xref: /linux/drivers/md/raid5.c (revision a8fe58cec351c25e09c393bf46117c0c47b5a17c)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <trace/events/block.h>
59 
60 #include "md.h"
61 #include "raid5.h"
62 #include "raid0.h"
63 #include "bitmap.h"
64 
65 #define cpu_to_group(cpu) cpu_to_node(cpu)
66 #define ANY_GROUP NUMA_NO_NODE
67 
68 static bool devices_handle_discard_safely = false;
69 module_param(devices_handle_discard_safely, bool, 0644);
70 MODULE_PARM_DESC(devices_handle_discard_safely,
71 		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72 static struct workqueue_struct *raid5_wq;
73 /*
74  * Stripe cache
75  */
76 
77 #define NR_STRIPES		256
78 #define STRIPE_SIZE		PAGE_SIZE
79 #define STRIPE_SHIFT		(PAGE_SHIFT - 9)
80 #define STRIPE_SECTORS		(STRIPE_SIZE>>9)
81 #define	IO_THRESHOLD		1
82 #define BYPASS_THRESHOLD	1
83 #define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
84 #define HASH_MASK		(NR_HASH - 1)
85 #define MAX_STRIPE_BATCH	8
86 
87 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
88 {
89 	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90 	return &conf->stripe_hashtbl[hash];
91 }
92 
93 static inline int stripe_hash_locks_hash(sector_t sect)
94 {
95 	return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96 }
97 
98 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99 {
100 	spin_lock_irq(conf->hash_locks + hash);
101 	spin_lock(&conf->device_lock);
102 }
103 
104 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105 {
106 	spin_unlock(&conf->device_lock);
107 	spin_unlock_irq(conf->hash_locks + hash);
108 }
109 
110 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111 {
112 	int i;
113 	local_irq_disable();
114 	spin_lock(conf->hash_locks);
115 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116 		spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117 	spin_lock(&conf->device_lock);
118 }
119 
120 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
121 {
122 	int i;
123 	spin_unlock(&conf->device_lock);
124 	for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125 		spin_unlock(conf->hash_locks + i - 1);
126 	local_irq_enable();
127 }
128 
129 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
130  * order without overlap.  There may be several bio's per stripe+device, and
131  * a bio could span several devices.
132  * When walking this list for a particular stripe+device, we must never proceed
133  * beyond a bio that extends past this device, as the next bio might no longer
134  * be valid.
135  * This function is used to determine the 'next' bio in the list, given the sector
136  * of the current stripe+device
137  */
138 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139 {
140 	int sectors = bio_sectors(bio);
141 	if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
142 		return bio->bi_next;
143 	else
144 		return NULL;
145 }
146 
147 /*
148  * We maintain a biased count of active stripes in the bottom 16 bits of
149  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
150  */
151 static inline int raid5_bi_processed_stripes(struct bio *bio)
152 {
153 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154 	return (atomic_read(segments) >> 16) & 0xffff;
155 }
156 
157 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
158 {
159 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160 	return atomic_sub_return(1, segments) & 0xffff;
161 }
162 
163 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
164 {
165 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166 	atomic_inc(segments);
167 }
168 
169 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170 	unsigned int cnt)
171 {
172 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173 	int old, new;
174 
175 	do {
176 		old = atomic_read(segments);
177 		new = (old & 0xffff) | (cnt << 16);
178 	} while (atomic_cmpxchg(segments, old, new) != old);
179 }
180 
181 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
182 {
183 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184 	atomic_set(segments, cnt);
185 }
186 
187 /* Find first data disk in a raid6 stripe */
188 static inline int raid6_d0(struct stripe_head *sh)
189 {
190 	if (sh->ddf_layout)
191 		/* ddf always start from first device */
192 		return 0;
193 	/* md starts just after Q block */
194 	if (sh->qd_idx == sh->disks - 1)
195 		return 0;
196 	else
197 		return sh->qd_idx + 1;
198 }
199 static inline int raid6_next_disk(int disk, int raid_disks)
200 {
201 	disk++;
202 	return (disk < raid_disks) ? disk : 0;
203 }
204 
205 /* When walking through the disks in a raid5, starting at raid6_d0,
206  * We need to map each disk to a 'slot', where the data disks are slot
207  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208  * is raid_disks-1.  This help does that mapping.
209  */
210 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211 			     int *count, int syndrome_disks)
212 {
213 	int slot = *count;
214 
215 	if (sh->ddf_layout)
216 		(*count)++;
217 	if (idx == sh->pd_idx)
218 		return syndrome_disks;
219 	if (idx == sh->qd_idx)
220 		return syndrome_disks + 1;
221 	if (!sh->ddf_layout)
222 		(*count)++;
223 	return slot;
224 }
225 
226 static void return_io(struct bio_list *return_bi)
227 {
228 	struct bio *bi;
229 	while ((bi = bio_list_pop(return_bi)) != NULL) {
230 		bi->bi_iter.bi_size = 0;
231 		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
232 					 bi, 0);
233 		bio_endio(bi);
234 	}
235 }
236 
237 static void print_raid5_conf (struct r5conf *conf);
238 
239 static int stripe_operations_active(struct stripe_head *sh)
240 {
241 	return sh->check_state || sh->reconstruct_state ||
242 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
243 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
244 }
245 
246 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
247 {
248 	struct r5conf *conf = sh->raid_conf;
249 	struct r5worker_group *group;
250 	int thread_cnt;
251 	int i, cpu = sh->cpu;
252 
253 	if (!cpu_online(cpu)) {
254 		cpu = cpumask_any(cpu_online_mask);
255 		sh->cpu = cpu;
256 	}
257 
258 	if (list_empty(&sh->lru)) {
259 		struct r5worker_group *group;
260 		group = conf->worker_groups + cpu_to_group(cpu);
261 		list_add_tail(&sh->lru, &group->handle_list);
262 		group->stripes_cnt++;
263 		sh->group = group;
264 	}
265 
266 	if (conf->worker_cnt_per_group == 0) {
267 		md_wakeup_thread(conf->mddev->thread);
268 		return;
269 	}
270 
271 	group = conf->worker_groups + cpu_to_group(sh->cpu);
272 
273 	group->workers[0].working = true;
274 	/* at least one worker should run to avoid race */
275 	queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
276 
277 	thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
278 	/* wakeup more workers */
279 	for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
280 		if (group->workers[i].working == false) {
281 			group->workers[i].working = true;
282 			queue_work_on(sh->cpu, raid5_wq,
283 				      &group->workers[i].work);
284 			thread_cnt--;
285 		}
286 	}
287 }
288 
289 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
290 			      struct list_head *temp_inactive_list)
291 {
292 	BUG_ON(!list_empty(&sh->lru));
293 	BUG_ON(atomic_read(&conf->active_stripes)==0);
294 	if (test_bit(STRIPE_HANDLE, &sh->state)) {
295 		if (test_bit(STRIPE_DELAYED, &sh->state) &&
296 		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
297 			list_add_tail(&sh->lru, &conf->delayed_list);
298 		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
299 			   sh->bm_seq - conf->seq_write > 0)
300 			list_add_tail(&sh->lru, &conf->bitmap_list);
301 		else {
302 			clear_bit(STRIPE_DELAYED, &sh->state);
303 			clear_bit(STRIPE_BIT_DELAY, &sh->state);
304 			if (conf->worker_cnt_per_group == 0) {
305 				list_add_tail(&sh->lru, &conf->handle_list);
306 			} else {
307 				raid5_wakeup_stripe_thread(sh);
308 				return;
309 			}
310 		}
311 		md_wakeup_thread(conf->mddev->thread);
312 	} else {
313 		BUG_ON(stripe_operations_active(sh));
314 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
315 			if (atomic_dec_return(&conf->preread_active_stripes)
316 			    < IO_THRESHOLD)
317 				md_wakeup_thread(conf->mddev->thread);
318 		atomic_dec(&conf->active_stripes);
319 		if (!test_bit(STRIPE_EXPANDING, &sh->state))
320 			list_add_tail(&sh->lru, temp_inactive_list);
321 	}
322 }
323 
324 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
325 			     struct list_head *temp_inactive_list)
326 {
327 	if (atomic_dec_and_test(&sh->count))
328 		do_release_stripe(conf, sh, temp_inactive_list);
329 }
330 
331 /*
332  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
333  *
334  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
335  * given time. Adding stripes only takes device lock, while deleting stripes
336  * only takes hash lock.
337  */
338 static void release_inactive_stripe_list(struct r5conf *conf,
339 					 struct list_head *temp_inactive_list,
340 					 int hash)
341 {
342 	int size;
343 	unsigned long do_wakeup = 0;
344 	int i = 0;
345 	unsigned long flags;
346 
347 	if (hash == NR_STRIPE_HASH_LOCKS) {
348 		size = NR_STRIPE_HASH_LOCKS;
349 		hash = NR_STRIPE_HASH_LOCKS - 1;
350 	} else
351 		size = 1;
352 	while (size) {
353 		struct list_head *list = &temp_inactive_list[size - 1];
354 
355 		/*
356 		 * We don't hold any lock here yet, raid5_get_active_stripe() might
357 		 * remove stripes from the list
358 		 */
359 		if (!list_empty_careful(list)) {
360 			spin_lock_irqsave(conf->hash_locks + hash, flags);
361 			if (list_empty(conf->inactive_list + hash) &&
362 			    !list_empty(list))
363 				atomic_dec(&conf->empty_inactive_list_nr);
364 			list_splice_tail_init(list, conf->inactive_list + hash);
365 			do_wakeup |= 1 << hash;
366 			spin_unlock_irqrestore(conf->hash_locks + hash, flags);
367 		}
368 		size--;
369 		hash--;
370 	}
371 
372 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) {
373 		if (do_wakeup & (1 << i))
374 			wake_up(&conf->wait_for_stripe[i]);
375 	}
376 
377 	if (do_wakeup) {
378 		if (atomic_read(&conf->active_stripes) == 0)
379 			wake_up(&conf->wait_for_quiescent);
380 		if (conf->retry_read_aligned)
381 			md_wakeup_thread(conf->mddev->thread);
382 	}
383 }
384 
385 /* should hold conf->device_lock already */
386 static int release_stripe_list(struct r5conf *conf,
387 			       struct list_head *temp_inactive_list)
388 {
389 	struct stripe_head *sh;
390 	int count = 0;
391 	struct llist_node *head;
392 
393 	head = llist_del_all(&conf->released_stripes);
394 	head = llist_reverse_order(head);
395 	while (head) {
396 		int hash;
397 
398 		sh = llist_entry(head, struct stripe_head, release_list);
399 		head = llist_next(head);
400 		/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
401 		smp_mb();
402 		clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
403 		/*
404 		 * Don't worry the bit is set here, because if the bit is set
405 		 * again, the count is always > 1. This is true for
406 		 * STRIPE_ON_UNPLUG_LIST bit too.
407 		 */
408 		hash = sh->hash_lock_index;
409 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
410 		count++;
411 	}
412 
413 	return count;
414 }
415 
416 void raid5_release_stripe(struct stripe_head *sh)
417 {
418 	struct r5conf *conf = sh->raid_conf;
419 	unsigned long flags;
420 	struct list_head list;
421 	int hash;
422 	bool wakeup;
423 
424 	/* Avoid release_list until the last reference.
425 	 */
426 	if (atomic_add_unless(&sh->count, -1, 1))
427 		return;
428 
429 	if (unlikely(!conf->mddev->thread) ||
430 		test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
431 		goto slow_path;
432 	wakeup = llist_add(&sh->release_list, &conf->released_stripes);
433 	if (wakeup)
434 		md_wakeup_thread(conf->mddev->thread);
435 	return;
436 slow_path:
437 	local_irq_save(flags);
438 	/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
439 	if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
440 		INIT_LIST_HEAD(&list);
441 		hash = sh->hash_lock_index;
442 		do_release_stripe(conf, sh, &list);
443 		spin_unlock(&conf->device_lock);
444 		release_inactive_stripe_list(conf, &list, hash);
445 	}
446 	local_irq_restore(flags);
447 }
448 
449 static inline void remove_hash(struct stripe_head *sh)
450 {
451 	pr_debug("remove_hash(), stripe %llu\n",
452 		(unsigned long long)sh->sector);
453 
454 	hlist_del_init(&sh->hash);
455 }
456 
457 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
458 {
459 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
460 
461 	pr_debug("insert_hash(), stripe %llu\n",
462 		(unsigned long long)sh->sector);
463 
464 	hlist_add_head(&sh->hash, hp);
465 }
466 
467 /* find an idle stripe, make sure it is unhashed, and return it. */
468 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
469 {
470 	struct stripe_head *sh = NULL;
471 	struct list_head *first;
472 
473 	if (list_empty(conf->inactive_list + hash))
474 		goto out;
475 	first = (conf->inactive_list + hash)->next;
476 	sh = list_entry(first, struct stripe_head, lru);
477 	list_del_init(first);
478 	remove_hash(sh);
479 	atomic_inc(&conf->active_stripes);
480 	BUG_ON(hash != sh->hash_lock_index);
481 	if (list_empty(conf->inactive_list + hash))
482 		atomic_inc(&conf->empty_inactive_list_nr);
483 out:
484 	return sh;
485 }
486 
487 static void shrink_buffers(struct stripe_head *sh)
488 {
489 	struct page *p;
490 	int i;
491 	int num = sh->raid_conf->pool_size;
492 
493 	for (i = 0; i < num ; i++) {
494 		WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
495 		p = sh->dev[i].page;
496 		if (!p)
497 			continue;
498 		sh->dev[i].page = NULL;
499 		put_page(p);
500 	}
501 }
502 
503 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
504 {
505 	int i;
506 	int num = sh->raid_conf->pool_size;
507 
508 	for (i = 0; i < num; i++) {
509 		struct page *page;
510 
511 		if (!(page = alloc_page(gfp))) {
512 			return 1;
513 		}
514 		sh->dev[i].page = page;
515 		sh->dev[i].orig_page = page;
516 	}
517 	return 0;
518 }
519 
520 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
521 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
522 			    struct stripe_head *sh);
523 
524 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
525 {
526 	struct r5conf *conf = sh->raid_conf;
527 	int i, seq;
528 
529 	BUG_ON(atomic_read(&sh->count) != 0);
530 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
531 	BUG_ON(stripe_operations_active(sh));
532 	BUG_ON(sh->batch_head);
533 
534 	pr_debug("init_stripe called, stripe %llu\n",
535 		(unsigned long long)sector);
536 retry:
537 	seq = read_seqcount_begin(&conf->gen_lock);
538 	sh->generation = conf->generation - previous;
539 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
540 	sh->sector = sector;
541 	stripe_set_idx(sector, conf, previous, sh);
542 	sh->state = 0;
543 
544 	for (i = sh->disks; i--; ) {
545 		struct r5dev *dev = &sh->dev[i];
546 
547 		if (dev->toread || dev->read || dev->towrite || dev->written ||
548 		    test_bit(R5_LOCKED, &dev->flags)) {
549 			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
550 			       (unsigned long long)sh->sector, i, dev->toread,
551 			       dev->read, dev->towrite, dev->written,
552 			       test_bit(R5_LOCKED, &dev->flags));
553 			WARN_ON(1);
554 		}
555 		dev->flags = 0;
556 		raid5_build_block(sh, i, previous);
557 	}
558 	if (read_seqcount_retry(&conf->gen_lock, seq))
559 		goto retry;
560 	sh->overwrite_disks = 0;
561 	insert_hash(conf, sh);
562 	sh->cpu = smp_processor_id();
563 	set_bit(STRIPE_BATCH_READY, &sh->state);
564 }
565 
566 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
567 					 short generation)
568 {
569 	struct stripe_head *sh;
570 
571 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
572 	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
573 		if (sh->sector == sector && sh->generation == generation)
574 			return sh;
575 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
576 	return NULL;
577 }
578 
579 /*
580  * Need to check if array has failed when deciding whether to:
581  *  - start an array
582  *  - remove non-faulty devices
583  *  - add a spare
584  *  - allow a reshape
585  * This determination is simple when no reshape is happening.
586  * However if there is a reshape, we need to carefully check
587  * both the before and after sections.
588  * This is because some failed devices may only affect one
589  * of the two sections, and some non-in_sync devices may
590  * be insync in the section most affected by failed devices.
591  */
592 static int calc_degraded(struct r5conf *conf)
593 {
594 	int degraded, degraded2;
595 	int i;
596 
597 	rcu_read_lock();
598 	degraded = 0;
599 	for (i = 0; i < conf->previous_raid_disks; i++) {
600 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
601 		if (rdev && test_bit(Faulty, &rdev->flags))
602 			rdev = rcu_dereference(conf->disks[i].replacement);
603 		if (!rdev || test_bit(Faulty, &rdev->flags))
604 			degraded++;
605 		else if (test_bit(In_sync, &rdev->flags))
606 			;
607 		else
608 			/* not in-sync or faulty.
609 			 * If the reshape increases the number of devices,
610 			 * this is being recovered by the reshape, so
611 			 * this 'previous' section is not in_sync.
612 			 * If the number of devices is being reduced however,
613 			 * the device can only be part of the array if
614 			 * we are reverting a reshape, so this section will
615 			 * be in-sync.
616 			 */
617 			if (conf->raid_disks >= conf->previous_raid_disks)
618 				degraded++;
619 	}
620 	rcu_read_unlock();
621 	if (conf->raid_disks == conf->previous_raid_disks)
622 		return degraded;
623 	rcu_read_lock();
624 	degraded2 = 0;
625 	for (i = 0; i < conf->raid_disks; i++) {
626 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
627 		if (rdev && test_bit(Faulty, &rdev->flags))
628 			rdev = rcu_dereference(conf->disks[i].replacement);
629 		if (!rdev || test_bit(Faulty, &rdev->flags))
630 			degraded2++;
631 		else if (test_bit(In_sync, &rdev->flags))
632 			;
633 		else
634 			/* not in-sync or faulty.
635 			 * If reshape increases the number of devices, this
636 			 * section has already been recovered, else it
637 			 * almost certainly hasn't.
638 			 */
639 			if (conf->raid_disks <= conf->previous_raid_disks)
640 				degraded2++;
641 	}
642 	rcu_read_unlock();
643 	if (degraded2 > degraded)
644 		return degraded2;
645 	return degraded;
646 }
647 
648 static int has_failed(struct r5conf *conf)
649 {
650 	int degraded;
651 
652 	if (conf->mddev->reshape_position == MaxSector)
653 		return conf->mddev->degraded > conf->max_degraded;
654 
655 	degraded = calc_degraded(conf);
656 	if (degraded > conf->max_degraded)
657 		return 1;
658 	return 0;
659 }
660 
661 struct stripe_head *
662 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
663 			int previous, int noblock, int noquiesce)
664 {
665 	struct stripe_head *sh;
666 	int hash = stripe_hash_locks_hash(sector);
667 
668 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
669 
670 	spin_lock_irq(conf->hash_locks + hash);
671 
672 	do {
673 		wait_event_lock_irq(conf->wait_for_quiescent,
674 				    conf->quiesce == 0 || noquiesce,
675 				    *(conf->hash_locks + hash));
676 		sh = __find_stripe(conf, sector, conf->generation - previous);
677 		if (!sh) {
678 			if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
679 				sh = get_free_stripe(conf, hash);
680 				if (!sh && !test_bit(R5_DID_ALLOC,
681 						     &conf->cache_state))
682 					set_bit(R5_ALLOC_MORE,
683 						&conf->cache_state);
684 			}
685 			if (noblock && sh == NULL)
686 				break;
687 			if (!sh) {
688 				set_bit(R5_INACTIVE_BLOCKED,
689 					&conf->cache_state);
690 				wait_event_exclusive_cmd(
691 					conf->wait_for_stripe[hash],
692 					!list_empty(conf->inactive_list + hash) &&
693 					(atomic_read(&conf->active_stripes)
694 					 < (conf->max_nr_stripes * 3 / 4)
695 					 || !test_bit(R5_INACTIVE_BLOCKED,
696 						      &conf->cache_state)),
697 					spin_unlock_irq(conf->hash_locks + hash),
698 					spin_lock_irq(conf->hash_locks + hash));
699 				clear_bit(R5_INACTIVE_BLOCKED,
700 					  &conf->cache_state);
701 			} else {
702 				init_stripe(sh, sector, previous);
703 				atomic_inc(&sh->count);
704 			}
705 		} else if (!atomic_inc_not_zero(&sh->count)) {
706 			spin_lock(&conf->device_lock);
707 			if (!atomic_read(&sh->count)) {
708 				if (!test_bit(STRIPE_HANDLE, &sh->state))
709 					atomic_inc(&conf->active_stripes);
710 				BUG_ON(list_empty(&sh->lru) &&
711 				       !test_bit(STRIPE_EXPANDING, &sh->state));
712 				list_del_init(&sh->lru);
713 				if (sh->group) {
714 					sh->group->stripes_cnt--;
715 					sh->group = NULL;
716 				}
717 			}
718 			atomic_inc(&sh->count);
719 			spin_unlock(&conf->device_lock);
720 		}
721 	} while (sh == NULL);
722 
723 	if (!list_empty(conf->inactive_list + hash))
724 		wake_up(&conf->wait_for_stripe[hash]);
725 
726 	spin_unlock_irq(conf->hash_locks + hash);
727 	return sh;
728 }
729 
730 static bool is_full_stripe_write(struct stripe_head *sh)
731 {
732 	BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
733 	return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
734 }
735 
736 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
737 {
738 	local_irq_disable();
739 	if (sh1 > sh2) {
740 		spin_lock(&sh2->stripe_lock);
741 		spin_lock_nested(&sh1->stripe_lock, 1);
742 	} else {
743 		spin_lock(&sh1->stripe_lock);
744 		spin_lock_nested(&sh2->stripe_lock, 1);
745 	}
746 }
747 
748 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
749 {
750 	spin_unlock(&sh1->stripe_lock);
751 	spin_unlock(&sh2->stripe_lock);
752 	local_irq_enable();
753 }
754 
755 /* Only freshly new full stripe normal write stripe can be added to a batch list */
756 static bool stripe_can_batch(struct stripe_head *sh)
757 {
758 	struct r5conf *conf = sh->raid_conf;
759 
760 	if (conf->log)
761 		return false;
762 	return test_bit(STRIPE_BATCH_READY, &sh->state) &&
763 		!test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
764 		is_full_stripe_write(sh);
765 }
766 
767 /* we only do back search */
768 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
769 {
770 	struct stripe_head *head;
771 	sector_t head_sector, tmp_sec;
772 	int hash;
773 	int dd_idx;
774 
775 	/* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
776 	tmp_sec = sh->sector;
777 	if (!sector_div(tmp_sec, conf->chunk_sectors))
778 		return;
779 	head_sector = sh->sector - STRIPE_SECTORS;
780 
781 	hash = stripe_hash_locks_hash(head_sector);
782 	spin_lock_irq(conf->hash_locks + hash);
783 	head = __find_stripe(conf, head_sector, conf->generation);
784 	if (head && !atomic_inc_not_zero(&head->count)) {
785 		spin_lock(&conf->device_lock);
786 		if (!atomic_read(&head->count)) {
787 			if (!test_bit(STRIPE_HANDLE, &head->state))
788 				atomic_inc(&conf->active_stripes);
789 			BUG_ON(list_empty(&head->lru) &&
790 			       !test_bit(STRIPE_EXPANDING, &head->state));
791 			list_del_init(&head->lru);
792 			if (head->group) {
793 				head->group->stripes_cnt--;
794 				head->group = NULL;
795 			}
796 		}
797 		atomic_inc(&head->count);
798 		spin_unlock(&conf->device_lock);
799 	}
800 	spin_unlock_irq(conf->hash_locks + hash);
801 
802 	if (!head)
803 		return;
804 	if (!stripe_can_batch(head))
805 		goto out;
806 
807 	lock_two_stripes(head, sh);
808 	/* clear_batch_ready clear the flag */
809 	if (!stripe_can_batch(head) || !stripe_can_batch(sh))
810 		goto unlock_out;
811 
812 	if (sh->batch_head)
813 		goto unlock_out;
814 
815 	dd_idx = 0;
816 	while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
817 		dd_idx++;
818 	if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw)
819 		goto unlock_out;
820 
821 	if (head->batch_head) {
822 		spin_lock(&head->batch_head->batch_lock);
823 		/* This batch list is already running */
824 		if (!stripe_can_batch(head)) {
825 			spin_unlock(&head->batch_head->batch_lock);
826 			goto unlock_out;
827 		}
828 
829 		/*
830 		 * at this point, head's BATCH_READY could be cleared, but we
831 		 * can still add the stripe to batch list
832 		 */
833 		list_add(&sh->batch_list, &head->batch_list);
834 		spin_unlock(&head->batch_head->batch_lock);
835 
836 		sh->batch_head = head->batch_head;
837 	} else {
838 		head->batch_head = head;
839 		sh->batch_head = head->batch_head;
840 		spin_lock(&head->batch_lock);
841 		list_add_tail(&sh->batch_list, &head->batch_list);
842 		spin_unlock(&head->batch_lock);
843 	}
844 
845 	if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
846 		if (atomic_dec_return(&conf->preread_active_stripes)
847 		    < IO_THRESHOLD)
848 			md_wakeup_thread(conf->mddev->thread);
849 
850 	if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
851 		int seq = sh->bm_seq;
852 		if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
853 		    sh->batch_head->bm_seq > seq)
854 			seq = sh->batch_head->bm_seq;
855 		set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
856 		sh->batch_head->bm_seq = seq;
857 	}
858 
859 	atomic_inc(&sh->count);
860 unlock_out:
861 	unlock_two_stripes(head, sh);
862 out:
863 	raid5_release_stripe(head);
864 }
865 
866 /* Determine if 'data_offset' or 'new_data_offset' should be used
867  * in this stripe_head.
868  */
869 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
870 {
871 	sector_t progress = conf->reshape_progress;
872 	/* Need a memory barrier to make sure we see the value
873 	 * of conf->generation, or ->data_offset that was set before
874 	 * reshape_progress was updated.
875 	 */
876 	smp_rmb();
877 	if (progress == MaxSector)
878 		return 0;
879 	if (sh->generation == conf->generation - 1)
880 		return 0;
881 	/* We are in a reshape, and this is a new-generation stripe,
882 	 * so use new_data_offset.
883 	 */
884 	return 1;
885 }
886 
887 static void
888 raid5_end_read_request(struct bio *bi);
889 static void
890 raid5_end_write_request(struct bio *bi);
891 
892 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
893 {
894 	struct r5conf *conf = sh->raid_conf;
895 	int i, disks = sh->disks;
896 	struct stripe_head *head_sh = sh;
897 
898 	might_sleep();
899 
900 	if (r5l_write_stripe(conf->log, sh) == 0)
901 		return;
902 	for (i = disks; i--; ) {
903 		int rw;
904 		int replace_only = 0;
905 		struct bio *bi, *rbi;
906 		struct md_rdev *rdev, *rrdev = NULL;
907 
908 		sh = head_sh;
909 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
910 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
911 				rw = WRITE_FUA;
912 			else
913 				rw = WRITE;
914 			if (test_bit(R5_Discard, &sh->dev[i].flags))
915 				rw |= REQ_DISCARD;
916 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
917 			rw = READ;
918 		else if (test_and_clear_bit(R5_WantReplace,
919 					    &sh->dev[i].flags)) {
920 			rw = WRITE;
921 			replace_only = 1;
922 		} else
923 			continue;
924 		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
925 			rw |= REQ_SYNC;
926 
927 again:
928 		bi = &sh->dev[i].req;
929 		rbi = &sh->dev[i].rreq; /* For writing to replacement */
930 
931 		rcu_read_lock();
932 		rrdev = rcu_dereference(conf->disks[i].replacement);
933 		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
934 		rdev = rcu_dereference(conf->disks[i].rdev);
935 		if (!rdev) {
936 			rdev = rrdev;
937 			rrdev = NULL;
938 		}
939 		if (rw & WRITE) {
940 			if (replace_only)
941 				rdev = NULL;
942 			if (rdev == rrdev)
943 				/* We raced and saw duplicates */
944 				rrdev = NULL;
945 		} else {
946 			if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
947 				rdev = rrdev;
948 			rrdev = NULL;
949 		}
950 
951 		if (rdev && test_bit(Faulty, &rdev->flags))
952 			rdev = NULL;
953 		if (rdev)
954 			atomic_inc(&rdev->nr_pending);
955 		if (rrdev && test_bit(Faulty, &rrdev->flags))
956 			rrdev = NULL;
957 		if (rrdev)
958 			atomic_inc(&rrdev->nr_pending);
959 		rcu_read_unlock();
960 
961 		/* We have already checked bad blocks for reads.  Now
962 		 * need to check for writes.  We never accept write errors
963 		 * on the replacement, so we don't to check rrdev.
964 		 */
965 		while ((rw & WRITE) && rdev &&
966 		       test_bit(WriteErrorSeen, &rdev->flags)) {
967 			sector_t first_bad;
968 			int bad_sectors;
969 			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
970 					      &first_bad, &bad_sectors);
971 			if (!bad)
972 				break;
973 
974 			if (bad < 0) {
975 				set_bit(BlockedBadBlocks, &rdev->flags);
976 				if (!conf->mddev->external &&
977 				    conf->mddev->flags) {
978 					/* It is very unlikely, but we might
979 					 * still need to write out the
980 					 * bad block log - better give it
981 					 * a chance*/
982 					md_check_recovery(conf->mddev);
983 				}
984 				/*
985 				 * Because md_wait_for_blocked_rdev
986 				 * will dec nr_pending, we must
987 				 * increment it first.
988 				 */
989 				atomic_inc(&rdev->nr_pending);
990 				md_wait_for_blocked_rdev(rdev, conf->mddev);
991 			} else {
992 				/* Acknowledged bad block - skip the write */
993 				rdev_dec_pending(rdev, conf->mddev);
994 				rdev = NULL;
995 			}
996 		}
997 
998 		if (rdev) {
999 			if (s->syncing || s->expanding || s->expanded
1000 			    || s->replacing)
1001 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1002 
1003 			set_bit(STRIPE_IO_STARTED, &sh->state);
1004 
1005 			bio_reset(bi);
1006 			bi->bi_bdev = rdev->bdev;
1007 			bi->bi_rw = rw;
1008 			bi->bi_end_io = (rw & WRITE)
1009 				? raid5_end_write_request
1010 				: raid5_end_read_request;
1011 			bi->bi_private = sh;
1012 
1013 			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
1014 				__func__, (unsigned long long)sh->sector,
1015 				bi->bi_rw, i);
1016 			atomic_inc(&sh->count);
1017 			if (sh != head_sh)
1018 				atomic_inc(&head_sh->count);
1019 			if (use_new_offset(conf, sh))
1020 				bi->bi_iter.bi_sector = (sh->sector
1021 						 + rdev->new_data_offset);
1022 			else
1023 				bi->bi_iter.bi_sector = (sh->sector
1024 						 + rdev->data_offset);
1025 			if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1026 				bi->bi_rw |= REQ_NOMERGE;
1027 
1028 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1029 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1030 			sh->dev[i].vec.bv_page = sh->dev[i].page;
1031 			bi->bi_vcnt = 1;
1032 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1033 			bi->bi_io_vec[0].bv_offset = 0;
1034 			bi->bi_iter.bi_size = STRIPE_SIZE;
1035 			/*
1036 			 * If this is discard request, set bi_vcnt 0. We don't
1037 			 * want to confuse SCSI because SCSI will replace payload
1038 			 */
1039 			if (rw & REQ_DISCARD)
1040 				bi->bi_vcnt = 0;
1041 			if (rrdev)
1042 				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1043 
1044 			if (conf->mddev->gendisk)
1045 				trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1046 						      bi, disk_devt(conf->mddev->gendisk),
1047 						      sh->dev[i].sector);
1048 			generic_make_request(bi);
1049 		}
1050 		if (rrdev) {
1051 			if (s->syncing || s->expanding || s->expanded
1052 			    || s->replacing)
1053 				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1054 
1055 			set_bit(STRIPE_IO_STARTED, &sh->state);
1056 
1057 			bio_reset(rbi);
1058 			rbi->bi_bdev = rrdev->bdev;
1059 			rbi->bi_rw = rw;
1060 			BUG_ON(!(rw & WRITE));
1061 			rbi->bi_end_io = raid5_end_write_request;
1062 			rbi->bi_private = sh;
1063 
1064 			pr_debug("%s: for %llu schedule op %ld on "
1065 				 "replacement disc %d\n",
1066 				__func__, (unsigned long long)sh->sector,
1067 				rbi->bi_rw, i);
1068 			atomic_inc(&sh->count);
1069 			if (sh != head_sh)
1070 				atomic_inc(&head_sh->count);
1071 			if (use_new_offset(conf, sh))
1072 				rbi->bi_iter.bi_sector = (sh->sector
1073 						  + rrdev->new_data_offset);
1074 			else
1075 				rbi->bi_iter.bi_sector = (sh->sector
1076 						  + rrdev->data_offset);
1077 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1078 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1079 			sh->dev[i].rvec.bv_page = sh->dev[i].page;
1080 			rbi->bi_vcnt = 1;
1081 			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1082 			rbi->bi_io_vec[0].bv_offset = 0;
1083 			rbi->bi_iter.bi_size = STRIPE_SIZE;
1084 			/*
1085 			 * If this is discard request, set bi_vcnt 0. We don't
1086 			 * want to confuse SCSI because SCSI will replace payload
1087 			 */
1088 			if (rw & REQ_DISCARD)
1089 				rbi->bi_vcnt = 0;
1090 			if (conf->mddev->gendisk)
1091 				trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1092 						      rbi, disk_devt(conf->mddev->gendisk),
1093 						      sh->dev[i].sector);
1094 			generic_make_request(rbi);
1095 		}
1096 		if (!rdev && !rrdev) {
1097 			if (rw & WRITE)
1098 				set_bit(STRIPE_DEGRADED, &sh->state);
1099 			pr_debug("skip op %ld on disc %d for sector %llu\n",
1100 				bi->bi_rw, i, (unsigned long long)sh->sector);
1101 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
1102 			set_bit(STRIPE_HANDLE, &sh->state);
1103 		}
1104 
1105 		if (!head_sh->batch_head)
1106 			continue;
1107 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1108 				      batch_list);
1109 		if (sh != head_sh)
1110 			goto again;
1111 	}
1112 }
1113 
1114 static struct dma_async_tx_descriptor *
1115 async_copy_data(int frombio, struct bio *bio, struct page **page,
1116 	sector_t sector, struct dma_async_tx_descriptor *tx,
1117 	struct stripe_head *sh)
1118 {
1119 	struct bio_vec bvl;
1120 	struct bvec_iter iter;
1121 	struct page *bio_page;
1122 	int page_offset;
1123 	struct async_submit_ctl submit;
1124 	enum async_tx_flags flags = 0;
1125 
1126 	if (bio->bi_iter.bi_sector >= sector)
1127 		page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1128 	else
1129 		page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1130 
1131 	if (frombio)
1132 		flags |= ASYNC_TX_FENCE;
1133 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1134 
1135 	bio_for_each_segment(bvl, bio, iter) {
1136 		int len = bvl.bv_len;
1137 		int clen;
1138 		int b_offset = 0;
1139 
1140 		if (page_offset < 0) {
1141 			b_offset = -page_offset;
1142 			page_offset += b_offset;
1143 			len -= b_offset;
1144 		}
1145 
1146 		if (len > 0 && page_offset + len > STRIPE_SIZE)
1147 			clen = STRIPE_SIZE - page_offset;
1148 		else
1149 			clen = len;
1150 
1151 		if (clen > 0) {
1152 			b_offset += bvl.bv_offset;
1153 			bio_page = bvl.bv_page;
1154 			if (frombio) {
1155 				if (sh->raid_conf->skip_copy &&
1156 				    b_offset == 0 && page_offset == 0 &&
1157 				    clen == STRIPE_SIZE)
1158 					*page = bio_page;
1159 				else
1160 					tx = async_memcpy(*page, bio_page, page_offset,
1161 						  b_offset, clen, &submit);
1162 			} else
1163 				tx = async_memcpy(bio_page, *page, b_offset,
1164 						  page_offset, clen, &submit);
1165 		}
1166 		/* chain the operations */
1167 		submit.depend_tx = tx;
1168 
1169 		if (clen < len) /* hit end of page */
1170 			break;
1171 		page_offset +=  len;
1172 	}
1173 
1174 	return tx;
1175 }
1176 
1177 static void ops_complete_biofill(void *stripe_head_ref)
1178 {
1179 	struct stripe_head *sh = stripe_head_ref;
1180 	struct bio_list return_bi = BIO_EMPTY_LIST;
1181 	int i;
1182 
1183 	pr_debug("%s: stripe %llu\n", __func__,
1184 		(unsigned long long)sh->sector);
1185 
1186 	/* clear completed biofills */
1187 	for (i = sh->disks; i--; ) {
1188 		struct r5dev *dev = &sh->dev[i];
1189 
1190 		/* acknowledge completion of a biofill operation */
1191 		/* and check if we need to reply to a read request,
1192 		 * new R5_Wantfill requests are held off until
1193 		 * !STRIPE_BIOFILL_RUN
1194 		 */
1195 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1196 			struct bio *rbi, *rbi2;
1197 
1198 			BUG_ON(!dev->read);
1199 			rbi = dev->read;
1200 			dev->read = NULL;
1201 			while (rbi && rbi->bi_iter.bi_sector <
1202 				dev->sector + STRIPE_SECTORS) {
1203 				rbi2 = r5_next_bio(rbi, dev->sector);
1204 				if (!raid5_dec_bi_active_stripes(rbi))
1205 					bio_list_add(&return_bi, rbi);
1206 				rbi = rbi2;
1207 			}
1208 		}
1209 	}
1210 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1211 
1212 	return_io(&return_bi);
1213 
1214 	set_bit(STRIPE_HANDLE, &sh->state);
1215 	raid5_release_stripe(sh);
1216 }
1217 
1218 static void ops_run_biofill(struct stripe_head *sh)
1219 {
1220 	struct dma_async_tx_descriptor *tx = NULL;
1221 	struct async_submit_ctl submit;
1222 	int i;
1223 
1224 	BUG_ON(sh->batch_head);
1225 	pr_debug("%s: stripe %llu\n", __func__,
1226 		(unsigned long long)sh->sector);
1227 
1228 	for (i = sh->disks; i--; ) {
1229 		struct r5dev *dev = &sh->dev[i];
1230 		if (test_bit(R5_Wantfill, &dev->flags)) {
1231 			struct bio *rbi;
1232 			spin_lock_irq(&sh->stripe_lock);
1233 			dev->read = rbi = dev->toread;
1234 			dev->toread = NULL;
1235 			spin_unlock_irq(&sh->stripe_lock);
1236 			while (rbi && rbi->bi_iter.bi_sector <
1237 				dev->sector + STRIPE_SECTORS) {
1238 				tx = async_copy_data(0, rbi, &dev->page,
1239 					dev->sector, tx, sh);
1240 				rbi = r5_next_bio(rbi, dev->sector);
1241 			}
1242 		}
1243 	}
1244 
1245 	atomic_inc(&sh->count);
1246 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1247 	async_trigger_callback(&submit);
1248 }
1249 
1250 static void mark_target_uptodate(struct stripe_head *sh, int target)
1251 {
1252 	struct r5dev *tgt;
1253 
1254 	if (target < 0)
1255 		return;
1256 
1257 	tgt = &sh->dev[target];
1258 	set_bit(R5_UPTODATE, &tgt->flags);
1259 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1260 	clear_bit(R5_Wantcompute, &tgt->flags);
1261 }
1262 
1263 static void ops_complete_compute(void *stripe_head_ref)
1264 {
1265 	struct stripe_head *sh = stripe_head_ref;
1266 
1267 	pr_debug("%s: stripe %llu\n", __func__,
1268 		(unsigned long long)sh->sector);
1269 
1270 	/* mark the computed target(s) as uptodate */
1271 	mark_target_uptodate(sh, sh->ops.target);
1272 	mark_target_uptodate(sh, sh->ops.target2);
1273 
1274 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1275 	if (sh->check_state == check_state_compute_run)
1276 		sh->check_state = check_state_compute_result;
1277 	set_bit(STRIPE_HANDLE, &sh->state);
1278 	raid5_release_stripe(sh);
1279 }
1280 
1281 /* return a pointer to the address conversion region of the scribble buffer */
1282 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1283 				 struct raid5_percpu *percpu, int i)
1284 {
1285 	void *addr;
1286 
1287 	addr = flex_array_get(percpu->scribble, i);
1288 	return addr + sizeof(struct page *) * (sh->disks + 2);
1289 }
1290 
1291 /* return a pointer to the address conversion region of the scribble buffer */
1292 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1293 {
1294 	void *addr;
1295 
1296 	addr = flex_array_get(percpu->scribble, i);
1297 	return addr;
1298 }
1299 
1300 static struct dma_async_tx_descriptor *
1301 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1302 {
1303 	int disks = sh->disks;
1304 	struct page **xor_srcs = to_addr_page(percpu, 0);
1305 	int target = sh->ops.target;
1306 	struct r5dev *tgt = &sh->dev[target];
1307 	struct page *xor_dest = tgt->page;
1308 	int count = 0;
1309 	struct dma_async_tx_descriptor *tx;
1310 	struct async_submit_ctl submit;
1311 	int i;
1312 
1313 	BUG_ON(sh->batch_head);
1314 
1315 	pr_debug("%s: stripe %llu block: %d\n",
1316 		__func__, (unsigned long long)sh->sector, target);
1317 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1318 
1319 	for (i = disks; i--; )
1320 		if (i != target)
1321 			xor_srcs[count++] = sh->dev[i].page;
1322 
1323 	atomic_inc(&sh->count);
1324 
1325 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1326 			  ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1327 	if (unlikely(count == 1))
1328 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1329 	else
1330 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1331 
1332 	return tx;
1333 }
1334 
1335 /* set_syndrome_sources - populate source buffers for gen_syndrome
1336  * @srcs - (struct page *) array of size sh->disks
1337  * @sh - stripe_head to parse
1338  *
1339  * Populates srcs in proper layout order for the stripe and returns the
1340  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1341  * destination buffer is recorded in srcs[count] and the Q destination
1342  * is recorded in srcs[count+1]].
1343  */
1344 static int set_syndrome_sources(struct page **srcs,
1345 				struct stripe_head *sh,
1346 				int srctype)
1347 {
1348 	int disks = sh->disks;
1349 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1350 	int d0_idx = raid6_d0(sh);
1351 	int count;
1352 	int i;
1353 
1354 	for (i = 0; i < disks; i++)
1355 		srcs[i] = NULL;
1356 
1357 	count = 0;
1358 	i = d0_idx;
1359 	do {
1360 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1361 		struct r5dev *dev = &sh->dev[i];
1362 
1363 		if (i == sh->qd_idx || i == sh->pd_idx ||
1364 		    (srctype == SYNDROME_SRC_ALL) ||
1365 		    (srctype == SYNDROME_SRC_WANT_DRAIN &&
1366 		     test_bit(R5_Wantdrain, &dev->flags)) ||
1367 		    (srctype == SYNDROME_SRC_WRITTEN &&
1368 		     dev->written))
1369 			srcs[slot] = sh->dev[i].page;
1370 		i = raid6_next_disk(i, disks);
1371 	} while (i != d0_idx);
1372 
1373 	return syndrome_disks;
1374 }
1375 
1376 static struct dma_async_tx_descriptor *
1377 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1378 {
1379 	int disks = sh->disks;
1380 	struct page **blocks = to_addr_page(percpu, 0);
1381 	int target;
1382 	int qd_idx = sh->qd_idx;
1383 	struct dma_async_tx_descriptor *tx;
1384 	struct async_submit_ctl submit;
1385 	struct r5dev *tgt;
1386 	struct page *dest;
1387 	int i;
1388 	int count;
1389 
1390 	BUG_ON(sh->batch_head);
1391 	if (sh->ops.target < 0)
1392 		target = sh->ops.target2;
1393 	else if (sh->ops.target2 < 0)
1394 		target = sh->ops.target;
1395 	else
1396 		/* we should only have one valid target */
1397 		BUG();
1398 	BUG_ON(target < 0);
1399 	pr_debug("%s: stripe %llu block: %d\n",
1400 		__func__, (unsigned long long)sh->sector, target);
1401 
1402 	tgt = &sh->dev[target];
1403 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1404 	dest = tgt->page;
1405 
1406 	atomic_inc(&sh->count);
1407 
1408 	if (target == qd_idx) {
1409 		count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1410 		blocks[count] = NULL; /* regenerating p is not necessary */
1411 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
1412 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1413 				  ops_complete_compute, sh,
1414 				  to_addr_conv(sh, percpu, 0));
1415 		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1416 	} else {
1417 		/* Compute any data- or p-drive using XOR */
1418 		count = 0;
1419 		for (i = disks; i-- ; ) {
1420 			if (i == target || i == qd_idx)
1421 				continue;
1422 			blocks[count++] = sh->dev[i].page;
1423 		}
1424 
1425 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1426 				  NULL, ops_complete_compute, sh,
1427 				  to_addr_conv(sh, percpu, 0));
1428 		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1429 	}
1430 
1431 	return tx;
1432 }
1433 
1434 static struct dma_async_tx_descriptor *
1435 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1436 {
1437 	int i, count, disks = sh->disks;
1438 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1439 	int d0_idx = raid6_d0(sh);
1440 	int faila = -1, failb = -1;
1441 	int target = sh->ops.target;
1442 	int target2 = sh->ops.target2;
1443 	struct r5dev *tgt = &sh->dev[target];
1444 	struct r5dev *tgt2 = &sh->dev[target2];
1445 	struct dma_async_tx_descriptor *tx;
1446 	struct page **blocks = to_addr_page(percpu, 0);
1447 	struct async_submit_ctl submit;
1448 
1449 	BUG_ON(sh->batch_head);
1450 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1451 		 __func__, (unsigned long long)sh->sector, target, target2);
1452 	BUG_ON(target < 0 || target2 < 0);
1453 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1454 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1455 
1456 	/* we need to open-code set_syndrome_sources to handle the
1457 	 * slot number conversion for 'faila' and 'failb'
1458 	 */
1459 	for (i = 0; i < disks ; i++)
1460 		blocks[i] = NULL;
1461 	count = 0;
1462 	i = d0_idx;
1463 	do {
1464 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1465 
1466 		blocks[slot] = sh->dev[i].page;
1467 
1468 		if (i == target)
1469 			faila = slot;
1470 		if (i == target2)
1471 			failb = slot;
1472 		i = raid6_next_disk(i, disks);
1473 	} while (i != d0_idx);
1474 
1475 	BUG_ON(faila == failb);
1476 	if (failb < faila)
1477 		swap(faila, failb);
1478 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1479 		 __func__, (unsigned long long)sh->sector, faila, failb);
1480 
1481 	atomic_inc(&sh->count);
1482 
1483 	if (failb == syndrome_disks+1) {
1484 		/* Q disk is one of the missing disks */
1485 		if (faila == syndrome_disks) {
1486 			/* Missing P+Q, just recompute */
1487 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1488 					  ops_complete_compute, sh,
1489 					  to_addr_conv(sh, percpu, 0));
1490 			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1491 						  STRIPE_SIZE, &submit);
1492 		} else {
1493 			struct page *dest;
1494 			int data_target;
1495 			int qd_idx = sh->qd_idx;
1496 
1497 			/* Missing D+Q: recompute D from P, then recompute Q */
1498 			if (target == qd_idx)
1499 				data_target = target2;
1500 			else
1501 				data_target = target;
1502 
1503 			count = 0;
1504 			for (i = disks; i-- ; ) {
1505 				if (i == data_target || i == qd_idx)
1506 					continue;
1507 				blocks[count++] = sh->dev[i].page;
1508 			}
1509 			dest = sh->dev[data_target].page;
1510 			init_async_submit(&submit,
1511 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1512 					  NULL, NULL, NULL,
1513 					  to_addr_conv(sh, percpu, 0));
1514 			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1515 				       &submit);
1516 
1517 			count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1518 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1519 					  ops_complete_compute, sh,
1520 					  to_addr_conv(sh, percpu, 0));
1521 			return async_gen_syndrome(blocks, 0, count+2,
1522 						  STRIPE_SIZE, &submit);
1523 		}
1524 	} else {
1525 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1526 				  ops_complete_compute, sh,
1527 				  to_addr_conv(sh, percpu, 0));
1528 		if (failb == syndrome_disks) {
1529 			/* We're missing D+P. */
1530 			return async_raid6_datap_recov(syndrome_disks+2,
1531 						       STRIPE_SIZE, faila,
1532 						       blocks, &submit);
1533 		} else {
1534 			/* We're missing D+D. */
1535 			return async_raid6_2data_recov(syndrome_disks+2,
1536 						       STRIPE_SIZE, faila, failb,
1537 						       blocks, &submit);
1538 		}
1539 	}
1540 }
1541 
1542 static void ops_complete_prexor(void *stripe_head_ref)
1543 {
1544 	struct stripe_head *sh = stripe_head_ref;
1545 
1546 	pr_debug("%s: stripe %llu\n", __func__,
1547 		(unsigned long long)sh->sector);
1548 }
1549 
1550 static struct dma_async_tx_descriptor *
1551 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1552 		struct dma_async_tx_descriptor *tx)
1553 {
1554 	int disks = sh->disks;
1555 	struct page **xor_srcs = to_addr_page(percpu, 0);
1556 	int count = 0, pd_idx = sh->pd_idx, i;
1557 	struct async_submit_ctl submit;
1558 
1559 	/* existing parity data subtracted */
1560 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1561 
1562 	BUG_ON(sh->batch_head);
1563 	pr_debug("%s: stripe %llu\n", __func__,
1564 		(unsigned long long)sh->sector);
1565 
1566 	for (i = disks; i--; ) {
1567 		struct r5dev *dev = &sh->dev[i];
1568 		/* Only process blocks that are known to be uptodate */
1569 		if (test_bit(R5_Wantdrain, &dev->flags))
1570 			xor_srcs[count++] = dev->page;
1571 	}
1572 
1573 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1574 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1575 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1576 
1577 	return tx;
1578 }
1579 
1580 static struct dma_async_tx_descriptor *
1581 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1582 		struct dma_async_tx_descriptor *tx)
1583 {
1584 	struct page **blocks = to_addr_page(percpu, 0);
1585 	int count;
1586 	struct async_submit_ctl submit;
1587 
1588 	pr_debug("%s: stripe %llu\n", __func__,
1589 		(unsigned long long)sh->sector);
1590 
1591 	count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1592 
1593 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1594 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1595 	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1596 
1597 	return tx;
1598 }
1599 
1600 static struct dma_async_tx_descriptor *
1601 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1602 {
1603 	int disks = sh->disks;
1604 	int i;
1605 	struct stripe_head *head_sh = sh;
1606 
1607 	pr_debug("%s: stripe %llu\n", __func__,
1608 		(unsigned long long)sh->sector);
1609 
1610 	for (i = disks; i--; ) {
1611 		struct r5dev *dev;
1612 		struct bio *chosen;
1613 
1614 		sh = head_sh;
1615 		if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1616 			struct bio *wbi;
1617 
1618 again:
1619 			dev = &sh->dev[i];
1620 			spin_lock_irq(&sh->stripe_lock);
1621 			chosen = dev->towrite;
1622 			dev->towrite = NULL;
1623 			sh->overwrite_disks = 0;
1624 			BUG_ON(dev->written);
1625 			wbi = dev->written = chosen;
1626 			spin_unlock_irq(&sh->stripe_lock);
1627 			WARN_ON(dev->page != dev->orig_page);
1628 
1629 			while (wbi && wbi->bi_iter.bi_sector <
1630 				dev->sector + STRIPE_SECTORS) {
1631 				if (wbi->bi_rw & REQ_FUA)
1632 					set_bit(R5_WantFUA, &dev->flags);
1633 				if (wbi->bi_rw & REQ_SYNC)
1634 					set_bit(R5_SyncIO, &dev->flags);
1635 				if (wbi->bi_rw & REQ_DISCARD)
1636 					set_bit(R5_Discard, &dev->flags);
1637 				else {
1638 					tx = async_copy_data(1, wbi, &dev->page,
1639 						dev->sector, tx, sh);
1640 					if (dev->page != dev->orig_page) {
1641 						set_bit(R5_SkipCopy, &dev->flags);
1642 						clear_bit(R5_UPTODATE, &dev->flags);
1643 						clear_bit(R5_OVERWRITE, &dev->flags);
1644 					}
1645 				}
1646 				wbi = r5_next_bio(wbi, dev->sector);
1647 			}
1648 
1649 			if (head_sh->batch_head) {
1650 				sh = list_first_entry(&sh->batch_list,
1651 						      struct stripe_head,
1652 						      batch_list);
1653 				if (sh == head_sh)
1654 					continue;
1655 				goto again;
1656 			}
1657 		}
1658 	}
1659 
1660 	return tx;
1661 }
1662 
1663 static void ops_complete_reconstruct(void *stripe_head_ref)
1664 {
1665 	struct stripe_head *sh = stripe_head_ref;
1666 	int disks = sh->disks;
1667 	int pd_idx = sh->pd_idx;
1668 	int qd_idx = sh->qd_idx;
1669 	int i;
1670 	bool fua = false, sync = false, discard = false;
1671 
1672 	pr_debug("%s: stripe %llu\n", __func__,
1673 		(unsigned long long)sh->sector);
1674 
1675 	for (i = disks; i--; ) {
1676 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1677 		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1678 		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1679 	}
1680 
1681 	for (i = disks; i--; ) {
1682 		struct r5dev *dev = &sh->dev[i];
1683 
1684 		if (dev->written || i == pd_idx || i == qd_idx) {
1685 			if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1686 				set_bit(R5_UPTODATE, &dev->flags);
1687 			if (fua)
1688 				set_bit(R5_WantFUA, &dev->flags);
1689 			if (sync)
1690 				set_bit(R5_SyncIO, &dev->flags);
1691 		}
1692 	}
1693 
1694 	if (sh->reconstruct_state == reconstruct_state_drain_run)
1695 		sh->reconstruct_state = reconstruct_state_drain_result;
1696 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1697 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1698 	else {
1699 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1700 		sh->reconstruct_state = reconstruct_state_result;
1701 	}
1702 
1703 	set_bit(STRIPE_HANDLE, &sh->state);
1704 	raid5_release_stripe(sh);
1705 }
1706 
1707 static void
1708 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1709 		     struct dma_async_tx_descriptor *tx)
1710 {
1711 	int disks = sh->disks;
1712 	struct page **xor_srcs;
1713 	struct async_submit_ctl submit;
1714 	int count, pd_idx = sh->pd_idx, i;
1715 	struct page *xor_dest;
1716 	int prexor = 0;
1717 	unsigned long flags;
1718 	int j = 0;
1719 	struct stripe_head *head_sh = sh;
1720 	int last_stripe;
1721 
1722 	pr_debug("%s: stripe %llu\n", __func__,
1723 		(unsigned long long)sh->sector);
1724 
1725 	for (i = 0; i < sh->disks; i++) {
1726 		if (pd_idx == i)
1727 			continue;
1728 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1729 			break;
1730 	}
1731 	if (i >= sh->disks) {
1732 		atomic_inc(&sh->count);
1733 		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1734 		ops_complete_reconstruct(sh);
1735 		return;
1736 	}
1737 again:
1738 	count = 0;
1739 	xor_srcs = to_addr_page(percpu, j);
1740 	/* check if prexor is active which means only process blocks
1741 	 * that are part of a read-modify-write (written)
1742 	 */
1743 	if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1744 		prexor = 1;
1745 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1746 		for (i = disks; i--; ) {
1747 			struct r5dev *dev = &sh->dev[i];
1748 			if (head_sh->dev[i].written)
1749 				xor_srcs[count++] = dev->page;
1750 		}
1751 	} else {
1752 		xor_dest = sh->dev[pd_idx].page;
1753 		for (i = disks; i--; ) {
1754 			struct r5dev *dev = &sh->dev[i];
1755 			if (i != pd_idx)
1756 				xor_srcs[count++] = dev->page;
1757 		}
1758 	}
1759 
1760 	/* 1/ if we prexor'd then the dest is reused as a source
1761 	 * 2/ if we did not prexor then we are redoing the parity
1762 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1763 	 * for the synchronous xor case
1764 	 */
1765 	last_stripe = !head_sh->batch_head ||
1766 		list_first_entry(&sh->batch_list,
1767 				 struct stripe_head, batch_list) == head_sh;
1768 	if (last_stripe) {
1769 		flags = ASYNC_TX_ACK |
1770 			(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1771 
1772 		atomic_inc(&head_sh->count);
1773 		init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1774 				  to_addr_conv(sh, percpu, j));
1775 	} else {
1776 		flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1777 		init_async_submit(&submit, flags, tx, NULL, NULL,
1778 				  to_addr_conv(sh, percpu, j));
1779 	}
1780 
1781 	if (unlikely(count == 1))
1782 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1783 	else
1784 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1785 	if (!last_stripe) {
1786 		j++;
1787 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1788 				      batch_list);
1789 		goto again;
1790 	}
1791 }
1792 
1793 static void
1794 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1795 		     struct dma_async_tx_descriptor *tx)
1796 {
1797 	struct async_submit_ctl submit;
1798 	struct page **blocks;
1799 	int count, i, j = 0;
1800 	struct stripe_head *head_sh = sh;
1801 	int last_stripe;
1802 	int synflags;
1803 	unsigned long txflags;
1804 
1805 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1806 
1807 	for (i = 0; i < sh->disks; i++) {
1808 		if (sh->pd_idx == i || sh->qd_idx == i)
1809 			continue;
1810 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1811 			break;
1812 	}
1813 	if (i >= sh->disks) {
1814 		atomic_inc(&sh->count);
1815 		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1816 		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1817 		ops_complete_reconstruct(sh);
1818 		return;
1819 	}
1820 
1821 again:
1822 	blocks = to_addr_page(percpu, j);
1823 
1824 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1825 		synflags = SYNDROME_SRC_WRITTEN;
1826 		txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1827 	} else {
1828 		synflags = SYNDROME_SRC_ALL;
1829 		txflags = ASYNC_TX_ACK;
1830 	}
1831 
1832 	count = set_syndrome_sources(blocks, sh, synflags);
1833 	last_stripe = !head_sh->batch_head ||
1834 		list_first_entry(&sh->batch_list,
1835 				 struct stripe_head, batch_list) == head_sh;
1836 
1837 	if (last_stripe) {
1838 		atomic_inc(&head_sh->count);
1839 		init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1840 				  head_sh, to_addr_conv(sh, percpu, j));
1841 	} else
1842 		init_async_submit(&submit, 0, tx, NULL, NULL,
1843 				  to_addr_conv(sh, percpu, j));
1844 	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1845 	if (!last_stripe) {
1846 		j++;
1847 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1848 				      batch_list);
1849 		goto again;
1850 	}
1851 }
1852 
1853 static void ops_complete_check(void *stripe_head_ref)
1854 {
1855 	struct stripe_head *sh = stripe_head_ref;
1856 
1857 	pr_debug("%s: stripe %llu\n", __func__,
1858 		(unsigned long long)sh->sector);
1859 
1860 	sh->check_state = check_state_check_result;
1861 	set_bit(STRIPE_HANDLE, &sh->state);
1862 	raid5_release_stripe(sh);
1863 }
1864 
1865 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1866 {
1867 	int disks = sh->disks;
1868 	int pd_idx = sh->pd_idx;
1869 	int qd_idx = sh->qd_idx;
1870 	struct page *xor_dest;
1871 	struct page **xor_srcs = to_addr_page(percpu, 0);
1872 	struct dma_async_tx_descriptor *tx;
1873 	struct async_submit_ctl submit;
1874 	int count;
1875 	int i;
1876 
1877 	pr_debug("%s: stripe %llu\n", __func__,
1878 		(unsigned long long)sh->sector);
1879 
1880 	BUG_ON(sh->batch_head);
1881 	count = 0;
1882 	xor_dest = sh->dev[pd_idx].page;
1883 	xor_srcs[count++] = xor_dest;
1884 	for (i = disks; i--; ) {
1885 		if (i == pd_idx || i == qd_idx)
1886 			continue;
1887 		xor_srcs[count++] = sh->dev[i].page;
1888 	}
1889 
1890 	init_async_submit(&submit, 0, NULL, NULL, NULL,
1891 			  to_addr_conv(sh, percpu, 0));
1892 	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1893 			   &sh->ops.zero_sum_result, &submit);
1894 
1895 	atomic_inc(&sh->count);
1896 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1897 	tx = async_trigger_callback(&submit);
1898 }
1899 
1900 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1901 {
1902 	struct page **srcs = to_addr_page(percpu, 0);
1903 	struct async_submit_ctl submit;
1904 	int count;
1905 
1906 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1907 		(unsigned long long)sh->sector, checkp);
1908 
1909 	BUG_ON(sh->batch_head);
1910 	count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
1911 	if (!checkp)
1912 		srcs[count] = NULL;
1913 
1914 	atomic_inc(&sh->count);
1915 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1916 			  sh, to_addr_conv(sh, percpu, 0));
1917 	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1918 			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1919 }
1920 
1921 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1922 {
1923 	int overlap_clear = 0, i, disks = sh->disks;
1924 	struct dma_async_tx_descriptor *tx = NULL;
1925 	struct r5conf *conf = sh->raid_conf;
1926 	int level = conf->level;
1927 	struct raid5_percpu *percpu;
1928 	unsigned long cpu;
1929 
1930 	cpu = get_cpu();
1931 	percpu = per_cpu_ptr(conf->percpu, cpu);
1932 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1933 		ops_run_biofill(sh);
1934 		overlap_clear++;
1935 	}
1936 
1937 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1938 		if (level < 6)
1939 			tx = ops_run_compute5(sh, percpu);
1940 		else {
1941 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
1942 				tx = ops_run_compute6_1(sh, percpu);
1943 			else
1944 				tx = ops_run_compute6_2(sh, percpu);
1945 		}
1946 		/* terminate the chain if reconstruct is not set to be run */
1947 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1948 			async_tx_ack(tx);
1949 	}
1950 
1951 	if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1952 		if (level < 6)
1953 			tx = ops_run_prexor5(sh, percpu, tx);
1954 		else
1955 			tx = ops_run_prexor6(sh, percpu, tx);
1956 	}
1957 
1958 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1959 		tx = ops_run_biodrain(sh, tx);
1960 		overlap_clear++;
1961 	}
1962 
1963 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1964 		if (level < 6)
1965 			ops_run_reconstruct5(sh, percpu, tx);
1966 		else
1967 			ops_run_reconstruct6(sh, percpu, tx);
1968 	}
1969 
1970 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1971 		if (sh->check_state == check_state_run)
1972 			ops_run_check_p(sh, percpu);
1973 		else if (sh->check_state == check_state_run_q)
1974 			ops_run_check_pq(sh, percpu, 0);
1975 		else if (sh->check_state == check_state_run_pq)
1976 			ops_run_check_pq(sh, percpu, 1);
1977 		else
1978 			BUG();
1979 	}
1980 
1981 	if (overlap_clear && !sh->batch_head)
1982 		for (i = disks; i--; ) {
1983 			struct r5dev *dev = &sh->dev[i];
1984 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
1985 				wake_up(&sh->raid_conf->wait_for_overlap);
1986 		}
1987 	put_cpu();
1988 }
1989 
1990 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp)
1991 {
1992 	struct stripe_head *sh;
1993 
1994 	sh = kmem_cache_zalloc(sc, gfp);
1995 	if (sh) {
1996 		spin_lock_init(&sh->stripe_lock);
1997 		spin_lock_init(&sh->batch_lock);
1998 		INIT_LIST_HEAD(&sh->batch_list);
1999 		INIT_LIST_HEAD(&sh->lru);
2000 		atomic_set(&sh->count, 1);
2001 	}
2002 	return sh;
2003 }
2004 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2005 {
2006 	struct stripe_head *sh;
2007 
2008 	sh = alloc_stripe(conf->slab_cache, gfp);
2009 	if (!sh)
2010 		return 0;
2011 
2012 	sh->raid_conf = conf;
2013 
2014 	if (grow_buffers(sh, gfp)) {
2015 		shrink_buffers(sh);
2016 		kmem_cache_free(conf->slab_cache, sh);
2017 		return 0;
2018 	}
2019 	sh->hash_lock_index =
2020 		conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2021 	/* we just created an active stripe so... */
2022 	atomic_inc(&conf->active_stripes);
2023 
2024 	raid5_release_stripe(sh);
2025 	conf->max_nr_stripes++;
2026 	return 1;
2027 }
2028 
2029 static int grow_stripes(struct r5conf *conf, int num)
2030 {
2031 	struct kmem_cache *sc;
2032 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
2033 
2034 	if (conf->mddev->gendisk)
2035 		sprintf(conf->cache_name[0],
2036 			"raid%d-%s", conf->level, mdname(conf->mddev));
2037 	else
2038 		sprintf(conf->cache_name[0],
2039 			"raid%d-%p", conf->level, conf->mddev);
2040 	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2041 
2042 	conf->active_name = 0;
2043 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
2044 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2045 			       0, 0, NULL);
2046 	if (!sc)
2047 		return 1;
2048 	conf->slab_cache = sc;
2049 	conf->pool_size = devs;
2050 	while (num--)
2051 		if (!grow_one_stripe(conf, GFP_KERNEL))
2052 			return 1;
2053 
2054 	return 0;
2055 }
2056 
2057 /**
2058  * scribble_len - return the required size of the scribble region
2059  * @num - total number of disks in the array
2060  *
2061  * The size must be enough to contain:
2062  * 1/ a struct page pointer for each device in the array +2
2063  * 2/ room to convert each entry in (1) to its corresponding dma
2064  *    (dma_map_page()) or page (page_address()) address.
2065  *
2066  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2067  * calculate over all devices (not just the data blocks), using zeros in place
2068  * of the P and Q blocks.
2069  */
2070 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2071 {
2072 	struct flex_array *ret;
2073 	size_t len;
2074 
2075 	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2076 	ret = flex_array_alloc(len, cnt, flags);
2077 	if (!ret)
2078 		return NULL;
2079 	/* always prealloc all elements, so no locking is required */
2080 	if (flex_array_prealloc(ret, 0, cnt, flags)) {
2081 		flex_array_free(ret);
2082 		return NULL;
2083 	}
2084 	return ret;
2085 }
2086 
2087 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2088 {
2089 	unsigned long cpu;
2090 	int err = 0;
2091 
2092 	mddev_suspend(conf->mddev);
2093 	get_online_cpus();
2094 	for_each_present_cpu(cpu) {
2095 		struct raid5_percpu *percpu;
2096 		struct flex_array *scribble;
2097 
2098 		percpu = per_cpu_ptr(conf->percpu, cpu);
2099 		scribble = scribble_alloc(new_disks,
2100 					  new_sectors / STRIPE_SECTORS,
2101 					  GFP_NOIO);
2102 
2103 		if (scribble) {
2104 			flex_array_free(percpu->scribble);
2105 			percpu->scribble = scribble;
2106 		} else {
2107 			err = -ENOMEM;
2108 			break;
2109 		}
2110 	}
2111 	put_online_cpus();
2112 	mddev_resume(conf->mddev);
2113 	return err;
2114 }
2115 
2116 static int resize_stripes(struct r5conf *conf, int newsize)
2117 {
2118 	/* Make all the stripes able to hold 'newsize' devices.
2119 	 * New slots in each stripe get 'page' set to a new page.
2120 	 *
2121 	 * This happens in stages:
2122 	 * 1/ create a new kmem_cache and allocate the required number of
2123 	 *    stripe_heads.
2124 	 * 2/ gather all the old stripe_heads and transfer the pages across
2125 	 *    to the new stripe_heads.  This will have the side effect of
2126 	 *    freezing the array as once all stripe_heads have been collected,
2127 	 *    no IO will be possible.  Old stripe heads are freed once their
2128 	 *    pages have been transferred over, and the old kmem_cache is
2129 	 *    freed when all stripes are done.
2130 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2131 	 *    we simple return a failre status - no need to clean anything up.
2132 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
2133 	 *    If this fails, we don't bother trying the shrink the
2134 	 *    stripe_heads down again, we just leave them as they are.
2135 	 *    As each stripe_head is processed the new one is released into
2136 	 *    active service.
2137 	 *
2138 	 * Once step2 is started, we cannot afford to wait for a write,
2139 	 * so we use GFP_NOIO allocations.
2140 	 */
2141 	struct stripe_head *osh, *nsh;
2142 	LIST_HEAD(newstripes);
2143 	struct disk_info *ndisks;
2144 	int err;
2145 	struct kmem_cache *sc;
2146 	int i;
2147 	int hash, cnt;
2148 
2149 	if (newsize <= conf->pool_size)
2150 		return 0; /* never bother to shrink */
2151 
2152 	err = md_allow_write(conf->mddev);
2153 	if (err)
2154 		return err;
2155 
2156 	/* Step 1 */
2157 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2158 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2159 			       0, 0, NULL);
2160 	if (!sc)
2161 		return -ENOMEM;
2162 
2163 	/* Need to ensure auto-resizing doesn't interfere */
2164 	mutex_lock(&conf->cache_size_mutex);
2165 
2166 	for (i = conf->max_nr_stripes; i; i--) {
2167 		nsh = alloc_stripe(sc, GFP_KERNEL);
2168 		if (!nsh)
2169 			break;
2170 
2171 		nsh->raid_conf = conf;
2172 		list_add(&nsh->lru, &newstripes);
2173 	}
2174 	if (i) {
2175 		/* didn't get enough, give up */
2176 		while (!list_empty(&newstripes)) {
2177 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
2178 			list_del(&nsh->lru);
2179 			kmem_cache_free(sc, nsh);
2180 		}
2181 		kmem_cache_destroy(sc);
2182 		mutex_unlock(&conf->cache_size_mutex);
2183 		return -ENOMEM;
2184 	}
2185 	/* Step 2 - Must use GFP_NOIO now.
2186 	 * OK, we have enough stripes, start collecting inactive
2187 	 * stripes and copying them over
2188 	 */
2189 	hash = 0;
2190 	cnt = 0;
2191 	list_for_each_entry(nsh, &newstripes, lru) {
2192 		lock_device_hash_lock(conf, hash);
2193 		wait_event_exclusive_cmd(conf->wait_for_stripe[hash],
2194 				    !list_empty(conf->inactive_list + hash),
2195 				    unlock_device_hash_lock(conf, hash),
2196 				    lock_device_hash_lock(conf, hash));
2197 		osh = get_free_stripe(conf, hash);
2198 		unlock_device_hash_lock(conf, hash);
2199 
2200 		for(i=0; i<conf->pool_size; i++) {
2201 			nsh->dev[i].page = osh->dev[i].page;
2202 			nsh->dev[i].orig_page = osh->dev[i].page;
2203 		}
2204 		nsh->hash_lock_index = hash;
2205 		kmem_cache_free(conf->slab_cache, osh);
2206 		cnt++;
2207 		if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2208 		    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2209 			hash++;
2210 			cnt = 0;
2211 		}
2212 	}
2213 	kmem_cache_destroy(conf->slab_cache);
2214 
2215 	/* Step 3.
2216 	 * At this point, we are holding all the stripes so the array
2217 	 * is completely stalled, so now is a good time to resize
2218 	 * conf->disks and the scribble region
2219 	 */
2220 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2221 	if (ndisks) {
2222 		for (i=0; i<conf->raid_disks; i++)
2223 			ndisks[i] = conf->disks[i];
2224 		kfree(conf->disks);
2225 		conf->disks = ndisks;
2226 	} else
2227 		err = -ENOMEM;
2228 
2229 	mutex_unlock(&conf->cache_size_mutex);
2230 	/* Step 4, return new stripes to service */
2231 	while(!list_empty(&newstripes)) {
2232 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
2233 		list_del_init(&nsh->lru);
2234 
2235 		for (i=conf->raid_disks; i < newsize; i++)
2236 			if (nsh->dev[i].page == NULL) {
2237 				struct page *p = alloc_page(GFP_NOIO);
2238 				nsh->dev[i].page = p;
2239 				nsh->dev[i].orig_page = p;
2240 				if (!p)
2241 					err = -ENOMEM;
2242 			}
2243 		raid5_release_stripe(nsh);
2244 	}
2245 	/* critical section pass, GFP_NOIO no longer needed */
2246 
2247 	conf->slab_cache = sc;
2248 	conf->active_name = 1-conf->active_name;
2249 	if (!err)
2250 		conf->pool_size = newsize;
2251 	return err;
2252 }
2253 
2254 static int drop_one_stripe(struct r5conf *conf)
2255 {
2256 	struct stripe_head *sh;
2257 	int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2258 
2259 	spin_lock_irq(conf->hash_locks + hash);
2260 	sh = get_free_stripe(conf, hash);
2261 	spin_unlock_irq(conf->hash_locks + hash);
2262 	if (!sh)
2263 		return 0;
2264 	BUG_ON(atomic_read(&sh->count));
2265 	shrink_buffers(sh);
2266 	kmem_cache_free(conf->slab_cache, sh);
2267 	atomic_dec(&conf->active_stripes);
2268 	conf->max_nr_stripes--;
2269 	return 1;
2270 }
2271 
2272 static void shrink_stripes(struct r5conf *conf)
2273 {
2274 	while (conf->max_nr_stripes &&
2275 	       drop_one_stripe(conf))
2276 		;
2277 
2278 	kmem_cache_destroy(conf->slab_cache);
2279 	conf->slab_cache = NULL;
2280 }
2281 
2282 static void raid5_end_read_request(struct bio * bi)
2283 {
2284 	struct stripe_head *sh = bi->bi_private;
2285 	struct r5conf *conf = sh->raid_conf;
2286 	int disks = sh->disks, i;
2287 	char b[BDEVNAME_SIZE];
2288 	struct md_rdev *rdev = NULL;
2289 	sector_t s;
2290 
2291 	for (i=0 ; i<disks; i++)
2292 		if (bi == &sh->dev[i].req)
2293 			break;
2294 
2295 	pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2296 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2297 		bi->bi_error);
2298 	if (i == disks) {
2299 		BUG();
2300 		return;
2301 	}
2302 	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2303 		/* If replacement finished while this request was outstanding,
2304 		 * 'replacement' might be NULL already.
2305 		 * In that case it moved down to 'rdev'.
2306 		 * rdev is not removed until all requests are finished.
2307 		 */
2308 		rdev = conf->disks[i].replacement;
2309 	if (!rdev)
2310 		rdev = conf->disks[i].rdev;
2311 
2312 	if (use_new_offset(conf, sh))
2313 		s = sh->sector + rdev->new_data_offset;
2314 	else
2315 		s = sh->sector + rdev->data_offset;
2316 	if (!bi->bi_error) {
2317 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
2318 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2319 			/* Note that this cannot happen on a
2320 			 * replacement device.  We just fail those on
2321 			 * any error
2322 			 */
2323 			printk_ratelimited(
2324 				KERN_INFO
2325 				"md/raid:%s: read error corrected"
2326 				" (%lu sectors at %llu on %s)\n",
2327 				mdname(conf->mddev), STRIPE_SECTORS,
2328 				(unsigned long long)s,
2329 				bdevname(rdev->bdev, b));
2330 			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2331 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2332 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2333 		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2334 			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2335 
2336 		if (atomic_read(&rdev->read_errors))
2337 			atomic_set(&rdev->read_errors, 0);
2338 	} else {
2339 		const char *bdn = bdevname(rdev->bdev, b);
2340 		int retry = 0;
2341 		int set_bad = 0;
2342 
2343 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2344 		atomic_inc(&rdev->read_errors);
2345 		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2346 			printk_ratelimited(
2347 				KERN_WARNING
2348 				"md/raid:%s: read error on replacement device "
2349 				"(sector %llu on %s).\n",
2350 				mdname(conf->mddev),
2351 				(unsigned long long)s,
2352 				bdn);
2353 		else if (conf->mddev->degraded >= conf->max_degraded) {
2354 			set_bad = 1;
2355 			printk_ratelimited(
2356 				KERN_WARNING
2357 				"md/raid:%s: read error not correctable "
2358 				"(sector %llu on %s).\n",
2359 				mdname(conf->mddev),
2360 				(unsigned long long)s,
2361 				bdn);
2362 		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2363 			/* Oh, no!!! */
2364 			set_bad = 1;
2365 			printk_ratelimited(
2366 				KERN_WARNING
2367 				"md/raid:%s: read error NOT corrected!! "
2368 				"(sector %llu on %s).\n",
2369 				mdname(conf->mddev),
2370 				(unsigned long long)s,
2371 				bdn);
2372 		} else if (atomic_read(&rdev->read_errors)
2373 			 > conf->max_nr_stripes)
2374 			printk(KERN_WARNING
2375 			       "md/raid:%s: Too many read errors, failing device %s.\n",
2376 			       mdname(conf->mddev), bdn);
2377 		else
2378 			retry = 1;
2379 		if (set_bad && test_bit(In_sync, &rdev->flags)
2380 		    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2381 			retry = 1;
2382 		if (retry)
2383 			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2384 				set_bit(R5_ReadError, &sh->dev[i].flags);
2385 				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2386 			} else
2387 				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2388 		else {
2389 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2390 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2391 			if (!(set_bad
2392 			      && test_bit(In_sync, &rdev->flags)
2393 			      && rdev_set_badblocks(
2394 				      rdev, sh->sector, STRIPE_SECTORS, 0)))
2395 				md_error(conf->mddev, rdev);
2396 		}
2397 	}
2398 	rdev_dec_pending(rdev, conf->mddev);
2399 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
2400 	set_bit(STRIPE_HANDLE, &sh->state);
2401 	raid5_release_stripe(sh);
2402 }
2403 
2404 static void raid5_end_write_request(struct bio *bi)
2405 {
2406 	struct stripe_head *sh = bi->bi_private;
2407 	struct r5conf *conf = sh->raid_conf;
2408 	int disks = sh->disks, i;
2409 	struct md_rdev *uninitialized_var(rdev);
2410 	sector_t first_bad;
2411 	int bad_sectors;
2412 	int replacement = 0;
2413 
2414 	for (i = 0 ; i < disks; i++) {
2415 		if (bi == &sh->dev[i].req) {
2416 			rdev = conf->disks[i].rdev;
2417 			break;
2418 		}
2419 		if (bi == &sh->dev[i].rreq) {
2420 			rdev = conf->disks[i].replacement;
2421 			if (rdev)
2422 				replacement = 1;
2423 			else
2424 				/* rdev was removed and 'replacement'
2425 				 * replaced it.  rdev is not removed
2426 				 * until all requests are finished.
2427 				 */
2428 				rdev = conf->disks[i].rdev;
2429 			break;
2430 		}
2431 	}
2432 	pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2433 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2434 		bi->bi_error);
2435 	if (i == disks) {
2436 		BUG();
2437 		return;
2438 	}
2439 
2440 	if (replacement) {
2441 		if (bi->bi_error)
2442 			md_error(conf->mddev, rdev);
2443 		else if (is_badblock(rdev, sh->sector,
2444 				     STRIPE_SECTORS,
2445 				     &first_bad, &bad_sectors))
2446 			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2447 	} else {
2448 		if (bi->bi_error) {
2449 			set_bit(STRIPE_DEGRADED, &sh->state);
2450 			set_bit(WriteErrorSeen, &rdev->flags);
2451 			set_bit(R5_WriteError, &sh->dev[i].flags);
2452 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2453 				set_bit(MD_RECOVERY_NEEDED,
2454 					&rdev->mddev->recovery);
2455 		} else if (is_badblock(rdev, sh->sector,
2456 				       STRIPE_SECTORS,
2457 				       &first_bad, &bad_sectors)) {
2458 			set_bit(R5_MadeGood, &sh->dev[i].flags);
2459 			if (test_bit(R5_ReadError, &sh->dev[i].flags))
2460 				/* That was a successful write so make
2461 				 * sure it looks like we already did
2462 				 * a re-write.
2463 				 */
2464 				set_bit(R5_ReWrite, &sh->dev[i].flags);
2465 		}
2466 	}
2467 	rdev_dec_pending(rdev, conf->mddev);
2468 
2469 	if (sh->batch_head && bi->bi_error && !replacement)
2470 		set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2471 
2472 	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2473 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2474 	set_bit(STRIPE_HANDLE, &sh->state);
2475 	raid5_release_stripe(sh);
2476 
2477 	if (sh->batch_head && sh != sh->batch_head)
2478 		raid5_release_stripe(sh->batch_head);
2479 }
2480 
2481 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2482 {
2483 	struct r5dev *dev = &sh->dev[i];
2484 
2485 	bio_init(&dev->req);
2486 	dev->req.bi_io_vec = &dev->vec;
2487 	dev->req.bi_max_vecs = 1;
2488 	dev->req.bi_private = sh;
2489 
2490 	bio_init(&dev->rreq);
2491 	dev->rreq.bi_io_vec = &dev->rvec;
2492 	dev->rreq.bi_max_vecs = 1;
2493 	dev->rreq.bi_private = sh;
2494 
2495 	dev->flags = 0;
2496 	dev->sector = raid5_compute_blocknr(sh, i, previous);
2497 }
2498 
2499 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2500 {
2501 	char b[BDEVNAME_SIZE];
2502 	struct r5conf *conf = mddev->private;
2503 	unsigned long flags;
2504 	pr_debug("raid456: error called\n");
2505 
2506 	spin_lock_irqsave(&conf->device_lock, flags);
2507 	clear_bit(In_sync, &rdev->flags);
2508 	mddev->degraded = calc_degraded(conf);
2509 	spin_unlock_irqrestore(&conf->device_lock, flags);
2510 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2511 
2512 	set_bit(Blocked, &rdev->flags);
2513 	set_bit(Faulty, &rdev->flags);
2514 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
2515 	set_bit(MD_CHANGE_PENDING, &mddev->flags);
2516 	printk(KERN_ALERT
2517 	       "md/raid:%s: Disk failure on %s, disabling device.\n"
2518 	       "md/raid:%s: Operation continuing on %d devices.\n",
2519 	       mdname(mddev),
2520 	       bdevname(rdev->bdev, b),
2521 	       mdname(mddev),
2522 	       conf->raid_disks - mddev->degraded);
2523 }
2524 
2525 /*
2526  * Input: a 'big' sector number,
2527  * Output: index of the data and parity disk, and the sector # in them.
2528  */
2529 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2530 			      int previous, int *dd_idx,
2531 			      struct stripe_head *sh)
2532 {
2533 	sector_t stripe, stripe2;
2534 	sector_t chunk_number;
2535 	unsigned int chunk_offset;
2536 	int pd_idx, qd_idx;
2537 	int ddf_layout = 0;
2538 	sector_t new_sector;
2539 	int algorithm = previous ? conf->prev_algo
2540 				 : conf->algorithm;
2541 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2542 					 : conf->chunk_sectors;
2543 	int raid_disks = previous ? conf->previous_raid_disks
2544 				  : conf->raid_disks;
2545 	int data_disks = raid_disks - conf->max_degraded;
2546 
2547 	/* First compute the information on this sector */
2548 
2549 	/*
2550 	 * Compute the chunk number and the sector offset inside the chunk
2551 	 */
2552 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
2553 	chunk_number = r_sector;
2554 
2555 	/*
2556 	 * Compute the stripe number
2557 	 */
2558 	stripe = chunk_number;
2559 	*dd_idx = sector_div(stripe, data_disks);
2560 	stripe2 = stripe;
2561 	/*
2562 	 * Select the parity disk based on the user selected algorithm.
2563 	 */
2564 	pd_idx = qd_idx = -1;
2565 	switch(conf->level) {
2566 	case 4:
2567 		pd_idx = data_disks;
2568 		break;
2569 	case 5:
2570 		switch (algorithm) {
2571 		case ALGORITHM_LEFT_ASYMMETRIC:
2572 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2573 			if (*dd_idx >= pd_idx)
2574 				(*dd_idx)++;
2575 			break;
2576 		case ALGORITHM_RIGHT_ASYMMETRIC:
2577 			pd_idx = sector_div(stripe2, raid_disks);
2578 			if (*dd_idx >= pd_idx)
2579 				(*dd_idx)++;
2580 			break;
2581 		case ALGORITHM_LEFT_SYMMETRIC:
2582 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2583 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2584 			break;
2585 		case ALGORITHM_RIGHT_SYMMETRIC:
2586 			pd_idx = sector_div(stripe2, raid_disks);
2587 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2588 			break;
2589 		case ALGORITHM_PARITY_0:
2590 			pd_idx = 0;
2591 			(*dd_idx)++;
2592 			break;
2593 		case ALGORITHM_PARITY_N:
2594 			pd_idx = data_disks;
2595 			break;
2596 		default:
2597 			BUG();
2598 		}
2599 		break;
2600 	case 6:
2601 
2602 		switch (algorithm) {
2603 		case ALGORITHM_LEFT_ASYMMETRIC:
2604 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2605 			qd_idx = pd_idx + 1;
2606 			if (pd_idx == raid_disks-1) {
2607 				(*dd_idx)++;	/* Q D D D P */
2608 				qd_idx = 0;
2609 			} else if (*dd_idx >= pd_idx)
2610 				(*dd_idx) += 2; /* D D P Q D */
2611 			break;
2612 		case ALGORITHM_RIGHT_ASYMMETRIC:
2613 			pd_idx = sector_div(stripe2, raid_disks);
2614 			qd_idx = pd_idx + 1;
2615 			if (pd_idx == raid_disks-1) {
2616 				(*dd_idx)++;	/* Q D D D P */
2617 				qd_idx = 0;
2618 			} else if (*dd_idx >= pd_idx)
2619 				(*dd_idx) += 2; /* D D P Q D */
2620 			break;
2621 		case ALGORITHM_LEFT_SYMMETRIC:
2622 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2623 			qd_idx = (pd_idx + 1) % raid_disks;
2624 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2625 			break;
2626 		case ALGORITHM_RIGHT_SYMMETRIC:
2627 			pd_idx = sector_div(stripe2, raid_disks);
2628 			qd_idx = (pd_idx + 1) % raid_disks;
2629 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2630 			break;
2631 
2632 		case ALGORITHM_PARITY_0:
2633 			pd_idx = 0;
2634 			qd_idx = 1;
2635 			(*dd_idx) += 2;
2636 			break;
2637 		case ALGORITHM_PARITY_N:
2638 			pd_idx = data_disks;
2639 			qd_idx = data_disks + 1;
2640 			break;
2641 
2642 		case ALGORITHM_ROTATING_ZERO_RESTART:
2643 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
2644 			 * of blocks for computing Q is different.
2645 			 */
2646 			pd_idx = sector_div(stripe2, raid_disks);
2647 			qd_idx = pd_idx + 1;
2648 			if (pd_idx == raid_disks-1) {
2649 				(*dd_idx)++;	/* Q D D D P */
2650 				qd_idx = 0;
2651 			} else if (*dd_idx >= pd_idx)
2652 				(*dd_idx) += 2; /* D D P Q D */
2653 			ddf_layout = 1;
2654 			break;
2655 
2656 		case ALGORITHM_ROTATING_N_RESTART:
2657 			/* Same a left_asymmetric, by first stripe is
2658 			 * D D D P Q  rather than
2659 			 * Q D D D P
2660 			 */
2661 			stripe2 += 1;
2662 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2663 			qd_idx = pd_idx + 1;
2664 			if (pd_idx == raid_disks-1) {
2665 				(*dd_idx)++;	/* Q D D D P */
2666 				qd_idx = 0;
2667 			} else if (*dd_idx >= pd_idx)
2668 				(*dd_idx) += 2; /* D D P Q D */
2669 			ddf_layout = 1;
2670 			break;
2671 
2672 		case ALGORITHM_ROTATING_N_CONTINUE:
2673 			/* Same as left_symmetric but Q is before P */
2674 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2675 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2676 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2677 			ddf_layout = 1;
2678 			break;
2679 
2680 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2681 			/* RAID5 left_asymmetric, with Q on last device */
2682 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2683 			if (*dd_idx >= pd_idx)
2684 				(*dd_idx)++;
2685 			qd_idx = raid_disks - 1;
2686 			break;
2687 
2688 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2689 			pd_idx = sector_div(stripe2, raid_disks-1);
2690 			if (*dd_idx >= pd_idx)
2691 				(*dd_idx)++;
2692 			qd_idx = raid_disks - 1;
2693 			break;
2694 
2695 		case ALGORITHM_LEFT_SYMMETRIC_6:
2696 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2697 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2698 			qd_idx = raid_disks - 1;
2699 			break;
2700 
2701 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2702 			pd_idx = sector_div(stripe2, raid_disks-1);
2703 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2704 			qd_idx = raid_disks - 1;
2705 			break;
2706 
2707 		case ALGORITHM_PARITY_0_6:
2708 			pd_idx = 0;
2709 			(*dd_idx)++;
2710 			qd_idx = raid_disks - 1;
2711 			break;
2712 
2713 		default:
2714 			BUG();
2715 		}
2716 		break;
2717 	}
2718 
2719 	if (sh) {
2720 		sh->pd_idx = pd_idx;
2721 		sh->qd_idx = qd_idx;
2722 		sh->ddf_layout = ddf_layout;
2723 	}
2724 	/*
2725 	 * Finally, compute the new sector number
2726 	 */
2727 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2728 	return new_sector;
2729 }
2730 
2731 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2732 {
2733 	struct r5conf *conf = sh->raid_conf;
2734 	int raid_disks = sh->disks;
2735 	int data_disks = raid_disks - conf->max_degraded;
2736 	sector_t new_sector = sh->sector, check;
2737 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2738 					 : conf->chunk_sectors;
2739 	int algorithm = previous ? conf->prev_algo
2740 				 : conf->algorithm;
2741 	sector_t stripe;
2742 	int chunk_offset;
2743 	sector_t chunk_number;
2744 	int dummy1, dd_idx = i;
2745 	sector_t r_sector;
2746 	struct stripe_head sh2;
2747 
2748 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
2749 	stripe = new_sector;
2750 
2751 	if (i == sh->pd_idx)
2752 		return 0;
2753 	switch(conf->level) {
2754 	case 4: break;
2755 	case 5:
2756 		switch (algorithm) {
2757 		case ALGORITHM_LEFT_ASYMMETRIC:
2758 		case ALGORITHM_RIGHT_ASYMMETRIC:
2759 			if (i > sh->pd_idx)
2760 				i--;
2761 			break;
2762 		case ALGORITHM_LEFT_SYMMETRIC:
2763 		case ALGORITHM_RIGHT_SYMMETRIC:
2764 			if (i < sh->pd_idx)
2765 				i += raid_disks;
2766 			i -= (sh->pd_idx + 1);
2767 			break;
2768 		case ALGORITHM_PARITY_0:
2769 			i -= 1;
2770 			break;
2771 		case ALGORITHM_PARITY_N:
2772 			break;
2773 		default:
2774 			BUG();
2775 		}
2776 		break;
2777 	case 6:
2778 		if (i == sh->qd_idx)
2779 			return 0; /* It is the Q disk */
2780 		switch (algorithm) {
2781 		case ALGORITHM_LEFT_ASYMMETRIC:
2782 		case ALGORITHM_RIGHT_ASYMMETRIC:
2783 		case ALGORITHM_ROTATING_ZERO_RESTART:
2784 		case ALGORITHM_ROTATING_N_RESTART:
2785 			if (sh->pd_idx == raid_disks-1)
2786 				i--;	/* Q D D D P */
2787 			else if (i > sh->pd_idx)
2788 				i -= 2; /* D D P Q D */
2789 			break;
2790 		case ALGORITHM_LEFT_SYMMETRIC:
2791 		case ALGORITHM_RIGHT_SYMMETRIC:
2792 			if (sh->pd_idx == raid_disks-1)
2793 				i--; /* Q D D D P */
2794 			else {
2795 				/* D D P Q D */
2796 				if (i < sh->pd_idx)
2797 					i += raid_disks;
2798 				i -= (sh->pd_idx + 2);
2799 			}
2800 			break;
2801 		case ALGORITHM_PARITY_0:
2802 			i -= 2;
2803 			break;
2804 		case ALGORITHM_PARITY_N:
2805 			break;
2806 		case ALGORITHM_ROTATING_N_CONTINUE:
2807 			/* Like left_symmetric, but P is before Q */
2808 			if (sh->pd_idx == 0)
2809 				i--;	/* P D D D Q */
2810 			else {
2811 				/* D D Q P D */
2812 				if (i < sh->pd_idx)
2813 					i += raid_disks;
2814 				i -= (sh->pd_idx + 1);
2815 			}
2816 			break;
2817 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2818 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2819 			if (i > sh->pd_idx)
2820 				i--;
2821 			break;
2822 		case ALGORITHM_LEFT_SYMMETRIC_6:
2823 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2824 			if (i < sh->pd_idx)
2825 				i += data_disks + 1;
2826 			i -= (sh->pd_idx + 1);
2827 			break;
2828 		case ALGORITHM_PARITY_0_6:
2829 			i -= 1;
2830 			break;
2831 		default:
2832 			BUG();
2833 		}
2834 		break;
2835 	}
2836 
2837 	chunk_number = stripe * data_disks + i;
2838 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2839 
2840 	check = raid5_compute_sector(conf, r_sector,
2841 				     previous, &dummy1, &sh2);
2842 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2843 		|| sh2.qd_idx != sh->qd_idx) {
2844 		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2845 		       mdname(conf->mddev));
2846 		return 0;
2847 	}
2848 	return r_sector;
2849 }
2850 
2851 static void
2852 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2853 			 int rcw, int expand)
2854 {
2855 	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
2856 	struct r5conf *conf = sh->raid_conf;
2857 	int level = conf->level;
2858 
2859 	if (rcw) {
2860 
2861 		for (i = disks; i--; ) {
2862 			struct r5dev *dev = &sh->dev[i];
2863 
2864 			if (dev->towrite) {
2865 				set_bit(R5_LOCKED, &dev->flags);
2866 				set_bit(R5_Wantdrain, &dev->flags);
2867 				if (!expand)
2868 					clear_bit(R5_UPTODATE, &dev->flags);
2869 				s->locked++;
2870 			}
2871 		}
2872 		/* if we are not expanding this is a proper write request, and
2873 		 * there will be bios with new data to be drained into the
2874 		 * stripe cache
2875 		 */
2876 		if (!expand) {
2877 			if (!s->locked)
2878 				/* False alarm, nothing to do */
2879 				return;
2880 			sh->reconstruct_state = reconstruct_state_drain_run;
2881 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2882 		} else
2883 			sh->reconstruct_state = reconstruct_state_run;
2884 
2885 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2886 
2887 		if (s->locked + conf->max_degraded == disks)
2888 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2889 				atomic_inc(&conf->pending_full_writes);
2890 	} else {
2891 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2892 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2893 		BUG_ON(level == 6 &&
2894 			(!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2895 			   test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
2896 
2897 		for (i = disks; i--; ) {
2898 			struct r5dev *dev = &sh->dev[i];
2899 			if (i == pd_idx || i == qd_idx)
2900 				continue;
2901 
2902 			if (dev->towrite &&
2903 			    (test_bit(R5_UPTODATE, &dev->flags) ||
2904 			     test_bit(R5_Wantcompute, &dev->flags))) {
2905 				set_bit(R5_Wantdrain, &dev->flags);
2906 				set_bit(R5_LOCKED, &dev->flags);
2907 				clear_bit(R5_UPTODATE, &dev->flags);
2908 				s->locked++;
2909 			}
2910 		}
2911 		if (!s->locked)
2912 			/* False alarm - nothing to do */
2913 			return;
2914 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2915 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2916 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2917 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2918 	}
2919 
2920 	/* keep the parity disk(s) locked while asynchronous operations
2921 	 * are in flight
2922 	 */
2923 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2924 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2925 	s->locked++;
2926 
2927 	if (level == 6) {
2928 		int qd_idx = sh->qd_idx;
2929 		struct r5dev *dev = &sh->dev[qd_idx];
2930 
2931 		set_bit(R5_LOCKED, &dev->flags);
2932 		clear_bit(R5_UPTODATE, &dev->flags);
2933 		s->locked++;
2934 	}
2935 
2936 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2937 		__func__, (unsigned long long)sh->sector,
2938 		s->locked, s->ops_request);
2939 }
2940 
2941 /*
2942  * Each stripe/dev can have one or more bion attached.
2943  * toread/towrite point to the first in a chain.
2944  * The bi_next chain must be in order.
2945  */
2946 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2947 			  int forwrite, int previous)
2948 {
2949 	struct bio **bip;
2950 	struct r5conf *conf = sh->raid_conf;
2951 	int firstwrite=0;
2952 
2953 	pr_debug("adding bi b#%llu to stripe s#%llu\n",
2954 		(unsigned long long)bi->bi_iter.bi_sector,
2955 		(unsigned long long)sh->sector);
2956 
2957 	/*
2958 	 * If several bio share a stripe. The bio bi_phys_segments acts as a
2959 	 * reference count to avoid race. The reference count should already be
2960 	 * increased before this function is called (for example, in
2961 	 * raid5_make_request()), so other bio sharing this stripe will not free the
2962 	 * stripe. If a stripe is owned by one stripe, the stripe lock will
2963 	 * protect it.
2964 	 */
2965 	spin_lock_irq(&sh->stripe_lock);
2966 	/* Don't allow new IO added to stripes in batch list */
2967 	if (sh->batch_head)
2968 		goto overlap;
2969 	if (forwrite) {
2970 		bip = &sh->dev[dd_idx].towrite;
2971 		if (*bip == NULL)
2972 			firstwrite = 1;
2973 	} else
2974 		bip = &sh->dev[dd_idx].toread;
2975 	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2976 		if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2977 			goto overlap;
2978 		bip = & (*bip)->bi_next;
2979 	}
2980 	if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2981 		goto overlap;
2982 
2983 	if (!forwrite || previous)
2984 		clear_bit(STRIPE_BATCH_READY, &sh->state);
2985 
2986 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2987 	if (*bip)
2988 		bi->bi_next = *bip;
2989 	*bip = bi;
2990 	raid5_inc_bi_active_stripes(bi);
2991 
2992 	if (forwrite) {
2993 		/* check if page is covered */
2994 		sector_t sector = sh->dev[dd_idx].sector;
2995 		for (bi=sh->dev[dd_idx].towrite;
2996 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2997 			     bi && bi->bi_iter.bi_sector <= sector;
2998 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2999 			if (bio_end_sector(bi) >= sector)
3000 				sector = bio_end_sector(bi);
3001 		}
3002 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3003 			if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3004 				sh->overwrite_disks++;
3005 	}
3006 
3007 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3008 		(unsigned long long)(*bip)->bi_iter.bi_sector,
3009 		(unsigned long long)sh->sector, dd_idx);
3010 
3011 	if (conf->mddev->bitmap && firstwrite) {
3012 		/* Cannot hold spinlock over bitmap_startwrite,
3013 		 * but must ensure this isn't added to a batch until
3014 		 * we have added to the bitmap and set bm_seq.
3015 		 * So set STRIPE_BITMAP_PENDING to prevent
3016 		 * batching.
3017 		 * If multiple add_stripe_bio() calls race here they
3018 		 * much all set STRIPE_BITMAP_PENDING.  So only the first one
3019 		 * to complete "bitmap_startwrite" gets to set
3020 		 * STRIPE_BIT_DELAY.  This is important as once a stripe
3021 		 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3022 		 * any more.
3023 		 */
3024 		set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3025 		spin_unlock_irq(&sh->stripe_lock);
3026 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3027 				  STRIPE_SECTORS, 0);
3028 		spin_lock_irq(&sh->stripe_lock);
3029 		clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3030 		if (!sh->batch_head) {
3031 			sh->bm_seq = conf->seq_flush+1;
3032 			set_bit(STRIPE_BIT_DELAY, &sh->state);
3033 		}
3034 	}
3035 	spin_unlock_irq(&sh->stripe_lock);
3036 
3037 	if (stripe_can_batch(sh))
3038 		stripe_add_to_batch_list(conf, sh);
3039 	return 1;
3040 
3041  overlap:
3042 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3043 	spin_unlock_irq(&sh->stripe_lock);
3044 	return 0;
3045 }
3046 
3047 static void end_reshape(struct r5conf *conf);
3048 
3049 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3050 			    struct stripe_head *sh)
3051 {
3052 	int sectors_per_chunk =
3053 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3054 	int dd_idx;
3055 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
3056 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3057 
3058 	raid5_compute_sector(conf,
3059 			     stripe * (disks - conf->max_degraded)
3060 			     *sectors_per_chunk + chunk_offset,
3061 			     previous,
3062 			     &dd_idx, sh);
3063 }
3064 
3065 static void
3066 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3067 				struct stripe_head_state *s, int disks,
3068 				struct bio_list *return_bi)
3069 {
3070 	int i;
3071 	BUG_ON(sh->batch_head);
3072 	for (i = disks; i--; ) {
3073 		struct bio *bi;
3074 		int bitmap_end = 0;
3075 
3076 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3077 			struct md_rdev *rdev;
3078 			rcu_read_lock();
3079 			rdev = rcu_dereference(conf->disks[i].rdev);
3080 			if (rdev && test_bit(In_sync, &rdev->flags))
3081 				atomic_inc(&rdev->nr_pending);
3082 			else
3083 				rdev = NULL;
3084 			rcu_read_unlock();
3085 			if (rdev) {
3086 				if (!rdev_set_badblocks(
3087 					    rdev,
3088 					    sh->sector,
3089 					    STRIPE_SECTORS, 0))
3090 					md_error(conf->mddev, rdev);
3091 				rdev_dec_pending(rdev, conf->mddev);
3092 			}
3093 		}
3094 		spin_lock_irq(&sh->stripe_lock);
3095 		/* fail all writes first */
3096 		bi = sh->dev[i].towrite;
3097 		sh->dev[i].towrite = NULL;
3098 		sh->overwrite_disks = 0;
3099 		spin_unlock_irq(&sh->stripe_lock);
3100 		if (bi)
3101 			bitmap_end = 1;
3102 
3103 		r5l_stripe_write_finished(sh);
3104 
3105 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3106 			wake_up(&conf->wait_for_overlap);
3107 
3108 		while (bi && bi->bi_iter.bi_sector <
3109 			sh->dev[i].sector + STRIPE_SECTORS) {
3110 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3111 
3112 			bi->bi_error = -EIO;
3113 			if (!raid5_dec_bi_active_stripes(bi)) {
3114 				md_write_end(conf->mddev);
3115 				bio_list_add(return_bi, bi);
3116 			}
3117 			bi = nextbi;
3118 		}
3119 		if (bitmap_end)
3120 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3121 				STRIPE_SECTORS, 0, 0);
3122 		bitmap_end = 0;
3123 		/* and fail all 'written' */
3124 		bi = sh->dev[i].written;
3125 		sh->dev[i].written = NULL;
3126 		if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3127 			WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3128 			sh->dev[i].page = sh->dev[i].orig_page;
3129 		}
3130 
3131 		if (bi) bitmap_end = 1;
3132 		while (bi && bi->bi_iter.bi_sector <
3133 		       sh->dev[i].sector + STRIPE_SECTORS) {
3134 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3135 
3136 			bi->bi_error = -EIO;
3137 			if (!raid5_dec_bi_active_stripes(bi)) {
3138 				md_write_end(conf->mddev);
3139 				bio_list_add(return_bi, bi);
3140 			}
3141 			bi = bi2;
3142 		}
3143 
3144 		/* fail any reads if this device is non-operational and
3145 		 * the data has not reached the cache yet.
3146 		 */
3147 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3148 		    s->failed > conf->max_degraded &&
3149 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3150 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
3151 			spin_lock_irq(&sh->stripe_lock);
3152 			bi = sh->dev[i].toread;
3153 			sh->dev[i].toread = NULL;
3154 			spin_unlock_irq(&sh->stripe_lock);
3155 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3156 				wake_up(&conf->wait_for_overlap);
3157 			if (bi)
3158 				s->to_read--;
3159 			while (bi && bi->bi_iter.bi_sector <
3160 			       sh->dev[i].sector + STRIPE_SECTORS) {
3161 				struct bio *nextbi =
3162 					r5_next_bio(bi, sh->dev[i].sector);
3163 
3164 				bi->bi_error = -EIO;
3165 				if (!raid5_dec_bi_active_stripes(bi))
3166 					bio_list_add(return_bi, bi);
3167 				bi = nextbi;
3168 			}
3169 		}
3170 		if (bitmap_end)
3171 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3172 					STRIPE_SECTORS, 0, 0);
3173 		/* If we were in the middle of a write the parity block might
3174 		 * still be locked - so just clear all R5_LOCKED flags
3175 		 */
3176 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
3177 	}
3178 	s->to_write = 0;
3179 	s->written = 0;
3180 
3181 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3182 		if (atomic_dec_and_test(&conf->pending_full_writes))
3183 			md_wakeup_thread(conf->mddev->thread);
3184 }
3185 
3186 static void
3187 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3188 		   struct stripe_head_state *s)
3189 {
3190 	int abort = 0;
3191 	int i;
3192 
3193 	BUG_ON(sh->batch_head);
3194 	clear_bit(STRIPE_SYNCING, &sh->state);
3195 	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3196 		wake_up(&conf->wait_for_overlap);
3197 	s->syncing = 0;
3198 	s->replacing = 0;
3199 	/* There is nothing more to do for sync/check/repair.
3200 	 * Don't even need to abort as that is handled elsewhere
3201 	 * if needed, and not always wanted e.g. if there is a known
3202 	 * bad block here.
3203 	 * For recover/replace we need to record a bad block on all
3204 	 * non-sync devices, or abort the recovery
3205 	 */
3206 	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3207 		/* During recovery devices cannot be removed, so
3208 		 * locking and refcounting of rdevs is not needed
3209 		 */
3210 		for (i = 0; i < conf->raid_disks; i++) {
3211 			struct md_rdev *rdev = conf->disks[i].rdev;
3212 			if (rdev
3213 			    && !test_bit(Faulty, &rdev->flags)
3214 			    && !test_bit(In_sync, &rdev->flags)
3215 			    && !rdev_set_badblocks(rdev, sh->sector,
3216 						   STRIPE_SECTORS, 0))
3217 				abort = 1;
3218 			rdev = conf->disks[i].replacement;
3219 			if (rdev
3220 			    && !test_bit(Faulty, &rdev->flags)
3221 			    && !test_bit(In_sync, &rdev->flags)
3222 			    && !rdev_set_badblocks(rdev, sh->sector,
3223 						   STRIPE_SECTORS, 0))
3224 				abort = 1;
3225 		}
3226 		if (abort)
3227 			conf->recovery_disabled =
3228 				conf->mddev->recovery_disabled;
3229 	}
3230 	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3231 }
3232 
3233 static int want_replace(struct stripe_head *sh, int disk_idx)
3234 {
3235 	struct md_rdev *rdev;
3236 	int rv = 0;
3237 	/* Doing recovery so rcu locking not required */
3238 	rdev = sh->raid_conf->disks[disk_idx].replacement;
3239 	if (rdev
3240 	    && !test_bit(Faulty, &rdev->flags)
3241 	    && !test_bit(In_sync, &rdev->flags)
3242 	    && (rdev->recovery_offset <= sh->sector
3243 		|| rdev->mddev->recovery_cp <= sh->sector))
3244 		rv = 1;
3245 
3246 	return rv;
3247 }
3248 
3249 /* fetch_block - checks the given member device to see if its data needs
3250  * to be read or computed to satisfy a request.
3251  *
3252  * Returns 1 when no more member devices need to be checked, otherwise returns
3253  * 0 to tell the loop in handle_stripe_fill to continue
3254  */
3255 
3256 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3257 			   int disk_idx, int disks)
3258 {
3259 	struct r5dev *dev = &sh->dev[disk_idx];
3260 	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3261 				  &sh->dev[s->failed_num[1]] };
3262 	int i;
3263 
3264 
3265 	if (test_bit(R5_LOCKED, &dev->flags) ||
3266 	    test_bit(R5_UPTODATE, &dev->flags))
3267 		/* No point reading this as we already have it or have
3268 		 * decided to get it.
3269 		 */
3270 		return 0;
3271 
3272 	if (dev->toread ||
3273 	    (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3274 		/* We need this block to directly satisfy a request */
3275 		return 1;
3276 
3277 	if (s->syncing || s->expanding ||
3278 	    (s->replacing && want_replace(sh, disk_idx)))
3279 		/* When syncing, or expanding we read everything.
3280 		 * When replacing, we need the replaced block.
3281 		 */
3282 		return 1;
3283 
3284 	if ((s->failed >= 1 && fdev[0]->toread) ||
3285 	    (s->failed >= 2 && fdev[1]->toread))
3286 		/* If we want to read from a failed device, then
3287 		 * we need to actually read every other device.
3288 		 */
3289 		return 1;
3290 
3291 	/* Sometimes neither read-modify-write nor reconstruct-write
3292 	 * cycles can work.  In those cases we read every block we
3293 	 * can.  Then the parity-update is certain to have enough to
3294 	 * work with.
3295 	 * This can only be a problem when we need to write something,
3296 	 * and some device has failed.  If either of those tests
3297 	 * fail we need look no further.
3298 	 */
3299 	if (!s->failed || !s->to_write)
3300 		return 0;
3301 
3302 	if (test_bit(R5_Insync, &dev->flags) &&
3303 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3304 		/* Pre-reads at not permitted until after short delay
3305 		 * to gather multiple requests.  However if this
3306 		 * device is no Insync, the block could only be be computed
3307 		 * and there is no need to delay that.
3308 		 */
3309 		return 0;
3310 
3311 	for (i = 0; i < s->failed && i < 2; i++) {
3312 		if (fdev[i]->towrite &&
3313 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3314 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3315 			/* If we have a partial write to a failed
3316 			 * device, then we will need to reconstruct
3317 			 * the content of that device, so all other
3318 			 * devices must be read.
3319 			 */
3320 			return 1;
3321 	}
3322 
3323 	/* If we are forced to do a reconstruct-write, either because
3324 	 * the current RAID6 implementation only supports that, or
3325 	 * or because parity cannot be trusted and we are currently
3326 	 * recovering it, there is extra need to be careful.
3327 	 * If one of the devices that we would need to read, because
3328 	 * it is not being overwritten (and maybe not written at all)
3329 	 * is missing/faulty, then we need to read everything we can.
3330 	 */
3331 	if (sh->raid_conf->level != 6 &&
3332 	    sh->sector < sh->raid_conf->mddev->recovery_cp)
3333 		/* reconstruct-write isn't being forced */
3334 		return 0;
3335 	for (i = 0; i < s->failed && i < 2; i++) {
3336 		if (s->failed_num[i] != sh->pd_idx &&
3337 		    s->failed_num[i] != sh->qd_idx &&
3338 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3339 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3340 			return 1;
3341 	}
3342 
3343 	return 0;
3344 }
3345 
3346 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3347 		       int disk_idx, int disks)
3348 {
3349 	struct r5dev *dev = &sh->dev[disk_idx];
3350 
3351 	/* is the data in this block needed, and can we get it? */
3352 	if (need_this_block(sh, s, disk_idx, disks)) {
3353 		/* we would like to get this block, possibly by computing it,
3354 		 * otherwise read it if the backing disk is insync
3355 		 */
3356 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3357 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
3358 		BUG_ON(sh->batch_head);
3359 		if ((s->uptodate == disks - 1) &&
3360 		    (s->failed && (disk_idx == s->failed_num[0] ||
3361 				   disk_idx == s->failed_num[1]))) {
3362 			/* have disk failed, and we're requested to fetch it;
3363 			 * do compute it
3364 			 */
3365 			pr_debug("Computing stripe %llu block %d\n",
3366 			       (unsigned long long)sh->sector, disk_idx);
3367 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3368 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3369 			set_bit(R5_Wantcompute, &dev->flags);
3370 			sh->ops.target = disk_idx;
3371 			sh->ops.target2 = -1; /* no 2nd target */
3372 			s->req_compute = 1;
3373 			/* Careful: from this point on 'uptodate' is in the eye
3374 			 * of raid_run_ops which services 'compute' operations
3375 			 * before writes. R5_Wantcompute flags a block that will
3376 			 * be R5_UPTODATE by the time it is needed for a
3377 			 * subsequent operation.
3378 			 */
3379 			s->uptodate++;
3380 			return 1;
3381 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
3382 			/* Computing 2-failure is *very* expensive; only
3383 			 * do it if failed >= 2
3384 			 */
3385 			int other;
3386 			for (other = disks; other--; ) {
3387 				if (other == disk_idx)
3388 					continue;
3389 				if (!test_bit(R5_UPTODATE,
3390 				      &sh->dev[other].flags))
3391 					break;
3392 			}
3393 			BUG_ON(other < 0);
3394 			pr_debug("Computing stripe %llu blocks %d,%d\n",
3395 			       (unsigned long long)sh->sector,
3396 			       disk_idx, other);
3397 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3398 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3399 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3400 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
3401 			sh->ops.target = disk_idx;
3402 			sh->ops.target2 = other;
3403 			s->uptodate += 2;
3404 			s->req_compute = 1;
3405 			return 1;
3406 		} else if (test_bit(R5_Insync, &dev->flags)) {
3407 			set_bit(R5_LOCKED, &dev->flags);
3408 			set_bit(R5_Wantread, &dev->flags);
3409 			s->locked++;
3410 			pr_debug("Reading block %d (sync=%d)\n",
3411 				disk_idx, s->syncing);
3412 		}
3413 	}
3414 
3415 	return 0;
3416 }
3417 
3418 /**
3419  * handle_stripe_fill - read or compute data to satisfy pending requests.
3420  */
3421 static void handle_stripe_fill(struct stripe_head *sh,
3422 			       struct stripe_head_state *s,
3423 			       int disks)
3424 {
3425 	int i;
3426 
3427 	/* look for blocks to read/compute, skip this if a compute
3428 	 * is already in flight, or if the stripe contents are in the
3429 	 * midst of changing due to a write
3430 	 */
3431 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3432 	    !sh->reconstruct_state)
3433 		for (i = disks; i--; )
3434 			if (fetch_block(sh, s, i, disks))
3435 				break;
3436 	set_bit(STRIPE_HANDLE, &sh->state);
3437 }
3438 
3439 static void break_stripe_batch_list(struct stripe_head *head_sh,
3440 				    unsigned long handle_flags);
3441 /* handle_stripe_clean_event
3442  * any written block on an uptodate or failed drive can be returned.
3443  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3444  * never LOCKED, so we don't need to test 'failed' directly.
3445  */
3446 static void handle_stripe_clean_event(struct r5conf *conf,
3447 	struct stripe_head *sh, int disks, struct bio_list *return_bi)
3448 {
3449 	int i;
3450 	struct r5dev *dev;
3451 	int discard_pending = 0;
3452 	struct stripe_head *head_sh = sh;
3453 	bool do_endio = false;
3454 
3455 	for (i = disks; i--; )
3456 		if (sh->dev[i].written) {
3457 			dev = &sh->dev[i];
3458 			if (!test_bit(R5_LOCKED, &dev->flags) &&
3459 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3460 			     test_bit(R5_Discard, &dev->flags) ||
3461 			     test_bit(R5_SkipCopy, &dev->flags))) {
3462 				/* We can return any write requests */
3463 				struct bio *wbi, *wbi2;
3464 				pr_debug("Return write for disc %d\n", i);
3465 				if (test_and_clear_bit(R5_Discard, &dev->flags))
3466 					clear_bit(R5_UPTODATE, &dev->flags);
3467 				if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3468 					WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3469 				}
3470 				do_endio = true;
3471 
3472 returnbi:
3473 				dev->page = dev->orig_page;
3474 				wbi = dev->written;
3475 				dev->written = NULL;
3476 				while (wbi && wbi->bi_iter.bi_sector <
3477 					dev->sector + STRIPE_SECTORS) {
3478 					wbi2 = r5_next_bio(wbi, dev->sector);
3479 					if (!raid5_dec_bi_active_stripes(wbi)) {
3480 						md_write_end(conf->mddev);
3481 						bio_list_add(return_bi, wbi);
3482 					}
3483 					wbi = wbi2;
3484 				}
3485 				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3486 						STRIPE_SECTORS,
3487 					 !test_bit(STRIPE_DEGRADED, &sh->state),
3488 						0);
3489 				if (head_sh->batch_head) {
3490 					sh = list_first_entry(&sh->batch_list,
3491 							      struct stripe_head,
3492 							      batch_list);
3493 					if (sh != head_sh) {
3494 						dev = &sh->dev[i];
3495 						goto returnbi;
3496 					}
3497 				}
3498 				sh = head_sh;
3499 				dev = &sh->dev[i];
3500 			} else if (test_bit(R5_Discard, &dev->flags))
3501 				discard_pending = 1;
3502 			WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3503 			WARN_ON(dev->page != dev->orig_page);
3504 		}
3505 
3506 	r5l_stripe_write_finished(sh);
3507 
3508 	if (!discard_pending &&
3509 	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3510 		int hash;
3511 		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3512 		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3513 		if (sh->qd_idx >= 0) {
3514 			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3515 			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3516 		}
3517 		/* now that discard is done we can proceed with any sync */
3518 		clear_bit(STRIPE_DISCARD, &sh->state);
3519 		/*
3520 		 * SCSI discard will change some bio fields and the stripe has
3521 		 * no updated data, so remove it from hash list and the stripe
3522 		 * will be reinitialized
3523 		 */
3524 unhash:
3525 		hash = sh->hash_lock_index;
3526 		spin_lock_irq(conf->hash_locks + hash);
3527 		remove_hash(sh);
3528 		spin_unlock_irq(conf->hash_locks + hash);
3529 		if (head_sh->batch_head) {
3530 			sh = list_first_entry(&sh->batch_list,
3531 					      struct stripe_head, batch_list);
3532 			if (sh != head_sh)
3533 					goto unhash;
3534 		}
3535 		sh = head_sh;
3536 
3537 		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3538 			set_bit(STRIPE_HANDLE, &sh->state);
3539 
3540 	}
3541 
3542 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3543 		if (atomic_dec_and_test(&conf->pending_full_writes))
3544 			md_wakeup_thread(conf->mddev->thread);
3545 
3546 	if (head_sh->batch_head && do_endio)
3547 		break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3548 }
3549 
3550 static void handle_stripe_dirtying(struct r5conf *conf,
3551 				   struct stripe_head *sh,
3552 				   struct stripe_head_state *s,
3553 				   int disks)
3554 {
3555 	int rmw = 0, rcw = 0, i;
3556 	sector_t recovery_cp = conf->mddev->recovery_cp;
3557 
3558 	/* Check whether resync is now happening or should start.
3559 	 * If yes, then the array is dirty (after unclean shutdown or
3560 	 * initial creation), so parity in some stripes might be inconsistent.
3561 	 * In this case, we need to always do reconstruct-write, to ensure
3562 	 * that in case of drive failure or read-error correction, we
3563 	 * generate correct data from the parity.
3564 	 */
3565 	if (conf->rmw_level == PARITY_DISABLE_RMW ||
3566 	    (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3567 	     s->failed == 0)) {
3568 		/* Calculate the real rcw later - for now make it
3569 		 * look like rcw is cheaper
3570 		 */
3571 		rcw = 1; rmw = 2;
3572 		pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3573 			 conf->rmw_level, (unsigned long long)recovery_cp,
3574 			 (unsigned long long)sh->sector);
3575 	} else for (i = disks; i--; ) {
3576 		/* would I have to read this buffer for read_modify_write */
3577 		struct r5dev *dev = &sh->dev[i];
3578 		if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3579 		    !test_bit(R5_LOCKED, &dev->flags) &&
3580 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
3581 		      test_bit(R5_Wantcompute, &dev->flags))) {
3582 			if (test_bit(R5_Insync, &dev->flags))
3583 				rmw++;
3584 			else
3585 				rmw += 2*disks;  /* cannot read it */
3586 		}
3587 		/* Would I have to read this buffer for reconstruct_write */
3588 		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3589 		    i != sh->pd_idx && i != sh->qd_idx &&
3590 		    !test_bit(R5_LOCKED, &dev->flags) &&
3591 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
3592 		    test_bit(R5_Wantcompute, &dev->flags))) {
3593 			if (test_bit(R5_Insync, &dev->flags))
3594 				rcw++;
3595 			else
3596 				rcw += 2*disks;
3597 		}
3598 	}
3599 	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3600 		(unsigned long long)sh->sector, rmw, rcw);
3601 	set_bit(STRIPE_HANDLE, &sh->state);
3602 	if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_ENABLE_RMW)) && rmw > 0) {
3603 		/* prefer read-modify-write, but need to get some data */
3604 		if (conf->mddev->queue)
3605 			blk_add_trace_msg(conf->mddev->queue,
3606 					  "raid5 rmw %llu %d",
3607 					  (unsigned long long)sh->sector, rmw);
3608 		for (i = disks; i--; ) {
3609 			struct r5dev *dev = &sh->dev[i];
3610 			if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3611 			    !test_bit(R5_LOCKED, &dev->flags) &&
3612 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3613 			    test_bit(R5_Wantcompute, &dev->flags)) &&
3614 			    test_bit(R5_Insync, &dev->flags)) {
3615 				if (test_bit(STRIPE_PREREAD_ACTIVE,
3616 					     &sh->state)) {
3617 					pr_debug("Read_old block %d for r-m-w\n",
3618 						 i);
3619 					set_bit(R5_LOCKED, &dev->flags);
3620 					set_bit(R5_Wantread, &dev->flags);
3621 					s->locked++;
3622 				} else {
3623 					set_bit(STRIPE_DELAYED, &sh->state);
3624 					set_bit(STRIPE_HANDLE, &sh->state);
3625 				}
3626 			}
3627 		}
3628 	}
3629 	if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_ENABLE_RMW)) && rcw > 0) {
3630 		/* want reconstruct write, but need to get some data */
3631 		int qread =0;
3632 		rcw = 0;
3633 		for (i = disks; i--; ) {
3634 			struct r5dev *dev = &sh->dev[i];
3635 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3636 			    i != sh->pd_idx && i != sh->qd_idx &&
3637 			    !test_bit(R5_LOCKED, &dev->flags) &&
3638 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3639 			      test_bit(R5_Wantcompute, &dev->flags))) {
3640 				rcw++;
3641 				if (test_bit(R5_Insync, &dev->flags) &&
3642 				    test_bit(STRIPE_PREREAD_ACTIVE,
3643 					     &sh->state)) {
3644 					pr_debug("Read_old block "
3645 						"%d for Reconstruct\n", i);
3646 					set_bit(R5_LOCKED, &dev->flags);
3647 					set_bit(R5_Wantread, &dev->flags);
3648 					s->locked++;
3649 					qread++;
3650 				} else {
3651 					set_bit(STRIPE_DELAYED, &sh->state);
3652 					set_bit(STRIPE_HANDLE, &sh->state);
3653 				}
3654 			}
3655 		}
3656 		if (rcw && conf->mddev->queue)
3657 			blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3658 					  (unsigned long long)sh->sector,
3659 					  rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3660 	}
3661 
3662 	if (rcw > disks && rmw > disks &&
3663 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3664 		set_bit(STRIPE_DELAYED, &sh->state);
3665 
3666 	/* now if nothing is locked, and if we have enough data,
3667 	 * we can start a write request
3668 	 */
3669 	/* since handle_stripe can be called at any time we need to handle the
3670 	 * case where a compute block operation has been submitted and then a
3671 	 * subsequent call wants to start a write request.  raid_run_ops only
3672 	 * handles the case where compute block and reconstruct are requested
3673 	 * simultaneously.  If this is not the case then new writes need to be
3674 	 * held off until the compute completes.
3675 	 */
3676 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3677 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3678 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3679 		schedule_reconstruction(sh, s, rcw == 0, 0);
3680 }
3681 
3682 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3683 				struct stripe_head_state *s, int disks)
3684 {
3685 	struct r5dev *dev = NULL;
3686 
3687 	BUG_ON(sh->batch_head);
3688 	set_bit(STRIPE_HANDLE, &sh->state);
3689 
3690 	switch (sh->check_state) {
3691 	case check_state_idle:
3692 		/* start a new check operation if there are no failures */
3693 		if (s->failed == 0) {
3694 			BUG_ON(s->uptodate != disks);
3695 			sh->check_state = check_state_run;
3696 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3697 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3698 			s->uptodate--;
3699 			break;
3700 		}
3701 		dev = &sh->dev[s->failed_num[0]];
3702 		/* fall through */
3703 	case check_state_compute_result:
3704 		sh->check_state = check_state_idle;
3705 		if (!dev)
3706 			dev = &sh->dev[sh->pd_idx];
3707 
3708 		/* check that a write has not made the stripe insync */
3709 		if (test_bit(STRIPE_INSYNC, &sh->state))
3710 			break;
3711 
3712 		/* either failed parity check, or recovery is happening */
3713 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3714 		BUG_ON(s->uptodate != disks);
3715 
3716 		set_bit(R5_LOCKED, &dev->flags);
3717 		s->locked++;
3718 		set_bit(R5_Wantwrite, &dev->flags);
3719 
3720 		clear_bit(STRIPE_DEGRADED, &sh->state);
3721 		set_bit(STRIPE_INSYNC, &sh->state);
3722 		break;
3723 	case check_state_run:
3724 		break; /* we will be called again upon completion */
3725 	case check_state_check_result:
3726 		sh->check_state = check_state_idle;
3727 
3728 		/* if a failure occurred during the check operation, leave
3729 		 * STRIPE_INSYNC not set and let the stripe be handled again
3730 		 */
3731 		if (s->failed)
3732 			break;
3733 
3734 		/* handle a successful check operation, if parity is correct
3735 		 * we are done.  Otherwise update the mismatch count and repair
3736 		 * parity if !MD_RECOVERY_CHECK
3737 		 */
3738 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3739 			/* parity is correct (on disc,
3740 			 * not in buffer any more)
3741 			 */
3742 			set_bit(STRIPE_INSYNC, &sh->state);
3743 		else {
3744 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3745 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3746 				/* don't try to repair!! */
3747 				set_bit(STRIPE_INSYNC, &sh->state);
3748 			else {
3749 				sh->check_state = check_state_compute_run;
3750 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3751 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3752 				set_bit(R5_Wantcompute,
3753 					&sh->dev[sh->pd_idx].flags);
3754 				sh->ops.target = sh->pd_idx;
3755 				sh->ops.target2 = -1;
3756 				s->uptodate++;
3757 			}
3758 		}
3759 		break;
3760 	case check_state_compute_run:
3761 		break;
3762 	default:
3763 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3764 		       __func__, sh->check_state,
3765 		       (unsigned long long) sh->sector);
3766 		BUG();
3767 	}
3768 }
3769 
3770 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3771 				  struct stripe_head_state *s,
3772 				  int disks)
3773 {
3774 	int pd_idx = sh->pd_idx;
3775 	int qd_idx = sh->qd_idx;
3776 	struct r5dev *dev;
3777 
3778 	BUG_ON(sh->batch_head);
3779 	set_bit(STRIPE_HANDLE, &sh->state);
3780 
3781 	BUG_ON(s->failed > 2);
3782 
3783 	/* Want to check and possibly repair P and Q.
3784 	 * However there could be one 'failed' device, in which
3785 	 * case we can only check one of them, possibly using the
3786 	 * other to generate missing data
3787 	 */
3788 
3789 	switch (sh->check_state) {
3790 	case check_state_idle:
3791 		/* start a new check operation if there are < 2 failures */
3792 		if (s->failed == s->q_failed) {
3793 			/* The only possible failed device holds Q, so it
3794 			 * makes sense to check P (If anything else were failed,
3795 			 * we would have used P to recreate it).
3796 			 */
3797 			sh->check_state = check_state_run;
3798 		}
3799 		if (!s->q_failed && s->failed < 2) {
3800 			/* Q is not failed, and we didn't use it to generate
3801 			 * anything, so it makes sense to check it
3802 			 */
3803 			if (sh->check_state == check_state_run)
3804 				sh->check_state = check_state_run_pq;
3805 			else
3806 				sh->check_state = check_state_run_q;
3807 		}
3808 
3809 		/* discard potentially stale zero_sum_result */
3810 		sh->ops.zero_sum_result = 0;
3811 
3812 		if (sh->check_state == check_state_run) {
3813 			/* async_xor_zero_sum destroys the contents of P */
3814 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3815 			s->uptodate--;
3816 		}
3817 		if (sh->check_state >= check_state_run &&
3818 		    sh->check_state <= check_state_run_pq) {
3819 			/* async_syndrome_zero_sum preserves P and Q, so
3820 			 * no need to mark them !uptodate here
3821 			 */
3822 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3823 			break;
3824 		}
3825 
3826 		/* we have 2-disk failure */
3827 		BUG_ON(s->failed != 2);
3828 		/* fall through */
3829 	case check_state_compute_result:
3830 		sh->check_state = check_state_idle;
3831 
3832 		/* check that a write has not made the stripe insync */
3833 		if (test_bit(STRIPE_INSYNC, &sh->state))
3834 			break;
3835 
3836 		/* now write out any block on a failed drive,
3837 		 * or P or Q if they were recomputed
3838 		 */
3839 		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3840 		if (s->failed == 2) {
3841 			dev = &sh->dev[s->failed_num[1]];
3842 			s->locked++;
3843 			set_bit(R5_LOCKED, &dev->flags);
3844 			set_bit(R5_Wantwrite, &dev->flags);
3845 		}
3846 		if (s->failed >= 1) {
3847 			dev = &sh->dev[s->failed_num[0]];
3848 			s->locked++;
3849 			set_bit(R5_LOCKED, &dev->flags);
3850 			set_bit(R5_Wantwrite, &dev->flags);
3851 		}
3852 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3853 			dev = &sh->dev[pd_idx];
3854 			s->locked++;
3855 			set_bit(R5_LOCKED, &dev->flags);
3856 			set_bit(R5_Wantwrite, &dev->flags);
3857 		}
3858 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3859 			dev = &sh->dev[qd_idx];
3860 			s->locked++;
3861 			set_bit(R5_LOCKED, &dev->flags);
3862 			set_bit(R5_Wantwrite, &dev->flags);
3863 		}
3864 		clear_bit(STRIPE_DEGRADED, &sh->state);
3865 
3866 		set_bit(STRIPE_INSYNC, &sh->state);
3867 		break;
3868 	case check_state_run:
3869 	case check_state_run_q:
3870 	case check_state_run_pq:
3871 		break; /* we will be called again upon completion */
3872 	case check_state_check_result:
3873 		sh->check_state = check_state_idle;
3874 
3875 		/* handle a successful check operation, if parity is correct
3876 		 * we are done.  Otherwise update the mismatch count and repair
3877 		 * parity if !MD_RECOVERY_CHECK
3878 		 */
3879 		if (sh->ops.zero_sum_result == 0) {
3880 			/* both parities are correct */
3881 			if (!s->failed)
3882 				set_bit(STRIPE_INSYNC, &sh->state);
3883 			else {
3884 				/* in contrast to the raid5 case we can validate
3885 				 * parity, but still have a failure to write
3886 				 * back
3887 				 */
3888 				sh->check_state = check_state_compute_result;
3889 				/* Returning at this point means that we may go
3890 				 * off and bring p and/or q uptodate again so
3891 				 * we make sure to check zero_sum_result again
3892 				 * to verify if p or q need writeback
3893 				 */
3894 			}
3895 		} else {
3896 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3897 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3898 				/* don't try to repair!! */
3899 				set_bit(STRIPE_INSYNC, &sh->state);
3900 			else {
3901 				int *target = &sh->ops.target;
3902 
3903 				sh->ops.target = -1;
3904 				sh->ops.target2 = -1;
3905 				sh->check_state = check_state_compute_run;
3906 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3907 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3908 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3909 					set_bit(R5_Wantcompute,
3910 						&sh->dev[pd_idx].flags);
3911 					*target = pd_idx;
3912 					target = &sh->ops.target2;
3913 					s->uptodate++;
3914 				}
3915 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3916 					set_bit(R5_Wantcompute,
3917 						&sh->dev[qd_idx].flags);
3918 					*target = qd_idx;
3919 					s->uptodate++;
3920 				}
3921 			}
3922 		}
3923 		break;
3924 	case check_state_compute_run:
3925 		break;
3926 	default:
3927 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3928 		       __func__, sh->check_state,
3929 		       (unsigned long long) sh->sector);
3930 		BUG();
3931 	}
3932 }
3933 
3934 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3935 {
3936 	int i;
3937 
3938 	/* We have read all the blocks in this stripe and now we need to
3939 	 * copy some of them into a target stripe for expand.
3940 	 */
3941 	struct dma_async_tx_descriptor *tx = NULL;
3942 	BUG_ON(sh->batch_head);
3943 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3944 	for (i = 0; i < sh->disks; i++)
3945 		if (i != sh->pd_idx && i != sh->qd_idx) {
3946 			int dd_idx, j;
3947 			struct stripe_head *sh2;
3948 			struct async_submit_ctl submit;
3949 
3950 			sector_t bn = raid5_compute_blocknr(sh, i, 1);
3951 			sector_t s = raid5_compute_sector(conf, bn, 0,
3952 							  &dd_idx, NULL);
3953 			sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
3954 			if (sh2 == NULL)
3955 				/* so far only the early blocks of this stripe
3956 				 * have been requested.  When later blocks
3957 				 * get requested, we will try again
3958 				 */
3959 				continue;
3960 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3961 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3962 				/* must have already done this block */
3963 				raid5_release_stripe(sh2);
3964 				continue;
3965 			}
3966 
3967 			/* place all the copies on one channel */
3968 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3969 			tx = async_memcpy(sh2->dev[dd_idx].page,
3970 					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
3971 					  &submit);
3972 
3973 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3974 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3975 			for (j = 0; j < conf->raid_disks; j++)
3976 				if (j != sh2->pd_idx &&
3977 				    j != sh2->qd_idx &&
3978 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
3979 					break;
3980 			if (j == conf->raid_disks) {
3981 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
3982 				set_bit(STRIPE_HANDLE, &sh2->state);
3983 			}
3984 			raid5_release_stripe(sh2);
3985 
3986 		}
3987 	/* done submitting copies, wait for them to complete */
3988 	async_tx_quiesce(&tx);
3989 }
3990 
3991 /*
3992  * handle_stripe - do things to a stripe.
3993  *
3994  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3995  * state of various bits to see what needs to be done.
3996  * Possible results:
3997  *    return some read requests which now have data
3998  *    return some write requests which are safely on storage
3999  *    schedule a read on some buffers
4000  *    schedule a write of some buffers
4001  *    return confirmation of parity correctness
4002  *
4003  */
4004 
4005 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4006 {
4007 	struct r5conf *conf = sh->raid_conf;
4008 	int disks = sh->disks;
4009 	struct r5dev *dev;
4010 	int i;
4011 	int do_recovery = 0;
4012 
4013 	memset(s, 0, sizeof(*s));
4014 
4015 	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4016 	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4017 	s->failed_num[0] = -1;
4018 	s->failed_num[1] = -1;
4019 	s->log_failed = r5l_log_disk_error(conf);
4020 
4021 	/* Now to look around and see what can be done */
4022 	rcu_read_lock();
4023 	for (i=disks; i--; ) {
4024 		struct md_rdev *rdev;
4025 		sector_t first_bad;
4026 		int bad_sectors;
4027 		int is_bad = 0;
4028 
4029 		dev = &sh->dev[i];
4030 
4031 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4032 			 i, dev->flags,
4033 			 dev->toread, dev->towrite, dev->written);
4034 		/* maybe we can reply to a read
4035 		 *
4036 		 * new wantfill requests are only permitted while
4037 		 * ops_complete_biofill is guaranteed to be inactive
4038 		 */
4039 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4040 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4041 			set_bit(R5_Wantfill, &dev->flags);
4042 
4043 		/* now count some things */
4044 		if (test_bit(R5_LOCKED, &dev->flags))
4045 			s->locked++;
4046 		if (test_bit(R5_UPTODATE, &dev->flags))
4047 			s->uptodate++;
4048 		if (test_bit(R5_Wantcompute, &dev->flags)) {
4049 			s->compute++;
4050 			BUG_ON(s->compute > 2);
4051 		}
4052 
4053 		if (test_bit(R5_Wantfill, &dev->flags))
4054 			s->to_fill++;
4055 		else if (dev->toread)
4056 			s->to_read++;
4057 		if (dev->towrite) {
4058 			s->to_write++;
4059 			if (!test_bit(R5_OVERWRITE, &dev->flags))
4060 				s->non_overwrite++;
4061 		}
4062 		if (dev->written)
4063 			s->written++;
4064 		/* Prefer to use the replacement for reads, but only
4065 		 * if it is recovered enough and has no bad blocks.
4066 		 */
4067 		rdev = rcu_dereference(conf->disks[i].replacement);
4068 		if (rdev && !test_bit(Faulty, &rdev->flags) &&
4069 		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4070 		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4071 				 &first_bad, &bad_sectors))
4072 			set_bit(R5_ReadRepl, &dev->flags);
4073 		else {
4074 			if (rdev && !test_bit(Faulty, &rdev->flags))
4075 				set_bit(R5_NeedReplace, &dev->flags);
4076 			else
4077 				clear_bit(R5_NeedReplace, &dev->flags);
4078 			rdev = rcu_dereference(conf->disks[i].rdev);
4079 			clear_bit(R5_ReadRepl, &dev->flags);
4080 		}
4081 		if (rdev && test_bit(Faulty, &rdev->flags))
4082 			rdev = NULL;
4083 		if (rdev) {
4084 			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4085 					     &first_bad, &bad_sectors);
4086 			if (s->blocked_rdev == NULL
4087 			    && (test_bit(Blocked, &rdev->flags)
4088 				|| is_bad < 0)) {
4089 				if (is_bad < 0)
4090 					set_bit(BlockedBadBlocks,
4091 						&rdev->flags);
4092 				s->blocked_rdev = rdev;
4093 				atomic_inc(&rdev->nr_pending);
4094 			}
4095 		}
4096 		clear_bit(R5_Insync, &dev->flags);
4097 		if (!rdev)
4098 			/* Not in-sync */;
4099 		else if (is_bad) {
4100 			/* also not in-sync */
4101 			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4102 			    test_bit(R5_UPTODATE, &dev->flags)) {
4103 				/* treat as in-sync, but with a read error
4104 				 * which we can now try to correct
4105 				 */
4106 				set_bit(R5_Insync, &dev->flags);
4107 				set_bit(R5_ReadError, &dev->flags);
4108 			}
4109 		} else if (test_bit(In_sync, &rdev->flags))
4110 			set_bit(R5_Insync, &dev->flags);
4111 		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4112 			/* in sync if before recovery_offset */
4113 			set_bit(R5_Insync, &dev->flags);
4114 		else if (test_bit(R5_UPTODATE, &dev->flags) &&
4115 			 test_bit(R5_Expanded, &dev->flags))
4116 			/* If we've reshaped into here, we assume it is Insync.
4117 			 * We will shortly update recovery_offset to make
4118 			 * it official.
4119 			 */
4120 			set_bit(R5_Insync, &dev->flags);
4121 
4122 		if (test_bit(R5_WriteError, &dev->flags)) {
4123 			/* This flag does not apply to '.replacement'
4124 			 * only to .rdev, so make sure to check that*/
4125 			struct md_rdev *rdev2 = rcu_dereference(
4126 				conf->disks[i].rdev);
4127 			if (rdev2 == rdev)
4128 				clear_bit(R5_Insync, &dev->flags);
4129 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4130 				s->handle_bad_blocks = 1;
4131 				atomic_inc(&rdev2->nr_pending);
4132 			} else
4133 				clear_bit(R5_WriteError, &dev->flags);
4134 		}
4135 		if (test_bit(R5_MadeGood, &dev->flags)) {
4136 			/* This flag does not apply to '.replacement'
4137 			 * only to .rdev, so make sure to check that*/
4138 			struct md_rdev *rdev2 = rcu_dereference(
4139 				conf->disks[i].rdev);
4140 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4141 				s->handle_bad_blocks = 1;
4142 				atomic_inc(&rdev2->nr_pending);
4143 			} else
4144 				clear_bit(R5_MadeGood, &dev->flags);
4145 		}
4146 		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4147 			struct md_rdev *rdev2 = rcu_dereference(
4148 				conf->disks[i].replacement);
4149 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4150 				s->handle_bad_blocks = 1;
4151 				atomic_inc(&rdev2->nr_pending);
4152 			} else
4153 				clear_bit(R5_MadeGoodRepl, &dev->flags);
4154 		}
4155 		if (!test_bit(R5_Insync, &dev->flags)) {
4156 			/* The ReadError flag will just be confusing now */
4157 			clear_bit(R5_ReadError, &dev->flags);
4158 			clear_bit(R5_ReWrite, &dev->flags);
4159 		}
4160 		if (test_bit(R5_ReadError, &dev->flags))
4161 			clear_bit(R5_Insync, &dev->flags);
4162 		if (!test_bit(R5_Insync, &dev->flags)) {
4163 			if (s->failed < 2)
4164 				s->failed_num[s->failed] = i;
4165 			s->failed++;
4166 			if (rdev && !test_bit(Faulty, &rdev->flags))
4167 				do_recovery = 1;
4168 		}
4169 	}
4170 	if (test_bit(STRIPE_SYNCING, &sh->state)) {
4171 		/* If there is a failed device being replaced,
4172 		 *     we must be recovering.
4173 		 * else if we are after recovery_cp, we must be syncing
4174 		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4175 		 * else we can only be replacing
4176 		 * sync and recovery both need to read all devices, and so
4177 		 * use the same flag.
4178 		 */
4179 		if (do_recovery ||
4180 		    sh->sector >= conf->mddev->recovery_cp ||
4181 		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4182 			s->syncing = 1;
4183 		else
4184 			s->replacing = 1;
4185 	}
4186 	rcu_read_unlock();
4187 }
4188 
4189 static int clear_batch_ready(struct stripe_head *sh)
4190 {
4191 	/* Return '1' if this is a member of batch, or
4192 	 * '0' if it is a lone stripe or a head which can now be
4193 	 * handled.
4194 	 */
4195 	struct stripe_head *tmp;
4196 	if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4197 		return (sh->batch_head && sh->batch_head != sh);
4198 	spin_lock(&sh->stripe_lock);
4199 	if (!sh->batch_head) {
4200 		spin_unlock(&sh->stripe_lock);
4201 		return 0;
4202 	}
4203 
4204 	/*
4205 	 * this stripe could be added to a batch list before we check
4206 	 * BATCH_READY, skips it
4207 	 */
4208 	if (sh->batch_head != sh) {
4209 		spin_unlock(&sh->stripe_lock);
4210 		return 1;
4211 	}
4212 	spin_lock(&sh->batch_lock);
4213 	list_for_each_entry(tmp, &sh->batch_list, batch_list)
4214 		clear_bit(STRIPE_BATCH_READY, &tmp->state);
4215 	spin_unlock(&sh->batch_lock);
4216 	spin_unlock(&sh->stripe_lock);
4217 
4218 	/*
4219 	 * BATCH_READY is cleared, no new stripes can be added.
4220 	 * batch_list can be accessed without lock
4221 	 */
4222 	return 0;
4223 }
4224 
4225 static void break_stripe_batch_list(struct stripe_head *head_sh,
4226 				    unsigned long handle_flags)
4227 {
4228 	struct stripe_head *sh, *next;
4229 	int i;
4230 	int do_wakeup = 0;
4231 
4232 	list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4233 
4234 		list_del_init(&sh->batch_list);
4235 
4236 		WARN_ON_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4237 					  (1 << STRIPE_SYNCING) |
4238 					  (1 << STRIPE_REPLACED) |
4239 					  (1 << STRIPE_PREREAD_ACTIVE) |
4240 					  (1 << STRIPE_DELAYED) |
4241 					  (1 << STRIPE_BIT_DELAY) |
4242 					  (1 << STRIPE_FULL_WRITE) |
4243 					  (1 << STRIPE_BIOFILL_RUN) |
4244 					  (1 << STRIPE_COMPUTE_RUN)  |
4245 					  (1 << STRIPE_OPS_REQ_PENDING) |
4246 					  (1 << STRIPE_DISCARD) |
4247 					  (1 << STRIPE_BATCH_READY) |
4248 					  (1 << STRIPE_BATCH_ERR) |
4249 					  (1 << STRIPE_BITMAP_PENDING)));
4250 		WARN_ON_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4251 					      (1 << STRIPE_REPLACED)));
4252 
4253 		set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4254 					    (1 << STRIPE_DEGRADED)),
4255 			      head_sh->state & (1 << STRIPE_INSYNC));
4256 
4257 		sh->check_state = head_sh->check_state;
4258 		sh->reconstruct_state = head_sh->reconstruct_state;
4259 		for (i = 0; i < sh->disks; i++) {
4260 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4261 				do_wakeup = 1;
4262 			sh->dev[i].flags = head_sh->dev[i].flags &
4263 				(~((1 << R5_WriteError) | (1 << R5_Overlap)));
4264 		}
4265 		spin_lock_irq(&sh->stripe_lock);
4266 		sh->batch_head = NULL;
4267 		spin_unlock_irq(&sh->stripe_lock);
4268 		if (handle_flags == 0 ||
4269 		    sh->state & handle_flags)
4270 			set_bit(STRIPE_HANDLE, &sh->state);
4271 		raid5_release_stripe(sh);
4272 	}
4273 	spin_lock_irq(&head_sh->stripe_lock);
4274 	head_sh->batch_head = NULL;
4275 	spin_unlock_irq(&head_sh->stripe_lock);
4276 	for (i = 0; i < head_sh->disks; i++)
4277 		if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4278 			do_wakeup = 1;
4279 	if (head_sh->state & handle_flags)
4280 		set_bit(STRIPE_HANDLE, &head_sh->state);
4281 
4282 	if (do_wakeup)
4283 		wake_up(&head_sh->raid_conf->wait_for_overlap);
4284 }
4285 
4286 static void handle_stripe(struct stripe_head *sh)
4287 {
4288 	struct stripe_head_state s;
4289 	struct r5conf *conf = sh->raid_conf;
4290 	int i;
4291 	int prexor;
4292 	int disks = sh->disks;
4293 	struct r5dev *pdev, *qdev;
4294 
4295 	clear_bit(STRIPE_HANDLE, &sh->state);
4296 	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4297 		/* already being handled, ensure it gets handled
4298 		 * again when current action finishes */
4299 		set_bit(STRIPE_HANDLE, &sh->state);
4300 		return;
4301 	}
4302 
4303 	if (clear_batch_ready(sh) ) {
4304 		clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4305 		return;
4306 	}
4307 
4308 	if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4309 		break_stripe_batch_list(sh, 0);
4310 
4311 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4312 		spin_lock(&sh->stripe_lock);
4313 		/* Cannot process 'sync' concurrently with 'discard' */
4314 		if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4315 		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4316 			set_bit(STRIPE_SYNCING, &sh->state);
4317 			clear_bit(STRIPE_INSYNC, &sh->state);
4318 			clear_bit(STRIPE_REPLACED, &sh->state);
4319 		}
4320 		spin_unlock(&sh->stripe_lock);
4321 	}
4322 	clear_bit(STRIPE_DELAYED, &sh->state);
4323 
4324 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4325 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4326 	       (unsigned long long)sh->sector, sh->state,
4327 	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4328 	       sh->check_state, sh->reconstruct_state);
4329 
4330 	analyse_stripe(sh, &s);
4331 
4332 	if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4333 		goto finish;
4334 
4335 	if (s.handle_bad_blocks) {
4336 		set_bit(STRIPE_HANDLE, &sh->state);
4337 		goto finish;
4338 	}
4339 
4340 	if (unlikely(s.blocked_rdev)) {
4341 		if (s.syncing || s.expanding || s.expanded ||
4342 		    s.replacing || s.to_write || s.written) {
4343 			set_bit(STRIPE_HANDLE, &sh->state);
4344 			goto finish;
4345 		}
4346 		/* There is nothing for the blocked_rdev to block */
4347 		rdev_dec_pending(s.blocked_rdev, conf->mddev);
4348 		s.blocked_rdev = NULL;
4349 	}
4350 
4351 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4352 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4353 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4354 	}
4355 
4356 	pr_debug("locked=%d uptodate=%d to_read=%d"
4357 	       " to_write=%d failed=%d failed_num=%d,%d\n",
4358 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4359 	       s.failed_num[0], s.failed_num[1]);
4360 	/* check if the array has lost more than max_degraded devices and,
4361 	 * if so, some requests might need to be failed.
4362 	 */
4363 	if (s.failed > conf->max_degraded || s.log_failed) {
4364 		sh->check_state = 0;
4365 		sh->reconstruct_state = 0;
4366 		break_stripe_batch_list(sh, 0);
4367 		if (s.to_read+s.to_write+s.written)
4368 			handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4369 		if (s.syncing + s.replacing)
4370 			handle_failed_sync(conf, sh, &s);
4371 	}
4372 
4373 	/* Now we check to see if any write operations have recently
4374 	 * completed
4375 	 */
4376 	prexor = 0;
4377 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4378 		prexor = 1;
4379 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
4380 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4381 		sh->reconstruct_state = reconstruct_state_idle;
4382 
4383 		/* All the 'written' buffers and the parity block are ready to
4384 		 * be written back to disk
4385 		 */
4386 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4387 		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4388 		BUG_ON(sh->qd_idx >= 0 &&
4389 		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4390 		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4391 		for (i = disks; i--; ) {
4392 			struct r5dev *dev = &sh->dev[i];
4393 			if (test_bit(R5_LOCKED, &dev->flags) &&
4394 				(i == sh->pd_idx || i == sh->qd_idx ||
4395 				 dev->written)) {
4396 				pr_debug("Writing block %d\n", i);
4397 				set_bit(R5_Wantwrite, &dev->flags);
4398 				if (prexor)
4399 					continue;
4400 				if (s.failed > 1)
4401 					continue;
4402 				if (!test_bit(R5_Insync, &dev->flags) ||
4403 				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
4404 				     s.failed == 0))
4405 					set_bit(STRIPE_INSYNC, &sh->state);
4406 			}
4407 		}
4408 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4409 			s.dec_preread_active = 1;
4410 	}
4411 
4412 	/*
4413 	 * might be able to return some write requests if the parity blocks
4414 	 * are safe, or on a failed drive
4415 	 */
4416 	pdev = &sh->dev[sh->pd_idx];
4417 	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4418 		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4419 	qdev = &sh->dev[sh->qd_idx];
4420 	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4421 		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4422 		|| conf->level < 6;
4423 
4424 	if (s.written &&
4425 	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4426 			     && !test_bit(R5_LOCKED, &pdev->flags)
4427 			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
4428 				 test_bit(R5_Discard, &pdev->flags))))) &&
4429 	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4430 			     && !test_bit(R5_LOCKED, &qdev->flags)
4431 			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
4432 				 test_bit(R5_Discard, &qdev->flags))))))
4433 		handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4434 
4435 	/* Now we might consider reading some blocks, either to check/generate
4436 	 * parity, or to satisfy requests
4437 	 * or to load a block that is being partially written.
4438 	 */
4439 	if (s.to_read || s.non_overwrite
4440 	    || (conf->level == 6 && s.to_write && s.failed)
4441 	    || (s.syncing && (s.uptodate + s.compute < disks))
4442 	    || s.replacing
4443 	    || s.expanding)
4444 		handle_stripe_fill(sh, &s, disks);
4445 
4446 	/* Now to consider new write requests and what else, if anything
4447 	 * should be read.  We do not handle new writes when:
4448 	 * 1/ A 'write' operation (copy+xor) is already in flight.
4449 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
4450 	 *    block.
4451 	 */
4452 	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4453 		handle_stripe_dirtying(conf, sh, &s, disks);
4454 
4455 	/* maybe we need to check and possibly fix the parity for this stripe
4456 	 * Any reads will already have been scheduled, so we just see if enough
4457 	 * data is available.  The parity check is held off while parity
4458 	 * dependent operations are in flight.
4459 	 */
4460 	if (sh->check_state ||
4461 	    (s.syncing && s.locked == 0 &&
4462 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4463 	     !test_bit(STRIPE_INSYNC, &sh->state))) {
4464 		if (conf->level == 6)
4465 			handle_parity_checks6(conf, sh, &s, disks);
4466 		else
4467 			handle_parity_checks5(conf, sh, &s, disks);
4468 	}
4469 
4470 	if ((s.replacing || s.syncing) && s.locked == 0
4471 	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4472 	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
4473 		/* Write out to replacement devices where possible */
4474 		for (i = 0; i < conf->raid_disks; i++)
4475 			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4476 				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4477 				set_bit(R5_WantReplace, &sh->dev[i].flags);
4478 				set_bit(R5_LOCKED, &sh->dev[i].flags);
4479 				s.locked++;
4480 			}
4481 		if (s.replacing)
4482 			set_bit(STRIPE_INSYNC, &sh->state);
4483 		set_bit(STRIPE_REPLACED, &sh->state);
4484 	}
4485 	if ((s.syncing || s.replacing) && s.locked == 0 &&
4486 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4487 	    test_bit(STRIPE_INSYNC, &sh->state)) {
4488 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4489 		clear_bit(STRIPE_SYNCING, &sh->state);
4490 		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4491 			wake_up(&conf->wait_for_overlap);
4492 	}
4493 
4494 	/* If the failed drives are just a ReadError, then we might need
4495 	 * to progress the repair/check process
4496 	 */
4497 	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4498 		for (i = 0; i < s.failed; i++) {
4499 			struct r5dev *dev = &sh->dev[s.failed_num[i]];
4500 			if (test_bit(R5_ReadError, &dev->flags)
4501 			    && !test_bit(R5_LOCKED, &dev->flags)
4502 			    && test_bit(R5_UPTODATE, &dev->flags)
4503 				) {
4504 				if (!test_bit(R5_ReWrite, &dev->flags)) {
4505 					set_bit(R5_Wantwrite, &dev->flags);
4506 					set_bit(R5_ReWrite, &dev->flags);
4507 					set_bit(R5_LOCKED, &dev->flags);
4508 					s.locked++;
4509 				} else {
4510 					/* let's read it back */
4511 					set_bit(R5_Wantread, &dev->flags);
4512 					set_bit(R5_LOCKED, &dev->flags);
4513 					s.locked++;
4514 				}
4515 			}
4516 		}
4517 
4518 	/* Finish reconstruct operations initiated by the expansion process */
4519 	if (sh->reconstruct_state == reconstruct_state_result) {
4520 		struct stripe_head *sh_src
4521 			= raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4522 		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4523 			/* sh cannot be written until sh_src has been read.
4524 			 * so arrange for sh to be delayed a little
4525 			 */
4526 			set_bit(STRIPE_DELAYED, &sh->state);
4527 			set_bit(STRIPE_HANDLE, &sh->state);
4528 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4529 					      &sh_src->state))
4530 				atomic_inc(&conf->preread_active_stripes);
4531 			raid5_release_stripe(sh_src);
4532 			goto finish;
4533 		}
4534 		if (sh_src)
4535 			raid5_release_stripe(sh_src);
4536 
4537 		sh->reconstruct_state = reconstruct_state_idle;
4538 		clear_bit(STRIPE_EXPANDING, &sh->state);
4539 		for (i = conf->raid_disks; i--; ) {
4540 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
4541 			set_bit(R5_LOCKED, &sh->dev[i].flags);
4542 			s.locked++;
4543 		}
4544 	}
4545 
4546 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4547 	    !sh->reconstruct_state) {
4548 		/* Need to write out all blocks after computing parity */
4549 		sh->disks = conf->raid_disks;
4550 		stripe_set_idx(sh->sector, conf, 0, sh);
4551 		schedule_reconstruction(sh, &s, 1, 1);
4552 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4553 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
4554 		atomic_dec(&conf->reshape_stripes);
4555 		wake_up(&conf->wait_for_overlap);
4556 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4557 	}
4558 
4559 	if (s.expanding && s.locked == 0 &&
4560 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4561 		handle_stripe_expansion(conf, sh);
4562 
4563 finish:
4564 	/* wait for this device to become unblocked */
4565 	if (unlikely(s.blocked_rdev)) {
4566 		if (conf->mddev->external)
4567 			md_wait_for_blocked_rdev(s.blocked_rdev,
4568 						 conf->mddev);
4569 		else
4570 			/* Internal metadata will immediately
4571 			 * be written by raid5d, so we don't
4572 			 * need to wait here.
4573 			 */
4574 			rdev_dec_pending(s.blocked_rdev,
4575 					 conf->mddev);
4576 	}
4577 
4578 	if (s.handle_bad_blocks)
4579 		for (i = disks; i--; ) {
4580 			struct md_rdev *rdev;
4581 			struct r5dev *dev = &sh->dev[i];
4582 			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4583 				/* We own a safe reference to the rdev */
4584 				rdev = conf->disks[i].rdev;
4585 				if (!rdev_set_badblocks(rdev, sh->sector,
4586 							STRIPE_SECTORS, 0))
4587 					md_error(conf->mddev, rdev);
4588 				rdev_dec_pending(rdev, conf->mddev);
4589 			}
4590 			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4591 				rdev = conf->disks[i].rdev;
4592 				rdev_clear_badblocks(rdev, sh->sector,
4593 						     STRIPE_SECTORS, 0);
4594 				rdev_dec_pending(rdev, conf->mddev);
4595 			}
4596 			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4597 				rdev = conf->disks[i].replacement;
4598 				if (!rdev)
4599 					/* rdev have been moved down */
4600 					rdev = conf->disks[i].rdev;
4601 				rdev_clear_badblocks(rdev, sh->sector,
4602 						     STRIPE_SECTORS, 0);
4603 				rdev_dec_pending(rdev, conf->mddev);
4604 			}
4605 		}
4606 
4607 	if (s.ops_request)
4608 		raid_run_ops(sh, s.ops_request);
4609 
4610 	ops_run_io(sh, &s);
4611 
4612 	if (s.dec_preread_active) {
4613 		/* We delay this until after ops_run_io so that if make_request
4614 		 * is waiting on a flush, it won't continue until the writes
4615 		 * have actually been submitted.
4616 		 */
4617 		atomic_dec(&conf->preread_active_stripes);
4618 		if (atomic_read(&conf->preread_active_stripes) <
4619 		    IO_THRESHOLD)
4620 			md_wakeup_thread(conf->mddev->thread);
4621 	}
4622 
4623 	if (!bio_list_empty(&s.return_bi)) {
4624 		if (test_bit(MD_CHANGE_PENDING, &conf->mddev->flags)) {
4625 			spin_lock_irq(&conf->device_lock);
4626 			bio_list_merge(&conf->return_bi, &s.return_bi);
4627 			spin_unlock_irq(&conf->device_lock);
4628 			md_wakeup_thread(conf->mddev->thread);
4629 		} else
4630 			return_io(&s.return_bi);
4631 	}
4632 
4633 	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4634 }
4635 
4636 static void raid5_activate_delayed(struct r5conf *conf)
4637 {
4638 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4639 		while (!list_empty(&conf->delayed_list)) {
4640 			struct list_head *l = conf->delayed_list.next;
4641 			struct stripe_head *sh;
4642 			sh = list_entry(l, struct stripe_head, lru);
4643 			list_del_init(l);
4644 			clear_bit(STRIPE_DELAYED, &sh->state);
4645 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4646 				atomic_inc(&conf->preread_active_stripes);
4647 			list_add_tail(&sh->lru, &conf->hold_list);
4648 			raid5_wakeup_stripe_thread(sh);
4649 		}
4650 	}
4651 }
4652 
4653 static void activate_bit_delay(struct r5conf *conf,
4654 	struct list_head *temp_inactive_list)
4655 {
4656 	/* device_lock is held */
4657 	struct list_head head;
4658 	list_add(&head, &conf->bitmap_list);
4659 	list_del_init(&conf->bitmap_list);
4660 	while (!list_empty(&head)) {
4661 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4662 		int hash;
4663 		list_del_init(&sh->lru);
4664 		atomic_inc(&sh->count);
4665 		hash = sh->hash_lock_index;
4666 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
4667 	}
4668 }
4669 
4670 static int raid5_congested(struct mddev *mddev, int bits)
4671 {
4672 	struct r5conf *conf = mddev->private;
4673 
4674 	/* No difference between reads and writes.  Just check
4675 	 * how busy the stripe_cache is
4676 	 */
4677 
4678 	if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
4679 		return 1;
4680 	if (conf->quiesce)
4681 		return 1;
4682 	if (atomic_read(&conf->empty_inactive_list_nr))
4683 		return 1;
4684 
4685 	return 0;
4686 }
4687 
4688 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4689 {
4690 	struct r5conf *conf = mddev->private;
4691 	sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4692 	unsigned int chunk_sectors;
4693 	unsigned int bio_sectors = bio_sectors(bio);
4694 
4695 	chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
4696 	return  chunk_sectors >=
4697 		((sector & (chunk_sectors - 1)) + bio_sectors);
4698 }
4699 
4700 /*
4701  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
4702  *  later sampled by raid5d.
4703  */
4704 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4705 {
4706 	unsigned long flags;
4707 
4708 	spin_lock_irqsave(&conf->device_lock, flags);
4709 
4710 	bi->bi_next = conf->retry_read_aligned_list;
4711 	conf->retry_read_aligned_list = bi;
4712 
4713 	spin_unlock_irqrestore(&conf->device_lock, flags);
4714 	md_wakeup_thread(conf->mddev->thread);
4715 }
4716 
4717 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4718 {
4719 	struct bio *bi;
4720 
4721 	bi = conf->retry_read_aligned;
4722 	if (bi) {
4723 		conf->retry_read_aligned = NULL;
4724 		return bi;
4725 	}
4726 	bi = conf->retry_read_aligned_list;
4727 	if(bi) {
4728 		conf->retry_read_aligned_list = bi->bi_next;
4729 		bi->bi_next = NULL;
4730 		/*
4731 		 * this sets the active strip count to 1 and the processed
4732 		 * strip count to zero (upper 8 bits)
4733 		 */
4734 		raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4735 	}
4736 
4737 	return bi;
4738 }
4739 
4740 /*
4741  *  The "raid5_align_endio" should check if the read succeeded and if it
4742  *  did, call bio_endio on the original bio (having bio_put the new bio
4743  *  first).
4744  *  If the read failed..
4745  */
4746 static void raid5_align_endio(struct bio *bi)
4747 {
4748 	struct bio* raid_bi  = bi->bi_private;
4749 	struct mddev *mddev;
4750 	struct r5conf *conf;
4751 	struct md_rdev *rdev;
4752 	int error = bi->bi_error;
4753 
4754 	bio_put(bi);
4755 
4756 	rdev = (void*)raid_bi->bi_next;
4757 	raid_bi->bi_next = NULL;
4758 	mddev = rdev->mddev;
4759 	conf = mddev->private;
4760 
4761 	rdev_dec_pending(rdev, conf->mddev);
4762 
4763 	if (!error) {
4764 		trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4765 					 raid_bi, 0);
4766 		bio_endio(raid_bi);
4767 		if (atomic_dec_and_test(&conf->active_aligned_reads))
4768 			wake_up(&conf->wait_for_quiescent);
4769 		return;
4770 	}
4771 
4772 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4773 
4774 	add_bio_to_retry(raid_bi, conf);
4775 }
4776 
4777 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
4778 {
4779 	struct r5conf *conf = mddev->private;
4780 	int dd_idx;
4781 	struct bio* align_bi;
4782 	struct md_rdev *rdev;
4783 	sector_t end_sector;
4784 
4785 	if (!in_chunk_boundary(mddev, raid_bio)) {
4786 		pr_debug("%s: non aligned\n", __func__);
4787 		return 0;
4788 	}
4789 	/*
4790 	 * use bio_clone_mddev to make a copy of the bio
4791 	 */
4792 	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4793 	if (!align_bi)
4794 		return 0;
4795 	/*
4796 	 *   set bi_end_io to a new function, and set bi_private to the
4797 	 *     original bio.
4798 	 */
4799 	align_bi->bi_end_io  = raid5_align_endio;
4800 	align_bi->bi_private = raid_bio;
4801 	/*
4802 	 *	compute position
4803 	 */
4804 	align_bi->bi_iter.bi_sector =
4805 		raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4806 				     0, &dd_idx, NULL);
4807 
4808 	end_sector = bio_end_sector(align_bi);
4809 	rcu_read_lock();
4810 	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4811 	if (!rdev || test_bit(Faulty, &rdev->flags) ||
4812 	    rdev->recovery_offset < end_sector) {
4813 		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4814 		if (rdev &&
4815 		    (test_bit(Faulty, &rdev->flags) ||
4816 		    !(test_bit(In_sync, &rdev->flags) ||
4817 		      rdev->recovery_offset >= end_sector)))
4818 			rdev = NULL;
4819 	}
4820 	if (rdev) {
4821 		sector_t first_bad;
4822 		int bad_sectors;
4823 
4824 		atomic_inc(&rdev->nr_pending);
4825 		rcu_read_unlock();
4826 		raid_bio->bi_next = (void*)rdev;
4827 		align_bi->bi_bdev =  rdev->bdev;
4828 		bio_clear_flag(align_bi, BIO_SEG_VALID);
4829 
4830 		if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
4831 				bio_sectors(align_bi),
4832 				&first_bad, &bad_sectors)) {
4833 			bio_put(align_bi);
4834 			rdev_dec_pending(rdev, mddev);
4835 			return 0;
4836 		}
4837 
4838 		/* No reshape active, so we can trust rdev->data_offset */
4839 		align_bi->bi_iter.bi_sector += rdev->data_offset;
4840 
4841 		spin_lock_irq(&conf->device_lock);
4842 		wait_event_lock_irq(conf->wait_for_quiescent,
4843 				    conf->quiesce == 0,
4844 				    conf->device_lock);
4845 		atomic_inc(&conf->active_aligned_reads);
4846 		spin_unlock_irq(&conf->device_lock);
4847 
4848 		if (mddev->gendisk)
4849 			trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4850 					      align_bi, disk_devt(mddev->gendisk),
4851 					      raid_bio->bi_iter.bi_sector);
4852 		generic_make_request(align_bi);
4853 		return 1;
4854 	} else {
4855 		rcu_read_unlock();
4856 		bio_put(align_bi);
4857 		return 0;
4858 	}
4859 }
4860 
4861 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
4862 {
4863 	struct bio *split;
4864 
4865 	do {
4866 		sector_t sector = raid_bio->bi_iter.bi_sector;
4867 		unsigned chunk_sects = mddev->chunk_sectors;
4868 		unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
4869 
4870 		if (sectors < bio_sectors(raid_bio)) {
4871 			split = bio_split(raid_bio, sectors, GFP_NOIO, fs_bio_set);
4872 			bio_chain(split, raid_bio);
4873 		} else
4874 			split = raid_bio;
4875 
4876 		if (!raid5_read_one_chunk(mddev, split)) {
4877 			if (split != raid_bio)
4878 				generic_make_request(raid_bio);
4879 			return split;
4880 		}
4881 	} while (split != raid_bio);
4882 
4883 	return NULL;
4884 }
4885 
4886 /* __get_priority_stripe - get the next stripe to process
4887  *
4888  * Full stripe writes are allowed to pass preread active stripes up until
4889  * the bypass_threshold is exceeded.  In general the bypass_count
4890  * increments when the handle_list is handled before the hold_list; however, it
4891  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4892  * stripe with in flight i/o.  The bypass_count will be reset when the
4893  * head of the hold_list has changed, i.e. the head was promoted to the
4894  * handle_list.
4895  */
4896 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4897 {
4898 	struct stripe_head *sh = NULL, *tmp;
4899 	struct list_head *handle_list = NULL;
4900 	struct r5worker_group *wg = NULL;
4901 
4902 	if (conf->worker_cnt_per_group == 0) {
4903 		handle_list = &conf->handle_list;
4904 	} else if (group != ANY_GROUP) {
4905 		handle_list = &conf->worker_groups[group].handle_list;
4906 		wg = &conf->worker_groups[group];
4907 	} else {
4908 		int i;
4909 		for (i = 0; i < conf->group_cnt; i++) {
4910 			handle_list = &conf->worker_groups[i].handle_list;
4911 			wg = &conf->worker_groups[i];
4912 			if (!list_empty(handle_list))
4913 				break;
4914 		}
4915 	}
4916 
4917 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4918 		  __func__,
4919 		  list_empty(handle_list) ? "empty" : "busy",
4920 		  list_empty(&conf->hold_list) ? "empty" : "busy",
4921 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
4922 
4923 	if (!list_empty(handle_list)) {
4924 		sh = list_entry(handle_list->next, typeof(*sh), lru);
4925 
4926 		if (list_empty(&conf->hold_list))
4927 			conf->bypass_count = 0;
4928 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4929 			if (conf->hold_list.next == conf->last_hold)
4930 				conf->bypass_count++;
4931 			else {
4932 				conf->last_hold = conf->hold_list.next;
4933 				conf->bypass_count -= conf->bypass_threshold;
4934 				if (conf->bypass_count < 0)
4935 					conf->bypass_count = 0;
4936 			}
4937 		}
4938 	} else if (!list_empty(&conf->hold_list) &&
4939 		   ((conf->bypass_threshold &&
4940 		     conf->bypass_count > conf->bypass_threshold) ||
4941 		    atomic_read(&conf->pending_full_writes) == 0)) {
4942 
4943 		list_for_each_entry(tmp, &conf->hold_list,  lru) {
4944 			if (conf->worker_cnt_per_group == 0 ||
4945 			    group == ANY_GROUP ||
4946 			    !cpu_online(tmp->cpu) ||
4947 			    cpu_to_group(tmp->cpu) == group) {
4948 				sh = tmp;
4949 				break;
4950 			}
4951 		}
4952 
4953 		if (sh) {
4954 			conf->bypass_count -= conf->bypass_threshold;
4955 			if (conf->bypass_count < 0)
4956 				conf->bypass_count = 0;
4957 		}
4958 		wg = NULL;
4959 	}
4960 
4961 	if (!sh)
4962 		return NULL;
4963 
4964 	if (wg) {
4965 		wg->stripes_cnt--;
4966 		sh->group = NULL;
4967 	}
4968 	list_del_init(&sh->lru);
4969 	BUG_ON(atomic_inc_return(&sh->count) != 1);
4970 	return sh;
4971 }
4972 
4973 struct raid5_plug_cb {
4974 	struct blk_plug_cb	cb;
4975 	struct list_head	list;
4976 	struct list_head	temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4977 };
4978 
4979 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4980 {
4981 	struct raid5_plug_cb *cb = container_of(
4982 		blk_cb, struct raid5_plug_cb, cb);
4983 	struct stripe_head *sh;
4984 	struct mddev *mddev = cb->cb.data;
4985 	struct r5conf *conf = mddev->private;
4986 	int cnt = 0;
4987 	int hash;
4988 
4989 	if (cb->list.next && !list_empty(&cb->list)) {
4990 		spin_lock_irq(&conf->device_lock);
4991 		while (!list_empty(&cb->list)) {
4992 			sh = list_first_entry(&cb->list, struct stripe_head, lru);
4993 			list_del_init(&sh->lru);
4994 			/*
4995 			 * avoid race release_stripe_plug() sees
4996 			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
4997 			 * is still in our list
4998 			 */
4999 			smp_mb__before_atomic();
5000 			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5001 			/*
5002 			 * STRIPE_ON_RELEASE_LIST could be set here. In that
5003 			 * case, the count is always > 1 here
5004 			 */
5005 			hash = sh->hash_lock_index;
5006 			__release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5007 			cnt++;
5008 		}
5009 		spin_unlock_irq(&conf->device_lock);
5010 	}
5011 	release_inactive_stripe_list(conf, cb->temp_inactive_list,
5012 				     NR_STRIPE_HASH_LOCKS);
5013 	if (mddev->queue)
5014 		trace_block_unplug(mddev->queue, cnt, !from_schedule);
5015 	kfree(cb);
5016 }
5017 
5018 static void release_stripe_plug(struct mddev *mddev,
5019 				struct stripe_head *sh)
5020 {
5021 	struct blk_plug_cb *blk_cb = blk_check_plugged(
5022 		raid5_unplug, mddev,
5023 		sizeof(struct raid5_plug_cb));
5024 	struct raid5_plug_cb *cb;
5025 
5026 	if (!blk_cb) {
5027 		raid5_release_stripe(sh);
5028 		return;
5029 	}
5030 
5031 	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5032 
5033 	if (cb->list.next == NULL) {
5034 		int i;
5035 		INIT_LIST_HEAD(&cb->list);
5036 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5037 			INIT_LIST_HEAD(cb->temp_inactive_list + i);
5038 	}
5039 
5040 	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5041 		list_add_tail(&sh->lru, &cb->list);
5042 	else
5043 		raid5_release_stripe(sh);
5044 }
5045 
5046 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5047 {
5048 	struct r5conf *conf = mddev->private;
5049 	sector_t logical_sector, last_sector;
5050 	struct stripe_head *sh;
5051 	int remaining;
5052 	int stripe_sectors;
5053 
5054 	if (mddev->reshape_position != MaxSector)
5055 		/* Skip discard while reshape is happening */
5056 		return;
5057 
5058 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5059 	last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5060 
5061 	bi->bi_next = NULL;
5062 	bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5063 
5064 	stripe_sectors = conf->chunk_sectors *
5065 		(conf->raid_disks - conf->max_degraded);
5066 	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5067 					       stripe_sectors);
5068 	sector_div(last_sector, stripe_sectors);
5069 
5070 	logical_sector *= conf->chunk_sectors;
5071 	last_sector *= conf->chunk_sectors;
5072 
5073 	for (; logical_sector < last_sector;
5074 	     logical_sector += STRIPE_SECTORS) {
5075 		DEFINE_WAIT(w);
5076 		int d;
5077 	again:
5078 		sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5079 		prepare_to_wait(&conf->wait_for_overlap, &w,
5080 				TASK_UNINTERRUPTIBLE);
5081 		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5082 		if (test_bit(STRIPE_SYNCING, &sh->state)) {
5083 			raid5_release_stripe(sh);
5084 			schedule();
5085 			goto again;
5086 		}
5087 		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5088 		spin_lock_irq(&sh->stripe_lock);
5089 		for (d = 0; d < conf->raid_disks; d++) {
5090 			if (d == sh->pd_idx || d == sh->qd_idx)
5091 				continue;
5092 			if (sh->dev[d].towrite || sh->dev[d].toread) {
5093 				set_bit(R5_Overlap, &sh->dev[d].flags);
5094 				spin_unlock_irq(&sh->stripe_lock);
5095 				raid5_release_stripe(sh);
5096 				schedule();
5097 				goto again;
5098 			}
5099 		}
5100 		set_bit(STRIPE_DISCARD, &sh->state);
5101 		finish_wait(&conf->wait_for_overlap, &w);
5102 		sh->overwrite_disks = 0;
5103 		for (d = 0; d < conf->raid_disks; d++) {
5104 			if (d == sh->pd_idx || d == sh->qd_idx)
5105 				continue;
5106 			sh->dev[d].towrite = bi;
5107 			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5108 			raid5_inc_bi_active_stripes(bi);
5109 			sh->overwrite_disks++;
5110 		}
5111 		spin_unlock_irq(&sh->stripe_lock);
5112 		if (conf->mddev->bitmap) {
5113 			for (d = 0;
5114 			     d < conf->raid_disks - conf->max_degraded;
5115 			     d++)
5116 				bitmap_startwrite(mddev->bitmap,
5117 						  sh->sector,
5118 						  STRIPE_SECTORS,
5119 						  0);
5120 			sh->bm_seq = conf->seq_flush + 1;
5121 			set_bit(STRIPE_BIT_DELAY, &sh->state);
5122 		}
5123 
5124 		set_bit(STRIPE_HANDLE, &sh->state);
5125 		clear_bit(STRIPE_DELAYED, &sh->state);
5126 		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5127 			atomic_inc(&conf->preread_active_stripes);
5128 		release_stripe_plug(mddev, sh);
5129 	}
5130 
5131 	remaining = raid5_dec_bi_active_stripes(bi);
5132 	if (remaining == 0) {
5133 		md_write_end(mddev);
5134 		bio_endio(bi);
5135 	}
5136 }
5137 
5138 static void raid5_make_request(struct mddev *mddev, struct bio * bi)
5139 {
5140 	struct r5conf *conf = mddev->private;
5141 	int dd_idx;
5142 	sector_t new_sector;
5143 	sector_t logical_sector, last_sector;
5144 	struct stripe_head *sh;
5145 	const int rw = bio_data_dir(bi);
5146 	int remaining;
5147 	DEFINE_WAIT(w);
5148 	bool do_prepare;
5149 
5150 	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
5151 		int ret = r5l_handle_flush_request(conf->log, bi);
5152 
5153 		if (ret == 0)
5154 			return;
5155 		if (ret == -ENODEV) {
5156 			md_flush_request(mddev, bi);
5157 			return;
5158 		}
5159 		/* ret == -EAGAIN, fallback */
5160 	}
5161 
5162 	md_write_start(mddev, bi);
5163 
5164 	/*
5165 	 * If array is degraded, better not do chunk aligned read because
5166 	 * later we might have to read it again in order to reconstruct
5167 	 * data on failed drives.
5168 	 */
5169 	if (rw == READ && mddev->degraded == 0 &&
5170 	    mddev->reshape_position == MaxSector) {
5171 		bi = chunk_aligned_read(mddev, bi);
5172 		if (!bi)
5173 			return;
5174 	}
5175 
5176 	if (unlikely(bi->bi_rw & REQ_DISCARD)) {
5177 		make_discard_request(mddev, bi);
5178 		return;
5179 	}
5180 
5181 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5182 	last_sector = bio_end_sector(bi);
5183 	bi->bi_next = NULL;
5184 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
5185 
5186 	prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5187 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5188 		int previous;
5189 		int seq;
5190 
5191 		do_prepare = false;
5192 	retry:
5193 		seq = read_seqcount_begin(&conf->gen_lock);
5194 		previous = 0;
5195 		if (do_prepare)
5196 			prepare_to_wait(&conf->wait_for_overlap, &w,
5197 				TASK_UNINTERRUPTIBLE);
5198 		if (unlikely(conf->reshape_progress != MaxSector)) {
5199 			/* spinlock is needed as reshape_progress may be
5200 			 * 64bit on a 32bit platform, and so it might be
5201 			 * possible to see a half-updated value
5202 			 * Of course reshape_progress could change after
5203 			 * the lock is dropped, so once we get a reference
5204 			 * to the stripe that we think it is, we will have
5205 			 * to check again.
5206 			 */
5207 			spin_lock_irq(&conf->device_lock);
5208 			if (mddev->reshape_backwards
5209 			    ? logical_sector < conf->reshape_progress
5210 			    : logical_sector >= conf->reshape_progress) {
5211 				previous = 1;
5212 			} else {
5213 				if (mddev->reshape_backwards
5214 				    ? logical_sector < conf->reshape_safe
5215 				    : logical_sector >= conf->reshape_safe) {
5216 					spin_unlock_irq(&conf->device_lock);
5217 					schedule();
5218 					do_prepare = true;
5219 					goto retry;
5220 				}
5221 			}
5222 			spin_unlock_irq(&conf->device_lock);
5223 		}
5224 
5225 		new_sector = raid5_compute_sector(conf, logical_sector,
5226 						  previous,
5227 						  &dd_idx, NULL);
5228 		pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5229 			(unsigned long long)new_sector,
5230 			(unsigned long long)logical_sector);
5231 
5232 		sh = raid5_get_active_stripe(conf, new_sector, previous,
5233 				       (bi->bi_rw&RWA_MASK), 0);
5234 		if (sh) {
5235 			if (unlikely(previous)) {
5236 				/* expansion might have moved on while waiting for a
5237 				 * stripe, so we must do the range check again.
5238 				 * Expansion could still move past after this
5239 				 * test, but as we are holding a reference to
5240 				 * 'sh', we know that if that happens,
5241 				 *  STRIPE_EXPANDING will get set and the expansion
5242 				 * won't proceed until we finish with the stripe.
5243 				 */
5244 				int must_retry = 0;
5245 				spin_lock_irq(&conf->device_lock);
5246 				if (mddev->reshape_backwards
5247 				    ? logical_sector >= conf->reshape_progress
5248 				    : logical_sector < conf->reshape_progress)
5249 					/* mismatch, need to try again */
5250 					must_retry = 1;
5251 				spin_unlock_irq(&conf->device_lock);
5252 				if (must_retry) {
5253 					raid5_release_stripe(sh);
5254 					schedule();
5255 					do_prepare = true;
5256 					goto retry;
5257 				}
5258 			}
5259 			if (read_seqcount_retry(&conf->gen_lock, seq)) {
5260 				/* Might have got the wrong stripe_head
5261 				 * by accident
5262 				 */
5263 				raid5_release_stripe(sh);
5264 				goto retry;
5265 			}
5266 
5267 			if (rw == WRITE &&
5268 			    logical_sector >= mddev->suspend_lo &&
5269 			    logical_sector < mddev->suspend_hi) {
5270 				raid5_release_stripe(sh);
5271 				/* As the suspend_* range is controlled by
5272 				 * userspace, we want an interruptible
5273 				 * wait.
5274 				 */
5275 				flush_signals(current);
5276 				prepare_to_wait(&conf->wait_for_overlap,
5277 						&w, TASK_INTERRUPTIBLE);
5278 				if (logical_sector >= mddev->suspend_lo &&
5279 				    logical_sector < mddev->suspend_hi) {
5280 					schedule();
5281 					do_prepare = true;
5282 				}
5283 				goto retry;
5284 			}
5285 
5286 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5287 			    !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5288 				/* Stripe is busy expanding or
5289 				 * add failed due to overlap.  Flush everything
5290 				 * and wait a while
5291 				 */
5292 				md_wakeup_thread(mddev->thread);
5293 				raid5_release_stripe(sh);
5294 				schedule();
5295 				do_prepare = true;
5296 				goto retry;
5297 			}
5298 			set_bit(STRIPE_HANDLE, &sh->state);
5299 			clear_bit(STRIPE_DELAYED, &sh->state);
5300 			if ((!sh->batch_head || sh == sh->batch_head) &&
5301 			    (bi->bi_rw & REQ_SYNC) &&
5302 			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5303 				atomic_inc(&conf->preread_active_stripes);
5304 			release_stripe_plug(mddev, sh);
5305 		} else {
5306 			/* cannot get stripe for read-ahead, just give-up */
5307 			bi->bi_error = -EIO;
5308 			break;
5309 		}
5310 	}
5311 	finish_wait(&conf->wait_for_overlap, &w);
5312 
5313 	remaining = raid5_dec_bi_active_stripes(bi);
5314 	if (remaining == 0) {
5315 
5316 		if ( rw == WRITE )
5317 			md_write_end(mddev);
5318 
5319 		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5320 					 bi, 0);
5321 		bio_endio(bi);
5322 	}
5323 }
5324 
5325 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5326 
5327 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5328 {
5329 	/* reshaping is quite different to recovery/resync so it is
5330 	 * handled quite separately ... here.
5331 	 *
5332 	 * On each call to sync_request, we gather one chunk worth of
5333 	 * destination stripes and flag them as expanding.
5334 	 * Then we find all the source stripes and request reads.
5335 	 * As the reads complete, handle_stripe will copy the data
5336 	 * into the destination stripe and release that stripe.
5337 	 */
5338 	struct r5conf *conf = mddev->private;
5339 	struct stripe_head *sh;
5340 	sector_t first_sector, last_sector;
5341 	int raid_disks = conf->previous_raid_disks;
5342 	int data_disks = raid_disks - conf->max_degraded;
5343 	int new_data_disks = conf->raid_disks - conf->max_degraded;
5344 	int i;
5345 	int dd_idx;
5346 	sector_t writepos, readpos, safepos;
5347 	sector_t stripe_addr;
5348 	int reshape_sectors;
5349 	struct list_head stripes;
5350 	sector_t retn;
5351 
5352 	if (sector_nr == 0) {
5353 		/* If restarting in the middle, skip the initial sectors */
5354 		if (mddev->reshape_backwards &&
5355 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5356 			sector_nr = raid5_size(mddev, 0, 0)
5357 				- conf->reshape_progress;
5358 		} else if (mddev->reshape_backwards &&
5359 			   conf->reshape_progress == MaxSector) {
5360 			/* shouldn't happen, but just in case, finish up.*/
5361 			sector_nr = MaxSector;
5362 		} else if (!mddev->reshape_backwards &&
5363 			   conf->reshape_progress > 0)
5364 			sector_nr = conf->reshape_progress;
5365 		sector_div(sector_nr, new_data_disks);
5366 		if (sector_nr) {
5367 			mddev->curr_resync_completed = sector_nr;
5368 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5369 			*skipped = 1;
5370 			retn = sector_nr;
5371 			goto finish;
5372 		}
5373 	}
5374 
5375 	/* We need to process a full chunk at a time.
5376 	 * If old and new chunk sizes differ, we need to process the
5377 	 * largest of these
5378 	 */
5379 
5380 	reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5381 
5382 	/* We update the metadata at least every 10 seconds, or when
5383 	 * the data about to be copied would over-write the source of
5384 	 * the data at the front of the range.  i.e. one new_stripe
5385 	 * along from reshape_progress new_maps to after where
5386 	 * reshape_safe old_maps to
5387 	 */
5388 	writepos = conf->reshape_progress;
5389 	sector_div(writepos, new_data_disks);
5390 	readpos = conf->reshape_progress;
5391 	sector_div(readpos, data_disks);
5392 	safepos = conf->reshape_safe;
5393 	sector_div(safepos, data_disks);
5394 	if (mddev->reshape_backwards) {
5395 		BUG_ON(writepos < reshape_sectors);
5396 		writepos -= reshape_sectors;
5397 		readpos += reshape_sectors;
5398 		safepos += reshape_sectors;
5399 	} else {
5400 		writepos += reshape_sectors;
5401 		/* readpos and safepos are worst-case calculations.
5402 		 * A negative number is overly pessimistic, and causes
5403 		 * obvious problems for unsigned storage.  So clip to 0.
5404 		 */
5405 		readpos -= min_t(sector_t, reshape_sectors, readpos);
5406 		safepos -= min_t(sector_t, reshape_sectors, safepos);
5407 	}
5408 
5409 	/* Having calculated the 'writepos' possibly use it
5410 	 * to set 'stripe_addr' which is where we will write to.
5411 	 */
5412 	if (mddev->reshape_backwards) {
5413 		BUG_ON(conf->reshape_progress == 0);
5414 		stripe_addr = writepos;
5415 		BUG_ON((mddev->dev_sectors &
5416 			~((sector_t)reshape_sectors - 1))
5417 		       - reshape_sectors - stripe_addr
5418 		       != sector_nr);
5419 	} else {
5420 		BUG_ON(writepos != sector_nr + reshape_sectors);
5421 		stripe_addr = sector_nr;
5422 	}
5423 
5424 	/* 'writepos' is the most advanced device address we might write.
5425 	 * 'readpos' is the least advanced device address we might read.
5426 	 * 'safepos' is the least address recorded in the metadata as having
5427 	 *     been reshaped.
5428 	 * If there is a min_offset_diff, these are adjusted either by
5429 	 * increasing the safepos/readpos if diff is negative, or
5430 	 * increasing writepos if diff is positive.
5431 	 * If 'readpos' is then behind 'writepos', there is no way that we can
5432 	 * ensure safety in the face of a crash - that must be done by userspace
5433 	 * making a backup of the data.  So in that case there is no particular
5434 	 * rush to update metadata.
5435 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5436 	 * update the metadata to advance 'safepos' to match 'readpos' so that
5437 	 * we can be safe in the event of a crash.
5438 	 * So we insist on updating metadata if safepos is behind writepos and
5439 	 * readpos is beyond writepos.
5440 	 * In any case, update the metadata every 10 seconds.
5441 	 * Maybe that number should be configurable, but I'm not sure it is
5442 	 * worth it.... maybe it could be a multiple of safemode_delay???
5443 	 */
5444 	if (conf->min_offset_diff < 0) {
5445 		safepos += -conf->min_offset_diff;
5446 		readpos += -conf->min_offset_diff;
5447 	} else
5448 		writepos += conf->min_offset_diff;
5449 
5450 	if ((mddev->reshape_backwards
5451 	     ? (safepos > writepos && readpos < writepos)
5452 	     : (safepos < writepos && readpos > writepos)) ||
5453 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5454 		/* Cannot proceed until we've updated the superblock... */
5455 		wait_event(conf->wait_for_overlap,
5456 			   atomic_read(&conf->reshape_stripes)==0
5457 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5458 		if (atomic_read(&conf->reshape_stripes) != 0)
5459 			return 0;
5460 		mddev->reshape_position = conf->reshape_progress;
5461 		mddev->curr_resync_completed = sector_nr;
5462 		conf->reshape_checkpoint = jiffies;
5463 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
5464 		md_wakeup_thread(mddev->thread);
5465 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
5466 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5467 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5468 			return 0;
5469 		spin_lock_irq(&conf->device_lock);
5470 		conf->reshape_safe = mddev->reshape_position;
5471 		spin_unlock_irq(&conf->device_lock);
5472 		wake_up(&conf->wait_for_overlap);
5473 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5474 	}
5475 
5476 	INIT_LIST_HEAD(&stripes);
5477 	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5478 		int j;
5479 		int skipped_disk = 0;
5480 		sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5481 		set_bit(STRIPE_EXPANDING, &sh->state);
5482 		atomic_inc(&conf->reshape_stripes);
5483 		/* If any of this stripe is beyond the end of the old
5484 		 * array, then we need to zero those blocks
5485 		 */
5486 		for (j=sh->disks; j--;) {
5487 			sector_t s;
5488 			if (j == sh->pd_idx)
5489 				continue;
5490 			if (conf->level == 6 &&
5491 			    j == sh->qd_idx)
5492 				continue;
5493 			s = raid5_compute_blocknr(sh, j, 0);
5494 			if (s < raid5_size(mddev, 0, 0)) {
5495 				skipped_disk = 1;
5496 				continue;
5497 			}
5498 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5499 			set_bit(R5_Expanded, &sh->dev[j].flags);
5500 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
5501 		}
5502 		if (!skipped_disk) {
5503 			set_bit(STRIPE_EXPAND_READY, &sh->state);
5504 			set_bit(STRIPE_HANDLE, &sh->state);
5505 		}
5506 		list_add(&sh->lru, &stripes);
5507 	}
5508 	spin_lock_irq(&conf->device_lock);
5509 	if (mddev->reshape_backwards)
5510 		conf->reshape_progress -= reshape_sectors * new_data_disks;
5511 	else
5512 		conf->reshape_progress += reshape_sectors * new_data_disks;
5513 	spin_unlock_irq(&conf->device_lock);
5514 	/* Ok, those stripe are ready. We can start scheduling
5515 	 * reads on the source stripes.
5516 	 * The source stripes are determined by mapping the first and last
5517 	 * block on the destination stripes.
5518 	 */
5519 	first_sector =
5520 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5521 				     1, &dd_idx, NULL);
5522 	last_sector =
5523 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5524 					    * new_data_disks - 1),
5525 				     1, &dd_idx, NULL);
5526 	if (last_sector >= mddev->dev_sectors)
5527 		last_sector = mddev->dev_sectors - 1;
5528 	while (first_sector <= last_sector) {
5529 		sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5530 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5531 		set_bit(STRIPE_HANDLE, &sh->state);
5532 		raid5_release_stripe(sh);
5533 		first_sector += STRIPE_SECTORS;
5534 	}
5535 	/* Now that the sources are clearly marked, we can release
5536 	 * the destination stripes
5537 	 */
5538 	while (!list_empty(&stripes)) {
5539 		sh = list_entry(stripes.next, struct stripe_head, lru);
5540 		list_del_init(&sh->lru);
5541 		raid5_release_stripe(sh);
5542 	}
5543 	/* If this takes us to the resync_max point where we have to pause,
5544 	 * then we need to write out the superblock.
5545 	 */
5546 	sector_nr += reshape_sectors;
5547 	retn = reshape_sectors;
5548 finish:
5549 	if (mddev->curr_resync_completed > mddev->resync_max ||
5550 	    (sector_nr - mddev->curr_resync_completed) * 2
5551 	    >= mddev->resync_max - mddev->curr_resync_completed) {
5552 		/* Cannot proceed until we've updated the superblock... */
5553 		wait_event(conf->wait_for_overlap,
5554 			   atomic_read(&conf->reshape_stripes) == 0
5555 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5556 		if (atomic_read(&conf->reshape_stripes) != 0)
5557 			goto ret;
5558 		mddev->reshape_position = conf->reshape_progress;
5559 		mddev->curr_resync_completed = sector_nr;
5560 		conf->reshape_checkpoint = jiffies;
5561 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
5562 		md_wakeup_thread(mddev->thread);
5563 		wait_event(mddev->sb_wait,
5564 			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
5565 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5566 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5567 			goto ret;
5568 		spin_lock_irq(&conf->device_lock);
5569 		conf->reshape_safe = mddev->reshape_position;
5570 		spin_unlock_irq(&conf->device_lock);
5571 		wake_up(&conf->wait_for_overlap);
5572 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5573 	}
5574 ret:
5575 	return retn;
5576 }
5577 
5578 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
5579 					  int *skipped)
5580 {
5581 	struct r5conf *conf = mddev->private;
5582 	struct stripe_head *sh;
5583 	sector_t max_sector = mddev->dev_sectors;
5584 	sector_t sync_blocks;
5585 	int still_degraded = 0;
5586 	int i;
5587 
5588 	if (sector_nr >= max_sector) {
5589 		/* just being told to finish up .. nothing much to do */
5590 
5591 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5592 			end_reshape(conf);
5593 			return 0;
5594 		}
5595 
5596 		if (mddev->curr_resync < max_sector) /* aborted */
5597 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5598 					&sync_blocks, 1);
5599 		else /* completed sync */
5600 			conf->fullsync = 0;
5601 		bitmap_close_sync(mddev->bitmap);
5602 
5603 		return 0;
5604 	}
5605 
5606 	/* Allow raid5_quiesce to complete */
5607 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5608 
5609 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5610 		return reshape_request(mddev, sector_nr, skipped);
5611 
5612 	/* No need to check resync_max as we never do more than one
5613 	 * stripe, and as resync_max will always be on a chunk boundary,
5614 	 * if the check in md_do_sync didn't fire, there is no chance
5615 	 * of overstepping resync_max here
5616 	 */
5617 
5618 	/* if there is too many failed drives and we are trying
5619 	 * to resync, then assert that we are finished, because there is
5620 	 * nothing we can do.
5621 	 */
5622 	if (mddev->degraded >= conf->max_degraded &&
5623 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5624 		sector_t rv = mddev->dev_sectors - sector_nr;
5625 		*skipped = 1;
5626 		return rv;
5627 	}
5628 	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5629 	    !conf->fullsync &&
5630 	    !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5631 	    sync_blocks >= STRIPE_SECTORS) {
5632 		/* we can skip this block, and probably more */
5633 		sync_blocks /= STRIPE_SECTORS;
5634 		*skipped = 1;
5635 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5636 	}
5637 
5638 	bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
5639 
5640 	sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
5641 	if (sh == NULL) {
5642 		sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
5643 		/* make sure we don't swamp the stripe cache if someone else
5644 		 * is trying to get access
5645 		 */
5646 		schedule_timeout_uninterruptible(1);
5647 	}
5648 	/* Need to check if array will still be degraded after recovery/resync
5649 	 * Note in case of > 1 drive failures it's possible we're rebuilding
5650 	 * one drive while leaving another faulty drive in array.
5651 	 */
5652 	rcu_read_lock();
5653 	for (i = 0; i < conf->raid_disks; i++) {
5654 		struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5655 
5656 		if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5657 			still_degraded = 1;
5658 	}
5659 	rcu_read_unlock();
5660 
5661 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5662 
5663 	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5664 	set_bit(STRIPE_HANDLE, &sh->state);
5665 
5666 	raid5_release_stripe(sh);
5667 
5668 	return STRIPE_SECTORS;
5669 }
5670 
5671 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5672 {
5673 	/* We may not be able to submit a whole bio at once as there
5674 	 * may not be enough stripe_heads available.
5675 	 * We cannot pre-allocate enough stripe_heads as we may need
5676 	 * more than exist in the cache (if we allow ever large chunks).
5677 	 * So we do one stripe head at a time and record in
5678 	 * ->bi_hw_segments how many have been done.
5679 	 *
5680 	 * We *know* that this entire raid_bio is in one chunk, so
5681 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5682 	 */
5683 	struct stripe_head *sh;
5684 	int dd_idx;
5685 	sector_t sector, logical_sector, last_sector;
5686 	int scnt = 0;
5687 	int remaining;
5688 	int handled = 0;
5689 
5690 	logical_sector = raid_bio->bi_iter.bi_sector &
5691 		~((sector_t)STRIPE_SECTORS-1);
5692 	sector = raid5_compute_sector(conf, logical_sector,
5693 				      0, &dd_idx, NULL);
5694 	last_sector = bio_end_sector(raid_bio);
5695 
5696 	for (; logical_sector < last_sector;
5697 	     logical_sector += STRIPE_SECTORS,
5698 		     sector += STRIPE_SECTORS,
5699 		     scnt++) {
5700 
5701 		if (scnt < raid5_bi_processed_stripes(raid_bio))
5702 			/* already done this stripe */
5703 			continue;
5704 
5705 		sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
5706 
5707 		if (!sh) {
5708 			/* failed to get a stripe - must wait */
5709 			raid5_set_bi_processed_stripes(raid_bio, scnt);
5710 			conf->retry_read_aligned = raid_bio;
5711 			return handled;
5712 		}
5713 
5714 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
5715 			raid5_release_stripe(sh);
5716 			raid5_set_bi_processed_stripes(raid_bio, scnt);
5717 			conf->retry_read_aligned = raid_bio;
5718 			return handled;
5719 		}
5720 
5721 		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5722 		handle_stripe(sh);
5723 		raid5_release_stripe(sh);
5724 		handled++;
5725 	}
5726 	remaining = raid5_dec_bi_active_stripes(raid_bio);
5727 	if (remaining == 0) {
5728 		trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5729 					 raid_bio, 0);
5730 		bio_endio(raid_bio);
5731 	}
5732 	if (atomic_dec_and_test(&conf->active_aligned_reads))
5733 		wake_up(&conf->wait_for_quiescent);
5734 	return handled;
5735 }
5736 
5737 static int handle_active_stripes(struct r5conf *conf, int group,
5738 				 struct r5worker *worker,
5739 				 struct list_head *temp_inactive_list)
5740 {
5741 	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5742 	int i, batch_size = 0, hash;
5743 	bool release_inactive = false;
5744 
5745 	while (batch_size < MAX_STRIPE_BATCH &&
5746 			(sh = __get_priority_stripe(conf, group)) != NULL)
5747 		batch[batch_size++] = sh;
5748 
5749 	if (batch_size == 0) {
5750 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5751 			if (!list_empty(temp_inactive_list + i))
5752 				break;
5753 		if (i == NR_STRIPE_HASH_LOCKS) {
5754 			spin_unlock_irq(&conf->device_lock);
5755 			r5l_flush_stripe_to_raid(conf->log);
5756 			spin_lock_irq(&conf->device_lock);
5757 			return batch_size;
5758 		}
5759 		release_inactive = true;
5760 	}
5761 	spin_unlock_irq(&conf->device_lock);
5762 
5763 	release_inactive_stripe_list(conf, temp_inactive_list,
5764 				     NR_STRIPE_HASH_LOCKS);
5765 
5766 	r5l_flush_stripe_to_raid(conf->log);
5767 	if (release_inactive) {
5768 		spin_lock_irq(&conf->device_lock);
5769 		return 0;
5770 	}
5771 
5772 	for (i = 0; i < batch_size; i++)
5773 		handle_stripe(batch[i]);
5774 	r5l_write_stripe_run(conf->log);
5775 
5776 	cond_resched();
5777 
5778 	spin_lock_irq(&conf->device_lock);
5779 	for (i = 0; i < batch_size; i++) {
5780 		hash = batch[i]->hash_lock_index;
5781 		__release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5782 	}
5783 	return batch_size;
5784 }
5785 
5786 static void raid5_do_work(struct work_struct *work)
5787 {
5788 	struct r5worker *worker = container_of(work, struct r5worker, work);
5789 	struct r5worker_group *group = worker->group;
5790 	struct r5conf *conf = group->conf;
5791 	int group_id = group - conf->worker_groups;
5792 	int handled;
5793 	struct blk_plug plug;
5794 
5795 	pr_debug("+++ raid5worker active\n");
5796 
5797 	blk_start_plug(&plug);
5798 	handled = 0;
5799 	spin_lock_irq(&conf->device_lock);
5800 	while (1) {
5801 		int batch_size, released;
5802 
5803 		released = release_stripe_list(conf, worker->temp_inactive_list);
5804 
5805 		batch_size = handle_active_stripes(conf, group_id, worker,
5806 						   worker->temp_inactive_list);
5807 		worker->working = false;
5808 		if (!batch_size && !released)
5809 			break;
5810 		handled += batch_size;
5811 	}
5812 	pr_debug("%d stripes handled\n", handled);
5813 
5814 	spin_unlock_irq(&conf->device_lock);
5815 	blk_finish_plug(&plug);
5816 
5817 	pr_debug("--- raid5worker inactive\n");
5818 }
5819 
5820 /*
5821  * This is our raid5 kernel thread.
5822  *
5823  * We scan the hash table for stripes which can be handled now.
5824  * During the scan, completed stripes are saved for us by the interrupt
5825  * handler, so that they will not have to wait for our next wakeup.
5826  */
5827 static void raid5d(struct md_thread *thread)
5828 {
5829 	struct mddev *mddev = thread->mddev;
5830 	struct r5conf *conf = mddev->private;
5831 	int handled;
5832 	struct blk_plug plug;
5833 
5834 	pr_debug("+++ raid5d active\n");
5835 
5836 	md_check_recovery(mddev);
5837 
5838 	if (!bio_list_empty(&conf->return_bi) &&
5839 	    !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5840 		struct bio_list tmp = BIO_EMPTY_LIST;
5841 		spin_lock_irq(&conf->device_lock);
5842 		if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5843 			bio_list_merge(&tmp, &conf->return_bi);
5844 			bio_list_init(&conf->return_bi);
5845 		}
5846 		spin_unlock_irq(&conf->device_lock);
5847 		return_io(&tmp);
5848 	}
5849 
5850 	blk_start_plug(&plug);
5851 	handled = 0;
5852 	spin_lock_irq(&conf->device_lock);
5853 	while (1) {
5854 		struct bio *bio;
5855 		int batch_size, released;
5856 
5857 		released = release_stripe_list(conf, conf->temp_inactive_list);
5858 		if (released)
5859 			clear_bit(R5_DID_ALLOC, &conf->cache_state);
5860 
5861 		if (
5862 		    !list_empty(&conf->bitmap_list)) {
5863 			/* Now is a good time to flush some bitmap updates */
5864 			conf->seq_flush++;
5865 			spin_unlock_irq(&conf->device_lock);
5866 			bitmap_unplug(mddev->bitmap);
5867 			spin_lock_irq(&conf->device_lock);
5868 			conf->seq_write = conf->seq_flush;
5869 			activate_bit_delay(conf, conf->temp_inactive_list);
5870 		}
5871 		raid5_activate_delayed(conf);
5872 
5873 		while ((bio = remove_bio_from_retry(conf))) {
5874 			int ok;
5875 			spin_unlock_irq(&conf->device_lock);
5876 			ok = retry_aligned_read(conf, bio);
5877 			spin_lock_irq(&conf->device_lock);
5878 			if (!ok)
5879 				break;
5880 			handled++;
5881 		}
5882 
5883 		batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5884 						   conf->temp_inactive_list);
5885 		if (!batch_size && !released)
5886 			break;
5887 		handled += batch_size;
5888 
5889 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5890 			spin_unlock_irq(&conf->device_lock);
5891 			md_check_recovery(mddev);
5892 			spin_lock_irq(&conf->device_lock);
5893 		}
5894 	}
5895 	pr_debug("%d stripes handled\n", handled);
5896 
5897 	spin_unlock_irq(&conf->device_lock);
5898 	if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
5899 	    mutex_trylock(&conf->cache_size_mutex)) {
5900 		grow_one_stripe(conf, __GFP_NOWARN);
5901 		/* Set flag even if allocation failed.  This helps
5902 		 * slow down allocation requests when mem is short
5903 		 */
5904 		set_bit(R5_DID_ALLOC, &conf->cache_state);
5905 		mutex_unlock(&conf->cache_size_mutex);
5906 	}
5907 
5908 	r5l_flush_stripe_to_raid(conf->log);
5909 
5910 	async_tx_issue_pending_all();
5911 	blk_finish_plug(&plug);
5912 
5913 	pr_debug("--- raid5d inactive\n");
5914 }
5915 
5916 static ssize_t
5917 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5918 {
5919 	struct r5conf *conf;
5920 	int ret = 0;
5921 	spin_lock(&mddev->lock);
5922 	conf = mddev->private;
5923 	if (conf)
5924 		ret = sprintf(page, "%d\n", conf->min_nr_stripes);
5925 	spin_unlock(&mddev->lock);
5926 	return ret;
5927 }
5928 
5929 int
5930 raid5_set_cache_size(struct mddev *mddev, int size)
5931 {
5932 	struct r5conf *conf = mddev->private;
5933 	int err;
5934 
5935 	if (size <= 16 || size > 32768)
5936 		return -EINVAL;
5937 
5938 	conf->min_nr_stripes = size;
5939 	mutex_lock(&conf->cache_size_mutex);
5940 	while (size < conf->max_nr_stripes &&
5941 	       drop_one_stripe(conf))
5942 		;
5943 	mutex_unlock(&conf->cache_size_mutex);
5944 
5945 
5946 	err = md_allow_write(mddev);
5947 	if (err)
5948 		return err;
5949 
5950 	mutex_lock(&conf->cache_size_mutex);
5951 	while (size > conf->max_nr_stripes)
5952 		if (!grow_one_stripe(conf, GFP_KERNEL))
5953 			break;
5954 	mutex_unlock(&conf->cache_size_mutex);
5955 
5956 	return 0;
5957 }
5958 EXPORT_SYMBOL(raid5_set_cache_size);
5959 
5960 static ssize_t
5961 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5962 {
5963 	struct r5conf *conf;
5964 	unsigned long new;
5965 	int err;
5966 
5967 	if (len >= PAGE_SIZE)
5968 		return -EINVAL;
5969 	if (kstrtoul(page, 10, &new))
5970 		return -EINVAL;
5971 	err = mddev_lock(mddev);
5972 	if (err)
5973 		return err;
5974 	conf = mddev->private;
5975 	if (!conf)
5976 		err = -ENODEV;
5977 	else
5978 		err = raid5_set_cache_size(mddev, new);
5979 	mddev_unlock(mddev);
5980 
5981 	return err ?: len;
5982 }
5983 
5984 static struct md_sysfs_entry
5985 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5986 				raid5_show_stripe_cache_size,
5987 				raid5_store_stripe_cache_size);
5988 
5989 static ssize_t
5990 raid5_show_rmw_level(struct mddev  *mddev, char *page)
5991 {
5992 	struct r5conf *conf = mddev->private;
5993 	if (conf)
5994 		return sprintf(page, "%d\n", conf->rmw_level);
5995 	else
5996 		return 0;
5997 }
5998 
5999 static ssize_t
6000 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
6001 {
6002 	struct r5conf *conf = mddev->private;
6003 	unsigned long new;
6004 
6005 	if (!conf)
6006 		return -ENODEV;
6007 
6008 	if (len >= PAGE_SIZE)
6009 		return -EINVAL;
6010 
6011 	if (kstrtoul(page, 10, &new))
6012 		return -EINVAL;
6013 
6014 	if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6015 		return -EINVAL;
6016 
6017 	if (new != PARITY_DISABLE_RMW &&
6018 	    new != PARITY_ENABLE_RMW &&
6019 	    new != PARITY_PREFER_RMW)
6020 		return -EINVAL;
6021 
6022 	conf->rmw_level = new;
6023 	return len;
6024 }
6025 
6026 static struct md_sysfs_entry
6027 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6028 			 raid5_show_rmw_level,
6029 			 raid5_store_rmw_level);
6030 
6031 
6032 static ssize_t
6033 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6034 {
6035 	struct r5conf *conf;
6036 	int ret = 0;
6037 	spin_lock(&mddev->lock);
6038 	conf = mddev->private;
6039 	if (conf)
6040 		ret = sprintf(page, "%d\n", conf->bypass_threshold);
6041 	spin_unlock(&mddev->lock);
6042 	return ret;
6043 }
6044 
6045 static ssize_t
6046 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6047 {
6048 	struct r5conf *conf;
6049 	unsigned long new;
6050 	int err;
6051 
6052 	if (len >= PAGE_SIZE)
6053 		return -EINVAL;
6054 	if (kstrtoul(page, 10, &new))
6055 		return -EINVAL;
6056 
6057 	err = mddev_lock(mddev);
6058 	if (err)
6059 		return err;
6060 	conf = mddev->private;
6061 	if (!conf)
6062 		err = -ENODEV;
6063 	else if (new > conf->min_nr_stripes)
6064 		err = -EINVAL;
6065 	else
6066 		conf->bypass_threshold = new;
6067 	mddev_unlock(mddev);
6068 	return err ?: len;
6069 }
6070 
6071 static struct md_sysfs_entry
6072 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6073 					S_IRUGO | S_IWUSR,
6074 					raid5_show_preread_threshold,
6075 					raid5_store_preread_threshold);
6076 
6077 static ssize_t
6078 raid5_show_skip_copy(struct mddev *mddev, char *page)
6079 {
6080 	struct r5conf *conf;
6081 	int ret = 0;
6082 	spin_lock(&mddev->lock);
6083 	conf = mddev->private;
6084 	if (conf)
6085 		ret = sprintf(page, "%d\n", conf->skip_copy);
6086 	spin_unlock(&mddev->lock);
6087 	return ret;
6088 }
6089 
6090 static ssize_t
6091 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6092 {
6093 	struct r5conf *conf;
6094 	unsigned long new;
6095 	int err;
6096 
6097 	if (len >= PAGE_SIZE)
6098 		return -EINVAL;
6099 	if (kstrtoul(page, 10, &new))
6100 		return -EINVAL;
6101 	new = !!new;
6102 
6103 	err = mddev_lock(mddev);
6104 	if (err)
6105 		return err;
6106 	conf = mddev->private;
6107 	if (!conf)
6108 		err = -ENODEV;
6109 	else if (new != conf->skip_copy) {
6110 		mddev_suspend(mddev);
6111 		conf->skip_copy = new;
6112 		if (new)
6113 			mddev->queue->backing_dev_info.capabilities |=
6114 				BDI_CAP_STABLE_WRITES;
6115 		else
6116 			mddev->queue->backing_dev_info.capabilities &=
6117 				~BDI_CAP_STABLE_WRITES;
6118 		mddev_resume(mddev);
6119 	}
6120 	mddev_unlock(mddev);
6121 	return err ?: len;
6122 }
6123 
6124 static struct md_sysfs_entry
6125 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6126 					raid5_show_skip_copy,
6127 					raid5_store_skip_copy);
6128 
6129 static ssize_t
6130 stripe_cache_active_show(struct mddev *mddev, char *page)
6131 {
6132 	struct r5conf *conf = mddev->private;
6133 	if (conf)
6134 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6135 	else
6136 		return 0;
6137 }
6138 
6139 static struct md_sysfs_entry
6140 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6141 
6142 static ssize_t
6143 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6144 {
6145 	struct r5conf *conf;
6146 	int ret = 0;
6147 	spin_lock(&mddev->lock);
6148 	conf = mddev->private;
6149 	if (conf)
6150 		ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6151 	spin_unlock(&mddev->lock);
6152 	return ret;
6153 }
6154 
6155 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6156 			       int *group_cnt,
6157 			       int *worker_cnt_per_group,
6158 			       struct r5worker_group **worker_groups);
6159 static ssize_t
6160 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6161 {
6162 	struct r5conf *conf;
6163 	unsigned long new;
6164 	int err;
6165 	struct r5worker_group *new_groups, *old_groups;
6166 	int group_cnt, worker_cnt_per_group;
6167 
6168 	if (len >= PAGE_SIZE)
6169 		return -EINVAL;
6170 	if (kstrtoul(page, 10, &new))
6171 		return -EINVAL;
6172 
6173 	err = mddev_lock(mddev);
6174 	if (err)
6175 		return err;
6176 	conf = mddev->private;
6177 	if (!conf)
6178 		err = -ENODEV;
6179 	else if (new != conf->worker_cnt_per_group) {
6180 		mddev_suspend(mddev);
6181 
6182 		old_groups = conf->worker_groups;
6183 		if (old_groups)
6184 			flush_workqueue(raid5_wq);
6185 
6186 		err = alloc_thread_groups(conf, new,
6187 					  &group_cnt, &worker_cnt_per_group,
6188 					  &new_groups);
6189 		if (!err) {
6190 			spin_lock_irq(&conf->device_lock);
6191 			conf->group_cnt = group_cnt;
6192 			conf->worker_cnt_per_group = worker_cnt_per_group;
6193 			conf->worker_groups = new_groups;
6194 			spin_unlock_irq(&conf->device_lock);
6195 
6196 			if (old_groups)
6197 				kfree(old_groups[0].workers);
6198 			kfree(old_groups);
6199 		}
6200 		mddev_resume(mddev);
6201 	}
6202 	mddev_unlock(mddev);
6203 
6204 	return err ?: len;
6205 }
6206 
6207 static struct md_sysfs_entry
6208 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6209 				raid5_show_group_thread_cnt,
6210 				raid5_store_group_thread_cnt);
6211 
6212 static struct attribute *raid5_attrs[] =  {
6213 	&raid5_stripecache_size.attr,
6214 	&raid5_stripecache_active.attr,
6215 	&raid5_preread_bypass_threshold.attr,
6216 	&raid5_group_thread_cnt.attr,
6217 	&raid5_skip_copy.attr,
6218 	&raid5_rmw_level.attr,
6219 	NULL,
6220 };
6221 static struct attribute_group raid5_attrs_group = {
6222 	.name = NULL,
6223 	.attrs = raid5_attrs,
6224 };
6225 
6226 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6227 			       int *group_cnt,
6228 			       int *worker_cnt_per_group,
6229 			       struct r5worker_group **worker_groups)
6230 {
6231 	int i, j, k;
6232 	ssize_t size;
6233 	struct r5worker *workers;
6234 
6235 	*worker_cnt_per_group = cnt;
6236 	if (cnt == 0) {
6237 		*group_cnt = 0;
6238 		*worker_groups = NULL;
6239 		return 0;
6240 	}
6241 	*group_cnt = num_possible_nodes();
6242 	size = sizeof(struct r5worker) * cnt;
6243 	workers = kzalloc(size * *group_cnt, GFP_NOIO);
6244 	*worker_groups = kzalloc(sizeof(struct r5worker_group) *
6245 				*group_cnt, GFP_NOIO);
6246 	if (!*worker_groups || !workers) {
6247 		kfree(workers);
6248 		kfree(*worker_groups);
6249 		return -ENOMEM;
6250 	}
6251 
6252 	for (i = 0; i < *group_cnt; i++) {
6253 		struct r5worker_group *group;
6254 
6255 		group = &(*worker_groups)[i];
6256 		INIT_LIST_HEAD(&group->handle_list);
6257 		group->conf = conf;
6258 		group->workers = workers + i * cnt;
6259 
6260 		for (j = 0; j < cnt; j++) {
6261 			struct r5worker *worker = group->workers + j;
6262 			worker->group = group;
6263 			INIT_WORK(&worker->work, raid5_do_work);
6264 
6265 			for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6266 				INIT_LIST_HEAD(worker->temp_inactive_list + k);
6267 		}
6268 	}
6269 
6270 	return 0;
6271 }
6272 
6273 static void free_thread_groups(struct r5conf *conf)
6274 {
6275 	if (conf->worker_groups)
6276 		kfree(conf->worker_groups[0].workers);
6277 	kfree(conf->worker_groups);
6278 	conf->worker_groups = NULL;
6279 }
6280 
6281 static sector_t
6282 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6283 {
6284 	struct r5conf *conf = mddev->private;
6285 
6286 	if (!sectors)
6287 		sectors = mddev->dev_sectors;
6288 	if (!raid_disks)
6289 		/* size is defined by the smallest of previous and new size */
6290 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6291 
6292 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
6293 	sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6294 	return sectors * (raid_disks - conf->max_degraded);
6295 }
6296 
6297 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6298 {
6299 	safe_put_page(percpu->spare_page);
6300 	if (percpu->scribble)
6301 		flex_array_free(percpu->scribble);
6302 	percpu->spare_page = NULL;
6303 	percpu->scribble = NULL;
6304 }
6305 
6306 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6307 {
6308 	if (conf->level == 6 && !percpu->spare_page)
6309 		percpu->spare_page = alloc_page(GFP_KERNEL);
6310 	if (!percpu->scribble)
6311 		percpu->scribble = scribble_alloc(max(conf->raid_disks,
6312 						      conf->previous_raid_disks),
6313 						  max(conf->chunk_sectors,
6314 						      conf->prev_chunk_sectors)
6315 						   / STRIPE_SECTORS,
6316 						  GFP_KERNEL);
6317 
6318 	if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6319 		free_scratch_buffer(conf, percpu);
6320 		return -ENOMEM;
6321 	}
6322 
6323 	return 0;
6324 }
6325 
6326 static void raid5_free_percpu(struct r5conf *conf)
6327 {
6328 	unsigned long cpu;
6329 
6330 	if (!conf->percpu)
6331 		return;
6332 
6333 #ifdef CONFIG_HOTPLUG_CPU
6334 	unregister_cpu_notifier(&conf->cpu_notify);
6335 #endif
6336 
6337 	get_online_cpus();
6338 	for_each_possible_cpu(cpu)
6339 		free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6340 	put_online_cpus();
6341 
6342 	free_percpu(conf->percpu);
6343 }
6344 
6345 static void free_conf(struct r5conf *conf)
6346 {
6347 	if (conf->log)
6348 		r5l_exit_log(conf->log);
6349 	if (conf->shrinker.seeks)
6350 		unregister_shrinker(&conf->shrinker);
6351 
6352 	free_thread_groups(conf);
6353 	shrink_stripes(conf);
6354 	raid5_free_percpu(conf);
6355 	kfree(conf->disks);
6356 	kfree(conf->stripe_hashtbl);
6357 	kfree(conf);
6358 }
6359 
6360 #ifdef CONFIG_HOTPLUG_CPU
6361 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
6362 			      void *hcpu)
6363 {
6364 	struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
6365 	long cpu = (long)hcpu;
6366 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6367 
6368 	switch (action) {
6369 	case CPU_UP_PREPARE:
6370 	case CPU_UP_PREPARE_FROZEN:
6371 		if (alloc_scratch_buffer(conf, percpu)) {
6372 			pr_err("%s: failed memory allocation for cpu%ld\n",
6373 			       __func__, cpu);
6374 			return notifier_from_errno(-ENOMEM);
6375 		}
6376 		break;
6377 	case CPU_DEAD:
6378 	case CPU_DEAD_FROZEN:
6379 		free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6380 		break;
6381 	default:
6382 		break;
6383 	}
6384 	return NOTIFY_OK;
6385 }
6386 #endif
6387 
6388 static int raid5_alloc_percpu(struct r5conf *conf)
6389 {
6390 	unsigned long cpu;
6391 	int err = 0;
6392 
6393 	conf->percpu = alloc_percpu(struct raid5_percpu);
6394 	if (!conf->percpu)
6395 		return -ENOMEM;
6396 
6397 #ifdef CONFIG_HOTPLUG_CPU
6398 	conf->cpu_notify.notifier_call = raid456_cpu_notify;
6399 	conf->cpu_notify.priority = 0;
6400 	err = register_cpu_notifier(&conf->cpu_notify);
6401 	if (err)
6402 		return err;
6403 #endif
6404 
6405 	get_online_cpus();
6406 	for_each_present_cpu(cpu) {
6407 		err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6408 		if (err) {
6409 			pr_err("%s: failed memory allocation for cpu%ld\n",
6410 			       __func__, cpu);
6411 			break;
6412 		}
6413 	}
6414 	put_online_cpus();
6415 
6416 	return err;
6417 }
6418 
6419 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6420 				      struct shrink_control *sc)
6421 {
6422 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6423 	unsigned long ret = SHRINK_STOP;
6424 
6425 	if (mutex_trylock(&conf->cache_size_mutex)) {
6426 		ret= 0;
6427 		while (ret < sc->nr_to_scan &&
6428 		       conf->max_nr_stripes > conf->min_nr_stripes) {
6429 			if (drop_one_stripe(conf) == 0) {
6430 				ret = SHRINK_STOP;
6431 				break;
6432 			}
6433 			ret++;
6434 		}
6435 		mutex_unlock(&conf->cache_size_mutex);
6436 	}
6437 	return ret;
6438 }
6439 
6440 static unsigned long raid5_cache_count(struct shrinker *shrink,
6441 				       struct shrink_control *sc)
6442 {
6443 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6444 
6445 	if (conf->max_nr_stripes < conf->min_nr_stripes)
6446 		/* unlikely, but not impossible */
6447 		return 0;
6448 	return conf->max_nr_stripes - conf->min_nr_stripes;
6449 }
6450 
6451 static struct r5conf *setup_conf(struct mddev *mddev)
6452 {
6453 	struct r5conf *conf;
6454 	int raid_disk, memory, max_disks;
6455 	struct md_rdev *rdev;
6456 	struct disk_info *disk;
6457 	char pers_name[6];
6458 	int i;
6459 	int group_cnt, worker_cnt_per_group;
6460 	struct r5worker_group *new_group;
6461 
6462 	if (mddev->new_level != 5
6463 	    && mddev->new_level != 4
6464 	    && mddev->new_level != 6) {
6465 		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6466 		       mdname(mddev), mddev->new_level);
6467 		return ERR_PTR(-EIO);
6468 	}
6469 	if ((mddev->new_level == 5
6470 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
6471 	    (mddev->new_level == 6
6472 	     && !algorithm_valid_raid6(mddev->new_layout))) {
6473 		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
6474 		       mdname(mddev), mddev->new_layout);
6475 		return ERR_PTR(-EIO);
6476 	}
6477 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6478 		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6479 		       mdname(mddev), mddev->raid_disks);
6480 		return ERR_PTR(-EINVAL);
6481 	}
6482 
6483 	if (!mddev->new_chunk_sectors ||
6484 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6485 	    !is_power_of_2(mddev->new_chunk_sectors)) {
6486 		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6487 		       mdname(mddev), mddev->new_chunk_sectors << 9);
6488 		return ERR_PTR(-EINVAL);
6489 	}
6490 
6491 	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6492 	if (conf == NULL)
6493 		goto abort;
6494 	/* Don't enable multi-threading by default*/
6495 	if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6496 				 &new_group)) {
6497 		conf->group_cnt = group_cnt;
6498 		conf->worker_cnt_per_group = worker_cnt_per_group;
6499 		conf->worker_groups = new_group;
6500 	} else
6501 		goto abort;
6502 	spin_lock_init(&conf->device_lock);
6503 	seqcount_init(&conf->gen_lock);
6504 	mutex_init(&conf->cache_size_mutex);
6505 	init_waitqueue_head(&conf->wait_for_quiescent);
6506 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) {
6507 		init_waitqueue_head(&conf->wait_for_stripe[i]);
6508 	}
6509 	init_waitqueue_head(&conf->wait_for_overlap);
6510 	INIT_LIST_HEAD(&conf->handle_list);
6511 	INIT_LIST_HEAD(&conf->hold_list);
6512 	INIT_LIST_HEAD(&conf->delayed_list);
6513 	INIT_LIST_HEAD(&conf->bitmap_list);
6514 	bio_list_init(&conf->return_bi);
6515 	init_llist_head(&conf->released_stripes);
6516 	atomic_set(&conf->active_stripes, 0);
6517 	atomic_set(&conf->preread_active_stripes, 0);
6518 	atomic_set(&conf->active_aligned_reads, 0);
6519 	conf->bypass_threshold = BYPASS_THRESHOLD;
6520 	conf->recovery_disabled = mddev->recovery_disabled - 1;
6521 
6522 	conf->raid_disks = mddev->raid_disks;
6523 	if (mddev->reshape_position == MaxSector)
6524 		conf->previous_raid_disks = mddev->raid_disks;
6525 	else
6526 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6527 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6528 
6529 	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6530 			      GFP_KERNEL);
6531 	if (!conf->disks)
6532 		goto abort;
6533 
6534 	conf->mddev = mddev;
6535 
6536 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6537 		goto abort;
6538 
6539 	/* We init hash_locks[0] separately to that it can be used
6540 	 * as the reference lock in the spin_lock_nest_lock() call
6541 	 * in lock_all_device_hash_locks_irq in order to convince
6542 	 * lockdep that we know what we are doing.
6543 	 */
6544 	spin_lock_init(conf->hash_locks);
6545 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6546 		spin_lock_init(conf->hash_locks + i);
6547 
6548 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6549 		INIT_LIST_HEAD(conf->inactive_list + i);
6550 
6551 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6552 		INIT_LIST_HEAD(conf->temp_inactive_list + i);
6553 
6554 	conf->level = mddev->new_level;
6555 	conf->chunk_sectors = mddev->new_chunk_sectors;
6556 	if (raid5_alloc_percpu(conf) != 0)
6557 		goto abort;
6558 
6559 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6560 
6561 	rdev_for_each(rdev, mddev) {
6562 		raid_disk = rdev->raid_disk;
6563 		if (raid_disk >= max_disks
6564 		    || raid_disk < 0 || test_bit(Journal, &rdev->flags))
6565 			continue;
6566 		disk = conf->disks + raid_disk;
6567 
6568 		if (test_bit(Replacement, &rdev->flags)) {
6569 			if (disk->replacement)
6570 				goto abort;
6571 			disk->replacement = rdev;
6572 		} else {
6573 			if (disk->rdev)
6574 				goto abort;
6575 			disk->rdev = rdev;
6576 		}
6577 
6578 		if (test_bit(In_sync, &rdev->flags)) {
6579 			char b[BDEVNAME_SIZE];
6580 			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6581 			       " disk %d\n",
6582 			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6583 		} else if (rdev->saved_raid_disk != raid_disk)
6584 			/* Cannot rely on bitmap to complete recovery */
6585 			conf->fullsync = 1;
6586 	}
6587 
6588 	conf->level = mddev->new_level;
6589 	if (conf->level == 6) {
6590 		conf->max_degraded = 2;
6591 		if (raid6_call.xor_syndrome)
6592 			conf->rmw_level = PARITY_ENABLE_RMW;
6593 		else
6594 			conf->rmw_level = PARITY_DISABLE_RMW;
6595 	} else {
6596 		conf->max_degraded = 1;
6597 		conf->rmw_level = PARITY_ENABLE_RMW;
6598 	}
6599 	conf->algorithm = mddev->new_layout;
6600 	conf->reshape_progress = mddev->reshape_position;
6601 	if (conf->reshape_progress != MaxSector) {
6602 		conf->prev_chunk_sectors = mddev->chunk_sectors;
6603 		conf->prev_algo = mddev->layout;
6604 	} else {
6605 		conf->prev_chunk_sectors = conf->chunk_sectors;
6606 		conf->prev_algo = conf->algorithm;
6607 	}
6608 
6609 	conf->min_nr_stripes = NR_STRIPES;
6610 	memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
6611 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6612 	atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6613 	if (grow_stripes(conf, conf->min_nr_stripes)) {
6614 		printk(KERN_ERR
6615 		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
6616 		       mdname(mddev), memory);
6617 		goto abort;
6618 	} else
6619 		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6620 		       mdname(mddev), memory);
6621 	/*
6622 	 * Losing a stripe head costs more than the time to refill it,
6623 	 * it reduces the queue depth and so can hurt throughput.
6624 	 * So set it rather large, scaled by number of devices.
6625 	 */
6626 	conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6627 	conf->shrinker.scan_objects = raid5_cache_scan;
6628 	conf->shrinker.count_objects = raid5_cache_count;
6629 	conf->shrinker.batch = 128;
6630 	conf->shrinker.flags = 0;
6631 	register_shrinker(&conf->shrinker);
6632 
6633 	sprintf(pers_name, "raid%d", mddev->new_level);
6634 	conf->thread = md_register_thread(raid5d, mddev, pers_name);
6635 	if (!conf->thread) {
6636 		printk(KERN_ERR
6637 		       "md/raid:%s: couldn't allocate thread.\n",
6638 		       mdname(mddev));
6639 		goto abort;
6640 	}
6641 
6642 	return conf;
6643 
6644  abort:
6645 	if (conf) {
6646 		free_conf(conf);
6647 		return ERR_PTR(-EIO);
6648 	} else
6649 		return ERR_PTR(-ENOMEM);
6650 }
6651 
6652 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6653 {
6654 	switch (algo) {
6655 	case ALGORITHM_PARITY_0:
6656 		if (raid_disk < max_degraded)
6657 			return 1;
6658 		break;
6659 	case ALGORITHM_PARITY_N:
6660 		if (raid_disk >= raid_disks - max_degraded)
6661 			return 1;
6662 		break;
6663 	case ALGORITHM_PARITY_0_6:
6664 		if (raid_disk == 0 ||
6665 		    raid_disk == raid_disks - 1)
6666 			return 1;
6667 		break;
6668 	case ALGORITHM_LEFT_ASYMMETRIC_6:
6669 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
6670 	case ALGORITHM_LEFT_SYMMETRIC_6:
6671 	case ALGORITHM_RIGHT_SYMMETRIC_6:
6672 		if (raid_disk == raid_disks - 1)
6673 			return 1;
6674 	}
6675 	return 0;
6676 }
6677 
6678 static int raid5_run(struct mddev *mddev)
6679 {
6680 	struct r5conf *conf;
6681 	int working_disks = 0;
6682 	int dirty_parity_disks = 0;
6683 	struct md_rdev *rdev;
6684 	struct md_rdev *journal_dev = NULL;
6685 	sector_t reshape_offset = 0;
6686 	int i;
6687 	long long min_offset_diff = 0;
6688 	int first = 1;
6689 
6690 	if (mddev->recovery_cp != MaxSector)
6691 		printk(KERN_NOTICE "md/raid:%s: not clean"
6692 		       " -- starting background reconstruction\n",
6693 		       mdname(mddev));
6694 
6695 	rdev_for_each(rdev, mddev) {
6696 		long long diff;
6697 
6698 		if (test_bit(Journal, &rdev->flags)) {
6699 			journal_dev = rdev;
6700 			continue;
6701 		}
6702 		if (rdev->raid_disk < 0)
6703 			continue;
6704 		diff = (rdev->new_data_offset - rdev->data_offset);
6705 		if (first) {
6706 			min_offset_diff = diff;
6707 			first = 0;
6708 		} else if (mddev->reshape_backwards &&
6709 			 diff < min_offset_diff)
6710 			min_offset_diff = diff;
6711 		else if (!mddev->reshape_backwards &&
6712 			 diff > min_offset_diff)
6713 			min_offset_diff = diff;
6714 	}
6715 
6716 	if (mddev->reshape_position != MaxSector) {
6717 		/* Check that we can continue the reshape.
6718 		 * Difficulties arise if the stripe we would write to
6719 		 * next is at or after the stripe we would read from next.
6720 		 * For a reshape that changes the number of devices, this
6721 		 * is only possible for a very short time, and mdadm makes
6722 		 * sure that time appears to have past before assembling
6723 		 * the array.  So we fail if that time hasn't passed.
6724 		 * For a reshape that keeps the number of devices the same
6725 		 * mdadm must be monitoring the reshape can keeping the
6726 		 * critical areas read-only and backed up.  It will start
6727 		 * the array in read-only mode, so we check for that.
6728 		 */
6729 		sector_t here_new, here_old;
6730 		int old_disks;
6731 		int max_degraded = (mddev->level == 6 ? 2 : 1);
6732 		int chunk_sectors;
6733 		int new_data_disks;
6734 
6735 		if (journal_dev) {
6736 			printk(KERN_ERR "md/raid:%s: don't support reshape with journal - aborting.\n",
6737 			       mdname(mddev));
6738 			return -EINVAL;
6739 		}
6740 
6741 		if (mddev->new_level != mddev->level) {
6742 			printk(KERN_ERR "md/raid:%s: unsupported reshape "
6743 			       "required - aborting.\n",
6744 			       mdname(mddev));
6745 			return -EINVAL;
6746 		}
6747 		old_disks = mddev->raid_disks - mddev->delta_disks;
6748 		/* reshape_position must be on a new-stripe boundary, and one
6749 		 * further up in new geometry must map after here in old
6750 		 * geometry.
6751 		 * If the chunk sizes are different, then as we perform reshape
6752 		 * in units of the largest of the two, reshape_position needs
6753 		 * be a multiple of the largest chunk size times new data disks.
6754 		 */
6755 		here_new = mddev->reshape_position;
6756 		chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
6757 		new_data_disks = mddev->raid_disks - max_degraded;
6758 		if (sector_div(here_new, chunk_sectors * new_data_disks)) {
6759 			printk(KERN_ERR "md/raid:%s: reshape_position not "
6760 			       "on a stripe boundary\n", mdname(mddev));
6761 			return -EINVAL;
6762 		}
6763 		reshape_offset = here_new * chunk_sectors;
6764 		/* here_new is the stripe we will write to */
6765 		here_old = mddev->reshape_position;
6766 		sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
6767 		/* here_old is the first stripe that we might need to read
6768 		 * from */
6769 		if (mddev->delta_disks == 0) {
6770 			/* We cannot be sure it is safe to start an in-place
6771 			 * reshape.  It is only safe if user-space is monitoring
6772 			 * and taking constant backups.
6773 			 * mdadm always starts a situation like this in
6774 			 * readonly mode so it can take control before
6775 			 * allowing any writes.  So just check for that.
6776 			 */
6777 			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6778 			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
6779 				/* not really in-place - so OK */;
6780 			else if (mddev->ro == 0) {
6781 				printk(KERN_ERR "md/raid:%s: in-place reshape "
6782 				       "must be started in read-only mode "
6783 				       "- aborting\n",
6784 				       mdname(mddev));
6785 				return -EINVAL;
6786 			}
6787 		} else if (mddev->reshape_backwards
6788 		    ? (here_new * chunk_sectors + min_offset_diff <=
6789 		       here_old * chunk_sectors)
6790 		    : (here_new * chunk_sectors >=
6791 		       here_old * chunk_sectors + (-min_offset_diff))) {
6792 			/* Reading from the same stripe as writing to - bad */
6793 			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6794 			       "auto-recovery - aborting.\n",
6795 			       mdname(mddev));
6796 			return -EINVAL;
6797 		}
6798 		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6799 		       mdname(mddev));
6800 		/* OK, we should be able to continue; */
6801 	} else {
6802 		BUG_ON(mddev->level != mddev->new_level);
6803 		BUG_ON(mddev->layout != mddev->new_layout);
6804 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6805 		BUG_ON(mddev->delta_disks != 0);
6806 	}
6807 
6808 	if (mddev->private == NULL)
6809 		conf = setup_conf(mddev);
6810 	else
6811 		conf = mddev->private;
6812 
6813 	if (IS_ERR(conf))
6814 		return PTR_ERR(conf);
6815 
6816 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !journal_dev) {
6817 		printk(KERN_ERR "md/raid:%s: journal disk is missing, force array readonly\n",
6818 		       mdname(mddev));
6819 		mddev->ro = 1;
6820 		set_disk_ro(mddev->gendisk, 1);
6821 	}
6822 
6823 	conf->min_offset_diff = min_offset_diff;
6824 	mddev->thread = conf->thread;
6825 	conf->thread = NULL;
6826 	mddev->private = conf;
6827 
6828 	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6829 	     i++) {
6830 		rdev = conf->disks[i].rdev;
6831 		if (!rdev && conf->disks[i].replacement) {
6832 			/* The replacement is all we have yet */
6833 			rdev = conf->disks[i].replacement;
6834 			conf->disks[i].replacement = NULL;
6835 			clear_bit(Replacement, &rdev->flags);
6836 			conf->disks[i].rdev = rdev;
6837 		}
6838 		if (!rdev)
6839 			continue;
6840 		if (conf->disks[i].replacement &&
6841 		    conf->reshape_progress != MaxSector) {
6842 			/* replacements and reshape simply do not mix. */
6843 			printk(KERN_ERR "md: cannot handle concurrent "
6844 			       "replacement and reshape.\n");
6845 			goto abort;
6846 		}
6847 		if (test_bit(In_sync, &rdev->flags)) {
6848 			working_disks++;
6849 			continue;
6850 		}
6851 		/* This disc is not fully in-sync.  However if it
6852 		 * just stored parity (beyond the recovery_offset),
6853 		 * when we don't need to be concerned about the
6854 		 * array being dirty.
6855 		 * When reshape goes 'backwards', we never have
6856 		 * partially completed devices, so we only need
6857 		 * to worry about reshape going forwards.
6858 		 */
6859 		/* Hack because v0.91 doesn't store recovery_offset properly. */
6860 		if (mddev->major_version == 0 &&
6861 		    mddev->minor_version > 90)
6862 			rdev->recovery_offset = reshape_offset;
6863 
6864 		if (rdev->recovery_offset < reshape_offset) {
6865 			/* We need to check old and new layout */
6866 			if (!only_parity(rdev->raid_disk,
6867 					 conf->algorithm,
6868 					 conf->raid_disks,
6869 					 conf->max_degraded))
6870 				continue;
6871 		}
6872 		if (!only_parity(rdev->raid_disk,
6873 				 conf->prev_algo,
6874 				 conf->previous_raid_disks,
6875 				 conf->max_degraded))
6876 			continue;
6877 		dirty_parity_disks++;
6878 	}
6879 
6880 	/*
6881 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
6882 	 */
6883 	mddev->degraded = calc_degraded(conf);
6884 
6885 	if (has_failed(conf)) {
6886 		printk(KERN_ERR "md/raid:%s: not enough operational devices"
6887 			" (%d/%d failed)\n",
6888 			mdname(mddev), mddev->degraded, conf->raid_disks);
6889 		goto abort;
6890 	}
6891 
6892 	/* device size must be a multiple of chunk size */
6893 	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6894 	mddev->resync_max_sectors = mddev->dev_sectors;
6895 
6896 	if (mddev->degraded > dirty_parity_disks &&
6897 	    mddev->recovery_cp != MaxSector) {
6898 		if (mddev->ok_start_degraded)
6899 			printk(KERN_WARNING
6900 			       "md/raid:%s: starting dirty degraded array"
6901 			       " - data corruption possible.\n",
6902 			       mdname(mddev));
6903 		else {
6904 			printk(KERN_ERR
6905 			       "md/raid:%s: cannot start dirty degraded array.\n",
6906 			       mdname(mddev));
6907 			goto abort;
6908 		}
6909 	}
6910 
6911 	if (mddev->degraded == 0)
6912 		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6913 		       " devices, algorithm %d\n", mdname(mddev), conf->level,
6914 		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6915 		       mddev->new_layout);
6916 	else
6917 		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6918 		       " out of %d devices, algorithm %d\n",
6919 		       mdname(mddev), conf->level,
6920 		       mddev->raid_disks - mddev->degraded,
6921 		       mddev->raid_disks, mddev->new_layout);
6922 
6923 	print_raid5_conf(conf);
6924 
6925 	if (conf->reshape_progress != MaxSector) {
6926 		conf->reshape_safe = conf->reshape_progress;
6927 		atomic_set(&conf->reshape_stripes, 0);
6928 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6929 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6930 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6931 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6932 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6933 							"reshape");
6934 	}
6935 
6936 	/* Ok, everything is just fine now */
6937 	if (mddev->to_remove == &raid5_attrs_group)
6938 		mddev->to_remove = NULL;
6939 	else if (mddev->kobj.sd &&
6940 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6941 		printk(KERN_WARNING
6942 		       "raid5: failed to create sysfs attributes for %s\n",
6943 		       mdname(mddev));
6944 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6945 
6946 	if (mddev->queue) {
6947 		int chunk_size;
6948 		bool discard_supported = true;
6949 		/* read-ahead size must cover two whole stripes, which
6950 		 * is 2 * (datadisks) * chunksize where 'n' is the
6951 		 * number of raid devices
6952 		 */
6953 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
6954 		int stripe = data_disks *
6955 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
6956 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6957 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6958 
6959 		chunk_size = mddev->chunk_sectors << 9;
6960 		blk_queue_io_min(mddev->queue, chunk_size);
6961 		blk_queue_io_opt(mddev->queue, chunk_size *
6962 				 (conf->raid_disks - conf->max_degraded));
6963 		mddev->queue->limits.raid_partial_stripes_expensive = 1;
6964 		/*
6965 		 * We can only discard a whole stripe. It doesn't make sense to
6966 		 * discard data disk but write parity disk
6967 		 */
6968 		stripe = stripe * PAGE_SIZE;
6969 		/* Round up to power of 2, as discard handling
6970 		 * currently assumes that */
6971 		while ((stripe-1) & stripe)
6972 			stripe = (stripe | (stripe-1)) + 1;
6973 		mddev->queue->limits.discard_alignment = stripe;
6974 		mddev->queue->limits.discard_granularity = stripe;
6975 		/*
6976 		 * unaligned part of discard request will be ignored, so can't
6977 		 * guarantee discard_zeroes_data
6978 		 */
6979 		mddev->queue->limits.discard_zeroes_data = 0;
6980 
6981 		blk_queue_max_write_same_sectors(mddev->queue, 0);
6982 
6983 		rdev_for_each(rdev, mddev) {
6984 			disk_stack_limits(mddev->gendisk, rdev->bdev,
6985 					  rdev->data_offset << 9);
6986 			disk_stack_limits(mddev->gendisk, rdev->bdev,
6987 					  rdev->new_data_offset << 9);
6988 			/*
6989 			 * discard_zeroes_data is required, otherwise data
6990 			 * could be lost. Consider a scenario: discard a stripe
6991 			 * (the stripe could be inconsistent if
6992 			 * discard_zeroes_data is 0); write one disk of the
6993 			 * stripe (the stripe could be inconsistent again
6994 			 * depending on which disks are used to calculate
6995 			 * parity); the disk is broken; The stripe data of this
6996 			 * disk is lost.
6997 			 */
6998 			if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6999 			    !bdev_get_queue(rdev->bdev)->
7000 						limits.discard_zeroes_data)
7001 				discard_supported = false;
7002 			/* Unfortunately, discard_zeroes_data is not currently
7003 			 * a guarantee - just a hint.  So we only allow DISCARD
7004 			 * if the sysadmin has confirmed that only safe devices
7005 			 * are in use by setting a module parameter.
7006 			 */
7007 			if (!devices_handle_discard_safely) {
7008 				if (discard_supported) {
7009 					pr_info("md/raid456: discard support disabled due to uncertainty.\n");
7010 					pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
7011 				}
7012 				discard_supported = false;
7013 			}
7014 		}
7015 
7016 		if (discard_supported &&
7017 		   mddev->queue->limits.max_discard_sectors >= stripe &&
7018 		   mddev->queue->limits.discard_granularity >= stripe)
7019 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
7020 						mddev->queue);
7021 		else
7022 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
7023 						mddev->queue);
7024 	}
7025 
7026 	if (journal_dev) {
7027 		char b[BDEVNAME_SIZE];
7028 
7029 		printk(KERN_INFO"md/raid:%s: using device %s as journal\n",
7030 		       mdname(mddev), bdevname(journal_dev->bdev, b));
7031 		r5l_init_log(conf, journal_dev);
7032 	}
7033 
7034 	return 0;
7035 abort:
7036 	md_unregister_thread(&mddev->thread);
7037 	print_raid5_conf(conf);
7038 	free_conf(conf);
7039 	mddev->private = NULL;
7040 	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
7041 	return -EIO;
7042 }
7043 
7044 static void raid5_free(struct mddev *mddev, void *priv)
7045 {
7046 	struct r5conf *conf = priv;
7047 
7048 	free_conf(conf);
7049 	mddev->to_remove = &raid5_attrs_group;
7050 }
7051 
7052 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7053 {
7054 	struct r5conf *conf = mddev->private;
7055 	int i;
7056 
7057 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7058 		conf->chunk_sectors / 2, mddev->layout);
7059 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7060 	for (i = 0; i < conf->raid_disks; i++)
7061 		seq_printf (seq, "%s",
7062 			       conf->disks[i].rdev &&
7063 			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
7064 	seq_printf (seq, "]");
7065 }
7066 
7067 static void print_raid5_conf (struct r5conf *conf)
7068 {
7069 	int i;
7070 	struct disk_info *tmp;
7071 
7072 	printk(KERN_DEBUG "RAID conf printout:\n");
7073 	if (!conf) {
7074 		printk("(conf==NULL)\n");
7075 		return;
7076 	}
7077 	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
7078 	       conf->raid_disks,
7079 	       conf->raid_disks - conf->mddev->degraded);
7080 
7081 	for (i = 0; i < conf->raid_disks; i++) {
7082 		char b[BDEVNAME_SIZE];
7083 		tmp = conf->disks + i;
7084 		if (tmp->rdev)
7085 			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
7086 			       i, !test_bit(Faulty, &tmp->rdev->flags),
7087 			       bdevname(tmp->rdev->bdev, b));
7088 	}
7089 }
7090 
7091 static int raid5_spare_active(struct mddev *mddev)
7092 {
7093 	int i;
7094 	struct r5conf *conf = mddev->private;
7095 	struct disk_info *tmp;
7096 	int count = 0;
7097 	unsigned long flags;
7098 
7099 	for (i = 0; i < conf->raid_disks; i++) {
7100 		tmp = conf->disks + i;
7101 		if (tmp->replacement
7102 		    && tmp->replacement->recovery_offset == MaxSector
7103 		    && !test_bit(Faulty, &tmp->replacement->flags)
7104 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7105 			/* Replacement has just become active. */
7106 			if (!tmp->rdev
7107 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7108 				count++;
7109 			if (tmp->rdev) {
7110 				/* Replaced device not technically faulty,
7111 				 * but we need to be sure it gets removed
7112 				 * and never re-added.
7113 				 */
7114 				set_bit(Faulty, &tmp->rdev->flags);
7115 				sysfs_notify_dirent_safe(
7116 					tmp->rdev->sysfs_state);
7117 			}
7118 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7119 		} else if (tmp->rdev
7120 		    && tmp->rdev->recovery_offset == MaxSector
7121 		    && !test_bit(Faulty, &tmp->rdev->flags)
7122 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7123 			count++;
7124 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7125 		}
7126 	}
7127 	spin_lock_irqsave(&conf->device_lock, flags);
7128 	mddev->degraded = calc_degraded(conf);
7129 	spin_unlock_irqrestore(&conf->device_lock, flags);
7130 	print_raid5_conf(conf);
7131 	return count;
7132 }
7133 
7134 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7135 {
7136 	struct r5conf *conf = mddev->private;
7137 	int err = 0;
7138 	int number = rdev->raid_disk;
7139 	struct md_rdev **rdevp;
7140 	struct disk_info *p = conf->disks + number;
7141 
7142 	print_raid5_conf(conf);
7143 	if (test_bit(Journal, &rdev->flags) && conf->log) {
7144 		struct r5l_log *log;
7145 		/*
7146 		 * we can't wait pending write here, as this is called in
7147 		 * raid5d, wait will deadlock.
7148 		 */
7149 		if (atomic_read(&mddev->writes_pending))
7150 			return -EBUSY;
7151 		log = conf->log;
7152 		conf->log = NULL;
7153 		synchronize_rcu();
7154 		r5l_exit_log(log);
7155 		return 0;
7156 	}
7157 	if (rdev == p->rdev)
7158 		rdevp = &p->rdev;
7159 	else if (rdev == p->replacement)
7160 		rdevp = &p->replacement;
7161 	else
7162 		return 0;
7163 
7164 	if (number >= conf->raid_disks &&
7165 	    conf->reshape_progress == MaxSector)
7166 		clear_bit(In_sync, &rdev->flags);
7167 
7168 	if (test_bit(In_sync, &rdev->flags) ||
7169 	    atomic_read(&rdev->nr_pending)) {
7170 		err = -EBUSY;
7171 		goto abort;
7172 	}
7173 	/* Only remove non-faulty devices if recovery
7174 	 * isn't possible.
7175 	 */
7176 	if (!test_bit(Faulty, &rdev->flags) &&
7177 	    mddev->recovery_disabled != conf->recovery_disabled &&
7178 	    !has_failed(conf) &&
7179 	    (!p->replacement || p->replacement == rdev) &&
7180 	    number < conf->raid_disks) {
7181 		err = -EBUSY;
7182 		goto abort;
7183 	}
7184 	*rdevp = NULL;
7185 	synchronize_rcu();
7186 	if (atomic_read(&rdev->nr_pending)) {
7187 		/* lost the race, try later */
7188 		err = -EBUSY;
7189 		*rdevp = rdev;
7190 	} else if (p->replacement) {
7191 		/* We must have just cleared 'rdev' */
7192 		p->rdev = p->replacement;
7193 		clear_bit(Replacement, &p->replacement->flags);
7194 		smp_mb(); /* Make sure other CPUs may see both as identical
7195 			   * but will never see neither - if they are careful
7196 			   */
7197 		p->replacement = NULL;
7198 		clear_bit(WantReplacement, &rdev->flags);
7199 	} else
7200 		/* We might have just removed the Replacement as faulty-
7201 		 * clear the bit just in case
7202 		 */
7203 		clear_bit(WantReplacement, &rdev->flags);
7204 abort:
7205 
7206 	print_raid5_conf(conf);
7207 	return err;
7208 }
7209 
7210 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7211 {
7212 	struct r5conf *conf = mddev->private;
7213 	int err = -EEXIST;
7214 	int disk;
7215 	struct disk_info *p;
7216 	int first = 0;
7217 	int last = conf->raid_disks - 1;
7218 
7219 	if (test_bit(Journal, &rdev->flags)) {
7220 		char b[BDEVNAME_SIZE];
7221 		if (conf->log)
7222 			return -EBUSY;
7223 
7224 		rdev->raid_disk = 0;
7225 		/*
7226 		 * The array is in readonly mode if journal is missing, so no
7227 		 * write requests running. We should be safe
7228 		 */
7229 		r5l_init_log(conf, rdev);
7230 		printk(KERN_INFO"md/raid:%s: using device %s as journal\n",
7231 		       mdname(mddev), bdevname(rdev->bdev, b));
7232 		return 0;
7233 	}
7234 	if (mddev->recovery_disabled == conf->recovery_disabled)
7235 		return -EBUSY;
7236 
7237 	if (rdev->saved_raid_disk < 0 && has_failed(conf))
7238 		/* no point adding a device */
7239 		return -EINVAL;
7240 
7241 	if (rdev->raid_disk >= 0)
7242 		first = last = rdev->raid_disk;
7243 
7244 	/*
7245 	 * find the disk ... but prefer rdev->saved_raid_disk
7246 	 * if possible.
7247 	 */
7248 	if (rdev->saved_raid_disk >= 0 &&
7249 	    rdev->saved_raid_disk >= first &&
7250 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
7251 		first = rdev->saved_raid_disk;
7252 
7253 	for (disk = first; disk <= last; disk++) {
7254 		p = conf->disks + disk;
7255 		if (p->rdev == NULL) {
7256 			clear_bit(In_sync, &rdev->flags);
7257 			rdev->raid_disk = disk;
7258 			err = 0;
7259 			if (rdev->saved_raid_disk != disk)
7260 				conf->fullsync = 1;
7261 			rcu_assign_pointer(p->rdev, rdev);
7262 			goto out;
7263 		}
7264 	}
7265 	for (disk = first; disk <= last; disk++) {
7266 		p = conf->disks + disk;
7267 		if (test_bit(WantReplacement, &p->rdev->flags) &&
7268 		    p->replacement == NULL) {
7269 			clear_bit(In_sync, &rdev->flags);
7270 			set_bit(Replacement, &rdev->flags);
7271 			rdev->raid_disk = disk;
7272 			err = 0;
7273 			conf->fullsync = 1;
7274 			rcu_assign_pointer(p->replacement, rdev);
7275 			break;
7276 		}
7277 	}
7278 out:
7279 	print_raid5_conf(conf);
7280 	return err;
7281 }
7282 
7283 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7284 {
7285 	/* no resync is happening, and there is enough space
7286 	 * on all devices, so we can resize.
7287 	 * We need to make sure resync covers any new space.
7288 	 * If the array is shrinking we should possibly wait until
7289 	 * any io in the removed space completes, but it hardly seems
7290 	 * worth it.
7291 	 */
7292 	sector_t newsize;
7293 	struct r5conf *conf = mddev->private;
7294 
7295 	if (conf->log)
7296 		return -EINVAL;
7297 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
7298 	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7299 	if (mddev->external_size &&
7300 	    mddev->array_sectors > newsize)
7301 		return -EINVAL;
7302 	if (mddev->bitmap) {
7303 		int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7304 		if (ret)
7305 			return ret;
7306 	}
7307 	md_set_array_sectors(mddev, newsize);
7308 	set_capacity(mddev->gendisk, mddev->array_sectors);
7309 	revalidate_disk(mddev->gendisk);
7310 	if (sectors > mddev->dev_sectors &&
7311 	    mddev->recovery_cp > mddev->dev_sectors) {
7312 		mddev->recovery_cp = mddev->dev_sectors;
7313 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7314 	}
7315 	mddev->dev_sectors = sectors;
7316 	mddev->resync_max_sectors = sectors;
7317 	return 0;
7318 }
7319 
7320 static int check_stripe_cache(struct mddev *mddev)
7321 {
7322 	/* Can only proceed if there are plenty of stripe_heads.
7323 	 * We need a minimum of one full stripe,, and for sensible progress
7324 	 * it is best to have about 4 times that.
7325 	 * If we require 4 times, then the default 256 4K stripe_heads will
7326 	 * allow for chunk sizes up to 256K, which is probably OK.
7327 	 * If the chunk size is greater, user-space should request more
7328 	 * stripe_heads first.
7329 	 */
7330 	struct r5conf *conf = mddev->private;
7331 	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7332 	    > conf->min_nr_stripes ||
7333 	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7334 	    > conf->min_nr_stripes) {
7335 		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7336 		       mdname(mddev),
7337 		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7338 			/ STRIPE_SIZE)*4);
7339 		return 0;
7340 	}
7341 	return 1;
7342 }
7343 
7344 static int check_reshape(struct mddev *mddev)
7345 {
7346 	struct r5conf *conf = mddev->private;
7347 
7348 	if (conf->log)
7349 		return -EINVAL;
7350 	if (mddev->delta_disks == 0 &&
7351 	    mddev->new_layout == mddev->layout &&
7352 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
7353 		return 0; /* nothing to do */
7354 	if (has_failed(conf))
7355 		return -EINVAL;
7356 	if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7357 		/* We might be able to shrink, but the devices must
7358 		 * be made bigger first.
7359 		 * For raid6, 4 is the minimum size.
7360 		 * Otherwise 2 is the minimum
7361 		 */
7362 		int min = 2;
7363 		if (mddev->level == 6)
7364 			min = 4;
7365 		if (mddev->raid_disks + mddev->delta_disks < min)
7366 			return -EINVAL;
7367 	}
7368 
7369 	if (!check_stripe_cache(mddev))
7370 		return -ENOSPC;
7371 
7372 	if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7373 	    mddev->delta_disks > 0)
7374 		if (resize_chunks(conf,
7375 				  conf->previous_raid_disks
7376 				  + max(0, mddev->delta_disks),
7377 				  max(mddev->new_chunk_sectors,
7378 				      mddev->chunk_sectors)
7379 			    ) < 0)
7380 			return -ENOMEM;
7381 	return resize_stripes(conf, (conf->previous_raid_disks
7382 				     + mddev->delta_disks));
7383 }
7384 
7385 static int raid5_start_reshape(struct mddev *mddev)
7386 {
7387 	struct r5conf *conf = mddev->private;
7388 	struct md_rdev *rdev;
7389 	int spares = 0;
7390 	unsigned long flags;
7391 
7392 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7393 		return -EBUSY;
7394 
7395 	if (!check_stripe_cache(mddev))
7396 		return -ENOSPC;
7397 
7398 	if (has_failed(conf))
7399 		return -EINVAL;
7400 
7401 	rdev_for_each(rdev, mddev) {
7402 		if (!test_bit(In_sync, &rdev->flags)
7403 		    && !test_bit(Faulty, &rdev->flags))
7404 			spares++;
7405 	}
7406 
7407 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7408 		/* Not enough devices even to make a degraded array
7409 		 * of that size
7410 		 */
7411 		return -EINVAL;
7412 
7413 	/* Refuse to reduce size of the array.  Any reductions in
7414 	 * array size must be through explicit setting of array_size
7415 	 * attribute.
7416 	 */
7417 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7418 	    < mddev->array_sectors) {
7419 		printk(KERN_ERR "md/raid:%s: array size must be reduced "
7420 		       "before number of disks\n", mdname(mddev));
7421 		return -EINVAL;
7422 	}
7423 
7424 	atomic_set(&conf->reshape_stripes, 0);
7425 	spin_lock_irq(&conf->device_lock);
7426 	write_seqcount_begin(&conf->gen_lock);
7427 	conf->previous_raid_disks = conf->raid_disks;
7428 	conf->raid_disks += mddev->delta_disks;
7429 	conf->prev_chunk_sectors = conf->chunk_sectors;
7430 	conf->chunk_sectors = mddev->new_chunk_sectors;
7431 	conf->prev_algo = conf->algorithm;
7432 	conf->algorithm = mddev->new_layout;
7433 	conf->generation++;
7434 	/* Code that selects data_offset needs to see the generation update
7435 	 * if reshape_progress has been set - so a memory barrier needed.
7436 	 */
7437 	smp_mb();
7438 	if (mddev->reshape_backwards)
7439 		conf->reshape_progress = raid5_size(mddev, 0, 0);
7440 	else
7441 		conf->reshape_progress = 0;
7442 	conf->reshape_safe = conf->reshape_progress;
7443 	write_seqcount_end(&conf->gen_lock);
7444 	spin_unlock_irq(&conf->device_lock);
7445 
7446 	/* Now make sure any requests that proceeded on the assumption
7447 	 * the reshape wasn't running - like Discard or Read - have
7448 	 * completed.
7449 	 */
7450 	mddev_suspend(mddev);
7451 	mddev_resume(mddev);
7452 
7453 	/* Add some new drives, as many as will fit.
7454 	 * We know there are enough to make the newly sized array work.
7455 	 * Don't add devices if we are reducing the number of
7456 	 * devices in the array.  This is because it is not possible
7457 	 * to correctly record the "partially reconstructed" state of
7458 	 * such devices during the reshape and confusion could result.
7459 	 */
7460 	if (mddev->delta_disks >= 0) {
7461 		rdev_for_each(rdev, mddev)
7462 			if (rdev->raid_disk < 0 &&
7463 			    !test_bit(Faulty, &rdev->flags)) {
7464 				if (raid5_add_disk(mddev, rdev) == 0) {
7465 					if (rdev->raid_disk
7466 					    >= conf->previous_raid_disks)
7467 						set_bit(In_sync, &rdev->flags);
7468 					else
7469 						rdev->recovery_offset = 0;
7470 
7471 					if (sysfs_link_rdev(mddev, rdev))
7472 						/* Failure here is OK */;
7473 				}
7474 			} else if (rdev->raid_disk >= conf->previous_raid_disks
7475 				   && !test_bit(Faulty, &rdev->flags)) {
7476 				/* This is a spare that was manually added */
7477 				set_bit(In_sync, &rdev->flags);
7478 			}
7479 
7480 		/* When a reshape changes the number of devices,
7481 		 * ->degraded is measured against the larger of the
7482 		 * pre and post number of devices.
7483 		 */
7484 		spin_lock_irqsave(&conf->device_lock, flags);
7485 		mddev->degraded = calc_degraded(conf);
7486 		spin_unlock_irqrestore(&conf->device_lock, flags);
7487 	}
7488 	mddev->raid_disks = conf->raid_disks;
7489 	mddev->reshape_position = conf->reshape_progress;
7490 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
7491 
7492 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7493 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7494 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7495 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7496 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7497 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7498 						"reshape");
7499 	if (!mddev->sync_thread) {
7500 		mddev->recovery = 0;
7501 		spin_lock_irq(&conf->device_lock);
7502 		write_seqcount_begin(&conf->gen_lock);
7503 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7504 		mddev->new_chunk_sectors =
7505 			conf->chunk_sectors = conf->prev_chunk_sectors;
7506 		mddev->new_layout = conf->algorithm = conf->prev_algo;
7507 		rdev_for_each(rdev, mddev)
7508 			rdev->new_data_offset = rdev->data_offset;
7509 		smp_wmb();
7510 		conf->generation --;
7511 		conf->reshape_progress = MaxSector;
7512 		mddev->reshape_position = MaxSector;
7513 		write_seqcount_end(&conf->gen_lock);
7514 		spin_unlock_irq(&conf->device_lock);
7515 		return -EAGAIN;
7516 	}
7517 	conf->reshape_checkpoint = jiffies;
7518 	md_wakeup_thread(mddev->sync_thread);
7519 	md_new_event(mddev);
7520 	return 0;
7521 }
7522 
7523 /* This is called from the reshape thread and should make any
7524  * changes needed in 'conf'
7525  */
7526 static void end_reshape(struct r5conf *conf)
7527 {
7528 
7529 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7530 		struct md_rdev *rdev;
7531 
7532 		spin_lock_irq(&conf->device_lock);
7533 		conf->previous_raid_disks = conf->raid_disks;
7534 		rdev_for_each(rdev, conf->mddev)
7535 			rdev->data_offset = rdev->new_data_offset;
7536 		smp_wmb();
7537 		conf->reshape_progress = MaxSector;
7538 		conf->mddev->reshape_position = MaxSector;
7539 		spin_unlock_irq(&conf->device_lock);
7540 		wake_up(&conf->wait_for_overlap);
7541 
7542 		/* read-ahead size must cover two whole stripes, which is
7543 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7544 		 */
7545 		if (conf->mddev->queue) {
7546 			int data_disks = conf->raid_disks - conf->max_degraded;
7547 			int stripe = data_disks * ((conf->chunk_sectors << 9)
7548 						   / PAGE_SIZE);
7549 			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7550 				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7551 		}
7552 	}
7553 }
7554 
7555 /* This is called from the raid5d thread with mddev_lock held.
7556  * It makes config changes to the device.
7557  */
7558 static void raid5_finish_reshape(struct mddev *mddev)
7559 {
7560 	struct r5conf *conf = mddev->private;
7561 
7562 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7563 
7564 		if (mddev->delta_disks > 0) {
7565 			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7566 			set_capacity(mddev->gendisk, mddev->array_sectors);
7567 			revalidate_disk(mddev->gendisk);
7568 		} else {
7569 			int d;
7570 			spin_lock_irq(&conf->device_lock);
7571 			mddev->degraded = calc_degraded(conf);
7572 			spin_unlock_irq(&conf->device_lock);
7573 			for (d = conf->raid_disks ;
7574 			     d < conf->raid_disks - mddev->delta_disks;
7575 			     d++) {
7576 				struct md_rdev *rdev = conf->disks[d].rdev;
7577 				if (rdev)
7578 					clear_bit(In_sync, &rdev->flags);
7579 				rdev = conf->disks[d].replacement;
7580 				if (rdev)
7581 					clear_bit(In_sync, &rdev->flags);
7582 			}
7583 		}
7584 		mddev->layout = conf->algorithm;
7585 		mddev->chunk_sectors = conf->chunk_sectors;
7586 		mddev->reshape_position = MaxSector;
7587 		mddev->delta_disks = 0;
7588 		mddev->reshape_backwards = 0;
7589 	}
7590 }
7591 
7592 static void raid5_quiesce(struct mddev *mddev, int state)
7593 {
7594 	struct r5conf *conf = mddev->private;
7595 
7596 	switch(state) {
7597 	case 2: /* resume for a suspend */
7598 		wake_up(&conf->wait_for_overlap);
7599 		break;
7600 
7601 	case 1: /* stop all writes */
7602 		lock_all_device_hash_locks_irq(conf);
7603 		/* '2' tells resync/reshape to pause so that all
7604 		 * active stripes can drain
7605 		 */
7606 		conf->quiesce = 2;
7607 		wait_event_cmd(conf->wait_for_quiescent,
7608 				    atomic_read(&conf->active_stripes) == 0 &&
7609 				    atomic_read(&conf->active_aligned_reads) == 0,
7610 				    unlock_all_device_hash_locks_irq(conf),
7611 				    lock_all_device_hash_locks_irq(conf));
7612 		conf->quiesce = 1;
7613 		unlock_all_device_hash_locks_irq(conf);
7614 		/* allow reshape to continue */
7615 		wake_up(&conf->wait_for_overlap);
7616 		break;
7617 
7618 	case 0: /* re-enable writes */
7619 		lock_all_device_hash_locks_irq(conf);
7620 		conf->quiesce = 0;
7621 		wake_up(&conf->wait_for_quiescent);
7622 		wake_up(&conf->wait_for_overlap);
7623 		unlock_all_device_hash_locks_irq(conf);
7624 		break;
7625 	}
7626 	r5l_quiesce(conf->log, state);
7627 }
7628 
7629 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7630 {
7631 	struct r0conf *raid0_conf = mddev->private;
7632 	sector_t sectors;
7633 
7634 	/* for raid0 takeover only one zone is supported */
7635 	if (raid0_conf->nr_strip_zones > 1) {
7636 		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7637 		       mdname(mddev));
7638 		return ERR_PTR(-EINVAL);
7639 	}
7640 
7641 	sectors = raid0_conf->strip_zone[0].zone_end;
7642 	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7643 	mddev->dev_sectors = sectors;
7644 	mddev->new_level = level;
7645 	mddev->new_layout = ALGORITHM_PARITY_N;
7646 	mddev->new_chunk_sectors = mddev->chunk_sectors;
7647 	mddev->raid_disks += 1;
7648 	mddev->delta_disks = 1;
7649 	/* make sure it will be not marked as dirty */
7650 	mddev->recovery_cp = MaxSector;
7651 
7652 	return setup_conf(mddev);
7653 }
7654 
7655 static void *raid5_takeover_raid1(struct mddev *mddev)
7656 {
7657 	int chunksect;
7658 
7659 	if (mddev->raid_disks != 2 ||
7660 	    mddev->degraded > 1)
7661 		return ERR_PTR(-EINVAL);
7662 
7663 	/* Should check if there are write-behind devices? */
7664 
7665 	chunksect = 64*2; /* 64K by default */
7666 
7667 	/* The array must be an exact multiple of chunksize */
7668 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
7669 		chunksect >>= 1;
7670 
7671 	if ((chunksect<<9) < STRIPE_SIZE)
7672 		/* array size does not allow a suitable chunk size */
7673 		return ERR_PTR(-EINVAL);
7674 
7675 	mddev->new_level = 5;
7676 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7677 	mddev->new_chunk_sectors = chunksect;
7678 
7679 	return setup_conf(mddev);
7680 }
7681 
7682 static void *raid5_takeover_raid6(struct mddev *mddev)
7683 {
7684 	int new_layout;
7685 
7686 	switch (mddev->layout) {
7687 	case ALGORITHM_LEFT_ASYMMETRIC_6:
7688 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7689 		break;
7690 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
7691 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7692 		break;
7693 	case ALGORITHM_LEFT_SYMMETRIC_6:
7694 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
7695 		break;
7696 	case ALGORITHM_RIGHT_SYMMETRIC_6:
7697 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7698 		break;
7699 	case ALGORITHM_PARITY_0_6:
7700 		new_layout = ALGORITHM_PARITY_0;
7701 		break;
7702 	case ALGORITHM_PARITY_N:
7703 		new_layout = ALGORITHM_PARITY_N;
7704 		break;
7705 	default:
7706 		return ERR_PTR(-EINVAL);
7707 	}
7708 	mddev->new_level = 5;
7709 	mddev->new_layout = new_layout;
7710 	mddev->delta_disks = -1;
7711 	mddev->raid_disks -= 1;
7712 	return setup_conf(mddev);
7713 }
7714 
7715 static int raid5_check_reshape(struct mddev *mddev)
7716 {
7717 	/* For a 2-drive array, the layout and chunk size can be changed
7718 	 * immediately as not restriping is needed.
7719 	 * For larger arrays we record the new value - after validation
7720 	 * to be used by a reshape pass.
7721 	 */
7722 	struct r5conf *conf = mddev->private;
7723 	int new_chunk = mddev->new_chunk_sectors;
7724 
7725 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
7726 		return -EINVAL;
7727 	if (new_chunk > 0) {
7728 		if (!is_power_of_2(new_chunk))
7729 			return -EINVAL;
7730 		if (new_chunk < (PAGE_SIZE>>9))
7731 			return -EINVAL;
7732 		if (mddev->array_sectors & (new_chunk-1))
7733 			/* not factor of array size */
7734 			return -EINVAL;
7735 	}
7736 
7737 	/* They look valid */
7738 
7739 	if (mddev->raid_disks == 2) {
7740 		/* can make the change immediately */
7741 		if (mddev->new_layout >= 0) {
7742 			conf->algorithm = mddev->new_layout;
7743 			mddev->layout = mddev->new_layout;
7744 		}
7745 		if (new_chunk > 0) {
7746 			conf->chunk_sectors = new_chunk ;
7747 			mddev->chunk_sectors = new_chunk;
7748 		}
7749 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
7750 		md_wakeup_thread(mddev->thread);
7751 	}
7752 	return check_reshape(mddev);
7753 }
7754 
7755 static int raid6_check_reshape(struct mddev *mddev)
7756 {
7757 	int new_chunk = mddev->new_chunk_sectors;
7758 
7759 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7760 		return -EINVAL;
7761 	if (new_chunk > 0) {
7762 		if (!is_power_of_2(new_chunk))
7763 			return -EINVAL;
7764 		if (new_chunk < (PAGE_SIZE >> 9))
7765 			return -EINVAL;
7766 		if (mddev->array_sectors & (new_chunk-1))
7767 			/* not factor of array size */
7768 			return -EINVAL;
7769 	}
7770 
7771 	/* They look valid */
7772 	return check_reshape(mddev);
7773 }
7774 
7775 static void *raid5_takeover(struct mddev *mddev)
7776 {
7777 	/* raid5 can take over:
7778 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
7779 	 *  raid1 - if there are two drives.  We need to know the chunk size
7780 	 *  raid4 - trivial - just use a raid4 layout.
7781 	 *  raid6 - Providing it is a *_6 layout
7782 	 */
7783 	if (mddev->level == 0)
7784 		return raid45_takeover_raid0(mddev, 5);
7785 	if (mddev->level == 1)
7786 		return raid5_takeover_raid1(mddev);
7787 	if (mddev->level == 4) {
7788 		mddev->new_layout = ALGORITHM_PARITY_N;
7789 		mddev->new_level = 5;
7790 		return setup_conf(mddev);
7791 	}
7792 	if (mddev->level == 6)
7793 		return raid5_takeover_raid6(mddev);
7794 
7795 	return ERR_PTR(-EINVAL);
7796 }
7797 
7798 static void *raid4_takeover(struct mddev *mddev)
7799 {
7800 	/* raid4 can take over:
7801 	 *  raid0 - if there is only one strip zone
7802 	 *  raid5 - if layout is right
7803 	 */
7804 	if (mddev->level == 0)
7805 		return raid45_takeover_raid0(mddev, 4);
7806 	if (mddev->level == 5 &&
7807 	    mddev->layout == ALGORITHM_PARITY_N) {
7808 		mddev->new_layout = 0;
7809 		mddev->new_level = 4;
7810 		return setup_conf(mddev);
7811 	}
7812 	return ERR_PTR(-EINVAL);
7813 }
7814 
7815 static struct md_personality raid5_personality;
7816 
7817 static void *raid6_takeover(struct mddev *mddev)
7818 {
7819 	/* Currently can only take over a raid5.  We map the
7820 	 * personality to an equivalent raid6 personality
7821 	 * with the Q block at the end.
7822 	 */
7823 	int new_layout;
7824 
7825 	if (mddev->pers != &raid5_personality)
7826 		return ERR_PTR(-EINVAL);
7827 	if (mddev->degraded > 1)
7828 		return ERR_PTR(-EINVAL);
7829 	if (mddev->raid_disks > 253)
7830 		return ERR_PTR(-EINVAL);
7831 	if (mddev->raid_disks < 3)
7832 		return ERR_PTR(-EINVAL);
7833 
7834 	switch (mddev->layout) {
7835 	case ALGORITHM_LEFT_ASYMMETRIC:
7836 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7837 		break;
7838 	case ALGORITHM_RIGHT_ASYMMETRIC:
7839 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7840 		break;
7841 	case ALGORITHM_LEFT_SYMMETRIC:
7842 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7843 		break;
7844 	case ALGORITHM_RIGHT_SYMMETRIC:
7845 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7846 		break;
7847 	case ALGORITHM_PARITY_0:
7848 		new_layout = ALGORITHM_PARITY_0_6;
7849 		break;
7850 	case ALGORITHM_PARITY_N:
7851 		new_layout = ALGORITHM_PARITY_N;
7852 		break;
7853 	default:
7854 		return ERR_PTR(-EINVAL);
7855 	}
7856 	mddev->new_level = 6;
7857 	mddev->new_layout = new_layout;
7858 	mddev->delta_disks = 1;
7859 	mddev->raid_disks += 1;
7860 	return setup_conf(mddev);
7861 }
7862 
7863 static struct md_personality raid6_personality =
7864 {
7865 	.name		= "raid6",
7866 	.level		= 6,
7867 	.owner		= THIS_MODULE,
7868 	.make_request	= raid5_make_request,
7869 	.run		= raid5_run,
7870 	.free		= raid5_free,
7871 	.status		= raid5_status,
7872 	.error_handler	= raid5_error,
7873 	.hot_add_disk	= raid5_add_disk,
7874 	.hot_remove_disk= raid5_remove_disk,
7875 	.spare_active	= raid5_spare_active,
7876 	.sync_request	= raid5_sync_request,
7877 	.resize		= raid5_resize,
7878 	.size		= raid5_size,
7879 	.check_reshape	= raid6_check_reshape,
7880 	.start_reshape  = raid5_start_reshape,
7881 	.finish_reshape = raid5_finish_reshape,
7882 	.quiesce	= raid5_quiesce,
7883 	.takeover	= raid6_takeover,
7884 	.congested	= raid5_congested,
7885 };
7886 static struct md_personality raid5_personality =
7887 {
7888 	.name		= "raid5",
7889 	.level		= 5,
7890 	.owner		= THIS_MODULE,
7891 	.make_request	= raid5_make_request,
7892 	.run		= raid5_run,
7893 	.free		= raid5_free,
7894 	.status		= raid5_status,
7895 	.error_handler	= raid5_error,
7896 	.hot_add_disk	= raid5_add_disk,
7897 	.hot_remove_disk= raid5_remove_disk,
7898 	.spare_active	= raid5_spare_active,
7899 	.sync_request	= raid5_sync_request,
7900 	.resize		= raid5_resize,
7901 	.size		= raid5_size,
7902 	.check_reshape	= raid5_check_reshape,
7903 	.start_reshape  = raid5_start_reshape,
7904 	.finish_reshape = raid5_finish_reshape,
7905 	.quiesce	= raid5_quiesce,
7906 	.takeover	= raid5_takeover,
7907 	.congested	= raid5_congested,
7908 };
7909 
7910 static struct md_personality raid4_personality =
7911 {
7912 	.name		= "raid4",
7913 	.level		= 4,
7914 	.owner		= THIS_MODULE,
7915 	.make_request	= raid5_make_request,
7916 	.run		= raid5_run,
7917 	.free		= raid5_free,
7918 	.status		= raid5_status,
7919 	.error_handler	= raid5_error,
7920 	.hot_add_disk	= raid5_add_disk,
7921 	.hot_remove_disk= raid5_remove_disk,
7922 	.spare_active	= raid5_spare_active,
7923 	.sync_request	= raid5_sync_request,
7924 	.resize		= raid5_resize,
7925 	.size		= raid5_size,
7926 	.check_reshape	= raid5_check_reshape,
7927 	.start_reshape  = raid5_start_reshape,
7928 	.finish_reshape = raid5_finish_reshape,
7929 	.quiesce	= raid5_quiesce,
7930 	.takeover	= raid4_takeover,
7931 	.congested	= raid5_congested,
7932 };
7933 
7934 static int __init raid5_init(void)
7935 {
7936 	raid5_wq = alloc_workqueue("raid5wq",
7937 		WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7938 	if (!raid5_wq)
7939 		return -ENOMEM;
7940 	register_md_personality(&raid6_personality);
7941 	register_md_personality(&raid5_personality);
7942 	register_md_personality(&raid4_personality);
7943 	return 0;
7944 }
7945 
7946 static void raid5_exit(void)
7947 {
7948 	unregister_md_personality(&raid6_personality);
7949 	unregister_md_personality(&raid5_personality);
7950 	unregister_md_personality(&raid4_personality);
7951 	destroy_workqueue(raid5_wq);
7952 }
7953 
7954 module_init(raid5_init);
7955 module_exit(raid5_exit);
7956 MODULE_LICENSE("GPL");
7957 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7958 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7959 MODULE_ALIAS("md-raid5");
7960 MODULE_ALIAS("md-raid4");
7961 MODULE_ALIAS("md-level-5");
7962 MODULE_ALIAS("md-level-4");
7963 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7964 MODULE_ALIAS("md-raid6");
7965 MODULE_ALIAS("md-level-6");
7966 
7967 /* This used to be two separate modules, they were: */
7968 MODULE_ALIAS("raid5");
7969 MODULE_ALIAS("raid6");
7970