xref: /linux/drivers/md/raid5.c (revision b454cc6636d254fbf6049b73e9560aee76fb04a3)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->bm_write is the number of the last batch successfully written.
31  * conf->bm_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is bm_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/module.h>
47 #include <linux/slab.h>
48 #include <linux/highmem.h>
49 #include <linux/bitops.h>
50 #include <linux/kthread.h>
51 #include <asm/atomic.h>
52 #include "raid6.h"
53 
54 #include <linux/raid/bitmap.h>
55 
56 /*
57  * Stripe cache
58  */
59 
60 #define NR_STRIPES		256
61 #define STRIPE_SIZE		PAGE_SIZE
62 #define STRIPE_SHIFT		(PAGE_SHIFT - 9)
63 #define STRIPE_SECTORS		(STRIPE_SIZE>>9)
64 #define	IO_THRESHOLD		1
65 #define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
66 #define HASH_MASK		(NR_HASH - 1)
67 
68 #define stripe_hash(conf, sect)	(&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
69 
70 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
71  * order without overlap.  There may be several bio's per stripe+device, and
72  * a bio could span several devices.
73  * When walking this list for a particular stripe+device, we must never proceed
74  * beyond a bio that extends past this device, as the next bio might no longer
75  * be valid.
76  * This macro is used to determine the 'next' bio in the list, given the sector
77  * of the current stripe+device
78  */
79 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
80 /*
81  * The following can be used to debug the driver
82  */
83 #define RAID5_DEBUG	0
84 #define RAID5_PARANOIA	1
85 #if RAID5_PARANOIA && defined(CONFIG_SMP)
86 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
87 #else
88 # define CHECK_DEVLOCK()
89 #endif
90 
91 #define PRINTK(x...) ((void)(RAID5_DEBUG && printk(x)))
92 #if RAID5_DEBUG
93 #define inline
94 #define __inline__
95 #endif
96 
97 #if !RAID6_USE_EMPTY_ZERO_PAGE
98 /* In .bss so it's zeroed */
99 const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
100 #endif
101 
102 static inline int raid6_next_disk(int disk, int raid_disks)
103 {
104 	disk++;
105 	return (disk < raid_disks) ? disk : 0;
106 }
107 static void print_raid5_conf (raid5_conf_t *conf);
108 
109 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
110 {
111 	if (atomic_dec_and_test(&sh->count)) {
112 		BUG_ON(!list_empty(&sh->lru));
113 		BUG_ON(atomic_read(&conf->active_stripes)==0);
114 		if (test_bit(STRIPE_HANDLE, &sh->state)) {
115 			if (test_bit(STRIPE_DELAYED, &sh->state)) {
116 				list_add_tail(&sh->lru, &conf->delayed_list);
117 				blk_plug_device(conf->mddev->queue);
118 			} else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
119 				   sh->bm_seq - conf->seq_write > 0) {
120 				list_add_tail(&sh->lru, &conf->bitmap_list);
121 				blk_plug_device(conf->mddev->queue);
122 			} else {
123 				clear_bit(STRIPE_BIT_DELAY, &sh->state);
124 				list_add_tail(&sh->lru, &conf->handle_list);
125 			}
126 			md_wakeup_thread(conf->mddev->thread);
127 		} else {
128 			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
129 				atomic_dec(&conf->preread_active_stripes);
130 				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
131 					md_wakeup_thread(conf->mddev->thread);
132 			}
133 			atomic_dec(&conf->active_stripes);
134 			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
135 				list_add_tail(&sh->lru, &conf->inactive_list);
136 				wake_up(&conf->wait_for_stripe);
137 				if (conf->retry_read_aligned)
138 					md_wakeup_thread(conf->mddev->thread);
139 			}
140 		}
141 	}
142 }
143 static void release_stripe(struct stripe_head *sh)
144 {
145 	raid5_conf_t *conf = sh->raid_conf;
146 	unsigned long flags;
147 
148 	spin_lock_irqsave(&conf->device_lock, flags);
149 	__release_stripe(conf, sh);
150 	spin_unlock_irqrestore(&conf->device_lock, flags);
151 }
152 
153 static inline void remove_hash(struct stripe_head *sh)
154 {
155 	PRINTK("remove_hash(), stripe %llu\n", (unsigned long long)sh->sector);
156 
157 	hlist_del_init(&sh->hash);
158 }
159 
160 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
161 {
162 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
163 
164 	PRINTK("insert_hash(), stripe %llu\n", (unsigned long long)sh->sector);
165 
166 	CHECK_DEVLOCK();
167 	hlist_add_head(&sh->hash, hp);
168 }
169 
170 
171 /* find an idle stripe, make sure it is unhashed, and return it. */
172 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
173 {
174 	struct stripe_head *sh = NULL;
175 	struct list_head *first;
176 
177 	CHECK_DEVLOCK();
178 	if (list_empty(&conf->inactive_list))
179 		goto out;
180 	first = conf->inactive_list.next;
181 	sh = list_entry(first, struct stripe_head, lru);
182 	list_del_init(first);
183 	remove_hash(sh);
184 	atomic_inc(&conf->active_stripes);
185 out:
186 	return sh;
187 }
188 
189 static void shrink_buffers(struct stripe_head *sh, int num)
190 {
191 	struct page *p;
192 	int i;
193 
194 	for (i=0; i<num ; i++) {
195 		p = sh->dev[i].page;
196 		if (!p)
197 			continue;
198 		sh->dev[i].page = NULL;
199 		put_page(p);
200 	}
201 }
202 
203 static int grow_buffers(struct stripe_head *sh, int num)
204 {
205 	int i;
206 
207 	for (i=0; i<num; i++) {
208 		struct page *page;
209 
210 		if (!(page = alloc_page(GFP_KERNEL))) {
211 			return 1;
212 		}
213 		sh->dev[i].page = page;
214 	}
215 	return 0;
216 }
217 
218 static void raid5_build_block (struct stripe_head *sh, int i);
219 
220 static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks)
221 {
222 	raid5_conf_t *conf = sh->raid_conf;
223 	int i;
224 
225 	BUG_ON(atomic_read(&sh->count) != 0);
226 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
227 
228 	CHECK_DEVLOCK();
229 	PRINTK("init_stripe called, stripe %llu\n",
230 		(unsigned long long)sh->sector);
231 
232 	remove_hash(sh);
233 
234 	sh->sector = sector;
235 	sh->pd_idx = pd_idx;
236 	sh->state = 0;
237 
238 	sh->disks = disks;
239 
240 	for (i = sh->disks; i--; ) {
241 		struct r5dev *dev = &sh->dev[i];
242 
243 		if (dev->toread || dev->towrite || dev->written ||
244 		    test_bit(R5_LOCKED, &dev->flags)) {
245 			printk("sector=%llx i=%d %p %p %p %d\n",
246 			       (unsigned long long)sh->sector, i, dev->toread,
247 			       dev->towrite, dev->written,
248 			       test_bit(R5_LOCKED, &dev->flags));
249 			BUG();
250 		}
251 		dev->flags = 0;
252 		raid5_build_block(sh, i);
253 	}
254 	insert_hash(conf, sh);
255 }
256 
257 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
258 {
259 	struct stripe_head *sh;
260 	struct hlist_node *hn;
261 
262 	CHECK_DEVLOCK();
263 	PRINTK("__find_stripe, sector %llu\n", (unsigned long long)sector);
264 	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
265 		if (sh->sector == sector && sh->disks == disks)
266 			return sh;
267 	PRINTK("__stripe %llu not in cache\n", (unsigned long long)sector);
268 	return NULL;
269 }
270 
271 static void unplug_slaves(mddev_t *mddev);
272 static void raid5_unplug_device(request_queue_t *q);
273 
274 static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks,
275 					     int pd_idx, int noblock)
276 {
277 	struct stripe_head *sh;
278 
279 	PRINTK("get_stripe, sector %llu\n", (unsigned long long)sector);
280 
281 	spin_lock_irq(&conf->device_lock);
282 
283 	do {
284 		wait_event_lock_irq(conf->wait_for_stripe,
285 				    conf->quiesce == 0,
286 				    conf->device_lock, /* nothing */);
287 		sh = __find_stripe(conf, sector, disks);
288 		if (!sh) {
289 			if (!conf->inactive_blocked)
290 				sh = get_free_stripe(conf);
291 			if (noblock && sh == NULL)
292 				break;
293 			if (!sh) {
294 				conf->inactive_blocked = 1;
295 				wait_event_lock_irq(conf->wait_for_stripe,
296 						    !list_empty(&conf->inactive_list) &&
297 						    (atomic_read(&conf->active_stripes)
298 						     < (conf->max_nr_stripes *3/4)
299 						     || !conf->inactive_blocked),
300 						    conf->device_lock,
301 						    raid5_unplug_device(conf->mddev->queue)
302 					);
303 				conf->inactive_blocked = 0;
304 			} else
305 				init_stripe(sh, sector, pd_idx, disks);
306 		} else {
307 			if (atomic_read(&sh->count)) {
308 			  BUG_ON(!list_empty(&sh->lru));
309 			} else {
310 				if (!test_bit(STRIPE_HANDLE, &sh->state))
311 					atomic_inc(&conf->active_stripes);
312 				if (list_empty(&sh->lru) &&
313 				    !test_bit(STRIPE_EXPANDING, &sh->state))
314 					BUG();
315 				list_del_init(&sh->lru);
316 			}
317 		}
318 	} while (sh == NULL);
319 
320 	if (sh)
321 		atomic_inc(&sh->count);
322 
323 	spin_unlock_irq(&conf->device_lock);
324 	return sh;
325 }
326 
327 static int grow_one_stripe(raid5_conf_t *conf)
328 {
329 	struct stripe_head *sh;
330 	sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
331 	if (!sh)
332 		return 0;
333 	memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
334 	sh->raid_conf = conf;
335 	spin_lock_init(&sh->lock);
336 
337 	if (grow_buffers(sh, conf->raid_disks)) {
338 		shrink_buffers(sh, conf->raid_disks);
339 		kmem_cache_free(conf->slab_cache, sh);
340 		return 0;
341 	}
342 	sh->disks = conf->raid_disks;
343 	/* we just created an active stripe so... */
344 	atomic_set(&sh->count, 1);
345 	atomic_inc(&conf->active_stripes);
346 	INIT_LIST_HEAD(&sh->lru);
347 	release_stripe(sh);
348 	return 1;
349 }
350 
351 static int grow_stripes(raid5_conf_t *conf, int num)
352 {
353 	struct kmem_cache *sc;
354 	int devs = conf->raid_disks;
355 
356 	sprintf(conf->cache_name[0], "raid5/%s", mdname(conf->mddev));
357 	sprintf(conf->cache_name[1], "raid5/%s-alt", mdname(conf->mddev));
358 	conf->active_name = 0;
359 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
360 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
361 			       0, 0, NULL, NULL);
362 	if (!sc)
363 		return 1;
364 	conf->slab_cache = sc;
365 	conf->pool_size = devs;
366 	while (num--)
367 		if (!grow_one_stripe(conf))
368 			return 1;
369 	return 0;
370 }
371 
372 #ifdef CONFIG_MD_RAID5_RESHAPE
373 static int resize_stripes(raid5_conf_t *conf, int newsize)
374 {
375 	/* Make all the stripes able to hold 'newsize' devices.
376 	 * New slots in each stripe get 'page' set to a new page.
377 	 *
378 	 * This happens in stages:
379 	 * 1/ create a new kmem_cache and allocate the required number of
380 	 *    stripe_heads.
381 	 * 2/ gather all the old stripe_heads and tranfer the pages across
382 	 *    to the new stripe_heads.  This will have the side effect of
383 	 *    freezing the array as once all stripe_heads have been collected,
384 	 *    no IO will be possible.  Old stripe heads are freed once their
385 	 *    pages have been transferred over, and the old kmem_cache is
386 	 *    freed when all stripes are done.
387 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
388 	 *    we simple return a failre status - no need to clean anything up.
389 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
390 	 *    If this fails, we don't bother trying the shrink the
391 	 *    stripe_heads down again, we just leave them as they are.
392 	 *    As each stripe_head is processed the new one is released into
393 	 *    active service.
394 	 *
395 	 * Once step2 is started, we cannot afford to wait for a write,
396 	 * so we use GFP_NOIO allocations.
397 	 */
398 	struct stripe_head *osh, *nsh;
399 	LIST_HEAD(newstripes);
400 	struct disk_info *ndisks;
401 	int err = 0;
402 	struct kmem_cache *sc;
403 	int i;
404 
405 	if (newsize <= conf->pool_size)
406 		return 0; /* never bother to shrink */
407 
408 	md_allow_write(conf->mddev);
409 
410 	/* Step 1 */
411 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
412 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
413 			       0, 0, NULL, NULL);
414 	if (!sc)
415 		return -ENOMEM;
416 
417 	for (i = conf->max_nr_stripes; i; i--) {
418 		nsh = kmem_cache_alloc(sc, GFP_KERNEL);
419 		if (!nsh)
420 			break;
421 
422 		memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
423 
424 		nsh->raid_conf = conf;
425 		spin_lock_init(&nsh->lock);
426 
427 		list_add(&nsh->lru, &newstripes);
428 	}
429 	if (i) {
430 		/* didn't get enough, give up */
431 		while (!list_empty(&newstripes)) {
432 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
433 			list_del(&nsh->lru);
434 			kmem_cache_free(sc, nsh);
435 		}
436 		kmem_cache_destroy(sc);
437 		return -ENOMEM;
438 	}
439 	/* Step 2 - Must use GFP_NOIO now.
440 	 * OK, we have enough stripes, start collecting inactive
441 	 * stripes and copying them over
442 	 */
443 	list_for_each_entry(nsh, &newstripes, lru) {
444 		spin_lock_irq(&conf->device_lock);
445 		wait_event_lock_irq(conf->wait_for_stripe,
446 				    !list_empty(&conf->inactive_list),
447 				    conf->device_lock,
448 				    unplug_slaves(conf->mddev)
449 			);
450 		osh = get_free_stripe(conf);
451 		spin_unlock_irq(&conf->device_lock);
452 		atomic_set(&nsh->count, 1);
453 		for(i=0; i<conf->pool_size; i++)
454 			nsh->dev[i].page = osh->dev[i].page;
455 		for( ; i<newsize; i++)
456 			nsh->dev[i].page = NULL;
457 		kmem_cache_free(conf->slab_cache, osh);
458 	}
459 	kmem_cache_destroy(conf->slab_cache);
460 
461 	/* Step 3.
462 	 * At this point, we are holding all the stripes so the array
463 	 * is completely stalled, so now is a good time to resize
464 	 * conf->disks.
465 	 */
466 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
467 	if (ndisks) {
468 		for (i=0; i<conf->raid_disks; i++)
469 			ndisks[i] = conf->disks[i];
470 		kfree(conf->disks);
471 		conf->disks = ndisks;
472 	} else
473 		err = -ENOMEM;
474 
475 	/* Step 4, return new stripes to service */
476 	while(!list_empty(&newstripes)) {
477 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
478 		list_del_init(&nsh->lru);
479 		for (i=conf->raid_disks; i < newsize; i++)
480 			if (nsh->dev[i].page == NULL) {
481 				struct page *p = alloc_page(GFP_NOIO);
482 				nsh->dev[i].page = p;
483 				if (!p)
484 					err = -ENOMEM;
485 			}
486 		release_stripe(nsh);
487 	}
488 	/* critical section pass, GFP_NOIO no longer needed */
489 
490 	conf->slab_cache = sc;
491 	conf->active_name = 1-conf->active_name;
492 	conf->pool_size = newsize;
493 	return err;
494 }
495 #endif
496 
497 static int drop_one_stripe(raid5_conf_t *conf)
498 {
499 	struct stripe_head *sh;
500 
501 	spin_lock_irq(&conf->device_lock);
502 	sh = get_free_stripe(conf);
503 	spin_unlock_irq(&conf->device_lock);
504 	if (!sh)
505 		return 0;
506 	BUG_ON(atomic_read(&sh->count));
507 	shrink_buffers(sh, conf->pool_size);
508 	kmem_cache_free(conf->slab_cache, sh);
509 	atomic_dec(&conf->active_stripes);
510 	return 1;
511 }
512 
513 static void shrink_stripes(raid5_conf_t *conf)
514 {
515 	while (drop_one_stripe(conf))
516 		;
517 
518 	if (conf->slab_cache)
519 		kmem_cache_destroy(conf->slab_cache);
520 	conf->slab_cache = NULL;
521 }
522 
523 static int raid5_end_read_request(struct bio * bi, unsigned int bytes_done,
524 				   int error)
525 {
526  	struct stripe_head *sh = bi->bi_private;
527 	raid5_conf_t *conf = sh->raid_conf;
528 	int disks = sh->disks, i;
529 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
530 	char b[BDEVNAME_SIZE];
531 	mdk_rdev_t *rdev;
532 
533 	if (bi->bi_size)
534 		return 1;
535 
536 	for (i=0 ; i<disks; i++)
537 		if (bi == &sh->dev[i].req)
538 			break;
539 
540 	PRINTK("end_read_request %llu/%d, count: %d, uptodate %d.\n",
541 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
542 		uptodate);
543 	if (i == disks) {
544 		BUG();
545 		return 0;
546 	}
547 
548 	if (uptodate) {
549 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
550 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
551 			rdev = conf->disks[i].rdev;
552 			printk(KERN_INFO "raid5:%s: read error corrected (%lu sectors at %llu on %s)\n",
553 			       mdname(conf->mddev), STRIPE_SECTORS,
554 			       (unsigned long long)sh->sector + rdev->data_offset,
555 			       bdevname(rdev->bdev, b));
556 			clear_bit(R5_ReadError, &sh->dev[i].flags);
557 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
558 		}
559 		if (atomic_read(&conf->disks[i].rdev->read_errors))
560 			atomic_set(&conf->disks[i].rdev->read_errors, 0);
561 	} else {
562 		const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
563 		int retry = 0;
564 		rdev = conf->disks[i].rdev;
565 
566 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
567 		atomic_inc(&rdev->read_errors);
568 		if (conf->mddev->degraded)
569 			printk(KERN_WARNING "raid5:%s: read error not correctable (sector %llu on %s).\n",
570 			       mdname(conf->mddev),
571 			       (unsigned long long)sh->sector + rdev->data_offset,
572 			       bdn);
573 		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
574 			/* Oh, no!!! */
575 			printk(KERN_WARNING "raid5:%s: read error NOT corrected!! (sector %llu on %s).\n",
576 			       mdname(conf->mddev),
577 			       (unsigned long long)sh->sector + rdev->data_offset,
578 			       bdn);
579 		else if (atomic_read(&rdev->read_errors)
580 			 > conf->max_nr_stripes)
581 			printk(KERN_WARNING
582 			       "raid5:%s: Too many read errors, failing device %s.\n",
583 			       mdname(conf->mddev), bdn);
584 		else
585 			retry = 1;
586 		if (retry)
587 			set_bit(R5_ReadError, &sh->dev[i].flags);
588 		else {
589 			clear_bit(R5_ReadError, &sh->dev[i].flags);
590 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
591 			md_error(conf->mddev, rdev);
592 		}
593 	}
594 	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
595 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
596 	set_bit(STRIPE_HANDLE, &sh->state);
597 	release_stripe(sh);
598 	return 0;
599 }
600 
601 static int raid5_end_write_request (struct bio *bi, unsigned int bytes_done,
602 				    int error)
603 {
604  	struct stripe_head *sh = bi->bi_private;
605 	raid5_conf_t *conf = sh->raid_conf;
606 	int disks = sh->disks, i;
607 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
608 
609 	if (bi->bi_size)
610 		return 1;
611 
612 	for (i=0 ; i<disks; i++)
613 		if (bi == &sh->dev[i].req)
614 			break;
615 
616 	PRINTK("end_write_request %llu/%d, count %d, uptodate: %d.\n",
617 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
618 		uptodate);
619 	if (i == disks) {
620 		BUG();
621 		return 0;
622 	}
623 
624 	if (!uptodate)
625 		md_error(conf->mddev, conf->disks[i].rdev);
626 
627 	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
628 
629 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
630 	set_bit(STRIPE_HANDLE, &sh->state);
631 	release_stripe(sh);
632 	return 0;
633 }
634 
635 
636 static sector_t compute_blocknr(struct stripe_head *sh, int i);
637 
638 static void raid5_build_block (struct stripe_head *sh, int i)
639 {
640 	struct r5dev *dev = &sh->dev[i];
641 
642 	bio_init(&dev->req);
643 	dev->req.bi_io_vec = &dev->vec;
644 	dev->req.bi_vcnt++;
645 	dev->req.bi_max_vecs++;
646 	dev->vec.bv_page = dev->page;
647 	dev->vec.bv_len = STRIPE_SIZE;
648 	dev->vec.bv_offset = 0;
649 
650 	dev->req.bi_sector = sh->sector;
651 	dev->req.bi_private = sh;
652 
653 	dev->flags = 0;
654 	dev->sector = compute_blocknr(sh, i);
655 }
656 
657 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
658 {
659 	char b[BDEVNAME_SIZE];
660 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
661 	PRINTK("raid5: error called\n");
662 
663 	if (!test_bit(Faulty, &rdev->flags)) {
664 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
665 		if (test_and_clear_bit(In_sync, &rdev->flags)) {
666 			unsigned long flags;
667 			spin_lock_irqsave(&conf->device_lock, flags);
668 			mddev->degraded++;
669 			spin_unlock_irqrestore(&conf->device_lock, flags);
670 			/*
671 			 * if recovery was running, make sure it aborts.
672 			 */
673 			set_bit(MD_RECOVERY_ERR, &mddev->recovery);
674 		}
675 		set_bit(Faulty, &rdev->flags);
676 		printk (KERN_ALERT
677 			"raid5: Disk failure on %s, disabling device."
678 			" Operation continuing on %d devices\n",
679 			bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
680 	}
681 }
682 
683 /*
684  * Input: a 'big' sector number,
685  * Output: index of the data and parity disk, and the sector # in them.
686  */
687 static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
688 			unsigned int data_disks, unsigned int * dd_idx,
689 			unsigned int * pd_idx, raid5_conf_t *conf)
690 {
691 	long stripe;
692 	unsigned long chunk_number;
693 	unsigned int chunk_offset;
694 	sector_t new_sector;
695 	int sectors_per_chunk = conf->chunk_size >> 9;
696 
697 	/* First compute the information on this sector */
698 
699 	/*
700 	 * Compute the chunk number and the sector offset inside the chunk
701 	 */
702 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
703 	chunk_number = r_sector;
704 	BUG_ON(r_sector != chunk_number);
705 
706 	/*
707 	 * Compute the stripe number
708 	 */
709 	stripe = chunk_number / data_disks;
710 
711 	/*
712 	 * Compute the data disk and parity disk indexes inside the stripe
713 	 */
714 	*dd_idx = chunk_number % data_disks;
715 
716 	/*
717 	 * Select the parity disk based on the user selected algorithm.
718 	 */
719 	switch(conf->level) {
720 	case 4:
721 		*pd_idx = data_disks;
722 		break;
723 	case 5:
724 		switch (conf->algorithm) {
725 		case ALGORITHM_LEFT_ASYMMETRIC:
726 			*pd_idx = data_disks - stripe % raid_disks;
727 			if (*dd_idx >= *pd_idx)
728 				(*dd_idx)++;
729 			break;
730 		case ALGORITHM_RIGHT_ASYMMETRIC:
731 			*pd_idx = stripe % raid_disks;
732 			if (*dd_idx >= *pd_idx)
733 				(*dd_idx)++;
734 			break;
735 		case ALGORITHM_LEFT_SYMMETRIC:
736 			*pd_idx = data_disks - stripe % raid_disks;
737 			*dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
738 			break;
739 		case ALGORITHM_RIGHT_SYMMETRIC:
740 			*pd_idx = stripe % raid_disks;
741 			*dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
742 			break;
743 		default:
744 			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
745 				conf->algorithm);
746 		}
747 		break;
748 	case 6:
749 
750 		/**** FIX THIS ****/
751 		switch (conf->algorithm) {
752 		case ALGORITHM_LEFT_ASYMMETRIC:
753 			*pd_idx = raid_disks - 1 - (stripe % raid_disks);
754 			if (*pd_idx == raid_disks-1)
755 				(*dd_idx)++; 	/* Q D D D P */
756 			else if (*dd_idx >= *pd_idx)
757 				(*dd_idx) += 2; /* D D P Q D */
758 			break;
759 		case ALGORITHM_RIGHT_ASYMMETRIC:
760 			*pd_idx = stripe % raid_disks;
761 			if (*pd_idx == raid_disks-1)
762 				(*dd_idx)++; 	/* Q D D D P */
763 			else if (*dd_idx >= *pd_idx)
764 				(*dd_idx) += 2; /* D D P Q D */
765 			break;
766 		case ALGORITHM_LEFT_SYMMETRIC:
767 			*pd_idx = raid_disks - 1 - (stripe % raid_disks);
768 			*dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
769 			break;
770 		case ALGORITHM_RIGHT_SYMMETRIC:
771 			*pd_idx = stripe % raid_disks;
772 			*dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
773 			break;
774 		default:
775 			printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
776 				conf->algorithm);
777 		}
778 		break;
779 	}
780 
781 	/*
782 	 * Finally, compute the new sector number
783 	 */
784 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
785 	return new_sector;
786 }
787 
788 
789 static sector_t compute_blocknr(struct stripe_head *sh, int i)
790 {
791 	raid5_conf_t *conf = sh->raid_conf;
792 	int raid_disks = sh->disks;
793 	int data_disks = raid_disks - conf->max_degraded;
794 	sector_t new_sector = sh->sector, check;
795 	int sectors_per_chunk = conf->chunk_size >> 9;
796 	sector_t stripe;
797 	int chunk_offset;
798 	int chunk_number, dummy1, dummy2, dd_idx = i;
799 	sector_t r_sector;
800 
801 
802 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
803 	stripe = new_sector;
804 	BUG_ON(new_sector != stripe);
805 
806 	if (i == sh->pd_idx)
807 		return 0;
808 	switch(conf->level) {
809 	case 4: break;
810 	case 5:
811 		switch (conf->algorithm) {
812 		case ALGORITHM_LEFT_ASYMMETRIC:
813 		case ALGORITHM_RIGHT_ASYMMETRIC:
814 			if (i > sh->pd_idx)
815 				i--;
816 			break;
817 		case ALGORITHM_LEFT_SYMMETRIC:
818 		case ALGORITHM_RIGHT_SYMMETRIC:
819 			if (i < sh->pd_idx)
820 				i += raid_disks;
821 			i -= (sh->pd_idx + 1);
822 			break;
823 		default:
824 			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
825 			       conf->algorithm);
826 		}
827 		break;
828 	case 6:
829 		if (i == raid6_next_disk(sh->pd_idx, raid_disks))
830 			return 0; /* It is the Q disk */
831 		switch (conf->algorithm) {
832 		case ALGORITHM_LEFT_ASYMMETRIC:
833 		case ALGORITHM_RIGHT_ASYMMETRIC:
834 		  	if (sh->pd_idx == raid_disks-1)
835 				i--; 	/* Q D D D P */
836 			else if (i > sh->pd_idx)
837 				i -= 2; /* D D P Q D */
838 			break;
839 		case ALGORITHM_LEFT_SYMMETRIC:
840 		case ALGORITHM_RIGHT_SYMMETRIC:
841 			if (sh->pd_idx == raid_disks-1)
842 				i--; /* Q D D D P */
843 			else {
844 				/* D D P Q D */
845 				if (i < sh->pd_idx)
846 					i += raid_disks;
847 				i -= (sh->pd_idx + 2);
848 			}
849 			break;
850 		default:
851 			printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
852 				conf->algorithm);
853 		}
854 		break;
855 	}
856 
857 	chunk_number = stripe * data_disks + i;
858 	r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
859 
860 	check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
861 	if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
862 		printk(KERN_ERR "compute_blocknr: map not correct\n");
863 		return 0;
864 	}
865 	return r_sector;
866 }
867 
868 
869 
870 /*
871  * Copy data between a page in the stripe cache, and one or more bion
872  * The page could align with the middle of the bio, or there could be
873  * several bion, each with several bio_vecs, which cover part of the page
874  * Multiple bion are linked together on bi_next.  There may be extras
875  * at the end of this list.  We ignore them.
876  */
877 static void copy_data(int frombio, struct bio *bio,
878 		     struct page *page,
879 		     sector_t sector)
880 {
881 	char *pa = page_address(page);
882 	struct bio_vec *bvl;
883 	int i;
884 	int page_offset;
885 
886 	if (bio->bi_sector >= sector)
887 		page_offset = (signed)(bio->bi_sector - sector) * 512;
888 	else
889 		page_offset = (signed)(sector - bio->bi_sector) * -512;
890 	bio_for_each_segment(bvl, bio, i) {
891 		int len = bio_iovec_idx(bio,i)->bv_len;
892 		int clen;
893 		int b_offset = 0;
894 
895 		if (page_offset < 0) {
896 			b_offset = -page_offset;
897 			page_offset += b_offset;
898 			len -= b_offset;
899 		}
900 
901 		if (len > 0 && page_offset + len > STRIPE_SIZE)
902 			clen = STRIPE_SIZE - page_offset;
903 		else clen = len;
904 
905 		if (clen > 0) {
906 			char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
907 			if (frombio)
908 				memcpy(pa+page_offset, ba+b_offset, clen);
909 			else
910 				memcpy(ba+b_offset, pa+page_offset, clen);
911 			__bio_kunmap_atomic(ba, KM_USER0);
912 		}
913 		if (clen < len) /* hit end of page */
914 			break;
915 		page_offset +=  len;
916 	}
917 }
918 
919 #define check_xor() 	do { 						\
920 			   if (count == MAX_XOR_BLOCKS) {		\
921 				xor_block(count, STRIPE_SIZE, ptr);	\
922 				count = 1;				\
923 			   }						\
924 			} while(0)
925 
926 
927 static void compute_block(struct stripe_head *sh, int dd_idx)
928 {
929 	int i, count, disks = sh->disks;
930 	void *ptr[MAX_XOR_BLOCKS], *p;
931 
932 	PRINTK("compute_block, stripe %llu, idx %d\n",
933 		(unsigned long long)sh->sector, dd_idx);
934 
935 	ptr[0] = page_address(sh->dev[dd_idx].page);
936 	memset(ptr[0], 0, STRIPE_SIZE);
937 	count = 1;
938 	for (i = disks ; i--; ) {
939 		if (i == dd_idx)
940 			continue;
941 		p = page_address(sh->dev[i].page);
942 		if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
943 			ptr[count++] = p;
944 		else
945 			printk(KERN_ERR "compute_block() %d, stripe %llu, %d"
946 				" not present\n", dd_idx,
947 				(unsigned long long)sh->sector, i);
948 
949 		check_xor();
950 	}
951 	if (count != 1)
952 		xor_block(count, STRIPE_SIZE, ptr);
953 	set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
954 }
955 
956 static void compute_parity5(struct stripe_head *sh, int method)
957 {
958 	raid5_conf_t *conf = sh->raid_conf;
959 	int i, pd_idx = sh->pd_idx, disks = sh->disks, count;
960 	void *ptr[MAX_XOR_BLOCKS];
961 	struct bio *chosen;
962 
963 	PRINTK("compute_parity5, stripe %llu, method %d\n",
964 		(unsigned long long)sh->sector, method);
965 
966 	count = 1;
967 	ptr[0] = page_address(sh->dev[pd_idx].page);
968 	switch(method) {
969 	case READ_MODIFY_WRITE:
970 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags));
971 		for (i=disks ; i-- ;) {
972 			if (i==pd_idx)
973 				continue;
974 			if (sh->dev[i].towrite &&
975 			    test_bit(R5_UPTODATE, &sh->dev[i].flags)) {
976 				ptr[count++] = page_address(sh->dev[i].page);
977 				chosen = sh->dev[i].towrite;
978 				sh->dev[i].towrite = NULL;
979 
980 				if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
981 					wake_up(&conf->wait_for_overlap);
982 
983 				BUG_ON(sh->dev[i].written);
984 				sh->dev[i].written = chosen;
985 				check_xor();
986 			}
987 		}
988 		break;
989 	case RECONSTRUCT_WRITE:
990 		memset(ptr[0], 0, STRIPE_SIZE);
991 		for (i= disks; i-- ;)
992 			if (i!=pd_idx && sh->dev[i].towrite) {
993 				chosen = sh->dev[i].towrite;
994 				sh->dev[i].towrite = NULL;
995 
996 				if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
997 					wake_up(&conf->wait_for_overlap);
998 
999 				BUG_ON(sh->dev[i].written);
1000 				sh->dev[i].written = chosen;
1001 			}
1002 		break;
1003 	case CHECK_PARITY:
1004 		break;
1005 	}
1006 	if (count>1) {
1007 		xor_block(count, STRIPE_SIZE, ptr);
1008 		count = 1;
1009 	}
1010 
1011 	for (i = disks; i--;)
1012 		if (sh->dev[i].written) {
1013 			sector_t sector = sh->dev[i].sector;
1014 			struct bio *wbi = sh->dev[i].written;
1015 			while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1016 				copy_data(1, wbi, sh->dev[i].page, sector);
1017 				wbi = r5_next_bio(wbi, sector);
1018 			}
1019 
1020 			set_bit(R5_LOCKED, &sh->dev[i].flags);
1021 			set_bit(R5_UPTODATE, &sh->dev[i].flags);
1022 		}
1023 
1024 	switch(method) {
1025 	case RECONSTRUCT_WRITE:
1026 	case CHECK_PARITY:
1027 		for (i=disks; i--;)
1028 			if (i != pd_idx) {
1029 				ptr[count++] = page_address(sh->dev[i].page);
1030 				check_xor();
1031 			}
1032 		break;
1033 	case READ_MODIFY_WRITE:
1034 		for (i = disks; i--;)
1035 			if (sh->dev[i].written) {
1036 				ptr[count++] = page_address(sh->dev[i].page);
1037 				check_xor();
1038 			}
1039 	}
1040 	if (count != 1)
1041 		xor_block(count, STRIPE_SIZE, ptr);
1042 
1043 	if (method != CHECK_PARITY) {
1044 		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1045 		set_bit(R5_LOCKED,   &sh->dev[pd_idx].flags);
1046 	} else
1047 		clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1048 }
1049 
1050 static void compute_parity6(struct stripe_head *sh, int method)
1051 {
1052 	raid6_conf_t *conf = sh->raid_conf;
1053 	int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = conf->raid_disks, count;
1054 	struct bio *chosen;
1055 	/**** FIX THIS: This could be very bad if disks is close to 256 ****/
1056 	void *ptrs[disks];
1057 
1058 	qd_idx = raid6_next_disk(pd_idx, disks);
1059 	d0_idx = raid6_next_disk(qd_idx, disks);
1060 
1061 	PRINTK("compute_parity, stripe %llu, method %d\n",
1062 		(unsigned long long)sh->sector, method);
1063 
1064 	switch(method) {
1065 	case READ_MODIFY_WRITE:
1066 		BUG();		/* READ_MODIFY_WRITE N/A for RAID-6 */
1067 	case RECONSTRUCT_WRITE:
1068 		for (i= disks; i-- ;)
1069 			if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1070 				chosen = sh->dev[i].towrite;
1071 				sh->dev[i].towrite = NULL;
1072 
1073 				if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1074 					wake_up(&conf->wait_for_overlap);
1075 
1076 				BUG_ON(sh->dev[i].written);
1077 				sh->dev[i].written = chosen;
1078 			}
1079 		break;
1080 	case CHECK_PARITY:
1081 		BUG();		/* Not implemented yet */
1082 	}
1083 
1084 	for (i = disks; i--;)
1085 		if (sh->dev[i].written) {
1086 			sector_t sector = sh->dev[i].sector;
1087 			struct bio *wbi = sh->dev[i].written;
1088 			while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1089 				copy_data(1, wbi, sh->dev[i].page, sector);
1090 				wbi = r5_next_bio(wbi, sector);
1091 			}
1092 
1093 			set_bit(R5_LOCKED, &sh->dev[i].flags);
1094 			set_bit(R5_UPTODATE, &sh->dev[i].flags);
1095 		}
1096 
1097 //	switch(method) {
1098 //	case RECONSTRUCT_WRITE:
1099 //	case CHECK_PARITY:
1100 //	case UPDATE_PARITY:
1101 		/* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1102 		/* FIX: Is this ordering of drives even remotely optimal? */
1103 		count = 0;
1104 		i = d0_idx;
1105 		do {
1106 			ptrs[count++] = page_address(sh->dev[i].page);
1107 			if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1108 				printk("block %d/%d not uptodate on parity calc\n", i,count);
1109 			i = raid6_next_disk(i, disks);
1110 		} while ( i != d0_idx );
1111 //		break;
1112 //	}
1113 
1114 	raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);
1115 
1116 	switch(method) {
1117 	case RECONSTRUCT_WRITE:
1118 		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1119 		set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1120 		set_bit(R5_LOCKED,   &sh->dev[pd_idx].flags);
1121 		set_bit(R5_LOCKED,   &sh->dev[qd_idx].flags);
1122 		break;
1123 	case UPDATE_PARITY:
1124 		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1125 		set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1126 		break;
1127 	}
1128 }
1129 
1130 
1131 /* Compute one missing block */
1132 static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1133 {
1134 	raid6_conf_t *conf = sh->raid_conf;
1135 	int i, count, disks = conf->raid_disks;
1136 	void *ptr[MAX_XOR_BLOCKS], *p;
1137 	int pd_idx = sh->pd_idx;
1138 	int qd_idx = raid6_next_disk(pd_idx, disks);
1139 
1140 	PRINTK("compute_block_1, stripe %llu, idx %d\n",
1141 		(unsigned long long)sh->sector, dd_idx);
1142 
1143 	if ( dd_idx == qd_idx ) {
1144 		/* We're actually computing the Q drive */
1145 		compute_parity6(sh, UPDATE_PARITY);
1146 	} else {
1147 		ptr[0] = page_address(sh->dev[dd_idx].page);
1148 		if (!nozero) memset(ptr[0], 0, STRIPE_SIZE);
1149 		count = 1;
1150 		for (i = disks ; i--; ) {
1151 			if (i == dd_idx || i == qd_idx)
1152 				continue;
1153 			p = page_address(sh->dev[i].page);
1154 			if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1155 				ptr[count++] = p;
1156 			else
1157 				printk("compute_block() %d, stripe %llu, %d"
1158 				       " not present\n", dd_idx,
1159 				       (unsigned long long)sh->sector, i);
1160 
1161 			check_xor();
1162 		}
1163 		if (count != 1)
1164 			xor_block(count, STRIPE_SIZE, ptr);
1165 		if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1166 		else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1167 	}
1168 }
1169 
1170 /* Compute two missing blocks */
1171 static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1172 {
1173 	raid6_conf_t *conf = sh->raid_conf;
1174 	int i, count, disks = conf->raid_disks;
1175 	int pd_idx = sh->pd_idx;
1176 	int qd_idx = raid6_next_disk(pd_idx, disks);
1177 	int d0_idx = raid6_next_disk(qd_idx, disks);
1178 	int faila, failb;
1179 
1180 	/* faila and failb are disk numbers relative to d0_idx */
1181 	/* pd_idx become disks-2 and qd_idx become disks-1 */
1182 	faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx;
1183 	failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx;
1184 
1185 	BUG_ON(faila == failb);
1186 	if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1187 
1188 	PRINTK("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1189 	       (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb);
1190 
1191 	if ( failb == disks-1 ) {
1192 		/* Q disk is one of the missing disks */
1193 		if ( faila == disks-2 ) {
1194 			/* Missing P+Q, just recompute */
1195 			compute_parity6(sh, UPDATE_PARITY);
1196 			return;
1197 		} else {
1198 			/* We're missing D+Q; recompute D from P */
1199 			compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0);
1200 			compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1201 			return;
1202 		}
1203 	}
1204 
1205 	/* We're missing D+P or D+D; build pointer table */
1206 	{
1207 		/**** FIX THIS: This could be very bad if disks is close to 256 ****/
1208 		void *ptrs[disks];
1209 
1210 		count = 0;
1211 		i = d0_idx;
1212 		do {
1213 			ptrs[count++] = page_address(sh->dev[i].page);
1214 			i = raid6_next_disk(i, disks);
1215 			if (i != dd_idx1 && i != dd_idx2 &&
1216 			    !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1217 				printk("compute_2 with missing block %d/%d\n", count, i);
1218 		} while ( i != d0_idx );
1219 
1220 		if ( failb == disks-2 ) {
1221 			/* We're missing D+P. */
1222 			raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
1223 		} else {
1224 			/* We're missing D+D. */
1225 			raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
1226 		}
1227 
1228 		/* Both the above update both missing blocks */
1229 		set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1230 		set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1231 	}
1232 }
1233 
1234 
1235 
1236 /*
1237  * Each stripe/dev can have one or more bion attached.
1238  * toread/towrite point to the first in a chain.
1239  * The bi_next chain must be in order.
1240  */
1241 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1242 {
1243 	struct bio **bip;
1244 	raid5_conf_t *conf = sh->raid_conf;
1245 	int firstwrite=0;
1246 
1247 	PRINTK("adding bh b#%llu to stripe s#%llu\n",
1248 		(unsigned long long)bi->bi_sector,
1249 		(unsigned long long)sh->sector);
1250 
1251 
1252 	spin_lock(&sh->lock);
1253 	spin_lock_irq(&conf->device_lock);
1254 	if (forwrite) {
1255 		bip = &sh->dev[dd_idx].towrite;
1256 		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1257 			firstwrite = 1;
1258 	} else
1259 		bip = &sh->dev[dd_idx].toread;
1260 	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1261 		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1262 			goto overlap;
1263 		bip = & (*bip)->bi_next;
1264 	}
1265 	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1266 		goto overlap;
1267 
1268 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1269 	if (*bip)
1270 		bi->bi_next = *bip;
1271 	*bip = bi;
1272 	bi->bi_phys_segments ++;
1273 	spin_unlock_irq(&conf->device_lock);
1274 	spin_unlock(&sh->lock);
1275 
1276 	PRINTK("added bi b#%llu to stripe s#%llu, disk %d.\n",
1277 		(unsigned long long)bi->bi_sector,
1278 		(unsigned long long)sh->sector, dd_idx);
1279 
1280 	if (conf->mddev->bitmap && firstwrite) {
1281 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1282 				  STRIPE_SECTORS, 0);
1283 		sh->bm_seq = conf->seq_flush+1;
1284 		set_bit(STRIPE_BIT_DELAY, &sh->state);
1285 	}
1286 
1287 	if (forwrite) {
1288 		/* check if page is covered */
1289 		sector_t sector = sh->dev[dd_idx].sector;
1290 		for (bi=sh->dev[dd_idx].towrite;
1291 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1292 			     bi && bi->bi_sector <= sector;
1293 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1294 			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1295 				sector = bi->bi_sector + (bi->bi_size>>9);
1296 		}
1297 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1298 			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1299 	}
1300 	return 1;
1301 
1302  overlap:
1303 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1304 	spin_unlock_irq(&conf->device_lock);
1305 	spin_unlock(&sh->lock);
1306 	return 0;
1307 }
1308 
1309 static void end_reshape(raid5_conf_t *conf);
1310 
1311 static int page_is_zero(struct page *p)
1312 {
1313 	char *a = page_address(p);
1314 	return ((*(u32*)a) == 0 &&
1315 		memcmp(a, a+4, STRIPE_SIZE-4)==0);
1316 }
1317 
1318 static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks)
1319 {
1320 	int sectors_per_chunk = conf->chunk_size >> 9;
1321 	int pd_idx, dd_idx;
1322 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
1323 
1324 	raid5_compute_sector(stripe * (disks - conf->max_degraded)
1325 			     *sectors_per_chunk + chunk_offset,
1326 			     disks, disks - conf->max_degraded,
1327 			     &dd_idx, &pd_idx, conf);
1328 	return pd_idx;
1329 }
1330 
1331 
1332 /*
1333  * handle_stripe - do things to a stripe.
1334  *
1335  * We lock the stripe and then examine the state of various bits
1336  * to see what needs to be done.
1337  * Possible results:
1338  *    return some read request which now have data
1339  *    return some write requests which are safely on disc
1340  *    schedule a read on some buffers
1341  *    schedule a write of some buffers
1342  *    return confirmation of parity correctness
1343  *
1344  * Parity calculations are done inside the stripe lock
1345  * buffers are taken off read_list or write_list, and bh_cache buffers
1346  * get BH_Lock set before the stripe lock is released.
1347  *
1348  */
1349 
1350 static void handle_stripe5(struct stripe_head *sh)
1351 {
1352 	raid5_conf_t *conf = sh->raid_conf;
1353 	int disks = sh->disks;
1354 	struct bio *return_bi= NULL;
1355 	struct bio *bi;
1356 	int i;
1357 	int syncing, expanding, expanded;
1358 	int locked=0, uptodate=0, to_read=0, to_write=0, failed=0, written=0;
1359 	int non_overwrite = 0;
1360 	int failed_num=0;
1361 	struct r5dev *dev;
1362 
1363 	PRINTK("handling stripe %llu, cnt=%d, pd_idx=%d\n",
1364 		(unsigned long long)sh->sector, atomic_read(&sh->count),
1365 		sh->pd_idx);
1366 
1367 	spin_lock(&sh->lock);
1368 	clear_bit(STRIPE_HANDLE, &sh->state);
1369 	clear_bit(STRIPE_DELAYED, &sh->state);
1370 
1371 	syncing = test_bit(STRIPE_SYNCING, &sh->state);
1372 	expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
1373 	expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
1374 	/* Now to look around and see what can be done */
1375 
1376 	rcu_read_lock();
1377 	for (i=disks; i--; ) {
1378 		mdk_rdev_t *rdev;
1379 		dev = &sh->dev[i];
1380 		clear_bit(R5_Insync, &dev->flags);
1381 
1382 		PRINTK("check %d: state 0x%lx read %p write %p written %p\n",
1383 			i, dev->flags, dev->toread, dev->towrite, dev->written);
1384 		/* maybe we can reply to a read */
1385 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
1386 			struct bio *rbi, *rbi2;
1387 			PRINTK("Return read for disc %d\n", i);
1388 			spin_lock_irq(&conf->device_lock);
1389 			rbi = dev->toread;
1390 			dev->toread = NULL;
1391 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
1392 				wake_up(&conf->wait_for_overlap);
1393 			spin_unlock_irq(&conf->device_lock);
1394 			while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
1395 				copy_data(0, rbi, dev->page, dev->sector);
1396 				rbi2 = r5_next_bio(rbi, dev->sector);
1397 				spin_lock_irq(&conf->device_lock);
1398 				if (--rbi->bi_phys_segments == 0) {
1399 					rbi->bi_next = return_bi;
1400 					return_bi = rbi;
1401 				}
1402 				spin_unlock_irq(&conf->device_lock);
1403 				rbi = rbi2;
1404 			}
1405 		}
1406 
1407 		/* now count some things */
1408 		if (test_bit(R5_LOCKED, &dev->flags)) locked++;
1409 		if (test_bit(R5_UPTODATE, &dev->flags)) uptodate++;
1410 
1411 
1412 		if (dev->toread) to_read++;
1413 		if (dev->towrite) {
1414 			to_write++;
1415 			if (!test_bit(R5_OVERWRITE, &dev->flags))
1416 				non_overwrite++;
1417 		}
1418 		if (dev->written) written++;
1419 		rdev = rcu_dereference(conf->disks[i].rdev);
1420 		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
1421 			/* The ReadError flag will just be confusing now */
1422 			clear_bit(R5_ReadError, &dev->flags);
1423 			clear_bit(R5_ReWrite, &dev->flags);
1424 		}
1425 		if (!rdev || !test_bit(In_sync, &rdev->flags)
1426 		    || test_bit(R5_ReadError, &dev->flags)) {
1427 			failed++;
1428 			failed_num = i;
1429 		} else
1430 			set_bit(R5_Insync, &dev->flags);
1431 	}
1432 	rcu_read_unlock();
1433 	PRINTK("locked=%d uptodate=%d to_read=%d"
1434 		" to_write=%d failed=%d failed_num=%d\n",
1435 		locked, uptodate, to_read, to_write, failed, failed_num);
1436 	/* check if the array has lost two devices and, if so, some requests might
1437 	 * need to be failed
1438 	 */
1439 	if (failed > 1 && to_read+to_write+written) {
1440 		for (i=disks; i--; ) {
1441 			int bitmap_end = 0;
1442 
1443 			if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1444 				mdk_rdev_t *rdev;
1445 				rcu_read_lock();
1446 				rdev = rcu_dereference(conf->disks[i].rdev);
1447 				if (rdev && test_bit(In_sync, &rdev->flags))
1448 					/* multiple read failures in one stripe */
1449 					md_error(conf->mddev, rdev);
1450 				rcu_read_unlock();
1451 			}
1452 
1453 			spin_lock_irq(&conf->device_lock);
1454 			/* fail all writes first */
1455 			bi = sh->dev[i].towrite;
1456 			sh->dev[i].towrite = NULL;
1457 			if (bi) { to_write--; bitmap_end = 1; }
1458 
1459 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1460 				wake_up(&conf->wait_for_overlap);
1461 
1462 			while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
1463 				struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1464 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
1465 				if (--bi->bi_phys_segments == 0) {
1466 					md_write_end(conf->mddev);
1467 					bi->bi_next = return_bi;
1468 					return_bi = bi;
1469 				}
1470 				bi = nextbi;
1471 			}
1472 			/* and fail all 'written' */
1473 			bi = sh->dev[i].written;
1474 			sh->dev[i].written = NULL;
1475 			if (bi) bitmap_end = 1;
1476 			while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS) {
1477 				struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
1478 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
1479 				if (--bi->bi_phys_segments == 0) {
1480 					md_write_end(conf->mddev);
1481 					bi->bi_next = return_bi;
1482 					return_bi = bi;
1483 				}
1484 				bi = bi2;
1485 			}
1486 
1487 			/* fail any reads if this device is non-operational */
1488 			if (!test_bit(R5_Insync, &sh->dev[i].flags) ||
1489 			    test_bit(R5_ReadError, &sh->dev[i].flags)) {
1490 				bi = sh->dev[i].toread;
1491 				sh->dev[i].toread = NULL;
1492 				if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1493 					wake_up(&conf->wait_for_overlap);
1494 				if (bi) to_read--;
1495 				while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
1496 					struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1497 					clear_bit(BIO_UPTODATE, &bi->bi_flags);
1498 					if (--bi->bi_phys_segments == 0) {
1499 						bi->bi_next = return_bi;
1500 						return_bi = bi;
1501 					}
1502 					bi = nextbi;
1503 				}
1504 			}
1505 			spin_unlock_irq(&conf->device_lock);
1506 			if (bitmap_end)
1507 				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1508 						STRIPE_SECTORS, 0, 0);
1509 		}
1510 	}
1511 	if (failed > 1 && syncing) {
1512 		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
1513 		clear_bit(STRIPE_SYNCING, &sh->state);
1514 		syncing = 0;
1515 	}
1516 
1517 	/* might be able to return some write requests if the parity block
1518 	 * is safe, or on a failed drive
1519 	 */
1520 	dev = &sh->dev[sh->pd_idx];
1521 	if ( written &&
1522 	     ( (test_bit(R5_Insync, &dev->flags) && !test_bit(R5_LOCKED, &dev->flags) &&
1523 		test_bit(R5_UPTODATE, &dev->flags))
1524 	       || (failed == 1 && failed_num == sh->pd_idx))
1525 	    ) {
1526 	    /* any written block on an uptodate or failed drive can be returned.
1527 	     * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
1528 	     * never LOCKED, so we don't need to test 'failed' directly.
1529 	     */
1530 	    for (i=disks; i--; )
1531 		if (sh->dev[i].written) {
1532 		    dev = &sh->dev[i];
1533 		    if (!test_bit(R5_LOCKED, &dev->flags) &&
1534 			 test_bit(R5_UPTODATE, &dev->flags) ) {
1535 			/* We can return any write requests */
1536 			    struct bio *wbi, *wbi2;
1537 			    int bitmap_end = 0;
1538 			    PRINTK("Return write for disc %d\n", i);
1539 			    spin_lock_irq(&conf->device_lock);
1540 			    wbi = dev->written;
1541 			    dev->written = NULL;
1542 			    while (wbi && wbi->bi_sector < dev->sector + STRIPE_SECTORS) {
1543 				    wbi2 = r5_next_bio(wbi, dev->sector);
1544 				    if (--wbi->bi_phys_segments == 0) {
1545 					    md_write_end(conf->mddev);
1546 					    wbi->bi_next = return_bi;
1547 					    return_bi = wbi;
1548 				    }
1549 				    wbi = wbi2;
1550 			    }
1551 			    if (dev->towrite == NULL)
1552 				    bitmap_end = 1;
1553 			    spin_unlock_irq(&conf->device_lock);
1554 			    if (bitmap_end)
1555 				    bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1556 						    STRIPE_SECTORS,
1557 						    !test_bit(STRIPE_DEGRADED, &sh->state), 0);
1558 		    }
1559 		}
1560 	}
1561 
1562 	/* Now we might consider reading some blocks, either to check/generate
1563 	 * parity, or to satisfy requests
1564 	 * or to load a block that is being partially written.
1565 	 */
1566 	if (to_read || non_overwrite || (syncing && (uptodate < disks)) || expanding) {
1567 		for (i=disks; i--;) {
1568 			dev = &sh->dev[i];
1569 			if (!test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
1570 			    (dev->toread ||
1571 			     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
1572 			     syncing ||
1573 			     expanding ||
1574 			     (failed && (sh->dev[failed_num].toread ||
1575 					 (sh->dev[failed_num].towrite && !test_bit(R5_OVERWRITE, &sh->dev[failed_num].flags))))
1576 				    )
1577 				) {
1578 				/* we would like to get this block, possibly
1579 				 * by computing it, but we might not be able to
1580 				 */
1581 				if (uptodate == disks-1) {
1582 					PRINTK("Computing block %d\n", i);
1583 					compute_block(sh, i);
1584 					uptodate++;
1585 				} else if (test_bit(R5_Insync, &dev->flags)) {
1586 					set_bit(R5_LOCKED, &dev->flags);
1587 					set_bit(R5_Wantread, &dev->flags);
1588 					locked++;
1589 					PRINTK("Reading block %d (sync=%d)\n",
1590 						i, syncing);
1591 				}
1592 			}
1593 		}
1594 		set_bit(STRIPE_HANDLE, &sh->state);
1595 	}
1596 
1597 	/* now to consider writing and what else, if anything should be read */
1598 	if (to_write) {
1599 		int rmw=0, rcw=0;
1600 		for (i=disks ; i--;) {
1601 			/* would I have to read this buffer for read_modify_write */
1602 			dev = &sh->dev[i];
1603 			if ((dev->towrite || i == sh->pd_idx) &&
1604 			    (!test_bit(R5_LOCKED, &dev->flags)
1605 				    ) &&
1606 			    !test_bit(R5_UPTODATE, &dev->flags)) {
1607 				if (test_bit(R5_Insync, &dev->flags)
1608 /*				    && !(!mddev->insync && i == sh->pd_idx) */
1609 					)
1610 					rmw++;
1611 				else rmw += 2*disks;  /* cannot read it */
1612 			}
1613 			/* Would I have to read this buffer for reconstruct_write */
1614 			if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
1615 			    (!test_bit(R5_LOCKED, &dev->flags)
1616 				    ) &&
1617 			    !test_bit(R5_UPTODATE, &dev->flags)) {
1618 				if (test_bit(R5_Insync, &dev->flags)) rcw++;
1619 				else rcw += 2*disks;
1620 			}
1621 		}
1622 		PRINTK("for sector %llu, rmw=%d rcw=%d\n",
1623 			(unsigned long long)sh->sector, rmw, rcw);
1624 		set_bit(STRIPE_HANDLE, &sh->state);
1625 		if (rmw < rcw && rmw > 0)
1626 			/* prefer read-modify-write, but need to get some data */
1627 			for (i=disks; i--;) {
1628 				dev = &sh->dev[i];
1629 				if ((dev->towrite || i == sh->pd_idx) &&
1630 				    !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
1631 				    test_bit(R5_Insync, &dev->flags)) {
1632 					if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
1633 					{
1634 						PRINTK("Read_old block %d for r-m-w\n", i);
1635 						set_bit(R5_LOCKED, &dev->flags);
1636 						set_bit(R5_Wantread, &dev->flags);
1637 						locked++;
1638 					} else {
1639 						set_bit(STRIPE_DELAYED, &sh->state);
1640 						set_bit(STRIPE_HANDLE, &sh->state);
1641 					}
1642 				}
1643 			}
1644 		if (rcw <= rmw && rcw > 0)
1645 			/* want reconstruct write, but need to get some data */
1646 			for (i=disks; i--;) {
1647 				dev = &sh->dev[i];
1648 				if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
1649 				    !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
1650 				    test_bit(R5_Insync, &dev->flags)) {
1651 					if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
1652 					{
1653 						PRINTK("Read_old block %d for Reconstruct\n", i);
1654 						set_bit(R5_LOCKED, &dev->flags);
1655 						set_bit(R5_Wantread, &dev->flags);
1656 						locked++;
1657 					} else {
1658 						set_bit(STRIPE_DELAYED, &sh->state);
1659 						set_bit(STRIPE_HANDLE, &sh->state);
1660 					}
1661 				}
1662 			}
1663 		/* now if nothing is locked, and if we have enough data, we can start a write request */
1664 		if (locked == 0 && (rcw == 0 ||rmw == 0) &&
1665 		    !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
1666 			PRINTK("Computing parity...\n");
1667 			compute_parity5(sh, rcw==0 ? RECONSTRUCT_WRITE : READ_MODIFY_WRITE);
1668 			/* now every locked buffer is ready to be written */
1669 			for (i=disks; i--;)
1670 				if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
1671 					PRINTK("Writing block %d\n", i);
1672 					locked++;
1673 					set_bit(R5_Wantwrite, &sh->dev[i].flags);
1674 					if (!test_bit(R5_Insync, &sh->dev[i].flags)
1675 					    || (i==sh->pd_idx && failed == 0))
1676 						set_bit(STRIPE_INSYNC, &sh->state);
1677 				}
1678 			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
1679 				atomic_dec(&conf->preread_active_stripes);
1680 				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
1681 					md_wakeup_thread(conf->mddev->thread);
1682 			}
1683 		}
1684 	}
1685 
1686 	/* maybe we need to check and possibly fix the parity for this stripe
1687 	 * Any reads will already have been scheduled, so we just see if enough data
1688 	 * is available
1689 	 */
1690 	if (syncing && locked == 0 &&
1691 	    !test_bit(STRIPE_INSYNC, &sh->state)) {
1692 		set_bit(STRIPE_HANDLE, &sh->state);
1693 		if (failed == 0) {
1694 			BUG_ON(uptodate != disks);
1695 			compute_parity5(sh, CHECK_PARITY);
1696 			uptodate--;
1697 			if (page_is_zero(sh->dev[sh->pd_idx].page)) {
1698 				/* parity is correct (on disc, not in buffer any more) */
1699 				set_bit(STRIPE_INSYNC, &sh->state);
1700 			} else {
1701 				conf->mddev->resync_mismatches += STRIPE_SECTORS;
1702 				if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
1703 					/* don't try to repair!! */
1704 					set_bit(STRIPE_INSYNC, &sh->state);
1705 				else {
1706 					compute_block(sh, sh->pd_idx);
1707 					uptodate++;
1708 				}
1709 			}
1710 		}
1711 		if (!test_bit(STRIPE_INSYNC, &sh->state)) {
1712 			/* either failed parity check, or recovery is happening */
1713 			if (failed==0)
1714 				failed_num = sh->pd_idx;
1715 			dev = &sh->dev[failed_num];
1716 			BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
1717 			BUG_ON(uptodate != disks);
1718 
1719 			set_bit(R5_LOCKED, &dev->flags);
1720 			set_bit(R5_Wantwrite, &dev->flags);
1721 			clear_bit(STRIPE_DEGRADED, &sh->state);
1722 			locked++;
1723 			set_bit(STRIPE_INSYNC, &sh->state);
1724 		}
1725 	}
1726 	if (syncing && locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
1727 		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
1728 		clear_bit(STRIPE_SYNCING, &sh->state);
1729 	}
1730 
1731 	/* If the failed drive is just a ReadError, then we might need to progress
1732 	 * the repair/check process
1733 	 */
1734 	if (failed == 1 && ! conf->mddev->ro &&
1735 	    test_bit(R5_ReadError, &sh->dev[failed_num].flags)
1736 	    && !test_bit(R5_LOCKED, &sh->dev[failed_num].flags)
1737 	    && test_bit(R5_UPTODATE, &sh->dev[failed_num].flags)
1738 		) {
1739 		dev = &sh->dev[failed_num];
1740 		if (!test_bit(R5_ReWrite, &dev->flags)) {
1741 			set_bit(R5_Wantwrite, &dev->flags);
1742 			set_bit(R5_ReWrite, &dev->flags);
1743 			set_bit(R5_LOCKED, &dev->flags);
1744 			locked++;
1745 		} else {
1746 			/* let's read it back */
1747 			set_bit(R5_Wantread, &dev->flags);
1748 			set_bit(R5_LOCKED, &dev->flags);
1749 			locked++;
1750 		}
1751 	}
1752 
1753 	if (expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
1754 		/* Need to write out all blocks after computing parity */
1755 		sh->disks = conf->raid_disks;
1756 		sh->pd_idx = stripe_to_pdidx(sh->sector, conf, conf->raid_disks);
1757 		compute_parity5(sh, RECONSTRUCT_WRITE);
1758 		for (i= conf->raid_disks; i--;) {
1759 			set_bit(R5_LOCKED, &sh->dev[i].flags);
1760 			locked++;
1761 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
1762 		}
1763 		clear_bit(STRIPE_EXPANDING, &sh->state);
1764 	} else if (expanded) {
1765 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
1766 		atomic_dec(&conf->reshape_stripes);
1767 		wake_up(&conf->wait_for_overlap);
1768 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
1769 	}
1770 
1771 	if (expanding && locked == 0) {
1772 		/* We have read all the blocks in this stripe and now we need to
1773 		 * copy some of them into a target stripe for expand.
1774 		 */
1775 		clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
1776 		for (i=0; i< sh->disks; i++)
1777 			if (i != sh->pd_idx) {
1778 				int dd_idx, pd_idx, j;
1779 				struct stripe_head *sh2;
1780 
1781 				sector_t bn = compute_blocknr(sh, i);
1782 				sector_t s = raid5_compute_sector(bn, conf->raid_disks,
1783 								  conf->raid_disks-1,
1784 								  &dd_idx, &pd_idx, conf);
1785 				sh2 = get_active_stripe(conf, s, conf->raid_disks, pd_idx, 1);
1786 				if (sh2 == NULL)
1787 					/* so far only the early blocks of this stripe
1788 					 * have been requested.  When later blocks
1789 					 * get requested, we will try again
1790 					 */
1791 					continue;
1792 				if(!test_bit(STRIPE_EXPANDING, &sh2->state) ||
1793 				   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
1794 					/* must have already done this block */
1795 					release_stripe(sh2);
1796 					continue;
1797 				}
1798 				memcpy(page_address(sh2->dev[dd_idx].page),
1799 				       page_address(sh->dev[i].page),
1800 				       STRIPE_SIZE);
1801 				set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
1802 				set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
1803 				for (j=0; j<conf->raid_disks; j++)
1804 					if (j != sh2->pd_idx &&
1805 					    !test_bit(R5_Expanded, &sh2->dev[j].flags))
1806 						break;
1807 				if (j == conf->raid_disks) {
1808 					set_bit(STRIPE_EXPAND_READY, &sh2->state);
1809 					set_bit(STRIPE_HANDLE, &sh2->state);
1810 				}
1811 				release_stripe(sh2);
1812 			}
1813 	}
1814 
1815 	spin_unlock(&sh->lock);
1816 
1817 	while ((bi=return_bi)) {
1818 		int bytes = bi->bi_size;
1819 
1820 		return_bi = bi->bi_next;
1821 		bi->bi_next = NULL;
1822 		bi->bi_size = 0;
1823 		bi->bi_end_io(bi, bytes,
1824 			      test_bit(BIO_UPTODATE, &bi->bi_flags)
1825 			        ? 0 : -EIO);
1826 	}
1827 	for (i=disks; i-- ;) {
1828 		int rw;
1829 		struct bio *bi;
1830 		mdk_rdev_t *rdev;
1831 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
1832 			rw = WRITE;
1833 		else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1834 			rw = READ;
1835 		else
1836 			continue;
1837 
1838 		bi = &sh->dev[i].req;
1839 
1840 		bi->bi_rw = rw;
1841 		if (rw == WRITE)
1842 			bi->bi_end_io = raid5_end_write_request;
1843 		else
1844 			bi->bi_end_io = raid5_end_read_request;
1845 
1846 		rcu_read_lock();
1847 		rdev = rcu_dereference(conf->disks[i].rdev);
1848 		if (rdev && test_bit(Faulty, &rdev->flags))
1849 			rdev = NULL;
1850 		if (rdev)
1851 			atomic_inc(&rdev->nr_pending);
1852 		rcu_read_unlock();
1853 
1854 		if (rdev) {
1855 			if (syncing || expanding || expanded)
1856 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1857 
1858 			bi->bi_bdev = rdev->bdev;
1859 			PRINTK("for %llu schedule op %ld on disc %d\n",
1860 				(unsigned long long)sh->sector, bi->bi_rw, i);
1861 			atomic_inc(&sh->count);
1862 			bi->bi_sector = sh->sector + rdev->data_offset;
1863 			bi->bi_flags = 1 << BIO_UPTODATE;
1864 			bi->bi_vcnt = 1;
1865 			bi->bi_max_vecs = 1;
1866 			bi->bi_idx = 0;
1867 			bi->bi_io_vec = &sh->dev[i].vec;
1868 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1869 			bi->bi_io_vec[0].bv_offset = 0;
1870 			bi->bi_size = STRIPE_SIZE;
1871 			bi->bi_next = NULL;
1872 			if (rw == WRITE &&
1873 			    test_bit(R5_ReWrite, &sh->dev[i].flags))
1874 				atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1875 			generic_make_request(bi);
1876 		} else {
1877 			if (rw == WRITE)
1878 				set_bit(STRIPE_DEGRADED, &sh->state);
1879 			PRINTK("skip op %ld on disc %d for sector %llu\n",
1880 				bi->bi_rw, i, (unsigned long long)sh->sector);
1881 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
1882 			set_bit(STRIPE_HANDLE, &sh->state);
1883 		}
1884 	}
1885 }
1886 
1887 static void handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
1888 {
1889 	raid6_conf_t *conf = sh->raid_conf;
1890 	int disks = conf->raid_disks;
1891 	struct bio *return_bi= NULL;
1892 	struct bio *bi;
1893 	int i;
1894 	int syncing;
1895 	int locked=0, uptodate=0, to_read=0, to_write=0, failed=0, written=0;
1896 	int non_overwrite = 0;
1897 	int failed_num[2] = {0, 0};
1898 	struct r5dev *dev, *pdev, *qdev;
1899 	int pd_idx = sh->pd_idx;
1900 	int qd_idx = raid6_next_disk(pd_idx, disks);
1901 	int p_failed, q_failed;
1902 
1903 	PRINTK("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d, qd_idx=%d\n",
1904 	       (unsigned long long)sh->sector, sh->state, atomic_read(&sh->count),
1905 	       pd_idx, qd_idx);
1906 
1907 	spin_lock(&sh->lock);
1908 	clear_bit(STRIPE_HANDLE, &sh->state);
1909 	clear_bit(STRIPE_DELAYED, &sh->state);
1910 
1911 	syncing = test_bit(STRIPE_SYNCING, &sh->state);
1912 	/* Now to look around and see what can be done */
1913 
1914 	rcu_read_lock();
1915 	for (i=disks; i--; ) {
1916 		mdk_rdev_t *rdev;
1917 		dev = &sh->dev[i];
1918 		clear_bit(R5_Insync, &dev->flags);
1919 
1920 		PRINTK("check %d: state 0x%lx read %p write %p written %p\n",
1921 			i, dev->flags, dev->toread, dev->towrite, dev->written);
1922 		/* maybe we can reply to a read */
1923 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
1924 			struct bio *rbi, *rbi2;
1925 			PRINTK("Return read for disc %d\n", i);
1926 			spin_lock_irq(&conf->device_lock);
1927 			rbi = dev->toread;
1928 			dev->toread = NULL;
1929 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
1930 				wake_up(&conf->wait_for_overlap);
1931 			spin_unlock_irq(&conf->device_lock);
1932 			while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
1933 				copy_data(0, rbi, dev->page, dev->sector);
1934 				rbi2 = r5_next_bio(rbi, dev->sector);
1935 				spin_lock_irq(&conf->device_lock);
1936 				if (--rbi->bi_phys_segments == 0) {
1937 					rbi->bi_next = return_bi;
1938 					return_bi = rbi;
1939 				}
1940 				spin_unlock_irq(&conf->device_lock);
1941 				rbi = rbi2;
1942 			}
1943 		}
1944 
1945 		/* now count some things */
1946 		if (test_bit(R5_LOCKED, &dev->flags)) locked++;
1947 		if (test_bit(R5_UPTODATE, &dev->flags)) uptodate++;
1948 
1949 
1950 		if (dev->toread) to_read++;
1951 		if (dev->towrite) {
1952 			to_write++;
1953 			if (!test_bit(R5_OVERWRITE, &dev->flags))
1954 				non_overwrite++;
1955 		}
1956 		if (dev->written) written++;
1957 		rdev = rcu_dereference(conf->disks[i].rdev);
1958 		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
1959 			/* The ReadError flag will just be confusing now */
1960 			clear_bit(R5_ReadError, &dev->flags);
1961 			clear_bit(R5_ReWrite, &dev->flags);
1962 		}
1963 		if (!rdev || !test_bit(In_sync, &rdev->flags)
1964 		    || test_bit(R5_ReadError, &dev->flags)) {
1965 			if ( failed < 2 )
1966 				failed_num[failed] = i;
1967 			failed++;
1968 		} else
1969 			set_bit(R5_Insync, &dev->flags);
1970 	}
1971 	rcu_read_unlock();
1972 	PRINTK("locked=%d uptodate=%d to_read=%d"
1973 	       " to_write=%d failed=%d failed_num=%d,%d\n",
1974 	       locked, uptodate, to_read, to_write, failed,
1975 	       failed_num[0], failed_num[1]);
1976 	/* check if the array has lost >2 devices and, if so, some requests might
1977 	 * need to be failed
1978 	 */
1979 	if (failed > 2 && to_read+to_write+written) {
1980 		for (i=disks; i--; ) {
1981 			int bitmap_end = 0;
1982 
1983 			if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1984 				mdk_rdev_t *rdev;
1985 				rcu_read_lock();
1986 				rdev = rcu_dereference(conf->disks[i].rdev);
1987 				if (rdev && test_bit(In_sync, &rdev->flags))
1988 					/* multiple read failures in one stripe */
1989 					md_error(conf->mddev, rdev);
1990 				rcu_read_unlock();
1991 			}
1992 
1993 			spin_lock_irq(&conf->device_lock);
1994 			/* fail all writes first */
1995 			bi = sh->dev[i].towrite;
1996 			sh->dev[i].towrite = NULL;
1997 			if (bi) { to_write--; bitmap_end = 1; }
1998 
1999 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2000 				wake_up(&conf->wait_for_overlap);
2001 
2002 			while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
2003 				struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2004 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2005 				if (--bi->bi_phys_segments == 0) {
2006 					md_write_end(conf->mddev);
2007 					bi->bi_next = return_bi;
2008 					return_bi = bi;
2009 				}
2010 				bi = nextbi;
2011 			}
2012 			/* and fail all 'written' */
2013 			bi = sh->dev[i].written;
2014 			sh->dev[i].written = NULL;
2015 			if (bi) bitmap_end = 1;
2016 			while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS) {
2017 				struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2018 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2019 				if (--bi->bi_phys_segments == 0) {
2020 					md_write_end(conf->mddev);
2021 					bi->bi_next = return_bi;
2022 					return_bi = bi;
2023 				}
2024 				bi = bi2;
2025 			}
2026 
2027 			/* fail any reads if this device is non-operational */
2028 			if (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2029 			    test_bit(R5_ReadError, &sh->dev[i].flags)) {
2030 				bi = sh->dev[i].toread;
2031 				sh->dev[i].toread = NULL;
2032 				if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2033 					wake_up(&conf->wait_for_overlap);
2034 				if (bi) to_read--;
2035 				while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
2036 					struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2037 					clear_bit(BIO_UPTODATE, &bi->bi_flags);
2038 					if (--bi->bi_phys_segments == 0) {
2039 						bi->bi_next = return_bi;
2040 						return_bi = bi;
2041 					}
2042 					bi = nextbi;
2043 				}
2044 			}
2045 			spin_unlock_irq(&conf->device_lock);
2046 			if (bitmap_end)
2047 				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2048 						STRIPE_SECTORS, 0, 0);
2049 		}
2050 	}
2051 	if (failed > 2 && syncing) {
2052 		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2053 		clear_bit(STRIPE_SYNCING, &sh->state);
2054 		syncing = 0;
2055 	}
2056 
2057 	/*
2058 	 * might be able to return some write requests if the parity blocks
2059 	 * are safe, or on a failed drive
2060 	 */
2061 	pdev = &sh->dev[pd_idx];
2062 	p_failed = (failed >= 1 && failed_num[0] == pd_idx)
2063 		|| (failed >= 2 && failed_num[1] == pd_idx);
2064 	qdev = &sh->dev[qd_idx];
2065 	q_failed = (failed >= 1 && failed_num[0] == qd_idx)
2066 		|| (failed >= 2 && failed_num[1] == qd_idx);
2067 
2068 	if ( written &&
2069 	     ( p_failed || ((test_bit(R5_Insync, &pdev->flags)
2070 			     && !test_bit(R5_LOCKED, &pdev->flags)
2071 			     && test_bit(R5_UPTODATE, &pdev->flags))) ) &&
2072 	     ( q_failed || ((test_bit(R5_Insync, &qdev->flags)
2073 			     && !test_bit(R5_LOCKED, &qdev->flags)
2074 			     && test_bit(R5_UPTODATE, &qdev->flags))) ) ) {
2075 		/* any written block on an uptodate or failed drive can be
2076 		 * returned.  Note that if we 'wrote' to a failed drive,
2077 		 * it will be UPTODATE, but never LOCKED, so we don't need
2078 		 * to test 'failed' directly.
2079 		 */
2080 		for (i=disks; i--; )
2081 			if (sh->dev[i].written) {
2082 				dev = &sh->dev[i];
2083 				if (!test_bit(R5_LOCKED, &dev->flags) &&
2084 				    test_bit(R5_UPTODATE, &dev->flags) ) {
2085 					/* We can return any write requests */
2086 					int bitmap_end = 0;
2087 					struct bio *wbi, *wbi2;
2088 					PRINTK("Return write for stripe %llu disc %d\n",
2089 					       (unsigned long long)sh->sector, i);
2090 					spin_lock_irq(&conf->device_lock);
2091 					wbi = dev->written;
2092 					dev->written = NULL;
2093 					while (wbi && wbi->bi_sector < dev->sector + STRIPE_SECTORS) {
2094 						wbi2 = r5_next_bio(wbi, dev->sector);
2095 						if (--wbi->bi_phys_segments == 0) {
2096 							md_write_end(conf->mddev);
2097 							wbi->bi_next = return_bi;
2098 							return_bi = wbi;
2099 						}
2100 						wbi = wbi2;
2101 					}
2102 					if (dev->towrite == NULL)
2103 						bitmap_end = 1;
2104 					spin_unlock_irq(&conf->device_lock);
2105 					if (bitmap_end)
2106 						bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2107 								STRIPE_SECTORS,
2108 								!test_bit(STRIPE_DEGRADED, &sh->state), 0);
2109 				}
2110 			}
2111 	}
2112 
2113 	/* Now we might consider reading some blocks, either to check/generate
2114 	 * parity, or to satisfy requests
2115 	 * or to load a block that is being partially written.
2116 	 */
2117 	if (to_read || non_overwrite || (to_write && failed) || (syncing && (uptodate < disks))) {
2118 		for (i=disks; i--;) {
2119 			dev = &sh->dev[i];
2120 			if (!test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
2121 			    (dev->toread ||
2122 			     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2123 			     syncing ||
2124 			     (failed >= 1 && (sh->dev[failed_num[0]].toread || to_write)) ||
2125 			     (failed >= 2 && (sh->dev[failed_num[1]].toread || to_write))
2126 				    )
2127 				) {
2128 				/* we would like to get this block, possibly
2129 				 * by computing it, but we might not be able to
2130 				 */
2131 				if (uptodate == disks-1) {
2132 					PRINTK("Computing stripe %llu block %d\n",
2133 					       (unsigned long long)sh->sector, i);
2134 					compute_block_1(sh, i, 0);
2135 					uptodate++;
2136 				} else if ( uptodate == disks-2 && failed >= 2 ) {
2137 					/* Computing 2-failure is *very* expensive; only do it if failed >= 2 */
2138 					int other;
2139 					for (other=disks; other--;) {
2140 						if ( other == i )
2141 							continue;
2142 						if ( !test_bit(R5_UPTODATE, &sh->dev[other].flags) )
2143 							break;
2144 					}
2145 					BUG_ON(other < 0);
2146 					PRINTK("Computing stripe %llu blocks %d,%d\n",
2147 					       (unsigned long long)sh->sector, i, other);
2148 					compute_block_2(sh, i, other);
2149 					uptodate += 2;
2150 				} else if (test_bit(R5_Insync, &dev->flags)) {
2151 					set_bit(R5_LOCKED, &dev->flags);
2152 					set_bit(R5_Wantread, &dev->flags);
2153 					locked++;
2154 					PRINTK("Reading block %d (sync=%d)\n",
2155 						i, syncing);
2156 				}
2157 			}
2158 		}
2159 		set_bit(STRIPE_HANDLE, &sh->state);
2160 	}
2161 
2162 	/* now to consider writing and what else, if anything should be read */
2163 	if (to_write) {
2164 		int rcw=0, must_compute=0;
2165 		for (i=disks ; i--;) {
2166 			dev = &sh->dev[i];
2167 			/* Would I have to read this buffer for reconstruct_write */
2168 			if (!test_bit(R5_OVERWRITE, &dev->flags)
2169 			    && i != pd_idx && i != qd_idx
2170 			    && (!test_bit(R5_LOCKED, &dev->flags)
2171 				    ) &&
2172 			    !test_bit(R5_UPTODATE, &dev->flags)) {
2173 				if (test_bit(R5_Insync, &dev->flags)) rcw++;
2174 				else {
2175 					PRINTK("raid6: must_compute: disk %d flags=%#lx\n", i, dev->flags);
2176 					must_compute++;
2177 				}
2178 			}
2179 		}
2180 		PRINTK("for sector %llu, rcw=%d, must_compute=%d\n",
2181 		       (unsigned long long)sh->sector, rcw, must_compute);
2182 		set_bit(STRIPE_HANDLE, &sh->state);
2183 
2184 		if (rcw > 0)
2185 			/* want reconstruct write, but need to get some data */
2186 			for (i=disks; i--;) {
2187 				dev = &sh->dev[i];
2188 				if (!test_bit(R5_OVERWRITE, &dev->flags)
2189 				    && !(failed == 0 && (i == pd_idx || i == qd_idx))
2190 				    && !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
2191 				    test_bit(R5_Insync, &dev->flags)) {
2192 					if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
2193 					{
2194 						PRINTK("Read_old stripe %llu block %d for Reconstruct\n",
2195 						       (unsigned long long)sh->sector, i);
2196 						set_bit(R5_LOCKED, &dev->flags);
2197 						set_bit(R5_Wantread, &dev->flags);
2198 						locked++;
2199 					} else {
2200 						PRINTK("Request delayed stripe %llu block %d for Reconstruct\n",
2201 						       (unsigned long long)sh->sector, i);
2202 						set_bit(STRIPE_DELAYED, &sh->state);
2203 						set_bit(STRIPE_HANDLE, &sh->state);
2204 					}
2205 				}
2206 			}
2207 		/* now if nothing is locked, and if we have enough data, we can start a write request */
2208 		if (locked == 0 && rcw == 0 &&
2209 		    !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2210 			if ( must_compute > 0 ) {
2211 				/* We have failed blocks and need to compute them */
2212 				switch ( failed ) {
2213 				case 0:	BUG();
2214 				case 1: compute_block_1(sh, failed_num[0], 0); break;
2215 				case 2: compute_block_2(sh, failed_num[0], failed_num[1]); break;
2216 				default: BUG();	/* This request should have been failed? */
2217 				}
2218 			}
2219 
2220 			PRINTK("Computing parity for stripe %llu\n", (unsigned long long)sh->sector);
2221 			compute_parity6(sh, RECONSTRUCT_WRITE);
2222 			/* now every locked buffer is ready to be written */
2223 			for (i=disks; i--;)
2224 				if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2225 					PRINTK("Writing stripe %llu block %d\n",
2226 					       (unsigned long long)sh->sector, i);
2227 					locked++;
2228 					set_bit(R5_Wantwrite, &sh->dev[i].flags);
2229 				}
2230 			/* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2231 			set_bit(STRIPE_INSYNC, &sh->state);
2232 
2233 			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2234 				atomic_dec(&conf->preread_active_stripes);
2235 				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
2236 					md_wakeup_thread(conf->mddev->thread);
2237 			}
2238 		}
2239 	}
2240 
2241 	/* maybe we need to check and possibly fix the parity for this stripe
2242 	 * Any reads will already have been scheduled, so we just see if enough data
2243 	 * is available
2244 	 */
2245 	if (syncing && locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state)) {
2246 		int update_p = 0, update_q = 0;
2247 		struct r5dev *dev;
2248 
2249 		set_bit(STRIPE_HANDLE, &sh->state);
2250 
2251 		BUG_ON(failed>2);
2252 		BUG_ON(uptodate < disks);
2253 		/* Want to check and possibly repair P and Q.
2254 		 * However there could be one 'failed' device, in which
2255 		 * case we can only check one of them, possibly using the
2256 		 * other to generate missing data
2257 		 */
2258 
2259 		/* If !tmp_page, we cannot do the calculations,
2260 		 * but as we have set STRIPE_HANDLE, we will soon be called
2261 		 * by stripe_handle with a tmp_page - just wait until then.
2262 		 */
2263 		if (tmp_page) {
2264 			if (failed == q_failed) {
2265 				/* The only possible failed device holds 'Q', so it makes
2266 				 * sense to check P (If anything else were failed, we would
2267 				 * have used P to recreate it).
2268 				 */
2269 				compute_block_1(sh, pd_idx, 1);
2270 				if (!page_is_zero(sh->dev[pd_idx].page)) {
2271 					compute_block_1(sh,pd_idx,0);
2272 					update_p = 1;
2273 				}
2274 			}
2275 			if (!q_failed && failed < 2) {
2276 				/* q is not failed, and we didn't use it to generate
2277 				 * anything, so it makes sense to check it
2278 				 */
2279 				memcpy(page_address(tmp_page),
2280 				       page_address(sh->dev[qd_idx].page),
2281 				       STRIPE_SIZE);
2282 				compute_parity6(sh, UPDATE_PARITY);
2283 				if (memcmp(page_address(tmp_page),
2284 					   page_address(sh->dev[qd_idx].page),
2285 					   STRIPE_SIZE)!= 0) {
2286 					clear_bit(STRIPE_INSYNC, &sh->state);
2287 					update_q = 1;
2288 				}
2289 			}
2290 			if (update_p || update_q) {
2291 				conf->mddev->resync_mismatches += STRIPE_SECTORS;
2292 				if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2293 					/* don't try to repair!! */
2294 					update_p = update_q = 0;
2295 			}
2296 
2297 			/* now write out any block on a failed drive,
2298 			 * or P or Q if they need it
2299 			 */
2300 
2301 			if (failed == 2) {
2302 				dev = &sh->dev[failed_num[1]];
2303 				locked++;
2304 				set_bit(R5_LOCKED, &dev->flags);
2305 				set_bit(R5_Wantwrite, &dev->flags);
2306 			}
2307 			if (failed >= 1) {
2308 				dev = &sh->dev[failed_num[0]];
2309 				locked++;
2310 				set_bit(R5_LOCKED, &dev->flags);
2311 				set_bit(R5_Wantwrite, &dev->flags);
2312 			}
2313 
2314 			if (update_p) {
2315 				dev = &sh->dev[pd_idx];
2316 				locked ++;
2317 				set_bit(R5_LOCKED, &dev->flags);
2318 				set_bit(R5_Wantwrite, &dev->flags);
2319 			}
2320 			if (update_q) {
2321 				dev = &sh->dev[qd_idx];
2322 				locked++;
2323 				set_bit(R5_LOCKED, &dev->flags);
2324 				set_bit(R5_Wantwrite, &dev->flags);
2325 			}
2326 			clear_bit(STRIPE_DEGRADED, &sh->state);
2327 
2328 			set_bit(STRIPE_INSYNC, &sh->state);
2329 		}
2330 	}
2331 
2332 	if (syncing && locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2333 		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2334 		clear_bit(STRIPE_SYNCING, &sh->state);
2335 	}
2336 
2337 	/* If the failed drives are just a ReadError, then we might need
2338 	 * to progress the repair/check process
2339 	 */
2340 	if (failed <= 2 && ! conf->mddev->ro)
2341 		for (i=0; i<failed;i++) {
2342 			dev = &sh->dev[failed_num[i]];
2343 			if (test_bit(R5_ReadError, &dev->flags)
2344 			    && !test_bit(R5_LOCKED, &dev->flags)
2345 			    && test_bit(R5_UPTODATE, &dev->flags)
2346 				) {
2347 				if (!test_bit(R5_ReWrite, &dev->flags)) {
2348 					set_bit(R5_Wantwrite, &dev->flags);
2349 					set_bit(R5_ReWrite, &dev->flags);
2350 					set_bit(R5_LOCKED, &dev->flags);
2351 				} else {
2352 					/* let's read it back */
2353 					set_bit(R5_Wantread, &dev->flags);
2354 					set_bit(R5_LOCKED, &dev->flags);
2355 				}
2356 			}
2357 		}
2358 	spin_unlock(&sh->lock);
2359 
2360 	while ((bi=return_bi)) {
2361 		int bytes = bi->bi_size;
2362 
2363 		return_bi = bi->bi_next;
2364 		bi->bi_next = NULL;
2365 		bi->bi_size = 0;
2366 		bi->bi_end_io(bi, bytes,
2367 			      test_bit(BIO_UPTODATE, &bi->bi_flags)
2368 			        ? 0 : -EIO);
2369 	}
2370 	for (i=disks; i-- ;) {
2371 		int rw;
2372 		struct bio *bi;
2373 		mdk_rdev_t *rdev;
2374 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
2375 			rw = WRITE;
2376 		else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
2377 			rw = READ;
2378 		else
2379 			continue;
2380 
2381 		bi = &sh->dev[i].req;
2382 
2383 		bi->bi_rw = rw;
2384 		if (rw == WRITE)
2385 			bi->bi_end_io = raid5_end_write_request;
2386 		else
2387 			bi->bi_end_io = raid5_end_read_request;
2388 
2389 		rcu_read_lock();
2390 		rdev = rcu_dereference(conf->disks[i].rdev);
2391 		if (rdev && test_bit(Faulty, &rdev->flags))
2392 			rdev = NULL;
2393 		if (rdev)
2394 			atomic_inc(&rdev->nr_pending);
2395 		rcu_read_unlock();
2396 
2397 		if (rdev) {
2398 			if (syncing)
2399 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
2400 
2401 			bi->bi_bdev = rdev->bdev;
2402 			PRINTK("for %llu schedule op %ld on disc %d\n",
2403 				(unsigned long long)sh->sector, bi->bi_rw, i);
2404 			atomic_inc(&sh->count);
2405 			bi->bi_sector = sh->sector + rdev->data_offset;
2406 			bi->bi_flags = 1 << BIO_UPTODATE;
2407 			bi->bi_vcnt = 1;
2408 			bi->bi_max_vecs = 1;
2409 			bi->bi_idx = 0;
2410 			bi->bi_io_vec = &sh->dev[i].vec;
2411 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
2412 			bi->bi_io_vec[0].bv_offset = 0;
2413 			bi->bi_size = STRIPE_SIZE;
2414 			bi->bi_next = NULL;
2415 			if (rw == WRITE &&
2416 			    test_bit(R5_ReWrite, &sh->dev[i].flags))
2417 				atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2418 			generic_make_request(bi);
2419 		} else {
2420 			if (rw == WRITE)
2421 				set_bit(STRIPE_DEGRADED, &sh->state);
2422 			PRINTK("skip op %ld on disc %d for sector %llu\n",
2423 				bi->bi_rw, i, (unsigned long long)sh->sector);
2424 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
2425 			set_bit(STRIPE_HANDLE, &sh->state);
2426 		}
2427 	}
2428 }
2429 
2430 static void handle_stripe(struct stripe_head *sh, struct page *tmp_page)
2431 {
2432 	if (sh->raid_conf->level == 6)
2433 		handle_stripe6(sh, tmp_page);
2434 	else
2435 		handle_stripe5(sh);
2436 }
2437 
2438 
2439 
2440 static void raid5_activate_delayed(raid5_conf_t *conf)
2441 {
2442 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
2443 		while (!list_empty(&conf->delayed_list)) {
2444 			struct list_head *l = conf->delayed_list.next;
2445 			struct stripe_head *sh;
2446 			sh = list_entry(l, struct stripe_head, lru);
2447 			list_del_init(l);
2448 			clear_bit(STRIPE_DELAYED, &sh->state);
2449 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
2450 				atomic_inc(&conf->preread_active_stripes);
2451 			list_add_tail(&sh->lru, &conf->handle_list);
2452 		}
2453 	}
2454 }
2455 
2456 static void activate_bit_delay(raid5_conf_t *conf)
2457 {
2458 	/* device_lock is held */
2459 	struct list_head head;
2460 	list_add(&head, &conf->bitmap_list);
2461 	list_del_init(&conf->bitmap_list);
2462 	while (!list_empty(&head)) {
2463 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
2464 		list_del_init(&sh->lru);
2465 		atomic_inc(&sh->count);
2466 		__release_stripe(conf, sh);
2467 	}
2468 }
2469 
2470 static void unplug_slaves(mddev_t *mddev)
2471 {
2472 	raid5_conf_t *conf = mddev_to_conf(mddev);
2473 	int i;
2474 
2475 	rcu_read_lock();
2476 	for (i=0; i<mddev->raid_disks; i++) {
2477 		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
2478 		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
2479 			request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
2480 
2481 			atomic_inc(&rdev->nr_pending);
2482 			rcu_read_unlock();
2483 
2484 			if (r_queue->unplug_fn)
2485 				r_queue->unplug_fn(r_queue);
2486 
2487 			rdev_dec_pending(rdev, mddev);
2488 			rcu_read_lock();
2489 		}
2490 	}
2491 	rcu_read_unlock();
2492 }
2493 
2494 static void raid5_unplug_device(request_queue_t *q)
2495 {
2496 	mddev_t *mddev = q->queuedata;
2497 	raid5_conf_t *conf = mddev_to_conf(mddev);
2498 	unsigned long flags;
2499 
2500 	spin_lock_irqsave(&conf->device_lock, flags);
2501 
2502 	if (blk_remove_plug(q)) {
2503 		conf->seq_flush++;
2504 		raid5_activate_delayed(conf);
2505 	}
2506 	md_wakeup_thread(mddev->thread);
2507 
2508 	spin_unlock_irqrestore(&conf->device_lock, flags);
2509 
2510 	unplug_slaves(mddev);
2511 }
2512 
2513 static int raid5_issue_flush(request_queue_t *q, struct gendisk *disk,
2514 			     sector_t *error_sector)
2515 {
2516 	mddev_t *mddev = q->queuedata;
2517 	raid5_conf_t *conf = mddev_to_conf(mddev);
2518 	int i, ret = 0;
2519 
2520 	rcu_read_lock();
2521 	for (i=0; i<mddev->raid_disks && ret == 0; i++) {
2522 		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
2523 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
2524 			struct block_device *bdev = rdev->bdev;
2525 			request_queue_t *r_queue = bdev_get_queue(bdev);
2526 
2527 			if (!r_queue->issue_flush_fn)
2528 				ret = -EOPNOTSUPP;
2529 			else {
2530 				atomic_inc(&rdev->nr_pending);
2531 				rcu_read_unlock();
2532 				ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
2533 							      error_sector);
2534 				rdev_dec_pending(rdev, mddev);
2535 				rcu_read_lock();
2536 			}
2537 		}
2538 	}
2539 	rcu_read_unlock();
2540 	return ret;
2541 }
2542 
2543 static int raid5_congested(void *data, int bits)
2544 {
2545 	mddev_t *mddev = data;
2546 	raid5_conf_t *conf = mddev_to_conf(mddev);
2547 
2548 	/* No difference between reads and writes.  Just check
2549 	 * how busy the stripe_cache is
2550 	 */
2551 	if (conf->inactive_blocked)
2552 		return 1;
2553 	if (conf->quiesce)
2554 		return 1;
2555 	if (list_empty_careful(&conf->inactive_list))
2556 		return 1;
2557 
2558 	return 0;
2559 }
2560 
2561 /* We want read requests to align with chunks where possible,
2562  * but write requests don't need to.
2563  */
2564 static int raid5_mergeable_bvec(request_queue_t *q, struct bio *bio, struct bio_vec *biovec)
2565 {
2566 	mddev_t *mddev = q->queuedata;
2567 	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
2568 	int max;
2569 	unsigned int chunk_sectors = mddev->chunk_size >> 9;
2570 	unsigned int bio_sectors = bio->bi_size >> 9;
2571 
2572 	if (bio_data_dir(bio) == WRITE)
2573 		return biovec->bv_len; /* always allow writes to be mergeable */
2574 
2575 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
2576 	if (max < 0) max = 0;
2577 	if (max <= biovec->bv_len && bio_sectors == 0)
2578 		return biovec->bv_len;
2579 	else
2580 		return max;
2581 }
2582 
2583 
2584 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
2585 {
2586 	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
2587 	unsigned int chunk_sectors = mddev->chunk_size >> 9;
2588 	unsigned int bio_sectors = bio->bi_size >> 9;
2589 
2590 	return  chunk_sectors >=
2591 		((sector & (chunk_sectors - 1)) + bio_sectors);
2592 }
2593 
2594 /*
2595  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
2596  *  later sampled by raid5d.
2597  */
2598 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
2599 {
2600 	unsigned long flags;
2601 
2602 	spin_lock_irqsave(&conf->device_lock, flags);
2603 
2604 	bi->bi_next = conf->retry_read_aligned_list;
2605 	conf->retry_read_aligned_list = bi;
2606 
2607 	spin_unlock_irqrestore(&conf->device_lock, flags);
2608 	md_wakeup_thread(conf->mddev->thread);
2609 }
2610 
2611 
2612 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
2613 {
2614 	struct bio *bi;
2615 
2616 	bi = conf->retry_read_aligned;
2617 	if (bi) {
2618 		conf->retry_read_aligned = NULL;
2619 		return bi;
2620 	}
2621 	bi = conf->retry_read_aligned_list;
2622 	if(bi) {
2623 		conf->retry_read_aligned = bi->bi_next;
2624 		bi->bi_next = NULL;
2625 		bi->bi_phys_segments = 1; /* biased count of active stripes */
2626 		bi->bi_hw_segments = 0; /* count of processed stripes */
2627 	}
2628 
2629 	return bi;
2630 }
2631 
2632 
2633 /*
2634  *  The "raid5_align_endio" should check if the read succeeded and if it
2635  *  did, call bio_endio on the original bio (having bio_put the new bio
2636  *  first).
2637  *  If the read failed..
2638  */
2639 static int raid5_align_endio(struct bio *bi, unsigned int bytes, int error)
2640 {
2641 	struct bio* raid_bi  = bi->bi_private;
2642 	mddev_t *mddev;
2643 	raid5_conf_t *conf;
2644 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2645 	mdk_rdev_t *rdev;
2646 
2647 	if (bi->bi_size)
2648 		return 1;
2649 	bio_put(bi);
2650 
2651 	mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
2652 	conf = mddev_to_conf(mddev);
2653 	rdev = (void*)raid_bi->bi_next;
2654 	raid_bi->bi_next = NULL;
2655 
2656 	rdev_dec_pending(rdev, conf->mddev);
2657 
2658 	if (!error && uptodate) {
2659 		bio_endio(raid_bi, bytes, 0);
2660 		if (atomic_dec_and_test(&conf->active_aligned_reads))
2661 			wake_up(&conf->wait_for_stripe);
2662 		return 0;
2663 	}
2664 
2665 
2666 	PRINTK("raid5_align_endio : io error...handing IO for a retry\n");
2667 
2668 	add_bio_to_retry(raid_bi, conf);
2669 	return 0;
2670 }
2671 
2672 static int chunk_aligned_read(request_queue_t *q, struct bio * raid_bio)
2673 {
2674 	mddev_t *mddev = q->queuedata;
2675 	raid5_conf_t *conf = mddev_to_conf(mddev);
2676 	const unsigned int raid_disks = conf->raid_disks;
2677 	const unsigned int data_disks = raid_disks - conf->max_degraded;
2678 	unsigned int dd_idx, pd_idx;
2679 	struct bio* align_bi;
2680 	mdk_rdev_t *rdev;
2681 
2682 	if (!in_chunk_boundary(mddev, raid_bio)) {
2683 		PRINTK("chunk_aligned_read : non aligned\n");
2684 		return 0;
2685 	}
2686 	/*
2687  	 * use bio_clone to make a copy of the bio
2688 	 */
2689 	align_bi = bio_clone(raid_bio, GFP_NOIO);
2690 	if (!align_bi)
2691 		return 0;
2692 	/*
2693 	 *   set bi_end_io to a new function, and set bi_private to the
2694 	 *     original bio.
2695 	 */
2696 	align_bi->bi_end_io  = raid5_align_endio;
2697 	align_bi->bi_private = raid_bio;
2698 	/*
2699 	 *	compute position
2700 	 */
2701 	align_bi->bi_sector =  raid5_compute_sector(raid_bio->bi_sector,
2702 					raid_disks,
2703 					data_disks,
2704 					&dd_idx,
2705 					&pd_idx,
2706 					conf);
2707 
2708 	rcu_read_lock();
2709 	rdev = rcu_dereference(conf->disks[dd_idx].rdev);
2710 	if (rdev && test_bit(In_sync, &rdev->flags)) {
2711 		atomic_inc(&rdev->nr_pending);
2712 		rcu_read_unlock();
2713 		raid_bio->bi_next = (void*)rdev;
2714 		align_bi->bi_bdev =  rdev->bdev;
2715 		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
2716 		align_bi->bi_sector += rdev->data_offset;
2717 
2718 		spin_lock_irq(&conf->device_lock);
2719 		wait_event_lock_irq(conf->wait_for_stripe,
2720 				    conf->quiesce == 0,
2721 				    conf->device_lock, /* nothing */);
2722 		atomic_inc(&conf->active_aligned_reads);
2723 		spin_unlock_irq(&conf->device_lock);
2724 
2725 		generic_make_request(align_bi);
2726 		return 1;
2727 	} else {
2728 		rcu_read_unlock();
2729 		bio_put(align_bi);
2730 		return 0;
2731 	}
2732 }
2733 
2734 
2735 static int make_request(request_queue_t *q, struct bio * bi)
2736 {
2737 	mddev_t *mddev = q->queuedata;
2738 	raid5_conf_t *conf = mddev_to_conf(mddev);
2739 	unsigned int dd_idx, pd_idx;
2740 	sector_t new_sector;
2741 	sector_t logical_sector, last_sector;
2742 	struct stripe_head *sh;
2743 	const int rw = bio_data_dir(bi);
2744 	int remaining;
2745 
2746 	if (unlikely(bio_barrier(bi))) {
2747 		bio_endio(bi, bi->bi_size, -EOPNOTSUPP);
2748 		return 0;
2749 	}
2750 
2751 	md_write_start(mddev, bi);
2752 
2753 	disk_stat_inc(mddev->gendisk, ios[rw]);
2754 	disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi));
2755 
2756 	if (rw == READ &&
2757 	     mddev->reshape_position == MaxSector &&
2758 	     chunk_aligned_read(q,bi))
2759             	return 0;
2760 
2761 	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
2762 	last_sector = bi->bi_sector + (bi->bi_size>>9);
2763 	bi->bi_next = NULL;
2764 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
2765 
2766 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
2767 		DEFINE_WAIT(w);
2768 		int disks, data_disks;
2769 
2770 	retry:
2771 		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
2772 		if (likely(conf->expand_progress == MaxSector))
2773 			disks = conf->raid_disks;
2774 		else {
2775 			/* spinlock is needed as expand_progress may be
2776 			 * 64bit on a 32bit platform, and so it might be
2777 			 * possible to see a half-updated value
2778 			 * Ofcourse expand_progress could change after
2779 			 * the lock is dropped, so once we get a reference
2780 			 * to the stripe that we think it is, we will have
2781 			 * to check again.
2782 			 */
2783 			spin_lock_irq(&conf->device_lock);
2784 			disks = conf->raid_disks;
2785 			if (logical_sector >= conf->expand_progress)
2786 				disks = conf->previous_raid_disks;
2787 			else {
2788 				if (logical_sector >= conf->expand_lo) {
2789 					spin_unlock_irq(&conf->device_lock);
2790 					schedule();
2791 					goto retry;
2792 				}
2793 			}
2794 			spin_unlock_irq(&conf->device_lock);
2795 		}
2796 		data_disks = disks - conf->max_degraded;
2797 
2798  		new_sector = raid5_compute_sector(logical_sector, disks, data_disks,
2799 						  &dd_idx, &pd_idx, conf);
2800 		PRINTK("raid5: make_request, sector %llu logical %llu\n",
2801 			(unsigned long long)new_sector,
2802 			(unsigned long long)logical_sector);
2803 
2804 		sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK));
2805 		if (sh) {
2806 			if (unlikely(conf->expand_progress != MaxSector)) {
2807 				/* expansion might have moved on while waiting for a
2808 				 * stripe, so we must do the range check again.
2809 				 * Expansion could still move past after this
2810 				 * test, but as we are holding a reference to
2811 				 * 'sh', we know that if that happens,
2812 				 *  STRIPE_EXPANDING will get set and the expansion
2813 				 * won't proceed until we finish with the stripe.
2814 				 */
2815 				int must_retry = 0;
2816 				spin_lock_irq(&conf->device_lock);
2817 				if (logical_sector <  conf->expand_progress &&
2818 				    disks == conf->previous_raid_disks)
2819 					/* mismatch, need to try again */
2820 					must_retry = 1;
2821 				spin_unlock_irq(&conf->device_lock);
2822 				if (must_retry) {
2823 					release_stripe(sh);
2824 					goto retry;
2825 				}
2826 			}
2827 			/* FIXME what if we get a false positive because these
2828 			 * are being updated.
2829 			 */
2830 			if (logical_sector >= mddev->suspend_lo &&
2831 			    logical_sector < mddev->suspend_hi) {
2832 				release_stripe(sh);
2833 				schedule();
2834 				goto retry;
2835 			}
2836 
2837 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
2838 			    !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
2839 				/* Stripe is busy expanding or
2840 				 * add failed due to overlap.  Flush everything
2841 				 * and wait a while
2842 				 */
2843 				raid5_unplug_device(mddev->queue);
2844 				release_stripe(sh);
2845 				schedule();
2846 				goto retry;
2847 			}
2848 			finish_wait(&conf->wait_for_overlap, &w);
2849 			handle_stripe(sh, NULL);
2850 			release_stripe(sh);
2851 		} else {
2852 			/* cannot get stripe for read-ahead, just give-up */
2853 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2854 			finish_wait(&conf->wait_for_overlap, &w);
2855 			break;
2856 		}
2857 
2858 	}
2859 	spin_lock_irq(&conf->device_lock);
2860 	remaining = --bi->bi_phys_segments;
2861 	spin_unlock_irq(&conf->device_lock);
2862 	if (remaining == 0) {
2863 		int bytes = bi->bi_size;
2864 
2865 		if ( rw == WRITE )
2866 			md_write_end(mddev);
2867 		bi->bi_size = 0;
2868 		bi->bi_end_io(bi, bytes,
2869 			      test_bit(BIO_UPTODATE, &bi->bi_flags)
2870 			        ? 0 : -EIO);
2871 	}
2872 	return 0;
2873 }
2874 
2875 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
2876 {
2877 	/* reshaping is quite different to recovery/resync so it is
2878 	 * handled quite separately ... here.
2879 	 *
2880 	 * On each call to sync_request, we gather one chunk worth of
2881 	 * destination stripes and flag them as expanding.
2882 	 * Then we find all the source stripes and request reads.
2883 	 * As the reads complete, handle_stripe will copy the data
2884 	 * into the destination stripe and release that stripe.
2885 	 */
2886 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
2887 	struct stripe_head *sh;
2888 	int pd_idx;
2889 	sector_t first_sector, last_sector;
2890 	int raid_disks;
2891 	int data_disks;
2892 	int i;
2893 	int dd_idx;
2894 	sector_t writepos, safepos, gap;
2895 
2896 	if (sector_nr == 0 &&
2897 	    conf->expand_progress != 0) {
2898 		/* restarting in the middle, skip the initial sectors */
2899 		sector_nr = conf->expand_progress;
2900 		sector_div(sector_nr, conf->raid_disks-1);
2901 		*skipped = 1;
2902 		return sector_nr;
2903 	}
2904 
2905 	/* we update the metadata when there is more than 3Meg
2906 	 * in the block range (that is rather arbitrary, should
2907 	 * probably be time based) or when the data about to be
2908 	 * copied would over-write the source of the data at
2909 	 * the front of the range.
2910 	 * i.e. one new_stripe forward from expand_progress new_maps
2911 	 * to after where expand_lo old_maps to
2912 	 */
2913 	writepos = conf->expand_progress +
2914 		conf->chunk_size/512*(conf->raid_disks-1);
2915 	sector_div(writepos, conf->raid_disks-1);
2916 	safepos = conf->expand_lo;
2917 	sector_div(safepos, conf->previous_raid_disks-1);
2918 	gap = conf->expand_progress - conf->expand_lo;
2919 
2920 	if (writepos >= safepos ||
2921 	    gap > (conf->raid_disks-1)*3000*2 /*3Meg*/) {
2922 		/* Cannot proceed until we've updated the superblock... */
2923 		wait_event(conf->wait_for_overlap,
2924 			   atomic_read(&conf->reshape_stripes)==0);
2925 		mddev->reshape_position = conf->expand_progress;
2926 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
2927 		md_wakeup_thread(mddev->thread);
2928 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
2929 			   kthread_should_stop());
2930 		spin_lock_irq(&conf->device_lock);
2931 		conf->expand_lo = mddev->reshape_position;
2932 		spin_unlock_irq(&conf->device_lock);
2933 		wake_up(&conf->wait_for_overlap);
2934 	}
2935 
2936 	for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
2937 		int j;
2938 		int skipped = 0;
2939 		pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks);
2940 		sh = get_active_stripe(conf, sector_nr+i,
2941 				       conf->raid_disks, pd_idx, 0);
2942 		set_bit(STRIPE_EXPANDING, &sh->state);
2943 		atomic_inc(&conf->reshape_stripes);
2944 		/* If any of this stripe is beyond the end of the old
2945 		 * array, then we need to zero those blocks
2946 		 */
2947 		for (j=sh->disks; j--;) {
2948 			sector_t s;
2949 			if (j == sh->pd_idx)
2950 				continue;
2951 			s = compute_blocknr(sh, j);
2952 			if (s < (mddev->array_size<<1)) {
2953 				skipped = 1;
2954 				continue;
2955 			}
2956 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
2957 			set_bit(R5_Expanded, &sh->dev[j].flags);
2958 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
2959 		}
2960 		if (!skipped) {
2961 			set_bit(STRIPE_EXPAND_READY, &sh->state);
2962 			set_bit(STRIPE_HANDLE, &sh->state);
2963 		}
2964 		release_stripe(sh);
2965 	}
2966 	spin_lock_irq(&conf->device_lock);
2967 	conf->expand_progress = (sector_nr + i)*(conf->raid_disks-1);
2968 	spin_unlock_irq(&conf->device_lock);
2969 	/* Ok, those stripe are ready. We can start scheduling
2970 	 * reads on the source stripes.
2971 	 * The source stripes are determined by mapping the first and last
2972 	 * block on the destination stripes.
2973 	 */
2974 	raid_disks = conf->previous_raid_disks;
2975 	data_disks = raid_disks - 1;
2976 	first_sector =
2977 		raid5_compute_sector(sector_nr*(conf->raid_disks-1),
2978 				     raid_disks, data_disks,
2979 				     &dd_idx, &pd_idx, conf);
2980 	last_sector =
2981 		raid5_compute_sector((sector_nr+conf->chunk_size/512)
2982 				     *(conf->raid_disks-1) -1,
2983 				     raid_disks, data_disks,
2984 				     &dd_idx, &pd_idx, conf);
2985 	if (last_sector >= (mddev->size<<1))
2986 		last_sector = (mddev->size<<1)-1;
2987 	while (first_sector <= last_sector) {
2988 		pd_idx = stripe_to_pdidx(first_sector, conf, conf->previous_raid_disks);
2989 		sh = get_active_stripe(conf, first_sector,
2990 				       conf->previous_raid_disks, pd_idx, 0);
2991 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2992 		set_bit(STRIPE_HANDLE, &sh->state);
2993 		release_stripe(sh);
2994 		first_sector += STRIPE_SECTORS;
2995 	}
2996 	return conf->chunk_size>>9;
2997 }
2998 
2999 /* FIXME go_faster isn't used */
3000 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3001 {
3002 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3003 	struct stripe_head *sh;
3004 	int pd_idx;
3005 	int raid_disks = conf->raid_disks;
3006 	sector_t max_sector = mddev->size << 1;
3007 	int sync_blocks;
3008 	int still_degraded = 0;
3009 	int i;
3010 
3011 	if (sector_nr >= max_sector) {
3012 		/* just being told to finish up .. nothing much to do */
3013 		unplug_slaves(mddev);
3014 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3015 			end_reshape(conf);
3016 			return 0;
3017 		}
3018 
3019 		if (mddev->curr_resync < max_sector) /* aborted */
3020 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3021 					&sync_blocks, 1);
3022 		else /* completed sync */
3023 			conf->fullsync = 0;
3024 		bitmap_close_sync(mddev->bitmap);
3025 
3026 		return 0;
3027 	}
3028 
3029 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3030 		return reshape_request(mddev, sector_nr, skipped);
3031 
3032 	/* if there is too many failed drives and we are trying
3033 	 * to resync, then assert that we are finished, because there is
3034 	 * nothing we can do.
3035 	 */
3036 	if (mddev->degraded >= conf->max_degraded &&
3037 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3038 		sector_t rv = (mddev->size << 1) - sector_nr;
3039 		*skipped = 1;
3040 		return rv;
3041 	}
3042 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3043 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3044 	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
3045 		/* we can skip this block, and probably more */
3046 		sync_blocks /= STRIPE_SECTORS;
3047 		*skipped = 1;
3048 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
3049 	}
3050 
3051 	pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks);
3052 	sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1);
3053 	if (sh == NULL) {
3054 		sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0);
3055 		/* make sure we don't swamp the stripe cache if someone else
3056 		 * is trying to get access
3057 		 */
3058 		schedule_timeout_uninterruptible(1);
3059 	}
3060 	/* Need to check if array will still be degraded after recovery/resync
3061 	 * We don't need to check the 'failed' flag as when that gets set,
3062 	 * recovery aborts.
3063 	 */
3064 	for (i=0; i<mddev->raid_disks; i++)
3065 		if (conf->disks[i].rdev == NULL)
3066 			still_degraded = 1;
3067 
3068 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
3069 
3070 	spin_lock(&sh->lock);
3071 	set_bit(STRIPE_SYNCING, &sh->state);
3072 	clear_bit(STRIPE_INSYNC, &sh->state);
3073 	spin_unlock(&sh->lock);
3074 
3075 	handle_stripe(sh, NULL);
3076 	release_stripe(sh);
3077 
3078 	return STRIPE_SECTORS;
3079 }
3080 
3081 static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
3082 {
3083 	/* We may not be able to submit a whole bio at once as there
3084 	 * may not be enough stripe_heads available.
3085 	 * We cannot pre-allocate enough stripe_heads as we may need
3086 	 * more than exist in the cache (if we allow ever large chunks).
3087 	 * So we do one stripe head at a time and record in
3088 	 * ->bi_hw_segments how many have been done.
3089 	 *
3090 	 * We *know* that this entire raid_bio is in one chunk, so
3091 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
3092 	 */
3093 	struct stripe_head *sh;
3094 	int dd_idx, pd_idx;
3095 	sector_t sector, logical_sector, last_sector;
3096 	int scnt = 0;
3097 	int remaining;
3098 	int handled = 0;
3099 
3100 	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3101 	sector = raid5_compute_sector(	logical_sector,
3102 					conf->raid_disks,
3103 					conf->raid_disks - conf->max_degraded,
3104 					&dd_idx,
3105 					&pd_idx,
3106 					conf);
3107 	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
3108 
3109 	for (; logical_sector < last_sector;
3110 	     logical_sector += STRIPE_SECTORS, scnt++) {
3111 
3112 		if (scnt < raid_bio->bi_hw_segments)
3113 			/* already done this stripe */
3114 			continue;
3115 
3116 		sh = get_active_stripe(conf, sector, conf->raid_disks, pd_idx, 1);
3117 
3118 		if (!sh) {
3119 			/* failed to get a stripe - must wait */
3120 			raid_bio->bi_hw_segments = scnt;
3121 			conf->retry_read_aligned = raid_bio;
3122 			return handled;
3123 		}
3124 
3125 		set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
3126 		add_stripe_bio(sh, raid_bio, dd_idx, 0);
3127 		handle_stripe(sh, NULL);
3128 		release_stripe(sh);
3129 		handled++;
3130 	}
3131 	spin_lock_irq(&conf->device_lock);
3132 	remaining = --raid_bio->bi_phys_segments;
3133 	spin_unlock_irq(&conf->device_lock);
3134 	if (remaining == 0) {
3135 		int bytes = raid_bio->bi_size;
3136 
3137 		raid_bio->bi_size = 0;
3138 		raid_bio->bi_end_io(raid_bio, bytes,
3139 			      test_bit(BIO_UPTODATE, &raid_bio->bi_flags)
3140 			        ? 0 : -EIO);
3141 	}
3142 	if (atomic_dec_and_test(&conf->active_aligned_reads))
3143 		wake_up(&conf->wait_for_stripe);
3144 	return handled;
3145 }
3146 
3147 
3148 
3149 /*
3150  * This is our raid5 kernel thread.
3151  *
3152  * We scan the hash table for stripes which can be handled now.
3153  * During the scan, completed stripes are saved for us by the interrupt
3154  * handler, so that they will not have to wait for our next wakeup.
3155  */
3156 static void raid5d (mddev_t *mddev)
3157 {
3158 	struct stripe_head *sh;
3159 	raid5_conf_t *conf = mddev_to_conf(mddev);
3160 	int handled;
3161 
3162 	PRINTK("+++ raid5d active\n");
3163 
3164 	md_check_recovery(mddev);
3165 
3166 	handled = 0;
3167 	spin_lock_irq(&conf->device_lock);
3168 	while (1) {
3169 		struct list_head *first;
3170 		struct bio *bio;
3171 
3172 		if (conf->seq_flush != conf->seq_write) {
3173 			int seq = conf->seq_flush;
3174 			spin_unlock_irq(&conf->device_lock);
3175 			bitmap_unplug(mddev->bitmap);
3176 			spin_lock_irq(&conf->device_lock);
3177 			conf->seq_write = seq;
3178 			activate_bit_delay(conf);
3179 		}
3180 
3181 		if (list_empty(&conf->handle_list) &&
3182 		    atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD &&
3183 		    !blk_queue_plugged(mddev->queue) &&
3184 		    !list_empty(&conf->delayed_list))
3185 			raid5_activate_delayed(conf);
3186 
3187 		while ((bio = remove_bio_from_retry(conf))) {
3188 			int ok;
3189 			spin_unlock_irq(&conf->device_lock);
3190 			ok = retry_aligned_read(conf, bio);
3191 			spin_lock_irq(&conf->device_lock);
3192 			if (!ok)
3193 				break;
3194 			handled++;
3195 		}
3196 
3197 		if (list_empty(&conf->handle_list))
3198 			break;
3199 
3200 		first = conf->handle_list.next;
3201 		sh = list_entry(first, struct stripe_head, lru);
3202 
3203 		list_del_init(first);
3204 		atomic_inc(&sh->count);
3205 		BUG_ON(atomic_read(&sh->count)!= 1);
3206 		spin_unlock_irq(&conf->device_lock);
3207 
3208 		handled++;
3209 		handle_stripe(sh, conf->spare_page);
3210 		release_stripe(sh);
3211 
3212 		spin_lock_irq(&conf->device_lock);
3213 	}
3214 	PRINTK("%d stripes handled\n", handled);
3215 
3216 	spin_unlock_irq(&conf->device_lock);
3217 
3218 	unplug_slaves(mddev);
3219 
3220 	PRINTK("--- raid5d inactive\n");
3221 }
3222 
3223 static ssize_t
3224 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
3225 {
3226 	raid5_conf_t *conf = mddev_to_conf(mddev);
3227 	if (conf)
3228 		return sprintf(page, "%d\n", conf->max_nr_stripes);
3229 	else
3230 		return 0;
3231 }
3232 
3233 static ssize_t
3234 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
3235 {
3236 	raid5_conf_t *conf = mddev_to_conf(mddev);
3237 	char *end;
3238 	int new;
3239 	if (len >= PAGE_SIZE)
3240 		return -EINVAL;
3241 	if (!conf)
3242 		return -ENODEV;
3243 
3244 	new = simple_strtoul(page, &end, 10);
3245 	if (!*page || (*end && *end != '\n') )
3246 		return -EINVAL;
3247 	if (new <= 16 || new > 32768)
3248 		return -EINVAL;
3249 	while (new < conf->max_nr_stripes) {
3250 		if (drop_one_stripe(conf))
3251 			conf->max_nr_stripes--;
3252 		else
3253 			break;
3254 	}
3255 	md_allow_write(mddev);
3256 	while (new > conf->max_nr_stripes) {
3257 		if (grow_one_stripe(conf))
3258 			conf->max_nr_stripes++;
3259 		else break;
3260 	}
3261 	return len;
3262 }
3263 
3264 static struct md_sysfs_entry
3265 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
3266 				raid5_show_stripe_cache_size,
3267 				raid5_store_stripe_cache_size);
3268 
3269 static ssize_t
3270 stripe_cache_active_show(mddev_t *mddev, char *page)
3271 {
3272 	raid5_conf_t *conf = mddev_to_conf(mddev);
3273 	if (conf)
3274 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
3275 	else
3276 		return 0;
3277 }
3278 
3279 static struct md_sysfs_entry
3280 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3281 
3282 static struct attribute *raid5_attrs[] =  {
3283 	&raid5_stripecache_size.attr,
3284 	&raid5_stripecache_active.attr,
3285 	NULL,
3286 };
3287 static struct attribute_group raid5_attrs_group = {
3288 	.name = NULL,
3289 	.attrs = raid5_attrs,
3290 };
3291 
3292 static int run(mddev_t *mddev)
3293 {
3294 	raid5_conf_t *conf;
3295 	int raid_disk, memory;
3296 	mdk_rdev_t *rdev;
3297 	struct disk_info *disk;
3298 	struct list_head *tmp;
3299 	int working_disks = 0;
3300 
3301 	if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) {
3302 		printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
3303 		       mdname(mddev), mddev->level);
3304 		return -EIO;
3305 	}
3306 
3307 	if (mddev->reshape_position != MaxSector) {
3308 		/* Check that we can continue the reshape.
3309 		 * Currently only disks can change, it must
3310 		 * increase, and we must be past the point where
3311 		 * a stripe over-writes itself
3312 		 */
3313 		sector_t here_new, here_old;
3314 		int old_disks;
3315 
3316 		if (mddev->new_level != mddev->level ||
3317 		    mddev->new_layout != mddev->layout ||
3318 		    mddev->new_chunk != mddev->chunk_size) {
3319 			printk(KERN_ERR "raid5: %s: unsupported reshape required - aborting.\n",
3320 			       mdname(mddev));
3321 			return -EINVAL;
3322 		}
3323 		if (mddev->delta_disks <= 0) {
3324 			printk(KERN_ERR "raid5: %s: unsupported reshape (reduce disks) required - aborting.\n",
3325 			       mdname(mddev));
3326 			return -EINVAL;
3327 		}
3328 		old_disks = mddev->raid_disks - mddev->delta_disks;
3329 		/* reshape_position must be on a new-stripe boundary, and one
3330 		 * further up in new geometry must map after here in old geometry.
3331 		 */
3332 		here_new = mddev->reshape_position;
3333 		if (sector_div(here_new, (mddev->chunk_size>>9)*(mddev->raid_disks-1))) {
3334 			printk(KERN_ERR "raid5: reshape_position not on a stripe boundary\n");
3335 			return -EINVAL;
3336 		}
3337 		/* here_new is the stripe we will write to */
3338 		here_old = mddev->reshape_position;
3339 		sector_div(here_old, (mddev->chunk_size>>9)*(old_disks-1));
3340 		/* here_old is the first stripe that we might need to read from */
3341 		if (here_new >= here_old) {
3342 			/* Reading from the same stripe as writing to - bad */
3343 			printk(KERN_ERR "raid5: reshape_position too early for auto-recovery - aborting.\n");
3344 			return -EINVAL;
3345 		}
3346 		printk(KERN_INFO "raid5: reshape will continue\n");
3347 		/* OK, we should be able to continue; */
3348 	}
3349 
3350 
3351 	mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
3352 	if ((conf = mddev->private) == NULL)
3353 		goto abort;
3354 	if (mddev->reshape_position == MaxSector) {
3355 		conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
3356 	} else {
3357 		conf->raid_disks = mddev->raid_disks;
3358 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
3359 	}
3360 
3361 	conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
3362 			      GFP_KERNEL);
3363 	if (!conf->disks)
3364 		goto abort;
3365 
3366 	conf->mddev = mddev;
3367 
3368 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
3369 		goto abort;
3370 
3371 	if (mddev->level == 6) {
3372 		conf->spare_page = alloc_page(GFP_KERNEL);
3373 		if (!conf->spare_page)
3374 			goto abort;
3375 	}
3376 	spin_lock_init(&conf->device_lock);
3377 	init_waitqueue_head(&conf->wait_for_stripe);
3378 	init_waitqueue_head(&conf->wait_for_overlap);
3379 	INIT_LIST_HEAD(&conf->handle_list);
3380 	INIT_LIST_HEAD(&conf->delayed_list);
3381 	INIT_LIST_HEAD(&conf->bitmap_list);
3382 	INIT_LIST_HEAD(&conf->inactive_list);
3383 	atomic_set(&conf->active_stripes, 0);
3384 	atomic_set(&conf->preread_active_stripes, 0);
3385 	atomic_set(&conf->active_aligned_reads, 0);
3386 
3387 	PRINTK("raid5: run(%s) called.\n", mdname(mddev));
3388 
3389 	ITERATE_RDEV(mddev,rdev,tmp) {
3390 		raid_disk = rdev->raid_disk;
3391 		if (raid_disk >= conf->raid_disks
3392 		    || raid_disk < 0)
3393 			continue;
3394 		disk = conf->disks + raid_disk;
3395 
3396 		disk->rdev = rdev;
3397 
3398 		if (test_bit(In_sync, &rdev->flags)) {
3399 			char b[BDEVNAME_SIZE];
3400 			printk(KERN_INFO "raid5: device %s operational as raid"
3401 				" disk %d\n", bdevname(rdev->bdev,b),
3402 				raid_disk);
3403 			working_disks++;
3404 		}
3405 	}
3406 
3407 	/*
3408 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
3409 	 */
3410 	mddev->degraded = conf->raid_disks - working_disks;
3411 	conf->mddev = mddev;
3412 	conf->chunk_size = mddev->chunk_size;
3413 	conf->level = mddev->level;
3414 	if (conf->level == 6)
3415 		conf->max_degraded = 2;
3416 	else
3417 		conf->max_degraded = 1;
3418 	conf->algorithm = mddev->layout;
3419 	conf->max_nr_stripes = NR_STRIPES;
3420 	conf->expand_progress = mddev->reshape_position;
3421 
3422 	/* device size must be a multiple of chunk size */
3423 	mddev->size &= ~(mddev->chunk_size/1024 -1);
3424 	mddev->resync_max_sectors = mddev->size << 1;
3425 
3426 	if (conf->level == 6 && conf->raid_disks < 4) {
3427 		printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
3428 		       mdname(mddev), conf->raid_disks);
3429 		goto abort;
3430 	}
3431 	if (!conf->chunk_size || conf->chunk_size % 4) {
3432 		printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
3433 			conf->chunk_size, mdname(mddev));
3434 		goto abort;
3435 	}
3436 	if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
3437 		printk(KERN_ERR
3438 			"raid5: unsupported parity algorithm %d for %s\n",
3439 			conf->algorithm, mdname(mddev));
3440 		goto abort;
3441 	}
3442 	if (mddev->degraded > conf->max_degraded) {
3443 		printk(KERN_ERR "raid5: not enough operational devices for %s"
3444 			" (%d/%d failed)\n",
3445 			mdname(mddev), mddev->degraded, conf->raid_disks);
3446 		goto abort;
3447 	}
3448 
3449 	if (mddev->degraded > 0 &&
3450 	    mddev->recovery_cp != MaxSector) {
3451 		if (mddev->ok_start_degraded)
3452 			printk(KERN_WARNING
3453 			       "raid5: starting dirty degraded array: %s"
3454 			       "- data corruption possible.\n",
3455 			       mdname(mddev));
3456 		else {
3457 			printk(KERN_ERR
3458 			       "raid5: cannot start dirty degraded array for %s\n",
3459 			       mdname(mddev));
3460 			goto abort;
3461 		}
3462 	}
3463 
3464 	{
3465 		mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
3466 		if (!mddev->thread) {
3467 			printk(KERN_ERR
3468 				"raid5: couldn't allocate thread for %s\n",
3469 				mdname(mddev));
3470 			goto abort;
3471 		}
3472 	}
3473 	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
3474 		 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
3475 	if (grow_stripes(conf, conf->max_nr_stripes)) {
3476 		printk(KERN_ERR
3477 			"raid5: couldn't allocate %dkB for buffers\n", memory);
3478 		shrink_stripes(conf);
3479 		md_unregister_thread(mddev->thread);
3480 		goto abort;
3481 	} else
3482 		printk(KERN_INFO "raid5: allocated %dkB for %s\n",
3483 			memory, mdname(mddev));
3484 
3485 	if (mddev->degraded == 0)
3486 		printk("raid5: raid level %d set %s active with %d out of %d"
3487 			" devices, algorithm %d\n", conf->level, mdname(mddev),
3488 			mddev->raid_disks-mddev->degraded, mddev->raid_disks,
3489 			conf->algorithm);
3490 	else
3491 		printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
3492 			" out of %d devices, algorithm %d\n", conf->level,
3493 			mdname(mddev), mddev->raid_disks - mddev->degraded,
3494 			mddev->raid_disks, conf->algorithm);
3495 
3496 	print_raid5_conf(conf);
3497 
3498 	if (conf->expand_progress != MaxSector) {
3499 		printk("...ok start reshape thread\n");
3500 		conf->expand_lo = conf->expand_progress;
3501 		atomic_set(&conf->reshape_stripes, 0);
3502 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3503 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3504 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3505 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3506 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3507 							"%s_reshape");
3508 	}
3509 
3510 	/* read-ahead size must cover two whole stripes, which is
3511 	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
3512 	 */
3513 	{
3514 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
3515 		int stripe = data_disks *
3516 			(mddev->chunk_size / PAGE_SIZE);
3517 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3518 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3519 	}
3520 
3521 	/* Ok, everything is just fine now */
3522 	sysfs_create_group(&mddev->kobj, &raid5_attrs_group);
3523 
3524 	mddev->queue->unplug_fn = raid5_unplug_device;
3525 	mddev->queue->issue_flush_fn = raid5_issue_flush;
3526 	mddev->queue->backing_dev_info.congested_fn = raid5_congested;
3527 	mddev->queue->backing_dev_info.congested_data = mddev;
3528 
3529 	mddev->array_size =  mddev->size * (conf->previous_raid_disks -
3530 					    conf->max_degraded);
3531 
3532 	blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
3533 
3534 	return 0;
3535 abort:
3536 	if (conf) {
3537 		print_raid5_conf(conf);
3538 		safe_put_page(conf->spare_page);
3539 		kfree(conf->disks);
3540 		kfree(conf->stripe_hashtbl);
3541 		kfree(conf);
3542 	}
3543 	mddev->private = NULL;
3544 	printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
3545 	return -EIO;
3546 }
3547 
3548 
3549 
3550 static int stop(mddev_t *mddev)
3551 {
3552 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3553 
3554 	md_unregister_thread(mddev->thread);
3555 	mddev->thread = NULL;
3556 	shrink_stripes(conf);
3557 	kfree(conf->stripe_hashtbl);
3558 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
3559 	sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
3560 	kfree(conf->disks);
3561 	kfree(conf);
3562 	mddev->private = NULL;
3563 	return 0;
3564 }
3565 
3566 #if RAID5_DEBUG
3567 static void print_sh (struct seq_file *seq, struct stripe_head *sh)
3568 {
3569 	int i;
3570 
3571 	seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
3572 		   (unsigned long long)sh->sector, sh->pd_idx, sh->state);
3573 	seq_printf(seq, "sh %llu,  count %d.\n",
3574 		   (unsigned long long)sh->sector, atomic_read(&sh->count));
3575 	seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
3576 	for (i = 0; i < sh->disks; i++) {
3577 		seq_printf(seq, "(cache%d: %p %ld) ",
3578 			   i, sh->dev[i].page, sh->dev[i].flags);
3579 	}
3580 	seq_printf(seq, "\n");
3581 }
3582 
3583 static void printall (struct seq_file *seq, raid5_conf_t *conf)
3584 {
3585 	struct stripe_head *sh;
3586 	struct hlist_node *hn;
3587 	int i;
3588 
3589 	spin_lock_irq(&conf->device_lock);
3590 	for (i = 0; i < NR_HASH; i++) {
3591 		hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
3592 			if (sh->raid_conf != conf)
3593 				continue;
3594 			print_sh(seq, sh);
3595 		}
3596 	}
3597 	spin_unlock_irq(&conf->device_lock);
3598 }
3599 #endif
3600 
3601 static void status (struct seq_file *seq, mddev_t *mddev)
3602 {
3603 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3604 	int i;
3605 
3606 	seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
3607 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
3608 	for (i = 0; i < conf->raid_disks; i++)
3609 		seq_printf (seq, "%s",
3610 			       conf->disks[i].rdev &&
3611 			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
3612 	seq_printf (seq, "]");
3613 #if RAID5_DEBUG
3614 	seq_printf (seq, "\n");
3615 	printall(seq, conf);
3616 #endif
3617 }
3618 
3619 static void print_raid5_conf (raid5_conf_t *conf)
3620 {
3621 	int i;
3622 	struct disk_info *tmp;
3623 
3624 	printk("RAID5 conf printout:\n");
3625 	if (!conf) {
3626 		printk("(conf==NULL)\n");
3627 		return;
3628 	}
3629 	printk(" --- rd:%d wd:%d\n", conf->raid_disks,
3630 		 conf->raid_disks - conf->mddev->degraded);
3631 
3632 	for (i = 0; i < conf->raid_disks; i++) {
3633 		char b[BDEVNAME_SIZE];
3634 		tmp = conf->disks + i;
3635 		if (tmp->rdev)
3636 		printk(" disk %d, o:%d, dev:%s\n",
3637 			i, !test_bit(Faulty, &tmp->rdev->flags),
3638 			bdevname(tmp->rdev->bdev,b));
3639 	}
3640 }
3641 
3642 static int raid5_spare_active(mddev_t *mddev)
3643 {
3644 	int i;
3645 	raid5_conf_t *conf = mddev->private;
3646 	struct disk_info *tmp;
3647 
3648 	for (i = 0; i < conf->raid_disks; i++) {
3649 		tmp = conf->disks + i;
3650 		if (tmp->rdev
3651 		    && !test_bit(Faulty, &tmp->rdev->flags)
3652 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
3653 			unsigned long flags;
3654 			spin_lock_irqsave(&conf->device_lock, flags);
3655 			mddev->degraded--;
3656 			spin_unlock_irqrestore(&conf->device_lock, flags);
3657 		}
3658 	}
3659 	print_raid5_conf(conf);
3660 	return 0;
3661 }
3662 
3663 static int raid5_remove_disk(mddev_t *mddev, int number)
3664 {
3665 	raid5_conf_t *conf = mddev->private;
3666 	int err = 0;
3667 	mdk_rdev_t *rdev;
3668 	struct disk_info *p = conf->disks + number;
3669 
3670 	print_raid5_conf(conf);
3671 	rdev = p->rdev;
3672 	if (rdev) {
3673 		if (test_bit(In_sync, &rdev->flags) ||
3674 		    atomic_read(&rdev->nr_pending)) {
3675 			err = -EBUSY;
3676 			goto abort;
3677 		}
3678 		p->rdev = NULL;
3679 		synchronize_rcu();
3680 		if (atomic_read(&rdev->nr_pending)) {
3681 			/* lost the race, try later */
3682 			err = -EBUSY;
3683 			p->rdev = rdev;
3684 		}
3685 	}
3686 abort:
3687 
3688 	print_raid5_conf(conf);
3689 	return err;
3690 }
3691 
3692 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
3693 {
3694 	raid5_conf_t *conf = mddev->private;
3695 	int found = 0;
3696 	int disk;
3697 	struct disk_info *p;
3698 
3699 	if (mddev->degraded > conf->max_degraded)
3700 		/* no point adding a device */
3701 		return 0;
3702 
3703 	/*
3704 	 * find the disk ... but prefer rdev->saved_raid_disk
3705 	 * if possible.
3706 	 */
3707 	if (rdev->saved_raid_disk >= 0 &&
3708 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
3709 		disk = rdev->saved_raid_disk;
3710 	else
3711 		disk = 0;
3712 	for ( ; disk < conf->raid_disks; disk++)
3713 		if ((p=conf->disks + disk)->rdev == NULL) {
3714 			clear_bit(In_sync, &rdev->flags);
3715 			rdev->raid_disk = disk;
3716 			found = 1;
3717 			if (rdev->saved_raid_disk != disk)
3718 				conf->fullsync = 1;
3719 			rcu_assign_pointer(p->rdev, rdev);
3720 			break;
3721 		}
3722 	print_raid5_conf(conf);
3723 	return found;
3724 }
3725 
3726 static int raid5_resize(mddev_t *mddev, sector_t sectors)
3727 {
3728 	/* no resync is happening, and there is enough space
3729 	 * on all devices, so we can resize.
3730 	 * We need to make sure resync covers any new space.
3731 	 * If the array is shrinking we should possibly wait until
3732 	 * any io in the removed space completes, but it hardly seems
3733 	 * worth it.
3734 	 */
3735 	raid5_conf_t *conf = mddev_to_conf(mddev);
3736 
3737 	sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
3738 	mddev->array_size = (sectors * (mddev->raid_disks-conf->max_degraded))>>1;
3739 	set_capacity(mddev->gendisk, mddev->array_size << 1);
3740 	mddev->changed = 1;
3741 	if (sectors/2  > mddev->size && mddev->recovery_cp == MaxSector) {
3742 		mddev->recovery_cp = mddev->size << 1;
3743 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3744 	}
3745 	mddev->size = sectors /2;
3746 	mddev->resync_max_sectors = sectors;
3747 	return 0;
3748 }
3749 
3750 #ifdef CONFIG_MD_RAID5_RESHAPE
3751 static int raid5_check_reshape(mddev_t *mddev)
3752 {
3753 	raid5_conf_t *conf = mddev_to_conf(mddev);
3754 	int err;
3755 
3756 	if (mddev->delta_disks < 0 ||
3757 	    mddev->new_level != mddev->level)
3758 		return -EINVAL; /* Cannot shrink array or change level yet */
3759 	if (mddev->delta_disks == 0)
3760 		return 0; /* nothing to do */
3761 
3762 	/* Can only proceed if there are plenty of stripe_heads.
3763 	 * We need a minimum of one full stripe,, and for sensible progress
3764 	 * it is best to have about 4 times that.
3765 	 * If we require 4 times, then the default 256 4K stripe_heads will
3766 	 * allow for chunk sizes up to 256K, which is probably OK.
3767 	 * If the chunk size is greater, user-space should request more
3768 	 * stripe_heads first.
3769 	 */
3770 	if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
3771 	    (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
3772 		printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n",
3773 		       (mddev->chunk_size / STRIPE_SIZE)*4);
3774 		return -ENOSPC;
3775 	}
3776 
3777 	err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
3778 	if (err)
3779 		return err;
3780 
3781 	/* looks like we might be able to manage this */
3782 	return 0;
3783 }
3784 
3785 static int raid5_start_reshape(mddev_t *mddev)
3786 {
3787 	raid5_conf_t *conf = mddev_to_conf(mddev);
3788 	mdk_rdev_t *rdev;
3789 	struct list_head *rtmp;
3790 	int spares = 0;
3791 	int added_devices = 0;
3792 	unsigned long flags;
3793 
3794 	if (mddev->degraded ||
3795 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3796 		return -EBUSY;
3797 
3798 	ITERATE_RDEV(mddev, rdev, rtmp)
3799 		if (rdev->raid_disk < 0 &&
3800 		    !test_bit(Faulty, &rdev->flags))
3801 			spares++;
3802 
3803 	if (spares < mddev->delta_disks-1)
3804 		/* Not enough devices even to make a degraded array
3805 		 * of that size
3806 		 */
3807 		return -EINVAL;
3808 
3809 	atomic_set(&conf->reshape_stripes, 0);
3810 	spin_lock_irq(&conf->device_lock);
3811 	conf->previous_raid_disks = conf->raid_disks;
3812 	conf->raid_disks += mddev->delta_disks;
3813 	conf->expand_progress = 0;
3814 	conf->expand_lo = 0;
3815 	spin_unlock_irq(&conf->device_lock);
3816 
3817 	/* Add some new drives, as many as will fit.
3818 	 * We know there are enough to make the newly sized array work.
3819 	 */
3820 	ITERATE_RDEV(mddev, rdev, rtmp)
3821 		if (rdev->raid_disk < 0 &&
3822 		    !test_bit(Faulty, &rdev->flags)) {
3823 			if (raid5_add_disk(mddev, rdev)) {
3824 				char nm[20];
3825 				set_bit(In_sync, &rdev->flags);
3826 				added_devices++;
3827 				rdev->recovery_offset = 0;
3828 				sprintf(nm, "rd%d", rdev->raid_disk);
3829 				sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
3830 			} else
3831 				break;
3832 		}
3833 
3834 	spin_lock_irqsave(&conf->device_lock, flags);
3835 	mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
3836 	spin_unlock_irqrestore(&conf->device_lock, flags);
3837 	mddev->raid_disks = conf->raid_disks;
3838 	mddev->reshape_position = 0;
3839 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
3840 
3841 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3842 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3843 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3844 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3845 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3846 						"%s_reshape");
3847 	if (!mddev->sync_thread) {
3848 		mddev->recovery = 0;
3849 		spin_lock_irq(&conf->device_lock);
3850 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
3851 		conf->expand_progress = MaxSector;
3852 		spin_unlock_irq(&conf->device_lock);
3853 		return -EAGAIN;
3854 	}
3855 	md_wakeup_thread(mddev->sync_thread);
3856 	md_new_event(mddev);
3857 	return 0;
3858 }
3859 #endif
3860 
3861 static void end_reshape(raid5_conf_t *conf)
3862 {
3863 	struct block_device *bdev;
3864 
3865 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
3866 		conf->mddev->array_size = conf->mddev->size * (conf->raid_disks-1);
3867 		set_capacity(conf->mddev->gendisk, conf->mddev->array_size << 1);
3868 		conf->mddev->changed = 1;
3869 
3870 		bdev = bdget_disk(conf->mddev->gendisk, 0);
3871 		if (bdev) {
3872 			mutex_lock(&bdev->bd_inode->i_mutex);
3873 			i_size_write(bdev->bd_inode, (loff_t)conf->mddev->array_size << 10);
3874 			mutex_unlock(&bdev->bd_inode->i_mutex);
3875 			bdput(bdev);
3876 		}
3877 		spin_lock_irq(&conf->device_lock);
3878 		conf->expand_progress = MaxSector;
3879 		spin_unlock_irq(&conf->device_lock);
3880 		conf->mddev->reshape_position = MaxSector;
3881 
3882 		/* read-ahead size must cover two whole stripes, which is
3883 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
3884 		 */
3885 		{
3886 			int data_disks = conf->previous_raid_disks - conf->max_degraded;
3887 			int stripe = data_disks *
3888 				(conf->mddev->chunk_size / PAGE_SIZE);
3889 			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3890 				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3891 		}
3892 	}
3893 }
3894 
3895 static void raid5_quiesce(mddev_t *mddev, int state)
3896 {
3897 	raid5_conf_t *conf = mddev_to_conf(mddev);
3898 
3899 	switch(state) {
3900 	case 2: /* resume for a suspend */
3901 		wake_up(&conf->wait_for_overlap);
3902 		break;
3903 
3904 	case 1: /* stop all writes */
3905 		spin_lock_irq(&conf->device_lock);
3906 		conf->quiesce = 1;
3907 		wait_event_lock_irq(conf->wait_for_stripe,
3908 				    atomic_read(&conf->active_stripes) == 0 &&
3909 				    atomic_read(&conf->active_aligned_reads) == 0,
3910 				    conf->device_lock, /* nothing */);
3911 		spin_unlock_irq(&conf->device_lock);
3912 		break;
3913 
3914 	case 0: /* re-enable writes */
3915 		spin_lock_irq(&conf->device_lock);
3916 		conf->quiesce = 0;
3917 		wake_up(&conf->wait_for_stripe);
3918 		wake_up(&conf->wait_for_overlap);
3919 		spin_unlock_irq(&conf->device_lock);
3920 		break;
3921 	}
3922 }
3923 
3924 static struct mdk_personality raid6_personality =
3925 {
3926 	.name		= "raid6",
3927 	.level		= 6,
3928 	.owner		= THIS_MODULE,
3929 	.make_request	= make_request,
3930 	.run		= run,
3931 	.stop		= stop,
3932 	.status		= status,
3933 	.error_handler	= error,
3934 	.hot_add_disk	= raid5_add_disk,
3935 	.hot_remove_disk= raid5_remove_disk,
3936 	.spare_active	= raid5_spare_active,
3937 	.sync_request	= sync_request,
3938 	.resize		= raid5_resize,
3939 	.quiesce	= raid5_quiesce,
3940 };
3941 static struct mdk_personality raid5_personality =
3942 {
3943 	.name		= "raid5",
3944 	.level		= 5,
3945 	.owner		= THIS_MODULE,
3946 	.make_request	= make_request,
3947 	.run		= run,
3948 	.stop		= stop,
3949 	.status		= status,
3950 	.error_handler	= error,
3951 	.hot_add_disk	= raid5_add_disk,
3952 	.hot_remove_disk= raid5_remove_disk,
3953 	.spare_active	= raid5_spare_active,
3954 	.sync_request	= sync_request,
3955 	.resize		= raid5_resize,
3956 #ifdef CONFIG_MD_RAID5_RESHAPE
3957 	.check_reshape	= raid5_check_reshape,
3958 	.start_reshape  = raid5_start_reshape,
3959 #endif
3960 	.quiesce	= raid5_quiesce,
3961 };
3962 
3963 static struct mdk_personality raid4_personality =
3964 {
3965 	.name		= "raid4",
3966 	.level		= 4,
3967 	.owner		= THIS_MODULE,
3968 	.make_request	= make_request,
3969 	.run		= run,
3970 	.stop		= stop,
3971 	.status		= status,
3972 	.error_handler	= error,
3973 	.hot_add_disk	= raid5_add_disk,
3974 	.hot_remove_disk= raid5_remove_disk,
3975 	.spare_active	= raid5_spare_active,
3976 	.sync_request	= sync_request,
3977 	.resize		= raid5_resize,
3978 	.quiesce	= raid5_quiesce,
3979 };
3980 
3981 static int __init raid5_init(void)
3982 {
3983 	int e;
3984 
3985 	e = raid6_select_algo();
3986 	if ( e )
3987 		return e;
3988 	register_md_personality(&raid6_personality);
3989 	register_md_personality(&raid5_personality);
3990 	register_md_personality(&raid4_personality);
3991 	return 0;
3992 }
3993 
3994 static void raid5_exit(void)
3995 {
3996 	unregister_md_personality(&raid6_personality);
3997 	unregister_md_personality(&raid5_personality);
3998 	unregister_md_personality(&raid4_personality);
3999 }
4000 
4001 module_init(raid5_init);
4002 module_exit(raid5_exit);
4003 MODULE_LICENSE("GPL");
4004 MODULE_ALIAS("md-personality-4"); /* RAID5 */
4005 MODULE_ALIAS("md-raid5");
4006 MODULE_ALIAS("md-raid4");
4007 MODULE_ALIAS("md-level-5");
4008 MODULE_ALIAS("md-level-4");
4009 MODULE_ALIAS("md-personality-8"); /* RAID6 */
4010 MODULE_ALIAS("md-raid6");
4011 MODULE_ALIAS("md-level-6");
4012 
4013 /* This used to be two separate modules, they were: */
4014 MODULE_ALIAS("raid5");
4015 MODULE_ALIAS("raid6");
4016