1 /* 2 * raid5.c : Multiple Devices driver for Linux 3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman 4 * Copyright (C) 1999, 2000 Ingo Molnar 5 * Copyright (C) 2002, 2003 H. Peter Anvin 6 * 7 * RAID-4/5/6 management functions. 8 * Thanks to Penguin Computing for making the RAID-6 development possible 9 * by donating a test server! 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 /* 22 * BITMAP UNPLUGGING: 23 * 24 * The sequencing for updating the bitmap reliably is a little 25 * subtle (and I got it wrong the first time) so it deserves some 26 * explanation. 27 * 28 * We group bitmap updates into batches. Each batch has a number. 29 * We may write out several batches at once, but that isn't very important. 30 * conf->bm_write is the number of the last batch successfully written. 31 * conf->bm_flush is the number of the last batch that was closed to 32 * new additions. 33 * When we discover that we will need to write to any block in a stripe 34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq 35 * the number of the batch it will be in. This is bm_flush+1. 36 * When we are ready to do a write, if that batch hasn't been written yet, 37 * we plug the array and queue the stripe for later. 38 * When an unplug happens, we increment bm_flush, thus closing the current 39 * batch. 40 * When we notice that bm_flush > bm_write, we write out all pending updates 41 * to the bitmap, and advance bm_write to where bm_flush was. 42 * This may occasionally write a bit out twice, but is sure never to 43 * miss any bits. 44 */ 45 46 #include <linux/module.h> 47 #include <linux/slab.h> 48 #include <linux/highmem.h> 49 #include <linux/bitops.h> 50 #include <linux/kthread.h> 51 #include <asm/atomic.h> 52 #include "raid6.h" 53 54 #include <linux/raid/bitmap.h> 55 56 /* 57 * Stripe cache 58 */ 59 60 #define NR_STRIPES 256 61 #define STRIPE_SIZE PAGE_SIZE 62 #define STRIPE_SHIFT (PAGE_SHIFT - 9) 63 #define STRIPE_SECTORS (STRIPE_SIZE>>9) 64 #define IO_THRESHOLD 1 65 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head)) 66 #define HASH_MASK (NR_HASH - 1) 67 68 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK])) 69 70 /* bio's attached to a stripe+device for I/O are linked together in bi_sector 71 * order without overlap. There may be several bio's per stripe+device, and 72 * a bio could span several devices. 73 * When walking this list for a particular stripe+device, we must never proceed 74 * beyond a bio that extends past this device, as the next bio might no longer 75 * be valid. 76 * This macro is used to determine the 'next' bio in the list, given the sector 77 * of the current stripe+device 78 */ 79 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL) 80 /* 81 * The following can be used to debug the driver 82 */ 83 #define RAID5_DEBUG 0 84 #define RAID5_PARANOIA 1 85 #if RAID5_PARANOIA && defined(CONFIG_SMP) 86 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock) 87 #else 88 # define CHECK_DEVLOCK() 89 #endif 90 91 #define PRINTK(x...) ((void)(RAID5_DEBUG && printk(x))) 92 #if RAID5_DEBUG 93 #define inline 94 #define __inline__ 95 #endif 96 97 #if !RAID6_USE_EMPTY_ZERO_PAGE 98 /* In .bss so it's zeroed */ 99 const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256))); 100 #endif 101 102 static inline int raid6_next_disk(int disk, int raid_disks) 103 { 104 disk++; 105 return (disk < raid_disks) ? disk : 0; 106 } 107 static void print_raid5_conf (raid5_conf_t *conf); 108 109 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh) 110 { 111 if (atomic_dec_and_test(&sh->count)) { 112 BUG_ON(!list_empty(&sh->lru)); 113 BUG_ON(atomic_read(&conf->active_stripes)==0); 114 if (test_bit(STRIPE_HANDLE, &sh->state)) { 115 if (test_bit(STRIPE_DELAYED, &sh->state)) { 116 list_add_tail(&sh->lru, &conf->delayed_list); 117 blk_plug_device(conf->mddev->queue); 118 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) && 119 sh->bm_seq - conf->seq_write > 0) { 120 list_add_tail(&sh->lru, &conf->bitmap_list); 121 blk_plug_device(conf->mddev->queue); 122 } else { 123 clear_bit(STRIPE_BIT_DELAY, &sh->state); 124 list_add_tail(&sh->lru, &conf->handle_list); 125 } 126 md_wakeup_thread(conf->mddev->thread); 127 } else { 128 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { 129 atomic_dec(&conf->preread_active_stripes); 130 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) 131 md_wakeup_thread(conf->mddev->thread); 132 } 133 atomic_dec(&conf->active_stripes); 134 if (!test_bit(STRIPE_EXPANDING, &sh->state)) { 135 list_add_tail(&sh->lru, &conf->inactive_list); 136 wake_up(&conf->wait_for_stripe); 137 if (conf->retry_read_aligned) 138 md_wakeup_thread(conf->mddev->thread); 139 } 140 } 141 } 142 } 143 static void release_stripe(struct stripe_head *sh) 144 { 145 raid5_conf_t *conf = sh->raid_conf; 146 unsigned long flags; 147 148 spin_lock_irqsave(&conf->device_lock, flags); 149 __release_stripe(conf, sh); 150 spin_unlock_irqrestore(&conf->device_lock, flags); 151 } 152 153 static inline void remove_hash(struct stripe_head *sh) 154 { 155 PRINTK("remove_hash(), stripe %llu\n", (unsigned long long)sh->sector); 156 157 hlist_del_init(&sh->hash); 158 } 159 160 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh) 161 { 162 struct hlist_head *hp = stripe_hash(conf, sh->sector); 163 164 PRINTK("insert_hash(), stripe %llu\n", (unsigned long long)sh->sector); 165 166 CHECK_DEVLOCK(); 167 hlist_add_head(&sh->hash, hp); 168 } 169 170 171 /* find an idle stripe, make sure it is unhashed, and return it. */ 172 static struct stripe_head *get_free_stripe(raid5_conf_t *conf) 173 { 174 struct stripe_head *sh = NULL; 175 struct list_head *first; 176 177 CHECK_DEVLOCK(); 178 if (list_empty(&conf->inactive_list)) 179 goto out; 180 first = conf->inactive_list.next; 181 sh = list_entry(first, struct stripe_head, lru); 182 list_del_init(first); 183 remove_hash(sh); 184 atomic_inc(&conf->active_stripes); 185 out: 186 return sh; 187 } 188 189 static void shrink_buffers(struct stripe_head *sh, int num) 190 { 191 struct page *p; 192 int i; 193 194 for (i=0; i<num ; i++) { 195 p = sh->dev[i].page; 196 if (!p) 197 continue; 198 sh->dev[i].page = NULL; 199 put_page(p); 200 } 201 } 202 203 static int grow_buffers(struct stripe_head *sh, int num) 204 { 205 int i; 206 207 for (i=0; i<num; i++) { 208 struct page *page; 209 210 if (!(page = alloc_page(GFP_KERNEL))) { 211 return 1; 212 } 213 sh->dev[i].page = page; 214 } 215 return 0; 216 } 217 218 static void raid5_build_block (struct stripe_head *sh, int i); 219 220 static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks) 221 { 222 raid5_conf_t *conf = sh->raid_conf; 223 int i; 224 225 BUG_ON(atomic_read(&sh->count) != 0); 226 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); 227 228 CHECK_DEVLOCK(); 229 PRINTK("init_stripe called, stripe %llu\n", 230 (unsigned long long)sh->sector); 231 232 remove_hash(sh); 233 234 sh->sector = sector; 235 sh->pd_idx = pd_idx; 236 sh->state = 0; 237 238 sh->disks = disks; 239 240 for (i = sh->disks; i--; ) { 241 struct r5dev *dev = &sh->dev[i]; 242 243 if (dev->toread || dev->towrite || dev->written || 244 test_bit(R5_LOCKED, &dev->flags)) { 245 printk("sector=%llx i=%d %p %p %p %d\n", 246 (unsigned long long)sh->sector, i, dev->toread, 247 dev->towrite, dev->written, 248 test_bit(R5_LOCKED, &dev->flags)); 249 BUG(); 250 } 251 dev->flags = 0; 252 raid5_build_block(sh, i); 253 } 254 insert_hash(conf, sh); 255 } 256 257 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks) 258 { 259 struct stripe_head *sh; 260 struct hlist_node *hn; 261 262 CHECK_DEVLOCK(); 263 PRINTK("__find_stripe, sector %llu\n", (unsigned long long)sector); 264 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash) 265 if (sh->sector == sector && sh->disks == disks) 266 return sh; 267 PRINTK("__stripe %llu not in cache\n", (unsigned long long)sector); 268 return NULL; 269 } 270 271 static void unplug_slaves(mddev_t *mddev); 272 static void raid5_unplug_device(request_queue_t *q); 273 274 static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks, 275 int pd_idx, int noblock) 276 { 277 struct stripe_head *sh; 278 279 PRINTK("get_stripe, sector %llu\n", (unsigned long long)sector); 280 281 spin_lock_irq(&conf->device_lock); 282 283 do { 284 wait_event_lock_irq(conf->wait_for_stripe, 285 conf->quiesce == 0, 286 conf->device_lock, /* nothing */); 287 sh = __find_stripe(conf, sector, disks); 288 if (!sh) { 289 if (!conf->inactive_blocked) 290 sh = get_free_stripe(conf); 291 if (noblock && sh == NULL) 292 break; 293 if (!sh) { 294 conf->inactive_blocked = 1; 295 wait_event_lock_irq(conf->wait_for_stripe, 296 !list_empty(&conf->inactive_list) && 297 (atomic_read(&conf->active_stripes) 298 < (conf->max_nr_stripes *3/4) 299 || !conf->inactive_blocked), 300 conf->device_lock, 301 raid5_unplug_device(conf->mddev->queue) 302 ); 303 conf->inactive_blocked = 0; 304 } else 305 init_stripe(sh, sector, pd_idx, disks); 306 } else { 307 if (atomic_read(&sh->count)) { 308 BUG_ON(!list_empty(&sh->lru)); 309 } else { 310 if (!test_bit(STRIPE_HANDLE, &sh->state)) 311 atomic_inc(&conf->active_stripes); 312 if (list_empty(&sh->lru) && 313 !test_bit(STRIPE_EXPANDING, &sh->state)) 314 BUG(); 315 list_del_init(&sh->lru); 316 } 317 } 318 } while (sh == NULL); 319 320 if (sh) 321 atomic_inc(&sh->count); 322 323 spin_unlock_irq(&conf->device_lock); 324 return sh; 325 } 326 327 static int grow_one_stripe(raid5_conf_t *conf) 328 { 329 struct stripe_head *sh; 330 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL); 331 if (!sh) 332 return 0; 333 memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev)); 334 sh->raid_conf = conf; 335 spin_lock_init(&sh->lock); 336 337 if (grow_buffers(sh, conf->raid_disks)) { 338 shrink_buffers(sh, conf->raid_disks); 339 kmem_cache_free(conf->slab_cache, sh); 340 return 0; 341 } 342 sh->disks = conf->raid_disks; 343 /* we just created an active stripe so... */ 344 atomic_set(&sh->count, 1); 345 atomic_inc(&conf->active_stripes); 346 INIT_LIST_HEAD(&sh->lru); 347 release_stripe(sh); 348 return 1; 349 } 350 351 static int grow_stripes(raid5_conf_t *conf, int num) 352 { 353 struct kmem_cache *sc; 354 int devs = conf->raid_disks; 355 356 sprintf(conf->cache_name[0], "raid5/%s", mdname(conf->mddev)); 357 sprintf(conf->cache_name[1], "raid5/%s-alt", mdname(conf->mddev)); 358 conf->active_name = 0; 359 sc = kmem_cache_create(conf->cache_name[conf->active_name], 360 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev), 361 0, 0, NULL, NULL); 362 if (!sc) 363 return 1; 364 conf->slab_cache = sc; 365 conf->pool_size = devs; 366 while (num--) 367 if (!grow_one_stripe(conf)) 368 return 1; 369 return 0; 370 } 371 372 #ifdef CONFIG_MD_RAID5_RESHAPE 373 static int resize_stripes(raid5_conf_t *conf, int newsize) 374 { 375 /* Make all the stripes able to hold 'newsize' devices. 376 * New slots in each stripe get 'page' set to a new page. 377 * 378 * This happens in stages: 379 * 1/ create a new kmem_cache and allocate the required number of 380 * stripe_heads. 381 * 2/ gather all the old stripe_heads and tranfer the pages across 382 * to the new stripe_heads. This will have the side effect of 383 * freezing the array as once all stripe_heads have been collected, 384 * no IO will be possible. Old stripe heads are freed once their 385 * pages have been transferred over, and the old kmem_cache is 386 * freed when all stripes are done. 387 * 3/ reallocate conf->disks to be suitable bigger. If this fails, 388 * we simple return a failre status - no need to clean anything up. 389 * 4/ allocate new pages for the new slots in the new stripe_heads. 390 * If this fails, we don't bother trying the shrink the 391 * stripe_heads down again, we just leave them as they are. 392 * As each stripe_head is processed the new one is released into 393 * active service. 394 * 395 * Once step2 is started, we cannot afford to wait for a write, 396 * so we use GFP_NOIO allocations. 397 */ 398 struct stripe_head *osh, *nsh; 399 LIST_HEAD(newstripes); 400 struct disk_info *ndisks; 401 int err = 0; 402 struct kmem_cache *sc; 403 int i; 404 405 if (newsize <= conf->pool_size) 406 return 0; /* never bother to shrink */ 407 408 md_allow_write(conf->mddev); 409 410 /* Step 1 */ 411 sc = kmem_cache_create(conf->cache_name[1-conf->active_name], 412 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev), 413 0, 0, NULL, NULL); 414 if (!sc) 415 return -ENOMEM; 416 417 for (i = conf->max_nr_stripes; i; i--) { 418 nsh = kmem_cache_alloc(sc, GFP_KERNEL); 419 if (!nsh) 420 break; 421 422 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev)); 423 424 nsh->raid_conf = conf; 425 spin_lock_init(&nsh->lock); 426 427 list_add(&nsh->lru, &newstripes); 428 } 429 if (i) { 430 /* didn't get enough, give up */ 431 while (!list_empty(&newstripes)) { 432 nsh = list_entry(newstripes.next, struct stripe_head, lru); 433 list_del(&nsh->lru); 434 kmem_cache_free(sc, nsh); 435 } 436 kmem_cache_destroy(sc); 437 return -ENOMEM; 438 } 439 /* Step 2 - Must use GFP_NOIO now. 440 * OK, we have enough stripes, start collecting inactive 441 * stripes and copying them over 442 */ 443 list_for_each_entry(nsh, &newstripes, lru) { 444 spin_lock_irq(&conf->device_lock); 445 wait_event_lock_irq(conf->wait_for_stripe, 446 !list_empty(&conf->inactive_list), 447 conf->device_lock, 448 unplug_slaves(conf->mddev) 449 ); 450 osh = get_free_stripe(conf); 451 spin_unlock_irq(&conf->device_lock); 452 atomic_set(&nsh->count, 1); 453 for(i=0; i<conf->pool_size; i++) 454 nsh->dev[i].page = osh->dev[i].page; 455 for( ; i<newsize; i++) 456 nsh->dev[i].page = NULL; 457 kmem_cache_free(conf->slab_cache, osh); 458 } 459 kmem_cache_destroy(conf->slab_cache); 460 461 /* Step 3. 462 * At this point, we are holding all the stripes so the array 463 * is completely stalled, so now is a good time to resize 464 * conf->disks. 465 */ 466 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO); 467 if (ndisks) { 468 for (i=0; i<conf->raid_disks; i++) 469 ndisks[i] = conf->disks[i]; 470 kfree(conf->disks); 471 conf->disks = ndisks; 472 } else 473 err = -ENOMEM; 474 475 /* Step 4, return new stripes to service */ 476 while(!list_empty(&newstripes)) { 477 nsh = list_entry(newstripes.next, struct stripe_head, lru); 478 list_del_init(&nsh->lru); 479 for (i=conf->raid_disks; i < newsize; i++) 480 if (nsh->dev[i].page == NULL) { 481 struct page *p = alloc_page(GFP_NOIO); 482 nsh->dev[i].page = p; 483 if (!p) 484 err = -ENOMEM; 485 } 486 release_stripe(nsh); 487 } 488 /* critical section pass, GFP_NOIO no longer needed */ 489 490 conf->slab_cache = sc; 491 conf->active_name = 1-conf->active_name; 492 conf->pool_size = newsize; 493 return err; 494 } 495 #endif 496 497 static int drop_one_stripe(raid5_conf_t *conf) 498 { 499 struct stripe_head *sh; 500 501 spin_lock_irq(&conf->device_lock); 502 sh = get_free_stripe(conf); 503 spin_unlock_irq(&conf->device_lock); 504 if (!sh) 505 return 0; 506 BUG_ON(atomic_read(&sh->count)); 507 shrink_buffers(sh, conf->pool_size); 508 kmem_cache_free(conf->slab_cache, sh); 509 atomic_dec(&conf->active_stripes); 510 return 1; 511 } 512 513 static void shrink_stripes(raid5_conf_t *conf) 514 { 515 while (drop_one_stripe(conf)) 516 ; 517 518 if (conf->slab_cache) 519 kmem_cache_destroy(conf->slab_cache); 520 conf->slab_cache = NULL; 521 } 522 523 static int raid5_end_read_request(struct bio * bi, unsigned int bytes_done, 524 int error) 525 { 526 struct stripe_head *sh = bi->bi_private; 527 raid5_conf_t *conf = sh->raid_conf; 528 int disks = sh->disks, i; 529 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); 530 char b[BDEVNAME_SIZE]; 531 mdk_rdev_t *rdev; 532 533 if (bi->bi_size) 534 return 1; 535 536 for (i=0 ; i<disks; i++) 537 if (bi == &sh->dev[i].req) 538 break; 539 540 PRINTK("end_read_request %llu/%d, count: %d, uptodate %d.\n", 541 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 542 uptodate); 543 if (i == disks) { 544 BUG(); 545 return 0; 546 } 547 548 if (uptodate) { 549 set_bit(R5_UPTODATE, &sh->dev[i].flags); 550 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 551 rdev = conf->disks[i].rdev; 552 printk(KERN_INFO "raid5:%s: read error corrected (%lu sectors at %llu on %s)\n", 553 mdname(conf->mddev), STRIPE_SECTORS, 554 (unsigned long long)sh->sector + rdev->data_offset, 555 bdevname(rdev->bdev, b)); 556 clear_bit(R5_ReadError, &sh->dev[i].flags); 557 clear_bit(R5_ReWrite, &sh->dev[i].flags); 558 } 559 if (atomic_read(&conf->disks[i].rdev->read_errors)) 560 atomic_set(&conf->disks[i].rdev->read_errors, 0); 561 } else { 562 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b); 563 int retry = 0; 564 rdev = conf->disks[i].rdev; 565 566 clear_bit(R5_UPTODATE, &sh->dev[i].flags); 567 atomic_inc(&rdev->read_errors); 568 if (conf->mddev->degraded) 569 printk(KERN_WARNING "raid5:%s: read error not correctable (sector %llu on %s).\n", 570 mdname(conf->mddev), 571 (unsigned long long)sh->sector + rdev->data_offset, 572 bdn); 573 else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) 574 /* Oh, no!!! */ 575 printk(KERN_WARNING "raid5:%s: read error NOT corrected!! (sector %llu on %s).\n", 576 mdname(conf->mddev), 577 (unsigned long long)sh->sector + rdev->data_offset, 578 bdn); 579 else if (atomic_read(&rdev->read_errors) 580 > conf->max_nr_stripes) 581 printk(KERN_WARNING 582 "raid5:%s: Too many read errors, failing device %s.\n", 583 mdname(conf->mddev), bdn); 584 else 585 retry = 1; 586 if (retry) 587 set_bit(R5_ReadError, &sh->dev[i].flags); 588 else { 589 clear_bit(R5_ReadError, &sh->dev[i].flags); 590 clear_bit(R5_ReWrite, &sh->dev[i].flags); 591 md_error(conf->mddev, rdev); 592 } 593 } 594 rdev_dec_pending(conf->disks[i].rdev, conf->mddev); 595 clear_bit(R5_LOCKED, &sh->dev[i].flags); 596 set_bit(STRIPE_HANDLE, &sh->state); 597 release_stripe(sh); 598 return 0; 599 } 600 601 static int raid5_end_write_request (struct bio *bi, unsigned int bytes_done, 602 int error) 603 { 604 struct stripe_head *sh = bi->bi_private; 605 raid5_conf_t *conf = sh->raid_conf; 606 int disks = sh->disks, i; 607 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); 608 609 if (bi->bi_size) 610 return 1; 611 612 for (i=0 ; i<disks; i++) 613 if (bi == &sh->dev[i].req) 614 break; 615 616 PRINTK("end_write_request %llu/%d, count %d, uptodate: %d.\n", 617 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 618 uptodate); 619 if (i == disks) { 620 BUG(); 621 return 0; 622 } 623 624 if (!uptodate) 625 md_error(conf->mddev, conf->disks[i].rdev); 626 627 rdev_dec_pending(conf->disks[i].rdev, conf->mddev); 628 629 clear_bit(R5_LOCKED, &sh->dev[i].flags); 630 set_bit(STRIPE_HANDLE, &sh->state); 631 release_stripe(sh); 632 return 0; 633 } 634 635 636 static sector_t compute_blocknr(struct stripe_head *sh, int i); 637 638 static void raid5_build_block (struct stripe_head *sh, int i) 639 { 640 struct r5dev *dev = &sh->dev[i]; 641 642 bio_init(&dev->req); 643 dev->req.bi_io_vec = &dev->vec; 644 dev->req.bi_vcnt++; 645 dev->req.bi_max_vecs++; 646 dev->vec.bv_page = dev->page; 647 dev->vec.bv_len = STRIPE_SIZE; 648 dev->vec.bv_offset = 0; 649 650 dev->req.bi_sector = sh->sector; 651 dev->req.bi_private = sh; 652 653 dev->flags = 0; 654 dev->sector = compute_blocknr(sh, i); 655 } 656 657 static void error(mddev_t *mddev, mdk_rdev_t *rdev) 658 { 659 char b[BDEVNAME_SIZE]; 660 raid5_conf_t *conf = (raid5_conf_t *) mddev->private; 661 PRINTK("raid5: error called\n"); 662 663 if (!test_bit(Faulty, &rdev->flags)) { 664 set_bit(MD_CHANGE_DEVS, &mddev->flags); 665 if (test_and_clear_bit(In_sync, &rdev->flags)) { 666 unsigned long flags; 667 spin_lock_irqsave(&conf->device_lock, flags); 668 mddev->degraded++; 669 spin_unlock_irqrestore(&conf->device_lock, flags); 670 /* 671 * if recovery was running, make sure it aborts. 672 */ 673 set_bit(MD_RECOVERY_ERR, &mddev->recovery); 674 } 675 set_bit(Faulty, &rdev->flags); 676 printk (KERN_ALERT 677 "raid5: Disk failure on %s, disabling device." 678 " Operation continuing on %d devices\n", 679 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded); 680 } 681 } 682 683 /* 684 * Input: a 'big' sector number, 685 * Output: index of the data and parity disk, and the sector # in them. 686 */ 687 static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks, 688 unsigned int data_disks, unsigned int * dd_idx, 689 unsigned int * pd_idx, raid5_conf_t *conf) 690 { 691 long stripe; 692 unsigned long chunk_number; 693 unsigned int chunk_offset; 694 sector_t new_sector; 695 int sectors_per_chunk = conf->chunk_size >> 9; 696 697 /* First compute the information on this sector */ 698 699 /* 700 * Compute the chunk number and the sector offset inside the chunk 701 */ 702 chunk_offset = sector_div(r_sector, sectors_per_chunk); 703 chunk_number = r_sector; 704 BUG_ON(r_sector != chunk_number); 705 706 /* 707 * Compute the stripe number 708 */ 709 stripe = chunk_number / data_disks; 710 711 /* 712 * Compute the data disk and parity disk indexes inside the stripe 713 */ 714 *dd_idx = chunk_number % data_disks; 715 716 /* 717 * Select the parity disk based on the user selected algorithm. 718 */ 719 switch(conf->level) { 720 case 4: 721 *pd_idx = data_disks; 722 break; 723 case 5: 724 switch (conf->algorithm) { 725 case ALGORITHM_LEFT_ASYMMETRIC: 726 *pd_idx = data_disks - stripe % raid_disks; 727 if (*dd_idx >= *pd_idx) 728 (*dd_idx)++; 729 break; 730 case ALGORITHM_RIGHT_ASYMMETRIC: 731 *pd_idx = stripe % raid_disks; 732 if (*dd_idx >= *pd_idx) 733 (*dd_idx)++; 734 break; 735 case ALGORITHM_LEFT_SYMMETRIC: 736 *pd_idx = data_disks - stripe % raid_disks; 737 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks; 738 break; 739 case ALGORITHM_RIGHT_SYMMETRIC: 740 *pd_idx = stripe % raid_disks; 741 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks; 742 break; 743 default: 744 printk(KERN_ERR "raid5: unsupported algorithm %d\n", 745 conf->algorithm); 746 } 747 break; 748 case 6: 749 750 /**** FIX THIS ****/ 751 switch (conf->algorithm) { 752 case ALGORITHM_LEFT_ASYMMETRIC: 753 *pd_idx = raid_disks - 1 - (stripe % raid_disks); 754 if (*pd_idx == raid_disks-1) 755 (*dd_idx)++; /* Q D D D P */ 756 else if (*dd_idx >= *pd_idx) 757 (*dd_idx) += 2; /* D D P Q D */ 758 break; 759 case ALGORITHM_RIGHT_ASYMMETRIC: 760 *pd_idx = stripe % raid_disks; 761 if (*pd_idx == raid_disks-1) 762 (*dd_idx)++; /* Q D D D P */ 763 else if (*dd_idx >= *pd_idx) 764 (*dd_idx) += 2; /* D D P Q D */ 765 break; 766 case ALGORITHM_LEFT_SYMMETRIC: 767 *pd_idx = raid_disks - 1 - (stripe % raid_disks); 768 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks; 769 break; 770 case ALGORITHM_RIGHT_SYMMETRIC: 771 *pd_idx = stripe % raid_disks; 772 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks; 773 break; 774 default: 775 printk (KERN_CRIT "raid6: unsupported algorithm %d\n", 776 conf->algorithm); 777 } 778 break; 779 } 780 781 /* 782 * Finally, compute the new sector number 783 */ 784 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset; 785 return new_sector; 786 } 787 788 789 static sector_t compute_blocknr(struct stripe_head *sh, int i) 790 { 791 raid5_conf_t *conf = sh->raid_conf; 792 int raid_disks = sh->disks; 793 int data_disks = raid_disks - conf->max_degraded; 794 sector_t new_sector = sh->sector, check; 795 int sectors_per_chunk = conf->chunk_size >> 9; 796 sector_t stripe; 797 int chunk_offset; 798 int chunk_number, dummy1, dummy2, dd_idx = i; 799 sector_t r_sector; 800 801 802 chunk_offset = sector_div(new_sector, sectors_per_chunk); 803 stripe = new_sector; 804 BUG_ON(new_sector != stripe); 805 806 if (i == sh->pd_idx) 807 return 0; 808 switch(conf->level) { 809 case 4: break; 810 case 5: 811 switch (conf->algorithm) { 812 case ALGORITHM_LEFT_ASYMMETRIC: 813 case ALGORITHM_RIGHT_ASYMMETRIC: 814 if (i > sh->pd_idx) 815 i--; 816 break; 817 case ALGORITHM_LEFT_SYMMETRIC: 818 case ALGORITHM_RIGHT_SYMMETRIC: 819 if (i < sh->pd_idx) 820 i += raid_disks; 821 i -= (sh->pd_idx + 1); 822 break; 823 default: 824 printk(KERN_ERR "raid5: unsupported algorithm %d\n", 825 conf->algorithm); 826 } 827 break; 828 case 6: 829 if (i == raid6_next_disk(sh->pd_idx, raid_disks)) 830 return 0; /* It is the Q disk */ 831 switch (conf->algorithm) { 832 case ALGORITHM_LEFT_ASYMMETRIC: 833 case ALGORITHM_RIGHT_ASYMMETRIC: 834 if (sh->pd_idx == raid_disks-1) 835 i--; /* Q D D D P */ 836 else if (i > sh->pd_idx) 837 i -= 2; /* D D P Q D */ 838 break; 839 case ALGORITHM_LEFT_SYMMETRIC: 840 case ALGORITHM_RIGHT_SYMMETRIC: 841 if (sh->pd_idx == raid_disks-1) 842 i--; /* Q D D D P */ 843 else { 844 /* D D P Q D */ 845 if (i < sh->pd_idx) 846 i += raid_disks; 847 i -= (sh->pd_idx + 2); 848 } 849 break; 850 default: 851 printk (KERN_CRIT "raid6: unsupported algorithm %d\n", 852 conf->algorithm); 853 } 854 break; 855 } 856 857 chunk_number = stripe * data_disks + i; 858 r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset; 859 860 check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf); 861 if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) { 862 printk(KERN_ERR "compute_blocknr: map not correct\n"); 863 return 0; 864 } 865 return r_sector; 866 } 867 868 869 870 /* 871 * Copy data between a page in the stripe cache, and one or more bion 872 * The page could align with the middle of the bio, or there could be 873 * several bion, each with several bio_vecs, which cover part of the page 874 * Multiple bion are linked together on bi_next. There may be extras 875 * at the end of this list. We ignore them. 876 */ 877 static void copy_data(int frombio, struct bio *bio, 878 struct page *page, 879 sector_t sector) 880 { 881 char *pa = page_address(page); 882 struct bio_vec *bvl; 883 int i; 884 int page_offset; 885 886 if (bio->bi_sector >= sector) 887 page_offset = (signed)(bio->bi_sector - sector) * 512; 888 else 889 page_offset = (signed)(sector - bio->bi_sector) * -512; 890 bio_for_each_segment(bvl, bio, i) { 891 int len = bio_iovec_idx(bio,i)->bv_len; 892 int clen; 893 int b_offset = 0; 894 895 if (page_offset < 0) { 896 b_offset = -page_offset; 897 page_offset += b_offset; 898 len -= b_offset; 899 } 900 901 if (len > 0 && page_offset + len > STRIPE_SIZE) 902 clen = STRIPE_SIZE - page_offset; 903 else clen = len; 904 905 if (clen > 0) { 906 char *ba = __bio_kmap_atomic(bio, i, KM_USER0); 907 if (frombio) 908 memcpy(pa+page_offset, ba+b_offset, clen); 909 else 910 memcpy(ba+b_offset, pa+page_offset, clen); 911 __bio_kunmap_atomic(ba, KM_USER0); 912 } 913 if (clen < len) /* hit end of page */ 914 break; 915 page_offset += len; 916 } 917 } 918 919 #define check_xor() do { \ 920 if (count == MAX_XOR_BLOCKS) { \ 921 xor_block(count, STRIPE_SIZE, ptr); \ 922 count = 1; \ 923 } \ 924 } while(0) 925 926 927 static void compute_block(struct stripe_head *sh, int dd_idx) 928 { 929 int i, count, disks = sh->disks; 930 void *ptr[MAX_XOR_BLOCKS], *p; 931 932 PRINTK("compute_block, stripe %llu, idx %d\n", 933 (unsigned long long)sh->sector, dd_idx); 934 935 ptr[0] = page_address(sh->dev[dd_idx].page); 936 memset(ptr[0], 0, STRIPE_SIZE); 937 count = 1; 938 for (i = disks ; i--; ) { 939 if (i == dd_idx) 940 continue; 941 p = page_address(sh->dev[i].page); 942 if (test_bit(R5_UPTODATE, &sh->dev[i].flags)) 943 ptr[count++] = p; 944 else 945 printk(KERN_ERR "compute_block() %d, stripe %llu, %d" 946 " not present\n", dd_idx, 947 (unsigned long long)sh->sector, i); 948 949 check_xor(); 950 } 951 if (count != 1) 952 xor_block(count, STRIPE_SIZE, ptr); 953 set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags); 954 } 955 956 static void compute_parity5(struct stripe_head *sh, int method) 957 { 958 raid5_conf_t *conf = sh->raid_conf; 959 int i, pd_idx = sh->pd_idx, disks = sh->disks, count; 960 void *ptr[MAX_XOR_BLOCKS]; 961 struct bio *chosen; 962 963 PRINTK("compute_parity5, stripe %llu, method %d\n", 964 (unsigned long long)sh->sector, method); 965 966 count = 1; 967 ptr[0] = page_address(sh->dev[pd_idx].page); 968 switch(method) { 969 case READ_MODIFY_WRITE: 970 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags)); 971 for (i=disks ; i-- ;) { 972 if (i==pd_idx) 973 continue; 974 if (sh->dev[i].towrite && 975 test_bit(R5_UPTODATE, &sh->dev[i].flags)) { 976 ptr[count++] = page_address(sh->dev[i].page); 977 chosen = sh->dev[i].towrite; 978 sh->dev[i].towrite = NULL; 979 980 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 981 wake_up(&conf->wait_for_overlap); 982 983 BUG_ON(sh->dev[i].written); 984 sh->dev[i].written = chosen; 985 check_xor(); 986 } 987 } 988 break; 989 case RECONSTRUCT_WRITE: 990 memset(ptr[0], 0, STRIPE_SIZE); 991 for (i= disks; i-- ;) 992 if (i!=pd_idx && sh->dev[i].towrite) { 993 chosen = sh->dev[i].towrite; 994 sh->dev[i].towrite = NULL; 995 996 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 997 wake_up(&conf->wait_for_overlap); 998 999 BUG_ON(sh->dev[i].written); 1000 sh->dev[i].written = chosen; 1001 } 1002 break; 1003 case CHECK_PARITY: 1004 break; 1005 } 1006 if (count>1) { 1007 xor_block(count, STRIPE_SIZE, ptr); 1008 count = 1; 1009 } 1010 1011 for (i = disks; i--;) 1012 if (sh->dev[i].written) { 1013 sector_t sector = sh->dev[i].sector; 1014 struct bio *wbi = sh->dev[i].written; 1015 while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) { 1016 copy_data(1, wbi, sh->dev[i].page, sector); 1017 wbi = r5_next_bio(wbi, sector); 1018 } 1019 1020 set_bit(R5_LOCKED, &sh->dev[i].flags); 1021 set_bit(R5_UPTODATE, &sh->dev[i].flags); 1022 } 1023 1024 switch(method) { 1025 case RECONSTRUCT_WRITE: 1026 case CHECK_PARITY: 1027 for (i=disks; i--;) 1028 if (i != pd_idx) { 1029 ptr[count++] = page_address(sh->dev[i].page); 1030 check_xor(); 1031 } 1032 break; 1033 case READ_MODIFY_WRITE: 1034 for (i = disks; i--;) 1035 if (sh->dev[i].written) { 1036 ptr[count++] = page_address(sh->dev[i].page); 1037 check_xor(); 1038 } 1039 } 1040 if (count != 1) 1041 xor_block(count, STRIPE_SIZE, ptr); 1042 1043 if (method != CHECK_PARITY) { 1044 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 1045 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); 1046 } else 1047 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 1048 } 1049 1050 static void compute_parity6(struct stripe_head *sh, int method) 1051 { 1052 raid6_conf_t *conf = sh->raid_conf; 1053 int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = conf->raid_disks, count; 1054 struct bio *chosen; 1055 /**** FIX THIS: This could be very bad if disks is close to 256 ****/ 1056 void *ptrs[disks]; 1057 1058 qd_idx = raid6_next_disk(pd_idx, disks); 1059 d0_idx = raid6_next_disk(qd_idx, disks); 1060 1061 PRINTK("compute_parity, stripe %llu, method %d\n", 1062 (unsigned long long)sh->sector, method); 1063 1064 switch(method) { 1065 case READ_MODIFY_WRITE: 1066 BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */ 1067 case RECONSTRUCT_WRITE: 1068 for (i= disks; i-- ;) 1069 if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) { 1070 chosen = sh->dev[i].towrite; 1071 sh->dev[i].towrite = NULL; 1072 1073 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 1074 wake_up(&conf->wait_for_overlap); 1075 1076 BUG_ON(sh->dev[i].written); 1077 sh->dev[i].written = chosen; 1078 } 1079 break; 1080 case CHECK_PARITY: 1081 BUG(); /* Not implemented yet */ 1082 } 1083 1084 for (i = disks; i--;) 1085 if (sh->dev[i].written) { 1086 sector_t sector = sh->dev[i].sector; 1087 struct bio *wbi = sh->dev[i].written; 1088 while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) { 1089 copy_data(1, wbi, sh->dev[i].page, sector); 1090 wbi = r5_next_bio(wbi, sector); 1091 } 1092 1093 set_bit(R5_LOCKED, &sh->dev[i].flags); 1094 set_bit(R5_UPTODATE, &sh->dev[i].flags); 1095 } 1096 1097 // switch(method) { 1098 // case RECONSTRUCT_WRITE: 1099 // case CHECK_PARITY: 1100 // case UPDATE_PARITY: 1101 /* Note that unlike RAID-5, the ordering of the disks matters greatly. */ 1102 /* FIX: Is this ordering of drives even remotely optimal? */ 1103 count = 0; 1104 i = d0_idx; 1105 do { 1106 ptrs[count++] = page_address(sh->dev[i].page); 1107 if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags)) 1108 printk("block %d/%d not uptodate on parity calc\n", i,count); 1109 i = raid6_next_disk(i, disks); 1110 } while ( i != d0_idx ); 1111 // break; 1112 // } 1113 1114 raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs); 1115 1116 switch(method) { 1117 case RECONSTRUCT_WRITE: 1118 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 1119 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags); 1120 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); 1121 set_bit(R5_LOCKED, &sh->dev[qd_idx].flags); 1122 break; 1123 case UPDATE_PARITY: 1124 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 1125 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags); 1126 break; 1127 } 1128 } 1129 1130 1131 /* Compute one missing block */ 1132 static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero) 1133 { 1134 raid6_conf_t *conf = sh->raid_conf; 1135 int i, count, disks = conf->raid_disks; 1136 void *ptr[MAX_XOR_BLOCKS], *p; 1137 int pd_idx = sh->pd_idx; 1138 int qd_idx = raid6_next_disk(pd_idx, disks); 1139 1140 PRINTK("compute_block_1, stripe %llu, idx %d\n", 1141 (unsigned long long)sh->sector, dd_idx); 1142 1143 if ( dd_idx == qd_idx ) { 1144 /* We're actually computing the Q drive */ 1145 compute_parity6(sh, UPDATE_PARITY); 1146 } else { 1147 ptr[0] = page_address(sh->dev[dd_idx].page); 1148 if (!nozero) memset(ptr[0], 0, STRIPE_SIZE); 1149 count = 1; 1150 for (i = disks ; i--; ) { 1151 if (i == dd_idx || i == qd_idx) 1152 continue; 1153 p = page_address(sh->dev[i].page); 1154 if (test_bit(R5_UPTODATE, &sh->dev[i].flags)) 1155 ptr[count++] = p; 1156 else 1157 printk("compute_block() %d, stripe %llu, %d" 1158 " not present\n", dd_idx, 1159 (unsigned long long)sh->sector, i); 1160 1161 check_xor(); 1162 } 1163 if (count != 1) 1164 xor_block(count, STRIPE_SIZE, ptr); 1165 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags); 1166 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags); 1167 } 1168 } 1169 1170 /* Compute two missing blocks */ 1171 static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2) 1172 { 1173 raid6_conf_t *conf = sh->raid_conf; 1174 int i, count, disks = conf->raid_disks; 1175 int pd_idx = sh->pd_idx; 1176 int qd_idx = raid6_next_disk(pd_idx, disks); 1177 int d0_idx = raid6_next_disk(qd_idx, disks); 1178 int faila, failb; 1179 1180 /* faila and failb are disk numbers relative to d0_idx */ 1181 /* pd_idx become disks-2 and qd_idx become disks-1 */ 1182 faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx; 1183 failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx; 1184 1185 BUG_ON(faila == failb); 1186 if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; } 1187 1188 PRINTK("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n", 1189 (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb); 1190 1191 if ( failb == disks-1 ) { 1192 /* Q disk is one of the missing disks */ 1193 if ( faila == disks-2 ) { 1194 /* Missing P+Q, just recompute */ 1195 compute_parity6(sh, UPDATE_PARITY); 1196 return; 1197 } else { 1198 /* We're missing D+Q; recompute D from P */ 1199 compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0); 1200 compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */ 1201 return; 1202 } 1203 } 1204 1205 /* We're missing D+P or D+D; build pointer table */ 1206 { 1207 /**** FIX THIS: This could be very bad if disks is close to 256 ****/ 1208 void *ptrs[disks]; 1209 1210 count = 0; 1211 i = d0_idx; 1212 do { 1213 ptrs[count++] = page_address(sh->dev[i].page); 1214 i = raid6_next_disk(i, disks); 1215 if (i != dd_idx1 && i != dd_idx2 && 1216 !test_bit(R5_UPTODATE, &sh->dev[i].flags)) 1217 printk("compute_2 with missing block %d/%d\n", count, i); 1218 } while ( i != d0_idx ); 1219 1220 if ( failb == disks-2 ) { 1221 /* We're missing D+P. */ 1222 raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs); 1223 } else { 1224 /* We're missing D+D. */ 1225 raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs); 1226 } 1227 1228 /* Both the above update both missing blocks */ 1229 set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags); 1230 set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags); 1231 } 1232 } 1233 1234 1235 1236 /* 1237 * Each stripe/dev can have one or more bion attached. 1238 * toread/towrite point to the first in a chain. 1239 * The bi_next chain must be in order. 1240 */ 1241 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite) 1242 { 1243 struct bio **bip; 1244 raid5_conf_t *conf = sh->raid_conf; 1245 int firstwrite=0; 1246 1247 PRINTK("adding bh b#%llu to stripe s#%llu\n", 1248 (unsigned long long)bi->bi_sector, 1249 (unsigned long long)sh->sector); 1250 1251 1252 spin_lock(&sh->lock); 1253 spin_lock_irq(&conf->device_lock); 1254 if (forwrite) { 1255 bip = &sh->dev[dd_idx].towrite; 1256 if (*bip == NULL && sh->dev[dd_idx].written == NULL) 1257 firstwrite = 1; 1258 } else 1259 bip = &sh->dev[dd_idx].toread; 1260 while (*bip && (*bip)->bi_sector < bi->bi_sector) { 1261 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector) 1262 goto overlap; 1263 bip = & (*bip)->bi_next; 1264 } 1265 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9)) 1266 goto overlap; 1267 1268 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next); 1269 if (*bip) 1270 bi->bi_next = *bip; 1271 *bip = bi; 1272 bi->bi_phys_segments ++; 1273 spin_unlock_irq(&conf->device_lock); 1274 spin_unlock(&sh->lock); 1275 1276 PRINTK("added bi b#%llu to stripe s#%llu, disk %d.\n", 1277 (unsigned long long)bi->bi_sector, 1278 (unsigned long long)sh->sector, dd_idx); 1279 1280 if (conf->mddev->bitmap && firstwrite) { 1281 bitmap_startwrite(conf->mddev->bitmap, sh->sector, 1282 STRIPE_SECTORS, 0); 1283 sh->bm_seq = conf->seq_flush+1; 1284 set_bit(STRIPE_BIT_DELAY, &sh->state); 1285 } 1286 1287 if (forwrite) { 1288 /* check if page is covered */ 1289 sector_t sector = sh->dev[dd_idx].sector; 1290 for (bi=sh->dev[dd_idx].towrite; 1291 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS && 1292 bi && bi->bi_sector <= sector; 1293 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) { 1294 if (bi->bi_sector + (bi->bi_size>>9) >= sector) 1295 sector = bi->bi_sector + (bi->bi_size>>9); 1296 } 1297 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS) 1298 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags); 1299 } 1300 return 1; 1301 1302 overlap: 1303 set_bit(R5_Overlap, &sh->dev[dd_idx].flags); 1304 spin_unlock_irq(&conf->device_lock); 1305 spin_unlock(&sh->lock); 1306 return 0; 1307 } 1308 1309 static void end_reshape(raid5_conf_t *conf); 1310 1311 static int page_is_zero(struct page *p) 1312 { 1313 char *a = page_address(p); 1314 return ((*(u32*)a) == 0 && 1315 memcmp(a, a+4, STRIPE_SIZE-4)==0); 1316 } 1317 1318 static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks) 1319 { 1320 int sectors_per_chunk = conf->chunk_size >> 9; 1321 int pd_idx, dd_idx; 1322 int chunk_offset = sector_div(stripe, sectors_per_chunk); 1323 1324 raid5_compute_sector(stripe * (disks - conf->max_degraded) 1325 *sectors_per_chunk + chunk_offset, 1326 disks, disks - conf->max_degraded, 1327 &dd_idx, &pd_idx, conf); 1328 return pd_idx; 1329 } 1330 1331 1332 /* 1333 * handle_stripe - do things to a stripe. 1334 * 1335 * We lock the stripe and then examine the state of various bits 1336 * to see what needs to be done. 1337 * Possible results: 1338 * return some read request which now have data 1339 * return some write requests which are safely on disc 1340 * schedule a read on some buffers 1341 * schedule a write of some buffers 1342 * return confirmation of parity correctness 1343 * 1344 * Parity calculations are done inside the stripe lock 1345 * buffers are taken off read_list or write_list, and bh_cache buffers 1346 * get BH_Lock set before the stripe lock is released. 1347 * 1348 */ 1349 1350 static void handle_stripe5(struct stripe_head *sh) 1351 { 1352 raid5_conf_t *conf = sh->raid_conf; 1353 int disks = sh->disks; 1354 struct bio *return_bi= NULL; 1355 struct bio *bi; 1356 int i; 1357 int syncing, expanding, expanded; 1358 int locked=0, uptodate=0, to_read=0, to_write=0, failed=0, written=0; 1359 int non_overwrite = 0; 1360 int failed_num=0; 1361 struct r5dev *dev; 1362 1363 PRINTK("handling stripe %llu, cnt=%d, pd_idx=%d\n", 1364 (unsigned long long)sh->sector, atomic_read(&sh->count), 1365 sh->pd_idx); 1366 1367 spin_lock(&sh->lock); 1368 clear_bit(STRIPE_HANDLE, &sh->state); 1369 clear_bit(STRIPE_DELAYED, &sh->state); 1370 1371 syncing = test_bit(STRIPE_SYNCING, &sh->state); 1372 expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state); 1373 expanded = test_bit(STRIPE_EXPAND_READY, &sh->state); 1374 /* Now to look around and see what can be done */ 1375 1376 rcu_read_lock(); 1377 for (i=disks; i--; ) { 1378 mdk_rdev_t *rdev; 1379 dev = &sh->dev[i]; 1380 clear_bit(R5_Insync, &dev->flags); 1381 1382 PRINTK("check %d: state 0x%lx read %p write %p written %p\n", 1383 i, dev->flags, dev->toread, dev->towrite, dev->written); 1384 /* maybe we can reply to a read */ 1385 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) { 1386 struct bio *rbi, *rbi2; 1387 PRINTK("Return read for disc %d\n", i); 1388 spin_lock_irq(&conf->device_lock); 1389 rbi = dev->toread; 1390 dev->toread = NULL; 1391 if (test_and_clear_bit(R5_Overlap, &dev->flags)) 1392 wake_up(&conf->wait_for_overlap); 1393 spin_unlock_irq(&conf->device_lock); 1394 while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) { 1395 copy_data(0, rbi, dev->page, dev->sector); 1396 rbi2 = r5_next_bio(rbi, dev->sector); 1397 spin_lock_irq(&conf->device_lock); 1398 if (--rbi->bi_phys_segments == 0) { 1399 rbi->bi_next = return_bi; 1400 return_bi = rbi; 1401 } 1402 spin_unlock_irq(&conf->device_lock); 1403 rbi = rbi2; 1404 } 1405 } 1406 1407 /* now count some things */ 1408 if (test_bit(R5_LOCKED, &dev->flags)) locked++; 1409 if (test_bit(R5_UPTODATE, &dev->flags)) uptodate++; 1410 1411 1412 if (dev->toread) to_read++; 1413 if (dev->towrite) { 1414 to_write++; 1415 if (!test_bit(R5_OVERWRITE, &dev->flags)) 1416 non_overwrite++; 1417 } 1418 if (dev->written) written++; 1419 rdev = rcu_dereference(conf->disks[i].rdev); 1420 if (!rdev || !test_bit(In_sync, &rdev->flags)) { 1421 /* The ReadError flag will just be confusing now */ 1422 clear_bit(R5_ReadError, &dev->flags); 1423 clear_bit(R5_ReWrite, &dev->flags); 1424 } 1425 if (!rdev || !test_bit(In_sync, &rdev->flags) 1426 || test_bit(R5_ReadError, &dev->flags)) { 1427 failed++; 1428 failed_num = i; 1429 } else 1430 set_bit(R5_Insync, &dev->flags); 1431 } 1432 rcu_read_unlock(); 1433 PRINTK("locked=%d uptodate=%d to_read=%d" 1434 " to_write=%d failed=%d failed_num=%d\n", 1435 locked, uptodate, to_read, to_write, failed, failed_num); 1436 /* check if the array has lost two devices and, if so, some requests might 1437 * need to be failed 1438 */ 1439 if (failed > 1 && to_read+to_write+written) { 1440 for (i=disks; i--; ) { 1441 int bitmap_end = 0; 1442 1443 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 1444 mdk_rdev_t *rdev; 1445 rcu_read_lock(); 1446 rdev = rcu_dereference(conf->disks[i].rdev); 1447 if (rdev && test_bit(In_sync, &rdev->flags)) 1448 /* multiple read failures in one stripe */ 1449 md_error(conf->mddev, rdev); 1450 rcu_read_unlock(); 1451 } 1452 1453 spin_lock_irq(&conf->device_lock); 1454 /* fail all writes first */ 1455 bi = sh->dev[i].towrite; 1456 sh->dev[i].towrite = NULL; 1457 if (bi) { to_write--; bitmap_end = 1; } 1458 1459 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 1460 wake_up(&conf->wait_for_overlap); 1461 1462 while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){ 1463 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector); 1464 clear_bit(BIO_UPTODATE, &bi->bi_flags); 1465 if (--bi->bi_phys_segments == 0) { 1466 md_write_end(conf->mddev); 1467 bi->bi_next = return_bi; 1468 return_bi = bi; 1469 } 1470 bi = nextbi; 1471 } 1472 /* and fail all 'written' */ 1473 bi = sh->dev[i].written; 1474 sh->dev[i].written = NULL; 1475 if (bi) bitmap_end = 1; 1476 while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS) { 1477 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector); 1478 clear_bit(BIO_UPTODATE, &bi->bi_flags); 1479 if (--bi->bi_phys_segments == 0) { 1480 md_write_end(conf->mddev); 1481 bi->bi_next = return_bi; 1482 return_bi = bi; 1483 } 1484 bi = bi2; 1485 } 1486 1487 /* fail any reads if this device is non-operational */ 1488 if (!test_bit(R5_Insync, &sh->dev[i].flags) || 1489 test_bit(R5_ReadError, &sh->dev[i].flags)) { 1490 bi = sh->dev[i].toread; 1491 sh->dev[i].toread = NULL; 1492 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 1493 wake_up(&conf->wait_for_overlap); 1494 if (bi) to_read--; 1495 while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){ 1496 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector); 1497 clear_bit(BIO_UPTODATE, &bi->bi_flags); 1498 if (--bi->bi_phys_segments == 0) { 1499 bi->bi_next = return_bi; 1500 return_bi = bi; 1501 } 1502 bi = nextbi; 1503 } 1504 } 1505 spin_unlock_irq(&conf->device_lock); 1506 if (bitmap_end) 1507 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 1508 STRIPE_SECTORS, 0, 0); 1509 } 1510 } 1511 if (failed > 1 && syncing) { 1512 md_done_sync(conf->mddev, STRIPE_SECTORS,0); 1513 clear_bit(STRIPE_SYNCING, &sh->state); 1514 syncing = 0; 1515 } 1516 1517 /* might be able to return some write requests if the parity block 1518 * is safe, or on a failed drive 1519 */ 1520 dev = &sh->dev[sh->pd_idx]; 1521 if ( written && 1522 ( (test_bit(R5_Insync, &dev->flags) && !test_bit(R5_LOCKED, &dev->flags) && 1523 test_bit(R5_UPTODATE, &dev->flags)) 1524 || (failed == 1 && failed_num == sh->pd_idx)) 1525 ) { 1526 /* any written block on an uptodate or failed drive can be returned. 1527 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but 1528 * never LOCKED, so we don't need to test 'failed' directly. 1529 */ 1530 for (i=disks; i--; ) 1531 if (sh->dev[i].written) { 1532 dev = &sh->dev[i]; 1533 if (!test_bit(R5_LOCKED, &dev->flags) && 1534 test_bit(R5_UPTODATE, &dev->flags) ) { 1535 /* We can return any write requests */ 1536 struct bio *wbi, *wbi2; 1537 int bitmap_end = 0; 1538 PRINTK("Return write for disc %d\n", i); 1539 spin_lock_irq(&conf->device_lock); 1540 wbi = dev->written; 1541 dev->written = NULL; 1542 while (wbi && wbi->bi_sector < dev->sector + STRIPE_SECTORS) { 1543 wbi2 = r5_next_bio(wbi, dev->sector); 1544 if (--wbi->bi_phys_segments == 0) { 1545 md_write_end(conf->mddev); 1546 wbi->bi_next = return_bi; 1547 return_bi = wbi; 1548 } 1549 wbi = wbi2; 1550 } 1551 if (dev->towrite == NULL) 1552 bitmap_end = 1; 1553 spin_unlock_irq(&conf->device_lock); 1554 if (bitmap_end) 1555 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 1556 STRIPE_SECTORS, 1557 !test_bit(STRIPE_DEGRADED, &sh->state), 0); 1558 } 1559 } 1560 } 1561 1562 /* Now we might consider reading some blocks, either to check/generate 1563 * parity, or to satisfy requests 1564 * or to load a block that is being partially written. 1565 */ 1566 if (to_read || non_overwrite || (syncing && (uptodate < disks)) || expanding) { 1567 for (i=disks; i--;) { 1568 dev = &sh->dev[i]; 1569 if (!test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) && 1570 (dev->toread || 1571 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) || 1572 syncing || 1573 expanding || 1574 (failed && (sh->dev[failed_num].toread || 1575 (sh->dev[failed_num].towrite && !test_bit(R5_OVERWRITE, &sh->dev[failed_num].flags)))) 1576 ) 1577 ) { 1578 /* we would like to get this block, possibly 1579 * by computing it, but we might not be able to 1580 */ 1581 if (uptodate == disks-1) { 1582 PRINTK("Computing block %d\n", i); 1583 compute_block(sh, i); 1584 uptodate++; 1585 } else if (test_bit(R5_Insync, &dev->flags)) { 1586 set_bit(R5_LOCKED, &dev->flags); 1587 set_bit(R5_Wantread, &dev->flags); 1588 locked++; 1589 PRINTK("Reading block %d (sync=%d)\n", 1590 i, syncing); 1591 } 1592 } 1593 } 1594 set_bit(STRIPE_HANDLE, &sh->state); 1595 } 1596 1597 /* now to consider writing and what else, if anything should be read */ 1598 if (to_write) { 1599 int rmw=0, rcw=0; 1600 for (i=disks ; i--;) { 1601 /* would I have to read this buffer for read_modify_write */ 1602 dev = &sh->dev[i]; 1603 if ((dev->towrite || i == sh->pd_idx) && 1604 (!test_bit(R5_LOCKED, &dev->flags) 1605 ) && 1606 !test_bit(R5_UPTODATE, &dev->flags)) { 1607 if (test_bit(R5_Insync, &dev->flags) 1608 /* && !(!mddev->insync && i == sh->pd_idx) */ 1609 ) 1610 rmw++; 1611 else rmw += 2*disks; /* cannot read it */ 1612 } 1613 /* Would I have to read this buffer for reconstruct_write */ 1614 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx && 1615 (!test_bit(R5_LOCKED, &dev->flags) 1616 ) && 1617 !test_bit(R5_UPTODATE, &dev->flags)) { 1618 if (test_bit(R5_Insync, &dev->flags)) rcw++; 1619 else rcw += 2*disks; 1620 } 1621 } 1622 PRINTK("for sector %llu, rmw=%d rcw=%d\n", 1623 (unsigned long long)sh->sector, rmw, rcw); 1624 set_bit(STRIPE_HANDLE, &sh->state); 1625 if (rmw < rcw && rmw > 0) 1626 /* prefer read-modify-write, but need to get some data */ 1627 for (i=disks; i--;) { 1628 dev = &sh->dev[i]; 1629 if ((dev->towrite || i == sh->pd_idx) && 1630 !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) && 1631 test_bit(R5_Insync, &dev->flags)) { 1632 if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 1633 { 1634 PRINTK("Read_old block %d for r-m-w\n", i); 1635 set_bit(R5_LOCKED, &dev->flags); 1636 set_bit(R5_Wantread, &dev->flags); 1637 locked++; 1638 } else { 1639 set_bit(STRIPE_DELAYED, &sh->state); 1640 set_bit(STRIPE_HANDLE, &sh->state); 1641 } 1642 } 1643 } 1644 if (rcw <= rmw && rcw > 0) 1645 /* want reconstruct write, but need to get some data */ 1646 for (i=disks; i--;) { 1647 dev = &sh->dev[i]; 1648 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx && 1649 !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) && 1650 test_bit(R5_Insync, &dev->flags)) { 1651 if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 1652 { 1653 PRINTK("Read_old block %d for Reconstruct\n", i); 1654 set_bit(R5_LOCKED, &dev->flags); 1655 set_bit(R5_Wantread, &dev->flags); 1656 locked++; 1657 } else { 1658 set_bit(STRIPE_DELAYED, &sh->state); 1659 set_bit(STRIPE_HANDLE, &sh->state); 1660 } 1661 } 1662 } 1663 /* now if nothing is locked, and if we have enough data, we can start a write request */ 1664 if (locked == 0 && (rcw == 0 ||rmw == 0) && 1665 !test_bit(STRIPE_BIT_DELAY, &sh->state)) { 1666 PRINTK("Computing parity...\n"); 1667 compute_parity5(sh, rcw==0 ? RECONSTRUCT_WRITE : READ_MODIFY_WRITE); 1668 /* now every locked buffer is ready to be written */ 1669 for (i=disks; i--;) 1670 if (test_bit(R5_LOCKED, &sh->dev[i].flags)) { 1671 PRINTK("Writing block %d\n", i); 1672 locked++; 1673 set_bit(R5_Wantwrite, &sh->dev[i].flags); 1674 if (!test_bit(R5_Insync, &sh->dev[i].flags) 1675 || (i==sh->pd_idx && failed == 0)) 1676 set_bit(STRIPE_INSYNC, &sh->state); 1677 } 1678 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { 1679 atomic_dec(&conf->preread_active_stripes); 1680 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) 1681 md_wakeup_thread(conf->mddev->thread); 1682 } 1683 } 1684 } 1685 1686 /* maybe we need to check and possibly fix the parity for this stripe 1687 * Any reads will already have been scheduled, so we just see if enough data 1688 * is available 1689 */ 1690 if (syncing && locked == 0 && 1691 !test_bit(STRIPE_INSYNC, &sh->state)) { 1692 set_bit(STRIPE_HANDLE, &sh->state); 1693 if (failed == 0) { 1694 BUG_ON(uptodate != disks); 1695 compute_parity5(sh, CHECK_PARITY); 1696 uptodate--; 1697 if (page_is_zero(sh->dev[sh->pd_idx].page)) { 1698 /* parity is correct (on disc, not in buffer any more) */ 1699 set_bit(STRIPE_INSYNC, &sh->state); 1700 } else { 1701 conf->mddev->resync_mismatches += STRIPE_SECTORS; 1702 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) 1703 /* don't try to repair!! */ 1704 set_bit(STRIPE_INSYNC, &sh->state); 1705 else { 1706 compute_block(sh, sh->pd_idx); 1707 uptodate++; 1708 } 1709 } 1710 } 1711 if (!test_bit(STRIPE_INSYNC, &sh->state)) { 1712 /* either failed parity check, or recovery is happening */ 1713 if (failed==0) 1714 failed_num = sh->pd_idx; 1715 dev = &sh->dev[failed_num]; 1716 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags)); 1717 BUG_ON(uptodate != disks); 1718 1719 set_bit(R5_LOCKED, &dev->flags); 1720 set_bit(R5_Wantwrite, &dev->flags); 1721 clear_bit(STRIPE_DEGRADED, &sh->state); 1722 locked++; 1723 set_bit(STRIPE_INSYNC, &sh->state); 1724 } 1725 } 1726 if (syncing && locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) { 1727 md_done_sync(conf->mddev, STRIPE_SECTORS,1); 1728 clear_bit(STRIPE_SYNCING, &sh->state); 1729 } 1730 1731 /* If the failed drive is just a ReadError, then we might need to progress 1732 * the repair/check process 1733 */ 1734 if (failed == 1 && ! conf->mddev->ro && 1735 test_bit(R5_ReadError, &sh->dev[failed_num].flags) 1736 && !test_bit(R5_LOCKED, &sh->dev[failed_num].flags) 1737 && test_bit(R5_UPTODATE, &sh->dev[failed_num].flags) 1738 ) { 1739 dev = &sh->dev[failed_num]; 1740 if (!test_bit(R5_ReWrite, &dev->flags)) { 1741 set_bit(R5_Wantwrite, &dev->flags); 1742 set_bit(R5_ReWrite, &dev->flags); 1743 set_bit(R5_LOCKED, &dev->flags); 1744 locked++; 1745 } else { 1746 /* let's read it back */ 1747 set_bit(R5_Wantread, &dev->flags); 1748 set_bit(R5_LOCKED, &dev->flags); 1749 locked++; 1750 } 1751 } 1752 1753 if (expanded && test_bit(STRIPE_EXPANDING, &sh->state)) { 1754 /* Need to write out all blocks after computing parity */ 1755 sh->disks = conf->raid_disks; 1756 sh->pd_idx = stripe_to_pdidx(sh->sector, conf, conf->raid_disks); 1757 compute_parity5(sh, RECONSTRUCT_WRITE); 1758 for (i= conf->raid_disks; i--;) { 1759 set_bit(R5_LOCKED, &sh->dev[i].flags); 1760 locked++; 1761 set_bit(R5_Wantwrite, &sh->dev[i].flags); 1762 } 1763 clear_bit(STRIPE_EXPANDING, &sh->state); 1764 } else if (expanded) { 1765 clear_bit(STRIPE_EXPAND_READY, &sh->state); 1766 atomic_dec(&conf->reshape_stripes); 1767 wake_up(&conf->wait_for_overlap); 1768 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 1769 } 1770 1771 if (expanding && locked == 0) { 1772 /* We have read all the blocks in this stripe and now we need to 1773 * copy some of them into a target stripe for expand. 1774 */ 1775 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state); 1776 for (i=0; i< sh->disks; i++) 1777 if (i != sh->pd_idx) { 1778 int dd_idx, pd_idx, j; 1779 struct stripe_head *sh2; 1780 1781 sector_t bn = compute_blocknr(sh, i); 1782 sector_t s = raid5_compute_sector(bn, conf->raid_disks, 1783 conf->raid_disks-1, 1784 &dd_idx, &pd_idx, conf); 1785 sh2 = get_active_stripe(conf, s, conf->raid_disks, pd_idx, 1); 1786 if (sh2 == NULL) 1787 /* so far only the early blocks of this stripe 1788 * have been requested. When later blocks 1789 * get requested, we will try again 1790 */ 1791 continue; 1792 if(!test_bit(STRIPE_EXPANDING, &sh2->state) || 1793 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) { 1794 /* must have already done this block */ 1795 release_stripe(sh2); 1796 continue; 1797 } 1798 memcpy(page_address(sh2->dev[dd_idx].page), 1799 page_address(sh->dev[i].page), 1800 STRIPE_SIZE); 1801 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags); 1802 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags); 1803 for (j=0; j<conf->raid_disks; j++) 1804 if (j != sh2->pd_idx && 1805 !test_bit(R5_Expanded, &sh2->dev[j].flags)) 1806 break; 1807 if (j == conf->raid_disks) { 1808 set_bit(STRIPE_EXPAND_READY, &sh2->state); 1809 set_bit(STRIPE_HANDLE, &sh2->state); 1810 } 1811 release_stripe(sh2); 1812 } 1813 } 1814 1815 spin_unlock(&sh->lock); 1816 1817 while ((bi=return_bi)) { 1818 int bytes = bi->bi_size; 1819 1820 return_bi = bi->bi_next; 1821 bi->bi_next = NULL; 1822 bi->bi_size = 0; 1823 bi->bi_end_io(bi, bytes, 1824 test_bit(BIO_UPTODATE, &bi->bi_flags) 1825 ? 0 : -EIO); 1826 } 1827 for (i=disks; i-- ;) { 1828 int rw; 1829 struct bio *bi; 1830 mdk_rdev_t *rdev; 1831 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) 1832 rw = WRITE; 1833 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags)) 1834 rw = READ; 1835 else 1836 continue; 1837 1838 bi = &sh->dev[i].req; 1839 1840 bi->bi_rw = rw; 1841 if (rw == WRITE) 1842 bi->bi_end_io = raid5_end_write_request; 1843 else 1844 bi->bi_end_io = raid5_end_read_request; 1845 1846 rcu_read_lock(); 1847 rdev = rcu_dereference(conf->disks[i].rdev); 1848 if (rdev && test_bit(Faulty, &rdev->flags)) 1849 rdev = NULL; 1850 if (rdev) 1851 atomic_inc(&rdev->nr_pending); 1852 rcu_read_unlock(); 1853 1854 if (rdev) { 1855 if (syncing || expanding || expanded) 1856 md_sync_acct(rdev->bdev, STRIPE_SECTORS); 1857 1858 bi->bi_bdev = rdev->bdev; 1859 PRINTK("for %llu schedule op %ld on disc %d\n", 1860 (unsigned long long)sh->sector, bi->bi_rw, i); 1861 atomic_inc(&sh->count); 1862 bi->bi_sector = sh->sector + rdev->data_offset; 1863 bi->bi_flags = 1 << BIO_UPTODATE; 1864 bi->bi_vcnt = 1; 1865 bi->bi_max_vecs = 1; 1866 bi->bi_idx = 0; 1867 bi->bi_io_vec = &sh->dev[i].vec; 1868 bi->bi_io_vec[0].bv_len = STRIPE_SIZE; 1869 bi->bi_io_vec[0].bv_offset = 0; 1870 bi->bi_size = STRIPE_SIZE; 1871 bi->bi_next = NULL; 1872 if (rw == WRITE && 1873 test_bit(R5_ReWrite, &sh->dev[i].flags)) 1874 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors); 1875 generic_make_request(bi); 1876 } else { 1877 if (rw == WRITE) 1878 set_bit(STRIPE_DEGRADED, &sh->state); 1879 PRINTK("skip op %ld on disc %d for sector %llu\n", 1880 bi->bi_rw, i, (unsigned long long)sh->sector); 1881 clear_bit(R5_LOCKED, &sh->dev[i].flags); 1882 set_bit(STRIPE_HANDLE, &sh->state); 1883 } 1884 } 1885 } 1886 1887 static void handle_stripe6(struct stripe_head *sh, struct page *tmp_page) 1888 { 1889 raid6_conf_t *conf = sh->raid_conf; 1890 int disks = conf->raid_disks; 1891 struct bio *return_bi= NULL; 1892 struct bio *bi; 1893 int i; 1894 int syncing; 1895 int locked=0, uptodate=0, to_read=0, to_write=0, failed=0, written=0; 1896 int non_overwrite = 0; 1897 int failed_num[2] = {0, 0}; 1898 struct r5dev *dev, *pdev, *qdev; 1899 int pd_idx = sh->pd_idx; 1900 int qd_idx = raid6_next_disk(pd_idx, disks); 1901 int p_failed, q_failed; 1902 1903 PRINTK("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d, qd_idx=%d\n", 1904 (unsigned long long)sh->sector, sh->state, atomic_read(&sh->count), 1905 pd_idx, qd_idx); 1906 1907 spin_lock(&sh->lock); 1908 clear_bit(STRIPE_HANDLE, &sh->state); 1909 clear_bit(STRIPE_DELAYED, &sh->state); 1910 1911 syncing = test_bit(STRIPE_SYNCING, &sh->state); 1912 /* Now to look around and see what can be done */ 1913 1914 rcu_read_lock(); 1915 for (i=disks; i--; ) { 1916 mdk_rdev_t *rdev; 1917 dev = &sh->dev[i]; 1918 clear_bit(R5_Insync, &dev->flags); 1919 1920 PRINTK("check %d: state 0x%lx read %p write %p written %p\n", 1921 i, dev->flags, dev->toread, dev->towrite, dev->written); 1922 /* maybe we can reply to a read */ 1923 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) { 1924 struct bio *rbi, *rbi2; 1925 PRINTK("Return read for disc %d\n", i); 1926 spin_lock_irq(&conf->device_lock); 1927 rbi = dev->toread; 1928 dev->toread = NULL; 1929 if (test_and_clear_bit(R5_Overlap, &dev->flags)) 1930 wake_up(&conf->wait_for_overlap); 1931 spin_unlock_irq(&conf->device_lock); 1932 while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) { 1933 copy_data(0, rbi, dev->page, dev->sector); 1934 rbi2 = r5_next_bio(rbi, dev->sector); 1935 spin_lock_irq(&conf->device_lock); 1936 if (--rbi->bi_phys_segments == 0) { 1937 rbi->bi_next = return_bi; 1938 return_bi = rbi; 1939 } 1940 spin_unlock_irq(&conf->device_lock); 1941 rbi = rbi2; 1942 } 1943 } 1944 1945 /* now count some things */ 1946 if (test_bit(R5_LOCKED, &dev->flags)) locked++; 1947 if (test_bit(R5_UPTODATE, &dev->flags)) uptodate++; 1948 1949 1950 if (dev->toread) to_read++; 1951 if (dev->towrite) { 1952 to_write++; 1953 if (!test_bit(R5_OVERWRITE, &dev->flags)) 1954 non_overwrite++; 1955 } 1956 if (dev->written) written++; 1957 rdev = rcu_dereference(conf->disks[i].rdev); 1958 if (!rdev || !test_bit(In_sync, &rdev->flags)) { 1959 /* The ReadError flag will just be confusing now */ 1960 clear_bit(R5_ReadError, &dev->flags); 1961 clear_bit(R5_ReWrite, &dev->flags); 1962 } 1963 if (!rdev || !test_bit(In_sync, &rdev->flags) 1964 || test_bit(R5_ReadError, &dev->flags)) { 1965 if ( failed < 2 ) 1966 failed_num[failed] = i; 1967 failed++; 1968 } else 1969 set_bit(R5_Insync, &dev->flags); 1970 } 1971 rcu_read_unlock(); 1972 PRINTK("locked=%d uptodate=%d to_read=%d" 1973 " to_write=%d failed=%d failed_num=%d,%d\n", 1974 locked, uptodate, to_read, to_write, failed, 1975 failed_num[0], failed_num[1]); 1976 /* check if the array has lost >2 devices and, if so, some requests might 1977 * need to be failed 1978 */ 1979 if (failed > 2 && to_read+to_write+written) { 1980 for (i=disks; i--; ) { 1981 int bitmap_end = 0; 1982 1983 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 1984 mdk_rdev_t *rdev; 1985 rcu_read_lock(); 1986 rdev = rcu_dereference(conf->disks[i].rdev); 1987 if (rdev && test_bit(In_sync, &rdev->flags)) 1988 /* multiple read failures in one stripe */ 1989 md_error(conf->mddev, rdev); 1990 rcu_read_unlock(); 1991 } 1992 1993 spin_lock_irq(&conf->device_lock); 1994 /* fail all writes first */ 1995 bi = sh->dev[i].towrite; 1996 sh->dev[i].towrite = NULL; 1997 if (bi) { to_write--; bitmap_end = 1; } 1998 1999 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 2000 wake_up(&conf->wait_for_overlap); 2001 2002 while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){ 2003 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector); 2004 clear_bit(BIO_UPTODATE, &bi->bi_flags); 2005 if (--bi->bi_phys_segments == 0) { 2006 md_write_end(conf->mddev); 2007 bi->bi_next = return_bi; 2008 return_bi = bi; 2009 } 2010 bi = nextbi; 2011 } 2012 /* and fail all 'written' */ 2013 bi = sh->dev[i].written; 2014 sh->dev[i].written = NULL; 2015 if (bi) bitmap_end = 1; 2016 while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS) { 2017 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector); 2018 clear_bit(BIO_UPTODATE, &bi->bi_flags); 2019 if (--bi->bi_phys_segments == 0) { 2020 md_write_end(conf->mddev); 2021 bi->bi_next = return_bi; 2022 return_bi = bi; 2023 } 2024 bi = bi2; 2025 } 2026 2027 /* fail any reads if this device is non-operational */ 2028 if (!test_bit(R5_Insync, &sh->dev[i].flags) || 2029 test_bit(R5_ReadError, &sh->dev[i].flags)) { 2030 bi = sh->dev[i].toread; 2031 sh->dev[i].toread = NULL; 2032 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 2033 wake_up(&conf->wait_for_overlap); 2034 if (bi) to_read--; 2035 while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){ 2036 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector); 2037 clear_bit(BIO_UPTODATE, &bi->bi_flags); 2038 if (--bi->bi_phys_segments == 0) { 2039 bi->bi_next = return_bi; 2040 return_bi = bi; 2041 } 2042 bi = nextbi; 2043 } 2044 } 2045 spin_unlock_irq(&conf->device_lock); 2046 if (bitmap_end) 2047 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 2048 STRIPE_SECTORS, 0, 0); 2049 } 2050 } 2051 if (failed > 2 && syncing) { 2052 md_done_sync(conf->mddev, STRIPE_SECTORS,0); 2053 clear_bit(STRIPE_SYNCING, &sh->state); 2054 syncing = 0; 2055 } 2056 2057 /* 2058 * might be able to return some write requests if the parity blocks 2059 * are safe, or on a failed drive 2060 */ 2061 pdev = &sh->dev[pd_idx]; 2062 p_failed = (failed >= 1 && failed_num[0] == pd_idx) 2063 || (failed >= 2 && failed_num[1] == pd_idx); 2064 qdev = &sh->dev[qd_idx]; 2065 q_failed = (failed >= 1 && failed_num[0] == qd_idx) 2066 || (failed >= 2 && failed_num[1] == qd_idx); 2067 2068 if ( written && 2069 ( p_failed || ((test_bit(R5_Insync, &pdev->flags) 2070 && !test_bit(R5_LOCKED, &pdev->flags) 2071 && test_bit(R5_UPTODATE, &pdev->flags))) ) && 2072 ( q_failed || ((test_bit(R5_Insync, &qdev->flags) 2073 && !test_bit(R5_LOCKED, &qdev->flags) 2074 && test_bit(R5_UPTODATE, &qdev->flags))) ) ) { 2075 /* any written block on an uptodate or failed drive can be 2076 * returned. Note that if we 'wrote' to a failed drive, 2077 * it will be UPTODATE, but never LOCKED, so we don't need 2078 * to test 'failed' directly. 2079 */ 2080 for (i=disks; i--; ) 2081 if (sh->dev[i].written) { 2082 dev = &sh->dev[i]; 2083 if (!test_bit(R5_LOCKED, &dev->flags) && 2084 test_bit(R5_UPTODATE, &dev->flags) ) { 2085 /* We can return any write requests */ 2086 int bitmap_end = 0; 2087 struct bio *wbi, *wbi2; 2088 PRINTK("Return write for stripe %llu disc %d\n", 2089 (unsigned long long)sh->sector, i); 2090 spin_lock_irq(&conf->device_lock); 2091 wbi = dev->written; 2092 dev->written = NULL; 2093 while (wbi && wbi->bi_sector < dev->sector + STRIPE_SECTORS) { 2094 wbi2 = r5_next_bio(wbi, dev->sector); 2095 if (--wbi->bi_phys_segments == 0) { 2096 md_write_end(conf->mddev); 2097 wbi->bi_next = return_bi; 2098 return_bi = wbi; 2099 } 2100 wbi = wbi2; 2101 } 2102 if (dev->towrite == NULL) 2103 bitmap_end = 1; 2104 spin_unlock_irq(&conf->device_lock); 2105 if (bitmap_end) 2106 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 2107 STRIPE_SECTORS, 2108 !test_bit(STRIPE_DEGRADED, &sh->state), 0); 2109 } 2110 } 2111 } 2112 2113 /* Now we might consider reading some blocks, either to check/generate 2114 * parity, or to satisfy requests 2115 * or to load a block that is being partially written. 2116 */ 2117 if (to_read || non_overwrite || (to_write && failed) || (syncing && (uptodate < disks))) { 2118 for (i=disks; i--;) { 2119 dev = &sh->dev[i]; 2120 if (!test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) && 2121 (dev->toread || 2122 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) || 2123 syncing || 2124 (failed >= 1 && (sh->dev[failed_num[0]].toread || to_write)) || 2125 (failed >= 2 && (sh->dev[failed_num[1]].toread || to_write)) 2126 ) 2127 ) { 2128 /* we would like to get this block, possibly 2129 * by computing it, but we might not be able to 2130 */ 2131 if (uptodate == disks-1) { 2132 PRINTK("Computing stripe %llu block %d\n", 2133 (unsigned long long)sh->sector, i); 2134 compute_block_1(sh, i, 0); 2135 uptodate++; 2136 } else if ( uptodate == disks-2 && failed >= 2 ) { 2137 /* Computing 2-failure is *very* expensive; only do it if failed >= 2 */ 2138 int other; 2139 for (other=disks; other--;) { 2140 if ( other == i ) 2141 continue; 2142 if ( !test_bit(R5_UPTODATE, &sh->dev[other].flags) ) 2143 break; 2144 } 2145 BUG_ON(other < 0); 2146 PRINTK("Computing stripe %llu blocks %d,%d\n", 2147 (unsigned long long)sh->sector, i, other); 2148 compute_block_2(sh, i, other); 2149 uptodate += 2; 2150 } else if (test_bit(R5_Insync, &dev->flags)) { 2151 set_bit(R5_LOCKED, &dev->flags); 2152 set_bit(R5_Wantread, &dev->flags); 2153 locked++; 2154 PRINTK("Reading block %d (sync=%d)\n", 2155 i, syncing); 2156 } 2157 } 2158 } 2159 set_bit(STRIPE_HANDLE, &sh->state); 2160 } 2161 2162 /* now to consider writing and what else, if anything should be read */ 2163 if (to_write) { 2164 int rcw=0, must_compute=0; 2165 for (i=disks ; i--;) { 2166 dev = &sh->dev[i]; 2167 /* Would I have to read this buffer for reconstruct_write */ 2168 if (!test_bit(R5_OVERWRITE, &dev->flags) 2169 && i != pd_idx && i != qd_idx 2170 && (!test_bit(R5_LOCKED, &dev->flags) 2171 ) && 2172 !test_bit(R5_UPTODATE, &dev->flags)) { 2173 if (test_bit(R5_Insync, &dev->flags)) rcw++; 2174 else { 2175 PRINTK("raid6: must_compute: disk %d flags=%#lx\n", i, dev->flags); 2176 must_compute++; 2177 } 2178 } 2179 } 2180 PRINTK("for sector %llu, rcw=%d, must_compute=%d\n", 2181 (unsigned long long)sh->sector, rcw, must_compute); 2182 set_bit(STRIPE_HANDLE, &sh->state); 2183 2184 if (rcw > 0) 2185 /* want reconstruct write, but need to get some data */ 2186 for (i=disks; i--;) { 2187 dev = &sh->dev[i]; 2188 if (!test_bit(R5_OVERWRITE, &dev->flags) 2189 && !(failed == 0 && (i == pd_idx || i == qd_idx)) 2190 && !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) && 2191 test_bit(R5_Insync, &dev->flags)) { 2192 if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 2193 { 2194 PRINTK("Read_old stripe %llu block %d for Reconstruct\n", 2195 (unsigned long long)sh->sector, i); 2196 set_bit(R5_LOCKED, &dev->flags); 2197 set_bit(R5_Wantread, &dev->flags); 2198 locked++; 2199 } else { 2200 PRINTK("Request delayed stripe %llu block %d for Reconstruct\n", 2201 (unsigned long long)sh->sector, i); 2202 set_bit(STRIPE_DELAYED, &sh->state); 2203 set_bit(STRIPE_HANDLE, &sh->state); 2204 } 2205 } 2206 } 2207 /* now if nothing is locked, and if we have enough data, we can start a write request */ 2208 if (locked == 0 && rcw == 0 && 2209 !test_bit(STRIPE_BIT_DELAY, &sh->state)) { 2210 if ( must_compute > 0 ) { 2211 /* We have failed blocks and need to compute them */ 2212 switch ( failed ) { 2213 case 0: BUG(); 2214 case 1: compute_block_1(sh, failed_num[0], 0); break; 2215 case 2: compute_block_2(sh, failed_num[0], failed_num[1]); break; 2216 default: BUG(); /* This request should have been failed? */ 2217 } 2218 } 2219 2220 PRINTK("Computing parity for stripe %llu\n", (unsigned long long)sh->sector); 2221 compute_parity6(sh, RECONSTRUCT_WRITE); 2222 /* now every locked buffer is ready to be written */ 2223 for (i=disks; i--;) 2224 if (test_bit(R5_LOCKED, &sh->dev[i].flags)) { 2225 PRINTK("Writing stripe %llu block %d\n", 2226 (unsigned long long)sh->sector, i); 2227 locked++; 2228 set_bit(R5_Wantwrite, &sh->dev[i].flags); 2229 } 2230 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */ 2231 set_bit(STRIPE_INSYNC, &sh->state); 2232 2233 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { 2234 atomic_dec(&conf->preread_active_stripes); 2235 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) 2236 md_wakeup_thread(conf->mddev->thread); 2237 } 2238 } 2239 } 2240 2241 /* maybe we need to check and possibly fix the parity for this stripe 2242 * Any reads will already have been scheduled, so we just see if enough data 2243 * is available 2244 */ 2245 if (syncing && locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state)) { 2246 int update_p = 0, update_q = 0; 2247 struct r5dev *dev; 2248 2249 set_bit(STRIPE_HANDLE, &sh->state); 2250 2251 BUG_ON(failed>2); 2252 BUG_ON(uptodate < disks); 2253 /* Want to check and possibly repair P and Q. 2254 * However there could be one 'failed' device, in which 2255 * case we can only check one of them, possibly using the 2256 * other to generate missing data 2257 */ 2258 2259 /* If !tmp_page, we cannot do the calculations, 2260 * but as we have set STRIPE_HANDLE, we will soon be called 2261 * by stripe_handle with a tmp_page - just wait until then. 2262 */ 2263 if (tmp_page) { 2264 if (failed == q_failed) { 2265 /* The only possible failed device holds 'Q', so it makes 2266 * sense to check P (If anything else were failed, we would 2267 * have used P to recreate it). 2268 */ 2269 compute_block_1(sh, pd_idx, 1); 2270 if (!page_is_zero(sh->dev[pd_idx].page)) { 2271 compute_block_1(sh,pd_idx,0); 2272 update_p = 1; 2273 } 2274 } 2275 if (!q_failed && failed < 2) { 2276 /* q is not failed, and we didn't use it to generate 2277 * anything, so it makes sense to check it 2278 */ 2279 memcpy(page_address(tmp_page), 2280 page_address(sh->dev[qd_idx].page), 2281 STRIPE_SIZE); 2282 compute_parity6(sh, UPDATE_PARITY); 2283 if (memcmp(page_address(tmp_page), 2284 page_address(sh->dev[qd_idx].page), 2285 STRIPE_SIZE)!= 0) { 2286 clear_bit(STRIPE_INSYNC, &sh->state); 2287 update_q = 1; 2288 } 2289 } 2290 if (update_p || update_q) { 2291 conf->mddev->resync_mismatches += STRIPE_SECTORS; 2292 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) 2293 /* don't try to repair!! */ 2294 update_p = update_q = 0; 2295 } 2296 2297 /* now write out any block on a failed drive, 2298 * or P or Q if they need it 2299 */ 2300 2301 if (failed == 2) { 2302 dev = &sh->dev[failed_num[1]]; 2303 locked++; 2304 set_bit(R5_LOCKED, &dev->flags); 2305 set_bit(R5_Wantwrite, &dev->flags); 2306 } 2307 if (failed >= 1) { 2308 dev = &sh->dev[failed_num[0]]; 2309 locked++; 2310 set_bit(R5_LOCKED, &dev->flags); 2311 set_bit(R5_Wantwrite, &dev->flags); 2312 } 2313 2314 if (update_p) { 2315 dev = &sh->dev[pd_idx]; 2316 locked ++; 2317 set_bit(R5_LOCKED, &dev->flags); 2318 set_bit(R5_Wantwrite, &dev->flags); 2319 } 2320 if (update_q) { 2321 dev = &sh->dev[qd_idx]; 2322 locked++; 2323 set_bit(R5_LOCKED, &dev->flags); 2324 set_bit(R5_Wantwrite, &dev->flags); 2325 } 2326 clear_bit(STRIPE_DEGRADED, &sh->state); 2327 2328 set_bit(STRIPE_INSYNC, &sh->state); 2329 } 2330 } 2331 2332 if (syncing && locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) { 2333 md_done_sync(conf->mddev, STRIPE_SECTORS,1); 2334 clear_bit(STRIPE_SYNCING, &sh->state); 2335 } 2336 2337 /* If the failed drives are just a ReadError, then we might need 2338 * to progress the repair/check process 2339 */ 2340 if (failed <= 2 && ! conf->mddev->ro) 2341 for (i=0; i<failed;i++) { 2342 dev = &sh->dev[failed_num[i]]; 2343 if (test_bit(R5_ReadError, &dev->flags) 2344 && !test_bit(R5_LOCKED, &dev->flags) 2345 && test_bit(R5_UPTODATE, &dev->flags) 2346 ) { 2347 if (!test_bit(R5_ReWrite, &dev->flags)) { 2348 set_bit(R5_Wantwrite, &dev->flags); 2349 set_bit(R5_ReWrite, &dev->flags); 2350 set_bit(R5_LOCKED, &dev->flags); 2351 } else { 2352 /* let's read it back */ 2353 set_bit(R5_Wantread, &dev->flags); 2354 set_bit(R5_LOCKED, &dev->flags); 2355 } 2356 } 2357 } 2358 spin_unlock(&sh->lock); 2359 2360 while ((bi=return_bi)) { 2361 int bytes = bi->bi_size; 2362 2363 return_bi = bi->bi_next; 2364 bi->bi_next = NULL; 2365 bi->bi_size = 0; 2366 bi->bi_end_io(bi, bytes, 2367 test_bit(BIO_UPTODATE, &bi->bi_flags) 2368 ? 0 : -EIO); 2369 } 2370 for (i=disks; i-- ;) { 2371 int rw; 2372 struct bio *bi; 2373 mdk_rdev_t *rdev; 2374 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) 2375 rw = WRITE; 2376 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags)) 2377 rw = READ; 2378 else 2379 continue; 2380 2381 bi = &sh->dev[i].req; 2382 2383 bi->bi_rw = rw; 2384 if (rw == WRITE) 2385 bi->bi_end_io = raid5_end_write_request; 2386 else 2387 bi->bi_end_io = raid5_end_read_request; 2388 2389 rcu_read_lock(); 2390 rdev = rcu_dereference(conf->disks[i].rdev); 2391 if (rdev && test_bit(Faulty, &rdev->flags)) 2392 rdev = NULL; 2393 if (rdev) 2394 atomic_inc(&rdev->nr_pending); 2395 rcu_read_unlock(); 2396 2397 if (rdev) { 2398 if (syncing) 2399 md_sync_acct(rdev->bdev, STRIPE_SECTORS); 2400 2401 bi->bi_bdev = rdev->bdev; 2402 PRINTK("for %llu schedule op %ld on disc %d\n", 2403 (unsigned long long)sh->sector, bi->bi_rw, i); 2404 atomic_inc(&sh->count); 2405 bi->bi_sector = sh->sector + rdev->data_offset; 2406 bi->bi_flags = 1 << BIO_UPTODATE; 2407 bi->bi_vcnt = 1; 2408 bi->bi_max_vecs = 1; 2409 bi->bi_idx = 0; 2410 bi->bi_io_vec = &sh->dev[i].vec; 2411 bi->bi_io_vec[0].bv_len = STRIPE_SIZE; 2412 bi->bi_io_vec[0].bv_offset = 0; 2413 bi->bi_size = STRIPE_SIZE; 2414 bi->bi_next = NULL; 2415 if (rw == WRITE && 2416 test_bit(R5_ReWrite, &sh->dev[i].flags)) 2417 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors); 2418 generic_make_request(bi); 2419 } else { 2420 if (rw == WRITE) 2421 set_bit(STRIPE_DEGRADED, &sh->state); 2422 PRINTK("skip op %ld on disc %d for sector %llu\n", 2423 bi->bi_rw, i, (unsigned long long)sh->sector); 2424 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2425 set_bit(STRIPE_HANDLE, &sh->state); 2426 } 2427 } 2428 } 2429 2430 static void handle_stripe(struct stripe_head *sh, struct page *tmp_page) 2431 { 2432 if (sh->raid_conf->level == 6) 2433 handle_stripe6(sh, tmp_page); 2434 else 2435 handle_stripe5(sh); 2436 } 2437 2438 2439 2440 static void raid5_activate_delayed(raid5_conf_t *conf) 2441 { 2442 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) { 2443 while (!list_empty(&conf->delayed_list)) { 2444 struct list_head *l = conf->delayed_list.next; 2445 struct stripe_head *sh; 2446 sh = list_entry(l, struct stripe_head, lru); 2447 list_del_init(l); 2448 clear_bit(STRIPE_DELAYED, &sh->state); 2449 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 2450 atomic_inc(&conf->preread_active_stripes); 2451 list_add_tail(&sh->lru, &conf->handle_list); 2452 } 2453 } 2454 } 2455 2456 static void activate_bit_delay(raid5_conf_t *conf) 2457 { 2458 /* device_lock is held */ 2459 struct list_head head; 2460 list_add(&head, &conf->bitmap_list); 2461 list_del_init(&conf->bitmap_list); 2462 while (!list_empty(&head)) { 2463 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru); 2464 list_del_init(&sh->lru); 2465 atomic_inc(&sh->count); 2466 __release_stripe(conf, sh); 2467 } 2468 } 2469 2470 static void unplug_slaves(mddev_t *mddev) 2471 { 2472 raid5_conf_t *conf = mddev_to_conf(mddev); 2473 int i; 2474 2475 rcu_read_lock(); 2476 for (i=0; i<mddev->raid_disks; i++) { 2477 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev); 2478 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) { 2479 request_queue_t *r_queue = bdev_get_queue(rdev->bdev); 2480 2481 atomic_inc(&rdev->nr_pending); 2482 rcu_read_unlock(); 2483 2484 if (r_queue->unplug_fn) 2485 r_queue->unplug_fn(r_queue); 2486 2487 rdev_dec_pending(rdev, mddev); 2488 rcu_read_lock(); 2489 } 2490 } 2491 rcu_read_unlock(); 2492 } 2493 2494 static void raid5_unplug_device(request_queue_t *q) 2495 { 2496 mddev_t *mddev = q->queuedata; 2497 raid5_conf_t *conf = mddev_to_conf(mddev); 2498 unsigned long flags; 2499 2500 spin_lock_irqsave(&conf->device_lock, flags); 2501 2502 if (blk_remove_plug(q)) { 2503 conf->seq_flush++; 2504 raid5_activate_delayed(conf); 2505 } 2506 md_wakeup_thread(mddev->thread); 2507 2508 spin_unlock_irqrestore(&conf->device_lock, flags); 2509 2510 unplug_slaves(mddev); 2511 } 2512 2513 static int raid5_issue_flush(request_queue_t *q, struct gendisk *disk, 2514 sector_t *error_sector) 2515 { 2516 mddev_t *mddev = q->queuedata; 2517 raid5_conf_t *conf = mddev_to_conf(mddev); 2518 int i, ret = 0; 2519 2520 rcu_read_lock(); 2521 for (i=0; i<mddev->raid_disks && ret == 0; i++) { 2522 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev); 2523 if (rdev && !test_bit(Faulty, &rdev->flags)) { 2524 struct block_device *bdev = rdev->bdev; 2525 request_queue_t *r_queue = bdev_get_queue(bdev); 2526 2527 if (!r_queue->issue_flush_fn) 2528 ret = -EOPNOTSUPP; 2529 else { 2530 atomic_inc(&rdev->nr_pending); 2531 rcu_read_unlock(); 2532 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk, 2533 error_sector); 2534 rdev_dec_pending(rdev, mddev); 2535 rcu_read_lock(); 2536 } 2537 } 2538 } 2539 rcu_read_unlock(); 2540 return ret; 2541 } 2542 2543 static int raid5_congested(void *data, int bits) 2544 { 2545 mddev_t *mddev = data; 2546 raid5_conf_t *conf = mddev_to_conf(mddev); 2547 2548 /* No difference between reads and writes. Just check 2549 * how busy the stripe_cache is 2550 */ 2551 if (conf->inactive_blocked) 2552 return 1; 2553 if (conf->quiesce) 2554 return 1; 2555 if (list_empty_careful(&conf->inactive_list)) 2556 return 1; 2557 2558 return 0; 2559 } 2560 2561 /* We want read requests to align with chunks where possible, 2562 * but write requests don't need to. 2563 */ 2564 static int raid5_mergeable_bvec(request_queue_t *q, struct bio *bio, struct bio_vec *biovec) 2565 { 2566 mddev_t *mddev = q->queuedata; 2567 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev); 2568 int max; 2569 unsigned int chunk_sectors = mddev->chunk_size >> 9; 2570 unsigned int bio_sectors = bio->bi_size >> 9; 2571 2572 if (bio_data_dir(bio) == WRITE) 2573 return biovec->bv_len; /* always allow writes to be mergeable */ 2574 2575 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9; 2576 if (max < 0) max = 0; 2577 if (max <= biovec->bv_len && bio_sectors == 0) 2578 return biovec->bv_len; 2579 else 2580 return max; 2581 } 2582 2583 2584 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio) 2585 { 2586 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev); 2587 unsigned int chunk_sectors = mddev->chunk_size >> 9; 2588 unsigned int bio_sectors = bio->bi_size >> 9; 2589 2590 return chunk_sectors >= 2591 ((sector & (chunk_sectors - 1)) + bio_sectors); 2592 } 2593 2594 /* 2595 * add bio to the retry LIFO ( in O(1) ... we are in interrupt ) 2596 * later sampled by raid5d. 2597 */ 2598 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf) 2599 { 2600 unsigned long flags; 2601 2602 spin_lock_irqsave(&conf->device_lock, flags); 2603 2604 bi->bi_next = conf->retry_read_aligned_list; 2605 conf->retry_read_aligned_list = bi; 2606 2607 spin_unlock_irqrestore(&conf->device_lock, flags); 2608 md_wakeup_thread(conf->mddev->thread); 2609 } 2610 2611 2612 static struct bio *remove_bio_from_retry(raid5_conf_t *conf) 2613 { 2614 struct bio *bi; 2615 2616 bi = conf->retry_read_aligned; 2617 if (bi) { 2618 conf->retry_read_aligned = NULL; 2619 return bi; 2620 } 2621 bi = conf->retry_read_aligned_list; 2622 if(bi) { 2623 conf->retry_read_aligned = bi->bi_next; 2624 bi->bi_next = NULL; 2625 bi->bi_phys_segments = 1; /* biased count of active stripes */ 2626 bi->bi_hw_segments = 0; /* count of processed stripes */ 2627 } 2628 2629 return bi; 2630 } 2631 2632 2633 /* 2634 * The "raid5_align_endio" should check if the read succeeded and if it 2635 * did, call bio_endio on the original bio (having bio_put the new bio 2636 * first). 2637 * If the read failed.. 2638 */ 2639 static int raid5_align_endio(struct bio *bi, unsigned int bytes, int error) 2640 { 2641 struct bio* raid_bi = bi->bi_private; 2642 mddev_t *mddev; 2643 raid5_conf_t *conf; 2644 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); 2645 mdk_rdev_t *rdev; 2646 2647 if (bi->bi_size) 2648 return 1; 2649 bio_put(bi); 2650 2651 mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata; 2652 conf = mddev_to_conf(mddev); 2653 rdev = (void*)raid_bi->bi_next; 2654 raid_bi->bi_next = NULL; 2655 2656 rdev_dec_pending(rdev, conf->mddev); 2657 2658 if (!error && uptodate) { 2659 bio_endio(raid_bi, bytes, 0); 2660 if (atomic_dec_and_test(&conf->active_aligned_reads)) 2661 wake_up(&conf->wait_for_stripe); 2662 return 0; 2663 } 2664 2665 2666 PRINTK("raid5_align_endio : io error...handing IO for a retry\n"); 2667 2668 add_bio_to_retry(raid_bi, conf); 2669 return 0; 2670 } 2671 2672 static int chunk_aligned_read(request_queue_t *q, struct bio * raid_bio) 2673 { 2674 mddev_t *mddev = q->queuedata; 2675 raid5_conf_t *conf = mddev_to_conf(mddev); 2676 const unsigned int raid_disks = conf->raid_disks; 2677 const unsigned int data_disks = raid_disks - conf->max_degraded; 2678 unsigned int dd_idx, pd_idx; 2679 struct bio* align_bi; 2680 mdk_rdev_t *rdev; 2681 2682 if (!in_chunk_boundary(mddev, raid_bio)) { 2683 PRINTK("chunk_aligned_read : non aligned\n"); 2684 return 0; 2685 } 2686 /* 2687 * use bio_clone to make a copy of the bio 2688 */ 2689 align_bi = bio_clone(raid_bio, GFP_NOIO); 2690 if (!align_bi) 2691 return 0; 2692 /* 2693 * set bi_end_io to a new function, and set bi_private to the 2694 * original bio. 2695 */ 2696 align_bi->bi_end_io = raid5_align_endio; 2697 align_bi->bi_private = raid_bio; 2698 /* 2699 * compute position 2700 */ 2701 align_bi->bi_sector = raid5_compute_sector(raid_bio->bi_sector, 2702 raid_disks, 2703 data_disks, 2704 &dd_idx, 2705 &pd_idx, 2706 conf); 2707 2708 rcu_read_lock(); 2709 rdev = rcu_dereference(conf->disks[dd_idx].rdev); 2710 if (rdev && test_bit(In_sync, &rdev->flags)) { 2711 atomic_inc(&rdev->nr_pending); 2712 rcu_read_unlock(); 2713 raid_bio->bi_next = (void*)rdev; 2714 align_bi->bi_bdev = rdev->bdev; 2715 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID); 2716 align_bi->bi_sector += rdev->data_offset; 2717 2718 spin_lock_irq(&conf->device_lock); 2719 wait_event_lock_irq(conf->wait_for_stripe, 2720 conf->quiesce == 0, 2721 conf->device_lock, /* nothing */); 2722 atomic_inc(&conf->active_aligned_reads); 2723 spin_unlock_irq(&conf->device_lock); 2724 2725 generic_make_request(align_bi); 2726 return 1; 2727 } else { 2728 rcu_read_unlock(); 2729 bio_put(align_bi); 2730 return 0; 2731 } 2732 } 2733 2734 2735 static int make_request(request_queue_t *q, struct bio * bi) 2736 { 2737 mddev_t *mddev = q->queuedata; 2738 raid5_conf_t *conf = mddev_to_conf(mddev); 2739 unsigned int dd_idx, pd_idx; 2740 sector_t new_sector; 2741 sector_t logical_sector, last_sector; 2742 struct stripe_head *sh; 2743 const int rw = bio_data_dir(bi); 2744 int remaining; 2745 2746 if (unlikely(bio_barrier(bi))) { 2747 bio_endio(bi, bi->bi_size, -EOPNOTSUPP); 2748 return 0; 2749 } 2750 2751 md_write_start(mddev, bi); 2752 2753 disk_stat_inc(mddev->gendisk, ios[rw]); 2754 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi)); 2755 2756 if (rw == READ && 2757 mddev->reshape_position == MaxSector && 2758 chunk_aligned_read(q,bi)) 2759 return 0; 2760 2761 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1); 2762 last_sector = bi->bi_sector + (bi->bi_size>>9); 2763 bi->bi_next = NULL; 2764 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */ 2765 2766 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) { 2767 DEFINE_WAIT(w); 2768 int disks, data_disks; 2769 2770 retry: 2771 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE); 2772 if (likely(conf->expand_progress == MaxSector)) 2773 disks = conf->raid_disks; 2774 else { 2775 /* spinlock is needed as expand_progress may be 2776 * 64bit on a 32bit platform, and so it might be 2777 * possible to see a half-updated value 2778 * Ofcourse expand_progress could change after 2779 * the lock is dropped, so once we get a reference 2780 * to the stripe that we think it is, we will have 2781 * to check again. 2782 */ 2783 spin_lock_irq(&conf->device_lock); 2784 disks = conf->raid_disks; 2785 if (logical_sector >= conf->expand_progress) 2786 disks = conf->previous_raid_disks; 2787 else { 2788 if (logical_sector >= conf->expand_lo) { 2789 spin_unlock_irq(&conf->device_lock); 2790 schedule(); 2791 goto retry; 2792 } 2793 } 2794 spin_unlock_irq(&conf->device_lock); 2795 } 2796 data_disks = disks - conf->max_degraded; 2797 2798 new_sector = raid5_compute_sector(logical_sector, disks, data_disks, 2799 &dd_idx, &pd_idx, conf); 2800 PRINTK("raid5: make_request, sector %llu logical %llu\n", 2801 (unsigned long long)new_sector, 2802 (unsigned long long)logical_sector); 2803 2804 sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK)); 2805 if (sh) { 2806 if (unlikely(conf->expand_progress != MaxSector)) { 2807 /* expansion might have moved on while waiting for a 2808 * stripe, so we must do the range check again. 2809 * Expansion could still move past after this 2810 * test, but as we are holding a reference to 2811 * 'sh', we know that if that happens, 2812 * STRIPE_EXPANDING will get set and the expansion 2813 * won't proceed until we finish with the stripe. 2814 */ 2815 int must_retry = 0; 2816 spin_lock_irq(&conf->device_lock); 2817 if (logical_sector < conf->expand_progress && 2818 disks == conf->previous_raid_disks) 2819 /* mismatch, need to try again */ 2820 must_retry = 1; 2821 spin_unlock_irq(&conf->device_lock); 2822 if (must_retry) { 2823 release_stripe(sh); 2824 goto retry; 2825 } 2826 } 2827 /* FIXME what if we get a false positive because these 2828 * are being updated. 2829 */ 2830 if (logical_sector >= mddev->suspend_lo && 2831 logical_sector < mddev->suspend_hi) { 2832 release_stripe(sh); 2833 schedule(); 2834 goto retry; 2835 } 2836 2837 if (test_bit(STRIPE_EXPANDING, &sh->state) || 2838 !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) { 2839 /* Stripe is busy expanding or 2840 * add failed due to overlap. Flush everything 2841 * and wait a while 2842 */ 2843 raid5_unplug_device(mddev->queue); 2844 release_stripe(sh); 2845 schedule(); 2846 goto retry; 2847 } 2848 finish_wait(&conf->wait_for_overlap, &w); 2849 handle_stripe(sh, NULL); 2850 release_stripe(sh); 2851 } else { 2852 /* cannot get stripe for read-ahead, just give-up */ 2853 clear_bit(BIO_UPTODATE, &bi->bi_flags); 2854 finish_wait(&conf->wait_for_overlap, &w); 2855 break; 2856 } 2857 2858 } 2859 spin_lock_irq(&conf->device_lock); 2860 remaining = --bi->bi_phys_segments; 2861 spin_unlock_irq(&conf->device_lock); 2862 if (remaining == 0) { 2863 int bytes = bi->bi_size; 2864 2865 if ( rw == WRITE ) 2866 md_write_end(mddev); 2867 bi->bi_size = 0; 2868 bi->bi_end_io(bi, bytes, 2869 test_bit(BIO_UPTODATE, &bi->bi_flags) 2870 ? 0 : -EIO); 2871 } 2872 return 0; 2873 } 2874 2875 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped) 2876 { 2877 /* reshaping is quite different to recovery/resync so it is 2878 * handled quite separately ... here. 2879 * 2880 * On each call to sync_request, we gather one chunk worth of 2881 * destination stripes and flag them as expanding. 2882 * Then we find all the source stripes and request reads. 2883 * As the reads complete, handle_stripe will copy the data 2884 * into the destination stripe and release that stripe. 2885 */ 2886 raid5_conf_t *conf = (raid5_conf_t *) mddev->private; 2887 struct stripe_head *sh; 2888 int pd_idx; 2889 sector_t first_sector, last_sector; 2890 int raid_disks; 2891 int data_disks; 2892 int i; 2893 int dd_idx; 2894 sector_t writepos, safepos, gap; 2895 2896 if (sector_nr == 0 && 2897 conf->expand_progress != 0) { 2898 /* restarting in the middle, skip the initial sectors */ 2899 sector_nr = conf->expand_progress; 2900 sector_div(sector_nr, conf->raid_disks-1); 2901 *skipped = 1; 2902 return sector_nr; 2903 } 2904 2905 /* we update the metadata when there is more than 3Meg 2906 * in the block range (that is rather arbitrary, should 2907 * probably be time based) or when the data about to be 2908 * copied would over-write the source of the data at 2909 * the front of the range. 2910 * i.e. one new_stripe forward from expand_progress new_maps 2911 * to after where expand_lo old_maps to 2912 */ 2913 writepos = conf->expand_progress + 2914 conf->chunk_size/512*(conf->raid_disks-1); 2915 sector_div(writepos, conf->raid_disks-1); 2916 safepos = conf->expand_lo; 2917 sector_div(safepos, conf->previous_raid_disks-1); 2918 gap = conf->expand_progress - conf->expand_lo; 2919 2920 if (writepos >= safepos || 2921 gap > (conf->raid_disks-1)*3000*2 /*3Meg*/) { 2922 /* Cannot proceed until we've updated the superblock... */ 2923 wait_event(conf->wait_for_overlap, 2924 atomic_read(&conf->reshape_stripes)==0); 2925 mddev->reshape_position = conf->expand_progress; 2926 set_bit(MD_CHANGE_DEVS, &mddev->flags); 2927 md_wakeup_thread(mddev->thread); 2928 wait_event(mddev->sb_wait, mddev->flags == 0 || 2929 kthread_should_stop()); 2930 spin_lock_irq(&conf->device_lock); 2931 conf->expand_lo = mddev->reshape_position; 2932 spin_unlock_irq(&conf->device_lock); 2933 wake_up(&conf->wait_for_overlap); 2934 } 2935 2936 for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) { 2937 int j; 2938 int skipped = 0; 2939 pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks); 2940 sh = get_active_stripe(conf, sector_nr+i, 2941 conf->raid_disks, pd_idx, 0); 2942 set_bit(STRIPE_EXPANDING, &sh->state); 2943 atomic_inc(&conf->reshape_stripes); 2944 /* If any of this stripe is beyond the end of the old 2945 * array, then we need to zero those blocks 2946 */ 2947 for (j=sh->disks; j--;) { 2948 sector_t s; 2949 if (j == sh->pd_idx) 2950 continue; 2951 s = compute_blocknr(sh, j); 2952 if (s < (mddev->array_size<<1)) { 2953 skipped = 1; 2954 continue; 2955 } 2956 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE); 2957 set_bit(R5_Expanded, &sh->dev[j].flags); 2958 set_bit(R5_UPTODATE, &sh->dev[j].flags); 2959 } 2960 if (!skipped) { 2961 set_bit(STRIPE_EXPAND_READY, &sh->state); 2962 set_bit(STRIPE_HANDLE, &sh->state); 2963 } 2964 release_stripe(sh); 2965 } 2966 spin_lock_irq(&conf->device_lock); 2967 conf->expand_progress = (sector_nr + i)*(conf->raid_disks-1); 2968 spin_unlock_irq(&conf->device_lock); 2969 /* Ok, those stripe are ready. We can start scheduling 2970 * reads on the source stripes. 2971 * The source stripes are determined by mapping the first and last 2972 * block on the destination stripes. 2973 */ 2974 raid_disks = conf->previous_raid_disks; 2975 data_disks = raid_disks - 1; 2976 first_sector = 2977 raid5_compute_sector(sector_nr*(conf->raid_disks-1), 2978 raid_disks, data_disks, 2979 &dd_idx, &pd_idx, conf); 2980 last_sector = 2981 raid5_compute_sector((sector_nr+conf->chunk_size/512) 2982 *(conf->raid_disks-1) -1, 2983 raid_disks, data_disks, 2984 &dd_idx, &pd_idx, conf); 2985 if (last_sector >= (mddev->size<<1)) 2986 last_sector = (mddev->size<<1)-1; 2987 while (first_sector <= last_sector) { 2988 pd_idx = stripe_to_pdidx(first_sector, conf, conf->previous_raid_disks); 2989 sh = get_active_stripe(conf, first_sector, 2990 conf->previous_raid_disks, pd_idx, 0); 2991 set_bit(STRIPE_EXPAND_SOURCE, &sh->state); 2992 set_bit(STRIPE_HANDLE, &sh->state); 2993 release_stripe(sh); 2994 first_sector += STRIPE_SECTORS; 2995 } 2996 return conf->chunk_size>>9; 2997 } 2998 2999 /* FIXME go_faster isn't used */ 3000 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster) 3001 { 3002 raid5_conf_t *conf = (raid5_conf_t *) mddev->private; 3003 struct stripe_head *sh; 3004 int pd_idx; 3005 int raid_disks = conf->raid_disks; 3006 sector_t max_sector = mddev->size << 1; 3007 int sync_blocks; 3008 int still_degraded = 0; 3009 int i; 3010 3011 if (sector_nr >= max_sector) { 3012 /* just being told to finish up .. nothing much to do */ 3013 unplug_slaves(mddev); 3014 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 3015 end_reshape(conf); 3016 return 0; 3017 } 3018 3019 if (mddev->curr_resync < max_sector) /* aborted */ 3020 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 3021 &sync_blocks, 1); 3022 else /* completed sync */ 3023 conf->fullsync = 0; 3024 bitmap_close_sync(mddev->bitmap); 3025 3026 return 0; 3027 } 3028 3029 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 3030 return reshape_request(mddev, sector_nr, skipped); 3031 3032 /* if there is too many failed drives and we are trying 3033 * to resync, then assert that we are finished, because there is 3034 * nothing we can do. 3035 */ 3036 if (mddev->degraded >= conf->max_degraded && 3037 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3038 sector_t rv = (mddev->size << 1) - sector_nr; 3039 *skipped = 1; 3040 return rv; 3041 } 3042 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 3043 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 3044 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) { 3045 /* we can skip this block, and probably more */ 3046 sync_blocks /= STRIPE_SECTORS; 3047 *skipped = 1; 3048 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */ 3049 } 3050 3051 pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks); 3052 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1); 3053 if (sh == NULL) { 3054 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0); 3055 /* make sure we don't swamp the stripe cache if someone else 3056 * is trying to get access 3057 */ 3058 schedule_timeout_uninterruptible(1); 3059 } 3060 /* Need to check if array will still be degraded after recovery/resync 3061 * We don't need to check the 'failed' flag as when that gets set, 3062 * recovery aborts. 3063 */ 3064 for (i=0; i<mddev->raid_disks; i++) 3065 if (conf->disks[i].rdev == NULL) 3066 still_degraded = 1; 3067 3068 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded); 3069 3070 spin_lock(&sh->lock); 3071 set_bit(STRIPE_SYNCING, &sh->state); 3072 clear_bit(STRIPE_INSYNC, &sh->state); 3073 spin_unlock(&sh->lock); 3074 3075 handle_stripe(sh, NULL); 3076 release_stripe(sh); 3077 3078 return STRIPE_SECTORS; 3079 } 3080 3081 static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio) 3082 { 3083 /* We may not be able to submit a whole bio at once as there 3084 * may not be enough stripe_heads available. 3085 * We cannot pre-allocate enough stripe_heads as we may need 3086 * more than exist in the cache (if we allow ever large chunks). 3087 * So we do one stripe head at a time and record in 3088 * ->bi_hw_segments how many have been done. 3089 * 3090 * We *know* that this entire raid_bio is in one chunk, so 3091 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector. 3092 */ 3093 struct stripe_head *sh; 3094 int dd_idx, pd_idx; 3095 sector_t sector, logical_sector, last_sector; 3096 int scnt = 0; 3097 int remaining; 3098 int handled = 0; 3099 3100 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1); 3101 sector = raid5_compute_sector( logical_sector, 3102 conf->raid_disks, 3103 conf->raid_disks - conf->max_degraded, 3104 &dd_idx, 3105 &pd_idx, 3106 conf); 3107 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9); 3108 3109 for (; logical_sector < last_sector; 3110 logical_sector += STRIPE_SECTORS, scnt++) { 3111 3112 if (scnt < raid_bio->bi_hw_segments) 3113 /* already done this stripe */ 3114 continue; 3115 3116 sh = get_active_stripe(conf, sector, conf->raid_disks, pd_idx, 1); 3117 3118 if (!sh) { 3119 /* failed to get a stripe - must wait */ 3120 raid_bio->bi_hw_segments = scnt; 3121 conf->retry_read_aligned = raid_bio; 3122 return handled; 3123 } 3124 3125 set_bit(R5_ReadError, &sh->dev[dd_idx].flags); 3126 add_stripe_bio(sh, raid_bio, dd_idx, 0); 3127 handle_stripe(sh, NULL); 3128 release_stripe(sh); 3129 handled++; 3130 } 3131 spin_lock_irq(&conf->device_lock); 3132 remaining = --raid_bio->bi_phys_segments; 3133 spin_unlock_irq(&conf->device_lock); 3134 if (remaining == 0) { 3135 int bytes = raid_bio->bi_size; 3136 3137 raid_bio->bi_size = 0; 3138 raid_bio->bi_end_io(raid_bio, bytes, 3139 test_bit(BIO_UPTODATE, &raid_bio->bi_flags) 3140 ? 0 : -EIO); 3141 } 3142 if (atomic_dec_and_test(&conf->active_aligned_reads)) 3143 wake_up(&conf->wait_for_stripe); 3144 return handled; 3145 } 3146 3147 3148 3149 /* 3150 * This is our raid5 kernel thread. 3151 * 3152 * We scan the hash table for stripes which can be handled now. 3153 * During the scan, completed stripes are saved for us by the interrupt 3154 * handler, so that they will not have to wait for our next wakeup. 3155 */ 3156 static void raid5d (mddev_t *mddev) 3157 { 3158 struct stripe_head *sh; 3159 raid5_conf_t *conf = mddev_to_conf(mddev); 3160 int handled; 3161 3162 PRINTK("+++ raid5d active\n"); 3163 3164 md_check_recovery(mddev); 3165 3166 handled = 0; 3167 spin_lock_irq(&conf->device_lock); 3168 while (1) { 3169 struct list_head *first; 3170 struct bio *bio; 3171 3172 if (conf->seq_flush != conf->seq_write) { 3173 int seq = conf->seq_flush; 3174 spin_unlock_irq(&conf->device_lock); 3175 bitmap_unplug(mddev->bitmap); 3176 spin_lock_irq(&conf->device_lock); 3177 conf->seq_write = seq; 3178 activate_bit_delay(conf); 3179 } 3180 3181 if (list_empty(&conf->handle_list) && 3182 atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD && 3183 !blk_queue_plugged(mddev->queue) && 3184 !list_empty(&conf->delayed_list)) 3185 raid5_activate_delayed(conf); 3186 3187 while ((bio = remove_bio_from_retry(conf))) { 3188 int ok; 3189 spin_unlock_irq(&conf->device_lock); 3190 ok = retry_aligned_read(conf, bio); 3191 spin_lock_irq(&conf->device_lock); 3192 if (!ok) 3193 break; 3194 handled++; 3195 } 3196 3197 if (list_empty(&conf->handle_list)) 3198 break; 3199 3200 first = conf->handle_list.next; 3201 sh = list_entry(first, struct stripe_head, lru); 3202 3203 list_del_init(first); 3204 atomic_inc(&sh->count); 3205 BUG_ON(atomic_read(&sh->count)!= 1); 3206 spin_unlock_irq(&conf->device_lock); 3207 3208 handled++; 3209 handle_stripe(sh, conf->spare_page); 3210 release_stripe(sh); 3211 3212 spin_lock_irq(&conf->device_lock); 3213 } 3214 PRINTK("%d stripes handled\n", handled); 3215 3216 spin_unlock_irq(&conf->device_lock); 3217 3218 unplug_slaves(mddev); 3219 3220 PRINTK("--- raid5d inactive\n"); 3221 } 3222 3223 static ssize_t 3224 raid5_show_stripe_cache_size(mddev_t *mddev, char *page) 3225 { 3226 raid5_conf_t *conf = mddev_to_conf(mddev); 3227 if (conf) 3228 return sprintf(page, "%d\n", conf->max_nr_stripes); 3229 else 3230 return 0; 3231 } 3232 3233 static ssize_t 3234 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len) 3235 { 3236 raid5_conf_t *conf = mddev_to_conf(mddev); 3237 char *end; 3238 int new; 3239 if (len >= PAGE_SIZE) 3240 return -EINVAL; 3241 if (!conf) 3242 return -ENODEV; 3243 3244 new = simple_strtoul(page, &end, 10); 3245 if (!*page || (*end && *end != '\n') ) 3246 return -EINVAL; 3247 if (new <= 16 || new > 32768) 3248 return -EINVAL; 3249 while (new < conf->max_nr_stripes) { 3250 if (drop_one_stripe(conf)) 3251 conf->max_nr_stripes--; 3252 else 3253 break; 3254 } 3255 md_allow_write(mddev); 3256 while (new > conf->max_nr_stripes) { 3257 if (grow_one_stripe(conf)) 3258 conf->max_nr_stripes++; 3259 else break; 3260 } 3261 return len; 3262 } 3263 3264 static struct md_sysfs_entry 3265 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR, 3266 raid5_show_stripe_cache_size, 3267 raid5_store_stripe_cache_size); 3268 3269 static ssize_t 3270 stripe_cache_active_show(mddev_t *mddev, char *page) 3271 { 3272 raid5_conf_t *conf = mddev_to_conf(mddev); 3273 if (conf) 3274 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes)); 3275 else 3276 return 0; 3277 } 3278 3279 static struct md_sysfs_entry 3280 raid5_stripecache_active = __ATTR_RO(stripe_cache_active); 3281 3282 static struct attribute *raid5_attrs[] = { 3283 &raid5_stripecache_size.attr, 3284 &raid5_stripecache_active.attr, 3285 NULL, 3286 }; 3287 static struct attribute_group raid5_attrs_group = { 3288 .name = NULL, 3289 .attrs = raid5_attrs, 3290 }; 3291 3292 static int run(mddev_t *mddev) 3293 { 3294 raid5_conf_t *conf; 3295 int raid_disk, memory; 3296 mdk_rdev_t *rdev; 3297 struct disk_info *disk; 3298 struct list_head *tmp; 3299 int working_disks = 0; 3300 3301 if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) { 3302 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n", 3303 mdname(mddev), mddev->level); 3304 return -EIO; 3305 } 3306 3307 if (mddev->reshape_position != MaxSector) { 3308 /* Check that we can continue the reshape. 3309 * Currently only disks can change, it must 3310 * increase, and we must be past the point where 3311 * a stripe over-writes itself 3312 */ 3313 sector_t here_new, here_old; 3314 int old_disks; 3315 3316 if (mddev->new_level != mddev->level || 3317 mddev->new_layout != mddev->layout || 3318 mddev->new_chunk != mddev->chunk_size) { 3319 printk(KERN_ERR "raid5: %s: unsupported reshape required - aborting.\n", 3320 mdname(mddev)); 3321 return -EINVAL; 3322 } 3323 if (mddev->delta_disks <= 0) { 3324 printk(KERN_ERR "raid5: %s: unsupported reshape (reduce disks) required - aborting.\n", 3325 mdname(mddev)); 3326 return -EINVAL; 3327 } 3328 old_disks = mddev->raid_disks - mddev->delta_disks; 3329 /* reshape_position must be on a new-stripe boundary, and one 3330 * further up in new geometry must map after here in old geometry. 3331 */ 3332 here_new = mddev->reshape_position; 3333 if (sector_div(here_new, (mddev->chunk_size>>9)*(mddev->raid_disks-1))) { 3334 printk(KERN_ERR "raid5: reshape_position not on a stripe boundary\n"); 3335 return -EINVAL; 3336 } 3337 /* here_new is the stripe we will write to */ 3338 here_old = mddev->reshape_position; 3339 sector_div(here_old, (mddev->chunk_size>>9)*(old_disks-1)); 3340 /* here_old is the first stripe that we might need to read from */ 3341 if (here_new >= here_old) { 3342 /* Reading from the same stripe as writing to - bad */ 3343 printk(KERN_ERR "raid5: reshape_position too early for auto-recovery - aborting.\n"); 3344 return -EINVAL; 3345 } 3346 printk(KERN_INFO "raid5: reshape will continue\n"); 3347 /* OK, we should be able to continue; */ 3348 } 3349 3350 3351 mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL); 3352 if ((conf = mddev->private) == NULL) 3353 goto abort; 3354 if (mddev->reshape_position == MaxSector) { 3355 conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks; 3356 } else { 3357 conf->raid_disks = mddev->raid_disks; 3358 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks; 3359 } 3360 3361 conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info), 3362 GFP_KERNEL); 3363 if (!conf->disks) 3364 goto abort; 3365 3366 conf->mddev = mddev; 3367 3368 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL) 3369 goto abort; 3370 3371 if (mddev->level == 6) { 3372 conf->spare_page = alloc_page(GFP_KERNEL); 3373 if (!conf->spare_page) 3374 goto abort; 3375 } 3376 spin_lock_init(&conf->device_lock); 3377 init_waitqueue_head(&conf->wait_for_stripe); 3378 init_waitqueue_head(&conf->wait_for_overlap); 3379 INIT_LIST_HEAD(&conf->handle_list); 3380 INIT_LIST_HEAD(&conf->delayed_list); 3381 INIT_LIST_HEAD(&conf->bitmap_list); 3382 INIT_LIST_HEAD(&conf->inactive_list); 3383 atomic_set(&conf->active_stripes, 0); 3384 atomic_set(&conf->preread_active_stripes, 0); 3385 atomic_set(&conf->active_aligned_reads, 0); 3386 3387 PRINTK("raid5: run(%s) called.\n", mdname(mddev)); 3388 3389 ITERATE_RDEV(mddev,rdev,tmp) { 3390 raid_disk = rdev->raid_disk; 3391 if (raid_disk >= conf->raid_disks 3392 || raid_disk < 0) 3393 continue; 3394 disk = conf->disks + raid_disk; 3395 3396 disk->rdev = rdev; 3397 3398 if (test_bit(In_sync, &rdev->flags)) { 3399 char b[BDEVNAME_SIZE]; 3400 printk(KERN_INFO "raid5: device %s operational as raid" 3401 " disk %d\n", bdevname(rdev->bdev,b), 3402 raid_disk); 3403 working_disks++; 3404 } 3405 } 3406 3407 /* 3408 * 0 for a fully functional array, 1 or 2 for a degraded array. 3409 */ 3410 mddev->degraded = conf->raid_disks - working_disks; 3411 conf->mddev = mddev; 3412 conf->chunk_size = mddev->chunk_size; 3413 conf->level = mddev->level; 3414 if (conf->level == 6) 3415 conf->max_degraded = 2; 3416 else 3417 conf->max_degraded = 1; 3418 conf->algorithm = mddev->layout; 3419 conf->max_nr_stripes = NR_STRIPES; 3420 conf->expand_progress = mddev->reshape_position; 3421 3422 /* device size must be a multiple of chunk size */ 3423 mddev->size &= ~(mddev->chunk_size/1024 -1); 3424 mddev->resync_max_sectors = mddev->size << 1; 3425 3426 if (conf->level == 6 && conf->raid_disks < 4) { 3427 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n", 3428 mdname(mddev), conf->raid_disks); 3429 goto abort; 3430 } 3431 if (!conf->chunk_size || conf->chunk_size % 4) { 3432 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n", 3433 conf->chunk_size, mdname(mddev)); 3434 goto abort; 3435 } 3436 if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) { 3437 printk(KERN_ERR 3438 "raid5: unsupported parity algorithm %d for %s\n", 3439 conf->algorithm, mdname(mddev)); 3440 goto abort; 3441 } 3442 if (mddev->degraded > conf->max_degraded) { 3443 printk(KERN_ERR "raid5: not enough operational devices for %s" 3444 " (%d/%d failed)\n", 3445 mdname(mddev), mddev->degraded, conf->raid_disks); 3446 goto abort; 3447 } 3448 3449 if (mddev->degraded > 0 && 3450 mddev->recovery_cp != MaxSector) { 3451 if (mddev->ok_start_degraded) 3452 printk(KERN_WARNING 3453 "raid5: starting dirty degraded array: %s" 3454 "- data corruption possible.\n", 3455 mdname(mddev)); 3456 else { 3457 printk(KERN_ERR 3458 "raid5: cannot start dirty degraded array for %s\n", 3459 mdname(mddev)); 3460 goto abort; 3461 } 3462 } 3463 3464 { 3465 mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5"); 3466 if (!mddev->thread) { 3467 printk(KERN_ERR 3468 "raid5: couldn't allocate thread for %s\n", 3469 mdname(mddev)); 3470 goto abort; 3471 } 3472 } 3473 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) + 3474 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024; 3475 if (grow_stripes(conf, conf->max_nr_stripes)) { 3476 printk(KERN_ERR 3477 "raid5: couldn't allocate %dkB for buffers\n", memory); 3478 shrink_stripes(conf); 3479 md_unregister_thread(mddev->thread); 3480 goto abort; 3481 } else 3482 printk(KERN_INFO "raid5: allocated %dkB for %s\n", 3483 memory, mdname(mddev)); 3484 3485 if (mddev->degraded == 0) 3486 printk("raid5: raid level %d set %s active with %d out of %d" 3487 " devices, algorithm %d\n", conf->level, mdname(mddev), 3488 mddev->raid_disks-mddev->degraded, mddev->raid_disks, 3489 conf->algorithm); 3490 else 3491 printk(KERN_ALERT "raid5: raid level %d set %s active with %d" 3492 " out of %d devices, algorithm %d\n", conf->level, 3493 mdname(mddev), mddev->raid_disks - mddev->degraded, 3494 mddev->raid_disks, conf->algorithm); 3495 3496 print_raid5_conf(conf); 3497 3498 if (conf->expand_progress != MaxSector) { 3499 printk("...ok start reshape thread\n"); 3500 conf->expand_lo = conf->expand_progress; 3501 atomic_set(&conf->reshape_stripes, 0); 3502 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3503 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3504 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 3505 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 3506 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 3507 "%s_reshape"); 3508 } 3509 3510 /* read-ahead size must cover two whole stripes, which is 3511 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 3512 */ 3513 { 3514 int data_disks = conf->previous_raid_disks - conf->max_degraded; 3515 int stripe = data_disks * 3516 (mddev->chunk_size / PAGE_SIZE); 3517 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 3518 mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 3519 } 3520 3521 /* Ok, everything is just fine now */ 3522 sysfs_create_group(&mddev->kobj, &raid5_attrs_group); 3523 3524 mddev->queue->unplug_fn = raid5_unplug_device; 3525 mddev->queue->issue_flush_fn = raid5_issue_flush; 3526 mddev->queue->backing_dev_info.congested_fn = raid5_congested; 3527 mddev->queue->backing_dev_info.congested_data = mddev; 3528 3529 mddev->array_size = mddev->size * (conf->previous_raid_disks - 3530 conf->max_degraded); 3531 3532 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec); 3533 3534 return 0; 3535 abort: 3536 if (conf) { 3537 print_raid5_conf(conf); 3538 safe_put_page(conf->spare_page); 3539 kfree(conf->disks); 3540 kfree(conf->stripe_hashtbl); 3541 kfree(conf); 3542 } 3543 mddev->private = NULL; 3544 printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev)); 3545 return -EIO; 3546 } 3547 3548 3549 3550 static int stop(mddev_t *mddev) 3551 { 3552 raid5_conf_t *conf = (raid5_conf_t *) mddev->private; 3553 3554 md_unregister_thread(mddev->thread); 3555 mddev->thread = NULL; 3556 shrink_stripes(conf); 3557 kfree(conf->stripe_hashtbl); 3558 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 3559 sysfs_remove_group(&mddev->kobj, &raid5_attrs_group); 3560 kfree(conf->disks); 3561 kfree(conf); 3562 mddev->private = NULL; 3563 return 0; 3564 } 3565 3566 #if RAID5_DEBUG 3567 static void print_sh (struct seq_file *seq, struct stripe_head *sh) 3568 { 3569 int i; 3570 3571 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n", 3572 (unsigned long long)sh->sector, sh->pd_idx, sh->state); 3573 seq_printf(seq, "sh %llu, count %d.\n", 3574 (unsigned long long)sh->sector, atomic_read(&sh->count)); 3575 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector); 3576 for (i = 0; i < sh->disks; i++) { 3577 seq_printf(seq, "(cache%d: %p %ld) ", 3578 i, sh->dev[i].page, sh->dev[i].flags); 3579 } 3580 seq_printf(seq, "\n"); 3581 } 3582 3583 static void printall (struct seq_file *seq, raid5_conf_t *conf) 3584 { 3585 struct stripe_head *sh; 3586 struct hlist_node *hn; 3587 int i; 3588 3589 spin_lock_irq(&conf->device_lock); 3590 for (i = 0; i < NR_HASH; i++) { 3591 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) { 3592 if (sh->raid_conf != conf) 3593 continue; 3594 print_sh(seq, sh); 3595 } 3596 } 3597 spin_unlock_irq(&conf->device_lock); 3598 } 3599 #endif 3600 3601 static void status (struct seq_file *seq, mddev_t *mddev) 3602 { 3603 raid5_conf_t *conf = (raid5_conf_t *) mddev->private; 3604 int i; 3605 3606 seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout); 3607 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded); 3608 for (i = 0; i < conf->raid_disks; i++) 3609 seq_printf (seq, "%s", 3610 conf->disks[i].rdev && 3611 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_"); 3612 seq_printf (seq, "]"); 3613 #if RAID5_DEBUG 3614 seq_printf (seq, "\n"); 3615 printall(seq, conf); 3616 #endif 3617 } 3618 3619 static void print_raid5_conf (raid5_conf_t *conf) 3620 { 3621 int i; 3622 struct disk_info *tmp; 3623 3624 printk("RAID5 conf printout:\n"); 3625 if (!conf) { 3626 printk("(conf==NULL)\n"); 3627 return; 3628 } 3629 printk(" --- rd:%d wd:%d\n", conf->raid_disks, 3630 conf->raid_disks - conf->mddev->degraded); 3631 3632 for (i = 0; i < conf->raid_disks; i++) { 3633 char b[BDEVNAME_SIZE]; 3634 tmp = conf->disks + i; 3635 if (tmp->rdev) 3636 printk(" disk %d, o:%d, dev:%s\n", 3637 i, !test_bit(Faulty, &tmp->rdev->flags), 3638 bdevname(tmp->rdev->bdev,b)); 3639 } 3640 } 3641 3642 static int raid5_spare_active(mddev_t *mddev) 3643 { 3644 int i; 3645 raid5_conf_t *conf = mddev->private; 3646 struct disk_info *tmp; 3647 3648 for (i = 0; i < conf->raid_disks; i++) { 3649 tmp = conf->disks + i; 3650 if (tmp->rdev 3651 && !test_bit(Faulty, &tmp->rdev->flags) 3652 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 3653 unsigned long flags; 3654 spin_lock_irqsave(&conf->device_lock, flags); 3655 mddev->degraded--; 3656 spin_unlock_irqrestore(&conf->device_lock, flags); 3657 } 3658 } 3659 print_raid5_conf(conf); 3660 return 0; 3661 } 3662 3663 static int raid5_remove_disk(mddev_t *mddev, int number) 3664 { 3665 raid5_conf_t *conf = mddev->private; 3666 int err = 0; 3667 mdk_rdev_t *rdev; 3668 struct disk_info *p = conf->disks + number; 3669 3670 print_raid5_conf(conf); 3671 rdev = p->rdev; 3672 if (rdev) { 3673 if (test_bit(In_sync, &rdev->flags) || 3674 atomic_read(&rdev->nr_pending)) { 3675 err = -EBUSY; 3676 goto abort; 3677 } 3678 p->rdev = NULL; 3679 synchronize_rcu(); 3680 if (atomic_read(&rdev->nr_pending)) { 3681 /* lost the race, try later */ 3682 err = -EBUSY; 3683 p->rdev = rdev; 3684 } 3685 } 3686 abort: 3687 3688 print_raid5_conf(conf); 3689 return err; 3690 } 3691 3692 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) 3693 { 3694 raid5_conf_t *conf = mddev->private; 3695 int found = 0; 3696 int disk; 3697 struct disk_info *p; 3698 3699 if (mddev->degraded > conf->max_degraded) 3700 /* no point adding a device */ 3701 return 0; 3702 3703 /* 3704 * find the disk ... but prefer rdev->saved_raid_disk 3705 * if possible. 3706 */ 3707 if (rdev->saved_raid_disk >= 0 && 3708 conf->disks[rdev->saved_raid_disk].rdev == NULL) 3709 disk = rdev->saved_raid_disk; 3710 else 3711 disk = 0; 3712 for ( ; disk < conf->raid_disks; disk++) 3713 if ((p=conf->disks + disk)->rdev == NULL) { 3714 clear_bit(In_sync, &rdev->flags); 3715 rdev->raid_disk = disk; 3716 found = 1; 3717 if (rdev->saved_raid_disk != disk) 3718 conf->fullsync = 1; 3719 rcu_assign_pointer(p->rdev, rdev); 3720 break; 3721 } 3722 print_raid5_conf(conf); 3723 return found; 3724 } 3725 3726 static int raid5_resize(mddev_t *mddev, sector_t sectors) 3727 { 3728 /* no resync is happening, and there is enough space 3729 * on all devices, so we can resize. 3730 * We need to make sure resync covers any new space. 3731 * If the array is shrinking we should possibly wait until 3732 * any io in the removed space completes, but it hardly seems 3733 * worth it. 3734 */ 3735 raid5_conf_t *conf = mddev_to_conf(mddev); 3736 3737 sectors &= ~((sector_t)mddev->chunk_size/512 - 1); 3738 mddev->array_size = (sectors * (mddev->raid_disks-conf->max_degraded))>>1; 3739 set_capacity(mddev->gendisk, mddev->array_size << 1); 3740 mddev->changed = 1; 3741 if (sectors/2 > mddev->size && mddev->recovery_cp == MaxSector) { 3742 mddev->recovery_cp = mddev->size << 1; 3743 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3744 } 3745 mddev->size = sectors /2; 3746 mddev->resync_max_sectors = sectors; 3747 return 0; 3748 } 3749 3750 #ifdef CONFIG_MD_RAID5_RESHAPE 3751 static int raid5_check_reshape(mddev_t *mddev) 3752 { 3753 raid5_conf_t *conf = mddev_to_conf(mddev); 3754 int err; 3755 3756 if (mddev->delta_disks < 0 || 3757 mddev->new_level != mddev->level) 3758 return -EINVAL; /* Cannot shrink array or change level yet */ 3759 if (mddev->delta_disks == 0) 3760 return 0; /* nothing to do */ 3761 3762 /* Can only proceed if there are plenty of stripe_heads. 3763 * We need a minimum of one full stripe,, and for sensible progress 3764 * it is best to have about 4 times that. 3765 * If we require 4 times, then the default 256 4K stripe_heads will 3766 * allow for chunk sizes up to 256K, which is probably OK. 3767 * If the chunk size is greater, user-space should request more 3768 * stripe_heads first. 3769 */ 3770 if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes || 3771 (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) { 3772 printk(KERN_WARNING "raid5: reshape: not enough stripes. Needed %lu\n", 3773 (mddev->chunk_size / STRIPE_SIZE)*4); 3774 return -ENOSPC; 3775 } 3776 3777 err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks); 3778 if (err) 3779 return err; 3780 3781 /* looks like we might be able to manage this */ 3782 return 0; 3783 } 3784 3785 static int raid5_start_reshape(mddev_t *mddev) 3786 { 3787 raid5_conf_t *conf = mddev_to_conf(mddev); 3788 mdk_rdev_t *rdev; 3789 struct list_head *rtmp; 3790 int spares = 0; 3791 int added_devices = 0; 3792 unsigned long flags; 3793 3794 if (mddev->degraded || 3795 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 3796 return -EBUSY; 3797 3798 ITERATE_RDEV(mddev, rdev, rtmp) 3799 if (rdev->raid_disk < 0 && 3800 !test_bit(Faulty, &rdev->flags)) 3801 spares++; 3802 3803 if (spares < mddev->delta_disks-1) 3804 /* Not enough devices even to make a degraded array 3805 * of that size 3806 */ 3807 return -EINVAL; 3808 3809 atomic_set(&conf->reshape_stripes, 0); 3810 spin_lock_irq(&conf->device_lock); 3811 conf->previous_raid_disks = conf->raid_disks; 3812 conf->raid_disks += mddev->delta_disks; 3813 conf->expand_progress = 0; 3814 conf->expand_lo = 0; 3815 spin_unlock_irq(&conf->device_lock); 3816 3817 /* Add some new drives, as many as will fit. 3818 * We know there are enough to make the newly sized array work. 3819 */ 3820 ITERATE_RDEV(mddev, rdev, rtmp) 3821 if (rdev->raid_disk < 0 && 3822 !test_bit(Faulty, &rdev->flags)) { 3823 if (raid5_add_disk(mddev, rdev)) { 3824 char nm[20]; 3825 set_bit(In_sync, &rdev->flags); 3826 added_devices++; 3827 rdev->recovery_offset = 0; 3828 sprintf(nm, "rd%d", rdev->raid_disk); 3829 sysfs_create_link(&mddev->kobj, &rdev->kobj, nm); 3830 } else 3831 break; 3832 } 3833 3834 spin_lock_irqsave(&conf->device_lock, flags); 3835 mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices; 3836 spin_unlock_irqrestore(&conf->device_lock, flags); 3837 mddev->raid_disks = conf->raid_disks; 3838 mddev->reshape_position = 0; 3839 set_bit(MD_CHANGE_DEVS, &mddev->flags); 3840 3841 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3842 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3843 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 3844 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 3845 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 3846 "%s_reshape"); 3847 if (!mddev->sync_thread) { 3848 mddev->recovery = 0; 3849 spin_lock_irq(&conf->device_lock); 3850 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks; 3851 conf->expand_progress = MaxSector; 3852 spin_unlock_irq(&conf->device_lock); 3853 return -EAGAIN; 3854 } 3855 md_wakeup_thread(mddev->sync_thread); 3856 md_new_event(mddev); 3857 return 0; 3858 } 3859 #endif 3860 3861 static void end_reshape(raid5_conf_t *conf) 3862 { 3863 struct block_device *bdev; 3864 3865 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 3866 conf->mddev->array_size = conf->mddev->size * (conf->raid_disks-1); 3867 set_capacity(conf->mddev->gendisk, conf->mddev->array_size << 1); 3868 conf->mddev->changed = 1; 3869 3870 bdev = bdget_disk(conf->mddev->gendisk, 0); 3871 if (bdev) { 3872 mutex_lock(&bdev->bd_inode->i_mutex); 3873 i_size_write(bdev->bd_inode, (loff_t)conf->mddev->array_size << 10); 3874 mutex_unlock(&bdev->bd_inode->i_mutex); 3875 bdput(bdev); 3876 } 3877 spin_lock_irq(&conf->device_lock); 3878 conf->expand_progress = MaxSector; 3879 spin_unlock_irq(&conf->device_lock); 3880 conf->mddev->reshape_position = MaxSector; 3881 3882 /* read-ahead size must cover two whole stripes, which is 3883 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 3884 */ 3885 { 3886 int data_disks = conf->previous_raid_disks - conf->max_degraded; 3887 int stripe = data_disks * 3888 (conf->mddev->chunk_size / PAGE_SIZE); 3889 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 3890 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 3891 } 3892 } 3893 } 3894 3895 static void raid5_quiesce(mddev_t *mddev, int state) 3896 { 3897 raid5_conf_t *conf = mddev_to_conf(mddev); 3898 3899 switch(state) { 3900 case 2: /* resume for a suspend */ 3901 wake_up(&conf->wait_for_overlap); 3902 break; 3903 3904 case 1: /* stop all writes */ 3905 spin_lock_irq(&conf->device_lock); 3906 conf->quiesce = 1; 3907 wait_event_lock_irq(conf->wait_for_stripe, 3908 atomic_read(&conf->active_stripes) == 0 && 3909 atomic_read(&conf->active_aligned_reads) == 0, 3910 conf->device_lock, /* nothing */); 3911 spin_unlock_irq(&conf->device_lock); 3912 break; 3913 3914 case 0: /* re-enable writes */ 3915 spin_lock_irq(&conf->device_lock); 3916 conf->quiesce = 0; 3917 wake_up(&conf->wait_for_stripe); 3918 wake_up(&conf->wait_for_overlap); 3919 spin_unlock_irq(&conf->device_lock); 3920 break; 3921 } 3922 } 3923 3924 static struct mdk_personality raid6_personality = 3925 { 3926 .name = "raid6", 3927 .level = 6, 3928 .owner = THIS_MODULE, 3929 .make_request = make_request, 3930 .run = run, 3931 .stop = stop, 3932 .status = status, 3933 .error_handler = error, 3934 .hot_add_disk = raid5_add_disk, 3935 .hot_remove_disk= raid5_remove_disk, 3936 .spare_active = raid5_spare_active, 3937 .sync_request = sync_request, 3938 .resize = raid5_resize, 3939 .quiesce = raid5_quiesce, 3940 }; 3941 static struct mdk_personality raid5_personality = 3942 { 3943 .name = "raid5", 3944 .level = 5, 3945 .owner = THIS_MODULE, 3946 .make_request = make_request, 3947 .run = run, 3948 .stop = stop, 3949 .status = status, 3950 .error_handler = error, 3951 .hot_add_disk = raid5_add_disk, 3952 .hot_remove_disk= raid5_remove_disk, 3953 .spare_active = raid5_spare_active, 3954 .sync_request = sync_request, 3955 .resize = raid5_resize, 3956 #ifdef CONFIG_MD_RAID5_RESHAPE 3957 .check_reshape = raid5_check_reshape, 3958 .start_reshape = raid5_start_reshape, 3959 #endif 3960 .quiesce = raid5_quiesce, 3961 }; 3962 3963 static struct mdk_personality raid4_personality = 3964 { 3965 .name = "raid4", 3966 .level = 4, 3967 .owner = THIS_MODULE, 3968 .make_request = make_request, 3969 .run = run, 3970 .stop = stop, 3971 .status = status, 3972 .error_handler = error, 3973 .hot_add_disk = raid5_add_disk, 3974 .hot_remove_disk= raid5_remove_disk, 3975 .spare_active = raid5_spare_active, 3976 .sync_request = sync_request, 3977 .resize = raid5_resize, 3978 .quiesce = raid5_quiesce, 3979 }; 3980 3981 static int __init raid5_init(void) 3982 { 3983 int e; 3984 3985 e = raid6_select_algo(); 3986 if ( e ) 3987 return e; 3988 register_md_personality(&raid6_personality); 3989 register_md_personality(&raid5_personality); 3990 register_md_personality(&raid4_personality); 3991 return 0; 3992 } 3993 3994 static void raid5_exit(void) 3995 { 3996 unregister_md_personality(&raid6_personality); 3997 unregister_md_personality(&raid5_personality); 3998 unregister_md_personality(&raid4_personality); 3999 } 4000 4001 module_init(raid5_init); 4002 module_exit(raid5_exit); 4003 MODULE_LICENSE("GPL"); 4004 MODULE_ALIAS("md-personality-4"); /* RAID5 */ 4005 MODULE_ALIAS("md-raid5"); 4006 MODULE_ALIAS("md-raid4"); 4007 MODULE_ALIAS("md-level-5"); 4008 MODULE_ALIAS("md-level-4"); 4009 MODULE_ALIAS("md-personality-8"); /* RAID6 */ 4010 MODULE_ALIAS("md-raid6"); 4011 MODULE_ALIAS("md-level-6"); 4012 4013 /* This used to be two separate modules, they were: */ 4014 MODULE_ALIAS("raid5"); 4015 MODULE_ALIAS("raid6"); 4016