xref: /linux/drivers/md/raid5.c (revision baaa68a9796ef2cadfe5caaf4c730412eda0f31c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid5.c : Multiple Devices driver for Linux
4  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
5  *	   Copyright (C) 1999, 2000 Ingo Molnar
6  *	   Copyright (C) 2002, 2003 H. Peter Anvin
7  *
8  * RAID-4/5/6 management functions.
9  * Thanks to Penguin Computing for making the RAID-6 development possible
10  * by donating a test server!
11  */
12 
13 /*
14  * BITMAP UNPLUGGING:
15  *
16  * The sequencing for updating the bitmap reliably is a little
17  * subtle (and I got it wrong the first time) so it deserves some
18  * explanation.
19  *
20  * We group bitmap updates into batches.  Each batch has a number.
21  * We may write out several batches at once, but that isn't very important.
22  * conf->seq_write is the number of the last batch successfully written.
23  * conf->seq_flush is the number of the last batch that was closed to
24  *    new additions.
25  * When we discover that we will need to write to any block in a stripe
26  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
27  * the number of the batch it will be in. This is seq_flush+1.
28  * When we are ready to do a write, if that batch hasn't been written yet,
29  *   we plug the array and queue the stripe for later.
30  * When an unplug happens, we increment bm_flush, thus closing the current
31  *   batch.
32  * When we notice that bm_flush > bm_write, we write out all pending updates
33  * to the bitmap, and advance bm_write to where bm_flush was.
34  * This may occasionally write a bit out twice, but is sure never to
35  * miss any bits.
36  */
37 
38 #include <linux/blkdev.h>
39 #include <linux/kthread.h>
40 #include <linux/raid/pq.h>
41 #include <linux/async_tx.h>
42 #include <linux/module.h>
43 #include <linux/async.h>
44 #include <linux/seq_file.h>
45 #include <linux/cpu.h>
46 #include <linux/slab.h>
47 #include <linux/ratelimit.h>
48 #include <linux/nodemask.h>
49 
50 #include <trace/events/block.h>
51 #include <linux/list_sort.h>
52 
53 #include "md.h"
54 #include "raid5.h"
55 #include "raid0.h"
56 #include "md-bitmap.h"
57 #include "raid5-log.h"
58 
59 #define UNSUPPORTED_MDDEV_FLAGS	(1L << MD_FAILFAST_SUPPORTED)
60 
61 #define cpu_to_group(cpu) cpu_to_node(cpu)
62 #define ANY_GROUP NUMA_NO_NODE
63 
64 static bool devices_handle_discard_safely = false;
65 module_param(devices_handle_discard_safely, bool, 0644);
66 MODULE_PARM_DESC(devices_handle_discard_safely,
67 		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
68 static struct workqueue_struct *raid5_wq;
69 
70 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
71 {
72 	int hash = (sect >> RAID5_STRIPE_SHIFT(conf)) & HASH_MASK;
73 	return &conf->stripe_hashtbl[hash];
74 }
75 
76 static inline int stripe_hash_locks_hash(struct r5conf *conf, sector_t sect)
77 {
78 	return (sect >> RAID5_STRIPE_SHIFT(conf)) & STRIPE_HASH_LOCKS_MASK;
79 }
80 
81 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
82 {
83 	spin_lock_irq(conf->hash_locks + hash);
84 	spin_lock(&conf->device_lock);
85 }
86 
87 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
88 {
89 	spin_unlock(&conf->device_lock);
90 	spin_unlock_irq(conf->hash_locks + hash);
91 }
92 
93 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
94 {
95 	int i;
96 	spin_lock_irq(conf->hash_locks);
97 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
98 		spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
99 	spin_lock(&conf->device_lock);
100 }
101 
102 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
103 {
104 	int i;
105 	spin_unlock(&conf->device_lock);
106 	for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
107 		spin_unlock(conf->hash_locks + i);
108 	spin_unlock_irq(conf->hash_locks);
109 }
110 
111 /* Find first data disk in a raid6 stripe */
112 static inline int raid6_d0(struct stripe_head *sh)
113 {
114 	if (sh->ddf_layout)
115 		/* ddf always start from first device */
116 		return 0;
117 	/* md starts just after Q block */
118 	if (sh->qd_idx == sh->disks - 1)
119 		return 0;
120 	else
121 		return sh->qd_idx + 1;
122 }
123 static inline int raid6_next_disk(int disk, int raid_disks)
124 {
125 	disk++;
126 	return (disk < raid_disks) ? disk : 0;
127 }
128 
129 /* When walking through the disks in a raid5, starting at raid6_d0,
130  * We need to map each disk to a 'slot', where the data disks are slot
131  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
132  * is raid_disks-1.  This help does that mapping.
133  */
134 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
135 			     int *count, int syndrome_disks)
136 {
137 	int slot = *count;
138 
139 	if (sh->ddf_layout)
140 		(*count)++;
141 	if (idx == sh->pd_idx)
142 		return syndrome_disks;
143 	if (idx == sh->qd_idx)
144 		return syndrome_disks + 1;
145 	if (!sh->ddf_layout)
146 		(*count)++;
147 	return slot;
148 }
149 
150 static void print_raid5_conf (struct r5conf *conf);
151 
152 static int stripe_operations_active(struct stripe_head *sh)
153 {
154 	return sh->check_state || sh->reconstruct_state ||
155 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
156 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
157 }
158 
159 static bool stripe_is_lowprio(struct stripe_head *sh)
160 {
161 	return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
162 		test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
163 	       !test_bit(STRIPE_R5C_CACHING, &sh->state);
164 }
165 
166 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
167 {
168 	struct r5conf *conf = sh->raid_conf;
169 	struct r5worker_group *group;
170 	int thread_cnt;
171 	int i, cpu = sh->cpu;
172 
173 	if (!cpu_online(cpu)) {
174 		cpu = cpumask_any(cpu_online_mask);
175 		sh->cpu = cpu;
176 	}
177 
178 	if (list_empty(&sh->lru)) {
179 		struct r5worker_group *group;
180 		group = conf->worker_groups + cpu_to_group(cpu);
181 		if (stripe_is_lowprio(sh))
182 			list_add_tail(&sh->lru, &group->loprio_list);
183 		else
184 			list_add_tail(&sh->lru, &group->handle_list);
185 		group->stripes_cnt++;
186 		sh->group = group;
187 	}
188 
189 	if (conf->worker_cnt_per_group == 0) {
190 		md_wakeup_thread(conf->mddev->thread);
191 		return;
192 	}
193 
194 	group = conf->worker_groups + cpu_to_group(sh->cpu);
195 
196 	group->workers[0].working = true;
197 	/* at least one worker should run to avoid race */
198 	queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
199 
200 	thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
201 	/* wakeup more workers */
202 	for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
203 		if (group->workers[i].working == false) {
204 			group->workers[i].working = true;
205 			queue_work_on(sh->cpu, raid5_wq,
206 				      &group->workers[i].work);
207 			thread_cnt--;
208 		}
209 	}
210 }
211 
212 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
213 			      struct list_head *temp_inactive_list)
214 {
215 	int i;
216 	int injournal = 0;	/* number of date pages with R5_InJournal */
217 
218 	BUG_ON(!list_empty(&sh->lru));
219 	BUG_ON(atomic_read(&conf->active_stripes)==0);
220 
221 	if (r5c_is_writeback(conf->log))
222 		for (i = sh->disks; i--; )
223 			if (test_bit(R5_InJournal, &sh->dev[i].flags))
224 				injournal++;
225 	/*
226 	 * In the following cases, the stripe cannot be released to cached
227 	 * lists. Therefore, we make the stripe write out and set
228 	 * STRIPE_HANDLE:
229 	 *   1. when quiesce in r5c write back;
230 	 *   2. when resync is requested fot the stripe.
231 	 */
232 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
233 	    (conf->quiesce && r5c_is_writeback(conf->log) &&
234 	     !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
235 		if (test_bit(STRIPE_R5C_CACHING, &sh->state))
236 			r5c_make_stripe_write_out(sh);
237 		set_bit(STRIPE_HANDLE, &sh->state);
238 	}
239 
240 	if (test_bit(STRIPE_HANDLE, &sh->state)) {
241 		if (test_bit(STRIPE_DELAYED, &sh->state) &&
242 		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
243 			list_add_tail(&sh->lru, &conf->delayed_list);
244 		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
245 			   sh->bm_seq - conf->seq_write > 0)
246 			list_add_tail(&sh->lru, &conf->bitmap_list);
247 		else {
248 			clear_bit(STRIPE_DELAYED, &sh->state);
249 			clear_bit(STRIPE_BIT_DELAY, &sh->state);
250 			if (conf->worker_cnt_per_group == 0) {
251 				if (stripe_is_lowprio(sh))
252 					list_add_tail(&sh->lru,
253 							&conf->loprio_list);
254 				else
255 					list_add_tail(&sh->lru,
256 							&conf->handle_list);
257 			} else {
258 				raid5_wakeup_stripe_thread(sh);
259 				return;
260 			}
261 		}
262 		md_wakeup_thread(conf->mddev->thread);
263 	} else {
264 		BUG_ON(stripe_operations_active(sh));
265 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
266 			if (atomic_dec_return(&conf->preread_active_stripes)
267 			    < IO_THRESHOLD)
268 				md_wakeup_thread(conf->mddev->thread);
269 		atomic_dec(&conf->active_stripes);
270 		if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
271 			if (!r5c_is_writeback(conf->log))
272 				list_add_tail(&sh->lru, temp_inactive_list);
273 			else {
274 				WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
275 				if (injournal == 0)
276 					list_add_tail(&sh->lru, temp_inactive_list);
277 				else if (injournal == conf->raid_disks - conf->max_degraded) {
278 					/* full stripe */
279 					if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
280 						atomic_inc(&conf->r5c_cached_full_stripes);
281 					if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
282 						atomic_dec(&conf->r5c_cached_partial_stripes);
283 					list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
284 					r5c_check_cached_full_stripe(conf);
285 				} else
286 					/*
287 					 * STRIPE_R5C_PARTIAL_STRIPE is set in
288 					 * r5c_try_caching_write(). No need to
289 					 * set it again.
290 					 */
291 					list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
292 			}
293 		}
294 	}
295 }
296 
297 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
298 			     struct list_head *temp_inactive_list)
299 {
300 	if (atomic_dec_and_test(&sh->count))
301 		do_release_stripe(conf, sh, temp_inactive_list);
302 }
303 
304 /*
305  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
306  *
307  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
308  * given time. Adding stripes only takes device lock, while deleting stripes
309  * only takes hash lock.
310  */
311 static void release_inactive_stripe_list(struct r5conf *conf,
312 					 struct list_head *temp_inactive_list,
313 					 int hash)
314 {
315 	int size;
316 	bool do_wakeup = false;
317 	unsigned long flags;
318 
319 	if (hash == NR_STRIPE_HASH_LOCKS) {
320 		size = NR_STRIPE_HASH_LOCKS;
321 		hash = NR_STRIPE_HASH_LOCKS - 1;
322 	} else
323 		size = 1;
324 	while (size) {
325 		struct list_head *list = &temp_inactive_list[size - 1];
326 
327 		/*
328 		 * We don't hold any lock here yet, raid5_get_active_stripe() might
329 		 * remove stripes from the list
330 		 */
331 		if (!list_empty_careful(list)) {
332 			spin_lock_irqsave(conf->hash_locks + hash, flags);
333 			if (list_empty(conf->inactive_list + hash) &&
334 			    !list_empty(list))
335 				atomic_dec(&conf->empty_inactive_list_nr);
336 			list_splice_tail_init(list, conf->inactive_list + hash);
337 			do_wakeup = true;
338 			spin_unlock_irqrestore(conf->hash_locks + hash, flags);
339 		}
340 		size--;
341 		hash--;
342 	}
343 
344 	if (do_wakeup) {
345 		wake_up(&conf->wait_for_stripe);
346 		if (atomic_read(&conf->active_stripes) == 0)
347 			wake_up(&conf->wait_for_quiescent);
348 		if (conf->retry_read_aligned)
349 			md_wakeup_thread(conf->mddev->thread);
350 	}
351 }
352 
353 /* should hold conf->device_lock already */
354 static int release_stripe_list(struct r5conf *conf,
355 			       struct list_head *temp_inactive_list)
356 {
357 	struct stripe_head *sh, *t;
358 	int count = 0;
359 	struct llist_node *head;
360 
361 	head = llist_del_all(&conf->released_stripes);
362 	head = llist_reverse_order(head);
363 	llist_for_each_entry_safe(sh, t, head, release_list) {
364 		int hash;
365 
366 		/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
367 		smp_mb();
368 		clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
369 		/*
370 		 * Don't worry the bit is set here, because if the bit is set
371 		 * again, the count is always > 1. This is true for
372 		 * STRIPE_ON_UNPLUG_LIST bit too.
373 		 */
374 		hash = sh->hash_lock_index;
375 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
376 		count++;
377 	}
378 
379 	return count;
380 }
381 
382 void raid5_release_stripe(struct stripe_head *sh)
383 {
384 	struct r5conf *conf = sh->raid_conf;
385 	unsigned long flags;
386 	struct list_head list;
387 	int hash;
388 	bool wakeup;
389 
390 	/* Avoid release_list until the last reference.
391 	 */
392 	if (atomic_add_unless(&sh->count, -1, 1))
393 		return;
394 
395 	if (unlikely(!conf->mddev->thread) ||
396 		test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
397 		goto slow_path;
398 	wakeup = llist_add(&sh->release_list, &conf->released_stripes);
399 	if (wakeup)
400 		md_wakeup_thread(conf->mddev->thread);
401 	return;
402 slow_path:
403 	/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
404 	if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) {
405 		INIT_LIST_HEAD(&list);
406 		hash = sh->hash_lock_index;
407 		do_release_stripe(conf, sh, &list);
408 		spin_unlock_irqrestore(&conf->device_lock, flags);
409 		release_inactive_stripe_list(conf, &list, hash);
410 	}
411 }
412 
413 static inline void remove_hash(struct stripe_head *sh)
414 {
415 	pr_debug("remove_hash(), stripe %llu\n",
416 		(unsigned long long)sh->sector);
417 
418 	hlist_del_init(&sh->hash);
419 }
420 
421 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
422 {
423 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
424 
425 	pr_debug("insert_hash(), stripe %llu\n",
426 		(unsigned long long)sh->sector);
427 
428 	hlist_add_head(&sh->hash, hp);
429 }
430 
431 /* find an idle stripe, make sure it is unhashed, and return it. */
432 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
433 {
434 	struct stripe_head *sh = NULL;
435 	struct list_head *first;
436 
437 	if (list_empty(conf->inactive_list + hash))
438 		goto out;
439 	first = (conf->inactive_list + hash)->next;
440 	sh = list_entry(first, struct stripe_head, lru);
441 	list_del_init(first);
442 	remove_hash(sh);
443 	atomic_inc(&conf->active_stripes);
444 	BUG_ON(hash != sh->hash_lock_index);
445 	if (list_empty(conf->inactive_list + hash))
446 		atomic_inc(&conf->empty_inactive_list_nr);
447 out:
448 	return sh;
449 }
450 
451 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
452 static void free_stripe_pages(struct stripe_head *sh)
453 {
454 	int i;
455 	struct page *p;
456 
457 	/* Have not allocate page pool */
458 	if (!sh->pages)
459 		return;
460 
461 	for (i = 0; i < sh->nr_pages; i++) {
462 		p = sh->pages[i];
463 		if (p)
464 			put_page(p);
465 		sh->pages[i] = NULL;
466 	}
467 }
468 
469 static int alloc_stripe_pages(struct stripe_head *sh, gfp_t gfp)
470 {
471 	int i;
472 	struct page *p;
473 
474 	for (i = 0; i < sh->nr_pages; i++) {
475 		/* The page have allocated. */
476 		if (sh->pages[i])
477 			continue;
478 
479 		p = alloc_page(gfp);
480 		if (!p) {
481 			free_stripe_pages(sh);
482 			return -ENOMEM;
483 		}
484 		sh->pages[i] = p;
485 	}
486 	return 0;
487 }
488 
489 static int
490 init_stripe_shared_pages(struct stripe_head *sh, struct r5conf *conf, int disks)
491 {
492 	int nr_pages, cnt;
493 
494 	if (sh->pages)
495 		return 0;
496 
497 	/* Each of the sh->dev[i] need one conf->stripe_size */
498 	cnt = PAGE_SIZE / conf->stripe_size;
499 	nr_pages = (disks + cnt - 1) / cnt;
500 
501 	sh->pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
502 	if (!sh->pages)
503 		return -ENOMEM;
504 	sh->nr_pages = nr_pages;
505 	sh->stripes_per_page = cnt;
506 	return 0;
507 }
508 #endif
509 
510 static void shrink_buffers(struct stripe_head *sh)
511 {
512 	int i;
513 	int num = sh->raid_conf->pool_size;
514 
515 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE
516 	for (i = 0; i < num ; i++) {
517 		struct page *p;
518 
519 		WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
520 		p = sh->dev[i].page;
521 		if (!p)
522 			continue;
523 		sh->dev[i].page = NULL;
524 		put_page(p);
525 	}
526 #else
527 	for (i = 0; i < num; i++)
528 		sh->dev[i].page = NULL;
529 	free_stripe_pages(sh); /* Free pages */
530 #endif
531 }
532 
533 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
534 {
535 	int i;
536 	int num = sh->raid_conf->pool_size;
537 
538 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE
539 	for (i = 0; i < num; i++) {
540 		struct page *page;
541 
542 		if (!(page = alloc_page(gfp))) {
543 			return 1;
544 		}
545 		sh->dev[i].page = page;
546 		sh->dev[i].orig_page = page;
547 		sh->dev[i].offset = 0;
548 	}
549 #else
550 	if (alloc_stripe_pages(sh, gfp))
551 		return -ENOMEM;
552 
553 	for (i = 0; i < num; i++) {
554 		sh->dev[i].page = raid5_get_dev_page(sh, i);
555 		sh->dev[i].orig_page = sh->dev[i].page;
556 		sh->dev[i].offset = raid5_get_page_offset(sh, i);
557 	}
558 #endif
559 	return 0;
560 }
561 
562 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
563 			    struct stripe_head *sh);
564 
565 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
566 {
567 	struct r5conf *conf = sh->raid_conf;
568 	int i, seq;
569 
570 	BUG_ON(atomic_read(&sh->count) != 0);
571 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
572 	BUG_ON(stripe_operations_active(sh));
573 	BUG_ON(sh->batch_head);
574 
575 	pr_debug("init_stripe called, stripe %llu\n",
576 		(unsigned long long)sector);
577 retry:
578 	seq = read_seqcount_begin(&conf->gen_lock);
579 	sh->generation = conf->generation - previous;
580 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
581 	sh->sector = sector;
582 	stripe_set_idx(sector, conf, previous, sh);
583 	sh->state = 0;
584 
585 	for (i = sh->disks; i--; ) {
586 		struct r5dev *dev = &sh->dev[i];
587 
588 		if (dev->toread || dev->read || dev->towrite || dev->written ||
589 		    test_bit(R5_LOCKED, &dev->flags)) {
590 			pr_err("sector=%llx i=%d %p %p %p %p %d\n",
591 			       (unsigned long long)sh->sector, i, dev->toread,
592 			       dev->read, dev->towrite, dev->written,
593 			       test_bit(R5_LOCKED, &dev->flags));
594 			WARN_ON(1);
595 		}
596 		dev->flags = 0;
597 		dev->sector = raid5_compute_blocknr(sh, i, previous);
598 	}
599 	if (read_seqcount_retry(&conf->gen_lock, seq))
600 		goto retry;
601 	sh->overwrite_disks = 0;
602 	insert_hash(conf, sh);
603 	sh->cpu = smp_processor_id();
604 	set_bit(STRIPE_BATCH_READY, &sh->state);
605 }
606 
607 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
608 					 short generation)
609 {
610 	struct stripe_head *sh;
611 
612 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
613 	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
614 		if (sh->sector == sector && sh->generation == generation)
615 			return sh;
616 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
617 	return NULL;
618 }
619 
620 /*
621  * Need to check if array has failed when deciding whether to:
622  *  - start an array
623  *  - remove non-faulty devices
624  *  - add a spare
625  *  - allow a reshape
626  * This determination is simple when no reshape is happening.
627  * However if there is a reshape, we need to carefully check
628  * both the before and after sections.
629  * This is because some failed devices may only affect one
630  * of the two sections, and some non-in_sync devices may
631  * be insync in the section most affected by failed devices.
632  */
633 int raid5_calc_degraded(struct r5conf *conf)
634 {
635 	int degraded, degraded2;
636 	int i;
637 
638 	rcu_read_lock();
639 	degraded = 0;
640 	for (i = 0; i < conf->previous_raid_disks; i++) {
641 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
642 		if (rdev && test_bit(Faulty, &rdev->flags))
643 			rdev = rcu_dereference(conf->disks[i].replacement);
644 		if (!rdev || test_bit(Faulty, &rdev->flags))
645 			degraded++;
646 		else if (test_bit(In_sync, &rdev->flags))
647 			;
648 		else
649 			/* not in-sync or faulty.
650 			 * If the reshape increases the number of devices,
651 			 * this is being recovered by the reshape, so
652 			 * this 'previous' section is not in_sync.
653 			 * If the number of devices is being reduced however,
654 			 * the device can only be part of the array if
655 			 * we are reverting a reshape, so this section will
656 			 * be in-sync.
657 			 */
658 			if (conf->raid_disks >= conf->previous_raid_disks)
659 				degraded++;
660 	}
661 	rcu_read_unlock();
662 	if (conf->raid_disks == conf->previous_raid_disks)
663 		return degraded;
664 	rcu_read_lock();
665 	degraded2 = 0;
666 	for (i = 0; i < conf->raid_disks; i++) {
667 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
668 		if (rdev && test_bit(Faulty, &rdev->flags))
669 			rdev = rcu_dereference(conf->disks[i].replacement);
670 		if (!rdev || test_bit(Faulty, &rdev->flags))
671 			degraded2++;
672 		else if (test_bit(In_sync, &rdev->flags))
673 			;
674 		else
675 			/* not in-sync or faulty.
676 			 * If reshape increases the number of devices, this
677 			 * section has already been recovered, else it
678 			 * almost certainly hasn't.
679 			 */
680 			if (conf->raid_disks <= conf->previous_raid_disks)
681 				degraded2++;
682 	}
683 	rcu_read_unlock();
684 	if (degraded2 > degraded)
685 		return degraded2;
686 	return degraded;
687 }
688 
689 static int has_failed(struct r5conf *conf)
690 {
691 	int degraded;
692 
693 	if (conf->mddev->reshape_position == MaxSector)
694 		return conf->mddev->degraded > conf->max_degraded;
695 
696 	degraded = raid5_calc_degraded(conf);
697 	if (degraded > conf->max_degraded)
698 		return 1;
699 	return 0;
700 }
701 
702 struct stripe_head *
703 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
704 			int previous, int noblock, int noquiesce)
705 {
706 	struct stripe_head *sh;
707 	int hash = stripe_hash_locks_hash(conf, sector);
708 	int inc_empty_inactive_list_flag;
709 
710 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
711 
712 	spin_lock_irq(conf->hash_locks + hash);
713 
714 	do {
715 		wait_event_lock_irq(conf->wait_for_quiescent,
716 				    conf->quiesce == 0 || noquiesce,
717 				    *(conf->hash_locks + hash));
718 		sh = __find_stripe(conf, sector, conf->generation - previous);
719 		if (!sh) {
720 			if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
721 				sh = get_free_stripe(conf, hash);
722 				if (!sh && !test_bit(R5_DID_ALLOC,
723 						     &conf->cache_state))
724 					set_bit(R5_ALLOC_MORE,
725 						&conf->cache_state);
726 			}
727 			if (noblock && sh == NULL)
728 				break;
729 
730 			r5c_check_stripe_cache_usage(conf);
731 			if (!sh) {
732 				set_bit(R5_INACTIVE_BLOCKED,
733 					&conf->cache_state);
734 				r5l_wake_reclaim(conf->log, 0);
735 				wait_event_lock_irq(
736 					conf->wait_for_stripe,
737 					!list_empty(conf->inactive_list + hash) &&
738 					(atomic_read(&conf->active_stripes)
739 					 < (conf->max_nr_stripes * 3 / 4)
740 					 || !test_bit(R5_INACTIVE_BLOCKED,
741 						      &conf->cache_state)),
742 					*(conf->hash_locks + hash));
743 				clear_bit(R5_INACTIVE_BLOCKED,
744 					  &conf->cache_state);
745 			} else {
746 				init_stripe(sh, sector, previous);
747 				atomic_inc(&sh->count);
748 			}
749 		} else if (!atomic_inc_not_zero(&sh->count)) {
750 			spin_lock(&conf->device_lock);
751 			if (!atomic_read(&sh->count)) {
752 				if (!test_bit(STRIPE_HANDLE, &sh->state))
753 					atomic_inc(&conf->active_stripes);
754 				BUG_ON(list_empty(&sh->lru) &&
755 				       !test_bit(STRIPE_EXPANDING, &sh->state));
756 				inc_empty_inactive_list_flag = 0;
757 				if (!list_empty(conf->inactive_list + hash))
758 					inc_empty_inactive_list_flag = 1;
759 				list_del_init(&sh->lru);
760 				if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
761 					atomic_inc(&conf->empty_inactive_list_nr);
762 				if (sh->group) {
763 					sh->group->stripes_cnt--;
764 					sh->group = NULL;
765 				}
766 			}
767 			atomic_inc(&sh->count);
768 			spin_unlock(&conf->device_lock);
769 		}
770 	} while (sh == NULL);
771 
772 	spin_unlock_irq(conf->hash_locks + hash);
773 	return sh;
774 }
775 
776 static bool is_full_stripe_write(struct stripe_head *sh)
777 {
778 	BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
779 	return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
780 }
781 
782 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
783 		__acquires(&sh1->stripe_lock)
784 		__acquires(&sh2->stripe_lock)
785 {
786 	if (sh1 > sh2) {
787 		spin_lock_irq(&sh2->stripe_lock);
788 		spin_lock_nested(&sh1->stripe_lock, 1);
789 	} else {
790 		spin_lock_irq(&sh1->stripe_lock);
791 		spin_lock_nested(&sh2->stripe_lock, 1);
792 	}
793 }
794 
795 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
796 		__releases(&sh1->stripe_lock)
797 		__releases(&sh2->stripe_lock)
798 {
799 	spin_unlock(&sh1->stripe_lock);
800 	spin_unlock_irq(&sh2->stripe_lock);
801 }
802 
803 /* Only freshly new full stripe normal write stripe can be added to a batch list */
804 static bool stripe_can_batch(struct stripe_head *sh)
805 {
806 	struct r5conf *conf = sh->raid_conf;
807 
808 	if (raid5_has_log(conf) || raid5_has_ppl(conf))
809 		return false;
810 	return test_bit(STRIPE_BATCH_READY, &sh->state) &&
811 		!test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
812 		is_full_stripe_write(sh);
813 }
814 
815 /* we only do back search */
816 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
817 {
818 	struct stripe_head *head;
819 	sector_t head_sector, tmp_sec;
820 	int hash;
821 	int dd_idx;
822 	int inc_empty_inactive_list_flag;
823 
824 	/* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
825 	tmp_sec = sh->sector;
826 	if (!sector_div(tmp_sec, conf->chunk_sectors))
827 		return;
828 	head_sector = sh->sector - RAID5_STRIPE_SECTORS(conf);
829 
830 	hash = stripe_hash_locks_hash(conf, head_sector);
831 	spin_lock_irq(conf->hash_locks + hash);
832 	head = __find_stripe(conf, head_sector, conf->generation);
833 	if (head && !atomic_inc_not_zero(&head->count)) {
834 		spin_lock(&conf->device_lock);
835 		if (!atomic_read(&head->count)) {
836 			if (!test_bit(STRIPE_HANDLE, &head->state))
837 				atomic_inc(&conf->active_stripes);
838 			BUG_ON(list_empty(&head->lru) &&
839 			       !test_bit(STRIPE_EXPANDING, &head->state));
840 			inc_empty_inactive_list_flag = 0;
841 			if (!list_empty(conf->inactive_list + hash))
842 				inc_empty_inactive_list_flag = 1;
843 			list_del_init(&head->lru);
844 			if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
845 				atomic_inc(&conf->empty_inactive_list_nr);
846 			if (head->group) {
847 				head->group->stripes_cnt--;
848 				head->group = NULL;
849 			}
850 		}
851 		atomic_inc(&head->count);
852 		spin_unlock(&conf->device_lock);
853 	}
854 	spin_unlock_irq(conf->hash_locks + hash);
855 
856 	if (!head)
857 		return;
858 	if (!stripe_can_batch(head))
859 		goto out;
860 
861 	lock_two_stripes(head, sh);
862 	/* clear_batch_ready clear the flag */
863 	if (!stripe_can_batch(head) || !stripe_can_batch(sh))
864 		goto unlock_out;
865 
866 	if (sh->batch_head)
867 		goto unlock_out;
868 
869 	dd_idx = 0;
870 	while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
871 		dd_idx++;
872 	if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
873 	    bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
874 		goto unlock_out;
875 
876 	if (head->batch_head) {
877 		spin_lock(&head->batch_head->batch_lock);
878 		/* This batch list is already running */
879 		if (!stripe_can_batch(head)) {
880 			spin_unlock(&head->batch_head->batch_lock);
881 			goto unlock_out;
882 		}
883 		/*
884 		 * We must assign batch_head of this stripe within the
885 		 * batch_lock, otherwise clear_batch_ready of batch head
886 		 * stripe could clear BATCH_READY bit of this stripe and
887 		 * this stripe->batch_head doesn't get assigned, which
888 		 * could confuse clear_batch_ready for this stripe
889 		 */
890 		sh->batch_head = head->batch_head;
891 
892 		/*
893 		 * at this point, head's BATCH_READY could be cleared, but we
894 		 * can still add the stripe to batch list
895 		 */
896 		list_add(&sh->batch_list, &head->batch_list);
897 		spin_unlock(&head->batch_head->batch_lock);
898 	} else {
899 		head->batch_head = head;
900 		sh->batch_head = head->batch_head;
901 		spin_lock(&head->batch_lock);
902 		list_add_tail(&sh->batch_list, &head->batch_list);
903 		spin_unlock(&head->batch_lock);
904 	}
905 
906 	if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
907 		if (atomic_dec_return(&conf->preread_active_stripes)
908 		    < IO_THRESHOLD)
909 			md_wakeup_thread(conf->mddev->thread);
910 
911 	if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
912 		int seq = sh->bm_seq;
913 		if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
914 		    sh->batch_head->bm_seq > seq)
915 			seq = sh->batch_head->bm_seq;
916 		set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
917 		sh->batch_head->bm_seq = seq;
918 	}
919 
920 	atomic_inc(&sh->count);
921 unlock_out:
922 	unlock_two_stripes(head, sh);
923 out:
924 	raid5_release_stripe(head);
925 }
926 
927 /* Determine if 'data_offset' or 'new_data_offset' should be used
928  * in this stripe_head.
929  */
930 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
931 {
932 	sector_t progress = conf->reshape_progress;
933 	/* Need a memory barrier to make sure we see the value
934 	 * of conf->generation, or ->data_offset that was set before
935 	 * reshape_progress was updated.
936 	 */
937 	smp_rmb();
938 	if (progress == MaxSector)
939 		return 0;
940 	if (sh->generation == conf->generation - 1)
941 		return 0;
942 	/* We are in a reshape, and this is a new-generation stripe,
943 	 * so use new_data_offset.
944 	 */
945 	return 1;
946 }
947 
948 static void dispatch_bio_list(struct bio_list *tmp)
949 {
950 	struct bio *bio;
951 
952 	while ((bio = bio_list_pop(tmp)))
953 		submit_bio_noacct(bio);
954 }
955 
956 static int cmp_stripe(void *priv, const struct list_head *a,
957 		      const struct list_head *b)
958 {
959 	const struct r5pending_data *da = list_entry(a,
960 				struct r5pending_data, sibling);
961 	const struct r5pending_data *db = list_entry(b,
962 				struct r5pending_data, sibling);
963 	if (da->sector > db->sector)
964 		return 1;
965 	if (da->sector < db->sector)
966 		return -1;
967 	return 0;
968 }
969 
970 static void dispatch_defer_bios(struct r5conf *conf, int target,
971 				struct bio_list *list)
972 {
973 	struct r5pending_data *data;
974 	struct list_head *first, *next = NULL;
975 	int cnt = 0;
976 
977 	if (conf->pending_data_cnt == 0)
978 		return;
979 
980 	list_sort(NULL, &conf->pending_list, cmp_stripe);
981 
982 	first = conf->pending_list.next;
983 
984 	/* temporarily move the head */
985 	if (conf->next_pending_data)
986 		list_move_tail(&conf->pending_list,
987 				&conf->next_pending_data->sibling);
988 
989 	while (!list_empty(&conf->pending_list)) {
990 		data = list_first_entry(&conf->pending_list,
991 			struct r5pending_data, sibling);
992 		if (&data->sibling == first)
993 			first = data->sibling.next;
994 		next = data->sibling.next;
995 
996 		bio_list_merge(list, &data->bios);
997 		list_move(&data->sibling, &conf->free_list);
998 		cnt++;
999 		if (cnt >= target)
1000 			break;
1001 	}
1002 	conf->pending_data_cnt -= cnt;
1003 	BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
1004 
1005 	if (next != &conf->pending_list)
1006 		conf->next_pending_data = list_entry(next,
1007 				struct r5pending_data, sibling);
1008 	else
1009 		conf->next_pending_data = NULL;
1010 	/* list isn't empty */
1011 	if (first != &conf->pending_list)
1012 		list_move_tail(&conf->pending_list, first);
1013 }
1014 
1015 static void flush_deferred_bios(struct r5conf *conf)
1016 {
1017 	struct bio_list tmp = BIO_EMPTY_LIST;
1018 
1019 	if (conf->pending_data_cnt == 0)
1020 		return;
1021 
1022 	spin_lock(&conf->pending_bios_lock);
1023 	dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
1024 	BUG_ON(conf->pending_data_cnt != 0);
1025 	spin_unlock(&conf->pending_bios_lock);
1026 
1027 	dispatch_bio_list(&tmp);
1028 }
1029 
1030 static void defer_issue_bios(struct r5conf *conf, sector_t sector,
1031 				struct bio_list *bios)
1032 {
1033 	struct bio_list tmp = BIO_EMPTY_LIST;
1034 	struct r5pending_data *ent;
1035 
1036 	spin_lock(&conf->pending_bios_lock);
1037 	ent = list_first_entry(&conf->free_list, struct r5pending_data,
1038 							sibling);
1039 	list_move_tail(&ent->sibling, &conf->pending_list);
1040 	ent->sector = sector;
1041 	bio_list_init(&ent->bios);
1042 	bio_list_merge(&ent->bios, bios);
1043 	conf->pending_data_cnt++;
1044 	if (conf->pending_data_cnt >= PENDING_IO_MAX)
1045 		dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
1046 
1047 	spin_unlock(&conf->pending_bios_lock);
1048 
1049 	dispatch_bio_list(&tmp);
1050 }
1051 
1052 static void
1053 raid5_end_read_request(struct bio *bi);
1054 static void
1055 raid5_end_write_request(struct bio *bi);
1056 
1057 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
1058 {
1059 	struct r5conf *conf = sh->raid_conf;
1060 	int i, disks = sh->disks;
1061 	struct stripe_head *head_sh = sh;
1062 	struct bio_list pending_bios = BIO_EMPTY_LIST;
1063 	struct r5dev *dev;
1064 	bool should_defer;
1065 
1066 	might_sleep();
1067 
1068 	if (log_stripe(sh, s) == 0)
1069 		return;
1070 
1071 	should_defer = conf->batch_bio_dispatch && conf->group_cnt;
1072 
1073 	for (i = disks; i--; ) {
1074 		int op, op_flags = 0;
1075 		int replace_only = 0;
1076 		struct bio *bi, *rbi;
1077 		struct md_rdev *rdev, *rrdev = NULL;
1078 
1079 		sh = head_sh;
1080 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1081 			op = REQ_OP_WRITE;
1082 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1083 				op_flags = REQ_FUA;
1084 			if (test_bit(R5_Discard, &sh->dev[i].flags))
1085 				op = REQ_OP_DISCARD;
1086 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1087 			op = REQ_OP_READ;
1088 		else if (test_and_clear_bit(R5_WantReplace,
1089 					    &sh->dev[i].flags)) {
1090 			op = REQ_OP_WRITE;
1091 			replace_only = 1;
1092 		} else
1093 			continue;
1094 		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1095 			op_flags |= REQ_SYNC;
1096 
1097 again:
1098 		dev = &sh->dev[i];
1099 		bi = &dev->req;
1100 		rbi = &dev->rreq; /* For writing to replacement */
1101 
1102 		rcu_read_lock();
1103 		rrdev = rcu_dereference(conf->disks[i].replacement);
1104 		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1105 		rdev = rcu_dereference(conf->disks[i].rdev);
1106 		if (!rdev) {
1107 			rdev = rrdev;
1108 			rrdev = NULL;
1109 		}
1110 		if (op_is_write(op)) {
1111 			if (replace_only)
1112 				rdev = NULL;
1113 			if (rdev == rrdev)
1114 				/* We raced and saw duplicates */
1115 				rrdev = NULL;
1116 		} else {
1117 			if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1118 				rdev = rrdev;
1119 			rrdev = NULL;
1120 		}
1121 
1122 		if (rdev && test_bit(Faulty, &rdev->flags))
1123 			rdev = NULL;
1124 		if (rdev)
1125 			atomic_inc(&rdev->nr_pending);
1126 		if (rrdev && test_bit(Faulty, &rrdev->flags))
1127 			rrdev = NULL;
1128 		if (rrdev)
1129 			atomic_inc(&rrdev->nr_pending);
1130 		rcu_read_unlock();
1131 
1132 		/* We have already checked bad blocks for reads.  Now
1133 		 * need to check for writes.  We never accept write errors
1134 		 * on the replacement, so we don't to check rrdev.
1135 		 */
1136 		while (op_is_write(op) && rdev &&
1137 		       test_bit(WriteErrorSeen, &rdev->flags)) {
1138 			sector_t first_bad;
1139 			int bad_sectors;
1140 			int bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
1141 					      &first_bad, &bad_sectors);
1142 			if (!bad)
1143 				break;
1144 
1145 			if (bad < 0) {
1146 				set_bit(BlockedBadBlocks, &rdev->flags);
1147 				if (!conf->mddev->external &&
1148 				    conf->mddev->sb_flags) {
1149 					/* It is very unlikely, but we might
1150 					 * still need to write out the
1151 					 * bad block log - better give it
1152 					 * a chance*/
1153 					md_check_recovery(conf->mddev);
1154 				}
1155 				/*
1156 				 * Because md_wait_for_blocked_rdev
1157 				 * will dec nr_pending, we must
1158 				 * increment it first.
1159 				 */
1160 				atomic_inc(&rdev->nr_pending);
1161 				md_wait_for_blocked_rdev(rdev, conf->mddev);
1162 			} else {
1163 				/* Acknowledged bad block - skip the write */
1164 				rdev_dec_pending(rdev, conf->mddev);
1165 				rdev = NULL;
1166 			}
1167 		}
1168 
1169 		if (rdev) {
1170 			if (s->syncing || s->expanding || s->expanded
1171 			    || s->replacing)
1172 				md_sync_acct(rdev->bdev, RAID5_STRIPE_SECTORS(conf));
1173 
1174 			set_bit(STRIPE_IO_STARTED, &sh->state);
1175 
1176 			bio_init(bi, rdev->bdev, &dev->vec, 1, op | op_flags);
1177 			bi->bi_end_io = op_is_write(op)
1178 				? raid5_end_write_request
1179 				: raid5_end_read_request;
1180 			bi->bi_private = sh;
1181 
1182 			pr_debug("%s: for %llu schedule op %d on disc %d\n",
1183 				__func__, (unsigned long long)sh->sector,
1184 				bi->bi_opf, i);
1185 			atomic_inc(&sh->count);
1186 			if (sh != head_sh)
1187 				atomic_inc(&head_sh->count);
1188 			if (use_new_offset(conf, sh))
1189 				bi->bi_iter.bi_sector = (sh->sector
1190 						 + rdev->new_data_offset);
1191 			else
1192 				bi->bi_iter.bi_sector = (sh->sector
1193 						 + rdev->data_offset);
1194 			if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1195 				bi->bi_opf |= REQ_NOMERGE;
1196 
1197 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1198 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1199 
1200 			if (!op_is_write(op) &&
1201 			    test_bit(R5_InJournal, &sh->dev[i].flags))
1202 				/*
1203 				 * issuing read for a page in journal, this
1204 				 * must be preparing for prexor in rmw; read
1205 				 * the data into orig_page
1206 				 */
1207 				sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1208 			else
1209 				sh->dev[i].vec.bv_page = sh->dev[i].page;
1210 			bi->bi_vcnt = 1;
1211 			bi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1212 			bi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
1213 			bi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1214 			bi->bi_write_hint = sh->dev[i].write_hint;
1215 			if (!rrdev)
1216 				sh->dev[i].write_hint = RWH_WRITE_LIFE_NOT_SET;
1217 			/*
1218 			 * If this is discard request, set bi_vcnt 0. We don't
1219 			 * want to confuse SCSI because SCSI will replace payload
1220 			 */
1221 			if (op == REQ_OP_DISCARD)
1222 				bi->bi_vcnt = 0;
1223 			if (rrdev)
1224 				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1225 
1226 			if (conf->mddev->gendisk)
1227 				trace_block_bio_remap(bi,
1228 						disk_devt(conf->mddev->gendisk),
1229 						sh->dev[i].sector);
1230 			if (should_defer && op_is_write(op))
1231 				bio_list_add(&pending_bios, bi);
1232 			else
1233 				submit_bio_noacct(bi);
1234 		}
1235 		if (rrdev) {
1236 			if (s->syncing || s->expanding || s->expanded
1237 			    || s->replacing)
1238 				md_sync_acct(rrdev->bdev, RAID5_STRIPE_SECTORS(conf));
1239 
1240 			set_bit(STRIPE_IO_STARTED, &sh->state);
1241 
1242 			bio_init(rbi, rrdev->bdev, &dev->rvec, 1, op | op_flags);
1243 			BUG_ON(!op_is_write(op));
1244 			rbi->bi_end_io = raid5_end_write_request;
1245 			rbi->bi_private = sh;
1246 
1247 			pr_debug("%s: for %llu schedule op %d on "
1248 				 "replacement disc %d\n",
1249 				__func__, (unsigned long long)sh->sector,
1250 				rbi->bi_opf, i);
1251 			atomic_inc(&sh->count);
1252 			if (sh != head_sh)
1253 				atomic_inc(&head_sh->count);
1254 			if (use_new_offset(conf, sh))
1255 				rbi->bi_iter.bi_sector = (sh->sector
1256 						  + rrdev->new_data_offset);
1257 			else
1258 				rbi->bi_iter.bi_sector = (sh->sector
1259 						  + rrdev->data_offset);
1260 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1261 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1262 			sh->dev[i].rvec.bv_page = sh->dev[i].page;
1263 			rbi->bi_vcnt = 1;
1264 			rbi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1265 			rbi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
1266 			rbi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1267 			rbi->bi_write_hint = sh->dev[i].write_hint;
1268 			sh->dev[i].write_hint = RWH_WRITE_LIFE_NOT_SET;
1269 			/*
1270 			 * If this is discard request, set bi_vcnt 0. We don't
1271 			 * want to confuse SCSI because SCSI will replace payload
1272 			 */
1273 			if (op == REQ_OP_DISCARD)
1274 				rbi->bi_vcnt = 0;
1275 			if (conf->mddev->gendisk)
1276 				trace_block_bio_remap(rbi,
1277 						disk_devt(conf->mddev->gendisk),
1278 						sh->dev[i].sector);
1279 			if (should_defer && op_is_write(op))
1280 				bio_list_add(&pending_bios, rbi);
1281 			else
1282 				submit_bio_noacct(rbi);
1283 		}
1284 		if (!rdev && !rrdev) {
1285 			if (op_is_write(op))
1286 				set_bit(STRIPE_DEGRADED, &sh->state);
1287 			pr_debug("skip op %d on disc %d for sector %llu\n",
1288 				bi->bi_opf, i, (unsigned long long)sh->sector);
1289 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
1290 			set_bit(STRIPE_HANDLE, &sh->state);
1291 		}
1292 
1293 		if (!head_sh->batch_head)
1294 			continue;
1295 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1296 				      batch_list);
1297 		if (sh != head_sh)
1298 			goto again;
1299 	}
1300 
1301 	if (should_defer && !bio_list_empty(&pending_bios))
1302 		defer_issue_bios(conf, head_sh->sector, &pending_bios);
1303 }
1304 
1305 static struct dma_async_tx_descriptor *
1306 async_copy_data(int frombio, struct bio *bio, struct page **page,
1307 	unsigned int poff, sector_t sector, struct dma_async_tx_descriptor *tx,
1308 	struct stripe_head *sh, int no_skipcopy)
1309 {
1310 	struct bio_vec bvl;
1311 	struct bvec_iter iter;
1312 	struct page *bio_page;
1313 	int page_offset;
1314 	struct async_submit_ctl submit;
1315 	enum async_tx_flags flags = 0;
1316 	struct r5conf *conf = sh->raid_conf;
1317 
1318 	if (bio->bi_iter.bi_sector >= sector)
1319 		page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1320 	else
1321 		page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1322 
1323 	if (frombio)
1324 		flags |= ASYNC_TX_FENCE;
1325 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1326 
1327 	bio_for_each_segment(bvl, bio, iter) {
1328 		int len = bvl.bv_len;
1329 		int clen;
1330 		int b_offset = 0;
1331 
1332 		if (page_offset < 0) {
1333 			b_offset = -page_offset;
1334 			page_offset += b_offset;
1335 			len -= b_offset;
1336 		}
1337 
1338 		if (len > 0 && page_offset + len > RAID5_STRIPE_SIZE(conf))
1339 			clen = RAID5_STRIPE_SIZE(conf) - page_offset;
1340 		else
1341 			clen = len;
1342 
1343 		if (clen > 0) {
1344 			b_offset += bvl.bv_offset;
1345 			bio_page = bvl.bv_page;
1346 			if (frombio) {
1347 				if (conf->skip_copy &&
1348 				    b_offset == 0 && page_offset == 0 &&
1349 				    clen == RAID5_STRIPE_SIZE(conf) &&
1350 				    !no_skipcopy)
1351 					*page = bio_page;
1352 				else
1353 					tx = async_memcpy(*page, bio_page, page_offset + poff,
1354 						  b_offset, clen, &submit);
1355 			} else
1356 				tx = async_memcpy(bio_page, *page, b_offset,
1357 						  page_offset + poff, clen, &submit);
1358 		}
1359 		/* chain the operations */
1360 		submit.depend_tx = tx;
1361 
1362 		if (clen < len) /* hit end of page */
1363 			break;
1364 		page_offset +=  len;
1365 	}
1366 
1367 	return tx;
1368 }
1369 
1370 static void ops_complete_biofill(void *stripe_head_ref)
1371 {
1372 	struct stripe_head *sh = stripe_head_ref;
1373 	int i;
1374 	struct r5conf *conf = sh->raid_conf;
1375 
1376 	pr_debug("%s: stripe %llu\n", __func__,
1377 		(unsigned long long)sh->sector);
1378 
1379 	/* clear completed biofills */
1380 	for (i = sh->disks; i--; ) {
1381 		struct r5dev *dev = &sh->dev[i];
1382 
1383 		/* acknowledge completion of a biofill operation */
1384 		/* and check if we need to reply to a read request,
1385 		 * new R5_Wantfill requests are held off until
1386 		 * !STRIPE_BIOFILL_RUN
1387 		 */
1388 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1389 			struct bio *rbi, *rbi2;
1390 
1391 			BUG_ON(!dev->read);
1392 			rbi = dev->read;
1393 			dev->read = NULL;
1394 			while (rbi && rbi->bi_iter.bi_sector <
1395 				dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1396 				rbi2 = r5_next_bio(conf, rbi, dev->sector);
1397 				bio_endio(rbi);
1398 				rbi = rbi2;
1399 			}
1400 		}
1401 	}
1402 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1403 
1404 	set_bit(STRIPE_HANDLE, &sh->state);
1405 	raid5_release_stripe(sh);
1406 }
1407 
1408 static void ops_run_biofill(struct stripe_head *sh)
1409 {
1410 	struct dma_async_tx_descriptor *tx = NULL;
1411 	struct async_submit_ctl submit;
1412 	int i;
1413 	struct r5conf *conf = sh->raid_conf;
1414 
1415 	BUG_ON(sh->batch_head);
1416 	pr_debug("%s: stripe %llu\n", __func__,
1417 		(unsigned long long)sh->sector);
1418 
1419 	for (i = sh->disks; i--; ) {
1420 		struct r5dev *dev = &sh->dev[i];
1421 		if (test_bit(R5_Wantfill, &dev->flags)) {
1422 			struct bio *rbi;
1423 			spin_lock_irq(&sh->stripe_lock);
1424 			dev->read = rbi = dev->toread;
1425 			dev->toread = NULL;
1426 			spin_unlock_irq(&sh->stripe_lock);
1427 			while (rbi && rbi->bi_iter.bi_sector <
1428 				dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1429 				tx = async_copy_data(0, rbi, &dev->page,
1430 						     dev->offset,
1431 						     dev->sector, tx, sh, 0);
1432 				rbi = r5_next_bio(conf, rbi, dev->sector);
1433 			}
1434 		}
1435 	}
1436 
1437 	atomic_inc(&sh->count);
1438 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1439 	async_trigger_callback(&submit);
1440 }
1441 
1442 static void mark_target_uptodate(struct stripe_head *sh, int target)
1443 {
1444 	struct r5dev *tgt;
1445 
1446 	if (target < 0)
1447 		return;
1448 
1449 	tgt = &sh->dev[target];
1450 	set_bit(R5_UPTODATE, &tgt->flags);
1451 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1452 	clear_bit(R5_Wantcompute, &tgt->flags);
1453 }
1454 
1455 static void ops_complete_compute(void *stripe_head_ref)
1456 {
1457 	struct stripe_head *sh = stripe_head_ref;
1458 
1459 	pr_debug("%s: stripe %llu\n", __func__,
1460 		(unsigned long long)sh->sector);
1461 
1462 	/* mark the computed target(s) as uptodate */
1463 	mark_target_uptodate(sh, sh->ops.target);
1464 	mark_target_uptodate(sh, sh->ops.target2);
1465 
1466 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1467 	if (sh->check_state == check_state_compute_run)
1468 		sh->check_state = check_state_compute_result;
1469 	set_bit(STRIPE_HANDLE, &sh->state);
1470 	raid5_release_stripe(sh);
1471 }
1472 
1473 /* return a pointer to the address conversion region of the scribble buffer */
1474 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1475 {
1476 	return percpu->scribble + i * percpu->scribble_obj_size;
1477 }
1478 
1479 /* return a pointer to the address conversion region of the scribble buffer */
1480 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1481 				 struct raid5_percpu *percpu, int i)
1482 {
1483 	return (void *) (to_addr_page(percpu, i) + sh->disks + 2);
1484 }
1485 
1486 /*
1487  * Return a pointer to record offset address.
1488  */
1489 static unsigned int *
1490 to_addr_offs(struct stripe_head *sh, struct raid5_percpu *percpu)
1491 {
1492 	return (unsigned int *) (to_addr_conv(sh, percpu, 0) + sh->disks + 2);
1493 }
1494 
1495 static struct dma_async_tx_descriptor *
1496 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1497 {
1498 	int disks = sh->disks;
1499 	struct page **xor_srcs = to_addr_page(percpu, 0);
1500 	unsigned int *off_srcs = to_addr_offs(sh, percpu);
1501 	int target = sh->ops.target;
1502 	struct r5dev *tgt = &sh->dev[target];
1503 	struct page *xor_dest = tgt->page;
1504 	unsigned int off_dest = tgt->offset;
1505 	int count = 0;
1506 	struct dma_async_tx_descriptor *tx;
1507 	struct async_submit_ctl submit;
1508 	int i;
1509 
1510 	BUG_ON(sh->batch_head);
1511 
1512 	pr_debug("%s: stripe %llu block: %d\n",
1513 		__func__, (unsigned long long)sh->sector, target);
1514 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1515 
1516 	for (i = disks; i--; ) {
1517 		if (i != target) {
1518 			off_srcs[count] = sh->dev[i].offset;
1519 			xor_srcs[count++] = sh->dev[i].page;
1520 		}
1521 	}
1522 
1523 	atomic_inc(&sh->count);
1524 
1525 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1526 			  ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1527 	if (unlikely(count == 1))
1528 		tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
1529 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1530 	else
1531 		tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
1532 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1533 
1534 	return tx;
1535 }
1536 
1537 /* set_syndrome_sources - populate source buffers for gen_syndrome
1538  * @srcs - (struct page *) array of size sh->disks
1539  * @offs - (unsigned int) array of offset for each page
1540  * @sh - stripe_head to parse
1541  *
1542  * Populates srcs in proper layout order for the stripe and returns the
1543  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1544  * destination buffer is recorded in srcs[count] and the Q destination
1545  * is recorded in srcs[count+1]].
1546  */
1547 static int set_syndrome_sources(struct page **srcs,
1548 				unsigned int *offs,
1549 				struct stripe_head *sh,
1550 				int srctype)
1551 {
1552 	int disks = sh->disks;
1553 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1554 	int d0_idx = raid6_d0(sh);
1555 	int count;
1556 	int i;
1557 
1558 	for (i = 0; i < disks; i++)
1559 		srcs[i] = NULL;
1560 
1561 	count = 0;
1562 	i = d0_idx;
1563 	do {
1564 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1565 		struct r5dev *dev = &sh->dev[i];
1566 
1567 		if (i == sh->qd_idx || i == sh->pd_idx ||
1568 		    (srctype == SYNDROME_SRC_ALL) ||
1569 		    (srctype == SYNDROME_SRC_WANT_DRAIN &&
1570 		     (test_bit(R5_Wantdrain, &dev->flags) ||
1571 		      test_bit(R5_InJournal, &dev->flags))) ||
1572 		    (srctype == SYNDROME_SRC_WRITTEN &&
1573 		     (dev->written ||
1574 		      test_bit(R5_InJournal, &dev->flags)))) {
1575 			if (test_bit(R5_InJournal, &dev->flags))
1576 				srcs[slot] = sh->dev[i].orig_page;
1577 			else
1578 				srcs[slot] = sh->dev[i].page;
1579 			/*
1580 			 * For R5_InJournal, PAGE_SIZE must be 4KB and will
1581 			 * not shared page. In that case, dev[i].offset
1582 			 * is 0.
1583 			 */
1584 			offs[slot] = sh->dev[i].offset;
1585 		}
1586 		i = raid6_next_disk(i, disks);
1587 	} while (i != d0_idx);
1588 
1589 	return syndrome_disks;
1590 }
1591 
1592 static struct dma_async_tx_descriptor *
1593 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1594 {
1595 	int disks = sh->disks;
1596 	struct page **blocks = to_addr_page(percpu, 0);
1597 	unsigned int *offs = to_addr_offs(sh, percpu);
1598 	int target;
1599 	int qd_idx = sh->qd_idx;
1600 	struct dma_async_tx_descriptor *tx;
1601 	struct async_submit_ctl submit;
1602 	struct r5dev *tgt;
1603 	struct page *dest;
1604 	unsigned int dest_off;
1605 	int i;
1606 	int count;
1607 
1608 	BUG_ON(sh->batch_head);
1609 	if (sh->ops.target < 0)
1610 		target = sh->ops.target2;
1611 	else if (sh->ops.target2 < 0)
1612 		target = sh->ops.target;
1613 	else
1614 		/* we should only have one valid target */
1615 		BUG();
1616 	BUG_ON(target < 0);
1617 	pr_debug("%s: stripe %llu block: %d\n",
1618 		__func__, (unsigned long long)sh->sector, target);
1619 
1620 	tgt = &sh->dev[target];
1621 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1622 	dest = tgt->page;
1623 	dest_off = tgt->offset;
1624 
1625 	atomic_inc(&sh->count);
1626 
1627 	if (target == qd_idx) {
1628 		count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
1629 		blocks[count] = NULL; /* regenerating p is not necessary */
1630 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
1631 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1632 				  ops_complete_compute, sh,
1633 				  to_addr_conv(sh, percpu, 0));
1634 		tx = async_gen_syndrome(blocks, offs, count+2,
1635 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1636 	} else {
1637 		/* Compute any data- or p-drive using XOR */
1638 		count = 0;
1639 		for (i = disks; i-- ; ) {
1640 			if (i == target || i == qd_idx)
1641 				continue;
1642 			offs[count] = sh->dev[i].offset;
1643 			blocks[count++] = sh->dev[i].page;
1644 		}
1645 
1646 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1647 				  NULL, ops_complete_compute, sh,
1648 				  to_addr_conv(sh, percpu, 0));
1649 		tx = async_xor_offs(dest, dest_off, blocks, offs, count,
1650 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1651 	}
1652 
1653 	return tx;
1654 }
1655 
1656 static struct dma_async_tx_descriptor *
1657 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1658 {
1659 	int i, count, disks = sh->disks;
1660 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1661 	int d0_idx = raid6_d0(sh);
1662 	int faila = -1, failb = -1;
1663 	int target = sh->ops.target;
1664 	int target2 = sh->ops.target2;
1665 	struct r5dev *tgt = &sh->dev[target];
1666 	struct r5dev *tgt2 = &sh->dev[target2];
1667 	struct dma_async_tx_descriptor *tx;
1668 	struct page **blocks = to_addr_page(percpu, 0);
1669 	unsigned int *offs = to_addr_offs(sh, percpu);
1670 	struct async_submit_ctl submit;
1671 
1672 	BUG_ON(sh->batch_head);
1673 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1674 		 __func__, (unsigned long long)sh->sector, target, target2);
1675 	BUG_ON(target < 0 || target2 < 0);
1676 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1677 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1678 
1679 	/* we need to open-code set_syndrome_sources to handle the
1680 	 * slot number conversion for 'faila' and 'failb'
1681 	 */
1682 	for (i = 0; i < disks ; i++) {
1683 		offs[i] = 0;
1684 		blocks[i] = NULL;
1685 	}
1686 	count = 0;
1687 	i = d0_idx;
1688 	do {
1689 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1690 
1691 		offs[slot] = sh->dev[i].offset;
1692 		blocks[slot] = sh->dev[i].page;
1693 
1694 		if (i == target)
1695 			faila = slot;
1696 		if (i == target2)
1697 			failb = slot;
1698 		i = raid6_next_disk(i, disks);
1699 	} while (i != d0_idx);
1700 
1701 	BUG_ON(faila == failb);
1702 	if (failb < faila)
1703 		swap(faila, failb);
1704 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1705 		 __func__, (unsigned long long)sh->sector, faila, failb);
1706 
1707 	atomic_inc(&sh->count);
1708 
1709 	if (failb == syndrome_disks+1) {
1710 		/* Q disk is one of the missing disks */
1711 		if (faila == syndrome_disks) {
1712 			/* Missing P+Q, just recompute */
1713 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1714 					  ops_complete_compute, sh,
1715 					  to_addr_conv(sh, percpu, 0));
1716 			return async_gen_syndrome(blocks, offs, syndrome_disks+2,
1717 						  RAID5_STRIPE_SIZE(sh->raid_conf),
1718 						  &submit);
1719 		} else {
1720 			struct page *dest;
1721 			unsigned int dest_off;
1722 			int data_target;
1723 			int qd_idx = sh->qd_idx;
1724 
1725 			/* Missing D+Q: recompute D from P, then recompute Q */
1726 			if (target == qd_idx)
1727 				data_target = target2;
1728 			else
1729 				data_target = target;
1730 
1731 			count = 0;
1732 			for (i = disks; i-- ; ) {
1733 				if (i == data_target || i == qd_idx)
1734 					continue;
1735 				offs[count] = sh->dev[i].offset;
1736 				blocks[count++] = sh->dev[i].page;
1737 			}
1738 			dest = sh->dev[data_target].page;
1739 			dest_off = sh->dev[data_target].offset;
1740 			init_async_submit(&submit,
1741 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1742 					  NULL, NULL, NULL,
1743 					  to_addr_conv(sh, percpu, 0));
1744 			tx = async_xor_offs(dest, dest_off, blocks, offs, count,
1745 				       RAID5_STRIPE_SIZE(sh->raid_conf),
1746 				       &submit);
1747 
1748 			count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
1749 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1750 					  ops_complete_compute, sh,
1751 					  to_addr_conv(sh, percpu, 0));
1752 			return async_gen_syndrome(blocks, offs, count+2,
1753 						  RAID5_STRIPE_SIZE(sh->raid_conf),
1754 						  &submit);
1755 		}
1756 	} else {
1757 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1758 				  ops_complete_compute, sh,
1759 				  to_addr_conv(sh, percpu, 0));
1760 		if (failb == syndrome_disks) {
1761 			/* We're missing D+P. */
1762 			return async_raid6_datap_recov(syndrome_disks+2,
1763 						RAID5_STRIPE_SIZE(sh->raid_conf),
1764 						faila,
1765 						blocks, offs, &submit);
1766 		} else {
1767 			/* We're missing D+D. */
1768 			return async_raid6_2data_recov(syndrome_disks+2,
1769 						RAID5_STRIPE_SIZE(sh->raid_conf),
1770 						faila, failb,
1771 						blocks, offs, &submit);
1772 		}
1773 	}
1774 }
1775 
1776 static void ops_complete_prexor(void *stripe_head_ref)
1777 {
1778 	struct stripe_head *sh = stripe_head_ref;
1779 
1780 	pr_debug("%s: stripe %llu\n", __func__,
1781 		(unsigned long long)sh->sector);
1782 
1783 	if (r5c_is_writeback(sh->raid_conf->log))
1784 		/*
1785 		 * raid5-cache write back uses orig_page during prexor.
1786 		 * After prexor, it is time to free orig_page
1787 		 */
1788 		r5c_release_extra_page(sh);
1789 }
1790 
1791 static struct dma_async_tx_descriptor *
1792 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1793 		struct dma_async_tx_descriptor *tx)
1794 {
1795 	int disks = sh->disks;
1796 	struct page **xor_srcs = to_addr_page(percpu, 0);
1797 	unsigned int *off_srcs = to_addr_offs(sh, percpu);
1798 	int count = 0, pd_idx = sh->pd_idx, i;
1799 	struct async_submit_ctl submit;
1800 
1801 	/* existing parity data subtracted */
1802 	unsigned int off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
1803 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1804 
1805 	BUG_ON(sh->batch_head);
1806 	pr_debug("%s: stripe %llu\n", __func__,
1807 		(unsigned long long)sh->sector);
1808 
1809 	for (i = disks; i--; ) {
1810 		struct r5dev *dev = &sh->dev[i];
1811 		/* Only process blocks that are known to be uptodate */
1812 		if (test_bit(R5_InJournal, &dev->flags)) {
1813 			/*
1814 			 * For this case, PAGE_SIZE must be equal to 4KB and
1815 			 * page offset is zero.
1816 			 */
1817 			off_srcs[count] = dev->offset;
1818 			xor_srcs[count++] = dev->orig_page;
1819 		} else if (test_bit(R5_Wantdrain, &dev->flags)) {
1820 			off_srcs[count] = dev->offset;
1821 			xor_srcs[count++] = dev->page;
1822 		}
1823 	}
1824 
1825 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1826 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1827 	tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
1828 			RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1829 
1830 	return tx;
1831 }
1832 
1833 static struct dma_async_tx_descriptor *
1834 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1835 		struct dma_async_tx_descriptor *tx)
1836 {
1837 	struct page **blocks = to_addr_page(percpu, 0);
1838 	unsigned int *offs = to_addr_offs(sh, percpu);
1839 	int count;
1840 	struct async_submit_ctl submit;
1841 
1842 	pr_debug("%s: stripe %llu\n", __func__,
1843 		(unsigned long long)sh->sector);
1844 
1845 	count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_WANT_DRAIN);
1846 
1847 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1848 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1849 	tx = async_gen_syndrome(blocks, offs, count+2,
1850 			RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1851 
1852 	return tx;
1853 }
1854 
1855 static struct dma_async_tx_descriptor *
1856 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1857 {
1858 	struct r5conf *conf = sh->raid_conf;
1859 	int disks = sh->disks;
1860 	int i;
1861 	struct stripe_head *head_sh = sh;
1862 
1863 	pr_debug("%s: stripe %llu\n", __func__,
1864 		(unsigned long long)sh->sector);
1865 
1866 	for (i = disks; i--; ) {
1867 		struct r5dev *dev;
1868 		struct bio *chosen;
1869 
1870 		sh = head_sh;
1871 		if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1872 			struct bio *wbi;
1873 
1874 again:
1875 			dev = &sh->dev[i];
1876 			/*
1877 			 * clear R5_InJournal, so when rewriting a page in
1878 			 * journal, it is not skipped by r5l_log_stripe()
1879 			 */
1880 			clear_bit(R5_InJournal, &dev->flags);
1881 			spin_lock_irq(&sh->stripe_lock);
1882 			chosen = dev->towrite;
1883 			dev->towrite = NULL;
1884 			sh->overwrite_disks = 0;
1885 			BUG_ON(dev->written);
1886 			wbi = dev->written = chosen;
1887 			spin_unlock_irq(&sh->stripe_lock);
1888 			WARN_ON(dev->page != dev->orig_page);
1889 
1890 			while (wbi && wbi->bi_iter.bi_sector <
1891 				dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1892 				if (wbi->bi_opf & REQ_FUA)
1893 					set_bit(R5_WantFUA, &dev->flags);
1894 				if (wbi->bi_opf & REQ_SYNC)
1895 					set_bit(R5_SyncIO, &dev->flags);
1896 				if (bio_op(wbi) == REQ_OP_DISCARD)
1897 					set_bit(R5_Discard, &dev->flags);
1898 				else {
1899 					tx = async_copy_data(1, wbi, &dev->page,
1900 							     dev->offset,
1901 							     dev->sector, tx, sh,
1902 							     r5c_is_writeback(conf->log));
1903 					if (dev->page != dev->orig_page &&
1904 					    !r5c_is_writeback(conf->log)) {
1905 						set_bit(R5_SkipCopy, &dev->flags);
1906 						clear_bit(R5_UPTODATE, &dev->flags);
1907 						clear_bit(R5_OVERWRITE, &dev->flags);
1908 					}
1909 				}
1910 				wbi = r5_next_bio(conf, wbi, dev->sector);
1911 			}
1912 
1913 			if (head_sh->batch_head) {
1914 				sh = list_first_entry(&sh->batch_list,
1915 						      struct stripe_head,
1916 						      batch_list);
1917 				if (sh == head_sh)
1918 					continue;
1919 				goto again;
1920 			}
1921 		}
1922 	}
1923 
1924 	return tx;
1925 }
1926 
1927 static void ops_complete_reconstruct(void *stripe_head_ref)
1928 {
1929 	struct stripe_head *sh = stripe_head_ref;
1930 	int disks = sh->disks;
1931 	int pd_idx = sh->pd_idx;
1932 	int qd_idx = sh->qd_idx;
1933 	int i;
1934 	bool fua = false, sync = false, discard = false;
1935 
1936 	pr_debug("%s: stripe %llu\n", __func__,
1937 		(unsigned long long)sh->sector);
1938 
1939 	for (i = disks; i--; ) {
1940 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1941 		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1942 		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1943 	}
1944 
1945 	for (i = disks; i--; ) {
1946 		struct r5dev *dev = &sh->dev[i];
1947 
1948 		if (dev->written || i == pd_idx || i == qd_idx) {
1949 			if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
1950 				set_bit(R5_UPTODATE, &dev->flags);
1951 				if (test_bit(STRIPE_EXPAND_READY, &sh->state))
1952 					set_bit(R5_Expanded, &dev->flags);
1953 			}
1954 			if (fua)
1955 				set_bit(R5_WantFUA, &dev->flags);
1956 			if (sync)
1957 				set_bit(R5_SyncIO, &dev->flags);
1958 		}
1959 	}
1960 
1961 	if (sh->reconstruct_state == reconstruct_state_drain_run)
1962 		sh->reconstruct_state = reconstruct_state_drain_result;
1963 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1964 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1965 	else {
1966 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1967 		sh->reconstruct_state = reconstruct_state_result;
1968 	}
1969 
1970 	set_bit(STRIPE_HANDLE, &sh->state);
1971 	raid5_release_stripe(sh);
1972 }
1973 
1974 static void
1975 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1976 		     struct dma_async_tx_descriptor *tx)
1977 {
1978 	int disks = sh->disks;
1979 	struct page **xor_srcs;
1980 	unsigned int *off_srcs;
1981 	struct async_submit_ctl submit;
1982 	int count, pd_idx = sh->pd_idx, i;
1983 	struct page *xor_dest;
1984 	unsigned int off_dest;
1985 	int prexor = 0;
1986 	unsigned long flags;
1987 	int j = 0;
1988 	struct stripe_head *head_sh = sh;
1989 	int last_stripe;
1990 
1991 	pr_debug("%s: stripe %llu\n", __func__,
1992 		(unsigned long long)sh->sector);
1993 
1994 	for (i = 0; i < sh->disks; i++) {
1995 		if (pd_idx == i)
1996 			continue;
1997 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1998 			break;
1999 	}
2000 	if (i >= sh->disks) {
2001 		atomic_inc(&sh->count);
2002 		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
2003 		ops_complete_reconstruct(sh);
2004 		return;
2005 	}
2006 again:
2007 	count = 0;
2008 	xor_srcs = to_addr_page(percpu, j);
2009 	off_srcs = to_addr_offs(sh, percpu);
2010 	/* check if prexor is active which means only process blocks
2011 	 * that are part of a read-modify-write (written)
2012 	 */
2013 	if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2014 		prexor = 1;
2015 		off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
2016 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
2017 		for (i = disks; i--; ) {
2018 			struct r5dev *dev = &sh->dev[i];
2019 			if (head_sh->dev[i].written ||
2020 			    test_bit(R5_InJournal, &head_sh->dev[i].flags)) {
2021 				off_srcs[count] = dev->offset;
2022 				xor_srcs[count++] = dev->page;
2023 			}
2024 		}
2025 	} else {
2026 		xor_dest = sh->dev[pd_idx].page;
2027 		off_dest = sh->dev[pd_idx].offset;
2028 		for (i = disks; i--; ) {
2029 			struct r5dev *dev = &sh->dev[i];
2030 			if (i != pd_idx) {
2031 				off_srcs[count] = dev->offset;
2032 				xor_srcs[count++] = dev->page;
2033 			}
2034 		}
2035 	}
2036 
2037 	/* 1/ if we prexor'd then the dest is reused as a source
2038 	 * 2/ if we did not prexor then we are redoing the parity
2039 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
2040 	 * for the synchronous xor case
2041 	 */
2042 	last_stripe = !head_sh->batch_head ||
2043 		list_first_entry(&sh->batch_list,
2044 				 struct stripe_head, batch_list) == head_sh;
2045 	if (last_stripe) {
2046 		flags = ASYNC_TX_ACK |
2047 			(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
2048 
2049 		atomic_inc(&head_sh->count);
2050 		init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
2051 				  to_addr_conv(sh, percpu, j));
2052 	} else {
2053 		flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
2054 		init_async_submit(&submit, flags, tx, NULL, NULL,
2055 				  to_addr_conv(sh, percpu, j));
2056 	}
2057 
2058 	if (unlikely(count == 1))
2059 		tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
2060 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2061 	else
2062 		tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
2063 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2064 	if (!last_stripe) {
2065 		j++;
2066 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
2067 				      batch_list);
2068 		goto again;
2069 	}
2070 }
2071 
2072 static void
2073 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
2074 		     struct dma_async_tx_descriptor *tx)
2075 {
2076 	struct async_submit_ctl submit;
2077 	struct page **blocks;
2078 	unsigned int *offs;
2079 	int count, i, j = 0;
2080 	struct stripe_head *head_sh = sh;
2081 	int last_stripe;
2082 	int synflags;
2083 	unsigned long txflags;
2084 
2085 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
2086 
2087 	for (i = 0; i < sh->disks; i++) {
2088 		if (sh->pd_idx == i || sh->qd_idx == i)
2089 			continue;
2090 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
2091 			break;
2092 	}
2093 	if (i >= sh->disks) {
2094 		atomic_inc(&sh->count);
2095 		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
2096 		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
2097 		ops_complete_reconstruct(sh);
2098 		return;
2099 	}
2100 
2101 again:
2102 	blocks = to_addr_page(percpu, j);
2103 	offs = to_addr_offs(sh, percpu);
2104 
2105 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2106 		synflags = SYNDROME_SRC_WRITTEN;
2107 		txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
2108 	} else {
2109 		synflags = SYNDROME_SRC_ALL;
2110 		txflags = ASYNC_TX_ACK;
2111 	}
2112 
2113 	count = set_syndrome_sources(blocks, offs, sh, synflags);
2114 	last_stripe = !head_sh->batch_head ||
2115 		list_first_entry(&sh->batch_list,
2116 				 struct stripe_head, batch_list) == head_sh;
2117 
2118 	if (last_stripe) {
2119 		atomic_inc(&head_sh->count);
2120 		init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
2121 				  head_sh, to_addr_conv(sh, percpu, j));
2122 	} else
2123 		init_async_submit(&submit, 0, tx, NULL, NULL,
2124 				  to_addr_conv(sh, percpu, j));
2125 	tx = async_gen_syndrome(blocks, offs, count+2,
2126 			RAID5_STRIPE_SIZE(sh->raid_conf),  &submit);
2127 	if (!last_stripe) {
2128 		j++;
2129 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
2130 				      batch_list);
2131 		goto again;
2132 	}
2133 }
2134 
2135 static void ops_complete_check(void *stripe_head_ref)
2136 {
2137 	struct stripe_head *sh = stripe_head_ref;
2138 
2139 	pr_debug("%s: stripe %llu\n", __func__,
2140 		(unsigned long long)sh->sector);
2141 
2142 	sh->check_state = check_state_check_result;
2143 	set_bit(STRIPE_HANDLE, &sh->state);
2144 	raid5_release_stripe(sh);
2145 }
2146 
2147 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
2148 {
2149 	int disks = sh->disks;
2150 	int pd_idx = sh->pd_idx;
2151 	int qd_idx = sh->qd_idx;
2152 	struct page *xor_dest;
2153 	unsigned int off_dest;
2154 	struct page **xor_srcs = to_addr_page(percpu, 0);
2155 	unsigned int *off_srcs = to_addr_offs(sh, percpu);
2156 	struct dma_async_tx_descriptor *tx;
2157 	struct async_submit_ctl submit;
2158 	int count;
2159 	int i;
2160 
2161 	pr_debug("%s: stripe %llu\n", __func__,
2162 		(unsigned long long)sh->sector);
2163 
2164 	BUG_ON(sh->batch_head);
2165 	count = 0;
2166 	xor_dest = sh->dev[pd_idx].page;
2167 	off_dest = sh->dev[pd_idx].offset;
2168 	off_srcs[count] = off_dest;
2169 	xor_srcs[count++] = xor_dest;
2170 	for (i = disks; i--; ) {
2171 		if (i == pd_idx || i == qd_idx)
2172 			continue;
2173 		off_srcs[count] = sh->dev[i].offset;
2174 		xor_srcs[count++] = sh->dev[i].page;
2175 	}
2176 
2177 	init_async_submit(&submit, 0, NULL, NULL, NULL,
2178 			  to_addr_conv(sh, percpu, 0));
2179 	tx = async_xor_val_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
2180 			   RAID5_STRIPE_SIZE(sh->raid_conf),
2181 			   &sh->ops.zero_sum_result, &submit);
2182 
2183 	atomic_inc(&sh->count);
2184 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2185 	tx = async_trigger_callback(&submit);
2186 }
2187 
2188 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2189 {
2190 	struct page **srcs = to_addr_page(percpu, 0);
2191 	unsigned int *offs = to_addr_offs(sh, percpu);
2192 	struct async_submit_ctl submit;
2193 	int count;
2194 
2195 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2196 		(unsigned long long)sh->sector, checkp);
2197 
2198 	BUG_ON(sh->batch_head);
2199 	count = set_syndrome_sources(srcs, offs, sh, SYNDROME_SRC_ALL);
2200 	if (!checkp)
2201 		srcs[count] = NULL;
2202 
2203 	atomic_inc(&sh->count);
2204 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2205 			  sh, to_addr_conv(sh, percpu, 0));
2206 	async_syndrome_val(srcs, offs, count+2,
2207 			   RAID5_STRIPE_SIZE(sh->raid_conf),
2208 			   &sh->ops.zero_sum_result, percpu->spare_page, 0, &submit);
2209 }
2210 
2211 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2212 {
2213 	int overlap_clear = 0, i, disks = sh->disks;
2214 	struct dma_async_tx_descriptor *tx = NULL;
2215 	struct r5conf *conf = sh->raid_conf;
2216 	int level = conf->level;
2217 	struct raid5_percpu *percpu;
2218 
2219 	local_lock(&conf->percpu->lock);
2220 	percpu = this_cpu_ptr(conf->percpu);
2221 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2222 		ops_run_biofill(sh);
2223 		overlap_clear++;
2224 	}
2225 
2226 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2227 		if (level < 6)
2228 			tx = ops_run_compute5(sh, percpu);
2229 		else {
2230 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
2231 				tx = ops_run_compute6_1(sh, percpu);
2232 			else
2233 				tx = ops_run_compute6_2(sh, percpu);
2234 		}
2235 		/* terminate the chain if reconstruct is not set to be run */
2236 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2237 			async_tx_ack(tx);
2238 	}
2239 
2240 	if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2241 		if (level < 6)
2242 			tx = ops_run_prexor5(sh, percpu, tx);
2243 		else
2244 			tx = ops_run_prexor6(sh, percpu, tx);
2245 	}
2246 
2247 	if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2248 		tx = ops_run_partial_parity(sh, percpu, tx);
2249 
2250 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2251 		tx = ops_run_biodrain(sh, tx);
2252 		overlap_clear++;
2253 	}
2254 
2255 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2256 		if (level < 6)
2257 			ops_run_reconstruct5(sh, percpu, tx);
2258 		else
2259 			ops_run_reconstruct6(sh, percpu, tx);
2260 	}
2261 
2262 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2263 		if (sh->check_state == check_state_run)
2264 			ops_run_check_p(sh, percpu);
2265 		else if (sh->check_state == check_state_run_q)
2266 			ops_run_check_pq(sh, percpu, 0);
2267 		else if (sh->check_state == check_state_run_pq)
2268 			ops_run_check_pq(sh, percpu, 1);
2269 		else
2270 			BUG();
2271 	}
2272 
2273 	if (overlap_clear && !sh->batch_head) {
2274 		for (i = disks; i--; ) {
2275 			struct r5dev *dev = &sh->dev[i];
2276 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
2277 				wake_up(&sh->raid_conf->wait_for_overlap);
2278 		}
2279 	}
2280 	local_unlock(&conf->percpu->lock);
2281 }
2282 
2283 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2284 {
2285 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2286 	kfree(sh->pages);
2287 #endif
2288 	if (sh->ppl_page)
2289 		__free_page(sh->ppl_page);
2290 	kmem_cache_free(sc, sh);
2291 }
2292 
2293 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2294 	int disks, struct r5conf *conf)
2295 {
2296 	struct stripe_head *sh;
2297 
2298 	sh = kmem_cache_zalloc(sc, gfp);
2299 	if (sh) {
2300 		spin_lock_init(&sh->stripe_lock);
2301 		spin_lock_init(&sh->batch_lock);
2302 		INIT_LIST_HEAD(&sh->batch_list);
2303 		INIT_LIST_HEAD(&sh->lru);
2304 		INIT_LIST_HEAD(&sh->r5c);
2305 		INIT_LIST_HEAD(&sh->log_list);
2306 		atomic_set(&sh->count, 1);
2307 		sh->raid_conf = conf;
2308 		sh->log_start = MaxSector;
2309 
2310 		if (raid5_has_ppl(conf)) {
2311 			sh->ppl_page = alloc_page(gfp);
2312 			if (!sh->ppl_page) {
2313 				free_stripe(sc, sh);
2314 				return NULL;
2315 			}
2316 		}
2317 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2318 		if (init_stripe_shared_pages(sh, conf, disks)) {
2319 			free_stripe(sc, sh);
2320 			return NULL;
2321 		}
2322 #endif
2323 	}
2324 	return sh;
2325 }
2326 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2327 {
2328 	struct stripe_head *sh;
2329 
2330 	sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2331 	if (!sh)
2332 		return 0;
2333 
2334 	if (grow_buffers(sh, gfp)) {
2335 		shrink_buffers(sh);
2336 		free_stripe(conf->slab_cache, sh);
2337 		return 0;
2338 	}
2339 	sh->hash_lock_index =
2340 		conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2341 	/* we just created an active stripe so... */
2342 	atomic_inc(&conf->active_stripes);
2343 
2344 	raid5_release_stripe(sh);
2345 	conf->max_nr_stripes++;
2346 	return 1;
2347 }
2348 
2349 static int grow_stripes(struct r5conf *conf, int num)
2350 {
2351 	struct kmem_cache *sc;
2352 	size_t namelen = sizeof(conf->cache_name[0]);
2353 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
2354 
2355 	if (conf->mddev->gendisk)
2356 		snprintf(conf->cache_name[0], namelen,
2357 			"raid%d-%s", conf->level, mdname(conf->mddev));
2358 	else
2359 		snprintf(conf->cache_name[0], namelen,
2360 			"raid%d-%p", conf->level, conf->mddev);
2361 	snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
2362 
2363 	conf->active_name = 0;
2364 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
2365 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2366 			       0, 0, NULL);
2367 	if (!sc)
2368 		return 1;
2369 	conf->slab_cache = sc;
2370 	conf->pool_size = devs;
2371 	while (num--)
2372 		if (!grow_one_stripe(conf, GFP_KERNEL))
2373 			return 1;
2374 
2375 	return 0;
2376 }
2377 
2378 /**
2379  * scribble_alloc - allocate percpu scribble buffer for required size
2380  *		    of the scribble region
2381  * @percpu: from for_each_present_cpu() of the caller
2382  * @num: total number of disks in the array
2383  * @cnt: scribble objs count for required size of the scribble region
2384  *
2385  * The scribble buffer size must be enough to contain:
2386  * 1/ a struct page pointer for each device in the array +2
2387  * 2/ room to convert each entry in (1) to its corresponding dma
2388  *    (dma_map_page()) or page (page_address()) address.
2389  *
2390  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2391  * calculate over all devices (not just the data blocks), using zeros in place
2392  * of the P and Q blocks.
2393  */
2394 static int scribble_alloc(struct raid5_percpu *percpu,
2395 			  int num, int cnt)
2396 {
2397 	size_t obj_size =
2398 		sizeof(struct page *) * (num + 2) +
2399 		sizeof(addr_conv_t) * (num + 2) +
2400 		sizeof(unsigned int) * (num + 2);
2401 	void *scribble;
2402 
2403 	/*
2404 	 * If here is in raid array suspend context, it is in memalloc noio
2405 	 * context as well, there is no potential recursive memory reclaim
2406 	 * I/Os with the GFP_KERNEL flag.
2407 	 */
2408 	scribble = kvmalloc_array(cnt, obj_size, GFP_KERNEL);
2409 	if (!scribble)
2410 		return -ENOMEM;
2411 
2412 	kvfree(percpu->scribble);
2413 
2414 	percpu->scribble = scribble;
2415 	percpu->scribble_obj_size = obj_size;
2416 	return 0;
2417 }
2418 
2419 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2420 {
2421 	unsigned long cpu;
2422 	int err = 0;
2423 
2424 	/*
2425 	 * Never shrink. And mddev_suspend() could deadlock if this is called
2426 	 * from raid5d. In that case, scribble_disks and scribble_sectors
2427 	 * should equal to new_disks and new_sectors
2428 	 */
2429 	if (conf->scribble_disks >= new_disks &&
2430 	    conf->scribble_sectors >= new_sectors)
2431 		return 0;
2432 	mddev_suspend(conf->mddev);
2433 	cpus_read_lock();
2434 
2435 	for_each_present_cpu(cpu) {
2436 		struct raid5_percpu *percpu;
2437 
2438 		percpu = per_cpu_ptr(conf->percpu, cpu);
2439 		err = scribble_alloc(percpu, new_disks,
2440 				     new_sectors / RAID5_STRIPE_SECTORS(conf));
2441 		if (err)
2442 			break;
2443 	}
2444 
2445 	cpus_read_unlock();
2446 	mddev_resume(conf->mddev);
2447 	if (!err) {
2448 		conf->scribble_disks = new_disks;
2449 		conf->scribble_sectors = new_sectors;
2450 	}
2451 	return err;
2452 }
2453 
2454 static int resize_stripes(struct r5conf *conf, int newsize)
2455 {
2456 	/* Make all the stripes able to hold 'newsize' devices.
2457 	 * New slots in each stripe get 'page' set to a new page.
2458 	 *
2459 	 * This happens in stages:
2460 	 * 1/ create a new kmem_cache and allocate the required number of
2461 	 *    stripe_heads.
2462 	 * 2/ gather all the old stripe_heads and transfer the pages across
2463 	 *    to the new stripe_heads.  This will have the side effect of
2464 	 *    freezing the array as once all stripe_heads have been collected,
2465 	 *    no IO will be possible.  Old stripe heads are freed once their
2466 	 *    pages have been transferred over, and the old kmem_cache is
2467 	 *    freed when all stripes are done.
2468 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2469 	 *    we simple return a failure status - no need to clean anything up.
2470 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
2471 	 *    If this fails, we don't bother trying the shrink the
2472 	 *    stripe_heads down again, we just leave them as they are.
2473 	 *    As each stripe_head is processed the new one is released into
2474 	 *    active service.
2475 	 *
2476 	 * Once step2 is started, we cannot afford to wait for a write,
2477 	 * so we use GFP_NOIO allocations.
2478 	 */
2479 	struct stripe_head *osh, *nsh;
2480 	LIST_HEAD(newstripes);
2481 	struct disk_info *ndisks;
2482 	int err = 0;
2483 	struct kmem_cache *sc;
2484 	int i;
2485 	int hash, cnt;
2486 
2487 	md_allow_write(conf->mddev);
2488 
2489 	/* Step 1 */
2490 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2491 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2492 			       0, 0, NULL);
2493 	if (!sc)
2494 		return -ENOMEM;
2495 
2496 	/* Need to ensure auto-resizing doesn't interfere */
2497 	mutex_lock(&conf->cache_size_mutex);
2498 
2499 	for (i = conf->max_nr_stripes; i; i--) {
2500 		nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2501 		if (!nsh)
2502 			break;
2503 
2504 		list_add(&nsh->lru, &newstripes);
2505 	}
2506 	if (i) {
2507 		/* didn't get enough, give up */
2508 		while (!list_empty(&newstripes)) {
2509 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
2510 			list_del(&nsh->lru);
2511 			free_stripe(sc, nsh);
2512 		}
2513 		kmem_cache_destroy(sc);
2514 		mutex_unlock(&conf->cache_size_mutex);
2515 		return -ENOMEM;
2516 	}
2517 	/* Step 2 - Must use GFP_NOIO now.
2518 	 * OK, we have enough stripes, start collecting inactive
2519 	 * stripes and copying them over
2520 	 */
2521 	hash = 0;
2522 	cnt = 0;
2523 	list_for_each_entry(nsh, &newstripes, lru) {
2524 		lock_device_hash_lock(conf, hash);
2525 		wait_event_cmd(conf->wait_for_stripe,
2526 				    !list_empty(conf->inactive_list + hash),
2527 				    unlock_device_hash_lock(conf, hash),
2528 				    lock_device_hash_lock(conf, hash));
2529 		osh = get_free_stripe(conf, hash);
2530 		unlock_device_hash_lock(conf, hash);
2531 
2532 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2533 	for (i = 0; i < osh->nr_pages; i++) {
2534 		nsh->pages[i] = osh->pages[i];
2535 		osh->pages[i] = NULL;
2536 	}
2537 #endif
2538 		for(i=0; i<conf->pool_size; i++) {
2539 			nsh->dev[i].page = osh->dev[i].page;
2540 			nsh->dev[i].orig_page = osh->dev[i].page;
2541 			nsh->dev[i].offset = osh->dev[i].offset;
2542 		}
2543 		nsh->hash_lock_index = hash;
2544 		free_stripe(conf->slab_cache, osh);
2545 		cnt++;
2546 		if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2547 		    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2548 			hash++;
2549 			cnt = 0;
2550 		}
2551 	}
2552 	kmem_cache_destroy(conf->slab_cache);
2553 
2554 	/* Step 3.
2555 	 * At this point, we are holding all the stripes so the array
2556 	 * is completely stalled, so now is a good time to resize
2557 	 * conf->disks and the scribble region
2558 	 */
2559 	ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO);
2560 	if (ndisks) {
2561 		for (i = 0; i < conf->pool_size; i++)
2562 			ndisks[i] = conf->disks[i];
2563 
2564 		for (i = conf->pool_size; i < newsize; i++) {
2565 			ndisks[i].extra_page = alloc_page(GFP_NOIO);
2566 			if (!ndisks[i].extra_page)
2567 				err = -ENOMEM;
2568 		}
2569 
2570 		if (err) {
2571 			for (i = conf->pool_size; i < newsize; i++)
2572 				if (ndisks[i].extra_page)
2573 					put_page(ndisks[i].extra_page);
2574 			kfree(ndisks);
2575 		} else {
2576 			kfree(conf->disks);
2577 			conf->disks = ndisks;
2578 		}
2579 	} else
2580 		err = -ENOMEM;
2581 
2582 	conf->slab_cache = sc;
2583 	conf->active_name = 1-conf->active_name;
2584 
2585 	/* Step 4, return new stripes to service */
2586 	while(!list_empty(&newstripes)) {
2587 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
2588 		list_del_init(&nsh->lru);
2589 
2590 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2591 		for (i = 0; i < nsh->nr_pages; i++) {
2592 			if (nsh->pages[i])
2593 				continue;
2594 			nsh->pages[i] = alloc_page(GFP_NOIO);
2595 			if (!nsh->pages[i])
2596 				err = -ENOMEM;
2597 		}
2598 
2599 		for (i = conf->raid_disks; i < newsize; i++) {
2600 			if (nsh->dev[i].page)
2601 				continue;
2602 			nsh->dev[i].page = raid5_get_dev_page(nsh, i);
2603 			nsh->dev[i].orig_page = nsh->dev[i].page;
2604 			nsh->dev[i].offset = raid5_get_page_offset(nsh, i);
2605 		}
2606 #else
2607 		for (i=conf->raid_disks; i < newsize; i++)
2608 			if (nsh->dev[i].page == NULL) {
2609 				struct page *p = alloc_page(GFP_NOIO);
2610 				nsh->dev[i].page = p;
2611 				nsh->dev[i].orig_page = p;
2612 				nsh->dev[i].offset = 0;
2613 				if (!p)
2614 					err = -ENOMEM;
2615 			}
2616 #endif
2617 		raid5_release_stripe(nsh);
2618 	}
2619 	/* critical section pass, GFP_NOIO no longer needed */
2620 
2621 	if (!err)
2622 		conf->pool_size = newsize;
2623 	mutex_unlock(&conf->cache_size_mutex);
2624 
2625 	return err;
2626 }
2627 
2628 static int drop_one_stripe(struct r5conf *conf)
2629 {
2630 	struct stripe_head *sh;
2631 	int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2632 
2633 	spin_lock_irq(conf->hash_locks + hash);
2634 	sh = get_free_stripe(conf, hash);
2635 	spin_unlock_irq(conf->hash_locks + hash);
2636 	if (!sh)
2637 		return 0;
2638 	BUG_ON(atomic_read(&sh->count));
2639 	shrink_buffers(sh);
2640 	free_stripe(conf->slab_cache, sh);
2641 	atomic_dec(&conf->active_stripes);
2642 	conf->max_nr_stripes--;
2643 	return 1;
2644 }
2645 
2646 static void shrink_stripes(struct r5conf *conf)
2647 {
2648 	while (conf->max_nr_stripes &&
2649 	       drop_one_stripe(conf))
2650 		;
2651 
2652 	kmem_cache_destroy(conf->slab_cache);
2653 	conf->slab_cache = NULL;
2654 }
2655 
2656 static void raid5_end_read_request(struct bio * bi)
2657 {
2658 	struct stripe_head *sh = bi->bi_private;
2659 	struct r5conf *conf = sh->raid_conf;
2660 	int disks = sh->disks, i;
2661 	char b[BDEVNAME_SIZE];
2662 	struct md_rdev *rdev = NULL;
2663 	sector_t s;
2664 
2665 	for (i=0 ; i<disks; i++)
2666 		if (bi == &sh->dev[i].req)
2667 			break;
2668 
2669 	pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2670 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2671 		bi->bi_status);
2672 	if (i == disks) {
2673 		BUG();
2674 		return;
2675 	}
2676 	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2677 		/* If replacement finished while this request was outstanding,
2678 		 * 'replacement' might be NULL already.
2679 		 * In that case it moved down to 'rdev'.
2680 		 * rdev is not removed until all requests are finished.
2681 		 */
2682 		rdev = conf->disks[i].replacement;
2683 	if (!rdev)
2684 		rdev = conf->disks[i].rdev;
2685 
2686 	if (use_new_offset(conf, sh))
2687 		s = sh->sector + rdev->new_data_offset;
2688 	else
2689 		s = sh->sector + rdev->data_offset;
2690 	if (!bi->bi_status) {
2691 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
2692 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2693 			/* Note that this cannot happen on a
2694 			 * replacement device.  We just fail those on
2695 			 * any error
2696 			 */
2697 			pr_info_ratelimited(
2698 				"md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
2699 				mdname(conf->mddev), RAID5_STRIPE_SECTORS(conf),
2700 				(unsigned long long)s,
2701 				bdevname(rdev->bdev, b));
2702 			atomic_add(RAID5_STRIPE_SECTORS(conf), &rdev->corrected_errors);
2703 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2704 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2705 		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2706 			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2707 
2708 		if (test_bit(R5_InJournal, &sh->dev[i].flags))
2709 			/*
2710 			 * end read for a page in journal, this
2711 			 * must be preparing for prexor in rmw
2712 			 */
2713 			set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2714 
2715 		if (atomic_read(&rdev->read_errors))
2716 			atomic_set(&rdev->read_errors, 0);
2717 	} else {
2718 		const char *bdn = bdevname(rdev->bdev, b);
2719 		int retry = 0;
2720 		int set_bad = 0;
2721 
2722 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2723 		if (!(bi->bi_status == BLK_STS_PROTECTION))
2724 			atomic_inc(&rdev->read_errors);
2725 		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2726 			pr_warn_ratelimited(
2727 				"md/raid:%s: read error on replacement device (sector %llu on %s).\n",
2728 				mdname(conf->mddev),
2729 				(unsigned long long)s,
2730 				bdn);
2731 		else if (conf->mddev->degraded >= conf->max_degraded) {
2732 			set_bad = 1;
2733 			pr_warn_ratelimited(
2734 				"md/raid:%s: read error not correctable (sector %llu on %s).\n",
2735 				mdname(conf->mddev),
2736 				(unsigned long long)s,
2737 				bdn);
2738 		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2739 			/* Oh, no!!! */
2740 			set_bad = 1;
2741 			pr_warn_ratelimited(
2742 				"md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
2743 				mdname(conf->mddev),
2744 				(unsigned long long)s,
2745 				bdn);
2746 		} else if (atomic_read(&rdev->read_errors)
2747 			 > conf->max_nr_stripes) {
2748 			if (!test_bit(Faulty, &rdev->flags)) {
2749 				pr_warn("md/raid:%s: %d read_errors > %d stripes\n",
2750 				    mdname(conf->mddev),
2751 				    atomic_read(&rdev->read_errors),
2752 				    conf->max_nr_stripes);
2753 				pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2754 				    mdname(conf->mddev), bdn);
2755 			}
2756 		} else
2757 			retry = 1;
2758 		if (set_bad && test_bit(In_sync, &rdev->flags)
2759 		    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2760 			retry = 1;
2761 		if (retry)
2762 			if (sh->qd_idx >= 0 && sh->pd_idx == i)
2763 				set_bit(R5_ReadError, &sh->dev[i].flags);
2764 			else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2765 				set_bit(R5_ReadError, &sh->dev[i].flags);
2766 				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2767 			} else
2768 				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2769 		else {
2770 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2771 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2772 			if (!(set_bad
2773 			      && test_bit(In_sync, &rdev->flags)
2774 			      && rdev_set_badblocks(
2775 				      rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 0)))
2776 				md_error(conf->mddev, rdev);
2777 		}
2778 	}
2779 	rdev_dec_pending(rdev, conf->mddev);
2780 	bio_uninit(bi);
2781 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
2782 	set_bit(STRIPE_HANDLE, &sh->state);
2783 	raid5_release_stripe(sh);
2784 }
2785 
2786 static void raid5_end_write_request(struct bio *bi)
2787 {
2788 	struct stripe_head *sh = bi->bi_private;
2789 	struct r5conf *conf = sh->raid_conf;
2790 	int disks = sh->disks, i;
2791 	struct md_rdev *rdev;
2792 	sector_t first_bad;
2793 	int bad_sectors;
2794 	int replacement = 0;
2795 
2796 	for (i = 0 ; i < disks; i++) {
2797 		if (bi == &sh->dev[i].req) {
2798 			rdev = conf->disks[i].rdev;
2799 			break;
2800 		}
2801 		if (bi == &sh->dev[i].rreq) {
2802 			rdev = conf->disks[i].replacement;
2803 			if (rdev)
2804 				replacement = 1;
2805 			else
2806 				/* rdev was removed and 'replacement'
2807 				 * replaced it.  rdev is not removed
2808 				 * until all requests are finished.
2809 				 */
2810 				rdev = conf->disks[i].rdev;
2811 			break;
2812 		}
2813 	}
2814 	pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2815 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2816 		bi->bi_status);
2817 	if (i == disks) {
2818 		BUG();
2819 		return;
2820 	}
2821 
2822 	if (replacement) {
2823 		if (bi->bi_status)
2824 			md_error(conf->mddev, rdev);
2825 		else if (is_badblock(rdev, sh->sector,
2826 				     RAID5_STRIPE_SECTORS(conf),
2827 				     &first_bad, &bad_sectors))
2828 			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2829 	} else {
2830 		if (bi->bi_status) {
2831 			set_bit(STRIPE_DEGRADED, &sh->state);
2832 			set_bit(WriteErrorSeen, &rdev->flags);
2833 			set_bit(R5_WriteError, &sh->dev[i].flags);
2834 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2835 				set_bit(MD_RECOVERY_NEEDED,
2836 					&rdev->mddev->recovery);
2837 		} else if (is_badblock(rdev, sh->sector,
2838 				       RAID5_STRIPE_SECTORS(conf),
2839 				       &first_bad, &bad_sectors)) {
2840 			set_bit(R5_MadeGood, &sh->dev[i].flags);
2841 			if (test_bit(R5_ReadError, &sh->dev[i].flags))
2842 				/* That was a successful write so make
2843 				 * sure it looks like we already did
2844 				 * a re-write.
2845 				 */
2846 				set_bit(R5_ReWrite, &sh->dev[i].flags);
2847 		}
2848 	}
2849 	rdev_dec_pending(rdev, conf->mddev);
2850 
2851 	if (sh->batch_head && bi->bi_status && !replacement)
2852 		set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2853 
2854 	bio_uninit(bi);
2855 	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2856 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2857 	set_bit(STRIPE_HANDLE, &sh->state);
2858 	raid5_release_stripe(sh);
2859 
2860 	if (sh->batch_head && sh != sh->batch_head)
2861 		raid5_release_stripe(sh->batch_head);
2862 }
2863 
2864 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2865 {
2866 	char b[BDEVNAME_SIZE];
2867 	struct r5conf *conf = mddev->private;
2868 	unsigned long flags;
2869 	pr_debug("raid456: error called\n");
2870 
2871 	spin_lock_irqsave(&conf->device_lock, flags);
2872 
2873 	if (test_bit(In_sync, &rdev->flags) &&
2874 	    mddev->degraded == conf->max_degraded) {
2875 		/*
2876 		 * Don't allow to achieve failed state
2877 		 * Don't try to recover this device
2878 		 */
2879 		conf->recovery_disabled = mddev->recovery_disabled;
2880 		spin_unlock_irqrestore(&conf->device_lock, flags);
2881 		return;
2882 	}
2883 
2884 	set_bit(Faulty, &rdev->flags);
2885 	clear_bit(In_sync, &rdev->flags);
2886 	mddev->degraded = raid5_calc_degraded(conf);
2887 	spin_unlock_irqrestore(&conf->device_lock, flags);
2888 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2889 
2890 	set_bit(Blocked, &rdev->flags);
2891 	set_mask_bits(&mddev->sb_flags, 0,
2892 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2893 	pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2894 		"md/raid:%s: Operation continuing on %d devices.\n",
2895 		mdname(mddev),
2896 		bdevname(rdev->bdev, b),
2897 		mdname(mddev),
2898 		conf->raid_disks - mddev->degraded);
2899 	r5c_update_on_rdev_error(mddev, rdev);
2900 }
2901 
2902 /*
2903  * Input: a 'big' sector number,
2904  * Output: index of the data and parity disk, and the sector # in them.
2905  */
2906 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2907 			      int previous, int *dd_idx,
2908 			      struct stripe_head *sh)
2909 {
2910 	sector_t stripe, stripe2;
2911 	sector_t chunk_number;
2912 	unsigned int chunk_offset;
2913 	int pd_idx, qd_idx;
2914 	int ddf_layout = 0;
2915 	sector_t new_sector;
2916 	int algorithm = previous ? conf->prev_algo
2917 				 : conf->algorithm;
2918 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2919 					 : conf->chunk_sectors;
2920 	int raid_disks = previous ? conf->previous_raid_disks
2921 				  : conf->raid_disks;
2922 	int data_disks = raid_disks - conf->max_degraded;
2923 
2924 	/* First compute the information on this sector */
2925 
2926 	/*
2927 	 * Compute the chunk number and the sector offset inside the chunk
2928 	 */
2929 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
2930 	chunk_number = r_sector;
2931 
2932 	/*
2933 	 * Compute the stripe number
2934 	 */
2935 	stripe = chunk_number;
2936 	*dd_idx = sector_div(stripe, data_disks);
2937 	stripe2 = stripe;
2938 	/*
2939 	 * Select the parity disk based on the user selected algorithm.
2940 	 */
2941 	pd_idx = qd_idx = -1;
2942 	switch(conf->level) {
2943 	case 4:
2944 		pd_idx = data_disks;
2945 		break;
2946 	case 5:
2947 		switch (algorithm) {
2948 		case ALGORITHM_LEFT_ASYMMETRIC:
2949 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2950 			if (*dd_idx >= pd_idx)
2951 				(*dd_idx)++;
2952 			break;
2953 		case ALGORITHM_RIGHT_ASYMMETRIC:
2954 			pd_idx = sector_div(stripe2, raid_disks);
2955 			if (*dd_idx >= pd_idx)
2956 				(*dd_idx)++;
2957 			break;
2958 		case ALGORITHM_LEFT_SYMMETRIC:
2959 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2960 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2961 			break;
2962 		case ALGORITHM_RIGHT_SYMMETRIC:
2963 			pd_idx = sector_div(stripe2, raid_disks);
2964 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2965 			break;
2966 		case ALGORITHM_PARITY_0:
2967 			pd_idx = 0;
2968 			(*dd_idx)++;
2969 			break;
2970 		case ALGORITHM_PARITY_N:
2971 			pd_idx = data_disks;
2972 			break;
2973 		default:
2974 			BUG();
2975 		}
2976 		break;
2977 	case 6:
2978 
2979 		switch (algorithm) {
2980 		case ALGORITHM_LEFT_ASYMMETRIC:
2981 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2982 			qd_idx = pd_idx + 1;
2983 			if (pd_idx == raid_disks-1) {
2984 				(*dd_idx)++;	/* Q D D D P */
2985 				qd_idx = 0;
2986 			} else if (*dd_idx >= pd_idx)
2987 				(*dd_idx) += 2; /* D D P Q D */
2988 			break;
2989 		case ALGORITHM_RIGHT_ASYMMETRIC:
2990 			pd_idx = sector_div(stripe2, raid_disks);
2991 			qd_idx = pd_idx + 1;
2992 			if (pd_idx == raid_disks-1) {
2993 				(*dd_idx)++;	/* Q D D D P */
2994 				qd_idx = 0;
2995 			} else if (*dd_idx >= pd_idx)
2996 				(*dd_idx) += 2; /* D D P Q D */
2997 			break;
2998 		case ALGORITHM_LEFT_SYMMETRIC:
2999 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3000 			qd_idx = (pd_idx + 1) % raid_disks;
3001 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
3002 			break;
3003 		case ALGORITHM_RIGHT_SYMMETRIC:
3004 			pd_idx = sector_div(stripe2, raid_disks);
3005 			qd_idx = (pd_idx + 1) % raid_disks;
3006 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
3007 			break;
3008 
3009 		case ALGORITHM_PARITY_0:
3010 			pd_idx = 0;
3011 			qd_idx = 1;
3012 			(*dd_idx) += 2;
3013 			break;
3014 		case ALGORITHM_PARITY_N:
3015 			pd_idx = data_disks;
3016 			qd_idx = data_disks + 1;
3017 			break;
3018 
3019 		case ALGORITHM_ROTATING_ZERO_RESTART:
3020 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
3021 			 * of blocks for computing Q is different.
3022 			 */
3023 			pd_idx = sector_div(stripe2, raid_disks);
3024 			qd_idx = pd_idx + 1;
3025 			if (pd_idx == raid_disks-1) {
3026 				(*dd_idx)++;	/* Q D D D P */
3027 				qd_idx = 0;
3028 			} else if (*dd_idx >= pd_idx)
3029 				(*dd_idx) += 2; /* D D P Q D */
3030 			ddf_layout = 1;
3031 			break;
3032 
3033 		case ALGORITHM_ROTATING_N_RESTART:
3034 			/* Same a left_asymmetric, by first stripe is
3035 			 * D D D P Q  rather than
3036 			 * Q D D D P
3037 			 */
3038 			stripe2 += 1;
3039 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3040 			qd_idx = pd_idx + 1;
3041 			if (pd_idx == raid_disks-1) {
3042 				(*dd_idx)++;	/* Q D D D P */
3043 				qd_idx = 0;
3044 			} else if (*dd_idx >= pd_idx)
3045 				(*dd_idx) += 2; /* D D P Q D */
3046 			ddf_layout = 1;
3047 			break;
3048 
3049 		case ALGORITHM_ROTATING_N_CONTINUE:
3050 			/* Same as left_symmetric but Q is before P */
3051 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3052 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
3053 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3054 			ddf_layout = 1;
3055 			break;
3056 
3057 		case ALGORITHM_LEFT_ASYMMETRIC_6:
3058 			/* RAID5 left_asymmetric, with Q on last device */
3059 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
3060 			if (*dd_idx >= pd_idx)
3061 				(*dd_idx)++;
3062 			qd_idx = raid_disks - 1;
3063 			break;
3064 
3065 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
3066 			pd_idx = sector_div(stripe2, raid_disks-1);
3067 			if (*dd_idx >= pd_idx)
3068 				(*dd_idx)++;
3069 			qd_idx = raid_disks - 1;
3070 			break;
3071 
3072 		case ALGORITHM_LEFT_SYMMETRIC_6:
3073 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
3074 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3075 			qd_idx = raid_disks - 1;
3076 			break;
3077 
3078 		case ALGORITHM_RIGHT_SYMMETRIC_6:
3079 			pd_idx = sector_div(stripe2, raid_disks-1);
3080 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3081 			qd_idx = raid_disks - 1;
3082 			break;
3083 
3084 		case ALGORITHM_PARITY_0_6:
3085 			pd_idx = 0;
3086 			(*dd_idx)++;
3087 			qd_idx = raid_disks - 1;
3088 			break;
3089 
3090 		default:
3091 			BUG();
3092 		}
3093 		break;
3094 	}
3095 
3096 	if (sh) {
3097 		sh->pd_idx = pd_idx;
3098 		sh->qd_idx = qd_idx;
3099 		sh->ddf_layout = ddf_layout;
3100 	}
3101 	/*
3102 	 * Finally, compute the new sector number
3103 	 */
3104 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
3105 	return new_sector;
3106 }
3107 
3108 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
3109 {
3110 	struct r5conf *conf = sh->raid_conf;
3111 	int raid_disks = sh->disks;
3112 	int data_disks = raid_disks - conf->max_degraded;
3113 	sector_t new_sector = sh->sector, check;
3114 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
3115 					 : conf->chunk_sectors;
3116 	int algorithm = previous ? conf->prev_algo
3117 				 : conf->algorithm;
3118 	sector_t stripe;
3119 	int chunk_offset;
3120 	sector_t chunk_number;
3121 	int dummy1, dd_idx = i;
3122 	sector_t r_sector;
3123 	struct stripe_head sh2;
3124 
3125 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
3126 	stripe = new_sector;
3127 
3128 	if (i == sh->pd_idx)
3129 		return 0;
3130 	switch(conf->level) {
3131 	case 4: break;
3132 	case 5:
3133 		switch (algorithm) {
3134 		case ALGORITHM_LEFT_ASYMMETRIC:
3135 		case ALGORITHM_RIGHT_ASYMMETRIC:
3136 			if (i > sh->pd_idx)
3137 				i--;
3138 			break;
3139 		case ALGORITHM_LEFT_SYMMETRIC:
3140 		case ALGORITHM_RIGHT_SYMMETRIC:
3141 			if (i < sh->pd_idx)
3142 				i += raid_disks;
3143 			i -= (sh->pd_idx + 1);
3144 			break;
3145 		case ALGORITHM_PARITY_0:
3146 			i -= 1;
3147 			break;
3148 		case ALGORITHM_PARITY_N:
3149 			break;
3150 		default:
3151 			BUG();
3152 		}
3153 		break;
3154 	case 6:
3155 		if (i == sh->qd_idx)
3156 			return 0; /* It is the Q disk */
3157 		switch (algorithm) {
3158 		case ALGORITHM_LEFT_ASYMMETRIC:
3159 		case ALGORITHM_RIGHT_ASYMMETRIC:
3160 		case ALGORITHM_ROTATING_ZERO_RESTART:
3161 		case ALGORITHM_ROTATING_N_RESTART:
3162 			if (sh->pd_idx == raid_disks-1)
3163 				i--;	/* Q D D D P */
3164 			else if (i > sh->pd_idx)
3165 				i -= 2; /* D D P Q D */
3166 			break;
3167 		case ALGORITHM_LEFT_SYMMETRIC:
3168 		case ALGORITHM_RIGHT_SYMMETRIC:
3169 			if (sh->pd_idx == raid_disks-1)
3170 				i--; /* Q D D D P */
3171 			else {
3172 				/* D D P Q D */
3173 				if (i < sh->pd_idx)
3174 					i += raid_disks;
3175 				i -= (sh->pd_idx + 2);
3176 			}
3177 			break;
3178 		case ALGORITHM_PARITY_0:
3179 			i -= 2;
3180 			break;
3181 		case ALGORITHM_PARITY_N:
3182 			break;
3183 		case ALGORITHM_ROTATING_N_CONTINUE:
3184 			/* Like left_symmetric, but P is before Q */
3185 			if (sh->pd_idx == 0)
3186 				i--;	/* P D D D Q */
3187 			else {
3188 				/* D D Q P D */
3189 				if (i < sh->pd_idx)
3190 					i += raid_disks;
3191 				i -= (sh->pd_idx + 1);
3192 			}
3193 			break;
3194 		case ALGORITHM_LEFT_ASYMMETRIC_6:
3195 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
3196 			if (i > sh->pd_idx)
3197 				i--;
3198 			break;
3199 		case ALGORITHM_LEFT_SYMMETRIC_6:
3200 		case ALGORITHM_RIGHT_SYMMETRIC_6:
3201 			if (i < sh->pd_idx)
3202 				i += data_disks + 1;
3203 			i -= (sh->pd_idx + 1);
3204 			break;
3205 		case ALGORITHM_PARITY_0_6:
3206 			i -= 1;
3207 			break;
3208 		default:
3209 			BUG();
3210 		}
3211 		break;
3212 	}
3213 
3214 	chunk_number = stripe * data_disks + i;
3215 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3216 
3217 	check = raid5_compute_sector(conf, r_sector,
3218 				     previous, &dummy1, &sh2);
3219 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3220 		|| sh2.qd_idx != sh->qd_idx) {
3221 		pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3222 			mdname(conf->mddev));
3223 		return 0;
3224 	}
3225 	return r_sector;
3226 }
3227 
3228 /*
3229  * There are cases where we want handle_stripe_dirtying() and
3230  * schedule_reconstruction() to delay towrite to some dev of a stripe.
3231  *
3232  * This function checks whether we want to delay the towrite. Specifically,
3233  * we delay the towrite when:
3234  *
3235  *   1. degraded stripe has a non-overwrite to the missing dev, AND this
3236  *      stripe has data in journal (for other devices).
3237  *
3238  *      In this case, when reading data for the non-overwrite dev, it is
3239  *      necessary to handle complex rmw of write back cache (prexor with
3240  *      orig_page, and xor with page). To keep read path simple, we would
3241  *      like to flush data in journal to RAID disks first, so complex rmw
3242  *      is handled in the write patch (handle_stripe_dirtying).
3243  *
3244  *   2. when journal space is critical (R5C_LOG_CRITICAL=1)
3245  *
3246  *      It is important to be able to flush all stripes in raid5-cache.
3247  *      Therefore, we need reserve some space on the journal device for
3248  *      these flushes. If flush operation includes pending writes to the
3249  *      stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3250  *      for the flush out. If we exclude these pending writes from flush
3251  *      operation, we only need (conf->max_degraded + 1) pages per stripe.
3252  *      Therefore, excluding pending writes in these cases enables more
3253  *      efficient use of the journal device.
3254  *
3255  *      Note: To make sure the stripe makes progress, we only delay
3256  *      towrite for stripes with data already in journal (injournal > 0).
3257  *      When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3258  *      no_space_stripes list.
3259  *
3260  *   3. during journal failure
3261  *      In journal failure, we try to flush all cached data to raid disks
3262  *      based on data in stripe cache. The array is read-only to upper
3263  *      layers, so we would skip all pending writes.
3264  *
3265  */
3266 static inline bool delay_towrite(struct r5conf *conf,
3267 				 struct r5dev *dev,
3268 				 struct stripe_head_state *s)
3269 {
3270 	/* case 1 above */
3271 	if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3272 	    !test_bit(R5_Insync, &dev->flags) && s->injournal)
3273 		return true;
3274 	/* case 2 above */
3275 	if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3276 	    s->injournal > 0)
3277 		return true;
3278 	/* case 3 above */
3279 	if (s->log_failed && s->injournal)
3280 		return true;
3281 	return false;
3282 }
3283 
3284 static void
3285 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3286 			 int rcw, int expand)
3287 {
3288 	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3289 	struct r5conf *conf = sh->raid_conf;
3290 	int level = conf->level;
3291 
3292 	if (rcw) {
3293 		/*
3294 		 * In some cases, handle_stripe_dirtying initially decided to
3295 		 * run rmw and allocates extra page for prexor. However, rcw is
3296 		 * cheaper later on. We need to free the extra page now,
3297 		 * because we won't be able to do that in ops_complete_prexor().
3298 		 */
3299 		r5c_release_extra_page(sh);
3300 
3301 		for (i = disks; i--; ) {
3302 			struct r5dev *dev = &sh->dev[i];
3303 
3304 			if (dev->towrite && !delay_towrite(conf, dev, s)) {
3305 				set_bit(R5_LOCKED, &dev->flags);
3306 				set_bit(R5_Wantdrain, &dev->flags);
3307 				if (!expand)
3308 					clear_bit(R5_UPTODATE, &dev->flags);
3309 				s->locked++;
3310 			} else if (test_bit(R5_InJournal, &dev->flags)) {
3311 				set_bit(R5_LOCKED, &dev->flags);
3312 				s->locked++;
3313 			}
3314 		}
3315 		/* if we are not expanding this is a proper write request, and
3316 		 * there will be bios with new data to be drained into the
3317 		 * stripe cache
3318 		 */
3319 		if (!expand) {
3320 			if (!s->locked)
3321 				/* False alarm, nothing to do */
3322 				return;
3323 			sh->reconstruct_state = reconstruct_state_drain_run;
3324 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3325 		} else
3326 			sh->reconstruct_state = reconstruct_state_run;
3327 
3328 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3329 
3330 		if (s->locked + conf->max_degraded == disks)
3331 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3332 				atomic_inc(&conf->pending_full_writes);
3333 	} else {
3334 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3335 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3336 		BUG_ON(level == 6 &&
3337 			(!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3338 			   test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3339 
3340 		for (i = disks; i--; ) {
3341 			struct r5dev *dev = &sh->dev[i];
3342 			if (i == pd_idx || i == qd_idx)
3343 				continue;
3344 
3345 			if (dev->towrite &&
3346 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3347 			     test_bit(R5_Wantcompute, &dev->flags))) {
3348 				set_bit(R5_Wantdrain, &dev->flags);
3349 				set_bit(R5_LOCKED, &dev->flags);
3350 				clear_bit(R5_UPTODATE, &dev->flags);
3351 				s->locked++;
3352 			} else if (test_bit(R5_InJournal, &dev->flags)) {
3353 				set_bit(R5_LOCKED, &dev->flags);
3354 				s->locked++;
3355 			}
3356 		}
3357 		if (!s->locked)
3358 			/* False alarm - nothing to do */
3359 			return;
3360 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3361 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3362 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3363 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3364 	}
3365 
3366 	/* keep the parity disk(s) locked while asynchronous operations
3367 	 * are in flight
3368 	 */
3369 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3370 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3371 	s->locked++;
3372 
3373 	if (level == 6) {
3374 		int qd_idx = sh->qd_idx;
3375 		struct r5dev *dev = &sh->dev[qd_idx];
3376 
3377 		set_bit(R5_LOCKED, &dev->flags);
3378 		clear_bit(R5_UPTODATE, &dev->flags);
3379 		s->locked++;
3380 	}
3381 
3382 	if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3383 	    test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3384 	    !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3385 	    test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3386 		set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3387 
3388 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3389 		__func__, (unsigned long long)sh->sector,
3390 		s->locked, s->ops_request);
3391 }
3392 
3393 /*
3394  * Each stripe/dev can have one or more bion attached.
3395  * toread/towrite point to the first in a chain.
3396  * The bi_next chain must be in order.
3397  */
3398 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3399 			  int forwrite, int previous)
3400 {
3401 	struct bio **bip;
3402 	struct r5conf *conf = sh->raid_conf;
3403 	int firstwrite=0;
3404 
3405 	pr_debug("adding bi b#%llu to stripe s#%llu\n",
3406 		(unsigned long long)bi->bi_iter.bi_sector,
3407 		(unsigned long long)sh->sector);
3408 
3409 	spin_lock_irq(&sh->stripe_lock);
3410 	sh->dev[dd_idx].write_hint = bi->bi_write_hint;
3411 	/* Don't allow new IO added to stripes in batch list */
3412 	if (sh->batch_head)
3413 		goto overlap;
3414 	if (forwrite) {
3415 		bip = &sh->dev[dd_idx].towrite;
3416 		if (*bip == NULL)
3417 			firstwrite = 1;
3418 	} else
3419 		bip = &sh->dev[dd_idx].toread;
3420 	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3421 		if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3422 			goto overlap;
3423 		bip = & (*bip)->bi_next;
3424 	}
3425 	if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3426 		goto overlap;
3427 
3428 	if (forwrite && raid5_has_ppl(conf)) {
3429 		/*
3430 		 * With PPL only writes to consecutive data chunks within a
3431 		 * stripe are allowed because for a single stripe_head we can
3432 		 * only have one PPL entry at a time, which describes one data
3433 		 * range. Not really an overlap, but wait_for_overlap can be
3434 		 * used to handle this.
3435 		 */
3436 		sector_t sector;
3437 		sector_t first = 0;
3438 		sector_t last = 0;
3439 		int count = 0;
3440 		int i;
3441 
3442 		for (i = 0; i < sh->disks; i++) {
3443 			if (i != sh->pd_idx &&
3444 			    (i == dd_idx || sh->dev[i].towrite)) {
3445 				sector = sh->dev[i].sector;
3446 				if (count == 0 || sector < first)
3447 					first = sector;
3448 				if (sector > last)
3449 					last = sector;
3450 				count++;
3451 			}
3452 		}
3453 
3454 		if (first + conf->chunk_sectors * (count - 1) != last)
3455 			goto overlap;
3456 	}
3457 
3458 	if (!forwrite || previous)
3459 		clear_bit(STRIPE_BATCH_READY, &sh->state);
3460 
3461 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3462 	if (*bip)
3463 		bi->bi_next = *bip;
3464 	*bip = bi;
3465 	bio_inc_remaining(bi);
3466 	md_write_inc(conf->mddev, bi);
3467 
3468 	if (forwrite) {
3469 		/* check if page is covered */
3470 		sector_t sector = sh->dev[dd_idx].sector;
3471 		for (bi=sh->dev[dd_idx].towrite;
3472 		     sector < sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf) &&
3473 			     bi && bi->bi_iter.bi_sector <= sector;
3474 		     bi = r5_next_bio(conf, bi, sh->dev[dd_idx].sector)) {
3475 			if (bio_end_sector(bi) >= sector)
3476 				sector = bio_end_sector(bi);
3477 		}
3478 		if (sector >= sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf))
3479 			if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3480 				sh->overwrite_disks++;
3481 	}
3482 
3483 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3484 		(unsigned long long)(*bip)->bi_iter.bi_sector,
3485 		(unsigned long long)sh->sector, dd_idx);
3486 
3487 	if (conf->mddev->bitmap && firstwrite) {
3488 		/* Cannot hold spinlock over bitmap_startwrite,
3489 		 * but must ensure this isn't added to a batch until
3490 		 * we have added to the bitmap and set bm_seq.
3491 		 * So set STRIPE_BITMAP_PENDING to prevent
3492 		 * batching.
3493 		 * If multiple add_stripe_bio() calls race here they
3494 		 * much all set STRIPE_BITMAP_PENDING.  So only the first one
3495 		 * to complete "bitmap_startwrite" gets to set
3496 		 * STRIPE_BIT_DELAY.  This is important as once a stripe
3497 		 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3498 		 * any more.
3499 		 */
3500 		set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3501 		spin_unlock_irq(&sh->stripe_lock);
3502 		md_bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3503 				     RAID5_STRIPE_SECTORS(conf), 0);
3504 		spin_lock_irq(&sh->stripe_lock);
3505 		clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3506 		if (!sh->batch_head) {
3507 			sh->bm_seq = conf->seq_flush+1;
3508 			set_bit(STRIPE_BIT_DELAY, &sh->state);
3509 		}
3510 	}
3511 	spin_unlock_irq(&sh->stripe_lock);
3512 
3513 	if (stripe_can_batch(sh))
3514 		stripe_add_to_batch_list(conf, sh);
3515 	return 1;
3516 
3517  overlap:
3518 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3519 	spin_unlock_irq(&sh->stripe_lock);
3520 	return 0;
3521 }
3522 
3523 static void end_reshape(struct r5conf *conf);
3524 
3525 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3526 			    struct stripe_head *sh)
3527 {
3528 	int sectors_per_chunk =
3529 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3530 	int dd_idx;
3531 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
3532 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3533 
3534 	raid5_compute_sector(conf,
3535 			     stripe * (disks - conf->max_degraded)
3536 			     *sectors_per_chunk + chunk_offset,
3537 			     previous,
3538 			     &dd_idx, sh);
3539 }
3540 
3541 static void
3542 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3543 		     struct stripe_head_state *s, int disks)
3544 {
3545 	int i;
3546 	BUG_ON(sh->batch_head);
3547 	for (i = disks; i--; ) {
3548 		struct bio *bi;
3549 		int bitmap_end = 0;
3550 
3551 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3552 			struct md_rdev *rdev;
3553 			rcu_read_lock();
3554 			rdev = rcu_dereference(conf->disks[i].rdev);
3555 			if (rdev && test_bit(In_sync, &rdev->flags) &&
3556 			    !test_bit(Faulty, &rdev->flags))
3557 				atomic_inc(&rdev->nr_pending);
3558 			else
3559 				rdev = NULL;
3560 			rcu_read_unlock();
3561 			if (rdev) {
3562 				if (!rdev_set_badblocks(
3563 					    rdev,
3564 					    sh->sector,
3565 					    RAID5_STRIPE_SECTORS(conf), 0))
3566 					md_error(conf->mddev, rdev);
3567 				rdev_dec_pending(rdev, conf->mddev);
3568 			}
3569 		}
3570 		spin_lock_irq(&sh->stripe_lock);
3571 		/* fail all writes first */
3572 		bi = sh->dev[i].towrite;
3573 		sh->dev[i].towrite = NULL;
3574 		sh->overwrite_disks = 0;
3575 		spin_unlock_irq(&sh->stripe_lock);
3576 		if (bi)
3577 			bitmap_end = 1;
3578 
3579 		log_stripe_write_finished(sh);
3580 
3581 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3582 			wake_up(&conf->wait_for_overlap);
3583 
3584 		while (bi && bi->bi_iter.bi_sector <
3585 			sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3586 			struct bio *nextbi = r5_next_bio(conf, bi, sh->dev[i].sector);
3587 
3588 			md_write_end(conf->mddev);
3589 			bio_io_error(bi);
3590 			bi = nextbi;
3591 		}
3592 		if (bitmap_end)
3593 			md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3594 					   RAID5_STRIPE_SECTORS(conf), 0, 0);
3595 		bitmap_end = 0;
3596 		/* and fail all 'written' */
3597 		bi = sh->dev[i].written;
3598 		sh->dev[i].written = NULL;
3599 		if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3600 			WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3601 			sh->dev[i].page = sh->dev[i].orig_page;
3602 		}
3603 
3604 		if (bi) bitmap_end = 1;
3605 		while (bi && bi->bi_iter.bi_sector <
3606 		       sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3607 			struct bio *bi2 = r5_next_bio(conf, bi, sh->dev[i].sector);
3608 
3609 			md_write_end(conf->mddev);
3610 			bio_io_error(bi);
3611 			bi = bi2;
3612 		}
3613 
3614 		/* fail any reads if this device is non-operational and
3615 		 * the data has not reached the cache yet.
3616 		 */
3617 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3618 		    s->failed > conf->max_degraded &&
3619 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3620 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
3621 			spin_lock_irq(&sh->stripe_lock);
3622 			bi = sh->dev[i].toread;
3623 			sh->dev[i].toread = NULL;
3624 			spin_unlock_irq(&sh->stripe_lock);
3625 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3626 				wake_up(&conf->wait_for_overlap);
3627 			if (bi)
3628 				s->to_read--;
3629 			while (bi && bi->bi_iter.bi_sector <
3630 			       sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3631 				struct bio *nextbi =
3632 					r5_next_bio(conf, bi, sh->dev[i].sector);
3633 
3634 				bio_io_error(bi);
3635 				bi = nextbi;
3636 			}
3637 		}
3638 		if (bitmap_end)
3639 			md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3640 					   RAID5_STRIPE_SECTORS(conf), 0, 0);
3641 		/* If we were in the middle of a write the parity block might
3642 		 * still be locked - so just clear all R5_LOCKED flags
3643 		 */
3644 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
3645 	}
3646 	s->to_write = 0;
3647 	s->written = 0;
3648 
3649 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3650 		if (atomic_dec_and_test(&conf->pending_full_writes))
3651 			md_wakeup_thread(conf->mddev->thread);
3652 }
3653 
3654 static void
3655 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3656 		   struct stripe_head_state *s)
3657 {
3658 	int abort = 0;
3659 	int i;
3660 
3661 	BUG_ON(sh->batch_head);
3662 	clear_bit(STRIPE_SYNCING, &sh->state);
3663 	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3664 		wake_up(&conf->wait_for_overlap);
3665 	s->syncing = 0;
3666 	s->replacing = 0;
3667 	/* There is nothing more to do for sync/check/repair.
3668 	 * Don't even need to abort as that is handled elsewhere
3669 	 * if needed, and not always wanted e.g. if there is a known
3670 	 * bad block here.
3671 	 * For recover/replace we need to record a bad block on all
3672 	 * non-sync devices, or abort the recovery
3673 	 */
3674 	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3675 		/* During recovery devices cannot be removed, so
3676 		 * locking and refcounting of rdevs is not needed
3677 		 */
3678 		rcu_read_lock();
3679 		for (i = 0; i < conf->raid_disks; i++) {
3680 			struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3681 			if (rdev
3682 			    && !test_bit(Faulty, &rdev->flags)
3683 			    && !test_bit(In_sync, &rdev->flags)
3684 			    && !rdev_set_badblocks(rdev, sh->sector,
3685 						   RAID5_STRIPE_SECTORS(conf), 0))
3686 				abort = 1;
3687 			rdev = rcu_dereference(conf->disks[i].replacement);
3688 			if (rdev
3689 			    && !test_bit(Faulty, &rdev->flags)
3690 			    && !test_bit(In_sync, &rdev->flags)
3691 			    && !rdev_set_badblocks(rdev, sh->sector,
3692 						   RAID5_STRIPE_SECTORS(conf), 0))
3693 				abort = 1;
3694 		}
3695 		rcu_read_unlock();
3696 		if (abort)
3697 			conf->recovery_disabled =
3698 				conf->mddev->recovery_disabled;
3699 	}
3700 	md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), !abort);
3701 }
3702 
3703 static int want_replace(struct stripe_head *sh, int disk_idx)
3704 {
3705 	struct md_rdev *rdev;
3706 	int rv = 0;
3707 
3708 	rcu_read_lock();
3709 	rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3710 	if (rdev
3711 	    && !test_bit(Faulty, &rdev->flags)
3712 	    && !test_bit(In_sync, &rdev->flags)
3713 	    && (rdev->recovery_offset <= sh->sector
3714 		|| rdev->mddev->recovery_cp <= sh->sector))
3715 		rv = 1;
3716 	rcu_read_unlock();
3717 	return rv;
3718 }
3719 
3720 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3721 			   int disk_idx, int disks)
3722 {
3723 	struct r5dev *dev = &sh->dev[disk_idx];
3724 	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3725 				  &sh->dev[s->failed_num[1]] };
3726 	int i;
3727 	bool force_rcw = (sh->raid_conf->rmw_level == PARITY_DISABLE_RMW);
3728 
3729 
3730 	if (test_bit(R5_LOCKED, &dev->flags) ||
3731 	    test_bit(R5_UPTODATE, &dev->flags))
3732 		/* No point reading this as we already have it or have
3733 		 * decided to get it.
3734 		 */
3735 		return 0;
3736 
3737 	if (dev->toread ||
3738 	    (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3739 		/* We need this block to directly satisfy a request */
3740 		return 1;
3741 
3742 	if (s->syncing || s->expanding ||
3743 	    (s->replacing && want_replace(sh, disk_idx)))
3744 		/* When syncing, or expanding we read everything.
3745 		 * When replacing, we need the replaced block.
3746 		 */
3747 		return 1;
3748 
3749 	if ((s->failed >= 1 && fdev[0]->toread) ||
3750 	    (s->failed >= 2 && fdev[1]->toread))
3751 		/* If we want to read from a failed device, then
3752 		 * we need to actually read every other device.
3753 		 */
3754 		return 1;
3755 
3756 	/* Sometimes neither read-modify-write nor reconstruct-write
3757 	 * cycles can work.  In those cases we read every block we
3758 	 * can.  Then the parity-update is certain to have enough to
3759 	 * work with.
3760 	 * This can only be a problem when we need to write something,
3761 	 * and some device has failed.  If either of those tests
3762 	 * fail we need look no further.
3763 	 */
3764 	if (!s->failed || !s->to_write)
3765 		return 0;
3766 
3767 	if (test_bit(R5_Insync, &dev->flags) &&
3768 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3769 		/* Pre-reads at not permitted until after short delay
3770 		 * to gather multiple requests.  However if this
3771 		 * device is no Insync, the block could only be computed
3772 		 * and there is no need to delay that.
3773 		 */
3774 		return 0;
3775 
3776 	for (i = 0; i < s->failed && i < 2; i++) {
3777 		if (fdev[i]->towrite &&
3778 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3779 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3780 			/* If we have a partial write to a failed
3781 			 * device, then we will need to reconstruct
3782 			 * the content of that device, so all other
3783 			 * devices must be read.
3784 			 */
3785 			return 1;
3786 
3787 		if (s->failed >= 2 &&
3788 		    (fdev[i]->towrite ||
3789 		     s->failed_num[i] == sh->pd_idx ||
3790 		     s->failed_num[i] == sh->qd_idx) &&
3791 		    !test_bit(R5_UPTODATE, &fdev[i]->flags))
3792 			/* In max degraded raid6, If the failed disk is P, Q,
3793 			 * or we want to read the failed disk, we need to do
3794 			 * reconstruct-write.
3795 			 */
3796 			force_rcw = true;
3797 	}
3798 
3799 	/* If we are forced to do a reconstruct-write, because parity
3800 	 * cannot be trusted and we are currently recovering it, there
3801 	 * is extra need to be careful.
3802 	 * If one of the devices that we would need to read, because
3803 	 * it is not being overwritten (and maybe not written at all)
3804 	 * is missing/faulty, then we need to read everything we can.
3805 	 */
3806 	if (!force_rcw &&
3807 	    sh->sector < sh->raid_conf->mddev->recovery_cp)
3808 		/* reconstruct-write isn't being forced */
3809 		return 0;
3810 	for (i = 0; i < s->failed && i < 2; i++) {
3811 		if (s->failed_num[i] != sh->pd_idx &&
3812 		    s->failed_num[i] != sh->qd_idx &&
3813 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3814 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3815 			return 1;
3816 	}
3817 
3818 	return 0;
3819 }
3820 
3821 /* fetch_block - checks the given member device to see if its data needs
3822  * to be read or computed to satisfy a request.
3823  *
3824  * Returns 1 when no more member devices need to be checked, otherwise returns
3825  * 0 to tell the loop in handle_stripe_fill to continue
3826  */
3827 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3828 		       int disk_idx, int disks)
3829 {
3830 	struct r5dev *dev = &sh->dev[disk_idx];
3831 
3832 	/* is the data in this block needed, and can we get it? */
3833 	if (need_this_block(sh, s, disk_idx, disks)) {
3834 		/* we would like to get this block, possibly by computing it,
3835 		 * otherwise read it if the backing disk is insync
3836 		 */
3837 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3838 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
3839 		BUG_ON(sh->batch_head);
3840 
3841 		/*
3842 		 * In the raid6 case if the only non-uptodate disk is P
3843 		 * then we already trusted P to compute the other failed
3844 		 * drives. It is safe to compute rather than re-read P.
3845 		 * In other cases we only compute blocks from failed
3846 		 * devices, otherwise check/repair might fail to detect
3847 		 * a real inconsistency.
3848 		 */
3849 
3850 		if ((s->uptodate == disks - 1) &&
3851 		    ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3852 		    (s->failed && (disk_idx == s->failed_num[0] ||
3853 				   disk_idx == s->failed_num[1])))) {
3854 			/* have disk failed, and we're requested to fetch it;
3855 			 * do compute it
3856 			 */
3857 			pr_debug("Computing stripe %llu block %d\n",
3858 			       (unsigned long long)sh->sector, disk_idx);
3859 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3860 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3861 			set_bit(R5_Wantcompute, &dev->flags);
3862 			sh->ops.target = disk_idx;
3863 			sh->ops.target2 = -1; /* no 2nd target */
3864 			s->req_compute = 1;
3865 			/* Careful: from this point on 'uptodate' is in the eye
3866 			 * of raid_run_ops which services 'compute' operations
3867 			 * before writes. R5_Wantcompute flags a block that will
3868 			 * be R5_UPTODATE by the time it is needed for a
3869 			 * subsequent operation.
3870 			 */
3871 			s->uptodate++;
3872 			return 1;
3873 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
3874 			/* Computing 2-failure is *very* expensive; only
3875 			 * do it if failed >= 2
3876 			 */
3877 			int other;
3878 			for (other = disks; other--; ) {
3879 				if (other == disk_idx)
3880 					continue;
3881 				if (!test_bit(R5_UPTODATE,
3882 				      &sh->dev[other].flags))
3883 					break;
3884 			}
3885 			BUG_ON(other < 0);
3886 			pr_debug("Computing stripe %llu blocks %d,%d\n",
3887 			       (unsigned long long)sh->sector,
3888 			       disk_idx, other);
3889 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3890 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3891 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3892 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
3893 			sh->ops.target = disk_idx;
3894 			sh->ops.target2 = other;
3895 			s->uptodate += 2;
3896 			s->req_compute = 1;
3897 			return 1;
3898 		} else if (test_bit(R5_Insync, &dev->flags)) {
3899 			set_bit(R5_LOCKED, &dev->flags);
3900 			set_bit(R5_Wantread, &dev->flags);
3901 			s->locked++;
3902 			pr_debug("Reading block %d (sync=%d)\n",
3903 				disk_idx, s->syncing);
3904 		}
3905 	}
3906 
3907 	return 0;
3908 }
3909 
3910 /*
3911  * handle_stripe_fill - read or compute data to satisfy pending requests.
3912  */
3913 static void handle_stripe_fill(struct stripe_head *sh,
3914 			       struct stripe_head_state *s,
3915 			       int disks)
3916 {
3917 	int i;
3918 
3919 	/* look for blocks to read/compute, skip this if a compute
3920 	 * is already in flight, or if the stripe contents are in the
3921 	 * midst of changing due to a write
3922 	 */
3923 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3924 	    !sh->reconstruct_state) {
3925 
3926 		/*
3927 		 * For degraded stripe with data in journal, do not handle
3928 		 * read requests yet, instead, flush the stripe to raid
3929 		 * disks first, this avoids handling complex rmw of write
3930 		 * back cache (prexor with orig_page, and then xor with
3931 		 * page) in the read path
3932 		 */
3933 		if (s->injournal && s->failed) {
3934 			if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3935 				r5c_make_stripe_write_out(sh);
3936 			goto out;
3937 		}
3938 
3939 		for (i = disks; i--; )
3940 			if (fetch_block(sh, s, i, disks))
3941 				break;
3942 	}
3943 out:
3944 	set_bit(STRIPE_HANDLE, &sh->state);
3945 }
3946 
3947 static void break_stripe_batch_list(struct stripe_head *head_sh,
3948 				    unsigned long handle_flags);
3949 /* handle_stripe_clean_event
3950  * any written block on an uptodate or failed drive can be returned.
3951  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3952  * never LOCKED, so we don't need to test 'failed' directly.
3953  */
3954 static void handle_stripe_clean_event(struct r5conf *conf,
3955 	struct stripe_head *sh, int disks)
3956 {
3957 	int i;
3958 	struct r5dev *dev;
3959 	int discard_pending = 0;
3960 	struct stripe_head *head_sh = sh;
3961 	bool do_endio = false;
3962 
3963 	for (i = disks; i--; )
3964 		if (sh->dev[i].written) {
3965 			dev = &sh->dev[i];
3966 			if (!test_bit(R5_LOCKED, &dev->flags) &&
3967 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3968 			     test_bit(R5_Discard, &dev->flags) ||
3969 			     test_bit(R5_SkipCopy, &dev->flags))) {
3970 				/* We can return any write requests */
3971 				struct bio *wbi, *wbi2;
3972 				pr_debug("Return write for disc %d\n", i);
3973 				if (test_and_clear_bit(R5_Discard, &dev->flags))
3974 					clear_bit(R5_UPTODATE, &dev->flags);
3975 				if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3976 					WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3977 				}
3978 				do_endio = true;
3979 
3980 returnbi:
3981 				dev->page = dev->orig_page;
3982 				wbi = dev->written;
3983 				dev->written = NULL;
3984 				while (wbi && wbi->bi_iter.bi_sector <
3985 					dev->sector + RAID5_STRIPE_SECTORS(conf)) {
3986 					wbi2 = r5_next_bio(conf, wbi, dev->sector);
3987 					md_write_end(conf->mddev);
3988 					bio_endio(wbi);
3989 					wbi = wbi2;
3990 				}
3991 				md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3992 						   RAID5_STRIPE_SECTORS(conf),
3993 						   !test_bit(STRIPE_DEGRADED, &sh->state),
3994 						   0);
3995 				if (head_sh->batch_head) {
3996 					sh = list_first_entry(&sh->batch_list,
3997 							      struct stripe_head,
3998 							      batch_list);
3999 					if (sh != head_sh) {
4000 						dev = &sh->dev[i];
4001 						goto returnbi;
4002 					}
4003 				}
4004 				sh = head_sh;
4005 				dev = &sh->dev[i];
4006 			} else if (test_bit(R5_Discard, &dev->flags))
4007 				discard_pending = 1;
4008 		}
4009 
4010 	log_stripe_write_finished(sh);
4011 
4012 	if (!discard_pending &&
4013 	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
4014 		int hash;
4015 		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
4016 		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4017 		if (sh->qd_idx >= 0) {
4018 			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
4019 			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
4020 		}
4021 		/* now that discard is done we can proceed with any sync */
4022 		clear_bit(STRIPE_DISCARD, &sh->state);
4023 		/*
4024 		 * SCSI discard will change some bio fields and the stripe has
4025 		 * no updated data, so remove it from hash list and the stripe
4026 		 * will be reinitialized
4027 		 */
4028 unhash:
4029 		hash = sh->hash_lock_index;
4030 		spin_lock_irq(conf->hash_locks + hash);
4031 		remove_hash(sh);
4032 		spin_unlock_irq(conf->hash_locks + hash);
4033 		if (head_sh->batch_head) {
4034 			sh = list_first_entry(&sh->batch_list,
4035 					      struct stripe_head, batch_list);
4036 			if (sh != head_sh)
4037 					goto unhash;
4038 		}
4039 		sh = head_sh;
4040 
4041 		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
4042 			set_bit(STRIPE_HANDLE, &sh->state);
4043 
4044 	}
4045 
4046 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
4047 		if (atomic_dec_and_test(&conf->pending_full_writes))
4048 			md_wakeup_thread(conf->mddev->thread);
4049 
4050 	if (head_sh->batch_head && do_endio)
4051 		break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
4052 }
4053 
4054 /*
4055  * For RMW in write back cache, we need extra page in prexor to store the
4056  * old data. This page is stored in dev->orig_page.
4057  *
4058  * This function checks whether we have data for prexor. The exact logic
4059  * is:
4060  *       R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
4061  */
4062 static inline bool uptodate_for_rmw(struct r5dev *dev)
4063 {
4064 	return (test_bit(R5_UPTODATE, &dev->flags)) &&
4065 		(!test_bit(R5_InJournal, &dev->flags) ||
4066 		 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
4067 }
4068 
4069 static int handle_stripe_dirtying(struct r5conf *conf,
4070 				  struct stripe_head *sh,
4071 				  struct stripe_head_state *s,
4072 				  int disks)
4073 {
4074 	int rmw = 0, rcw = 0, i;
4075 	sector_t recovery_cp = conf->mddev->recovery_cp;
4076 
4077 	/* Check whether resync is now happening or should start.
4078 	 * If yes, then the array is dirty (after unclean shutdown or
4079 	 * initial creation), so parity in some stripes might be inconsistent.
4080 	 * In this case, we need to always do reconstruct-write, to ensure
4081 	 * that in case of drive failure or read-error correction, we
4082 	 * generate correct data from the parity.
4083 	 */
4084 	if (conf->rmw_level == PARITY_DISABLE_RMW ||
4085 	    (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
4086 	     s->failed == 0)) {
4087 		/* Calculate the real rcw later - for now make it
4088 		 * look like rcw is cheaper
4089 		 */
4090 		rcw = 1; rmw = 2;
4091 		pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
4092 			 conf->rmw_level, (unsigned long long)recovery_cp,
4093 			 (unsigned long long)sh->sector);
4094 	} else for (i = disks; i--; ) {
4095 		/* would I have to read this buffer for read_modify_write */
4096 		struct r5dev *dev = &sh->dev[i];
4097 		if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
4098 		     i == sh->pd_idx || i == sh->qd_idx ||
4099 		     test_bit(R5_InJournal, &dev->flags)) &&
4100 		    !test_bit(R5_LOCKED, &dev->flags) &&
4101 		    !(uptodate_for_rmw(dev) ||
4102 		      test_bit(R5_Wantcompute, &dev->flags))) {
4103 			if (test_bit(R5_Insync, &dev->flags))
4104 				rmw++;
4105 			else
4106 				rmw += 2*disks;  /* cannot read it */
4107 		}
4108 		/* Would I have to read this buffer for reconstruct_write */
4109 		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4110 		    i != sh->pd_idx && i != sh->qd_idx &&
4111 		    !test_bit(R5_LOCKED, &dev->flags) &&
4112 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
4113 		      test_bit(R5_Wantcompute, &dev->flags))) {
4114 			if (test_bit(R5_Insync, &dev->flags))
4115 				rcw++;
4116 			else
4117 				rcw += 2*disks;
4118 		}
4119 	}
4120 
4121 	pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
4122 		 (unsigned long long)sh->sector, sh->state, rmw, rcw);
4123 	set_bit(STRIPE_HANDLE, &sh->state);
4124 	if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
4125 		/* prefer read-modify-write, but need to get some data */
4126 		if (conf->mddev->queue)
4127 			blk_add_trace_msg(conf->mddev->queue,
4128 					  "raid5 rmw %llu %d",
4129 					  (unsigned long long)sh->sector, rmw);
4130 		for (i = disks; i--; ) {
4131 			struct r5dev *dev = &sh->dev[i];
4132 			if (test_bit(R5_InJournal, &dev->flags) &&
4133 			    dev->page == dev->orig_page &&
4134 			    !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
4135 				/* alloc page for prexor */
4136 				struct page *p = alloc_page(GFP_NOIO);
4137 
4138 				if (p) {
4139 					dev->orig_page = p;
4140 					continue;
4141 				}
4142 
4143 				/*
4144 				 * alloc_page() failed, try use
4145 				 * disk_info->extra_page
4146 				 */
4147 				if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
4148 						      &conf->cache_state)) {
4149 					r5c_use_extra_page(sh);
4150 					break;
4151 				}
4152 
4153 				/* extra_page in use, add to delayed_list */
4154 				set_bit(STRIPE_DELAYED, &sh->state);
4155 				s->waiting_extra_page = 1;
4156 				return -EAGAIN;
4157 			}
4158 		}
4159 
4160 		for (i = disks; i--; ) {
4161 			struct r5dev *dev = &sh->dev[i];
4162 			if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
4163 			     i == sh->pd_idx || i == sh->qd_idx ||
4164 			     test_bit(R5_InJournal, &dev->flags)) &&
4165 			    !test_bit(R5_LOCKED, &dev->flags) &&
4166 			    !(uptodate_for_rmw(dev) ||
4167 			      test_bit(R5_Wantcompute, &dev->flags)) &&
4168 			    test_bit(R5_Insync, &dev->flags)) {
4169 				if (test_bit(STRIPE_PREREAD_ACTIVE,
4170 					     &sh->state)) {
4171 					pr_debug("Read_old block %d for r-m-w\n",
4172 						 i);
4173 					set_bit(R5_LOCKED, &dev->flags);
4174 					set_bit(R5_Wantread, &dev->flags);
4175 					s->locked++;
4176 				} else
4177 					set_bit(STRIPE_DELAYED, &sh->state);
4178 			}
4179 		}
4180 	}
4181 	if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
4182 		/* want reconstruct write, but need to get some data */
4183 		int qread =0;
4184 		rcw = 0;
4185 		for (i = disks; i--; ) {
4186 			struct r5dev *dev = &sh->dev[i];
4187 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4188 			    i != sh->pd_idx && i != sh->qd_idx &&
4189 			    !test_bit(R5_LOCKED, &dev->flags) &&
4190 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
4191 			      test_bit(R5_Wantcompute, &dev->flags))) {
4192 				rcw++;
4193 				if (test_bit(R5_Insync, &dev->flags) &&
4194 				    test_bit(STRIPE_PREREAD_ACTIVE,
4195 					     &sh->state)) {
4196 					pr_debug("Read_old block "
4197 						"%d for Reconstruct\n", i);
4198 					set_bit(R5_LOCKED, &dev->flags);
4199 					set_bit(R5_Wantread, &dev->flags);
4200 					s->locked++;
4201 					qread++;
4202 				} else
4203 					set_bit(STRIPE_DELAYED, &sh->state);
4204 			}
4205 		}
4206 		if (rcw && conf->mddev->queue)
4207 			blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
4208 					  (unsigned long long)sh->sector,
4209 					  rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
4210 	}
4211 
4212 	if (rcw > disks && rmw > disks &&
4213 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4214 		set_bit(STRIPE_DELAYED, &sh->state);
4215 
4216 	/* now if nothing is locked, and if we have enough data,
4217 	 * we can start a write request
4218 	 */
4219 	/* since handle_stripe can be called at any time we need to handle the
4220 	 * case where a compute block operation has been submitted and then a
4221 	 * subsequent call wants to start a write request.  raid_run_ops only
4222 	 * handles the case where compute block and reconstruct are requested
4223 	 * simultaneously.  If this is not the case then new writes need to be
4224 	 * held off until the compute completes.
4225 	 */
4226 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4227 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4228 	     !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4229 		schedule_reconstruction(sh, s, rcw == 0, 0);
4230 	return 0;
4231 }
4232 
4233 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4234 				struct stripe_head_state *s, int disks)
4235 {
4236 	struct r5dev *dev = NULL;
4237 
4238 	BUG_ON(sh->batch_head);
4239 	set_bit(STRIPE_HANDLE, &sh->state);
4240 
4241 	switch (sh->check_state) {
4242 	case check_state_idle:
4243 		/* start a new check operation if there are no failures */
4244 		if (s->failed == 0) {
4245 			BUG_ON(s->uptodate != disks);
4246 			sh->check_state = check_state_run;
4247 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
4248 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4249 			s->uptodate--;
4250 			break;
4251 		}
4252 		dev = &sh->dev[s->failed_num[0]];
4253 		fallthrough;
4254 	case check_state_compute_result:
4255 		sh->check_state = check_state_idle;
4256 		if (!dev)
4257 			dev = &sh->dev[sh->pd_idx];
4258 
4259 		/* check that a write has not made the stripe insync */
4260 		if (test_bit(STRIPE_INSYNC, &sh->state))
4261 			break;
4262 
4263 		/* either failed parity check, or recovery is happening */
4264 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4265 		BUG_ON(s->uptodate != disks);
4266 
4267 		set_bit(R5_LOCKED, &dev->flags);
4268 		s->locked++;
4269 		set_bit(R5_Wantwrite, &dev->flags);
4270 
4271 		clear_bit(STRIPE_DEGRADED, &sh->state);
4272 		set_bit(STRIPE_INSYNC, &sh->state);
4273 		break;
4274 	case check_state_run:
4275 		break; /* we will be called again upon completion */
4276 	case check_state_check_result:
4277 		sh->check_state = check_state_idle;
4278 
4279 		/* if a failure occurred during the check operation, leave
4280 		 * STRIPE_INSYNC not set and let the stripe be handled again
4281 		 */
4282 		if (s->failed)
4283 			break;
4284 
4285 		/* handle a successful check operation, if parity is correct
4286 		 * we are done.  Otherwise update the mismatch count and repair
4287 		 * parity if !MD_RECOVERY_CHECK
4288 		 */
4289 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4290 			/* parity is correct (on disc,
4291 			 * not in buffer any more)
4292 			 */
4293 			set_bit(STRIPE_INSYNC, &sh->state);
4294 		else {
4295 			atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4296 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4297 				/* don't try to repair!! */
4298 				set_bit(STRIPE_INSYNC, &sh->state);
4299 				pr_warn_ratelimited("%s: mismatch sector in range "
4300 						    "%llu-%llu\n", mdname(conf->mddev),
4301 						    (unsigned long long) sh->sector,
4302 						    (unsigned long long) sh->sector +
4303 						    RAID5_STRIPE_SECTORS(conf));
4304 			} else {
4305 				sh->check_state = check_state_compute_run;
4306 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4307 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4308 				set_bit(R5_Wantcompute,
4309 					&sh->dev[sh->pd_idx].flags);
4310 				sh->ops.target = sh->pd_idx;
4311 				sh->ops.target2 = -1;
4312 				s->uptodate++;
4313 			}
4314 		}
4315 		break;
4316 	case check_state_compute_run:
4317 		break;
4318 	default:
4319 		pr_err("%s: unknown check_state: %d sector: %llu\n",
4320 		       __func__, sh->check_state,
4321 		       (unsigned long long) sh->sector);
4322 		BUG();
4323 	}
4324 }
4325 
4326 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4327 				  struct stripe_head_state *s,
4328 				  int disks)
4329 {
4330 	int pd_idx = sh->pd_idx;
4331 	int qd_idx = sh->qd_idx;
4332 	struct r5dev *dev;
4333 
4334 	BUG_ON(sh->batch_head);
4335 	set_bit(STRIPE_HANDLE, &sh->state);
4336 
4337 	BUG_ON(s->failed > 2);
4338 
4339 	/* Want to check and possibly repair P and Q.
4340 	 * However there could be one 'failed' device, in which
4341 	 * case we can only check one of them, possibly using the
4342 	 * other to generate missing data
4343 	 */
4344 
4345 	switch (sh->check_state) {
4346 	case check_state_idle:
4347 		/* start a new check operation if there are < 2 failures */
4348 		if (s->failed == s->q_failed) {
4349 			/* The only possible failed device holds Q, so it
4350 			 * makes sense to check P (If anything else were failed,
4351 			 * we would have used P to recreate it).
4352 			 */
4353 			sh->check_state = check_state_run;
4354 		}
4355 		if (!s->q_failed && s->failed < 2) {
4356 			/* Q is not failed, and we didn't use it to generate
4357 			 * anything, so it makes sense to check it
4358 			 */
4359 			if (sh->check_state == check_state_run)
4360 				sh->check_state = check_state_run_pq;
4361 			else
4362 				sh->check_state = check_state_run_q;
4363 		}
4364 
4365 		/* discard potentially stale zero_sum_result */
4366 		sh->ops.zero_sum_result = 0;
4367 
4368 		if (sh->check_state == check_state_run) {
4369 			/* async_xor_zero_sum destroys the contents of P */
4370 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4371 			s->uptodate--;
4372 		}
4373 		if (sh->check_state >= check_state_run &&
4374 		    sh->check_state <= check_state_run_pq) {
4375 			/* async_syndrome_zero_sum preserves P and Q, so
4376 			 * no need to mark them !uptodate here
4377 			 */
4378 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
4379 			break;
4380 		}
4381 
4382 		/* we have 2-disk failure */
4383 		BUG_ON(s->failed != 2);
4384 		fallthrough;
4385 	case check_state_compute_result:
4386 		sh->check_state = check_state_idle;
4387 
4388 		/* check that a write has not made the stripe insync */
4389 		if (test_bit(STRIPE_INSYNC, &sh->state))
4390 			break;
4391 
4392 		/* now write out any block on a failed drive,
4393 		 * or P or Q if they were recomputed
4394 		 */
4395 		dev = NULL;
4396 		if (s->failed == 2) {
4397 			dev = &sh->dev[s->failed_num[1]];
4398 			s->locked++;
4399 			set_bit(R5_LOCKED, &dev->flags);
4400 			set_bit(R5_Wantwrite, &dev->flags);
4401 		}
4402 		if (s->failed >= 1) {
4403 			dev = &sh->dev[s->failed_num[0]];
4404 			s->locked++;
4405 			set_bit(R5_LOCKED, &dev->flags);
4406 			set_bit(R5_Wantwrite, &dev->flags);
4407 		}
4408 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4409 			dev = &sh->dev[pd_idx];
4410 			s->locked++;
4411 			set_bit(R5_LOCKED, &dev->flags);
4412 			set_bit(R5_Wantwrite, &dev->flags);
4413 		}
4414 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4415 			dev = &sh->dev[qd_idx];
4416 			s->locked++;
4417 			set_bit(R5_LOCKED, &dev->flags);
4418 			set_bit(R5_Wantwrite, &dev->flags);
4419 		}
4420 		if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags),
4421 			      "%s: disk%td not up to date\n",
4422 			      mdname(conf->mddev),
4423 			      dev - (struct r5dev *) &sh->dev)) {
4424 			clear_bit(R5_LOCKED, &dev->flags);
4425 			clear_bit(R5_Wantwrite, &dev->flags);
4426 			s->locked--;
4427 		}
4428 		clear_bit(STRIPE_DEGRADED, &sh->state);
4429 
4430 		set_bit(STRIPE_INSYNC, &sh->state);
4431 		break;
4432 	case check_state_run:
4433 	case check_state_run_q:
4434 	case check_state_run_pq:
4435 		break; /* we will be called again upon completion */
4436 	case check_state_check_result:
4437 		sh->check_state = check_state_idle;
4438 
4439 		/* handle a successful check operation, if parity is correct
4440 		 * we are done.  Otherwise update the mismatch count and repair
4441 		 * parity if !MD_RECOVERY_CHECK
4442 		 */
4443 		if (sh->ops.zero_sum_result == 0) {
4444 			/* both parities are correct */
4445 			if (!s->failed)
4446 				set_bit(STRIPE_INSYNC, &sh->state);
4447 			else {
4448 				/* in contrast to the raid5 case we can validate
4449 				 * parity, but still have a failure to write
4450 				 * back
4451 				 */
4452 				sh->check_state = check_state_compute_result;
4453 				/* Returning at this point means that we may go
4454 				 * off and bring p and/or q uptodate again so
4455 				 * we make sure to check zero_sum_result again
4456 				 * to verify if p or q need writeback
4457 				 */
4458 			}
4459 		} else {
4460 			atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4461 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4462 				/* don't try to repair!! */
4463 				set_bit(STRIPE_INSYNC, &sh->state);
4464 				pr_warn_ratelimited("%s: mismatch sector in range "
4465 						    "%llu-%llu\n", mdname(conf->mddev),
4466 						    (unsigned long long) sh->sector,
4467 						    (unsigned long long) sh->sector +
4468 						    RAID5_STRIPE_SECTORS(conf));
4469 			} else {
4470 				int *target = &sh->ops.target;
4471 
4472 				sh->ops.target = -1;
4473 				sh->ops.target2 = -1;
4474 				sh->check_state = check_state_compute_run;
4475 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4476 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4477 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4478 					set_bit(R5_Wantcompute,
4479 						&sh->dev[pd_idx].flags);
4480 					*target = pd_idx;
4481 					target = &sh->ops.target2;
4482 					s->uptodate++;
4483 				}
4484 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4485 					set_bit(R5_Wantcompute,
4486 						&sh->dev[qd_idx].flags);
4487 					*target = qd_idx;
4488 					s->uptodate++;
4489 				}
4490 			}
4491 		}
4492 		break;
4493 	case check_state_compute_run:
4494 		break;
4495 	default:
4496 		pr_warn("%s: unknown check_state: %d sector: %llu\n",
4497 			__func__, sh->check_state,
4498 			(unsigned long long) sh->sector);
4499 		BUG();
4500 	}
4501 }
4502 
4503 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4504 {
4505 	int i;
4506 
4507 	/* We have read all the blocks in this stripe and now we need to
4508 	 * copy some of them into a target stripe for expand.
4509 	 */
4510 	struct dma_async_tx_descriptor *tx = NULL;
4511 	BUG_ON(sh->batch_head);
4512 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4513 	for (i = 0; i < sh->disks; i++)
4514 		if (i != sh->pd_idx && i != sh->qd_idx) {
4515 			int dd_idx, j;
4516 			struct stripe_head *sh2;
4517 			struct async_submit_ctl submit;
4518 
4519 			sector_t bn = raid5_compute_blocknr(sh, i, 1);
4520 			sector_t s = raid5_compute_sector(conf, bn, 0,
4521 							  &dd_idx, NULL);
4522 			sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
4523 			if (sh2 == NULL)
4524 				/* so far only the early blocks of this stripe
4525 				 * have been requested.  When later blocks
4526 				 * get requested, we will try again
4527 				 */
4528 				continue;
4529 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4530 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4531 				/* must have already done this block */
4532 				raid5_release_stripe(sh2);
4533 				continue;
4534 			}
4535 
4536 			/* place all the copies on one channel */
4537 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4538 			tx = async_memcpy(sh2->dev[dd_idx].page,
4539 					  sh->dev[i].page, sh2->dev[dd_idx].offset,
4540 					  sh->dev[i].offset, RAID5_STRIPE_SIZE(conf),
4541 					  &submit);
4542 
4543 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4544 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4545 			for (j = 0; j < conf->raid_disks; j++)
4546 				if (j != sh2->pd_idx &&
4547 				    j != sh2->qd_idx &&
4548 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
4549 					break;
4550 			if (j == conf->raid_disks) {
4551 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
4552 				set_bit(STRIPE_HANDLE, &sh2->state);
4553 			}
4554 			raid5_release_stripe(sh2);
4555 
4556 		}
4557 	/* done submitting copies, wait for them to complete */
4558 	async_tx_quiesce(&tx);
4559 }
4560 
4561 /*
4562  * handle_stripe - do things to a stripe.
4563  *
4564  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4565  * state of various bits to see what needs to be done.
4566  * Possible results:
4567  *    return some read requests which now have data
4568  *    return some write requests which are safely on storage
4569  *    schedule a read on some buffers
4570  *    schedule a write of some buffers
4571  *    return confirmation of parity correctness
4572  *
4573  */
4574 
4575 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4576 {
4577 	struct r5conf *conf = sh->raid_conf;
4578 	int disks = sh->disks;
4579 	struct r5dev *dev;
4580 	int i;
4581 	int do_recovery = 0;
4582 
4583 	memset(s, 0, sizeof(*s));
4584 
4585 	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4586 	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4587 	s->failed_num[0] = -1;
4588 	s->failed_num[1] = -1;
4589 	s->log_failed = r5l_log_disk_error(conf);
4590 
4591 	/* Now to look around and see what can be done */
4592 	rcu_read_lock();
4593 	for (i=disks; i--; ) {
4594 		struct md_rdev *rdev;
4595 		sector_t first_bad;
4596 		int bad_sectors;
4597 		int is_bad = 0;
4598 
4599 		dev = &sh->dev[i];
4600 
4601 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4602 			 i, dev->flags,
4603 			 dev->toread, dev->towrite, dev->written);
4604 		/* maybe we can reply to a read
4605 		 *
4606 		 * new wantfill requests are only permitted while
4607 		 * ops_complete_biofill is guaranteed to be inactive
4608 		 */
4609 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4610 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4611 			set_bit(R5_Wantfill, &dev->flags);
4612 
4613 		/* now count some things */
4614 		if (test_bit(R5_LOCKED, &dev->flags))
4615 			s->locked++;
4616 		if (test_bit(R5_UPTODATE, &dev->flags))
4617 			s->uptodate++;
4618 		if (test_bit(R5_Wantcompute, &dev->flags)) {
4619 			s->compute++;
4620 			BUG_ON(s->compute > 2);
4621 		}
4622 
4623 		if (test_bit(R5_Wantfill, &dev->flags))
4624 			s->to_fill++;
4625 		else if (dev->toread)
4626 			s->to_read++;
4627 		if (dev->towrite) {
4628 			s->to_write++;
4629 			if (!test_bit(R5_OVERWRITE, &dev->flags))
4630 				s->non_overwrite++;
4631 		}
4632 		if (dev->written)
4633 			s->written++;
4634 		/* Prefer to use the replacement for reads, but only
4635 		 * if it is recovered enough and has no bad blocks.
4636 		 */
4637 		rdev = rcu_dereference(conf->disks[i].replacement);
4638 		if (rdev && !test_bit(Faulty, &rdev->flags) &&
4639 		    rdev->recovery_offset >= sh->sector + RAID5_STRIPE_SECTORS(conf) &&
4640 		    !is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
4641 				 &first_bad, &bad_sectors))
4642 			set_bit(R5_ReadRepl, &dev->flags);
4643 		else {
4644 			if (rdev && !test_bit(Faulty, &rdev->flags))
4645 				set_bit(R5_NeedReplace, &dev->flags);
4646 			else
4647 				clear_bit(R5_NeedReplace, &dev->flags);
4648 			rdev = rcu_dereference(conf->disks[i].rdev);
4649 			clear_bit(R5_ReadRepl, &dev->flags);
4650 		}
4651 		if (rdev && test_bit(Faulty, &rdev->flags))
4652 			rdev = NULL;
4653 		if (rdev) {
4654 			is_bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
4655 					     &first_bad, &bad_sectors);
4656 			if (s->blocked_rdev == NULL
4657 			    && (test_bit(Blocked, &rdev->flags)
4658 				|| is_bad < 0)) {
4659 				if (is_bad < 0)
4660 					set_bit(BlockedBadBlocks,
4661 						&rdev->flags);
4662 				s->blocked_rdev = rdev;
4663 				atomic_inc(&rdev->nr_pending);
4664 			}
4665 		}
4666 		clear_bit(R5_Insync, &dev->flags);
4667 		if (!rdev)
4668 			/* Not in-sync */;
4669 		else if (is_bad) {
4670 			/* also not in-sync */
4671 			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4672 			    test_bit(R5_UPTODATE, &dev->flags)) {
4673 				/* treat as in-sync, but with a read error
4674 				 * which we can now try to correct
4675 				 */
4676 				set_bit(R5_Insync, &dev->flags);
4677 				set_bit(R5_ReadError, &dev->flags);
4678 			}
4679 		} else if (test_bit(In_sync, &rdev->flags))
4680 			set_bit(R5_Insync, &dev->flags);
4681 		else if (sh->sector + RAID5_STRIPE_SECTORS(conf) <= rdev->recovery_offset)
4682 			/* in sync if before recovery_offset */
4683 			set_bit(R5_Insync, &dev->flags);
4684 		else if (test_bit(R5_UPTODATE, &dev->flags) &&
4685 			 test_bit(R5_Expanded, &dev->flags))
4686 			/* If we've reshaped into here, we assume it is Insync.
4687 			 * We will shortly update recovery_offset to make
4688 			 * it official.
4689 			 */
4690 			set_bit(R5_Insync, &dev->flags);
4691 
4692 		if (test_bit(R5_WriteError, &dev->flags)) {
4693 			/* This flag does not apply to '.replacement'
4694 			 * only to .rdev, so make sure to check that*/
4695 			struct md_rdev *rdev2 = rcu_dereference(
4696 				conf->disks[i].rdev);
4697 			if (rdev2 == rdev)
4698 				clear_bit(R5_Insync, &dev->flags);
4699 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4700 				s->handle_bad_blocks = 1;
4701 				atomic_inc(&rdev2->nr_pending);
4702 			} else
4703 				clear_bit(R5_WriteError, &dev->flags);
4704 		}
4705 		if (test_bit(R5_MadeGood, &dev->flags)) {
4706 			/* This flag does not apply to '.replacement'
4707 			 * only to .rdev, so make sure to check that*/
4708 			struct md_rdev *rdev2 = rcu_dereference(
4709 				conf->disks[i].rdev);
4710 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4711 				s->handle_bad_blocks = 1;
4712 				atomic_inc(&rdev2->nr_pending);
4713 			} else
4714 				clear_bit(R5_MadeGood, &dev->flags);
4715 		}
4716 		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4717 			struct md_rdev *rdev2 = rcu_dereference(
4718 				conf->disks[i].replacement);
4719 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4720 				s->handle_bad_blocks = 1;
4721 				atomic_inc(&rdev2->nr_pending);
4722 			} else
4723 				clear_bit(R5_MadeGoodRepl, &dev->flags);
4724 		}
4725 		if (!test_bit(R5_Insync, &dev->flags)) {
4726 			/* The ReadError flag will just be confusing now */
4727 			clear_bit(R5_ReadError, &dev->flags);
4728 			clear_bit(R5_ReWrite, &dev->flags);
4729 		}
4730 		if (test_bit(R5_ReadError, &dev->flags))
4731 			clear_bit(R5_Insync, &dev->flags);
4732 		if (!test_bit(R5_Insync, &dev->flags)) {
4733 			if (s->failed < 2)
4734 				s->failed_num[s->failed] = i;
4735 			s->failed++;
4736 			if (rdev && !test_bit(Faulty, &rdev->flags))
4737 				do_recovery = 1;
4738 			else if (!rdev) {
4739 				rdev = rcu_dereference(
4740 				    conf->disks[i].replacement);
4741 				if (rdev && !test_bit(Faulty, &rdev->flags))
4742 					do_recovery = 1;
4743 			}
4744 		}
4745 
4746 		if (test_bit(R5_InJournal, &dev->flags))
4747 			s->injournal++;
4748 		if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4749 			s->just_cached++;
4750 	}
4751 	if (test_bit(STRIPE_SYNCING, &sh->state)) {
4752 		/* If there is a failed device being replaced,
4753 		 *     we must be recovering.
4754 		 * else if we are after recovery_cp, we must be syncing
4755 		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4756 		 * else we can only be replacing
4757 		 * sync and recovery both need to read all devices, and so
4758 		 * use the same flag.
4759 		 */
4760 		if (do_recovery ||
4761 		    sh->sector >= conf->mddev->recovery_cp ||
4762 		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4763 			s->syncing = 1;
4764 		else
4765 			s->replacing = 1;
4766 	}
4767 	rcu_read_unlock();
4768 }
4769 
4770 /*
4771  * Return '1' if this is a member of batch, or '0' if it is a lone stripe or
4772  * a head which can now be handled.
4773  */
4774 static int clear_batch_ready(struct stripe_head *sh)
4775 {
4776 	struct stripe_head *tmp;
4777 	if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4778 		return (sh->batch_head && sh->batch_head != sh);
4779 	spin_lock(&sh->stripe_lock);
4780 	if (!sh->batch_head) {
4781 		spin_unlock(&sh->stripe_lock);
4782 		return 0;
4783 	}
4784 
4785 	/*
4786 	 * this stripe could be added to a batch list before we check
4787 	 * BATCH_READY, skips it
4788 	 */
4789 	if (sh->batch_head != sh) {
4790 		spin_unlock(&sh->stripe_lock);
4791 		return 1;
4792 	}
4793 	spin_lock(&sh->batch_lock);
4794 	list_for_each_entry(tmp, &sh->batch_list, batch_list)
4795 		clear_bit(STRIPE_BATCH_READY, &tmp->state);
4796 	spin_unlock(&sh->batch_lock);
4797 	spin_unlock(&sh->stripe_lock);
4798 
4799 	/*
4800 	 * BATCH_READY is cleared, no new stripes can be added.
4801 	 * batch_list can be accessed without lock
4802 	 */
4803 	return 0;
4804 }
4805 
4806 static void break_stripe_batch_list(struct stripe_head *head_sh,
4807 				    unsigned long handle_flags)
4808 {
4809 	struct stripe_head *sh, *next;
4810 	int i;
4811 	int do_wakeup = 0;
4812 
4813 	list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4814 
4815 		list_del_init(&sh->batch_list);
4816 
4817 		WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4818 					  (1 << STRIPE_SYNCING) |
4819 					  (1 << STRIPE_REPLACED) |
4820 					  (1 << STRIPE_DELAYED) |
4821 					  (1 << STRIPE_BIT_DELAY) |
4822 					  (1 << STRIPE_FULL_WRITE) |
4823 					  (1 << STRIPE_BIOFILL_RUN) |
4824 					  (1 << STRIPE_COMPUTE_RUN)  |
4825 					  (1 << STRIPE_DISCARD) |
4826 					  (1 << STRIPE_BATCH_READY) |
4827 					  (1 << STRIPE_BATCH_ERR) |
4828 					  (1 << STRIPE_BITMAP_PENDING)),
4829 			"stripe state: %lx\n", sh->state);
4830 		WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4831 					      (1 << STRIPE_REPLACED)),
4832 			"head stripe state: %lx\n", head_sh->state);
4833 
4834 		set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4835 					    (1 << STRIPE_PREREAD_ACTIVE) |
4836 					    (1 << STRIPE_DEGRADED) |
4837 					    (1 << STRIPE_ON_UNPLUG_LIST)),
4838 			      head_sh->state & (1 << STRIPE_INSYNC));
4839 
4840 		sh->check_state = head_sh->check_state;
4841 		sh->reconstruct_state = head_sh->reconstruct_state;
4842 		spin_lock_irq(&sh->stripe_lock);
4843 		sh->batch_head = NULL;
4844 		spin_unlock_irq(&sh->stripe_lock);
4845 		for (i = 0; i < sh->disks; i++) {
4846 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4847 				do_wakeup = 1;
4848 			sh->dev[i].flags = head_sh->dev[i].flags &
4849 				(~((1 << R5_WriteError) | (1 << R5_Overlap)));
4850 		}
4851 		if (handle_flags == 0 ||
4852 		    sh->state & handle_flags)
4853 			set_bit(STRIPE_HANDLE, &sh->state);
4854 		raid5_release_stripe(sh);
4855 	}
4856 	spin_lock_irq(&head_sh->stripe_lock);
4857 	head_sh->batch_head = NULL;
4858 	spin_unlock_irq(&head_sh->stripe_lock);
4859 	for (i = 0; i < head_sh->disks; i++)
4860 		if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4861 			do_wakeup = 1;
4862 	if (head_sh->state & handle_flags)
4863 		set_bit(STRIPE_HANDLE, &head_sh->state);
4864 
4865 	if (do_wakeup)
4866 		wake_up(&head_sh->raid_conf->wait_for_overlap);
4867 }
4868 
4869 static void handle_stripe(struct stripe_head *sh)
4870 {
4871 	struct stripe_head_state s;
4872 	struct r5conf *conf = sh->raid_conf;
4873 	int i;
4874 	int prexor;
4875 	int disks = sh->disks;
4876 	struct r5dev *pdev, *qdev;
4877 
4878 	clear_bit(STRIPE_HANDLE, &sh->state);
4879 
4880 	/*
4881 	 * handle_stripe should not continue handle the batched stripe, only
4882 	 * the head of batch list or lone stripe can continue. Otherwise we
4883 	 * could see break_stripe_batch_list warns about the STRIPE_ACTIVE
4884 	 * is set for the batched stripe.
4885 	 */
4886 	if (clear_batch_ready(sh))
4887 		return;
4888 
4889 	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4890 		/* already being handled, ensure it gets handled
4891 		 * again when current action finishes */
4892 		set_bit(STRIPE_HANDLE, &sh->state);
4893 		return;
4894 	}
4895 
4896 	if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4897 		break_stripe_batch_list(sh, 0);
4898 
4899 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4900 		spin_lock(&sh->stripe_lock);
4901 		/*
4902 		 * Cannot process 'sync' concurrently with 'discard'.
4903 		 * Flush data in r5cache before 'sync'.
4904 		 */
4905 		if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4906 		    !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4907 		    !test_bit(STRIPE_DISCARD, &sh->state) &&
4908 		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4909 			set_bit(STRIPE_SYNCING, &sh->state);
4910 			clear_bit(STRIPE_INSYNC, &sh->state);
4911 			clear_bit(STRIPE_REPLACED, &sh->state);
4912 		}
4913 		spin_unlock(&sh->stripe_lock);
4914 	}
4915 	clear_bit(STRIPE_DELAYED, &sh->state);
4916 
4917 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4918 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4919 	       (unsigned long long)sh->sector, sh->state,
4920 	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4921 	       sh->check_state, sh->reconstruct_state);
4922 
4923 	analyse_stripe(sh, &s);
4924 
4925 	if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4926 		goto finish;
4927 
4928 	if (s.handle_bad_blocks ||
4929 	    test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4930 		set_bit(STRIPE_HANDLE, &sh->state);
4931 		goto finish;
4932 	}
4933 
4934 	if (unlikely(s.blocked_rdev)) {
4935 		if (s.syncing || s.expanding || s.expanded ||
4936 		    s.replacing || s.to_write || s.written) {
4937 			set_bit(STRIPE_HANDLE, &sh->state);
4938 			goto finish;
4939 		}
4940 		/* There is nothing for the blocked_rdev to block */
4941 		rdev_dec_pending(s.blocked_rdev, conf->mddev);
4942 		s.blocked_rdev = NULL;
4943 	}
4944 
4945 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4946 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4947 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4948 	}
4949 
4950 	pr_debug("locked=%d uptodate=%d to_read=%d"
4951 	       " to_write=%d failed=%d failed_num=%d,%d\n",
4952 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4953 	       s.failed_num[0], s.failed_num[1]);
4954 	/*
4955 	 * check if the array has lost more than max_degraded devices and,
4956 	 * if so, some requests might need to be failed.
4957 	 *
4958 	 * When journal device failed (log_failed), we will only process
4959 	 * the stripe if there is data need write to raid disks
4960 	 */
4961 	if (s.failed > conf->max_degraded ||
4962 	    (s.log_failed && s.injournal == 0)) {
4963 		sh->check_state = 0;
4964 		sh->reconstruct_state = 0;
4965 		break_stripe_batch_list(sh, 0);
4966 		if (s.to_read+s.to_write+s.written)
4967 			handle_failed_stripe(conf, sh, &s, disks);
4968 		if (s.syncing + s.replacing)
4969 			handle_failed_sync(conf, sh, &s);
4970 	}
4971 
4972 	/* Now we check to see if any write operations have recently
4973 	 * completed
4974 	 */
4975 	prexor = 0;
4976 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4977 		prexor = 1;
4978 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
4979 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4980 		sh->reconstruct_state = reconstruct_state_idle;
4981 
4982 		/* All the 'written' buffers and the parity block are ready to
4983 		 * be written back to disk
4984 		 */
4985 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4986 		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4987 		BUG_ON(sh->qd_idx >= 0 &&
4988 		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4989 		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4990 		for (i = disks; i--; ) {
4991 			struct r5dev *dev = &sh->dev[i];
4992 			if (test_bit(R5_LOCKED, &dev->flags) &&
4993 				(i == sh->pd_idx || i == sh->qd_idx ||
4994 				 dev->written || test_bit(R5_InJournal,
4995 							  &dev->flags))) {
4996 				pr_debug("Writing block %d\n", i);
4997 				set_bit(R5_Wantwrite, &dev->flags);
4998 				if (prexor)
4999 					continue;
5000 				if (s.failed > 1)
5001 					continue;
5002 				if (!test_bit(R5_Insync, &dev->flags) ||
5003 				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
5004 				     s.failed == 0))
5005 					set_bit(STRIPE_INSYNC, &sh->state);
5006 			}
5007 		}
5008 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5009 			s.dec_preread_active = 1;
5010 	}
5011 
5012 	/*
5013 	 * might be able to return some write requests if the parity blocks
5014 	 * are safe, or on a failed drive
5015 	 */
5016 	pdev = &sh->dev[sh->pd_idx];
5017 	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
5018 		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
5019 	qdev = &sh->dev[sh->qd_idx];
5020 	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
5021 		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
5022 		|| conf->level < 6;
5023 
5024 	if (s.written &&
5025 	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
5026 			     && !test_bit(R5_LOCKED, &pdev->flags)
5027 			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
5028 				 test_bit(R5_Discard, &pdev->flags))))) &&
5029 	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
5030 			     && !test_bit(R5_LOCKED, &qdev->flags)
5031 			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
5032 				 test_bit(R5_Discard, &qdev->flags))))))
5033 		handle_stripe_clean_event(conf, sh, disks);
5034 
5035 	if (s.just_cached)
5036 		r5c_handle_cached_data_endio(conf, sh, disks);
5037 	log_stripe_write_finished(sh);
5038 
5039 	/* Now we might consider reading some blocks, either to check/generate
5040 	 * parity, or to satisfy requests
5041 	 * or to load a block that is being partially written.
5042 	 */
5043 	if (s.to_read || s.non_overwrite
5044 	    || (s.to_write && s.failed)
5045 	    || (s.syncing && (s.uptodate + s.compute < disks))
5046 	    || s.replacing
5047 	    || s.expanding)
5048 		handle_stripe_fill(sh, &s, disks);
5049 
5050 	/*
5051 	 * When the stripe finishes full journal write cycle (write to journal
5052 	 * and raid disk), this is the clean up procedure so it is ready for
5053 	 * next operation.
5054 	 */
5055 	r5c_finish_stripe_write_out(conf, sh, &s);
5056 
5057 	/*
5058 	 * Now to consider new write requests, cache write back and what else,
5059 	 * if anything should be read.  We do not handle new writes when:
5060 	 * 1/ A 'write' operation (copy+xor) is already in flight.
5061 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
5062 	 *    block.
5063 	 * 3/ A r5c cache log write is in flight.
5064 	 */
5065 
5066 	if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
5067 		if (!r5c_is_writeback(conf->log)) {
5068 			if (s.to_write)
5069 				handle_stripe_dirtying(conf, sh, &s, disks);
5070 		} else { /* write back cache */
5071 			int ret = 0;
5072 
5073 			/* First, try handle writes in caching phase */
5074 			if (s.to_write)
5075 				ret = r5c_try_caching_write(conf, sh, &s,
5076 							    disks);
5077 			/*
5078 			 * If caching phase failed: ret == -EAGAIN
5079 			 *    OR
5080 			 * stripe under reclaim: !caching && injournal
5081 			 *
5082 			 * fall back to handle_stripe_dirtying()
5083 			 */
5084 			if (ret == -EAGAIN ||
5085 			    /* stripe under reclaim: !caching && injournal */
5086 			    (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
5087 			     s.injournal > 0)) {
5088 				ret = handle_stripe_dirtying(conf, sh, &s,
5089 							     disks);
5090 				if (ret == -EAGAIN)
5091 					goto finish;
5092 			}
5093 		}
5094 	}
5095 
5096 	/* maybe we need to check and possibly fix the parity for this stripe
5097 	 * Any reads will already have been scheduled, so we just see if enough
5098 	 * data is available.  The parity check is held off while parity
5099 	 * dependent operations are in flight.
5100 	 */
5101 	if (sh->check_state ||
5102 	    (s.syncing && s.locked == 0 &&
5103 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5104 	     !test_bit(STRIPE_INSYNC, &sh->state))) {
5105 		if (conf->level == 6)
5106 			handle_parity_checks6(conf, sh, &s, disks);
5107 		else
5108 			handle_parity_checks5(conf, sh, &s, disks);
5109 	}
5110 
5111 	if ((s.replacing || s.syncing) && s.locked == 0
5112 	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
5113 	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
5114 		/* Write out to replacement devices where possible */
5115 		for (i = 0; i < conf->raid_disks; i++)
5116 			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
5117 				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
5118 				set_bit(R5_WantReplace, &sh->dev[i].flags);
5119 				set_bit(R5_LOCKED, &sh->dev[i].flags);
5120 				s.locked++;
5121 			}
5122 		if (s.replacing)
5123 			set_bit(STRIPE_INSYNC, &sh->state);
5124 		set_bit(STRIPE_REPLACED, &sh->state);
5125 	}
5126 	if ((s.syncing || s.replacing) && s.locked == 0 &&
5127 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5128 	    test_bit(STRIPE_INSYNC, &sh->state)) {
5129 		md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
5130 		clear_bit(STRIPE_SYNCING, &sh->state);
5131 		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
5132 			wake_up(&conf->wait_for_overlap);
5133 	}
5134 
5135 	/* If the failed drives are just a ReadError, then we might need
5136 	 * to progress the repair/check process
5137 	 */
5138 	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
5139 		for (i = 0; i < s.failed; i++) {
5140 			struct r5dev *dev = &sh->dev[s.failed_num[i]];
5141 			if (test_bit(R5_ReadError, &dev->flags)
5142 			    && !test_bit(R5_LOCKED, &dev->flags)
5143 			    && test_bit(R5_UPTODATE, &dev->flags)
5144 				) {
5145 				if (!test_bit(R5_ReWrite, &dev->flags)) {
5146 					set_bit(R5_Wantwrite, &dev->flags);
5147 					set_bit(R5_ReWrite, &dev->flags);
5148 				} else
5149 					/* let's read it back */
5150 					set_bit(R5_Wantread, &dev->flags);
5151 				set_bit(R5_LOCKED, &dev->flags);
5152 				s.locked++;
5153 			}
5154 		}
5155 
5156 	/* Finish reconstruct operations initiated by the expansion process */
5157 	if (sh->reconstruct_state == reconstruct_state_result) {
5158 		struct stripe_head *sh_src
5159 			= raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
5160 		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
5161 			/* sh cannot be written until sh_src has been read.
5162 			 * so arrange for sh to be delayed a little
5163 			 */
5164 			set_bit(STRIPE_DELAYED, &sh->state);
5165 			set_bit(STRIPE_HANDLE, &sh->state);
5166 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
5167 					      &sh_src->state))
5168 				atomic_inc(&conf->preread_active_stripes);
5169 			raid5_release_stripe(sh_src);
5170 			goto finish;
5171 		}
5172 		if (sh_src)
5173 			raid5_release_stripe(sh_src);
5174 
5175 		sh->reconstruct_state = reconstruct_state_idle;
5176 		clear_bit(STRIPE_EXPANDING, &sh->state);
5177 		for (i = conf->raid_disks; i--; ) {
5178 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
5179 			set_bit(R5_LOCKED, &sh->dev[i].flags);
5180 			s.locked++;
5181 		}
5182 	}
5183 
5184 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
5185 	    !sh->reconstruct_state) {
5186 		/* Need to write out all blocks after computing parity */
5187 		sh->disks = conf->raid_disks;
5188 		stripe_set_idx(sh->sector, conf, 0, sh);
5189 		schedule_reconstruction(sh, &s, 1, 1);
5190 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
5191 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
5192 		atomic_dec(&conf->reshape_stripes);
5193 		wake_up(&conf->wait_for_overlap);
5194 		md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
5195 	}
5196 
5197 	if (s.expanding && s.locked == 0 &&
5198 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
5199 		handle_stripe_expansion(conf, sh);
5200 
5201 finish:
5202 	/* wait for this device to become unblocked */
5203 	if (unlikely(s.blocked_rdev)) {
5204 		if (conf->mddev->external)
5205 			md_wait_for_blocked_rdev(s.blocked_rdev,
5206 						 conf->mddev);
5207 		else
5208 			/* Internal metadata will immediately
5209 			 * be written by raid5d, so we don't
5210 			 * need to wait here.
5211 			 */
5212 			rdev_dec_pending(s.blocked_rdev,
5213 					 conf->mddev);
5214 	}
5215 
5216 	if (s.handle_bad_blocks)
5217 		for (i = disks; i--; ) {
5218 			struct md_rdev *rdev;
5219 			struct r5dev *dev = &sh->dev[i];
5220 			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
5221 				/* We own a safe reference to the rdev */
5222 				rdev = conf->disks[i].rdev;
5223 				if (!rdev_set_badblocks(rdev, sh->sector,
5224 							RAID5_STRIPE_SECTORS(conf), 0))
5225 					md_error(conf->mddev, rdev);
5226 				rdev_dec_pending(rdev, conf->mddev);
5227 			}
5228 			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5229 				rdev = conf->disks[i].rdev;
5230 				rdev_clear_badblocks(rdev, sh->sector,
5231 						     RAID5_STRIPE_SECTORS(conf), 0);
5232 				rdev_dec_pending(rdev, conf->mddev);
5233 			}
5234 			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5235 				rdev = conf->disks[i].replacement;
5236 				if (!rdev)
5237 					/* rdev have been moved down */
5238 					rdev = conf->disks[i].rdev;
5239 				rdev_clear_badblocks(rdev, sh->sector,
5240 						     RAID5_STRIPE_SECTORS(conf), 0);
5241 				rdev_dec_pending(rdev, conf->mddev);
5242 			}
5243 		}
5244 
5245 	if (s.ops_request)
5246 		raid_run_ops(sh, s.ops_request);
5247 
5248 	ops_run_io(sh, &s);
5249 
5250 	if (s.dec_preread_active) {
5251 		/* We delay this until after ops_run_io so that if make_request
5252 		 * is waiting on a flush, it won't continue until the writes
5253 		 * have actually been submitted.
5254 		 */
5255 		atomic_dec(&conf->preread_active_stripes);
5256 		if (atomic_read(&conf->preread_active_stripes) <
5257 		    IO_THRESHOLD)
5258 			md_wakeup_thread(conf->mddev->thread);
5259 	}
5260 
5261 	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5262 }
5263 
5264 static void raid5_activate_delayed(struct r5conf *conf)
5265 {
5266 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5267 		while (!list_empty(&conf->delayed_list)) {
5268 			struct list_head *l = conf->delayed_list.next;
5269 			struct stripe_head *sh;
5270 			sh = list_entry(l, struct stripe_head, lru);
5271 			list_del_init(l);
5272 			clear_bit(STRIPE_DELAYED, &sh->state);
5273 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5274 				atomic_inc(&conf->preread_active_stripes);
5275 			list_add_tail(&sh->lru, &conf->hold_list);
5276 			raid5_wakeup_stripe_thread(sh);
5277 		}
5278 	}
5279 }
5280 
5281 static void activate_bit_delay(struct r5conf *conf,
5282 	struct list_head *temp_inactive_list)
5283 {
5284 	/* device_lock is held */
5285 	struct list_head head;
5286 	list_add(&head, &conf->bitmap_list);
5287 	list_del_init(&conf->bitmap_list);
5288 	while (!list_empty(&head)) {
5289 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5290 		int hash;
5291 		list_del_init(&sh->lru);
5292 		atomic_inc(&sh->count);
5293 		hash = sh->hash_lock_index;
5294 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
5295 	}
5296 }
5297 
5298 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5299 {
5300 	struct r5conf *conf = mddev->private;
5301 	sector_t sector = bio->bi_iter.bi_sector;
5302 	unsigned int chunk_sectors;
5303 	unsigned int bio_sectors = bio_sectors(bio);
5304 
5305 	chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5306 	return  chunk_sectors >=
5307 		((sector & (chunk_sectors - 1)) + bio_sectors);
5308 }
5309 
5310 /*
5311  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
5312  *  later sampled by raid5d.
5313  */
5314 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5315 {
5316 	unsigned long flags;
5317 
5318 	spin_lock_irqsave(&conf->device_lock, flags);
5319 
5320 	bi->bi_next = conf->retry_read_aligned_list;
5321 	conf->retry_read_aligned_list = bi;
5322 
5323 	spin_unlock_irqrestore(&conf->device_lock, flags);
5324 	md_wakeup_thread(conf->mddev->thread);
5325 }
5326 
5327 static struct bio *remove_bio_from_retry(struct r5conf *conf,
5328 					 unsigned int *offset)
5329 {
5330 	struct bio *bi;
5331 
5332 	bi = conf->retry_read_aligned;
5333 	if (bi) {
5334 		*offset = conf->retry_read_offset;
5335 		conf->retry_read_aligned = NULL;
5336 		return bi;
5337 	}
5338 	bi = conf->retry_read_aligned_list;
5339 	if(bi) {
5340 		conf->retry_read_aligned_list = bi->bi_next;
5341 		bi->bi_next = NULL;
5342 		*offset = 0;
5343 	}
5344 
5345 	return bi;
5346 }
5347 
5348 /*
5349  *  The "raid5_align_endio" should check if the read succeeded and if it
5350  *  did, call bio_endio on the original bio (having bio_put the new bio
5351  *  first).
5352  *  If the read failed..
5353  */
5354 static void raid5_align_endio(struct bio *bi)
5355 {
5356 	struct md_io_acct *md_io_acct = bi->bi_private;
5357 	struct bio *raid_bi = md_io_acct->orig_bio;
5358 	struct mddev *mddev;
5359 	struct r5conf *conf;
5360 	struct md_rdev *rdev;
5361 	blk_status_t error = bi->bi_status;
5362 	unsigned long start_time = md_io_acct->start_time;
5363 
5364 	bio_put(bi);
5365 
5366 	rdev = (void*)raid_bi->bi_next;
5367 	raid_bi->bi_next = NULL;
5368 	mddev = rdev->mddev;
5369 	conf = mddev->private;
5370 
5371 	rdev_dec_pending(rdev, conf->mddev);
5372 
5373 	if (!error) {
5374 		if (blk_queue_io_stat(raid_bi->bi_bdev->bd_disk->queue))
5375 			bio_end_io_acct(raid_bi, start_time);
5376 		bio_endio(raid_bi);
5377 		if (atomic_dec_and_test(&conf->active_aligned_reads))
5378 			wake_up(&conf->wait_for_quiescent);
5379 		return;
5380 	}
5381 
5382 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5383 
5384 	add_bio_to_retry(raid_bi, conf);
5385 }
5386 
5387 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5388 {
5389 	struct r5conf *conf = mddev->private;
5390 	struct bio *align_bio;
5391 	struct md_rdev *rdev;
5392 	sector_t sector, end_sector, first_bad;
5393 	int bad_sectors, dd_idx;
5394 	struct md_io_acct *md_io_acct;
5395 	bool did_inc;
5396 
5397 	if (!in_chunk_boundary(mddev, raid_bio)) {
5398 		pr_debug("%s: non aligned\n", __func__);
5399 		return 0;
5400 	}
5401 
5402 	sector = raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 0,
5403 				      &dd_idx, NULL);
5404 	end_sector = bio_end_sector(raid_bio);
5405 
5406 	rcu_read_lock();
5407 	if (r5c_big_stripe_cached(conf, sector))
5408 		goto out_rcu_unlock;
5409 
5410 	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5411 	if (!rdev || test_bit(Faulty, &rdev->flags) ||
5412 	    rdev->recovery_offset < end_sector) {
5413 		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5414 		if (!rdev)
5415 			goto out_rcu_unlock;
5416 		if (test_bit(Faulty, &rdev->flags) ||
5417 		    !(test_bit(In_sync, &rdev->flags) ||
5418 		      rdev->recovery_offset >= end_sector))
5419 			goto out_rcu_unlock;
5420 	}
5421 
5422 	atomic_inc(&rdev->nr_pending);
5423 	rcu_read_unlock();
5424 
5425 	if (is_badblock(rdev, sector, bio_sectors(raid_bio), &first_bad,
5426 			&bad_sectors)) {
5427 		bio_put(raid_bio);
5428 		rdev_dec_pending(rdev, mddev);
5429 		return 0;
5430 	}
5431 
5432 	align_bio = bio_alloc_clone(rdev->bdev, raid_bio, GFP_NOIO,
5433 				    &mddev->io_acct_set);
5434 	md_io_acct = container_of(align_bio, struct md_io_acct, bio_clone);
5435 	raid_bio->bi_next = (void *)rdev;
5436 	if (blk_queue_io_stat(raid_bio->bi_bdev->bd_disk->queue))
5437 		md_io_acct->start_time = bio_start_io_acct(raid_bio);
5438 	md_io_acct->orig_bio = raid_bio;
5439 
5440 	align_bio->bi_end_io = raid5_align_endio;
5441 	align_bio->bi_private = md_io_acct;
5442 	align_bio->bi_iter.bi_sector = sector;
5443 
5444 	/* No reshape active, so we can trust rdev->data_offset */
5445 	align_bio->bi_iter.bi_sector += rdev->data_offset;
5446 
5447 	did_inc = false;
5448 	if (conf->quiesce == 0) {
5449 		atomic_inc(&conf->active_aligned_reads);
5450 		did_inc = true;
5451 	}
5452 	/* need a memory barrier to detect the race with raid5_quiesce() */
5453 	if (!did_inc || smp_load_acquire(&conf->quiesce) != 0) {
5454 		/* quiesce is in progress, so we need to undo io activation and wait
5455 		 * for it to finish
5456 		 */
5457 		if (did_inc && atomic_dec_and_test(&conf->active_aligned_reads))
5458 			wake_up(&conf->wait_for_quiescent);
5459 		spin_lock_irq(&conf->device_lock);
5460 		wait_event_lock_irq(conf->wait_for_quiescent, conf->quiesce == 0,
5461 				    conf->device_lock);
5462 		atomic_inc(&conf->active_aligned_reads);
5463 		spin_unlock_irq(&conf->device_lock);
5464 	}
5465 
5466 	if (mddev->gendisk)
5467 		trace_block_bio_remap(align_bio, disk_devt(mddev->gendisk),
5468 				      raid_bio->bi_iter.bi_sector);
5469 	submit_bio_noacct(align_bio);
5470 	return 1;
5471 
5472 out_rcu_unlock:
5473 	rcu_read_unlock();
5474 	return 0;
5475 }
5476 
5477 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5478 {
5479 	struct bio *split;
5480 	sector_t sector = raid_bio->bi_iter.bi_sector;
5481 	unsigned chunk_sects = mddev->chunk_sectors;
5482 	unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5483 
5484 	if (sectors < bio_sectors(raid_bio)) {
5485 		struct r5conf *conf = mddev->private;
5486 		split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split);
5487 		bio_chain(split, raid_bio);
5488 		submit_bio_noacct(raid_bio);
5489 		raid_bio = split;
5490 	}
5491 
5492 	if (!raid5_read_one_chunk(mddev, raid_bio))
5493 		return raid_bio;
5494 
5495 	return NULL;
5496 }
5497 
5498 /* __get_priority_stripe - get the next stripe to process
5499  *
5500  * Full stripe writes are allowed to pass preread active stripes up until
5501  * the bypass_threshold is exceeded.  In general the bypass_count
5502  * increments when the handle_list is handled before the hold_list; however, it
5503  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5504  * stripe with in flight i/o.  The bypass_count will be reset when the
5505  * head of the hold_list has changed, i.e. the head was promoted to the
5506  * handle_list.
5507  */
5508 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5509 {
5510 	struct stripe_head *sh, *tmp;
5511 	struct list_head *handle_list = NULL;
5512 	struct r5worker_group *wg;
5513 	bool second_try = !r5c_is_writeback(conf->log) &&
5514 		!r5l_log_disk_error(conf);
5515 	bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5516 		r5l_log_disk_error(conf);
5517 
5518 again:
5519 	wg = NULL;
5520 	sh = NULL;
5521 	if (conf->worker_cnt_per_group == 0) {
5522 		handle_list = try_loprio ? &conf->loprio_list :
5523 					&conf->handle_list;
5524 	} else if (group != ANY_GROUP) {
5525 		handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5526 				&conf->worker_groups[group].handle_list;
5527 		wg = &conf->worker_groups[group];
5528 	} else {
5529 		int i;
5530 		for (i = 0; i < conf->group_cnt; i++) {
5531 			handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5532 				&conf->worker_groups[i].handle_list;
5533 			wg = &conf->worker_groups[i];
5534 			if (!list_empty(handle_list))
5535 				break;
5536 		}
5537 	}
5538 
5539 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5540 		  __func__,
5541 		  list_empty(handle_list) ? "empty" : "busy",
5542 		  list_empty(&conf->hold_list) ? "empty" : "busy",
5543 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
5544 
5545 	if (!list_empty(handle_list)) {
5546 		sh = list_entry(handle_list->next, typeof(*sh), lru);
5547 
5548 		if (list_empty(&conf->hold_list))
5549 			conf->bypass_count = 0;
5550 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5551 			if (conf->hold_list.next == conf->last_hold)
5552 				conf->bypass_count++;
5553 			else {
5554 				conf->last_hold = conf->hold_list.next;
5555 				conf->bypass_count -= conf->bypass_threshold;
5556 				if (conf->bypass_count < 0)
5557 					conf->bypass_count = 0;
5558 			}
5559 		}
5560 	} else if (!list_empty(&conf->hold_list) &&
5561 		   ((conf->bypass_threshold &&
5562 		     conf->bypass_count > conf->bypass_threshold) ||
5563 		    atomic_read(&conf->pending_full_writes) == 0)) {
5564 
5565 		list_for_each_entry(tmp, &conf->hold_list,  lru) {
5566 			if (conf->worker_cnt_per_group == 0 ||
5567 			    group == ANY_GROUP ||
5568 			    !cpu_online(tmp->cpu) ||
5569 			    cpu_to_group(tmp->cpu) == group) {
5570 				sh = tmp;
5571 				break;
5572 			}
5573 		}
5574 
5575 		if (sh) {
5576 			conf->bypass_count -= conf->bypass_threshold;
5577 			if (conf->bypass_count < 0)
5578 				conf->bypass_count = 0;
5579 		}
5580 		wg = NULL;
5581 	}
5582 
5583 	if (!sh) {
5584 		if (second_try)
5585 			return NULL;
5586 		second_try = true;
5587 		try_loprio = !try_loprio;
5588 		goto again;
5589 	}
5590 
5591 	if (wg) {
5592 		wg->stripes_cnt--;
5593 		sh->group = NULL;
5594 	}
5595 	list_del_init(&sh->lru);
5596 	BUG_ON(atomic_inc_return(&sh->count) != 1);
5597 	return sh;
5598 }
5599 
5600 struct raid5_plug_cb {
5601 	struct blk_plug_cb	cb;
5602 	struct list_head	list;
5603 	struct list_head	temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5604 };
5605 
5606 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5607 {
5608 	struct raid5_plug_cb *cb = container_of(
5609 		blk_cb, struct raid5_plug_cb, cb);
5610 	struct stripe_head *sh;
5611 	struct mddev *mddev = cb->cb.data;
5612 	struct r5conf *conf = mddev->private;
5613 	int cnt = 0;
5614 	int hash;
5615 
5616 	if (cb->list.next && !list_empty(&cb->list)) {
5617 		spin_lock_irq(&conf->device_lock);
5618 		while (!list_empty(&cb->list)) {
5619 			sh = list_first_entry(&cb->list, struct stripe_head, lru);
5620 			list_del_init(&sh->lru);
5621 			/*
5622 			 * avoid race release_stripe_plug() sees
5623 			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5624 			 * is still in our list
5625 			 */
5626 			smp_mb__before_atomic();
5627 			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5628 			/*
5629 			 * STRIPE_ON_RELEASE_LIST could be set here. In that
5630 			 * case, the count is always > 1 here
5631 			 */
5632 			hash = sh->hash_lock_index;
5633 			__release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5634 			cnt++;
5635 		}
5636 		spin_unlock_irq(&conf->device_lock);
5637 	}
5638 	release_inactive_stripe_list(conf, cb->temp_inactive_list,
5639 				     NR_STRIPE_HASH_LOCKS);
5640 	if (mddev->queue)
5641 		trace_block_unplug(mddev->queue, cnt, !from_schedule);
5642 	kfree(cb);
5643 }
5644 
5645 static void release_stripe_plug(struct mddev *mddev,
5646 				struct stripe_head *sh)
5647 {
5648 	struct blk_plug_cb *blk_cb = blk_check_plugged(
5649 		raid5_unplug, mddev,
5650 		sizeof(struct raid5_plug_cb));
5651 	struct raid5_plug_cb *cb;
5652 
5653 	if (!blk_cb) {
5654 		raid5_release_stripe(sh);
5655 		return;
5656 	}
5657 
5658 	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5659 
5660 	if (cb->list.next == NULL) {
5661 		int i;
5662 		INIT_LIST_HEAD(&cb->list);
5663 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5664 			INIT_LIST_HEAD(cb->temp_inactive_list + i);
5665 	}
5666 
5667 	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5668 		list_add_tail(&sh->lru, &cb->list);
5669 	else
5670 		raid5_release_stripe(sh);
5671 }
5672 
5673 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5674 {
5675 	struct r5conf *conf = mddev->private;
5676 	sector_t logical_sector, last_sector;
5677 	struct stripe_head *sh;
5678 	int stripe_sectors;
5679 
5680 	/* We need to handle this when io_uring supports discard/trim */
5681 	if (WARN_ON_ONCE(bi->bi_opf & REQ_NOWAIT))
5682 		return;
5683 
5684 	if (mddev->reshape_position != MaxSector)
5685 		/* Skip discard while reshape is happening */
5686 		return;
5687 
5688 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
5689 	last_sector = bio_end_sector(bi);
5690 
5691 	bi->bi_next = NULL;
5692 
5693 	stripe_sectors = conf->chunk_sectors *
5694 		(conf->raid_disks - conf->max_degraded);
5695 	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5696 					       stripe_sectors);
5697 	sector_div(last_sector, stripe_sectors);
5698 
5699 	logical_sector *= conf->chunk_sectors;
5700 	last_sector *= conf->chunk_sectors;
5701 
5702 	for (; logical_sector < last_sector;
5703 	     logical_sector += RAID5_STRIPE_SECTORS(conf)) {
5704 		DEFINE_WAIT(w);
5705 		int d;
5706 	again:
5707 		sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5708 		prepare_to_wait(&conf->wait_for_overlap, &w,
5709 				TASK_UNINTERRUPTIBLE);
5710 		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5711 		if (test_bit(STRIPE_SYNCING, &sh->state)) {
5712 			raid5_release_stripe(sh);
5713 			schedule();
5714 			goto again;
5715 		}
5716 		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5717 		spin_lock_irq(&sh->stripe_lock);
5718 		for (d = 0; d < conf->raid_disks; d++) {
5719 			if (d == sh->pd_idx || d == sh->qd_idx)
5720 				continue;
5721 			if (sh->dev[d].towrite || sh->dev[d].toread) {
5722 				set_bit(R5_Overlap, &sh->dev[d].flags);
5723 				spin_unlock_irq(&sh->stripe_lock);
5724 				raid5_release_stripe(sh);
5725 				schedule();
5726 				goto again;
5727 			}
5728 		}
5729 		set_bit(STRIPE_DISCARD, &sh->state);
5730 		finish_wait(&conf->wait_for_overlap, &w);
5731 		sh->overwrite_disks = 0;
5732 		for (d = 0; d < conf->raid_disks; d++) {
5733 			if (d == sh->pd_idx || d == sh->qd_idx)
5734 				continue;
5735 			sh->dev[d].towrite = bi;
5736 			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5737 			bio_inc_remaining(bi);
5738 			md_write_inc(mddev, bi);
5739 			sh->overwrite_disks++;
5740 		}
5741 		spin_unlock_irq(&sh->stripe_lock);
5742 		if (conf->mddev->bitmap) {
5743 			for (d = 0;
5744 			     d < conf->raid_disks - conf->max_degraded;
5745 			     d++)
5746 				md_bitmap_startwrite(mddev->bitmap,
5747 						     sh->sector,
5748 						     RAID5_STRIPE_SECTORS(conf),
5749 						     0);
5750 			sh->bm_seq = conf->seq_flush + 1;
5751 			set_bit(STRIPE_BIT_DELAY, &sh->state);
5752 		}
5753 
5754 		set_bit(STRIPE_HANDLE, &sh->state);
5755 		clear_bit(STRIPE_DELAYED, &sh->state);
5756 		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5757 			atomic_inc(&conf->preread_active_stripes);
5758 		release_stripe_plug(mddev, sh);
5759 	}
5760 
5761 	bio_endio(bi);
5762 }
5763 
5764 static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
5765 {
5766 	struct r5conf *conf = mddev->private;
5767 	int dd_idx;
5768 	sector_t new_sector;
5769 	sector_t logical_sector, last_sector;
5770 	struct stripe_head *sh;
5771 	const int rw = bio_data_dir(bi);
5772 	DEFINE_WAIT(w);
5773 	bool do_prepare;
5774 	bool do_flush = false;
5775 
5776 	if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5777 		int ret = log_handle_flush_request(conf, bi);
5778 
5779 		if (ret == 0)
5780 			return true;
5781 		if (ret == -ENODEV) {
5782 			if (md_flush_request(mddev, bi))
5783 				return true;
5784 		}
5785 		/* ret == -EAGAIN, fallback */
5786 		/*
5787 		 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5788 		 * we need to flush journal device
5789 		 */
5790 		do_flush = bi->bi_opf & REQ_PREFLUSH;
5791 	}
5792 
5793 	if (!md_write_start(mddev, bi))
5794 		return false;
5795 	/*
5796 	 * If array is degraded, better not do chunk aligned read because
5797 	 * later we might have to read it again in order to reconstruct
5798 	 * data on failed drives.
5799 	 */
5800 	if (rw == READ && mddev->degraded == 0 &&
5801 	    mddev->reshape_position == MaxSector) {
5802 		bi = chunk_aligned_read(mddev, bi);
5803 		if (!bi)
5804 			return true;
5805 	}
5806 
5807 	if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5808 		make_discard_request(mddev, bi);
5809 		md_write_end(mddev);
5810 		return true;
5811 	}
5812 
5813 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
5814 	last_sector = bio_end_sector(bi);
5815 	bi->bi_next = NULL;
5816 
5817 	/* Bail out if conflicts with reshape and REQ_NOWAIT is set */
5818 	if ((bi->bi_opf & REQ_NOWAIT) &&
5819 	    (conf->reshape_progress != MaxSector) &&
5820 	    (mddev->reshape_backwards
5821 	    ? (logical_sector > conf->reshape_progress && logical_sector <= conf->reshape_safe)
5822 	    : (logical_sector >= conf->reshape_safe && logical_sector < conf->reshape_progress))) {
5823 		bio_wouldblock_error(bi);
5824 		if (rw == WRITE)
5825 			md_write_end(mddev);
5826 		return true;
5827 	}
5828 	md_account_bio(mddev, &bi);
5829 	prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5830 	for (; logical_sector < last_sector; logical_sector += RAID5_STRIPE_SECTORS(conf)) {
5831 		int previous;
5832 		int seq;
5833 
5834 		do_prepare = false;
5835 	retry:
5836 		seq = read_seqcount_begin(&conf->gen_lock);
5837 		previous = 0;
5838 		if (do_prepare)
5839 			prepare_to_wait(&conf->wait_for_overlap, &w,
5840 				TASK_UNINTERRUPTIBLE);
5841 		if (unlikely(conf->reshape_progress != MaxSector)) {
5842 			/* spinlock is needed as reshape_progress may be
5843 			 * 64bit on a 32bit platform, and so it might be
5844 			 * possible to see a half-updated value
5845 			 * Of course reshape_progress could change after
5846 			 * the lock is dropped, so once we get a reference
5847 			 * to the stripe that we think it is, we will have
5848 			 * to check again.
5849 			 */
5850 			spin_lock_irq(&conf->device_lock);
5851 			if (mddev->reshape_backwards
5852 			    ? logical_sector < conf->reshape_progress
5853 			    : logical_sector >= conf->reshape_progress) {
5854 				previous = 1;
5855 			} else {
5856 				if (mddev->reshape_backwards
5857 				    ? logical_sector < conf->reshape_safe
5858 				    : logical_sector >= conf->reshape_safe) {
5859 					spin_unlock_irq(&conf->device_lock);
5860 					schedule();
5861 					do_prepare = true;
5862 					goto retry;
5863 				}
5864 			}
5865 			spin_unlock_irq(&conf->device_lock);
5866 		}
5867 
5868 		new_sector = raid5_compute_sector(conf, logical_sector,
5869 						  previous,
5870 						  &dd_idx, NULL);
5871 		pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5872 			(unsigned long long)new_sector,
5873 			(unsigned long long)logical_sector);
5874 
5875 		sh = raid5_get_active_stripe(conf, new_sector, previous,
5876 				       (bi->bi_opf & REQ_RAHEAD), 0);
5877 		if (sh) {
5878 			if (unlikely(previous)) {
5879 				/* expansion might have moved on while waiting for a
5880 				 * stripe, so we must do the range check again.
5881 				 * Expansion could still move past after this
5882 				 * test, but as we are holding a reference to
5883 				 * 'sh', we know that if that happens,
5884 				 *  STRIPE_EXPANDING will get set and the expansion
5885 				 * won't proceed until we finish with the stripe.
5886 				 */
5887 				int must_retry = 0;
5888 				spin_lock_irq(&conf->device_lock);
5889 				if (mddev->reshape_backwards
5890 				    ? logical_sector >= conf->reshape_progress
5891 				    : logical_sector < conf->reshape_progress)
5892 					/* mismatch, need to try again */
5893 					must_retry = 1;
5894 				spin_unlock_irq(&conf->device_lock);
5895 				if (must_retry) {
5896 					raid5_release_stripe(sh);
5897 					schedule();
5898 					do_prepare = true;
5899 					goto retry;
5900 				}
5901 			}
5902 			if (read_seqcount_retry(&conf->gen_lock, seq)) {
5903 				/* Might have got the wrong stripe_head
5904 				 * by accident
5905 				 */
5906 				raid5_release_stripe(sh);
5907 				goto retry;
5908 			}
5909 
5910 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5911 			    !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5912 				/* Stripe is busy expanding or
5913 				 * add failed due to overlap.  Flush everything
5914 				 * and wait a while
5915 				 */
5916 				md_wakeup_thread(mddev->thread);
5917 				raid5_release_stripe(sh);
5918 				schedule();
5919 				do_prepare = true;
5920 				goto retry;
5921 			}
5922 			if (do_flush) {
5923 				set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5924 				/* we only need flush for one stripe */
5925 				do_flush = false;
5926 			}
5927 
5928 			set_bit(STRIPE_HANDLE, &sh->state);
5929 			clear_bit(STRIPE_DELAYED, &sh->state);
5930 			if ((!sh->batch_head || sh == sh->batch_head) &&
5931 			    (bi->bi_opf & REQ_SYNC) &&
5932 			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5933 				atomic_inc(&conf->preread_active_stripes);
5934 			release_stripe_plug(mddev, sh);
5935 		} else {
5936 			/* cannot get stripe for read-ahead, just give-up */
5937 			bi->bi_status = BLK_STS_IOERR;
5938 			break;
5939 		}
5940 	}
5941 	finish_wait(&conf->wait_for_overlap, &w);
5942 
5943 	if (rw == WRITE)
5944 		md_write_end(mddev);
5945 	bio_endio(bi);
5946 	return true;
5947 }
5948 
5949 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5950 
5951 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5952 {
5953 	/* reshaping is quite different to recovery/resync so it is
5954 	 * handled quite separately ... here.
5955 	 *
5956 	 * On each call to sync_request, we gather one chunk worth of
5957 	 * destination stripes and flag them as expanding.
5958 	 * Then we find all the source stripes and request reads.
5959 	 * As the reads complete, handle_stripe will copy the data
5960 	 * into the destination stripe and release that stripe.
5961 	 */
5962 	struct r5conf *conf = mddev->private;
5963 	struct stripe_head *sh;
5964 	struct md_rdev *rdev;
5965 	sector_t first_sector, last_sector;
5966 	int raid_disks = conf->previous_raid_disks;
5967 	int data_disks = raid_disks - conf->max_degraded;
5968 	int new_data_disks = conf->raid_disks - conf->max_degraded;
5969 	int i;
5970 	int dd_idx;
5971 	sector_t writepos, readpos, safepos;
5972 	sector_t stripe_addr;
5973 	int reshape_sectors;
5974 	struct list_head stripes;
5975 	sector_t retn;
5976 
5977 	if (sector_nr == 0) {
5978 		/* If restarting in the middle, skip the initial sectors */
5979 		if (mddev->reshape_backwards &&
5980 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5981 			sector_nr = raid5_size(mddev, 0, 0)
5982 				- conf->reshape_progress;
5983 		} else if (mddev->reshape_backwards &&
5984 			   conf->reshape_progress == MaxSector) {
5985 			/* shouldn't happen, but just in case, finish up.*/
5986 			sector_nr = MaxSector;
5987 		} else if (!mddev->reshape_backwards &&
5988 			   conf->reshape_progress > 0)
5989 			sector_nr = conf->reshape_progress;
5990 		sector_div(sector_nr, new_data_disks);
5991 		if (sector_nr) {
5992 			mddev->curr_resync_completed = sector_nr;
5993 			sysfs_notify_dirent_safe(mddev->sysfs_completed);
5994 			*skipped = 1;
5995 			retn = sector_nr;
5996 			goto finish;
5997 		}
5998 	}
5999 
6000 	/* We need to process a full chunk at a time.
6001 	 * If old and new chunk sizes differ, we need to process the
6002 	 * largest of these
6003 	 */
6004 
6005 	reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
6006 
6007 	/* We update the metadata at least every 10 seconds, or when
6008 	 * the data about to be copied would over-write the source of
6009 	 * the data at the front of the range.  i.e. one new_stripe
6010 	 * along from reshape_progress new_maps to after where
6011 	 * reshape_safe old_maps to
6012 	 */
6013 	writepos = conf->reshape_progress;
6014 	sector_div(writepos, new_data_disks);
6015 	readpos = conf->reshape_progress;
6016 	sector_div(readpos, data_disks);
6017 	safepos = conf->reshape_safe;
6018 	sector_div(safepos, data_disks);
6019 	if (mddev->reshape_backwards) {
6020 		BUG_ON(writepos < reshape_sectors);
6021 		writepos -= reshape_sectors;
6022 		readpos += reshape_sectors;
6023 		safepos += reshape_sectors;
6024 	} else {
6025 		writepos += reshape_sectors;
6026 		/* readpos and safepos are worst-case calculations.
6027 		 * A negative number is overly pessimistic, and causes
6028 		 * obvious problems for unsigned storage.  So clip to 0.
6029 		 */
6030 		readpos -= min_t(sector_t, reshape_sectors, readpos);
6031 		safepos -= min_t(sector_t, reshape_sectors, safepos);
6032 	}
6033 
6034 	/* Having calculated the 'writepos' possibly use it
6035 	 * to set 'stripe_addr' which is where we will write to.
6036 	 */
6037 	if (mddev->reshape_backwards) {
6038 		BUG_ON(conf->reshape_progress == 0);
6039 		stripe_addr = writepos;
6040 		BUG_ON((mddev->dev_sectors &
6041 			~((sector_t)reshape_sectors - 1))
6042 		       - reshape_sectors - stripe_addr
6043 		       != sector_nr);
6044 	} else {
6045 		BUG_ON(writepos != sector_nr + reshape_sectors);
6046 		stripe_addr = sector_nr;
6047 	}
6048 
6049 	/* 'writepos' is the most advanced device address we might write.
6050 	 * 'readpos' is the least advanced device address we might read.
6051 	 * 'safepos' is the least address recorded in the metadata as having
6052 	 *     been reshaped.
6053 	 * If there is a min_offset_diff, these are adjusted either by
6054 	 * increasing the safepos/readpos if diff is negative, or
6055 	 * increasing writepos if diff is positive.
6056 	 * If 'readpos' is then behind 'writepos', there is no way that we can
6057 	 * ensure safety in the face of a crash - that must be done by userspace
6058 	 * making a backup of the data.  So in that case there is no particular
6059 	 * rush to update metadata.
6060 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
6061 	 * update the metadata to advance 'safepos' to match 'readpos' so that
6062 	 * we can be safe in the event of a crash.
6063 	 * So we insist on updating metadata if safepos is behind writepos and
6064 	 * readpos is beyond writepos.
6065 	 * In any case, update the metadata every 10 seconds.
6066 	 * Maybe that number should be configurable, but I'm not sure it is
6067 	 * worth it.... maybe it could be a multiple of safemode_delay???
6068 	 */
6069 	if (conf->min_offset_diff < 0) {
6070 		safepos += -conf->min_offset_diff;
6071 		readpos += -conf->min_offset_diff;
6072 	} else
6073 		writepos += conf->min_offset_diff;
6074 
6075 	if ((mddev->reshape_backwards
6076 	     ? (safepos > writepos && readpos < writepos)
6077 	     : (safepos < writepos && readpos > writepos)) ||
6078 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
6079 		/* Cannot proceed until we've updated the superblock... */
6080 		wait_event(conf->wait_for_overlap,
6081 			   atomic_read(&conf->reshape_stripes)==0
6082 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6083 		if (atomic_read(&conf->reshape_stripes) != 0)
6084 			return 0;
6085 		mddev->reshape_position = conf->reshape_progress;
6086 		mddev->curr_resync_completed = sector_nr;
6087 		if (!mddev->reshape_backwards)
6088 			/* Can update recovery_offset */
6089 			rdev_for_each(rdev, mddev)
6090 				if (rdev->raid_disk >= 0 &&
6091 				    !test_bit(Journal, &rdev->flags) &&
6092 				    !test_bit(In_sync, &rdev->flags) &&
6093 				    rdev->recovery_offset < sector_nr)
6094 					rdev->recovery_offset = sector_nr;
6095 
6096 		conf->reshape_checkpoint = jiffies;
6097 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6098 		md_wakeup_thread(mddev->thread);
6099 		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
6100 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6101 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6102 			return 0;
6103 		spin_lock_irq(&conf->device_lock);
6104 		conf->reshape_safe = mddev->reshape_position;
6105 		spin_unlock_irq(&conf->device_lock);
6106 		wake_up(&conf->wait_for_overlap);
6107 		sysfs_notify_dirent_safe(mddev->sysfs_completed);
6108 	}
6109 
6110 	INIT_LIST_HEAD(&stripes);
6111 	for (i = 0; i < reshape_sectors; i += RAID5_STRIPE_SECTORS(conf)) {
6112 		int j;
6113 		int skipped_disk = 0;
6114 		sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
6115 		set_bit(STRIPE_EXPANDING, &sh->state);
6116 		atomic_inc(&conf->reshape_stripes);
6117 		/* If any of this stripe is beyond the end of the old
6118 		 * array, then we need to zero those blocks
6119 		 */
6120 		for (j=sh->disks; j--;) {
6121 			sector_t s;
6122 			if (j == sh->pd_idx)
6123 				continue;
6124 			if (conf->level == 6 &&
6125 			    j == sh->qd_idx)
6126 				continue;
6127 			s = raid5_compute_blocknr(sh, j, 0);
6128 			if (s < raid5_size(mddev, 0, 0)) {
6129 				skipped_disk = 1;
6130 				continue;
6131 			}
6132 			memset(page_address(sh->dev[j].page), 0, RAID5_STRIPE_SIZE(conf));
6133 			set_bit(R5_Expanded, &sh->dev[j].flags);
6134 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
6135 		}
6136 		if (!skipped_disk) {
6137 			set_bit(STRIPE_EXPAND_READY, &sh->state);
6138 			set_bit(STRIPE_HANDLE, &sh->state);
6139 		}
6140 		list_add(&sh->lru, &stripes);
6141 	}
6142 	spin_lock_irq(&conf->device_lock);
6143 	if (mddev->reshape_backwards)
6144 		conf->reshape_progress -= reshape_sectors * new_data_disks;
6145 	else
6146 		conf->reshape_progress += reshape_sectors * new_data_disks;
6147 	spin_unlock_irq(&conf->device_lock);
6148 	/* Ok, those stripe are ready. We can start scheduling
6149 	 * reads on the source stripes.
6150 	 * The source stripes are determined by mapping the first and last
6151 	 * block on the destination stripes.
6152 	 */
6153 	first_sector =
6154 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
6155 				     1, &dd_idx, NULL);
6156 	last_sector =
6157 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
6158 					    * new_data_disks - 1),
6159 				     1, &dd_idx, NULL);
6160 	if (last_sector >= mddev->dev_sectors)
6161 		last_sector = mddev->dev_sectors - 1;
6162 	while (first_sector <= last_sector) {
6163 		sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
6164 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
6165 		set_bit(STRIPE_HANDLE, &sh->state);
6166 		raid5_release_stripe(sh);
6167 		first_sector += RAID5_STRIPE_SECTORS(conf);
6168 	}
6169 	/* Now that the sources are clearly marked, we can release
6170 	 * the destination stripes
6171 	 */
6172 	while (!list_empty(&stripes)) {
6173 		sh = list_entry(stripes.next, struct stripe_head, lru);
6174 		list_del_init(&sh->lru);
6175 		raid5_release_stripe(sh);
6176 	}
6177 	/* If this takes us to the resync_max point where we have to pause,
6178 	 * then we need to write out the superblock.
6179 	 */
6180 	sector_nr += reshape_sectors;
6181 	retn = reshape_sectors;
6182 finish:
6183 	if (mddev->curr_resync_completed > mddev->resync_max ||
6184 	    (sector_nr - mddev->curr_resync_completed) * 2
6185 	    >= mddev->resync_max - mddev->curr_resync_completed) {
6186 		/* Cannot proceed until we've updated the superblock... */
6187 		wait_event(conf->wait_for_overlap,
6188 			   atomic_read(&conf->reshape_stripes) == 0
6189 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6190 		if (atomic_read(&conf->reshape_stripes) != 0)
6191 			goto ret;
6192 		mddev->reshape_position = conf->reshape_progress;
6193 		mddev->curr_resync_completed = sector_nr;
6194 		if (!mddev->reshape_backwards)
6195 			/* Can update recovery_offset */
6196 			rdev_for_each(rdev, mddev)
6197 				if (rdev->raid_disk >= 0 &&
6198 				    !test_bit(Journal, &rdev->flags) &&
6199 				    !test_bit(In_sync, &rdev->flags) &&
6200 				    rdev->recovery_offset < sector_nr)
6201 					rdev->recovery_offset = sector_nr;
6202 		conf->reshape_checkpoint = jiffies;
6203 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6204 		md_wakeup_thread(mddev->thread);
6205 		wait_event(mddev->sb_wait,
6206 			   !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
6207 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6208 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6209 			goto ret;
6210 		spin_lock_irq(&conf->device_lock);
6211 		conf->reshape_safe = mddev->reshape_position;
6212 		spin_unlock_irq(&conf->device_lock);
6213 		wake_up(&conf->wait_for_overlap);
6214 		sysfs_notify_dirent_safe(mddev->sysfs_completed);
6215 	}
6216 ret:
6217 	return retn;
6218 }
6219 
6220 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6221 					  int *skipped)
6222 {
6223 	struct r5conf *conf = mddev->private;
6224 	struct stripe_head *sh;
6225 	sector_t max_sector = mddev->dev_sectors;
6226 	sector_t sync_blocks;
6227 	int still_degraded = 0;
6228 	int i;
6229 
6230 	if (sector_nr >= max_sector) {
6231 		/* just being told to finish up .. nothing much to do */
6232 
6233 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6234 			end_reshape(conf);
6235 			return 0;
6236 		}
6237 
6238 		if (mddev->curr_resync < max_sector) /* aborted */
6239 			md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6240 					   &sync_blocks, 1);
6241 		else /* completed sync */
6242 			conf->fullsync = 0;
6243 		md_bitmap_close_sync(mddev->bitmap);
6244 
6245 		return 0;
6246 	}
6247 
6248 	/* Allow raid5_quiesce to complete */
6249 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6250 
6251 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6252 		return reshape_request(mddev, sector_nr, skipped);
6253 
6254 	/* No need to check resync_max as we never do more than one
6255 	 * stripe, and as resync_max will always be on a chunk boundary,
6256 	 * if the check in md_do_sync didn't fire, there is no chance
6257 	 * of overstepping resync_max here
6258 	 */
6259 
6260 	/* if there is too many failed drives and we are trying
6261 	 * to resync, then assert that we are finished, because there is
6262 	 * nothing we can do.
6263 	 */
6264 	if (mddev->degraded >= conf->max_degraded &&
6265 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6266 		sector_t rv = mddev->dev_sectors - sector_nr;
6267 		*skipped = 1;
6268 		return rv;
6269 	}
6270 	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6271 	    !conf->fullsync &&
6272 	    !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6273 	    sync_blocks >= RAID5_STRIPE_SECTORS(conf)) {
6274 		/* we can skip this block, and probably more */
6275 		do_div(sync_blocks, RAID5_STRIPE_SECTORS(conf));
6276 		*skipped = 1;
6277 		/* keep things rounded to whole stripes */
6278 		return sync_blocks * RAID5_STRIPE_SECTORS(conf);
6279 	}
6280 
6281 	md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
6282 
6283 	sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
6284 	if (sh == NULL) {
6285 		sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
6286 		/* make sure we don't swamp the stripe cache if someone else
6287 		 * is trying to get access
6288 		 */
6289 		schedule_timeout_uninterruptible(1);
6290 	}
6291 	/* Need to check if array will still be degraded after recovery/resync
6292 	 * Note in case of > 1 drive failures it's possible we're rebuilding
6293 	 * one drive while leaving another faulty drive in array.
6294 	 */
6295 	rcu_read_lock();
6296 	for (i = 0; i < conf->raid_disks; i++) {
6297 		struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
6298 
6299 		if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6300 			still_degraded = 1;
6301 	}
6302 	rcu_read_unlock();
6303 
6304 	md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6305 
6306 	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6307 	set_bit(STRIPE_HANDLE, &sh->state);
6308 
6309 	raid5_release_stripe(sh);
6310 
6311 	return RAID5_STRIPE_SECTORS(conf);
6312 }
6313 
6314 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6315 			       unsigned int offset)
6316 {
6317 	/* We may not be able to submit a whole bio at once as there
6318 	 * may not be enough stripe_heads available.
6319 	 * We cannot pre-allocate enough stripe_heads as we may need
6320 	 * more than exist in the cache (if we allow ever large chunks).
6321 	 * So we do one stripe head at a time and record in
6322 	 * ->bi_hw_segments how many have been done.
6323 	 *
6324 	 * We *know* that this entire raid_bio is in one chunk, so
6325 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6326 	 */
6327 	struct stripe_head *sh;
6328 	int dd_idx;
6329 	sector_t sector, logical_sector, last_sector;
6330 	int scnt = 0;
6331 	int handled = 0;
6332 
6333 	logical_sector = raid_bio->bi_iter.bi_sector &
6334 		~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6335 	sector = raid5_compute_sector(conf, logical_sector,
6336 				      0, &dd_idx, NULL);
6337 	last_sector = bio_end_sector(raid_bio);
6338 
6339 	for (; logical_sector < last_sector;
6340 	     logical_sector += RAID5_STRIPE_SECTORS(conf),
6341 		     sector += RAID5_STRIPE_SECTORS(conf),
6342 		     scnt++) {
6343 
6344 		if (scnt < offset)
6345 			/* already done this stripe */
6346 			continue;
6347 
6348 		sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
6349 
6350 		if (!sh) {
6351 			/* failed to get a stripe - must wait */
6352 			conf->retry_read_aligned = raid_bio;
6353 			conf->retry_read_offset = scnt;
6354 			return handled;
6355 		}
6356 
6357 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6358 			raid5_release_stripe(sh);
6359 			conf->retry_read_aligned = raid_bio;
6360 			conf->retry_read_offset = scnt;
6361 			return handled;
6362 		}
6363 
6364 		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6365 		handle_stripe(sh);
6366 		raid5_release_stripe(sh);
6367 		handled++;
6368 	}
6369 
6370 	bio_endio(raid_bio);
6371 
6372 	if (atomic_dec_and_test(&conf->active_aligned_reads))
6373 		wake_up(&conf->wait_for_quiescent);
6374 	return handled;
6375 }
6376 
6377 static int handle_active_stripes(struct r5conf *conf, int group,
6378 				 struct r5worker *worker,
6379 				 struct list_head *temp_inactive_list)
6380 		__releases(&conf->device_lock)
6381 		__acquires(&conf->device_lock)
6382 {
6383 	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6384 	int i, batch_size = 0, hash;
6385 	bool release_inactive = false;
6386 
6387 	while (batch_size < MAX_STRIPE_BATCH &&
6388 			(sh = __get_priority_stripe(conf, group)) != NULL)
6389 		batch[batch_size++] = sh;
6390 
6391 	if (batch_size == 0) {
6392 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6393 			if (!list_empty(temp_inactive_list + i))
6394 				break;
6395 		if (i == NR_STRIPE_HASH_LOCKS) {
6396 			spin_unlock_irq(&conf->device_lock);
6397 			log_flush_stripe_to_raid(conf);
6398 			spin_lock_irq(&conf->device_lock);
6399 			return batch_size;
6400 		}
6401 		release_inactive = true;
6402 	}
6403 	spin_unlock_irq(&conf->device_lock);
6404 
6405 	release_inactive_stripe_list(conf, temp_inactive_list,
6406 				     NR_STRIPE_HASH_LOCKS);
6407 
6408 	r5l_flush_stripe_to_raid(conf->log);
6409 	if (release_inactive) {
6410 		spin_lock_irq(&conf->device_lock);
6411 		return 0;
6412 	}
6413 
6414 	for (i = 0; i < batch_size; i++)
6415 		handle_stripe(batch[i]);
6416 	log_write_stripe_run(conf);
6417 
6418 	cond_resched();
6419 
6420 	spin_lock_irq(&conf->device_lock);
6421 	for (i = 0; i < batch_size; i++) {
6422 		hash = batch[i]->hash_lock_index;
6423 		__release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6424 	}
6425 	return batch_size;
6426 }
6427 
6428 static void raid5_do_work(struct work_struct *work)
6429 {
6430 	struct r5worker *worker = container_of(work, struct r5worker, work);
6431 	struct r5worker_group *group = worker->group;
6432 	struct r5conf *conf = group->conf;
6433 	struct mddev *mddev = conf->mddev;
6434 	int group_id = group - conf->worker_groups;
6435 	int handled;
6436 	struct blk_plug plug;
6437 
6438 	pr_debug("+++ raid5worker active\n");
6439 
6440 	blk_start_plug(&plug);
6441 	handled = 0;
6442 	spin_lock_irq(&conf->device_lock);
6443 	while (1) {
6444 		int batch_size, released;
6445 
6446 		released = release_stripe_list(conf, worker->temp_inactive_list);
6447 
6448 		batch_size = handle_active_stripes(conf, group_id, worker,
6449 						   worker->temp_inactive_list);
6450 		worker->working = false;
6451 		if (!batch_size && !released)
6452 			break;
6453 		handled += batch_size;
6454 		wait_event_lock_irq(mddev->sb_wait,
6455 			!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6456 			conf->device_lock);
6457 	}
6458 	pr_debug("%d stripes handled\n", handled);
6459 
6460 	spin_unlock_irq(&conf->device_lock);
6461 
6462 	flush_deferred_bios(conf);
6463 
6464 	r5l_flush_stripe_to_raid(conf->log);
6465 
6466 	async_tx_issue_pending_all();
6467 	blk_finish_plug(&plug);
6468 
6469 	pr_debug("--- raid5worker inactive\n");
6470 }
6471 
6472 /*
6473  * This is our raid5 kernel thread.
6474  *
6475  * We scan the hash table for stripes which can be handled now.
6476  * During the scan, completed stripes are saved for us by the interrupt
6477  * handler, so that they will not have to wait for our next wakeup.
6478  */
6479 static void raid5d(struct md_thread *thread)
6480 {
6481 	struct mddev *mddev = thread->mddev;
6482 	struct r5conf *conf = mddev->private;
6483 	int handled;
6484 	struct blk_plug plug;
6485 
6486 	pr_debug("+++ raid5d active\n");
6487 
6488 	md_check_recovery(mddev);
6489 
6490 	blk_start_plug(&plug);
6491 	handled = 0;
6492 	spin_lock_irq(&conf->device_lock);
6493 	while (1) {
6494 		struct bio *bio;
6495 		int batch_size, released;
6496 		unsigned int offset;
6497 
6498 		released = release_stripe_list(conf, conf->temp_inactive_list);
6499 		if (released)
6500 			clear_bit(R5_DID_ALLOC, &conf->cache_state);
6501 
6502 		if (
6503 		    !list_empty(&conf->bitmap_list)) {
6504 			/* Now is a good time to flush some bitmap updates */
6505 			conf->seq_flush++;
6506 			spin_unlock_irq(&conf->device_lock);
6507 			md_bitmap_unplug(mddev->bitmap);
6508 			spin_lock_irq(&conf->device_lock);
6509 			conf->seq_write = conf->seq_flush;
6510 			activate_bit_delay(conf, conf->temp_inactive_list);
6511 		}
6512 		raid5_activate_delayed(conf);
6513 
6514 		while ((bio = remove_bio_from_retry(conf, &offset))) {
6515 			int ok;
6516 			spin_unlock_irq(&conf->device_lock);
6517 			ok = retry_aligned_read(conf, bio, offset);
6518 			spin_lock_irq(&conf->device_lock);
6519 			if (!ok)
6520 				break;
6521 			handled++;
6522 		}
6523 
6524 		batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6525 						   conf->temp_inactive_list);
6526 		if (!batch_size && !released)
6527 			break;
6528 		handled += batch_size;
6529 
6530 		if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6531 			spin_unlock_irq(&conf->device_lock);
6532 			md_check_recovery(mddev);
6533 			spin_lock_irq(&conf->device_lock);
6534 		}
6535 	}
6536 	pr_debug("%d stripes handled\n", handled);
6537 
6538 	spin_unlock_irq(&conf->device_lock);
6539 	if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6540 	    mutex_trylock(&conf->cache_size_mutex)) {
6541 		grow_one_stripe(conf, __GFP_NOWARN);
6542 		/* Set flag even if allocation failed.  This helps
6543 		 * slow down allocation requests when mem is short
6544 		 */
6545 		set_bit(R5_DID_ALLOC, &conf->cache_state);
6546 		mutex_unlock(&conf->cache_size_mutex);
6547 	}
6548 
6549 	flush_deferred_bios(conf);
6550 
6551 	r5l_flush_stripe_to_raid(conf->log);
6552 
6553 	async_tx_issue_pending_all();
6554 	blk_finish_plug(&plug);
6555 
6556 	pr_debug("--- raid5d inactive\n");
6557 }
6558 
6559 static ssize_t
6560 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6561 {
6562 	struct r5conf *conf;
6563 	int ret = 0;
6564 	spin_lock(&mddev->lock);
6565 	conf = mddev->private;
6566 	if (conf)
6567 		ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6568 	spin_unlock(&mddev->lock);
6569 	return ret;
6570 }
6571 
6572 int
6573 raid5_set_cache_size(struct mddev *mddev, int size)
6574 {
6575 	int result = 0;
6576 	struct r5conf *conf = mddev->private;
6577 
6578 	if (size <= 16 || size > 32768)
6579 		return -EINVAL;
6580 
6581 	conf->min_nr_stripes = size;
6582 	mutex_lock(&conf->cache_size_mutex);
6583 	while (size < conf->max_nr_stripes &&
6584 	       drop_one_stripe(conf))
6585 		;
6586 	mutex_unlock(&conf->cache_size_mutex);
6587 
6588 	md_allow_write(mddev);
6589 
6590 	mutex_lock(&conf->cache_size_mutex);
6591 	while (size > conf->max_nr_stripes)
6592 		if (!grow_one_stripe(conf, GFP_KERNEL)) {
6593 			conf->min_nr_stripes = conf->max_nr_stripes;
6594 			result = -ENOMEM;
6595 			break;
6596 		}
6597 	mutex_unlock(&conf->cache_size_mutex);
6598 
6599 	return result;
6600 }
6601 EXPORT_SYMBOL(raid5_set_cache_size);
6602 
6603 static ssize_t
6604 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6605 {
6606 	struct r5conf *conf;
6607 	unsigned long new;
6608 	int err;
6609 
6610 	if (len >= PAGE_SIZE)
6611 		return -EINVAL;
6612 	if (kstrtoul(page, 10, &new))
6613 		return -EINVAL;
6614 	err = mddev_lock(mddev);
6615 	if (err)
6616 		return err;
6617 	conf = mddev->private;
6618 	if (!conf)
6619 		err = -ENODEV;
6620 	else
6621 		err = raid5_set_cache_size(mddev, new);
6622 	mddev_unlock(mddev);
6623 
6624 	return err ?: len;
6625 }
6626 
6627 static struct md_sysfs_entry
6628 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6629 				raid5_show_stripe_cache_size,
6630 				raid5_store_stripe_cache_size);
6631 
6632 static ssize_t
6633 raid5_show_rmw_level(struct mddev  *mddev, char *page)
6634 {
6635 	struct r5conf *conf = mddev->private;
6636 	if (conf)
6637 		return sprintf(page, "%d\n", conf->rmw_level);
6638 	else
6639 		return 0;
6640 }
6641 
6642 static ssize_t
6643 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
6644 {
6645 	struct r5conf *conf = mddev->private;
6646 	unsigned long new;
6647 
6648 	if (!conf)
6649 		return -ENODEV;
6650 
6651 	if (len >= PAGE_SIZE)
6652 		return -EINVAL;
6653 
6654 	if (kstrtoul(page, 10, &new))
6655 		return -EINVAL;
6656 
6657 	if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6658 		return -EINVAL;
6659 
6660 	if (new != PARITY_DISABLE_RMW &&
6661 	    new != PARITY_ENABLE_RMW &&
6662 	    new != PARITY_PREFER_RMW)
6663 		return -EINVAL;
6664 
6665 	conf->rmw_level = new;
6666 	return len;
6667 }
6668 
6669 static struct md_sysfs_entry
6670 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6671 			 raid5_show_rmw_level,
6672 			 raid5_store_rmw_level);
6673 
6674 static ssize_t
6675 raid5_show_stripe_size(struct mddev  *mddev, char *page)
6676 {
6677 	struct r5conf *conf;
6678 	int ret = 0;
6679 
6680 	spin_lock(&mddev->lock);
6681 	conf = mddev->private;
6682 	if (conf)
6683 		ret = sprintf(page, "%lu\n", RAID5_STRIPE_SIZE(conf));
6684 	spin_unlock(&mddev->lock);
6685 	return ret;
6686 }
6687 
6688 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
6689 static ssize_t
6690 raid5_store_stripe_size(struct mddev  *mddev, const char *page, size_t len)
6691 {
6692 	struct r5conf *conf;
6693 	unsigned long new;
6694 	int err;
6695 	int size;
6696 
6697 	if (len >= PAGE_SIZE)
6698 		return -EINVAL;
6699 	if (kstrtoul(page, 10, &new))
6700 		return -EINVAL;
6701 
6702 	/*
6703 	 * The value should not be bigger than PAGE_SIZE. It requires to
6704 	 * be multiple of DEFAULT_STRIPE_SIZE and the value should be power
6705 	 * of two.
6706 	 */
6707 	if (new % DEFAULT_STRIPE_SIZE != 0 ||
6708 			new > PAGE_SIZE || new == 0 ||
6709 			new != roundup_pow_of_two(new))
6710 		return -EINVAL;
6711 
6712 	err = mddev_lock(mddev);
6713 	if (err)
6714 		return err;
6715 
6716 	conf = mddev->private;
6717 	if (!conf) {
6718 		err = -ENODEV;
6719 		goto out_unlock;
6720 	}
6721 
6722 	if (new == conf->stripe_size)
6723 		goto out_unlock;
6724 
6725 	pr_debug("md/raid: change stripe_size from %lu to %lu\n",
6726 			conf->stripe_size, new);
6727 
6728 	if (mddev->sync_thread ||
6729 		test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6730 		mddev->reshape_position != MaxSector ||
6731 		mddev->sysfs_active) {
6732 		err = -EBUSY;
6733 		goto out_unlock;
6734 	}
6735 
6736 	mddev_suspend(mddev);
6737 	mutex_lock(&conf->cache_size_mutex);
6738 	size = conf->max_nr_stripes;
6739 
6740 	shrink_stripes(conf);
6741 
6742 	conf->stripe_size = new;
6743 	conf->stripe_shift = ilog2(new) - 9;
6744 	conf->stripe_sectors = new >> 9;
6745 	if (grow_stripes(conf, size)) {
6746 		pr_warn("md/raid:%s: couldn't allocate buffers\n",
6747 				mdname(mddev));
6748 		err = -ENOMEM;
6749 	}
6750 	mutex_unlock(&conf->cache_size_mutex);
6751 	mddev_resume(mddev);
6752 
6753 out_unlock:
6754 	mddev_unlock(mddev);
6755 	return err ?: len;
6756 }
6757 
6758 static struct md_sysfs_entry
6759 raid5_stripe_size = __ATTR(stripe_size, 0644,
6760 			 raid5_show_stripe_size,
6761 			 raid5_store_stripe_size);
6762 #else
6763 static struct md_sysfs_entry
6764 raid5_stripe_size = __ATTR(stripe_size, 0444,
6765 			 raid5_show_stripe_size,
6766 			 NULL);
6767 #endif
6768 
6769 static ssize_t
6770 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6771 {
6772 	struct r5conf *conf;
6773 	int ret = 0;
6774 	spin_lock(&mddev->lock);
6775 	conf = mddev->private;
6776 	if (conf)
6777 		ret = sprintf(page, "%d\n", conf->bypass_threshold);
6778 	spin_unlock(&mddev->lock);
6779 	return ret;
6780 }
6781 
6782 static ssize_t
6783 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6784 {
6785 	struct r5conf *conf;
6786 	unsigned long new;
6787 	int err;
6788 
6789 	if (len >= PAGE_SIZE)
6790 		return -EINVAL;
6791 	if (kstrtoul(page, 10, &new))
6792 		return -EINVAL;
6793 
6794 	err = mddev_lock(mddev);
6795 	if (err)
6796 		return err;
6797 	conf = mddev->private;
6798 	if (!conf)
6799 		err = -ENODEV;
6800 	else if (new > conf->min_nr_stripes)
6801 		err = -EINVAL;
6802 	else
6803 		conf->bypass_threshold = new;
6804 	mddev_unlock(mddev);
6805 	return err ?: len;
6806 }
6807 
6808 static struct md_sysfs_entry
6809 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6810 					S_IRUGO | S_IWUSR,
6811 					raid5_show_preread_threshold,
6812 					raid5_store_preread_threshold);
6813 
6814 static ssize_t
6815 raid5_show_skip_copy(struct mddev *mddev, char *page)
6816 {
6817 	struct r5conf *conf;
6818 	int ret = 0;
6819 	spin_lock(&mddev->lock);
6820 	conf = mddev->private;
6821 	if (conf)
6822 		ret = sprintf(page, "%d\n", conf->skip_copy);
6823 	spin_unlock(&mddev->lock);
6824 	return ret;
6825 }
6826 
6827 static ssize_t
6828 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6829 {
6830 	struct r5conf *conf;
6831 	unsigned long new;
6832 	int err;
6833 
6834 	if (len >= PAGE_SIZE)
6835 		return -EINVAL;
6836 	if (kstrtoul(page, 10, &new))
6837 		return -EINVAL;
6838 	new = !!new;
6839 
6840 	err = mddev_lock(mddev);
6841 	if (err)
6842 		return err;
6843 	conf = mddev->private;
6844 	if (!conf)
6845 		err = -ENODEV;
6846 	else if (new != conf->skip_copy) {
6847 		struct request_queue *q = mddev->queue;
6848 
6849 		mddev_suspend(mddev);
6850 		conf->skip_copy = new;
6851 		if (new)
6852 			blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
6853 		else
6854 			blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
6855 		mddev_resume(mddev);
6856 	}
6857 	mddev_unlock(mddev);
6858 	return err ?: len;
6859 }
6860 
6861 static struct md_sysfs_entry
6862 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6863 					raid5_show_skip_copy,
6864 					raid5_store_skip_copy);
6865 
6866 static ssize_t
6867 stripe_cache_active_show(struct mddev *mddev, char *page)
6868 {
6869 	struct r5conf *conf = mddev->private;
6870 	if (conf)
6871 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6872 	else
6873 		return 0;
6874 }
6875 
6876 static struct md_sysfs_entry
6877 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6878 
6879 static ssize_t
6880 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6881 {
6882 	struct r5conf *conf;
6883 	int ret = 0;
6884 	spin_lock(&mddev->lock);
6885 	conf = mddev->private;
6886 	if (conf)
6887 		ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6888 	spin_unlock(&mddev->lock);
6889 	return ret;
6890 }
6891 
6892 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6893 			       int *group_cnt,
6894 			       struct r5worker_group **worker_groups);
6895 static ssize_t
6896 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6897 {
6898 	struct r5conf *conf;
6899 	unsigned int new;
6900 	int err;
6901 	struct r5worker_group *new_groups, *old_groups;
6902 	int group_cnt;
6903 
6904 	if (len >= PAGE_SIZE)
6905 		return -EINVAL;
6906 	if (kstrtouint(page, 10, &new))
6907 		return -EINVAL;
6908 	/* 8192 should be big enough */
6909 	if (new > 8192)
6910 		return -EINVAL;
6911 
6912 	err = mddev_lock(mddev);
6913 	if (err)
6914 		return err;
6915 	conf = mddev->private;
6916 	if (!conf)
6917 		err = -ENODEV;
6918 	else if (new != conf->worker_cnt_per_group) {
6919 		mddev_suspend(mddev);
6920 
6921 		old_groups = conf->worker_groups;
6922 		if (old_groups)
6923 			flush_workqueue(raid5_wq);
6924 
6925 		err = alloc_thread_groups(conf, new, &group_cnt, &new_groups);
6926 		if (!err) {
6927 			spin_lock_irq(&conf->device_lock);
6928 			conf->group_cnt = group_cnt;
6929 			conf->worker_cnt_per_group = new;
6930 			conf->worker_groups = new_groups;
6931 			spin_unlock_irq(&conf->device_lock);
6932 
6933 			if (old_groups)
6934 				kfree(old_groups[0].workers);
6935 			kfree(old_groups);
6936 		}
6937 		mddev_resume(mddev);
6938 	}
6939 	mddev_unlock(mddev);
6940 
6941 	return err ?: len;
6942 }
6943 
6944 static struct md_sysfs_entry
6945 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6946 				raid5_show_group_thread_cnt,
6947 				raid5_store_group_thread_cnt);
6948 
6949 static struct attribute *raid5_attrs[] =  {
6950 	&raid5_stripecache_size.attr,
6951 	&raid5_stripecache_active.attr,
6952 	&raid5_preread_bypass_threshold.attr,
6953 	&raid5_group_thread_cnt.attr,
6954 	&raid5_skip_copy.attr,
6955 	&raid5_rmw_level.attr,
6956 	&raid5_stripe_size.attr,
6957 	&r5c_journal_mode.attr,
6958 	&ppl_write_hint.attr,
6959 	NULL,
6960 };
6961 static const struct attribute_group raid5_attrs_group = {
6962 	.name = NULL,
6963 	.attrs = raid5_attrs,
6964 };
6965 
6966 static int alloc_thread_groups(struct r5conf *conf, int cnt, int *group_cnt,
6967 			       struct r5worker_group **worker_groups)
6968 {
6969 	int i, j, k;
6970 	ssize_t size;
6971 	struct r5worker *workers;
6972 
6973 	if (cnt == 0) {
6974 		*group_cnt = 0;
6975 		*worker_groups = NULL;
6976 		return 0;
6977 	}
6978 	*group_cnt = num_possible_nodes();
6979 	size = sizeof(struct r5worker) * cnt;
6980 	workers = kcalloc(size, *group_cnt, GFP_NOIO);
6981 	*worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group),
6982 				 GFP_NOIO);
6983 	if (!*worker_groups || !workers) {
6984 		kfree(workers);
6985 		kfree(*worker_groups);
6986 		return -ENOMEM;
6987 	}
6988 
6989 	for (i = 0; i < *group_cnt; i++) {
6990 		struct r5worker_group *group;
6991 
6992 		group = &(*worker_groups)[i];
6993 		INIT_LIST_HEAD(&group->handle_list);
6994 		INIT_LIST_HEAD(&group->loprio_list);
6995 		group->conf = conf;
6996 		group->workers = workers + i * cnt;
6997 
6998 		for (j = 0; j < cnt; j++) {
6999 			struct r5worker *worker = group->workers + j;
7000 			worker->group = group;
7001 			INIT_WORK(&worker->work, raid5_do_work);
7002 
7003 			for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
7004 				INIT_LIST_HEAD(worker->temp_inactive_list + k);
7005 		}
7006 	}
7007 
7008 	return 0;
7009 }
7010 
7011 static void free_thread_groups(struct r5conf *conf)
7012 {
7013 	if (conf->worker_groups)
7014 		kfree(conf->worker_groups[0].workers);
7015 	kfree(conf->worker_groups);
7016 	conf->worker_groups = NULL;
7017 }
7018 
7019 static sector_t
7020 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
7021 {
7022 	struct r5conf *conf = mddev->private;
7023 
7024 	if (!sectors)
7025 		sectors = mddev->dev_sectors;
7026 	if (!raid_disks)
7027 		/* size is defined by the smallest of previous and new size */
7028 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
7029 
7030 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
7031 	sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
7032 	return sectors * (raid_disks - conf->max_degraded);
7033 }
7034 
7035 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7036 {
7037 	safe_put_page(percpu->spare_page);
7038 	percpu->spare_page = NULL;
7039 	kvfree(percpu->scribble);
7040 	percpu->scribble = NULL;
7041 }
7042 
7043 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7044 {
7045 	if (conf->level == 6 && !percpu->spare_page) {
7046 		percpu->spare_page = alloc_page(GFP_KERNEL);
7047 		if (!percpu->spare_page)
7048 			return -ENOMEM;
7049 	}
7050 
7051 	if (scribble_alloc(percpu,
7052 			   max(conf->raid_disks,
7053 			       conf->previous_raid_disks),
7054 			   max(conf->chunk_sectors,
7055 			       conf->prev_chunk_sectors)
7056 			   / RAID5_STRIPE_SECTORS(conf))) {
7057 		free_scratch_buffer(conf, percpu);
7058 		return -ENOMEM;
7059 	}
7060 
7061 	local_lock_init(&percpu->lock);
7062 	return 0;
7063 }
7064 
7065 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
7066 {
7067 	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7068 
7069 	free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
7070 	return 0;
7071 }
7072 
7073 static void raid5_free_percpu(struct r5conf *conf)
7074 {
7075 	if (!conf->percpu)
7076 		return;
7077 
7078 	cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
7079 	free_percpu(conf->percpu);
7080 }
7081 
7082 static void free_conf(struct r5conf *conf)
7083 {
7084 	int i;
7085 
7086 	log_exit(conf);
7087 
7088 	unregister_shrinker(&conf->shrinker);
7089 	free_thread_groups(conf);
7090 	shrink_stripes(conf);
7091 	raid5_free_percpu(conf);
7092 	for (i = 0; i < conf->pool_size; i++)
7093 		if (conf->disks[i].extra_page)
7094 			put_page(conf->disks[i].extra_page);
7095 	kfree(conf->disks);
7096 	bioset_exit(&conf->bio_split);
7097 	kfree(conf->stripe_hashtbl);
7098 	kfree(conf->pending_data);
7099 	kfree(conf);
7100 }
7101 
7102 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
7103 {
7104 	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7105 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
7106 
7107 	if (alloc_scratch_buffer(conf, percpu)) {
7108 		pr_warn("%s: failed memory allocation for cpu%u\n",
7109 			__func__, cpu);
7110 		return -ENOMEM;
7111 	}
7112 	return 0;
7113 }
7114 
7115 static int raid5_alloc_percpu(struct r5conf *conf)
7116 {
7117 	int err = 0;
7118 
7119 	conf->percpu = alloc_percpu(struct raid5_percpu);
7120 	if (!conf->percpu)
7121 		return -ENOMEM;
7122 
7123 	err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
7124 	if (!err) {
7125 		conf->scribble_disks = max(conf->raid_disks,
7126 			conf->previous_raid_disks);
7127 		conf->scribble_sectors = max(conf->chunk_sectors,
7128 			conf->prev_chunk_sectors);
7129 	}
7130 	return err;
7131 }
7132 
7133 static unsigned long raid5_cache_scan(struct shrinker *shrink,
7134 				      struct shrink_control *sc)
7135 {
7136 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
7137 	unsigned long ret = SHRINK_STOP;
7138 
7139 	if (mutex_trylock(&conf->cache_size_mutex)) {
7140 		ret= 0;
7141 		while (ret < sc->nr_to_scan &&
7142 		       conf->max_nr_stripes > conf->min_nr_stripes) {
7143 			if (drop_one_stripe(conf) == 0) {
7144 				ret = SHRINK_STOP;
7145 				break;
7146 			}
7147 			ret++;
7148 		}
7149 		mutex_unlock(&conf->cache_size_mutex);
7150 	}
7151 	return ret;
7152 }
7153 
7154 static unsigned long raid5_cache_count(struct shrinker *shrink,
7155 				       struct shrink_control *sc)
7156 {
7157 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
7158 
7159 	if (conf->max_nr_stripes < conf->min_nr_stripes)
7160 		/* unlikely, but not impossible */
7161 		return 0;
7162 	return conf->max_nr_stripes - conf->min_nr_stripes;
7163 }
7164 
7165 static struct r5conf *setup_conf(struct mddev *mddev)
7166 {
7167 	struct r5conf *conf;
7168 	int raid_disk, memory, max_disks;
7169 	struct md_rdev *rdev;
7170 	struct disk_info *disk;
7171 	char pers_name[6];
7172 	int i;
7173 	int group_cnt;
7174 	struct r5worker_group *new_group;
7175 	int ret;
7176 
7177 	if (mddev->new_level != 5
7178 	    && mddev->new_level != 4
7179 	    && mddev->new_level != 6) {
7180 		pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
7181 			mdname(mddev), mddev->new_level);
7182 		return ERR_PTR(-EIO);
7183 	}
7184 	if ((mddev->new_level == 5
7185 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
7186 	    (mddev->new_level == 6
7187 	     && !algorithm_valid_raid6(mddev->new_layout))) {
7188 		pr_warn("md/raid:%s: layout %d not supported\n",
7189 			mdname(mddev), mddev->new_layout);
7190 		return ERR_PTR(-EIO);
7191 	}
7192 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
7193 		pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
7194 			mdname(mddev), mddev->raid_disks);
7195 		return ERR_PTR(-EINVAL);
7196 	}
7197 
7198 	if (!mddev->new_chunk_sectors ||
7199 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
7200 	    !is_power_of_2(mddev->new_chunk_sectors)) {
7201 		pr_warn("md/raid:%s: invalid chunk size %d\n",
7202 			mdname(mddev), mddev->new_chunk_sectors << 9);
7203 		return ERR_PTR(-EINVAL);
7204 	}
7205 
7206 	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
7207 	if (conf == NULL)
7208 		goto abort;
7209 
7210 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
7211 	conf->stripe_size = DEFAULT_STRIPE_SIZE;
7212 	conf->stripe_shift = ilog2(DEFAULT_STRIPE_SIZE) - 9;
7213 	conf->stripe_sectors = DEFAULT_STRIPE_SIZE >> 9;
7214 #endif
7215 	INIT_LIST_HEAD(&conf->free_list);
7216 	INIT_LIST_HEAD(&conf->pending_list);
7217 	conf->pending_data = kcalloc(PENDING_IO_MAX,
7218 				     sizeof(struct r5pending_data),
7219 				     GFP_KERNEL);
7220 	if (!conf->pending_data)
7221 		goto abort;
7222 	for (i = 0; i < PENDING_IO_MAX; i++)
7223 		list_add(&conf->pending_data[i].sibling, &conf->free_list);
7224 	/* Don't enable multi-threading by default*/
7225 	if (!alloc_thread_groups(conf, 0, &group_cnt, &new_group)) {
7226 		conf->group_cnt = group_cnt;
7227 		conf->worker_cnt_per_group = 0;
7228 		conf->worker_groups = new_group;
7229 	} else
7230 		goto abort;
7231 	spin_lock_init(&conf->device_lock);
7232 	seqcount_spinlock_init(&conf->gen_lock, &conf->device_lock);
7233 	mutex_init(&conf->cache_size_mutex);
7234 	init_waitqueue_head(&conf->wait_for_quiescent);
7235 	init_waitqueue_head(&conf->wait_for_stripe);
7236 	init_waitqueue_head(&conf->wait_for_overlap);
7237 	INIT_LIST_HEAD(&conf->handle_list);
7238 	INIT_LIST_HEAD(&conf->loprio_list);
7239 	INIT_LIST_HEAD(&conf->hold_list);
7240 	INIT_LIST_HEAD(&conf->delayed_list);
7241 	INIT_LIST_HEAD(&conf->bitmap_list);
7242 	init_llist_head(&conf->released_stripes);
7243 	atomic_set(&conf->active_stripes, 0);
7244 	atomic_set(&conf->preread_active_stripes, 0);
7245 	atomic_set(&conf->active_aligned_reads, 0);
7246 	spin_lock_init(&conf->pending_bios_lock);
7247 	conf->batch_bio_dispatch = true;
7248 	rdev_for_each(rdev, mddev) {
7249 		if (test_bit(Journal, &rdev->flags))
7250 			continue;
7251 		if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
7252 			conf->batch_bio_dispatch = false;
7253 			break;
7254 		}
7255 	}
7256 
7257 	conf->bypass_threshold = BYPASS_THRESHOLD;
7258 	conf->recovery_disabled = mddev->recovery_disabled - 1;
7259 
7260 	conf->raid_disks = mddev->raid_disks;
7261 	if (mddev->reshape_position == MaxSector)
7262 		conf->previous_raid_disks = mddev->raid_disks;
7263 	else
7264 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
7265 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
7266 
7267 	conf->disks = kcalloc(max_disks, sizeof(struct disk_info),
7268 			      GFP_KERNEL);
7269 
7270 	if (!conf->disks)
7271 		goto abort;
7272 
7273 	for (i = 0; i < max_disks; i++) {
7274 		conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
7275 		if (!conf->disks[i].extra_page)
7276 			goto abort;
7277 	}
7278 
7279 	ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
7280 	if (ret)
7281 		goto abort;
7282 	conf->mddev = mddev;
7283 
7284 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
7285 		goto abort;
7286 
7287 	/* We init hash_locks[0] separately to that it can be used
7288 	 * as the reference lock in the spin_lock_nest_lock() call
7289 	 * in lock_all_device_hash_locks_irq in order to convince
7290 	 * lockdep that we know what we are doing.
7291 	 */
7292 	spin_lock_init(conf->hash_locks);
7293 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
7294 		spin_lock_init(conf->hash_locks + i);
7295 
7296 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7297 		INIT_LIST_HEAD(conf->inactive_list + i);
7298 
7299 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7300 		INIT_LIST_HEAD(conf->temp_inactive_list + i);
7301 
7302 	atomic_set(&conf->r5c_cached_full_stripes, 0);
7303 	INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
7304 	atomic_set(&conf->r5c_cached_partial_stripes, 0);
7305 	INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
7306 	atomic_set(&conf->r5c_flushing_full_stripes, 0);
7307 	atomic_set(&conf->r5c_flushing_partial_stripes, 0);
7308 
7309 	conf->level = mddev->new_level;
7310 	conf->chunk_sectors = mddev->new_chunk_sectors;
7311 	if (raid5_alloc_percpu(conf) != 0)
7312 		goto abort;
7313 
7314 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
7315 
7316 	rdev_for_each(rdev, mddev) {
7317 		raid_disk = rdev->raid_disk;
7318 		if (raid_disk >= max_disks
7319 		    || raid_disk < 0 || test_bit(Journal, &rdev->flags))
7320 			continue;
7321 		disk = conf->disks + raid_disk;
7322 
7323 		if (test_bit(Replacement, &rdev->flags)) {
7324 			if (disk->replacement)
7325 				goto abort;
7326 			disk->replacement = rdev;
7327 		} else {
7328 			if (disk->rdev)
7329 				goto abort;
7330 			disk->rdev = rdev;
7331 		}
7332 
7333 		if (test_bit(In_sync, &rdev->flags)) {
7334 			char b[BDEVNAME_SIZE];
7335 			pr_info("md/raid:%s: device %s operational as raid disk %d\n",
7336 				mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
7337 		} else if (rdev->saved_raid_disk != raid_disk)
7338 			/* Cannot rely on bitmap to complete recovery */
7339 			conf->fullsync = 1;
7340 	}
7341 
7342 	conf->level = mddev->new_level;
7343 	if (conf->level == 6) {
7344 		conf->max_degraded = 2;
7345 		if (raid6_call.xor_syndrome)
7346 			conf->rmw_level = PARITY_ENABLE_RMW;
7347 		else
7348 			conf->rmw_level = PARITY_DISABLE_RMW;
7349 	} else {
7350 		conf->max_degraded = 1;
7351 		conf->rmw_level = PARITY_ENABLE_RMW;
7352 	}
7353 	conf->algorithm = mddev->new_layout;
7354 	conf->reshape_progress = mddev->reshape_position;
7355 	if (conf->reshape_progress != MaxSector) {
7356 		conf->prev_chunk_sectors = mddev->chunk_sectors;
7357 		conf->prev_algo = mddev->layout;
7358 	} else {
7359 		conf->prev_chunk_sectors = conf->chunk_sectors;
7360 		conf->prev_algo = conf->algorithm;
7361 	}
7362 
7363 	conf->min_nr_stripes = NR_STRIPES;
7364 	if (mddev->reshape_position != MaxSector) {
7365 		int stripes = max_t(int,
7366 			((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4,
7367 			((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4);
7368 		conf->min_nr_stripes = max(NR_STRIPES, stripes);
7369 		if (conf->min_nr_stripes != NR_STRIPES)
7370 			pr_info("md/raid:%s: force stripe size %d for reshape\n",
7371 				mdname(mddev), conf->min_nr_stripes);
7372 	}
7373 	memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7374 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7375 	atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7376 	if (grow_stripes(conf, conf->min_nr_stripes)) {
7377 		pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7378 			mdname(mddev), memory);
7379 		goto abort;
7380 	} else
7381 		pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7382 	/*
7383 	 * Losing a stripe head costs more than the time to refill it,
7384 	 * it reduces the queue depth and so can hurt throughput.
7385 	 * So set it rather large, scaled by number of devices.
7386 	 */
7387 	conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7388 	conf->shrinker.scan_objects = raid5_cache_scan;
7389 	conf->shrinker.count_objects = raid5_cache_count;
7390 	conf->shrinker.batch = 128;
7391 	conf->shrinker.flags = 0;
7392 	if (register_shrinker(&conf->shrinker)) {
7393 		pr_warn("md/raid:%s: couldn't register shrinker.\n",
7394 			mdname(mddev));
7395 		goto abort;
7396 	}
7397 
7398 	sprintf(pers_name, "raid%d", mddev->new_level);
7399 	conf->thread = md_register_thread(raid5d, mddev, pers_name);
7400 	if (!conf->thread) {
7401 		pr_warn("md/raid:%s: couldn't allocate thread.\n",
7402 			mdname(mddev));
7403 		goto abort;
7404 	}
7405 
7406 	return conf;
7407 
7408  abort:
7409 	if (conf) {
7410 		free_conf(conf);
7411 		return ERR_PTR(-EIO);
7412 	} else
7413 		return ERR_PTR(-ENOMEM);
7414 }
7415 
7416 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7417 {
7418 	switch (algo) {
7419 	case ALGORITHM_PARITY_0:
7420 		if (raid_disk < max_degraded)
7421 			return 1;
7422 		break;
7423 	case ALGORITHM_PARITY_N:
7424 		if (raid_disk >= raid_disks - max_degraded)
7425 			return 1;
7426 		break;
7427 	case ALGORITHM_PARITY_0_6:
7428 		if (raid_disk == 0 ||
7429 		    raid_disk == raid_disks - 1)
7430 			return 1;
7431 		break;
7432 	case ALGORITHM_LEFT_ASYMMETRIC_6:
7433 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
7434 	case ALGORITHM_LEFT_SYMMETRIC_6:
7435 	case ALGORITHM_RIGHT_SYMMETRIC_6:
7436 		if (raid_disk == raid_disks - 1)
7437 			return 1;
7438 	}
7439 	return 0;
7440 }
7441 
7442 static void raid5_set_io_opt(struct r5conf *conf)
7443 {
7444 	blk_queue_io_opt(conf->mddev->queue, (conf->chunk_sectors << 9) *
7445 			 (conf->raid_disks - conf->max_degraded));
7446 }
7447 
7448 static int raid5_run(struct mddev *mddev)
7449 {
7450 	struct r5conf *conf;
7451 	int working_disks = 0;
7452 	int dirty_parity_disks = 0;
7453 	struct md_rdev *rdev;
7454 	struct md_rdev *journal_dev = NULL;
7455 	sector_t reshape_offset = 0;
7456 	int i, ret = 0;
7457 	long long min_offset_diff = 0;
7458 	int first = 1;
7459 
7460 	if (acct_bioset_init(mddev)) {
7461 		pr_err("md/raid456:%s: alloc acct bioset failed.\n", mdname(mddev));
7462 		return -ENOMEM;
7463 	}
7464 
7465 	if (mddev_init_writes_pending(mddev) < 0) {
7466 		ret = -ENOMEM;
7467 		goto exit_acct_set;
7468 	}
7469 
7470 	if (mddev->recovery_cp != MaxSector)
7471 		pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7472 			  mdname(mddev));
7473 
7474 	rdev_for_each(rdev, mddev) {
7475 		long long diff;
7476 
7477 		if (test_bit(Journal, &rdev->flags)) {
7478 			journal_dev = rdev;
7479 			continue;
7480 		}
7481 		if (rdev->raid_disk < 0)
7482 			continue;
7483 		diff = (rdev->new_data_offset - rdev->data_offset);
7484 		if (first) {
7485 			min_offset_diff = diff;
7486 			first = 0;
7487 		} else if (mddev->reshape_backwards &&
7488 			 diff < min_offset_diff)
7489 			min_offset_diff = diff;
7490 		else if (!mddev->reshape_backwards &&
7491 			 diff > min_offset_diff)
7492 			min_offset_diff = diff;
7493 	}
7494 
7495 	if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7496 	    (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7497 		pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7498 			  mdname(mddev));
7499 		ret = -EINVAL;
7500 		goto exit_acct_set;
7501 	}
7502 
7503 	if (mddev->reshape_position != MaxSector) {
7504 		/* Check that we can continue the reshape.
7505 		 * Difficulties arise if the stripe we would write to
7506 		 * next is at or after the stripe we would read from next.
7507 		 * For a reshape that changes the number of devices, this
7508 		 * is only possible for a very short time, and mdadm makes
7509 		 * sure that time appears to have past before assembling
7510 		 * the array.  So we fail if that time hasn't passed.
7511 		 * For a reshape that keeps the number of devices the same
7512 		 * mdadm must be monitoring the reshape can keeping the
7513 		 * critical areas read-only and backed up.  It will start
7514 		 * the array in read-only mode, so we check for that.
7515 		 */
7516 		sector_t here_new, here_old;
7517 		int old_disks;
7518 		int max_degraded = (mddev->level == 6 ? 2 : 1);
7519 		int chunk_sectors;
7520 		int new_data_disks;
7521 
7522 		if (journal_dev) {
7523 			pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7524 				mdname(mddev));
7525 			ret = -EINVAL;
7526 			goto exit_acct_set;
7527 		}
7528 
7529 		if (mddev->new_level != mddev->level) {
7530 			pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7531 				mdname(mddev));
7532 			ret = -EINVAL;
7533 			goto exit_acct_set;
7534 		}
7535 		old_disks = mddev->raid_disks - mddev->delta_disks;
7536 		/* reshape_position must be on a new-stripe boundary, and one
7537 		 * further up in new geometry must map after here in old
7538 		 * geometry.
7539 		 * If the chunk sizes are different, then as we perform reshape
7540 		 * in units of the largest of the two, reshape_position needs
7541 		 * be a multiple of the largest chunk size times new data disks.
7542 		 */
7543 		here_new = mddev->reshape_position;
7544 		chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7545 		new_data_disks = mddev->raid_disks - max_degraded;
7546 		if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7547 			pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7548 				mdname(mddev));
7549 			ret = -EINVAL;
7550 			goto exit_acct_set;
7551 		}
7552 		reshape_offset = here_new * chunk_sectors;
7553 		/* here_new is the stripe we will write to */
7554 		here_old = mddev->reshape_position;
7555 		sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7556 		/* here_old is the first stripe that we might need to read
7557 		 * from */
7558 		if (mddev->delta_disks == 0) {
7559 			/* We cannot be sure it is safe to start an in-place
7560 			 * reshape.  It is only safe if user-space is monitoring
7561 			 * and taking constant backups.
7562 			 * mdadm always starts a situation like this in
7563 			 * readonly mode so it can take control before
7564 			 * allowing any writes.  So just check for that.
7565 			 */
7566 			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7567 			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
7568 				/* not really in-place - so OK */;
7569 			else if (mddev->ro == 0) {
7570 				pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7571 					mdname(mddev));
7572 				ret = -EINVAL;
7573 				goto exit_acct_set;
7574 			}
7575 		} else if (mddev->reshape_backwards
7576 		    ? (here_new * chunk_sectors + min_offset_diff <=
7577 		       here_old * chunk_sectors)
7578 		    : (here_new * chunk_sectors >=
7579 		       here_old * chunk_sectors + (-min_offset_diff))) {
7580 			/* Reading from the same stripe as writing to - bad */
7581 			pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7582 				mdname(mddev));
7583 			ret = -EINVAL;
7584 			goto exit_acct_set;
7585 		}
7586 		pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7587 		/* OK, we should be able to continue; */
7588 	} else {
7589 		BUG_ON(mddev->level != mddev->new_level);
7590 		BUG_ON(mddev->layout != mddev->new_layout);
7591 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7592 		BUG_ON(mddev->delta_disks != 0);
7593 	}
7594 
7595 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7596 	    test_bit(MD_HAS_PPL, &mddev->flags)) {
7597 		pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7598 			mdname(mddev));
7599 		clear_bit(MD_HAS_PPL, &mddev->flags);
7600 		clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
7601 	}
7602 
7603 	if (mddev->private == NULL)
7604 		conf = setup_conf(mddev);
7605 	else
7606 		conf = mddev->private;
7607 
7608 	if (IS_ERR(conf)) {
7609 		ret = PTR_ERR(conf);
7610 		goto exit_acct_set;
7611 	}
7612 
7613 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7614 		if (!journal_dev) {
7615 			pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7616 				mdname(mddev));
7617 			mddev->ro = 1;
7618 			set_disk_ro(mddev->gendisk, 1);
7619 		} else if (mddev->recovery_cp == MaxSector)
7620 			set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7621 	}
7622 
7623 	conf->min_offset_diff = min_offset_diff;
7624 	mddev->thread = conf->thread;
7625 	conf->thread = NULL;
7626 	mddev->private = conf;
7627 
7628 	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7629 	     i++) {
7630 		rdev = conf->disks[i].rdev;
7631 		if (!rdev && conf->disks[i].replacement) {
7632 			/* The replacement is all we have yet */
7633 			rdev = conf->disks[i].replacement;
7634 			conf->disks[i].replacement = NULL;
7635 			clear_bit(Replacement, &rdev->flags);
7636 			conf->disks[i].rdev = rdev;
7637 		}
7638 		if (!rdev)
7639 			continue;
7640 		if (conf->disks[i].replacement &&
7641 		    conf->reshape_progress != MaxSector) {
7642 			/* replacements and reshape simply do not mix. */
7643 			pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7644 			goto abort;
7645 		}
7646 		if (test_bit(In_sync, &rdev->flags)) {
7647 			working_disks++;
7648 			continue;
7649 		}
7650 		/* This disc is not fully in-sync.  However if it
7651 		 * just stored parity (beyond the recovery_offset),
7652 		 * when we don't need to be concerned about the
7653 		 * array being dirty.
7654 		 * When reshape goes 'backwards', we never have
7655 		 * partially completed devices, so we only need
7656 		 * to worry about reshape going forwards.
7657 		 */
7658 		/* Hack because v0.91 doesn't store recovery_offset properly. */
7659 		if (mddev->major_version == 0 &&
7660 		    mddev->minor_version > 90)
7661 			rdev->recovery_offset = reshape_offset;
7662 
7663 		if (rdev->recovery_offset < reshape_offset) {
7664 			/* We need to check old and new layout */
7665 			if (!only_parity(rdev->raid_disk,
7666 					 conf->algorithm,
7667 					 conf->raid_disks,
7668 					 conf->max_degraded))
7669 				continue;
7670 		}
7671 		if (!only_parity(rdev->raid_disk,
7672 				 conf->prev_algo,
7673 				 conf->previous_raid_disks,
7674 				 conf->max_degraded))
7675 			continue;
7676 		dirty_parity_disks++;
7677 	}
7678 
7679 	/*
7680 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
7681 	 */
7682 	mddev->degraded = raid5_calc_degraded(conf);
7683 
7684 	if (has_failed(conf)) {
7685 		pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7686 			mdname(mddev), mddev->degraded, conf->raid_disks);
7687 		goto abort;
7688 	}
7689 
7690 	/* device size must be a multiple of chunk size */
7691 	mddev->dev_sectors &= ~((sector_t)mddev->chunk_sectors - 1);
7692 	mddev->resync_max_sectors = mddev->dev_sectors;
7693 
7694 	if (mddev->degraded > dirty_parity_disks &&
7695 	    mddev->recovery_cp != MaxSector) {
7696 		if (test_bit(MD_HAS_PPL, &mddev->flags))
7697 			pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7698 				mdname(mddev));
7699 		else if (mddev->ok_start_degraded)
7700 			pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7701 				mdname(mddev));
7702 		else {
7703 			pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7704 				mdname(mddev));
7705 			goto abort;
7706 		}
7707 	}
7708 
7709 	pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7710 		mdname(mddev), conf->level,
7711 		mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7712 		mddev->new_layout);
7713 
7714 	print_raid5_conf(conf);
7715 
7716 	if (conf->reshape_progress != MaxSector) {
7717 		conf->reshape_safe = conf->reshape_progress;
7718 		atomic_set(&conf->reshape_stripes, 0);
7719 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7720 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7721 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7722 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7723 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7724 							"reshape");
7725 		if (!mddev->sync_thread)
7726 			goto abort;
7727 	}
7728 
7729 	/* Ok, everything is just fine now */
7730 	if (mddev->to_remove == &raid5_attrs_group)
7731 		mddev->to_remove = NULL;
7732 	else if (mddev->kobj.sd &&
7733 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
7734 		pr_warn("raid5: failed to create sysfs attributes for %s\n",
7735 			mdname(mddev));
7736 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7737 
7738 	if (mddev->queue) {
7739 		int chunk_size;
7740 		/* read-ahead size must cover two whole stripes, which
7741 		 * is 2 * (datadisks) * chunksize where 'n' is the
7742 		 * number of raid devices
7743 		 */
7744 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
7745 		int stripe = data_disks *
7746 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
7747 
7748 		chunk_size = mddev->chunk_sectors << 9;
7749 		blk_queue_io_min(mddev->queue, chunk_size);
7750 		raid5_set_io_opt(conf);
7751 		mddev->queue->limits.raid_partial_stripes_expensive = 1;
7752 		/*
7753 		 * We can only discard a whole stripe. It doesn't make sense to
7754 		 * discard data disk but write parity disk
7755 		 */
7756 		stripe = stripe * PAGE_SIZE;
7757 		stripe = roundup_pow_of_two(stripe);
7758 		mddev->queue->limits.discard_alignment = stripe;
7759 		mddev->queue->limits.discard_granularity = stripe;
7760 
7761 		blk_queue_max_write_same_sectors(mddev->queue, 0);
7762 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
7763 
7764 		rdev_for_each(rdev, mddev) {
7765 			disk_stack_limits(mddev->gendisk, rdev->bdev,
7766 					  rdev->data_offset << 9);
7767 			disk_stack_limits(mddev->gendisk, rdev->bdev,
7768 					  rdev->new_data_offset << 9);
7769 		}
7770 
7771 		/*
7772 		 * zeroing is required, otherwise data
7773 		 * could be lost. Consider a scenario: discard a stripe
7774 		 * (the stripe could be inconsistent if
7775 		 * discard_zeroes_data is 0); write one disk of the
7776 		 * stripe (the stripe could be inconsistent again
7777 		 * depending on which disks are used to calculate
7778 		 * parity); the disk is broken; The stripe data of this
7779 		 * disk is lost.
7780 		 *
7781 		 * We only allow DISCARD if the sysadmin has confirmed that
7782 		 * only safe devices are in use by setting a module parameter.
7783 		 * A better idea might be to turn DISCARD into WRITE_ZEROES
7784 		 * requests, as that is required to be safe.
7785 		 */
7786 		if (devices_handle_discard_safely &&
7787 		    mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7788 		    mddev->queue->limits.discard_granularity >= stripe)
7789 			blk_queue_flag_set(QUEUE_FLAG_DISCARD,
7790 						mddev->queue);
7791 		else
7792 			blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
7793 						mddev->queue);
7794 
7795 		blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
7796 	}
7797 
7798 	if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
7799 		goto abort;
7800 
7801 	return 0;
7802 abort:
7803 	md_unregister_thread(&mddev->thread);
7804 	print_raid5_conf(conf);
7805 	free_conf(conf);
7806 	mddev->private = NULL;
7807 	pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
7808 	ret = -EIO;
7809 exit_acct_set:
7810 	acct_bioset_exit(mddev);
7811 	return ret;
7812 }
7813 
7814 static void raid5_free(struct mddev *mddev, void *priv)
7815 {
7816 	struct r5conf *conf = priv;
7817 
7818 	free_conf(conf);
7819 	acct_bioset_exit(mddev);
7820 	mddev->to_remove = &raid5_attrs_group;
7821 }
7822 
7823 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7824 {
7825 	struct r5conf *conf = mddev->private;
7826 	int i;
7827 
7828 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7829 		conf->chunk_sectors / 2, mddev->layout);
7830 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7831 	rcu_read_lock();
7832 	for (i = 0; i < conf->raid_disks; i++) {
7833 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7834 		seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7835 	}
7836 	rcu_read_unlock();
7837 	seq_printf (seq, "]");
7838 }
7839 
7840 static void print_raid5_conf (struct r5conf *conf)
7841 {
7842 	int i;
7843 	struct disk_info *tmp;
7844 
7845 	pr_debug("RAID conf printout:\n");
7846 	if (!conf) {
7847 		pr_debug("(conf==NULL)\n");
7848 		return;
7849 	}
7850 	pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
7851 	       conf->raid_disks,
7852 	       conf->raid_disks - conf->mddev->degraded);
7853 
7854 	for (i = 0; i < conf->raid_disks; i++) {
7855 		char b[BDEVNAME_SIZE];
7856 		tmp = conf->disks + i;
7857 		if (tmp->rdev)
7858 			pr_debug(" disk %d, o:%d, dev:%s\n",
7859 			       i, !test_bit(Faulty, &tmp->rdev->flags),
7860 			       bdevname(tmp->rdev->bdev, b));
7861 	}
7862 }
7863 
7864 static int raid5_spare_active(struct mddev *mddev)
7865 {
7866 	int i;
7867 	struct r5conf *conf = mddev->private;
7868 	struct disk_info *tmp;
7869 	int count = 0;
7870 	unsigned long flags;
7871 
7872 	for (i = 0; i < conf->raid_disks; i++) {
7873 		tmp = conf->disks + i;
7874 		if (tmp->replacement
7875 		    && tmp->replacement->recovery_offset == MaxSector
7876 		    && !test_bit(Faulty, &tmp->replacement->flags)
7877 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7878 			/* Replacement has just become active. */
7879 			if (!tmp->rdev
7880 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7881 				count++;
7882 			if (tmp->rdev) {
7883 				/* Replaced device not technically faulty,
7884 				 * but we need to be sure it gets removed
7885 				 * and never re-added.
7886 				 */
7887 				set_bit(Faulty, &tmp->rdev->flags);
7888 				sysfs_notify_dirent_safe(
7889 					tmp->rdev->sysfs_state);
7890 			}
7891 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7892 		} else if (tmp->rdev
7893 		    && tmp->rdev->recovery_offset == MaxSector
7894 		    && !test_bit(Faulty, &tmp->rdev->flags)
7895 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7896 			count++;
7897 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7898 		}
7899 	}
7900 	spin_lock_irqsave(&conf->device_lock, flags);
7901 	mddev->degraded = raid5_calc_degraded(conf);
7902 	spin_unlock_irqrestore(&conf->device_lock, flags);
7903 	print_raid5_conf(conf);
7904 	return count;
7905 }
7906 
7907 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7908 {
7909 	struct r5conf *conf = mddev->private;
7910 	int err = 0;
7911 	int number = rdev->raid_disk;
7912 	struct md_rdev **rdevp;
7913 	struct disk_info *p = conf->disks + number;
7914 
7915 	print_raid5_conf(conf);
7916 	if (test_bit(Journal, &rdev->flags) && conf->log) {
7917 		/*
7918 		 * we can't wait pending write here, as this is called in
7919 		 * raid5d, wait will deadlock.
7920 		 * neilb: there is no locking about new writes here,
7921 		 * so this cannot be safe.
7922 		 */
7923 		if (atomic_read(&conf->active_stripes) ||
7924 		    atomic_read(&conf->r5c_cached_full_stripes) ||
7925 		    atomic_read(&conf->r5c_cached_partial_stripes)) {
7926 			return -EBUSY;
7927 		}
7928 		log_exit(conf);
7929 		return 0;
7930 	}
7931 	if (rdev == p->rdev)
7932 		rdevp = &p->rdev;
7933 	else if (rdev == p->replacement)
7934 		rdevp = &p->replacement;
7935 	else
7936 		return 0;
7937 
7938 	if (number >= conf->raid_disks &&
7939 	    conf->reshape_progress == MaxSector)
7940 		clear_bit(In_sync, &rdev->flags);
7941 
7942 	if (test_bit(In_sync, &rdev->flags) ||
7943 	    atomic_read(&rdev->nr_pending)) {
7944 		err = -EBUSY;
7945 		goto abort;
7946 	}
7947 	/* Only remove non-faulty devices if recovery
7948 	 * isn't possible.
7949 	 */
7950 	if (!test_bit(Faulty, &rdev->flags) &&
7951 	    mddev->recovery_disabled != conf->recovery_disabled &&
7952 	    !has_failed(conf) &&
7953 	    (!p->replacement || p->replacement == rdev) &&
7954 	    number < conf->raid_disks) {
7955 		err = -EBUSY;
7956 		goto abort;
7957 	}
7958 	*rdevp = NULL;
7959 	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7960 		synchronize_rcu();
7961 		if (atomic_read(&rdev->nr_pending)) {
7962 			/* lost the race, try later */
7963 			err = -EBUSY;
7964 			*rdevp = rdev;
7965 		}
7966 	}
7967 	if (!err) {
7968 		err = log_modify(conf, rdev, false);
7969 		if (err)
7970 			goto abort;
7971 	}
7972 	if (p->replacement) {
7973 		/* We must have just cleared 'rdev' */
7974 		p->rdev = p->replacement;
7975 		clear_bit(Replacement, &p->replacement->flags);
7976 		smp_mb(); /* Make sure other CPUs may see both as identical
7977 			   * but will never see neither - if they are careful
7978 			   */
7979 		p->replacement = NULL;
7980 
7981 		if (!err)
7982 			err = log_modify(conf, p->rdev, true);
7983 	}
7984 
7985 	clear_bit(WantReplacement, &rdev->flags);
7986 abort:
7987 
7988 	print_raid5_conf(conf);
7989 	return err;
7990 }
7991 
7992 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7993 {
7994 	struct r5conf *conf = mddev->private;
7995 	int ret, err = -EEXIST;
7996 	int disk;
7997 	struct disk_info *p;
7998 	int first = 0;
7999 	int last = conf->raid_disks - 1;
8000 
8001 	if (test_bit(Journal, &rdev->flags)) {
8002 		if (conf->log)
8003 			return -EBUSY;
8004 
8005 		rdev->raid_disk = 0;
8006 		/*
8007 		 * The array is in readonly mode if journal is missing, so no
8008 		 * write requests running. We should be safe
8009 		 */
8010 		ret = log_init(conf, rdev, false);
8011 		if (ret)
8012 			return ret;
8013 
8014 		ret = r5l_start(conf->log);
8015 		if (ret)
8016 			return ret;
8017 
8018 		return 0;
8019 	}
8020 	if (mddev->recovery_disabled == conf->recovery_disabled)
8021 		return -EBUSY;
8022 
8023 	if (rdev->saved_raid_disk < 0 && has_failed(conf))
8024 		/* no point adding a device */
8025 		return -EINVAL;
8026 
8027 	if (rdev->raid_disk >= 0)
8028 		first = last = rdev->raid_disk;
8029 
8030 	/*
8031 	 * find the disk ... but prefer rdev->saved_raid_disk
8032 	 * if possible.
8033 	 */
8034 	if (rdev->saved_raid_disk >= 0 &&
8035 	    rdev->saved_raid_disk >= first &&
8036 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
8037 		first = rdev->saved_raid_disk;
8038 
8039 	for (disk = first; disk <= last; disk++) {
8040 		p = conf->disks + disk;
8041 		if (p->rdev == NULL) {
8042 			clear_bit(In_sync, &rdev->flags);
8043 			rdev->raid_disk = disk;
8044 			if (rdev->saved_raid_disk != disk)
8045 				conf->fullsync = 1;
8046 			rcu_assign_pointer(p->rdev, rdev);
8047 
8048 			err = log_modify(conf, rdev, true);
8049 
8050 			goto out;
8051 		}
8052 	}
8053 	for (disk = first; disk <= last; disk++) {
8054 		p = conf->disks + disk;
8055 		if (test_bit(WantReplacement, &p->rdev->flags) &&
8056 		    p->replacement == NULL) {
8057 			clear_bit(In_sync, &rdev->flags);
8058 			set_bit(Replacement, &rdev->flags);
8059 			rdev->raid_disk = disk;
8060 			err = 0;
8061 			conf->fullsync = 1;
8062 			rcu_assign_pointer(p->replacement, rdev);
8063 			break;
8064 		}
8065 	}
8066 out:
8067 	print_raid5_conf(conf);
8068 	return err;
8069 }
8070 
8071 static int raid5_resize(struct mddev *mddev, sector_t sectors)
8072 {
8073 	/* no resync is happening, and there is enough space
8074 	 * on all devices, so we can resize.
8075 	 * We need to make sure resync covers any new space.
8076 	 * If the array is shrinking we should possibly wait until
8077 	 * any io in the removed space completes, but it hardly seems
8078 	 * worth it.
8079 	 */
8080 	sector_t newsize;
8081 	struct r5conf *conf = mddev->private;
8082 
8083 	if (raid5_has_log(conf) || raid5_has_ppl(conf))
8084 		return -EINVAL;
8085 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
8086 	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
8087 	if (mddev->external_size &&
8088 	    mddev->array_sectors > newsize)
8089 		return -EINVAL;
8090 	if (mddev->bitmap) {
8091 		int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0);
8092 		if (ret)
8093 			return ret;
8094 	}
8095 	md_set_array_sectors(mddev, newsize);
8096 	if (sectors > mddev->dev_sectors &&
8097 	    mddev->recovery_cp > mddev->dev_sectors) {
8098 		mddev->recovery_cp = mddev->dev_sectors;
8099 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8100 	}
8101 	mddev->dev_sectors = sectors;
8102 	mddev->resync_max_sectors = sectors;
8103 	return 0;
8104 }
8105 
8106 static int check_stripe_cache(struct mddev *mddev)
8107 {
8108 	/* Can only proceed if there are plenty of stripe_heads.
8109 	 * We need a minimum of one full stripe,, and for sensible progress
8110 	 * it is best to have about 4 times that.
8111 	 * If we require 4 times, then the default 256 4K stripe_heads will
8112 	 * allow for chunk sizes up to 256K, which is probably OK.
8113 	 * If the chunk size is greater, user-space should request more
8114 	 * stripe_heads first.
8115 	 */
8116 	struct r5conf *conf = mddev->private;
8117 	if (((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
8118 	    > conf->min_nr_stripes ||
8119 	    ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
8120 	    > conf->min_nr_stripes) {
8121 		pr_warn("md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
8122 			mdname(mddev),
8123 			((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
8124 			 / RAID5_STRIPE_SIZE(conf))*4);
8125 		return 0;
8126 	}
8127 	return 1;
8128 }
8129 
8130 static int check_reshape(struct mddev *mddev)
8131 {
8132 	struct r5conf *conf = mddev->private;
8133 
8134 	if (raid5_has_log(conf) || raid5_has_ppl(conf))
8135 		return -EINVAL;
8136 	if (mddev->delta_disks == 0 &&
8137 	    mddev->new_layout == mddev->layout &&
8138 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
8139 		return 0; /* nothing to do */
8140 	if (has_failed(conf))
8141 		return -EINVAL;
8142 	if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
8143 		/* We might be able to shrink, but the devices must
8144 		 * be made bigger first.
8145 		 * For raid6, 4 is the minimum size.
8146 		 * Otherwise 2 is the minimum
8147 		 */
8148 		int min = 2;
8149 		if (mddev->level == 6)
8150 			min = 4;
8151 		if (mddev->raid_disks + mddev->delta_disks < min)
8152 			return -EINVAL;
8153 	}
8154 
8155 	if (!check_stripe_cache(mddev))
8156 		return -ENOSPC;
8157 
8158 	if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
8159 	    mddev->delta_disks > 0)
8160 		if (resize_chunks(conf,
8161 				  conf->previous_raid_disks
8162 				  + max(0, mddev->delta_disks),
8163 				  max(mddev->new_chunk_sectors,
8164 				      mddev->chunk_sectors)
8165 			    ) < 0)
8166 			return -ENOMEM;
8167 
8168 	if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
8169 		return 0; /* never bother to shrink */
8170 	return resize_stripes(conf, (conf->previous_raid_disks
8171 				     + mddev->delta_disks));
8172 }
8173 
8174 static int raid5_start_reshape(struct mddev *mddev)
8175 {
8176 	struct r5conf *conf = mddev->private;
8177 	struct md_rdev *rdev;
8178 	int spares = 0;
8179 	unsigned long flags;
8180 
8181 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
8182 		return -EBUSY;
8183 
8184 	if (!check_stripe_cache(mddev))
8185 		return -ENOSPC;
8186 
8187 	if (has_failed(conf))
8188 		return -EINVAL;
8189 
8190 	rdev_for_each(rdev, mddev) {
8191 		if (!test_bit(In_sync, &rdev->flags)
8192 		    && !test_bit(Faulty, &rdev->flags))
8193 			spares++;
8194 	}
8195 
8196 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
8197 		/* Not enough devices even to make a degraded array
8198 		 * of that size
8199 		 */
8200 		return -EINVAL;
8201 
8202 	/* Refuse to reduce size of the array.  Any reductions in
8203 	 * array size must be through explicit setting of array_size
8204 	 * attribute.
8205 	 */
8206 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
8207 	    < mddev->array_sectors) {
8208 		pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
8209 			mdname(mddev));
8210 		return -EINVAL;
8211 	}
8212 
8213 	atomic_set(&conf->reshape_stripes, 0);
8214 	spin_lock_irq(&conf->device_lock);
8215 	write_seqcount_begin(&conf->gen_lock);
8216 	conf->previous_raid_disks = conf->raid_disks;
8217 	conf->raid_disks += mddev->delta_disks;
8218 	conf->prev_chunk_sectors = conf->chunk_sectors;
8219 	conf->chunk_sectors = mddev->new_chunk_sectors;
8220 	conf->prev_algo = conf->algorithm;
8221 	conf->algorithm = mddev->new_layout;
8222 	conf->generation++;
8223 	/* Code that selects data_offset needs to see the generation update
8224 	 * if reshape_progress has been set - so a memory barrier needed.
8225 	 */
8226 	smp_mb();
8227 	if (mddev->reshape_backwards)
8228 		conf->reshape_progress = raid5_size(mddev, 0, 0);
8229 	else
8230 		conf->reshape_progress = 0;
8231 	conf->reshape_safe = conf->reshape_progress;
8232 	write_seqcount_end(&conf->gen_lock);
8233 	spin_unlock_irq(&conf->device_lock);
8234 
8235 	/* Now make sure any requests that proceeded on the assumption
8236 	 * the reshape wasn't running - like Discard or Read - have
8237 	 * completed.
8238 	 */
8239 	mddev_suspend(mddev);
8240 	mddev_resume(mddev);
8241 
8242 	/* Add some new drives, as many as will fit.
8243 	 * We know there are enough to make the newly sized array work.
8244 	 * Don't add devices if we are reducing the number of
8245 	 * devices in the array.  This is because it is not possible
8246 	 * to correctly record the "partially reconstructed" state of
8247 	 * such devices during the reshape and confusion could result.
8248 	 */
8249 	if (mddev->delta_disks >= 0) {
8250 		rdev_for_each(rdev, mddev)
8251 			if (rdev->raid_disk < 0 &&
8252 			    !test_bit(Faulty, &rdev->flags)) {
8253 				if (raid5_add_disk(mddev, rdev) == 0) {
8254 					if (rdev->raid_disk
8255 					    >= conf->previous_raid_disks)
8256 						set_bit(In_sync, &rdev->flags);
8257 					else
8258 						rdev->recovery_offset = 0;
8259 
8260 					/* Failure here is OK */
8261 					sysfs_link_rdev(mddev, rdev);
8262 				}
8263 			} else if (rdev->raid_disk >= conf->previous_raid_disks
8264 				   && !test_bit(Faulty, &rdev->flags)) {
8265 				/* This is a spare that was manually added */
8266 				set_bit(In_sync, &rdev->flags);
8267 			}
8268 
8269 		/* When a reshape changes the number of devices,
8270 		 * ->degraded is measured against the larger of the
8271 		 * pre and post number of devices.
8272 		 */
8273 		spin_lock_irqsave(&conf->device_lock, flags);
8274 		mddev->degraded = raid5_calc_degraded(conf);
8275 		spin_unlock_irqrestore(&conf->device_lock, flags);
8276 	}
8277 	mddev->raid_disks = conf->raid_disks;
8278 	mddev->reshape_position = conf->reshape_progress;
8279 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8280 
8281 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8282 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8283 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8284 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8285 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8286 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
8287 						"reshape");
8288 	if (!mddev->sync_thread) {
8289 		mddev->recovery = 0;
8290 		spin_lock_irq(&conf->device_lock);
8291 		write_seqcount_begin(&conf->gen_lock);
8292 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
8293 		mddev->new_chunk_sectors =
8294 			conf->chunk_sectors = conf->prev_chunk_sectors;
8295 		mddev->new_layout = conf->algorithm = conf->prev_algo;
8296 		rdev_for_each(rdev, mddev)
8297 			rdev->new_data_offset = rdev->data_offset;
8298 		smp_wmb();
8299 		conf->generation --;
8300 		conf->reshape_progress = MaxSector;
8301 		mddev->reshape_position = MaxSector;
8302 		write_seqcount_end(&conf->gen_lock);
8303 		spin_unlock_irq(&conf->device_lock);
8304 		return -EAGAIN;
8305 	}
8306 	conf->reshape_checkpoint = jiffies;
8307 	md_wakeup_thread(mddev->sync_thread);
8308 	md_new_event();
8309 	return 0;
8310 }
8311 
8312 /* This is called from the reshape thread and should make any
8313  * changes needed in 'conf'
8314  */
8315 static void end_reshape(struct r5conf *conf)
8316 {
8317 
8318 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
8319 		struct md_rdev *rdev;
8320 
8321 		spin_lock_irq(&conf->device_lock);
8322 		conf->previous_raid_disks = conf->raid_disks;
8323 		md_finish_reshape(conf->mddev);
8324 		smp_wmb();
8325 		conf->reshape_progress = MaxSector;
8326 		conf->mddev->reshape_position = MaxSector;
8327 		rdev_for_each(rdev, conf->mddev)
8328 			if (rdev->raid_disk >= 0 &&
8329 			    !test_bit(Journal, &rdev->flags) &&
8330 			    !test_bit(In_sync, &rdev->flags))
8331 				rdev->recovery_offset = MaxSector;
8332 		spin_unlock_irq(&conf->device_lock);
8333 		wake_up(&conf->wait_for_overlap);
8334 
8335 		if (conf->mddev->queue)
8336 			raid5_set_io_opt(conf);
8337 	}
8338 }
8339 
8340 /* This is called from the raid5d thread with mddev_lock held.
8341  * It makes config changes to the device.
8342  */
8343 static void raid5_finish_reshape(struct mddev *mddev)
8344 {
8345 	struct r5conf *conf = mddev->private;
8346 
8347 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8348 
8349 		if (mddev->delta_disks <= 0) {
8350 			int d;
8351 			spin_lock_irq(&conf->device_lock);
8352 			mddev->degraded = raid5_calc_degraded(conf);
8353 			spin_unlock_irq(&conf->device_lock);
8354 			for (d = conf->raid_disks ;
8355 			     d < conf->raid_disks - mddev->delta_disks;
8356 			     d++) {
8357 				struct md_rdev *rdev = conf->disks[d].rdev;
8358 				if (rdev)
8359 					clear_bit(In_sync, &rdev->flags);
8360 				rdev = conf->disks[d].replacement;
8361 				if (rdev)
8362 					clear_bit(In_sync, &rdev->flags);
8363 			}
8364 		}
8365 		mddev->layout = conf->algorithm;
8366 		mddev->chunk_sectors = conf->chunk_sectors;
8367 		mddev->reshape_position = MaxSector;
8368 		mddev->delta_disks = 0;
8369 		mddev->reshape_backwards = 0;
8370 	}
8371 }
8372 
8373 static void raid5_quiesce(struct mddev *mddev, int quiesce)
8374 {
8375 	struct r5conf *conf = mddev->private;
8376 
8377 	if (quiesce) {
8378 		/* stop all writes */
8379 		lock_all_device_hash_locks_irq(conf);
8380 		/* '2' tells resync/reshape to pause so that all
8381 		 * active stripes can drain
8382 		 */
8383 		r5c_flush_cache(conf, INT_MAX);
8384 		/* need a memory barrier to make sure read_one_chunk() sees
8385 		 * quiesce started and reverts to slow (locked) path.
8386 		 */
8387 		smp_store_release(&conf->quiesce, 2);
8388 		wait_event_cmd(conf->wait_for_quiescent,
8389 				    atomic_read(&conf->active_stripes) == 0 &&
8390 				    atomic_read(&conf->active_aligned_reads) == 0,
8391 				    unlock_all_device_hash_locks_irq(conf),
8392 				    lock_all_device_hash_locks_irq(conf));
8393 		conf->quiesce = 1;
8394 		unlock_all_device_hash_locks_irq(conf);
8395 		/* allow reshape to continue */
8396 		wake_up(&conf->wait_for_overlap);
8397 	} else {
8398 		/* re-enable writes */
8399 		lock_all_device_hash_locks_irq(conf);
8400 		conf->quiesce = 0;
8401 		wake_up(&conf->wait_for_quiescent);
8402 		wake_up(&conf->wait_for_overlap);
8403 		unlock_all_device_hash_locks_irq(conf);
8404 	}
8405 	log_quiesce(conf, quiesce);
8406 }
8407 
8408 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8409 {
8410 	struct r0conf *raid0_conf = mddev->private;
8411 	sector_t sectors;
8412 
8413 	/* for raid0 takeover only one zone is supported */
8414 	if (raid0_conf->nr_strip_zones > 1) {
8415 		pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8416 			mdname(mddev));
8417 		return ERR_PTR(-EINVAL);
8418 	}
8419 
8420 	sectors = raid0_conf->strip_zone[0].zone_end;
8421 	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8422 	mddev->dev_sectors = sectors;
8423 	mddev->new_level = level;
8424 	mddev->new_layout = ALGORITHM_PARITY_N;
8425 	mddev->new_chunk_sectors = mddev->chunk_sectors;
8426 	mddev->raid_disks += 1;
8427 	mddev->delta_disks = 1;
8428 	/* make sure it will be not marked as dirty */
8429 	mddev->recovery_cp = MaxSector;
8430 
8431 	return setup_conf(mddev);
8432 }
8433 
8434 static void *raid5_takeover_raid1(struct mddev *mddev)
8435 {
8436 	int chunksect;
8437 	void *ret;
8438 
8439 	if (mddev->raid_disks != 2 ||
8440 	    mddev->degraded > 1)
8441 		return ERR_PTR(-EINVAL);
8442 
8443 	/* Should check if there are write-behind devices? */
8444 
8445 	chunksect = 64*2; /* 64K by default */
8446 
8447 	/* The array must be an exact multiple of chunksize */
8448 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
8449 		chunksect >>= 1;
8450 
8451 	if ((chunksect<<9) < RAID5_STRIPE_SIZE((struct r5conf *)mddev->private))
8452 		/* array size does not allow a suitable chunk size */
8453 		return ERR_PTR(-EINVAL);
8454 
8455 	mddev->new_level = 5;
8456 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8457 	mddev->new_chunk_sectors = chunksect;
8458 
8459 	ret = setup_conf(mddev);
8460 	if (!IS_ERR(ret))
8461 		mddev_clear_unsupported_flags(mddev,
8462 			UNSUPPORTED_MDDEV_FLAGS);
8463 	return ret;
8464 }
8465 
8466 static void *raid5_takeover_raid6(struct mddev *mddev)
8467 {
8468 	int new_layout;
8469 
8470 	switch (mddev->layout) {
8471 	case ALGORITHM_LEFT_ASYMMETRIC_6:
8472 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8473 		break;
8474 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
8475 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8476 		break;
8477 	case ALGORITHM_LEFT_SYMMETRIC_6:
8478 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
8479 		break;
8480 	case ALGORITHM_RIGHT_SYMMETRIC_6:
8481 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8482 		break;
8483 	case ALGORITHM_PARITY_0_6:
8484 		new_layout = ALGORITHM_PARITY_0;
8485 		break;
8486 	case ALGORITHM_PARITY_N:
8487 		new_layout = ALGORITHM_PARITY_N;
8488 		break;
8489 	default:
8490 		return ERR_PTR(-EINVAL);
8491 	}
8492 	mddev->new_level = 5;
8493 	mddev->new_layout = new_layout;
8494 	mddev->delta_disks = -1;
8495 	mddev->raid_disks -= 1;
8496 	return setup_conf(mddev);
8497 }
8498 
8499 static int raid5_check_reshape(struct mddev *mddev)
8500 {
8501 	/* For a 2-drive array, the layout and chunk size can be changed
8502 	 * immediately as not restriping is needed.
8503 	 * For larger arrays we record the new value - after validation
8504 	 * to be used by a reshape pass.
8505 	 */
8506 	struct r5conf *conf = mddev->private;
8507 	int new_chunk = mddev->new_chunk_sectors;
8508 
8509 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8510 		return -EINVAL;
8511 	if (new_chunk > 0) {
8512 		if (!is_power_of_2(new_chunk))
8513 			return -EINVAL;
8514 		if (new_chunk < (PAGE_SIZE>>9))
8515 			return -EINVAL;
8516 		if (mddev->array_sectors & (new_chunk-1))
8517 			/* not factor of array size */
8518 			return -EINVAL;
8519 	}
8520 
8521 	/* They look valid */
8522 
8523 	if (mddev->raid_disks == 2) {
8524 		/* can make the change immediately */
8525 		if (mddev->new_layout >= 0) {
8526 			conf->algorithm = mddev->new_layout;
8527 			mddev->layout = mddev->new_layout;
8528 		}
8529 		if (new_chunk > 0) {
8530 			conf->chunk_sectors = new_chunk ;
8531 			mddev->chunk_sectors = new_chunk;
8532 		}
8533 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8534 		md_wakeup_thread(mddev->thread);
8535 	}
8536 	return check_reshape(mddev);
8537 }
8538 
8539 static int raid6_check_reshape(struct mddev *mddev)
8540 {
8541 	int new_chunk = mddev->new_chunk_sectors;
8542 
8543 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8544 		return -EINVAL;
8545 	if (new_chunk > 0) {
8546 		if (!is_power_of_2(new_chunk))
8547 			return -EINVAL;
8548 		if (new_chunk < (PAGE_SIZE >> 9))
8549 			return -EINVAL;
8550 		if (mddev->array_sectors & (new_chunk-1))
8551 			/* not factor of array size */
8552 			return -EINVAL;
8553 	}
8554 
8555 	/* They look valid */
8556 	return check_reshape(mddev);
8557 }
8558 
8559 static void *raid5_takeover(struct mddev *mddev)
8560 {
8561 	/* raid5 can take over:
8562 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
8563 	 *  raid1 - if there are two drives.  We need to know the chunk size
8564 	 *  raid4 - trivial - just use a raid4 layout.
8565 	 *  raid6 - Providing it is a *_6 layout
8566 	 */
8567 	if (mddev->level == 0)
8568 		return raid45_takeover_raid0(mddev, 5);
8569 	if (mddev->level == 1)
8570 		return raid5_takeover_raid1(mddev);
8571 	if (mddev->level == 4) {
8572 		mddev->new_layout = ALGORITHM_PARITY_N;
8573 		mddev->new_level = 5;
8574 		return setup_conf(mddev);
8575 	}
8576 	if (mddev->level == 6)
8577 		return raid5_takeover_raid6(mddev);
8578 
8579 	return ERR_PTR(-EINVAL);
8580 }
8581 
8582 static void *raid4_takeover(struct mddev *mddev)
8583 {
8584 	/* raid4 can take over:
8585 	 *  raid0 - if there is only one strip zone
8586 	 *  raid5 - if layout is right
8587 	 */
8588 	if (mddev->level == 0)
8589 		return raid45_takeover_raid0(mddev, 4);
8590 	if (mddev->level == 5 &&
8591 	    mddev->layout == ALGORITHM_PARITY_N) {
8592 		mddev->new_layout = 0;
8593 		mddev->new_level = 4;
8594 		return setup_conf(mddev);
8595 	}
8596 	return ERR_PTR(-EINVAL);
8597 }
8598 
8599 static struct md_personality raid5_personality;
8600 
8601 static void *raid6_takeover(struct mddev *mddev)
8602 {
8603 	/* Currently can only take over a raid5.  We map the
8604 	 * personality to an equivalent raid6 personality
8605 	 * with the Q block at the end.
8606 	 */
8607 	int new_layout;
8608 
8609 	if (mddev->pers != &raid5_personality)
8610 		return ERR_PTR(-EINVAL);
8611 	if (mddev->degraded > 1)
8612 		return ERR_PTR(-EINVAL);
8613 	if (mddev->raid_disks > 253)
8614 		return ERR_PTR(-EINVAL);
8615 	if (mddev->raid_disks < 3)
8616 		return ERR_PTR(-EINVAL);
8617 
8618 	switch (mddev->layout) {
8619 	case ALGORITHM_LEFT_ASYMMETRIC:
8620 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8621 		break;
8622 	case ALGORITHM_RIGHT_ASYMMETRIC:
8623 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8624 		break;
8625 	case ALGORITHM_LEFT_SYMMETRIC:
8626 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8627 		break;
8628 	case ALGORITHM_RIGHT_SYMMETRIC:
8629 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8630 		break;
8631 	case ALGORITHM_PARITY_0:
8632 		new_layout = ALGORITHM_PARITY_0_6;
8633 		break;
8634 	case ALGORITHM_PARITY_N:
8635 		new_layout = ALGORITHM_PARITY_N;
8636 		break;
8637 	default:
8638 		return ERR_PTR(-EINVAL);
8639 	}
8640 	mddev->new_level = 6;
8641 	mddev->new_layout = new_layout;
8642 	mddev->delta_disks = 1;
8643 	mddev->raid_disks += 1;
8644 	return setup_conf(mddev);
8645 }
8646 
8647 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8648 {
8649 	struct r5conf *conf;
8650 	int err;
8651 
8652 	err = mddev_lock(mddev);
8653 	if (err)
8654 		return err;
8655 	conf = mddev->private;
8656 	if (!conf) {
8657 		mddev_unlock(mddev);
8658 		return -ENODEV;
8659 	}
8660 
8661 	if (strncmp(buf, "ppl", 3) == 0) {
8662 		/* ppl only works with RAID 5 */
8663 		if (!raid5_has_ppl(conf) && conf->level == 5) {
8664 			err = log_init(conf, NULL, true);
8665 			if (!err) {
8666 				err = resize_stripes(conf, conf->pool_size);
8667 				if (err)
8668 					log_exit(conf);
8669 			}
8670 		} else
8671 			err = -EINVAL;
8672 	} else if (strncmp(buf, "resync", 6) == 0) {
8673 		if (raid5_has_ppl(conf)) {
8674 			mddev_suspend(mddev);
8675 			log_exit(conf);
8676 			mddev_resume(mddev);
8677 			err = resize_stripes(conf, conf->pool_size);
8678 		} else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8679 			   r5l_log_disk_error(conf)) {
8680 			bool journal_dev_exists = false;
8681 			struct md_rdev *rdev;
8682 
8683 			rdev_for_each(rdev, mddev)
8684 				if (test_bit(Journal, &rdev->flags)) {
8685 					journal_dev_exists = true;
8686 					break;
8687 				}
8688 
8689 			if (!journal_dev_exists) {
8690 				mddev_suspend(mddev);
8691 				clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8692 				mddev_resume(mddev);
8693 			} else  /* need remove journal device first */
8694 				err = -EBUSY;
8695 		} else
8696 			err = -EINVAL;
8697 	} else {
8698 		err = -EINVAL;
8699 	}
8700 
8701 	if (!err)
8702 		md_update_sb(mddev, 1);
8703 
8704 	mddev_unlock(mddev);
8705 
8706 	return err;
8707 }
8708 
8709 static int raid5_start(struct mddev *mddev)
8710 {
8711 	struct r5conf *conf = mddev->private;
8712 
8713 	return r5l_start(conf->log);
8714 }
8715 
8716 static struct md_personality raid6_personality =
8717 {
8718 	.name		= "raid6",
8719 	.level		= 6,
8720 	.owner		= THIS_MODULE,
8721 	.make_request	= raid5_make_request,
8722 	.run		= raid5_run,
8723 	.start		= raid5_start,
8724 	.free		= raid5_free,
8725 	.status		= raid5_status,
8726 	.error_handler	= raid5_error,
8727 	.hot_add_disk	= raid5_add_disk,
8728 	.hot_remove_disk= raid5_remove_disk,
8729 	.spare_active	= raid5_spare_active,
8730 	.sync_request	= raid5_sync_request,
8731 	.resize		= raid5_resize,
8732 	.size		= raid5_size,
8733 	.check_reshape	= raid6_check_reshape,
8734 	.start_reshape  = raid5_start_reshape,
8735 	.finish_reshape = raid5_finish_reshape,
8736 	.quiesce	= raid5_quiesce,
8737 	.takeover	= raid6_takeover,
8738 	.change_consistency_policy = raid5_change_consistency_policy,
8739 };
8740 static struct md_personality raid5_personality =
8741 {
8742 	.name		= "raid5",
8743 	.level		= 5,
8744 	.owner		= THIS_MODULE,
8745 	.make_request	= raid5_make_request,
8746 	.run		= raid5_run,
8747 	.start		= raid5_start,
8748 	.free		= raid5_free,
8749 	.status		= raid5_status,
8750 	.error_handler	= raid5_error,
8751 	.hot_add_disk	= raid5_add_disk,
8752 	.hot_remove_disk= raid5_remove_disk,
8753 	.spare_active	= raid5_spare_active,
8754 	.sync_request	= raid5_sync_request,
8755 	.resize		= raid5_resize,
8756 	.size		= raid5_size,
8757 	.check_reshape	= raid5_check_reshape,
8758 	.start_reshape  = raid5_start_reshape,
8759 	.finish_reshape = raid5_finish_reshape,
8760 	.quiesce	= raid5_quiesce,
8761 	.takeover	= raid5_takeover,
8762 	.change_consistency_policy = raid5_change_consistency_policy,
8763 };
8764 
8765 static struct md_personality raid4_personality =
8766 {
8767 	.name		= "raid4",
8768 	.level		= 4,
8769 	.owner		= THIS_MODULE,
8770 	.make_request	= raid5_make_request,
8771 	.run		= raid5_run,
8772 	.start		= raid5_start,
8773 	.free		= raid5_free,
8774 	.status		= raid5_status,
8775 	.error_handler	= raid5_error,
8776 	.hot_add_disk	= raid5_add_disk,
8777 	.hot_remove_disk= raid5_remove_disk,
8778 	.spare_active	= raid5_spare_active,
8779 	.sync_request	= raid5_sync_request,
8780 	.resize		= raid5_resize,
8781 	.size		= raid5_size,
8782 	.check_reshape	= raid5_check_reshape,
8783 	.start_reshape  = raid5_start_reshape,
8784 	.finish_reshape = raid5_finish_reshape,
8785 	.quiesce	= raid5_quiesce,
8786 	.takeover	= raid4_takeover,
8787 	.change_consistency_policy = raid5_change_consistency_policy,
8788 };
8789 
8790 static int __init raid5_init(void)
8791 {
8792 	int ret;
8793 
8794 	raid5_wq = alloc_workqueue("raid5wq",
8795 		WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8796 	if (!raid5_wq)
8797 		return -ENOMEM;
8798 
8799 	ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8800 				      "md/raid5:prepare",
8801 				      raid456_cpu_up_prepare,
8802 				      raid456_cpu_dead);
8803 	if (ret) {
8804 		destroy_workqueue(raid5_wq);
8805 		return ret;
8806 	}
8807 	register_md_personality(&raid6_personality);
8808 	register_md_personality(&raid5_personality);
8809 	register_md_personality(&raid4_personality);
8810 	return 0;
8811 }
8812 
8813 static void raid5_exit(void)
8814 {
8815 	unregister_md_personality(&raid6_personality);
8816 	unregister_md_personality(&raid5_personality);
8817 	unregister_md_personality(&raid4_personality);
8818 	cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
8819 	destroy_workqueue(raid5_wq);
8820 }
8821 
8822 module_init(raid5_init);
8823 module_exit(raid5_exit);
8824 MODULE_LICENSE("GPL");
8825 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8826 MODULE_ALIAS("md-personality-4"); /* RAID5 */
8827 MODULE_ALIAS("md-raid5");
8828 MODULE_ALIAS("md-raid4");
8829 MODULE_ALIAS("md-level-5");
8830 MODULE_ALIAS("md-level-4");
8831 MODULE_ALIAS("md-personality-8"); /* RAID6 */
8832 MODULE_ALIAS("md-raid6");
8833 MODULE_ALIAS("md-level-6");
8834 
8835 /* This used to be two separate modules, they were: */
8836 MODULE_ALIAS("raid5");
8837 MODULE_ALIAS("raid6");
8838