xref: /linux/drivers/md/raid5.c (revision b43ab901d671e3e3cad425ea5e9a3c74e266dcdd)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include "md.h"
57 #include "raid5.h"
58 #include "raid0.h"
59 #include "bitmap.h"
60 
61 /*
62  * Stripe cache
63  */
64 
65 #define NR_STRIPES		256
66 #define STRIPE_SIZE		PAGE_SIZE
67 #define STRIPE_SHIFT		(PAGE_SHIFT - 9)
68 #define STRIPE_SECTORS		(STRIPE_SIZE>>9)
69 #define	IO_THRESHOLD		1
70 #define BYPASS_THRESHOLD	1
71 #define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
72 #define HASH_MASK		(NR_HASH - 1)
73 
74 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
75 {
76 	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
77 	return &conf->stripe_hashtbl[hash];
78 }
79 
80 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
81  * order without overlap.  There may be several bio's per stripe+device, and
82  * a bio could span several devices.
83  * When walking this list for a particular stripe+device, we must never proceed
84  * beyond a bio that extends past this device, as the next bio might no longer
85  * be valid.
86  * This function is used to determine the 'next' bio in the list, given the sector
87  * of the current stripe+device
88  */
89 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
90 {
91 	int sectors = bio->bi_size >> 9;
92 	if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
93 		return bio->bi_next;
94 	else
95 		return NULL;
96 }
97 
98 /*
99  * We maintain a biased count of active stripes in the bottom 16 bits of
100  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
101  */
102 static inline int raid5_bi_phys_segments(struct bio *bio)
103 {
104 	return bio->bi_phys_segments & 0xffff;
105 }
106 
107 static inline int raid5_bi_hw_segments(struct bio *bio)
108 {
109 	return (bio->bi_phys_segments >> 16) & 0xffff;
110 }
111 
112 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
113 {
114 	--bio->bi_phys_segments;
115 	return raid5_bi_phys_segments(bio);
116 }
117 
118 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
119 {
120 	unsigned short val = raid5_bi_hw_segments(bio);
121 
122 	--val;
123 	bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
124 	return val;
125 }
126 
127 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
128 {
129 	bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
130 }
131 
132 /* Find first data disk in a raid6 stripe */
133 static inline int raid6_d0(struct stripe_head *sh)
134 {
135 	if (sh->ddf_layout)
136 		/* ddf always start from first device */
137 		return 0;
138 	/* md starts just after Q block */
139 	if (sh->qd_idx == sh->disks - 1)
140 		return 0;
141 	else
142 		return sh->qd_idx + 1;
143 }
144 static inline int raid6_next_disk(int disk, int raid_disks)
145 {
146 	disk++;
147 	return (disk < raid_disks) ? disk : 0;
148 }
149 
150 /* When walking through the disks in a raid5, starting at raid6_d0,
151  * We need to map each disk to a 'slot', where the data disks are slot
152  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
153  * is raid_disks-1.  This help does that mapping.
154  */
155 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
156 			     int *count, int syndrome_disks)
157 {
158 	int slot = *count;
159 
160 	if (sh->ddf_layout)
161 		(*count)++;
162 	if (idx == sh->pd_idx)
163 		return syndrome_disks;
164 	if (idx == sh->qd_idx)
165 		return syndrome_disks + 1;
166 	if (!sh->ddf_layout)
167 		(*count)++;
168 	return slot;
169 }
170 
171 static void return_io(struct bio *return_bi)
172 {
173 	struct bio *bi = return_bi;
174 	while (bi) {
175 
176 		return_bi = bi->bi_next;
177 		bi->bi_next = NULL;
178 		bi->bi_size = 0;
179 		bio_endio(bi, 0);
180 		bi = return_bi;
181 	}
182 }
183 
184 static void print_raid5_conf (struct r5conf *conf);
185 
186 static int stripe_operations_active(struct stripe_head *sh)
187 {
188 	return sh->check_state || sh->reconstruct_state ||
189 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
190 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
191 }
192 
193 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
194 {
195 	if (atomic_dec_and_test(&sh->count)) {
196 		BUG_ON(!list_empty(&sh->lru));
197 		BUG_ON(atomic_read(&conf->active_stripes)==0);
198 		if (test_bit(STRIPE_HANDLE, &sh->state)) {
199 			if (test_bit(STRIPE_DELAYED, &sh->state))
200 				list_add_tail(&sh->lru, &conf->delayed_list);
201 			else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
202 				   sh->bm_seq - conf->seq_write > 0)
203 				list_add_tail(&sh->lru, &conf->bitmap_list);
204 			else {
205 				clear_bit(STRIPE_BIT_DELAY, &sh->state);
206 				list_add_tail(&sh->lru, &conf->handle_list);
207 			}
208 			md_wakeup_thread(conf->mddev->thread);
209 		} else {
210 			BUG_ON(stripe_operations_active(sh));
211 			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
212 				atomic_dec(&conf->preread_active_stripes);
213 				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
214 					md_wakeup_thread(conf->mddev->thread);
215 			}
216 			atomic_dec(&conf->active_stripes);
217 			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
218 				list_add_tail(&sh->lru, &conf->inactive_list);
219 				wake_up(&conf->wait_for_stripe);
220 				if (conf->retry_read_aligned)
221 					md_wakeup_thread(conf->mddev->thread);
222 			}
223 		}
224 	}
225 }
226 
227 static void release_stripe(struct stripe_head *sh)
228 {
229 	struct r5conf *conf = sh->raid_conf;
230 	unsigned long flags;
231 
232 	spin_lock_irqsave(&conf->device_lock, flags);
233 	__release_stripe(conf, sh);
234 	spin_unlock_irqrestore(&conf->device_lock, flags);
235 }
236 
237 static inline void remove_hash(struct stripe_head *sh)
238 {
239 	pr_debug("remove_hash(), stripe %llu\n",
240 		(unsigned long long)sh->sector);
241 
242 	hlist_del_init(&sh->hash);
243 }
244 
245 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
246 {
247 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
248 
249 	pr_debug("insert_hash(), stripe %llu\n",
250 		(unsigned long long)sh->sector);
251 
252 	hlist_add_head(&sh->hash, hp);
253 }
254 
255 
256 /* find an idle stripe, make sure it is unhashed, and return it. */
257 static struct stripe_head *get_free_stripe(struct r5conf *conf)
258 {
259 	struct stripe_head *sh = NULL;
260 	struct list_head *first;
261 
262 	if (list_empty(&conf->inactive_list))
263 		goto out;
264 	first = conf->inactive_list.next;
265 	sh = list_entry(first, struct stripe_head, lru);
266 	list_del_init(first);
267 	remove_hash(sh);
268 	atomic_inc(&conf->active_stripes);
269 out:
270 	return sh;
271 }
272 
273 static void shrink_buffers(struct stripe_head *sh)
274 {
275 	struct page *p;
276 	int i;
277 	int num = sh->raid_conf->pool_size;
278 
279 	for (i = 0; i < num ; i++) {
280 		p = sh->dev[i].page;
281 		if (!p)
282 			continue;
283 		sh->dev[i].page = NULL;
284 		put_page(p);
285 	}
286 }
287 
288 static int grow_buffers(struct stripe_head *sh)
289 {
290 	int i;
291 	int num = sh->raid_conf->pool_size;
292 
293 	for (i = 0; i < num; i++) {
294 		struct page *page;
295 
296 		if (!(page = alloc_page(GFP_KERNEL))) {
297 			return 1;
298 		}
299 		sh->dev[i].page = page;
300 	}
301 	return 0;
302 }
303 
304 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
305 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
306 			    struct stripe_head *sh);
307 
308 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
309 {
310 	struct r5conf *conf = sh->raid_conf;
311 	int i;
312 
313 	BUG_ON(atomic_read(&sh->count) != 0);
314 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
315 	BUG_ON(stripe_operations_active(sh));
316 
317 	pr_debug("init_stripe called, stripe %llu\n",
318 		(unsigned long long)sh->sector);
319 
320 	remove_hash(sh);
321 
322 	sh->generation = conf->generation - previous;
323 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
324 	sh->sector = sector;
325 	stripe_set_idx(sector, conf, previous, sh);
326 	sh->state = 0;
327 
328 
329 	for (i = sh->disks; i--; ) {
330 		struct r5dev *dev = &sh->dev[i];
331 
332 		if (dev->toread || dev->read || dev->towrite || dev->written ||
333 		    test_bit(R5_LOCKED, &dev->flags)) {
334 			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
335 			       (unsigned long long)sh->sector, i, dev->toread,
336 			       dev->read, dev->towrite, dev->written,
337 			       test_bit(R5_LOCKED, &dev->flags));
338 			WARN_ON(1);
339 		}
340 		dev->flags = 0;
341 		raid5_build_block(sh, i, previous);
342 	}
343 	insert_hash(conf, sh);
344 }
345 
346 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
347 					 short generation)
348 {
349 	struct stripe_head *sh;
350 	struct hlist_node *hn;
351 
352 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
353 	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
354 		if (sh->sector == sector && sh->generation == generation)
355 			return sh;
356 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
357 	return NULL;
358 }
359 
360 /*
361  * Need to check if array has failed when deciding whether to:
362  *  - start an array
363  *  - remove non-faulty devices
364  *  - add a spare
365  *  - allow a reshape
366  * This determination is simple when no reshape is happening.
367  * However if there is a reshape, we need to carefully check
368  * both the before and after sections.
369  * This is because some failed devices may only affect one
370  * of the two sections, and some non-in_sync devices may
371  * be insync in the section most affected by failed devices.
372  */
373 static int calc_degraded(struct r5conf *conf)
374 {
375 	int degraded, degraded2;
376 	int i;
377 
378 	rcu_read_lock();
379 	degraded = 0;
380 	for (i = 0; i < conf->previous_raid_disks; i++) {
381 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
382 		if (!rdev || test_bit(Faulty, &rdev->flags))
383 			degraded++;
384 		else if (test_bit(In_sync, &rdev->flags))
385 			;
386 		else
387 			/* not in-sync or faulty.
388 			 * If the reshape increases the number of devices,
389 			 * this is being recovered by the reshape, so
390 			 * this 'previous' section is not in_sync.
391 			 * If the number of devices is being reduced however,
392 			 * the device can only be part of the array if
393 			 * we are reverting a reshape, so this section will
394 			 * be in-sync.
395 			 */
396 			if (conf->raid_disks >= conf->previous_raid_disks)
397 				degraded++;
398 	}
399 	rcu_read_unlock();
400 	if (conf->raid_disks == conf->previous_raid_disks)
401 		return degraded;
402 	rcu_read_lock();
403 	degraded2 = 0;
404 	for (i = 0; i < conf->raid_disks; i++) {
405 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
406 		if (!rdev || test_bit(Faulty, &rdev->flags))
407 			degraded2++;
408 		else if (test_bit(In_sync, &rdev->flags))
409 			;
410 		else
411 			/* not in-sync or faulty.
412 			 * If reshape increases the number of devices, this
413 			 * section has already been recovered, else it
414 			 * almost certainly hasn't.
415 			 */
416 			if (conf->raid_disks <= conf->previous_raid_disks)
417 				degraded2++;
418 	}
419 	rcu_read_unlock();
420 	if (degraded2 > degraded)
421 		return degraded2;
422 	return degraded;
423 }
424 
425 static int has_failed(struct r5conf *conf)
426 {
427 	int degraded;
428 
429 	if (conf->mddev->reshape_position == MaxSector)
430 		return conf->mddev->degraded > conf->max_degraded;
431 
432 	degraded = calc_degraded(conf);
433 	if (degraded > conf->max_degraded)
434 		return 1;
435 	return 0;
436 }
437 
438 static struct stripe_head *
439 get_active_stripe(struct r5conf *conf, sector_t sector,
440 		  int previous, int noblock, int noquiesce)
441 {
442 	struct stripe_head *sh;
443 
444 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
445 
446 	spin_lock_irq(&conf->device_lock);
447 
448 	do {
449 		wait_event_lock_irq(conf->wait_for_stripe,
450 				    conf->quiesce == 0 || noquiesce,
451 				    conf->device_lock, /* nothing */);
452 		sh = __find_stripe(conf, sector, conf->generation - previous);
453 		if (!sh) {
454 			if (!conf->inactive_blocked)
455 				sh = get_free_stripe(conf);
456 			if (noblock && sh == NULL)
457 				break;
458 			if (!sh) {
459 				conf->inactive_blocked = 1;
460 				wait_event_lock_irq(conf->wait_for_stripe,
461 						    !list_empty(&conf->inactive_list) &&
462 						    (atomic_read(&conf->active_stripes)
463 						     < (conf->max_nr_stripes *3/4)
464 						     || !conf->inactive_blocked),
465 						    conf->device_lock,
466 						    );
467 				conf->inactive_blocked = 0;
468 			} else
469 				init_stripe(sh, sector, previous);
470 		} else {
471 			if (atomic_read(&sh->count)) {
472 				BUG_ON(!list_empty(&sh->lru)
473 				    && !test_bit(STRIPE_EXPANDING, &sh->state));
474 			} else {
475 				if (!test_bit(STRIPE_HANDLE, &sh->state))
476 					atomic_inc(&conf->active_stripes);
477 				if (list_empty(&sh->lru) &&
478 				    !test_bit(STRIPE_EXPANDING, &sh->state))
479 					BUG();
480 				list_del_init(&sh->lru);
481 			}
482 		}
483 	} while (sh == NULL);
484 
485 	if (sh)
486 		atomic_inc(&sh->count);
487 
488 	spin_unlock_irq(&conf->device_lock);
489 	return sh;
490 }
491 
492 static void
493 raid5_end_read_request(struct bio *bi, int error);
494 static void
495 raid5_end_write_request(struct bio *bi, int error);
496 
497 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
498 {
499 	struct r5conf *conf = sh->raid_conf;
500 	int i, disks = sh->disks;
501 
502 	might_sleep();
503 
504 	for (i = disks; i--; ) {
505 		int rw;
506 		int replace_only = 0;
507 		struct bio *bi, *rbi;
508 		struct md_rdev *rdev, *rrdev = NULL;
509 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
510 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
511 				rw = WRITE_FUA;
512 			else
513 				rw = WRITE;
514 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
515 			rw = READ;
516 		else if (test_and_clear_bit(R5_WantReplace,
517 					    &sh->dev[i].flags)) {
518 			rw = WRITE;
519 			replace_only = 1;
520 		} else
521 			continue;
522 
523 		bi = &sh->dev[i].req;
524 		rbi = &sh->dev[i].rreq; /* For writing to replacement */
525 
526 		bi->bi_rw = rw;
527 		rbi->bi_rw = rw;
528 		if (rw & WRITE) {
529 			bi->bi_end_io = raid5_end_write_request;
530 			rbi->bi_end_io = raid5_end_write_request;
531 		} else
532 			bi->bi_end_io = raid5_end_read_request;
533 
534 		rcu_read_lock();
535 		rrdev = rcu_dereference(conf->disks[i].replacement);
536 		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
537 		rdev = rcu_dereference(conf->disks[i].rdev);
538 		if (!rdev) {
539 			rdev = rrdev;
540 			rrdev = NULL;
541 		}
542 		if (rw & WRITE) {
543 			if (replace_only)
544 				rdev = NULL;
545 			if (rdev == rrdev)
546 				/* We raced and saw duplicates */
547 				rrdev = NULL;
548 		} else {
549 			if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
550 				rdev = rrdev;
551 			rrdev = NULL;
552 		}
553 
554 		if (rdev && test_bit(Faulty, &rdev->flags))
555 			rdev = NULL;
556 		if (rdev)
557 			atomic_inc(&rdev->nr_pending);
558 		if (rrdev && test_bit(Faulty, &rrdev->flags))
559 			rrdev = NULL;
560 		if (rrdev)
561 			atomic_inc(&rrdev->nr_pending);
562 		rcu_read_unlock();
563 
564 		/* We have already checked bad blocks for reads.  Now
565 		 * need to check for writes.  We never accept write errors
566 		 * on the replacement, so we don't to check rrdev.
567 		 */
568 		while ((rw & WRITE) && rdev &&
569 		       test_bit(WriteErrorSeen, &rdev->flags)) {
570 			sector_t first_bad;
571 			int bad_sectors;
572 			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
573 					      &first_bad, &bad_sectors);
574 			if (!bad)
575 				break;
576 
577 			if (bad < 0) {
578 				set_bit(BlockedBadBlocks, &rdev->flags);
579 				if (!conf->mddev->external &&
580 				    conf->mddev->flags) {
581 					/* It is very unlikely, but we might
582 					 * still need to write out the
583 					 * bad block log - better give it
584 					 * a chance*/
585 					md_check_recovery(conf->mddev);
586 				}
587 				md_wait_for_blocked_rdev(rdev, conf->mddev);
588 			} else {
589 				/* Acknowledged bad block - skip the write */
590 				rdev_dec_pending(rdev, conf->mddev);
591 				rdev = NULL;
592 			}
593 		}
594 
595 		if (rdev) {
596 			if (s->syncing || s->expanding || s->expanded
597 			    || s->replacing)
598 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
599 
600 			set_bit(STRIPE_IO_STARTED, &sh->state);
601 
602 			bi->bi_bdev = rdev->bdev;
603 			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
604 				__func__, (unsigned long long)sh->sector,
605 				bi->bi_rw, i);
606 			atomic_inc(&sh->count);
607 			bi->bi_sector = sh->sector + rdev->data_offset;
608 			bi->bi_flags = 1 << BIO_UPTODATE;
609 			bi->bi_idx = 0;
610 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
611 			bi->bi_io_vec[0].bv_offset = 0;
612 			bi->bi_size = STRIPE_SIZE;
613 			bi->bi_next = NULL;
614 			if (rrdev)
615 				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
616 			generic_make_request(bi);
617 		}
618 		if (rrdev) {
619 			if (s->syncing || s->expanding || s->expanded
620 			    || s->replacing)
621 				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
622 
623 			set_bit(STRIPE_IO_STARTED, &sh->state);
624 
625 			rbi->bi_bdev = rrdev->bdev;
626 			pr_debug("%s: for %llu schedule op %ld on "
627 				 "replacement disc %d\n",
628 				__func__, (unsigned long long)sh->sector,
629 				rbi->bi_rw, i);
630 			atomic_inc(&sh->count);
631 			rbi->bi_sector = sh->sector + rrdev->data_offset;
632 			rbi->bi_flags = 1 << BIO_UPTODATE;
633 			rbi->bi_idx = 0;
634 			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
635 			rbi->bi_io_vec[0].bv_offset = 0;
636 			rbi->bi_size = STRIPE_SIZE;
637 			rbi->bi_next = NULL;
638 			generic_make_request(rbi);
639 		}
640 		if (!rdev && !rrdev) {
641 			if (rw & WRITE)
642 				set_bit(STRIPE_DEGRADED, &sh->state);
643 			pr_debug("skip op %ld on disc %d for sector %llu\n",
644 				bi->bi_rw, i, (unsigned long long)sh->sector);
645 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
646 			set_bit(STRIPE_HANDLE, &sh->state);
647 		}
648 	}
649 }
650 
651 static struct dma_async_tx_descriptor *
652 async_copy_data(int frombio, struct bio *bio, struct page *page,
653 	sector_t sector, struct dma_async_tx_descriptor *tx)
654 {
655 	struct bio_vec *bvl;
656 	struct page *bio_page;
657 	int i;
658 	int page_offset;
659 	struct async_submit_ctl submit;
660 	enum async_tx_flags flags = 0;
661 
662 	if (bio->bi_sector >= sector)
663 		page_offset = (signed)(bio->bi_sector - sector) * 512;
664 	else
665 		page_offset = (signed)(sector - bio->bi_sector) * -512;
666 
667 	if (frombio)
668 		flags |= ASYNC_TX_FENCE;
669 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
670 
671 	bio_for_each_segment(bvl, bio, i) {
672 		int len = bvl->bv_len;
673 		int clen;
674 		int b_offset = 0;
675 
676 		if (page_offset < 0) {
677 			b_offset = -page_offset;
678 			page_offset += b_offset;
679 			len -= b_offset;
680 		}
681 
682 		if (len > 0 && page_offset + len > STRIPE_SIZE)
683 			clen = STRIPE_SIZE - page_offset;
684 		else
685 			clen = len;
686 
687 		if (clen > 0) {
688 			b_offset += bvl->bv_offset;
689 			bio_page = bvl->bv_page;
690 			if (frombio)
691 				tx = async_memcpy(page, bio_page, page_offset,
692 						  b_offset, clen, &submit);
693 			else
694 				tx = async_memcpy(bio_page, page, b_offset,
695 						  page_offset, clen, &submit);
696 		}
697 		/* chain the operations */
698 		submit.depend_tx = tx;
699 
700 		if (clen < len) /* hit end of page */
701 			break;
702 		page_offset +=  len;
703 	}
704 
705 	return tx;
706 }
707 
708 static void ops_complete_biofill(void *stripe_head_ref)
709 {
710 	struct stripe_head *sh = stripe_head_ref;
711 	struct bio *return_bi = NULL;
712 	struct r5conf *conf = sh->raid_conf;
713 	int i;
714 
715 	pr_debug("%s: stripe %llu\n", __func__,
716 		(unsigned long long)sh->sector);
717 
718 	/* clear completed biofills */
719 	spin_lock_irq(&conf->device_lock);
720 	for (i = sh->disks; i--; ) {
721 		struct r5dev *dev = &sh->dev[i];
722 
723 		/* acknowledge completion of a biofill operation */
724 		/* and check if we need to reply to a read request,
725 		 * new R5_Wantfill requests are held off until
726 		 * !STRIPE_BIOFILL_RUN
727 		 */
728 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
729 			struct bio *rbi, *rbi2;
730 
731 			BUG_ON(!dev->read);
732 			rbi = dev->read;
733 			dev->read = NULL;
734 			while (rbi && rbi->bi_sector <
735 				dev->sector + STRIPE_SECTORS) {
736 				rbi2 = r5_next_bio(rbi, dev->sector);
737 				if (!raid5_dec_bi_phys_segments(rbi)) {
738 					rbi->bi_next = return_bi;
739 					return_bi = rbi;
740 				}
741 				rbi = rbi2;
742 			}
743 		}
744 	}
745 	spin_unlock_irq(&conf->device_lock);
746 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
747 
748 	return_io(return_bi);
749 
750 	set_bit(STRIPE_HANDLE, &sh->state);
751 	release_stripe(sh);
752 }
753 
754 static void ops_run_biofill(struct stripe_head *sh)
755 {
756 	struct dma_async_tx_descriptor *tx = NULL;
757 	struct r5conf *conf = sh->raid_conf;
758 	struct async_submit_ctl submit;
759 	int i;
760 
761 	pr_debug("%s: stripe %llu\n", __func__,
762 		(unsigned long long)sh->sector);
763 
764 	for (i = sh->disks; i--; ) {
765 		struct r5dev *dev = &sh->dev[i];
766 		if (test_bit(R5_Wantfill, &dev->flags)) {
767 			struct bio *rbi;
768 			spin_lock_irq(&conf->device_lock);
769 			dev->read = rbi = dev->toread;
770 			dev->toread = NULL;
771 			spin_unlock_irq(&conf->device_lock);
772 			while (rbi && rbi->bi_sector <
773 				dev->sector + STRIPE_SECTORS) {
774 				tx = async_copy_data(0, rbi, dev->page,
775 					dev->sector, tx);
776 				rbi = r5_next_bio(rbi, dev->sector);
777 			}
778 		}
779 	}
780 
781 	atomic_inc(&sh->count);
782 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
783 	async_trigger_callback(&submit);
784 }
785 
786 static void mark_target_uptodate(struct stripe_head *sh, int target)
787 {
788 	struct r5dev *tgt;
789 
790 	if (target < 0)
791 		return;
792 
793 	tgt = &sh->dev[target];
794 	set_bit(R5_UPTODATE, &tgt->flags);
795 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
796 	clear_bit(R5_Wantcompute, &tgt->flags);
797 }
798 
799 static void ops_complete_compute(void *stripe_head_ref)
800 {
801 	struct stripe_head *sh = stripe_head_ref;
802 
803 	pr_debug("%s: stripe %llu\n", __func__,
804 		(unsigned long long)sh->sector);
805 
806 	/* mark the computed target(s) as uptodate */
807 	mark_target_uptodate(sh, sh->ops.target);
808 	mark_target_uptodate(sh, sh->ops.target2);
809 
810 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
811 	if (sh->check_state == check_state_compute_run)
812 		sh->check_state = check_state_compute_result;
813 	set_bit(STRIPE_HANDLE, &sh->state);
814 	release_stripe(sh);
815 }
816 
817 /* return a pointer to the address conversion region of the scribble buffer */
818 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
819 				 struct raid5_percpu *percpu)
820 {
821 	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
822 }
823 
824 static struct dma_async_tx_descriptor *
825 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
826 {
827 	int disks = sh->disks;
828 	struct page **xor_srcs = percpu->scribble;
829 	int target = sh->ops.target;
830 	struct r5dev *tgt = &sh->dev[target];
831 	struct page *xor_dest = tgt->page;
832 	int count = 0;
833 	struct dma_async_tx_descriptor *tx;
834 	struct async_submit_ctl submit;
835 	int i;
836 
837 	pr_debug("%s: stripe %llu block: %d\n",
838 		__func__, (unsigned long long)sh->sector, target);
839 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
840 
841 	for (i = disks; i--; )
842 		if (i != target)
843 			xor_srcs[count++] = sh->dev[i].page;
844 
845 	atomic_inc(&sh->count);
846 
847 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
848 			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
849 	if (unlikely(count == 1))
850 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
851 	else
852 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
853 
854 	return tx;
855 }
856 
857 /* set_syndrome_sources - populate source buffers for gen_syndrome
858  * @srcs - (struct page *) array of size sh->disks
859  * @sh - stripe_head to parse
860  *
861  * Populates srcs in proper layout order for the stripe and returns the
862  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
863  * destination buffer is recorded in srcs[count] and the Q destination
864  * is recorded in srcs[count+1]].
865  */
866 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
867 {
868 	int disks = sh->disks;
869 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
870 	int d0_idx = raid6_d0(sh);
871 	int count;
872 	int i;
873 
874 	for (i = 0; i < disks; i++)
875 		srcs[i] = NULL;
876 
877 	count = 0;
878 	i = d0_idx;
879 	do {
880 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
881 
882 		srcs[slot] = sh->dev[i].page;
883 		i = raid6_next_disk(i, disks);
884 	} while (i != d0_idx);
885 
886 	return syndrome_disks;
887 }
888 
889 static struct dma_async_tx_descriptor *
890 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
891 {
892 	int disks = sh->disks;
893 	struct page **blocks = percpu->scribble;
894 	int target;
895 	int qd_idx = sh->qd_idx;
896 	struct dma_async_tx_descriptor *tx;
897 	struct async_submit_ctl submit;
898 	struct r5dev *tgt;
899 	struct page *dest;
900 	int i;
901 	int count;
902 
903 	if (sh->ops.target < 0)
904 		target = sh->ops.target2;
905 	else if (sh->ops.target2 < 0)
906 		target = sh->ops.target;
907 	else
908 		/* we should only have one valid target */
909 		BUG();
910 	BUG_ON(target < 0);
911 	pr_debug("%s: stripe %llu block: %d\n",
912 		__func__, (unsigned long long)sh->sector, target);
913 
914 	tgt = &sh->dev[target];
915 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
916 	dest = tgt->page;
917 
918 	atomic_inc(&sh->count);
919 
920 	if (target == qd_idx) {
921 		count = set_syndrome_sources(blocks, sh);
922 		blocks[count] = NULL; /* regenerating p is not necessary */
923 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
924 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
925 				  ops_complete_compute, sh,
926 				  to_addr_conv(sh, percpu));
927 		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
928 	} else {
929 		/* Compute any data- or p-drive using XOR */
930 		count = 0;
931 		for (i = disks; i-- ; ) {
932 			if (i == target || i == qd_idx)
933 				continue;
934 			blocks[count++] = sh->dev[i].page;
935 		}
936 
937 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
938 				  NULL, ops_complete_compute, sh,
939 				  to_addr_conv(sh, percpu));
940 		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
941 	}
942 
943 	return tx;
944 }
945 
946 static struct dma_async_tx_descriptor *
947 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
948 {
949 	int i, count, disks = sh->disks;
950 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
951 	int d0_idx = raid6_d0(sh);
952 	int faila = -1, failb = -1;
953 	int target = sh->ops.target;
954 	int target2 = sh->ops.target2;
955 	struct r5dev *tgt = &sh->dev[target];
956 	struct r5dev *tgt2 = &sh->dev[target2];
957 	struct dma_async_tx_descriptor *tx;
958 	struct page **blocks = percpu->scribble;
959 	struct async_submit_ctl submit;
960 
961 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
962 		 __func__, (unsigned long long)sh->sector, target, target2);
963 	BUG_ON(target < 0 || target2 < 0);
964 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
965 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
966 
967 	/* we need to open-code set_syndrome_sources to handle the
968 	 * slot number conversion for 'faila' and 'failb'
969 	 */
970 	for (i = 0; i < disks ; i++)
971 		blocks[i] = NULL;
972 	count = 0;
973 	i = d0_idx;
974 	do {
975 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
976 
977 		blocks[slot] = sh->dev[i].page;
978 
979 		if (i == target)
980 			faila = slot;
981 		if (i == target2)
982 			failb = slot;
983 		i = raid6_next_disk(i, disks);
984 	} while (i != d0_idx);
985 
986 	BUG_ON(faila == failb);
987 	if (failb < faila)
988 		swap(faila, failb);
989 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
990 		 __func__, (unsigned long long)sh->sector, faila, failb);
991 
992 	atomic_inc(&sh->count);
993 
994 	if (failb == syndrome_disks+1) {
995 		/* Q disk is one of the missing disks */
996 		if (faila == syndrome_disks) {
997 			/* Missing P+Q, just recompute */
998 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
999 					  ops_complete_compute, sh,
1000 					  to_addr_conv(sh, percpu));
1001 			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1002 						  STRIPE_SIZE, &submit);
1003 		} else {
1004 			struct page *dest;
1005 			int data_target;
1006 			int qd_idx = sh->qd_idx;
1007 
1008 			/* Missing D+Q: recompute D from P, then recompute Q */
1009 			if (target == qd_idx)
1010 				data_target = target2;
1011 			else
1012 				data_target = target;
1013 
1014 			count = 0;
1015 			for (i = disks; i-- ; ) {
1016 				if (i == data_target || i == qd_idx)
1017 					continue;
1018 				blocks[count++] = sh->dev[i].page;
1019 			}
1020 			dest = sh->dev[data_target].page;
1021 			init_async_submit(&submit,
1022 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1023 					  NULL, NULL, NULL,
1024 					  to_addr_conv(sh, percpu));
1025 			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1026 				       &submit);
1027 
1028 			count = set_syndrome_sources(blocks, sh);
1029 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1030 					  ops_complete_compute, sh,
1031 					  to_addr_conv(sh, percpu));
1032 			return async_gen_syndrome(blocks, 0, count+2,
1033 						  STRIPE_SIZE, &submit);
1034 		}
1035 	} else {
1036 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1037 				  ops_complete_compute, sh,
1038 				  to_addr_conv(sh, percpu));
1039 		if (failb == syndrome_disks) {
1040 			/* We're missing D+P. */
1041 			return async_raid6_datap_recov(syndrome_disks+2,
1042 						       STRIPE_SIZE, faila,
1043 						       blocks, &submit);
1044 		} else {
1045 			/* We're missing D+D. */
1046 			return async_raid6_2data_recov(syndrome_disks+2,
1047 						       STRIPE_SIZE, faila, failb,
1048 						       blocks, &submit);
1049 		}
1050 	}
1051 }
1052 
1053 
1054 static void ops_complete_prexor(void *stripe_head_ref)
1055 {
1056 	struct stripe_head *sh = stripe_head_ref;
1057 
1058 	pr_debug("%s: stripe %llu\n", __func__,
1059 		(unsigned long long)sh->sector);
1060 }
1061 
1062 static struct dma_async_tx_descriptor *
1063 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1064 	       struct dma_async_tx_descriptor *tx)
1065 {
1066 	int disks = sh->disks;
1067 	struct page **xor_srcs = percpu->scribble;
1068 	int count = 0, pd_idx = sh->pd_idx, i;
1069 	struct async_submit_ctl submit;
1070 
1071 	/* existing parity data subtracted */
1072 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1073 
1074 	pr_debug("%s: stripe %llu\n", __func__,
1075 		(unsigned long long)sh->sector);
1076 
1077 	for (i = disks; i--; ) {
1078 		struct r5dev *dev = &sh->dev[i];
1079 		/* Only process blocks that are known to be uptodate */
1080 		if (test_bit(R5_Wantdrain, &dev->flags))
1081 			xor_srcs[count++] = dev->page;
1082 	}
1083 
1084 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1085 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1086 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1087 
1088 	return tx;
1089 }
1090 
1091 static struct dma_async_tx_descriptor *
1092 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1093 {
1094 	int disks = sh->disks;
1095 	int i;
1096 
1097 	pr_debug("%s: stripe %llu\n", __func__,
1098 		(unsigned long long)sh->sector);
1099 
1100 	for (i = disks; i--; ) {
1101 		struct r5dev *dev = &sh->dev[i];
1102 		struct bio *chosen;
1103 
1104 		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1105 			struct bio *wbi;
1106 
1107 			spin_lock_irq(&sh->raid_conf->device_lock);
1108 			chosen = dev->towrite;
1109 			dev->towrite = NULL;
1110 			BUG_ON(dev->written);
1111 			wbi = dev->written = chosen;
1112 			spin_unlock_irq(&sh->raid_conf->device_lock);
1113 
1114 			while (wbi && wbi->bi_sector <
1115 				dev->sector + STRIPE_SECTORS) {
1116 				if (wbi->bi_rw & REQ_FUA)
1117 					set_bit(R5_WantFUA, &dev->flags);
1118 				tx = async_copy_data(1, wbi, dev->page,
1119 					dev->sector, tx);
1120 				wbi = r5_next_bio(wbi, dev->sector);
1121 			}
1122 		}
1123 	}
1124 
1125 	return tx;
1126 }
1127 
1128 static void ops_complete_reconstruct(void *stripe_head_ref)
1129 {
1130 	struct stripe_head *sh = stripe_head_ref;
1131 	int disks = sh->disks;
1132 	int pd_idx = sh->pd_idx;
1133 	int qd_idx = sh->qd_idx;
1134 	int i;
1135 	bool fua = false;
1136 
1137 	pr_debug("%s: stripe %llu\n", __func__,
1138 		(unsigned long long)sh->sector);
1139 
1140 	for (i = disks; i--; )
1141 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1142 
1143 	for (i = disks; i--; ) {
1144 		struct r5dev *dev = &sh->dev[i];
1145 
1146 		if (dev->written || i == pd_idx || i == qd_idx) {
1147 			set_bit(R5_UPTODATE, &dev->flags);
1148 			if (fua)
1149 				set_bit(R5_WantFUA, &dev->flags);
1150 		}
1151 	}
1152 
1153 	if (sh->reconstruct_state == reconstruct_state_drain_run)
1154 		sh->reconstruct_state = reconstruct_state_drain_result;
1155 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1156 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1157 	else {
1158 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1159 		sh->reconstruct_state = reconstruct_state_result;
1160 	}
1161 
1162 	set_bit(STRIPE_HANDLE, &sh->state);
1163 	release_stripe(sh);
1164 }
1165 
1166 static void
1167 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1168 		     struct dma_async_tx_descriptor *tx)
1169 {
1170 	int disks = sh->disks;
1171 	struct page **xor_srcs = percpu->scribble;
1172 	struct async_submit_ctl submit;
1173 	int count = 0, pd_idx = sh->pd_idx, i;
1174 	struct page *xor_dest;
1175 	int prexor = 0;
1176 	unsigned long flags;
1177 
1178 	pr_debug("%s: stripe %llu\n", __func__,
1179 		(unsigned long long)sh->sector);
1180 
1181 	/* check if prexor is active which means only process blocks
1182 	 * that are part of a read-modify-write (written)
1183 	 */
1184 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1185 		prexor = 1;
1186 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1187 		for (i = disks; i--; ) {
1188 			struct r5dev *dev = &sh->dev[i];
1189 			if (dev->written)
1190 				xor_srcs[count++] = dev->page;
1191 		}
1192 	} else {
1193 		xor_dest = sh->dev[pd_idx].page;
1194 		for (i = disks; i--; ) {
1195 			struct r5dev *dev = &sh->dev[i];
1196 			if (i != pd_idx)
1197 				xor_srcs[count++] = dev->page;
1198 		}
1199 	}
1200 
1201 	/* 1/ if we prexor'd then the dest is reused as a source
1202 	 * 2/ if we did not prexor then we are redoing the parity
1203 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1204 	 * for the synchronous xor case
1205 	 */
1206 	flags = ASYNC_TX_ACK |
1207 		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1208 
1209 	atomic_inc(&sh->count);
1210 
1211 	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1212 			  to_addr_conv(sh, percpu));
1213 	if (unlikely(count == 1))
1214 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1215 	else
1216 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1217 }
1218 
1219 static void
1220 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1221 		     struct dma_async_tx_descriptor *tx)
1222 {
1223 	struct async_submit_ctl submit;
1224 	struct page **blocks = percpu->scribble;
1225 	int count;
1226 
1227 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1228 
1229 	count = set_syndrome_sources(blocks, sh);
1230 
1231 	atomic_inc(&sh->count);
1232 
1233 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1234 			  sh, to_addr_conv(sh, percpu));
1235 	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1236 }
1237 
1238 static void ops_complete_check(void *stripe_head_ref)
1239 {
1240 	struct stripe_head *sh = stripe_head_ref;
1241 
1242 	pr_debug("%s: stripe %llu\n", __func__,
1243 		(unsigned long long)sh->sector);
1244 
1245 	sh->check_state = check_state_check_result;
1246 	set_bit(STRIPE_HANDLE, &sh->state);
1247 	release_stripe(sh);
1248 }
1249 
1250 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1251 {
1252 	int disks = sh->disks;
1253 	int pd_idx = sh->pd_idx;
1254 	int qd_idx = sh->qd_idx;
1255 	struct page *xor_dest;
1256 	struct page **xor_srcs = percpu->scribble;
1257 	struct dma_async_tx_descriptor *tx;
1258 	struct async_submit_ctl submit;
1259 	int count;
1260 	int i;
1261 
1262 	pr_debug("%s: stripe %llu\n", __func__,
1263 		(unsigned long long)sh->sector);
1264 
1265 	count = 0;
1266 	xor_dest = sh->dev[pd_idx].page;
1267 	xor_srcs[count++] = xor_dest;
1268 	for (i = disks; i--; ) {
1269 		if (i == pd_idx || i == qd_idx)
1270 			continue;
1271 		xor_srcs[count++] = sh->dev[i].page;
1272 	}
1273 
1274 	init_async_submit(&submit, 0, NULL, NULL, NULL,
1275 			  to_addr_conv(sh, percpu));
1276 	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1277 			   &sh->ops.zero_sum_result, &submit);
1278 
1279 	atomic_inc(&sh->count);
1280 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1281 	tx = async_trigger_callback(&submit);
1282 }
1283 
1284 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1285 {
1286 	struct page **srcs = percpu->scribble;
1287 	struct async_submit_ctl submit;
1288 	int count;
1289 
1290 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1291 		(unsigned long long)sh->sector, checkp);
1292 
1293 	count = set_syndrome_sources(srcs, sh);
1294 	if (!checkp)
1295 		srcs[count] = NULL;
1296 
1297 	atomic_inc(&sh->count);
1298 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1299 			  sh, to_addr_conv(sh, percpu));
1300 	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1301 			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1302 }
1303 
1304 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1305 {
1306 	int overlap_clear = 0, i, disks = sh->disks;
1307 	struct dma_async_tx_descriptor *tx = NULL;
1308 	struct r5conf *conf = sh->raid_conf;
1309 	int level = conf->level;
1310 	struct raid5_percpu *percpu;
1311 	unsigned long cpu;
1312 
1313 	cpu = get_cpu();
1314 	percpu = per_cpu_ptr(conf->percpu, cpu);
1315 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1316 		ops_run_biofill(sh);
1317 		overlap_clear++;
1318 	}
1319 
1320 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1321 		if (level < 6)
1322 			tx = ops_run_compute5(sh, percpu);
1323 		else {
1324 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
1325 				tx = ops_run_compute6_1(sh, percpu);
1326 			else
1327 				tx = ops_run_compute6_2(sh, percpu);
1328 		}
1329 		/* terminate the chain if reconstruct is not set to be run */
1330 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1331 			async_tx_ack(tx);
1332 	}
1333 
1334 	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1335 		tx = ops_run_prexor(sh, percpu, tx);
1336 
1337 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1338 		tx = ops_run_biodrain(sh, tx);
1339 		overlap_clear++;
1340 	}
1341 
1342 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1343 		if (level < 6)
1344 			ops_run_reconstruct5(sh, percpu, tx);
1345 		else
1346 			ops_run_reconstruct6(sh, percpu, tx);
1347 	}
1348 
1349 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1350 		if (sh->check_state == check_state_run)
1351 			ops_run_check_p(sh, percpu);
1352 		else if (sh->check_state == check_state_run_q)
1353 			ops_run_check_pq(sh, percpu, 0);
1354 		else if (sh->check_state == check_state_run_pq)
1355 			ops_run_check_pq(sh, percpu, 1);
1356 		else
1357 			BUG();
1358 	}
1359 
1360 	if (overlap_clear)
1361 		for (i = disks; i--; ) {
1362 			struct r5dev *dev = &sh->dev[i];
1363 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
1364 				wake_up(&sh->raid_conf->wait_for_overlap);
1365 		}
1366 	put_cpu();
1367 }
1368 
1369 #ifdef CONFIG_MULTICORE_RAID456
1370 static void async_run_ops(void *param, async_cookie_t cookie)
1371 {
1372 	struct stripe_head *sh = param;
1373 	unsigned long ops_request = sh->ops.request;
1374 
1375 	clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1376 	wake_up(&sh->ops.wait_for_ops);
1377 
1378 	__raid_run_ops(sh, ops_request);
1379 	release_stripe(sh);
1380 }
1381 
1382 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1383 {
1384 	/* since handle_stripe can be called outside of raid5d context
1385 	 * we need to ensure sh->ops.request is de-staged before another
1386 	 * request arrives
1387 	 */
1388 	wait_event(sh->ops.wait_for_ops,
1389 		   !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1390 	sh->ops.request = ops_request;
1391 
1392 	atomic_inc(&sh->count);
1393 	async_schedule(async_run_ops, sh);
1394 }
1395 #else
1396 #define raid_run_ops __raid_run_ops
1397 #endif
1398 
1399 static int grow_one_stripe(struct r5conf *conf)
1400 {
1401 	struct stripe_head *sh;
1402 	sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1403 	if (!sh)
1404 		return 0;
1405 
1406 	sh->raid_conf = conf;
1407 	#ifdef CONFIG_MULTICORE_RAID456
1408 	init_waitqueue_head(&sh->ops.wait_for_ops);
1409 	#endif
1410 
1411 	if (grow_buffers(sh)) {
1412 		shrink_buffers(sh);
1413 		kmem_cache_free(conf->slab_cache, sh);
1414 		return 0;
1415 	}
1416 	/* we just created an active stripe so... */
1417 	atomic_set(&sh->count, 1);
1418 	atomic_inc(&conf->active_stripes);
1419 	INIT_LIST_HEAD(&sh->lru);
1420 	release_stripe(sh);
1421 	return 1;
1422 }
1423 
1424 static int grow_stripes(struct r5conf *conf, int num)
1425 {
1426 	struct kmem_cache *sc;
1427 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
1428 
1429 	if (conf->mddev->gendisk)
1430 		sprintf(conf->cache_name[0],
1431 			"raid%d-%s", conf->level, mdname(conf->mddev));
1432 	else
1433 		sprintf(conf->cache_name[0],
1434 			"raid%d-%p", conf->level, conf->mddev);
1435 	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1436 
1437 	conf->active_name = 0;
1438 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
1439 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1440 			       0, 0, NULL);
1441 	if (!sc)
1442 		return 1;
1443 	conf->slab_cache = sc;
1444 	conf->pool_size = devs;
1445 	while (num--)
1446 		if (!grow_one_stripe(conf))
1447 			return 1;
1448 	return 0;
1449 }
1450 
1451 /**
1452  * scribble_len - return the required size of the scribble region
1453  * @num - total number of disks in the array
1454  *
1455  * The size must be enough to contain:
1456  * 1/ a struct page pointer for each device in the array +2
1457  * 2/ room to convert each entry in (1) to its corresponding dma
1458  *    (dma_map_page()) or page (page_address()) address.
1459  *
1460  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1461  * calculate over all devices (not just the data blocks), using zeros in place
1462  * of the P and Q blocks.
1463  */
1464 static size_t scribble_len(int num)
1465 {
1466 	size_t len;
1467 
1468 	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1469 
1470 	return len;
1471 }
1472 
1473 static int resize_stripes(struct r5conf *conf, int newsize)
1474 {
1475 	/* Make all the stripes able to hold 'newsize' devices.
1476 	 * New slots in each stripe get 'page' set to a new page.
1477 	 *
1478 	 * This happens in stages:
1479 	 * 1/ create a new kmem_cache and allocate the required number of
1480 	 *    stripe_heads.
1481 	 * 2/ gather all the old stripe_heads and tranfer the pages across
1482 	 *    to the new stripe_heads.  This will have the side effect of
1483 	 *    freezing the array as once all stripe_heads have been collected,
1484 	 *    no IO will be possible.  Old stripe heads are freed once their
1485 	 *    pages have been transferred over, and the old kmem_cache is
1486 	 *    freed when all stripes are done.
1487 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1488 	 *    we simple return a failre status - no need to clean anything up.
1489 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
1490 	 *    If this fails, we don't bother trying the shrink the
1491 	 *    stripe_heads down again, we just leave them as they are.
1492 	 *    As each stripe_head is processed the new one is released into
1493 	 *    active service.
1494 	 *
1495 	 * Once step2 is started, we cannot afford to wait for a write,
1496 	 * so we use GFP_NOIO allocations.
1497 	 */
1498 	struct stripe_head *osh, *nsh;
1499 	LIST_HEAD(newstripes);
1500 	struct disk_info *ndisks;
1501 	unsigned long cpu;
1502 	int err;
1503 	struct kmem_cache *sc;
1504 	int i;
1505 
1506 	if (newsize <= conf->pool_size)
1507 		return 0; /* never bother to shrink */
1508 
1509 	err = md_allow_write(conf->mddev);
1510 	if (err)
1511 		return err;
1512 
1513 	/* Step 1 */
1514 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1515 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1516 			       0, 0, NULL);
1517 	if (!sc)
1518 		return -ENOMEM;
1519 
1520 	for (i = conf->max_nr_stripes; i; i--) {
1521 		nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1522 		if (!nsh)
1523 			break;
1524 
1525 		nsh->raid_conf = conf;
1526 		#ifdef CONFIG_MULTICORE_RAID456
1527 		init_waitqueue_head(&nsh->ops.wait_for_ops);
1528 		#endif
1529 
1530 		list_add(&nsh->lru, &newstripes);
1531 	}
1532 	if (i) {
1533 		/* didn't get enough, give up */
1534 		while (!list_empty(&newstripes)) {
1535 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
1536 			list_del(&nsh->lru);
1537 			kmem_cache_free(sc, nsh);
1538 		}
1539 		kmem_cache_destroy(sc);
1540 		return -ENOMEM;
1541 	}
1542 	/* Step 2 - Must use GFP_NOIO now.
1543 	 * OK, we have enough stripes, start collecting inactive
1544 	 * stripes and copying them over
1545 	 */
1546 	list_for_each_entry(nsh, &newstripes, lru) {
1547 		spin_lock_irq(&conf->device_lock);
1548 		wait_event_lock_irq(conf->wait_for_stripe,
1549 				    !list_empty(&conf->inactive_list),
1550 				    conf->device_lock,
1551 				    );
1552 		osh = get_free_stripe(conf);
1553 		spin_unlock_irq(&conf->device_lock);
1554 		atomic_set(&nsh->count, 1);
1555 		for(i=0; i<conf->pool_size; i++)
1556 			nsh->dev[i].page = osh->dev[i].page;
1557 		for( ; i<newsize; i++)
1558 			nsh->dev[i].page = NULL;
1559 		kmem_cache_free(conf->slab_cache, osh);
1560 	}
1561 	kmem_cache_destroy(conf->slab_cache);
1562 
1563 	/* Step 3.
1564 	 * At this point, we are holding all the stripes so the array
1565 	 * is completely stalled, so now is a good time to resize
1566 	 * conf->disks and the scribble region
1567 	 */
1568 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1569 	if (ndisks) {
1570 		for (i=0; i<conf->raid_disks; i++)
1571 			ndisks[i] = conf->disks[i];
1572 		kfree(conf->disks);
1573 		conf->disks = ndisks;
1574 	} else
1575 		err = -ENOMEM;
1576 
1577 	get_online_cpus();
1578 	conf->scribble_len = scribble_len(newsize);
1579 	for_each_present_cpu(cpu) {
1580 		struct raid5_percpu *percpu;
1581 		void *scribble;
1582 
1583 		percpu = per_cpu_ptr(conf->percpu, cpu);
1584 		scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1585 
1586 		if (scribble) {
1587 			kfree(percpu->scribble);
1588 			percpu->scribble = scribble;
1589 		} else {
1590 			err = -ENOMEM;
1591 			break;
1592 		}
1593 	}
1594 	put_online_cpus();
1595 
1596 	/* Step 4, return new stripes to service */
1597 	while(!list_empty(&newstripes)) {
1598 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
1599 		list_del_init(&nsh->lru);
1600 
1601 		for (i=conf->raid_disks; i < newsize; i++)
1602 			if (nsh->dev[i].page == NULL) {
1603 				struct page *p = alloc_page(GFP_NOIO);
1604 				nsh->dev[i].page = p;
1605 				if (!p)
1606 					err = -ENOMEM;
1607 			}
1608 		release_stripe(nsh);
1609 	}
1610 	/* critical section pass, GFP_NOIO no longer needed */
1611 
1612 	conf->slab_cache = sc;
1613 	conf->active_name = 1-conf->active_name;
1614 	conf->pool_size = newsize;
1615 	return err;
1616 }
1617 
1618 static int drop_one_stripe(struct r5conf *conf)
1619 {
1620 	struct stripe_head *sh;
1621 
1622 	spin_lock_irq(&conf->device_lock);
1623 	sh = get_free_stripe(conf);
1624 	spin_unlock_irq(&conf->device_lock);
1625 	if (!sh)
1626 		return 0;
1627 	BUG_ON(atomic_read(&sh->count));
1628 	shrink_buffers(sh);
1629 	kmem_cache_free(conf->slab_cache, sh);
1630 	atomic_dec(&conf->active_stripes);
1631 	return 1;
1632 }
1633 
1634 static void shrink_stripes(struct r5conf *conf)
1635 {
1636 	while (drop_one_stripe(conf))
1637 		;
1638 
1639 	if (conf->slab_cache)
1640 		kmem_cache_destroy(conf->slab_cache);
1641 	conf->slab_cache = NULL;
1642 }
1643 
1644 static void raid5_end_read_request(struct bio * bi, int error)
1645 {
1646 	struct stripe_head *sh = bi->bi_private;
1647 	struct r5conf *conf = sh->raid_conf;
1648 	int disks = sh->disks, i;
1649 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1650 	char b[BDEVNAME_SIZE];
1651 	struct md_rdev *rdev = NULL;
1652 
1653 
1654 	for (i=0 ; i<disks; i++)
1655 		if (bi == &sh->dev[i].req)
1656 			break;
1657 
1658 	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1659 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1660 		uptodate);
1661 	if (i == disks) {
1662 		BUG();
1663 		return;
1664 	}
1665 	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1666 		/* If replacement finished while this request was outstanding,
1667 		 * 'replacement' might be NULL already.
1668 		 * In that case it moved down to 'rdev'.
1669 		 * rdev is not removed until all requests are finished.
1670 		 */
1671 		rdev = conf->disks[i].replacement;
1672 	if (!rdev)
1673 		rdev = conf->disks[i].rdev;
1674 
1675 	if (uptodate) {
1676 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1677 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1678 			/* Note that this cannot happen on a
1679 			 * replacement device.  We just fail those on
1680 			 * any error
1681 			 */
1682 			printk_ratelimited(
1683 				KERN_INFO
1684 				"md/raid:%s: read error corrected"
1685 				" (%lu sectors at %llu on %s)\n",
1686 				mdname(conf->mddev), STRIPE_SECTORS,
1687 				(unsigned long long)(sh->sector
1688 						     + rdev->data_offset),
1689 				bdevname(rdev->bdev, b));
1690 			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1691 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1692 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1693 		}
1694 		if (atomic_read(&rdev->read_errors))
1695 			atomic_set(&rdev->read_errors, 0);
1696 	} else {
1697 		const char *bdn = bdevname(rdev->bdev, b);
1698 		int retry = 0;
1699 
1700 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1701 		atomic_inc(&rdev->read_errors);
1702 		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1703 			printk_ratelimited(
1704 				KERN_WARNING
1705 				"md/raid:%s: read error on replacement device "
1706 				"(sector %llu on %s).\n",
1707 				mdname(conf->mddev),
1708 				(unsigned long long)(sh->sector
1709 						     + rdev->data_offset),
1710 				bdn);
1711 		else if (conf->mddev->degraded >= conf->max_degraded)
1712 			printk_ratelimited(
1713 				KERN_WARNING
1714 				"md/raid:%s: read error not correctable "
1715 				"(sector %llu on %s).\n",
1716 				mdname(conf->mddev),
1717 				(unsigned long long)(sh->sector
1718 						     + rdev->data_offset),
1719 				bdn);
1720 		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1721 			/* Oh, no!!! */
1722 			printk_ratelimited(
1723 				KERN_WARNING
1724 				"md/raid:%s: read error NOT corrected!! "
1725 				"(sector %llu on %s).\n",
1726 				mdname(conf->mddev),
1727 				(unsigned long long)(sh->sector
1728 						     + rdev->data_offset),
1729 				bdn);
1730 		else if (atomic_read(&rdev->read_errors)
1731 			 > conf->max_nr_stripes)
1732 			printk(KERN_WARNING
1733 			       "md/raid:%s: Too many read errors, failing device %s.\n",
1734 			       mdname(conf->mddev), bdn);
1735 		else
1736 			retry = 1;
1737 		if (retry)
1738 			set_bit(R5_ReadError, &sh->dev[i].flags);
1739 		else {
1740 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1741 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1742 			md_error(conf->mddev, rdev);
1743 		}
1744 	}
1745 	rdev_dec_pending(rdev, conf->mddev);
1746 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1747 	set_bit(STRIPE_HANDLE, &sh->state);
1748 	release_stripe(sh);
1749 }
1750 
1751 static void raid5_end_write_request(struct bio *bi, int error)
1752 {
1753 	struct stripe_head *sh = bi->bi_private;
1754 	struct r5conf *conf = sh->raid_conf;
1755 	int disks = sh->disks, i;
1756 	struct md_rdev *uninitialized_var(rdev);
1757 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1758 	sector_t first_bad;
1759 	int bad_sectors;
1760 	int replacement = 0;
1761 
1762 	for (i = 0 ; i < disks; i++) {
1763 		if (bi == &sh->dev[i].req) {
1764 			rdev = conf->disks[i].rdev;
1765 			break;
1766 		}
1767 		if (bi == &sh->dev[i].rreq) {
1768 			rdev = conf->disks[i].replacement;
1769 			if (rdev)
1770 				replacement = 1;
1771 			else
1772 				/* rdev was removed and 'replacement'
1773 				 * replaced it.  rdev is not removed
1774 				 * until all requests are finished.
1775 				 */
1776 				rdev = conf->disks[i].rdev;
1777 			break;
1778 		}
1779 	}
1780 	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1781 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1782 		uptodate);
1783 	if (i == disks) {
1784 		BUG();
1785 		return;
1786 	}
1787 
1788 	if (replacement) {
1789 		if (!uptodate)
1790 			md_error(conf->mddev, rdev);
1791 		else if (is_badblock(rdev, sh->sector,
1792 				     STRIPE_SECTORS,
1793 				     &first_bad, &bad_sectors))
1794 			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
1795 	} else {
1796 		if (!uptodate) {
1797 			set_bit(WriteErrorSeen, &rdev->flags);
1798 			set_bit(R5_WriteError, &sh->dev[i].flags);
1799 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
1800 				set_bit(MD_RECOVERY_NEEDED,
1801 					&rdev->mddev->recovery);
1802 		} else if (is_badblock(rdev, sh->sector,
1803 				       STRIPE_SECTORS,
1804 				       &first_bad, &bad_sectors))
1805 			set_bit(R5_MadeGood, &sh->dev[i].flags);
1806 	}
1807 	rdev_dec_pending(rdev, conf->mddev);
1808 
1809 	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
1810 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
1811 	set_bit(STRIPE_HANDLE, &sh->state);
1812 	release_stripe(sh);
1813 }
1814 
1815 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1816 
1817 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1818 {
1819 	struct r5dev *dev = &sh->dev[i];
1820 
1821 	bio_init(&dev->req);
1822 	dev->req.bi_io_vec = &dev->vec;
1823 	dev->req.bi_vcnt++;
1824 	dev->req.bi_max_vecs++;
1825 	dev->req.bi_private = sh;
1826 	dev->vec.bv_page = dev->page;
1827 
1828 	bio_init(&dev->rreq);
1829 	dev->rreq.bi_io_vec = &dev->rvec;
1830 	dev->rreq.bi_vcnt++;
1831 	dev->rreq.bi_max_vecs++;
1832 	dev->rreq.bi_private = sh;
1833 	dev->rvec.bv_page = dev->page;
1834 
1835 	dev->flags = 0;
1836 	dev->sector = compute_blocknr(sh, i, previous);
1837 }
1838 
1839 static void error(struct mddev *mddev, struct md_rdev *rdev)
1840 {
1841 	char b[BDEVNAME_SIZE];
1842 	struct r5conf *conf = mddev->private;
1843 	unsigned long flags;
1844 	pr_debug("raid456: error called\n");
1845 
1846 	spin_lock_irqsave(&conf->device_lock, flags);
1847 	clear_bit(In_sync, &rdev->flags);
1848 	mddev->degraded = calc_degraded(conf);
1849 	spin_unlock_irqrestore(&conf->device_lock, flags);
1850 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1851 
1852 	set_bit(Blocked, &rdev->flags);
1853 	set_bit(Faulty, &rdev->flags);
1854 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1855 	printk(KERN_ALERT
1856 	       "md/raid:%s: Disk failure on %s, disabling device.\n"
1857 	       "md/raid:%s: Operation continuing on %d devices.\n",
1858 	       mdname(mddev),
1859 	       bdevname(rdev->bdev, b),
1860 	       mdname(mddev),
1861 	       conf->raid_disks - mddev->degraded);
1862 }
1863 
1864 /*
1865  * Input: a 'big' sector number,
1866  * Output: index of the data and parity disk, and the sector # in them.
1867  */
1868 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
1869 				     int previous, int *dd_idx,
1870 				     struct stripe_head *sh)
1871 {
1872 	sector_t stripe, stripe2;
1873 	sector_t chunk_number;
1874 	unsigned int chunk_offset;
1875 	int pd_idx, qd_idx;
1876 	int ddf_layout = 0;
1877 	sector_t new_sector;
1878 	int algorithm = previous ? conf->prev_algo
1879 				 : conf->algorithm;
1880 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1881 					 : conf->chunk_sectors;
1882 	int raid_disks = previous ? conf->previous_raid_disks
1883 				  : conf->raid_disks;
1884 	int data_disks = raid_disks - conf->max_degraded;
1885 
1886 	/* First compute the information on this sector */
1887 
1888 	/*
1889 	 * Compute the chunk number and the sector offset inside the chunk
1890 	 */
1891 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
1892 	chunk_number = r_sector;
1893 
1894 	/*
1895 	 * Compute the stripe number
1896 	 */
1897 	stripe = chunk_number;
1898 	*dd_idx = sector_div(stripe, data_disks);
1899 	stripe2 = stripe;
1900 	/*
1901 	 * Select the parity disk based on the user selected algorithm.
1902 	 */
1903 	pd_idx = qd_idx = -1;
1904 	switch(conf->level) {
1905 	case 4:
1906 		pd_idx = data_disks;
1907 		break;
1908 	case 5:
1909 		switch (algorithm) {
1910 		case ALGORITHM_LEFT_ASYMMETRIC:
1911 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1912 			if (*dd_idx >= pd_idx)
1913 				(*dd_idx)++;
1914 			break;
1915 		case ALGORITHM_RIGHT_ASYMMETRIC:
1916 			pd_idx = sector_div(stripe2, raid_disks);
1917 			if (*dd_idx >= pd_idx)
1918 				(*dd_idx)++;
1919 			break;
1920 		case ALGORITHM_LEFT_SYMMETRIC:
1921 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1922 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1923 			break;
1924 		case ALGORITHM_RIGHT_SYMMETRIC:
1925 			pd_idx = sector_div(stripe2, raid_disks);
1926 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1927 			break;
1928 		case ALGORITHM_PARITY_0:
1929 			pd_idx = 0;
1930 			(*dd_idx)++;
1931 			break;
1932 		case ALGORITHM_PARITY_N:
1933 			pd_idx = data_disks;
1934 			break;
1935 		default:
1936 			BUG();
1937 		}
1938 		break;
1939 	case 6:
1940 
1941 		switch (algorithm) {
1942 		case ALGORITHM_LEFT_ASYMMETRIC:
1943 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1944 			qd_idx = pd_idx + 1;
1945 			if (pd_idx == raid_disks-1) {
1946 				(*dd_idx)++;	/* Q D D D P */
1947 				qd_idx = 0;
1948 			} else if (*dd_idx >= pd_idx)
1949 				(*dd_idx) += 2; /* D D P Q D */
1950 			break;
1951 		case ALGORITHM_RIGHT_ASYMMETRIC:
1952 			pd_idx = sector_div(stripe2, raid_disks);
1953 			qd_idx = pd_idx + 1;
1954 			if (pd_idx == raid_disks-1) {
1955 				(*dd_idx)++;	/* Q D D D P */
1956 				qd_idx = 0;
1957 			} else if (*dd_idx >= pd_idx)
1958 				(*dd_idx) += 2; /* D D P Q D */
1959 			break;
1960 		case ALGORITHM_LEFT_SYMMETRIC:
1961 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1962 			qd_idx = (pd_idx + 1) % raid_disks;
1963 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1964 			break;
1965 		case ALGORITHM_RIGHT_SYMMETRIC:
1966 			pd_idx = sector_div(stripe2, raid_disks);
1967 			qd_idx = (pd_idx + 1) % raid_disks;
1968 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1969 			break;
1970 
1971 		case ALGORITHM_PARITY_0:
1972 			pd_idx = 0;
1973 			qd_idx = 1;
1974 			(*dd_idx) += 2;
1975 			break;
1976 		case ALGORITHM_PARITY_N:
1977 			pd_idx = data_disks;
1978 			qd_idx = data_disks + 1;
1979 			break;
1980 
1981 		case ALGORITHM_ROTATING_ZERO_RESTART:
1982 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
1983 			 * of blocks for computing Q is different.
1984 			 */
1985 			pd_idx = sector_div(stripe2, raid_disks);
1986 			qd_idx = pd_idx + 1;
1987 			if (pd_idx == raid_disks-1) {
1988 				(*dd_idx)++;	/* Q D D D P */
1989 				qd_idx = 0;
1990 			} else if (*dd_idx >= pd_idx)
1991 				(*dd_idx) += 2; /* D D P Q D */
1992 			ddf_layout = 1;
1993 			break;
1994 
1995 		case ALGORITHM_ROTATING_N_RESTART:
1996 			/* Same a left_asymmetric, by first stripe is
1997 			 * D D D P Q  rather than
1998 			 * Q D D D P
1999 			 */
2000 			stripe2 += 1;
2001 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2002 			qd_idx = pd_idx + 1;
2003 			if (pd_idx == raid_disks-1) {
2004 				(*dd_idx)++;	/* Q D D D P */
2005 				qd_idx = 0;
2006 			} else if (*dd_idx >= pd_idx)
2007 				(*dd_idx) += 2; /* D D P Q D */
2008 			ddf_layout = 1;
2009 			break;
2010 
2011 		case ALGORITHM_ROTATING_N_CONTINUE:
2012 			/* Same as left_symmetric but Q is before P */
2013 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2014 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2015 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2016 			ddf_layout = 1;
2017 			break;
2018 
2019 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2020 			/* RAID5 left_asymmetric, with Q on last device */
2021 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2022 			if (*dd_idx >= pd_idx)
2023 				(*dd_idx)++;
2024 			qd_idx = raid_disks - 1;
2025 			break;
2026 
2027 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2028 			pd_idx = sector_div(stripe2, raid_disks-1);
2029 			if (*dd_idx >= pd_idx)
2030 				(*dd_idx)++;
2031 			qd_idx = raid_disks - 1;
2032 			break;
2033 
2034 		case ALGORITHM_LEFT_SYMMETRIC_6:
2035 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2036 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2037 			qd_idx = raid_disks - 1;
2038 			break;
2039 
2040 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2041 			pd_idx = sector_div(stripe2, raid_disks-1);
2042 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2043 			qd_idx = raid_disks - 1;
2044 			break;
2045 
2046 		case ALGORITHM_PARITY_0_6:
2047 			pd_idx = 0;
2048 			(*dd_idx)++;
2049 			qd_idx = raid_disks - 1;
2050 			break;
2051 
2052 		default:
2053 			BUG();
2054 		}
2055 		break;
2056 	}
2057 
2058 	if (sh) {
2059 		sh->pd_idx = pd_idx;
2060 		sh->qd_idx = qd_idx;
2061 		sh->ddf_layout = ddf_layout;
2062 	}
2063 	/*
2064 	 * Finally, compute the new sector number
2065 	 */
2066 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2067 	return new_sector;
2068 }
2069 
2070 
2071 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2072 {
2073 	struct r5conf *conf = sh->raid_conf;
2074 	int raid_disks = sh->disks;
2075 	int data_disks = raid_disks - conf->max_degraded;
2076 	sector_t new_sector = sh->sector, check;
2077 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2078 					 : conf->chunk_sectors;
2079 	int algorithm = previous ? conf->prev_algo
2080 				 : conf->algorithm;
2081 	sector_t stripe;
2082 	int chunk_offset;
2083 	sector_t chunk_number;
2084 	int dummy1, dd_idx = i;
2085 	sector_t r_sector;
2086 	struct stripe_head sh2;
2087 
2088 
2089 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
2090 	stripe = new_sector;
2091 
2092 	if (i == sh->pd_idx)
2093 		return 0;
2094 	switch(conf->level) {
2095 	case 4: break;
2096 	case 5:
2097 		switch (algorithm) {
2098 		case ALGORITHM_LEFT_ASYMMETRIC:
2099 		case ALGORITHM_RIGHT_ASYMMETRIC:
2100 			if (i > sh->pd_idx)
2101 				i--;
2102 			break;
2103 		case ALGORITHM_LEFT_SYMMETRIC:
2104 		case ALGORITHM_RIGHT_SYMMETRIC:
2105 			if (i < sh->pd_idx)
2106 				i += raid_disks;
2107 			i -= (sh->pd_idx + 1);
2108 			break;
2109 		case ALGORITHM_PARITY_0:
2110 			i -= 1;
2111 			break;
2112 		case ALGORITHM_PARITY_N:
2113 			break;
2114 		default:
2115 			BUG();
2116 		}
2117 		break;
2118 	case 6:
2119 		if (i == sh->qd_idx)
2120 			return 0; /* It is the Q disk */
2121 		switch (algorithm) {
2122 		case ALGORITHM_LEFT_ASYMMETRIC:
2123 		case ALGORITHM_RIGHT_ASYMMETRIC:
2124 		case ALGORITHM_ROTATING_ZERO_RESTART:
2125 		case ALGORITHM_ROTATING_N_RESTART:
2126 			if (sh->pd_idx == raid_disks-1)
2127 				i--;	/* Q D D D P */
2128 			else if (i > sh->pd_idx)
2129 				i -= 2; /* D D P Q D */
2130 			break;
2131 		case ALGORITHM_LEFT_SYMMETRIC:
2132 		case ALGORITHM_RIGHT_SYMMETRIC:
2133 			if (sh->pd_idx == raid_disks-1)
2134 				i--; /* Q D D D P */
2135 			else {
2136 				/* D D P Q D */
2137 				if (i < sh->pd_idx)
2138 					i += raid_disks;
2139 				i -= (sh->pd_idx + 2);
2140 			}
2141 			break;
2142 		case ALGORITHM_PARITY_0:
2143 			i -= 2;
2144 			break;
2145 		case ALGORITHM_PARITY_N:
2146 			break;
2147 		case ALGORITHM_ROTATING_N_CONTINUE:
2148 			/* Like left_symmetric, but P is before Q */
2149 			if (sh->pd_idx == 0)
2150 				i--;	/* P D D D Q */
2151 			else {
2152 				/* D D Q P D */
2153 				if (i < sh->pd_idx)
2154 					i += raid_disks;
2155 				i -= (sh->pd_idx + 1);
2156 			}
2157 			break;
2158 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2159 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2160 			if (i > sh->pd_idx)
2161 				i--;
2162 			break;
2163 		case ALGORITHM_LEFT_SYMMETRIC_6:
2164 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2165 			if (i < sh->pd_idx)
2166 				i += data_disks + 1;
2167 			i -= (sh->pd_idx + 1);
2168 			break;
2169 		case ALGORITHM_PARITY_0_6:
2170 			i -= 1;
2171 			break;
2172 		default:
2173 			BUG();
2174 		}
2175 		break;
2176 	}
2177 
2178 	chunk_number = stripe * data_disks + i;
2179 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2180 
2181 	check = raid5_compute_sector(conf, r_sector,
2182 				     previous, &dummy1, &sh2);
2183 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2184 		|| sh2.qd_idx != sh->qd_idx) {
2185 		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2186 		       mdname(conf->mddev));
2187 		return 0;
2188 	}
2189 	return r_sector;
2190 }
2191 
2192 
2193 static void
2194 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2195 			 int rcw, int expand)
2196 {
2197 	int i, pd_idx = sh->pd_idx, disks = sh->disks;
2198 	struct r5conf *conf = sh->raid_conf;
2199 	int level = conf->level;
2200 
2201 	if (rcw) {
2202 		/* if we are not expanding this is a proper write request, and
2203 		 * there will be bios with new data to be drained into the
2204 		 * stripe cache
2205 		 */
2206 		if (!expand) {
2207 			sh->reconstruct_state = reconstruct_state_drain_run;
2208 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2209 		} else
2210 			sh->reconstruct_state = reconstruct_state_run;
2211 
2212 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2213 
2214 		for (i = disks; i--; ) {
2215 			struct r5dev *dev = &sh->dev[i];
2216 
2217 			if (dev->towrite) {
2218 				set_bit(R5_LOCKED, &dev->flags);
2219 				set_bit(R5_Wantdrain, &dev->flags);
2220 				if (!expand)
2221 					clear_bit(R5_UPTODATE, &dev->flags);
2222 				s->locked++;
2223 			}
2224 		}
2225 		if (s->locked + conf->max_degraded == disks)
2226 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2227 				atomic_inc(&conf->pending_full_writes);
2228 	} else {
2229 		BUG_ON(level == 6);
2230 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2231 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2232 
2233 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2234 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2235 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2236 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2237 
2238 		for (i = disks; i--; ) {
2239 			struct r5dev *dev = &sh->dev[i];
2240 			if (i == pd_idx)
2241 				continue;
2242 
2243 			if (dev->towrite &&
2244 			    (test_bit(R5_UPTODATE, &dev->flags) ||
2245 			     test_bit(R5_Wantcompute, &dev->flags))) {
2246 				set_bit(R5_Wantdrain, &dev->flags);
2247 				set_bit(R5_LOCKED, &dev->flags);
2248 				clear_bit(R5_UPTODATE, &dev->flags);
2249 				s->locked++;
2250 			}
2251 		}
2252 	}
2253 
2254 	/* keep the parity disk(s) locked while asynchronous operations
2255 	 * are in flight
2256 	 */
2257 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2258 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2259 	s->locked++;
2260 
2261 	if (level == 6) {
2262 		int qd_idx = sh->qd_idx;
2263 		struct r5dev *dev = &sh->dev[qd_idx];
2264 
2265 		set_bit(R5_LOCKED, &dev->flags);
2266 		clear_bit(R5_UPTODATE, &dev->flags);
2267 		s->locked++;
2268 	}
2269 
2270 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2271 		__func__, (unsigned long long)sh->sector,
2272 		s->locked, s->ops_request);
2273 }
2274 
2275 /*
2276  * Each stripe/dev can have one or more bion attached.
2277  * toread/towrite point to the first in a chain.
2278  * The bi_next chain must be in order.
2279  */
2280 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2281 {
2282 	struct bio **bip;
2283 	struct r5conf *conf = sh->raid_conf;
2284 	int firstwrite=0;
2285 
2286 	pr_debug("adding bi b#%llu to stripe s#%llu\n",
2287 		(unsigned long long)bi->bi_sector,
2288 		(unsigned long long)sh->sector);
2289 
2290 
2291 	spin_lock_irq(&conf->device_lock);
2292 	if (forwrite) {
2293 		bip = &sh->dev[dd_idx].towrite;
2294 		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2295 			firstwrite = 1;
2296 	} else
2297 		bip = &sh->dev[dd_idx].toread;
2298 	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2299 		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2300 			goto overlap;
2301 		bip = & (*bip)->bi_next;
2302 	}
2303 	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2304 		goto overlap;
2305 
2306 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2307 	if (*bip)
2308 		bi->bi_next = *bip;
2309 	*bip = bi;
2310 	bi->bi_phys_segments++;
2311 
2312 	if (forwrite) {
2313 		/* check if page is covered */
2314 		sector_t sector = sh->dev[dd_idx].sector;
2315 		for (bi=sh->dev[dd_idx].towrite;
2316 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2317 			     bi && bi->bi_sector <= sector;
2318 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2319 			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2320 				sector = bi->bi_sector + (bi->bi_size>>9);
2321 		}
2322 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2323 			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2324 	}
2325 	spin_unlock_irq(&conf->device_lock);
2326 
2327 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2328 		(unsigned long long)(*bip)->bi_sector,
2329 		(unsigned long long)sh->sector, dd_idx);
2330 
2331 	if (conf->mddev->bitmap && firstwrite) {
2332 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2333 				  STRIPE_SECTORS, 0);
2334 		sh->bm_seq = conf->seq_flush+1;
2335 		set_bit(STRIPE_BIT_DELAY, &sh->state);
2336 	}
2337 	return 1;
2338 
2339  overlap:
2340 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2341 	spin_unlock_irq(&conf->device_lock);
2342 	return 0;
2343 }
2344 
2345 static void end_reshape(struct r5conf *conf);
2346 
2347 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2348 			    struct stripe_head *sh)
2349 {
2350 	int sectors_per_chunk =
2351 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2352 	int dd_idx;
2353 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2354 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2355 
2356 	raid5_compute_sector(conf,
2357 			     stripe * (disks - conf->max_degraded)
2358 			     *sectors_per_chunk + chunk_offset,
2359 			     previous,
2360 			     &dd_idx, sh);
2361 }
2362 
2363 static void
2364 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2365 				struct stripe_head_state *s, int disks,
2366 				struct bio **return_bi)
2367 {
2368 	int i;
2369 	for (i = disks; i--; ) {
2370 		struct bio *bi;
2371 		int bitmap_end = 0;
2372 
2373 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2374 			struct md_rdev *rdev;
2375 			rcu_read_lock();
2376 			rdev = rcu_dereference(conf->disks[i].rdev);
2377 			if (rdev && test_bit(In_sync, &rdev->flags))
2378 				atomic_inc(&rdev->nr_pending);
2379 			else
2380 				rdev = NULL;
2381 			rcu_read_unlock();
2382 			if (rdev) {
2383 				if (!rdev_set_badblocks(
2384 					    rdev,
2385 					    sh->sector,
2386 					    STRIPE_SECTORS, 0))
2387 					md_error(conf->mddev, rdev);
2388 				rdev_dec_pending(rdev, conf->mddev);
2389 			}
2390 		}
2391 		spin_lock_irq(&conf->device_lock);
2392 		/* fail all writes first */
2393 		bi = sh->dev[i].towrite;
2394 		sh->dev[i].towrite = NULL;
2395 		if (bi) {
2396 			s->to_write--;
2397 			bitmap_end = 1;
2398 		}
2399 
2400 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2401 			wake_up(&conf->wait_for_overlap);
2402 
2403 		while (bi && bi->bi_sector <
2404 			sh->dev[i].sector + STRIPE_SECTORS) {
2405 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2406 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2407 			if (!raid5_dec_bi_phys_segments(bi)) {
2408 				md_write_end(conf->mddev);
2409 				bi->bi_next = *return_bi;
2410 				*return_bi = bi;
2411 			}
2412 			bi = nextbi;
2413 		}
2414 		/* and fail all 'written' */
2415 		bi = sh->dev[i].written;
2416 		sh->dev[i].written = NULL;
2417 		if (bi) bitmap_end = 1;
2418 		while (bi && bi->bi_sector <
2419 		       sh->dev[i].sector + STRIPE_SECTORS) {
2420 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2421 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2422 			if (!raid5_dec_bi_phys_segments(bi)) {
2423 				md_write_end(conf->mddev);
2424 				bi->bi_next = *return_bi;
2425 				*return_bi = bi;
2426 			}
2427 			bi = bi2;
2428 		}
2429 
2430 		/* fail any reads if this device is non-operational and
2431 		 * the data has not reached the cache yet.
2432 		 */
2433 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2434 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2435 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2436 			bi = sh->dev[i].toread;
2437 			sh->dev[i].toread = NULL;
2438 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2439 				wake_up(&conf->wait_for_overlap);
2440 			if (bi) s->to_read--;
2441 			while (bi && bi->bi_sector <
2442 			       sh->dev[i].sector + STRIPE_SECTORS) {
2443 				struct bio *nextbi =
2444 					r5_next_bio(bi, sh->dev[i].sector);
2445 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2446 				if (!raid5_dec_bi_phys_segments(bi)) {
2447 					bi->bi_next = *return_bi;
2448 					*return_bi = bi;
2449 				}
2450 				bi = nextbi;
2451 			}
2452 		}
2453 		spin_unlock_irq(&conf->device_lock);
2454 		if (bitmap_end)
2455 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2456 					STRIPE_SECTORS, 0, 0);
2457 		/* If we were in the middle of a write the parity block might
2458 		 * still be locked - so just clear all R5_LOCKED flags
2459 		 */
2460 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2461 	}
2462 
2463 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2464 		if (atomic_dec_and_test(&conf->pending_full_writes))
2465 			md_wakeup_thread(conf->mddev->thread);
2466 }
2467 
2468 static void
2469 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2470 		   struct stripe_head_state *s)
2471 {
2472 	int abort = 0;
2473 	int i;
2474 
2475 	md_done_sync(conf->mddev, STRIPE_SECTORS, 0);
2476 	clear_bit(STRIPE_SYNCING, &sh->state);
2477 	s->syncing = 0;
2478 	s->replacing = 0;
2479 	/* There is nothing more to do for sync/check/repair.
2480 	 * For recover/replace we need to record a bad block on all
2481 	 * non-sync devices, or abort the recovery
2482 	 */
2483 	if (!test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery))
2484 		return;
2485 	/* During recovery devices cannot be removed, so locking and
2486 	 * refcounting of rdevs is not needed
2487 	 */
2488 	for (i = 0; i < conf->raid_disks; i++) {
2489 		struct md_rdev *rdev = conf->disks[i].rdev;
2490 		if (rdev
2491 		    && !test_bit(Faulty, &rdev->flags)
2492 		    && !test_bit(In_sync, &rdev->flags)
2493 		    && !rdev_set_badblocks(rdev, sh->sector,
2494 					   STRIPE_SECTORS, 0))
2495 			abort = 1;
2496 		rdev = conf->disks[i].replacement;
2497 		if (rdev
2498 		    && !test_bit(Faulty, &rdev->flags)
2499 		    && !test_bit(In_sync, &rdev->flags)
2500 		    && !rdev_set_badblocks(rdev, sh->sector,
2501 					   STRIPE_SECTORS, 0))
2502 			abort = 1;
2503 	}
2504 	if (abort) {
2505 		conf->recovery_disabled = conf->mddev->recovery_disabled;
2506 		set_bit(MD_RECOVERY_INTR, &conf->mddev->recovery);
2507 	}
2508 }
2509 
2510 static int want_replace(struct stripe_head *sh, int disk_idx)
2511 {
2512 	struct md_rdev *rdev;
2513 	int rv = 0;
2514 	/* Doing recovery so rcu locking not required */
2515 	rdev = sh->raid_conf->disks[disk_idx].replacement;
2516 	if (rdev
2517 	    && !test_bit(Faulty, &rdev->flags)
2518 	    && !test_bit(In_sync, &rdev->flags)
2519 	    && (rdev->recovery_offset <= sh->sector
2520 		|| rdev->mddev->recovery_cp <= sh->sector))
2521 		rv = 1;
2522 
2523 	return rv;
2524 }
2525 
2526 /* fetch_block - checks the given member device to see if its data needs
2527  * to be read or computed to satisfy a request.
2528  *
2529  * Returns 1 when no more member devices need to be checked, otherwise returns
2530  * 0 to tell the loop in handle_stripe_fill to continue
2531  */
2532 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2533 		       int disk_idx, int disks)
2534 {
2535 	struct r5dev *dev = &sh->dev[disk_idx];
2536 	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2537 				  &sh->dev[s->failed_num[1]] };
2538 
2539 	/* is the data in this block needed, and can we get it? */
2540 	if (!test_bit(R5_LOCKED, &dev->flags) &&
2541 	    !test_bit(R5_UPTODATE, &dev->flags) &&
2542 	    (dev->toread ||
2543 	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2544 	     s->syncing || s->expanding ||
2545 	     (s->replacing && want_replace(sh, disk_idx)) ||
2546 	     (s->failed >= 1 && fdev[0]->toread) ||
2547 	     (s->failed >= 2 && fdev[1]->toread) ||
2548 	     (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2549 	      !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2550 	     (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2551 		/* we would like to get this block, possibly by computing it,
2552 		 * otherwise read it if the backing disk is insync
2553 		 */
2554 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2555 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
2556 		if ((s->uptodate == disks - 1) &&
2557 		    (s->failed && (disk_idx == s->failed_num[0] ||
2558 				   disk_idx == s->failed_num[1]))) {
2559 			/* have disk failed, and we're requested to fetch it;
2560 			 * do compute it
2561 			 */
2562 			pr_debug("Computing stripe %llu block %d\n",
2563 			       (unsigned long long)sh->sector, disk_idx);
2564 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2565 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2566 			set_bit(R5_Wantcompute, &dev->flags);
2567 			sh->ops.target = disk_idx;
2568 			sh->ops.target2 = -1; /* no 2nd target */
2569 			s->req_compute = 1;
2570 			/* Careful: from this point on 'uptodate' is in the eye
2571 			 * of raid_run_ops which services 'compute' operations
2572 			 * before writes. R5_Wantcompute flags a block that will
2573 			 * be R5_UPTODATE by the time it is needed for a
2574 			 * subsequent operation.
2575 			 */
2576 			s->uptodate++;
2577 			return 1;
2578 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
2579 			/* Computing 2-failure is *very* expensive; only
2580 			 * do it if failed >= 2
2581 			 */
2582 			int other;
2583 			for (other = disks; other--; ) {
2584 				if (other == disk_idx)
2585 					continue;
2586 				if (!test_bit(R5_UPTODATE,
2587 				      &sh->dev[other].flags))
2588 					break;
2589 			}
2590 			BUG_ON(other < 0);
2591 			pr_debug("Computing stripe %llu blocks %d,%d\n",
2592 			       (unsigned long long)sh->sector,
2593 			       disk_idx, other);
2594 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2595 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2596 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2597 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
2598 			sh->ops.target = disk_idx;
2599 			sh->ops.target2 = other;
2600 			s->uptodate += 2;
2601 			s->req_compute = 1;
2602 			return 1;
2603 		} else if (test_bit(R5_Insync, &dev->flags)) {
2604 			set_bit(R5_LOCKED, &dev->flags);
2605 			set_bit(R5_Wantread, &dev->flags);
2606 			s->locked++;
2607 			pr_debug("Reading block %d (sync=%d)\n",
2608 				disk_idx, s->syncing);
2609 		}
2610 	}
2611 
2612 	return 0;
2613 }
2614 
2615 /**
2616  * handle_stripe_fill - read or compute data to satisfy pending requests.
2617  */
2618 static void handle_stripe_fill(struct stripe_head *sh,
2619 			       struct stripe_head_state *s,
2620 			       int disks)
2621 {
2622 	int i;
2623 
2624 	/* look for blocks to read/compute, skip this if a compute
2625 	 * is already in flight, or if the stripe contents are in the
2626 	 * midst of changing due to a write
2627 	 */
2628 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2629 	    !sh->reconstruct_state)
2630 		for (i = disks; i--; )
2631 			if (fetch_block(sh, s, i, disks))
2632 				break;
2633 	set_bit(STRIPE_HANDLE, &sh->state);
2634 }
2635 
2636 
2637 /* handle_stripe_clean_event
2638  * any written block on an uptodate or failed drive can be returned.
2639  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2640  * never LOCKED, so we don't need to test 'failed' directly.
2641  */
2642 static void handle_stripe_clean_event(struct r5conf *conf,
2643 	struct stripe_head *sh, int disks, struct bio **return_bi)
2644 {
2645 	int i;
2646 	struct r5dev *dev;
2647 
2648 	for (i = disks; i--; )
2649 		if (sh->dev[i].written) {
2650 			dev = &sh->dev[i];
2651 			if (!test_bit(R5_LOCKED, &dev->flags) &&
2652 				test_bit(R5_UPTODATE, &dev->flags)) {
2653 				/* We can return any write requests */
2654 				struct bio *wbi, *wbi2;
2655 				int bitmap_end = 0;
2656 				pr_debug("Return write for disc %d\n", i);
2657 				spin_lock_irq(&conf->device_lock);
2658 				wbi = dev->written;
2659 				dev->written = NULL;
2660 				while (wbi && wbi->bi_sector <
2661 					dev->sector + STRIPE_SECTORS) {
2662 					wbi2 = r5_next_bio(wbi, dev->sector);
2663 					if (!raid5_dec_bi_phys_segments(wbi)) {
2664 						md_write_end(conf->mddev);
2665 						wbi->bi_next = *return_bi;
2666 						*return_bi = wbi;
2667 					}
2668 					wbi = wbi2;
2669 				}
2670 				if (dev->towrite == NULL)
2671 					bitmap_end = 1;
2672 				spin_unlock_irq(&conf->device_lock);
2673 				if (bitmap_end)
2674 					bitmap_endwrite(conf->mddev->bitmap,
2675 							sh->sector,
2676 							STRIPE_SECTORS,
2677 					 !test_bit(STRIPE_DEGRADED, &sh->state),
2678 							0);
2679 			}
2680 		}
2681 
2682 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2683 		if (atomic_dec_and_test(&conf->pending_full_writes))
2684 			md_wakeup_thread(conf->mddev->thread);
2685 }
2686 
2687 static void handle_stripe_dirtying(struct r5conf *conf,
2688 				   struct stripe_head *sh,
2689 				   struct stripe_head_state *s,
2690 				   int disks)
2691 {
2692 	int rmw = 0, rcw = 0, i;
2693 	if (conf->max_degraded == 2) {
2694 		/* RAID6 requires 'rcw' in current implementation
2695 		 * Calculate the real rcw later - for now fake it
2696 		 * look like rcw is cheaper
2697 		 */
2698 		rcw = 1; rmw = 2;
2699 	} else for (i = disks; i--; ) {
2700 		/* would I have to read this buffer for read_modify_write */
2701 		struct r5dev *dev = &sh->dev[i];
2702 		if ((dev->towrite || i == sh->pd_idx) &&
2703 		    !test_bit(R5_LOCKED, &dev->flags) &&
2704 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2705 		      test_bit(R5_Wantcompute, &dev->flags))) {
2706 			if (test_bit(R5_Insync, &dev->flags))
2707 				rmw++;
2708 			else
2709 				rmw += 2*disks;  /* cannot read it */
2710 		}
2711 		/* Would I have to read this buffer for reconstruct_write */
2712 		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2713 		    !test_bit(R5_LOCKED, &dev->flags) &&
2714 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2715 		    test_bit(R5_Wantcompute, &dev->flags))) {
2716 			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2717 			else
2718 				rcw += 2*disks;
2719 		}
2720 	}
2721 	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2722 		(unsigned long long)sh->sector, rmw, rcw);
2723 	set_bit(STRIPE_HANDLE, &sh->state);
2724 	if (rmw < rcw && rmw > 0)
2725 		/* prefer read-modify-write, but need to get some data */
2726 		for (i = disks; i--; ) {
2727 			struct r5dev *dev = &sh->dev[i];
2728 			if ((dev->towrite || i == sh->pd_idx) &&
2729 			    !test_bit(R5_LOCKED, &dev->flags) &&
2730 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2731 			    test_bit(R5_Wantcompute, &dev->flags)) &&
2732 			    test_bit(R5_Insync, &dev->flags)) {
2733 				if (
2734 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2735 					pr_debug("Read_old block "
2736 						"%d for r-m-w\n", i);
2737 					set_bit(R5_LOCKED, &dev->flags);
2738 					set_bit(R5_Wantread, &dev->flags);
2739 					s->locked++;
2740 				} else {
2741 					set_bit(STRIPE_DELAYED, &sh->state);
2742 					set_bit(STRIPE_HANDLE, &sh->state);
2743 				}
2744 			}
2745 		}
2746 	if (rcw <= rmw && rcw > 0) {
2747 		/* want reconstruct write, but need to get some data */
2748 		rcw = 0;
2749 		for (i = disks; i--; ) {
2750 			struct r5dev *dev = &sh->dev[i];
2751 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2752 			    i != sh->pd_idx && i != sh->qd_idx &&
2753 			    !test_bit(R5_LOCKED, &dev->flags) &&
2754 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2755 			      test_bit(R5_Wantcompute, &dev->flags))) {
2756 				rcw++;
2757 				if (!test_bit(R5_Insync, &dev->flags))
2758 					continue; /* it's a failed drive */
2759 				if (
2760 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2761 					pr_debug("Read_old block "
2762 						"%d for Reconstruct\n", i);
2763 					set_bit(R5_LOCKED, &dev->flags);
2764 					set_bit(R5_Wantread, &dev->flags);
2765 					s->locked++;
2766 				} else {
2767 					set_bit(STRIPE_DELAYED, &sh->state);
2768 					set_bit(STRIPE_HANDLE, &sh->state);
2769 				}
2770 			}
2771 		}
2772 	}
2773 	/* now if nothing is locked, and if we have enough data,
2774 	 * we can start a write request
2775 	 */
2776 	/* since handle_stripe can be called at any time we need to handle the
2777 	 * case where a compute block operation has been submitted and then a
2778 	 * subsequent call wants to start a write request.  raid_run_ops only
2779 	 * handles the case where compute block and reconstruct are requested
2780 	 * simultaneously.  If this is not the case then new writes need to be
2781 	 * held off until the compute completes.
2782 	 */
2783 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2784 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2785 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2786 		schedule_reconstruction(sh, s, rcw == 0, 0);
2787 }
2788 
2789 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
2790 				struct stripe_head_state *s, int disks)
2791 {
2792 	struct r5dev *dev = NULL;
2793 
2794 	set_bit(STRIPE_HANDLE, &sh->state);
2795 
2796 	switch (sh->check_state) {
2797 	case check_state_idle:
2798 		/* start a new check operation if there are no failures */
2799 		if (s->failed == 0) {
2800 			BUG_ON(s->uptodate != disks);
2801 			sh->check_state = check_state_run;
2802 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2803 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2804 			s->uptodate--;
2805 			break;
2806 		}
2807 		dev = &sh->dev[s->failed_num[0]];
2808 		/* fall through */
2809 	case check_state_compute_result:
2810 		sh->check_state = check_state_idle;
2811 		if (!dev)
2812 			dev = &sh->dev[sh->pd_idx];
2813 
2814 		/* check that a write has not made the stripe insync */
2815 		if (test_bit(STRIPE_INSYNC, &sh->state))
2816 			break;
2817 
2818 		/* either failed parity check, or recovery is happening */
2819 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2820 		BUG_ON(s->uptodate != disks);
2821 
2822 		set_bit(R5_LOCKED, &dev->flags);
2823 		s->locked++;
2824 		set_bit(R5_Wantwrite, &dev->flags);
2825 
2826 		clear_bit(STRIPE_DEGRADED, &sh->state);
2827 		set_bit(STRIPE_INSYNC, &sh->state);
2828 		break;
2829 	case check_state_run:
2830 		break; /* we will be called again upon completion */
2831 	case check_state_check_result:
2832 		sh->check_state = check_state_idle;
2833 
2834 		/* if a failure occurred during the check operation, leave
2835 		 * STRIPE_INSYNC not set and let the stripe be handled again
2836 		 */
2837 		if (s->failed)
2838 			break;
2839 
2840 		/* handle a successful check operation, if parity is correct
2841 		 * we are done.  Otherwise update the mismatch count and repair
2842 		 * parity if !MD_RECOVERY_CHECK
2843 		 */
2844 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2845 			/* parity is correct (on disc,
2846 			 * not in buffer any more)
2847 			 */
2848 			set_bit(STRIPE_INSYNC, &sh->state);
2849 		else {
2850 			conf->mddev->resync_mismatches += STRIPE_SECTORS;
2851 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2852 				/* don't try to repair!! */
2853 				set_bit(STRIPE_INSYNC, &sh->state);
2854 			else {
2855 				sh->check_state = check_state_compute_run;
2856 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2857 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2858 				set_bit(R5_Wantcompute,
2859 					&sh->dev[sh->pd_idx].flags);
2860 				sh->ops.target = sh->pd_idx;
2861 				sh->ops.target2 = -1;
2862 				s->uptodate++;
2863 			}
2864 		}
2865 		break;
2866 	case check_state_compute_run:
2867 		break;
2868 	default:
2869 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2870 		       __func__, sh->check_state,
2871 		       (unsigned long long) sh->sector);
2872 		BUG();
2873 	}
2874 }
2875 
2876 
2877 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
2878 				  struct stripe_head_state *s,
2879 				  int disks)
2880 {
2881 	int pd_idx = sh->pd_idx;
2882 	int qd_idx = sh->qd_idx;
2883 	struct r5dev *dev;
2884 
2885 	set_bit(STRIPE_HANDLE, &sh->state);
2886 
2887 	BUG_ON(s->failed > 2);
2888 
2889 	/* Want to check and possibly repair P and Q.
2890 	 * However there could be one 'failed' device, in which
2891 	 * case we can only check one of them, possibly using the
2892 	 * other to generate missing data
2893 	 */
2894 
2895 	switch (sh->check_state) {
2896 	case check_state_idle:
2897 		/* start a new check operation if there are < 2 failures */
2898 		if (s->failed == s->q_failed) {
2899 			/* The only possible failed device holds Q, so it
2900 			 * makes sense to check P (If anything else were failed,
2901 			 * we would have used P to recreate it).
2902 			 */
2903 			sh->check_state = check_state_run;
2904 		}
2905 		if (!s->q_failed && s->failed < 2) {
2906 			/* Q is not failed, and we didn't use it to generate
2907 			 * anything, so it makes sense to check it
2908 			 */
2909 			if (sh->check_state == check_state_run)
2910 				sh->check_state = check_state_run_pq;
2911 			else
2912 				sh->check_state = check_state_run_q;
2913 		}
2914 
2915 		/* discard potentially stale zero_sum_result */
2916 		sh->ops.zero_sum_result = 0;
2917 
2918 		if (sh->check_state == check_state_run) {
2919 			/* async_xor_zero_sum destroys the contents of P */
2920 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2921 			s->uptodate--;
2922 		}
2923 		if (sh->check_state >= check_state_run &&
2924 		    sh->check_state <= check_state_run_pq) {
2925 			/* async_syndrome_zero_sum preserves P and Q, so
2926 			 * no need to mark them !uptodate here
2927 			 */
2928 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2929 			break;
2930 		}
2931 
2932 		/* we have 2-disk failure */
2933 		BUG_ON(s->failed != 2);
2934 		/* fall through */
2935 	case check_state_compute_result:
2936 		sh->check_state = check_state_idle;
2937 
2938 		/* check that a write has not made the stripe insync */
2939 		if (test_bit(STRIPE_INSYNC, &sh->state))
2940 			break;
2941 
2942 		/* now write out any block on a failed drive,
2943 		 * or P or Q if they were recomputed
2944 		 */
2945 		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2946 		if (s->failed == 2) {
2947 			dev = &sh->dev[s->failed_num[1]];
2948 			s->locked++;
2949 			set_bit(R5_LOCKED, &dev->flags);
2950 			set_bit(R5_Wantwrite, &dev->flags);
2951 		}
2952 		if (s->failed >= 1) {
2953 			dev = &sh->dev[s->failed_num[0]];
2954 			s->locked++;
2955 			set_bit(R5_LOCKED, &dev->flags);
2956 			set_bit(R5_Wantwrite, &dev->flags);
2957 		}
2958 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2959 			dev = &sh->dev[pd_idx];
2960 			s->locked++;
2961 			set_bit(R5_LOCKED, &dev->flags);
2962 			set_bit(R5_Wantwrite, &dev->flags);
2963 		}
2964 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2965 			dev = &sh->dev[qd_idx];
2966 			s->locked++;
2967 			set_bit(R5_LOCKED, &dev->flags);
2968 			set_bit(R5_Wantwrite, &dev->flags);
2969 		}
2970 		clear_bit(STRIPE_DEGRADED, &sh->state);
2971 
2972 		set_bit(STRIPE_INSYNC, &sh->state);
2973 		break;
2974 	case check_state_run:
2975 	case check_state_run_q:
2976 	case check_state_run_pq:
2977 		break; /* we will be called again upon completion */
2978 	case check_state_check_result:
2979 		sh->check_state = check_state_idle;
2980 
2981 		/* handle a successful check operation, if parity is correct
2982 		 * we are done.  Otherwise update the mismatch count and repair
2983 		 * parity if !MD_RECOVERY_CHECK
2984 		 */
2985 		if (sh->ops.zero_sum_result == 0) {
2986 			/* both parities are correct */
2987 			if (!s->failed)
2988 				set_bit(STRIPE_INSYNC, &sh->state);
2989 			else {
2990 				/* in contrast to the raid5 case we can validate
2991 				 * parity, but still have a failure to write
2992 				 * back
2993 				 */
2994 				sh->check_state = check_state_compute_result;
2995 				/* Returning at this point means that we may go
2996 				 * off and bring p and/or q uptodate again so
2997 				 * we make sure to check zero_sum_result again
2998 				 * to verify if p or q need writeback
2999 				 */
3000 			}
3001 		} else {
3002 			conf->mddev->resync_mismatches += STRIPE_SECTORS;
3003 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3004 				/* don't try to repair!! */
3005 				set_bit(STRIPE_INSYNC, &sh->state);
3006 			else {
3007 				int *target = &sh->ops.target;
3008 
3009 				sh->ops.target = -1;
3010 				sh->ops.target2 = -1;
3011 				sh->check_state = check_state_compute_run;
3012 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3013 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3014 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3015 					set_bit(R5_Wantcompute,
3016 						&sh->dev[pd_idx].flags);
3017 					*target = pd_idx;
3018 					target = &sh->ops.target2;
3019 					s->uptodate++;
3020 				}
3021 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3022 					set_bit(R5_Wantcompute,
3023 						&sh->dev[qd_idx].flags);
3024 					*target = qd_idx;
3025 					s->uptodate++;
3026 				}
3027 			}
3028 		}
3029 		break;
3030 	case check_state_compute_run:
3031 		break;
3032 	default:
3033 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3034 		       __func__, sh->check_state,
3035 		       (unsigned long long) sh->sector);
3036 		BUG();
3037 	}
3038 }
3039 
3040 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3041 {
3042 	int i;
3043 
3044 	/* We have read all the blocks in this stripe and now we need to
3045 	 * copy some of them into a target stripe for expand.
3046 	 */
3047 	struct dma_async_tx_descriptor *tx = NULL;
3048 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3049 	for (i = 0; i < sh->disks; i++)
3050 		if (i != sh->pd_idx && i != sh->qd_idx) {
3051 			int dd_idx, j;
3052 			struct stripe_head *sh2;
3053 			struct async_submit_ctl submit;
3054 
3055 			sector_t bn = compute_blocknr(sh, i, 1);
3056 			sector_t s = raid5_compute_sector(conf, bn, 0,
3057 							  &dd_idx, NULL);
3058 			sh2 = get_active_stripe(conf, s, 0, 1, 1);
3059 			if (sh2 == NULL)
3060 				/* so far only the early blocks of this stripe
3061 				 * have been requested.  When later blocks
3062 				 * get requested, we will try again
3063 				 */
3064 				continue;
3065 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3066 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3067 				/* must have already done this block */
3068 				release_stripe(sh2);
3069 				continue;
3070 			}
3071 
3072 			/* place all the copies on one channel */
3073 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3074 			tx = async_memcpy(sh2->dev[dd_idx].page,
3075 					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
3076 					  &submit);
3077 
3078 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3079 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3080 			for (j = 0; j < conf->raid_disks; j++)
3081 				if (j != sh2->pd_idx &&
3082 				    j != sh2->qd_idx &&
3083 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
3084 					break;
3085 			if (j == conf->raid_disks) {
3086 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
3087 				set_bit(STRIPE_HANDLE, &sh2->state);
3088 			}
3089 			release_stripe(sh2);
3090 
3091 		}
3092 	/* done submitting copies, wait for them to complete */
3093 	if (tx) {
3094 		async_tx_ack(tx);
3095 		dma_wait_for_async_tx(tx);
3096 	}
3097 }
3098 
3099 /*
3100  * handle_stripe - do things to a stripe.
3101  *
3102  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3103  * state of various bits to see what needs to be done.
3104  * Possible results:
3105  *    return some read requests which now have data
3106  *    return some write requests which are safely on storage
3107  *    schedule a read on some buffers
3108  *    schedule a write of some buffers
3109  *    return confirmation of parity correctness
3110  *
3111  */
3112 
3113 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3114 {
3115 	struct r5conf *conf = sh->raid_conf;
3116 	int disks = sh->disks;
3117 	struct r5dev *dev;
3118 	int i;
3119 	int do_recovery = 0;
3120 
3121 	memset(s, 0, sizeof(*s));
3122 
3123 	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3124 	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3125 	s->failed_num[0] = -1;
3126 	s->failed_num[1] = -1;
3127 
3128 	/* Now to look around and see what can be done */
3129 	rcu_read_lock();
3130 	spin_lock_irq(&conf->device_lock);
3131 	for (i=disks; i--; ) {
3132 		struct md_rdev *rdev;
3133 		sector_t first_bad;
3134 		int bad_sectors;
3135 		int is_bad = 0;
3136 
3137 		dev = &sh->dev[i];
3138 
3139 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3140 			 i, dev->flags,
3141 			 dev->toread, dev->towrite, dev->written);
3142 		/* maybe we can reply to a read
3143 		 *
3144 		 * new wantfill requests are only permitted while
3145 		 * ops_complete_biofill is guaranteed to be inactive
3146 		 */
3147 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3148 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3149 			set_bit(R5_Wantfill, &dev->flags);
3150 
3151 		/* now count some things */
3152 		if (test_bit(R5_LOCKED, &dev->flags))
3153 			s->locked++;
3154 		if (test_bit(R5_UPTODATE, &dev->flags))
3155 			s->uptodate++;
3156 		if (test_bit(R5_Wantcompute, &dev->flags)) {
3157 			s->compute++;
3158 			BUG_ON(s->compute > 2);
3159 		}
3160 
3161 		if (test_bit(R5_Wantfill, &dev->flags))
3162 			s->to_fill++;
3163 		else if (dev->toread)
3164 			s->to_read++;
3165 		if (dev->towrite) {
3166 			s->to_write++;
3167 			if (!test_bit(R5_OVERWRITE, &dev->flags))
3168 				s->non_overwrite++;
3169 		}
3170 		if (dev->written)
3171 			s->written++;
3172 		/* Prefer to use the replacement for reads, but only
3173 		 * if it is recovered enough and has no bad blocks.
3174 		 */
3175 		rdev = rcu_dereference(conf->disks[i].replacement);
3176 		if (rdev && !test_bit(Faulty, &rdev->flags) &&
3177 		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3178 		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3179 				 &first_bad, &bad_sectors))
3180 			set_bit(R5_ReadRepl, &dev->flags);
3181 		else {
3182 			if (rdev)
3183 				set_bit(R5_NeedReplace, &dev->flags);
3184 			rdev = rcu_dereference(conf->disks[i].rdev);
3185 			clear_bit(R5_ReadRepl, &dev->flags);
3186 		}
3187 		if (rdev && test_bit(Faulty, &rdev->flags))
3188 			rdev = NULL;
3189 		if (rdev) {
3190 			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3191 					     &first_bad, &bad_sectors);
3192 			if (s->blocked_rdev == NULL
3193 			    && (test_bit(Blocked, &rdev->flags)
3194 				|| is_bad < 0)) {
3195 				if (is_bad < 0)
3196 					set_bit(BlockedBadBlocks,
3197 						&rdev->flags);
3198 				s->blocked_rdev = rdev;
3199 				atomic_inc(&rdev->nr_pending);
3200 			}
3201 		}
3202 		clear_bit(R5_Insync, &dev->flags);
3203 		if (!rdev)
3204 			/* Not in-sync */;
3205 		else if (is_bad) {
3206 			/* also not in-sync */
3207 			if (!test_bit(WriteErrorSeen, &rdev->flags)) {
3208 				/* treat as in-sync, but with a read error
3209 				 * which we can now try to correct
3210 				 */
3211 				set_bit(R5_Insync, &dev->flags);
3212 				set_bit(R5_ReadError, &dev->flags);
3213 			}
3214 		} else if (test_bit(In_sync, &rdev->flags))
3215 			set_bit(R5_Insync, &dev->flags);
3216 		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3217 			/* in sync if before recovery_offset */
3218 			set_bit(R5_Insync, &dev->flags);
3219 		else if (test_bit(R5_UPTODATE, &dev->flags) &&
3220 			 test_bit(R5_Expanded, &dev->flags))
3221 			/* If we've reshaped into here, we assume it is Insync.
3222 			 * We will shortly update recovery_offset to make
3223 			 * it official.
3224 			 */
3225 			set_bit(R5_Insync, &dev->flags);
3226 
3227 		if (rdev && test_bit(R5_WriteError, &dev->flags)) {
3228 			/* This flag does not apply to '.replacement'
3229 			 * only to .rdev, so make sure to check that*/
3230 			struct md_rdev *rdev2 = rcu_dereference(
3231 				conf->disks[i].rdev);
3232 			if (rdev2 == rdev)
3233 				clear_bit(R5_Insync, &dev->flags);
3234 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3235 				s->handle_bad_blocks = 1;
3236 				atomic_inc(&rdev2->nr_pending);
3237 			} else
3238 				clear_bit(R5_WriteError, &dev->flags);
3239 		}
3240 		if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
3241 			/* This flag does not apply to '.replacement'
3242 			 * only to .rdev, so make sure to check that*/
3243 			struct md_rdev *rdev2 = rcu_dereference(
3244 				conf->disks[i].rdev);
3245 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3246 				s->handle_bad_blocks = 1;
3247 				atomic_inc(&rdev2->nr_pending);
3248 			} else
3249 				clear_bit(R5_MadeGood, &dev->flags);
3250 		}
3251 		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3252 			struct md_rdev *rdev2 = rcu_dereference(
3253 				conf->disks[i].replacement);
3254 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3255 				s->handle_bad_blocks = 1;
3256 				atomic_inc(&rdev2->nr_pending);
3257 			} else
3258 				clear_bit(R5_MadeGoodRepl, &dev->flags);
3259 		}
3260 		if (!test_bit(R5_Insync, &dev->flags)) {
3261 			/* The ReadError flag will just be confusing now */
3262 			clear_bit(R5_ReadError, &dev->flags);
3263 			clear_bit(R5_ReWrite, &dev->flags);
3264 		}
3265 		if (test_bit(R5_ReadError, &dev->flags))
3266 			clear_bit(R5_Insync, &dev->flags);
3267 		if (!test_bit(R5_Insync, &dev->flags)) {
3268 			if (s->failed < 2)
3269 				s->failed_num[s->failed] = i;
3270 			s->failed++;
3271 			if (rdev && !test_bit(Faulty, &rdev->flags))
3272 				do_recovery = 1;
3273 		}
3274 	}
3275 	spin_unlock_irq(&conf->device_lock);
3276 	if (test_bit(STRIPE_SYNCING, &sh->state)) {
3277 		/* If there is a failed device being replaced,
3278 		 *     we must be recovering.
3279 		 * else if we are after recovery_cp, we must be syncing
3280 		 * else we can only be replacing
3281 		 * sync and recovery both need to read all devices, and so
3282 		 * use the same flag.
3283 		 */
3284 		if (do_recovery ||
3285 		    sh->sector >= conf->mddev->recovery_cp)
3286 			s->syncing = 1;
3287 		else
3288 			s->replacing = 1;
3289 	}
3290 	rcu_read_unlock();
3291 }
3292 
3293 static void handle_stripe(struct stripe_head *sh)
3294 {
3295 	struct stripe_head_state s;
3296 	struct r5conf *conf = sh->raid_conf;
3297 	int i;
3298 	int prexor;
3299 	int disks = sh->disks;
3300 	struct r5dev *pdev, *qdev;
3301 
3302 	clear_bit(STRIPE_HANDLE, &sh->state);
3303 	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3304 		/* already being handled, ensure it gets handled
3305 		 * again when current action finishes */
3306 		set_bit(STRIPE_HANDLE, &sh->state);
3307 		return;
3308 	}
3309 
3310 	if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3311 		set_bit(STRIPE_SYNCING, &sh->state);
3312 		clear_bit(STRIPE_INSYNC, &sh->state);
3313 	}
3314 	clear_bit(STRIPE_DELAYED, &sh->state);
3315 
3316 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3317 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3318 	       (unsigned long long)sh->sector, sh->state,
3319 	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3320 	       sh->check_state, sh->reconstruct_state);
3321 
3322 	analyse_stripe(sh, &s);
3323 
3324 	if (s.handle_bad_blocks) {
3325 		set_bit(STRIPE_HANDLE, &sh->state);
3326 		goto finish;
3327 	}
3328 
3329 	if (unlikely(s.blocked_rdev)) {
3330 		if (s.syncing || s.expanding || s.expanded ||
3331 		    s.replacing || s.to_write || s.written) {
3332 			set_bit(STRIPE_HANDLE, &sh->state);
3333 			goto finish;
3334 		}
3335 		/* There is nothing for the blocked_rdev to block */
3336 		rdev_dec_pending(s.blocked_rdev, conf->mddev);
3337 		s.blocked_rdev = NULL;
3338 	}
3339 
3340 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3341 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3342 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3343 	}
3344 
3345 	pr_debug("locked=%d uptodate=%d to_read=%d"
3346 	       " to_write=%d failed=%d failed_num=%d,%d\n",
3347 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3348 	       s.failed_num[0], s.failed_num[1]);
3349 	/* check if the array has lost more than max_degraded devices and,
3350 	 * if so, some requests might need to be failed.
3351 	 */
3352 	if (s.failed > conf->max_degraded) {
3353 		sh->check_state = 0;
3354 		sh->reconstruct_state = 0;
3355 		if (s.to_read+s.to_write+s.written)
3356 			handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3357 		if (s.syncing + s.replacing)
3358 			handle_failed_sync(conf, sh, &s);
3359 	}
3360 
3361 	/*
3362 	 * might be able to return some write requests if the parity blocks
3363 	 * are safe, or on a failed drive
3364 	 */
3365 	pdev = &sh->dev[sh->pd_idx];
3366 	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3367 		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3368 	qdev = &sh->dev[sh->qd_idx];
3369 	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3370 		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3371 		|| conf->level < 6;
3372 
3373 	if (s.written &&
3374 	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3375 			     && !test_bit(R5_LOCKED, &pdev->flags)
3376 			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3377 	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3378 			     && !test_bit(R5_LOCKED, &qdev->flags)
3379 			     && test_bit(R5_UPTODATE, &qdev->flags)))))
3380 		handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3381 
3382 	/* Now we might consider reading some blocks, either to check/generate
3383 	 * parity, or to satisfy requests
3384 	 * or to load a block that is being partially written.
3385 	 */
3386 	if (s.to_read || s.non_overwrite
3387 	    || (conf->level == 6 && s.to_write && s.failed)
3388 	    || (s.syncing && (s.uptodate + s.compute < disks))
3389 	    || s.replacing
3390 	    || s.expanding)
3391 		handle_stripe_fill(sh, &s, disks);
3392 
3393 	/* Now we check to see if any write operations have recently
3394 	 * completed
3395 	 */
3396 	prexor = 0;
3397 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3398 		prexor = 1;
3399 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
3400 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3401 		sh->reconstruct_state = reconstruct_state_idle;
3402 
3403 		/* All the 'written' buffers and the parity block are ready to
3404 		 * be written back to disk
3405 		 */
3406 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3407 		BUG_ON(sh->qd_idx >= 0 &&
3408 		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags));
3409 		for (i = disks; i--; ) {
3410 			struct r5dev *dev = &sh->dev[i];
3411 			if (test_bit(R5_LOCKED, &dev->flags) &&
3412 				(i == sh->pd_idx || i == sh->qd_idx ||
3413 				 dev->written)) {
3414 				pr_debug("Writing block %d\n", i);
3415 				set_bit(R5_Wantwrite, &dev->flags);
3416 				if (prexor)
3417 					continue;
3418 				if (!test_bit(R5_Insync, &dev->flags) ||
3419 				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
3420 				     s.failed == 0))
3421 					set_bit(STRIPE_INSYNC, &sh->state);
3422 			}
3423 		}
3424 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3425 			s.dec_preread_active = 1;
3426 	}
3427 
3428 	/* Now to consider new write requests and what else, if anything
3429 	 * should be read.  We do not handle new writes when:
3430 	 * 1/ A 'write' operation (copy+xor) is already in flight.
3431 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
3432 	 *    block.
3433 	 */
3434 	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3435 		handle_stripe_dirtying(conf, sh, &s, disks);
3436 
3437 	/* maybe we need to check and possibly fix the parity for this stripe
3438 	 * Any reads will already have been scheduled, so we just see if enough
3439 	 * data is available.  The parity check is held off while parity
3440 	 * dependent operations are in flight.
3441 	 */
3442 	if (sh->check_state ||
3443 	    (s.syncing && s.locked == 0 &&
3444 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3445 	     !test_bit(STRIPE_INSYNC, &sh->state))) {
3446 		if (conf->level == 6)
3447 			handle_parity_checks6(conf, sh, &s, disks);
3448 		else
3449 			handle_parity_checks5(conf, sh, &s, disks);
3450 	}
3451 
3452 	if (s.replacing && s.locked == 0
3453 	    && !test_bit(STRIPE_INSYNC, &sh->state)) {
3454 		/* Write out to replacement devices where possible */
3455 		for (i = 0; i < conf->raid_disks; i++)
3456 			if (test_bit(R5_UPTODATE, &sh->dev[i].flags) &&
3457 			    test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3458 				set_bit(R5_WantReplace, &sh->dev[i].flags);
3459 				set_bit(R5_LOCKED, &sh->dev[i].flags);
3460 				s.locked++;
3461 			}
3462 		set_bit(STRIPE_INSYNC, &sh->state);
3463 	}
3464 	if ((s.syncing || s.replacing) && s.locked == 0 &&
3465 	    test_bit(STRIPE_INSYNC, &sh->state)) {
3466 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3467 		clear_bit(STRIPE_SYNCING, &sh->state);
3468 	}
3469 
3470 	/* If the failed drives are just a ReadError, then we might need
3471 	 * to progress the repair/check process
3472 	 */
3473 	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3474 		for (i = 0; i < s.failed; i++) {
3475 			struct r5dev *dev = &sh->dev[s.failed_num[i]];
3476 			if (test_bit(R5_ReadError, &dev->flags)
3477 			    && !test_bit(R5_LOCKED, &dev->flags)
3478 			    && test_bit(R5_UPTODATE, &dev->flags)
3479 				) {
3480 				if (!test_bit(R5_ReWrite, &dev->flags)) {
3481 					set_bit(R5_Wantwrite, &dev->flags);
3482 					set_bit(R5_ReWrite, &dev->flags);
3483 					set_bit(R5_LOCKED, &dev->flags);
3484 					s.locked++;
3485 				} else {
3486 					/* let's read it back */
3487 					set_bit(R5_Wantread, &dev->flags);
3488 					set_bit(R5_LOCKED, &dev->flags);
3489 					s.locked++;
3490 				}
3491 			}
3492 		}
3493 
3494 
3495 	/* Finish reconstruct operations initiated by the expansion process */
3496 	if (sh->reconstruct_state == reconstruct_state_result) {
3497 		struct stripe_head *sh_src
3498 			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3499 		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3500 			/* sh cannot be written until sh_src has been read.
3501 			 * so arrange for sh to be delayed a little
3502 			 */
3503 			set_bit(STRIPE_DELAYED, &sh->state);
3504 			set_bit(STRIPE_HANDLE, &sh->state);
3505 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3506 					      &sh_src->state))
3507 				atomic_inc(&conf->preread_active_stripes);
3508 			release_stripe(sh_src);
3509 			goto finish;
3510 		}
3511 		if (sh_src)
3512 			release_stripe(sh_src);
3513 
3514 		sh->reconstruct_state = reconstruct_state_idle;
3515 		clear_bit(STRIPE_EXPANDING, &sh->state);
3516 		for (i = conf->raid_disks; i--; ) {
3517 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
3518 			set_bit(R5_LOCKED, &sh->dev[i].flags);
3519 			s.locked++;
3520 		}
3521 	}
3522 
3523 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3524 	    !sh->reconstruct_state) {
3525 		/* Need to write out all blocks after computing parity */
3526 		sh->disks = conf->raid_disks;
3527 		stripe_set_idx(sh->sector, conf, 0, sh);
3528 		schedule_reconstruction(sh, &s, 1, 1);
3529 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3530 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3531 		atomic_dec(&conf->reshape_stripes);
3532 		wake_up(&conf->wait_for_overlap);
3533 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3534 	}
3535 
3536 	if (s.expanding && s.locked == 0 &&
3537 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3538 		handle_stripe_expansion(conf, sh);
3539 
3540 finish:
3541 	/* wait for this device to become unblocked */
3542 	if (conf->mddev->external && unlikely(s.blocked_rdev))
3543 		md_wait_for_blocked_rdev(s.blocked_rdev, conf->mddev);
3544 
3545 	if (s.handle_bad_blocks)
3546 		for (i = disks; i--; ) {
3547 			struct md_rdev *rdev;
3548 			struct r5dev *dev = &sh->dev[i];
3549 			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3550 				/* We own a safe reference to the rdev */
3551 				rdev = conf->disks[i].rdev;
3552 				if (!rdev_set_badblocks(rdev, sh->sector,
3553 							STRIPE_SECTORS, 0))
3554 					md_error(conf->mddev, rdev);
3555 				rdev_dec_pending(rdev, conf->mddev);
3556 			}
3557 			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3558 				rdev = conf->disks[i].rdev;
3559 				rdev_clear_badblocks(rdev, sh->sector,
3560 						     STRIPE_SECTORS);
3561 				rdev_dec_pending(rdev, conf->mddev);
3562 			}
3563 			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3564 				rdev = conf->disks[i].replacement;
3565 				if (!rdev)
3566 					/* rdev have been moved down */
3567 					rdev = conf->disks[i].rdev;
3568 				rdev_clear_badblocks(rdev, sh->sector,
3569 						     STRIPE_SECTORS);
3570 				rdev_dec_pending(rdev, conf->mddev);
3571 			}
3572 		}
3573 
3574 	if (s.ops_request)
3575 		raid_run_ops(sh, s.ops_request);
3576 
3577 	ops_run_io(sh, &s);
3578 
3579 	if (s.dec_preread_active) {
3580 		/* We delay this until after ops_run_io so that if make_request
3581 		 * is waiting on a flush, it won't continue until the writes
3582 		 * have actually been submitted.
3583 		 */
3584 		atomic_dec(&conf->preread_active_stripes);
3585 		if (atomic_read(&conf->preread_active_stripes) <
3586 		    IO_THRESHOLD)
3587 			md_wakeup_thread(conf->mddev->thread);
3588 	}
3589 
3590 	return_io(s.return_bi);
3591 
3592 	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
3593 }
3594 
3595 static void raid5_activate_delayed(struct r5conf *conf)
3596 {
3597 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3598 		while (!list_empty(&conf->delayed_list)) {
3599 			struct list_head *l = conf->delayed_list.next;
3600 			struct stripe_head *sh;
3601 			sh = list_entry(l, struct stripe_head, lru);
3602 			list_del_init(l);
3603 			clear_bit(STRIPE_DELAYED, &sh->state);
3604 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3605 				atomic_inc(&conf->preread_active_stripes);
3606 			list_add_tail(&sh->lru, &conf->hold_list);
3607 		}
3608 	}
3609 }
3610 
3611 static void activate_bit_delay(struct r5conf *conf)
3612 {
3613 	/* device_lock is held */
3614 	struct list_head head;
3615 	list_add(&head, &conf->bitmap_list);
3616 	list_del_init(&conf->bitmap_list);
3617 	while (!list_empty(&head)) {
3618 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3619 		list_del_init(&sh->lru);
3620 		atomic_inc(&sh->count);
3621 		__release_stripe(conf, sh);
3622 	}
3623 }
3624 
3625 int md_raid5_congested(struct mddev *mddev, int bits)
3626 {
3627 	struct r5conf *conf = mddev->private;
3628 
3629 	/* No difference between reads and writes.  Just check
3630 	 * how busy the stripe_cache is
3631 	 */
3632 
3633 	if (conf->inactive_blocked)
3634 		return 1;
3635 	if (conf->quiesce)
3636 		return 1;
3637 	if (list_empty_careful(&conf->inactive_list))
3638 		return 1;
3639 
3640 	return 0;
3641 }
3642 EXPORT_SYMBOL_GPL(md_raid5_congested);
3643 
3644 static int raid5_congested(void *data, int bits)
3645 {
3646 	struct mddev *mddev = data;
3647 
3648 	return mddev_congested(mddev, bits) ||
3649 		md_raid5_congested(mddev, bits);
3650 }
3651 
3652 /* We want read requests to align with chunks where possible,
3653  * but write requests don't need to.
3654  */
3655 static int raid5_mergeable_bvec(struct request_queue *q,
3656 				struct bvec_merge_data *bvm,
3657 				struct bio_vec *biovec)
3658 {
3659 	struct mddev *mddev = q->queuedata;
3660 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3661 	int max;
3662 	unsigned int chunk_sectors = mddev->chunk_sectors;
3663 	unsigned int bio_sectors = bvm->bi_size >> 9;
3664 
3665 	if ((bvm->bi_rw & 1) == WRITE)
3666 		return biovec->bv_len; /* always allow writes to be mergeable */
3667 
3668 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3669 		chunk_sectors = mddev->new_chunk_sectors;
3670 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3671 	if (max < 0) max = 0;
3672 	if (max <= biovec->bv_len && bio_sectors == 0)
3673 		return biovec->bv_len;
3674 	else
3675 		return max;
3676 }
3677 
3678 
3679 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
3680 {
3681 	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3682 	unsigned int chunk_sectors = mddev->chunk_sectors;
3683 	unsigned int bio_sectors = bio->bi_size >> 9;
3684 
3685 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3686 		chunk_sectors = mddev->new_chunk_sectors;
3687 	return  chunk_sectors >=
3688 		((sector & (chunk_sectors - 1)) + bio_sectors);
3689 }
3690 
3691 /*
3692  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3693  *  later sampled by raid5d.
3694  */
3695 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
3696 {
3697 	unsigned long flags;
3698 
3699 	spin_lock_irqsave(&conf->device_lock, flags);
3700 
3701 	bi->bi_next = conf->retry_read_aligned_list;
3702 	conf->retry_read_aligned_list = bi;
3703 
3704 	spin_unlock_irqrestore(&conf->device_lock, flags);
3705 	md_wakeup_thread(conf->mddev->thread);
3706 }
3707 
3708 
3709 static struct bio *remove_bio_from_retry(struct r5conf *conf)
3710 {
3711 	struct bio *bi;
3712 
3713 	bi = conf->retry_read_aligned;
3714 	if (bi) {
3715 		conf->retry_read_aligned = NULL;
3716 		return bi;
3717 	}
3718 	bi = conf->retry_read_aligned_list;
3719 	if(bi) {
3720 		conf->retry_read_aligned_list = bi->bi_next;
3721 		bi->bi_next = NULL;
3722 		/*
3723 		 * this sets the active strip count to 1 and the processed
3724 		 * strip count to zero (upper 8 bits)
3725 		 */
3726 		bi->bi_phys_segments = 1; /* biased count of active stripes */
3727 	}
3728 
3729 	return bi;
3730 }
3731 
3732 
3733 /*
3734  *  The "raid5_align_endio" should check if the read succeeded and if it
3735  *  did, call bio_endio on the original bio (having bio_put the new bio
3736  *  first).
3737  *  If the read failed..
3738  */
3739 static void raid5_align_endio(struct bio *bi, int error)
3740 {
3741 	struct bio* raid_bi  = bi->bi_private;
3742 	struct mddev *mddev;
3743 	struct r5conf *conf;
3744 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3745 	struct md_rdev *rdev;
3746 
3747 	bio_put(bi);
3748 
3749 	rdev = (void*)raid_bi->bi_next;
3750 	raid_bi->bi_next = NULL;
3751 	mddev = rdev->mddev;
3752 	conf = mddev->private;
3753 
3754 	rdev_dec_pending(rdev, conf->mddev);
3755 
3756 	if (!error && uptodate) {
3757 		bio_endio(raid_bi, 0);
3758 		if (atomic_dec_and_test(&conf->active_aligned_reads))
3759 			wake_up(&conf->wait_for_stripe);
3760 		return;
3761 	}
3762 
3763 
3764 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3765 
3766 	add_bio_to_retry(raid_bi, conf);
3767 }
3768 
3769 static int bio_fits_rdev(struct bio *bi)
3770 {
3771 	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3772 
3773 	if ((bi->bi_size>>9) > queue_max_sectors(q))
3774 		return 0;
3775 	blk_recount_segments(q, bi);
3776 	if (bi->bi_phys_segments > queue_max_segments(q))
3777 		return 0;
3778 
3779 	if (q->merge_bvec_fn)
3780 		/* it's too hard to apply the merge_bvec_fn at this stage,
3781 		 * just just give up
3782 		 */
3783 		return 0;
3784 
3785 	return 1;
3786 }
3787 
3788 
3789 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
3790 {
3791 	struct r5conf *conf = mddev->private;
3792 	int dd_idx;
3793 	struct bio* align_bi;
3794 	struct md_rdev *rdev;
3795 	sector_t end_sector;
3796 
3797 	if (!in_chunk_boundary(mddev, raid_bio)) {
3798 		pr_debug("chunk_aligned_read : non aligned\n");
3799 		return 0;
3800 	}
3801 	/*
3802 	 * use bio_clone_mddev to make a copy of the bio
3803 	 */
3804 	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3805 	if (!align_bi)
3806 		return 0;
3807 	/*
3808 	 *   set bi_end_io to a new function, and set bi_private to the
3809 	 *     original bio.
3810 	 */
3811 	align_bi->bi_end_io  = raid5_align_endio;
3812 	align_bi->bi_private = raid_bio;
3813 	/*
3814 	 *	compute position
3815 	 */
3816 	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3817 						    0,
3818 						    &dd_idx, NULL);
3819 
3820 	end_sector = align_bi->bi_sector + (align_bi->bi_size >> 9);
3821 	rcu_read_lock();
3822 	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
3823 	if (!rdev || test_bit(Faulty, &rdev->flags) ||
3824 	    rdev->recovery_offset < end_sector) {
3825 		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3826 		if (rdev &&
3827 		    (test_bit(Faulty, &rdev->flags) ||
3828 		    !(test_bit(In_sync, &rdev->flags) ||
3829 		      rdev->recovery_offset >= end_sector)))
3830 			rdev = NULL;
3831 	}
3832 	if (rdev) {
3833 		sector_t first_bad;
3834 		int bad_sectors;
3835 
3836 		atomic_inc(&rdev->nr_pending);
3837 		rcu_read_unlock();
3838 		raid_bio->bi_next = (void*)rdev;
3839 		align_bi->bi_bdev =  rdev->bdev;
3840 		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3841 		align_bi->bi_sector += rdev->data_offset;
3842 
3843 		if (!bio_fits_rdev(align_bi) ||
3844 		    is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
3845 				&first_bad, &bad_sectors)) {
3846 			/* too big in some way, or has a known bad block */
3847 			bio_put(align_bi);
3848 			rdev_dec_pending(rdev, mddev);
3849 			return 0;
3850 		}
3851 
3852 		spin_lock_irq(&conf->device_lock);
3853 		wait_event_lock_irq(conf->wait_for_stripe,
3854 				    conf->quiesce == 0,
3855 				    conf->device_lock, /* nothing */);
3856 		atomic_inc(&conf->active_aligned_reads);
3857 		spin_unlock_irq(&conf->device_lock);
3858 
3859 		generic_make_request(align_bi);
3860 		return 1;
3861 	} else {
3862 		rcu_read_unlock();
3863 		bio_put(align_bi);
3864 		return 0;
3865 	}
3866 }
3867 
3868 /* __get_priority_stripe - get the next stripe to process
3869  *
3870  * Full stripe writes are allowed to pass preread active stripes up until
3871  * the bypass_threshold is exceeded.  In general the bypass_count
3872  * increments when the handle_list is handled before the hold_list; however, it
3873  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3874  * stripe with in flight i/o.  The bypass_count will be reset when the
3875  * head of the hold_list has changed, i.e. the head was promoted to the
3876  * handle_list.
3877  */
3878 static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
3879 {
3880 	struct stripe_head *sh;
3881 
3882 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3883 		  __func__,
3884 		  list_empty(&conf->handle_list) ? "empty" : "busy",
3885 		  list_empty(&conf->hold_list) ? "empty" : "busy",
3886 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
3887 
3888 	if (!list_empty(&conf->handle_list)) {
3889 		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3890 
3891 		if (list_empty(&conf->hold_list))
3892 			conf->bypass_count = 0;
3893 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3894 			if (conf->hold_list.next == conf->last_hold)
3895 				conf->bypass_count++;
3896 			else {
3897 				conf->last_hold = conf->hold_list.next;
3898 				conf->bypass_count -= conf->bypass_threshold;
3899 				if (conf->bypass_count < 0)
3900 					conf->bypass_count = 0;
3901 			}
3902 		}
3903 	} else if (!list_empty(&conf->hold_list) &&
3904 		   ((conf->bypass_threshold &&
3905 		     conf->bypass_count > conf->bypass_threshold) ||
3906 		    atomic_read(&conf->pending_full_writes) == 0)) {
3907 		sh = list_entry(conf->hold_list.next,
3908 				typeof(*sh), lru);
3909 		conf->bypass_count -= conf->bypass_threshold;
3910 		if (conf->bypass_count < 0)
3911 			conf->bypass_count = 0;
3912 	} else
3913 		return NULL;
3914 
3915 	list_del_init(&sh->lru);
3916 	atomic_inc(&sh->count);
3917 	BUG_ON(atomic_read(&sh->count) != 1);
3918 	return sh;
3919 }
3920 
3921 static void make_request(struct mddev *mddev, struct bio * bi)
3922 {
3923 	struct r5conf *conf = mddev->private;
3924 	int dd_idx;
3925 	sector_t new_sector;
3926 	sector_t logical_sector, last_sector;
3927 	struct stripe_head *sh;
3928 	const int rw = bio_data_dir(bi);
3929 	int remaining;
3930 	int plugged;
3931 
3932 	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
3933 		md_flush_request(mddev, bi);
3934 		return;
3935 	}
3936 
3937 	md_write_start(mddev, bi);
3938 
3939 	if (rw == READ &&
3940 	     mddev->reshape_position == MaxSector &&
3941 	     chunk_aligned_read(mddev,bi))
3942 		return;
3943 
3944 	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3945 	last_sector = bi->bi_sector + (bi->bi_size>>9);
3946 	bi->bi_next = NULL;
3947 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
3948 
3949 	plugged = mddev_check_plugged(mddev);
3950 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3951 		DEFINE_WAIT(w);
3952 		int disks, data_disks;
3953 		int previous;
3954 
3955 	retry:
3956 		previous = 0;
3957 		disks = conf->raid_disks;
3958 		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3959 		if (unlikely(conf->reshape_progress != MaxSector)) {
3960 			/* spinlock is needed as reshape_progress may be
3961 			 * 64bit on a 32bit platform, and so it might be
3962 			 * possible to see a half-updated value
3963 			 * Of course reshape_progress could change after
3964 			 * the lock is dropped, so once we get a reference
3965 			 * to the stripe that we think it is, we will have
3966 			 * to check again.
3967 			 */
3968 			spin_lock_irq(&conf->device_lock);
3969 			if (mddev->delta_disks < 0
3970 			    ? logical_sector < conf->reshape_progress
3971 			    : logical_sector >= conf->reshape_progress) {
3972 				disks = conf->previous_raid_disks;
3973 				previous = 1;
3974 			} else {
3975 				if (mddev->delta_disks < 0
3976 				    ? logical_sector < conf->reshape_safe
3977 				    : logical_sector >= conf->reshape_safe) {
3978 					spin_unlock_irq(&conf->device_lock);
3979 					schedule();
3980 					goto retry;
3981 				}
3982 			}
3983 			spin_unlock_irq(&conf->device_lock);
3984 		}
3985 		data_disks = disks - conf->max_degraded;
3986 
3987 		new_sector = raid5_compute_sector(conf, logical_sector,
3988 						  previous,
3989 						  &dd_idx, NULL);
3990 		pr_debug("raid456: make_request, sector %llu logical %llu\n",
3991 			(unsigned long long)new_sector,
3992 			(unsigned long long)logical_sector);
3993 
3994 		sh = get_active_stripe(conf, new_sector, previous,
3995 				       (bi->bi_rw&RWA_MASK), 0);
3996 		if (sh) {
3997 			if (unlikely(previous)) {
3998 				/* expansion might have moved on while waiting for a
3999 				 * stripe, so we must do the range check again.
4000 				 * Expansion could still move past after this
4001 				 * test, but as we are holding a reference to
4002 				 * 'sh', we know that if that happens,
4003 				 *  STRIPE_EXPANDING will get set and the expansion
4004 				 * won't proceed until we finish with the stripe.
4005 				 */
4006 				int must_retry = 0;
4007 				spin_lock_irq(&conf->device_lock);
4008 				if (mddev->delta_disks < 0
4009 				    ? logical_sector >= conf->reshape_progress
4010 				    : logical_sector < conf->reshape_progress)
4011 					/* mismatch, need to try again */
4012 					must_retry = 1;
4013 				spin_unlock_irq(&conf->device_lock);
4014 				if (must_retry) {
4015 					release_stripe(sh);
4016 					schedule();
4017 					goto retry;
4018 				}
4019 			}
4020 
4021 			if (rw == WRITE &&
4022 			    logical_sector >= mddev->suspend_lo &&
4023 			    logical_sector < mddev->suspend_hi) {
4024 				release_stripe(sh);
4025 				/* As the suspend_* range is controlled by
4026 				 * userspace, we want an interruptible
4027 				 * wait.
4028 				 */
4029 				flush_signals(current);
4030 				prepare_to_wait(&conf->wait_for_overlap,
4031 						&w, TASK_INTERRUPTIBLE);
4032 				if (logical_sector >= mddev->suspend_lo &&
4033 				    logical_sector < mddev->suspend_hi)
4034 					schedule();
4035 				goto retry;
4036 			}
4037 
4038 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4039 			    !add_stripe_bio(sh, bi, dd_idx, rw)) {
4040 				/* Stripe is busy expanding or
4041 				 * add failed due to overlap.  Flush everything
4042 				 * and wait a while
4043 				 */
4044 				md_wakeup_thread(mddev->thread);
4045 				release_stripe(sh);
4046 				schedule();
4047 				goto retry;
4048 			}
4049 			finish_wait(&conf->wait_for_overlap, &w);
4050 			set_bit(STRIPE_HANDLE, &sh->state);
4051 			clear_bit(STRIPE_DELAYED, &sh->state);
4052 			if ((bi->bi_rw & REQ_SYNC) &&
4053 			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4054 				atomic_inc(&conf->preread_active_stripes);
4055 			release_stripe(sh);
4056 		} else {
4057 			/* cannot get stripe for read-ahead, just give-up */
4058 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
4059 			finish_wait(&conf->wait_for_overlap, &w);
4060 			break;
4061 		}
4062 
4063 	}
4064 	if (!plugged)
4065 		md_wakeup_thread(mddev->thread);
4066 
4067 	spin_lock_irq(&conf->device_lock);
4068 	remaining = raid5_dec_bi_phys_segments(bi);
4069 	spin_unlock_irq(&conf->device_lock);
4070 	if (remaining == 0) {
4071 
4072 		if ( rw == WRITE )
4073 			md_write_end(mddev);
4074 
4075 		bio_endio(bi, 0);
4076 	}
4077 }
4078 
4079 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4080 
4081 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4082 {
4083 	/* reshaping is quite different to recovery/resync so it is
4084 	 * handled quite separately ... here.
4085 	 *
4086 	 * On each call to sync_request, we gather one chunk worth of
4087 	 * destination stripes and flag them as expanding.
4088 	 * Then we find all the source stripes and request reads.
4089 	 * As the reads complete, handle_stripe will copy the data
4090 	 * into the destination stripe and release that stripe.
4091 	 */
4092 	struct r5conf *conf = mddev->private;
4093 	struct stripe_head *sh;
4094 	sector_t first_sector, last_sector;
4095 	int raid_disks = conf->previous_raid_disks;
4096 	int data_disks = raid_disks - conf->max_degraded;
4097 	int new_data_disks = conf->raid_disks - conf->max_degraded;
4098 	int i;
4099 	int dd_idx;
4100 	sector_t writepos, readpos, safepos;
4101 	sector_t stripe_addr;
4102 	int reshape_sectors;
4103 	struct list_head stripes;
4104 
4105 	if (sector_nr == 0) {
4106 		/* If restarting in the middle, skip the initial sectors */
4107 		if (mddev->delta_disks < 0 &&
4108 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4109 			sector_nr = raid5_size(mddev, 0, 0)
4110 				- conf->reshape_progress;
4111 		} else if (mddev->delta_disks >= 0 &&
4112 			   conf->reshape_progress > 0)
4113 			sector_nr = conf->reshape_progress;
4114 		sector_div(sector_nr, new_data_disks);
4115 		if (sector_nr) {
4116 			mddev->curr_resync_completed = sector_nr;
4117 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4118 			*skipped = 1;
4119 			return sector_nr;
4120 		}
4121 	}
4122 
4123 	/* We need to process a full chunk at a time.
4124 	 * If old and new chunk sizes differ, we need to process the
4125 	 * largest of these
4126 	 */
4127 	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4128 		reshape_sectors = mddev->new_chunk_sectors;
4129 	else
4130 		reshape_sectors = mddev->chunk_sectors;
4131 
4132 	/* we update the metadata when there is more than 3Meg
4133 	 * in the block range (that is rather arbitrary, should
4134 	 * probably be time based) or when the data about to be
4135 	 * copied would over-write the source of the data at
4136 	 * the front of the range.
4137 	 * i.e. one new_stripe along from reshape_progress new_maps
4138 	 * to after where reshape_safe old_maps to
4139 	 */
4140 	writepos = conf->reshape_progress;
4141 	sector_div(writepos, new_data_disks);
4142 	readpos = conf->reshape_progress;
4143 	sector_div(readpos, data_disks);
4144 	safepos = conf->reshape_safe;
4145 	sector_div(safepos, data_disks);
4146 	if (mddev->delta_disks < 0) {
4147 		writepos -= min_t(sector_t, reshape_sectors, writepos);
4148 		readpos += reshape_sectors;
4149 		safepos += reshape_sectors;
4150 	} else {
4151 		writepos += reshape_sectors;
4152 		readpos -= min_t(sector_t, reshape_sectors, readpos);
4153 		safepos -= min_t(sector_t, reshape_sectors, safepos);
4154 	}
4155 
4156 	/* 'writepos' is the most advanced device address we might write.
4157 	 * 'readpos' is the least advanced device address we might read.
4158 	 * 'safepos' is the least address recorded in the metadata as having
4159 	 *     been reshaped.
4160 	 * If 'readpos' is behind 'writepos', then there is no way that we can
4161 	 * ensure safety in the face of a crash - that must be done by userspace
4162 	 * making a backup of the data.  So in that case there is no particular
4163 	 * rush to update metadata.
4164 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4165 	 * update the metadata to advance 'safepos' to match 'readpos' so that
4166 	 * we can be safe in the event of a crash.
4167 	 * So we insist on updating metadata if safepos is behind writepos and
4168 	 * readpos is beyond writepos.
4169 	 * In any case, update the metadata every 10 seconds.
4170 	 * Maybe that number should be configurable, but I'm not sure it is
4171 	 * worth it.... maybe it could be a multiple of safemode_delay???
4172 	 */
4173 	if ((mddev->delta_disks < 0
4174 	     ? (safepos > writepos && readpos < writepos)
4175 	     : (safepos < writepos && readpos > writepos)) ||
4176 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4177 		/* Cannot proceed until we've updated the superblock... */
4178 		wait_event(conf->wait_for_overlap,
4179 			   atomic_read(&conf->reshape_stripes)==0);
4180 		mddev->reshape_position = conf->reshape_progress;
4181 		mddev->curr_resync_completed = sector_nr;
4182 		conf->reshape_checkpoint = jiffies;
4183 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4184 		md_wakeup_thread(mddev->thread);
4185 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4186 			   kthread_should_stop());
4187 		spin_lock_irq(&conf->device_lock);
4188 		conf->reshape_safe = mddev->reshape_position;
4189 		spin_unlock_irq(&conf->device_lock);
4190 		wake_up(&conf->wait_for_overlap);
4191 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4192 	}
4193 
4194 	if (mddev->delta_disks < 0) {
4195 		BUG_ON(conf->reshape_progress == 0);
4196 		stripe_addr = writepos;
4197 		BUG_ON((mddev->dev_sectors &
4198 			~((sector_t)reshape_sectors - 1))
4199 		       - reshape_sectors - stripe_addr
4200 		       != sector_nr);
4201 	} else {
4202 		BUG_ON(writepos != sector_nr + reshape_sectors);
4203 		stripe_addr = sector_nr;
4204 	}
4205 	INIT_LIST_HEAD(&stripes);
4206 	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4207 		int j;
4208 		int skipped_disk = 0;
4209 		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4210 		set_bit(STRIPE_EXPANDING, &sh->state);
4211 		atomic_inc(&conf->reshape_stripes);
4212 		/* If any of this stripe is beyond the end of the old
4213 		 * array, then we need to zero those blocks
4214 		 */
4215 		for (j=sh->disks; j--;) {
4216 			sector_t s;
4217 			if (j == sh->pd_idx)
4218 				continue;
4219 			if (conf->level == 6 &&
4220 			    j == sh->qd_idx)
4221 				continue;
4222 			s = compute_blocknr(sh, j, 0);
4223 			if (s < raid5_size(mddev, 0, 0)) {
4224 				skipped_disk = 1;
4225 				continue;
4226 			}
4227 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4228 			set_bit(R5_Expanded, &sh->dev[j].flags);
4229 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
4230 		}
4231 		if (!skipped_disk) {
4232 			set_bit(STRIPE_EXPAND_READY, &sh->state);
4233 			set_bit(STRIPE_HANDLE, &sh->state);
4234 		}
4235 		list_add(&sh->lru, &stripes);
4236 	}
4237 	spin_lock_irq(&conf->device_lock);
4238 	if (mddev->delta_disks < 0)
4239 		conf->reshape_progress -= reshape_sectors * new_data_disks;
4240 	else
4241 		conf->reshape_progress += reshape_sectors * new_data_disks;
4242 	spin_unlock_irq(&conf->device_lock);
4243 	/* Ok, those stripe are ready. We can start scheduling
4244 	 * reads on the source stripes.
4245 	 * The source stripes are determined by mapping the first and last
4246 	 * block on the destination stripes.
4247 	 */
4248 	first_sector =
4249 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4250 				     1, &dd_idx, NULL);
4251 	last_sector =
4252 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4253 					    * new_data_disks - 1),
4254 				     1, &dd_idx, NULL);
4255 	if (last_sector >= mddev->dev_sectors)
4256 		last_sector = mddev->dev_sectors - 1;
4257 	while (first_sector <= last_sector) {
4258 		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4259 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4260 		set_bit(STRIPE_HANDLE, &sh->state);
4261 		release_stripe(sh);
4262 		first_sector += STRIPE_SECTORS;
4263 	}
4264 	/* Now that the sources are clearly marked, we can release
4265 	 * the destination stripes
4266 	 */
4267 	while (!list_empty(&stripes)) {
4268 		sh = list_entry(stripes.next, struct stripe_head, lru);
4269 		list_del_init(&sh->lru);
4270 		release_stripe(sh);
4271 	}
4272 	/* If this takes us to the resync_max point where we have to pause,
4273 	 * then we need to write out the superblock.
4274 	 */
4275 	sector_nr += reshape_sectors;
4276 	if ((sector_nr - mddev->curr_resync_completed) * 2
4277 	    >= mddev->resync_max - mddev->curr_resync_completed) {
4278 		/* Cannot proceed until we've updated the superblock... */
4279 		wait_event(conf->wait_for_overlap,
4280 			   atomic_read(&conf->reshape_stripes) == 0);
4281 		mddev->reshape_position = conf->reshape_progress;
4282 		mddev->curr_resync_completed = sector_nr;
4283 		conf->reshape_checkpoint = jiffies;
4284 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4285 		md_wakeup_thread(mddev->thread);
4286 		wait_event(mddev->sb_wait,
4287 			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4288 			   || kthread_should_stop());
4289 		spin_lock_irq(&conf->device_lock);
4290 		conf->reshape_safe = mddev->reshape_position;
4291 		spin_unlock_irq(&conf->device_lock);
4292 		wake_up(&conf->wait_for_overlap);
4293 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4294 	}
4295 	return reshape_sectors;
4296 }
4297 
4298 /* FIXME go_faster isn't used */
4299 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4300 {
4301 	struct r5conf *conf = mddev->private;
4302 	struct stripe_head *sh;
4303 	sector_t max_sector = mddev->dev_sectors;
4304 	sector_t sync_blocks;
4305 	int still_degraded = 0;
4306 	int i;
4307 
4308 	if (sector_nr >= max_sector) {
4309 		/* just being told to finish up .. nothing much to do */
4310 
4311 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4312 			end_reshape(conf);
4313 			return 0;
4314 		}
4315 
4316 		if (mddev->curr_resync < max_sector) /* aborted */
4317 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4318 					&sync_blocks, 1);
4319 		else /* completed sync */
4320 			conf->fullsync = 0;
4321 		bitmap_close_sync(mddev->bitmap);
4322 
4323 		return 0;
4324 	}
4325 
4326 	/* Allow raid5_quiesce to complete */
4327 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4328 
4329 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4330 		return reshape_request(mddev, sector_nr, skipped);
4331 
4332 	/* No need to check resync_max as we never do more than one
4333 	 * stripe, and as resync_max will always be on a chunk boundary,
4334 	 * if the check in md_do_sync didn't fire, there is no chance
4335 	 * of overstepping resync_max here
4336 	 */
4337 
4338 	/* if there is too many failed drives and we are trying
4339 	 * to resync, then assert that we are finished, because there is
4340 	 * nothing we can do.
4341 	 */
4342 	if (mddev->degraded >= conf->max_degraded &&
4343 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4344 		sector_t rv = mddev->dev_sectors - sector_nr;
4345 		*skipped = 1;
4346 		return rv;
4347 	}
4348 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4349 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4350 	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4351 		/* we can skip this block, and probably more */
4352 		sync_blocks /= STRIPE_SECTORS;
4353 		*skipped = 1;
4354 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4355 	}
4356 
4357 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4358 
4359 	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4360 	if (sh == NULL) {
4361 		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4362 		/* make sure we don't swamp the stripe cache if someone else
4363 		 * is trying to get access
4364 		 */
4365 		schedule_timeout_uninterruptible(1);
4366 	}
4367 	/* Need to check if array will still be degraded after recovery/resync
4368 	 * We don't need to check the 'failed' flag as when that gets set,
4369 	 * recovery aborts.
4370 	 */
4371 	for (i = 0; i < conf->raid_disks; i++)
4372 		if (conf->disks[i].rdev == NULL)
4373 			still_degraded = 1;
4374 
4375 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4376 
4377 	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4378 
4379 	handle_stripe(sh);
4380 	release_stripe(sh);
4381 
4382 	return STRIPE_SECTORS;
4383 }
4384 
4385 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
4386 {
4387 	/* We may not be able to submit a whole bio at once as there
4388 	 * may not be enough stripe_heads available.
4389 	 * We cannot pre-allocate enough stripe_heads as we may need
4390 	 * more than exist in the cache (if we allow ever large chunks).
4391 	 * So we do one stripe head at a time and record in
4392 	 * ->bi_hw_segments how many have been done.
4393 	 *
4394 	 * We *know* that this entire raid_bio is in one chunk, so
4395 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4396 	 */
4397 	struct stripe_head *sh;
4398 	int dd_idx;
4399 	sector_t sector, logical_sector, last_sector;
4400 	int scnt = 0;
4401 	int remaining;
4402 	int handled = 0;
4403 
4404 	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4405 	sector = raid5_compute_sector(conf, logical_sector,
4406 				      0, &dd_idx, NULL);
4407 	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4408 
4409 	for (; logical_sector < last_sector;
4410 	     logical_sector += STRIPE_SECTORS,
4411 		     sector += STRIPE_SECTORS,
4412 		     scnt++) {
4413 
4414 		if (scnt < raid5_bi_hw_segments(raid_bio))
4415 			/* already done this stripe */
4416 			continue;
4417 
4418 		sh = get_active_stripe(conf, sector, 0, 1, 0);
4419 
4420 		if (!sh) {
4421 			/* failed to get a stripe - must wait */
4422 			raid5_set_bi_hw_segments(raid_bio, scnt);
4423 			conf->retry_read_aligned = raid_bio;
4424 			return handled;
4425 		}
4426 
4427 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4428 			release_stripe(sh);
4429 			raid5_set_bi_hw_segments(raid_bio, scnt);
4430 			conf->retry_read_aligned = raid_bio;
4431 			return handled;
4432 		}
4433 
4434 		handle_stripe(sh);
4435 		release_stripe(sh);
4436 		handled++;
4437 	}
4438 	spin_lock_irq(&conf->device_lock);
4439 	remaining = raid5_dec_bi_phys_segments(raid_bio);
4440 	spin_unlock_irq(&conf->device_lock);
4441 	if (remaining == 0)
4442 		bio_endio(raid_bio, 0);
4443 	if (atomic_dec_and_test(&conf->active_aligned_reads))
4444 		wake_up(&conf->wait_for_stripe);
4445 	return handled;
4446 }
4447 
4448 
4449 /*
4450  * This is our raid5 kernel thread.
4451  *
4452  * We scan the hash table for stripes which can be handled now.
4453  * During the scan, completed stripes are saved for us by the interrupt
4454  * handler, so that they will not have to wait for our next wakeup.
4455  */
4456 static void raid5d(struct mddev *mddev)
4457 {
4458 	struct stripe_head *sh;
4459 	struct r5conf *conf = mddev->private;
4460 	int handled;
4461 	struct blk_plug plug;
4462 
4463 	pr_debug("+++ raid5d active\n");
4464 
4465 	md_check_recovery(mddev);
4466 
4467 	blk_start_plug(&plug);
4468 	handled = 0;
4469 	spin_lock_irq(&conf->device_lock);
4470 	while (1) {
4471 		struct bio *bio;
4472 
4473 		if (atomic_read(&mddev->plug_cnt) == 0 &&
4474 		    !list_empty(&conf->bitmap_list)) {
4475 			/* Now is a good time to flush some bitmap updates */
4476 			conf->seq_flush++;
4477 			spin_unlock_irq(&conf->device_lock);
4478 			bitmap_unplug(mddev->bitmap);
4479 			spin_lock_irq(&conf->device_lock);
4480 			conf->seq_write = conf->seq_flush;
4481 			activate_bit_delay(conf);
4482 		}
4483 		if (atomic_read(&mddev->plug_cnt) == 0)
4484 			raid5_activate_delayed(conf);
4485 
4486 		while ((bio = remove_bio_from_retry(conf))) {
4487 			int ok;
4488 			spin_unlock_irq(&conf->device_lock);
4489 			ok = retry_aligned_read(conf, bio);
4490 			spin_lock_irq(&conf->device_lock);
4491 			if (!ok)
4492 				break;
4493 			handled++;
4494 		}
4495 
4496 		sh = __get_priority_stripe(conf);
4497 
4498 		if (!sh)
4499 			break;
4500 		spin_unlock_irq(&conf->device_lock);
4501 
4502 		handled++;
4503 		handle_stripe(sh);
4504 		release_stripe(sh);
4505 		cond_resched();
4506 
4507 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
4508 			md_check_recovery(mddev);
4509 
4510 		spin_lock_irq(&conf->device_lock);
4511 	}
4512 	pr_debug("%d stripes handled\n", handled);
4513 
4514 	spin_unlock_irq(&conf->device_lock);
4515 
4516 	async_tx_issue_pending_all();
4517 	blk_finish_plug(&plug);
4518 
4519 	pr_debug("--- raid5d inactive\n");
4520 }
4521 
4522 static ssize_t
4523 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
4524 {
4525 	struct r5conf *conf = mddev->private;
4526 	if (conf)
4527 		return sprintf(page, "%d\n", conf->max_nr_stripes);
4528 	else
4529 		return 0;
4530 }
4531 
4532 int
4533 raid5_set_cache_size(struct mddev *mddev, int size)
4534 {
4535 	struct r5conf *conf = mddev->private;
4536 	int err;
4537 
4538 	if (size <= 16 || size > 32768)
4539 		return -EINVAL;
4540 	while (size < conf->max_nr_stripes) {
4541 		if (drop_one_stripe(conf))
4542 			conf->max_nr_stripes--;
4543 		else
4544 			break;
4545 	}
4546 	err = md_allow_write(mddev);
4547 	if (err)
4548 		return err;
4549 	while (size > conf->max_nr_stripes) {
4550 		if (grow_one_stripe(conf))
4551 			conf->max_nr_stripes++;
4552 		else break;
4553 	}
4554 	return 0;
4555 }
4556 EXPORT_SYMBOL(raid5_set_cache_size);
4557 
4558 static ssize_t
4559 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
4560 {
4561 	struct r5conf *conf = mddev->private;
4562 	unsigned long new;
4563 	int err;
4564 
4565 	if (len >= PAGE_SIZE)
4566 		return -EINVAL;
4567 	if (!conf)
4568 		return -ENODEV;
4569 
4570 	if (strict_strtoul(page, 10, &new))
4571 		return -EINVAL;
4572 	err = raid5_set_cache_size(mddev, new);
4573 	if (err)
4574 		return err;
4575 	return len;
4576 }
4577 
4578 static struct md_sysfs_entry
4579 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4580 				raid5_show_stripe_cache_size,
4581 				raid5_store_stripe_cache_size);
4582 
4583 static ssize_t
4584 raid5_show_preread_threshold(struct mddev *mddev, char *page)
4585 {
4586 	struct r5conf *conf = mddev->private;
4587 	if (conf)
4588 		return sprintf(page, "%d\n", conf->bypass_threshold);
4589 	else
4590 		return 0;
4591 }
4592 
4593 static ssize_t
4594 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
4595 {
4596 	struct r5conf *conf = mddev->private;
4597 	unsigned long new;
4598 	if (len >= PAGE_SIZE)
4599 		return -EINVAL;
4600 	if (!conf)
4601 		return -ENODEV;
4602 
4603 	if (strict_strtoul(page, 10, &new))
4604 		return -EINVAL;
4605 	if (new > conf->max_nr_stripes)
4606 		return -EINVAL;
4607 	conf->bypass_threshold = new;
4608 	return len;
4609 }
4610 
4611 static struct md_sysfs_entry
4612 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4613 					S_IRUGO | S_IWUSR,
4614 					raid5_show_preread_threshold,
4615 					raid5_store_preread_threshold);
4616 
4617 static ssize_t
4618 stripe_cache_active_show(struct mddev *mddev, char *page)
4619 {
4620 	struct r5conf *conf = mddev->private;
4621 	if (conf)
4622 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4623 	else
4624 		return 0;
4625 }
4626 
4627 static struct md_sysfs_entry
4628 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4629 
4630 static struct attribute *raid5_attrs[] =  {
4631 	&raid5_stripecache_size.attr,
4632 	&raid5_stripecache_active.attr,
4633 	&raid5_preread_bypass_threshold.attr,
4634 	NULL,
4635 };
4636 static struct attribute_group raid5_attrs_group = {
4637 	.name = NULL,
4638 	.attrs = raid5_attrs,
4639 };
4640 
4641 static sector_t
4642 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
4643 {
4644 	struct r5conf *conf = mddev->private;
4645 
4646 	if (!sectors)
4647 		sectors = mddev->dev_sectors;
4648 	if (!raid_disks)
4649 		/* size is defined by the smallest of previous and new size */
4650 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4651 
4652 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4653 	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4654 	return sectors * (raid_disks - conf->max_degraded);
4655 }
4656 
4657 static void raid5_free_percpu(struct r5conf *conf)
4658 {
4659 	struct raid5_percpu *percpu;
4660 	unsigned long cpu;
4661 
4662 	if (!conf->percpu)
4663 		return;
4664 
4665 	get_online_cpus();
4666 	for_each_possible_cpu(cpu) {
4667 		percpu = per_cpu_ptr(conf->percpu, cpu);
4668 		safe_put_page(percpu->spare_page);
4669 		kfree(percpu->scribble);
4670 	}
4671 #ifdef CONFIG_HOTPLUG_CPU
4672 	unregister_cpu_notifier(&conf->cpu_notify);
4673 #endif
4674 	put_online_cpus();
4675 
4676 	free_percpu(conf->percpu);
4677 }
4678 
4679 static void free_conf(struct r5conf *conf)
4680 {
4681 	shrink_stripes(conf);
4682 	raid5_free_percpu(conf);
4683 	kfree(conf->disks);
4684 	kfree(conf->stripe_hashtbl);
4685 	kfree(conf);
4686 }
4687 
4688 #ifdef CONFIG_HOTPLUG_CPU
4689 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4690 			      void *hcpu)
4691 {
4692 	struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
4693 	long cpu = (long)hcpu;
4694 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4695 
4696 	switch (action) {
4697 	case CPU_UP_PREPARE:
4698 	case CPU_UP_PREPARE_FROZEN:
4699 		if (conf->level == 6 && !percpu->spare_page)
4700 			percpu->spare_page = alloc_page(GFP_KERNEL);
4701 		if (!percpu->scribble)
4702 			percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4703 
4704 		if (!percpu->scribble ||
4705 		    (conf->level == 6 && !percpu->spare_page)) {
4706 			safe_put_page(percpu->spare_page);
4707 			kfree(percpu->scribble);
4708 			pr_err("%s: failed memory allocation for cpu%ld\n",
4709 			       __func__, cpu);
4710 			return notifier_from_errno(-ENOMEM);
4711 		}
4712 		break;
4713 	case CPU_DEAD:
4714 	case CPU_DEAD_FROZEN:
4715 		safe_put_page(percpu->spare_page);
4716 		kfree(percpu->scribble);
4717 		percpu->spare_page = NULL;
4718 		percpu->scribble = NULL;
4719 		break;
4720 	default:
4721 		break;
4722 	}
4723 	return NOTIFY_OK;
4724 }
4725 #endif
4726 
4727 static int raid5_alloc_percpu(struct r5conf *conf)
4728 {
4729 	unsigned long cpu;
4730 	struct page *spare_page;
4731 	struct raid5_percpu __percpu *allcpus;
4732 	void *scribble;
4733 	int err;
4734 
4735 	allcpus = alloc_percpu(struct raid5_percpu);
4736 	if (!allcpus)
4737 		return -ENOMEM;
4738 	conf->percpu = allcpus;
4739 
4740 	get_online_cpus();
4741 	err = 0;
4742 	for_each_present_cpu(cpu) {
4743 		if (conf->level == 6) {
4744 			spare_page = alloc_page(GFP_KERNEL);
4745 			if (!spare_page) {
4746 				err = -ENOMEM;
4747 				break;
4748 			}
4749 			per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4750 		}
4751 		scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4752 		if (!scribble) {
4753 			err = -ENOMEM;
4754 			break;
4755 		}
4756 		per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4757 	}
4758 #ifdef CONFIG_HOTPLUG_CPU
4759 	conf->cpu_notify.notifier_call = raid456_cpu_notify;
4760 	conf->cpu_notify.priority = 0;
4761 	if (err == 0)
4762 		err = register_cpu_notifier(&conf->cpu_notify);
4763 #endif
4764 	put_online_cpus();
4765 
4766 	return err;
4767 }
4768 
4769 static struct r5conf *setup_conf(struct mddev *mddev)
4770 {
4771 	struct r5conf *conf;
4772 	int raid_disk, memory, max_disks;
4773 	struct md_rdev *rdev;
4774 	struct disk_info *disk;
4775 
4776 	if (mddev->new_level != 5
4777 	    && mddev->new_level != 4
4778 	    && mddev->new_level != 6) {
4779 		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4780 		       mdname(mddev), mddev->new_level);
4781 		return ERR_PTR(-EIO);
4782 	}
4783 	if ((mddev->new_level == 5
4784 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
4785 	    (mddev->new_level == 6
4786 	     && !algorithm_valid_raid6(mddev->new_layout))) {
4787 		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4788 		       mdname(mddev), mddev->new_layout);
4789 		return ERR_PTR(-EIO);
4790 	}
4791 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4792 		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4793 		       mdname(mddev), mddev->raid_disks);
4794 		return ERR_PTR(-EINVAL);
4795 	}
4796 
4797 	if (!mddev->new_chunk_sectors ||
4798 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4799 	    !is_power_of_2(mddev->new_chunk_sectors)) {
4800 		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4801 		       mdname(mddev), mddev->new_chunk_sectors << 9);
4802 		return ERR_PTR(-EINVAL);
4803 	}
4804 
4805 	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
4806 	if (conf == NULL)
4807 		goto abort;
4808 	spin_lock_init(&conf->device_lock);
4809 	init_waitqueue_head(&conf->wait_for_stripe);
4810 	init_waitqueue_head(&conf->wait_for_overlap);
4811 	INIT_LIST_HEAD(&conf->handle_list);
4812 	INIT_LIST_HEAD(&conf->hold_list);
4813 	INIT_LIST_HEAD(&conf->delayed_list);
4814 	INIT_LIST_HEAD(&conf->bitmap_list);
4815 	INIT_LIST_HEAD(&conf->inactive_list);
4816 	atomic_set(&conf->active_stripes, 0);
4817 	atomic_set(&conf->preread_active_stripes, 0);
4818 	atomic_set(&conf->active_aligned_reads, 0);
4819 	conf->bypass_threshold = BYPASS_THRESHOLD;
4820 	conf->recovery_disabled = mddev->recovery_disabled - 1;
4821 
4822 	conf->raid_disks = mddev->raid_disks;
4823 	if (mddev->reshape_position == MaxSector)
4824 		conf->previous_raid_disks = mddev->raid_disks;
4825 	else
4826 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4827 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4828 	conf->scribble_len = scribble_len(max_disks);
4829 
4830 	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4831 			      GFP_KERNEL);
4832 	if (!conf->disks)
4833 		goto abort;
4834 
4835 	conf->mddev = mddev;
4836 
4837 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4838 		goto abort;
4839 
4840 	conf->level = mddev->new_level;
4841 	if (raid5_alloc_percpu(conf) != 0)
4842 		goto abort;
4843 
4844 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
4845 
4846 	list_for_each_entry(rdev, &mddev->disks, same_set) {
4847 		raid_disk = rdev->raid_disk;
4848 		if (raid_disk >= max_disks
4849 		    || raid_disk < 0)
4850 			continue;
4851 		disk = conf->disks + raid_disk;
4852 
4853 		if (test_bit(Replacement, &rdev->flags)) {
4854 			if (disk->replacement)
4855 				goto abort;
4856 			disk->replacement = rdev;
4857 		} else {
4858 			if (disk->rdev)
4859 				goto abort;
4860 			disk->rdev = rdev;
4861 		}
4862 
4863 		if (test_bit(In_sync, &rdev->flags)) {
4864 			char b[BDEVNAME_SIZE];
4865 			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4866 			       " disk %d\n",
4867 			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4868 		} else if (rdev->saved_raid_disk != raid_disk)
4869 			/* Cannot rely on bitmap to complete recovery */
4870 			conf->fullsync = 1;
4871 	}
4872 
4873 	conf->chunk_sectors = mddev->new_chunk_sectors;
4874 	conf->level = mddev->new_level;
4875 	if (conf->level == 6)
4876 		conf->max_degraded = 2;
4877 	else
4878 		conf->max_degraded = 1;
4879 	conf->algorithm = mddev->new_layout;
4880 	conf->max_nr_stripes = NR_STRIPES;
4881 	conf->reshape_progress = mddev->reshape_position;
4882 	if (conf->reshape_progress != MaxSector) {
4883 		conf->prev_chunk_sectors = mddev->chunk_sectors;
4884 		conf->prev_algo = mddev->layout;
4885 	}
4886 
4887 	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4888 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4889 	if (grow_stripes(conf, conf->max_nr_stripes)) {
4890 		printk(KERN_ERR
4891 		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
4892 		       mdname(mddev), memory);
4893 		goto abort;
4894 	} else
4895 		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4896 		       mdname(mddev), memory);
4897 
4898 	conf->thread = md_register_thread(raid5d, mddev, NULL);
4899 	if (!conf->thread) {
4900 		printk(KERN_ERR
4901 		       "md/raid:%s: couldn't allocate thread.\n",
4902 		       mdname(mddev));
4903 		goto abort;
4904 	}
4905 
4906 	return conf;
4907 
4908  abort:
4909 	if (conf) {
4910 		free_conf(conf);
4911 		return ERR_PTR(-EIO);
4912 	} else
4913 		return ERR_PTR(-ENOMEM);
4914 }
4915 
4916 
4917 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4918 {
4919 	switch (algo) {
4920 	case ALGORITHM_PARITY_0:
4921 		if (raid_disk < max_degraded)
4922 			return 1;
4923 		break;
4924 	case ALGORITHM_PARITY_N:
4925 		if (raid_disk >= raid_disks - max_degraded)
4926 			return 1;
4927 		break;
4928 	case ALGORITHM_PARITY_0_6:
4929 		if (raid_disk == 0 ||
4930 		    raid_disk == raid_disks - 1)
4931 			return 1;
4932 		break;
4933 	case ALGORITHM_LEFT_ASYMMETRIC_6:
4934 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
4935 	case ALGORITHM_LEFT_SYMMETRIC_6:
4936 	case ALGORITHM_RIGHT_SYMMETRIC_6:
4937 		if (raid_disk == raid_disks - 1)
4938 			return 1;
4939 	}
4940 	return 0;
4941 }
4942 
4943 static int run(struct mddev *mddev)
4944 {
4945 	struct r5conf *conf;
4946 	int working_disks = 0;
4947 	int dirty_parity_disks = 0;
4948 	struct md_rdev *rdev;
4949 	sector_t reshape_offset = 0;
4950 	int i;
4951 
4952 	if (mddev->recovery_cp != MaxSector)
4953 		printk(KERN_NOTICE "md/raid:%s: not clean"
4954 		       " -- starting background reconstruction\n",
4955 		       mdname(mddev));
4956 	if (mddev->reshape_position != MaxSector) {
4957 		/* Check that we can continue the reshape.
4958 		 * Currently only disks can change, it must
4959 		 * increase, and we must be past the point where
4960 		 * a stripe over-writes itself
4961 		 */
4962 		sector_t here_new, here_old;
4963 		int old_disks;
4964 		int max_degraded = (mddev->level == 6 ? 2 : 1);
4965 
4966 		if (mddev->new_level != mddev->level) {
4967 			printk(KERN_ERR "md/raid:%s: unsupported reshape "
4968 			       "required - aborting.\n",
4969 			       mdname(mddev));
4970 			return -EINVAL;
4971 		}
4972 		old_disks = mddev->raid_disks - mddev->delta_disks;
4973 		/* reshape_position must be on a new-stripe boundary, and one
4974 		 * further up in new geometry must map after here in old
4975 		 * geometry.
4976 		 */
4977 		here_new = mddev->reshape_position;
4978 		if (sector_div(here_new, mddev->new_chunk_sectors *
4979 			       (mddev->raid_disks - max_degraded))) {
4980 			printk(KERN_ERR "md/raid:%s: reshape_position not "
4981 			       "on a stripe boundary\n", mdname(mddev));
4982 			return -EINVAL;
4983 		}
4984 		reshape_offset = here_new * mddev->new_chunk_sectors;
4985 		/* here_new is the stripe we will write to */
4986 		here_old = mddev->reshape_position;
4987 		sector_div(here_old, mddev->chunk_sectors *
4988 			   (old_disks-max_degraded));
4989 		/* here_old is the first stripe that we might need to read
4990 		 * from */
4991 		if (mddev->delta_disks == 0) {
4992 			/* We cannot be sure it is safe to start an in-place
4993 			 * reshape.  It is only safe if user-space if monitoring
4994 			 * and taking constant backups.
4995 			 * mdadm always starts a situation like this in
4996 			 * readonly mode so it can take control before
4997 			 * allowing any writes.  So just check for that.
4998 			 */
4999 			if ((here_new * mddev->new_chunk_sectors !=
5000 			     here_old * mddev->chunk_sectors) ||
5001 			    mddev->ro == 0) {
5002 				printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
5003 				       " in read-only mode - aborting\n",
5004 				       mdname(mddev));
5005 				return -EINVAL;
5006 			}
5007 		} else if (mddev->delta_disks < 0
5008 		    ? (here_new * mddev->new_chunk_sectors <=
5009 		       here_old * mddev->chunk_sectors)
5010 		    : (here_new * mddev->new_chunk_sectors >=
5011 		       here_old * mddev->chunk_sectors)) {
5012 			/* Reading from the same stripe as writing to - bad */
5013 			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5014 			       "auto-recovery - aborting.\n",
5015 			       mdname(mddev));
5016 			return -EINVAL;
5017 		}
5018 		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5019 		       mdname(mddev));
5020 		/* OK, we should be able to continue; */
5021 	} else {
5022 		BUG_ON(mddev->level != mddev->new_level);
5023 		BUG_ON(mddev->layout != mddev->new_layout);
5024 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5025 		BUG_ON(mddev->delta_disks != 0);
5026 	}
5027 
5028 	if (mddev->private == NULL)
5029 		conf = setup_conf(mddev);
5030 	else
5031 		conf = mddev->private;
5032 
5033 	if (IS_ERR(conf))
5034 		return PTR_ERR(conf);
5035 
5036 	mddev->thread = conf->thread;
5037 	conf->thread = NULL;
5038 	mddev->private = conf;
5039 
5040 	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5041 	     i++) {
5042 		rdev = conf->disks[i].rdev;
5043 		if (!rdev && conf->disks[i].replacement) {
5044 			/* The replacement is all we have yet */
5045 			rdev = conf->disks[i].replacement;
5046 			conf->disks[i].replacement = NULL;
5047 			clear_bit(Replacement, &rdev->flags);
5048 			conf->disks[i].rdev = rdev;
5049 		}
5050 		if (!rdev)
5051 			continue;
5052 		if (conf->disks[i].replacement &&
5053 		    conf->reshape_progress != MaxSector) {
5054 			/* replacements and reshape simply do not mix. */
5055 			printk(KERN_ERR "md: cannot handle concurrent "
5056 			       "replacement and reshape.\n");
5057 			goto abort;
5058 		}
5059 		if (test_bit(In_sync, &rdev->flags)) {
5060 			working_disks++;
5061 			continue;
5062 		}
5063 		/* This disc is not fully in-sync.  However if it
5064 		 * just stored parity (beyond the recovery_offset),
5065 		 * when we don't need to be concerned about the
5066 		 * array being dirty.
5067 		 * When reshape goes 'backwards', we never have
5068 		 * partially completed devices, so we only need
5069 		 * to worry about reshape going forwards.
5070 		 */
5071 		/* Hack because v0.91 doesn't store recovery_offset properly. */
5072 		if (mddev->major_version == 0 &&
5073 		    mddev->minor_version > 90)
5074 			rdev->recovery_offset = reshape_offset;
5075 
5076 		if (rdev->recovery_offset < reshape_offset) {
5077 			/* We need to check old and new layout */
5078 			if (!only_parity(rdev->raid_disk,
5079 					 conf->algorithm,
5080 					 conf->raid_disks,
5081 					 conf->max_degraded))
5082 				continue;
5083 		}
5084 		if (!only_parity(rdev->raid_disk,
5085 				 conf->prev_algo,
5086 				 conf->previous_raid_disks,
5087 				 conf->max_degraded))
5088 			continue;
5089 		dirty_parity_disks++;
5090 	}
5091 
5092 	/*
5093 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
5094 	 */
5095 	mddev->degraded = calc_degraded(conf);
5096 
5097 	if (has_failed(conf)) {
5098 		printk(KERN_ERR "md/raid:%s: not enough operational devices"
5099 			" (%d/%d failed)\n",
5100 			mdname(mddev), mddev->degraded, conf->raid_disks);
5101 		goto abort;
5102 	}
5103 
5104 	/* device size must be a multiple of chunk size */
5105 	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5106 	mddev->resync_max_sectors = mddev->dev_sectors;
5107 
5108 	if (mddev->degraded > dirty_parity_disks &&
5109 	    mddev->recovery_cp != MaxSector) {
5110 		if (mddev->ok_start_degraded)
5111 			printk(KERN_WARNING
5112 			       "md/raid:%s: starting dirty degraded array"
5113 			       " - data corruption possible.\n",
5114 			       mdname(mddev));
5115 		else {
5116 			printk(KERN_ERR
5117 			       "md/raid:%s: cannot start dirty degraded array.\n",
5118 			       mdname(mddev));
5119 			goto abort;
5120 		}
5121 	}
5122 
5123 	if (mddev->degraded == 0)
5124 		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5125 		       " devices, algorithm %d\n", mdname(mddev), conf->level,
5126 		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5127 		       mddev->new_layout);
5128 	else
5129 		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5130 		       " out of %d devices, algorithm %d\n",
5131 		       mdname(mddev), conf->level,
5132 		       mddev->raid_disks - mddev->degraded,
5133 		       mddev->raid_disks, mddev->new_layout);
5134 
5135 	print_raid5_conf(conf);
5136 
5137 	if (conf->reshape_progress != MaxSector) {
5138 		conf->reshape_safe = conf->reshape_progress;
5139 		atomic_set(&conf->reshape_stripes, 0);
5140 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5141 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5142 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5143 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5144 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5145 							"reshape");
5146 	}
5147 
5148 
5149 	/* Ok, everything is just fine now */
5150 	if (mddev->to_remove == &raid5_attrs_group)
5151 		mddev->to_remove = NULL;
5152 	else if (mddev->kobj.sd &&
5153 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5154 		printk(KERN_WARNING
5155 		       "raid5: failed to create sysfs attributes for %s\n",
5156 		       mdname(mddev));
5157 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5158 
5159 	if (mddev->queue) {
5160 		int chunk_size;
5161 		/* read-ahead size must cover two whole stripes, which
5162 		 * is 2 * (datadisks) * chunksize where 'n' is the
5163 		 * number of raid devices
5164 		 */
5165 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
5166 		int stripe = data_disks *
5167 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
5168 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5169 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5170 
5171 		blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5172 
5173 		mddev->queue->backing_dev_info.congested_data = mddev;
5174 		mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5175 
5176 		chunk_size = mddev->chunk_sectors << 9;
5177 		blk_queue_io_min(mddev->queue, chunk_size);
5178 		blk_queue_io_opt(mddev->queue, chunk_size *
5179 				 (conf->raid_disks - conf->max_degraded));
5180 
5181 		list_for_each_entry(rdev, &mddev->disks, same_set)
5182 			disk_stack_limits(mddev->gendisk, rdev->bdev,
5183 					  rdev->data_offset << 9);
5184 	}
5185 
5186 	return 0;
5187 abort:
5188 	md_unregister_thread(&mddev->thread);
5189 	print_raid5_conf(conf);
5190 	free_conf(conf);
5191 	mddev->private = NULL;
5192 	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5193 	return -EIO;
5194 }
5195 
5196 static int stop(struct mddev *mddev)
5197 {
5198 	struct r5conf *conf = mddev->private;
5199 
5200 	md_unregister_thread(&mddev->thread);
5201 	if (mddev->queue)
5202 		mddev->queue->backing_dev_info.congested_fn = NULL;
5203 	free_conf(conf);
5204 	mddev->private = NULL;
5205 	mddev->to_remove = &raid5_attrs_group;
5206 	return 0;
5207 }
5208 
5209 static void status(struct seq_file *seq, struct mddev *mddev)
5210 {
5211 	struct r5conf *conf = mddev->private;
5212 	int i;
5213 
5214 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5215 		mddev->chunk_sectors / 2, mddev->layout);
5216 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5217 	for (i = 0; i < conf->raid_disks; i++)
5218 		seq_printf (seq, "%s",
5219 			       conf->disks[i].rdev &&
5220 			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5221 	seq_printf (seq, "]");
5222 }
5223 
5224 static void print_raid5_conf (struct r5conf *conf)
5225 {
5226 	int i;
5227 	struct disk_info *tmp;
5228 
5229 	printk(KERN_DEBUG "RAID conf printout:\n");
5230 	if (!conf) {
5231 		printk("(conf==NULL)\n");
5232 		return;
5233 	}
5234 	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5235 	       conf->raid_disks,
5236 	       conf->raid_disks - conf->mddev->degraded);
5237 
5238 	for (i = 0; i < conf->raid_disks; i++) {
5239 		char b[BDEVNAME_SIZE];
5240 		tmp = conf->disks + i;
5241 		if (tmp->rdev)
5242 			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5243 			       i, !test_bit(Faulty, &tmp->rdev->flags),
5244 			       bdevname(tmp->rdev->bdev, b));
5245 	}
5246 }
5247 
5248 static int raid5_spare_active(struct mddev *mddev)
5249 {
5250 	int i;
5251 	struct r5conf *conf = mddev->private;
5252 	struct disk_info *tmp;
5253 	int count = 0;
5254 	unsigned long flags;
5255 
5256 	for (i = 0; i < conf->raid_disks; i++) {
5257 		tmp = conf->disks + i;
5258 		if (tmp->replacement
5259 		    && tmp->replacement->recovery_offset == MaxSector
5260 		    && !test_bit(Faulty, &tmp->replacement->flags)
5261 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
5262 			/* Replacement has just become active. */
5263 			if (!tmp->rdev
5264 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
5265 				count++;
5266 			if (tmp->rdev) {
5267 				/* Replaced device not technically faulty,
5268 				 * but we need to be sure it gets removed
5269 				 * and never re-added.
5270 				 */
5271 				set_bit(Faulty, &tmp->rdev->flags);
5272 				sysfs_notify_dirent_safe(
5273 					tmp->rdev->sysfs_state);
5274 			}
5275 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
5276 		} else if (tmp->rdev
5277 		    && tmp->rdev->recovery_offset == MaxSector
5278 		    && !test_bit(Faulty, &tmp->rdev->flags)
5279 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5280 			count++;
5281 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5282 		}
5283 	}
5284 	spin_lock_irqsave(&conf->device_lock, flags);
5285 	mddev->degraded = calc_degraded(conf);
5286 	spin_unlock_irqrestore(&conf->device_lock, flags);
5287 	print_raid5_conf(conf);
5288 	return count;
5289 }
5290 
5291 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
5292 {
5293 	struct r5conf *conf = mddev->private;
5294 	int err = 0;
5295 	int number = rdev->raid_disk;
5296 	struct md_rdev **rdevp;
5297 	struct disk_info *p = conf->disks + number;
5298 
5299 	print_raid5_conf(conf);
5300 	if (rdev == p->rdev)
5301 		rdevp = &p->rdev;
5302 	else if (rdev == p->replacement)
5303 		rdevp = &p->replacement;
5304 	else
5305 		return 0;
5306 
5307 	if (number >= conf->raid_disks &&
5308 	    conf->reshape_progress == MaxSector)
5309 		clear_bit(In_sync, &rdev->flags);
5310 
5311 	if (test_bit(In_sync, &rdev->flags) ||
5312 	    atomic_read(&rdev->nr_pending)) {
5313 		err = -EBUSY;
5314 		goto abort;
5315 	}
5316 	/* Only remove non-faulty devices if recovery
5317 	 * isn't possible.
5318 	 */
5319 	if (!test_bit(Faulty, &rdev->flags) &&
5320 	    mddev->recovery_disabled != conf->recovery_disabled &&
5321 	    !has_failed(conf) &&
5322 	    (!p->replacement || p->replacement == rdev) &&
5323 	    number < conf->raid_disks) {
5324 		err = -EBUSY;
5325 		goto abort;
5326 	}
5327 	*rdevp = NULL;
5328 	synchronize_rcu();
5329 	if (atomic_read(&rdev->nr_pending)) {
5330 		/* lost the race, try later */
5331 		err = -EBUSY;
5332 		*rdevp = rdev;
5333 	} else if (p->replacement) {
5334 		/* We must have just cleared 'rdev' */
5335 		p->rdev = p->replacement;
5336 		clear_bit(Replacement, &p->replacement->flags);
5337 		smp_mb(); /* Make sure other CPUs may see both as identical
5338 			   * but will never see neither - if they are careful
5339 			   */
5340 		p->replacement = NULL;
5341 		clear_bit(WantReplacement, &rdev->flags);
5342 	} else
5343 		/* We might have just removed the Replacement as faulty-
5344 		 * clear the bit just in case
5345 		 */
5346 		clear_bit(WantReplacement, &rdev->flags);
5347 abort:
5348 
5349 	print_raid5_conf(conf);
5350 	return err;
5351 }
5352 
5353 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
5354 {
5355 	struct r5conf *conf = mddev->private;
5356 	int err = -EEXIST;
5357 	int disk;
5358 	struct disk_info *p;
5359 	int first = 0;
5360 	int last = conf->raid_disks - 1;
5361 
5362 	if (mddev->recovery_disabled == conf->recovery_disabled)
5363 		return -EBUSY;
5364 
5365 	if (has_failed(conf))
5366 		/* no point adding a device */
5367 		return -EINVAL;
5368 
5369 	if (rdev->raid_disk >= 0)
5370 		first = last = rdev->raid_disk;
5371 
5372 	/*
5373 	 * find the disk ... but prefer rdev->saved_raid_disk
5374 	 * if possible.
5375 	 */
5376 	if (rdev->saved_raid_disk >= 0 &&
5377 	    rdev->saved_raid_disk >= first &&
5378 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
5379 		disk = rdev->saved_raid_disk;
5380 	else
5381 		disk = first;
5382 	for ( ; disk <= last ; disk++) {
5383 		p = conf->disks + disk;
5384 		if (p->rdev == NULL) {
5385 			clear_bit(In_sync, &rdev->flags);
5386 			rdev->raid_disk = disk;
5387 			err = 0;
5388 			if (rdev->saved_raid_disk != disk)
5389 				conf->fullsync = 1;
5390 			rcu_assign_pointer(p->rdev, rdev);
5391 			break;
5392 		}
5393 		if (test_bit(WantReplacement, &p->rdev->flags) &&
5394 		    p->replacement == NULL) {
5395 			clear_bit(In_sync, &rdev->flags);
5396 			set_bit(Replacement, &rdev->flags);
5397 			rdev->raid_disk = disk;
5398 			err = 0;
5399 			conf->fullsync = 1;
5400 			rcu_assign_pointer(p->replacement, rdev);
5401 			break;
5402 		}
5403 	}
5404 	print_raid5_conf(conf);
5405 	return err;
5406 }
5407 
5408 static int raid5_resize(struct mddev *mddev, sector_t sectors)
5409 {
5410 	/* no resync is happening, and there is enough space
5411 	 * on all devices, so we can resize.
5412 	 * We need to make sure resync covers any new space.
5413 	 * If the array is shrinking we should possibly wait until
5414 	 * any io in the removed space completes, but it hardly seems
5415 	 * worth it.
5416 	 */
5417 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5418 	md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5419 					       mddev->raid_disks));
5420 	if (mddev->array_sectors >
5421 	    raid5_size(mddev, sectors, mddev->raid_disks))
5422 		return -EINVAL;
5423 	set_capacity(mddev->gendisk, mddev->array_sectors);
5424 	revalidate_disk(mddev->gendisk);
5425 	if (sectors > mddev->dev_sectors &&
5426 	    mddev->recovery_cp > mddev->dev_sectors) {
5427 		mddev->recovery_cp = mddev->dev_sectors;
5428 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5429 	}
5430 	mddev->dev_sectors = sectors;
5431 	mddev->resync_max_sectors = sectors;
5432 	return 0;
5433 }
5434 
5435 static int check_stripe_cache(struct mddev *mddev)
5436 {
5437 	/* Can only proceed if there are plenty of stripe_heads.
5438 	 * We need a minimum of one full stripe,, and for sensible progress
5439 	 * it is best to have about 4 times that.
5440 	 * If we require 4 times, then the default 256 4K stripe_heads will
5441 	 * allow for chunk sizes up to 256K, which is probably OK.
5442 	 * If the chunk size is greater, user-space should request more
5443 	 * stripe_heads first.
5444 	 */
5445 	struct r5conf *conf = mddev->private;
5446 	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5447 	    > conf->max_nr_stripes ||
5448 	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5449 	    > conf->max_nr_stripes) {
5450 		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
5451 		       mdname(mddev),
5452 		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5453 			/ STRIPE_SIZE)*4);
5454 		return 0;
5455 	}
5456 	return 1;
5457 }
5458 
5459 static int check_reshape(struct mddev *mddev)
5460 {
5461 	struct r5conf *conf = mddev->private;
5462 
5463 	if (mddev->delta_disks == 0 &&
5464 	    mddev->new_layout == mddev->layout &&
5465 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
5466 		return 0; /* nothing to do */
5467 	if (mddev->bitmap)
5468 		/* Cannot grow a bitmap yet */
5469 		return -EBUSY;
5470 	if (has_failed(conf))
5471 		return -EINVAL;
5472 	if (mddev->delta_disks < 0) {
5473 		/* We might be able to shrink, but the devices must
5474 		 * be made bigger first.
5475 		 * For raid6, 4 is the minimum size.
5476 		 * Otherwise 2 is the minimum
5477 		 */
5478 		int min = 2;
5479 		if (mddev->level == 6)
5480 			min = 4;
5481 		if (mddev->raid_disks + mddev->delta_disks < min)
5482 			return -EINVAL;
5483 	}
5484 
5485 	if (!check_stripe_cache(mddev))
5486 		return -ENOSPC;
5487 
5488 	return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5489 }
5490 
5491 static int raid5_start_reshape(struct mddev *mddev)
5492 {
5493 	struct r5conf *conf = mddev->private;
5494 	struct md_rdev *rdev;
5495 	int spares = 0;
5496 	unsigned long flags;
5497 
5498 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5499 		return -EBUSY;
5500 
5501 	if (!check_stripe_cache(mddev))
5502 		return -ENOSPC;
5503 
5504 	list_for_each_entry(rdev, &mddev->disks, same_set)
5505 		if (!test_bit(In_sync, &rdev->flags)
5506 		    && !test_bit(Faulty, &rdev->flags))
5507 			spares++;
5508 
5509 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5510 		/* Not enough devices even to make a degraded array
5511 		 * of that size
5512 		 */
5513 		return -EINVAL;
5514 
5515 	/* Refuse to reduce size of the array.  Any reductions in
5516 	 * array size must be through explicit setting of array_size
5517 	 * attribute.
5518 	 */
5519 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5520 	    < mddev->array_sectors) {
5521 		printk(KERN_ERR "md/raid:%s: array size must be reduced "
5522 		       "before number of disks\n", mdname(mddev));
5523 		return -EINVAL;
5524 	}
5525 
5526 	atomic_set(&conf->reshape_stripes, 0);
5527 	spin_lock_irq(&conf->device_lock);
5528 	conf->previous_raid_disks = conf->raid_disks;
5529 	conf->raid_disks += mddev->delta_disks;
5530 	conf->prev_chunk_sectors = conf->chunk_sectors;
5531 	conf->chunk_sectors = mddev->new_chunk_sectors;
5532 	conf->prev_algo = conf->algorithm;
5533 	conf->algorithm = mddev->new_layout;
5534 	if (mddev->delta_disks < 0)
5535 		conf->reshape_progress = raid5_size(mddev, 0, 0);
5536 	else
5537 		conf->reshape_progress = 0;
5538 	conf->reshape_safe = conf->reshape_progress;
5539 	conf->generation++;
5540 	spin_unlock_irq(&conf->device_lock);
5541 
5542 	/* Add some new drives, as many as will fit.
5543 	 * We know there are enough to make the newly sized array work.
5544 	 * Don't add devices if we are reducing the number of
5545 	 * devices in the array.  This is because it is not possible
5546 	 * to correctly record the "partially reconstructed" state of
5547 	 * such devices during the reshape and confusion could result.
5548 	 */
5549 	if (mddev->delta_disks >= 0) {
5550 		int added_devices = 0;
5551 		list_for_each_entry(rdev, &mddev->disks, same_set)
5552 			if (rdev->raid_disk < 0 &&
5553 			    !test_bit(Faulty, &rdev->flags)) {
5554 				if (raid5_add_disk(mddev, rdev) == 0) {
5555 					if (rdev->raid_disk
5556 					    >= conf->previous_raid_disks) {
5557 						set_bit(In_sync, &rdev->flags);
5558 						added_devices++;
5559 					} else
5560 						rdev->recovery_offset = 0;
5561 
5562 					if (sysfs_link_rdev(mddev, rdev))
5563 						/* Failure here is OK */;
5564 				}
5565 			} else if (rdev->raid_disk >= conf->previous_raid_disks
5566 				   && !test_bit(Faulty, &rdev->flags)) {
5567 				/* This is a spare that was manually added */
5568 				set_bit(In_sync, &rdev->flags);
5569 				added_devices++;
5570 			}
5571 
5572 		/* When a reshape changes the number of devices,
5573 		 * ->degraded is measured against the larger of the
5574 		 * pre and post number of devices.
5575 		 */
5576 		spin_lock_irqsave(&conf->device_lock, flags);
5577 		mddev->degraded = calc_degraded(conf);
5578 		spin_unlock_irqrestore(&conf->device_lock, flags);
5579 	}
5580 	mddev->raid_disks = conf->raid_disks;
5581 	mddev->reshape_position = conf->reshape_progress;
5582 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5583 
5584 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5585 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5586 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5587 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5588 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5589 						"reshape");
5590 	if (!mddev->sync_thread) {
5591 		mddev->recovery = 0;
5592 		spin_lock_irq(&conf->device_lock);
5593 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5594 		conf->reshape_progress = MaxSector;
5595 		spin_unlock_irq(&conf->device_lock);
5596 		return -EAGAIN;
5597 	}
5598 	conf->reshape_checkpoint = jiffies;
5599 	md_wakeup_thread(mddev->sync_thread);
5600 	md_new_event(mddev);
5601 	return 0;
5602 }
5603 
5604 /* This is called from the reshape thread and should make any
5605  * changes needed in 'conf'
5606  */
5607 static void end_reshape(struct r5conf *conf)
5608 {
5609 
5610 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5611 
5612 		spin_lock_irq(&conf->device_lock);
5613 		conf->previous_raid_disks = conf->raid_disks;
5614 		conf->reshape_progress = MaxSector;
5615 		spin_unlock_irq(&conf->device_lock);
5616 		wake_up(&conf->wait_for_overlap);
5617 
5618 		/* read-ahead size must cover two whole stripes, which is
5619 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5620 		 */
5621 		if (conf->mddev->queue) {
5622 			int data_disks = conf->raid_disks - conf->max_degraded;
5623 			int stripe = data_disks * ((conf->chunk_sectors << 9)
5624 						   / PAGE_SIZE);
5625 			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5626 				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5627 		}
5628 	}
5629 }
5630 
5631 /* This is called from the raid5d thread with mddev_lock held.
5632  * It makes config changes to the device.
5633  */
5634 static void raid5_finish_reshape(struct mddev *mddev)
5635 {
5636 	struct r5conf *conf = mddev->private;
5637 
5638 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5639 
5640 		if (mddev->delta_disks > 0) {
5641 			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5642 			set_capacity(mddev->gendisk, mddev->array_sectors);
5643 			revalidate_disk(mddev->gendisk);
5644 		} else {
5645 			int d;
5646 			spin_lock_irq(&conf->device_lock);
5647 			mddev->degraded = calc_degraded(conf);
5648 			spin_unlock_irq(&conf->device_lock);
5649 			for (d = conf->raid_disks ;
5650 			     d < conf->raid_disks - mddev->delta_disks;
5651 			     d++) {
5652 				struct md_rdev *rdev = conf->disks[d].rdev;
5653 				if (rdev &&
5654 				    raid5_remove_disk(mddev, rdev) == 0) {
5655 					sysfs_unlink_rdev(mddev, rdev);
5656 					rdev->raid_disk = -1;
5657 				}
5658 			}
5659 		}
5660 		mddev->layout = conf->algorithm;
5661 		mddev->chunk_sectors = conf->chunk_sectors;
5662 		mddev->reshape_position = MaxSector;
5663 		mddev->delta_disks = 0;
5664 	}
5665 }
5666 
5667 static void raid5_quiesce(struct mddev *mddev, int state)
5668 {
5669 	struct r5conf *conf = mddev->private;
5670 
5671 	switch(state) {
5672 	case 2: /* resume for a suspend */
5673 		wake_up(&conf->wait_for_overlap);
5674 		break;
5675 
5676 	case 1: /* stop all writes */
5677 		spin_lock_irq(&conf->device_lock);
5678 		/* '2' tells resync/reshape to pause so that all
5679 		 * active stripes can drain
5680 		 */
5681 		conf->quiesce = 2;
5682 		wait_event_lock_irq(conf->wait_for_stripe,
5683 				    atomic_read(&conf->active_stripes) == 0 &&
5684 				    atomic_read(&conf->active_aligned_reads) == 0,
5685 				    conf->device_lock, /* nothing */);
5686 		conf->quiesce = 1;
5687 		spin_unlock_irq(&conf->device_lock);
5688 		/* allow reshape to continue */
5689 		wake_up(&conf->wait_for_overlap);
5690 		break;
5691 
5692 	case 0: /* re-enable writes */
5693 		spin_lock_irq(&conf->device_lock);
5694 		conf->quiesce = 0;
5695 		wake_up(&conf->wait_for_stripe);
5696 		wake_up(&conf->wait_for_overlap);
5697 		spin_unlock_irq(&conf->device_lock);
5698 		break;
5699 	}
5700 }
5701 
5702 
5703 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
5704 {
5705 	struct r0conf *raid0_conf = mddev->private;
5706 	sector_t sectors;
5707 
5708 	/* for raid0 takeover only one zone is supported */
5709 	if (raid0_conf->nr_strip_zones > 1) {
5710 		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5711 		       mdname(mddev));
5712 		return ERR_PTR(-EINVAL);
5713 	}
5714 
5715 	sectors = raid0_conf->strip_zone[0].zone_end;
5716 	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
5717 	mddev->dev_sectors = sectors;
5718 	mddev->new_level = level;
5719 	mddev->new_layout = ALGORITHM_PARITY_N;
5720 	mddev->new_chunk_sectors = mddev->chunk_sectors;
5721 	mddev->raid_disks += 1;
5722 	mddev->delta_disks = 1;
5723 	/* make sure it will be not marked as dirty */
5724 	mddev->recovery_cp = MaxSector;
5725 
5726 	return setup_conf(mddev);
5727 }
5728 
5729 
5730 static void *raid5_takeover_raid1(struct mddev *mddev)
5731 {
5732 	int chunksect;
5733 
5734 	if (mddev->raid_disks != 2 ||
5735 	    mddev->degraded > 1)
5736 		return ERR_PTR(-EINVAL);
5737 
5738 	/* Should check if there are write-behind devices? */
5739 
5740 	chunksect = 64*2; /* 64K by default */
5741 
5742 	/* The array must be an exact multiple of chunksize */
5743 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
5744 		chunksect >>= 1;
5745 
5746 	if ((chunksect<<9) < STRIPE_SIZE)
5747 		/* array size does not allow a suitable chunk size */
5748 		return ERR_PTR(-EINVAL);
5749 
5750 	mddev->new_level = 5;
5751 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5752 	mddev->new_chunk_sectors = chunksect;
5753 
5754 	return setup_conf(mddev);
5755 }
5756 
5757 static void *raid5_takeover_raid6(struct mddev *mddev)
5758 {
5759 	int new_layout;
5760 
5761 	switch (mddev->layout) {
5762 	case ALGORITHM_LEFT_ASYMMETRIC_6:
5763 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5764 		break;
5765 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
5766 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5767 		break;
5768 	case ALGORITHM_LEFT_SYMMETRIC_6:
5769 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
5770 		break;
5771 	case ALGORITHM_RIGHT_SYMMETRIC_6:
5772 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5773 		break;
5774 	case ALGORITHM_PARITY_0_6:
5775 		new_layout = ALGORITHM_PARITY_0;
5776 		break;
5777 	case ALGORITHM_PARITY_N:
5778 		new_layout = ALGORITHM_PARITY_N;
5779 		break;
5780 	default:
5781 		return ERR_PTR(-EINVAL);
5782 	}
5783 	mddev->new_level = 5;
5784 	mddev->new_layout = new_layout;
5785 	mddev->delta_disks = -1;
5786 	mddev->raid_disks -= 1;
5787 	return setup_conf(mddev);
5788 }
5789 
5790 
5791 static int raid5_check_reshape(struct mddev *mddev)
5792 {
5793 	/* For a 2-drive array, the layout and chunk size can be changed
5794 	 * immediately as not restriping is needed.
5795 	 * For larger arrays we record the new value - after validation
5796 	 * to be used by a reshape pass.
5797 	 */
5798 	struct r5conf *conf = mddev->private;
5799 	int new_chunk = mddev->new_chunk_sectors;
5800 
5801 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5802 		return -EINVAL;
5803 	if (new_chunk > 0) {
5804 		if (!is_power_of_2(new_chunk))
5805 			return -EINVAL;
5806 		if (new_chunk < (PAGE_SIZE>>9))
5807 			return -EINVAL;
5808 		if (mddev->array_sectors & (new_chunk-1))
5809 			/* not factor of array size */
5810 			return -EINVAL;
5811 	}
5812 
5813 	/* They look valid */
5814 
5815 	if (mddev->raid_disks == 2) {
5816 		/* can make the change immediately */
5817 		if (mddev->new_layout >= 0) {
5818 			conf->algorithm = mddev->new_layout;
5819 			mddev->layout = mddev->new_layout;
5820 		}
5821 		if (new_chunk > 0) {
5822 			conf->chunk_sectors = new_chunk ;
5823 			mddev->chunk_sectors = new_chunk;
5824 		}
5825 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
5826 		md_wakeup_thread(mddev->thread);
5827 	}
5828 	return check_reshape(mddev);
5829 }
5830 
5831 static int raid6_check_reshape(struct mddev *mddev)
5832 {
5833 	int new_chunk = mddev->new_chunk_sectors;
5834 
5835 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5836 		return -EINVAL;
5837 	if (new_chunk > 0) {
5838 		if (!is_power_of_2(new_chunk))
5839 			return -EINVAL;
5840 		if (new_chunk < (PAGE_SIZE >> 9))
5841 			return -EINVAL;
5842 		if (mddev->array_sectors & (new_chunk-1))
5843 			/* not factor of array size */
5844 			return -EINVAL;
5845 	}
5846 
5847 	/* They look valid */
5848 	return check_reshape(mddev);
5849 }
5850 
5851 static void *raid5_takeover(struct mddev *mddev)
5852 {
5853 	/* raid5 can take over:
5854 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
5855 	 *  raid1 - if there are two drives.  We need to know the chunk size
5856 	 *  raid4 - trivial - just use a raid4 layout.
5857 	 *  raid6 - Providing it is a *_6 layout
5858 	 */
5859 	if (mddev->level == 0)
5860 		return raid45_takeover_raid0(mddev, 5);
5861 	if (mddev->level == 1)
5862 		return raid5_takeover_raid1(mddev);
5863 	if (mddev->level == 4) {
5864 		mddev->new_layout = ALGORITHM_PARITY_N;
5865 		mddev->new_level = 5;
5866 		return setup_conf(mddev);
5867 	}
5868 	if (mddev->level == 6)
5869 		return raid5_takeover_raid6(mddev);
5870 
5871 	return ERR_PTR(-EINVAL);
5872 }
5873 
5874 static void *raid4_takeover(struct mddev *mddev)
5875 {
5876 	/* raid4 can take over:
5877 	 *  raid0 - if there is only one strip zone
5878 	 *  raid5 - if layout is right
5879 	 */
5880 	if (mddev->level == 0)
5881 		return raid45_takeover_raid0(mddev, 4);
5882 	if (mddev->level == 5 &&
5883 	    mddev->layout == ALGORITHM_PARITY_N) {
5884 		mddev->new_layout = 0;
5885 		mddev->new_level = 4;
5886 		return setup_conf(mddev);
5887 	}
5888 	return ERR_PTR(-EINVAL);
5889 }
5890 
5891 static struct md_personality raid5_personality;
5892 
5893 static void *raid6_takeover(struct mddev *mddev)
5894 {
5895 	/* Currently can only take over a raid5.  We map the
5896 	 * personality to an equivalent raid6 personality
5897 	 * with the Q block at the end.
5898 	 */
5899 	int new_layout;
5900 
5901 	if (mddev->pers != &raid5_personality)
5902 		return ERR_PTR(-EINVAL);
5903 	if (mddev->degraded > 1)
5904 		return ERR_PTR(-EINVAL);
5905 	if (mddev->raid_disks > 253)
5906 		return ERR_PTR(-EINVAL);
5907 	if (mddev->raid_disks < 3)
5908 		return ERR_PTR(-EINVAL);
5909 
5910 	switch (mddev->layout) {
5911 	case ALGORITHM_LEFT_ASYMMETRIC:
5912 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5913 		break;
5914 	case ALGORITHM_RIGHT_ASYMMETRIC:
5915 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5916 		break;
5917 	case ALGORITHM_LEFT_SYMMETRIC:
5918 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5919 		break;
5920 	case ALGORITHM_RIGHT_SYMMETRIC:
5921 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5922 		break;
5923 	case ALGORITHM_PARITY_0:
5924 		new_layout = ALGORITHM_PARITY_0_6;
5925 		break;
5926 	case ALGORITHM_PARITY_N:
5927 		new_layout = ALGORITHM_PARITY_N;
5928 		break;
5929 	default:
5930 		return ERR_PTR(-EINVAL);
5931 	}
5932 	mddev->new_level = 6;
5933 	mddev->new_layout = new_layout;
5934 	mddev->delta_disks = 1;
5935 	mddev->raid_disks += 1;
5936 	return setup_conf(mddev);
5937 }
5938 
5939 
5940 static struct md_personality raid6_personality =
5941 {
5942 	.name		= "raid6",
5943 	.level		= 6,
5944 	.owner		= THIS_MODULE,
5945 	.make_request	= make_request,
5946 	.run		= run,
5947 	.stop		= stop,
5948 	.status		= status,
5949 	.error_handler	= error,
5950 	.hot_add_disk	= raid5_add_disk,
5951 	.hot_remove_disk= raid5_remove_disk,
5952 	.spare_active	= raid5_spare_active,
5953 	.sync_request	= sync_request,
5954 	.resize		= raid5_resize,
5955 	.size		= raid5_size,
5956 	.check_reshape	= raid6_check_reshape,
5957 	.start_reshape  = raid5_start_reshape,
5958 	.finish_reshape = raid5_finish_reshape,
5959 	.quiesce	= raid5_quiesce,
5960 	.takeover	= raid6_takeover,
5961 };
5962 static struct md_personality raid5_personality =
5963 {
5964 	.name		= "raid5",
5965 	.level		= 5,
5966 	.owner		= THIS_MODULE,
5967 	.make_request	= make_request,
5968 	.run		= run,
5969 	.stop		= stop,
5970 	.status		= status,
5971 	.error_handler	= error,
5972 	.hot_add_disk	= raid5_add_disk,
5973 	.hot_remove_disk= raid5_remove_disk,
5974 	.spare_active	= raid5_spare_active,
5975 	.sync_request	= sync_request,
5976 	.resize		= raid5_resize,
5977 	.size		= raid5_size,
5978 	.check_reshape	= raid5_check_reshape,
5979 	.start_reshape  = raid5_start_reshape,
5980 	.finish_reshape = raid5_finish_reshape,
5981 	.quiesce	= raid5_quiesce,
5982 	.takeover	= raid5_takeover,
5983 };
5984 
5985 static struct md_personality raid4_personality =
5986 {
5987 	.name		= "raid4",
5988 	.level		= 4,
5989 	.owner		= THIS_MODULE,
5990 	.make_request	= make_request,
5991 	.run		= run,
5992 	.stop		= stop,
5993 	.status		= status,
5994 	.error_handler	= error,
5995 	.hot_add_disk	= raid5_add_disk,
5996 	.hot_remove_disk= raid5_remove_disk,
5997 	.spare_active	= raid5_spare_active,
5998 	.sync_request	= sync_request,
5999 	.resize		= raid5_resize,
6000 	.size		= raid5_size,
6001 	.check_reshape	= raid5_check_reshape,
6002 	.start_reshape  = raid5_start_reshape,
6003 	.finish_reshape = raid5_finish_reshape,
6004 	.quiesce	= raid5_quiesce,
6005 	.takeover	= raid4_takeover,
6006 };
6007 
6008 static int __init raid5_init(void)
6009 {
6010 	register_md_personality(&raid6_personality);
6011 	register_md_personality(&raid5_personality);
6012 	register_md_personality(&raid4_personality);
6013 	return 0;
6014 }
6015 
6016 static void raid5_exit(void)
6017 {
6018 	unregister_md_personality(&raid6_personality);
6019 	unregister_md_personality(&raid5_personality);
6020 	unregister_md_personality(&raid4_personality);
6021 }
6022 
6023 module_init(raid5_init);
6024 module_exit(raid5_exit);
6025 MODULE_LICENSE("GPL");
6026 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6027 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6028 MODULE_ALIAS("md-raid5");
6029 MODULE_ALIAS("md-raid4");
6030 MODULE_ALIAS("md-level-5");
6031 MODULE_ALIAS("md-level-4");
6032 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6033 MODULE_ALIAS("md-raid6");
6034 MODULE_ALIAS("md-level-6");
6035 
6036 /* This used to be two separate modules, they were: */
6037 MODULE_ALIAS("raid5");
6038 MODULE_ALIAS("raid6");
6039