xref: /linux/drivers/md/raid5.c (revision c39b9fd728d8173ecda993524089fbc38211a17f)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <trace/events/block.h>
57 
58 #include "md.h"
59 #include "raid5.h"
60 #include "raid0.h"
61 #include "bitmap.h"
62 
63 /*
64  * Stripe cache
65  */
66 
67 #define NR_STRIPES		256
68 #define STRIPE_SIZE		PAGE_SIZE
69 #define STRIPE_SHIFT		(PAGE_SHIFT - 9)
70 #define STRIPE_SECTORS		(STRIPE_SIZE>>9)
71 #define	IO_THRESHOLD		1
72 #define BYPASS_THRESHOLD	1
73 #define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
74 #define HASH_MASK		(NR_HASH - 1)
75 
76 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
77 {
78 	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
79 	return &conf->stripe_hashtbl[hash];
80 }
81 
82 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
83  * order without overlap.  There may be several bio's per stripe+device, and
84  * a bio could span several devices.
85  * When walking this list for a particular stripe+device, we must never proceed
86  * beyond a bio that extends past this device, as the next bio might no longer
87  * be valid.
88  * This function is used to determine the 'next' bio in the list, given the sector
89  * of the current stripe+device
90  */
91 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
92 {
93 	int sectors = bio->bi_size >> 9;
94 	if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
95 		return bio->bi_next;
96 	else
97 		return NULL;
98 }
99 
100 /*
101  * We maintain a biased count of active stripes in the bottom 16 bits of
102  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
103  */
104 static inline int raid5_bi_processed_stripes(struct bio *bio)
105 {
106 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
107 	return (atomic_read(segments) >> 16) & 0xffff;
108 }
109 
110 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
111 {
112 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
113 	return atomic_sub_return(1, segments) & 0xffff;
114 }
115 
116 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
117 {
118 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
119 	atomic_inc(segments);
120 }
121 
122 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
123 	unsigned int cnt)
124 {
125 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
126 	int old, new;
127 
128 	do {
129 		old = atomic_read(segments);
130 		new = (old & 0xffff) | (cnt << 16);
131 	} while (atomic_cmpxchg(segments, old, new) != old);
132 }
133 
134 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
135 {
136 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
137 	atomic_set(segments, cnt);
138 }
139 
140 /* Find first data disk in a raid6 stripe */
141 static inline int raid6_d0(struct stripe_head *sh)
142 {
143 	if (sh->ddf_layout)
144 		/* ddf always start from first device */
145 		return 0;
146 	/* md starts just after Q block */
147 	if (sh->qd_idx == sh->disks - 1)
148 		return 0;
149 	else
150 		return sh->qd_idx + 1;
151 }
152 static inline int raid6_next_disk(int disk, int raid_disks)
153 {
154 	disk++;
155 	return (disk < raid_disks) ? disk : 0;
156 }
157 
158 /* When walking through the disks in a raid5, starting at raid6_d0,
159  * We need to map each disk to a 'slot', where the data disks are slot
160  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
161  * is raid_disks-1.  This help does that mapping.
162  */
163 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
164 			     int *count, int syndrome_disks)
165 {
166 	int slot = *count;
167 
168 	if (sh->ddf_layout)
169 		(*count)++;
170 	if (idx == sh->pd_idx)
171 		return syndrome_disks;
172 	if (idx == sh->qd_idx)
173 		return syndrome_disks + 1;
174 	if (!sh->ddf_layout)
175 		(*count)++;
176 	return slot;
177 }
178 
179 static void return_io(struct bio *return_bi)
180 {
181 	struct bio *bi = return_bi;
182 	while (bi) {
183 
184 		return_bi = bi->bi_next;
185 		bi->bi_next = NULL;
186 		bi->bi_size = 0;
187 		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
188 					 bi, 0);
189 		bio_endio(bi, 0);
190 		bi = return_bi;
191 	}
192 }
193 
194 static void print_raid5_conf (struct r5conf *conf);
195 
196 static int stripe_operations_active(struct stripe_head *sh)
197 {
198 	return sh->check_state || sh->reconstruct_state ||
199 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
200 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
201 }
202 
203 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh)
204 {
205 	BUG_ON(!list_empty(&sh->lru));
206 	BUG_ON(atomic_read(&conf->active_stripes)==0);
207 	if (test_bit(STRIPE_HANDLE, &sh->state)) {
208 		if (test_bit(STRIPE_DELAYED, &sh->state) &&
209 		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
210 			list_add_tail(&sh->lru, &conf->delayed_list);
211 		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
212 			   sh->bm_seq - conf->seq_write > 0)
213 			list_add_tail(&sh->lru, &conf->bitmap_list);
214 		else {
215 			clear_bit(STRIPE_DELAYED, &sh->state);
216 			clear_bit(STRIPE_BIT_DELAY, &sh->state);
217 			list_add_tail(&sh->lru, &conf->handle_list);
218 		}
219 		md_wakeup_thread(conf->mddev->thread);
220 	} else {
221 		BUG_ON(stripe_operations_active(sh));
222 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
223 			if (atomic_dec_return(&conf->preread_active_stripes)
224 			    < IO_THRESHOLD)
225 				md_wakeup_thread(conf->mddev->thread);
226 		atomic_dec(&conf->active_stripes);
227 		if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
228 			list_add_tail(&sh->lru, &conf->inactive_list);
229 			wake_up(&conf->wait_for_stripe);
230 			if (conf->retry_read_aligned)
231 				md_wakeup_thread(conf->mddev->thread);
232 		}
233 	}
234 }
235 
236 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
237 {
238 	if (atomic_dec_and_test(&sh->count))
239 		do_release_stripe(conf, sh);
240 }
241 
242 static void release_stripe(struct stripe_head *sh)
243 {
244 	struct r5conf *conf = sh->raid_conf;
245 	unsigned long flags;
246 
247 	local_irq_save(flags);
248 	if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
249 		do_release_stripe(conf, sh);
250 		spin_unlock(&conf->device_lock);
251 	}
252 	local_irq_restore(flags);
253 }
254 
255 static inline void remove_hash(struct stripe_head *sh)
256 {
257 	pr_debug("remove_hash(), stripe %llu\n",
258 		(unsigned long long)sh->sector);
259 
260 	hlist_del_init(&sh->hash);
261 }
262 
263 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
264 {
265 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
266 
267 	pr_debug("insert_hash(), stripe %llu\n",
268 		(unsigned long long)sh->sector);
269 
270 	hlist_add_head(&sh->hash, hp);
271 }
272 
273 
274 /* find an idle stripe, make sure it is unhashed, and return it. */
275 static struct stripe_head *get_free_stripe(struct r5conf *conf)
276 {
277 	struct stripe_head *sh = NULL;
278 	struct list_head *first;
279 
280 	if (list_empty(&conf->inactive_list))
281 		goto out;
282 	first = conf->inactive_list.next;
283 	sh = list_entry(first, struct stripe_head, lru);
284 	list_del_init(first);
285 	remove_hash(sh);
286 	atomic_inc(&conf->active_stripes);
287 out:
288 	return sh;
289 }
290 
291 static void shrink_buffers(struct stripe_head *sh)
292 {
293 	struct page *p;
294 	int i;
295 	int num = sh->raid_conf->pool_size;
296 
297 	for (i = 0; i < num ; i++) {
298 		p = sh->dev[i].page;
299 		if (!p)
300 			continue;
301 		sh->dev[i].page = NULL;
302 		put_page(p);
303 	}
304 }
305 
306 static int grow_buffers(struct stripe_head *sh)
307 {
308 	int i;
309 	int num = sh->raid_conf->pool_size;
310 
311 	for (i = 0; i < num; i++) {
312 		struct page *page;
313 
314 		if (!(page = alloc_page(GFP_KERNEL))) {
315 			return 1;
316 		}
317 		sh->dev[i].page = page;
318 	}
319 	return 0;
320 }
321 
322 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
323 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
324 			    struct stripe_head *sh);
325 
326 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
327 {
328 	struct r5conf *conf = sh->raid_conf;
329 	int i;
330 
331 	BUG_ON(atomic_read(&sh->count) != 0);
332 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
333 	BUG_ON(stripe_operations_active(sh));
334 
335 	pr_debug("init_stripe called, stripe %llu\n",
336 		(unsigned long long)sh->sector);
337 
338 	remove_hash(sh);
339 
340 	sh->generation = conf->generation - previous;
341 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
342 	sh->sector = sector;
343 	stripe_set_idx(sector, conf, previous, sh);
344 	sh->state = 0;
345 
346 
347 	for (i = sh->disks; i--; ) {
348 		struct r5dev *dev = &sh->dev[i];
349 
350 		if (dev->toread || dev->read || dev->towrite || dev->written ||
351 		    test_bit(R5_LOCKED, &dev->flags)) {
352 			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
353 			       (unsigned long long)sh->sector, i, dev->toread,
354 			       dev->read, dev->towrite, dev->written,
355 			       test_bit(R5_LOCKED, &dev->flags));
356 			WARN_ON(1);
357 		}
358 		dev->flags = 0;
359 		raid5_build_block(sh, i, previous);
360 	}
361 	insert_hash(conf, sh);
362 }
363 
364 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
365 					 short generation)
366 {
367 	struct stripe_head *sh;
368 
369 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
370 	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
371 		if (sh->sector == sector && sh->generation == generation)
372 			return sh;
373 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
374 	return NULL;
375 }
376 
377 /*
378  * Need to check if array has failed when deciding whether to:
379  *  - start an array
380  *  - remove non-faulty devices
381  *  - add a spare
382  *  - allow a reshape
383  * This determination is simple when no reshape is happening.
384  * However if there is a reshape, we need to carefully check
385  * both the before and after sections.
386  * This is because some failed devices may only affect one
387  * of the two sections, and some non-in_sync devices may
388  * be insync in the section most affected by failed devices.
389  */
390 static int calc_degraded(struct r5conf *conf)
391 {
392 	int degraded, degraded2;
393 	int i;
394 
395 	rcu_read_lock();
396 	degraded = 0;
397 	for (i = 0; i < conf->previous_raid_disks; i++) {
398 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
399 		if (rdev && test_bit(Faulty, &rdev->flags))
400 			rdev = rcu_dereference(conf->disks[i].replacement);
401 		if (!rdev || test_bit(Faulty, &rdev->flags))
402 			degraded++;
403 		else if (test_bit(In_sync, &rdev->flags))
404 			;
405 		else
406 			/* not in-sync or faulty.
407 			 * If the reshape increases the number of devices,
408 			 * this is being recovered by the reshape, so
409 			 * this 'previous' section is not in_sync.
410 			 * If the number of devices is being reduced however,
411 			 * the device can only be part of the array if
412 			 * we are reverting a reshape, so this section will
413 			 * be in-sync.
414 			 */
415 			if (conf->raid_disks >= conf->previous_raid_disks)
416 				degraded++;
417 	}
418 	rcu_read_unlock();
419 	if (conf->raid_disks == conf->previous_raid_disks)
420 		return degraded;
421 	rcu_read_lock();
422 	degraded2 = 0;
423 	for (i = 0; i < conf->raid_disks; i++) {
424 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
425 		if (rdev && test_bit(Faulty, &rdev->flags))
426 			rdev = rcu_dereference(conf->disks[i].replacement);
427 		if (!rdev || test_bit(Faulty, &rdev->flags))
428 			degraded2++;
429 		else if (test_bit(In_sync, &rdev->flags))
430 			;
431 		else
432 			/* not in-sync or faulty.
433 			 * If reshape increases the number of devices, this
434 			 * section has already been recovered, else it
435 			 * almost certainly hasn't.
436 			 */
437 			if (conf->raid_disks <= conf->previous_raid_disks)
438 				degraded2++;
439 	}
440 	rcu_read_unlock();
441 	if (degraded2 > degraded)
442 		return degraded2;
443 	return degraded;
444 }
445 
446 static int has_failed(struct r5conf *conf)
447 {
448 	int degraded;
449 
450 	if (conf->mddev->reshape_position == MaxSector)
451 		return conf->mddev->degraded > conf->max_degraded;
452 
453 	degraded = calc_degraded(conf);
454 	if (degraded > conf->max_degraded)
455 		return 1;
456 	return 0;
457 }
458 
459 static struct stripe_head *
460 get_active_stripe(struct r5conf *conf, sector_t sector,
461 		  int previous, int noblock, int noquiesce)
462 {
463 	struct stripe_head *sh;
464 
465 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
466 
467 	spin_lock_irq(&conf->device_lock);
468 
469 	do {
470 		wait_event_lock_irq(conf->wait_for_stripe,
471 				    conf->quiesce == 0 || noquiesce,
472 				    conf->device_lock);
473 		sh = __find_stripe(conf, sector, conf->generation - previous);
474 		if (!sh) {
475 			if (!conf->inactive_blocked)
476 				sh = get_free_stripe(conf);
477 			if (noblock && sh == NULL)
478 				break;
479 			if (!sh) {
480 				conf->inactive_blocked = 1;
481 				wait_event_lock_irq(conf->wait_for_stripe,
482 						    !list_empty(&conf->inactive_list) &&
483 						    (atomic_read(&conf->active_stripes)
484 						     < (conf->max_nr_stripes *3/4)
485 						     || !conf->inactive_blocked),
486 						    conf->device_lock);
487 				conf->inactive_blocked = 0;
488 			} else
489 				init_stripe(sh, sector, previous);
490 		} else {
491 			if (atomic_read(&sh->count)) {
492 				BUG_ON(!list_empty(&sh->lru)
493 				    && !test_bit(STRIPE_EXPANDING, &sh->state)
494 				    && !test_bit(STRIPE_ON_UNPLUG_LIST, &sh->state));
495 			} else {
496 				if (!test_bit(STRIPE_HANDLE, &sh->state))
497 					atomic_inc(&conf->active_stripes);
498 				if (list_empty(&sh->lru) &&
499 				    !test_bit(STRIPE_EXPANDING, &sh->state))
500 					BUG();
501 				list_del_init(&sh->lru);
502 			}
503 		}
504 	} while (sh == NULL);
505 
506 	if (sh)
507 		atomic_inc(&sh->count);
508 
509 	spin_unlock_irq(&conf->device_lock);
510 	return sh;
511 }
512 
513 /* Determine if 'data_offset' or 'new_data_offset' should be used
514  * in this stripe_head.
515  */
516 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
517 {
518 	sector_t progress = conf->reshape_progress;
519 	/* Need a memory barrier to make sure we see the value
520 	 * of conf->generation, or ->data_offset that was set before
521 	 * reshape_progress was updated.
522 	 */
523 	smp_rmb();
524 	if (progress == MaxSector)
525 		return 0;
526 	if (sh->generation == conf->generation - 1)
527 		return 0;
528 	/* We are in a reshape, and this is a new-generation stripe,
529 	 * so use new_data_offset.
530 	 */
531 	return 1;
532 }
533 
534 static void
535 raid5_end_read_request(struct bio *bi, int error);
536 static void
537 raid5_end_write_request(struct bio *bi, int error);
538 
539 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
540 {
541 	struct r5conf *conf = sh->raid_conf;
542 	int i, disks = sh->disks;
543 
544 	might_sleep();
545 
546 	for (i = disks; i--; ) {
547 		int rw;
548 		int replace_only = 0;
549 		struct bio *bi, *rbi;
550 		struct md_rdev *rdev, *rrdev = NULL;
551 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
552 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
553 				rw = WRITE_FUA;
554 			else
555 				rw = WRITE;
556 			if (test_bit(R5_Discard, &sh->dev[i].flags))
557 				rw |= REQ_DISCARD;
558 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
559 			rw = READ;
560 		else if (test_and_clear_bit(R5_WantReplace,
561 					    &sh->dev[i].flags)) {
562 			rw = WRITE;
563 			replace_only = 1;
564 		} else
565 			continue;
566 		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
567 			rw |= REQ_SYNC;
568 
569 		bi = &sh->dev[i].req;
570 		rbi = &sh->dev[i].rreq; /* For writing to replacement */
571 
572 		bi->bi_rw = rw;
573 		rbi->bi_rw = rw;
574 		if (rw & WRITE) {
575 			bi->bi_end_io = raid5_end_write_request;
576 			rbi->bi_end_io = raid5_end_write_request;
577 		} else
578 			bi->bi_end_io = raid5_end_read_request;
579 
580 		rcu_read_lock();
581 		rrdev = rcu_dereference(conf->disks[i].replacement);
582 		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
583 		rdev = rcu_dereference(conf->disks[i].rdev);
584 		if (!rdev) {
585 			rdev = rrdev;
586 			rrdev = NULL;
587 		}
588 		if (rw & WRITE) {
589 			if (replace_only)
590 				rdev = NULL;
591 			if (rdev == rrdev)
592 				/* We raced and saw duplicates */
593 				rrdev = NULL;
594 		} else {
595 			if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
596 				rdev = rrdev;
597 			rrdev = NULL;
598 		}
599 
600 		if (rdev && test_bit(Faulty, &rdev->flags))
601 			rdev = NULL;
602 		if (rdev)
603 			atomic_inc(&rdev->nr_pending);
604 		if (rrdev && test_bit(Faulty, &rrdev->flags))
605 			rrdev = NULL;
606 		if (rrdev)
607 			atomic_inc(&rrdev->nr_pending);
608 		rcu_read_unlock();
609 
610 		/* We have already checked bad blocks for reads.  Now
611 		 * need to check for writes.  We never accept write errors
612 		 * on the replacement, so we don't to check rrdev.
613 		 */
614 		while ((rw & WRITE) && rdev &&
615 		       test_bit(WriteErrorSeen, &rdev->flags)) {
616 			sector_t first_bad;
617 			int bad_sectors;
618 			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
619 					      &first_bad, &bad_sectors);
620 			if (!bad)
621 				break;
622 
623 			if (bad < 0) {
624 				set_bit(BlockedBadBlocks, &rdev->flags);
625 				if (!conf->mddev->external &&
626 				    conf->mddev->flags) {
627 					/* It is very unlikely, but we might
628 					 * still need to write out the
629 					 * bad block log - better give it
630 					 * a chance*/
631 					md_check_recovery(conf->mddev);
632 				}
633 				/*
634 				 * Because md_wait_for_blocked_rdev
635 				 * will dec nr_pending, we must
636 				 * increment it first.
637 				 */
638 				atomic_inc(&rdev->nr_pending);
639 				md_wait_for_blocked_rdev(rdev, conf->mddev);
640 			} else {
641 				/* Acknowledged bad block - skip the write */
642 				rdev_dec_pending(rdev, conf->mddev);
643 				rdev = NULL;
644 			}
645 		}
646 
647 		if (rdev) {
648 			if (s->syncing || s->expanding || s->expanded
649 			    || s->replacing)
650 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
651 
652 			set_bit(STRIPE_IO_STARTED, &sh->state);
653 
654 			bi->bi_bdev = rdev->bdev;
655 			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
656 				__func__, (unsigned long long)sh->sector,
657 				bi->bi_rw, i);
658 			atomic_inc(&sh->count);
659 			if (use_new_offset(conf, sh))
660 				bi->bi_sector = (sh->sector
661 						 + rdev->new_data_offset);
662 			else
663 				bi->bi_sector = (sh->sector
664 						 + rdev->data_offset);
665 			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
666 				bi->bi_rw |= REQ_FLUSH;
667 
668 			bi->bi_flags = 1 << BIO_UPTODATE;
669 			bi->bi_idx = 0;
670 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
671 			bi->bi_io_vec[0].bv_offset = 0;
672 			bi->bi_size = STRIPE_SIZE;
673 			bi->bi_next = NULL;
674 			if (rrdev)
675 				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
676 
677 			if (conf->mddev->gendisk)
678 				trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
679 						      bi, disk_devt(conf->mddev->gendisk),
680 						      sh->dev[i].sector);
681 			generic_make_request(bi);
682 		}
683 		if (rrdev) {
684 			if (s->syncing || s->expanding || s->expanded
685 			    || s->replacing)
686 				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
687 
688 			set_bit(STRIPE_IO_STARTED, &sh->state);
689 
690 			rbi->bi_bdev = rrdev->bdev;
691 			pr_debug("%s: for %llu schedule op %ld on "
692 				 "replacement disc %d\n",
693 				__func__, (unsigned long long)sh->sector,
694 				rbi->bi_rw, i);
695 			atomic_inc(&sh->count);
696 			if (use_new_offset(conf, sh))
697 				rbi->bi_sector = (sh->sector
698 						  + rrdev->new_data_offset);
699 			else
700 				rbi->bi_sector = (sh->sector
701 						  + rrdev->data_offset);
702 			rbi->bi_flags = 1 << BIO_UPTODATE;
703 			rbi->bi_idx = 0;
704 			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
705 			rbi->bi_io_vec[0].bv_offset = 0;
706 			rbi->bi_size = STRIPE_SIZE;
707 			rbi->bi_next = NULL;
708 			if (conf->mddev->gendisk)
709 				trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
710 						      rbi, disk_devt(conf->mddev->gendisk),
711 						      sh->dev[i].sector);
712 			generic_make_request(rbi);
713 		}
714 		if (!rdev && !rrdev) {
715 			if (rw & WRITE)
716 				set_bit(STRIPE_DEGRADED, &sh->state);
717 			pr_debug("skip op %ld on disc %d for sector %llu\n",
718 				bi->bi_rw, i, (unsigned long long)sh->sector);
719 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
720 			set_bit(STRIPE_HANDLE, &sh->state);
721 		}
722 	}
723 }
724 
725 static struct dma_async_tx_descriptor *
726 async_copy_data(int frombio, struct bio *bio, struct page *page,
727 	sector_t sector, struct dma_async_tx_descriptor *tx)
728 {
729 	struct bio_vec *bvl;
730 	struct page *bio_page;
731 	int i;
732 	int page_offset;
733 	struct async_submit_ctl submit;
734 	enum async_tx_flags flags = 0;
735 
736 	if (bio->bi_sector >= sector)
737 		page_offset = (signed)(bio->bi_sector - sector) * 512;
738 	else
739 		page_offset = (signed)(sector - bio->bi_sector) * -512;
740 
741 	if (frombio)
742 		flags |= ASYNC_TX_FENCE;
743 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
744 
745 	bio_for_each_segment(bvl, bio, i) {
746 		int len = bvl->bv_len;
747 		int clen;
748 		int b_offset = 0;
749 
750 		if (page_offset < 0) {
751 			b_offset = -page_offset;
752 			page_offset += b_offset;
753 			len -= b_offset;
754 		}
755 
756 		if (len > 0 && page_offset + len > STRIPE_SIZE)
757 			clen = STRIPE_SIZE - page_offset;
758 		else
759 			clen = len;
760 
761 		if (clen > 0) {
762 			b_offset += bvl->bv_offset;
763 			bio_page = bvl->bv_page;
764 			if (frombio)
765 				tx = async_memcpy(page, bio_page, page_offset,
766 						  b_offset, clen, &submit);
767 			else
768 				tx = async_memcpy(bio_page, page, b_offset,
769 						  page_offset, clen, &submit);
770 		}
771 		/* chain the operations */
772 		submit.depend_tx = tx;
773 
774 		if (clen < len) /* hit end of page */
775 			break;
776 		page_offset +=  len;
777 	}
778 
779 	return tx;
780 }
781 
782 static void ops_complete_biofill(void *stripe_head_ref)
783 {
784 	struct stripe_head *sh = stripe_head_ref;
785 	struct bio *return_bi = NULL;
786 	int i;
787 
788 	pr_debug("%s: stripe %llu\n", __func__,
789 		(unsigned long long)sh->sector);
790 
791 	/* clear completed biofills */
792 	for (i = sh->disks; i--; ) {
793 		struct r5dev *dev = &sh->dev[i];
794 
795 		/* acknowledge completion of a biofill operation */
796 		/* and check if we need to reply to a read request,
797 		 * new R5_Wantfill requests are held off until
798 		 * !STRIPE_BIOFILL_RUN
799 		 */
800 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
801 			struct bio *rbi, *rbi2;
802 
803 			BUG_ON(!dev->read);
804 			rbi = dev->read;
805 			dev->read = NULL;
806 			while (rbi && rbi->bi_sector <
807 				dev->sector + STRIPE_SECTORS) {
808 				rbi2 = r5_next_bio(rbi, dev->sector);
809 				if (!raid5_dec_bi_active_stripes(rbi)) {
810 					rbi->bi_next = return_bi;
811 					return_bi = rbi;
812 				}
813 				rbi = rbi2;
814 			}
815 		}
816 	}
817 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
818 
819 	return_io(return_bi);
820 
821 	set_bit(STRIPE_HANDLE, &sh->state);
822 	release_stripe(sh);
823 }
824 
825 static void ops_run_biofill(struct stripe_head *sh)
826 {
827 	struct dma_async_tx_descriptor *tx = NULL;
828 	struct async_submit_ctl submit;
829 	int i;
830 
831 	pr_debug("%s: stripe %llu\n", __func__,
832 		(unsigned long long)sh->sector);
833 
834 	for (i = sh->disks; i--; ) {
835 		struct r5dev *dev = &sh->dev[i];
836 		if (test_bit(R5_Wantfill, &dev->flags)) {
837 			struct bio *rbi;
838 			spin_lock_irq(&sh->stripe_lock);
839 			dev->read = rbi = dev->toread;
840 			dev->toread = NULL;
841 			spin_unlock_irq(&sh->stripe_lock);
842 			while (rbi && rbi->bi_sector <
843 				dev->sector + STRIPE_SECTORS) {
844 				tx = async_copy_data(0, rbi, dev->page,
845 					dev->sector, tx);
846 				rbi = r5_next_bio(rbi, dev->sector);
847 			}
848 		}
849 	}
850 
851 	atomic_inc(&sh->count);
852 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
853 	async_trigger_callback(&submit);
854 }
855 
856 static void mark_target_uptodate(struct stripe_head *sh, int target)
857 {
858 	struct r5dev *tgt;
859 
860 	if (target < 0)
861 		return;
862 
863 	tgt = &sh->dev[target];
864 	set_bit(R5_UPTODATE, &tgt->flags);
865 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
866 	clear_bit(R5_Wantcompute, &tgt->flags);
867 }
868 
869 static void ops_complete_compute(void *stripe_head_ref)
870 {
871 	struct stripe_head *sh = stripe_head_ref;
872 
873 	pr_debug("%s: stripe %llu\n", __func__,
874 		(unsigned long long)sh->sector);
875 
876 	/* mark the computed target(s) as uptodate */
877 	mark_target_uptodate(sh, sh->ops.target);
878 	mark_target_uptodate(sh, sh->ops.target2);
879 
880 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
881 	if (sh->check_state == check_state_compute_run)
882 		sh->check_state = check_state_compute_result;
883 	set_bit(STRIPE_HANDLE, &sh->state);
884 	release_stripe(sh);
885 }
886 
887 /* return a pointer to the address conversion region of the scribble buffer */
888 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
889 				 struct raid5_percpu *percpu)
890 {
891 	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
892 }
893 
894 static struct dma_async_tx_descriptor *
895 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
896 {
897 	int disks = sh->disks;
898 	struct page **xor_srcs = percpu->scribble;
899 	int target = sh->ops.target;
900 	struct r5dev *tgt = &sh->dev[target];
901 	struct page *xor_dest = tgt->page;
902 	int count = 0;
903 	struct dma_async_tx_descriptor *tx;
904 	struct async_submit_ctl submit;
905 	int i;
906 
907 	pr_debug("%s: stripe %llu block: %d\n",
908 		__func__, (unsigned long long)sh->sector, target);
909 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
910 
911 	for (i = disks; i--; )
912 		if (i != target)
913 			xor_srcs[count++] = sh->dev[i].page;
914 
915 	atomic_inc(&sh->count);
916 
917 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
918 			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
919 	if (unlikely(count == 1))
920 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
921 	else
922 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
923 
924 	return tx;
925 }
926 
927 /* set_syndrome_sources - populate source buffers for gen_syndrome
928  * @srcs - (struct page *) array of size sh->disks
929  * @sh - stripe_head to parse
930  *
931  * Populates srcs in proper layout order for the stripe and returns the
932  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
933  * destination buffer is recorded in srcs[count] and the Q destination
934  * is recorded in srcs[count+1]].
935  */
936 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
937 {
938 	int disks = sh->disks;
939 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
940 	int d0_idx = raid6_d0(sh);
941 	int count;
942 	int i;
943 
944 	for (i = 0; i < disks; i++)
945 		srcs[i] = NULL;
946 
947 	count = 0;
948 	i = d0_idx;
949 	do {
950 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
951 
952 		srcs[slot] = sh->dev[i].page;
953 		i = raid6_next_disk(i, disks);
954 	} while (i != d0_idx);
955 
956 	return syndrome_disks;
957 }
958 
959 static struct dma_async_tx_descriptor *
960 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
961 {
962 	int disks = sh->disks;
963 	struct page **blocks = percpu->scribble;
964 	int target;
965 	int qd_idx = sh->qd_idx;
966 	struct dma_async_tx_descriptor *tx;
967 	struct async_submit_ctl submit;
968 	struct r5dev *tgt;
969 	struct page *dest;
970 	int i;
971 	int count;
972 
973 	if (sh->ops.target < 0)
974 		target = sh->ops.target2;
975 	else if (sh->ops.target2 < 0)
976 		target = sh->ops.target;
977 	else
978 		/* we should only have one valid target */
979 		BUG();
980 	BUG_ON(target < 0);
981 	pr_debug("%s: stripe %llu block: %d\n",
982 		__func__, (unsigned long long)sh->sector, target);
983 
984 	tgt = &sh->dev[target];
985 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
986 	dest = tgt->page;
987 
988 	atomic_inc(&sh->count);
989 
990 	if (target == qd_idx) {
991 		count = set_syndrome_sources(blocks, sh);
992 		blocks[count] = NULL; /* regenerating p is not necessary */
993 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
994 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
995 				  ops_complete_compute, sh,
996 				  to_addr_conv(sh, percpu));
997 		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
998 	} else {
999 		/* Compute any data- or p-drive using XOR */
1000 		count = 0;
1001 		for (i = disks; i-- ; ) {
1002 			if (i == target || i == qd_idx)
1003 				continue;
1004 			blocks[count++] = sh->dev[i].page;
1005 		}
1006 
1007 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1008 				  NULL, ops_complete_compute, sh,
1009 				  to_addr_conv(sh, percpu));
1010 		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1011 	}
1012 
1013 	return tx;
1014 }
1015 
1016 static struct dma_async_tx_descriptor *
1017 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1018 {
1019 	int i, count, disks = sh->disks;
1020 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1021 	int d0_idx = raid6_d0(sh);
1022 	int faila = -1, failb = -1;
1023 	int target = sh->ops.target;
1024 	int target2 = sh->ops.target2;
1025 	struct r5dev *tgt = &sh->dev[target];
1026 	struct r5dev *tgt2 = &sh->dev[target2];
1027 	struct dma_async_tx_descriptor *tx;
1028 	struct page **blocks = percpu->scribble;
1029 	struct async_submit_ctl submit;
1030 
1031 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1032 		 __func__, (unsigned long long)sh->sector, target, target2);
1033 	BUG_ON(target < 0 || target2 < 0);
1034 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1035 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1036 
1037 	/* we need to open-code set_syndrome_sources to handle the
1038 	 * slot number conversion for 'faila' and 'failb'
1039 	 */
1040 	for (i = 0; i < disks ; i++)
1041 		blocks[i] = NULL;
1042 	count = 0;
1043 	i = d0_idx;
1044 	do {
1045 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1046 
1047 		blocks[slot] = sh->dev[i].page;
1048 
1049 		if (i == target)
1050 			faila = slot;
1051 		if (i == target2)
1052 			failb = slot;
1053 		i = raid6_next_disk(i, disks);
1054 	} while (i != d0_idx);
1055 
1056 	BUG_ON(faila == failb);
1057 	if (failb < faila)
1058 		swap(faila, failb);
1059 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1060 		 __func__, (unsigned long long)sh->sector, faila, failb);
1061 
1062 	atomic_inc(&sh->count);
1063 
1064 	if (failb == syndrome_disks+1) {
1065 		/* Q disk is one of the missing disks */
1066 		if (faila == syndrome_disks) {
1067 			/* Missing P+Q, just recompute */
1068 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1069 					  ops_complete_compute, sh,
1070 					  to_addr_conv(sh, percpu));
1071 			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1072 						  STRIPE_SIZE, &submit);
1073 		} else {
1074 			struct page *dest;
1075 			int data_target;
1076 			int qd_idx = sh->qd_idx;
1077 
1078 			/* Missing D+Q: recompute D from P, then recompute Q */
1079 			if (target == qd_idx)
1080 				data_target = target2;
1081 			else
1082 				data_target = target;
1083 
1084 			count = 0;
1085 			for (i = disks; i-- ; ) {
1086 				if (i == data_target || i == qd_idx)
1087 					continue;
1088 				blocks[count++] = sh->dev[i].page;
1089 			}
1090 			dest = sh->dev[data_target].page;
1091 			init_async_submit(&submit,
1092 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1093 					  NULL, NULL, NULL,
1094 					  to_addr_conv(sh, percpu));
1095 			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1096 				       &submit);
1097 
1098 			count = set_syndrome_sources(blocks, sh);
1099 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1100 					  ops_complete_compute, sh,
1101 					  to_addr_conv(sh, percpu));
1102 			return async_gen_syndrome(blocks, 0, count+2,
1103 						  STRIPE_SIZE, &submit);
1104 		}
1105 	} else {
1106 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1107 				  ops_complete_compute, sh,
1108 				  to_addr_conv(sh, percpu));
1109 		if (failb == syndrome_disks) {
1110 			/* We're missing D+P. */
1111 			return async_raid6_datap_recov(syndrome_disks+2,
1112 						       STRIPE_SIZE, faila,
1113 						       blocks, &submit);
1114 		} else {
1115 			/* We're missing D+D. */
1116 			return async_raid6_2data_recov(syndrome_disks+2,
1117 						       STRIPE_SIZE, faila, failb,
1118 						       blocks, &submit);
1119 		}
1120 	}
1121 }
1122 
1123 
1124 static void ops_complete_prexor(void *stripe_head_ref)
1125 {
1126 	struct stripe_head *sh = stripe_head_ref;
1127 
1128 	pr_debug("%s: stripe %llu\n", __func__,
1129 		(unsigned long long)sh->sector);
1130 }
1131 
1132 static struct dma_async_tx_descriptor *
1133 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1134 	       struct dma_async_tx_descriptor *tx)
1135 {
1136 	int disks = sh->disks;
1137 	struct page **xor_srcs = percpu->scribble;
1138 	int count = 0, pd_idx = sh->pd_idx, i;
1139 	struct async_submit_ctl submit;
1140 
1141 	/* existing parity data subtracted */
1142 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1143 
1144 	pr_debug("%s: stripe %llu\n", __func__,
1145 		(unsigned long long)sh->sector);
1146 
1147 	for (i = disks; i--; ) {
1148 		struct r5dev *dev = &sh->dev[i];
1149 		/* Only process blocks that are known to be uptodate */
1150 		if (test_bit(R5_Wantdrain, &dev->flags))
1151 			xor_srcs[count++] = dev->page;
1152 	}
1153 
1154 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1155 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1156 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1157 
1158 	return tx;
1159 }
1160 
1161 static struct dma_async_tx_descriptor *
1162 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1163 {
1164 	int disks = sh->disks;
1165 	int i;
1166 
1167 	pr_debug("%s: stripe %llu\n", __func__,
1168 		(unsigned long long)sh->sector);
1169 
1170 	for (i = disks; i--; ) {
1171 		struct r5dev *dev = &sh->dev[i];
1172 		struct bio *chosen;
1173 
1174 		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1175 			struct bio *wbi;
1176 
1177 			spin_lock_irq(&sh->stripe_lock);
1178 			chosen = dev->towrite;
1179 			dev->towrite = NULL;
1180 			BUG_ON(dev->written);
1181 			wbi = dev->written = chosen;
1182 			spin_unlock_irq(&sh->stripe_lock);
1183 
1184 			while (wbi && wbi->bi_sector <
1185 				dev->sector + STRIPE_SECTORS) {
1186 				if (wbi->bi_rw & REQ_FUA)
1187 					set_bit(R5_WantFUA, &dev->flags);
1188 				if (wbi->bi_rw & REQ_SYNC)
1189 					set_bit(R5_SyncIO, &dev->flags);
1190 				if (wbi->bi_rw & REQ_DISCARD)
1191 					set_bit(R5_Discard, &dev->flags);
1192 				else
1193 					tx = async_copy_data(1, wbi, dev->page,
1194 						dev->sector, tx);
1195 				wbi = r5_next_bio(wbi, dev->sector);
1196 			}
1197 		}
1198 	}
1199 
1200 	return tx;
1201 }
1202 
1203 static void ops_complete_reconstruct(void *stripe_head_ref)
1204 {
1205 	struct stripe_head *sh = stripe_head_ref;
1206 	int disks = sh->disks;
1207 	int pd_idx = sh->pd_idx;
1208 	int qd_idx = sh->qd_idx;
1209 	int i;
1210 	bool fua = false, sync = false, discard = false;
1211 
1212 	pr_debug("%s: stripe %llu\n", __func__,
1213 		(unsigned long long)sh->sector);
1214 
1215 	for (i = disks; i--; ) {
1216 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1217 		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1218 		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1219 	}
1220 
1221 	for (i = disks; i--; ) {
1222 		struct r5dev *dev = &sh->dev[i];
1223 
1224 		if (dev->written || i == pd_idx || i == qd_idx) {
1225 			if (!discard)
1226 				set_bit(R5_UPTODATE, &dev->flags);
1227 			if (fua)
1228 				set_bit(R5_WantFUA, &dev->flags);
1229 			if (sync)
1230 				set_bit(R5_SyncIO, &dev->flags);
1231 		}
1232 	}
1233 
1234 	if (sh->reconstruct_state == reconstruct_state_drain_run)
1235 		sh->reconstruct_state = reconstruct_state_drain_result;
1236 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1237 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1238 	else {
1239 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1240 		sh->reconstruct_state = reconstruct_state_result;
1241 	}
1242 
1243 	set_bit(STRIPE_HANDLE, &sh->state);
1244 	release_stripe(sh);
1245 }
1246 
1247 static void
1248 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1249 		     struct dma_async_tx_descriptor *tx)
1250 {
1251 	int disks = sh->disks;
1252 	struct page **xor_srcs = percpu->scribble;
1253 	struct async_submit_ctl submit;
1254 	int count = 0, pd_idx = sh->pd_idx, i;
1255 	struct page *xor_dest;
1256 	int prexor = 0;
1257 	unsigned long flags;
1258 
1259 	pr_debug("%s: stripe %llu\n", __func__,
1260 		(unsigned long long)sh->sector);
1261 
1262 	for (i = 0; i < sh->disks; i++) {
1263 		if (pd_idx == i)
1264 			continue;
1265 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1266 			break;
1267 	}
1268 	if (i >= sh->disks) {
1269 		atomic_inc(&sh->count);
1270 		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1271 		ops_complete_reconstruct(sh);
1272 		return;
1273 	}
1274 	/* check if prexor is active which means only process blocks
1275 	 * that are part of a read-modify-write (written)
1276 	 */
1277 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1278 		prexor = 1;
1279 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1280 		for (i = disks; i--; ) {
1281 			struct r5dev *dev = &sh->dev[i];
1282 			if (dev->written)
1283 				xor_srcs[count++] = dev->page;
1284 		}
1285 	} else {
1286 		xor_dest = sh->dev[pd_idx].page;
1287 		for (i = disks; i--; ) {
1288 			struct r5dev *dev = &sh->dev[i];
1289 			if (i != pd_idx)
1290 				xor_srcs[count++] = dev->page;
1291 		}
1292 	}
1293 
1294 	/* 1/ if we prexor'd then the dest is reused as a source
1295 	 * 2/ if we did not prexor then we are redoing the parity
1296 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1297 	 * for the synchronous xor case
1298 	 */
1299 	flags = ASYNC_TX_ACK |
1300 		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1301 
1302 	atomic_inc(&sh->count);
1303 
1304 	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1305 			  to_addr_conv(sh, percpu));
1306 	if (unlikely(count == 1))
1307 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1308 	else
1309 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1310 }
1311 
1312 static void
1313 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1314 		     struct dma_async_tx_descriptor *tx)
1315 {
1316 	struct async_submit_ctl submit;
1317 	struct page **blocks = percpu->scribble;
1318 	int count, i;
1319 
1320 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1321 
1322 	for (i = 0; i < sh->disks; i++) {
1323 		if (sh->pd_idx == i || sh->qd_idx == i)
1324 			continue;
1325 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1326 			break;
1327 	}
1328 	if (i >= sh->disks) {
1329 		atomic_inc(&sh->count);
1330 		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1331 		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1332 		ops_complete_reconstruct(sh);
1333 		return;
1334 	}
1335 
1336 	count = set_syndrome_sources(blocks, sh);
1337 
1338 	atomic_inc(&sh->count);
1339 
1340 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1341 			  sh, to_addr_conv(sh, percpu));
1342 	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1343 }
1344 
1345 static void ops_complete_check(void *stripe_head_ref)
1346 {
1347 	struct stripe_head *sh = stripe_head_ref;
1348 
1349 	pr_debug("%s: stripe %llu\n", __func__,
1350 		(unsigned long long)sh->sector);
1351 
1352 	sh->check_state = check_state_check_result;
1353 	set_bit(STRIPE_HANDLE, &sh->state);
1354 	release_stripe(sh);
1355 }
1356 
1357 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1358 {
1359 	int disks = sh->disks;
1360 	int pd_idx = sh->pd_idx;
1361 	int qd_idx = sh->qd_idx;
1362 	struct page *xor_dest;
1363 	struct page **xor_srcs = percpu->scribble;
1364 	struct dma_async_tx_descriptor *tx;
1365 	struct async_submit_ctl submit;
1366 	int count;
1367 	int i;
1368 
1369 	pr_debug("%s: stripe %llu\n", __func__,
1370 		(unsigned long long)sh->sector);
1371 
1372 	count = 0;
1373 	xor_dest = sh->dev[pd_idx].page;
1374 	xor_srcs[count++] = xor_dest;
1375 	for (i = disks; i--; ) {
1376 		if (i == pd_idx || i == qd_idx)
1377 			continue;
1378 		xor_srcs[count++] = sh->dev[i].page;
1379 	}
1380 
1381 	init_async_submit(&submit, 0, NULL, NULL, NULL,
1382 			  to_addr_conv(sh, percpu));
1383 	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1384 			   &sh->ops.zero_sum_result, &submit);
1385 
1386 	atomic_inc(&sh->count);
1387 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1388 	tx = async_trigger_callback(&submit);
1389 }
1390 
1391 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1392 {
1393 	struct page **srcs = percpu->scribble;
1394 	struct async_submit_ctl submit;
1395 	int count;
1396 
1397 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1398 		(unsigned long long)sh->sector, checkp);
1399 
1400 	count = set_syndrome_sources(srcs, sh);
1401 	if (!checkp)
1402 		srcs[count] = NULL;
1403 
1404 	atomic_inc(&sh->count);
1405 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1406 			  sh, to_addr_conv(sh, percpu));
1407 	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1408 			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1409 }
1410 
1411 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1412 {
1413 	int overlap_clear = 0, i, disks = sh->disks;
1414 	struct dma_async_tx_descriptor *tx = NULL;
1415 	struct r5conf *conf = sh->raid_conf;
1416 	int level = conf->level;
1417 	struct raid5_percpu *percpu;
1418 	unsigned long cpu;
1419 
1420 	cpu = get_cpu();
1421 	percpu = per_cpu_ptr(conf->percpu, cpu);
1422 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1423 		ops_run_biofill(sh);
1424 		overlap_clear++;
1425 	}
1426 
1427 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1428 		if (level < 6)
1429 			tx = ops_run_compute5(sh, percpu);
1430 		else {
1431 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
1432 				tx = ops_run_compute6_1(sh, percpu);
1433 			else
1434 				tx = ops_run_compute6_2(sh, percpu);
1435 		}
1436 		/* terminate the chain if reconstruct is not set to be run */
1437 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1438 			async_tx_ack(tx);
1439 	}
1440 
1441 	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1442 		tx = ops_run_prexor(sh, percpu, tx);
1443 
1444 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1445 		tx = ops_run_biodrain(sh, tx);
1446 		overlap_clear++;
1447 	}
1448 
1449 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1450 		if (level < 6)
1451 			ops_run_reconstruct5(sh, percpu, tx);
1452 		else
1453 			ops_run_reconstruct6(sh, percpu, tx);
1454 	}
1455 
1456 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1457 		if (sh->check_state == check_state_run)
1458 			ops_run_check_p(sh, percpu);
1459 		else if (sh->check_state == check_state_run_q)
1460 			ops_run_check_pq(sh, percpu, 0);
1461 		else if (sh->check_state == check_state_run_pq)
1462 			ops_run_check_pq(sh, percpu, 1);
1463 		else
1464 			BUG();
1465 	}
1466 
1467 	if (overlap_clear)
1468 		for (i = disks; i--; ) {
1469 			struct r5dev *dev = &sh->dev[i];
1470 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
1471 				wake_up(&sh->raid_conf->wait_for_overlap);
1472 		}
1473 	put_cpu();
1474 }
1475 
1476 static int grow_one_stripe(struct r5conf *conf)
1477 {
1478 	struct stripe_head *sh;
1479 	sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1480 	if (!sh)
1481 		return 0;
1482 
1483 	sh->raid_conf = conf;
1484 
1485 	spin_lock_init(&sh->stripe_lock);
1486 
1487 	if (grow_buffers(sh)) {
1488 		shrink_buffers(sh);
1489 		kmem_cache_free(conf->slab_cache, sh);
1490 		return 0;
1491 	}
1492 	/* we just created an active stripe so... */
1493 	atomic_set(&sh->count, 1);
1494 	atomic_inc(&conf->active_stripes);
1495 	INIT_LIST_HEAD(&sh->lru);
1496 	release_stripe(sh);
1497 	return 1;
1498 }
1499 
1500 static int grow_stripes(struct r5conf *conf, int num)
1501 {
1502 	struct kmem_cache *sc;
1503 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
1504 
1505 	if (conf->mddev->gendisk)
1506 		sprintf(conf->cache_name[0],
1507 			"raid%d-%s", conf->level, mdname(conf->mddev));
1508 	else
1509 		sprintf(conf->cache_name[0],
1510 			"raid%d-%p", conf->level, conf->mddev);
1511 	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1512 
1513 	conf->active_name = 0;
1514 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
1515 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1516 			       0, 0, NULL);
1517 	if (!sc)
1518 		return 1;
1519 	conf->slab_cache = sc;
1520 	conf->pool_size = devs;
1521 	while (num--)
1522 		if (!grow_one_stripe(conf))
1523 			return 1;
1524 	return 0;
1525 }
1526 
1527 /**
1528  * scribble_len - return the required size of the scribble region
1529  * @num - total number of disks in the array
1530  *
1531  * The size must be enough to contain:
1532  * 1/ a struct page pointer for each device in the array +2
1533  * 2/ room to convert each entry in (1) to its corresponding dma
1534  *    (dma_map_page()) or page (page_address()) address.
1535  *
1536  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1537  * calculate over all devices (not just the data blocks), using zeros in place
1538  * of the P and Q blocks.
1539  */
1540 static size_t scribble_len(int num)
1541 {
1542 	size_t len;
1543 
1544 	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1545 
1546 	return len;
1547 }
1548 
1549 static int resize_stripes(struct r5conf *conf, int newsize)
1550 {
1551 	/* Make all the stripes able to hold 'newsize' devices.
1552 	 * New slots in each stripe get 'page' set to a new page.
1553 	 *
1554 	 * This happens in stages:
1555 	 * 1/ create a new kmem_cache and allocate the required number of
1556 	 *    stripe_heads.
1557 	 * 2/ gather all the old stripe_heads and transfer the pages across
1558 	 *    to the new stripe_heads.  This will have the side effect of
1559 	 *    freezing the array as once all stripe_heads have been collected,
1560 	 *    no IO will be possible.  Old stripe heads are freed once their
1561 	 *    pages have been transferred over, and the old kmem_cache is
1562 	 *    freed when all stripes are done.
1563 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1564 	 *    we simple return a failre status - no need to clean anything up.
1565 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
1566 	 *    If this fails, we don't bother trying the shrink the
1567 	 *    stripe_heads down again, we just leave them as they are.
1568 	 *    As each stripe_head is processed the new one is released into
1569 	 *    active service.
1570 	 *
1571 	 * Once step2 is started, we cannot afford to wait for a write,
1572 	 * so we use GFP_NOIO allocations.
1573 	 */
1574 	struct stripe_head *osh, *nsh;
1575 	LIST_HEAD(newstripes);
1576 	struct disk_info *ndisks;
1577 	unsigned long cpu;
1578 	int err;
1579 	struct kmem_cache *sc;
1580 	int i;
1581 
1582 	if (newsize <= conf->pool_size)
1583 		return 0; /* never bother to shrink */
1584 
1585 	err = md_allow_write(conf->mddev);
1586 	if (err)
1587 		return err;
1588 
1589 	/* Step 1 */
1590 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1591 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1592 			       0, 0, NULL);
1593 	if (!sc)
1594 		return -ENOMEM;
1595 
1596 	for (i = conf->max_nr_stripes; i; i--) {
1597 		nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1598 		if (!nsh)
1599 			break;
1600 
1601 		nsh->raid_conf = conf;
1602 		spin_lock_init(&nsh->stripe_lock);
1603 
1604 		list_add(&nsh->lru, &newstripes);
1605 	}
1606 	if (i) {
1607 		/* didn't get enough, give up */
1608 		while (!list_empty(&newstripes)) {
1609 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
1610 			list_del(&nsh->lru);
1611 			kmem_cache_free(sc, nsh);
1612 		}
1613 		kmem_cache_destroy(sc);
1614 		return -ENOMEM;
1615 	}
1616 	/* Step 2 - Must use GFP_NOIO now.
1617 	 * OK, we have enough stripes, start collecting inactive
1618 	 * stripes and copying them over
1619 	 */
1620 	list_for_each_entry(nsh, &newstripes, lru) {
1621 		spin_lock_irq(&conf->device_lock);
1622 		wait_event_lock_irq(conf->wait_for_stripe,
1623 				    !list_empty(&conf->inactive_list),
1624 				    conf->device_lock);
1625 		osh = get_free_stripe(conf);
1626 		spin_unlock_irq(&conf->device_lock);
1627 		atomic_set(&nsh->count, 1);
1628 		for(i=0; i<conf->pool_size; i++)
1629 			nsh->dev[i].page = osh->dev[i].page;
1630 		for( ; i<newsize; i++)
1631 			nsh->dev[i].page = NULL;
1632 		kmem_cache_free(conf->slab_cache, osh);
1633 	}
1634 	kmem_cache_destroy(conf->slab_cache);
1635 
1636 	/* Step 3.
1637 	 * At this point, we are holding all the stripes so the array
1638 	 * is completely stalled, so now is a good time to resize
1639 	 * conf->disks and the scribble region
1640 	 */
1641 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1642 	if (ndisks) {
1643 		for (i=0; i<conf->raid_disks; i++)
1644 			ndisks[i] = conf->disks[i];
1645 		kfree(conf->disks);
1646 		conf->disks = ndisks;
1647 	} else
1648 		err = -ENOMEM;
1649 
1650 	get_online_cpus();
1651 	conf->scribble_len = scribble_len(newsize);
1652 	for_each_present_cpu(cpu) {
1653 		struct raid5_percpu *percpu;
1654 		void *scribble;
1655 
1656 		percpu = per_cpu_ptr(conf->percpu, cpu);
1657 		scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1658 
1659 		if (scribble) {
1660 			kfree(percpu->scribble);
1661 			percpu->scribble = scribble;
1662 		} else {
1663 			err = -ENOMEM;
1664 			break;
1665 		}
1666 	}
1667 	put_online_cpus();
1668 
1669 	/* Step 4, return new stripes to service */
1670 	while(!list_empty(&newstripes)) {
1671 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
1672 		list_del_init(&nsh->lru);
1673 
1674 		for (i=conf->raid_disks; i < newsize; i++)
1675 			if (nsh->dev[i].page == NULL) {
1676 				struct page *p = alloc_page(GFP_NOIO);
1677 				nsh->dev[i].page = p;
1678 				if (!p)
1679 					err = -ENOMEM;
1680 			}
1681 		release_stripe(nsh);
1682 	}
1683 	/* critical section pass, GFP_NOIO no longer needed */
1684 
1685 	conf->slab_cache = sc;
1686 	conf->active_name = 1-conf->active_name;
1687 	conf->pool_size = newsize;
1688 	return err;
1689 }
1690 
1691 static int drop_one_stripe(struct r5conf *conf)
1692 {
1693 	struct stripe_head *sh;
1694 
1695 	spin_lock_irq(&conf->device_lock);
1696 	sh = get_free_stripe(conf);
1697 	spin_unlock_irq(&conf->device_lock);
1698 	if (!sh)
1699 		return 0;
1700 	BUG_ON(atomic_read(&sh->count));
1701 	shrink_buffers(sh);
1702 	kmem_cache_free(conf->slab_cache, sh);
1703 	atomic_dec(&conf->active_stripes);
1704 	return 1;
1705 }
1706 
1707 static void shrink_stripes(struct r5conf *conf)
1708 {
1709 	while (drop_one_stripe(conf))
1710 		;
1711 
1712 	if (conf->slab_cache)
1713 		kmem_cache_destroy(conf->slab_cache);
1714 	conf->slab_cache = NULL;
1715 }
1716 
1717 static void raid5_end_read_request(struct bio * bi, int error)
1718 {
1719 	struct stripe_head *sh = bi->bi_private;
1720 	struct r5conf *conf = sh->raid_conf;
1721 	int disks = sh->disks, i;
1722 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1723 	char b[BDEVNAME_SIZE];
1724 	struct md_rdev *rdev = NULL;
1725 	sector_t s;
1726 
1727 	for (i=0 ; i<disks; i++)
1728 		if (bi == &sh->dev[i].req)
1729 			break;
1730 
1731 	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1732 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1733 		uptodate);
1734 	if (i == disks) {
1735 		BUG();
1736 		return;
1737 	}
1738 	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1739 		/* If replacement finished while this request was outstanding,
1740 		 * 'replacement' might be NULL already.
1741 		 * In that case it moved down to 'rdev'.
1742 		 * rdev is not removed until all requests are finished.
1743 		 */
1744 		rdev = conf->disks[i].replacement;
1745 	if (!rdev)
1746 		rdev = conf->disks[i].rdev;
1747 
1748 	if (use_new_offset(conf, sh))
1749 		s = sh->sector + rdev->new_data_offset;
1750 	else
1751 		s = sh->sector + rdev->data_offset;
1752 	if (uptodate) {
1753 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1754 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1755 			/* Note that this cannot happen on a
1756 			 * replacement device.  We just fail those on
1757 			 * any error
1758 			 */
1759 			printk_ratelimited(
1760 				KERN_INFO
1761 				"md/raid:%s: read error corrected"
1762 				" (%lu sectors at %llu on %s)\n",
1763 				mdname(conf->mddev), STRIPE_SECTORS,
1764 				(unsigned long long)s,
1765 				bdevname(rdev->bdev, b));
1766 			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1767 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1768 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1769 		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
1770 			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1771 
1772 		if (atomic_read(&rdev->read_errors))
1773 			atomic_set(&rdev->read_errors, 0);
1774 	} else {
1775 		const char *bdn = bdevname(rdev->bdev, b);
1776 		int retry = 0;
1777 		int set_bad = 0;
1778 
1779 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1780 		atomic_inc(&rdev->read_errors);
1781 		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1782 			printk_ratelimited(
1783 				KERN_WARNING
1784 				"md/raid:%s: read error on replacement device "
1785 				"(sector %llu on %s).\n",
1786 				mdname(conf->mddev),
1787 				(unsigned long long)s,
1788 				bdn);
1789 		else if (conf->mddev->degraded >= conf->max_degraded) {
1790 			set_bad = 1;
1791 			printk_ratelimited(
1792 				KERN_WARNING
1793 				"md/raid:%s: read error not correctable "
1794 				"(sector %llu on %s).\n",
1795 				mdname(conf->mddev),
1796 				(unsigned long long)s,
1797 				bdn);
1798 		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
1799 			/* Oh, no!!! */
1800 			set_bad = 1;
1801 			printk_ratelimited(
1802 				KERN_WARNING
1803 				"md/raid:%s: read error NOT corrected!! "
1804 				"(sector %llu on %s).\n",
1805 				mdname(conf->mddev),
1806 				(unsigned long long)s,
1807 				bdn);
1808 		} else if (atomic_read(&rdev->read_errors)
1809 			 > conf->max_nr_stripes)
1810 			printk(KERN_WARNING
1811 			       "md/raid:%s: Too many read errors, failing device %s.\n",
1812 			       mdname(conf->mddev), bdn);
1813 		else
1814 			retry = 1;
1815 		if (retry)
1816 			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
1817 				set_bit(R5_ReadError, &sh->dev[i].flags);
1818 				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1819 			} else
1820 				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1821 		else {
1822 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1823 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1824 			if (!(set_bad
1825 			      && test_bit(In_sync, &rdev->flags)
1826 			      && rdev_set_badblocks(
1827 				      rdev, sh->sector, STRIPE_SECTORS, 0)))
1828 				md_error(conf->mddev, rdev);
1829 		}
1830 	}
1831 	rdev_dec_pending(rdev, conf->mddev);
1832 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1833 	set_bit(STRIPE_HANDLE, &sh->state);
1834 	release_stripe(sh);
1835 }
1836 
1837 static void raid5_end_write_request(struct bio *bi, int error)
1838 {
1839 	struct stripe_head *sh = bi->bi_private;
1840 	struct r5conf *conf = sh->raid_conf;
1841 	int disks = sh->disks, i;
1842 	struct md_rdev *uninitialized_var(rdev);
1843 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1844 	sector_t first_bad;
1845 	int bad_sectors;
1846 	int replacement = 0;
1847 
1848 	for (i = 0 ; i < disks; i++) {
1849 		if (bi == &sh->dev[i].req) {
1850 			rdev = conf->disks[i].rdev;
1851 			break;
1852 		}
1853 		if (bi == &sh->dev[i].rreq) {
1854 			rdev = conf->disks[i].replacement;
1855 			if (rdev)
1856 				replacement = 1;
1857 			else
1858 				/* rdev was removed and 'replacement'
1859 				 * replaced it.  rdev is not removed
1860 				 * until all requests are finished.
1861 				 */
1862 				rdev = conf->disks[i].rdev;
1863 			break;
1864 		}
1865 	}
1866 	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1867 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1868 		uptodate);
1869 	if (i == disks) {
1870 		BUG();
1871 		return;
1872 	}
1873 
1874 	if (replacement) {
1875 		if (!uptodate)
1876 			md_error(conf->mddev, rdev);
1877 		else if (is_badblock(rdev, sh->sector,
1878 				     STRIPE_SECTORS,
1879 				     &first_bad, &bad_sectors))
1880 			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
1881 	} else {
1882 		if (!uptodate) {
1883 			set_bit(WriteErrorSeen, &rdev->flags);
1884 			set_bit(R5_WriteError, &sh->dev[i].flags);
1885 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
1886 				set_bit(MD_RECOVERY_NEEDED,
1887 					&rdev->mddev->recovery);
1888 		} else if (is_badblock(rdev, sh->sector,
1889 				       STRIPE_SECTORS,
1890 				       &first_bad, &bad_sectors)) {
1891 			set_bit(R5_MadeGood, &sh->dev[i].flags);
1892 			if (test_bit(R5_ReadError, &sh->dev[i].flags))
1893 				/* That was a successful write so make
1894 				 * sure it looks like we already did
1895 				 * a re-write.
1896 				 */
1897 				set_bit(R5_ReWrite, &sh->dev[i].flags);
1898 		}
1899 	}
1900 	rdev_dec_pending(rdev, conf->mddev);
1901 
1902 	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
1903 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
1904 	set_bit(STRIPE_HANDLE, &sh->state);
1905 	release_stripe(sh);
1906 }
1907 
1908 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1909 
1910 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1911 {
1912 	struct r5dev *dev = &sh->dev[i];
1913 
1914 	bio_init(&dev->req);
1915 	dev->req.bi_io_vec = &dev->vec;
1916 	dev->req.bi_vcnt++;
1917 	dev->req.bi_max_vecs++;
1918 	dev->req.bi_private = sh;
1919 	dev->vec.bv_page = dev->page;
1920 
1921 	bio_init(&dev->rreq);
1922 	dev->rreq.bi_io_vec = &dev->rvec;
1923 	dev->rreq.bi_vcnt++;
1924 	dev->rreq.bi_max_vecs++;
1925 	dev->rreq.bi_private = sh;
1926 	dev->rvec.bv_page = dev->page;
1927 
1928 	dev->flags = 0;
1929 	dev->sector = compute_blocknr(sh, i, previous);
1930 }
1931 
1932 static void error(struct mddev *mddev, struct md_rdev *rdev)
1933 {
1934 	char b[BDEVNAME_SIZE];
1935 	struct r5conf *conf = mddev->private;
1936 	unsigned long flags;
1937 	pr_debug("raid456: error called\n");
1938 
1939 	spin_lock_irqsave(&conf->device_lock, flags);
1940 	clear_bit(In_sync, &rdev->flags);
1941 	mddev->degraded = calc_degraded(conf);
1942 	spin_unlock_irqrestore(&conf->device_lock, flags);
1943 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1944 
1945 	set_bit(Blocked, &rdev->flags);
1946 	set_bit(Faulty, &rdev->flags);
1947 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1948 	printk(KERN_ALERT
1949 	       "md/raid:%s: Disk failure on %s, disabling device.\n"
1950 	       "md/raid:%s: Operation continuing on %d devices.\n",
1951 	       mdname(mddev),
1952 	       bdevname(rdev->bdev, b),
1953 	       mdname(mddev),
1954 	       conf->raid_disks - mddev->degraded);
1955 }
1956 
1957 /*
1958  * Input: a 'big' sector number,
1959  * Output: index of the data and parity disk, and the sector # in them.
1960  */
1961 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
1962 				     int previous, int *dd_idx,
1963 				     struct stripe_head *sh)
1964 {
1965 	sector_t stripe, stripe2;
1966 	sector_t chunk_number;
1967 	unsigned int chunk_offset;
1968 	int pd_idx, qd_idx;
1969 	int ddf_layout = 0;
1970 	sector_t new_sector;
1971 	int algorithm = previous ? conf->prev_algo
1972 				 : conf->algorithm;
1973 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1974 					 : conf->chunk_sectors;
1975 	int raid_disks = previous ? conf->previous_raid_disks
1976 				  : conf->raid_disks;
1977 	int data_disks = raid_disks - conf->max_degraded;
1978 
1979 	/* First compute the information on this sector */
1980 
1981 	/*
1982 	 * Compute the chunk number and the sector offset inside the chunk
1983 	 */
1984 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
1985 	chunk_number = r_sector;
1986 
1987 	/*
1988 	 * Compute the stripe number
1989 	 */
1990 	stripe = chunk_number;
1991 	*dd_idx = sector_div(stripe, data_disks);
1992 	stripe2 = stripe;
1993 	/*
1994 	 * Select the parity disk based on the user selected algorithm.
1995 	 */
1996 	pd_idx = qd_idx = -1;
1997 	switch(conf->level) {
1998 	case 4:
1999 		pd_idx = data_disks;
2000 		break;
2001 	case 5:
2002 		switch (algorithm) {
2003 		case ALGORITHM_LEFT_ASYMMETRIC:
2004 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2005 			if (*dd_idx >= pd_idx)
2006 				(*dd_idx)++;
2007 			break;
2008 		case ALGORITHM_RIGHT_ASYMMETRIC:
2009 			pd_idx = sector_div(stripe2, raid_disks);
2010 			if (*dd_idx >= pd_idx)
2011 				(*dd_idx)++;
2012 			break;
2013 		case ALGORITHM_LEFT_SYMMETRIC:
2014 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2015 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2016 			break;
2017 		case ALGORITHM_RIGHT_SYMMETRIC:
2018 			pd_idx = sector_div(stripe2, raid_disks);
2019 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2020 			break;
2021 		case ALGORITHM_PARITY_0:
2022 			pd_idx = 0;
2023 			(*dd_idx)++;
2024 			break;
2025 		case ALGORITHM_PARITY_N:
2026 			pd_idx = data_disks;
2027 			break;
2028 		default:
2029 			BUG();
2030 		}
2031 		break;
2032 	case 6:
2033 
2034 		switch (algorithm) {
2035 		case ALGORITHM_LEFT_ASYMMETRIC:
2036 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2037 			qd_idx = pd_idx + 1;
2038 			if (pd_idx == raid_disks-1) {
2039 				(*dd_idx)++;	/* Q D D D P */
2040 				qd_idx = 0;
2041 			} else if (*dd_idx >= pd_idx)
2042 				(*dd_idx) += 2; /* D D P Q D */
2043 			break;
2044 		case ALGORITHM_RIGHT_ASYMMETRIC:
2045 			pd_idx = sector_div(stripe2, raid_disks);
2046 			qd_idx = pd_idx + 1;
2047 			if (pd_idx == raid_disks-1) {
2048 				(*dd_idx)++;	/* Q D D D P */
2049 				qd_idx = 0;
2050 			} else if (*dd_idx >= pd_idx)
2051 				(*dd_idx) += 2; /* D D P Q D */
2052 			break;
2053 		case ALGORITHM_LEFT_SYMMETRIC:
2054 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2055 			qd_idx = (pd_idx + 1) % raid_disks;
2056 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2057 			break;
2058 		case ALGORITHM_RIGHT_SYMMETRIC:
2059 			pd_idx = sector_div(stripe2, raid_disks);
2060 			qd_idx = (pd_idx + 1) % raid_disks;
2061 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2062 			break;
2063 
2064 		case ALGORITHM_PARITY_0:
2065 			pd_idx = 0;
2066 			qd_idx = 1;
2067 			(*dd_idx) += 2;
2068 			break;
2069 		case ALGORITHM_PARITY_N:
2070 			pd_idx = data_disks;
2071 			qd_idx = data_disks + 1;
2072 			break;
2073 
2074 		case ALGORITHM_ROTATING_ZERO_RESTART:
2075 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
2076 			 * of blocks for computing Q is different.
2077 			 */
2078 			pd_idx = sector_div(stripe2, raid_disks);
2079 			qd_idx = pd_idx + 1;
2080 			if (pd_idx == raid_disks-1) {
2081 				(*dd_idx)++;	/* Q D D D P */
2082 				qd_idx = 0;
2083 			} else if (*dd_idx >= pd_idx)
2084 				(*dd_idx) += 2; /* D D P Q D */
2085 			ddf_layout = 1;
2086 			break;
2087 
2088 		case ALGORITHM_ROTATING_N_RESTART:
2089 			/* Same a left_asymmetric, by first stripe is
2090 			 * D D D P Q  rather than
2091 			 * Q D D D P
2092 			 */
2093 			stripe2 += 1;
2094 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2095 			qd_idx = pd_idx + 1;
2096 			if (pd_idx == raid_disks-1) {
2097 				(*dd_idx)++;	/* Q D D D P */
2098 				qd_idx = 0;
2099 			} else if (*dd_idx >= pd_idx)
2100 				(*dd_idx) += 2; /* D D P Q D */
2101 			ddf_layout = 1;
2102 			break;
2103 
2104 		case ALGORITHM_ROTATING_N_CONTINUE:
2105 			/* Same as left_symmetric but Q is before P */
2106 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2107 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2108 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2109 			ddf_layout = 1;
2110 			break;
2111 
2112 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2113 			/* RAID5 left_asymmetric, with Q on last device */
2114 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2115 			if (*dd_idx >= pd_idx)
2116 				(*dd_idx)++;
2117 			qd_idx = raid_disks - 1;
2118 			break;
2119 
2120 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2121 			pd_idx = sector_div(stripe2, raid_disks-1);
2122 			if (*dd_idx >= pd_idx)
2123 				(*dd_idx)++;
2124 			qd_idx = raid_disks - 1;
2125 			break;
2126 
2127 		case ALGORITHM_LEFT_SYMMETRIC_6:
2128 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2129 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2130 			qd_idx = raid_disks - 1;
2131 			break;
2132 
2133 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2134 			pd_idx = sector_div(stripe2, raid_disks-1);
2135 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2136 			qd_idx = raid_disks - 1;
2137 			break;
2138 
2139 		case ALGORITHM_PARITY_0_6:
2140 			pd_idx = 0;
2141 			(*dd_idx)++;
2142 			qd_idx = raid_disks - 1;
2143 			break;
2144 
2145 		default:
2146 			BUG();
2147 		}
2148 		break;
2149 	}
2150 
2151 	if (sh) {
2152 		sh->pd_idx = pd_idx;
2153 		sh->qd_idx = qd_idx;
2154 		sh->ddf_layout = ddf_layout;
2155 	}
2156 	/*
2157 	 * Finally, compute the new sector number
2158 	 */
2159 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2160 	return new_sector;
2161 }
2162 
2163 
2164 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2165 {
2166 	struct r5conf *conf = sh->raid_conf;
2167 	int raid_disks = sh->disks;
2168 	int data_disks = raid_disks - conf->max_degraded;
2169 	sector_t new_sector = sh->sector, check;
2170 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2171 					 : conf->chunk_sectors;
2172 	int algorithm = previous ? conf->prev_algo
2173 				 : conf->algorithm;
2174 	sector_t stripe;
2175 	int chunk_offset;
2176 	sector_t chunk_number;
2177 	int dummy1, dd_idx = i;
2178 	sector_t r_sector;
2179 	struct stripe_head sh2;
2180 
2181 
2182 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
2183 	stripe = new_sector;
2184 
2185 	if (i == sh->pd_idx)
2186 		return 0;
2187 	switch(conf->level) {
2188 	case 4: break;
2189 	case 5:
2190 		switch (algorithm) {
2191 		case ALGORITHM_LEFT_ASYMMETRIC:
2192 		case ALGORITHM_RIGHT_ASYMMETRIC:
2193 			if (i > sh->pd_idx)
2194 				i--;
2195 			break;
2196 		case ALGORITHM_LEFT_SYMMETRIC:
2197 		case ALGORITHM_RIGHT_SYMMETRIC:
2198 			if (i < sh->pd_idx)
2199 				i += raid_disks;
2200 			i -= (sh->pd_idx + 1);
2201 			break;
2202 		case ALGORITHM_PARITY_0:
2203 			i -= 1;
2204 			break;
2205 		case ALGORITHM_PARITY_N:
2206 			break;
2207 		default:
2208 			BUG();
2209 		}
2210 		break;
2211 	case 6:
2212 		if (i == sh->qd_idx)
2213 			return 0; /* It is the Q disk */
2214 		switch (algorithm) {
2215 		case ALGORITHM_LEFT_ASYMMETRIC:
2216 		case ALGORITHM_RIGHT_ASYMMETRIC:
2217 		case ALGORITHM_ROTATING_ZERO_RESTART:
2218 		case ALGORITHM_ROTATING_N_RESTART:
2219 			if (sh->pd_idx == raid_disks-1)
2220 				i--;	/* Q D D D P */
2221 			else if (i > sh->pd_idx)
2222 				i -= 2; /* D D P Q D */
2223 			break;
2224 		case ALGORITHM_LEFT_SYMMETRIC:
2225 		case ALGORITHM_RIGHT_SYMMETRIC:
2226 			if (sh->pd_idx == raid_disks-1)
2227 				i--; /* Q D D D P */
2228 			else {
2229 				/* D D P Q D */
2230 				if (i < sh->pd_idx)
2231 					i += raid_disks;
2232 				i -= (sh->pd_idx + 2);
2233 			}
2234 			break;
2235 		case ALGORITHM_PARITY_0:
2236 			i -= 2;
2237 			break;
2238 		case ALGORITHM_PARITY_N:
2239 			break;
2240 		case ALGORITHM_ROTATING_N_CONTINUE:
2241 			/* Like left_symmetric, but P is before Q */
2242 			if (sh->pd_idx == 0)
2243 				i--;	/* P D D D Q */
2244 			else {
2245 				/* D D Q P D */
2246 				if (i < sh->pd_idx)
2247 					i += raid_disks;
2248 				i -= (sh->pd_idx + 1);
2249 			}
2250 			break;
2251 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2252 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2253 			if (i > sh->pd_idx)
2254 				i--;
2255 			break;
2256 		case ALGORITHM_LEFT_SYMMETRIC_6:
2257 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2258 			if (i < sh->pd_idx)
2259 				i += data_disks + 1;
2260 			i -= (sh->pd_idx + 1);
2261 			break;
2262 		case ALGORITHM_PARITY_0_6:
2263 			i -= 1;
2264 			break;
2265 		default:
2266 			BUG();
2267 		}
2268 		break;
2269 	}
2270 
2271 	chunk_number = stripe * data_disks + i;
2272 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2273 
2274 	check = raid5_compute_sector(conf, r_sector,
2275 				     previous, &dummy1, &sh2);
2276 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2277 		|| sh2.qd_idx != sh->qd_idx) {
2278 		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2279 		       mdname(conf->mddev));
2280 		return 0;
2281 	}
2282 	return r_sector;
2283 }
2284 
2285 
2286 static void
2287 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2288 			 int rcw, int expand)
2289 {
2290 	int i, pd_idx = sh->pd_idx, disks = sh->disks;
2291 	struct r5conf *conf = sh->raid_conf;
2292 	int level = conf->level;
2293 
2294 	if (rcw) {
2295 
2296 		for (i = disks; i--; ) {
2297 			struct r5dev *dev = &sh->dev[i];
2298 
2299 			if (dev->towrite) {
2300 				set_bit(R5_LOCKED, &dev->flags);
2301 				set_bit(R5_Wantdrain, &dev->flags);
2302 				if (!expand)
2303 					clear_bit(R5_UPTODATE, &dev->flags);
2304 				s->locked++;
2305 			}
2306 		}
2307 		/* if we are not expanding this is a proper write request, and
2308 		 * there will be bios with new data to be drained into the
2309 		 * stripe cache
2310 		 */
2311 		if (!expand) {
2312 			if (!s->locked)
2313 				/* False alarm, nothing to do */
2314 				return;
2315 			sh->reconstruct_state = reconstruct_state_drain_run;
2316 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2317 		} else
2318 			sh->reconstruct_state = reconstruct_state_run;
2319 
2320 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2321 
2322 		if (s->locked + conf->max_degraded == disks)
2323 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2324 				atomic_inc(&conf->pending_full_writes);
2325 	} else {
2326 		BUG_ON(level == 6);
2327 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2328 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2329 
2330 		for (i = disks; i--; ) {
2331 			struct r5dev *dev = &sh->dev[i];
2332 			if (i == pd_idx)
2333 				continue;
2334 
2335 			if (dev->towrite &&
2336 			    (test_bit(R5_UPTODATE, &dev->flags) ||
2337 			     test_bit(R5_Wantcompute, &dev->flags))) {
2338 				set_bit(R5_Wantdrain, &dev->flags);
2339 				set_bit(R5_LOCKED, &dev->flags);
2340 				clear_bit(R5_UPTODATE, &dev->flags);
2341 				s->locked++;
2342 			}
2343 		}
2344 		if (!s->locked)
2345 			/* False alarm - nothing to do */
2346 			return;
2347 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2348 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2349 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2350 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2351 	}
2352 
2353 	/* keep the parity disk(s) locked while asynchronous operations
2354 	 * are in flight
2355 	 */
2356 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2357 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2358 	s->locked++;
2359 
2360 	if (level == 6) {
2361 		int qd_idx = sh->qd_idx;
2362 		struct r5dev *dev = &sh->dev[qd_idx];
2363 
2364 		set_bit(R5_LOCKED, &dev->flags);
2365 		clear_bit(R5_UPTODATE, &dev->flags);
2366 		s->locked++;
2367 	}
2368 
2369 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2370 		__func__, (unsigned long long)sh->sector,
2371 		s->locked, s->ops_request);
2372 }
2373 
2374 /*
2375  * Each stripe/dev can have one or more bion attached.
2376  * toread/towrite point to the first in a chain.
2377  * The bi_next chain must be in order.
2378  */
2379 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2380 {
2381 	struct bio **bip;
2382 	struct r5conf *conf = sh->raid_conf;
2383 	int firstwrite=0;
2384 
2385 	pr_debug("adding bi b#%llu to stripe s#%llu\n",
2386 		(unsigned long long)bi->bi_sector,
2387 		(unsigned long long)sh->sector);
2388 
2389 	/*
2390 	 * If several bio share a stripe. The bio bi_phys_segments acts as a
2391 	 * reference count to avoid race. The reference count should already be
2392 	 * increased before this function is called (for example, in
2393 	 * make_request()), so other bio sharing this stripe will not free the
2394 	 * stripe. If a stripe is owned by one stripe, the stripe lock will
2395 	 * protect it.
2396 	 */
2397 	spin_lock_irq(&sh->stripe_lock);
2398 	if (forwrite) {
2399 		bip = &sh->dev[dd_idx].towrite;
2400 		if (*bip == NULL)
2401 			firstwrite = 1;
2402 	} else
2403 		bip = &sh->dev[dd_idx].toread;
2404 	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2405 		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2406 			goto overlap;
2407 		bip = & (*bip)->bi_next;
2408 	}
2409 	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2410 		goto overlap;
2411 
2412 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2413 	if (*bip)
2414 		bi->bi_next = *bip;
2415 	*bip = bi;
2416 	raid5_inc_bi_active_stripes(bi);
2417 
2418 	if (forwrite) {
2419 		/* check if page is covered */
2420 		sector_t sector = sh->dev[dd_idx].sector;
2421 		for (bi=sh->dev[dd_idx].towrite;
2422 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2423 			     bi && bi->bi_sector <= sector;
2424 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2425 			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2426 				sector = bi->bi_sector + (bi->bi_size>>9);
2427 		}
2428 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2429 			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2430 	}
2431 
2432 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2433 		(unsigned long long)(*bip)->bi_sector,
2434 		(unsigned long long)sh->sector, dd_idx);
2435 	spin_unlock_irq(&sh->stripe_lock);
2436 
2437 	if (conf->mddev->bitmap && firstwrite) {
2438 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2439 				  STRIPE_SECTORS, 0);
2440 		sh->bm_seq = conf->seq_flush+1;
2441 		set_bit(STRIPE_BIT_DELAY, &sh->state);
2442 	}
2443 	return 1;
2444 
2445  overlap:
2446 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2447 	spin_unlock_irq(&sh->stripe_lock);
2448 	return 0;
2449 }
2450 
2451 static void end_reshape(struct r5conf *conf);
2452 
2453 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2454 			    struct stripe_head *sh)
2455 {
2456 	int sectors_per_chunk =
2457 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2458 	int dd_idx;
2459 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2460 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2461 
2462 	raid5_compute_sector(conf,
2463 			     stripe * (disks - conf->max_degraded)
2464 			     *sectors_per_chunk + chunk_offset,
2465 			     previous,
2466 			     &dd_idx, sh);
2467 }
2468 
2469 static void
2470 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2471 				struct stripe_head_state *s, int disks,
2472 				struct bio **return_bi)
2473 {
2474 	int i;
2475 	for (i = disks; i--; ) {
2476 		struct bio *bi;
2477 		int bitmap_end = 0;
2478 
2479 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2480 			struct md_rdev *rdev;
2481 			rcu_read_lock();
2482 			rdev = rcu_dereference(conf->disks[i].rdev);
2483 			if (rdev && test_bit(In_sync, &rdev->flags))
2484 				atomic_inc(&rdev->nr_pending);
2485 			else
2486 				rdev = NULL;
2487 			rcu_read_unlock();
2488 			if (rdev) {
2489 				if (!rdev_set_badblocks(
2490 					    rdev,
2491 					    sh->sector,
2492 					    STRIPE_SECTORS, 0))
2493 					md_error(conf->mddev, rdev);
2494 				rdev_dec_pending(rdev, conf->mddev);
2495 			}
2496 		}
2497 		spin_lock_irq(&sh->stripe_lock);
2498 		/* fail all writes first */
2499 		bi = sh->dev[i].towrite;
2500 		sh->dev[i].towrite = NULL;
2501 		spin_unlock_irq(&sh->stripe_lock);
2502 		if (bi)
2503 			bitmap_end = 1;
2504 
2505 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2506 			wake_up(&conf->wait_for_overlap);
2507 
2508 		while (bi && bi->bi_sector <
2509 			sh->dev[i].sector + STRIPE_SECTORS) {
2510 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2511 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2512 			if (!raid5_dec_bi_active_stripes(bi)) {
2513 				md_write_end(conf->mddev);
2514 				bi->bi_next = *return_bi;
2515 				*return_bi = bi;
2516 			}
2517 			bi = nextbi;
2518 		}
2519 		if (bitmap_end)
2520 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2521 				STRIPE_SECTORS, 0, 0);
2522 		bitmap_end = 0;
2523 		/* and fail all 'written' */
2524 		bi = sh->dev[i].written;
2525 		sh->dev[i].written = NULL;
2526 		if (bi) bitmap_end = 1;
2527 		while (bi && bi->bi_sector <
2528 		       sh->dev[i].sector + STRIPE_SECTORS) {
2529 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2530 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2531 			if (!raid5_dec_bi_active_stripes(bi)) {
2532 				md_write_end(conf->mddev);
2533 				bi->bi_next = *return_bi;
2534 				*return_bi = bi;
2535 			}
2536 			bi = bi2;
2537 		}
2538 
2539 		/* fail any reads if this device is non-operational and
2540 		 * the data has not reached the cache yet.
2541 		 */
2542 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2543 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2544 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2545 			spin_lock_irq(&sh->stripe_lock);
2546 			bi = sh->dev[i].toread;
2547 			sh->dev[i].toread = NULL;
2548 			spin_unlock_irq(&sh->stripe_lock);
2549 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2550 				wake_up(&conf->wait_for_overlap);
2551 			while (bi && bi->bi_sector <
2552 			       sh->dev[i].sector + STRIPE_SECTORS) {
2553 				struct bio *nextbi =
2554 					r5_next_bio(bi, sh->dev[i].sector);
2555 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2556 				if (!raid5_dec_bi_active_stripes(bi)) {
2557 					bi->bi_next = *return_bi;
2558 					*return_bi = bi;
2559 				}
2560 				bi = nextbi;
2561 			}
2562 		}
2563 		if (bitmap_end)
2564 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2565 					STRIPE_SECTORS, 0, 0);
2566 		/* If we were in the middle of a write the parity block might
2567 		 * still be locked - so just clear all R5_LOCKED flags
2568 		 */
2569 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2570 	}
2571 
2572 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2573 		if (atomic_dec_and_test(&conf->pending_full_writes))
2574 			md_wakeup_thread(conf->mddev->thread);
2575 }
2576 
2577 static void
2578 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2579 		   struct stripe_head_state *s)
2580 {
2581 	int abort = 0;
2582 	int i;
2583 
2584 	clear_bit(STRIPE_SYNCING, &sh->state);
2585 	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
2586 		wake_up(&conf->wait_for_overlap);
2587 	s->syncing = 0;
2588 	s->replacing = 0;
2589 	/* There is nothing more to do for sync/check/repair.
2590 	 * Don't even need to abort as that is handled elsewhere
2591 	 * if needed, and not always wanted e.g. if there is a known
2592 	 * bad block here.
2593 	 * For recover/replace we need to record a bad block on all
2594 	 * non-sync devices, or abort the recovery
2595 	 */
2596 	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2597 		/* During recovery devices cannot be removed, so
2598 		 * locking and refcounting of rdevs is not needed
2599 		 */
2600 		for (i = 0; i < conf->raid_disks; i++) {
2601 			struct md_rdev *rdev = conf->disks[i].rdev;
2602 			if (rdev
2603 			    && !test_bit(Faulty, &rdev->flags)
2604 			    && !test_bit(In_sync, &rdev->flags)
2605 			    && !rdev_set_badblocks(rdev, sh->sector,
2606 						   STRIPE_SECTORS, 0))
2607 				abort = 1;
2608 			rdev = conf->disks[i].replacement;
2609 			if (rdev
2610 			    && !test_bit(Faulty, &rdev->flags)
2611 			    && !test_bit(In_sync, &rdev->flags)
2612 			    && !rdev_set_badblocks(rdev, sh->sector,
2613 						   STRIPE_SECTORS, 0))
2614 				abort = 1;
2615 		}
2616 		if (abort)
2617 			conf->recovery_disabled =
2618 				conf->mddev->recovery_disabled;
2619 	}
2620 	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2621 }
2622 
2623 static int want_replace(struct stripe_head *sh, int disk_idx)
2624 {
2625 	struct md_rdev *rdev;
2626 	int rv = 0;
2627 	/* Doing recovery so rcu locking not required */
2628 	rdev = sh->raid_conf->disks[disk_idx].replacement;
2629 	if (rdev
2630 	    && !test_bit(Faulty, &rdev->flags)
2631 	    && !test_bit(In_sync, &rdev->flags)
2632 	    && (rdev->recovery_offset <= sh->sector
2633 		|| rdev->mddev->recovery_cp <= sh->sector))
2634 		rv = 1;
2635 
2636 	return rv;
2637 }
2638 
2639 /* fetch_block - checks the given member device to see if its data needs
2640  * to be read or computed to satisfy a request.
2641  *
2642  * Returns 1 when no more member devices need to be checked, otherwise returns
2643  * 0 to tell the loop in handle_stripe_fill to continue
2644  */
2645 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2646 		       int disk_idx, int disks)
2647 {
2648 	struct r5dev *dev = &sh->dev[disk_idx];
2649 	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2650 				  &sh->dev[s->failed_num[1]] };
2651 
2652 	/* is the data in this block needed, and can we get it? */
2653 	if (!test_bit(R5_LOCKED, &dev->flags) &&
2654 	    !test_bit(R5_UPTODATE, &dev->flags) &&
2655 	    (dev->toread ||
2656 	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2657 	     s->syncing || s->expanding ||
2658 	     (s->replacing && want_replace(sh, disk_idx)) ||
2659 	     (s->failed >= 1 && fdev[0]->toread) ||
2660 	     (s->failed >= 2 && fdev[1]->toread) ||
2661 	     (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2662 	      !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2663 	     (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2664 		/* we would like to get this block, possibly by computing it,
2665 		 * otherwise read it if the backing disk is insync
2666 		 */
2667 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2668 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
2669 		if ((s->uptodate == disks - 1) &&
2670 		    (s->failed && (disk_idx == s->failed_num[0] ||
2671 				   disk_idx == s->failed_num[1]))) {
2672 			/* have disk failed, and we're requested to fetch it;
2673 			 * do compute it
2674 			 */
2675 			pr_debug("Computing stripe %llu block %d\n",
2676 			       (unsigned long long)sh->sector, disk_idx);
2677 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2678 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2679 			set_bit(R5_Wantcompute, &dev->flags);
2680 			sh->ops.target = disk_idx;
2681 			sh->ops.target2 = -1; /* no 2nd target */
2682 			s->req_compute = 1;
2683 			/* Careful: from this point on 'uptodate' is in the eye
2684 			 * of raid_run_ops which services 'compute' operations
2685 			 * before writes. R5_Wantcompute flags a block that will
2686 			 * be R5_UPTODATE by the time it is needed for a
2687 			 * subsequent operation.
2688 			 */
2689 			s->uptodate++;
2690 			return 1;
2691 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
2692 			/* Computing 2-failure is *very* expensive; only
2693 			 * do it if failed >= 2
2694 			 */
2695 			int other;
2696 			for (other = disks; other--; ) {
2697 				if (other == disk_idx)
2698 					continue;
2699 				if (!test_bit(R5_UPTODATE,
2700 				      &sh->dev[other].flags))
2701 					break;
2702 			}
2703 			BUG_ON(other < 0);
2704 			pr_debug("Computing stripe %llu blocks %d,%d\n",
2705 			       (unsigned long long)sh->sector,
2706 			       disk_idx, other);
2707 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2708 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2709 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2710 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
2711 			sh->ops.target = disk_idx;
2712 			sh->ops.target2 = other;
2713 			s->uptodate += 2;
2714 			s->req_compute = 1;
2715 			return 1;
2716 		} else if (test_bit(R5_Insync, &dev->flags)) {
2717 			set_bit(R5_LOCKED, &dev->flags);
2718 			set_bit(R5_Wantread, &dev->flags);
2719 			s->locked++;
2720 			pr_debug("Reading block %d (sync=%d)\n",
2721 				disk_idx, s->syncing);
2722 		}
2723 	}
2724 
2725 	return 0;
2726 }
2727 
2728 /**
2729  * handle_stripe_fill - read or compute data to satisfy pending requests.
2730  */
2731 static void handle_stripe_fill(struct stripe_head *sh,
2732 			       struct stripe_head_state *s,
2733 			       int disks)
2734 {
2735 	int i;
2736 
2737 	/* look for blocks to read/compute, skip this if a compute
2738 	 * is already in flight, or if the stripe contents are in the
2739 	 * midst of changing due to a write
2740 	 */
2741 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2742 	    !sh->reconstruct_state)
2743 		for (i = disks; i--; )
2744 			if (fetch_block(sh, s, i, disks))
2745 				break;
2746 	set_bit(STRIPE_HANDLE, &sh->state);
2747 }
2748 
2749 
2750 /* handle_stripe_clean_event
2751  * any written block on an uptodate or failed drive can be returned.
2752  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2753  * never LOCKED, so we don't need to test 'failed' directly.
2754  */
2755 static void handle_stripe_clean_event(struct r5conf *conf,
2756 	struct stripe_head *sh, int disks, struct bio **return_bi)
2757 {
2758 	int i;
2759 	struct r5dev *dev;
2760 	int discard_pending = 0;
2761 
2762 	for (i = disks; i--; )
2763 		if (sh->dev[i].written) {
2764 			dev = &sh->dev[i];
2765 			if (!test_bit(R5_LOCKED, &dev->flags) &&
2766 			    (test_bit(R5_UPTODATE, &dev->flags) ||
2767 			     test_bit(R5_Discard, &dev->flags))) {
2768 				/* We can return any write requests */
2769 				struct bio *wbi, *wbi2;
2770 				pr_debug("Return write for disc %d\n", i);
2771 				if (test_and_clear_bit(R5_Discard, &dev->flags))
2772 					clear_bit(R5_UPTODATE, &dev->flags);
2773 				wbi = dev->written;
2774 				dev->written = NULL;
2775 				while (wbi && wbi->bi_sector <
2776 					dev->sector + STRIPE_SECTORS) {
2777 					wbi2 = r5_next_bio(wbi, dev->sector);
2778 					if (!raid5_dec_bi_active_stripes(wbi)) {
2779 						md_write_end(conf->mddev);
2780 						wbi->bi_next = *return_bi;
2781 						*return_bi = wbi;
2782 					}
2783 					wbi = wbi2;
2784 				}
2785 				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2786 						STRIPE_SECTORS,
2787 					 !test_bit(STRIPE_DEGRADED, &sh->state),
2788 						0);
2789 			} else if (test_bit(R5_Discard, &dev->flags))
2790 				discard_pending = 1;
2791 		}
2792 	if (!discard_pending &&
2793 	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
2794 		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
2795 		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2796 		if (sh->qd_idx >= 0) {
2797 			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
2798 			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
2799 		}
2800 		/* now that discard is done we can proceed with any sync */
2801 		clear_bit(STRIPE_DISCARD, &sh->state);
2802 		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
2803 			set_bit(STRIPE_HANDLE, &sh->state);
2804 
2805 	}
2806 
2807 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2808 		if (atomic_dec_and_test(&conf->pending_full_writes))
2809 			md_wakeup_thread(conf->mddev->thread);
2810 }
2811 
2812 static void handle_stripe_dirtying(struct r5conf *conf,
2813 				   struct stripe_head *sh,
2814 				   struct stripe_head_state *s,
2815 				   int disks)
2816 {
2817 	int rmw = 0, rcw = 0, i;
2818 	sector_t recovery_cp = conf->mddev->recovery_cp;
2819 
2820 	/* RAID6 requires 'rcw' in current implementation.
2821 	 * Otherwise, check whether resync is now happening or should start.
2822 	 * If yes, then the array is dirty (after unclean shutdown or
2823 	 * initial creation), so parity in some stripes might be inconsistent.
2824 	 * In this case, we need to always do reconstruct-write, to ensure
2825 	 * that in case of drive failure or read-error correction, we
2826 	 * generate correct data from the parity.
2827 	 */
2828 	if (conf->max_degraded == 2 ||
2829 	    (recovery_cp < MaxSector && sh->sector >= recovery_cp)) {
2830 		/* Calculate the real rcw later - for now make it
2831 		 * look like rcw is cheaper
2832 		 */
2833 		rcw = 1; rmw = 2;
2834 		pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
2835 			 conf->max_degraded, (unsigned long long)recovery_cp,
2836 			 (unsigned long long)sh->sector);
2837 	} else for (i = disks; i--; ) {
2838 		/* would I have to read this buffer for read_modify_write */
2839 		struct r5dev *dev = &sh->dev[i];
2840 		if ((dev->towrite || i == sh->pd_idx) &&
2841 		    !test_bit(R5_LOCKED, &dev->flags) &&
2842 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2843 		      test_bit(R5_Wantcompute, &dev->flags))) {
2844 			if (test_bit(R5_Insync, &dev->flags))
2845 				rmw++;
2846 			else
2847 				rmw += 2*disks;  /* cannot read it */
2848 		}
2849 		/* Would I have to read this buffer for reconstruct_write */
2850 		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2851 		    !test_bit(R5_LOCKED, &dev->flags) &&
2852 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2853 		    test_bit(R5_Wantcompute, &dev->flags))) {
2854 			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2855 			else
2856 				rcw += 2*disks;
2857 		}
2858 	}
2859 	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2860 		(unsigned long long)sh->sector, rmw, rcw);
2861 	set_bit(STRIPE_HANDLE, &sh->state);
2862 	if (rmw < rcw && rmw > 0) {
2863 		/* prefer read-modify-write, but need to get some data */
2864 		if (conf->mddev->queue)
2865 			blk_add_trace_msg(conf->mddev->queue,
2866 					  "raid5 rmw %llu %d",
2867 					  (unsigned long long)sh->sector, rmw);
2868 		for (i = disks; i--; ) {
2869 			struct r5dev *dev = &sh->dev[i];
2870 			if ((dev->towrite || i == sh->pd_idx) &&
2871 			    !test_bit(R5_LOCKED, &dev->flags) &&
2872 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2873 			    test_bit(R5_Wantcompute, &dev->flags)) &&
2874 			    test_bit(R5_Insync, &dev->flags)) {
2875 				if (
2876 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2877 					pr_debug("Read_old block "
2878 						 "%d for r-m-w\n", i);
2879 					set_bit(R5_LOCKED, &dev->flags);
2880 					set_bit(R5_Wantread, &dev->flags);
2881 					s->locked++;
2882 				} else {
2883 					set_bit(STRIPE_DELAYED, &sh->state);
2884 					set_bit(STRIPE_HANDLE, &sh->state);
2885 				}
2886 			}
2887 		}
2888 	}
2889 	if (rcw <= rmw && rcw > 0) {
2890 		/* want reconstruct write, but need to get some data */
2891 		int qread =0;
2892 		rcw = 0;
2893 		for (i = disks; i--; ) {
2894 			struct r5dev *dev = &sh->dev[i];
2895 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2896 			    i != sh->pd_idx && i != sh->qd_idx &&
2897 			    !test_bit(R5_LOCKED, &dev->flags) &&
2898 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2899 			      test_bit(R5_Wantcompute, &dev->flags))) {
2900 				rcw++;
2901 				if (!test_bit(R5_Insync, &dev->flags))
2902 					continue; /* it's a failed drive */
2903 				if (
2904 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2905 					pr_debug("Read_old block "
2906 						"%d for Reconstruct\n", i);
2907 					set_bit(R5_LOCKED, &dev->flags);
2908 					set_bit(R5_Wantread, &dev->flags);
2909 					s->locked++;
2910 					qread++;
2911 				} else {
2912 					set_bit(STRIPE_DELAYED, &sh->state);
2913 					set_bit(STRIPE_HANDLE, &sh->state);
2914 				}
2915 			}
2916 		}
2917 		if (rcw && conf->mddev->queue)
2918 			blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
2919 					  (unsigned long long)sh->sector,
2920 					  rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
2921 	}
2922 	/* now if nothing is locked, and if we have enough data,
2923 	 * we can start a write request
2924 	 */
2925 	/* since handle_stripe can be called at any time we need to handle the
2926 	 * case where a compute block operation has been submitted and then a
2927 	 * subsequent call wants to start a write request.  raid_run_ops only
2928 	 * handles the case where compute block and reconstruct are requested
2929 	 * simultaneously.  If this is not the case then new writes need to be
2930 	 * held off until the compute completes.
2931 	 */
2932 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2933 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2934 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2935 		schedule_reconstruction(sh, s, rcw == 0, 0);
2936 }
2937 
2938 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
2939 				struct stripe_head_state *s, int disks)
2940 {
2941 	struct r5dev *dev = NULL;
2942 
2943 	set_bit(STRIPE_HANDLE, &sh->state);
2944 
2945 	switch (sh->check_state) {
2946 	case check_state_idle:
2947 		/* start a new check operation if there are no failures */
2948 		if (s->failed == 0) {
2949 			BUG_ON(s->uptodate != disks);
2950 			sh->check_state = check_state_run;
2951 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2952 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2953 			s->uptodate--;
2954 			break;
2955 		}
2956 		dev = &sh->dev[s->failed_num[0]];
2957 		/* fall through */
2958 	case check_state_compute_result:
2959 		sh->check_state = check_state_idle;
2960 		if (!dev)
2961 			dev = &sh->dev[sh->pd_idx];
2962 
2963 		/* check that a write has not made the stripe insync */
2964 		if (test_bit(STRIPE_INSYNC, &sh->state))
2965 			break;
2966 
2967 		/* either failed parity check, or recovery is happening */
2968 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2969 		BUG_ON(s->uptodate != disks);
2970 
2971 		set_bit(R5_LOCKED, &dev->flags);
2972 		s->locked++;
2973 		set_bit(R5_Wantwrite, &dev->flags);
2974 
2975 		clear_bit(STRIPE_DEGRADED, &sh->state);
2976 		set_bit(STRIPE_INSYNC, &sh->state);
2977 		break;
2978 	case check_state_run:
2979 		break; /* we will be called again upon completion */
2980 	case check_state_check_result:
2981 		sh->check_state = check_state_idle;
2982 
2983 		/* if a failure occurred during the check operation, leave
2984 		 * STRIPE_INSYNC not set and let the stripe be handled again
2985 		 */
2986 		if (s->failed)
2987 			break;
2988 
2989 		/* handle a successful check operation, if parity is correct
2990 		 * we are done.  Otherwise update the mismatch count and repair
2991 		 * parity if !MD_RECOVERY_CHECK
2992 		 */
2993 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2994 			/* parity is correct (on disc,
2995 			 * not in buffer any more)
2996 			 */
2997 			set_bit(STRIPE_INSYNC, &sh->state);
2998 		else {
2999 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3000 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3001 				/* don't try to repair!! */
3002 				set_bit(STRIPE_INSYNC, &sh->state);
3003 			else {
3004 				sh->check_state = check_state_compute_run;
3005 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3006 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3007 				set_bit(R5_Wantcompute,
3008 					&sh->dev[sh->pd_idx].flags);
3009 				sh->ops.target = sh->pd_idx;
3010 				sh->ops.target2 = -1;
3011 				s->uptodate++;
3012 			}
3013 		}
3014 		break;
3015 	case check_state_compute_run:
3016 		break;
3017 	default:
3018 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3019 		       __func__, sh->check_state,
3020 		       (unsigned long long) sh->sector);
3021 		BUG();
3022 	}
3023 }
3024 
3025 
3026 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3027 				  struct stripe_head_state *s,
3028 				  int disks)
3029 {
3030 	int pd_idx = sh->pd_idx;
3031 	int qd_idx = sh->qd_idx;
3032 	struct r5dev *dev;
3033 
3034 	set_bit(STRIPE_HANDLE, &sh->state);
3035 
3036 	BUG_ON(s->failed > 2);
3037 
3038 	/* Want to check and possibly repair P and Q.
3039 	 * However there could be one 'failed' device, in which
3040 	 * case we can only check one of them, possibly using the
3041 	 * other to generate missing data
3042 	 */
3043 
3044 	switch (sh->check_state) {
3045 	case check_state_idle:
3046 		/* start a new check operation if there are < 2 failures */
3047 		if (s->failed == s->q_failed) {
3048 			/* The only possible failed device holds Q, so it
3049 			 * makes sense to check P (If anything else were failed,
3050 			 * we would have used P to recreate it).
3051 			 */
3052 			sh->check_state = check_state_run;
3053 		}
3054 		if (!s->q_failed && s->failed < 2) {
3055 			/* Q is not failed, and we didn't use it to generate
3056 			 * anything, so it makes sense to check it
3057 			 */
3058 			if (sh->check_state == check_state_run)
3059 				sh->check_state = check_state_run_pq;
3060 			else
3061 				sh->check_state = check_state_run_q;
3062 		}
3063 
3064 		/* discard potentially stale zero_sum_result */
3065 		sh->ops.zero_sum_result = 0;
3066 
3067 		if (sh->check_state == check_state_run) {
3068 			/* async_xor_zero_sum destroys the contents of P */
3069 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3070 			s->uptodate--;
3071 		}
3072 		if (sh->check_state >= check_state_run &&
3073 		    sh->check_state <= check_state_run_pq) {
3074 			/* async_syndrome_zero_sum preserves P and Q, so
3075 			 * no need to mark them !uptodate here
3076 			 */
3077 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3078 			break;
3079 		}
3080 
3081 		/* we have 2-disk failure */
3082 		BUG_ON(s->failed != 2);
3083 		/* fall through */
3084 	case check_state_compute_result:
3085 		sh->check_state = check_state_idle;
3086 
3087 		/* check that a write has not made the stripe insync */
3088 		if (test_bit(STRIPE_INSYNC, &sh->state))
3089 			break;
3090 
3091 		/* now write out any block on a failed drive,
3092 		 * or P or Q if they were recomputed
3093 		 */
3094 		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3095 		if (s->failed == 2) {
3096 			dev = &sh->dev[s->failed_num[1]];
3097 			s->locked++;
3098 			set_bit(R5_LOCKED, &dev->flags);
3099 			set_bit(R5_Wantwrite, &dev->flags);
3100 		}
3101 		if (s->failed >= 1) {
3102 			dev = &sh->dev[s->failed_num[0]];
3103 			s->locked++;
3104 			set_bit(R5_LOCKED, &dev->flags);
3105 			set_bit(R5_Wantwrite, &dev->flags);
3106 		}
3107 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3108 			dev = &sh->dev[pd_idx];
3109 			s->locked++;
3110 			set_bit(R5_LOCKED, &dev->flags);
3111 			set_bit(R5_Wantwrite, &dev->flags);
3112 		}
3113 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3114 			dev = &sh->dev[qd_idx];
3115 			s->locked++;
3116 			set_bit(R5_LOCKED, &dev->flags);
3117 			set_bit(R5_Wantwrite, &dev->flags);
3118 		}
3119 		clear_bit(STRIPE_DEGRADED, &sh->state);
3120 
3121 		set_bit(STRIPE_INSYNC, &sh->state);
3122 		break;
3123 	case check_state_run:
3124 	case check_state_run_q:
3125 	case check_state_run_pq:
3126 		break; /* we will be called again upon completion */
3127 	case check_state_check_result:
3128 		sh->check_state = check_state_idle;
3129 
3130 		/* handle a successful check operation, if parity is correct
3131 		 * we are done.  Otherwise update the mismatch count and repair
3132 		 * parity if !MD_RECOVERY_CHECK
3133 		 */
3134 		if (sh->ops.zero_sum_result == 0) {
3135 			/* both parities are correct */
3136 			if (!s->failed)
3137 				set_bit(STRIPE_INSYNC, &sh->state);
3138 			else {
3139 				/* in contrast to the raid5 case we can validate
3140 				 * parity, but still have a failure to write
3141 				 * back
3142 				 */
3143 				sh->check_state = check_state_compute_result;
3144 				/* Returning at this point means that we may go
3145 				 * off and bring p and/or q uptodate again so
3146 				 * we make sure to check zero_sum_result again
3147 				 * to verify if p or q need writeback
3148 				 */
3149 			}
3150 		} else {
3151 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3152 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3153 				/* don't try to repair!! */
3154 				set_bit(STRIPE_INSYNC, &sh->state);
3155 			else {
3156 				int *target = &sh->ops.target;
3157 
3158 				sh->ops.target = -1;
3159 				sh->ops.target2 = -1;
3160 				sh->check_state = check_state_compute_run;
3161 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3162 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3163 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3164 					set_bit(R5_Wantcompute,
3165 						&sh->dev[pd_idx].flags);
3166 					*target = pd_idx;
3167 					target = &sh->ops.target2;
3168 					s->uptodate++;
3169 				}
3170 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3171 					set_bit(R5_Wantcompute,
3172 						&sh->dev[qd_idx].flags);
3173 					*target = qd_idx;
3174 					s->uptodate++;
3175 				}
3176 			}
3177 		}
3178 		break;
3179 	case check_state_compute_run:
3180 		break;
3181 	default:
3182 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3183 		       __func__, sh->check_state,
3184 		       (unsigned long long) sh->sector);
3185 		BUG();
3186 	}
3187 }
3188 
3189 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3190 {
3191 	int i;
3192 
3193 	/* We have read all the blocks in this stripe and now we need to
3194 	 * copy some of them into a target stripe for expand.
3195 	 */
3196 	struct dma_async_tx_descriptor *tx = NULL;
3197 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3198 	for (i = 0; i < sh->disks; i++)
3199 		if (i != sh->pd_idx && i != sh->qd_idx) {
3200 			int dd_idx, j;
3201 			struct stripe_head *sh2;
3202 			struct async_submit_ctl submit;
3203 
3204 			sector_t bn = compute_blocknr(sh, i, 1);
3205 			sector_t s = raid5_compute_sector(conf, bn, 0,
3206 							  &dd_idx, NULL);
3207 			sh2 = get_active_stripe(conf, s, 0, 1, 1);
3208 			if (sh2 == NULL)
3209 				/* so far only the early blocks of this stripe
3210 				 * have been requested.  When later blocks
3211 				 * get requested, we will try again
3212 				 */
3213 				continue;
3214 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3215 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3216 				/* must have already done this block */
3217 				release_stripe(sh2);
3218 				continue;
3219 			}
3220 
3221 			/* place all the copies on one channel */
3222 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3223 			tx = async_memcpy(sh2->dev[dd_idx].page,
3224 					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
3225 					  &submit);
3226 
3227 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3228 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3229 			for (j = 0; j < conf->raid_disks; j++)
3230 				if (j != sh2->pd_idx &&
3231 				    j != sh2->qd_idx &&
3232 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
3233 					break;
3234 			if (j == conf->raid_disks) {
3235 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
3236 				set_bit(STRIPE_HANDLE, &sh2->state);
3237 			}
3238 			release_stripe(sh2);
3239 
3240 		}
3241 	/* done submitting copies, wait for them to complete */
3242 	async_tx_quiesce(&tx);
3243 }
3244 
3245 /*
3246  * handle_stripe - do things to a stripe.
3247  *
3248  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3249  * state of various bits to see what needs to be done.
3250  * Possible results:
3251  *    return some read requests which now have data
3252  *    return some write requests which are safely on storage
3253  *    schedule a read on some buffers
3254  *    schedule a write of some buffers
3255  *    return confirmation of parity correctness
3256  *
3257  */
3258 
3259 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3260 {
3261 	struct r5conf *conf = sh->raid_conf;
3262 	int disks = sh->disks;
3263 	struct r5dev *dev;
3264 	int i;
3265 	int do_recovery = 0;
3266 
3267 	memset(s, 0, sizeof(*s));
3268 
3269 	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3270 	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3271 	s->failed_num[0] = -1;
3272 	s->failed_num[1] = -1;
3273 
3274 	/* Now to look around and see what can be done */
3275 	rcu_read_lock();
3276 	for (i=disks; i--; ) {
3277 		struct md_rdev *rdev;
3278 		sector_t first_bad;
3279 		int bad_sectors;
3280 		int is_bad = 0;
3281 
3282 		dev = &sh->dev[i];
3283 
3284 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3285 			 i, dev->flags,
3286 			 dev->toread, dev->towrite, dev->written);
3287 		/* maybe we can reply to a read
3288 		 *
3289 		 * new wantfill requests are only permitted while
3290 		 * ops_complete_biofill is guaranteed to be inactive
3291 		 */
3292 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3293 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3294 			set_bit(R5_Wantfill, &dev->flags);
3295 
3296 		/* now count some things */
3297 		if (test_bit(R5_LOCKED, &dev->flags))
3298 			s->locked++;
3299 		if (test_bit(R5_UPTODATE, &dev->flags))
3300 			s->uptodate++;
3301 		if (test_bit(R5_Wantcompute, &dev->flags)) {
3302 			s->compute++;
3303 			BUG_ON(s->compute > 2);
3304 		}
3305 
3306 		if (test_bit(R5_Wantfill, &dev->flags))
3307 			s->to_fill++;
3308 		else if (dev->toread)
3309 			s->to_read++;
3310 		if (dev->towrite) {
3311 			s->to_write++;
3312 			if (!test_bit(R5_OVERWRITE, &dev->flags))
3313 				s->non_overwrite++;
3314 		}
3315 		if (dev->written)
3316 			s->written++;
3317 		/* Prefer to use the replacement for reads, but only
3318 		 * if it is recovered enough and has no bad blocks.
3319 		 */
3320 		rdev = rcu_dereference(conf->disks[i].replacement);
3321 		if (rdev && !test_bit(Faulty, &rdev->flags) &&
3322 		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3323 		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3324 				 &first_bad, &bad_sectors))
3325 			set_bit(R5_ReadRepl, &dev->flags);
3326 		else {
3327 			if (rdev)
3328 				set_bit(R5_NeedReplace, &dev->flags);
3329 			rdev = rcu_dereference(conf->disks[i].rdev);
3330 			clear_bit(R5_ReadRepl, &dev->flags);
3331 		}
3332 		if (rdev && test_bit(Faulty, &rdev->flags))
3333 			rdev = NULL;
3334 		if (rdev) {
3335 			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3336 					     &first_bad, &bad_sectors);
3337 			if (s->blocked_rdev == NULL
3338 			    && (test_bit(Blocked, &rdev->flags)
3339 				|| is_bad < 0)) {
3340 				if (is_bad < 0)
3341 					set_bit(BlockedBadBlocks,
3342 						&rdev->flags);
3343 				s->blocked_rdev = rdev;
3344 				atomic_inc(&rdev->nr_pending);
3345 			}
3346 		}
3347 		clear_bit(R5_Insync, &dev->flags);
3348 		if (!rdev)
3349 			/* Not in-sync */;
3350 		else if (is_bad) {
3351 			/* also not in-sync */
3352 			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3353 			    test_bit(R5_UPTODATE, &dev->flags)) {
3354 				/* treat as in-sync, but with a read error
3355 				 * which we can now try to correct
3356 				 */
3357 				set_bit(R5_Insync, &dev->flags);
3358 				set_bit(R5_ReadError, &dev->flags);
3359 			}
3360 		} else if (test_bit(In_sync, &rdev->flags))
3361 			set_bit(R5_Insync, &dev->flags);
3362 		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3363 			/* in sync if before recovery_offset */
3364 			set_bit(R5_Insync, &dev->flags);
3365 		else if (test_bit(R5_UPTODATE, &dev->flags) &&
3366 			 test_bit(R5_Expanded, &dev->flags))
3367 			/* If we've reshaped into here, we assume it is Insync.
3368 			 * We will shortly update recovery_offset to make
3369 			 * it official.
3370 			 */
3371 			set_bit(R5_Insync, &dev->flags);
3372 
3373 		if (rdev && test_bit(R5_WriteError, &dev->flags)) {
3374 			/* This flag does not apply to '.replacement'
3375 			 * only to .rdev, so make sure to check that*/
3376 			struct md_rdev *rdev2 = rcu_dereference(
3377 				conf->disks[i].rdev);
3378 			if (rdev2 == rdev)
3379 				clear_bit(R5_Insync, &dev->flags);
3380 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3381 				s->handle_bad_blocks = 1;
3382 				atomic_inc(&rdev2->nr_pending);
3383 			} else
3384 				clear_bit(R5_WriteError, &dev->flags);
3385 		}
3386 		if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
3387 			/* This flag does not apply to '.replacement'
3388 			 * only to .rdev, so make sure to check that*/
3389 			struct md_rdev *rdev2 = rcu_dereference(
3390 				conf->disks[i].rdev);
3391 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3392 				s->handle_bad_blocks = 1;
3393 				atomic_inc(&rdev2->nr_pending);
3394 			} else
3395 				clear_bit(R5_MadeGood, &dev->flags);
3396 		}
3397 		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3398 			struct md_rdev *rdev2 = rcu_dereference(
3399 				conf->disks[i].replacement);
3400 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3401 				s->handle_bad_blocks = 1;
3402 				atomic_inc(&rdev2->nr_pending);
3403 			} else
3404 				clear_bit(R5_MadeGoodRepl, &dev->flags);
3405 		}
3406 		if (!test_bit(R5_Insync, &dev->flags)) {
3407 			/* The ReadError flag will just be confusing now */
3408 			clear_bit(R5_ReadError, &dev->flags);
3409 			clear_bit(R5_ReWrite, &dev->flags);
3410 		}
3411 		if (test_bit(R5_ReadError, &dev->flags))
3412 			clear_bit(R5_Insync, &dev->flags);
3413 		if (!test_bit(R5_Insync, &dev->flags)) {
3414 			if (s->failed < 2)
3415 				s->failed_num[s->failed] = i;
3416 			s->failed++;
3417 			if (rdev && !test_bit(Faulty, &rdev->flags))
3418 				do_recovery = 1;
3419 		}
3420 	}
3421 	if (test_bit(STRIPE_SYNCING, &sh->state)) {
3422 		/* If there is a failed device being replaced,
3423 		 *     we must be recovering.
3424 		 * else if we are after recovery_cp, we must be syncing
3425 		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3426 		 * else we can only be replacing
3427 		 * sync and recovery both need to read all devices, and so
3428 		 * use the same flag.
3429 		 */
3430 		if (do_recovery ||
3431 		    sh->sector >= conf->mddev->recovery_cp ||
3432 		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3433 			s->syncing = 1;
3434 		else
3435 			s->replacing = 1;
3436 	}
3437 	rcu_read_unlock();
3438 }
3439 
3440 static void handle_stripe(struct stripe_head *sh)
3441 {
3442 	struct stripe_head_state s;
3443 	struct r5conf *conf = sh->raid_conf;
3444 	int i;
3445 	int prexor;
3446 	int disks = sh->disks;
3447 	struct r5dev *pdev, *qdev;
3448 
3449 	clear_bit(STRIPE_HANDLE, &sh->state);
3450 	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3451 		/* already being handled, ensure it gets handled
3452 		 * again when current action finishes */
3453 		set_bit(STRIPE_HANDLE, &sh->state);
3454 		return;
3455 	}
3456 
3457 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3458 		spin_lock(&sh->stripe_lock);
3459 		/* Cannot process 'sync' concurrently with 'discard' */
3460 		if (!test_bit(STRIPE_DISCARD, &sh->state) &&
3461 		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3462 			set_bit(STRIPE_SYNCING, &sh->state);
3463 			clear_bit(STRIPE_INSYNC, &sh->state);
3464 		}
3465 		spin_unlock(&sh->stripe_lock);
3466 	}
3467 	clear_bit(STRIPE_DELAYED, &sh->state);
3468 
3469 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3470 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3471 	       (unsigned long long)sh->sector, sh->state,
3472 	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3473 	       sh->check_state, sh->reconstruct_state);
3474 
3475 	analyse_stripe(sh, &s);
3476 
3477 	if (s.handle_bad_blocks) {
3478 		set_bit(STRIPE_HANDLE, &sh->state);
3479 		goto finish;
3480 	}
3481 
3482 	if (unlikely(s.blocked_rdev)) {
3483 		if (s.syncing || s.expanding || s.expanded ||
3484 		    s.replacing || s.to_write || s.written) {
3485 			set_bit(STRIPE_HANDLE, &sh->state);
3486 			goto finish;
3487 		}
3488 		/* There is nothing for the blocked_rdev to block */
3489 		rdev_dec_pending(s.blocked_rdev, conf->mddev);
3490 		s.blocked_rdev = NULL;
3491 	}
3492 
3493 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3494 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3495 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3496 	}
3497 
3498 	pr_debug("locked=%d uptodate=%d to_read=%d"
3499 	       " to_write=%d failed=%d failed_num=%d,%d\n",
3500 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3501 	       s.failed_num[0], s.failed_num[1]);
3502 	/* check if the array has lost more than max_degraded devices and,
3503 	 * if so, some requests might need to be failed.
3504 	 */
3505 	if (s.failed > conf->max_degraded) {
3506 		sh->check_state = 0;
3507 		sh->reconstruct_state = 0;
3508 		if (s.to_read+s.to_write+s.written)
3509 			handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3510 		if (s.syncing + s.replacing)
3511 			handle_failed_sync(conf, sh, &s);
3512 	}
3513 
3514 	/* Now we check to see if any write operations have recently
3515 	 * completed
3516 	 */
3517 	prexor = 0;
3518 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3519 		prexor = 1;
3520 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
3521 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3522 		sh->reconstruct_state = reconstruct_state_idle;
3523 
3524 		/* All the 'written' buffers and the parity block are ready to
3525 		 * be written back to disk
3526 		 */
3527 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
3528 		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
3529 		BUG_ON(sh->qd_idx >= 0 &&
3530 		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
3531 		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
3532 		for (i = disks; i--; ) {
3533 			struct r5dev *dev = &sh->dev[i];
3534 			if (test_bit(R5_LOCKED, &dev->flags) &&
3535 				(i == sh->pd_idx || i == sh->qd_idx ||
3536 				 dev->written)) {
3537 				pr_debug("Writing block %d\n", i);
3538 				set_bit(R5_Wantwrite, &dev->flags);
3539 				if (prexor)
3540 					continue;
3541 				if (!test_bit(R5_Insync, &dev->flags) ||
3542 				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
3543 				     s.failed == 0))
3544 					set_bit(STRIPE_INSYNC, &sh->state);
3545 			}
3546 		}
3547 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3548 			s.dec_preread_active = 1;
3549 	}
3550 
3551 	/*
3552 	 * might be able to return some write requests if the parity blocks
3553 	 * are safe, or on a failed drive
3554 	 */
3555 	pdev = &sh->dev[sh->pd_idx];
3556 	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3557 		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3558 	qdev = &sh->dev[sh->qd_idx];
3559 	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3560 		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3561 		|| conf->level < 6;
3562 
3563 	if (s.written &&
3564 	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3565 			     && !test_bit(R5_LOCKED, &pdev->flags)
3566 			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
3567 				 test_bit(R5_Discard, &pdev->flags))))) &&
3568 	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3569 			     && !test_bit(R5_LOCKED, &qdev->flags)
3570 			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
3571 				 test_bit(R5_Discard, &qdev->flags))))))
3572 		handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3573 
3574 	/* Now we might consider reading some blocks, either to check/generate
3575 	 * parity, or to satisfy requests
3576 	 * or to load a block that is being partially written.
3577 	 */
3578 	if (s.to_read || s.non_overwrite
3579 	    || (conf->level == 6 && s.to_write && s.failed)
3580 	    || (s.syncing && (s.uptodate + s.compute < disks))
3581 	    || s.replacing
3582 	    || s.expanding)
3583 		handle_stripe_fill(sh, &s, disks);
3584 
3585 	/* Now to consider new write requests and what else, if anything
3586 	 * should be read.  We do not handle new writes when:
3587 	 * 1/ A 'write' operation (copy+xor) is already in flight.
3588 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
3589 	 *    block.
3590 	 */
3591 	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3592 		handle_stripe_dirtying(conf, sh, &s, disks);
3593 
3594 	/* maybe we need to check and possibly fix the parity for this stripe
3595 	 * Any reads will already have been scheduled, so we just see if enough
3596 	 * data is available.  The parity check is held off while parity
3597 	 * dependent operations are in flight.
3598 	 */
3599 	if (sh->check_state ||
3600 	    (s.syncing && s.locked == 0 &&
3601 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3602 	     !test_bit(STRIPE_INSYNC, &sh->state))) {
3603 		if (conf->level == 6)
3604 			handle_parity_checks6(conf, sh, &s, disks);
3605 		else
3606 			handle_parity_checks5(conf, sh, &s, disks);
3607 	}
3608 
3609 	if (s.replacing && s.locked == 0
3610 	    && !test_bit(STRIPE_INSYNC, &sh->state)) {
3611 		/* Write out to replacement devices where possible */
3612 		for (i = 0; i < conf->raid_disks; i++)
3613 			if (test_bit(R5_UPTODATE, &sh->dev[i].flags) &&
3614 			    test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3615 				set_bit(R5_WantReplace, &sh->dev[i].flags);
3616 				set_bit(R5_LOCKED, &sh->dev[i].flags);
3617 				s.locked++;
3618 			}
3619 		set_bit(STRIPE_INSYNC, &sh->state);
3620 	}
3621 	if ((s.syncing || s.replacing) && s.locked == 0 &&
3622 	    test_bit(STRIPE_INSYNC, &sh->state)) {
3623 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3624 		clear_bit(STRIPE_SYNCING, &sh->state);
3625 		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3626 			wake_up(&conf->wait_for_overlap);
3627 	}
3628 
3629 	/* If the failed drives are just a ReadError, then we might need
3630 	 * to progress the repair/check process
3631 	 */
3632 	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3633 		for (i = 0; i < s.failed; i++) {
3634 			struct r5dev *dev = &sh->dev[s.failed_num[i]];
3635 			if (test_bit(R5_ReadError, &dev->flags)
3636 			    && !test_bit(R5_LOCKED, &dev->flags)
3637 			    && test_bit(R5_UPTODATE, &dev->flags)
3638 				) {
3639 				if (!test_bit(R5_ReWrite, &dev->flags)) {
3640 					set_bit(R5_Wantwrite, &dev->flags);
3641 					set_bit(R5_ReWrite, &dev->flags);
3642 					set_bit(R5_LOCKED, &dev->flags);
3643 					s.locked++;
3644 				} else {
3645 					/* let's read it back */
3646 					set_bit(R5_Wantread, &dev->flags);
3647 					set_bit(R5_LOCKED, &dev->flags);
3648 					s.locked++;
3649 				}
3650 			}
3651 		}
3652 
3653 
3654 	/* Finish reconstruct operations initiated by the expansion process */
3655 	if (sh->reconstruct_state == reconstruct_state_result) {
3656 		struct stripe_head *sh_src
3657 			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3658 		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3659 			/* sh cannot be written until sh_src has been read.
3660 			 * so arrange for sh to be delayed a little
3661 			 */
3662 			set_bit(STRIPE_DELAYED, &sh->state);
3663 			set_bit(STRIPE_HANDLE, &sh->state);
3664 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3665 					      &sh_src->state))
3666 				atomic_inc(&conf->preread_active_stripes);
3667 			release_stripe(sh_src);
3668 			goto finish;
3669 		}
3670 		if (sh_src)
3671 			release_stripe(sh_src);
3672 
3673 		sh->reconstruct_state = reconstruct_state_idle;
3674 		clear_bit(STRIPE_EXPANDING, &sh->state);
3675 		for (i = conf->raid_disks; i--; ) {
3676 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
3677 			set_bit(R5_LOCKED, &sh->dev[i].flags);
3678 			s.locked++;
3679 		}
3680 	}
3681 
3682 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3683 	    !sh->reconstruct_state) {
3684 		/* Need to write out all blocks after computing parity */
3685 		sh->disks = conf->raid_disks;
3686 		stripe_set_idx(sh->sector, conf, 0, sh);
3687 		schedule_reconstruction(sh, &s, 1, 1);
3688 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3689 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3690 		atomic_dec(&conf->reshape_stripes);
3691 		wake_up(&conf->wait_for_overlap);
3692 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3693 	}
3694 
3695 	if (s.expanding && s.locked == 0 &&
3696 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3697 		handle_stripe_expansion(conf, sh);
3698 
3699 finish:
3700 	/* wait for this device to become unblocked */
3701 	if (unlikely(s.blocked_rdev)) {
3702 		if (conf->mddev->external)
3703 			md_wait_for_blocked_rdev(s.blocked_rdev,
3704 						 conf->mddev);
3705 		else
3706 			/* Internal metadata will immediately
3707 			 * be written by raid5d, so we don't
3708 			 * need to wait here.
3709 			 */
3710 			rdev_dec_pending(s.blocked_rdev,
3711 					 conf->mddev);
3712 	}
3713 
3714 	if (s.handle_bad_blocks)
3715 		for (i = disks; i--; ) {
3716 			struct md_rdev *rdev;
3717 			struct r5dev *dev = &sh->dev[i];
3718 			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3719 				/* We own a safe reference to the rdev */
3720 				rdev = conf->disks[i].rdev;
3721 				if (!rdev_set_badblocks(rdev, sh->sector,
3722 							STRIPE_SECTORS, 0))
3723 					md_error(conf->mddev, rdev);
3724 				rdev_dec_pending(rdev, conf->mddev);
3725 			}
3726 			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3727 				rdev = conf->disks[i].rdev;
3728 				rdev_clear_badblocks(rdev, sh->sector,
3729 						     STRIPE_SECTORS, 0);
3730 				rdev_dec_pending(rdev, conf->mddev);
3731 			}
3732 			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3733 				rdev = conf->disks[i].replacement;
3734 				if (!rdev)
3735 					/* rdev have been moved down */
3736 					rdev = conf->disks[i].rdev;
3737 				rdev_clear_badblocks(rdev, sh->sector,
3738 						     STRIPE_SECTORS, 0);
3739 				rdev_dec_pending(rdev, conf->mddev);
3740 			}
3741 		}
3742 
3743 	if (s.ops_request)
3744 		raid_run_ops(sh, s.ops_request);
3745 
3746 	ops_run_io(sh, &s);
3747 
3748 	if (s.dec_preread_active) {
3749 		/* We delay this until after ops_run_io so that if make_request
3750 		 * is waiting on a flush, it won't continue until the writes
3751 		 * have actually been submitted.
3752 		 */
3753 		atomic_dec(&conf->preread_active_stripes);
3754 		if (atomic_read(&conf->preread_active_stripes) <
3755 		    IO_THRESHOLD)
3756 			md_wakeup_thread(conf->mddev->thread);
3757 	}
3758 
3759 	return_io(s.return_bi);
3760 
3761 	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
3762 }
3763 
3764 static void raid5_activate_delayed(struct r5conf *conf)
3765 {
3766 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3767 		while (!list_empty(&conf->delayed_list)) {
3768 			struct list_head *l = conf->delayed_list.next;
3769 			struct stripe_head *sh;
3770 			sh = list_entry(l, struct stripe_head, lru);
3771 			list_del_init(l);
3772 			clear_bit(STRIPE_DELAYED, &sh->state);
3773 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3774 				atomic_inc(&conf->preread_active_stripes);
3775 			list_add_tail(&sh->lru, &conf->hold_list);
3776 		}
3777 	}
3778 }
3779 
3780 static void activate_bit_delay(struct r5conf *conf)
3781 {
3782 	/* device_lock is held */
3783 	struct list_head head;
3784 	list_add(&head, &conf->bitmap_list);
3785 	list_del_init(&conf->bitmap_list);
3786 	while (!list_empty(&head)) {
3787 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3788 		list_del_init(&sh->lru);
3789 		atomic_inc(&sh->count);
3790 		__release_stripe(conf, sh);
3791 	}
3792 }
3793 
3794 int md_raid5_congested(struct mddev *mddev, int bits)
3795 {
3796 	struct r5conf *conf = mddev->private;
3797 
3798 	/* No difference between reads and writes.  Just check
3799 	 * how busy the stripe_cache is
3800 	 */
3801 
3802 	if (conf->inactive_blocked)
3803 		return 1;
3804 	if (conf->quiesce)
3805 		return 1;
3806 	if (list_empty_careful(&conf->inactive_list))
3807 		return 1;
3808 
3809 	return 0;
3810 }
3811 EXPORT_SYMBOL_GPL(md_raid5_congested);
3812 
3813 static int raid5_congested(void *data, int bits)
3814 {
3815 	struct mddev *mddev = data;
3816 
3817 	return mddev_congested(mddev, bits) ||
3818 		md_raid5_congested(mddev, bits);
3819 }
3820 
3821 /* We want read requests to align with chunks where possible,
3822  * but write requests don't need to.
3823  */
3824 static int raid5_mergeable_bvec(struct request_queue *q,
3825 				struct bvec_merge_data *bvm,
3826 				struct bio_vec *biovec)
3827 {
3828 	struct mddev *mddev = q->queuedata;
3829 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3830 	int max;
3831 	unsigned int chunk_sectors = mddev->chunk_sectors;
3832 	unsigned int bio_sectors = bvm->bi_size >> 9;
3833 
3834 	if ((bvm->bi_rw & 1) == WRITE)
3835 		return biovec->bv_len; /* always allow writes to be mergeable */
3836 
3837 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3838 		chunk_sectors = mddev->new_chunk_sectors;
3839 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3840 	if (max < 0) max = 0;
3841 	if (max <= biovec->bv_len && bio_sectors == 0)
3842 		return biovec->bv_len;
3843 	else
3844 		return max;
3845 }
3846 
3847 
3848 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
3849 {
3850 	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3851 	unsigned int chunk_sectors = mddev->chunk_sectors;
3852 	unsigned int bio_sectors = bio->bi_size >> 9;
3853 
3854 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3855 		chunk_sectors = mddev->new_chunk_sectors;
3856 	return  chunk_sectors >=
3857 		((sector & (chunk_sectors - 1)) + bio_sectors);
3858 }
3859 
3860 /*
3861  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3862  *  later sampled by raid5d.
3863  */
3864 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
3865 {
3866 	unsigned long flags;
3867 
3868 	spin_lock_irqsave(&conf->device_lock, flags);
3869 
3870 	bi->bi_next = conf->retry_read_aligned_list;
3871 	conf->retry_read_aligned_list = bi;
3872 
3873 	spin_unlock_irqrestore(&conf->device_lock, flags);
3874 	md_wakeup_thread(conf->mddev->thread);
3875 }
3876 
3877 
3878 static struct bio *remove_bio_from_retry(struct r5conf *conf)
3879 {
3880 	struct bio *bi;
3881 
3882 	bi = conf->retry_read_aligned;
3883 	if (bi) {
3884 		conf->retry_read_aligned = NULL;
3885 		return bi;
3886 	}
3887 	bi = conf->retry_read_aligned_list;
3888 	if(bi) {
3889 		conf->retry_read_aligned_list = bi->bi_next;
3890 		bi->bi_next = NULL;
3891 		/*
3892 		 * this sets the active strip count to 1 and the processed
3893 		 * strip count to zero (upper 8 bits)
3894 		 */
3895 		raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
3896 	}
3897 
3898 	return bi;
3899 }
3900 
3901 
3902 /*
3903  *  The "raid5_align_endio" should check if the read succeeded and if it
3904  *  did, call bio_endio on the original bio (having bio_put the new bio
3905  *  first).
3906  *  If the read failed..
3907  */
3908 static void raid5_align_endio(struct bio *bi, int error)
3909 {
3910 	struct bio* raid_bi  = bi->bi_private;
3911 	struct mddev *mddev;
3912 	struct r5conf *conf;
3913 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3914 	struct md_rdev *rdev;
3915 
3916 	bio_put(bi);
3917 
3918 	rdev = (void*)raid_bi->bi_next;
3919 	raid_bi->bi_next = NULL;
3920 	mddev = rdev->mddev;
3921 	conf = mddev->private;
3922 
3923 	rdev_dec_pending(rdev, conf->mddev);
3924 
3925 	if (!error && uptodate) {
3926 		trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
3927 					 raid_bi, 0);
3928 		bio_endio(raid_bi, 0);
3929 		if (atomic_dec_and_test(&conf->active_aligned_reads))
3930 			wake_up(&conf->wait_for_stripe);
3931 		return;
3932 	}
3933 
3934 
3935 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3936 
3937 	add_bio_to_retry(raid_bi, conf);
3938 }
3939 
3940 static int bio_fits_rdev(struct bio *bi)
3941 {
3942 	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3943 
3944 	if ((bi->bi_size>>9) > queue_max_sectors(q))
3945 		return 0;
3946 	blk_recount_segments(q, bi);
3947 	if (bi->bi_phys_segments > queue_max_segments(q))
3948 		return 0;
3949 
3950 	if (q->merge_bvec_fn)
3951 		/* it's too hard to apply the merge_bvec_fn at this stage,
3952 		 * just just give up
3953 		 */
3954 		return 0;
3955 
3956 	return 1;
3957 }
3958 
3959 
3960 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
3961 {
3962 	struct r5conf *conf = mddev->private;
3963 	int dd_idx;
3964 	struct bio* align_bi;
3965 	struct md_rdev *rdev;
3966 	sector_t end_sector;
3967 
3968 	if (!in_chunk_boundary(mddev, raid_bio)) {
3969 		pr_debug("chunk_aligned_read : non aligned\n");
3970 		return 0;
3971 	}
3972 	/*
3973 	 * use bio_clone_mddev to make a copy of the bio
3974 	 */
3975 	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3976 	if (!align_bi)
3977 		return 0;
3978 	/*
3979 	 *   set bi_end_io to a new function, and set bi_private to the
3980 	 *     original bio.
3981 	 */
3982 	align_bi->bi_end_io  = raid5_align_endio;
3983 	align_bi->bi_private = raid_bio;
3984 	/*
3985 	 *	compute position
3986 	 */
3987 	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3988 						    0,
3989 						    &dd_idx, NULL);
3990 
3991 	end_sector = align_bi->bi_sector + (align_bi->bi_size >> 9);
3992 	rcu_read_lock();
3993 	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
3994 	if (!rdev || test_bit(Faulty, &rdev->flags) ||
3995 	    rdev->recovery_offset < end_sector) {
3996 		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3997 		if (rdev &&
3998 		    (test_bit(Faulty, &rdev->flags) ||
3999 		    !(test_bit(In_sync, &rdev->flags) ||
4000 		      rdev->recovery_offset >= end_sector)))
4001 			rdev = NULL;
4002 	}
4003 	if (rdev) {
4004 		sector_t first_bad;
4005 		int bad_sectors;
4006 
4007 		atomic_inc(&rdev->nr_pending);
4008 		rcu_read_unlock();
4009 		raid_bio->bi_next = (void*)rdev;
4010 		align_bi->bi_bdev =  rdev->bdev;
4011 		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
4012 
4013 		if (!bio_fits_rdev(align_bi) ||
4014 		    is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
4015 				&first_bad, &bad_sectors)) {
4016 			/* too big in some way, or has a known bad block */
4017 			bio_put(align_bi);
4018 			rdev_dec_pending(rdev, mddev);
4019 			return 0;
4020 		}
4021 
4022 		/* No reshape active, so we can trust rdev->data_offset */
4023 		align_bi->bi_sector += rdev->data_offset;
4024 
4025 		spin_lock_irq(&conf->device_lock);
4026 		wait_event_lock_irq(conf->wait_for_stripe,
4027 				    conf->quiesce == 0,
4028 				    conf->device_lock);
4029 		atomic_inc(&conf->active_aligned_reads);
4030 		spin_unlock_irq(&conf->device_lock);
4031 
4032 		if (mddev->gendisk)
4033 			trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4034 					      align_bi, disk_devt(mddev->gendisk),
4035 					      raid_bio->bi_sector);
4036 		generic_make_request(align_bi);
4037 		return 1;
4038 	} else {
4039 		rcu_read_unlock();
4040 		bio_put(align_bi);
4041 		return 0;
4042 	}
4043 }
4044 
4045 /* __get_priority_stripe - get the next stripe to process
4046  *
4047  * Full stripe writes are allowed to pass preread active stripes up until
4048  * the bypass_threshold is exceeded.  In general the bypass_count
4049  * increments when the handle_list is handled before the hold_list; however, it
4050  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4051  * stripe with in flight i/o.  The bypass_count will be reset when the
4052  * head of the hold_list has changed, i.e. the head was promoted to the
4053  * handle_list.
4054  */
4055 static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
4056 {
4057 	struct stripe_head *sh;
4058 
4059 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4060 		  __func__,
4061 		  list_empty(&conf->handle_list) ? "empty" : "busy",
4062 		  list_empty(&conf->hold_list) ? "empty" : "busy",
4063 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
4064 
4065 	if (!list_empty(&conf->handle_list)) {
4066 		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
4067 
4068 		if (list_empty(&conf->hold_list))
4069 			conf->bypass_count = 0;
4070 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4071 			if (conf->hold_list.next == conf->last_hold)
4072 				conf->bypass_count++;
4073 			else {
4074 				conf->last_hold = conf->hold_list.next;
4075 				conf->bypass_count -= conf->bypass_threshold;
4076 				if (conf->bypass_count < 0)
4077 					conf->bypass_count = 0;
4078 			}
4079 		}
4080 	} else if (!list_empty(&conf->hold_list) &&
4081 		   ((conf->bypass_threshold &&
4082 		     conf->bypass_count > conf->bypass_threshold) ||
4083 		    atomic_read(&conf->pending_full_writes) == 0)) {
4084 		sh = list_entry(conf->hold_list.next,
4085 				typeof(*sh), lru);
4086 		conf->bypass_count -= conf->bypass_threshold;
4087 		if (conf->bypass_count < 0)
4088 			conf->bypass_count = 0;
4089 	} else
4090 		return NULL;
4091 
4092 	list_del_init(&sh->lru);
4093 	atomic_inc(&sh->count);
4094 	BUG_ON(atomic_read(&sh->count) != 1);
4095 	return sh;
4096 }
4097 
4098 struct raid5_plug_cb {
4099 	struct blk_plug_cb	cb;
4100 	struct list_head	list;
4101 };
4102 
4103 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4104 {
4105 	struct raid5_plug_cb *cb = container_of(
4106 		blk_cb, struct raid5_plug_cb, cb);
4107 	struct stripe_head *sh;
4108 	struct mddev *mddev = cb->cb.data;
4109 	struct r5conf *conf = mddev->private;
4110 	int cnt = 0;
4111 
4112 	if (cb->list.next && !list_empty(&cb->list)) {
4113 		spin_lock_irq(&conf->device_lock);
4114 		while (!list_empty(&cb->list)) {
4115 			sh = list_first_entry(&cb->list, struct stripe_head, lru);
4116 			list_del_init(&sh->lru);
4117 			/*
4118 			 * avoid race release_stripe_plug() sees
4119 			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
4120 			 * is still in our list
4121 			 */
4122 			smp_mb__before_clear_bit();
4123 			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4124 			__release_stripe(conf, sh);
4125 			cnt++;
4126 		}
4127 		spin_unlock_irq(&conf->device_lock);
4128 	}
4129 	if (mddev->queue)
4130 		trace_block_unplug(mddev->queue, cnt, !from_schedule);
4131 	kfree(cb);
4132 }
4133 
4134 static void release_stripe_plug(struct mddev *mddev,
4135 				struct stripe_head *sh)
4136 {
4137 	struct blk_plug_cb *blk_cb = blk_check_plugged(
4138 		raid5_unplug, mddev,
4139 		sizeof(struct raid5_plug_cb));
4140 	struct raid5_plug_cb *cb;
4141 
4142 	if (!blk_cb) {
4143 		release_stripe(sh);
4144 		return;
4145 	}
4146 
4147 	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4148 
4149 	if (cb->list.next == NULL)
4150 		INIT_LIST_HEAD(&cb->list);
4151 
4152 	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4153 		list_add_tail(&sh->lru, &cb->list);
4154 	else
4155 		release_stripe(sh);
4156 }
4157 
4158 static void make_discard_request(struct mddev *mddev, struct bio *bi)
4159 {
4160 	struct r5conf *conf = mddev->private;
4161 	sector_t logical_sector, last_sector;
4162 	struct stripe_head *sh;
4163 	int remaining;
4164 	int stripe_sectors;
4165 
4166 	if (mddev->reshape_position != MaxSector)
4167 		/* Skip discard while reshape is happening */
4168 		return;
4169 
4170 	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4171 	last_sector = bi->bi_sector + (bi->bi_size>>9);
4172 
4173 	bi->bi_next = NULL;
4174 	bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4175 
4176 	stripe_sectors = conf->chunk_sectors *
4177 		(conf->raid_disks - conf->max_degraded);
4178 	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4179 					       stripe_sectors);
4180 	sector_div(last_sector, stripe_sectors);
4181 
4182 	logical_sector *= conf->chunk_sectors;
4183 	last_sector *= conf->chunk_sectors;
4184 
4185 	for (; logical_sector < last_sector;
4186 	     logical_sector += STRIPE_SECTORS) {
4187 		DEFINE_WAIT(w);
4188 		int d;
4189 	again:
4190 		sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4191 		prepare_to_wait(&conf->wait_for_overlap, &w,
4192 				TASK_UNINTERRUPTIBLE);
4193 		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4194 		if (test_bit(STRIPE_SYNCING, &sh->state)) {
4195 			release_stripe(sh);
4196 			schedule();
4197 			goto again;
4198 		}
4199 		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4200 		spin_lock_irq(&sh->stripe_lock);
4201 		for (d = 0; d < conf->raid_disks; d++) {
4202 			if (d == sh->pd_idx || d == sh->qd_idx)
4203 				continue;
4204 			if (sh->dev[d].towrite || sh->dev[d].toread) {
4205 				set_bit(R5_Overlap, &sh->dev[d].flags);
4206 				spin_unlock_irq(&sh->stripe_lock);
4207 				release_stripe(sh);
4208 				schedule();
4209 				goto again;
4210 			}
4211 		}
4212 		set_bit(STRIPE_DISCARD, &sh->state);
4213 		finish_wait(&conf->wait_for_overlap, &w);
4214 		for (d = 0; d < conf->raid_disks; d++) {
4215 			if (d == sh->pd_idx || d == sh->qd_idx)
4216 				continue;
4217 			sh->dev[d].towrite = bi;
4218 			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
4219 			raid5_inc_bi_active_stripes(bi);
4220 		}
4221 		spin_unlock_irq(&sh->stripe_lock);
4222 		if (conf->mddev->bitmap) {
4223 			for (d = 0;
4224 			     d < conf->raid_disks - conf->max_degraded;
4225 			     d++)
4226 				bitmap_startwrite(mddev->bitmap,
4227 						  sh->sector,
4228 						  STRIPE_SECTORS,
4229 						  0);
4230 			sh->bm_seq = conf->seq_flush + 1;
4231 			set_bit(STRIPE_BIT_DELAY, &sh->state);
4232 		}
4233 
4234 		set_bit(STRIPE_HANDLE, &sh->state);
4235 		clear_bit(STRIPE_DELAYED, &sh->state);
4236 		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4237 			atomic_inc(&conf->preread_active_stripes);
4238 		release_stripe_plug(mddev, sh);
4239 	}
4240 
4241 	remaining = raid5_dec_bi_active_stripes(bi);
4242 	if (remaining == 0) {
4243 		md_write_end(mddev);
4244 		bio_endio(bi, 0);
4245 	}
4246 }
4247 
4248 static void make_request(struct mddev *mddev, struct bio * bi)
4249 {
4250 	struct r5conf *conf = mddev->private;
4251 	int dd_idx;
4252 	sector_t new_sector;
4253 	sector_t logical_sector, last_sector;
4254 	struct stripe_head *sh;
4255 	const int rw = bio_data_dir(bi);
4256 	int remaining;
4257 
4258 	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4259 		md_flush_request(mddev, bi);
4260 		return;
4261 	}
4262 
4263 	md_write_start(mddev, bi);
4264 
4265 	if (rw == READ &&
4266 	     mddev->reshape_position == MaxSector &&
4267 	     chunk_aligned_read(mddev,bi))
4268 		return;
4269 
4270 	if (unlikely(bi->bi_rw & REQ_DISCARD)) {
4271 		make_discard_request(mddev, bi);
4272 		return;
4273 	}
4274 
4275 	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4276 	last_sector = bi->bi_sector + (bi->bi_size>>9);
4277 	bi->bi_next = NULL;
4278 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
4279 
4280 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4281 		DEFINE_WAIT(w);
4282 		int previous;
4283 
4284 	retry:
4285 		previous = 0;
4286 		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4287 		if (unlikely(conf->reshape_progress != MaxSector)) {
4288 			/* spinlock is needed as reshape_progress may be
4289 			 * 64bit on a 32bit platform, and so it might be
4290 			 * possible to see a half-updated value
4291 			 * Of course reshape_progress could change after
4292 			 * the lock is dropped, so once we get a reference
4293 			 * to the stripe that we think it is, we will have
4294 			 * to check again.
4295 			 */
4296 			spin_lock_irq(&conf->device_lock);
4297 			if (mddev->reshape_backwards
4298 			    ? logical_sector < conf->reshape_progress
4299 			    : logical_sector >= conf->reshape_progress) {
4300 				previous = 1;
4301 			} else {
4302 				if (mddev->reshape_backwards
4303 				    ? logical_sector < conf->reshape_safe
4304 				    : logical_sector >= conf->reshape_safe) {
4305 					spin_unlock_irq(&conf->device_lock);
4306 					schedule();
4307 					goto retry;
4308 				}
4309 			}
4310 			spin_unlock_irq(&conf->device_lock);
4311 		}
4312 
4313 		new_sector = raid5_compute_sector(conf, logical_sector,
4314 						  previous,
4315 						  &dd_idx, NULL);
4316 		pr_debug("raid456: make_request, sector %llu logical %llu\n",
4317 			(unsigned long long)new_sector,
4318 			(unsigned long long)logical_sector);
4319 
4320 		sh = get_active_stripe(conf, new_sector, previous,
4321 				       (bi->bi_rw&RWA_MASK), 0);
4322 		if (sh) {
4323 			if (unlikely(previous)) {
4324 				/* expansion might have moved on while waiting for a
4325 				 * stripe, so we must do the range check again.
4326 				 * Expansion could still move past after this
4327 				 * test, but as we are holding a reference to
4328 				 * 'sh', we know that if that happens,
4329 				 *  STRIPE_EXPANDING will get set and the expansion
4330 				 * won't proceed until we finish with the stripe.
4331 				 */
4332 				int must_retry = 0;
4333 				spin_lock_irq(&conf->device_lock);
4334 				if (mddev->reshape_backwards
4335 				    ? logical_sector >= conf->reshape_progress
4336 				    : logical_sector < conf->reshape_progress)
4337 					/* mismatch, need to try again */
4338 					must_retry = 1;
4339 				spin_unlock_irq(&conf->device_lock);
4340 				if (must_retry) {
4341 					release_stripe(sh);
4342 					schedule();
4343 					goto retry;
4344 				}
4345 			}
4346 
4347 			if (rw == WRITE &&
4348 			    logical_sector >= mddev->suspend_lo &&
4349 			    logical_sector < mddev->suspend_hi) {
4350 				release_stripe(sh);
4351 				/* As the suspend_* range is controlled by
4352 				 * userspace, we want an interruptible
4353 				 * wait.
4354 				 */
4355 				flush_signals(current);
4356 				prepare_to_wait(&conf->wait_for_overlap,
4357 						&w, TASK_INTERRUPTIBLE);
4358 				if (logical_sector >= mddev->suspend_lo &&
4359 				    logical_sector < mddev->suspend_hi)
4360 					schedule();
4361 				goto retry;
4362 			}
4363 
4364 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4365 			    !add_stripe_bio(sh, bi, dd_idx, rw)) {
4366 				/* Stripe is busy expanding or
4367 				 * add failed due to overlap.  Flush everything
4368 				 * and wait a while
4369 				 */
4370 				md_wakeup_thread(mddev->thread);
4371 				release_stripe(sh);
4372 				schedule();
4373 				goto retry;
4374 			}
4375 			finish_wait(&conf->wait_for_overlap, &w);
4376 			set_bit(STRIPE_HANDLE, &sh->state);
4377 			clear_bit(STRIPE_DELAYED, &sh->state);
4378 			if ((bi->bi_rw & REQ_SYNC) &&
4379 			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4380 				atomic_inc(&conf->preread_active_stripes);
4381 			release_stripe_plug(mddev, sh);
4382 		} else {
4383 			/* cannot get stripe for read-ahead, just give-up */
4384 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
4385 			finish_wait(&conf->wait_for_overlap, &w);
4386 			break;
4387 		}
4388 	}
4389 
4390 	remaining = raid5_dec_bi_active_stripes(bi);
4391 	if (remaining == 0) {
4392 
4393 		if ( rw == WRITE )
4394 			md_write_end(mddev);
4395 
4396 		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
4397 					 bi, 0);
4398 		bio_endio(bi, 0);
4399 	}
4400 }
4401 
4402 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4403 
4404 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4405 {
4406 	/* reshaping is quite different to recovery/resync so it is
4407 	 * handled quite separately ... here.
4408 	 *
4409 	 * On each call to sync_request, we gather one chunk worth of
4410 	 * destination stripes and flag them as expanding.
4411 	 * Then we find all the source stripes and request reads.
4412 	 * As the reads complete, handle_stripe will copy the data
4413 	 * into the destination stripe and release that stripe.
4414 	 */
4415 	struct r5conf *conf = mddev->private;
4416 	struct stripe_head *sh;
4417 	sector_t first_sector, last_sector;
4418 	int raid_disks = conf->previous_raid_disks;
4419 	int data_disks = raid_disks - conf->max_degraded;
4420 	int new_data_disks = conf->raid_disks - conf->max_degraded;
4421 	int i;
4422 	int dd_idx;
4423 	sector_t writepos, readpos, safepos;
4424 	sector_t stripe_addr;
4425 	int reshape_sectors;
4426 	struct list_head stripes;
4427 
4428 	if (sector_nr == 0) {
4429 		/* If restarting in the middle, skip the initial sectors */
4430 		if (mddev->reshape_backwards &&
4431 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4432 			sector_nr = raid5_size(mddev, 0, 0)
4433 				- conf->reshape_progress;
4434 		} else if (!mddev->reshape_backwards &&
4435 			   conf->reshape_progress > 0)
4436 			sector_nr = conf->reshape_progress;
4437 		sector_div(sector_nr, new_data_disks);
4438 		if (sector_nr) {
4439 			mddev->curr_resync_completed = sector_nr;
4440 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4441 			*skipped = 1;
4442 			return sector_nr;
4443 		}
4444 	}
4445 
4446 	/* We need to process a full chunk at a time.
4447 	 * If old and new chunk sizes differ, we need to process the
4448 	 * largest of these
4449 	 */
4450 	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4451 		reshape_sectors = mddev->new_chunk_sectors;
4452 	else
4453 		reshape_sectors = mddev->chunk_sectors;
4454 
4455 	/* We update the metadata at least every 10 seconds, or when
4456 	 * the data about to be copied would over-write the source of
4457 	 * the data at the front of the range.  i.e. one new_stripe
4458 	 * along from reshape_progress new_maps to after where
4459 	 * reshape_safe old_maps to
4460 	 */
4461 	writepos = conf->reshape_progress;
4462 	sector_div(writepos, new_data_disks);
4463 	readpos = conf->reshape_progress;
4464 	sector_div(readpos, data_disks);
4465 	safepos = conf->reshape_safe;
4466 	sector_div(safepos, data_disks);
4467 	if (mddev->reshape_backwards) {
4468 		writepos -= min_t(sector_t, reshape_sectors, writepos);
4469 		readpos += reshape_sectors;
4470 		safepos += reshape_sectors;
4471 	} else {
4472 		writepos += reshape_sectors;
4473 		readpos -= min_t(sector_t, reshape_sectors, readpos);
4474 		safepos -= min_t(sector_t, reshape_sectors, safepos);
4475 	}
4476 
4477 	/* Having calculated the 'writepos' possibly use it
4478 	 * to set 'stripe_addr' which is where we will write to.
4479 	 */
4480 	if (mddev->reshape_backwards) {
4481 		BUG_ON(conf->reshape_progress == 0);
4482 		stripe_addr = writepos;
4483 		BUG_ON((mddev->dev_sectors &
4484 			~((sector_t)reshape_sectors - 1))
4485 		       - reshape_sectors - stripe_addr
4486 		       != sector_nr);
4487 	} else {
4488 		BUG_ON(writepos != sector_nr + reshape_sectors);
4489 		stripe_addr = sector_nr;
4490 	}
4491 
4492 	/* 'writepos' is the most advanced device address we might write.
4493 	 * 'readpos' is the least advanced device address we might read.
4494 	 * 'safepos' is the least address recorded in the metadata as having
4495 	 *     been reshaped.
4496 	 * If there is a min_offset_diff, these are adjusted either by
4497 	 * increasing the safepos/readpos if diff is negative, or
4498 	 * increasing writepos if diff is positive.
4499 	 * If 'readpos' is then behind 'writepos', there is no way that we can
4500 	 * ensure safety in the face of a crash - that must be done by userspace
4501 	 * making a backup of the data.  So in that case there is no particular
4502 	 * rush to update metadata.
4503 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4504 	 * update the metadata to advance 'safepos' to match 'readpos' so that
4505 	 * we can be safe in the event of a crash.
4506 	 * So we insist on updating metadata if safepos is behind writepos and
4507 	 * readpos is beyond writepos.
4508 	 * In any case, update the metadata every 10 seconds.
4509 	 * Maybe that number should be configurable, but I'm not sure it is
4510 	 * worth it.... maybe it could be a multiple of safemode_delay???
4511 	 */
4512 	if (conf->min_offset_diff < 0) {
4513 		safepos += -conf->min_offset_diff;
4514 		readpos += -conf->min_offset_diff;
4515 	} else
4516 		writepos += conf->min_offset_diff;
4517 
4518 	if ((mddev->reshape_backwards
4519 	     ? (safepos > writepos && readpos < writepos)
4520 	     : (safepos < writepos && readpos > writepos)) ||
4521 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4522 		/* Cannot proceed until we've updated the superblock... */
4523 		wait_event(conf->wait_for_overlap,
4524 			   atomic_read(&conf->reshape_stripes)==0);
4525 		mddev->reshape_position = conf->reshape_progress;
4526 		mddev->curr_resync_completed = sector_nr;
4527 		conf->reshape_checkpoint = jiffies;
4528 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4529 		md_wakeup_thread(mddev->thread);
4530 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4531 			   kthread_should_stop());
4532 		spin_lock_irq(&conf->device_lock);
4533 		conf->reshape_safe = mddev->reshape_position;
4534 		spin_unlock_irq(&conf->device_lock);
4535 		wake_up(&conf->wait_for_overlap);
4536 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4537 	}
4538 
4539 	INIT_LIST_HEAD(&stripes);
4540 	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4541 		int j;
4542 		int skipped_disk = 0;
4543 		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4544 		set_bit(STRIPE_EXPANDING, &sh->state);
4545 		atomic_inc(&conf->reshape_stripes);
4546 		/* If any of this stripe is beyond the end of the old
4547 		 * array, then we need to zero those blocks
4548 		 */
4549 		for (j=sh->disks; j--;) {
4550 			sector_t s;
4551 			if (j == sh->pd_idx)
4552 				continue;
4553 			if (conf->level == 6 &&
4554 			    j == sh->qd_idx)
4555 				continue;
4556 			s = compute_blocknr(sh, j, 0);
4557 			if (s < raid5_size(mddev, 0, 0)) {
4558 				skipped_disk = 1;
4559 				continue;
4560 			}
4561 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4562 			set_bit(R5_Expanded, &sh->dev[j].flags);
4563 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
4564 		}
4565 		if (!skipped_disk) {
4566 			set_bit(STRIPE_EXPAND_READY, &sh->state);
4567 			set_bit(STRIPE_HANDLE, &sh->state);
4568 		}
4569 		list_add(&sh->lru, &stripes);
4570 	}
4571 	spin_lock_irq(&conf->device_lock);
4572 	if (mddev->reshape_backwards)
4573 		conf->reshape_progress -= reshape_sectors * new_data_disks;
4574 	else
4575 		conf->reshape_progress += reshape_sectors * new_data_disks;
4576 	spin_unlock_irq(&conf->device_lock);
4577 	/* Ok, those stripe are ready. We can start scheduling
4578 	 * reads on the source stripes.
4579 	 * The source stripes are determined by mapping the first and last
4580 	 * block on the destination stripes.
4581 	 */
4582 	first_sector =
4583 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4584 				     1, &dd_idx, NULL);
4585 	last_sector =
4586 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4587 					    * new_data_disks - 1),
4588 				     1, &dd_idx, NULL);
4589 	if (last_sector >= mddev->dev_sectors)
4590 		last_sector = mddev->dev_sectors - 1;
4591 	while (first_sector <= last_sector) {
4592 		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4593 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4594 		set_bit(STRIPE_HANDLE, &sh->state);
4595 		release_stripe(sh);
4596 		first_sector += STRIPE_SECTORS;
4597 	}
4598 	/* Now that the sources are clearly marked, we can release
4599 	 * the destination stripes
4600 	 */
4601 	while (!list_empty(&stripes)) {
4602 		sh = list_entry(stripes.next, struct stripe_head, lru);
4603 		list_del_init(&sh->lru);
4604 		release_stripe(sh);
4605 	}
4606 	/* If this takes us to the resync_max point where we have to pause,
4607 	 * then we need to write out the superblock.
4608 	 */
4609 	sector_nr += reshape_sectors;
4610 	if ((sector_nr - mddev->curr_resync_completed) * 2
4611 	    >= mddev->resync_max - mddev->curr_resync_completed) {
4612 		/* Cannot proceed until we've updated the superblock... */
4613 		wait_event(conf->wait_for_overlap,
4614 			   atomic_read(&conf->reshape_stripes) == 0);
4615 		mddev->reshape_position = conf->reshape_progress;
4616 		mddev->curr_resync_completed = sector_nr;
4617 		conf->reshape_checkpoint = jiffies;
4618 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4619 		md_wakeup_thread(mddev->thread);
4620 		wait_event(mddev->sb_wait,
4621 			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4622 			   || kthread_should_stop());
4623 		spin_lock_irq(&conf->device_lock);
4624 		conf->reshape_safe = mddev->reshape_position;
4625 		spin_unlock_irq(&conf->device_lock);
4626 		wake_up(&conf->wait_for_overlap);
4627 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4628 	}
4629 	return reshape_sectors;
4630 }
4631 
4632 /* FIXME go_faster isn't used */
4633 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4634 {
4635 	struct r5conf *conf = mddev->private;
4636 	struct stripe_head *sh;
4637 	sector_t max_sector = mddev->dev_sectors;
4638 	sector_t sync_blocks;
4639 	int still_degraded = 0;
4640 	int i;
4641 
4642 	if (sector_nr >= max_sector) {
4643 		/* just being told to finish up .. nothing much to do */
4644 
4645 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4646 			end_reshape(conf);
4647 			return 0;
4648 		}
4649 
4650 		if (mddev->curr_resync < max_sector) /* aborted */
4651 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4652 					&sync_blocks, 1);
4653 		else /* completed sync */
4654 			conf->fullsync = 0;
4655 		bitmap_close_sync(mddev->bitmap);
4656 
4657 		return 0;
4658 	}
4659 
4660 	/* Allow raid5_quiesce to complete */
4661 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4662 
4663 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4664 		return reshape_request(mddev, sector_nr, skipped);
4665 
4666 	/* No need to check resync_max as we never do more than one
4667 	 * stripe, and as resync_max will always be on a chunk boundary,
4668 	 * if the check in md_do_sync didn't fire, there is no chance
4669 	 * of overstepping resync_max here
4670 	 */
4671 
4672 	/* if there is too many failed drives and we are trying
4673 	 * to resync, then assert that we are finished, because there is
4674 	 * nothing we can do.
4675 	 */
4676 	if (mddev->degraded >= conf->max_degraded &&
4677 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4678 		sector_t rv = mddev->dev_sectors - sector_nr;
4679 		*skipped = 1;
4680 		return rv;
4681 	}
4682 	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4683 	    !conf->fullsync &&
4684 	    !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4685 	    sync_blocks >= STRIPE_SECTORS) {
4686 		/* we can skip this block, and probably more */
4687 		sync_blocks /= STRIPE_SECTORS;
4688 		*skipped = 1;
4689 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4690 	}
4691 
4692 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4693 
4694 	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4695 	if (sh == NULL) {
4696 		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4697 		/* make sure we don't swamp the stripe cache if someone else
4698 		 * is trying to get access
4699 		 */
4700 		schedule_timeout_uninterruptible(1);
4701 	}
4702 	/* Need to check if array will still be degraded after recovery/resync
4703 	 * We don't need to check the 'failed' flag as when that gets set,
4704 	 * recovery aborts.
4705 	 */
4706 	for (i = 0; i < conf->raid_disks; i++)
4707 		if (conf->disks[i].rdev == NULL)
4708 			still_degraded = 1;
4709 
4710 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4711 
4712 	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4713 
4714 	handle_stripe(sh);
4715 	release_stripe(sh);
4716 
4717 	return STRIPE_SECTORS;
4718 }
4719 
4720 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
4721 {
4722 	/* We may not be able to submit a whole bio at once as there
4723 	 * may not be enough stripe_heads available.
4724 	 * We cannot pre-allocate enough stripe_heads as we may need
4725 	 * more than exist in the cache (if we allow ever large chunks).
4726 	 * So we do one stripe head at a time and record in
4727 	 * ->bi_hw_segments how many have been done.
4728 	 *
4729 	 * We *know* that this entire raid_bio is in one chunk, so
4730 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4731 	 */
4732 	struct stripe_head *sh;
4733 	int dd_idx;
4734 	sector_t sector, logical_sector, last_sector;
4735 	int scnt = 0;
4736 	int remaining;
4737 	int handled = 0;
4738 
4739 	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4740 	sector = raid5_compute_sector(conf, logical_sector,
4741 				      0, &dd_idx, NULL);
4742 	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4743 
4744 	for (; logical_sector < last_sector;
4745 	     logical_sector += STRIPE_SECTORS,
4746 		     sector += STRIPE_SECTORS,
4747 		     scnt++) {
4748 
4749 		if (scnt < raid5_bi_processed_stripes(raid_bio))
4750 			/* already done this stripe */
4751 			continue;
4752 
4753 		sh = get_active_stripe(conf, sector, 0, 1, 0);
4754 
4755 		if (!sh) {
4756 			/* failed to get a stripe - must wait */
4757 			raid5_set_bi_processed_stripes(raid_bio, scnt);
4758 			conf->retry_read_aligned = raid_bio;
4759 			return handled;
4760 		}
4761 
4762 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4763 			release_stripe(sh);
4764 			raid5_set_bi_processed_stripes(raid_bio, scnt);
4765 			conf->retry_read_aligned = raid_bio;
4766 			return handled;
4767 		}
4768 
4769 		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
4770 		handle_stripe(sh);
4771 		release_stripe(sh);
4772 		handled++;
4773 	}
4774 	remaining = raid5_dec_bi_active_stripes(raid_bio);
4775 	if (remaining == 0) {
4776 		trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
4777 					 raid_bio, 0);
4778 		bio_endio(raid_bio, 0);
4779 	}
4780 	if (atomic_dec_and_test(&conf->active_aligned_reads))
4781 		wake_up(&conf->wait_for_stripe);
4782 	return handled;
4783 }
4784 
4785 #define MAX_STRIPE_BATCH 8
4786 static int handle_active_stripes(struct r5conf *conf)
4787 {
4788 	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
4789 	int i, batch_size = 0;
4790 
4791 	while (batch_size < MAX_STRIPE_BATCH &&
4792 			(sh = __get_priority_stripe(conf)) != NULL)
4793 		batch[batch_size++] = sh;
4794 
4795 	if (batch_size == 0)
4796 		return batch_size;
4797 	spin_unlock_irq(&conf->device_lock);
4798 
4799 	for (i = 0; i < batch_size; i++)
4800 		handle_stripe(batch[i]);
4801 
4802 	cond_resched();
4803 
4804 	spin_lock_irq(&conf->device_lock);
4805 	for (i = 0; i < batch_size; i++)
4806 		__release_stripe(conf, batch[i]);
4807 	return batch_size;
4808 }
4809 
4810 /*
4811  * This is our raid5 kernel thread.
4812  *
4813  * We scan the hash table for stripes which can be handled now.
4814  * During the scan, completed stripes are saved for us by the interrupt
4815  * handler, so that they will not have to wait for our next wakeup.
4816  */
4817 static void raid5d(struct md_thread *thread)
4818 {
4819 	struct mddev *mddev = thread->mddev;
4820 	struct r5conf *conf = mddev->private;
4821 	int handled;
4822 	struct blk_plug plug;
4823 
4824 	pr_debug("+++ raid5d active\n");
4825 
4826 	md_check_recovery(mddev);
4827 
4828 	blk_start_plug(&plug);
4829 	handled = 0;
4830 	spin_lock_irq(&conf->device_lock);
4831 	while (1) {
4832 		struct bio *bio;
4833 		int batch_size;
4834 
4835 		if (
4836 		    !list_empty(&conf->bitmap_list)) {
4837 			/* Now is a good time to flush some bitmap updates */
4838 			conf->seq_flush++;
4839 			spin_unlock_irq(&conf->device_lock);
4840 			bitmap_unplug(mddev->bitmap);
4841 			spin_lock_irq(&conf->device_lock);
4842 			conf->seq_write = conf->seq_flush;
4843 			activate_bit_delay(conf);
4844 		}
4845 		raid5_activate_delayed(conf);
4846 
4847 		while ((bio = remove_bio_from_retry(conf))) {
4848 			int ok;
4849 			spin_unlock_irq(&conf->device_lock);
4850 			ok = retry_aligned_read(conf, bio);
4851 			spin_lock_irq(&conf->device_lock);
4852 			if (!ok)
4853 				break;
4854 			handled++;
4855 		}
4856 
4857 		batch_size = handle_active_stripes(conf);
4858 		if (!batch_size)
4859 			break;
4860 		handled += batch_size;
4861 
4862 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
4863 			spin_unlock_irq(&conf->device_lock);
4864 			md_check_recovery(mddev);
4865 			spin_lock_irq(&conf->device_lock);
4866 		}
4867 	}
4868 	pr_debug("%d stripes handled\n", handled);
4869 
4870 	spin_unlock_irq(&conf->device_lock);
4871 
4872 	async_tx_issue_pending_all();
4873 	blk_finish_plug(&plug);
4874 
4875 	pr_debug("--- raid5d inactive\n");
4876 }
4877 
4878 static ssize_t
4879 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
4880 {
4881 	struct r5conf *conf = mddev->private;
4882 	if (conf)
4883 		return sprintf(page, "%d\n", conf->max_nr_stripes);
4884 	else
4885 		return 0;
4886 }
4887 
4888 int
4889 raid5_set_cache_size(struct mddev *mddev, int size)
4890 {
4891 	struct r5conf *conf = mddev->private;
4892 	int err;
4893 
4894 	if (size <= 16 || size > 32768)
4895 		return -EINVAL;
4896 	while (size < conf->max_nr_stripes) {
4897 		if (drop_one_stripe(conf))
4898 			conf->max_nr_stripes--;
4899 		else
4900 			break;
4901 	}
4902 	err = md_allow_write(mddev);
4903 	if (err)
4904 		return err;
4905 	while (size > conf->max_nr_stripes) {
4906 		if (grow_one_stripe(conf))
4907 			conf->max_nr_stripes++;
4908 		else break;
4909 	}
4910 	return 0;
4911 }
4912 EXPORT_SYMBOL(raid5_set_cache_size);
4913 
4914 static ssize_t
4915 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
4916 {
4917 	struct r5conf *conf = mddev->private;
4918 	unsigned long new;
4919 	int err;
4920 
4921 	if (len >= PAGE_SIZE)
4922 		return -EINVAL;
4923 	if (!conf)
4924 		return -ENODEV;
4925 
4926 	if (strict_strtoul(page, 10, &new))
4927 		return -EINVAL;
4928 	err = raid5_set_cache_size(mddev, new);
4929 	if (err)
4930 		return err;
4931 	return len;
4932 }
4933 
4934 static struct md_sysfs_entry
4935 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4936 				raid5_show_stripe_cache_size,
4937 				raid5_store_stripe_cache_size);
4938 
4939 static ssize_t
4940 raid5_show_preread_threshold(struct mddev *mddev, char *page)
4941 {
4942 	struct r5conf *conf = mddev->private;
4943 	if (conf)
4944 		return sprintf(page, "%d\n", conf->bypass_threshold);
4945 	else
4946 		return 0;
4947 }
4948 
4949 static ssize_t
4950 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
4951 {
4952 	struct r5conf *conf = mddev->private;
4953 	unsigned long new;
4954 	if (len >= PAGE_SIZE)
4955 		return -EINVAL;
4956 	if (!conf)
4957 		return -ENODEV;
4958 
4959 	if (strict_strtoul(page, 10, &new))
4960 		return -EINVAL;
4961 	if (new > conf->max_nr_stripes)
4962 		return -EINVAL;
4963 	conf->bypass_threshold = new;
4964 	return len;
4965 }
4966 
4967 static struct md_sysfs_entry
4968 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4969 					S_IRUGO | S_IWUSR,
4970 					raid5_show_preread_threshold,
4971 					raid5_store_preread_threshold);
4972 
4973 static ssize_t
4974 stripe_cache_active_show(struct mddev *mddev, char *page)
4975 {
4976 	struct r5conf *conf = mddev->private;
4977 	if (conf)
4978 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4979 	else
4980 		return 0;
4981 }
4982 
4983 static struct md_sysfs_entry
4984 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4985 
4986 static struct attribute *raid5_attrs[] =  {
4987 	&raid5_stripecache_size.attr,
4988 	&raid5_stripecache_active.attr,
4989 	&raid5_preread_bypass_threshold.attr,
4990 	NULL,
4991 };
4992 static struct attribute_group raid5_attrs_group = {
4993 	.name = NULL,
4994 	.attrs = raid5_attrs,
4995 };
4996 
4997 static sector_t
4998 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
4999 {
5000 	struct r5conf *conf = mddev->private;
5001 
5002 	if (!sectors)
5003 		sectors = mddev->dev_sectors;
5004 	if (!raid_disks)
5005 		/* size is defined by the smallest of previous and new size */
5006 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
5007 
5008 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5009 	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
5010 	return sectors * (raid_disks - conf->max_degraded);
5011 }
5012 
5013 static void raid5_free_percpu(struct r5conf *conf)
5014 {
5015 	struct raid5_percpu *percpu;
5016 	unsigned long cpu;
5017 
5018 	if (!conf->percpu)
5019 		return;
5020 
5021 	get_online_cpus();
5022 	for_each_possible_cpu(cpu) {
5023 		percpu = per_cpu_ptr(conf->percpu, cpu);
5024 		safe_put_page(percpu->spare_page);
5025 		kfree(percpu->scribble);
5026 	}
5027 #ifdef CONFIG_HOTPLUG_CPU
5028 	unregister_cpu_notifier(&conf->cpu_notify);
5029 #endif
5030 	put_online_cpus();
5031 
5032 	free_percpu(conf->percpu);
5033 }
5034 
5035 static void free_conf(struct r5conf *conf)
5036 {
5037 	shrink_stripes(conf);
5038 	raid5_free_percpu(conf);
5039 	kfree(conf->disks);
5040 	kfree(conf->stripe_hashtbl);
5041 	kfree(conf);
5042 }
5043 
5044 #ifdef CONFIG_HOTPLUG_CPU
5045 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
5046 			      void *hcpu)
5047 {
5048 	struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
5049 	long cpu = (long)hcpu;
5050 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
5051 
5052 	switch (action) {
5053 	case CPU_UP_PREPARE:
5054 	case CPU_UP_PREPARE_FROZEN:
5055 		if (conf->level == 6 && !percpu->spare_page)
5056 			percpu->spare_page = alloc_page(GFP_KERNEL);
5057 		if (!percpu->scribble)
5058 			percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5059 
5060 		if (!percpu->scribble ||
5061 		    (conf->level == 6 && !percpu->spare_page)) {
5062 			safe_put_page(percpu->spare_page);
5063 			kfree(percpu->scribble);
5064 			pr_err("%s: failed memory allocation for cpu%ld\n",
5065 			       __func__, cpu);
5066 			return notifier_from_errno(-ENOMEM);
5067 		}
5068 		break;
5069 	case CPU_DEAD:
5070 	case CPU_DEAD_FROZEN:
5071 		safe_put_page(percpu->spare_page);
5072 		kfree(percpu->scribble);
5073 		percpu->spare_page = NULL;
5074 		percpu->scribble = NULL;
5075 		break;
5076 	default:
5077 		break;
5078 	}
5079 	return NOTIFY_OK;
5080 }
5081 #endif
5082 
5083 static int raid5_alloc_percpu(struct r5conf *conf)
5084 {
5085 	unsigned long cpu;
5086 	struct page *spare_page;
5087 	struct raid5_percpu __percpu *allcpus;
5088 	void *scribble;
5089 	int err;
5090 
5091 	allcpus = alloc_percpu(struct raid5_percpu);
5092 	if (!allcpus)
5093 		return -ENOMEM;
5094 	conf->percpu = allcpus;
5095 
5096 	get_online_cpus();
5097 	err = 0;
5098 	for_each_present_cpu(cpu) {
5099 		if (conf->level == 6) {
5100 			spare_page = alloc_page(GFP_KERNEL);
5101 			if (!spare_page) {
5102 				err = -ENOMEM;
5103 				break;
5104 			}
5105 			per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
5106 		}
5107 		scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5108 		if (!scribble) {
5109 			err = -ENOMEM;
5110 			break;
5111 		}
5112 		per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
5113 	}
5114 #ifdef CONFIG_HOTPLUG_CPU
5115 	conf->cpu_notify.notifier_call = raid456_cpu_notify;
5116 	conf->cpu_notify.priority = 0;
5117 	if (err == 0)
5118 		err = register_cpu_notifier(&conf->cpu_notify);
5119 #endif
5120 	put_online_cpus();
5121 
5122 	return err;
5123 }
5124 
5125 static struct r5conf *setup_conf(struct mddev *mddev)
5126 {
5127 	struct r5conf *conf;
5128 	int raid_disk, memory, max_disks;
5129 	struct md_rdev *rdev;
5130 	struct disk_info *disk;
5131 	char pers_name[6];
5132 
5133 	if (mddev->new_level != 5
5134 	    && mddev->new_level != 4
5135 	    && mddev->new_level != 6) {
5136 		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
5137 		       mdname(mddev), mddev->new_level);
5138 		return ERR_PTR(-EIO);
5139 	}
5140 	if ((mddev->new_level == 5
5141 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
5142 	    (mddev->new_level == 6
5143 	     && !algorithm_valid_raid6(mddev->new_layout))) {
5144 		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
5145 		       mdname(mddev), mddev->new_layout);
5146 		return ERR_PTR(-EIO);
5147 	}
5148 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
5149 		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
5150 		       mdname(mddev), mddev->raid_disks);
5151 		return ERR_PTR(-EINVAL);
5152 	}
5153 
5154 	if (!mddev->new_chunk_sectors ||
5155 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
5156 	    !is_power_of_2(mddev->new_chunk_sectors)) {
5157 		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
5158 		       mdname(mddev), mddev->new_chunk_sectors << 9);
5159 		return ERR_PTR(-EINVAL);
5160 	}
5161 
5162 	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
5163 	if (conf == NULL)
5164 		goto abort;
5165 	spin_lock_init(&conf->device_lock);
5166 	init_waitqueue_head(&conf->wait_for_stripe);
5167 	init_waitqueue_head(&conf->wait_for_overlap);
5168 	INIT_LIST_HEAD(&conf->handle_list);
5169 	INIT_LIST_HEAD(&conf->hold_list);
5170 	INIT_LIST_HEAD(&conf->delayed_list);
5171 	INIT_LIST_HEAD(&conf->bitmap_list);
5172 	INIT_LIST_HEAD(&conf->inactive_list);
5173 	atomic_set(&conf->active_stripes, 0);
5174 	atomic_set(&conf->preread_active_stripes, 0);
5175 	atomic_set(&conf->active_aligned_reads, 0);
5176 	conf->bypass_threshold = BYPASS_THRESHOLD;
5177 	conf->recovery_disabled = mddev->recovery_disabled - 1;
5178 
5179 	conf->raid_disks = mddev->raid_disks;
5180 	if (mddev->reshape_position == MaxSector)
5181 		conf->previous_raid_disks = mddev->raid_disks;
5182 	else
5183 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5184 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
5185 	conf->scribble_len = scribble_len(max_disks);
5186 
5187 	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
5188 			      GFP_KERNEL);
5189 	if (!conf->disks)
5190 		goto abort;
5191 
5192 	conf->mddev = mddev;
5193 
5194 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
5195 		goto abort;
5196 
5197 	conf->level = mddev->new_level;
5198 	if (raid5_alloc_percpu(conf) != 0)
5199 		goto abort;
5200 
5201 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
5202 
5203 	rdev_for_each(rdev, mddev) {
5204 		raid_disk = rdev->raid_disk;
5205 		if (raid_disk >= max_disks
5206 		    || raid_disk < 0)
5207 			continue;
5208 		disk = conf->disks + raid_disk;
5209 
5210 		if (test_bit(Replacement, &rdev->flags)) {
5211 			if (disk->replacement)
5212 				goto abort;
5213 			disk->replacement = rdev;
5214 		} else {
5215 			if (disk->rdev)
5216 				goto abort;
5217 			disk->rdev = rdev;
5218 		}
5219 
5220 		if (test_bit(In_sync, &rdev->flags)) {
5221 			char b[BDEVNAME_SIZE];
5222 			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5223 			       " disk %d\n",
5224 			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
5225 		} else if (rdev->saved_raid_disk != raid_disk)
5226 			/* Cannot rely on bitmap to complete recovery */
5227 			conf->fullsync = 1;
5228 	}
5229 
5230 	conf->chunk_sectors = mddev->new_chunk_sectors;
5231 	conf->level = mddev->new_level;
5232 	if (conf->level == 6)
5233 		conf->max_degraded = 2;
5234 	else
5235 		conf->max_degraded = 1;
5236 	conf->algorithm = mddev->new_layout;
5237 	conf->max_nr_stripes = NR_STRIPES;
5238 	conf->reshape_progress = mddev->reshape_position;
5239 	if (conf->reshape_progress != MaxSector) {
5240 		conf->prev_chunk_sectors = mddev->chunk_sectors;
5241 		conf->prev_algo = mddev->layout;
5242 	}
5243 
5244 	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5245 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
5246 	if (grow_stripes(conf, conf->max_nr_stripes)) {
5247 		printk(KERN_ERR
5248 		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
5249 		       mdname(mddev), memory);
5250 		goto abort;
5251 	} else
5252 		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5253 		       mdname(mddev), memory);
5254 
5255 	sprintf(pers_name, "raid%d", mddev->new_level);
5256 	conf->thread = md_register_thread(raid5d, mddev, pers_name);
5257 	if (!conf->thread) {
5258 		printk(KERN_ERR
5259 		       "md/raid:%s: couldn't allocate thread.\n",
5260 		       mdname(mddev));
5261 		goto abort;
5262 	}
5263 
5264 	return conf;
5265 
5266  abort:
5267 	if (conf) {
5268 		free_conf(conf);
5269 		return ERR_PTR(-EIO);
5270 	} else
5271 		return ERR_PTR(-ENOMEM);
5272 }
5273 
5274 
5275 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5276 {
5277 	switch (algo) {
5278 	case ALGORITHM_PARITY_0:
5279 		if (raid_disk < max_degraded)
5280 			return 1;
5281 		break;
5282 	case ALGORITHM_PARITY_N:
5283 		if (raid_disk >= raid_disks - max_degraded)
5284 			return 1;
5285 		break;
5286 	case ALGORITHM_PARITY_0_6:
5287 		if (raid_disk == 0 ||
5288 		    raid_disk == raid_disks - 1)
5289 			return 1;
5290 		break;
5291 	case ALGORITHM_LEFT_ASYMMETRIC_6:
5292 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
5293 	case ALGORITHM_LEFT_SYMMETRIC_6:
5294 	case ALGORITHM_RIGHT_SYMMETRIC_6:
5295 		if (raid_disk == raid_disks - 1)
5296 			return 1;
5297 	}
5298 	return 0;
5299 }
5300 
5301 static int run(struct mddev *mddev)
5302 {
5303 	struct r5conf *conf;
5304 	int working_disks = 0;
5305 	int dirty_parity_disks = 0;
5306 	struct md_rdev *rdev;
5307 	sector_t reshape_offset = 0;
5308 	int i;
5309 	long long min_offset_diff = 0;
5310 	int first = 1;
5311 
5312 	if (mddev->recovery_cp != MaxSector)
5313 		printk(KERN_NOTICE "md/raid:%s: not clean"
5314 		       " -- starting background reconstruction\n",
5315 		       mdname(mddev));
5316 
5317 	rdev_for_each(rdev, mddev) {
5318 		long long diff;
5319 		if (rdev->raid_disk < 0)
5320 			continue;
5321 		diff = (rdev->new_data_offset - rdev->data_offset);
5322 		if (first) {
5323 			min_offset_diff = diff;
5324 			first = 0;
5325 		} else if (mddev->reshape_backwards &&
5326 			 diff < min_offset_diff)
5327 			min_offset_diff = diff;
5328 		else if (!mddev->reshape_backwards &&
5329 			 diff > min_offset_diff)
5330 			min_offset_diff = diff;
5331 	}
5332 
5333 	if (mddev->reshape_position != MaxSector) {
5334 		/* Check that we can continue the reshape.
5335 		 * Difficulties arise if the stripe we would write to
5336 		 * next is at or after the stripe we would read from next.
5337 		 * For a reshape that changes the number of devices, this
5338 		 * is only possible for a very short time, and mdadm makes
5339 		 * sure that time appears to have past before assembling
5340 		 * the array.  So we fail if that time hasn't passed.
5341 		 * For a reshape that keeps the number of devices the same
5342 		 * mdadm must be monitoring the reshape can keeping the
5343 		 * critical areas read-only and backed up.  It will start
5344 		 * the array in read-only mode, so we check for that.
5345 		 */
5346 		sector_t here_new, here_old;
5347 		int old_disks;
5348 		int max_degraded = (mddev->level == 6 ? 2 : 1);
5349 
5350 		if (mddev->new_level != mddev->level) {
5351 			printk(KERN_ERR "md/raid:%s: unsupported reshape "
5352 			       "required - aborting.\n",
5353 			       mdname(mddev));
5354 			return -EINVAL;
5355 		}
5356 		old_disks = mddev->raid_disks - mddev->delta_disks;
5357 		/* reshape_position must be on a new-stripe boundary, and one
5358 		 * further up in new geometry must map after here in old
5359 		 * geometry.
5360 		 */
5361 		here_new = mddev->reshape_position;
5362 		if (sector_div(here_new, mddev->new_chunk_sectors *
5363 			       (mddev->raid_disks - max_degraded))) {
5364 			printk(KERN_ERR "md/raid:%s: reshape_position not "
5365 			       "on a stripe boundary\n", mdname(mddev));
5366 			return -EINVAL;
5367 		}
5368 		reshape_offset = here_new * mddev->new_chunk_sectors;
5369 		/* here_new is the stripe we will write to */
5370 		here_old = mddev->reshape_position;
5371 		sector_div(here_old, mddev->chunk_sectors *
5372 			   (old_disks-max_degraded));
5373 		/* here_old is the first stripe that we might need to read
5374 		 * from */
5375 		if (mddev->delta_disks == 0) {
5376 			if ((here_new * mddev->new_chunk_sectors !=
5377 			     here_old * mddev->chunk_sectors)) {
5378 				printk(KERN_ERR "md/raid:%s: reshape position is"
5379 				       " confused - aborting\n", mdname(mddev));
5380 				return -EINVAL;
5381 			}
5382 			/* We cannot be sure it is safe to start an in-place
5383 			 * reshape.  It is only safe if user-space is monitoring
5384 			 * and taking constant backups.
5385 			 * mdadm always starts a situation like this in
5386 			 * readonly mode so it can take control before
5387 			 * allowing any writes.  So just check for that.
5388 			 */
5389 			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
5390 			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
5391 				/* not really in-place - so OK */;
5392 			else if (mddev->ro == 0) {
5393 				printk(KERN_ERR "md/raid:%s: in-place reshape "
5394 				       "must be started in read-only mode "
5395 				       "- aborting\n",
5396 				       mdname(mddev));
5397 				return -EINVAL;
5398 			}
5399 		} else if (mddev->reshape_backwards
5400 		    ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
5401 		       here_old * mddev->chunk_sectors)
5402 		    : (here_new * mddev->new_chunk_sectors >=
5403 		       here_old * mddev->chunk_sectors + (-min_offset_diff))) {
5404 			/* Reading from the same stripe as writing to - bad */
5405 			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5406 			       "auto-recovery - aborting.\n",
5407 			       mdname(mddev));
5408 			return -EINVAL;
5409 		}
5410 		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5411 		       mdname(mddev));
5412 		/* OK, we should be able to continue; */
5413 	} else {
5414 		BUG_ON(mddev->level != mddev->new_level);
5415 		BUG_ON(mddev->layout != mddev->new_layout);
5416 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5417 		BUG_ON(mddev->delta_disks != 0);
5418 	}
5419 
5420 	if (mddev->private == NULL)
5421 		conf = setup_conf(mddev);
5422 	else
5423 		conf = mddev->private;
5424 
5425 	if (IS_ERR(conf))
5426 		return PTR_ERR(conf);
5427 
5428 	conf->min_offset_diff = min_offset_diff;
5429 	mddev->thread = conf->thread;
5430 	conf->thread = NULL;
5431 	mddev->private = conf;
5432 
5433 	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5434 	     i++) {
5435 		rdev = conf->disks[i].rdev;
5436 		if (!rdev && conf->disks[i].replacement) {
5437 			/* The replacement is all we have yet */
5438 			rdev = conf->disks[i].replacement;
5439 			conf->disks[i].replacement = NULL;
5440 			clear_bit(Replacement, &rdev->flags);
5441 			conf->disks[i].rdev = rdev;
5442 		}
5443 		if (!rdev)
5444 			continue;
5445 		if (conf->disks[i].replacement &&
5446 		    conf->reshape_progress != MaxSector) {
5447 			/* replacements and reshape simply do not mix. */
5448 			printk(KERN_ERR "md: cannot handle concurrent "
5449 			       "replacement and reshape.\n");
5450 			goto abort;
5451 		}
5452 		if (test_bit(In_sync, &rdev->flags)) {
5453 			working_disks++;
5454 			continue;
5455 		}
5456 		/* This disc is not fully in-sync.  However if it
5457 		 * just stored parity (beyond the recovery_offset),
5458 		 * when we don't need to be concerned about the
5459 		 * array being dirty.
5460 		 * When reshape goes 'backwards', we never have
5461 		 * partially completed devices, so we only need
5462 		 * to worry about reshape going forwards.
5463 		 */
5464 		/* Hack because v0.91 doesn't store recovery_offset properly. */
5465 		if (mddev->major_version == 0 &&
5466 		    mddev->minor_version > 90)
5467 			rdev->recovery_offset = reshape_offset;
5468 
5469 		if (rdev->recovery_offset < reshape_offset) {
5470 			/* We need to check old and new layout */
5471 			if (!only_parity(rdev->raid_disk,
5472 					 conf->algorithm,
5473 					 conf->raid_disks,
5474 					 conf->max_degraded))
5475 				continue;
5476 		}
5477 		if (!only_parity(rdev->raid_disk,
5478 				 conf->prev_algo,
5479 				 conf->previous_raid_disks,
5480 				 conf->max_degraded))
5481 			continue;
5482 		dirty_parity_disks++;
5483 	}
5484 
5485 	/*
5486 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
5487 	 */
5488 	mddev->degraded = calc_degraded(conf);
5489 
5490 	if (has_failed(conf)) {
5491 		printk(KERN_ERR "md/raid:%s: not enough operational devices"
5492 			" (%d/%d failed)\n",
5493 			mdname(mddev), mddev->degraded, conf->raid_disks);
5494 		goto abort;
5495 	}
5496 
5497 	/* device size must be a multiple of chunk size */
5498 	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5499 	mddev->resync_max_sectors = mddev->dev_sectors;
5500 
5501 	if (mddev->degraded > dirty_parity_disks &&
5502 	    mddev->recovery_cp != MaxSector) {
5503 		if (mddev->ok_start_degraded)
5504 			printk(KERN_WARNING
5505 			       "md/raid:%s: starting dirty degraded array"
5506 			       " - data corruption possible.\n",
5507 			       mdname(mddev));
5508 		else {
5509 			printk(KERN_ERR
5510 			       "md/raid:%s: cannot start dirty degraded array.\n",
5511 			       mdname(mddev));
5512 			goto abort;
5513 		}
5514 	}
5515 
5516 	if (mddev->degraded == 0)
5517 		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5518 		       " devices, algorithm %d\n", mdname(mddev), conf->level,
5519 		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5520 		       mddev->new_layout);
5521 	else
5522 		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5523 		       " out of %d devices, algorithm %d\n",
5524 		       mdname(mddev), conf->level,
5525 		       mddev->raid_disks - mddev->degraded,
5526 		       mddev->raid_disks, mddev->new_layout);
5527 
5528 	print_raid5_conf(conf);
5529 
5530 	if (conf->reshape_progress != MaxSector) {
5531 		conf->reshape_safe = conf->reshape_progress;
5532 		atomic_set(&conf->reshape_stripes, 0);
5533 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5534 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5535 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5536 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5537 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5538 							"reshape");
5539 	}
5540 
5541 
5542 	/* Ok, everything is just fine now */
5543 	if (mddev->to_remove == &raid5_attrs_group)
5544 		mddev->to_remove = NULL;
5545 	else if (mddev->kobj.sd &&
5546 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5547 		printk(KERN_WARNING
5548 		       "raid5: failed to create sysfs attributes for %s\n",
5549 		       mdname(mddev));
5550 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5551 
5552 	if (mddev->queue) {
5553 		int chunk_size;
5554 		bool discard_supported = true;
5555 		/* read-ahead size must cover two whole stripes, which
5556 		 * is 2 * (datadisks) * chunksize where 'n' is the
5557 		 * number of raid devices
5558 		 */
5559 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
5560 		int stripe = data_disks *
5561 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
5562 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5563 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5564 
5565 		blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5566 
5567 		mddev->queue->backing_dev_info.congested_data = mddev;
5568 		mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5569 
5570 		chunk_size = mddev->chunk_sectors << 9;
5571 		blk_queue_io_min(mddev->queue, chunk_size);
5572 		blk_queue_io_opt(mddev->queue, chunk_size *
5573 				 (conf->raid_disks - conf->max_degraded));
5574 		/*
5575 		 * We can only discard a whole stripe. It doesn't make sense to
5576 		 * discard data disk but write parity disk
5577 		 */
5578 		stripe = stripe * PAGE_SIZE;
5579 		/* Round up to power of 2, as discard handling
5580 		 * currently assumes that */
5581 		while ((stripe-1) & stripe)
5582 			stripe = (stripe | (stripe-1)) + 1;
5583 		mddev->queue->limits.discard_alignment = stripe;
5584 		mddev->queue->limits.discard_granularity = stripe;
5585 		/*
5586 		 * unaligned part of discard request will be ignored, so can't
5587 		 * guarantee discard_zerors_data
5588 		 */
5589 		mddev->queue->limits.discard_zeroes_data = 0;
5590 
5591 		rdev_for_each(rdev, mddev) {
5592 			disk_stack_limits(mddev->gendisk, rdev->bdev,
5593 					  rdev->data_offset << 9);
5594 			disk_stack_limits(mddev->gendisk, rdev->bdev,
5595 					  rdev->new_data_offset << 9);
5596 			/*
5597 			 * discard_zeroes_data is required, otherwise data
5598 			 * could be lost. Consider a scenario: discard a stripe
5599 			 * (the stripe could be inconsistent if
5600 			 * discard_zeroes_data is 0); write one disk of the
5601 			 * stripe (the stripe could be inconsistent again
5602 			 * depending on which disks are used to calculate
5603 			 * parity); the disk is broken; The stripe data of this
5604 			 * disk is lost.
5605 			 */
5606 			if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
5607 			    !bdev_get_queue(rdev->bdev)->
5608 						limits.discard_zeroes_data)
5609 				discard_supported = false;
5610 		}
5611 
5612 		if (discard_supported &&
5613 		   mddev->queue->limits.max_discard_sectors >= stripe &&
5614 		   mddev->queue->limits.discard_granularity >= stripe)
5615 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
5616 						mddev->queue);
5617 		else
5618 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
5619 						mddev->queue);
5620 	}
5621 
5622 	return 0;
5623 abort:
5624 	md_unregister_thread(&mddev->thread);
5625 	print_raid5_conf(conf);
5626 	free_conf(conf);
5627 	mddev->private = NULL;
5628 	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5629 	return -EIO;
5630 }
5631 
5632 static int stop(struct mddev *mddev)
5633 {
5634 	struct r5conf *conf = mddev->private;
5635 
5636 	md_unregister_thread(&mddev->thread);
5637 	if (mddev->queue)
5638 		mddev->queue->backing_dev_info.congested_fn = NULL;
5639 	free_conf(conf);
5640 	mddev->private = NULL;
5641 	mddev->to_remove = &raid5_attrs_group;
5642 	return 0;
5643 }
5644 
5645 static void status(struct seq_file *seq, struct mddev *mddev)
5646 {
5647 	struct r5conf *conf = mddev->private;
5648 	int i;
5649 
5650 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5651 		mddev->chunk_sectors / 2, mddev->layout);
5652 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5653 	for (i = 0; i < conf->raid_disks; i++)
5654 		seq_printf (seq, "%s",
5655 			       conf->disks[i].rdev &&
5656 			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5657 	seq_printf (seq, "]");
5658 }
5659 
5660 static void print_raid5_conf (struct r5conf *conf)
5661 {
5662 	int i;
5663 	struct disk_info *tmp;
5664 
5665 	printk(KERN_DEBUG "RAID conf printout:\n");
5666 	if (!conf) {
5667 		printk("(conf==NULL)\n");
5668 		return;
5669 	}
5670 	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5671 	       conf->raid_disks,
5672 	       conf->raid_disks - conf->mddev->degraded);
5673 
5674 	for (i = 0; i < conf->raid_disks; i++) {
5675 		char b[BDEVNAME_SIZE];
5676 		tmp = conf->disks + i;
5677 		if (tmp->rdev)
5678 			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5679 			       i, !test_bit(Faulty, &tmp->rdev->flags),
5680 			       bdevname(tmp->rdev->bdev, b));
5681 	}
5682 }
5683 
5684 static int raid5_spare_active(struct mddev *mddev)
5685 {
5686 	int i;
5687 	struct r5conf *conf = mddev->private;
5688 	struct disk_info *tmp;
5689 	int count = 0;
5690 	unsigned long flags;
5691 
5692 	for (i = 0; i < conf->raid_disks; i++) {
5693 		tmp = conf->disks + i;
5694 		if (tmp->replacement
5695 		    && tmp->replacement->recovery_offset == MaxSector
5696 		    && !test_bit(Faulty, &tmp->replacement->flags)
5697 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
5698 			/* Replacement has just become active. */
5699 			if (!tmp->rdev
5700 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
5701 				count++;
5702 			if (tmp->rdev) {
5703 				/* Replaced device not technically faulty,
5704 				 * but we need to be sure it gets removed
5705 				 * and never re-added.
5706 				 */
5707 				set_bit(Faulty, &tmp->rdev->flags);
5708 				sysfs_notify_dirent_safe(
5709 					tmp->rdev->sysfs_state);
5710 			}
5711 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
5712 		} else if (tmp->rdev
5713 		    && tmp->rdev->recovery_offset == MaxSector
5714 		    && !test_bit(Faulty, &tmp->rdev->flags)
5715 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5716 			count++;
5717 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5718 		}
5719 	}
5720 	spin_lock_irqsave(&conf->device_lock, flags);
5721 	mddev->degraded = calc_degraded(conf);
5722 	spin_unlock_irqrestore(&conf->device_lock, flags);
5723 	print_raid5_conf(conf);
5724 	return count;
5725 }
5726 
5727 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
5728 {
5729 	struct r5conf *conf = mddev->private;
5730 	int err = 0;
5731 	int number = rdev->raid_disk;
5732 	struct md_rdev **rdevp;
5733 	struct disk_info *p = conf->disks + number;
5734 
5735 	print_raid5_conf(conf);
5736 	if (rdev == p->rdev)
5737 		rdevp = &p->rdev;
5738 	else if (rdev == p->replacement)
5739 		rdevp = &p->replacement;
5740 	else
5741 		return 0;
5742 
5743 	if (number >= conf->raid_disks &&
5744 	    conf->reshape_progress == MaxSector)
5745 		clear_bit(In_sync, &rdev->flags);
5746 
5747 	if (test_bit(In_sync, &rdev->flags) ||
5748 	    atomic_read(&rdev->nr_pending)) {
5749 		err = -EBUSY;
5750 		goto abort;
5751 	}
5752 	/* Only remove non-faulty devices if recovery
5753 	 * isn't possible.
5754 	 */
5755 	if (!test_bit(Faulty, &rdev->flags) &&
5756 	    mddev->recovery_disabled != conf->recovery_disabled &&
5757 	    !has_failed(conf) &&
5758 	    (!p->replacement || p->replacement == rdev) &&
5759 	    number < conf->raid_disks) {
5760 		err = -EBUSY;
5761 		goto abort;
5762 	}
5763 	*rdevp = NULL;
5764 	synchronize_rcu();
5765 	if (atomic_read(&rdev->nr_pending)) {
5766 		/* lost the race, try later */
5767 		err = -EBUSY;
5768 		*rdevp = rdev;
5769 	} else if (p->replacement) {
5770 		/* We must have just cleared 'rdev' */
5771 		p->rdev = p->replacement;
5772 		clear_bit(Replacement, &p->replacement->flags);
5773 		smp_mb(); /* Make sure other CPUs may see both as identical
5774 			   * but will never see neither - if they are careful
5775 			   */
5776 		p->replacement = NULL;
5777 		clear_bit(WantReplacement, &rdev->flags);
5778 	} else
5779 		/* We might have just removed the Replacement as faulty-
5780 		 * clear the bit just in case
5781 		 */
5782 		clear_bit(WantReplacement, &rdev->flags);
5783 abort:
5784 
5785 	print_raid5_conf(conf);
5786 	return err;
5787 }
5788 
5789 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
5790 {
5791 	struct r5conf *conf = mddev->private;
5792 	int err = -EEXIST;
5793 	int disk;
5794 	struct disk_info *p;
5795 	int first = 0;
5796 	int last = conf->raid_disks - 1;
5797 
5798 	if (mddev->recovery_disabled == conf->recovery_disabled)
5799 		return -EBUSY;
5800 
5801 	if (rdev->saved_raid_disk < 0 && has_failed(conf))
5802 		/* no point adding a device */
5803 		return -EINVAL;
5804 
5805 	if (rdev->raid_disk >= 0)
5806 		first = last = rdev->raid_disk;
5807 
5808 	/*
5809 	 * find the disk ... but prefer rdev->saved_raid_disk
5810 	 * if possible.
5811 	 */
5812 	if (rdev->saved_raid_disk >= 0 &&
5813 	    rdev->saved_raid_disk >= first &&
5814 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
5815 		first = rdev->saved_raid_disk;
5816 
5817 	for (disk = first; disk <= last; disk++) {
5818 		p = conf->disks + disk;
5819 		if (p->rdev == NULL) {
5820 			clear_bit(In_sync, &rdev->flags);
5821 			rdev->raid_disk = disk;
5822 			err = 0;
5823 			if (rdev->saved_raid_disk != disk)
5824 				conf->fullsync = 1;
5825 			rcu_assign_pointer(p->rdev, rdev);
5826 			goto out;
5827 		}
5828 	}
5829 	for (disk = first; disk <= last; disk++) {
5830 		p = conf->disks + disk;
5831 		if (test_bit(WantReplacement, &p->rdev->flags) &&
5832 		    p->replacement == NULL) {
5833 			clear_bit(In_sync, &rdev->flags);
5834 			set_bit(Replacement, &rdev->flags);
5835 			rdev->raid_disk = disk;
5836 			err = 0;
5837 			conf->fullsync = 1;
5838 			rcu_assign_pointer(p->replacement, rdev);
5839 			break;
5840 		}
5841 	}
5842 out:
5843 	print_raid5_conf(conf);
5844 	return err;
5845 }
5846 
5847 static int raid5_resize(struct mddev *mddev, sector_t sectors)
5848 {
5849 	/* no resync is happening, and there is enough space
5850 	 * on all devices, so we can resize.
5851 	 * We need to make sure resync covers any new space.
5852 	 * If the array is shrinking we should possibly wait until
5853 	 * any io in the removed space completes, but it hardly seems
5854 	 * worth it.
5855 	 */
5856 	sector_t newsize;
5857 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5858 	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
5859 	if (mddev->external_size &&
5860 	    mddev->array_sectors > newsize)
5861 		return -EINVAL;
5862 	if (mddev->bitmap) {
5863 		int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
5864 		if (ret)
5865 			return ret;
5866 	}
5867 	md_set_array_sectors(mddev, newsize);
5868 	set_capacity(mddev->gendisk, mddev->array_sectors);
5869 	revalidate_disk(mddev->gendisk);
5870 	if (sectors > mddev->dev_sectors &&
5871 	    mddev->recovery_cp > mddev->dev_sectors) {
5872 		mddev->recovery_cp = mddev->dev_sectors;
5873 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5874 	}
5875 	mddev->dev_sectors = sectors;
5876 	mddev->resync_max_sectors = sectors;
5877 	return 0;
5878 }
5879 
5880 static int check_stripe_cache(struct mddev *mddev)
5881 {
5882 	/* Can only proceed if there are plenty of stripe_heads.
5883 	 * We need a minimum of one full stripe,, and for sensible progress
5884 	 * it is best to have about 4 times that.
5885 	 * If we require 4 times, then the default 256 4K stripe_heads will
5886 	 * allow for chunk sizes up to 256K, which is probably OK.
5887 	 * If the chunk size is greater, user-space should request more
5888 	 * stripe_heads first.
5889 	 */
5890 	struct r5conf *conf = mddev->private;
5891 	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5892 	    > conf->max_nr_stripes ||
5893 	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5894 	    > conf->max_nr_stripes) {
5895 		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
5896 		       mdname(mddev),
5897 		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5898 			/ STRIPE_SIZE)*4);
5899 		return 0;
5900 	}
5901 	return 1;
5902 }
5903 
5904 static int check_reshape(struct mddev *mddev)
5905 {
5906 	struct r5conf *conf = mddev->private;
5907 
5908 	if (mddev->delta_disks == 0 &&
5909 	    mddev->new_layout == mddev->layout &&
5910 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
5911 		return 0; /* nothing to do */
5912 	if (has_failed(conf))
5913 		return -EINVAL;
5914 	if (mddev->delta_disks < 0) {
5915 		/* We might be able to shrink, but the devices must
5916 		 * be made bigger first.
5917 		 * For raid6, 4 is the minimum size.
5918 		 * Otherwise 2 is the minimum
5919 		 */
5920 		int min = 2;
5921 		if (mddev->level == 6)
5922 			min = 4;
5923 		if (mddev->raid_disks + mddev->delta_disks < min)
5924 			return -EINVAL;
5925 	}
5926 
5927 	if (!check_stripe_cache(mddev))
5928 		return -ENOSPC;
5929 
5930 	return resize_stripes(conf, (conf->previous_raid_disks
5931 				     + mddev->delta_disks));
5932 }
5933 
5934 static int raid5_start_reshape(struct mddev *mddev)
5935 {
5936 	struct r5conf *conf = mddev->private;
5937 	struct md_rdev *rdev;
5938 	int spares = 0;
5939 	unsigned long flags;
5940 
5941 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5942 		return -EBUSY;
5943 
5944 	if (!check_stripe_cache(mddev))
5945 		return -ENOSPC;
5946 
5947 	if (has_failed(conf))
5948 		return -EINVAL;
5949 
5950 	rdev_for_each(rdev, mddev) {
5951 		if (!test_bit(In_sync, &rdev->flags)
5952 		    && !test_bit(Faulty, &rdev->flags))
5953 			spares++;
5954 	}
5955 
5956 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5957 		/* Not enough devices even to make a degraded array
5958 		 * of that size
5959 		 */
5960 		return -EINVAL;
5961 
5962 	/* Refuse to reduce size of the array.  Any reductions in
5963 	 * array size must be through explicit setting of array_size
5964 	 * attribute.
5965 	 */
5966 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5967 	    < mddev->array_sectors) {
5968 		printk(KERN_ERR "md/raid:%s: array size must be reduced "
5969 		       "before number of disks\n", mdname(mddev));
5970 		return -EINVAL;
5971 	}
5972 
5973 	atomic_set(&conf->reshape_stripes, 0);
5974 	spin_lock_irq(&conf->device_lock);
5975 	conf->previous_raid_disks = conf->raid_disks;
5976 	conf->raid_disks += mddev->delta_disks;
5977 	conf->prev_chunk_sectors = conf->chunk_sectors;
5978 	conf->chunk_sectors = mddev->new_chunk_sectors;
5979 	conf->prev_algo = conf->algorithm;
5980 	conf->algorithm = mddev->new_layout;
5981 	conf->generation++;
5982 	/* Code that selects data_offset needs to see the generation update
5983 	 * if reshape_progress has been set - so a memory barrier needed.
5984 	 */
5985 	smp_mb();
5986 	if (mddev->reshape_backwards)
5987 		conf->reshape_progress = raid5_size(mddev, 0, 0);
5988 	else
5989 		conf->reshape_progress = 0;
5990 	conf->reshape_safe = conf->reshape_progress;
5991 	spin_unlock_irq(&conf->device_lock);
5992 
5993 	/* Add some new drives, as many as will fit.
5994 	 * We know there are enough to make the newly sized array work.
5995 	 * Don't add devices if we are reducing the number of
5996 	 * devices in the array.  This is because it is not possible
5997 	 * to correctly record the "partially reconstructed" state of
5998 	 * such devices during the reshape and confusion could result.
5999 	 */
6000 	if (mddev->delta_disks >= 0) {
6001 		rdev_for_each(rdev, mddev)
6002 			if (rdev->raid_disk < 0 &&
6003 			    !test_bit(Faulty, &rdev->flags)) {
6004 				if (raid5_add_disk(mddev, rdev) == 0) {
6005 					if (rdev->raid_disk
6006 					    >= conf->previous_raid_disks)
6007 						set_bit(In_sync, &rdev->flags);
6008 					else
6009 						rdev->recovery_offset = 0;
6010 
6011 					if (sysfs_link_rdev(mddev, rdev))
6012 						/* Failure here is OK */;
6013 				}
6014 			} else if (rdev->raid_disk >= conf->previous_raid_disks
6015 				   && !test_bit(Faulty, &rdev->flags)) {
6016 				/* This is a spare that was manually added */
6017 				set_bit(In_sync, &rdev->flags);
6018 			}
6019 
6020 		/* When a reshape changes the number of devices,
6021 		 * ->degraded is measured against the larger of the
6022 		 * pre and post number of devices.
6023 		 */
6024 		spin_lock_irqsave(&conf->device_lock, flags);
6025 		mddev->degraded = calc_degraded(conf);
6026 		spin_unlock_irqrestore(&conf->device_lock, flags);
6027 	}
6028 	mddev->raid_disks = conf->raid_disks;
6029 	mddev->reshape_position = conf->reshape_progress;
6030 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
6031 
6032 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6033 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6034 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6035 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6036 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6037 						"reshape");
6038 	if (!mddev->sync_thread) {
6039 		mddev->recovery = 0;
6040 		spin_lock_irq(&conf->device_lock);
6041 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
6042 		rdev_for_each(rdev, mddev)
6043 			rdev->new_data_offset = rdev->data_offset;
6044 		smp_wmb();
6045 		conf->reshape_progress = MaxSector;
6046 		mddev->reshape_position = MaxSector;
6047 		spin_unlock_irq(&conf->device_lock);
6048 		return -EAGAIN;
6049 	}
6050 	conf->reshape_checkpoint = jiffies;
6051 	md_wakeup_thread(mddev->sync_thread);
6052 	md_new_event(mddev);
6053 	return 0;
6054 }
6055 
6056 /* This is called from the reshape thread and should make any
6057  * changes needed in 'conf'
6058  */
6059 static void end_reshape(struct r5conf *conf)
6060 {
6061 
6062 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
6063 		struct md_rdev *rdev;
6064 
6065 		spin_lock_irq(&conf->device_lock);
6066 		conf->previous_raid_disks = conf->raid_disks;
6067 		rdev_for_each(rdev, conf->mddev)
6068 			rdev->data_offset = rdev->new_data_offset;
6069 		smp_wmb();
6070 		conf->reshape_progress = MaxSector;
6071 		spin_unlock_irq(&conf->device_lock);
6072 		wake_up(&conf->wait_for_overlap);
6073 
6074 		/* read-ahead size must cover two whole stripes, which is
6075 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6076 		 */
6077 		if (conf->mddev->queue) {
6078 			int data_disks = conf->raid_disks - conf->max_degraded;
6079 			int stripe = data_disks * ((conf->chunk_sectors << 9)
6080 						   / PAGE_SIZE);
6081 			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6082 				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6083 		}
6084 	}
6085 }
6086 
6087 /* This is called from the raid5d thread with mddev_lock held.
6088  * It makes config changes to the device.
6089  */
6090 static void raid5_finish_reshape(struct mddev *mddev)
6091 {
6092 	struct r5conf *conf = mddev->private;
6093 
6094 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6095 
6096 		if (mddev->delta_disks > 0) {
6097 			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6098 			set_capacity(mddev->gendisk, mddev->array_sectors);
6099 			revalidate_disk(mddev->gendisk);
6100 		} else {
6101 			int d;
6102 			spin_lock_irq(&conf->device_lock);
6103 			mddev->degraded = calc_degraded(conf);
6104 			spin_unlock_irq(&conf->device_lock);
6105 			for (d = conf->raid_disks ;
6106 			     d < conf->raid_disks - mddev->delta_disks;
6107 			     d++) {
6108 				struct md_rdev *rdev = conf->disks[d].rdev;
6109 				if (rdev)
6110 					clear_bit(In_sync, &rdev->flags);
6111 				rdev = conf->disks[d].replacement;
6112 				if (rdev)
6113 					clear_bit(In_sync, &rdev->flags);
6114 			}
6115 		}
6116 		mddev->layout = conf->algorithm;
6117 		mddev->chunk_sectors = conf->chunk_sectors;
6118 		mddev->reshape_position = MaxSector;
6119 		mddev->delta_disks = 0;
6120 		mddev->reshape_backwards = 0;
6121 	}
6122 }
6123 
6124 static void raid5_quiesce(struct mddev *mddev, int state)
6125 {
6126 	struct r5conf *conf = mddev->private;
6127 
6128 	switch(state) {
6129 	case 2: /* resume for a suspend */
6130 		wake_up(&conf->wait_for_overlap);
6131 		break;
6132 
6133 	case 1: /* stop all writes */
6134 		spin_lock_irq(&conf->device_lock);
6135 		/* '2' tells resync/reshape to pause so that all
6136 		 * active stripes can drain
6137 		 */
6138 		conf->quiesce = 2;
6139 		wait_event_lock_irq(conf->wait_for_stripe,
6140 				    atomic_read(&conf->active_stripes) == 0 &&
6141 				    atomic_read(&conf->active_aligned_reads) == 0,
6142 				    conf->device_lock);
6143 		conf->quiesce = 1;
6144 		spin_unlock_irq(&conf->device_lock);
6145 		/* allow reshape to continue */
6146 		wake_up(&conf->wait_for_overlap);
6147 		break;
6148 
6149 	case 0: /* re-enable writes */
6150 		spin_lock_irq(&conf->device_lock);
6151 		conf->quiesce = 0;
6152 		wake_up(&conf->wait_for_stripe);
6153 		wake_up(&conf->wait_for_overlap);
6154 		spin_unlock_irq(&conf->device_lock);
6155 		break;
6156 	}
6157 }
6158 
6159 
6160 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
6161 {
6162 	struct r0conf *raid0_conf = mddev->private;
6163 	sector_t sectors;
6164 
6165 	/* for raid0 takeover only one zone is supported */
6166 	if (raid0_conf->nr_strip_zones > 1) {
6167 		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6168 		       mdname(mddev));
6169 		return ERR_PTR(-EINVAL);
6170 	}
6171 
6172 	sectors = raid0_conf->strip_zone[0].zone_end;
6173 	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
6174 	mddev->dev_sectors = sectors;
6175 	mddev->new_level = level;
6176 	mddev->new_layout = ALGORITHM_PARITY_N;
6177 	mddev->new_chunk_sectors = mddev->chunk_sectors;
6178 	mddev->raid_disks += 1;
6179 	mddev->delta_disks = 1;
6180 	/* make sure it will be not marked as dirty */
6181 	mddev->recovery_cp = MaxSector;
6182 
6183 	return setup_conf(mddev);
6184 }
6185 
6186 
6187 static void *raid5_takeover_raid1(struct mddev *mddev)
6188 {
6189 	int chunksect;
6190 
6191 	if (mddev->raid_disks != 2 ||
6192 	    mddev->degraded > 1)
6193 		return ERR_PTR(-EINVAL);
6194 
6195 	/* Should check if there are write-behind devices? */
6196 
6197 	chunksect = 64*2; /* 64K by default */
6198 
6199 	/* The array must be an exact multiple of chunksize */
6200 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
6201 		chunksect >>= 1;
6202 
6203 	if ((chunksect<<9) < STRIPE_SIZE)
6204 		/* array size does not allow a suitable chunk size */
6205 		return ERR_PTR(-EINVAL);
6206 
6207 	mddev->new_level = 5;
6208 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
6209 	mddev->new_chunk_sectors = chunksect;
6210 
6211 	return setup_conf(mddev);
6212 }
6213 
6214 static void *raid5_takeover_raid6(struct mddev *mddev)
6215 {
6216 	int new_layout;
6217 
6218 	switch (mddev->layout) {
6219 	case ALGORITHM_LEFT_ASYMMETRIC_6:
6220 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
6221 		break;
6222 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
6223 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
6224 		break;
6225 	case ALGORITHM_LEFT_SYMMETRIC_6:
6226 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
6227 		break;
6228 	case ALGORITHM_RIGHT_SYMMETRIC_6:
6229 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
6230 		break;
6231 	case ALGORITHM_PARITY_0_6:
6232 		new_layout = ALGORITHM_PARITY_0;
6233 		break;
6234 	case ALGORITHM_PARITY_N:
6235 		new_layout = ALGORITHM_PARITY_N;
6236 		break;
6237 	default:
6238 		return ERR_PTR(-EINVAL);
6239 	}
6240 	mddev->new_level = 5;
6241 	mddev->new_layout = new_layout;
6242 	mddev->delta_disks = -1;
6243 	mddev->raid_disks -= 1;
6244 	return setup_conf(mddev);
6245 }
6246 
6247 
6248 static int raid5_check_reshape(struct mddev *mddev)
6249 {
6250 	/* For a 2-drive array, the layout and chunk size can be changed
6251 	 * immediately as not restriping is needed.
6252 	 * For larger arrays we record the new value - after validation
6253 	 * to be used by a reshape pass.
6254 	 */
6255 	struct r5conf *conf = mddev->private;
6256 	int new_chunk = mddev->new_chunk_sectors;
6257 
6258 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
6259 		return -EINVAL;
6260 	if (new_chunk > 0) {
6261 		if (!is_power_of_2(new_chunk))
6262 			return -EINVAL;
6263 		if (new_chunk < (PAGE_SIZE>>9))
6264 			return -EINVAL;
6265 		if (mddev->array_sectors & (new_chunk-1))
6266 			/* not factor of array size */
6267 			return -EINVAL;
6268 	}
6269 
6270 	/* They look valid */
6271 
6272 	if (mddev->raid_disks == 2) {
6273 		/* can make the change immediately */
6274 		if (mddev->new_layout >= 0) {
6275 			conf->algorithm = mddev->new_layout;
6276 			mddev->layout = mddev->new_layout;
6277 		}
6278 		if (new_chunk > 0) {
6279 			conf->chunk_sectors = new_chunk ;
6280 			mddev->chunk_sectors = new_chunk;
6281 		}
6282 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
6283 		md_wakeup_thread(mddev->thread);
6284 	}
6285 	return check_reshape(mddev);
6286 }
6287 
6288 static int raid6_check_reshape(struct mddev *mddev)
6289 {
6290 	int new_chunk = mddev->new_chunk_sectors;
6291 
6292 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
6293 		return -EINVAL;
6294 	if (new_chunk > 0) {
6295 		if (!is_power_of_2(new_chunk))
6296 			return -EINVAL;
6297 		if (new_chunk < (PAGE_SIZE >> 9))
6298 			return -EINVAL;
6299 		if (mddev->array_sectors & (new_chunk-1))
6300 			/* not factor of array size */
6301 			return -EINVAL;
6302 	}
6303 
6304 	/* They look valid */
6305 	return check_reshape(mddev);
6306 }
6307 
6308 static void *raid5_takeover(struct mddev *mddev)
6309 {
6310 	/* raid5 can take over:
6311 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
6312 	 *  raid1 - if there are two drives.  We need to know the chunk size
6313 	 *  raid4 - trivial - just use a raid4 layout.
6314 	 *  raid6 - Providing it is a *_6 layout
6315 	 */
6316 	if (mddev->level == 0)
6317 		return raid45_takeover_raid0(mddev, 5);
6318 	if (mddev->level == 1)
6319 		return raid5_takeover_raid1(mddev);
6320 	if (mddev->level == 4) {
6321 		mddev->new_layout = ALGORITHM_PARITY_N;
6322 		mddev->new_level = 5;
6323 		return setup_conf(mddev);
6324 	}
6325 	if (mddev->level == 6)
6326 		return raid5_takeover_raid6(mddev);
6327 
6328 	return ERR_PTR(-EINVAL);
6329 }
6330 
6331 static void *raid4_takeover(struct mddev *mddev)
6332 {
6333 	/* raid4 can take over:
6334 	 *  raid0 - if there is only one strip zone
6335 	 *  raid5 - if layout is right
6336 	 */
6337 	if (mddev->level == 0)
6338 		return raid45_takeover_raid0(mddev, 4);
6339 	if (mddev->level == 5 &&
6340 	    mddev->layout == ALGORITHM_PARITY_N) {
6341 		mddev->new_layout = 0;
6342 		mddev->new_level = 4;
6343 		return setup_conf(mddev);
6344 	}
6345 	return ERR_PTR(-EINVAL);
6346 }
6347 
6348 static struct md_personality raid5_personality;
6349 
6350 static void *raid6_takeover(struct mddev *mddev)
6351 {
6352 	/* Currently can only take over a raid5.  We map the
6353 	 * personality to an equivalent raid6 personality
6354 	 * with the Q block at the end.
6355 	 */
6356 	int new_layout;
6357 
6358 	if (mddev->pers != &raid5_personality)
6359 		return ERR_PTR(-EINVAL);
6360 	if (mddev->degraded > 1)
6361 		return ERR_PTR(-EINVAL);
6362 	if (mddev->raid_disks > 253)
6363 		return ERR_PTR(-EINVAL);
6364 	if (mddev->raid_disks < 3)
6365 		return ERR_PTR(-EINVAL);
6366 
6367 	switch (mddev->layout) {
6368 	case ALGORITHM_LEFT_ASYMMETRIC:
6369 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
6370 		break;
6371 	case ALGORITHM_RIGHT_ASYMMETRIC:
6372 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
6373 		break;
6374 	case ALGORITHM_LEFT_SYMMETRIC:
6375 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
6376 		break;
6377 	case ALGORITHM_RIGHT_SYMMETRIC:
6378 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
6379 		break;
6380 	case ALGORITHM_PARITY_0:
6381 		new_layout = ALGORITHM_PARITY_0_6;
6382 		break;
6383 	case ALGORITHM_PARITY_N:
6384 		new_layout = ALGORITHM_PARITY_N;
6385 		break;
6386 	default:
6387 		return ERR_PTR(-EINVAL);
6388 	}
6389 	mddev->new_level = 6;
6390 	mddev->new_layout = new_layout;
6391 	mddev->delta_disks = 1;
6392 	mddev->raid_disks += 1;
6393 	return setup_conf(mddev);
6394 }
6395 
6396 
6397 static struct md_personality raid6_personality =
6398 {
6399 	.name		= "raid6",
6400 	.level		= 6,
6401 	.owner		= THIS_MODULE,
6402 	.make_request	= make_request,
6403 	.run		= run,
6404 	.stop		= stop,
6405 	.status		= status,
6406 	.error_handler	= error,
6407 	.hot_add_disk	= raid5_add_disk,
6408 	.hot_remove_disk= raid5_remove_disk,
6409 	.spare_active	= raid5_spare_active,
6410 	.sync_request	= sync_request,
6411 	.resize		= raid5_resize,
6412 	.size		= raid5_size,
6413 	.check_reshape	= raid6_check_reshape,
6414 	.start_reshape  = raid5_start_reshape,
6415 	.finish_reshape = raid5_finish_reshape,
6416 	.quiesce	= raid5_quiesce,
6417 	.takeover	= raid6_takeover,
6418 };
6419 static struct md_personality raid5_personality =
6420 {
6421 	.name		= "raid5",
6422 	.level		= 5,
6423 	.owner		= THIS_MODULE,
6424 	.make_request	= make_request,
6425 	.run		= run,
6426 	.stop		= stop,
6427 	.status		= status,
6428 	.error_handler	= error,
6429 	.hot_add_disk	= raid5_add_disk,
6430 	.hot_remove_disk= raid5_remove_disk,
6431 	.spare_active	= raid5_spare_active,
6432 	.sync_request	= sync_request,
6433 	.resize		= raid5_resize,
6434 	.size		= raid5_size,
6435 	.check_reshape	= raid5_check_reshape,
6436 	.start_reshape  = raid5_start_reshape,
6437 	.finish_reshape = raid5_finish_reshape,
6438 	.quiesce	= raid5_quiesce,
6439 	.takeover	= raid5_takeover,
6440 };
6441 
6442 static struct md_personality raid4_personality =
6443 {
6444 	.name		= "raid4",
6445 	.level		= 4,
6446 	.owner		= THIS_MODULE,
6447 	.make_request	= make_request,
6448 	.run		= run,
6449 	.stop		= stop,
6450 	.status		= status,
6451 	.error_handler	= error,
6452 	.hot_add_disk	= raid5_add_disk,
6453 	.hot_remove_disk= raid5_remove_disk,
6454 	.spare_active	= raid5_spare_active,
6455 	.sync_request	= sync_request,
6456 	.resize		= raid5_resize,
6457 	.size		= raid5_size,
6458 	.check_reshape	= raid5_check_reshape,
6459 	.start_reshape  = raid5_start_reshape,
6460 	.finish_reshape = raid5_finish_reshape,
6461 	.quiesce	= raid5_quiesce,
6462 	.takeover	= raid4_takeover,
6463 };
6464 
6465 static int __init raid5_init(void)
6466 {
6467 	register_md_personality(&raid6_personality);
6468 	register_md_personality(&raid5_personality);
6469 	register_md_personality(&raid4_personality);
6470 	return 0;
6471 }
6472 
6473 static void raid5_exit(void)
6474 {
6475 	unregister_md_personality(&raid6_personality);
6476 	unregister_md_personality(&raid5_personality);
6477 	unregister_md_personality(&raid4_personality);
6478 }
6479 
6480 module_init(raid5_init);
6481 module_exit(raid5_exit);
6482 MODULE_LICENSE("GPL");
6483 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6484 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6485 MODULE_ALIAS("md-raid5");
6486 MODULE_ALIAS("md-raid4");
6487 MODULE_ALIAS("md-level-5");
6488 MODULE_ALIAS("md-level-4");
6489 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6490 MODULE_ALIAS("md-raid6");
6491 MODULE_ALIAS("md-level-6");
6492 
6493 /* This used to be two separate modules, they were: */
6494 MODULE_ALIAS("raid5");
6495 MODULE_ALIAS("raid6");
6496