1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid5.c : Multiple Devices driver for Linux 4 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman 5 * Copyright (C) 1999, 2000 Ingo Molnar 6 * Copyright (C) 2002, 2003 H. Peter Anvin 7 * 8 * RAID-4/5/6 management functions. 9 * Thanks to Penguin Computing for making the RAID-6 development possible 10 * by donating a test server! 11 */ 12 13 /* 14 * BITMAP UNPLUGGING: 15 * 16 * The sequencing for updating the bitmap reliably is a little 17 * subtle (and I got it wrong the first time) so it deserves some 18 * explanation. 19 * 20 * We group bitmap updates into batches. Each batch has a number. 21 * We may write out several batches at once, but that isn't very important. 22 * conf->seq_write is the number of the last batch successfully written. 23 * conf->seq_flush is the number of the last batch that was closed to 24 * new additions. 25 * When we discover that we will need to write to any block in a stripe 26 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq 27 * the number of the batch it will be in. This is seq_flush+1. 28 * When we are ready to do a write, if that batch hasn't been written yet, 29 * we plug the array and queue the stripe for later. 30 * When an unplug happens, we increment bm_flush, thus closing the current 31 * batch. 32 * When we notice that bm_flush > bm_write, we write out all pending updates 33 * to the bitmap, and advance bm_write to where bm_flush was. 34 * This may occasionally write a bit out twice, but is sure never to 35 * miss any bits. 36 */ 37 38 #include <linux/blkdev.h> 39 #include <linux/kthread.h> 40 #include <linux/raid/pq.h> 41 #include <linux/async_tx.h> 42 #include <linux/module.h> 43 #include <linux/async.h> 44 #include <linux/seq_file.h> 45 #include <linux/cpu.h> 46 #include <linux/slab.h> 47 #include <linux/ratelimit.h> 48 #include <linux/nodemask.h> 49 50 #include <trace/events/block.h> 51 #include <linux/list_sort.h> 52 53 #include "md.h" 54 #include "raid5.h" 55 #include "raid0.h" 56 #include "md-bitmap.h" 57 #include "raid5-log.h" 58 59 #define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED) 60 61 #define cpu_to_group(cpu) cpu_to_node(cpu) 62 #define ANY_GROUP NUMA_NO_NODE 63 64 static bool devices_handle_discard_safely = false; 65 module_param(devices_handle_discard_safely, bool, 0644); 66 MODULE_PARM_DESC(devices_handle_discard_safely, 67 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions"); 68 static struct workqueue_struct *raid5_wq; 69 70 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect) 71 { 72 int hash = (sect >> RAID5_STRIPE_SHIFT(conf)) & HASH_MASK; 73 return &conf->stripe_hashtbl[hash]; 74 } 75 76 static inline int stripe_hash_locks_hash(struct r5conf *conf, sector_t sect) 77 { 78 return (sect >> RAID5_STRIPE_SHIFT(conf)) & STRIPE_HASH_LOCKS_MASK; 79 } 80 81 static inline void lock_device_hash_lock(struct r5conf *conf, int hash) 82 { 83 spin_lock_irq(conf->hash_locks + hash); 84 spin_lock(&conf->device_lock); 85 } 86 87 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash) 88 { 89 spin_unlock(&conf->device_lock); 90 spin_unlock_irq(conf->hash_locks + hash); 91 } 92 93 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf) 94 { 95 int i; 96 spin_lock_irq(conf->hash_locks); 97 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 98 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks); 99 spin_lock(&conf->device_lock); 100 } 101 102 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf) 103 { 104 int i; 105 spin_unlock(&conf->device_lock); 106 for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--) 107 spin_unlock(conf->hash_locks + i); 108 spin_unlock_irq(conf->hash_locks); 109 } 110 111 /* Find first data disk in a raid6 stripe */ 112 static inline int raid6_d0(struct stripe_head *sh) 113 { 114 if (sh->ddf_layout) 115 /* ddf always start from first device */ 116 return 0; 117 /* md starts just after Q block */ 118 if (sh->qd_idx == sh->disks - 1) 119 return 0; 120 else 121 return sh->qd_idx + 1; 122 } 123 static inline int raid6_next_disk(int disk, int raid_disks) 124 { 125 disk++; 126 return (disk < raid_disks) ? disk : 0; 127 } 128 129 /* When walking through the disks in a raid5, starting at raid6_d0, 130 * We need to map each disk to a 'slot', where the data disks are slot 131 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk 132 * is raid_disks-1. This help does that mapping. 133 */ 134 static int raid6_idx_to_slot(int idx, struct stripe_head *sh, 135 int *count, int syndrome_disks) 136 { 137 int slot = *count; 138 139 if (sh->ddf_layout) 140 (*count)++; 141 if (idx == sh->pd_idx) 142 return syndrome_disks; 143 if (idx == sh->qd_idx) 144 return syndrome_disks + 1; 145 if (!sh->ddf_layout) 146 (*count)++; 147 return slot; 148 } 149 150 static void print_raid5_conf (struct r5conf *conf); 151 152 static int stripe_operations_active(struct stripe_head *sh) 153 { 154 return sh->check_state || sh->reconstruct_state || 155 test_bit(STRIPE_BIOFILL_RUN, &sh->state) || 156 test_bit(STRIPE_COMPUTE_RUN, &sh->state); 157 } 158 159 static bool stripe_is_lowprio(struct stripe_head *sh) 160 { 161 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) || 162 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) && 163 !test_bit(STRIPE_R5C_CACHING, &sh->state); 164 } 165 166 static void raid5_wakeup_stripe_thread(struct stripe_head *sh) 167 { 168 struct r5conf *conf = sh->raid_conf; 169 struct r5worker_group *group; 170 int thread_cnt; 171 int i, cpu = sh->cpu; 172 173 if (!cpu_online(cpu)) { 174 cpu = cpumask_any(cpu_online_mask); 175 sh->cpu = cpu; 176 } 177 178 if (list_empty(&sh->lru)) { 179 struct r5worker_group *group; 180 group = conf->worker_groups + cpu_to_group(cpu); 181 if (stripe_is_lowprio(sh)) 182 list_add_tail(&sh->lru, &group->loprio_list); 183 else 184 list_add_tail(&sh->lru, &group->handle_list); 185 group->stripes_cnt++; 186 sh->group = group; 187 } 188 189 if (conf->worker_cnt_per_group == 0) { 190 md_wakeup_thread(conf->mddev->thread); 191 return; 192 } 193 194 group = conf->worker_groups + cpu_to_group(sh->cpu); 195 196 group->workers[0].working = true; 197 /* at least one worker should run to avoid race */ 198 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work); 199 200 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1; 201 /* wakeup more workers */ 202 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) { 203 if (group->workers[i].working == false) { 204 group->workers[i].working = true; 205 queue_work_on(sh->cpu, raid5_wq, 206 &group->workers[i].work); 207 thread_cnt--; 208 } 209 } 210 } 211 212 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh, 213 struct list_head *temp_inactive_list) 214 { 215 int i; 216 int injournal = 0; /* number of date pages with R5_InJournal */ 217 218 BUG_ON(!list_empty(&sh->lru)); 219 BUG_ON(atomic_read(&conf->active_stripes)==0); 220 221 if (r5c_is_writeback(conf->log)) 222 for (i = sh->disks; i--; ) 223 if (test_bit(R5_InJournal, &sh->dev[i].flags)) 224 injournal++; 225 /* 226 * In the following cases, the stripe cannot be released to cached 227 * lists. Therefore, we make the stripe write out and set 228 * STRIPE_HANDLE: 229 * 1. when quiesce in r5c write back; 230 * 2. when resync is requested fot the stripe. 231 */ 232 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) || 233 (conf->quiesce && r5c_is_writeback(conf->log) && 234 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) { 235 if (test_bit(STRIPE_R5C_CACHING, &sh->state)) 236 r5c_make_stripe_write_out(sh); 237 set_bit(STRIPE_HANDLE, &sh->state); 238 } 239 240 if (test_bit(STRIPE_HANDLE, &sh->state)) { 241 if (test_bit(STRIPE_DELAYED, &sh->state) && 242 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 243 list_add_tail(&sh->lru, &conf->delayed_list); 244 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) && 245 sh->bm_seq - conf->seq_write > 0) 246 list_add_tail(&sh->lru, &conf->bitmap_list); 247 else { 248 clear_bit(STRIPE_DELAYED, &sh->state); 249 clear_bit(STRIPE_BIT_DELAY, &sh->state); 250 if (conf->worker_cnt_per_group == 0) { 251 if (stripe_is_lowprio(sh)) 252 list_add_tail(&sh->lru, 253 &conf->loprio_list); 254 else 255 list_add_tail(&sh->lru, 256 &conf->handle_list); 257 } else { 258 raid5_wakeup_stripe_thread(sh); 259 return; 260 } 261 } 262 md_wakeup_thread(conf->mddev->thread); 263 } else { 264 BUG_ON(stripe_operations_active(sh)); 265 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 266 if (atomic_dec_return(&conf->preread_active_stripes) 267 < IO_THRESHOLD) 268 md_wakeup_thread(conf->mddev->thread); 269 atomic_dec(&conf->active_stripes); 270 if (!test_bit(STRIPE_EXPANDING, &sh->state)) { 271 if (!r5c_is_writeback(conf->log)) 272 list_add_tail(&sh->lru, temp_inactive_list); 273 else { 274 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags)); 275 if (injournal == 0) 276 list_add_tail(&sh->lru, temp_inactive_list); 277 else if (injournal == conf->raid_disks - conf->max_degraded) { 278 /* full stripe */ 279 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) 280 atomic_inc(&conf->r5c_cached_full_stripes); 281 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) 282 atomic_dec(&conf->r5c_cached_partial_stripes); 283 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list); 284 r5c_check_cached_full_stripe(conf); 285 } else 286 /* 287 * STRIPE_R5C_PARTIAL_STRIPE is set in 288 * r5c_try_caching_write(). No need to 289 * set it again. 290 */ 291 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list); 292 } 293 } 294 } 295 } 296 297 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh, 298 struct list_head *temp_inactive_list) 299 { 300 if (atomic_dec_and_test(&sh->count)) 301 do_release_stripe(conf, sh, temp_inactive_list); 302 } 303 304 /* 305 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list 306 * 307 * Be careful: Only one task can add/delete stripes from temp_inactive_list at 308 * given time. Adding stripes only takes device lock, while deleting stripes 309 * only takes hash lock. 310 */ 311 static void release_inactive_stripe_list(struct r5conf *conf, 312 struct list_head *temp_inactive_list, 313 int hash) 314 { 315 int size; 316 bool do_wakeup = false; 317 unsigned long flags; 318 319 if (hash == NR_STRIPE_HASH_LOCKS) { 320 size = NR_STRIPE_HASH_LOCKS; 321 hash = NR_STRIPE_HASH_LOCKS - 1; 322 } else 323 size = 1; 324 while (size) { 325 struct list_head *list = &temp_inactive_list[size - 1]; 326 327 /* 328 * We don't hold any lock here yet, raid5_get_active_stripe() might 329 * remove stripes from the list 330 */ 331 if (!list_empty_careful(list)) { 332 spin_lock_irqsave(conf->hash_locks + hash, flags); 333 if (list_empty(conf->inactive_list + hash) && 334 !list_empty(list)) 335 atomic_dec(&conf->empty_inactive_list_nr); 336 list_splice_tail_init(list, conf->inactive_list + hash); 337 do_wakeup = true; 338 spin_unlock_irqrestore(conf->hash_locks + hash, flags); 339 } 340 size--; 341 hash--; 342 } 343 344 if (do_wakeup) { 345 wake_up(&conf->wait_for_stripe); 346 if (atomic_read(&conf->active_stripes) == 0) 347 wake_up(&conf->wait_for_quiescent); 348 if (conf->retry_read_aligned) 349 md_wakeup_thread(conf->mddev->thread); 350 } 351 } 352 353 /* should hold conf->device_lock already */ 354 static int release_stripe_list(struct r5conf *conf, 355 struct list_head *temp_inactive_list) 356 { 357 struct stripe_head *sh, *t; 358 int count = 0; 359 struct llist_node *head; 360 361 head = llist_del_all(&conf->released_stripes); 362 head = llist_reverse_order(head); 363 llist_for_each_entry_safe(sh, t, head, release_list) { 364 int hash; 365 366 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */ 367 smp_mb(); 368 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state); 369 /* 370 * Don't worry the bit is set here, because if the bit is set 371 * again, the count is always > 1. This is true for 372 * STRIPE_ON_UNPLUG_LIST bit too. 373 */ 374 hash = sh->hash_lock_index; 375 __release_stripe(conf, sh, &temp_inactive_list[hash]); 376 count++; 377 } 378 379 return count; 380 } 381 382 void raid5_release_stripe(struct stripe_head *sh) 383 { 384 struct r5conf *conf = sh->raid_conf; 385 unsigned long flags; 386 struct list_head list; 387 int hash; 388 bool wakeup; 389 390 /* Avoid release_list until the last reference. 391 */ 392 if (atomic_add_unless(&sh->count, -1, 1)) 393 return; 394 395 if (unlikely(!conf->mddev->thread) || 396 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state)) 397 goto slow_path; 398 wakeup = llist_add(&sh->release_list, &conf->released_stripes); 399 if (wakeup) 400 md_wakeup_thread(conf->mddev->thread); 401 return; 402 slow_path: 403 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */ 404 if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) { 405 INIT_LIST_HEAD(&list); 406 hash = sh->hash_lock_index; 407 do_release_stripe(conf, sh, &list); 408 spin_unlock_irqrestore(&conf->device_lock, flags); 409 release_inactive_stripe_list(conf, &list, hash); 410 } 411 } 412 413 static inline void remove_hash(struct stripe_head *sh) 414 { 415 pr_debug("remove_hash(), stripe %llu\n", 416 (unsigned long long)sh->sector); 417 418 hlist_del_init(&sh->hash); 419 } 420 421 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh) 422 { 423 struct hlist_head *hp = stripe_hash(conf, sh->sector); 424 425 pr_debug("insert_hash(), stripe %llu\n", 426 (unsigned long long)sh->sector); 427 428 hlist_add_head(&sh->hash, hp); 429 } 430 431 /* find an idle stripe, make sure it is unhashed, and return it. */ 432 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash) 433 { 434 struct stripe_head *sh = NULL; 435 struct list_head *first; 436 437 if (list_empty(conf->inactive_list + hash)) 438 goto out; 439 first = (conf->inactive_list + hash)->next; 440 sh = list_entry(first, struct stripe_head, lru); 441 list_del_init(first); 442 remove_hash(sh); 443 atomic_inc(&conf->active_stripes); 444 BUG_ON(hash != sh->hash_lock_index); 445 if (list_empty(conf->inactive_list + hash)) 446 atomic_inc(&conf->empty_inactive_list_nr); 447 out: 448 return sh; 449 } 450 451 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 452 static void free_stripe_pages(struct stripe_head *sh) 453 { 454 int i; 455 struct page *p; 456 457 /* Have not allocate page pool */ 458 if (!sh->pages) 459 return; 460 461 for (i = 0; i < sh->nr_pages; i++) { 462 p = sh->pages[i]; 463 if (p) 464 put_page(p); 465 sh->pages[i] = NULL; 466 } 467 } 468 469 static int alloc_stripe_pages(struct stripe_head *sh, gfp_t gfp) 470 { 471 int i; 472 struct page *p; 473 474 for (i = 0; i < sh->nr_pages; i++) { 475 /* The page have allocated. */ 476 if (sh->pages[i]) 477 continue; 478 479 p = alloc_page(gfp); 480 if (!p) { 481 free_stripe_pages(sh); 482 return -ENOMEM; 483 } 484 sh->pages[i] = p; 485 } 486 return 0; 487 } 488 489 static int 490 init_stripe_shared_pages(struct stripe_head *sh, struct r5conf *conf, int disks) 491 { 492 int nr_pages, cnt; 493 494 if (sh->pages) 495 return 0; 496 497 /* Each of the sh->dev[i] need one conf->stripe_size */ 498 cnt = PAGE_SIZE / conf->stripe_size; 499 nr_pages = (disks + cnt - 1) / cnt; 500 501 sh->pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL); 502 if (!sh->pages) 503 return -ENOMEM; 504 sh->nr_pages = nr_pages; 505 sh->stripes_per_page = cnt; 506 return 0; 507 } 508 #endif 509 510 static void shrink_buffers(struct stripe_head *sh) 511 { 512 int i; 513 int num = sh->raid_conf->pool_size; 514 515 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE 516 for (i = 0; i < num ; i++) { 517 struct page *p; 518 519 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page); 520 p = sh->dev[i].page; 521 if (!p) 522 continue; 523 sh->dev[i].page = NULL; 524 put_page(p); 525 } 526 #else 527 for (i = 0; i < num; i++) 528 sh->dev[i].page = NULL; 529 free_stripe_pages(sh); /* Free pages */ 530 #endif 531 } 532 533 static int grow_buffers(struct stripe_head *sh, gfp_t gfp) 534 { 535 int i; 536 int num = sh->raid_conf->pool_size; 537 538 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE 539 for (i = 0; i < num; i++) { 540 struct page *page; 541 542 if (!(page = alloc_page(gfp))) { 543 return 1; 544 } 545 sh->dev[i].page = page; 546 sh->dev[i].orig_page = page; 547 sh->dev[i].offset = 0; 548 } 549 #else 550 if (alloc_stripe_pages(sh, gfp)) 551 return -ENOMEM; 552 553 for (i = 0; i < num; i++) { 554 sh->dev[i].page = raid5_get_dev_page(sh, i); 555 sh->dev[i].orig_page = sh->dev[i].page; 556 sh->dev[i].offset = raid5_get_page_offset(sh, i); 557 } 558 #endif 559 return 0; 560 } 561 562 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 563 struct stripe_head *sh); 564 565 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous) 566 { 567 struct r5conf *conf = sh->raid_conf; 568 int i, seq; 569 570 BUG_ON(atomic_read(&sh->count) != 0); 571 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); 572 BUG_ON(stripe_operations_active(sh)); 573 BUG_ON(sh->batch_head); 574 575 pr_debug("init_stripe called, stripe %llu\n", 576 (unsigned long long)sector); 577 retry: 578 seq = read_seqcount_begin(&conf->gen_lock); 579 sh->generation = conf->generation - previous; 580 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks; 581 sh->sector = sector; 582 stripe_set_idx(sector, conf, previous, sh); 583 sh->state = 0; 584 585 for (i = sh->disks; i--; ) { 586 struct r5dev *dev = &sh->dev[i]; 587 588 if (dev->toread || dev->read || dev->towrite || dev->written || 589 test_bit(R5_LOCKED, &dev->flags)) { 590 pr_err("sector=%llx i=%d %p %p %p %p %d\n", 591 (unsigned long long)sh->sector, i, dev->toread, 592 dev->read, dev->towrite, dev->written, 593 test_bit(R5_LOCKED, &dev->flags)); 594 WARN_ON(1); 595 } 596 dev->flags = 0; 597 dev->sector = raid5_compute_blocknr(sh, i, previous); 598 } 599 if (read_seqcount_retry(&conf->gen_lock, seq)) 600 goto retry; 601 sh->overwrite_disks = 0; 602 insert_hash(conf, sh); 603 sh->cpu = smp_processor_id(); 604 set_bit(STRIPE_BATCH_READY, &sh->state); 605 } 606 607 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector, 608 short generation) 609 { 610 struct stripe_head *sh; 611 612 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector); 613 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash) 614 if (sh->sector == sector && sh->generation == generation) 615 return sh; 616 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector); 617 return NULL; 618 } 619 620 /* 621 * Need to check if array has failed when deciding whether to: 622 * - start an array 623 * - remove non-faulty devices 624 * - add a spare 625 * - allow a reshape 626 * This determination is simple when no reshape is happening. 627 * However if there is a reshape, we need to carefully check 628 * both the before and after sections. 629 * This is because some failed devices may only affect one 630 * of the two sections, and some non-in_sync devices may 631 * be insync in the section most affected by failed devices. 632 */ 633 int raid5_calc_degraded(struct r5conf *conf) 634 { 635 int degraded, degraded2; 636 int i; 637 638 rcu_read_lock(); 639 degraded = 0; 640 for (i = 0; i < conf->previous_raid_disks; i++) { 641 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 642 if (rdev && test_bit(Faulty, &rdev->flags)) 643 rdev = rcu_dereference(conf->disks[i].replacement); 644 if (!rdev || test_bit(Faulty, &rdev->flags)) 645 degraded++; 646 else if (test_bit(In_sync, &rdev->flags)) 647 ; 648 else 649 /* not in-sync or faulty. 650 * If the reshape increases the number of devices, 651 * this is being recovered by the reshape, so 652 * this 'previous' section is not in_sync. 653 * If the number of devices is being reduced however, 654 * the device can only be part of the array if 655 * we are reverting a reshape, so this section will 656 * be in-sync. 657 */ 658 if (conf->raid_disks >= conf->previous_raid_disks) 659 degraded++; 660 } 661 rcu_read_unlock(); 662 if (conf->raid_disks == conf->previous_raid_disks) 663 return degraded; 664 rcu_read_lock(); 665 degraded2 = 0; 666 for (i = 0; i < conf->raid_disks; i++) { 667 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 668 if (rdev && test_bit(Faulty, &rdev->flags)) 669 rdev = rcu_dereference(conf->disks[i].replacement); 670 if (!rdev || test_bit(Faulty, &rdev->flags)) 671 degraded2++; 672 else if (test_bit(In_sync, &rdev->flags)) 673 ; 674 else 675 /* not in-sync or faulty. 676 * If reshape increases the number of devices, this 677 * section has already been recovered, else it 678 * almost certainly hasn't. 679 */ 680 if (conf->raid_disks <= conf->previous_raid_disks) 681 degraded2++; 682 } 683 rcu_read_unlock(); 684 if (degraded2 > degraded) 685 return degraded2; 686 return degraded; 687 } 688 689 static int has_failed(struct r5conf *conf) 690 { 691 int degraded; 692 693 if (conf->mddev->reshape_position == MaxSector) 694 return conf->mddev->degraded > conf->max_degraded; 695 696 degraded = raid5_calc_degraded(conf); 697 if (degraded > conf->max_degraded) 698 return 1; 699 return 0; 700 } 701 702 struct stripe_head * 703 raid5_get_active_stripe(struct r5conf *conf, sector_t sector, 704 int previous, int noblock, int noquiesce) 705 { 706 struct stripe_head *sh; 707 int hash = stripe_hash_locks_hash(conf, sector); 708 int inc_empty_inactive_list_flag; 709 710 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector); 711 712 spin_lock_irq(conf->hash_locks + hash); 713 714 do { 715 wait_event_lock_irq(conf->wait_for_quiescent, 716 conf->quiesce == 0 || noquiesce, 717 *(conf->hash_locks + hash)); 718 sh = __find_stripe(conf, sector, conf->generation - previous); 719 if (!sh) { 720 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) { 721 sh = get_free_stripe(conf, hash); 722 if (!sh && !test_bit(R5_DID_ALLOC, 723 &conf->cache_state)) 724 set_bit(R5_ALLOC_MORE, 725 &conf->cache_state); 726 } 727 if (noblock && sh == NULL) 728 break; 729 730 r5c_check_stripe_cache_usage(conf); 731 if (!sh) { 732 set_bit(R5_INACTIVE_BLOCKED, 733 &conf->cache_state); 734 r5l_wake_reclaim(conf->log, 0); 735 wait_event_lock_irq( 736 conf->wait_for_stripe, 737 !list_empty(conf->inactive_list + hash) && 738 (atomic_read(&conf->active_stripes) 739 < (conf->max_nr_stripes * 3 / 4) 740 || !test_bit(R5_INACTIVE_BLOCKED, 741 &conf->cache_state)), 742 *(conf->hash_locks + hash)); 743 clear_bit(R5_INACTIVE_BLOCKED, 744 &conf->cache_state); 745 } else { 746 init_stripe(sh, sector, previous); 747 atomic_inc(&sh->count); 748 } 749 } else if (!atomic_inc_not_zero(&sh->count)) { 750 spin_lock(&conf->device_lock); 751 if (!atomic_read(&sh->count)) { 752 if (!test_bit(STRIPE_HANDLE, &sh->state)) 753 atomic_inc(&conf->active_stripes); 754 BUG_ON(list_empty(&sh->lru) && 755 !test_bit(STRIPE_EXPANDING, &sh->state)); 756 inc_empty_inactive_list_flag = 0; 757 if (!list_empty(conf->inactive_list + hash)) 758 inc_empty_inactive_list_flag = 1; 759 list_del_init(&sh->lru); 760 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag) 761 atomic_inc(&conf->empty_inactive_list_nr); 762 if (sh->group) { 763 sh->group->stripes_cnt--; 764 sh->group = NULL; 765 } 766 } 767 atomic_inc(&sh->count); 768 spin_unlock(&conf->device_lock); 769 } 770 } while (sh == NULL); 771 772 spin_unlock_irq(conf->hash_locks + hash); 773 return sh; 774 } 775 776 static bool is_full_stripe_write(struct stripe_head *sh) 777 { 778 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded)); 779 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded); 780 } 781 782 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) 783 __acquires(&sh1->stripe_lock) 784 __acquires(&sh2->stripe_lock) 785 { 786 if (sh1 > sh2) { 787 spin_lock_irq(&sh2->stripe_lock); 788 spin_lock_nested(&sh1->stripe_lock, 1); 789 } else { 790 spin_lock_irq(&sh1->stripe_lock); 791 spin_lock_nested(&sh2->stripe_lock, 1); 792 } 793 } 794 795 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) 796 __releases(&sh1->stripe_lock) 797 __releases(&sh2->stripe_lock) 798 { 799 spin_unlock(&sh1->stripe_lock); 800 spin_unlock_irq(&sh2->stripe_lock); 801 } 802 803 /* Only freshly new full stripe normal write stripe can be added to a batch list */ 804 static bool stripe_can_batch(struct stripe_head *sh) 805 { 806 struct r5conf *conf = sh->raid_conf; 807 808 if (raid5_has_log(conf) || raid5_has_ppl(conf)) 809 return false; 810 return test_bit(STRIPE_BATCH_READY, &sh->state) && 811 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) && 812 is_full_stripe_write(sh); 813 } 814 815 /* we only do back search */ 816 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh) 817 { 818 struct stripe_head *head; 819 sector_t head_sector, tmp_sec; 820 int hash; 821 int dd_idx; 822 int inc_empty_inactive_list_flag; 823 824 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */ 825 tmp_sec = sh->sector; 826 if (!sector_div(tmp_sec, conf->chunk_sectors)) 827 return; 828 head_sector = sh->sector - RAID5_STRIPE_SECTORS(conf); 829 830 hash = stripe_hash_locks_hash(conf, head_sector); 831 spin_lock_irq(conf->hash_locks + hash); 832 head = __find_stripe(conf, head_sector, conf->generation); 833 if (head && !atomic_inc_not_zero(&head->count)) { 834 spin_lock(&conf->device_lock); 835 if (!atomic_read(&head->count)) { 836 if (!test_bit(STRIPE_HANDLE, &head->state)) 837 atomic_inc(&conf->active_stripes); 838 BUG_ON(list_empty(&head->lru) && 839 !test_bit(STRIPE_EXPANDING, &head->state)); 840 inc_empty_inactive_list_flag = 0; 841 if (!list_empty(conf->inactive_list + hash)) 842 inc_empty_inactive_list_flag = 1; 843 list_del_init(&head->lru); 844 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag) 845 atomic_inc(&conf->empty_inactive_list_nr); 846 if (head->group) { 847 head->group->stripes_cnt--; 848 head->group = NULL; 849 } 850 } 851 atomic_inc(&head->count); 852 spin_unlock(&conf->device_lock); 853 } 854 spin_unlock_irq(conf->hash_locks + hash); 855 856 if (!head) 857 return; 858 if (!stripe_can_batch(head)) 859 goto out; 860 861 lock_two_stripes(head, sh); 862 /* clear_batch_ready clear the flag */ 863 if (!stripe_can_batch(head) || !stripe_can_batch(sh)) 864 goto unlock_out; 865 866 if (sh->batch_head) 867 goto unlock_out; 868 869 dd_idx = 0; 870 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx) 871 dd_idx++; 872 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf || 873 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite)) 874 goto unlock_out; 875 876 if (head->batch_head) { 877 spin_lock(&head->batch_head->batch_lock); 878 /* This batch list is already running */ 879 if (!stripe_can_batch(head)) { 880 spin_unlock(&head->batch_head->batch_lock); 881 goto unlock_out; 882 } 883 /* 884 * We must assign batch_head of this stripe within the 885 * batch_lock, otherwise clear_batch_ready of batch head 886 * stripe could clear BATCH_READY bit of this stripe and 887 * this stripe->batch_head doesn't get assigned, which 888 * could confuse clear_batch_ready for this stripe 889 */ 890 sh->batch_head = head->batch_head; 891 892 /* 893 * at this point, head's BATCH_READY could be cleared, but we 894 * can still add the stripe to batch list 895 */ 896 list_add(&sh->batch_list, &head->batch_list); 897 spin_unlock(&head->batch_head->batch_lock); 898 } else { 899 head->batch_head = head; 900 sh->batch_head = head->batch_head; 901 spin_lock(&head->batch_lock); 902 list_add_tail(&sh->batch_list, &head->batch_list); 903 spin_unlock(&head->batch_lock); 904 } 905 906 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 907 if (atomic_dec_return(&conf->preread_active_stripes) 908 < IO_THRESHOLD) 909 md_wakeup_thread(conf->mddev->thread); 910 911 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) { 912 int seq = sh->bm_seq; 913 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) && 914 sh->batch_head->bm_seq > seq) 915 seq = sh->batch_head->bm_seq; 916 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state); 917 sh->batch_head->bm_seq = seq; 918 } 919 920 atomic_inc(&sh->count); 921 unlock_out: 922 unlock_two_stripes(head, sh); 923 out: 924 raid5_release_stripe(head); 925 } 926 927 /* Determine if 'data_offset' or 'new_data_offset' should be used 928 * in this stripe_head. 929 */ 930 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh) 931 { 932 sector_t progress = conf->reshape_progress; 933 /* Need a memory barrier to make sure we see the value 934 * of conf->generation, or ->data_offset that was set before 935 * reshape_progress was updated. 936 */ 937 smp_rmb(); 938 if (progress == MaxSector) 939 return 0; 940 if (sh->generation == conf->generation - 1) 941 return 0; 942 /* We are in a reshape, and this is a new-generation stripe, 943 * so use new_data_offset. 944 */ 945 return 1; 946 } 947 948 static void dispatch_bio_list(struct bio_list *tmp) 949 { 950 struct bio *bio; 951 952 while ((bio = bio_list_pop(tmp))) 953 submit_bio_noacct(bio); 954 } 955 956 static int cmp_stripe(void *priv, const struct list_head *a, 957 const struct list_head *b) 958 { 959 const struct r5pending_data *da = list_entry(a, 960 struct r5pending_data, sibling); 961 const struct r5pending_data *db = list_entry(b, 962 struct r5pending_data, sibling); 963 if (da->sector > db->sector) 964 return 1; 965 if (da->sector < db->sector) 966 return -1; 967 return 0; 968 } 969 970 static void dispatch_defer_bios(struct r5conf *conf, int target, 971 struct bio_list *list) 972 { 973 struct r5pending_data *data; 974 struct list_head *first, *next = NULL; 975 int cnt = 0; 976 977 if (conf->pending_data_cnt == 0) 978 return; 979 980 list_sort(NULL, &conf->pending_list, cmp_stripe); 981 982 first = conf->pending_list.next; 983 984 /* temporarily move the head */ 985 if (conf->next_pending_data) 986 list_move_tail(&conf->pending_list, 987 &conf->next_pending_data->sibling); 988 989 while (!list_empty(&conf->pending_list)) { 990 data = list_first_entry(&conf->pending_list, 991 struct r5pending_data, sibling); 992 if (&data->sibling == first) 993 first = data->sibling.next; 994 next = data->sibling.next; 995 996 bio_list_merge(list, &data->bios); 997 list_move(&data->sibling, &conf->free_list); 998 cnt++; 999 if (cnt >= target) 1000 break; 1001 } 1002 conf->pending_data_cnt -= cnt; 1003 BUG_ON(conf->pending_data_cnt < 0 || cnt < target); 1004 1005 if (next != &conf->pending_list) 1006 conf->next_pending_data = list_entry(next, 1007 struct r5pending_data, sibling); 1008 else 1009 conf->next_pending_data = NULL; 1010 /* list isn't empty */ 1011 if (first != &conf->pending_list) 1012 list_move_tail(&conf->pending_list, first); 1013 } 1014 1015 static void flush_deferred_bios(struct r5conf *conf) 1016 { 1017 struct bio_list tmp = BIO_EMPTY_LIST; 1018 1019 if (conf->pending_data_cnt == 0) 1020 return; 1021 1022 spin_lock(&conf->pending_bios_lock); 1023 dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp); 1024 BUG_ON(conf->pending_data_cnt != 0); 1025 spin_unlock(&conf->pending_bios_lock); 1026 1027 dispatch_bio_list(&tmp); 1028 } 1029 1030 static void defer_issue_bios(struct r5conf *conf, sector_t sector, 1031 struct bio_list *bios) 1032 { 1033 struct bio_list tmp = BIO_EMPTY_LIST; 1034 struct r5pending_data *ent; 1035 1036 spin_lock(&conf->pending_bios_lock); 1037 ent = list_first_entry(&conf->free_list, struct r5pending_data, 1038 sibling); 1039 list_move_tail(&ent->sibling, &conf->pending_list); 1040 ent->sector = sector; 1041 bio_list_init(&ent->bios); 1042 bio_list_merge(&ent->bios, bios); 1043 conf->pending_data_cnt++; 1044 if (conf->pending_data_cnt >= PENDING_IO_MAX) 1045 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp); 1046 1047 spin_unlock(&conf->pending_bios_lock); 1048 1049 dispatch_bio_list(&tmp); 1050 } 1051 1052 static void 1053 raid5_end_read_request(struct bio *bi); 1054 static void 1055 raid5_end_write_request(struct bio *bi); 1056 1057 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s) 1058 { 1059 struct r5conf *conf = sh->raid_conf; 1060 int i, disks = sh->disks; 1061 struct stripe_head *head_sh = sh; 1062 struct bio_list pending_bios = BIO_EMPTY_LIST; 1063 struct r5dev *dev; 1064 bool should_defer; 1065 1066 might_sleep(); 1067 1068 if (log_stripe(sh, s) == 0) 1069 return; 1070 1071 should_defer = conf->batch_bio_dispatch && conf->group_cnt; 1072 1073 for (i = disks; i--; ) { 1074 int op, op_flags = 0; 1075 int replace_only = 0; 1076 struct bio *bi, *rbi; 1077 struct md_rdev *rdev, *rrdev = NULL; 1078 1079 sh = head_sh; 1080 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) { 1081 op = REQ_OP_WRITE; 1082 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags)) 1083 op_flags = REQ_FUA; 1084 if (test_bit(R5_Discard, &sh->dev[i].flags)) 1085 op = REQ_OP_DISCARD; 1086 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags)) 1087 op = REQ_OP_READ; 1088 else if (test_and_clear_bit(R5_WantReplace, 1089 &sh->dev[i].flags)) { 1090 op = REQ_OP_WRITE; 1091 replace_only = 1; 1092 } else 1093 continue; 1094 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags)) 1095 op_flags |= REQ_SYNC; 1096 1097 again: 1098 dev = &sh->dev[i]; 1099 bi = &dev->req; 1100 rbi = &dev->rreq; /* For writing to replacement */ 1101 1102 rcu_read_lock(); 1103 rrdev = rcu_dereference(conf->disks[i].replacement); 1104 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */ 1105 rdev = rcu_dereference(conf->disks[i].rdev); 1106 if (!rdev) { 1107 rdev = rrdev; 1108 rrdev = NULL; 1109 } 1110 if (op_is_write(op)) { 1111 if (replace_only) 1112 rdev = NULL; 1113 if (rdev == rrdev) 1114 /* We raced and saw duplicates */ 1115 rrdev = NULL; 1116 } else { 1117 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev) 1118 rdev = rrdev; 1119 rrdev = NULL; 1120 } 1121 1122 if (rdev && test_bit(Faulty, &rdev->flags)) 1123 rdev = NULL; 1124 if (rdev) 1125 atomic_inc(&rdev->nr_pending); 1126 if (rrdev && test_bit(Faulty, &rrdev->flags)) 1127 rrdev = NULL; 1128 if (rrdev) 1129 atomic_inc(&rrdev->nr_pending); 1130 rcu_read_unlock(); 1131 1132 /* We have already checked bad blocks for reads. Now 1133 * need to check for writes. We never accept write errors 1134 * on the replacement, so we don't to check rrdev. 1135 */ 1136 while (op_is_write(op) && rdev && 1137 test_bit(WriteErrorSeen, &rdev->flags)) { 1138 sector_t first_bad; 1139 int bad_sectors; 1140 int bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 1141 &first_bad, &bad_sectors); 1142 if (!bad) 1143 break; 1144 1145 if (bad < 0) { 1146 set_bit(BlockedBadBlocks, &rdev->flags); 1147 if (!conf->mddev->external && 1148 conf->mddev->sb_flags) { 1149 /* It is very unlikely, but we might 1150 * still need to write out the 1151 * bad block log - better give it 1152 * a chance*/ 1153 md_check_recovery(conf->mddev); 1154 } 1155 /* 1156 * Because md_wait_for_blocked_rdev 1157 * will dec nr_pending, we must 1158 * increment it first. 1159 */ 1160 atomic_inc(&rdev->nr_pending); 1161 md_wait_for_blocked_rdev(rdev, conf->mddev); 1162 } else { 1163 /* Acknowledged bad block - skip the write */ 1164 rdev_dec_pending(rdev, conf->mddev); 1165 rdev = NULL; 1166 } 1167 } 1168 1169 if (rdev) { 1170 if (s->syncing || s->expanding || s->expanded 1171 || s->replacing) 1172 md_sync_acct(rdev->bdev, RAID5_STRIPE_SECTORS(conf)); 1173 1174 set_bit(STRIPE_IO_STARTED, &sh->state); 1175 1176 bio_init(bi, rdev->bdev, &dev->vec, 1, op | op_flags); 1177 bi->bi_end_io = op_is_write(op) 1178 ? raid5_end_write_request 1179 : raid5_end_read_request; 1180 bi->bi_private = sh; 1181 1182 pr_debug("%s: for %llu schedule op %d on disc %d\n", 1183 __func__, (unsigned long long)sh->sector, 1184 bi->bi_opf, i); 1185 atomic_inc(&sh->count); 1186 if (sh != head_sh) 1187 atomic_inc(&head_sh->count); 1188 if (use_new_offset(conf, sh)) 1189 bi->bi_iter.bi_sector = (sh->sector 1190 + rdev->new_data_offset); 1191 else 1192 bi->bi_iter.bi_sector = (sh->sector 1193 + rdev->data_offset); 1194 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags)) 1195 bi->bi_opf |= REQ_NOMERGE; 1196 1197 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 1198 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 1199 1200 if (!op_is_write(op) && 1201 test_bit(R5_InJournal, &sh->dev[i].flags)) 1202 /* 1203 * issuing read for a page in journal, this 1204 * must be preparing for prexor in rmw; read 1205 * the data into orig_page 1206 */ 1207 sh->dev[i].vec.bv_page = sh->dev[i].orig_page; 1208 else 1209 sh->dev[i].vec.bv_page = sh->dev[i].page; 1210 bi->bi_vcnt = 1; 1211 bi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf); 1212 bi->bi_io_vec[0].bv_offset = sh->dev[i].offset; 1213 bi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf); 1214 bi->bi_write_hint = sh->dev[i].write_hint; 1215 if (!rrdev) 1216 sh->dev[i].write_hint = RWH_WRITE_LIFE_NOT_SET; 1217 /* 1218 * If this is discard request, set bi_vcnt 0. We don't 1219 * want to confuse SCSI because SCSI will replace payload 1220 */ 1221 if (op == REQ_OP_DISCARD) 1222 bi->bi_vcnt = 0; 1223 if (rrdev) 1224 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags); 1225 1226 if (conf->mddev->gendisk) 1227 trace_block_bio_remap(bi, 1228 disk_devt(conf->mddev->gendisk), 1229 sh->dev[i].sector); 1230 if (should_defer && op_is_write(op)) 1231 bio_list_add(&pending_bios, bi); 1232 else 1233 submit_bio_noacct(bi); 1234 } 1235 if (rrdev) { 1236 if (s->syncing || s->expanding || s->expanded 1237 || s->replacing) 1238 md_sync_acct(rrdev->bdev, RAID5_STRIPE_SECTORS(conf)); 1239 1240 set_bit(STRIPE_IO_STARTED, &sh->state); 1241 1242 bio_init(rbi, rrdev->bdev, &dev->rvec, 1, op | op_flags); 1243 BUG_ON(!op_is_write(op)); 1244 rbi->bi_end_io = raid5_end_write_request; 1245 rbi->bi_private = sh; 1246 1247 pr_debug("%s: for %llu schedule op %d on " 1248 "replacement disc %d\n", 1249 __func__, (unsigned long long)sh->sector, 1250 rbi->bi_opf, i); 1251 atomic_inc(&sh->count); 1252 if (sh != head_sh) 1253 atomic_inc(&head_sh->count); 1254 if (use_new_offset(conf, sh)) 1255 rbi->bi_iter.bi_sector = (sh->sector 1256 + rrdev->new_data_offset); 1257 else 1258 rbi->bi_iter.bi_sector = (sh->sector 1259 + rrdev->data_offset); 1260 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 1261 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 1262 sh->dev[i].rvec.bv_page = sh->dev[i].page; 1263 rbi->bi_vcnt = 1; 1264 rbi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf); 1265 rbi->bi_io_vec[0].bv_offset = sh->dev[i].offset; 1266 rbi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf); 1267 rbi->bi_write_hint = sh->dev[i].write_hint; 1268 sh->dev[i].write_hint = RWH_WRITE_LIFE_NOT_SET; 1269 /* 1270 * If this is discard request, set bi_vcnt 0. We don't 1271 * want to confuse SCSI because SCSI will replace payload 1272 */ 1273 if (op == REQ_OP_DISCARD) 1274 rbi->bi_vcnt = 0; 1275 if (conf->mddev->gendisk) 1276 trace_block_bio_remap(rbi, 1277 disk_devt(conf->mddev->gendisk), 1278 sh->dev[i].sector); 1279 if (should_defer && op_is_write(op)) 1280 bio_list_add(&pending_bios, rbi); 1281 else 1282 submit_bio_noacct(rbi); 1283 } 1284 if (!rdev && !rrdev) { 1285 if (op_is_write(op)) 1286 set_bit(STRIPE_DEGRADED, &sh->state); 1287 pr_debug("skip op %d on disc %d for sector %llu\n", 1288 bi->bi_opf, i, (unsigned long long)sh->sector); 1289 clear_bit(R5_LOCKED, &sh->dev[i].flags); 1290 set_bit(STRIPE_HANDLE, &sh->state); 1291 } 1292 1293 if (!head_sh->batch_head) 1294 continue; 1295 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1296 batch_list); 1297 if (sh != head_sh) 1298 goto again; 1299 } 1300 1301 if (should_defer && !bio_list_empty(&pending_bios)) 1302 defer_issue_bios(conf, head_sh->sector, &pending_bios); 1303 } 1304 1305 static struct dma_async_tx_descriptor * 1306 async_copy_data(int frombio, struct bio *bio, struct page **page, 1307 unsigned int poff, sector_t sector, struct dma_async_tx_descriptor *tx, 1308 struct stripe_head *sh, int no_skipcopy) 1309 { 1310 struct bio_vec bvl; 1311 struct bvec_iter iter; 1312 struct page *bio_page; 1313 int page_offset; 1314 struct async_submit_ctl submit; 1315 enum async_tx_flags flags = 0; 1316 struct r5conf *conf = sh->raid_conf; 1317 1318 if (bio->bi_iter.bi_sector >= sector) 1319 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512; 1320 else 1321 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512; 1322 1323 if (frombio) 1324 flags |= ASYNC_TX_FENCE; 1325 init_async_submit(&submit, flags, tx, NULL, NULL, NULL); 1326 1327 bio_for_each_segment(bvl, bio, iter) { 1328 int len = bvl.bv_len; 1329 int clen; 1330 int b_offset = 0; 1331 1332 if (page_offset < 0) { 1333 b_offset = -page_offset; 1334 page_offset += b_offset; 1335 len -= b_offset; 1336 } 1337 1338 if (len > 0 && page_offset + len > RAID5_STRIPE_SIZE(conf)) 1339 clen = RAID5_STRIPE_SIZE(conf) - page_offset; 1340 else 1341 clen = len; 1342 1343 if (clen > 0) { 1344 b_offset += bvl.bv_offset; 1345 bio_page = bvl.bv_page; 1346 if (frombio) { 1347 if (conf->skip_copy && 1348 b_offset == 0 && page_offset == 0 && 1349 clen == RAID5_STRIPE_SIZE(conf) && 1350 !no_skipcopy) 1351 *page = bio_page; 1352 else 1353 tx = async_memcpy(*page, bio_page, page_offset + poff, 1354 b_offset, clen, &submit); 1355 } else 1356 tx = async_memcpy(bio_page, *page, b_offset, 1357 page_offset + poff, clen, &submit); 1358 } 1359 /* chain the operations */ 1360 submit.depend_tx = tx; 1361 1362 if (clen < len) /* hit end of page */ 1363 break; 1364 page_offset += len; 1365 } 1366 1367 return tx; 1368 } 1369 1370 static void ops_complete_biofill(void *stripe_head_ref) 1371 { 1372 struct stripe_head *sh = stripe_head_ref; 1373 int i; 1374 struct r5conf *conf = sh->raid_conf; 1375 1376 pr_debug("%s: stripe %llu\n", __func__, 1377 (unsigned long long)sh->sector); 1378 1379 /* clear completed biofills */ 1380 for (i = sh->disks; i--; ) { 1381 struct r5dev *dev = &sh->dev[i]; 1382 1383 /* acknowledge completion of a biofill operation */ 1384 /* and check if we need to reply to a read request, 1385 * new R5_Wantfill requests are held off until 1386 * !STRIPE_BIOFILL_RUN 1387 */ 1388 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) { 1389 struct bio *rbi, *rbi2; 1390 1391 BUG_ON(!dev->read); 1392 rbi = dev->read; 1393 dev->read = NULL; 1394 while (rbi && rbi->bi_iter.bi_sector < 1395 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 1396 rbi2 = r5_next_bio(conf, rbi, dev->sector); 1397 bio_endio(rbi); 1398 rbi = rbi2; 1399 } 1400 } 1401 } 1402 clear_bit(STRIPE_BIOFILL_RUN, &sh->state); 1403 1404 set_bit(STRIPE_HANDLE, &sh->state); 1405 raid5_release_stripe(sh); 1406 } 1407 1408 static void ops_run_biofill(struct stripe_head *sh) 1409 { 1410 struct dma_async_tx_descriptor *tx = NULL; 1411 struct async_submit_ctl submit; 1412 int i; 1413 struct r5conf *conf = sh->raid_conf; 1414 1415 BUG_ON(sh->batch_head); 1416 pr_debug("%s: stripe %llu\n", __func__, 1417 (unsigned long long)sh->sector); 1418 1419 for (i = sh->disks; i--; ) { 1420 struct r5dev *dev = &sh->dev[i]; 1421 if (test_bit(R5_Wantfill, &dev->flags)) { 1422 struct bio *rbi; 1423 spin_lock_irq(&sh->stripe_lock); 1424 dev->read = rbi = dev->toread; 1425 dev->toread = NULL; 1426 spin_unlock_irq(&sh->stripe_lock); 1427 while (rbi && rbi->bi_iter.bi_sector < 1428 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 1429 tx = async_copy_data(0, rbi, &dev->page, 1430 dev->offset, 1431 dev->sector, tx, sh, 0); 1432 rbi = r5_next_bio(conf, rbi, dev->sector); 1433 } 1434 } 1435 } 1436 1437 atomic_inc(&sh->count); 1438 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL); 1439 async_trigger_callback(&submit); 1440 } 1441 1442 static void mark_target_uptodate(struct stripe_head *sh, int target) 1443 { 1444 struct r5dev *tgt; 1445 1446 if (target < 0) 1447 return; 1448 1449 tgt = &sh->dev[target]; 1450 set_bit(R5_UPTODATE, &tgt->flags); 1451 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1452 clear_bit(R5_Wantcompute, &tgt->flags); 1453 } 1454 1455 static void ops_complete_compute(void *stripe_head_ref) 1456 { 1457 struct stripe_head *sh = stripe_head_ref; 1458 1459 pr_debug("%s: stripe %llu\n", __func__, 1460 (unsigned long long)sh->sector); 1461 1462 /* mark the computed target(s) as uptodate */ 1463 mark_target_uptodate(sh, sh->ops.target); 1464 mark_target_uptodate(sh, sh->ops.target2); 1465 1466 clear_bit(STRIPE_COMPUTE_RUN, &sh->state); 1467 if (sh->check_state == check_state_compute_run) 1468 sh->check_state = check_state_compute_result; 1469 set_bit(STRIPE_HANDLE, &sh->state); 1470 raid5_release_stripe(sh); 1471 } 1472 1473 /* return a pointer to the address conversion region of the scribble buffer */ 1474 static struct page **to_addr_page(struct raid5_percpu *percpu, int i) 1475 { 1476 return percpu->scribble + i * percpu->scribble_obj_size; 1477 } 1478 1479 /* return a pointer to the address conversion region of the scribble buffer */ 1480 static addr_conv_t *to_addr_conv(struct stripe_head *sh, 1481 struct raid5_percpu *percpu, int i) 1482 { 1483 return (void *) (to_addr_page(percpu, i) + sh->disks + 2); 1484 } 1485 1486 /* 1487 * Return a pointer to record offset address. 1488 */ 1489 static unsigned int * 1490 to_addr_offs(struct stripe_head *sh, struct raid5_percpu *percpu) 1491 { 1492 return (unsigned int *) (to_addr_conv(sh, percpu, 0) + sh->disks + 2); 1493 } 1494 1495 static struct dma_async_tx_descriptor * 1496 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu) 1497 { 1498 int disks = sh->disks; 1499 struct page **xor_srcs = to_addr_page(percpu, 0); 1500 unsigned int *off_srcs = to_addr_offs(sh, percpu); 1501 int target = sh->ops.target; 1502 struct r5dev *tgt = &sh->dev[target]; 1503 struct page *xor_dest = tgt->page; 1504 unsigned int off_dest = tgt->offset; 1505 int count = 0; 1506 struct dma_async_tx_descriptor *tx; 1507 struct async_submit_ctl submit; 1508 int i; 1509 1510 BUG_ON(sh->batch_head); 1511 1512 pr_debug("%s: stripe %llu block: %d\n", 1513 __func__, (unsigned long long)sh->sector, target); 1514 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1515 1516 for (i = disks; i--; ) { 1517 if (i != target) { 1518 off_srcs[count] = sh->dev[i].offset; 1519 xor_srcs[count++] = sh->dev[i].page; 1520 } 1521 } 1522 1523 atomic_inc(&sh->count); 1524 1525 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL, 1526 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0)); 1527 if (unlikely(count == 1)) 1528 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0], 1529 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1530 else 1531 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count, 1532 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1533 1534 return tx; 1535 } 1536 1537 /* set_syndrome_sources - populate source buffers for gen_syndrome 1538 * @srcs - (struct page *) array of size sh->disks 1539 * @offs - (unsigned int) array of offset for each page 1540 * @sh - stripe_head to parse 1541 * 1542 * Populates srcs in proper layout order for the stripe and returns the 1543 * 'count' of sources to be used in a call to async_gen_syndrome. The P 1544 * destination buffer is recorded in srcs[count] and the Q destination 1545 * is recorded in srcs[count+1]]. 1546 */ 1547 static int set_syndrome_sources(struct page **srcs, 1548 unsigned int *offs, 1549 struct stripe_head *sh, 1550 int srctype) 1551 { 1552 int disks = sh->disks; 1553 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2); 1554 int d0_idx = raid6_d0(sh); 1555 int count; 1556 int i; 1557 1558 for (i = 0; i < disks; i++) 1559 srcs[i] = NULL; 1560 1561 count = 0; 1562 i = d0_idx; 1563 do { 1564 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1565 struct r5dev *dev = &sh->dev[i]; 1566 1567 if (i == sh->qd_idx || i == sh->pd_idx || 1568 (srctype == SYNDROME_SRC_ALL) || 1569 (srctype == SYNDROME_SRC_WANT_DRAIN && 1570 (test_bit(R5_Wantdrain, &dev->flags) || 1571 test_bit(R5_InJournal, &dev->flags))) || 1572 (srctype == SYNDROME_SRC_WRITTEN && 1573 (dev->written || 1574 test_bit(R5_InJournal, &dev->flags)))) { 1575 if (test_bit(R5_InJournal, &dev->flags)) 1576 srcs[slot] = sh->dev[i].orig_page; 1577 else 1578 srcs[slot] = sh->dev[i].page; 1579 /* 1580 * For R5_InJournal, PAGE_SIZE must be 4KB and will 1581 * not shared page. In that case, dev[i].offset 1582 * is 0. 1583 */ 1584 offs[slot] = sh->dev[i].offset; 1585 } 1586 i = raid6_next_disk(i, disks); 1587 } while (i != d0_idx); 1588 1589 return syndrome_disks; 1590 } 1591 1592 static struct dma_async_tx_descriptor * 1593 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu) 1594 { 1595 int disks = sh->disks; 1596 struct page **blocks = to_addr_page(percpu, 0); 1597 unsigned int *offs = to_addr_offs(sh, percpu); 1598 int target; 1599 int qd_idx = sh->qd_idx; 1600 struct dma_async_tx_descriptor *tx; 1601 struct async_submit_ctl submit; 1602 struct r5dev *tgt; 1603 struct page *dest; 1604 unsigned int dest_off; 1605 int i; 1606 int count; 1607 1608 BUG_ON(sh->batch_head); 1609 if (sh->ops.target < 0) 1610 target = sh->ops.target2; 1611 else if (sh->ops.target2 < 0) 1612 target = sh->ops.target; 1613 else 1614 /* we should only have one valid target */ 1615 BUG(); 1616 BUG_ON(target < 0); 1617 pr_debug("%s: stripe %llu block: %d\n", 1618 __func__, (unsigned long long)sh->sector, target); 1619 1620 tgt = &sh->dev[target]; 1621 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1622 dest = tgt->page; 1623 dest_off = tgt->offset; 1624 1625 atomic_inc(&sh->count); 1626 1627 if (target == qd_idx) { 1628 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL); 1629 blocks[count] = NULL; /* regenerating p is not necessary */ 1630 BUG_ON(blocks[count+1] != dest); /* q should already be set */ 1631 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1632 ops_complete_compute, sh, 1633 to_addr_conv(sh, percpu, 0)); 1634 tx = async_gen_syndrome(blocks, offs, count+2, 1635 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1636 } else { 1637 /* Compute any data- or p-drive using XOR */ 1638 count = 0; 1639 for (i = disks; i-- ; ) { 1640 if (i == target || i == qd_idx) 1641 continue; 1642 offs[count] = sh->dev[i].offset; 1643 blocks[count++] = sh->dev[i].page; 1644 } 1645 1646 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1647 NULL, ops_complete_compute, sh, 1648 to_addr_conv(sh, percpu, 0)); 1649 tx = async_xor_offs(dest, dest_off, blocks, offs, count, 1650 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1651 } 1652 1653 return tx; 1654 } 1655 1656 static struct dma_async_tx_descriptor * 1657 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu) 1658 { 1659 int i, count, disks = sh->disks; 1660 int syndrome_disks = sh->ddf_layout ? disks : disks-2; 1661 int d0_idx = raid6_d0(sh); 1662 int faila = -1, failb = -1; 1663 int target = sh->ops.target; 1664 int target2 = sh->ops.target2; 1665 struct r5dev *tgt = &sh->dev[target]; 1666 struct r5dev *tgt2 = &sh->dev[target2]; 1667 struct dma_async_tx_descriptor *tx; 1668 struct page **blocks = to_addr_page(percpu, 0); 1669 unsigned int *offs = to_addr_offs(sh, percpu); 1670 struct async_submit_ctl submit; 1671 1672 BUG_ON(sh->batch_head); 1673 pr_debug("%s: stripe %llu block1: %d block2: %d\n", 1674 __func__, (unsigned long long)sh->sector, target, target2); 1675 BUG_ON(target < 0 || target2 < 0); 1676 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1677 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags)); 1678 1679 /* we need to open-code set_syndrome_sources to handle the 1680 * slot number conversion for 'faila' and 'failb' 1681 */ 1682 for (i = 0; i < disks ; i++) { 1683 offs[i] = 0; 1684 blocks[i] = NULL; 1685 } 1686 count = 0; 1687 i = d0_idx; 1688 do { 1689 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1690 1691 offs[slot] = sh->dev[i].offset; 1692 blocks[slot] = sh->dev[i].page; 1693 1694 if (i == target) 1695 faila = slot; 1696 if (i == target2) 1697 failb = slot; 1698 i = raid6_next_disk(i, disks); 1699 } while (i != d0_idx); 1700 1701 BUG_ON(faila == failb); 1702 if (failb < faila) 1703 swap(faila, failb); 1704 pr_debug("%s: stripe: %llu faila: %d failb: %d\n", 1705 __func__, (unsigned long long)sh->sector, faila, failb); 1706 1707 atomic_inc(&sh->count); 1708 1709 if (failb == syndrome_disks+1) { 1710 /* Q disk is one of the missing disks */ 1711 if (faila == syndrome_disks) { 1712 /* Missing P+Q, just recompute */ 1713 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1714 ops_complete_compute, sh, 1715 to_addr_conv(sh, percpu, 0)); 1716 return async_gen_syndrome(blocks, offs, syndrome_disks+2, 1717 RAID5_STRIPE_SIZE(sh->raid_conf), 1718 &submit); 1719 } else { 1720 struct page *dest; 1721 unsigned int dest_off; 1722 int data_target; 1723 int qd_idx = sh->qd_idx; 1724 1725 /* Missing D+Q: recompute D from P, then recompute Q */ 1726 if (target == qd_idx) 1727 data_target = target2; 1728 else 1729 data_target = target; 1730 1731 count = 0; 1732 for (i = disks; i-- ; ) { 1733 if (i == data_target || i == qd_idx) 1734 continue; 1735 offs[count] = sh->dev[i].offset; 1736 blocks[count++] = sh->dev[i].page; 1737 } 1738 dest = sh->dev[data_target].page; 1739 dest_off = sh->dev[data_target].offset; 1740 init_async_submit(&submit, 1741 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1742 NULL, NULL, NULL, 1743 to_addr_conv(sh, percpu, 0)); 1744 tx = async_xor_offs(dest, dest_off, blocks, offs, count, 1745 RAID5_STRIPE_SIZE(sh->raid_conf), 1746 &submit); 1747 1748 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL); 1749 init_async_submit(&submit, ASYNC_TX_FENCE, tx, 1750 ops_complete_compute, sh, 1751 to_addr_conv(sh, percpu, 0)); 1752 return async_gen_syndrome(blocks, offs, count+2, 1753 RAID5_STRIPE_SIZE(sh->raid_conf), 1754 &submit); 1755 } 1756 } else { 1757 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1758 ops_complete_compute, sh, 1759 to_addr_conv(sh, percpu, 0)); 1760 if (failb == syndrome_disks) { 1761 /* We're missing D+P. */ 1762 return async_raid6_datap_recov(syndrome_disks+2, 1763 RAID5_STRIPE_SIZE(sh->raid_conf), 1764 faila, 1765 blocks, offs, &submit); 1766 } else { 1767 /* We're missing D+D. */ 1768 return async_raid6_2data_recov(syndrome_disks+2, 1769 RAID5_STRIPE_SIZE(sh->raid_conf), 1770 faila, failb, 1771 blocks, offs, &submit); 1772 } 1773 } 1774 } 1775 1776 static void ops_complete_prexor(void *stripe_head_ref) 1777 { 1778 struct stripe_head *sh = stripe_head_ref; 1779 1780 pr_debug("%s: stripe %llu\n", __func__, 1781 (unsigned long long)sh->sector); 1782 1783 if (r5c_is_writeback(sh->raid_conf->log)) 1784 /* 1785 * raid5-cache write back uses orig_page during prexor. 1786 * After prexor, it is time to free orig_page 1787 */ 1788 r5c_release_extra_page(sh); 1789 } 1790 1791 static struct dma_async_tx_descriptor * 1792 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu, 1793 struct dma_async_tx_descriptor *tx) 1794 { 1795 int disks = sh->disks; 1796 struct page **xor_srcs = to_addr_page(percpu, 0); 1797 unsigned int *off_srcs = to_addr_offs(sh, percpu); 1798 int count = 0, pd_idx = sh->pd_idx, i; 1799 struct async_submit_ctl submit; 1800 1801 /* existing parity data subtracted */ 1802 unsigned int off_dest = off_srcs[count] = sh->dev[pd_idx].offset; 1803 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1804 1805 BUG_ON(sh->batch_head); 1806 pr_debug("%s: stripe %llu\n", __func__, 1807 (unsigned long long)sh->sector); 1808 1809 for (i = disks; i--; ) { 1810 struct r5dev *dev = &sh->dev[i]; 1811 /* Only process blocks that are known to be uptodate */ 1812 if (test_bit(R5_InJournal, &dev->flags)) { 1813 /* 1814 * For this case, PAGE_SIZE must be equal to 4KB and 1815 * page offset is zero. 1816 */ 1817 off_srcs[count] = dev->offset; 1818 xor_srcs[count++] = dev->orig_page; 1819 } else if (test_bit(R5_Wantdrain, &dev->flags)) { 1820 off_srcs[count] = dev->offset; 1821 xor_srcs[count++] = dev->page; 1822 } 1823 } 1824 1825 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx, 1826 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); 1827 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count, 1828 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1829 1830 return tx; 1831 } 1832 1833 static struct dma_async_tx_descriptor * 1834 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu, 1835 struct dma_async_tx_descriptor *tx) 1836 { 1837 struct page **blocks = to_addr_page(percpu, 0); 1838 unsigned int *offs = to_addr_offs(sh, percpu); 1839 int count; 1840 struct async_submit_ctl submit; 1841 1842 pr_debug("%s: stripe %llu\n", __func__, 1843 (unsigned long long)sh->sector); 1844 1845 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_WANT_DRAIN); 1846 1847 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx, 1848 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); 1849 tx = async_gen_syndrome(blocks, offs, count+2, 1850 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1851 1852 return tx; 1853 } 1854 1855 static struct dma_async_tx_descriptor * 1856 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) 1857 { 1858 struct r5conf *conf = sh->raid_conf; 1859 int disks = sh->disks; 1860 int i; 1861 struct stripe_head *head_sh = sh; 1862 1863 pr_debug("%s: stripe %llu\n", __func__, 1864 (unsigned long long)sh->sector); 1865 1866 for (i = disks; i--; ) { 1867 struct r5dev *dev; 1868 struct bio *chosen; 1869 1870 sh = head_sh; 1871 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) { 1872 struct bio *wbi; 1873 1874 again: 1875 dev = &sh->dev[i]; 1876 /* 1877 * clear R5_InJournal, so when rewriting a page in 1878 * journal, it is not skipped by r5l_log_stripe() 1879 */ 1880 clear_bit(R5_InJournal, &dev->flags); 1881 spin_lock_irq(&sh->stripe_lock); 1882 chosen = dev->towrite; 1883 dev->towrite = NULL; 1884 sh->overwrite_disks = 0; 1885 BUG_ON(dev->written); 1886 wbi = dev->written = chosen; 1887 spin_unlock_irq(&sh->stripe_lock); 1888 WARN_ON(dev->page != dev->orig_page); 1889 1890 while (wbi && wbi->bi_iter.bi_sector < 1891 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 1892 if (wbi->bi_opf & REQ_FUA) 1893 set_bit(R5_WantFUA, &dev->flags); 1894 if (wbi->bi_opf & REQ_SYNC) 1895 set_bit(R5_SyncIO, &dev->flags); 1896 if (bio_op(wbi) == REQ_OP_DISCARD) 1897 set_bit(R5_Discard, &dev->flags); 1898 else { 1899 tx = async_copy_data(1, wbi, &dev->page, 1900 dev->offset, 1901 dev->sector, tx, sh, 1902 r5c_is_writeback(conf->log)); 1903 if (dev->page != dev->orig_page && 1904 !r5c_is_writeback(conf->log)) { 1905 set_bit(R5_SkipCopy, &dev->flags); 1906 clear_bit(R5_UPTODATE, &dev->flags); 1907 clear_bit(R5_OVERWRITE, &dev->flags); 1908 } 1909 } 1910 wbi = r5_next_bio(conf, wbi, dev->sector); 1911 } 1912 1913 if (head_sh->batch_head) { 1914 sh = list_first_entry(&sh->batch_list, 1915 struct stripe_head, 1916 batch_list); 1917 if (sh == head_sh) 1918 continue; 1919 goto again; 1920 } 1921 } 1922 } 1923 1924 return tx; 1925 } 1926 1927 static void ops_complete_reconstruct(void *stripe_head_ref) 1928 { 1929 struct stripe_head *sh = stripe_head_ref; 1930 int disks = sh->disks; 1931 int pd_idx = sh->pd_idx; 1932 int qd_idx = sh->qd_idx; 1933 int i; 1934 bool fua = false, sync = false, discard = false; 1935 1936 pr_debug("%s: stripe %llu\n", __func__, 1937 (unsigned long long)sh->sector); 1938 1939 for (i = disks; i--; ) { 1940 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags); 1941 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags); 1942 discard |= test_bit(R5_Discard, &sh->dev[i].flags); 1943 } 1944 1945 for (i = disks; i--; ) { 1946 struct r5dev *dev = &sh->dev[i]; 1947 1948 if (dev->written || i == pd_idx || i == qd_idx) { 1949 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) { 1950 set_bit(R5_UPTODATE, &dev->flags); 1951 if (test_bit(STRIPE_EXPAND_READY, &sh->state)) 1952 set_bit(R5_Expanded, &dev->flags); 1953 } 1954 if (fua) 1955 set_bit(R5_WantFUA, &dev->flags); 1956 if (sync) 1957 set_bit(R5_SyncIO, &dev->flags); 1958 } 1959 } 1960 1961 if (sh->reconstruct_state == reconstruct_state_drain_run) 1962 sh->reconstruct_state = reconstruct_state_drain_result; 1963 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) 1964 sh->reconstruct_state = reconstruct_state_prexor_drain_result; 1965 else { 1966 BUG_ON(sh->reconstruct_state != reconstruct_state_run); 1967 sh->reconstruct_state = reconstruct_state_result; 1968 } 1969 1970 set_bit(STRIPE_HANDLE, &sh->state); 1971 raid5_release_stripe(sh); 1972 } 1973 1974 static void 1975 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu, 1976 struct dma_async_tx_descriptor *tx) 1977 { 1978 int disks = sh->disks; 1979 struct page **xor_srcs; 1980 unsigned int *off_srcs; 1981 struct async_submit_ctl submit; 1982 int count, pd_idx = sh->pd_idx, i; 1983 struct page *xor_dest; 1984 unsigned int off_dest; 1985 int prexor = 0; 1986 unsigned long flags; 1987 int j = 0; 1988 struct stripe_head *head_sh = sh; 1989 int last_stripe; 1990 1991 pr_debug("%s: stripe %llu\n", __func__, 1992 (unsigned long long)sh->sector); 1993 1994 for (i = 0; i < sh->disks; i++) { 1995 if (pd_idx == i) 1996 continue; 1997 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 1998 break; 1999 } 2000 if (i >= sh->disks) { 2001 atomic_inc(&sh->count); 2002 set_bit(R5_Discard, &sh->dev[pd_idx].flags); 2003 ops_complete_reconstruct(sh); 2004 return; 2005 } 2006 again: 2007 count = 0; 2008 xor_srcs = to_addr_page(percpu, j); 2009 off_srcs = to_addr_offs(sh, percpu); 2010 /* check if prexor is active which means only process blocks 2011 * that are part of a read-modify-write (written) 2012 */ 2013 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 2014 prexor = 1; 2015 off_dest = off_srcs[count] = sh->dev[pd_idx].offset; 2016 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 2017 for (i = disks; i--; ) { 2018 struct r5dev *dev = &sh->dev[i]; 2019 if (head_sh->dev[i].written || 2020 test_bit(R5_InJournal, &head_sh->dev[i].flags)) { 2021 off_srcs[count] = dev->offset; 2022 xor_srcs[count++] = dev->page; 2023 } 2024 } 2025 } else { 2026 xor_dest = sh->dev[pd_idx].page; 2027 off_dest = sh->dev[pd_idx].offset; 2028 for (i = disks; i--; ) { 2029 struct r5dev *dev = &sh->dev[i]; 2030 if (i != pd_idx) { 2031 off_srcs[count] = dev->offset; 2032 xor_srcs[count++] = dev->page; 2033 } 2034 } 2035 } 2036 2037 /* 1/ if we prexor'd then the dest is reused as a source 2038 * 2/ if we did not prexor then we are redoing the parity 2039 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST 2040 * for the synchronous xor case 2041 */ 2042 last_stripe = !head_sh->batch_head || 2043 list_first_entry(&sh->batch_list, 2044 struct stripe_head, batch_list) == head_sh; 2045 if (last_stripe) { 2046 flags = ASYNC_TX_ACK | 2047 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST); 2048 2049 atomic_inc(&head_sh->count); 2050 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh, 2051 to_addr_conv(sh, percpu, j)); 2052 } else { 2053 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST; 2054 init_async_submit(&submit, flags, tx, NULL, NULL, 2055 to_addr_conv(sh, percpu, j)); 2056 } 2057 2058 if (unlikely(count == 1)) 2059 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0], 2060 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 2061 else 2062 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count, 2063 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 2064 if (!last_stripe) { 2065 j++; 2066 sh = list_first_entry(&sh->batch_list, struct stripe_head, 2067 batch_list); 2068 goto again; 2069 } 2070 } 2071 2072 static void 2073 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu, 2074 struct dma_async_tx_descriptor *tx) 2075 { 2076 struct async_submit_ctl submit; 2077 struct page **blocks; 2078 unsigned int *offs; 2079 int count, i, j = 0; 2080 struct stripe_head *head_sh = sh; 2081 int last_stripe; 2082 int synflags; 2083 unsigned long txflags; 2084 2085 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); 2086 2087 for (i = 0; i < sh->disks; i++) { 2088 if (sh->pd_idx == i || sh->qd_idx == i) 2089 continue; 2090 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 2091 break; 2092 } 2093 if (i >= sh->disks) { 2094 atomic_inc(&sh->count); 2095 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 2096 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 2097 ops_complete_reconstruct(sh); 2098 return; 2099 } 2100 2101 again: 2102 blocks = to_addr_page(percpu, j); 2103 offs = to_addr_offs(sh, percpu); 2104 2105 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 2106 synflags = SYNDROME_SRC_WRITTEN; 2107 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST; 2108 } else { 2109 synflags = SYNDROME_SRC_ALL; 2110 txflags = ASYNC_TX_ACK; 2111 } 2112 2113 count = set_syndrome_sources(blocks, offs, sh, synflags); 2114 last_stripe = !head_sh->batch_head || 2115 list_first_entry(&sh->batch_list, 2116 struct stripe_head, batch_list) == head_sh; 2117 2118 if (last_stripe) { 2119 atomic_inc(&head_sh->count); 2120 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct, 2121 head_sh, to_addr_conv(sh, percpu, j)); 2122 } else 2123 init_async_submit(&submit, 0, tx, NULL, NULL, 2124 to_addr_conv(sh, percpu, j)); 2125 tx = async_gen_syndrome(blocks, offs, count+2, 2126 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 2127 if (!last_stripe) { 2128 j++; 2129 sh = list_first_entry(&sh->batch_list, struct stripe_head, 2130 batch_list); 2131 goto again; 2132 } 2133 } 2134 2135 static void ops_complete_check(void *stripe_head_ref) 2136 { 2137 struct stripe_head *sh = stripe_head_ref; 2138 2139 pr_debug("%s: stripe %llu\n", __func__, 2140 (unsigned long long)sh->sector); 2141 2142 sh->check_state = check_state_check_result; 2143 set_bit(STRIPE_HANDLE, &sh->state); 2144 raid5_release_stripe(sh); 2145 } 2146 2147 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu) 2148 { 2149 int disks = sh->disks; 2150 int pd_idx = sh->pd_idx; 2151 int qd_idx = sh->qd_idx; 2152 struct page *xor_dest; 2153 unsigned int off_dest; 2154 struct page **xor_srcs = to_addr_page(percpu, 0); 2155 unsigned int *off_srcs = to_addr_offs(sh, percpu); 2156 struct dma_async_tx_descriptor *tx; 2157 struct async_submit_ctl submit; 2158 int count; 2159 int i; 2160 2161 pr_debug("%s: stripe %llu\n", __func__, 2162 (unsigned long long)sh->sector); 2163 2164 BUG_ON(sh->batch_head); 2165 count = 0; 2166 xor_dest = sh->dev[pd_idx].page; 2167 off_dest = sh->dev[pd_idx].offset; 2168 off_srcs[count] = off_dest; 2169 xor_srcs[count++] = xor_dest; 2170 for (i = disks; i--; ) { 2171 if (i == pd_idx || i == qd_idx) 2172 continue; 2173 off_srcs[count] = sh->dev[i].offset; 2174 xor_srcs[count++] = sh->dev[i].page; 2175 } 2176 2177 init_async_submit(&submit, 0, NULL, NULL, NULL, 2178 to_addr_conv(sh, percpu, 0)); 2179 tx = async_xor_val_offs(xor_dest, off_dest, xor_srcs, off_srcs, count, 2180 RAID5_STRIPE_SIZE(sh->raid_conf), 2181 &sh->ops.zero_sum_result, &submit); 2182 2183 atomic_inc(&sh->count); 2184 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL); 2185 tx = async_trigger_callback(&submit); 2186 } 2187 2188 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp) 2189 { 2190 struct page **srcs = to_addr_page(percpu, 0); 2191 unsigned int *offs = to_addr_offs(sh, percpu); 2192 struct async_submit_ctl submit; 2193 int count; 2194 2195 pr_debug("%s: stripe %llu checkp: %d\n", __func__, 2196 (unsigned long long)sh->sector, checkp); 2197 2198 BUG_ON(sh->batch_head); 2199 count = set_syndrome_sources(srcs, offs, sh, SYNDROME_SRC_ALL); 2200 if (!checkp) 2201 srcs[count] = NULL; 2202 2203 atomic_inc(&sh->count); 2204 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check, 2205 sh, to_addr_conv(sh, percpu, 0)); 2206 async_syndrome_val(srcs, offs, count+2, 2207 RAID5_STRIPE_SIZE(sh->raid_conf), 2208 &sh->ops.zero_sum_result, percpu->spare_page, 0, &submit); 2209 } 2210 2211 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request) 2212 { 2213 int overlap_clear = 0, i, disks = sh->disks; 2214 struct dma_async_tx_descriptor *tx = NULL; 2215 struct r5conf *conf = sh->raid_conf; 2216 int level = conf->level; 2217 struct raid5_percpu *percpu; 2218 2219 local_lock(&conf->percpu->lock); 2220 percpu = this_cpu_ptr(conf->percpu); 2221 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) { 2222 ops_run_biofill(sh); 2223 overlap_clear++; 2224 } 2225 2226 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) { 2227 if (level < 6) 2228 tx = ops_run_compute5(sh, percpu); 2229 else { 2230 if (sh->ops.target2 < 0 || sh->ops.target < 0) 2231 tx = ops_run_compute6_1(sh, percpu); 2232 else 2233 tx = ops_run_compute6_2(sh, percpu); 2234 } 2235 /* terminate the chain if reconstruct is not set to be run */ 2236 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) 2237 async_tx_ack(tx); 2238 } 2239 2240 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) { 2241 if (level < 6) 2242 tx = ops_run_prexor5(sh, percpu, tx); 2243 else 2244 tx = ops_run_prexor6(sh, percpu, tx); 2245 } 2246 2247 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request)) 2248 tx = ops_run_partial_parity(sh, percpu, tx); 2249 2250 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) { 2251 tx = ops_run_biodrain(sh, tx); 2252 overlap_clear++; 2253 } 2254 2255 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) { 2256 if (level < 6) 2257 ops_run_reconstruct5(sh, percpu, tx); 2258 else 2259 ops_run_reconstruct6(sh, percpu, tx); 2260 } 2261 2262 if (test_bit(STRIPE_OP_CHECK, &ops_request)) { 2263 if (sh->check_state == check_state_run) 2264 ops_run_check_p(sh, percpu); 2265 else if (sh->check_state == check_state_run_q) 2266 ops_run_check_pq(sh, percpu, 0); 2267 else if (sh->check_state == check_state_run_pq) 2268 ops_run_check_pq(sh, percpu, 1); 2269 else 2270 BUG(); 2271 } 2272 2273 if (overlap_clear && !sh->batch_head) { 2274 for (i = disks; i--; ) { 2275 struct r5dev *dev = &sh->dev[i]; 2276 if (test_and_clear_bit(R5_Overlap, &dev->flags)) 2277 wake_up(&sh->raid_conf->wait_for_overlap); 2278 } 2279 } 2280 local_unlock(&conf->percpu->lock); 2281 } 2282 2283 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh) 2284 { 2285 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 2286 kfree(sh->pages); 2287 #endif 2288 if (sh->ppl_page) 2289 __free_page(sh->ppl_page); 2290 kmem_cache_free(sc, sh); 2291 } 2292 2293 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp, 2294 int disks, struct r5conf *conf) 2295 { 2296 struct stripe_head *sh; 2297 2298 sh = kmem_cache_zalloc(sc, gfp); 2299 if (sh) { 2300 spin_lock_init(&sh->stripe_lock); 2301 spin_lock_init(&sh->batch_lock); 2302 INIT_LIST_HEAD(&sh->batch_list); 2303 INIT_LIST_HEAD(&sh->lru); 2304 INIT_LIST_HEAD(&sh->r5c); 2305 INIT_LIST_HEAD(&sh->log_list); 2306 atomic_set(&sh->count, 1); 2307 sh->raid_conf = conf; 2308 sh->log_start = MaxSector; 2309 2310 if (raid5_has_ppl(conf)) { 2311 sh->ppl_page = alloc_page(gfp); 2312 if (!sh->ppl_page) { 2313 free_stripe(sc, sh); 2314 return NULL; 2315 } 2316 } 2317 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 2318 if (init_stripe_shared_pages(sh, conf, disks)) { 2319 free_stripe(sc, sh); 2320 return NULL; 2321 } 2322 #endif 2323 } 2324 return sh; 2325 } 2326 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp) 2327 { 2328 struct stripe_head *sh; 2329 2330 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf); 2331 if (!sh) 2332 return 0; 2333 2334 if (grow_buffers(sh, gfp)) { 2335 shrink_buffers(sh); 2336 free_stripe(conf->slab_cache, sh); 2337 return 0; 2338 } 2339 sh->hash_lock_index = 2340 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS; 2341 /* we just created an active stripe so... */ 2342 atomic_inc(&conf->active_stripes); 2343 2344 raid5_release_stripe(sh); 2345 conf->max_nr_stripes++; 2346 return 1; 2347 } 2348 2349 static int grow_stripes(struct r5conf *conf, int num) 2350 { 2351 struct kmem_cache *sc; 2352 size_t namelen = sizeof(conf->cache_name[0]); 2353 int devs = max(conf->raid_disks, conf->previous_raid_disks); 2354 2355 if (conf->mddev->gendisk) 2356 snprintf(conf->cache_name[0], namelen, 2357 "raid%d-%s", conf->level, mdname(conf->mddev)); 2358 else 2359 snprintf(conf->cache_name[0], namelen, 2360 "raid%d-%p", conf->level, conf->mddev); 2361 snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]); 2362 2363 conf->active_name = 0; 2364 sc = kmem_cache_create(conf->cache_name[conf->active_name], 2365 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev), 2366 0, 0, NULL); 2367 if (!sc) 2368 return 1; 2369 conf->slab_cache = sc; 2370 conf->pool_size = devs; 2371 while (num--) 2372 if (!grow_one_stripe(conf, GFP_KERNEL)) 2373 return 1; 2374 2375 return 0; 2376 } 2377 2378 /** 2379 * scribble_alloc - allocate percpu scribble buffer for required size 2380 * of the scribble region 2381 * @percpu: from for_each_present_cpu() of the caller 2382 * @num: total number of disks in the array 2383 * @cnt: scribble objs count for required size of the scribble region 2384 * 2385 * The scribble buffer size must be enough to contain: 2386 * 1/ a struct page pointer for each device in the array +2 2387 * 2/ room to convert each entry in (1) to its corresponding dma 2388 * (dma_map_page()) or page (page_address()) address. 2389 * 2390 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we 2391 * calculate over all devices (not just the data blocks), using zeros in place 2392 * of the P and Q blocks. 2393 */ 2394 static int scribble_alloc(struct raid5_percpu *percpu, 2395 int num, int cnt) 2396 { 2397 size_t obj_size = 2398 sizeof(struct page *) * (num + 2) + 2399 sizeof(addr_conv_t) * (num + 2) + 2400 sizeof(unsigned int) * (num + 2); 2401 void *scribble; 2402 2403 /* 2404 * If here is in raid array suspend context, it is in memalloc noio 2405 * context as well, there is no potential recursive memory reclaim 2406 * I/Os with the GFP_KERNEL flag. 2407 */ 2408 scribble = kvmalloc_array(cnt, obj_size, GFP_KERNEL); 2409 if (!scribble) 2410 return -ENOMEM; 2411 2412 kvfree(percpu->scribble); 2413 2414 percpu->scribble = scribble; 2415 percpu->scribble_obj_size = obj_size; 2416 return 0; 2417 } 2418 2419 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors) 2420 { 2421 unsigned long cpu; 2422 int err = 0; 2423 2424 /* 2425 * Never shrink. And mddev_suspend() could deadlock if this is called 2426 * from raid5d. In that case, scribble_disks and scribble_sectors 2427 * should equal to new_disks and new_sectors 2428 */ 2429 if (conf->scribble_disks >= new_disks && 2430 conf->scribble_sectors >= new_sectors) 2431 return 0; 2432 mddev_suspend(conf->mddev); 2433 cpus_read_lock(); 2434 2435 for_each_present_cpu(cpu) { 2436 struct raid5_percpu *percpu; 2437 2438 percpu = per_cpu_ptr(conf->percpu, cpu); 2439 err = scribble_alloc(percpu, new_disks, 2440 new_sectors / RAID5_STRIPE_SECTORS(conf)); 2441 if (err) 2442 break; 2443 } 2444 2445 cpus_read_unlock(); 2446 mddev_resume(conf->mddev); 2447 if (!err) { 2448 conf->scribble_disks = new_disks; 2449 conf->scribble_sectors = new_sectors; 2450 } 2451 return err; 2452 } 2453 2454 static int resize_stripes(struct r5conf *conf, int newsize) 2455 { 2456 /* Make all the stripes able to hold 'newsize' devices. 2457 * New slots in each stripe get 'page' set to a new page. 2458 * 2459 * This happens in stages: 2460 * 1/ create a new kmem_cache and allocate the required number of 2461 * stripe_heads. 2462 * 2/ gather all the old stripe_heads and transfer the pages across 2463 * to the new stripe_heads. This will have the side effect of 2464 * freezing the array as once all stripe_heads have been collected, 2465 * no IO will be possible. Old stripe heads are freed once their 2466 * pages have been transferred over, and the old kmem_cache is 2467 * freed when all stripes are done. 2468 * 3/ reallocate conf->disks to be suitable bigger. If this fails, 2469 * we simple return a failure status - no need to clean anything up. 2470 * 4/ allocate new pages for the new slots in the new stripe_heads. 2471 * If this fails, we don't bother trying the shrink the 2472 * stripe_heads down again, we just leave them as they are. 2473 * As each stripe_head is processed the new one is released into 2474 * active service. 2475 * 2476 * Once step2 is started, we cannot afford to wait for a write, 2477 * so we use GFP_NOIO allocations. 2478 */ 2479 struct stripe_head *osh, *nsh; 2480 LIST_HEAD(newstripes); 2481 struct disk_info *ndisks; 2482 int err = 0; 2483 struct kmem_cache *sc; 2484 int i; 2485 int hash, cnt; 2486 2487 md_allow_write(conf->mddev); 2488 2489 /* Step 1 */ 2490 sc = kmem_cache_create(conf->cache_name[1-conf->active_name], 2491 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev), 2492 0, 0, NULL); 2493 if (!sc) 2494 return -ENOMEM; 2495 2496 /* Need to ensure auto-resizing doesn't interfere */ 2497 mutex_lock(&conf->cache_size_mutex); 2498 2499 for (i = conf->max_nr_stripes; i; i--) { 2500 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf); 2501 if (!nsh) 2502 break; 2503 2504 list_add(&nsh->lru, &newstripes); 2505 } 2506 if (i) { 2507 /* didn't get enough, give up */ 2508 while (!list_empty(&newstripes)) { 2509 nsh = list_entry(newstripes.next, struct stripe_head, lru); 2510 list_del(&nsh->lru); 2511 free_stripe(sc, nsh); 2512 } 2513 kmem_cache_destroy(sc); 2514 mutex_unlock(&conf->cache_size_mutex); 2515 return -ENOMEM; 2516 } 2517 /* Step 2 - Must use GFP_NOIO now. 2518 * OK, we have enough stripes, start collecting inactive 2519 * stripes and copying them over 2520 */ 2521 hash = 0; 2522 cnt = 0; 2523 list_for_each_entry(nsh, &newstripes, lru) { 2524 lock_device_hash_lock(conf, hash); 2525 wait_event_cmd(conf->wait_for_stripe, 2526 !list_empty(conf->inactive_list + hash), 2527 unlock_device_hash_lock(conf, hash), 2528 lock_device_hash_lock(conf, hash)); 2529 osh = get_free_stripe(conf, hash); 2530 unlock_device_hash_lock(conf, hash); 2531 2532 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 2533 for (i = 0; i < osh->nr_pages; i++) { 2534 nsh->pages[i] = osh->pages[i]; 2535 osh->pages[i] = NULL; 2536 } 2537 #endif 2538 for(i=0; i<conf->pool_size; i++) { 2539 nsh->dev[i].page = osh->dev[i].page; 2540 nsh->dev[i].orig_page = osh->dev[i].page; 2541 nsh->dev[i].offset = osh->dev[i].offset; 2542 } 2543 nsh->hash_lock_index = hash; 2544 free_stripe(conf->slab_cache, osh); 2545 cnt++; 2546 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS + 2547 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) { 2548 hash++; 2549 cnt = 0; 2550 } 2551 } 2552 kmem_cache_destroy(conf->slab_cache); 2553 2554 /* Step 3. 2555 * At this point, we are holding all the stripes so the array 2556 * is completely stalled, so now is a good time to resize 2557 * conf->disks and the scribble region 2558 */ 2559 ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO); 2560 if (ndisks) { 2561 for (i = 0; i < conf->pool_size; i++) 2562 ndisks[i] = conf->disks[i]; 2563 2564 for (i = conf->pool_size; i < newsize; i++) { 2565 ndisks[i].extra_page = alloc_page(GFP_NOIO); 2566 if (!ndisks[i].extra_page) 2567 err = -ENOMEM; 2568 } 2569 2570 if (err) { 2571 for (i = conf->pool_size; i < newsize; i++) 2572 if (ndisks[i].extra_page) 2573 put_page(ndisks[i].extra_page); 2574 kfree(ndisks); 2575 } else { 2576 kfree(conf->disks); 2577 conf->disks = ndisks; 2578 } 2579 } else 2580 err = -ENOMEM; 2581 2582 conf->slab_cache = sc; 2583 conf->active_name = 1-conf->active_name; 2584 2585 /* Step 4, return new stripes to service */ 2586 while(!list_empty(&newstripes)) { 2587 nsh = list_entry(newstripes.next, struct stripe_head, lru); 2588 list_del_init(&nsh->lru); 2589 2590 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 2591 for (i = 0; i < nsh->nr_pages; i++) { 2592 if (nsh->pages[i]) 2593 continue; 2594 nsh->pages[i] = alloc_page(GFP_NOIO); 2595 if (!nsh->pages[i]) 2596 err = -ENOMEM; 2597 } 2598 2599 for (i = conf->raid_disks; i < newsize; i++) { 2600 if (nsh->dev[i].page) 2601 continue; 2602 nsh->dev[i].page = raid5_get_dev_page(nsh, i); 2603 nsh->dev[i].orig_page = nsh->dev[i].page; 2604 nsh->dev[i].offset = raid5_get_page_offset(nsh, i); 2605 } 2606 #else 2607 for (i=conf->raid_disks; i < newsize; i++) 2608 if (nsh->dev[i].page == NULL) { 2609 struct page *p = alloc_page(GFP_NOIO); 2610 nsh->dev[i].page = p; 2611 nsh->dev[i].orig_page = p; 2612 nsh->dev[i].offset = 0; 2613 if (!p) 2614 err = -ENOMEM; 2615 } 2616 #endif 2617 raid5_release_stripe(nsh); 2618 } 2619 /* critical section pass, GFP_NOIO no longer needed */ 2620 2621 if (!err) 2622 conf->pool_size = newsize; 2623 mutex_unlock(&conf->cache_size_mutex); 2624 2625 return err; 2626 } 2627 2628 static int drop_one_stripe(struct r5conf *conf) 2629 { 2630 struct stripe_head *sh; 2631 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK; 2632 2633 spin_lock_irq(conf->hash_locks + hash); 2634 sh = get_free_stripe(conf, hash); 2635 spin_unlock_irq(conf->hash_locks + hash); 2636 if (!sh) 2637 return 0; 2638 BUG_ON(atomic_read(&sh->count)); 2639 shrink_buffers(sh); 2640 free_stripe(conf->slab_cache, sh); 2641 atomic_dec(&conf->active_stripes); 2642 conf->max_nr_stripes--; 2643 return 1; 2644 } 2645 2646 static void shrink_stripes(struct r5conf *conf) 2647 { 2648 while (conf->max_nr_stripes && 2649 drop_one_stripe(conf)) 2650 ; 2651 2652 kmem_cache_destroy(conf->slab_cache); 2653 conf->slab_cache = NULL; 2654 } 2655 2656 static void raid5_end_read_request(struct bio * bi) 2657 { 2658 struct stripe_head *sh = bi->bi_private; 2659 struct r5conf *conf = sh->raid_conf; 2660 int disks = sh->disks, i; 2661 char b[BDEVNAME_SIZE]; 2662 struct md_rdev *rdev = NULL; 2663 sector_t s; 2664 2665 for (i=0 ; i<disks; i++) 2666 if (bi == &sh->dev[i].req) 2667 break; 2668 2669 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n", 2670 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2671 bi->bi_status); 2672 if (i == disks) { 2673 BUG(); 2674 return; 2675 } 2676 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2677 /* If replacement finished while this request was outstanding, 2678 * 'replacement' might be NULL already. 2679 * In that case it moved down to 'rdev'. 2680 * rdev is not removed until all requests are finished. 2681 */ 2682 rdev = conf->disks[i].replacement; 2683 if (!rdev) 2684 rdev = conf->disks[i].rdev; 2685 2686 if (use_new_offset(conf, sh)) 2687 s = sh->sector + rdev->new_data_offset; 2688 else 2689 s = sh->sector + rdev->data_offset; 2690 if (!bi->bi_status) { 2691 set_bit(R5_UPTODATE, &sh->dev[i].flags); 2692 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 2693 /* Note that this cannot happen on a 2694 * replacement device. We just fail those on 2695 * any error 2696 */ 2697 pr_info_ratelimited( 2698 "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n", 2699 mdname(conf->mddev), RAID5_STRIPE_SECTORS(conf), 2700 (unsigned long long)s, 2701 bdevname(rdev->bdev, b)); 2702 atomic_add(RAID5_STRIPE_SECTORS(conf), &rdev->corrected_errors); 2703 clear_bit(R5_ReadError, &sh->dev[i].flags); 2704 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2705 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2706 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2707 2708 if (test_bit(R5_InJournal, &sh->dev[i].flags)) 2709 /* 2710 * end read for a page in journal, this 2711 * must be preparing for prexor in rmw 2712 */ 2713 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags); 2714 2715 if (atomic_read(&rdev->read_errors)) 2716 atomic_set(&rdev->read_errors, 0); 2717 } else { 2718 const char *bdn = bdevname(rdev->bdev, b); 2719 int retry = 0; 2720 int set_bad = 0; 2721 2722 clear_bit(R5_UPTODATE, &sh->dev[i].flags); 2723 if (!(bi->bi_status == BLK_STS_PROTECTION)) 2724 atomic_inc(&rdev->read_errors); 2725 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2726 pr_warn_ratelimited( 2727 "md/raid:%s: read error on replacement device (sector %llu on %s).\n", 2728 mdname(conf->mddev), 2729 (unsigned long long)s, 2730 bdn); 2731 else if (conf->mddev->degraded >= conf->max_degraded) { 2732 set_bad = 1; 2733 pr_warn_ratelimited( 2734 "md/raid:%s: read error not correctable (sector %llu on %s).\n", 2735 mdname(conf->mddev), 2736 (unsigned long long)s, 2737 bdn); 2738 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) { 2739 /* Oh, no!!! */ 2740 set_bad = 1; 2741 pr_warn_ratelimited( 2742 "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n", 2743 mdname(conf->mddev), 2744 (unsigned long long)s, 2745 bdn); 2746 } else if (atomic_read(&rdev->read_errors) 2747 > conf->max_nr_stripes) { 2748 if (!test_bit(Faulty, &rdev->flags)) { 2749 pr_warn("md/raid:%s: %d read_errors > %d stripes\n", 2750 mdname(conf->mddev), 2751 atomic_read(&rdev->read_errors), 2752 conf->max_nr_stripes); 2753 pr_warn("md/raid:%s: Too many read errors, failing device %s.\n", 2754 mdname(conf->mddev), bdn); 2755 } 2756 } else 2757 retry = 1; 2758 if (set_bad && test_bit(In_sync, &rdev->flags) 2759 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2760 retry = 1; 2761 if (retry) 2762 if (sh->qd_idx >= 0 && sh->pd_idx == i) 2763 set_bit(R5_ReadError, &sh->dev[i].flags); 2764 else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) { 2765 set_bit(R5_ReadError, &sh->dev[i].flags); 2766 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2767 } else 2768 set_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2769 else { 2770 clear_bit(R5_ReadError, &sh->dev[i].flags); 2771 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2772 if (!(set_bad 2773 && test_bit(In_sync, &rdev->flags) 2774 && rdev_set_badblocks( 2775 rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 0))) 2776 md_error(conf->mddev, rdev); 2777 } 2778 } 2779 rdev_dec_pending(rdev, conf->mddev); 2780 bio_uninit(bi); 2781 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2782 set_bit(STRIPE_HANDLE, &sh->state); 2783 raid5_release_stripe(sh); 2784 } 2785 2786 static void raid5_end_write_request(struct bio *bi) 2787 { 2788 struct stripe_head *sh = bi->bi_private; 2789 struct r5conf *conf = sh->raid_conf; 2790 int disks = sh->disks, i; 2791 struct md_rdev *rdev; 2792 sector_t first_bad; 2793 int bad_sectors; 2794 int replacement = 0; 2795 2796 for (i = 0 ; i < disks; i++) { 2797 if (bi == &sh->dev[i].req) { 2798 rdev = conf->disks[i].rdev; 2799 break; 2800 } 2801 if (bi == &sh->dev[i].rreq) { 2802 rdev = conf->disks[i].replacement; 2803 if (rdev) 2804 replacement = 1; 2805 else 2806 /* rdev was removed and 'replacement' 2807 * replaced it. rdev is not removed 2808 * until all requests are finished. 2809 */ 2810 rdev = conf->disks[i].rdev; 2811 break; 2812 } 2813 } 2814 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n", 2815 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2816 bi->bi_status); 2817 if (i == disks) { 2818 BUG(); 2819 return; 2820 } 2821 2822 if (replacement) { 2823 if (bi->bi_status) 2824 md_error(conf->mddev, rdev); 2825 else if (is_badblock(rdev, sh->sector, 2826 RAID5_STRIPE_SECTORS(conf), 2827 &first_bad, &bad_sectors)) 2828 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags); 2829 } else { 2830 if (bi->bi_status) { 2831 set_bit(STRIPE_DEGRADED, &sh->state); 2832 set_bit(WriteErrorSeen, &rdev->flags); 2833 set_bit(R5_WriteError, &sh->dev[i].flags); 2834 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2835 set_bit(MD_RECOVERY_NEEDED, 2836 &rdev->mddev->recovery); 2837 } else if (is_badblock(rdev, sh->sector, 2838 RAID5_STRIPE_SECTORS(conf), 2839 &first_bad, &bad_sectors)) { 2840 set_bit(R5_MadeGood, &sh->dev[i].flags); 2841 if (test_bit(R5_ReadError, &sh->dev[i].flags)) 2842 /* That was a successful write so make 2843 * sure it looks like we already did 2844 * a re-write. 2845 */ 2846 set_bit(R5_ReWrite, &sh->dev[i].flags); 2847 } 2848 } 2849 rdev_dec_pending(rdev, conf->mddev); 2850 2851 if (sh->batch_head && bi->bi_status && !replacement) 2852 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state); 2853 2854 bio_uninit(bi); 2855 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags)) 2856 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2857 set_bit(STRIPE_HANDLE, &sh->state); 2858 raid5_release_stripe(sh); 2859 2860 if (sh->batch_head && sh != sh->batch_head) 2861 raid5_release_stripe(sh->batch_head); 2862 } 2863 2864 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev) 2865 { 2866 char b[BDEVNAME_SIZE]; 2867 struct r5conf *conf = mddev->private; 2868 unsigned long flags; 2869 pr_debug("raid456: error called\n"); 2870 2871 spin_lock_irqsave(&conf->device_lock, flags); 2872 2873 if (test_bit(In_sync, &rdev->flags) && 2874 mddev->degraded == conf->max_degraded) { 2875 /* 2876 * Don't allow to achieve failed state 2877 * Don't try to recover this device 2878 */ 2879 conf->recovery_disabled = mddev->recovery_disabled; 2880 spin_unlock_irqrestore(&conf->device_lock, flags); 2881 return; 2882 } 2883 2884 set_bit(Faulty, &rdev->flags); 2885 clear_bit(In_sync, &rdev->flags); 2886 mddev->degraded = raid5_calc_degraded(conf); 2887 spin_unlock_irqrestore(&conf->device_lock, flags); 2888 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2889 2890 set_bit(Blocked, &rdev->flags); 2891 set_mask_bits(&mddev->sb_flags, 0, 2892 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 2893 pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n" 2894 "md/raid:%s: Operation continuing on %d devices.\n", 2895 mdname(mddev), 2896 bdevname(rdev->bdev, b), 2897 mdname(mddev), 2898 conf->raid_disks - mddev->degraded); 2899 r5c_update_on_rdev_error(mddev, rdev); 2900 } 2901 2902 /* 2903 * Input: a 'big' sector number, 2904 * Output: index of the data and parity disk, and the sector # in them. 2905 */ 2906 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector, 2907 int previous, int *dd_idx, 2908 struct stripe_head *sh) 2909 { 2910 sector_t stripe, stripe2; 2911 sector_t chunk_number; 2912 unsigned int chunk_offset; 2913 int pd_idx, qd_idx; 2914 int ddf_layout = 0; 2915 sector_t new_sector; 2916 int algorithm = previous ? conf->prev_algo 2917 : conf->algorithm; 2918 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 2919 : conf->chunk_sectors; 2920 int raid_disks = previous ? conf->previous_raid_disks 2921 : conf->raid_disks; 2922 int data_disks = raid_disks - conf->max_degraded; 2923 2924 /* First compute the information on this sector */ 2925 2926 /* 2927 * Compute the chunk number and the sector offset inside the chunk 2928 */ 2929 chunk_offset = sector_div(r_sector, sectors_per_chunk); 2930 chunk_number = r_sector; 2931 2932 /* 2933 * Compute the stripe number 2934 */ 2935 stripe = chunk_number; 2936 *dd_idx = sector_div(stripe, data_disks); 2937 stripe2 = stripe; 2938 /* 2939 * Select the parity disk based on the user selected algorithm. 2940 */ 2941 pd_idx = qd_idx = -1; 2942 switch(conf->level) { 2943 case 4: 2944 pd_idx = data_disks; 2945 break; 2946 case 5: 2947 switch (algorithm) { 2948 case ALGORITHM_LEFT_ASYMMETRIC: 2949 pd_idx = data_disks - sector_div(stripe2, raid_disks); 2950 if (*dd_idx >= pd_idx) 2951 (*dd_idx)++; 2952 break; 2953 case ALGORITHM_RIGHT_ASYMMETRIC: 2954 pd_idx = sector_div(stripe2, raid_disks); 2955 if (*dd_idx >= pd_idx) 2956 (*dd_idx)++; 2957 break; 2958 case ALGORITHM_LEFT_SYMMETRIC: 2959 pd_idx = data_disks - sector_div(stripe2, raid_disks); 2960 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2961 break; 2962 case ALGORITHM_RIGHT_SYMMETRIC: 2963 pd_idx = sector_div(stripe2, raid_disks); 2964 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2965 break; 2966 case ALGORITHM_PARITY_0: 2967 pd_idx = 0; 2968 (*dd_idx)++; 2969 break; 2970 case ALGORITHM_PARITY_N: 2971 pd_idx = data_disks; 2972 break; 2973 default: 2974 BUG(); 2975 } 2976 break; 2977 case 6: 2978 2979 switch (algorithm) { 2980 case ALGORITHM_LEFT_ASYMMETRIC: 2981 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2982 qd_idx = pd_idx + 1; 2983 if (pd_idx == raid_disks-1) { 2984 (*dd_idx)++; /* Q D D D P */ 2985 qd_idx = 0; 2986 } else if (*dd_idx >= pd_idx) 2987 (*dd_idx) += 2; /* D D P Q D */ 2988 break; 2989 case ALGORITHM_RIGHT_ASYMMETRIC: 2990 pd_idx = sector_div(stripe2, raid_disks); 2991 qd_idx = pd_idx + 1; 2992 if (pd_idx == raid_disks-1) { 2993 (*dd_idx)++; /* Q D D D P */ 2994 qd_idx = 0; 2995 } else if (*dd_idx >= pd_idx) 2996 (*dd_idx) += 2; /* D D P Q D */ 2997 break; 2998 case ALGORITHM_LEFT_SYMMETRIC: 2999 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 3000 qd_idx = (pd_idx + 1) % raid_disks; 3001 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 3002 break; 3003 case ALGORITHM_RIGHT_SYMMETRIC: 3004 pd_idx = sector_div(stripe2, raid_disks); 3005 qd_idx = (pd_idx + 1) % raid_disks; 3006 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 3007 break; 3008 3009 case ALGORITHM_PARITY_0: 3010 pd_idx = 0; 3011 qd_idx = 1; 3012 (*dd_idx) += 2; 3013 break; 3014 case ALGORITHM_PARITY_N: 3015 pd_idx = data_disks; 3016 qd_idx = data_disks + 1; 3017 break; 3018 3019 case ALGORITHM_ROTATING_ZERO_RESTART: 3020 /* Exactly the same as RIGHT_ASYMMETRIC, but or 3021 * of blocks for computing Q is different. 3022 */ 3023 pd_idx = sector_div(stripe2, raid_disks); 3024 qd_idx = pd_idx + 1; 3025 if (pd_idx == raid_disks-1) { 3026 (*dd_idx)++; /* Q D D D P */ 3027 qd_idx = 0; 3028 } else if (*dd_idx >= pd_idx) 3029 (*dd_idx) += 2; /* D D P Q D */ 3030 ddf_layout = 1; 3031 break; 3032 3033 case ALGORITHM_ROTATING_N_RESTART: 3034 /* Same a left_asymmetric, by first stripe is 3035 * D D D P Q rather than 3036 * Q D D D P 3037 */ 3038 stripe2 += 1; 3039 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 3040 qd_idx = pd_idx + 1; 3041 if (pd_idx == raid_disks-1) { 3042 (*dd_idx)++; /* Q D D D P */ 3043 qd_idx = 0; 3044 } else if (*dd_idx >= pd_idx) 3045 (*dd_idx) += 2; /* D D P Q D */ 3046 ddf_layout = 1; 3047 break; 3048 3049 case ALGORITHM_ROTATING_N_CONTINUE: 3050 /* Same as left_symmetric but Q is before P */ 3051 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 3052 qd_idx = (pd_idx + raid_disks - 1) % raid_disks; 3053 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 3054 ddf_layout = 1; 3055 break; 3056 3057 case ALGORITHM_LEFT_ASYMMETRIC_6: 3058 /* RAID5 left_asymmetric, with Q on last device */ 3059 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 3060 if (*dd_idx >= pd_idx) 3061 (*dd_idx)++; 3062 qd_idx = raid_disks - 1; 3063 break; 3064 3065 case ALGORITHM_RIGHT_ASYMMETRIC_6: 3066 pd_idx = sector_div(stripe2, raid_disks-1); 3067 if (*dd_idx >= pd_idx) 3068 (*dd_idx)++; 3069 qd_idx = raid_disks - 1; 3070 break; 3071 3072 case ALGORITHM_LEFT_SYMMETRIC_6: 3073 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 3074 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 3075 qd_idx = raid_disks - 1; 3076 break; 3077 3078 case ALGORITHM_RIGHT_SYMMETRIC_6: 3079 pd_idx = sector_div(stripe2, raid_disks-1); 3080 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 3081 qd_idx = raid_disks - 1; 3082 break; 3083 3084 case ALGORITHM_PARITY_0_6: 3085 pd_idx = 0; 3086 (*dd_idx)++; 3087 qd_idx = raid_disks - 1; 3088 break; 3089 3090 default: 3091 BUG(); 3092 } 3093 break; 3094 } 3095 3096 if (sh) { 3097 sh->pd_idx = pd_idx; 3098 sh->qd_idx = qd_idx; 3099 sh->ddf_layout = ddf_layout; 3100 } 3101 /* 3102 * Finally, compute the new sector number 3103 */ 3104 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset; 3105 return new_sector; 3106 } 3107 3108 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous) 3109 { 3110 struct r5conf *conf = sh->raid_conf; 3111 int raid_disks = sh->disks; 3112 int data_disks = raid_disks - conf->max_degraded; 3113 sector_t new_sector = sh->sector, check; 3114 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 3115 : conf->chunk_sectors; 3116 int algorithm = previous ? conf->prev_algo 3117 : conf->algorithm; 3118 sector_t stripe; 3119 int chunk_offset; 3120 sector_t chunk_number; 3121 int dummy1, dd_idx = i; 3122 sector_t r_sector; 3123 struct stripe_head sh2; 3124 3125 chunk_offset = sector_div(new_sector, sectors_per_chunk); 3126 stripe = new_sector; 3127 3128 if (i == sh->pd_idx) 3129 return 0; 3130 switch(conf->level) { 3131 case 4: break; 3132 case 5: 3133 switch (algorithm) { 3134 case ALGORITHM_LEFT_ASYMMETRIC: 3135 case ALGORITHM_RIGHT_ASYMMETRIC: 3136 if (i > sh->pd_idx) 3137 i--; 3138 break; 3139 case ALGORITHM_LEFT_SYMMETRIC: 3140 case ALGORITHM_RIGHT_SYMMETRIC: 3141 if (i < sh->pd_idx) 3142 i += raid_disks; 3143 i -= (sh->pd_idx + 1); 3144 break; 3145 case ALGORITHM_PARITY_0: 3146 i -= 1; 3147 break; 3148 case ALGORITHM_PARITY_N: 3149 break; 3150 default: 3151 BUG(); 3152 } 3153 break; 3154 case 6: 3155 if (i == sh->qd_idx) 3156 return 0; /* It is the Q disk */ 3157 switch (algorithm) { 3158 case ALGORITHM_LEFT_ASYMMETRIC: 3159 case ALGORITHM_RIGHT_ASYMMETRIC: 3160 case ALGORITHM_ROTATING_ZERO_RESTART: 3161 case ALGORITHM_ROTATING_N_RESTART: 3162 if (sh->pd_idx == raid_disks-1) 3163 i--; /* Q D D D P */ 3164 else if (i > sh->pd_idx) 3165 i -= 2; /* D D P Q D */ 3166 break; 3167 case ALGORITHM_LEFT_SYMMETRIC: 3168 case ALGORITHM_RIGHT_SYMMETRIC: 3169 if (sh->pd_idx == raid_disks-1) 3170 i--; /* Q D D D P */ 3171 else { 3172 /* D D P Q D */ 3173 if (i < sh->pd_idx) 3174 i += raid_disks; 3175 i -= (sh->pd_idx + 2); 3176 } 3177 break; 3178 case ALGORITHM_PARITY_0: 3179 i -= 2; 3180 break; 3181 case ALGORITHM_PARITY_N: 3182 break; 3183 case ALGORITHM_ROTATING_N_CONTINUE: 3184 /* Like left_symmetric, but P is before Q */ 3185 if (sh->pd_idx == 0) 3186 i--; /* P D D D Q */ 3187 else { 3188 /* D D Q P D */ 3189 if (i < sh->pd_idx) 3190 i += raid_disks; 3191 i -= (sh->pd_idx + 1); 3192 } 3193 break; 3194 case ALGORITHM_LEFT_ASYMMETRIC_6: 3195 case ALGORITHM_RIGHT_ASYMMETRIC_6: 3196 if (i > sh->pd_idx) 3197 i--; 3198 break; 3199 case ALGORITHM_LEFT_SYMMETRIC_6: 3200 case ALGORITHM_RIGHT_SYMMETRIC_6: 3201 if (i < sh->pd_idx) 3202 i += data_disks + 1; 3203 i -= (sh->pd_idx + 1); 3204 break; 3205 case ALGORITHM_PARITY_0_6: 3206 i -= 1; 3207 break; 3208 default: 3209 BUG(); 3210 } 3211 break; 3212 } 3213 3214 chunk_number = stripe * data_disks + i; 3215 r_sector = chunk_number * sectors_per_chunk + chunk_offset; 3216 3217 check = raid5_compute_sector(conf, r_sector, 3218 previous, &dummy1, &sh2); 3219 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx 3220 || sh2.qd_idx != sh->qd_idx) { 3221 pr_warn("md/raid:%s: compute_blocknr: map not correct\n", 3222 mdname(conf->mddev)); 3223 return 0; 3224 } 3225 return r_sector; 3226 } 3227 3228 /* 3229 * There are cases where we want handle_stripe_dirtying() and 3230 * schedule_reconstruction() to delay towrite to some dev of a stripe. 3231 * 3232 * This function checks whether we want to delay the towrite. Specifically, 3233 * we delay the towrite when: 3234 * 3235 * 1. degraded stripe has a non-overwrite to the missing dev, AND this 3236 * stripe has data in journal (for other devices). 3237 * 3238 * In this case, when reading data for the non-overwrite dev, it is 3239 * necessary to handle complex rmw of write back cache (prexor with 3240 * orig_page, and xor with page). To keep read path simple, we would 3241 * like to flush data in journal to RAID disks first, so complex rmw 3242 * is handled in the write patch (handle_stripe_dirtying). 3243 * 3244 * 2. when journal space is critical (R5C_LOG_CRITICAL=1) 3245 * 3246 * It is important to be able to flush all stripes in raid5-cache. 3247 * Therefore, we need reserve some space on the journal device for 3248 * these flushes. If flush operation includes pending writes to the 3249 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe 3250 * for the flush out. If we exclude these pending writes from flush 3251 * operation, we only need (conf->max_degraded + 1) pages per stripe. 3252 * Therefore, excluding pending writes in these cases enables more 3253 * efficient use of the journal device. 3254 * 3255 * Note: To make sure the stripe makes progress, we only delay 3256 * towrite for stripes with data already in journal (injournal > 0). 3257 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to 3258 * no_space_stripes list. 3259 * 3260 * 3. during journal failure 3261 * In journal failure, we try to flush all cached data to raid disks 3262 * based on data in stripe cache. The array is read-only to upper 3263 * layers, so we would skip all pending writes. 3264 * 3265 */ 3266 static inline bool delay_towrite(struct r5conf *conf, 3267 struct r5dev *dev, 3268 struct stripe_head_state *s) 3269 { 3270 /* case 1 above */ 3271 if (!test_bit(R5_OVERWRITE, &dev->flags) && 3272 !test_bit(R5_Insync, &dev->flags) && s->injournal) 3273 return true; 3274 /* case 2 above */ 3275 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) && 3276 s->injournal > 0) 3277 return true; 3278 /* case 3 above */ 3279 if (s->log_failed && s->injournal) 3280 return true; 3281 return false; 3282 } 3283 3284 static void 3285 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s, 3286 int rcw, int expand) 3287 { 3288 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks; 3289 struct r5conf *conf = sh->raid_conf; 3290 int level = conf->level; 3291 3292 if (rcw) { 3293 /* 3294 * In some cases, handle_stripe_dirtying initially decided to 3295 * run rmw and allocates extra page for prexor. However, rcw is 3296 * cheaper later on. We need to free the extra page now, 3297 * because we won't be able to do that in ops_complete_prexor(). 3298 */ 3299 r5c_release_extra_page(sh); 3300 3301 for (i = disks; i--; ) { 3302 struct r5dev *dev = &sh->dev[i]; 3303 3304 if (dev->towrite && !delay_towrite(conf, dev, s)) { 3305 set_bit(R5_LOCKED, &dev->flags); 3306 set_bit(R5_Wantdrain, &dev->flags); 3307 if (!expand) 3308 clear_bit(R5_UPTODATE, &dev->flags); 3309 s->locked++; 3310 } else if (test_bit(R5_InJournal, &dev->flags)) { 3311 set_bit(R5_LOCKED, &dev->flags); 3312 s->locked++; 3313 } 3314 } 3315 /* if we are not expanding this is a proper write request, and 3316 * there will be bios with new data to be drained into the 3317 * stripe cache 3318 */ 3319 if (!expand) { 3320 if (!s->locked) 3321 /* False alarm, nothing to do */ 3322 return; 3323 sh->reconstruct_state = reconstruct_state_drain_run; 3324 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 3325 } else 3326 sh->reconstruct_state = reconstruct_state_run; 3327 3328 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 3329 3330 if (s->locked + conf->max_degraded == disks) 3331 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state)) 3332 atomic_inc(&conf->pending_full_writes); 3333 } else { 3334 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) || 3335 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags))); 3336 BUG_ON(level == 6 && 3337 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) || 3338 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags)))); 3339 3340 for (i = disks; i--; ) { 3341 struct r5dev *dev = &sh->dev[i]; 3342 if (i == pd_idx || i == qd_idx) 3343 continue; 3344 3345 if (dev->towrite && 3346 (test_bit(R5_UPTODATE, &dev->flags) || 3347 test_bit(R5_Wantcompute, &dev->flags))) { 3348 set_bit(R5_Wantdrain, &dev->flags); 3349 set_bit(R5_LOCKED, &dev->flags); 3350 clear_bit(R5_UPTODATE, &dev->flags); 3351 s->locked++; 3352 } else if (test_bit(R5_InJournal, &dev->flags)) { 3353 set_bit(R5_LOCKED, &dev->flags); 3354 s->locked++; 3355 } 3356 } 3357 if (!s->locked) 3358 /* False alarm - nothing to do */ 3359 return; 3360 sh->reconstruct_state = reconstruct_state_prexor_drain_run; 3361 set_bit(STRIPE_OP_PREXOR, &s->ops_request); 3362 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 3363 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 3364 } 3365 3366 /* keep the parity disk(s) locked while asynchronous operations 3367 * are in flight 3368 */ 3369 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); 3370 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 3371 s->locked++; 3372 3373 if (level == 6) { 3374 int qd_idx = sh->qd_idx; 3375 struct r5dev *dev = &sh->dev[qd_idx]; 3376 3377 set_bit(R5_LOCKED, &dev->flags); 3378 clear_bit(R5_UPTODATE, &dev->flags); 3379 s->locked++; 3380 } 3381 3382 if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page && 3383 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) && 3384 !test_bit(STRIPE_FULL_WRITE, &sh->state) && 3385 test_bit(R5_Insync, &sh->dev[pd_idx].flags)) 3386 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request); 3387 3388 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n", 3389 __func__, (unsigned long long)sh->sector, 3390 s->locked, s->ops_request); 3391 } 3392 3393 /* 3394 * Each stripe/dev can have one or more bion attached. 3395 * toread/towrite point to the first in a chain. 3396 * The bi_next chain must be in order. 3397 */ 3398 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, 3399 int forwrite, int previous) 3400 { 3401 struct bio **bip; 3402 struct r5conf *conf = sh->raid_conf; 3403 int firstwrite=0; 3404 3405 pr_debug("adding bi b#%llu to stripe s#%llu\n", 3406 (unsigned long long)bi->bi_iter.bi_sector, 3407 (unsigned long long)sh->sector); 3408 3409 spin_lock_irq(&sh->stripe_lock); 3410 sh->dev[dd_idx].write_hint = bi->bi_write_hint; 3411 /* Don't allow new IO added to stripes in batch list */ 3412 if (sh->batch_head) 3413 goto overlap; 3414 if (forwrite) { 3415 bip = &sh->dev[dd_idx].towrite; 3416 if (*bip == NULL) 3417 firstwrite = 1; 3418 } else 3419 bip = &sh->dev[dd_idx].toread; 3420 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) { 3421 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector) 3422 goto overlap; 3423 bip = & (*bip)->bi_next; 3424 } 3425 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi)) 3426 goto overlap; 3427 3428 if (forwrite && raid5_has_ppl(conf)) { 3429 /* 3430 * With PPL only writes to consecutive data chunks within a 3431 * stripe are allowed because for a single stripe_head we can 3432 * only have one PPL entry at a time, which describes one data 3433 * range. Not really an overlap, but wait_for_overlap can be 3434 * used to handle this. 3435 */ 3436 sector_t sector; 3437 sector_t first = 0; 3438 sector_t last = 0; 3439 int count = 0; 3440 int i; 3441 3442 for (i = 0; i < sh->disks; i++) { 3443 if (i != sh->pd_idx && 3444 (i == dd_idx || sh->dev[i].towrite)) { 3445 sector = sh->dev[i].sector; 3446 if (count == 0 || sector < first) 3447 first = sector; 3448 if (sector > last) 3449 last = sector; 3450 count++; 3451 } 3452 } 3453 3454 if (first + conf->chunk_sectors * (count - 1) != last) 3455 goto overlap; 3456 } 3457 3458 if (!forwrite || previous) 3459 clear_bit(STRIPE_BATCH_READY, &sh->state); 3460 3461 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next); 3462 if (*bip) 3463 bi->bi_next = *bip; 3464 *bip = bi; 3465 bio_inc_remaining(bi); 3466 md_write_inc(conf->mddev, bi); 3467 3468 if (forwrite) { 3469 /* check if page is covered */ 3470 sector_t sector = sh->dev[dd_idx].sector; 3471 for (bi=sh->dev[dd_idx].towrite; 3472 sector < sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf) && 3473 bi && bi->bi_iter.bi_sector <= sector; 3474 bi = r5_next_bio(conf, bi, sh->dev[dd_idx].sector)) { 3475 if (bio_end_sector(bi) >= sector) 3476 sector = bio_end_sector(bi); 3477 } 3478 if (sector >= sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf)) 3479 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags)) 3480 sh->overwrite_disks++; 3481 } 3482 3483 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n", 3484 (unsigned long long)(*bip)->bi_iter.bi_sector, 3485 (unsigned long long)sh->sector, dd_idx); 3486 3487 if (conf->mddev->bitmap && firstwrite) { 3488 /* Cannot hold spinlock over bitmap_startwrite, 3489 * but must ensure this isn't added to a batch until 3490 * we have added to the bitmap and set bm_seq. 3491 * So set STRIPE_BITMAP_PENDING to prevent 3492 * batching. 3493 * If multiple add_stripe_bio() calls race here they 3494 * much all set STRIPE_BITMAP_PENDING. So only the first one 3495 * to complete "bitmap_startwrite" gets to set 3496 * STRIPE_BIT_DELAY. This is important as once a stripe 3497 * is added to a batch, STRIPE_BIT_DELAY cannot be changed 3498 * any more. 3499 */ 3500 set_bit(STRIPE_BITMAP_PENDING, &sh->state); 3501 spin_unlock_irq(&sh->stripe_lock); 3502 md_bitmap_startwrite(conf->mddev->bitmap, sh->sector, 3503 RAID5_STRIPE_SECTORS(conf), 0); 3504 spin_lock_irq(&sh->stripe_lock); 3505 clear_bit(STRIPE_BITMAP_PENDING, &sh->state); 3506 if (!sh->batch_head) { 3507 sh->bm_seq = conf->seq_flush+1; 3508 set_bit(STRIPE_BIT_DELAY, &sh->state); 3509 } 3510 } 3511 spin_unlock_irq(&sh->stripe_lock); 3512 3513 if (stripe_can_batch(sh)) 3514 stripe_add_to_batch_list(conf, sh); 3515 return 1; 3516 3517 overlap: 3518 set_bit(R5_Overlap, &sh->dev[dd_idx].flags); 3519 spin_unlock_irq(&sh->stripe_lock); 3520 return 0; 3521 } 3522 3523 static void end_reshape(struct r5conf *conf); 3524 3525 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 3526 struct stripe_head *sh) 3527 { 3528 int sectors_per_chunk = 3529 previous ? conf->prev_chunk_sectors : conf->chunk_sectors; 3530 int dd_idx; 3531 int chunk_offset = sector_div(stripe, sectors_per_chunk); 3532 int disks = previous ? conf->previous_raid_disks : conf->raid_disks; 3533 3534 raid5_compute_sector(conf, 3535 stripe * (disks - conf->max_degraded) 3536 *sectors_per_chunk + chunk_offset, 3537 previous, 3538 &dd_idx, sh); 3539 } 3540 3541 static void 3542 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh, 3543 struct stripe_head_state *s, int disks) 3544 { 3545 int i; 3546 BUG_ON(sh->batch_head); 3547 for (i = disks; i--; ) { 3548 struct bio *bi; 3549 int bitmap_end = 0; 3550 3551 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 3552 struct md_rdev *rdev; 3553 rcu_read_lock(); 3554 rdev = rcu_dereference(conf->disks[i].rdev); 3555 if (rdev && test_bit(In_sync, &rdev->flags) && 3556 !test_bit(Faulty, &rdev->flags)) 3557 atomic_inc(&rdev->nr_pending); 3558 else 3559 rdev = NULL; 3560 rcu_read_unlock(); 3561 if (rdev) { 3562 if (!rdev_set_badblocks( 3563 rdev, 3564 sh->sector, 3565 RAID5_STRIPE_SECTORS(conf), 0)) 3566 md_error(conf->mddev, rdev); 3567 rdev_dec_pending(rdev, conf->mddev); 3568 } 3569 } 3570 spin_lock_irq(&sh->stripe_lock); 3571 /* fail all writes first */ 3572 bi = sh->dev[i].towrite; 3573 sh->dev[i].towrite = NULL; 3574 sh->overwrite_disks = 0; 3575 spin_unlock_irq(&sh->stripe_lock); 3576 if (bi) 3577 bitmap_end = 1; 3578 3579 log_stripe_write_finished(sh); 3580 3581 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 3582 wake_up(&conf->wait_for_overlap); 3583 3584 while (bi && bi->bi_iter.bi_sector < 3585 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) { 3586 struct bio *nextbi = r5_next_bio(conf, bi, sh->dev[i].sector); 3587 3588 md_write_end(conf->mddev); 3589 bio_io_error(bi); 3590 bi = nextbi; 3591 } 3592 if (bitmap_end) 3593 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3594 RAID5_STRIPE_SECTORS(conf), 0, 0); 3595 bitmap_end = 0; 3596 /* and fail all 'written' */ 3597 bi = sh->dev[i].written; 3598 sh->dev[i].written = NULL; 3599 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) { 3600 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 3601 sh->dev[i].page = sh->dev[i].orig_page; 3602 } 3603 3604 if (bi) bitmap_end = 1; 3605 while (bi && bi->bi_iter.bi_sector < 3606 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) { 3607 struct bio *bi2 = r5_next_bio(conf, bi, sh->dev[i].sector); 3608 3609 md_write_end(conf->mddev); 3610 bio_io_error(bi); 3611 bi = bi2; 3612 } 3613 3614 /* fail any reads if this device is non-operational and 3615 * the data has not reached the cache yet. 3616 */ 3617 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) && 3618 s->failed > conf->max_degraded && 3619 (!test_bit(R5_Insync, &sh->dev[i].flags) || 3620 test_bit(R5_ReadError, &sh->dev[i].flags))) { 3621 spin_lock_irq(&sh->stripe_lock); 3622 bi = sh->dev[i].toread; 3623 sh->dev[i].toread = NULL; 3624 spin_unlock_irq(&sh->stripe_lock); 3625 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 3626 wake_up(&conf->wait_for_overlap); 3627 if (bi) 3628 s->to_read--; 3629 while (bi && bi->bi_iter.bi_sector < 3630 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) { 3631 struct bio *nextbi = 3632 r5_next_bio(conf, bi, sh->dev[i].sector); 3633 3634 bio_io_error(bi); 3635 bi = nextbi; 3636 } 3637 } 3638 if (bitmap_end) 3639 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3640 RAID5_STRIPE_SECTORS(conf), 0, 0); 3641 /* If we were in the middle of a write the parity block might 3642 * still be locked - so just clear all R5_LOCKED flags 3643 */ 3644 clear_bit(R5_LOCKED, &sh->dev[i].flags); 3645 } 3646 s->to_write = 0; 3647 s->written = 0; 3648 3649 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 3650 if (atomic_dec_and_test(&conf->pending_full_writes)) 3651 md_wakeup_thread(conf->mddev->thread); 3652 } 3653 3654 static void 3655 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh, 3656 struct stripe_head_state *s) 3657 { 3658 int abort = 0; 3659 int i; 3660 3661 BUG_ON(sh->batch_head); 3662 clear_bit(STRIPE_SYNCING, &sh->state); 3663 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 3664 wake_up(&conf->wait_for_overlap); 3665 s->syncing = 0; 3666 s->replacing = 0; 3667 /* There is nothing more to do for sync/check/repair. 3668 * Don't even need to abort as that is handled elsewhere 3669 * if needed, and not always wanted e.g. if there is a known 3670 * bad block here. 3671 * For recover/replace we need to record a bad block on all 3672 * non-sync devices, or abort the recovery 3673 */ 3674 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) { 3675 /* During recovery devices cannot be removed, so 3676 * locking and refcounting of rdevs is not needed 3677 */ 3678 rcu_read_lock(); 3679 for (i = 0; i < conf->raid_disks; i++) { 3680 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 3681 if (rdev 3682 && !test_bit(Faulty, &rdev->flags) 3683 && !test_bit(In_sync, &rdev->flags) 3684 && !rdev_set_badblocks(rdev, sh->sector, 3685 RAID5_STRIPE_SECTORS(conf), 0)) 3686 abort = 1; 3687 rdev = rcu_dereference(conf->disks[i].replacement); 3688 if (rdev 3689 && !test_bit(Faulty, &rdev->flags) 3690 && !test_bit(In_sync, &rdev->flags) 3691 && !rdev_set_badblocks(rdev, sh->sector, 3692 RAID5_STRIPE_SECTORS(conf), 0)) 3693 abort = 1; 3694 } 3695 rcu_read_unlock(); 3696 if (abort) 3697 conf->recovery_disabled = 3698 conf->mddev->recovery_disabled; 3699 } 3700 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), !abort); 3701 } 3702 3703 static int want_replace(struct stripe_head *sh, int disk_idx) 3704 { 3705 struct md_rdev *rdev; 3706 int rv = 0; 3707 3708 rcu_read_lock(); 3709 rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement); 3710 if (rdev 3711 && !test_bit(Faulty, &rdev->flags) 3712 && !test_bit(In_sync, &rdev->flags) 3713 && (rdev->recovery_offset <= sh->sector 3714 || rdev->mddev->recovery_cp <= sh->sector)) 3715 rv = 1; 3716 rcu_read_unlock(); 3717 return rv; 3718 } 3719 3720 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s, 3721 int disk_idx, int disks) 3722 { 3723 struct r5dev *dev = &sh->dev[disk_idx]; 3724 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]], 3725 &sh->dev[s->failed_num[1]] }; 3726 int i; 3727 bool force_rcw = (sh->raid_conf->rmw_level == PARITY_DISABLE_RMW); 3728 3729 3730 if (test_bit(R5_LOCKED, &dev->flags) || 3731 test_bit(R5_UPTODATE, &dev->flags)) 3732 /* No point reading this as we already have it or have 3733 * decided to get it. 3734 */ 3735 return 0; 3736 3737 if (dev->toread || 3738 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags))) 3739 /* We need this block to directly satisfy a request */ 3740 return 1; 3741 3742 if (s->syncing || s->expanding || 3743 (s->replacing && want_replace(sh, disk_idx))) 3744 /* When syncing, or expanding we read everything. 3745 * When replacing, we need the replaced block. 3746 */ 3747 return 1; 3748 3749 if ((s->failed >= 1 && fdev[0]->toread) || 3750 (s->failed >= 2 && fdev[1]->toread)) 3751 /* If we want to read from a failed device, then 3752 * we need to actually read every other device. 3753 */ 3754 return 1; 3755 3756 /* Sometimes neither read-modify-write nor reconstruct-write 3757 * cycles can work. In those cases we read every block we 3758 * can. Then the parity-update is certain to have enough to 3759 * work with. 3760 * This can only be a problem when we need to write something, 3761 * and some device has failed. If either of those tests 3762 * fail we need look no further. 3763 */ 3764 if (!s->failed || !s->to_write) 3765 return 0; 3766 3767 if (test_bit(R5_Insync, &dev->flags) && 3768 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3769 /* Pre-reads at not permitted until after short delay 3770 * to gather multiple requests. However if this 3771 * device is no Insync, the block could only be computed 3772 * and there is no need to delay that. 3773 */ 3774 return 0; 3775 3776 for (i = 0; i < s->failed && i < 2; i++) { 3777 if (fdev[i]->towrite && 3778 !test_bit(R5_UPTODATE, &fdev[i]->flags) && 3779 !test_bit(R5_OVERWRITE, &fdev[i]->flags)) 3780 /* If we have a partial write to a failed 3781 * device, then we will need to reconstruct 3782 * the content of that device, so all other 3783 * devices must be read. 3784 */ 3785 return 1; 3786 3787 if (s->failed >= 2 && 3788 (fdev[i]->towrite || 3789 s->failed_num[i] == sh->pd_idx || 3790 s->failed_num[i] == sh->qd_idx) && 3791 !test_bit(R5_UPTODATE, &fdev[i]->flags)) 3792 /* In max degraded raid6, If the failed disk is P, Q, 3793 * or we want to read the failed disk, we need to do 3794 * reconstruct-write. 3795 */ 3796 force_rcw = true; 3797 } 3798 3799 /* If we are forced to do a reconstruct-write, because parity 3800 * cannot be trusted and we are currently recovering it, there 3801 * is extra need to be careful. 3802 * If one of the devices that we would need to read, because 3803 * it is not being overwritten (and maybe not written at all) 3804 * is missing/faulty, then we need to read everything we can. 3805 */ 3806 if (!force_rcw && 3807 sh->sector < sh->raid_conf->mddev->recovery_cp) 3808 /* reconstruct-write isn't being forced */ 3809 return 0; 3810 for (i = 0; i < s->failed && i < 2; i++) { 3811 if (s->failed_num[i] != sh->pd_idx && 3812 s->failed_num[i] != sh->qd_idx && 3813 !test_bit(R5_UPTODATE, &fdev[i]->flags) && 3814 !test_bit(R5_OVERWRITE, &fdev[i]->flags)) 3815 return 1; 3816 } 3817 3818 return 0; 3819 } 3820 3821 /* fetch_block - checks the given member device to see if its data needs 3822 * to be read or computed to satisfy a request. 3823 * 3824 * Returns 1 when no more member devices need to be checked, otherwise returns 3825 * 0 to tell the loop in handle_stripe_fill to continue 3826 */ 3827 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s, 3828 int disk_idx, int disks) 3829 { 3830 struct r5dev *dev = &sh->dev[disk_idx]; 3831 3832 /* is the data in this block needed, and can we get it? */ 3833 if (need_this_block(sh, s, disk_idx, disks)) { 3834 /* we would like to get this block, possibly by computing it, 3835 * otherwise read it if the backing disk is insync 3836 */ 3837 BUG_ON(test_bit(R5_Wantcompute, &dev->flags)); 3838 BUG_ON(test_bit(R5_Wantread, &dev->flags)); 3839 BUG_ON(sh->batch_head); 3840 3841 /* 3842 * In the raid6 case if the only non-uptodate disk is P 3843 * then we already trusted P to compute the other failed 3844 * drives. It is safe to compute rather than re-read P. 3845 * In other cases we only compute blocks from failed 3846 * devices, otherwise check/repair might fail to detect 3847 * a real inconsistency. 3848 */ 3849 3850 if ((s->uptodate == disks - 1) && 3851 ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) || 3852 (s->failed && (disk_idx == s->failed_num[0] || 3853 disk_idx == s->failed_num[1])))) { 3854 /* have disk failed, and we're requested to fetch it; 3855 * do compute it 3856 */ 3857 pr_debug("Computing stripe %llu block %d\n", 3858 (unsigned long long)sh->sector, disk_idx); 3859 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3860 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3861 set_bit(R5_Wantcompute, &dev->flags); 3862 sh->ops.target = disk_idx; 3863 sh->ops.target2 = -1; /* no 2nd target */ 3864 s->req_compute = 1; 3865 /* Careful: from this point on 'uptodate' is in the eye 3866 * of raid_run_ops which services 'compute' operations 3867 * before writes. R5_Wantcompute flags a block that will 3868 * be R5_UPTODATE by the time it is needed for a 3869 * subsequent operation. 3870 */ 3871 s->uptodate++; 3872 return 1; 3873 } else if (s->uptodate == disks-2 && s->failed >= 2) { 3874 /* Computing 2-failure is *very* expensive; only 3875 * do it if failed >= 2 3876 */ 3877 int other; 3878 for (other = disks; other--; ) { 3879 if (other == disk_idx) 3880 continue; 3881 if (!test_bit(R5_UPTODATE, 3882 &sh->dev[other].flags)) 3883 break; 3884 } 3885 BUG_ON(other < 0); 3886 pr_debug("Computing stripe %llu blocks %d,%d\n", 3887 (unsigned long long)sh->sector, 3888 disk_idx, other); 3889 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3890 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3891 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags); 3892 set_bit(R5_Wantcompute, &sh->dev[other].flags); 3893 sh->ops.target = disk_idx; 3894 sh->ops.target2 = other; 3895 s->uptodate += 2; 3896 s->req_compute = 1; 3897 return 1; 3898 } else if (test_bit(R5_Insync, &dev->flags)) { 3899 set_bit(R5_LOCKED, &dev->flags); 3900 set_bit(R5_Wantread, &dev->flags); 3901 s->locked++; 3902 pr_debug("Reading block %d (sync=%d)\n", 3903 disk_idx, s->syncing); 3904 } 3905 } 3906 3907 return 0; 3908 } 3909 3910 /* 3911 * handle_stripe_fill - read or compute data to satisfy pending requests. 3912 */ 3913 static void handle_stripe_fill(struct stripe_head *sh, 3914 struct stripe_head_state *s, 3915 int disks) 3916 { 3917 int i; 3918 3919 /* look for blocks to read/compute, skip this if a compute 3920 * is already in flight, or if the stripe contents are in the 3921 * midst of changing due to a write 3922 */ 3923 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state && 3924 !sh->reconstruct_state) { 3925 3926 /* 3927 * For degraded stripe with data in journal, do not handle 3928 * read requests yet, instead, flush the stripe to raid 3929 * disks first, this avoids handling complex rmw of write 3930 * back cache (prexor with orig_page, and then xor with 3931 * page) in the read path 3932 */ 3933 if (s->injournal && s->failed) { 3934 if (test_bit(STRIPE_R5C_CACHING, &sh->state)) 3935 r5c_make_stripe_write_out(sh); 3936 goto out; 3937 } 3938 3939 for (i = disks; i--; ) 3940 if (fetch_block(sh, s, i, disks)) 3941 break; 3942 } 3943 out: 3944 set_bit(STRIPE_HANDLE, &sh->state); 3945 } 3946 3947 static void break_stripe_batch_list(struct stripe_head *head_sh, 3948 unsigned long handle_flags); 3949 /* handle_stripe_clean_event 3950 * any written block on an uptodate or failed drive can be returned. 3951 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but 3952 * never LOCKED, so we don't need to test 'failed' directly. 3953 */ 3954 static void handle_stripe_clean_event(struct r5conf *conf, 3955 struct stripe_head *sh, int disks) 3956 { 3957 int i; 3958 struct r5dev *dev; 3959 int discard_pending = 0; 3960 struct stripe_head *head_sh = sh; 3961 bool do_endio = false; 3962 3963 for (i = disks; i--; ) 3964 if (sh->dev[i].written) { 3965 dev = &sh->dev[i]; 3966 if (!test_bit(R5_LOCKED, &dev->flags) && 3967 (test_bit(R5_UPTODATE, &dev->flags) || 3968 test_bit(R5_Discard, &dev->flags) || 3969 test_bit(R5_SkipCopy, &dev->flags))) { 3970 /* We can return any write requests */ 3971 struct bio *wbi, *wbi2; 3972 pr_debug("Return write for disc %d\n", i); 3973 if (test_and_clear_bit(R5_Discard, &dev->flags)) 3974 clear_bit(R5_UPTODATE, &dev->flags); 3975 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) { 3976 WARN_ON(test_bit(R5_UPTODATE, &dev->flags)); 3977 } 3978 do_endio = true; 3979 3980 returnbi: 3981 dev->page = dev->orig_page; 3982 wbi = dev->written; 3983 dev->written = NULL; 3984 while (wbi && wbi->bi_iter.bi_sector < 3985 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 3986 wbi2 = r5_next_bio(conf, wbi, dev->sector); 3987 md_write_end(conf->mddev); 3988 bio_endio(wbi); 3989 wbi = wbi2; 3990 } 3991 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3992 RAID5_STRIPE_SECTORS(conf), 3993 !test_bit(STRIPE_DEGRADED, &sh->state), 3994 0); 3995 if (head_sh->batch_head) { 3996 sh = list_first_entry(&sh->batch_list, 3997 struct stripe_head, 3998 batch_list); 3999 if (sh != head_sh) { 4000 dev = &sh->dev[i]; 4001 goto returnbi; 4002 } 4003 } 4004 sh = head_sh; 4005 dev = &sh->dev[i]; 4006 } else if (test_bit(R5_Discard, &dev->flags)) 4007 discard_pending = 1; 4008 } 4009 4010 log_stripe_write_finished(sh); 4011 4012 if (!discard_pending && 4013 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) { 4014 int hash; 4015 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 4016 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 4017 if (sh->qd_idx >= 0) { 4018 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 4019 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags); 4020 } 4021 /* now that discard is done we can proceed with any sync */ 4022 clear_bit(STRIPE_DISCARD, &sh->state); 4023 /* 4024 * SCSI discard will change some bio fields and the stripe has 4025 * no updated data, so remove it from hash list and the stripe 4026 * will be reinitialized 4027 */ 4028 unhash: 4029 hash = sh->hash_lock_index; 4030 spin_lock_irq(conf->hash_locks + hash); 4031 remove_hash(sh); 4032 spin_unlock_irq(conf->hash_locks + hash); 4033 if (head_sh->batch_head) { 4034 sh = list_first_entry(&sh->batch_list, 4035 struct stripe_head, batch_list); 4036 if (sh != head_sh) 4037 goto unhash; 4038 } 4039 sh = head_sh; 4040 4041 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) 4042 set_bit(STRIPE_HANDLE, &sh->state); 4043 4044 } 4045 4046 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 4047 if (atomic_dec_and_test(&conf->pending_full_writes)) 4048 md_wakeup_thread(conf->mddev->thread); 4049 4050 if (head_sh->batch_head && do_endio) 4051 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS); 4052 } 4053 4054 /* 4055 * For RMW in write back cache, we need extra page in prexor to store the 4056 * old data. This page is stored in dev->orig_page. 4057 * 4058 * This function checks whether we have data for prexor. The exact logic 4059 * is: 4060 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE) 4061 */ 4062 static inline bool uptodate_for_rmw(struct r5dev *dev) 4063 { 4064 return (test_bit(R5_UPTODATE, &dev->flags)) && 4065 (!test_bit(R5_InJournal, &dev->flags) || 4066 test_bit(R5_OrigPageUPTDODATE, &dev->flags)); 4067 } 4068 4069 static int handle_stripe_dirtying(struct r5conf *conf, 4070 struct stripe_head *sh, 4071 struct stripe_head_state *s, 4072 int disks) 4073 { 4074 int rmw = 0, rcw = 0, i; 4075 sector_t recovery_cp = conf->mddev->recovery_cp; 4076 4077 /* Check whether resync is now happening or should start. 4078 * If yes, then the array is dirty (after unclean shutdown or 4079 * initial creation), so parity in some stripes might be inconsistent. 4080 * In this case, we need to always do reconstruct-write, to ensure 4081 * that in case of drive failure or read-error correction, we 4082 * generate correct data from the parity. 4083 */ 4084 if (conf->rmw_level == PARITY_DISABLE_RMW || 4085 (recovery_cp < MaxSector && sh->sector >= recovery_cp && 4086 s->failed == 0)) { 4087 /* Calculate the real rcw later - for now make it 4088 * look like rcw is cheaper 4089 */ 4090 rcw = 1; rmw = 2; 4091 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n", 4092 conf->rmw_level, (unsigned long long)recovery_cp, 4093 (unsigned long long)sh->sector); 4094 } else for (i = disks; i--; ) { 4095 /* would I have to read this buffer for read_modify_write */ 4096 struct r5dev *dev = &sh->dev[i]; 4097 if (((dev->towrite && !delay_towrite(conf, dev, s)) || 4098 i == sh->pd_idx || i == sh->qd_idx || 4099 test_bit(R5_InJournal, &dev->flags)) && 4100 !test_bit(R5_LOCKED, &dev->flags) && 4101 !(uptodate_for_rmw(dev) || 4102 test_bit(R5_Wantcompute, &dev->flags))) { 4103 if (test_bit(R5_Insync, &dev->flags)) 4104 rmw++; 4105 else 4106 rmw += 2*disks; /* cannot read it */ 4107 } 4108 /* Would I have to read this buffer for reconstruct_write */ 4109 if (!test_bit(R5_OVERWRITE, &dev->flags) && 4110 i != sh->pd_idx && i != sh->qd_idx && 4111 !test_bit(R5_LOCKED, &dev->flags) && 4112 !(test_bit(R5_UPTODATE, &dev->flags) || 4113 test_bit(R5_Wantcompute, &dev->flags))) { 4114 if (test_bit(R5_Insync, &dev->flags)) 4115 rcw++; 4116 else 4117 rcw += 2*disks; 4118 } 4119 } 4120 4121 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n", 4122 (unsigned long long)sh->sector, sh->state, rmw, rcw); 4123 set_bit(STRIPE_HANDLE, &sh->state); 4124 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) { 4125 /* prefer read-modify-write, but need to get some data */ 4126 if (conf->mddev->queue) 4127 blk_add_trace_msg(conf->mddev->queue, 4128 "raid5 rmw %llu %d", 4129 (unsigned long long)sh->sector, rmw); 4130 for (i = disks; i--; ) { 4131 struct r5dev *dev = &sh->dev[i]; 4132 if (test_bit(R5_InJournal, &dev->flags) && 4133 dev->page == dev->orig_page && 4134 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) { 4135 /* alloc page for prexor */ 4136 struct page *p = alloc_page(GFP_NOIO); 4137 4138 if (p) { 4139 dev->orig_page = p; 4140 continue; 4141 } 4142 4143 /* 4144 * alloc_page() failed, try use 4145 * disk_info->extra_page 4146 */ 4147 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE, 4148 &conf->cache_state)) { 4149 r5c_use_extra_page(sh); 4150 break; 4151 } 4152 4153 /* extra_page in use, add to delayed_list */ 4154 set_bit(STRIPE_DELAYED, &sh->state); 4155 s->waiting_extra_page = 1; 4156 return -EAGAIN; 4157 } 4158 } 4159 4160 for (i = disks; i--; ) { 4161 struct r5dev *dev = &sh->dev[i]; 4162 if (((dev->towrite && !delay_towrite(conf, dev, s)) || 4163 i == sh->pd_idx || i == sh->qd_idx || 4164 test_bit(R5_InJournal, &dev->flags)) && 4165 !test_bit(R5_LOCKED, &dev->flags) && 4166 !(uptodate_for_rmw(dev) || 4167 test_bit(R5_Wantcompute, &dev->flags)) && 4168 test_bit(R5_Insync, &dev->flags)) { 4169 if (test_bit(STRIPE_PREREAD_ACTIVE, 4170 &sh->state)) { 4171 pr_debug("Read_old block %d for r-m-w\n", 4172 i); 4173 set_bit(R5_LOCKED, &dev->flags); 4174 set_bit(R5_Wantread, &dev->flags); 4175 s->locked++; 4176 } else 4177 set_bit(STRIPE_DELAYED, &sh->state); 4178 } 4179 } 4180 } 4181 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) { 4182 /* want reconstruct write, but need to get some data */ 4183 int qread =0; 4184 rcw = 0; 4185 for (i = disks; i--; ) { 4186 struct r5dev *dev = &sh->dev[i]; 4187 if (!test_bit(R5_OVERWRITE, &dev->flags) && 4188 i != sh->pd_idx && i != sh->qd_idx && 4189 !test_bit(R5_LOCKED, &dev->flags) && 4190 !(test_bit(R5_UPTODATE, &dev->flags) || 4191 test_bit(R5_Wantcompute, &dev->flags))) { 4192 rcw++; 4193 if (test_bit(R5_Insync, &dev->flags) && 4194 test_bit(STRIPE_PREREAD_ACTIVE, 4195 &sh->state)) { 4196 pr_debug("Read_old block " 4197 "%d for Reconstruct\n", i); 4198 set_bit(R5_LOCKED, &dev->flags); 4199 set_bit(R5_Wantread, &dev->flags); 4200 s->locked++; 4201 qread++; 4202 } else 4203 set_bit(STRIPE_DELAYED, &sh->state); 4204 } 4205 } 4206 if (rcw && conf->mddev->queue) 4207 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d", 4208 (unsigned long long)sh->sector, 4209 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state)); 4210 } 4211 4212 if (rcw > disks && rmw > disks && 4213 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4214 set_bit(STRIPE_DELAYED, &sh->state); 4215 4216 /* now if nothing is locked, and if we have enough data, 4217 * we can start a write request 4218 */ 4219 /* since handle_stripe can be called at any time we need to handle the 4220 * case where a compute block operation has been submitted and then a 4221 * subsequent call wants to start a write request. raid_run_ops only 4222 * handles the case where compute block and reconstruct are requested 4223 * simultaneously. If this is not the case then new writes need to be 4224 * held off until the compute completes. 4225 */ 4226 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) && 4227 (s->locked == 0 && (rcw == 0 || rmw == 0) && 4228 !test_bit(STRIPE_BIT_DELAY, &sh->state))) 4229 schedule_reconstruction(sh, s, rcw == 0, 0); 4230 return 0; 4231 } 4232 4233 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh, 4234 struct stripe_head_state *s, int disks) 4235 { 4236 struct r5dev *dev = NULL; 4237 4238 BUG_ON(sh->batch_head); 4239 set_bit(STRIPE_HANDLE, &sh->state); 4240 4241 switch (sh->check_state) { 4242 case check_state_idle: 4243 /* start a new check operation if there are no failures */ 4244 if (s->failed == 0) { 4245 BUG_ON(s->uptodate != disks); 4246 sh->check_state = check_state_run; 4247 set_bit(STRIPE_OP_CHECK, &s->ops_request); 4248 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 4249 s->uptodate--; 4250 break; 4251 } 4252 dev = &sh->dev[s->failed_num[0]]; 4253 fallthrough; 4254 case check_state_compute_result: 4255 sh->check_state = check_state_idle; 4256 if (!dev) 4257 dev = &sh->dev[sh->pd_idx]; 4258 4259 /* check that a write has not made the stripe insync */ 4260 if (test_bit(STRIPE_INSYNC, &sh->state)) 4261 break; 4262 4263 /* either failed parity check, or recovery is happening */ 4264 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags)); 4265 BUG_ON(s->uptodate != disks); 4266 4267 set_bit(R5_LOCKED, &dev->flags); 4268 s->locked++; 4269 set_bit(R5_Wantwrite, &dev->flags); 4270 4271 clear_bit(STRIPE_DEGRADED, &sh->state); 4272 set_bit(STRIPE_INSYNC, &sh->state); 4273 break; 4274 case check_state_run: 4275 break; /* we will be called again upon completion */ 4276 case check_state_check_result: 4277 sh->check_state = check_state_idle; 4278 4279 /* if a failure occurred during the check operation, leave 4280 * STRIPE_INSYNC not set and let the stripe be handled again 4281 */ 4282 if (s->failed) 4283 break; 4284 4285 /* handle a successful check operation, if parity is correct 4286 * we are done. Otherwise update the mismatch count and repair 4287 * parity if !MD_RECOVERY_CHECK 4288 */ 4289 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0) 4290 /* parity is correct (on disc, 4291 * not in buffer any more) 4292 */ 4293 set_bit(STRIPE_INSYNC, &sh->state); 4294 else { 4295 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches); 4296 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) { 4297 /* don't try to repair!! */ 4298 set_bit(STRIPE_INSYNC, &sh->state); 4299 pr_warn_ratelimited("%s: mismatch sector in range " 4300 "%llu-%llu\n", mdname(conf->mddev), 4301 (unsigned long long) sh->sector, 4302 (unsigned long long) sh->sector + 4303 RAID5_STRIPE_SECTORS(conf)); 4304 } else { 4305 sh->check_state = check_state_compute_run; 4306 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 4307 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 4308 set_bit(R5_Wantcompute, 4309 &sh->dev[sh->pd_idx].flags); 4310 sh->ops.target = sh->pd_idx; 4311 sh->ops.target2 = -1; 4312 s->uptodate++; 4313 } 4314 } 4315 break; 4316 case check_state_compute_run: 4317 break; 4318 default: 4319 pr_err("%s: unknown check_state: %d sector: %llu\n", 4320 __func__, sh->check_state, 4321 (unsigned long long) sh->sector); 4322 BUG(); 4323 } 4324 } 4325 4326 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh, 4327 struct stripe_head_state *s, 4328 int disks) 4329 { 4330 int pd_idx = sh->pd_idx; 4331 int qd_idx = sh->qd_idx; 4332 struct r5dev *dev; 4333 4334 BUG_ON(sh->batch_head); 4335 set_bit(STRIPE_HANDLE, &sh->state); 4336 4337 BUG_ON(s->failed > 2); 4338 4339 /* Want to check and possibly repair P and Q. 4340 * However there could be one 'failed' device, in which 4341 * case we can only check one of them, possibly using the 4342 * other to generate missing data 4343 */ 4344 4345 switch (sh->check_state) { 4346 case check_state_idle: 4347 /* start a new check operation if there are < 2 failures */ 4348 if (s->failed == s->q_failed) { 4349 /* The only possible failed device holds Q, so it 4350 * makes sense to check P (If anything else were failed, 4351 * we would have used P to recreate it). 4352 */ 4353 sh->check_state = check_state_run; 4354 } 4355 if (!s->q_failed && s->failed < 2) { 4356 /* Q is not failed, and we didn't use it to generate 4357 * anything, so it makes sense to check it 4358 */ 4359 if (sh->check_state == check_state_run) 4360 sh->check_state = check_state_run_pq; 4361 else 4362 sh->check_state = check_state_run_q; 4363 } 4364 4365 /* discard potentially stale zero_sum_result */ 4366 sh->ops.zero_sum_result = 0; 4367 4368 if (sh->check_state == check_state_run) { 4369 /* async_xor_zero_sum destroys the contents of P */ 4370 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 4371 s->uptodate--; 4372 } 4373 if (sh->check_state >= check_state_run && 4374 sh->check_state <= check_state_run_pq) { 4375 /* async_syndrome_zero_sum preserves P and Q, so 4376 * no need to mark them !uptodate here 4377 */ 4378 set_bit(STRIPE_OP_CHECK, &s->ops_request); 4379 break; 4380 } 4381 4382 /* we have 2-disk failure */ 4383 BUG_ON(s->failed != 2); 4384 fallthrough; 4385 case check_state_compute_result: 4386 sh->check_state = check_state_idle; 4387 4388 /* check that a write has not made the stripe insync */ 4389 if (test_bit(STRIPE_INSYNC, &sh->state)) 4390 break; 4391 4392 /* now write out any block on a failed drive, 4393 * or P or Q if they were recomputed 4394 */ 4395 dev = NULL; 4396 if (s->failed == 2) { 4397 dev = &sh->dev[s->failed_num[1]]; 4398 s->locked++; 4399 set_bit(R5_LOCKED, &dev->flags); 4400 set_bit(R5_Wantwrite, &dev->flags); 4401 } 4402 if (s->failed >= 1) { 4403 dev = &sh->dev[s->failed_num[0]]; 4404 s->locked++; 4405 set_bit(R5_LOCKED, &dev->flags); 4406 set_bit(R5_Wantwrite, &dev->flags); 4407 } 4408 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 4409 dev = &sh->dev[pd_idx]; 4410 s->locked++; 4411 set_bit(R5_LOCKED, &dev->flags); 4412 set_bit(R5_Wantwrite, &dev->flags); 4413 } 4414 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 4415 dev = &sh->dev[qd_idx]; 4416 s->locked++; 4417 set_bit(R5_LOCKED, &dev->flags); 4418 set_bit(R5_Wantwrite, &dev->flags); 4419 } 4420 if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags), 4421 "%s: disk%td not up to date\n", 4422 mdname(conf->mddev), 4423 dev - (struct r5dev *) &sh->dev)) { 4424 clear_bit(R5_LOCKED, &dev->flags); 4425 clear_bit(R5_Wantwrite, &dev->flags); 4426 s->locked--; 4427 } 4428 clear_bit(STRIPE_DEGRADED, &sh->state); 4429 4430 set_bit(STRIPE_INSYNC, &sh->state); 4431 break; 4432 case check_state_run: 4433 case check_state_run_q: 4434 case check_state_run_pq: 4435 break; /* we will be called again upon completion */ 4436 case check_state_check_result: 4437 sh->check_state = check_state_idle; 4438 4439 /* handle a successful check operation, if parity is correct 4440 * we are done. Otherwise update the mismatch count and repair 4441 * parity if !MD_RECOVERY_CHECK 4442 */ 4443 if (sh->ops.zero_sum_result == 0) { 4444 /* both parities are correct */ 4445 if (!s->failed) 4446 set_bit(STRIPE_INSYNC, &sh->state); 4447 else { 4448 /* in contrast to the raid5 case we can validate 4449 * parity, but still have a failure to write 4450 * back 4451 */ 4452 sh->check_state = check_state_compute_result; 4453 /* Returning at this point means that we may go 4454 * off and bring p and/or q uptodate again so 4455 * we make sure to check zero_sum_result again 4456 * to verify if p or q need writeback 4457 */ 4458 } 4459 } else { 4460 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches); 4461 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) { 4462 /* don't try to repair!! */ 4463 set_bit(STRIPE_INSYNC, &sh->state); 4464 pr_warn_ratelimited("%s: mismatch sector in range " 4465 "%llu-%llu\n", mdname(conf->mddev), 4466 (unsigned long long) sh->sector, 4467 (unsigned long long) sh->sector + 4468 RAID5_STRIPE_SECTORS(conf)); 4469 } else { 4470 int *target = &sh->ops.target; 4471 4472 sh->ops.target = -1; 4473 sh->ops.target2 = -1; 4474 sh->check_state = check_state_compute_run; 4475 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 4476 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 4477 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 4478 set_bit(R5_Wantcompute, 4479 &sh->dev[pd_idx].flags); 4480 *target = pd_idx; 4481 target = &sh->ops.target2; 4482 s->uptodate++; 4483 } 4484 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 4485 set_bit(R5_Wantcompute, 4486 &sh->dev[qd_idx].flags); 4487 *target = qd_idx; 4488 s->uptodate++; 4489 } 4490 } 4491 } 4492 break; 4493 case check_state_compute_run: 4494 break; 4495 default: 4496 pr_warn("%s: unknown check_state: %d sector: %llu\n", 4497 __func__, sh->check_state, 4498 (unsigned long long) sh->sector); 4499 BUG(); 4500 } 4501 } 4502 4503 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh) 4504 { 4505 int i; 4506 4507 /* We have read all the blocks in this stripe and now we need to 4508 * copy some of them into a target stripe for expand. 4509 */ 4510 struct dma_async_tx_descriptor *tx = NULL; 4511 BUG_ON(sh->batch_head); 4512 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state); 4513 for (i = 0; i < sh->disks; i++) 4514 if (i != sh->pd_idx && i != sh->qd_idx) { 4515 int dd_idx, j; 4516 struct stripe_head *sh2; 4517 struct async_submit_ctl submit; 4518 4519 sector_t bn = raid5_compute_blocknr(sh, i, 1); 4520 sector_t s = raid5_compute_sector(conf, bn, 0, 4521 &dd_idx, NULL); 4522 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1); 4523 if (sh2 == NULL) 4524 /* so far only the early blocks of this stripe 4525 * have been requested. When later blocks 4526 * get requested, we will try again 4527 */ 4528 continue; 4529 if (!test_bit(STRIPE_EXPANDING, &sh2->state) || 4530 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) { 4531 /* must have already done this block */ 4532 raid5_release_stripe(sh2); 4533 continue; 4534 } 4535 4536 /* place all the copies on one channel */ 4537 init_async_submit(&submit, 0, tx, NULL, NULL, NULL); 4538 tx = async_memcpy(sh2->dev[dd_idx].page, 4539 sh->dev[i].page, sh2->dev[dd_idx].offset, 4540 sh->dev[i].offset, RAID5_STRIPE_SIZE(conf), 4541 &submit); 4542 4543 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags); 4544 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags); 4545 for (j = 0; j < conf->raid_disks; j++) 4546 if (j != sh2->pd_idx && 4547 j != sh2->qd_idx && 4548 !test_bit(R5_Expanded, &sh2->dev[j].flags)) 4549 break; 4550 if (j == conf->raid_disks) { 4551 set_bit(STRIPE_EXPAND_READY, &sh2->state); 4552 set_bit(STRIPE_HANDLE, &sh2->state); 4553 } 4554 raid5_release_stripe(sh2); 4555 4556 } 4557 /* done submitting copies, wait for them to complete */ 4558 async_tx_quiesce(&tx); 4559 } 4560 4561 /* 4562 * handle_stripe - do things to a stripe. 4563 * 4564 * We lock the stripe by setting STRIPE_ACTIVE and then examine the 4565 * state of various bits to see what needs to be done. 4566 * Possible results: 4567 * return some read requests which now have data 4568 * return some write requests which are safely on storage 4569 * schedule a read on some buffers 4570 * schedule a write of some buffers 4571 * return confirmation of parity correctness 4572 * 4573 */ 4574 4575 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s) 4576 { 4577 struct r5conf *conf = sh->raid_conf; 4578 int disks = sh->disks; 4579 struct r5dev *dev; 4580 int i; 4581 int do_recovery = 0; 4582 4583 memset(s, 0, sizeof(*s)); 4584 4585 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head; 4586 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head; 4587 s->failed_num[0] = -1; 4588 s->failed_num[1] = -1; 4589 s->log_failed = r5l_log_disk_error(conf); 4590 4591 /* Now to look around and see what can be done */ 4592 rcu_read_lock(); 4593 for (i=disks; i--; ) { 4594 struct md_rdev *rdev; 4595 sector_t first_bad; 4596 int bad_sectors; 4597 int is_bad = 0; 4598 4599 dev = &sh->dev[i]; 4600 4601 pr_debug("check %d: state 0x%lx read %p write %p written %p\n", 4602 i, dev->flags, 4603 dev->toread, dev->towrite, dev->written); 4604 /* maybe we can reply to a read 4605 * 4606 * new wantfill requests are only permitted while 4607 * ops_complete_biofill is guaranteed to be inactive 4608 */ 4609 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread && 4610 !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) 4611 set_bit(R5_Wantfill, &dev->flags); 4612 4613 /* now count some things */ 4614 if (test_bit(R5_LOCKED, &dev->flags)) 4615 s->locked++; 4616 if (test_bit(R5_UPTODATE, &dev->flags)) 4617 s->uptodate++; 4618 if (test_bit(R5_Wantcompute, &dev->flags)) { 4619 s->compute++; 4620 BUG_ON(s->compute > 2); 4621 } 4622 4623 if (test_bit(R5_Wantfill, &dev->flags)) 4624 s->to_fill++; 4625 else if (dev->toread) 4626 s->to_read++; 4627 if (dev->towrite) { 4628 s->to_write++; 4629 if (!test_bit(R5_OVERWRITE, &dev->flags)) 4630 s->non_overwrite++; 4631 } 4632 if (dev->written) 4633 s->written++; 4634 /* Prefer to use the replacement for reads, but only 4635 * if it is recovered enough and has no bad blocks. 4636 */ 4637 rdev = rcu_dereference(conf->disks[i].replacement); 4638 if (rdev && !test_bit(Faulty, &rdev->flags) && 4639 rdev->recovery_offset >= sh->sector + RAID5_STRIPE_SECTORS(conf) && 4640 !is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 4641 &first_bad, &bad_sectors)) 4642 set_bit(R5_ReadRepl, &dev->flags); 4643 else { 4644 if (rdev && !test_bit(Faulty, &rdev->flags)) 4645 set_bit(R5_NeedReplace, &dev->flags); 4646 else 4647 clear_bit(R5_NeedReplace, &dev->flags); 4648 rdev = rcu_dereference(conf->disks[i].rdev); 4649 clear_bit(R5_ReadRepl, &dev->flags); 4650 } 4651 if (rdev && test_bit(Faulty, &rdev->flags)) 4652 rdev = NULL; 4653 if (rdev) { 4654 is_bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 4655 &first_bad, &bad_sectors); 4656 if (s->blocked_rdev == NULL 4657 && (test_bit(Blocked, &rdev->flags) 4658 || is_bad < 0)) { 4659 if (is_bad < 0) 4660 set_bit(BlockedBadBlocks, 4661 &rdev->flags); 4662 s->blocked_rdev = rdev; 4663 atomic_inc(&rdev->nr_pending); 4664 } 4665 } 4666 clear_bit(R5_Insync, &dev->flags); 4667 if (!rdev) 4668 /* Not in-sync */; 4669 else if (is_bad) { 4670 /* also not in-sync */ 4671 if (!test_bit(WriteErrorSeen, &rdev->flags) && 4672 test_bit(R5_UPTODATE, &dev->flags)) { 4673 /* treat as in-sync, but with a read error 4674 * which we can now try to correct 4675 */ 4676 set_bit(R5_Insync, &dev->flags); 4677 set_bit(R5_ReadError, &dev->flags); 4678 } 4679 } else if (test_bit(In_sync, &rdev->flags)) 4680 set_bit(R5_Insync, &dev->flags); 4681 else if (sh->sector + RAID5_STRIPE_SECTORS(conf) <= rdev->recovery_offset) 4682 /* in sync if before recovery_offset */ 4683 set_bit(R5_Insync, &dev->flags); 4684 else if (test_bit(R5_UPTODATE, &dev->flags) && 4685 test_bit(R5_Expanded, &dev->flags)) 4686 /* If we've reshaped into here, we assume it is Insync. 4687 * We will shortly update recovery_offset to make 4688 * it official. 4689 */ 4690 set_bit(R5_Insync, &dev->flags); 4691 4692 if (test_bit(R5_WriteError, &dev->flags)) { 4693 /* This flag does not apply to '.replacement' 4694 * only to .rdev, so make sure to check that*/ 4695 struct md_rdev *rdev2 = rcu_dereference( 4696 conf->disks[i].rdev); 4697 if (rdev2 == rdev) 4698 clear_bit(R5_Insync, &dev->flags); 4699 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4700 s->handle_bad_blocks = 1; 4701 atomic_inc(&rdev2->nr_pending); 4702 } else 4703 clear_bit(R5_WriteError, &dev->flags); 4704 } 4705 if (test_bit(R5_MadeGood, &dev->flags)) { 4706 /* This flag does not apply to '.replacement' 4707 * only to .rdev, so make sure to check that*/ 4708 struct md_rdev *rdev2 = rcu_dereference( 4709 conf->disks[i].rdev); 4710 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4711 s->handle_bad_blocks = 1; 4712 atomic_inc(&rdev2->nr_pending); 4713 } else 4714 clear_bit(R5_MadeGood, &dev->flags); 4715 } 4716 if (test_bit(R5_MadeGoodRepl, &dev->flags)) { 4717 struct md_rdev *rdev2 = rcu_dereference( 4718 conf->disks[i].replacement); 4719 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4720 s->handle_bad_blocks = 1; 4721 atomic_inc(&rdev2->nr_pending); 4722 } else 4723 clear_bit(R5_MadeGoodRepl, &dev->flags); 4724 } 4725 if (!test_bit(R5_Insync, &dev->flags)) { 4726 /* The ReadError flag will just be confusing now */ 4727 clear_bit(R5_ReadError, &dev->flags); 4728 clear_bit(R5_ReWrite, &dev->flags); 4729 } 4730 if (test_bit(R5_ReadError, &dev->flags)) 4731 clear_bit(R5_Insync, &dev->flags); 4732 if (!test_bit(R5_Insync, &dev->flags)) { 4733 if (s->failed < 2) 4734 s->failed_num[s->failed] = i; 4735 s->failed++; 4736 if (rdev && !test_bit(Faulty, &rdev->flags)) 4737 do_recovery = 1; 4738 else if (!rdev) { 4739 rdev = rcu_dereference( 4740 conf->disks[i].replacement); 4741 if (rdev && !test_bit(Faulty, &rdev->flags)) 4742 do_recovery = 1; 4743 } 4744 } 4745 4746 if (test_bit(R5_InJournal, &dev->flags)) 4747 s->injournal++; 4748 if (test_bit(R5_InJournal, &dev->flags) && dev->written) 4749 s->just_cached++; 4750 } 4751 if (test_bit(STRIPE_SYNCING, &sh->state)) { 4752 /* If there is a failed device being replaced, 4753 * we must be recovering. 4754 * else if we are after recovery_cp, we must be syncing 4755 * else if MD_RECOVERY_REQUESTED is set, we also are syncing. 4756 * else we can only be replacing 4757 * sync and recovery both need to read all devices, and so 4758 * use the same flag. 4759 */ 4760 if (do_recovery || 4761 sh->sector >= conf->mddev->recovery_cp || 4762 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery))) 4763 s->syncing = 1; 4764 else 4765 s->replacing = 1; 4766 } 4767 rcu_read_unlock(); 4768 } 4769 4770 /* 4771 * Return '1' if this is a member of batch, or '0' if it is a lone stripe or 4772 * a head which can now be handled. 4773 */ 4774 static int clear_batch_ready(struct stripe_head *sh) 4775 { 4776 struct stripe_head *tmp; 4777 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state)) 4778 return (sh->batch_head && sh->batch_head != sh); 4779 spin_lock(&sh->stripe_lock); 4780 if (!sh->batch_head) { 4781 spin_unlock(&sh->stripe_lock); 4782 return 0; 4783 } 4784 4785 /* 4786 * this stripe could be added to a batch list before we check 4787 * BATCH_READY, skips it 4788 */ 4789 if (sh->batch_head != sh) { 4790 spin_unlock(&sh->stripe_lock); 4791 return 1; 4792 } 4793 spin_lock(&sh->batch_lock); 4794 list_for_each_entry(tmp, &sh->batch_list, batch_list) 4795 clear_bit(STRIPE_BATCH_READY, &tmp->state); 4796 spin_unlock(&sh->batch_lock); 4797 spin_unlock(&sh->stripe_lock); 4798 4799 /* 4800 * BATCH_READY is cleared, no new stripes can be added. 4801 * batch_list can be accessed without lock 4802 */ 4803 return 0; 4804 } 4805 4806 static void break_stripe_batch_list(struct stripe_head *head_sh, 4807 unsigned long handle_flags) 4808 { 4809 struct stripe_head *sh, *next; 4810 int i; 4811 int do_wakeup = 0; 4812 4813 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) { 4814 4815 list_del_init(&sh->batch_list); 4816 4817 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) | 4818 (1 << STRIPE_SYNCING) | 4819 (1 << STRIPE_REPLACED) | 4820 (1 << STRIPE_DELAYED) | 4821 (1 << STRIPE_BIT_DELAY) | 4822 (1 << STRIPE_FULL_WRITE) | 4823 (1 << STRIPE_BIOFILL_RUN) | 4824 (1 << STRIPE_COMPUTE_RUN) | 4825 (1 << STRIPE_DISCARD) | 4826 (1 << STRIPE_BATCH_READY) | 4827 (1 << STRIPE_BATCH_ERR) | 4828 (1 << STRIPE_BITMAP_PENDING)), 4829 "stripe state: %lx\n", sh->state); 4830 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) | 4831 (1 << STRIPE_REPLACED)), 4832 "head stripe state: %lx\n", head_sh->state); 4833 4834 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS | 4835 (1 << STRIPE_PREREAD_ACTIVE) | 4836 (1 << STRIPE_DEGRADED) | 4837 (1 << STRIPE_ON_UNPLUG_LIST)), 4838 head_sh->state & (1 << STRIPE_INSYNC)); 4839 4840 sh->check_state = head_sh->check_state; 4841 sh->reconstruct_state = head_sh->reconstruct_state; 4842 spin_lock_irq(&sh->stripe_lock); 4843 sh->batch_head = NULL; 4844 spin_unlock_irq(&sh->stripe_lock); 4845 for (i = 0; i < sh->disks; i++) { 4846 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 4847 do_wakeup = 1; 4848 sh->dev[i].flags = head_sh->dev[i].flags & 4849 (~((1 << R5_WriteError) | (1 << R5_Overlap))); 4850 } 4851 if (handle_flags == 0 || 4852 sh->state & handle_flags) 4853 set_bit(STRIPE_HANDLE, &sh->state); 4854 raid5_release_stripe(sh); 4855 } 4856 spin_lock_irq(&head_sh->stripe_lock); 4857 head_sh->batch_head = NULL; 4858 spin_unlock_irq(&head_sh->stripe_lock); 4859 for (i = 0; i < head_sh->disks; i++) 4860 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags)) 4861 do_wakeup = 1; 4862 if (head_sh->state & handle_flags) 4863 set_bit(STRIPE_HANDLE, &head_sh->state); 4864 4865 if (do_wakeup) 4866 wake_up(&head_sh->raid_conf->wait_for_overlap); 4867 } 4868 4869 static void handle_stripe(struct stripe_head *sh) 4870 { 4871 struct stripe_head_state s; 4872 struct r5conf *conf = sh->raid_conf; 4873 int i; 4874 int prexor; 4875 int disks = sh->disks; 4876 struct r5dev *pdev, *qdev; 4877 4878 clear_bit(STRIPE_HANDLE, &sh->state); 4879 4880 /* 4881 * handle_stripe should not continue handle the batched stripe, only 4882 * the head of batch list or lone stripe can continue. Otherwise we 4883 * could see break_stripe_batch_list warns about the STRIPE_ACTIVE 4884 * is set for the batched stripe. 4885 */ 4886 if (clear_batch_ready(sh)) 4887 return; 4888 4889 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) { 4890 /* already being handled, ensure it gets handled 4891 * again when current action finishes */ 4892 set_bit(STRIPE_HANDLE, &sh->state); 4893 return; 4894 } 4895 4896 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state)) 4897 break_stripe_batch_list(sh, 0); 4898 4899 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) { 4900 spin_lock(&sh->stripe_lock); 4901 /* 4902 * Cannot process 'sync' concurrently with 'discard'. 4903 * Flush data in r5cache before 'sync'. 4904 */ 4905 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) && 4906 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) && 4907 !test_bit(STRIPE_DISCARD, &sh->state) && 4908 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) { 4909 set_bit(STRIPE_SYNCING, &sh->state); 4910 clear_bit(STRIPE_INSYNC, &sh->state); 4911 clear_bit(STRIPE_REPLACED, &sh->state); 4912 } 4913 spin_unlock(&sh->stripe_lock); 4914 } 4915 clear_bit(STRIPE_DELAYED, &sh->state); 4916 4917 pr_debug("handling stripe %llu, state=%#lx cnt=%d, " 4918 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n", 4919 (unsigned long long)sh->sector, sh->state, 4920 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx, 4921 sh->check_state, sh->reconstruct_state); 4922 4923 analyse_stripe(sh, &s); 4924 4925 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state)) 4926 goto finish; 4927 4928 if (s.handle_bad_blocks || 4929 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) { 4930 set_bit(STRIPE_HANDLE, &sh->state); 4931 goto finish; 4932 } 4933 4934 if (unlikely(s.blocked_rdev)) { 4935 if (s.syncing || s.expanding || s.expanded || 4936 s.replacing || s.to_write || s.written) { 4937 set_bit(STRIPE_HANDLE, &sh->state); 4938 goto finish; 4939 } 4940 /* There is nothing for the blocked_rdev to block */ 4941 rdev_dec_pending(s.blocked_rdev, conf->mddev); 4942 s.blocked_rdev = NULL; 4943 } 4944 4945 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) { 4946 set_bit(STRIPE_OP_BIOFILL, &s.ops_request); 4947 set_bit(STRIPE_BIOFILL_RUN, &sh->state); 4948 } 4949 4950 pr_debug("locked=%d uptodate=%d to_read=%d" 4951 " to_write=%d failed=%d failed_num=%d,%d\n", 4952 s.locked, s.uptodate, s.to_read, s.to_write, s.failed, 4953 s.failed_num[0], s.failed_num[1]); 4954 /* 4955 * check if the array has lost more than max_degraded devices and, 4956 * if so, some requests might need to be failed. 4957 * 4958 * When journal device failed (log_failed), we will only process 4959 * the stripe if there is data need write to raid disks 4960 */ 4961 if (s.failed > conf->max_degraded || 4962 (s.log_failed && s.injournal == 0)) { 4963 sh->check_state = 0; 4964 sh->reconstruct_state = 0; 4965 break_stripe_batch_list(sh, 0); 4966 if (s.to_read+s.to_write+s.written) 4967 handle_failed_stripe(conf, sh, &s, disks); 4968 if (s.syncing + s.replacing) 4969 handle_failed_sync(conf, sh, &s); 4970 } 4971 4972 /* Now we check to see if any write operations have recently 4973 * completed 4974 */ 4975 prexor = 0; 4976 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result) 4977 prexor = 1; 4978 if (sh->reconstruct_state == reconstruct_state_drain_result || 4979 sh->reconstruct_state == reconstruct_state_prexor_drain_result) { 4980 sh->reconstruct_state = reconstruct_state_idle; 4981 4982 /* All the 'written' buffers and the parity block are ready to 4983 * be written back to disk 4984 */ 4985 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) && 4986 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)); 4987 BUG_ON(sh->qd_idx >= 0 && 4988 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) && 4989 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags)); 4990 for (i = disks; i--; ) { 4991 struct r5dev *dev = &sh->dev[i]; 4992 if (test_bit(R5_LOCKED, &dev->flags) && 4993 (i == sh->pd_idx || i == sh->qd_idx || 4994 dev->written || test_bit(R5_InJournal, 4995 &dev->flags))) { 4996 pr_debug("Writing block %d\n", i); 4997 set_bit(R5_Wantwrite, &dev->flags); 4998 if (prexor) 4999 continue; 5000 if (s.failed > 1) 5001 continue; 5002 if (!test_bit(R5_Insync, &dev->flags) || 5003 ((i == sh->pd_idx || i == sh->qd_idx) && 5004 s.failed == 0)) 5005 set_bit(STRIPE_INSYNC, &sh->state); 5006 } 5007 } 5008 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5009 s.dec_preread_active = 1; 5010 } 5011 5012 /* 5013 * might be able to return some write requests if the parity blocks 5014 * are safe, or on a failed drive 5015 */ 5016 pdev = &sh->dev[sh->pd_idx]; 5017 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx) 5018 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx); 5019 qdev = &sh->dev[sh->qd_idx]; 5020 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx) 5021 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx) 5022 || conf->level < 6; 5023 5024 if (s.written && 5025 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags) 5026 && !test_bit(R5_LOCKED, &pdev->flags) 5027 && (test_bit(R5_UPTODATE, &pdev->flags) || 5028 test_bit(R5_Discard, &pdev->flags))))) && 5029 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags) 5030 && !test_bit(R5_LOCKED, &qdev->flags) 5031 && (test_bit(R5_UPTODATE, &qdev->flags) || 5032 test_bit(R5_Discard, &qdev->flags)))))) 5033 handle_stripe_clean_event(conf, sh, disks); 5034 5035 if (s.just_cached) 5036 r5c_handle_cached_data_endio(conf, sh, disks); 5037 log_stripe_write_finished(sh); 5038 5039 /* Now we might consider reading some blocks, either to check/generate 5040 * parity, or to satisfy requests 5041 * or to load a block that is being partially written. 5042 */ 5043 if (s.to_read || s.non_overwrite 5044 || (s.to_write && s.failed) 5045 || (s.syncing && (s.uptodate + s.compute < disks)) 5046 || s.replacing 5047 || s.expanding) 5048 handle_stripe_fill(sh, &s, disks); 5049 5050 /* 5051 * When the stripe finishes full journal write cycle (write to journal 5052 * and raid disk), this is the clean up procedure so it is ready for 5053 * next operation. 5054 */ 5055 r5c_finish_stripe_write_out(conf, sh, &s); 5056 5057 /* 5058 * Now to consider new write requests, cache write back and what else, 5059 * if anything should be read. We do not handle new writes when: 5060 * 1/ A 'write' operation (copy+xor) is already in flight. 5061 * 2/ A 'check' operation is in flight, as it may clobber the parity 5062 * block. 5063 * 3/ A r5c cache log write is in flight. 5064 */ 5065 5066 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) { 5067 if (!r5c_is_writeback(conf->log)) { 5068 if (s.to_write) 5069 handle_stripe_dirtying(conf, sh, &s, disks); 5070 } else { /* write back cache */ 5071 int ret = 0; 5072 5073 /* First, try handle writes in caching phase */ 5074 if (s.to_write) 5075 ret = r5c_try_caching_write(conf, sh, &s, 5076 disks); 5077 /* 5078 * If caching phase failed: ret == -EAGAIN 5079 * OR 5080 * stripe under reclaim: !caching && injournal 5081 * 5082 * fall back to handle_stripe_dirtying() 5083 */ 5084 if (ret == -EAGAIN || 5085 /* stripe under reclaim: !caching && injournal */ 5086 (!test_bit(STRIPE_R5C_CACHING, &sh->state) && 5087 s.injournal > 0)) { 5088 ret = handle_stripe_dirtying(conf, sh, &s, 5089 disks); 5090 if (ret == -EAGAIN) 5091 goto finish; 5092 } 5093 } 5094 } 5095 5096 /* maybe we need to check and possibly fix the parity for this stripe 5097 * Any reads will already have been scheduled, so we just see if enough 5098 * data is available. The parity check is held off while parity 5099 * dependent operations are in flight. 5100 */ 5101 if (sh->check_state || 5102 (s.syncing && s.locked == 0 && 5103 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 5104 !test_bit(STRIPE_INSYNC, &sh->state))) { 5105 if (conf->level == 6) 5106 handle_parity_checks6(conf, sh, &s, disks); 5107 else 5108 handle_parity_checks5(conf, sh, &s, disks); 5109 } 5110 5111 if ((s.replacing || s.syncing) && s.locked == 0 5112 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state) 5113 && !test_bit(STRIPE_REPLACED, &sh->state)) { 5114 /* Write out to replacement devices where possible */ 5115 for (i = 0; i < conf->raid_disks; i++) 5116 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) { 5117 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags)); 5118 set_bit(R5_WantReplace, &sh->dev[i].flags); 5119 set_bit(R5_LOCKED, &sh->dev[i].flags); 5120 s.locked++; 5121 } 5122 if (s.replacing) 5123 set_bit(STRIPE_INSYNC, &sh->state); 5124 set_bit(STRIPE_REPLACED, &sh->state); 5125 } 5126 if ((s.syncing || s.replacing) && s.locked == 0 && 5127 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 5128 test_bit(STRIPE_INSYNC, &sh->state)) { 5129 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1); 5130 clear_bit(STRIPE_SYNCING, &sh->state); 5131 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 5132 wake_up(&conf->wait_for_overlap); 5133 } 5134 5135 /* If the failed drives are just a ReadError, then we might need 5136 * to progress the repair/check process 5137 */ 5138 if (s.failed <= conf->max_degraded && !conf->mddev->ro) 5139 for (i = 0; i < s.failed; i++) { 5140 struct r5dev *dev = &sh->dev[s.failed_num[i]]; 5141 if (test_bit(R5_ReadError, &dev->flags) 5142 && !test_bit(R5_LOCKED, &dev->flags) 5143 && test_bit(R5_UPTODATE, &dev->flags) 5144 ) { 5145 if (!test_bit(R5_ReWrite, &dev->flags)) { 5146 set_bit(R5_Wantwrite, &dev->flags); 5147 set_bit(R5_ReWrite, &dev->flags); 5148 } else 5149 /* let's read it back */ 5150 set_bit(R5_Wantread, &dev->flags); 5151 set_bit(R5_LOCKED, &dev->flags); 5152 s.locked++; 5153 } 5154 } 5155 5156 /* Finish reconstruct operations initiated by the expansion process */ 5157 if (sh->reconstruct_state == reconstruct_state_result) { 5158 struct stripe_head *sh_src 5159 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1); 5160 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) { 5161 /* sh cannot be written until sh_src has been read. 5162 * so arrange for sh to be delayed a little 5163 */ 5164 set_bit(STRIPE_DELAYED, &sh->state); 5165 set_bit(STRIPE_HANDLE, &sh->state); 5166 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, 5167 &sh_src->state)) 5168 atomic_inc(&conf->preread_active_stripes); 5169 raid5_release_stripe(sh_src); 5170 goto finish; 5171 } 5172 if (sh_src) 5173 raid5_release_stripe(sh_src); 5174 5175 sh->reconstruct_state = reconstruct_state_idle; 5176 clear_bit(STRIPE_EXPANDING, &sh->state); 5177 for (i = conf->raid_disks; i--; ) { 5178 set_bit(R5_Wantwrite, &sh->dev[i].flags); 5179 set_bit(R5_LOCKED, &sh->dev[i].flags); 5180 s.locked++; 5181 } 5182 } 5183 5184 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) && 5185 !sh->reconstruct_state) { 5186 /* Need to write out all blocks after computing parity */ 5187 sh->disks = conf->raid_disks; 5188 stripe_set_idx(sh->sector, conf, 0, sh); 5189 schedule_reconstruction(sh, &s, 1, 1); 5190 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) { 5191 clear_bit(STRIPE_EXPAND_READY, &sh->state); 5192 atomic_dec(&conf->reshape_stripes); 5193 wake_up(&conf->wait_for_overlap); 5194 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1); 5195 } 5196 5197 if (s.expanding && s.locked == 0 && 5198 !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) 5199 handle_stripe_expansion(conf, sh); 5200 5201 finish: 5202 /* wait for this device to become unblocked */ 5203 if (unlikely(s.blocked_rdev)) { 5204 if (conf->mddev->external) 5205 md_wait_for_blocked_rdev(s.blocked_rdev, 5206 conf->mddev); 5207 else 5208 /* Internal metadata will immediately 5209 * be written by raid5d, so we don't 5210 * need to wait here. 5211 */ 5212 rdev_dec_pending(s.blocked_rdev, 5213 conf->mddev); 5214 } 5215 5216 if (s.handle_bad_blocks) 5217 for (i = disks; i--; ) { 5218 struct md_rdev *rdev; 5219 struct r5dev *dev = &sh->dev[i]; 5220 if (test_and_clear_bit(R5_WriteError, &dev->flags)) { 5221 /* We own a safe reference to the rdev */ 5222 rdev = conf->disks[i].rdev; 5223 if (!rdev_set_badblocks(rdev, sh->sector, 5224 RAID5_STRIPE_SECTORS(conf), 0)) 5225 md_error(conf->mddev, rdev); 5226 rdev_dec_pending(rdev, conf->mddev); 5227 } 5228 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) { 5229 rdev = conf->disks[i].rdev; 5230 rdev_clear_badblocks(rdev, sh->sector, 5231 RAID5_STRIPE_SECTORS(conf), 0); 5232 rdev_dec_pending(rdev, conf->mddev); 5233 } 5234 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) { 5235 rdev = conf->disks[i].replacement; 5236 if (!rdev) 5237 /* rdev have been moved down */ 5238 rdev = conf->disks[i].rdev; 5239 rdev_clear_badblocks(rdev, sh->sector, 5240 RAID5_STRIPE_SECTORS(conf), 0); 5241 rdev_dec_pending(rdev, conf->mddev); 5242 } 5243 } 5244 5245 if (s.ops_request) 5246 raid_run_ops(sh, s.ops_request); 5247 5248 ops_run_io(sh, &s); 5249 5250 if (s.dec_preread_active) { 5251 /* We delay this until after ops_run_io so that if make_request 5252 * is waiting on a flush, it won't continue until the writes 5253 * have actually been submitted. 5254 */ 5255 atomic_dec(&conf->preread_active_stripes); 5256 if (atomic_read(&conf->preread_active_stripes) < 5257 IO_THRESHOLD) 5258 md_wakeup_thread(conf->mddev->thread); 5259 } 5260 5261 clear_bit_unlock(STRIPE_ACTIVE, &sh->state); 5262 } 5263 5264 static void raid5_activate_delayed(struct r5conf *conf) 5265 { 5266 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) { 5267 while (!list_empty(&conf->delayed_list)) { 5268 struct list_head *l = conf->delayed_list.next; 5269 struct stripe_head *sh; 5270 sh = list_entry(l, struct stripe_head, lru); 5271 list_del_init(l); 5272 clear_bit(STRIPE_DELAYED, &sh->state); 5273 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5274 atomic_inc(&conf->preread_active_stripes); 5275 list_add_tail(&sh->lru, &conf->hold_list); 5276 raid5_wakeup_stripe_thread(sh); 5277 } 5278 } 5279 } 5280 5281 static void activate_bit_delay(struct r5conf *conf, 5282 struct list_head *temp_inactive_list) 5283 { 5284 /* device_lock is held */ 5285 struct list_head head; 5286 list_add(&head, &conf->bitmap_list); 5287 list_del_init(&conf->bitmap_list); 5288 while (!list_empty(&head)) { 5289 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru); 5290 int hash; 5291 list_del_init(&sh->lru); 5292 atomic_inc(&sh->count); 5293 hash = sh->hash_lock_index; 5294 __release_stripe(conf, sh, &temp_inactive_list[hash]); 5295 } 5296 } 5297 5298 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio) 5299 { 5300 struct r5conf *conf = mddev->private; 5301 sector_t sector = bio->bi_iter.bi_sector; 5302 unsigned int chunk_sectors; 5303 unsigned int bio_sectors = bio_sectors(bio); 5304 5305 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors); 5306 return chunk_sectors >= 5307 ((sector & (chunk_sectors - 1)) + bio_sectors); 5308 } 5309 5310 /* 5311 * add bio to the retry LIFO ( in O(1) ... we are in interrupt ) 5312 * later sampled by raid5d. 5313 */ 5314 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf) 5315 { 5316 unsigned long flags; 5317 5318 spin_lock_irqsave(&conf->device_lock, flags); 5319 5320 bi->bi_next = conf->retry_read_aligned_list; 5321 conf->retry_read_aligned_list = bi; 5322 5323 spin_unlock_irqrestore(&conf->device_lock, flags); 5324 md_wakeup_thread(conf->mddev->thread); 5325 } 5326 5327 static struct bio *remove_bio_from_retry(struct r5conf *conf, 5328 unsigned int *offset) 5329 { 5330 struct bio *bi; 5331 5332 bi = conf->retry_read_aligned; 5333 if (bi) { 5334 *offset = conf->retry_read_offset; 5335 conf->retry_read_aligned = NULL; 5336 return bi; 5337 } 5338 bi = conf->retry_read_aligned_list; 5339 if(bi) { 5340 conf->retry_read_aligned_list = bi->bi_next; 5341 bi->bi_next = NULL; 5342 *offset = 0; 5343 } 5344 5345 return bi; 5346 } 5347 5348 /* 5349 * The "raid5_align_endio" should check if the read succeeded and if it 5350 * did, call bio_endio on the original bio (having bio_put the new bio 5351 * first). 5352 * If the read failed.. 5353 */ 5354 static void raid5_align_endio(struct bio *bi) 5355 { 5356 struct md_io_acct *md_io_acct = bi->bi_private; 5357 struct bio *raid_bi = md_io_acct->orig_bio; 5358 struct mddev *mddev; 5359 struct r5conf *conf; 5360 struct md_rdev *rdev; 5361 blk_status_t error = bi->bi_status; 5362 unsigned long start_time = md_io_acct->start_time; 5363 5364 bio_put(bi); 5365 5366 rdev = (void*)raid_bi->bi_next; 5367 raid_bi->bi_next = NULL; 5368 mddev = rdev->mddev; 5369 conf = mddev->private; 5370 5371 rdev_dec_pending(rdev, conf->mddev); 5372 5373 if (!error) { 5374 if (blk_queue_io_stat(raid_bi->bi_bdev->bd_disk->queue)) 5375 bio_end_io_acct(raid_bi, start_time); 5376 bio_endio(raid_bi); 5377 if (atomic_dec_and_test(&conf->active_aligned_reads)) 5378 wake_up(&conf->wait_for_quiescent); 5379 return; 5380 } 5381 5382 pr_debug("raid5_align_endio : io error...handing IO for a retry\n"); 5383 5384 add_bio_to_retry(raid_bi, conf); 5385 } 5386 5387 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio) 5388 { 5389 struct r5conf *conf = mddev->private; 5390 struct bio *align_bio; 5391 struct md_rdev *rdev; 5392 sector_t sector, end_sector, first_bad; 5393 int bad_sectors, dd_idx; 5394 struct md_io_acct *md_io_acct; 5395 bool did_inc; 5396 5397 if (!in_chunk_boundary(mddev, raid_bio)) { 5398 pr_debug("%s: non aligned\n", __func__); 5399 return 0; 5400 } 5401 5402 sector = raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 0, 5403 &dd_idx, NULL); 5404 end_sector = bio_end_sector(raid_bio); 5405 5406 rcu_read_lock(); 5407 if (r5c_big_stripe_cached(conf, sector)) 5408 goto out_rcu_unlock; 5409 5410 rdev = rcu_dereference(conf->disks[dd_idx].replacement); 5411 if (!rdev || test_bit(Faulty, &rdev->flags) || 5412 rdev->recovery_offset < end_sector) { 5413 rdev = rcu_dereference(conf->disks[dd_idx].rdev); 5414 if (!rdev) 5415 goto out_rcu_unlock; 5416 if (test_bit(Faulty, &rdev->flags) || 5417 !(test_bit(In_sync, &rdev->flags) || 5418 rdev->recovery_offset >= end_sector)) 5419 goto out_rcu_unlock; 5420 } 5421 5422 atomic_inc(&rdev->nr_pending); 5423 rcu_read_unlock(); 5424 5425 if (is_badblock(rdev, sector, bio_sectors(raid_bio), &first_bad, 5426 &bad_sectors)) { 5427 bio_put(raid_bio); 5428 rdev_dec_pending(rdev, mddev); 5429 return 0; 5430 } 5431 5432 align_bio = bio_alloc_clone(rdev->bdev, raid_bio, GFP_NOIO, 5433 &mddev->io_acct_set); 5434 md_io_acct = container_of(align_bio, struct md_io_acct, bio_clone); 5435 raid_bio->bi_next = (void *)rdev; 5436 if (blk_queue_io_stat(raid_bio->bi_bdev->bd_disk->queue)) 5437 md_io_acct->start_time = bio_start_io_acct(raid_bio); 5438 md_io_acct->orig_bio = raid_bio; 5439 5440 align_bio->bi_end_io = raid5_align_endio; 5441 align_bio->bi_private = md_io_acct; 5442 align_bio->bi_iter.bi_sector = sector; 5443 5444 /* No reshape active, so we can trust rdev->data_offset */ 5445 align_bio->bi_iter.bi_sector += rdev->data_offset; 5446 5447 did_inc = false; 5448 if (conf->quiesce == 0) { 5449 atomic_inc(&conf->active_aligned_reads); 5450 did_inc = true; 5451 } 5452 /* need a memory barrier to detect the race with raid5_quiesce() */ 5453 if (!did_inc || smp_load_acquire(&conf->quiesce) != 0) { 5454 /* quiesce is in progress, so we need to undo io activation and wait 5455 * for it to finish 5456 */ 5457 if (did_inc && atomic_dec_and_test(&conf->active_aligned_reads)) 5458 wake_up(&conf->wait_for_quiescent); 5459 spin_lock_irq(&conf->device_lock); 5460 wait_event_lock_irq(conf->wait_for_quiescent, conf->quiesce == 0, 5461 conf->device_lock); 5462 atomic_inc(&conf->active_aligned_reads); 5463 spin_unlock_irq(&conf->device_lock); 5464 } 5465 5466 if (mddev->gendisk) 5467 trace_block_bio_remap(align_bio, disk_devt(mddev->gendisk), 5468 raid_bio->bi_iter.bi_sector); 5469 submit_bio_noacct(align_bio); 5470 return 1; 5471 5472 out_rcu_unlock: 5473 rcu_read_unlock(); 5474 return 0; 5475 } 5476 5477 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio) 5478 { 5479 struct bio *split; 5480 sector_t sector = raid_bio->bi_iter.bi_sector; 5481 unsigned chunk_sects = mddev->chunk_sectors; 5482 unsigned sectors = chunk_sects - (sector & (chunk_sects-1)); 5483 5484 if (sectors < bio_sectors(raid_bio)) { 5485 struct r5conf *conf = mddev->private; 5486 split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split); 5487 bio_chain(split, raid_bio); 5488 submit_bio_noacct(raid_bio); 5489 raid_bio = split; 5490 } 5491 5492 if (!raid5_read_one_chunk(mddev, raid_bio)) 5493 return raid_bio; 5494 5495 return NULL; 5496 } 5497 5498 /* __get_priority_stripe - get the next stripe to process 5499 * 5500 * Full stripe writes are allowed to pass preread active stripes up until 5501 * the bypass_threshold is exceeded. In general the bypass_count 5502 * increments when the handle_list is handled before the hold_list; however, it 5503 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a 5504 * stripe with in flight i/o. The bypass_count will be reset when the 5505 * head of the hold_list has changed, i.e. the head was promoted to the 5506 * handle_list. 5507 */ 5508 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group) 5509 { 5510 struct stripe_head *sh, *tmp; 5511 struct list_head *handle_list = NULL; 5512 struct r5worker_group *wg; 5513 bool second_try = !r5c_is_writeback(conf->log) && 5514 !r5l_log_disk_error(conf); 5515 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) || 5516 r5l_log_disk_error(conf); 5517 5518 again: 5519 wg = NULL; 5520 sh = NULL; 5521 if (conf->worker_cnt_per_group == 0) { 5522 handle_list = try_loprio ? &conf->loprio_list : 5523 &conf->handle_list; 5524 } else if (group != ANY_GROUP) { 5525 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list : 5526 &conf->worker_groups[group].handle_list; 5527 wg = &conf->worker_groups[group]; 5528 } else { 5529 int i; 5530 for (i = 0; i < conf->group_cnt; i++) { 5531 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list : 5532 &conf->worker_groups[i].handle_list; 5533 wg = &conf->worker_groups[i]; 5534 if (!list_empty(handle_list)) 5535 break; 5536 } 5537 } 5538 5539 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n", 5540 __func__, 5541 list_empty(handle_list) ? "empty" : "busy", 5542 list_empty(&conf->hold_list) ? "empty" : "busy", 5543 atomic_read(&conf->pending_full_writes), conf->bypass_count); 5544 5545 if (!list_empty(handle_list)) { 5546 sh = list_entry(handle_list->next, typeof(*sh), lru); 5547 5548 if (list_empty(&conf->hold_list)) 5549 conf->bypass_count = 0; 5550 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) { 5551 if (conf->hold_list.next == conf->last_hold) 5552 conf->bypass_count++; 5553 else { 5554 conf->last_hold = conf->hold_list.next; 5555 conf->bypass_count -= conf->bypass_threshold; 5556 if (conf->bypass_count < 0) 5557 conf->bypass_count = 0; 5558 } 5559 } 5560 } else if (!list_empty(&conf->hold_list) && 5561 ((conf->bypass_threshold && 5562 conf->bypass_count > conf->bypass_threshold) || 5563 atomic_read(&conf->pending_full_writes) == 0)) { 5564 5565 list_for_each_entry(tmp, &conf->hold_list, lru) { 5566 if (conf->worker_cnt_per_group == 0 || 5567 group == ANY_GROUP || 5568 !cpu_online(tmp->cpu) || 5569 cpu_to_group(tmp->cpu) == group) { 5570 sh = tmp; 5571 break; 5572 } 5573 } 5574 5575 if (sh) { 5576 conf->bypass_count -= conf->bypass_threshold; 5577 if (conf->bypass_count < 0) 5578 conf->bypass_count = 0; 5579 } 5580 wg = NULL; 5581 } 5582 5583 if (!sh) { 5584 if (second_try) 5585 return NULL; 5586 second_try = true; 5587 try_loprio = !try_loprio; 5588 goto again; 5589 } 5590 5591 if (wg) { 5592 wg->stripes_cnt--; 5593 sh->group = NULL; 5594 } 5595 list_del_init(&sh->lru); 5596 BUG_ON(atomic_inc_return(&sh->count) != 1); 5597 return sh; 5598 } 5599 5600 struct raid5_plug_cb { 5601 struct blk_plug_cb cb; 5602 struct list_head list; 5603 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS]; 5604 }; 5605 5606 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule) 5607 { 5608 struct raid5_plug_cb *cb = container_of( 5609 blk_cb, struct raid5_plug_cb, cb); 5610 struct stripe_head *sh; 5611 struct mddev *mddev = cb->cb.data; 5612 struct r5conf *conf = mddev->private; 5613 int cnt = 0; 5614 int hash; 5615 5616 if (cb->list.next && !list_empty(&cb->list)) { 5617 spin_lock_irq(&conf->device_lock); 5618 while (!list_empty(&cb->list)) { 5619 sh = list_first_entry(&cb->list, struct stripe_head, lru); 5620 list_del_init(&sh->lru); 5621 /* 5622 * avoid race release_stripe_plug() sees 5623 * STRIPE_ON_UNPLUG_LIST clear but the stripe 5624 * is still in our list 5625 */ 5626 smp_mb__before_atomic(); 5627 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state); 5628 /* 5629 * STRIPE_ON_RELEASE_LIST could be set here. In that 5630 * case, the count is always > 1 here 5631 */ 5632 hash = sh->hash_lock_index; 5633 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]); 5634 cnt++; 5635 } 5636 spin_unlock_irq(&conf->device_lock); 5637 } 5638 release_inactive_stripe_list(conf, cb->temp_inactive_list, 5639 NR_STRIPE_HASH_LOCKS); 5640 if (mddev->queue) 5641 trace_block_unplug(mddev->queue, cnt, !from_schedule); 5642 kfree(cb); 5643 } 5644 5645 static void release_stripe_plug(struct mddev *mddev, 5646 struct stripe_head *sh) 5647 { 5648 struct blk_plug_cb *blk_cb = blk_check_plugged( 5649 raid5_unplug, mddev, 5650 sizeof(struct raid5_plug_cb)); 5651 struct raid5_plug_cb *cb; 5652 5653 if (!blk_cb) { 5654 raid5_release_stripe(sh); 5655 return; 5656 } 5657 5658 cb = container_of(blk_cb, struct raid5_plug_cb, cb); 5659 5660 if (cb->list.next == NULL) { 5661 int i; 5662 INIT_LIST_HEAD(&cb->list); 5663 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 5664 INIT_LIST_HEAD(cb->temp_inactive_list + i); 5665 } 5666 5667 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)) 5668 list_add_tail(&sh->lru, &cb->list); 5669 else 5670 raid5_release_stripe(sh); 5671 } 5672 5673 static void make_discard_request(struct mddev *mddev, struct bio *bi) 5674 { 5675 struct r5conf *conf = mddev->private; 5676 sector_t logical_sector, last_sector; 5677 struct stripe_head *sh; 5678 int stripe_sectors; 5679 5680 /* We need to handle this when io_uring supports discard/trim */ 5681 if (WARN_ON_ONCE(bi->bi_opf & REQ_NOWAIT)) 5682 return; 5683 5684 if (mddev->reshape_position != MaxSector) 5685 /* Skip discard while reshape is happening */ 5686 return; 5687 5688 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1); 5689 last_sector = bio_end_sector(bi); 5690 5691 bi->bi_next = NULL; 5692 5693 stripe_sectors = conf->chunk_sectors * 5694 (conf->raid_disks - conf->max_degraded); 5695 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector, 5696 stripe_sectors); 5697 sector_div(last_sector, stripe_sectors); 5698 5699 logical_sector *= conf->chunk_sectors; 5700 last_sector *= conf->chunk_sectors; 5701 5702 for (; logical_sector < last_sector; 5703 logical_sector += RAID5_STRIPE_SECTORS(conf)) { 5704 DEFINE_WAIT(w); 5705 int d; 5706 again: 5707 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0); 5708 prepare_to_wait(&conf->wait_for_overlap, &w, 5709 TASK_UNINTERRUPTIBLE); 5710 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 5711 if (test_bit(STRIPE_SYNCING, &sh->state)) { 5712 raid5_release_stripe(sh); 5713 schedule(); 5714 goto again; 5715 } 5716 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 5717 spin_lock_irq(&sh->stripe_lock); 5718 for (d = 0; d < conf->raid_disks; d++) { 5719 if (d == sh->pd_idx || d == sh->qd_idx) 5720 continue; 5721 if (sh->dev[d].towrite || sh->dev[d].toread) { 5722 set_bit(R5_Overlap, &sh->dev[d].flags); 5723 spin_unlock_irq(&sh->stripe_lock); 5724 raid5_release_stripe(sh); 5725 schedule(); 5726 goto again; 5727 } 5728 } 5729 set_bit(STRIPE_DISCARD, &sh->state); 5730 finish_wait(&conf->wait_for_overlap, &w); 5731 sh->overwrite_disks = 0; 5732 for (d = 0; d < conf->raid_disks; d++) { 5733 if (d == sh->pd_idx || d == sh->qd_idx) 5734 continue; 5735 sh->dev[d].towrite = bi; 5736 set_bit(R5_OVERWRITE, &sh->dev[d].flags); 5737 bio_inc_remaining(bi); 5738 md_write_inc(mddev, bi); 5739 sh->overwrite_disks++; 5740 } 5741 spin_unlock_irq(&sh->stripe_lock); 5742 if (conf->mddev->bitmap) { 5743 for (d = 0; 5744 d < conf->raid_disks - conf->max_degraded; 5745 d++) 5746 md_bitmap_startwrite(mddev->bitmap, 5747 sh->sector, 5748 RAID5_STRIPE_SECTORS(conf), 5749 0); 5750 sh->bm_seq = conf->seq_flush + 1; 5751 set_bit(STRIPE_BIT_DELAY, &sh->state); 5752 } 5753 5754 set_bit(STRIPE_HANDLE, &sh->state); 5755 clear_bit(STRIPE_DELAYED, &sh->state); 5756 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5757 atomic_inc(&conf->preread_active_stripes); 5758 release_stripe_plug(mddev, sh); 5759 } 5760 5761 bio_endio(bi); 5762 } 5763 5764 static bool raid5_make_request(struct mddev *mddev, struct bio * bi) 5765 { 5766 struct r5conf *conf = mddev->private; 5767 int dd_idx; 5768 sector_t new_sector; 5769 sector_t logical_sector, last_sector; 5770 struct stripe_head *sh; 5771 const int rw = bio_data_dir(bi); 5772 DEFINE_WAIT(w); 5773 bool do_prepare; 5774 bool do_flush = false; 5775 5776 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) { 5777 int ret = log_handle_flush_request(conf, bi); 5778 5779 if (ret == 0) 5780 return true; 5781 if (ret == -ENODEV) { 5782 if (md_flush_request(mddev, bi)) 5783 return true; 5784 } 5785 /* ret == -EAGAIN, fallback */ 5786 /* 5787 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH, 5788 * we need to flush journal device 5789 */ 5790 do_flush = bi->bi_opf & REQ_PREFLUSH; 5791 } 5792 5793 if (!md_write_start(mddev, bi)) 5794 return false; 5795 /* 5796 * If array is degraded, better not do chunk aligned read because 5797 * later we might have to read it again in order to reconstruct 5798 * data on failed drives. 5799 */ 5800 if (rw == READ && mddev->degraded == 0 && 5801 mddev->reshape_position == MaxSector) { 5802 bi = chunk_aligned_read(mddev, bi); 5803 if (!bi) 5804 return true; 5805 } 5806 5807 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) { 5808 make_discard_request(mddev, bi); 5809 md_write_end(mddev); 5810 return true; 5811 } 5812 5813 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1); 5814 last_sector = bio_end_sector(bi); 5815 bi->bi_next = NULL; 5816 5817 /* Bail out if conflicts with reshape and REQ_NOWAIT is set */ 5818 if ((bi->bi_opf & REQ_NOWAIT) && 5819 (conf->reshape_progress != MaxSector) && 5820 (mddev->reshape_backwards 5821 ? (logical_sector > conf->reshape_progress && logical_sector <= conf->reshape_safe) 5822 : (logical_sector >= conf->reshape_safe && logical_sector < conf->reshape_progress))) { 5823 bio_wouldblock_error(bi); 5824 if (rw == WRITE) 5825 md_write_end(mddev); 5826 return true; 5827 } 5828 md_account_bio(mddev, &bi); 5829 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE); 5830 for (; logical_sector < last_sector; logical_sector += RAID5_STRIPE_SECTORS(conf)) { 5831 int previous; 5832 int seq; 5833 5834 do_prepare = false; 5835 retry: 5836 seq = read_seqcount_begin(&conf->gen_lock); 5837 previous = 0; 5838 if (do_prepare) 5839 prepare_to_wait(&conf->wait_for_overlap, &w, 5840 TASK_UNINTERRUPTIBLE); 5841 if (unlikely(conf->reshape_progress != MaxSector)) { 5842 /* spinlock is needed as reshape_progress may be 5843 * 64bit on a 32bit platform, and so it might be 5844 * possible to see a half-updated value 5845 * Of course reshape_progress could change after 5846 * the lock is dropped, so once we get a reference 5847 * to the stripe that we think it is, we will have 5848 * to check again. 5849 */ 5850 spin_lock_irq(&conf->device_lock); 5851 if (mddev->reshape_backwards 5852 ? logical_sector < conf->reshape_progress 5853 : logical_sector >= conf->reshape_progress) { 5854 previous = 1; 5855 } else { 5856 if (mddev->reshape_backwards 5857 ? logical_sector < conf->reshape_safe 5858 : logical_sector >= conf->reshape_safe) { 5859 spin_unlock_irq(&conf->device_lock); 5860 schedule(); 5861 do_prepare = true; 5862 goto retry; 5863 } 5864 } 5865 spin_unlock_irq(&conf->device_lock); 5866 } 5867 5868 new_sector = raid5_compute_sector(conf, logical_sector, 5869 previous, 5870 &dd_idx, NULL); 5871 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n", 5872 (unsigned long long)new_sector, 5873 (unsigned long long)logical_sector); 5874 5875 sh = raid5_get_active_stripe(conf, new_sector, previous, 5876 (bi->bi_opf & REQ_RAHEAD), 0); 5877 if (sh) { 5878 if (unlikely(previous)) { 5879 /* expansion might have moved on while waiting for a 5880 * stripe, so we must do the range check again. 5881 * Expansion could still move past after this 5882 * test, but as we are holding a reference to 5883 * 'sh', we know that if that happens, 5884 * STRIPE_EXPANDING will get set and the expansion 5885 * won't proceed until we finish with the stripe. 5886 */ 5887 int must_retry = 0; 5888 spin_lock_irq(&conf->device_lock); 5889 if (mddev->reshape_backwards 5890 ? logical_sector >= conf->reshape_progress 5891 : logical_sector < conf->reshape_progress) 5892 /* mismatch, need to try again */ 5893 must_retry = 1; 5894 spin_unlock_irq(&conf->device_lock); 5895 if (must_retry) { 5896 raid5_release_stripe(sh); 5897 schedule(); 5898 do_prepare = true; 5899 goto retry; 5900 } 5901 } 5902 if (read_seqcount_retry(&conf->gen_lock, seq)) { 5903 /* Might have got the wrong stripe_head 5904 * by accident 5905 */ 5906 raid5_release_stripe(sh); 5907 goto retry; 5908 } 5909 5910 if (test_bit(STRIPE_EXPANDING, &sh->state) || 5911 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) { 5912 /* Stripe is busy expanding or 5913 * add failed due to overlap. Flush everything 5914 * and wait a while 5915 */ 5916 md_wakeup_thread(mddev->thread); 5917 raid5_release_stripe(sh); 5918 schedule(); 5919 do_prepare = true; 5920 goto retry; 5921 } 5922 if (do_flush) { 5923 set_bit(STRIPE_R5C_PREFLUSH, &sh->state); 5924 /* we only need flush for one stripe */ 5925 do_flush = false; 5926 } 5927 5928 set_bit(STRIPE_HANDLE, &sh->state); 5929 clear_bit(STRIPE_DELAYED, &sh->state); 5930 if ((!sh->batch_head || sh == sh->batch_head) && 5931 (bi->bi_opf & REQ_SYNC) && 5932 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5933 atomic_inc(&conf->preread_active_stripes); 5934 release_stripe_plug(mddev, sh); 5935 } else { 5936 /* cannot get stripe for read-ahead, just give-up */ 5937 bi->bi_status = BLK_STS_IOERR; 5938 break; 5939 } 5940 } 5941 finish_wait(&conf->wait_for_overlap, &w); 5942 5943 if (rw == WRITE) 5944 md_write_end(mddev); 5945 bio_endio(bi); 5946 return true; 5947 } 5948 5949 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks); 5950 5951 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped) 5952 { 5953 /* reshaping is quite different to recovery/resync so it is 5954 * handled quite separately ... here. 5955 * 5956 * On each call to sync_request, we gather one chunk worth of 5957 * destination stripes and flag them as expanding. 5958 * Then we find all the source stripes and request reads. 5959 * As the reads complete, handle_stripe will copy the data 5960 * into the destination stripe and release that stripe. 5961 */ 5962 struct r5conf *conf = mddev->private; 5963 struct stripe_head *sh; 5964 struct md_rdev *rdev; 5965 sector_t first_sector, last_sector; 5966 int raid_disks = conf->previous_raid_disks; 5967 int data_disks = raid_disks - conf->max_degraded; 5968 int new_data_disks = conf->raid_disks - conf->max_degraded; 5969 int i; 5970 int dd_idx; 5971 sector_t writepos, readpos, safepos; 5972 sector_t stripe_addr; 5973 int reshape_sectors; 5974 struct list_head stripes; 5975 sector_t retn; 5976 5977 if (sector_nr == 0) { 5978 /* If restarting in the middle, skip the initial sectors */ 5979 if (mddev->reshape_backwards && 5980 conf->reshape_progress < raid5_size(mddev, 0, 0)) { 5981 sector_nr = raid5_size(mddev, 0, 0) 5982 - conf->reshape_progress; 5983 } else if (mddev->reshape_backwards && 5984 conf->reshape_progress == MaxSector) { 5985 /* shouldn't happen, but just in case, finish up.*/ 5986 sector_nr = MaxSector; 5987 } else if (!mddev->reshape_backwards && 5988 conf->reshape_progress > 0) 5989 sector_nr = conf->reshape_progress; 5990 sector_div(sector_nr, new_data_disks); 5991 if (sector_nr) { 5992 mddev->curr_resync_completed = sector_nr; 5993 sysfs_notify_dirent_safe(mddev->sysfs_completed); 5994 *skipped = 1; 5995 retn = sector_nr; 5996 goto finish; 5997 } 5998 } 5999 6000 /* We need to process a full chunk at a time. 6001 * If old and new chunk sizes differ, we need to process the 6002 * largest of these 6003 */ 6004 6005 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors); 6006 6007 /* We update the metadata at least every 10 seconds, or when 6008 * the data about to be copied would over-write the source of 6009 * the data at the front of the range. i.e. one new_stripe 6010 * along from reshape_progress new_maps to after where 6011 * reshape_safe old_maps to 6012 */ 6013 writepos = conf->reshape_progress; 6014 sector_div(writepos, new_data_disks); 6015 readpos = conf->reshape_progress; 6016 sector_div(readpos, data_disks); 6017 safepos = conf->reshape_safe; 6018 sector_div(safepos, data_disks); 6019 if (mddev->reshape_backwards) { 6020 BUG_ON(writepos < reshape_sectors); 6021 writepos -= reshape_sectors; 6022 readpos += reshape_sectors; 6023 safepos += reshape_sectors; 6024 } else { 6025 writepos += reshape_sectors; 6026 /* readpos and safepos are worst-case calculations. 6027 * A negative number is overly pessimistic, and causes 6028 * obvious problems for unsigned storage. So clip to 0. 6029 */ 6030 readpos -= min_t(sector_t, reshape_sectors, readpos); 6031 safepos -= min_t(sector_t, reshape_sectors, safepos); 6032 } 6033 6034 /* Having calculated the 'writepos' possibly use it 6035 * to set 'stripe_addr' which is where we will write to. 6036 */ 6037 if (mddev->reshape_backwards) { 6038 BUG_ON(conf->reshape_progress == 0); 6039 stripe_addr = writepos; 6040 BUG_ON((mddev->dev_sectors & 6041 ~((sector_t)reshape_sectors - 1)) 6042 - reshape_sectors - stripe_addr 6043 != sector_nr); 6044 } else { 6045 BUG_ON(writepos != sector_nr + reshape_sectors); 6046 stripe_addr = sector_nr; 6047 } 6048 6049 /* 'writepos' is the most advanced device address we might write. 6050 * 'readpos' is the least advanced device address we might read. 6051 * 'safepos' is the least address recorded in the metadata as having 6052 * been reshaped. 6053 * If there is a min_offset_diff, these are adjusted either by 6054 * increasing the safepos/readpos if diff is negative, or 6055 * increasing writepos if diff is positive. 6056 * If 'readpos' is then behind 'writepos', there is no way that we can 6057 * ensure safety in the face of a crash - that must be done by userspace 6058 * making a backup of the data. So in that case there is no particular 6059 * rush to update metadata. 6060 * Otherwise if 'safepos' is behind 'writepos', then we really need to 6061 * update the metadata to advance 'safepos' to match 'readpos' so that 6062 * we can be safe in the event of a crash. 6063 * So we insist on updating metadata if safepos is behind writepos and 6064 * readpos is beyond writepos. 6065 * In any case, update the metadata every 10 seconds. 6066 * Maybe that number should be configurable, but I'm not sure it is 6067 * worth it.... maybe it could be a multiple of safemode_delay??? 6068 */ 6069 if (conf->min_offset_diff < 0) { 6070 safepos += -conf->min_offset_diff; 6071 readpos += -conf->min_offset_diff; 6072 } else 6073 writepos += conf->min_offset_diff; 6074 6075 if ((mddev->reshape_backwards 6076 ? (safepos > writepos && readpos < writepos) 6077 : (safepos < writepos && readpos > writepos)) || 6078 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 6079 /* Cannot proceed until we've updated the superblock... */ 6080 wait_event(conf->wait_for_overlap, 6081 atomic_read(&conf->reshape_stripes)==0 6082 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 6083 if (atomic_read(&conf->reshape_stripes) != 0) 6084 return 0; 6085 mddev->reshape_position = conf->reshape_progress; 6086 mddev->curr_resync_completed = sector_nr; 6087 if (!mddev->reshape_backwards) 6088 /* Can update recovery_offset */ 6089 rdev_for_each(rdev, mddev) 6090 if (rdev->raid_disk >= 0 && 6091 !test_bit(Journal, &rdev->flags) && 6092 !test_bit(In_sync, &rdev->flags) && 6093 rdev->recovery_offset < sector_nr) 6094 rdev->recovery_offset = sector_nr; 6095 6096 conf->reshape_checkpoint = jiffies; 6097 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6098 md_wakeup_thread(mddev->thread); 6099 wait_event(mddev->sb_wait, mddev->sb_flags == 0 || 6100 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 6101 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6102 return 0; 6103 spin_lock_irq(&conf->device_lock); 6104 conf->reshape_safe = mddev->reshape_position; 6105 spin_unlock_irq(&conf->device_lock); 6106 wake_up(&conf->wait_for_overlap); 6107 sysfs_notify_dirent_safe(mddev->sysfs_completed); 6108 } 6109 6110 INIT_LIST_HEAD(&stripes); 6111 for (i = 0; i < reshape_sectors; i += RAID5_STRIPE_SECTORS(conf)) { 6112 int j; 6113 int skipped_disk = 0; 6114 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1); 6115 set_bit(STRIPE_EXPANDING, &sh->state); 6116 atomic_inc(&conf->reshape_stripes); 6117 /* If any of this stripe is beyond the end of the old 6118 * array, then we need to zero those blocks 6119 */ 6120 for (j=sh->disks; j--;) { 6121 sector_t s; 6122 if (j == sh->pd_idx) 6123 continue; 6124 if (conf->level == 6 && 6125 j == sh->qd_idx) 6126 continue; 6127 s = raid5_compute_blocknr(sh, j, 0); 6128 if (s < raid5_size(mddev, 0, 0)) { 6129 skipped_disk = 1; 6130 continue; 6131 } 6132 memset(page_address(sh->dev[j].page), 0, RAID5_STRIPE_SIZE(conf)); 6133 set_bit(R5_Expanded, &sh->dev[j].flags); 6134 set_bit(R5_UPTODATE, &sh->dev[j].flags); 6135 } 6136 if (!skipped_disk) { 6137 set_bit(STRIPE_EXPAND_READY, &sh->state); 6138 set_bit(STRIPE_HANDLE, &sh->state); 6139 } 6140 list_add(&sh->lru, &stripes); 6141 } 6142 spin_lock_irq(&conf->device_lock); 6143 if (mddev->reshape_backwards) 6144 conf->reshape_progress -= reshape_sectors * new_data_disks; 6145 else 6146 conf->reshape_progress += reshape_sectors * new_data_disks; 6147 spin_unlock_irq(&conf->device_lock); 6148 /* Ok, those stripe are ready. We can start scheduling 6149 * reads on the source stripes. 6150 * The source stripes are determined by mapping the first and last 6151 * block on the destination stripes. 6152 */ 6153 first_sector = 6154 raid5_compute_sector(conf, stripe_addr*(new_data_disks), 6155 1, &dd_idx, NULL); 6156 last_sector = 6157 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors) 6158 * new_data_disks - 1), 6159 1, &dd_idx, NULL); 6160 if (last_sector >= mddev->dev_sectors) 6161 last_sector = mddev->dev_sectors - 1; 6162 while (first_sector <= last_sector) { 6163 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1); 6164 set_bit(STRIPE_EXPAND_SOURCE, &sh->state); 6165 set_bit(STRIPE_HANDLE, &sh->state); 6166 raid5_release_stripe(sh); 6167 first_sector += RAID5_STRIPE_SECTORS(conf); 6168 } 6169 /* Now that the sources are clearly marked, we can release 6170 * the destination stripes 6171 */ 6172 while (!list_empty(&stripes)) { 6173 sh = list_entry(stripes.next, struct stripe_head, lru); 6174 list_del_init(&sh->lru); 6175 raid5_release_stripe(sh); 6176 } 6177 /* If this takes us to the resync_max point where we have to pause, 6178 * then we need to write out the superblock. 6179 */ 6180 sector_nr += reshape_sectors; 6181 retn = reshape_sectors; 6182 finish: 6183 if (mddev->curr_resync_completed > mddev->resync_max || 6184 (sector_nr - mddev->curr_resync_completed) * 2 6185 >= mddev->resync_max - mddev->curr_resync_completed) { 6186 /* Cannot proceed until we've updated the superblock... */ 6187 wait_event(conf->wait_for_overlap, 6188 atomic_read(&conf->reshape_stripes) == 0 6189 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 6190 if (atomic_read(&conf->reshape_stripes) != 0) 6191 goto ret; 6192 mddev->reshape_position = conf->reshape_progress; 6193 mddev->curr_resync_completed = sector_nr; 6194 if (!mddev->reshape_backwards) 6195 /* Can update recovery_offset */ 6196 rdev_for_each(rdev, mddev) 6197 if (rdev->raid_disk >= 0 && 6198 !test_bit(Journal, &rdev->flags) && 6199 !test_bit(In_sync, &rdev->flags) && 6200 rdev->recovery_offset < sector_nr) 6201 rdev->recovery_offset = sector_nr; 6202 conf->reshape_checkpoint = jiffies; 6203 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6204 md_wakeup_thread(mddev->thread); 6205 wait_event(mddev->sb_wait, 6206 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) 6207 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 6208 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6209 goto ret; 6210 spin_lock_irq(&conf->device_lock); 6211 conf->reshape_safe = mddev->reshape_position; 6212 spin_unlock_irq(&conf->device_lock); 6213 wake_up(&conf->wait_for_overlap); 6214 sysfs_notify_dirent_safe(mddev->sysfs_completed); 6215 } 6216 ret: 6217 return retn; 6218 } 6219 6220 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr, 6221 int *skipped) 6222 { 6223 struct r5conf *conf = mddev->private; 6224 struct stripe_head *sh; 6225 sector_t max_sector = mddev->dev_sectors; 6226 sector_t sync_blocks; 6227 int still_degraded = 0; 6228 int i; 6229 6230 if (sector_nr >= max_sector) { 6231 /* just being told to finish up .. nothing much to do */ 6232 6233 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 6234 end_reshape(conf); 6235 return 0; 6236 } 6237 6238 if (mddev->curr_resync < max_sector) /* aborted */ 6239 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 6240 &sync_blocks, 1); 6241 else /* completed sync */ 6242 conf->fullsync = 0; 6243 md_bitmap_close_sync(mddev->bitmap); 6244 6245 return 0; 6246 } 6247 6248 /* Allow raid5_quiesce to complete */ 6249 wait_event(conf->wait_for_overlap, conf->quiesce != 2); 6250 6251 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 6252 return reshape_request(mddev, sector_nr, skipped); 6253 6254 /* No need to check resync_max as we never do more than one 6255 * stripe, and as resync_max will always be on a chunk boundary, 6256 * if the check in md_do_sync didn't fire, there is no chance 6257 * of overstepping resync_max here 6258 */ 6259 6260 /* if there is too many failed drives and we are trying 6261 * to resync, then assert that we are finished, because there is 6262 * nothing we can do. 6263 */ 6264 if (mddev->degraded >= conf->max_degraded && 6265 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 6266 sector_t rv = mddev->dev_sectors - sector_nr; 6267 *skipped = 1; 6268 return rv; 6269 } 6270 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 6271 !conf->fullsync && 6272 !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 6273 sync_blocks >= RAID5_STRIPE_SECTORS(conf)) { 6274 /* we can skip this block, and probably more */ 6275 do_div(sync_blocks, RAID5_STRIPE_SECTORS(conf)); 6276 *skipped = 1; 6277 /* keep things rounded to whole stripes */ 6278 return sync_blocks * RAID5_STRIPE_SECTORS(conf); 6279 } 6280 6281 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false); 6282 6283 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0); 6284 if (sh == NULL) { 6285 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0); 6286 /* make sure we don't swamp the stripe cache if someone else 6287 * is trying to get access 6288 */ 6289 schedule_timeout_uninterruptible(1); 6290 } 6291 /* Need to check if array will still be degraded after recovery/resync 6292 * Note in case of > 1 drive failures it's possible we're rebuilding 6293 * one drive while leaving another faulty drive in array. 6294 */ 6295 rcu_read_lock(); 6296 for (i = 0; i < conf->raid_disks; i++) { 6297 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev); 6298 6299 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) 6300 still_degraded = 1; 6301 } 6302 rcu_read_unlock(); 6303 6304 md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded); 6305 6306 set_bit(STRIPE_SYNC_REQUESTED, &sh->state); 6307 set_bit(STRIPE_HANDLE, &sh->state); 6308 6309 raid5_release_stripe(sh); 6310 6311 return RAID5_STRIPE_SECTORS(conf); 6312 } 6313 6314 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio, 6315 unsigned int offset) 6316 { 6317 /* We may not be able to submit a whole bio at once as there 6318 * may not be enough stripe_heads available. 6319 * We cannot pre-allocate enough stripe_heads as we may need 6320 * more than exist in the cache (if we allow ever large chunks). 6321 * So we do one stripe head at a time and record in 6322 * ->bi_hw_segments how many have been done. 6323 * 6324 * We *know* that this entire raid_bio is in one chunk, so 6325 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector. 6326 */ 6327 struct stripe_head *sh; 6328 int dd_idx; 6329 sector_t sector, logical_sector, last_sector; 6330 int scnt = 0; 6331 int handled = 0; 6332 6333 logical_sector = raid_bio->bi_iter.bi_sector & 6334 ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1); 6335 sector = raid5_compute_sector(conf, logical_sector, 6336 0, &dd_idx, NULL); 6337 last_sector = bio_end_sector(raid_bio); 6338 6339 for (; logical_sector < last_sector; 6340 logical_sector += RAID5_STRIPE_SECTORS(conf), 6341 sector += RAID5_STRIPE_SECTORS(conf), 6342 scnt++) { 6343 6344 if (scnt < offset) 6345 /* already done this stripe */ 6346 continue; 6347 6348 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1); 6349 6350 if (!sh) { 6351 /* failed to get a stripe - must wait */ 6352 conf->retry_read_aligned = raid_bio; 6353 conf->retry_read_offset = scnt; 6354 return handled; 6355 } 6356 6357 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) { 6358 raid5_release_stripe(sh); 6359 conf->retry_read_aligned = raid_bio; 6360 conf->retry_read_offset = scnt; 6361 return handled; 6362 } 6363 6364 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags); 6365 handle_stripe(sh); 6366 raid5_release_stripe(sh); 6367 handled++; 6368 } 6369 6370 bio_endio(raid_bio); 6371 6372 if (atomic_dec_and_test(&conf->active_aligned_reads)) 6373 wake_up(&conf->wait_for_quiescent); 6374 return handled; 6375 } 6376 6377 static int handle_active_stripes(struct r5conf *conf, int group, 6378 struct r5worker *worker, 6379 struct list_head *temp_inactive_list) 6380 __releases(&conf->device_lock) 6381 __acquires(&conf->device_lock) 6382 { 6383 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh; 6384 int i, batch_size = 0, hash; 6385 bool release_inactive = false; 6386 6387 while (batch_size < MAX_STRIPE_BATCH && 6388 (sh = __get_priority_stripe(conf, group)) != NULL) 6389 batch[batch_size++] = sh; 6390 6391 if (batch_size == 0) { 6392 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 6393 if (!list_empty(temp_inactive_list + i)) 6394 break; 6395 if (i == NR_STRIPE_HASH_LOCKS) { 6396 spin_unlock_irq(&conf->device_lock); 6397 log_flush_stripe_to_raid(conf); 6398 spin_lock_irq(&conf->device_lock); 6399 return batch_size; 6400 } 6401 release_inactive = true; 6402 } 6403 spin_unlock_irq(&conf->device_lock); 6404 6405 release_inactive_stripe_list(conf, temp_inactive_list, 6406 NR_STRIPE_HASH_LOCKS); 6407 6408 r5l_flush_stripe_to_raid(conf->log); 6409 if (release_inactive) { 6410 spin_lock_irq(&conf->device_lock); 6411 return 0; 6412 } 6413 6414 for (i = 0; i < batch_size; i++) 6415 handle_stripe(batch[i]); 6416 log_write_stripe_run(conf); 6417 6418 cond_resched(); 6419 6420 spin_lock_irq(&conf->device_lock); 6421 for (i = 0; i < batch_size; i++) { 6422 hash = batch[i]->hash_lock_index; 6423 __release_stripe(conf, batch[i], &temp_inactive_list[hash]); 6424 } 6425 return batch_size; 6426 } 6427 6428 static void raid5_do_work(struct work_struct *work) 6429 { 6430 struct r5worker *worker = container_of(work, struct r5worker, work); 6431 struct r5worker_group *group = worker->group; 6432 struct r5conf *conf = group->conf; 6433 struct mddev *mddev = conf->mddev; 6434 int group_id = group - conf->worker_groups; 6435 int handled; 6436 struct blk_plug plug; 6437 6438 pr_debug("+++ raid5worker active\n"); 6439 6440 blk_start_plug(&plug); 6441 handled = 0; 6442 spin_lock_irq(&conf->device_lock); 6443 while (1) { 6444 int batch_size, released; 6445 6446 released = release_stripe_list(conf, worker->temp_inactive_list); 6447 6448 batch_size = handle_active_stripes(conf, group_id, worker, 6449 worker->temp_inactive_list); 6450 worker->working = false; 6451 if (!batch_size && !released) 6452 break; 6453 handled += batch_size; 6454 wait_event_lock_irq(mddev->sb_wait, 6455 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags), 6456 conf->device_lock); 6457 } 6458 pr_debug("%d stripes handled\n", handled); 6459 6460 spin_unlock_irq(&conf->device_lock); 6461 6462 flush_deferred_bios(conf); 6463 6464 r5l_flush_stripe_to_raid(conf->log); 6465 6466 async_tx_issue_pending_all(); 6467 blk_finish_plug(&plug); 6468 6469 pr_debug("--- raid5worker inactive\n"); 6470 } 6471 6472 /* 6473 * This is our raid5 kernel thread. 6474 * 6475 * We scan the hash table for stripes which can be handled now. 6476 * During the scan, completed stripes are saved for us by the interrupt 6477 * handler, so that they will not have to wait for our next wakeup. 6478 */ 6479 static void raid5d(struct md_thread *thread) 6480 { 6481 struct mddev *mddev = thread->mddev; 6482 struct r5conf *conf = mddev->private; 6483 int handled; 6484 struct blk_plug plug; 6485 6486 pr_debug("+++ raid5d active\n"); 6487 6488 md_check_recovery(mddev); 6489 6490 blk_start_plug(&plug); 6491 handled = 0; 6492 spin_lock_irq(&conf->device_lock); 6493 while (1) { 6494 struct bio *bio; 6495 int batch_size, released; 6496 unsigned int offset; 6497 6498 released = release_stripe_list(conf, conf->temp_inactive_list); 6499 if (released) 6500 clear_bit(R5_DID_ALLOC, &conf->cache_state); 6501 6502 if ( 6503 !list_empty(&conf->bitmap_list)) { 6504 /* Now is a good time to flush some bitmap updates */ 6505 conf->seq_flush++; 6506 spin_unlock_irq(&conf->device_lock); 6507 md_bitmap_unplug(mddev->bitmap); 6508 spin_lock_irq(&conf->device_lock); 6509 conf->seq_write = conf->seq_flush; 6510 activate_bit_delay(conf, conf->temp_inactive_list); 6511 } 6512 raid5_activate_delayed(conf); 6513 6514 while ((bio = remove_bio_from_retry(conf, &offset))) { 6515 int ok; 6516 spin_unlock_irq(&conf->device_lock); 6517 ok = retry_aligned_read(conf, bio, offset); 6518 spin_lock_irq(&conf->device_lock); 6519 if (!ok) 6520 break; 6521 handled++; 6522 } 6523 6524 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL, 6525 conf->temp_inactive_list); 6526 if (!batch_size && !released) 6527 break; 6528 handled += batch_size; 6529 6530 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) { 6531 spin_unlock_irq(&conf->device_lock); 6532 md_check_recovery(mddev); 6533 spin_lock_irq(&conf->device_lock); 6534 } 6535 } 6536 pr_debug("%d stripes handled\n", handled); 6537 6538 spin_unlock_irq(&conf->device_lock); 6539 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) && 6540 mutex_trylock(&conf->cache_size_mutex)) { 6541 grow_one_stripe(conf, __GFP_NOWARN); 6542 /* Set flag even if allocation failed. This helps 6543 * slow down allocation requests when mem is short 6544 */ 6545 set_bit(R5_DID_ALLOC, &conf->cache_state); 6546 mutex_unlock(&conf->cache_size_mutex); 6547 } 6548 6549 flush_deferred_bios(conf); 6550 6551 r5l_flush_stripe_to_raid(conf->log); 6552 6553 async_tx_issue_pending_all(); 6554 blk_finish_plug(&plug); 6555 6556 pr_debug("--- raid5d inactive\n"); 6557 } 6558 6559 static ssize_t 6560 raid5_show_stripe_cache_size(struct mddev *mddev, char *page) 6561 { 6562 struct r5conf *conf; 6563 int ret = 0; 6564 spin_lock(&mddev->lock); 6565 conf = mddev->private; 6566 if (conf) 6567 ret = sprintf(page, "%d\n", conf->min_nr_stripes); 6568 spin_unlock(&mddev->lock); 6569 return ret; 6570 } 6571 6572 int 6573 raid5_set_cache_size(struct mddev *mddev, int size) 6574 { 6575 int result = 0; 6576 struct r5conf *conf = mddev->private; 6577 6578 if (size <= 16 || size > 32768) 6579 return -EINVAL; 6580 6581 conf->min_nr_stripes = size; 6582 mutex_lock(&conf->cache_size_mutex); 6583 while (size < conf->max_nr_stripes && 6584 drop_one_stripe(conf)) 6585 ; 6586 mutex_unlock(&conf->cache_size_mutex); 6587 6588 md_allow_write(mddev); 6589 6590 mutex_lock(&conf->cache_size_mutex); 6591 while (size > conf->max_nr_stripes) 6592 if (!grow_one_stripe(conf, GFP_KERNEL)) { 6593 conf->min_nr_stripes = conf->max_nr_stripes; 6594 result = -ENOMEM; 6595 break; 6596 } 6597 mutex_unlock(&conf->cache_size_mutex); 6598 6599 return result; 6600 } 6601 EXPORT_SYMBOL(raid5_set_cache_size); 6602 6603 static ssize_t 6604 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len) 6605 { 6606 struct r5conf *conf; 6607 unsigned long new; 6608 int err; 6609 6610 if (len >= PAGE_SIZE) 6611 return -EINVAL; 6612 if (kstrtoul(page, 10, &new)) 6613 return -EINVAL; 6614 err = mddev_lock(mddev); 6615 if (err) 6616 return err; 6617 conf = mddev->private; 6618 if (!conf) 6619 err = -ENODEV; 6620 else 6621 err = raid5_set_cache_size(mddev, new); 6622 mddev_unlock(mddev); 6623 6624 return err ?: len; 6625 } 6626 6627 static struct md_sysfs_entry 6628 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR, 6629 raid5_show_stripe_cache_size, 6630 raid5_store_stripe_cache_size); 6631 6632 static ssize_t 6633 raid5_show_rmw_level(struct mddev *mddev, char *page) 6634 { 6635 struct r5conf *conf = mddev->private; 6636 if (conf) 6637 return sprintf(page, "%d\n", conf->rmw_level); 6638 else 6639 return 0; 6640 } 6641 6642 static ssize_t 6643 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len) 6644 { 6645 struct r5conf *conf = mddev->private; 6646 unsigned long new; 6647 6648 if (!conf) 6649 return -ENODEV; 6650 6651 if (len >= PAGE_SIZE) 6652 return -EINVAL; 6653 6654 if (kstrtoul(page, 10, &new)) 6655 return -EINVAL; 6656 6657 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome) 6658 return -EINVAL; 6659 6660 if (new != PARITY_DISABLE_RMW && 6661 new != PARITY_ENABLE_RMW && 6662 new != PARITY_PREFER_RMW) 6663 return -EINVAL; 6664 6665 conf->rmw_level = new; 6666 return len; 6667 } 6668 6669 static struct md_sysfs_entry 6670 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR, 6671 raid5_show_rmw_level, 6672 raid5_store_rmw_level); 6673 6674 static ssize_t 6675 raid5_show_stripe_size(struct mddev *mddev, char *page) 6676 { 6677 struct r5conf *conf; 6678 int ret = 0; 6679 6680 spin_lock(&mddev->lock); 6681 conf = mddev->private; 6682 if (conf) 6683 ret = sprintf(page, "%lu\n", RAID5_STRIPE_SIZE(conf)); 6684 spin_unlock(&mddev->lock); 6685 return ret; 6686 } 6687 6688 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 6689 static ssize_t 6690 raid5_store_stripe_size(struct mddev *mddev, const char *page, size_t len) 6691 { 6692 struct r5conf *conf; 6693 unsigned long new; 6694 int err; 6695 int size; 6696 6697 if (len >= PAGE_SIZE) 6698 return -EINVAL; 6699 if (kstrtoul(page, 10, &new)) 6700 return -EINVAL; 6701 6702 /* 6703 * The value should not be bigger than PAGE_SIZE. It requires to 6704 * be multiple of DEFAULT_STRIPE_SIZE and the value should be power 6705 * of two. 6706 */ 6707 if (new % DEFAULT_STRIPE_SIZE != 0 || 6708 new > PAGE_SIZE || new == 0 || 6709 new != roundup_pow_of_two(new)) 6710 return -EINVAL; 6711 6712 err = mddev_lock(mddev); 6713 if (err) 6714 return err; 6715 6716 conf = mddev->private; 6717 if (!conf) { 6718 err = -ENODEV; 6719 goto out_unlock; 6720 } 6721 6722 if (new == conf->stripe_size) 6723 goto out_unlock; 6724 6725 pr_debug("md/raid: change stripe_size from %lu to %lu\n", 6726 conf->stripe_size, new); 6727 6728 if (mddev->sync_thread || 6729 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 6730 mddev->reshape_position != MaxSector || 6731 mddev->sysfs_active) { 6732 err = -EBUSY; 6733 goto out_unlock; 6734 } 6735 6736 mddev_suspend(mddev); 6737 mutex_lock(&conf->cache_size_mutex); 6738 size = conf->max_nr_stripes; 6739 6740 shrink_stripes(conf); 6741 6742 conf->stripe_size = new; 6743 conf->stripe_shift = ilog2(new) - 9; 6744 conf->stripe_sectors = new >> 9; 6745 if (grow_stripes(conf, size)) { 6746 pr_warn("md/raid:%s: couldn't allocate buffers\n", 6747 mdname(mddev)); 6748 err = -ENOMEM; 6749 } 6750 mutex_unlock(&conf->cache_size_mutex); 6751 mddev_resume(mddev); 6752 6753 out_unlock: 6754 mddev_unlock(mddev); 6755 return err ?: len; 6756 } 6757 6758 static struct md_sysfs_entry 6759 raid5_stripe_size = __ATTR(stripe_size, 0644, 6760 raid5_show_stripe_size, 6761 raid5_store_stripe_size); 6762 #else 6763 static struct md_sysfs_entry 6764 raid5_stripe_size = __ATTR(stripe_size, 0444, 6765 raid5_show_stripe_size, 6766 NULL); 6767 #endif 6768 6769 static ssize_t 6770 raid5_show_preread_threshold(struct mddev *mddev, char *page) 6771 { 6772 struct r5conf *conf; 6773 int ret = 0; 6774 spin_lock(&mddev->lock); 6775 conf = mddev->private; 6776 if (conf) 6777 ret = sprintf(page, "%d\n", conf->bypass_threshold); 6778 spin_unlock(&mddev->lock); 6779 return ret; 6780 } 6781 6782 static ssize_t 6783 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len) 6784 { 6785 struct r5conf *conf; 6786 unsigned long new; 6787 int err; 6788 6789 if (len >= PAGE_SIZE) 6790 return -EINVAL; 6791 if (kstrtoul(page, 10, &new)) 6792 return -EINVAL; 6793 6794 err = mddev_lock(mddev); 6795 if (err) 6796 return err; 6797 conf = mddev->private; 6798 if (!conf) 6799 err = -ENODEV; 6800 else if (new > conf->min_nr_stripes) 6801 err = -EINVAL; 6802 else 6803 conf->bypass_threshold = new; 6804 mddev_unlock(mddev); 6805 return err ?: len; 6806 } 6807 6808 static struct md_sysfs_entry 6809 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold, 6810 S_IRUGO | S_IWUSR, 6811 raid5_show_preread_threshold, 6812 raid5_store_preread_threshold); 6813 6814 static ssize_t 6815 raid5_show_skip_copy(struct mddev *mddev, char *page) 6816 { 6817 struct r5conf *conf; 6818 int ret = 0; 6819 spin_lock(&mddev->lock); 6820 conf = mddev->private; 6821 if (conf) 6822 ret = sprintf(page, "%d\n", conf->skip_copy); 6823 spin_unlock(&mddev->lock); 6824 return ret; 6825 } 6826 6827 static ssize_t 6828 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len) 6829 { 6830 struct r5conf *conf; 6831 unsigned long new; 6832 int err; 6833 6834 if (len >= PAGE_SIZE) 6835 return -EINVAL; 6836 if (kstrtoul(page, 10, &new)) 6837 return -EINVAL; 6838 new = !!new; 6839 6840 err = mddev_lock(mddev); 6841 if (err) 6842 return err; 6843 conf = mddev->private; 6844 if (!conf) 6845 err = -ENODEV; 6846 else if (new != conf->skip_copy) { 6847 struct request_queue *q = mddev->queue; 6848 6849 mddev_suspend(mddev); 6850 conf->skip_copy = new; 6851 if (new) 6852 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q); 6853 else 6854 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q); 6855 mddev_resume(mddev); 6856 } 6857 mddev_unlock(mddev); 6858 return err ?: len; 6859 } 6860 6861 static struct md_sysfs_entry 6862 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR, 6863 raid5_show_skip_copy, 6864 raid5_store_skip_copy); 6865 6866 static ssize_t 6867 stripe_cache_active_show(struct mddev *mddev, char *page) 6868 { 6869 struct r5conf *conf = mddev->private; 6870 if (conf) 6871 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes)); 6872 else 6873 return 0; 6874 } 6875 6876 static struct md_sysfs_entry 6877 raid5_stripecache_active = __ATTR_RO(stripe_cache_active); 6878 6879 static ssize_t 6880 raid5_show_group_thread_cnt(struct mddev *mddev, char *page) 6881 { 6882 struct r5conf *conf; 6883 int ret = 0; 6884 spin_lock(&mddev->lock); 6885 conf = mddev->private; 6886 if (conf) 6887 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group); 6888 spin_unlock(&mddev->lock); 6889 return ret; 6890 } 6891 6892 static int alloc_thread_groups(struct r5conf *conf, int cnt, 6893 int *group_cnt, 6894 struct r5worker_group **worker_groups); 6895 static ssize_t 6896 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len) 6897 { 6898 struct r5conf *conf; 6899 unsigned int new; 6900 int err; 6901 struct r5worker_group *new_groups, *old_groups; 6902 int group_cnt; 6903 6904 if (len >= PAGE_SIZE) 6905 return -EINVAL; 6906 if (kstrtouint(page, 10, &new)) 6907 return -EINVAL; 6908 /* 8192 should be big enough */ 6909 if (new > 8192) 6910 return -EINVAL; 6911 6912 err = mddev_lock(mddev); 6913 if (err) 6914 return err; 6915 conf = mddev->private; 6916 if (!conf) 6917 err = -ENODEV; 6918 else if (new != conf->worker_cnt_per_group) { 6919 mddev_suspend(mddev); 6920 6921 old_groups = conf->worker_groups; 6922 if (old_groups) 6923 flush_workqueue(raid5_wq); 6924 6925 err = alloc_thread_groups(conf, new, &group_cnt, &new_groups); 6926 if (!err) { 6927 spin_lock_irq(&conf->device_lock); 6928 conf->group_cnt = group_cnt; 6929 conf->worker_cnt_per_group = new; 6930 conf->worker_groups = new_groups; 6931 spin_unlock_irq(&conf->device_lock); 6932 6933 if (old_groups) 6934 kfree(old_groups[0].workers); 6935 kfree(old_groups); 6936 } 6937 mddev_resume(mddev); 6938 } 6939 mddev_unlock(mddev); 6940 6941 return err ?: len; 6942 } 6943 6944 static struct md_sysfs_entry 6945 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR, 6946 raid5_show_group_thread_cnt, 6947 raid5_store_group_thread_cnt); 6948 6949 static struct attribute *raid5_attrs[] = { 6950 &raid5_stripecache_size.attr, 6951 &raid5_stripecache_active.attr, 6952 &raid5_preread_bypass_threshold.attr, 6953 &raid5_group_thread_cnt.attr, 6954 &raid5_skip_copy.attr, 6955 &raid5_rmw_level.attr, 6956 &raid5_stripe_size.attr, 6957 &r5c_journal_mode.attr, 6958 &ppl_write_hint.attr, 6959 NULL, 6960 }; 6961 static const struct attribute_group raid5_attrs_group = { 6962 .name = NULL, 6963 .attrs = raid5_attrs, 6964 }; 6965 6966 static int alloc_thread_groups(struct r5conf *conf, int cnt, int *group_cnt, 6967 struct r5worker_group **worker_groups) 6968 { 6969 int i, j, k; 6970 ssize_t size; 6971 struct r5worker *workers; 6972 6973 if (cnt == 0) { 6974 *group_cnt = 0; 6975 *worker_groups = NULL; 6976 return 0; 6977 } 6978 *group_cnt = num_possible_nodes(); 6979 size = sizeof(struct r5worker) * cnt; 6980 workers = kcalloc(size, *group_cnt, GFP_NOIO); 6981 *worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group), 6982 GFP_NOIO); 6983 if (!*worker_groups || !workers) { 6984 kfree(workers); 6985 kfree(*worker_groups); 6986 return -ENOMEM; 6987 } 6988 6989 for (i = 0; i < *group_cnt; i++) { 6990 struct r5worker_group *group; 6991 6992 group = &(*worker_groups)[i]; 6993 INIT_LIST_HEAD(&group->handle_list); 6994 INIT_LIST_HEAD(&group->loprio_list); 6995 group->conf = conf; 6996 group->workers = workers + i * cnt; 6997 6998 for (j = 0; j < cnt; j++) { 6999 struct r5worker *worker = group->workers + j; 7000 worker->group = group; 7001 INIT_WORK(&worker->work, raid5_do_work); 7002 7003 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++) 7004 INIT_LIST_HEAD(worker->temp_inactive_list + k); 7005 } 7006 } 7007 7008 return 0; 7009 } 7010 7011 static void free_thread_groups(struct r5conf *conf) 7012 { 7013 if (conf->worker_groups) 7014 kfree(conf->worker_groups[0].workers); 7015 kfree(conf->worker_groups); 7016 conf->worker_groups = NULL; 7017 } 7018 7019 static sector_t 7020 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks) 7021 { 7022 struct r5conf *conf = mddev->private; 7023 7024 if (!sectors) 7025 sectors = mddev->dev_sectors; 7026 if (!raid_disks) 7027 /* size is defined by the smallest of previous and new size */ 7028 raid_disks = min(conf->raid_disks, conf->previous_raid_disks); 7029 7030 sectors &= ~((sector_t)conf->chunk_sectors - 1); 7031 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1); 7032 return sectors * (raid_disks - conf->max_degraded); 7033 } 7034 7035 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 7036 { 7037 safe_put_page(percpu->spare_page); 7038 percpu->spare_page = NULL; 7039 kvfree(percpu->scribble); 7040 percpu->scribble = NULL; 7041 } 7042 7043 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 7044 { 7045 if (conf->level == 6 && !percpu->spare_page) { 7046 percpu->spare_page = alloc_page(GFP_KERNEL); 7047 if (!percpu->spare_page) 7048 return -ENOMEM; 7049 } 7050 7051 if (scribble_alloc(percpu, 7052 max(conf->raid_disks, 7053 conf->previous_raid_disks), 7054 max(conf->chunk_sectors, 7055 conf->prev_chunk_sectors) 7056 / RAID5_STRIPE_SECTORS(conf))) { 7057 free_scratch_buffer(conf, percpu); 7058 return -ENOMEM; 7059 } 7060 7061 local_lock_init(&percpu->lock); 7062 return 0; 7063 } 7064 7065 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node) 7066 { 7067 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node); 7068 7069 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu)); 7070 return 0; 7071 } 7072 7073 static void raid5_free_percpu(struct r5conf *conf) 7074 { 7075 if (!conf->percpu) 7076 return; 7077 7078 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node); 7079 free_percpu(conf->percpu); 7080 } 7081 7082 static void free_conf(struct r5conf *conf) 7083 { 7084 int i; 7085 7086 log_exit(conf); 7087 7088 unregister_shrinker(&conf->shrinker); 7089 free_thread_groups(conf); 7090 shrink_stripes(conf); 7091 raid5_free_percpu(conf); 7092 for (i = 0; i < conf->pool_size; i++) 7093 if (conf->disks[i].extra_page) 7094 put_page(conf->disks[i].extra_page); 7095 kfree(conf->disks); 7096 bioset_exit(&conf->bio_split); 7097 kfree(conf->stripe_hashtbl); 7098 kfree(conf->pending_data); 7099 kfree(conf); 7100 } 7101 7102 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node) 7103 { 7104 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node); 7105 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu); 7106 7107 if (alloc_scratch_buffer(conf, percpu)) { 7108 pr_warn("%s: failed memory allocation for cpu%u\n", 7109 __func__, cpu); 7110 return -ENOMEM; 7111 } 7112 return 0; 7113 } 7114 7115 static int raid5_alloc_percpu(struct r5conf *conf) 7116 { 7117 int err = 0; 7118 7119 conf->percpu = alloc_percpu(struct raid5_percpu); 7120 if (!conf->percpu) 7121 return -ENOMEM; 7122 7123 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node); 7124 if (!err) { 7125 conf->scribble_disks = max(conf->raid_disks, 7126 conf->previous_raid_disks); 7127 conf->scribble_sectors = max(conf->chunk_sectors, 7128 conf->prev_chunk_sectors); 7129 } 7130 return err; 7131 } 7132 7133 static unsigned long raid5_cache_scan(struct shrinker *shrink, 7134 struct shrink_control *sc) 7135 { 7136 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker); 7137 unsigned long ret = SHRINK_STOP; 7138 7139 if (mutex_trylock(&conf->cache_size_mutex)) { 7140 ret= 0; 7141 while (ret < sc->nr_to_scan && 7142 conf->max_nr_stripes > conf->min_nr_stripes) { 7143 if (drop_one_stripe(conf) == 0) { 7144 ret = SHRINK_STOP; 7145 break; 7146 } 7147 ret++; 7148 } 7149 mutex_unlock(&conf->cache_size_mutex); 7150 } 7151 return ret; 7152 } 7153 7154 static unsigned long raid5_cache_count(struct shrinker *shrink, 7155 struct shrink_control *sc) 7156 { 7157 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker); 7158 7159 if (conf->max_nr_stripes < conf->min_nr_stripes) 7160 /* unlikely, but not impossible */ 7161 return 0; 7162 return conf->max_nr_stripes - conf->min_nr_stripes; 7163 } 7164 7165 static struct r5conf *setup_conf(struct mddev *mddev) 7166 { 7167 struct r5conf *conf; 7168 int raid_disk, memory, max_disks; 7169 struct md_rdev *rdev; 7170 struct disk_info *disk; 7171 char pers_name[6]; 7172 int i; 7173 int group_cnt; 7174 struct r5worker_group *new_group; 7175 int ret; 7176 7177 if (mddev->new_level != 5 7178 && mddev->new_level != 4 7179 && mddev->new_level != 6) { 7180 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n", 7181 mdname(mddev), mddev->new_level); 7182 return ERR_PTR(-EIO); 7183 } 7184 if ((mddev->new_level == 5 7185 && !algorithm_valid_raid5(mddev->new_layout)) || 7186 (mddev->new_level == 6 7187 && !algorithm_valid_raid6(mddev->new_layout))) { 7188 pr_warn("md/raid:%s: layout %d not supported\n", 7189 mdname(mddev), mddev->new_layout); 7190 return ERR_PTR(-EIO); 7191 } 7192 if (mddev->new_level == 6 && mddev->raid_disks < 4) { 7193 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n", 7194 mdname(mddev), mddev->raid_disks); 7195 return ERR_PTR(-EINVAL); 7196 } 7197 7198 if (!mddev->new_chunk_sectors || 7199 (mddev->new_chunk_sectors << 9) % PAGE_SIZE || 7200 !is_power_of_2(mddev->new_chunk_sectors)) { 7201 pr_warn("md/raid:%s: invalid chunk size %d\n", 7202 mdname(mddev), mddev->new_chunk_sectors << 9); 7203 return ERR_PTR(-EINVAL); 7204 } 7205 7206 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL); 7207 if (conf == NULL) 7208 goto abort; 7209 7210 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 7211 conf->stripe_size = DEFAULT_STRIPE_SIZE; 7212 conf->stripe_shift = ilog2(DEFAULT_STRIPE_SIZE) - 9; 7213 conf->stripe_sectors = DEFAULT_STRIPE_SIZE >> 9; 7214 #endif 7215 INIT_LIST_HEAD(&conf->free_list); 7216 INIT_LIST_HEAD(&conf->pending_list); 7217 conf->pending_data = kcalloc(PENDING_IO_MAX, 7218 sizeof(struct r5pending_data), 7219 GFP_KERNEL); 7220 if (!conf->pending_data) 7221 goto abort; 7222 for (i = 0; i < PENDING_IO_MAX; i++) 7223 list_add(&conf->pending_data[i].sibling, &conf->free_list); 7224 /* Don't enable multi-threading by default*/ 7225 if (!alloc_thread_groups(conf, 0, &group_cnt, &new_group)) { 7226 conf->group_cnt = group_cnt; 7227 conf->worker_cnt_per_group = 0; 7228 conf->worker_groups = new_group; 7229 } else 7230 goto abort; 7231 spin_lock_init(&conf->device_lock); 7232 seqcount_spinlock_init(&conf->gen_lock, &conf->device_lock); 7233 mutex_init(&conf->cache_size_mutex); 7234 init_waitqueue_head(&conf->wait_for_quiescent); 7235 init_waitqueue_head(&conf->wait_for_stripe); 7236 init_waitqueue_head(&conf->wait_for_overlap); 7237 INIT_LIST_HEAD(&conf->handle_list); 7238 INIT_LIST_HEAD(&conf->loprio_list); 7239 INIT_LIST_HEAD(&conf->hold_list); 7240 INIT_LIST_HEAD(&conf->delayed_list); 7241 INIT_LIST_HEAD(&conf->bitmap_list); 7242 init_llist_head(&conf->released_stripes); 7243 atomic_set(&conf->active_stripes, 0); 7244 atomic_set(&conf->preread_active_stripes, 0); 7245 atomic_set(&conf->active_aligned_reads, 0); 7246 spin_lock_init(&conf->pending_bios_lock); 7247 conf->batch_bio_dispatch = true; 7248 rdev_for_each(rdev, mddev) { 7249 if (test_bit(Journal, &rdev->flags)) 7250 continue; 7251 if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) { 7252 conf->batch_bio_dispatch = false; 7253 break; 7254 } 7255 } 7256 7257 conf->bypass_threshold = BYPASS_THRESHOLD; 7258 conf->recovery_disabled = mddev->recovery_disabled - 1; 7259 7260 conf->raid_disks = mddev->raid_disks; 7261 if (mddev->reshape_position == MaxSector) 7262 conf->previous_raid_disks = mddev->raid_disks; 7263 else 7264 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks; 7265 max_disks = max(conf->raid_disks, conf->previous_raid_disks); 7266 7267 conf->disks = kcalloc(max_disks, sizeof(struct disk_info), 7268 GFP_KERNEL); 7269 7270 if (!conf->disks) 7271 goto abort; 7272 7273 for (i = 0; i < max_disks; i++) { 7274 conf->disks[i].extra_page = alloc_page(GFP_KERNEL); 7275 if (!conf->disks[i].extra_page) 7276 goto abort; 7277 } 7278 7279 ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 7280 if (ret) 7281 goto abort; 7282 conf->mddev = mddev; 7283 7284 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL) 7285 goto abort; 7286 7287 /* We init hash_locks[0] separately to that it can be used 7288 * as the reference lock in the spin_lock_nest_lock() call 7289 * in lock_all_device_hash_locks_irq in order to convince 7290 * lockdep that we know what we are doing. 7291 */ 7292 spin_lock_init(conf->hash_locks); 7293 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 7294 spin_lock_init(conf->hash_locks + i); 7295 7296 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 7297 INIT_LIST_HEAD(conf->inactive_list + i); 7298 7299 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 7300 INIT_LIST_HEAD(conf->temp_inactive_list + i); 7301 7302 atomic_set(&conf->r5c_cached_full_stripes, 0); 7303 INIT_LIST_HEAD(&conf->r5c_full_stripe_list); 7304 atomic_set(&conf->r5c_cached_partial_stripes, 0); 7305 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list); 7306 atomic_set(&conf->r5c_flushing_full_stripes, 0); 7307 atomic_set(&conf->r5c_flushing_partial_stripes, 0); 7308 7309 conf->level = mddev->new_level; 7310 conf->chunk_sectors = mddev->new_chunk_sectors; 7311 if (raid5_alloc_percpu(conf) != 0) 7312 goto abort; 7313 7314 pr_debug("raid456: run(%s) called.\n", mdname(mddev)); 7315 7316 rdev_for_each(rdev, mddev) { 7317 raid_disk = rdev->raid_disk; 7318 if (raid_disk >= max_disks 7319 || raid_disk < 0 || test_bit(Journal, &rdev->flags)) 7320 continue; 7321 disk = conf->disks + raid_disk; 7322 7323 if (test_bit(Replacement, &rdev->flags)) { 7324 if (disk->replacement) 7325 goto abort; 7326 disk->replacement = rdev; 7327 } else { 7328 if (disk->rdev) 7329 goto abort; 7330 disk->rdev = rdev; 7331 } 7332 7333 if (test_bit(In_sync, &rdev->flags)) { 7334 char b[BDEVNAME_SIZE]; 7335 pr_info("md/raid:%s: device %s operational as raid disk %d\n", 7336 mdname(mddev), bdevname(rdev->bdev, b), raid_disk); 7337 } else if (rdev->saved_raid_disk != raid_disk) 7338 /* Cannot rely on bitmap to complete recovery */ 7339 conf->fullsync = 1; 7340 } 7341 7342 conf->level = mddev->new_level; 7343 if (conf->level == 6) { 7344 conf->max_degraded = 2; 7345 if (raid6_call.xor_syndrome) 7346 conf->rmw_level = PARITY_ENABLE_RMW; 7347 else 7348 conf->rmw_level = PARITY_DISABLE_RMW; 7349 } else { 7350 conf->max_degraded = 1; 7351 conf->rmw_level = PARITY_ENABLE_RMW; 7352 } 7353 conf->algorithm = mddev->new_layout; 7354 conf->reshape_progress = mddev->reshape_position; 7355 if (conf->reshape_progress != MaxSector) { 7356 conf->prev_chunk_sectors = mddev->chunk_sectors; 7357 conf->prev_algo = mddev->layout; 7358 } else { 7359 conf->prev_chunk_sectors = conf->chunk_sectors; 7360 conf->prev_algo = conf->algorithm; 7361 } 7362 7363 conf->min_nr_stripes = NR_STRIPES; 7364 if (mddev->reshape_position != MaxSector) { 7365 int stripes = max_t(int, 7366 ((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4, 7367 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4); 7368 conf->min_nr_stripes = max(NR_STRIPES, stripes); 7369 if (conf->min_nr_stripes != NR_STRIPES) 7370 pr_info("md/raid:%s: force stripe size %d for reshape\n", 7371 mdname(mddev), conf->min_nr_stripes); 7372 } 7373 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) + 7374 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024; 7375 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS); 7376 if (grow_stripes(conf, conf->min_nr_stripes)) { 7377 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n", 7378 mdname(mddev), memory); 7379 goto abort; 7380 } else 7381 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory); 7382 /* 7383 * Losing a stripe head costs more than the time to refill it, 7384 * it reduces the queue depth and so can hurt throughput. 7385 * So set it rather large, scaled by number of devices. 7386 */ 7387 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4; 7388 conf->shrinker.scan_objects = raid5_cache_scan; 7389 conf->shrinker.count_objects = raid5_cache_count; 7390 conf->shrinker.batch = 128; 7391 conf->shrinker.flags = 0; 7392 if (register_shrinker(&conf->shrinker)) { 7393 pr_warn("md/raid:%s: couldn't register shrinker.\n", 7394 mdname(mddev)); 7395 goto abort; 7396 } 7397 7398 sprintf(pers_name, "raid%d", mddev->new_level); 7399 conf->thread = md_register_thread(raid5d, mddev, pers_name); 7400 if (!conf->thread) { 7401 pr_warn("md/raid:%s: couldn't allocate thread.\n", 7402 mdname(mddev)); 7403 goto abort; 7404 } 7405 7406 return conf; 7407 7408 abort: 7409 if (conf) { 7410 free_conf(conf); 7411 return ERR_PTR(-EIO); 7412 } else 7413 return ERR_PTR(-ENOMEM); 7414 } 7415 7416 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded) 7417 { 7418 switch (algo) { 7419 case ALGORITHM_PARITY_0: 7420 if (raid_disk < max_degraded) 7421 return 1; 7422 break; 7423 case ALGORITHM_PARITY_N: 7424 if (raid_disk >= raid_disks - max_degraded) 7425 return 1; 7426 break; 7427 case ALGORITHM_PARITY_0_6: 7428 if (raid_disk == 0 || 7429 raid_disk == raid_disks - 1) 7430 return 1; 7431 break; 7432 case ALGORITHM_LEFT_ASYMMETRIC_6: 7433 case ALGORITHM_RIGHT_ASYMMETRIC_6: 7434 case ALGORITHM_LEFT_SYMMETRIC_6: 7435 case ALGORITHM_RIGHT_SYMMETRIC_6: 7436 if (raid_disk == raid_disks - 1) 7437 return 1; 7438 } 7439 return 0; 7440 } 7441 7442 static void raid5_set_io_opt(struct r5conf *conf) 7443 { 7444 blk_queue_io_opt(conf->mddev->queue, (conf->chunk_sectors << 9) * 7445 (conf->raid_disks - conf->max_degraded)); 7446 } 7447 7448 static int raid5_run(struct mddev *mddev) 7449 { 7450 struct r5conf *conf; 7451 int working_disks = 0; 7452 int dirty_parity_disks = 0; 7453 struct md_rdev *rdev; 7454 struct md_rdev *journal_dev = NULL; 7455 sector_t reshape_offset = 0; 7456 int i, ret = 0; 7457 long long min_offset_diff = 0; 7458 int first = 1; 7459 7460 if (acct_bioset_init(mddev)) { 7461 pr_err("md/raid456:%s: alloc acct bioset failed.\n", mdname(mddev)); 7462 return -ENOMEM; 7463 } 7464 7465 if (mddev_init_writes_pending(mddev) < 0) { 7466 ret = -ENOMEM; 7467 goto exit_acct_set; 7468 } 7469 7470 if (mddev->recovery_cp != MaxSector) 7471 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n", 7472 mdname(mddev)); 7473 7474 rdev_for_each(rdev, mddev) { 7475 long long diff; 7476 7477 if (test_bit(Journal, &rdev->flags)) { 7478 journal_dev = rdev; 7479 continue; 7480 } 7481 if (rdev->raid_disk < 0) 7482 continue; 7483 diff = (rdev->new_data_offset - rdev->data_offset); 7484 if (first) { 7485 min_offset_diff = diff; 7486 first = 0; 7487 } else if (mddev->reshape_backwards && 7488 diff < min_offset_diff) 7489 min_offset_diff = diff; 7490 else if (!mddev->reshape_backwards && 7491 diff > min_offset_diff) 7492 min_offset_diff = diff; 7493 } 7494 7495 if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) && 7496 (mddev->bitmap_info.offset || mddev->bitmap_info.file)) { 7497 pr_notice("md/raid:%s: array cannot have both journal and bitmap\n", 7498 mdname(mddev)); 7499 ret = -EINVAL; 7500 goto exit_acct_set; 7501 } 7502 7503 if (mddev->reshape_position != MaxSector) { 7504 /* Check that we can continue the reshape. 7505 * Difficulties arise if the stripe we would write to 7506 * next is at or after the stripe we would read from next. 7507 * For a reshape that changes the number of devices, this 7508 * is only possible for a very short time, and mdadm makes 7509 * sure that time appears to have past before assembling 7510 * the array. So we fail if that time hasn't passed. 7511 * For a reshape that keeps the number of devices the same 7512 * mdadm must be monitoring the reshape can keeping the 7513 * critical areas read-only and backed up. It will start 7514 * the array in read-only mode, so we check for that. 7515 */ 7516 sector_t here_new, here_old; 7517 int old_disks; 7518 int max_degraded = (mddev->level == 6 ? 2 : 1); 7519 int chunk_sectors; 7520 int new_data_disks; 7521 7522 if (journal_dev) { 7523 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n", 7524 mdname(mddev)); 7525 ret = -EINVAL; 7526 goto exit_acct_set; 7527 } 7528 7529 if (mddev->new_level != mddev->level) { 7530 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n", 7531 mdname(mddev)); 7532 ret = -EINVAL; 7533 goto exit_acct_set; 7534 } 7535 old_disks = mddev->raid_disks - mddev->delta_disks; 7536 /* reshape_position must be on a new-stripe boundary, and one 7537 * further up in new geometry must map after here in old 7538 * geometry. 7539 * If the chunk sizes are different, then as we perform reshape 7540 * in units of the largest of the two, reshape_position needs 7541 * be a multiple of the largest chunk size times new data disks. 7542 */ 7543 here_new = mddev->reshape_position; 7544 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors); 7545 new_data_disks = mddev->raid_disks - max_degraded; 7546 if (sector_div(here_new, chunk_sectors * new_data_disks)) { 7547 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n", 7548 mdname(mddev)); 7549 ret = -EINVAL; 7550 goto exit_acct_set; 7551 } 7552 reshape_offset = here_new * chunk_sectors; 7553 /* here_new is the stripe we will write to */ 7554 here_old = mddev->reshape_position; 7555 sector_div(here_old, chunk_sectors * (old_disks-max_degraded)); 7556 /* here_old is the first stripe that we might need to read 7557 * from */ 7558 if (mddev->delta_disks == 0) { 7559 /* We cannot be sure it is safe to start an in-place 7560 * reshape. It is only safe if user-space is monitoring 7561 * and taking constant backups. 7562 * mdadm always starts a situation like this in 7563 * readonly mode so it can take control before 7564 * allowing any writes. So just check for that. 7565 */ 7566 if (abs(min_offset_diff) >= mddev->chunk_sectors && 7567 abs(min_offset_diff) >= mddev->new_chunk_sectors) 7568 /* not really in-place - so OK */; 7569 else if (mddev->ro == 0) { 7570 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n", 7571 mdname(mddev)); 7572 ret = -EINVAL; 7573 goto exit_acct_set; 7574 } 7575 } else if (mddev->reshape_backwards 7576 ? (here_new * chunk_sectors + min_offset_diff <= 7577 here_old * chunk_sectors) 7578 : (here_new * chunk_sectors >= 7579 here_old * chunk_sectors + (-min_offset_diff))) { 7580 /* Reading from the same stripe as writing to - bad */ 7581 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n", 7582 mdname(mddev)); 7583 ret = -EINVAL; 7584 goto exit_acct_set; 7585 } 7586 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev)); 7587 /* OK, we should be able to continue; */ 7588 } else { 7589 BUG_ON(mddev->level != mddev->new_level); 7590 BUG_ON(mddev->layout != mddev->new_layout); 7591 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors); 7592 BUG_ON(mddev->delta_disks != 0); 7593 } 7594 7595 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && 7596 test_bit(MD_HAS_PPL, &mddev->flags)) { 7597 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n", 7598 mdname(mddev)); 7599 clear_bit(MD_HAS_PPL, &mddev->flags); 7600 clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags); 7601 } 7602 7603 if (mddev->private == NULL) 7604 conf = setup_conf(mddev); 7605 else 7606 conf = mddev->private; 7607 7608 if (IS_ERR(conf)) { 7609 ret = PTR_ERR(conf); 7610 goto exit_acct_set; 7611 } 7612 7613 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 7614 if (!journal_dev) { 7615 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n", 7616 mdname(mddev)); 7617 mddev->ro = 1; 7618 set_disk_ro(mddev->gendisk, 1); 7619 } else if (mddev->recovery_cp == MaxSector) 7620 set_bit(MD_JOURNAL_CLEAN, &mddev->flags); 7621 } 7622 7623 conf->min_offset_diff = min_offset_diff; 7624 mddev->thread = conf->thread; 7625 conf->thread = NULL; 7626 mddev->private = conf; 7627 7628 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks; 7629 i++) { 7630 rdev = conf->disks[i].rdev; 7631 if (!rdev && conf->disks[i].replacement) { 7632 /* The replacement is all we have yet */ 7633 rdev = conf->disks[i].replacement; 7634 conf->disks[i].replacement = NULL; 7635 clear_bit(Replacement, &rdev->flags); 7636 conf->disks[i].rdev = rdev; 7637 } 7638 if (!rdev) 7639 continue; 7640 if (conf->disks[i].replacement && 7641 conf->reshape_progress != MaxSector) { 7642 /* replacements and reshape simply do not mix. */ 7643 pr_warn("md: cannot handle concurrent replacement and reshape.\n"); 7644 goto abort; 7645 } 7646 if (test_bit(In_sync, &rdev->flags)) { 7647 working_disks++; 7648 continue; 7649 } 7650 /* This disc is not fully in-sync. However if it 7651 * just stored parity (beyond the recovery_offset), 7652 * when we don't need to be concerned about the 7653 * array being dirty. 7654 * When reshape goes 'backwards', we never have 7655 * partially completed devices, so we only need 7656 * to worry about reshape going forwards. 7657 */ 7658 /* Hack because v0.91 doesn't store recovery_offset properly. */ 7659 if (mddev->major_version == 0 && 7660 mddev->minor_version > 90) 7661 rdev->recovery_offset = reshape_offset; 7662 7663 if (rdev->recovery_offset < reshape_offset) { 7664 /* We need to check old and new layout */ 7665 if (!only_parity(rdev->raid_disk, 7666 conf->algorithm, 7667 conf->raid_disks, 7668 conf->max_degraded)) 7669 continue; 7670 } 7671 if (!only_parity(rdev->raid_disk, 7672 conf->prev_algo, 7673 conf->previous_raid_disks, 7674 conf->max_degraded)) 7675 continue; 7676 dirty_parity_disks++; 7677 } 7678 7679 /* 7680 * 0 for a fully functional array, 1 or 2 for a degraded array. 7681 */ 7682 mddev->degraded = raid5_calc_degraded(conf); 7683 7684 if (has_failed(conf)) { 7685 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n", 7686 mdname(mddev), mddev->degraded, conf->raid_disks); 7687 goto abort; 7688 } 7689 7690 /* device size must be a multiple of chunk size */ 7691 mddev->dev_sectors &= ~((sector_t)mddev->chunk_sectors - 1); 7692 mddev->resync_max_sectors = mddev->dev_sectors; 7693 7694 if (mddev->degraded > dirty_parity_disks && 7695 mddev->recovery_cp != MaxSector) { 7696 if (test_bit(MD_HAS_PPL, &mddev->flags)) 7697 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n", 7698 mdname(mddev)); 7699 else if (mddev->ok_start_degraded) 7700 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n", 7701 mdname(mddev)); 7702 else { 7703 pr_crit("md/raid:%s: cannot start dirty degraded array.\n", 7704 mdname(mddev)); 7705 goto abort; 7706 } 7707 } 7708 7709 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n", 7710 mdname(mddev), conf->level, 7711 mddev->raid_disks-mddev->degraded, mddev->raid_disks, 7712 mddev->new_layout); 7713 7714 print_raid5_conf(conf); 7715 7716 if (conf->reshape_progress != MaxSector) { 7717 conf->reshape_safe = conf->reshape_progress; 7718 atomic_set(&conf->reshape_stripes, 0); 7719 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7720 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7721 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7722 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7723 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 7724 "reshape"); 7725 if (!mddev->sync_thread) 7726 goto abort; 7727 } 7728 7729 /* Ok, everything is just fine now */ 7730 if (mddev->to_remove == &raid5_attrs_group) 7731 mddev->to_remove = NULL; 7732 else if (mddev->kobj.sd && 7733 sysfs_create_group(&mddev->kobj, &raid5_attrs_group)) 7734 pr_warn("raid5: failed to create sysfs attributes for %s\n", 7735 mdname(mddev)); 7736 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 7737 7738 if (mddev->queue) { 7739 int chunk_size; 7740 /* read-ahead size must cover two whole stripes, which 7741 * is 2 * (datadisks) * chunksize where 'n' is the 7742 * number of raid devices 7743 */ 7744 int data_disks = conf->previous_raid_disks - conf->max_degraded; 7745 int stripe = data_disks * 7746 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 7747 7748 chunk_size = mddev->chunk_sectors << 9; 7749 blk_queue_io_min(mddev->queue, chunk_size); 7750 raid5_set_io_opt(conf); 7751 mddev->queue->limits.raid_partial_stripes_expensive = 1; 7752 /* 7753 * We can only discard a whole stripe. It doesn't make sense to 7754 * discard data disk but write parity disk 7755 */ 7756 stripe = stripe * PAGE_SIZE; 7757 stripe = roundup_pow_of_two(stripe); 7758 mddev->queue->limits.discard_alignment = stripe; 7759 mddev->queue->limits.discard_granularity = stripe; 7760 7761 blk_queue_max_write_same_sectors(mddev->queue, 0); 7762 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 7763 7764 rdev_for_each(rdev, mddev) { 7765 disk_stack_limits(mddev->gendisk, rdev->bdev, 7766 rdev->data_offset << 9); 7767 disk_stack_limits(mddev->gendisk, rdev->bdev, 7768 rdev->new_data_offset << 9); 7769 } 7770 7771 /* 7772 * zeroing is required, otherwise data 7773 * could be lost. Consider a scenario: discard a stripe 7774 * (the stripe could be inconsistent if 7775 * discard_zeroes_data is 0); write one disk of the 7776 * stripe (the stripe could be inconsistent again 7777 * depending on which disks are used to calculate 7778 * parity); the disk is broken; The stripe data of this 7779 * disk is lost. 7780 * 7781 * We only allow DISCARD if the sysadmin has confirmed that 7782 * only safe devices are in use by setting a module parameter. 7783 * A better idea might be to turn DISCARD into WRITE_ZEROES 7784 * requests, as that is required to be safe. 7785 */ 7786 if (devices_handle_discard_safely && 7787 mddev->queue->limits.max_discard_sectors >= (stripe >> 9) && 7788 mddev->queue->limits.discard_granularity >= stripe) 7789 blk_queue_flag_set(QUEUE_FLAG_DISCARD, 7790 mddev->queue); 7791 else 7792 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, 7793 mddev->queue); 7794 7795 blk_queue_max_hw_sectors(mddev->queue, UINT_MAX); 7796 } 7797 7798 if (log_init(conf, journal_dev, raid5_has_ppl(conf))) 7799 goto abort; 7800 7801 return 0; 7802 abort: 7803 md_unregister_thread(&mddev->thread); 7804 print_raid5_conf(conf); 7805 free_conf(conf); 7806 mddev->private = NULL; 7807 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev)); 7808 ret = -EIO; 7809 exit_acct_set: 7810 acct_bioset_exit(mddev); 7811 return ret; 7812 } 7813 7814 static void raid5_free(struct mddev *mddev, void *priv) 7815 { 7816 struct r5conf *conf = priv; 7817 7818 free_conf(conf); 7819 acct_bioset_exit(mddev); 7820 mddev->to_remove = &raid5_attrs_group; 7821 } 7822 7823 static void raid5_status(struct seq_file *seq, struct mddev *mddev) 7824 { 7825 struct r5conf *conf = mddev->private; 7826 int i; 7827 7828 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level, 7829 conf->chunk_sectors / 2, mddev->layout); 7830 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded); 7831 rcu_read_lock(); 7832 for (i = 0; i < conf->raid_disks; i++) { 7833 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 7834 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 7835 } 7836 rcu_read_unlock(); 7837 seq_printf (seq, "]"); 7838 } 7839 7840 static void print_raid5_conf (struct r5conf *conf) 7841 { 7842 int i; 7843 struct disk_info *tmp; 7844 7845 pr_debug("RAID conf printout:\n"); 7846 if (!conf) { 7847 pr_debug("(conf==NULL)\n"); 7848 return; 7849 } 7850 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level, 7851 conf->raid_disks, 7852 conf->raid_disks - conf->mddev->degraded); 7853 7854 for (i = 0; i < conf->raid_disks; i++) { 7855 char b[BDEVNAME_SIZE]; 7856 tmp = conf->disks + i; 7857 if (tmp->rdev) 7858 pr_debug(" disk %d, o:%d, dev:%s\n", 7859 i, !test_bit(Faulty, &tmp->rdev->flags), 7860 bdevname(tmp->rdev->bdev, b)); 7861 } 7862 } 7863 7864 static int raid5_spare_active(struct mddev *mddev) 7865 { 7866 int i; 7867 struct r5conf *conf = mddev->private; 7868 struct disk_info *tmp; 7869 int count = 0; 7870 unsigned long flags; 7871 7872 for (i = 0; i < conf->raid_disks; i++) { 7873 tmp = conf->disks + i; 7874 if (tmp->replacement 7875 && tmp->replacement->recovery_offset == MaxSector 7876 && !test_bit(Faulty, &tmp->replacement->flags) 7877 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 7878 /* Replacement has just become active. */ 7879 if (!tmp->rdev 7880 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 7881 count++; 7882 if (tmp->rdev) { 7883 /* Replaced device not technically faulty, 7884 * but we need to be sure it gets removed 7885 * and never re-added. 7886 */ 7887 set_bit(Faulty, &tmp->rdev->flags); 7888 sysfs_notify_dirent_safe( 7889 tmp->rdev->sysfs_state); 7890 } 7891 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 7892 } else if (tmp->rdev 7893 && tmp->rdev->recovery_offset == MaxSector 7894 && !test_bit(Faulty, &tmp->rdev->flags) 7895 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 7896 count++; 7897 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 7898 } 7899 } 7900 spin_lock_irqsave(&conf->device_lock, flags); 7901 mddev->degraded = raid5_calc_degraded(conf); 7902 spin_unlock_irqrestore(&conf->device_lock, flags); 7903 print_raid5_conf(conf); 7904 return count; 7905 } 7906 7907 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 7908 { 7909 struct r5conf *conf = mddev->private; 7910 int err = 0; 7911 int number = rdev->raid_disk; 7912 struct md_rdev **rdevp; 7913 struct disk_info *p = conf->disks + number; 7914 7915 print_raid5_conf(conf); 7916 if (test_bit(Journal, &rdev->flags) && conf->log) { 7917 /* 7918 * we can't wait pending write here, as this is called in 7919 * raid5d, wait will deadlock. 7920 * neilb: there is no locking about new writes here, 7921 * so this cannot be safe. 7922 */ 7923 if (atomic_read(&conf->active_stripes) || 7924 atomic_read(&conf->r5c_cached_full_stripes) || 7925 atomic_read(&conf->r5c_cached_partial_stripes)) { 7926 return -EBUSY; 7927 } 7928 log_exit(conf); 7929 return 0; 7930 } 7931 if (rdev == p->rdev) 7932 rdevp = &p->rdev; 7933 else if (rdev == p->replacement) 7934 rdevp = &p->replacement; 7935 else 7936 return 0; 7937 7938 if (number >= conf->raid_disks && 7939 conf->reshape_progress == MaxSector) 7940 clear_bit(In_sync, &rdev->flags); 7941 7942 if (test_bit(In_sync, &rdev->flags) || 7943 atomic_read(&rdev->nr_pending)) { 7944 err = -EBUSY; 7945 goto abort; 7946 } 7947 /* Only remove non-faulty devices if recovery 7948 * isn't possible. 7949 */ 7950 if (!test_bit(Faulty, &rdev->flags) && 7951 mddev->recovery_disabled != conf->recovery_disabled && 7952 !has_failed(conf) && 7953 (!p->replacement || p->replacement == rdev) && 7954 number < conf->raid_disks) { 7955 err = -EBUSY; 7956 goto abort; 7957 } 7958 *rdevp = NULL; 7959 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 7960 synchronize_rcu(); 7961 if (atomic_read(&rdev->nr_pending)) { 7962 /* lost the race, try later */ 7963 err = -EBUSY; 7964 *rdevp = rdev; 7965 } 7966 } 7967 if (!err) { 7968 err = log_modify(conf, rdev, false); 7969 if (err) 7970 goto abort; 7971 } 7972 if (p->replacement) { 7973 /* We must have just cleared 'rdev' */ 7974 p->rdev = p->replacement; 7975 clear_bit(Replacement, &p->replacement->flags); 7976 smp_mb(); /* Make sure other CPUs may see both as identical 7977 * but will never see neither - if they are careful 7978 */ 7979 p->replacement = NULL; 7980 7981 if (!err) 7982 err = log_modify(conf, p->rdev, true); 7983 } 7984 7985 clear_bit(WantReplacement, &rdev->flags); 7986 abort: 7987 7988 print_raid5_conf(conf); 7989 return err; 7990 } 7991 7992 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev) 7993 { 7994 struct r5conf *conf = mddev->private; 7995 int ret, err = -EEXIST; 7996 int disk; 7997 struct disk_info *p; 7998 int first = 0; 7999 int last = conf->raid_disks - 1; 8000 8001 if (test_bit(Journal, &rdev->flags)) { 8002 if (conf->log) 8003 return -EBUSY; 8004 8005 rdev->raid_disk = 0; 8006 /* 8007 * The array is in readonly mode if journal is missing, so no 8008 * write requests running. We should be safe 8009 */ 8010 ret = log_init(conf, rdev, false); 8011 if (ret) 8012 return ret; 8013 8014 ret = r5l_start(conf->log); 8015 if (ret) 8016 return ret; 8017 8018 return 0; 8019 } 8020 if (mddev->recovery_disabled == conf->recovery_disabled) 8021 return -EBUSY; 8022 8023 if (rdev->saved_raid_disk < 0 && has_failed(conf)) 8024 /* no point adding a device */ 8025 return -EINVAL; 8026 8027 if (rdev->raid_disk >= 0) 8028 first = last = rdev->raid_disk; 8029 8030 /* 8031 * find the disk ... but prefer rdev->saved_raid_disk 8032 * if possible. 8033 */ 8034 if (rdev->saved_raid_disk >= 0 && 8035 rdev->saved_raid_disk >= first && 8036 conf->disks[rdev->saved_raid_disk].rdev == NULL) 8037 first = rdev->saved_raid_disk; 8038 8039 for (disk = first; disk <= last; disk++) { 8040 p = conf->disks + disk; 8041 if (p->rdev == NULL) { 8042 clear_bit(In_sync, &rdev->flags); 8043 rdev->raid_disk = disk; 8044 if (rdev->saved_raid_disk != disk) 8045 conf->fullsync = 1; 8046 rcu_assign_pointer(p->rdev, rdev); 8047 8048 err = log_modify(conf, rdev, true); 8049 8050 goto out; 8051 } 8052 } 8053 for (disk = first; disk <= last; disk++) { 8054 p = conf->disks + disk; 8055 if (test_bit(WantReplacement, &p->rdev->flags) && 8056 p->replacement == NULL) { 8057 clear_bit(In_sync, &rdev->flags); 8058 set_bit(Replacement, &rdev->flags); 8059 rdev->raid_disk = disk; 8060 err = 0; 8061 conf->fullsync = 1; 8062 rcu_assign_pointer(p->replacement, rdev); 8063 break; 8064 } 8065 } 8066 out: 8067 print_raid5_conf(conf); 8068 return err; 8069 } 8070 8071 static int raid5_resize(struct mddev *mddev, sector_t sectors) 8072 { 8073 /* no resync is happening, and there is enough space 8074 * on all devices, so we can resize. 8075 * We need to make sure resync covers any new space. 8076 * If the array is shrinking we should possibly wait until 8077 * any io in the removed space completes, but it hardly seems 8078 * worth it. 8079 */ 8080 sector_t newsize; 8081 struct r5conf *conf = mddev->private; 8082 8083 if (raid5_has_log(conf) || raid5_has_ppl(conf)) 8084 return -EINVAL; 8085 sectors &= ~((sector_t)conf->chunk_sectors - 1); 8086 newsize = raid5_size(mddev, sectors, mddev->raid_disks); 8087 if (mddev->external_size && 8088 mddev->array_sectors > newsize) 8089 return -EINVAL; 8090 if (mddev->bitmap) { 8091 int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0); 8092 if (ret) 8093 return ret; 8094 } 8095 md_set_array_sectors(mddev, newsize); 8096 if (sectors > mddev->dev_sectors && 8097 mddev->recovery_cp > mddev->dev_sectors) { 8098 mddev->recovery_cp = mddev->dev_sectors; 8099 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8100 } 8101 mddev->dev_sectors = sectors; 8102 mddev->resync_max_sectors = sectors; 8103 return 0; 8104 } 8105 8106 static int check_stripe_cache(struct mddev *mddev) 8107 { 8108 /* Can only proceed if there are plenty of stripe_heads. 8109 * We need a minimum of one full stripe,, and for sensible progress 8110 * it is best to have about 4 times that. 8111 * If we require 4 times, then the default 256 4K stripe_heads will 8112 * allow for chunk sizes up to 256K, which is probably OK. 8113 * If the chunk size is greater, user-space should request more 8114 * stripe_heads first. 8115 */ 8116 struct r5conf *conf = mddev->private; 8117 if (((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4 8118 > conf->min_nr_stripes || 8119 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4 8120 > conf->min_nr_stripes) { 8121 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n", 8122 mdname(mddev), 8123 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9) 8124 / RAID5_STRIPE_SIZE(conf))*4); 8125 return 0; 8126 } 8127 return 1; 8128 } 8129 8130 static int check_reshape(struct mddev *mddev) 8131 { 8132 struct r5conf *conf = mddev->private; 8133 8134 if (raid5_has_log(conf) || raid5_has_ppl(conf)) 8135 return -EINVAL; 8136 if (mddev->delta_disks == 0 && 8137 mddev->new_layout == mddev->layout && 8138 mddev->new_chunk_sectors == mddev->chunk_sectors) 8139 return 0; /* nothing to do */ 8140 if (has_failed(conf)) 8141 return -EINVAL; 8142 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) { 8143 /* We might be able to shrink, but the devices must 8144 * be made bigger first. 8145 * For raid6, 4 is the minimum size. 8146 * Otherwise 2 is the minimum 8147 */ 8148 int min = 2; 8149 if (mddev->level == 6) 8150 min = 4; 8151 if (mddev->raid_disks + mddev->delta_disks < min) 8152 return -EINVAL; 8153 } 8154 8155 if (!check_stripe_cache(mddev)) 8156 return -ENOSPC; 8157 8158 if (mddev->new_chunk_sectors > mddev->chunk_sectors || 8159 mddev->delta_disks > 0) 8160 if (resize_chunks(conf, 8161 conf->previous_raid_disks 8162 + max(0, mddev->delta_disks), 8163 max(mddev->new_chunk_sectors, 8164 mddev->chunk_sectors) 8165 ) < 0) 8166 return -ENOMEM; 8167 8168 if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size) 8169 return 0; /* never bother to shrink */ 8170 return resize_stripes(conf, (conf->previous_raid_disks 8171 + mddev->delta_disks)); 8172 } 8173 8174 static int raid5_start_reshape(struct mddev *mddev) 8175 { 8176 struct r5conf *conf = mddev->private; 8177 struct md_rdev *rdev; 8178 int spares = 0; 8179 unsigned long flags; 8180 8181 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 8182 return -EBUSY; 8183 8184 if (!check_stripe_cache(mddev)) 8185 return -ENOSPC; 8186 8187 if (has_failed(conf)) 8188 return -EINVAL; 8189 8190 rdev_for_each(rdev, mddev) { 8191 if (!test_bit(In_sync, &rdev->flags) 8192 && !test_bit(Faulty, &rdev->flags)) 8193 spares++; 8194 } 8195 8196 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded) 8197 /* Not enough devices even to make a degraded array 8198 * of that size 8199 */ 8200 return -EINVAL; 8201 8202 /* Refuse to reduce size of the array. Any reductions in 8203 * array size must be through explicit setting of array_size 8204 * attribute. 8205 */ 8206 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks) 8207 < mddev->array_sectors) { 8208 pr_warn("md/raid:%s: array size must be reduced before number of disks\n", 8209 mdname(mddev)); 8210 return -EINVAL; 8211 } 8212 8213 atomic_set(&conf->reshape_stripes, 0); 8214 spin_lock_irq(&conf->device_lock); 8215 write_seqcount_begin(&conf->gen_lock); 8216 conf->previous_raid_disks = conf->raid_disks; 8217 conf->raid_disks += mddev->delta_disks; 8218 conf->prev_chunk_sectors = conf->chunk_sectors; 8219 conf->chunk_sectors = mddev->new_chunk_sectors; 8220 conf->prev_algo = conf->algorithm; 8221 conf->algorithm = mddev->new_layout; 8222 conf->generation++; 8223 /* Code that selects data_offset needs to see the generation update 8224 * if reshape_progress has been set - so a memory barrier needed. 8225 */ 8226 smp_mb(); 8227 if (mddev->reshape_backwards) 8228 conf->reshape_progress = raid5_size(mddev, 0, 0); 8229 else 8230 conf->reshape_progress = 0; 8231 conf->reshape_safe = conf->reshape_progress; 8232 write_seqcount_end(&conf->gen_lock); 8233 spin_unlock_irq(&conf->device_lock); 8234 8235 /* Now make sure any requests that proceeded on the assumption 8236 * the reshape wasn't running - like Discard or Read - have 8237 * completed. 8238 */ 8239 mddev_suspend(mddev); 8240 mddev_resume(mddev); 8241 8242 /* Add some new drives, as many as will fit. 8243 * We know there are enough to make the newly sized array work. 8244 * Don't add devices if we are reducing the number of 8245 * devices in the array. This is because it is not possible 8246 * to correctly record the "partially reconstructed" state of 8247 * such devices during the reshape and confusion could result. 8248 */ 8249 if (mddev->delta_disks >= 0) { 8250 rdev_for_each(rdev, mddev) 8251 if (rdev->raid_disk < 0 && 8252 !test_bit(Faulty, &rdev->flags)) { 8253 if (raid5_add_disk(mddev, rdev) == 0) { 8254 if (rdev->raid_disk 8255 >= conf->previous_raid_disks) 8256 set_bit(In_sync, &rdev->flags); 8257 else 8258 rdev->recovery_offset = 0; 8259 8260 /* Failure here is OK */ 8261 sysfs_link_rdev(mddev, rdev); 8262 } 8263 } else if (rdev->raid_disk >= conf->previous_raid_disks 8264 && !test_bit(Faulty, &rdev->flags)) { 8265 /* This is a spare that was manually added */ 8266 set_bit(In_sync, &rdev->flags); 8267 } 8268 8269 /* When a reshape changes the number of devices, 8270 * ->degraded is measured against the larger of the 8271 * pre and post number of devices. 8272 */ 8273 spin_lock_irqsave(&conf->device_lock, flags); 8274 mddev->degraded = raid5_calc_degraded(conf); 8275 spin_unlock_irqrestore(&conf->device_lock, flags); 8276 } 8277 mddev->raid_disks = conf->raid_disks; 8278 mddev->reshape_position = conf->reshape_progress; 8279 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8280 8281 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8282 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8283 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 8284 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8285 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8286 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 8287 "reshape"); 8288 if (!mddev->sync_thread) { 8289 mddev->recovery = 0; 8290 spin_lock_irq(&conf->device_lock); 8291 write_seqcount_begin(&conf->gen_lock); 8292 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks; 8293 mddev->new_chunk_sectors = 8294 conf->chunk_sectors = conf->prev_chunk_sectors; 8295 mddev->new_layout = conf->algorithm = conf->prev_algo; 8296 rdev_for_each(rdev, mddev) 8297 rdev->new_data_offset = rdev->data_offset; 8298 smp_wmb(); 8299 conf->generation --; 8300 conf->reshape_progress = MaxSector; 8301 mddev->reshape_position = MaxSector; 8302 write_seqcount_end(&conf->gen_lock); 8303 spin_unlock_irq(&conf->device_lock); 8304 return -EAGAIN; 8305 } 8306 conf->reshape_checkpoint = jiffies; 8307 md_wakeup_thread(mddev->sync_thread); 8308 md_new_event(); 8309 return 0; 8310 } 8311 8312 /* This is called from the reshape thread and should make any 8313 * changes needed in 'conf' 8314 */ 8315 static void end_reshape(struct r5conf *conf) 8316 { 8317 8318 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 8319 struct md_rdev *rdev; 8320 8321 spin_lock_irq(&conf->device_lock); 8322 conf->previous_raid_disks = conf->raid_disks; 8323 md_finish_reshape(conf->mddev); 8324 smp_wmb(); 8325 conf->reshape_progress = MaxSector; 8326 conf->mddev->reshape_position = MaxSector; 8327 rdev_for_each(rdev, conf->mddev) 8328 if (rdev->raid_disk >= 0 && 8329 !test_bit(Journal, &rdev->flags) && 8330 !test_bit(In_sync, &rdev->flags)) 8331 rdev->recovery_offset = MaxSector; 8332 spin_unlock_irq(&conf->device_lock); 8333 wake_up(&conf->wait_for_overlap); 8334 8335 if (conf->mddev->queue) 8336 raid5_set_io_opt(conf); 8337 } 8338 } 8339 8340 /* This is called from the raid5d thread with mddev_lock held. 8341 * It makes config changes to the device. 8342 */ 8343 static void raid5_finish_reshape(struct mddev *mddev) 8344 { 8345 struct r5conf *conf = mddev->private; 8346 8347 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8348 8349 if (mddev->delta_disks <= 0) { 8350 int d; 8351 spin_lock_irq(&conf->device_lock); 8352 mddev->degraded = raid5_calc_degraded(conf); 8353 spin_unlock_irq(&conf->device_lock); 8354 for (d = conf->raid_disks ; 8355 d < conf->raid_disks - mddev->delta_disks; 8356 d++) { 8357 struct md_rdev *rdev = conf->disks[d].rdev; 8358 if (rdev) 8359 clear_bit(In_sync, &rdev->flags); 8360 rdev = conf->disks[d].replacement; 8361 if (rdev) 8362 clear_bit(In_sync, &rdev->flags); 8363 } 8364 } 8365 mddev->layout = conf->algorithm; 8366 mddev->chunk_sectors = conf->chunk_sectors; 8367 mddev->reshape_position = MaxSector; 8368 mddev->delta_disks = 0; 8369 mddev->reshape_backwards = 0; 8370 } 8371 } 8372 8373 static void raid5_quiesce(struct mddev *mddev, int quiesce) 8374 { 8375 struct r5conf *conf = mddev->private; 8376 8377 if (quiesce) { 8378 /* stop all writes */ 8379 lock_all_device_hash_locks_irq(conf); 8380 /* '2' tells resync/reshape to pause so that all 8381 * active stripes can drain 8382 */ 8383 r5c_flush_cache(conf, INT_MAX); 8384 /* need a memory barrier to make sure read_one_chunk() sees 8385 * quiesce started and reverts to slow (locked) path. 8386 */ 8387 smp_store_release(&conf->quiesce, 2); 8388 wait_event_cmd(conf->wait_for_quiescent, 8389 atomic_read(&conf->active_stripes) == 0 && 8390 atomic_read(&conf->active_aligned_reads) == 0, 8391 unlock_all_device_hash_locks_irq(conf), 8392 lock_all_device_hash_locks_irq(conf)); 8393 conf->quiesce = 1; 8394 unlock_all_device_hash_locks_irq(conf); 8395 /* allow reshape to continue */ 8396 wake_up(&conf->wait_for_overlap); 8397 } else { 8398 /* re-enable writes */ 8399 lock_all_device_hash_locks_irq(conf); 8400 conf->quiesce = 0; 8401 wake_up(&conf->wait_for_quiescent); 8402 wake_up(&conf->wait_for_overlap); 8403 unlock_all_device_hash_locks_irq(conf); 8404 } 8405 log_quiesce(conf, quiesce); 8406 } 8407 8408 static void *raid45_takeover_raid0(struct mddev *mddev, int level) 8409 { 8410 struct r0conf *raid0_conf = mddev->private; 8411 sector_t sectors; 8412 8413 /* for raid0 takeover only one zone is supported */ 8414 if (raid0_conf->nr_strip_zones > 1) { 8415 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n", 8416 mdname(mddev)); 8417 return ERR_PTR(-EINVAL); 8418 } 8419 8420 sectors = raid0_conf->strip_zone[0].zone_end; 8421 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev); 8422 mddev->dev_sectors = sectors; 8423 mddev->new_level = level; 8424 mddev->new_layout = ALGORITHM_PARITY_N; 8425 mddev->new_chunk_sectors = mddev->chunk_sectors; 8426 mddev->raid_disks += 1; 8427 mddev->delta_disks = 1; 8428 /* make sure it will be not marked as dirty */ 8429 mddev->recovery_cp = MaxSector; 8430 8431 return setup_conf(mddev); 8432 } 8433 8434 static void *raid5_takeover_raid1(struct mddev *mddev) 8435 { 8436 int chunksect; 8437 void *ret; 8438 8439 if (mddev->raid_disks != 2 || 8440 mddev->degraded > 1) 8441 return ERR_PTR(-EINVAL); 8442 8443 /* Should check if there are write-behind devices? */ 8444 8445 chunksect = 64*2; /* 64K by default */ 8446 8447 /* The array must be an exact multiple of chunksize */ 8448 while (chunksect && (mddev->array_sectors & (chunksect-1))) 8449 chunksect >>= 1; 8450 8451 if ((chunksect<<9) < RAID5_STRIPE_SIZE((struct r5conf *)mddev->private)) 8452 /* array size does not allow a suitable chunk size */ 8453 return ERR_PTR(-EINVAL); 8454 8455 mddev->new_level = 5; 8456 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC; 8457 mddev->new_chunk_sectors = chunksect; 8458 8459 ret = setup_conf(mddev); 8460 if (!IS_ERR(ret)) 8461 mddev_clear_unsupported_flags(mddev, 8462 UNSUPPORTED_MDDEV_FLAGS); 8463 return ret; 8464 } 8465 8466 static void *raid5_takeover_raid6(struct mddev *mddev) 8467 { 8468 int new_layout; 8469 8470 switch (mddev->layout) { 8471 case ALGORITHM_LEFT_ASYMMETRIC_6: 8472 new_layout = ALGORITHM_LEFT_ASYMMETRIC; 8473 break; 8474 case ALGORITHM_RIGHT_ASYMMETRIC_6: 8475 new_layout = ALGORITHM_RIGHT_ASYMMETRIC; 8476 break; 8477 case ALGORITHM_LEFT_SYMMETRIC_6: 8478 new_layout = ALGORITHM_LEFT_SYMMETRIC; 8479 break; 8480 case ALGORITHM_RIGHT_SYMMETRIC_6: 8481 new_layout = ALGORITHM_RIGHT_SYMMETRIC; 8482 break; 8483 case ALGORITHM_PARITY_0_6: 8484 new_layout = ALGORITHM_PARITY_0; 8485 break; 8486 case ALGORITHM_PARITY_N: 8487 new_layout = ALGORITHM_PARITY_N; 8488 break; 8489 default: 8490 return ERR_PTR(-EINVAL); 8491 } 8492 mddev->new_level = 5; 8493 mddev->new_layout = new_layout; 8494 mddev->delta_disks = -1; 8495 mddev->raid_disks -= 1; 8496 return setup_conf(mddev); 8497 } 8498 8499 static int raid5_check_reshape(struct mddev *mddev) 8500 { 8501 /* For a 2-drive array, the layout and chunk size can be changed 8502 * immediately as not restriping is needed. 8503 * For larger arrays we record the new value - after validation 8504 * to be used by a reshape pass. 8505 */ 8506 struct r5conf *conf = mddev->private; 8507 int new_chunk = mddev->new_chunk_sectors; 8508 8509 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout)) 8510 return -EINVAL; 8511 if (new_chunk > 0) { 8512 if (!is_power_of_2(new_chunk)) 8513 return -EINVAL; 8514 if (new_chunk < (PAGE_SIZE>>9)) 8515 return -EINVAL; 8516 if (mddev->array_sectors & (new_chunk-1)) 8517 /* not factor of array size */ 8518 return -EINVAL; 8519 } 8520 8521 /* They look valid */ 8522 8523 if (mddev->raid_disks == 2) { 8524 /* can make the change immediately */ 8525 if (mddev->new_layout >= 0) { 8526 conf->algorithm = mddev->new_layout; 8527 mddev->layout = mddev->new_layout; 8528 } 8529 if (new_chunk > 0) { 8530 conf->chunk_sectors = new_chunk ; 8531 mddev->chunk_sectors = new_chunk; 8532 } 8533 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8534 md_wakeup_thread(mddev->thread); 8535 } 8536 return check_reshape(mddev); 8537 } 8538 8539 static int raid6_check_reshape(struct mddev *mddev) 8540 { 8541 int new_chunk = mddev->new_chunk_sectors; 8542 8543 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout)) 8544 return -EINVAL; 8545 if (new_chunk > 0) { 8546 if (!is_power_of_2(new_chunk)) 8547 return -EINVAL; 8548 if (new_chunk < (PAGE_SIZE >> 9)) 8549 return -EINVAL; 8550 if (mddev->array_sectors & (new_chunk-1)) 8551 /* not factor of array size */ 8552 return -EINVAL; 8553 } 8554 8555 /* They look valid */ 8556 return check_reshape(mddev); 8557 } 8558 8559 static void *raid5_takeover(struct mddev *mddev) 8560 { 8561 /* raid5 can take over: 8562 * raid0 - if there is only one strip zone - make it a raid4 layout 8563 * raid1 - if there are two drives. We need to know the chunk size 8564 * raid4 - trivial - just use a raid4 layout. 8565 * raid6 - Providing it is a *_6 layout 8566 */ 8567 if (mddev->level == 0) 8568 return raid45_takeover_raid0(mddev, 5); 8569 if (mddev->level == 1) 8570 return raid5_takeover_raid1(mddev); 8571 if (mddev->level == 4) { 8572 mddev->new_layout = ALGORITHM_PARITY_N; 8573 mddev->new_level = 5; 8574 return setup_conf(mddev); 8575 } 8576 if (mddev->level == 6) 8577 return raid5_takeover_raid6(mddev); 8578 8579 return ERR_PTR(-EINVAL); 8580 } 8581 8582 static void *raid4_takeover(struct mddev *mddev) 8583 { 8584 /* raid4 can take over: 8585 * raid0 - if there is only one strip zone 8586 * raid5 - if layout is right 8587 */ 8588 if (mddev->level == 0) 8589 return raid45_takeover_raid0(mddev, 4); 8590 if (mddev->level == 5 && 8591 mddev->layout == ALGORITHM_PARITY_N) { 8592 mddev->new_layout = 0; 8593 mddev->new_level = 4; 8594 return setup_conf(mddev); 8595 } 8596 return ERR_PTR(-EINVAL); 8597 } 8598 8599 static struct md_personality raid5_personality; 8600 8601 static void *raid6_takeover(struct mddev *mddev) 8602 { 8603 /* Currently can only take over a raid5. We map the 8604 * personality to an equivalent raid6 personality 8605 * with the Q block at the end. 8606 */ 8607 int new_layout; 8608 8609 if (mddev->pers != &raid5_personality) 8610 return ERR_PTR(-EINVAL); 8611 if (mddev->degraded > 1) 8612 return ERR_PTR(-EINVAL); 8613 if (mddev->raid_disks > 253) 8614 return ERR_PTR(-EINVAL); 8615 if (mddev->raid_disks < 3) 8616 return ERR_PTR(-EINVAL); 8617 8618 switch (mddev->layout) { 8619 case ALGORITHM_LEFT_ASYMMETRIC: 8620 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6; 8621 break; 8622 case ALGORITHM_RIGHT_ASYMMETRIC: 8623 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6; 8624 break; 8625 case ALGORITHM_LEFT_SYMMETRIC: 8626 new_layout = ALGORITHM_LEFT_SYMMETRIC_6; 8627 break; 8628 case ALGORITHM_RIGHT_SYMMETRIC: 8629 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6; 8630 break; 8631 case ALGORITHM_PARITY_0: 8632 new_layout = ALGORITHM_PARITY_0_6; 8633 break; 8634 case ALGORITHM_PARITY_N: 8635 new_layout = ALGORITHM_PARITY_N; 8636 break; 8637 default: 8638 return ERR_PTR(-EINVAL); 8639 } 8640 mddev->new_level = 6; 8641 mddev->new_layout = new_layout; 8642 mddev->delta_disks = 1; 8643 mddev->raid_disks += 1; 8644 return setup_conf(mddev); 8645 } 8646 8647 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf) 8648 { 8649 struct r5conf *conf; 8650 int err; 8651 8652 err = mddev_lock(mddev); 8653 if (err) 8654 return err; 8655 conf = mddev->private; 8656 if (!conf) { 8657 mddev_unlock(mddev); 8658 return -ENODEV; 8659 } 8660 8661 if (strncmp(buf, "ppl", 3) == 0) { 8662 /* ppl only works with RAID 5 */ 8663 if (!raid5_has_ppl(conf) && conf->level == 5) { 8664 err = log_init(conf, NULL, true); 8665 if (!err) { 8666 err = resize_stripes(conf, conf->pool_size); 8667 if (err) 8668 log_exit(conf); 8669 } 8670 } else 8671 err = -EINVAL; 8672 } else if (strncmp(buf, "resync", 6) == 0) { 8673 if (raid5_has_ppl(conf)) { 8674 mddev_suspend(mddev); 8675 log_exit(conf); 8676 mddev_resume(mddev); 8677 err = resize_stripes(conf, conf->pool_size); 8678 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) && 8679 r5l_log_disk_error(conf)) { 8680 bool journal_dev_exists = false; 8681 struct md_rdev *rdev; 8682 8683 rdev_for_each(rdev, mddev) 8684 if (test_bit(Journal, &rdev->flags)) { 8685 journal_dev_exists = true; 8686 break; 8687 } 8688 8689 if (!journal_dev_exists) { 8690 mddev_suspend(mddev); 8691 clear_bit(MD_HAS_JOURNAL, &mddev->flags); 8692 mddev_resume(mddev); 8693 } else /* need remove journal device first */ 8694 err = -EBUSY; 8695 } else 8696 err = -EINVAL; 8697 } else { 8698 err = -EINVAL; 8699 } 8700 8701 if (!err) 8702 md_update_sb(mddev, 1); 8703 8704 mddev_unlock(mddev); 8705 8706 return err; 8707 } 8708 8709 static int raid5_start(struct mddev *mddev) 8710 { 8711 struct r5conf *conf = mddev->private; 8712 8713 return r5l_start(conf->log); 8714 } 8715 8716 static struct md_personality raid6_personality = 8717 { 8718 .name = "raid6", 8719 .level = 6, 8720 .owner = THIS_MODULE, 8721 .make_request = raid5_make_request, 8722 .run = raid5_run, 8723 .start = raid5_start, 8724 .free = raid5_free, 8725 .status = raid5_status, 8726 .error_handler = raid5_error, 8727 .hot_add_disk = raid5_add_disk, 8728 .hot_remove_disk= raid5_remove_disk, 8729 .spare_active = raid5_spare_active, 8730 .sync_request = raid5_sync_request, 8731 .resize = raid5_resize, 8732 .size = raid5_size, 8733 .check_reshape = raid6_check_reshape, 8734 .start_reshape = raid5_start_reshape, 8735 .finish_reshape = raid5_finish_reshape, 8736 .quiesce = raid5_quiesce, 8737 .takeover = raid6_takeover, 8738 .change_consistency_policy = raid5_change_consistency_policy, 8739 }; 8740 static struct md_personality raid5_personality = 8741 { 8742 .name = "raid5", 8743 .level = 5, 8744 .owner = THIS_MODULE, 8745 .make_request = raid5_make_request, 8746 .run = raid5_run, 8747 .start = raid5_start, 8748 .free = raid5_free, 8749 .status = raid5_status, 8750 .error_handler = raid5_error, 8751 .hot_add_disk = raid5_add_disk, 8752 .hot_remove_disk= raid5_remove_disk, 8753 .spare_active = raid5_spare_active, 8754 .sync_request = raid5_sync_request, 8755 .resize = raid5_resize, 8756 .size = raid5_size, 8757 .check_reshape = raid5_check_reshape, 8758 .start_reshape = raid5_start_reshape, 8759 .finish_reshape = raid5_finish_reshape, 8760 .quiesce = raid5_quiesce, 8761 .takeover = raid5_takeover, 8762 .change_consistency_policy = raid5_change_consistency_policy, 8763 }; 8764 8765 static struct md_personality raid4_personality = 8766 { 8767 .name = "raid4", 8768 .level = 4, 8769 .owner = THIS_MODULE, 8770 .make_request = raid5_make_request, 8771 .run = raid5_run, 8772 .start = raid5_start, 8773 .free = raid5_free, 8774 .status = raid5_status, 8775 .error_handler = raid5_error, 8776 .hot_add_disk = raid5_add_disk, 8777 .hot_remove_disk= raid5_remove_disk, 8778 .spare_active = raid5_spare_active, 8779 .sync_request = raid5_sync_request, 8780 .resize = raid5_resize, 8781 .size = raid5_size, 8782 .check_reshape = raid5_check_reshape, 8783 .start_reshape = raid5_start_reshape, 8784 .finish_reshape = raid5_finish_reshape, 8785 .quiesce = raid5_quiesce, 8786 .takeover = raid4_takeover, 8787 .change_consistency_policy = raid5_change_consistency_policy, 8788 }; 8789 8790 static int __init raid5_init(void) 8791 { 8792 int ret; 8793 8794 raid5_wq = alloc_workqueue("raid5wq", 8795 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0); 8796 if (!raid5_wq) 8797 return -ENOMEM; 8798 8799 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE, 8800 "md/raid5:prepare", 8801 raid456_cpu_up_prepare, 8802 raid456_cpu_dead); 8803 if (ret) { 8804 destroy_workqueue(raid5_wq); 8805 return ret; 8806 } 8807 register_md_personality(&raid6_personality); 8808 register_md_personality(&raid5_personality); 8809 register_md_personality(&raid4_personality); 8810 return 0; 8811 } 8812 8813 static void raid5_exit(void) 8814 { 8815 unregister_md_personality(&raid6_personality); 8816 unregister_md_personality(&raid5_personality); 8817 unregister_md_personality(&raid4_personality); 8818 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE); 8819 destroy_workqueue(raid5_wq); 8820 } 8821 8822 module_init(raid5_init); 8823 module_exit(raid5_exit); 8824 MODULE_LICENSE("GPL"); 8825 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD"); 8826 MODULE_ALIAS("md-personality-4"); /* RAID5 */ 8827 MODULE_ALIAS("md-raid5"); 8828 MODULE_ALIAS("md-raid4"); 8829 MODULE_ALIAS("md-level-5"); 8830 MODULE_ALIAS("md-level-4"); 8831 MODULE_ALIAS("md-personality-8"); /* RAID6 */ 8832 MODULE_ALIAS("md-raid6"); 8833 MODULE_ALIAS("md-level-6"); 8834 8835 /* This used to be two separate modules, they were: */ 8836 MODULE_ALIAS("raid5"); 8837 MODULE_ALIAS("raid6"); 8838