xref: /linux/drivers/md/raid5.c (revision b8bb76713ec50df2f11efee386e16f93d51e1076)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->bm_write is the number of the last batch successfully written.
31  * conf->bm_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is bm_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/kthread.h>
47 #include "raid6.h"
48 
49 #include <linux/raid/bitmap.h>
50 #include <linux/async_tx.h>
51 
52 /*
53  * Stripe cache
54  */
55 
56 #define NR_STRIPES		256
57 #define STRIPE_SIZE		PAGE_SIZE
58 #define STRIPE_SHIFT		(PAGE_SHIFT - 9)
59 #define STRIPE_SECTORS		(STRIPE_SIZE>>9)
60 #define	IO_THRESHOLD		1
61 #define BYPASS_THRESHOLD	1
62 #define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
63 #define HASH_MASK		(NR_HASH - 1)
64 
65 #define stripe_hash(conf, sect)	(&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
66 
67 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
68  * order without overlap.  There may be several bio's per stripe+device, and
69  * a bio could span several devices.
70  * When walking this list for a particular stripe+device, we must never proceed
71  * beyond a bio that extends past this device, as the next bio might no longer
72  * be valid.
73  * This macro is used to determine the 'next' bio in the list, given the sector
74  * of the current stripe+device
75  */
76 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
77 /*
78  * The following can be used to debug the driver
79  */
80 #define RAID5_PARANOIA	1
81 #if RAID5_PARANOIA && defined(CONFIG_SMP)
82 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
83 #else
84 # define CHECK_DEVLOCK()
85 #endif
86 
87 #ifdef DEBUG
88 #define inline
89 #define __inline__
90 #endif
91 
92 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
93 
94 #if !RAID6_USE_EMPTY_ZERO_PAGE
95 /* In .bss so it's zeroed */
96 const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
97 #endif
98 
99 /*
100  * We maintain a biased count of active stripes in the bottom 16 bits of
101  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
102  */
103 static inline int raid5_bi_phys_segments(struct bio *bio)
104 {
105 	return bio->bi_phys_segments & 0xffff;
106 }
107 
108 static inline int raid5_bi_hw_segments(struct bio *bio)
109 {
110 	return (bio->bi_phys_segments >> 16) & 0xffff;
111 }
112 
113 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
114 {
115 	--bio->bi_phys_segments;
116 	return raid5_bi_phys_segments(bio);
117 }
118 
119 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
120 {
121 	unsigned short val = raid5_bi_hw_segments(bio);
122 
123 	--val;
124 	bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
125 	return val;
126 }
127 
128 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
129 {
130 	bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
131 }
132 
133 static inline int raid6_next_disk(int disk, int raid_disks)
134 {
135 	disk++;
136 	return (disk < raid_disks) ? disk : 0;
137 }
138 
139 static void return_io(struct bio *return_bi)
140 {
141 	struct bio *bi = return_bi;
142 	while (bi) {
143 
144 		return_bi = bi->bi_next;
145 		bi->bi_next = NULL;
146 		bi->bi_size = 0;
147 		bio_endio(bi, 0);
148 		bi = return_bi;
149 	}
150 }
151 
152 static void print_raid5_conf (raid5_conf_t *conf);
153 
154 static int stripe_operations_active(struct stripe_head *sh)
155 {
156 	return sh->check_state || sh->reconstruct_state ||
157 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
158 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
159 }
160 
161 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
162 {
163 	if (atomic_dec_and_test(&sh->count)) {
164 		BUG_ON(!list_empty(&sh->lru));
165 		BUG_ON(atomic_read(&conf->active_stripes)==0);
166 		if (test_bit(STRIPE_HANDLE, &sh->state)) {
167 			if (test_bit(STRIPE_DELAYED, &sh->state)) {
168 				list_add_tail(&sh->lru, &conf->delayed_list);
169 				blk_plug_device(conf->mddev->queue);
170 			} else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
171 				   sh->bm_seq - conf->seq_write > 0) {
172 				list_add_tail(&sh->lru, &conf->bitmap_list);
173 				blk_plug_device(conf->mddev->queue);
174 			} else {
175 				clear_bit(STRIPE_BIT_DELAY, &sh->state);
176 				list_add_tail(&sh->lru, &conf->handle_list);
177 			}
178 			md_wakeup_thread(conf->mddev->thread);
179 		} else {
180 			BUG_ON(stripe_operations_active(sh));
181 			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
182 				atomic_dec(&conf->preread_active_stripes);
183 				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
184 					md_wakeup_thread(conf->mddev->thread);
185 			}
186 			atomic_dec(&conf->active_stripes);
187 			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
188 				list_add_tail(&sh->lru, &conf->inactive_list);
189 				wake_up(&conf->wait_for_stripe);
190 				if (conf->retry_read_aligned)
191 					md_wakeup_thread(conf->mddev->thread);
192 			}
193 		}
194 	}
195 }
196 static void release_stripe(struct stripe_head *sh)
197 {
198 	raid5_conf_t *conf = sh->raid_conf;
199 	unsigned long flags;
200 
201 	spin_lock_irqsave(&conf->device_lock, flags);
202 	__release_stripe(conf, sh);
203 	spin_unlock_irqrestore(&conf->device_lock, flags);
204 }
205 
206 static inline void remove_hash(struct stripe_head *sh)
207 {
208 	pr_debug("remove_hash(), stripe %llu\n",
209 		(unsigned long long)sh->sector);
210 
211 	hlist_del_init(&sh->hash);
212 }
213 
214 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
215 {
216 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
217 
218 	pr_debug("insert_hash(), stripe %llu\n",
219 		(unsigned long long)sh->sector);
220 
221 	CHECK_DEVLOCK();
222 	hlist_add_head(&sh->hash, hp);
223 }
224 
225 
226 /* find an idle stripe, make sure it is unhashed, and return it. */
227 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
228 {
229 	struct stripe_head *sh = NULL;
230 	struct list_head *first;
231 
232 	CHECK_DEVLOCK();
233 	if (list_empty(&conf->inactive_list))
234 		goto out;
235 	first = conf->inactive_list.next;
236 	sh = list_entry(first, struct stripe_head, lru);
237 	list_del_init(first);
238 	remove_hash(sh);
239 	atomic_inc(&conf->active_stripes);
240 out:
241 	return sh;
242 }
243 
244 static void shrink_buffers(struct stripe_head *sh, int num)
245 {
246 	struct page *p;
247 	int i;
248 
249 	for (i=0; i<num ; i++) {
250 		p = sh->dev[i].page;
251 		if (!p)
252 			continue;
253 		sh->dev[i].page = NULL;
254 		put_page(p);
255 	}
256 }
257 
258 static int grow_buffers(struct stripe_head *sh, int num)
259 {
260 	int i;
261 
262 	for (i=0; i<num; i++) {
263 		struct page *page;
264 
265 		if (!(page = alloc_page(GFP_KERNEL))) {
266 			return 1;
267 		}
268 		sh->dev[i].page = page;
269 	}
270 	return 0;
271 }
272 
273 static void raid5_build_block(struct stripe_head *sh, int i);
274 
275 static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks)
276 {
277 	raid5_conf_t *conf = sh->raid_conf;
278 	int i;
279 
280 	BUG_ON(atomic_read(&sh->count) != 0);
281 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
282 	BUG_ON(stripe_operations_active(sh));
283 
284 	CHECK_DEVLOCK();
285 	pr_debug("init_stripe called, stripe %llu\n",
286 		(unsigned long long)sh->sector);
287 
288 	remove_hash(sh);
289 
290 	sh->sector = sector;
291 	sh->pd_idx = pd_idx;
292 	sh->state = 0;
293 
294 	sh->disks = disks;
295 
296 	for (i = sh->disks; i--; ) {
297 		struct r5dev *dev = &sh->dev[i];
298 
299 		if (dev->toread || dev->read || dev->towrite || dev->written ||
300 		    test_bit(R5_LOCKED, &dev->flags)) {
301 			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
302 			       (unsigned long long)sh->sector, i, dev->toread,
303 			       dev->read, dev->towrite, dev->written,
304 			       test_bit(R5_LOCKED, &dev->flags));
305 			BUG();
306 		}
307 		dev->flags = 0;
308 		raid5_build_block(sh, i);
309 	}
310 	insert_hash(conf, sh);
311 }
312 
313 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
314 {
315 	struct stripe_head *sh;
316 	struct hlist_node *hn;
317 
318 	CHECK_DEVLOCK();
319 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
320 	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
321 		if (sh->sector == sector && sh->disks == disks)
322 			return sh;
323 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
324 	return NULL;
325 }
326 
327 static void unplug_slaves(mddev_t *mddev);
328 static void raid5_unplug_device(struct request_queue *q);
329 
330 static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks,
331 					     int pd_idx, int noblock)
332 {
333 	struct stripe_head *sh;
334 
335 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
336 
337 	spin_lock_irq(&conf->device_lock);
338 
339 	do {
340 		wait_event_lock_irq(conf->wait_for_stripe,
341 				    conf->quiesce == 0,
342 				    conf->device_lock, /* nothing */);
343 		sh = __find_stripe(conf, sector, disks);
344 		if (!sh) {
345 			if (!conf->inactive_blocked)
346 				sh = get_free_stripe(conf);
347 			if (noblock && sh == NULL)
348 				break;
349 			if (!sh) {
350 				conf->inactive_blocked = 1;
351 				wait_event_lock_irq(conf->wait_for_stripe,
352 						    !list_empty(&conf->inactive_list) &&
353 						    (atomic_read(&conf->active_stripes)
354 						     < (conf->max_nr_stripes *3/4)
355 						     || !conf->inactive_blocked),
356 						    conf->device_lock,
357 						    raid5_unplug_device(conf->mddev->queue)
358 					);
359 				conf->inactive_blocked = 0;
360 			} else
361 				init_stripe(sh, sector, pd_idx, disks);
362 		} else {
363 			if (atomic_read(&sh->count)) {
364 			  BUG_ON(!list_empty(&sh->lru));
365 			} else {
366 				if (!test_bit(STRIPE_HANDLE, &sh->state))
367 					atomic_inc(&conf->active_stripes);
368 				if (list_empty(&sh->lru) &&
369 				    !test_bit(STRIPE_EXPANDING, &sh->state))
370 					BUG();
371 				list_del_init(&sh->lru);
372 			}
373 		}
374 	} while (sh == NULL);
375 
376 	if (sh)
377 		atomic_inc(&sh->count);
378 
379 	spin_unlock_irq(&conf->device_lock);
380 	return sh;
381 }
382 
383 static void
384 raid5_end_read_request(struct bio *bi, int error);
385 static void
386 raid5_end_write_request(struct bio *bi, int error);
387 
388 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
389 {
390 	raid5_conf_t *conf = sh->raid_conf;
391 	int i, disks = sh->disks;
392 
393 	might_sleep();
394 
395 	for (i = disks; i--; ) {
396 		int rw;
397 		struct bio *bi;
398 		mdk_rdev_t *rdev;
399 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
400 			rw = WRITE;
401 		else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
402 			rw = READ;
403 		else
404 			continue;
405 
406 		bi = &sh->dev[i].req;
407 
408 		bi->bi_rw = rw;
409 		if (rw == WRITE)
410 			bi->bi_end_io = raid5_end_write_request;
411 		else
412 			bi->bi_end_io = raid5_end_read_request;
413 
414 		rcu_read_lock();
415 		rdev = rcu_dereference(conf->disks[i].rdev);
416 		if (rdev && test_bit(Faulty, &rdev->flags))
417 			rdev = NULL;
418 		if (rdev)
419 			atomic_inc(&rdev->nr_pending);
420 		rcu_read_unlock();
421 
422 		if (rdev) {
423 			if (s->syncing || s->expanding || s->expanded)
424 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
425 
426 			set_bit(STRIPE_IO_STARTED, &sh->state);
427 
428 			bi->bi_bdev = rdev->bdev;
429 			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
430 				__func__, (unsigned long long)sh->sector,
431 				bi->bi_rw, i);
432 			atomic_inc(&sh->count);
433 			bi->bi_sector = sh->sector + rdev->data_offset;
434 			bi->bi_flags = 1 << BIO_UPTODATE;
435 			bi->bi_vcnt = 1;
436 			bi->bi_max_vecs = 1;
437 			bi->bi_idx = 0;
438 			bi->bi_io_vec = &sh->dev[i].vec;
439 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
440 			bi->bi_io_vec[0].bv_offset = 0;
441 			bi->bi_size = STRIPE_SIZE;
442 			bi->bi_next = NULL;
443 			if (rw == WRITE &&
444 			    test_bit(R5_ReWrite, &sh->dev[i].flags))
445 				atomic_add(STRIPE_SECTORS,
446 					&rdev->corrected_errors);
447 			generic_make_request(bi);
448 		} else {
449 			if (rw == WRITE)
450 				set_bit(STRIPE_DEGRADED, &sh->state);
451 			pr_debug("skip op %ld on disc %d for sector %llu\n",
452 				bi->bi_rw, i, (unsigned long long)sh->sector);
453 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
454 			set_bit(STRIPE_HANDLE, &sh->state);
455 		}
456 	}
457 }
458 
459 static struct dma_async_tx_descriptor *
460 async_copy_data(int frombio, struct bio *bio, struct page *page,
461 	sector_t sector, struct dma_async_tx_descriptor *tx)
462 {
463 	struct bio_vec *bvl;
464 	struct page *bio_page;
465 	int i;
466 	int page_offset;
467 
468 	if (bio->bi_sector >= sector)
469 		page_offset = (signed)(bio->bi_sector - sector) * 512;
470 	else
471 		page_offset = (signed)(sector - bio->bi_sector) * -512;
472 	bio_for_each_segment(bvl, bio, i) {
473 		int len = bio_iovec_idx(bio, i)->bv_len;
474 		int clen;
475 		int b_offset = 0;
476 
477 		if (page_offset < 0) {
478 			b_offset = -page_offset;
479 			page_offset += b_offset;
480 			len -= b_offset;
481 		}
482 
483 		if (len > 0 && page_offset + len > STRIPE_SIZE)
484 			clen = STRIPE_SIZE - page_offset;
485 		else
486 			clen = len;
487 
488 		if (clen > 0) {
489 			b_offset += bio_iovec_idx(bio, i)->bv_offset;
490 			bio_page = bio_iovec_idx(bio, i)->bv_page;
491 			if (frombio)
492 				tx = async_memcpy(page, bio_page, page_offset,
493 					b_offset, clen,
494 					ASYNC_TX_DEP_ACK,
495 					tx, NULL, NULL);
496 			else
497 				tx = async_memcpy(bio_page, page, b_offset,
498 					page_offset, clen,
499 					ASYNC_TX_DEP_ACK,
500 					tx, NULL, NULL);
501 		}
502 		if (clen < len) /* hit end of page */
503 			break;
504 		page_offset +=  len;
505 	}
506 
507 	return tx;
508 }
509 
510 static void ops_complete_biofill(void *stripe_head_ref)
511 {
512 	struct stripe_head *sh = stripe_head_ref;
513 	struct bio *return_bi = NULL;
514 	raid5_conf_t *conf = sh->raid_conf;
515 	int i;
516 
517 	pr_debug("%s: stripe %llu\n", __func__,
518 		(unsigned long long)sh->sector);
519 
520 	/* clear completed biofills */
521 	spin_lock_irq(&conf->device_lock);
522 	for (i = sh->disks; i--; ) {
523 		struct r5dev *dev = &sh->dev[i];
524 
525 		/* acknowledge completion of a biofill operation */
526 		/* and check if we need to reply to a read request,
527 		 * new R5_Wantfill requests are held off until
528 		 * !STRIPE_BIOFILL_RUN
529 		 */
530 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
531 			struct bio *rbi, *rbi2;
532 
533 			BUG_ON(!dev->read);
534 			rbi = dev->read;
535 			dev->read = NULL;
536 			while (rbi && rbi->bi_sector <
537 				dev->sector + STRIPE_SECTORS) {
538 				rbi2 = r5_next_bio(rbi, dev->sector);
539 				if (!raid5_dec_bi_phys_segments(rbi)) {
540 					rbi->bi_next = return_bi;
541 					return_bi = rbi;
542 				}
543 				rbi = rbi2;
544 			}
545 		}
546 	}
547 	spin_unlock_irq(&conf->device_lock);
548 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
549 
550 	return_io(return_bi);
551 
552 	set_bit(STRIPE_HANDLE, &sh->state);
553 	release_stripe(sh);
554 }
555 
556 static void ops_run_biofill(struct stripe_head *sh)
557 {
558 	struct dma_async_tx_descriptor *tx = NULL;
559 	raid5_conf_t *conf = sh->raid_conf;
560 	int i;
561 
562 	pr_debug("%s: stripe %llu\n", __func__,
563 		(unsigned long long)sh->sector);
564 
565 	for (i = sh->disks; i--; ) {
566 		struct r5dev *dev = &sh->dev[i];
567 		if (test_bit(R5_Wantfill, &dev->flags)) {
568 			struct bio *rbi;
569 			spin_lock_irq(&conf->device_lock);
570 			dev->read = rbi = dev->toread;
571 			dev->toread = NULL;
572 			spin_unlock_irq(&conf->device_lock);
573 			while (rbi && rbi->bi_sector <
574 				dev->sector + STRIPE_SECTORS) {
575 				tx = async_copy_data(0, rbi, dev->page,
576 					dev->sector, tx);
577 				rbi = r5_next_bio(rbi, dev->sector);
578 			}
579 		}
580 	}
581 
582 	atomic_inc(&sh->count);
583 	async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
584 		ops_complete_biofill, sh);
585 }
586 
587 static void ops_complete_compute5(void *stripe_head_ref)
588 {
589 	struct stripe_head *sh = stripe_head_ref;
590 	int target = sh->ops.target;
591 	struct r5dev *tgt = &sh->dev[target];
592 
593 	pr_debug("%s: stripe %llu\n", __func__,
594 		(unsigned long long)sh->sector);
595 
596 	set_bit(R5_UPTODATE, &tgt->flags);
597 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
598 	clear_bit(R5_Wantcompute, &tgt->flags);
599 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
600 	if (sh->check_state == check_state_compute_run)
601 		sh->check_state = check_state_compute_result;
602 	set_bit(STRIPE_HANDLE, &sh->state);
603 	release_stripe(sh);
604 }
605 
606 static struct dma_async_tx_descriptor *ops_run_compute5(struct stripe_head *sh)
607 {
608 	/* kernel stack size limits the total number of disks */
609 	int disks = sh->disks;
610 	struct page *xor_srcs[disks];
611 	int target = sh->ops.target;
612 	struct r5dev *tgt = &sh->dev[target];
613 	struct page *xor_dest = tgt->page;
614 	int count = 0;
615 	struct dma_async_tx_descriptor *tx;
616 	int i;
617 
618 	pr_debug("%s: stripe %llu block: %d\n",
619 		__func__, (unsigned long long)sh->sector, target);
620 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
621 
622 	for (i = disks; i--; )
623 		if (i != target)
624 			xor_srcs[count++] = sh->dev[i].page;
625 
626 	atomic_inc(&sh->count);
627 
628 	if (unlikely(count == 1))
629 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
630 			0, NULL, ops_complete_compute5, sh);
631 	else
632 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
633 			ASYNC_TX_XOR_ZERO_DST, NULL,
634 			ops_complete_compute5, sh);
635 
636 	return tx;
637 }
638 
639 static void ops_complete_prexor(void *stripe_head_ref)
640 {
641 	struct stripe_head *sh = stripe_head_ref;
642 
643 	pr_debug("%s: stripe %llu\n", __func__,
644 		(unsigned long long)sh->sector);
645 }
646 
647 static struct dma_async_tx_descriptor *
648 ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
649 {
650 	/* kernel stack size limits the total number of disks */
651 	int disks = sh->disks;
652 	struct page *xor_srcs[disks];
653 	int count = 0, pd_idx = sh->pd_idx, i;
654 
655 	/* existing parity data subtracted */
656 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
657 
658 	pr_debug("%s: stripe %llu\n", __func__,
659 		(unsigned long long)sh->sector);
660 
661 	for (i = disks; i--; ) {
662 		struct r5dev *dev = &sh->dev[i];
663 		/* Only process blocks that are known to be uptodate */
664 		if (test_bit(R5_Wantdrain, &dev->flags))
665 			xor_srcs[count++] = dev->page;
666 	}
667 
668 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
669 		ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
670 		ops_complete_prexor, sh);
671 
672 	return tx;
673 }
674 
675 static struct dma_async_tx_descriptor *
676 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
677 {
678 	int disks = sh->disks;
679 	int i;
680 
681 	pr_debug("%s: stripe %llu\n", __func__,
682 		(unsigned long long)sh->sector);
683 
684 	for (i = disks; i--; ) {
685 		struct r5dev *dev = &sh->dev[i];
686 		struct bio *chosen;
687 
688 		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
689 			struct bio *wbi;
690 
691 			spin_lock(&sh->lock);
692 			chosen = dev->towrite;
693 			dev->towrite = NULL;
694 			BUG_ON(dev->written);
695 			wbi = dev->written = chosen;
696 			spin_unlock(&sh->lock);
697 
698 			while (wbi && wbi->bi_sector <
699 				dev->sector + STRIPE_SECTORS) {
700 				tx = async_copy_data(1, wbi, dev->page,
701 					dev->sector, tx);
702 				wbi = r5_next_bio(wbi, dev->sector);
703 			}
704 		}
705 	}
706 
707 	return tx;
708 }
709 
710 static void ops_complete_postxor(void *stripe_head_ref)
711 {
712 	struct stripe_head *sh = stripe_head_ref;
713 	int disks = sh->disks, i, pd_idx = sh->pd_idx;
714 
715 	pr_debug("%s: stripe %llu\n", __func__,
716 		(unsigned long long)sh->sector);
717 
718 	for (i = disks; i--; ) {
719 		struct r5dev *dev = &sh->dev[i];
720 		if (dev->written || i == pd_idx)
721 			set_bit(R5_UPTODATE, &dev->flags);
722 	}
723 
724 	if (sh->reconstruct_state == reconstruct_state_drain_run)
725 		sh->reconstruct_state = reconstruct_state_drain_result;
726 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
727 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
728 	else {
729 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
730 		sh->reconstruct_state = reconstruct_state_result;
731 	}
732 
733 	set_bit(STRIPE_HANDLE, &sh->state);
734 	release_stripe(sh);
735 }
736 
737 static void
738 ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
739 {
740 	/* kernel stack size limits the total number of disks */
741 	int disks = sh->disks;
742 	struct page *xor_srcs[disks];
743 
744 	int count = 0, pd_idx = sh->pd_idx, i;
745 	struct page *xor_dest;
746 	int prexor = 0;
747 	unsigned long flags;
748 
749 	pr_debug("%s: stripe %llu\n", __func__,
750 		(unsigned long long)sh->sector);
751 
752 	/* check if prexor is active which means only process blocks
753 	 * that are part of a read-modify-write (written)
754 	 */
755 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
756 		prexor = 1;
757 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
758 		for (i = disks; i--; ) {
759 			struct r5dev *dev = &sh->dev[i];
760 			if (dev->written)
761 				xor_srcs[count++] = dev->page;
762 		}
763 	} else {
764 		xor_dest = sh->dev[pd_idx].page;
765 		for (i = disks; i--; ) {
766 			struct r5dev *dev = &sh->dev[i];
767 			if (i != pd_idx)
768 				xor_srcs[count++] = dev->page;
769 		}
770 	}
771 
772 	/* 1/ if we prexor'd then the dest is reused as a source
773 	 * 2/ if we did not prexor then we are redoing the parity
774 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
775 	 * for the synchronous xor case
776 	 */
777 	flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
778 		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
779 
780 	atomic_inc(&sh->count);
781 
782 	if (unlikely(count == 1)) {
783 		flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
784 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
785 			flags, tx, ops_complete_postxor, sh);
786 	} else
787 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
788 			flags, tx, ops_complete_postxor, sh);
789 }
790 
791 static void ops_complete_check(void *stripe_head_ref)
792 {
793 	struct stripe_head *sh = stripe_head_ref;
794 
795 	pr_debug("%s: stripe %llu\n", __func__,
796 		(unsigned long long)sh->sector);
797 
798 	sh->check_state = check_state_check_result;
799 	set_bit(STRIPE_HANDLE, &sh->state);
800 	release_stripe(sh);
801 }
802 
803 static void ops_run_check(struct stripe_head *sh)
804 {
805 	/* kernel stack size limits the total number of disks */
806 	int disks = sh->disks;
807 	struct page *xor_srcs[disks];
808 	struct dma_async_tx_descriptor *tx;
809 
810 	int count = 0, pd_idx = sh->pd_idx, i;
811 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
812 
813 	pr_debug("%s: stripe %llu\n", __func__,
814 		(unsigned long long)sh->sector);
815 
816 	for (i = disks; i--; ) {
817 		struct r5dev *dev = &sh->dev[i];
818 		if (i != pd_idx)
819 			xor_srcs[count++] = dev->page;
820 	}
821 
822 	tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
823 		&sh->ops.zero_sum_result, 0, NULL, NULL, NULL);
824 
825 	atomic_inc(&sh->count);
826 	tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
827 		ops_complete_check, sh);
828 }
829 
830 static void raid5_run_ops(struct stripe_head *sh, unsigned long ops_request)
831 {
832 	int overlap_clear = 0, i, disks = sh->disks;
833 	struct dma_async_tx_descriptor *tx = NULL;
834 
835 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
836 		ops_run_biofill(sh);
837 		overlap_clear++;
838 	}
839 
840 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
841 		tx = ops_run_compute5(sh);
842 		/* terminate the chain if postxor is not set to be run */
843 		if (tx && !test_bit(STRIPE_OP_POSTXOR, &ops_request))
844 			async_tx_ack(tx);
845 	}
846 
847 	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
848 		tx = ops_run_prexor(sh, tx);
849 
850 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
851 		tx = ops_run_biodrain(sh, tx);
852 		overlap_clear++;
853 	}
854 
855 	if (test_bit(STRIPE_OP_POSTXOR, &ops_request))
856 		ops_run_postxor(sh, tx);
857 
858 	if (test_bit(STRIPE_OP_CHECK, &ops_request))
859 		ops_run_check(sh);
860 
861 	if (overlap_clear)
862 		for (i = disks; i--; ) {
863 			struct r5dev *dev = &sh->dev[i];
864 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
865 				wake_up(&sh->raid_conf->wait_for_overlap);
866 		}
867 }
868 
869 static int grow_one_stripe(raid5_conf_t *conf)
870 {
871 	struct stripe_head *sh;
872 	sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
873 	if (!sh)
874 		return 0;
875 	memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
876 	sh->raid_conf = conf;
877 	spin_lock_init(&sh->lock);
878 
879 	if (grow_buffers(sh, conf->raid_disks)) {
880 		shrink_buffers(sh, conf->raid_disks);
881 		kmem_cache_free(conf->slab_cache, sh);
882 		return 0;
883 	}
884 	sh->disks = conf->raid_disks;
885 	/* we just created an active stripe so... */
886 	atomic_set(&sh->count, 1);
887 	atomic_inc(&conf->active_stripes);
888 	INIT_LIST_HEAD(&sh->lru);
889 	release_stripe(sh);
890 	return 1;
891 }
892 
893 static int grow_stripes(raid5_conf_t *conf, int num)
894 {
895 	struct kmem_cache *sc;
896 	int devs = conf->raid_disks;
897 
898 	sprintf(conf->cache_name[0], "raid5-%s", mdname(conf->mddev));
899 	sprintf(conf->cache_name[1], "raid5-%s-alt", mdname(conf->mddev));
900 	conf->active_name = 0;
901 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
902 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
903 			       0, 0, NULL);
904 	if (!sc)
905 		return 1;
906 	conf->slab_cache = sc;
907 	conf->pool_size = devs;
908 	while (num--)
909 		if (!grow_one_stripe(conf))
910 			return 1;
911 	return 0;
912 }
913 
914 #ifdef CONFIG_MD_RAID5_RESHAPE
915 static int resize_stripes(raid5_conf_t *conf, int newsize)
916 {
917 	/* Make all the stripes able to hold 'newsize' devices.
918 	 * New slots in each stripe get 'page' set to a new page.
919 	 *
920 	 * This happens in stages:
921 	 * 1/ create a new kmem_cache and allocate the required number of
922 	 *    stripe_heads.
923 	 * 2/ gather all the old stripe_heads and tranfer the pages across
924 	 *    to the new stripe_heads.  This will have the side effect of
925 	 *    freezing the array as once all stripe_heads have been collected,
926 	 *    no IO will be possible.  Old stripe heads are freed once their
927 	 *    pages have been transferred over, and the old kmem_cache is
928 	 *    freed when all stripes are done.
929 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
930 	 *    we simple return a failre status - no need to clean anything up.
931 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
932 	 *    If this fails, we don't bother trying the shrink the
933 	 *    stripe_heads down again, we just leave them as they are.
934 	 *    As each stripe_head is processed the new one is released into
935 	 *    active service.
936 	 *
937 	 * Once step2 is started, we cannot afford to wait for a write,
938 	 * so we use GFP_NOIO allocations.
939 	 */
940 	struct stripe_head *osh, *nsh;
941 	LIST_HEAD(newstripes);
942 	struct disk_info *ndisks;
943 	int err;
944 	struct kmem_cache *sc;
945 	int i;
946 
947 	if (newsize <= conf->pool_size)
948 		return 0; /* never bother to shrink */
949 
950 	err = md_allow_write(conf->mddev);
951 	if (err)
952 		return err;
953 
954 	/* Step 1 */
955 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
956 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
957 			       0, 0, NULL);
958 	if (!sc)
959 		return -ENOMEM;
960 
961 	for (i = conf->max_nr_stripes; i; i--) {
962 		nsh = kmem_cache_alloc(sc, GFP_KERNEL);
963 		if (!nsh)
964 			break;
965 
966 		memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
967 
968 		nsh->raid_conf = conf;
969 		spin_lock_init(&nsh->lock);
970 
971 		list_add(&nsh->lru, &newstripes);
972 	}
973 	if (i) {
974 		/* didn't get enough, give up */
975 		while (!list_empty(&newstripes)) {
976 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
977 			list_del(&nsh->lru);
978 			kmem_cache_free(sc, nsh);
979 		}
980 		kmem_cache_destroy(sc);
981 		return -ENOMEM;
982 	}
983 	/* Step 2 - Must use GFP_NOIO now.
984 	 * OK, we have enough stripes, start collecting inactive
985 	 * stripes and copying them over
986 	 */
987 	list_for_each_entry(nsh, &newstripes, lru) {
988 		spin_lock_irq(&conf->device_lock);
989 		wait_event_lock_irq(conf->wait_for_stripe,
990 				    !list_empty(&conf->inactive_list),
991 				    conf->device_lock,
992 				    unplug_slaves(conf->mddev)
993 			);
994 		osh = get_free_stripe(conf);
995 		spin_unlock_irq(&conf->device_lock);
996 		atomic_set(&nsh->count, 1);
997 		for(i=0; i<conf->pool_size; i++)
998 			nsh->dev[i].page = osh->dev[i].page;
999 		for( ; i<newsize; i++)
1000 			nsh->dev[i].page = NULL;
1001 		kmem_cache_free(conf->slab_cache, osh);
1002 	}
1003 	kmem_cache_destroy(conf->slab_cache);
1004 
1005 	/* Step 3.
1006 	 * At this point, we are holding all the stripes so the array
1007 	 * is completely stalled, so now is a good time to resize
1008 	 * conf->disks.
1009 	 */
1010 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1011 	if (ndisks) {
1012 		for (i=0; i<conf->raid_disks; i++)
1013 			ndisks[i] = conf->disks[i];
1014 		kfree(conf->disks);
1015 		conf->disks = ndisks;
1016 	} else
1017 		err = -ENOMEM;
1018 
1019 	/* Step 4, return new stripes to service */
1020 	while(!list_empty(&newstripes)) {
1021 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
1022 		list_del_init(&nsh->lru);
1023 		for (i=conf->raid_disks; i < newsize; i++)
1024 			if (nsh->dev[i].page == NULL) {
1025 				struct page *p = alloc_page(GFP_NOIO);
1026 				nsh->dev[i].page = p;
1027 				if (!p)
1028 					err = -ENOMEM;
1029 			}
1030 		release_stripe(nsh);
1031 	}
1032 	/* critical section pass, GFP_NOIO no longer needed */
1033 
1034 	conf->slab_cache = sc;
1035 	conf->active_name = 1-conf->active_name;
1036 	conf->pool_size = newsize;
1037 	return err;
1038 }
1039 #endif
1040 
1041 static int drop_one_stripe(raid5_conf_t *conf)
1042 {
1043 	struct stripe_head *sh;
1044 
1045 	spin_lock_irq(&conf->device_lock);
1046 	sh = get_free_stripe(conf);
1047 	spin_unlock_irq(&conf->device_lock);
1048 	if (!sh)
1049 		return 0;
1050 	BUG_ON(atomic_read(&sh->count));
1051 	shrink_buffers(sh, conf->pool_size);
1052 	kmem_cache_free(conf->slab_cache, sh);
1053 	atomic_dec(&conf->active_stripes);
1054 	return 1;
1055 }
1056 
1057 static void shrink_stripes(raid5_conf_t *conf)
1058 {
1059 	while (drop_one_stripe(conf))
1060 		;
1061 
1062 	if (conf->slab_cache)
1063 		kmem_cache_destroy(conf->slab_cache);
1064 	conf->slab_cache = NULL;
1065 }
1066 
1067 static void raid5_end_read_request(struct bio * bi, int error)
1068 {
1069  	struct stripe_head *sh = bi->bi_private;
1070 	raid5_conf_t *conf = sh->raid_conf;
1071 	int disks = sh->disks, i;
1072 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1073 	char b[BDEVNAME_SIZE];
1074 	mdk_rdev_t *rdev;
1075 
1076 
1077 	for (i=0 ; i<disks; i++)
1078 		if (bi == &sh->dev[i].req)
1079 			break;
1080 
1081 	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1082 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1083 		uptodate);
1084 	if (i == disks) {
1085 		BUG();
1086 		return;
1087 	}
1088 
1089 	if (uptodate) {
1090 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1091 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1092 			rdev = conf->disks[i].rdev;
1093 			printk_rl(KERN_INFO "raid5:%s: read error corrected"
1094 				  " (%lu sectors at %llu on %s)\n",
1095 				  mdname(conf->mddev), STRIPE_SECTORS,
1096 				  (unsigned long long)(sh->sector
1097 						       + rdev->data_offset),
1098 				  bdevname(rdev->bdev, b));
1099 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1100 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1101 		}
1102 		if (atomic_read(&conf->disks[i].rdev->read_errors))
1103 			atomic_set(&conf->disks[i].rdev->read_errors, 0);
1104 	} else {
1105 		const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1106 		int retry = 0;
1107 		rdev = conf->disks[i].rdev;
1108 
1109 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1110 		atomic_inc(&rdev->read_errors);
1111 		if (conf->mddev->degraded)
1112 			printk_rl(KERN_WARNING
1113 				  "raid5:%s: read error not correctable "
1114 				  "(sector %llu on %s).\n",
1115 				  mdname(conf->mddev),
1116 				  (unsigned long long)(sh->sector
1117 						       + rdev->data_offset),
1118 				  bdn);
1119 		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1120 			/* Oh, no!!! */
1121 			printk_rl(KERN_WARNING
1122 				  "raid5:%s: read error NOT corrected!! "
1123 				  "(sector %llu on %s).\n",
1124 				  mdname(conf->mddev),
1125 				  (unsigned long long)(sh->sector
1126 						       + rdev->data_offset),
1127 				  bdn);
1128 		else if (atomic_read(&rdev->read_errors)
1129 			 > conf->max_nr_stripes)
1130 			printk(KERN_WARNING
1131 			       "raid5:%s: Too many read errors, failing device %s.\n",
1132 			       mdname(conf->mddev), bdn);
1133 		else
1134 			retry = 1;
1135 		if (retry)
1136 			set_bit(R5_ReadError, &sh->dev[i].flags);
1137 		else {
1138 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1139 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1140 			md_error(conf->mddev, rdev);
1141 		}
1142 	}
1143 	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1144 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1145 	set_bit(STRIPE_HANDLE, &sh->state);
1146 	release_stripe(sh);
1147 }
1148 
1149 static void raid5_end_write_request(struct bio *bi, int error)
1150 {
1151  	struct stripe_head *sh = bi->bi_private;
1152 	raid5_conf_t *conf = sh->raid_conf;
1153 	int disks = sh->disks, i;
1154 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1155 
1156 	for (i=0 ; i<disks; i++)
1157 		if (bi == &sh->dev[i].req)
1158 			break;
1159 
1160 	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1161 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1162 		uptodate);
1163 	if (i == disks) {
1164 		BUG();
1165 		return;
1166 	}
1167 
1168 	if (!uptodate)
1169 		md_error(conf->mddev, conf->disks[i].rdev);
1170 
1171 	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1172 
1173 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1174 	set_bit(STRIPE_HANDLE, &sh->state);
1175 	release_stripe(sh);
1176 }
1177 
1178 
1179 static sector_t compute_blocknr(struct stripe_head *sh, int i);
1180 
1181 static void raid5_build_block(struct stripe_head *sh, int i)
1182 {
1183 	struct r5dev *dev = &sh->dev[i];
1184 
1185 	bio_init(&dev->req);
1186 	dev->req.bi_io_vec = &dev->vec;
1187 	dev->req.bi_vcnt++;
1188 	dev->req.bi_max_vecs++;
1189 	dev->vec.bv_page = dev->page;
1190 	dev->vec.bv_len = STRIPE_SIZE;
1191 	dev->vec.bv_offset = 0;
1192 
1193 	dev->req.bi_sector = sh->sector;
1194 	dev->req.bi_private = sh;
1195 
1196 	dev->flags = 0;
1197 	dev->sector = compute_blocknr(sh, i);
1198 }
1199 
1200 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1201 {
1202 	char b[BDEVNAME_SIZE];
1203 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1204 	pr_debug("raid5: error called\n");
1205 
1206 	if (!test_bit(Faulty, &rdev->flags)) {
1207 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1208 		if (test_and_clear_bit(In_sync, &rdev->flags)) {
1209 			unsigned long flags;
1210 			spin_lock_irqsave(&conf->device_lock, flags);
1211 			mddev->degraded++;
1212 			spin_unlock_irqrestore(&conf->device_lock, flags);
1213 			/*
1214 			 * if recovery was running, make sure it aborts.
1215 			 */
1216 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1217 		}
1218 		set_bit(Faulty, &rdev->flags);
1219 		printk(KERN_ALERT
1220 		       "raid5: Disk failure on %s, disabling device.\n"
1221 		       "raid5: Operation continuing on %d devices.\n",
1222 		       bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1223 	}
1224 }
1225 
1226 /*
1227  * Input: a 'big' sector number,
1228  * Output: index of the data and parity disk, and the sector # in them.
1229  */
1230 static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
1231 			unsigned int data_disks, unsigned int * dd_idx,
1232 			unsigned int * pd_idx, raid5_conf_t *conf)
1233 {
1234 	long stripe;
1235 	unsigned long chunk_number;
1236 	unsigned int chunk_offset;
1237 	sector_t new_sector;
1238 	int sectors_per_chunk = conf->chunk_size >> 9;
1239 
1240 	/* First compute the information on this sector */
1241 
1242 	/*
1243 	 * Compute the chunk number and the sector offset inside the chunk
1244 	 */
1245 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
1246 	chunk_number = r_sector;
1247 	BUG_ON(r_sector != chunk_number);
1248 
1249 	/*
1250 	 * Compute the stripe number
1251 	 */
1252 	stripe = chunk_number / data_disks;
1253 
1254 	/*
1255 	 * Compute the data disk and parity disk indexes inside the stripe
1256 	 */
1257 	*dd_idx = chunk_number % data_disks;
1258 
1259 	/*
1260 	 * Select the parity disk based on the user selected algorithm.
1261 	 */
1262 	switch(conf->level) {
1263 	case 4:
1264 		*pd_idx = data_disks;
1265 		break;
1266 	case 5:
1267 		switch (conf->algorithm) {
1268 		case ALGORITHM_LEFT_ASYMMETRIC:
1269 			*pd_idx = data_disks - stripe % raid_disks;
1270 			if (*dd_idx >= *pd_idx)
1271 				(*dd_idx)++;
1272 			break;
1273 		case ALGORITHM_RIGHT_ASYMMETRIC:
1274 			*pd_idx = stripe % raid_disks;
1275 			if (*dd_idx >= *pd_idx)
1276 				(*dd_idx)++;
1277 			break;
1278 		case ALGORITHM_LEFT_SYMMETRIC:
1279 			*pd_idx = data_disks - stripe % raid_disks;
1280 			*dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1281 			break;
1282 		case ALGORITHM_RIGHT_SYMMETRIC:
1283 			*pd_idx = stripe % raid_disks;
1284 			*dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1285 			break;
1286 		default:
1287 			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1288 				conf->algorithm);
1289 		}
1290 		break;
1291 	case 6:
1292 
1293 		/**** FIX THIS ****/
1294 		switch (conf->algorithm) {
1295 		case ALGORITHM_LEFT_ASYMMETRIC:
1296 			*pd_idx = raid_disks - 1 - (stripe % raid_disks);
1297 			if (*pd_idx == raid_disks-1)
1298 				(*dd_idx)++; 	/* Q D D D P */
1299 			else if (*dd_idx >= *pd_idx)
1300 				(*dd_idx) += 2; /* D D P Q D */
1301 			break;
1302 		case ALGORITHM_RIGHT_ASYMMETRIC:
1303 			*pd_idx = stripe % raid_disks;
1304 			if (*pd_idx == raid_disks-1)
1305 				(*dd_idx)++; 	/* Q D D D P */
1306 			else if (*dd_idx >= *pd_idx)
1307 				(*dd_idx) += 2; /* D D P Q D */
1308 			break;
1309 		case ALGORITHM_LEFT_SYMMETRIC:
1310 			*pd_idx = raid_disks - 1 - (stripe % raid_disks);
1311 			*dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1312 			break;
1313 		case ALGORITHM_RIGHT_SYMMETRIC:
1314 			*pd_idx = stripe % raid_disks;
1315 			*dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1316 			break;
1317 		default:
1318 			printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1319 			       conf->algorithm);
1320 		}
1321 		break;
1322 	}
1323 
1324 	/*
1325 	 * Finally, compute the new sector number
1326 	 */
1327 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1328 	return new_sector;
1329 }
1330 
1331 
1332 static sector_t compute_blocknr(struct stripe_head *sh, int i)
1333 {
1334 	raid5_conf_t *conf = sh->raid_conf;
1335 	int raid_disks = sh->disks;
1336 	int data_disks = raid_disks - conf->max_degraded;
1337 	sector_t new_sector = sh->sector, check;
1338 	int sectors_per_chunk = conf->chunk_size >> 9;
1339 	sector_t stripe;
1340 	int chunk_offset;
1341 	int chunk_number, dummy1, dummy2, dd_idx = i;
1342 	sector_t r_sector;
1343 
1344 
1345 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
1346 	stripe = new_sector;
1347 	BUG_ON(new_sector != stripe);
1348 
1349 	if (i == sh->pd_idx)
1350 		return 0;
1351 	switch(conf->level) {
1352 	case 4: break;
1353 	case 5:
1354 		switch (conf->algorithm) {
1355 		case ALGORITHM_LEFT_ASYMMETRIC:
1356 		case ALGORITHM_RIGHT_ASYMMETRIC:
1357 			if (i > sh->pd_idx)
1358 				i--;
1359 			break;
1360 		case ALGORITHM_LEFT_SYMMETRIC:
1361 		case ALGORITHM_RIGHT_SYMMETRIC:
1362 			if (i < sh->pd_idx)
1363 				i += raid_disks;
1364 			i -= (sh->pd_idx + 1);
1365 			break;
1366 		default:
1367 			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1368 			       conf->algorithm);
1369 		}
1370 		break;
1371 	case 6:
1372 		if (i == raid6_next_disk(sh->pd_idx, raid_disks))
1373 			return 0; /* It is the Q disk */
1374 		switch (conf->algorithm) {
1375 		case ALGORITHM_LEFT_ASYMMETRIC:
1376 		case ALGORITHM_RIGHT_ASYMMETRIC:
1377 		  	if (sh->pd_idx == raid_disks-1)
1378 				i--; 	/* Q D D D P */
1379 			else if (i > sh->pd_idx)
1380 				i -= 2; /* D D P Q D */
1381 			break;
1382 		case ALGORITHM_LEFT_SYMMETRIC:
1383 		case ALGORITHM_RIGHT_SYMMETRIC:
1384 			if (sh->pd_idx == raid_disks-1)
1385 				i--; /* Q D D D P */
1386 			else {
1387 				/* D D P Q D */
1388 				if (i < sh->pd_idx)
1389 					i += raid_disks;
1390 				i -= (sh->pd_idx + 2);
1391 			}
1392 			break;
1393 		default:
1394 			printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1395 			       conf->algorithm);
1396 		}
1397 		break;
1398 	}
1399 
1400 	chunk_number = stripe * data_disks + i;
1401 	r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1402 
1403 	check = raid5_compute_sector(r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
1404 	if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
1405 		printk(KERN_ERR "compute_blocknr: map not correct\n");
1406 		return 0;
1407 	}
1408 	return r_sector;
1409 }
1410 
1411 
1412 
1413 /*
1414  * Copy data between a page in the stripe cache, and one or more bion
1415  * The page could align with the middle of the bio, or there could be
1416  * several bion, each with several bio_vecs, which cover part of the page
1417  * Multiple bion are linked together on bi_next.  There may be extras
1418  * at the end of this list.  We ignore them.
1419  */
1420 static void copy_data(int frombio, struct bio *bio,
1421 		     struct page *page,
1422 		     sector_t sector)
1423 {
1424 	char *pa = page_address(page);
1425 	struct bio_vec *bvl;
1426 	int i;
1427 	int page_offset;
1428 
1429 	if (bio->bi_sector >= sector)
1430 		page_offset = (signed)(bio->bi_sector - sector) * 512;
1431 	else
1432 		page_offset = (signed)(sector - bio->bi_sector) * -512;
1433 	bio_for_each_segment(bvl, bio, i) {
1434 		int len = bio_iovec_idx(bio,i)->bv_len;
1435 		int clen;
1436 		int b_offset = 0;
1437 
1438 		if (page_offset < 0) {
1439 			b_offset = -page_offset;
1440 			page_offset += b_offset;
1441 			len -= b_offset;
1442 		}
1443 
1444 		if (len > 0 && page_offset + len > STRIPE_SIZE)
1445 			clen = STRIPE_SIZE - page_offset;
1446 		else clen = len;
1447 
1448 		if (clen > 0) {
1449 			char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1450 			if (frombio)
1451 				memcpy(pa+page_offset, ba+b_offset, clen);
1452 			else
1453 				memcpy(ba+b_offset, pa+page_offset, clen);
1454 			__bio_kunmap_atomic(ba, KM_USER0);
1455 		}
1456 		if (clen < len) /* hit end of page */
1457 			break;
1458 		page_offset +=  len;
1459 	}
1460 }
1461 
1462 #define check_xor()	do {						  \
1463 				if (count == MAX_XOR_BLOCKS) {		  \
1464 				xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1465 				count = 0;				  \
1466 			   }						  \
1467 			} while(0)
1468 
1469 static void compute_parity6(struct stripe_head *sh, int method)
1470 {
1471 	raid6_conf_t *conf = sh->raid_conf;
1472 	int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
1473 	struct bio *chosen;
1474 	/**** FIX THIS: This could be very bad if disks is close to 256 ****/
1475 	void *ptrs[disks];
1476 
1477 	qd_idx = raid6_next_disk(pd_idx, disks);
1478 	d0_idx = raid6_next_disk(qd_idx, disks);
1479 
1480 	pr_debug("compute_parity, stripe %llu, method %d\n",
1481 		(unsigned long long)sh->sector, method);
1482 
1483 	switch(method) {
1484 	case READ_MODIFY_WRITE:
1485 		BUG();		/* READ_MODIFY_WRITE N/A for RAID-6 */
1486 	case RECONSTRUCT_WRITE:
1487 		for (i= disks; i-- ;)
1488 			if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1489 				chosen = sh->dev[i].towrite;
1490 				sh->dev[i].towrite = NULL;
1491 
1492 				if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1493 					wake_up(&conf->wait_for_overlap);
1494 
1495 				BUG_ON(sh->dev[i].written);
1496 				sh->dev[i].written = chosen;
1497 			}
1498 		break;
1499 	case CHECK_PARITY:
1500 		BUG();		/* Not implemented yet */
1501 	}
1502 
1503 	for (i = disks; i--;)
1504 		if (sh->dev[i].written) {
1505 			sector_t sector = sh->dev[i].sector;
1506 			struct bio *wbi = sh->dev[i].written;
1507 			while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1508 				copy_data(1, wbi, sh->dev[i].page, sector);
1509 				wbi = r5_next_bio(wbi, sector);
1510 			}
1511 
1512 			set_bit(R5_LOCKED, &sh->dev[i].flags);
1513 			set_bit(R5_UPTODATE, &sh->dev[i].flags);
1514 		}
1515 
1516 //	switch(method) {
1517 //	case RECONSTRUCT_WRITE:
1518 //	case CHECK_PARITY:
1519 //	case UPDATE_PARITY:
1520 		/* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1521 		/* FIX: Is this ordering of drives even remotely optimal? */
1522 		count = 0;
1523 		i = d0_idx;
1524 		do {
1525 			ptrs[count++] = page_address(sh->dev[i].page);
1526 			if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1527 				printk("block %d/%d not uptodate on parity calc\n", i,count);
1528 			i = raid6_next_disk(i, disks);
1529 		} while ( i != d0_idx );
1530 //		break;
1531 //	}
1532 
1533 	raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);
1534 
1535 	switch(method) {
1536 	case RECONSTRUCT_WRITE:
1537 		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1538 		set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1539 		set_bit(R5_LOCKED,   &sh->dev[pd_idx].flags);
1540 		set_bit(R5_LOCKED,   &sh->dev[qd_idx].flags);
1541 		break;
1542 	case UPDATE_PARITY:
1543 		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1544 		set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1545 		break;
1546 	}
1547 }
1548 
1549 
1550 /* Compute one missing block */
1551 static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1552 {
1553 	int i, count, disks = sh->disks;
1554 	void *ptr[MAX_XOR_BLOCKS], *dest, *p;
1555 	int pd_idx = sh->pd_idx;
1556 	int qd_idx = raid6_next_disk(pd_idx, disks);
1557 
1558 	pr_debug("compute_block_1, stripe %llu, idx %d\n",
1559 		(unsigned long long)sh->sector, dd_idx);
1560 
1561 	if ( dd_idx == qd_idx ) {
1562 		/* We're actually computing the Q drive */
1563 		compute_parity6(sh, UPDATE_PARITY);
1564 	} else {
1565 		dest = page_address(sh->dev[dd_idx].page);
1566 		if (!nozero) memset(dest, 0, STRIPE_SIZE);
1567 		count = 0;
1568 		for (i = disks ; i--; ) {
1569 			if (i == dd_idx || i == qd_idx)
1570 				continue;
1571 			p = page_address(sh->dev[i].page);
1572 			if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1573 				ptr[count++] = p;
1574 			else
1575 				printk("compute_block() %d, stripe %llu, %d"
1576 				       " not present\n", dd_idx,
1577 				       (unsigned long long)sh->sector, i);
1578 
1579 			check_xor();
1580 		}
1581 		if (count)
1582 			xor_blocks(count, STRIPE_SIZE, dest, ptr);
1583 		if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1584 		else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1585 	}
1586 }
1587 
1588 /* Compute two missing blocks */
1589 static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1590 {
1591 	int i, count, disks = sh->disks;
1592 	int pd_idx = sh->pd_idx;
1593 	int qd_idx = raid6_next_disk(pd_idx, disks);
1594 	int d0_idx = raid6_next_disk(qd_idx, disks);
1595 	int faila, failb;
1596 
1597 	/* faila and failb are disk numbers relative to d0_idx */
1598 	/* pd_idx become disks-2 and qd_idx become disks-1 */
1599 	faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx;
1600 	failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx;
1601 
1602 	BUG_ON(faila == failb);
1603 	if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1604 
1605 	pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1606 	       (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb);
1607 
1608 	if ( failb == disks-1 ) {
1609 		/* Q disk is one of the missing disks */
1610 		if ( faila == disks-2 ) {
1611 			/* Missing P+Q, just recompute */
1612 			compute_parity6(sh, UPDATE_PARITY);
1613 			return;
1614 		} else {
1615 			/* We're missing D+Q; recompute D from P */
1616 			compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0);
1617 			compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1618 			return;
1619 		}
1620 	}
1621 
1622 	/* We're missing D+P or D+D; build pointer table */
1623 	{
1624 		/**** FIX THIS: This could be very bad if disks is close to 256 ****/
1625 		void *ptrs[disks];
1626 
1627 		count = 0;
1628 		i = d0_idx;
1629 		do {
1630 			ptrs[count++] = page_address(sh->dev[i].page);
1631 			i = raid6_next_disk(i, disks);
1632 			if (i != dd_idx1 && i != dd_idx2 &&
1633 			    !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1634 				printk("compute_2 with missing block %d/%d\n", count, i);
1635 		} while ( i != d0_idx );
1636 
1637 		if ( failb == disks-2 ) {
1638 			/* We're missing D+P. */
1639 			raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
1640 		} else {
1641 			/* We're missing D+D. */
1642 			raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
1643 		}
1644 
1645 		/* Both the above update both missing blocks */
1646 		set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1647 		set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1648 	}
1649 }
1650 
1651 static void
1652 schedule_reconstruction5(struct stripe_head *sh, struct stripe_head_state *s,
1653 			 int rcw, int expand)
1654 {
1655 	int i, pd_idx = sh->pd_idx, disks = sh->disks;
1656 
1657 	if (rcw) {
1658 		/* if we are not expanding this is a proper write request, and
1659 		 * there will be bios with new data to be drained into the
1660 		 * stripe cache
1661 		 */
1662 		if (!expand) {
1663 			sh->reconstruct_state = reconstruct_state_drain_run;
1664 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1665 		} else
1666 			sh->reconstruct_state = reconstruct_state_run;
1667 
1668 		set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
1669 
1670 		for (i = disks; i--; ) {
1671 			struct r5dev *dev = &sh->dev[i];
1672 
1673 			if (dev->towrite) {
1674 				set_bit(R5_LOCKED, &dev->flags);
1675 				set_bit(R5_Wantdrain, &dev->flags);
1676 				if (!expand)
1677 					clear_bit(R5_UPTODATE, &dev->flags);
1678 				s->locked++;
1679 			}
1680 		}
1681 		if (s->locked + 1 == disks)
1682 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
1683 				atomic_inc(&sh->raid_conf->pending_full_writes);
1684 	} else {
1685 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1686 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1687 
1688 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
1689 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
1690 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1691 		set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
1692 
1693 		for (i = disks; i--; ) {
1694 			struct r5dev *dev = &sh->dev[i];
1695 			if (i == pd_idx)
1696 				continue;
1697 
1698 			if (dev->towrite &&
1699 			    (test_bit(R5_UPTODATE, &dev->flags) ||
1700 			     test_bit(R5_Wantcompute, &dev->flags))) {
1701 				set_bit(R5_Wantdrain, &dev->flags);
1702 				set_bit(R5_LOCKED, &dev->flags);
1703 				clear_bit(R5_UPTODATE, &dev->flags);
1704 				s->locked++;
1705 			}
1706 		}
1707 	}
1708 
1709 	/* keep the parity disk locked while asynchronous operations
1710 	 * are in flight
1711 	 */
1712 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1713 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1714 	s->locked++;
1715 
1716 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
1717 		__func__, (unsigned long long)sh->sector,
1718 		s->locked, s->ops_request);
1719 }
1720 
1721 /*
1722  * Each stripe/dev can have one or more bion attached.
1723  * toread/towrite point to the first in a chain.
1724  * The bi_next chain must be in order.
1725  */
1726 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1727 {
1728 	struct bio **bip;
1729 	raid5_conf_t *conf = sh->raid_conf;
1730 	int firstwrite=0;
1731 
1732 	pr_debug("adding bh b#%llu to stripe s#%llu\n",
1733 		(unsigned long long)bi->bi_sector,
1734 		(unsigned long long)sh->sector);
1735 
1736 
1737 	spin_lock(&sh->lock);
1738 	spin_lock_irq(&conf->device_lock);
1739 	if (forwrite) {
1740 		bip = &sh->dev[dd_idx].towrite;
1741 		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1742 			firstwrite = 1;
1743 	} else
1744 		bip = &sh->dev[dd_idx].toread;
1745 	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1746 		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1747 			goto overlap;
1748 		bip = & (*bip)->bi_next;
1749 	}
1750 	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1751 		goto overlap;
1752 
1753 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1754 	if (*bip)
1755 		bi->bi_next = *bip;
1756 	*bip = bi;
1757 	bi->bi_phys_segments++;
1758 	spin_unlock_irq(&conf->device_lock);
1759 	spin_unlock(&sh->lock);
1760 
1761 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1762 		(unsigned long long)bi->bi_sector,
1763 		(unsigned long long)sh->sector, dd_idx);
1764 
1765 	if (conf->mddev->bitmap && firstwrite) {
1766 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1767 				  STRIPE_SECTORS, 0);
1768 		sh->bm_seq = conf->seq_flush+1;
1769 		set_bit(STRIPE_BIT_DELAY, &sh->state);
1770 	}
1771 
1772 	if (forwrite) {
1773 		/* check if page is covered */
1774 		sector_t sector = sh->dev[dd_idx].sector;
1775 		for (bi=sh->dev[dd_idx].towrite;
1776 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1777 			     bi && bi->bi_sector <= sector;
1778 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1779 			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1780 				sector = bi->bi_sector + (bi->bi_size>>9);
1781 		}
1782 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1783 			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1784 	}
1785 	return 1;
1786 
1787  overlap:
1788 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1789 	spin_unlock_irq(&conf->device_lock);
1790 	spin_unlock(&sh->lock);
1791 	return 0;
1792 }
1793 
1794 static void end_reshape(raid5_conf_t *conf);
1795 
1796 static int page_is_zero(struct page *p)
1797 {
1798 	char *a = page_address(p);
1799 	return ((*(u32*)a) == 0 &&
1800 		memcmp(a, a+4, STRIPE_SIZE-4)==0);
1801 }
1802 
1803 static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks)
1804 {
1805 	int sectors_per_chunk = conf->chunk_size >> 9;
1806 	int pd_idx, dd_idx;
1807 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
1808 
1809 	raid5_compute_sector(stripe * (disks - conf->max_degraded)
1810 			     *sectors_per_chunk + chunk_offset,
1811 			     disks, disks - conf->max_degraded,
1812 			     &dd_idx, &pd_idx, conf);
1813 	return pd_idx;
1814 }
1815 
1816 static void
1817 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
1818 				struct stripe_head_state *s, int disks,
1819 				struct bio **return_bi)
1820 {
1821 	int i;
1822 	for (i = disks; i--; ) {
1823 		struct bio *bi;
1824 		int bitmap_end = 0;
1825 
1826 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1827 			mdk_rdev_t *rdev;
1828 			rcu_read_lock();
1829 			rdev = rcu_dereference(conf->disks[i].rdev);
1830 			if (rdev && test_bit(In_sync, &rdev->flags))
1831 				/* multiple read failures in one stripe */
1832 				md_error(conf->mddev, rdev);
1833 			rcu_read_unlock();
1834 		}
1835 		spin_lock_irq(&conf->device_lock);
1836 		/* fail all writes first */
1837 		bi = sh->dev[i].towrite;
1838 		sh->dev[i].towrite = NULL;
1839 		if (bi) {
1840 			s->to_write--;
1841 			bitmap_end = 1;
1842 		}
1843 
1844 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1845 			wake_up(&conf->wait_for_overlap);
1846 
1847 		while (bi && bi->bi_sector <
1848 			sh->dev[i].sector + STRIPE_SECTORS) {
1849 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1850 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
1851 			if (!raid5_dec_bi_phys_segments(bi)) {
1852 				md_write_end(conf->mddev);
1853 				bi->bi_next = *return_bi;
1854 				*return_bi = bi;
1855 			}
1856 			bi = nextbi;
1857 		}
1858 		/* and fail all 'written' */
1859 		bi = sh->dev[i].written;
1860 		sh->dev[i].written = NULL;
1861 		if (bi) bitmap_end = 1;
1862 		while (bi && bi->bi_sector <
1863 		       sh->dev[i].sector + STRIPE_SECTORS) {
1864 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
1865 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
1866 			if (!raid5_dec_bi_phys_segments(bi)) {
1867 				md_write_end(conf->mddev);
1868 				bi->bi_next = *return_bi;
1869 				*return_bi = bi;
1870 			}
1871 			bi = bi2;
1872 		}
1873 
1874 		/* fail any reads if this device is non-operational and
1875 		 * the data has not reached the cache yet.
1876 		 */
1877 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
1878 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
1879 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
1880 			bi = sh->dev[i].toread;
1881 			sh->dev[i].toread = NULL;
1882 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1883 				wake_up(&conf->wait_for_overlap);
1884 			if (bi) s->to_read--;
1885 			while (bi && bi->bi_sector <
1886 			       sh->dev[i].sector + STRIPE_SECTORS) {
1887 				struct bio *nextbi =
1888 					r5_next_bio(bi, sh->dev[i].sector);
1889 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
1890 				if (!raid5_dec_bi_phys_segments(bi)) {
1891 					bi->bi_next = *return_bi;
1892 					*return_bi = bi;
1893 				}
1894 				bi = nextbi;
1895 			}
1896 		}
1897 		spin_unlock_irq(&conf->device_lock);
1898 		if (bitmap_end)
1899 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1900 					STRIPE_SECTORS, 0, 0);
1901 	}
1902 
1903 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
1904 		if (atomic_dec_and_test(&conf->pending_full_writes))
1905 			md_wakeup_thread(conf->mddev->thread);
1906 }
1907 
1908 /* fetch_block5 - checks the given member device to see if its data needs
1909  * to be read or computed to satisfy a request.
1910  *
1911  * Returns 1 when no more member devices need to be checked, otherwise returns
1912  * 0 to tell the loop in handle_stripe_fill5 to continue
1913  */
1914 static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
1915 			int disk_idx, int disks)
1916 {
1917 	struct r5dev *dev = &sh->dev[disk_idx];
1918 	struct r5dev *failed_dev = &sh->dev[s->failed_num];
1919 
1920 	/* is the data in this block needed, and can we get it? */
1921 	if (!test_bit(R5_LOCKED, &dev->flags) &&
1922 	    !test_bit(R5_UPTODATE, &dev->flags) &&
1923 	    (dev->toread ||
1924 	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
1925 	     s->syncing || s->expanding ||
1926 	     (s->failed &&
1927 	      (failed_dev->toread ||
1928 	       (failed_dev->towrite &&
1929 		!test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
1930 		/* We would like to get this block, possibly by computing it,
1931 		 * otherwise read it if the backing disk is insync
1932 		 */
1933 		if ((s->uptodate == disks - 1) &&
1934 		    (s->failed && disk_idx == s->failed_num)) {
1935 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
1936 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
1937 			set_bit(R5_Wantcompute, &dev->flags);
1938 			sh->ops.target = disk_idx;
1939 			s->req_compute = 1;
1940 			/* Careful: from this point on 'uptodate' is in the eye
1941 			 * of raid5_run_ops which services 'compute' operations
1942 			 * before writes. R5_Wantcompute flags a block that will
1943 			 * be R5_UPTODATE by the time it is needed for a
1944 			 * subsequent operation.
1945 			 */
1946 			s->uptodate++;
1947 			return 1; /* uptodate + compute == disks */
1948 		} else if (test_bit(R5_Insync, &dev->flags)) {
1949 			set_bit(R5_LOCKED, &dev->flags);
1950 			set_bit(R5_Wantread, &dev->flags);
1951 			s->locked++;
1952 			pr_debug("Reading block %d (sync=%d)\n", disk_idx,
1953 				s->syncing);
1954 		}
1955 	}
1956 
1957 	return 0;
1958 }
1959 
1960 /**
1961  * handle_stripe_fill5 - read or compute data to satisfy pending requests.
1962  */
1963 static void handle_stripe_fill5(struct stripe_head *sh,
1964 			struct stripe_head_state *s, int disks)
1965 {
1966 	int i;
1967 
1968 	/* look for blocks to read/compute, skip this if a compute
1969 	 * is already in flight, or if the stripe contents are in the
1970 	 * midst of changing due to a write
1971 	 */
1972 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
1973 	    !sh->reconstruct_state)
1974 		for (i = disks; i--; )
1975 			if (fetch_block5(sh, s, i, disks))
1976 				break;
1977 	set_bit(STRIPE_HANDLE, &sh->state);
1978 }
1979 
1980 static void handle_stripe_fill6(struct stripe_head *sh,
1981 			struct stripe_head_state *s, struct r6_state *r6s,
1982 			int disks)
1983 {
1984 	int i;
1985 	for (i = disks; i--; ) {
1986 		struct r5dev *dev = &sh->dev[i];
1987 		if (!test_bit(R5_LOCKED, &dev->flags) &&
1988 		    !test_bit(R5_UPTODATE, &dev->flags) &&
1989 		    (dev->toread || (dev->towrite &&
1990 		     !test_bit(R5_OVERWRITE, &dev->flags)) ||
1991 		     s->syncing || s->expanding ||
1992 		     (s->failed >= 1 &&
1993 		      (sh->dev[r6s->failed_num[0]].toread ||
1994 		       s->to_write)) ||
1995 		     (s->failed >= 2 &&
1996 		      (sh->dev[r6s->failed_num[1]].toread ||
1997 		       s->to_write)))) {
1998 			/* we would like to get this block, possibly
1999 			 * by computing it, but we might not be able to
2000 			 */
2001 			if ((s->uptodate == disks - 1) &&
2002 			    (s->failed && (i == r6s->failed_num[0] ||
2003 					   i == r6s->failed_num[1]))) {
2004 				pr_debug("Computing stripe %llu block %d\n",
2005 				       (unsigned long long)sh->sector, i);
2006 				compute_block_1(sh, i, 0);
2007 				s->uptodate++;
2008 			} else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
2009 				/* Computing 2-failure is *very* expensive; only
2010 				 * do it if failed >= 2
2011 				 */
2012 				int other;
2013 				for (other = disks; other--; ) {
2014 					if (other == i)
2015 						continue;
2016 					if (!test_bit(R5_UPTODATE,
2017 					      &sh->dev[other].flags))
2018 						break;
2019 				}
2020 				BUG_ON(other < 0);
2021 				pr_debug("Computing stripe %llu blocks %d,%d\n",
2022 				       (unsigned long long)sh->sector,
2023 				       i, other);
2024 				compute_block_2(sh, i, other);
2025 				s->uptodate += 2;
2026 			} else if (test_bit(R5_Insync, &dev->flags)) {
2027 				set_bit(R5_LOCKED, &dev->flags);
2028 				set_bit(R5_Wantread, &dev->flags);
2029 				s->locked++;
2030 				pr_debug("Reading block %d (sync=%d)\n",
2031 					i, s->syncing);
2032 			}
2033 		}
2034 	}
2035 	set_bit(STRIPE_HANDLE, &sh->state);
2036 }
2037 
2038 
2039 /* handle_stripe_clean_event
2040  * any written block on an uptodate or failed drive can be returned.
2041  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2042  * never LOCKED, so we don't need to test 'failed' directly.
2043  */
2044 static void handle_stripe_clean_event(raid5_conf_t *conf,
2045 	struct stripe_head *sh, int disks, struct bio **return_bi)
2046 {
2047 	int i;
2048 	struct r5dev *dev;
2049 
2050 	for (i = disks; i--; )
2051 		if (sh->dev[i].written) {
2052 			dev = &sh->dev[i];
2053 			if (!test_bit(R5_LOCKED, &dev->flags) &&
2054 				test_bit(R5_UPTODATE, &dev->flags)) {
2055 				/* We can return any write requests */
2056 				struct bio *wbi, *wbi2;
2057 				int bitmap_end = 0;
2058 				pr_debug("Return write for disc %d\n", i);
2059 				spin_lock_irq(&conf->device_lock);
2060 				wbi = dev->written;
2061 				dev->written = NULL;
2062 				while (wbi && wbi->bi_sector <
2063 					dev->sector + STRIPE_SECTORS) {
2064 					wbi2 = r5_next_bio(wbi, dev->sector);
2065 					if (!raid5_dec_bi_phys_segments(wbi)) {
2066 						md_write_end(conf->mddev);
2067 						wbi->bi_next = *return_bi;
2068 						*return_bi = wbi;
2069 					}
2070 					wbi = wbi2;
2071 				}
2072 				if (dev->towrite == NULL)
2073 					bitmap_end = 1;
2074 				spin_unlock_irq(&conf->device_lock);
2075 				if (bitmap_end)
2076 					bitmap_endwrite(conf->mddev->bitmap,
2077 							sh->sector,
2078 							STRIPE_SECTORS,
2079 					 !test_bit(STRIPE_DEGRADED, &sh->state),
2080 							0);
2081 			}
2082 		}
2083 
2084 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2085 		if (atomic_dec_and_test(&conf->pending_full_writes))
2086 			md_wakeup_thread(conf->mddev->thread);
2087 }
2088 
2089 static void handle_stripe_dirtying5(raid5_conf_t *conf,
2090 		struct stripe_head *sh,	struct stripe_head_state *s, int disks)
2091 {
2092 	int rmw = 0, rcw = 0, i;
2093 	for (i = disks; i--; ) {
2094 		/* would I have to read this buffer for read_modify_write */
2095 		struct r5dev *dev = &sh->dev[i];
2096 		if ((dev->towrite || i == sh->pd_idx) &&
2097 		    !test_bit(R5_LOCKED, &dev->flags) &&
2098 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2099 		      test_bit(R5_Wantcompute, &dev->flags))) {
2100 			if (test_bit(R5_Insync, &dev->flags))
2101 				rmw++;
2102 			else
2103 				rmw += 2*disks;  /* cannot read it */
2104 		}
2105 		/* Would I have to read this buffer for reconstruct_write */
2106 		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2107 		    !test_bit(R5_LOCKED, &dev->flags) &&
2108 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2109 		    test_bit(R5_Wantcompute, &dev->flags))) {
2110 			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2111 			else
2112 				rcw += 2*disks;
2113 		}
2114 	}
2115 	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2116 		(unsigned long long)sh->sector, rmw, rcw);
2117 	set_bit(STRIPE_HANDLE, &sh->state);
2118 	if (rmw < rcw && rmw > 0)
2119 		/* prefer read-modify-write, but need to get some data */
2120 		for (i = disks; i--; ) {
2121 			struct r5dev *dev = &sh->dev[i];
2122 			if ((dev->towrite || i == sh->pd_idx) &&
2123 			    !test_bit(R5_LOCKED, &dev->flags) &&
2124 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2125 			    test_bit(R5_Wantcompute, &dev->flags)) &&
2126 			    test_bit(R5_Insync, &dev->flags)) {
2127 				if (
2128 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2129 					pr_debug("Read_old block "
2130 						"%d for r-m-w\n", i);
2131 					set_bit(R5_LOCKED, &dev->flags);
2132 					set_bit(R5_Wantread, &dev->flags);
2133 					s->locked++;
2134 				} else {
2135 					set_bit(STRIPE_DELAYED, &sh->state);
2136 					set_bit(STRIPE_HANDLE, &sh->state);
2137 				}
2138 			}
2139 		}
2140 	if (rcw <= rmw && rcw > 0)
2141 		/* want reconstruct write, but need to get some data */
2142 		for (i = disks; i--; ) {
2143 			struct r5dev *dev = &sh->dev[i];
2144 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2145 			    i != sh->pd_idx &&
2146 			    !test_bit(R5_LOCKED, &dev->flags) &&
2147 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2148 			    test_bit(R5_Wantcompute, &dev->flags)) &&
2149 			    test_bit(R5_Insync, &dev->flags)) {
2150 				if (
2151 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2152 					pr_debug("Read_old block "
2153 						"%d for Reconstruct\n", i);
2154 					set_bit(R5_LOCKED, &dev->flags);
2155 					set_bit(R5_Wantread, &dev->flags);
2156 					s->locked++;
2157 				} else {
2158 					set_bit(STRIPE_DELAYED, &sh->state);
2159 					set_bit(STRIPE_HANDLE, &sh->state);
2160 				}
2161 			}
2162 		}
2163 	/* now if nothing is locked, and if we have enough data,
2164 	 * we can start a write request
2165 	 */
2166 	/* since handle_stripe can be called at any time we need to handle the
2167 	 * case where a compute block operation has been submitted and then a
2168 	 * subsequent call wants to start a write request.  raid5_run_ops only
2169 	 * handles the case where compute block and postxor are requested
2170 	 * simultaneously.  If this is not the case then new writes need to be
2171 	 * held off until the compute completes.
2172 	 */
2173 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2174 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2175 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2176 		schedule_reconstruction5(sh, s, rcw == 0, 0);
2177 }
2178 
2179 static void handle_stripe_dirtying6(raid5_conf_t *conf,
2180 		struct stripe_head *sh,	struct stripe_head_state *s,
2181 		struct r6_state *r6s, int disks)
2182 {
2183 	int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
2184 	int qd_idx = r6s->qd_idx;
2185 	for (i = disks; i--; ) {
2186 		struct r5dev *dev = &sh->dev[i];
2187 		/* Would I have to read this buffer for reconstruct_write */
2188 		if (!test_bit(R5_OVERWRITE, &dev->flags)
2189 		    && i != pd_idx && i != qd_idx
2190 		    && (!test_bit(R5_LOCKED, &dev->flags)
2191 			    ) &&
2192 		    !test_bit(R5_UPTODATE, &dev->flags)) {
2193 			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2194 			else {
2195 				pr_debug("raid6: must_compute: "
2196 					"disk %d flags=%#lx\n", i, dev->flags);
2197 				must_compute++;
2198 			}
2199 		}
2200 	}
2201 	pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2202 	       (unsigned long long)sh->sector, rcw, must_compute);
2203 	set_bit(STRIPE_HANDLE, &sh->state);
2204 
2205 	if (rcw > 0)
2206 		/* want reconstruct write, but need to get some data */
2207 		for (i = disks; i--; ) {
2208 			struct r5dev *dev = &sh->dev[i];
2209 			if (!test_bit(R5_OVERWRITE, &dev->flags)
2210 			    && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2211 			    && !test_bit(R5_LOCKED, &dev->flags) &&
2212 			    !test_bit(R5_UPTODATE, &dev->flags) &&
2213 			    test_bit(R5_Insync, &dev->flags)) {
2214 				if (
2215 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2216 					pr_debug("Read_old stripe %llu "
2217 						"block %d for Reconstruct\n",
2218 					     (unsigned long long)sh->sector, i);
2219 					set_bit(R5_LOCKED, &dev->flags);
2220 					set_bit(R5_Wantread, &dev->flags);
2221 					s->locked++;
2222 				} else {
2223 					pr_debug("Request delayed stripe %llu "
2224 						"block %d for Reconstruct\n",
2225 					     (unsigned long long)sh->sector, i);
2226 					set_bit(STRIPE_DELAYED, &sh->state);
2227 					set_bit(STRIPE_HANDLE, &sh->state);
2228 				}
2229 			}
2230 		}
2231 	/* now if nothing is locked, and if we have enough data, we can start a
2232 	 * write request
2233 	 */
2234 	if (s->locked == 0 && rcw == 0 &&
2235 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2236 		if (must_compute > 0) {
2237 			/* We have failed blocks and need to compute them */
2238 			switch (s->failed) {
2239 			case 0:
2240 				BUG();
2241 			case 1:
2242 				compute_block_1(sh, r6s->failed_num[0], 0);
2243 				break;
2244 			case 2:
2245 				compute_block_2(sh, r6s->failed_num[0],
2246 						r6s->failed_num[1]);
2247 				break;
2248 			default: /* This request should have been failed? */
2249 				BUG();
2250 			}
2251 		}
2252 
2253 		pr_debug("Computing parity for stripe %llu\n",
2254 			(unsigned long long)sh->sector);
2255 		compute_parity6(sh, RECONSTRUCT_WRITE);
2256 		/* now every locked buffer is ready to be written */
2257 		for (i = disks; i--; )
2258 			if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2259 				pr_debug("Writing stripe %llu block %d\n",
2260 				       (unsigned long long)sh->sector, i);
2261 				s->locked++;
2262 				set_bit(R5_Wantwrite, &sh->dev[i].flags);
2263 			}
2264 		if (s->locked == disks)
2265 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2266 				atomic_inc(&conf->pending_full_writes);
2267 		/* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2268 		set_bit(STRIPE_INSYNC, &sh->state);
2269 
2270 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2271 			atomic_dec(&conf->preread_active_stripes);
2272 			if (atomic_read(&conf->preread_active_stripes) <
2273 			    IO_THRESHOLD)
2274 				md_wakeup_thread(conf->mddev->thread);
2275 		}
2276 	}
2277 }
2278 
2279 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2280 				struct stripe_head_state *s, int disks)
2281 {
2282 	struct r5dev *dev = NULL;
2283 
2284 	set_bit(STRIPE_HANDLE, &sh->state);
2285 
2286 	switch (sh->check_state) {
2287 	case check_state_idle:
2288 		/* start a new check operation if there are no failures */
2289 		if (s->failed == 0) {
2290 			BUG_ON(s->uptodate != disks);
2291 			sh->check_state = check_state_run;
2292 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2293 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2294 			s->uptodate--;
2295 			break;
2296 		}
2297 		dev = &sh->dev[s->failed_num];
2298 		/* fall through */
2299 	case check_state_compute_result:
2300 		sh->check_state = check_state_idle;
2301 		if (!dev)
2302 			dev = &sh->dev[sh->pd_idx];
2303 
2304 		/* check that a write has not made the stripe insync */
2305 		if (test_bit(STRIPE_INSYNC, &sh->state))
2306 			break;
2307 
2308 		/* either failed parity check, or recovery is happening */
2309 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2310 		BUG_ON(s->uptodate != disks);
2311 
2312 		set_bit(R5_LOCKED, &dev->flags);
2313 		s->locked++;
2314 		set_bit(R5_Wantwrite, &dev->flags);
2315 
2316 		clear_bit(STRIPE_DEGRADED, &sh->state);
2317 		set_bit(STRIPE_INSYNC, &sh->state);
2318 		break;
2319 	case check_state_run:
2320 		break; /* we will be called again upon completion */
2321 	case check_state_check_result:
2322 		sh->check_state = check_state_idle;
2323 
2324 		/* if a failure occurred during the check operation, leave
2325 		 * STRIPE_INSYNC not set and let the stripe be handled again
2326 		 */
2327 		if (s->failed)
2328 			break;
2329 
2330 		/* handle a successful check operation, if parity is correct
2331 		 * we are done.  Otherwise update the mismatch count and repair
2332 		 * parity if !MD_RECOVERY_CHECK
2333 		 */
2334 		if (sh->ops.zero_sum_result == 0)
2335 			/* parity is correct (on disc,
2336 			 * not in buffer any more)
2337 			 */
2338 			set_bit(STRIPE_INSYNC, &sh->state);
2339 		else {
2340 			conf->mddev->resync_mismatches += STRIPE_SECTORS;
2341 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2342 				/* don't try to repair!! */
2343 				set_bit(STRIPE_INSYNC, &sh->state);
2344 			else {
2345 				sh->check_state = check_state_compute_run;
2346 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2347 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2348 				set_bit(R5_Wantcompute,
2349 					&sh->dev[sh->pd_idx].flags);
2350 				sh->ops.target = sh->pd_idx;
2351 				s->uptodate++;
2352 			}
2353 		}
2354 		break;
2355 	case check_state_compute_run:
2356 		break;
2357 	default:
2358 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2359 		       __func__, sh->check_state,
2360 		       (unsigned long long) sh->sector);
2361 		BUG();
2362 	}
2363 }
2364 
2365 
2366 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2367 				struct stripe_head_state *s,
2368 				struct r6_state *r6s, struct page *tmp_page,
2369 				int disks)
2370 {
2371 	int update_p = 0, update_q = 0;
2372 	struct r5dev *dev;
2373 	int pd_idx = sh->pd_idx;
2374 	int qd_idx = r6s->qd_idx;
2375 
2376 	set_bit(STRIPE_HANDLE, &sh->state);
2377 
2378 	BUG_ON(s->failed > 2);
2379 	BUG_ON(s->uptodate < disks);
2380 	/* Want to check and possibly repair P and Q.
2381 	 * However there could be one 'failed' device, in which
2382 	 * case we can only check one of them, possibly using the
2383 	 * other to generate missing data
2384 	 */
2385 
2386 	/* If !tmp_page, we cannot do the calculations,
2387 	 * but as we have set STRIPE_HANDLE, we will soon be called
2388 	 * by stripe_handle with a tmp_page - just wait until then.
2389 	 */
2390 	if (tmp_page) {
2391 		if (s->failed == r6s->q_failed) {
2392 			/* The only possible failed device holds 'Q', so it
2393 			 * makes sense to check P (If anything else were failed,
2394 			 * we would have used P to recreate it).
2395 			 */
2396 			compute_block_1(sh, pd_idx, 1);
2397 			if (!page_is_zero(sh->dev[pd_idx].page)) {
2398 				compute_block_1(sh, pd_idx, 0);
2399 				update_p = 1;
2400 			}
2401 		}
2402 		if (!r6s->q_failed && s->failed < 2) {
2403 			/* q is not failed, and we didn't use it to generate
2404 			 * anything, so it makes sense to check it
2405 			 */
2406 			memcpy(page_address(tmp_page),
2407 			       page_address(sh->dev[qd_idx].page),
2408 			       STRIPE_SIZE);
2409 			compute_parity6(sh, UPDATE_PARITY);
2410 			if (memcmp(page_address(tmp_page),
2411 				   page_address(sh->dev[qd_idx].page),
2412 				   STRIPE_SIZE) != 0) {
2413 				clear_bit(STRIPE_INSYNC, &sh->state);
2414 				update_q = 1;
2415 			}
2416 		}
2417 		if (update_p || update_q) {
2418 			conf->mddev->resync_mismatches += STRIPE_SECTORS;
2419 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2420 				/* don't try to repair!! */
2421 				update_p = update_q = 0;
2422 		}
2423 
2424 		/* now write out any block on a failed drive,
2425 		 * or P or Q if they need it
2426 		 */
2427 
2428 		if (s->failed == 2) {
2429 			dev = &sh->dev[r6s->failed_num[1]];
2430 			s->locked++;
2431 			set_bit(R5_LOCKED, &dev->flags);
2432 			set_bit(R5_Wantwrite, &dev->flags);
2433 		}
2434 		if (s->failed >= 1) {
2435 			dev = &sh->dev[r6s->failed_num[0]];
2436 			s->locked++;
2437 			set_bit(R5_LOCKED, &dev->flags);
2438 			set_bit(R5_Wantwrite, &dev->flags);
2439 		}
2440 
2441 		if (update_p) {
2442 			dev = &sh->dev[pd_idx];
2443 			s->locked++;
2444 			set_bit(R5_LOCKED, &dev->flags);
2445 			set_bit(R5_Wantwrite, &dev->flags);
2446 		}
2447 		if (update_q) {
2448 			dev = &sh->dev[qd_idx];
2449 			s->locked++;
2450 			set_bit(R5_LOCKED, &dev->flags);
2451 			set_bit(R5_Wantwrite, &dev->flags);
2452 		}
2453 		clear_bit(STRIPE_DEGRADED, &sh->state);
2454 
2455 		set_bit(STRIPE_INSYNC, &sh->state);
2456 	}
2457 }
2458 
2459 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2460 				struct r6_state *r6s)
2461 {
2462 	int i;
2463 
2464 	/* We have read all the blocks in this stripe and now we need to
2465 	 * copy some of them into a target stripe for expand.
2466 	 */
2467 	struct dma_async_tx_descriptor *tx = NULL;
2468 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2469 	for (i = 0; i < sh->disks; i++)
2470 		if (i != sh->pd_idx && (!r6s || i != r6s->qd_idx)) {
2471 			int dd_idx, pd_idx, j;
2472 			struct stripe_head *sh2;
2473 
2474 			sector_t bn = compute_blocknr(sh, i);
2475 			sector_t s = raid5_compute_sector(bn, conf->raid_disks,
2476 						conf->raid_disks -
2477 						conf->max_degraded, &dd_idx,
2478 						&pd_idx, conf);
2479 			sh2 = get_active_stripe(conf, s, conf->raid_disks,
2480 						pd_idx, 1);
2481 			if (sh2 == NULL)
2482 				/* so far only the early blocks of this stripe
2483 				 * have been requested.  When later blocks
2484 				 * get requested, we will try again
2485 				 */
2486 				continue;
2487 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2488 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2489 				/* must have already done this block */
2490 				release_stripe(sh2);
2491 				continue;
2492 			}
2493 
2494 			/* place all the copies on one channel */
2495 			tx = async_memcpy(sh2->dev[dd_idx].page,
2496 				sh->dev[i].page, 0, 0, STRIPE_SIZE,
2497 				ASYNC_TX_DEP_ACK, tx, NULL, NULL);
2498 
2499 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2500 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2501 			for (j = 0; j < conf->raid_disks; j++)
2502 				if (j != sh2->pd_idx &&
2503 				    (!r6s || j != raid6_next_disk(sh2->pd_idx,
2504 								 sh2->disks)) &&
2505 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
2506 					break;
2507 			if (j == conf->raid_disks) {
2508 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
2509 				set_bit(STRIPE_HANDLE, &sh2->state);
2510 			}
2511 			release_stripe(sh2);
2512 
2513 		}
2514 	/* done submitting copies, wait for them to complete */
2515 	if (tx) {
2516 		async_tx_ack(tx);
2517 		dma_wait_for_async_tx(tx);
2518 	}
2519 }
2520 
2521 
2522 /*
2523  * handle_stripe - do things to a stripe.
2524  *
2525  * We lock the stripe and then examine the state of various bits
2526  * to see what needs to be done.
2527  * Possible results:
2528  *    return some read request which now have data
2529  *    return some write requests which are safely on disc
2530  *    schedule a read on some buffers
2531  *    schedule a write of some buffers
2532  *    return confirmation of parity correctness
2533  *
2534  * buffers are taken off read_list or write_list, and bh_cache buffers
2535  * get BH_Lock set before the stripe lock is released.
2536  *
2537  */
2538 
2539 static bool handle_stripe5(struct stripe_head *sh)
2540 {
2541 	raid5_conf_t *conf = sh->raid_conf;
2542 	int disks = sh->disks, i;
2543 	struct bio *return_bi = NULL;
2544 	struct stripe_head_state s;
2545 	struct r5dev *dev;
2546 	mdk_rdev_t *blocked_rdev = NULL;
2547 	int prexor;
2548 
2549 	memset(&s, 0, sizeof(s));
2550 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
2551 		 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
2552 		 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
2553 		 sh->reconstruct_state);
2554 
2555 	spin_lock(&sh->lock);
2556 	clear_bit(STRIPE_HANDLE, &sh->state);
2557 	clear_bit(STRIPE_DELAYED, &sh->state);
2558 
2559 	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2560 	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2561 	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2562 
2563 	/* Now to look around and see what can be done */
2564 	rcu_read_lock();
2565 	for (i=disks; i--; ) {
2566 		mdk_rdev_t *rdev;
2567 		struct r5dev *dev = &sh->dev[i];
2568 		clear_bit(R5_Insync, &dev->flags);
2569 
2570 		pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2571 			"written %p\n",	i, dev->flags, dev->toread, dev->read,
2572 			dev->towrite, dev->written);
2573 
2574 		/* maybe we can request a biofill operation
2575 		 *
2576 		 * new wantfill requests are only permitted while
2577 		 * ops_complete_biofill is guaranteed to be inactive
2578 		 */
2579 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2580 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2581 			set_bit(R5_Wantfill, &dev->flags);
2582 
2583 		/* now count some things */
2584 		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2585 		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2586 		if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2587 
2588 		if (test_bit(R5_Wantfill, &dev->flags))
2589 			s.to_fill++;
2590 		else if (dev->toread)
2591 			s.to_read++;
2592 		if (dev->towrite) {
2593 			s.to_write++;
2594 			if (!test_bit(R5_OVERWRITE, &dev->flags))
2595 				s.non_overwrite++;
2596 		}
2597 		if (dev->written)
2598 			s.written++;
2599 		rdev = rcu_dereference(conf->disks[i].rdev);
2600 		if (blocked_rdev == NULL &&
2601 		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2602 			blocked_rdev = rdev;
2603 			atomic_inc(&rdev->nr_pending);
2604 		}
2605 		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2606 			/* The ReadError flag will just be confusing now */
2607 			clear_bit(R5_ReadError, &dev->flags);
2608 			clear_bit(R5_ReWrite, &dev->flags);
2609 		}
2610 		if (!rdev || !test_bit(In_sync, &rdev->flags)
2611 		    || test_bit(R5_ReadError, &dev->flags)) {
2612 			s.failed++;
2613 			s.failed_num = i;
2614 		} else
2615 			set_bit(R5_Insync, &dev->flags);
2616 	}
2617 	rcu_read_unlock();
2618 
2619 	if (unlikely(blocked_rdev)) {
2620 		if (s.syncing || s.expanding || s.expanded ||
2621 		    s.to_write || s.written) {
2622 			set_bit(STRIPE_HANDLE, &sh->state);
2623 			goto unlock;
2624 		}
2625 		/* There is nothing for the blocked_rdev to block */
2626 		rdev_dec_pending(blocked_rdev, conf->mddev);
2627 		blocked_rdev = NULL;
2628 	}
2629 
2630 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
2631 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
2632 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
2633 	}
2634 
2635 	pr_debug("locked=%d uptodate=%d to_read=%d"
2636 		" to_write=%d failed=%d failed_num=%d\n",
2637 		s.locked, s.uptodate, s.to_read, s.to_write,
2638 		s.failed, s.failed_num);
2639 	/* check if the array has lost two devices and, if so, some requests might
2640 	 * need to be failed
2641 	 */
2642 	if (s.failed > 1 && s.to_read+s.to_write+s.written)
2643 		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
2644 	if (s.failed > 1 && s.syncing) {
2645 		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2646 		clear_bit(STRIPE_SYNCING, &sh->state);
2647 		s.syncing = 0;
2648 	}
2649 
2650 	/* might be able to return some write requests if the parity block
2651 	 * is safe, or on a failed drive
2652 	 */
2653 	dev = &sh->dev[sh->pd_idx];
2654 	if ( s.written &&
2655 	     ((test_bit(R5_Insync, &dev->flags) &&
2656 	       !test_bit(R5_LOCKED, &dev->flags) &&
2657 	       test_bit(R5_UPTODATE, &dev->flags)) ||
2658 	       (s.failed == 1 && s.failed_num == sh->pd_idx)))
2659 		handle_stripe_clean_event(conf, sh, disks, &return_bi);
2660 
2661 	/* Now we might consider reading some blocks, either to check/generate
2662 	 * parity, or to satisfy requests
2663 	 * or to load a block that is being partially written.
2664 	 */
2665 	if (s.to_read || s.non_overwrite ||
2666 	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
2667 		handle_stripe_fill5(sh, &s, disks);
2668 
2669 	/* Now we check to see if any write operations have recently
2670 	 * completed
2671 	 */
2672 	prexor = 0;
2673 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
2674 		prexor = 1;
2675 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
2676 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
2677 		sh->reconstruct_state = reconstruct_state_idle;
2678 
2679 		/* All the 'written' buffers and the parity block are ready to
2680 		 * be written back to disk
2681 		 */
2682 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
2683 		for (i = disks; i--; ) {
2684 			dev = &sh->dev[i];
2685 			if (test_bit(R5_LOCKED, &dev->flags) &&
2686 				(i == sh->pd_idx || dev->written)) {
2687 				pr_debug("Writing block %d\n", i);
2688 				set_bit(R5_Wantwrite, &dev->flags);
2689 				if (prexor)
2690 					continue;
2691 				if (!test_bit(R5_Insync, &dev->flags) ||
2692 				    (i == sh->pd_idx && s.failed == 0))
2693 					set_bit(STRIPE_INSYNC, &sh->state);
2694 			}
2695 		}
2696 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2697 			atomic_dec(&conf->preread_active_stripes);
2698 			if (atomic_read(&conf->preread_active_stripes) <
2699 				IO_THRESHOLD)
2700 				md_wakeup_thread(conf->mddev->thread);
2701 		}
2702 	}
2703 
2704 	/* Now to consider new write requests and what else, if anything
2705 	 * should be read.  We do not handle new writes when:
2706 	 * 1/ A 'write' operation (copy+xor) is already in flight.
2707 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
2708 	 *    block.
2709 	 */
2710 	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
2711 		handle_stripe_dirtying5(conf, sh, &s, disks);
2712 
2713 	/* maybe we need to check and possibly fix the parity for this stripe
2714 	 * Any reads will already have been scheduled, so we just see if enough
2715 	 * data is available.  The parity check is held off while parity
2716 	 * dependent operations are in flight.
2717 	 */
2718 	if (sh->check_state ||
2719 	    (s.syncing && s.locked == 0 &&
2720 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
2721 	     !test_bit(STRIPE_INSYNC, &sh->state)))
2722 		handle_parity_checks5(conf, sh, &s, disks);
2723 
2724 	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2725 		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2726 		clear_bit(STRIPE_SYNCING, &sh->state);
2727 	}
2728 
2729 	/* If the failed drive is just a ReadError, then we might need to progress
2730 	 * the repair/check process
2731 	 */
2732 	if (s.failed == 1 && !conf->mddev->ro &&
2733 	    test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2734 	    && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2735 	    && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
2736 		) {
2737 		dev = &sh->dev[s.failed_num];
2738 		if (!test_bit(R5_ReWrite, &dev->flags)) {
2739 			set_bit(R5_Wantwrite, &dev->flags);
2740 			set_bit(R5_ReWrite, &dev->flags);
2741 			set_bit(R5_LOCKED, &dev->flags);
2742 			s.locked++;
2743 		} else {
2744 			/* let's read it back */
2745 			set_bit(R5_Wantread, &dev->flags);
2746 			set_bit(R5_LOCKED, &dev->flags);
2747 			s.locked++;
2748 		}
2749 	}
2750 
2751 	/* Finish reconstruct operations initiated by the expansion process */
2752 	if (sh->reconstruct_state == reconstruct_state_result) {
2753 		sh->reconstruct_state = reconstruct_state_idle;
2754 		clear_bit(STRIPE_EXPANDING, &sh->state);
2755 		for (i = conf->raid_disks; i--; ) {
2756 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
2757 			set_bit(R5_LOCKED, &sh->dev[i].flags);
2758 			s.locked++;
2759 		}
2760 	}
2761 
2762 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
2763 	    !sh->reconstruct_state) {
2764 		/* Need to write out all blocks after computing parity */
2765 		sh->disks = conf->raid_disks;
2766 		sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
2767 			conf->raid_disks);
2768 		schedule_reconstruction5(sh, &s, 1, 1);
2769 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
2770 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
2771 		atomic_dec(&conf->reshape_stripes);
2772 		wake_up(&conf->wait_for_overlap);
2773 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2774 	}
2775 
2776 	if (s.expanding && s.locked == 0 &&
2777 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
2778 		handle_stripe_expansion(conf, sh, NULL);
2779 
2780  unlock:
2781 	spin_unlock(&sh->lock);
2782 
2783 	/* wait for this device to become unblocked */
2784 	if (unlikely(blocked_rdev))
2785 		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
2786 
2787 	if (s.ops_request)
2788 		raid5_run_ops(sh, s.ops_request);
2789 
2790 	ops_run_io(sh, &s);
2791 
2792 	return_io(return_bi);
2793 
2794 	return blocked_rdev == NULL;
2795 }
2796 
2797 static bool handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
2798 {
2799 	raid6_conf_t *conf = sh->raid_conf;
2800 	int disks = sh->disks;
2801 	struct bio *return_bi = NULL;
2802 	int i, pd_idx = sh->pd_idx;
2803 	struct stripe_head_state s;
2804 	struct r6_state r6s;
2805 	struct r5dev *dev, *pdev, *qdev;
2806 	mdk_rdev_t *blocked_rdev = NULL;
2807 
2808 	r6s.qd_idx = raid6_next_disk(pd_idx, disks);
2809 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
2810 		"pd_idx=%d, qd_idx=%d\n",
2811 	       (unsigned long long)sh->sector, sh->state,
2812 	       atomic_read(&sh->count), pd_idx, r6s.qd_idx);
2813 	memset(&s, 0, sizeof(s));
2814 
2815 	spin_lock(&sh->lock);
2816 	clear_bit(STRIPE_HANDLE, &sh->state);
2817 	clear_bit(STRIPE_DELAYED, &sh->state);
2818 
2819 	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2820 	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2821 	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2822 	/* Now to look around and see what can be done */
2823 
2824 	rcu_read_lock();
2825 	for (i=disks; i--; ) {
2826 		mdk_rdev_t *rdev;
2827 		dev = &sh->dev[i];
2828 		clear_bit(R5_Insync, &dev->flags);
2829 
2830 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
2831 			i, dev->flags, dev->toread, dev->towrite, dev->written);
2832 		/* maybe we can reply to a read */
2833 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
2834 			struct bio *rbi, *rbi2;
2835 			pr_debug("Return read for disc %d\n", i);
2836 			spin_lock_irq(&conf->device_lock);
2837 			rbi = dev->toread;
2838 			dev->toread = NULL;
2839 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
2840 				wake_up(&conf->wait_for_overlap);
2841 			spin_unlock_irq(&conf->device_lock);
2842 			while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
2843 				copy_data(0, rbi, dev->page, dev->sector);
2844 				rbi2 = r5_next_bio(rbi, dev->sector);
2845 				spin_lock_irq(&conf->device_lock);
2846 				if (!raid5_dec_bi_phys_segments(rbi)) {
2847 					rbi->bi_next = return_bi;
2848 					return_bi = rbi;
2849 				}
2850 				spin_unlock_irq(&conf->device_lock);
2851 				rbi = rbi2;
2852 			}
2853 		}
2854 
2855 		/* now count some things */
2856 		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2857 		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2858 
2859 
2860 		if (dev->toread)
2861 			s.to_read++;
2862 		if (dev->towrite) {
2863 			s.to_write++;
2864 			if (!test_bit(R5_OVERWRITE, &dev->flags))
2865 				s.non_overwrite++;
2866 		}
2867 		if (dev->written)
2868 			s.written++;
2869 		rdev = rcu_dereference(conf->disks[i].rdev);
2870 		if (blocked_rdev == NULL &&
2871 		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2872 			blocked_rdev = rdev;
2873 			atomic_inc(&rdev->nr_pending);
2874 		}
2875 		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2876 			/* The ReadError flag will just be confusing now */
2877 			clear_bit(R5_ReadError, &dev->flags);
2878 			clear_bit(R5_ReWrite, &dev->flags);
2879 		}
2880 		if (!rdev || !test_bit(In_sync, &rdev->flags)
2881 		    || test_bit(R5_ReadError, &dev->flags)) {
2882 			if (s.failed < 2)
2883 				r6s.failed_num[s.failed] = i;
2884 			s.failed++;
2885 		} else
2886 			set_bit(R5_Insync, &dev->flags);
2887 	}
2888 	rcu_read_unlock();
2889 
2890 	if (unlikely(blocked_rdev)) {
2891 		if (s.syncing || s.expanding || s.expanded ||
2892 		    s.to_write || s.written) {
2893 			set_bit(STRIPE_HANDLE, &sh->state);
2894 			goto unlock;
2895 		}
2896 		/* There is nothing for the blocked_rdev to block */
2897 		rdev_dec_pending(blocked_rdev, conf->mddev);
2898 		blocked_rdev = NULL;
2899 	}
2900 
2901 	pr_debug("locked=%d uptodate=%d to_read=%d"
2902 	       " to_write=%d failed=%d failed_num=%d,%d\n",
2903 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
2904 	       r6s.failed_num[0], r6s.failed_num[1]);
2905 	/* check if the array has lost >2 devices and, if so, some requests
2906 	 * might need to be failed
2907 	 */
2908 	if (s.failed > 2 && s.to_read+s.to_write+s.written)
2909 		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
2910 	if (s.failed > 2 && s.syncing) {
2911 		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2912 		clear_bit(STRIPE_SYNCING, &sh->state);
2913 		s.syncing = 0;
2914 	}
2915 
2916 	/*
2917 	 * might be able to return some write requests if the parity blocks
2918 	 * are safe, or on a failed drive
2919 	 */
2920 	pdev = &sh->dev[pd_idx];
2921 	r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
2922 		|| (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
2923 	qdev = &sh->dev[r6s.qd_idx];
2924 	r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == r6s.qd_idx)
2925 		|| (s.failed >= 2 && r6s.failed_num[1] == r6s.qd_idx);
2926 
2927 	if ( s.written &&
2928 	     ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
2929 			     && !test_bit(R5_LOCKED, &pdev->flags)
2930 			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
2931 	     ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
2932 			     && !test_bit(R5_LOCKED, &qdev->flags)
2933 			     && test_bit(R5_UPTODATE, &qdev->flags)))))
2934 		handle_stripe_clean_event(conf, sh, disks, &return_bi);
2935 
2936 	/* Now we might consider reading some blocks, either to check/generate
2937 	 * parity, or to satisfy requests
2938 	 * or to load a block that is being partially written.
2939 	 */
2940 	if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
2941 	    (s.syncing && (s.uptodate < disks)) || s.expanding)
2942 		handle_stripe_fill6(sh, &s, &r6s, disks);
2943 
2944 	/* now to consider writing and what else, if anything should be read */
2945 	if (s.to_write)
2946 		handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
2947 
2948 	/* maybe we need to check and possibly fix the parity for this stripe
2949 	 * Any reads will already have been scheduled, so we just see if enough
2950 	 * data is available
2951 	 */
2952 	if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
2953 		handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
2954 
2955 	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2956 		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2957 		clear_bit(STRIPE_SYNCING, &sh->state);
2958 	}
2959 
2960 	/* If the failed drives are just a ReadError, then we might need
2961 	 * to progress the repair/check process
2962 	 */
2963 	if (s.failed <= 2 && !conf->mddev->ro)
2964 		for (i = 0; i < s.failed; i++) {
2965 			dev = &sh->dev[r6s.failed_num[i]];
2966 			if (test_bit(R5_ReadError, &dev->flags)
2967 			    && !test_bit(R5_LOCKED, &dev->flags)
2968 			    && test_bit(R5_UPTODATE, &dev->flags)
2969 				) {
2970 				if (!test_bit(R5_ReWrite, &dev->flags)) {
2971 					set_bit(R5_Wantwrite, &dev->flags);
2972 					set_bit(R5_ReWrite, &dev->flags);
2973 					set_bit(R5_LOCKED, &dev->flags);
2974 				} else {
2975 					/* let's read it back */
2976 					set_bit(R5_Wantread, &dev->flags);
2977 					set_bit(R5_LOCKED, &dev->flags);
2978 				}
2979 			}
2980 		}
2981 
2982 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
2983 		/* Need to write out all blocks after computing P&Q */
2984 		sh->disks = conf->raid_disks;
2985 		sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
2986 					     conf->raid_disks);
2987 		compute_parity6(sh, RECONSTRUCT_WRITE);
2988 		for (i = conf->raid_disks ; i-- ;  ) {
2989 			set_bit(R5_LOCKED, &sh->dev[i].flags);
2990 			s.locked++;
2991 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
2992 		}
2993 		clear_bit(STRIPE_EXPANDING, &sh->state);
2994 	} else if (s.expanded) {
2995 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
2996 		atomic_dec(&conf->reshape_stripes);
2997 		wake_up(&conf->wait_for_overlap);
2998 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2999 	}
3000 
3001 	if (s.expanding && s.locked == 0 &&
3002 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3003 		handle_stripe_expansion(conf, sh, &r6s);
3004 
3005  unlock:
3006 	spin_unlock(&sh->lock);
3007 
3008 	/* wait for this device to become unblocked */
3009 	if (unlikely(blocked_rdev))
3010 		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3011 
3012 	ops_run_io(sh, &s);
3013 
3014 	return_io(return_bi);
3015 
3016 	return blocked_rdev == NULL;
3017 }
3018 
3019 /* returns true if the stripe was handled */
3020 static bool handle_stripe(struct stripe_head *sh, struct page *tmp_page)
3021 {
3022 	if (sh->raid_conf->level == 6)
3023 		return handle_stripe6(sh, tmp_page);
3024 	else
3025 		return handle_stripe5(sh);
3026 }
3027 
3028 
3029 
3030 static void raid5_activate_delayed(raid5_conf_t *conf)
3031 {
3032 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3033 		while (!list_empty(&conf->delayed_list)) {
3034 			struct list_head *l = conf->delayed_list.next;
3035 			struct stripe_head *sh;
3036 			sh = list_entry(l, struct stripe_head, lru);
3037 			list_del_init(l);
3038 			clear_bit(STRIPE_DELAYED, &sh->state);
3039 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3040 				atomic_inc(&conf->preread_active_stripes);
3041 			list_add_tail(&sh->lru, &conf->hold_list);
3042 		}
3043 	} else
3044 		blk_plug_device(conf->mddev->queue);
3045 }
3046 
3047 static void activate_bit_delay(raid5_conf_t *conf)
3048 {
3049 	/* device_lock is held */
3050 	struct list_head head;
3051 	list_add(&head, &conf->bitmap_list);
3052 	list_del_init(&conf->bitmap_list);
3053 	while (!list_empty(&head)) {
3054 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3055 		list_del_init(&sh->lru);
3056 		atomic_inc(&sh->count);
3057 		__release_stripe(conf, sh);
3058 	}
3059 }
3060 
3061 static void unplug_slaves(mddev_t *mddev)
3062 {
3063 	raid5_conf_t *conf = mddev_to_conf(mddev);
3064 	int i;
3065 
3066 	rcu_read_lock();
3067 	for (i=0; i<mddev->raid_disks; i++) {
3068 		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3069 		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3070 			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3071 
3072 			atomic_inc(&rdev->nr_pending);
3073 			rcu_read_unlock();
3074 
3075 			blk_unplug(r_queue);
3076 
3077 			rdev_dec_pending(rdev, mddev);
3078 			rcu_read_lock();
3079 		}
3080 	}
3081 	rcu_read_unlock();
3082 }
3083 
3084 static void raid5_unplug_device(struct request_queue *q)
3085 {
3086 	mddev_t *mddev = q->queuedata;
3087 	raid5_conf_t *conf = mddev_to_conf(mddev);
3088 	unsigned long flags;
3089 
3090 	spin_lock_irqsave(&conf->device_lock, flags);
3091 
3092 	if (blk_remove_plug(q)) {
3093 		conf->seq_flush++;
3094 		raid5_activate_delayed(conf);
3095 	}
3096 	md_wakeup_thread(mddev->thread);
3097 
3098 	spin_unlock_irqrestore(&conf->device_lock, flags);
3099 
3100 	unplug_slaves(mddev);
3101 }
3102 
3103 static int raid5_congested(void *data, int bits)
3104 {
3105 	mddev_t *mddev = data;
3106 	raid5_conf_t *conf = mddev_to_conf(mddev);
3107 
3108 	/* No difference between reads and writes.  Just check
3109 	 * how busy the stripe_cache is
3110 	 */
3111 	if (conf->inactive_blocked)
3112 		return 1;
3113 	if (conf->quiesce)
3114 		return 1;
3115 	if (list_empty_careful(&conf->inactive_list))
3116 		return 1;
3117 
3118 	return 0;
3119 }
3120 
3121 /* We want read requests to align with chunks where possible,
3122  * but write requests don't need to.
3123  */
3124 static int raid5_mergeable_bvec(struct request_queue *q,
3125 				struct bvec_merge_data *bvm,
3126 				struct bio_vec *biovec)
3127 {
3128 	mddev_t *mddev = q->queuedata;
3129 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3130 	int max;
3131 	unsigned int chunk_sectors = mddev->chunk_size >> 9;
3132 	unsigned int bio_sectors = bvm->bi_size >> 9;
3133 
3134 	if ((bvm->bi_rw & 1) == WRITE)
3135 		return biovec->bv_len; /* always allow writes to be mergeable */
3136 
3137 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3138 	if (max < 0) max = 0;
3139 	if (max <= biovec->bv_len && bio_sectors == 0)
3140 		return biovec->bv_len;
3141 	else
3142 		return max;
3143 }
3144 
3145 
3146 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3147 {
3148 	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3149 	unsigned int chunk_sectors = mddev->chunk_size >> 9;
3150 	unsigned int bio_sectors = bio->bi_size >> 9;
3151 
3152 	return  chunk_sectors >=
3153 		((sector & (chunk_sectors - 1)) + bio_sectors);
3154 }
3155 
3156 /*
3157  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3158  *  later sampled by raid5d.
3159  */
3160 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3161 {
3162 	unsigned long flags;
3163 
3164 	spin_lock_irqsave(&conf->device_lock, flags);
3165 
3166 	bi->bi_next = conf->retry_read_aligned_list;
3167 	conf->retry_read_aligned_list = bi;
3168 
3169 	spin_unlock_irqrestore(&conf->device_lock, flags);
3170 	md_wakeup_thread(conf->mddev->thread);
3171 }
3172 
3173 
3174 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3175 {
3176 	struct bio *bi;
3177 
3178 	bi = conf->retry_read_aligned;
3179 	if (bi) {
3180 		conf->retry_read_aligned = NULL;
3181 		return bi;
3182 	}
3183 	bi = conf->retry_read_aligned_list;
3184 	if(bi) {
3185 		conf->retry_read_aligned_list = bi->bi_next;
3186 		bi->bi_next = NULL;
3187 		/*
3188 		 * this sets the active strip count to 1 and the processed
3189 		 * strip count to zero (upper 8 bits)
3190 		 */
3191 		bi->bi_phys_segments = 1; /* biased count of active stripes */
3192 	}
3193 
3194 	return bi;
3195 }
3196 
3197 
3198 /*
3199  *  The "raid5_align_endio" should check if the read succeeded and if it
3200  *  did, call bio_endio on the original bio (having bio_put the new bio
3201  *  first).
3202  *  If the read failed..
3203  */
3204 static void raid5_align_endio(struct bio *bi, int error)
3205 {
3206 	struct bio* raid_bi  = bi->bi_private;
3207 	mddev_t *mddev;
3208 	raid5_conf_t *conf;
3209 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3210 	mdk_rdev_t *rdev;
3211 
3212 	bio_put(bi);
3213 
3214 	mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3215 	conf = mddev_to_conf(mddev);
3216 	rdev = (void*)raid_bi->bi_next;
3217 	raid_bi->bi_next = NULL;
3218 
3219 	rdev_dec_pending(rdev, conf->mddev);
3220 
3221 	if (!error && uptodate) {
3222 		bio_endio(raid_bi, 0);
3223 		if (atomic_dec_and_test(&conf->active_aligned_reads))
3224 			wake_up(&conf->wait_for_stripe);
3225 		return;
3226 	}
3227 
3228 
3229 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3230 
3231 	add_bio_to_retry(raid_bi, conf);
3232 }
3233 
3234 static int bio_fits_rdev(struct bio *bi)
3235 {
3236 	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3237 
3238 	if ((bi->bi_size>>9) > q->max_sectors)
3239 		return 0;
3240 	blk_recount_segments(q, bi);
3241 	if (bi->bi_phys_segments > q->max_phys_segments)
3242 		return 0;
3243 
3244 	if (q->merge_bvec_fn)
3245 		/* it's too hard to apply the merge_bvec_fn at this stage,
3246 		 * just just give up
3247 		 */
3248 		return 0;
3249 
3250 	return 1;
3251 }
3252 
3253 
3254 static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3255 {
3256 	mddev_t *mddev = q->queuedata;
3257 	raid5_conf_t *conf = mddev_to_conf(mddev);
3258 	const unsigned int raid_disks = conf->raid_disks;
3259 	const unsigned int data_disks = raid_disks - conf->max_degraded;
3260 	unsigned int dd_idx, pd_idx;
3261 	struct bio* align_bi;
3262 	mdk_rdev_t *rdev;
3263 
3264 	if (!in_chunk_boundary(mddev, raid_bio)) {
3265 		pr_debug("chunk_aligned_read : non aligned\n");
3266 		return 0;
3267 	}
3268 	/*
3269  	 * use bio_clone to make a copy of the bio
3270 	 */
3271 	align_bi = bio_clone(raid_bio, GFP_NOIO);
3272 	if (!align_bi)
3273 		return 0;
3274 	/*
3275 	 *   set bi_end_io to a new function, and set bi_private to the
3276 	 *     original bio.
3277 	 */
3278 	align_bi->bi_end_io  = raid5_align_endio;
3279 	align_bi->bi_private = raid_bio;
3280 	/*
3281 	 *	compute position
3282 	 */
3283 	align_bi->bi_sector =  raid5_compute_sector(raid_bio->bi_sector,
3284 					raid_disks,
3285 					data_disks,
3286 					&dd_idx,
3287 					&pd_idx,
3288 					conf);
3289 
3290 	rcu_read_lock();
3291 	rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3292 	if (rdev && test_bit(In_sync, &rdev->flags)) {
3293 		atomic_inc(&rdev->nr_pending);
3294 		rcu_read_unlock();
3295 		raid_bio->bi_next = (void*)rdev;
3296 		align_bi->bi_bdev =  rdev->bdev;
3297 		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3298 		align_bi->bi_sector += rdev->data_offset;
3299 
3300 		if (!bio_fits_rdev(align_bi)) {
3301 			/* too big in some way */
3302 			bio_put(align_bi);
3303 			rdev_dec_pending(rdev, mddev);
3304 			return 0;
3305 		}
3306 
3307 		spin_lock_irq(&conf->device_lock);
3308 		wait_event_lock_irq(conf->wait_for_stripe,
3309 				    conf->quiesce == 0,
3310 				    conf->device_lock, /* nothing */);
3311 		atomic_inc(&conf->active_aligned_reads);
3312 		spin_unlock_irq(&conf->device_lock);
3313 
3314 		generic_make_request(align_bi);
3315 		return 1;
3316 	} else {
3317 		rcu_read_unlock();
3318 		bio_put(align_bi);
3319 		return 0;
3320 	}
3321 }
3322 
3323 /* __get_priority_stripe - get the next stripe to process
3324  *
3325  * Full stripe writes are allowed to pass preread active stripes up until
3326  * the bypass_threshold is exceeded.  In general the bypass_count
3327  * increments when the handle_list is handled before the hold_list; however, it
3328  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3329  * stripe with in flight i/o.  The bypass_count will be reset when the
3330  * head of the hold_list has changed, i.e. the head was promoted to the
3331  * handle_list.
3332  */
3333 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3334 {
3335 	struct stripe_head *sh;
3336 
3337 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3338 		  __func__,
3339 		  list_empty(&conf->handle_list) ? "empty" : "busy",
3340 		  list_empty(&conf->hold_list) ? "empty" : "busy",
3341 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
3342 
3343 	if (!list_empty(&conf->handle_list)) {
3344 		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3345 
3346 		if (list_empty(&conf->hold_list))
3347 			conf->bypass_count = 0;
3348 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3349 			if (conf->hold_list.next == conf->last_hold)
3350 				conf->bypass_count++;
3351 			else {
3352 				conf->last_hold = conf->hold_list.next;
3353 				conf->bypass_count -= conf->bypass_threshold;
3354 				if (conf->bypass_count < 0)
3355 					conf->bypass_count = 0;
3356 			}
3357 		}
3358 	} else if (!list_empty(&conf->hold_list) &&
3359 		   ((conf->bypass_threshold &&
3360 		     conf->bypass_count > conf->bypass_threshold) ||
3361 		    atomic_read(&conf->pending_full_writes) == 0)) {
3362 		sh = list_entry(conf->hold_list.next,
3363 				typeof(*sh), lru);
3364 		conf->bypass_count -= conf->bypass_threshold;
3365 		if (conf->bypass_count < 0)
3366 			conf->bypass_count = 0;
3367 	} else
3368 		return NULL;
3369 
3370 	list_del_init(&sh->lru);
3371 	atomic_inc(&sh->count);
3372 	BUG_ON(atomic_read(&sh->count) != 1);
3373 	return sh;
3374 }
3375 
3376 static int make_request(struct request_queue *q, struct bio * bi)
3377 {
3378 	mddev_t *mddev = q->queuedata;
3379 	raid5_conf_t *conf = mddev_to_conf(mddev);
3380 	unsigned int dd_idx, pd_idx;
3381 	sector_t new_sector;
3382 	sector_t logical_sector, last_sector;
3383 	struct stripe_head *sh;
3384 	const int rw = bio_data_dir(bi);
3385 	int cpu, remaining;
3386 
3387 	if (unlikely(bio_barrier(bi))) {
3388 		bio_endio(bi, -EOPNOTSUPP);
3389 		return 0;
3390 	}
3391 
3392 	md_write_start(mddev, bi);
3393 
3394 	cpu = part_stat_lock();
3395 	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
3396 	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
3397 		      bio_sectors(bi));
3398 	part_stat_unlock();
3399 
3400 	if (rw == READ &&
3401 	     mddev->reshape_position == MaxSector &&
3402 	     chunk_aligned_read(q,bi))
3403             	return 0;
3404 
3405 	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3406 	last_sector = bi->bi_sector + (bi->bi_size>>9);
3407 	bi->bi_next = NULL;
3408 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
3409 
3410 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3411 		DEFINE_WAIT(w);
3412 		int disks, data_disks;
3413 
3414 	retry:
3415 		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3416 		if (likely(conf->expand_progress == MaxSector))
3417 			disks = conf->raid_disks;
3418 		else {
3419 			/* spinlock is needed as expand_progress may be
3420 			 * 64bit on a 32bit platform, and so it might be
3421 			 * possible to see a half-updated value
3422 			 * Ofcourse expand_progress could change after
3423 			 * the lock is dropped, so once we get a reference
3424 			 * to the stripe that we think it is, we will have
3425 			 * to check again.
3426 			 */
3427 			spin_lock_irq(&conf->device_lock);
3428 			disks = conf->raid_disks;
3429 			if (logical_sector >= conf->expand_progress)
3430 				disks = conf->previous_raid_disks;
3431 			else {
3432 				if (logical_sector >= conf->expand_lo) {
3433 					spin_unlock_irq(&conf->device_lock);
3434 					schedule();
3435 					goto retry;
3436 				}
3437 			}
3438 			spin_unlock_irq(&conf->device_lock);
3439 		}
3440 		data_disks = disks - conf->max_degraded;
3441 
3442  		new_sector = raid5_compute_sector(logical_sector, disks, data_disks,
3443 						  &dd_idx, &pd_idx, conf);
3444 		pr_debug("raid5: make_request, sector %llu logical %llu\n",
3445 			(unsigned long long)new_sector,
3446 			(unsigned long long)logical_sector);
3447 
3448 		sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK));
3449 		if (sh) {
3450 			if (unlikely(conf->expand_progress != MaxSector)) {
3451 				/* expansion might have moved on while waiting for a
3452 				 * stripe, so we must do the range check again.
3453 				 * Expansion could still move past after this
3454 				 * test, but as we are holding a reference to
3455 				 * 'sh', we know that if that happens,
3456 				 *  STRIPE_EXPANDING will get set and the expansion
3457 				 * won't proceed until we finish with the stripe.
3458 				 */
3459 				int must_retry = 0;
3460 				spin_lock_irq(&conf->device_lock);
3461 				if (logical_sector <  conf->expand_progress &&
3462 				    disks == conf->previous_raid_disks)
3463 					/* mismatch, need to try again */
3464 					must_retry = 1;
3465 				spin_unlock_irq(&conf->device_lock);
3466 				if (must_retry) {
3467 					release_stripe(sh);
3468 					goto retry;
3469 				}
3470 			}
3471 			/* FIXME what if we get a false positive because these
3472 			 * are being updated.
3473 			 */
3474 			if (logical_sector >= mddev->suspend_lo &&
3475 			    logical_sector < mddev->suspend_hi) {
3476 				release_stripe(sh);
3477 				schedule();
3478 				goto retry;
3479 			}
3480 
3481 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3482 			    !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3483 				/* Stripe is busy expanding or
3484 				 * add failed due to overlap.  Flush everything
3485 				 * and wait a while
3486 				 */
3487 				raid5_unplug_device(mddev->queue);
3488 				release_stripe(sh);
3489 				schedule();
3490 				goto retry;
3491 			}
3492 			finish_wait(&conf->wait_for_overlap, &w);
3493 			set_bit(STRIPE_HANDLE, &sh->state);
3494 			clear_bit(STRIPE_DELAYED, &sh->state);
3495 			release_stripe(sh);
3496 		} else {
3497 			/* cannot get stripe for read-ahead, just give-up */
3498 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
3499 			finish_wait(&conf->wait_for_overlap, &w);
3500 			break;
3501 		}
3502 
3503 	}
3504 	spin_lock_irq(&conf->device_lock);
3505 	remaining = raid5_dec_bi_phys_segments(bi);
3506 	spin_unlock_irq(&conf->device_lock);
3507 	if (remaining == 0) {
3508 
3509 		if ( rw == WRITE )
3510 			md_write_end(mddev);
3511 
3512 		bio_endio(bi, 0);
3513 	}
3514 	return 0;
3515 }
3516 
3517 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3518 {
3519 	/* reshaping is quite different to recovery/resync so it is
3520 	 * handled quite separately ... here.
3521 	 *
3522 	 * On each call to sync_request, we gather one chunk worth of
3523 	 * destination stripes and flag them as expanding.
3524 	 * Then we find all the source stripes and request reads.
3525 	 * As the reads complete, handle_stripe will copy the data
3526 	 * into the destination stripe and release that stripe.
3527 	 */
3528 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3529 	struct stripe_head *sh;
3530 	int pd_idx;
3531 	sector_t first_sector, last_sector;
3532 	int raid_disks = conf->previous_raid_disks;
3533 	int data_disks = raid_disks - conf->max_degraded;
3534 	int new_data_disks = conf->raid_disks - conf->max_degraded;
3535 	int i;
3536 	int dd_idx;
3537 	sector_t writepos, safepos, gap;
3538 
3539 	if (sector_nr == 0 &&
3540 	    conf->expand_progress != 0) {
3541 		/* restarting in the middle, skip the initial sectors */
3542 		sector_nr = conf->expand_progress;
3543 		sector_div(sector_nr, new_data_disks);
3544 		*skipped = 1;
3545 		return sector_nr;
3546 	}
3547 
3548 	/* we update the metadata when there is more than 3Meg
3549 	 * in the block range (that is rather arbitrary, should
3550 	 * probably be time based) or when the data about to be
3551 	 * copied would over-write the source of the data at
3552 	 * the front of the range.
3553 	 * i.e. one new_stripe forward from expand_progress new_maps
3554 	 * to after where expand_lo old_maps to
3555 	 */
3556 	writepos = conf->expand_progress +
3557 		conf->chunk_size/512*(new_data_disks);
3558 	sector_div(writepos, new_data_disks);
3559 	safepos = conf->expand_lo;
3560 	sector_div(safepos, data_disks);
3561 	gap = conf->expand_progress - conf->expand_lo;
3562 
3563 	if (writepos >= safepos ||
3564 	    gap > (new_data_disks)*3000*2 /*3Meg*/) {
3565 		/* Cannot proceed until we've updated the superblock... */
3566 		wait_event(conf->wait_for_overlap,
3567 			   atomic_read(&conf->reshape_stripes)==0);
3568 		mddev->reshape_position = conf->expand_progress;
3569 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
3570 		md_wakeup_thread(mddev->thread);
3571 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
3572 			   kthread_should_stop());
3573 		spin_lock_irq(&conf->device_lock);
3574 		conf->expand_lo = mddev->reshape_position;
3575 		spin_unlock_irq(&conf->device_lock);
3576 		wake_up(&conf->wait_for_overlap);
3577 	}
3578 
3579 	for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
3580 		int j;
3581 		int skipped = 0;
3582 		pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks);
3583 		sh = get_active_stripe(conf, sector_nr+i,
3584 				       conf->raid_disks, pd_idx, 0);
3585 		set_bit(STRIPE_EXPANDING, &sh->state);
3586 		atomic_inc(&conf->reshape_stripes);
3587 		/* If any of this stripe is beyond the end of the old
3588 		 * array, then we need to zero those blocks
3589 		 */
3590 		for (j=sh->disks; j--;) {
3591 			sector_t s;
3592 			if (j == sh->pd_idx)
3593 				continue;
3594 			if (conf->level == 6 &&
3595 			    j == raid6_next_disk(sh->pd_idx, sh->disks))
3596 				continue;
3597 			s = compute_blocknr(sh, j);
3598 			if (s < mddev->array_sectors) {
3599 				skipped = 1;
3600 				continue;
3601 			}
3602 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3603 			set_bit(R5_Expanded, &sh->dev[j].flags);
3604 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
3605 		}
3606 		if (!skipped) {
3607 			set_bit(STRIPE_EXPAND_READY, &sh->state);
3608 			set_bit(STRIPE_HANDLE, &sh->state);
3609 		}
3610 		release_stripe(sh);
3611 	}
3612 	spin_lock_irq(&conf->device_lock);
3613 	conf->expand_progress = (sector_nr + i) * new_data_disks;
3614 	spin_unlock_irq(&conf->device_lock);
3615 	/* Ok, those stripe are ready. We can start scheduling
3616 	 * reads on the source stripes.
3617 	 * The source stripes are determined by mapping the first and last
3618 	 * block on the destination stripes.
3619 	 */
3620 	first_sector =
3621 		raid5_compute_sector(sector_nr*(new_data_disks),
3622 				     raid_disks, data_disks,
3623 				     &dd_idx, &pd_idx, conf);
3624 	last_sector =
3625 		raid5_compute_sector((sector_nr+conf->chunk_size/512)
3626 				     *(new_data_disks) -1,
3627 				     raid_disks, data_disks,
3628 				     &dd_idx, &pd_idx, conf);
3629 	if (last_sector >= (mddev->size<<1))
3630 		last_sector = (mddev->size<<1)-1;
3631 	while (first_sector <= last_sector) {
3632 		pd_idx = stripe_to_pdidx(first_sector, conf,
3633 					 conf->previous_raid_disks);
3634 		sh = get_active_stripe(conf, first_sector,
3635 				       conf->previous_raid_disks, pd_idx, 0);
3636 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3637 		set_bit(STRIPE_HANDLE, &sh->state);
3638 		release_stripe(sh);
3639 		first_sector += STRIPE_SECTORS;
3640 	}
3641 	/* If this takes us to the resync_max point where we have to pause,
3642 	 * then we need to write out the superblock.
3643 	 */
3644 	sector_nr += conf->chunk_size>>9;
3645 	if (sector_nr >= mddev->resync_max) {
3646 		/* Cannot proceed until we've updated the superblock... */
3647 		wait_event(conf->wait_for_overlap,
3648 			   atomic_read(&conf->reshape_stripes) == 0);
3649 		mddev->reshape_position = conf->expand_progress;
3650 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
3651 		md_wakeup_thread(mddev->thread);
3652 		wait_event(mddev->sb_wait,
3653 			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
3654 			   || kthread_should_stop());
3655 		spin_lock_irq(&conf->device_lock);
3656 		conf->expand_lo = mddev->reshape_position;
3657 		spin_unlock_irq(&conf->device_lock);
3658 		wake_up(&conf->wait_for_overlap);
3659 	}
3660 	return conf->chunk_size>>9;
3661 }
3662 
3663 /* FIXME go_faster isn't used */
3664 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3665 {
3666 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3667 	struct stripe_head *sh;
3668 	int pd_idx;
3669 	int raid_disks = conf->raid_disks;
3670 	sector_t max_sector = mddev->size << 1;
3671 	int sync_blocks;
3672 	int still_degraded = 0;
3673 	int i;
3674 
3675 	if (sector_nr >= max_sector) {
3676 		/* just being told to finish up .. nothing much to do */
3677 		unplug_slaves(mddev);
3678 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3679 			end_reshape(conf);
3680 			return 0;
3681 		}
3682 
3683 		if (mddev->curr_resync < max_sector) /* aborted */
3684 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3685 					&sync_blocks, 1);
3686 		else /* completed sync */
3687 			conf->fullsync = 0;
3688 		bitmap_close_sync(mddev->bitmap);
3689 
3690 		return 0;
3691 	}
3692 
3693 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3694 		return reshape_request(mddev, sector_nr, skipped);
3695 
3696 	/* No need to check resync_max as we never do more than one
3697 	 * stripe, and as resync_max will always be on a chunk boundary,
3698 	 * if the check in md_do_sync didn't fire, there is no chance
3699 	 * of overstepping resync_max here
3700 	 */
3701 
3702 	/* if there is too many failed drives and we are trying
3703 	 * to resync, then assert that we are finished, because there is
3704 	 * nothing we can do.
3705 	 */
3706 	if (mddev->degraded >= conf->max_degraded &&
3707 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3708 		sector_t rv = (mddev->size << 1) - sector_nr;
3709 		*skipped = 1;
3710 		return rv;
3711 	}
3712 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3713 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3714 	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
3715 		/* we can skip this block, and probably more */
3716 		sync_blocks /= STRIPE_SECTORS;
3717 		*skipped = 1;
3718 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
3719 	}
3720 
3721 
3722 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3723 
3724 	pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks);
3725 	sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1);
3726 	if (sh == NULL) {
3727 		sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0);
3728 		/* make sure we don't swamp the stripe cache if someone else
3729 		 * is trying to get access
3730 		 */
3731 		schedule_timeout_uninterruptible(1);
3732 	}
3733 	/* Need to check if array will still be degraded after recovery/resync
3734 	 * We don't need to check the 'failed' flag as when that gets set,
3735 	 * recovery aborts.
3736 	 */
3737 	for (i=0; i<mddev->raid_disks; i++)
3738 		if (conf->disks[i].rdev == NULL)
3739 			still_degraded = 1;
3740 
3741 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
3742 
3743 	spin_lock(&sh->lock);
3744 	set_bit(STRIPE_SYNCING, &sh->state);
3745 	clear_bit(STRIPE_INSYNC, &sh->state);
3746 	spin_unlock(&sh->lock);
3747 
3748 	/* wait for any blocked device to be handled */
3749 	while(unlikely(!handle_stripe(sh, NULL)))
3750 		;
3751 	release_stripe(sh);
3752 
3753 	return STRIPE_SECTORS;
3754 }
3755 
3756 static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
3757 {
3758 	/* We may not be able to submit a whole bio at once as there
3759 	 * may not be enough stripe_heads available.
3760 	 * We cannot pre-allocate enough stripe_heads as we may need
3761 	 * more than exist in the cache (if we allow ever large chunks).
3762 	 * So we do one stripe head at a time and record in
3763 	 * ->bi_hw_segments how many have been done.
3764 	 *
3765 	 * We *know* that this entire raid_bio is in one chunk, so
3766 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
3767 	 */
3768 	struct stripe_head *sh;
3769 	int dd_idx, pd_idx;
3770 	sector_t sector, logical_sector, last_sector;
3771 	int scnt = 0;
3772 	int remaining;
3773 	int handled = 0;
3774 
3775 	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3776 	sector = raid5_compute_sector(	logical_sector,
3777 					conf->raid_disks,
3778 					conf->raid_disks - conf->max_degraded,
3779 					&dd_idx,
3780 					&pd_idx,
3781 					conf);
3782 	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
3783 
3784 	for (; logical_sector < last_sector;
3785 	     logical_sector += STRIPE_SECTORS,
3786 		     sector += STRIPE_SECTORS,
3787 		     scnt++) {
3788 
3789 		if (scnt < raid5_bi_hw_segments(raid_bio))
3790 			/* already done this stripe */
3791 			continue;
3792 
3793 		sh = get_active_stripe(conf, sector, conf->raid_disks, pd_idx, 1);
3794 
3795 		if (!sh) {
3796 			/* failed to get a stripe - must wait */
3797 			raid5_set_bi_hw_segments(raid_bio, scnt);
3798 			conf->retry_read_aligned = raid_bio;
3799 			return handled;
3800 		}
3801 
3802 		set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
3803 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
3804 			release_stripe(sh);
3805 			raid5_set_bi_hw_segments(raid_bio, scnt);
3806 			conf->retry_read_aligned = raid_bio;
3807 			return handled;
3808 		}
3809 
3810 		handle_stripe(sh, NULL);
3811 		release_stripe(sh);
3812 		handled++;
3813 	}
3814 	spin_lock_irq(&conf->device_lock);
3815 	remaining = raid5_dec_bi_phys_segments(raid_bio);
3816 	spin_unlock_irq(&conf->device_lock);
3817 	if (remaining == 0)
3818 		bio_endio(raid_bio, 0);
3819 	if (atomic_dec_and_test(&conf->active_aligned_reads))
3820 		wake_up(&conf->wait_for_stripe);
3821 	return handled;
3822 }
3823 
3824 
3825 
3826 /*
3827  * This is our raid5 kernel thread.
3828  *
3829  * We scan the hash table for stripes which can be handled now.
3830  * During the scan, completed stripes are saved for us by the interrupt
3831  * handler, so that they will not have to wait for our next wakeup.
3832  */
3833 static void raid5d(mddev_t *mddev)
3834 {
3835 	struct stripe_head *sh;
3836 	raid5_conf_t *conf = mddev_to_conf(mddev);
3837 	int handled;
3838 
3839 	pr_debug("+++ raid5d active\n");
3840 
3841 	md_check_recovery(mddev);
3842 
3843 	handled = 0;
3844 	spin_lock_irq(&conf->device_lock);
3845 	while (1) {
3846 		struct bio *bio;
3847 
3848 		if (conf->seq_flush != conf->seq_write) {
3849 			int seq = conf->seq_flush;
3850 			spin_unlock_irq(&conf->device_lock);
3851 			bitmap_unplug(mddev->bitmap);
3852 			spin_lock_irq(&conf->device_lock);
3853 			conf->seq_write = seq;
3854 			activate_bit_delay(conf);
3855 		}
3856 
3857 		while ((bio = remove_bio_from_retry(conf))) {
3858 			int ok;
3859 			spin_unlock_irq(&conf->device_lock);
3860 			ok = retry_aligned_read(conf, bio);
3861 			spin_lock_irq(&conf->device_lock);
3862 			if (!ok)
3863 				break;
3864 			handled++;
3865 		}
3866 
3867 		sh = __get_priority_stripe(conf);
3868 
3869 		if (!sh)
3870 			break;
3871 		spin_unlock_irq(&conf->device_lock);
3872 
3873 		handled++;
3874 		handle_stripe(sh, conf->spare_page);
3875 		release_stripe(sh);
3876 
3877 		spin_lock_irq(&conf->device_lock);
3878 	}
3879 	pr_debug("%d stripes handled\n", handled);
3880 
3881 	spin_unlock_irq(&conf->device_lock);
3882 
3883 	async_tx_issue_pending_all();
3884 	unplug_slaves(mddev);
3885 
3886 	pr_debug("--- raid5d inactive\n");
3887 }
3888 
3889 static ssize_t
3890 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
3891 {
3892 	raid5_conf_t *conf = mddev_to_conf(mddev);
3893 	if (conf)
3894 		return sprintf(page, "%d\n", conf->max_nr_stripes);
3895 	else
3896 		return 0;
3897 }
3898 
3899 static ssize_t
3900 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
3901 {
3902 	raid5_conf_t *conf = mddev_to_conf(mddev);
3903 	unsigned long new;
3904 	int err;
3905 
3906 	if (len >= PAGE_SIZE)
3907 		return -EINVAL;
3908 	if (!conf)
3909 		return -ENODEV;
3910 
3911 	if (strict_strtoul(page, 10, &new))
3912 		return -EINVAL;
3913 	if (new <= 16 || new > 32768)
3914 		return -EINVAL;
3915 	while (new < conf->max_nr_stripes) {
3916 		if (drop_one_stripe(conf))
3917 			conf->max_nr_stripes--;
3918 		else
3919 			break;
3920 	}
3921 	err = md_allow_write(mddev);
3922 	if (err)
3923 		return err;
3924 	while (new > conf->max_nr_stripes) {
3925 		if (grow_one_stripe(conf))
3926 			conf->max_nr_stripes++;
3927 		else break;
3928 	}
3929 	return len;
3930 }
3931 
3932 static struct md_sysfs_entry
3933 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
3934 				raid5_show_stripe_cache_size,
3935 				raid5_store_stripe_cache_size);
3936 
3937 static ssize_t
3938 raid5_show_preread_threshold(mddev_t *mddev, char *page)
3939 {
3940 	raid5_conf_t *conf = mddev_to_conf(mddev);
3941 	if (conf)
3942 		return sprintf(page, "%d\n", conf->bypass_threshold);
3943 	else
3944 		return 0;
3945 }
3946 
3947 static ssize_t
3948 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
3949 {
3950 	raid5_conf_t *conf = mddev_to_conf(mddev);
3951 	unsigned long new;
3952 	if (len >= PAGE_SIZE)
3953 		return -EINVAL;
3954 	if (!conf)
3955 		return -ENODEV;
3956 
3957 	if (strict_strtoul(page, 10, &new))
3958 		return -EINVAL;
3959 	if (new > conf->max_nr_stripes)
3960 		return -EINVAL;
3961 	conf->bypass_threshold = new;
3962 	return len;
3963 }
3964 
3965 static struct md_sysfs_entry
3966 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
3967 					S_IRUGO | S_IWUSR,
3968 					raid5_show_preread_threshold,
3969 					raid5_store_preread_threshold);
3970 
3971 static ssize_t
3972 stripe_cache_active_show(mddev_t *mddev, char *page)
3973 {
3974 	raid5_conf_t *conf = mddev_to_conf(mddev);
3975 	if (conf)
3976 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
3977 	else
3978 		return 0;
3979 }
3980 
3981 static struct md_sysfs_entry
3982 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3983 
3984 static struct attribute *raid5_attrs[] =  {
3985 	&raid5_stripecache_size.attr,
3986 	&raid5_stripecache_active.attr,
3987 	&raid5_preread_bypass_threshold.attr,
3988 	NULL,
3989 };
3990 static struct attribute_group raid5_attrs_group = {
3991 	.name = NULL,
3992 	.attrs = raid5_attrs,
3993 };
3994 
3995 static int run(mddev_t *mddev)
3996 {
3997 	raid5_conf_t *conf;
3998 	int raid_disk, memory;
3999 	mdk_rdev_t *rdev;
4000 	struct disk_info *disk;
4001 	int working_disks = 0;
4002 
4003 	if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) {
4004 		printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
4005 		       mdname(mddev), mddev->level);
4006 		return -EIO;
4007 	}
4008 
4009 	if (mddev->chunk_size < PAGE_SIZE) {
4010 		printk(KERN_ERR "md/raid5: chunk_size must be at least "
4011 		       "PAGE_SIZE but %d < %ld\n",
4012 		       mddev->chunk_size, PAGE_SIZE);
4013 		return -EINVAL;
4014 	}
4015 
4016 	if (mddev->reshape_position != MaxSector) {
4017 		/* Check that we can continue the reshape.
4018 		 * Currently only disks can change, it must
4019 		 * increase, and we must be past the point where
4020 		 * a stripe over-writes itself
4021 		 */
4022 		sector_t here_new, here_old;
4023 		int old_disks;
4024 		int max_degraded = (mddev->level == 5 ? 1 : 2);
4025 
4026 		if (mddev->new_level != mddev->level ||
4027 		    mddev->new_layout != mddev->layout ||
4028 		    mddev->new_chunk != mddev->chunk_size) {
4029 			printk(KERN_ERR "raid5: %s: unsupported reshape "
4030 			       "required - aborting.\n",
4031 			       mdname(mddev));
4032 			return -EINVAL;
4033 		}
4034 		if (mddev->delta_disks <= 0) {
4035 			printk(KERN_ERR "raid5: %s: unsupported reshape "
4036 			       "(reduce disks) required - aborting.\n",
4037 			       mdname(mddev));
4038 			return -EINVAL;
4039 		}
4040 		old_disks = mddev->raid_disks - mddev->delta_disks;
4041 		/* reshape_position must be on a new-stripe boundary, and one
4042 		 * further up in new geometry must map after here in old
4043 		 * geometry.
4044 		 */
4045 		here_new = mddev->reshape_position;
4046 		if (sector_div(here_new, (mddev->chunk_size>>9)*
4047 			       (mddev->raid_disks - max_degraded))) {
4048 			printk(KERN_ERR "raid5: reshape_position not "
4049 			       "on a stripe boundary\n");
4050 			return -EINVAL;
4051 		}
4052 		/* here_new is the stripe we will write to */
4053 		here_old = mddev->reshape_position;
4054 		sector_div(here_old, (mddev->chunk_size>>9)*
4055 			   (old_disks-max_degraded));
4056 		/* here_old is the first stripe that we might need to read
4057 		 * from */
4058 		if (here_new >= here_old) {
4059 			/* Reading from the same stripe as writing to - bad */
4060 			printk(KERN_ERR "raid5: reshape_position too early for "
4061 			       "auto-recovery - aborting.\n");
4062 			return -EINVAL;
4063 		}
4064 		printk(KERN_INFO "raid5: reshape will continue\n");
4065 		/* OK, we should be able to continue; */
4066 	}
4067 
4068 
4069 	mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
4070 	if ((conf = mddev->private) == NULL)
4071 		goto abort;
4072 	if (mddev->reshape_position == MaxSector) {
4073 		conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
4074 	} else {
4075 		conf->raid_disks = mddev->raid_disks;
4076 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4077 	}
4078 
4079 	conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4080 			      GFP_KERNEL);
4081 	if (!conf->disks)
4082 		goto abort;
4083 
4084 	conf->mddev = mddev;
4085 
4086 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4087 		goto abort;
4088 
4089 	if (mddev->level == 6) {
4090 		conf->spare_page = alloc_page(GFP_KERNEL);
4091 		if (!conf->spare_page)
4092 			goto abort;
4093 	}
4094 	spin_lock_init(&conf->device_lock);
4095 	mddev->queue->queue_lock = &conf->device_lock;
4096 	init_waitqueue_head(&conf->wait_for_stripe);
4097 	init_waitqueue_head(&conf->wait_for_overlap);
4098 	INIT_LIST_HEAD(&conf->handle_list);
4099 	INIT_LIST_HEAD(&conf->hold_list);
4100 	INIT_LIST_HEAD(&conf->delayed_list);
4101 	INIT_LIST_HEAD(&conf->bitmap_list);
4102 	INIT_LIST_HEAD(&conf->inactive_list);
4103 	atomic_set(&conf->active_stripes, 0);
4104 	atomic_set(&conf->preread_active_stripes, 0);
4105 	atomic_set(&conf->active_aligned_reads, 0);
4106 	conf->bypass_threshold = BYPASS_THRESHOLD;
4107 
4108 	pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4109 
4110 	list_for_each_entry(rdev, &mddev->disks, same_set) {
4111 		raid_disk = rdev->raid_disk;
4112 		if (raid_disk >= conf->raid_disks
4113 		    || raid_disk < 0)
4114 			continue;
4115 		disk = conf->disks + raid_disk;
4116 
4117 		disk->rdev = rdev;
4118 
4119 		if (test_bit(In_sync, &rdev->flags)) {
4120 			char b[BDEVNAME_SIZE];
4121 			printk(KERN_INFO "raid5: device %s operational as raid"
4122 				" disk %d\n", bdevname(rdev->bdev,b),
4123 				raid_disk);
4124 			working_disks++;
4125 		} else
4126 			/* Cannot rely on bitmap to complete recovery */
4127 			conf->fullsync = 1;
4128 	}
4129 
4130 	/*
4131 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
4132 	 */
4133 	mddev->degraded = conf->raid_disks - working_disks;
4134 	conf->mddev = mddev;
4135 	conf->chunk_size = mddev->chunk_size;
4136 	conf->level = mddev->level;
4137 	if (conf->level == 6)
4138 		conf->max_degraded = 2;
4139 	else
4140 		conf->max_degraded = 1;
4141 	conf->algorithm = mddev->layout;
4142 	conf->max_nr_stripes = NR_STRIPES;
4143 	conf->expand_progress = mddev->reshape_position;
4144 
4145 	/* device size must be a multiple of chunk size */
4146 	mddev->size &= ~(mddev->chunk_size/1024 -1);
4147 	mddev->resync_max_sectors = mddev->size << 1;
4148 
4149 	if (conf->level == 6 && conf->raid_disks < 4) {
4150 		printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4151 		       mdname(mddev), conf->raid_disks);
4152 		goto abort;
4153 	}
4154 	if (!conf->chunk_size || conf->chunk_size % 4) {
4155 		printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4156 			conf->chunk_size, mdname(mddev));
4157 		goto abort;
4158 	}
4159 	if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
4160 		printk(KERN_ERR
4161 			"raid5: unsupported parity algorithm %d for %s\n",
4162 			conf->algorithm, mdname(mddev));
4163 		goto abort;
4164 	}
4165 	if (mddev->degraded > conf->max_degraded) {
4166 		printk(KERN_ERR "raid5: not enough operational devices for %s"
4167 			" (%d/%d failed)\n",
4168 			mdname(mddev), mddev->degraded, conf->raid_disks);
4169 		goto abort;
4170 	}
4171 
4172 	if (mddev->degraded > 0 &&
4173 	    mddev->recovery_cp != MaxSector) {
4174 		if (mddev->ok_start_degraded)
4175 			printk(KERN_WARNING
4176 			       "raid5: starting dirty degraded array: %s"
4177 			       "- data corruption possible.\n",
4178 			       mdname(mddev));
4179 		else {
4180 			printk(KERN_ERR
4181 			       "raid5: cannot start dirty degraded array for %s\n",
4182 			       mdname(mddev));
4183 			goto abort;
4184 		}
4185 	}
4186 
4187 	{
4188 		mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4189 		if (!mddev->thread) {
4190 			printk(KERN_ERR
4191 				"raid5: couldn't allocate thread for %s\n",
4192 				mdname(mddev));
4193 			goto abort;
4194 		}
4195 	}
4196 	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4197 		 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4198 	if (grow_stripes(conf, conf->max_nr_stripes)) {
4199 		printk(KERN_ERR
4200 			"raid5: couldn't allocate %dkB for buffers\n", memory);
4201 		shrink_stripes(conf);
4202 		md_unregister_thread(mddev->thread);
4203 		goto abort;
4204 	} else
4205 		printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4206 			memory, mdname(mddev));
4207 
4208 	if (mddev->degraded == 0)
4209 		printk("raid5: raid level %d set %s active with %d out of %d"
4210 			" devices, algorithm %d\n", conf->level, mdname(mddev),
4211 			mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4212 			conf->algorithm);
4213 	else
4214 		printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4215 			" out of %d devices, algorithm %d\n", conf->level,
4216 			mdname(mddev), mddev->raid_disks - mddev->degraded,
4217 			mddev->raid_disks, conf->algorithm);
4218 
4219 	print_raid5_conf(conf);
4220 
4221 	if (conf->expand_progress != MaxSector) {
4222 		printk("...ok start reshape thread\n");
4223 		conf->expand_lo = conf->expand_progress;
4224 		atomic_set(&conf->reshape_stripes, 0);
4225 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4226 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4227 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4228 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4229 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4230 							"%s_reshape");
4231 	}
4232 
4233 	/* read-ahead size must cover two whole stripes, which is
4234 	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4235 	 */
4236 	{
4237 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
4238 		int stripe = data_disks *
4239 			(mddev->chunk_size / PAGE_SIZE);
4240 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4241 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4242 	}
4243 
4244 	/* Ok, everything is just fine now */
4245 	if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4246 		printk(KERN_WARNING
4247 		       "raid5: failed to create sysfs attributes for %s\n",
4248 		       mdname(mddev));
4249 
4250 	mddev->queue->unplug_fn = raid5_unplug_device;
4251 	mddev->queue->backing_dev_info.congested_data = mddev;
4252 	mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4253 
4254 	mddev->array_sectors = 2 * mddev->size * (conf->previous_raid_disks -
4255 					    conf->max_degraded);
4256 
4257 	blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4258 
4259 	return 0;
4260 abort:
4261 	if (conf) {
4262 		print_raid5_conf(conf);
4263 		safe_put_page(conf->spare_page);
4264 		kfree(conf->disks);
4265 		kfree(conf->stripe_hashtbl);
4266 		kfree(conf);
4267 	}
4268 	mddev->private = NULL;
4269 	printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
4270 	return -EIO;
4271 }
4272 
4273 
4274 
4275 static int stop(mddev_t *mddev)
4276 {
4277 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4278 
4279 	md_unregister_thread(mddev->thread);
4280 	mddev->thread = NULL;
4281 	shrink_stripes(conf);
4282 	kfree(conf->stripe_hashtbl);
4283 	mddev->queue->backing_dev_info.congested_fn = NULL;
4284 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
4285 	sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
4286 	kfree(conf->disks);
4287 	kfree(conf);
4288 	mddev->private = NULL;
4289 	return 0;
4290 }
4291 
4292 #ifdef DEBUG
4293 static void print_sh(struct seq_file *seq, struct stripe_head *sh)
4294 {
4295 	int i;
4296 
4297 	seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4298 		   (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4299 	seq_printf(seq, "sh %llu,  count %d.\n",
4300 		   (unsigned long long)sh->sector, atomic_read(&sh->count));
4301 	seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4302 	for (i = 0; i < sh->disks; i++) {
4303 		seq_printf(seq, "(cache%d: %p %ld) ",
4304 			   i, sh->dev[i].page, sh->dev[i].flags);
4305 	}
4306 	seq_printf(seq, "\n");
4307 }
4308 
4309 static void printall(struct seq_file *seq, raid5_conf_t *conf)
4310 {
4311 	struct stripe_head *sh;
4312 	struct hlist_node *hn;
4313 	int i;
4314 
4315 	spin_lock_irq(&conf->device_lock);
4316 	for (i = 0; i < NR_HASH; i++) {
4317 		hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4318 			if (sh->raid_conf != conf)
4319 				continue;
4320 			print_sh(seq, sh);
4321 		}
4322 	}
4323 	spin_unlock_irq(&conf->device_lock);
4324 }
4325 #endif
4326 
4327 static void status(struct seq_file *seq, mddev_t *mddev)
4328 {
4329 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4330 	int i;
4331 
4332 	seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
4333 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4334 	for (i = 0; i < conf->raid_disks; i++)
4335 		seq_printf (seq, "%s",
4336 			       conf->disks[i].rdev &&
4337 			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
4338 	seq_printf (seq, "]");
4339 #ifdef DEBUG
4340 	seq_printf (seq, "\n");
4341 	printall(seq, conf);
4342 #endif
4343 }
4344 
4345 static void print_raid5_conf (raid5_conf_t *conf)
4346 {
4347 	int i;
4348 	struct disk_info *tmp;
4349 
4350 	printk("RAID5 conf printout:\n");
4351 	if (!conf) {
4352 		printk("(conf==NULL)\n");
4353 		return;
4354 	}
4355 	printk(" --- rd:%d wd:%d\n", conf->raid_disks,
4356 		 conf->raid_disks - conf->mddev->degraded);
4357 
4358 	for (i = 0; i < conf->raid_disks; i++) {
4359 		char b[BDEVNAME_SIZE];
4360 		tmp = conf->disks + i;
4361 		if (tmp->rdev)
4362 		printk(" disk %d, o:%d, dev:%s\n",
4363 			i, !test_bit(Faulty, &tmp->rdev->flags),
4364 			bdevname(tmp->rdev->bdev,b));
4365 	}
4366 }
4367 
4368 static int raid5_spare_active(mddev_t *mddev)
4369 {
4370 	int i;
4371 	raid5_conf_t *conf = mddev->private;
4372 	struct disk_info *tmp;
4373 
4374 	for (i = 0; i < conf->raid_disks; i++) {
4375 		tmp = conf->disks + i;
4376 		if (tmp->rdev
4377 		    && !test_bit(Faulty, &tmp->rdev->flags)
4378 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4379 			unsigned long flags;
4380 			spin_lock_irqsave(&conf->device_lock, flags);
4381 			mddev->degraded--;
4382 			spin_unlock_irqrestore(&conf->device_lock, flags);
4383 		}
4384 	}
4385 	print_raid5_conf(conf);
4386 	return 0;
4387 }
4388 
4389 static int raid5_remove_disk(mddev_t *mddev, int number)
4390 {
4391 	raid5_conf_t *conf = mddev->private;
4392 	int err = 0;
4393 	mdk_rdev_t *rdev;
4394 	struct disk_info *p = conf->disks + number;
4395 
4396 	print_raid5_conf(conf);
4397 	rdev = p->rdev;
4398 	if (rdev) {
4399 		if (test_bit(In_sync, &rdev->flags) ||
4400 		    atomic_read(&rdev->nr_pending)) {
4401 			err = -EBUSY;
4402 			goto abort;
4403 		}
4404 		/* Only remove non-faulty devices if recovery
4405 		 * isn't possible.
4406 		 */
4407 		if (!test_bit(Faulty, &rdev->flags) &&
4408 		    mddev->degraded <= conf->max_degraded) {
4409 			err = -EBUSY;
4410 			goto abort;
4411 		}
4412 		p->rdev = NULL;
4413 		synchronize_rcu();
4414 		if (atomic_read(&rdev->nr_pending)) {
4415 			/* lost the race, try later */
4416 			err = -EBUSY;
4417 			p->rdev = rdev;
4418 		}
4419 	}
4420 abort:
4421 
4422 	print_raid5_conf(conf);
4423 	return err;
4424 }
4425 
4426 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4427 {
4428 	raid5_conf_t *conf = mddev->private;
4429 	int err = -EEXIST;
4430 	int disk;
4431 	struct disk_info *p;
4432 	int first = 0;
4433 	int last = conf->raid_disks - 1;
4434 
4435 	if (mddev->degraded > conf->max_degraded)
4436 		/* no point adding a device */
4437 		return -EINVAL;
4438 
4439 	if (rdev->raid_disk >= 0)
4440 		first = last = rdev->raid_disk;
4441 
4442 	/*
4443 	 * find the disk ... but prefer rdev->saved_raid_disk
4444 	 * if possible.
4445 	 */
4446 	if (rdev->saved_raid_disk >= 0 &&
4447 	    rdev->saved_raid_disk >= first &&
4448 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
4449 		disk = rdev->saved_raid_disk;
4450 	else
4451 		disk = first;
4452 	for ( ; disk <= last ; disk++)
4453 		if ((p=conf->disks + disk)->rdev == NULL) {
4454 			clear_bit(In_sync, &rdev->flags);
4455 			rdev->raid_disk = disk;
4456 			err = 0;
4457 			if (rdev->saved_raid_disk != disk)
4458 				conf->fullsync = 1;
4459 			rcu_assign_pointer(p->rdev, rdev);
4460 			break;
4461 		}
4462 	print_raid5_conf(conf);
4463 	return err;
4464 }
4465 
4466 static int raid5_resize(mddev_t *mddev, sector_t sectors)
4467 {
4468 	/* no resync is happening, and there is enough space
4469 	 * on all devices, so we can resize.
4470 	 * We need to make sure resync covers any new space.
4471 	 * If the array is shrinking we should possibly wait until
4472 	 * any io in the removed space completes, but it hardly seems
4473 	 * worth it.
4474 	 */
4475 	raid5_conf_t *conf = mddev_to_conf(mddev);
4476 
4477 	sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4478 	mddev->array_sectors = sectors * (mddev->raid_disks
4479 					  - conf->max_degraded);
4480 	set_capacity(mddev->gendisk, mddev->array_sectors);
4481 	mddev->changed = 1;
4482 	if (sectors/2  > mddev->size && mddev->recovery_cp == MaxSector) {
4483 		mddev->recovery_cp = mddev->size << 1;
4484 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4485 	}
4486 	mddev->size = sectors /2;
4487 	mddev->resync_max_sectors = sectors;
4488 	return 0;
4489 }
4490 
4491 #ifdef CONFIG_MD_RAID5_RESHAPE
4492 static int raid5_check_reshape(mddev_t *mddev)
4493 {
4494 	raid5_conf_t *conf = mddev_to_conf(mddev);
4495 	int err;
4496 
4497 	if (mddev->delta_disks < 0 ||
4498 	    mddev->new_level != mddev->level)
4499 		return -EINVAL; /* Cannot shrink array or change level yet */
4500 	if (mddev->delta_disks == 0)
4501 		return 0; /* nothing to do */
4502 	if (mddev->bitmap)
4503 		/* Cannot grow a bitmap yet */
4504 		return -EBUSY;
4505 
4506 	/* Can only proceed if there are plenty of stripe_heads.
4507 	 * We need a minimum of one full stripe,, and for sensible progress
4508 	 * it is best to have about 4 times that.
4509 	 * If we require 4 times, then the default 256 4K stripe_heads will
4510 	 * allow for chunk sizes up to 256K, which is probably OK.
4511 	 * If the chunk size is greater, user-space should request more
4512 	 * stripe_heads first.
4513 	 */
4514 	if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
4515 	    (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
4516 		printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n",
4517 		       (mddev->chunk_size / STRIPE_SIZE)*4);
4518 		return -ENOSPC;
4519 	}
4520 
4521 	err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
4522 	if (err)
4523 		return err;
4524 
4525 	if (mddev->degraded > conf->max_degraded)
4526 		return -EINVAL;
4527 	/* looks like we might be able to manage this */
4528 	return 0;
4529 }
4530 
4531 static int raid5_start_reshape(mddev_t *mddev)
4532 {
4533 	raid5_conf_t *conf = mddev_to_conf(mddev);
4534 	mdk_rdev_t *rdev;
4535 	int spares = 0;
4536 	int added_devices = 0;
4537 	unsigned long flags;
4538 
4539 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4540 		return -EBUSY;
4541 
4542 	list_for_each_entry(rdev, &mddev->disks, same_set)
4543 		if (rdev->raid_disk < 0 &&
4544 		    !test_bit(Faulty, &rdev->flags))
4545 			spares++;
4546 
4547 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
4548 		/* Not enough devices even to make a degraded array
4549 		 * of that size
4550 		 */
4551 		return -EINVAL;
4552 
4553 	atomic_set(&conf->reshape_stripes, 0);
4554 	spin_lock_irq(&conf->device_lock);
4555 	conf->previous_raid_disks = conf->raid_disks;
4556 	conf->raid_disks += mddev->delta_disks;
4557 	conf->expand_progress = 0;
4558 	conf->expand_lo = 0;
4559 	spin_unlock_irq(&conf->device_lock);
4560 
4561 	/* Add some new drives, as many as will fit.
4562 	 * We know there are enough to make the newly sized array work.
4563 	 */
4564 	list_for_each_entry(rdev, &mddev->disks, same_set)
4565 		if (rdev->raid_disk < 0 &&
4566 		    !test_bit(Faulty, &rdev->flags)) {
4567 			if (raid5_add_disk(mddev, rdev) == 0) {
4568 				char nm[20];
4569 				set_bit(In_sync, &rdev->flags);
4570 				added_devices++;
4571 				rdev->recovery_offset = 0;
4572 				sprintf(nm, "rd%d", rdev->raid_disk);
4573 				if (sysfs_create_link(&mddev->kobj,
4574 						      &rdev->kobj, nm))
4575 					printk(KERN_WARNING
4576 					       "raid5: failed to create "
4577 					       " link %s for %s\n",
4578 					       nm, mdname(mddev));
4579 			} else
4580 				break;
4581 		}
4582 
4583 	spin_lock_irqsave(&conf->device_lock, flags);
4584 	mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
4585 	spin_unlock_irqrestore(&conf->device_lock, flags);
4586 	mddev->raid_disks = conf->raid_disks;
4587 	mddev->reshape_position = 0;
4588 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
4589 
4590 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4591 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4592 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4593 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4594 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4595 						"%s_reshape");
4596 	if (!mddev->sync_thread) {
4597 		mddev->recovery = 0;
4598 		spin_lock_irq(&conf->device_lock);
4599 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
4600 		conf->expand_progress = MaxSector;
4601 		spin_unlock_irq(&conf->device_lock);
4602 		return -EAGAIN;
4603 	}
4604 	md_wakeup_thread(mddev->sync_thread);
4605 	md_new_event(mddev);
4606 	return 0;
4607 }
4608 #endif
4609 
4610 static void end_reshape(raid5_conf_t *conf)
4611 {
4612 	struct block_device *bdev;
4613 
4614 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
4615 		conf->mddev->array_sectors = 2 * conf->mddev->size *
4616 			(conf->raid_disks - conf->max_degraded);
4617 		set_capacity(conf->mddev->gendisk, conf->mddev->array_sectors);
4618 		conf->mddev->changed = 1;
4619 
4620 		bdev = bdget_disk(conf->mddev->gendisk, 0);
4621 		if (bdev) {
4622 			mutex_lock(&bdev->bd_inode->i_mutex);
4623 			i_size_write(bdev->bd_inode,
4624 				     (loff_t)conf->mddev->array_sectors << 9);
4625 			mutex_unlock(&bdev->bd_inode->i_mutex);
4626 			bdput(bdev);
4627 		}
4628 		spin_lock_irq(&conf->device_lock);
4629 		conf->expand_progress = MaxSector;
4630 		spin_unlock_irq(&conf->device_lock);
4631 		conf->mddev->reshape_position = MaxSector;
4632 
4633 		/* read-ahead size must cover two whole stripes, which is
4634 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4635 		 */
4636 		{
4637 			int data_disks = conf->previous_raid_disks - conf->max_degraded;
4638 			int stripe = data_disks *
4639 				(conf->mddev->chunk_size / PAGE_SIZE);
4640 			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4641 				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4642 		}
4643 	}
4644 }
4645 
4646 static void raid5_quiesce(mddev_t *mddev, int state)
4647 {
4648 	raid5_conf_t *conf = mddev_to_conf(mddev);
4649 
4650 	switch(state) {
4651 	case 2: /* resume for a suspend */
4652 		wake_up(&conf->wait_for_overlap);
4653 		break;
4654 
4655 	case 1: /* stop all writes */
4656 		spin_lock_irq(&conf->device_lock);
4657 		conf->quiesce = 1;
4658 		wait_event_lock_irq(conf->wait_for_stripe,
4659 				    atomic_read(&conf->active_stripes) == 0 &&
4660 				    atomic_read(&conf->active_aligned_reads) == 0,
4661 				    conf->device_lock, /* nothing */);
4662 		spin_unlock_irq(&conf->device_lock);
4663 		break;
4664 
4665 	case 0: /* re-enable writes */
4666 		spin_lock_irq(&conf->device_lock);
4667 		conf->quiesce = 0;
4668 		wake_up(&conf->wait_for_stripe);
4669 		wake_up(&conf->wait_for_overlap);
4670 		spin_unlock_irq(&conf->device_lock);
4671 		break;
4672 	}
4673 }
4674 
4675 static struct mdk_personality raid6_personality =
4676 {
4677 	.name		= "raid6",
4678 	.level		= 6,
4679 	.owner		= THIS_MODULE,
4680 	.make_request	= make_request,
4681 	.run		= run,
4682 	.stop		= stop,
4683 	.status		= status,
4684 	.error_handler	= error,
4685 	.hot_add_disk	= raid5_add_disk,
4686 	.hot_remove_disk= raid5_remove_disk,
4687 	.spare_active	= raid5_spare_active,
4688 	.sync_request	= sync_request,
4689 	.resize		= raid5_resize,
4690 #ifdef CONFIG_MD_RAID5_RESHAPE
4691 	.check_reshape	= raid5_check_reshape,
4692 	.start_reshape  = raid5_start_reshape,
4693 #endif
4694 	.quiesce	= raid5_quiesce,
4695 };
4696 static struct mdk_personality raid5_personality =
4697 {
4698 	.name		= "raid5",
4699 	.level		= 5,
4700 	.owner		= THIS_MODULE,
4701 	.make_request	= make_request,
4702 	.run		= run,
4703 	.stop		= stop,
4704 	.status		= status,
4705 	.error_handler	= error,
4706 	.hot_add_disk	= raid5_add_disk,
4707 	.hot_remove_disk= raid5_remove_disk,
4708 	.spare_active	= raid5_spare_active,
4709 	.sync_request	= sync_request,
4710 	.resize		= raid5_resize,
4711 #ifdef CONFIG_MD_RAID5_RESHAPE
4712 	.check_reshape	= raid5_check_reshape,
4713 	.start_reshape  = raid5_start_reshape,
4714 #endif
4715 	.quiesce	= raid5_quiesce,
4716 };
4717 
4718 static struct mdk_personality raid4_personality =
4719 {
4720 	.name		= "raid4",
4721 	.level		= 4,
4722 	.owner		= THIS_MODULE,
4723 	.make_request	= make_request,
4724 	.run		= run,
4725 	.stop		= stop,
4726 	.status		= status,
4727 	.error_handler	= error,
4728 	.hot_add_disk	= raid5_add_disk,
4729 	.hot_remove_disk= raid5_remove_disk,
4730 	.spare_active	= raid5_spare_active,
4731 	.sync_request	= sync_request,
4732 	.resize		= raid5_resize,
4733 #ifdef CONFIG_MD_RAID5_RESHAPE
4734 	.check_reshape	= raid5_check_reshape,
4735 	.start_reshape  = raid5_start_reshape,
4736 #endif
4737 	.quiesce	= raid5_quiesce,
4738 };
4739 
4740 static int __init raid5_init(void)
4741 {
4742 	int e;
4743 
4744 	e = raid6_select_algo();
4745 	if ( e )
4746 		return e;
4747 	register_md_personality(&raid6_personality);
4748 	register_md_personality(&raid5_personality);
4749 	register_md_personality(&raid4_personality);
4750 	return 0;
4751 }
4752 
4753 static void raid5_exit(void)
4754 {
4755 	unregister_md_personality(&raid6_personality);
4756 	unregister_md_personality(&raid5_personality);
4757 	unregister_md_personality(&raid4_personality);
4758 }
4759 
4760 module_init(raid5_init);
4761 module_exit(raid5_exit);
4762 MODULE_LICENSE("GPL");
4763 MODULE_ALIAS("md-personality-4"); /* RAID5 */
4764 MODULE_ALIAS("md-raid5");
4765 MODULE_ALIAS("md-raid4");
4766 MODULE_ALIAS("md-level-5");
4767 MODULE_ALIAS("md-level-4");
4768 MODULE_ALIAS("md-personality-8"); /* RAID6 */
4769 MODULE_ALIAS("md-raid6");
4770 MODULE_ALIAS("md-level-6");
4771 
4772 /* This used to be two separate modules, they were: */
4773 MODULE_ALIAS("raid5");
4774 MODULE_ALIAS("raid6");
4775