1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid5.c : Multiple Devices driver for Linux 4 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman 5 * Copyright (C) 1999, 2000 Ingo Molnar 6 * Copyright (C) 2002, 2003 H. Peter Anvin 7 * 8 * RAID-4/5/6 management functions. 9 * Thanks to Penguin Computing for making the RAID-6 development possible 10 * by donating a test server! 11 */ 12 13 /* 14 * BITMAP UNPLUGGING: 15 * 16 * The sequencing for updating the bitmap reliably is a little 17 * subtle (and I got it wrong the first time) so it deserves some 18 * explanation. 19 * 20 * We group bitmap updates into batches. Each batch has a number. 21 * We may write out several batches at once, but that isn't very important. 22 * conf->seq_write is the number of the last batch successfully written. 23 * conf->seq_flush is the number of the last batch that was closed to 24 * new additions. 25 * When we discover that we will need to write to any block in a stripe 26 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq 27 * the number of the batch it will be in. This is seq_flush+1. 28 * When we are ready to do a write, if that batch hasn't been written yet, 29 * we plug the array and queue the stripe for later. 30 * When an unplug happens, we increment bm_flush, thus closing the current 31 * batch. 32 * When we notice that bm_flush > bm_write, we write out all pending updates 33 * to the bitmap, and advance bm_write to where bm_flush was. 34 * This may occasionally write a bit out twice, but is sure never to 35 * miss any bits. 36 */ 37 38 #include <linux/blkdev.h> 39 #include <linux/delay.h> 40 #include <linux/kthread.h> 41 #include <linux/raid/pq.h> 42 #include <linux/async_tx.h> 43 #include <linux/module.h> 44 #include <linux/async.h> 45 #include <linux/seq_file.h> 46 #include <linux/cpu.h> 47 #include <linux/slab.h> 48 #include <linux/ratelimit.h> 49 #include <linux/nodemask.h> 50 51 #include <trace/events/block.h> 52 #include <linux/list_sort.h> 53 54 #include "md.h" 55 #include "raid5.h" 56 #include "raid0.h" 57 #include "md-bitmap.h" 58 #include "raid5-log.h" 59 60 #define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED) 61 62 #define cpu_to_group(cpu) cpu_to_node(cpu) 63 #define ANY_GROUP NUMA_NO_NODE 64 65 #define RAID5_MAX_REQ_STRIPES 256 66 67 static bool devices_handle_discard_safely = false; 68 module_param(devices_handle_discard_safely, bool, 0644); 69 MODULE_PARM_DESC(devices_handle_discard_safely, 70 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions"); 71 static struct workqueue_struct *raid5_wq; 72 73 static void raid5_quiesce(struct mddev *mddev, int quiesce); 74 75 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect) 76 { 77 int hash = (sect >> RAID5_STRIPE_SHIFT(conf)) & HASH_MASK; 78 return &conf->stripe_hashtbl[hash]; 79 } 80 81 static inline int stripe_hash_locks_hash(struct r5conf *conf, sector_t sect) 82 { 83 return (sect >> RAID5_STRIPE_SHIFT(conf)) & STRIPE_HASH_LOCKS_MASK; 84 } 85 86 static inline void lock_device_hash_lock(struct r5conf *conf, int hash) 87 __acquires(&conf->device_lock) 88 { 89 spin_lock_irq(conf->hash_locks + hash); 90 spin_lock(&conf->device_lock); 91 } 92 93 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash) 94 __releases(&conf->device_lock) 95 { 96 spin_unlock(&conf->device_lock); 97 spin_unlock_irq(conf->hash_locks + hash); 98 } 99 100 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf) 101 __acquires(&conf->device_lock) 102 { 103 int i; 104 spin_lock_irq(conf->hash_locks); 105 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 106 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks); 107 spin_lock(&conf->device_lock); 108 } 109 110 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf) 111 __releases(&conf->device_lock) 112 { 113 int i; 114 spin_unlock(&conf->device_lock); 115 for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--) 116 spin_unlock(conf->hash_locks + i); 117 spin_unlock_irq(conf->hash_locks); 118 } 119 120 /* Find first data disk in a raid6 stripe */ 121 static inline int raid6_d0(struct stripe_head *sh) 122 { 123 if (sh->ddf_layout) 124 /* ddf always start from first device */ 125 return 0; 126 /* md starts just after Q block */ 127 if (sh->qd_idx == sh->disks - 1) 128 return 0; 129 else 130 return sh->qd_idx + 1; 131 } 132 static inline int raid6_next_disk(int disk, int raid_disks) 133 { 134 disk++; 135 return (disk < raid_disks) ? disk : 0; 136 } 137 138 /* When walking through the disks in a raid5, starting at raid6_d0, 139 * We need to map each disk to a 'slot', where the data disks are slot 140 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk 141 * is raid_disks-1. This help does that mapping. 142 */ 143 static int raid6_idx_to_slot(int idx, struct stripe_head *sh, 144 int *count, int syndrome_disks) 145 { 146 int slot = *count; 147 148 if (sh->ddf_layout) 149 (*count)++; 150 if (idx == sh->pd_idx) 151 return syndrome_disks; 152 if (idx == sh->qd_idx) 153 return syndrome_disks + 1; 154 if (!sh->ddf_layout) 155 (*count)++; 156 return slot; 157 } 158 159 static void print_raid5_conf (struct r5conf *conf); 160 161 static int stripe_operations_active(struct stripe_head *sh) 162 { 163 return sh->check_state || sh->reconstruct_state || 164 test_bit(STRIPE_BIOFILL_RUN, &sh->state) || 165 test_bit(STRIPE_COMPUTE_RUN, &sh->state); 166 } 167 168 static bool stripe_is_lowprio(struct stripe_head *sh) 169 { 170 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) || 171 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) && 172 !test_bit(STRIPE_R5C_CACHING, &sh->state); 173 } 174 175 static void raid5_wakeup_stripe_thread(struct stripe_head *sh) 176 __must_hold(&sh->raid_conf->device_lock) 177 { 178 struct r5conf *conf = sh->raid_conf; 179 struct r5worker_group *group; 180 int thread_cnt; 181 int i, cpu = sh->cpu; 182 183 if (!cpu_online(cpu)) { 184 cpu = cpumask_any(cpu_online_mask); 185 sh->cpu = cpu; 186 } 187 188 if (list_empty(&sh->lru)) { 189 struct r5worker_group *group; 190 group = conf->worker_groups + cpu_to_group(cpu); 191 if (stripe_is_lowprio(sh)) 192 list_add_tail(&sh->lru, &group->loprio_list); 193 else 194 list_add_tail(&sh->lru, &group->handle_list); 195 group->stripes_cnt++; 196 sh->group = group; 197 } 198 199 if (conf->worker_cnt_per_group == 0) { 200 md_wakeup_thread(conf->mddev->thread); 201 return; 202 } 203 204 group = conf->worker_groups + cpu_to_group(sh->cpu); 205 206 group->workers[0].working = true; 207 /* at least one worker should run to avoid race */ 208 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work); 209 210 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1; 211 /* wakeup more workers */ 212 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) { 213 if (group->workers[i].working == false) { 214 group->workers[i].working = true; 215 queue_work_on(sh->cpu, raid5_wq, 216 &group->workers[i].work); 217 thread_cnt--; 218 } 219 } 220 } 221 222 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh, 223 struct list_head *temp_inactive_list) 224 __must_hold(&conf->device_lock) 225 { 226 int i; 227 int injournal = 0; /* number of date pages with R5_InJournal */ 228 229 BUG_ON(!list_empty(&sh->lru)); 230 BUG_ON(atomic_read(&conf->active_stripes)==0); 231 232 if (r5c_is_writeback(conf->log)) 233 for (i = sh->disks; i--; ) 234 if (test_bit(R5_InJournal, &sh->dev[i].flags)) 235 injournal++; 236 /* 237 * In the following cases, the stripe cannot be released to cached 238 * lists. Therefore, we make the stripe write out and set 239 * STRIPE_HANDLE: 240 * 1. when quiesce in r5c write back; 241 * 2. when resync is requested fot the stripe. 242 */ 243 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) || 244 (conf->quiesce && r5c_is_writeback(conf->log) && 245 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) { 246 if (test_bit(STRIPE_R5C_CACHING, &sh->state)) 247 r5c_make_stripe_write_out(sh); 248 set_bit(STRIPE_HANDLE, &sh->state); 249 } 250 251 if (test_bit(STRIPE_HANDLE, &sh->state)) { 252 if (test_bit(STRIPE_DELAYED, &sh->state) && 253 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 254 list_add_tail(&sh->lru, &conf->delayed_list); 255 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) && 256 sh->bm_seq - conf->seq_write > 0) 257 list_add_tail(&sh->lru, &conf->bitmap_list); 258 else { 259 clear_bit(STRIPE_DELAYED, &sh->state); 260 clear_bit(STRIPE_BIT_DELAY, &sh->state); 261 if (conf->worker_cnt_per_group == 0) { 262 if (stripe_is_lowprio(sh)) 263 list_add_tail(&sh->lru, 264 &conf->loprio_list); 265 else 266 list_add_tail(&sh->lru, 267 &conf->handle_list); 268 } else { 269 raid5_wakeup_stripe_thread(sh); 270 return; 271 } 272 } 273 md_wakeup_thread(conf->mddev->thread); 274 } else { 275 BUG_ON(stripe_operations_active(sh)); 276 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 277 if (atomic_dec_return(&conf->preread_active_stripes) 278 < IO_THRESHOLD) 279 md_wakeup_thread(conf->mddev->thread); 280 atomic_dec(&conf->active_stripes); 281 if (!test_bit(STRIPE_EXPANDING, &sh->state)) { 282 if (!r5c_is_writeback(conf->log)) 283 list_add_tail(&sh->lru, temp_inactive_list); 284 else { 285 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags)); 286 if (injournal == 0) 287 list_add_tail(&sh->lru, temp_inactive_list); 288 else if (injournal == conf->raid_disks - conf->max_degraded) { 289 /* full stripe */ 290 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) 291 atomic_inc(&conf->r5c_cached_full_stripes); 292 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) 293 atomic_dec(&conf->r5c_cached_partial_stripes); 294 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list); 295 r5c_check_cached_full_stripe(conf); 296 } else 297 /* 298 * STRIPE_R5C_PARTIAL_STRIPE is set in 299 * r5c_try_caching_write(). No need to 300 * set it again. 301 */ 302 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list); 303 } 304 } 305 } 306 } 307 308 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh, 309 struct list_head *temp_inactive_list) 310 __must_hold(&conf->device_lock) 311 { 312 if (atomic_dec_and_test(&sh->count)) 313 do_release_stripe(conf, sh, temp_inactive_list); 314 } 315 316 /* 317 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list 318 * 319 * Be careful: Only one task can add/delete stripes from temp_inactive_list at 320 * given time. Adding stripes only takes device lock, while deleting stripes 321 * only takes hash lock. 322 */ 323 static void release_inactive_stripe_list(struct r5conf *conf, 324 struct list_head *temp_inactive_list, 325 int hash) 326 { 327 int size; 328 bool do_wakeup = false; 329 unsigned long flags; 330 331 if (hash == NR_STRIPE_HASH_LOCKS) { 332 size = NR_STRIPE_HASH_LOCKS; 333 hash = NR_STRIPE_HASH_LOCKS - 1; 334 } else 335 size = 1; 336 while (size) { 337 struct list_head *list = &temp_inactive_list[size - 1]; 338 339 /* 340 * We don't hold any lock here yet, raid5_get_active_stripe() might 341 * remove stripes from the list 342 */ 343 if (!list_empty_careful(list)) { 344 spin_lock_irqsave(conf->hash_locks + hash, flags); 345 if (list_empty(conf->inactive_list + hash) && 346 !list_empty(list)) 347 atomic_dec(&conf->empty_inactive_list_nr); 348 list_splice_tail_init(list, conf->inactive_list + hash); 349 do_wakeup = true; 350 spin_unlock_irqrestore(conf->hash_locks + hash, flags); 351 } 352 size--; 353 hash--; 354 } 355 356 if (do_wakeup) { 357 wake_up(&conf->wait_for_stripe); 358 if (atomic_read(&conf->active_stripes) == 0) 359 wake_up(&conf->wait_for_quiescent); 360 if (conf->retry_read_aligned) 361 md_wakeup_thread(conf->mddev->thread); 362 } 363 } 364 365 static int release_stripe_list(struct r5conf *conf, 366 struct list_head *temp_inactive_list) 367 __must_hold(&conf->device_lock) 368 { 369 struct stripe_head *sh, *t; 370 int count = 0; 371 struct llist_node *head; 372 373 head = llist_del_all(&conf->released_stripes); 374 head = llist_reverse_order(head); 375 llist_for_each_entry_safe(sh, t, head, release_list) { 376 int hash; 377 378 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */ 379 smp_mb(); 380 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state); 381 /* 382 * Don't worry the bit is set here, because if the bit is set 383 * again, the count is always > 1. This is true for 384 * STRIPE_ON_UNPLUG_LIST bit too. 385 */ 386 hash = sh->hash_lock_index; 387 __release_stripe(conf, sh, &temp_inactive_list[hash]); 388 count++; 389 } 390 391 return count; 392 } 393 394 void raid5_release_stripe(struct stripe_head *sh) 395 { 396 struct r5conf *conf = sh->raid_conf; 397 unsigned long flags; 398 struct list_head list; 399 int hash; 400 bool wakeup; 401 402 /* Avoid release_list until the last reference. 403 */ 404 if (atomic_add_unless(&sh->count, -1, 1)) 405 return; 406 407 if (unlikely(!conf->mddev->thread) || 408 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state)) 409 goto slow_path; 410 wakeup = llist_add(&sh->release_list, &conf->released_stripes); 411 if (wakeup) 412 md_wakeup_thread(conf->mddev->thread); 413 return; 414 slow_path: 415 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */ 416 if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) { 417 INIT_LIST_HEAD(&list); 418 hash = sh->hash_lock_index; 419 do_release_stripe(conf, sh, &list); 420 spin_unlock_irqrestore(&conf->device_lock, flags); 421 release_inactive_stripe_list(conf, &list, hash); 422 } 423 } 424 425 static inline void remove_hash(struct stripe_head *sh) 426 { 427 pr_debug("remove_hash(), stripe %llu\n", 428 (unsigned long long)sh->sector); 429 430 hlist_del_init(&sh->hash); 431 } 432 433 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh) 434 { 435 struct hlist_head *hp = stripe_hash(conf, sh->sector); 436 437 pr_debug("insert_hash(), stripe %llu\n", 438 (unsigned long long)sh->sector); 439 440 hlist_add_head(&sh->hash, hp); 441 } 442 443 /* find an idle stripe, make sure it is unhashed, and return it. */ 444 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash) 445 { 446 struct stripe_head *sh = NULL; 447 struct list_head *first; 448 449 if (list_empty(conf->inactive_list + hash)) 450 goto out; 451 first = (conf->inactive_list + hash)->next; 452 sh = list_entry(first, struct stripe_head, lru); 453 list_del_init(first); 454 remove_hash(sh); 455 atomic_inc(&conf->active_stripes); 456 BUG_ON(hash != sh->hash_lock_index); 457 if (list_empty(conf->inactive_list + hash)) 458 atomic_inc(&conf->empty_inactive_list_nr); 459 out: 460 return sh; 461 } 462 463 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 464 static void free_stripe_pages(struct stripe_head *sh) 465 { 466 int i; 467 struct page *p; 468 469 /* Have not allocate page pool */ 470 if (!sh->pages) 471 return; 472 473 for (i = 0; i < sh->nr_pages; i++) { 474 p = sh->pages[i]; 475 if (p) 476 put_page(p); 477 sh->pages[i] = NULL; 478 } 479 } 480 481 static int alloc_stripe_pages(struct stripe_head *sh, gfp_t gfp) 482 { 483 int i; 484 struct page *p; 485 486 for (i = 0; i < sh->nr_pages; i++) { 487 /* The page have allocated. */ 488 if (sh->pages[i]) 489 continue; 490 491 p = alloc_page(gfp); 492 if (!p) { 493 free_stripe_pages(sh); 494 return -ENOMEM; 495 } 496 sh->pages[i] = p; 497 } 498 return 0; 499 } 500 501 static int 502 init_stripe_shared_pages(struct stripe_head *sh, struct r5conf *conf, int disks) 503 { 504 int nr_pages, cnt; 505 506 if (sh->pages) 507 return 0; 508 509 /* Each of the sh->dev[i] need one conf->stripe_size */ 510 cnt = PAGE_SIZE / conf->stripe_size; 511 nr_pages = (disks + cnt - 1) / cnt; 512 513 sh->pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL); 514 if (!sh->pages) 515 return -ENOMEM; 516 sh->nr_pages = nr_pages; 517 sh->stripes_per_page = cnt; 518 return 0; 519 } 520 #endif 521 522 static void shrink_buffers(struct stripe_head *sh) 523 { 524 int i; 525 int num = sh->raid_conf->pool_size; 526 527 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE 528 for (i = 0; i < num ; i++) { 529 struct page *p; 530 531 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page); 532 p = sh->dev[i].page; 533 if (!p) 534 continue; 535 sh->dev[i].page = NULL; 536 put_page(p); 537 } 538 #else 539 for (i = 0; i < num; i++) 540 sh->dev[i].page = NULL; 541 free_stripe_pages(sh); /* Free pages */ 542 #endif 543 } 544 545 static int grow_buffers(struct stripe_head *sh, gfp_t gfp) 546 { 547 int i; 548 int num = sh->raid_conf->pool_size; 549 550 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE 551 for (i = 0; i < num; i++) { 552 struct page *page; 553 554 if (!(page = alloc_page(gfp))) { 555 return 1; 556 } 557 sh->dev[i].page = page; 558 sh->dev[i].orig_page = page; 559 sh->dev[i].offset = 0; 560 } 561 #else 562 if (alloc_stripe_pages(sh, gfp)) 563 return -ENOMEM; 564 565 for (i = 0; i < num; i++) { 566 sh->dev[i].page = raid5_get_dev_page(sh, i); 567 sh->dev[i].orig_page = sh->dev[i].page; 568 sh->dev[i].offset = raid5_get_page_offset(sh, i); 569 } 570 #endif 571 return 0; 572 } 573 574 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 575 struct stripe_head *sh); 576 577 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous) 578 { 579 struct r5conf *conf = sh->raid_conf; 580 int i, seq; 581 582 BUG_ON(atomic_read(&sh->count) != 0); 583 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); 584 BUG_ON(stripe_operations_active(sh)); 585 BUG_ON(sh->batch_head); 586 587 pr_debug("init_stripe called, stripe %llu\n", 588 (unsigned long long)sector); 589 retry: 590 seq = read_seqcount_begin(&conf->gen_lock); 591 sh->generation = conf->generation - previous; 592 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks; 593 sh->sector = sector; 594 stripe_set_idx(sector, conf, previous, sh); 595 sh->state = 0; 596 597 for (i = sh->disks; i--; ) { 598 struct r5dev *dev = &sh->dev[i]; 599 600 if (dev->toread || dev->read || dev->towrite || dev->written || 601 test_bit(R5_LOCKED, &dev->flags)) { 602 pr_err("sector=%llx i=%d %p %p %p %p %d\n", 603 (unsigned long long)sh->sector, i, dev->toread, 604 dev->read, dev->towrite, dev->written, 605 test_bit(R5_LOCKED, &dev->flags)); 606 WARN_ON(1); 607 } 608 dev->flags = 0; 609 dev->sector = raid5_compute_blocknr(sh, i, previous); 610 } 611 if (read_seqcount_retry(&conf->gen_lock, seq)) 612 goto retry; 613 sh->overwrite_disks = 0; 614 insert_hash(conf, sh); 615 sh->cpu = smp_processor_id(); 616 set_bit(STRIPE_BATCH_READY, &sh->state); 617 } 618 619 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector, 620 short generation) 621 { 622 struct stripe_head *sh; 623 624 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector); 625 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash) 626 if (sh->sector == sector && sh->generation == generation) 627 return sh; 628 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector); 629 return NULL; 630 } 631 632 static struct stripe_head *find_get_stripe(struct r5conf *conf, 633 sector_t sector, short generation, int hash) 634 { 635 int inc_empty_inactive_list_flag; 636 struct stripe_head *sh; 637 638 sh = __find_stripe(conf, sector, generation); 639 if (!sh) 640 return NULL; 641 642 if (atomic_inc_not_zero(&sh->count)) 643 return sh; 644 645 /* 646 * Slow path. The reference count is zero which means the stripe must 647 * be on a list (sh->lru). Must remove the stripe from the list that 648 * references it with the device_lock held. 649 */ 650 651 spin_lock(&conf->device_lock); 652 if (!atomic_read(&sh->count)) { 653 if (!test_bit(STRIPE_HANDLE, &sh->state)) 654 atomic_inc(&conf->active_stripes); 655 BUG_ON(list_empty(&sh->lru) && 656 !test_bit(STRIPE_EXPANDING, &sh->state)); 657 inc_empty_inactive_list_flag = 0; 658 if (!list_empty(conf->inactive_list + hash)) 659 inc_empty_inactive_list_flag = 1; 660 list_del_init(&sh->lru); 661 if (list_empty(conf->inactive_list + hash) && 662 inc_empty_inactive_list_flag) 663 atomic_inc(&conf->empty_inactive_list_nr); 664 if (sh->group) { 665 sh->group->stripes_cnt--; 666 sh->group = NULL; 667 } 668 } 669 atomic_inc(&sh->count); 670 spin_unlock(&conf->device_lock); 671 672 return sh; 673 } 674 675 /* 676 * Need to check if array has failed when deciding whether to: 677 * - start an array 678 * - remove non-faulty devices 679 * - add a spare 680 * - allow a reshape 681 * This determination is simple when no reshape is happening. 682 * However if there is a reshape, we need to carefully check 683 * both the before and after sections. 684 * This is because some failed devices may only affect one 685 * of the two sections, and some non-in_sync devices may 686 * be insync in the section most affected by failed devices. 687 * 688 * Most calls to this function hold &conf->device_lock. Calls 689 * in raid5_run() do not require the lock as no other threads 690 * have been started yet. 691 */ 692 int raid5_calc_degraded(struct r5conf *conf) 693 { 694 int degraded, degraded2; 695 int i; 696 697 degraded = 0; 698 for (i = 0; i < conf->previous_raid_disks; i++) { 699 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev); 700 701 if (rdev && test_bit(Faulty, &rdev->flags)) 702 rdev = READ_ONCE(conf->disks[i].replacement); 703 if (!rdev || test_bit(Faulty, &rdev->flags)) 704 degraded++; 705 else if (test_bit(In_sync, &rdev->flags)) 706 ; 707 else 708 /* not in-sync or faulty. 709 * If the reshape increases the number of devices, 710 * this is being recovered by the reshape, so 711 * this 'previous' section is not in_sync. 712 * If the number of devices is being reduced however, 713 * the device can only be part of the array if 714 * we are reverting a reshape, so this section will 715 * be in-sync. 716 */ 717 if (conf->raid_disks >= conf->previous_raid_disks) 718 degraded++; 719 } 720 if (conf->raid_disks == conf->previous_raid_disks) 721 return degraded; 722 degraded2 = 0; 723 for (i = 0; i < conf->raid_disks; i++) { 724 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev); 725 726 if (rdev && test_bit(Faulty, &rdev->flags)) 727 rdev = READ_ONCE(conf->disks[i].replacement); 728 if (!rdev || test_bit(Faulty, &rdev->flags)) 729 degraded2++; 730 else if (test_bit(In_sync, &rdev->flags)) 731 ; 732 else 733 /* not in-sync or faulty. 734 * If reshape increases the number of devices, this 735 * section has already been recovered, else it 736 * almost certainly hasn't. 737 */ 738 if (conf->raid_disks <= conf->previous_raid_disks) 739 degraded2++; 740 } 741 if (degraded2 > degraded) 742 return degraded2; 743 return degraded; 744 } 745 746 static bool has_failed(struct r5conf *conf) 747 { 748 int degraded = conf->mddev->degraded; 749 750 if (test_bit(MD_BROKEN, &conf->mddev->flags)) 751 return true; 752 753 if (conf->mddev->reshape_position != MaxSector) 754 degraded = raid5_calc_degraded(conf); 755 756 return degraded > conf->max_degraded; 757 } 758 759 enum stripe_result { 760 STRIPE_SUCCESS = 0, 761 STRIPE_RETRY, 762 STRIPE_SCHEDULE_AND_RETRY, 763 STRIPE_FAIL, 764 STRIPE_WAIT_RESHAPE, 765 }; 766 767 struct stripe_request_ctx { 768 /* a reference to the last stripe_head for batching */ 769 struct stripe_head *batch_last; 770 771 /* first sector in the request */ 772 sector_t first_sector; 773 774 /* last sector in the request */ 775 sector_t last_sector; 776 777 /* 778 * bitmap to track stripe sectors that have been added to stripes 779 * add one to account for unaligned requests 780 */ 781 DECLARE_BITMAP(sectors_to_do, RAID5_MAX_REQ_STRIPES + 1); 782 783 /* the request had REQ_PREFLUSH, cleared after the first stripe_head */ 784 bool do_flush; 785 }; 786 787 /* 788 * Block until another thread clears R5_INACTIVE_BLOCKED or 789 * there are fewer than 3/4 the maximum number of active stripes 790 * and there is an inactive stripe available. 791 */ 792 static bool is_inactive_blocked(struct r5conf *conf, int hash) 793 { 794 if (list_empty(conf->inactive_list + hash)) 795 return false; 796 797 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) 798 return true; 799 800 return (atomic_read(&conf->active_stripes) < 801 (conf->max_nr_stripes * 3 / 4)); 802 } 803 804 struct stripe_head *raid5_get_active_stripe(struct r5conf *conf, 805 struct stripe_request_ctx *ctx, sector_t sector, 806 unsigned int flags) 807 { 808 struct stripe_head *sh; 809 int hash = stripe_hash_locks_hash(conf, sector); 810 int previous = !!(flags & R5_GAS_PREVIOUS); 811 812 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector); 813 814 spin_lock_irq(conf->hash_locks + hash); 815 816 for (;;) { 817 if (!(flags & R5_GAS_NOQUIESCE) && conf->quiesce) { 818 /* 819 * Must release the reference to batch_last before 820 * waiting, on quiesce, otherwise the batch_last will 821 * hold a reference to a stripe and raid5_quiesce() 822 * will deadlock waiting for active_stripes to go to 823 * zero. 824 */ 825 if (ctx && ctx->batch_last) { 826 raid5_release_stripe(ctx->batch_last); 827 ctx->batch_last = NULL; 828 } 829 830 wait_event_lock_irq(conf->wait_for_quiescent, 831 !conf->quiesce, 832 *(conf->hash_locks + hash)); 833 } 834 835 sh = find_get_stripe(conf, sector, conf->generation - previous, 836 hash); 837 if (sh) 838 break; 839 840 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) { 841 sh = get_free_stripe(conf, hash); 842 if (sh) { 843 r5c_check_stripe_cache_usage(conf); 844 init_stripe(sh, sector, previous); 845 atomic_inc(&sh->count); 846 break; 847 } 848 849 if (!test_bit(R5_DID_ALLOC, &conf->cache_state)) 850 set_bit(R5_ALLOC_MORE, &conf->cache_state); 851 } 852 853 if (flags & R5_GAS_NOBLOCK) 854 break; 855 856 set_bit(R5_INACTIVE_BLOCKED, &conf->cache_state); 857 r5l_wake_reclaim(conf->log, 0); 858 859 /* release batch_last before wait to avoid risk of deadlock */ 860 if (ctx && ctx->batch_last) { 861 raid5_release_stripe(ctx->batch_last); 862 ctx->batch_last = NULL; 863 } 864 865 wait_event_lock_irq(conf->wait_for_stripe, 866 is_inactive_blocked(conf, hash), 867 *(conf->hash_locks + hash)); 868 clear_bit(R5_INACTIVE_BLOCKED, &conf->cache_state); 869 } 870 871 spin_unlock_irq(conf->hash_locks + hash); 872 return sh; 873 } 874 875 static bool is_full_stripe_write(struct stripe_head *sh) 876 { 877 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded)); 878 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded); 879 } 880 881 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) 882 __acquires(&sh1->stripe_lock) 883 __acquires(&sh2->stripe_lock) 884 { 885 if (sh1 > sh2) { 886 spin_lock_irq(&sh2->stripe_lock); 887 spin_lock_nested(&sh1->stripe_lock, 1); 888 } else { 889 spin_lock_irq(&sh1->stripe_lock); 890 spin_lock_nested(&sh2->stripe_lock, 1); 891 } 892 } 893 894 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) 895 __releases(&sh1->stripe_lock) 896 __releases(&sh2->stripe_lock) 897 { 898 spin_unlock(&sh1->stripe_lock); 899 spin_unlock_irq(&sh2->stripe_lock); 900 } 901 902 /* Only freshly new full stripe normal write stripe can be added to a batch list */ 903 static bool stripe_can_batch(struct stripe_head *sh) 904 { 905 struct r5conf *conf = sh->raid_conf; 906 907 if (raid5_has_log(conf) || raid5_has_ppl(conf)) 908 return false; 909 return test_bit(STRIPE_BATCH_READY, &sh->state) && 910 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) && 911 is_full_stripe_write(sh); 912 } 913 914 /* we only do back search */ 915 static void stripe_add_to_batch_list(struct r5conf *conf, 916 struct stripe_head *sh, struct stripe_head *last_sh) 917 { 918 struct stripe_head *head; 919 sector_t head_sector, tmp_sec; 920 int hash; 921 int dd_idx; 922 923 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */ 924 tmp_sec = sh->sector; 925 if (!sector_div(tmp_sec, conf->chunk_sectors)) 926 return; 927 head_sector = sh->sector - RAID5_STRIPE_SECTORS(conf); 928 929 if (last_sh && head_sector == last_sh->sector) { 930 head = last_sh; 931 atomic_inc(&head->count); 932 } else { 933 hash = stripe_hash_locks_hash(conf, head_sector); 934 spin_lock_irq(conf->hash_locks + hash); 935 head = find_get_stripe(conf, head_sector, conf->generation, 936 hash); 937 spin_unlock_irq(conf->hash_locks + hash); 938 if (!head) 939 return; 940 if (!stripe_can_batch(head)) 941 goto out; 942 } 943 944 lock_two_stripes(head, sh); 945 /* clear_batch_ready clear the flag */ 946 if (!stripe_can_batch(head) || !stripe_can_batch(sh)) 947 goto unlock_out; 948 949 if (sh->batch_head) 950 goto unlock_out; 951 952 dd_idx = 0; 953 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx) 954 dd_idx++; 955 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf || 956 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite)) 957 goto unlock_out; 958 959 if (head->batch_head) { 960 spin_lock(&head->batch_head->batch_lock); 961 /* This batch list is already running */ 962 if (!stripe_can_batch(head)) { 963 spin_unlock(&head->batch_head->batch_lock); 964 goto unlock_out; 965 } 966 /* 967 * We must assign batch_head of this stripe within the 968 * batch_lock, otherwise clear_batch_ready of batch head 969 * stripe could clear BATCH_READY bit of this stripe and 970 * this stripe->batch_head doesn't get assigned, which 971 * could confuse clear_batch_ready for this stripe 972 */ 973 sh->batch_head = head->batch_head; 974 975 /* 976 * at this point, head's BATCH_READY could be cleared, but we 977 * can still add the stripe to batch list 978 */ 979 list_add(&sh->batch_list, &head->batch_list); 980 spin_unlock(&head->batch_head->batch_lock); 981 } else { 982 head->batch_head = head; 983 sh->batch_head = head->batch_head; 984 spin_lock(&head->batch_lock); 985 list_add_tail(&sh->batch_list, &head->batch_list); 986 spin_unlock(&head->batch_lock); 987 } 988 989 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 990 if (atomic_dec_return(&conf->preread_active_stripes) 991 < IO_THRESHOLD) 992 md_wakeup_thread(conf->mddev->thread); 993 994 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) { 995 int seq = sh->bm_seq; 996 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) && 997 sh->batch_head->bm_seq > seq) 998 seq = sh->batch_head->bm_seq; 999 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state); 1000 sh->batch_head->bm_seq = seq; 1001 } 1002 1003 atomic_inc(&sh->count); 1004 unlock_out: 1005 unlock_two_stripes(head, sh); 1006 out: 1007 raid5_release_stripe(head); 1008 } 1009 1010 /* Determine if 'data_offset' or 'new_data_offset' should be used 1011 * in this stripe_head. 1012 */ 1013 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh) 1014 { 1015 sector_t progress = conf->reshape_progress; 1016 /* Need a memory barrier to make sure we see the value 1017 * of conf->generation, or ->data_offset that was set before 1018 * reshape_progress was updated. 1019 */ 1020 smp_rmb(); 1021 if (progress == MaxSector) 1022 return 0; 1023 if (sh->generation == conf->generation - 1) 1024 return 0; 1025 /* We are in a reshape, and this is a new-generation stripe, 1026 * so use new_data_offset. 1027 */ 1028 return 1; 1029 } 1030 1031 static void dispatch_bio_list(struct bio_list *tmp) 1032 { 1033 struct bio *bio; 1034 1035 while ((bio = bio_list_pop(tmp))) 1036 submit_bio_noacct(bio); 1037 } 1038 1039 static int cmp_stripe(void *priv, const struct list_head *a, 1040 const struct list_head *b) 1041 { 1042 const struct r5pending_data *da = list_entry(a, 1043 struct r5pending_data, sibling); 1044 const struct r5pending_data *db = list_entry(b, 1045 struct r5pending_data, sibling); 1046 if (da->sector > db->sector) 1047 return 1; 1048 if (da->sector < db->sector) 1049 return -1; 1050 return 0; 1051 } 1052 1053 static void dispatch_defer_bios(struct r5conf *conf, int target, 1054 struct bio_list *list) 1055 { 1056 struct r5pending_data *data; 1057 struct list_head *first, *next = NULL; 1058 int cnt = 0; 1059 1060 if (conf->pending_data_cnt == 0) 1061 return; 1062 1063 list_sort(NULL, &conf->pending_list, cmp_stripe); 1064 1065 first = conf->pending_list.next; 1066 1067 /* temporarily move the head */ 1068 if (conf->next_pending_data) 1069 list_move_tail(&conf->pending_list, 1070 &conf->next_pending_data->sibling); 1071 1072 while (!list_empty(&conf->pending_list)) { 1073 data = list_first_entry(&conf->pending_list, 1074 struct r5pending_data, sibling); 1075 if (&data->sibling == first) 1076 first = data->sibling.next; 1077 next = data->sibling.next; 1078 1079 bio_list_merge(list, &data->bios); 1080 list_move(&data->sibling, &conf->free_list); 1081 cnt++; 1082 if (cnt >= target) 1083 break; 1084 } 1085 conf->pending_data_cnt -= cnt; 1086 BUG_ON(conf->pending_data_cnt < 0 || cnt < target); 1087 1088 if (next != &conf->pending_list) 1089 conf->next_pending_data = list_entry(next, 1090 struct r5pending_data, sibling); 1091 else 1092 conf->next_pending_data = NULL; 1093 /* list isn't empty */ 1094 if (first != &conf->pending_list) 1095 list_move_tail(&conf->pending_list, first); 1096 } 1097 1098 static void flush_deferred_bios(struct r5conf *conf) 1099 { 1100 struct bio_list tmp = BIO_EMPTY_LIST; 1101 1102 if (conf->pending_data_cnt == 0) 1103 return; 1104 1105 spin_lock(&conf->pending_bios_lock); 1106 dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp); 1107 BUG_ON(conf->pending_data_cnt != 0); 1108 spin_unlock(&conf->pending_bios_lock); 1109 1110 dispatch_bio_list(&tmp); 1111 } 1112 1113 static void defer_issue_bios(struct r5conf *conf, sector_t sector, 1114 struct bio_list *bios) 1115 { 1116 struct bio_list tmp = BIO_EMPTY_LIST; 1117 struct r5pending_data *ent; 1118 1119 spin_lock(&conf->pending_bios_lock); 1120 ent = list_first_entry(&conf->free_list, struct r5pending_data, 1121 sibling); 1122 list_move_tail(&ent->sibling, &conf->pending_list); 1123 ent->sector = sector; 1124 bio_list_init(&ent->bios); 1125 bio_list_merge(&ent->bios, bios); 1126 conf->pending_data_cnt++; 1127 if (conf->pending_data_cnt >= PENDING_IO_MAX) 1128 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp); 1129 1130 spin_unlock(&conf->pending_bios_lock); 1131 1132 dispatch_bio_list(&tmp); 1133 } 1134 1135 static void 1136 raid5_end_read_request(struct bio *bi); 1137 static void 1138 raid5_end_write_request(struct bio *bi); 1139 1140 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s) 1141 { 1142 struct r5conf *conf = sh->raid_conf; 1143 int i, disks = sh->disks; 1144 struct stripe_head *head_sh = sh; 1145 struct bio_list pending_bios = BIO_EMPTY_LIST; 1146 struct r5dev *dev; 1147 bool should_defer; 1148 1149 might_sleep(); 1150 1151 if (log_stripe(sh, s) == 0) 1152 return; 1153 1154 should_defer = conf->batch_bio_dispatch && conf->group_cnt; 1155 1156 for (i = disks; i--; ) { 1157 enum req_op op; 1158 blk_opf_t op_flags = 0; 1159 int replace_only = 0; 1160 struct bio *bi, *rbi; 1161 struct md_rdev *rdev, *rrdev = NULL; 1162 1163 sh = head_sh; 1164 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) { 1165 op = REQ_OP_WRITE; 1166 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags)) 1167 op_flags = REQ_FUA; 1168 if (test_bit(R5_Discard, &sh->dev[i].flags)) 1169 op = REQ_OP_DISCARD; 1170 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags)) 1171 op = REQ_OP_READ; 1172 else if (test_and_clear_bit(R5_WantReplace, 1173 &sh->dev[i].flags)) { 1174 op = REQ_OP_WRITE; 1175 replace_only = 1; 1176 } else 1177 continue; 1178 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags)) 1179 op_flags |= REQ_SYNC; 1180 1181 again: 1182 dev = &sh->dev[i]; 1183 bi = &dev->req; 1184 rbi = &dev->rreq; /* For writing to replacement */ 1185 1186 rdev = conf->disks[i].rdev; 1187 rrdev = conf->disks[i].replacement; 1188 if (op_is_write(op)) { 1189 if (replace_only) 1190 rdev = NULL; 1191 if (rdev == rrdev) 1192 /* We raced and saw duplicates */ 1193 rrdev = NULL; 1194 } else { 1195 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev) 1196 rdev = rrdev; 1197 rrdev = NULL; 1198 } 1199 1200 if (rdev && test_bit(Faulty, &rdev->flags)) 1201 rdev = NULL; 1202 if (rdev) 1203 atomic_inc(&rdev->nr_pending); 1204 if (rrdev && test_bit(Faulty, &rrdev->flags)) 1205 rrdev = NULL; 1206 if (rrdev) 1207 atomic_inc(&rrdev->nr_pending); 1208 1209 /* We have already checked bad blocks for reads. Now 1210 * need to check for writes. We never accept write errors 1211 * on the replacement, so we don't to check rrdev. 1212 */ 1213 while (op_is_write(op) && rdev && 1214 test_bit(WriteErrorSeen, &rdev->flags)) { 1215 int bad = rdev_has_badblock(rdev, sh->sector, 1216 RAID5_STRIPE_SECTORS(conf)); 1217 if (!bad) 1218 break; 1219 1220 if (bad < 0) { 1221 set_bit(BlockedBadBlocks, &rdev->flags); 1222 if (!conf->mddev->external && 1223 conf->mddev->sb_flags) { 1224 /* It is very unlikely, but we might 1225 * still need to write out the 1226 * bad block log - better give it 1227 * a chance*/ 1228 md_check_recovery(conf->mddev); 1229 } 1230 /* 1231 * Because md_wait_for_blocked_rdev 1232 * will dec nr_pending, we must 1233 * increment it first. 1234 */ 1235 atomic_inc(&rdev->nr_pending); 1236 md_wait_for_blocked_rdev(rdev, conf->mddev); 1237 } else { 1238 /* Acknowledged bad block - skip the write */ 1239 rdev_dec_pending(rdev, conf->mddev); 1240 rdev = NULL; 1241 } 1242 } 1243 1244 if (rdev) { 1245 if (s->syncing || s->expanding || s->expanded 1246 || s->replacing) 1247 md_sync_acct(rdev->bdev, RAID5_STRIPE_SECTORS(conf)); 1248 1249 set_bit(STRIPE_IO_STARTED, &sh->state); 1250 1251 bio_init(bi, rdev->bdev, &dev->vec, 1, op | op_flags); 1252 bi->bi_end_io = op_is_write(op) 1253 ? raid5_end_write_request 1254 : raid5_end_read_request; 1255 bi->bi_private = sh; 1256 1257 pr_debug("%s: for %llu schedule op %d on disc %d\n", 1258 __func__, (unsigned long long)sh->sector, 1259 bi->bi_opf, i); 1260 atomic_inc(&sh->count); 1261 if (sh != head_sh) 1262 atomic_inc(&head_sh->count); 1263 if (use_new_offset(conf, sh)) 1264 bi->bi_iter.bi_sector = (sh->sector 1265 + rdev->new_data_offset); 1266 else 1267 bi->bi_iter.bi_sector = (sh->sector 1268 + rdev->data_offset); 1269 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags)) 1270 bi->bi_opf |= REQ_NOMERGE; 1271 1272 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 1273 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 1274 1275 if (!op_is_write(op) && 1276 test_bit(R5_InJournal, &sh->dev[i].flags)) 1277 /* 1278 * issuing read for a page in journal, this 1279 * must be preparing for prexor in rmw; read 1280 * the data into orig_page 1281 */ 1282 sh->dev[i].vec.bv_page = sh->dev[i].orig_page; 1283 else 1284 sh->dev[i].vec.bv_page = sh->dev[i].page; 1285 bi->bi_vcnt = 1; 1286 bi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf); 1287 bi->bi_io_vec[0].bv_offset = sh->dev[i].offset; 1288 bi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf); 1289 /* 1290 * If this is discard request, set bi_vcnt 0. We don't 1291 * want to confuse SCSI because SCSI will replace payload 1292 */ 1293 if (op == REQ_OP_DISCARD) 1294 bi->bi_vcnt = 0; 1295 if (rrdev) 1296 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags); 1297 1298 mddev_trace_remap(conf->mddev, bi, sh->dev[i].sector); 1299 if (should_defer && op_is_write(op)) 1300 bio_list_add(&pending_bios, bi); 1301 else 1302 submit_bio_noacct(bi); 1303 } 1304 if (rrdev) { 1305 if (s->syncing || s->expanding || s->expanded 1306 || s->replacing) 1307 md_sync_acct(rrdev->bdev, RAID5_STRIPE_SECTORS(conf)); 1308 1309 set_bit(STRIPE_IO_STARTED, &sh->state); 1310 1311 bio_init(rbi, rrdev->bdev, &dev->rvec, 1, op | op_flags); 1312 BUG_ON(!op_is_write(op)); 1313 rbi->bi_end_io = raid5_end_write_request; 1314 rbi->bi_private = sh; 1315 1316 pr_debug("%s: for %llu schedule op %d on " 1317 "replacement disc %d\n", 1318 __func__, (unsigned long long)sh->sector, 1319 rbi->bi_opf, i); 1320 atomic_inc(&sh->count); 1321 if (sh != head_sh) 1322 atomic_inc(&head_sh->count); 1323 if (use_new_offset(conf, sh)) 1324 rbi->bi_iter.bi_sector = (sh->sector 1325 + rrdev->new_data_offset); 1326 else 1327 rbi->bi_iter.bi_sector = (sh->sector 1328 + rrdev->data_offset); 1329 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 1330 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 1331 sh->dev[i].rvec.bv_page = sh->dev[i].page; 1332 rbi->bi_vcnt = 1; 1333 rbi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf); 1334 rbi->bi_io_vec[0].bv_offset = sh->dev[i].offset; 1335 rbi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf); 1336 /* 1337 * If this is discard request, set bi_vcnt 0. We don't 1338 * want to confuse SCSI because SCSI will replace payload 1339 */ 1340 if (op == REQ_OP_DISCARD) 1341 rbi->bi_vcnt = 0; 1342 mddev_trace_remap(conf->mddev, rbi, sh->dev[i].sector); 1343 if (should_defer && op_is_write(op)) 1344 bio_list_add(&pending_bios, rbi); 1345 else 1346 submit_bio_noacct(rbi); 1347 } 1348 if (!rdev && !rrdev) { 1349 if (op_is_write(op)) 1350 set_bit(STRIPE_DEGRADED, &sh->state); 1351 pr_debug("skip op %d on disc %d for sector %llu\n", 1352 bi->bi_opf, i, (unsigned long long)sh->sector); 1353 clear_bit(R5_LOCKED, &sh->dev[i].flags); 1354 set_bit(STRIPE_HANDLE, &sh->state); 1355 } 1356 1357 if (!head_sh->batch_head) 1358 continue; 1359 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1360 batch_list); 1361 if (sh != head_sh) 1362 goto again; 1363 } 1364 1365 if (should_defer && !bio_list_empty(&pending_bios)) 1366 defer_issue_bios(conf, head_sh->sector, &pending_bios); 1367 } 1368 1369 static struct dma_async_tx_descriptor * 1370 async_copy_data(int frombio, struct bio *bio, struct page **page, 1371 unsigned int poff, sector_t sector, struct dma_async_tx_descriptor *tx, 1372 struct stripe_head *sh, int no_skipcopy) 1373 { 1374 struct bio_vec bvl; 1375 struct bvec_iter iter; 1376 struct page *bio_page; 1377 int page_offset; 1378 struct async_submit_ctl submit; 1379 enum async_tx_flags flags = 0; 1380 struct r5conf *conf = sh->raid_conf; 1381 1382 if (bio->bi_iter.bi_sector >= sector) 1383 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512; 1384 else 1385 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512; 1386 1387 if (frombio) 1388 flags |= ASYNC_TX_FENCE; 1389 init_async_submit(&submit, flags, tx, NULL, NULL, NULL); 1390 1391 bio_for_each_segment(bvl, bio, iter) { 1392 int len = bvl.bv_len; 1393 int clen; 1394 int b_offset = 0; 1395 1396 if (page_offset < 0) { 1397 b_offset = -page_offset; 1398 page_offset += b_offset; 1399 len -= b_offset; 1400 } 1401 1402 if (len > 0 && page_offset + len > RAID5_STRIPE_SIZE(conf)) 1403 clen = RAID5_STRIPE_SIZE(conf) - page_offset; 1404 else 1405 clen = len; 1406 1407 if (clen > 0) { 1408 b_offset += bvl.bv_offset; 1409 bio_page = bvl.bv_page; 1410 if (frombio) { 1411 if (conf->skip_copy && 1412 b_offset == 0 && page_offset == 0 && 1413 clen == RAID5_STRIPE_SIZE(conf) && 1414 !no_skipcopy) 1415 *page = bio_page; 1416 else 1417 tx = async_memcpy(*page, bio_page, page_offset + poff, 1418 b_offset, clen, &submit); 1419 } else 1420 tx = async_memcpy(bio_page, *page, b_offset, 1421 page_offset + poff, clen, &submit); 1422 } 1423 /* chain the operations */ 1424 submit.depend_tx = tx; 1425 1426 if (clen < len) /* hit end of page */ 1427 break; 1428 page_offset += len; 1429 } 1430 1431 return tx; 1432 } 1433 1434 static void ops_complete_biofill(void *stripe_head_ref) 1435 { 1436 struct stripe_head *sh = stripe_head_ref; 1437 int i; 1438 struct r5conf *conf = sh->raid_conf; 1439 1440 pr_debug("%s: stripe %llu\n", __func__, 1441 (unsigned long long)sh->sector); 1442 1443 /* clear completed biofills */ 1444 for (i = sh->disks; i--; ) { 1445 struct r5dev *dev = &sh->dev[i]; 1446 1447 /* acknowledge completion of a biofill operation */ 1448 /* and check if we need to reply to a read request, 1449 * new R5_Wantfill requests are held off until 1450 * !STRIPE_BIOFILL_RUN 1451 */ 1452 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) { 1453 struct bio *rbi, *rbi2; 1454 1455 BUG_ON(!dev->read); 1456 rbi = dev->read; 1457 dev->read = NULL; 1458 while (rbi && rbi->bi_iter.bi_sector < 1459 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 1460 rbi2 = r5_next_bio(conf, rbi, dev->sector); 1461 bio_endio(rbi); 1462 rbi = rbi2; 1463 } 1464 } 1465 } 1466 clear_bit(STRIPE_BIOFILL_RUN, &sh->state); 1467 1468 set_bit(STRIPE_HANDLE, &sh->state); 1469 raid5_release_stripe(sh); 1470 } 1471 1472 static void ops_run_biofill(struct stripe_head *sh) 1473 { 1474 struct dma_async_tx_descriptor *tx = NULL; 1475 struct async_submit_ctl submit; 1476 int i; 1477 struct r5conf *conf = sh->raid_conf; 1478 1479 BUG_ON(sh->batch_head); 1480 pr_debug("%s: stripe %llu\n", __func__, 1481 (unsigned long long)sh->sector); 1482 1483 for (i = sh->disks; i--; ) { 1484 struct r5dev *dev = &sh->dev[i]; 1485 if (test_bit(R5_Wantfill, &dev->flags)) { 1486 struct bio *rbi; 1487 spin_lock_irq(&sh->stripe_lock); 1488 dev->read = rbi = dev->toread; 1489 dev->toread = NULL; 1490 spin_unlock_irq(&sh->stripe_lock); 1491 while (rbi && rbi->bi_iter.bi_sector < 1492 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 1493 tx = async_copy_data(0, rbi, &dev->page, 1494 dev->offset, 1495 dev->sector, tx, sh, 0); 1496 rbi = r5_next_bio(conf, rbi, dev->sector); 1497 } 1498 } 1499 } 1500 1501 atomic_inc(&sh->count); 1502 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL); 1503 async_trigger_callback(&submit); 1504 } 1505 1506 static void mark_target_uptodate(struct stripe_head *sh, int target) 1507 { 1508 struct r5dev *tgt; 1509 1510 if (target < 0) 1511 return; 1512 1513 tgt = &sh->dev[target]; 1514 set_bit(R5_UPTODATE, &tgt->flags); 1515 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1516 clear_bit(R5_Wantcompute, &tgt->flags); 1517 } 1518 1519 static void ops_complete_compute(void *stripe_head_ref) 1520 { 1521 struct stripe_head *sh = stripe_head_ref; 1522 1523 pr_debug("%s: stripe %llu\n", __func__, 1524 (unsigned long long)sh->sector); 1525 1526 /* mark the computed target(s) as uptodate */ 1527 mark_target_uptodate(sh, sh->ops.target); 1528 mark_target_uptodate(sh, sh->ops.target2); 1529 1530 clear_bit(STRIPE_COMPUTE_RUN, &sh->state); 1531 if (sh->check_state == check_state_compute_run) 1532 sh->check_state = check_state_compute_result; 1533 set_bit(STRIPE_HANDLE, &sh->state); 1534 raid5_release_stripe(sh); 1535 } 1536 1537 /* return a pointer to the address conversion region of the scribble buffer */ 1538 static struct page **to_addr_page(struct raid5_percpu *percpu, int i) 1539 { 1540 return percpu->scribble + i * percpu->scribble_obj_size; 1541 } 1542 1543 /* return a pointer to the address conversion region of the scribble buffer */ 1544 static addr_conv_t *to_addr_conv(struct stripe_head *sh, 1545 struct raid5_percpu *percpu, int i) 1546 { 1547 return (void *) (to_addr_page(percpu, i) + sh->disks + 2); 1548 } 1549 1550 /* 1551 * Return a pointer to record offset address. 1552 */ 1553 static unsigned int * 1554 to_addr_offs(struct stripe_head *sh, struct raid5_percpu *percpu) 1555 { 1556 return (unsigned int *) (to_addr_conv(sh, percpu, 0) + sh->disks + 2); 1557 } 1558 1559 static struct dma_async_tx_descriptor * 1560 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu) 1561 { 1562 int disks = sh->disks; 1563 struct page **xor_srcs = to_addr_page(percpu, 0); 1564 unsigned int *off_srcs = to_addr_offs(sh, percpu); 1565 int target = sh->ops.target; 1566 struct r5dev *tgt = &sh->dev[target]; 1567 struct page *xor_dest = tgt->page; 1568 unsigned int off_dest = tgt->offset; 1569 int count = 0; 1570 struct dma_async_tx_descriptor *tx; 1571 struct async_submit_ctl submit; 1572 int i; 1573 1574 BUG_ON(sh->batch_head); 1575 1576 pr_debug("%s: stripe %llu block: %d\n", 1577 __func__, (unsigned long long)sh->sector, target); 1578 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1579 1580 for (i = disks; i--; ) { 1581 if (i != target) { 1582 off_srcs[count] = sh->dev[i].offset; 1583 xor_srcs[count++] = sh->dev[i].page; 1584 } 1585 } 1586 1587 atomic_inc(&sh->count); 1588 1589 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL, 1590 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0)); 1591 if (unlikely(count == 1)) 1592 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0], 1593 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1594 else 1595 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count, 1596 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1597 1598 return tx; 1599 } 1600 1601 /* set_syndrome_sources - populate source buffers for gen_syndrome 1602 * @srcs - (struct page *) array of size sh->disks 1603 * @offs - (unsigned int) array of offset for each page 1604 * @sh - stripe_head to parse 1605 * 1606 * Populates srcs in proper layout order for the stripe and returns the 1607 * 'count' of sources to be used in a call to async_gen_syndrome. The P 1608 * destination buffer is recorded in srcs[count] and the Q destination 1609 * is recorded in srcs[count+1]]. 1610 */ 1611 static int set_syndrome_sources(struct page **srcs, 1612 unsigned int *offs, 1613 struct stripe_head *sh, 1614 int srctype) 1615 { 1616 int disks = sh->disks; 1617 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2); 1618 int d0_idx = raid6_d0(sh); 1619 int count; 1620 int i; 1621 1622 for (i = 0; i < disks; i++) 1623 srcs[i] = NULL; 1624 1625 count = 0; 1626 i = d0_idx; 1627 do { 1628 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1629 struct r5dev *dev = &sh->dev[i]; 1630 1631 if (i == sh->qd_idx || i == sh->pd_idx || 1632 (srctype == SYNDROME_SRC_ALL) || 1633 (srctype == SYNDROME_SRC_WANT_DRAIN && 1634 (test_bit(R5_Wantdrain, &dev->flags) || 1635 test_bit(R5_InJournal, &dev->flags))) || 1636 (srctype == SYNDROME_SRC_WRITTEN && 1637 (dev->written || 1638 test_bit(R5_InJournal, &dev->flags)))) { 1639 if (test_bit(R5_InJournal, &dev->flags)) 1640 srcs[slot] = sh->dev[i].orig_page; 1641 else 1642 srcs[slot] = sh->dev[i].page; 1643 /* 1644 * For R5_InJournal, PAGE_SIZE must be 4KB and will 1645 * not shared page. In that case, dev[i].offset 1646 * is 0. 1647 */ 1648 offs[slot] = sh->dev[i].offset; 1649 } 1650 i = raid6_next_disk(i, disks); 1651 } while (i != d0_idx); 1652 1653 return syndrome_disks; 1654 } 1655 1656 static struct dma_async_tx_descriptor * 1657 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu) 1658 { 1659 int disks = sh->disks; 1660 struct page **blocks = to_addr_page(percpu, 0); 1661 unsigned int *offs = to_addr_offs(sh, percpu); 1662 int target; 1663 int qd_idx = sh->qd_idx; 1664 struct dma_async_tx_descriptor *tx; 1665 struct async_submit_ctl submit; 1666 struct r5dev *tgt; 1667 struct page *dest; 1668 unsigned int dest_off; 1669 int i; 1670 int count; 1671 1672 BUG_ON(sh->batch_head); 1673 if (sh->ops.target < 0) 1674 target = sh->ops.target2; 1675 else if (sh->ops.target2 < 0) 1676 target = sh->ops.target; 1677 else 1678 /* we should only have one valid target */ 1679 BUG(); 1680 BUG_ON(target < 0); 1681 pr_debug("%s: stripe %llu block: %d\n", 1682 __func__, (unsigned long long)sh->sector, target); 1683 1684 tgt = &sh->dev[target]; 1685 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1686 dest = tgt->page; 1687 dest_off = tgt->offset; 1688 1689 atomic_inc(&sh->count); 1690 1691 if (target == qd_idx) { 1692 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL); 1693 blocks[count] = NULL; /* regenerating p is not necessary */ 1694 BUG_ON(blocks[count+1] != dest); /* q should already be set */ 1695 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1696 ops_complete_compute, sh, 1697 to_addr_conv(sh, percpu, 0)); 1698 tx = async_gen_syndrome(blocks, offs, count+2, 1699 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1700 } else { 1701 /* Compute any data- or p-drive using XOR */ 1702 count = 0; 1703 for (i = disks; i-- ; ) { 1704 if (i == target || i == qd_idx) 1705 continue; 1706 offs[count] = sh->dev[i].offset; 1707 blocks[count++] = sh->dev[i].page; 1708 } 1709 1710 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1711 NULL, ops_complete_compute, sh, 1712 to_addr_conv(sh, percpu, 0)); 1713 tx = async_xor_offs(dest, dest_off, blocks, offs, count, 1714 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1715 } 1716 1717 return tx; 1718 } 1719 1720 static struct dma_async_tx_descriptor * 1721 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu) 1722 { 1723 int i, count, disks = sh->disks; 1724 int syndrome_disks = sh->ddf_layout ? disks : disks-2; 1725 int d0_idx = raid6_d0(sh); 1726 int faila = -1, failb = -1; 1727 int target = sh->ops.target; 1728 int target2 = sh->ops.target2; 1729 struct r5dev *tgt = &sh->dev[target]; 1730 struct r5dev *tgt2 = &sh->dev[target2]; 1731 struct dma_async_tx_descriptor *tx; 1732 struct page **blocks = to_addr_page(percpu, 0); 1733 unsigned int *offs = to_addr_offs(sh, percpu); 1734 struct async_submit_ctl submit; 1735 1736 BUG_ON(sh->batch_head); 1737 pr_debug("%s: stripe %llu block1: %d block2: %d\n", 1738 __func__, (unsigned long long)sh->sector, target, target2); 1739 BUG_ON(target < 0 || target2 < 0); 1740 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1741 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags)); 1742 1743 /* we need to open-code set_syndrome_sources to handle the 1744 * slot number conversion for 'faila' and 'failb' 1745 */ 1746 for (i = 0; i < disks ; i++) { 1747 offs[i] = 0; 1748 blocks[i] = NULL; 1749 } 1750 count = 0; 1751 i = d0_idx; 1752 do { 1753 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1754 1755 offs[slot] = sh->dev[i].offset; 1756 blocks[slot] = sh->dev[i].page; 1757 1758 if (i == target) 1759 faila = slot; 1760 if (i == target2) 1761 failb = slot; 1762 i = raid6_next_disk(i, disks); 1763 } while (i != d0_idx); 1764 1765 BUG_ON(faila == failb); 1766 if (failb < faila) 1767 swap(faila, failb); 1768 pr_debug("%s: stripe: %llu faila: %d failb: %d\n", 1769 __func__, (unsigned long long)sh->sector, faila, failb); 1770 1771 atomic_inc(&sh->count); 1772 1773 if (failb == syndrome_disks+1) { 1774 /* Q disk is one of the missing disks */ 1775 if (faila == syndrome_disks) { 1776 /* Missing P+Q, just recompute */ 1777 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1778 ops_complete_compute, sh, 1779 to_addr_conv(sh, percpu, 0)); 1780 return async_gen_syndrome(blocks, offs, syndrome_disks+2, 1781 RAID5_STRIPE_SIZE(sh->raid_conf), 1782 &submit); 1783 } else { 1784 struct page *dest; 1785 unsigned int dest_off; 1786 int data_target; 1787 int qd_idx = sh->qd_idx; 1788 1789 /* Missing D+Q: recompute D from P, then recompute Q */ 1790 if (target == qd_idx) 1791 data_target = target2; 1792 else 1793 data_target = target; 1794 1795 count = 0; 1796 for (i = disks; i-- ; ) { 1797 if (i == data_target || i == qd_idx) 1798 continue; 1799 offs[count] = sh->dev[i].offset; 1800 blocks[count++] = sh->dev[i].page; 1801 } 1802 dest = sh->dev[data_target].page; 1803 dest_off = sh->dev[data_target].offset; 1804 init_async_submit(&submit, 1805 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1806 NULL, NULL, NULL, 1807 to_addr_conv(sh, percpu, 0)); 1808 tx = async_xor_offs(dest, dest_off, blocks, offs, count, 1809 RAID5_STRIPE_SIZE(sh->raid_conf), 1810 &submit); 1811 1812 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL); 1813 init_async_submit(&submit, ASYNC_TX_FENCE, tx, 1814 ops_complete_compute, sh, 1815 to_addr_conv(sh, percpu, 0)); 1816 return async_gen_syndrome(blocks, offs, count+2, 1817 RAID5_STRIPE_SIZE(sh->raid_conf), 1818 &submit); 1819 } 1820 } else { 1821 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1822 ops_complete_compute, sh, 1823 to_addr_conv(sh, percpu, 0)); 1824 if (failb == syndrome_disks) { 1825 /* We're missing D+P. */ 1826 return async_raid6_datap_recov(syndrome_disks+2, 1827 RAID5_STRIPE_SIZE(sh->raid_conf), 1828 faila, 1829 blocks, offs, &submit); 1830 } else { 1831 /* We're missing D+D. */ 1832 return async_raid6_2data_recov(syndrome_disks+2, 1833 RAID5_STRIPE_SIZE(sh->raid_conf), 1834 faila, failb, 1835 blocks, offs, &submit); 1836 } 1837 } 1838 } 1839 1840 static void ops_complete_prexor(void *stripe_head_ref) 1841 { 1842 struct stripe_head *sh = stripe_head_ref; 1843 1844 pr_debug("%s: stripe %llu\n", __func__, 1845 (unsigned long long)sh->sector); 1846 1847 if (r5c_is_writeback(sh->raid_conf->log)) 1848 /* 1849 * raid5-cache write back uses orig_page during prexor. 1850 * After prexor, it is time to free orig_page 1851 */ 1852 r5c_release_extra_page(sh); 1853 } 1854 1855 static struct dma_async_tx_descriptor * 1856 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu, 1857 struct dma_async_tx_descriptor *tx) 1858 { 1859 int disks = sh->disks; 1860 struct page **xor_srcs = to_addr_page(percpu, 0); 1861 unsigned int *off_srcs = to_addr_offs(sh, percpu); 1862 int count = 0, pd_idx = sh->pd_idx, i; 1863 struct async_submit_ctl submit; 1864 1865 /* existing parity data subtracted */ 1866 unsigned int off_dest = off_srcs[count] = sh->dev[pd_idx].offset; 1867 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1868 1869 BUG_ON(sh->batch_head); 1870 pr_debug("%s: stripe %llu\n", __func__, 1871 (unsigned long long)sh->sector); 1872 1873 for (i = disks; i--; ) { 1874 struct r5dev *dev = &sh->dev[i]; 1875 /* Only process blocks that are known to be uptodate */ 1876 if (test_bit(R5_InJournal, &dev->flags)) { 1877 /* 1878 * For this case, PAGE_SIZE must be equal to 4KB and 1879 * page offset is zero. 1880 */ 1881 off_srcs[count] = dev->offset; 1882 xor_srcs[count++] = dev->orig_page; 1883 } else if (test_bit(R5_Wantdrain, &dev->flags)) { 1884 off_srcs[count] = dev->offset; 1885 xor_srcs[count++] = dev->page; 1886 } 1887 } 1888 1889 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx, 1890 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); 1891 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count, 1892 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1893 1894 return tx; 1895 } 1896 1897 static struct dma_async_tx_descriptor * 1898 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu, 1899 struct dma_async_tx_descriptor *tx) 1900 { 1901 struct page **blocks = to_addr_page(percpu, 0); 1902 unsigned int *offs = to_addr_offs(sh, percpu); 1903 int count; 1904 struct async_submit_ctl submit; 1905 1906 pr_debug("%s: stripe %llu\n", __func__, 1907 (unsigned long long)sh->sector); 1908 1909 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_WANT_DRAIN); 1910 1911 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx, 1912 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); 1913 tx = async_gen_syndrome(blocks, offs, count+2, 1914 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1915 1916 return tx; 1917 } 1918 1919 static struct dma_async_tx_descriptor * 1920 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) 1921 { 1922 struct r5conf *conf = sh->raid_conf; 1923 int disks = sh->disks; 1924 int i; 1925 struct stripe_head *head_sh = sh; 1926 1927 pr_debug("%s: stripe %llu\n", __func__, 1928 (unsigned long long)sh->sector); 1929 1930 for (i = disks; i--; ) { 1931 struct r5dev *dev; 1932 struct bio *chosen; 1933 1934 sh = head_sh; 1935 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) { 1936 struct bio *wbi; 1937 1938 again: 1939 dev = &sh->dev[i]; 1940 /* 1941 * clear R5_InJournal, so when rewriting a page in 1942 * journal, it is not skipped by r5l_log_stripe() 1943 */ 1944 clear_bit(R5_InJournal, &dev->flags); 1945 spin_lock_irq(&sh->stripe_lock); 1946 chosen = dev->towrite; 1947 dev->towrite = NULL; 1948 sh->overwrite_disks = 0; 1949 BUG_ON(dev->written); 1950 wbi = dev->written = chosen; 1951 spin_unlock_irq(&sh->stripe_lock); 1952 WARN_ON(dev->page != dev->orig_page); 1953 1954 while (wbi && wbi->bi_iter.bi_sector < 1955 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 1956 if (wbi->bi_opf & REQ_FUA) 1957 set_bit(R5_WantFUA, &dev->flags); 1958 if (wbi->bi_opf & REQ_SYNC) 1959 set_bit(R5_SyncIO, &dev->flags); 1960 if (bio_op(wbi) == REQ_OP_DISCARD) 1961 set_bit(R5_Discard, &dev->flags); 1962 else { 1963 tx = async_copy_data(1, wbi, &dev->page, 1964 dev->offset, 1965 dev->sector, tx, sh, 1966 r5c_is_writeback(conf->log)); 1967 if (dev->page != dev->orig_page && 1968 !r5c_is_writeback(conf->log)) { 1969 set_bit(R5_SkipCopy, &dev->flags); 1970 clear_bit(R5_UPTODATE, &dev->flags); 1971 clear_bit(R5_OVERWRITE, &dev->flags); 1972 } 1973 } 1974 wbi = r5_next_bio(conf, wbi, dev->sector); 1975 } 1976 1977 if (head_sh->batch_head) { 1978 sh = list_first_entry(&sh->batch_list, 1979 struct stripe_head, 1980 batch_list); 1981 if (sh == head_sh) 1982 continue; 1983 goto again; 1984 } 1985 } 1986 } 1987 1988 return tx; 1989 } 1990 1991 static void ops_complete_reconstruct(void *stripe_head_ref) 1992 { 1993 struct stripe_head *sh = stripe_head_ref; 1994 int disks = sh->disks; 1995 int pd_idx = sh->pd_idx; 1996 int qd_idx = sh->qd_idx; 1997 int i; 1998 bool fua = false, sync = false, discard = false; 1999 2000 pr_debug("%s: stripe %llu\n", __func__, 2001 (unsigned long long)sh->sector); 2002 2003 for (i = disks; i--; ) { 2004 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags); 2005 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags); 2006 discard |= test_bit(R5_Discard, &sh->dev[i].flags); 2007 } 2008 2009 for (i = disks; i--; ) { 2010 struct r5dev *dev = &sh->dev[i]; 2011 2012 if (dev->written || i == pd_idx || i == qd_idx) { 2013 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) { 2014 set_bit(R5_UPTODATE, &dev->flags); 2015 if (test_bit(STRIPE_EXPAND_READY, &sh->state)) 2016 set_bit(R5_Expanded, &dev->flags); 2017 } 2018 if (fua) 2019 set_bit(R5_WantFUA, &dev->flags); 2020 if (sync) 2021 set_bit(R5_SyncIO, &dev->flags); 2022 } 2023 } 2024 2025 if (sh->reconstruct_state == reconstruct_state_drain_run) 2026 sh->reconstruct_state = reconstruct_state_drain_result; 2027 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) 2028 sh->reconstruct_state = reconstruct_state_prexor_drain_result; 2029 else { 2030 BUG_ON(sh->reconstruct_state != reconstruct_state_run); 2031 sh->reconstruct_state = reconstruct_state_result; 2032 } 2033 2034 set_bit(STRIPE_HANDLE, &sh->state); 2035 raid5_release_stripe(sh); 2036 } 2037 2038 static void 2039 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu, 2040 struct dma_async_tx_descriptor *tx) 2041 { 2042 int disks = sh->disks; 2043 struct page **xor_srcs; 2044 unsigned int *off_srcs; 2045 struct async_submit_ctl submit; 2046 int count, pd_idx = sh->pd_idx, i; 2047 struct page *xor_dest; 2048 unsigned int off_dest; 2049 int prexor = 0; 2050 unsigned long flags; 2051 int j = 0; 2052 struct stripe_head *head_sh = sh; 2053 int last_stripe; 2054 2055 pr_debug("%s: stripe %llu\n", __func__, 2056 (unsigned long long)sh->sector); 2057 2058 for (i = 0; i < sh->disks; i++) { 2059 if (pd_idx == i) 2060 continue; 2061 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 2062 break; 2063 } 2064 if (i >= sh->disks) { 2065 atomic_inc(&sh->count); 2066 set_bit(R5_Discard, &sh->dev[pd_idx].flags); 2067 ops_complete_reconstruct(sh); 2068 return; 2069 } 2070 again: 2071 count = 0; 2072 xor_srcs = to_addr_page(percpu, j); 2073 off_srcs = to_addr_offs(sh, percpu); 2074 /* check if prexor is active which means only process blocks 2075 * that are part of a read-modify-write (written) 2076 */ 2077 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 2078 prexor = 1; 2079 off_dest = off_srcs[count] = sh->dev[pd_idx].offset; 2080 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 2081 for (i = disks; i--; ) { 2082 struct r5dev *dev = &sh->dev[i]; 2083 if (head_sh->dev[i].written || 2084 test_bit(R5_InJournal, &head_sh->dev[i].flags)) { 2085 off_srcs[count] = dev->offset; 2086 xor_srcs[count++] = dev->page; 2087 } 2088 } 2089 } else { 2090 xor_dest = sh->dev[pd_idx].page; 2091 off_dest = sh->dev[pd_idx].offset; 2092 for (i = disks; i--; ) { 2093 struct r5dev *dev = &sh->dev[i]; 2094 if (i != pd_idx) { 2095 off_srcs[count] = dev->offset; 2096 xor_srcs[count++] = dev->page; 2097 } 2098 } 2099 } 2100 2101 /* 1/ if we prexor'd then the dest is reused as a source 2102 * 2/ if we did not prexor then we are redoing the parity 2103 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST 2104 * for the synchronous xor case 2105 */ 2106 last_stripe = !head_sh->batch_head || 2107 list_first_entry(&sh->batch_list, 2108 struct stripe_head, batch_list) == head_sh; 2109 if (last_stripe) { 2110 flags = ASYNC_TX_ACK | 2111 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST); 2112 2113 atomic_inc(&head_sh->count); 2114 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh, 2115 to_addr_conv(sh, percpu, j)); 2116 } else { 2117 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST; 2118 init_async_submit(&submit, flags, tx, NULL, NULL, 2119 to_addr_conv(sh, percpu, j)); 2120 } 2121 2122 if (unlikely(count == 1)) 2123 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0], 2124 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 2125 else 2126 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count, 2127 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 2128 if (!last_stripe) { 2129 j++; 2130 sh = list_first_entry(&sh->batch_list, struct stripe_head, 2131 batch_list); 2132 goto again; 2133 } 2134 } 2135 2136 static void 2137 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu, 2138 struct dma_async_tx_descriptor *tx) 2139 { 2140 struct async_submit_ctl submit; 2141 struct page **blocks; 2142 unsigned int *offs; 2143 int count, i, j = 0; 2144 struct stripe_head *head_sh = sh; 2145 int last_stripe; 2146 int synflags; 2147 unsigned long txflags; 2148 2149 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); 2150 2151 for (i = 0; i < sh->disks; i++) { 2152 if (sh->pd_idx == i || sh->qd_idx == i) 2153 continue; 2154 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 2155 break; 2156 } 2157 if (i >= sh->disks) { 2158 atomic_inc(&sh->count); 2159 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 2160 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 2161 ops_complete_reconstruct(sh); 2162 return; 2163 } 2164 2165 again: 2166 blocks = to_addr_page(percpu, j); 2167 offs = to_addr_offs(sh, percpu); 2168 2169 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 2170 synflags = SYNDROME_SRC_WRITTEN; 2171 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST; 2172 } else { 2173 synflags = SYNDROME_SRC_ALL; 2174 txflags = ASYNC_TX_ACK; 2175 } 2176 2177 count = set_syndrome_sources(blocks, offs, sh, synflags); 2178 last_stripe = !head_sh->batch_head || 2179 list_first_entry(&sh->batch_list, 2180 struct stripe_head, batch_list) == head_sh; 2181 2182 if (last_stripe) { 2183 atomic_inc(&head_sh->count); 2184 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct, 2185 head_sh, to_addr_conv(sh, percpu, j)); 2186 } else 2187 init_async_submit(&submit, 0, tx, NULL, NULL, 2188 to_addr_conv(sh, percpu, j)); 2189 tx = async_gen_syndrome(blocks, offs, count+2, 2190 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 2191 if (!last_stripe) { 2192 j++; 2193 sh = list_first_entry(&sh->batch_list, struct stripe_head, 2194 batch_list); 2195 goto again; 2196 } 2197 } 2198 2199 static void ops_complete_check(void *stripe_head_ref) 2200 { 2201 struct stripe_head *sh = stripe_head_ref; 2202 2203 pr_debug("%s: stripe %llu\n", __func__, 2204 (unsigned long long)sh->sector); 2205 2206 sh->check_state = check_state_check_result; 2207 set_bit(STRIPE_HANDLE, &sh->state); 2208 raid5_release_stripe(sh); 2209 } 2210 2211 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu) 2212 { 2213 int disks = sh->disks; 2214 int pd_idx = sh->pd_idx; 2215 int qd_idx = sh->qd_idx; 2216 struct page *xor_dest; 2217 unsigned int off_dest; 2218 struct page **xor_srcs = to_addr_page(percpu, 0); 2219 unsigned int *off_srcs = to_addr_offs(sh, percpu); 2220 struct dma_async_tx_descriptor *tx; 2221 struct async_submit_ctl submit; 2222 int count; 2223 int i; 2224 2225 pr_debug("%s: stripe %llu\n", __func__, 2226 (unsigned long long)sh->sector); 2227 2228 BUG_ON(sh->batch_head); 2229 count = 0; 2230 xor_dest = sh->dev[pd_idx].page; 2231 off_dest = sh->dev[pd_idx].offset; 2232 off_srcs[count] = off_dest; 2233 xor_srcs[count++] = xor_dest; 2234 for (i = disks; i--; ) { 2235 if (i == pd_idx || i == qd_idx) 2236 continue; 2237 off_srcs[count] = sh->dev[i].offset; 2238 xor_srcs[count++] = sh->dev[i].page; 2239 } 2240 2241 init_async_submit(&submit, 0, NULL, NULL, NULL, 2242 to_addr_conv(sh, percpu, 0)); 2243 tx = async_xor_val_offs(xor_dest, off_dest, xor_srcs, off_srcs, count, 2244 RAID5_STRIPE_SIZE(sh->raid_conf), 2245 &sh->ops.zero_sum_result, &submit); 2246 2247 atomic_inc(&sh->count); 2248 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL); 2249 tx = async_trigger_callback(&submit); 2250 } 2251 2252 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp) 2253 { 2254 struct page **srcs = to_addr_page(percpu, 0); 2255 unsigned int *offs = to_addr_offs(sh, percpu); 2256 struct async_submit_ctl submit; 2257 int count; 2258 2259 pr_debug("%s: stripe %llu checkp: %d\n", __func__, 2260 (unsigned long long)sh->sector, checkp); 2261 2262 BUG_ON(sh->batch_head); 2263 count = set_syndrome_sources(srcs, offs, sh, SYNDROME_SRC_ALL); 2264 if (!checkp) 2265 srcs[count] = NULL; 2266 2267 atomic_inc(&sh->count); 2268 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check, 2269 sh, to_addr_conv(sh, percpu, 0)); 2270 async_syndrome_val(srcs, offs, count+2, 2271 RAID5_STRIPE_SIZE(sh->raid_conf), 2272 &sh->ops.zero_sum_result, percpu->spare_page, 0, &submit); 2273 } 2274 2275 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request) 2276 { 2277 int overlap_clear = 0, i, disks = sh->disks; 2278 struct dma_async_tx_descriptor *tx = NULL; 2279 struct r5conf *conf = sh->raid_conf; 2280 int level = conf->level; 2281 struct raid5_percpu *percpu; 2282 2283 local_lock(&conf->percpu->lock); 2284 percpu = this_cpu_ptr(conf->percpu); 2285 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) { 2286 ops_run_biofill(sh); 2287 overlap_clear++; 2288 } 2289 2290 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) { 2291 if (level < 6) 2292 tx = ops_run_compute5(sh, percpu); 2293 else { 2294 if (sh->ops.target2 < 0 || sh->ops.target < 0) 2295 tx = ops_run_compute6_1(sh, percpu); 2296 else 2297 tx = ops_run_compute6_2(sh, percpu); 2298 } 2299 /* terminate the chain if reconstruct is not set to be run */ 2300 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) 2301 async_tx_ack(tx); 2302 } 2303 2304 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) { 2305 if (level < 6) 2306 tx = ops_run_prexor5(sh, percpu, tx); 2307 else 2308 tx = ops_run_prexor6(sh, percpu, tx); 2309 } 2310 2311 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request)) 2312 tx = ops_run_partial_parity(sh, percpu, tx); 2313 2314 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) { 2315 tx = ops_run_biodrain(sh, tx); 2316 overlap_clear++; 2317 } 2318 2319 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) { 2320 if (level < 6) 2321 ops_run_reconstruct5(sh, percpu, tx); 2322 else 2323 ops_run_reconstruct6(sh, percpu, tx); 2324 } 2325 2326 if (test_bit(STRIPE_OP_CHECK, &ops_request)) { 2327 if (sh->check_state == check_state_run) 2328 ops_run_check_p(sh, percpu); 2329 else if (sh->check_state == check_state_run_q) 2330 ops_run_check_pq(sh, percpu, 0); 2331 else if (sh->check_state == check_state_run_pq) 2332 ops_run_check_pq(sh, percpu, 1); 2333 else 2334 BUG(); 2335 } 2336 2337 if (overlap_clear && !sh->batch_head) { 2338 for (i = disks; i--; ) { 2339 struct r5dev *dev = &sh->dev[i]; 2340 if (test_and_clear_bit(R5_Overlap, &dev->flags)) 2341 wake_up(&sh->raid_conf->wait_for_overlap); 2342 } 2343 } 2344 local_unlock(&conf->percpu->lock); 2345 } 2346 2347 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh) 2348 { 2349 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 2350 kfree(sh->pages); 2351 #endif 2352 if (sh->ppl_page) 2353 __free_page(sh->ppl_page); 2354 kmem_cache_free(sc, sh); 2355 } 2356 2357 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp, 2358 int disks, struct r5conf *conf) 2359 { 2360 struct stripe_head *sh; 2361 2362 sh = kmem_cache_zalloc(sc, gfp); 2363 if (sh) { 2364 spin_lock_init(&sh->stripe_lock); 2365 spin_lock_init(&sh->batch_lock); 2366 INIT_LIST_HEAD(&sh->batch_list); 2367 INIT_LIST_HEAD(&sh->lru); 2368 INIT_LIST_HEAD(&sh->r5c); 2369 INIT_LIST_HEAD(&sh->log_list); 2370 atomic_set(&sh->count, 1); 2371 sh->raid_conf = conf; 2372 sh->log_start = MaxSector; 2373 2374 if (raid5_has_ppl(conf)) { 2375 sh->ppl_page = alloc_page(gfp); 2376 if (!sh->ppl_page) { 2377 free_stripe(sc, sh); 2378 return NULL; 2379 } 2380 } 2381 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 2382 if (init_stripe_shared_pages(sh, conf, disks)) { 2383 free_stripe(sc, sh); 2384 return NULL; 2385 } 2386 #endif 2387 } 2388 return sh; 2389 } 2390 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp) 2391 { 2392 struct stripe_head *sh; 2393 2394 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf); 2395 if (!sh) 2396 return 0; 2397 2398 if (grow_buffers(sh, gfp)) { 2399 shrink_buffers(sh); 2400 free_stripe(conf->slab_cache, sh); 2401 return 0; 2402 } 2403 sh->hash_lock_index = 2404 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS; 2405 /* we just created an active stripe so... */ 2406 atomic_inc(&conf->active_stripes); 2407 2408 raid5_release_stripe(sh); 2409 WRITE_ONCE(conf->max_nr_stripes, conf->max_nr_stripes + 1); 2410 return 1; 2411 } 2412 2413 static int grow_stripes(struct r5conf *conf, int num) 2414 { 2415 struct kmem_cache *sc; 2416 size_t namelen = sizeof(conf->cache_name[0]); 2417 int devs = max(conf->raid_disks, conf->previous_raid_disks); 2418 2419 if (mddev_is_dm(conf->mddev)) 2420 snprintf(conf->cache_name[0], namelen, 2421 "raid%d-%p", conf->level, conf->mddev); 2422 else 2423 snprintf(conf->cache_name[0], namelen, 2424 "raid%d-%s", conf->level, mdname(conf->mddev)); 2425 snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]); 2426 2427 conf->active_name = 0; 2428 sc = kmem_cache_create(conf->cache_name[conf->active_name], 2429 struct_size_t(struct stripe_head, dev, devs), 2430 0, 0, NULL); 2431 if (!sc) 2432 return 1; 2433 conf->slab_cache = sc; 2434 conf->pool_size = devs; 2435 while (num--) 2436 if (!grow_one_stripe(conf, GFP_KERNEL)) 2437 return 1; 2438 2439 return 0; 2440 } 2441 2442 /** 2443 * scribble_alloc - allocate percpu scribble buffer for required size 2444 * of the scribble region 2445 * @percpu: from for_each_present_cpu() of the caller 2446 * @num: total number of disks in the array 2447 * @cnt: scribble objs count for required size of the scribble region 2448 * 2449 * The scribble buffer size must be enough to contain: 2450 * 1/ a struct page pointer for each device in the array +2 2451 * 2/ room to convert each entry in (1) to its corresponding dma 2452 * (dma_map_page()) or page (page_address()) address. 2453 * 2454 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we 2455 * calculate over all devices (not just the data blocks), using zeros in place 2456 * of the P and Q blocks. 2457 */ 2458 static int scribble_alloc(struct raid5_percpu *percpu, 2459 int num, int cnt) 2460 { 2461 size_t obj_size = 2462 sizeof(struct page *) * (num + 2) + 2463 sizeof(addr_conv_t) * (num + 2) + 2464 sizeof(unsigned int) * (num + 2); 2465 void *scribble; 2466 2467 /* 2468 * If here is in raid array suspend context, it is in memalloc noio 2469 * context as well, there is no potential recursive memory reclaim 2470 * I/Os with the GFP_KERNEL flag. 2471 */ 2472 scribble = kvmalloc_array(cnt, obj_size, GFP_KERNEL); 2473 if (!scribble) 2474 return -ENOMEM; 2475 2476 kvfree(percpu->scribble); 2477 2478 percpu->scribble = scribble; 2479 percpu->scribble_obj_size = obj_size; 2480 return 0; 2481 } 2482 2483 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors) 2484 { 2485 unsigned long cpu; 2486 int err = 0; 2487 2488 /* Never shrink. */ 2489 if (conf->scribble_disks >= new_disks && 2490 conf->scribble_sectors >= new_sectors) 2491 return 0; 2492 2493 raid5_quiesce(conf->mddev, true); 2494 cpus_read_lock(); 2495 2496 for_each_present_cpu(cpu) { 2497 struct raid5_percpu *percpu; 2498 2499 percpu = per_cpu_ptr(conf->percpu, cpu); 2500 err = scribble_alloc(percpu, new_disks, 2501 new_sectors / RAID5_STRIPE_SECTORS(conf)); 2502 if (err) 2503 break; 2504 } 2505 2506 cpus_read_unlock(); 2507 raid5_quiesce(conf->mddev, false); 2508 2509 if (!err) { 2510 conf->scribble_disks = new_disks; 2511 conf->scribble_sectors = new_sectors; 2512 } 2513 return err; 2514 } 2515 2516 static int resize_stripes(struct r5conf *conf, int newsize) 2517 { 2518 /* Make all the stripes able to hold 'newsize' devices. 2519 * New slots in each stripe get 'page' set to a new page. 2520 * 2521 * This happens in stages: 2522 * 1/ create a new kmem_cache and allocate the required number of 2523 * stripe_heads. 2524 * 2/ gather all the old stripe_heads and transfer the pages across 2525 * to the new stripe_heads. This will have the side effect of 2526 * freezing the array as once all stripe_heads have been collected, 2527 * no IO will be possible. Old stripe heads are freed once their 2528 * pages have been transferred over, and the old kmem_cache is 2529 * freed when all stripes are done. 2530 * 3/ reallocate conf->disks to be suitable bigger. If this fails, 2531 * we simple return a failure status - no need to clean anything up. 2532 * 4/ allocate new pages for the new slots in the new stripe_heads. 2533 * If this fails, we don't bother trying the shrink the 2534 * stripe_heads down again, we just leave them as they are. 2535 * As each stripe_head is processed the new one is released into 2536 * active service. 2537 * 2538 * Once step2 is started, we cannot afford to wait for a write, 2539 * so we use GFP_NOIO allocations. 2540 */ 2541 struct stripe_head *osh, *nsh; 2542 LIST_HEAD(newstripes); 2543 struct disk_info *ndisks; 2544 int err = 0; 2545 struct kmem_cache *sc; 2546 int i; 2547 int hash, cnt; 2548 2549 md_allow_write(conf->mddev); 2550 2551 /* Step 1 */ 2552 sc = kmem_cache_create(conf->cache_name[1-conf->active_name], 2553 struct_size_t(struct stripe_head, dev, newsize), 2554 0, 0, NULL); 2555 if (!sc) 2556 return -ENOMEM; 2557 2558 /* Need to ensure auto-resizing doesn't interfere */ 2559 mutex_lock(&conf->cache_size_mutex); 2560 2561 for (i = conf->max_nr_stripes; i; i--) { 2562 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf); 2563 if (!nsh) 2564 break; 2565 2566 list_add(&nsh->lru, &newstripes); 2567 } 2568 if (i) { 2569 /* didn't get enough, give up */ 2570 while (!list_empty(&newstripes)) { 2571 nsh = list_entry(newstripes.next, struct stripe_head, lru); 2572 list_del(&nsh->lru); 2573 free_stripe(sc, nsh); 2574 } 2575 kmem_cache_destroy(sc); 2576 mutex_unlock(&conf->cache_size_mutex); 2577 return -ENOMEM; 2578 } 2579 /* Step 2 - Must use GFP_NOIO now. 2580 * OK, we have enough stripes, start collecting inactive 2581 * stripes and copying them over 2582 */ 2583 hash = 0; 2584 cnt = 0; 2585 list_for_each_entry(nsh, &newstripes, lru) { 2586 lock_device_hash_lock(conf, hash); 2587 wait_event_cmd(conf->wait_for_stripe, 2588 !list_empty(conf->inactive_list + hash), 2589 unlock_device_hash_lock(conf, hash), 2590 lock_device_hash_lock(conf, hash)); 2591 osh = get_free_stripe(conf, hash); 2592 unlock_device_hash_lock(conf, hash); 2593 2594 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 2595 for (i = 0; i < osh->nr_pages; i++) { 2596 nsh->pages[i] = osh->pages[i]; 2597 osh->pages[i] = NULL; 2598 } 2599 #endif 2600 for(i=0; i<conf->pool_size; i++) { 2601 nsh->dev[i].page = osh->dev[i].page; 2602 nsh->dev[i].orig_page = osh->dev[i].page; 2603 nsh->dev[i].offset = osh->dev[i].offset; 2604 } 2605 nsh->hash_lock_index = hash; 2606 free_stripe(conf->slab_cache, osh); 2607 cnt++; 2608 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS + 2609 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) { 2610 hash++; 2611 cnt = 0; 2612 } 2613 } 2614 kmem_cache_destroy(conf->slab_cache); 2615 2616 /* Step 3. 2617 * At this point, we are holding all the stripes so the array 2618 * is completely stalled, so now is a good time to resize 2619 * conf->disks and the scribble region 2620 */ 2621 ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO); 2622 if (ndisks) { 2623 for (i = 0; i < conf->pool_size; i++) 2624 ndisks[i] = conf->disks[i]; 2625 2626 for (i = conf->pool_size; i < newsize; i++) { 2627 ndisks[i].extra_page = alloc_page(GFP_NOIO); 2628 if (!ndisks[i].extra_page) 2629 err = -ENOMEM; 2630 } 2631 2632 if (err) { 2633 for (i = conf->pool_size; i < newsize; i++) 2634 if (ndisks[i].extra_page) 2635 put_page(ndisks[i].extra_page); 2636 kfree(ndisks); 2637 } else { 2638 kfree(conf->disks); 2639 conf->disks = ndisks; 2640 } 2641 } else 2642 err = -ENOMEM; 2643 2644 conf->slab_cache = sc; 2645 conf->active_name = 1-conf->active_name; 2646 2647 /* Step 4, return new stripes to service */ 2648 while(!list_empty(&newstripes)) { 2649 nsh = list_entry(newstripes.next, struct stripe_head, lru); 2650 list_del_init(&nsh->lru); 2651 2652 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 2653 for (i = 0; i < nsh->nr_pages; i++) { 2654 if (nsh->pages[i]) 2655 continue; 2656 nsh->pages[i] = alloc_page(GFP_NOIO); 2657 if (!nsh->pages[i]) 2658 err = -ENOMEM; 2659 } 2660 2661 for (i = conf->raid_disks; i < newsize; i++) { 2662 if (nsh->dev[i].page) 2663 continue; 2664 nsh->dev[i].page = raid5_get_dev_page(nsh, i); 2665 nsh->dev[i].orig_page = nsh->dev[i].page; 2666 nsh->dev[i].offset = raid5_get_page_offset(nsh, i); 2667 } 2668 #else 2669 for (i=conf->raid_disks; i < newsize; i++) 2670 if (nsh->dev[i].page == NULL) { 2671 struct page *p = alloc_page(GFP_NOIO); 2672 nsh->dev[i].page = p; 2673 nsh->dev[i].orig_page = p; 2674 nsh->dev[i].offset = 0; 2675 if (!p) 2676 err = -ENOMEM; 2677 } 2678 #endif 2679 raid5_release_stripe(nsh); 2680 } 2681 /* critical section pass, GFP_NOIO no longer needed */ 2682 2683 if (!err) 2684 conf->pool_size = newsize; 2685 mutex_unlock(&conf->cache_size_mutex); 2686 2687 return err; 2688 } 2689 2690 static int drop_one_stripe(struct r5conf *conf) 2691 { 2692 struct stripe_head *sh; 2693 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK; 2694 2695 spin_lock_irq(conf->hash_locks + hash); 2696 sh = get_free_stripe(conf, hash); 2697 spin_unlock_irq(conf->hash_locks + hash); 2698 if (!sh) 2699 return 0; 2700 BUG_ON(atomic_read(&sh->count)); 2701 shrink_buffers(sh); 2702 free_stripe(conf->slab_cache, sh); 2703 atomic_dec(&conf->active_stripes); 2704 WRITE_ONCE(conf->max_nr_stripes, conf->max_nr_stripes - 1); 2705 return 1; 2706 } 2707 2708 static void shrink_stripes(struct r5conf *conf) 2709 { 2710 while (conf->max_nr_stripes && 2711 drop_one_stripe(conf)) 2712 ; 2713 2714 kmem_cache_destroy(conf->slab_cache); 2715 conf->slab_cache = NULL; 2716 } 2717 2718 static void raid5_end_read_request(struct bio * bi) 2719 { 2720 struct stripe_head *sh = bi->bi_private; 2721 struct r5conf *conf = sh->raid_conf; 2722 int disks = sh->disks, i; 2723 struct md_rdev *rdev = NULL; 2724 sector_t s; 2725 2726 for (i=0 ; i<disks; i++) 2727 if (bi == &sh->dev[i].req) 2728 break; 2729 2730 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n", 2731 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2732 bi->bi_status); 2733 if (i == disks) { 2734 BUG(); 2735 return; 2736 } 2737 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2738 /* If replacement finished while this request was outstanding, 2739 * 'replacement' might be NULL already. 2740 * In that case it moved down to 'rdev'. 2741 * rdev is not removed until all requests are finished. 2742 */ 2743 rdev = conf->disks[i].replacement; 2744 if (!rdev) 2745 rdev = conf->disks[i].rdev; 2746 2747 if (use_new_offset(conf, sh)) 2748 s = sh->sector + rdev->new_data_offset; 2749 else 2750 s = sh->sector + rdev->data_offset; 2751 if (!bi->bi_status) { 2752 set_bit(R5_UPTODATE, &sh->dev[i].flags); 2753 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 2754 /* Note that this cannot happen on a 2755 * replacement device. We just fail those on 2756 * any error 2757 */ 2758 pr_info_ratelimited( 2759 "md/raid:%s: read error corrected (%lu sectors at %llu on %pg)\n", 2760 mdname(conf->mddev), RAID5_STRIPE_SECTORS(conf), 2761 (unsigned long long)s, 2762 rdev->bdev); 2763 atomic_add(RAID5_STRIPE_SECTORS(conf), &rdev->corrected_errors); 2764 clear_bit(R5_ReadError, &sh->dev[i].flags); 2765 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2766 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2767 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2768 2769 if (test_bit(R5_InJournal, &sh->dev[i].flags)) 2770 /* 2771 * end read for a page in journal, this 2772 * must be preparing for prexor in rmw 2773 */ 2774 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags); 2775 2776 if (atomic_read(&rdev->read_errors)) 2777 atomic_set(&rdev->read_errors, 0); 2778 } else { 2779 int retry = 0; 2780 int set_bad = 0; 2781 2782 clear_bit(R5_UPTODATE, &sh->dev[i].flags); 2783 if (!(bi->bi_status == BLK_STS_PROTECTION)) 2784 atomic_inc(&rdev->read_errors); 2785 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2786 pr_warn_ratelimited( 2787 "md/raid:%s: read error on replacement device (sector %llu on %pg).\n", 2788 mdname(conf->mddev), 2789 (unsigned long long)s, 2790 rdev->bdev); 2791 else if (conf->mddev->degraded >= conf->max_degraded) { 2792 set_bad = 1; 2793 pr_warn_ratelimited( 2794 "md/raid:%s: read error not correctable (sector %llu on %pg).\n", 2795 mdname(conf->mddev), 2796 (unsigned long long)s, 2797 rdev->bdev); 2798 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) { 2799 /* Oh, no!!! */ 2800 set_bad = 1; 2801 pr_warn_ratelimited( 2802 "md/raid:%s: read error NOT corrected!! (sector %llu on %pg).\n", 2803 mdname(conf->mddev), 2804 (unsigned long long)s, 2805 rdev->bdev); 2806 } else if (atomic_read(&rdev->read_errors) 2807 > conf->max_nr_stripes) { 2808 if (!test_bit(Faulty, &rdev->flags)) { 2809 pr_warn("md/raid:%s: %d read_errors > %d stripes\n", 2810 mdname(conf->mddev), 2811 atomic_read(&rdev->read_errors), 2812 conf->max_nr_stripes); 2813 pr_warn("md/raid:%s: Too many read errors, failing device %pg.\n", 2814 mdname(conf->mddev), rdev->bdev); 2815 } 2816 } else 2817 retry = 1; 2818 if (set_bad && test_bit(In_sync, &rdev->flags) 2819 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2820 retry = 1; 2821 if (retry) 2822 if (sh->qd_idx >= 0 && sh->pd_idx == i) 2823 set_bit(R5_ReadError, &sh->dev[i].flags); 2824 else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) { 2825 set_bit(R5_ReadError, &sh->dev[i].flags); 2826 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2827 } else 2828 set_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2829 else { 2830 clear_bit(R5_ReadError, &sh->dev[i].flags); 2831 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2832 if (!(set_bad 2833 && test_bit(In_sync, &rdev->flags) 2834 && rdev_set_badblocks( 2835 rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 0))) 2836 md_error(conf->mddev, rdev); 2837 } 2838 } 2839 rdev_dec_pending(rdev, conf->mddev); 2840 bio_uninit(bi); 2841 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2842 set_bit(STRIPE_HANDLE, &sh->state); 2843 raid5_release_stripe(sh); 2844 } 2845 2846 static void raid5_end_write_request(struct bio *bi) 2847 { 2848 struct stripe_head *sh = bi->bi_private; 2849 struct r5conf *conf = sh->raid_conf; 2850 int disks = sh->disks, i; 2851 struct md_rdev *rdev; 2852 int replacement = 0; 2853 2854 for (i = 0 ; i < disks; i++) { 2855 if (bi == &sh->dev[i].req) { 2856 rdev = conf->disks[i].rdev; 2857 break; 2858 } 2859 if (bi == &sh->dev[i].rreq) { 2860 rdev = conf->disks[i].replacement; 2861 if (rdev) 2862 replacement = 1; 2863 else 2864 /* rdev was removed and 'replacement' 2865 * replaced it. rdev is not removed 2866 * until all requests are finished. 2867 */ 2868 rdev = conf->disks[i].rdev; 2869 break; 2870 } 2871 } 2872 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n", 2873 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2874 bi->bi_status); 2875 if (i == disks) { 2876 BUG(); 2877 return; 2878 } 2879 2880 if (replacement) { 2881 if (bi->bi_status) 2882 md_error(conf->mddev, rdev); 2883 else if (rdev_has_badblock(rdev, sh->sector, 2884 RAID5_STRIPE_SECTORS(conf))) 2885 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags); 2886 } else { 2887 if (bi->bi_status) { 2888 set_bit(STRIPE_DEGRADED, &sh->state); 2889 set_bit(WriteErrorSeen, &rdev->flags); 2890 set_bit(R5_WriteError, &sh->dev[i].flags); 2891 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2892 set_bit(MD_RECOVERY_NEEDED, 2893 &rdev->mddev->recovery); 2894 } else if (rdev_has_badblock(rdev, sh->sector, 2895 RAID5_STRIPE_SECTORS(conf))) { 2896 set_bit(R5_MadeGood, &sh->dev[i].flags); 2897 if (test_bit(R5_ReadError, &sh->dev[i].flags)) 2898 /* That was a successful write so make 2899 * sure it looks like we already did 2900 * a re-write. 2901 */ 2902 set_bit(R5_ReWrite, &sh->dev[i].flags); 2903 } 2904 } 2905 rdev_dec_pending(rdev, conf->mddev); 2906 2907 if (sh->batch_head && bi->bi_status && !replacement) 2908 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state); 2909 2910 bio_uninit(bi); 2911 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags)) 2912 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2913 set_bit(STRIPE_HANDLE, &sh->state); 2914 2915 if (sh->batch_head && sh != sh->batch_head) 2916 raid5_release_stripe(sh->batch_head); 2917 raid5_release_stripe(sh); 2918 } 2919 2920 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev) 2921 { 2922 struct r5conf *conf = mddev->private; 2923 unsigned long flags; 2924 pr_debug("raid456: error called\n"); 2925 2926 pr_crit("md/raid:%s: Disk failure on %pg, disabling device.\n", 2927 mdname(mddev), rdev->bdev); 2928 2929 spin_lock_irqsave(&conf->device_lock, flags); 2930 set_bit(Faulty, &rdev->flags); 2931 clear_bit(In_sync, &rdev->flags); 2932 mddev->degraded = raid5_calc_degraded(conf); 2933 2934 if (has_failed(conf)) { 2935 set_bit(MD_BROKEN, &conf->mddev->flags); 2936 conf->recovery_disabled = mddev->recovery_disabled; 2937 2938 pr_crit("md/raid:%s: Cannot continue operation (%d/%d failed).\n", 2939 mdname(mddev), mddev->degraded, conf->raid_disks); 2940 } else { 2941 pr_crit("md/raid:%s: Operation continuing on %d devices.\n", 2942 mdname(mddev), conf->raid_disks - mddev->degraded); 2943 } 2944 2945 spin_unlock_irqrestore(&conf->device_lock, flags); 2946 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2947 2948 set_bit(Blocked, &rdev->flags); 2949 set_mask_bits(&mddev->sb_flags, 0, 2950 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 2951 r5c_update_on_rdev_error(mddev, rdev); 2952 } 2953 2954 /* 2955 * Input: a 'big' sector number, 2956 * Output: index of the data and parity disk, and the sector # in them. 2957 */ 2958 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector, 2959 int previous, int *dd_idx, 2960 struct stripe_head *sh) 2961 { 2962 sector_t stripe, stripe2; 2963 sector_t chunk_number; 2964 unsigned int chunk_offset; 2965 int pd_idx, qd_idx; 2966 int ddf_layout = 0; 2967 sector_t new_sector; 2968 int algorithm = previous ? conf->prev_algo 2969 : conf->algorithm; 2970 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 2971 : conf->chunk_sectors; 2972 int raid_disks = previous ? conf->previous_raid_disks 2973 : conf->raid_disks; 2974 int data_disks = raid_disks - conf->max_degraded; 2975 2976 /* First compute the information on this sector */ 2977 2978 /* 2979 * Compute the chunk number and the sector offset inside the chunk 2980 */ 2981 chunk_offset = sector_div(r_sector, sectors_per_chunk); 2982 chunk_number = r_sector; 2983 2984 /* 2985 * Compute the stripe number 2986 */ 2987 stripe = chunk_number; 2988 *dd_idx = sector_div(stripe, data_disks); 2989 stripe2 = stripe; 2990 /* 2991 * Select the parity disk based on the user selected algorithm. 2992 */ 2993 pd_idx = qd_idx = -1; 2994 switch(conf->level) { 2995 case 4: 2996 pd_idx = data_disks; 2997 break; 2998 case 5: 2999 switch (algorithm) { 3000 case ALGORITHM_LEFT_ASYMMETRIC: 3001 pd_idx = data_disks - sector_div(stripe2, raid_disks); 3002 if (*dd_idx >= pd_idx) 3003 (*dd_idx)++; 3004 break; 3005 case ALGORITHM_RIGHT_ASYMMETRIC: 3006 pd_idx = sector_div(stripe2, raid_disks); 3007 if (*dd_idx >= pd_idx) 3008 (*dd_idx)++; 3009 break; 3010 case ALGORITHM_LEFT_SYMMETRIC: 3011 pd_idx = data_disks - sector_div(stripe2, raid_disks); 3012 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 3013 break; 3014 case ALGORITHM_RIGHT_SYMMETRIC: 3015 pd_idx = sector_div(stripe2, raid_disks); 3016 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 3017 break; 3018 case ALGORITHM_PARITY_0: 3019 pd_idx = 0; 3020 (*dd_idx)++; 3021 break; 3022 case ALGORITHM_PARITY_N: 3023 pd_idx = data_disks; 3024 break; 3025 default: 3026 BUG(); 3027 } 3028 break; 3029 case 6: 3030 3031 switch (algorithm) { 3032 case ALGORITHM_LEFT_ASYMMETRIC: 3033 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 3034 qd_idx = pd_idx + 1; 3035 if (pd_idx == raid_disks-1) { 3036 (*dd_idx)++; /* Q D D D P */ 3037 qd_idx = 0; 3038 } else if (*dd_idx >= pd_idx) 3039 (*dd_idx) += 2; /* D D P Q D */ 3040 break; 3041 case ALGORITHM_RIGHT_ASYMMETRIC: 3042 pd_idx = sector_div(stripe2, raid_disks); 3043 qd_idx = pd_idx + 1; 3044 if (pd_idx == raid_disks-1) { 3045 (*dd_idx)++; /* Q D D D P */ 3046 qd_idx = 0; 3047 } else if (*dd_idx >= pd_idx) 3048 (*dd_idx) += 2; /* D D P Q D */ 3049 break; 3050 case ALGORITHM_LEFT_SYMMETRIC: 3051 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 3052 qd_idx = (pd_idx + 1) % raid_disks; 3053 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 3054 break; 3055 case ALGORITHM_RIGHT_SYMMETRIC: 3056 pd_idx = sector_div(stripe2, raid_disks); 3057 qd_idx = (pd_idx + 1) % raid_disks; 3058 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 3059 break; 3060 3061 case ALGORITHM_PARITY_0: 3062 pd_idx = 0; 3063 qd_idx = 1; 3064 (*dd_idx) += 2; 3065 break; 3066 case ALGORITHM_PARITY_N: 3067 pd_idx = data_disks; 3068 qd_idx = data_disks + 1; 3069 break; 3070 3071 case ALGORITHM_ROTATING_ZERO_RESTART: 3072 /* Exactly the same as RIGHT_ASYMMETRIC, but or 3073 * of blocks for computing Q is different. 3074 */ 3075 pd_idx = sector_div(stripe2, raid_disks); 3076 qd_idx = pd_idx + 1; 3077 if (pd_idx == raid_disks-1) { 3078 (*dd_idx)++; /* Q D D D P */ 3079 qd_idx = 0; 3080 } else if (*dd_idx >= pd_idx) 3081 (*dd_idx) += 2; /* D D P Q D */ 3082 ddf_layout = 1; 3083 break; 3084 3085 case ALGORITHM_ROTATING_N_RESTART: 3086 /* Same a left_asymmetric, by first stripe is 3087 * D D D P Q rather than 3088 * Q D D D P 3089 */ 3090 stripe2 += 1; 3091 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 3092 qd_idx = pd_idx + 1; 3093 if (pd_idx == raid_disks-1) { 3094 (*dd_idx)++; /* Q D D D P */ 3095 qd_idx = 0; 3096 } else if (*dd_idx >= pd_idx) 3097 (*dd_idx) += 2; /* D D P Q D */ 3098 ddf_layout = 1; 3099 break; 3100 3101 case ALGORITHM_ROTATING_N_CONTINUE: 3102 /* Same as left_symmetric but Q is before P */ 3103 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 3104 qd_idx = (pd_idx + raid_disks - 1) % raid_disks; 3105 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 3106 ddf_layout = 1; 3107 break; 3108 3109 case ALGORITHM_LEFT_ASYMMETRIC_6: 3110 /* RAID5 left_asymmetric, with Q on last device */ 3111 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 3112 if (*dd_idx >= pd_idx) 3113 (*dd_idx)++; 3114 qd_idx = raid_disks - 1; 3115 break; 3116 3117 case ALGORITHM_RIGHT_ASYMMETRIC_6: 3118 pd_idx = sector_div(stripe2, raid_disks-1); 3119 if (*dd_idx >= pd_idx) 3120 (*dd_idx)++; 3121 qd_idx = raid_disks - 1; 3122 break; 3123 3124 case ALGORITHM_LEFT_SYMMETRIC_6: 3125 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 3126 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 3127 qd_idx = raid_disks - 1; 3128 break; 3129 3130 case ALGORITHM_RIGHT_SYMMETRIC_6: 3131 pd_idx = sector_div(stripe2, raid_disks-1); 3132 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 3133 qd_idx = raid_disks - 1; 3134 break; 3135 3136 case ALGORITHM_PARITY_0_6: 3137 pd_idx = 0; 3138 (*dd_idx)++; 3139 qd_idx = raid_disks - 1; 3140 break; 3141 3142 default: 3143 BUG(); 3144 } 3145 break; 3146 } 3147 3148 if (sh) { 3149 sh->pd_idx = pd_idx; 3150 sh->qd_idx = qd_idx; 3151 sh->ddf_layout = ddf_layout; 3152 } 3153 /* 3154 * Finally, compute the new sector number 3155 */ 3156 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset; 3157 return new_sector; 3158 } 3159 3160 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous) 3161 { 3162 struct r5conf *conf = sh->raid_conf; 3163 int raid_disks = sh->disks; 3164 int data_disks = raid_disks - conf->max_degraded; 3165 sector_t new_sector = sh->sector, check; 3166 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 3167 : conf->chunk_sectors; 3168 int algorithm = previous ? conf->prev_algo 3169 : conf->algorithm; 3170 sector_t stripe; 3171 int chunk_offset; 3172 sector_t chunk_number; 3173 int dummy1, dd_idx = i; 3174 sector_t r_sector; 3175 struct stripe_head sh2; 3176 3177 chunk_offset = sector_div(new_sector, sectors_per_chunk); 3178 stripe = new_sector; 3179 3180 if (i == sh->pd_idx) 3181 return 0; 3182 switch(conf->level) { 3183 case 4: break; 3184 case 5: 3185 switch (algorithm) { 3186 case ALGORITHM_LEFT_ASYMMETRIC: 3187 case ALGORITHM_RIGHT_ASYMMETRIC: 3188 if (i > sh->pd_idx) 3189 i--; 3190 break; 3191 case ALGORITHM_LEFT_SYMMETRIC: 3192 case ALGORITHM_RIGHT_SYMMETRIC: 3193 if (i < sh->pd_idx) 3194 i += raid_disks; 3195 i -= (sh->pd_idx + 1); 3196 break; 3197 case ALGORITHM_PARITY_0: 3198 i -= 1; 3199 break; 3200 case ALGORITHM_PARITY_N: 3201 break; 3202 default: 3203 BUG(); 3204 } 3205 break; 3206 case 6: 3207 if (i == sh->qd_idx) 3208 return 0; /* It is the Q disk */ 3209 switch (algorithm) { 3210 case ALGORITHM_LEFT_ASYMMETRIC: 3211 case ALGORITHM_RIGHT_ASYMMETRIC: 3212 case ALGORITHM_ROTATING_ZERO_RESTART: 3213 case ALGORITHM_ROTATING_N_RESTART: 3214 if (sh->pd_idx == raid_disks-1) 3215 i--; /* Q D D D P */ 3216 else if (i > sh->pd_idx) 3217 i -= 2; /* D D P Q D */ 3218 break; 3219 case ALGORITHM_LEFT_SYMMETRIC: 3220 case ALGORITHM_RIGHT_SYMMETRIC: 3221 if (sh->pd_idx == raid_disks-1) 3222 i--; /* Q D D D P */ 3223 else { 3224 /* D D P Q D */ 3225 if (i < sh->pd_idx) 3226 i += raid_disks; 3227 i -= (sh->pd_idx + 2); 3228 } 3229 break; 3230 case ALGORITHM_PARITY_0: 3231 i -= 2; 3232 break; 3233 case ALGORITHM_PARITY_N: 3234 break; 3235 case ALGORITHM_ROTATING_N_CONTINUE: 3236 /* Like left_symmetric, but P is before Q */ 3237 if (sh->pd_idx == 0) 3238 i--; /* P D D D Q */ 3239 else { 3240 /* D D Q P D */ 3241 if (i < sh->pd_idx) 3242 i += raid_disks; 3243 i -= (sh->pd_idx + 1); 3244 } 3245 break; 3246 case ALGORITHM_LEFT_ASYMMETRIC_6: 3247 case ALGORITHM_RIGHT_ASYMMETRIC_6: 3248 if (i > sh->pd_idx) 3249 i--; 3250 break; 3251 case ALGORITHM_LEFT_SYMMETRIC_6: 3252 case ALGORITHM_RIGHT_SYMMETRIC_6: 3253 if (i < sh->pd_idx) 3254 i += data_disks + 1; 3255 i -= (sh->pd_idx + 1); 3256 break; 3257 case ALGORITHM_PARITY_0_6: 3258 i -= 1; 3259 break; 3260 default: 3261 BUG(); 3262 } 3263 break; 3264 } 3265 3266 chunk_number = stripe * data_disks + i; 3267 r_sector = chunk_number * sectors_per_chunk + chunk_offset; 3268 3269 check = raid5_compute_sector(conf, r_sector, 3270 previous, &dummy1, &sh2); 3271 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx 3272 || sh2.qd_idx != sh->qd_idx) { 3273 pr_warn("md/raid:%s: compute_blocknr: map not correct\n", 3274 mdname(conf->mddev)); 3275 return 0; 3276 } 3277 return r_sector; 3278 } 3279 3280 /* 3281 * There are cases where we want handle_stripe_dirtying() and 3282 * schedule_reconstruction() to delay towrite to some dev of a stripe. 3283 * 3284 * This function checks whether we want to delay the towrite. Specifically, 3285 * we delay the towrite when: 3286 * 3287 * 1. degraded stripe has a non-overwrite to the missing dev, AND this 3288 * stripe has data in journal (for other devices). 3289 * 3290 * In this case, when reading data for the non-overwrite dev, it is 3291 * necessary to handle complex rmw of write back cache (prexor with 3292 * orig_page, and xor with page). To keep read path simple, we would 3293 * like to flush data in journal to RAID disks first, so complex rmw 3294 * is handled in the write patch (handle_stripe_dirtying). 3295 * 3296 * 2. when journal space is critical (R5C_LOG_CRITICAL=1) 3297 * 3298 * It is important to be able to flush all stripes in raid5-cache. 3299 * Therefore, we need reserve some space on the journal device for 3300 * these flushes. If flush operation includes pending writes to the 3301 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe 3302 * for the flush out. If we exclude these pending writes from flush 3303 * operation, we only need (conf->max_degraded + 1) pages per stripe. 3304 * Therefore, excluding pending writes in these cases enables more 3305 * efficient use of the journal device. 3306 * 3307 * Note: To make sure the stripe makes progress, we only delay 3308 * towrite for stripes with data already in journal (injournal > 0). 3309 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to 3310 * no_space_stripes list. 3311 * 3312 * 3. during journal failure 3313 * In journal failure, we try to flush all cached data to raid disks 3314 * based on data in stripe cache. The array is read-only to upper 3315 * layers, so we would skip all pending writes. 3316 * 3317 */ 3318 static inline bool delay_towrite(struct r5conf *conf, 3319 struct r5dev *dev, 3320 struct stripe_head_state *s) 3321 { 3322 /* case 1 above */ 3323 if (!test_bit(R5_OVERWRITE, &dev->flags) && 3324 !test_bit(R5_Insync, &dev->flags) && s->injournal) 3325 return true; 3326 /* case 2 above */ 3327 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) && 3328 s->injournal > 0) 3329 return true; 3330 /* case 3 above */ 3331 if (s->log_failed && s->injournal) 3332 return true; 3333 return false; 3334 } 3335 3336 static void 3337 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s, 3338 int rcw, int expand) 3339 { 3340 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks; 3341 struct r5conf *conf = sh->raid_conf; 3342 int level = conf->level; 3343 3344 if (rcw) { 3345 /* 3346 * In some cases, handle_stripe_dirtying initially decided to 3347 * run rmw and allocates extra page for prexor. However, rcw is 3348 * cheaper later on. We need to free the extra page now, 3349 * because we won't be able to do that in ops_complete_prexor(). 3350 */ 3351 r5c_release_extra_page(sh); 3352 3353 for (i = disks; i--; ) { 3354 struct r5dev *dev = &sh->dev[i]; 3355 3356 if (dev->towrite && !delay_towrite(conf, dev, s)) { 3357 set_bit(R5_LOCKED, &dev->flags); 3358 set_bit(R5_Wantdrain, &dev->flags); 3359 if (!expand) 3360 clear_bit(R5_UPTODATE, &dev->flags); 3361 s->locked++; 3362 } else if (test_bit(R5_InJournal, &dev->flags)) { 3363 set_bit(R5_LOCKED, &dev->flags); 3364 s->locked++; 3365 } 3366 } 3367 /* if we are not expanding this is a proper write request, and 3368 * there will be bios with new data to be drained into the 3369 * stripe cache 3370 */ 3371 if (!expand) { 3372 if (!s->locked) 3373 /* False alarm, nothing to do */ 3374 return; 3375 sh->reconstruct_state = reconstruct_state_drain_run; 3376 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 3377 } else 3378 sh->reconstruct_state = reconstruct_state_run; 3379 3380 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 3381 3382 if (s->locked + conf->max_degraded == disks) 3383 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state)) 3384 atomic_inc(&conf->pending_full_writes); 3385 } else { 3386 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) || 3387 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags))); 3388 BUG_ON(level == 6 && 3389 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) || 3390 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags)))); 3391 3392 for (i = disks; i--; ) { 3393 struct r5dev *dev = &sh->dev[i]; 3394 if (i == pd_idx || i == qd_idx) 3395 continue; 3396 3397 if (dev->towrite && 3398 (test_bit(R5_UPTODATE, &dev->flags) || 3399 test_bit(R5_Wantcompute, &dev->flags))) { 3400 set_bit(R5_Wantdrain, &dev->flags); 3401 set_bit(R5_LOCKED, &dev->flags); 3402 clear_bit(R5_UPTODATE, &dev->flags); 3403 s->locked++; 3404 } else if (test_bit(R5_InJournal, &dev->flags)) { 3405 set_bit(R5_LOCKED, &dev->flags); 3406 s->locked++; 3407 } 3408 } 3409 if (!s->locked) 3410 /* False alarm - nothing to do */ 3411 return; 3412 sh->reconstruct_state = reconstruct_state_prexor_drain_run; 3413 set_bit(STRIPE_OP_PREXOR, &s->ops_request); 3414 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 3415 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 3416 } 3417 3418 /* keep the parity disk(s) locked while asynchronous operations 3419 * are in flight 3420 */ 3421 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); 3422 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 3423 s->locked++; 3424 3425 if (level == 6) { 3426 int qd_idx = sh->qd_idx; 3427 struct r5dev *dev = &sh->dev[qd_idx]; 3428 3429 set_bit(R5_LOCKED, &dev->flags); 3430 clear_bit(R5_UPTODATE, &dev->flags); 3431 s->locked++; 3432 } 3433 3434 if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page && 3435 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) && 3436 !test_bit(STRIPE_FULL_WRITE, &sh->state) && 3437 test_bit(R5_Insync, &sh->dev[pd_idx].flags)) 3438 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request); 3439 3440 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n", 3441 __func__, (unsigned long long)sh->sector, 3442 s->locked, s->ops_request); 3443 } 3444 3445 static bool stripe_bio_overlaps(struct stripe_head *sh, struct bio *bi, 3446 int dd_idx, int forwrite) 3447 { 3448 struct r5conf *conf = sh->raid_conf; 3449 struct bio **bip; 3450 3451 pr_debug("checking bi b#%llu to stripe s#%llu\n", 3452 bi->bi_iter.bi_sector, sh->sector); 3453 3454 /* Don't allow new IO added to stripes in batch list */ 3455 if (sh->batch_head) 3456 return true; 3457 3458 if (forwrite) 3459 bip = &sh->dev[dd_idx].towrite; 3460 else 3461 bip = &sh->dev[dd_idx].toread; 3462 3463 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) { 3464 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector) 3465 return true; 3466 bip = &(*bip)->bi_next; 3467 } 3468 3469 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi)) 3470 return true; 3471 3472 if (forwrite && raid5_has_ppl(conf)) { 3473 /* 3474 * With PPL only writes to consecutive data chunks within a 3475 * stripe are allowed because for a single stripe_head we can 3476 * only have one PPL entry at a time, which describes one data 3477 * range. Not really an overlap, but wait_for_overlap can be 3478 * used to handle this. 3479 */ 3480 sector_t sector; 3481 sector_t first = 0; 3482 sector_t last = 0; 3483 int count = 0; 3484 int i; 3485 3486 for (i = 0; i < sh->disks; i++) { 3487 if (i != sh->pd_idx && 3488 (i == dd_idx || sh->dev[i].towrite)) { 3489 sector = sh->dev[i].sector; 3490 if (count == 0 || sector < first) 3491 first = sector; 3492 if (sector > last) 3493 last = sector; 3494 count++; 3495 } 3496 } 3497 3498 if (first + conf->chunk_sectors * (count - 1) != last) 3499 return true; 3500 } 3501 3502 return false; 3503 } 3504 3505 static void __add_stripe_bio(struct stripe_head *sh, struct bio *bi, 3506 int dd_idx, int forwrite, int previous) 3507 { 3508 struct r5conf *conf = sh->raid_conf; 3509 struct bio **bip; 3510 int firstwrite = 0; 3511 3512 if (forwrite) { 3513 bip = &sh->dev[dd_idx].towrite; 3514 if (!*bip) 3515 firstwrite = 1; 3516 } else { 3517 bip = &sh->dev[dd_idx].toread; 3518 } 3519 3520 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) 3521 bip = &(*bip)->bi_next; 3522 3523 if (!forwrite || previous) 3524 clear_bit(STRIPE_BATCH_READY, &sh->state); 3525 3526 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next); 3527 if (*bip) 3528 bi->bi_next = *bip; 3529 *bip = bi; 3530 bio_inc_remaining(bi); 3531 md_write_inc(conf->mddev, bi); 3532 3533 if (forwrite) { 3534 /* check if page is covered */ 3535 sector_t sector = sh->dev[dd_idx].sector; 3536 for (bi=sh->dev[dd_idx].towrite; 3537 sector < sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf) && 3538 bi && bi->bi_iter.bi_sector <= sector; 3539 bi = r5_next_bio(conf, bi, sh->dev[dd_idx].sector)) { 3540 if (bio_end_sector(bi) >= sector) 3541 sector = bio_end_sector(bi); 3542 } 3543 if (sector >= sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf)) 3544 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags)) 3545 sh->overwrite_disks++; 3546 } 3547 3548 pr_debug("added bi b#%llu to stripe s#%llu, disk %d, logical %llu\n", 3549 (*bip)->bi_iter.bi_sector, sh->sector, dd_idx, 3550 sh->dev[dd_idx].sector); 3551 3552 if (conf->mddev->bitmap && firstwrite) { 3553 /* Cannot hold spinlock over bitmap_startwrite, 3554 * but must ensure this isn't added to a batch until 3555 * we have added to the bitmap and set bm_seq. 3556 * So set STRIPE_BITMAP_PENDING to prevent 3557 * batching. 3558 * If multiple __add_stripe_bio() calls race here they 3559 * much all set STRIPE_BITMAP_PENDING. So only the first one 3560 * to complete "bitmap_startwrite" gets to set 3561 * STRIPE_BIT_DELAY. This is important as once a stripe 3562 * is added to a batch, STRIPE_BIT_DELAY cannot be changed 3563 * any more. 3564 */ 3565 set_bit(STRIPE_BITMAP_PENDING, &sh->state); 3566 spin_unlock_irq(&sh->stripe_lock); 3567 md_bitmap_startwrite(conf->mddev->bitmap, sh->sector, 3568 RAID5_STRIPE_SECTORS(conf), 0); 3569 spin_lock_irq(&sh->stripe_lock); 3570 clear_bit(STRIPE_BITMAP_PENDING, &sh->state); 3571 if (!sh->batch_head) { 3572 sh->bm_seq = conf->seq_flush+1; 3573 set_bit(STRIPE_BIT_DELAY, &sh->state); 3574 } 3575 } 3576 } 3577 3578 /* 3579 * Each stripe/dev can have one or more bios attached. 3580 * toread/towrite point to the first in a chain. 3581 * The bi_next chain must be in order. 3582 */ 3583 static bool add_stripe_bio(struct stripe_head *sh, struct bio *bi, 3584 int dd_idx, int forwrite, int previous) 3585 { 3586 spin_lock_irq(&sh->stripe_lock); 3587 3588 if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) { 3589 set_bit(R5_Overlap, &sh->dev[dd_idx].flags); 3590 spin_unlock_irq(&sh->stripe_lock); 3591 return false; 3592 } 3593 3594 __add_stripe_bio(sh, bi, dd_idx, forwrite, previous); 3595 spin_unlock_irq(&sh->stripe_lock); 3596 return true; 3597 } 3598 3599 static void end_reshape(struct r5conf *conf); 3600 3601 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 3602 struct stripe_head *sh) 3603 { 3604 int sectors_per_chunk = 3605 previous ? conf->prev_chunk_sectors : conf->chunk_sectors; 3606 int dd_idx; 3607 int chunk_offset = sector_div(stripe, sectors_per_chunk); 3608 int disks = previous ? conf->previous_raid_disks : conf->raid_disks; 3609 3610 raid5_compute_sector(conf, 3611 stripe * (disks - conf->max_degraded) 3612 *sectors_per_chunk + chunk_offset, 3613 previous, 3614 &dd_idx, sh); 3615 } 3616 3617 static void 3618 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh, 3619 struct stripe_head_state *s, int disks) 3620 { 3621 int i; 3622 BUG_ON(sh->batch_head); 3623 for (i = disks; i--; ) { 3624 struct bio *bi; 3625 int bitmap_end = 0; 3626 3627 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 3628 struct md_rdev *rdev = conf->disks[i].rdev; 3629 3630 if (rdev && test_bit(In_sync, &rdev->flags) && 3631 !test_bit(Faulty, &rdev->flags)) 3632 atomic_inc(&rdev->nr_pending); 3633 else 3634 rdev = NULL; 3635 if (rdev) { 3636 if (!rdev_set_badblocks( 3637 rdev, 3638 sh->sector, 3639 RAID5_STRIPE_SECTORS(conf), 0)) 3640 md_error(conf->mddev, rdev); 3641 rdev_dec_pending(rdev, conf->mddev); 3642 } 3643 } 3644 spin_lock_irq(&sh->stripe_lock); 3645 /* fail all writes first */ 3646 bi = sh->dev[i].towrite; 3647 sh->dev[i].towrite = NULL; 3648 sh->overwrite_disks = 0; 3649 spin_unlock_irq(&sh->stripe_lock); 3650 if (bi) 3651 bitmap_end = 1; 3652 3653 log_stripe_write_finished(sh); 3654 3655 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 3656 wake_up(&conf->wait_for_overlap); 3657 3658 while (bi && bi->bi_iter.bi_sector < 3659 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) { 3660 struct bio *nextbi = r5_next_bio(conf, bi, sh->dev[i].sector); 3661 3662 md_write_end(conf->mddev); 3663 bio_io_error(bi); 3664 bi = nextbi; 3665 } 3666 if (bitmap_end) 3667 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3668 RAID5_STRIPE_SECTORS(conf), 0, 0); 3669 bitmap_end = 0; 3670 /* and fail all 'written' */ 3671 bi = sh->dev[i].written; 3672 sh->dev[i].written = NULL; 3673 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) { 3674 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 3675 sh->dev[i].page = sh->dev[i].orig_page; 3676 } 3677 3678 if (bi) bitmap_end = 1; 3679 while (bi && bi->bi_iter.bi_sector < 3680 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) { 3681 struct bio *bi2 = r5_next_bio(conf, bi, sh->dev[i].sector); 3682 3683 md_write_end(conf->mddev); 3684 bio_io_error(bi); 3685 bi = bi2; 3686 } 3687 3688 /* fail any reads if this device is non-operational and 3689 * the data has not reached the cache yet. 3690 */ 3691 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) && 3692 s->failed > conf->max_degraded && 3693 (!test_bit(R5_Insync, &sh->dev[i].flags) || 3694 test_bit(R5_ReadError, &sh->dev[i].flags))) { 3695 spin_lock_irq(&sh->stripe_lock); 3696 bi = sh->dev[i].toread; 3697 sh->dev[i].toread = NULL; 3698 spin_unlock_irq(&sh->stripe_lock); 3699 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 3700 wake_up(&conf->wait_for_overlap); 3701 if (bi) 3702 s->to_read--; 3703 while (bi && bi->bi_iter.bi_sector < 3704 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) { 3705 struct bio *nextbi = 3706 r5_next_bio(conf, bi, sh->dev[i].sector); 3707 3708 bio_io_error(bi); 3709 bi = nextbi; 3710 } 3711 } 3712 if (bitmap_end) 3713 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3714 RAID5_STRIPE_SECTORS(conf), 0, 0); 3715 /* If we were in the middle of a write the parity block might 3716 * still be locked - so just clear all R5_LOCKED flags 3717 */ 3718 clear_bit(R5_LOCKED, &sh->dev[i].flags); 3719 } 3720 s->to_write = 0; 3721 s->written = 0; 3722 3723 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 3724 if (atomic_dec_and_test(&conf->pending_full_writes)) 3725 md_wakeup_thread(conf->mddev->thread); 3726 } 3727 3728 static void 3729 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh, 3730 struct stripe_head_state *s) 3731 { 3732 int abort = 0; 3733 int i; 3734 3735 BUG_ON(sh->batch_head); 3736 clear_bit(STRIPE_SYNCING, &sh->state); 3737 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 3738 wake_up(&conf->wait_for_overlap); 3739 s->syncing = 0; 3740 s->replacing = 0; 3741 /* There is nothing more to do for sync/check/repair. 3742 * Don't even need to abort as that is handled elsewhere 3743 * if needed, and not always wanted e.g. if there is a known 3744 * bad block here. 3745 * For recover/replace we need to record a bad block on all 3746 * non-sync devices, or abort the recovery 3747 */ 3748 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) { 3749 /* During recovery devices cannot be removed, so 3750 * locking and refcounting of rdevs is not needed 3751 */ 3752 for (i = 0; i < conf->raid_disks; i++) { 3753 struct md_rdev *rdev = conf->disks[i].rdev; 3754 3755 if (rdev 3756 && !test_bit(Faulty, &rdev->flags) 3757 && !test_bit(In_sync, &rdev->flags) 3758 && !rdev_set_badblocks(rdev, sh->sector, 3759 RAID5_STRIPE_SECTORS(conf), 0)) 3760 abort = 1; 3761 rdev = conf->disks[i].replacement; 3762 3763 if (rdev 3764 && !test_bit(Faulty, &rdev->flags) 3765 && !test_bit(In_sync, &rdev->flags) 3766 && !rdev_set_badblocks(rdev, sh->sector, 3767 RAID5_STRIPE_SECTORS(conf), 0)) 3768 abort = 1; 3769 } 3770 if (abort) 3771 conf->recovery_disabled = 3772 conf->mddev->recovery_disabled; 3773 } 3774 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), !abort); 3775 } 3776 3777 static int want_replace(struct stripe_head *sh, int disk_idx) 3778 { 3779 struct md_rdev *rdev; 3780 int rv = 0; 3781 3782 rdev = sh->raid_conf->disks[disk_idx].replacement; 3783 if (rdev 3784 && !test_bit(Faulty, &rdev->flags) 3785 && !test_bit(In_sync, &rdev->flags) 3786 && (rdev->recovery_offset <= sh->sector 3787 || rdev->mddev->recovery_cp <= sh->sector)) 3788 rv = 1; 3789 return rv; 3790 } 3791 3792 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s, 3793 int disk_idx, int disks) 3794 { 3795 struct r5dev *dev = &sh->dev[disk_idx]; 3796 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]], 3797 &sh->dev[s->failed_num[1]] }; 3798 int i; 3799 bool force_rcw = (sh->raid_conf->rmw_level == PARITY_DISABLE_RMW); 3800 3801 3802 if (test_bit(R5_LOCKED, &dev->flags) || 3803 test_bit(R5_UPTODATE, &dev->flags)) 3804 /* No point reading this as we already have it or have 3805 * decided to get it. 3806 */ 3807 return 0; 3808 3809 if (dev->toread || 3810 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags))) 3811 /* We need this block to directly satisfy a request */ 3812 return 1; 3813 3814 if (s->syncing || s->expanding || 3815 (s->replacing && want_replace(sh, disk_idx))) 3816 /* When syncing, or expanding we read everything. 3817 * When replacing, we need the replaced block. 3818 */ 3819 return 1; 3820 3821 if ((s->failed >= 1 && fdev[0]->toread) || 3822 (s->failed >= 2 && fdev[1]->toread)) 3823 /* If we want to read from a failed device, then 3824 * we need to actually read every other device. 3825 */ 3826 return 1; 3827 3828 /* Sometimes neither read-modify-write nor reconstruct-write 3829 * cycles can work. In those cases we read every block we 3830 * can. Then the parity-update is certain to have enough to 3831 * work with. 3832 * This can only be a problem when we need to write something, 3833 * and some device has failed. If either of those tests 3834 * fail we need look no further. 3835 */ 3836 if (!s->failed || !s->to_write) 3837 return 0; 3838 3839 if (test_bit(R5_Insync, &dev->flags) && 3840 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3841 /* Pre-reads at not permitted until after short delay 3842 * to gather multiple requests. However if this 3843 * device is no Insync, the block could only be computed 3844 * and there is no need to delay that. 3845 */ 3846 return 0; 3847 3848 for (i = 0; i < s->failed && i < 2; i++) { 3849 if (fdev[i]->towrite && 3850 !test_bit(R5_UPTODATE, &fdev[i]->flags) && 3851 !test_bit(R5_OVERWRITE, &fdev[i]->flags)) 3852 /* If we have a partial write to a failed 3853 * device, then we will need to reconstruct 3854 * the content of that device, so all other 3855 * devices must be read. 3856 */ 3857 return 1; 3858 3859 if (s->failed >= 2 && 3860 (fdev[i]->towrite || 3861 s->failed_num[i] == sh->pd_idx || 3862 s->failed_num[i] == sh->qd_idx) && 3863 !test_bit(R5_UPTODATE, &fdev[i]->flags)) 3864 /* In max degraded raid6, If the failed disk is P, Q, 3865 * or we want to read the failed disk, we need to do 3866 * reconstruct-write. 3867 */ 3868 force_rcw = true; 3869 } 3870 3871 /* If we are forced to do a reconstruct-write, because parity 3872 * cannot be trusted and we are currently recovering it, there 3873 * is extra need to be careful. 3874 * If one of the devices that we would need to read, because 3875 * it is not being overwritten (and maybe not written at all) 3876 * is missing/faulty, then we need to read everything we can. 3877 */ 3878 if (!force_rcw && 3879 sh->sector < sh->raid_conf->mddev->recovery_cp) 3880 /* reconstruct-write isn't being forced */ 3881 return 0; 3882 for (i = 0; i < s->failed && i < 2; i++) { 3883 if (s->failed_num[i] != sh->pd_idx && 3884 s->failed_num[i] != sh->qd_idx && 3885 !test_bit(R5_UPTODATE, &fdev[i]->flags) && 3886 !test_bit(R5_OVERWRITE, &fdev[i]->flags)) 3887 return 1; 3888 } 3889 3890 return 0; 3891 } 3892 3893 /* fetch_block - checks the given member device to see if its data needs 3894 * to be read or computed to satisfy a request. 3895 * 3896 * Returns 1 when no more member devices need to be checked, otherwise returns 3897 * 0 to tell the loop in handle_stripe_fill to continue 3898 */ 3899 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s, 3900 int disk_idx, int disks) 3901 { 3902 struct r5dev *dev = &sh->dev[disk_idx]; 3903 3904 /* is the data in this block needed, and can we get it? */ 3905 if (need_this_block(sh, s, disk_idx, disks)) { 3906 /* we would like to get this block, possibly by computing it, 3907 * otherwise read it if the backing disk is insync 3908 */ 3909 BUG_ON(test_bit(R5_Wantcompute, &dev->flags)); 3910 BUG_ON(test_bit(R5_Wantread, &dev->flags)); 3911 BUG_ON(sh->batch_head); 3912 3913 /* 3914 * In the raid6 case if the only non-uptodate disk is P 3915 * then we already trusted P to compute the other failed 3916 * drives. It is safe to compute rather than re-read P. 3917 * In other cases we only compute blocks from failed 3918 * devices, otherwise check/repair might fail to detect 3919 * a real inconsistency. 3920 */ 3921 3922 if ((s->uptodate == disks - 1) && 3923 ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) || 3924 (s->failed && (disk_idx == s->failed_num[0] || 3925 disk_idx == s->failed_num[1])))) { 3926 /* have disk failed, and we're requested to fetch it; 3927 * do compute it 3928 */ 3929 pr_debug("Computing stripe %llu block %d\n", 3930 (unsigned long long)sh->sector, disk_idx); 3931 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3932 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3933 set_bit(R5_Wantcompute, &dev->flags); 3934 sh->ops.target = disk_idx; 3935 sh->ops.target2 = -1; /* no 2nd target */ 3936 s->req_compute = 1; 3937 /* Careful: from this point on 'uptodate' is in the eye 3938 * of raid_run_ops which services 'compute' operations 3939 * before writes. R5_Wantcompute flags a block that will 3940 * be R5_UPTODATE by the time it is needed for a 3941 * subsequent operation. 3942 */ 3943 s->uptodate++; 3944 return 1; 3945 } else if (s->uptodate == disks-2 && s->failed >= 2) { 3946 /* Computing 2-failure is *very* expensive; only 3947 * do it if failed >= 2 3948 */ 3949 int other; 3950 for (other = disks; other--; ) { 3951 if (other == disk_idx) 3952 continue; 3953 if (!test_bit(R5_UPTODATE, 3954 &sh->dev[other].flags)) 3955 break; 3956 } 3957 BUG_ON(other < 0); 3958 pr_debug("Computing stripe %llu blocks %d,%d\n", 3959 (unsigned long long)sh->sector, 3960 disk_idx, other); 3961 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3962 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3963 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags); 3964 set_bit(R5_Wantcompute, &sh->dev[other].flags); 3965 sh->ops.target = disk_idx; 3966 sh->ops.target2 = other; 3967 s->uptodate += 2; 3968 s->req_compute = 1; 3969 return 1; 3970 } else if (test_bit(R5_Insync, &dev->flags)) { 3971 set_bit(R5_LOCKED, &dev->flags); 3972 set_bit(R5_Wantread, &dev->flags); 3973 s->locked++; 3974 pr_debug("Reading block %d (sync=%d)\n", 3975 disk_idx, s->syncing); 3976 } 3977 } 3978 3979 return 0; 3980 } 3981 3982 /* 3983 * handle_stripe_fill - read or compute data to satisfy pending requests. 3984 */ 3985 static void handle_stripe_fill(struct stripe_head *sh, 3986 struct stripe_head_state *s, 3987 int disks) 3988 { 3989 int i; 3990 3991 /* look for blocks to read/compute, skip this if a compute 3992 * is already in flight, or if the stripe contents are in the 3993 * midst of changing due to a write 3994 */ 3995 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state && 3996 !sh->reconstruct_state) { 3997 3998 /* 3999 * For degraded stripe with data in journal, do not handle 4000 * read requests yet, instead, flush the stripe to raid 4001 * disks first, this avoids handling complex rmw of write 4002 * back cache (prexor with orig_page, and then xor with 4003 * page) in the read path 4004 */ 4005 if (s->to_read && s->injournal && s->failed) { 4006 if (test_bit(STRIPE_R5C_CACHING, &sh->state)) 4007 r5c_make_stripe_write_out(sh); 4008 goto out; 4009 } 4010 4011 for (i = disks; i--; ) 4012 if (fetch_block(sh, s, i, disks)) 4013 break; 4014 } 4015 out: 4016 set_bit(STRIPE_HANDLE, &sh->state); 4017 } 4018 4019 static void break_stripe_batch_list(struct stripe_head *head_sh, 4020 unsigned long handle_flags); 4021 /* handle_stripe_clean_event 4022 * any written block on an uptodate or failed drive can be returned. 4023 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but 4024 * never LOCKED, so we don't need to test 'failed' directly. 4025 */ 4026 static void handle_stripe_clean_event(struct r5conf *conf, 4027 struct stripe_head *sh, int disks) 4028 { 4029 int i; 4030 struct r5dev *dev; 4031 int discard_pending = 0; 4032 struct stripe_head *head_sh = sh; 4033 bool do_endio = false; 4034 4035 for (i = disks; i--; ) 4036 if (sh->dev[i].written) { 4037 dev = &sh->dev[i]; 4038 if (!test_bit(R5_LOCKED, &dev->flags) && 4039 (test_bit(R5_UPTODATE, &dev->flags) || 4040 test_bit(R5_Discard, &dev->flags) || 4041 test_bit(R5_SkipCopy, &dev->flags))) { 4042 /* We can return any write requests */ 4043 struct bio *wbi, *wbi2; 4044 pr_debug("Return write for disc %d\n", i); 4045 if (test_and_clear_bit(R5_Discard, &dev->flags)) 4046 clear_bit(R5_UPTODATE, &dev->flags); 4047 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) { 4048 WARN_ON(test_bit(R5_UPTODATE, &dev->flags)); 4049 } 4050 do_endio = true; 4051 4052 returnbi: 4053 dev->page = dev->orig_page; 4054 wbi = dev->written; 4055 dev->written = NULL; 4056 while (wbi && wbi->bi_iter.bi_sector < 4057 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 4058 wbi2 = r5_next_bio(conf, wbi, dev->sector); 4059 md_write_end(conf->mddev); 4060 bio_endio(wbi); 4061 wbi = wbi2; 4062 } 4063 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector, 4064 RAID5_STRIPE_SECTORS(conf), 4065 !test_bit(STRIPE_DEGRADED, &sh->state), 4066 0); 4067 if (head_sh->batch_head) { 4068 sh = list_first_entry(&sh->batch_list, 4069 struct stripe_head, 4070 batch_list); 4071 if (sh != head_sh) { 4072 dev = &sh->dev[i]; 4073 goto returnbi; 4074 } 4075 } 4076 sh = head_sh; 4077 dev = &sh->dev[i]; 4078 } else if (test_bit(R5_Discard, &dev->flags)) 4079 discard_pending = 1; 4080 } 4081 4082 log_stripe_write_finished(sh); 4083 4084 if (!discard_pending && 4085 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) { 4086 int hash; 4087 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 4088 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 4089 if (sh->qd_idx >= 0) { 4090 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 4091 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags); 4092 } 4093 /* now that discard is done we can proceed with any sync */ 4094 clear_bit(STRIPE_DISCARD, &sh->state); 4095 /* 4096 * SCSI discard will change some bio fields and the stripe has 4097 * no updated data, so remove it from hash list and the stripe 4098 * will be reinitialized 4099 */ 4100 unhash: 4101 hash = sh->hash_lock_index; 4102 spin_lock_irq(conf->hash_locks + hash); 4103 remove_hash(sh); 4104 spin_unlock_irq(conf->hash_locks + hash); 4105 if (head_sh->batch_head) { 4106 sh = list_first_entry(&sh->batch_list, 4107 struct stripe_head, batch_list); 4108 if (sh != head_sh) 4109 goto unhash; 4110 } 4111 sh = head_sh; 4112 4113 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) 4114 set_bit(STRIPE_HANDLE, &sh->state); 4115 4116 } 4117 4118 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 4119 if (atomic_dec_and_test(&conf->pending_full_writes)) 4120 md_wakeup_thread(conf->mddev->thread); 4121 4122 if (head_sh->batch_head && do_endio) 4123 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS); 4124 } 4125 4126 /* 4127 * For RMW in write back cache, we need extra page in prexor to store the 4128 * old data. This page is stored in dev->orig_page. 4129 * 4130 * This function checks whether we have data for prexor. The exact logic 4131 * is: 4132 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE) 4133 */ 4134 static inline bool uptodate_for_rmw(struct r5dev *dev) 4135 { 4136 return (test_bit(R5_UPTODATE, &dev->flags)) && 4137 (!test_bit(R5_InJournal, &dev->flags) || 4138 test_bit(R5_OrigPageUPTDODATE, &dev->flags)); 4139 } 4140 4141 static int handle_stripe_dirtying(struct r5conf *conf, 4142 struct stripe_head *sh, 4143 struct stripe_head_state *s, 4144 int disks) 4145 { 4146 int rmw = 0, rcw = 0, i; 4147 sector_t recovery_cp = conf->mddev->recovery_cp; 4148 4149 /* Check whether resync is now happening or should start. 4150 * If yes, then the array is dirty (after unclean shutdown or 4151 * initial creation), so parity in some stripes might be inconsistent. 4152 * In this case, we need to always do reconstruct-write, to ensure 4153 * that in case of drive failure or read-error correction, we 4154 * generate correct data from the parity. 4155 */ 4156 if (conf->rmw_level == PARITY_DISABLE_RMW || 4157 (recovery_cp < MaxSector && sh->sector >= recovery_cp && 4158 s->failed == 0)) { 4159 /* Calculate the real rcw later - for now make it 4160 * look like rcw is cheaper 4161 */ 4162 rcw = 1; rmw = 2; 4163 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n", 4164 conf->rmw_level, (unsigned long long)recovery_cp, 4165 (unsigned long long)sh->sector); 4166 } else for (i = disks; i--; ) { 4167 /* would I have to read this buffer for read_modify_write */ 4168 struct r5dev *dev = &sh->dev[i]; 4169 if (((dev->towrite && !delay_towrite(conf, dev, s)) || 4170 i == sh->pd_idx || i == sh->qd_idx || 4171 test_bit(R5_InJournal, &dev->flags)) && 4172 !test_bit(R5_LOCKED, &dev->flags) && 4173 !(uptodate_for_rmw(dev) || 4174 test_bit(R5_Wantcompute, &dev->flags))) { 4175 if (test_bit(R5_Insync, &dev->flags)) 4176 rmw++; 4177 else 4178 rmw += 2*disks; /* cannot read it */ 4179 } 4180 /* Would I have to read this buffer for reconstruct_write */ 4181 if (!test_bit(R5_OVERWRITE, &dev->flags) && 4182 i != sh->pd_idx && i != sh->qd_idx && 4183 !test_bit(R5_LOCKED, &dev->flags) && 4184 !(test_bit(R5_UPTODATE, &dev->flags) || 4185 test_bit(R5_Wantcompute, &dev->flags))) { 4186 if (test_bit(R5_Insync, &dev->flags)) 4187 rcw++; 4188 else 4189 rcw += 2*disks; 4190 } 4191 } 4192 4193 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n", 4194 (unsigned long long)sh->sector, sh->state, rmw, rcw); 4195 set_bit(STRIPE_HANDLE, &sh->state); 4196 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) { 4197 /* prefer read-modify-write, but need to get some data */ 4198 mddev_add_trace_msg(conf->mddev, "raid5 rmw %llu %d", 4199 sh->sector, rmw); 4200 4201 for (i = disks; i--; ) { 4202 struct r5dev *dev = &sh->dev[i]; 4203 if (test_bit(R5_InJournal, &dev->flags) && 4204 dev->page == dev->orig_page && 4205 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) { 4206 /* alloc page for prexor */ 4207 struct page *p = alloc_page(GFP_NOIO); 4208 4209 if (p) { 4210 dev->orig_page = p; 4211 continue; 4212 } 4213 4214 /* 4215 * alloc_page() failed, try use 4216 * disk_info->extra_page 4217 */ 4218 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE, 4219 &conf->cache_state)) { 4220 r5c_use_extra_page(sh); 4221 break; 4222 } 4223 4224 /* extra_page in use, add to delayed_list */ 4225 set_bit(STRIPE_DELAYED, &sh->state); 4226 s->waiting_extra_page = 1; 4227 return -EAGAIN; 4228 } 4229 } 4230 4231 for (i = disks; i--; ) { 4232 struct r5dev *dev = &sh->dev[i]; 4233 if (((dev->towrite && !delay_towrite(conf, dev, s)) || 4234 i == sh->pd_idx || i == sh->qd_idx || 4235 test_bit(R5_InJournal, &dev->flags)) && 4236 !test_bit(R5_LOCKED, &dev->flags) && 4237 !(uptodate_for_rmw(dev) || 4238 test_bit(R5_Wantcompute, &dev->flags)) && 4239 test_bit(R5_Insync, &dev->flags)) { 4240 if (test_bit(STRIPE_PREREAD_ACTIVE, 4241 &sh->state)) { 4242 pr_debug("Read_old block %d for r-m-w\n", 4243 i); 4244 set_bit(R5_LOCKED, &dev->flags); 4245 set_bit(R5_Wantread, &dev->flags); 4246 s->locked++; 4247 } else 4248 set_bit(STRIPE_DELAYED, &sh->state); 4249 } 4250 } 4251 } 4252 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) { 4253 /* want reconstruct write, but need to get some data */ 4254 int qread =0; 4255 rcw = 0; 4256 for (i = disks; i--; ) { 4257 struct r5dev *dev = &sh->dev[i]; 4258 if (!test_bit(R5_OVERWRITE, &dev->flags) && 4259 i != sh->pd_idx && i != sh->qd_idx && 4260 !test_bit(R5_LOCKED, &dev->flags) && 4261 !(test_bit(R5_UPTODATE, &dev->flags) || 4262 test_bit(R5_Wantcompute, &dev->flags))) { 4263 rcw++; 4264 if (test_bit(R5_Insync, &dev->flags) && 4265 test_bit(STRIPE_PREREAD_ACTIVE, 4266 &sh->state)) { 4267 pr_debug("Read_old block " 4268 "%d for Reconstruct\n", i); 4269 set_bit(R5_LOCKED, &dev->flags); 4270 set_bit(R5_Wantread, &dev->flags); 4271 s->locked++; 4272 qread++; 4273 } else 4274 set_bit(STRIPE_DELAYED, &sh->state); 4275 } 4276 } 4277 if (rcw && !mddev_is_dm(conf->mddev)) 4278 blk_add_trace_msg(conf->mddev->gendisk->queue, 4279 "raid5 rcw %llu %d %d %d", 4280 (unsigned long long)sh->sector, rcw, qread, 4281 test_bit(STRIPE_DELAYED, &sh->state)); 4282 } 4283 4284 if (rcw > disks && rmw > disks && 4285 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4286 set_bit(STRIPE_DELAYED, &sh->state); 4287 4288 /* now if nothing is locked, and if we have enough data, 4289 * we can start a write request 4290 */ 4291 /* since handle_stripe can be called at any time we need to handle the 4292 * case where a compute block operation has been submitted and then a 4293 * subsequent call wants to start a write request. raid_run_ops only 4294 * handles the case where compute block and reconstruct are requested 4295 * simultaneously. If this is not the case then new writes need to be 4296 * held off until the compute completes. 4297 */ 4298 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) && 4299 (s->locked == 0 && (rcw == 0 || rmw == 0) && 4300 !test_bit(STRIPE_BIT_DELAY, &sh->state))) 4301 schedule_reconstruction(sh, s, rcw == 0, 0); 4302 return 0; 4303 } 4304 4305 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh, 4306 struct stripe_head_state *s, int disks) 4307 { 4308 struct r5dev *dev = NULL; 4309 4310 BUG_ON(sh->batch_head); 4311 set_bit(STRIPE_HANDLE, &sh->state); 4312 4313 switch (sh->check_state) { 4314 case check_state_idle: 4315 /* start a new check operation if there are no failures */ 4316 if (s->failed == 0) { 4317 BUG_ON(s->uptodate != disks); 4318 sh->check_state = check_state_run; 4319 set_bit(STRIPE_OP_CHECK, &s->ops_request); 4320 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 4321 s->uptodate--; 4322 break; 4323 } 4324 dev = &sh->dev[s->failed_num[0]]; 4325 fallthrough; 4326 case check_state_compute_result: 4327 sh->check_state = check_state_idle; 4328 if (!dev) 4329 dev = &sh->dev[sh->pd_idx]; 4330 4331 /* check that a write has not made the stripe insync */ 4332 if (test_bit(STRIPE_INSYNC, &sh->state)) 4333 break; 4334 4335 /* either failed parity check, or recovery is happening */ 4336 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags)); 4337 BUG_ON(s->uptodate != disks); 4338 4339 set_bit(R5_LOCKED, &dev->flags); 4340 s->locked++; 4341 set_bit(R5_Wantwrite, &dev->flags); 4342 4343 clear_bit(STRIPE_DEGRADED, &sh->state); 4344 set_bit(STRIPE_INSYNC, &sh->state); 4345 break; 4346 case check_state_run: 4347 break; /* we will be called again upon completion */ 4348 case check_state_check_result: 4349 sh->check_state = check_state_idle; 4350 4351 /* if a failure occurred during the check operation, leave 4352 * STRIPE_INSYNC not set and let the stripe be handled again 4353 */ 4354 if (s->failed) 4355 break; 4356 4357 /* handle a successful check operation, if parity is correct 4358 * we are done. Otherwise update the mismatch count and repair 4359 * parity if !MD_RECOVERY_CHECK 4360 */ 4361 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0) 4362 /* parity is correct (on disc, 4363 * not in buffer any more) 4364 */ 4365 set_bit(STRIPE_INSYNC, &sh->state); 4366 else { 4367 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches); 4368 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) { 4369 /* don't try to repair!! */ 4370 set_bit(STRIPE_INSYNC, &sh->state); 4371 pr_warn_ratelimited("%s: mismatch sector in range " 4372 "%llu-%llu\n", mdname(conf->mddev), 4373 (unsigned long long) sh->sector, 4374 (unsigned long long) sh->sector + 4375 RAID5_STRIPE_SECTORS(conf)); 4376 } else { 4377 sh->check_state = check_state_compute_run; 4378 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 4379 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 4380 set_bit(R5_Wantcompute, 4381 &sh->dev[sh->pd_idx].flags); 4382 sh->ops.target = sh->pd_idx; 4383 sh->ops.target2 = -1; 4384 s->uptodate++; 4385 } 4386 } 4387 break; 4388 case check_state_compute_run: 4389 break; 4390 default: 4391 pr_err("%s: unknown check_state: %d sector: %llu\n", 4392 __func__, sh->check_state, 4393 (unsigned long long) sh->sector); 4394 BUG(); 4395 } 4396 } 4397 4398 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh, 4399 struct stripe_head_state *s, 4400 int disks) 4401 { 4402 int pd_idx = sh->pd_idx; 4403 int qd_idx = sh->qd_idx; 4404 struct r5dev *dev; 4405 4406 BUG_ON(sh->batch_head); 4407 set_bit(STRIPE_HANDLE, &sh->state); 4408 4409 BUG_ON(s->failed > 2); 4410 4411 /* Want to check and possibly repair P and Q. 4412 * However there could be one 'failed' device, in which 4413 * case we can only check one of them, possibly using the 4414 * other to generate missing data 4415 */ 4416 4417 switch (sh->check_state) { 4418 case check_state_idle: 4419 /* start a new check operation if there are < 2 failures */ 4420 if (s->failed == s->q_failed) { 4421 /* The only possible failed device holds Q, so it 4422 * makes sense to check P (If anything else were failed, 4423 * we would have used P to recreate it). 4424 */ 4425 sh->check_state = check_state_run; 4426 } 4427 if (!s->q_failed && s->failed < 2) { 4428 /* Q is not failed, and we didn't use it to generate 4429 * anything, so it makes sense to check it 4430 */ 4431 if (sh->check_state == check_state_run) 4432 sh->check_state = check_state_run_pq; 4433 else 4434 sh->check_state = check_state_run_q; 4435 } 4436 4437 /* discard potentially stale zero_sum_result */ 4438 sh->ops.zero_sum_result = 0; 4439 4440 if (sh->check_state == check_state_run) { 4441 /* async_xor_zero_sum destroys the contents of P */ 4442 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 4443 s->uptodate--; 4444 } 4445 if (sh->check_state >= check_state_run && 4446 sh->check_state <= check_state_run_pq) { 4447 /* async_syndrome_zero_sum preserves P and Q, so 4448 * no need to mark them !uptodate here 4449 */ 4450 set_bit(STRIPE_OP_CHECK, &s->ops_request); 4451 break; 4452 } 4453 4454 /* we have 2-disk failure */ 4455 BUG_ON(s->failed != 2); 4456 fallthrough; 4457 case check_state_compute_result: 4458 sh->check_state = check_state_idle; 4459 4460 /* check that a write has not made the stripe insync */ 4461 if (test_bit(STRIPE_INSYNC, &sh->state)) 4462 break; 4463 4464 /* now write out any block on a failed drive, 4465 * or P or Q if they were recomputed 4466 */ 4467 dev = NULL; 4468 if (s->failed == 2) { 4469 dev = &sh->dev[s->failed_num[1]]; 4470 s->locked++; 4471 set_bit(R5_LOCKED, &dev->flags); 4472 set_bit(R5_Wantwrite, &dev->flags); 4473 } 4474 if (s->failed >= 1) { 4475 dev = &sh->dev[s->failed_num[0]]; 4476 s->locked++; 4477 set_bit(R5_LOCKED, &dev->flags); 4478 set_bit(R5_Wantwrite, &dev->flags); 4479 } 4480 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 4481 dev = &sh->dev[pd_idx]; 4482 s->locked++; 4483 set_bit(R5_LOCKED, &dev->flags); 4484 set_bit(R5_Wantwrite, &dev->flags); 4485 } 4486 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 4487 dev = &sh->dev[qd_idx]; 4488 s->locked++; 4489 set_bit(R5_LOCKED, &dev->flags); 4490 set_bit(R5_Wantwrite, &dev->flags); 4491 } 4492 if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags), 4493 "%s: disk%td not up to date\n", 4494 mdname(conf->mddev), 4495 dev - (struct r5dev *) &sh->dev)) { 4496 clear_bit(R5_LOCKED, &dev->flags); 4497 clear_bit(R5_Wantwrite, &dev->flags); 4498 s->locked--; 4499 } 4500 clear_bit(STRIPE_DEGRADED, &sh->state); 4501 4502 set_bit(STRIPE_INSYNC, &sh->state); 4503 break; 4504 case check_state_run: 4505 case check_state_run_q: 4506 case check_state_run_pq: 4507 break; /* we will be called again upon completion */ 4508 case check_state_check_result: 4509 sh->check_state = check_state_idle; 4510 4511 /* handle a successful check operation, if parity is correct 4512 * we are done. Otherwise update the mismatch count and repair 4513 * parity if !MD_RECOVERY_CHECK 4514 */ 4515 if (sh->ops.zero_sum_result == 0) { 4516 /* both parities are correct */ 4517 if (!s->failed) 4518 set_bit(STRIPE_INSYNC, &sh->state); 4519 else { 4520 /* in contrast to the raid5 case we can validate 4521 * parity, but still have a failure to write 4522 * back 4523 */ 4524 sh->check_state = check_state_compute_result; 4525 /* Returning at this point means that we may go 4526 * off and bring p and/or q uptodate again so 4527 * we make sure to check zero_sum_result again 4528 * to verify if p or q need writeback 4529 */ 4530 } 4531 } else { 4532 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches); 4533 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) { 4534 /* don't try to repair!! */ 4535 set_bit(STRIPE_INSYNC, &sh->state); 4536 pr_warn_ratelimited("%s: mismatch sector in range " 4537 "%llu-%llu\n", mdname(conf->mddev), 4538 (unsigned long long) sh->sector, 4539 (unsigned long long) sh->sector + 4540 RAID5_STRIPE_SECTORS(conf)); 4541 } else { 4542 int *target = &sh->ops.target; 4543 4544 sh->ops.target = -1; 4545 sh->ops.target2 = -1; 4546 sh->check_state = check_state_compute_run; 4547 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 4548 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 4549 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 4550 set_bit(R5_Wantcompute, 4551 &sh->dev[pd_idx].flags); 4552 *target = pd_idx; 4553 target = &sh->ops.target2; 4554 s->uptodate++; 4555 } 4556 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 4557 set_bit(R5_Wantcompute, 4558 &sh->dev[qd_idx].flags); 4559 *target = qd_idx; 4560 s->uptodate++; 4561 } 4562 } 4563 } 4564 break; 4565 case check_state_compute_run: 4566 break; 4567 default: 4568 pr_warn("%s: unknown check_state: %d sector: %llu\n", 4569 __func__, sh->check_state, 4570 (unsigned long long) sh->sector); 4571 BUG(); 4572 } 4573 } 4574 4575 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh) 4576 { 4577 int i; 4578 4579 /* We have read all the blocks in this stripe and now we need to 4580 * copy some of them into a target stripe for expand. 4581 */ 4582 struct dma_async_tx_descriptor *tx = NULL; 4583 BUG_ON(sh->batch_head); 4584 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state); 4585 for (i = 0; i < sh->disks; i++) 4586 if (i != sh->pd_idx && i != sh->qd_idx) { 4587 int dd_idx, j; 4588 struct stripe_head *sh2; 4589 struct async_submit_ctl submit; 4590 4591 sector_t bn = raid5_compute_blocknr(sh, i, 1); 4592 sector_t s = raid5_compute_sector(conf, bn, 0, 4593 &dd_idx, NULL); 4594 sh2 = raid5_get_active_stripe(conf, NULL, s, 4595 R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE); 4596 if (sh2 == NULL) 4597 /* so far only the early blocks of this stripe 4598 * have been requested. When later blocks 4599 * get requested, we will try again 4600 */ 4601 continue; 4602 if (!test_bit(STRIPE_EXPANDING, &sh2->state) || 4603 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) { 4604 /* must have already done this block */ 4605 raid5_release_stripe(sh2); 4606 continue; 4607 } 4608 4609 /* place all the copies on one channel */ 4610 init_async_submit(&submit, 0, tx, NULL, NULL, NULL); 4611 tx = async_memcpy(sh2->dev[dd_idx].page, 4612 sh->dev[i].page, sh2->dev[dd_idx].offset, 4613 sh->dev[i].offset, RAID5_STRIPE_SIZE(conf), 4614 &submit); 4615 4616 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags); 4617 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags); 4618 for (j = 0; j < conf->raid_disks; j++) 4619 if (j != sh2->pd_idx && 4620 j != sh2->qd_idx && 4621 !test_bit(R5_Expanded, &sh2->dev[j].flags)) 4622 break; 4623 if (j == conf->raid_disks) { 4624 set_bit(STRIPE_EXPAND_READY, &sh2->state); 4625 set_bit(STRIPE_HANDLE, &sh2->state); 4626 } 4627 raid5_release_stripe(sh2); 4628 4629 } 4630 /* done submitting copies, wait for them to complete */ 4631 async_tx_quiesce(&tx); 4632 } 4633 4634 /* 4635 * handle_stripe - do things to a stripe. 4636 * 4637 * We lock the stripe by setting STRIPE_ACTIVE and then examine the 4638 * state of various bits to see what needs to be done. 4639 * Possible results: 4640 * return some read requests which now have data 4641 * return some write requests which are safely on storage 4642 * schedule a read on some buffers 4643 * schedule a write of some buffers 4644 * return confirmation of parity correctness 4645 * 4646 */ 4647 4648 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s) 4649 { 4650 struct r5conf *conf = sh->raid_conf; 4651 int disks = sh->disks; 4652 struct r5dev *dev; 4653 int i; 4654 int do_recovery = 0; 4655 4656 memset(s, 0, sizeof(*s)); 4657 4658 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head; 4659 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head; 4660 s->failed_num[0] = -1; 4661 s->failed_num[1] = -1; 4662 s->log_failed = r5l_log_disk_error(conf); 4663 4664 /* Now to look around and see what can be done */ 4665 for (i=disks; i--; ) { 4666 struct md_rdev *rdev; 4667 int is_bad = 0; 4668 4669 dev = &sh->dev[i]; 4670 4671 pr_debug("check %d: state 0x%lx read %p write %p written %p\n", 4672 i, dev->flags, 4673 dev->toread, dev->towrite, dev->written); 4674 /* maybe we can reply to a read 4675 * 4676 * new wantfill requests are only permitted while 4677 * ops_complete_biofill is guaranteed to be inactive 4678 */ 4679 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread && 4680 !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) 4681 set_bit(R5_Wantfill, &dev->flags); 4682 4683 /* now count some things */ 4684 if (test_bit(R5_LOCKED, &dev->flags)) 4685 s->locked++; 4686 if (test_bit(R5_UPTODATE, &dev->flags)) 4687 s->uptodate++; 4688 if (test_bit(R5_Wantcompute, &dev->flags)) { 4689 s->compute++; 4690 BUG_ON(s->compute > 2); 4691 } 4692 4693 if (test_bit(R5_Wantfill, &dev->flags)) 4694 s->to_fill++; 4695 else if (dev->toread) 4696 s->to_read++; 4697 if (dev->towrite) { 4698 s->to_write++; 4699 if (!test_bit(R5_OVERWRITE, &dev->flags)) 4700 s->non_overwrite++; 4701 } 4702 if (dev->written) 4703 s->written++; 4704 /* Prefer to use the replacement for reads, but only 4705 * if it is recovered enough and has no bad blocks. 4706 */ 4707 rdev = conf->disks[i].replacement; 4708 if (rdev && !test_bit(Faulty, &rdev->flags) && 4709 rdev->recovery_offset >= sh->sector + RAID5_STRIPE_SECTORS(conf) && 4710 !rdev_has_badblock(rdev, sh->sector, 4711 RAID5_STRIPE_SECTORS(conf))) 4712 set_bit(R5_ReadRepl, &dev->flags); 4713 else { 4714 if (rdev && !test_bit(Faulty, &rdev->flags)) 4715 set_bit(R5_NeedReplace, &dev->flags); 4716 else 4717 clear_bit(R5_NeedReplace, &dev->flags); 4718 rdev = conf->disks[i].rdev; 4719 clear_bit(R5_ReadRepl, &dev->flags); 4720 } 4721 if (rdev && test_bit(Faulty, &rdev->flags)) 4722 rdev = NULL; 4723 if (rdev) { 4724 is_bad = rdev_has_badblock(rdev, sh->sector, 4725 RAID5_STRIPE_SECTORS(conf)); 4726 if (s->blocked_rdev == NULL 4727 && (test_bit(Blocked, &rdev->flags) 4728 || is_bad < 0)) { 4729 if (is_bad < 0) 4730 set_bit(BlockedBadBlocks, 4731 &rdev->flags); 4732 s->blocked_rdev = rdev; 4733 atomic_inc(&rdev->nr_pending); 4734 } 4735 } 4736 clear_bit(R5_Insync, &dev->flags); 4737 if (!rdev) 4738 /* Not in-sync */; 4739 else if (is_bad) { 4740 /* also not in-sync */ 4741 if (!test_bit(WriteErrorSeen, &rdev->flags) && 4742 test_bit(R5_UPTODATE, &dev->flags)) { 4743 /* treat as in-sync, but with a read error 4744 * which we can now try to correct 4745 */ 4746 set_bit(R5_Insync, &dev->flags); 4747 set_bit(R5_ReadError, &dev->flags); 4748 } 4749 } else if (test_bit(In_sync, &rdev->flags)) 4750 set_bit(R5_Insync, &dev->flags); 4751 else if (sh->sector + RAID5_STRIPE_SECTORS(conf) <= rdev->recovery_offset) 4752 /* in sync if before recovery_offset */ 4753 set_bit(R5_Insync, &dev->flags); 4754 else if (test_bit(R5_UPTODATE, &dev->flags) && 4755 test_bit(R5_Expanded, &dev->flags)) 4756 /* If we've reshaped into here, we assume it is Insync. 4757 * We will shortly update recovery_offset to make 4758 * it official. 4759 */ 4760 set_bit(R5_Insync, &dev->flags); 4761 4762 if (test_bit(R5_WriteError, &dev->flags)) { 4763 /* This flag does not apply to '.replacement' 4764 * only to .rdev, so make sure to check that*/ 4765 struct md_rdev *rdev2 = conf->disks[i].rdev; 4766 4767 if (rdev2 == rdev) 4768 clear_bit(R5_Insync, &dev->flags); 4769 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4770 s->handle_bad_blocks = 1; 4771 atomic_inc(&rdev2->nr_pending); 4772 } else 4773 clear_bit(R5_WriteError, &dev->flags); 4774 } 4775 if (test_bit(R5_MadeGood, &dev->flags)) { 4776 /* This flag does not apply to '.replacement' 4777 * only to .rdev, so make sure to check that*/ 4778 struct md_rdev *rdev2 = conf->disks[i].rdev; 4779 4780 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4781 s->handle_bad_blocks = 1; 4782 atomic_inc(&rdev2->nr_pending); 4783 } else 4784 clear_bit(R5_MadeGood, &dev->flags); 4785 } 4786 if (test_bit(R5_MadeGoodRepl, &dev->flags)) { 4787 struct md_rdev *rdev2 = conf->disks[i].replacement; 4788 4789 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4790 s->handle_bad_blocks = 1; 4791 atomic_inc(&rdev2->nr_pending); 4792 } else 4793 clear_bit(R5_MadeGoodRepl, &dev->flags); 4794 } 4795 if (!test_bit(R5_Insync, &dev->flags)) { 4796 /* The ReadError flag will just be confusing now */ 4797 clear_bit(R5_ReadError, &dev->flags); 4798 clear_bit(R5_ReWrite, &dev->flags); 4799 } 4800 if (test_bit(R5_ReadError, &dev->flags)) 4801 clear_bit(R5_Insync, &dev->flags); 4802 if (!test_bit(R5_Insync, &dev->flags)) { 4803 if (s->failed < 2) 4804 s->failed_num[s->failed] = i; 4805 s->failed++; 4806 if (rdev && !test_bit(Faulty, &rdev->flags)) 4807 do_recovery = 1; 4808 else if (!rdev) { 4809 rdev = conf->disks[i].replacement; 4810 if (rdev && !test_bit(Faulty, &rdev->flags)) 4811 do_recovery = 1; 4812 } 4813 } 4814 4815 if (test_bit(R5_InJournal, &dev->flags)) 4816 s->injournal++; 4817 if (test_bit(R5_InJournal, &dev->flags) && dev->written) 4818 s->just_cached++; 4819 } 4820 if (test_bit(STRIPE_SYNCING, &sh->state)) { 4821 /* If there is a failed device being replaced, 4822 * we must be recovering. 4823 * else if we are after recovery_cp, we must be syncing 4824 * else if MD_RECOVERY_REQUESTED is set, we also are syncing. 4825 * else we can only be replacing 4826 * sync and recovery both need to read all devices, and so 4827 * use the same flag. 4828 */ 4829 if (do_recovery || 4830 sh->sector >= conf->mddev->recovery_cp || 4831 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery))) 4832 s->syncing = 1; 4833 else 4834 s->replacing = 1; 4835 } 4836 } 4837 4838 /* 4839 * Return '1' if this is a member of batch, or '0' if it is a lone stripe or 4840 * a head which can now be handled. 4841 */ 4842 static int clear_batch_ready(struct stripe_head *sh) 4843 { 4844 struct stripe_head *tmp; 4845 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state)) 4846 return (sh->batch_head && sh->batch_head != sh); 4847 spin_lock(&sh->stripe_lock); 4848 if (!sh->batch_head) { 4849 spin_unlock(&sh->stripe_lock); 4850 return 0; 4851 } 4852 4853 /* 4854 * this stripe could be added to a batch list before we check 4855 * BATCH_READY, skips it 4856 */ 4857 if (sh->batch_head != sh) { 4858 spin_unlock(&sh->stripe_lock); 4859 return 1; 4860 } 4861 spin_lock(&sh->batch_lock); 4862 list_for_each_entry(tmp, &sh->batch_list, batch_list) 4863 clear_bit(STRIPE_BATCH_READY, &tmp->state); 4864 spin_unlock(&sh->batch_lock); 4865 spin_unlock(&sh->stripe_lock); 4866 4867 /* 4868 * BATCH_READY is cleared, no new stripes can be added. 4869 * batch_list can be accessed without lock 4870 */ 4871 return 0; 4872 } 4873 4874 static void break_stripe_batch_list(struct stripe_head *head_sh, 4875 unsigned long handle_flags) 4876 { 4877 struct stripe_head *sh, *next; 4878 int i; 4879 int do_wakeup = 0; 4880 4881 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) { 4882 4883 list_del_init(&sh->batch_list); 4884 4885 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) | 4886 (1 << STRIPE_SYNCING) | 4887 (1 << STRIPE_REPLACED) | 4888 (1 << STRIPE_DELAYED) | 4889 (1 << STRIPE_BIT_DELAY) | 4890 (1 << STRIPE_FULL_WRITE) | 4891 (1 << STRIPE_BIOFILL_RUN) | 4892 (1 << STRIPE_COMPUTE_RUN) | 4893 (1 << STRIPE_DISCARD) | 4894 (1 << STRIPE_BATCH_READY) | 4895 (1 << STRIPE_BATCH_ERR) | 4896 (1 << STRIPE_BITMAP_PENDING)), 4897 "stripe state: %lx\n", sh->state); 4898 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) | 4899 (1 << STRIPE_REPLACED)), 4900 "head stripe state: %lx\n", head_sh->state); 4901 4902 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS | 4903 (1 << STRIPE_PREREAD_ACTIVE) | 4904 (1 << STRIPE_DEGRADED) | 4905 (1 << STRIPE_ON_UNPLUG_LIST)), 4906 head_sh->state & (1 << STRIPE_INSYNC)); 4907 4908 sh->check_state = head_sh->check_state; 4909 sh->reconstruct_state = head_sh->reconstruct_state; 4910 spin_lock_irq(&sh->stripe_lock); 4911 sh->batch_head = NULL; 4912 spin_unlock_irq(&sh->stripe_lock); 4913 for (i = 0; i < sh->disks; i++) { 4914 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 4915 do_wakeup = 1; 4916 sh->dev[i].flags = head_sh->dev[i].flags & 4917 (~((1 << R5_WriteError) | (1 << R5_Overlap))); 4918 } 4919 if (handle_flags == 0 || 4920 sh->state & handle_flags) 4921 set_bit(STRIPE_HANDLE, &sh->state); 4922 raid5_release_stripe(sh); 4923 } 4924 spin_lock_irq(&head_sh->stripe_lock); 4925 head_sh->batch_head = NULL; 4926 spin_unlock_irq(&head_sh->stripe_lock); 4927 for (i = 0; i < head_sh->disks; i++) 4928 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags)) 4929 do_wakeup = 1; 4930 if (head_sh->state & handle_flags) 4931 set_bit(STRIPE_HANDLE, &head_sh->state); 4932 4933 if (do_wakeup) 4934 wake_up(&head_sh->raid_conf->wait_for_overlap); 4935 } 4936 4937 static void handle_stripe(struct stripe_head *sh) 4938 { 4939 struct stripe_head_state s; 4940 struct r5conf *conf = sh->raid_conf; 4941 int i; 4942 int prexor; 4943 int disks = sh->disks; 4944 struct r5dev *pdev, *qdev; 4945 4946 clear_bit(STRIPE_HANDLE, &sh->state); 4947 4948 /* 4949 * handle_stripe should not continue handle the batched stripe, only 4950 * the head of batch list or lone stripe can continue. Otherwise we 4951 * could see break_stripe_batch_list warns about the STRIPE_ACTIVE 4952 * is set for the batched stripe. 4953 */ 4954 if (clear_batch_ready(sh)) 4955 return; 4956 4957 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) { 4958 /* already being handled, ensure it gets handled 4959 * again when current action finishes */ 4960 set_bit(STRIPE_HANDLE, &sh->state); 4961 return; 4962 } 4963 4964 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state)) 4965 break_stripe_batch_list(sh, 0); 4966 4967 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) { 4968 spin_lock(&sh->stripe_lock); 4969 /* 4970 * Cannot process 'sync' concurrently with 'discard'. 4971 * Flush data in r5cache before 'sync'. 4972 */ 4973 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) && 4974 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) && 4975 !test_bit(STRIPE_DISCARD, &sh->state) && 4976 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) { 4977 set_bit(STRIPE_SYNCING, &sh->state); 4978 clear_bit(STRIPE_INSYNC, &sh->state); 4979 clear_bit(STRIPE_REPLACED, &sh->state); 4980 } 4981 spin_unlock(&sh->stripe_lock); 4982 } 4983 clear_bit(STRIPE_DELAYED, &sh->state); 4984 4985 pr_debug("handling stripe %llu, state=%#lx cnt=%d, " 4986 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n", 4987 (unsigned long long)sh->sector, sh->state, 4988 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx, 4989 sh->check_state, sh->reconstruct_state); 4990 4991 analyse_stripe(sh, &s); 4992 4993 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state)) 4994 goto finish; 4995 4996 if (s.handle_bad_blocks || 4997 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) { 4998 set_bit(STRIPE_HANDLE, &sh->state); 4999 goto finish; 5000 } 5001 5002 if (unlikely(s.blocked_rdev)) { 5003 if (s.syncing || s.expanding || s.expanded || 5004 s.replacing || s.to_write || s.written) { 5005 set_bit(STRIPE_HANDLE, &sh->state); 5006 goto finish; 5007 } 5008 /* There is nothing for the blocked_rdev to block */ 5009 rdev_dec_pending(s.blocked_rdev, conf->mddev); 5010 s.blocked_rdev = NULL; 5011 } 5012 5013 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) { 5014 set_bit(STRIPE_OP_BIOFILL, &s.ops_request); 5015 set_bit(STRIPE_BIOFILL_RUN, &sh->state); 5016 } 5017 5018 pr_debug("locked=%d uptodate=%d to_read=%d" 5019 " to_write=%d failed=%d failed_num=%d,%d\n", 5020 s.locked, s.uptodate, s.to_read, s.to_write, s.failed, 5021 s.failed_num[0], s.failed_num[1]); 5022 /* 5023 * check if the array has lost more than max_degraded devices and, 5024 * if so, some requests might need to be failed. 5025 * 5026 * When journal device failed (log_failed), we will only process 5027 * the stripe if there is data need write to raid disks 5028 */ 5029 if (s.failed > conf->max_degraded || 5030 (s.log_failed && s.injournal == 0)) { 5031 sh->check_state = 0; 5032 sh->reconstruct_state = 0; 5033 break_stripe_batch_list(sh, 0); 5034 if (s.to_read+s.to_write+s.written) 5035 handle_failed_stripe(conf, sh, &s, disks); 5036 if (s.syncing + s.replacing) 5037 handle_failed_sync(conf, sh, &s); 5038 } 5039 5040 /* Now we check to see if any write operations have recently 5041 * completed 5042 */ 5043 prexor = 0; 5044 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result) 5045 prexor = 1; 5046 if (sh->reconstruct_state == reconstruct_state_drain_result || 5047 sh->reconstruct_state == reconstruct_state_prexor_drain_result) { 5048 sh->reconstruct_state = reconstruct_state_idle; 5049 5050 /* All the 'written' buffers and the parity block are ready to 5051 * be written back to disk 5052 */ 5053 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) && 5054 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)); 5055 BUG_ON(sh->qd_idx >= 0 && 5056 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) && 5057 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags)); 5058 for (i = disks; i--; ) { 5059 struct r5dev *dev = &sh->dev[i]; 5060 if (test_bit(R5_LOCKED, &dev->flags) && 5061 (i == sh->pd_idx || i == sh->qd_idx || 5062 dev->written || test_bit(R5_InJournal, 5063 &dev->flags))) { 5064 pr_debug("Writing block %d\n", i); 5065 set_bit(R5_Wantwrite, &dev->flags); 5066 if (prexor) 5067 continue; 5068 if (s.failed > 1) 5069 continue; 5070 if (!test_bit(R5_Insync, &dev->flags) || 5071 ((i == sh->pd_idx || i == sh->qd_idx) && 5072 s.failed == 0)) 5073 set_bit(STRIPE_INSYNC, &sh->state); 5074 } 5075 } 5076 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5077 s.dec_preread_active = 1; 5078 } 5079 5080 /* 5081 * might be able to return some write requests if the parity blocks 5082 * are safe, or on a failed drive 5083 */ 5084 pdev = &sh->dev[sh->pd_idx]; 5085 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx) 5086 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx); 5087 qdev = &sh->dev[sh->qd_idx]; 5088 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx) 5089 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx) 5090 || conf->level < 6; 5091 5092 if (s.written && 5093 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags) 5094 && !test_bit(R5_LOCKED, &pdev->flags) 5095 && (test_bit(R5_UPTODATE, &pdev->flags) || 5096 test_bit(R5_Discard, &pdev->flags))))) && 5097 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags) 5098 && !test_bit(R5_LOCKED, &qdev->flags) 5099 && (test_bit(R5_UPTODATE, &qdev->flags) || 5100 test_bit(R5_Discard, &qdev->flags)))))) 5101 handle_stripe_clean_event(conf, sh, disks); 5102 5103 if (s.just_cached) 5104 r5c_handle_cached_data_endio(conf, sh, disks); 5105 log_stripe_write_finished(sh); 5106 5107 /* Now we might consider reading some blocks, either to check/generate 5108 * parity, or to satisfy requests 5109 * or to load a block that is being partially written. 5110 */ 5111 if (s.to_read || s.non_overwrite 5112 || (s.to_write && s.failed) 5113 || (s.syncing && (s.uptodate + s.compute < disks)) 5114 || s.replacing 5115 || s.expanding) 5116 handle_stripe_fill(sh, &s, disks); 5117 5118 /* 5119 * When the stripe finishes full journal write cycle (write to journal 5120 * and raid disk), this is the clean up procedure so it is ready for 5121 * next operation. 5122 */ 5123 r5c_finish_stripe_write_out(conf, sh, &s); 5124 5125 /* 5126 * Now to consider new write requests, cache write back and what else, 5127 * if anything should be read. We do not handle new writes when: 5128 * 1/ A 'write' operation (copy+xor) is already in flight. 5129 * 2/ A 'check' operation is in flight, as it may clobber the parity 5130 * block. 5131 * 3/ A r5c cache log write is in flight. 5132 */ 5133 5134 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) { 5135 if (!r5c_is_writeback(conf->log)) { 5136 if (s.to_write) 5137 handle_stripe_dirtying(conf, sh, &s, disks); 5138 } else { /* write back cache */ 5139 int ret = 0; 5140 5141 /* First, try handle writes in caching phase */ 5142 if (s.to_write) 5143 ret = r5c_try_caching_write(conf, sh, &s, 5144 disks); 5145 /* 5146 * If caching phase failed: ret == -EAGAIN 5147 * OR 5148 * stripe under reclaim: !caching && injournal 5149 * 5150 * fall back to handle_stripe_dirtying() 5151 */ 5152 if (ret == -EAGAIN || 5153 /* stripe under reclaim: !caching && injournal */ 5154 (!test_bit(STRIPE_R5C_CACHING, &sh->state) && 5155 s.injournal > 0)) { 5156 ret = handle_stripe_dirtying(conf, sh, &s, 5157 disks); 5158 if (ret == -EAGAIN) 5159 goto finish; 5160 } 5161 } 5162 } 5163 5164 /* maybe we need to check and possibly fix the parity for this stripe 5165 * Any reads will already have been scheduled, so we just see if enough 5166 * data is available. The parity check is held off while parity 5167 * dependent operations are in flight. 5168 */ 5169 if (sh->check_state || 5170 (s.syncing && s.locked == 0 && 5171 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 5172 !test_bit(STRIPE_INSYNC, &sh->state))) { 5173 if (conf->level == 6) 5174 handle_parity_checks6(conf, sh, &s, disks); 5175 else 5176 handle_parity_checks5(conf, sh, &s, disks); 5177 } 5178 5179 if ((s.replacing || s.syncing) && s.locked == 0 5180 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state) 5181 && !test_bit(STRIPE_REPLACED, &sh->state)) { 5182 /* Write out to replacement devices where possible */ 5183 for (i = 0; i < conf->raid_disks; i++) 5184 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) { 5185 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags)); 5186 set_bit(R5_WantReplace, &sh->dev[i].flags); 5187 set_bit(R5_LOCKED, &sh->dev[i].flags); 5188 s.locked++; 5189 } 5190 if (s.replacing) 5191 set_bit(STRIPE_INSYNC, &sh->state); 5192 set_bit(STRIPE_REPLACED, &sh->state); 5193 } 5194 if ((s.syncing || s.replacing) && s.locked == 0 && 5195 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 5196 test_bit(STRIPE_INSYNC, &sh->state)) { 5197 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1); 5198 clear_bit(STRIPE_SYNCING, &sh->state); 5199 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 5200 wake_up(&conf->wait_for_overlap); 5201 } 5202 5203 /* If the failed drives are just a ReadError, then we might need 5204 * to progress the repair/check process 5205 */ 5206 if (s.failed <= conf->max_degraded && !conf->mddev->ro) 5207 for (i = 0; i < s.failed; i++) { 5208 struct r5dev *dev = &sh->dev[s.failed_num[i]]; 5209 if (test_bit(R5_ReadError, &dev->flags) 5210 && !test_bit(R5_LOCKED, &dev->flags) 5211 && test_bit(R5_UPTODATE, &dev->flags) 5212 ) { 5213 if (!test_bit(R5_ReWrite, &dev->flags)) { 5214 set_bit(R5_Wantwrite, &dev->flags); 5215 set_bit(R5_ReWrite, &dev->flags); 5216 } else 5217 /* let's read it back */ 5218 set_bit(R5_Wantread, &dev->flags); 5219 set_bit(R5_LOCKED, &dev->flags); 5220 s.locked++; 5221 } 5222 } 5223 5224 /* Finish reconstruct operations initiated by the expansion process */ 5225 if (sh->reconstruct_state == reconstruct_state_result) { 5226 struct stripe_head *sh_src 5227 = raid5_get_active_stripe(conf, NULL, sh->sector, 5228 R5_GAS_PREVIOUS | R5_GAS_NOBLOCK | 5229 R5_GAS_NOQUIESCE); 5230 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) { 5231 /* sh cannot be written until sh_src has been read. 5232 * so arrange for sh to be delayed a little 5233 */ 5234 set_bit(STRIPE_DELAYED, &sh->state); 5235 set_bit(STRIPE_HANDLE, &sh->state); 5236 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, 5237 &sh_src->state)) 5238 atomic_inc(&conf->preread_active_stripes); 5239 raid5_release_stripe(sh_src); 5240 goto finish; 5241 } 5242 if (sh_src) 5243 raid5_release_stripe(sh_src); 5244 5245 sh->reconstruct_state = reconstruct_state_idle; 5246 clear_bit(STRIPE_EXPANDING, &sh->state); 5247 for (i = conf->raid_disks; i--; ) { 5248 set_bit(R5_Wantwrite, &sh->dev[i].flags); 5249 set_bit(R5_LOCKED, &sh->dev[i].flags); 5250 s.locked++; 5251 } 5252 } 5253 5254 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) && 5255 !sh->reconstruct_state) { 5256 /* Need to write out all blocks after computing parity */ 5257 sh->disks = conf->raid_disks; 5258 stripe_set_idx(sh->sector, conf, 0, sh); 5259 schedule_reconstruction(sh, &s, 1, 1); 5260 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) { 5261 clear_bit(STRIPE_EXPAND_READY, &sh->state); 5262 atomic_dec(&conf->reshape_stripes); 5263 wake_up(&conf->wait_for_overlap); 5264 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1); 5265 } 5266 5267 if (s.expanding && s.locked == 0 && 5268 !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) 5269 handle_stripe_expansion(conf, sh); 5270 5271 finish: 5272 /* wait for this device to become unblocked */ 5273 if (unlikely(s.blocked_rdev)) { 5274 if (conf->mddev->external) 5275 md_wait_for_blocked_rdev(s.blocked_rdev, 5276 conf->mddev); 5277 else 5278 /* Internal metadata will immediately 5279 * be written by raid5d, so we don't 5280 * need to wait here. 5281 */ 5282 rdev_dec_pending(s.blocked_rdev, 5283 conf->mddev); 5284 } 5285 5286 if (s.handle_bad_blocks) 5287 for (i = disks; i--; ) { 5288 struct md_rdev *rdev; 5289 struct r5dev *dev = &sh->dev[i]; 5290 if (test_and_clear_bit(R5_WriteError, &dev->flags)) { 5291 /* We own a safe reference to the rdev */ 5292 rdev = conf->disks[i].rdev; 5293 if (!rdev_set_badblocks(rdev, sh->sector, 5294 RAID5_STRIPE_SECTORS(conf), 0)) 5295 md_error(conf->mddev, rdev); 5296 rdev_dec_pending(rdev, conf->mddev); 5297 } 5298 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) { 5299 rdev = conf->disks[i].rdev; 5300 rdev_clear_badblocks(rdev, sh->sector, 5301 RAID5_STRIPE_SECTORS(conf), 0); 5302 rdev_dec_pending(rdev, conf->mddev); 5303 } 5304 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) { 5305 rdev = conf->disks[i].replacement; 5306 if (!rdev) 5307 /* rdev have been moved down */ 5308 rdev = conf->disks[i].rdev; 5309 rdev_clear_badblocks(rdev, sh->sector, 5310 RAID5_STRIPE_SECTORS(conf), 0); 5311 rdev_dec_pending(rdev, conf->mddev); 5312 } 5313 } 5314 5315 if (s.ops_request) 5316 raid_run_ops(sh, s.ops_request); 5317 5318 ops_run_io(sh, &s); 5319 5320 if (s.dec_preread_active) { 5321 /* We delay this until after ops_run_io so that if make_request 5322 * is waiting on a flush, it won't continue until the writes 5323 * have actually been submitted. 5324 */ 5325 atomic_dec(&conf->preread_active_stripes); 5326 if (atomic_read(&conf->preread_active_stripes) < 5327 IO_THRESHOLD) 5328 md_wakeup_thread(conf->mddev->thread); 5329 } 5330 5331 clear_bit_unlock(STRIPE_ACTIVE, &sh->state); 5332 } 5333 5334 static void raid5_activate_delayed(struct r5conf *conf) 5335 __must_hold(&conf->device_lock) 5336 { 5337 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) { 5338 while (!list_empty(&conf->delayed_list)) { 5339 struct list_head *l = conf->delayed_list.next; 5340 struct stripe_head *sh; 5341 sh = list_entry(l, struct stripe_head, lru); 5342 list_del_init(l); 5343 clear_bit(STRIPE_DELAYED, &sh->state); 5344 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5345 atomic_inc(&conf->preread_active_stripes); 5346 list_add_tail(&sh->lru, &conf->hold_list); 5347 raid5_wakeup_stripe_thread(sh); 5348 } 5349 } 5350 } 5351 5352 static void activate_bit_delay(struct r5conf *conf, 5353 struct list_head *temp_inactive_list) 5354 __must_hold(&conf->device_lock) 5355 { 5356 struct list_head head; 5357 list_add(&head, &conf->bitmap_list); 5358 list_del_init(&conf->bitmap_list); 5359 while (!list_empty(&head)) { 5360 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru); 5361 int hash; 5362 list_del_init(&sh->lru); 5363 atomic_inc(&sh->count); 5364 hash = sh->hash_lock_index; 5365 __release_stripe(conf, sh, &temp_inactive_list[hash]); 5366 } 5367 } 5368 5369 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio) 5370 { 5371 struct r5conf *conf = mddev->private; 5372 sector_t sector = bio->bi_iter.bi_sector; 5373 unsigned int chunk_sectors; 5374 unsigned int bio_sectors = bio_sectors(bio); 5375 5376 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors); 5377 return chunk_sectors >= 5378 ((sector & (chunk_sectors - 1)) + bio_sectors); 5379 } 5380 5381 /* 5382 * add bio to the retry LIFO ( in O(1) ... we are in interrupt ) 5383 * later sampled by raid5d. 5384 */ 5385 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf) 5386 { 5387 unsigned long flags; 5388 5389 spin_lock_irqsave(&conf->device_lock, flags); 5390 5391 bi->bi_next = conf->retry_read_aligned_list; 5392 conf->retry_read_aligned_list = bi; 5393 5394 spin_unlock_irqrestore(&conf->device_lock, flags); 5395 md_wakeup_thread(conf->mddev->thread); 5396 } 5397 5398 static struct bio *remove_bio_from_retry(struct r5conf *conf, 5399 unsigned int *offset) 5400 { 5401 struct bio *bi; 5402 5403 bi = conf->retry_read_aligned; 5404 if (bi) { 5405 *offset = conf->retry_read_offset; 5406 conf->retry_read_aligned = NULL; 5407 return bi; 5408 } 5409 bi = conf->retry_read_aligned_list; 5410 if(bi) { 5411 conf->retry_read_aligned_list = bi->bi_next; 5412 bi->bi_next = NULL; 5413 *offset = 0; 5414 } 5415 5416 return bi; 5417 } 5418 5419 /* 5420 * The "raid5_align_endio" should check if the read succeeded and if it 5421 * did, call bio_endio on the original bio (having bio_put the new bio 5422 * first). 5423 * If the read failed.. 5424 */ 5425 static void raid5_align_endio(struct bio *bi) 5426 { 5427 struct bio *raid_bi = bi->bi_private; 5428 struct md_rdev *rdev = (void *)raid_bi->bi_next; 5429 struct mddev *mddev = rdev->mddev; 5430 struct r5conf *conf = mddev->private; 5431 blk_status_t error = bi->bi_status; 5432 5433 bio_put(bi); 5434 raid_bi->bi_next = NULL; 5435 rdev_dec_pending(rdev, conf->mddev); 5436 5437 if (!error) { 5438 bio_endio(raid_bi); 5439 if (atomic_dec_and_test(&conf->active_aligned_reads)) 5440 wake_up(&conf->wait_for_quiescent); 5441 return; 5442 } 5443 5444 pr_debug("raid5_align_endio : io error...handing IO for a retry\n"); 5445 5446 add_bio_to_retry(raid_bi, conf); 5447 } 5448 5449 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio) 5450 { 5451 struct r5conf *conf = mddev->private; 5452 struct bio *align_bio; 5453 struct md_rdev *rdev; 5454 sector_t sector, end_sector; 5455 int dd_idx; 5456 bool did_inc; 5457 5458 if (!in_chunk_boundary(mddev, raid_bio)) { 5459 pr_debug("%s: non aligned\n", __func__); 5460 return 0; 5461 } 5462 5463 sector = raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 0, 5464 &dd_idx, NULL); 5465 end_sector = sector + bio_sectors(raid_bio); 5466 5467 if (r5c_big_stripe_cached(conf, sector)) 5468 return 0; 5469 5470 rdev = conf->disks[dd_idx].replacement; 5471 if (!rdev || test_bit(Faulty, &rdev->flags) || 5472 rdev->recovery_offset < end_sector) { 5473 rdev = conf->disks[dd_idx].rdev; 5474 if (!rdev) 5475 return 0; 5476 if (test_bit(Faulty, &rdev->flags) || 5477 !(test_bit(In_sync, &rdev->flags) || 5478 rdev->recovery_offset >= end_sector)) 5479 return 0; 5480 } 5481 5482 atomic_inc(&rdev->nr_pending); 5483 5484 if (rdev_has_badblock(rdev, sector, bio_sectors(raid_bio))) { 5485 rdev_dec_pending(rdev, mddev); 5486 return 0; 5487 } 5488 5489 md_account_bio(mddev, &raid_bio); 5490 raid_bio->bi_next = (void *)rdev; 5491 5492 align_bio = bio_alloc_clone(rdev->bdev, raid_bio, GFP_NOIO, 5493 &mddev->bio_set); 5494 align_bio->bi_end_io = raid5_align_endio; 5495 align_bio->bi_private = raid_bio; 5496 align_bio->bi_iter.bi_sector = sector; 5497 5498 /* No reshape active, so we can trust rdev->data_offset */ 5499 align_bio->bi_iter.bi_sector += rdev->data_offset; 5500 5501 did_inc = false; 5502 if (conf->quiesce == 0) { 5503 atomic_inc(&conf->active_aligned_reads); 5504 did_inc = true; 5505 } 5506 /* need a memory barrier to detect the race with raid5_quiesce() */ 5507 if (!did_inc || smp_load_acquire(&conf->quiesce) != 0) { 5508 /* quiesce is in progress, so we need to undo io activation and wait 5509 * for it to finish 5510 */ 5511 if (did_inc && atomic_dec_and_test(&conf->active_aligned_reads)) 5512 wake_up(&conf->wait_for_quiescent); 5513 spin_lock_irq(&conf->device_lock); 5514 wait_event_lock_irq(conf->wait_for_quiescent, conf->quiesce == 0, 5515 conf->device_lock); 5516 atomic_inc(&conf->active_aligned_reads); 5517 spin_unlock_irq(&conf->device_lock); 5518 } 5519 5520 mddev_trace_remap(mddev, align_bio, raid_bio->bi_iter.bi_sector); 5521 submit_bio_noacct(align_bio); 5522 return 1; 5523 } 5524 5525 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio) 5526 { 5527 struct bio *split; 5528 sector_t sector = raid_bio->bi_iter.bi_sector; 5529 unsigned chunk_sects = mddev->chunk_sectors; 5530 unsigned sectors = chunk_sects - (sector & (chunk_sects-1)); 5531 5532 if (sectors < bio_sectors(raid_bio)) { 5533 struct r5conf *conf = mddev->private; 5534 split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split); 5535 bio_chain(split, raid_bio); 5536 submit_bio_noacct(raid_bio); 5537 raid_bio = split; 5538 } 5539 5540 if (!raid5_read_one_chunk(mddev, raid_bio)) 5541 return raid_bio; 5542 5543 return NULL; 5544 } 5545 5546 /* __get_priority_stripe - get the next stripe to process 5547 * 5548 * Full stripe writes are allowed to pass preread active stripes up until 5549 * the bypass_threshold is exceeded. In general the bypass_count 5550 * increments when the handle_list is handled before the hold_list; however, it 5551 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a 5552 * stripe with in flight i/o. The bypass_count will be reset when the 5553 * head of the hold_list has changed, i.e. the head was promoted to the 5554 * handle_list. 5555 */ 5556 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group) 5557 __must_hold(&conf->device_lock) 5558 { 5559 struct stripe_head *sh, *tmp; 5560 struct list_head *handle_list = NULL; 5561 struct r5worker_group *wg; 5562 bool second_try = !r5c_is_writeback(conf->log) && 5563 !r5l_log_disk_error(conf); 5564 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) || 5565 r5l_log_disk_error(conf); 5566 5567 again: 5568 wg = NULL; 5569 sh = NULL; 5570 if (conf->worker_cnt_per_group == 0) { 5571 handle_list = try_loprio ? &conf->loprio_list : 5572 &conf->handle_list; 5573 } else if (group != ANY_GROUP) { 5574 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list : 5575 &conf->worker_groups[group].handle_list; 5576 wg = &conf->worker_groups[group]; 5577 } else { 5578 int i; 5579 for (i = 0; i < conf->group_cnt; i++) { 5580 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list : 5581 &conf->worker_groups[i].handle_list; 5582 wg = &conf->worker_groups[i]; 5583 if (!list_empty(handle_list)) 5584 break; 5585 } 5586 } 5587 5588 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n", 5589 __func__, 5590 list_empty(handle_list) ? "empty" : "busy", 5591 list_empty(&conf->hold_list) ? "empty" : "busy", 5592 atomic_read(&conf->pending_full_writes), conf->bypass_count); 5593 5594 if (!list_empty(handle_list)) { 5595 sh = list_entry(handle_list->next, typeof(*sh), lru); 5596 5597 if (list_empty(&conf->hold_list)) 5598 conf->bypass_count = 0; 5599 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) { 5600 if (conf->hold_list.next == conf->last_hold) 5601 conf->bypass_count++; 5602 else { 5603 conf->last_hold = conf->hold_list.next; 5604 conf->bypass_count -= conf->bypass_threshold; 5605 if (conf->bypass_count < 0) 5606 conf->bypass_count = 0; 5607 } 5608 } 5609 } else if (!list_empty(&conf->hold_list) && 5610 ((conf->bypass_threshold && 5611 conf->bypass_count > conf->bypass_threshold) || 5612 atomic_read(&conf->pending_full_writes) == 0)) { 5613 5614 list_for_each_entry(tmp, &conf->hold_list, lru) { 5615 if (conf->worker_cnt_per_group == 0 || 5616 group == ANY_GROUP || 5617 !cpu_online(tmp->cpu) || 5618 cpu_to_group(tmp->cpu) == group) { 5619 sh = tmp; 5620 break; 5621 } 5622 } 5623 5624 if (sh) { 5625 conf->bypass_count -= conf->bypass_threshold; 5626 if (conf->bypass_count < 0) 5627 conf->bypass_count = 0; 5628 } 5629 wg = NULL; 5630 } 5631 5632 if (!sh) { 5633 if (second_try) 5634 return NULL; 5635 second_try = true; 5636 try_loprio = !try_loprio; 5637 goto again; 5638 } 5639 5640 if (wg) { 5641 wg->stripes_cnt--; 5642 sh->group = NULL; 5643 } 5644 list_del_init(&sh->lru); 5645 BUG_ON(atomic_inc_return(&sh->count) != 1); 5646 return sh; 5647 } 5648 5649 struct raid5_plug_cb { 5650 struct blk_plug_cb cb; 5651 struct list_head list; 5652 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS]; 5653 }; 5654 5655 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule) 5656 { 5657 struct raid5_plug_cb *cb = container_of( 5658 blk_cb, struct raid5_plug_cb, cb); 5659 struct stripe_head *sh; 5660 struct mddev *mddev = cb->cb.data; 5661 struct r5conf *conf = mddev->private; 5662 int cnt = 0; 5663 int hash; 5664 5665 if (cb->list.next && !list_empty(&cb->list)) { 5666 spin_lock_irq(&conf->device_lock); 5667 while (!list_empty(&cb->list)) { 5668 sh = list_first_entry(&cb->list, struct stripe_head, lru); 5669 list_del_init(&sh->lru); 5670 /* 5671 * avoid race release_stripe_plug() sees 5672 * STRIPE_ON_UNPLUG_LIST clear but the stripe 5673 * is still in our list 5674 */ 5675 smp_mb__before_atomic(); 5676 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state); 5677 /* 5678 * STRIPE_ON_RELEASE_LIST could be set here. In that 5679 * case, the count is always > 1 here 5680 */ 5681 hash = sh->hash_lock_index; 5682 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]); 5683 cnt++; 5684 } 5685 spin_unlock_irq(&conf->device_lock); 5686 } 5687 release_inactive_stripe_list(conf, cb->temp_inactive_list, 5688 NR_STRIPE_HASH_LOCKS); 5689 if (!mddev_is_dm(mddev)) 5690 trace_block_unplug(mddev->gendisk->queue, cnt, !from_schedule); 5691 kfree(cb); 5692 } 5693 5694 static void release_stripe_plug(struct mddev *mddev, 5695 struct stripe_head *sh) 5696 { 5697 struct blk_plug_cb *blk_cb = blk_check_plugged( 5698 raid5_unplug, mddev, 5699 sizeof(struct raid5_plug_cb)); 5700 struct raid5_plug_cb *cb; 5701 5702 if (!blk_cb) { 5703 raid5_release_stripe(sh); 5704 return; 5705 } 5706 5707 cb = container_of(blk_cb, struct raid5_plug_cb, cb); 5708 5709 if (cb->list.next == NULL) { 5710 int i; 5711 INIT_LIST_HEAD(&cb->list); 5712 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 5713 INIT_LIST_HEAD(cb->temp_inactive_list + i); 5714 } 5715 5716 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)) 5717 list_add_tail(&sh->lru, &cb->list); 5718 else 5719 raid5_release_stripe(sh); 5720 } 5721 5722 static void make_discard_request(struct mddev *mddev, struct bio *bi) 5723 { 5724 struct r5conf *conf = mddev->private; 5725 sector_t logical_sector, last_sector; 5726 struct stripe_head *sh; 5727 int stripe_sectors; 5728 5729 /* We need to handle this when io_uring supports discard/trim */ 5730 if (WARN_ON_ONCE(bi->bi_opf & REQ_NOWAIT)) 5731 return; 5732 5733 if (mddev->reshape_position != MaxSector) 5734 /* Skip discard while reshape is happening */ 5735 return; 5736 5737 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1); 5738 last_sector = bio_end_sector(bi); 5739 5740 bi->bi_next = NULL; 5741 5742 stripe_sectors = conf->chunk_sectors * 5743 (conf->raid_disks - conf->max_degraded); 5744 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector, 5745 stripe_sectors); 5746 sector_div(last_sector, stripe_sectors); 5747 5748 logical_sector *= conf->chunk_sectors; 5749 last_sector *= conf->chunk_sectors; 5750 5751 for (; logical_sector < last_sector; 5752 logical_sector += RAID5_STRIPE_SECTORS(conf)) { 5753 DEFINE_WAIT(w); 5754 int d; 5755 again: 5756 sh = raid5_get_active_stripe(conf, NULL, logical_sector, 0); 5757 prepare_to_wait(&conf->wait_for_overlap, &w, 5758 TASK_UNINTERRUPTIBLE); 5759 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 5760 if (test_bit(STRIPE_SYNCING, &sh->state)) { 5761 raid5_release_stripe(sh); 5762 schedule(); 5763 goto again; 5764 } 5765 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 5766 spin_lock_irq(&sh->stripe_lock); 5767 for (d = 0; d < conf->raid_disks; d++) { 5768 if (d == sh->pd_idx || d == sh->qd_idx) 5769 continue; 5770 if (sh->dev[d].towrite || sh->dev[d].toread) { 5771 set_bit(R5_Overlap, &sh->dev[d].flags); 5772 spin_unlock_irq(&sh->stripe_lock); 5773 raid5_release_stripe(sh); 5774 schedule(); 5775 goto again; 5776 } 5777 } 5778 set_bit(STRIPE_DISCARD, &sh->state); 5779 finish_wait(&conf->wait_for_overlap, &w); 5780 sh->overwrite_disks = 0; 5781 for (d = 0; d < conf->raid_disks; d++) { 5782 if (d == sh->pd_idx || d == sh->qd_idx) 5783 continue; 5784 sh->dev[d].towrite = bi; 5785 set_bit(R5_OVERWRITE, &sh->dev[d].flags); 5786 bio_inc_remaining(bi); 5787 md_write_inc(mddev, bi); 5788 sh->overwrite_disks++; 5789 } 5790 spin_unlock_irq(&sh->stripe_lock); 5791 if (conf->mddev->bitmap) { 5792 for (d = 0; 5793 d < conf->raid_disks - conf->max_degraded; 5794 d++) 5795 md_bitmap_startwrite(mddev->bitmap, 5796 sh->sector, 5797 RAID5_STRIPE_SECTORS(conf), 5798 0); 5799 sh->bm_seq = conf->seq_flush + 1; 5800 set_bit(STRIPE_BIT_DELAY, &sh->state); 5801 } 5802 5803 set_bit(STRIPE_HANDLE, &sh->state); 5804 clear_bit(STRIPE_DELAYED, &sh->state); 5805 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5806 atomic_inc(&conf->preread_active_stripes); 5807 release_stripe_plug(mddev, sh); 5808 } 5809 5810 bio_endio(bi); 5811 } 5812 5813 static bool ahead_of_reshape(struct mddev *mddev, sector_t sector, 5814 sector_t reshape_sector) 5815 { 5816 return mddev->reshape_backwards ? sector < reshape_sector : 5817 sector >= reshape_sector; 5818 } 5819 5820 static bool range_ahead_of_reshape(struct mddev *mddev, sector_t min, 5821 sector_t max, sector_t reshape_sector) 5822 { 5823 return mddev->reshape_backwards ? max < reshape_sector : 5824 min >= reshape_sector; 5825 } 5826 5827 static bool stripe_ahead_of_reshape(struct mddev *mddev, struct r5conf *conf, 5828 struct stripe_head *sh) 5829 { 5830 sector_t max_sector = 0, min_sector = MaxSector; 5831 bool ret = false; 5832 int dd_idx; 5833 5834 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) { 5835 if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx) 5836 continue; 5837 5838 min_sector = min(min_sector, sh->dev[dd_idx].sector); 5839 max_sector = max(max_sector, sh->dev[dd_idx].sector); 5840 } 5841 5842 spin_lock_irq(&conf->device_lock); 5843 5844 if (!range_ahead_of_reshape(mddev, min_sector, max_sector, 5845 conf->reshape_progress)) 5846 /* mismatch, need to try again */ 5847 ret = true; 5848 5849 spin_unlock_irq(&conf->device_lock); 5850 5851 return ret; 5852 } 5853 5854 static int add_all_stripe_bios(struct r5conf *conf, 5855 struct stripe_request_ctx *ctx, struct stripe_head *sh, 5856 struct bio *bi, int forwrite, int previous) 5857 { 5858 int dd_idx; 5859 int ret = 1; 5860 5861 spin_lock_irq(&sh->stripe_lock); 5862 5863 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) { 5864 struct r5dev *dev = &sh->dev[dd_idx]; 5865 5866 if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx) 5867 continue; 5868 5869 if (dev->sector < ctx->first_sector || 5870 dev->sector >= ctx->last_sector) 5871 continue; 5872 5873 if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) { 5874 set_bit(R5_Overlap, &dev->flags); 5875 ret = 0; 5876 continue; 5877 } 5878 } 5879 5880 if (!ret) 5881 goto out; 5882 5883 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) { 5884 struct r5dev *dev = &sh->dev[dd_idx]; 5885 5886 if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx) 5887 continue; 5888 5889 if (dev->sector < ctx->first_sector || 5890 dev->sector >= ctx->last_sector) 5891 continue; 5892 5893 __add_stripe_bio(sh, bi, dd_idx, forwrite, previous); 5894 clear_bit((dev->sector - ctx->first_sector) >> 5895 RAID5_STRIPE_SHIFT(conf), ctx->sectors_to_do); 5896 } 5897 5898 out: 5899 spin_unlock_irq(&sh->stripe_lock); 5900 return ret; 5901 } 5902 5903 static enum stripe_result make_stripe_request(struct mddev *mddev, 5904 struct r5conf *conf, struct stripe_request_ctx *ctx, 5905 sector_t logical_sector, struct bio *bi) 5906 { 5907 const int rw = bio_data_dir(bi); 5908 enum stripe_result ret; 5909 struct stripe_head *sh; 5910 sector_t new_sector; 5911 int previous = 0, flags = 0; 5912 int seq, dd_idx; 5913 5914 seq = read_seqcount_begin(&conf->gen_lock); 5915 5916 if (unlikely(conf->reshape_progress != MaxSector)) { 5917 /* 5918 * Spinlock is needed as reshape_progress may be 5919 * 64bit on a 32bit platform, and so it might be 5920 * possible to see a half-updated value 5921 * Of course reshape_progress could change after 5922 * the lock is dropped, so once we get a reference 5923 * to the stripe that we think it is, we will have 5924 * to check again. 5925 */ 5926 spin_lock_irq(&conf->device_lock); 5927 if (ahead_of_reshape(mddev, logical_sector, 5928 conf->reshape_progress)) { 5929 previous = 1; 5930 } else { 5931 if (ahead_of_reshape(mddev, logical_sector, 5932 conf->reshape_safe)) { 5933 spin_unlock_irq(&conf->device_lock); 5934 ret = STRIPE_SCHEDULE_AND_RETRY; 5935 goto out; 5936 } 5937 } 5938 spin_unlock_irq(&conf->device_lock); 5939 } 5940 5941 new_sector = raid5_compute_sector(conf, logical_sector, previous, 5942 &dd_idx, NULL); 5943 pr_debug("raid456: %s, sector %llu logical %llu\n", __func__, 5944 new_sector, logical_sector); 5945 5946 if (previous) 5947 flags |= R5_GAS_PREVIOUS; 5948 if (bi->bi_opf & REQ_RAHEAD) 5949 flags |= R5_GAS_NOBLOCK; 5950 sh = raid5_get_active_stripe(conf, ctx, new_sector, flags); 5951 if (unlikely(!sh)) { 5952 /* cannot get stripe, just give-up */ 5953 bi->bi_status = BLK_STS_IOERR; 5954 return STRIPE_FAIL; 5955 } 5956 5957 if (unlikely(previous) && 5958 stripe_ahead_of_reshape(mddev, conf, sh)) { 5959 /* 5960 * Expansion moved on while waiting for a stripe. 5961 * Expansion could still move past after this 5962 * test, but as we are holding a reference to 5963 * 'sh', we know that if that happens, 5964 * STRIPE_EXPANDING will get set and the expansion 5965 * won't proceed until we finish with the stripe. 5966 */ 5967 ret = STRIPE_SCHEDULE_AND_RETRY; 5968 goto out_release; 5969 } 5970 5971 if (read_seqcount_retry(&conf->gen_lock, seq)) { 5972 /* Might have got the wrong stripe_head by accident */ 5973 ret = STRIPE_RETRY; 5974 goto out_release; 5975 } 5976 5977 if (test_bit(STRIPE_EXPANDING, &sh->state) || 5978 !add_all_stripe_bios(conf, ctx, sh, bi, rw, previous)) { 5979 /* 5980 * Stripe is busy expanding or add failed due to 5981 * overlap. Flush everything and wait a while. 5982 */ 5983 md_wakeup_thread(mddev->thread); 5984 ret = STRIPE_SCHEDULE_AND_RETRY; 5985 goto out_release; 5986 } 5987 5988 if (stripe_can_batch(sh)) { 5989 stripe_add_to_batch_list(conf, sh, ctx->batch_last); 5990 if (ctx->batch_last) 5991 raid5_release_stripe(ctx->batch_last); 5992 atomic_inc(&sh->count); 5993 ctx->batch_last = sh; 5994 } 5995 5996 if (ctx->do_flush) { 5997 set_bit(STRIPE_R5C_PREFLUSH, &sh->state); 5998 /* we only need flush for one stripe */ 5999 ctx->do_flush = false; 6000 } 6001 6002 set_bit(STRIPE_HANDLE, &sh->state); 6003 clear_bit(STRIPE_DELAYED, &sh->state); 6004 if ((!sh->batch_head || sh == sh->batch_head) && 6005 (bi->bi_opf & REQ_SYNC) && 6006 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 6007 atomic_inc(&conf->preread_active_stripes); 6008 6009 release_stripe_plug(mddev, sh); 6010 return STRIPE_SUCCESS; 6011 6012 out_release: 6013 raid5_release_stripe(sh); 6014 out: 6015 if (ret == STRIPE_SCHEDULE_AND_RETRY && reshape_interrupted(mddev)) { 6016 bi->bi_status = BLK_STS_RESOURCE; 6017 ret = STRIPE_WAIT_RESHAPE; 6018 pr_err_ratelimited("dm-raid456: io across reshape position while reshape can't make progress"); 6019 } 6020 return ret; 6021 } 6022 6023 /* 6024 * If the bio covers multiple data disks, find sector within the bio that has 6025 * the lowest chunk offset in the first chunk. 6026 */ 6027 static sector_t raid5_bio_lowest_chunk_sector(struct r5conf *conf, 6028 struct bio *bi) 6029 { 6030 int sectors_per_chunk = conf->chunk_sectors; 6031 int raid_disks = conf->raid_disks; 6032 int dd_idx; 6033 struct stripe_head sh; 6034 unsigned int chunk_offset; 6035 sector_t r_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1); 6036 sector_t sector; 6037 6038 /* We pass in fake stripe_head to get back parity disk numbers */ 6039 sector = raid5_compute_sector(conf, r_sector, 0, &dd_idx, &sh); 6040 chunk_offset = sector_div(sector, sectors_per_chunk); 6041 if (sectors_per_chunk - chunk_offset >= bio_sectors(bi)) 6042 return r_sector; 6043 /* 6044 * Bio crosses to the next data disk. Check whether it's in the same 6045 * chunk. 6046 */ 6047 dd_idx++; 6048 while (dd_idx == sh.pd_idx || dd_idx == sh.qd_idx) 6049 dd_idx++; 6050 if (dd_idx >= raid_disks) 6051 return r_sector; 6052 return r_sector + sectors_per_chunk - chunk_offset; 6053 } 6054 6055 static bool raid5_make_request(struct mddev *mddev, struct bio * bi) 6056 { 6057 DEFINE_WAIT_FUNC(wait, woken_wake_function); 6058 struct r5conf *conf = mddev->private; 6059 sector_t logical_sector; 6060 struct stripe_request_ctx ctx = {}; 6061 const int rw = bio_data_dir(bi); 6062 enum stripe_result res; 6063 int s, stripe_cnt; 6064 6065 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) { 6066 int ret = log_handle_flush_request(conf, bi); 6067 6068 if (ret == 0) 6069 return true; 6070 if (ret == -ENODEV) { 6071 if (md_flush_request(mddev, bi)) 6072 return true; 6073 } 6074 /* ret == -EAGAIN, fallback */ 6075 /* 6076 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH, 6077 * we need to flush journal device 6078 */ 6079 ctx.do_flush = bi->bi_opf & REQ_PREFLUSH; 6080 } 6081 6082 if (!md_write_start(mddev, bi)) 6083 return false; 6084 /* 6085 * If array is degraded, better not do chunk aligned read because 6086 * later we might have to read it again in order to reconstruct 6087 * data on failed drives. 6088 */ 6089 if (rw == READ && mddev->degraded == 0 && 6090 mddev->reshape_position == MaxSector) { 6091 bi = chunk_aligned_read(mddev, bi); 6092 if (!bi) 6093 return true; 6094 } 6095 6096 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) { 6097 make_discard_request(mddev, bi); 6098 md_write_end(mddev); 6099 return true; 6100 } 6101 6102 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1); 6103 ctx.first_sector = logical_sector; 6104 ctx.last_sector = bio_end_sector(bi); 6105 bi->bi_next = NULL; 6106 6107 stripe_cnt = DIV_ROUND_UP_SECTOR_T(ctx.last_sector - logical_sector, 6108 RAID5_STRIPE_SECTORS(conf)); 6109 bitmap_set(ctx.sectors_to_do, 0, stripe_cnt); 6110 6111 pr_debug("raid456: %s, logical %llu to %llu\n", __func__, 6112 bi->bi_iter.bi_sector, ctx.last_sector); 6113 6114 /* Bail out if conflicts with reshape and REQ_NOWAIT is set */ 6115 if ((bi->bi_opf & REQ_NOWAIT) && 6116 (conf->reshape_progress != MaxSector) && 6117 !ahead_of_reshape(mddev, logical_sector, conf->reshape_progress) && 6118 ahead_of_reshape(mddev, logical_sector, conf->reshape_safe)) { 6119 bio_wouldblock_error(bi); 6120 if (rw == WRITE) 6121 md_write_end(mddev); 6122 return true; 6123 } 6124 md_account_bio(mddev, &bi); 6125 6126 /* 6127 * Lets start with the stripe with the lowest chunk offset in the first 6128 * chunk. That has the best chances of creating IOs adjacent to 6129 * previous IOs in case of sequential IO and thus creates the most 6130 * sequential IO pattern. We don't bother with the optimization when 6131 * reshaping as the performance benefit is not worth the complexity. 6132 */ 6133 if (likely(conf->reshape_progress == MaxSector)) 6134 logical_sector = raid5_bio_lowest_chunk_sector(conf, bi); 6135 s = (logical_sector - ctx.first_sector) >> RAID5_STRIPE_SHIFT(conf); 6136 6137 add_wait_queue(&conf->wait_for_overlap, &wait); 6138 while (1) { 6139 res = make_stripe_request(mddev, conf, &ctx, logical_sector, 6140 bi); 6141 if (res == STRIPE_FAIL || res == STRIPE_WAIT_RESHAPE) 6142 break; 6143 6144 if (res == STRIPE_RETRY) 6145 continue; 6146 6147 if (res == STRIPE_SCHEDULE_AND_RETRY) { 6148 /* 6149 * Must release the reference to batch_last before 6150 * scheduling and waiting for work to be done, 6151 * otherwise the batch_last stripe head could prevent 6152 * raid5_activate_delayed() from making progress 6153 * and thus deadlocking. 6154 */ 6155 if (ctx.batch_last) { 6156 raid5_release_stripe(ctx.batch_last); 6157 ctx.batch_last = NULL; 6158 } 6159 6160 wait_woken(&wait, TASK_UNINTERRUPTIBLE, 6161 MAX_SCHEDULE_TIMEOUT); 6162 continue; 6163 } 6164 6165 s = find_next_bit_wrap(ctx.sectors_to_do, stripe_cnt, s); 6166 if (s == stripe_cnt) 6167 break; 6168 6169 logical_sector = ctx.first_sector + 6170 (s << RAID5_STRIPE_SHIFT(conf)); 6171 } 6172 remove_wait_queue(&conf->wait_for_overlap, &wait); 6173 6174 if (ctx.batch_last) 6175 raid5_release_stripe(ctx.batch_last); 6176 6177 if (rw == WRITE) 6178 md_write_end(mddev); 6179 if (res == STRIPE_WAIT_RESHAPE) { 6180 md_free_cloned_bio(bi); 6181 return false; 6182 } 6183 6184 bio_endio(bi); 6185 return true; 6186 } 6187 6188 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks); 6189 6190 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped) 6191 { 6192 /* reshaping is quite different to recovery/resync so it is 6193 * handled quite separately ... here. 6194 * 6195 * On each call to sync_request, we gather one chunk worth of 6196 * destination stripes and flag them as expanding. 6197 * Then we find all the source stripes and request reads. 6198 * As the reads complete, handle_stripe will copy the data 6199 * into the destination stripe and release that stripe. 6200 */ 6201 struct r5conf *conf = mddev->private; 6202 struct stripe_head *sh; 6203 struct md_rdev *rdev; 6204 sector_t first_sector, last_sector; 6205 int raid_disks = conf->previous_raid_disks; 6206 int data_disks = raid_disks - conf->max_degraded; 6207 int new_data_disks = conf->raid_disks - conf->max_degraded; 6208 int i; 6209 int dd_idx; 6210 sector_t writepos, readpos, safepos; 6211 sector_t stripe_addr; 6212 int reshape_sectors; 6213 struct list_head stripes; 6214 sector_t retn; 6215 6216 if (sector_nr == 0) { 6217 /* If restarting in the middle, skip the initial sectors */ 6218 if (mddev->reshape_backwards && 6219 conf->reshape_progress < raid5_size(mddev, 0, 0)) { 6220 sector_nr = raid5_size(mddev, 0, 0) 6221 - conf->reshape_progress; 6222 } else if (mddev->reshape_backwards && 6223 conf->reshape_progress == MaxSector) { 6224 /* shouldn't happen, but just in case, finish up.*/ 6225 sector_nr = MaxSector; 6226 } else if (!mddev->reshape_backwards && 6227 conf->reshape_progress > 0) 6228 sector_nr = conf->reshape_progress; 6229 sector_div(sector_nr, new_data_disks); 6230 if (sector_nr) { 6231 mddev->curr_resync_completed = sector_nr; 6232 sysfs_notify_dirent_safe(mddev->sysfs_completed); 6233 *skipped = 1; 6234 retn = sector_nr; 6235 goto finish; 6236 } 6237 } 6238 6239 /* We need to process a full chunk at a time. 6240 * If old and new chunk sizes differ, we need to process the 6241 * largest of these 6242 */ 6243 6244 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors); 6245 6246 /* We update the metadata at least every 10 seconds, or when 6247 * the data about to be copied would over-write the source of 6248 * the data at the front of the range. i.e. one new_stripe 6249 * along from reshape_progress new_maps to after where 6250 * reshape_safe old_maps to 6251 */ 6252 writepos = conf->reshape_progress; 6253 sector_div(writepos, new_data_disks); 6254 readpos = conf->reshape_progress; 6255 sector_div(readpos, data_disks); 6256 safepos = conf->reshape_safe; 6257 sector_div(safepos, data_disks); 6258 if (mddev->reshape_backwards) { 6259 BUG_ON(writepos < reshape_sectors); 6260 writepos -= reshape_sectors; 6261 readpos += reshape_sectors; 6262 safepos += reshape_sectors; 6263 } else { 6264 writepos += reshape_sectors; 6265 /* readpos and safepos are worst-case calculations. 6266 * A negative number is overly pessimistic, and causes 6267 * obvious problems for unsigned storage. So clip to 0. 6268 */ 6269 readpos -= min_t(sector_t, reshape_sectors, readpos); 6270 safepos -= min_t(sector_t, reshape_sectors, safepos); 6271 } 6272 6273 /* Having calculated the 'writepos' possibly use it 6274 * to set 'stripe_addr' which is where we will write to. 6275 */ 6276 if (mddev->reshape_backwards) { 6277 BUG_ON(conf->reshape_progress == 0); 6278 stripe_addr = writepos; 6279 BUG_ON((mddev->dev_sectors & 6280 ~((sector_t)reshape_sectors - 1)) 6281 - reshape_sectors - stripe_addr 6282 != sector_nr); 6283 } else { 6284 BUG_ON(writepos != sector_nr + reshape_sectors); 6285 stripe_addr = sector_nr; 6286 } 6287 6288 /* 'writepos' is the most advanced device address we might write. 6289 * 'readpos' is the least advanced device address we might read. 6290 * 'safepos' is the least address recorded in the metadata as having 6291 * been reshaped. 6292 * If there is a min_offset_diff, these are adjusted either by 6293 * increasing the safepos/readpos if diff is negative, or 6294 * increasing writepos if diff is positive. 6295 * If 'readpos' is then behind 'writepos', there is no way that we can 6296 * ensure safety in the face of a crash - that must be done by userspace 6297 * making a backup of the data. So in that case there is no particular 6298 * rush to update metadata. 6299 * Otherwise if 'safepos' is behind 'writepos', then we really need to 6300 * update the metadata to advance 'safepos' to match 'readpos' so that 6301 * we can be safe in the event of a crash. 6302 * So we insist on updating metadata if safepos is behind writepos and 6303 * readpos is beyond writepos. 6304 * In any case, update the metadata every 10 seconds. 6305 * Maybe that number should be configurable, but I'm not sure it is 6306 * worth it.... maybe it could be a multiple of safemode_delay??? 6307 */ 6308 if (conf->min_offset_diff < 0) { 6309 safepos += -conf->min_offset_diff; 6310 readpos += -conf->min_offset_diff; 6311 } else 6312 writepos += conf->min_offset_diff; 6313 6314 if ((mddev->reshape_backwards 6315 ? (safepos > writepos && readpos < writepos) 6316 : (safepos < writepos && readpos > writepos)) || 6317 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 6318 /* Cannot proceed until we've updated the superblock... */ 6319 wait_event(conf->wait_for_overlap, 6320 atomic_read(&conf->reshape_stripes)==0 6321 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 6322 if (atomic_read(&conf->reshape_stripes) != 0) 6323 return 0; 6324 mddev->reshape_position = conf->reshape_progress; 6325 mddev->curr_resync_completed = sector_nr; 6326 if (!mddev->reshape_backwards) 6327 /* Can update recovery_offset */ 6328 rdev_for_each(rdev, mddev) 6329 if (rdev->raid_disk >= 0 && 6330 !test_bit(Journal, &rdev->flags) && 6331 !test_bit(In_sync, &rdev->flags) && 6332 rdev->recovery_offset < sector_nr) 6333 rdev->recovery_offset = sector_nr; 6334 6335 conf->reshape_checkpoint = jiffies; 6336 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6337 md_wakeup_thread(mddev->thread); 6338 wait_event(mddev->sb_wait, mddev->sb_flags == 0 || 6339 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 6340 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6341 return 0; 6342 spin_lock_irq(&conf->device_lock); 6343 conf->reshape_safe = mddev->reshape_position; 6344 spin_unlock_irq(&conf->device_lock); 6345 wake_up(&conf->wait_for_overlap); 6346 sysfs_notify_dirent_safe(mddev->sysfs_completed); 6347 } 6348 6349 INIT_LIST_HEAD(&stripes); 6350 for (i = 0; i < reshape_sectors; i += RAID5_STRIPE_SECTORS(conf)) { 6351 int j; 6352 int skipped_disk = 0; 6353 sh = raid5_get_active_stripe(conf, NULL, stripe_addr+i, 6354 R5_GAS_NOQUIESCE); 6355 set_bit(STRIPE_EXPANDING, &sh->state); 6356 atomic_inc(&conf->reshape_stripes); 6357 /* If any of this stripe is beyond the end of the old 6358 * array, then we need to zero those blocks 6359 */ 6360 for (j=sh->disks; j--;) { 6361 sector_t s; 6362 if (j == sh->pd_idx) 6363 continue; 6364 if (conf->level == 6 && 6365 j == sh->qd_idx) 6366 continue; 6367 s = raid5_compute_blocknr(sh, j, 0); 6368 if (s < raid5_size(mddev, 0, 0)) { 6369 skipped_disk = 1; 6370 continue; 6371 } 6372 memset(page_address(sh->dev[j].page), 0, RAID5_STRIPE_SIZE(conf)); 6373 set_bit(R5_Expanded, &sh->dev[j].flags); 6374 set_bit(R5_UPTODATE, &sh->dev[j].flags); 6375 } 6376 if (!skipped_disk) { 6377 set_bit(STRIPE_EXPAND_READY, &sh->state); 6378 set_bit(STRIPE_HANDLE, &sh->state); 6379 } 6380 list_add(&sh->lru, &stripes); 6381 } 6382 spin_lock_irq(&conf->device_lock); 6383 if (mddev->reshape_backwards) 6384 conf->reshape_progress -= reshape_sectors * new_data_disks; 6385 else 6386 conf->reshape_progress += reshape_sectors * new_data_disks; 6387 spin_unlock_irq(&conf->device_lock); 6388 /* Ok, those stripe are ready. We can start scheduling 6389 * reads on the source stripes. 6390 * The source stripes are determined by mapping the first and last 6391 * block on the destination stripes. 6392 */ 6393 first_sector = 6394 raid5_compute_sector(conf, stripe_addr*(new_data_disks), 6395 1, &dd_idx, NULL); 6396 last_sector = 6397 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors) 6398 * new_data_disks - 1), 6399 1, &dd_idx, NULL); 6400 if (last_sector >= mddev->dev_sectors) 6401 last_sector = mddev->dev_sectors - 1; 6402 while (first_sector <= last_sector) { 6403 sh = raid5_get_active_stripe(conf, NULL, first_sector, 6404 R5_GAS_PREVIOUS | R5_GAS_NOQUIESCE); 6405 set_bit(STRIPE_EXPAND_SOURCE, &sh->state); 6406 set_bit(STRIPE_HANDLE, &sh->state); 6407 raid5_release_stripe(sh); 6408 first_sector += RAID5_STRIPE_SECTORS(conf); 6409 } 6410 /* Now that the sources are clearly marked, we can release 6411 * the destination stripes 6412 */ 6413 while (!list_empty(&stripes)) { 6414 sh = list_entry(stripes.next, struct stripe_head, lru); 6415 list_del_init(&sh->lru); 6416 raid5_release_stripe(sh); 6417 } 6418 /* If this takes us to the resync_max point where we have to pause, 6419 * then we need to write out the superblock. 6420 */ 6421 sector_nr += reshape_sectors; 6422 retn = reshape_sectors; 6423 finish: 6424 if (mddev->curr_resync_completed > mddev->resync_max || 6425 (sector_nr - mddev->curr_resync_completed) * 2 6426 >= mddev->resync_max - mddev->curr_resync_completed) { 6427 /* Cannot proceed until we've updated the superblock... */ 6428 wait_event(conf->wait_for_overlap, 6429 atomic_read(&conf->reshape_stripes) == 0 6430 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 6431 if (atomic_read(&conf->reshape_stripes) != 0) 6432 goto ret; 6433 mddev->reshape_position = conf->reshape_progress; 6434 mddev->curr_resync_completed = sector_nr; 6435 if (!mddev->reshape_backwards) 6436 /* Can update recovery_offset */ 6437 rdev_for_each(rdev, mddev) 6438 if (rdev->raid_disk >= 0 && 6439 !test_bit(Journal, &rdev->flags) && 6440 !test_bit(In_sync, &rdev->flags) && 6441 rdev->recovery_offset < sector_nr) 6442 rdev->recovery_offset = sector_nr; 6443 conf->reshape_checkpoint = jiffies; 6444 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6445 md_wakeup_thread(mddev->thread); 6446 wait_event(mddev->sb_wait, 6447 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) 6448 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 6449 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6450 goto ret; 6451 spin_lock_irq(&conf->device_lock); 6452 conf->reshape_safe = mddev->reshape_position; 6453 spin_unlock_irq(&conf->device_lock); 6454 wake_up(&conf->wait_for_overlap); 6455 sysfs_notify_dirent_safe(mddev->sysfs_completed); 6456 } 6457 ret: 6458 return retn; 6459 } 6460 6461 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr, 6462 int *skipped) 6463 { 6464 struct r5conf *conf = mddev->private; 6465 struct stripe_head *sh; 6466 sector_t max_sector = mddev->dev_sectors; 6467 sector_t sync_blocks; 6468 int still_degraded = 0; 6469 int i; 6470 6471 if (sector_nr >= max_sector) { 6472 /* just being told to finish up .. nothing much to do */ 6473 6474 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 6475 end_reshape(conf); 6476 return 0; 6477 } 6478 6479 if (mddev->curr_resync < max_sector) /* aborted */ 6480 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 6481 &sync_blocks, 1); 6482 else /* completed sync */ 6483 conf->fullsync = 0; 6484 md_bitmap_close_sync(mddev->bitmap); 6485 6486 return 0; 6487 } 6488 6489 /* Allow raid5_quiesce to complete */ 6490 wait_event(conf->wait_for_overlap, conf->quiesce != 2); 6491 6492 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 6493 return reshape_request(mddev, sector_nr, skipped); 6494 6495 /* No need to check resync_max as we never do more than one 6496 * stripe, and as resync_max will always be on a chunk boundary, 6497 * if the check in md_do_sync didn't fire, there is no chance 6498 * of overstepping resync_max here 6499 */ 6500 6501 /* if there is too many failed drives and we are trying 6502 * to resync, then assert that we are finished, because there is 6503 * nothing we can do. 6504 */ 6505 if (mddev->degraded >= conf->max_degraded && 6506 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 6507 sector_t rv = mddev->dev_sectors - sector_nr; 6508 *skipped = 1; 6509 return rv; 6510 } 6511 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 6512 !conf->fullsync && 6513 !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 6514 sync_blocks >= RAID5_STRIPE_SECTORS(conf)) { 6515 /* we can skip this block, and probably more */ 6516 do_div(sync_blocks, RAID5_STRIPE_SECTORS(conf)); 6517 *skipped = 1; 6518 /* keep things rounded to whole stripes */ 6519 return sync_blocks * RAID5_STRIPE_SECTORS(conf); 6520 } 6521 6522 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false); 6523 6524 sh = raid5_get_active_stripe(conf, NULL, sector_nr, 6525 R5_GAS_NOBLOCK); 6526 if (sh == NULL) { 6527 sh = raid5_get_active_stripe(conf, NULL, sector_nr, 0); 6528 /* make sure we don't swamp the stripe cache if someone else 6529 * is trying to get access 6530 */ 6531 schedule_timeout_uninterruptible(1); 6532 } 6533 /* Need to check if array will still be degraded after recovery/resync 6534 * Note in case of > 1 drive failures it's possible we're rebuilding 6535 * one drive while leaving another faulty drive in array. 6536 */ 6537 for (i = 0; i < conf->raid_disks; i++) { 6538 struct md_rdev *rdev = conf->disks[i].rdev; 6539 6540 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) 6541 still_degraded = 1; 6542 } 6543 6544 md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded); 6545 6546 set_bit(STRIPE_SYNC_REQUESTED, &sh->state); 6547 set_bit(STRIPE_HANDLE, &sh->state); 6548 6549 raid5_release_stripe(sh); 6550 6551 return RAID5_STRIPE_SECTORS(conf); 6552 } 6553 6554 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio, 6555 unsigned int offset) 6556 { 6557 /* We may not be able to submit a whole bio at once as there 6558 * may not be enough stripe_heads available. 6559 * We cannot pre-allocate enough stripe_heads as we may need 6560 * more than exist in the cache (if we allow ever large chunks). 6561 * So we do one stripe head at a time and record in 6562 * ->bi_hw_segments how many have been done. 6563 * 6564 * We *know* that this entire raid_bio is in one chunk, so 6565 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector. 6566 */ 6567 struct stripe_head *sh; 6568 int dd_idx; 6569 sector_t sector, logical_sector, last_sector; 6570 int scnt = 0; 6571 int handled = 0; 6572 6573 logical_sector = raid_bio->bi_iter.bi_sector & 6574 ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1); 6575 sector = raid5_compute_sector(conf, logical_sector, 6576 0, &dd_idx, NULL); 6577 last_sector = bio_end_sector(raid_bio); 6578 6579 for (; logical_sector < last_sector; 6580 logical_sector += RAID5_STRIPE_SECTORS(conf), 6581 sector += RAID5_STRIPE_SECTORS(conf), 6582 scnt++) { 6583 6584 if (scnt < offset) 6585 /* already done this stripe */ 6586 continue; 6587 6588 sh = raid5_get_active_stripe(conf, NULL, sector, 6589 R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE); 6590 if (!sh) { 6591 /* failed to get a stripe - must wait */ 6592 conf->retry_read_aligned = raid_bio; 6593 conf->retry_read_offset = scnt; 6594 return handled; 6595 } 6596 6597 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) { 6598 raid5_release_stripe(sh); 6599 conf->retry_read_aligned = raid_bio; 6600 conf->retry_read_offset = scnt; 6601 return handled; 6602 } 6603 6604 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags); 6605 handle_stripe(sh); 6606 raid5_release_stripe(sh); 6607 handled++; 6608 } 6609 6610 bio_endio(raid_bio); 6611 6612 if (atomic_dec_and_test(&conf->active_aligned_reads)) 6613 wake_up(&conf->wait_for_quiescent); 6614 return handled; 6615 } 6616 6617 static int handle_active_stripes(struct r5conf *conf, int group, 6618 struct r5worker *worker, 6619 struct list_head *temp_inactive_list) 6620 __must_hold(&conf->device_lock) 6621 { 6622 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh; 6623 int i, batch_size = 0, hash; 6624 bool release_inactive = false; 6625 6626 while (batch_size < MAX_STRIPE_BATCH && 6627 (sh = __get_priority_stripe(conf, group)) != NULL) 6628 batch[batch_size++] = sh; 6629 6630 if (batch_size == 0) { 6631 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 6632 if (!list_empty(temp_inactive_list + i)) 6633 break; 6634 if (i == NR_STRIPE_HASH_LOCKS) { 6635 spin_unlock_irq(&conf->device_lock); 6636 log_flush_stripe_to_raid(conf); 6637 spin_lock_irq(&conf->device_lock); 6638 return batch_size; 6639 } 6640 release_inactive = true; 6641 } 6642 spin_unlock_irq(&conf->device_lock); 6643 6644 release_inactive_stripe_list(conf, temp_inactive_list, 6645 NR_STRIPE_HASH_LOCKS); 6646 6647 r5l_flush_stripe_to_raid(conf->log); 6648 if (release_inactive) { 6649 spin_lock_irq(&conf->device_lock); 6650 return 0; 6651 } 6652 6653 for (i = 0; i < batch_size; i++) 6654 handle_stripe(batch[i]); 6655 log_write_stripe_run(conf); 6656 6657 cond_resched(); 6658 6659 spin_lock_irq(&conf->device_lock); 6660 for (i = 0; i < batch_size; i++) { 6661 hash = batch[i]->hash_lock_index; 6662 __release_stripe(conf, batch[i], &temp_inactive_list[hash]); 6663 } 6664 return batch_size; 6665 } 6666 6667 static void raid5_do_work(struct work_struct *work) 6668 { 6669 struct r5worker *worker = container_of(work, struct r5worker, work); 6670 struct r5worker_group *group = worker->group; 6671 struct r5conf *conf = group->conf; 6672 struct mddev *mddev = conf->mddev; 6673 int group_id = group - conf->worker_groups; 6674 int handled; 6675 struct blk_plug plug; 6676 6677 pr_debug("+++ raid5worker active\n"); 6678 6679 blk_start_plug(&plug); 6680 handled = 0; 6681 spin_lock_irq(&conf->device_lock); 6682 while (1) { 6683 int batch_size, released; 6684 6685 released = release_stripe_list(conf, worker->temp_inactive_list); 6686 6687 batch_size = handle_active_stripes(conf, group_id, worker, 6688 worker->temp_inactive_list); 6689 worker->working = false; 6690 if (!batch_size && !released) 6691 break; 6692 handled += batch_size; 6693 wait_event_lock_irq(mddev->sb_wait, 6694 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags), 6695 conf->device_lock); 6696 } 6697 pr_debug("%d stripes handled\n", handled); 6698 6699 spin_unlock_irq(&conf->device_lock); 6700 6701 flush_deferred_bios(conf); 6702 6703 r5l_flush_stripe_to_raid(conf->log); 6704 6705 async_tx_issue_pending_all(); 6706 blk_finish_plug(&plug); 6707 6708 pr_debug("--- raid5worker inactive\n"); 6709 } 6710 6711 /* 6712 * This is our raid5 kernel thread. 6713 * 6714 * We scan the hash table for stripes which can be handled now. 6715 * During the scan, completed stripes are saved for us by the interrupt 6716 * handler, so that they will not have to wait for our next wakeup. 6717 */ 6718 static void raid5d(struct md_thread *thread) 6719 { 6720 struct mddev *mddev = thread->mddev; 6721 struct r5conf *conf = mddev->private; 6722 int handled; 6723 struct blk_plug plug; 6724 6725 pr_debug("+++ raid5d active\n"); 6726 6727 md_check_recovery(mddev); 6728 6729 blk_start_plug(&plug); 6730 handled = 0; 6731 spin_lock_irq(&conf->device_lock); 6732 while (1) { 6733 struct bio *bio; 6734 int batch_size, released; 6735 unsigned int offset; 6736 6737 released = release_stripe_list(conf, conf->temp_inactive_list); 6738 if (released) 6739 clear_bit(R5_DID_ALLOC, &conf->cache_state); 6740 6741 if ( 6742 !list_empty(&conf->bitmap_list)) { 6743 /* Now is a good time to flush some bitmap updates */ 6744 conf->seq_flush++; 6745 spin_unlock_irq(&conf->device_lock); 6746 md_bitmap_unplug(mddev->bitmap); 6747 spin_lock_irq(&conf->device_lock); 6748 conf->seq_write = conf->seq_flush; 6749 activate_bit_delay(conf, conf->temp_inactive_list); 6750 } 6751 raid5_activate_delayed(conf); 6752 6753 while ((bio = remove_bio_from_retry(conf, &offset))) { 6754 int ok; 6755 spin_unlock_irq(&conf->device_lock); 6756 ok = retry_aligned_read(conf, bio, offset); 6757 spin_lock_irq(&conf->device_lock); 6758 if (!ok) 6759 break; 6760 handled++; 6761 } 6762 6763 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL, 6764 conf->temp_inactive_list); 6765 if (!batch_size && !released) 6766 break; 6767 handled += batch_size; 6768 6769 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) { 6770 spin_unlock_irq(&conf->device_lock); 6771 md_check_recovery(mddev); 6772 spin_lock_irq(&conf->device_lock); 6773 6774 /* 6775 * Waiting on MD_SB_CHANGE_PENDING below may deadlock 6776 * seeing md_check_recovery() is needed to clear 6777 * the flag when using mdmon. 6778 */ 6779 continue; 6780 } 6781 6782 wait_event_lock_irq(mddev->sb_wait, 6783 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags), 6784 conf->device_lock); 6785 } 6786 pr_debug("%d stripes handled\n", handled); 6787 6788 spin_unlock_irq(&conf->device_lock); 6789 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) && 6790 mutex_trylock(&conf->cache_size_mutex)) { 6791 grow_one_stripe(conf, __GFP_NOWARN); 6792 /* Set flag even if allocation failed. This helps 6793 * slow down allocation requests when mem is short 6794 */ 6795 set_bit(R5_DID_ALLOC, &conf->cache_state); 6796 mutex_unlock(&conf->cache_size_mutex); 6797 } 6798 6799 flush_deferred_bios(conf); 6800 6801 r5l_flush_stripe_to_raid(conf->log); 6802 6803 async_tx_issue_pending_all(); 6804 blk_finish_plug(&plug); 6805 6806 pr_debug("--- raid5d inactive\n"); 6807 } 6808 6809 static ssize_t 6810 raid5_show_stripe_cache_size(struct mddev *mddev, char *page) 6811 { 6812 struct r5conf *conf; 6813 int ret = 0; 6814 spin_lock(&mddev->lock); 6815 conf = mddev->private; 6816 if (conf) 6817 ret = sprintf(page, "%d\n", conf->min_nr_stripes); 6818 spin_unlock(&mddev->lock); 6819 return ret; 6820 } 6821 6822 int 6823 raid5_set_cache_size(struct mddev *mddev, int size) 6824 { 6825 int result = 0; 6826 struct r5conf *conf = mddev->private; 6827 6828 if (size <= 16 || size > 32768) 6829 return -EINVAL; 6830 6831 WRITE_ONCE(conf->min_nr_stripes, size); 6832 mutex_lock(&conf->cache_size_mutex); 6833 while (size < conf->max_nr_stripes && 6834 drop_one_stripe(conf)) 6835 ; 6836 mutex_unlock(&conf->cache_size_mutex); 6837 6838 md_allow_write(mddev); 6839 6840 mutex_lock(&conf->cache_size_mutex); 6841 while (size > conf->max_nr_stripes) 6842 if (!grow_one_stripe(conf, GFP_KERNEL)) { 6843 WRITE_ONCE(conf->min_nr_stripes, conf->max_nr_stripes); 6844 result = -ENOMEM; 6845 break; 6846 } 6847 mutex_unlock(&conf->cache_size_mutex); 6848 6849 return result; 6850 } 6851 EXPORT_SYMBOL(raid5_set_cache_size); 6852 6853 static ssize_t 6854 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len) 6855 { 6856 struct r5conf *conf; 6857 unsigned long new; 6858 int err; 6859 6860 if (len >= PAGE_SIZE) 6861 return -EINVAL; 6862 if (kstrtoul(page, 10, &new)) 6863 return -EINVAL; 6864 err = mddev_lock(mddev); 6865 if (err) 6866 return err; 6867 conf = mddev->private; 6868 if (!conf) 6869 err = -ENODEV; 6870 else 6871 err = raid5_set_cache_size(mddev, new); 6872 mddev_unlock(mddev); 6873 6874 return err ?: len; 6875 } 6876 6877 static struct md_sysfs_entry 6878 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR, 6879 raid5_show_stripe_cache_size, 6880 raid5_store_stripe_cache_size); 6881 6882 static ssize_t 6883 raid5_show_rmw_level(struct mddev *mddev, char *page) 6884 { 6885 struct r5conf *conf = mddev->private; 6886 if (conf) 6887 return sprintf(page, "%d\n", conf->rmw_level); 6888 else 6889 return 0; 6890 } 6891 6892 static ssize_t 6893 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len) 6894 { 6895 struct r5conf *conf = mddev->private; 6896 unsigned long new; 6897 6898 if (!conf) 6899 return -ENODEV; 6900 6901 if (len >= PAGE_SIZE) 6902 return -EINVAL; 6903 6904 if (kstrtoul(page, 10, &new)) 6905 return -EINVAL; 6906 6907 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome) 6908 return -EINVAL; 6909 6910 if (new != PARITY_DISABLE_RMW && 6911 new != PARITY_ENABLE_RMW && 6912 new != PARITY_PREFER_RMW) 6913 return -EINVAL; 6914 6915 conf->rmw_level = new; 6916 return len; 6917 } 6918 6919 static struct md_sysfs_entry 6920 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR, 6921 raid5_show_rmw_level, 6922 raid5_store_rmw_level); 6923 6924 static ssize_t 6925 raid5_show_stripe_size(struct mddev *mddev, char *page) 6926 { 6927 struct r5conf *conf; 6928 int ret = 0; 6929 6930 spin_lock(&mddev->lock); 6931 conf = mddev->private; 6932 if (conf) 6933 ret = sprintf(page, "%lu\n", RAID5_STRIPE_SIZE(conf)); 6934 spin_unlock(&mddev->lock); 6935 return ret; 6936 } 6937 6938 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 6939 static ssize_t 6940 raid5_store_stripe_size(struct mddev *mddev, const char *page, size_t len) 6941 { 6942 struct r5conf *conf; 6943 unsigned long new; 6944 int err; 6945 int size; 6946 6947 if (len >= PAGE_SIZE) 6948 return -EINVAL; 6949 if (kstrtoul(page, 10, &new)) 6950 return -EINVAL; 6951 6952 /* 6953 * The value should not be bigger than PAGE_SIZE. It requires to 6954 * be multiple of DEFAULT_STRIPE_SIZE and the value should be power 6955 * of two. 6956 */ 6957 if (new % DEFAULT_STRIPE_SIZE != 0 || 6958 new > PAGE_SIZE || new == 0 || 6959 new != roundup_pow_of_two(new)) 6960 return -EINVAL; 6961 6962 err = mddev_suspend_and_lock(mddev); 6963 if (err) 6964 return err; 6965 6966 conf = mddev->private; 6967 if (!conf) { 6968 err = -ENODEV; 6969 goto out_unlock; 6970 } 6971 6972 if (new == conf->stripe_size) 6973 goto out_unlock; 6974 6975 pr_debug("md/raid: change stripe_size from %lu to %lu\n", 6976 conf->stripe_size, new); 6977 6978 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 6979 mddev->reshape_position != MaxSector || mddev->sysfs_active) { 6980 err = -EBUSY; 6981 goto out_unlock; 6982 } 6983 6984 mutex_lock(&conf->cache_size_mutex); 6985 size = conf->max_nr_stripes; 6986 6987 shrink_stripes(conf); 6988 6989 conf->stripe_size = new; 6990 conf->stripe_shift = ilog2(new) - 9; 6991 conf->stripe_sectors = new >> 9; 6992 if (grow_stripes(conf, size)) { 6993 pr_warn("md/raid:%s: couldn't allocate buffers\n", 6994 mdname(mddev)); 6995 err = -ENOMEM; 6996 } 6997 mutex_unlock(&conf->cache_size_mutex); 6998 6999 out_unlock: 7000 mddev_unlock_and_resume(mddev); 7001 return err ?: len; 7002 } 7003 7004 static struct md_sysfs_entry 7005 raid5_stripe_size = __ATTR(stripe_size, 0644, 7006 raid5_show_stripe_size, 7007 raid5_store_stripe_size); 7008 #else 7009 static struct md_sysfs_entry 7010 raid5_stripe_size = __ATTR(stripe_size, 0444, 7011 raid5_show_stripe_size, 7012 NULL); 7013 #endif 7014 7015 static ssize_t 7016 raid5_show_preread_threshold(struct mddev *mddev, char *page) 7017 { 7018 struct r5conf *conf; 7019 int ret = 0; 7020 spin_lock(&mddev->lock); 7021 conf = mddev->private; 7022 if (conf) 7023 ret = sprintf(page, "%d\n", conf->bypass_threshold); 7024 spin_unlock(&mddev->lock); 7025 return ret; 7026 } 7027 7028 static ssize_t 7029 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len) 7030 { 7031 struct r5conf *conf; 7032 unsigned long new; 7033 int err; 7034 7035 if (len >= PAGE_SIZE) 7036 return -EINVAL; 7037 if (kstrtoul(page, 10, &new)) 7038 return -EINVAL; 7039 7040 err = mddev_lock(mddev); 7041 if (err) 7042 return err; 7043 conf = mddev->private; 7044 if (!conf) 7045 err = -ENODEV; 7046 else if (new > conf->min_nr_stripes) 7047 err = -EINVAL; 7048 else 7049 conf->bypass_threshold = new; 7050 mddev_unlock(mddev); 7051 return err ?: len; 7052 } 7053 7054 static struct md_sysfs_entry 7055 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold, 7056 S_IRUGO | S_IWUSR, 7057 raid5_show_preread_threshold, 7058 raid5_store_preread_threshold); 7059 7060 static ssize_t 7061 raid5_show_skip_copy(struct mddev *mddev, char *page) 7062 { 7063 struct r5conf *conf; 7064 int ret = 0; 7065 spin_lock(&mddev->lock); 7066 conf = mddev->private; 7067 if (conf) 7068 ret = sprintf(page, "%d\n", conf->skip_copy); 7069 spin_unlock(&mddev->lock); 7070 return ret; 7071 } 7072 7073 static ssize_t 7074 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len) 7075 { 7076 struct r5conf *conf; 7077 unsigned long new; 7078 int err; 7079 7080 if (len >= PAGE_SIZE) 7081 return -EINVAL; 7082 if (kstrtoul(page, 10, &new)) 7083 return -EINVAL; 7084 new = !!new; 7085 7086 err = mddev_suspend_and_lock(mddev); 7087 if (err) 7088 return err; 7089 conf = mddev->private; 7090 if (!conf) 7091 err = -ENODEV; 7092 else if (new != conf->skip_copy) { 7093 struct request_queue *q = mddev->gendisk->queue; 7094 7095 conf->skip_copy = new; 7096 if (new) 7097 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q); 7098 else 7099 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q); 7100 } 7101 mddev_unlock_and_resume(mddev); 7102 return err ?: len; 7103 } 7104 7105 static struct md_sysfs_entry 7106 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR, 7107 raid5_show_skip_copy, 7108 raid5_store_skip_copy); 7109 7110 static ssize_t 7111 stripe_cache_active_show(struct mddev *mddev, char *page) 7112 { 7113 struct r5conf *conf = mddev->private; 7114 if (conf) 7115 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes)); 7116 else 7117 return 0; 7118 } 7119 7120 static struct md_sysfs_entry 7121 raid5_stripecache_active = __ATTR_RO(stripe_cache_active); 7122 7123 static ssize_t 7124 raid5_show_group_thread_cnt(struct mddev *mddev, char *page) 7125 { 7126 struct r5conf *conf; 7127 int ret = 0; 7128 spin_lock(&mddev->lock); 7129 conf = mddev->private; 7130 if (conf) 7131 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group); 7132 spin_unlock(&mddev->lock); 7133 return ret; 7134 } 7135 7136 static int alloc_thread_groups(struct r5conf *conf, int cnt, 7137 int *group_cnt, 7138 struct r5worker_group **worker_groups); 7139 static ssize_t 7140 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len) 7141 { 7142 struct r5conf *conf; 7143 unsigned int new; 7144 int err; 7145 struct r5worker_group *new_groups, *old_groups; 7146 int group_cnt; 7147 7148 if (len >= PAGE_SIZE) 7149 return -EINVAL; 7150 if (kstrtouint(page, 10, &new)) 7151 return -EINVAL; 7152 /* 8192 should be big enough */ 7153 if (new > 8192) 7154 return -EINVAL; 7155 7156 err = mddev_suspend_and_lock(mddev); 7157 if (err) 7158 return err; 7159 conf = mddev->private; 7160 if (!conf) 7161 err = -ENODEV; 7162 else if (new != conf->worker_cnt_per_group) { 7163 old_groups = conf->worker_groups; 7164 if (old_groups) 7165 flush_workqueue(raid5_wq); 7166 7167 err = alloc_thread_groups(conf, new, &group_cnt, &new_groups); 7168 if (!err) { 7169 spin_lock_irq(&conf->device_lock); 7170 conf->group_cnt = group_cnt; 7171 conf->worker_cnt_per_group = new; 7172 conf->worker_groups = new_groups; 7173 spin_unlock_irq(&conf->device_lock); 7174 7175 if (old_groups) 7176 kfree(old_groups[0].workers); 7177 kfree(old_groups); 7178 } 7179 } 7180 mddev_unlock_and_resume(mddev); 7181 7182 return err ?: len; 7183 } 7184 7185 static struct md_sysfs_entry 7186 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR, 7187 raid5_show_group_thread_cnt, 7188 raid5_store_group_thread_cnt); 7189 7190 static struct attribute *raid5_attrs[] = { 7191 &raid5_stripecache_size.attr, 7192 &raid5_stripecache_active.attr, 7193 &raid5_preread_bypass_threshold.attr, 7194 &raid5_group_thread_cnt.attr, 7195 &raid5_skip_copy.attr, 7196 &raid5_rmw_level.attr, 7197 &raid5_stripe_size.attr, 7198 &r5c_journal_mode.attr, 7199 &ppl_write_hint.attr, 7200 NULL, 7201 }; 7202 static const struct attribute_group raid5_attrs_group = { 7203 .name = NULL, 7204 .attrs = raid5_attrs, 7205 }; 7206 7207 static int alloc_thread_groups(struct r5conf *conf, int cnt, int *group_cnt, 7208 struct r5worker_group **worker_groups) 7209 { 7210 int i, j, k; 7211 ssize_t size; 7212 struct r5worker *workers; 7213 7214 if (cnt == 0) { 7215 *group_cnt = 0; 7216 *worker_groups = NULL; 7217 return 0; 7218 } 7219 *group_cnt = num_possible_nodes(); 7220 size = sizeof(struct r5worker) * cnt; 7221 workers = kcalloc(size, *group_cnt, GFP_NOIO); 7222 *worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group), 7223 GFP_NOIO); 7224 if (!*worker_groups || !workers) { 7225 kfree(workers); 7226 kfree(*worker_groups); 7227 return -ENOMEM; 7228 } 7229 7230 for (i = 0; i < *group_cnt; i++) { 7231 struct r5worker_group *group; 7232 7233 group = &(*worker_groups)[i]; 7234 INIT_LIST_HEAD(&group->handle_list); 7235 INIT_LIST_HEAD(&group->loprio_list); 7236 group->conf = conf; 7237 group->workers = workers + i * cnt; 7238 7239 for (j = 0; j < cnt; j++) { 7240 struct r5worker *worker = group->workers + j; 7241 worker->group = group; 7242 INIT_WORK(&worker->work, raid5_do_work); 7243 7244 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++) 7245 INIT_LIST_HEAD(worker->temp_inactive_list + k); 7246 } 7247 } 7248 7249 return 0; 7250 } 7251 7252 static void free_thread_groups(struct r5conf *conf) 7253 { 7254 if (conf->worker_groups) 7255 kfree(conf->worker_groups[0].workers); 7256 kfree(conf->worker_groups); 7257 conf->worker_groups = NULL; 7258 } 7259 7260 static sector_t 7261 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks) 7262 { 7263 struct r5conf *conf = mddev->private; 7264 7265 if (!sectors) 7266 sectors = mddev->dev_sectors; 7267 if (!raid_disks) 7268 /* size is defined by the smallest of previous and new size */ 7269 raid_disks = min(conf->raid_disks, conf->previous_raid_disks); 7270 7271 sectors &= ~((sector_t)conf->chunk_sectors - 1); 7272 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1); 7273 return sectors * (raid_disks - conf->max_degraded); 7274 } 7275 7276 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 7277 { 7278 safe_put_page(percpu->spare_page); 7279 percpu->spare_page = NULL; 7280 kvfree(percpu->scribble); 7281 percpu->scribble = NULL; 7282 } 7283 7284 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 7285 { 7286 if (conf->level == 6 && !percpu->spare_page) { 7287 percpu->spare_page = alloc_page(GFP_KERNEL); 7288 if (!percpu->spare_page) 7289 return -ENOMEM; 7290 } 7291 7292 if (scribble_alloc(percpu, 7293 max(conf->raid_disks, 7294 conf->previous_raid_disks), 7295 max(conf->chunk_sectors, 7296 conf->prev_chunk_sectors) 7297 / RAID5_STRIPE_SECTORS(conf))) { 7298 free_scratch_buffer(conf, percpu); 7299 return -ENOMEM; 7300 } 7301 7302 local_lock_init(&percpu->lock); 7303 return 0; 7304 } 7305 7306 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node) 7307 { 7308 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node); 7309 7310 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu)); 7311 return 0; 7312 } 7313 7314 static void raid5_free_percpu(struct r5conf *conf) 7315 { 7316 if (!conf->percpu) 7317 return; 7318 7319 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node); 7320 free_percpu(conf->percpu); 7321 } 7322 7323 static void free_conf(struct r5conf *conf) 7324 { 7325 int i; 7326 7327 log_exit(conf); 7328 7329 shrinker_free(conf->shrinker); 7330 free_thread_groups(conf); 7331 shrink_stripes(conf); 7332 raid5_free_percpu(conf); 7333 for (i = 0; i < conf->pool_size; i++) 7334 if (conf->disks[i].extra_page) 7335 put_page(conf->disks[i].extra_page); 7336 kfree(conf->disks); 7337 bioset_exit(&conf->bio_split); 7338 kfree(conf->stripe_hashtbl); 7339 kfree(conf->pending_data); 7340 kfree(conf); 7341 } 7342 7343 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node) 7344 { 7345 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node); 7346 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu); 7347 7348 if (alloc_scratch_buffer(conf, percpu)) { 7349 pr_warn("%s: failed memory allocation for cpu%u\n", 7350 __func__, cpu); 7351 return -ENOMEM; 7352 } 7353 return 0; 7354 } 7355 7356 static int raid5_alloc_percpu(struct r5conf *conf) 7357 { 7358 int err = 0; 7359 7360 conf->percpu = alloc_percpu(struct raid5_percpu); 7361 if (!conf->percpu) 7362 return -ENOMEM; 7363 7364 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node); 7365 if (!err) { 7366 conf->scribble_disks = max(conf->raid_disks, 7367 conf->previous_raid_disks); 7368 conf->scribble_sectors = max(conf->chunk_sectors, 7369 conf->prev_chunk_sectors); 7370 } 7371 return err; 7372 } 7373 7374 static unsigned long raid5_cache_scan(struct shrinker *shrink, 7375 struct shrink_control *sc) 7376 { 7377 struct r5conf *conf = shrink->private_data; 7378 unsigned long ret = SHRINK_STOP; 7379 7380 if (mutex_trylock(&conf->cache_size_mutex)) { 7381 ret= 0; 7382 while (ret < sc->nr_to_scan && 7383 conf->max_nr_stripes > conf->min_nr_stripes) { 7384 if (drop_one_stripe(conf) == 0) { 7385 ret = SHRINK_STOP; 7386 break; 7387 } 7388 ret++; 7389 } 7390 mutex_unlock(&conf->cache_size_mutex); 7391 } 7392 return ret; 7393 } 7394 7395 static unsigned long raid5_cache_count(struct shrinker *shrink, 7396 struct shrink_control *sc) 7397 { 7398 struct r5conf *conf = shrink->private_data; 7399 int max_stripes = READ_ONCE(conf->max_nr_stripes); 7400 int min_stripes = READ_ONCE(conf->min_nr_stripes); 7401 7402 if (max_stripes < min_stripes) 7403 /* unlikely, but not impossible */ 7404 return 0; 7405 return max_stripes - min_stripes; 7406 } 7407 7408 static struct r5conf *setup_conf(struct mddev *mddev) 7409 { 7410 struct r5conf *conf; 7411 int raid_disk, memory, max_disks; 7412 struct md_rdev *rdev; 7413 struct disk_info *disk; 7414 char pers_name[6]; 7415 int i; 7416 int group_cnt; 7417 struct r5worker_group *new_group; 7418 int ret = -ENOMEM; 7419 7420 if (mddev->new_level != 5 7421 && mddev->new_level != 4 7422 && mddev->new_level != 6) { 7423 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n", 7424 mdname(mddev), mddev->new_level); 7425 return ERR_PTR(-EIO); 7426 } 7427 if ((mddev->new_level == 5 7428 && !algorithm_valid_raid5(mddev->new_layout)) || 7429 (mddev->new_level == 6 7430 && !algorithm_valid_raid6(mddev->new_layout))) { 7431 pr_warn("md/raid:%s: layout %d not supported\n", 7432 mdname(mddev), mddev->new_layout); 7433 return ERR_PTR(-EIO); 7434 } 7435 if (mddev->new_level == 6 && mddev->raid_disks < 4) { 7436 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n", 7437 mdname(mddev), mddev->raid_disks); 7438 return ERR_PTR(-EINVAL); 7439 } 7440 7441 if (!mddev->new_chunk_sectors || 7442 (mddev->new_chunk_sectors << 9) % PAGE_SIZE || 7443 !is_power_of_2(mddev->new_chunk_sectors)) { 7444 pr_warn("md/raid:%s: invalid chunk size %d\n", 7445 mdname(mddev), mddev->new_chunk_sectors << 9); 7446 return ERR_PTR(-EINVAL); 7447 } 7448 7449 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL); 7450 if (conf == NULL) 7451 goto abort; 7452 7453 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 7454 conf->stripe_size = DEFAULT_STRIPE_SIZE; 7455 conf->stripe_shift = ilog2(DEFAULT_STRIPE_SIZE) - 9; 7456 conf->stripe_sectors = DEFAULT_STRIPE_SIZE >> 9; 7457 #endif 7458 INIT_LIST_HEAD(&conf->free_list); 7459 INIT_LIST_HEAD(&conf->pending_list); 7460 conf->pending_data = kcalloc(PENDING_IO_MAX, 7461 sizeof(struct r5pending_data), 7462 GFP_KERNEL); 7463 if (!conf->pending_data) 7464 goto abort; 7465 for (i = 0; i < PENDING_IO_MAX; i++) 7466 list_add(&conf->pending_data[i].sibling, &conf->free_list); 7467 /* Don't enable multi-threading by default*/ 7468 if (!alloc_thread_groups(conf, 0, &group_cnt, &new_group)) { 7469 conf->group_cnt = group_cnt; 7470 conf->worker_cnt_per_group = 0; 7471 conf->worker_groups = new_group; 7472 } else 7473 goto abort; 7474 spin_lock_init(&conf->device_lock); 7475 seqcount_spinlock_init(&conf->gen_lock, &conf->device_lock); 7476 mutex_init(&conf->cache_size_mutex); 7477 7478 init_waitqueue_head(&conf->wait_for_quiescent); 7479 init_waitqueue_head(&conf->wait_for_stripe); 7480 init_waitqueue_head(&conf->wait_for_overlap); 7481 INIT_LIST_HEAD(&conf->handle_list); 7482 INIT_LIST_HEAD(&conf->loprio_list); 7483 INIT_LIST_HEAD(&conf->hold_list); 7484 INIT_LIST_HEAD(&conf->delayed_list); 7485 INIT_LIST_HEAD(&conf->bitmap_list); 7486 init_llist_head(&conf->released_stripes); 7487 atomic_set(&conf->active_stripes, 0); 7488 atomic_set(&conf->preread_active_stripes, 0); 7489 atomic_set(&conf->active_aligned_reads, 0); 7490 spin_lock_init(&conf->pending_bios_lock); 7491 conf->batch_bio_dispatch = true; 7492 rdev_for_each(rdev, mddev) { 7493 if (test_bit(Journal, &rdev->flags)) 7494 continue; 7495 if (bdev_nonrot(rdev->bdev)) { 7496 conf->batch_bio_dispatch = false; 7497 break; 7498 } 7499 } 7500 7501 conf->bypass_threshold = BYPASS_THRESHOLD; 7502 conf->recovery_disabled = mddev->recovery_disabled - 1; 7503 7504 conf->raid_disks = mddev->raid_disks; 7505 if (mddev->reshape_position == MaxSector) 7506 conf->previous_raid_disks = mddev->raid_disks; 7507 else 7508 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks; 7509 max_disks = max(conf->raid_disks, conf->previous_raid_disks); 7510 7511 conf->disks = kcalloc(max_disks, sizeof(struct disk_info), 7512 GFP_KERNEL); 7513 7514 if (!conf->disks) 7515 goto abort; 7516 7517 for (i = 0; i < max_disks; i++) { 7518 conf->disks[i].extra_page = alloc_page(GFP_KERNEL); 7519 if (!conf->disks[i].extra_page) 7520 goto abort; 7521 } 7522 7523 ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 7524 if (ret) 7525 goto abort; 7526 conf->mddev = mddev; 7527 7528 ret = -ENOMEM; 7529 conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL); 7530 if (!conf->stripe_hashtbl) 7531 goto abort; 7532 7533 /* We init hash_locks[0] separately to that it can be used 7534 * as the reference lock in the spin_lock_nest_lock() call 7535 * in lock_all_device_hash_locks_irq in order to convince 7536 * lockdep that we know what we are doing. 7537 */ 7538 spin_lock_init(conf->hash_locks); 7539 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 7540 spin_lock_init(conf->hash_locks + i); 7541 7542 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 7543 INIT_LIST_HEAD(conf->inactive_list + i); 7544 7545 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 7546 INIT_LIST_HEAD(conf->temp_inactive_list + i); 7547 7548 atomic_set(&conf->r5c_cached_full_stripes, 0); 7549 INIT_LIST_HEAD(&conf->r5c_full_stripe_list); 7550 atomic_set(&conf->r5c_cached_partial_stripes, 0); 7551 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list); 7552 atomic_set(&conf->r5c_flushing_full_stripes, 0); 7553 atomic_set(&conf->r5c_flushing_partial_stripes, 0); 7554 7555 conf->level = mddev->new_level; 7556 conf->chunk_sectors = mddev->new_chunk_sectors; 7557 ret = raid5_alloc_percpu(conf); 7558 if (ret) 7559 goto abort; 7560 7561 pr_debug("raid456: run(%s) called.\n", mdname(mddev)); 7562 7563 ret = -EIO; 7564 rdev_for_each(rdev, mddev) { 7565 raid_disk = rdev->raid_disk; 7566 if (raid_disk >= max_disks 7567 || raid_disk < 0 || test_bit(Journal, &rdev->flags)) 7568 continue; 7569 disk = conf->disks + raid_disk; 7570 7571 if (test_bit(Replacement, &rdev->flags)) { 7572 if (disk->replacement) 7573 goto abort; 7574 RCU_INIT_POINTER(disk->replacement, rdev); 7575 } else { 7576 if (disk->rdev) 7577 goto abort; 7578 RCU_INIT_POINTER(disk->rdev, rdev); 7579 } 7580 7581 if (test_bit(In_sync, &rdev->flags)) { 7582 pr_info("md/raid:%s: device %pg operational as raid disk %d\n", 7583 mdname(mddev), rdev->bdev, raid_disk); 7584 } else if (rdev->saved_raid_disk != raid_disk) 7585 /* Cannot rely on bitmap to complete recovery */ 7586 conf->fullsync = 1; 7587 } 7588 7589 conf->level = mddev->new_level; 7590 if (conf->level == 6) { 7591 conf->max_degraded = 2; 7592 if (raid6_call.xor_syndrome) 7593 conf->rmw_level = PARITY_ENABLE_RMW; 7594 else 7595 conf->rmw_level = PARITY_DISABLE_RMW; 7596 } else { 7597 conf->max_degraded = 1; 7598 conf->rmw_level = PARITY_ENABLE_RMW; 7599 } 7600 conf->algorithm = mddev->new_layout; 7601 conf->reshape_progress = mddev->reshape_position; 7602 if (conf->reshape_progress != MaxSector) { 7603 conf->prev_chunk_sectors = mddev->chunk_sectors; 7604 conf->prev_algo = mddev->layout; 7605 } else { 7606 conf->prev_chunk_sectors = conf->chunk_sectors; 7607 conf->prev_algo = conf->algorithm; 7608 } 7609 7610 conf->min_nr_stripes = NR_STRIPES; 7611 if (mddev->reshape_position != MaxSector) { 7612 int stripes = max_t(int, 7613 ((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4, 7614 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4); 7615 conf->min_nr_stripes = max(NR_STRIPES, stripes); 7616 if (conf->min_nr_stripes != NR_STRIPES) 7617 pr_info("md/raid:%s: force stripe size %d for reshape\n", 7618 mdname(mddev), conf->min_nr_stripes); 7619 } 7620 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) + 7621 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024; 7622 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS); 7623 if (grow_stripes(conf, conf->min_nr_stripes)) { 7624 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n", 7625 mdname(mddev), memory); 7626 ret = -ENOMEM; 7627 goto abort; 7628 } else 7629 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory); 7630 /* 7631 * Losing a stripe head costs more than the time to refill it, 7632 * it reduces the queue depth and so can hurt throughput. 7633 * So set it rather large, scaled by number of devices. 7634 */ 7635 conf->shrinker = shrinker_alloc(0, "md-raid5:%s", mdname(mddev)); 7636 if (!conf->shrinker) { 7637 ret = -ENOMEM; 7638 pr_warn("md/raid:%s: couldn't allocate shrinker.\n", 7639 mdname(mddev)); 7640 goto abort; 7641 } 7642 7643 conf->shrinker->seeks = DEFAULT_SEEKS * conf->raid_disks * 4; 7644 conf->shrinker->scan_objects = raid5_cache_scan; 7645 conf->shrinker->count_objects = raid5_cache_count; 7646 conf->shrinker->batch = 128; 7647 conf->shrinker->private_data = conf; 7648 7649 shrinker_register(conf->shrinker); 7650 7651 sprintf(pers_name, "raid%d", mddev->new_level); 7652 rcu_assign_pointer(conf->thread, 7653 md_register_thread(raid5d, mddev, pers_name)); 7654 if (!conf->thread) { 7655 pr_warn("md/raid:%s: couldn't allocate thread.\n", 7656 mdname(mddev)); 7657 ret = -ENOMEM; 7658 goto abort; 7659 } 7660 7661 return conf; 7662 7663 abort: 7664 if (conf) 7665 free_conf(conf); 7666 return ERR_PTR(ret); 7667 } 7668 7669 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded) 7670 { 7671 switch (algo) { 7672 case ALGORITHM_PARITY_0: 7673 if (raid_disk < max_degraded) 7674 return 1; 7675 break; 7676 case ALGORITHM_PARITY_N: 7677 if (raid_disk >= raid_disks - max_degraded) 7678 return 1; 7679 break; 7680 case ALGORITHM_PARITY_0_6: 7681 if (raid_disk == 0 || 7682 raid_disk == raid_disks - 1) 7683 return 1; 7684 break; 7685 case ALGORITHM_LEFT_ASYMMETRIC_6: 7686 case ALGORITHM_RIGHT_ASYMMETRIC_6: 7687 case ALGORITHM_LEFT_SYMMETRIC_6: 7688 case ALGORITHM_RIGHT_SYMMETRIC_6: 7689 if (raid_disk == raid_disks - 1) 7690 return 1; 7691 } 7692 return 0; 7693 } 7694 7695 static int raid5_set_limits(struct mddev *mddev) 7696 { 7697 struct r5conf *conf = mddev->private; 7698 struct queue_limits lim; 7699 int data_disks, stripe; 7700 struct md_rdev *rdev; 7701 7702 /* 7703 * The read-ahead size must cover two whole stripes, which is 7704 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices. 7705 */ 7706 data_disks = conf->previous_raid_disks - conf->max_degraded; 7707 7708 /* 7709 * We can only discard a whole stripe. It doesn't make sense to 7710 * discard data disk but write parity disk 7711 */ 7712 stripe = roundup_pow_of_two(data_disks * (mddev->chunk_sectors << 9)); 7713 7714 blk_set_stacking_limits(&lim); 7715 lim.io_min = mddev->chunk_sectors << 9; 7716 lim.io_opt = lim.io_min * (conf->raid_disks - conf->max_degraded); 7717 lim.raid_partial_stripes_expensive = 1; 7718 lim.discard_granularity = stripe; 7719 lim.max_write_zeroes_sectors = 0; 7720 mddev_stack_rdev_limits(mddev, &lim); 7721 rdev_for_each(rdev, mddev) 7722 queue_limits_stack_bdev(&lim, rdev->bdev, rdev->new_data_offset, 7723 mddev->gendisk->disk_name); 7724 7725 /* 7726 * Zeroing is required for discard, otherwise data could be lost. 7727 * 7728 * Consider a scenario: discard a stripe (the stripe could be 7729 * inconsistent if discard_zeroes_data is 0); write one disk of the 7730 * stripe (the stripe could be inconsistent again depending on which 7731 * disks are used to calculate parity); the disk is broken; The stripe 7732 * data of this disk is lost. 7733 * 7734 * We only allow DISCARD if the sysadmin has confirmed that only safe 7735 * devices are in use by setting a module parameter. A better idea 7736 * might be to turn DISCARD into WRITE_ZEROES requests, as that is 7737 * required to be safe. 7738 */ 7739 if (!devices_handle_discard_safely || 7740 lim.max_discard_sectors < (stripe >> 9) || 7741 lim.discard_granularity < stripe) 7742 lim.max_hw_discard_sectors = 0; 7743 7744 /* 7745 * Requests require having a bitmap for each stripe. 7746 * Limit the max sectors based on this. 7747 */ 7748 lim.max_hw_sectors = RAID5_MAX_REQ_STRIPES << RAID5_STRIPE_SHIFT(conf); 7749 7750 /* No restrictions on the number of segments in the request */ 7751 lim.max_segments = USHRT_MAX; 7752 7753 return queue_limits_set(mddev->gendisk->queue, &lim); 7754 } 7755 7756 static int raid5_run(struct mddev *mddev) 7757 { 7758 struct r5conf *conf; 7759 int dirty_parity_disks = 0; 7760 struct md_rdev *rdev; 7761 struct md_rdev *journal_dev = NULL; 7762 sector_t reshape_offset = 0; 7763 int i; 7764 long long min_offset_diff = 0; 7765 int first = 1; 7766 int ret = -EIO; 7767 7768 if (mddev->recovery_cp != MaxSector) 7769 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n", 7770 mdname(mddev)); 7771 7772 rdev_for_each(rdev, mddev) { 7773 long long diff; 7774 7775 if (test_bit(Journal, &rdev->flags)) { 7776 journal_dev = rdev; 7777 continue; 7778 } 7779 if (rdev->raid_disk < 0) 7780 continue; 7781 diff = (rdev->new_data_offset - rdev->data_offset); 7782 if (first) { 7783 min_offset_diff = diff; 7784 first = 0; 7785 } else if (mddev->reshape_backwards && 7786 diff < min_offset_diff) 7787 min_offset_diff = diff; 7788 else if (!mddev->reshape_backwards && 7789 diff > min_offset_diff) 7790 min_offset_diff = diff; 7791 } 7792 7793 if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) && 7794 (mddev->bitmap_info.offset || mddev->bitmap_info.file)) { 7795 pr_notice("md/raid:%s: array cannot have both journal and bitmap\n", 7796 mdname(mddev)); 7797 return -EINVAL; 7798 } 7799 7800 if (mddev->reshape_position != MaxSector) { 7801 /* Check that we can continue the reshape. 7802 * Difficulties arise if the stripe we would write to 7803 * next is at or after the stripe we would read from next. 7804 * For a reshape that changes the number of devices, this 7805 * is only possible for a very short time, and mdadm makes 7806 * sure that time appears to have past before assembling 7807 * the array. So we fail if that time hasn't passed. 7808 * For a reshape that keeps the number of devices the same 7809 * mdadm must be monitoring the reshape can keeping the 7810 * critical areas read-only and backed up. It will start 7811 * the array in read-only mode, so we check for that. 7812 */ 7813 sector_t here_new, here_old; 7814 int old_disks; 7815 int max_degraded = (mddev->level == 6 ? 2 : 1); 7816 int chunk_sectors; 7817 int new_data_disks; 7818 7819 if (journal_dev) { 7820 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n", 7821 mdname(mddev)); 7822 return -EINVAL; 7823 } 7824 7825 if (mddev->new_level != mddev->level) { 7826 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n", 7827 mdname(mddev)); 7828 return -EINVAL; 7829 } 7830 old_disks = mddev->raid_disks - mddev->delta_disks; 7831 /* reshape_position must be on a new-stripe boundary, and one 7832 * further up in new geometry must map after here in old 7833 * geometry. 7834 * If the chunk sizes are different, then as we perform reshape 7835 * in units of the largest of the two, reshape_position needs 7836 * be a multiple of the largest chunk size times new data disks. 7837 */ 7838 here_new = mddev->reshape_position; 7839 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors); 7840 new_data_disks = mddev->raid_disks - max_degraded; 7841 if (sector_div(here_new, chunk_sectors * new_data_disks)) { 7842 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n", 7843 mdname(mddev)); 7844 return -EINVAL; 7845 } 7846 reshape_offset = here_new * chunk_sectors; 7847 /* here_new is the stripe we will write to */ 7848 here_old = mddev->reshape_position; 7849 sector_div(here_old, chunk_sectors * (old_disks-max_degraded)); 7850 /* here_old is the first stripe that we might need to read 7851 * from */ 7852 if (mddev->delta_disks == 0) { 7853 /* We cannot be sure it is safe to start an in-place 7854 * reshape. It is only safe if user-space is monitoring 7855 * and taking constant backups. 7856 * mdadm always starts a situation like this in 7857 * readonly mode so it can take control before 7858 * allowing any writes. So just check for that. 7859 */ 7860 if (abs(min_offset_diff) >= mddev->chunk_sectors && 7861 abs(min_offset_diff) >= mddev->new_chunk_sectors) 7862 /* not really in-place - so OK */; 7863 else if (mddev->ro == 0) { 7864 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n", 7865 mdname(mddev)); 7866 return -EINVAL; 7867 } 7868 } else if (mddev->reshape_backwards 7869 ? (here_new * chunk_sectors + min_offset_diff <= 7870 here_old * chunk_sectors) 7871 : (here_new * chunk_sectors >= 7872 here_old * chunk_sectors + (-min_offset_diff))) { 7873 /* Reading from the same stripe as writing to - bad */ 7874 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n", 7875 mdname(mddev)); 7876 return -EINVAL; 7877 } 7878 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev)); 7879 /* OK, we should be able to continue; */ 7880 } else { 7881 BUG_ON(mddev->level != mddev->new_level); 7882 BUG_ON(mddev->layout != mddev->new_layout); 7883 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors); 7884 BUG_ON(mddev->delta_disks != 0); 7885 } 7886 7887 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && 7888 test_bit(MD_HAS_PPL, &mddev->flags)) { 7889 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n", 7890 mdname(mddev)); 7891 clear_bit(MD_HAS_PPL, &mddev->flags); 7892 clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags); 7893 } 7894 7895 if (mddev->private == NULL) 7896 conf = setup_conf(mddev); 7897 else 7898 conf = mddev->private; 7899 7900 if (IS_ERR(conf)) 7901 return PTR_ERR(conf); 7902 7903 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 7904 if (!journal_dev) { 7905 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n", 7906 mdname(mddev)); 7907 mddev->ro = 1; 7908 set_disk_ro(mddev->gendisk, 1); 7909 } else if (mddev->recovery_cp == MaxSector) 7910 set_bit(MD_JOURNAL_CLEAN, &mddev->flags); 7911 } 7912 7913 conf->min_offset_diff = min_offset_diff; 7914 rcu_assign_pointer(mddev->thread, conf->thread); 7915 rcu_assign_pointer(conf->thread, NULL); 7916 mddev->private = conf; 7917 7918 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks; 7919 i++) { 7920 rdev = conf->disks[i].rdev; 7921 if (!rdev) 7922 continue; 7923 if (conf->disks[i].replacement && 7924 conf->reshape_progress != MaxSector) { 7925 /* replacements and reshape simply do not mix. */ 7926 pr_warn("md: cannot handle concurrent replacement and reshape.\n"); 7927 goto abort; 7928 } 7929 if (test_bit(In_sync, &rdev->flags)) 7930 continue; 7931 /* This disc is not fully in-sync. However if it 7932 * just stored parity (beyond the recovery_offset), 7933 * when we don't need to be concerned about the 7934 * array being dirty. 7935 * When reshape goes 'backwards', we never have 7936 * partially completed devices, so we only need 7937 * to worry about reshape going forwards. 7938 */ 7939 /* Hack because v0.91 doesn't store recovery_offset properly. */ 7940 if (mddev->major_version == 0 && 7941 mddev->minor_version > 90) 7942 rdev->recovery_offset = reshape_offset; 7943 7944 if (rdev->recovery_offset < reshape_offset) { 7945 /* We need to check old and new layout */ 7946 if (!only_parity(rdev->raid_disk, 7947 conf->algorithm, 7948 conf->raid_disks, 7949 conf->max_degraded)) 7950 continue; 7951 } 7952 if (!only_parity(rdev->raid_disk, 7953 conf->prev_algo, 7954 conf->previous_raid_disks, 7955 conf->max_degraded)) 7956 continue; 7957 dirty_parity_disks++; 7958 } 7959 7960 /* 7961 * 0 for a fully functional array, 1 or 2 for a degraded array. 7962 */ 7963 mddev->degraded = raid5_calc_degraded(conf); 7964 7965 if (has_failed(conf)) { 7966 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n", 7967 mdname(mddev), mddev->degraded, conf->raid_disks); 7968 goto abort; 7969 } 7970 7971 /* device size must be a multiple of chunk size */ 7972 mddev->dev_sectors &= ~((sector_t)mddev->chunk_sectors - 1); 7973 mddev->resync_max_sectors = mddev->dev_sectors; 7974 7975 if (mddev->degraded > dirty_parity_disks && 7976 mddev->recovery_cp != MaxSector) { 7977 if (test_bit(MD_HAS_PPL, &mddev->flags)) 7978 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n", 7979 mdname(mddev)); 7980 else if (mddev->ok_start_degraded) 7981 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n", 7982 mdname(mddev)); 7983 else { 7984 pr_crit("md/raid:%s: cannot start dirty degraded array.\n", 7985 mdname(mddev)); 7986 goto abort; 7987 } 7988 } 7989 7990 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n", 7991 mdname(mddev), conf->level, 7992 mddev->raid_disks-mddev->degraded, mddev->raid_disks, 7993 mddev->new_layout); 7994 7995 print_raid5_conf(conf); 7996 7997 if (conf->reshape_progress != MaxSector) { 7998 conf->reshape_safe = conf->reshape_progress; 7999 atomic_set(&conf->reshape_stripes, 0); 8000 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8001 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8002 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8003 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8004 } 8005 8006 /* Ok, everything is just fine now */ 8007 if (mddev->to_remove == &raid5_attrs_group) 8008 mddev->to_remove = NULL; 8009 else if (mddev->kobj.sd && 8010 sysfs_create_group(&mddev->kobj, &raid5_attrs_group)) 8011 pr_warn("raid5: failed to create sysfs attributes for %s\n", 8012 mdname(mddev)); 8013 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 8014 8015 if (!mddev_is_dm(mddev)) { 8016 ret = raid5_set_limits(mddev); 8017 if (ret) 8018 goto abort; 8019 } 8020 8021 if (log_init(conf, journal_dev, raid5_has_ppl(conf))) 8022 goto abort; 8023 8024 return 0; 8025 abort: 8026 md_unregister_thread(mddev, &mddev->thread); 8027 print_raid5_conf(conf); 8028 free_conf(conf); 8029 mddev->private = NULL; 8030 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev)); 8031 return ret; 8032 } 8033 8034 static void raid5_free(struct mddev *mddev, void *priv) 8035 { 8036 struct r5conf *conf = priv; 8037 8038 free_conf(conf); 8039 mddev->to_remove = &raid5_attrs_group; 8040 } 8041 8042 static void raid5_status(struct seq_file *seq, struct mddev *mddev) 8043 { 8044 struct r5conf *conf = mddev->private; 8045 int i; 8046 8047 lockdep_assert_held(&mddev->lock); 8048 8049 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level, 8050 conf->chunk_sectors / 2, mddev->layout); 8051 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded); 8052 for (i = 0; i < conf->raid_disks; i++) { 8053 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev); 8054 8055 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 8056 } 8057 seq_printf (seq, "]"); 8058 } 8059 8060 static void print_raid5_conf (struct r5conf *conf) 8061 { 8062 struct md_rdev *rdev; 8063 int i; 8064 8065 pr_debug("RAID conf printout:\n"); 8066 if (!conf) { 8067 pr_debug("(conf==NULL)\n"); 8068 return; 8069 } 8070 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level, 8071 conf->raid_disks, 8072 conf->raid_disks - conf->mddev->degraded); 8073 8074 rcu_read_lock(); 8075 for (i = 0; i < conf->raid_disks; i++) { 8076 rdev = rcu_dereference(conf->disks[i].rdev); 8077 if (rdev) 8078 pr_debug(" disk %d, o:%d, dev:%pg\n", 8079 i, !test_bit(Faulty, &rdev->flags), 8080 rdev->bdev); 8081 } 8082 rcu_read_unlock(); 8083 } 8084 8085 static int raid5_spare_active(struct mddev *mddev) 8086 { 8087 int i; 8088 struct r5conf *conf = mddev->private; 8089 struct md_rdev *rdev, *replacement; 8090 int count = 0; 8091 unsigned long flags; 8092 8093 for (i = 0; i < conf->raid_disks; i++) { 8094 rdev = conf->disks[i].rdev; 8095 replacement = conf->disks[i].replacement; 8096 if (replacement 8097 && replacement->recovery_offset == MaxSector 8098 && !test_bit(Faulty, &replacement->flags) 8099 && !test_and_set_bit(In_sync, &replacement->flags)) { 8100 /* Replacement has just become active. */ 8101 if (!rdev 8102 || !test_and_clear_bit(In_sync, &rdev->flags)) 8103 count++; 8104 if (rdev) { 8105 /* Replaced device not technically faulty, 8106 * but we need to be sure it gets removed 8107 * and never re-added. 8108 */ 8109 set_bit(Faulty, &rdev->flags); 8110 sysfs_notify_dirent_safe( 8111 rdev->sysfs_state); 8112 } 8113 sysfs_notify_dirent_safe(replacement->sysfs_state); 8114 } else if (rdev 8115 && rdev->recovery_offset == MaxSector 8116 && !test_bit(Faulty, &rdev->flags) 8117 && !test_and_set_bit(In_sync, &rdev->flags)) { 8118 count++; 8119 sysfs_notify_dirent_safe(rdev->sysfs_state); 8120 } 8121 } 8122 spin_lock_irqsave(&conf->device_lock, flags); 8123 mddev->degraded = raid5_calc_degraded(conf); 8124 spin_unlock_irqrestore(&conf->device_lock, flags); 8125 print_raid5_conf(conf); 8126 return count; 8127 } 8128 8129 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 8130 { 8131 struct r5conf *conf = mddev->private; 8132 int err = 0; 8133 int number = rdev->raid_disk; 8134 struct md_rdev **rdevp; 8135 struct disk_info *p; 8136 struct md_rdev *tmp; 8137 8138 print_raid5_conf(conf); 8139 if (test_bit(Journal, &rdev->flags) && conf->log) { 8140 /* 8141 * we can't wait pending write here, as this is called in 8142 * raid5d, wait will deadlock. 8143 * neilb: there is no locking about new writes here, 8144 * so this cannot be safe. 8145 */ 8146 if (atomic_read(&conf->active_stripes) || 8147 atomic_read(&conf->r5c_cached_full_stripes) || 8148 atomic_read(&conf->r5c_cached_partial_stripes)) { 8149 return -EBUSY; 8150 } 8151 log_exit(conf); 8152 return 0; 8153 } 8154 if (unlikely(number >= conf->pool_size)) 8155 return 0; 8156 p = conf->disks + number; 8157 if (rdev == p->rdev) 8158 rdevp = &p->rdev; 8159 else if (rdev == p->replacement) 8160 rdevp = &p->replacement; 8161 else 8162 return 0; 8163 8164 if (number >= conf->raid_disks && 8165 conf->reshape_progress == MaxSector) 8166 clear_bit(In_sync, &rdev->flags); 8167 8168 if (test_bit(In_sync, &rdev->flags) || 8169 atomic_read(&rdev->nr_pending)) { 8170 err = -EBUSY; 8171 goto abort; 8172 } 8173 /* Only remove non-faulty devices if recovery 8174 * isn't possible. 8175 */ 8176 if (!test_bit(Faulty, &rdev->flags) && 8177 mddev->recovery_disabled != conf->recovery_disabled && 8178 !has_failed(conf) && 8179 (!p->replacement || p->replacement == rdev) && 8180 number < conf->raid_disks) { 8181 err = -EBUSY; 8182 goto abort; 8183 } 8184 WRITE_ONCE(*rdevp, NULL); 8185 if (!err) { 8186 err = log_modify(conf, rdev, false); 8187 if (err) 8188 goto abort; 8189 } 8190 8191 tmp = p->replacement; 8192 if (tmp) { 8193 /* We must have just cleared 'rdev' */ 8194 WRITE_ONCE(p->rdev, tmp); 8195 clear_bit(Replacement, &tmp->flags); 8196 WRITE_ONCE(p->replacement, NULL); 8197 8198 if (!err) 8199 err = log_modify(conf, tmp, true); 8200 } 8201 8202 clear_bit(WantReplacement, &rdev->flags); 8203 abort: 8204 8205 print_raid5_conf(conf); 8206 return err; 8207 } 8208 8209 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev) 8210 { 8211 struct r5conf *conf = mddev->private; 8212 int ret, err = -EEXIST; 8213 int disk; 8214 struct disk_info *p; 8215 struct md_rdev *tmp; 8216 int first = 0; 8217 int last = conf->raid_disks - 1; 8218 8219 if (test_bit(Journal, &rdev->flags)) { 8220 if (conf->log) 8221 return -EBUSY; 8222 8223 rdev->raid_disk = 0; 8224 /* 8225 * The array is in readonly mode if journal is missing, so no 8226 * write requests running. We should be safe 8227 */ 8228 ret = log_init(conf, rdev, false); 8229 if (ret) 8230 return ret; 8231 8232 ret = r5l_start(conf->log); 8233 if (ret) 8234 return ret; 8235 8236 return 0; 8237 } 8238 if (mddev->recovery_disabled == conf->recovery_disabled) 8239 return -EBUSY; 8240 8241 if (rdev->saved_raid_disk < 0 && has_failed(conf)) 8242 /* no point adding a device */ 8243 return -EINVAL; 8244 8245 if (rdev->raid_disk >= 0) 8246 first = last = rdev->raid_disk; 8247 8248 /* 8249 * find the disk ... but prefer rdev->saved_raid_disk 8250 * if possible. 8251 */ 8252 if (rdev->saved_raid_disk >= first && 8253 rdev->saved_raid_disk <= last && 8254 conf->disks[rdev->saved_raid_disk].rdev == NULL) 8255 first = rdev->saved_raid_disk; 8256 8257 for (disk = first; disk <= last; disk++) { 8258 p = conf->disks + disk; 8259 if (p->rdev == NULL) { 8260 clear_bit(In_sync, &rdev->flags); 8261 rdev->raid_disk = disk; 8262 if (rdev->saved_raid_disk != disk) 8263 conf->fullsync = 1; 8264 WRITE_ONCE(p->rdev, rdev); 8265 8266 err = log_modify(conf, rdev, true); 8267 8268 goto out; 8269 } 8270 } 8271 for (disk = first; disk <= last; disk++) { 8272 p = conf->disks + disk; 8273 tmp = p->rdev; 8274 if (test_bit(WantReplacement, &tmp->flags) && 8275 mddev->reshape_position == MaxSector && 8276 p->replacement == NULL) { 8277 clear_bit(In_sync, &rdev->flags); 8278 set_bit(Replacement, &rdev->flags); 8279 rdev->raid_disk = disk; 8280 err = 0; 8281 conf->fullsync = 1; 8282 WRITE_ONCE(p->replacement, rdev); 8283 break; 8284 } 8285 } 8286 out: 8287 print_raid5_conf(conf); 8288 return err; 8289 } 8290 8291 static int raid5_resize(struct mddev *mddev, sector_t sectors) 8292 { 8293 /* no resync is happening, and there is enough space 8294 * on all devices, so we can resize. 8295 * We need to make sure resync covers any new space. 8296 * If the array is shrinking we should possibly wait until 8297 * any io in the removed space completes, but it hardly seems 8298 * worth it. 8299 */ 8300 sector_t newsize; 8301 struct r5conf *conf = mddev->private; 8302 8303 if (raid5_has_log(conf) || raid5_has_ppl(conf)) 8304 return -EINVAL; 8305 sectors &= ~((sector_t)conf->chunk_sectors - 1); 8306 newsize = raid5_size(mddev, sectors, mddev->raid_disks); 8307 if (mddev->external_size && 8308 mddev->array_sectors > newsize) 8309 return -EINVAL; 8310 if (mddev->bitmap) { 8311 int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0); 8312 if (ret) 8313 return ret; 8314 } 8315 md_set_array_sectors(mddev, newsize); 8316 if (sectors > mddev->dev_sectors && 8317 mddev->recovery_cp > mddev->dev_sectors) { 8318 mddev->recovery_cp = mddev->dev_sectors; 8319 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8320 } 8321 mddev->dev_sectors = sectors; 8322 mddev->resync_max_sectors = sectors; 8323 return 0; 8324 } 8325 8326 static int check_stripe_cache(struct mddev *mddev) 8327 { 8328 /* Can only proceed if there are plenty of stripe_heads. 8329 * We need a minimum of one full stripe,, and for sensible progress 8330 * it is best to have about 4 times that. 8331 * If we require 4 times, then the default 256 4K stripe_heads will 8332 * allow for chunk sizes up to 256K, which is probably OK. 8333 * If the chunk size is greater, user-space should request more 8334 * stripe_heads first. 8335 */ 8336 struct r5conf *conf = mddev->private; 8337 if (((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4 8338 > conf->min_nr_stripes || 8339 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4 8340 > conf->min_nr_stripes) { 8341 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n", 8342 mdname(mddev), 8343 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9) 8344 / RAID5_STRIPE_SIZE(conf))*4); 8345 return 0; 8346 } 8347 return 1; 8348 } 8349 8350 static int check_reshape(struct mddev *mddev) 8351 { 8352 struct r5conf *conf = mddev->private; 8353 8354 if (raid5_has_log(conf) || raid5_has_ppl(conf)) 8355 return -EINVAL; 8356 if (mddev->delta_disks == 0 && 8357 mddev->new_layout == mddev->layout && 8358 mddev->new_chunk_sectors == mddev->chunk_sectors) 8359 return 0; /* nothing to do */ 8360 if (has_failed(conf)) 8361 return -EINVAL; 8362 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) { 8363 /* We might be able to shrink, but the devices must 8364 * be made bigger first. 8365 * For raid6, 4 is the minimum size. 8366 * Otherwise 2 is the minimum 8367 */ 8368 int min = 2; 8369 if (mddev->level == 6) 8370 min = 4; 8371 if (mddev->raid_disks + mddev->delta_disks < min) 8372 return -EINVAL; 8373 } 8374 8375 if (!check_stripe_cache(mddev)) 8376 return -ENOSPC; 8377 8378 if (mddev->new_chunk_sectors > mddev->chunk_sectors || 8379 mddev->delta_disks > 0) 8380 if (resize_chunks(conf, 8381 conf->previous_raid_disks 8382 + max(0, mddev->delta_disks), 8383 max(mddev->new_chunk_sectors, 8384 mddev->chunk_sectors) 8385 ) < 0) 8386 return -ENOMEM; 8387 8388 if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size) 8389 return 0; /* never bother to shrink */ 8390 return resize_stripes(conf, (conf->previous_raid_disks 8391 + mddev->delta_disks)); 8392 } 8393 8394 static int raid5_start_reshape(struct mddev *mddev) 8395 { 8396 struct r5conf *conf = mddev->private; 8397 struct md_rdev *rdev; 8398 int spares = 0; 8399 int i; 8400 unsigned long flags; 8401 8402 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 8403 return -EBUSY; 8404 8405 if (!check_stripe_cache(mddev)) 8406 return -ENOSPC; 8407 8408 if (has_failed(conf)) 8409 return -EINVAL; 8410 8411 /* raid5 can't handle concurrent reshape and recovery */ 8412 if (mddev->recovery_cp < MaxSector) 8413 return -EBUSY; 8414 for (i = 0; i < conf->raid_disks; i++) 8415 if (conf->disks[i].replacement) 8416 return -EBUSY; 8417 8418 rdev_for_each(rdev, mddev) { 8419 if (!test_bit(In_sync, &rdev->flags) 8420 && !test_bit(Faulty, &rdev->flags)) 8421 spares++; 8422 } 8423 8424 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded) 8425 /* Not enough devices even to make a degraded array 8426 * of that size 8427 */ 8428 return -EINVAL; 8429 8430 /* Refuse to reduce size of the array. Any reductions in 8431 * array size must be through explicit setting of array_size 8432 * attribute. 8433 */ 8434 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks) 8435 < mddev->array_sectors) { 8436 pr_warn("md/raid:%s: array size must be reduced before number of disks\n", 8437 mdname(mddev)); 8438 return -EINVAL; 8439 } 8440 8441 atomic_set(&conf->reshape_stripes, 0); 8442 spin_lock_irq(&conf->device_lock); 8443 write_seqcount_begin(&conf->gen_lock); 8444 conf->previous_raid_disks = conf->raid_disks; 8445 conf->raid_disks += mddev->delta_disks; 8446 conf->prev_chunk_sectors = conf->chunk_sectors; 8447 conf->chunk_sectors = mddev->new_chunk_sectors; 8448 conf->prev_algo = conf->algorithm; 8449 conf->algorithm = mddev->new_layout; 8450 conf->generation++; 8451 /* Code that selects data_offset needs to see the generation update 8452 * if reshape_progress has been set - so a memory barrier needed. 8453 */ 8454 smp_mb(); 8455 if (mddev->reshape_backwards) 8456 conf->reshape_progress = raid5_size(mddev, 0, 0); 8457 else 8458 conf->reshape_progress = 0; 8459 conf->reshape_safe = conf->reshape_progress; 8460 write_seqcount_end(&conf->gen_lock); 8461 spin_unlock_irq(&conf->device_lock); 8462 8463 /* Now make sure any requests that proceeded on the assumption 8464 * the reshape wasn't running - like Discard or Read - have 8465 * completed. 8466 */ 8467 raid5_quiesce(mddev, true); 8468 raid5_quiesce(mddev, false); 8469 8470 /* Add some new drives, as many as will fit. 8471 * We know there are enough to make the newly sized array work. 8472 * Don't add devices if we are reducing the number of 8473 * devices in the array. This is because it is not possible 8474 * to correctly record the "partially reconstructed" state of 8475 * such devices during the reshape and confusion could result. 8476 */ 8477 if (mddev->delta_disks >= 0) { 8478 rdev_for_each(rdev, mddev) 8479 if (rdev->raid_disk < 0 && 8480 !test_bit(Faulty, &rdev->flags)) { 8481 if (raid5_add_disk(mddev, rdev) == 0) { 8482 if (rdev->raid_disk 8483 >= conf->previous_raid_disks) 8484 set_bit(In_sync, &rdev->flags); 8485 else 8486 rdev->recovery_offset = 0; 8487 8488 /* Failure here is OK */ 8489 sysfs_link_rdev(mddev, rdev); 8490 } 8491 } else if (rdev->raid_disk >= conf->previous_raid_disks 8492 && !test_bit(Faulty, &rdev->flags)) { 8493 /* This is a spare that was manually added */ 8494 set_bit(In_sync, &rdev->flags); 8495 } 8496 8497 /* When a reshape changes the number of devices, 8498 * ->degraded is measured against the larger of the 8499 * pre and post number of devices. 8500 */ 8501 spin_lock_irqsave(&conf->device_lock, flags); 8502 mddev->degraded = raid5_calc_degraded(conf); 8503 spin_unlock_irqrestore(&conf->device_lock, flags); 8504 } 8505 mddev->raid_disks = conf->raid_disks; 8506 mddev->reshape_position = conf->reshape_progress; 8507 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8508 8509 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8510 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8511 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 8512 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8513 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8514 conf->reshape_checkpoint = jiffies; 8515 md_new_event(); 8516 return 0; 8517 } 8518 8519 /* This is called from the reshape thread and should make any 8520 * changes needed in 'conf' 8521 */ 8522 static void end_reshape(struct r5conf *conf) 8523 { 8524 8525 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 8526 struct md_rdev *rdev; 8527 8528 spin_lock_irq(&conf->device_lock); 8529 conf->previous_raid_disks = conf->raid_disks; 8530 md_finish_reshape(conf->mddev); 8531 smp_wmb(); 8532 conf->reshape_progress = MaxSector; 8533 conf->mddev->reshape_position = MaxSector; 8534 rdev_for_each(rdev, conf->mddev) 8535 if (rdev->raid_disk >= 0 && 8536 !test_bit(Journal, &rdev->flags) && 8537 !test_bit(In_sync, &rdev->flags)) 8538 rdev->recovery_offset = MaxSector; 8539 spin_unlock_irq(&conf->device_lock); 8540 wake_up(&conf->wait_for_overlap); 8541 8542 mddev_update_io_opt(conf->mddev, 8543 conf->raid_disks - conf->max_degraded); 8544 } 8545 } 8546 8547 /* This is called from the raid5d thread with mddev_lock held. 8548 * It makes config changes to the device. 8549 */ 8550 static void raid5_finish_reshape(struct mddev *mddev) 8551 { 8552 struct r5conf *conf = mddev->private; 8553 struct md_rdev *rdev; 8554 8555 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8556 8557 if (mddev->delta_disks <= 0) { 8558 int d; 8559 spin_lock_irq(&conf->device_lock); 8560 mddev->degraded = raid5_calc_degraded(conf); 8561 spin_unlock_irq(&conf->device_lock); 8562 for (d = conf->raid_disks ; 8563 d < conf->raid_disks - mddev->delta_disks; 8564 d++) { 8565 rdev = conf->disks[d].rdev; 8566 if (rdev) 8567 clear_bit(In_sync, &rdev->flags); 8568 rdev = conf->disks[d].replacement; 8569 if (rdev) 8570 clear_bit(In_sync, &rdev->flags); 8571 } 8572 } 8573 mddev->layout = conf->algorithm; 8574 mddev->chunk_sectors = conf->chunk_sectors; 8575 mddev->reshape_position = MaxSector; 8576 mddev->delta_disks = 0; 8577 mddev->reshape_backwards = 0; 8578 } 8579 } 8580 8581 static void raid5_quiesce(struct mddev *mddev, int quiesce) 8582 { 8583 struct r5conf *conf = mddev->private; 8584 8585 if (quiesce) { 8586 /* stop all writes */ 8587 lock_all_device_hash_locks_irq(conf); 8588 /* '2' tells resync/reshape to pause so that all 8589 * active stripes can drain 8590 */ 8591 r5c_flush_cache(conf, INT_MAX); 8592 /* need a memory barrier to make sure read_one_chunk() sees 8593 * quiesce started and reverts to slow (locked) path. 8594 */ 8595 smp_store_release(&conf->quiesce, 2); 8596 wait_event_cmd(conf->wait_for_quiescent, 8597 atomic_read(&conf->active_stripes) == 0 && 8598 atomic_read(&conf->active_aligned_reads) == 0, 8599 unlock_all_device_hash_locks_irq(conf), 8600 lock_all_device_hash_locks_irq(conf)); 8601 conf->quiesce = 1; 8602 unlock_all_device_hash_locks_irq(conf); 8603 /* allow reshape to continue */ 8604 wake_up(&conf->wait_for_overlap); 8605 } else { 8606 /* re-enable writes */ 8607 lock_all_device_hash_locks_irq(conf); 8608 conf->quiesce = 0; 8609 wake_up(&conf->wait_for_quiescent); 8610 wake_up(&conf->wait_for_overlap); 8611 unlock_all_device_hash_locks_irq(conf); 8612 } 8613 log_quiesce(conf, quiesce); 8614 } 8615 8616 static void *raid45_takeover_raid0(struct mddev *mddev, int level) 8617 { 8618 struct r0conf *raid0_conf = mddev->private; 8619 sector_t sectors; 8620 8621 /* for raid0 takeover only one zone is supported */ 8622 if (raid0_conf->nr_strip_zones > 1) { 8623 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n", 8624 mdname(mddev)); 8625 return ERR_PTR(-EINVAL); 8626 } 8627 8628 sectors = raid0_conf->strip_zone[0].zone_end; 8629 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev); 8630 mddev->dev_sectors = sectors; 8631 mddev->new_level = level; 8632 mddev->new_layout = ALGORITHM_PARITY_N; 8633 mddev->new_chunk_sectors = mddev->chunk_sectors; 8634 mddev->raid_disks += 1; 8635 mddev->delta_disks = 1; 8636 /* make sure it will be not marked as dirty */ 8637 mddev->recovery_cp = MaxSector; 8638 8639 return setup_conf(mddev); 8640 } 8641 8642 static void *raid5_takeover_raid1(struct mddev *mddev) 8643 { 8644 int chunksect; 8645 void *ret; 8646 8647 if (mddev->raid_disks != 2 || 8648 mddev->degraded > 1) 8649 return ERR_PTR(-EINVAL); 8650 8651 /* Should check if there are write-behind devices? */ 8652 8653 chunksect = 64*2; /* 64K by default */ 8654 8655 /* The array must be an exact multiple of chunksize */ 8656 while (chunksect && (mddev->array_sectors & (chunksect-1))) 8657 chunksect >>= 1; 8658 8659 if ((chunksect<<9) < RAID5_STRIPE_SIZE((struct r5conf *)mddev->private)) 8660 /* array size does not allow a suitable chunk size */ 8661 return ERR_PTR(-EINVAL); 8662 8663 mddev->new_level = 5; 8664 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC; 8665 mddev->new_chunk_sectors = chunksect; 8666 8667 ret = setup_conf(mddev); 8668 if (!IS_ERR(ret)) 8669 mddev_clear_unsupported_flags(mddev, 8670 UNSUPPORTED_MDDEV_FLAGS); 8671 return ret; 8672 } 8673 8674 static void *raid5_takeover_raid6(struct mddev *mddev) 8675 { 8676 int new_layout; 8677 8678 switch (mddev->layout) { 8679 case ALGORITHM_LEFT_ASYMMETRIC_6: 8680 new_layout = ALGORITHM_LEFT_ASYMMETRIC; 8681 break; 8682 case ALGORITHM_RIGHT_ASYMMETRIC_6: 8683 new_layout = ALGORITHM_RIGHT_ASYMMETRIC; 8684 break; 8685 case ALGORITHM_LEFT_SYMMETRIC_6: 8686 new_layout = ALGORITHM_LEFT_SYMMETRIC; 8687 break; 8688 case ALGORITHM_RIGHT_SYMMETRIC_6: 8689 new_layout = ALGORITHM_RIGHT_SYMMETRIC; 8690 break; 8691 case ALGORITHM_PARITY_0_6: 8692 new_layout = ALGORITHM_PARITY_0; 8693 break; 8694 case ALGORITHM_PARITY_N: 8695 new_layout = ALGORITHM_PARITY_N; 8696 break; 8697 default: 8698 return ERR_PTR(-EINVAL); 8699 } 8700 mddev->new_level = 5; 8701 mddev->new_layout = new_layout; 8702 mddev->delta_disks = -1; 8703 mddev->raid_disks -= 1; 8704 return setup_conf(mddev); 8705 } 8706 8707 static int raid5_check_reshape(struct mddev *mddev) 8708 { 8709 /* For a 2-drive array, the layout and chunk size can be changed 8710 * immediately as not restriping is needed. 8711 * For larger arrays we record the new value - after validation 8712 * to be used by a reshape pass. 8713 */ 8714 struct r5conf *conf = mddev->private; 8715 int new_chunk = mddev->new_chunk_sectors; 8716 8717 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout)) 8718 return -EINVAL; 8719 if (new_chunk > 0) { 8720 if (!is_power_of_2(new_chunk)) 8721 return -EINVAL; 8722 if (new_chunk < (PAGE_SIZE>>9)) 8723 return -EINVAL; 8724 if (mddev->array_sectors & (new_chunk-1)) 8725 /* not factor of array size */ 8726 return -EINVAL; 8727 } 8728 8729 /* They look valid */ 8730 8731 if (mddev->raid_disks == 2) { 8732 /* can make the change immediately */ 8733 if (mddev->new_layout >= 0) { 8734 conf->algorithm = mddev->new_layout; 8735 mddev->layout = mddev->new_layout; 8736 } 8737 if (new_chunk > 0) { 8738 conf->chunk_sectors = new_chunk ; 8739 mddev->chunk_sectors = new_chunk; 8740 } 8741 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8742 md_wakeup_thread(mddev->thread); 8743 } 8744 return check_reshape(mddev); 8745 } 8746 8747 static int raid6_check_reshape(struct mddev *mddev) 8748 { 8749 int new_chunk = mddev->new_chunk_sectors; 8750 8751 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout)) 8752 return -EINVAL; 8753 if (new_chunk > 0) { 8754 if (!is_power_of_2(new_chunk)) 8755 return -EINVAL; 8756 if (new_chunk < (PAGE_SIZE >> 9)) 8757 return -EINVAL; 8758 if (mddev->array_sectors & (new_chunk-1)) 8759 /* not factor of array size */ 8760 return -EINVAL; 8761 } 8762 8763 /* They look valid */ 8764 return check_reshape(mddev); 8765 } 8766 8767 static void *raid5_takeover(struct mddev *mddev) 8768 { 8769 /* raid5 can take over: 8770 * raid0 - if there is only one strip zone - make it a raid4 layout 8771 * raid1 - if there are two drives. We need to know the chunk size 8772 * raid4 - trivial - just use a raid4 layout. 8773 * raid6 - Providing it is a *_6 layout 8774 */ 8775 if (mddev->level == 0) 8776 return raid45_takeover_raid0(mddev, 5); 8777 if (mddev->level == 1) 8778 return raid5_takeover_raid1(mddev); 8779 if (mddev->level == 4) { 8780 mddev->new_layout = ALGORITHM_PARITY_N; 8781 mddev->new_level = 5; 8782 return setup_conf(mddev); 8783 } 8784 if (mddev->level == 6) 8785 return raid5_takeover_raid6(mddev); 8786 8787 return ERR_PTR(-EINVAL); 8788 } 8789 8790 static void *raid4_takeover(struct mddev *mddev) 8791 { 8792 /* raid4 can take over: 8793 * raid0 - if there is only one strip zone 8794 * raid5 - if layout is right 8795 */ 8796 if (mddev->level == 0) 8797 return raid45_takeover_raid0(mddev, 4); 8798 if (mddev->level == 5 && 8799 mddev->layout == ALGORITHM_PARITY_N) { 8800 mddev->new_layout = 0; 8801 mddev->new_level = 4; 8802 return setup_conf(mddev); 8803 } 8804 return ERR_PTR(-EINVAL); 8805 } 8806 8807 static struct md_personality raid5_personality; 8808 8809 static void *raid6_takeover(struct mddev *mddev) 8810 { 8811 /* Currently can only take over a raid5. We map the 8812 * personality to an equivalent raid6 personality 8813 * with the Q block at the end. 8814 */ 8815 int new_layout; 8816 8817 if (mddev->pers != &raid5_personality) 8818 return ERR_PTR(-EINVAL); 8819 if (mddev->degraded > 1) 8820 return ERR_PTR(-EINVAL); 8821 if (mddev->raid_disks > 253) 8822 return ERR_PTR(-EINVAL); 8823 if (mddev->raid_disks < 3) 8824 return ERR_PTR(-EINVAL); 8825 8826 switch (mddev->layout) { 8827 case ALGORITHM_LEFT_ASYMMETRIC: 8828 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6; 8829 break; 8830 case ALGORITHM_RIGHT_ASYMMETRIC: 8831 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6; 8832 break; 8833 case ALGORITHM_LEFT_SYMMETRIC: 8834 new_layout = ALGORITHM_LEFT_SYMMETRIC_6; 8835 break; 8836 case ALGORITHM_RIGHT_SYMMETRIC: 8837 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6; 8838 break; 8839 case ALGORITHM_PARITY_0: 8840 new_layout = ALGORITHM_PARITY_0_6; 8841 break; 8842 case ALGORITHM_PARITY_N: 8843 new_layout = ALGORITHM_PARITY_N; 8844 break; 8845 default: 8846 return ERR_PTR(-EINVAL); 8847 } 8848 mddev->new_level = 6; 8849 mddev->new_layout = new_layout; 8850 mddev->delta_disks = 1; 8851 mddev->raid_disks += 1; 8852 return setup_conf(mddev); 8853 } 8854 8855 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf) 8856 { 8857 struct r5conf *conf; 8858 int err; 8859 8860 err = mddev_suspend_and_lock(mddev); 8861 if (err) 8862 return err; 8863 conf = mddev->private; 8864 if (!conf) { 8865 mddev_unlock_and_resume(mddev); 8866 return -ENODEV; 8867 } 8868 8869 if (strncmp(buf, "ppl", 3) == 0) { 8870 /* ppl only works with RAID 5 */ 8871 if (!raid5_has_ppl(conf) && conf->level == 5) { 8872 err = log_init(conf, NULL, true); 8873 if (!err) { 8874 err = resize_stripes(conf, conf->pool_size); 8875 if (err) 8876 log_exit(conf); 8877 } 8878 } else 8879 err = -EINVAL; 8880 } else if (strncmp(buf, "resync", 6) == 0) { 8881 if (raid5_has_ppl(conf)) { 8882 log_exit(conf); 8883 err = resize_stripes(conf, conf->pool_size); 8884 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) && 8885 r5l_log_disk_error(conf)) { 8886 bool journal_dev_exists = false; 8887 struct md_rdev *rdev; 8888 8889 rdev_for_each(rdev, mddev) 8890 if (test_bit(Journal, &rdev->flags)) { 8891 journal_dev_exists = true; 8892 break; 8893 } 8894 8895 if (!journal_dev_exists) 8896 clear_bit(MD_HAS_JOURNAL, &mddev->flags); 8897 else /* need remove journal device first */ 8898 err = -EBUSY; 8899 } else 8900 err = -EINVAL; 8901 } else { 8902 err = -EINVAL; 8903 } 8904 8905 if (!err) 8906 md_update_sb(mddev, 1); 8907 8908 mddev_unlock_and_resume(mddev); 8909 8910 return err; 8911 } 8912 8913 static int raid5_start(struct mddev *mddev) 8914 { 8915 struct r5conf *conf = mddev->private; 8916 8917 return r5l_start(conf->log); 8918 } 8919 8920 /* 8921 * This is only used for dm-raid456, caller already frozen sync_thread, hence 8922 * if rehsape is still in progress, io that is waiting for reshape can never be 8923 * done now, hence wake up and handle those IO. 8924 */ 8925 static void raid5_prepare_suspend(struct mddev *mddev) 8926 { 8927 struct r5conf *conf = mddev->private; 8928 8929 wake_up(&conf->wait_for_overlap); 8930 } 8931 8932 static struct md_personality raid6_personality = 8933 { 8934 .name = "raid6", 8935 .level = 6, 8936 .owner = THIS_MODULE, 8937 .make_request = raid5_make_request, 8938 .run = raid5_run, 8939 .start = raid5_start, 8940 .free = raid5_free, 8941 .status = raid5_status, 8942 .error_handler = raid5_error, 8943 .hot_add_disk = raid5_add_disk, 8944 .hot_remove_disk= raid5_remove_disk, 8945 .spare_active = raid5_spare_active, 8946 .sync_request = raid5_sync_request, 8947 .resize = raid5_resize, 8948 .size = raid5_size, 8949 .check_reshape = raid6_check_reshape, 8950 .start_reshape = raid5_start_reshape, 8951 .finish_reshape = raid5_finish_reshape, 8952 .quiesce = raid5_quiesce, 8953 .takeover = raid6_takeover, 8954 .change_consistency_policy = raid5_change_consistency_policy, 8955 .prepare_suspend = raid5_prepare_suspend, 8956 }; 8957 static struct md_personality raid5_personality = 8958 { 8959 .name = "raid5", 8960 .level = 5, 8961 .owner = THIS_MODULE, 8962 .make_request = raid5_make_request, 8963 .run = raid5_run, 8964 .start = raid5_start, 8965 .free = raid5_free, 8966 .status = raid5_status, 8967 .error_handler = raid5_error, 8968 .hot_add_disk = raid5_add_disk, 8969 .hot_remove_disk= raid5_remove_disk, 8970 .spare_active = raid5_spare_active, 8971 .sync_request = raid5_sync_request, 8972 .resize = raid5_resize, 8973 .size = raid5_size, 8974 .check_reshape = raid5_check_reshape, 8975 .start_reshape = raid5_start_reshape, 8976 .finish_reshape = raid5_finish_reshape, 8977 .quiesce = raid5_quiesce, 8978 .takeover = raid5_takeover, 8979 .change_consistency_policy = raid5_change_consistency_policy, 8980 .prepare_suspend = raid5_prepare_suspend, 8981 }; 8982 8983 static struct md_personality raid4_personality = 8984 { 8985 .name = "raid4", 8986 .level = 4, 8987 .owner = THIS_MODULE, 8988 .make_request = raid5_make_request, 8989 .run = raid5_run, 8990 .start = raid5_start, 8991 .free = raid5_free, 8992 .status = raid5_status, 8993 .error_handler = raid5_error, 8994 .hot_add_disk = raid5_add_disk, 8995 .hot_remove_disk= raid5_remove_disk, 8996 .spare_active = raid5_spare_active, 8997 .sync_request = raid5_sync_request, 8998 .resize = raid5_resize, 8999 .size = raid5_size, 9000 .check_reshape = raid5_check_reshape, 9001 .start_reshape = raid5_start_reshape, 9002 .finish_reshape = raid5_finish_reshape, 9003 .quiesce = raid5_quiesce, 9004 .takeover = raid4_takeover, 9005 .change_consistency_policy = raid5_change_consistency_policy, 9006 .prepare_suspend = raid5_prepare_suspend, 9007 }; 9008 9009 static int __init raid5_init(void) 9010 { 9011 int ret; 9012 9013 raid5_wq = alloc_workqueue("raid5wq", 9014 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0); 9015 if (!raid5_wq) 9016 return -ENOMEM; 9017 9018 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE, 9019 "md/raid5:prepare", 9020 raid456_cpu_up_prepare, 9021 raid456_cpu_dead); 9022 if (ret) { 9023 destroy_workqueue(raid5_wq); 9024 return ret; 9025 } 9026 register_md_personality(&raid6_personality); 9027 register_md_personality(&raid5_personality); 9028 register_md_personality(&raid4_personality); 9029 return 0; 9030 } 9031 9032 static void raid5_exit(void) 9033 { 9034 unregister_md_personality(&raid6_personality); 9035 unregister_md_personality(&raid5_personality); 9036 unregister_md_personality(&raid4_personality); 9037 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE); 9038 destroy_workqueue(raid5_wq); 9039 } 9040 9041 module_init(raid5_init); 9042 module_exit(raid5_exit); 9043 MODULE_LICENSE("GPL"); 9044 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD"); 9045 MODULE_ALIAS("md-personality-4"); /* RAID5 */ 9046 MODULE_ALIAS("md-raid5"); 9047 MODULE_ALIAS("md-raid4"); 9048 MODULE_ALIAS("md-level-5"); 9049 MODULE_ALIAS("md-level-4"); 9050 MODULE_ALIAS("md-personality-8"); /* RAID6 */ 9051 MODULE_ALIAS("md-raid6"); 9052 MODULE_ALIAS("md-level-6"); 9053 9054 /* This used to be two separate modules, they were: */ 9055 MODULE_ALIAS("raid5"); 9056 MODULE_ALIAS("raid6"); 9057