1 /* 2 * raid5.c : Multiple Devices driver for Linux 3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman 4 * Copyright (C) 1999, 2000 Ingo Molnar 5 * Copyright (C) 2002, 2003 H. Peter Anvin 6 * 7 * RAID-4/5/6 management functions. 8 * Thanks to Penguin Computing for making the RAID-6 development possible 9 * by donating a test server! 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 /* 22 * BITMAP UNPLUGGING: 23 * 24 * The sequencing for updating the bitmap reliably is a little 25 * subtle (and I got it wrong the first time) so it deserves some 26 * explanation. 27 * 28 * We group bitmap updates into batches. Each batch has a number. 29 * We may write out several batches at once, but that isn't very important. 30 * conf->seq_write is the number of the last batch successfully written. 31 * conf->seq_flush is the number of the last batch that was closed to 32 * new additions. 33 * When we discover that we will need to write to any block in a stripe 34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq 35 * the number of the batch it will be in. This is seq_flush+1. 36 * When we are ready to do a write, if that batch hasn't been written yet, 37 * we plug the array and queue the stripe for later. 38 * When an unplug happens, we increment bm_flush, thus closing the current 39 * batch. 40 * When we notice that bm_flush > bm_write, we write out all pending updates 41 * to the bitmap, and advance bm_write to where bm_flush was. 42 * This may occasionally write a bit out twice, but is sure never to 43 * miss any bits. 44 */ 45 46 #include <linux/blkdev.h> 47 #include <linux/kthread.h> 48 #include <linux/raid/pq.h> 49 #include <linux/async_tx.h> 50 #include <linux/module.h> 51 #include <linux/async.h> 52 #include <linux/seq_file.h> 53 #include <linux/cpu.h> 54 #include <linux/slab.h> 55 #include <linux/ratelimit.h> 56 #include <linux/nodemask.h> 57 #include <linux/flex_array.h> 58 #include <trace/events/block.h> 59 60 #include "md.h" 61 #include "raid5.h" 62 #include "raid0.h" 63 #include "bitmap.h" 64 65 #define cpu_to_group(cpu) cpu_to_node(cpu) 66 #define ANY_GROUP NUMA_NO_NODE 67 68 static bool devices_handle_discard_safely = false; 69 module_param(devices_handle_discard_safely, bool, 0644); 70 MODULE_PARM_DESC(devices_handle_discard_safely, 71 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions"); 72 static struct workqueue_struct *raid5_wq; 73 /* 74 * Stripe cache 75 */ 76 77 #define NR_STRIPES 256 78 #define STRIPE_SIZE PAGE_SIZE 79 #define STRIPE_SHIFT (PAGE_SHIFT - 9) 80 #define STRIPE_SECTORS (STRIPE_SIZE>>9) 81 #define IO_THRESHOLD 1 82 #define BYPASS_THRESHOLD 1 83 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head)) 84 #define HASH_MASK (NR_HASH - 1) 85 #define MAX_STRIPE_BATCH 8 86 87 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect) 88 { 89 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK; 90 return &conf->stripe_hashtbl[hash]; 91 } 92 93 static inline int stripe_hash_locks_hash(sector_t sect) 94 { 95 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK; 96 } 97 98 static inline void lock_device_hash_lock(struct r5conf *conf, int hash) 99 { 100 spin_lock_irq(conf->hash_locks + hash); 101 spin_lock(&conf->device_lock); 102 } 103 104 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash) 105 { 106 spin_unlock(&conf->device_lock); 107 spin_unlock_irq(conf->hash_locks + hash); 108 } 109 110 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf) 111 { 112 int i; 113 local_irq_disable(); 114 spin_lock(conf->hash_locks); 115 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 116 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks); 117 spin_lock(&conf->device_lock); 118 } 119 120 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf) 121 { 122 int i; 123 spin_unlock(&conf->device_lock); 124 for (i = NR_STRIPE_HASH_LOCKS; i; i--) 125 spin_unlock(conf->hash_locks + i - 1); 126 local_irq_enable(); 127 } 128 129 /* bio's attached to a stripe+device for I/O are linked together in bi_sector 130 * order without overlap. There may be several bio's per stripe+device, and 131 * a bio could span several devices. 132 * When walking this list for a particular stripe+device, we must never proceed 133 * beyond a bio that extends past this device, as the next bio might no longer 134 * be valid. 135 * This function is used to determine the 'next' bio in the list, given the sector 136 * of the current stripe+device 137 */ 138 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector) 139 { 140 int sectors = bio_sectors(bio); 141 if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS) 142 return bio->bi_next; 143 else 144 return NULL; 145 } 146 147 /* 148 * We maintain a biased count of active stripes in the bottom 16 bits of 149 * bi_phys_segments, and a count of processed stripes in the upper 16 bits 150 */ 151 static inline int raid5_bi_processed_stripes(struct bio *bio) 152 { 153 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 154 return (atomic_read(segments) >> 16) & 0xffff; 155 } 156 157 static inline int raid5_dec_bi_active_stripes(struct bio *bio) 158 { 159 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 160 return atomic_sub_return(1, segments) & 0xffff; 161 } 162 163 static inline void raid5_inc_bi_active_stripes(struct bio *bio) 164 { 165 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 166 atomic_inc(segments); 167 } 168 169 static inline void raid5_set_bi_processed_stripes(struct bio *bio, 170 unsigned int cnt) 171 { 172 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 173 int old, new; 174 175 do { 176 old = atomic_read(segments); 177 new = (old & 0xffff) | (cnt << 16); 178 } while (atomic_cmpxchg(segments, old, new) != old); 179 } 180 181 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt) 182 { 183 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 184 atomic_set(segments, cnt); 185 } 186 187 /* Find first data disk in a raid6 stripe */ 188 static inline int raid6_d0(struct stripe_head *sh) 189 { 190 if (sh->ddf_layout) 191 /* ddf always start from first device */ 192 return 0; 193 /* md starts just after Q block */ 194 if (sh->qd_idx == sh->disks - 1) 195 return 0; 196 else 197 return sh->qd_idx + 1; 198 } 199 static inline int raid6_next_disk(int disk, int raid_disks) 200 { 201 disk++; 202 return (disk < raid_disks) ? disk : 0; 203 } 204 205 /* When walking through the disks in a raid5, starting at raid6_d0, 206 * We need to map each disk to a 'slot', where the data disks are slot 207 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk 208 * is raid_disks-1. This help does that mapping. 209 */ 210 static int raid6_idx_to_slot(int idx, struct stripe_head *sh, 211 int *count, int syndrome_disks) 212 { 213 int slot = *count; 214 215 if (sh->ddf_layout) 216 (*count)++; 217 if (idx == sh->pd_idx) 218 return syndrome_disks; 219 if (idx == sh->qd_idx) 220 return syndrome_disks + 1; 221 if (!sh->ddf_layout) 222 (*count)++; 223 return slot; 224 } 225 226 static void return_io(struct bio_list *return_bi) 227 { 228 struct bio *bi; 229 while ((bi = bio_list_pop(return_bi)) != NULL) { 230 bi->bi_iter.bi_size = 0; 231 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev), 232 bi, 0); 233 bio_endio(bi); 234 } 235 } 236 237 static void print_raid5_conf (struct r5conf *conf); 238 239 static int stripe_operations_active(struct stripe_head *sh) 240 { 241 return sh->check_state || sh->reconstruct_state || 242 test_bit(STRIPE_BIOFILL_RUN, &sh->state) || 243 test_bit(STRIPE_COMPUTE_RUN, &sh->state); 244 } 245 246 static void raid5_wakeup_stripe_thread(struct stripe_head *sh) 247 { 248 struct r5conf *conf = sh->raid_conf; 249 struct r5worker_group *group; 250 int thread_cnt; 251 int i, cpu = sh->cpu; 252 253 if (!cpu_online(cpu)) { 254 cpu = cpumask_any(cpu_online_mask); 255 sh->cpu = cpu; 256 } 257 258 if (list_empty(&sh->lru)) { 259 struct r5worker_group *group; 260 group = conf->worker_groups + cpu_to_group(cpu); 261 list_add_tail(&sh->lru, &group->handle_list); 262 group->stripes_cnt++; 263 sh->group = group; 264 } 265 266 if (conf->worker_cnt_per_group == 0) { 267 md_wakeup_thread(conf->mddev->thread); 268 return; 269 } 270 271 group = conf->worker_groups + cpu_to_group(sh->cpu); 272 273 group->workers[0].working = true; 274 /* at least one worker should run to avoid race */ 275 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work); 276 277 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1; 278 /* wakeup more workers */ 279 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) { 280 if (group->workers[i].working == false) { 281 group->workers[i].working = true; 282 queue_work_on(sh->cpu, raid5_wq, 283 &group->workers[i].work); 284 thread_cnt--; 285 } 286 } 287 } 288 289 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh, 290 struct list_head *temp_inactive_list) 291 { 292 BUG_ON(!list_empty(&sh->lru)); 293 BUG_ON(atomic_read(&conf->active_stripes)==0); 294 if (test_bit(STRIPE_HANDLE, &sh->state)) { 295 if (test_bit(STRIPE_DELAYED, &sh->state) && 296 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 297 list_add_tail(&sh->lru, &conf->delayed_list); 298 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) && 299 sh->bm_seq - conf->seq_write > 0) 300 list_add_tail(&sh->lru, &conf->bitmap_list); 301 else { 302 clear_bit(STRIPE_DELAYED, &sh->state); 303 clear_bit(STRIPE_BIT_DELAY, &sh->state); 304 if (conf->worker_cnt_per_group == 0) { 305 list_add_tail(&sh->lru, &conf->handle_list); 306 } else { 307 raid5_wakeup_stripe_thread(sh); 308 return; 309 } 310 } 311 md_wakeup_thread(conf->mddev->thread); 312 } else { 313 BUG_ON(stripe_operations_active(sh)); 314 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 315 if (atomic_dec_return(&conf->preread_active_stripes) 316 < IO_THRESHOLD) 317 md_wakeup_thread(conf->mddev->thread); 318 atomic_dec(&conf->active_stripes); 319 if (!test_bit(STRIPE_EXPANDING, &sh->state)) 320 list_add_tail(&sh->lru, temp_inactive_list); 321 } 322 } 323 324 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh, 325 struct list_head *temp_inactive_list) 326 { 327 if (atomic_dec_and_test(&sh->count)) 328 do_release_stripe(conf, sh, temp_inactive_list); 329 } 330 331 /* 332 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list 333 * 334 * Be careful: Only one task can add/delete stripes from temp_inactive_list at 335 * given time. Adding stripes only takes device lock, while deleting stripes 336 * only takes hash lock. 337 */ 338 static void release_inactive_stripe_list(struct r5conf *conf, 339 struct list_head *temp_inactive_list, 340 int hash) 341 { 342 int size; 343 unsigned long do_wakeup = 0; 344 int i = 0; 345 unsigned long flags; 346 347 if (hash == NR_STRIPE_HASH_LOCKS) { 348 size = NR_STRIPE_HASH_LOCKS; 349 hash = NR_STRIPE_HASH_LOCKS - 1; 350 } else 351 size = 1; 352 while (size) { 353 struct list_head *list = &temp_inactive_list[size - 1]; 354 355 /* 356 * We don't hold any lock here yet, raid5_get_active_stripe() might 357 * remove stripes from the list 358 */ 359 if (!list_empty_careful(list)) { 360 spin_lock_irqsave(conf->hash_locks + hash, flags); 361 if (list_empty(conf->inactive_list + hash) && 362 !list_empty(list)) 363 atomic_dec(&conf->empty_inactive_list_nr); 364 list_splice_tail_init(list, conf->inactive_list + hash); 365 do_wakeup |= 1 << hash; 366 spin_unlock_irqrestore(conf->hash_locks + hash, flags); 367 } 368 size--; 369 hash--; 370 } 371 372 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) { 373 if (do_wakeup & (1 << i)) 374 wake_up(&conf->wait_for_stripe[i]); 375 } 376 377 if (do_wakeup) { 378 if (atomic_read(&conf->active_stripes) == 0) 379 wake_up(&conf->wait_for_quiescent); 380 if (conf->retry_read_aligned) 381 md_wakeup_thread(conf->mddev->thread); 382 } 383 } 384 385 /* should hold conf->device_lock already */ 386 static int release_stripe_list(struct r5conf *conf, 387 struct list_head *temp_inactive_list) 388 { 389 struct stripe_head *sh; 390 int count = 0; 391 struct llist_node *head; 392 393 head = llist_del_all(&conf->released_stripes); 394 head = llist_reverse_order(head); 395 while (head) { 396 int hash; 397 398 sh = llist_entry(head, struct stripe_head, release_list); 399 head = llist_next(head); 400 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */ 401 smp_mb(); 402 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state); 403 /* 404 * Don't worry the bit is set here, because if the bit is set 405 * again, the count is always > 1. This is true for 406 * STRIPE_ON_UNPLUG_LIST bit too. 407 */ 408 hash = sh->hash_lock_index; 409 __release_stripe(conf, sh, &temp_inactive_list[hash]); 410 count++; 411 } 412 413 return count; 414 } 415 416 void raid5_release_stripe(struct stripe_head *sh) 417 { 418 struct r5conf *conf = sh->raid_conf; 419 unsigned long flags; 420 struct list_head list; 421 int hash; 422 bool wakeup; 423 424 /* Avoid release_list until the last reference. 425 */ 426 if (atomic_add_unless(&sh->count, -1, 1)) 427 return; 428 429 if (unlikely(!conf->mddev->thread) || 430 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state)) 431 goto slow_path; 432 wakeup = llist_add(&sh->release_list, &conf->released_stripes); 433 if (wakeup) 434 md_wakeup_thread(conf->mddev->thread); 435 return; 436 slow_path: 437 local_irq_save(flags); 438 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */ 439 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) { 440 INIT_LIST_HEAD(&list); 441 hash = sh->hash_lock_index; 442 do_release_stripe(conf, sh, &list); 443 spin_unlock(&conf->device_lock); 444 release_inactive_stripe_list(conf, &list, hash); 445 } 446 local_irq_restore(flags); 447 } 448 449 static inline void remove_hash(struct stripe_head *sh) 450 { 451 pr_debug("remove_hash(), stripe %llu\n", 452 (unsigned long long)sh->sector); 453 454 hlist_del_init(&sh->hash); 455 } 456 457 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh) 458 { 459 struct hlist_head *hp = stripe_hash(conf, sh->sector); 460 461 pr_debug("insert_hash(), stripe %llu\n", 462 (unsigned long long)sh->sector); 463 464 hlist_add_head(&sh->hash, hp); 465 } 466 467 /* find an idle stripe, make sure it is unhashed, and return it. */ 468 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash) 469 { 470 struct stripe_head *sh = NULL; 471 struct list_head *first; 472 473 if (list_empty(conf->inactive_list + hash)) 474 goto out; 475 first = (conf->inactive_list + hash)->next; 476 sh = list_entry(first, struct stripe_head, lru); 477 list_del_init(first); 478 remove_hash(sh); 479 atomic_inc(&conf->active_stripes); 480 BUG_ON(hash != sh->hash_lock_index); 481 if (list_empty(conf->inactive_list + hash)) 482 atomic_inc(&conf->empty_inactive_list_nr); 483 out: 484 return sh; 485 } 486 487 static void shrink_buffers(struct stripe_head *sh) 488 { 489 struct page *p; 490 int i; 491 int num = sh->raid_conf->pool_size; 492 493 for (i = 0; i < num ; i++) { 494 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page); 495 p = sh->dev[i].page; 496 if (!p) 497 continue; 498 sh->dev[i].page = NULL; 499 put_page(p); 500 } 501 } 502 503 static int grow_buffers(struct stripe_head *sh, gfp_t gfp) 504 { 505 int i; 506 int num = sh->raid_conf->pool_size; 507 508 for (i = 0; i < num; i++) { 509 struct page *page; 510 511 if (!(page = alloc_page(gfp))) { 512 return 1; 513 } 514 sh->dev[i].page = page; 515 sh->dev[i].orig_page = page; 516 } 517 return 0; 518 } 519 520 static void raid5_build_block(struct stripe_head *sh, int i, int previous); 521 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 522 struct stripe_head *sh); 523 524 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous) 525 { 526 struct r5conf *conf = sh->raid_conf; 527 int i, seq; 528 529 BUG_ON(atomic_read(&sh->count) != 0); 530 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); 531 BUG_ON(stripe_operations_active(sh)); 532 BUG_ON(sh->batch_head); 533 534 pr_debug("init_stripe called, stripe %llu\n", 535 (unsigned long long)sector); 536 retry: 537 seq = read_seqcount_begin(&conf->gen_lock); 538 sh->generation = conf->generation - previous; 539 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks; 540 sh->sector = sector; 541 stripe_set_idx(sector, conf, previous, sh); 542 sh->state = 0; 543 544 for (i = sh->disks; i--; ) { 545 struct r5dev *dev = &sh->dev[i]; 546 547 if (dev->toread || dev->read || dev->towrite || dev->written || 548 test_bit(R5_LOCKED, &dev->flags)) { 549 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n", 550 (unsigned long long)sh->sector, i, dev->toread, 551 dev->read, dev->towrite, dev->written, 552 test_bit(R5_LOCKED, &dev->flags)); 553 WARN_ON(1); 554 } 555 dev->flags = 0; 556 raid5_build_block(sh, i, previous); 557 } 558 if (read_seqcount_retry(&conf->gen_lock, seq)) 559 goto retry; 560 sh->overwrite_disks = 0; 561 insert_hash(conf, sh); 562 sh->cpu = smp_processor_id(); 563 set_bit(STRIPE_BATCH_READY, &sh->state); 564 } 565 566 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector, 567 short generation) 568 { 569 struct stripe_head *sh; 570 571 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector); 572 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash) 573 if (sh->sector == sector && sh->generation == generation) 574 return sh; 575 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector); 576 return NULL; 577 } 578 579 /* 580 * Need to check if array has failed when deciding whether to: 581 * - start an array 582 * - remove non-faulty devices 583 * - add a spare 584 * - allow a reshape 585 * This determination is simple when no reshape is happening. 586 * However if there is a reshape, we need to carefully check 587 * both the before and after sections. 588 * This is because some failed devices may only affect one 589 * of the two sections, and some non-in_sync devices may 590 * be insync in the section most affected by failed devices. 591 */ 592 static int calc_degraded(struct r5conf *conf) 593 { 594 int degraded, degraded2; 595 int i; 596 597 rcu_read_lock(); 598 degraded = 0; 599 for (i = 0; i < conf->previous_raid_disks; i++) { 600 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 601 if (rdev && test_bit(Faulty, &rdev->flags)) 602 rdev = rcu_dereference(conf->disks[i].replacement); 603 if (!rdev || test_bit(Faulty, &rdev->flags)) 604 degraded++; 605 else if (test_bit(In_sync, &rdev->flags)) 606 ; 607 else 608 /* not in-sync or faulty. 609 * If the reshape increases the number of devices, 610 * this is being recovered by the reshape, so 611 * this 'previous' section is not in_sync. 612 * If the number of devices is being reduced however, 613 * the device can only be part of the array if 614 * we are reverting a reshape, so this section will 615 * be in-sync. 616 */ 617 if (conf->raid_disks >= conf->previous_raid_disks) 618 degraded++; 619 } 620 rcu_read_unlock(); 621 if (conf->raid_disks == conf->previous_raid_disks) 622 return degraded; 623 rcu_read_lock(); 624 degraded2 = 0; 625 for (i = 0; i < conf->raid_disks; i++) { 626 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 627 if (rdev && test_bit(Faulty, &rdev->flags)) 628 rdev = rcu_dereference(conf->disks[i].replacement); 629 if (!rdev || test_bit(Faulty, &rdev->flags)) 630 degraded2++; 631 else if (test_bit(In_sync, &rdev->flags)) 632 ; 633 else 634 /* not in-sync or faulty. 635 * If reshape increases the number of devices, this 636 * section has already been recovered, else it 637 * almost certainly hasn't. 638 */ 639 if (conf->raid_disks <= conf->previous_raid_disks) 640 degraded2++; 641 } 642 rcu_read_unlock(); 643 if (degraded2 > degraded) 644 return degraded2; 645 return degraded; 646 } 647 648 static int has_failed(struct r5conf *conf) 649 { 650 int degraded; 651 652 if (conf->mddev->reshape_position == MaxSector) 653 return conf->mddev->degraded > conf->max_degraded; 654 655 degraded = calc_degraded(conf); 656 if (degraded > conf->max_degraded) 657 return 1; 658 return 0; 659 } 660 661 struct stripe_head * 662 raid5_get_active_stripe(struct r5conf *conf, sector_t sector, 663 int previous, int noblock, int noquiesce) 664 { 665 struct stripe_head *sh; 666 int hash = stripe_hash_locks_hash(sector); 667 668 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector); 669 670 spin_lock_irq(conf->hash_locks + hash); 671 672 do { 673 wait_event_lock_irq(conf->wait_for_quiescent, 674 conf->quiesce == 0 || noquiesce, 675 *(conf->hash_locks + hash)); 676 sh = __find_stripe(conf, sector, conf->generation - previous); 677 if (!sh) { 678 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) { 679 sh = get_free_stripe(conf, hash); 680 if (!sh && !test_bit(R5_DID_ALLOC, 681 &conf->cache_state)) 682 set_bit(R5_ALLOC_MORE, 683 &conf->cache_state); 684 } 685 if (noblock && sh == NULL) 686 break; 687 if (!sh) { 688 set_bit(R5_INACTIVE_BLOCKED, 689 &conf->cache_state); 690 wait_event_exclusive_cmd( 691 conf->wait_for_stripe[hash], 692 !list_empty(conf->inactive_list + hash) && 693 (atomic_read(&conf->active_stripes) 694 < (conf->max_nr_stripes * 3 / 4) 695 || !test_bit(R5_INACTIVE_BLOCKED, 696 &conf->cache_state)), 697 spin_unlock_irq(conf->hash_locks + hash), 698 spin_lock_irq(conf->hash_locks + hash)); 699 clear_bit(R5_INACTIVE_BLOCKED, 700 &conf->cache_state); 701 } else { 702 init_stripe(sh, sector, previous); 703 atomic_inc(&sh->count); 704 } 705 } else if (!atomic_inc_not_zero(&sh->count)) { 706 spin_lock(&conf->device_lock); 707 if (!atomic_read(&sh->count)) { 708 if (!test_bit(STRIPE_HANDLE, &sh->state)) 709 atomic_inc(&conf->active_stripes); 710 BUG_ON(list_empty(&sh->lru) && 711 !test_bit(STRIPE_EXPANDING, &sh->state)); 712 list_del_init(&sh->lru); 713 if (sh->group) { 714 sh->group->stripes_cnt--; 715 sh->group = NULL; 716 } 717 } 718 atomic_inc(&sh->count); 719 spin_unlock(&conf->device_lock); 720 } 721 } while (sh == NULL); 722 723 if (!list_empty(conf->inactive_list + hash)) 724 wake_up(&conf->wait_for_stripe[hash]); 725 726 spin_unlock_irq(conf->hash_locks + hash); 727 return sh; 728 } 729 730 static bool is_full_stripe_write(struct stripe_head *sh) 731 { 732 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded)); 733 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded); 734 } 735 736 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) 737 { 738 local_irq_disable(); 739 if (sh1 > sh2) { 740 spin_lock(&sh2->stripe_lock); 741 spin_lock_nested(&sh1->stripe_lock, 1); 742 } else { 743 spin_lock(&sh1->stripe_lock); 744 spin_lock_nested(&sh2->stripe_lock, 1); 745 } 746 } 747 748 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) 749 { 750 spin_unlock(&sh1->stripe_lock); 751 spin_unlock(&sh2->stripe_lock); 752 local_irq_enable(); 753 } 754 755 /* Only freshly new full stripe normal write stripe can be added to a batch list */ 756 static bool stripe_can_batch(struct stripe_head *sh) 757 { 758 struct r5conf *conf = sh->raid_conf; 759 760 if (conf->log) 761 return false; 762 return test_bit(STRIPE_BATCH_READY, &sh->state) && 763 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) && 764 is_full_stripe_write(sh); 765 } 766 767 /* we only do back search */ 768 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh) 769 { 770 struct stripe_head *head; 771 sector_t head_sector, tmp_sec; 772 int hash; 773 int dd_idx; 774 775 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */ 776 tmp_sec = sh->sector; 777 if (!sector_div(tmp_sec, conf->chunk_sectors)) 778 return; 779 head_sector = sh->sector - STRIPE_SECTORS; 780 781 hash = stripe_hash_locks_hash(head_sector); 782 spin_lock_irq(conf->hash_locks + hash); 783 head = __find_stripe(conf, head_sector, conf->generation); 784 if (head && !atomic_inc_not_zero(&head->count)) { 785 spin_lock(&conf->device_lock); 786 if (!atomic_read(&head->count)) { 787 if (!test_bit(STRIPE_HANDLE, &head->state)) 788 atomic_inc(&conf->active_stripes); 789 BUG_ON(list_empty(&head->lru) && 790 !test_bit(STRIPE_EXPANDING, &head->state)); 791 list_del_init(&head->lru); 792 if (head->group) { 793 head->group->stripes_cnt--; 794 head->group = NULL; 795 } 796 } 797 atomic_inc(&head->count); 798 spin_unlock(&conf->device_lock); 799 } 800 spin_unlock_irq(conf->hash_locks + hash); 801 802 if (!head) 803 return; 804 if (!stripe_can_batch(head)) 805 goto out; 806 807 lock_two_stripes(head, sh); 808 /* clear_batch_ready clear the flag */ 809 if (!stripe_can_batch(head) || !stripe_can_batch(sh)) 810 goto unlock_out; 811 812 if (sh->batch_head) 813 goto unlock_out; 814 815 dd_idx = 0; 816 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx) 817 dd_idx++; 818 if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw) 819 goto unlock_out; 820 821 if (head->batch_head) { 822 spin_lock(&head->batch_head->batch_lock); 823 /* This batch list is already running */ 824 if (!stripe_can_batch(head)) { 825 spin_unlock(&head->batch_head->batch_lock); 826 goto unlock_out; 827 } 828 829 /* 830 * at this point, head's BATCH_READY could be cleared, but we 831 * can still add the stripe to batch list 832 */ 833 list_add(&sh->batch_list, &head->batch_list); 834 spin_unlock(&head->batch_head->batch_lock); 835 836 sh->batch_head = head->batch_head; 837 } else { 838 head->batch_head = head; 839 sh->batch_head = head->batch_head; 840 spin_lock(&head->batch_lock); 841 list_add_tail(&sh->batch_list, &head->batch_list); 842 spin_unlock(&head->batch_lock); 843 } 844 845 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 846 if (atomic_dec_return(&conf->preread_active_stripes) 847 < IO_THRESHOLD) 848 md_wakeup_thread(conf->mddev->thread); 849 850 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) { 851 int seq = sh->bm_seq; 852 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) && 853 sh->batch_head->bm_seq > seq) 854 seq = sh->batch_head->bm_seq; 855 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state); 856 sh->batch_head->bm_seq = seq; 857 } 858 859 atomic_inc(&sh->count); 860 unlock_out: 861 unlock_two_stripes(head, sh); 862 out: 863 raid5_release_stripe(head); 864 } 865 866 /* Determine if 'data_offset' or 'new_data_offset' should be used 867 * in this stripe_head. 868 */ 869 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh) 870 { 871 sector_t progress = conf->reshape_progress; 872 /* Need a memory barrier to make sure we see the value 873 * of conf->generation, or ->data_offset that was set before 874 * reshape_progress was updated. 875 */ 876 smp_rmb(); 877 if (progress == MaxSector) 878 return 0; 879 if (sh->generation == conf->generation - 1) 880 return 0; 881 /* We are in a reshape, and this is a new-generation stripe, 882 * so use new_data_offset. 883 */ 884 return 1; 885 } 886 887 static void 888 raid5_end_read_request(struct bio *bi); 889 static void 890 raid5_end_write_request(struct bio *bi); 891 892 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s) 893 { 894 struct r5conf *conf = sh->raid_conf; 895 int i, disks = sh->disks; 896 struct stripe_head *head_sh = sh; 897 898 might_sleep(); 899 900 if (r5l_write_stripe(conf->log, sh) == 0) 901 return; 902 for (i = disks; i--; ) { 903 int rw; 904 int replace_only = 0; 905 struct bio *bi, *rbi; 906 struct md_rdev *rdev, *rrdev = NULL; 907 908 sh = head_sh; 909 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) { 910 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags)) 911 rw = WRITE_FUA; 912 else 913 rw = WRITE; 914 if (test_bit(R5_Discard, &sh->dev[i].flags)) 915 rw |= REQ_DISCARD; 916 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags)) 917 rw = READ; 918 else if (test_and_clear_bit(R5_WantReplace, 919 &sh->dev[i].flags)) { 920 rw = WRITE; 921 replace_only = 1; 922 } else 923 continue; 924 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags)) 925 rw |= REQ_SYNC; 926 927 again: 928 bi = &sh->dev[i].req; 929 rbi = &sh->dev[i].rreq; /* For writing to replacement */ 930 931 rcu_read_lock(); 932 rrdev = rcu_dereference(conf->disks[i].replacement); 933 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */ 934 rdev = rcu_dereference(conf->disks[i].rdev); 935 if (!rdev) { 936 rdev = rrdev; 937 rrdev = NULL; 938 } 939 if (rw & WRITE) { 940 if (replace_only) 941 rdev = NULL; 942 if (rdev == rrdev) 943 /* We raced and saw duplicates */ 944 rrdev = NULL; 945 } else { 946 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev) 947 rdev = rrdev; 948 rrdev = NULL; 949 } 950 951 if (rdev && test_bit(Faulty, &rdev->flags)) 952 rdev = NULL; 953 if (rdev) 954 atomic_inc(&rdev->nr_pending); 955 if (rrdev && test_bit(Faulty, &rrdev->flags)) 956 rrdev = NULL; 957 if (rrdev) 958 atomic_inc(&rrdev->nr_pending); 959 rcu_read_unlock(); 960 961 /* We have already checked bad blocks for reads. Now 962 * need to check for writes. We never accept write errors 963 * on the replacement, so we don't to check rrdev. 964 */ 965 while ((rw & WRITE) && rdev && 966 test_bit(WriteErrorSeen, &rdev->flags)) { 967 sector_t first_bad; 968 int bad_sectors; 969 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS, 970 &first_bad, &bad_sectors); 971 if (!bad) 972 break; 973 974 if (bad < 0) { 975 set_bit(BlockedBadBlocks, &rdev->flags); 976 if (!conf->mddev->external && 977 conf->mddev->flags) { 978 /* It is very unlikely, but we might 979 * still need to write out the 980 * bad block log - better give it 981 * a chance*/ 982 md_check_recovery(conf->mddev); 983 } 984 /* 985 * Because md_wait_for_blocked_rdev 986 * will dec nr_pending, we must 987 * increment it first. 988 */ 989 atomic_inc(&rdev->nr_pending); 990 md_wait_for_blocked_rdev(rdev, conf->mddev); 991 } else { 992 /* Acknowledged bad block - skip the write */ 993 rdev_dec_pending(rdev, conf->mddev); 994 rdev = NULL; 995 } 996 } 997 998 if (rdev) { 999 if (s->syncing || s->expanding || s->expanded 1000 || s->replacing) 1001 md_sync_acct(rdev->bdev, STRIPE_SECTORS); 1002 1003 set_bit(STRIPE_IO_STARTED, &sh->state); 1004 1005 bio_reset(bi); 1006 bi->bi_bdev = rdev->bdev; 1007 bi->bi_rw = rw; 1008 bi->bi_end_io = (rw & WRITE) 1009 ? raid5_end_write_request 1010 : raid5_end_read_request; 1011 bi->bi_private = sh; 1012 1013 pr_debug("%s: for %llu schedule op %ld on disc %d\n", 1014 __func__, (unsigned long long)sh->sector, 1015 bi->bi_rw, i); 1016 atomic_inc(&sh->count); 1017 if (sh != head_sh) 1018 atomic_inc(&head_sh->count); 1019 if (use_new_offset(conf, sh)) 1020 bi->bi_iter.bi_sector = (sh->sector 1021 + rdev->new_data_offset); 1022 else 1023 bi->bi_iter.bi_sector = (sh->sector 1024 + rdev->data_offset); 1025 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags)) 1026 bi->bi_rw |= REQ_NOMERGE; 1027 1028 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 1029 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 1030 sh->dev[i].vec.bv_page = sh->dev[i].page; 1031 bi->bi_vcnt = 1; 1032 bi->bi_io_vec[0].bv_len = STRIPE_SIZE; 1033 bi->bi_io_vec[0].bv_offset = 0; 1034 bi->bi_iter.bi_size = STRIPE_SIZE; 1035 /* 1036 * If this is discard request, set bi_vcnt 0. We don't 1037 * want to confuse SCSI because SCSI will replace payload 1038 */ 1039 if (rw & REQ_DISCARD) 1040 bi->bi_vcnt = 0; 1041 if (rrdev) 1042 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags); 1043 1044 if (conf->mddev->gendisk) 1045 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev), 1046 bi, disk_devt(conf->mddev->gendisk), 1047 sh->dev[i].sector); 1048 generic_make_request(bi); 1049 } 1050 if (rrdev) { 1051 if (s->syncing || s->expanding || s->expanded 1052 || s->replacing) 1053 md_sync_acct(rrdev->bdev, STRIPE_SECTORS); 1054 1055 set_bit(STRIPE_IO_STARTED, &sh->state); 1056 1057 bio_reset(rbi); 1058 rbi->bi_bdev = rrdev->bdev; 1059 rbi->bi_rw = rw; 1060 BUG_ON(!(rw & WRITE)); 1061 rbi->bi_end_io = raid5_end_write_request; 1062 rbi->bi_private = sh; 1063 1064 pr_debug("%s: for %llu schedule op %ld on " 1065 "replacement disc %d\n", 1066 __func__, (unsigned long long)sh->sector, 1067 rbi->bi_rw, i); 1068 atomic_inc(&sh->count); 1069 if (sh != head_sh) 1070 atomic_inc(&head_sh->count); 1071 if (use_new_offset(conf, sh)) 1072 rbi->bi_iter.bi_sector = (sh->sector 1073 + rrdev->new_data_offset); 1074 else 1075 rbi->bi_iter.bi_sector = (sh->sector 1076 + rrdev->data_offset); 1077 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 1078 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 1079 sh->dev[i].rvec.bv_page = sh->dev[i].page; 1080 rbi->bi_vcnt = 1; 1081 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE; 1082 rbi->bi_io_vec[0].bv_offset = 0; 1083 rbi->bi_iter.bi_size = STRIPE_SIZE; 1084 /* 1085 * If this is discard request, set bi_vcnt 0. We don't 1086 * want to confuse SCSI because SCSI will replace payload 1087 */ 1088 if (rw & REQ_DISCARD) 1089 rbi->bi_vcnt = 0; 1090 if (conf->mddev->gendisk) 1091 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev), 1092 rbi, disk_devt(conf->mddev->gendisk), 1093 sh->dev[i].sector); 1094 generic_make_request(rbi); 1095 } 1096 if (!rdev && !rrdev) { 1097 if (rw & WRITE) 1098 set_bit(STRIPE_DEGRADED, &sh->state); 1099 pr_debug("skip op %ld on disc %d for sector %llu\n", 1100 bi->bi_rw, i, (unsigned long long)sh->sector); 1101 clear_bit(R5_LOCKED, &sh->dev[i].flags); 1102 set_bit(STRIPE_HANDLE, &sh->state); 1103 } 1104 1105 if (!head_sh->batch_head) 1106 continue; 1107 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1108 batch_list); 1109 if (sh != head_sh) 1110 goto again; 1111 } 1112 } 1113 1114 static struct dma_async_tx_descriptor * 1115 async_copy_data(int frombio, struct bio *bio, struct page **page, 1116 sector_t sector, struct dma_async_tx_descriptor *tx, 1117 struct stripe_head *sh) 1118 { 1119 struct bio_vec bvl; 1120 struct bvec_iter iter; 1121 struct page *bio_page; 1122 int page_offset; 1123 struct async_submit_ctl submit; 1124 enum async_tx_flags flags = 0; 1125 1126 if (bio->bi_iter.bi_sector >= sector) 1127 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512; 1128 else 1129 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512; 1130 1131 if (frombio) 1132 flags |= ASYNC_TX_FENCE; 1133 init_async_submit(&submit, flags, tx, NULL, NULL, NULL); 1134 1135 bio_for_each_segment(bvl, bio, iter) { 1136 int len = bvl.bv_len; 1137 int clen; 1138 int b_offset = 0; 1139 1140 if (page_offset < 0) { 1141 b_offset = -page_offset; 1142 page_offset += b_offset; 1143 len -= b_offset; 1144 } 1145 1146 if (len > 0 && page_offset + len > STRIPE_SIZE) 1147 clen = STRIPE_SIZE - page_offset; 1148 else 1149 clen = len; 1150 1151 if (clen > 0) { 1152 b_offset += bvl.bv_offset; 1153 bio_page = bvl.bv_page; 1154 if (frombio) { 1155 if (sh->raid_conf->skip_copy && 1156 b_offset == 0 && page_offset == 0 && 1157 clen == STRIPE_SIZE) 1158 *page = bio_page; 1159 else 1160 tx = async_memcpy(*page, bio_page, page_offset, 1161 b_offset, clen, &submit); 1162 } else 1163 tx = async_memcpy(bio_page, *page, b_offset, 1164 page_offset, clen, &submit); 1165 } 1166 /* chain the operations */ 1167 submit.depend_tx = tx; 1168 1169 if (clen < len) /* hit end of page */ 1170 break; 1171 page_offset += len; 1172 } 1173 1174 return tx; 1175 } 1176 1177 static void ops_complete_biofill(void *stripe_head_ref) 1178 { 1179 struct stripe_head *sh = stripe_head_ref; 1180 struct bio_list return_bi = BIO_EMPTY_LIST; 1181 int i; 1182 1183 pr_debug("%s: stripe %llu\n", __func__, 1184 (unsigned long long)sh->sector); 1185 1186 /* clear completed biofills */ 1187 for (i = sh->disks; i--; ) { 1188 struct r5dev *dev = &sh->dev[i]; 1189 1190 /* acknowledge completion of a biofill operation */ 1191 /* and check if we need to reply to a read request, 1192 * new R5_Wantfill requests are held off until 1193 * !STRIPE_BIOFILL_RUN 1194 */ 1195 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) { 1196 struct bio *rbi, *rbi2; 1197 1198 BUG_ON(!dev->read); 1199 rbi = dev->read; 1200 dev->read = NULL; 1201 while (rbi && rbi->bi_iter.bi_sector < 1202 dev->sector + STRIPE_SECTORS) { 1203 rbi2 = r5_next_bio(rbi, dev->sector); 1204 if (!raid5_dec_bi_active_stripes(rbi)) 1205 bio_list_add(&return_bi, rbi); 1206 rbi = rbi2; 1207 } 1208 } 1209 } 1210 clear_bit(STRIPE_BIOFILL_RUN, &sh->state); 1211 1212 return_io(&return_bi); 1213 1214 set_bit(STRIPE_HANDLE, &sh->state); 1215 raid5_release_stripe(sh); 1216 } 1217 1218 static void ops_run_biofill(struct stripe_head *sh) 1219 { 1220 struct dma_async_tx_descriptor *tx = NULL; 1221 struct async_submit_ctl submit; 1222 int i; 1223 1224 BUG_ON(sh->batch_head); 1225 pr_debug("%s: stripe %llu\n", __func__, 1226 (unsigned long long)sh->sector); 1227 1228 for (i = sh->disks; i--; ) { 1229 struct r5dev *dev = &sh->dev[i]; 1230 if (test_bit(R5_Wantfill, &dev->flags)) { 1231 struct bio *rbi; 1232 spin_lock_irq(&sh->stripe_lock); 1233 dev->read = rbi = dev->toread; 1234 dev->toread = NULL; 1235 spin_unlock_irq(&sh->stripe_lock); 1236 while (rbi && rbi->bi_iter.bi_sector < 1237 dev->sector + STRIPE_SECTORS) { 1238 tx = async_copy_data(0, rbi, &dev->page, 1239 dev->sector, tx, sh); 1240 rbi = r5_next_bio(rbi, dev->sector); 1241 } 1242 } 1243 } 1244 1245 atomic_inc(&sh->count); 1246 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL); 1247 async_trigger_callback(&submit); 1248 } 1249 1250 static void mark_target_uptodate(struct stripe_head *sh, int target) 1251 { 1252 struct r5dev *tgt; 1253 1254 if (target < 0) 1255 return; 1256 1257 tgt = &sh->dev[target]; 1258 set_bit(R5_UPTODATE, &tgt->flags); 1259 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1260 clear_bit(R5_Wantcompute, &tgt->flags); 1261 } 1262 1263 static void ops_complete_compute(void *stripe_head_ref) 1264 { 1265 struct stripe_head *sh = stripe_head_ref; 1266 1267 pr_debug("%s: stripe %llu\n", __func__, 1268 (unsigned long long)sh->sector); 1269 1270 /* mark the computed target(s) as uptodate */ 1271 mark_target_uptodate(sh, sh->ops.target); 1272 mark_target_uptodate(sh, sh->ops.target2); 1273 1274 clear_bit(STRIPE_COMPUTE_RUN, &sh->state); 1275 if (sh->check_state == check_state_compute_run) 1276 sh->check_state = check_state_compute_result; 1277 set_bit(STRIPE_HANDLE, &sh->state); 1278 raid5_release_stripe(sh); 1279 } 1280 1281 /* return a pointer to the address conversion region of the scribble buffer */ 1282 static addr_conv_t *to_addr_conv(struct stripe_head *sh, 1283 struct raid5_percpu *percpu, int i) 1284 { 1285 void *addr; 1286 1287 addr = flex_array_get(percpu->scribble, i); 1288 return addr + sizeof(struct page *) * (sh->disks + 2); 1289 } 1290 1291 /* return a pointer to the address conversion region of the scribble buffer */ 1292 static struct page **to_addr_page(struct raid5_percpu *percpu, int i) 1293 { 1294 void *addr; 1295 1296 addr = flex_array_get(percpu->scribble, i); 1297 return addr; 1298 } 1299 1300 static struct dma_async_tx_descriptor * 1301 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu) 1302 { 1303 int disks = sh->disks; 1304 struct page **xor_srcs = to_addr_page(percpu, 0); 1305 int target = sh->ops.target; 1306 struct r5dev *tgt = &sh->dev[target]; 1307 struct page *xor_dest = tgt->page; 1308 int count = 0; 1309 struct dma_async_tx_descriptor *tx; 1310 struct async_submit_ctl submit; 1311 int i; 1312 1313 BUG_ON(sh->batch_head); 1314 1315 pr_debug("%s: stripe %llu block: %d\n", 1316 __func__, (unsigned long long)sh->sector, target); 1317 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1318 1319 for (i = disks; i--; ) 1320 if (i != target) 1321 xor_srcs[count++] = sh->dev[i].page; 1322 1323 atomic_inc(&sh->count); 1324 1325 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL, 1326 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0)); 1327 if (unlikely(count == 1)) 1328 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); 1329 else 1330 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1331 1332 return tx; 1333 } 1334 1335 /* set_syndrome_sources - populate source buffers for gen_syndrome 1336 * @srcs - (struct page *) array of size sh->disks 1337 * @sh - stripe_head to parse 1338 * 1339 * Populates srcs in proper layout order for the stripe and returns the 1340 * 'count' of sources to be used in a call to async_gen_syndrome. The P 1341 * destination buffer is recorded in srcs[count] and the Q destination 1342 * is recorded in srcs[count+1]]. 1343 */ 1344 static int set_syndrome_sources(struct page **srcs, 1345 struct stripe_head *sh, 1346 int srctype) 1347 { 1348 int disks = sh->disks; 1349 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2); 1350 int d0_idx = raid6_d0(sh); 1351 int count; 1352 int i; 1353 1354 for (i = 0; i < disks; i++) 1355 srcs[i] = NULL; 1356 1357 count = 0; 1358 i = d0_idx; 1359 do { 1360 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1361 struct r5dev *dev = &sh->dev[i]; 1362 1363 if (i == sh->qd_idx || i == sh->pd_idx || 1364 (srctype == SYNDROME_SRC_ALL) || 1365 (srctype == SYNDROME_SRC_WANT_DRAIN && 1366 test_bit(R5_Wantdrain, &dev->flags)) || 1367 (srctype == SYNDROME_SRC_WRITTEN && 1368 dev->written)) 1369 srcs[slot] = sh->dev[i].page; 1370 i = raid6_next_disk(i, disks); 1371 } while (i != d0_idx); 1372 1373 return syndrome_disks; 1374 } 1375 1376 static struct dma_async_tx_descriptor * 1377 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu) 1378 { 1379 int disks = sh->disks; 1380 struct page **blocks = to_addr_page(percpu, 0); 1381 int target; 1382 int qd_idx = sh->qd_idx; 1383 struct dma_async_tx_descriptor *tx; 1384 struct async_submit_ctl submit; 1385 struct r5dev *tgt; 1386 struct page *dest; 1387 int i; 1388 int count; 1389 1390 BUG_ON(sh->batch_head); 1391 if (sh->ops.target < 0) 1392 target = sh->ops.target2; 1393 else if (sh->ops.target2 < 0) 1394 target = sh->ops.target; 1395 else 1396 /* we should only have one valid target */ 1397 BUG(); 1398 BUG_ON(target < 0); 1399 pr_debug("%s: stripe %llu block: %d\n", 1400 __func__, (unsigned long long)sh->sector, target); 1401 1402 tgt = &sh->dev[target]; 1403 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1404 dest = tgt->page; 1405 1406 atomic_inc(&sh->count); 1407 1408 if (target == qd_idx) { 1409 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL); 1410 blocks[count] = NULL; /* regenerating p is not necessary */ 1411 BUG_ON(blocks[count+1] != dest); /* q should already be set */ 1412 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1413 ops_complete_compute, sh, 1414 to_addr_conv(sh, percpu, 0)); 1415 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1416 } else { 1417 /* Compute any data- or p-drive using XOR */ 1418 count = 0; 1419 for (i = disks; i-- ; ) { 1420 if (i == target || i == qd_idx) 1421 continue; 1422 blocks[count++] = sh->dev[i].page; 1423 } 1424 1425 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1426 NULL, ops_complete_compute, sh, 1427 to_addr_conv(sh, percpu, 0)); 1428 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit); 1429 } 1430 1431 return tx; 1432 } 1433 1434 static struct dma_async_tx_descriptor * 1435 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu) 1436 { 1437 int i, count, disks = sh->disks; 1438 int syndrome_disks = sh->ddf_layout ? disks : disks-2; 1439 int d0_idx = raid6_d0(sh); 1440 int faila = -1, failb = -1; 1441 int target = sh->ops.target; 1442 int target2 = sh->ops.target2; 1443 struct r5dev *tgt = &sh->dev[target]; 1444 struct r5dev *tgt2 = &sh->dev[target2]; 1445 struct dma_async_tx_descriptor *tx; 1446 struct page **blocks = to_addr_page(percpu, 0); 1447 struct async_submit_ctl submit; 1448 1449 BUG_ON(sh->batch_head); 1450 pr_debug("%s: stripe %llu block1: %d block2: %d\n", 1451 __func__, (unsigned long long)sh->sector, target, target2); 1452 BUG_ON(target < 0 || target2 < 0); 1453 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1454 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags)); 1455 1456 /* we need to open-code set_syndrome_sources to handle the 1457 * slot number conversion for 'faila' and 'failb' 1458 */ 1459 for (i = 0; i < disks ; i++) 1460 blocks[i] = NULL; 1461 count = 0; 1462 i = d0_idx; 1463 do { 1464 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1465 1466 blocks[slot] = sh->dev[i].page; 1467 1468 if (i == target) 1469 faila = slot; 1470 if (i == target2) 1471 failb = slot; 1472 i = raid6_next_disk(i, disks); 1473 } while (i != d0_idx); 1474 1475 BUG_ON(faila == failb); 1476 if (failb < faila) 1477 swap(faila, failb); 1478 pr_debug("%s: stripe: %llu faila: %d failb: %d\n", 1479 __func__, (unsigned long long)sh->sector, faila, failb); 1480 1481 atomic_inc(&sh->count); 1482 1483 if (failb == syndrome_disks+1) { 1484 /* Q disk is one of the missing disks */ 1485 if (faila == syndrome_disks) { 1486 /* Missing P+Q, just recompute */ 1487 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1488 ops_complete_compute, sh, 1489 to_addr_conv(sh, percpu, 0)); 1490 return async_gen_syndrome(blocks, 0, syndrome_disks+2, 1491 STRIPE_SIZE, &submit); 1492 } else { 1493 struct page *dest; 1494 int data_target; 1495 int qd_idx = sh->qd_idx; 1496 1497 /* Missing D+Q: recompute D from P, then recompute Q */ 1498 if (target == qd_idx) 1499 data_target = target2; 1500 else 1501 data_target = target; 1502 1503 count = 0; 1504 for (i = disks; i-- ; ) { 1505 if (i == data_target || i == qd_idx) 1506 continue; 1507 blocks[count++] = sh->dev[i].page; 1508 } 1509 dest = sh->dev[data_target].page; 1510 init_async_submit(&submit, 1511 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1512 NULL, NULL, NULL, 1513 to_addr_conv(sh, percpu, 0)); 1514 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, 1515 &submit); 1516 1517 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL); 1518 init_async_submit(&submit, ASYNC_TX_FENCE, tx, 1519 ops_complete_compute, sh, 1520 to_addr_conv(sh, percpu, 0)); 1521 return async_gen_syndrome(blocks, 0, count+2, 1522 STRIPE_SIZE, &submit); 1523 } 1524 } else { 1525 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1526 ops_complete_compute, sh, 1527 to_addr_conv(sh, percpu, 0)); 1528 if (failb == syndrome_disks) { 1529 /* We're missing D+P. */ 1530 return async_raid6_datap_recov(syndrome_disks+2, 1531 STRIPE_SIZE, faila, 1532 blocks, &submit); 1533 } else { 1534 /* We're missing D+D. */ 1535 return async_raid6_2data_recov(syndrome_disks+2, 1536 STRIPE_SIZE, faila, failb, 1537 blocks, &submit); 1538 } 1539 } 1540 } 1541 1542 static void ops_complete_prexor(void *stripe_head_ref) 1543 { 1544 struct stripe_head *sh = stripe_head_ref; 1545 1546 pr_debug("%s: stripe %llu\n", __func__, 1547 (unsigned long long)sh->sector); 1548 } 1549 1550 static struct dma_async_tx_descriptor * 1551 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu, 1552 struct dma_async_tx_descriptor *tx) 1553 { 1554 int disks = sh->disks; 1555 struct page **xor_srcs = to_addr_page(percpu, 0); 1556 int count = 0, pd_idx = sh->pd_idx, i; 1557 struct async_submit_ctl submit; 1558 1559 /* existing parity data subtracted */ 1560 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1561 1562 BUG_ON(sh->batch_head); 1563 pr_debug("%s: stripe %llu\n", __func__, 1564 (unsigned long long)sh->sector); 1565 1566 for (i = disks; i--; ) { 1567 struct r5dev *dev = &sh->dev[i]; 1568 /* Only process blocks that are known to be uptodate */ 1569 if (test_bit(R5_Wantdrain, &dev->flags)) 1570 xor_srcs[count++] = dev->page; 1571 } 1572 1573 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx, 1574 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); 1575 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1576 1577 return tx; 1578 } 1579 1580 static struct dma_async_tx_descriptor * 1581 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu, 1582 struct dma_async_tx_descriptor *tx) 1583 { 1584 struct page **blocks = to_addr_page(percpu, 0); 1585 int count; 1586 struct async_submit_ctl submit; 1587 1588 pr_debug("%s: stripe %llu\n", __func__, 1589 (unsigned long long)sh->sector); 1590 1591 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN); 1592 1593 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx, 1594 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); 1595 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1596 1597 return tx; 1598 } 1599 1600 static struct dma_async_tx_descriptor * 1601 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) 1602 { 1603 int disks = sh->disks; 1604 int i; 1605 struct stripe_head *head_sh = sh; 1606 1607 pr_debug("%s: stripe %llu\n", __func__, 1608 (unsigned long long)sh->sector); 1609 1610 for (i = disks; i--; ) { 1611 struct r5dev *dev; 1612 struct bio *chosen; 1613 1614 sh = head_sh; 1615 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) { 1616 struct bio *wbi; 1617 1618 again: 1619 dev = &sh->dev[i]; 1620 spin_lock_irq(&sh->stripe_lock); 1621 chosen = dev->towrite; 1622 dev->towrite = NULL; 1623 sh->overwrite_disks = 0; 1624 BUG_ON(dev->written); 1625 wbi = dev->written = chosen; 1626 spin_unlock_irq(&sh->stripe_lock); 1627 WARN_ON(dev->page != dev->orig_page); 1628 1629 while (wbi && wbi->bi_iter.bi_sector < 1630 dev->sector + STRIPE_SECTORS) { 1631 if (wbi->bi_rw & REQ_FUA) 1632 set_bit(R5_WantFUA, &dev->flags); 1633 if (wbi->bi_rw & REQ_SYNC) 1634 set_bit(R5_SyncIO, &dev->flags); 1635 if (wbi->bi_rw & REQ_DISCARD) 1636 set_bit(R5_Discard, &dev->flags); 1637 else { 1638 tx = async_copy_data(1, wbi, &dev->page, 1639 dev->sector, tx, sh); 1640 if (dev->page != dev->orig_page) { 1641 set_bit(R5_SkipCopy, &dev->flags); 1642 clear_bit(R5_UPTODATE, &dev->flags); 1643 clear_bit(R5_OVERWRITE, &dev->flags); 1644 } 1645 } 1646 wbi = r5_next_bio(wbi, dev->sector); 1647 } 1648 1649 if (head_sh->batch_head) { 1650 sh = list_first_entry(&sh->batch_list, 1651 struct stripe_head, 1652 batch_list); 1653 if (sh == head_sh) 1654 continue; 1655 goto again; 1656 } 1657 } 1658 } 1659 1660 return tx; 1661 } 1662 1663 static void ops_complete_reconstruct(void *stripe_head_ref) 1664 { 1665 struct stripe_head *sh = stripe_head_ref; 1666 int disks = sh->disks; 1667 int pd_idx = sh->pd_idx; 1668 int qd_idx = sh->qd_idx; 1669 int i; 1670 bool fua = false, sync = false, discard = false; 1671 1672 pr_debug("%s: stripe %llu\n", __func__, 1673 (unsigned long long)sh->sector); 1674 1675 for (i = disks; i--; ) { 1676 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags); 1677 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags); 1678 discard |= test_bit(R5_Discard, &sh->dev[i].flags); 1679 } 1680 1681 for (i = disks; i--; ) { 1682 struct r5dev *dev = &sh->dev[i]; 1683 1684 if (dev->written || i == pd_idx || i == qd_idx) { 1685 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) 1686 set_bit(R5_UPTODATE, &dev->flags); 1687 if (fua) 1688 set_bit(R5_WantFUA, &dev->flags); 1689 if (sync) 1690 set_bit(R5_SyncIO, &dev->flags); 1691 } 1692 } 1693 1694 if (sh->reconstruct_state == reconstruct_state_drain_run) 1695 sh->reconstruct_state = reconstruct_state_drain_result; 1696 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) 1697 sh->reconstruct_state = reconstruct_state_prexor_drain_result; 1698 else { 1699 BUG_ON(sh->reconstruct_state != reconstruct_state_run); 1700 sh->reconstruct_state = reconstruct_state_result; 1701 } 1702 1703 set_bit(STRIPE_HANDLE, &sh->state); 1704 raid5_release_stripe(sh); 1705 } 1706 1707 static void 1708 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu, 1709 struct dma_async_tx_descriptor *tx) 1710 { 1711 int disks = sh->disks; 1712 struct page **xor_srcs; 1713 struct async_submit_ctl submit; 1714 int count, pd_idx = sh->pd_idx, i; 1715 struct page *xor_dest; 1716 int prexor = 0; 1717 unsigned long flags; 1718 int j = 0; 1719 struct stripe_head *head_sh = sh; 1720 int last_stripe; 1721 1722 pr_debug("%s: stripe %llu\n", __func__, 1723 (unsigned long long)sh->sector); 1724 1725 for (i = 0; i < sh->disks; i++) { 1726 if (pd_idx == i) 1727 continue; 1728 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 1729 break; 1730 } 1731 if (i >= sh->disks) { 1732 atomic_inc(&sh->count); 1733 set_bit(R5_Discard, &sh->dev[pd_idx].flags); 1734 ops_complete_reconstruct(sh); 1735 return; 1736 } 1737 again: 1738 count = 0; 1739 xor_srcs = to_addr_page(percpu, j); 1740 /* check if prexor is active which means only process blocks 1741 * that are part of a read-modify-write (written) 1742 */ 1743 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 1744 prexor = 1; 1745 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1746 for (i = disks; i--; ) { 1747 struct r5dev *dev = &sh->dev[i]; 1748 if (head_sh->dev[i].written) 1749 xor_srcs[count++] = dev->page; 1750 } 1751 } else { 1752 xor_dest = sh->dev[pd_idx].page; 1753 for (i = disks; i--; ) { 1754 struct r5dev *dev = &sh->dev[i]; 1755 if (i != pd_idx) 1756 xor_srcs[count++] = dev->page; 1757 } 1758 } 1759 1760 /* 1/ if we prexor'd then the dest is reused as a source 1761 * 2/ if we did not prexor then we are redoing the parity 1762 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST 1763 * for the synchronous xor case 1764 */ 1765 last_stripe = !head_sh->batch_head || 1766 list_first_entry(&sh->batch_list, 1767 struct stripe_head, batch_list) == head_sh; 1768 if (last_stripe) { 1769 flags = ASYNC_TX_ACK | 1770 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST); 1771 1772 atomic_inc(&head_sh->count); 1773 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh, 1774 to_addr_conv(sh, percpu, j)); 1775 } else { 1776 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST; 1777 init_async_submit(&submit, flags, tx, NULL, NULL, 1778 to_addr_conv(sh, percpu, j)); 1779 } 1780 1781 if (unlikely(count == 1)) 1782 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); 1783 else 1784 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1785 if (!last_stripe) { 1786 j++; 1787 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1788 batch_list); 1789 goto again; 1790 } 1791 } 1792 1793 static void 1794 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu, 1795 struct dma_async_tx_descriptor *tx) 1796 { 1797 struct async_submit_ctl submit; 1798 struct page **blocks; 1799 int count, i, j = 0; 1800 struct stripe_head *head_sh = sh; 1801 int last_stripe; 1802 int synflags; 1803 unsigned long txflags; 1804 1805 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); 1806 1807 for (i = 0; i < sh->disks; i++) { 1808 if (sh->pd_idx == i || sh->qd_idx == i) 1809 continue; 1810 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 1811 break; 1812 } 1813 if (i >= sh->disks) { 1814 atomic_inc(&sh->count); 1815 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 1816 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 1817 ops_complete_reconstruct(sh); 1818 return; 1819 } 1820 1821 again: 1822 blocks = to_addr_page(percpu, j); 1823 1824 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 1825 synflags = SYNDROME_SRC_WRITTEN; 1826 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST; 1827 } else { 1828 synflags = SYNDROME_SRC_ALL; 1829 txflags = ASYNC_TX_ACK; 1830 } 1831 1832 count = set_syndrome_sources(blocks, sh, synflags); 1833 last_stripe = !head_sh->batch_head || 1834 list_first_entry(&sh->batch_list, 1835 struct stripe_head, batch_list) == head_sh; 1836 1837 if (last_stripe) { 1838 atomic_inc(&head_sh->count); 1839 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct, 1840 head_sh, to_addr_conv(sh, percpu, j)); 1841 } else 1842 init_async_submit(&submit, 0, tx, NULL, NULL, 1843 to_addr_conv(sh, percpu, j)); 1844 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1845 if (!last_stripe) { 1846 j++; 1847 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1848 batch_list); 1849 goto again; 1850 } 1851 } 1852 1853 static void ops_complete_check(void *stripe_head_ref) 1854 { 1855 struct stripe_head *sh = stripe_head_ref; 1856 1857 pr_debug("%s: stripe %llu\n", __func__, 1858 (unsigned long long)sh->sector); 1859 1860 sh->check_state = check_state_check_result; 1861 set_bit(STRIPE_HANDLE, &sh->state); 1862 raid5_release_stripe(sh); 1863 } 1864 1865 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu) 1866 { 1867 int disks = sh->disks; 1868 int pd_idx = sh->pd_idx; 1869 int qd_idx = sh->qd_idx; 1870 struct page *xor_dest; 1871 struct page **xor_srcs = to_addr_page(percpu, 0); 1872 struct dma_async_tx_descriptor *tx; 1873 struct async_submit_ctl submit; 1874 int count; 1875 int i; 1876 1877 pr_debug("%s: stripe %llu\n", __func__, 1878 (unsigned long long)sh->sector); 1879 1880 BUG_ON(sh->batch_head); 1881 count = 0; 1882 xor_dest = sh->dev[pd_idx].page; 1883 xor_srcs[count++] = xor_dest; 1884 for (i = disks; i--; ) { 1885 if (i == pd_idx || i == qd_idx) 1886 continue; 1887 xor_srcs[count++] = sh->dev[i].page; 1888 } 1889 1890 init_async_submit(&submit, 0, NULL, NULL, NULL, 1891 to_addr_conv(sh, percpu, 0)); 1892 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, 1893 &sh->ops.zero_sum_result, &submit); 1894 1895 atomic_inc(&sh->count); 1896 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL); 1897 tx = async_trigger_callback(&submit); 1898 } 1899 1900 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp) 1901 { 1902 struct page **srcs = to_addr_page(percpu, 0); 1903 struct async_submit_ctl submit; 1904 int count; 1905 1906 pr_debug("%s: stripe %llu checkp: %d\n", __func__, 1907 (unsigned long long)sh->sector, checkp); 1908 1909 BUG_ON(sh->batch_head); 1910 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL); 1911 if (!checkp) 1912 srcs[count] = NULL; 1913 1914 atomic_inc(&sh->count); 1915 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check, 1916 sh, to_addr_conv(sh, percpu, 0)); 1917 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE, 1918 &sh->ops.zero_sum_result, percpu->spare_page, &submit); 1919 } 1920 1921 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request) 1922 { 1923 int overlap_clear = 0, i, disks = sh->disks; 1924 struct dma_async_tx_descriptor *tx = NULL; 1925 struct r5conf *conf = sh->raid_conf; 1926 int level = conf->level; 1927 struct raid5_percpu *percpu; 1928 unsigned long cpu; 1929 1930 cpu = get_cpu(); 1931 percpu = per_cpu_ptr(conf->percpu, cpu); 1932 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) { 1933 ops_run_biofill(sh); 1934 overlap_clear++; 1935 } 1936 1937 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) { 1938 if (level < 6) 1939 tx = ops_run_compute5(sh, percpu); 1940 else { 1941 if (sh->ops.target2 < 0 || sh->ops.target < 0) 1942 tx = ops_run_compute6_1(sh, percpu); 1943 else 1944 tx = ops_run_compute6_2(sh, percpu); 1945 } 1946 /* terminate the chain if reconstruct is not set to be run */ 1947 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) 1948 async_tx_ack(tx); 1949 } 1950 1951 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) { 1952 if (level < 6) 1953 tx = ops_run_prexor5(sh, percpu, tx); 1954 else 1955 tx = ops_run_prexor6(sh, percpu, tx); 1956 } 1957 1958 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) { 1959 tx = ops_run_biodrain(sh, tx); 1960 overlap_clear++; 1961 } 1962 1963 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) { 1964 if (level < 6) 1965 ops_run_reconstruct5(sh, percpu, tx); 1966 else 1967 ops_run_reconstruct6(sh, percpu, tx); 1968 } 1969 1970 if (test_bit(STRIPE_OP_CHECK, &ops_request)) { 1971 if (sh->check_state == check_state_run) 1972 ops_run_check_p(sh, percpu); 1973 else if (sh->check_state == check_state_run_q) 1974 ops_run_check_pq(sh, percpu, 0); 1975 else if (sh->check_state == check_state_run_pq) 1976 ops_run_check_pq(sh, percpu, 1); 1977 else 1978 BUG(); 1979 } 1980 1981 if (overlap_clear && !sh->batch_head) 1982 for (i = disks; i--; ) { 1983 struct r5dev *dev = &sh->dev[i]; 1984 if (test_and_clear_bit(R5_Overlap, &dev->flags)) 1985 wake_up(&sh->raid_conf->wait_for_overlap); 1986 } 1987 put_cpu(); 1988 } 1989 1990 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp) 1991 { 1992 struct stripe_head *sh; 1993 1994 sh = kmem_cache_zalloc(sc, gfp); 1995 if (sh) { 1996 spin_lock_init(&sh->stripe_lock); 1997 spin_lock_init(&sh->batch_lock); 1998 INIT_LIST_HEAD(&sh->batch_list); 1999 INIT_LIST_HEAD(&sh->lru); 2000 atomic_set(&sh->count, 1); 2001 } 2002 return sh; 2003 } 2004 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp) 2005 { 2006 struct stripe_head *sh; 2007 2008 sh = alloc_stripe(conf->slab_cache, gfp); 2009 if (!sh) 2010 return 0; 2011 2012 sh->raid_conf = conf; 2013 2014 if (grow_buffers(sh, gfp)) { 2015 shrink_buffers(sh); 2016 kmem_cache_free(conf->slab_cache, sh); 2017 return 0; 2018 } 2019 sh->hash_lock_index = 2020 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS; 2021 /* we just created an active stripe so... */ 2022 atomic_inc(&conf->active_stripes); 2023 2024 raid5_release_stripe(sh); 2025 conf->max_nr_stripes++; 2026 return 1; 2027 } 2028 2029 static int grow_stripes(struct r5conf *conf, int num) 2030 { 2031 struct kmem_cache *sc; 2032 int devs = max(conf->raid_disks, conf->previous_raid_disks); 2033 2034 if (conf->mddev->gendisk) 2035 sprintf(conf->cache_name[0], 2036 "raid%d-%s", conf->level, mdname(conf->mddev)); 2037 else 2038 sprintf(conf->cache_name[0], 2039 "raid%d-%p", conf->level, conf->mddev); 2040 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]); 2041 2042 conf->active_name = 0; 2043 sc = kmem_cache_create(conf->cache_name[conf->active_name], 2044 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev), 2045 0, 0, NULL); 2046 if (!sc) 2047 return 1; 2048 conf->slab_cache = sc; 2049 conf->pool_size = devs; 2050 while (num--) 2051 if (!grow_one_stripe(conf, GFP_KERNEL)) 2052 return 1; 2053 2054 return 0; 2055 } 2056 2057 /** 2058 * scribble_len - return the required size of the scribble region 2059 * @num - total number of disks in the array 2060 * 2061 * The size must be enough to contain: 2062 * 1/ a struct page pointer for each device in the array +2 2063 * 2/ room to convert each entry in (1) to its corresponding dma 2064 * (dma_map_page()) or page (page_address()) address. 2065 * 2066 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we 2067 * calculate over all devices (not just the data blocks), using zeros in place 2068 * of the P and Q blocks. 2069 */ 2070 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags) 2071 { 2072 struct flex_array *ret; 2073 size_t len; 2074 2075 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2); 2076 ret = flex_array_alloc(len, cnt, flags); 2077 if (!ret) 2078 return NULL; 2079 /* always prealloc all elements, so no locking is required */ 2080 if (flex_array_prealloc(ret, 0, cnt, flags)) { 2081 flex_array_free(ret); 2082 return NULL; 2083 } 2084 return ret; 2085 } 2086 2087 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors) 2088 { 2089 unsigned long cpu; 2090 int err = 0; 2091 2092 mddev_suspend(conf->mddev); 2093 get_online_cpus(); 2094 for_each_present_cpu(cpu) { 2095 struct raid5_percpu *percpu; 2096 struct flex_array *scribble; 2097 2098 percpu = per_cpu_ptr(conf->percpu, cpu); 2099 scribble = scribble_alloc(new_disks, 2100 new_sectors / STRIPE_SECTORS, 2101 GFP_NOIO); 2102 2103 if (scribble) { 2104 flex_array_free(percpu->scribble); 2105 percpu->scribble = scribble; 2106 } else { 2107 err = -ENOMEM; 2108 break; 2109 } 2110 } 2111 put_online_cpus(); 2112 mddev_resume(conf->mddev); 2113 return err; 2114 } 2115 2116 static int resize_stripes(struct r5conf *conf, int newsize) 2117 { 2118 /* Make all the stripes able to hold 'newsize' devices. 2119 * New slots in each stripe get 'page' set to a new page. 2120 * 2121 * This happens in stages: 2122 * 1/ create a new kmem_cache and allocate the required number of 2123 * stripe_heads. 2124 * 2/ gather all the old stripe_heads and transfer the pages across 2125 * to the new stripe_heads. This will have the side effect of 2126 * freezing the array as once all stripe_heads have been collected, 2127 * no IO will be possible. Old stripe heads are freed once their 2128 * pages have been transferred over, and the old kmem_cache is 2129 * freed when all stripes are done. 2130 * 3/ reallocate conf->disks to be suitable bigger. If this fails, 2131 * we simple return a failre status - no need to clean anything up. 2132 * 4/ allocate new pages for the new slots in the new stripe_heads. 2133 * If this fails, we don't bother trying the shrink the 2134 * stripe_heads down again, we just leave them as they are. 2135 * As each stripe_head is processed the new one is released into 2136 * active service. 2137 * 2138 * Once step2 is started, we cannot afford to wait for a write, 2139 * so we use GFP_NOIO allocations. 2140 */ 2141 struct stripe_head *osh, *nsh; 2142 LIST_HEAD(newstripes); 2143 struct disk_info *ndisks; 2144 int err; 2145 struct kmem_cache *sc; 2146 int i; 2147 int hash, cnt; 2148 2149 if (newsize <= conf->pool_size) 2150 return 0; /* never bother to shrink */ 2151 2152 err = md_allow_write(conf->mddev); 2153 if (err) 2154 return err; 2155 2156 /* Step 1 */ 2157 sc = kmem_cache_create(conf->cache_name[1-conf->active_name], 2158 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev), 2159 0, 0, NULL); 2160 if (!sc) 2161 return -ENOMEM; 2162 2163 /* Need to ensure auto-resizing doesn't interfere */ 2164 mutex_lock(&conf->cache_size_mutex); 2165 2166 for (i = conf->max_nr_stripes; i; i--) { 2167 nsh = alloc_stripe(sc, GFP_KERNEL); 2168 if (!nsh) 2169 break; 2170 2171 nsh->raid_conf = conf; 2172 list_add(&nsh->lru, &newstripes); 2173 } 2174 if (i) { 2175 /* didn't get enough, give up */ 2176 while (!list_empty(&newstripes)) { 2177 nsh = list_entry(newstripes.next, struct stripe_head, lru); 2178 list_del(&nsh->lru); 2179 kmem_cache_free(sc, nsh); 2180 } 2181 kmem_cache_destroy(sc); 2182 mutex_unlock(&conf->cache_size_mutex); 2183 return -ENOMEM; 2184 } 2185 /* Step 2 - Must use GFP_NOIO now. 2186 * OK, we have enough stripes, start collecting inactive 2187 * stripes and copying them over 2188 */ 2189 hash = 0; 2190 cnt = 0; 2191 list_for_each_entry(nsh, &newstripes, lru) { 2192 lock_device_hash_lock(conf, hash); 2193 wait_event_exclusive_cmd(conf->wait_for_stripe[hash], 2194 !list_empty(conf->inactive_list + hash), 2195 unlock_device_hash_lock(conf, hash), 2196 lock_device_hash_lock(conf, hash)); 2197 osh = get_free_stripe(conf, hash); 2198 unlock_device_hash_lock(conf, hash); 2199 2200 for(i=0; i<conf->pool_size; i++) { 2201 nsh->dev[i].page = osh->dev[i].page; 2202 nsh->dev[i].orig_page = osh->dev[i].page; 2203 } 2204 nsh->hash_lock_index = hash; 2205 kmem_cache_free(conf->slab_cache, osh); 2206 cnt++; 2207 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS + 2208 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) { 2209 hash++; 2210 cnt = 0; 2211 } 2212 } 2213 kmem_cache_destroy(conf->slab_cache); 2214 2215 /* Step 3. 2216 * At this point, we are holding all the stripes so the array 2217 * is completely stalled, so now is a good time to resize 2218 * conf->disks and the scribble region 2219 */ 2220 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO); 2221 if (ndisks) { 2222 for (i=0; i<conf->raid_disks; i++) 2223 ndisks[i] = conf->disks[i]; 2224 kfree(conf->disks); 2225 conf->disks = ndisks; 2226 } else 2227 err = -ENOMEM; 2228 2229 mutex_unlock(&conf->cache_size_mutex); 2230 /* Step 4, return new stripes to service */ 2231 while(!list_empty(&newstripes)) { 2232 nsh = list_entry(newstripes.next, struct stripe_head, lru); 2233 list_del_init(&nsh->lru); 2234 2235 for (i=conf->raid_disks; i < newsize; i++) 2236 if (nsh->dev[i].page == NULL) { 2237 struct page *p = alloc_page(GFP_NOIO); 2238 nsh->dev[i].page = p; 2239 nsh->dev[i].orig_page = p; 2240 if (!p) 2241 err = -ENOMEM; 2242 } 2243 raid5_release_stripe(nsh); 2244 } 2245 /* critical section pass, GFP_NOIO no longer needed */ 2246 2247 conf->slab_cache = sc; 2248 conf->active_name = 1-conf->active_name; 2249 if (!err) 2250 conf->pool_size = newsize; 2251 return err; 2252 } 2253 2254 static int drop_one_stripe(struct r5conf *conf) 2255 { 2256 struct stripe_head *sh; 2257 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK; 2258 2259 spin_lock_irq(conf->hash_locks + hash); 2260 sh = get_free_stripe(conf, hash); 2261 spin_unlock_irq(conf->hash_locks + hash); 2262 if (!sh) 2263 return 0; 2264 BUG_ON(atomic_read(&sh->count)); 2265 shrink_buffers(sh); 2266 kmem_cache_free(conf->slab_cache, sh); 2267 atomic_dec(&conf->active_stripes); 2268 conf->max_nr_stripes--; 2269 return 1; 2270 } 2271 2272 static void shrink_stripes(struct r5conf *conf) 2273 { 2274 while (conf->max_nr_stripes && 2275 drop_one_stripe(conf)) 2276 ; 2277 2278 kmem_cache_destroy(conf->slab_cache); 2279 conf->slab_cache = NULL; 2280 } 2281 2282 static void raid5_end_read_request(struct bio * bi) 2283 { 2284 struct stripe_head *sh = bi->bi_private; 2285 struct r5conf *conf = sh->raid_conf; 2286 int disks = sh->disks, i; 2287 char b[BDEVNAME_SIZE]; 2288 struct md_rdev *rdev = NULL; 2289 sector_t s; 2290 2291 for (i=0 ; i<disks; i++) 2292 if (bi == &sh->dev[i].req) 2293 break; 2294 2295 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n", 2296 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2297 bi->bi_error); 2298 if (i == disks) { 2299 BUG(); 2300 return; 2301 } 2302 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2303 /* If replacement finished while this request was outstanding, 2304 * 'replacement' might be NULL already. 2305 * In that case it moved down to 'rdev'. 2306 * rdev is not removed until all requests are finished. 2307 */ 2308 rdev = conf->disks[i].replacement; 2309 if (!rdev) 2310 rdev = conf->disks[i].rdev; 2311 2312 if (use_new_offset(conf, sh)) 2313 s = sh->sector + rdev->new_data_offset; 2314 else 2315 s = sh->sector + rdev->data_offset; 2316 if (!bi->bi_error) { 2317 set_bit(R5_UPTODATE, &sh->dev[i].flags); 2318 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 2319 /* Note that this cannot happen on a 2320 * replacement device. We just fail those on 2321 * any error 2322 */ 2323 printk_ratelimited( 2324 KERN_INFO 2325 "md/raid:%s: read error corrected" 2326 " (%lu sectors at %llu on %s)\n", 2327 mdname(conf->mddev), STRIPE_SECTORS, 2328 (unsigned long long)s, 2329 bdevname(rdev->bdev, b)); 2330 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors); 2331 clear_bit(R5_ReadError, &sh->dev[i].flags); 2332 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2333 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2334 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2335 2336 if (atomic_read(&rdev->read_errors)) 2337 atomic_set(&rdev->read_errors, 0); 2338 } else { 2339 const char *bdn = bdevname(rdev->bdev, b); 2340 int retry = 0; 2341 int set_bad = 0; 2342 2343 clear_bit(R5_UPTODATE, &sh->dev[i].flags); 2344 atomic_inc(&rdev->read_errors); 2345 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2346 printk_ratelimited( 2347 KERN_WARNING 2348 "md/raid:%s: read error on replacement device " 2349 "(sector %llu on %s).\n", 2350 mdname(conf->mddev), 2351 (unsigned long long)s, 2352 bdn); 2353 else if (conf->mddev->degraded >= conf->max_degraded) { 2354 set_bad = 1; 2355 printk_ratelimited( 2356 KERN_WARNING 2357 "md/raid:%s: read error not correctable " 2358 "(sector %llu on %s).\n", 2359 mdname(conf->mddev), 2360 (unsigned long long)s, 2361 bdn); 2362 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) { 2363 /* Oh, no!!! */ 2364 set_bad = 1; 2365 printk_ratelimited( 2366 KERN_WARNING 2367 "md/raid:%s: read error NOT corrected!! " 2368 "(sector %llu on %s).\n", 2369 mdname(conf->mddev), 2370 (unsigned long long)s, 2371 bdn); 2372 } else if (atomic_read(&rdev->read_errors) 2373 > conf->max_nr_stripes) 2374 printk(KERN_WARNING 2375 "md/raid:%s: Too many read errors, failing device %s.\n", 2376 mdname(conf->mddev), bdn); 2377 else 2378 retry = 1; 2379 if (set_bad && test_bit(In_sync, &rdev->flags) 2380 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2381 retry = 1; 2382 if (retry) 2383 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) { 2384 set_bit(R5_ReadError, &sh->dev[i].flags); 2385 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2386 } else 2387 set_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2388 else { 2389 clear_bit(R5_ReadError, &sh->dev[i].flags); 2390 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2391 if (!(set_bad 2392 && test_bit(In_sync, &rdev->flags) 2393 && rdev_set_badblocks( 2394 rdev, sh->sector, STRIPE_SECTORS, 0))) 2395 md_error(conf->mddev, rdev); 2396 } 2397 } 2398 rdev_dec_pending(rdev, conf->mddev); 2399 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2400 set_bit(STRIPE_HANDLE, &sh->state); 2401 raid5_release_stripe(sh); 2402 } 2403 2404 static void raid5_end_write_request(struct bio *bi) 2405 { 2406 struct stripe_head *sh = bi->bi_private; 2407 struct r5conf *conf = sh->raid_conf; 2408 int disks = sh->disks, i; 2409 struct md_rdev *uninitialized_var(rdev); 2410 sector_t first_bad; 2411 int bad_sectors; 2412 int replacement = 0; 2413 2414 for (i = 0 ; i < disks; i++) { 2415 if (bi == &sh->dev[i].req) { 2416 rdev = conf->disks[i].rdev; 2417 break; 2418 } 2419 if (bi == &sh->dev[i].rreq) { 2420 rdev = conf->disks[i].replacement; 2421 if (rdev) 2422 replacement = 1; 2423 else 2424 /* rdev was removed and 'replacement' 2425 * replaced it. rdev is not removed 2426 * until all requests are finished. 2427 */ 2428 rdev = conf->disks[i].rdev; 2429 break; 2430 } 2431 } 2432 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n", 2433 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2434 bi->bi_error); 2435 if (i == disks) { 2436 BUG(); 2437 return; 2438 } 2439 2440 if (replacement) { 2441 if (bi->bi_error) 2442 md_error(conf->mddev, rdev); 2443 else if (is_badblock(rdev, sh->sector, 2444 STRIPE_SECTORS, 2445 &first_bad, &bad_sectors)) 2446 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags); 2447 } else { 2448 if (bi->bi_error) { 2449 set_bit(STRIPE_DEGRADED, &sh->state); 2450 set_bit(WriteErrorSeen, &rdev->flags); 2451 set_bit(R5_WriteError, &sh->dev[i].flags); 2452 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2453 set_bit(MD_RECOVERY_NEEDED, 2454 &rdev->mddev->recovery); 2455 } else if (is_badblock(rdev, sh->sector, 2456 STRIPE_SECTORS, 2457 &first_bad, &bad_sectors)) { 2458 set_bit(R5_MadeGood, &sh->dev[i].flags); 2459 if (test_bit(R5_ReadError, &sh->dev[i].flags)) 2460 /* That was a successful write so make 2461 * sure it looks like we already did 2462 * a re-write. 2463 */ 2464 set_bit(R5_ReWrite, &sh->dev[i].flags); 2465 } 2466 } 2467 rdev_dec_pending(rdev, conf->mddev); 2468 2469 if (sh->batch_head && bi->bi_error && !replacement) 2470 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state); 2471 2472 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags)) 2473 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2474 set_bit(STRIPE_HANDLE, &sh->state); 2475 raid5_release_stripe(sh); 2476 2477 if (sh->batch_head && sh != sh->batch_head) 2478 raid5_release_stripe(sh->batch_head); 2479 } 2480 2481 static void raid5_build_block(struct stripe_head *sh, int i, int previous) 2482 { 2483 struct r5dev *dev = &sh->dev[i]; 2484 2485 bio_init(&dev->req); 2486 dev->req.bi_io_vec = &dev->vec; 2487 dev->req.bi_max_vecs = 1; 2488 dev->req.bi_private = sh; 2489 2490 bio_init(&dev->rreq); 2491 dev->rreq.bi_io_vec = &dev->rvec; 2492 dev->rreq.bi_max_vecs = 1; 2493 dev->rreq.bi_private = sh; 2494 2495 dev->flags = 0; 2496 dev->sector = raid5_compute_blocknr(sh, i, previous); 2497 } 2498 2499 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev) 2500 { 2501 char b[BDEVNAME_SIZE]; 2502 struct r5conf *conf = mddev->private; 2503 unsigned long flags; 2504 pr_debug("raid456: error called\n"); 2505 2506 spin_lock_irqsave(&conf->device_lock, flags); 2507 clear_bit(In_sync, &rdev->flags); 2508 mddev->degraded = calc_degraded(conf); 2509 spin_unlock_irqrestore(&conf->device_lock, flags); 2510 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2511 2512 set_bit(Blocked, &rdev->flags); 2513 set_bit(Faulty, &rdev->flags); 2514 set_bit(MD_CHANGE_DEVS, &mddev->flags); 2515 set_bit(MD_CHANGE_PENDING, &mddev->flags); 2516 printk(KERN_ALERT 2517 "md/raid:%s: Disk failure on %s, disabling device.\n" 2518 "md/raid:%s: Operation continuing on %d devices.\n", 2519 mdname(mddev), 2520 bdevname(rdev->bdev, b), 2521 mdname(mddev), 2522 conf->raid_disks - mddev->degraded); 2523 } 2524 2525 /* 2526 * Input: a 'big' sector number, 2527 * Output: index of the data and parity disk, and the sector # in them. 2528 */ 2529 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector, 2530 int previous, int *dd_idx, 2531 struct stripe_head *sh) 2532 { 2533 sector_t stripe, stripe2; 2534 sector_t chunk_number; 2535 unsigned int chunk_offset; 2536 int pd_idx, qd_idx; 2537 int ddf_layout = 0; 2538 sector_t new_sector; 2539 int algorithm = previous ? conf->prev_algo 2540 : conf->algorithm; 2541 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 2542 : conf->chunk_sectors; 2543 int raid_disks = previous ? conf->previous_raid_disks 2544 : conf->raid_disks; 2545 int data_disks = raid_disks - conf->max_degraded; 2546 2547 /* First compute the information on this sector */ 2548 2549 /* 2550 * Compute the chunk number and the sector offset inside the chunk 2551 */ 2552 chunk_offset = sector_div(r_sector, sectors_per_chunk); 2553 chunk_number = r_sector; 2554 2555 /* 2556 * Compute the stripe number 2557 */ 2558 stripe = chunk_number; 2559 *dd_idx = sector_div(stripe, data_disks); 2560 stripe2 = stripe; 2561 /* 2562 * Select the parity disk based on the user selected algorithm. 2563 */ 2564 pd_idx = qd_idx = -1; 2565 switch(conf->level) { 2566 case 4: 2567 pd_idx = data_disks; 2568 break; 2569 case 5: 2570 switch (algorithm) { 2571 case ALGORITHM_LEFT_ASYMMETRIC: 2572 pd_idx = data_disks - sector_div(stripe2, raid_disks); 2573 if (*dd_idx >= pd_idx) 2574 (*dd_idx)++; 2575 break; 2576 case ALGORITHM_RIGHT_ASYMMETRIC: 2577 pd_idx = sector_div(stripe2, raid_disks); 2578 if (*dd_idx >= pd_idx) 2579 (*dd_idx)++; 2580 break; 2581 case ALGORITHM_LEFT_SYMMETRIC: 2582 pd_idx = data_disks - sector_div(stripe2, raid_disks); 2583 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2584 break; 2585 case ALGORITHM_RIGHT_SYMMETRIC: 2586 pd_idx = sector_div(stripe2, raid_disks); 2587 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2588 break; 2589 case ALGORITHM_PARITY_0: 2590 pd_idx = 0; 2591 (*dd_idx)++; 2592 break; 2593 case ALGORITHM_PARITY_N: 2594 pd_idx = data_disks; 2595 break; 2596 default: 2597 BUG(); 2598 } 2599 break; 2600 case 6: 2601 2602 switch (algorithm) { 2603 case ALGORITHM_LEFT_ASYMMETRIC: 2604 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2605 qd_idx = pd_idx + 1; 2606 if (pd_idx == raid_disks-1) { 2607 (*dd_idx)++; /* Q D D D P */ 2608 qd_idx = 0; 2609 } else if (*dd_idx >= pd_idx) 2610 (*dd_idx) += 2; /* D D P Q D */ 2611 break; 2612 case ALGORITHM_RIGHT_ASYMMETRIC: 2613 pd_idx = sector_div(stripe2, raid_disks); 2614 qd_idx = pd_idx + 1; 2615 if (pd_idx == raid_disks-1) { 2616 (*dd_idx)++; /* Q D D D P */ 2617 qd_idx = 0; 2618 } else if (*dd_idx >= pd_idx) 2619 (*dd_idx) += 2; /* D D P Q D */ 2620 break; 2621 case ALGORITHM_LEFT_SYMMETRIC: 2622 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2623 qd_idx = (pd_idx + 1) % raid_disks; 2624 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 2625 break; 2626 case ALGORITHM_RIGHT_SYMMETRIC: 2627 pd_idx = sector_div(stripe2, raid_disks); 2628 qd_idx = (pd_idx + 1) % raid_disks; 2629 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 2630 break; 2631 2632 case ALGORITHM_PARITY_0: 2633 pd_idx = 0; 2634 qd_idx = 1; 2635 (*dd_idx) += 2; 2636 break; 2637 case ALGORITHM_PARITY_N: 2638 pd_idx = data_disks; 2639 qd_idx = data_disks + 1; 2640 break; 2641 2642 case ALGORITHM_ROTATING_ZERO_RESTART: 2643 /* Exactly the same as RIGHT_ASYMMETRIC, but or 2644 * of blocks for computing Q is different. 2645 */ 2646 pd_idx = sector_div(stripe2, raid_disks); 2647 qd_idx = pd_idx + 1; 2648 if (pd_idx == raid_disks-1) { 2649 (*dd_idx)++; /* Q D D D P */ 2650 qd_idx = 0; 2651 } else if (*dd_idx >= pd_idx) 2652 (*dd_idx) += 2; /* D D P Q D */ 2653 ddf_layout = 1; 2654 break; 2655 2656 case ALGORITHM_ROTATING_N_RESTART: 2657 /* Same a left_asymmetric, by first stripe is 2658 * D D D P Q rather than 2659 * Q D D D P 2660 */ 2661 stripe2 += 1; 2662 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2663 qd_idx = pd_idx + 1; 2664 if (pd_idx == raid_disks-1) { 2665 (*dd_idx)++; /* Q D D D P */ 2666 qd_idx = 0; 2667 } else if (*dd_idx >= pd_idx) 2668 (*dd_idx) += 2; /* D D P Q D */ 2669 ddf_layout = 1; 2670 break; 2671 2672 case ALGORITHM_ROTATING_N_CONTINUE: 2673 /* Same as left_symmetric but Q is before P */ 2674 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2675 qd_idx = (pd_idx + raid_disks - 1) % raid_disks; 2676 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2677 ddf_layout = 1; 2678 break; 2679 2680 case ALGORITHM_LEFT_ASYMMETRIC_6: 2681 /* RAID5 left_asymmetric, with Q on last device */ 2682 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 2683 if (*dd_idx >= pd_idx) 2684 (*dd_idx)++; 2685 qd_idx = raid_disks - 1; 2686 break; 2687 2688 case ALGORITHM_RIGHT_ASYMMETRIC_6: 2689 pd_idx = sector_div(stripe2, raid_disks-1); 2690 if (*dd_idx >= pd_idx) 2691 (*dd_idx)++; 2692 qd_idx = raid_disks - 1; 2693 break; 2694 2695 case ALGORITHM_LEFT_SYMMETRIC_6: 2696 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 2697 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 2698 qd_idx = raid_disks - 1; 2699 break; 2700 2701 case ALGORITHM_RIGHT_SYMMETRIC_6: 2702 pd_idx = sector_div(stripe2, raid_disks-1); 2703 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 2704 qd_idx = raid_disks - 1; 2705 break; 2706 2707 case ALGORITHM_PARITY_0_6: 2708 pd_idx = 0; 2709 (*dd_idx)++; 2710 qd_idx = raid_disks - 1; 2711 break; 2712 2713 default: 2714 BUG(); 2715 } 2716 break; 2717 } 2718 2719 if (sh) { 2720 sh->pd_idx = pd_idx; 2721 sh->qd_idx = qd_idx; 2722 sh->ddf_layout = ddf_layout; 2723 } 2724 /* 2725 * Finally, compute the new sector number 2726 */ 2727 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset; 2728 return new_sector; 2729 } 2730 2731 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous) 2732 { 2733 struct r5conf *conf = sh->raid_conf; 2734 int raid_disks = sh->disks; 2735 int data_disks = raid_disks - conf->max_degraded; 2736 sector_t new_sector = sh->sector, check; 2737 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 2738 : conf->chunk_sectors; 2739 int algorithm = previous ? conf->prev_algo 2740 : conf->algorithm; 2741 sector_t stripe; 2742 int chunk_offset; 2743 sector_t chunk_number; 2744 int dummy1, dd_idx = i; 2745 sector_t r_sector; 2746 struct stripe_head sh2; 2747 2748 chunk_offset = sector_div(new_sector, sectors_per_chunk); 2749 stripe = new_sector; 2750 2751 if (i == sh->pd_idx) 2752 return 0; 2753 switch(conf->level) { 2754 case 4: break; 2755 case 5: 2756 switch (algorithm) { 2757 case ALGORITHM_LEFT_ASYMMETRIC: 2758 case ALGORITHM_RIGHT_ASYMMETRIC: 2759 if (i > sh->pd_idx) 2760 i--; 2761 break; 2762 case ALGORITHM_LEFT_SYMMETRIC: 2763 case ALGORITHM_RIGHT_SYMMETRIC: 2764 if (i < sh->pd_idx) 2765 i += raid_disks; 2766 i -= (sh->pd_idx + 1); 2767 break; 2768 case ALGORITHM_PARITY_0: 2769 i -= 1; 2770 break; 2771 case ALGORITHM_PARITY_N: 2772 break; 2773 default: 2774 BUG(); 2775 } 2776 break; 2777 case 6: 2778 if (i == sh->qd_idx) 2779 return 0; /* It is the Q disk */ 2780 switch (algorithm) { 2781 case ALGORITHM_LEFT_ASYMMETRIC: 2782 case ALGORITHM_RIGHT_ASYMMETRIC: 2783 case ALGORITHM_ROTATING_ZERO_RESTART: 2784 case ALGORITHM_ROTATING_N_RESTART: 2785 if (sh->pd_idx == raid_disks-1) 2786 i--; /* Q D D D P */ 2787 else if (i > sh->pd_idx) 2788 i -= 2; /* D D P Q D */ 2789 break; 2790 case ALGORITHM_LEFT_SYMMETRIC: 2791 case ALGORITHM_RIGHT_SYMMETRIC: 2792 if (sh->pd_idx == raid_disks-1) 2793 i--; /* Q D D D P */ 2794 else { 2795 /* D D P Q D */ 2796 if (i < sh->pd_idx) 2797 i += raid_disks; 2798 i -= (sh->pd_idx + 2); 2799 } 2800 break; 2801 case ALGORITHM_PARITY_0: 2802 i -= 2; 2803 break; 2804 case ALGORITHM_PARITY_N: 2805 break; 2806 case ALGORITHM_ROTATING_N_CONTINUE: 2807 /* Like left_symmetric, but P is before Q */ 2808 if (sh->pd_idx == 0) 2809 i--; /* P D D D Q */ 2810 else { 2811 /* D D Q P D */ 2812 if (i < sh->pd_idx) 2813 i += raid_disks; 2814 i -= (sh->pd_idx + 1); 2815 } 2816 break; 2817 case ALGORITHM_LEFT_ASYMMETRIC_6: 2818 case ALGORITHM_RIGHT_ASYMMETRIC_6: 2819 if (i > sh->pd_idx) 2820 i--; 2821 break; 2822 case ALGORITHM_LEFT_SYMMETRIC_6: 2823 case ALGORITHM_RIGHT_SYMMETRIC_6: 2824 if (i < sh->pd_idx) 2825 i += data_disks + 1; 2826 i -= (sh->pd_idx + 1); 2827 break; 2828 case ALGORITHM_PARITY_0_6: 2829 i -= 1; 2830 break; 2831 default: 2832 BUG(); 2833 } 2834 break; 2835 } 2836 2837 chunk_number = stripe * data_disks + i; 2838 r_sector = chunk_number * sectors_per_chunk + chunk_offset; 2839 2840 check = raid5_compute_sector(conf, r_sector, 2841 previous, &dummy1, &sh2); 2842 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx 2843 || sh2.qd_idx != sh->qd_idx) { 2844 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n", 2845 mdname(conf->mddev)); 2846 return 0; 2847 } 2848 return r_sector; 2849 } 2850 2851 static void 2852 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s, 2853 int rcw, int expand) 2854 { 2855 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks; 2856 struct r5conf *conf = sh->raid_conf; 2857 int level = conf->level; 2858 2859 if (rcw) { 2860 2861 for (i = disks; i--; ) { 2862 struct r5dev *dev = &sh->dev[i]; 2863 2864 if (dev->towrite) { 2865 set_bit(R5_LOCKED, &dev->flags); 2866 set_bit(R5_Wantdrain, &dev->flags); 2867 if (!expand) 2868 clear_bit(R5_UPTODATE, &dev->flags); 2869 s->locked++; 2870 } 2871 } 2872 /* if we are not expanding this is a proper write request, and 2873 * there will be bios with new data to be drained into the 2874 * stripe cache 2875 */ 2876 if (!expand) { 2877 if (!s->locked) 2878 /* False alarm, nothing to do */ 2879 return; 2880 sh->reconstruct_state = reconstruct_state_drain_run; 2881 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 2882 } else 2883 sh->reconstruct_state = reconstruct_state_run; 2884 2885 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 2886 2887 if (s->locked + conf->max_degraded == disks) 2888 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state)) 2889 atomic_inc(&conf->pending_full_writes); 2890 } else { 2891 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) || 2892 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags))); 2893 BUG_ON(level == 6 && 2894 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) || 2895 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags)))); 2896 2897 for (i = disks; i--; ) { 2898 struct r5dev *dev = &sh->dev[i]; 2899 if (i == pd_idx || i == qd_idx) 2900 continue; 2901 2902 if (dev->towrite && 2903 (test_bit(R5_UPTODATE, &dev->flags) || 2904 test_bit(R5_Wantcompute, &dev->flags))) { 2905 set_bit(R5_Wantdrain, &dev->flags); 2906 set_bit(R5_LOCKED, &dev->flags); 2907 clear_bit(R5_UPTODATE, &dev->flags); 2908 s->locked++; 2909 } 2910 } 2911 if (!s->locked) 2912 /* False alarm - nothing to do */ 2913 return; 2914 sh->reconstruct_state = reconstruct_state_prexor_drain_run; 2915 set_bit(STRIPE_OP_PREXOR, &s->ops_request); 2916 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 2917 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 2918 } 2919 2920 /* keep the parity disk(s) locked while asynchronous operations 2921 * are in flight 2922 */ 2923 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); 2924 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 2925 s->locked++; 2926 2927 if (level == 6) { 2928 int qd_idx = sh->qd_idx; 2929 struct r5dev *dev = &sh->dev[qd_idx]; 2930 2931 set_bit(R5_LOCKED, &dev->flags); 2932 clear_bit(R5_UPTODATE, &dev->flags); 2933 s->locked++; 2934 } 2935 2936 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n", 2937 __func__, (unsigned long long)sh->sector, 2938 s->locked, s->ops_request); 2939 } 2940 2941 /* 2942 * Each stripe/dev can have one or more bion attached. 2943 * toread/towrite point to the first in a chain. 2944 * The bi_next chain must be in order. 2945 */ 2946 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, 2947 int forwrite, int previous) 2948 { 2949 struct bio **bip; 2950 struct r5conf *conf = sh->raid_conf; 2951 int firstwrite=0; 2952 2953 pr_debug("adding bi b#%llu to stripe s#%llu\n", 2954 (unsigned long long)bi->bi_iter.bi_sector, 2955 (unsigned long long)sh->sector); 2956 2957 /* 2958 * If several bio share a stripe. The bio bi_phys_segments acts as a 2959 * reference count to avoid race. The reference count should already be 2960 * increased before this function is called (for example, in 2961 * raid5_make_request()), so other bio sharing this stripe will not free the 2962 * stripe. If a stripe is owned by one stripe, the stripe lock will 2963 * protect it. 2964 */ 2965 spin_lock_irq(&sh->stripe_lock); 2966 /* Don't allow new IO added to stripes in batch list */ 2967 if (sh->batch_head) 2968 goto overlap; 2969 if (forwrite) { 2970 bip = &sh->dev[dd_idx].towrite; 2971 if (*bip == NULL) 2972 firstwrite = 1; 2973 } else 2974 bip = &sh->dev[dd_idx].toread; 2975 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) { 2976 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector) 2977 goto overlap; 2978 bip = & (*bip)->bi_next; 2979 } 2980 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi)) 2981 goto overlap; 2982 2983 if (!forwrite || previous) 2984 clear_bit(STRIPE_BATCH_READY, &sh->state); 2985 2986 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next); 2987 if (*bip) 2988 bi->bi_next = *bip; 2989 *bip = bi; 2990 raid5_inc_bi_active_stripes(bi); 2991 2992 if (forwrite) { 2993 /* check if page is covered */ 2994 sector_t sector = sh->dev[dd_idx].sector; 2995 for (bi=sh->dev[dd_idx].towrite; 2996 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS && 2997 bi && bi->bi_iter.bi_sector <= sector; 2998 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) { 2999 if (bio_end_sector(bi) >= sector) 3000 sector = bio_end_sector(bi); 3001 } 3002 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS) 3003 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags)) 3004 sh->overwrite_disks++; 3005 } 3006 3007 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n", 3008 (unsigned long long)(*bip)->bi_iter.bi_sector, 3009 (unsigned long long)sh->sector, dd_idx); 3010 3011 if (conf->mddev->bitmap && firstwrite) { 3012 /* Cannot hold spinlock over bitmap_startwrite, 3013 * but must ensure this isn't added to a batch until 3014 * we have added to the bitmap and set bm_seq. 3015 * So set STRIPE_BITMAP_PENDING to prevent 3016 * batching. 3017 * If multiple add_stripe_bio() calls race here they 3018 * much all set STRIPE_BITMAP_PENDING. So only the first one 3019 * to complete "bitmap_startwrite" gets to set 3020 * STRIPE_BIT_DELAY. This is important as once a stripe 3021 * is added to a batch, STRIPE_BIT_DELAY cannot be changed 3022 * any more. 3023 */ 3024 set_bit(STRIPE_BITMAP_PENDING, &sh->state); 3025 spin_unlock_irq(&sh->stripe_lock); 3026 bitmap_startwrite(conf->mddev->bitmap, sh->sector, 3027 STRIPE_SECTORS, 0); 3028 spin_lock_irq(&sh->stripe_lock); 3029 clear_bit(STRIPE_BITMAP_PENDING, &sh->state); 3030 if (!sh->batch_head) { 3031 sh->bm_seq = conf->seq_flush+1; 3032 set_bit(STRIPE_BIT_DELAY, &sh->state); 3033 } 3034 } 3035 spin_unlock_irq(&sh->stripe_lock); 3036 3037 if (stripe_can_batch(sh)) 3038 stripe_add_to_batch_list(conf, sh); 3039 return 1; 3040 3041 overlap: 3042 set_bit(R5_Overlap, &sh->dev[dd_idx].flags); 3043 spin_unlock_irq(&sh->stripe_lock); 3044 return 0; 3045 } 3046 3047 static void end_reshape(struct r5conf *conf); 3048 3049 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 3050 struct stripe_head *sh) 3051 { 3052 int sectors_per_chunk = 3053 previous ? conf->prev_chunk_sectors : conf->chunk_sectors; 3054 int dd_idx; 3055 int chunk_offset = sector_div(stripe, sectors_per_chunk); 3056 int disks = previous ? conf->previous_raid_disks : conf->raid_disks; 3057 3058 raid5_compute_sector(conf, 3059 stripe * (disks - conf->max_degraded) 3060 *sectors_per_chunk + chunk_offset, 3061 previous, 3062 &dd_idx, sh); 3063 } 3064 3065 static void 3066 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh, 3067 struct stripe_head_state *s, int disks, 3068 struct bio_list *return_bi) 3069 { 3070 int i; 3071 BUG_ON(sh->batch_head); 3072 for (i = disks; i--; ) { 3073 struct bio *bi; 3074 int bitmap_end = 0; 3075 3076 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 3077 struct md_rdev *rdev; 3078 rcu_read_lock(); 3079 rdev = rcu_dereference(conf->disks[i].rdev); 3080 if (rdev && test_bit(In_sync, &rdev->flags)) 3081 atomic_inc(&rdev->nr_pending); 3082 else 3083 rdev = NULL; 3084 rcu_read_unlock(); 3085 if (rdev) { 3086 if (!rdev_set_badblocks( 3087 rdev, 3088 sh->sector, 3089 STRIPE_SECTORS, 0)) 3090 md_error(conf->mddev, rdev); 3091 rdev_dec_pending(rdev, conf->mddev); 3092 } 3093 } 3094 spin_lock_irq(&sh->stripe_lock); 3095 /* fail all writes first */ 3096 bi = sh->dev[i].towrite; 3097 sh->dev[i].towrite = NULL; 3098 sh->overwrite_disks = 0; 3099 spin_unlock_irq(&sh->stripe_lock); 3100 if (bi) 3101 bitmap_end = 1; 3102 3103 r5l_stripe_write_finished(sh); 3104 3105 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 3106 wake_up(&conf->wait_for_overlap); 3107 3108 while (bi && bi->bi_iter.bi_sector < 3109 sh->dev[i].sector + STRIPE_SECTORS) { 3110 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector); 3111 3112 bi->bi_error = -EIO; 3113 if (!raid5_dec_bi_active_stripes(bi)) { 3114 md_write_end(conf->mddev); 3115 bio_list_add(return_bi, bi); 3116 } 3117 bi = nextbi; 3118 } 3119 if (bitmap_end) 3120 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3121 STRIPE_SECTORS, 0, 0); 3122 bitmap_end = 0; 3123 /* and fail all 'written' */ 3124 bi = sh->dev[i].written; 3125 sh->dev[i].written = NULL; 3126 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) { 3127 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 3128 sh->dev[i].page = sh->dev[i].orig_page; 3129 } 3130 3131 if (bi) bitmap_end = 1; 3132 while (bi && bi->bi_iter.bi_sector < 3133 sh->dev[i].sector + STRIPE_SECTORS) { 3134 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector); 3135 3136 bi->bi_error = -EIO; 3137 if (!raid5_dec_bi_active_stripes(bi)) { 3138 md_write_end(conf->mddev); 3139 bio_list_add(return_bi, bi); 3140 } 3141 bi = bi2; 3142 } 3143 3144 /* fail any reads if this device is non-operational and 3145 * the data has not reached the cache yet. 3146 */ 3147 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) && 3148 s->failed > conf->max_degraded && 3149 (!test_bit(R5_Insync, &sh->dev[i].flags) || 3150 test_bit(R5_ReadError, &sh->dev[i].flags))) { 3151 spin_lock_irq(&sh->stripe_lock); 3152 bi = sh->dev[i].toread; 3153 sh->dev[i].toread = NULL; 3154 spin_unlock_irq(&sh->stripe_lock); 3155 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 3156 wake_up(&conf->wait_for_overlap); 3157 if (bi) 3158 s->to_read--; 3159 while (bi && bi->bi_iter.bi_sector < 3160 sh->dev[i].sector + STRIPE_SECTORS) { 3161 struct bio *nextbi = 3162 r5_next_bio(bi, sh->dev[i].sector); 3163 3164 bi->bi_error = -EIO; 3165 if (!raid5_dec_bi_active_stripes(bi)) 3166 bio_list_add(return_bi, bi); 3167 bi = nextbi; 3168 } 3169 } 3170 if (bitmap_end) 3171 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3172 STRIPE_SECTORS, 0, 0); 3173 /* If we were in the middle of a write the parity block might 3174 * still be locked - so just clear all R5_LOCKED flags 3175 */ 3176 clear_bit(R5_LOCKED, &sh->dev[i].flags); 3177 } 3178 s->to_write = 0; 3179 s->written = 0; 3180 3181 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 3182 if (atomic_dec_and_test(&conf->pending_full_writes)) 3183 md_wakeup_thread(conf->mddev->thread); 3184 } 3185 3186 static void 3187 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh, 3188 struct stripe_head_state *s) 3189 { 3190 int abort = 0; 3191 int i; 3192 3193 BUG_ON(sh->batch_head); 3194 clear_bit(STRIPE_SYNCING, &sh->state); 3195 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 3196 wake_up(&conf->wait_for_overlap); 3197 s->syncing = 0; 3198 s->replacing = 0; 3199 /* There is nothing more to do for sync/check/repair. 3200 * Don't even need to abort as that is handled elsewhere 3201 * if needed, and not always wanted e.g. if there is a known 3202 * bad block here. 3203 * For recover/replace we need to record a bad block on all 3204 * non-sync devices, or abort the recovery 3205 */ 3206 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) { 3207 /* During recovery devices cannot be removed, so 3208 * locking and refcounting of rdevs is not needed 3209 */ 3210 for (i = 0; i < conf->raid_disks; i++) { 3211 struct md_rdev *rdev = conf->disks[i].rdev; 3212 if (rdev 3213 && !test_bit(Faulty, &rdev->flags) 3214 && !test_bit(In_sync, &rdev->flags) 3215 && !rdev_set_badblocks(rdev, sh->sector, 3216 STRIPE_SECTORS, 0)) 3217 abort = 1; 3218 rdev = conf->disks[i].replacement; 3219 if (rdev 3220 && !test_bit(Faulty, &rdev->flags) 3221 && !test_bit(In_sync, &rdev->flags) 3222 && !rdev_set_badblocks(rdev, sh->sector, 3223 STRIPE_SECTORS, 0)) 3224 abort = 1; 3225 } 3226 if (abort) 3227 conf->recovery_disabled = 3228 conf->mddev->recovery_disabled; 3229 } 3230 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort); 3231 } 3232 3233 static int want_replace(struct stripe_head *sh, int disk_idx) 3234 { 3235 struct md_rdev *rdev; 3236 int rv = 0; 3237 /* Doing recovery so rcu locking not required */ 3238 rdev = sh->raid_conf->disks[disk_idx].replacement; 3239 if (rdev 3240 && !test_bit(Faulty, &rdev->flags) 3241 && !test_bit(In_sync, &rdev->flags) 3242 && (rdev->recovery_offset <= sh->sector 3243 || rdev->mddev->recovery_cp <= sh->sector)) 3244 rv = 1; 3245 3246 return rv; 3247 } 3248 3249 /* fetch_block - checks the given member device to see if its data needs 3250 * to be read or computed to satisfy a request. 3251 * 3252 * Returns 1 when no more member devices need to be checked, otherwise returns 3253 * 0 to tell the loop in handle_stripe_fill to continue 3254 */ 3255 3256 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s, 3257 int disk_idx, int disks) 3258 { 3259 struct r5dev *dev = &sh->dev[disk_idx]; 3260 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]], 3261 &sh->dev[s->failed_num[1]] }; 3262 int i; 3263 3264 3265 if (test_bit(R5_LOCKED, &dev->flags) || 3266 test_bit(R5_UPTODATE, &dev->flags)) 3267 /* No point reading this as we already have it or have 3268 * decided to get it. 3269 */ 3270 return 0; 3271 3272 if (dev->toread || 3273 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags))) 3274 /* We need this block to directly satisfy a request */ 3275 return 1; 3276 3277 if (s->syncing || s->expanding || 3278 (s->replacing && want_replace(sh, disk_idx))) 3279 /* When syncing, or expanding we read everything. 3280 * When replacing, we need the replaced block. 3281 */ 3282 return 1; 3283 3284 if ((s->failed >= 1 && fdev[0]->toread) || 3285 (s->failed >= 2 && fdev[1]->toread)) 3286 /* If we want to read from a failed device, then 3287 * we need to actually read every other device. 3288 */ 3289 return 1; 3290 3291 /* Sometimes neither read-modify-write nor reconstruct-write 3292 * cycles can work. In those cases we read every block we 3293 * can. Then the parity-update is certain to have enough to 3294 * work with. 3295 * This can only be a problem when we need to write something, 3296 * and some device has failed. If either of those tests 3297 * fail we need look no further. 3298 */ 3299 if (!s->failed || !s->to_write) 3300 return 0; 3301 3302 if (test_bit(R5_Insync, &dev->flags) && 3303 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3304 /* Pre-reads at not permitted until after short delay 3305 * to gather multiple requests. However if this 3306 * device is no Insync, the block could only be be computed 3307 * and there is no need to delay that. 3308 */ 3309 return 0; 3310 3311 for (i = 0; i < s->failed && i < 2; i++) { 3312 if (fdev[i]->towrite && 3313 !test_bit(R5_UPTODATE, &fdev[i]->flags) && 3314 !test_bit(R5_OVERWRITE, &fdev[i]->flags)) 3315 /* If we have a partial write to a failed 3316 * device, then we will need to reconstruct 3317 * the content of that device, so all other 3318 * devices must be read. 3319 */ 3320 return 1; 3321 } 3322 3323 /* If we are forced to do a reconstruct-write, either because 3324 * the current RAID6 implementation only supports that, or 3325 * or because parity cannot be trusted and we are currently 3326 * recovering it, there is extra need to be careful. 3327 * If one of the devices that we would need to read, because 3328 * it is not being overwritten (and maybe not written at all) 3329 * is missing/faulty, then we need to read everything we can. 3330 */ 3331 if (sh->raid_conf->level != 6 && 3332 sh->sector < sh->raid_conf->mddev->recovery_cp) 3333 /* reconstruct-write isn't being forced */ 3334 return 0; 3335 for (i = 0; i < s->failed && i < 2; i++) { 3336 if (s->failed_num[i] != sh->pd_idx && 3337 s->failed_num[i] != sh->qd_idx && 3338 !test_bit(R5_UPTODATE, &fdev[i]->flags) && 3339 !test_bit(R5_OVERWRITE, &fdev[i]->flags)) 3340 return 1; 3341 } 3342 3343 return 0; 3344 } 3345 3346 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s, 3347 int disk_idx, int disks) 3348 { 3349 struct r5dev *dev = &sh->dev[disk_idx]; 3350 3351 /* is the data in this block needed, and can we get it? */ 3352 if (need_this_block(sh, s, disk_idx, disks)) { 3353 /* we would like to get this block, possibly by computing it, 3354 * otherwise read it if the backing disk is insync 3355 */ 3356 BUG_ON(test_bit(R5_Wantcompute, &dev->flags)); 3357 BUG_ON(test_bit(R5_Wantread, &dev->flags)); 3358 BUG_ON(sh->batch_head); 3359 if ((s->uptodate == disks - 1) && 3360 (s->failed && (disk_idx == s->failed_num[0] || 3361 disk_idx == s->failed_num[1]))) { 3362 /* have disk failed, and we're requested to fetch it; 3363 * do compute it 3364 */ 3365 pr_debug("Computing stripe %llu block %d\n", 3366 (unsigned long long)sh->sector, disk_idx); 3367 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3368 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3369 set_bit(R5_Wantcompute, &dev->flags); 3370 sh->ops.target = disk_idx; 3371 sh->ops.target2 = -1; /* no 2nd target */ 3372 s->req_compute = 1; 3373 /* Careful: from this point on 'uptodate' is in the eye 3374 * of raid_run_ops which services 'compute' operations 3375 * before writes. R5_Wantcompute flags a block that will 3376 * be R5_UPTODATE by the time it is needed for a 3377 * subsequent operation. 3378 */ 3379 s->uptodate++; 3380 return 1; 3381 } else if (s->uptodate == disks-2 && s->failed >= 2) { 3382 /* Computing 2-failure is *very* expensive; only 3383 * do it if failed >= 2 3384 */ 3385 int other; 3386 for (other = disks; other--; ) { 3387 if (other == disk_idx) 3388 continue; 3389 if (!test_bit(R5_UPTODATE, 3390 &sh->dev[other].flags)) 3391 break; 3392 } 3393 BUG_ON(other < 0); 3394 pr_debug("Computing stripe %llu blocks %d,%d\n", 3395 (unsigned long long)sh->sector, 3396 disk_idx, other); 3397 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3398 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3399 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags); 3400 set_bit(R5_Wantcompute, &sh->dev[other].flags); 3401 sh->ops.target = disk_idx; 3402 sh->ops.target2 = other; 3403 s->uptodate += 2; 3404 s->req_compute = 1; 3405 return 1; 3406 } else if (test_bit(R5_Insync, &dev->flags)) { 3407 set_bit(R5_LOCKED, &dev->flags); 3408 set_bit(R5_Wantread, &dev->flags); 3409 s->locked++; 3410 pr_debug("Reading block %d (sync=%d)\n", 3411 disk_idx, s->syncing); 3412 } 3413 } 3414 3415 return 0; 3416 } 3417 3418 /** 3419 * handle_stripe_fill - read or compute data to satisfy pending requests. 3420 */ 3421 static void handle_stripe_fill(struct stripe_head *sh, 3422 struct stripe_head_state *s, 3423 int disks) 3424 { 3425 int i; 3426 3427 /* look for blocks to read/compute, skip this if a compute 3428 * is already in flight, or if the stripe contents are in the 3429 * midst of changing due to a write 3430 */ 3431 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state && 3432 !sh->reconstruct_state) 3433 for (i = disks; i--; ) 3434 if (fetch_block(sh, s, i, disks)) 3435 break; 3436 set_bit(STRIPE_HANDLE, &sh->state); 3437 } 3438 3439 static void break_stripe_batch_list(struct stripe_head *head_sh, 3440 unsigned long handle_flags); 3441 /* handle_stripe_clean_event 3442 * any written block on an uptodate or failed drive can be returned. 3443 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but 3444 * never LOCKED, so we don't need to test 'failed' directly. 3445 */ 3446 static void handle_stripe_clean_event(struct r5conf *conf, 3447 struct stripe_head *sh, int disks, struct bio_list *return_bi) 3448 { 3449 int i; 3450 struct r5dev *dev; 3451 int discard_pending = 0; 3452 struct stripe_head *head_sh = sh; 3453 bool do_endio = false; 3454 3455 for (i = disks; i--; ) 3456 if (sh->dev[i].written) { 3457 dev = &sh->dev[i]; 3458 if (!test_bit(R5_LOCKED, &dev->flags) && 3459 (test_bit(R5_UPTODATE, &dev->flags) || 3460 test_bit(R5_Discard, &dev->flags) || 3461 test_bit(R5_SkipCopy, &dev->flags))) { 3462 /* We can return any write requests */ 3463 struct bio *wbi, *wbi2; 3464 pr_debug("Return write for disc %d\n", i); 3465 if (test_and_clear_bit(R5_Discard, &dev->flags)) 3466 clear_bit(R5_UPTODATE, &dev->flags); 3467 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) { 3468 WARN_ON(test_bit(R5_UPTODATE, &dev->flags)); 3469 } 3470 do_endio = true; 3471 3472 returnbi: 3473 dev->page = dev->orig_page; 3474 wbi = dev->written; 3475 dev->written = NULL; 3476 while (wbi && wbi->bi_iter.bi_sector < 3477 dev->sector + STRIPE_SECTORS) { 3478 wbi2 = r5_next_bio(wbi, dev->sector); 3479 if (!raid5_dec_bi_active_stripes(wbi)) { 3480 md_write_end(conf->mddev); 3481 bio_list_add(return_bi, wbi); 3482 } 3483 wbi = wbi2; 3484 } 3485 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3486 STRIPE_SECTORS, 3487 !test_bit(STRIPE_DEGRADED, &sh->state), 3488 0); 3489 if (head_sh->batch_head) { 3490 sh = list_first_entry(&sh->batch_list, 3491 struct stripe_head, 3492 batch_list); 3493 if (sh != head_sh) { 3494 dev = &sh->dev[i]; 3495 goto returnbi; 3496 } 3497 } 3498 sh = head_sh; 3499 dev = &sh->dev[i]; 3500 } else if (test_bit(R5_Discard, &dev->flags)) 3501 discard_pending = 1; 3502 WARN_ON(test_bit(R5_SkipCopy, &dev->flags)); 3503 WARN_ON(dev->page != dev->orig_page); 3504 } 3505 3506 r5l_stripe_write_finished(sh); 3507 3508 if (!discard_pending && 3509 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) { 3510 int hash; 3511 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 3512 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 3513 if (sh->qd_idx >= 0) { 3514 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 3515 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags); 3516 } 3517 /* now that discard is done we can proceed with any sync */ 3518 clear_bit(STRIPE_DISCARD, &sh->state); 3519 /* 3520 * SCSI discard will change some bio fields and the stripe has 3521 * no updated data, so remove it from hash list and the stripe 3522 * will be reinitialized 3523 */ 3524 unhash: 3525 hash = sh->hash_lock_index; 3526 spin_lock_irq(conf->hash_locks + hash); 3527 remove_hash(sh); 3528 spin_unlock_irq(conf->hash_locks + hash); 3529 if (head_sh->batch_head) { 3530 sh = list_first_entry(&sh->batch_list, 3531 struct stripe_head, batch_list); 3532 if (sh != head_sh) 3533 goto unhash; 3534 } 3535 sh = head_sh; 3536 3537 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) 3538 set_bit(STRIPE_HANDLE, &sh->state); 3539 3540 } 3541 3542 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 3543 if (atomic_dec_and_test(&conf->pending_full_writes)) 3544 md_wakeup_thread(conf->mddev->thread); 3545 3546 if (head_sh->batch_head && do_endio) 3547 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS); 3548 } 3549 3550 static void handle_stripe_dirtying(struct r5conf *conf, 3551 struct stripe_head *sh, 3552 struct stripe_head_state *s, 3553 int disks) 3554 { 3555 int rmw = 0, rcw = 0, i; 3556 sector_t recovery_cp = conf->mddev->recovery_cp; 3557 3558 /* Check whether resync is now happening or should start. 3559 * If yes, then the array is dirty (after unclean shutdown or 3560 * initial creation), so parity in some stripes might be inconsistent. 3561 * In this case, we need to always do reconstruct-write, to ensure 3562 * that in case of drive failure or read-error correction, we 3563 * generate correct data from the parity. 3564 */ 3565 if (conf->rmw_level == PARITY_DISABLE_RMW || 3566 (recovery_cp < MaxSector && sh->sector >= recovery_cp && 3567 s->failed == 0)) { 3568 /* Calculate the real rcw later - for now make it 3569 * look like rcw is cheaper 3570 */ 3571 rcw = 1; rmw = 2; 3572 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n", 3573 conf->rmw_level, (unsigned long long)recovery_cp, 3574 (unsigned long long)sh->sector); 3575 } else for (i = disks; i--; ) { 3576 /* would I have to read this buffer for read_modify_write */ 3577 struct r5dev *dev = &sh->dev[i]; 3578 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) && 3579 !test_bit(R5_LOCKED, &dev->flags) && 3580 !(test_bit(R5_UPTODATE, &dev->flags) || 3581 test_bit(R5_Wantcompute, &dev->flags))) { 3582 if (test_bit(R5_Insync, &dev->flags)) 3583 rmw++; 3584 else 3585 rmw += 2*disks; /* cannot read it */ 3586 } 3587 /* Would I have to read this buffer for reconstruct_write */ 3588 if (!test_bit(R5_OVERWRITE, &dev->flags) && 3589 i != sh->pd_idx && i != sh->qd_idx && 3590 !test_bit(R5_LOCKED, &dev->flags) && 3591 !(test_bit(R5_UPTODATE, &dev->flags) || 3592 test_bit(R5_Wantcompute, &dev->flags))) { 3593 if (test_bit(R5_Insync, &dev->flags)) 3594 rcw++; 3595 else 3596 rcw += 2*disks; 3597 } 3598 } 3599 pr_debug("for sector %llu, rmw=%d rcw=%d\n", 3600 (unsigned long long)sh->sector, rmw, rcw); 3601 set_bit(STRIPE_HANDLE, &sh->state); 3602 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_ENABLE_RMW)) && rmw > 0) { 3603 /* prefer read-modify-write, but need to get some data */ 3604 if (conf->mddev->queue) 3605 blk_add_trace_msg(conf->mddev->queue, 3606 "raid5 rmw %llu %d", 3607 (unsigned long long)sh->sector, rmw); 3608 for (i = disks; i--; ) { 3609 struct r5dev *dev = &sh->dev[i]; 3610 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) && 3611 !test_bit(R5_LOCKED, &dev->flags) && 3612 !(test_bit(R5_UPTODATE, &dev->flags) || 3613 test_bit(R5_Wantcompute, &dev->flags)) && 3614 test_bit(R5_Insync, &dev->flags)) { 3615 if (test_bit(STRIPE_PREREAD_ACTIVE, 3616 &sh->state)) { 3617 pr_debug("Read_old block %d for r-m-w\n", 3618 i); 3619 set_bit(R5_LOCKED, &dev->flags); 3620 set_bit(R5_Wantread, &dev->flags); 3621 s->locked++; 3622 } else { 3623 set_bit(STRIPE_DELAYED, &sh->state); 3624 set_bit(STRIPE_HANDLE, &sh->state); 3625 } 3626 } 3627 } 3628 } 3629 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_ENABLE_RMW)) && rcw > 0) { 3630 /* want reconstruct write, but need to get some data */ 3631 int qread =0; 3632 rcw = 0; 3633 for (i = disks; i--; ) { 3634 struct r5dev *dev = &sh->dev[i]; 3635 if (!test_bit(R5_OVERWRITE, &dev->flags) && 3636 i != sh->pd_idx && i != sh->qd_idx && 3637 !test_bit(R5_LOCKED, &dev->flags) && 3638 !(test_bit(R5_UPTODATE, &dev->flags) || 3639 test_bit(R5_Wantcompute, &dev->flags))) { 3640 rcw++; 3641 if (test_bit(R5_Insync, &dev->flags) && 3642 test_bit(STRIPE_PREREAD_ACTIVE, 3643 &sh->state)) { 3644 pr_debug("Read_old block " 3645 "%d for Reconstruct\n", i); 3646 set_bit(R5_LOCKED, &dev->flags); 3647 set_bit(R5_Wantread, &dev->flags); 3648 s->locked++; 3649 qread++; 3650 } else { 3651 set_bit(STRIPE_DELAYED, &sh->state); 3652 set_bit(STRIPE_HANDLE, &sh->state); 3653 } 3654 } 3655 } 3656 if (rcw && conf->mddev->queue) 3657 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d", 3658 (unsigned long long)sh->sector, 3659 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state)); 3660 } 3661 3662 if (rcw > disks && rmw > disks && 3663 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3664 set_bit(STRIPE_DELAYED, &sh->state); 3665 3666 /* now if nothing is locked, and if we have enough data, 3667 * we can start a write request 3668 */ 3669 /* since handle_stripe can be called at any time we need to handle the 3670 * case where a compute block operation has been submitted and then a 3671 * subsequent call wants to start a write request. raid_run_ops only 3672 * handles the case where compute block and reconstruct are requested 3673 * simultaneously. If this is not the case then new writes need to be 3674 * held off until the compute completes. 3675 */ 3676 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) && 3677 (s->locked == 0 && (rcw == 0 || rmw == 0) && 3678 !test_bit(STRIPE_BIT_DELAY, &sh->state))) 3679 schedule_reconstruction(sh, s, rcw == 0, 0); 3680 } 3681 3682 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh, 3683 struct stripe_head_state *s, int disks) 3684 { 3685 struct r5dev *dev = NULL; 3686 3687 BUG_ON(sh->batch_head); 3688 set_bit(STRIPE_HANDLE, &sh->state); 3689 3690 switch (sh->check_state) { 3691 case check_state_idle: 3692 /* start a new check operation if there are no failures */ 3693 if (s->failed == 0) { 3694 BUG_ON(s->uptodate != disks); 3695 sh->check_state = check_state_run; 3696 set_bit(STRIPE_OP_CHECK, &s->ops_request); 3697 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 3698 s->uptodate--; 3699 break; 3700 } 3701 dev = &sh->dev[s->failed_num[0]]; 3702 /* fall through */ 3703 case check_state_compute_result: 3704 sh->check_state = check_state_idle; 3705 if (!dev) 3706 dev = &sh->dev[sh->pd_idx]; 3707 3708 /* check that a write has not made the stripe insync */ 3709 if (test_bit(STRIPE_INSYNC, &sh->state)) 3710 break; 3711 3712 /* either failed parity check, or recovery is happening */ 3713 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags)); 3714 BUG_ON(s->uptodate != disks); 3715 3716 set_bit(R5_LOCKED, &dev->flags); 3717 s->locked++; 3718 set_bit(R5_Wantwrite, &dev->flags); 3719 3720 clear_bit(STRIPE_DEGRADED, &sh->state); 3721 set_bit(STRIPE_INSYNC, &sh->state); 3722 break; 3723 case check_state_run: 3724 break; /* we will be called again upon completion */ 3725 case check_state_check_result: 3726 sh->check_state = check_state_idle; 3727 3728 /* if a failure occurred during the check operation, leave 3729 * STRIPE_INSYNC not set and let the stripe be handled again 3730 */ 3731 if (s->failed) 3732 break; 3733 3734 /* handle a successful check operation, if parity is correct 3735 * we are done. Otherwise update the mismatch count and repair 3736 * parity if !MD_RECOVERY_CHECK 3737 */ 3738 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0) 3739 /* parity is correct (on disc, 3740 * not in buffer any more) 3741 */ 3742 set_bit(STRIPE_INSYNC, &sh->state); 3743 else { 3744 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches); 3745 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) 3746 /* don't try to repair!! */ 3747 set_bit(STRIPE_INSYNC, &sh->state); 3748 else { 3749 sh->check_state = check_state_compute_run; 3750 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3751 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3752 set_bit(R5_Wantcompute, 3753 &sh->dev[sh->pd_idx].flags); 3754 sh->ops.target = sh->pd_idx; 3755 sh->ops.target2 = -1; 3756 s->uptodate++; 3757 } 3758 } 3759 break; 3760 case check_state_compute_run: 3761 break; 3762 default: 3763 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n", 3764 __func__, sh->check_state, 3765 (unsigned long long) sh->sector); 3766 BUG(); 3767 } 3768 } 3769 3770 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh, 3771 struct stripe_head_state *s, 3772 int disks) 3773 { 3774 int pd_idx = sh->pd_idx; 3775 int qd_idx = sh->qd_idx; 3776 struct r5dev *dev; 3777 3778 BUG_ON(sh->batch_head); 3779 set_bit(STRIPE_HANDLE, &sh->state); 3780 3781 BUG_ON(s->failed > 2); 3782 3783 /* Want to check and possibly repair P and Q. 3784 * However there could be one 'failed' device, in which 3785 * case we can only check one of them, possibly using the 3786 * other to generate missing data 3787 */ 3788 3789 switch (sh->check_state) { 3790 case check_state_idle: 3791 /* start a new check operation if there are < 2 failures */ 3792 if (s->failed == s->q_failed) { 3793 /* The only possible failed device holds Q, so it 3794 * makes sense to check P (If anything else were failed, 3795 * we would have used P to recreate it). 3796 */ 3797 sh->check_state = check_state_run; 3798 } 3799 if (!s->q_failed && s->failed < 2) { 3800 /* Q is not failed, and we didn't use it to generate 3801 * anything, so it makes sense to check it 3802 */ 3803 if (sh->check_state == check_state_run) 3804 sh->check_state = check_state_run_pq; 3805 else 3806 sh->check_state = check_state_run_q; 3807 } 3808 3809 /* discard potentially stale zero_sum_result */ 3810 sh->ops.zero_sum_result = 0; 3811 3812 if (sh->check_state == check_state_run) { 3813 /* async_xor_zero_sum destroys the contents of P */ 3814 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 3815 s->uptodate--; 3816 } 3817 if (sh->check_state >= check_state_run && 3818 sh->check_state <= check_state_run_pq) { 3819 /* async_syndrome_zero_sum preserves P and Q, so 3820 * no need to mark them !uptodate here 3821 */ 3822 set_bit(STRIPE_OP_CHECK, &s->ops_request); 3823 break; 3824 } 3825 3826 /* we have 2-disk failure */ 3827 BUG_ON(s->failed != 2); 3828 /* fall through */ 3829 case check_state_compute_result: 3830 sh->check_state = check_state_idle; 3831 3832 /* check that a write has not made the stripe insync */ 3833 if (test_bit(STRIPE_INSYNC, &sh->state)) 3834 break; 3835 3836 /* now write out any block on a failed drive, 3837 * or P or Q if they were recomputed 3838 */ 3839 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */ 3840 if (s->failed == 2) { 3841 dev = &sh->dev[s->failed_num[1]]; 3842 s->locked++; 3843 set_bit(R5_LOCKED, &dev->flags); 3844 set_bit(R5_Wantwrite, &dev->flags); 3845 } 3846 if (s->failed >= 1) { 3847 dev = &sh->dev[s->failed_num[0]]; 3848 s->locked++; 3849 set_bit(R5_LOCKED, &dev->flags); 3850 set_bit(R5_Wantwrite, &dev->flags); 3851 } 3852 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 3853 dev = &sh->dev[pd_idx]; 3854 s->locked++; 3855 set_bit(R5_LOCKED, &dev->flags); 3856 set_bit(R5_Wantwrite, &dev->flags); 3857 } 3858 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 3859 dev = &sh->dev[qd_idx]; 3860 s->locked++; 3861 set_bit(R5_LOCKED, &dev->flags); 3862 set_bit(R5_Wantwrite, &dev->flags); 3863 } 3864 clear_bit(STRIPE_DEGRADED, &sh->state); 3865 3866 set_bit(STRIPE_INSYNC, &sh->state); 3867 break; 3868 case check_state_run: 3869 case check_state_run_q: 3870 case check_state_run_pq: 3871 break; /* we will be called again upon completion */ 3872 case check_state_check_result: 3873 sh->check_state = check_state_idle; 3874 3875 /* handle a successful check operation, if parity is correct 3876 * we are done. Otherwise update the mismatch count and repair 3877 * parity if !MD_RECOVERY_CHECK 3878 */ 3879 if (sh->ops.zero_sum_result == 0) { 3880 /* both parities are correct */ 3881 if (!s->failed) 3882 set_bit(STRIPE_INSYNC, &sh->state); 3883 else { 3884 /* in contrast to the raid5 case we can validate 3885 * parity, but still have a failure to write 3886 * back 3887 */ 3888 sh->check_state = check_state_compute_result; 3889 /* Returning at this point means that we may go 3890 * off and bring p and/or q uptodate again so 3891 * we make sure to check zero_sum_result again 3892 * to verify if p or q need writeback 3893 */ 3894 } 3895 } else { 3896 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches); 3897 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) 3898 /* don't try to repair!! */ 3899 set_bit(STRIPE_INSYNC, &sh->state); 3900 else { 3901 int *target = &sh->ops.target; 3902 3903 sh->ops.target = -1; 3904 sh->ops.target2 = -1; 3905 sh->check_state = check_state_compute_run; 3906 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3907 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3908 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 3909 set_bit(R5_Wantcompute, 3910 &sh->dev[pd_idx].flags); 3911 *target = pd_idx; 3912 target = &sh->ops.target2; 3913 s->uptodate++; 3914 } 3915 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 3916 set_bit(R5_Wantcompute, 3917 &sh->dev[qd_idx].flags); 3918 *target = qd_idx; 3919 s->uptodate++; 3920 } 3921 } 3922 } 3923 break; 3924 case check_state_compute_run: 3925 break; 3926 default: 3927 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n", 3928 __func__, sh->check_state, 3929 (unsigned long long) sh->sector); 3930 BUG(); 3931 } 3932 } 3933 3934 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh) 3935 { 3936 int i; 3937 3938 /* We have read all the blocks in this stripe and now we need to 3939 * copy some of them into a target stripe for expand. 3940 */ 3941 struct dma_async_tx_descriptor *tx = NULL; 3942 BUG_ON(sh->batch_head); 3943 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state); 3944 for (i = 0; i < sh->disks; i++) 3945 if (i != sh->pd_idx && i != sh->qd_idx) { 3946 int dd_idx, j; 3947 struct stripe_head *sh2; 3948 struct async_submit_ctl submit; 3949 3950 sector_t bn = raid5_compute_blocknr(sh, i, 1); 3951 sector_t s = raid5_compute_sector(conf, bn, 0, 3952 &dd_idx, NULL); 3953 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1); 3954 if (sh2 == NULL) 3955 /* so far only the early blocks of this stripe 3956 * have been requested. When later blocks 3957 * get requested, we will try again 3958 */ 3959 continue; 3960 if (!test_bit(STRIPE_EXPANDING, &sh2->state) || 3961 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) { 3962 /* must have already done this block */ 3963 raid5_release_stripe(sh2); 3964 continue; 3965 } 3966 3967 /* place all the copies on one channel */ 3968 init_async_submit(&submit, 0, tx, NULL, NULL, NULL); 3969 tx = async_memcpy(sh2->dev[dd_idx].page, 3970 sh->dev[i].page, 0, 0, STRIPE_SIZE, 3971 &submit); 3972 3973 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags); 3974 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags); 3975 for (j = 0; j < conf->raid_disks; j++) 3976 if (j != sh2->pd_idx && 3977 j != sh2->qd_idx && 3978 !test_bit(R5_Expanded, &sh2->dev[j].flags)) 3979 break; 3980 if (j == conf->raid_disks) { 3981 set_bit(STRIPE_EXPAND_READY, &sh2->state); 3982 set_bit(STRIPE_HANDLE, &sh2->state); 3983 } 3984 raid5_release_stripe(sh2); 3985 3986 } 3987 /* done submitting copies, wait for them to complete */ 3988 async_tx_quiesce(&tx); 3989 } 3990 3991 /* 3992 * handle_stripe - do things to a stripe. 3993 * 3994 * We lock the stripe by setting STRIPE_ACTIVE and then examine the 3995 * state of various bits to see what needs to be done. 3996 * Possible results: 3997 * return some read requests which now have data 3998 * return some write requests which are safely on storage 3999 * schedule a read on some buffers 4000 * schedule a write of some buffers 4001 * return confirmation of parity correctness 4002 * 4003 */ 4004 4005 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s) 4006 { 4007 struct r5conf *conf = sh->raid_conf; 4008 int disks = sh->disks; 4009 struct r5dev *dev; 4010 int i; 4011 int do_recovery = 0; 4012 4013 memset(s, 0, sizeof(*s)); 4014 4015 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head; 4016 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head; 4017 s->failed_num[0] = -1; 4018 s->failed_num[1] = -1; 4019 s->log_failed = r5l_log_disk_error(conf); 4020 4021 /* Now to look around and see what can be done */ 4022 rcu_read_lock(); 4023 for (i=disks; i--; ) { 4024 struct md_rdev *rdev; 4025 sector_t first_bad; 4026 int bad_sectors; 4027 int is_bad = 0; 4028 4029 dev = &sh->dev[i]; 4030 4031 pr_debug("check %d: state 0x%lx read %p write %p written %p\n", 4032 i, dev->flags, 4033 dev->toread, dev->towrite, dev->written); 4034 /* maybe we can reply to a read 4035 * 4036 * new wantfill requests are only permitted while 4037 * ops_complete_biofill is guaranteed to be inactive 4038 */ 4039 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread && 4040 !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) 4041 set_bit(R5_Wantfill, &dev->flags); 4042 4043 /* now count some things */ 4044 if (test_bit(R5_LOCKED, &dev->flags)) 4045 s->locked++; 4046 if (test_bit(R5_UPTODATE, &dev->flags)) 4047 s->uptodate++; 4048 if (test_bit(R5_Wantcompute, &dev->flags)) { 4049 s->compute++; 4050 BUG_ON(s->compute > 2); 4051 } 4052 4053 if (test_bit(R5_Wantfill, &dev->flags)) 4054 s->to_fill++; 4055 else if (dev->toread) 4056 s->to_read++; 4057 if (dev->towrite) { 4058 s->to_write++; 4059 if (!test_bit(R5_OVERWRITE, &dev->flags)) 4060 s->non_overwrite++; 4061 } 4062 if (dev->written) 4063 s->written++; 4064 /* Prefer to use the replacement for reads, but only 4065 * if it is recovered enough and has no bad blocks. 4066 */ 4067 rdev = rcu_dereference(conf->disks[i].replacement); 4068 if (rdev && !test_bit(Faulty, &rdev->flags) && 4069 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS && 4070 !is_badblock(rdev, sh->sector, STRIPE_SECTORS, 4071 &first_bad, &bad_sectors)) 4072 set_bit(R5_ReadRepl, &dev->flags); 4073 else { 4074 if (rdev && !test_bit(Faulty, &rdev->flags)) 4075 set_bit(R5_NeedReplace, &dev->flags); 4076 else 4077 clear_bit(R5_NeedReplace, &dev->flags); 4078 rdev = rcu_dereference(conf->disks[i].rdev); 4079 clear_bit(R5_ReadRepl, &dev->flags); 4080 } 4081 if (rdev && test_bit(Faulty, &rdev->flags)) 4082 rdev = NULL; 4083 if (rdev) { 4084 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS, 4085 &first_bad, &bad_sectors); 4086 if (s->blocked_rdev == NULL 4087 && (test_bit(Blocked, &rdev->flags) 4088 || is_bad < 0)) { 4089 if (is_bad < 0) 4090 set_bit(BlockedBadBlocks, 4091 &rdev->flags); 4092 s->blocked_rdev = rdev; 4093 atomic_inc(&rdev->nr_pending); 4094 } 4095 } 4096 clear_bit(R5_Insync, &dev->flags); 4097 if (!rdev) 4098 /* Not in-sync */; 4099 else if (is_bad) { 4100 /* also not in-sync */ 4101 if (!test_bit(WriteErrorSeen, &rdev->flags) && 4102 test_bit(R5_UPTODATE, &dev->flags)) { 4103 /* treat as in-sync, but with a read error 4104 * which we can now try to correct 4105 */ 4106 set_bit(R5_Insync, &dev->flags); 4107 set_bit(R5_ReadError, &dev->flags); 4108 } 4109 } else if (test_bit(In_sync, &rdev->flags)) 4110 set_bit(R5_Insync, &dev->flags); 4111 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset) 4112 /* in sync if before recovery_offset */ 4113 set_bit(R5_Insync, &dev->flags); 4114 else if (test_bit(R5_UPTODATE, &dev->flags) && 4115 test_bit(R5_Expanded, &dev->flags)) 4116 /* If we've reshaped into here, we assume it is Insync. 4117 * We will shortly update recovery_offset to make 4118 * it official. 4119 */ 4120 set_bit(R5_Insync, &dev->flags); 4121 4122 if (test_bit(R5_WriteError, &dev->flags)) { 4123 /* This flag does not apply to '.replacement' 4124 * only to .rdev, so make sure to check that*/ 4125 struct md_rdev *rdev2 = rcu_dereference( 4126 conf->disks[i].rdev); 4127 if (rdev2 == rdev) 4128 clear_bit(R5_Insync, &dev->flags); 4129 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4130 s->handle_bad_blocks = 1; 4131 atomic_inc(&rdev2->nr_pending); 4132 } else 4133 clear_bit(R5_WriteError, &dev->flags); 4134 } 4135 if (test_bit(R5_MadeGood, &dev->flags)) { 4136 /* This flag does not apply to '.replacement' 4137 * only to .rdev, so make sure to check that*/ 4138 struct md_rdev *rdev2 = rcu_dereference( 4139 conf->disks[i].rdev); 4140 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4141 s->handle_bad_blocks = 1; 4142 atomic_inc(&rdev2->nr_pending); 4143 } else 4144 clear_bit(R5_MadeGood, &dev->flags); 4145 } 4146 if (test_bit(R5_MadeGoodRepl, &dev->flags)) { 4147 struct md_rdev *rdev2 = rcu_dereference( 4148 conf->disks[i].replacement); 4149 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4150 s->handle_bad_blocks = 1; 4151 atomic_inc(&rdev2->nr_pending); 4152 } else 4153 clear_bit(R5_MadeGoodRepl, &dev->flags); 4154 } 4155 if (!test_bit(R5_Insync, &dev->flags)) { 4156 /* The ReadError flag will just be confusing now */ 4157 clear_bit(R5_ReadError, &dev->flags); 4158 clear_bit(R5_ReWrite, &dev->flags); 4159 } 4160 if (test_bit(R5_ReadError, &dev->flags)) 4161 clear_bit(R5_Insync, &dev->flags); 4162 if (!test_bit(R5_Insync, &dev->flags)) { 4163 if (s->failed < 2) 4164 s->failed_num[s->failed] = i; 4165 s->failed++; 4166 if (rdev && !test_bit(Faulty, &rdev->flags)) 4167 do_recovery = 1; 4168 } 4169 } 4170 if (test_bit(STRIPE_SYNCING, &sh->state)) { 4171 /* If there is a failed device being replaced, 4172 * we must be recovering. 4173 * else if we are after recovery_cp, we must be syncing 4174 * else if MD_RECOVERY_REQUESTED is set, we also are syncing. 4175 * else we can only be replacing 4176 * sync and recovery both need to read all devices, and so 4177 * use the same flag. 4178 */ 4179 if (do_recovery || 4180 sh->sector >= conf->mddev->recovery_cp || 4181 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery))) 4182 s->syncing = 1; 4183 else 4184 s->replacing = 1; 4185 } 4186 rcu_read_unlock(); 4187 } 4188 4189 static int clear_batch_ready(struct stripe_head *sh) 4190 { 4191 /* Return '1' if this is a member of batch, or 4192 * '0' if it is a lone stripe or a head which can now be 4193 * handled. 4194 */ 4195 struct stripe_head *tmp; 4196 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state)) 4197 return (sh->batch_head && sh->batch_head != sh); 4198 spin_lock(&sh->stripe_lock); 4199 if (!sh->batch_head) { 4200 spin_unlock(&sh->stripe_lock); 4201 return 0; 4202 } 4203 4204 /* 4205 * this stripe could be added to a batch list before we check 4206 * BATCH_READY, skips it 4207 */ 4208 if (sh->batch_head != sh) { 4209 spin_unlock(&sh->stripe_lock); 4210 return 1; 4211 } 4212 spin_lock(&sh->batch_lock); 4213 list_for_each_entry(tmp, &sh->batch_list, batch_list) 4214 clear_bit(STRIPE_BATCH_READY, &tmp->state); 4215 spin_unlock(&sh->batch_lock); 4216 spin_unlock(&sh->stripe_lock); 4217 4218 /* 4219 * BATCH_READY is cleared, no new stripes can be added. 4220 * batch_list can be accessed without lock 4221 */ 4222 return 0; 4223 } 4224 4225 static void break_stripe_batch_list(struct stripe_head *head_sh, 4226 unsigned long handle_flags) 4227 { 4228 struct stripe_head *sh, *next; 4229 int i; 4230 int do_wakeup = 0; 4231 4232 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) { 4233 4234 list_del_init(&sh->batch_list); 4235 4236 WARN_ON_ONCE(sh->state & ((1 << STRIPE_ACTIVE) | 4237 (1 << STRIPE_SYNCING) | 4238 (1 << STRIPE_REPLACED) | 4239 (1 << STRIPE_PREREAD_ACTIVE) | 4240 (1 << STRIPE_DELAYED) | 4241 (1 << STRIPE_BIT_DELAY) | 4242 (1 << STRIPE_FULL_WRITE) | 4243 (1 << STRIPE_BIOFILL_RUN) | 4244 (1 << STRIPE_COMPUTE_RUN) | 4245 (1 << STRIPE_OPS_REQ_PENDING) | 4246 (1 << STRIPE_DISCARD) | 4247 (1 << STRIPE_BATCH_READY) | 4248 (1 << STRIPE_BATCH_ERR) | 4249 (1 << STRIPE_BITMAP_PENDING))); 4250 WARN_ON_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) | 4251 (1 << STRIPE_REPLACED))); 4252 4253 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS | 4254 (1 << STRIPE_DEGRADED)), 4255 head_sh->state & (1 << STRIPE_INSYNC)); 4256 4257 sh->check_state = head_sh->check_state; 4258 sh->reconstruct_state = head_sh->reconstruct_state; 4259 for (i = 0; i < sh->disks; i++) { 4260 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 4261 do_wakeup = 1; 4262 sh->dev[i].flags = head_sh->dev[i].flags & 4263 (~((1 << R5_WriteError) | (1 << R5_Overlap))); 4264 } 4265 spin_lock_irq(&sh->stripe_lock); 4266 sh->batch_head = NULL; 4267 spin_unlock_irq(&sh->stripe_lock); 4268 if (handle_flags == 0 || 4269 sh->state & handle_flags) 4270 set_bit(STRIPE_HANDLE, &sh->state); 4271 raid5_release_stripe(sh); 4272 } 4273 spin_lock_irq(&head_sh->stripe_lock); 4274 head_sh->batch_head = NULL; 4275 spin_unlock_irq(&head_sh->stripe_lock); 4276 for (i = 0; i < head_sh->disks; i++) 4277 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags)) 4278 do_wakeup = 1; 4279 if (head_sh->state & handle_flags) 4280 set_bit(STRIPE_HANDLE, &head_sh->state); 4281 4282 if (do_wakeup) 4283 wake_up(&head_sh->raid_conf->wait_for_overlap); 4284 } 4285 4286 static void handle_stripe(struct stripe_head *sh) 4287 { 4288 struct stripe_head_state s; 4289 struct r5conf *conf = sh->raid_conf; 4290 int i; 4291 int prexor; 4292 int disks = sh->disks; 4293 struct r5dev *pdev, *qdev; 4294 4295 clear_bit(STRIPE_HANDLE, &sh->state); 4296 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) { 4297 /* already being handled, ensure it gets handled 4298 * again when current action finishes */ 4299 set_bit(STRIPE_HANDLE, &sh->state); 4300 return; 4301 } 4302 4303 if (clear_batch_ready(sh) ) { 4304 clear_bit_unlock(STRIPE_ACTIVE, &sh->state); 4305 return; 4306 } 4307 4308 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state)) 4309 break_stripe_batch_list(sh, 0); 4310 4311 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) { 4312 spin_lock(&sh->stripe_lock); 4313 /* Cannot process 'sync' concurrently with 'discard' */ 4314 if (!test_bit(STRIPE_DISCARD, &sh->state) && 4315 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) { 4316 set_bit(STRIPE_SYNCING, &sh->state); 4317 clear_bit(STRIPE_INSYNC, &sh->state); 4318 clear_bit(STRIPE_REPLACED, &sh->state); 4319 } 4320 spin_unlock(&sh->stripe_lock); 4321 } 4322 clear_bit(STRIPE_DELAYED, &sh->state); 4323 4324 pr_debug("handling stripe %llu, state=%#lx cnt=%d, " 4325 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n", 4326 (unsigned long long)sh->sector, sh->state, 4327 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx, 4328 sh->check_state, sh->reconstruct_state); 4329 4330 analyse_stripe(sh, &s); 4331 4332 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state)) 4333 goto finish; 4334 4335 if (s.handle_bad_blocks) { 4336 set_bit(STRIPE_HANDLE, &sh->state); 4337 goto finish; 4338 } 4339 4340 if (unlikely(s.blocked_rdev)) { 4341 if (s.syncing || s.expanding || s.expanded || 4342 s.replacing || s.to_write || s.written) { 4343 set_bit(STRIPE_HANDLE, &sh->state); 4344 goto finish; 4345 } 4346 /* There is nothing for the blocked_rdev to block */ 4347 rdev_dec_pending(s.blocked_rdev, conf->mddev); 4348 s.blocked_rdev = NULL; 4349 } 4350 4351 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) { 4352 set_bit(STRIPE_OP_BIOFILL, &s.ops_request); 4353 set_bit(STRIPE_BIOFILL_RUN, &sh->state); 4354 } 4355 4356 pr_debug("locked=%d uptodate=%d to_read=%d" 4357 " to_write=%d failed=%d failed_num=%d,%d\n", 4358 s.locked, s.uptodate, s.to_read, s.to_write, s.failed, 4359 s.failed_num[0], s.failed_num[1]); 4360 /* check if the array has lost more than max_degraded devices and, 4361 * if so, some requests might need to be failed. 4362 */ 4363 if (s.failed > conf->max_degraded || s.log_failed) { 4364 sh->check_state = 0; 4365 sh->reconstruct_state = 0; 4366 break_stripe_batch_list(sh, 0); 4367 if (s.to_read+s.to_write+s.written) 4368 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi); 4369 if (s.syncing + s.replacing) 4370 handle_failed_sync(conf, sh, &s); 4371 } 4372 4373 /* Now we check to see if any write operations have recently 4374 * completed 4375 */ 4376 prexor = 0; 4377 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result) 4378 prexor = 1; 4379 if (sh->reconstruct_state == reconstruct_state_drain_result || 4380 sh->reconstruct_state == reconstruct_state_prexor_drain_result) { 4381 sh->reconstruct_state = reconstruct_state_idle; 4382 4383 /* All the 'written' buffers and the parity block are ready to 4384 * be written back to disk 4385 */ 4386 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) && 4387 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)); 4388 BUG_ON(sh->qd_idx >= 0 && 4389 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) && 4390 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags)); 4391 for (i = disks; i--; ) { 4392 struct r5dev *dev = &sh->dev[i]; 4393 if (test_bit(R5_LOCKED, &dev->flags) && 4394 (i == sh->pd_idx || i == sh->qd_idx || 4395 dev->written)) { 4396 pr_debug("Writing block %d\n", i); 4397 set_bit(R5_Wantwrite, &dev->flags); 4398 if (prexor) 4399 continue; 4400 if (s.failed > 1) 4401 continue; 4402 if (!test_bit(R5_Insync, &dev->flags) || 4403 ((i == sh->pd_idx || i == sh->qd_idx) && 4404 s.failed == 0)) 4405 set_bit(STRIPE_INSYNC, &sh->state); 4406 } 4407 } 4408 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4409 s.dec_preread_active = 1; 4410 } 4411 4412 /* 4413 * might be able to return some write requests if the parity blocks 4414 * are safe, or on a failed drive 4415 */ 4416 pdev = &sh->dev[sh->pd_idx]; 4417 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx) 4418 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx); 4419 qdev = &sh->dev[sh->qd_idx]; 4420 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx) 4421 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx) 4422 || conf->level < 6; 4423 4424 if (s.written && 4425 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags) 4426 && !test_bit(R5_LOCKED, &pdev->flags) 4427 && (test_bit(R5_UPTODATE, &pdev->flags) || 4428 test_bit(R5_Discard, &pdev->flags))))) && 4429 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags) 4430 && !test_bit(R5_LOCKED, &qdev->flags) 4431 && (test_bit(R5_UPTODATE, &qdev->flags) || 4432 test_bit(R5_Discard, &qdev->flags)))))) 4433 handle_stripe_clean_event(conf, sh, disks, &s.return_bi); 4434 4435 /* Now we might consider reading some blocks, either to check/generate 4436 * parity, or to satisfy requests 4437 * or to load a block that is being partially written. 4438 */ 4439 if (s.to_read || s.non_overwrite 4440 || (conf->level == 6 && s.to_write && s.failed) 4441 || (s.syncing && (s.uptodate + s.compute < disks)) 4442 || s.replacing 4443 || s.expanding) 4444 handle_stripe_fill(sh, &s, disks); 4445 4446 /* Now to consider new write requests and what else, if anything 4447 * should be read. We do not handle new writes when: 4448 * 1/ A 'write' operation (copy+xor) is already in flight. 4449 * 2/ A 'check' operation is in flight, as it may clobber the parity 4450 * block. 4451 */ 4452 if (s.to_write && !sh->reconstruct_state && !sh->check_state) 4453 handle_stripe_dirtying(conf, sh, &s, disks); 4454 4455 /* maybe we need to check and possibly fix the parity for this stripe 4456 * Any reads will already have been scheduled, so we just see if enough 4457 * data is available. The parity check is held off while parity 4458 * dependent operations are in flight. 4459 */ 4460 if (sh->check_state || 4461 (s.syncing && s.locked == 0 && 4462 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 4463 !test_bit(STRIPE_INSYNC, &sh->state))) { 4464 if (conf->level == 6) 4465 handle_parity_checks6(conf, sh, &s, disks); 4466 else 4467 handle_parity_checks5(conf, sh, &s, disks); 4468 } 4469 4470 if ((s.replacing || s.syncing) && s.locked == 0 4471 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state) 4472 && !test_bit(STRIPE_REPLACED, &sh->state)) { 4473 /* Write out to replacement devices where possible */ 4474 for (i = 0; i < conf->raid_disks; i++) 4475 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) { 4476 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags)); 4477 set_bit(R5_WantReplace, &sh->dev[i].flags); 4478 set_bit(R5_LOCKED, &sh->dev[i].flags); 4479 s.locked++; 4480 } 4481 if (s.replacing) 4482 set_bit(STRIPE_INSYNC, &sh->state); 4483 set_bit(STRIPE_REPLACED, &sh->state); 4484 } 4485 if ((s.syncing || s.replacing) && s.locked == 0 && 4486 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 4487 test_bit(STRIPE_INSYNC, &sh->state)) { 4488 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 4489 clear_bit(STRIPE_SYNCING, &sh->state); 4490 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 4491 wake_up(&conf->wait_for_overlap); 4492 } 4493 4494 /* If the failed drives are just a ReadError, then we might need 4495 * to progress the repair/check process 4496 */ 4497 if (s.failed <= conf->max_degraded && !conf->mddev->ro) 4498 for (i = 0; i < s.failed; i++) { 4499 struct r5dev *dev = &sh->dev[s.failed_num[i]]; 4500 if (test_bit(R5_ReadError, &dev->flags) 4501 && !test_bit(R5_LOCKED, &dev->flags) 4502 && test_bit(R5_UPTODATE, &dev->flags) 4503 ) { 4504 if (!test_bit(R5_ReWrite, &dev->flags)) { 4505 set_bit(R5_Wantwrite, &dev->flags); 4506 set_bit(R5_ReWrite, &dev->flags); 4507 set_bit(R5_LOCKED, &dev->flags); 4508 s.locked++; 4509 } else { 4510 /* let's read it back */ 4511 set_bit(R5_Wantread, &dev->flags); 4512 set_bit(R5_LOCKED, &dev->flags); 4513 s.locked++; 4514 } 4515 } 4516 } 4517 4518 /* Finish reconstruct operations initiated by the expansion process */ 4519 if (sh->reconstruct_state == reconstruct_state_result) { 4520 struct stripe_head *sh_src 4521 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1); 4522 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) { 4523 /* sh cannot be written until sh_src has been read. 4524 * so arrange for sh to be delayed a little 4525 */ 4526 set_bit(STRIPE_DELAYED, &sh->state); 4527 set_bit(STRIPE_HANDLE, &sh->state); 4528 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, 4529 &sh_src->state)) 4530 atomic_inc(&conf->preread_active_stripes); 4531 raid5_release_stripe(sh_src); 4532 goto finish; 4533 } 4534 if (sh_src) 4535 raid5_release_stripe(sh_src); 4536 4537 sh->reconstruct_state = reconstruct_state_idle; 4538 clear_bit(STRIPE_EXPANDING, &sh->state); 4539 for (i = conf->raid_disks; i--; ) { 4540 set_bit(R5_Wantwrite, &sh->dev[i].flags); 4541 set_bit(R5_LOCKED, &sh->dev[i].flags); 4542 s.locked++; 4543 } 4544 } 4545 4546 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) && 4547 !sh->reconstruct_state) { 4548 /* Need to write out all blocks after computing parity */ 4549 sh->disks = conf->raid_disks; 4550 stripe_set_idx(sh->sector, conf, 0, sh); 4551 schedule_reconstruction(sh, &s, 1, 1); 4552 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) { 4553 clear_bit(STRIPE_EXPAND_READY, &sh->state); 4554 atomic_dec(&conf->reshape_stripes); 4555 wake_up(&conf->wait_for_overlap); 4556 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 4557 } 4558 4559 if (s.expanding && s.locked == 0 && 4560 !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) 4561 handle_stripe_expansion(conf, sh); 4562 4563 finish: 4564 /* wait for this device to become unblocked */ 4565 if (unlikely(s.blocked_rdev)) { 4566 if (conf->mddev->external) 4567 md_wait_for_blocked_rdev(s.blocked_rdev, 4568 conf->mddev); 4569 else 4570 /* Internal metadata will immediately 4571 * be written by raid5d, so we don't 4572 * need to wait here. 4573 */ 4574 rdev_dec_pending(s.blocked_rdev, 4575 conf->mddev); 4576 } 4577 4578 if (s.handle_bad_blocks) 4579 for (i = disks; i--; ) { 4580 struct md_rdev *rdev; 4581 struct r5dev *dev = &sh->dev[i]; 4582 if (test_and_clear_bit(R5_WriteError, &dev->flags)) { 4583 /* We own a safe reference to the rdev */ 4584 rdev = conf->disks[i].rdev; 4585 if (!rdev_set_badblocks(rdev, sh->sector, 4586 STRIPE_SECTORS, 0)) 4587 md_error(conf->mddev, rdev); 4588 rdev_dec_pending(rdev, conf->mddev); 4589 } 4590 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) { 4591 rdev = conf->disks[i].rdev; 4592 rdev_clear_badblocks(rdev, sh->sector, 4593 STRIPE_SECTORS, 0); 4594 rdev_dec_pending(rdev, conf->mddev); 4595 } 4596 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) { 4597 rdev = conf->disks[i].replacement; 4598 if (!rdev) 4599 /* rdev have been moved down */ 4600 rdev = conf->disks[i].rdev; 4601 rdev_clear_badblocks(rdev, sh->sector, 4602 STRIPE_SECTORS, 0); 4603 rdev_dec_pending(rdev, conf->mddev); 4604 } 4605 } 4606 4607 if (s.ops_request) 4608 raid_run_ops(sh, s.ops_request); 4609 4610 ops_run_io(sh, &s); 4611 4612 if (s.dec_preread_active) { 4613 /* We delay this until after ops_run_io so that if make_request 4614 * is waiting on a flush, it won't continue until the writes 4615 * have actually been submitted. 4616 */ 4617 atomic_dec(&conf->preread_active_stripes); 4618 if (atomic_read(&conf->preread_active_stripes) < 4619 IO_THRESHOLD) 4620 md_wakeup_thread(conf->mddev->thread); 4621 } 4622 4623 if (!bio_list_empty(&s.return_bi)) { 4624 if (test_bit(MD_CHANGE_PENDING, &conf->mddev->flags)) { 4625 spin_lock_irq(&conf->device_lock); 4626 bio_list_merge(&conf->return_bi, &s.return_bi); 4627 spin_unlock_irq(&conf->device_lock); 4628 md_wakeup_thread(conf->mddev->thread); 4629 } else 4630 return_io(&s.return_bi); 4631 } 4632 4633 clear_bit_unlock(STRIPE_ACTIVE, &sh->state); 4634 } 4635 4636 static void raid5_activate_delayed(struct r5conf *conf) 4637 { 4638 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) { 4639 while (!list_empty(&conf->delayed_list)) { 4640 struct list_head *l = conf->delayed_list.next; 4641 struct stripe_head *sh; 4642 sh = list_entry(l, struct stripe_head, lru); 4643 list_del_init(l); 4644 clear_bit(STRIPE_DELAYED, &sh->state); 4645 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4646 atomic_inc(&conf->preread_active_stripes); 4647 list_add_tail(&sh->lru, &conf->hold_list); 4648 raid5_wakeup_stripe_thread(sh); 4649 } 4650 } 4651 } 4652 4653 static void activate_bit_delay(struct r5conf *conf, 4654 struct list_head *temp_inactive_list) 4655 { 4656 /* device_lock is held */ 4657 struct list_head head; 4658 list_add(&head, &conf->bitmap_list); 4659 list_del_init(&conf->bitmap_list); 4660 while (!list_empty(&head)) { 4661 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru); 4662 int hash; 4663 list_del_init(&sh->lru); 4664 atomic_inc(&sh->count); 4665 hash = sh->hash_lock_index; 4666 __release_stripe(conf, sh, &temp_inactive_list[hash]); 4667 } 4668 } 4669 4670 static int raid5_congested(struct mddev *mddev, int bits) 4671 { 4672 struct r5conf *conf = mddev->private; 4673 4674 /* No difference between reads and writes. Just check 4675 * how busy the stripe_cache is 4676 */ 4677 4678 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) 4679 return 1; 4680 if (conf->quiesce) 4681 return 1; 4682 if (atomic_read(&conf->empty_inactive_list_nr)) 4683 return 1; 4684 4685 return 0; 4686 } 4687 4688 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio) 4689 { 4690 struct r5conf *conf = mddev->private; 4691 sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev); 4692 unsigned int chunk_sectors; 4693 unsigned int bio_sectors = bio_sectors(bio); 4694 4695 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors); 4696 return chunk_sectors >= 4697 ((sector & (chunk_sectors - 1)) + bio_sectors); 4698 } 4699 4700 /* 4701 * add bio to the retry LIFO ( in O(1) ... we are in interrupt ) 4702 * later sampled by raid5d. 4703 */ 4704 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf) 4705 { 4706 unsigned long flags; 4707 4708 spin_lock_irqsave(&conf->device_lock, flags); 4709 4710 bi->bi_next = conf->retry_read_aligned_list; 4711 conf->retry_read_aligned_list = bi; 4712 4713 spin_unlock_irqrestore(&conf->device_lock, flags); 4714 md_wakeup_thread(conf->mddev->thread); 4715 } 4716 4717 static struct bio *remove_bio_from_retry(struct r5conf *conf) 4718 { 4719 struct bio *bi; 4720 4721 bi = conf->retry_read_aligned; 4722 if (bi) { 4723 conf->retry_read_aligned = NULL; 4724 return bi; 4725 } 4726 bi = conf->retry_read_aligned_list; 4727 if(bi) { 4728 conf->retry_read_aligned_list = bi->bi_next; 4729 bi->bi_next = NULL; 4730 /* 4731 * this sets the active strip count to 1 and the processed 4732 * strip count to zero (upper 8 bits) 4733 */ 4734 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */ 4735 } 4736 4737 return bi; 4738 } 4739 4740 /* 4741 * The "raid5_align_endio" should check if the read succeeded and if it 4742 * did, call bio_endio on the original bio (having bio_put the new bio 4743 * first). 4744 * If the read failed.. 4745 */ 4746 static void raid5_align_endio(struct bio *bi) 4747 { 4748 struct bio* raid_bi = bi->bi_private; 4749 struct mddev *mddev; 4750 struct r5conf *conf; 4751 struct md_rdev *rdev; 4752 int error = bi->bi_error; 4753 4754 bio_put(bi); 4755 4756 rdev = (void*)raid_bi->bi_next; 4757 raid_bi->bi_next = NULL; 4758 mddev = rdev->mddev; 4759 conf = mddev->private; 4760 4761 rdev_dec_pending(rdev, conf->mddev); 4762 4763 if (!error) { 4764 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev), 4765 raid_bi, 0); 4766 bio_endio(raid_bi); 4767 if (atomic_dec_and_test(&conf->active_aligned_reads)) 4768 wake_up(&conf->wait_for_quiescent); 4769 return; 4770 } 4771 4772 pr_debug("raid5_align_endio : io error...handing IO for a retry\n"); 4773 4774 add_bio_to_retry(raid_bi, conf); 4775 } 4776 4777 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio) 4778 { 4779 struct r5conf *conf = mddev->private; 4780 int dd_idx; 4781 struct bio* align_bi; 4782 struct md_rdev *rdev; 4783 sector_t end_sector; 4784 4785 if (!in_chunk_boundary(mddev, raid_bio)) { 4786 pr_debug("%s: non aligned\n", __func__); 4787 return 0; 4788 } 4789 /* 4790 * use bio_clone_mddev to make a copy of the bio 4791 */ 4792 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev); 4793 if (!align_bi) 4794 return 0; 4795 /* 4796 * set bi_end_io to a new function, and set bi_private to the 4797 * original bio. 4798 */ 4799 align_bi->bi_end_io = raid5_align_endio; 4800 align_bi->bi_private = raid_bio; 4801 /* 4802 * compute position 4803 */ 4804 align_bi->bi_iter.bi_sector = 4805 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 4806 0, &dd_idx, NULL); 4807 4808 end_sector = bio_end_sector(align_bi); 4809 rcu_read_lock(); 4810 rdev = rcu_dereference(conf->disks[dd_idx].replacement); 4811 if (!rdev || test_bit(Faulty, &rdev->flags) || 4812 rdev->recovery_offset < end_sector) { 4813 rdev = rcu_dereference(conf->disks[dd_idx].rdev); 4814 if (rdev && 4815 (test_bit(Faulty, &rdev->flags) || 4816 !(test_bit(In_sync, &rdev->flags) || 4817 rdev->recovery_offset >= end_sector))) 4818 rdev = NULL; 4819 } 4820 if (rdev) { 4821 sector_t first_bad; 4822 int bad_sectors; 4823 4824 atomic_inc(&rdev->nr_pending); 4825 rcu_read_unlock(); 4826 raid_bio->bi_next = (void*)rdev; 4827 align_bi->bi_bdev = rdev->bdev; 4828 bio_clear_flag(align_bi, BIO_SEG_VALID); 4829 4830 if (is_badblock(rdev, align_bi->bi_iter.bi_sector, 4831 bio_sectors(align_bi), 4832 &first_bad, &bad_sectors)) { 4833 bio_put(align_bi); 4834 rdev_dec_pending(rdev, mddev); 4835 return 0; 4836 } 4837 4838 /* No reshape active, so we can trust rdev->data_offset */ 4839 align_bi->bi_iter.bi_sector += rdev->data_offset; 4840 4841 spin_lock_irq(&conf->device_lock); 4842 wait_event_lock_irq(conf->wait_for_quiescent, 4843 conf->quiesce == 0, 4844 conf->device_lock); 4845 atomic_inc(&conf->active_aligned_reads); 4846 spin_unlock_irq(&conf->device_lock); 4847 4848 if (mddev->gendisk) 4849 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev), 4850 align_bi, disk_devt(mddev->gendisk), 4851 raid_bio->bi_iter.bi_sector); 4852 generic_make_request(align_bi); 4853 return 1; 4854 } else { 4855 rcu_read_unlock(); 4856 bio_put(align_bi); 4857 return 0; 4858 } 4859 } 4860 4861 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio) 4862 { 4863 struct bio *split; 4864 4865 do { 4866 sector_t sector = raid_bio->bi_iter.bi_sector; 4867 unsigned chunk_sects = mddev->chunk_sectors; 4868 unsigned sectors = chunk_sects - (sector & (chunk_sects-1)); 4869 4870 if (sectors < bio_sectors(raid_bio)) { 4871 split = bio_split(raid_bio, sectors, GFP_NOIO, fs_bio_set); 4872 bio_chain(split, raid_bio); 4873 } else 4874 split = raid_bio; 4875 4876 if (!raid5_read_one_chunk(mddev, split)) { 4877 if (split != raid_bio) 4878 generic_make_request(raid_bio); 4879 return split; 4880 } 4881 } while (split != raid_bio); 4882 4883 return NULL; 4884 } 4885 4886 /* __get_priority_stripe - get the next stripe to process 4887 * 4888 * Full stripe writes are allowed to pass preread active stripes up until 4889 * the bypass_threshold is exceeded. In general the bypass_count 4890 * increments when the handle_list is handled before the hold_list; however, it 4891 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a 4892 * stripe with in flight i/o. The bypass_count will be reset when the 4893 * head of the hold_list has changed, i.e. the head was promoted to the 4894 * handle_list. 4895 */ 4896 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group) 4897 { 4898 struct stripe_head *sh = NULL, *tmp; 4899 struct list_head *handle_list = NULL; 4900 struct r5worker_group *wg = NULL; 4901 4902 if (conf->worker_cnt_per_group == 0) { 4903 handle_list = &conf->handle_list; 4904 } else if (group != ANY_GROUP) { 4905 handle_list = &conf->worker_groups[group].handle_list; 4906 wg = &conf->worker_groups[group]; 4907 } else { 4908 int i; 4909 for (i = 0; i < conf->group_cnt; i++) { 4910 handle_list = &conf->worker_groups[i].handle_list; 4911 wg = &conf->worker_groups[i]; 4912 if (!list_empty(handle_list)) 4913 break; 4914 } 4915 } 4916 4917 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n", 4918 __func__, 4919 list_empty(handle_list) ? "empty" : "busy", 4920 list_empty(&conf->hold_list) ? "empty" : "busy", 4921 atomic_read(&conf->pending_full_writes), conf->bypass_count); 4922 4923 if (!list_empty(handle_list)) { 4924 sh = list_entry(handle_list->next, typeof(*sh), lru); 4925 4926 if (list_empty(&conf->hold_list)) 4927 conf->bypass_count = 0; 4928 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) { 4929 if (conf->hold_list.next == conf->last_hold) 4930 conf->bypass_count++; 4931 else { 4932 conf->last_hold = conf->hold_list.next; 4933 conf->bypass_count -= conf->bypass_threshold; 4934 if (conf->bypass_count < 0) 4935 conf->bypass_count = 0; 4936 } 4937 } 4938 } else if (!list_empty(&conf->hold_list) && 4939 ((conf->bypass_threshold && 4940 conf->bypass_count > conf->bypass_threshold) || 4941 atomic_read(&conf->pending_full_writes) == 0)) { 4942 4943 list_for_each_entry(tmp, &conf->hold_list, lru) { 4944 if (conf->worker_cnt_per_group == 0 || 4945 group == ANY_GROUP || 4946 !cpu_online(tmp->cpu) || 4947 cpu_to_group(tmp->cpu) == group) { 4948 sh = tmp; 4949 break; 4950 } 4951 } 4952 4953 if (sh) { 4954 conf->bypass_count -= conf->bypass_threshold; 4955 if (conf->bypass_count < 0) 4956 conf->bypass_count = 0; 4957 } 4958 wg = NULL; 4959 } 4960 4961 if (!sh) 4962 return NULL; 4963 4964 if (wg) { 4965 wg->stripes_cnt--; 4966 sh->group = NULL; 4967 } 4968 list_del_init(&sh->lru); 4969 BUG_ON(atomic_inc_return(&sh->count) != 1); 4970 return sh; 4971 } 4972 4973 struct raid5_plug_cb { 4974 struct blk_plug_cb cb; 4975 struct list_head list; 4976 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS]; 4977 }; 4978 4979 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule) 4980 { 4981 struct raid5_plug_cb *cb = container_of( 4982 blk_cb, struct raid5_plug_cb, cb); 4983 struct stripe_head *sh; 4984 struct mddev *mddev = cb->cb.data; 4985 struct r5conf *conf = mddev->private; 4986 int cnt = 0; 4987 int hash; 4988 4989 if (cb->list.next && !list_empty(&cb->list)) { 4990 spin_lock_irq(&conf->device_lock); 4991 while (!list_empty(&cb->list)) { 4992 sh = list_first_entry(&cb->list, struct stripe_head, lru); 4993 list_del_init(&sh->lru); 4994 /* 4995 * avoid race release_stripe_plug() sees 4996 * STRIPE_ON_UNPLUG_LIST clear but the stripe 4997 * is still in our list 4998 */ 4999 smp_mb__before_atomic(); 5000 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state); 5001 /* 5002 * STRIPE_ON_RELEASE_LIST could be set here. In that 5003 * case, the count is always > 1 here 5004 */ 5005 hash = sh->hash_lock_index; 5006 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]); 5007 cnt++; 5008 } 5009 spin_unlock_irq(&conf->device_lock); 5010 } 5011 release_inactive_stripe_list(conf, cb->temp_inactive_list, 5012 NR_STRIPE_HASH_LOCKS); 5013 if (mddev->queue) 5014 trace_block_unplug(mddev->queue, cnt, !from_schedule); 5015 kfree(cb); 5016 } 5017 5018 static void release_stripe_plug(struct mddev *mddev, 5019 struct stripe_head *sh) 5020 { 5021 struct blk_plug_cb *blk_cb = blk_check_plugged( 5022 raid5_unplug, mddev, 5023 sizeof(struct raid5_plug_cb)); 5024 struct raid5_plug_cb *cb; 5025 5026 if (!blk_cb) { 5027 raid5_release_stripe(sh); 5028 return; 5029 } 5030 5031 cb = container_of(blk_cb, struct raid5_plug_cb, cb); 5032 5033 if (cb->list.next == NULL) { 5034 int i; 5035 INIT_LIST_HEAD(&cb->list); 5036 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 5037 INIT_LIST_HEAD(cb->temp_inactive_list + i); 5038 } 5039 5040 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)) 5041 list_add_tail(&sh->lru, &cb->list); 5042 else 5043 raid5_release_stripe(sh); 5044 } 5045 5046 static void make_discard_request(struct mddev *mddev, struct bio *bi) 5047 { 5048 struct r5conf *conf = mddev->private; 5049 sector_t logical_sector, last_sector; 5050 struct stripe_head *sh; 5051 int remaining; 5052 int stripe_sectors; 5053 5054 if (mddev->reshape_position != MaxSector) 5055 /* Skip discard while reshape is happening */ 5056 return; 5057 5058 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1); 5059 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9); 5060 5061 bi->bi_next = NULL; 5062 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */ 5063 5064 stripe_sectors = conf->chunk_sectors * 5065 (conf->raid_disks - conf->max_degraded); 5066 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector, 5067 stripe_sectors); 5068 sector_div(last_sector, stripe_sectors); 5069 5070 logical_sector *= conf->chunk_sectors; 5071 last_sector *= conf->chunk_sectors; 5072 5073 for (; logical_sector < last_sector; 5074 logical_sector += STRIPE_SECTORS) { 5075 DEFINE_WAIT(w); 5076 int d; 5077 again: 5078 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0); 5079 prepare_to_wait(&conf->wait_for_overlap, &w, 5080 TASK_UNINTERRUPTIBLE); 5081 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 5082 if (test_bit(STRIPE_SYNCING, &sh->state)) { 5083 raid5_release_stripe(sh); 5084 schedule(); 5085 goto again; 5086 } 5087 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 5088 spin_lock_irq(&sh->stripe_lock); 5089 for (d = 0; d < conf->raid_disks; d++) { 5090 if (d == sh->pd_idx || d == sh->qd_idx) 5091 continue; 5092 if (sh->dev[d].towrite || sh->dev[d].toread) { 5093 set_bit(R5_Overlap, &sh->dev[d].flags); 5094 spin_unlock_irq(&sh->stripe_lock); 5095 raid5_release_stripe(sh); 5096 schedule(); 5097 goto again; 5098 } 5099 } 5100 set_bit(STRIPE_DISCARD, &sh->state); 5101 finish_wait(&conf->wait_for_overlap, &w); 5102 sh->overwrite_disks = 0; 5103 for (d = 0; d < conf->raid_disks; d++) { 5104 if (d == sh->pd_idx || d == sh->qd_idx) 5105 continue; 5106 sh->dev[d].towrite = bi; 5107 set_bit(R5_OVERWRITE, &sh->dev[d].flags); 5108 raid5_inc_bi_active_stripes(bi); 5109 sh->overwrite_disks++; 5110 } 5111 spin_unlock_irq(&sh->stripe_lock); 5112 if (conf->mddev->bitmap) { 5113 for (d = 0; 5114 d < conf->raid_disks - conf->max_degraded; 5115 d++) 5116 bitmap_startwrite(mddev->bitmap, 5117 sh->sector, 5118 STRIPE_SECTORS, 5119 0); 5120 sh->bm_seq = conf->seq_flush + 1; 5121 set_bit(STRIPE_BIT_DELAY, &sh->state); 5122 } 5123 5124 set_bit(STRIPE_HANDLE, &sh->state); 5125 clear_bit(STRIPE_DELAYED, &sh->state); 5126 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5127 atomic_inc(&conf->preread_active_stripes); 5128 release_stripe_plug(mddev, sh); 5129 } 5130 5131 remaining = raid5_dec_bi_active_stripes(bi); 5132 if (remaining == 0) { 5133 md_write_end(mddev); 5134 bio_endio(bi); 5135 } 5136 } 5137 5138 static void raid5_make_request(struct mddev *mddev, struct bio * bi) 5139 { 5140 struct r5conf *conf = mddev->private; 5141 int dd_idx; 5142 sector_t new_sector; 5143 sector_t logical_sector, last_sector; 5144 struct stripe_head *sh; 5145 const int rw = bio_data_dir(bi); 5146 int remaining; 5147 DEFINE_WAIT(w); 5148 bool do_prepare; 5149 5150 if (unlikely(bi->bi_rw & REQ_FLUSH)) { 5151 int ret = r5l_handle_flush_request(conf->log, bi); 5152 5153 if (ret == 0) 5154 return; 5155 if (ret == -ENODEV) { 5156 md_flush_request(mddev, bi); 5157 return; 5158 } 5159 /* ret == -EAGAIN, fallback */ 5160 } 5161 5162 md_write_start(mddev, bi); 5163 5164 /* 5165 * If array is degraded, better not do chunk aligned read because 5166 * later we might have to read it again in order to reconstruct 5167 * data on failed drives. 5168 */ 5169 if (rw == READ && mddev->degraded == 0 && 5170 mddev->reshape_position == MaxSector) { 5171 bi = chunk_aligned_read(mddev, bi); 5172 if (!bi) 5173 return; 5174 } 5175 5176 if (unlikely(bi->bi_rw & REQ_DISCARD)) { 5177 make_discard_request(mddev, bi); 5178 return; 5179 } 5180 5181 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1); 5182 last_sector = bio_end_sector(bi); 5183 bi->bi_next = NULL; 5184 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */ 5185 5186 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE); 5187 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) { 5188 int previous; 5189 int seq; 5190 5191 do_prepare = false; 5192 retry: 5193 seq = read_seqcount_begin(&conf->gen_lock); 5194 previous = 0; 5195 if (do_prepare) 5196 prepare_to_wait(&conf->wait_for_overlap, &w, 5197 TASK_UNINTERRUPTIBLE); 5198 if (unlikely(conf->reshape_progress != MaxSector)) { 5199 /* spinlock is needed as reshape_progress may be 5200 * 64bit on a 32bit platform, and so it might be 5201 * possible to see a half-updated value 5202 * Of course reshape_progress could change after 5203 * the lock is dropped, so once we get a reference 5204 * to the stripe that we think it is, we will have 5205 * to check again. 5206 */ 5207 spin_lock_irq(&conf->device_lock); 5208 if (mddev->reshape_backwards 5209 ? logical_sector < conf->reshape_progress 5210 : logical_sector >= conf->reshape_progress) { 5211 previous = 1; 5212 } else { 5213 if (mddev->reshape_backwards 5214 ? logical_sector < conf->reshape_safe 5215 : logical_sector >= conf->reshape_safe) { 5216 spin_unlock_irq(&conf->device_lock); 5217 schedule(); 5218 do_prepare = true; 5219 goto retry; 5220 } 5221 } 5222 spin_unlock_irq(&conf->device_lock); 5223 } 5224 5225 new_sector = raid5_compute_sector(conf, logical_sector, 5226 previous, 5227 &dd_idx, NULL); 5228 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n", 5229 (unsigned long long)new_sector, 5230 (unsigned long long)logical_sector); 5231 5232 sh = raid5_get_active_stripe(conf, new_sector, previous, 5233 (bi->bi_rw&RWA_MASK), 0); 5234 if (sh) { 5235 if (unlikely(previous)) { 5236 /* expansion might have moved on while waiting for a 5237 * stripe, so we must do the range check again. 5238 * Expansion could still move past after this 5239 * test, but as we are holding a reference to 5240 * 'sh', we know that if that happens, 5241 * STRIPE_EXPANDING will get set and the expansion 5242 * won't proceed until we finish with the stripe. 5243 */ 5244 int must_retry = 0; 5245 spin_lock_irq(&conf->device_lock); 5246 if (mddev->reshape_backwards 5247 ? logical_sector >= conf->reshape_progress 5248 : logical_sector < conf->reshape_progress) 5249 /* mismatch, need to try again */ 5250 must_retry = 1; 5251 spin_unlock_irq(&conf->device_lock); 5252 if (must_retry) { 5253 raid5_release_stripe(sh); 5254 schedule(); 5255 do_prepare = true; 5256 goto retry; 5257 } 5258 } 5259 if (read_seqcount_retry(&conf->gen_lock, seq)) { 5260 /* Might have got the wrong stripe_head 5261 * by accident 5262 */ 5263 raid5_release_stripe(sh); 5264 goto retry; 5265 } 5266 5267 if (rw == WRITE && 5268 logical_sector >= mddev->suspend_lo && 5269 logical_sector < mddev->suspend_hi) { 5270 raid5_release_stripe(sh); 5271 /* As the suspend_* range is controlled by 5272 * userspace, we want an interruptible 5273 * wait. 5274 */ 5275 flush_signals(current); 5276 prepare_to_wait(&conf->wait_for_overlap, 5277 &w, TASK_INTERRUPTIBLE); 5278 if (logical_sector >= mddev->suspend_lo && 5279 logical_sector < mddev->suspend_hi) { 5280 schedule(); 5281 do_prepare = true; 5282 } 5283 goto retry; 5284 } 5285 5286 if (test_bit(STRIPE_EXPANDING, &sh->state) || 5287 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) { 5288 /* Stripe is busy expanding or 5289 * add failed due to overlap. Flush everything 5290 * and wait a while 5291 */ 5292 md_wakeup_thread(mddev->thread); 5293 raid5_release_stripe(sh); 5294 schedule(); 5295 do_prepare = true; 5296 goto retry; 5297 } 5298 set_bit(STRIPE_HANDLE, &sh->state); 5299 clear_bit(STRIPE_DELAYED, &sh->state); 5300 if ((!sh->batch_head || sh == sh->batch_head) && 5301 (bi->bi_rw & REQ_SYNC) && 5302 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5303 atomic_inc(&conf->preread_active_stripes); 5304 release_stripe_plug(mddev, sh); 5305 } else { 5306 /* cannot get stripe for read-ahead, just give-up */ 5307 bi->bi_error = -EIO; 5308 break; 5309 } 5310 } 5311 finish_wait(&conf->wait_for_overlap, &w); 5312 5313 remaining = raid5_dec_bi_active_stripes(bi); 5314 if (remaining == 0) { 5315 5316 if ( rw == WRITE ) 5317 md_write_end(mddev); 5318 5319 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev), 5320 bi, 0); 5321 bio_endio(bi); 5322 } 5323 } 5324 5325 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks); 5326 5327 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped) 5328 { 5329 /* reshaping is quite different to recovery/resync so it is 5330 * handled quite separately ... here. 5331 * 5332 * On each call to sync_request, we gather one chunk worth of 5333 * destination stripes and flag them as expanding. 5334 * Then we find all the source stripes and request reads. 5335 * As the reads complete, handle_stripe will copy the data 5336 * into the destination stripe and release that stripe. 5337 */ 5338 struct r5conf *conf = mddev->private; 5339 struct stripe_head *sh; 5340 sector_t first_sector, last_sector; 5341 int raid_disks = conf->previous_raid_disks; 5342 int data_disks = raid_disks - conf->max_degraded; 5343 int new_data_disks = conf->raid_disks - conf->max_degraded; 5344 int i; 5345 int dd_idx; 5346 sector_t writepos, readpos, safepos; 5347 sector_t stripe_addr; 5348 int reshape_sectors; 5349 struct list_head stripes; 5350 sector_t retn; 5351 5352 if (sector_nr == 0) { 5353 /* If restarting in the middle, skip the initial sectors */ 5354 if (mddev->reshape_backwards && 5355 conf->reshape_progress < raid5_size(mddev, 0, 0)) { 5356 sector_nr = raid5_size(mddev, 0, 0) 5357 - conf->reshape_progress; 5358 } else if (mddev->reshape_backwards && 5359 conf->reshape_progress == MaxSector) { 5360 /* shouldn't happen, but just in case, finish up.*/ 5361 sector_nr = MaxSector; 5362 } else if (!mddev->reshape_backwards && 5363 conf->reshape_progress > 0) 5364 sector_nr = conf->reshape_progress; 5365 sector_div(sector_nr, new_data_disks); 5366 if (sector_nr) { 5367 mddev->curr_resync_completed = sector_nr; 5368 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 5369 *skipped = 1; 5370 retn = sector_nr; 5371 goto finish; 5372 } 5373 } 5374 5375 /* We need to process a full chunk at a time. 5376 * If old and new chunk sizes differ, we need to process the 5377 * largest of these 5378 */ 5379 5380 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors); 5381 5382 /* We update the metadata at least every 10 seconds, or when 5383 * the data about to be copied would over-write the source of 5384 * the data at the front of the range. i.e. one new_stripe 5385 * along from reshape_progress new_maps to after where 5386 * reshape_safe old_maps to 5387 */ 5388 writepos = conf->reshape_progress; 5389 sector_div(writepos, new_data_disks); 5390 readpos = conf->reshape_progress; 5391 sector_div(readpos, data_disks); 5392 safepos = conf->reshape_safe; 5393 sector_div(safepos, data_disks); 5394 if (mddev->reshape_backwards) { 5395 BUG_ON(writepos < reshape_sectors); 5396 writepos -= reshape_sectors; 5397 readpos += reshape_sectors; 5398 safepos += reshape_sectors; 5399 } else { 5400 writepos += reshape_sectors; 5401 /* readpos and safepos are worst-case calculations. 5402 * A negative number is overly pessimistic, and causes 5403 * obvious problems for unsigned storage. So clip to 0. 5404 */ 5405 readpos -= min_t(sector_t, reshape_sectors, readpos); 5406 safepos -= min_t(sector_t, reshape_sectors, safepos); 5407 } 5408 5409 /* Having calculated the 'writepos' possibly use it 5410 * to set 'stripe_addr' which is where we will write to. 5411 */ 5412 if (mddev->reshape_backwards) { 5413 BUG_ON(conf->reshape_progress == 0); 5414 stripe_addr = writepos; 5415 BUG_ON((mddev->dev_sectors & 5416 ~((sector_t)reshape_sectors - 1)) 5417 - reshape_sectors - stripe_addr 5418 != sector_nr); 5419 } else { 5420 BUG_ON(writepos != sector_nr + reshape_sectors); 5421 stripe_addr = sector_nr; 5422 } 5423 5424 /* 'writepos' is the most advanced device address we might write. 5425 * 'readpos' is the least advanced device address we might read. 5426 * 'safepos' is the least address recorded in the metadata as having 5427 * been reshaped. 5428 * If there is a min_offset_diff, these are adjusted either by 5429 * increasing the safepos/readpos if diff is negative, or 5430 * increasing writepos if diff is positive. 5431 * If 'readpos' is then behind 'writepos', there is no way that we can 5432 * ensure safety in the face of a crash - that must be done by userspace 5433 * making a backup of the data. So in that case there is no particular 5434 * rush to update metadata. 5435 * Otherwise if 'safepos' is behind 'writepos', then we really need to 5436 * update the metadata to advance 'safepos' to match 'readpos' so that 5437 * we can be safe in the event of a crash. 5438 * So we insist on updating metadata if safepos is behind writepos and 5439 * readpos is beyond writepos. 5440 * In any case, update the metadata every 10 seconds. 5441 * Maybe that number should be configurable, but I'm not sure it is 5442 * worth it.... maybe it could be a multiple of safemode_delay??? 5443 */ 5444 if (conf->min_offset_diff < 0) { 5445 safepos += -conf->min_offset_diff; 5446 readpos += -conf->min_offset_diff; 5447 } else 5448 writepos += conf->min_offset_diff; 5449 5450 if ((mddev->reshape_backwards 5451 ? (safepos > writepos && readpos < writepos) 5452 : (safepos < writepos && readpos > writepos)) || 5453 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 5454 /* Cannot proceed until we've updated the superblock... */ 5455 wait_event(conf->wait_for_overlap, 5456 atomic_read(&conf->reshape_stripes)==0 5457 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5458 if (atomic_read(&conf->reshape_stripes) != 0) 5459 return 0; 5460 mddev->reshape_position = conf->reshape_progress; 5461 mddev->curr_resync_completed = sector_nr; 5462 conf->reshape_checkpoint = jiffies; 5463 set_bit(MD_CHANGE_DEVS, &mddev->flags); 5464 md_wakeup_thread(mddev->thread); 5465 wait_event(mddev->sb_wait, mddev->flags == 0 || 5466 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5467 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 5468 return 0; 5469 spin_lock_irq(&conf->device_lock); 5470 conf->reshape_safe = mddev->reshape_position; 5471 spin_unlock_irq(&conf->device_lock); 5472 wake_up(&conf->wait_for_overlap); 5473 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 5474 } 5475 5476 INIT_LIST_HEAD(&stripes); 5477 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) { 5478 int j; 5479 int skipped_disk = 0; 5480 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1); 5481 set_bit(STRIPE_EXPANDING, &sh->state); 5482 atomic_inc(&conf->reshape_stripes); 5483 /* If any of this stripe is beyond the end of the old 5484 * array, then we need to zero those blocks 5485 */ 5486 for (j=sh->disks; j--;) { 5487 sector_t s; 5488 if (j == sh->pd_idx) 5489 continue; 5490 if (conf->level == 6 && 5491 j == sh->qd_idx) 5492 continue; 5493 s = raid5_compute_blocknr(sh, j, 0); 5494 if (s < raid5_size(mddev, 0, 0)) { 5495 skipped_disk = 1; 5496 continue; 5497 } 5498 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE); 5499 set_bit(R5_Expanded, &sh->dev[j].flags); 5500 set_bit(R5_UPTODATE, &sh->dev[j].flags); 5501 } 5502 if (!skipped_disk) { 5503 set_bit(STRIPE_EXPAND_READY, &sh->state); 5504 set_bit(STRIPE_HANDLE, &sh->state); 5505 } 5506 list_add(&sh->lru, &stripes); 5507 } 5508 spin_lock_irq(&conf->device_lock); 5509 if (mddev->reshape_backwards) 5510 conf->reshape_progress -= reshape_sectors * new_data_disks; 5511 else 5512 conf->reshape_progress += reshape_sectors * new_data_disks; 5513 spin_unlock_irq(&conf->device_lock); 5514 /* Ok, those stripe are ready. We can start scheduling 5515 * reads on the source stripes. 5516 * The source stripes are determined by mapping the first and last 5517 * block on the destination stripes. 5518 */ 5519 first_sector = 5520 raid5_compute_sector(conf, stripe_addr*(new_data_disks), 5521 1, &dd_idx, NULL); 5522 last_sector = 5523 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors) 5524 * new_data_disks - 1), 5525 1, &dd_idx, NULL); 5526 if (last_sector >= mddev->dev_sectors) 5527 last_sector = mddev->dev_sectors - 1; 5528 while (first_sector <= last_sector) { 5529 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1); 5530 set_bit(STRIPE_EXPAND_SOURCE, &sh->state); 5531 set_bit(STRIPE_HANDLE, &sh->state); 5532 raid5_release_stripe(sh); 5533 first_sector += STRIPE_SECTORS; 5534 } 5535 /* Now that the sources are clearly marked, we can release 5536 * the destination stripes 5537 */ 5538 while (!list_empty(&stripes)) { 5539 sh = list_entry(stripes.next, struct stripe_head, lru); 5540 list_del_init(&sh->lru); 5541 raid5_release_stripe(sh); 5542 } 5543 /* If this takes us to the resync_max point where we have to pause, 5544 * then we need to write out the superblock. 5545 */ 5546 sector_nr += reshape_sectors; 5547 retn = reshape_sectors; 5548 finish: 5549 if (mddev->curr_resync_completed > mddev->resync_max || 5550 (sector_nr - mddev->curr_resync_completed) * 2 5551 >= mddev->resync_max - mddev->curr_resync_completed) { 5552 /* Cannot proceed until we've updated the superblock... */ 5553 wait_event(conf->wait_for_overlap, 5554 atomic_read(&conf->reshape_stripes) == 0 5555 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5556 if (atomic_read(&conf->reshape_stripes) != 0) 5557 goto ret; 5558 mddev->reshape_position = conf->reshape_progress; 5559 mddev->curr_resync_completed = sector_nr; 5560 conf->reshape_checkpoint = jiffies; 5561 set_bit(MD_CHANGE_DEVS, &mddev->flags); 5562 md_wakeup_thread(mddev->thread); 5563 wait_event(mddev->sb_wait, 5564 !test_bit(MD_CHANGE_DEVS, &mddev->flags) 5565 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5566 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 5567 goto ret; 5568 spin_lock_irq(&conf->device_lock); 5569 conf->reshape_safe = mddev->reshape_position; 5570 spin_unlock_irq(&conf->device_lock); 5571 wake_up(&conf->wait_for_overlap); 5572 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 5573 } 5574 ret: 5575 return retn; 5576 } 5577 5578 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr, 5579 int *skipped) 5580 { 5581 struct r5conf *conf = mddev->private; 5582 struct stripe_head *sh; 5583 sector_t max_sector = mddev->dev_sectors; 5584 sector_t sync_blocks; 5585 int still_degraded = 0; 5586 int i; 5587 5588 if (sector_nr >= max_sector) { 5589 /* just being told to finish up .. nothing much to do */ 5590 5591 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 5592 end_reshape(conf); 5593 return 0; 5594 } 5595 5596 if (mddev->curr_resync < max_sector) /* aborted */ 5597 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 5598 &sync_blocks, 1); 5599 else /* completed sync */ 5600 conf->fullsync = 0; 5601 bitmap_close_sync(mddev->bitmap); 5602 5603 return 0; 5604 } 5605 5606 /* Allow raid5_quiesce to complete */ 5607 wait_event(conf->wait_for_overlap, conf->quiesce != 2); 5608 5609 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 5610 return reshape_request(mddev, sector_nr, skipped); 5611 5612 /* No need to check resync_max as we never do more than one 5613 * stripe, and as resync_max will always be on a chunk boundary, 5614 * if the check in md_do_sync didn't fire, there is no chance 5615 * of overstepping resync_max here 5616 */ 5617 5618 /* if there is too many failed drives and we are trying 5619 * to resync, then assert that we are finished, because there is 5620 * nothing we can do. 5621 */ 5622 if (mddev->degraded >= conf->max_degraded && 5623 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 5624 sector_t rv = mddev->dev_sectors - sector_nr; 5625 *skipped = 1; 5626 return rv; 5627 } 5628 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 5629 !conf->fullsync && 5630 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 5631 sync_blocks >= STRIPE_SECTORS) { 5632 /* we can skip this block, and probably more */ 5633 sync_blocks /= STRIPE_SECTORS; 5634 *skipped = 1; 5635 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */ 5636 } 5637 5638 bitmap_cond_end_sync(mddev->bitmap, sector_nr, false); 5639 5640 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0); 5641 if (sh == NULL) { 5642 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0); 5643 /* make sure we don't swamp the stripe cache if someone else 5644 * is trying to get access 5645 */ 5646 schedule_timeout_uninterruptible(1); 5647 } 5648 /* Need to check if array will still be degraded after recovery/resync 5649 * Note in case of > 1 drive failures it's possible we're rebuilding 5650 * one drive while leaving another faulty drive in array. 5651 */ 5652 rcu_read_lock(); 5653 for (i = 0; i < conf->raid_disks; i++) { 5654 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev); 5655 5656 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) 5657 still_degraded = 1; 5658 } 5659 rcu_read_unlock(); 5660 5661 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded); 5662 5663 set_bit(STRIPE_SYNC_REQUESTED, &sh->state); 5664 set_bit(STRIPE_HANDLE, &sh->state); 5665 5666 raid5_release_stripe(sh); 5667 5668 return STRIPE_SECTORS; 5669 } 5670 5671 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio) 5672 { 5673 /* We may not be able to submit a whole bio at once as there 5674 * may not be enough stripe_heads available. 5675 * We cannot pre-allocate enough stripe_heads as we may need 5676 * more than exist in the cache (if we allow ever large chunks). 5677 * So we do one stripe head at a time and record in 5678 * ->bi_hw_segments how many have been done. 5679 * 5680 * We *know* that this entire raid_bio is in one chunk, so 5681 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector. 5682 */ 5683 struct stripe_head *sh; 5684 int dd_idx; 5685 sector_t sector, logical_sector, last_sector; 5686 int scnt = 0; 5687 int remaining; 5688 int handled = 0; 5689 5690 logical_sector = raid_bio->bi_iter.bi_sector & 5691 ~((sector_t)STRIPE_SECTORS-1); 5692 sector = raid5_compute_sector(conf, logical_sector, 5693 0, &dd_idx, NULL); 5694 last_sector = bio_end_sector(raid_bio); 5695 5696 for (; logical_sector < last_sector; 5697 logical_sector += STRIPE_SECTORS, 5698 sector += STRIPE_SECTORS, 5699 scnt++) { 5700 5701 if (scnt < raid5_bi_processed_stripes(raid_bio)) 5702 /* already done this stripe */ 5703 continue; 5704 5705 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1); 5706 5707 if (!sh) { 5708 /* failed to get a stripe - must wait */ 5709 raid5_set_bi_processed_stripes(raid_bio, scnt); 5710 conf->retry_read_aligned = raid_bio; 5711 return handled; 5712 } 5713 5714 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) { 5715 raid5_release_stripe(sh); 5716 raid5_set_bi_processed_stripes(raid_bio, scnt); 5717 conf->retry_read_aligned = raid_bio; 5718 return handled; 5719 } 5720 5721 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags); 5722 handle_stripe(sh); 5723 raid5_release_stripe(sh); 5724 handled++; 5725 } 5726 remaining = raid5_dec_bi_active_stripes(raid_bio); 5727 if (remaining == 0) { 5728 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev), 5729 raid_bio, 0); 5730 bio_endio(raid_bio); 5731 } 5732 if (atomic_dec_and_test(&conf->active_aligned_reads)) 5733 wake_up(&conf->wait_for_quiescent); 5734 return handled; 5735 } 5736 5737 static int handle_active_stripes(struct r5conf *conf, int group, 5738 struct r5worker *worker, 5739 struct list_head *temp_inactive_list) 5740 { 5741 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh; 5742 int i, batch_size = 0, hash; 5743 bool release_inactive = false; 5744 5745 while (batch_size < MAX_STRIPE_BATCH && 5746 (sh = __get_priority_stripe(conf, group)) != NULL) 5747 batch[batch_size++] = sh; 5748 5749 if (batch_size == 0) { 5750 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 5751 if (!list_empty(temp_inactive_list + i)) 5752 break; 5753 if (i == NR_STRIPE_HASH_LOCKS) { 5754 spin_unlock_irq(&conf->device_lock); 5755 r5l_flush_stripe_to_raid(conf->log); 5756 spin_lock_irq(&conf->device_lock); 5757 return batch_size; 5758 } 5759 release_inactive = true; 5760 } 5761 spin_unlock_irq(&conf->device_lock); 5762 5763 release_inactive_stripe_list(conf, temp_inactive_list, 5764 NR_STRIPE_HASH_LOCKS); 5765 5766 r5l_flush_stripe_to_raid(conf->log); 5767 if (release_inactive) { 5768 spin_lock_irq(&conf->device_lock); 5769 return 0; 5770 } 5771 5772 for (i = 0; i < batch_size; i++) 5773 handle_stripe(batch[i]); 5774 r5l_write_stripe_run(conf->log); 5775 5776 cond_resched(); 5777 5778 spin_lock_irq(&conf->device_lock); 5779 for (i = 0; i < batch_size; i++) { 5780 hash = batch[i]->hash_lock_index; 5781 __release_stripe(conf, batch[i], &temp_inactive_list[hash]); 5782 } 5783 return batch_size; 5784 } 5785 5786 static void raid5_do_work(struct work_struct *work) 5787 { 5788 struct r5worker *worker = container_of(work, struct r5worker, work); 5789 struct r5worker_group *group = worker->group; 5790 struct r5conf *conf = group->conf; 5791 int group_id = group - conf->worker_groups; 5792 int handled; 5793 struct blk_plug plug; 5794 5795 pr_debug("+++ raid5worker active\n"); 5796 5797 blk_start_plug(&plug); 5798 handled = 0; 5799 spin_lock_irq(&conf->device_lock); 5800 while (1) { 5801 int batch_size, released; 5802 5803 released = release_stripe_list(conf, worker->temp_inactive_list); 5804 5805 batch_size = handle_active_stripes(conf, group_id, worker, 5806 worker->temp_inactive_list); 5807 worker->working = false; 5808 if (!batch_size && !released) 5809 break; 5810 handled += batch_size; 5811 } 5812 pr_debug("%d stripes handled\n", handled); 5813 5814 spin_unlock_irq(&conf->device_lock); 5815 blk_finish_plug(&plug); 5816 5817 pr_debug("--- raid5worker inactive\n"); 5818 } 5819 5820 /* 5821 * This is our raid5 kernel thread. 5822 * 5823 * We scan the hash table for stripes which can be handled now. 5824 * During the scan, completed stripes are saved for us by the interrupt 5825 * handler, so that they will not have to wait for our next wakeup. 5826 */ 5827 static void raid5d(struct md_thread *thread) 5828 { 5829 struct mddev *mddev = thread->mddev; 5830 struct r5conf *conf = mddev->private; 5831 int handled; 5832 struct blk_plug plug; 5833 5834 pr_debug("+++ raid5d active\n"); 5835 5836 md_check_recovery(mddev); 5837 5838 if (!bio_list_empty(&conf->return_bi) && 5839 !test_bit(MD_CHANGE_PENDING, &mddev->flags)) { 5840 struct bio_list tmp = BIO_EMPTY_LIST; 5841 spin_lock_irq(&conf->device_lock); 5842 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) { 5843 bio_list_merge(&tmp, &conf->return_bi); 5844 bio_list_init(&conf->return_bi); 5845 } 5846 spin_unlock_irq(&conf->device_lock); 5847 return_io(&tmp); 5848 } 5849 5850 blk_start_plug(&plug); 5851 handled = 0; 5852 spin_lock_irq(&conf->device_lock); 5853 while (1) { 5854 struct bio *bio; 5855 int batch_size, released; 5856 5857 released = release_stripe_list(conf, conf->temp_inactive_list); 5858 if (released) 5859 clear_bit(R5_DID_ALLOC, &conf->cache_state); 5860 5861 if ( 5862 !list_empty(&conf->bitmap_list)) { 5863 /* Now is a good time to flush some bitmap updates */ 5864 conf->seq_flush++; 5865 spin_unlock_irq(&conf->device_lock); 5866 bitmap_unplug(mddev->bitmap); 5867 spin_lock_irq(&conf->device_lock); 5868 conf->seq_write = conf->seq_flush; 5869 activate_bit_delay(conf, conf->temp_inactive_list); 5870 } 5871 raid5_activate_delayed(conf); 5872 5873 while ((bio = remove_bio_from_retry(conf))) { 5874 int ok; 5875 spin_unlock_irq(&conf->device_lock); 5876 ok = retry_aligned_read(conf, bio); 5877 spin_lock_irq(&conf->device_lock); 5878 if (!ok) 5879 break; 5880 handled++; 5881 } 5882 5883 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL, 5884 conf->temp_inactive_list); 5885 if (!batch_size && !released) 5886 break; 5887 handled += batch_size; 5888 5889 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) { 5890 spin_unlock_irq(&conf->device_lock); 5891 md_check_recovery(mddev); 5892 spin_lock_irq(&conf->device_lock); 5893 } 5894 } 5895 pr_debug("%d stripes handled\n", handled); 5896 5897 spin_unlock_irq(&conf->device_lock); 5898 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) && 5899 mutex_trylock(&conf->cache_size_mutex)) { 5900 grow_one_stripe(conf, __GFP_NOWARN); 5901 /* Set flag even if allocation failed. This helps 5902 * slow down allocation requests when mem is short 5903 */ 5904 set_bit(R5_DID_ALLOC, &conf->cache_state); 5905 mutex_unlock(&conf->cache_size_mutex); 5906 } 5907 5908 r5l_flush_stripe_to_raid(conf->log); 5909 5910 async_tx_issue_pending_all(); 5911 blk_finish_plug(&plug); 5912 5913 pr_debug("--- raid5d inactive\n"); 5914 } 5915 5916 static ssize_t 5917 raid5_show_stripe_cache_size(struct mddev *mddev, char *page) 5918 { 5919 struct r5conf *conf; 5920 int ret = 0; 5921 spin_lock(&mddev->lock); 5922 conf = mddev->private; 5923 if (conf) 5924 ret = sprintf(page, "%d\n", conf->min_nr_stripes); 5925 spin_unlock(&mddev->lock); 5926 return ret; 5927 } 5928 5929 int 5930 raid5_set_cache_size(struct mddev *mddev, int size) 5931 { 5932 struct r5conf *conf = mddev->private; 5933 int err; 5934 5935 if (size <= 16 || size > 32768) 5936 return -EINVAL; 5937 5938 conf->min_nr_stripes = size; 5939 mutex_lock(&conf->cache_size_mutex); 5940 while (size < conf->max_nr_stripes && 5941 drop_one_stripe(conf)) 5942 ; 5943 mutex_unlock(&conf->cache_size_mutex); 5944 5945 5946 err = md_allow_write(mddev); 5947 if (err) 5948 return err; 5949 5950 mutex_lock(&conf->cache_size_mutex); 5951 while (size > conf->max_nr_stripes) 5952 if (!grow_one_stripe(conf, GFP_KERNEL)) 5953 break; 5954 mutex_unlock(&conf->cache_size_mutex); 5955 5956 return 0; 5957 } 5958 EXPORT_SYMBOL(raid5_set_cache_size); 5959 5960 static ssize_t 5961 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len) 5962 { 5963 struct r5conf *conf; 5964 unsigned long new; 5965 int err; 5966 5967 if (len >= PAGE_SIZE) 5968 return -EINVAL; 5969 if (kstrtoul(page, 10, &new)) 5970 return -EINVAL; 5971 err = mddev_lock(mddev); 5972 if (err) 5973 return err; 5974 conf = mddev->private; 5975 if (!conf) 5976 err = -ENODEV; 5977 else 5978 err = raid5_set_cache_size(mddev, new); 5979 mddev_unlock(mddev); 5980 5981 return err ?: len; 5982 } 5983 5984 static struct md_sysfs_entry 5985 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR, 5986 raid5_show_stripe_cache_size, 5987 raid5_store_stripe_cache_size); 5988 5989 static ssize_t 5990 raid5_show_rmw_level(struct mddev *mddev, char *page) 5991 { 5992 struct r5conf *conf = mddev->private; 5993 if (conf) 5994 return sprintf(page, "%d\n", conf->rmw_level); 5995 else 5996 return 0; 5997 } 5998 5999 static ssize_t 6000 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len) 6001 { 6002 struct r5conf *conf = mddev->private; 6003 unsigned long new; 6004 6005 if (!conf) 6006 return -ENODEV; 6007 6008 if (len >= PAGE_SIZE) 6009 return -EINVAL; 6010 6011 if (kstrtoul(page, 10, &new)) 6012 return -EINVAL; 6013 6014 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome) 6015 return -EINVAL; 6016 6017 if (new != PARITY_DISABLE_RMW && 6018 new != PARITY_ENABLE_RMW && 6019 new != PARITY_PREFER_RMW) 6020 return -EINVAL; 6021 6022 conf->rmw_level = new; 6023 return len; 6024 } 6025 6026 static struct md_sysfs_entry 6027 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR, 6028 raid5_show_rmw_level, 6029 raid5_store_rmw_level); 6030 6031 6032 static ssize_t 6033 raid5_show_preread_threshold(struct mddev *mddev, char *page) 6034 { 6035 struct r5conf *conf; 6036 int ret = 0; 6037 spin_lock(&mddev->lock); 6038 conf = mddev->private; 6039 if (conf) 6040 ret = sprintf(page, "%d\n", conf->bypass_threshold); 6041 spin_unlock(&mddev->lock); 6042 return ret; 6043 } 6044 6045 static ssize_t 6046 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len) 6047 { 6048 struct r5conf *conf; 6049 unsigned long new; 6050 int err; 6051 6052 if (len >= PAGE_SIZE) 6053 return -EINVAL; 6054 if (kstrtoul(page, 10, &new)) 6055 return -EINVAL; 6056 6057 err = mddev_lock(mddev); 6058 if (err) 6059 return err; 6060 conf = mddev->private; 6061 if (!conf) 6062 err = -ENODEV; 6063 else if (new > conf->min_nr_stripes) 6064 err = -EINVAL; 6065 else 6066 conf->bypass_threshold = new; 6067 mddev_unlock(mddev); 6068 return err ?: len; 6069 } 6070 6071 static struct md_sysfs_entry 6072 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold, 6073 S_IRUGO | S_IWUSR, 6074 raid5_show_preread_threshold, 6075 raid5_store_preread_threshold); 6076 6077 static ssize_t 6078 raid5_show_skip_copy(struct mddev *mddev, char *page) 6079 { 6080 struct r5conf *conf; 6081 int ret = 0; 6082 spin_lock(&mddev->lock); 6083 conf = mddev->private; 6084 if (conf) 6085 ret = sprintf(page, "%d\n", conf->skip_copy); 6086 spin_unlock(&mddev->lock); 6087 return ret; 6088 } 6089 6090 static ssize_t 6091 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len) 6092 { 6093 struct r5conf *conf; 6094 unsigned long new; 6095 int err; 6096 6097 if (len >= PAGE_SIZE) 6098 return -EINVAL; 6099 if (kstrtoul(page, 10, &new)) 6100 return -EINVAL; 6101 new = !!new; 6102 6103 err = mddev_lock(mddev); 6104 if (err) 6105 return err; 6106 conf = mddev->private; 6107 if (!conf) 6108 err = -ENODEV; 6109 else if (new != conf->skip_copy) { 6110 mddev_suspend(mddev); 6111 conf->skip_copy = new; 6112 if (new) 6113 mddev->queue->backing_dev_info.capabilities |= 6114 BDI_CAP_STABLE_WRITES; 6115 else 6116 mddev->queue->backing_dev_info.capabilities &= 6117 ~BDI_CAP_STABLE_WRITES; 6118 mddev_resume(mddev); 6119 } 6120 mddev_unlock(mddev); 6121 return err ?: len; 6122 } 6123 6124 static struct md_sysfs_entry 6125 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR, 6126 raid5_show_skip_copy, 6127 raid5_store_skip_copy); 6128 6129 static ssize_t 6130 stripe_cache_active_show(struct mddev *mddev, char *page) 6131 { 6132 struct r5conf *conf = mddev->private; 6133 if (conf) 6134 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes)); 6135 else 6136 return 0; 6137 } 6138 6139 static struct md_sysfs_entry 6140 raid5_stripecache_active = __ATTR_RO(stripe_cache_active); 6141 6142 static ssize_t 6143 raid5_show_group_thread_cnt(struct mddev *mddev, char *page) 6144 { 6145 struct r5conf *conf; 6146 int ret = 0; 6147 spin_lock(&mddev->lock); 6148 conf = mddev->private; 6149 if (conf) 6150 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group); 6151 spin_unlock(&mddev->lock); 6152 return ret; 6153 } 6154 6155 static int alloc_thread_groups(struct r5conf *conf, int cnt, 6156 int *group_cnt, 6157 int *worker_cnt_per_group, 6158 struct r5worker_group **worker_groups); 6159 static ssize_t 6160 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len) 6161 { 6162 struct r5conf *conf; 6163 unsigned long new; 6164 int err; 6165 struct r5worker_group *new_groups, *old_groups; 6166 int group_cnt, worker_cnt_per_group; 6167 6168 if (len >= PAGE_SIZE) 6169 return -EINVAL; 6170 if (kstrtoul(page, 10, &new)) 6171 return -EINVAL; 6172 6173 err = mddev_lock(mddev); 6174 if (err) 6175 return err; 6176 conf = mddev->private; 6177 if (!conf) 6178 err = -ENODEV; 6179 else if (new != conf->worker_cnt_per_group) { 6180 mddev_suspend(mddev); 6181 6182 old_groups = conf->worker_groups; 6183 if (old_groups) 6184 flush_workqueue(raid5_wq); 6185 6186 err = alloc_thread_groups(conf, new, 6187 &group_cnt, &worker_cnt_per_group, 6188 &new_groups); 6189 if (!err) { 6190 spin_lock_irq(&conf->device_lock); 6191 conf->group_cnt = group_cnt; 6192 conf->worker_cnt_per_group = worker_cnt_per_group; 6193 conf->worker_groups = new_groups; 6194 spin_unlock_irq(&conf->device_lock); 6195 6196 if (old_groups) 6197 kfree(old_groups[0].workers); 6198 kfree(old_groups); 6199 } 6200 mddev_resume(mddev); 6201 } 6202 mddev_unlock(mddev); 6203 6204 return err ?: len; 6205 } 6206 6207 static struct md_sysfs_entry 6208 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR, 6209 raid5_show_group_thread_cnt, 6210 raid5_store_group_thread_cnt); 6211 6212 static struct attribute *raid5_attrs[] = { 6213 &raid5_stripecache_size.attr, 6214 &raid5_stripecache_active.attr, 6215 &raid5_preread_bypass_threshold.attr, 6216 &raid5_group_thread_cnt.attr, 6217 &raid5_skip_copy.attr, 6218 &raid5_rmw_level.attr, 6219 NULL, 6220 }; 6221 static struct attribute_group raid5_attrs_group = { 6222 .name = NULL, 6223 .attrs = raid5_attrs, 6224 }; 6225 6226 static int alloc_thread_groups(struct r5conf *conf, int cnt, 6227 int *group_cnt, 6228 int *worker_cnt_per_group, 6229 struct r5worker_group **worker_groups) 6230 { 6231 int i, j, k; 6232 ssize_t size; 6233 struct r5worker *workers; 6234 6235 *worker_cnt_per_group = cnt; 6236 if (cnt == 0) { 6237 *group_cnt = 0; 6238 *worker_groups = NULL; 6239 return 0; 6240 } 6241 *group_cnt = num_possible_nodes(); 6242 size = sizeof(struct r5worker) * cnt; 6243 workers = kzalloc(size * *group_cnt, GFP_NOIO); 6244 *worker_groups = kzalloc(sizeof(struct r5worker_group) * 6245 *group_cnt, GFP_NOIO); 6246 if (!*worker_groups || !workers) { 6247 kfree(workers); 6248 kfree(*worker_groups); 6249 return -ENOMEM; 6250 } 6251 6252 for (i = 0; i < *group_cnt; i++) { 6253 struct r5worker_group *group; 6254 6255 group = &(*worker_groups)[i]; 6256 INIT_LIST_HEAD(&group->handle_list); 6257 group->conf = conf; 6258 group->workers = workers + i * cnt; 6259 6260 for (j = 0; j < cnt; j++) { 6261 struct r5worker *worker = group->workers + j; 6262 worker->group = group; 6263 INIT_WORK(&worker->work, raid5_do_work); 6264 6265 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++) 6266 INIT_LIST_HEAD(worker->temp_inactive_list + k); 6267 } 6268 } 6269 6270 return 0; 6271 } 6272 6273 static void free_thread_groups(struct r5conf *conf) 6274 { 6275 if (conf->worker_groups) 6276 kfree(conf->worker_groups[0].workers); 6277 kfree(conf->worker_groups); 6278 conf->worker_groups = NULL; 6279 } 6280 6281 static sector_t 6282 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks) 6283 { 6284 struct r5conf *conf = mddev->private; 6285 6286 if (!sectors) 6287 sectors = mddev->dev_sectors; 6288 if (!raid_disks) 6289 /* size is defined by the smallest of previous and new size */ 6290 raid_disks = min(conf->raid_disks, conf->previous_raid_disks); 6291 6292 sectors &= ~((sector_t)conf->chunk_sectors - 1); 6293 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1); 6294 return sectors * (raid_disks - conf->max_degraded); 6295 } 6296 6297 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 6298 { 6299 safe_put_page(percpu->spare_page); 6300 if (percpu->scribble) 6301 flex_array_free(percpu->scribble); 6302 percpu->spare_page = NULL; 6303 percpu->scribble = NULL; 6304 } 6305 6306 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 6307 { 6308 if (conf->level == 6 && !percpu->spare_page) 6309 percpu->spare_page = alloc_page(GFP_KERNEL); 6310 if (!percpu->scribble) 6311 percpu->scribble = scribble_alloc(max(conf->raid_disks, 6312 conf->previous_raid_disks), 6313 max(conf->chunk_sectors, 6314 conf->prev_chunk_sectors) 6315 / STRIPE_SECTORS, 6316 GFP_KERNEL); 6317 6318 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) { 6319 free_scratch_buffer(conf, percpu); 6320 return -ENOMEM; 6321 } 6322 6323 return 0; 6324 } 6325 6326 static void raid5_free_percpu(struct r5conf *conf) 6327 { 6328 unsigned long cpu; 6329 6330 if (!conf->percpu) 6331 return; 6332 6333 #ifdef CONFIG_HOTPLUG_CPU 6334 unregister_cpu_notifier(&conf->cpu_notify); 6335 #endif 6336 6337 get_online_cpus(); 6338 for_each_possible_cpu(cpu) 6339 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu)); 6340 put_online_cpus(); 6341 6342 free_percpu(conf->percpu); 6343 } 6344 6345 static void free_conf(struct r5conf *conf) 6346 { 6347 if (conf->log) 6348 r5l_exit_log(conf->log); 6349 if (conf->shrinker.seeks) 6350 unregister_shrinker(&conf->shrinker); 6351 6352 free_thread_groups(conf); 6353 shrink_stripes(conf); 6354 raid5_free_percpu(conf); 6355 kfree(conf->disks); 6356 kfree(conf->stripe_hashtbl); 6357 kfree(conf); 6358 } 6359 6360 #ifdef CONFIG_HOTPLUG_CPU 6361 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action, 6362 void *hcpu) 6363 { 6364 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify); 6365 long cpu = (long)hcpu; 6366 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu); 6367 6368 switch (action) { 6369 case CPU_UP_PREPARE: 6370 case CPU_UP_PREPARE_FROZEN: 6371 if (alloc_scratch_buffer(conf, percpu)) { 6372 pr_err("%s: failed memory allocation for cpu%ld\n", 6373 __func__, cpu); 6374 return notifier_from_errno(-ENOMEM); 6375 } 6376 break; 6377 case CPU_DEAD: 6378 case CPU_DEAD_FROZEN: 6379 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu)); 6380 break; 6381 default: 6382 break; 6383 } 6384 return NOTIFY_OK; 6385 } 6386 #endif 6387 6388 static int raid5_alloc_percpu(struct r5conf *conf) 6389 { 6390 unsigned long cpu; 6391 int err = 0; 6392 6393 conf->percpu = alloc_percpu(struct raid5_percpu); 6394 if (!conf->percpu) 6395 return -ENOMEM; 6396 6397 #ifdef CONFIG_HOTPLUG_CPU 6398 conf->cpu_notify.notifier_call = raid456_cpu_notify; 6399 conf->cpu_notify.priority = 0; 6400 err = register_cpu_notifier(&conf->cpu_notify); 6401 if (err) 6402 return err; 6403 #endif 6404 6405 get_online_cpus(); 6406 for_each_present_cpu(cpu) { 6407 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu)); 6408 if (err) { 6409 pr_err("%s: failed memory allocation for cpu%ld\n", 6410 __func__, cpu); 6411 break; 6412 } 6413 } 6414 put_online_cpus(); 6415 6416 return err; 6417 } 6418 6419 static unsigned long raid5_cache_scan(struct shrinker *shrink, 6420 struct shrink_control *sc) 6421 { 6422 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker); 6423 unsigned long ret = SHRINK_STOP; 6424 6425 if (mutex_trylock(&conf->cache_size_mutex)) { 6426 ret= 0; 6427 while (ret < sc->nr_to_scan && 6428 conf->max_nr_stripes > conf->min_nr_stripes) { 6429 if (drop_one_stripe(conf) == 0) { 6430 ret = SHRINK_STOP; 6431 break; 6432 } 6433 ret++; 6434 } 6435 mutex_unlock(&conf->cache_size_mutex); 6436 } 6437 return ret; 6438 } 6439 6440 static unsigned long raid5_cache_count(struct shrinker *shrink, 6441 struct shrink_control *sc) 6442 { 6443 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker); 6444 6445 if (conf->max_nr_stripes < conf->min_nr_stripes) 6446 /* unlikely, but not impossible */ 6447 return 0; 6448 return conf->max_nr_stripes - conf->min_nr_stripes; 6449 } 6450 6451 static struct r5conf *setup_conf(struct mddev *mddev) 6452 { 6453 struct r5conf *conf; 6454 int raid_disk, memory, max_disks; 6455 struct md_rdev *rdev; 6456 struct disk_info *disk; 6457 char pers_name[6]; 6458 int i; 6459 int group_cnt, worker_cnt_per_group; 6460 struct r5worker_group *new_group; 6461 6462 if (mddev->new_level != 5 6463 && mddev->new_level != 4 6464 && mddev->new_level != 6) { 6465 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n", 6466 mdname(mddev), mddev->new_level); 6467 return ERR_PTR(-EIO); 6468 } 6469 if ((mddev->new_level == 5 6470 && !algorithm_valid_raid5(mddev->new_layout)) || 6471 (mddev->new_level == 6 6472 && !algorithm_valid_raid6(mddev->new_layout))) { 6473 printk(KERN_ERR "md/raid:%s: layout %d not supported\n", 6474 mdname(mddev), mddev->new_layout); 6475 return ERR_PTR(-EIO); 6476 } 6477 if (mddev->new_level == 6 && mddev->raid_disks < 4) { 6478 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n", 6479 mdname(mddev), mddev->raid_disks); 6480 return ERR_PTR(-EINVAL); 6481 } 6482 6483 if (!mddev->new_chunk_sectors || 6484 (mddev->new_chunk_sectors << 9) % PAGE_SIZE || 6485 !is_power_of_2(mddev->new_chunk_sectors)) { 6486 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n", 6487 mdname(mddev), mddev->new_chunk_sectors << 9); 6488 return ERR_PTR(-EINVAL); 6489 } 6490 6491 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL); 6492 if (conf == NULL) 6493 goto abort; 6494 /* Don't enable multi-threading by default*/ 6495 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group, 6496 &new_group)) { 6497 conf->group_cnt = group_cnt; 6498 conf->worker_cnt_per_group = worker_cnt_per_group; 6499 conf->worker_groups = new_group; 6500 } else 6501 goto abort; 6502 spin_lock_init(&conf->device_lock); 6503 seqcount_init(&conf->gen_lock); 6504 mutex_init(&conf->cache_size_mutex); 6505 init_waitqueue_head(&conf->wait_for_quiescent); 6506 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) { 6507 init_waitqueue_head(&conf->wait_for_stripe[i]); 6508 } 6509 init_waitqueue_head(&conf->wait_for_overlap); 6510 INIT_LIST_HEAD(&conf->handle_list); 6511 INIT_LIST_HEAD(&conf->hold_list); 6512 INIT_LIST_HEAD(&conf->delayed_list); 6513 INIT_LIST_HEAD(&conf->bitmap_list); 6514 bio_list_init(&conf->return_bi); 6515 init_llist_head(&conf->released_stripes); 6516 atomic_set(&conf->active_stripes, 0); 6517 atomic_set(&conf->preread_active_stripes, 0); 6518 atomic_set(&conf->active_aligned_reads, 0); 6519 conf->bypass_threshold = BYPASS_THRESHOLD; 6520 conf->recovery_disabled = mddev->recovery_disabled - 1; 6521 6522 conf->raid_disks = mddev->raid_disks; 6523 if (mddev->reshape_position == MaxSector) 6524 conf->previous_raid_disks = mddev->raid_disks; 6525 else 6526 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks; 6527 max_disks = max(conf->raid_disks, conf->previous_raid_disks); 6528 6529 conf->disks = kzalloc(max_disks * sizeof(struct disk_info), 6530 GFP_KERNEL); 6531 if (!conf->disks) 6532 goto abort; 6533 6534 conf->mddev = mddev; 6535 6536 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL) 6537 goto abort; 6538 6539 /* We init hash_locks[0] separately to that it can be used 6540 * as the reference lock in the spin_lock_nest_lock() call 6541 * in lock_all_device_hash_locks_irq in order to convince 6542 * lockdep that we know what we are doing. 6543 */ 6544 spin_lock_init(conf->hash_locks); 6545 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 6546 spin_lock_init(conf->hash_locks + i); 6547 6548 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 6549 INIT_LIST_HEAD(conf->inactive_list + i); 6550 6551 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 6552 INIT_LIST_HEAD(conf->temp_inactive_list + i); 6553 6554 conf->level = mddev->new_level; 6555 conf->chunk_sectors = mddev->new_chunk_sectors; 6556 if (raid5_alloc_percpu(conf) != 0) 6557 goto abort; 6558 6559 pr_debug("raid456: run(%s) called.\n", mdname(mddev)); 6560 6561 rdev_for_each(rdev, mddev) { 6562 raid_disk = rdev->raid_disk; 6563 if (raid_disk >= max_disks 6564 || raid_disk < 0 || test_bit(Journal, &rdev->flags)) 6565 continue; 6566 disk = conf->disks + raid_disk; 6567 6568 if (test_bit(Replacement, &rdev->flags)) { 6569 if (disk->replacement) 6570 goto abort; 6571 disk->replacement = rdev; 6572 } else { 6573 if (disk->rdev) 6574 goto abort; 6575 disk->rdev = rdev; 6576 } 6577 6578 if (test_bit(In_sync, &rdev->flags)) { 6579 char b[BDEVNAME_SIZE]; 6580 printk(KERN_INFO "md/raid:%s: device %s operational as raid" 6581 " disk %d\n", 6582 mdname(mddev), bdevname(rdev->bdev, b), raid_disk); 6583 } else if (rdev->saved_raid_disk != raid_disk) 6584 /* Cannot rely on bitmap to complete recovery */ 6585 conf->fullsync = 1; 6586 } 6587 6588 conf->level = mddev->new_level; 6589 if (conf->level == 6) { 6590 conf->max_degraded = 2; 6591 if (raid6_call.xor_syndrome) 6592 conf->rmw_level = PARITY_ENABLE_RMW; 6593 else 6594 conf->rmw_level = PARITY_DISABLE_RMW; 6595 } else { 6596 conf->max_degraded = 1; 6597 conf->rmw_level = PARITY_ENABLE_RMW; 6598 } 6599 conf->algorithm = mddev->new_layout; 6600 conf->reshape_progress = mddev->reshape_position; 6601 if (conf->reshape_progress != MaxSector) { 6602 conf->prev_chunk_sectors = mddev->chunk_sectors; 6603 conf->prev_algo = mddev->layout; 6604 } else { 6605 conf->prev_chunk_sectors = conf->chunk_sectors; 6606 conf->prev_algo = conf->algorithm; 6607 } 6608 6609 conf->min_nr_stripes = NR_STRIPES; 6610 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) + 6611 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024; 6612 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS); 6613 if (grow_stripes(conf, conf->min_nr_stripes)) { 6614 printk(KERN_ERR 6615 "md/raid:%s: couldn't allocate %dkB for buffers\n", 6616 mdname(mddev), memory); 6617 goto abort; 6618 } else 6619 printk(KERN_INFO "md/raid:%s: allocated %dkB\n", 6620 mdname(mddev), memory); 6621 /* 6622 * Losing a stripe head costs more than the time to refill it, 6623 * it reduces the queue depth and so can hurt throughput. 6624 * So set it rather large, scaled by number of devices. 6625 */ 6626 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4; 6627 conf->shrinker.scan_objects = raid5_cache_scan; 6628 conf->shrinker.count_objects = raid5_cache_count; 6629 conf->shrinker.batch = 128; 6630 conf->shrinker.flags = 0; 6631 register_shrinker(&conf->shrinker); 6632 6633 sprintf(pers_name, "raid%d", mddev->new_level); 6634 conf->thread = md_register_thread(raid5d, mddev, pers_name); 6635 if (!conf->thread) { 6636 printk(KERN_ERR 6637 "md/raid:%s: couldn't allocate thread.\n", 6638 mdname(mddev)); 6639 goto abort; 6640 } 6641 6642 return conf; 6643 6644 abort: 6645 if (conf) { 6646 free_conf(conf); 6647 return ERR_PTR(-EIO); 6648 } else 6649 return ERR_PTR(-ENOMEM); 6650 } 6651 6652 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded) 6653 { 6654 switch (algo) { 6655 case ALGORITHM_PARITY_0: 6656 if (raid_disk < max_degraded) 6657 return 1; 6658 break; 6659 case ALGORITHM_PARITY_N: 6660 if (raid_disk >= raid_disks - max_degraded) 6661 return 1; 6662 break; 6663 case ALGORITHM_PARITY_0_6: 6664 if (raid_disk == 0 || 6665 raid_disk == raid_disks - 1) 6666 return 1; 6667 break; 6668 case ALGORITHM_LEFT_ASYMMETRIC_6: 6669 case ALGORITHM_RIGHT_ASYMMETRIC_6: 6670 case ALGORITHM_LEFT_SYMMETRIC_6: 6671 case ALGORITHM_RIGHT_SYMMETRIC_6: 6672 if (raid_disk == raid_disks - 1) 6673 return 1; 6674 } 6675 return 0; 6676 } 6677 6678 static int raid5_run(struct mddev *mddev) 6679 { 6680 struct r5conf *conf; 6681 int working_disks = 0; 6682 int dirty_parity_disks = 0; 6683 struct md_rdev *rdev; 6684 struct md_rdev *journal_dev = NULL; 6685 sector_t reshape_offset = 0; 6686 int i; 6687 long long min_offset_diff = 0; 6688 int first = 1; 6689 6690 if (mddev->recovery_cp != MaxSector) 6691 printk(KERN_NOTICE "md/raid:%s: not clean" 6692 " -- starting background reconstruction\n", 6693 mdname(mddev)); 6694 6695 rdev_for_each(rdev, mddev) { 6696 long long diff; 6697 6698 if (test_bit(Journal, &rdev->flags)) { 6699 journal_dev = rdev; 6700 continue; 6701 } 6702 if (rdev->raid_disk < 0) 6703 continue; 6704 diff = (rdev->new_data_offset - rdev->data_offset); 6705 if (first) { 6706 min_offset_diff = diff; 6707 first = 0; 6708 } else if (mddev->reshape_backwards && 6709 diff < min_offset_diff) 6710 min_offset_diff = diff; 6711 else if (!mddev->reshape_backwards && 6712 diff > min_offset_diff) 6713 min_offset_diff = diff; 6714 } 6715 6716 if (mddev->reshape_position != MaxSector) { 6717 /* Check that we can continue the reshape. 6718 * Difficulties arise if the stripe we would write to 6719 * next is at or after the stripe we would read from next. 6720 * For a reshape that changes the number of devices, this 6721 * is only possible for a very short time, and mdadm makes 6722 * sure that time appears to have past before assembling 6723 * the array. So we fail if that time hasn't passed. 6724 * For a reshape that keeps the number of devices the same 6725 * mdadm must be monitoring the reshape can keeping the 6726 * critical areas read-only and backed up. It will start 6727 * the array in read-only mode, so we check for that. 6728 */ 6729 sector_t here_new, here_old; 6730 int old_disks; 6731 int max_degraded = (mddev->level == 6 ? 2 : 1); 6732 int chunk_sectors; 6733 int new_data_disks; 6734 6735 if (journal_dev) { 6736 printk(KERN_ERR "md/raid:%s: don't support reshape with journal - aborting.\n", 6737 mdname(mddev)); 6738 return -EINVAL; 6739 } 6740 6741 if (mddev->new_level != mddev->level) { 6742 printk(KERN_ERR "md/raid:%s: unsupported reshape " 6743 "required - aborting.\n", 6744 mdname(mddev)); 6745 return -EINVAL; 6746 } 6747 old_disks = mddev->raid_disks - mddev->delta_disks; 6748 /* reshape_position must be on a new-stripe boundary, and one 6749 * further up in new geometry must map after here in old 6750 * geometry. 6751 * If the chunk sizes are different, then as we perform reshape 6752 * in units of the largest of the two, reshape_position needs 6753 * be a multiple of the largest chunk size times new data disks. 6754 */ 6755 here_new = mddev->reshape_position; 6756 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors); 6757 new_data_disks = mddev->raid_disks - max_degraded; 6758 if (sector_div(here_new, chunk_sectors * new_data_disks)) { 6759 printk(KERN_ERR "md/raid:%s: reshape_position not " 6760 "on a stripe boundary\n", mdname(mddev)); 6761 return -EINVAL; 6762 } 6763 reshape_offset = here_new * chunk_sectors; 6764 /* here_new is the stripe we will write to */ 6765 here_old = mddev->reshape_position; 6766 sector_div(here_old, chunk_sectors * (old_disks-max_degraded)); 6767 /* here_old is the first stripe that we might need to read 6768 * from */ 6769 if (mddev->delta_disks == 0) { 6770 /* We cannot be sure it is safe to start an in-place 6771 * reshape. It is only safe if user-space is monitoring 6772 * and taking constant backups. 6773 * mdadm always starts a situation like this in 6774 * readonly mode so it can take control before 6775 * allowing any writes. So just check for that. 6776 */ 6777 if (abs(min_offset_diff) >= mddev->chunk_sectors && 6778 abs(min_offset_diff) >= mddev->new_chunk_sectors) 6779 /* not really in-place - so OK */; 6780 else if (mddev->ro == 0) { 6781 printk(KERN_ERR "md/raid:%s: in-place reshape " 6782 "must be started in read-only mode " 6783 "- aborting\n", 6784 mdname(mddev)); 6785 return -EINVAL; 6786 } 6787 } else if (mddev->reshape_backwards 6788 ? (here_new * chunk_sectors + min_offset_diff <= 6789 here_old * chunk_sectors) 6790 : (here_new * chunk_sectors >= 6791 here_old * chunk_sectors + (-min_offset_diff))) { 6792 /* Reading from the same stripe as writing to - bad */ 6793 printk(KERN_ERR "md/raid:%s: reshape_position too early for " 6794 "auto-recovery - aborting.\n", 6795 mdname(mddev)); 6796 return -EINVAL; 6797 } 6798 printk(KERN_INFO "md/raid:%s: reshape will continue\n", 6799 mdname(mddev)); 6800 /* OK, we should be able to continue; */ 6801 } else { 6802 BUG_ON(mddev->level != mddev->new_level); 6803 BUG_ON(mddev->layout != mddev->new_layout); 6804 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors); 6805 BUG_ON(mddev->delta_disks != 0); 6806 } 6807 6808 if (mddev->private == NULL) 6809 conf = setup_conf(mddev); 6810 else 6811 conf = mddev->private; 6812 6813 if (IS_ERR(conf)) 6814 return PTR_ERR(conf); 6815 6816 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !journal_dev) { 6817 printk(KERN_ERR "md/raid:%s: journal disk is missing, force array readonly\n", 6818 mdname(mddev)); 6819 mddev->ro = 1; 6820 set_disk_ro(mddev->gendisk, 1); 6821 } 6822 6823 conf->min_offset_diff = min_offset_diff; 6824 mddev->thread = conf->thread; 6825 conf->thread = NULL; 6826 mddev->private = conf; 6827 6828 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks; 6829 i++) { 6830 rdev = conf->disks[i].rdev; 6831 if (!rdev && conf->disks[i].replacement) { 6832 /* The replacement is all we have yet */ 6833 rdev = conf->disks[i].replacement; 6834 conf->disks[i].replacement = NULL; 6835 clear_bit(Replacement, &rdev->flags); 6836 conf->disks[i].rdev = rdev; 6837 } 6838 if (!rdev) 6839 continue; 6840 if (conf->disks[i].replacement && 6841 conf->reshape_progress != MaxSector) { 6842 /* replacements and reshape simply do not mix. */ 6843 printk(KERN_ERR "md: cannot handle concurrent " 6844 "replacement and reshape.\n"); 6845 goto abort; 6846 } 6847 if (test_bit(In_sync, &rdev->flags)) { 6848 working_disks++; 6849 continue; 6850 } 6851 /* This disc is not fully in-sync. However if it 6852 * just stored parity (beyond the recovery_offset), 6853 * when we don't need to be concerned about the 6854 * array being dirty. 6855 * When reshape goes 'backwards', we never have 6856 * partially completed devices, so we only need 6857 * to worry about reshape going forwards. 6858 */ 6859 /* Hack because v0.91 doesn't store recovery_offset properly. */ 6860 if (mddev->major_version == 0 && 6861 mddev->minor_version > 90) 6862 rdev->recovery_offset = reshape_offset; 6863 6864 if (rdev->recovery_offset < reshape_offset) { 6865 /* We need to check old and new layout */ 6866 if (!only_parity(rdev->raid_disk, 6867 conf->algorithm, 6868 conf->raid_disks, 6869 conf->max_degraded)) 6870 continue; 6871 } 6872 if (!only_parity(rdev->raid_disk, 6873 conf->prev_algo, 6874 conf->previous_raid_disks, 6875 conf->max_degraded)) 6876 continue; 6877 dirty_parity_disks++; 6878 } 6879 6880 /* 6881 * 0 for a fully functional array, 1 or 2 for a degraded array. 6882 */ 6883 mddev->degraded = calc_degraded(conf); 6884 6885 if (has_failed(conf)) { 6886 printk(KERN_ERR "md/raid:%s: not enough operational devices" 6887 " (%d/%d failed)\n", 6888 mdname(mddev), mddev->degraded, conf->raid_disks); 6889 goto abort; 6890 } 6891 6892 /* device size must be a multiple of chunk size */ 6893 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1); 6894 mddev->resync_max_sectors = mddev->dev_sectors; 6895 6896 if (mddev->degraded > dirty_parity_disks && 6897 mddev->recovery_cp != MaxSector) { 6898 if (mddev->ok_start_degraded) 6899 printk(KERN_WARNING 6900 "md/raid:%s: starting dirty degraded array" 6901 " - data corruption possible.\n", 6902 mdname(mddev)); 6903 else { 6904 printk(KERN_ERR 6905 "md/raid:%s: cannot start dirty degraded array.\n", 6906 mdname(mddev)); 6907 goto abort; 6908 } 6909 } 6910 6911 if (mddev->degraded == 0) 6912 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d" 6913 " devices, algorithm %d\n", mdname(mddev), conf->level, 6914 mddev->raid_disks-mddev->degraded, mddev->raid_disks, 6915 mddev->new_layout); 6916 else 6917 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d" 6918 " out of %d devices, algorithm %d\n", 6919 mdname(mddev), conf->level, 6920 mddev->raid_disks - mddev->degraded, 6921 mddev->raid_disks, mddev->new_layout); 6922 6923 print_raid5_conf(conf); 6924 6925 if (conf->reshape_progress != MaxSector) { 6926 conf->reshape_safe = conf->reshape_progress; 6927 atomic_set(&conf->reshape_stripes, 0); 6928 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 6929 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 6930 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 6931 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 6932 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 6933 "reshape"); 6934 } 6935 6936 /* Ok, everything is just fine now */ 6937 if (mddev->to_remove == &raid5_attrs_group) 6938 mddev->to_remove = NULL; 6939 else if (mddev->kobj.sd && 6940 sysfs_create_group(&mddev->kobj, &raid5_attrs_group)) 6941 printk(KERN_WARNING 6942 "raid5: failed to create sysfs attributes for %s\n", 6943 mdname(mddev)); 6944 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 6945 6946 if (mddev->queue) { 6947 int chunk_size; 6948 bool discard_supported = true; 6949 /* read-ahead size must cover two whole stripes, which 6950 * is 2 * (datadisks) * chunksize where 'n' is the 6951 * number of raid devices 6952 */ 6953 int data_disks = conf->previous_raid_disks - conf->max_degraded; 6954 int stripe = data_disks * 6955 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 6956 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 6957 mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 6958 6959 chunk_size = mddev->chunk_sectors << 9; 6960 blk_queue_io_min(mddev->queue, chunk_size); 6961 blk_queue_io_opt(mddev->queue, chunk_size * 6962 (conf->raid_disks - conf->max_degraded)); 6963 mddev->queue->limits.raid_partial_stripes_expensive = 1; 6964 /* 6965 * We can only discard a whole stripe. It doesn't make sense to 6966 * discard data disk but write parity disk 6967 */ 6968 stripe = stripe * PAGE_SIZE; 6969 /* Round up to power of 2, as discard handling 6970 * currently assumes that */ 6971 while ((stripe-1) & stripe) 6972 stripe = (stripe | (stripe-1)) + 1; 6973 mddev->queue->limits.discard_alignment = stripe; 6974 mddev->queue->limits.discard_granularity = stripe; 6975 /* 6976 * unaligned part of discard request will be ignored, so can't 6977 * guarantee discard_zeroes_data 6978 */ 6979 mddev->queue->limits.discard_zeroes_data = 0; 6980 6981 blk_queue_max_write_same_sectors(mddev->queue, 0); 6982 6983 rdev_for_each(rdev, mddev) { 6984 disk_stack_limits(mddev->gendisk, rdev->bdev, 6985 rdev->data_offset << 9); 6986 disk_stack_limits(mddev->gendisk, rdev->bdev, 6987 rdev->new_data_offset << 9); 6988 /* 6989 * discard_zeroes_data is required, otherwise data 6990 * could be lost. Consider a scenario: discard a stripe 6991 * (the stripe could be inconsistent if 6992 * discard_zeroes_data is 0); write one disk of the 6993 * stripe (the stripe could be inconsistent again 6994 * depending on which disks are used to calculate 6995 * parity); the disk is broken; The stripe data of this 6996 * disk is lost. 6997 */ 6998 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) || 6999 !bdev_get_queue(rdev->bdev)-> 7000 limits.discard_zeroes_data) 7001 discard_supported = false; 7002 /* Unfortunately, discard_zeroes_data is not currently 7003 * a guarantee - just a hint. So we only allow DISCARD 7004 * if the sysadmin has confirmed that only safe devices 7005 * are in use by setting a module parameter. 7006 */ 7007 if (!devices_handle_discard_safely) { 7008 if (discard_supported) { 7009 pr_info("md/raid456: discard support disabled due to uncertainty.\n"); 7010 pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n"); 7011 } 7012 discard_supported = false; 7013 } 7014 } 7015 7016 if (discard_supported && 7017 mddev->queue->limits.max_discard_sectors >= stripe && 7018 mddev->queue->limits.discard_granularity >= stripe) 7019 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 7020 mddev->queue); 7021 else 7022 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 7023 mddev->queue); 7024 } 7025 7026 if (journal_dev) { 7027 char b[BDEVNAME_SIZE]; 7028 7029 printk(KERN_INFO"md/raid:%s: using device %s as journal\n", 7030 mdname(mddev), bdevname(journal_dev->bdev, b)); 7031 r5l_init_log(conf, journal_dev); 7032 } 7033 7034 return 0; 7035 abort: 7036 md_unregister_thread(&mddev->thread); 7037 print_raid5_conf(conf); 7038 free_conf(conf); 7039 mddev->private = NULL; 7040 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev)); 7041 return -EIO; 7042 } 7043 7044 static void raid5_free(struct mddev *mddev, void *priv) 7045 { 7046 struct r5conf *conf = priv; 7047 7048 free_conf(conf); 7049 mddev->to_remove = &raid5_attrs_group; 7050 } 7051 7052 static void raid5_status(struct seq_file *seq, struct mddev *mddev) 7053 { 7054 struct r5conf *conf = mddev->private; 7055 int i; 7056 7057 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level, 7058 conf->chunk_sectors / 2, mddev->layout); 7059 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded); 7060 for (i = 0; i < conf->raid_disks; i++) 7061 seq_printf (seq, "%s", 7062 conf->disks[i].rdev && 7063 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_"); 7064 seq_printf (seq, "]"); 7065 } 7066 7067 static void print_raid5_conf (struct r5conf *conf) 7068 { 7069 int i; 7070 struct disk_info *tmp; 7071 7072 printk(KERN_DEBUG "RAID conf printout:\n"); 7073 if (!conf) { 7074 printk("(conf==NULL)\n"); 7075 return; 7076 } 7077 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level, 7078 conf->raid_disks, 7079 conf->raid_disks - conf->mddev->degraded); 7080 7081 for (i = 0; i < conf->raid_disks; i++) { 7082 char b[BDEVNAME_SIZE]; 7083 tmp = conf->disks + i; 7084 if (tmp->rdev) 7085 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n", 7086 i, !test_bit(Faulty, &tmp->rdev->flags), 7087 bdevname(tmp->rdev->bdev, b)); 7088 } 7089 } 7090 7091 static int raid5_spare_active(struct mddev *mddev) 7092 { 7093 int i; 7094 struct r5conf *conf = mddev->private; 7095 struct disk_info *tmp; 7096 int count = 0; 7097 unsigned long flags; 7098 7099 for (i = 0; i < conf->raid_disks; i++) { 7100 tmp = conf->disks + i; 7101 if (tmp->replacement 7102 && tmp->replacement->recovery_offset == MaxSector 7103 && !test_bit(Faulty, &tmp->replacement->flags) 7104 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 7105 /* Replacement has just become active. */ 7106 if (!tmp->rdev 7107 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 7108 count++; 7109 if (tmp->rdev) { 7110 /* Replaced device not technically faulty, 7111 * but we need to be sure it gets removed 7112 * and never re-added. 7113 */ 7114 set_bit(Faulty, &tmp->rdev->flags); 7115 sysfs_notify_dirent_safe( 7116 tmp->rdev->sysfs_state); 7117 } 7118 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 7119 } else if (tmp->rdev 7120 && tmp->rdev->recovery_offset == MaxSector 7121 && !test_bit(Faulty, &tmp->rdev->flags) 7122 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 7123 count++; 7124 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 7125 } 7126 } 7127 spin_lock_irqsave(&conf->device_lock, flags); 7128 mddev->degraded = calc_degraded(conf); 7129 spin_unlock_irqrestore(&conf->device_lock, flags); 7130 print_raid5_conf(conf); 7131 return count; 7132 } 7133 7134 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 7135 { 7136 struct r5conf *conf = mddev->private; 7137 int err = 0; 7138 int number = rdev->raid_disk; 7139 struct md_rdev **rdevp; 7140 struct disk_info *p = conf->disks + number; 7141 7142 print_raid5_conf(conf); 7143 if (test_bit(Journal, &rdev->flags) && conf->log) { 7144 struct r5l_log *log; 7145 /* 7146 * we can't wait pending write here, as this is called in 7147 * raid5d, wait will deadlock. 7148 */ 7149 if (atomic_read(&mddev->writes_pending)) 7150 return -EBUSY; 7151 log = conf->log; 7152 conf->log = NULL; 7153 synchronize_rcu(); 7154 r5l_exit_log(log); 7155 return 0; 7156 } 7157 if (rdev == p->rdev) 7158 rdevp = &p->rdev; 7159 else if (rdev == p->replacement) 7160 rdevp = &p->replacement; 7161 else 7162 return 0; 7163 7164 if (number >= conf->raid_disks && 7165 conf->reshape_progress == MaxSector) 7166 clear_bit(In_sync, &rdev->flags); 7167 7168 if (test_bit(In_sync, &rdev->flags) || 7169 atomic_read(&rdev->nr_pending)) { 7170 err = -EBUSY; 7171 goto abort; 7172 } 7173 /* Only remove non-faulty devices if recovery 7174 * isn't possible. 7175 */ 7176 if (!test_bit(Faulty, &rdev->flags) && 7177 mddev->recovery_disabled != conf->recovery_disabled && 7178 !has_failed(conf) && 7179 (!p->replacement || p->replacement == rdev) && 7180 number < conf->raid_disks) { 7181 err = -EBUSY; 7182 goto abort; 7183 } 7184 *rdevp = NULL; 7185 synchronize_rcu(); 7186 if (atomic_read(&rdev->nr_pending)) { 7187 /* lost the race, try later */ 7188 err = -EBUSY; 7189 *rdevp = rdev; 7190 } else if (p->replacement) { 7191 /* We must have just cleared 'rdev' */ 7192 p->rdev = p->replacement; 7193 clear_bit(Replacement, &p->replacement->flags); 7194 smp_mb(); /* Make sure other CPUs may see both as identical 7195 * but will never see neither - if they are careful 7196 */ 7197 p->replacement = NULL; 7198 clear_bit(WantReplacement, &rdev->flags); 7199 } else 7200 /* We might have just removed the Replacement as faulty- 7201 * clear the bit just in case 7202 */ 7203 clear_bit(WantReplacement, &rdev->flags); 7204 abort: 7205 7206 print_raid5_conf(conf); 7207 return err; 7208 } 7209 7210 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev) 7211 { 7212 struct r5conf *conf = mddev->private; 7213 int err = -EEXIST; 7214 int disk; 7215 struct disk_info *p; 7216 int first = 0; 7217 int last = conf->raid_disks - 1; 7218 7219 if (test_bit(Journal, &rdev->flags)) { 7220 char b[BDEVNAME_SIZE]; 7221 if (conf->log) 7222 return -EBUSY; 7223 7224 rdev->raid_disk = 0; 7225 /* 7226 * The array is in readonly mode if journal is missing, so no 7227 * write requests running. We should be safe 7228 */ 7229 r5l_init_log(conf, rdev); 7230 printk(KERN_INFO"md/raid:%s: using device %s as journal\n", 7231 mdname(mddev), bdevname(rdev->bdev, b)); 7232 return 0; 7233 } 7234 if (mddev->recovery_disabled == conf->recovery_disabled) 7235 return -EBUSY; 7236 7237 if (rdev->saved_raid_disk < 0 && has_failed(conf)) 7238 /* no point adding a device */ 7239 return -EINVAL; 7240 7241 if (rdev->raid_disk >= 0) 7242 first = last = rdev->raid_disk; 7243 7244 /* 7245 * find the disk ... but prefer rdev->saved_raid_disk 7246 * if possible. 7247 */ 7248 if (rdev->saved_raid_disk >= 0 && 7249 rdev->saved_raid_disk >= first && 7250 conf->disks[rdev->saved_raid_disk].rdev == NULL) 7251 first = rdev->saved_raid_disk; 7252 7253 for (disk = first; disk <= last; disk++) { 7254 p = conf->disks + disk; 7255 if (p->rdev == NULL) { 7256 clear_bit(In_sync, &rdev->flags); 7257 rdev->raid_disk = disk; 7258 err = 0; 7259 if (rdev->saved_raid_disk != disk) 7260 conf->fullsync = 1; 7261 rcu_assign_pointer(p->rdev, rdev); 7262 goto out; 7263 } 7264 } 7265 for (disk = first; disk <= last; disk++) { 7266 p = conf->disks + disk; 7267 if (test_bit(WantReplacement, &p->rdev->flags) && 7268 p->replacement == NULL) { 7269 clear_bit(In_sync, &rdev->flags); 7270 set_bit(Replacement, &rdev->flags); 7271 rdev->raid_disk = disk; 7272 err = 0; 7273 conf->fullsync = 1; 7274 rcu_assign_pointer(p->replacement, rdev); 7275 break; 7276 } 7277 } 7278 out: 7279 print_raid5_conf(conf); 7280 return err; 7281 } 7282 7283 static int raid5_resize(struct mddev *mddev, sector_t sectors) 7284 { 7285 /* no resync is happening, and there is enough space 7286 * on all devices, so we can resize. 7287 * We need to make sure resync covers any new space. 7288 * If the array is shrinking we should possibly wait until 7289 * any io in the removed space completes, but it hardly seems 7290 * worth it. 7291 */ 7292 sector_t newsize; 7293 struct r5conf *conf = mddev->private; 7294 7295 if (conf->log) 7296 return -EINVAL; 7297 sectors &= ~((sector_t)conf->chunk_sectors - 1); 7298 newsize = raid5_size(mddev, sectors, mddev->raid_disks); 7299 if (mddev->external_size && 7300 mddev->array_sectors > newsize) 7301 return -EINVAL; 7302 if (mddev->bitmap) { 7303 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0); 7304 if (ret) 7305 return ret; 7306 } 7307 md_set_array_sectors(mddev, newsize); 7308 set_capacity(mddev->gendisk, mddev->array_sectors); 7309 revalidate_disk(mddev->gendisk); 7310 if (sectors > mddev->dev_sectors && 7311 mddev->recovery_cp > mddev->dev_sectors) { 7312 mddev->recovery_cp = mddev->dev_sectors; 7313 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7314 } 7315 mddev->dev_sectors = sectors; 7316 mddev->resync_max_sectors = sectors; 7317 return 0; 7318 } 7319 7320 static int check_stripe_cache(struct mddev *mddev) 7321 { 7322 /* Can only proceed if there are plenty of stripe_heads. 7323 * We need a minimum of one full stripe,, and for sensible progress 7324 * it is best to have about 4 times that. 7325 * If we require 4 times, then the default 256 4K stripe_heads will 7326 * allow for chunk sizes up to 256K, which is probably OK. 7327 * If the chunk size is greater, user-space should request more 7328 * stripe_heads first. 7329 */ 7330 struct r5conf *conf = mddev->private; 7331 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4 7332 > conf->min_nr_stripes || 7333 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4 7334 > conf->min_nr_stripes) { 7335 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n", 7336 mdname(mddev), 7337 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9) 7338 / STRIPE_SIZE)*4); 7339 return 0; 7340 } 7341 return 1; 7342 } 7343 7344 static int check_reshape(struct mddev *mddev) 7345 { 7346 struct r5conf *conf = mddev->private; 7347 7348 if (conf->log) 7349 return -EINVAL; 7350 if (mddev->delta_disks == 0 && 7351 mddev->new_layout == mddev->layout && 7352 mddev->new_chunk_sectors == mddev->chunk_sectors) 7353 return 0; /* nothing to do */ 7354 if (has_failed(conf)) 7355 return -EINVAL; 7356 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) { 7357 /* We might be able to shrink, but the devices must 7358 * be made bigger first. 7359 * For raid6, 4 is the minimum size. 7360 * Otherwise 2 is the minimum 7361 */ 7362 int min = 2; 7363 if (mddev->level == 6) 7364 min = 4; 7365 if (mddev->raid_disks + mddev->delta_disks < min) 7366 return -EINVAL; 7367 } 7368 7369 if (!check_stripe_cache(mddev)) 7370 return -ENOSPC; 7371 7372 if (mddev->new_chunk_sectors > mddev->chunk_sectors || 7373 mddev->delta_disks > 0) 7374 if (resize_chunks(conf, 7375 conf->previous_raid_disks 7376 + max(0, mddev->delta_disks), 7377 max(mddev->new_chunk_sectors, 7378 mddev->chunk_sectors) 7379 ) < 0) 7380 return -ENOMEM; 7381 return resize_stripes(conf, (conf->previous_raid_disks 7382 + mddev->delta_disks)); 7383 } 7384 7385 static int raid5_start_reshape(struct mddev *mddev) 7386 { 7387 struct r5conf *conf = mddev->private; 7388 struct md_rdev *rdev; 7389 int spares = 0; 7390 unsigned long flags; 7391 7392 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 7393 return -EBUSY; 7394 7395 if (!check_stripe_cache(mddev)) 7396 return -ENOSPC; 7397 7398 if (has_failed(conf)) 7399 return -EINVAL; 7400 7401 rdev_for_each(rdev, mddev) { 7402 if (!test_bit(In_sync, &rdev->flags) 7403 && !test_bit(Faulty, &rdev->flags)) 7404 spares++; 7405 } 7406 7407 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded) 7408 /* Not enough devices even to make a degraded array 7409 * of that size 7410 */ 7411 return -EINVAL; 7412 7413 /* Refuse to reduce size of the array. Any reductions in 7414 * array size must be through explicit setting of array_size 7415 * attribute. 7416 */ 7417 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks) 7418 < mddev->array_sectors) { 7419 printk(KERN_ERR "md/raid:%s: array size must be reduced " 7420 "before number of disks\n", mdname(mddev)); 7421 return -EINVAL; 7422 } 7423 7424 atomic_set(&conf->reshape_stripes, 0); 7425 spin_lock_irq(&conf->device_lock); 7426 write_seqcount_begin(&conf->gen_lock); 7427 conf->previous_raid_disks = conf->raid_disks; 7428 conf->raid_disks += mddev->delta_disks; 7429 conf->prev_chunk_sectors = conf->chunk_sectors; 7430 conf->chunk_sectors = mddev->new_chunk_sectors; 7431 conf->prev_algo = conf->algorithm; 7432 conf->algorithm = mddev->new_layout; 7433 conf->generation++; 7434 /* Code that selects data_offset needs to see the generation update 7435 * if reshape_progress has been set - so a memory barrier needed. 7436 */ 7437 smp_mb(); 7438 if (mddev->reshape_backwards) 7439 conf->reshape_progress = raid5_size(mddev, 0, 0); 7440 else 7441 conf->reshape_progress = 0; 7442 conf->reshape_safe = conf->reshape_progress; 7443 write_seqcount_end(&conf->gen_lock); 7444 spin_unlock_irq(&conf->device_lock); 7445 7446 /* Now make sure any requests that proceeded on the assumption 7447 * the reshape wasn't running - like Discard or Read - have 7448 * completed. 7449 */ 7450 mddev_suspend(mddev); 7451 mddev_resume(mddev); 7452 7453 /* Add some new drives, as many as will fit. 7454 * We know there are enough to make the newly sized array work. 7455 * Don't add devices if we are reducing the number of 7456 * devices in the array. This is because it is not possible 7457 * to correctly record the "partially reconstructed" state of 7458 * such devices during the reshape and confusion could result. 7459 */ 7460 if (mddev->delta_disks >= 0) { 7461 rdev_for_each(rdev, mddev) 7462 if (rdev->raid_disk < 0 && 7463 !test_bit(Faulty, &rdev->flags)) { 7464 if (raid5_add_disk(mddev, rdev) == 0) { 7465 if (rdev->raid_disk 7466 >= conf->previous_raid_disks) 7467 set_bit(In_sync, &rdev->flags); 7468 else 7469 rdev->recovery_offset = 0; 7470 7471 if (sysfs_link_rdev(mddev, rdev)) 7472 /* Failure here is OK */; 7473 } 7474 } else if (rdev->raid_disk >= conf->previous_raid_disks 7475 && !test_bit(Faulty, &rdev->flags)) { 7476 /* This is a spare that was manually added */ 7477 set_bit(In_sync, &rdev->flags); 7478 } 7479 7480 /* When a reshape changes the number of devices, 7481 * ->degraded is measured against the larger of the 7482 * pre and post number of devices. 7483 */ 7484 spin_lock_irqsave(&conf->device_lock, flags); 7485 mddev->degraded = calc_degraded(conf); 7486 spin_unlock_irqrestore(&conf->device_lock, flags); 7487 } 7488 mddev->raid_disks = conf->raid_disks; 7489 mddev->reshape_position = conf->reshape_progress; 7490 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7491 7492 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7493 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7494 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 7495 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7496 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7497 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 7498 "reshape"); 7499 if (!mddev->sync_thread) { 7500 mddev->recovery = 0; 7501 spin_lock_irq(&conf->device_lock); 7502 write_seqcount_begin(&conf->gen_lock); 7503 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks; 7504 mddev->new_chunk_sectors = 7505 conf->chunk_sectors = conf->prev_chunk_sectors; 7506 mddev->new_layout = conf->algorithm = conf->prev_algo; 7507 rdev_for_each(rdev, mddev) 7508 rdev->new_data_offset = rdev->data_offset; 7509 smp_wmb(); 7510 conf->generation --; 7511 conf->reshape_progress = MaxSector; 7512 mddev->reshape_position = MaxSector; 7513 write_seqcount_end(&conf->gen_lock); 7514 spin_unlock_irq(&conf->device_lock); 7515 return -EAGAIN; 7516 } 7517 conf->reshape_checkpoint = jiffies; 7518 md_wakeup_thread(mddev->sync_thread); 7519 md_new_event(mddev); 7520 return 0; 7521 } 7522 7523 /* This is called from the reshape thread and should make any 7524 * changes needed in 'conf' 7525 */ 7526 static void end_reshape(struct r5conf *conf) 7527 { 7528 7529 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 7530 struct md_rdev *rdev; 7531 7532 spin_lock_irq(&conf->device_lock); 7533 conf->previous_raid_disks = conf->raid_disks; 7534 rdev_for_each(rdev, conf->mddev) 7535 rdev->data_offset = rdev->new_data_offset; 7536 smp_wmb(); 7537 conf->reshape_progress = MaxSector; 7538 conf->mddev->reshape_position = MaxSector; 7539 spin_unlock_irq(&conf->device_lock); 7540 wake_up(&conf->wait_for_overlap); 7541 7542 /* read-ahead size must cover two whole stripes, which is 7543 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 7544 */ 7545 if (conf->mddev->queue) { 7546 int data_disks = conf->raid_disks - conf->max_degraded; 7547 int stripe = data_disks * ((conf->chunk_sectors << 9) 7548 / PAGE_SIZE); 7549 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 7550 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 7551 } 7552 } 7553 } 7554 7555 /* This is called from the raid5d thread with mddev_lock held. 7556 * It makes config changes to the device. 7557 */ 7558 static void raid5_finish_reshape(struct mddev *mddev) 7559 { 7560 struct r5conf *conf = mddev->private; 7561 7562 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 7563 7564 if (mddev->delta_disks > 0) { 7565 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 7566 set_capacity(mddev->gendisk, mddev->array_sectors); 7567 revalidate_disk(mddev->gendisk); 7568 } else { 7569 int d; 7570 spin_lock_irq(&conf->device_lock); 7571 mddev->degraded = calc_degraded(conf); 7572 spin_unlock_irq(&conf->device_lock); 7573 for (d = conf->raid_disks ; 7574 d < conf->raid_disks - mddev->delta_disks; 7575 d++) { 7576 struct md_rdev *rdev = conf->disks[d].rdev; 7577 if (rdev) 7578 clear_bit(In_sync, &rdev->flags); 7579 rdev = conf->disks[d].replacement; 7580 if (rdev) 7581 clear_bit(In_sync, &rdev->flags); 7582 } 7583 } 7584 mddev->layout = conf->algorithm; 7585 mddev->chunk_sectors = conf->chunk_sectors; 7586 mddev->reshape_position = MaxSector; 7587 mddev->delta_disks = 0; 7588 mddev->reshape_backwards = 0; 7589 } 7590 } 7591 7592 static void raid5_quiesce(struct mddev *mddev, int state) 7593 { 7594 struct r5conf *conf = mddev->private; 7595 7596 switch(state) { 7597 case 2: /* resume for a suspend */ 7598 wake_up(&conf->wait_for_overlap); 7599 break; 7600 7601 case 1: /* stop all writes */ 7602 lock_all_device_hash_locks_irq(conf); 7603 /* '2' tells resync/reshape to pause so that all 7604 * active stripes can drain 7605 */ 7606 conf->quiesce = 2; 7607 wait_event_cmd(conf->wait_for_quiescent, 7608 atomic_read(&conf->active_stripes) == 0 && 7609 atomic_read(&conf->active_aligned_reads) == 0, 7610 unlock_all_device_hash_locks_irq(conf), 7611 lock_all_device_hash_locks_irq(conf)); 7612 conf->quiesce = 1; 7613 unlock_all_device_hash_locks_irq(conf); 7614 /* allow reshape to continue */ 7615 wake_up(&conf->wait_for_overlap); 7616 break; 7617 7618 case 0: /* re-enable writes */ 7619 lock_all_device_hash_locks_irq(conf); 7620 conf->quiesce = 0; 7621 wake_up(&conf->wait_for_quiescent); 7622 wake_up(&conf->wait_for_overlap); 7623 unlock_all_device_hash_locks_irq(conf); 7624 break; 7625 } 7626 r5l_quiesce(conf->log, state); 7627 } 7628 7629 static void *raid45_takeover_raid0(struct mddev *mddev, int level) 7630 { 7631 struct r0conf *raid0_conf = mddev->private; 7632 sector_t sectors; 7633 7634 /* for raid0 takeover only one zone is supported */ 7635 if (raid0_conf->nr_strip_zones > 1) { 7636 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n", 7637 mdname(mddev)); 7638 return ERR_PTR(-EINVAL); 7639 } 7640 7641 sectors = raid0_conf->strip_zone[0].zone_end; 7642 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev); 7643 mddev->dev_sectors = sectors; 7644 mddev->new_level = level; 7645 mddev->new_layout = ALGORITHM_PARITY_N; 7646 mddev->new_chunk_sectors = mddev->chunk_sectors; 7647 mddev->raid_disks += 1; 7648 mddev->delta_disks = 1; 7649 /* make sure it will be not marked as dirty */ 7650 mddev->recovery_cp = MaxSector; 7651 7652 return setup_conf(mddev); 7653 } 7654 7655 static void *raid5_takeover_raid1(struct mddev *mddev) 7656 { 7657 int chunksect; 7658 7659 if (mddev->raid_disks != 2 || 7660 mddev->degraded > 1) 7661 return ERR_PTR(-EINVAL); 7662 7663 /* Should check if there are write-behind devices? */ 7664 7665 chunksect = 64*2; /* 64K by default */ 7666 7667 /* The array must be an exact multiple of chunksize */ 7668 while (chunksect && (mddev->array_sectors & (chunksect-1))) 7669 chunksect >>= 1; 7670 7671 if ((chunksect<<9) < STRIPE_SIZE) 7672 /* array size does not allow a suitable chunk size */ 7673 return ERR_PTR(-EINVAL); 7674 7675 mddev->new_level = 5; 7676 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC; 7677 mddev->new_chunk_sectors = chunksect; 7678 7679 return setup_conf(mddev); 7680 } 7681 7682 static void *raid5_takeover_raid6(struct mddev *mddev) 7683 { 7684 int new_layout; 7685 7686 switch (mddev->layout) { 7687 case ALGORITHM_LEFT_ASYMMETRIC_6: 7688 new_layout = ALGORITHM_LEFT_ASYMMETRIC; 7689 break; 7690 case ALGORITHM_RIGHT_ASYMMETRIC_6: 7691 new_layout = ALGORITHM_RIGHT_ASYMMETRIC; 7692 break; 7693 case ALGORITHM_LEFT_SYMMETRIC_6: 7694 new_layout = ALGORITHM_LEFT_SYMMETRIC; 7695 break; 7696 case ALGORITHM_RIGHT_SYMMETRIC_6: 7697 new_layout = ALGORITHM_RIGHT_SYMMETRIC; 7698 break; 7699 case ALGORITHM_PARITY_0_6: 7700 new_layout = ALGORITHM_PARITY_0; 7701 break; 7702 case ALGORITHM_PARITY_N: 7703 new_layout = ALGORITHM_PARITY_N; 7704 break; 7705 default: 7706 return ERR_PTR(-EINVAL); 7707 } 7708 mddev->new_level = 5; 7709 mddev->new_layout = new_layout; 7710 mddev->delta_disks = -1; 7711 mddev->raid_disks -= 1; 7712 return setup_conf(mddev); 7713 } 7714 7715 static int raid5_check_reshape(struct mddev *mddev) 7716 { 7717 /* For a 2-drive array, the layout and chunk size can be changed 7718 * immediately as not restriping is needed. 7719 * For larger arrays we record the new value - after validation 7720 * to be used by a reshape pass. 7721 */ 7722 struct r5conf *conf = mddev->private; 7723 int new_chunk = mddev->new_chunk_sectors; 7724 7725 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout)) 7726 return -EINVAL; 7727 if (new_chunk > 0) { 7728 if (!is_power_of_2(new_chunk)) 7729 return -EINVAL; 7730 if (new_chunk < (PAGE_SIZE>>9)) 7731 return -EINVAL; 7732 if (mddev->array_sectors & (new_chunk-1)) 7733 /* not factor of array size */ 7734 return -EINVAL; 7735 } 7736 7737 /* They look valid */ 7738 7739 if (mddev->raid_disks == 2) { 7740 /* can make the change immediately */ 7741 if (mddev->new_layout >= 0) { 7742 conf->algorithm = mddev->new_layout; 7743 mddev->layout = mddev->new_layout; 7744 } 7745 if (new_chunk > 0) { 7746 conf->chunk_sectors = new_chunk ; 7747 mddev->chunk_sectors = new_chunk; 7748 } 7749 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7750 md_wakeup_thread(mddev->thread); 7751 } 7752 return check_reshape(mddev); 7753 } 7754 7755 static int raid6_check_reshape(struct mddev *mddev) 7756 { 7757 int new_chunk = mddev->new_chunk_sectors; 7758 7759 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout)) 7760 return -EINVAL; 7761 if (new_chunk > 0) { 7762 if (!is_power_of_2(new_chunk)) 7763 return -EINVAL; 7764 if (new_chunk < (PAGE_SIZE >> 9)) 7765 return -EINVAL; 7766 if (mddev->array_sectors & (new_chunk-1)) 7767 /* not factor of array size */ 7768 return -EINVAL; 7769 } 7770 7771 /* They look valid */ 7772 return check_reshape(mddev); 7773 } 7774 7775 static void *raid5_takeover(struct mddev *mddev) 7776 { 7777 /* raid5 can take over: 7778 * raid0 - if there is only one strip zone - make it a raid4 layout 7779 * raid1 - if there are two drives. We need to know the chunk size 7780 * raid4 - trivial - just use a raid4 layout. 7781 * raid6 - Providing it is a *_6 layout 7782 */ 7783 if (mddev->level == 0) 7784 return raid45_takeover_raid0(mddev, 5); 7785 if (mddev->level == 1) 7786 return raid5_takeover_raid1(mddev); 7787 if (mddev->level == 4) { 7788 mddev->new_layout = ALGORITHM_PARITY_N; 7789 mddev->new_level = 5; 7790 return setup_conf(mddev); 7791 } 7792 if (mddev->level == 6) 7793 return raid5_takeover_raid6(mddev); 7794 7795 return ERR_PTR(-EINVAL); 7796 } 7797 7798 static void *raid4_takeover(struct mddev *mddev) 7799 { 7800 /* raid4 can take over: 7801 * raid0 - if there is only one strip zone 7802 * raid5 - if layout is right 7803 */ 7804 if (mddev->level == 0) 7805 return raid45_takeover_raid0(mddev, 4); 7806 if (mddev->level == 5 && 7807 mddev->layout == ALGORITHM_PARITY_N) { 7808 mddev->new_layout = 0; 7809 mddev->new_level = 4; 7810 return setup_conf(mddev); 7811 } 7812 return ERR_PTR(-EINVAL); 7813 } 7814 7815 static struct md_personality raid5_personality; 7816 7817 static void *raid6_takeover(struct mddev *mddev) 7818 { 7819 /* Currently can only take over a raid5. We map the 7820 * personality to an equivalent raid6 personality 7821 * with the Q block at the end. 7822 */ 7823 int new_layout; 7824 7825 if (mddev->pers != &raid5_personality) 7826 return ERR_PTR(-EINVAL); 7827 if (mddev->degraded > 1) 7828 return ERR_PTR(-EINVAL); 7829 if (mddev->raid_disks > 253) 7830 return ERR_PTR(-EINVAL); 7831 if (mddev->raid_disks < 3) 7832 return ERR_PTR(-EINVAL); 7833 7834 switch (mddev->layout) { 7835 case ALGORITHM_LEFT_ASYMMETRIC: 7836 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6; 7837 break; 7838 case ALGORITHM_RIGHT_ASYMMETRIC: 7839 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6; 7840 break; 7841 case ALGORITHM_LEFT_SYMMETRIC: 7842 new_layout = ALGORITHM_LEFT_SYMMETRIC_6; 7843 break; 7844 case ALGORITHM_RIGHT_SYMMETRIC: 7845 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6; 7846 break; 7847 case ALGORITHM_PARITY_0: 7848 new_layout = ALGORITHM_PARITY_0_6; 7849 break; 7850 case ALGORITHM_PARITY_N: 7851 new_layout = ALGORITHM_PARITY_N; 7852 break; 7853 default: 7854 return ERR_PTR(-EINVAL); 7855 } 7856 mddev->new_level = 6; 7857 mddev->new_layout = new_layout; 7858 mddev->delta_disks = 1; 7859 mddev->raid_disks += 1; 7860 return setup_conf(mddev); 7861 } 7862 7863 static struct md_personality raid6_personality = 7864 { 7865 .name = "raid6", 7866 .level = 6, 7867 .owner = THIS_MODULE, 7868 .make_request = raid5_make_request, 7869 .run = raid5_run, 7870 .free = raid5_free, 7871 .status = raid5_status, 7872 .error_handler = raid5_error, 7873 .hot_add_disk = raid5_add_disk, 7874 .hot_remove_disk= raid5_remove_disk, 7875 .spare_active = raid5_spare_active, 7876 .sync_request = raid5_sync_request, 7877 .resize = raid5_resize, 7878 .size = raid5_size, 7879 .check_reshape = raid6_check_reshape, 7880 .start_reshape = raid5_start_reshape, 7881 .finish_reshape = raid5_finish_reshape, 7882 .quiesce = raid5_quiesce, 7883 .takeover = raid6_takeover, 7884 .congested = raid5_congested, 7885 }; 7886 static struct md_personality raid5_personality = 7887 { 7888 .name = "raid5", 7889 .level = 5, 7890 .owner = THIS_MODULE, 7891 .make_request = raid5_make_request, 7892 .run = raid5_run, 7893 .free = raid5_free, 7894 .status = raid5_status, 7895 .error_handler = raid5_error, 7896 .hot_add_disk = raid5_add_disk, 7897 .hot_remove_disk= raid5_remove_disk, 7898 .spare_active = raid5_spare_active, 7899 .sync_request = raid5_sync_request, 7900 .resize = raid5_resize, 7901 .size = raid5_size, 7902 .check_reshape = raid5_check_reshape, 7903 .start_reshape = raid5_start_reshape, 7904 .finish_reshape = raid5_finish_reshape, 7905 .quiesce = raid5_quiesce, 7906 .takeover = raid5_takeover, 7907 .congested = raid5_congested, 7908 }; 7909 7910 static struct md_personality raid4_personality = 7911 { 7912 .name = "raid4", 7913 .level = 4, 7914 .owner = THIS_MODULE, 7915 .make_request = raid5_make_request, 7916 .run = raid5_run, 7917 .free = raid5_free, 7918 .status = raid5_status, 7919 .error_handler = raid5_error, 7920 .hot_add_disk = raid5_add_disk, 7921 .hot_remove_disk= raid5_remove_disk, 7922 .spare_active = raid5_spare_active, 7923 .sync_request = raid5_sync_request, 7924 .resize = raid5_resize, 7925 .size = raid5_size, 7926 .check_reshape = raid5_check_reshape, 7927 .start_reshape = raid5_start_reshape, 7928 .finish_reshape = raid5_finish_reshape, 7929 .quiesce = raid5_quiesce, 7930 .takeover = raid4_takeover, 7931 .congested = raid5_congested, 7932 }; 7933 7934 static int __init raid5_init(void) 7935 { 7936 raid5_wq = alloc_workqueue("raid5wq", 7937 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0); 7938 if (!raid5_wq) 7939 return -ENOMEM; 7940 register_md_personality(&raid6_personality); 7941 register_md_personality(&raid5_personality); 7942 register_md_personality(&raid4_personality); 7943 return 0; 7944 } 7945 7946 static void raid5_exit(void) 7947 { 7948 unregister_md_personality(&raid6_personality); 7949 unregister_md_personality(&raid5_personality); 7950 unregister_md_personality(&raid4_personality); 7951 destroy_workqueue(raid5_wq); 7952 } 7953 7954 module_init(raid5_init); 7955 module_exit(raid5_exit); 7956 MODULE_LICENSE("GPL"); 7957 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD"); 7958 MODULE_ALIAS("md-personality-4"); /* RAID5 */ 7959 MODULE_ALIAS("md-raid5"); 7960 MODULE_ALIAS("md-raid4"); 7961 MODULE_ALIAS("md-level-5"); 7962 MODULE_ALIAS("md-level-4"); 7963 MODULE_ALIAS("md-personality-8"); /* RAID6 */ 7964 MODULE_ALIAS("md-raid6"); 7965 MODULE_ALIAS("md-level-6"); 7966 7967 /* This used to be two separate modules, they were: */ 7968 MODULE_ALIAS("raid5"); 7969 MODULE_ALIAS("raid6"); 7970