1 /* 2 * raid5.c : Multiple Devices driver for Linux 3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman 4 * Copyright (C) 1999, 2000 Ingo Molnar 5 * Copyright (C) 2002, 2003 H. Peter Anvin 6 * 7 * RAID-4/5/6 management functions. 8 * Thanks to Penguin Computing for making the RAID-6 development possible 9 * by donating a test server! 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 /* 22 * BITMAP UNPLUGGING: 23 * 24 * The sequencing for updating the bitmap reliably is a little 25 * subtle (and I got it wrong the first time) so it deserves some 26 * explanation. 27 * 28 * We group bitmap updates into batches. Each batch has a number. 29 * We may write out several batches at once, but that isn't very important. 30 * conf->bm_write is the number of the last batch successfully written. 31 * conf->bm_flush is the number of the last batch that was closed to 32 * new additions. 33 * When we discover that we will need to write to any block in a stripe 34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq 35 * the number of the batch it will be in. This is bm_flush+1. 36 * When we are ready to do a write, if that batch hasn't been written yet, 37 * we plug the array and queue the stripe for later. 38 * When an unplug happens, we increment bm_flush, thus closing the current 39 * batch. 40 * When we notice that bm_flush > bm_write, we write out all pending updates 41 * to the bitmap, and advance bm_write to where bm_flush was. 42 * This may occasionally write a bit out twice, but is sure never to 43 * miss any bits. 44 */ 45 46 #include <linux/kthread.h> 47 #include "raid6.h" 48 49 #include <linux/raid/bitmap.h> 50 #include <linux/async_tx.h> 51 52 /* 53 * Stripe cache 54 */ 55 56 #define NR_STRIPES 256 57 #define STRIPE_SIZE PAGE_SIZE 58 #define STRIPE_SHIFT (PAGE_SHIFT - 9) 59 #define STRIPE_SECTORS (STRIPE_SIZE>>9) 60 #define IO_THRESHOLD 1 61 #define BYPASS_THRESHOLD 1 62 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head)) 63 #define HASH_MASK (NR_HASH - 1) 64 65 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK])) 66 67 /* bio's attached to a stripe+device for I/O are linked together in bi_sector 68 * order without overlap. There may be several bio's per stripe+device, and 69 * a bio could span several devices. 70 * When walking this list for a particular stripe+device, we must never proceed 71 * beyond a bio that extends past this device, as the next bio might no longer 72 * be valid. 73 * This macro is used to determine the 'next' bio in the list, given the sector 74 * of the current stripe+device 75 */ 76 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL) 77 /* 78 * The following can be used to debug the driver 79 */ 80 #define RAID5_PARANOIA 1 81 #if RAID5_PARANOIA && defined(CONFIG_SMP) 82 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock) 83 #else 84 # define CHECK_DEVLOCK() 85 #endif 86 87 #ifdef DEBUG 88 #define inline 89 #define __inline__ 90 #endif 91 92 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args))) 93 94 #if !RAID6_USE_EMPTY_ZERO_PAGE 95 /* In .bss so it's zeroed */ 96 const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256))); 97 #endif 98 99 /* 100 * We maintain a biased count of active stripes in the bottom 16 bits of 101 * bi_phys_segments, and a count of processed stripes in the upper 16 bits 102 */ 103 static inline int raid5_bi_phys_segments(struct bio *bio) 104 { 105 return bio->bi_phys_segments & 0xffff; 106 } 107 108 static inline int raid5_bi_hw_segments(struct bio *bio) 109 { 110 return (bio->bi_phys_segments >> 16) & 0xffff; 111 } 112 113 static inline int raid5_dec_bi_phys_segments(struct bio *bio) 114 { 115 --bio->bi_phys_segments; 116 return raid5_bi_phys_segments(bio); 117 } 118 119 static inline int raid5_dec_bi_hw_segments(struct bio *bio) 120 { 121 unsigned short val = raid5_bi_hw_segments(bio); 122 123 --val; 124 bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio); 125 return val; 126 } 127 128 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt) 129 { 130 bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16); 131 } 132 133 static inline int raid6_next_disk(int disk, int raid_disks) 134 { 135 disk++; 136 return (disk < raid_disks) ? disk : 0; 137 } 138 139 static void return_io(struct bio *return_bi) 140 { 141 struct bio *bi = return_bi; 142 while (bi) { 143 144 return_bi = bi->bi_next; 145 bi->bi_next = NULL; 146 bi->bi_size = 0; 147 bio_endio(bi, 0); 148 bi = return_bi; 149 } 150 } 151 152 static void print_raid5_conf (raid5_conf_t *conf); 153 154 static int stripe_operations_active(struct stripe_head *sh) 155 { 156 return sh->check_state || sh->reconstruct_state || 157 test_bit(STRIPE_BIOFILL_RUN, &sh->state) || 158 test_bit(STRIPE_COMPUTE_RUN, &sh->state); 159 } 160 161 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh) 162 { 163 if (atomic_dec_and_test(&sh->count)) { 164 BUG_ON(!list_empty(&sh->lru)); 165 BUG_ON(atomic_read(&conf->active_stripes)==0); 166 if (test_bit(STRIPE_HANDLE, &sh->state)) { 167 if (test_bit(STRIPE_DELAYED, &sh->state)) { 168 list_add_tail(&sh->lru, &conf->delayed_list); 169 blk_plug_device(conf->mddev->queue); 170 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) && 171 sh->bm_seq - conf->seq_write > 0) { 172 list_add_tail(&sh->lru, &conf->bitmap_list); 173 blk_plug_device(conf->mddev->queue); 174 } else { 175 clear_bit(STRIPE_BIT_DELAY, &sh->state); 176 list_add_tail(&sh->lru, &conf->handle_list); 177 } 178 md_wakeup_thread(conf->mddev->thread); 179 } else { 180 BUG_ON(stripe_operations_active(sh)); 181 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { 182 atomic_dec(&conf->preread_active_stripes); 183 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) 184 md_wakeup_thread(conf->mddev->thread); 185 } 186 atomic_dec(&conf->active_stripes); 187 if (!test_bit(STRIPE_EXPANDING, &sh->state)) { 188 list_add_tail(&sh->lru, &conf->inactive_list); 189 wake_up(&conf->wait_for_stripe); 190 if (conf->retry_read_aligned) 191 md_wakeup_thread(conf->mddev->thread); 192 } 193 } 194 } 195 } 196 static void release_stripe(struct stripe_head *sh) 197 { 198 raid5_conf_t *conf = sh->raid_conf; 199 unsigned long flags; 200 201 spin_lock_irqsave(&conf->device_lock, flags); 202 __release_stripe(conf, sh); 203 spin_unlock_irqrestore(&conf->device_lock, flags); 204 } 205 206 static inline void remove_hash(struct stripe_head *sh) 207 { 208 pr_debug("remove_hash(), stripe %llu\n", 209 (unsigned long long)sh->sector); 210 211 hlist_del_init(&sh->hash); 212 } 213 214 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh) 215 { 216 struct hlist_head *hp = stripe_hash(conf, sh->sector); 217 218 pr_debug("insert_hash(), stripe %llu\n", 219 (unsigned long long)sh->sector); 220 221 CHECK_DEVLOCK(); 222 hlist_add_head(&sh->hash, hp); 223 } 224 225 226 /* find an idle stripe, make sure it is unhashed, and return it. */ 227 static struct stripe_head *get_free_stripe(raid5_conf_t *conf) 228 { 229 struct stripe_head *sh = NULL; 230 struct list_head *first; 231 232 CHECK_DEVLOCK(); 233 if (list_empty(&conf->inactive_list)) 234 goto out; 235 first = conf->inactive_list.next; 236 sh = list_entry(first, struct stripe_head, lru); 237 list_del_init(first); 238 remove_hash(sh); 239 atomic_inc(&conf->active_stripes); 240 out: 241 return sh; 242 } 243 244 static void shrink_buffers(struct stripe_head *sh, int num) 245 { 246 struct page *p; 247 int i; 248 249 for (i=0; i<num ; i++) { 250 p = sh->dev[i].page; 251 if (!p) 252 continue; 253 sh->dev[i].page = NULL; 254 put_page(p); 255 } 256 } 257 258 static int grow_buffers(struct stripe_head *sh, int num) 259 { 260 int i; 261 262 for (i=0; i<num; i++) { 263 struct page *page; 264 265 if (!(page = alloc_page(GFP_KERNEL))) { 266 return 1; 267 } 268 sh->dev[i].page = page; 269 } 270 return 0; 271 } 272 273 static void raid5_build_block(struct stripe_head *sh, int i); 274 275 static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks) 276 { 277 raid5_conf_t *conf = sh->raid_conf; 278 int i; 279 280 BUG_ON(atomic_read(&sh->count) != 0); 281 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); 282 BUG_ON(stripe_operations_active(sh)); 283 284 CHECK_DEVLOCK(); 285 pr_debug("init_stripe called, stripe %llu\n", 286 (unsigned long long)sh->sector); 287 288 remove_hash(sh); 289 290 sh->sector = sector; 291 sh->pd_idx = pd_idx; 292 sh->state = 0; 293 294 sh->disks = disks; 295 296 for (i = sh->disks; i--; ) { 297 struct r5dev *dev = &sh->dev[i]; 298 299 if (dev->toread || dev->read || dev->towrite || dev->written || 300 test_bit(R5_LOCKED, &dev->flags)) { 301 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n", 302 (unsigned long long)sh->sector, i, dev->toread, 303 dev->read, dev->towrite, dev->written, 304 test_bit(R5_LOCKED, &dev->flags)); 305 BUG(); 306 } 307 dev->flags = 0; 308 raid5_build_block(sh, i); 309 } 310 insert_hash(conf, sh); 311 } 312 313 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks) 314 { 315 struct stripe_head *sh; 316 struct hlist_node *hn; 317 318 CHECK_DEVLOCK(); 319 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector); 320 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash) 321 if (sh->sector == sector && sh->disks == disks) 322 return sh; 323 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector); 324 return NULL; 325 } 326 327 static void unplug_slaves(mddev_t *mddev); 328 static void raid5_unplug_device(struct request_queue *q); 329 330 static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks, 331 int pd_idx, int noblock) 332 { 333 struct stripe_head *sh; 334 335 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector); 336 337 spin_lock_irq(&conf->device_lock); 338 339 do { 340 wait_event_lock_irq(conf->wait_for_stripe, 341 conf->quiesce == 0, 342 conf->device_lock, /* nothing */); 343 sh = __find_stripe(conf, sector, disks); 344 if (!sh) { 345 if (!conf->inactive_blocked) 346 sh = get_free_stripe(conf); 347 if (noblock && sh == NULL) 348 break; 349 if (!sh) { 350 conf->inactive_blocked = 1; 351 wait_event_lock_irq(conf->wait_for_stripe, 352 !list_empty(&conf->inactive_list) && 353 (atomic_read(&conf->active_stripes) 354 < (conf->max_nr_stripes *3/4) 355 || !conf->inactive_blocked), 356 conf->device_lock, 357 raid5_unplug_device(conf->mddev->queue) 358 ); 359 conf->inactive_blocked = 0; 360 } else 361 init_stripe(sh, sector, pd_idx, disks); 362 } else { 363 if (atomic_read(&sh->count)) { 364 BUG_ON(!list_empty(&sh->lru)); 365 } else { 366 if (!test_bit(STRIPE_HANDLE, &sh->state)) 367 atomic_inc(&conf->active_stripes); 368 if (list_empty(&sh->lru) && 369 !test_bit(STRIPE_EXPANDING, &sh->state)) 370 BUG(); 371 list_del_init(&sh->lru); 372 } 373 } 374 } while (sh == NULL); 375 376 if (sh) 377 atomic_inc(&sh->count); 378 379 spin_unlock_irq(&conf->device_lock); 380 return sh; 381 } 382 383 static void 384 raid5_end_read_request(struct bio *bi, int error); 385 static void 386 raid5_end_write_request(struct bio *bi, int error); 387 388 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s) 389 { 390 raid5_conf_t *conf = sh->raid_conf; 391 int i, disks = sh->disks; 392 393 might_sleep(); 394 395 for (i = disks; i--; ) { 396 int rw; 397 struct bio *bi; 398 mdk_rdev_t *rdev; 399 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) 400 rw = WRITE; 401 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags)) 402 rw = READ; 403 else 404 continue; 405 406 bi = &sh->dev[i].req; 407 408 bi->bi_rw = rw; 409 if (rw == WRITE) 410 bi->bi_end_io = raid5_end_write_request; 411 else 412 bi->bi_end_io = raid5_end_read_request; 413 414 rcu_read_lock(); 415 rdev = rcu_dereference(conf->disks[i].rdev); 416 if (rdev && test_bit(Faulty, &rdev->flags)) 417 rdev = NULL; 418 if (rdev) 419 atomic_inc(&rdev->nr_pending); 420 rcu_read_unlock(); 421 422 if (rdev) { 423 if (s->syncing || s->expanding || s->expanded) 424 md_sync_acct(rdev->bdev, STRIPE_SECTORS); 425 426 set_bit(STRIPE_IO_STARTED, &sh->state); 427 428 bi->bi_bdev = rdev->bdev; 429 pr_debug("%s: for %llu schedule op %ld on disc %d\n", 430 __func__, (unsigned long long)sh->sector, 431 bi->bi_rw, i); 432 atomic_inc(&sh->count); 433 bi->bi_sector = sh->sector + rdev->data_offset; 434 bi->bi_flags = 1 << BIO_UPTODATE; 435 bi->bi_vcnt = 1; 436 bi->bi_max_vecs = 1; 437 bi->bi_idx = 0; 438 bi->bi_io_vec = &sh->dev[i].vec; 439 bi->bi_io_vec[0].bv_len = STRIPE_SIZE; 440 bi->bi_io_vec[0].bv_offset = 0; 441 bi->bi_size = STRIPE_SIZE; 442 bi->bi_next = NULL; 443 if (rw == WRITE && 444 test_bit(R5_ReWrite, &sh->dev[i].flags)) 445 atomic_add(STRIPE_SECTORS, 446 &rdev->corrected_errors); 447 generic_make_request(bi); 448 } else { 449 if (rw == WRITE) 450 set_bit(STRIPE_DEGRADED, &sh->state); 451 pr_debug("skip op %ld on disc %d for sector %llu\n", 452 bi->bi_rw, i, (unsigned long long)sh->sector); 453 clear_bit(R5_LOCKED, &sh->dev[i].flags); 454 set_bit(STRIPE_HANDLE, &sh->state); 455 } 456 } 457 } 458 459 static struct dma_async_tx_descriptor * 460 async_copy_data(int frombio, struct bio *bio, struct page *page, 461 sector_t sector, struct dma_async_tx_descriptor *tx) 462 { 463 struct bio_vec *bvl; 464 struct page *bio_page; 465 int i; 466 int page_offset; 467 468 if (bio->bi_sector >= sector) 469 page_offset = (signed)(bio->bi_sector - sector) * 512; 470 else 471 page_offset = (signed)(sector - bio->bi_sector) * -512; 472 bio_for_each_segment(bvl, bio, i) { 473 int len = bio_iovec_idx(bio, i)->bv_len; 474 int clen; 475 int b_offset = 0; 476 477 if (page_offset < 0) { 478 b_offset = -page_offset; 479 page_offset += b_offset; 480 len -= b_offset; 481 } 482 483 if (len > 0 && page_offset + len > STRIPE_SIZE) 484 clen = STRIPE_SIZE - page_offset; 485 else 486 clen = len; 487 488 if (clen > 0) { 489 b_offset += bio_iovec_idx(bio, i)->bv_offset; 490 bio_page = bio_iovec_idx(bio, i)->bv_page; 491 if (frombio) 492 tx = async_memcpy(page, bio_page, page_offset, 493 b_offset, clen, 494 ASYNC_TX_DEP_ACK, 495 tx, NULL, NULL); 496 else 497 tx = async_memcpy(bio_page, page, b_offset, 498 page_offset, clen, 499 ASYNC_TX_DEP_ACK, 500 tx, NULL, NULL); 501 } 502 if (clen < len) /* hit end of page */ 503 break; 504 page_offset += len; 505 } 506 507 return tx; 508 } 509 510 static void ops_complete_biofill(void *stripe_head_ref) 511 { 512 struct stripe_head *sh = stripe_head_ref; 513 struct bio *return_bi = NULL; 514 raid5_conf_t *conf = sh->raid_conf; 515 int i; 516 517 pr_debug("%s: stripe %llu\n", __func__, 518 (unsigned long long)sh->sector); 519 520 /* clear completed biofills */ 521 spin_lock_irq(&conf->device_lock); 522 for (i = sh->disks; i--; ) { 523 struct r5dev *dev = &sh->dev[i]; 524 525 /* acknowledge completion of a biofill operation */ 526 /* and check if we need to reply to a read request, 527 * new R5_Wantfill requests are held off until 528 * !STRIPE_BIOFILL_RUN 529 */ 530 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) { 531 struct bio *rbi, *rbi2; 532 533 BUG_ON(!dev->read); 534 rbi = dev->read; 535 dev->read = NULL; 536 while (rbi && rbi->bi_sector < 537 dev->sector + STRIPE_SECTORS) { 538 rbi2 = r5_next_bio(rbi, dev->sector); 539 if (!raid5_dec_bi_phys_segments(rbi)) { 540 rbi->bi_next = return_bi; 541 return_bi = rbi; 542 } 543 rbi = rbi2; 544 } 545 } 546 } 547 spin_unlock_irq(&conf->device_lock); 548 clear_bit(STRIPE_BIOFILL_RUN, &sh->state); 549 550 return_io(return_bi); 551 552 set_bit(STRIPE_HANDLE, &sh->state); 553 release_stripe(sh); 554 } 555 556 static void ops_run_biofill(struct stripe_head *sh) 557 { 558 struct dma_async_tx_descriptor *tx = NULL; 559 raid5_conf_t *conf = sh->raid_conf; 560 int i; 561 562 pr_debug("%s: stripe %llu\n", __func__, 563 (unsigned long long)sh->sector); 564 565 for (i = sh->disks; i--; ) { 566 struct r5dev *dev = &sh->dev[i]; 567 if (test_bit(R5_Wantfill, &dev->flags)) { 568 struct bio *rbi; 569 spin_lock_irq(&conf->device_lock); 570 dev->read = rbi = dev->toread; 571 dev->toread = NULL; 572 spin_unlock_irq(&conf->device_lock); 573 while (rbi && rbi->bi_sector < 574 dev->sector + STRIPE_SECTORS) { 575 tx = async_copy_data(0, rbi, dev->page, 576 dev->sector, tx); 577 rbi = r5_next_bio(rbi, dev->sector); 578 } 579 } 580 } 581 582 atomic_inc(&sh->count); 583 async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx, 584 ops_complete_biofill, sh); 585 } 586 587 static void ops_complete_compute5(void *stripe_head_ref) 588 { 589 struct stripe_head *sh = stripe_head_ref; 590 int target = sh->ops.target; 591 struct r5dev *tgt = &sh->dev[target]; 592 593 pr_debug("%s: stripe %llu\n", __func__, 594 (unsigned long long)sh->sector); 595 596 set_bit(R5_UPTODATE, &tgt->flags); 597 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 598 clear_bit(R5_Wantcompute, &tgt->flags); 599 clear_bit(STRIPE_COMPUTE_RUN, &sh->state); 600 if (sh->check_state == check_state_compute_run) 601 sh->check_state = check_state_compute_result; 602 set_bit(STRIPE_HANDLE, &sh->state); 603 release_stripe(sh); 604 } 605 606 static struct dma_async_tx_descriptor *ops_run_compute5(struct stripe_head *sh) 607 { 608 /* kernel stack size limits the total number of disks */ 609 int disks = sh->disks; 610 struct page *xor_srcs[disks]; 611 int target = sh->ops.target; 612 struct r5dev *tgt = &sh->dev[target]; 613 struct page *xor_dest = tgt->page; 614 int count = 0; 615 struct dma_async_tx_descriptor *tx; 616 int i; 617 618 pr_debug("%s: stripe %llu block: %d\n", 619 __func__, (unsigned long long)sh->sector, target); 620 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 621 622 for (i = disks; i--; ) 623 if (i != target) 624 xor_srcs[count++] = sh->dev[i].page; 625 626 atomic_inc(&sh->count); 627 628 if (unlikely(count == 1)) 629 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, 630 0, NULL, ops_complete_compute5, sh); 631 else 632 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, 633 ASYNC_TX_XOR_ZERO_DST, NULL, 634 ops_complete_compute5, sh); 635 636 return tx; 637 } 638 639 static void ops_complete_prexor(void *stripe_head_ref) 640 { 641 struct stripe_head *sh = stripe_head_ref; 642 643 pr_debug("%s: stripe %llu\n", __func__, 644 (unsigned long long)sh->sector); 645 } 646 647 static struct dma_async_tx_descriptor * 648 ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) 649 { 650 /* kernel stack size limits the total number of disks */ 651 int disks = sh->disks; 652 struct page *xor_srcs[disks]; 653 int count = 0, pd_idx = sh->pd_idx, i; 654 655 /* existing parity data subtracted */ 656 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 657 658 pr_debug("%s: stripe %llu\n", __func__, 659 (unsigned long long)sh->sector); 660 661 for (i = disks; i--; ) { 662 struct r5dev *dev = &sh->dev[i]; 663 /* Only process blocks that are known to be uptodate */ 664 if (test_bit(R5_Wantdrain, &dev->flags)) 665 xor_srcs[count++] = dev->page; 666 } 667 668 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, 669 ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx, 670 ops_complete_prexor, sh); 671 672 return tx; 673 } 674 675 static struct dma_async_tx_descriptor * 676 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) 677 { 678 int disks = sh->disks; 679 int i; 680 681 pr_debug("%s: stripe %llu\n", __func__, 682 (unsigned long long)sh->sector); 683 684 for (i = disks; i--; ) { 685 struct r5dev *dev = &sh->dev[i]; 686 struct bio *chosen; 687 688 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) { 689 struct bio *wbi; 690 691 spin_lock(&sh->lock); 692 chosen = dev->towrite; 693 dev->towrite = NULL; 694 BUG_ON(dev->written); 695 wbi = dev->written = chosen; 696 spin_unlock(&sh->lock); 697 698 while (wbi && wbi->bi_sector < 699 dev->sector + STRIPE_SECTORS) { 700 tx = async_copy_data(1, wbi, dev->page, 701 dev->sector, tx); 702 wbi = r5_next_bio(wbi, dev->sector); 703 } 704 } 705 } 706 707 return tx; 708 } 709 710 static void ops_complete_postxor(void *stripe_head_ref) 711 { 712 struct stripe_head *sh = stripe_head_ref; 713 int disks = sh->disks, i, pd_idx = sh->pd_idx; 714 715 pr_debug("%s: stripe %llu\n", __func__, 716 (unsigned long long)sh->sector); 717 718 for (i = disks; i--; ) { 719 struct r5dev *dev = &sh->dev[i]; 720 if (dev->written || i == pd_idx) 721 set_bit(R5_UPTODATE, &dev->flags); 722 } 723 724 if (sh->reconstruct_state == reconstruct_state_drain_run) 725 sh->reconstruct_state = reconstruct_state_drain_result; 726 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) 727 sh->reconstruct_state = reconstruct_state_prexor_drain_result; 728 else { 729 BUG_ON(sh->reconstruct_state != reconstruct_state_run); 730 sh->reconstruct_state = reconstruct_state_result; 731 } 732 733 set_bit(STRIPE_HANDLE, &sh->state); 734 release_stripe(sh); 735 } 736 737 static void 738 ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) 739 { 740 /* kernel stack size limits the total number of disks */ 741 int disks = sh->disks; 742 struct page *xor_srcs[disks]; 743 744 int count = 0, pd_idx = sh->pd_idx, i; 745 struct page *xor_dest; 746 int prexor = 0; 747 unsigned long flags; 748 749 pr_debug("%s: stripe %llu\n", __func__, 750 (unsigned long long)sh->sector); 751 752 /* check if prexor is active which means only process blocks 753 * that are part of a read-modify-write (written) 754 */ 755 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 756 prexor = 1; 757 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 758 for (i = disks; i--; ) { 759 struct r5dev *dev = &sh->dev[i]; 760 if (dev->written) 761 xor_srcs[count++] = dev->page; 762 } 763 } else { 764 xor_dest = sh->dev[pd_idx].page; 765 for (i = disks; i--; ) { 766 struct r5dev *dev = &sh->dev[i]; 767 if (i != pd_idx) 768 xor_srcs[count++] = dev->page; 769 } 770 } 771 772 /* 1/ if we prexor'd then the dest is reused as a source 773 * 2/ if we did not prexor then we are redoing the parity 774 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST 775 * for the synchronous xor case 776 */ 777 flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK | 778 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST); 779 780 atomic_inc(&sh->count); 781 782 if (unlikely(count == 1)) { 783 flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST); 784 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, 785 flags, tx, ops_complete_postxor, sh); 786 } else 787 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, 788 flags, tx, ops_complete_postxor, sh); 789 } 790 791 static void ops_complete_check(void *stripe_head_ref) 792 { 793 struct stripe_head *sh = stripe_head_ref; 794 795 pr_debug("%s: stripe %llu\n", __func__, 796 (unsigned long long)sh->sector); 797 798 sh->check_state = check_state_check_result; 799 set_bit(STRIPE_HANDLE, &sh->state); 800 release_stripe(sh); 801 } 802 803 static void ops_run_check(struct stripe_head *sh) 804 { 805 /* kernel stack size limits the total number of disks */ 806 int disks = sh->disks; 807 struct page *xor_srcs[disks]; 808 struct dma_async_tx_descriptor *tx; 809 810 int count = 0, pd_idx = sh->pd_idx, i; 811 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 812 813 pr_debug("%s: stripe %llu\n", __func__, 814 (unsigned long long)sh->sector); 815 816 for (i = disks; i--; ) { 817 struct r5dev *dev = &sh->dev[i]; 818 if (i != pd_idx) 819 xor_srcs[count++] = dev->page; 820 } 821 822 tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, 823 &sh->ops.zero_sum_result, 0, NULL, NULL, NULL); 824 825 atomic_inc(&sh->count); 826 tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx, 827 ops_complete_check, sh); 828 } 829 830 static void raid5_run_ops(struct stripe_head *sh, unsigned long ops_request) 831 { 832 int overlap_clear = 0, i, disks = sh->disks; 833 struct dma_async_tx_descriptor *tx = NULL; 834 835 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) { 836 ops_run_biofill(sh); 837 overlap_clear++; 838 } 839 840 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) { 841 tx = ops_run_compute5(sh); 842 /* terminate the chain if postxor is not set to be run */ 843 if (tx && !test_bit(STRIPE_OP_POSTXOR, &ops_request)) 844 async_tx_ack(tx); 845 } 846 847 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) 848 tx = ops_run_prexor(sh, tx); 849 850 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) { 851 tx = ops_run_biodrain(sh, tx); 852 overlap_clear++; 853 } 854 855 if (test_bit(STRIPE_OP_POSTXOR, &ops_request)) 856 ops_run_postxor(sh, tx); 857 858 if (test_bit(STRIPE_OP_CHECK, &ops_request)) 859 ops_run_check(sh); 860 861 if (overlap_clear) 862 for (i = disks; i--; ) { 863 struct r5dev *dev = &sh->dev[i]; 864 if (test_and_clear_bit(R5_Overlap, &dev->flags)) 865 wake_up(&sh->raid_conf->wait_for_overlap); 866 } 867 } 868 869 static int grow_one_stripe(raid5_conf_t *conf) 870 { 871 struct stripe_head *sh; 872 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL); 873 if (!sh) 874 return 0; 875 memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev)); 876 sh->raid_conf = conf; 877 spin_lock_init(&sh->lock); 878 879 if (grow_buffers(sh, conf->raid_disks)) { 880 shrink_buffers(sh, conf->raid_disks); 881 kmem_cache_free(conf->slab_cache, sh); 882 return 0; 883 } 884 sh->disks = conf->raid_disks; 885 /* we just created an active stripe so... */ 886 atomic_set(&sh->count, 1); 887 atomic_inc(&conf->active_stripes); 888 INIT_LIST_HEAD(&sh->lru); 889 release_stripe(sh); 890 return 1; 891 } 892 893 static int grow_stripes(raid5_conf_t *conf, int num) 894 { 895 struct kmem_cache *sc; 896 int devs = conf->raid_disks; 897 898 sprintf(conf->cache_name[0], "raid5-%s", mdname(conf->mddev)); 899 sprintf(conf->cache_name[1], "raid5-%s-alt", mdname(conf->mddev)); 900 conf->active_name = 0; 901 sc = kmem_cache_create(conf->cache_name[conf->active_name], 902 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev), 903 0, 0, NULL); 904 if (!sc) 905 return 1; 906 conf->slab_cache = sc; 907 conf->pool_size = devs; 908 while (num--) 909 if (!grow_one_stripe(conf)) 910 return 1; 911 return 0; 912 } 913 914 #ifdef CONFIG_MD_RAID5_RESHAPE 915 static int resize_stripes(raid5_conf_t *conf, int newsize) 916 { 917 /* Make all the stripes able to hold 'newsize' devices. 918 * New slots in each stripe get 'page' set to a new page. 919 * 920 * This happens in stages: 921 * 1/ create a new kmem_cache and allocate the required number of 922 * stripe_heads. 923 * 2/ gather all the old stripe_heads and tranfer the pages across 924 * to the new stripe_heads. This will have the side effect of 925 * freezing the array as once all stripe_heads have been collected, 926 * no IO will be possible. Old stripe heads are freed once their 927 * pages have been transferred over, and the old kmem_cache is 928 * freed when all stripes are done. 929 * 3/ reallocate conf->disks to be suitable bigger. If this fails, 930 * we simple return a failre status - no need to clean anything up. 931 * 4/ allocate new pages for the new slots in the new stripe_heads. 932 * If this fails, we don't bother trying the shrink the 933 * stripe_heads down again, we just leave them as they are. 934 * As each stripe_head is processed the new one is released into 935 * active service. 936 * 937 * Once step2 is started, we cannot afford to wait for a write, 938 * so we use GFP_NOIO allocations. 939 */ 940 struct stripe_head *osh, *nsh; 941 LIST_HEAD(newstripes); 942 struct disk_info *ndisks; 943 int err; 944 struct kmem_cache *sc; 945 int i; 946 947 if (newsize <= conf->pool_size) 948 return 0; /* never bother to shrink */ 949 950 err = md_allow_write(conf->mddev); 951 if (err) 952 return err; 953 954 /* Step 1 */ 955 sc = kmem_cache_create(conf->cache_name[1-conf->active_name], 956 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev), 957 0, 0, NULL); 958 if (!sc) 959 return -ENOMEM; 960 961 for (i = conf->max_nr_stripes; i; i--) { 962 nsh = kmem_cache_alloc(sc, GFP_KERNEL); 963 if (!nsh) 964 break; 965 966 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev)); 967 968 nsh->raid_conf = conf; 969 spin_lock_init(&nsh->lock); 970 971 list_add(&nsh->lru, &newstripes); 972 } 973 if (i) { 974 /* didn't get enough, give up */ 975 while (!list_empty(&newstripes)) { 976 nsh = list_entry(newstripes.next, struct stripe_head, lru); 977 list_del(&nsh->lru); 978 kmem_cache_free(sc, nsh); 979 } 980 kmem_cache_destroy(sc); 981 return -ENOMEM; 982 } 983 /* Step 2 - Must use GFP_NOIO now. 984 * OK, we have enough stripes, start collecting inactive 985 * stripes and copying them over 986 */ 987 list_for_each_entry(nsh, &newstripes, lru) { 988 spin_lock_irq(&conf->device_lock); 989 wait_event_lock_irq(conf->wait_for_stripe, 990 !list_empty(&conf->inactive_list), 991 conf->device_lock, 992 unplug_slaves(conf->mddev) 993 ); 994 osh = get_free_stripe(conf); 995 spin_unlock_irq(&conf->device_lock); 996 atomic_set(&nsh->count, 1); 997 for(i=0; i<conf->pool_size; i++) 998 nsh->dev[i].page = osh->dev[i].page; 999 for( ; i<newsize; i++) 1000 nsh->dev[i].page = NULL; 1001 kmem_cache_free(conf->slab_cache, osh); 1002 } 1003 kmem_cache_destroy(conf->slab_cache); 1004 1005 /* Step 3. 1006 * At this point, we are holding all the stripes so the array 1007 * is completely stalled, so now is a good time to resize 1008 * conf->disks. 1009 */ 1010 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO); 1011 if (ndisks) { 1012 for (i=0; i<conf->raid_disks; i++) 1013 ndisks[i] = conf->disks[i]; 1014 kfree(conf->disks); 1015 conf->disks = ndisks; 1016 } else 1017 err = -ENOMEM; 1018 1019 /* Step 4, return new stripes to service */ 1020 while(!list_empty(&newstripes)) { 1021 nsh = list_entry(newstripes.next, struct stripe_head, lru); 1022 list_del_init(&nsh->lru); 1023 for (i=conf->raid_disks; i < newsize; i++) 1024 if (nsh->dev[i].page == NULL) { 1025 struct page *p = alloc_page(GFP_NOIO); 1026 nsh->dev[i].page = p; 1027 if (!p) 1028 err = -ENOMEM; 1029 } 1030 release_stripe(nsh); 1031 } 1032 /* critical section pass, GFP_NOIO no longer needed */ 1033 1034 conf->slab_cache = sc; 1035 conf->active_name = 1-conf->active_name; 1036 conf->pool_size = newsize; 1037 return err; 1038 } 1039 #endif 1040 1041 static int drop_one_stripe(raid5_conf_t *conf) 1042 { 1043 struct stripe_head *sh; 1044 1045 spin_lock_irq(&conf->device_lock); 1046 sh = get_free_stripe(conf); 1047 spin_unlock_irq(&conf->device_lock); 1048 if (!sh) 1049 return 0; 1050 BUG_ON(atomic_read(&sh->count)); 1051 shrink_buffers(sh, conf->pool_size); 1052 kmem_cache_free(conf->slab_cache, sh); 1053 atomic_dec(&conf->active_stripes); 1054 return 1; 1055 } 1056 1057 static void shrink_stripes(raid5_conf_t *conf) 1058 { 1059 while (drop_one_stripe(conf)) 1060 ; 1061 1062 if (conf->slab_cache) 1063 kmem_cache_destroy(conf->slab_cache); 1064 conf->slab_cache = NULL; 1065 } 1066 1067 static void raid5_end_read_request(struct bio * bi, int error) 1068 { 1069 struct stripe_head *sh = bi->bi_private; 1070 raid5_conf_t *conf = sh->raid_conf; 1071 int disks = sh->disks, i; 1072 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); 1073 char b[BDEVNAME_SIZE]; 1074 mdk_rdev_t *rdev; 1075 1076 1077 for (i=0 ; i<disks; i++) 1078 if (bi == &sh->dev[i].req) 1079 break; 1080 1081 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n", 1082 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 1083 uptodate); 1084 if (i == disks) { 1085 BUG(); 1086 return; 1087 } 1088 1089 if (uptodate) { 1090 set_bit(R5_UPTODATE, &sh->dev[i].flags); 1091 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 1092 rdev = conf->disks[i].rdev; 1093 printk_rl(KERN_INFO "raid5:%s: read error corrected" 1094 " (%lu sectors at %llu on %s)\n", 1095 mdname(conf->mddev), STRIPE_SECTORS, 1096 (unsigned long long)(sh->sector 1097 + rdev->data_offset), 1098 bdevname(rdev->bdev, b)); 1099 clear_bit(R5_ReadError, &sh->dev[i].flags); 1100 clear_bit(R5_ReWrite, &sh->dev[i].flags); 1101 } 1102 if (atomic_read(&conf->disks[i].rdev->read_errors)) 1103 atomic_set(&conf->disks[i].rdev->read_errors, 0); 1104 } else { 1105 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b); 1106 int retry = 0; 1107 rdev = conf->disks[i].rdev; 1108 1109 clear_bit(R5_UPTODATE, &sh->dev[i].flags); 1110 atomic_inc(&rdev->read_errors); 1111 if (conf->mddev->degraded) 1112 printk_rl(KERN_WARNING 1113 "raid5:%s: read error not correctable " 1114 "(sector %llu on %s).\n", 1115 mdname(conf->mddev), 1116 (unsigned long long)(sh->sector 1117 + rdev->data_offset), 1118 bdn); 1119 else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) 1120 /* Oh, no!!! */ 1121 printk_rl(KERN_WARNING 1122 "raid5:%s: read error NOT corrected!! " 1123 "(sector %llu on %s).\n", 1124 mdname(conf->mddev), 1125 (unsigned long long)(sh->sector 1126 + rdev->data_offset), 1127 bdn); 1128 else if (atomic_read(&rdev->read_errors) 1129 > conf->max_nr_stripes) 1130 printk(KERN_WARNING 1131 "raid5:%s: Too many read errors, failing device %s.\n", 1132 mdname(conf->mddev), bdn); 1133 else 1134 retry = 1; 1135 if (retry) 1136 set_bit(R5_ReadError, &sh->dev[i].flags); 1137 else { 1138 clear_bit(R5_ReadError, &sh->dev[i].flags); 1139 clear_bit(R5_ReWrite, &sh->dev[i].flags); 1140 md_error(conf->mddev, rdev); 1141 } 1142 } 1143 rdev_dec_pending(conf->disks[i].rdev, conf->mddev); 1144 clear_bit(R5_LOCKED, &sh->dev[i].flags); 1145 set_bit(STRIPE_HANDLE, &sh->state); 1146 release_stripe(sh); 1147 } 1148 1149 static void raid5_end_write_request(struct bio *bi, int error) 1150 { 1151 struct stripe_head *sh = bi->bi_private; 1152 raid5_conf_t *conf = sh->raid_conf; 1153 int disks = sh->disks, i; 1154 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); 1155 1156 for (i=0 ; i<disks; i++) 1157 if (bi == &sh->dev[i].req) 1158 break; 1159 1160 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n", 1161 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 1162 uptodate); 1163 if (i == disks) { 1164 BUG(); 1165 return; 1166 } 1167 1168 if (!uptodate) 1169 md_error(conf->mddev, conf->disks[i].rdev); 1170 1171 rdev_dec_pending(conf->disks[i].rdev, conf->mddev); 1172 1173 clear_bit(R5_LOCKED, &sh->dev[i].flags); 1174 set_bit(STRIPE_HANDLE, &sh->state); 1175 release_stripe(sh); 1176 } 1177 1178 1179 static sector_t compute_blocknr(struct stripe_head *sh, int i); 1180 1181 static void raid5_build_block(struct stripe_head *sh, int i) 1182 { 1183 struct r5dev *dev = &sh->dev[i]; 1184 1185 bio_init(&dev->req); 1186 dev->req.bi_io_vec = &dev->vec; 1187 dev->req.bi_vcnt++; 1188 dev->req.bi_max_vecs++; 1189 dev->vec.bv_page = dev->page; 1190 dev->vec.bv_len = STRIPE_SIZE; 1191 dev->vec.bv_offset = 0; 1192 1193 dev->req.bi_sector = sh->sector; 1194 dev->req.bi_private = sh; 1195 1196 dev->flags = 0; 1197 dev->sector = compute_blocknr(sh, i); 1198 } 1199 1200 static void error(mddev_t *mddev, mdk_rdev_t *rdev) 1201 { 1202 char b[BDEVNAME_SIZE]; 1203 raid5_conf_t *conf = (raid5_conf_t *) mddev->private; 1204 pr_debug("raid5: error called\n"); 1205 1206 if (!test_bit(Faulty, &rdev->flags)) { 1207 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1208 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1209 unsigned long flags; 1210 spin_lock_irqsave(&conf->device_lock, flags); 1211 mddev->degraded++; 1212 spin_unlock_irqrestore(&conf->device_lock, flags); 1213 /* 1214 * if recovery was running, make sure it aborts. 1215 */ 1216 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1217 } 1218 set_bit(Faulty, &rdev->flags); 1219 printk(KERN_ALERT 1220 "raid5: Disk failure on %s, disabling device.\n" 1221 "raid5: Operation continuing on %d devices.\n", 1222 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded); 1223 } 1224 } 1225 1226 /* 1227 * Input: a 'big' sector number, 1228 * Output: index of the data and parity disk, and the sector # in them. 1229 */ 1230 static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks, 1231 unsigned int data_disks, unsigned int * dd_idx, 1232 unsigned int * pd_idx, raid5_conf_t *conf) 1233 { 1234 long stripe; 1235 unsigned long chunk_number; 1236 unsigned int chunk_offset; 1237 sector_t new_sector; 1238 int sectors_per_chunk = conf->chunk_size >> 9; 1239 1240 /* First compute the information on this sector */ 1241 1242 /* 1243 * Compute the chunk number and the sector offset inside the chunk 1244 */ 1245 chunk_offset = sector_div(r_sector, sectors_per_chunk); 1246 chunk_number = r_sector; 1247 BUG_ON(r_sector != chunk_number); 1248 1249 /* 1250 * Compute the stripe number 1251 */ 1252 stripe = chunk_number / data_disks; 1253 1254 /* 1255 * Compute the data disk and parity disk indexes inside the stripe 1256 */ 1257 *dd_idx = chunk_number % data_disks; 1258 1259 /* 1260 * Select the parity disk based on the user selected algorithm. 1261 */ 1262 switch(conf->level) { 1263 case 4: 1264 *pd_idx = data_disks; 1265 break; 1266 case 5: 1267 switch (conf->algorithm) { 1268 case ALGORITHM_LEFT_ASYMMETRIC: 1269 *pd_idx = data_disks - stripe % raid_disks; 1270 if (*dd_idx >= *pd_idx) 1271 (*dd_idx)++; 1272 break; 1273 case ALGORITHM_RIGHT_ASYMMETRIC: 1274 *pd_idx = stripe % raid_disks; 1275 if (*dd_idx >= *pd_idx) 1276 (*dd_idx)++; 1277 break; 1278 case ALGORITHM_LEFT_SYMMETRIC: 1279 *pd_idx = data_disks - stripe % raid_disks; 1280 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks; 1281 break; 1282 case ALGORITHM_RIGHT_SYMMETRIC: 1283 *pd_idx = stripe % raid_disks; 1284 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks; 1285 break; 1286 default: 1287 printk(KERN_ERR "raid5: unsupported algorithm %d\n", 1288 conf->algorithm); 1289 } 1290 break; 1291 case 6: 1292 1293 /**** FIX THIS ****/ 1294 switch (conf->algorithm) { 1295 case ALGORITHM_LEFT_ASYMMETRIC: 1296 *pd_idx = raid_disks - 1 - (stripe % raid_disks); 1297 if (*pd_idx == raid_disks-1) 1298 (*dd_idx)++; /* Q D D D P */ 1299 else if (*dd_idx >= *pd_idx) 1300 (*dd_idx) += 2; /* D D P Q D */ 1301 break; 1302 case ALGORITHM_RIGHT_ASYMMETRIC: 1303 *pd_idx = stripe % raid_disks; 1304 if (*pd_idx == raid_disks-1) 1305 (*dd_idx)++; /* Q D D D P */ 1306 else if (*dd_idx >= *pd_idx) 1307 (*dd_idx) += 2; /* D D P Q D */ 1308 break; 1309 case ALGORITHM_LEFT_SYMMETRIC: 1310 *pd_idx = raid_disks - 1 - (stripe % raid_disks); 1311 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks; 1312 break; 1313 case ALGORITHM_RIGHT_SYMMETRIC: 1314 *pd_idx = stripe % raid_disks; 1315 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks; 1316 break; 1317 default: 1318 printk(KERN_CRIT "raid6: unsupported algorithm %d\n", 1319 conf->algorithm); 1320 } 1321 break; 1322 } 1323 1324 /* 1325 * Finally, compute the new sector number 1326 */ 1327 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset; 1328 return new_sector; 1329 } 1330 1331 1332 static sector_t compute_blocknr(struct stripe_head *sh, int i) 1333 { 1334 raid5_conf_t *conf = sh->raid_conf; 1335 int raid_disks = sh->disks; 1336 int data_disks = raid_disks - conf->max_degraded; 1337 sector_t new_sector = sh->sector, check; 1338 int sectors_per_chunk = conf->chunk_size >> 9; 1339 sector_t stripe; 1340 int chunk_offset; 1341 int chunk_number, dummy1, dummy2, dd_idx = i; 1342 sector_t r_sector; 1343 1344 1345 chunk_offset = sector_div(new_sector, sectors_per_chunk); 1346 stripe = new_sector; 1347 BUG_ON(new_sector != stripe); 1348 1349 if (i == sh->pd_idx) 1350 return 0; 1351 switch(conf->level) { 1352 case 4: break; 1353 case 5: 1354 switch (conf->algorithm) { 1355 case ALGORITHM_LEFT_ASYMMETRIC: 1356 case ALGORITHM_RIGHT_ASYMMETRIC: 1357 if (i > sh->pd_idx) 1358 i--; 1359 break; 1360 case ALGORITHM_LEFT_SYMMETRIC: 1361 case ALGORITHM_RIGHT_SYMMETRIC: 1362 if (i < sh->pd_idx) 1363 i += raid_disks; 1364 i -= (sh->pd_idx + 1); 1365 break; 1366 default: 1367 printk(KERN_ERR "raid5: unsupported algorithm %d\n", 1368 conf->algorithm); 1369 } 1370 break; 1371 case 6: 1372 if (i == raid6_next_disk(sh->pd_idx, raid_disks)) 1373 return 0; /* It is the Q disk */ 1374 switch (conf->algorithm) { 1375 case ALGORITHM_LEFT_ASYMMETRIC: 1376 case ALGORITHM_RIGHT_ASYMMETRIC: 1377 if (sh->pd_idx == raid_disks-1) 1378 i--; /* Q D D D P */ 1379 else if (i > sh->pd_idx) 1380 i -= 2; /* D D P Q D */ 1381 break; 1382 case ALGORITHM_LEFT_SYMMETRIC: 1383 case ALGORITHM_RIGHT_SYMMETRIC: 1384 if (sh->pd_idx == raid_disks-1) 1385 i--; /* Q D D D P */ 1386 else { 1387 /* D D P Q D */ 1388 if (i < sh->pd_idx) 1389 i += raid_disks; 1390 i -= (sh->pd_idx + 2); 1391 } 1392 break; 1393 default: 1394 printk(KERN_CRIT "raid6: unsupported algorithm %d\n", 1395 conf->algorithm); 1396 } 1397 break; 1398 } 1399 1400 chunk_number = stripe * data_disks + i; 1401 r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset; 1402 1403 check = raid5_compute_sector(r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf); 1404 if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) { 1405 printk(KERN_ERR "compute_blocknr: map not correct\n"); 1406 return 0; 1407 } 1408 return r_sector; 1409 } 1410 1411 1412 1413 /* 1414 * Copy data between a page in the stripe cache, and one or more bion 1415 * The page could align with the middle of the bio, or there could be 1416 * several bion, each with several bio_vecs, which cover part of the page 1417 * Multiple bion are linked together on bi_next. There may be extras 1418 * at the end of this list. We ignore them. 1419 */ 1420 static void copy_data(int frombio, struct bio *bio, 1421 struct page *page, 1422 sector_t sector) 1423 { 1424 char *pa = page_address(page); 1425 struct bio_vec *bvl; 1426 int i; 1427 int page_offset; 1428 1429 if (bio->bi_sector >= sector) 1430 page_offset = (signed)(bio->bi_sector - sector) * 512; 1431 else 1432 page_offset = (signed)(sector - bio->bi_sector) * -512; 1433 bio_for_each_segment(bvl, bio, i) { 1434 int len = bio_iovec_idx(bio,i)->bv_len; 1435 int clen; 1436 int b_offset = 0; 1437 1438 if (page_offset < 0) { 1439 b_offset = -page_offset; 1440 page_offset += b_offset; 1441 len -= b_offset; 1442 } 1443 1444 if (len > 0 && page_offset + len > STRIPE_SIZE) 1445 clen = STRIPE_SIZE - page_offset; 1446 else clen = len; 1447 1448 if (clen > 0) { 1449 char *ba = __bio_kmap_atomic(bio, i, KM_USER0); 1450 if (frombio) 1451 memcpy(pa+page_offset, ba+b_offset, clen); 1452 else 1453 memcpy(ba+b_offset, pa+page_offset, clen); 1454 __bio_kunmap_atomic(ba, KM_USER0); 1455 } 1456 if (clen < len) /* hit end of page */ 1457 break; 1458 page_offset += len; 1459 } 1460 } 1461 1462 #define check_xor() do { \ 1463 if (count == MAX_XOR_BLOCKS) { \ 1464 xor_blocks(count, STRIPE_SIZE, dest, ptr);\ 1465 count = 0; \ 1466 } \ 1467 } while(0) 1468 1469 static void compute_parity6(struct stripe_head *sh, int method) 1470 { 1471 raid6_conf_t *conf = sh->raid_conf; 1472 int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = sh->disks, count; 1473 struct bio *chosen; 1474 /**** FIX THIS: This could be very bad if disks is close to 256 ****/ 1475 void *ptrs[disks]; 1476 1477 qd_idx = raid6_next_disk(pd_idx, disks); 1478 d0_idx = raid6_next_disk(qd_idx, disks); 1479 1480 pr_debug("compute_parity, stripe %llu, method %d\n", 1481 (unsigned long long)sh->sector, method); 1482 1483 switch(method) { 1484 case READ_MODIFY_WRITE: 1485 BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */ 1486 case RECONSTRUCT_WRITE: 1487 for (i= disks; i-- ;) 1488 if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) { 1489 chosen = sh->dev[i].towrite; 1490 sh->dev[i].towrite = NULL; 1491 1492 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 1493 wake_up(&conf->wait_for_overlap); 1494 1495 BUG_ON(sh->dev[i].written); 1496 sh->dev[i].written = chosen; 1497 } 1498 break; 1499 case CHECK_PARITY: 1500 BUG(); /* Not implemented yet */ 1501 } 1502 1503 for (i = disks; i--;) 1504 if (sh->dev[i].written) { 1505 sector_t sector = sh->dev[i].sector; 1506 struct bio *wbi = sh->dev[i].written; 1507 while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) { 1508 copy_data(1, wbi, sh->dev[i].page, sector); 1509 wbi = r5_next_bio(wbi, sector); 1510 } 1511 1512 set_bit(R5_LOCKED, &sh->dev[i].flags); 1513 set_bit(R5_UPTODATE, &sh->dev[i].flags); 1514 } 1515 1516 // switch(method) { 1517 // case RECONSTRUCT_WRITE: 1518 // case CHECK_PARITY: 1519 // case UPDATE_PARITY: 1520 /* Note that unlike RAID-5, the ordering of the disks matters greatly. */ 1521 /* FIX: Is this ordering of drives even remotely optimal? */ 1522 count = 0; 1523 i = d0_idx; 1524 do { 1525 ptrs[count++] = page_address(sh->dev[i].page); 1526 if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags)) 1527 printk("block %d/%d not uptodate on parity calc\n", i,count); 1528 i = raid6_next_disk(i, disks); 1529 } while ( i != d0_idx ); 1530 // break; 1531 // } 1532 1533 raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs); 1534 1535 switch(method) { 1536 case RECONSTRUCT_WRITE: 1537 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 1538 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags); 1539 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); 1540 set_bit(R5_LOCKED, &sh->dev[qd_idx].flags); 1541 break; 1542 case UPDATE_PARITY: 1543 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 1544 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags); 1545 break; 1546 } 1547 } 1548 1549 1550 /* Compute one missing block */ 1551 static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero) 1552 { 1553 int i, count, disks = sh->disks; 1554 void *ptr[MAX_XOR_BLOCKS], *dest, *p; 1555 int pd_idx = sh->pd_idx; 1556 int qd_idx = raid6_next_disk(pd_idx, disks); 1557 1558 pr_debug("compute_block_1, stripe %llu, idx %d\n", 1559 (unsigned long long)sh->sector, dd_idx); 1560 1561 if ( dd_idx == qd_idx ) { 1562 /* We're actually computing the Q drive */ 1563 compute_parity6(sh, UPDATE_PARITY); 1564 } else { 1565 dest = page_address(sh->dev[dd_idx].page); 1566 if (!nozero) memset(dest, 0, STRIPE_SIZE); 1567 count = 0; 1568 for (i = disks ; i--; ) { 1569 if (i == dd_idx || i == qd_idx) 1570 continue; 1571 p = page_address(sh->dev[i].page); 1572 if (test_bit(R5_UPTODATE, &sh->dev[i].flags)) 1573 ptr[count++] = p; 1574 else 1575 printk("compute_block() %d, stripe %llu, %d" 1576 " not present\n", dd_idx, 1577 (unsigned long long)sh->sector, i); 1578 1579 check_xor(); 1580 } 1581 if (count) 1582 xor_blocks(count, STRIPE_SIZE, dest, ptr); 1583 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags); 1584 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags); 1585 } 1586 } 1587 1588 /* Compute two missing blocks */ 1589 static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2) 1590 { 1591 int i, count, disks = sh->disks; 1592 int pd_idx = sh->pd_idx; 1593 int qd_idx = raid6_next_disk(pd_idx, disks); 1594 int d0_idx = raid6_next_disk(qd_idx, disks); 1595 int faila, failb; 1596 1597 /* faila and failb are disk numbers relative to d0_idx */ 1598 /* pd_idx become disks-2 and qd_idx become disks-1 */ 1599 faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx; 1600 failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx; 1601 1602 BUG_ON(faila == failb); 1603 if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; } 1604 1605 pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n", 1606 (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb); 1607 1608 if ( failb == disks-1 ) { 1609 /* Q disk is one of the missing disks */ 1610 if ( faila == disks-2 ) { 1611 /* Missing P+Q, just recompute */ 1612 compute_parity6(sh, UPDATE_PARITY); 1613 return; 1614 } else { 1615 /* We're missing D+Q; recompute D from P */ 1616 compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0); 1617 compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */ 1618 return; 1619 } 1620 } 1621 1622 /* We're missing D+P or D+D; build pointer table */ 1623 { 1624 /**** FIX THIS: This could be very bad if disks is close to 256 ****/ 1625 void *ptrs[disks]; 1626 1627 count = 0; 1628 i = d0_idx; 1629 do { 1630 ptrs[count++] = page_address(sh->dev[i].page); 1631 i = raid6_next_disk(i, disks); 1632 if (i != dd_idx1 && i != dd_idx2 && 1633 !test_bit(R5_UPTODATE, &sh->dev[i].flags)) 1634 printk("compute_2 with missing block %d/%d\n", count, i); 1635 } while ( i != d0_idx ); 1636 1637 if ( failb == disks-2 ) { 1638 /* We're missing D+P. */ 1639 raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs); 1640 } else { 1641 /* We're missing D+D. */ 1642 raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs); 1643 } 1644 1645 /* Both the above update both missing blocks */ 1646 set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags); 1647 set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags); 1648 } 1649 } 1650 1651 static void 1652 schedule_reconstruction5(struct stripe_head *sh, struct stripe_head_state *s, 1653 int rcw, int expand) 1654 { 1655 int i, pd_idx = sh->pd_idx, disks = sh->disks; 1656 1657 if (rcw) { 1658 /* if we are not expanding this is a proper write request, and 1659 * there will be bios with new data to be drained into the 1660 * stripe cache 1661 */ 1662 if (!expand) { 1663 sh->reconstruct_state = reconstruct_state_drain_run; 1664 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 1665 } else 1666 sh->reconstruct_state = reconstruct_state_run; 1667 1668 set_bit(STRIPE_OP_POSTXOR, &s->ops_request); 1669 1670 for (i = disks; i--; ) { 1671 struct r5dev *dev = &sh->dev[i]; 1672 1673 if (dev->towrite) { 1674 set_bit(R5_LOCKED, &dev->flags); 1675 set_bit(R5_Wantdrain, &dev->flags); 1676 if (!expand) 1677 clear_bit(R5_UPTODATE, &dev->flags); 1678 s->locked++; 1679 } 1680 } 1681 if (s->locked + 1 == disks) 1682 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state)) 1683 atomic_inc(&sh->raid_conf->pending_full_writes); 1684 } else { 1685 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) || 1686 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags))); 1687 1688 sh->reconstruct_state = reconstruct_state_prexor_drain_run; 1689 set_bit(STRIPE_OP_PREXOR, &s->ops_request); 1690 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 1691 set_bit(STRIPE_OP_POSTXOR, &s->ops_request); 1692 1693 for (i = disks; i--; ) { 1694 struct r5dev *dev = &sh->dev[i]; 1695 if (i == pd_idx) 1696 continue; 1697 1698 if (dev->towrite && 1699 (test_bit(R5_UPTODATE, &dev->flags) || 1700 test_bit(R5_Wantcompute, &dev->flags))) { 1701 set_bit(R5_Wantdrain, &dev->flags); 1702 set_bit(R5_LOCKED, &dev->flags); 1703 clear_bit(R5_UPTODATE, &dev->flags); 1704 s->locked++; 1705 } 1706 } 1707 } 1708 1709 /* keep the parity disk locked while asynchronous operations 1710 * are in flight 1711 */ 1712 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); 1713 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 1714 s->locked++; 1715 1716 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n", 1717 __func__, (unsigned long long)sh->sector, 1718 s->locked, s->ops_request); 1719 } 1720 1721 /* 1722 * Each stripe/dev can have one or more bion attached. 1723 * toread/towrite point to the first in a chain. 1724 * The bi_next chain must be in order. 1725 */ 1726 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite) 1727 { 1728 struct bio **bip; 1729 raid5_conf_t *conf = sh->raid_conf; 1730 int firstwrite=0; 1731 1732 pr_debug("adding bh b#%llu to stripe s#%llu\n", 1733 (unsigned long long)bi->bi_sector, 1734 (unsigned long long)sh->sector); 1735 1736 1737 spin_lock(&sh->lock); 1738 spin_lock_irq(&conf->device_lock); 1739 if (forwrite) { 1740 bip = &sh->dev[dd_idx].towrite; 1741 if (*bip == NULL && sh->dev[dd_idx].written == NULL) 1742 firstwrite = 1; 1743 } else 1744 bip = &sh->dev[dd_idx].toread; 1745 while (*bip && (*bip)->bi_sector < bi->bi_sector) { 1746 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector) 1747 goto overlap; 1748 bip = & (*bip)->bi_next; 1749 } 1750 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9)) 1751 goto overlap; 1752 1753 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next); 1754 if (*bip) 1755 bi->bi_next = *bip; 1756 *bip = bi; 1757 bi->bi_phys_segments++; 1758 spin_unlock_irq(&conf->device_lock); 1759 spin_unlock(&sh->lock); 1760 1761 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n", 1762 (unsigned long long)bi->bi_sector, 1763 (unsigned long long)sh->sector, dd_idx); 1764 1765 if (conf->mddev->bitmap && firstwrite) { 1766 bitmap_startwrite(conf->mddev->bitmap, sh->sector, 1767 STRIPE_SECTORS, 0); 1768 sh->bm_seq = conf->seq_flush+1; 1769 set_bit(STRIPE_BIT_DELAY, &sh->state); 1770 } 1771 1772 if (forwrite) { 1773 /* check if page is covered */ 1774 sector_t sector = sh->dev[dd_idx].sector; 1775 for (bi=sh->dev[dd_idx].towrite; 1776 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS && 1777 bi && bi->bi_sector <= sector; 1778 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) { 1779 if (bi->bi_sector + (bi->bi_size>>9) >= sector) 1780 sector = bi->bi_sector + (bi->bi_size>>9); 1781 } 1782 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS) 1783 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags); 1784 } 1785 return 1; 1786 1787 overlap: 1788 set_bit(R5_Overlap, &sh->dev[dd_idx].flags); 1789 spin_unlock_irq(&conf->device_lock); 1790 spin_unlock(&sh->lock); 1791 return 0; 1792 } 1793 1794 static void end_reshape(raid5_conf_t *conf); 1795 1796 static int page_is_zero(struct page *p) 1797 { 1798 char *a = page_address(p); 1799 return ((*(u32*)a) == 0 && 1800 memcmp(a, a+4, STRIPE_SIZE-4)==0); 1801 } 1802 1803 static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks) 1804 { 1805 int sectors_per_chunk = conf->chunk_size >> 9; 1806 int pd_idx, dd_idx; 1807 int chunk_offset = sector_div(stripe, sectors_per_chunk); 1808 1809 raid5_compute_sector(stripe * (disks - conf->max_degraded) 1810 *sectors_per_chunk + chunk_offset, 1811 disks, disks - conf->max_degraded, 1812 &dd_idx, &pd_idx, conf); 1813 return pd_idx; 1814 } 1815 1816 static void 1817 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh, 1818 struct stripe_head_state *s, int disks, 1819 struct bio **return_bi) 1820 { 1821 int i; 1822 for (i = disks; i--; ) { 1823 struct bio *bi; 1824 int bitmap_end = 0; 1825 1826 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 1827 mdk_rdev_t *rdev; 1828 rcu_read_lock(); 1829 rdev = rcu_dereference(conf->disks[i].rdev); 1830 if (rdev && test_bit(In_sync, &rdev->flags)) 1831 /* multiple read failures in one stripe */ 1832 md_error(conf->mddev, rdev); 1833 rcu_read_unlock(); 1834 } 1835 spin_lock_irq(&conf->device_lock); 1836 /* fail all writes first */ 1837 bi = sh->dev[i].towrite; 1838 sh->dev[i].towrite = NULL; 1839 if (bi) { 1840 s->to_write--; 1841 bitmap_end = 1; 1842 } 1843 1844 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 1845 wake_up(&conf->wait_for_overlap); 1846 1847 while (bi && bi->bi_sector < 1848 sh->dev[i].sector + STRIPE_SECTORS) { 1849 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector); 1850 clear_bit(BIO_UPTODATE, &bi->bi_flags); 1851 if (!raid5_dec_bi_phys_segments(bi)) { 1852 md_write_end(conf->mddev); 1853 bi->bi_next = *return_bi; 1854 *return_bi = bi; 1855 } 1856 bi = nextbi; 1857 } 1858 /* and fail all 'written' */ 1859 bi = sh->dev[i].written; 1860 sh->dev[i].written = NULL; 1861 if (bi) bitmap_end = 1; 1862 while (bi && bi->bi_sector < 1863 sh->dev[i].sector + STRIPE_SECTORS) { 1864 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector); 1865 clear_bit(BIO_UPTODATE, &bi->bi_flags); 1866 if (!raid5_dec_bi_phys_segments(bi)) { 1867 md_write_end(conf->mddev); 1868 bi->bi_next = *return_bi; 1869 *return_bi = bi; 1870 } 1871 bi = bi2; 1872 } 1873 1874 /* fail any reads if this device is non-operational and 1875 * the data has not reached the cache yet. 1876 */ 1877 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) && 1878 (!test_bit(R5_Insync, &sh->dev[i].flags) || 1879 test_bit(R5_ReadError, &sh->dev[i].flags))) { 1880 bi = sh->dev[i].toread; 1881 sh->dev[i].toread = NULL; 1882 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 1883 wake_up(&conf->wait_for_overlap); 1884 if (bi) s->to_read--; 1885 while (bi && bi->bi_sector < 1886 sh->dev[i].sector + STRIPE_SECTORS) { 1887 struct bio *nextbi = 1888 r5_next_bio(bi, sh->dev[i].sector); 1889 clear_bit(BIO_UPTODATE, &bi->bi_flags); 1890 if (!raid5_dec_bi_phys_segments(bi)) { 1891 bi->bi_next = *return_bi; 1892 *return_bi = bi; 1893 } 1894 bi = nextbi; 1895 } 1896 } 1897 spin_unlock_irq(&conf->device_lock); 1898 if (bitmap_end) 1899 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 1900 STRIPE_SECTORS, 0, 0); 1901 } 1902 1903 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 1904 if (atomic_dec_and_test(&conf->pending_full_writes)) 1905 md_wakeup_thread(conf->mddev->thread); 1906 } 1907 1908 /* fetch_block5 - checks the given member device to see if its data needs 1909 * to be read or computed to satisfy a request. 1910 * 1911 * Returns 1 when no more member devices need to be checked, otherwise returns 1912 * 0 to tell the loop in handle_stripe_fill5 to continue 1913 */ 1914 static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s, 1915 int disk_idx, int disks) 1916 { 1917 struct r5dev *dev = &sh->dev[disk_idx]; 1918 struct r5dev *failed_dev = &sh->dev[s->failed_num]; 1919 1920 /* is the data in this block needed, and can we get it? */ 1921 if (!test_bit(R5_LOCKED, &dev->flags) && 1922 !test_bit(R5_UPTODATE, &dev->flags) && 1923 (dev->toread || 1924 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) || 1925 s->syncing || s->expanding || 1926 (s->failed && 1927 (failed_dev->toread || 1928 (failed_dev->towrite && 1929 !test_bit(R5_OVERWRITE, &failed_dev->flags)))))) { 1930 /* We would like to get this block, possibly by computing it, 1931 * otherwise read it if the backing disk is insync 1932 */ 1933 if ((s->uptodate == disks - 1) && 1934 (s->failed && disk_idx == s->failed_num)) { 1935 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 1936 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 1937 set_bit(R5_Wantcompute, &dev->flags); 1938 sh->ops.target = disk_idx; 1939 s->req_compute = 1; 1940 /* Careful: from this point on 'uptodate' is in the eye 1941 * of raid5_run_ops which services 'compute' operations 1942 * before writes. R5_Wantcompute flags a block that will 1943 * be R5_UPTODATE by the time it is needed for a 1944 * subsequent operation. 1945 */ 1946 s->uptodate++; 1947 return 1; /* uptodate + compute == disks */ 1948 } else if (test_bit(R5_Insync, &dev->flags)) { 1949 set_bit(R5_LOCKED, &dev->flags); 1950 set_bit(R5_Wantread, &dev->flags); 1951 s->locked++; 1952 pr_debug("Reading block %d (sync=%d)\n", disk_idx, 1953 s->syncing); 1954 } 1955 } 1956 1957 return 0; 1958 } 1959 1960 /** 1961 * handle_stripe_fill5 - read or compute data to satisfy pending requests. 1962 */ 1963 static void handle_stripe_fill5(struct stripe_head *sh, 1964 struct stripe_head_state *s, int disks) 1965 { 1966 int i; 1967 1968 /* look for blocks to read/compute, skip this if a compute 1969 * is already in flight, or if the stripe contents are in the 1970 * midst of changing due to a write 1971 */ 1972 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state && 1973 !sh->reconstruct_state) 1974 for (i = disks; i--; ) 1975 if (fetch_block5(sh, s, i, disks)) 1976 break; 1977 set_bit(STRIPE_HANDLE, &sh->state); 1978 } 1979 1980 static void handle_stripe_fill6(struct stripe_head *sh, 1981 struct stripe_head_state *s, struct r6_state *r6s, 1982 int disks) 1983 { 1984 int i; 1985 for (i = disks; i--; ) { 1986 struct r5dev *dev = &sh->dev[i]; 1987 if (!test_bit(R5_LOCKED, &dev->flags) && 1988 !test_bit(R5_UPTODATE, &dev->flags) && 1989 (dev->toread || (dev->towrite && 1990 !test_bit(R5_OVERWRITE, &dev->flags)) || 1991 s->syncing || s->expanding || 1992 (s->failed >= 1 && 1993 (sh->dev[r6s->failed_num[0]].toread || 1994 s->to_write)) || 1995 (s->failed >= 2 && 1996 (sh->dev[r6s->failed_num[1]].toread || 1997 s->to_write)))) { 1998 /* we would like to get this block, possibly 1999 * by computing it, but we might not be able to 2000 */ 2001 if ((s->uptodate == disks - 1) && 2002 (s->failed && (i == r6s->failed_num[0] || 2003 i == r6s->failed_num[1]))) { 2004 pr_debug("Computing stripe %llu block %d\n", 2005 (unsigned long long)sh->sector, i); 2006 compute_block_1(sh, i, 0); 2007 s->uptodate++; 2008 } else if ( s->uptodate == disks-2 && s->failed >= 2 ) { 2009 /* Computing 2-failure is *very* expensive; only 2010 * do it if failed >= 2 2011 */ 2012 int other; 2013 for (other = disks; other--; ) { 2014 if (other == i) 2015 continue; 2016 if (!test_bit(R5_UPTODATE, 2017 &sh->dev[other].flags)) 2018 break; 2019 } 2020 BUG_ON(other < 0); 2021 pr_debug("Computing stripe %llu blocks %d,%d\n", 2022 (unsigned long long)sh->sector, 2023 i, other); 2024 compute_block_2(sh, i, other); 2025 s->uptodate += 2; 2026 } else if (test_bit(R5_Insync, &dev->flags)) { 2027 set_bit(R5_LOCKED, &dev->flags); 2028 set_bit(R5_Wantread, &dev->flags); 2029 s->locked++; 2030 pr_debug("Reading block %d (sync=%d)\n", 2031 i, s->syncing); 2032 } 2033 } 2034 } 2035 set_bit(STRIPE_HANDLE, &sh->state); 2036 } 2037 2038 2039 /* handle_stripe_clean_event 2040 * any written block on an uptodate or failed drive can be returned. 2041 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but 2042 * never LOCKED, so we don't need to test 'failed' directly. 2043 */ 2044 static void handle_stripe_clean_event(raid5_conf_t *conf, 2045 struct stripe_head *sh, int disks, struct bio **return_bi) 2046 { 2047 int i; 2048 struct r5dev *dev; 2049 2050 for (i = disks; i--; ) 2051 if (sh->dev[i].written) { 2052 dev = &sh->dev[i]; 2053 if (!test_bit(R5_LOCKED, &dev->flags) && 2054 test_bit(R5_UPTODATE, &dev->flags)) { 2055 /* We can return any write requests */ 2056 struct bio *wbi, *wbi2; 2057 int bitmap_end = 0; 2058 pr_debug("Return write for disc %d\n", i); 2059 spin_lock_irq(&conf->device_lock); 2060 wbi = dev->written; 2061 dev->written = NULL; 2062 while (wbi && wbi->bi_sector < 2063 dev->sector + STRIPE_SECTORS) { 2064 wbi2 = r5_next_bio(wbi, dev->sector); 2065 if (!raid5_dec_bi_phys_segments(wbi)) { 2066 md_write_end(conf->mddev); 2067 wbi->bi_next = *return_bi; 2068 *return_bi = wbi; 2069 } 2070 wbi = wbi2; 2071 } 2072 if (dev->towrite == NULL) 2073 bitmap_end = 1; 2074 spin_unlock_irq(&conf->device_lock); 2075 if (bitmap_end) 2076 bitmap_endwrite(conf->mddev->bitmap, 2077 sh->sector, 2078 STRIPE_SECTORS, 2079 !test_bit(STRIPE_DEGRADED, &sh->state), 2080 0); 2081 } 2082 } 2083 2084 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 2085 if (atomic_dec_and_test(&conf->pending_full_writes)) 2086 md_wakeup_thread(conf->mddev->thread); 2087 } 2088 2089 static void handle_stripe_dirtying5(raid5_conf_t *conf, 2090 struct stripe_head *sh, struct stripe_head_state *s, int disks) 2091 { 2092 int rmw = 0, rcw = 0, i; 2093 for (i = disks; i--; ) { 2094 /* would I have to read this buffer for read_modify_write */ 2095 struct r5dev *dev = &sh->dev[i]; 2096 if ((dev->towrite || i == sh->pd_idx) && 2097 !test_bit(R5_LOCKED, &dev->flags) && 2098 !(test_bit(R5_UPTODATE, &dev->flags) || 2099 test_bit(R5_Wantcompute, &dev->flags))) { 2100 if (test_bit(R5_Insync, &dev->flags)) 2101 rmw++; 2102 else 2103 rmw += 2*disks; /* cannot read it */ 2104 } 2105 /* Would I have to read this buffer for reconstruct_write */ 2106 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx && 2107 !test_bit(R5_LOCKED, &dev->flags) && 2108 !(test_bit(R5_UPTODATE, &dev->flags) || 2109 test_bit(R5_Wantcompute, &dev->flags))) { 2110 if (test_bit(R5_Insync, &dev->flags)) rcw++; 2111 else 2112 rcw += 2*disks; 2113 } 2114 } 2115 pr_debug("for sector %llu, rmw=%d rcw=%d\n", 2116 (unsigned long long)sh->sector, rmw, rcw); 2117 set_bit(STRIPE_HANDLE, &sh->state); 2118 if (rmw < rcw && rmw > 0) 2119 /* prefer read-modify-write, but need to get some data */ 2120 for (i = disks; i--; ) { 2121 struct r5dev *dev = &sh->dev[i]; 2122 if ((dev->towrite || i == sh->pd_idx) && 2123 !test_bit(R5_LOCKED, &dev->flags) && 2124 !(test_bit(R5_UPTODATE, &dev->flags) || 2125 test_bit(R5_Wantcompute, &dev->flags)) && 2126 test_bit(R5_Insync, &dev->flags)) { 2127 if ( 2128 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { 2129 pr_debug("Read_old block " 2130 "%d for r-m-w\n", i); 2131 set_bit(R5_LOCKED, &dev->flags); 2132 set_bit(R5_Wantread, &dev->flags); 2133 s->locked++; 2134 } else { 2135 set_bit(STRIPE_DELAYED, &sh->state); 2136 set_bit(STRIPE_HANDLE, &sh->state); 2137 } 2138 } 2139 } 2140 if (rcw <= rmw && rcw > 0) 2141 /* want reconstruct write, but need to get some data */ 2142 for (i = disks; i--; ) { 2143 struct r5dev *dev = &sh->dev[i]; 2144 if (!test_bit(R5_OVERWRITE, &dev->flags) && 2145 i != sh->pd_idx && 2146 !test_bit(R5_LOCKED, &dev->flags) && 2147 !(test_bit(R5_UPTODATE, &dev->flags) || 2148 test_bit(R5_Wantcompute, &dev->flags)) && 2149 test_bit(R5_Insync, &dev->flags)) { 2150 if ( 2151 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { 2152 pr_debug("Read_old block " 2153 "%d for Reconstruct\n", i); 2154 set_bit(R5_LOCKED, &dev->flags); 2155 set_bit(R5_Wantread, &dev->flags); 2156 s->locked++; 2157 } else { 2158 set_bit(STRIPE_DELAYED, &sh->state); 2159 set_bit(STRIPE_HANDLE, &sh->state); 2160 } 2161 } 2162 } 2163 /* now if nothing is locked, and if we have enough data, 2164 * we can start a write request 2165 */ 2166 /* since handle_stripe can be called at any time we need to handle the 2167 * case where a compute block operation has been submitted and then a 2168 * subsequent call wants to start a write request. raid5_run_ops only 2169 * handles the case where compute block and postxor are requested 2170 * simultaneously. If this is not the case then new writes need to be 2171 * held off until the compute completes. 2172 */ 2173 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) && 2174 (s->locked == 0 && (rcw == 0 || rmw == 0) && 2175 !test_bit(STRIPE_BIT_DELAY, &sh->state))) 2176 schedule_reconstruction5(sh, s, rcw == 0, 0); 2177 } 2178 2179 static void handle_stripe_dirtying6(raid5_conf_t *conf, 2180 struct stripe_head *sh, struct stripe_head_state *s, 2181 struct r6_state *r6s, int disks) 2182 { 2183 int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i; 2184 int qd_idx = r6s->qd_idx; 2185 for (i = disks; i--; ) { 2186 struct r5dev *dev = &sh->dev[i]; 2187 /* Would I have to read this buffer for reconstruct_write */ 2188 if (!test_bit(R5_OVERWRITE, &dev->flags) 2189 && i != pd_idx && i != qd_idx 2190 && (!test_bit(R5_LOCKED, &dev->flags) 2191 ) && 2192 !test_bit(R5_UPTODATE, &dev->flags)) { 2193 if (test_bit(R5_Insync, &dev->flags)) rcw++; 2194 else { 2195 pr_debug("raid6: must_compute: " 2196 "disk %d flags=%#lx\n", i, dev->flags); 2197 must_compute++; 2198 } 2199 } 2200 } 2201 pr_debug("for sector %llu, rcw=%d, must_compute=%d\n", 2202 (unsigned long long)sh->sector, rcw, must_compute); 2203 set_bit(STRIPE_HANDLE, &sh->state); 2204 2205 if (rcw > 0) 2206 /* want reconstruct write, but need to get some data */ 2207 for (i = disks; i--; ) { 2208 struct r5dev *dev = &sh->dev[i]; 2209 if (!test_bit(R5_OVERWRITE, &dev->flags) 2210 && !(s->failed == 0 && (i == pd_idx || i == qd_idx)) 2211 && !test_bit(R5_LOCKED, &dev->flags) && 2212 !test_bit(R5_UPTODATE, &dev->flags) && 2213 test_bit(R5_Insync, &dev->flags)) { 2214 if ( 2215 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { 2216 pr_debug("Read_old stripe %llu " 2217 "block %d for Reconstruct\n", 2218 (unsigned long long)sh->sector, i); 2219 set_bit(R5_LOCKED, &dev->flags); 2220 set_bit(R5_Wantread, &dev->flags); 2221 s->locked++; 2222 } else { 2223 pr_debug("Request delayed stripe %llu " 2224 "block %d for Reconstruct\n", 2225 (unsigned long long)sh->sector, i); 2226 set_bit(STRIPE_DELAYED, &sh->state); 2227 set_bit(STRIPE_HANDLE, &sh->state); 2228 } 2229 } 2230 } 2231 /* now if nothing is locked, and if we have enough data, we can start a 2232 * write request 2233 */ 2234 if (s->locked == 0 && rcw == 0 && 2235 !test_bit(STRIPE_BIT_DELAY, &sh->state)) { 2236 if (must_compute > 0) { 2237 /* We have failed blocks and need to compute them */ 2238 switch (s->failed) { 2239 case 0: 2240 BUG(); 2241 case 1: 2242 compute_block_1(sh, r6s->failed_num[0], 0); 2243 break; 2244 case 2: 2245 compute_block_2(sh, r6s->failed_num[0], 2246 r6s->failed_num[1]); 2247 break; 2248 default: /* This request should have been failed? */ 2249 BUG(); 2250 } 2251 } 2252 2253 pr_debug("Computing parity for stripe %llu\n", 2254 (unsigned long long)sh->sector); 2255 compute_parity6(sh, RECONSTRUCT_WRITE); 2256 /* now every locked buffer is ready to be written */ 2257 for (i = disks; i--; ) 2258 if (test_bit(R5_LOCKED, &sh->dev[i].flags)) { 2259 pr_debug("Writing stripe %llu block %d\n", 2260 (unsigned long long)sh->sector, i); 2261 s->locked++; 2262 set_bit(R5_Wantwrite, &sh->dev[i].flags); 2263 } 2264 if (s->locked == disks) 2265 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state)) 2266 atomic_inc(&conf->pending_full_writes); 2267 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */ 2268 set_bit(STRIPE_INSYNC, &sh->state); 2269 2270 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { 2271 atomic_dec(&conf->preread_active_stripes); 2272 if (atomic_read(&conf->preread_active_stripes) < 2273 IO_THRESHOLD) 2274 md_wakeup_thread(conf->mddev->thread); 2275 } 2276 } 2277 } 2278 2279 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh, 2280 struct stripe_head_state *s, int disks) 2281 { 2282 struct r5dev *dev = NULL; 2283 2284 set_bit(STRIPE_HANDLE, &sh->state); 2285 2286 switch (sh->check_state) { 2287 case check_state_idle: 2288 /* start a new check operation if there are no failures */ 2289 if (s->failed == 0) { 2290 BUG_ON(s->uptodate != disks); 2291 sh->check_state = check_state_run; 2292 set_bit(STRIPE_OP_CHECK, &s->ops_request); 2293 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 2294 s->uptodate--; 2295 break; 2296 } 2297 dev = &sh->dev[s->failed_num]; 2298 /* fall through */ 2299 case check_state_compute_result: 2300 sh->check_state = check_state_idle; 2301 if (!dev) 2302 dev = &sh->dev[sh->pd_idx]; 2303 2304 /* check that a write has not made the stripe insync */ 2305 if (test_bit(STRIPE_INSYNC, &sh->state)) 2306 break; 2307 2308 /* either failed parity check, or recovery is happening */ 2309 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags)); 2310 BUG_ON(s->uptodate != disks); 2311 2312 set_bit(R5_LOCKED, &dev->flags); 2313 s->locked++; 2314 set_bit(R5_Wantwrite, &dev->flags); 2315 2316 clear_bit(STRIPE_DEGRADED, &sh->state); 2317 set_bit(STRIPE_INSYNC, &sh->state); 2318 break; 2319 case check_state_run: 2320 break; /* we will be called again upon completion */ 2321 case check_state_check_result: 2322 sh->check_state = check_state_idle; 2323 2324 /* if a failure occurred during the check operation, leave 2325 * STRIPE_INSYNC not set and let the stripe be handled again 2326 */ 2327 if (s->failed) 2328 break; 2329 2330 /* handle a successful check operation, if parity is correct 2331 * we are done. Otherwise update the mismatch count and repair 2332 * parity if !MD_RECOVERY_CHECK 2333 */ 2334 if (sh->ops.zero_sum_result == 0) 2335 /* parity is correct (on disc, 2336 * not in buffer any more) 2337 */ 2338 set_bit(STRIPE_INSYNC, &sh->state); 2339 else { 2340 conf->mddev->resync_mismatches += STRIPE_SECTORS; 2341 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) 2342 /* don't try to repair!! */ 2343 set_bit(STRIPE_INSYNC, &sh->state); 2344 else { 2345 sh->check_state = check_state_compute_run; 2346 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 2347 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 2348 set_bit(R5_Wantcompute, 2349 &sh->dev[sh->pd_idx].flags); 2350 sh->ops.target = sh->pd_idx; 2351 s->uptodate++; 2352 } 2353 } 2354 break; 2355 case check_state_compute_run: 2356 break; 2357 default: 2358 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n", 2359 __func__, sh->check_state, 2360 (unsigned long long) sh->sector); 2361 BUG(); 2362 } 2363 } 2364 2365 2366 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh, 2367 struct stripe_head_state *s, 2368 struct r6_state *r6s, struct page *tmp_page, 2369 int disks) 2370 { 2371 int update_p = 0, update_q = 0; 2372 struct r5dev *dev; 2373 int pd_idx = sh->pd_idx; 2374 int qd_idx = r6s->qd_idx; 2375 2376 set_bit(STRIPE_HANDLE, &sh->state); 2377 2378 BUG_ON(s->failed > 2); 2379 BUG_ON(s->uptodate < disks); 2380 /* Want to check and possibly repair P and Q. 2381 * However there could be one 'failed' device, in which 2382 * case we can only check one of them, possibly using the 2383 * other to generate missing data 2384 */ 2385 2386 /* If !tmp_page, we cannot do the calculations, 2387 * but as we have set STRIPE_HANDLE, we will soon be called 2388 * by stripe_handle with a tmp_page - just wait until then. 2389 */ 2390 if (tmp_page) { 2391 if (s->failed == r6s->q_failed) { 2392 /* The only possible failed device holds 'Q', so it 2393 * makes sense to check P (If anything else were failed, 2394 * we would have used P to recreate it). 2395 */ 2396 compute_block_1(sh, pd_idx, 1); 2397 if (!page_is_zero(sh->dev[pd_idx].page)) { 2398 compute_block_1(sh, pd_idx, 0); 2399 update_p = 1; 2400 } 2401 } 2402 if (!r6s->q_failed && s->failed < 2) { 2403 /* q is not failed, and we didn't use it to generate 2404 * anything, so it makes sense to check it 2405 */ 2406 memcpy(page_address(tmp_page), 2407 page_address(sh->dev[qd_idx].page), 2408 STRIPE_SIZE); 2409 compute_parity6(sh, UPDATE_PARITY); 2410 if (memcmp(page_address(tmp_page), 2411 page_address(sh->dev[qd_idx].page), 2412 STRIPE_SIZE) != 0) { 2413 clear_bit(STRIPE_INSYNC, &sh->state); 2414 update_q = 1; 2415 } 2416 } 2417 if (update_p || update_q) { 2418 conf->mddev->resync_mismatches += STRIPE_SECTORS; 2419 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) 2420 /* don't try to repair!! */ 2421 update_p = update_q = 0; 2422 } 2423 2424 /* now write out any block on a failed drive, 2425 * or P or Q if they need it 2426 */ 2427 2428 if (s->failed == 2) { 2429 dev = &sh->dev[r6s->failed_num[1]]; 2430 s->locked++; 2431 set_bit(R5_LOCKED, &dev->flags); 2432 set_bit(R5_Wantwrite, &dev->flags); 2433 } 2434 if (s->failed >= 1) { 2435 dev = &sh->dev[r6s->failed_num[0]]; 2436 s->locked++; 2437 set_bit(R5_LOCKED, &dev->flags); 2438 set_bit(R5_Wantwrite, &dev->flags); 2439 } 2440 2441 if (update_p) { 2442 dev = &sh->dev[pd_idx]; 2443 s->locked++; 2444 set_bit(R5_LOCKED, &dev->flags); 2445 set_bit(R5_Wantwrite, &dev->flags); 2446 } 2447 if (update_q) { 2448 dev = &sh->dev[qd_idx]; 2449 s->locked++; 2450 set_bit(R5_LOCKED, &dev->flags); 2451 set_bit(R5_Wantwrite, &dev->flags); 2452 } 2453 clear_bit(STRIPE_DEGRADED, &sh->state); 2454 2455 set_bit(STRIPE_INSYNC, &sh->state); 2456 } 2457 } 2458 2459 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh, 2460 struct r6_state *r6s) 2461 { 2462 int i; 2463 2464 /* We have read all the blocks in this stripe and now we need to 2465 * copy some of them into a target stripe for expand. 2466 */ 2467 struct dma_async_tx_descriptor *tx = NULL; 2468 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state); 2469 for (i = 0; i < sh->disks; i++) 2470 if (i != sh->pd_idx && (!r6s || i != r6s->qd_idx)) { 2471 int dd_idx, pd_idx, j; 2472 struct stripe_head *sh2; 2473 2474 sector_t bn = compute_blocknr(sh, i); 2475 sector_t s = raid5_compute_sector(bn, conf->raid_disks, 2476 conf->raid_disks - 2477 conf->max_degraded, &dd_idx, 2478 &pd_idx, conf); 2479 sh2 = get_active_stripe(conf, s, conf->raid_disks, 2480 pd_idx, 1); 2481 if (sh2 == NULL) 2482 /* so far only the early blocks of this stripe 2483 * have been requested. When later blocks 2484 * get requested, we will try again 2485 */ 2486 continue; 2487 if (!test_bit(STRIPE_EXPANDING, &sh2->state) || 2488 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) { 2489 /* must have already done this block */ 2490 release_stripe(sh2); 2491 continue; 2492 } 2493 2494 /* place all the copies on one channel */ 2495 tx = async_memcpy(sh2->dev[dd_idx].page, 2496 sh->dev[i].page, 0, 0, STRIPE_SIZE, 2497 ASYNC_TX_DEP_ACK, tx, NULL, NULL); 2498 2499 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags); 2500 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags); 2501 for (j = 0; j < conf->raid_disks; j++) 2502 if (j != sh2->pd_idx && 2503 (!r6s || j != raid6_next_disk(sh2->pd_idx, 2504 sh2->disks)) && 2505 !test_bit(R5_Expanded, &sh2->dev[j].flags)) 2506 break; 2507 if (j == conf->raid_disks) { 2508 set_bit(STRIPE_EXPAND_READY, &sh2->state); 2509 set_bit(STRIPE_HANDLE, &sh2->state); 2510 } 2511 release_stripe(sh2); 2512 2513 } 2514 /* done submitting copies, wait for them to complete */ 2515 if (tx) { 2516 async_tx_ack(tx); 2517 dma_wait_for_async_tx(tx); 2518 } 2519 } 2520 2521 2522 /* 2523 * handle_stripe - do things to a stripe. 2524 * 2525 * We lock the stripe and then examine the state of various bits 2526 * to see what needs to be done. 2527 * Possible results: 2528 * return some read request which now have data 2529 * return some write requests which are safely on disc 2530 * schedule a read on some buffers 2531 * schedule a write of some buffers 2532 * return confirmation of parity correctness 2533 * 2534 * buffers are taken off read_list or write_list, and bh_cache buffers 2535 * get BH_Lock set before the stripe lock is released. 2536 * 2537 */ 2538 2539 static bool handle_stripe5(struct stripe_head *sh) 2540 { 2541 raid5_conf_t *conf = sh->raid_conf; 2542 int disks = sh->disks, i; 2543 struct bio *return_bi = NULL; 2544 struct stripe_head_state s; 2545 struct r5dev *dev; 2546 mdk_rdev_t *blocked_rdev = NULL; 2547 int prexor; 2548 2549 memset(&s, 0, sizeof(s)); 2550 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d " 2551 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state, 2552 atomic_read(&sh->count), sh->pd_idx, sh->check_state, 2553 sh->reconstruct_state); 2554 2555 spin_lock(&sh->lock); 2556 clear_bit(STRIPE_HANDLE, &sh->state); 2557 clear_bit(STRIPE_DELAYED, &sh->state); 2558 2559 s.syncing = test_bit(STRIPE_SYNCING, &sh->state); 2560 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state); 2561 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state); 2562 2563 /* Now to look around and see what can be done */ 2564 rcu_read_lock(); 2565 for (i=disks; i--; ) { 2566 mdk_rdev_t *rdev; 2567 struct r5dev *dev = &sh->dev[i]; 2568 clear_bit(R5_Insync, &dev->flags); 2569 2570 pr_debug("check %d: state 0x%lx toread %p read %p write %p " 2571 "written %p\n", i, dev->flags, dev->toread, dev->read, 2572 dev->towrite, dev->written); 2573 2574 /* maybe we can request a biofill operation 2575 * 2576 * new wantfill requests are only permitted while 2577 * ops_complete_biofill is guaranteed to be inactive 2578 */ 2579 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread && 2580 !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) 2581 set_bit(R5_Wantfill, &dev->flags); 2582 2583 /* now count some things */ 2584 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++; 2585 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++; 2586 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++; 2587 2588 if (test_bit(R5_Wantfill, &dev->flags)) 2589 s.to_fill++; 2590 else if (dev->toread) 2591 s.to_read++; 2592 if (dev->towrite) { 2593 s.to_write++; 2594 if (!test_bit(R5_OVERWRITE, &dev->flags)) 2595 s.non_overwrite++; 2596 } 2597 if (dev->written) 2598 s.written++; 2599 rdev = rcu_dereference(conf->disks[i].rdev); 2600 if (blocked_rdev == NULL && 2601 rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 2602 blocked_rdev = rdev; 2603 atomic_inc(&rdev->nr_pending); 2604 } 2605 if (!rdev || !test_bit(In_sync, &rdev->flags)) { 2606 /* The ReadError flag will just be confusing now */ 2607 clear_bit(R5_ReadError, &dev->flags); 2608 clear_bit(R5_ReWrite, &dev->flags); 2609 } 2610 if (!rdev || !test_bit(In_sync, &rdev->flags) 2611 || test_bit(R5_ReadError, &dev->flags)) { 2612 s.failed++; 2613 s.failed_num = i; 2614 } else 2615 set_bit(R5_Insync, &dev->flags); 2616 } 2617 rcu_read_unlock(); 2618 2619 if (unlikely(blocked_rdev)) { 2620 if (s.syncing || s.expanding || s.expanded || 2621 s.to_write || s.written) { 2622 set_bit(STRIPE_HANDLE, &sh->state); 2623 goto unlock; 2624 } 2625 /* There is nothing for the blocked_rdev to block */ 2626 rdev_dec_pending(blocked_rdev, conf->mddev); 2627 blocked_rdev = NULL; 2628 } 2629 2630 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) { 2631 set_bit(STRIPE_OP_BIOFILL, &s.ops_request); 2632 set_bit(STRIPE_BIOFILL_RUN, &sh->state); 2633 } 2634 2635 pr_debug("locked=%d uptodate=%d to_read=%d" 2636 " to_write=%d failed=%d failed_num=%d\n", 2637 s.locked, s.uptodate, s.to_read, s.to_write, 2638 s.failed, s.failed_num); 2639 /* check if the array has lost two devices and, if so, some requests might 2640 * need to be failed 2641 */ 2642 if (s.failed > 1 && s.to_read+s.to_write+s.written) 2643 handle_failed_stripe(conf, sh, &s, disks, &return_bi); 2644 if (s.failed > 1 && s.syncing) { 2645 md_done_sync(conf->mddev, STRIPE_SECTORS,0); 2646 clear_bit(STRIPE_SYNCING, &sh->state); 2647 s.syncing = 0; 2648 } 2649 2650 /* might be able to return some write requests if the parity block 2651 * is safe, or on a failed drive 2652 */ 2653 dev = &sh->dev[sh->pd_idx]; 2654 if ( s.written && 2655 ((test_bit(R5_Insync, &dev->flags) && 2656 !test_bit(R5_LOCKED, &dev->flags) && 2657 test_bit(R5_UPTODATE, &dev->flags)) || 2658 (s.failed == 1 && s.failed_num == sh->pd_idx))) 2659 handle_stripe_clean_event(conf, sh, disks, &return_bi); 2660 2661 /* Now we might consider reading some blocks, either to check/generate 2662 * parity, or to satisfy requests 2663 * or to load a block that is being partially written. 2664 */ 2665 if (s.to_read || s.non_overwrite || 2666 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding) 2667 handle_stripe_fill5(sh, &s, disks); 2668 2669 /* Now we check to see if any write operations have recently 2670 * completed 2671 */ 2672 prexor = 0; 2673 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result) 2674 prexor = 1; 2675 if (sh->reconstruct_state == reconstruct_state_drain_result || 2676 sh->reconstruct_state == reconstruct_state_prexor_drain_result) { 2677 sh->reconstruct_state = reconstruct_state_idle; 2678 2679 /* All the 'written' buffers and the parity block are ready to 2680 * be written back to disk 2681 */ 2682 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags)); 2683 for (i = disks; i--; ) { 2684 dev = &sh->dev[i]; 2685 if (test_bit(R5_LOCKED, &dev->flags) && 2686 (i == sh->pd_idx || dev->written)) { 2687 pr_debug("Writing block %d\n", i); 2688 set_bit(R5_Wantwrite, &dev->flags); 2689 if (prexor) 2690 continue; 2691 if (!test_bit(R5_Insync, &dev->flags) || 2692 (i == sh->pd_idx && s.failed == 0)) 2693 set_bit(STRIPE_INSYNC, &sh->state); 2694 } 2695 } 2696 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { 2697 atomic_dec(&conf->preread_active_stripes); 2698 if (atomic_read(&conf->preread_active_stripes) < 2699 IO_THRESHOLD) 2700 md_wakeup_thread(conf->mddev->thread); 2701 } 2702 } 2703 2704 /* Now to consider new write requests and what else, if anything 2705 * should be read. We do not handle new writes when: 2706 * 1/ A 'write' operation (copy+xor) is already in flight. 2707 * 2/ A 'check' operation is in flight, as it may clobber the parity 2708 * block. 2709 */ 2710 if (s.to_write && !sh->reconstruct_state && !sh->check_state) 2711 handle_stripe_dirtying5(conf, sh, &s, disks); 2712 2713 /* maybe we need to check and possibly fix the parity for this stripe 2714 * Any reads will already have been scheduled, so we just see if enough 2715 * data is available. The parity check is held off while parity 2716 * dependent operations are in flight. 2717 */ 2718 if (sh->check_state || 2719 (s.syncing && s.locked == 0 && 2720 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 2721 !test_bit(STRIPE_INSYNC, &sh->state))) 2722 handle_parity_checks5(conf, sh, &s, disks); 2723 2724 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) { 2725 md_done_sync(conf->mddev, STRIPE_SECTORS,1); 2726 clear_bit(STRIPE_SYNCING, &sh->state); 2727 } 2728 2729 /* If the failed drive is just a ReadError, then we might need to progress 2730 * the repair/check process 2731 */ 2732 if (s.failed == 1 && !conf->mddev->ro && 2733 test_bit(R5_ReadError, &sh->dev[s.failed_num].flags) 2734 && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags) 2735 && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags) 2736 ) { 2737 dev = &sh->dev[s.failed_num]; 2738 if (!test_bit(R5_ReWrite, &dev->flags)) { 2739 set_bit(R5_Wantwrite, &dev->flags); 2740 set_bit(R5_ReWrite, &dev->flags); 2741 set_bit(R5_LOCKED, &dev->flags); 2742 s.locked++; 2743 } else { 2744 /* let's read it back */ 2745 set_bit(R5_Wantread, &dev->flags); 2746 set_bit(R5_LOCKED, &dev->flags); 2747 s.locked++; 2748 } 2749 } 2750 2751 /* Finish reconstruct operations initiated by the expansion process */ 2752 if (sh->reconstruct_state == reconstruct_state_result) { 2753 sh->reconstruct_state = reconstruct_state_idle; 2754 clear_bit(STRIPE_EXPANDING, &sh->state); 2755 for (i = conf->raid_disks; i--; ) { 2756 set_bit(R5_Wantwrite, &sh->dev[i].flags); 2757 set_bit(R5_LOCKED, &sh->dev[i].flags); 2758 s.locked++; 2759 } 2760 } 2761 2762 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) && 2763 !sh->reconstruct_state) { 2764 /* Need to write out all blocks after computing parity */ 2765 sh->disks = conf->raid_disks; 2766 sh->pd_idx = stripe_to_pdidx(sh->sector, conf, 2767 conf->raid_disks); 2768 schedule_reconstruction5(sh, &s, 1, 1); 2769 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) { 2770 clear_bit(STRIPE_EXPAND_READY, &sh->state); 2771 atomic_dec(&conf->reshape_stripes); 2772 wake_up(&conf->wait_for_overlap); 2773 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 2774 } 2775 2776 if (s.expanding && s.locked == 0 && 2777 !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) 2778 handle_stripe_expansion(conf, sh, NULL); 2779 2780 unlock: 2781 spin_unlock(&sh->lock); 2782 2783 /* wait for this device to become unblocked */ 2784 if (unlikely(blocked_rdev)) 2785 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev); 2786 2787 if (s.ops_request) 2788 raid5_run_ops(sh, s.ops_request); 2789 2790 ops_run_io(sh, &s); 2791 2792 return_io(return_bi); 2793 2794 return blocked_rdev == NULL; 2795 } 2796 2797 static bool handle_stripe6(struct stripe_head *sh, struct page *tmp_page) 2798 { 2799 raid6_conf_t *conf = sh->raid_conf; 2800 int disks = sh->disks; 2801 struct bio *return_bi = NULL; 2802 int i, pd_idx = sh->pd_idx; 2803 struct stripe_head_state s; 2804 struct r6_state r6s; 2805 struct r5dev *dev, *pdev, *qdev; 2806 mdk_rdev_t *blocked_rdev = NULL; 2807 2808 r6s.qd_idx = raid6_next_disk(pd_idx, disks); 2809 pr_debug("handling stripe %llu, state=%#lx cnt=%d, " 2810 "pd_idx=%d, qd_idx=%d\n", 2811 (unsigned long long)sh->sector, sh->state, 2812 atomic_read(&sh->count), pd_idx, r6s.qd_idx); 2813 memset(&s, 0, sizeof(s)); 2814 2815 spin_lock(&sh->lock); 2816 clear_bit(STRIPE_HANDLE, &sh->state); 2817 clear_bit(STRIPE_DELAYED, &sh->state); 2818 2819 s.syncing = test_bit(STRIPE_SYNCING, &sh->state); 2820 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state); 2821 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state); 2822 /* Now to look around and see what can be done */ 2823 2824 rcu_read_lock(); 2825 for (i=disks; i--; ) { 2826 mdk_rdev_t *rdev; 2827 dev = &sh->dev[i]; 2828 clear_bit(R5_Insync, &dev->flags); 2829 2830 pr_debug("check %d: state 0x%lx read %p write %p written %p\n", 2831 i, dev->flags, dev->toread, dev->towrite, dev->written); 2832 /* maybe we can reply to a read */ 2833 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) { 2834 struct bio *rbi, *rbi2; 2835 pr_debug("Return read for disc %d\n", i); 2836 spin_lock_irq(&conf->device_lock); 2837 rbi = dev->toread; 2838 dev->toread = NULL; 2839 if (test_and_clear_bit(R5_Overlap, &dev->flags)) 2840 wake_up(&conf->wait_for_overlap); 2841 spin_unlock_irq(&conf->device_lock); 2842 while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) { 2843 copy_data(0, rbi, dev->page, dev->sector); 2844 rbi2 = r5_next_bio(rbi, dev->sector); 2845 spin_lock_irq(&conf->device_lock); 2846 if (!raid5_dec_bi_phys_segments(rbi)) { 2847 rbi->bi_next = return_bi; 2848 return_bi = rbi; 2849 } 2850 spin_unlock_irq(&conf->device_lock); 2851 rbi = rbi2; 2852 } 2853 } 2854 2855 /* now count some things */ 2856 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++; 2857 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++; 2858 2859 2860 if (dev->toread) 2861 s.to_read++; 2862 if (dev->towrite) { 2863 s.to_write++; 2864 if (!test_bit(R5_OVERWRITE, &dev->flags)) 2865 s.non_overwrite++; 2866 } 2867 if (dev->written) 2868 s.written++; 2869 rdev = rcu_dereference(conf->disks[i].rdev); 2870 if (blocked_rdev == NULL && 2871 rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 2872 blocked_rdev = rdev; 2873 atomic_inc(&rdev->nr_pending); 2874 } 2875 if (!rdev || !test_bit(In_sync, &rdev->flags)) { 2876 /* The ReadError flag will just be confusing now */ 2877 clear_bit(R5_ReadError, &dev->flags); 2878 clear_bit(R5_ReWrite, &dev->flags); 2879 } 2880 if (!rdev || !test_bit(In_sync, &rdev->flags) 2881 || test_bit(R5_ReadError, &dev->flags)) { 2882 if (s.failed < 2) 2883 r6s.failed_num[s.failed] = i; 2884 s.failed++; 2885 } else 2886 set_bit(R5_Insync, &dev->flags); 2887 } 2888 rcu_read_unlock(); 2889 2890 if (unlikely(blocked_rdev)) { 2891 if (s.syncing || s.expanding || s.expanded || 2892 s.to_write || s.written) { 2893 set_bit(STRIPE_HANDLE, &sh->state); 2894 goto unlock; 2895 } 2896 /* There is nothing for the blocked_rdev to block */ 2897 rdev_dec_pending(blocked_rdev, conf->mddev); 2898 blocked_rdev = NULL; 2899 } 2900 2901 pr_debug("locked=%d uptodate=%d to_read=%d" 2902 " to_write=%d failed=%d failed_num=%d,%d\n", 2903 s.locked, s.uptodate, s.to_read, s.to_write, s.failed, 2904 r6s.failed_num[0], r6s.failed_num[1]); 2905 /* check if the array has lost >2 devices and, if so, some requests 2906 * might need to be failed 2907 */ 2908 if (s.failed > 2 && s.to_read+s.to_write+s.written) 2909 handle_failed_stripe(conf, sh, &s, disks, &return_bi); 2910 if (s.failed > 2 && s.syncing) { 2911 md_done_sync(conf->mddev, STRIPE_SECTORS,0); 2912 clear_bit(STRIPE_SYNCING, &sh->state); 2913 s.syncing = 0; 2914 } 2915 2916 /* 2917 * might be able to return some write requests if the parity blocks 2918 * are safe, or on a failed drive 2919 */ 2920 pdev = &sh->dev[pd_idx]; 2921 r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx) 2922 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx); 2923 qdev = &sh->dev[r6s.qd_idx]; 2924 r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == r6s.qd_idx) 2925 || (s.failed >= 2 && r6s.failed_num[1] == r6s.qd_idx); 2926 2927 if ( s.written && 2928 ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags) 2929 && !test_bit(R5_LOCKED, &pdev->flags) 2930 && test_bit(R5_UPTODATE, &pdev->flags)))) && 2931 ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags) 2932 && !test_bit(R5_LOCKED, &qdev->flags) 2933 && test_bit(R5_UPTODATE, &qdev->flags))))) 2934 handle_stripe_clean_event(conf, sh, disks, &return_bi); 2935 2936 /* Now we might consider reading some blocks, either to check/generate 2937 * parity, or to satisfy requests 2938 * or to load a block that is being partially written. 2939 */ 2940 if (s.to_read || s.non_overwrite || (s.to_write && s.failed) || 2941 (s.syncing && (s.uptodate < disks)) || s.expanding) 2942 handle_stripe_fill6(sh, &s, &r6s, disks); 2943 2944 /* now to consider writing and what else, if anything should be read */ 2945 if (s.to_write) 2946 handle_stripe_dirtying6(conf, sh, &s, &r6s, disks); 2947 2948 /* maybe we need to check and possibly fix the parity for this stripe 2949 * Any reads will already have been scheduled, so we just see if enough 2950 * data is available 2951 */ 2952 if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state)) 2953 handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks); 2954 2955 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) { 2956 md_done_sync(conf->mddev, STRIPE_SECTORS,1); 2957 clear_bit(STRIPE_SYNCING, &sh->state); 2958 } 2959 2960 /* If the failed drives are just a ReadError, then we might need 2961 * to progress the repair/check process 2962 */ 2963 if (s.failed <= 2 && !conf->mddev->ro) 2964 for (i = 0; i < s.failed; i++) { 2965 dev = &sh->dev[r6s.failed_num[i]]; 2966 if (test_bit(R5_ReadError, &dev->flags) 2967 && !test_bit(R5_LOCKED, &dev->flags) 2968 && test_bit(R5_UPTODATE, &dev->flags) 2969 ) { 2970 if (!test_bit(R5_ReWrite, &dev->flags)) { 2971 set_bit(R5_Wantwrite, &dev->flags); 2972 set_bit(R5_ReWrite, &dev->flags); 2973 set_bit(R5_LOCKED, &dev->flags); 2974 } else { 2975 /* let's read it back */ 2976 set_bit(R5_Wantread, &dev->flags); 2977 set_bit(R5_LOCKED, &dev->flags); 2978 } 2979 } 2980 } 2981 2982 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) { 2983 /* Need to write out all blocks after computing P&Q */ 2984 sh->disks = conf->raid_disks; 2985 sh->pd_idx = stripe_to_pdidx(sh->sector, conf, 2986 conf->raid_disks); 2987 compute_parity6(sh, RECONSTRUCT_WRITE); 2988 for (i = conf->raid_disks ; i-- ; ) { 2989 set_bit(R5_LOCKED, &sh->dev[i].flags); 2990 s.locked++; 2991 set_bit(R5_Wantwrite, &sh->dev[i].flags); 2992 } 2993 clear_bit(STRIPE_EXPANDING, &sh->state); 2994 } else if (s.expanded) { 2995 clear_bit(STRIPE_EXPAND_READY, &sh->state); 2996 atomic_dec(&conf->reshape_stripes); 2997 wake_up(&conf->wait_for_overlap); 2998 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 2999 } 3000 3001 if (s.expanding && s.locked == 0 && 3002 !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) 3003 handle_stripe_expansion(conf, sh, &r6s); 3004 3005 unlock: 3006 spin_unlock(&sh->lock); 3007 3008 /* wait for this device to become unblocked */ 3009 if (unlikely(blocked_rdev)) 3010 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev); 3011 3012 ops_run_io(sh, &s); 3013 3014 return_io(return_bi); 3015 3016 return blocked_rdev == NULL; 3017 } 3018 3019 /* returns true if the stripe was handled */ 3020 static bool handle_stripe(struct stripe_head *sh, struct page *tmp_page) 3021 { 3022 if (sh->raid_conf->level == 6) 3023 return handle_stripe6(sh, tmp_page); 3024 else 3025 return handle_stripe5(sh); 3026 } 3027 3028 3029 3030 static void raid5_activate_delayed(raid5_conf_t *conf) 3031 { 3032 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) { 3033 while (!list_empty(&conf->delayed_list)) { 3034 struct list_head *l = conf->delayed_list.next; 3035 struct stripe_head *sh; 3036 sh = list_entry(l, struct stripe_head, lru); 3037 list_del_init(l); 3038 clear_bit(STRIPE_DELAYED, &sh->state); 3039 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3040 atomic_inc(&conf->preread_active_stripes); 3041 list_add_tail(&sh->lru, &conf->hold_list); 3042 } 3043 } else 3044 blk_plug_device(conf->mddev->queue); 3045 } 3046 3047 static void activate_bit_delay(raid5_conf_t *conf) 3048 { 3049 /* device_lock is held */ 3050 struct list_head head; 3051 list_add(&head, &conf->bitmap_list); 3052 list_del_init(&conf->bitmap_list); 3053 while (!list_empty(&head)) { 3054 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru); 3055 list_del_init(&sh->lru); 3056 atomic_inc(&sh->count); 3057 __release_stripe(conf, sh); 3058 } 3059 } 3060 3061 static void unplug_slaves(mddev_t *mddev) 3062 { 3063 raid5_conf_t *conf = mddev_to_conf(mddev); 3064 int i; 3065 3066 rcu_read_lock(); 3067 for (i=0; i<mddev->raid_disks; i++) { 3068 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev); 3069 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) { 3070 struct request_queue *r_queue = bdev_get_queue(rdev->bdev); 3071 3072 atomic_inc(&rdev->nr_pending); 3073 rcu_read_unlock(); 3074 3075 blk_unplug(r_queue); 3076 3077 rdev_dec_pending(rdev, mddev); 3078 rcu_read_lock(); 3079 } 3080 } 3081 rcu_read_unlock(); 3082 } 3083 3084 static void raid5_unplug_device(struct request_queue *q) 3085 { 3086 mddev_t *mddev = q->queuedata; 3087 raid5_conf_t *conf = mddev_to_conf(mddev); 3088 unsigned long flags; 3089 3090 spin_lock_irqsave(&conf->device_lock, flags); 3091 3092 if (blk_remove_plug(q)) { 3093 conf->seq_flush++; 3094 raid5_activate_delayed(conf); 3095 } 3096 md_wakeup_thread(mddev->thread); 3097 3098 spin_unlock_irqrestore(&conf->device_lock, flags); 3099 3100 unplug_slaves(mddev); 3101 } 3102 3103 static int raid5_congested(void *data, int bits) 3104 { 3105 mddev_t *mddev = data; 3106 raid5_conf_t *conf = mddev_to_conf(mddev); 3107 3108 /* No difference between reads and writes. Just check 3109 * how busy the stripe_cache is 3110 */ 3111 if (conf->inactive_blocked) 3112 return 1; 3113 if (conf->quiesce) 3114 return 1; 3115 if (list_empty_careful(&conf->inactive_list)) 3116 return 1; 3117 3118 return 0; 3119 } 3120 3121 /* We want read requests to align with chunks where possible, 3122 * but write requests don't need to. 3123 */ 3124 static int raid5_mergeable_bvec(struct request_queue *q, 3125 struct bvec_merge_data *bvm, 3126 struct bio_vec *biovec) 3127 { 3128 mddev_t *mddev = q->queuedata; 3129 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); 3130 int max; 3131 unsigned int chunk_sectors = mddev->chunk_size >> 9; 3132 unsigned int bio_sectors = bvm->bi_size >> 9; 3133 3134 if ((bvm->bi_rw & 1) == WRITE) 3135 return biovec->bv_len; /* always allow writes to be mergeable */ 3136 3137 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9; 3138 if (max < 0) max = 0; 3139 if (max <= biovec->bv_len && bio_sectors == 0) 3140 return biovec->bv_len; 3141 else 3142 return max; 3143 } 3144 3145 3146 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio) 3147 { 3148 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev); 3149 unsigned int chunk_sectors = mddev->chunk_size >> 9; 3150 unsigned int bio_sectors = bio->bi_size >> 9; 3151 3152 return chunk_sectors >= 3153 ((sector & (chunk_sectors - 1)) + bio_sectors); 3154 } 3155 3156 /* 3157 * add bio to the retry LIFO ( in O(1) ... we are in interrupt ) 3158 * later sampled by raid5d. 3159 */ 3160 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf) 3161 { 3162 unsigned long flags; 3163 3164 spin_lock_irqsave(&conf->device_lock, flags); 3165 3166 bi->bi_next = conf->retry_read_aligned_list; 3167 conf->retry_read_aligned_list = bi; 3168 3169 spin_unlock_irqrestore(&conf->device_lock, flags); 3170 md_wakeup_thread(conf->mddev->thread); 3171 } 3172 3173 3174 static struct bio *remove_bio_from_retry(raid5_conf_t *conf) 3175 { 3176 struct bio *bi; 3177 3178 bi = conf->retry_read_aligned; 3179 if (bi) { 3180 conf->retry_read_aligned = NULL; 3181 return bi; 3182 } 3183 bi = conf->retry_read_aligned_list; 3184 if(bi) { 3185 conf->retry_read_aligned_list = bi->bi_next; 3186 bi->bi_next = NULL; 3187 /* 3188 * this sets the active strip count to 1 and the processed 3189 * strip count to zero (upper 8 bits) 3190 */ 3191 bi->bi_phys_segments = 1; /* biased count of active stripes */ 3192 } 3193 3194 return bi; 3195 } 3196 3197 3198 /* 3199 * The "raid5_align_endio" should check if the read succeeded and if it 3200 * did, call bio_endio on the original bio (having bio_put the new bio 3201 * first). 3202 * If the read failed.. 3203 */ 3204 static void raid5_align_endio(struct bio *bi, int error) 3205 { 3206 struct bio* raid_bi = bi->bi_private; 3207 mddev_t *mddev; 3208 raid5_conf_t *conf; 3209 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); 3210 mdk_rdev_t *rdev; 3211 3212 bio_put(bi); 3213 3214 mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata; 3215 conf = mddev_to_conf(mddev); 3216 rdev = (void*)raid_bi->bi_next; 3217 raid_bi->bi_next = NULL; 3218 3219 rdev_dec_pending(rdev, conf->mddev); 3220 3221 if (!error && uptodate) { 3222 bio_endio(raid_bi, 0); 3223 if (atomic_dec_and_test(&conf->active_aligned_reads)) 3224 wake_up(&conf->wait_for_stripe); 3225 return; 3226 } 3227 3228 3229 pr_debug("raid5_align_endio : io error...handing IO for a retry\n"); 3230 3231 add_bio_to_retry(raid_bi, conf); 3232 } 3233 3234 static int bio_fits_rdev(struct bio *bi) 3235 { 3236 struct request_queue *q = bdev_get_queue(bi->bi_bdev); 3237 3238 if ((bi->bi_size>>9) > q->max_sectors) 3239 return 0; 3240 blk_recount_segments(q, bi); 3241 if (bi->bi_phys_segments > q->max_phys_segments) 3242 return 0; 3243 3244 if (q->merge_bvec_fn) 3245 /* it's too hard to apply the merge_bvec_fn at this stage, 3246 * just just give up 3247 */ 3248 return 0; 3249 3250 return 1; 3251 } 3252 3253 3254 static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio) 3255 { 3256 mddev_t *mddev = q->queuedata; 3257 raid5_conf_t *conf = mddev_to_conf(mddev); 3258 const unsigned int raid_disks = conf->raid_disks; 3259 const unsigned int data_disks = raid_disks - conf->max_degraded; 3260 unsigned int dd_idx, pd_idx; 3261 struct bio* align_bi; 3262 mdk_rdev_t *rdev; 3263 3264 if (!in_chunk_boundary(mddev, raid_bio)) { 3265 pr_debug("chunk_aligned_read : non aligned\n"); 3266 return 0; 3267 } 3268 /* 3269 * use bio_clone to make a copy of the bio 3270 */ 3271 align_bi = bio_clone(raid_bio, GFP_NOIO); 3272 if (!align_bi) 3273 return 0; 3274 /* 3275 * set bi_end_io to a new function, and set bi_private to the 3276 * original bio. 3277 */ 3278 align_bi->bi_end_io = raid5_align_endio; 3279 align_bi->bi_private = raid_bio; 3280 /* 3281 * compute position 3282 */ 3283 align_bi->bi_sector = raid5_compute_sector(raid_bio->bi_sector, 3284 raid_disks, 3285 data_disks, 3286 &dd_idx, 3287 &pd_idx, 3288 conf); 3289 3290 rcu_read_lock(); 3291 rdev = rcu_dereference(conf->disks[dd_idx].rdev); 3292 if (rdev && test_bit(In_sync, &rdev->flags)) { 3293 atomic_inc(&rdev->nr_pending); 3294 rcu_read_unlock(); 3295 raid_bio->bi_next = (void*)rdev; 3296 align_bi->bi_bdev = rdev->bdev; 3297 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID); 3298 align_bi->bi_sector += rdev->data_offset; 3299 3300 if (!bio_fits_rdev(align_bi)) { 3301 /* too big in some way */ 3302 bio_put(align_bi); 3303 rdev_dec_pending(rdev, mddev); 3304 return 0; 3305 } 3306 3307 spin_lock_irq(&conf->device_lock); 3308 wait_event_lock_irq(conf->wait_for_stripe, 3309 conf->quiesce == 0, 3310 conf->device_lock, /* nothing */); 3311 atomic_inc(&conf->active_aligned_reads); 3312 spin_unlock_irq(&conf->device_lock); 3313 3314 generic_make_request(align_bi); 3315 return 1; 3316 } else { 3317 rcu_read_unlock(); 3318 bio_put(align_bi); 3319 return 0; 3320 } 3321 } 3322 3323 /* __get_priority_stripe - get the next stripe to process 3324 * 3325 * Full stripe writes are allowed to pass preread active stripes up until 3326 * the bypass_threshold is exceeded. In general the bypass_count 3327 * increments when the handle_list is handled before the hold_list; however, it 3328 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a 3329 * stripe with in flight i/o. The bypass_count will be reset when the 3330 * head of the hold_list has changed, i.e. the head was promoted to the 3331 * handle_list. 3332 */ 3333 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf) 3334 { 3335 struct stripe_head *sh; 3336 3337 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n", 3338 __func__, 3339 list_empty(&conf->handle_list) ? "empty" : "busy", 3340 list_empty(&conf->hold_list) ? "empty" : "busy", 3341 atomic_read(&conf->pending_full_writes), conf->bypass_count); 3342 3343 if (!list_empty(&conf->handle_list)) { 3344 sh = list_entry(conf->handle_list.next, typeof(*sh), lru); 3345 3346 if (list_empty(&conf->hold_list)) 3347 conf->bypass_count = 0; 3348 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) { 3349 if (conf->hold_list.next == conf->last_hold) 3350 conf->bypass_count++; 3351 else { 3352 conf->last_hold = conf->hold_list.next; 3353 conf->bypass_count -= conf->bypass_threshold; 3354 if (conf->bypass_count < 0) 3355 conf->bypass_count = 0; 3356 } 3357 } 3358 } else if (!list_empty(&conf->hold_list) && 3359 ((conf->bypass_threshold && 3360 conf->bypass_count > conf->bypass_threshold) || 3361 atomic_read(&conf->pending_full_writes) == 0)) { 3362 sh = list_entry(conf->hold_list.next, 3363 typeof(*sh), lru); 3364 conf->bypass_count -= conf->bypass_threshold; 3365 if (conf->bypass_count < 0) 3366 conf->bypass_count = 0; 3367 } else 3368 return NULL; 3369 3370 list_del_init(&sh->lru); 3371 atomic_inc(&sh->count); 3372 BUG_ON(atomic_read(&sh->count) != 1); 3373 return sh; 3374 } 3375 3376 static int make_request(struct request_queue *q, struct bio * bi) 3377 { 3378 mddev_t *mddev = q->queuedata; 3379 raid5_conf_t *conf = mddev_to_conf(mddev); 3380 unsigned int dd_idx, pd_idx; 3381 sector_t new_sector; 3382 sector_t logical_sector, last_sector; 3383 struct stripe_head *sh; 3384 const int rw = bio_data_dir(bi); 3385 int cpu, remaining; 3386 3387 if (unlikely(bio_barrier(bi))) { 3388 bio_endio(bi, -EOPNOTSUPP); 3389 return 0; 3390 } 3391 3392 md_write_start(mddev, bi); 3393 3394 cpu = part_stat_lock(); 3395 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]); 3396 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], 3397 bio_sectors(bi)); 3398 part_stat_unlock(); 3399 3400 if (rw == READ && 3401 mddev->reshape_position == MaxSector && 3402 chunk_aligned_read(q,bi)) 3403 return 0; 3404 3405 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1); 3406 last_sector = bi->bi_sector + (bi->bi_size>>9); 3407 bi->bi_next = NULL; 3408 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */ 3409 3410 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) { 3411 DEFINE_WAIT(w); 3412 int disks, data_disks; 3413 3414 retry: 3415 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE); 3416 if (likely(conf->expand_progress == MaxSector)) 3417 disks = conf->raid_disks; 3418 else { 3419 /* spinlock is needed as expand_progress may be 3420 * 64bit on a 32bit platform, and so it might be 3421 * possible to see a half-updated value 3422 * Ofcourse expand_progress could change after 3423 * the lock is dropped, so once we get a reference 3424 * to the stripe that we think it is, we will have 3425 * to check again. 3426 */ 3427 spin_lock_irq(&conf->device_lock); 3428 disks = conf->raid_disks; 3429 if (logical_sector >= conf->expand_progress) 3430 disks = conf->previous_raid_disks; 3431 else { 3432 if (logical_sector >= conf->expand_lo) { 3433 spin_unlock_irq(&conf->device_lock); 3434 schedule(); 3435 goto retry; 3436 } 3437 } 3438 spin_unlock_irq(&conf->device_lock); 3439 } 3440 data_disks = disks - conf->max_degraded; 3441 3442 new_sector = raid5_compute_sector(logical_sector, disks, data_disks, 3443 &dd_idx, &pd_idx, conf); 3444 pr_debug("raid5: make_request, sector %llu logical %llu\n", 3445 (unsigned long long)new_sector, 3446 (unsigned long long)logical_sector); 3447 3448 sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK)); 3449 if (sh) { 3450 if (unlikely(conf->expand_progress != MaxSector)) { 3451 /* expansion might have moved on while waiting for a 3452 * stripe, so we must do the range check again. 3453 * Expansion could still move past after this 3454 * test, but as we are holding a reference to 3455 * 'sh', we know that if that happens, 3456 * STRIPE_EXPANDING will get set and the expansion 3457 * won't proceed until we finish with the stripe. 3458 */ 3459 int must_retry = 0; 3460 spin_lock_irq(&conf->device_lock); 3461 if (logical_sector < conf->expand_progress && 3462 disks == conf->previous_raid_disks) 3463 /* mismatch, need to try again */ 3464 must_retry = 1; 3465 spin_unlock_irq(&conf->device_lock); 3466 if (must_retry) { 3467 release_stripe(sh); 3468 goto retry; 3469 } 3470 } 3471 /* FIXME what if we get a false positive because these 3472 * are being updated. 3473 */ 3474 if (logical_sector >= mddev->suspend_lo && 3475 logical_sector < mddev->suspend_hi) { 3476 release_stripe(sh); 3477 schedule(); 3478 goto retry; 3479 } 3480 3481 if (test_bit(STRIPE_EXPANDING, &sh->state) || 3482 !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) { 3483 /* Stripe is busy expanding or 3484 * add failed due to overlap. Flush everything 3485 * and wait a while 3486 */ 3487 raid5_unplug_device(mddev->queue); 3488 release_stripe(sh); 3489 schedule(); 3490 goto retry; 3491 } 3492 finish_wait(&conf->wait_for_overlap, &w); 3493 set_bit(STRIPE_HANDLE, &sh->state); 3494 clear_bit(STRIPE_DELAYED, &sh->state); 3495 release_stripe(sh); 3496 } else { 3497 /* cannot get stripe for read-ahead, just give-up */ 3498 clear_bit(BIO_UPTODATE, &bi->bi_flags); 3499 finish_wait(&conf->wait_for_overlap, &w); 3500 break; 3501 } 3502 3503 } 3504 spin_lock_irq(&conf->device_lock); 3505 remaining = raid5_dec_bi_phys_segments(bi); 3506 spin_unlock_irq(&conf->device_lock); 3507 if (remaining == 0) { 3508 3509 if ( rw == WRITE ) 3510 md_write_end(mddev); 3511 3512 bio_endio(bi, 0); 3513 } 3514 return 0; 3515 } 3516 3517 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped) 3518 { 3519 /* reshaping is quite different to recovery/resync so it is 3520 * handled quite separately ... here. 3521 * 3522 * On each call to sync_request, we gather one chunk worth of 3523 * destination stripes and flag them as expanding. 3524 * Then we find all the source stripes and request reads. 3525 * As the reads complete, handle_stripe will copy the data 3526 * into the destination stripe and release that stripe. 3527 */ 3528 raid5_conf_t *conf = (raid5_conf_t *) mddev->private; 3529 struct stripe_head *sh; 3530 int pd_idx; 3531 sector_t first_sector, last_sector; 3532 int raid_disks = conf->previous_raid_disks; 3533 int data_disks = raid_disks - conf->max_degraded; 3534 int new_data_disks = conf->raid_disks - conf->max_degraded; 3535 int i; 3536 int dd_idx; 3537 sector_t writepos, safepos, gap; 3538 3539 if (sector_nr == 0 && 3540 conf->expand_progress != 0) { 3541 /* restarting in the middle, skip the initial sectors */ 3542 sector_nr = conf->expand_progress; 3543 sector_div(sector_nr, new_data_disks); 3544 *skipped = 1; 3545 return sector_nr; 3546 } 3547 3548 /* we update the metadata when there is more than 3Meg 3549 * in the block range (that is rather arbitrary, should 3550 * probably be time based) or when the data about to be 3551 * copied would over-write the source of the data at 3552 * the front of the range. 3553 * i.e. one new_stripe forward from expand_progress new_maps 3554 * to after where expand_lo old_maps to 3555 */ 3556 writepos = conf->expand_progress + 3557 conf->chunk_size/512*(new_data_disks); 3558 sector_div(writepos, new_data_disks); 3559 safepos = conf->expand_lo; 3560 sector_div(safepos, data_disks); 3561 gap = conf->expand_progress - conf->expand_lo; 3562 3563 if (writepos >= safepos || 3564 gap > (new_data_disks)*3000*2 /*3Meg*/) { 3565 /* Cannot proceed until we've updated the superblock... */ 3566 wait_event(conf->wait_for_overlap, 3567 atomic_read(&conf->reshape_stripes)==0); 3568 mddev->reshape_position = conf->expand_progress; 3569 set_bit(MD_CHANGE_DEVS, &mddev->flags); 3570 md_wakeup_thread(mddev->thread); 3571 wait_event(mddev->sb_wait, mddev->flags == 0 || 3572 kthread_should_stop()); 3573 spin_lock_irq(&conf->device_lock); 3574 conf->expand_lo = mddev->reshape_position; 3575 spin_unlock_irq(&conf->device_lock); 3576 wake_up(&conf->wait_for_overlap); 3577 } 3578 3579 for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) { 3580 int j; 3581 int skipped = 0; 3582 pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks); 3583 sh = get_active_stripe(conf, sector_nr+i, 3584 conf->raid_disks, pd_idx, 0); 3585 set_bit(STRIPE_EXPANDING, &sh->state); 3586 atomic_inc(&conf->reshape_stripes); 3587 /* If any of this stripe is beyond the end of the old 3588 * array, then we need to zero those blocks 3589 */ 3590 for (j=sh->disks; j--;) { 3591 sector_t s; 3592 if (j == sh->pd_idx) 3593 continue; 3594 if (conf->level == 6 && 3595 j == raid6_next_disk(sh->pd_idx, sh->disks)) 3596 continue; 3597 s = compute_blocknr(sh, j); 3598 if (s < mddev->array_sectors) { 3599 skipped = 1; 3600 continue; 3601 } 3602 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE); 3603 set_bit(R5_Expanded, &sh->dev[j].flags); 3604 set_bit(R5_UPTODATE, &sh->dev[j].flags); 3605 } 3606 if (!skipped) { 3607 set_bit(STRIPE_EXPAND_READY, &sh->state); 3608 set_bit(STRIPE_HANDLE, &sh->state); 3609 } 3610 release_stripe(sh); 3611 } 3612 spin_lock_irq(&conf->device_lock); 3613 conf->expand_progress = (sector_nr + i) * new_data_disks; 3614 spin_unlock_irq(&conf->device_lock); 3615 /* Ok, those stripe are ready. We can start scheduling 3616 * reads on the source stripes. 3617 * The source stripes are determined by mapping the first and last 3618 * block on the destination stripes. 3619 */ 3620 first_sector = 3621 raid5_compute_sector(sector_nr*(new_data_disks), 3622 raid_disks, data_disks, 3623 &dd_idx, &pd_idx, conf); 3624 last_sector = 3625 raid5_compute_sector((sector_nr+conf->chunk_size/512) 3626 *(new_data_disks) -1, 3627 raid_disks, data_disks, 3628 &dd_idx, &pd_idx, conf); 3629 if (last_sector >= (mddev->size<<1)) 3630 last_sector = (mddev->size<<1)-1; 3631 while (first_sector <= last_sector) { 3632 pd_idx = stripe_to_pdidx(first_sector, conf, 3633 conf->previous_raid_disks); 3634 sh = get_active_stripe(conf, first_sector, 3635 conf->previous_raid_disks, pd_idx, 0); 3636 set_bit(STRIPE_EXPAND_SOURCE, &sh->state); 3637 set_bit(STRIPE_HANDLE, &sh->state); 3638 release_stripe(sh); 3639 first_sector += STRIPE_SECTORS; 3640 } 3641 /* If this takes us to the resync_max point where we have to pause, 3642 * then we need to write out the superblock. 3643 */ 3644 sector_nr += conf->chunk_size>>9; 3645 if (sector_nr >= mddev->resync_max) { 3646 /* Cannot proceed until we've updated the superblock... */ 3647 wait_event(conf->wait_for_overlap, 3648 atomic_read(&conf->reshape_stripes) == 0); 3649 mddev->reshape_position = conf->expand_progress; 3650 set_bit(MD_CHANGE_DEVS, &mddev->flags); 3651 md_wakeup_thread(mddev->thread); 3652 wait_event(mddev->sb_wait, 3653 !test_bit(MD_CHANGE_DEVS, &mddev->flags) 3654 || kthread_should_stop()); 3655 spin_lock_irq(&conf->device_lock); 3656 conf->expand_lo = mddev->reshape_position; 3657 spin_unlock_irq(&conf->device_lock); 3658 wake_up(&conf->wait_for_overlap); 3659 } 3660 return conf->chunk_size>>9; 3661 } 3662 3663 /* FIXME go_faster isn't used */ 3664 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster) 3665 { 3666 raid5_conf_t *conf = (raid5_conf_t *) mddev->private; 3667 struct stripe_head *sh; 3668 int pd_idx; 3669 int raid_disks = conf->raid_disks; 3670 sector_t max_sector = mddev->size << 1; 3671 int sync_blocks; 3672 int still_degraded = 0; 3673 int i; 3674 3675 if (sector_nr >= max_sector) { 3676 /* just being told to finish up .. nothing much to do */ 3677 unplug_slaves(mddev); 3678 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 3679 end_reshape(conf); 3680 return 0; 3681 } 3682 3683 if (mddev->curr_resync < max_sector) /* aborted */ 3684 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 3685 &sync_blocks, 1); 3686 else /* completed sync */ 3687 conf->fullsync = 0; 3688 bitmap_close_sync(mddev->bitmap); 3689 3690 return 0; 3691 } 3692 3693 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 3694 return reshape_request(mddev, sector_nr, skipped); 3695 3696 /* No need to check resync_max as we never do more than one 3697 * stripe, and as resync_max will always be on a chunk boundary, 3698 * if the check in md_do_sync didn't fire, there is no chance 3699 * of overstepping resync_max here 3700 */ 3701 3702 /* if there is too many failed drives and we are trying 3703 * to resync, then assert that we are finished, because there is 3704 * nothing we can do. 3705 */ 3706 if (mddev->degraded >= conf->max_degraded && 3707 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3708 sector_t rv = (mddev->size << 1) - sector_nr; 3709 *skipped = 1; 3710 return rv; 3711 } 3712 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 3713 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 3714 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) { 3715 /* we can skip this block, and probably more */ 3716 sync_blocks /= STRIPE_SECTORS; 3717 *skipped = 1; 3718 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */ 3719 } 3720 3721 3722 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 3723 3724 pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks); 3725 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1); 3726 if (sh == NULL) { 3727 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0); 3728 /* make sure we don't swamp the stripe cache if someone else 3729 * is trying to get access 3730 */ 3731 schedule_timeout_uninterruptible(1); 3732 } 3733 /* Need to check if array will still be degraded after recovery/resync 3734 * We don't need to check the 'failed' flag as when that gets set, 3735 * recovery aborts. 3736 */ 3737 for (i=0; i<mddev->raid_disks; i++) 3738 if (conf->disks[i].rdev == NULL) 3739 still_degraded = 1; 3740 3741 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded); 3742 3743 spin_lock(&sh->lock); 3744 set_bit(STRIPE_SYNCING, &sh->state); 3745 clear_bit(STRIPE_INSYNC, &sh->state); 3746 spin_unlock(&sh->lock); 3747 3748 /* wait for any blocked device to be handled */ 3749 while(unlikely(!handle_stripe(sh, NULL))) 3750 ; 3751 release_stripe(sh); 3752 3753 return STRIPE_SECTORS; 3754 } 3755 3756 static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio) 3757 { 3758 /* We may not be able to submit a whole bio at once as there 3759 * may not be enough stripe_heads available. 3760 * We cannot pre-allocate enough stripe_heads as we may need 3761 * more than exist in the cache (if we allow ever large chunks). 3762 * So we do one stripe head at a time and record in 3763 * ->bi_hw_segments how many have been done. 3764 * 3765 * We *know* that this entire raid_bio is in one chunk, so 3766 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector. 3767 */ 3768 struct stripe_head *sh; 3769 int dd_idx, pd_idx; 3770 sector_t sector, logical_sector, last_sector; 3771 int scnt = 0; 3772 int remaining; 3773 int handled = 0; 3774 3775 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1); 3776 sector = raid5_compute_sector( logical_sector, 3777 conf->raid_disks, 3778 conf->raid_disks - conf->max_degraded, 3779 &dd_idx, 3780 &pd_idx, 3781 conf); 3782 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9); 3783 3784 for (; logical_sector < last_sector; 3785 logical_sector += STRIPE_SECTORS, 3786 sector += STRIPE_SECTORS, 3787 scnt++) { 3788 3789 if (scnt < raid5_bi_hw_segments(raid_bio)) 3790 /* already done this stripe */ 3791 continue; 3792 3793 sh = get_active_stripe(conf, sector, conf->raid_disks, pd_idx, 1); 3794 3795 if (!sh) { 3796 /* failed to get a stripe - must wait */ 3797 raid5_set_bi_hw_segments(raid_bio, scnt); 3798 conf->retry_read_aligned = raid_bio; 3799 return handled; 3800 } 3801 3802 set_bit(R5_ReadError, &sh->dev[dd_idx].flags); 3803 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) { 3804 release_stripe(sh); 3805 raid5_set_bi_hw_segments(raid_bio, scnt); 3806 conf->retry_read_aligned = raid_bio; 3807 return handled; 3808 } 3809 3810 handle_stripe(sh, NULL); 3811 release_stripe(sh); 3812 handled++; 3813 } 3814 spin_lock_irq(&conf->device_lock); 3815 remaining = raid5_dec_bi_phys_segments(raid_bio); 3816 spin_unlock_irq(&conf->device_lock); 3817 if (remaining == 0) 3818 bio_endio(raid_bio, 0); 3819 if (atomic_dec_and_test(&conf->active_aligned_reads)) 3820 wake_up(&conf->wait_for_stripe); 3821 return handled; 3822 } 3823 3824 3825 3826 /* 3827 * This is our raid5 kernel thread. 3828 * 3829 * We scan the hash table for stripes which can be handled now. 3830 * During the scan, completed stripes are saved for us by the interrupt 3831 * handler, so that they will not have to wait for our next wakeup. 3832 */ 3833 static void raid5d(mddev_t *mddev) 3834 { 3835 struct stripe_head *sh; 3836 raid5_conf_t *conf = mddev_to_conf(mddev); 3837 int handled; 3838 3839 pr_debug("+++ raid5d active\n"); 3840 3841 md_check_recovery(mddev); 3842 3843 handled = 0; 3844 spin_lock_irq(&conf->device_lock); 3845 while (1) { 3846 struct bio *bio; 3847 3848 if (conf->seq_flush != conf->seq_write) { 3849 int seq = conf->seq_flush; 3850 spin_unlock_irq(&conf->device_lock); 3851 bitmap_unplug(mddev->bitmap); 3852 spin_lock_irq(&conf->device_lock); 3853 conf->seq_write = seq; 3854 activate_bit_delay(conf); 3855 } 3856 3857 while ((bio = remove_bio_from_retry(conf))) { 3858 int ok; 3859 spin_unlock_irq(&conf->device_lock); 3860 ok = retry_aligned_read(conf, bio); 3861 spin_lock_irq(&conf->device_lock); 3862 if (!ok) 3863 break; 3864 handled++; 3865 } 3866 3867 sh = __get_priority_stripe(conf); 3868 3869 if (!sh) 3870 break; 3871 spin_unlock_irq(&conf->device_lock); 3872 3873 handled++; 3874 handle_stripe(sh, conf->spare_page); 3875 release_stripe(sh); 3876 3877 spin_lock_irq(&conf->device_lock); 3878 } 3879 pr_debug("%d stripes handled\n", handled); 3880 3881 spin_unlock_irq(&conf->device_lock); 3882 3883 async_tx_issue_pending_all(); 3884 unplug_slaves(mddev); 3885 3886 pr_debug("--- raid5d inactive\n"); 3887 } 3888 3889 static ssize_t 3890 raid5_show_stripe_cache_size(mddev_t *mddev, char *page) 3891 { 3892 raid5_conf_t *conf = mddev_to_conf(mddev); 3893 if (conf) 3894 return sprintf(page, "%d\n", conf->max_nr_stripes); 3895 else 3896 return 0; 3897 } 3898 3899 static ssize_t 3900 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len) 3901 { 3902 raid5_conf_t *conf = mddev_to_conf(mddev); 3903 unsigned long new; 3904 int err; 3905 3906 if (len >= PAGE_SIZE) 3907 return -EINVAL; 3908 if (!conf) 3909 return -ENODEV; 3910 3911 if (strict_strtoul(page, 10, &new)) 3912 return -EINVAL; 3913 if (new <= 16 || new > 32768) 3914 return -EINVAL; 3915 while (new < conf->max_nr_stripes) { 3916 if (drop_one_stripe(conf)) 3917 conf->max_nr_stripes--; 3918 else 3919 break; 3920 } 3921 err = md_allow_write(mddev); 3922 if (err) 3923 return err; 3924 while (new > conf->max_nr_stripes) { 3925 if (grow_one_stripe(conf)) 3926 conf->max_nr_stripes++; 3927 else break; 3928 } 3929 return len; 3930 } 3931 3932 static struct md_sysfs_entry 3933 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR, 3934 raid5_show_stripe_cache_size, 3935 raid5_store_stripe_cache_size); 3936 3937 static ssize_t 3938 raid5_show_preread_threshold(mddev_t *mddev, char *page) 3939 { 3940 raid5_conf_t *conf = mddev_to_conf(mddev); 3941 if (conf) 3942 return sprintf(page, "%d\n", conf->bypass_threshold); 3943 else 3944 return 0; 3945 } 3946 3947 static ssize_t 3948 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len) 3949 { 3950 raid5_conf_t *conf = mddev_to_conf(mddev); 3951 unsigned long new; 3952 if (len >= PAGE_SIZE) 3953 return -EINVAL; 3954 if (!conf) 3955 return -ENODEV; 3956 3957 if (strict_strtoul(page, 10, &new)) 3958 return -EINVAL; 3959 if (new > conf->max_nr_stripes) 3960 return -EINVAL; 3961 conf->bypass_threshold = new; 3962 return len; 3963 } 3964 3965 static struct md_sysfs_entry 3966 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold, 3967 S_IRUGO | S_IWUSR, 3968 raid5_show_preread_threshold, 3969 raid5_store_preread_threshold); 3970 3971 static ssize_t 3972 stripe_cache_active_show(mddev_t *mddev, char *page) 3973 { 3974 raid5_conf_t *conf = mddev_to_conf(mddev); 3975 if (conf) 3976 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes)); 3977 else 3978 return 0; 3979 } 3980 3981 static struct md_sysfs_entry 3982 raid5_stripecache_active = __ATTR_RO(stripe_cache_active); 3983 3984 static struct attribute *raid5_attrs[] = { 3985 &raid5_stripecache_size.attr, 3986 &raid5_stripecache_active.attr, 3987 &raid5_preread_bypass_threshold.attr, 3988 NULL, 3989 }; 3990 static struct attribute_group raid5_attrs_group = { 3991 .name = NULL, 3992 .attrs = raid5_attrs, 3993 }; 3994 3995 static int run(mddev_t *mddev) 3996 { 3997 raid5_conf_t *conf; 3998 int raid_disk, memory; 3999 mdk_rdev_t *rdev; 4000 struct disk_info *disk; 4001 int working_disks = 0; 4002 4003 if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) { 4004 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n", 4005 mdname(mddev), mddev->level); 4006 return -EIO; 4007 } 4008 4009 if (mddev->chunk_size < PAGE_SIZE) { 4010 printk(KERN_ERR "md/raid5: chunk_size must be at least " 4011 "PAGE_SIZE but %d < %ld\n", 4012 mddev->chunk_size, PAGE_SIZE); 4013 return -EINVAL; 4014 } 4015 4016 if (mddev->reshape_position != MaxSector) { 4017 /* Check that we can continue the reshape. 4018 * Currently only disks can change, it must 4019 * increase, and we must be past the point where 4020 * a stripe over-writes itself 4021 */ 4022 sector_t here_new, here_old; 4023 int old_disks; 4024 int max_degraded = (mddev->level == 5 ? 1 : 2); 4025 4026 if (mddev->new_level != mddev->level || 4027 mddev->new_layout != mddev->layout || 4028 mddev->new_chunk != mddev->chunk_size) { 4029 printk(KERN_ERR "raid5: %s: unsupported reshape " 4030 "required - aborting.\n", 4031 mdname(mddev)); 4032 return -EINVAL; 4033 } 4034 if (mddev->delta_disks <= 0) { 4035 printk(KERN_ERR "raid5: %s: unsupported reshape " 4036 "(reduce disks) required - aborting.\n", 4037 mdname(mddev)); 4038 return -EINVAL; 4039 } 4040 old_disks = mddev->raid_disks - mddev->delta_disks; 4041 /* reshape_position must be on a new-stripe boundary, and one 4042 * further up in new geometry must map after here in old 4043 * geometry. 4044 */ 4045 here_new = mddev->reshape_position; 4046 if (sector_div(here_new, (mddev->chunk_size>>9)* 4047 (mddev->raid_disks - max_degraded))) { 4048 printk(KERN_ERR "raid5: reshape_position not " 4049 "on a stripe boundary\n"); 4050 return -EINVAL; 4051 } 4052 /* here_new is the stripe we will write to */ 4053 here_old = mddev->reshape_position; 4054 sector_div(here_old, (mddev->chunk_size>>9)* 4055 (old_disks-max_degraded)); 4056 /* here_old is the first stripe that we might need to read 4057 * from */ 4058 if (here_new >= here_old) { 4059 /* Reading from the same stripe as writing to - bad */ 4060 printk(KERN_ERR "raid5: reshape_position too early for " 4061 "auto-recovery - aborting.\n"); 4062 return -EINVAL; 4063 } 4064 printk(KERN_INFO "raid5: reshape will continue\n"); 4065 /* OK, we should be able to continue; */ 4066 } 4067 4068 4069 mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL); 4070 if ((conf = mddev->private) == NULL) 4071 goto abort; 4072 if (mddev->reshape_position == MaxSector) { 4073 conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks; 4074 } else { 4075 conf->raid_disks = mddev->raid_disks; 4076 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks; 4077 } 4078 4079 conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info), 4080 GFP_KERNEL); 4081 if (!conf->disks) 4082 goto abort; 4083 4084 conf->mddev = mddev; 4085 4086 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL) 4087 goto abort; 4088 4089 if (mddev->level == 6) { 4090 conf->spare_page = alloc_page(GFP_KERNEL); 4091 if (!conf->spare_page) 4092 goto abort; 4093 } 4094 spin_lock_init(&conf->device_lock); 4095 mddev->queue->queue_lock = &conf->device_lock; 4096 init_waitqueue_head(&conf->wait_for_stripe); 4097 init_waitqueue_head(&conf->wait_for_overlap); 4098 INIT_LIST_HEAD(&conf->handle_list); 4099 INIT_LIST_HEAD(&conf->hold_list); 4100 INIT_LIST_HEAD(&conf->delayed_list); 4101 INIT_LIST_HEAD(&conf->bitmap_list); 4102 INIT_LIST_HEAD(&conf->inactive_list); 4103 atomic_set(&conf->active_stripes, 0); 4104 atomic_set(&conf->preread_active_stripes, 0); 4105 atomic_set(&conf->active_aligned_reads, 0); 4106 conf->bypass_threshold = BYPASS_THRESHOLD; 4107 4108 pr_debug("raid5: run(%s) called.\n", mdname(mddev)); 4109 4110 list_for_each_entry(rdev, &mddev->disks, same_set) { 4111 raid_disk = rdev->raid_disk; 4112 if (raid_disk >= conf->raid_disks 4113 || raid_disk < 0) 4114 continue; 4115 disk = conf->disks + raid_disk; 4116 4117 disk->rdev = rdev; 4118 4119 if (test_bit(In_sync, &rdev->flags)) { 4120 char b[BDEVNAME_SIZE]; 4121 printk(KERN_INFO "raid5: device %s operational as raid" 4122 " disk %d\n", bdevname(rdev->bdev,b), 4123 raid_disk); 4124 working_disks++; 4125 } else 4126 /* Cannot rely on bitmap to complete recovery */ 4127 conf->fullsync = 1; 4128 } 4129 4130 /* 4131 * 0 for a fully functional array, 1 or 2 for a degraded array. 4132 */ 4133 mddev->degraded = conf->raid_disks - working_disks; 4134 conf->mddev = mddev; 4135 conf->chunk_size = mddev->chunk_size; 4136 conf->level = mddev->level; 4137 if (conf->level == 6) 4138 conf->max_degraded = 2; 4139 else 4140 conf->max_degraded = 1; 4141 conf->algorithm = mddev->layout; 4142 conf->max_nr_stripes = NR_STRIPES; 4143 conf->expand_progress = mddev->reshape_position; 4144 4145 /* device size must be a multiple of chunk size */ 4146 mddev->size &= ~(mddev->chunk_size/1024 -1); 4147 mddev->resync_max_sectors = mddev->size << 1; 4148 4149 if (conf->level == 6 && conf->raid_disks < 4) { 4150 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n", 4151 mdname(mddev), conf->raid_disks); 4152 goto abort; 4153 } 4154 if (!conf->chunk_size || conf->chunk_size % 4) { 4155 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n", 4156 conf->chunk_size, mdname(mddev)); 4157 goto abort; 4158 } 4159 if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) { 4160 printk(KERN_ERR 4161 "raid5: unsupported parity algorithm %d for %s\n", 4162 conf->algorithm, mdname(mddev)); 4163 goto abort; 4164 } 4165 if (mddev->degraded > conf->max_degraded) { 4166 printk(KERN_ERR "raid5: not enough operational devices for %s" 4167 " (%d/%d failed)\n", 4168 mdname(mddev), mddev->degraded, conf->raid_disks); 4169 goto abort; 4170 } 4171 4172 if (mddev->degraded > 0 && 4173 mddev->recovery_cp != MaxSector) { 4174 if (mddev->ok_start_degraded) 4175 printk(KERN_WARNING 4176 "raid5: starting dirty degraded array: %s" 4177 "- data corruption possible.\n", 4178 mdname(mddev)); 4179 else { 4180 printk(KERN_ERR 4181 "raid5: cannot start dirty degraded array for %s\n", 4182 mdname(mddev)); 4183 goto abort; 4184 } 4185 } 4186 4187 { 4188 mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5"); 4189 if (!mddev->thread) { 4190 printk(KERN_ERR 4191 "raid5: couldn't allocate thread for %s\n", 4192 mdname(mddev)); 4193 goto abort; 4194 } 4195 } 4196 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) + 4197 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024; 4198 if (grow_stripes(conf, conf->max_nr_stripes)) { 4199 printk(KERN_ERR 4200 "raid5: couldn't allocate %dkB for buffers\n", memory); 4201 shrink_stripes(conf); 4202 md_unregister_thread(mddev->thread); 4203 goto abort; 4204 } else 4205 printk(KERN_INFO "raid5: allocated %dkB for %s\n", 4206 memory, mdname(mddev)); 4207 4208 if (mddev->degraded == 0) 4209 printk("raid5: raid level %d set %s active with %d out of %d" 4210 " devices, algorithm %d\n", conf->level, mdname(mddev), 4211 mddev->raid_disks-mddev->degraded, mddev->raid_disks, 4212 conf->algorithm); 4213 else 4214 printk(KERN_ALERT "raid5: raid level %d set %s active with %d" 4215 " out of %d devices, algorithm %d\n", conf->level, 4216 mdname(mddev), mddev->raid_disks - mddev->degraded, 4217 mddev->raid_disks, conf->algorithm); 4218 4219 print_raid5_conf(conf); 4220 4221 if (conf->expand_progress != MaxSector) { 4222 printk("...ok start reshape thread\n"); 4223 conf->expand_lo = conf->expand_progress; 4224 atomic_set(&conf->reshape_stripes, 0); 4225 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4226 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4227 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4228 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 4229 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 4230 "%s_reshape"); 4231 } 4232 4233 /* read-ahead size must cover two whole stripes, which is 4234 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 4235 */ 4236 { 4237 int data_disks = conf->previous_raid_disks - conf->max_degraded; 4238 int stripe = data_disks * 4239 (mddev->chunk_size / PAGE_SIZE); 4240 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 4241 mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 4242 } 4243 4244 /* Ok, everything is just fine now */ 4245 if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group)) 4246 printk(KERN_WARNING 4247 "raid5: failed to create sysfs attributes for %s\n", 4248 mdname(mddev)); 4249 4250 mddev->queue->unplug_fn = raid5_unplug_device; 4251 mddev->queue->backing_dev_info.congested_data = mddev; 4252 mddev->queue->backing_dev_info.congested_fn = raid5_congested; 4253 4254 mddev->array_sectors = 2 * mddev->size * (conf->previous_raid_disks - 4255 conf->max_degraded); 4256 4257 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec); 4258 4259 return 0; 4260 abort: 4261 if (conf) { 4262 print_raid5_conf(conf); 4263 safe_put_page(conf->spare_page); 4264 kfree(conf->disks); 4265 kfree(conf->stripe_hashtbl); 4266 kfree(conf); 4267 } 4268 mddev->private = NULL; 4269 printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev)); 4270 return -EIO; 4271 } 4272 4273 4274 4275 static int stop(mddev_t *mddev) 4276 { 4277 raid5_conf_t *conf = (raid5_conf_t *) mddev->private; 4278 4279 md_unregister_thread(mddev->thread); 4280 mddev->thread = NULL; 4281 shrink_stripes(conf); 4282 kfree(conf->stripe_hashtbl); 4283 mddev->queue->backing_dev_info.congested_fn = NULL; 4284 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 4285 sysfs_remove_group(&mddev->kobj, &raid5_attrs_group); 4286 kfree(conf->disks); 4287 kfree(conf); 4288 mddev->private = NULL; 4289 return 0; 4290 } 4291 4292 #ifdef DEBUG 4293 static void print_sh(struct seq_file *seq, struct stripe_head *sh) 4294 { 4295 int i; 4296 4297 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n", 4298 (unsigned long long)sh->sector, sh->pd_idx, sh->state); 4299 seq_printf(seq, "sh %llu, count %d.\n", 4300 (unsigned long long)sh->sector, atomic_read(&sh->count)); 4301 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector); 4302 for (i = 0; i < sh->disks; i++) { 4303 seq_printf(seq, "(cache%d: %p %ld) ", 4304 i, sh->dev[i].page, sh->dev[i].flags); 4305 } 4306 seq_printf(seq, "\n"); 4307 } 4308 4309 static void printall(struct seq_file *seq, raid5_conf_t *conf) 4310 { 4311 struct stripe_head *sh; 4312 struct hlist_node *hn; 4313 int i; 4314 4315 spin_lock_irq(&conf->device_lock); 4316 for (i = 0; i < NR_HASH; i++) { 4317 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) { 4318 if (sh->raid_conf != conf) 4319 continue; 4320 print_sh(seq, sh); 4321 } 4322 } 4323 spin_unlock_irq(&conf->device_lock); 4324 } 4325 #endif 4326 4327 static void status(struct seq_file *seq, mddev_t *mddev) 4328 { 4329 raid5_conf_t *conf = (raid5_conf_t *) mddev->private; 4330 int i; 4331 4332 seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout); 4333 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded); 4334 for (i = 0; i < conf->raid_disks; i++) 4335 seq_printf (seq, "%s", 4336 conf->disks[i].rdev && 4337 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_"); 4338 seq_printf (seq, "]"); 4339 #ifdef DEBUG 4340 seq_printf (seq, "\n"); 4341 printall(seq, conf); 4342 #endif 4343 } 4344 4345 static void print_raid5_conf (raid5_conf_t *conf) 4346 { 4347 int i; 4348 struct disk_info *tmp; 4349 4350 printk("RAID5 conf printout:\n"); 4351 if (!conf) { 4352 printk("(conf==NULL)\n"); 4353 return; 4354 } 4355 printk(" --- rd:%d wd:%d\n", conf->raid_disks, 4356 conf->raid_disks - conf->mddev->degraded); 4357 4358 for (i = 0; i < conf->raid_disks; i++) { 4359 char b[BDEVNAME_SIZE]; 4360 tmp = conf->disks + i; 4361 if (tmp->rdev) 4362 printk(" disk %d, o:%d, dev:%s\n", 4363 i, !test_bit(Faulty, &tmp->rdev->flags), 4364 bdevname(tmp->rdev->bdev,b)); 4365 } 4366 } 4367 4368 static int raid5_spare_active(mddev_t *mddev) 4369 { 4370 int i; 4371 raid5_conf_t *conf = mddev->private; 4372 struct disk_info *tmp; 4373 4374 for (i = 0; i < conf->raid_disks; i++) { 4375 tmp = conf->disks + i; 4376 if (tmp->rdev 4377 && !test_bit(Faulty, &tmp->rdev->flags) 4378 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 4379 unsigned long flags; 4380 spin_lock_irqsave(&conf->device_lock, flags); 4381 mddev->degraded--; 4382 spin_unlock_irqrestore(&conf->device_lock, flags); 4383 } 4384 } 4385 print_raid5_conf(conf); 4386 return 0; 4387 } 4388 4389 static int raid5_remove_disk(mddev_t *mddev, int number) 4390 { 4391 raid5_conf_t *conf = mddev->private; 4392 int err = 0; 4393 mdk_rdev_t *rdev; 4394 struct disk_info *p = conf->disks + number; 4395 4396 print_raid5_conf(conf); 4397 rdev = p->rdev; 4398 if (rdev) { 4399 if (test_bit(In_sync, &rdev->flags) || 4400 atomic_read(&rdev->nr_pending)) { 4401 err = -EBUSY; 4402 goto abort; 4403 } 4404 /* Only remove non-faulty devices if recovery 4405 * isn't possible. 4406 */ 4407 if (!test_bit(Faulty, &rdev->flags) && 4408 mddev->degraded <= conf->max_degraded) { 4409 err = -EBUSY; 4410 goto abort; 4411 } 4412 p->rdev = NULL; 4413 synchronize_rcu(); 4414 if (atomic_read(&rdev->nr_pending)) { 4415 /* lost the race, try later */ 4416 err = -EBUSY; 4417 p->rdev = rdev; 4418 } 4419 } 4420 abort: 4421 4422 print_raid5_conf(conf); 4423 return err; 4424 } 4425 4426 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) 4427 { 4428 raid5_conf_t *conf = mddev->private; 4429 int err = -EEXIST; 4430 int disk; 4431 struct disk_info *p; 4432 int first = 0; 4433 int last = conf->raid_disks - 1; 4434 4435 if (mddev->degraded > conf->max_degraded) 4436 /* no point adding a device */ 4437 return -EINVAL; 4438 4439 if (rdev->raid_disk >= 0) 4440 first = last = rdev->raid_disk; 4441 4442 /* 4443 * find the disk ... but prefer rdev->saved_raid_disk 4444 * if possible. 4445 */ 4446 if (rdev->saved_raid_disk >= 0 && 4447 rdev->saved_raid_disk >= first && 4448 conf->disks[rdev->saved_raid_disk].rdev == NULL) 4449 disk = rdev->saved_raid_disk; 4450 else 4451 disk = first; 4452 for ( ; disk <= last ; disk++) 4453 if ((p=conf->disks + disk)->rdev == NULL) { 4454 clear_bit(In_sync, &rdev->flags); 4455 rdev->raid_disk = disk; 4456 err = 0; 4457 if (rdev->saved_raid_disk != disk) 4458 conf->fullsync = 1; 4459 rcu_assign_pointer(p->rdev, rdev); 4460 break; 4461 } 4462 print_raid5_conf(conf); 4463 return err; 4464 } 4465 4466 static int raid5_resize(mddev_t *mddev, sector_t sectors) 4467 { 4468 /* no resync is happening, and there is enough space 4469 * on all devices, so we can resize. 4470 * We need to make sure resync covers any new space. 4471 * If the array is shrinking we should possibly wait until 4472 * any io in the removed space completes, but it hardly seems 4473 * worth it. 4474 */ 4475 raid5_conf_t *conf = mddev_to_conf(mddev); 4476 4477 sectors &= ~((sector_t)mddev->chunk_size/512 - 1); 4478 mddev->array_sectors = sectors * (mddev->raid_disks 4479 - conf->max_degraded); 4480 set_capacity(mddev->gendisk, mddev->array_sectors); 4481 mddev->changed = 1; 4482 if (sectors/2 > mddev->size && mddev->recovery_cp == MaxSector) { 4483 mddev->recovery_cp = mddev->size << 1; 4484 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4485 } 4486 mddev->size = sectors /2; 4487 mddev->resync_max_sectors = sectors; 4488 return 0; 4489 } 4490 4491 #ifdef CONFIG_MD_RAID5_RESHAPE 4492 static int raid5_check_reshape(mddev_t *mddev) 4493 { 4494 raid5_conf_t *conf = mddev_to_conf(mddev); 4495 int err; 4496 4497 if (mddev->delta_disks < 0 || 4498 mddev->new_level != mddev->level) 4499 return -EINVAL; /* Cannot shrink array or change level yet */ 4500 if (mddev->delta_disks == 0) 4501 return 0; /* nothing to do */ 4502 if (mddev->bitmap) 4503 /* Cannot grow a bitmap yet */ 4504 return -EBUSY; 4505 4506 /* Can only proceed if there are plenty of stripe_heads. 4507 * We need a minimum of one full stripe,, and for sensible progress 4508 * it is best to have about 4 times that. 4509 * If we require 4 times, then the default 256 4K stripe_heads will 4510 * allow for chunk sizes up to 256K, which is probably OK. 4511 * If the chunk size is greater, user-space should request more 4512 * stripe_heads first. 4513 */ 4514 if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes || 4515 (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) { 4516 printk(KERN_WARNING "raid5: reshape: not enough stripes. Needed %lu\n", 4517 (mddev->chunk_size / STRIPE_SIZE)*4); 4518 return -ENOSPC; 4519 } 4520 4521 err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks); 4522 if (err) 4523 return err; 4524 4525 if (mddev->degraded > conf->max_degraded) 4526 return -EINVAL; 4527 /* looks like we might be able to manage this */ 4528 return 0; 4529 } 4530 4531 static int raid5_start_reshape(mddev_t *mddev) 4532 { 4533 raid5_conf_t *conf = mddev_to_conf(mddev); 4534 mdk_rdev_t *rdev; 4535 int spares = 0; 4536 int added_devices = 0; 4537 unsigned long flags; 4538 4539 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4540 return -EBUSY; 4541 4542 list_for_each_entry(rdev, &mddev->disks, same_set) 4543 if (rdev->raid_disk < 0 && 4544 !test_bit(Faulty, &rdev->flags)) 4545 spares++; 4546 4547 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded) 4548 /* Not enough devices even to make a degraded array 4549 * of that size 4550 */ 4551 return -EINVAL; 4552 4553 atomic_set(&conf->reshape_stripes, 0); 4554 spin_lock_irq(&conf->device_lock); 4555 conf->previous_raid_disks = conf->raid_disks; 4556 conf->raid_disks += mddev->delta_disks; 4557 conf->expand_progress = 0; 4558 conf->expand_lo = 0; 4559 spin_unlock_irq(&conf->device_lock); 4560 4561 /* Add some new drives, as many as will fit. 4562 * We know there are enough to make the newly sized array work. 4563 */ 4564 list_for_each_entry(rdev, &mddev->disks, same_set) 4565 if (rdev->raid_disk < 0 && 4566 !test_bit(Faulty, &rdev->flags)) { 4567 if (raid5_add_disk(mddev, rdev) == 0) { 4568 char nm[20]; 4569 set_bit(In_sync, &rdev->flags); 4570 added_devices++; 4571 rdev->recovery_offset = 0; 4572 sprintf(nm, "rd%d", rdev->raid_disk); 4573 if (sysfs_create_link(&mddev->kobj, 4574 &rdev->kobj, nm)) 4575 printk(KERN_WARNING 4576 "raid5: failed to create " 4577 " link %s for %s\n", 4578 nm, mdname(mddev)); 4579 } else 4580 break; 4581 } 4582 4583 spin_lock_irqsave(&conf->device_lock, flags); 4584 mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices; 4585 spin_unlock_irqrestore(&conf->device_lock, flags); 4586 mddev->raid_disks = conf->raid_disks; 4587 mddev->reshape_position = 0; 4588 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4589 4590 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4591 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4592 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4593 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 4594 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 4595 "%s_reshape"); 4596 if (!mddev->sync_thread) { 4597 mddev->recovery = 0; 4598 spin_lock_irq(&conf->device_lock); 4599 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks; 4600 conf->expand_progress = MaxSector; 4601 spin_unlock_irq(&conf->device_lock); 4602 return -EAGAIN; 4603 } 4604 md_wakeup_thread(mddev->sync_thread); 4605 md_new_event(mddev); 4606 return 0; 4607 } 4608 #endif 4609 4610 static void end_reshape(raid5_conf_t *conf) 4611 { 4612 struct block_device *bdev; 4613 4614 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 4615 conf->mddev->array_sectors = 2 * conf->mddev->size * 4616 (conf->raid_disks - conf->max_degraded); 4617 set_capacity(conf->mddev->gendisk, conf->mddev->array_sectors); 4618 conf->mddev->changed = 1; 4619 4620 bdev = bdget_disk(conf->mddev->gendisk, 0); 4621 if (bdev) { 4622 mutex_lock(&bdev->bd_inode->i_mutex); 4623 i_size_write(bdev->bd_inode, 4624 (loff_t)conf->mddev->array_sectors << 9); 4625 mutex_unlock(&bdev->bd_inode->i_mutex); 4626 bdput(bdev); 4627 } 4628 spin_lock_irq(&conf->device_lock); 4629 conf->expand_progress = MaxSector; 4630 spin_unlock_irq(&conf->device_lock); 4631 conf->mddev->reshape_position = MaxSector; 4632 4633 /* read-ahead size must cover two whole stripes, which is 4634 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 4635 */ 4636 { 4637 int data_disks = conf->previous_raid_disks - conf->max_degraded; 4638 int stripe = data_disks * 4639 (conf->mddev->chunk_size / PAGE_SIZE); 4640 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 4641 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 4642 } 4643 } 4644 } 4645 4646 static void raid5_quiesce(mddev_t *mddev, int state) 4647 { 4648 raid5_conf_t *conf = mddev_to_conf(mddev); 4649 4650 switch(state) { 4651 case 2: /* resume for a suspend */ 4652 wake_up(&conf->wait_for_overlap); 4653 break; 4654 4655 case 1: /* stop all writes */ 4656 spin_lock_irq(&conf->device_lock); 4657 conf->quiesce = 1; 4658 wait_event_lock_irq(conf->wait_for_stripe, 4659 atomic_read(&conf->active_stripes) == 0 && 4660 atomic_read(&conf->active_aligned_reads) == 0, 4661 conf->device_lock, /* nothing */); 4662 spin_unlock_irq(&conf->device_lock); 4663 break; 4664 4665 case 0: /* re-enable writes */ 4666 spin_lock_irq(&conf->device_lock); 4667 conf->quiesce = 0; 4668 wake_up(&conf->wait_for_stripe); 4669 wake_up(&conf->wait_for_overlap); 4670 spin_unlock_irq(&conf->device_lock); 4671 break; 4672 } 4673 } 4674 4675 static struct mdk_personality raid6_personality = 4676 { 4677 .name = "raid6", 4678 .level = 6, 4679 .owner = THIS_MODULE, 4680 .make_request = make_request, 4681 .run = run, 4682 .stop = stop, 4683 .status = status, 4684 .error_handler = error, 4685 .hot_add_disk = raid5_add_disk, 4686 .hot_remove_disk= raid5_remove_disk, 4687 .spare_active = raid5_spare_active, 4688 .sync_request = sync_request, 4689 .resize = raid5_resize, 4690 #ifdef CONFIG_MD_RAID5_RESHAPE 4691 .check_reshape = raid5_check_reshape, 4692 .start_reshape = raid5_start_reshape, 4693 #endif 4694 .quiesce = raid5_quiesce, 4695 }; 4696 static struct mdk_personality raid5_personality = 4697 { 4698 .name = "raid5", 4699 .level = 5, 4700 .owner = THIS_MODULE, 4701 .make_request = make_request, 4702 .run = run, 4703 .stop = stop, 4704 .status = status, 4705 .error_handler = error, 4706 .hot_add_disk = raid5_add_disk, 4707 .hot_remove_disk= raid5_remove_disk, 4708 .spare_active = raid5_spare_active, 4709 .sync_request = sync_request, 4710 .resize = raid5_resize, 4711 #ifdef CONFIG_MD_RAID5_RESHAPE 4712 .check_reshape = raid5_check_reshape, 4713 .start_reshape = raid5_start_reshape, 4714 #endif 4715 .quiesce = raid5_quiesce, 4716 }; 4717 4718 static struct mdk_personality raid4_personality = 4719 { 4720 .name = "raid4", 4721 .level = 4, 4722 .owner = THIS_MODULE, 4723 .make_request = make_request, 4724 .run = run, 4725 .stop = stop, 4726 .status = status, 4727 .error_handler = error, 4728 .hot_add_disk = raid5_add_disk, 4729 .hot_remove_disk= raid5_remove_disk, 4730 .spare_active = raid5_spare_active, 4731 .sync_request = sync_request, 4732 .resize = raid5_resize, 4733 #ifdef CONFIG_MD_RAID5_RESHAPE 4734 .check_reshape = raid5_check_reshape, 4735 .start_reshape = raid5_start_reshape, 4736 #endif 4737 .quiesce = raid5_quiesce, 4738 }; 4739 4740 static int __init raid5_init(void) 4741 { 4742 int e; 4743 4744 e = raid6_select_algo(); 4745 if ( e ) 4746 return e; 4747 register_md_personality(&raid6_personality); 4748 register_md_personality(&raid5_personality); 4749 register_md_personality(&raid4_personality); 4750 return 0; 4751 } 4752 4753 static void raid5_exit(void) 4754 { 4755 unregister_md_personality(&raid6_personality); 4756 unregister_md_personality(&raid5_personality); 4757 unregister_md_personality(&raid4_personality); 4758 } 4759 4760 module_init(raid5_init); 4761 module_exit(raid5_exit); 4762 MODULE_LICENSE("GPL"); 4763 MODULE_ALIAS("md-personality-4"); /* RAID5 */ 4764 MODULE_ALIAS("md-raid5"); 4765 MODULE_ALIAS("md-raid4"); 4766 MODULE_ALIAS("md-level-5"); 4767 MODULE_ALIAS("md-level-4"); 4768 MODULE_ALIAS("md-personality-8"); /* RAID6 */ 4769 MODULE_ALIAS("md-raid6"); 4770 MODULE_ALIAS("md-level-6"); 4771 4772 /* This used to be two separate modules, they were: */ 4773 MODULE_ALIAS("raid5"); 4774 MODULE_ALIAS("raid6"); 4775