xref: /linux/drivers/md/raid5.c (revision a3a4a816b4b194c45d0217e8b9e08b2639802cda)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <linux/sched/signal.h>
59 
60 #include <trace/events/block.h>
61 
62 #include "md.h"
63 #include "raid5.h"
64 #include "raid0.h"
65 #include "bitmap.h"
66 
67 #define UNSUPPORTED_MDDEV_FLAGS	(1L << MD_FAILFAST_SUPPORTED)
68 
69 #define cpu_to_group(cpu) cpu_to_node(cpu)
70 #define ANY_GROUP NUMA_NO_NODE
71 
72 static bool devices_handle_discard_safely = false;
73 module_param(devices_handle_discard_safely, bool, 0644);
74 MODULE_PARM_DESC(devices_handle_discard_safely,
75 		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
76 static struct workqueue_struct *raid5_wq;
77 
78 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
79 {
80 	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
81 	return &conf->stripe_hashtbl[hash];
82 }
83 
84 static inline int stripe_hash_locks_hash(sector_t sect)
85 {
86 	return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
87 }
88 
89 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
90 {
91 	spin_lock_irq(conf->hash_locks + hash);
92 	spin_lock(&conf->device_lock);
93 }
94 
95 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
96 {
97 	spin_unlock(&conf->device_lock);
98 	spin_unlock_irq(conf->hash_locks + hash);
99 }
100 
101 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
102 {
103 	int i;
104 	local_irq_disable();
105 	spin_lock(conf->hash_locks);
106 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
107 		spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
108 	spin_lock(&conf->device_lock);
109 }
110 
111 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
112 {
113 	int i;
114 	spin_unlock(&conf->device_lock);
115 	for (i = NR_STRIPE_HASH_LOCKS; i; i--)
116 		spin_unlock(conf->hash_locks + i - 1);
117 	local_irq_enable();
118 }
119 
120 /* Find first data disk in a raid6 stripe */
121 static inline int raid6_d0(struct stripe_head *sh)
122 {
123 	if (sh->ddf_layout)
124 		/* ddf always start from first device */
125 		return 0;
126 	/* md starts just after Q block */
127 	if (sh->qd_idx == sh->disks - 1)
128 		return 0;
129 	else
130 		return sh->qd_idx + 1;
131 }
132 static inline int raid6_next_disk(int disk, int raid_disks)
133 {
134 	disk++;
135 	return (disk < raid_disks) ? disk : 0;
136 }
137 
138 /* When walking through the disks in a raid5, starting at raid6_d0,
139  * We need to map each disk to a 'slot', where the data disks are slot
140  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
141  * is raid_disks-1.  This help does that mapping.
142  */
143 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
144 			     int *count, int syndrome_disks)
145 {
146 	int slot = *count;
147 
148 	if (sh->ddf_layout)
149 		(*count)++;
150 	if (idx == sh->pd_idx)
151 		return syndrome_disks;
152 	if (idx == sh->qd_idx)
153 		return syndrome_disks + 1;
154 	if (!sh->ddf_layout)
155 		(*count)++;
156 	return slot;
157 }
158 
159 static void return_io(struct bio_list *return_bi)
160 {
161 	struct bio *bi;
162 	while ((bi = bio_list_pop(return_bi)) != NULL) {
163 		bi->bi_iter.bi_size = 0;
164 		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
165 					 bi, 0);
166 		bio_endio(bi);
167 	}
168 }
169 
170 static void print_raid5_conf (struct r5conf *conf);
171 
172 static int stripe_operations_active(struct stripe_head *sh)
173 {
174 	return sh->check_state || sh->reconstruct_state ||
175 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
176 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
177 }
178 
179 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
180 {
181 	struct r5conf *conf = sh->raid_conf;
182 	struct r5worker_group *group;
183 	int thread_cnt;
184 	int i, cpu = sh->cpu;
185 
186 	if (!cpu_online(cpu)) {
187 		cpu = cpumask_any(cpu_online_mask);
188 		sh->cpu = cpu;
189 	}
190 
191 	if (list_empty(&sh->lru)) {
192 		struct r5worker_group *group;
193 		group = conf->worker_groups + cpu_to_group(cpu);
194 		list_add_tail(&sh->lru, &group->handle_list);
195 		group->stripes_cnt++;
196 		sh->group = group;
197 	}
198 
199 	if (conf->worker_cnt_per_group == 0) {
200 		md_wakeup_thread(conf->mddev->thread);
201 		return;
202 	}
203 
204 	group = conf->worker_groups + cpu_to_group(sh->cpu);
205 
206 	group->workers[0].working = true;
207 	/* at least one worker should run to avoid race */
208 	queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
209 
210 	thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
211 	/* wakeup more workers */
212 	for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
213 		if (group->workers[i].working == false) {
214 			group->workers[i].working = true;
215 			queue_work_on(sh->cpu, raid5_wq,
216 				      &group->workers[i].work);
217 			thread_cnt--;
218 		}
219 	}
220 }
221 
222 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
223 			      struct list_head *temp_inactive_list)
224 {
225 	int i;
226 	int injournal = 0;	/* number of date pages with R5_InJournal */
227 
228 	BUG_ON(!list_empty(&sh->lru));
229 	BUG_ON(atomic_read(&conf->active_stripes)==0);
230 
231 	if (r5c_is_writeback(conf->log))
232 		for (i = sh->disks; i--; )
233 			if (test_bit(R5_InJournal, &sh->dev[i].flags))
234 				injournal++;
235 	/*
236 	 * When quiesce in r5c write back, set STRIPE_HANDLE for stripes with
237 	 * data in journal, so they are not released to cached lists
238 	 */
239 	if (conf->quiesce && r5c_is_writeback(conf->log) &&
240 	    !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0) {
241 		if (test_bit(STRIPE_R5C_CACHING, &sh->state))
242 			r5c_make_stripe_write_out(sh);
243 		set_bit(STRIPE_HANDLE, &sh->state);
244 	}
245 
246 	if (test_bit(STRIPE_HANDLE, &sh->state)) {
247 		if (test_bit(STRIPE_DELAYED, &sh->state) &&
248 		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
249 			list_add_tail(&sh->lru, &conf->delayed_list);
250 		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
251 			   sh->bm_seq - conf->seq_write > 0)
252 			list_add_tail(&sh->lru, &conf->bitmap_list);
253 		else {
254 			clear_bit(STRIPE_DELAYED, &sh->state);
255 			clear_bit(STRIPE_BIT_DELAY, &sh->state);
256 			if (conf->worker_cnt_per_group == 0) {
257 				list_add_tail(&sh->lru, &conf->handle_list);
258 			} else {
259 				raid5_wakeup_stripe_thread(sh);
260 				return;
261 			}
262 		}
263 		md_wakeup_thread(conf->mddev->thread);
264 	} else {
265 		BUG_ON(stripe_operations_active(sh));
266 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
267 			if (atomic_dec_return(&conf->preread_active_stripes)
268 			    < IO_THRESHOLD)
269 				md_wakeup_thread(conf->mddev->thread);
270 		atomic_dec(&conf->active_stripes);
271 		if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
272 			if (!r5c_is_writeback(conf->log))
273 				list_add_tail(&sh->lru, temp_inactive_list);
274 			else {
275 				WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
276 				if (injournal == 0)
277 					list_add_tail(&sh->lru, temp_inactive_list);
278 				else if (injournal == conf->raid_disks - conf->max_degraded) {
279 					/* full stripe */
280 					if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
281 						atomic_inc(&conf->r5c_cached_full_stripes);
282 					if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
283 						atomic_dec(&conf->r5c_cached_partial_stripes);
284 					list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
285 					r5c_check_cached_full_stripe(conf);
286 				} else
287 					/*
288 					 * STRIPE_R5C_PARTIAL_STRIPE is set in
289 					 * r5c_try_caching_write(). No need to
290 					 * set it again.
291 					 */
292 					list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
293 			}
294 		}
295 	}
296 }
297 
298 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
299 			     struct list_head *temp_inactive_list)
300 {
301 	if (atomic_dec_and_test(&sh->count))
302 		do_release_stripe(conf, sh, temp_inactive_list);
303 }
304 
305 /*
306  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
307  *
308  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
309  * given time. Adding stripes only takes device lock, while deleting stripes
310  * only takes hash lock.
311  */
312 static void release_inactive_stripe_list(struct r5conf *conf,
313 					 struct list_head *temp_inactive_list,
314 					 int hash)
315 {
316 	int size;
317 	bool do_wakeup = false;
318 	unsigned long flags;
319 
320 	if (hash == NR_STRIPE_HASH_LOCKS) {
321 		size = NR_STRIPE_HASH_LOCKS;
322 		hash = NR_STRIPE_HASH_LOCKS - 1;
323 	} else
324 		size = 1;
325 	while (size) {
326 		struct list_head *list = &temp_inactive_list[size - 1];
327 
328 		/*
329 		 * We don't hold any lock here yet, raid5_get_active_stripe() might
330 		 * remove stripes from the list
331 		 */
332 		if (!list_empty_careful(list)) {
333 			spin_lock_irqsave(conf->hash_locks + hash, flags);
334 			if (list_empty(conf->inactive_list + hash) &&
335 			    !list_empty(list))
336 				atomic_dec(&conf->empty_inactive_list_nr);
337 			list_splice_tail_init(list, conf->inactive_list + hash);
338 			do_wakeup = true;
339 			spin_unlock_irqrestore(conf->hash_locks + hash, flags);
340 		}
341 		size--;
342 		hash--;
343 	}
344 
345 	if (do_wakeup) {
346 		wake_up(&conf->wait_for_stripe);
347 		if (atomic_read(&conf->active_stripes) == 0)
348 			wake_up(&conf->wait_for_quiescent);
349 		if (conf->retry_read_aligned)
350 			md_wakeup_thread(conf->mddev->thread);
351 	}
352 }
353 
354 /* should hold conf->device_lock already */
355 static int release_stripe_list(struct r5conf *conf,
356 			       struct list_head *temp_inactive_list)
357 {
358 	struct stripe_head *sh, *t;
359 	int count = 0;
360 	struct llist_node *head;
361 
362 	head = llist_del_all(&conf->released_stripes);
363 	head = llist_reverse_order(head);
364 	llist_for_each_entry_safe(sh, t, head, release_list) {
365 		int hash;
366 
367 		/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
368 		smp_mb();
369 		clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
370 		/*
371 		 * Don't worry the bit is set here, because if the bit is set
372 		 * again, the count is always > 1. This is true for
373 		 * STRIPE_ON_UNPLUG_LIST bit too.
374 		 */
375 		hash = sh->hash_lock_index;
376 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
377 		count++;
378 	}
379 
380 	return count;
381 }
382 
383 void raid5_release_stripe(struct stripe_head *sh)
384 {
385 	struct r5conf *conf = sh->raid_conf;
386 	unsigned long flags;
387 	struct list_head list;
388 	int hash;
389 	bool wakeup;
390 
391 	/* Avoid release_list until the last reference.
392 	 */
393 	if (atomic_add_unless(&sh->count, -1, 1))
394 		return;
395 
396 	if (unlikely(!conf->mddev->thread) ||
397 		test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
398 		goto slow_path;
399 	wakeup = llist_add(&sh->release_list, &conf->released_stripes);
400 	if (wakeup)
401 		md_wakeup_thread(conf->mddev->thread);
402 	return;
403 slow_path:
404 	local_irq_save(flags);
405 	/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
406 	if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
407 		INIT_LIST_HEAD(&list);
408 		hash = sh->hash_lock_index;
409 		do_release_stripe(conf, sh, &list);
410 		spin_unlock(&conf->device_lock);
411 		release_inactive_stripe_list(conf, &list, hash);
412 	}
413 	local_irq_restore(flags);
414 }
415 
416 static inline void remove_hash(struct stripe_head *sh)
417 {
418 	pr_debug("remove_hash(), stripe %llu\n",
419 		(unsigned long long)sh->sector);
420 
421 	hlist_del_init(&sh->hash);
422 }
423 
424 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
425 {
426 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
427 
428 	pr_debug("insert_hash(), stripe %llu\n",
429 		(unsigned long long)sh->sector);
430 
431 	hlist_add_head(&sh->hash, hp);
432 }
433 
434 /* find an idle stripe, make sure it is unhashed, and return it. */
435 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
436 {
437 	struct stripe_head *sh = NULL;
438 	struct list_head *first;
439 
440 	if (list_empty(conf->inactive_list + hash))
441 		goto out;
442 	first = (conf->inactive_list + hash)->next;
443 	sh = list_entry(first, struct stripe_head, lru);
444 	list_del_init(first);
445 	remove_hash(sh);
446 	atomic_inc(&conf->active_stripes);
447 	BUG_ON(hash != sh->hash_lock_index);
448 	if (list_empty(conf->inactive_list + hash))
449 		atomic_inc(&conf->empty_inactive_list_nr);
450 out:
451 	return sh;
452 }
453 
454 static void shrink_buffers(struct stripe_head *sh)
455 {
456 	struct page *p;
457 	int i;
458 	int num = sh->raid_conf->pool_size;
459 
460 	for (i = 0; i < num ; i++) {
461 		WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
462 		p = sh->dev[i].page;
463 		if (!p)
464 			continue;
465 		sh->dev[i].page = NULL;
466 		put_page(p);
467 	}
468 }
469 
470 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
471 {
472 	int i;
473 	int num = sh->raid_conf->pool_size;
474 
475 	for (i = 0; i < num; i++) {
476 		struct page *page;
477 
478 		if (!(page = alloc_page(gfp))) {
479 			return 1;
480 		}
481 		sh->dev[i].page = page;
482 		sh->dev[i].orig_page = page;
483 	}
484 	return 0;
485 }
486 
487 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
488 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
489 			    struct stripe_head *sh);
490 
491 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
492 {
493 	struct r5conf *conf = sh->raid_conf;
494 	int i, seq;
495 
496 	BUG_ON(atomic_read(&sh->count) != 0);
497 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
498 	BUG_ON(stripe_operations_active(sh));
499 	BUG_ON(sh->batch_head);
500 
501 	pr_debug("init_stripe called, stripe %llu\n",
502 		(unsigned long long)sector);
503 retry:
504 	seq = read_seqcount_begin(&conf->gen_lock);
505 	sh->generation = conf->generation - previous;
506 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
507 	sh->sector = sector;
508 	stripe_set_idx(sector, conf, previous, sh);
509 	sh->state = 0;
510 
511 	for (i = sh->disks; i--; ) {
512 		struct r5dev *dev = &sh->dev[i];
513 
514 		if (dev->toread || dev->read || dev->towrite || dev->written ||
515 		    test_bit(R5_LOCKED, &dev->flags)) {
516 			pr_err("sector=%llx i=%d %p %p %p %p %d\n",
517 			       (unsigned long long)sh->sector, i, dev->toread,
518 			       dev->read, dev->towrite, dev->written,
519 			       test_bit(R5_LOCKED, &dev->flags));
520 			WARN_ON(1);
521 		}
522 		dev->flags = 0;
523 		raid5_build_block(sh, i, previous);
524 	}
525 	if (read_seqcount_retry(&conf->gen_lock, seq))
526 		goto retry;
527 	sh->overwrite_disks = 0;
528 	insert_hash(conf, sh);
529 	sh->cpu = smp_processor_id();
530 	set_bit(STRIPE_BATCH_READY, &sh->state);
531 }
532 
533 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
534 					 short generation)
535 {
536 	struct stripe_head *sh;
537 
538 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
539 	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
540 		if (sh->sector == sector && sh->generation == generation)
541 			return sh;
542 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
543 	return NULL;
544 }
545 
546 /*
547  * Need to check if array has failed when deciding whether to:
548  *  - start an array
549  *  - remove non-faulty devices
550  *  - add a spare
551  *  - allow a reshape
552  * This determination is simple when no reshape is happening.
553  * However if there is a reshape, we need to carefully check
554  * both the before and after sections.
555  * This is because some failed devices may only affect one
556  * of the two sections, and some non-in_sync devices may
557  * be insync in the section most affected by failed devices.
558  */
559 int raid5_calc_degraded(struct r5conf *conf)
560 {
561 	int degraded, degraded2;
562 	int i;
563 
564 	rcu_read_lock();
565 	degraded = 0;
566 	for (i = 0; i < conf->previous_raid_disks; i++) {
567 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
568 		if (rdev && test_bit(Faulty, &rdev->flags))
569 			rdev = rcu_dereference(conf->disks[i].replacement);
570 		if (!rdev || test_bit(Faulty, &rdev->flags))
571 			degraded++;
572 		else if (test_bit(In_sync, &rdev->flags))
573 			;
574 		else
575 			/* not in-sync or faulty.
576 			 * If the reshape increases the number of devices,
577 			 * this is being recovered by the reshape, so
578 			 * this 'previous' section is not in_sync.
579 			 * If the number of devices is being reduced however,
580 			 * the device can only be part of the array if
581 			 * we are reverting a reshape, so this section will
582 			 * be in-sync.
583 			 */
584 			if (conf->raid_disks >= conf->previous_raid_disks)
585 				degraded++;
586 	}
587 	rcu_read_unlock();
588 	if (conf->raid_disks == conf->previous_raid_disks)
589 		return degraded;
590 	rcu_read_lock();
591 	degraded2 = 0;
592 	for (i = 0; i < conf->raid_disks; i++) {
593 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
594 		if (rdev && test_bit(Faulty, &rdev->flags))
595 			rdev = rcu_dereference(conf->disks[i].replacement);
596 		if (!rdev || test_bit(Faulty, &rdev->flags))
597 			degraded2++;
598 		else if (test_bit(In_sync, &rdev->flags))
599 			;
600 		else
601 			/* not in-sync or faulty.
602 			 * If reshape increases the number of devices, this
603 			 * section has already been recovered, else it
604 			 * almost certainly hasn't.
605 			 */
606 			if (conf->raid_disks <= conf->previous_raid_disks)
607 				degraded2++;
608 	}
609 	rcu_read_unlock();
610 	if (degraded2 > degraded)
611 		return degraded2;
612 	return degraded;
613 }
614 
615 static int has_failed(struct r5conf *conf)
616 {
617 	int degraded;
618 
619 	if (conf->mddev->reshape_position == MaxSector)
620 		return conf->mddev->degraded > conf->max_degraded;
621 
622 	degraded = raid5_calc_degraded(conf);
623 	if (degraded > conf->max_degraded)
624 		return 1;
625 	return 0;
626 }
627 
628 struct stripe_head *
629 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
630 			int previous, int noblock, int noquiesce)
631 {
632 	struct stripe_head *sh;
633 	int hash = stripe_hash_locks_hash(sector);
634 	int inc_empty_inactive_list_flag;
635 
636 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
637 
638 	spin_lock_irq(conf->hash_locks + hash);
639 
640 	do {
641 		wait_event_lock_irq(conf->wait_for_quiescent,
642 				    conf->quiesce == 0 || noquiesce,
643 				    *(conf->hash_locks + hash));
644 		sh = __find_stripe(conf, sector, conf->generation - previous);
645 		if (!sh) {
646 			if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
647 				sh = get_free_stripe(conf, hash);
648 				if (!sh && !test_bit(R5_DID_ALLOC,
649 						     &conf->cache_state))
650 					set_bit(R5_ALLOC_MORE,
651 						&conf->cache_state);
652 			}
653 			if (noblock && sh == NULL)
654 				break;
655 
656 			r5c_check_stripe_cache_usage(conf);
657 			if (!sh) {
658 				set_bit(R5_INACTIVE_BLOCKED,
659 					&conf->cache_state);
660 				r5l_wake_reclaim(conf->log, 0);
661 				wait_event_lock_irq(
662 					conf->wait_for_stripe,
663 					!list_empty(conf->inactive_list + hash) &&
664 					(atomic_read(&conf->active_stripes)
665 					 < (conf->max_nr_stripes * 3 / 4)
666 					 || !test_bit(R5_INACTIVE_BLOCKED,
667 						      &conf->cache_state)),
668 					*(conf->hash_locks + hash));
669 				clear_bit(R5_INACTIVE_BLOCKED,
670 					  &conf->cache_state);
671 			} else {
672 				init_stripe(sh, sector, previous);
673 				atomic_inc(&sh->count);
674 			}
675 		} else if (!atomic_inc_not_zero(&sh->count)) {
676 			spin_lock(&conf->device_lock);
677 			if (!atomic_read(&sh->count)) {
678 				if (!test_bit(STRIPE_HANDLE, &sh->state))
679 					atomic_inc(&conf->active_stripes);
680 				BUG_ON(list_empty(&sh->lru) &&
681 				       !test_bit(STRIPE_EXPANDING, &sh->state));
682 				inc_empty_inactive_list_flag = 0;
683 				if (!list_empty(conf->inactive_list + hash))
684 					inc_empty_inactive_list_flag = 1;
685 				list_del_init(&sh->lru);
686 				if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
687 					atomic_inc(&conf->empty_inactive_list_nr);
688 				if (sh->group) {
689 					sh->group->stripes_cnt--;
690 					sh->group = NULL;
691 				}
692 			}
693 			atomic_inc(&sh->count);
694 			spin_unlock(&conf->device_lock);
695 		}
696 	} while (sh == NULL);
697 
698 	spin_unlock_irq(conf->hash_locks + hash);
699 	return sh;
700 }
701 
702 static bool is_full_stripe_write(struct stripe_head *sh)
703 {
704 	BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
705 	return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
706 }
707 
708 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
709 {
710 	local_irq_disable();
711 	if (sh1 > sh2) {
712 		spin_lock(&sh2->stripe_lock);
713 		spin_lock_nested(&sh1->stripe_lock, 1);
714 	} else {
715 		spin_lock(&sh1->stripe_lock);
716 		spin_lock_nested(&sh2->stripe_lock, 1);
717 	}
718 }
719 
720 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
721 {
722 	spin_unlock(&sh1->stripe_lock);
723 	spin_unlock(&sh2->stripe_lock);
724 	local_irq_enable();
725 }
726 
727 /* Only freshly new full stripe normal write stripe can be added to a batch list */
728 static bool stripe_can_batch(struct stripe_head *sh)
729 {
730 	struct r5conf *conf = sh->raid_conf;
731 
732 	if (conf->log)
733 		return false;
734 	return test_bit(STRIPE_BATCH_READY, &sh->state) &&
735 		!test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
736 		is_full_stripe_write(sh);
737 }
738 
739 /* we only do back search */
740 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
741 {
742 	struct stripe_head *head;
743 	sector_t head_sector, tmp_sec;
744 	int hash;
745 	int dd_idx;
746 	int inc_empty_inactive_list_flag;
747 
748 	/* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
749 	tmp_sec = sh->sector;
750 	if (!sector_div(tmp_sec, conf->chunk_sectors))
751 		return;
752 	head_sector = sh->sector - STRIPE_SECTORS;
753 
754 	hash = stripe_hash_locks_hash(head_sector);
755 	spin_lock_irq(conf->hash_locks + hash);
756 	head = __find_stripe(conf, head_sector, conf->generation);
757 	if (head && !atomic_inc_not_zero(&head->count)) {
758 		spin_lock(&conf->device_lock);
759 		if (!atomic_read(&head->count)) {
760 			if (!test_bit(STRIPE_HANDLE, &head->state))
761 				atomic_inc(&conf->active_stripes);
762 			BUG_ON(list_empty(&head->lru) &&
763 			       !test_bit(STRIPE_EXPANDING, &head->state));
764 			inc_empty_inactive_list_flag = 0;
765 			if (!list_empty(conf->inactive_list + hash))
766 				inc_empty_inactive_list_flag = 1;
767 			list_del_init(&head->lru);
768 			if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
769 				atomic_inc(&conf->empty_inactive_list_nr);
770 			if (head->group) {
771 				head->group->stripes_cnt--;
772 				head->group = NULL;
773 			}
774 		}
775 		atomic_inc(&head->count);
776 		spin_unlock(&conf->device_lock);
777 	}
778 	spin_unlock_irq(conf->hash_locks + hash);
779 
780 	if (!head)
781 		return;
782 	if (!stripe_can_batch(head))
783 		goto out;
784 
785 	lock_two_stripes(head, sh);
786 	/* clear_batch_ready clear the flag */
787 	if (!stripe_can_batch(head) || !stripe_can_batch(sh))
788 		goto unlock_out;
789 
790 	if (sh->batch_head)
791 		goto unlock_out;
792 
793 	dd_idx = 0;
794 	while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
795 		dd_idx++;
796 	if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
797 	    bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
798 		goto unlock_out;
799 
800 	if (head->batch_head) {
801 		spin_lock(&head->batch_head->batch_lock);
802 		/* This batch list is already running */
803 		if (!stripe_can_batch(head)) {
804 			spin_unlock(&head->batch_head->batch_lock);
805 			goto unlock_out;
806 		}
807 
808 		/*
809 		 * at this point, head's BATCH_READY could be cleared, but we
810 		 * can still add the stripe to batch list
811 		 */
812 		list_add(&sh->batch_list, &head->batch_list);
813 		spin_unlock(&head->batch_head->batch_lock);
814 
815 		sh->batch_head = head->batch_head;
816 	} else {
817 		head->batch_head = head;
818 		sh->batch_head = head->batch_head;
819 		spin_lock(&head->batch_lock);
820 		list_add_tail(&sh->batch_list, &head->batch_list);
821 		spin_unlock(&head->batch_lock);
822 	}
823 
824 	if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
825 		if (atomic_dec_return(&conf->preread_active_stripes)
826 		    < IO_THRESHOLD)
827 			md_wakeup_thread(conf->mddev->thread);
828 
829 	if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
830 		int seq = sh->bm_seq;
831 		if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
832 		    sh->batch_head->bm_seq > seq)
833 			seq = sh->batch_head->bm_seq;
834 		set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
835 		sh->batch_head->bm_seq = seq;
836 	}
837 
838 	atomic_inc(&sh->count);
839 unlock_out:
840 	unlock_two_stripes(head, sh);
841 out:
842 	raid5_release_stripe(head);
843 }
844 
845 /* Determine if 'data_offset' or 'new_data_offset' should be used
846  * in this stripe_head.
847  */
848 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
849 {
850 	sector_t progress = conf->reshape_progress;
851 	/* Need a memory barrier to make sure we see the value
852 	 * of conf->generation, or ->data_offset that was set before
853 	 * reshape_progress was updated.
854 	 */
855 	smp_rmb();
856 	if (progress == MaxSector)
857 		return 0;
858 	if (sh->generation == conf->generation - 1)
859 		return 0;
860 	/* We are in a reshape, and this is a new-generation stripe,
861 	 * so use new_data_offset.
862 	 */
863 	return 1;
864 }
865 
866 static void flush_deferred_bios(struct r5conf *conf)
867 {
868 	struct bio_list tmp;
869 	struct bio *bio;
870 
871 	if (!conf->batch_bio_dispatch || !conf->group_cnt)
872 		return;
873 
874 	bio_list_init(&tmp);
875 	spin_lock(&conf->pending_bios_lock);
876 	bio_list_merge(&tmp, &conf->pending_bios);
877 	bio_list_init(&conf->pending_bios);
878 	spin_unlock(&conf->pending_bios_lock);
879 
880 	while ((bio = bio_list_pop(&tmp)))
881 		generic_make_request(bio);
882 }
883 
884 static void defer_bio_issue(struct r5conf *conf, struct bio *bio)
885 {
886 	/*
887 	 * change group_cnt will drain all bios, so this is safe
888 	 *
889 	 * A read generally means a read-modify-write, which usually means a
890 	 * randwrite, so we don't delay it
891 	 */
892 	if (!conf->batch_bio_dispatch || !conf->group_cnt ||
893 	    bio_op(bio) == REQ_OP_READ) {
894 		generic_make_request(bio);
895 		return;
896 	}
897 	spin_lock(&conf->pending_bios_lock);
898 	bio_list_add(&conf->pending_bios, bio);
899 	spin_unlock(&conf->pending_bios_lock);
900 	md_wakeup_thread(conf->mddev->thread);
901 }
902 
903 static void
904 raid5_end_read_request(struct bio *bi);
905 static void
906 raid5_end_write_request(struct bio *bi);
907 
908 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
909 {
910 	struct r5conf *conf = sh->raid_conf;
911 	int i, disks = sh->disks;
912 	struct stripe_head *head_sh = sh;
913 
914 	might_sleep();
915 
916 	if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
917 		/* writing out phase */
918 		if (s->waiting_extra_page)
919 			return;
920 		if (r5l_write_stripe(conf->log, sh) == 0)
921 			return;
922 	} else {  /* caching phase */
923 		if (test_bit(STRIPE_LOG_TRAPPED, &sh->state)) {
924 			r5c_cache_data(conf->log, sh, s);
925 			return;
926 		}
927 	}
928 
929 	for (i = disks; i--; ) {
930 		int op, op_flags = 0;
931 		int replace_only = 0;
932 		struct bio *bi, *rbi;
933 		struct md_rdev *rdev, *rrdev = NULL;
934 
935 		sh = head_sh;
936 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
937 			op = REQ_OP_WRITE;
938 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
939 				op_flags = REQ_FUA;
940 			if (test_bit(R5_Discard, &sh->dev[i].flags))
941 				op = REQ_OP_DISCARD;
942 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
943 			op = REQ_OP_READ;
944 		else if (test_and_clear_bit(R5_WantReplace,
945 					    &sh->dev[i].flags)) {
946 			op = REQ_OP_WRITE;
947 			replace_only = 1;
948 		} else
949 			continue;
950 		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
951 			op_flags |= REQ_SYNC;
952 
953 again:
954 		bi = &sh->dev[i].req;
955 		rbi = &sh->dev[i].rreq; /* For writing to replacement */
956 
957 		rcu_read_lock();
958 		rrdev = rcu_dereference(conf->disks[i].replacement);
959 		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
960 		rdev = rcu_dereference(conf->disks[i].rdev);
961 		if (!rdev) {
962 			rdev = rrdev;
963 			rrdev = NULL;
964 		}
965 		if (op_is_write(op)) {
966 			if (replace_only)
967 				rdev = NULL;
968 			if (rdev == rrdev)
969 				/* We raced and saw duplicates */
970 				rrdev = NULL;
971 		} else {
972 			if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
973 				rdev = rrdev;
974 			rrdev = NULL;
975 		}
976 
977 		if (rdev && test_bit(Faulty, &rdev->flags))
978 			rdev = NULL;
979 		if (rdev)
980 			atomic_inc(&rdev->nr_pending);
981 		if (rrdev && test_bit(Faulty, &rrdev->flags))
982 			rrdev = NULL;
983 		if (rrdev)
984 			atomic_inc(&rrdev->nr_pending);
985 		rcu_read_unlock();
986 
987 		/* We have already checked bad blocks for reads.  Now
988 		 * need to check for writes.  We never accept write errors
989 		 * on the replacement, so we don't to check rrdev.
990 		 */
991 		while (op_is_write(op) && rdev &&
992 		       test_bit(WriteErrorSeen, &rdev->flags)) {
993 			sector_t first_bad;
994 			int bad_sectors;
995 			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
996 					      &first_bad, &bad_sectors);
997 			if (!bad)
998 				break;
999 
1000 			if (bad < 0) {
1001 				set_bit(BlockedBadBlocks, &rdev->flags);
1002 				if (!conf->mddev->external &&
1003 				    conf->mddev->sb_flags) {
1004 					/* It is very unlikely, but we might
1005 					 * still need to write out the
1006 					 * bad block log - better give it
1007 					 * a chance*/
1008 					md_check_recovery(conf->mddev);
1009 				}
1010 				/*
1011 				 * Because md_wait_for_blocked_rdev
1012 				 * will dec nr_pending, we must
1013 				 * increment it first.
1014 				 */
1015 				atomic_inc(&rdev->nr_pending);
1016 				md_wait_for_blocked_rdev(rdev, conf->mddev);
1017 			} else {
1018 				/* Acknowledged bad block - skip the write */
1019 				rdev_dec_pending(rdev, conf->mddev);
1020 				rdev = NULL;
1021 			}
1022 		}
1023 
1024 		if (rdev) {
1025 			if (s->syncing || s->expanding || s->expanded
1026 			    || s->replacing)
1027 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1028 
1029 			set_bit(STRIPE_IO_STARTED, &sh->state);
1030 
1031 			bi->bi_bdev = rdev->bdev;
1032 			bio_set_op_attrs(bi, op, op_flags);
1033 			bi->bi_end_io = op_is_write(op)
1034 				? raid5_end_write_request
1035 				: raid5_end_read_request;
1036 			bi->bi_private = sh;
1037 
1038 			pr_debug("%s: for %llu schedule op %d on disc %d\n",
1039 				__func__, (unsigned long long)sh->sector,
1040 				bi->bi_opf, i);
1041 			atomic_inc(&sh->count);
1042 			if (sh != head_sh)
1043 				atomic_inc(&head_sh->count);
1044 			if (use_new_offset(conf, sh))
1045 				bi->bi_iter.bi_sector = (sh->sector
1046 						 + rdev->new_data_offset);
1047 			else
1048 				bi->bi_iter.bi_sector = (sh->sector
1049 						 + rdev->data_offset);
1050 			if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1051 				bi->bi_opf |= REQ_NOMERGE;
1052 
1053 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1054 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1055 
1056 			if (!op_is_write(op) &&
1057 			    test_bit(R5_InJournal, &sh->dev[i].flags))
1058 				/*
1059 				 * issuing read for a page in journal, this
1060 				 * must be preparing for prexor in rmw; read
1061 				 * the data into orig_page
1062 				 */
1063 				sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1064 			else
1065 				sh->dev[i].vec.bv_page = sh->dev[i].page;
1066 			bi->bi_vcnt = 1;
1067 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1068 			bi->bi_io_vec[0].bv_offset = 0;
1069 			bi->bi_iter.bi_size = STRIPE_SIZE;
1070 			/*
1071 			 * If this is discard request, set bi_vcnt 0. We don't
1072 			 * want to confuse SCSI because SCSI will replace payload
1073 			 */
1074 			if (op == REQ_OP_DISCARD)
1075 				bi->bi_vcnt = 0;
1076 			if (rrdev)
1077 				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1078 
1079 			if (conf->mddev->gendisk)
1080 				trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1081 						      bi, disk_devt(conf->mddev->gendisk),
1082 						      sh->dev[i].sector);
1083 			defer_bio_issue(conf, bi);
1084 		}
1085 		if (rrdev) {
1086 			if (s->syncing || s->expanding || s->expanded
1087 			    || s->replacing)
1088 				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1089 
1090 			set_bit(STRIPE_IO_STARTED, &sh->state);
1091 
1092 			rbi->bi_bdev = rrdev->bdev;
1093 			bio_set_op_attrs(rbi, op, op_flags);
1094 			BUG_ON(!op_is_write(op));
1095 			rbi->bi_end_io = raid5_end_write_request;
1096 			rbi->bi_private = sh;
1097 
1098 			pr_debug("%s: for %llu schedule op %d on "
1099 				 "replacement disc %d\n",
1100 				__func__, (unsigned long long)sh->sector,
1101 				rbi->bi_opf, i);
1102 			atomic_inc(&sh->count);
1103 			if (sh != head_sh)
1104 				atomic_inc(&head_sh->count);
1105 			if (use_new_offset(conf, sh))
1106 				rbi->bi_iter.bi_sector = (sh->sector
1107 						  + rrdev->new_data_offset);
1108 			else
1109 				rbi->bi_iter.bi_sector = (sh->sector
1110 						  + rrdev->data_offset);
1111 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1112 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1113 			sh->dev[i].rvec.bv_page = sh->dev[i].page;
1114 			rbi->bi_vcnt = 1;
1115 			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1116 			rbi->bi_io_vec[0].bv_offset = 0;
1117 			rbi->bi_iter.bi_size = STRIPE_SIZE;
1118 			/*
1119 			 * If this is discard request, set bi_vcnt 0. We don't
1120 			 * want to confuse SCSI because SCSI will replace payload
1121 			 */
1122 			if (op == REQ_OP_DISCARD)
1123 				rbi->bi_vcnt = 0;
1124 			if (conf->mddev->gendisk)
1125 				trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1126 						      rbi, disk_devt(conf->mddev->gendisk),
1127 						      sh->dev[i].sector);
1128 			defer_bio_issue(conf, rbi);
1129 		}
1130 		if (!rdev && !rrdev) {
1131 			if (op_is_write(op))
1132 				set_bit(STRIPE_DEGRADED, &sh->state);
1133 			pr_debug("skip op %d on disc %d for sector %llu\n",
1134 				bi->bi_opf, i, (unsigned long long)sh->sector);
1135 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
1136 			set_bit(STRIPE_HANDLE, &sh->state);
1137 		}
1138 
1139 		if (!head_sh->batch_head)
1140 			continue;
1141 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1142 				      batch_list);
1143 		if (sh != head_sh)
1144 			goto again;
1145 	}
1146 }
1147 
1148 static struct dma_async_tx_descriptor *
1149 async_copy_data(int frombio, struct bio *bio, struct page **page,
1150 	sector_t sector, struct dma_async_tx_descriptor *tx,
1151 	struct stripe_head *sh, int no_skipcopy)
1152 {
1153 	struct bio_vec bvl;
1154 	struct bvec_iter iter;
1155 	struct page *bio_page;
1156 	int page_offset;
1157 	struct async_submit_ctl submit;
1158 	enum async_tx_flags flags = 0;
1159 
1160 	if (bio->bi_iter.bi_sector >= sector)
1161 		page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1162 	else
1163 		page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1164 
1165 	if (frombio)
1166 		flags |= ASYNC_TX_FENCE;
1167 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1168 
1169 	bio_for_each_segment(bvl, bio, iter) {
1170 		int len = bvl.bv_len;
1171 		int clen;
1172 		int b_offset = 0;
1173 
1174 		if (page_offset < 0) {
1175 			b_offset = -page_offset;
1176 			page_offset += b_offset;
1177 			len -= b_offset;
1178 		}
1179 
1180 		if (len > 0 && page_offset + len > STRIPE_SIZE)
1181 			clen = STRIPE_SIZE - page_offset;
1182 		else
1183 			clen = len;
1184 
1185 		if (clen > 0) {
1186 			b_offset += bvl.bv_offset;
1187 			bio_page = bvl.bv_page;
1188 			if (frombio) {
1189 				if (sh->raid_conf->skip_copy &&
1190 				    b_offset == 0 && page_offset == 0 &&
1191 				    clen == STRIPE_SIZE &&
1192 				    !no_skipcopy)
1193 					*page = bio_page;
1194 				else
1195 					tx = async_memcpy(*page, bio_page, page_offset,
1196 						  b_offset, clen, &submit);
1197 			} else
1198 				tx = async_memcpy(bio_page, *page, b_offset,
1199 						  page_offset, clen, &submit);
1200 		}
1201 		/* chain the operations */
1202 		submit.depend_tx = tx;
1203 
1204 		if (clen < len) /* hit end of page */
1205 			break;
1206 		page_offset +=  len;
1207 	}
1208 
1209 	return tx;
1210 }
1211 
1212 static void ops_complete_biofill(void *stripe_head_ref)
1213 {
1214 	struct stripe_head *sh = stripe_head_ref;
1215 	struct bio_list return_bi = BIO_EMPTY_LIST;
1216 	int i;
1217 
1218 	pr_debug("%s: stripe %llu\n", __func__,
1219 		(unsigned long long)sh->sector);
1220 
1221 	/* clear completed biofills */
1222 	for (i = sh->disks; i--; ) {
1223 		struct r5dev *dev = &sh->dev[i];
1224 
1225 		/* acknowledge completion of a biofill operation */
1226 		/* and check if we need to reply to a read request,
1227 		 * new R5_Wantfill requests are held off until
1228 		 * !STRIPE_BIOFILL_RUN
1229 		 */
1230 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1231 			struct bio *rbi, *rbi2;
1232 
1233 			BUG_ON(!dev->read);
1234 			rbi = dev->read;
1235 			dev->read = NULL;
1236 			while (rbi && rbi->bi_iter.bi_sector <
1237 				dev->sector + STRIPE_SECTORS) {
1238 				rbi2 = r5_next_bio(rbi, dev->sector);
1239 				if (!raid5_dec_bi_active_stripes(rbi))
1240 					bio_list_add(&return_bi, rbi);
1241 				rbi = rbi2;
1242 			}
1243 		}
1244 	}
1245 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1246 
1247 	return_io(&return_bi);
1248 
1249 	set_bit(STRIPE_HANDLE, &sh->state);
1250 	raid5_release_stripe(sh);
1251 }
1252 
1253 static void ops_run_biofill(struct stripe_head *sh)
1254 {
1255 	struct dma_async_tx_descriptor *tx = NULL;
1256 	struct async_submit_ctl submit;
1257 	int i;
1258 
1259 	BUG_ON(sh->batch_head);
1260 	pr_debug("%s: stripe %llu\n", __func__,
1261 		(unsigned long long)sh->sector);
1262 
1263 	for (i = sh->disks; i--; ) {
1264 		struct r5dev *dev = &sh->dev[i];
1265 		if (test_bit(R5_Wantfill, &dev->flags)) {
1266 			struct bio *rbi;
1267 			spin_lock_irq(&sh->stripe_lock);
1268 			dev->read = rbi = dev->toread;
1269 			dev->toread = NULL;
1270 			spin_unlock_irq(&sh->stripe_lock);
1271 			while (rbi && rbi->bi_iter.bi_sector <
1272 				dev->sector + STRIPE_SECTORS) {
1273 				tx = async_copy_data(0, rbi, &dev->page,
1274 						     dev->sector, tx, sh, 0);
1275 				rbi = r5_next_bio(rbi, dev->sector);
1276 			}
1277 		}
1278 	}
1279 
1280 	atomic_inc(&sh->count);
1281 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1282 	async_trigger_callback(&submit);
1283 }
1284 
1285 static void mark_target_uptodate(struct stripe_head *sh, int target)
1286 {
1287 	struct r5dev *tgt;
1288 
1289 	if (target < 0)
1290 		return;
1291 
1292 	tgt = &sh->dev[target];
1293 	set_bit(R5_UPTODATE, &tgt->flags);
1294 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1295 	clear_bit(R5_Wantcompute, &tgt->flags);
1296 }
1297 
1298 static void ops_complete_compute(void *stripe_head_ref)
1299 {
1300 	struct stripe_head *sh = stripe_head_ref;
1301 
1302 	pr_debug("%s: stripe %llu\n", __func__,
1303 		(unsigned long long)sh->sector);
1304 
1305 	/* mark the computed target(s) as uptodate */
1306 	mark_target_uptodate(sh, sh->ops.target);
1307 	mark_target_uptodate(sh, sh->ops.target2);
1308 
1309 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1310 	if (sh->check_state == check_state_compute_run)
1311 		sh->check_state = check_state_compute_result;
1312 	set_bit(STRIPE_HANDLE, &sh->state);
1313 	raid5_release_stripe(sh);
1314 }
1315 
1316 /* return a pointer to the address conversion region of the scribble buffer */
1317 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1318 				 struct raid5_percpu *percpu, int i)
1319 {
1320 	void *addr;
1321 
1322 	addr = flex_array_get(percpu->scribble, i);
1323 	return addr + sizeof(struct page *) * (sh->disks + 2);
1324 }
1325 
1326 /* return a pointer to the address conversion region of the scribble buffer */
1327 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1328 {
1329 	void *addr;
1330 
1331 	addr = flex_array_get(percpu->scribble, i);
1332 	return addr;
1333 }
1334 
1335 static struct dma_async_tx_descriptor *
1336 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1337 {
1338 	int disks = sh->disks;
1339 	struct page **xor_srcs = to_addr_page(percpu, 0);
1340 	int target = sh->ops.target;
1341 	struct r5dev *tgt = &sh->dev[target];
1342 	struct page *xor_dest = tgt->page;
1343 	int count = 0;
1344 	struct dma_async_tx_descriptor *tx;
1345 	struct async_submit_ctl submit;
1346 	int i;
1347 
1348 	BUG_ON(sh->batch_head);
1349 
1350 	pr_debug("%s: stripe %llu block: %d\n",
1351 		__func__, (unsigned long long)sh->sector, target);
1352 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1353 
1354 	for (i = disks; i--; )
1355 		if (i != target)
1356 			xor_srcs[count++] = sh->dev[i].page;
1357 
1358 	atomic_inc(&sh->count);
1359 
1360 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1361 			  ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1362 	if (unlikely(count == 1))
1363 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1364 	else
1365 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1366 
1367 	return tx;
1368 }
1369 
1370 /* set_syndrome_sources - populate source buffers for gen_syndrome
1371  * @srcs - (struct page *) array of size sh->disks
1372  * @sh - stripe_head to parse
1373  *
1374  * Populates srcs in proper layout order for the stripe and returns the
1375  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1376  * destination buffer is recorded in srcs[count] and the Q destination
1377  * is recorded in srcs[count+1]].
1378  */
1379 static int set_syndrome_sources(struct page **srcs,
1380 				struct stripe_head *sh,
1381 				int srctype)
1382 {
1383 	int disks = sh->disks;
1384 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1385 	int d0_idx = raid6_d0(sh);
1386 	int count;
1387 	int i;
1388 
1389 	for (i = 0; i < disks; i++)
1390 		srcs[i] = NULL;
1391 
1392 	count = 0;
1393 	i = d0_idx;
1394 	do {
1395 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1396 		struct r5dev *dev = &sh->dev[i];
1397 
1398 		if (i == sh->qd_idx || i == sh->pd_idx ||
1399 		    (srctype == SYNDROME_SRC_ALL) ||
1400 		    (srctype == SYNDROME_SRC_WANT_DRAIN &&
1401 		     (test_bit(R5_Wantdrain, &dev->flags) ||
1402 		      test_bit(R5_InJournal, &dev->flags))) ||
1403 		    (srctype == SYNDROME_SRC_WRITTEN &&
1404 		     dev->written)) {
1405 			if (test_bit(R5_InJournal, &dev->flags))
1406 				srcs[slot] = sh->dev[i].orig_page;
1407 			else
1408 				srcs[slot] = sh->dev[i].page;
1409 		}
1410 		i = raid6_next_disk(i, disks);
1411 	} while (i != d0_idx);
1412 
1413 	return syndrome_disks;
1414 }
1415 
1416 static struct dma_async_tx_descriptor *
1417 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1418 {
1419 	int disks = sh->disks;
1420 	struct page **blocks = to_addr_page(percpu, 0);
1421 	int target;
1422 	int qd_idx = sh->qd_idx;
1423 	struct dma_async_tx_descriptor *tx;
1424 	struct async_submit_ctl submit;
1425 	struct r5dev *tgt;
1426 	struct page *dest;
1427 	int i;
1428 	int count;
1429 
1430 	BUG_ON(sh->batch_head);
1431 	if (sh->ops.target < 0)
1432 		target = sh->ops.target2;
1433 	else if (sh->ops.target2 < 0)
1434 		target = sh->ops.target;
1435 	else
1436 		/* we should only have one valid target */
1437 		BUG();
1438 	BUG_ON(target < 0);
1439 	pr_debug("%s: stripe %llu block: %d\n",
1440 		__func__, (unsigned long long)sh->sector, target);
1441 
1442 	tgt = &sh->dev[target];
1443 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1444 	dest = tgt->page;
1445 
1446 	atomic_inc(&sh->count);
1447 
1448 	if (target == qd_idx) {
1449 		count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1450 		blocks[count] = NULL; /* regenerating p is not necessary */
1451 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
1452 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1453 				  ops_complete_compute, sh,
1454 				  to_addr_conv(sh, percpu, 0));
1455 		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1456 	} else {
1457 		/* Compute any data- or p-drive using XOR */
1458 		count = 0;
1459 		for (i = disks; i-- ; ) {
1460 			if (i == target || i == qd_idx)
1461 				continue;
1462 			blocks[count++] = sh->dev[i].page;
1463 		}
1464 
1465 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1466 				  NULL, ops_complete_compute, sh,
1467 				  to_addr_conv(sh, percpu, 0));
1468 		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1469 	}
1470 
1471 	return tx;
1472 }
1473 
1474 static struct dma_async_tx_descriptor *
1475 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1476 {
1477 	int i, count, disks = sh->disks;
1478 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1479 	int d0_idx = raid6_d0(sh);
1480 	int faila = -1, failb = -1;
1481 	int target = sh->ops.target;
1482 	int target2 = sh->ops.target2;
1483 	struct r5dev *tgt = &sh->dev[target];
1484 	struct r5dev *tgt2 = &sh->dev[target2];
1485 	struct dma_async_tx_descriptor *tx;
1486 	struct page **blocks = to_addr_page(percpu, 0);
1487 	struct async_submit_ctl submit;
1488 
1489 	BUG_ON(sh->batch_head);
1490 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1491 		 __func__, (unsigned long long)sh->sector, target, target2);
1492 	BUG_ON(target < 0 || target2 < 0);
1493 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1494 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1495 
1496 	/* we need to open-code set_syndrome_sources to handle the
1497 	 * slot number conversion for 'faila' and 'failb'
1498 	 */
1499 	for (i = 0; i < disks ; i++)
1500 		blocks[i] = NULL;
1501 	count = 0;
1502 	i = d0_idx;
1503 	do {
1504 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1505 
1506 		blocks[slot] = sh->dev[i].page;
1507 
1508 		if (i == target)
1509 			faila = slot;
1510 		if (i == target2)
1511 			failb = slot;
1512 		i = raid6_next_disk(i, disks);
1513 	} while (i != d0_idx);
1514 
1515 	BUG_ON(faila == failb);
1516 	if (failb < faila)
1517 		swap(faila, failb);
1518 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1519 		 __func__, (unsigned long long)sh->sector, faila, failb);
1520 
1521 	atomic_inc(&sh->count);
1522 
1523 	if (failb == syndrome_disks+1) {
1524 		/* Q disk is one of the missing disks */
1525 		if (faila == syndrome_disks) {
1526 			/* Missing P+Q, just recompute */
1527 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1528 					  ops_complete_compute, sh,
1529 					  to_addr_conv(sh, percpu, 0));
1530 			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1531 						  STRIPE_SIZE, &submit);
1532 		} else {
1533 			struct page *dest;
1534 			int data_target;
1535 			int qd_idx = sh->qd_idx;
1536 
1537 			/* Missing D+Q: recompute D from P, then recompute Q */
1538 			if (target == qd_idx)
1539 				data_target = target2;
1540 			else
1541 				data_target = target;
1542 
1543 			count = 0;
1544 			for (i = disks; i-- ; ) {
1545 				if (i == data_target || i == qd_idx)
1546 					continue;
1547 				blocks[count++] = sh->dev[i].page;
1548 			}
1549 			dest = sh->dev[data_target].page;
1550 			init_async_submit(&submit,
1551 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1552 					  NULL, NULL, NULL,
1553 					  to_addr_conv(sh, percpu, 0));
1554 			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1555 				       &submit);
1556 
1557 			count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1558 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1559 					  ops_complete_compute, sh,
1560 					  to_addr_conv(sh, percpu, 0));
1561 			return async_gen_syndrome(blocks, 0, count+2,
1562 						  STRIPE_SIZE, &submit);
1563 		}
1564 	} else {
1565 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1566 				  ops_complete_compute, sh,
1567 				  to_addr_conv(sh, percpu, 0));
1568 		if (failb == syndrome_disks) {
1569 			/* We're missing D+P. */
1570 			return async_raid6_datap_recov(syndrome_disks+2,
1571 						       STRIPE_SIZE, faila,
1572 						       blocks, &submit);
1573 		} else {
1574 			/* We're missing D+D. */
1575 			return async_raid6_2data_recov(syndrome_disks+2,
1576 						       STRIPE_SIZE, faila, failb,
1577 						       blocks, &submit);
1578 		}
1579 	}
1580 }
1581 
1582 static void ops_complete_prexor(void *stripe_head_ref)
1583 {
1584 	struct stripe_head *sh = stripe_head_ref;
1585 
1586 	pr_debug("%s: stripe %llu\n", __func__,
1587 		(unsigned long long)sh->sector);
1588 
1589 	if (r5c_is_writeback(sh->raid_conf->log))
1590 		/*
1591 		 * raid5-cache write back uses orig_page during prexor.
1592 		 * After prexor, it is time to free orig_page
1593 		 */
1594 		r5c_release_extra_page(sh);
1595 }
1596 
1597 static struct dma_async_tx_descriptor *
1598 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1599 		struct dma_async_tx_descriptor *tx)
1600 {
1601 	int disks = sh->disks;
1602 	struct page **xor_srcs = to_addr_page(percpu, 0);
1603 	int count = 0, pd_idx = sh->pd_idx, i;
1604 	struct async_submit_ctl submit;
1605 
1606 	/* existing parity data subtracted */
1607 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1608 
1609 	BUG_ON(sh->batch_head);
1610 	pr_debug("%s: stripe %llu\n", __func__,
1611 		(unsigned long long)sh->sector);
1612 
1613 	for (i = disks; i--; ) {
1614 		struct r5dev *dev = &sh->dev[i];
1615 		/* Only process blocks that are known to be uptodate */
1616 		if (test_bit(R5_InJournal, &dev->flags))
1617 			xor_srcs[count++] = dev->orig_page;
1618 		else if (test_bit(R5_Wantdrain, &dev->flags))
1619 			xor_srcs[count++] = dev->page;
1620 	}
1621 
1622 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1623 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1624 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1625 
1626 	return tx;
1627 }
1628 
1629 static struct dma_async_tx_descriptor *
1630 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1631 		struct dma_async_tx_descriptor *tx)
1632 {
1633 	struct page **blocks = to_addr_page(percpu, 0);
1634 	int count;
1635 	struct async_submit_ctl submit;
1636 
1637 	pr_debug("%s: stripe %llu\n", __func__,
1638 		(unsigned long long)sh->sector);
1639 
1640 	count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1641 
1642 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1643 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1644 	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1645 
1646 	return tx;
1647 }
1648 
1649 static struct dma_async_tx_descriptor *
1650 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1651 {
1652 	struct r5conf *conf = sh->raid_conf;
1653 	int disks = sh->disks;
1654 	int i;
1655 	struct stripe_head *head_sh = sh;
1656 
1657 	pr_debug("%s: stripe %llu\n", __func__,
1658 		(unsigned long long)sh->sector);
1659 
1660 	for (i = disks; i--; ) {
1661 		struct r5dev *dev;
1662 		struct bio *chosen;
1663 
1664 		sh = head_sh;
1665 		if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1666 			struct bio *wbi;
1667 
1668 again:
1669 			dev = &sh->dev[i];
1670 			/*
1671 			 * clear R5_InJournal, so when rewriting a page in
1672 			 * journal, it is not skipped by r5l_log_stripe()
1673 			 */
1674 			clear_bit(R5_InJournal, &dev->flags);
1675 			spin_lock_irq(&sh->stripe_lock);
1676 			chosen = dev->towrite;
1677 			dev->towrite = NULL;
1678 			sh->overwrite_disks = 0;
1679 			BUG_ON(dev->written);
1680 			wbi = dev->written = chosen;
1681 			spin_unlock_irq(&sh->stripe_lock);
1682 			WARN_ON(dev->page != dev->orig_page);
1683 
1684 			while (wbi && wbi->bi_iter.bi_sector <
1685 				dev->sector + STRIPE_SECTORS) {
1686 				if (wbi->bi_opf & REQ_FUA)
1687 					set_bit(R5_WantFUA, &dev->flags);
1688 				if (wbi->bi_opf & REQ_SYNC)
1689 					set_bit(R5_SyncIO, &dev->flags);
1690 				if (bio_op(wbi) == REQ_OP_DISCARD)
1691 					set_bit(R5_Discard, &dev->flags);
1692 				else {
1693 					tx = async_copy_data(1, wbi, &dev->page,
1694 							     dev->sector, tx, sh,
1695 							     r5c_is_writeback(conf->log));
1696 					if (dev->page != dev->orig_page &&
1697 					    !r5c_is_writeback(conf->log)) {
1698 						set_bit(R5_SkipCopy, &dev->flags);
1699 						clear_bit(R5_UPTODATE, &dev->flags);
1700 						clear_bit(R5_OVERWRITE, &dev->flags);
1701 					}
1702 				}
1703 				wbi = r5_next_bio(wbi, dev->sector);
1704 			}
1705 
1706 			if (head_sh->batch_head) {
1707 				sh = list_first_entry(&sh->batch_list,
1708 						      struct stripe_head,
1709 						      batch_list);
1710 				if (sh == head_sh)
1711 					continue;
1712 				goto again;
1713 			}
1714 		}
1715 	}
1716 
1717 	return tx;
1718 }
1719 
1720 static void ops_complete_reconstruct(void *stripe_head_ref)
1721 {
1722 	struct stripe_head *sh = stripe_head_ref;
1723 	int disks = sh->disks;
1724 	int pd_idx = sh->pd_idx;
1725 	int qd_idx = sh->qd_idx;
1726 	int i;
1727 	bool fua = false, sync = false, discard = false;
1728 
1729 	pr_debug("%s: stripe %llu\n", __func__,
1730 		(unsigned long long)sh->sector);
1731 
1732 	for (i = disks; i--; ) {
1733 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1734 		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1735 		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1736 	}
1737 
1738 	for (i = disks; i--; ) {
1739 		struct r5dev *dev = &sh->dev[i];
1740 
1741 		if (dev->written || i == pd_idx || i == qd_idx) {
1742 			if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1743 				set_bit(R5_UPTODATE, &dev->flags);
1744 			if (fua)
1745 				set_bit(R5_WantFUA, &dev->flags);
1746 			if (sync)
1747 				set_bit(R5_SyncIO, &dev->flags);
1748 		}
1749 	}
1750 
1751 	if (sh->reconstruct_state == reconstruct_state_drain_run)
1752 		sh->reconstruct_state = reconstruct_state_drain_result;
1753 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1754 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1755 	else {
1756 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1757 		sh->reconstruct_state = reconstruct_state_result;
1758 	}
1759 
1760 	set_bit(STRIPE_HANDLE, &sh->state);
1761 	raid5_release_stripe(sh);
1762 }
1763 
1764 static void
1765 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1766 		     struct dma_async_tx_descriptor *tx)
1767 {
1768 	int disks = sh->disks;
1769 	struct page **xor_srcs;
1770 	struct async_submit_ctl submit;
1771 	int count, pd_idx = sh->pd_idx, i;
1772 	struct page *xor_dest;
1773 	int prexor = 0;
1774 	unsigned long flags;
1775 	int j = 0;
1776 	struct stripe_head *head_sh = sh;
1777 	int last_stripe;
1778 
1779 	pr_debug("%s: stripe %llu\n", __func__,
1780 		(unsigned long long)sh->sector);
1781 
1782 	for (i = 0; i < sh->disks; i++) {
1783 		if (pd_idx == i)
1784 			continue;
1785 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1786 			break;
1787 	}
1788 	if (i >= sh->disks) {
1789 		atomic_inc(&sh->count);
1790 		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1791 		ops_complete_reconstruct(sh);
1792 		return;
1793 	}
1794 again:
1795 	count = 0;
1796 	xor_srcs = to_addr_page(percpu, j);
1797 	/* check if prexor is active which means only process blocks
1798 	 * that are part of a read-modify-write (written)
1799 	 */
1800 	if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1801 		prexor = 1;
1802 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1803 		for (i = disks; i--; ) {
1804 			struct r5dev *dev = &sh->dev[i];
1805 			if (head_sh->dev[i].written ||
1806 			    test_bit(R5_InJournal, &head_sh->dev[i].flags))
1807 				xor_srcs[count++] = dev->page;
1808 		}
1809 	} else {
1810 		xor_dest = sh->dev[pd_idx].page;
1811 		for (i = disks; i--; ) {
1812 			struct r5dev *dev = &sh->dev[i];
1813 			if (i != pd_idx)
1814 				xor_srcs[count++] = dev->page;
1815 		}
1816 	}
1817 
1818 	/* 1/ if we prexor'd then the dest is reused as a source
1819 	 * 2/ if we did not prexor then we are redoing the parity
1820 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1821 	 * for the synchronous xor case
1822 	 */
1823 	last_stripe = !head_sh->batch_head ||
1824 		list_first_entry(&sh->batch_list,
1825 				 struct stripe_head, batch_list) == head_sh;
1826 	if (last_stripe) {
1827 		flags = ASYNC_TX_ACK |
1828 			(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1829 
1830 		atomic_inc(&head_sh->count);
1831 		init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1832 				  to_addr_conv(sh, percpu, j));
1833 	} else {
1834 		flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1835 		init_async_submit(&submit, flags, tx, NULL, NULL,
1836 				  to_addr_conv(sh, percpu, j));
1837 	}
1838 
1839 	if (unlikely(count == 1))
1840 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1841 	else
1842 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1843 	if (!last_stripe) {
1844 		j++;
1845 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1846 				      batch_list);
1847 		goto again;
1848 	}
1849 }
1850 
1851 static void
1852 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1853 		     struct dma_async_tx_descriptor *tx)
1854 {
1855 	struct async_submit_ctl submit;
1856 	struct page **blocks;
1857 	int count, i, j = 0;
1858 	struct stripe_head *head_sh = sh;
1859 	int last_stripe;
1860 	int synflags;
1861 	unsigned long txflags;
1862 
1863 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1864 
1865 	for (i = 0; i < sh->disks; i++) {
1866 		if (sh->pd_idx == i || sh->qd_idx == i)
1867 			continue;
1868 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1869 			break;
1870 	}
1871 	if (i >= sh->disks) {
1872 		atomic_inc(&sh->count);
1873 		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1874 		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1875 		ops_complete_reconstruct(sh);
1876 		return;
1877 	}
1878 
1879 again:
1880 	blocks = to_addr_page(percpu, j);
1881 
1882 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1883 		synflags = SYNDROME_SRC_WRITTEN;
1884 		txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1885 	} else {
1886 		synflags = SYNDROME_SRC_ALL;
1887 		txflags = ASYNC_TX_ACK;
1888 	}
1889 
1890 	count = set_syndrome_sources(blocks, sh, synflags);
1891 	last_stripe = !head_sh->batch_head ||
1892 		list_first_entry(&sh->batch_list,
1893 				 struct stripe_head, batch_list) == head_sh;
1894 
1895 	if (last_stripe) {
1896 		atomic_inc(&head_sh->count);
1897 		init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1898 				  head_sh, to_addr_conv(sh, percpu, j));
1899 	} else
1900 		init_async_submit(&submit, 0, tx, NULL, NULL,
1901 				  to_addr_conv(sh, percpu, j));
1902 	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1903 	if (!last_stripe) {
1904 		j++;
1905 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1906 				      batch_list);
1907 		goto again;
1908 	}
1909 }
1910 
1911 static void ops_complete_check(void *stripe_head_ref)
1912 {
1913 	struct stripe_head *sh = stripe_head_ref;
1914 
1915 	pr_debug("%s: stripe %llu\n", __func__,
1916 		(unsigned long long)sh->sector);
1917 
1918 	sh->check_state = check_state_check_result;
1919 	set_bit(STRIPE_HANDLE, &sh->state);
1920 	raid5_release_stripe(sh);
1921 }
1922 
1923 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1924 {
1925 	int disks = sh->disks;
1926 	int pd_idx = sh->pd_idx;
1927 	int qd_idx = sh->qd_idx;
1928 	struct page *xor_dest;
1929 	struct page **xor_srcs = to_addr_page(percpu, 0);
1930 	struct dma_async_tx_descriptor *tx;
1931 	struct async_submit_ctl submit;
1932 	int count;
1933 	int i;
1934 
1935 	pr_debug("%s: stripe %llu\n", __func__,
1936 		(unsigned long long)sh->sector);
1937 
1938 	BUG_ON(sh->batch_head);
1939 	count = 0;
1940 	xor_dest = sh->dev[pd_idx].page;
1941 	xor_srcs[count++] = xor_dest;
1942 	for (i = disks; i--; ) {
1943 		if (i == pd_idx || i == qd_idx)
1944 			continue;
1945 		xor_srcs[count++] = sh->dev[i].page;
1946 	}
1947 
1948 	init_async_submit(&submit, 0, NULL, NULL, NULL,
1949 			  to_addr_conv(sh, percpu, 0));
1950 	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1951 			   &sh->ops.zero_sum_result, &submit);
1952 
1953 	atomic_inc(&sh->count);
1954 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1955 	tx = async_trigger_callback(&submit);
1956 }
1957 
1958 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1959 {
1960 	struct page **srcs = to_addr_page(percpu, 0);
1961 	struct async_submit_ctl submit;
1962 	int count;
1963 
1964 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1965 		(unsigned long long)sh->sector, checkp);
1966 
1967 	BUG_ON(sh->batch_head);
1968 	count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
1969 	if (!checkp)
1970 		srcs[count] = NULL;
1971 
1972 	atomic_inc(&sh->count);
1973 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1974 			  sh, to_addr_conv(sh, percpu, 0));
1975 	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1976 			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1977 }
1978 
1979 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1980 {
1981 	int overlap_clear = 0, i, disks = sh->disks;
1982 	struct dma_async_tx_descriptor *tx = NULL;
1983 	struct r5conf *conf = sh->raid_conf;
1984 	int level = conf->level;
1985 	struct raid5_percpu *percpu;
1986 	unsigned long cpu;
1987 
1988 	cpu = get_cpu();
1989 	percpu = per_cpu_ptr(conf->percpu, cpu);
1990 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1991 		ops_run_biofill(sh);
1992 		overlap_clear++;
1993 	}
1994 
1995 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1996 		if (level < 6)
1997 			tx = ops_run_compute5(sh, percpu);
1998 		else {
1999 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
2000 				tx = ops_run_compute6_1(sh, percpu);
2001 			else
2002 				tx = ops_run_compute6_2(sh, percpu);
2003 		}
2004 		/* terminate the chain if reconstruct is not set to be run */
2005 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2006 			async_tx_ack(tx);
2007 	}
2008 
2009 	if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2010 		if (level < 6)
2011 			tx = ops_run_prexor5(sh, percpu, tx);
2012 		else
2013 			tx = ops_run_prexor6(sh, percpu, tx);
2014 	}
2015 
2016 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2017 		tx = ops_run_biodrain(sh, tx);
2018 		overlap_clear++;
2019 	}
2020 
2021 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2022 		if (level < 6)
2023 			ops_run_reconstruct5(sh, percpu, tx);
2024 		else
2025 			ops_run_reconstruct6(sh, percpu, tx);
2026 	}
2027 
2028 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2029 		if (sh->check_state == check_state_run)
2030 			ops_run_check_p(sh, percpu);
2031 		else if (sh->check_state == check_state_run_q)
2032 			ops_run_check_pq(sh, percpu, 0);
2033 		else if (sh->check_state == check_state_run_pq)
2034 			ops_run_check_pq(sh, percpu, 1);
2035 		else
2036 			BUG();
2037 	}
2038 
2039 	if (overlap_clear && !sh->batch_head)
2040 		for (i = disks; i--; ) {
2041 			struct r5dev *dev = &sh->dev[i];
2042 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
2043 				wake_up(&sh->raid_conf->wait_for_overlap);
2044 		}
2045 	put_cpu();
2046 }
2047 
2048 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2049 	int disks)
2050 {
2051 	struct stripe_head *sh;
2052 	int i;
2053 
2054 	sh = kmem_cache_zalloc(sc, gfp);
2055 	if (sh) {
2056 		spin_lock_init(&sh->stripe_lock);
2057 		spin_lock_init(&sh->batch_lock);
2058 		INIT_LIST_HEAD(&sh->batch_list);
2059 		INIT_LIST_HEAD(&sh->lru);
2060 		INIT_LIST_HEAD(&sh->r5c);
2061 		INIT_LIST_HEAD(&sh->log_list);
2062 		atomic_set(&sh->count, 1);
2063 		sh->log_start = MaxSector;
2064 		for (i = 0; i < disks; i++) {
2065 			struct r5dev *dev = &sh->dev[i];
2066 
2067 			bio_init(&dev->req, &dev->vec, 1);
2068 			bio_init(&dev->rreq, &dev->rvec, 1);
2069 		}
2070 	}
2071 	return sh;
2072 }
2073 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2074 {
2075 	struct stripe_head *sh;
2076 
2077 	sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size);
2078 	if (!sh)
2079 		return 0;
2080 
2081 	sh->raid_conf = conf;
2082 
2083 	if (grow_buffers(sh, gfp)) {
2084 		shrink_buffers(sh);
2085 		kmem_cache_free(conf->slab_cache, sh);
2086 		return 0;
2087 	}
2088 	sh->hash_lock_index =
2089 		conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2090 	/* we just created an active stripe so... */
2091 	atomic_inc(&conf->active_stripes);
2092 
2093 	raid5_release_stripe(sh);
2094 	conf->max_nr_stripes++;
2095 	return 1;
2096 }
2097 
2098 static int grow_stripes(struct r5conf *conf, int num)
2099 {
2100 	struct kmem_cache *sc;
2101 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
2102 
2103 	if (conf->mddev->gendisk)
2104 		sprintf(conf->cache_name[0],
2105 			"raid%d-%s", conf->level, mdname(conf->mddev));
2106 	else
2107 		sprintf(conf->cache_name[0],
2108 			"raid%d-%p", conf->level, conf->mddev);
2109 	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2110 
2111 	conf->active_name = 0;
2112 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
2113 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2114 			       0, 0, NULL);
2115 	if (!sc)
2116 		return 1;
2117 	conf->slab_cache = sc;
2118 	conf->pool_size = devs;
2119 	while (num--)
2120 		if (!grow_one_stripe(conf, GFP_KERNEL))
2121 			return 1;
2122 
2123 	return 0;
2124 }
2125 
2126 /**
2127  * scribble_len - return the required size of the scribble region
2128  * @num - total number of disks in the array
2129  *
2130  * The size must be enough to contain:
2131  * 1/ a struct page pointer for each device in the array +2
2132  * 2/ room to convert each entry in (1) to its corresponding dma
2133  *    (dma_map_page()) or page (page_address()) address.
2134  *
2135  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2136  * calculate over all devices (not just the data blocks), using zeros in place
2137  * of the P and Q blocks.
2138  */
2139 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2140 {
2141 	struct flex_array *ret;
2142 	size_t len;
2143 
2144 	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2145 	ret = flex_array_alloc(len, cnt, flags);
2146 	if (!ret)
2147 		return NULL;
2148 	/* always prealloc all elements, so no locking is required */
2149 	if (flex_array_prealloc(ret, 0, cnt, flags)) {
2150 		flex_array_free(ret);
2151 		return NULL;
2152 	}
2153 	return ret;
2154 }
2155 
2156 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2157 {
2158 	unsigned long cpu;
2159 	int err = 0;
2160 
2161 	/*
2162 	 * Never shrink. And mddev_suspend() could deadlock if this is called
2163 	 * from raid5d. In that case, scribble_disks and scribble_sectors
2164 	 * should equal to new_disks and new_sectors
2165 	 */
2166 	if (conf->scribble_disks >= new_disks &&
2167 	    conf->scribble_sectors >= new_sectors)
2168 		return 0;
2169 	mddev_suspend(conf->mddev);
2170 	get_online_cpus();
2171 	for_each_present_cpu(cpu) {
2172 		struct raid5_percpu *percpu;
2173 		struct flex_array *scribble;
2174 
2175 		percpu = per_cpu_ptr(conf->percpu, cpu);
2176 		scribble = scribble_alloc(new_disks,
2177 					  new_sectors / STRIPE_SECTORS,
2178 					  GFP_NOIO);
2179 
2180 		if (scribble) {
2181 			flex_array_free(percpu->scribble);
2182 			percpu->scribble = scribble;
2183 		} else {
2184 			err = -ENOMEM;
2185 			break;
2186 		}
2187 	}
2188 	put_online_cpus();
2189 	mddev_resume(conf->mddev);
2190 	if (!err) {
2191 		conf->scribble_disks = new_disks;
2192 		conf->scribble_sectors = new_sectors;
2193 	}
2194 	return err;
2195 }
2196 
2197 static int resize_stripes(struct r5conf *conf, int newsize)
2198 {
2199 	/* Make all the stripes able to hold 'newsize' devices.
2200 	 * New slots in each stripe get 'page' set to a new page.
2201 	 *
2202 	 * This happens in stages:
2203 	 * 1/ create a new kmem_cache and allocate the required number of
2204 	 *    stripe_heads.
2205 	 * 2/ gather all the old stripe_heads and transfer the pages across
2206 	 *    to the new stripe_heads.  This will have the side effect of
2207 	 *    freezing the array as once all stripe_heads have been collected,
2208 	 *    no IO will be possible.  Old stripe heads are freed once their
2209 	 *    pages have been transferred over, and the old kmem_cache is
2210 	 *    freed when all stripes are done.
2211 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2212 	 *    we simple return a failre status - no need to clean anything up.
2213 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
2214 	 *    If this fails, we don't bother trying the shrink the
2215 	 *    stripe_heads down again, we just leave them as they are.
2216 	 *    As each stripe_head is processed the new one is released into
2217 	 *    active service.
2218 	 *
2219 	 * Once step2 is started, we cannot afford to wait for a write,
2220 	 * so we use GFP_NOIO allocations.
2221 	 */
2222 	struct stripe_head *osh, *nsh;
2223 	LIST_HEAD(newstripes);
2224 	struct disk_info *ndisks;
2225 	int err;
2226 	struct kmem_cache *sc;
2227 	int i;
2228 	int hash, cnt;
2229 
2230 	if (newsize <= conf->pool_size)
2231 		return 0; /* never bother to shrink */
2232 
2233 	err = md_allow_write(conf->mddev);
2234 	if (err)
2235 		return err;
2236 
2237 	/* Step 1 */
2238 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2239 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2240 			       0, 0, NULL);
2241 	if (!sc)
2242 		return -ENOMEM;
2243 
2244 	/* Need to ensure auto-resizing doesn't interfere */
2245 	mutex_lock(&conf->cache_size_mutex);
2246 
2247 	for (i = conf->max_nr_stripes; i; i--) {
2248 		nsh = alloc_stripe(sc, GFP_KERNEL, newsize);
2249 		if (!nsh)
2250 			break;
2251 
2252 		nsh->raid_conf = conf;
2253 		list_add(&nsh->lru, &newstripes);
2254 	}
2255 	if (i) {
2256 		/* didn't get enough, give up */
2257 		while (!list_empty(&newstripes)) {
2258 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
2259 			list_del(&nsh->lru);
2260 			kmem_cache_free(sc, nsh);
2261 		}
2262 		kmem_cache_destroy(sc);
2263 		mutex_unlock(&conf->cache_size_mutex);
2264 		return -ENOMEM;
2265 	}
2266 	/* Step 2 - Must use GFP_NOIO now.
2267 	 * OK, we have enough stripes, start collecting inactive
2268 	 * stripes and copying them over
2269 	 */
2270 	hash = 0;
2271 	cnt = 0;
2272 	list_for_each_entry(nsh, &newstripes, lru) {
2273 		lock_device_hash_lock(conf, hash);
2274 		wait_event_cmd(conf->wait_for_stripe,
2275 				    !list_empty(conf->inactive_list + hash),
2276 				    unlock_device_hash_lock(conf, hash),
2277 				    lock_device_hash_lock(conf, hash));
2278 		osh = get_free_stripe(conf, hash);
2279 		unlock_device_hash_lock(conf, hash);
2280 
2281 		for(i=0; i<conf->pool_size; i++) {
2282 			nsh->dev[i].page = osh->dev[i].page;
2283 			nsh->dev[i].orig_page = osh->dev[i].page;
2284 		}
2285 		nsh->hash_lock_index = hash;
2286 		kmem_cache_free(conf->slab_cache, osh);
2287 		cnt++;
2288 		if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2289 		    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2290 			hash++;
2291 			cnt = 0;
2292 		}
2293 	}
2294 	kmem_cache_destroy(conf->slab_cache);
2295 
2296 	/* Step 3.
2297 	 * At this point, we are holding all the stripes so the array
2298 	 * is completely stalled, so now is a good time to resize
2299 	 * conf->disks and the scribble region
2300 	 */
2301 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2302 	if (ndisks) {
2303 		for (i = 0; i < conf->pool_size; i++)
2304 			ndisks[i] = conf->disks[i];
2305 
2306 		for (i = conf->pool_size; i < newsize; i++) {
2307 			ndisks[i].extra_page = alloc_page(GFP_NOIO);
2308 			if (!ndisks[i].extra_page)
2309 				err = -ENOMEM;
2310 		}
2311 
2312 		if (err) {
2313 			for (i = conf->pool_size; i < newsize; i++)
2314 				if (ndisks[i].extra_page)
2315 					put_page(ndisks[i].extra_page);
2316 			kfree(ndisks);
2317 		} else {
2318 			kfree(conf->disks);
2319 			conf->disks = ndisks;
2320 		}
2321 	} else
2322 		err = -ENOMEM;
2323 
2324 	mutex_unlock(&conf->cache_size_mutex);
2325 	/* Step 4, return new stripes to service */
2326 	while(!list_empty(&newstripes)) {
2327 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
2328 		list_del_init(&nsh->lru);
2329 
2330 		for (i=conf->raid_disks; i < newsize; i++)
2331 			if (nsh->dev[i].page == NULL) {
2332 				struct page *p = alloc_page(GFP_NOIO);
2333 				nsh->dev[i].page = p;
2334 				nsh->dev[i].orig_page = p;
2335 				if (!p)
2336 					err = -ENOMEM;
2337 			}
2338 		raid5_release_stripe(nsh);
2339 	}
2340 	/* critical section pass, GFP_NOIO no longer needed */
2341 
2342 	conf->slab_cache = sc;
2343 	conf->active_name = 1-conf->active_name;
2344 	if (!err)
2345 		conf->pool_size = newsize;
2346 	return err;
2347 }
2348 
2349 static int drop_one_stripe(struct r5conf *conf)
2350 {
2351 	struct stripe_head *sh;
2352 	int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2353 
2354 	spin_lock_irq(conf->hash_locks + hash);
2355 	sh = get_free_stripe(conf, hash);
2356 	spin_unlock_irq(conf->hash_locks + hash);
2357 	if (!sh)
2358 		return 0;
2359 	BUG_ON(atomic_read(&sh->count));
2360 	shrink_buffers(sh);
2361 	kmem_cache_free(conf->slab_cache, sh);
2362 	atomic_dec(&conf->active_stripes);
2363 	conf->max_nr_stripes--;
2364 	return 1;
2365 }
2366 
2367 static void shrink_stripes(struct r5conf *conf)
2368 {
2369 	while (conf->max_nr_stripes &&
2370 	       drop_one_stripe(conf))
2371 		;
2372 
2373 	kmem_cache_destroy(conf->slab_cache);
2374 	conf->slab_cache = NULL;
2375 }
2376 
2377 static void raid5_end_read_request(struct bio * bi)
2378 {
2379 	struct stripe_head *sh = bi->bi_private;
2380 	struct r5conf *conf = sh->raid_conf;
2381 	int disks = sh->disks, i;
2382 	char b[BDEVNAME_SIZE];
2383 	struct md_rdev *rdev = NULL;
2384 	sector_t s;
2385 
2386 	for (i=0 ; i<disks; i++)
2387 		if (bi == &sh->dev[i].req)
2388 			break;
2389 
2390 	pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2391 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2392 		bi->bi_error);
2393 	if (i == disks) {
2394 		bio_reset(bi);
2395 		BUG();
2396 		return;
2397 	}
2398 	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2399 		/* If replacement finished while this request was outstanding,
2400 		 * 'replacement' might be NULL already.
2401 		 * In that case it moved down to 'rdev'.
2402 		 * rdev is not removed until all requests are finished.
2403 		 */
2404 		rdev = conf->disks[i].replacement;
2405 	if (!rdev)
2406 		rdev = conf->disks[i].rdev;
2407 
2408 	if (use_new_offset(conf, sh))
2409 		s = sh->sector + rdev->new_data_offset;
2410 	else
2411 		s = sh->sector + rdev->data_offset;
2412 	if (!bi->bi_error) {
2413 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
2414 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2415 			/* Note that this cannot happen on a
2416 			 * replacement device.  We just fail those on
2417 			 * any error
2418 			 */
2419 			pr_info_ratelimited(
2420 				"md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
2421 				mdname(conf->mddev), STRIPE_SECTORS,
2422 				(unsigned long long)s,
2423 				bdevname(rdev->bdev, b));
2424 			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2425 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2426 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2427 		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2428 			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2429 
2430 		if (test_bit(R5_InJournal, &sh->dev[i].flags))
2431 			/*
2432 			 * end read for a page in journal, this
2433 			 * must be preparing for prexor in rmw
2434 			 */
2435 			set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2436 
2437 		if (atomic_read(&rdev->read_errors))
2438 			atomic_set(&rdev->read_errors, 0);
2439 	} else {
2440 		const char *bdn = bdevname(rdev->bdev, b);
2441 		int retry = 0;
2442 		int set_bad = 0;
2443 
2444 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2445 		atomic_inc(&rdev->read_errors);
2446 		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2447 			pr_warn_ratelimited(
2448 				"md/raid:%s: read error on replacement device (sector %llu on %s).\n",
2449 				mdname(conf->mddev),
2450 				(unsigned long long)s,
2451 				bdn);
2452 		else if (conf->mddev->degraded >= conf->max_degraded) {
2453 			set_bad = 1;
2454 			pr_warn_ratelimited(
2455 				"md/raid:%s: read error not correctable (sector %llu on %s).\n",
2456 				mdname(conf->mddev),
2457 				(unsigned long long)s,
2458 				bdn);
2459 		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2460 			/* Oh, no!!! */
2461 			set_bad = 1;
2462 			pr_warn_ratelimited(
2463 				"md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
2464 				mdname(conf->mddev),
2465 				(unsigned long long)s,
2466 				bdn);
2467 		} else if (atomic_read(&rdev->read_errors)
2468 			 > conf->max_nr_stripes)
2469 			pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2470 			       mdname(conf->mddev), bdn);
2471 		else
2472 			retry = 1;
2473 		if (set_bad && test_bit(In_sync, &rdev->flags)
2474 		    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2475 			retry = 1;
2476 		if (retry)
2477 			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2478 				set_bit(R5_ReadError, &sh->dev[i].flags);
2479 				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2480 			} else
2481 				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2482 		else {
2483 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2484 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2485 			if (!(set_bad
2486 			      && test_bit(In_sync, &rdev->flags)
2487 			      && rdev_set_badblocks(
2488 				      rdev, sh->sector, STRIPE_SECTORS, 0)))
2489 				md_error(conf->mddev, rdev);
2490 		}
2491 	}
2492 	rdev_dec_pending(rdev, conf->mddev);
2493 	bio_reset(bi);
2494 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
2495 	set_bit(STRIPE_HANDLE, &sh->state);
2496 	raid5_release_stripe(sh);
2497 }
2498 
2499 static void raid5_end_write_request(struct bio *bi)
2500 {
2501 	struct stripe_head *sh = bi->bi_private;
2502 	struct r5conf *conf = sh->raid_conf;
2503 	int disks = sh->disks, i;
2504 	struct md_rdev *uninitialized_var(rdev);
2505 	sector_t first_bad;
2506 	int bad_sectors;
2507 	int replacement = 0;
2508 
2509 	for (i = 0 ; i < disks; i++) {
2510 		if (bi == &sh->dev[i].req) {
2511 			rdev = conf->disks[i].rdev;
2512 			break;
2513 		}
2514 		if (bi == &sh->dev[i].rreq) {
2515 			rdev = conf->disks[i].replacement;
2516 			if (rdev)
2517 				replacement = 1;
2518 			else
2519 				/* rdev was removed and 'replacement'
2520 				 * replaced it.  rdev is not removed
2521 				 * until all requests are finished.
2522 				 */
2523 				rdev = conf->disks[i].rdev;
2524 			break;
2525 		}
2526 	}
2527 	pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2528 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2529 		bi->bi_error);
2530 	if (i == disks) {
2531 		bio_reset(bi);
2532 		BUG();
2533 		return;
2534 	}
2535 
2536 	if (replacement) {
2537 		if (bi->bi_error)
2538 			md_error(conf->mddev, rdev);
2539 		else if (is_badblock(rdev, sh->sector,
2540 				     STRIPE_SECTORS,
2541 				     &first_bad, &bad_sectors))
2542 			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2543 	} else {
2544 		if (bi->bi_error) {
2545 			set_bit(STRIPE_DEGRADED, &sh->state);
2546 			set_bit(WriteErrorSeen, &rdev->flags);
2547 			set_bit(R5_WriteError, &sh->dev[i].flags);
2548 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2549 				set_bit(MD_RECOVERY_NEEDED,
2550 					&rdev->mddev->recovery);
2551 		} else if (is_badblock(rdev, sh->sector,
2552 				       STRIPE_SECTORS,
2553 				       &first_bad, &bad_sectors)) {
2554 			set_bit(R5_MadeGood, &sh->dev[i].flags);
2555 			if (test_bit(R5_ReadError, &sh->dev[i].flags))
2556 				/* That was a successful write so make
2557 				 * sure it looks like we already did
2558 				 * a re-write.
2559 				 */
2560 				set_bit(R5_ReWrite, &sh->dev[i].flags);
2561 		}
2562 	}
2563 	rdev_dec_pending(rdev, conf->mddev);
2564 
2565 	if (sh->batch_head && bi->bi_error && !replacement)
2566 		set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2567 
2568 	bio_reset(bi);
2569 	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2570 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2571 	set_bit(STRIPE_HANDLE, &sh->state);
2572 	raid5_release_stripe(sh);
2573 
2574 	if (sh->batch_head && sh != sh->batch_head)
2575 		raid5_release_stripe(sh->batch_head);
2576 }
2577 
2578 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2579 {
2580 	struct r5dev *dev = &sh->dev[i];
2581 
2582 	dev->flags = 0;
2583 	dev->sector = raid5_compute_blocknr(sh, i, previous);
2584 }
2585 
2586 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2587 {
2588 	char b[BDEVNAME_SIZE];
2589 	struct r5conf *conf = mddev->private;
2590 	unsigned long flags;
2591 	pr_debug("raid456: error called\n");
2592 
2593 	spin_lock_irqsave(&conf->device_lock, flags);
2594 	clear_bit(In_sync, &rdev->flags);
2595 	mddev->degraded = raid5_calc_degraded(conf);
2596 	spin_unlock_irqrestore(&conf->device_lock, flags);
2597 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2598 
2599 	set_bit(Blocked, &rdev->flags);
2600 	set_bit(Faulty, &rdev->flags);
2601 	set_mask_bits(&mddev->sb_flags, 0,
2602 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2603 	pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2604 		"md/raid:%s: Operation continuing on %d devices.\n",
2605 		mdname(mddev),
2606 		bdevname(rdev->bdev, b),
2607 		mdname(mddev),
2608 		conf->raid_disks - mddev->degraded);
2609 	r5c_update_on_rdev_error(mddev);
2610 }
2611 
2612 /*
2613  * Input: a 'big' sector number,
2614  * Output: index of the data and parity disk, and the sector # in them.
2615  */
2616 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2617 			      int previous, int *dd_idx,
2618 			      struct stripe_head *sh)
2619 {
2620 	sector_t stripe, stripe2;
2621 	sector_t chunk_number;
2622 	unsigned int chunk_offset;
2623 	int pd_idx, qd_idx;
2624 	int ddf_layout = 0;
2625 	sector_t new_sector;
2626 	int algorithm = previous ? conf->prev_algo
2627 				 : conf->algorithm;
2628 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2629 					 : conf->chunk_sectors;
2630 	int raid_disks = previous ? conf->previous_raid_disks
2631 				  : conf->raid_disks;
2632 	int data_disks = raid_disks - conf->max_degraded;
2633 
2634 	/* First compute the information on this sector */
2635 
2636 	/*
2637 	 * Compute the chunk number and the sector offset inside the chunk
2638 	 */
2639 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
2640 	chunk_number = r_sector;
2641 
2642 	/*
2643 	 * Compute the stripe number
2644 	 */
2645 	stripe = chunk_number;
2646 	*dd_idx = sector_div(stripe, data_disks);
2647 	stripe2 = stripe;
2648 	/*
2649 	 * Select the parity disk based on the user selected algorithm.
2650 	 */
2651 	pd_idx = qd_idx = -1;
2652 	switch(conf->level) {
2653 	case 4:
2654 		pd_idx = data_disks;
2655 		break;
2656 	case 5:
2657 		switch (algorithm) {
2658 		case ALGORITHM_LEFT_ASYMMETRIC:
2659 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2660 			if (*dd_idx >= pd_idx)
2661 				(*dd_idx)++;
2662 			break;
2663 		case ALGORITHM_RIGHT_ASYMMETRIC:
2664 			pd_idx = sector_div(stripe2, raid_disks);
2665 			if (*dd_idx >= pd_idx)
2666 				(*dd_idx)++;
2667 			break;
2668 		case ALGORITHM_LEFT_SYMMETRIC:
2669 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2670 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2671 			break;
2672 		case ALGORITHM_RIGHT_SYMMETRIC:
2673 			pd_idx = sector_div(stripe2, raid_disks);
2674 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2675 			break;
2676 		case ALGORITHM_PARITY_0:
2677 			pd_idx = 0;
2678 			(*dd_idx)++;
2679 			break;
2680 		case ALGORITHM_PARITY_N:
2681 			pd_idx = data_disks;
2682 			break;
2683 		default:
2684 			BUG();
2685 		}
2686 		break;
2687 	case 6:
2688 
2689 		switch (algorithm) {
2690 		case ALGORITHM_LEFT_ASYMMETRIC:
2691 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2692 			qd_idx = pd_idx + 1;
2693 			if (pd_idx == raid_disks-1) {
2694 				(*dd_idx)++;	/* Q D D D P */
2695 				qd_idx = 0;
2696 			} else if (*dd_idx >= pd_idx)
2697 				(*dd_idx) += 2; /* D D P Q D */
2698 			break;
2699 		case ALGORITHM_RIGHT_ASYMMETRIC:
2700 			pd_idx = sector_div(stripe2, raid_disks);
2701 			qd_idx = pd_idx + 1;
2702 			if (pd_idx == raid_disks-1) {
2703 				(*dd_idx)++;	/* Q D D D P */
2704 				qd_idx = 0;
2705 			} else if (*dd_idx >= pd_idx)
2706 				(*dd_idx) += 2; /* D D P Q D */
2707 			break;
2708 		case ALGORITHM_LEFT_SYMMETRIC:
2709 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2710 			qd_idx = (pd_idx + 1) % raid_disks;
2711 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2712 			break;
2713 		case ALGORITHM_RIGHT_SYMMETRIC:
2714 			pd_idx = sector_div(stripe2, raid_disks);
2715 			qd_idx = (pd_idx + 1) % raid_disks;
2716 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2717 			break;
2718 
2719 		case ALGORITHM_PARITY_0:
2720 			pd_idx = 0;
2721 			qd_idx = 1;
2722 			(*dd_idx) += 2;
2723 			break;
2724 		case ALGORITHM_PARITY_N:
2725 			pd_idx = data_disks;
2726 			qd_idx = data_disks + 1;
2727 			break;
2728 
2729 		case ALGORITHM_ROTATING_ZERO_RESTART:
2730 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
2731 			 * of blocks for computing Q is different.
2732 			 */
2733 			pd_idx = sector_div(stripe2, raid_disks);
2734 			qd_idx = pd_idx + 1;
2735 			if (pd_idx == raid_disks-1) {
2736 				(*dd_idx)++;	/* Q D D D P */
2737 				qd_idx = 0;
2738 			} else if (*dd_idx >= pd_idx)
2739 				(*dd_idx) += 2; /* D D P Q D */
2740 			ddf_layout = 1;
2741 			break;
2742 
2743 		case ALGORITHM_ROTATING_N_RESTART:
2744 			/* Same a left_asymmetric, by first stripe is
2745 			 * D D D P Q  rather than
2746 			 * Q D D D P
2747 			 */
2748 			stripe2 += 1;
2749 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2750 			qd_idx = pd_idx + 1;
2751 			if (pd_idx == raid_disks-1) {
2752 				(*dd_idx)++;	/* Q D D D P */
2753 				qd_idx = 0;
2754 			} else if (*dd_idx >= pd_idx)
2755 				(*dd_idx) += 2; /* D D P Q D */
2756 			ddf_layout = 1;
2757 			break;
2758 
2759 		case ALGORITHM_ROTATING_N_CONTINUE:
2760 			/* Same as left_symmetric but Q is before P */
2761 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2762 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2763 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2764 			ddf_layout = 1;
2765 			break;
2766 
2767 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2768 			/* RAID5 left_asymmetric, with Q on last device */
2769 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2770 			if (*dd_idx >= pd_idx)
2771 				(*dd_idx)++;
2772 			qd_idx = raid_disks - 1;
2773 			break;
2774 
2775 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2776 			pd_idx = sector_div(stripe2, raid_disks-1);
2777 			if (*dd_idx >= pd_idx)
2778 				(*dd_idx)++;
2779 			qd_idx = raid_disks - 1;
2780 			break;
2781 
2782 		case ALGORITHM_LEFT_SYMMETRIC_6:
2783 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2784 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2785 			qd_idx = raid_disks - 1;
2786 			break;
2787 
2788 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2789 			pd_idx = sector_div(stripe2, raid_disks-1);
2790 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2791 			qd_idx = raid_disks - 1;
2792 			break;
2793 
2794 		case ALGORITHM_PARITY_0_6:
2795 			pd_idx = 0;
2796 			(*dd_idx)++;
2797 			qd_idx = raid_disks - 1;
2798 			break;
2799 
2800 		default:
2801 			BUG();
2802 		}
2803 		break;
2804 	}
2805 
2806 	if (sh) {
2807 		sh->pd_idx = pd_idx;
2808 		sh->qd_idx = qd_idx;
2809 		sh->ddf_layout = ddf_layout;
2810 	}
2811 	/*
2812 	 * Finally, compute the new sector number
2813 	 */
2814 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2815 	return new_sector;
2816 }
2817 
2818 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2819 {
2820 	struct r5conf *conf = sh->raid_conf;
2821 	int raid_disks = sh->disks;
2822 	int data_disks = raid_disks - conf->max_degraded;
2823 	sector_t new_sector = sh->sector, check;
2824 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2825 					 : conf->chunk_sectors;
2826 	int algorithm = previous ? conf->prev_algo
2827 				 : conf->algorithm;
2828 	sector_t stripe;
2829 	int chunk_offset;
2830 	sector_t chunk_number;
2831 	int dummy1, dd_idx = i;
2832 	sector_t r_sector;
2833 	struct stripe_head sh2;
2834 
2835 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
2836 	stripe = new_sector;
2837 
2838 	if (i == sh->pd_idx)
2839 		return 0;
2840 	switch(conf->level) {
2841 	case 4: break;
2842 	case 5:
2843 		switch (algorithm) {
2844 		case ALGORITHM_LEFT_ASYMMETRIC:
2845 		case ALGORITHM_RIGHT_ASYMMETRIC:
2846 			if (i > sh->pd_idx)
2847 				i--;
2848 			break;
2849 		case ALGORITHM_LEFT_SYMMETRIC:
2850 		case ALGORITHM_RIGHT_SYMMETRIC:
2851 			if (i < sh->pd_idx)
2852 				i += raid_disks;
2853 			i -= (sh->pd_idx + 1);
2854 			break;
2855 		case ALGORITHM_PARITY_0:
2856 			i -= 1;
2857 			break;
2858 		case ALGORITHM_PARITY_N:
2859 			break;
2860 		default:
2861 			BUG();
2862 		}
2863 		break;
2864 	case 6:
2865 		if (i == sh->qd_idx)
2866 			return 0; /* It is the Q disk */
2867 		switch (algorithm) {
2868 		case ALGORITHM_LEFT_ASYMMETRIC:
2869 		case ALGORITHM_RIGHT_ASYMMETRIC:
2870 		case ALGORITHM_ROTATING_ZERO_RESTART:
2871 		case ALGORITHM_ROTATING_N_RESTART:
2872 			if (sh->pd_idx == raid_disks-1)
2873 				i--;	/* Q D D D P */
2874 			else if (i > sh->pd_idx)
2875 				i -= 2; /* D D P Q D */
2876 			break;
2877 		case ALGORITHM_LEFT_SYMMETRIC:
2878 		case ALGORITHM_RIGHT_SYMMETRIC:
2879 			if (sh->pd_idx == raid_disks-1)
2880 				i--; /* Q D D D P */
2881 			else {
2882 				/* D D P Q D */
2883 				if (i < sh->pd_idx)
2884 					i += raid_disks;
2885 				i -= (sh->pd_idx + 2);
2886 			}
2887 			break;
2888 		case ALGORITHM_PARITY_0:
2889 			i -= 2;
2890 			break;
2891 		case ALGORITHM_PARITY_N:
2892 			break;
2893 		case ALGORITHM_ROTATING_N_CONTINUE:
2894 			/* Like left_symmetric, but P is before Q */
2895 			if (sh->pd_idx == 0)
2896 				i--;	/* P D D D Q */
2897 			else {
2898 				/* D D Q P D */
2899 				if (i < sh->pd_idx)
2900 					i += raid_disks;
2901 				i -= (sh->pd_idx + 1);
2902 			}
2903 			break;
2904 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2905 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2906 			if (i > sh->pd_idx)
2907 				i--;
2908 			break;
2909 		case ALGORITHM_LEFT_SYMMETRIC_6:
2910 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2911 			if (i < sh->pd_idx)
2912 				i += data_disks + 1;
2913 			i -= (sh->pd_idx + 1);
2914 			break;
2915 		case ALGORITHM_PARITY_0_6:
2916 			i -= 1;
2917 			break;
2918 		default:
2919 			BUG();
2920 		}
2921 		break;
2922 	}
2923 
2924 	chunk_number = stripe * data_disks + i;
2925 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2926 
2927 	check = raid5_compute_sector(conf, r_sector,
2928 				     previous, &dummy1, &sh2);
2929 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2930 		|| sh2.qd_idx != sh->qd_idx) {
2931 		pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
2932 			mdname(conf->mddev));
2933 		return 0;
2934 	}
2935 	return r_sector;
2936 }
2937 
2938 /*
2939  * There are cases where we want handle_stripe_dirtying() and
2940  * schedule_reconstruction() to delay towrite to some dev of a stripe.
2941  *
2942  * This function checks whether we want to delay the towrite. Specifically,
2943  * we delay the towrite when:
2944  *
2945  *   1. degraded stripe has a non-overwrite to the missing dev, AND this
2946  *      stripe has data in journal (for other devices).
2947  *
2948  *      In this case, when reading data for the non-overwrite dev, it is
2949  *      necessary to handle complex rmw of write back cache (prexor with
2950  *      orig_page, and xor with page). To keep read path simple, we would
2951  *      like to flush data in journal to RAID disks first, so complex rmw
2952  *      is handled in the write patch (handle_stripe_dirtying).
2953  *
2954  *   2. when journal space is critical (R5C_LOG_CRITICAL=1)
2955  *
2956  *      It is important to be able to flush all stripes in raid5-cache.
2957  *      Therefore, we need reserve some space on the journal device for
2958  *      these flushes. If flush operation includes pending writes to the
2959  *      stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
2960  *      for the flush out. If we exclude these pending writes from flush
2961  *      operation, we only need (conf->max_degraded + 1) pages per stripe.
2962  *      Therefore, excluding pending writes in these cases enables more
2963  *      efficient use of the journal device.
2964  *
2965  *      Note: To make sure the stripe makes progress, we only delay
2966  *      towrite for stripes with data already in journal (injournal > 0).
2967  *      When LOG_CRITICAL, stripes with injournal == 0 will be sent to
2968  *      no_space_stripes list.
2969  *
2970  */
2971 static inline bool delay_towrite(struct r5conf *conf,
2972 				 struct r5dev *dev,
2973 				 struct stripe_head_state *s)
2974 {
2975 	/* case 1 above */
2976 	if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2977 	    !test_bit(R5_Insync, &dev->flags) && s->injournal)
2978 		return true;
2979 	/* case 2 above */
2980 	if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
2981 	    s->injournal > 0)
2982 		return true;
2983 	return false;
2984 }
2985 
2986 static void
2987 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2988 			 int rcw, int expand)
2989 {
2990 	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
2991 	struct r5conf *conf = sh->raid_conf;
2992 	int level = conf->level;
2993 
2994 	if (rcw) {
2995 		/*
2996 		 * In some cases, handle_stripe_dirtying initially decided to
2997 		 * run rmw and allocates extra page for prexor. However, rcw is
2998 		 * cheaper later on. We need to free the extra page now,
2999 		 * because we won't be able to do that in ops_complete_prexor().
3000 		 */
3001 		r5c_release_extra_page(sh);
3002 
3003 		for (i = disks; i--; ) {
3004 			struct r5dev *dev = &sh->dev[i];
3005 
3006 			if (dev->towrite && !delay_towrite(conf, dev, s)) {
3007 				set_bit(R5_LOCKED, &dev->flags);
3008 				set_bit(R5_Wantdrain, &dev->flags);
3009 				if (!expand)
3010 					clear_bit(R5_UPTODATE, &dev->flags);
3011 				s->locked++;
3012 			} else if (test_bit(R5_InJournal, &dev->flags)) {
3013 				set_bit(R5_LOCKED, &dev->flags);
3014 				s->locked++;
3015 			}
3016 		}
3017 		/* if we are not expanding this is a proper write request, and
3018 		 * there will be bios with new data to be drained into the
3019 		 * stripe cache
3020 		 */
3021 		if (!expand) {
3022 			if (!s->locked)
3023 				/* False alarm, nothing to do */
3024 				return;
3025 			sh->reconstruct_state = reconstruct_state_drain_run;
3026 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3027 		} else
3028 			sh->reconstruct_state = reconstruct_state_run;
3029 
3030 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3031 
3032 		if (s->locked + conf->max_degraded == disks)
3033 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3034 				atomic_inc(&conf->pending_full_writes);
3035 	} else {
3036 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3037 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3038 		BUG_ON(level == 6 &&
3039 			(!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3040 			   test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3041 
3042 		for (i = disks; i--; ) {
3043 			struct r5dev *dev = &sh->dev[i];
3044 			if (i == pd_idx || i == qd_idx)
3045 				continue;
3046 
3047 			if (dev->towrite &&
3048 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3049 			     test_bit(R5_Wantcompute, &dev->flags))) {
3050 				set_bit(R5_Wantdrain, &dev->flags);
3051 				set_bit(R5_LOCKED, &dev->flags);
3052 				clear_bit(R5_UPTODATE, &dev->flags);
3053 				s->locked++;
3054 			} else if (test_bit(R5_InJournal, &dev->flags)) {
3055 				set_bit(R5_LOCKED, &dev->flags);
3056 				s->locked++;
3057 			}
3058 		}
3059 		if (!s->locked)
3060 			/* False alarm - nothing to do */
3061 			return;
3062 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3063 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3064 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3065 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3066 	}
3067 
3068 	/* keep the parity disk(s) locked while asynchronous operations
3069 	 * are in flight
3070 	 */
3071 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3072 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3073 	s->locked++;
3074 
3075 	if (level == 6) {
3076 		int qd_idx = sh->qd_idx;
3077 		struct r5dev *dev = &sh->dev[qd_idx];
3078 
3079 		set_bit(R5_LOCKED, &dev->flags);
3080 		clear_bit(R5_UPTODATE, &dev->flags);
3081 		s->locked++;
3082 	}
3083 
3084 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3085 		__func__, (unsigned long long)sh->sector,
3086 		s->locked, s->ops_request);
3087 }
3088 
3089 /*
3090  * Each stripe/dev can have one or more bion attached.
3091  * toread/towrite point to the first in a chain.
3092  * The bi_next chain must be in order.
3093  */
3094 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3095 			  int forwrite, int previous)
3096 {
3097 	struct bio **bip;
3098 	struct r5conf *conf = sh->raid_conf;
3099 	int firstwrite=0;
3100 
3101 	pr_debug("adding bi b#%llu to stripe s#%llu\n",
3102 		(unsigned long long)bi->bi_iter.bi_sector,
3103 		(unsigned long long)sh->sector);
3104 
3105 	/*
3106 	 * If several bio share a stripe. The bio bi_phys_segments acts as a
3107 	 * reference count to avoid race. The reference count should already be
3108 	 * increased before this function is called (for example, in
3109 	 * raid5_make_request()), so other bio sharing this stripe will not free the
3110 	 * stripe. If a stripe is owned by one stripe, the stripe lock will
3111 	 * protect it.
3112 	 */
3113 	spin_lock_irq(&sh->stripe_lock);
3114 	/* Don't allow new IO added to stripes in batch list */
3115 	if (sh->batch_head)
3116 		goto overlap;
3117 	if (forwrite) {
3118 		bip = &sh->dev[dd_idx].towrite;
3119 		if (*bip == NULL)
3120 			firstwrite = 1;
3121 	} else
3122 		bip = &sh->dev[dd_idx].toread;
3123 	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3124 		if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3125 			goto overlap;
3126 		bip = & (*bip)->bi_next;
3127 	}
3128 	if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3129 		goto overlap;
3130 
3131 	if (!forwrite || previous)
3132 		clear_bit(STRIPE_BATCH_READY, &sh->state);
3133 
3134 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3135 	if (*bip)
3136 		bi->bi_next = *bip;
3137 	*bip = bi;
3138 	raid5_inc_bi_active_stripes(bi);
3139 
3140 	if (forwrite) {
3141 		/* check if page is covered */
3142 		sector_t sector = sh->dev[dd_idx].sector;
3143 		for (bi=sh->dev[dd_idx].towrite;
3144 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3145 			     bi && bi->bi_iter.bi_sector <= sector;
3146 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3147 			if (bio_end_sector(bi) >= sector)
3148 				sector = bio_end_sector(bi);
3149 		}
3150 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3151 			if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3152 				sh->overwrite_disks++;
3153 	}
3154 
3155 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3156 		(unsigned long long)(*bip)->bi_iter.bi_sector,
3157 		(unsigned long long)sh->sector, dd_idx);
3158 
3159 	if (conf->mddev->bitmap && firstwrite) {
3160 		/* Cannot hold spinlock over bitmap_startwrite,
3161 		 * but must ensure this isn't added to a batch until
3162 		 * we have added to the bitmap and set bm_seq.
3163 		 * So set STRIPE_BITMAP_PENDING to prevent
3164 		 * batching.
3165 		 * If multiple add_stripe_bio() calls race here they
3166 		 * much all set STRIPE_BITMAP_PENDING.  So only the first one
3167 		 * to complete "bitmap_startwrite" gets to set
3168 		 * STRIPE_BIT_DELAY.  This is important as once a stripe
3169 		 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3170 		 * any more.
3171 		 */
3172 		set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3173 		spin_unlock_irq(&sh->stripe_lock);
3174 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3175 				  STRIPE_SECTORS, 0);
3176 		spin_lock_irq(&sh->stripe_lock);
3177 		clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3178 		if (!sh->batch_head) {
3179 			sh->bm_seq = conf->seq_flush+1;
3180 			set_bit(STRIPE_BIT_DELAY, &sh->state);
3181 		}
3182 	}
3183 	spin_unlock_irq(&sh->stripe_lock);
3184 
3185 	if (stripe_can_batch(sh))
3186 		stripe_add_to_batch_list(conf, sh);
3187 	return 1;
3188 
3189  overlap:
3190 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3191 	spin_unlock_irq(&sh->stripe_lock);
3192 	return 0;
3193 }
3194 
3195 static void end_reshape(struct r5conf *conf);
3196 
3197 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3198 			    struct stripe_head *sh)
3199 {
3200 	int sectors_per_chunk =
3201 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3202 	int dd_idx;
3203 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
3204 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3205 
3206 	raid5_compute_sector(conf,
3207 			     stripe * (disks - conf->max_degraded)
3208 			     *sectors_per_chunk + chunk_offset,
3209 			     previous,
3210 			     &dd_idx, sh);
3211 }
3212 
3213 static void
3214 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3215 				struct stripe_head_state *s, int disks,
3216 				struct bio_list *return_bi)
3217 {
3218 	int i;
3219 	BUG_ON(sh->batch_head);
3220 	for (i = disks; i--; ) {
3221 		struct bio *bi;
3222 		int bitmap_end = 0;
3223 
3224 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3225 			struct md_rdev *rdev;
3226 			rcu_read_lock();
3227 			rdev = rcu_dereference(conf->disks[i].rdev);
3228 			if (rdev && test_bit(In_sync, &rdev->flags) &&
3229 			    !test_bit(Faulty, &rdev->flags))
3230 				atomic_inc(&rdev->nr_pending);
3231 			else
3232 				rdev = NULL;
3233 			rcu_read_unlock();
3234 			if (rdev) {
3235 				if (!rdev_set_badblocks(
3236 					    rdev,
3237 					    sh->sector,
3238 					    STRIPE_SECTORS, 0))
3239 					md_error(conf->mddev, rdev);
3240 				rdev_dec_pending(rdev, conf->mddev);
3241 			}
3242 		}
3243 		spin_lock_irq(&sh->stripe_lock);
3244 		/* fail all writes first */
3245 		bi = sh->dev[i].towrite;
3246 		sh->dev[i].towrite = NULL;
3247 		sh->overwrite_disks = 0;
3248 		spin_unlock_irq(&sh->stripe_lock);
3249 		if (bi)
3250 			bitmap_end = 1;
3251 
3252 		r5l_stripe_write_finished(sh);
3253 
3254 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3255 			wake_up(&conf->wait_for_overlap);
3256 
3257 		while (bi && bi->bi_iter.bi_sector <
3258 			sh->dev[i].sector + STRIPE_SECTORS) {
3259 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3260 
3261 			bi->bi_error = -EIO;
3262 			if (!raid5_dec_bi_active_stripes(bi)) {
3263 				md_write_end(conf->mddev);
3264 				bio_list_add(return_bi, bi);
3265 			}
3266 			bi = nextbi;
3267 		}
3268 		if (bitmap_end)
3269 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3270 				STRIPE_SECTORS, 0, 0);
3271 		bitmap_end = 0;
3272 		/* and fail all 'written' */
3273 		bi = sh->dev[i].written;
3274 		sh->dev[i].written = NULL;
3275 		if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3276 			WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3277 			sh->dev[i].page = sh->dev[i].orig_page;
3278 		}
3279 
3280 		if (bi) bitmap_end = 1;
3281 		while (bi && bi->bi_iter.bi_sector <
3282 		       sh->dev[i].sector + STRIPE_SECTORS) {
3283 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3284 
3285 			bi->bi_error = -EIO;
3286 			if (!raid5_dec_bi_active_stripes(bi)) {
3287 				md_write_end(conf->mddev);
3288 				bio_list_add(return_bi, bi);
3289 			}
3290 			bi = bi2;
3291 		}
3292 
3293 		/* fail any reads if this device is non-operational and
3294 		 * the data has not reached the cache yet.
3295 		 */
3296 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3297 		    s->failed > conf->max_degraded &&
3298 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3299 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
3300 			spin_lock_irq(&sh->stripe_lock);
3301 			bi = sh->dev[i].toread;
3302 			sh->dev[i].toread = NULL;
3303 			spin_unlock_irq(&sh->stripe_lock);
3304 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3305 				wake_up(&conf->wait_for_overlap);
3306 			if (bi)
3307 				s->to_read--;
3308 			while (bi && bi->bi_iter.bi_sector <
3309 			       sh->dev[i].sector + STRIPE_SECTORS) {
3310 				struct bio *nextbi =
3311 					r5_next_bio(bi, sh->dev[i].sector);
3312 
3313 				bi->bi_error = -EIO;
3314 				if (!raid5_dec_bi_active_stripes(bi))
3315 					bio_list_add(return_bi, bi);
3316 				bi = nextbi;
3317 			}
3318 		}
3319 		if (bitmap_end)
3320 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3321 					STRIPE_SECTORS, 0, 0);
3322 		/* If we were in the middle of a write the parity block might
3323 		 * still be locked - so just clear all R5_LOCKED flags
3324 		 */
3325 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
3326 	}
3327 	s->to_write = 0;
3328 	s->written = 0;
3329 
3330 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3331 		if (atomic_dec_and_test(&conf->pending_full_writes))
3332 			md_wakeup_thread(conf->mddev->thread);
3333 }
3334 
3335 static void
3336 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3337 		   struct stripe_head_state *s)
3338 {
3339 	int abort = 0;
3340 	int i;
3341 
3342 	BUG_ON(sh->batch_head);
3343 	clear_bit(STRIPE_SYNCING, &sh->state);
3344 	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3345 		wake_up(&conf->wait_for_overlap);
3346 	s->syncing = 0;
3347 	s->replacing = 0;
3348 	/* There is nothing more to do for sync/check/repair.
3349 	 * Don't even need to abort as that is handled elsewhere
3350 	 * if needed, and not always wanted e.g. if there is a known
3351 	 * bad block here.
3352 	 * For recover/replace we need to record a bad block on all
3353 	 * non-sync devices, or abort the recovery
3354 	 */
3355 	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3356 		/* During recovery devices cannot be removed, so
3357 		 * locking and refcounting of rdevs is not needed
3358 		 */
3359 		rcu_read_lock();
3360 		for (i = 0; i < conf->raid_disks; i++) {
3361 			struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3362 			if (rdev
3363 			    && !test_bit(Faulty, &rdev->flags)
3364 			    && !test_bit(In_sync, &rdev->flags)
3365 			    && !rdev_set_badblocks(rdev, sh->sector,
3366 						   STRIPE_SECTORS, 0))
3367 				abort = 1;
3368 			rdev = rcu_dereference(conf->disks[i].replacement);
3369 			if (rdev
3370 			    && !test_bit(Faulty, &rdev->flags)
3371 			    && !test_bit(In_sync, &rdev->flags)
3372 			    && !rdev_set_badblocks(rdev, sh->sector,
3373 						   STRIPE_SECTORS, 0))
3374 				abort = 1;
3375 		}
3376 		rcu_read_unlock();
3377 		if (abort)
3378 			conf->recovery_disabled =
3379 				conf->mddev->recovery_disabled;
3380 	}
3381 	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3382 }
3383 
3384 static int want_replace(struct stripe_head *sh, int disk_idx)
3385 {
3386 	struct md_rdev *rdev;
3387 	int rv = 0;
3388 
3389 	rcu_read_lock();
3390 	rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3391 	if (rdev
3392 	    && !test_bit(Faulty, &rdev->flags)
3393 	    && !test_bit(In_sync, &rdev->flags)
3394 	    && (rdev->recovery_offset <= sh->sector
3395 		|| rdev->mddev->recovery_cp <= sh->sector))
3396 		rv = 1;
3397 	rcu_read_unlock();
3398 	return rv;
3399 }
3400 
3401 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3402 			   int disk_idx, int disks)
3403 {
3404 	struct r5dev *dev = &sh->dev[disk_idx];
3405 	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3406 				  &sh->dev[s->failed_num[1]] };
3407 	int i;
3408 
3409 
3410 	if (test_bit(R5_LOCKED, &dev->flags) ||
3411 	    test_bit(R5_UPTODATE, &dev->flags))
3412 		/* No point reading this as we already have it or have
3413 		 * decided to get it.
3414 		 */
3415 		return 0;
3416 
3417 	if (dev->toread ||
3418 	    (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3419 		/* We need this block to directly satisfy a request */
3420 		return 1;
3421 
3422 	if (s->syncing || s->expanding ||
3423 	    (s->replacing && want_replace(sh, disk_idx)))
3424 		/* When syncing, or expanding we read everything.
3425 		 * When replacing, we need the replaced block.
3426 		 */
3427 		return 1;
3428 
3429 	if ((s->failed >= 1 && fdev[0]->toread) ||
3430 	    (s->failed >= 2 && fdev[1]->toread))
3431 		/* If we want to read from a failed device, then
3432 		 * we need to actually read every other device.
3433 		 */
3434 		return 1;
3435 
3436 	/* Sometimes neither read-modify-write nor reconstruct-write
3437 	 * cycles can work.  In those cases we read every block we
3438 	 * can.  Then the parity-update is certain to have enough to
3439 	 * work with.
3440 	 * This can only be a problem when we need to write something,
3441 	 * and some device has failed.  If either of those tests
3442 	 * fail we need look no further.
3443 	 */
3444 	if (!s->failed || !s->to_write)
3445 		return 0;
3446 
3447 	if (test_bit(R5_Insync, &dev->flags) &&
3448 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3449 		/* Pre-reads at not permitted until after short delay
3450 		 * to gather multiple requests.  However if this
3451 		 * device is no Insync, the block could only be be computed
3452 		 * and there is no need to delay that.
3453 		 */
3454 		return 0;
3455 
3456 	for (i = 0; i < s->failed && i < 2; i++) {
3457 		if (fdev[i]->towrite &&
3458 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3459 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3460 			/* If we have a partial write to a failed
3461 			 * device, then we will need to reconstruct
3462 			 * the content of that device, so all other
3463 			 * devices must be read.
3464 			 */
3465 			return 1;
3466 	}
3467 
3468 	/* If we are forced to do a reconstruct-write, either because
3469 	 * the current RAID6 implementation only supports that, or
3470 	 * or because parity cannot be trusted and we are currently
3471 	 * recovering it, there is extra need to be careful.
3472 	 * If one of the devices that we would need to read, because
3473 	 * it is not being overwritten (and maybe not written at all)
3474 	 * is missing/faulty, then we need to read everything we can.
3475 	 */
3476 	if (sh->raid_conf->level != 6 &&
3477 	    sh->sector < sh->raid_conf->mddev->recovery_cp)
3478 		/* reconstruct-write isn't being forced */
3479 		return 0;
3480 	for (i = 0; i < s->failed && i < 2; i++) {
3481 		if (s->failed_num[i] != sh->pd_idx &&
3482 		    s->failed_num[i] != sh->qd_idx &&
3483 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3484 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3485 			return 1;
3486 	}
3487 
3488 	return 0;
3489 }
3490 
3491 /* fetch_block - checks the given member device to see if its data needs
3492  * to be read or computed to satisfy a request.
3493  *
3494  * Returns 1 when no more member devices need to be checked, otherwise returns
3495  * 0 to tell the loop in handle_stripe_fill to continue
3496  */
3497 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3498 		       int disk_idx, int disks)
3499 {
3500 	struct r5dev *dev = &sh->dev[disk_idx];
3501 
3502 	/* is the data in this block needed, and can we get it? */
3503 	if (need_this_block(sh, s, disk_idx, disks)) {
3504 		/* we would like to get this block, possibly by computing it,
3505 		 * otherwise read it if the backing disk is insync
3506 		 */
3507 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3508 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
3509 		BUG_ON(sh->batch_head);
3510 		if ((s->uptodate == disks - 1) &&
3511 		    (s->failed && (disk_idx == s->failed_num[0] ||
3512 				   disk_idx == s->failed_num[1]))) {
3513 			/* have disk failed, and we're requested to fetch it;
3514 			 * do compute it
3515 			 */
3516 			pr_debug("Computing stripe %llu block %d\n",
3517 			       (unsigned long long)sh->sector, disk_idx);
3518 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3519 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3520 			set_bit(R5_Wantcompute, &dev->flags);
3521 			sh->ops.target = disk_idx;
3522 			sh->ops.target2 = -1; /* no 2nd target */
3523 			s->req_compute = 1;
3524 			/* Careful: from this point on 'uptodate' is in the eye
3525 			 * of raid_run_ops which services 'compute' operations
3526 			 * before writes. R5_Wantcompute flags a block that will
3527 			 * be R5_UPTODATE by the time it is needed for a
3528 			 * subsequent operation.
3529 			 */
3530 			s->uptodate++;
3531 			return 1;
3532 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
3533 			/* Computing 2-failure is *very* expensive; only
3534 			 * do it if failed >= 2
3535 			 */
3536 			int other;
3537 			for (other = disks; other--; ) {
3538 				if (other == disk_idx)
3539 					continue;
3540 				if (!test_bit(R5_UPTODATE,
3541 				      &sh->dev[other].flags))
3542 					break;
3543 			}
3544 			BUG_ON(other < 0);
3545 			pr_debug("Computing stripe %llu blocks %d,%d\n",
3546 			       (unsigned long long)sh->sector,
3547 			       disk_idx, other);
3548 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3549 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3550 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3551 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
3552 			sh->ops.target = disk_idx;
3553 			sh->ops.target2 = other;
3554 			s->uptodate += 2;
3555 			s->req_compute = 1;
3556 			return 1;
3557 		} else if (test_bit(R5_Insync, &dev->flags)) {
3558 			set_bit(R5_LOCKED, &dev->flags);
3559 			set_bit(R5_Wantread, &dev->flags);
3560 			s->locked++;
3561 			pr_debug("Reading block %d (sync=%d)\n",
3562 				disk_idx, s->syncing);
3563 		}
3564 	}
3565 
3566 	return 0;
3567 }
3568 
3569 /**
3570  * handle_stripe_fill - read or compute data to satisfy pending requests.
3571  */
3572 static void handle_stripe_fill(struct stripe_head *sh,
3573 			       struct stripe_head_state *s,
3574 			       int disks)
3575 {
3576 	int i;
3577 
3578 	/* look for blocks to read/compute, skip this if a compute
3579 	 * is already in flight, or if the stripe contents are in the
3580 	 * midst of changing due to a write
3581 	 */
3582 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3583 	    !sh->reconstruct_state) {
3584 
3585 		/*
3586 		 * For degraded stripe with data in journal, do not handle
3587 		 * read requests yet, instead, flush the stripe to raid
3588 		 * disks first, this avoids handling complex rmw of write
3589 		 * back cache (prexor with orig_page, and then xor with
3590 		 * page) in the read path
3591 		 */
3592 		if (s->injournal && s->failed) {
3593 			if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3594 				r5c_make_stripe_write_out(sh);
3595 			goto out;
3596 		}
3597 
3598 		for (i = disks; i--; )
3599 			if (fetch_block(sh, s, i, disks))
3600 				break;
3601 	}
3602 out:
3603 	set_bit(STRIPE_HANDLE, &sh->state);
3604 }
3605 
3606 static void break_stripe_batch_list(struct stripe_head *head_sh,
3607 				    unsigned long handle_flags);
3608 /* handle_stripe_clean_event
3609  * any written block on an uptodate or failed drive can be returned.
3610  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3611  * never LOCKED, so we don't need to test 'failed' directly.
3612  */
3613 static void handle_stripe_clean_event(struct r5conf *conf,
3614 	struct stripe_head *sh, int disks, struct bio_list *return_bi)
3615 {
3616 	int i;
3617 	struct r5dev *dev;
3618 	int discard_pending = 0;
3619 	struct stripe_head *head_sh = sh;
3620 	bool do_endio = false;
3621 
3622 	for (i = disks; i--; )
3623 		if (sh->dev[i].written) {
3624 			dev = &sh->dev[i];
3625 			if (!test_bit(R5_LOCKED, &dev->flags) &&
3626 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3627 			     test_bit(R5_Discard, &dev->flags) ||
3628 			     test_bit(R5_SkipCopy, &dev->flags))) {
3629 				/* We can return any write requests */
3630 				struct bio *wbi, *wbi2;
3631 				pr_debug("Return write for disc %d\n", i);
3632 				if (test_and_clear_bit(R5_Discard, &dev->flags))
3633 					clear_bit(R5_UPTODATE, &dev->flags);
3634 				if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3635 					WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3636 				}
3637 				do_endio = true;
3638 
3639 returnbi:
3640 				dev->page = dev->orig_page;
3641 				wbi = dev->written;
3642 				dev->written = NULL;
3643 				while (wbi && wbi->bi_iter.bi_sector <
3644 					dev->sector + STRIPE_SECTORS) {
3645 					wbi2 = r5_next_bio(wbi, dev->sector);
3646 					if (!raid5_dec_bi_active_stripes(wbi)) {
3647 						md_write_end(conf->mddev);
3648 						bio_list_add(return_bi, wbi);
3649 					}
3650 					wbi = wbi2;
3651 				}
3652 				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3653 						STRIPE_SECTORS,
3654 					 !test_bit(STRIPE_DEGRADED, &sh->state),
3655 						0);
3656 				if (head_sh->batch_head) {
3657 					sh = list_first_entry(&sh->batch_list,
3658 							      struct stripe_head,
3659 							      batch_list);
3660 					if (sh != head_sh) {
3661 						dev = &sh->dev[i];
3662 						goto returnbi;
3663 					}
3664 				}
3665 				sh = head_sh;
3666 				dev = &sh->dev[i];
3667 			} else if (test_bit(R5_Discard, &dev->flags))
3668 				discard_pending = 1;
3669 		}
3670 
3671 	r5l_stripe_write_finished(sh);
3672 
3673 	if (!discard_pending &&
3674 	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3675 		int hash;
3676 		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3677 		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3678 		if (sh->qd_idx >= 0) {
3679 			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3680 			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3681 		}
3682 		/* now that discard is done we can proceed with any sync */
3683 		clear_bit(STRIPE_DISCARD, &sh->state);
3684 		/*
3685 		 * SCSI discard will change some bio fields and the stripe has
3686 		 * no updated data, so remove it from hash list and the stripe
3687 		 * will be reinitialized
3688 		 */
3689 unhash:
3690 		hash = sh->hash_lock_index;
3691 		spin_lock_irq(conf->hash_locks + hash);
3692 		remove_hash(sh);
3693 		spin_unlock_irq(conf->hash_locks + hash);
3694 		if (head_sh->batch_head) {
3695 			sh = list_first_entry(&sh->batch_list,
3696 					      struct stripe_head, batch_list);
3697 			if (sh != head_sh)
3698 					goto unhash;
3699 		}
3700 		sh = head_sh;
3701 
3702 		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3703 			set_bit(STRIPE_HANDLE, &sh->state);
3704 
3705 	}
3706 
3707 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3708 		if (atomic_dec_and_test(&conf->pending_full_writes))
3709 			md_wakeup_thread(conf->mddev->thread);
3710 
3711 	if (head_sh->batch_head && do_endio)
3712 		break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3713 }
3714 
3715 /*
3716  * For RMW in write back cache, we need extra page in prexor to store the
3717  * old data. This page is stored in dev->orig_page.
3718  *
3719  * This function checks whether we have data for prexor. The exact logic
3720  * is:
3721  *       R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
3722  */
3723 static inline bool uptodate_for_rmw(struct r5dev *dev)
3724 {
3725 	return (test_bit(R5_UPTODATE, &dev->flags)) &&
3726 		(!test_bit(R5_InJournal, &dev->flags) ||
3727 		 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
3728 }
3729 
3730 static int handle_stripe_dirtying(struct r5conf *conf,
3731 				  struct stripe_head *sh,
3732 				  struct stripe_head_state *s,
3733 				  int disks)
3734 {
3735 	int rmw = 0, rcw = 0, i;
3736 	sector_t recovery_cp = conf->mddev->recovery_cp;
3737 
3738 	/* Check whether resync is now happening or should start.
3739 	 * If yes, then the array is dirty (after unclean shutdown or
3740 	 * initial creation), so parity in some stripes might be inconsistent.
3741 	 * In this case, we need to always do reconstruct-write, to ensure
3742 	 * that in case of drive failure or read-error correction, we
3743 	 * generate correct data from the parity.
3744 	 */
3745 	if (conf->rmw_level == PARITY_DISABLE_RMW ||
3746 	    (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3747 	     s->failed == 0)) {
3748 		/* Calculate the real rcw later - for now make it
3749 		 * look like rcw is cheaper
3750 		 */
3751 		rcw = 1; rmw = 2;
3752 		pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3753 			 conf->rmw_level, (unsigned long long)recovery_cp,
3754 			 (unsigned long long)sh->sector);
3755 	} else for (i = disks; i--; ) {
3756 		/* would I have to read this buffer for read_modify_write */
3757 		struct r5dev *dev = &sh->dev[i];
3758 		if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3759 		     i == sh->pd_idx || i == sh->qd_idx ||
3760 		     test_bit(R5_InJournal, &dev->flags)) &&
3761 		    !test_bit(R5_LOCKED, &dev->flags) &&
3762 		    !(uptodate_for_rmw(dev) ||
3763 		      test_bit(R5_Wantcompute, &dev->flags))) {
3764 			if (test_bit(R5_Insync, &dev->flags))
3765 				rmw++;
3766 			else
3767 				rmw += 2*disks;  /* cannot read it */
3768 		}
3769 		/* Would I have to read this buffer for reconstruct_write */
3770 		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3771 		    i != sh->pd_idx && i != sh->qd_idx &&
3772 		    !test_bit(R5_LOCKED, &dev->flags) &&
3773 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
3774 		      test_bit(R5_Wantcompute, &dev->flags))) {
3775 			if (test_bit(R5_Insync, &dev->flags))
3776 				rcw++;
3777 			else
3778 				rcw += 2*disks;
3779 		}
3780 	}
3781 
3782 	pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
3783 		 (unsigned long long)sh->sector, sh->state, rmw, rcw);
3784 	set_bit(STRIPE_HANDLE, &sh->state);
3785 	if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
3786 		/* prefer read-modify-write, but need to get some data */
3787 		if (conf->mddev->queue)
3788 			blk_add_trace_msg(conf->mddev->queue,
3789 					  "raid5 rmw %llu %d",
3790 					  (unsigned long long)sh->sector, rmw);
3791 		for (i = disks; i--; ) {
3792 			struct r5dev *dev = &sh->dev[i];
3793 			if (test_bit(R5_InJournal, &dev->flags) &&
3794 			    dev->page == dev->orig_page &&
3795 			    !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
3796 				/* alloc page for prexor */
3797 				struct page *p = alloc_page(GFP_NOIO);
3798 
3799 				if (p) {
3800 					dev->orig_page = p;
3801 					continue;
3802 				}
3803 
3804 				/*
3805 				 * alloc_page() failed, try use
3806 				 * disk_info->extra_page
3807 				 */
3808 				if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
3809 						      &conf->cache_state)) {
3810 					r5c_use_extra_page(sh);
3811 					break;
3812 				}
3813 
3814 				/* extra_page in use, add to delayed_list */
3815 				set_bit(STRIPE_DELAYED, &sh->state);
3816 				s->waiting_extra_page = 1;
3817 				return -EAGAIN;
3818 			}
3819 		}
3820 
3821 		for (i = disks; i--; ) {
3822 			struct r5dev *dev = &sh->dev[i];
3823 			if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3824 			     i == sh->pd_idx || i == sh->qd_idx ||
3825 			     test_bit(R5_InJournal, &dev->flags)) &&
3826 			    !test_bit(R5_LOCKED, &dev->flags) &&
3827 			    !(uptodate_for_rmw(dev) ||
3828 			      test_bit(R5_Wantcompute, &dev->flags)) &&
3829 			    test_bit(R5_Insync, &dev->flags)) {
3830 				if (test_bit(STRIPE_PREREAD_ACTIVE,
3831 					     &sh->state)) {
3832 					pr_debug("Read_old block %d for r-m-w\n",
3833 						 i);
3834 					set_bit(R5_LOCKED, &dev->flags);
3835 					set_bit(R5_Wantread, &dev->flags);
3836 					s->locked++;
3837 				} else {
3838 					set_bit(STRIPE_DELAYED, &sh->state);
3839 					set_bit(STRIPE_HANDLE, &sh->state);
3840 				}
3841 			}
3842 		}
3843 	}
3844 	if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
3845 		/* want reconstruct write, but need to get some data */
3846 		int qread =0;
3847 		rcw = 0;
3848 		for (i = disks; i--; ) {
3849 			struct r5dev *dev = &sh->dev[i];
3850 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3851 			    i != sh->pd_idx && i != sh->qd_idx &&
3852 			    !test_bit(R5_LOCKED, &dev->flags) &&
3853 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3854 			      test_bit(R5_Wantcompute, &dev->flags))) {
3855 				rcw++;
3856 				if (test_bit(R5_Insync, &dev->flags) &&
3857 				    test_bit(STRIPE_PREREAD_ACTIVE,
3858 					     &sh->state)) {
3859 					pr_debug("Read_old block "
3860 						"%d for Reconstruct\n", i);
3861 					set_bit(R5_LOCKED, &dev->flags);
3862 					set_bit(R5_Wantread, &dev->flags);
3863 					s->locked++;
3864 					qread++;
3865 				} else {
3866 					set_bit(STRIPE_DELAYED, &sh->state);
3867 					set_bit(STRIPE_HANDLE, &sh->state);
3868 				}
3869 			}
3870 		}
3871 		if (rcw && conf->mddev->queue)
3872 			blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3873 					  (unsigned long long)sh->sector,
3874 					  rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3875 	}
3876 
3877 	if (rcw > disks && rmw > disks &&
3878 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3879 		set_bit(STRIPE_DELAYED, &sh->state);
3880 
3881 	/* now if nothing is locked, and if we have enough data,
3882 	 * we can start a write request
3883 	 */
3884 	/* since handle_stripe can be called at any time we need to handle the
3885 	 * case where a compute block operation has been submitted and then a
3886 	 * subsequent call wants to start a write request.  raid_run_ops only
3887 	 * handles the case where compute block and reconstruct are requested
3888 	 * simultaneously.  If this is not the case then new writes need to be
3889 	 * held off until the compute completes.
3890 	 */
3891 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3892 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3893 	     !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3894 		schedule_reconstruction(sh, s, rcw == 0, 0);
3895 	return 0;
3896 }
3897 
3898 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3899 				struct stripe_head_state *s, int disks)
3900 {
3901 	struct r5dev *dev = NULL;
3902 
3903 	BUG_ON(sh->batch_head);
3904 	set_bit(STRIPE_HANDLE, &sh->state);
3905 
3906 	switch (sh->check_state) {
3907 	case check_state_idle:
3908 		/* start a new check operation if there are no failures */
3909 		if (s->failed == 0) {
3910 			BUG_ON(s->uptodate != disks);
3911 			sh->check_state = check_state_run;
3912 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3913 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3914 			s->uptodate--;
3915 			break;
3916 		}
3917 		dev = &sh->dev[s->failed_num[0]];
3918 		/* fall through */
3919 	case check_state_compute_result:
3920 		sh->check_state = check_state_idle;
3921 		if (!dev)
3922 			dev = &sh->dev[sh->pd_idx];
3923 
3924 		/* check that a write has not made the stripe insync */
3925 		if (test_bit(STRIPE_INSYNC, &sh->state))
3926 			break;
3927 
3928 		/* either failed parity check, or recovery is happening */
3929 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3930 		BUG_ON(s->uptodate != disks);
3931 
3932 		set_bit(R5_LOCKED, &dev->flags);
3933 		s->locked++;
3934 		set_bit(R5_Wantwrite, &dev->flags);
3935 
3936 		clear_bit(STRIPE_DEGRADED, &sh->state);
3937 		set_bit(STRIPE_INSYNC, &sh->state);
3938 		break;
3939 	case check_state_run:
3940 		break; /* we will be called again upon completion */
3941 	case check_state_check_result:
3942 		sh->check_state = check_state_idle;
3943 
3944 		/* if a failure occurred during the check operation, leave
3945 		 * STRIPE_INSYNC not set and let the stripe be handled again
3946 		 */
3947 		if (s->failed)
3948 			break;
3949 
3950 		/* handle a successful check operation, if parity is correct
3951 		 * we are done.  Otherwise update the mismatch count and repair
3952 		 * parity if !MD_RECOVERY_CHECK
3953 		 */
3954 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3955 			/* parity is correct (on disc,
3956 			 * not in buffer any more)
3957 			 */
3958 			set_bit(STRIPE_INSYNC, &sh->state);
3959 		else {
3960 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3961 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3962 				/* don't try to repair!! */
3963 				set_bit(STRIPE_INSYNC, &sh->state);
3964 			else {
3965 				sh->check_state = check_state_compute_run;
3966 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3967 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3968 				set_bit(R5_Wantcompute,
3969 					&sh->dev[sh->pd_idx].flags);
3970 				sh->ops.target = sh->pd_idx;
3971 				sh->ops.target2 = -1;
3972 				s->uptodate++;
3973 			}
3974 		}
3975 		break;
3976 	case check_state_compute_run:
3977 		break;
3978 	default:
3979 		pr_err("%s: unknown check_state: %d sector: %llu\n",
3980 		       __func__, sh->check_state,
3981 		       (unsigned long long) sh->sector);
3982 		BUG();
3983 	}
3984 }
3985 
3986 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3987 				  struct stripe_head_state *s,
3988 				  int disks)
3989 {
3990 	int pd_idx = sh->pd_idx;
3991 	int qd_idx = sh->qd_idx;
3992 	struct r5dev *dev;
3993 
3994 	BUG_ON(sh->batch_head);
3995 	set_bit(STRIPE_HANDLE, &sh->state);
3996 
3997 	BUG_ON(s->failed > 2);
3998 
3999 	/* Want to check and possibly repair P and Q.
4000 	 * However there could be one 'failed' device, in which
4001 	 * case we can only check one of them, possibly using the
4002 	 * other to generate missing data
4003 	 */
4004 
4005 	switch (sh->check_state) {
4006 	case check_state_idle:
4007 		/* start a new check operation if there are < 2 failures */
4008 		if (s->failed == s->q_failed) {
4009 			/* The only possible failed device holds Q, so it
4010 			 * makes sense to check P (If anything else were failed,
4011 			 * we would have used P to recreate it).
4012 			 */
4013 			sh->check_state = check_state_run;
4014 		}
4015 		if (!s->q_failed && s->failed < 2) {
4016 			/* Q is not failed, and we didn't use it to generate
4017 			 * anything, so it makes sense to check it
4018 			 */
4019 			if (sh->check_state == check_state_run)
4020 				sh->check_state = check_state_run_pq;
4021 			else
4022 				sh->check_state = check_state_run_q;
4023 		}
4024 
4025 		/* discard potentially stale zero_sum_result */
4026 		sh->ops.zero_sum_result = 0;
4027 
4028 		if (sh->check_state == check_state_run) {
4029 			/* async_xor_zero_sum destroys the contents of P */
4030 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4031 			s->uptodate--;
4032 		}
4033 		if (sh->check_state >= check_state_run &&
4034 		    sh->check_state <= check_state_run_pq) {
4035 			/* async_syndrome_zero_sum preserves P and Q, so
4036 			 * no need to mark them !uptodate here
4037 			 */
4038 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
4039 			break;
4040 		}
4041 
4042 		/* we have 2-disk failure */
4043 		BUG_ON(s->failed != 2);
4044 		/* fall through */
4045 	case check_state_compute_result:
4046 		sh->check_state = check_state_idle;
4047 
4048 		/* check that a write has not made the stripe insync */
4049 		if (test_bit(STRIPE_INSYNC, &sh->state))
4050 			break;
4051 
4052 		/* now write out any block on a failed drive,
4053 		 * or P or Q if they were recomputed
4054 		 */
4055 		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
4056 		if (s->failed == 2) {
4057 			dev = &sh->dev[s->failed_num[1]];
4058 			s->locked++;
4059 			set_bit(R5_LOCKED, &dev->flags);
4060 			set_bit(R5_Wantwrite, &dev->flags);
4061 		}
4062 		if (s->failed >= 1) {
4063 			dev = &sh->dev[s->failed_num[0]];
4064 			s->locked++;
4065 			set_bit(R5_LOCKED, &dev->flags);
4066 			set_bit(R5_Wantwrite, &dev->flags);
4067 		}
4068 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4069 			dev = &sh->dev[pd_idx];
4070 			s->locked++;
4071 			set_bit(R5_LOCKED, &dev->flags);
4072 			set_bit(R5_Wantwrite, &dev->flags);
4073 		}
4074 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4075 			dev = &sh->dev[qd_idx];
4076 			s->locked++;
4077 			set_bit(R5_LOCKED, &dev->flags);
4078 			set_bit(R5_Wantwrite, &dev->flags);
4079 		}
4080 		clear_bit(STRIPE_DEGRADED, &sh->state);
4081 
4082 		set_bit(STRIPE_INSYNC, &sh->state);
4083 		break;
4084 	case check_state_run:
4085 	case check_state_run_q:
4086 	case check_state_run_pq:
4087 		break; /* we will be called again upon completion */
4088 	case check_state_check_result:
4089 		sh->check_state = check_state_idle;
4090 
4091 		/* handle a successful check operation, if parity is correct
4092 		 * we are done.  Otherwise update the mismatch count and repair
4093 		 * parity if !MD_RECOVERY_CHECK
4094 		 */
4095 		if (sh->ops.zero_sum_result == 0) {
4096 			/* both parities are correct */
4097 			if (!s->failed)
4098 				set_bit(STRIPE_INSYNC, &sh->state);
4099 			else {
4100 				/* in contrast to the raid5 case we can validate
4101 				 * parity, but still have a failure to write
4102 				 * back
4103 				 */
4104 				sh->check_state = check_state_compute_result;
4105 				/* Returning at this point means that we may go
4106 				 * off and bring p and/or q uptodate again so
4107 				 * we make sure to check zero_sum_result again
4108 				 * to verify if p or q need writeback
4109 				 */
4110 			}
4111 		} else {
4112 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4113 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
4114 				/* don't try to repair!! */
4115 				set_bit(STRIPE_INSYNC, &sh->state);
4116 			else {
4117 				int *target = &sh->ops.target;
4118 
4119 				sh->ops.target = -1;
4120 				sh->ops.target2 = -1;
4121 				sh->check_state = check_state_compute_run;
4122 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4123 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4124 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4125 					set_bit(R5_Wantcompute,
4126 						&sh->dev[pd_idx].flags);
4127 					*target = pd_idx;
4128 					target = &sh->ops.target2;
4129 					s->uptodate++;
4130 				}
4131 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4132 					set_bit(R5_Wantcompute,
4133 						&sh->dev[qd_idx].flags);
4134 					*target = qd_idx;
4135 					s->uptodate++;
4136 				}
4137 			}
4138 		}
4139 		break;
4140 	case check_state_compute_run:
4141 		break;
4142 	default:
4143 		pr_warn("%s: unknown check_state: %d sector: %llu\n",
4144 			__func__, sh->check_state,
4145 			(unsigned long long) sh->sector);
4146 		BUG();
4147 	}
4148 }
4149 
4150 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4151 {
4152 	int i;
4153 
4154 	/* We have read all the blocks in this stripe and now we need to
4155 	 * copy some of them into a target stripe for expand.
4156 	 */
4157 	struct dma_async_tx_descriptor *tx = NULL;
4158 	BUG_ON(sh->batch_head);
4159 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4160 	for (i = 0; i < sh->disks; i++)
4161 		if (i != sh->pd_idx && i != sh->qd_idx) {
4162 			int dd_idx, j;
4163 			struct stripe_head *sh2;
4164 			struct async_submit_ctl submit;
4165 
4166 			sector_t bn = raid5_compute_blocknr(sh, i, 1);
4167 			sector_t s = raid5_compute_sector(conf, bn, 0,
4168 							  &dd_idx, NULL);
4169 			sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
4170 			if (sh2 == NULL)
4171 				/* so far only the early blocks of this stripe
4172 				 * have been requested.  When later blocks
4173 				 * get requested, we will try again
4174 				 */
4175 				continue;
4176 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4177 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4178 				/* must have already done this block */
4179 				raid5_release_stripe(sh2);
4180 				continue;
4181 			}
4182 
4183 			/* place all the copies on one channel */
4184 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4185 			tx = async_memcpy(sh2->dev[dd_idx].page,
4186 					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
4187 					  &submit);
4188 
4189 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4190 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4191 			for (j = 0; j < conf->raid_disks; j++)
4192 				if (j != sh2->pd_idx &&
4193 				    j != sh2->qd_idx &&
4194 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
4195 					break;
4196 			if (j == conf->raid_disks) {
4197 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
4198 				set_bit(STRIPE_HANDLE, &sh2->state);
4199 			}
4200 			raid5_release_stripe(sh2);
4201 
4202 		}
4203 	/* done submitting copies, wait for them to complete */
4204 	async_tx_quiesce(&tx);
4205 }
4206 
4207 /*
4208  * handle_stripe - do things to a stripe.
4209  *
4210  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4211  * state of various bits to see what needs to be done.
4212  * Possible results:
4213  *    return some read requests which now have data
4214  *    return some write requests which are safely on storage
4215  *    schedule a read on some buffers
4216  *    schedule a write of some buffers
4217  *    return confirmation of parity correctness
4218  *
4219  */
4220 
4221 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4222 {
4223 	struct r5conf *conf = sh->raid_conf;
4224 	int disks = sh->disks;
4225 	struct r5dev *dev;
4226 	int i;
4227 	int do_recovery = 0;
4228 
4229 	memset(s, 0, sizeof(*s));
4230 
4231 	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4232 	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4233 	s->failed_num[0] = -1;
4234 	s->failed_num[1] = -1;
4235 	s->log_failed = r5l_log_disk_error(conf);
4236 
4237 	/* Now to look around and see what can be done */
4238 	rcu_read_lock();
4239 	for (i=disks; i--; ) {
4240 		struct md_rdev *rdev;
4241 		sector_t first_bad;
4242 		int bad_sectors;
4243 		int is_bad = 0;
4244 
4245 		dev = &sh->dev[i];
4246 
4247 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4248 			 i, dev->flags,
4249 			 dev->toread, dev->towrite, dev->written);
4250 		/* maybe we can reply to a read
4251 		 *
4252 		 * new wantfill requests are only permitted while
4253 		 * ops_complete_biofill is guaranteed to be inactive
4254 		 */
4255 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4256 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4257 			set_bit(R5_Wantfill, &dev->flags);
4258 
4259 		/* now count some things */
4260 		if (test_bit(R5_LOCKED, &dev->flags))
4261 			s->locked++;
4262 		if (test_bit(R5_UPTODATE, &dev->flags))
4263 			s->uptodate++;
4264 		if (test_bit(R5_Wantcompute, &dev->flags)) {
4265 			s->compute++;
4266 			BUG_ON(s->compute > 2);
4267 		}
4268 
4269 		if (test_bit(R5_Wantfill, &dev->flags))
4270 			s->to_fill++;
4271 		else if (dev->toread)
4272 			s->to_read++;
4273 		if (dev->towrite) {
4274 			s->to_write++;
4275 			if (!test_bit(R5_OVERWRITE, &dev->flags))
4276 				s->non_overwrite++;
4277 		}
4278 		if (dev->written)
4279 			s->written++;
4280 		/* Prefer to use the replacement for reads, but only
4281 		 * if it is recovered enough and has no bad blocks.
4282 		 */
4283 		rdev = rcu_dereference(conf->disks[i].replacement);
4284 		if (rdev && !test_bit(Faulty, &rdev->flags) &&
4285 		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4286 		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4287 				 &first_bad, &bad_sectors))
4288 			set_bit(R5_ReadRepl, &dev->flags);
4289 		else {
4290 			if (rdev && !test_bit(Faulty, &rdev->flags))
4291 				set_bit(R5_NeedReplace, &dev->flags);
4292 			else
4293 				clear_bit(R5_NeedReplace, &dev->flags);
4294 			rdev = rcu_dereference(conf->disks[i].rdev);
4295 			clear_bit(R5_ReadRepl, &dev->flags);
4296 		}
4297 		if (rdev && test_bit(Faulty, &rdev->flags))
4298 			rdev = NULL;
4299 		if (rdev) {
4300 			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4301 					     &first_bad, &bad_sectors);
4302 			if (s->blocked_rdev == NULL
4303 			    && (test_bit(Blocked, &rdev->flags)
4304 				|| is_bad < 0)) {
4305 				if (is_bad < 0)
4306 					set_bit(BlockedBadBlocks,
4307 						&rdev->flags);
4308 				s->blocked_rdev = rdev;
4309 				atomic_inc(&rdev->nr_pending);
4310 			}
4311 		}
4312 		clear_bit(R5_Insync, &dev->flags);
4313 		if (!rdev)
4314 			/* Not in-sync */;
4315 		else if (is_bad) {
4316 			/* also not in-sync */
4317 			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4318 			    test_bit(R5_UPTODATE, &dev->flags)) {
4319 				/* treat as in-sync, but with a read error
4320 				 * which we can now try to correct
4321 				 */
4322 				set_bit(R5_Insync, &dev->flags);
4323 				set_bit(R5_ReadError, &dev->flags);
4324 			}
4325 		} else if (test_bit(In_sync, &rdev->flags))
4326 			set_bit(R5_Insync, &dev->flags);
4327 		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4328 			/* in sync if before recovery_offset */
4329 			set_bit(R5_Insync, &dev->flags);
4330 		else if (test_bit(R5_UPTODATE, &dev->flags) &&
4331 			 test_bit(R5_Expanded, &dev->flags))
4332 			/* If we've reshaped into here, we assume it is Insync.
4333 			 * We will shortly update recovery_offset to make
4334 			 * it official.
4335 			 */
4336 			set_bit(R5_Insync, &dev->flags);
4337 
4338 		if (test_bit(R5_WriteError, &dev->flags)) {
4339 			/* This flag does not apply to '.replacement'
4340 			 * only to .rdev, so make sure to check that*/
4341 			struct md_rdev *rdev2 = rcu_dereference(
4342 				conf->disks[i].rdev);
4343 			if (rdev2 == rdev)
4344 				clear_bit(R5_Insync, &dev->flags);
4345 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4346 				s->handle_bad_blocks = 1;
4347 				atomic_inc(&rdev2->nr_pending);
4348 			} else
4349 				clear_bit(R5_WriteError, &dev->flags);
4350 		}
4351 		if (test_bit(R5_MadeGood, &dev->flags)) {
4352 			/* This flag does not apply to '.replacement'
4353 			 * only to .rdev, so make sure to check that*/
4354 			struct md_rdev *rdev2 = rcu_dereference(
4355 				conf->disks[i].rdev);
4356 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4357 				s->handle_bad_blocks = 1;
4358 				atomic_inc(&rdev2->nr_pending);
4359 			} else
4360 				clear_bit(R5_MadeGood, &dev->flags);
4361 		}
4362 		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4363 			struct md_rdev *rdev2 = rcu_dereference(
4364 				conf->disks[i].replacement);
4365 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4366 				s->handle_bad_blocks = 1;
4367 				atomic_inc(&rdev2->nr_pending);
4368 			} else
4369 				clear_bit(R5_MadeGoodRepl, &dev->flags);
4370 		}
4371 		if (!test_bit(R5_Insync, &dev->flags)) {
4372 			/* The ReadError flag will just be confusing now */
4373 			clear_bit(R5_ReadError, &dev->flags);
4374 			clear_bit(R5_ReWrite, &dev->flags);
4375 		}
4376 		if (test_bit(R5_ReadError, &dev->flags))
4377 			clear_bit(R5_Insync, &dev->flags);
4378 		if (!test_bit(R5_Insync, &dev->flags)) {
4379 			if (s->failed < 2)
4380 				s->failed_num[s->failed] = i;
4381 			s->failed++;
4382 			if (rdev && !test_bit(Faulty, &rdev->flags))
4383 				do_recovery = 1;
4384 		}
4385 
4386 		if (test_bit(R5_InJournal, &dev->flags))
4387 			s->injournal++;
4388 		if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4389 			s->just_cached++;
4390 	}
4391 	if (test_bit(STRIPE_SYNCING, &sh->state)) {
4392 		/* If there is a failed device being replaced,
4393 		 *     we must be recovering.
4394 		 * else if we are after recovery_cp, we must be syncing
4395 		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4396 		 * else we can only be replacing
4397 		 * sync and recovery both need to read all devices, and so
4398 		 * use the same flag.
4399 		 */
4400 		if (do_recovery ||
4401 		    sh->sector >= conf->mddev->recovery_cp ||
4402 		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4403 			s->syncing = 1;
4404 		else
4405 			s->replacing = 1;
4406 	}
4407 	rcu_read_unlock();
4408 }
4409 
4410 static int clear_batch_ready(struct stripe_head *sh)
4411 {
4412 	/* Return '1' if this is a member of batch, or
4413 	 * '0' if it is a lone stripe or a head which can now be
4414 	 * handled.
4415 	 */
4416 	struct stripe_head *tmp;
4417 	if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4418 		return (sh->batch_head && sh->batch_head != sh);
4419 	spin_lock(&sh->stripe_lock);
4420 	if (!sh->batch_head) {
4421 		spin_unlock(&sh->stripe_lock);
4422 		return 0;
4423 	}
4424 
4425 	/*
4426 	 * this stripe could be added to a batch list before we check
4427 	 * BATCH_READY, skips it
4428 	 */
4429 	if (sh->batch_head != sh) {
4430 		spin_unlock(&sh->stripe_lock);
4431 		return 1;
4432 	}
4433 	spin_lock(&sh->batch_lock);
4434 	list_for_each_entry(tmp, &sh->batch_list, batch_list)
4435 		clear_bit(STRIPE_BATCH_READY, &tmp->state);
4436 	spin_unlock(&sh->batch_lock);
4437 	spin_unlock(&sh->stripe_lock);
4438 
4439 	/*
4440 	 * BATCH_READY is cleared, no new stripes can be added.
4441 	 * batch_list can be accessed without lock
4442 	 */
4443 	return 0;
4444 }
4445 
4446 static void break_stripe_batch_list(struct stripe_head *head_sh,
4447 				    unsigned long handle_flags)
4448 {
4449 	struct stripe_head *sh, *next;
4450 	int i;
4451 	int do_wakeup = 0;
4452 
4453 	list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4454 
4455 		list_del_init(&sh->batch_list);
4456 
4457 		WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4458 					  (1 << STRIPE_SYNCING) |
4459 					  (1 << STRIPE_REPLACED) |
4460 					  (1 << STRIPE_DELAYED) |
4461 					  (1 << STRIPE_BIT_DELAY) |
4462 					  (1 << STRIPE_FULL_WRITE) |
4463 					  (1 << STRIPE_BIOFILL_RUN) |
4464 					  (1 << STRIPE_COMPUTE_RUN)  |
4465 					  (1 << STRIPE_OPS_REQ_PENDING) |
4466 					  (1 << STRIPE_DISCARD) |
4467 					  (1 << STRIPE_BATCH_READY) |
4468 					  (1 << STRIPE_BATCH_ERR) |
4469 					  (1 << STRIPE_BITMAP_PENDING)),
4470 			"stripe state: %lx\n", sh->state);
4471 		WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4472 					      (1 << STRIPE_REPLACED)),
4473 			"head stripe state: %lx\n", head_sh->state);
4474 
4475 		set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4476 					    (1 << STRIPE_PREREAD_ACTIVE) |
4477 					    (1 << STRIPE_DEGRADED)),
4478 			      head_sh->state & (1 << STRIPE_INSYNC));
4479 
4480 		sh->check_state = head_sh->check_state;
4481 		sh->reconstruct_state = head_sh->reconstruct_state;
4482 		for (i = 0; i < sh->disks; i++) {
4483 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4484 				do_wakeup = 1;
4485 			sh->dev[i].flags = head_sh->dev[i].flags &
4486 				(~((1 << R5_WriteError) | (1 << R5_Overlap)));
4487 		}
4488 		spin_lock_irq(&sh->stripe_lock);
4489 		sh->batch_head = NULL;
4490 		spin_unlock_irq(&sh->stripe_lock);
4491 		if (handle_flags == 0 ||
4492 		    sh->state & handle_flags)
4493 			set_bit(STRIPE_HANDLE, &sh->state);
4494 		raid5_release_stripe(sh);
4495 	}
4496 	spin_lock_irq(&head_sh->stripe_lock);
4497 	head_sh->batch_head = NULL;
4498 	spin_unlock_irq(&head_sh->stripe_lock);
4499 	for (i = 0; i < head_sh->disks; i++)
4500 		if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4501 			do_wakeup = 1;
4502 	if (head_sh->state & handle_flags)
4503 		set_bit(STRIPE_HANDLE, &head_sh->state);
4504 
4505 	if (do_wakeup)
4506 		wake_up(&head_sh->raid_conf->wait_for_overlap);
4507 }
4508 
4509 static void handle_stripe(struct stripe_head *sh)
4510 {
4511 	struct stripe_head_state s;
4512 	struct r5conf *conf = sh->raid_conf;
4513 	int i;
4514 	int prexor;
4515 	int disks = sh->disks;
4516 	struct r5dev *pdev, *qdev;
4517 
4518 	clear_bit(STRIPE_HANDLE, &sh->state);
4519 	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4520 		/* already being handled, ensure it gets handled
4521 		 * again when current action finishes */
4522 		set_bit(STRIPE_HANDLE, &sh->state);
4523 		return;
4524 	}
4525 
4526 	if (clear_batch_ready(sh) ) {
4527 		clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4528 		return;
4529 	}
4530 
4531 	if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4532 		break_stripe_batch_list(sh, 0);
4533 
4534 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4535 		spin_lock(&sh->stripe_lock);
4536 		/* Cannot process 'sync' concurrently with 'discard' */
4537 		if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4538 		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4539 			set_bit(STRIPE_SYNCING, &sh->state);
4540 			clear_bit(STRIPE_INSYNC, &sh->state);
4541 			clear_bit(STRIPE_REPLACED, &sh->state);
4542 		}
4543 		spin_unlock(&sh->stripe_lock);
4544 	}
4545 	clear_bit(STRIPE_DELAYED, &sh->state);
4546 
4547 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4548 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4549 	       (unsigned long long)sh->sector, sh->state,
4550 	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4551 	       sh->check_state, sh->reconstruct_state);
4552 
4553 	analyse_stripe(sh, &s);
4554 
4555 	if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4556 		goto finish;
4557 
4558 	if (s.handle_bad_blocks) {
4559 		set_bit(STRIPE_HANDLE, &sh->state);
4560 		goto finish;
4561 	}
4562 
4563 	if (unlikely(s.blocked_rdev)) {
4564 		if (s.syncing || s.expanding || s.expanded ||
4565 		    s.replacing || s.to_write || s.written) {
4566 			set_bit(STRIPE_HANDLE, &sh->state);
4567 			goto finish;
4568 		}
4569 		/* There is nothing for the blocked_rdev to block */
4570 		rdev_dec_pending(s.blocked_rdev, conf->mddev);
4571 		s.blocked_rdev = NULL;
4572 	}
4573 
4574 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4575 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4576 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4577 	}
4578 
4579 	pr_debug("locked=%d uptodate=%d to_read=%d"
4580 	       " to_write=%d failed=%d failed_num=%d,%d\n",
4581 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4582 	       s.failed_num[0], s.failed_num[1]);
4583 	/* check if the array has lost more than max_degraded devices and,
4584 	 * if so, some requests might need to be failed.
4585 	 */
4586 	if (s.failed > conf->max_degraded || s.log_failed) {
4587 		sh->check_state = 0;
4588 		sh->reconstruct_state = 0;
4589 		break_stripe_batch_list(sh, 0);
4590 		if (s.to_read+s.to_write+s.written)
4591 			handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4592 		if (s.syncing + s.replacing)
4593 			handle_failed_sync(conf, sh, &s);
4594 	}
4595 
4596 	/* Now we check to see if any write operations have recently
4597 	 * completed
4598 	 */
4599 	prexor = 0;
4600 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4601 		prexor = 1;
4602 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
4603 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4604 		sh->reconstruct_state = reconstruct_state_idle;
4605 
4606 		/* All the 'written' buffers and the parity block are ready to
4607 		 * be written back to disk
4608 		 */
4609 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4610 		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4611 		BUG_ON(sh->qd_idx >= 0 &&
4612 		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4613 		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4614 		for (i = disks; i--; ) {
4615 			struct r5dev *dev = &sh->dev[i];
4616 			if (test_bit(R5_LOCKED, &dev->flags) &&
4617 				(i == sh->pd_idx || i == sh->qd_idx ||
4618 				 dev->written || test_bit(R5_InJournal,
4619 							  &dev->flags))) {
4620 				pr_debug("Writing block %d\n", i);
4621 				set_bit(R5_Wantwrite, &dev->flags);
4622 				if (prexor)
4623 					continue;
4624 				if (s.failed > 1)
4625 					continue;
4626 				if (!test_bit(R5_Insync, &dev->flags) ||
4627 				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
4628 				     s.failed == 0))
4629 					set_bit(STRIPE_INSYNC, &sh->state);
4630 			}
4631 		}
4632 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4633 			s.dec_preread_active = 1;
4634 	}
4635 
4636 	/*
4637 	 * might be able to return some write requests if the parity blocks
4638 	 * are safe, or on a failed drive
4639 	 */
4640 	pdev = &sh->dev[sh->pd_idx];
4641 	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4642 		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4643 	qdev = &sh->dev[sh->qd_idx];
4644 	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4645 		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4646 		|| conf->level < 6;
4647 
4648 	if (s.written &&
4649 	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4650 			     && !test_bit(R5_LOCKED, &pdev->flags)
4651 			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
4652 				 test_bit(R5_Discard, &pdev->flags))))) &&
4653 	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4654 			     && !test_bit(R5_LOCKED, &qdev->flags)
4655 			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
4656 				 test_bit(R5_Discard, &qdev->flags))))))
4657 		handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4658 
4659 	if (s.just_cached)
4660 		r5c_handle_cached_data_endio(conf, sh, disks, &s.return_bi);
4661 	r5l_stripe_write_finished(sh);
4662 
4663 	/* Now we might consider reading some blocks, either to check/generate
4664 	 * parity, or to satisfy requests
4665 	 * or to load a block that is being partially written.
4666 	 */
4667 	if (s.to_read || s.non_overwrite
4668 	    || (conf->level == 6 && s.to_write && s.failed)
4669 	    || (s.syncing && (s.uptodate + s.compute < disks))
4670 	    || s.replacing
4671 	    || s.expanding)
4672 		handle_stripe_fill(sh, &s, disks);
4673 
4674 	/*
4675 	 * When the stripe finishes full journal write cycle (write to journal
4676 	 * and raid disk), this is the clean up procedure so it is ready for
4677 	 * next operation.
4678 	 */
4679 	r5c_finish_stripe_write_out(conf, sh, &s);
4680 
4681 	/*
4682 	 * Now to consider new write requests, cache write back and what else,
4683 	 * if anything should be read.  We do not handle new writes when:
4684 	 * 1/ A 'write' operation (copy+xor) is already in flight.
4685 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
4686 	 *    block.
4687 	 * 3/ A r5c cache log write is in flight.
4688 	 */
4689 
4690 	if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
4691 		if (!r5c_is_writeback(conf->log)) {
4692 			if (s.to_write)
4693 				handle_stripe_dirtying(conf, sh, &s, disks);
4694 		} else { /* write back cache */
4695 			int ret = 0;
4696 
4697 			/* First, try handle writes in caching phase */
4698 			if (s.to_write)
4699 				ret = r5c_try_caching_write(conf, sh, &s,
4700 							    disks);
4701 			/*
4702 			 * If caching phase failed: ret == -EAGAIN
4703 			 *    OR
4704 			 * stripe under reclaim: !caching && injournal
4705 			 *
4706 			 * fall back to handle_stripe_dirtying()
4707 			 */
4708 			if (ret == -EAGAIN ||
4709 			    /* stripe under reclaim: !caching && injournal */
4710 			    (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
4711 			     s.injournal > 0)) {
4712 				ret = handle_stripe_dirtying(conf, sh, &s,
4713 							     disks);
4714 				if (ret == -EAGAIN)
4715 					goto finish;
4716 			}
4717 		}
4718 	}
4719 
4720 	/* maybe we need to check and possibly fix the parity for this stripe
4721 	 * Any reads will already have been scheduled, so we just see if enough
4722 	 * data is available.  The parity check is held off while parity
4723 	 * dependent operations are in flight.
4724 	 */
4725 	if (sh->check_state ||
4726 	    (s.syncing && s.locked == 0 &&
4727 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4728 	     !test_bit(STRIPE_INSYNC, &sh->state))) {
4729 		if (conf->level == 6)
4730 			handle_parity_checks6(conf, sh, &s, disks);
4731 		else
4732 			handle_parity_checks5(conf, sh, &s, disks);
4733 	}
4734 
4735 	if ((s.replacing || s.syncing) && s.locked == 0
4736 	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4737 	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
4738 		/* Write out to replacement devices where possible */
4739 		for (i = 0; i < conf->raid_disks; i++)
4740 			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4741 				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4742 				set_bit(R5_WantReplace, &sh->dev[i].flags);
4743 				set_bit(R5_LOCKED, &sh->dev[i].flags);
4744 				s.locked++;
4745 			}
4746 		if (s.replacing)
4747 			set_bit(STRIPE_INSYNC, &sh->state);
4748 		set_bit(STRIPE_REPLACED, &sh->state);
4749 	}
4750 	if ((s.syncing || s.replacing) && s.locked == 0 &&
4751 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4752 	    test_bit(STRIPE_INSYNC, &sh->state)) {
4753 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4754 		clear_bit(STRIPE_SYNCING, &sh->state);
4755 		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4756 			wake_up(&conf->wait_for_overlap);
4757 	}
4758 
4759 	/* If the failed drives are just a ReadError, then we might need
4760 	 * to progress the repair/check process
4761 	 */
4762 	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4763 		for (i = 0; i < s.failed; i++) {
4764 			struct r5dev *dev = &sh->dev[s.failed_num[i]];
4765 			if (test_bit(R5_ReadError, &dev->flags)
4766 			    && !test_bit(R5_LOCKED, &dev->flags)
4767 			    && test_bit(R5_UPTODATE, &dev->flags)
4768 				) {
4769 				if (!test_bit(R5_ReWrite, &dev->flags)) {
4770 					set_bit(R5_Wantwrite, &dev->flags);
4771 					set_bit(R5_ReWrite, &dev->flags);
4772 					set_bit(R5_LOCKED, &dev->flags);
4773 					s.locked++;
4774 				} else {
4775 					/* let's read it back */
4776 					set_bit(R5_Wantread, &dev->flags);
4777 					set_bit(R5_LOCKED, &dev->flags);
4778 					s.locked++;
4779 				}
4780 			}
4781 		}
4782 
4783 	/* Finish reconstruct operations initiated by the expansion process */
4784 	if (sh->reconstruct_state == reconstruct_state_result) {
4785 		struct stripe_head *sh_src
4786 			= raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4787 		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4788 			/* sh cannot be written until sh_src has been read.
4789 			 * so arrange for sh to be delayed a little
4790 			 */
4791 			set_bit(STRIPE_DELAYED, &sh->state);
4792 			set_bit(STRIPE_HANDLE, &sh->state);
4793 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4794 					      &sh_src->state))
4795 				atomic_inc(&conf->preread_active_stripes);
4796 			raid5_release_stripe(sh_src);
4797 			goto finish;
4798 		}
4799 		if (sh_src)
4800 			raid5_release_stripe(sh_src);
4801 
4802 		sh->reconstruct_state = reconstruct_state_idle;
4803 		clear_bit(STRIPE_EXPANDING, &sh->state);
4804 		for (i = conf->raid_disks; i--; ) {
4805 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
4806 			set_bit(R5_LOCKED, &sh->dev[i].flags);
4807 			s.locked++;
4808 		}
4809 	}
4810 
4811 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4812 	    !sh->reconstruct_state) {
4813 		/* Need to write out all blocks after computing parity */
4814 		sh->disks = conf->raid_disks;
4815 		stripe_set_idx(sh->sector, conf, 0, sh);
4816 		schedule_reconstruction(sh, &s, 1, 1);
4817 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4818 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
4819 		atomic_dec(&conf->reshape_stripes);
4820 		wake_up(&conf->wait_for_overlap);
4821 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4822 	}
4823 
4824 	if (s.expanding && s.locked == 0 &&
4825 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4826 		handle_stripe_expansion(conf, sh);
4827 
4828 finish:
4829 	/* wait for this device to become unblocked */
4830 	if (unlikely(s.blocked_rdev)) {
4831 		if (conf->mddev->external)
4832 			md_wait_for_blocked_rdev(s.blocked_rdev,
4833 						 conf->mddev);
4834 		else
4835 			/* Internal metadata will immediately
4836 			 * be written by raid5d, so we don't
4837 			 * need to wait here.
4838 			 */
4839 			rdev_dec_pending(s.blocked_rdev,
4840 					 conf->mddev);
4841 	}
4842 
4843 	if (s.handle_bad_blocks)
4844 		for (i = disks; i--; ) {
4845 			struct md_rdev *rdev;
4846 			struct r5dev *dev = &sh->dev[i];
4847 			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4848 				/* We own a safe reference to the rdev */
4849 				rdev = conf->disks[i].rdev;
4850 				if (!rdev_set_badblocks(rdev, sh->sector,
4851 							STRIPE_SECTORS, 0))
4852 					md_error(conf->mddev, rdev);
4853 				rdev_dec_pending(rdev, conf->mddev);
4854 			}
4855 			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4856 				rdev = conf->disks[i].rdev;
4857 				rdev_clear_badblocks(rdev, sh->sector,
4858 						     STRIPE_SECTORS, 0);
4859 				rdev_dec_pending(rdev, conf->mddev);
4860 			}
4861 			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4862 				rdev = conf->disks[i].replacement;
4863 				if (!rdev)
4864 					/* rdev have been moved down */
4865 					rdev = conf->disks[i].rdev;
4866 				rdev_clear_badblocks(rdev, sh->sector,
4867 						     STRIPE_SECTORS, 0);
4868 				rdev_dec_pending(rdev, conf->mddev);
4869 			}
4870 		}
4871 
4872 	if (s.ops_request)
4873 		raid_run_ops(sh, s.ops_request);
4874 
4875 	ops_run_io(sh, &s);
4876 
4877 	if (s.dec_preread_active) {
4878 		/* We delay this until after ops_run_io so that if make_request
4879 		 * is waiting on a flush, it won't continue until the writes
4880 		 * have actually been submitted.
4881 		 */
4882 		atomic_dec(&conf->preread_active_stripes);
4883 		if (atomic_read(&conf->preread_active_stripes) <
4884 		    IO_THRESHOLD)
4885 			md_wakeup_thread(conf->mddev->thread);
4886 	}
4887 
4888 	if (!bio_list_empty(&s.return_bi)) {
4889 		if (test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4890 			spin_lock_irq(&conf->device_lock);
4891 			bio_list_merge(&conf->return_bi, &s.return_bi);
4892 			spin_unlock_irq(&conf->device_lock);
4893 			md_wakeup_thread(conf->mddev->thread);
4894 		} else
4895 			return_io(&s.return_bi);
4896 	}
4897 
4898 	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4899 }
4900 
4901 static void raid5_activate_delayed(struct r5conf *conf)
4902 {
4903 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4904 		while (!list_empty(&conf->delayed_list)) {
4905 			struct list_head *l = conf->delayed_list.next;
4906 			struct stripe_head *sh;
4907 			sh = list_entry(l, struct stripe_head, lru);
4908 			list_del_init(l);
4909 			clear_bit(STRIPE_DELAYED, &sh->state);
4910 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4911 				atomic_inc(&conf->preread_active_stripes);
4912 			list_add_tail(&sh->lru, &conf->hold_list);
4913 			raid5_wakeup_stripe_thread(sh);
4914 		}
4915 	}
4916 }
4917 
4918 static void activate_bit_delay(struct r5conf *conf,
4919 	struct list_head *temp_inactive_list)
4920 {
4921 	/* device_lock is held */
4922 	struct list_head head;
4923 	list_add(&head, &conf->bitmap_list);
4924 	list_del_init(&conf->bitmap_list);
4925 	while (!list_empty(&head)) {
4926 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4927 		int hash;
4928 		list_del_init(&sh->lru);
4929 		atomic_inc(&sh->count);
4930 		hash = sh->hash_lock_index;
4931 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
4932 	}
4933 }
4934 
4935 static int raid5_congested(struct mddev *mddev, int bits)
4936 {
4937 	struct r5conf *conf = mddev->private;
4938 
4939 	/* No difference between reads and writes.  Just check
4940 	 * how busy the stripe_cache is
4941 	 */
4942 
4943 	if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
4944 		return 1;
4945 
4946 	/* Also checks whether there is pressure on r5cache log space */
4947 	if (test_bit(R5C_LOG_TIGHT, &conf->cache_state))
4948 		return 1;
4949 	if (conf->quiesce)
4950 		return 1;
4951 	if (atomic_read(&conf->empty_inactive_list_nr))
4952 		return 1;
4953 
4954 	return 0;
4955 }
4956 
4957 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4958 {
4959 	struct r5conf *conf = mddev->private;
4960 	sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4961 	unsigned int chunk_sectors;
4962 	unsigned int bio_sectors = bio_sectors(bio);
4963 
4964 	chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
4965 	return  chunk_sectors >=
4966 		((sector & (chunk_sectors - 1)) + bio_sectors);
4967 }
4968 
4969 /*
4970  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
4971  *  later sampled by raid5d.
4972  */
4973 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4974 {
4975 	unsigned long flags;
4976 
4977 	spin_lock_irqsave(&conf->device_lock, flags);
4978 
4979 	bi->bi_next = conf->retry_read_aligned_list;
4980 	conf->retry_read_aligned_list = bi;
4981 
4982 	spin_unlock_irqrestore(&conf->device_lock, flags);
4983 	md_wakeup_thread(conf->mddev->thread);
4984 }
4985 
4986 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4987 {
4988 	struct bio *bi;
4989 
4990 	bi = conf->retry_read_aligned;
4991 	if (bi) {
4992 		conf->retry_read_aligned = NULL;
4993 		return bi;
4994 	}
4995 	bi = conf->retry_read_aligned_list;
4996 	if(bi) {
4997 		conf->retry_read_aligned_list = bi->bi_next;
4998 		bi->bi_next = NULL;
4999 		/*
5000 		 * this sets the active strip count to 1 and the processed
5001 		 * strip count to zero (upper 8 bits)
5002 		 */
5003 		raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
5004 	}
5005 
5006 	return bi;
5007 }
5008 
5009 /*
5010  *  The "raid5_align_endio" should check if the read succeeded and if it
5011  *  did, call bio_endio on the original bio (having bio_put the new bio
5012  *  first).
5013  *  If the read failed..
5014  */
5015 static void raid5_align_endio(struct bio *bi)
5016 {
5017 	struct bio* raid_bi  = bi->bi_private;
5018 	struct mddev *mddev;
5019 	struct r5conf *conf;
5020 	struct md_rdev *rdev;
5021 	int error = bi->bi_error;
5022 
5023 	bio_put(bi);
5024 
5025 	rdev = (void*)raid_bi->bi_next;
5026 	raid_bi->bi_next = NULL;
5027 	mddev = rdev->mddev;
5028 	conf = mddev->private;
5029 
5030 	rdev_dec_pending(rdev, conf->mddev);
5031 
5032 	if (!error) {
5033 		trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
5034 					 raid_bi, 0);
5035 		bio_endio(raid_bi);
5036 		if (atomic_dec_and_test(&conf->active_aligned_reads))
5037 			wake_up(&conf->wait_for_quiescent);
5038 		return;
5039 	}
5040 
5041 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5042 
5043 	add_bio_to_retry(raid_bi, conf);
5044 }
5045 
5046 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5047 {
5048 	struct r5conf *conf = mddev->private;
5049 	int dd_idx;
5050 	struct bio* align_bi;
5051 	struct md_rdev *rdev;
5052 	sector_t end_sector;
5053 
5054 	if (!in_chunk_boundary(mddev, raid_bio)) {
5055 		pr_debug("%s: non aligned\n", __func__);
5056 		return 0;
5057 	}
5058 	/*
5059 	 * use bio_clone_fast to make a copy of the bio
5060 	 */
5061 	align_bi = bio_clone_fast(raid_bio, GFP_NOIO, mddev->bio_set);
5062 	if (!align_bi)
5063 		return 0;
5064 	/*
5065 	 *   set bi_end_io to a new function, and set bi_private to the
5066 	 *     original bio.
5067 	 */
5068 	align_bi->bi_end_io  = raid5_align_endio;
5069 	align_bi->bi_private = raid_bio;
5070 	/*
5071 	 *	compute position
5072 	 */
5073 	align_bi->bi_iter.bi_sector =
5074 		raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
5075 				     0, &dd_idx, NULL);
5076 
5077 	end_sector = bio_end_sector(align_bi);
5078 	rcu_read_lock();
5079 	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5080 	if (!rdev || test_bit(Faulty, &rdev->flags) ||
5081 	    rdev->recovery_offset < end_sector) {
5082 		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5083 		if (rdev &&
5084 		    (test_bit(Faulty, &rdev->flags) ||
5085 		    !(test_bit(In_sync, &rdev->flags) ||
5086 		      rdev->recovery_offset >= end_sector)))
5087 			rdev = NULL;
5088 	}
5089 
5090 	if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) {
5091 		rcu_read_unlock();
5092 		bio_put(align_bi);
5093 		return 0;
5094 	}
5095 
5096 	if (rdev) {
5097 		sector_t first_bad;
5098 		int bad_sectors;
5099 
5100 		atomic_inc(&rdev->nr_pending);
5101 		rcu_read_unlock();
5102 		raid_bio->bi_next = (void*)rdev;
5103 		align_bi->bi_bdev =  rdev->bdev;
5104 		bio_clear_flag(align_bi, BIO_SEG_VALID);
5105 
5106 		if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
5107 				bio_sectors(align_bi),
5108 				&first_bad, &bad_sectors)) {
5109 			bio_put(align_bi);
5110 			rdev_dec_pending(rdev, mddev);
5111 			return 0;
5112 		}
5113 
5114 		/* No reshape active, so we can trust rdev->data_offset */
5115 		align_bi->bi_iter.bi_sector += rdev->data_offset;
5116 
5117 		spin_lock_irq(&conf->device_lock);
5118 		wait_event_lock_irq(conf->wait_for_quiescent,
5119 				    conf->quiesce == 0,
5120 				    conf->device_lock);
5121 		atomic_inc(&conf->active_aligned_reads);
5122 		spin_unlock_irq(&conf->device_lock);
5123 
5124 		if (mddev->gendisk)
5125 			trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
5126 					      align_bi, disk_devt(mddev->gendisk),
5127 					      raid_bio->bi_iter.bi_sector);
5128 		generic_make_request(align_bi);
5129 		return 1;
5130 	} else {
5131 		rcu_read_unlock();
5132 		bio_put(align_bi);
5133 		return 0;
5134 	}
5135 }
5136 
5137 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5138 {
5139 	struct bio *split;
5140 
5141 	do {
5142 		sector_t sector = raid_bio->bi_iter.bi_sector;
5143 		unsigned chunk_sects = mddev->chunk_sectors;
5144 		unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5145 
5146 		if (sectors < bio_sectors(raid_bio)) {
5147 			split = bio_split(raid_bio, sectors, GFP_NOIO, fs_bio_set);
5148 			bio_chain(split, raid_bio);
5149 		} else
5150 			split = raid_bio;
5151 
5152 		if (!raid5_read_one_chunk(mddev, split)) {
5153 			if (split != raid_bio)
5154 				generic_make_request(raid_bio);
5155 			return split;
5156 		}
5157 	} while (split != raid_bio);
5158 
5159 	return NULL;
5160 }
5161 
5162 /* __get_priority_stripe - get the next stripe to process
5163  *
5164  * Full stripe writes are allowed to pass preread active stripes up until
5165  * the bypass_threshold is exceeded.  In general the bypass_count
5166  * increments when the handle_list is handled before the hold_list; however, it
5167  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5168  * stripe with in flight i/o.  The bypass_count will be reset when the
5169  * head of the hold_list has changed, i.e. the head was promoted to the
5170  * handle_list.
5171  */
5172 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5173 {
5174 	struct stripe_head *sh = NULL, *tmp;
5175 	struct list_head *handle_list = NULL;
5176 	struct r5worker_group *wg = NULL;
5177 
5178 	if (conf->worker_cnt_per_group == 0) {
5179 		handle_list = &conf->handle_list;
5180 	} else if (group != ANY_GROUP) {
5181 		handle_list = &conf->worker_groups[group].handle_list;
5182 		wg = &conf->worker_groups[group];
5183 	} else {
5184 		int i;
5185 		for (i = 0; i < conf->group_cnt; i++) {
5186 			handle_list = &conf->worker_groups[i].handle_list;
5187 			wg = &conf->worker_groups[i];
5188 			if (!list_empty(handle_list))
5189 				break;
5190 		}
5191 	}
5192 
5193 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5194 		  __func__,
5195 		  list_empty(handle_list) ? "empty" : "busy",
5196 		  list_empty(&conf->hold_list) ? "empty" : "busy",
5197 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
5198 
5199 	if (!list_empty(handle_list)) {
5200 		sh = list_entry(handle_list->next, typeof(*sh), lru);
5201 
5202 		if (list_empty(&conf->hold_list))
5203 			conf->bypass_count = 0;
5204 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5205 			if (conf->hold_list.next == conf->last_hold)
5206 				conf->bypass_count++;
5207 			else {
5208 				conf->last_hold = conf->hold_list.next;
5209 				conf->bypass_count -= conf->bypass_threshold;
5210 				if (conf->bypass_count < 0)
5211 					conf->bypass_count = 0;
5212 			}
5213 		}
5214 	} else if (!list_empty(&conf->hold_list) &&
5215 		   ((conf->bypass_threshold &&
5216 		     conf->bypass_count > conf->bypass_threshold) ||
5217 		    atomic_read(&conf->pending_full_writes) == 0)) {
5218 
5219 		list_for_each_entry(tmp, &conf->hold_list,  lru) {
5220 			if (conf->worker_cnt_per_group == 0 ||
5221 			    group == ANY_GROUP ||
5222 			    !cpu_online(tmp->cpu) ||
5223 			    cpu_to_group(tmp->cpu) == group) {
5224 				sh = tmp;
5225 				break;
5226 			}
5227 		}
5228 
5229 		if (sh) {
5230 			conf->bypass_count -= conf->bypass_threshold;
5231 			if (conf->bypass_count < 0)
5232 				conf->bypass_count = 0;
5233 		}
5234 		wg = NULL;
5235 	}
5236 
5237 	if (!sh)
5238 		return NULL;
5239 
5240 	if (wg) {
5241 		wg->stripes_cnt--;
5242 		sh->group = NULL;
5243 	}
5244 	list_del_init(&sh->lru);
5245 	BUG_ON(atomic_inc_return(&sh->count) != 1);
5246 	return sh;
5247 }
5248 
5249 struct raid5_plug_cb {
5250 	struct blk_plug_cb	cb;
5251 	struct list_head	list;
5252 	struct list_head	temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5253 };
5254 
5255 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5256 {
5257 	struct raid5_plug_cb *cb = container_of(
5258 		blk_cb, struct raid5_plug_cb, cb);
5259 	struct stripe_head *sh;
5260 	struct mddev *mddev = cb->cb.data;
5261 	struct r5conf *conf = mddev->private;
5262 	int cnt = 0;
5263 	int hash;
5264 
5265 	if (cb->list.next && !list_empty(&cb->list)) {
5266 		spin_lock_irq(&conf->device_lock);
5267 		while (!list_empty(&cb->list)) {
5268 			sh = list_first_entry(&cb->list, struct stripe_head, lru);
5269 			list_del_init(&sh->lru);
5270 			/*
5271 			 * avoid race release_stripe_plug() sees
5272 			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5273 			 * is still in our list
5274 			 */
5275 			smp_mb__before_atomic();
5276 			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5277 			/*
5278 			 * STRIPE_ON_RELEASE_LIST could be set here. In that
5279 			 * case, the count is always > 1 here
5280 			 */
5281 			hash = sh->hash_lock_index;
5282 			__release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5283 			cnt++;
5284 		}
5285 		spin_unlock_irq(&conf->device_lock);
5286 	}
5287 	release_inactive_stripe_list(conf, cb->temp_inactive_list,
5288 				     NR_STRIPE_HASH_LOCKS);
5289 	if (mddev->queue)
5290 		trace_block_unplug(mddev->queue, cnt, !from_schedule);
5291 	kfree(cb);
5292 }
5293 
5294 static void release_stripe_plug(struct mddev *mddev,
5295 				struct stripe_head *sh)
5296 {
5297 	struct blk_plug_cb *blk_cb = blk_check_plugged(
5298 		raid5_unplug, mddev,
5299 		sizeof(struct raid5_plug_cb));
5300 	struct raid5_plug_cb *cb;
5301 
5302 	if (!blk_cb) {
5303 		raid5_release_stripe(sh);
5304 		return;
5305 	}
5306 
5307 	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5308 
5309 	if (cb->list.next == NULL) {
5310 		int i;
5311 		INIT_LIST_HEAD(&cb->list);
5312 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5313 			INIT_LIST_HEAD(cb->temp_inactive_list + i);
5314 	}
5315 
5316 	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5317 		list_add_tail(&sh->lru, &cb->list);
5318 	else
5319 		raid5_release_stripe(sh);
5320 }
5321 
5322 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5323 {
5324 	struct r5conf *conf = mddev->private;
5325 	sector_t logical_sector, last_sector;
5326 	struct stripe_head *sh;
5327 	int remaining;
5328 	int stripe_sectors;
5329 
5330 	if (mddev->reshape_position != MaxSector)
5331 		/* Skip discard while reshape is happening */
5332 		return;
5333 
5334 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5335 	last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5336 
5337 	bi->bi_next = NULL;
5338 	bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5339 
5340 	stripe_sectors = conf->chunk_sectors *
5341 		(conf->raid_disks - conf->max_degraded);
5342 	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5343 					       stripe_sectors);
5344 	sector_div(last_sector, stripe_sectors);
5345 
5346 	logical_sector *= conf->chunk_sectors;
5347 	last_sector *= conf->chunk_sectors;
5348 
5349 	for (; logical_sector < last_sector;
5350 	     logical_sector += STRIPE_SECTORS) {
5351 		DEFINE_WAIT(w);
5352 		int d;
5353 	again:
5354 		sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5355 		prepare_to_wait(&conf->wait_for_overlap, &w,
5356 				TASK_UNINTERRUPTIBLE);
5357 		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5358 		if (test_bit(STRIPE_SYNCING, &sh->state)) {
5359 			raid5_release_stripe(sh);
5360 			schedule();
5361 			goto again;
5362 		}
5363 		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5364 		spin_lock_irq(&sh->stripe_lock);
5365 		for (d = 0; d < conf->raid_disks; d++) {
5366 			if (d == sh->pd_idx || d == sh->qd_idx)
5367 				continue;
5368 			if (sh->dev[d].towrite || sh->dev[d].toread) {
5369 				set_bit(R5_Overlap, &sh->dev[d].flags);
5370 				spin_unlock_irq(&sh->stripe_lock);
5371 				raid5_release_stripe(sh);
5372 				schedule();
5373 				goto again;
5374 			}
5375 		}
5376 		set_bit(STRIPE_DISCARD, &sh->state);
5377 		finish_wait(&conf->wait_for_overlap, &w);
5378 		sh->overwrite_disks = 0;
5379 		for (d = 0; d < conf->raid_disks; d++) {
5380 			if (d == sh->pd_idx || d == sh->qd_idx)
5381 				continue;
5382 			sh->dev[d].towrite = bi;
5383 			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5384 			raid5_inc_bi_active_stripes(bi);
5385 			sh->overwrite_disks++;
5386 		}
5387 		spin_unlock_irq(&sh->stripe_lock);
5388 		if (conf->mddev->bitmap) {
5389 			for (d = 0;
5390 			     d < conf->raid_disks - conf->max_degraded;
5391 			     d++)
5392 				bitmap_startwrite(mddev->bitmap,
5393 						  sh->sector,
5394 						  STRIPE_SECTORS,
5395 						  0);
5396 			sh->bm_seq = conf->seq_flush + 1;
5397 			set_bit(STRIPE_BIT_DELAY, &sh->state);
5398 		}
5399 
5400 		set_bit(STRIPE_HANDLE, &sh->state);
5401 		clear_bit(STRIPE_DELAYED, &sh->state);
5402 		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5403 			atomic_inc(&conf->preread_active_stripes);
5404 		release_stripe_plug(mddev, sh);
5405 	}
5406 
5407 	remaining = raid5_dec_bi_active_stripes(bi);
5408 	if (remaining == 0) {
5409 		md_write_end(mddev);
5410 		bio_endio(bi);
5411 	}
5412 }
5413 
5414 static void raid5_make_request(struct mddev *mddev, struct bio * bi)
5415 {
5416 	struct r5conf *conf = mddev->private;
5417 	int dd_idx;
5418 	sector_t new_sector;
5419 	sector_t logical_sector, last_sector;
5420 	struct stripe_head *sh;
5421 	const int rw = bio_data_dir(bi);
5422 	int remaining;
5423 	DEFINE_WAIT(w);
5424 	bool do_prepare;
5425 	bool do_flush = false;
5426 
5427 	if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5428 		int ret = r5l_handle_flush_request(conf->log, bi);
5429 
5430 		if (ret == 0)
5431 			return;
5432 		if (ret == -ENODEV) {
5433 			md_flush_request(mddev, bi);
5434 			return;
5435 		}
5436 		/* ret == -EAGAIN, fallback */
5437 		/*
5438 		 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5439 		 * we need to flush journal device
5440 		 */
5441 		do_flush = bi->bi_opf & REQ_PREFLUSH;
5442 	}
5443 
5444 	md_write_start(mddev, bi);
5445 
5446 	/*
5447 	 * If array is degraded, better not do chunk aligned read because
5448 	 * later we might have to read it again in order to reconstruct
5449 	 * data on failed drives.
5450 	 */
5451 	if (rw == READ && mddev->degraded == 0 &&
5452 	    mddev->reshape_position == MaxSector) {
5453 		bi = chunk_aligned_read(mddev, bi);
5454 		if (!bi)
5455 			return;
5456 	}
5457 
5458 	if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5459 		make_discard_request(mddev, bi);
5460 		return;
5461 	}
5462 
5463 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5464 	last_sector = bio_end_sector(bi);
5465 	bi->bi_next = NULL;
5466 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
5467 
5468 	prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5469 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5470 		int previous;
5471 		int seq;
5472 
5473 		do_prepare = false;
5474 	retry:
5475 		seq = read_seqcount_begin(&conf->gen_lock);
5476 		previous = 0;
5477 		if (do_prepare)
5478 			prepare_to_wait(&conf->wait_for_overlap, &w,
5479 				TASK_UNINTERRUPTIBLE);
5480 		if (unlikely(conf->reshape_progress != MaxSector)) {
5481 			/* spinlock is needed as reshape_progress may be
5482 			 * 64bit on a 32bit platform, and so it might be
5483 			 * possible to see a half-updated value
5484 			 * Of course reshape_progress could change after
5485 			 * the lock is dropped, so once we get a reference
5486 			 * to the stripe that we think it is, we will have
5487 			 * to check again.
5488 			 */
5489 			spin_lock_irq(&conf->device_lock);
5490 			if (mddev->reshape_backwards
5491 			    ? logical_sector < conf->reshape_progress
5492 			    : logical_sector >= conf->reshape_progress) {
5493 				previous = 1;
5494 			} else {
5495 				if (mddev->reshape_backwards
5496 				    ? logical_sector < conf->reshape_safe
5497 				    : logical_sector >= conf->reshape_safe) {
5498 					spin_unlock_irq(&conf->device_lock);
5499 					schedule();
5500 					do_prepare = true;
5501 					goto retry;
5502 				}
5503 			}
5504 			spin_unlock_irq(&conf->device_lock);
5505 		}
5506 
5507 		new_sector = raid5_compute_sector(conf, logical_sector,
5508 						  previous,
5509 						  &dd_idx, NULL);
5510 		pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5511 			(unsigned long long)new_sector,
5512 			(unsigned long long)logical_sector);
5513 
5514 		sh = raid5_get_active_stripe(conf, new_sector, previous,
5515 				       (bi->bi_opf & REQ_RAHEAD), 0);
5516 		if (sh) {
5517 			if (unlikely(previous)) {
5518 				/* expansion might have moved on while waiting for a
5519 				 * stripe, so we must do the range check again.
5520 				 * Expansion could still move past after this
5521 				 * test, but as we are holding a reference to
5522 				 * 'sh', we know that if that happens,
5523 				 *  STRIPE_EXPANDING will get set and the expansion
5524 				 * won't proceed until we finish with the stripe.
5525 				 */
5526 				int must_retry = 0;
5527 				spin_lock_irq(&conf->device_lock);
5528 				if (mddev->reshape_backwards
5529 				    ? logical_sector >= conf->reshape_progress
5530 				    : logical_sector < conf->reshape_progress)
5531 					/* mismatch, need to try again */
5532 					must_retry = 1;
5533 				spin_unlock_irq(&conf->device_lock);
5534 				if (must_retry) {
5535 					raid5_release_stripe(sh);
5536 					schedule();
5537 					do_prepare = true;
5538 					goto retry;
5539 				}
5540 			}
5541 			if (read_seqcount_retry(&conf->gen_lock, seq)) {
5542 				/* Might have got the wrong stripe_head
5543 				 * by accident
5544 				 */
5545 				raid5_release_stripe(sh);
5546 				goto retry;
5547 			}
5548 
5549 			if (rw == WRITE &&
5550 			    logical_sector >= mddev->suspend_lo &&
5551 			    logical_sector < mddev->suspend_hi) {
5552 				raid5_release_stripe(sh);
5553 				/* As the suspend_* range is controlled by
5554 				 * userspace, we want an interruptible
5555 				 * wait.
5556 				 */
5557 				flush_signals(current);
5558 				prepare_to_wait(&conf->wait_for_overlap,
5559 						&w, TASK_INTERRUPTIBLE);
5560 				if (logical_sector >= mddev->suspend_lo &&
5561 				    logical_sector < mddev->suspend_hi) {
5562 					schedule();
5563 					do_prepare = true;
5564 				}
5565 				goto retry;
5566 			}
5567 
5568 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5569 			    !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5570 				/* Stripe is busy expanding or
5571 				 * add failed due to overlap.  Flush everything
5572 				 * and wait a while
5573 				 */
5574 				md_wakeup_thread(mddev->thread);
5575 				raid5_release_stripe(sh);
5576 				schedule();
5577 				do_prepare = true;
5578 				goto retry;
5579 			}
5580 			if (do_flush) {
5581 				set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5582 				/* we only need flush for one stripe */
5583 				do_flush = false;
5584 			}
5585 
5586 			set_bit(STRIPE_HANDLE, &sh->state);
5587 			clear_bit(STRIPE_DELAYED, &sh->state);
5588 			if ((!sh->batch_head || sh == sh->batch_head) &&
5589 			    (bi->bi_opf & REQ_SYNC) &&
5590 			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5591 				atomic_inc(&conf->preread_active_stripes);
5592 			release_stripe_plug(mddev, sh);
5593 		} else {
5594 			/* cannot get stripe for read-ahead, just give-up */
5595 			bi->bi_error = -EIO;
5596 			break;
5597 		}
5598 	}
5599 	finish_wait(&conf->wait_for_overlap, &w);
5600 
5601 	remaining = raid5_dec_bi_active_stripes(bi);
5602 	if (remaining == 0) {
5603 
5604 		if ( rw == WRITE )
5605 			md_write_end(mddev);
5606 
5607 		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5608 					 bi, 0);
5609 		bio_endio(bi);
5610 	}
5611 }
5612 
5613 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5614 
5615 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5616 {
5617 	/* reshaping is quite different to recovery/resync so it is
5618 	 * handled quite separately ... here.
5619 	 *
5620 	 * On each call to sync_request, we gather one chunk worth of
5621 	 * destination stripes and flag them as expanding.
5622 	 * Then we find all the source stripes and request reads.
5623 	 * As the reads complete, handle_stripe will copy the data
5624 	 * into the destination stripe and release that stripe.
5625 	 */
5626 	struct r5conf *conf = mddev->private;
5627 	struct stripe_head *sh;
5628 	sector_t first_sector, last_sector;
5629 	int raid_disks = conf->previous_raid_disks;
5630 	int data_disks = raid_disks - conf->max_degraded;
5631 	int new_data_disks = conf->raid_disks - conf->max_degraded;
5632 	int i;
5633 	int dd_idx;
5634 	sector_t writepos, readpos, safepos;
5635 	sector_t stripe_addr;
5636 	int reshape_sectors;
5637 	struct list_head stripes;
5638 	sector_t retn;
5639 
5640 	if (sector_nr == 0) {
5641 		/* If restarting in the middle, skip the initial sectors */
5642 		if (mddev->reshape_backwards &&
5643 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5644 			sector_nr = raid5_size(mddev, 0, 0)
5645 				- conf->reshape_progress;
5646 		} else if (mddev->reshape_backwards &&
5647 			   conf->reshape_progress == MaxSector) {
5648 			/* shouldn't happen, but just in case, finish up.*/
5649 			sector_nr = MaxSector;
5650 		} else if (!mddev->reshape_backwards &&
5651 			   conf->reshape_progress > 0)
5652 			sector_nr = conf->reshape_progress;
5653 		sector_div(sector_nr, new_data_disks);
5654 		if (sector_nr) {
5655 			mddev->curr_resync_completed = sector_nr;
5656 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5657 			*skipped = 1;
5658 			retn = sector_nr;
5659 			goto finish;
5660 		}
5661 	}
5662 
5663 	/* We need to process a full chunk at a time.
5664 	 * If old and new chunk sizes differ, we need to process the
5665 	 * largest of these
5666 	 */
5667 
5668 	reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5669 
5670 	/* We update the metadata at least every 10 seconds, or when
5671 	 * the data about to be copied would over-write the source of
5672 	 * the data at the front of the range.  i.e. one new_stripe
5673 	 * along from reshape_progress new_maps to after where
5674 	 * reshape_safe old_maps to
5675 	 */
5676 	writepos = conf->reshape_progress;
5677 	sector_div(writepos, new_data_disks);
5678 	readpos = conf->reshape_progress;
5679 	sector_div(readpos, data_disks);
5680 	safepos = conf->reshape_safe;
5681 	sector_div(safepos, data_disks);
5682 	if (mddev->reshape_backwards) {
5683 		BUG_ON(writepos < reshape_sectors);
5684 		writepos -= reshape_sectors;
5685 		readpos += reshape_sectors;
5686 		safepos += reshape_sectors;
5687 	} else {
5688 		writepos += reshape_sectors;
5689 		/* readpos and safepos are worst-case calculations.
5690 		 * A negative number is overly pessimistic, and causes
5691 		 * obvious problems for unsigned storage.  So clip to 0.
5692 		 */
5693 		readpos -= min_t(sector_t, reshape_sectors, readpos);
5694 		safepos -= min_t(sector_t, reshape_sectors, safepos);
5695 	}
5696 
5697 	/* Having calculated the 'writepos' possibly use it
5698 	 * to set 'stripe_addr' which is where we will write to.
5699 	 */
5700 	if (mddev->reshape_backwards) {
5701 		BUG_ON(conf->reshape_progress == 0);
5702 		stripe_addr = writepos;
5703 		BUG_ON((mddev->dev_sectors &
5704 			~((sector_t)reshape_sectors - 1))
5705 		       - reshape_sectors - stripe_addr
5706 		       != sector_nr);
5707 	} else {
5708 		BUG_ON(writepos != sector_nr + reshape_sectors);
5709 		stripe_addr = sector_nr;
5710 	}
5711 
5712 	/* 'writepos' is the most advanced device address we might write.
5713 	 * 'readpos' is the least advanced device address we might read.
5714 	 * 'safepos' is the least address recorded in the metadata as having
5715 	 *     been reshaped.
5716 	 * If there is a min_offset_diff, these are adjusted either by
5717 	 * increasing the safepos/readpos if diff is negative, or
5718 	 * increasing writepos if diff is positive.
5719 	 * If 'readpos' is then behind 'writepos', there is no way that we can
5720 	 * ensure safety in the face of a crash - that must be done by userspace
5721 	 * making a backup of the data.  So in that case there is no particular
5722 	 * rush to update metadata.
5723 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5724 	 * update the metadata to advance 'safepos' to match 'readpos' so that
5725 	 * we can be safe in the event of a crash.
5726 	 * So we insist on updating metadata if safepos is behind writepos and
5727 	 * readpos is beyond writepos.
5728 	 * In any case, update the metadata every 10 seconds.
5729 	 * Maybe that number should be configurable, but I'm not sure it is
5730 	 * worth it.... maybe it could be a multiple of safemode_delay???
5731 	 */
5732 	if (conf->min_offset_diff < 0) {
5733 		safepos += -conf->min_offset_diff;
5734 		readpos += -conf->min_offset_diff;
5735 	} else
5736 		writepos += conf->min_offset_diff;
5737 
5738 	if ((mddev->reshape_backwards
5739 	     ? (safepos > writepos && readpos < writepos)
5740 	     : (safepos < writepos && readpos > writepos)) ||
5741 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5742 		/* Cannot proceed until we've updated the superblock... */
5743 		wait_event(conf->wait_for_overlap,
5744 			   atomic_read(&conf->reshape_stripes)==0
5745 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5746 		if (atomic_read(&conf->reshape_stripes) != 0)
5747 			return 0;
5748 		mddev->reshape_position = conf->reshape_progress;
5749 		mddev->curr_resync_completed = sector_nr;
5750 		conf->reshape_checkpoint = jiffies;
5751 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5752 		md_wakeup_thread(mddev->thread);
5753 		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
5754 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5755 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5756 			return 0;
5757 		spin_lock_irq(&conf->device_lock);
5758 		conf->reshape_safe = mddev->reshape_position;
5759 		spin_unlock_irq(&conf->device_lock);
5760 		wake_up(&conf->wait_for_overlap);
5761 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5762 	}
5763 
5764 	INIT_LIST_HEAD(&stripes);
5765 	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5766 		int j;
5767 		int skipped_disk = 0;
5768 		sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5769 		set_bit(STRIPE_EXPANDING, &sh->state);
5770 		atomic_inc(&conf->reshape_stripes);
5771 		/* If any of this stripe is beyond the end of the old
5772 		 * array, then we need to zero those blocks
5773 		 */
5774 		for (j=sh->disks; j--;) {
5775 			sector_t s;
5776 			if (j == sh->pd_idx)
5777 				continue;
5778 			if (conf->level == 6 &&
5779 			    j == sh->qd_idx)
5780 				continue;
5781 			s = raid5_compute_blocknr(sh, j, 0);
5782 			if (s < raid5_size(mddev, 0, 0)) {
5783 				skipped_disk = 1;
5784 				continue;
5785 			}
5786 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5787 			set_bit(R5_Expanded, &sh->dev[j].flags);
5788 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
5789 		}
5790 		if (!skipped_disk) {
5791 			set_bit(STRIPE_EXPAND_READY, &sh->state);
5792 			set_bit(STRIPE_HANDLE, &sh->state);
5793 		}
5794 		list_add(&sh->lru, &stripes);
5795 	}
5796 	spin_lock_irq(&conf->device_lock);
5797 	if (mddev->reshape_backwards)
5798 		conf->reshape_progress -= reshape_sectors * new_data_disks;
5799 	else
5800 		conf->reshape_progress += reshape_sectors * new_data_disks;
5801 	spin_unlock_irq(&conf->device_lock);
5802 	/* Ok, those stripe are ready. We can start scheduling
5803 	 * reads on the source stripes.
5804 	 * The source stripes are determined by mapping the first and last
5805 	 * block on the destination stripes.
5806 	 */
5807 	first_sector =
5808 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5809 				     1, &dd_idx, NULL);
5810 	last_sector =
5811 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5812 					    * new_data_disks - 1),
5813 				     1, &dd_idx, NULL);
5814 	if (last_sector >= mddev->dev_sectors)
5815 		last_sector = mddev->dev_sectors - 1;
5816 	while (first_sector <= last_sector) {
5817 		sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5818 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5819 		set_bit(STRIPE_HANDLE, &sh->state);
5820 		raid5_release_stripe(sh);
5821 		first_sector += STRIPE_SECTORS;
5822 	}
5823 	/* Now that the sources are clearly marked, we can release
5824 	 * the destination stripes
5825 	 */
5826 	while (!list_empty(&stripes)) {
5827 		sh = list_entry(stripes.next, struct stripe_head, lru);
5828 		list_del_init(&sh->lru);
5829 		raid5_release_stripe(sh);
5830 	}
5831 	/* If this takes us to the resync_max point where we have to pause,
5832 	 * then we need to write out the superblock.
5833 	 */
5834 	sector_nr += reshape_sectors;
5835 	retn = reshape_sectors;
5836 finish:
5837 	if (mddev->curr_resync_completed > mddev->resync_max ||
5838 	    (sector_nr - mddev->curr_resync_completed) * 2
5839 	    >= mddev->resync_max - mddev->curr_resync_completed) {
5840 		/* Cannot proceed until we've updated the superblock... */
5841 		wait_event(conf->wait_for_overlap,
5842 			   atomic_read(&conf->reshape_stripes) == 0
5843 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5844 		if (atomic_read(&conf->reshape_stripes) != 0)
5845 			goto ret;
5846 		mddev->reshape_position = conf->reshape_progress;
5847 		mddev->curr_resync_completed = sector_nr;
5848 		conf->reshape_checkpoint = jiffies;
5849 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5850 		md_wakeup_thread(mddev->thread);
5851 		wait_event(mddev->sb_wait,
5852 			   !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
5853 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5854 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5855 			goto ret;
5856 		spin_lock_irq(&conf->device_lock);
5857 		conf->reshape_safe = mddev->reshape_position;
5858 		spin_unlock_irq(&conf->device_lock);
5859 		wake_up(&conf->wait_for_overlap);
5860 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5861 	}
5862 ret:
5863 	return retn;
5864 }
5865 
5866 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
5867 					  int *skipped)
5868 {
5869 	struct r5conf *conf = mddev->private;
5870 	struct stripe_head *sh;
5871 	sector_t max_sector = mddev->dev_sectors;
5872 	sector_t sync_blocks;
5873 	int still_degraded = 0;
5874 	int i;
5875 
5876 	if (sector_nr >= max_sector) {
5877 		/* just being told to finish up .. nothing much to do */
5878 
5879 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5880 			end_reshape(conf);
5881 			return 0;
5882 		}
5883 
5884 		if (mddev->curr_resync < max_sector) /* aborted */
5885 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5886 					&sync_blocks, 1);
5887 		else /* completed sync */
5888 			conf->fullsync = 0;
5889 		bitmap_close_sync(mddev->bitmap);
5890 
5891 		return 0;
5892 	}
5893 
5894 	/* Allow raid5_quiesce to complete */
5895 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5896 
5897 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5898 		return reshape_request(mddev, sector_nr, skipped);
5899 
5900 	/* No need to check resync_max as we never do more than one
5901 	 * stripe, and as resync_max will always be on a chunk boundary,
5902 	 * if the check in md_do_sync didn't fire, there is no chance
5903 	 * of overstepping resync_max here
5904 	 */
5905 
5906 	/* if there is too many failed drives and we are trying
5907 	 * to resync, then assert that we are finished, because there is
5908 	 * nothing we can do.
5909 	 */
5910 	if (mddev->degraded >= conf->max_degraded &&
5911 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5912 		sector_t rv = mddev->dev_sectors - sector_nr;
5913 		*skipped = 1;
5914 		return rv;
5915 	}
5916 	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5917 	    !conf->fullsync &&
5918 	    !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5919 	    sync_blocks >= STRIPE_SECTORS) {
5920 		/* we can skip this block, and probably more */
5921 		sync_blocks /= STRIPE_SECTORS;
5922 		*skipped = 1;
5923 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5924 	}
5925 
5926 	bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
5927 
5928 	sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
5929 	if (sh == NULL) {
5930 		sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
5931 		/* make sure we don't swamp the stripe cache if someone else
5932 		 * is trying to get access
5933 		 */
5934 		schedule_timeout_uninterruptible(1);
5935 	}
5936 	/* Need to check if array will still be degraded after recovery/resync
5937 	 * Note in case of > 1 drive failures it's possible we're rebuilding
5938 	 * one drive while leaving another faulty drive in array.
5939 	 */
5940 	rcu_read_lock();
5941 	for (i = 0; i < conf->raid_disks; i++) {
5942 		struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5943 
5944 		if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5945 			still_degraded = 1;
5946 	}
5947 	rcu_read_unlock();
5948 
5949 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5950 
5951 	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5952 	set_bit(STRIPE_HANDLE, &sh->state);
5953 
5954 	raid5_release_stripe(sh);
5955 
5956 	return STRIPE_SECTORS;
5957 }
5958 
5959 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5960 {
5961 	/* We may not be able to submit a whole bio at once as there
5962 	 * may not be enough stripe_heads available.
5963 	 * We cannot pre-allocate enough stripe_heads as we may need
5964 	 * more than exist in the cache (if we allow ever large chunks).
5965 	 * So we do one stripe head at a time and record in
5966 	 * ->bi_hw_segments how many have been done.
5967 	 *
5968 	 * We *know* that this entire raid_bio is in one chunk, so
5969 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5970 	 */
5971 	struct stripe_head *sh;
5972 	int dd_idx;
5973 	sector_t sector, logical_sector, last_sector;
5974 	int scnt = 0;
5975 	int remaining;
5976 	int handled = 0;
5977 
5978 	logical_sector = raid_bio->bi_iter.bi_sector &
5979 		~((sector_t)STRIPE_SECTORS-1);
5980 	sector = raid5_compute_sector(conf, logical_sector,
5981 				      0, &dd_idx, NULL);
5982 	last_sector = bio_end_sector(raid_bio);
5983 
5984 	for (; logical_sector < last_sector;
5985 	     logical_sector += STRIPE_SECTORS,
5986 		     sector += STRIPE_SECTORS,
5987 		     scnt++) {
5988 
5989 		if (scnt < raid5_bi_processed_stripes(raid_bio))
5990 			/* already done this stripe */
5991 			continue;
5992 
5993 		sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
5994 
5995 		if (!sh) {
5996 			/* failed to get a stripe - must wait */
5997 			raid5_set_bi_processed_stripes(raid_bio, scnt);
5998 			conf->retry_read_aligned = raid_bio;
5999 			return handled;
6000 		}
6001 
6002 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6003 			raid5_release_stripe(sh);
6004 			raid5_set_bi_processed_stripes(raid_bio, scnt);
6005 			conf->retry_read_aligned = raid_bio;
6006 			return handled;
6007 		}
6008 
6009 		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6010 		handle_stripe(sh);
6011 		raid5_release_stripe(sh);
6012 		handled++;
6013 	}
6014 	remaining = raid5_dec_bi_active_stripes(raid_bio);
6015 	if (remaining == 0) {
6016 		trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
6017 					 raid_bio, 0);
6018 		bio_endio(raid_bio);
6019 	}
6020 	if (atomic_dec_and_test(&conf->active_aligned_reads))
6021 		wake_up(&conf->wait_for_quiescent);
6022 	return handled;
6023 }
6024 
6025 static int handle_active_stripes(struct r5conf *conf, int group,
6026 				 struct r5worker *worker,
6027 				 struct list_head *temp_inactive_list)
6028 {
6029 	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6030 	int i, batch_size = 0, hash;
6031 	bool release_inactive = false;
6032 
6033 	while (batch_size < MAX_STRIPE_BATCH &&
6034 			(sh = __get_priority_stripe(conf, group)) != NULL)
6035 		batch[batch_size++] = sh;
6036 
6037 	if (batch_size == 0) {
6038 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6039 			if (!list_empty(temp_inactive_list + i))
6040 				break;
6041 		if (i == NR_STRIPE_HASH_LOCKS) {
6042 			spin_unlock_irq(&conf->device_lock);
6043 			r5l_flush_stripe_to_raid(conf->log);
6044 			spin_lock_irq(&conf->device_lock);
6045 			return batch_size;
6046 		}
6047 		release_inactive = true;
6048 	}
6049 	spin_unlock_irq(&conf->device_lock);
6050 
6051 	release_inactive_stripe_list(conf, temp_inactive_list,
6052 				     NR_STRIPE_HASH_LOCKS);
6053 
6054 	r5l_flush_stripe_to_raid(conf->log);
6055 	if (release_inactive) {
6056 		spin_lock_irq(&conf->device_lock);
6057 		return 0;
6058 	}
6059 
6060 	for (i = 0; i < batch_size; i++)
6061 		handle_stripe(batch[i]);
6062 	r5l_write_stripe_run(conf->log);
6063 
6064 	cond_resched();
6065 
6066 	spin_lock_irq(&conf->device_lock);
6067 	for (i = 0; i < batch_size; i++) {
6068 		hash = batch[i]->hash_lock_index;
6069 		__release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6070 	}
6071 	return batch_size;
6072 }
6073 
6074 static void raid5_do_work(struct work_struct *work)
6075 {
6076 	struct r5worker *worker = container_of(work, struct r5worker, work);
6077 	struct r5worker_group *group = worker->group;
6078 	struct r5conf *conf = group->conf;
6079 	int group_id = group - conf->worker_groups;
6080 	int handled;
6081 	struct blk_plug plug;
6082 
6083 	pr_debug("+++ raid5worker active\n");
6084 
6085 	blk_start_plug(&plug);
6086 	handled = 0;
6087 	spin_lock_irq(&conf->device_lock);
6088 	while (1) {
6089 		int batch_size, released;
6090 
6091 		released = release_stripe_list(conf, worker->temp_inactive_list);
6092 
6093 		batch_size = handle_active_stripes(conf, group_id, worker,
6094 						   worker->temp_inactive_list);
6095 		worker->working = false;
6096 		if (!batch_size && !released)
6097 			break;
6098 		handled += batch_size;
6099 	}
6100 	pr_debug("%d stripes handled\n", handled);
6101 
6102 	spin_unlock_irq(&conf->device_lock);
6103 	blk_finish_plug(&plug);
6104 
6105 	pr_debug("--- raid5worker inactive\n");
6106 }
6107 
6108 /*
6109  * This is our raid5 kernel thread.
6110  *
6111  * We scan the hash table for stripes which can be handled now.
6112  * During the scan, completed stripes are saved for us by the interrupt
6113  * handler, so that they will not have to wait for our next wakeup.
6114  */
6115 static void raid5d(struct md_thread *thread)
6116 {
6117 	struct mddev *mddev = thread->mddev;
6118 	struct r5conf *conf = mddev->private;
6119 	int handled;
6120 	struct blk_plug plug;
6121 
6122 	pr_debug("+++ raid5d active\n");
6123 
6124 	md_check_recovery(mddev);
6125 
6126 	if (!bio_list_empty(&conf->return_bi) &&
6127 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
6128 		struct bio_list tmp = BIO_EMPTY_LIST;
6129 		spin_lock_irq(&conf->device_lock);
6130 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
6131 			bio_list_merge(&tmp, &conf->return_bi);
6132 			bio_list_init(&conf->return_bi);
6133 		}
6134 		spin_unlock_irq(&conf->device_lock);
6135 		return_io(&tmp);
6136 	}
6137 
6138 	blk_start_plug(&plug);
6139 	handled = 0;
6140 	spin_lock_irq(&conf->device_lock);
6141 	while (1) {
6142 		struct bio *bio;
6143 		int batch_size, released;
6144 
6145 		released = release_stripe_list(conf, conf->temp_inactive_list);
6146 		if (released)
6147 			clear_bit(R5_DID_ALLOC, &conf->cache_state);
6148 
6149 		if (
6150 		    !list_empty(&conf->bitmap_list)) {
6151 			/* Now is a good time to flush some bitmap updates */
6152 			conf->seq_flush++;
6153 			spin_unlock_irq(&conf->device_lock);
6154 			bitmap_unplug(mddev->bitmap);
6155 			spin_lock_irq(&conf->device_lock);
6156 			conf->seq_write = conf->seq_flush;
6157 			activate_bit_delay(conf, conf->temp_inactive_list);
6158 		}
6159 		raid5_activate_delayed(conf);
6160 
6161 		while ((bio = remove_bio_from_retry(conf))) {
6162 			int ok;
6163 			spin_unlock_irq(&conf->device_lock);
6164 			ok = retry_aligned_read(conf, bio);
6165 			spin_lock_irq(&conf->device_lock);
6166 			if (!ok)
6167 				break;
6168 			handled++;
6169 		}
6170 
6171 		batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6172 						   conf->temp_inactive_list);
6173 		if (!batch_size && !released)
6174 			break;
6175 		handled += batch_size;
6176 
6177 		if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6178 			spin_unlock_irq(&conf->device_lock);
6179 			md_check_recovery(mddev);
6180 			spin_lock_irq(&conf->device_lock);
6181 		}
6182 	}
6183 	pr_debug("%d stripes handled\n", handled);
6184 
6185 	spin_unlock_irq(&conf->device_lock);
6186 	if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6187 	    mutex_trylock(&conf->cache_size_mutex)) {
6188 		grow_one_stripe(conf, __GFP_NOWARN);
6189 		/* Set flag even if allocation failed.  This helps
6190 		 * slow down allocation requests when mem is short
6191 		 */
6192 		set_bit(R5_DID_ALLOC, &conf->cache_state);
6193 		mutex_unlock(&conf->cache_size_mutex);
6194 	}
6195 
6196 	flush_deferred_bios(conf);
6197 
6198 	r5l_flush_stripe_to_raid(conf->log);
6199 
6200 	async_tx_issue_pending_all();
6201 	blk_finish_plug(&plug);
6202 
6203 	pr_debug("--- raid5d inactive\n");
6204 }
6205 
6206 static ssize_t
6207 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6208 {
6209 	struct r5conf *conf;
6210 	int ret = 0;
6211 	spin_lock(&mddev->lock);
6212 	conf = mddev->private;
6213 	if (conf)
6214 		ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6215 	spin_unlock(&mddev->lock);
6216 	return ret;
6217 }
6218 
6219 int
6220 raid5_set_cache_size(struct mddev *mddev, int size)
6221 {
6222 	struct r5conf *conf = mddev->private;
6223 	int err;
6224 
6225 	if (size <= 16 || size > 32768)
6226 		return -EINVAL;
6227 
6228 	conf->min_nr_stripes = size;
6229 	mutex_lock(&conf->cache_size_mutex);
6230 	while (size < conf->max_nr_stripes &&
6231 	       drop_one_stripe(conf))
6232 		;
6233 	mutex_unlock(&conf->cache_size_mutex);
6234 
6235 
6236 	err = md_allow_write(mddev);
6237 	if (err)
6238 		return err;
6239 
6240 	mutex_lock(&conf->cache_size_mutex);
6241 	while (size > conf->max_nr_stripes)
6242 		if (!grow_one_stripe(conf, GFP_KERNEL))
6243 			break;
6244 	mutex_unlock(&conf->cache_size_mutex);
6245 
6246 	return 0;
6247 }
6248 EXPORT_SYMBOL(raid5_set_cache_size);
6249 
6250 static ssize_t
6251 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6252 {
6253 	struct r5conf *conf;
6254 	unsigned long new;
6255 	int err;
6256 
6257 	if (len >= PAGE_SIZE)
6258 		return -EINVAL;
6259 	if (kstrtoul(page, 10, &new))
6260 		return -EINVAL;
6261 	err = mddev_lock(mddev);
6262 	if (err)
6263 		return err;
6264 	conf = mddev->private;
6265 	if (!conf)
6266 		err = -ENODEV;
6267 	else
6268 		err = raid5_set_cache_size(mddev, new);
6269 	mddev_unlock(mddev);
6270 
6271 	return err ?: len;
6272 }
6273 
6274 static struct md_sysfs_entry
6275 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6276 				raid5_show_stripe_cache_size,
6277 				raid5_store_stripe_cache_size);
6278 
6279 static ssize_t
6280 raid5_show_rmw_level(struct mddev  *mddev, char *page)
6281 {
6282 	struct r5conf *conf = mddev->private;
6283 	if (conf)
6284 		return sprintf(page, "%d\n", conf->rmw_level);
6285 	else
6286 		return 0;
6287 }
6288 
6289 static ssize_t
6290 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
6291 {
6292 	struct r5conf *conf = mddev->private;
6293 	unsigned long new;
6294 
6295 	if (!conf)
6296 		return -ENODEV;
6297 
6298 	if (len >= PAGE_SIZE)
6299 		return -EINVAL;
6300 
6301 	if (kstrtoul(page, 10, &new))
6302 		return -EINVAL;
6303 
6304 	if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6305 		return -EINVAL;
6306 
6307 	if (new != PARITY_DISABLE_RMW &&
6308 	    new != PARITY_ENABLE_RMW &&
6309 	    new != PARITY_PREFER_RMW)
6310 		return -EINVAL;
6311 
6312 	conf->rmw_level = new;
6313 	return len;
6314 }
6315 
6316 static struct md_sysfs_entry
6317 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6318 			 raid5_show_rmw_level,
6319 			 raid5_store_rmw_level);
6320 
6321 
6322 static ssize_t
6323 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6324 {
6325 	struct r5conf *conf;
6326 	int ret = 0;
6327 	spin_lock(&mddev->lock);
6328 	conf = mddev->private;
6329 	if (conf)
6330 		ret = sprintf(page, "%d\n", conf->bypass_threshold);
6331 	spin_unlock(&mddev->lock);
6332 	return ret;
6333 }
6334 
6335 static ssize_t
6336 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6337 {
6338 	struct r5conf *conf;
6339 	unsigned long new;
6340 	int err;
6341 
6342 	if (len >= PAGE_SIZE)
6343 		return -EINVAL;
6344 	if (kstrtoul(page, 10, &new))
6345 		return -EINVAL;
6346 
6347 	err = mddev_lock(mddev);
6348 	if (err)
6349 		return err;
6350 	conf = mddev->private;
6351 	if (!conf)
6352 		err = -ENODEV;
6353 	else if (new > conf->min_nr_stripes)
6354 		err = -EINVAL;
6355 	else
6356 		conf->bypass_threshold = new;
6357 	mddev_unlock(mddev);
6358 	return err ?: len;
6359 }
6360 
6361 static struct md_sysfs_entry
6362 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6363 					S_IRUGO | S_IWUSR,
6364 					raid5_show_preread_threshold,
6365 					raid5_store_preread_threshold);
6366 
6367 static ssize_t
6368 raid5_show_skip_copy(struct mddev *mddev, char *page)
6369 {
6370 	struct r5conf *conf;
6371 	int ret = 0;
6372 	spin_lock(&mddev->lock);
6373 	conf = mddev->private;
6374 	if (conf)
6375 		ret = sprintf(page, "%d\n", conf->skip_copy);
6376 	spin_unlock(&mddev->lock);
6377 	return ret;
6378 }
6379 
6380 static ssize_t
6381 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6382 {
6383 	struct r5conf *conf;
6384 	unsigned long new;
6385 	int err;
6386 
6387 	if (len >= PAGE_SIZE)
6388 		return -EINVAL;
6389 	if (kstrtoul(page, 10, &new))
6390 		return -EINVAL;
6391 	new = !!new;
6392 
6393 	err = mddev_lock(mddev);
6394 	if (err)
6395 		return err;
6396 	conf = mddev->private;
6397 	if (!conf)
6398 		err = -ENODEV;
6399 	else if (new != conf->skip_copy) {
6400 		mddev_suspend(mddev);
6401 		conf->skip_copy = new;
6402 		if (new)
6403 			mddev->queue->backing_dev_info->capabilities |=
6404 				BDI_CAP_STABLE_WRITES;
6405 		else
6406 			mddev->queue->backing_dev_info->capabilities &=
6407 				~BDI_CAP_STABLE_WRITES;
6408 		mddev_resume(mddev);
6409 	}
6410 	mddev_unlock(mddev);
6411 	return err ?: len;
6412 }
6413 
6414 static struct md_sysfs_entry
6415 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6416 					raid5_show_skip_copy,
6417 					raid5_store_skip_copy);
6418 
6419 static ssize_t
6420 stripe_cache_active_show(struct mddev *mddev, char *page)
6421 {
6422 	struct r5conf *conf = mddev->private;
6423 	if (conf)
6424 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6425 	else
6426 		return 0;
6427 }
6428 
6429 static struct md_sysfs_entry
6430 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6431 
6432 static ssize_t
6433 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6434 {
6435 	struct r5conf *conf;
6436 	int ret = 0;
6437 	spin_lock(&mddev->lock);
6438 	conf = mddev->private;
6439 	if (conf)
6440 		ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6441 	spin_unlock(&mddev->lock);
6442 	return ret;
6443 }
6444 
6445 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6446 			       int *group_cnt,
6447 			       int *worker_cnt_per_group,
6448 			       struct r5worker_group **worker_groups);
6449 static ssize_t
6450 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6451 {
6452 	struct r5conf *conf;
6453 	unsigned long new;
6454 	int err;
6455 	struct r5worker_group *new_groups, *old_groups;
6456 	int group_cnt, worker_cnt_per_group;
6457 
6458 	if (len >= PAGE_SIZE)
6459 		return -EINVAL;
6460 	if (kstrtoul(page, 10, &new))
6461 		return -EINVAL;
6462 
6463 	err = mddev_lock(mddev);
6464 	if (err)
6465 		return err;
6466 	conf = mddev->private;
6467 	if (!conf)
6468 		err = -ENODEV;
6469 	else if (new != conf->worker_cnt_per_group) {
6470 		mddev_suspend(mddev);
6471 
6472 		old_groups = conf->worker_groups;
6473 		if (old_groups)
6474 			flush_workqueue(raid5_wq);
6475 
6476 		err = alloc_thread_groups(conf, new,
6477 					  &group_cnt, &worker_cnt_per_group,
6478 					  &new_groups);
6479 		if (!err) {
6480 			spin_lock_irq(&conf->device_lock);
6481 			conf->group_cnt = group_cnt;
6482 			conf->worker_cnt_per_group = worker_cnt_per_group;
6483 			conf->worker_groups = new_groups;
6484 			spin_unlock_irq(&conf->device_lock);
6485 
6486 			if (old_groups)
6487 				kfree(old_groups[0].workers);
6488 			kfree(old_groups);
6489 		}
6490 		mddev_resume(mddev);
6491 	}
6492 	mddev_unlock(mddev);
6493 
6494 	return err ?: len;
6495 }
6496 
6497 static struct md_sysfs_entry
6498 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6499 				raid5_show_group_thread_cnt,
6500 				raid5_store_group_thread_cnt);
6501 
6502 static struct attribute *raid5_attrs[] =  {
6503 	&raid5_stripecache_size.attr,
6504 	&raid5_stripecache_active.attr,
6505 	&raid5_preread_bypass_threshold.attr,
6506 	&raid5_group_thread_cnt.attr,
6507 	&raid5_skip_copy.attr,
6508 	&raid5_rmw_level.attr,
6509 	&r5c_journal_mode.attr,
6510 	NULL,
6511 };
6512 static struct attribute_group raid5_attrs_group = {
6513 	.name = NULL,
6514 	.attrs = raid5_attrs,
6515 };
6516 
6517 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6518 			       int *group_cnt,
6519 			       int *worker_cnt_per_group,
6520 			       struct r5worker_group **worker_groups)
6521 {
6522 	int i, j, k;
6523 	ssize_t size;
6524 	struct r5worker *workers;
6525 
6526 	*worker_cnt_per_group = cnt;
6527 	if (cnt == 0) {
6528 		*group_cnt = 0;
6529 		*worker_groups = NULL;
6530 		return 0;
6531 	}
6532 	*group_cnt = num_possible_nodes();
6533 	size = sizeof(struct r5worker) * cnt;
6534 	workers = kzalloc(size * *group_cnt, GFP_NOIO);
6535 	*worker_groups = kzalloc(sizeof(struct r5worker_group) *
6536 				*group_cnt, GFP_NOIO);
6537 	if (!*worker_groups || !workers) {
6538 		kfree(workers);
6539 		kfree(*worker_groups);
6540 		return -ENOMEM;
6541 	}
6542 
6543 	for (i = 0; i < *group_cnt; i++) {
6544 		struct r5worker_group *group;
6545 
6546 		group = &(*worker_groups)[i];
6547 		INIT_LIST_HEAD(&group->handle_list);
6548 		group->conf = conf;
6549 		group->workers = workers + i * cnt;
6550 
6551 		for (j = 0; j < cnt; j++) {
6552 			struct r5worker *worker = group->workers + j;
6553 			worker->group = group;
6554 			INIT_WORK(&worker->work, raid5_do_work);
6555 
6556 			for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6557 				INIT_LIST_HEAD(worker->temp_inactive_list + k);
6558 		}
6559 	}
6560 
6561 	return 0;
6562 }
6563 
6564 static void free_thread_groups(struct r5conf *conf)
6565 {
6566 	if (conf->worker_groups)
6567 		kfree(conf->worker_groups[0].workers);
6568 	kfree(conf->worker_groups);
6569 	conf->worker_groups = NULL;
6570 }
6571 
6572 static sector_t
6573 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6574 {
6575 	struct r5conf *conf = mddev->private;
6576 
6577 	if (!sectors)
6578 		sectors = mddev->dev_sectors;
6579 	if (!raid_disks)
6580 		/* size is defined by the smallest of previous and new size */
6581 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6582 
6583 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
6584 	sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6585 	return sectors * (raid_disks - conf->max_degraded);
6586 }
6587 
6588 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6589 {
6590 	safe_put_page(percpu->spare_page);
6591 	if (percpu->scribble)
6592 		flex_array_free(percpu->scribble);
6593 	percpu->spare_page = NULL;
6594 	percpu->scribble = NULL;
6595 }
6596 
6597 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6598 {
6599 	if (conf->level == 6 && !percpu->spare_page)
6600 		percpu->spare_page = alloc_page(GFP_KERNEL);
6601 	if (!percpu->scribble)
6602 		percpu->scribble = scribble_alloc(max(conf->raid_disks,
6603 						      conf->previous_raid_disks),
6604 						  max(conf->chunk_sectors,
6605 						      conf->prev_chunk_sectors)
6606 						   / STRIPE_SECTORS,
6607 						  GFP_KERNEL);
6608 
6609 	if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6610 		free_scratch_buffer(conf, percpu);
6611 		return -ENOMEM;
6612 	}
6613 
6614 	return 0;
6615 }
6616 
6617 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
6618 {
6619 	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6620 
6621 	free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6622 	return 0;
6623 }
6624 
6625 static void raid5_free_percpu(struct r5conf *conf)
6626 {
6627 	if (!conf->percpu)
6628 		return;
6629 
6630 	cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6631 	free_percpu(conf->percpu);
6632 }
6633 
6634 static void free_conf(struct r5conf *conf)
6635 {
6636 	int i;
6637 
6638 	if (conf->log)
6639 		r5l_exit_log(conf->log);
6640 	if (conf->shrinker.nr_deferred)
6641 		unregister_shrinker(&conf->shrinker);
6642 
6643 	free_thread_groups(conf);
6644 	shrink_stripes(conf);
6645 	raid5_free_percpu(conf);
6646 	for (i = 0; i < conf->pool_size; i++)
6647 		if (conf->disks[i].extra_page)
6648 			put_page(conf->disks[i].extra_page);
6649 	kfree(conf->disks);
6650 	kfree(conf->stripe_hashtbl);
6651 	kfree(conf);
6652 }
6653 
6654 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
6655 {
6656 	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6657 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6658 
6659 	if (alloc_scratch_buffer(conf, percpu)) {
6660 		pr_warn("%s: failed memory allocation for cpu%u\n",
6661 			__func__, cpu);
6662 		return -ENOMEM;
6663 	}
6664 	return 0;
6665 }
6666 
6667 static int raid5_alloc_percpu(struct r5conf *conf)
6668 {
6669 	int err = 0;
6670 
6671 	conf->percpu = alloc_percpu(struct raid5_percpu);
6672 	if (!conf->percpu)
6673 		return -ENOMEM;
6674 
6675 	err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6676 	if (!err) {
6677 		conf->scribble_disks = max(conf->raid_disks,
6678 			conf->previous_raid_disks);
6679 		conf->scribble_sectors = max(conf->chunk_sectors,
6680 			conf->prev_chunk_sectors);
6681 	}
6682 	return err;
6683 }
6684 
6685 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6686 				      struct shrink_control *sc)
6687 {
6688 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6689 	unsigned long ret = SHRINK_STOP;
6690 
6691 	if (mutex_trylock(&conf->cache_size_mutex)) {
6692 		ret= 0;
6693 		while (ret < sc->nr_to_scan &&
6694 		       conf->max_nr_stripes > conf->min_nr_stripes) {
6695 			if (drop_one_stripe(conf) == 0) {
6696 				ret = SHRINK_STOP;
6697 				break;
6698 			}
6699 			ret++;
6700 		}
6701 		mutex_unlock(&conf->cache_size_mutex);
6702 	}
6703 	return ret;
6704 }
6705 
6706 static unsigned long raid5_cache_count(struct shrinker *shrink,
6707 				       struct shrink_control *sc)
6708 {
6709 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6710 
6711 	if (conf->max_nr_stripes < conf->min_nr_stripes)
6712 		/* unlikely, but not impossible */
6713 		return 0;
6714 	return conf->max_nr_stripes - conf->min_nr_stripes;
6715 }
6716 
6717 static struct r5conf *setup_conf(struct mddev *mddev)
6718 {
6719 	struct r5conf *conf;
6720 	int raid_disk, memory, max_disks;
6721 	struct md_rdev *rdev;
6722 	struct disk_info *disk;
6723 	char pers_name[6];
6724 	int i;
6725 	int group_cnt, worker_cnt_per_group;
6726 	struct r5worker_group *new_group;
6727 
6728 	if (mddev->new_level != 5
6729 	    && mddev->new_level != 4
6730 	    && mddev->new_level != 6) {
6731 		pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6732 			mdname(mddev), mddev->new_level);
6733 		return ERR_PTR(-EIO);
6734 	}
6735 	if ((mddev->new_level == 5
6736 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
6737 	    (mddev->new_level == 6
6738 	     && !algorithm_valid_raid6(mddev->new_layout))) {
6739 		pr_warn("md/raid:%s: layout %d not supported\n",
6740 			mdname(mddev), mddev->new_layout);
6741 		return ERR_PTR(-EIO);
6742 	}
6743 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6744 		pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6745 			mdname(mddev), mddev->raid_disks);
6746 		return ERR_PTR(-EINVAL);
6747 	}
6748 
6749 	if (!mddev->new_chunk_sectors ||
6750 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6751 	    !is_power_of_2(mddev->new_chunk_sectors)) {
6752 		pr_warn("md/raid:%s: invalid chunk size %d\n",
6753 			mdname(mddev), mddev->new_chunk_sectors << 9);
6754 		return ERR_PTR(-EINVAL);
6755 	}
6756 
6757 	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6758 	if (conf == NULL)
6759 		goto abort;
6760 	/* Don't enable multi-threading by default*/
6761 	if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6762 				 &new_group)) {
6763 		conf->group_cnt = group_cnt;
6764 		conf->worker_cnt_per_group = worker_cnt_per_group;
6765 		conf->worker_groups = new_group;
6766 	} else
6767 		goto abort;
6768 	spin_lock_init(&conf->device_lock);
6769 	seqcount_init(&conf->gen_lock);
6770 	mutex_init(&conf->cache_size_mutex);
6771 	init_waitqueue_head(&conf->wait_for_quiescent);
6772 	init_waitqueue_head(&conf->wait_for_stripe);
6773 	init_waitqueue_head(&conf->wait_for_overlap);
6774 	INIT_LIST_HEAD(&conf->handle_list);
6775 	INIT_LIST_HEAD(&conf->hold_list);
6776 	INIT_LIST_HEAD(&conf->delayed_list);
6777 	INIT_LIST_HEAD(&conf->bitmap_list);
6778 	bio_list_init(&conf->return_bi);
6779 	init_llist_head(&conf->released_stripes);
6780 	atomic_set(&conf->active_stripes, 0);
6781 	atomic_set(&conf->preread_active_stripes, 0);
6782 	atomic_set(&conf->active_aligned_reads, 0);
6783 	bio_list_init(&conf->pending_bios);
6784 	spin_lock_init(&conf->pending_bios_lock);
6785 	conf->batch_bio_dispatch = true;
6786 	rdev_for_each(rdev, mddev) {
6787 		if (test_bit(Journal, &rdev->flags))
6788 			continue;
6789 		if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
6790 			conf->batch_bio_dispatch = false;
6791 			break;
6792 		}
6793 	}
6794 
6795 	conf->bypass_threshold = BYPASS_THRESHOLD;
6796 	conf->recovery_disabled = mddev->recovery_disabled - 1;
6797 
6798 	conf->raid_disks = mddev->raid_disks;
6799 	if (mddev->reshape_position == MaxSector)
6800 		conf->previous_raid_disks = mddev->raid_disks;
6801 	else
6802 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6803 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6804 
6805 	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6806 			      GFP_KERNEL);
6807 
6808 	if (!conf->disks)
6809 		goto abort;
6810 
6811 	for (i = 0; i < max_disks; i++) {
6812 		conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
6813 		if (!conf->disks[i].extra_page)
6814 			goto abort;
6815 	}
6816 
6817 	conf->mddev = mddev;
6818 
6819 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6820 		goto abort;
6821 
6822 	/* We init hash_locks[0] separately to that it can be used
6823 	 * as the reference lock in the spin_lock_nest_lock() call
6824 	 * in lock_all_device_hash_locks_irq in order to convince
6825 	 * lockdep that we know what we are doing.
6826 	 */
6827 	spin_lock_init(conf->hash_locks);
6828 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6829 		spin_lock_init(conf->hash_locks + i);
6830 
6831 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6832 		INIT_LIST_HEAD(conf->inactive_list + i);
6833 
6834 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6835 		INIT_LIST_HEAD(conf->temp_inactive_list + i);
6836 
6837 	atomic_set(&conf->r5c_cached_full_stripes, 0);
6838 	INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
6839 	atomic_set(&conf->r5c_cached_partial_stripes, 0);
6840 	INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
6841 	atomic_set(&conf->r5c_flushing_full_stripes, 0);
6842 	atomic_set(&conf->r5c_flushing_partial_stripes, 0);
6843 
6844 	conf->level = mddev->new_level;
6845 	conf->chunk_sectors = mddev->new_chunk_sectors;
6846 	if (raid5_alloc_percpu(conf) != 0)
6847 		goto abort;
6848 
6849 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6850 
6851 	rdev_for_each(rdev, mddev) {
6852 		raid_disk = rdev->raid_disk;
6853 		if (raid_disk >= max_disks
6854 		    || raid_disk < 0 || test_bit(Journal, &rdev->flags))
6855 			continue;
6856 		disk = conf->disks + raid_disk;
6857 
6858 		if (test_bit(Replacement, &rdev->flags)) {
6859 			if (disk->replacement)
6860 				goto abort;
6861 			disk->replacement = rdev;
6862 		} else {
6863 			if (disk->rdev)
6864 				goto abort;
6865 			disk->rdev = rdev;
6866 		}
6867 
6868 		if (test_bit(In_sync, &rdev->flags)) {
6869 			char b[BDEVNAME_SIZE];
6870 			pr_info("md/raid:%s: device %s operational as raid disk %d\n",
6871 				mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6872 		} else if (rdev->saved_raid_disk != raid_disk)
6873 			/* Cannot rely on bitmap to complete recovery */
6874 			conf->fullsync = 1;
6875 	}
6876 
6877 	conf->level = mddev->new_level;
6878 	if (conf->level == 6) {
6879 		conf->max_degraded = 2;
6880 		if (raid6_call.xor_syndrome)
6881 			conf->rmw_level = PARITY_ENABLE_RMW;
6882 		else
6883 			conf->rmw_level = PARITY_DISABLE_RMW;
6884 	} else {
6885 		conf->max_degraded = 1;
6886 		conf->rmw_level = PARITY_ENABLE_RMW;
6887 	}
6888 	conf->algorithm = mddev->new_layout;
6889 	conf->reshape_progress = mddev->reshape_position;
6890 	if (conf->reshape_progress != MaxSector) {
6891 		conf->prev_chunk_sectors = mddev->chunk_sectors;
6892 		conf->prev_algo = mddev->layout;
6893 	} else {
6894 		conf->prev_chunk_sectors = conf->chunk_sectors;
6895 		conf->prev_algo = conf->algorithm;
6896 	}
6897 
6898 	conf->min_nr_stripes = NR_STRIPES;
6899 	if (mddev->reshape_position != MaxSector) {
6900 		int stripes = max_t(int,
6901 			((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4,
6902 			((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4);
6903 		conf->min_nr_stripes = max(NR_STRIPES, stripes);
6904 		if (conf->min_nr_stripes != NR_STRIPES)
6905 			pr_info("md/raid:%s: force stripe size %d for reshape\n",
6906 				mdname(mddev), conf->min_nr_stripes);
6907 	}
6908 	memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
6909 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6910 	atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6911 	if (grow_stripes(conf, conf->min_nr_stripes)) {
6912 		pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
6913 			mdname(mddev), memory);
6914 		goto abort;
6915 	} else
6916 		pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
6917 	/*
6918 	 * Losing a stripe head costs more than the time to refill it,
6919 	 * it reduces the queue depth and so can hurt throughput.
6920 	 * So set it rather large, scaled by number of devices.
6921 	 */
6922 	conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6923 	conf->shrinker.scan_objects = raid5_cache_scan;
6924 	conf->shrinker.count_objects = raid5_cache_count;
6925 	conf->shrinker.batch = 128;
6926 	conf->shrinker.flags = 0;
6927 	if (register_shrinker(&conf->shrinker)) {
6928 		pr_warn("md/raid:%s: couldn't register shrinker.\n",
6929 			mdname(mddev));
6930 		goto abort;
6931 	}
6932 
6933 	sprintf(pers_name, "raid%d", mddev->new_level);
6934 	conf->thread = md_register_thread(raid5d, mddev, pers_name);
6935 	if (!conf->thread) {
6936 		pr_warn("md/raid:%s: couldn't allocate thread.\n",
6937 			mdname(mddev));
6938 		goto abort;
6939 	}
6940 
6941 	return conf;
6942 
6943  abort:
6944 	if (conf) {
6945 		free_conf(conf);
6946 		return ERR_PTR(-EIO);
6947 	} else
6948 		return ERR_PTR(-ENOMEM);
6949 }
6950 
6951 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6952 {
6953 	switch (algo) {
6954 	case ALGORITHM_PARITY_0:
6955 		if (raid_disk < max_degraded)
6956 			return 1;
6957 		break;
6958 	case ALGORITHM_PARITY_N:
6959 		if (raid_disk >= raid_disks - max_degraded)
6960 			return 1;
6961 		break;
6962 	case ALGORITHM_PARITY_0_6:
6963 		if (raid_disk == 0 ||
6964 		    raid_disk == raid_disks - 1)
6965 			return 1;
6966 		break;
6967 	case ALGORITHM_LEFT_ASYMMETRIC_6:
6968 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
6969 	case ALGORITHM_LEFT_SYMMETRIC_6:
6970 	case ALGORITHM_RIGHT_SYMMETRIC_6:
6971 		if (raid_disk == raid_disks - 1)
6972 			return 1;
6973 	}
6974 	return 0;
6975 }
6976 
6977 static int raid5_run(struct mddev *mddev)
6978 {
6979 	struct r5conf *conf;
6980 	int working_disks = 0;
6981 	int dirty_parity_disks = 0;
6982 	struct md_rdev *rdev;
6983 	struct md_rdev *journal_dev = NULL;
6984 	sector_t reshape_offset = 0;
6985 	int i;
6986 	long long min_offset_diff = 0;
6987 	int first = 1;
6988 
6989 	if (mddev->recovery_cp != MaxSector)
6990 		pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
6991 			  mdname(mddev));
6992 
6993 	rdev_for_each(rdev, mddev) {
6994 		long long diff;
6995 
6996 		if (test_bit(Journal, &rdev->flags)) {
6997 			journal_dev = rdev;
6998 			continue;
6999 		}
7000 		if (rdev->raid_disk < 0)
7001 			continue;
7002 		diff = (rdev->new_data_offset - rdev->data_offset);
7003 		if (first) {
7004 			min_offset_diff = diff;
7005 			first = 0;
7006 		} else if (mddev->reshape_backwards &&
7007 			 diff < min_offset_diff)
7008 			min_offset_diff = diff;
7009 		else if (!mddev->reshape_backwards &&
7010 			 diff > min_offset_diff)
7011 			min_offset_diff = diff;
7012 	}
7013 
7014 	if (mddev->reshape_position != MaxSector) {
7015 		/* Check that we can continue the reshape.
7016 		 * Difficulties arise if the stripe we would write to
7017 		 * next is at or after the stripe we would read from next.
7018 		 * For a reshape that changes the number of devices, this
7019 		 * is only possible for a very short time, and mdadm makes
7020 		 * sure that time appears to have past before assembling
7021 		 * the array.  So we fail if that time hasn't passed.
7022 		 * For a reshape that keeps the number of devices the same
7023 		 * mdadm must be monitoring the reshape can keeping the
7024 		 * critical areas read-only and backed up.  It will start
7025 		 * the array in read-only mode, so we check for that.
7026 		 */
7027 		sector_t here_new, here_old;
7028 		int old_disks;
7029 		int max_degraded = (mddev->level == 6 ? 2 : 1);
7030 		int chunk_sectors;
7031 		int new_data_disks;
7032 
7033 		if (journal_dev) {
7034 			pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7035 				mdname(mddev));
7036 			return -EINVAL;
7037 		}
7038 
7039 		if (mddev->new_level != mddev->level) {
7040 			pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7041 				mdname(mddev));
7042 			return -EINVAL;
7043 		}
7044 		old_disks = mddev->raid_disks - mddev->delta_disks;
7045 		/* reshape_position must be on a new-stripe boundary, and one
7046 		 * further up in new geometry must map after here in old
7047 		 * geometry.
7048 		 * If the chunk sizes are different, then as we perform reshape
7049 		 * in units of the largest of the two, reshape_position needs
7050 		 * be a multiple of the largest chunk size times new data disks.
7051 		 */
7052 		here_new = mddev->reshape_position;
7053 		chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7054 		new_data_disks = mddev->raid_disks - max_degraded;
7055 		if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7056 			pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7057 				mdname(mddev));
7058 			return -EINVAL;
7059 		}
7060 		reshape_offset = here_new * chunk_sectors;
7061 		/* here_new is the stripe we will write to */
7062 		here_old = mddev->reshape_position;
7063 		sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7064 		/* here_old is the first stripe that we might need to read
7065 		 * from */
7066 		if (mddev->delta_disks == 0) {
7067 			/* We cannot be sure it is safe to start an in-place
7068 			 * reshape.  It is only safe if user-space is monitoring
7069 			 * and taking constant backups.
7070 			 * mdadm always starts a situation like this in
7071 			 * readonly mode so it can take control before
7072 			 * allowing any writes.  So just check for that.
7073 			 */
7074 			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7075 			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
7076 				/* not really in-place - so OK */;
7077 			else if (mddev->ro == 0) {
7078 				pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7079 					mdname(mddev));
7080 				return -EINVAL;
7081 			}
7082 		} else if (mddev->reshape_backwards
7083 		    ? (here_new * chunk_sectors + min_offset_diff <=
7084 		       here_old * chunk_sectors)
7085 		    : (here_new * chunk_sectors >=
7086 		       here_old * chunk_sectors + (-min_offset_diff))) {
7087 			/* Reading from the same stripe as writing to - bad */
7088 			pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7089 				mdname(mddev));
7090 			return -EINVAL;
7091 		}
7092 		pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7093 		/* OK, we should be able to continue; */
7094 	} else {
7095 		BUG_ON(mddev->level != mddev->new_level);
7096 		BUG_ON(mddev->layout != mddev->new_layout);
7097 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7098 		BUG_ON(mddev->delta_disks != 0);
7099 	}
7100 
7101 	if (mddev->private == NULL)
7102 		conf = setup_conf(mddev);
7103 	else
7104 		conf = mddev->private;
7105 
7106 	if (IS_ERR(conf))
7107 		return PTR_ERR(conf);
7108 
7109 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7110 		if (!journal_dev) {
7111 			pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7112 				mdname(mddev));
7113 			mddev->ro = 1;
7114 			set_disk_ro(mddev->gendisk, 1);
7115 		} else if (mddev->recovery_cp == MaxSector)
7116 			set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7117 	}
7118 
7119 	conf->min_offset_diff = min_offset_diff;
7120 	mddev->thread = conf->thread;
7121 	conf->thread = NULL;
7122 	mddev->private = conf;
7123 
7124 	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7125 	     i++) {
7126 		rdev = conf->disks[i].rdev;
7127 		if (!rdev && conf->disks[i].replacement) {
7128 			/* The replacement is all we have yet */
7129 			rdev = conf->disks[i].replacement;
7130 			conf->disks[i].replacement = NULL;
7131 			clear_bit(Replacement, &rdev->flags);
7132 			conf->disks[i].rdev = rdev;
7133 		}
7134 		if (!rdev)
7135 			continue;
7136 		if (conf->disks[i].replacement &&
7137 		    conf->reshape_progress != MaxSector) {
7138 			/* replacements and reshape simply do not mix. */
7139 			pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7140 			goto abort;
7141 		}
7142 		if (test_bit(In_sync, &rdev->flags)) {
7143 			working_disks++;
7144 			continue;
7145 		}
7146 		/* This disc is not fully in-sync.  However if it
7147 		 * just stored parity (beyond the recovery_offset),
7148 		 * when we don't need to be concerned about the
7149 		 * array being dirty.
7150 		 * When reshape goes 'backwards', we never have
7151 		 * partially completed devices, so we only need
7152 		 * to worry about reshape going forwards.
7153 		 */
7154 		/* Hack because v0.91 doesn't store recovery_offset properly. */
7155 		if (mddev->major_version == 0 &&
7156 		    mddev->minor_version > 90)
7157 			rdev->recovery_offset = reshape_offset;
7158 
7159 		if (rdev->recovery_offset < reshape_offset) {
7160 			/* We need to check old and new layout */
7161 			if (!only_parity(rdev->raid_disk,
7162 					 conf->algorithm,
7163 					 conf->raid_disks,
7164 					 conf->max_degraded))
7165 				continue;
7166 		}
7167 		if (!only_parity(rdev->raid_disk,
7168 				 conf->prev_algo,
7169 				 conf->previous_raid_disks,
7170 				 conf->max_degraded))
7171 			continue;
7172 		dirty_parity_disks++;
7173 	}
7174 
7175 	/*
7176 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
7177 	 */
7178 	mddev->degraded = raid5_calc_degraded(conf);
7179 
7180 	if (has_failed(conf)) {
7181 		pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7182 			mdname(mddev), mddev->degraded, conf->raid_disks);
7183 		goto abort;
7184 	}
7185 
7186 	/* device size must be a multiple of chunk size */
7187 	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
7188 	mddev->resync_max_sectors = mddev->dev_sectors;
7189 
7190 	if (mddev->degraded > dirty_parity_disks &&
7191 	    mddev->recovery_cp != MaxSector) {
7192 		if (mddev->ok_start_degraded)
7193 			pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7194 				mdname(mddev));
7195 		else {
7196 			pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7197 				mdname(mddev));
7198 			goto abort;
7199 		}
7200 	}
7201 
7202 	pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7203 		mdname(mddev), conf->level,
7204 		mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7205 		mddev->new_layout);
7206 
7207 	print_raid5_conf(conf);
7208 
7209 	if (conf->reshape_progress != MaxSector) {
7210 		conf->reshape_safe = conf->reshape_progress;
7211 		atomic_set(&conf->reshape_stripes, 0);
7212 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7213 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7214 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7215 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7216 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7217 							"reshape");
7218 	}
7219 
7220 	/* Ok, everything is just fine now */
7221 	if (mddev->to_remove == &raid5_attrs_group)
7222 		mddev->to_remove = NULL;
7223 	else if (mddev->kobj.sd &&
7224 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
7225 		pr_warn("raid5: failed to create sysfs attributes for %s\n",
7226 			mdname(mddev));
7227 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7228 
7229 	if (mddev->queue) {
7230 		int chunk_size;
7231 		bool discard_supported = true;
7232 		/* read-ahead size must cover two whole stripes, which
7233 		 * is 2 * (datadisks) * chunksize where 'n' is the
7234 		 * number of raid devices
7235 		 */
7236 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
7237 		int stripe = data_disks *
7238 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
7239 		if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7240 			mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
7241 
7242 		chunk_size = mddev->chunk_sectors << 9;
7243 		blk_queue_io_min(mddev->queue, chunk_size);
7244 		blk_queue_io_opt(mddev->queue, chunk_size *
7245 				 (conf->raid_disks - conf->max_degraded));
7246 		mddev->queue->limits.raid_partial_stripes_expensive = 1;
7247 		/*
7248 		 * We can only discard a whole stripe. It doesn't make sense to
7249 		 * discard data disk but write parity disk
7250 		 */
7251 		stripe = stripe * PAGE_SIZE;
7252 		/* Round up to power of 2, as discard handling
7253 		 * currently assumes that */
7254 		while ((stripe-1) & stripe)
7255 			stripe = (stripe | (stripe-1)) + 1;
7256 		mddev->queue->limits.discard_alignment = stripe;
7257 		mddev->queue->limits.discard_granularity = stripe;
7258 
7259 		/*
7260 		 * We use 16-bit counter of active stripes in bi_phys_segments
7261 		 * (minus one for over-loaded initialization)
7262 		 */
7263 		blk_queue_max_hw_sectors(mddev->queue, 0xfffe * STRIPE_SECTORS);
7264 		blk_queue_max_discard_sectors(mddev->queue,
7265 					      0xfffe * STRIPE_SECTORS);
7266 
7267 		/*
7268 		 * unaligned part of discard request will be ignored, so can't
7269 		 * guarantee discard_zeroes_data
7270 		 */
7271 		mddev->queue->limits.discard_zeroes_data = 0;
7272 
7273 		blk_queue_max_write_same_sectors(mddev->queue, 0);
7274 
7275 		rdev_for_each(rdev, mddev) {
7276 			disk_stack_limits(mddev->gendisk, rdev->bdev,
7277 					  rdev->data_offset << 9);
7278 			disk_stack_limits(mddev->gendisk, rdev->bdev,
7279 					  rdev->new_data_offset << 9);
7280 			/*
7281 			 * discard_zeroes_data is required, otherwise data
7282 			 * could be lost. Consider a scenario: discard a stripe
7283 			 * (the stripe could be inconsistent if
7284 			 * discard_zeroes_data is 0); write one disk of the
7285 			 * stripe (the stripe could be inconsistent again
7286 			 * depending on which disks are used to calculate
7287 			 * parity); the disk is broken; The stripe data of this
7288 			 * disk is lost.
7289 			 */
7290 			if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
7291 			    !bdev_get_queue(rdev->bdev)->
7292 						limits.discard_zeroes_data)
7293 				discard_supported = false;
7294 			/* Unfortunately, discard_zeroes_data is not currently
7295 			 * a guarantee - just a hint.  So we only allow DISCARD
7296 			 * if the sysadmin has confirmed that only safe devices
7297 			 * are in use by setting a module parameter.
7298 			 */
7299 			if (!devices_handle_discard_safely) {
7300 				if (discard_supported) {
7301 					pr_info("md/raid456: discard support disabled due to uncertainty.\n");
7302 					pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
7303 				}
7304 				discard_supported = false;
7305 			}
7306 		}
7307 
7308 		if (discard_supported &&
7309 		    mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7310 		    mddev->queue->limits.discard_granularity >= stripe)
7311 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
7312 						mddev->queue);
7313 		else
7314 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
7315 						mddev->queue);
7316 
7317 		blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
7318 	}
7319 
7320 	if (journal_dev) {
7321 		char b[BDEVNAME_SIZE];
7322 
7323 		pr_debug("md/raid:%s: using device %s as journal\n",
7324 			 mdname(mddev), bdevname(journal_dev->bdev, b));
7325 		if (r5l_init_log(conf, journal_dev))
7326 			goto abort;
7327 	}
7328 
7329 	return 0;
7330 abort:
7331 	md_unregister_thread(&mddev->thread);
7332 	print_raid5_conf(conf);
7333 	free_conf(conf);
7334 	mddev->private = NULL;
7335 	pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
7336 	return -EIO;
7337 }
7338 
7339 static void raid5_free(struct mddev *mddev, void *priv)
7340 {
7341 	struct r5conf *conf = priv;
7342 
7343 	free_conf(conf);
7344 	mddev->to_remove = &raid5_attrs_group;
7345 }
7346 
7347 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7348 {
7349 	struct r5conf *conf = mddev->private;
7350 	int i;
7351 
7352 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7353 		conf->chunk_sectors / 2, mddev->layout);
7354 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7355 	rcu_read_lock();
7356 	for (i = 0; i < conf->raid_disks; i++) {
7357 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7358 		seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7359 	}
7360 	rcu_read_unlock();
7361 	seq_printf (seq, "]");
7362 }
7363 
7364 static void print_raid5_conf (struct r5conf *conf)
7365 {
7366 	int i;
7367 	struct disk_info *tmp;
7368 
7369 	pr_debug("RAID conf printout:\n");
7370 	if (!conf) {
7371 		pr_debug("(conf==NULL)\n");
7372 		return;
7373 	}
7374 	pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
7375 	       conf->raid_disks,
7376 	       conf->raid_disks - conf->mddev->degraded);
7377 
7378 	for (i = 0; i < conf->raid_disks; i++) {
7379 		char b[BDEVNAME_SIZE];
7380 		tmp = conf->disks + i;
7381 		if (tmp->rdev)
7382 			pr_debug(" disk %d, o:%d, dev:%s\n",
7383 			       i, !test_bit(Faulty, &tmp->rdev->flags),
7384 			       bdevname(tmp->rdev->bdev, b));
7385 	}
7386 }
7387 
7388 static int raid5_spare_active(struct mddev *mddev)
7389 {
7390 	int i;
7391 	struct r5conf *conf = mddev->private;
7392 	struct disk_info *tmp;
7393 	int count = 0;
7394 	unsigned long flags;
7395 
7396 	for (i = 0; i < conf->raid_disks; i++) {
7397 		tmp = conf->disks + i;
7398 		if (tmp->replacement
7399 		    && tmp->replacement->recovery_offset == MaxSector
7400 		    && !test_bit(Faulty, &tmp->replacement->flags)
7401 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7402 			/* Replacement has just become active. */
7403 			if (!tmp->rdev
7404 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7405 				count++;
7406 			if (tmp->rdev) {
7407 				/* Replaced device not technically faulty,
7408 				 * but we need to be sure it gets removed
7409 				 * and never re-added.
7410 				 */
7411 				set_bit(Faulty, &tmp->rdev->flags);
7412 				sysfs_notify_dirent_safe(
7413 					tmp->rdev->sysfs_state);
7414 			}
7415 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7416 		} else if (tmp->rdev
7417 		    && tmp->rdev->recovery_offset == MaxSector
7418 		    && !test_bit(Faulty, &tmp->rdev->flags)
7419 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7420 			count++;
7421 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7422 		}
7423 	}
7424 	spin_lock_irqsave(&conf->device_lock, flags);
7425 	mddev->degraded = raid5_calc_degraded(conf);
7426 	spin_unlock_irqrestore(&conf->device_lock, flags);
7427 	print_raid5_conf(conf);
7428 	return count;
7429 }
7430 
7431 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7432 {
7433 	struct r5conf *conf = mddev->private;
7434 	int err = 0;
7435 	int number = rdev->raid_disk;
7436 	struct md_rdev **rdevp;
7437 	struct disk_info *p = conf->disks + number;
7438 
7439 	print_raid5_conf(conf);
7440 	if (test_bit(Journal, &rdev->flags) && conf->log) {
7441 		struct r5l_log *log;
7442 		/*
7443 		 * we can't wait pending write here, as this is called in
7444 		 * raid5d, wait will deadlock.
7445 		 */
7446 		if (atomic_read(&mddev->writes_pending))
7447 			return -EBUSY;
7448 		log = conf->log;
7449 		conf->log = NULL;
7450 		synchronize_rcu();
7451 		r5l_exit_log(log);
7452 		return 0;
7453 	}
7454 	if (rdev == p->rdev)
7455 		rdevp = &p->rdev;
7456 	else if (rdev == p->replacement)
7457 		rdevp = &p->replacement;
7458 	else
7459 		return 0;
7460 
7461 	if (number >= conf->raid_disks &&
7462 	    conf->reshape_progress == MaxSector)
7463 		clear_bit(In_sync, &rdev->flags);
7464 
7465 	if (test_bit(In_sync, &rdev->flags) ||
7466 	    atomic_read(&rdev->nr_pending)) {
7467 		err = -EBUSY;
7468 		goto abort;
7469 	}
7470 	/* Only remove non-faulty devices if recovery
7471 	 * isn't possible.
7472 	 */
7473 	if (!test_bit(Faulty, &rdev->flags) &&
7474 	    mddev->recovery_disabled != conf->recovery_disabled &&
7475 	    !has_failed(conf) &&
7476 	    (!p->replacement || p->replacement == rdev) &&
7477 	    number < conf->raid_disks) {
7478 		err = -EBUSY;
7479 		goto abort;
7480 	}
7481 	*rdevp = NULL;
7482 	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7483 		synchronize_rcu();
7484 		if (atomic_read(&rdev->nr_pending)) {
7485 			/* lost the race, try later */
7486 			err = -EBUSY;
7487 			*rdevp = rdev;
7488 		}
7489 	}
7490 	if (p->replacement) {
7491 		/* We must have just cleared 'rdev' */
7492 		p->rdev = p->replacement;
7493 		clear_bit(Replacement, &p->replacement->flags);
7494 		smp_mb(); /* Make sure other CPUs may see both as identical
7495 			   * but will never see neither - if they are careful
7496 			   */
7497 		p->replacement = NULL;
7498 		clear_bit(WantReplacement, &rdev->flags);
7499 	} else
7500 		/* We might have just removed the Replacement as faulty-
7501 		 * clear the bit just in case
7502 		 */
7503 		clear_bit(WantReplacement, &rdev->flags);
7504 abort:
7505 
7506 	print_raid5_conf(conf);
7507 	return err;
7508 }
7509 
7510 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7511 {
7512 	struct r5conf *conf = mddev->private;
7513 	int err = -EEXIST;
7514 	int disk;
7515 	struct disk_info *p;
7516 	int first = 0;
7517 	int last = conf->raid_disks - 1;
7518 
7519 	if (test_bit(Journal, &rdev->flags)) {
7520 		char b[BDEVNAME_SIZE];
7521 		if (conf->log)
7522 			return -EBUSY;
7523 
7524 		rdev->raid_disk = 0;
7525 		/*
7526 		 * The array is in readonly mode if journal is missing, so no
7527 		 * write requests running. We should be safe
7528 		 */
7529 		r5l_init_log(conf, rdev);
7530 		pr_debug("md/raid:%s: using device %s as journal\n",
7531 			 mdname(mddev), bdevname(rdev->bdev, b));
7532 		return 0;
7533 	}
7534 	if (mddev->recovery_disabled == conf->recovery_disabled)
7535 		return -EBUSY;
7536 
7537 	if (rdev->saved_raid_disk < 0 && has_failed(conf))
7538 		/* no point adding a device */
7539 		return -EINVAL;
7540 
7541 	if (rdev->raid_disk >= 0)
7542 		first = last = rdev->raid_disk;
7543 
7544 	/*
7545 	 * find the disk ... but prefer rdev->saved_raid_disk
7546 	 * if possible.
7547 	 */
7548 	if (rdev->saved_raid_disk >= 0 &&
7549 	    rdev->saved_raid_disk >= first &&
7550 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
7551 		first = rdev->saved_raid_disk;
7552 
7553 	for (disk = first; disk <= last; disk++) {
7554 		p = conf->disks + disk;
7555 		if (p->rdev == NULL) {
7556 			clear_bit(In_sync, &rdev->flags);
7557 			rdev->raid_disk = disk;
7558 			err = 0;
7559 			if (rdev->saved_raid_disk != disk)
7560 				conf->fullsync = 1;
7561 			rcu_assign_pointer(p->rdev, rdev);
7562 			goto out;
7563 		}
7564 	}
7565 	for (disk = first; disk <= last; disk++) {
7566 		p = conf->disks + disk;
7567 		if (test_bit(WantReplacement, &p->rdev->flags) &&
7568 		    p->replacement == NULL) {
7569 			clear_bit(In_sync, &rdev->flags);
7570 			set_bit(Replacement, &rdev->flags);
7571 			rdev->raid_disk = disk;
7572 			err = 0;
7573 			conf->fullsync = 1;
7574 			rcu_assign_pointer(p->replacement, rdev);
7575 			break;
7576 		}
7577 	}
7578 out:
7579 	print_raid5_conf(conf);
7580 	return err;
7581 }
7582 
7583 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7584 {
7585 	/* no resync is happening, and there is enough space
7586 	 * on all devices, so we can resize.
7587 	 * We need to make sure resync covers any new space.
7588 	 * If the array is shrinking we should possibly wait until
7589 	 * any io in the removed space completes, but it hardly seems
7590 	 * worth it.
7591 	 */
7592 	sector_t newsize;
7593 	struct r5conf *conf = mddev->private;
7594 
7595 	if (conf->log)
7596 		return -EINVAL;
7597 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
7598 	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7599 	if (mddev->external_size &&
7600 	    mddev->array_sectors > newsize)
7601 		return -EINVAL;
7602 	if (mddev->bitmap) {
7603 		int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7604 		if (ret)
7605 			return ret;
7606 	}
7607 	md_set_array_sectors(mddev, newsize);
7608 	set_capacity(mddev->gendisk, mddev->array_sectors);
7609 	revalidate_disk(mddev->gendisk);
7610 	if (sectors > mddev->dev_sectors &&
7611 	    mddev->recovery_cp > mddev->dev_sectors) {
7612 		mddev->recovery_cp = mddev->dev_sectors;
7613 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7614 	}
7615 	mddev->dev_sectors = sectors;
7616 	mddev->resync_max_sectors = sectors;
7617 	return 0;
7618 }
7619 
7620 static int check_stripe_cache(struct mddev *mddev)
7621 {
7622 	/* Can only proceed if there are plenty of stripe_heads.
7623 	 * We need a minimum of one full stripe,, and for sensible progress
7624 	 * it is best to have about 4 times that.
7625 	 * If we require 4 times, then the default 256 4K stripe_heads will
7626 	 * allow for chunk sizes up to 256K, which is probably OK.
7627 	 * If the chunk size is greater, user-space should request more
7628 	 * stripe_heads first.
7629 	 */
7630 	struct r5conf *conf = mddev->private;
7631 	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7632 	    > conf->min_nr_stripes ||
7633 	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7634 	    > conf->min_nr_stripes) {
7635 		pr_warn("md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7636 			mdname(mddev),
7637 			((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7638 			 / STRIPE_SIZE)*4);
7639 		return 0;
7640 	}
7641 	return 1;
7642 }
7643 
7644 static int check_reshape(struct mddev *mddev)
7645 {
7646 	struct r5conf *conf = mddev->private;
7647 
7648 	if (conf->log)
7649 		return -EINVAL;
7650 	if (mddev->delta_disks == 0 &&
7651 	    mddev->new_layout == mddev->layout &&
7652 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
7653 		return 0; /* nothing to do */
7654 	if (has_failed(conf))
7655 		return -EINVAL;
7656 	if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7657 		/* We might be able to shrink, but the devices must
7658 		 * be made bigger first.
7659 		 * For raid6, 4 is the minimum size.
7660 		 * Otherwise 2 is the minimum
7661 		 */
7662 		int min = 2;
7663 		if (mddev->level == 6)
7664 			min = 4;
7665 		if (mddev->raid_disks + mddev->delta_disks < min)
7666 			return -EINVAL;
7667 	}
7668 
7669 	if (!check_stripe_cache(mddev))
7670 		return -ENOSPC;
7671 
7672 	if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7673 	    mddev->delta_disks > 0)
7674 		if (resize_chunks(conf,
7675 				  conf->previous_raid_disks
7676 				  + max(0, mddev->delta_disks),
7677 				  max(mddev->new_chunk_sectors,
7678 				      mddev->chunk_sectors)
7679 			    ) < 0)
7680 			return -ENOMEM;
7681 	return resize_stripes(conf, (conf->previous_raid_disks
7682 				     + mddev->delta_disks));
7683 }
7684 
7685 static int raid5_start_reshape(struct mddev *mddev)
7686 {
7687 	struct r5conf *conf = mddev->private;
7688 	struct md_rdev *rdev;
7689 	int spares = 0;
7690 	unsigned long flags;
7691 
7692 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7693 		return -EBUSY;
7694 
7695 	if (!check_stripe_cache(mddev))
7696 		return -ENOSPC;
7697 
7698 	if (has_failed(conf))
7699 		return -EINVAL;
7700 
7701 	rdev_for_each(rdev, mddev) {
7702 		if (!test_bit(In_sync, &rdev->flags)
7703 		    && !test_bit(Faulty, &rdev->flags))
7704 			spares++;
7705 	}
7706 
7707 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7708 		/* Not enough devices even to make a degraded array
7709 		 * of that size
7710 		 */
7711 		return -EINVAL;
7712 
7713 	/* Refuse to reduce size of the array.  Any reductions in
7714 	 * array size must be through explicit setting of array_size
7715 	 * attribute.
7716 	 */
7717 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7718 	    < mddev->array_sectors) {
7719 		pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
7720 			mdname(mddev));
7721 		return -EINVAL;
7722 	}
7723 
7724 	atomic_set(&conf->reshape_stripes, 0);
7725 	spin_lock_irq(&conf->device_lock);
7726 	write_seqcount_begin(&conf->gen_lock);
7727 	conf->previous_raid_disks = conf->raid_disks;
7728 	conf->raid_disks += mddev->delta_disks;
7729 	conf->prev_chunk_sectors = conf->chunk_sectors;
7730 	conf->chunk_sectors = mddev->new_chunk_sectors;
7731 	conf->prev_algo = conf->algorithm;
7732 	conf->algorithm = mddev->new_layout;
7733 	conf->generation++;
7734 	/* Code that selects data_offset needs to see the generation update
7735 	 * if reshape_progress has been set - so a memory barrier needed.
7736 	 */
7737 	smp_mb();
7738 	if (mddev->reshape_backwards)
7739 		conf->reshape_progress = raid5_size(mddev, 0, 0);
7740 	else
7741 		conf->reshape_progress = 0;
7742 	conf->reshape_safe = conf->reshape_progress;
7743 	write_seqcount_end(&conf->gen_lock);
7744 	spin_unlock_irq(&conf->device_lock);
7745 
7746 	/* Now make sure any requests that proceeded on the assumption
7747 	 * the reshape wasn't running - like Discard or Read - have
7748 	 * completed.
7749 	 */
7750 	mddev_suspend(mddev);
7751 	mddev_resume(mddev);
7752 
7753 	/* Add some new drives, as many as will fit.
7754 	 * We know there are enough to make the newly sized array work.
7755 	 * Don't add devices if we are reducing the number of
7756 	 * devices in the array.  This is because it is not possible
7757 	 * to correctly record the "partially reconstructed" state of
7758 	 * such devices during the reshape and confusion could result.
7759 	 */
7760 	if (mddev->delta_disks >= 0) {
7761 		rdev_for_each(rdev, mddev)
7762 			if (rdev->raid_disk < 0 &&
7763 			    !test_bit(Faulty, &rdev->flags)) {
7764 				if (raid5_add_disk(mddev, rdev) == 0) {
7765 					if (rdev->raid_disk
7766 					    >= conf->previous_raid_disks)
7767 						set_bit(In_sync, &rdev->flags);
7768 					else
7769 						rdev->recovery_offset = 0;
7770 
7771 					if (sysfs_link_rdev(mddev, rdev))
7772 						/* Failure here is OK */;
7773 				}
7774 			} else if (rdev->raid_disk >= conf->previous_raid_disks
7775 				   && !test_bit(Faulty, &rdev->flags)) {
7776 				/* This is a spare that was manually added */
7777 				set_bit(In_sync, &rdev->flags);
7778 			}
7779 
7780 		/* When a reshape changes the number of devices,
7781 		 * ->degraded is measured against the larger of the
7782 		 * pre and post number of devices.
7783 		 */
7784 		spin_lock_irqsave(&conf->device_lock, flags);
7785 		mddev->degraded = raid5_calc_degraded(conf);
7786 		spin_unlock_irqrestore(&conf->device_lock, flags);
7787 	}
7788 	mddev->raid_disks = conf->raid_disks;
7789 	mddev->reshape_position = conf->reshape_progress;
7790 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7791 
7792 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7793 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7794 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7795 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7796 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7797 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7798 						"reshape");
7799 	if (!mddev->sync_thread) {
7800 		mddev->recovery = 0;
7801 		spin_lock_irq(&conf->device_lock);
7802 		write_seqcount_begin(&conf->gen_lock);
7803 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7804 		mddev->new_chunk_sectors =
7805 			conf->chunk_sectors = conf->prev_chunk_sectors;
7806 		mddev->new_layout = conf->algorithm = conf->prev_algo;
7807 		rdev_for_each(rdev, mddev)
7808 			rdev->new_data_offset = rdev->data_offset;
7809 		smp_wmb();
7810 		conf->generation --;
7811 		conf->reshape_progress = MaxSector;
7812 		mddev->reshape_position = MaxSector;
7813 		write_seqcount_end(&conf->gen_lock);
7814 		spin_unlock_irq(&conf->device_lock);
7815 		return -EAGAIN;
7816 	}
7817 	conf->reshape_checkpoint = jiffies;
7818 	md_wakeup_thread(mddev->sync_thread);
7819 	md_new_event(mddev);
7820 	return 0;
7821 }
7822 
7823 /* This is called from the reshape thread and should make any
7824  * changes needed in 'conf'
7825  */
7826 static void end_reshape(struct r5conf *conf)
7827 {
7828 
7829 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7830 		struct md_rdev *rdev;
7831 
7832 		spin_lock_irq(&conf->device_lock);
7833 		conf->previous_raid_disks = conf->raid_disks;
7834 		rdev_for_each(rdev, conf->mddev)
7835 			rdev->data_offset = rdev->new_data_offset;
7836 		smp_wmb();
7837 		conf->reshape_progress = MaxSector;
7838 		conf->mddev->reshape_position = MaxSector;
7839 		spin_unlock_irq(&conf->device_lock);
7840 		wake_up(&conf->wait_for_overlap);
7841 
7842 		/* read-ahead size must cover two whole stripes, which is
7843 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7844 		 */
7845 		if (conf->mddev->queue) {
7846 			int data_disks = conf->raid_disks - conf->max_degraded;
7847 			int stripe = data_disks * ((conf->chunk_sectors << 9)
7848 						   / PAGE_SIZE);
7849 			if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7850 				conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
7851 		}
7852 	}
7853 }
7854 
7855 /* This is called from the raid5d thread with mddev_lock held.
7856  * It makes config changes to the device.
7857  */
7858 static void raid5_finish_reshape(struct mddev *mddev)
7859 {
7860 	struct r5conf *conf = mddev->private;
7861 
7862 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7863 
7864 		if (mddev->delta_disks > 0) {
7865 			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7866 			if (mddev->queue) {
7867 				set_capacity(mddev->gendisk, mddev->array_sectors);
7868 				revalidate_disk(mddev->gendisk);
7869 			}
7870 		} else {
7871 			int d;
7872 			spin_lock_irq(&conf->device_lock);
7873 			mddev->degraded = raid5_calc_degraded(conf);
7874 			spin_unlock_irq(&conf->device_lock);
7875 			for (d = conf->raid_disks ;
7876 			     d < conf->raid_disks - mddev->delta_disks;
7877 			     d++) {
7878 				struct md_rdev *rdev = conf->disks[d].rdev;
7879 				if (rdev)
7880 					clear_bit(In_sync, &rdev->flags);
7881 				rdev = conf->disks[d].replacement;
7882 				if (rdev)
7883 					clear_bit(In_sync, &rdev->flags);
7884 			}
7885 		}
7886 		mddev->layout = conf->algorithm;
7887 		mddev->chunk_sectors = conf->chunk_sectors;
7888 		mddev->reshape_position = MaxSector;
7889 		mddev->delta_disks = 0;
7890 		mddev->reshape_backwards = 0;
7891 	}
7892 }
7893 
7894 static void raid5_quiesce(struct mddev *mddev, int state)
7895 {
7896 	struct r5conf *conf = mddev->private;
7897 
7898 	switch(state) {
7899 	case 2: /* resume for a suspend */
7900 		wake_up(&conf->wait_for_overlap);
7901 		break;
7902 
7903 	case 1: /* stop all writes */
7904 		lock_all_device_hash_locks_irq(conf);
7905 		/* '2' tells resync/reshape to pause so that all
7906 		 * active stripes can drain
7907 		 */
7908 		r5c_flush_cache(conf, INT_MAX);
7909 		conf->quiesce = 2;
7910 		wait_event_cmd(conf->wait_for_quiescent,
7911 				    atomic_read(&conf->active_stripes) == 0 &&
7912 				    atomic_read(&conf->active_aligned_reads) == 0,
7913 				    unlock_all_device_hash_locks_irq(conf),
7914 				    lock_all_device_hash_locks_irq(conf));
7915 		conf->quiesce = 1;
7916 		unlock_all_device_hash_locks_irq(conf);
7917 		/* allow reshape to continue */
7918 		wake_up(&conf->wait_for_overlap);
7919 		break;
7920 
7921 	case 0: /* re-enable writes */
7922 		lock_all_device_hash_locks_irq(conf);
7923 		conf->quiesce = 0;
7924 		wake_up(&conf->wait_for_quiescent);
7925 		wake_up(&conf->wait_for_overlap);
7926 		unlock_all_device_hash_locks_irq(conf);
7927 		break;
7928 	}
7929 	r5l_quiesce(conf->log, state);
7930 }
7931 
7932 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7933 {
7934 	struct r0conf *raid0_conf = mddev->private;
7935 	sector_t sectors;
7936 
7937 	/* for raid0 takeover only one zone is supported */
7938 	if (raid0_conf->nr_strip_zones > 1) {
7939 		pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7940 			mdname(mddev));
7941 		return ERR_PTR(-EINVAL);
7942 	}
7943 
7944 	sectors = raid0_conf->strip_zone[0].zone_end;
7945 	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7946 	mddev->dev_sectors = sectors;
7947 	mddev->new_level = level;
7948 	mddev->new_layout = ALGORITHM_PARITY_N;
7949 	mddev->new_chunk_sectors = mddev->chunk_sectors;
7950 	mddev->raid_disks += 1;
7951 	mddev->delta_disks = 1;
7952 	/* make sure it will be not marked as dirty */
7953 	mddev->recovery_cp = MaxSector;
7954 
7955 	return setup_conf(mddev);
7956 }
7957 
7958 static void *raid5_takeover_raid1(struct mddev *mddev)
7959 {
7960 	int chunksect;
7961 	void *ret;
7962 
7963 	if (mddev->raid_disks != 2 ||
7964 	    mddev->degraded > 1)
7965 		return ERR_PTR(-EINVAL);
7966 
7967 	/* Should check if there are write-behind devices? */
7968 
7969 	chunksect = 64*2; /* 64K by default */
7970 
7971 	/* The array must be an exact multiple of chunksize */
7972 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
7973 		chunksect >>= 1;
7974 
7975 	if ((chunksect<<9) < STRIPE_SIZE)
7976 		/* array size does not allow a suitable chunk size */
7977 		return ERR_PTR(-EINVAL);
7978 
7979 	mddev->new_level = 5;
7980 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7981 	mddev->new_chunk_sectors = chunksect;
7982 
7983 	ret = setup_conf(mddev);
7984 	if (!IS_ERR(ret))
7985 		mddev_clear_unsupported_flags(mddev,
7986 			UNSUPPORTED_MDDEV_FLAGS);
7987 	return ret;
7988 }
7989 
7990 static void *raid5_takeover_raid6(struct mddev *mddev)
7991 {
7992 	int new_layout;
7993 
7994 	switch (mddev->layout) {
7995 	case ALGORITHM_LEFT_ASYMMETRIC_6:
7996 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7997 		break;
7998 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
7999 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8000 		break;
8001 	case ALGORITHM_LEFT_SYMMETRIC_6:
8002 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
8003 		break;
8004 	case ALGORITHM_RIGHT_SYMMETRIC_6:
8005 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8006 		break;
8007 	case ALGORITHM_PARITY_0_6:
8008 		new_layout = ALGORITHM_PARITY_0;
8009 		break;
8010 	case ALGORITHM_PARITY_N:
8011 		new_layout = ALGORITHM_PARITY_N;
8012 		break;
8013 	default:
8014 		return ERR_PTR(-EINVAL);
8015 	}
8016 	mddev->new_level = 5;
8017 	mddev->new_layout = new_layout;
8018 	mddev->delta_disks = -1;
8019 	mddev->raid_disks -= 1;
8020 	return setup_conf(mddev);
8021 }
8022 
8023 static int raid5_check_reshape(struct mddev *mddev)
8024 {
8025 	/* For a 2-drive array, the layout and chunk size can be changed
8026 	 * immediately as not restriping is needed.
8027 	 * For larger arrays we record the new value - after validation
8028 	 * to be used by a reshape pass.
8029 	 */
8030 	struct r5conf *conf = mddev->private;
8031 	int new_chunk = mddev->new_chunk_sectors;
8032 
8033 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8034 		return -EINVAL;
8035 	if (new_chunk > 0) {
8036 		if (!is_power_of_2(new_chunk))
8037 			return -EINVAL;
8038 		if (new_chunk < (PAGE_SIZE>>9))
8039 			return -EINVAL;
8040 		if (mddev->array_sectors & (new_chunk-1))
8041 			/* not factor of array size */
8042 			return -EINVAL;
8043 	}
8044 
8045 	/* They look valid */
8046 
8047 	if (mddev->raid_disks == 2) {
8048 		/* can make the change immediately */
8049 		if (mddev->new_layout >= 0) {
8050 			conf->algorithm = mddev->new_layout;
8051 			mddev->layout = mddev->new_layout;
8052 		}
8053 		if (new_chunk > 0) {
8054 			conf->chunk_sectors = new_chunk ;
8055 			mddev->chunk_sectors = new_chunk;
8056 		}
8057 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8058 		md_wakeup_thread(mddev->thread);
8059 	}
8060 	return check_reshape(mddev);
8061 }
8062 
8063 static int raid6_check_reshape(struct mddev *mddev)
8064 {
8065 	int new_chunk = mddev->new_chunk_sectors;
8066 
8067 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8068 		return -EINVAL;
8069 	if (new_chunk > 0) {
8070 		if (!is_power_of_2(new_chunk))
8071 			return -EINVAL;
8072 		if (new_chunk < (PAGE_SIZE >> 9))
8073 			return -EINVAL;
8074 		if (mddev->array_sectors & (new_chunk-1))
8075 			/* not factor of array size */
8076 			return -EINVAL;
8077 	}
8078 
8079 	/* They look valid */
8080 	return check_reshape(mddev);
8081 }
8082 
8083 static void *raid5_takeover(struct mddev *mddev)
8084 {
8085 	/* raid5 can take over:
8086 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
8087 	 *  raid1 - if there are two drives.  We need to know the chunk size
8088 	 *  raid4 - trivial - just use a raid4 layout.
8089 	 *  raid6 - Providing it is a *_6 layout
8090 	 */
8091 	if (mddev->level == 0)
8092 		return raid45_takeover_raid0(mddev, 5);
8093 	if (mddev->level == 1)
8094 		return raid5_takeover_raid1(mddev);
8095 	if (mddev->level == 4) {
8096 		mddev->new_layout = ALGORITHM_PARITY_N;
8097 		mddev->new_level = 5;
8098 		return setup_conf(mddev);
8099 	}
8100 	if (mddev->level == 6)
8101 		return raid5_takeover_raid6(mddev);
8102 
8103 	return ERR_PTR(-EINVAL);
8104 }
8105 
8106 static void *raid4_takeover(struct mddev *mddev)
8107 {
8108 	/* raid4 can take over:
8109 	 *  raid0 - if there is only one strip zone
8110 	 *  raid5 - if layout is right
8111 	 */
8112 	if (mddev->level == 0)
8113 		return raid45_takeover_raid0(mddev, 4);
8114 	if (mddev->level == 5 &&
8115 	    mddev->layout == ALGORITHM_PARITY_N) {
8116 		mddev->new_layout = 0;
8117 		mddev->new_level = 4;
8118 		return setup_conf(mddev);
8119 	}
8120 	return ERR_PTR(-EINVAL);
8121 }
8122 
8123 static struct md_personality raid5_personality;
8124 
8125 static void *raid6_takeover(struct mddev *mddev)
8126 {
8127 	/* Currently can only take over a raid5.  We map the
8128 	 * personality to an equivalent raid6 personality
8129 	 * with the Q block at the end.
8130 	 */
8131 	int new_layout;
8132 
8133 	if (mddev->pers != &raid5_personality)
8134 		return ERR_PTR(-EINVAL);
8135 	if (mddev->degraded > 1)
8136 		return ERR_PTR(-EINVAL);
8137 	if (mddev->raid_disks > 253)
8138 		return ERR_PTR(-EINVAL);
8139 	if (mddev->raid_disks < 3)
8140 		return ERR_PTR(-EINVAL);
8141 
8142 	switch (mddev->layout) {
8143 	case ALGORITHM_LEFT_ASYMMETRIC:
8144 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8145 		break;
8146 	case ALGORITHM_RIGHT_ASYMMETRIC:
8147 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8148 		break;
8149 	case ALGORITHM_LEFT_SYMMETRIC:
8150 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8151 		break;
8152 	case ALGORITHM_RIGHT_SYMMETRIC:
8153 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8154 		break;
8155 	case ALGORITHM_PARITY_0:
8156 		new_layout = ALGORITHM_PARITY_0_6;
8157 		break;
8158 	case ALGORITHM_PARITY_N:
8159 		new_layout = ALGORITHM_PARITY_N;
8160 		break;
8161 	default:
8162 		return ERR_PTR(-EINVAL);
8163 	}
8164 	mddev->new_level = 6;
8165 	mddev->new_layout = new_layout;
8166 	mddev->delta_disks = 1;
8167 	mddev->raid_disks += 1;
8168 	return setup_conf(mddev);
8169 }
8170 
8171 static struct md_personality raid6_personality =
8172 {
8173 	.name		= "raid6",
8174 	.level		= 6,
8175 	.owner		= THIS_MODULE,
8176 	.make_request	= raid5_make_request,
8177 	.run		= raid5_run,
8178 	.free		= raid5_free,
8179 	.status		= raid5_status,
8180 	.error_handler	= raid5_error,
8181 	.hot_add_disk	= raid5_add_disk,
8182 	.hot_remove_disk= raid5_remove_disk,
8183 	.spare_active	= raid5_spare_active,
8184 	.sync_request	= raid5_sync_request,
8185 	.resize		= raid5_resize,
8186 	.size		= raid5_size,
8187 	.check_reshape	= raid6_check_reshape,
8188 	.start_reshape  = raid5_start_reshape,
8189 	.finish_reshape = raid5_finish_reshape,
8190 	.quiesce	= raid5_quiesce,
8191 	.takeover	= raid6_takeover,
8192 	.congested	= raid5_congested,
8193 };
8194 static struct md_personality raid5_personality =
8195 {
8196 	.name		= "raid5",
8197 	.level		= 5,
8198 	.owner		= THIS_MODULE,
8199 	.make_request	= raid5_make_request,
8200 	.run		= raid5_run,
8201 	.free		= raid5_free,
8202 	.status		= raid5_status,
8203 	.error_handler	= raid5_error,
8204 	.hot_add_disk	= raid5_add_disk,
8205 	.hot_remove_disk= raid5_remove_disk,
8206 	.spare_active	= raid5_spare_active,
8207 	.sync_request	= raid5_sync_request,
8208 	.resize		= raid5_resize,
8209 	.size		= raid5_size,
8210 	.check_reshape	= raid5_check_reshape,
8211 	.start_reshape  = raid5_start_reshape,
8212 	.finish_reshape = raid5_finish_reshape,
8213 	.quiesce	= raid5_quiesce,
8214 	.takeover	= raid5_takeover,
8215 	.congested	= raid5_congested,
8216 };
8217 
8218 static struct md_personality raid4_personality =
8219 {
8220 	.name		= "raid4",
8221 	.level		= 4,
8222 	.owner		= THIS_MODULE,
8223 	.make_request	= raid5_make_request,
8224 	.run		= raid5_run,
8225 	.free		= raid5_free,
8226 	.status		= raid5_status,
8227 	.error_handler	= raid5_error,
8228 	.hot_add_disk	= raid5_add_disk,
8229 	.hot_remove_disk= raid5_remove_disk,
8230 	.spare_active	= raid5_spare_active,
8231 	.sync_request	= raid5_sync_request,
8232 	.resize		= raid5_resize,
8233 	.size		= raid5_size,
8234 	.check_reshape	= raid5_check_reshape,
8235 	.start_reshape  = raid5_start_reshape,
8236 	.finish_reshape = raid5_finish_reshape,
8237 	.quiesce	= raid5_quiesce,
8238 	.takeover	= raid4_takeover,
8239 	.congested	= raid5_congested,
8240 };
8241 
8242 static int __init raid5_init(void)
8243 {
8244 	int ret;
8245 
8246 	raid5_wq = alloc_workqueue("raid5wq",
8247 		WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8248 	if (!raid5_wq)
8249 		return -ENOMEM;
8250 
8251 	ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8252 				      "md/raid5:prepare",
8253 				      raid456_cpu_up_prepare,
8254 				      raid456_cpu_dead);
8255 	if (ret) {
8256 		destroy_workqueue(raid5_wq);
8257 		return ret;
8258 	}
8259 	register_md_personality(&raid6_personality);
8260 	register_md_personality(&raid5_personality);
8261 	register_md_personality(&raid4_personality);
8262 	return 0;
8263 }
8264 
8265 static void raid5_exit(void)
8266 {
8267 	unregister_md_personality(&raid6_personality);
8268 	unregister_md_personality(&raid5_personality);
8269 	unregister_md_personality(&raid4_personality);
8270 	cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
8271 	destroy_workqueue(raid5_wq);
8272 }
8273 
8274 module_init(raid5_init);
8275 module_exit(raid5_exit);
8276 MODULE_LICENSE("GPL");
8277 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8278 MODULE_ALIAS("md-personality-4"); /* RAID5 */
8279 MODULE_ALIAS("md-raid5");
8280 MODULE_ALIAS("md-raid4");
8281 MODULE_ALIAS("md-level-5");
8282 MODULE_ALIAS("md-level-4");
8283 MODULE_ALIAS("md-personality-8"); /* RAID6 */
8284 MODULE_ALIAS("md-raid6");
8285 MODULE_ALIAS("md-level-6");
8286 
8287 /* This used to be two separate modules, they were: */
8288 MODULE_ALIAS("raid5");
8289 MODULE_ALIAS("raid6");
8290