xref: /linux/drivers/md/raid5.c (revision a33f32244d8550da8b4a26e277ce07d5c6d158b5)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->bm_write is the number of the last batch successfully written.
31  * conf->bm_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is bm_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/async.h>
51 #include <linux/seq_file.h>
52 #include <linux/cpu.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "raid5.h"
56 #include "bitmap.h"
57 
58 /*
59  * Stripe cache
60  */
61 
62 #define NR_STRIPES		256
63 #define STRIPE_SIZE		PAGE_SIZE
64 #define STRIPE_SHIFT		(PAGE_SHIFT - 9)
65 #define STRIPE_SECTORS		(STRIPE_SIZE>>9)
66 #define	IO_THRESHOLD		1
67 #define BYPASS_THRESHOLD	1
68 #define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
69 #define HASH_MASK		(NR_HASH - 1)
70 
71 #define stripe_hash(conf, sect)	(&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
72 
73 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
74  * order without overlap.  There may be several bio's per stripe+device, and
75  * a bio could span several devices.
76  * When walking this list for a particular stripe+device, we must never proceed
77  * beyond a bio that extends past this device, as the next bio might no longer
78  * be valid.
79  * This macro is used to determine the 'next' bio in the list, given the sector
80  * of the current stripe+device
81  */
82 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
83 /*
84  * The following can be used to debug the driver
85  */
86 #define RAID5_PARANOIA	1
87 #if RAID5_PARANOIA && defined(CONFIG_SMP)
88 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
89 #else
90 # define CHECK_DEVLOCK()
91 #endif
92 
93 #ifdef DEBUG
94 #define inline
95 #define __inline__
96 #endif
97 
98 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
99 
100 /*
101  * We maintain a biased count of active stripes in the bottom 16 bits of
102  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
103  */
104 static inline int raid5_bi_phys_segments(struct bio *bio)
105 {
106 	return bio->bi_phys_segments & 0xffff;
107 }
108 
109 static inline int raid5_bi_hw_segments(struct bio *bio)
110 {
111 	return (bio->bi_phys_segments >> 16) & 0xffff;
112 }
113 
114 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
115 {
116 	--bio->bi_phys_segments;
117 	return raid5_bi_phys_segments(bio);
118 }
119 
120 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
121 {
122 	unsigned short val = raid5_bi_hw_segments(bio);
123 
124 	--val;
125 	bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
126 	return val;
127 }
128 
129 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
130 {
131 	bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
132 }
133 
134 /* Find first data disk in a raid6 stripe */
135 static inline int raid6_d0(struct stripe_head *sh)
136 {
137 	if (sh->ddf_layout)
138 		/* ddf always start from first device */
139 		return 0;
140 	/* md starts just after Q block */
141 	if (sh->qd_idx == sh->disks - 1)
142 		return 0;
143 	else
144 		return sh->qd_idx + 1;
145 }
146 static inline int raid6_next_disk(int disk, int raid_disks)
147 {
148 	disk++;
149 	return (disk < raid_disks) ? disk : 0;
150 }
151 
152 /* When walking through the disks in a raid5, starting at raid6_d0,
153  * We need to map each disk to a 'slot', where the data disks are slot
154  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
155  * is raid_disks-1.  This help does that mapping.
156  */
157 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
158 			     int *count, int syndrome_disks)
159 {
160 	int slot = *count;
161 
162 	if (sh->ddf_layout)
163 		(*count)++;
164 	if (idx == sh->pd_idx)
165 		return syndrome_disks;
166 	if (idx == sh->qd_idx)
167 		return syndrome_disks + 1;
168 	if (!sh->ddf_layout)
169 		(*count)++;
170 	return slot;
171 }
172 
173 static void return_io(struct bio *return_bi)
174 {
175 	struct bio *bi = return_bi;
176 	while (bi) {
177 
178 		return_bi = bi->bi_next;
179 		bi->bi_next = NULL;
180 		bi->bi_size = 0;
181 		bio_endio(bi, 0);
182 		bi = return_bi;
183 	}
184 }
185 
186 static void print_raid5_conf (raid5_conf_t *conf);
187 
188 static int stripe_operations_active(struct stripe_head *sh)
189 {
190 	return sh->check_state || sh->reconstruct_state ||
191 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
192 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
193 }
194 
195 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
196 {
197 	if (atomic_dec_and_test(&sh->count)) {
198 		BUG_ON(!list_empty(&sh->lru));
199 		BUG_ON(atomic_read(&conf->active_stripes)==0);
200 		if (test_bit(STRIPE_HANDLE, &sh->state)) {
201 			if (test_bit(STRIPE_DELAYED, &sh->state)) {
202 				list_add_tail(&sh->lru, &conf->delayed_list);
203 				blk_plug_device(conf->mddev->queue);
204 			} else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
205 				   sh->bm_seq - conf->seq_write > 0) {
206 				list_add_tail(&sh->lru, &conf->bitmap_list);
207 				blk_plug_device(conf->mddev->queue);
208 			} else {
209 				clear_bit(STRIPE_BIT_DELAY, &sh->state);
210 				list_add_tail(&sh->lru, &conf->handle_list);
211 			}
212 			md_wakeup_thread(conf->mddev->thread);
213 		} else {
214 			BUG_ON(stripe_operations_active(sh));
215 			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
216 				atomic_dec(&conf->preread_active_stripes);
217 				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
218 					md_wakeup_thread(conf->mddev->thread);
219 			}
220 			atomic_dec(&conf->active_stripes);
221 			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
222 				list_add_tail(&sh->lru, &conf->inactive_list);
223 				wake_up(&conf->wait_for_stripe);
224 				if (conf->retry_read_aligned)
225 					md_wakeup_thread(conf->mddev->thread);
226 			}
227 		}
228 	}
229 }
230 
231 static void release_stripe(struct stripe_head *sh)
232 {
233 	raid5_conf_t *conf = sh->raid_conf;
234 	unsigned long flags;
235 
236 	spin_lock_irqsave(&conf->device_lock, flags);
237 	__release_stripe(conf, sh);
238 	spin_unlock_irqrestore(&conf->device_lock, flags);
239 }
240 
241 static inline void remove_hash(struct stripe_head *sh)
242 {
243 	pr_debug("remove_hash(), stripe %llu\n",
244 		(unsigned long long)sh->sector);
245 
246 	hlist_del_init(&sh->hash);
247 }
248 
249 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
250 {
251 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
252 
253 	pr_debug("insert_hash(), stripe %llu\n",
254 		(unsigned long long)sh->sector);
255 
256 	CHECK_DEVLOCK();
257 	hlist_add_head(&sh->hash, hp);
258 }
259 
260 
261 /* find an idle stripe, make sure it is unhashed, and return it. */
262 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
263 {
264 	struct stripe_head *sh = NULL;
265 	struct list_head *first;
266 
267 	CHECK_DEVLOCK();
268 	if (list_empty(&conf->inactive_list))
269 		goto out;
270 	first = conf->inactive_list.next;
271 	sh = list_entry(first, struct stripe_head, lru);
272 	list_del_init(first);
273 	remove_hash(sh);
274 	atomic_inc(&conf->active_stripes);
275 out:
276 	return sh;
277 }
278 
279 static void shrink_buffers(struct stripe_head *sh, int num)
280 {
281 	struct page *p;
282 	int i;
283 
284 	for (i=0; i<num ; i++) {
285 		p = sh->dev[i].page;
286 		if (!p)
287 			continue;
288 		sh->dev[i].page = NULL;
289 		put_page(p);
290 	}
291 }
292 
293 static int grow_buffers(struct stripe_head *sh, int num)
294 {
295 	int i;
296 
297 	for (i=0; i<num; i++) {
298 		struct page *page;
299 
300 		if (!(page = alloc_page(GFP_KERNEL))) {
301 			return 1;
302 		}
303 		sh->dev[i].page = page;
304 	}
305 	return 0;
306 }
307 
308 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
309 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
310 			    struct stripe_head *sh);
311 
312 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
313 {
314 	raid5_conf_t *conf = sh->raid_conf;
315 	int i;
316 
317 	BUG_ON(atomic_read(&sh->count) != 0);
318 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
319 	BUG_ON(stripe_operations_active(sh));
320 
321 	CHECK_DEVLOCK();
322 	pr_debug("init_stripe called, stripe %llu\n",
323 		(unsigned long long)sh->sector);
324 
325 	remove_hash(sh);
326 
327 	sh->generation = conf->generation - previous;
328 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
329 	sh->sector = sector;
330 	stripe_set_idx(sector, conf, previous, sh);
331 	sh->state = 0;
332 
333 
334 	for (i = sh->disks; i--; ) {
335 		struct r5dev *dev = &sh->dev[i];
336 
337 		if (dev->toread || dev->read || dev->towrite || dev->written ||
338 		    test_bit(R5_LOCKED, &dev->flags)) {
339 			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
340 			       (unsigned long long)sh->sector, i, dev->toread,
341 			       dev->read, dev->towrite, dev->written,
342 			       test_bit(R5_LOCKED, &dev->flags));
343 			BUG();
344 		}
345 		dev->flags = 0;
346 		raid5_build_block(sh, i, previous);
347 	}
348 	insert_hash(conf, sh);
349 }
350 
351 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
352 					 short generation)
353 {
354 	struct stripe_head *sh;
355 	struct hlist_node *hn;
356 
357 	CHECK_DEVLOCK();
358 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
359 	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
360 		if (sh->sector == sector && sh->generation == generation)
361 			return sh;
362 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
363 	return NULL;
364 }
365 
366 static void unplug_slaves(mddev_t *mddev);
367 static void raid5_unplug_device(struct request_queue *q);
368 
369 static struct stripe_head *
370 get_active_stripe(raid5_conf_t *conf, sector_t sector,
371 		  int previous, int noblock, int noquiesce)
372 {
373 	struct stripe_head *sh;
374 
375 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
376 
377 	spin_lock_irq(&conf->device_lock);
378 
379 	do {
380 		wait_event_lock_irq(conf->wait_for_stripe,
381 				    conf->quiesce == 0 || noquiesce,
382 				    conf->device_lock, /* nothing */);
383 		sh = __find_stripe(conf, sector, conf->generation - previous);
384 		if (!sh) {
385 			if (!conf->inactive_blocked)
386 				sh = get_free_stripe(conf);
387 			if (noblock && sh == NULL)
388 				break;
389 			if (!sh) {
390 				conf->inactive_blocked = 1;
391 				wait_event_lock_irq(conf->wait_for_stripe,
392 						    !list_empty(&conf->inactive_list) &&
393 						    (atomic_read(&conf->active_stripes)
394 						     < (conf->max_nr_stripes *3/4)
395 						     || !conf->inactive_blocked),
396 						    conf->device_lock,
397 						    raid5_unplug_device(conf->mddev->queue)
398 					);
399 				conf->inactive_blocked = 0;
400 			} else
401 				init_stripe(sh, sector, previous);
402 		} else {
403 			if (atomic_read(&sh->count)) {
404 				BUG_ON(!list_empty(&sh->lru)
405 				    && !test_bit(STRIPE_EXPANDING, &sh->state));
406 			} else {
407 				if (!test_bit(STRIPE_HANDLE, &sh->state))
408 					atomic_inc(&conf->active_stripes);
409 				if (list_empty(&sh->lru) &&
410 				    !test_bit(STRIPE_EXPANDING, &sh->state))
411 					BUG();
412 				list_del_init(&sh->lru);
413 			}
414 		}
415 	} while (sh == NULL);
416 
417 	if (sh)
418 		atomic_inc(&sh->count);
419 
420 	spin_unlock_irq(&conf->device_lock);
421 	return sh;
422 }
423 
424 static void
425 raid5_end_read_request(struct bio *bi, int error);
426 static void
427 raid5_end_write_request(struct bio *bi, int error);
428 
429 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
430 {
431 	raid5_conf_t *conf = sh->raid_conf;
432 	int i, disks = sh->disks;
433 
434 	might_sleep();
435 
436 	for (i = disks; i--; ) {
437 		int rw;
438 		struct bio *bi;
439 		mdk_rdev_t *rdev;
440 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
441 			rw = WRITE;
442 		else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
443 			rw = READ;
444 		else
445 			continue;
446 
447 		bi = &sh->dev[i].req;
448 
449 		bi->bi_rw = rw;
450 		if (rw == WRITE)
451 			bi->bi_end_io = raid5_end_write_request;
452 		else
453 			bi->bi_end_io = raid5_end_read_request;
454 
455 		rcu_read_lock();
456 		rdev = rcu_dereference(conf->disks[i].rdev);
457 		if (rdev && test_bit(Faulty, &rdev->flags))
458 			rdev = NULL;
459 		if (rdev)
460 			atomic_inc(&rdev->nr_pending);
461 		rcu_read_unlock();
462 
463 		if (rdev) {
464 			if (s->syncing || s->expanding || s->expanded)
465 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
466 
467 			set_bit(STRIPE_IO_STARTED, &sh->state);
468 
469 			bi->bi_bdev = rdev->bdev;
470 			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
471 				__func__, (unsigned long long)sh->sector,
472 				bi->bi_rw, i);
473 			atomic_inc(&sh->count);
474 			bi->bi_sector = sh->sector + rdev->data_offset;
475 			bi->bi_flags = 1 << BIO_UPTODATE;
476 			bi->bi_vcnt = 1;
477 			bi->bi_max_vecs = 1;
478 			bi->bi_idx = 0;
479 			bi->bi_io_vec = &sh->dev[i].vec;
480 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
481 			bi->bi_io_vec[0].bv_offset = 0;
482 			bi->bi_size = STRIPE_SIZE;
483 			bi->bi_next = NULL;
484 			if (rw == WRITE &&
485 			    test_bit(R5_ReWrite, &sh->dev[i].flags))
486 				atomic_add(STRIPE_SECTORS,
487 					&rdev->corrected_errors);
488 			generic_make_request(bi);
489 		} else {
490 			if (rw == WRITE)
491 				set_bit(STRIPE_DEGRADED, &sh->state);
492 			pr_debug("skip op %ld on disc %d for sector %llu\n",
493 				bi->bi_rw, i, (unsigned long long)sh->sector);
494 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
495 			set_bit(STRIPE_HANDLE, &sh->state);
496 		}
497 	}
498 }
499 
500 static struct dma_async_tx_descriptor *
501 async_copy_data(int frombio, struct bio *bio, struct page *page,
502 	sector_t sector, struct dma_async_tx_descriptor *tx)
503 {
504 	struct bio_vec *bvl;
505 	struct page *bio_page;
506 	int i;
507 	int page_offset;
508 	struct async_submit_ctl submit;
509 	enum async_tx_flags flags = 0;
510 
511 	if (bio->bi_sector >= sector)
512 		page_offset = (signed)(bio->bi_sector - sector) * 512;
513 	else
514 		page_offset = (signed)(sector - bio->bi_sector) * -512;
515 
516 	if (frombio)
517 		flags |= ASYNC_TX_FENCE;
518 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
519 
520 	bio_for_each_segment(bvl, bio, i) {
521 		int len = bio_iovec_idx(bio, i)->bv_len;
522 		int clen;
523 		int b_offset = 0;
524 
525 		if (page_offset < 0) {
526 			b_offset = -page_offset;
527 			page_offset += b_offset;
528 			len -= b_offset;
529 		}
530 
531 		if (len > 0 && page_offset + len > STRIPE_SIZE)
532 			clen = STRIPE_SIZE - page_offset;
533 		else
534 			clen = len;
535 
536 		if (clen > 0) {
537 			b_offset += bio_iovec_idx(bio, i)->bv_offset;
538 			bio_page = bio_iovec_idx(bio, i)->bv_page;
539 			if (frombio)
540 				tx = async_memcpy(page, bio_page, page_offset,
541 						  b_offset, clen, &submit);
542 			else
543 				tx = async_memcpy(bio_page, page, b_offset,
544 						  page_offset, clen, &submit);
545 		}
546 		/* chain the operations */
547 		submit.depend_tx = tx;
548 
549 		if (clen < len) /* hit end of page */
550 			break;
551 		page_offset +=  len;
552 	}
553 
554 	return tx;
555 }
556 
557 static void ops_complete_biofill(void *stripe_head_ref)
558 {
559 	struct stripe_head *sh = stripe_head_ref;
560 	struct bio *return_bi = NULL;
561 	raid5_conf_t *conf = sh->raid_conf;
562 	int i;
563 
564 	pr_debug("%s: stripe %llu\n", __func__,
565 		(unsigned long long)sh->sector);
566 
567 	/* clear completed biofills */
568 	spin_lock_irq(&conf->device_lock);
569 	for (i = sh->disks; i--; ) {
570 		struct r5dev *dev = &sh->dev[i];
571 
572 		/* acknowledge completion of a biofill operation */
573 		/* and check if we need to reply to a read request,
574 		 * new R5_Wantfill requests are held off until
575 		 * !STRIPE_BIOFILL_RUN
576 		 */
577 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
578 			struct bio *rbi, *rbi2;
579 
580 			BUG_ON(!dev->read);
581 			rbi = dev->read;
582 			dev->read = NULL;
583 			while (rbi && rbi->bi_sector <
584 				dev->sector + STRIPE_SECTORS) {
585 				rbi2 = r5_next_bio(rbi, dev->sector);
586 				if (!raid5_dec_bi_phys_segments(rbi)) {
587 					rbi->bi_next = return_bi;
588 					return_bi = rbi;
589 				}
590 				rbi = rbi2;
591 			}
592 		}
593 	}
594 	spin_unlock_irq(&conf->device_lock);
595 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
596 
597 	return_io(return_bi);
598 
599 	set_bit(STRIPE_HANDLE, &sh->state);
600 	release_stripe(sh);
601 }
602 
603 static void ops_run_biofill(struct stripe_head *sh)
604 {
605 	struct dma_async_tx_descriptor *tx = NULL;
606 	raid5_conf_t *conf = sh->raid_conf;
607 	struct async_submit_ctl submit;
608 	int i;
609 
610 	pr_debug("%s: stripe %llu\n", __func__,
611 		(unsigned long long)sh->sector);
612 
613 	for (i = sh->disks; i--; ) {
614 		struct r5dev *dev = &sh->dev[i];
615 		if (test_bit(R5_Wantfill, &dev->flags)) {
616 			struct bio *rbi;
617 			spin_lock_irq(&conf->device_lock);
618 			dev->read = rbi = dev->toread;
619 			dev->toread = NULL;
620 			spin_unlock_irq(&conf->device_lock);
621 			while (rbi && rbi->bi_sector <
622 				dev->sector + STRIPE_SECTORS) {
623 				tx = async_copy_data(0, rbi, dev->page,
624 					dev->sector, tx);
625 				rbi = r5_next_bio(rbi, dev->sector);
626 			}
627 		}
628 	}
629 
630 	atomic_inc(&sh->count);
631 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
632 	async_trigger_callback(&submit);
633 }
634 
635 static void mark_target_uptodate(struct stripe_head *sh, int target)
636 {
637 	struct r5dev *tgt;
638 
639 	if (target < 0)
640 		return;
641 
642 	tgt = &sh->dev[target];
643 	set_bit(R5_UPTODATE, &tgt->flags);
644 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
645 	clear_bit(R5_Wantcompute, &tgt->flags);
646 }
647 
648 static void ops_complete_compute(void *stripe_head_ref)
649 {
650 	struct stripe_head *sh = stripe_head_ref;
651 
652 	pr_debug("%s: stripe %llu\n", __func__,
653 		(unsigned long long)sh->sector);
654 
655 	/* mark the computed target(s) as uptodate */
656 	mark_target_uptodate(sh, sh->ops.target);
657 	mark_target_uptodate(sh, sh->ops.target2);
658 
659 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
660 	if (sh->check_state == check_state_compute_run)
661 		sh->check_state = check_state_compute_result;
662 	set_bit(STRIPE_HANDLE, &sh->state);
663 	release_stripe(sh);
664 }
665 
666 /* return a pointer to the address conversion region of the scribble buffer */
667 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
668 				 struct raid5_percpu *percpu)
669 {
670 	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
671 }
672 
673 static struct dma_async_tx_descriptor *
674 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
675 {
676 	int disks = sh->disks;
677 	struct page **xor_srcs = percpu->scribble;
678 	int target = sh->ops.target;
679 	struct r5dev *tgt = &sh->dev[target];
680 	struct page *xor_dest = tgt->page;
681 	int count = 0;
682 	struct dma_async_tx_descriptor *tx;
683 	struct async_submit_ctl submit;
684 	int i;
685 
686 	pr_debug("%s: stripe %llu block: %d\n",
687 		__func__, (unsigned long long)sh->sector, target);
688 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
689 
690 	for (i = disks; i--; )
691 		if (i != target)
692 			xor_srcs[count++] = sh->dev[i].page;
693 
694 	atomic_inc(&sh->count);
695 
696 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
697 			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
698 	if (unlikely(count == 1))
699 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
700 	else
701 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
702 
703 	return tx;
704 }
705 
706 /* set_syndrome_sources - populate source buffers for gen_syndrome
707  * @srcs - (struct page *) array of size sh->disks
708  * @sh - stripe_head to parse
709  *
710  * Populates srcs in proper layout order for the stripe and returns the
711  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
712  * destination buffer is recorded in srcs[count] and the Q destination
713  * is recorded in srcs[count+1]].
714  */
715 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
716 {
717 	int disks = sh->disks;
718 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
719 	int d0_idx = raid6_d0(sh);
720 	int count;
721 	int i;
722 
723 	for (i = 0; i < disks; i++)
724 		srcs[i] = NULL;
725 
726 	count = 0;
727 	i = d0_idx;
728 	do {
729 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
730 
731 		srcs[slot] = sh->dev[i].page;
732 		i = raid6_next_disk(i, disks);
733 	} while (i != d0_idx);
734 
735 	return syndrome_disks;
736 }
737 
738 static struct dma_async_tx_descriptor *
739 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
740 {
741 	int disks = sh->disks;
742 	struct page **blocks = percpu->scribble;
743 	int target;
744 	int qd_idx = sh->qd_idx;
745 	struct dma_async_tx_descriptor *tx;
746 	struct async_submit_ctl submit;
747 	struct r5dev *tgt;
748 	struct page *dest;
749 	int i;
750 	int count;
751 
752 	if (sh->ops.target < 0)
753 		target = sh->ops.target2;
754 	else if (sh->ops.target2 < 0)
755 		target = sh->ops.target;
756 	else
757 		/* we should only have one valid target */
758 		BUG();
759 	BUG_ON(target < 0);
760 	pr_debug("%s: stripe %llu block: %d\n",
761 		__func__, (unsigned long long)sh->sector, target);
762 
763 	tgt = &sh->dev[target];
764 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
765 	dest = tgt->page;
766 
767 	atomic_inc(&sh->count);
768 
769 	if (target == qd_idx) {
770 		count = set_syndrome_sources(blocks, sh);
771 		blocks[count] = NULL; /* regenerating p is not necessary */
772 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
773 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
774 				  ops_complete_compute, sh,
775 				  to_addr_conv(sh, percpu));
776 		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
777 	} else {
778 		/* Compute any data- or p-drive using XOR */
779 		count = 0;
780 		for (i = disks; i-- ; ) {
781 			if (i == target || i == qd_idx)
782 				continue;
783 			blocks[count++] = sh->dev[i].page;
784 		}
785 
786 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
787 				  NULL, ops_complete_compute, sh,
788 				  to_addr_conv(sh, percpu));
789 		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
790 	}
791 
792 	return tx;
793 }
794 
795 static struct dma_async_tx_descriptor *
796 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
797 {
798 	int i, count, disks = sh->disks;
799 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
800 	int d0_idx = raid6_d0(sh);
801 	int faila = -1, failb = -1;
802 	int target = sh->ops.target;
803 	int target2 = sh->ops.target2;
804 	struct r5dev *tgt = &sh->dev[target];
805 	struct r5dev *tgt2 = &sh->dev[target2];
806 	struct dma_async_tx_descriptor *tx;
807 	struct page **blocks = percpu->scribble;
808 	struct async_submit_ctl submit;
809 
810 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
811 		 __func__, (unsigned long long)sh->sector, target, target2);
812 	BUG_ON(target < 0 || target2 < 0);
813 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
814 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
815 
816 	/* we need to open-code set_syndrome_sources to handle the
817 	 * slot number conversion for 'faila' and 'failb'
818 	 */
819 	for (i = 0; i < disks ; i++)
820 		blocks[i] = NULL;
821 	count = 0;
822 	i = d0_idx;
823 	do {
824 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
825 
826 		blocks[slot] = sh->dev[i].page;
827 
828 		if (i == target)
829 			faila = slot;
830 		if (i == target2)
831 			failb = slot;
832 		i = raid6_next_disk(i, disks);
833 	} while (i != d0_idx);
834 
835 	BUG_ON(faila == failb);
836 	if (failb < faila)
837 		swap(faila, failb);
838 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
839 		 __func__, (unsigned long long)sh->sector, faila, failb);
840 
841 	atomic_inc(&sh->count);
842 
843 	if (failb == syndrome_disks+1) {
844 		/* Q disk is one of the missing disks */
845 		if (faila == syndrome_disks) {
846 			/* Missing P+Q, just recompute */
847 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
848 					  ops_complete_compute, sh,
849 					  to_addr_conv(sh, percpu));
850 			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
851 						  STRIPE_SIZE, &submit);
852 		} else {
853 			struct page *dest;
854 			int data_target;
855 			int qd_idx = sh->qd_idx;
856 
857 			/* Missing D+Q: recompute D from P, then recompute Q */
858 			if (target == qd_idx)
859 				data_target = target2;
860 			else
861 				data_target = target;
862 
863 			count = 0;
864 			for (i = disks; i-- ; ) {
865 				if (i == data_target || i == qd_idx)
866 					continue;
867 				blocks[count++] = sh->dev[i].page;
868 			}
869 			dest = sh->dev[data_target].page;
870 			init_async_submit(&submit,
871 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
872 					  NULL, NULL, NULL,
873 					  to_addr_conv(sh, percpu));
874 			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
875 				       &submit);
876 
877 			count = set_syndrome_sources(blocks, sh);
878 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
879 					  ops_complete_compute, sh,
880 					  to_addr_conv(sh, percpu));
881 			return async_gen_syndrome(blocks, 0, count+2,
882 						  STRIPE_SIZE, &submit);
883 		}
884 	} else {
885 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
886 				  ops_complete_compute, sh,
887 				  to_addr_conv(sh, percpu));
888 		if (failb == syndrome_disks) {
889 			/* We're missing D+P. */
890 			return async_raid6_datap_recov(syndrome_disks+2,
891 						       STRIPE_SIZE, faila,
892 						       blocks, &submit);
893 		} else {
894 			/* We're missing D+D. */
895 			return async_raid6_2data_recov(syndrome_disks+2,
896 						       STRIPE_SIZE, faila, failb,
897 						       blocks, &submit);
898 		}
899 	}
900 }
901 
902 
903 static void ops_complete_prexor(void *stripe_head_ref)
904 {
905 	struct stripe_head *sh = stripe_head_ref;
906 
907 	pr_debug("%s: stripe %llu\n", __func__,
908 		(unsigned long long)sh->sector);
909 }
910 
911 static struct dma_async_tx_descriptor *
912 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
913 	       struct dma_async_tx_descriptor *tx)
914 {
915 	int disks = sh->disks;
916 	struct page **xor_srcs = percpu->scribble;
917 	int count = 0, pd_idx = sh->pd_idx, i;
918 	struct async_submit_ctl submit;
919 
920 	/* existing parity data subtracted */
921 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
922 
923 	pr_debug("%s: stripe %llu\n", __func__,
924 		(unsigned long long)sh->sector);
925 
926 	for (i = disks; i--; ) {
927 		struct r5dev *dev = &sh->dev[i];
928 		/* Only process blocks that are known to be uptodate */
929 		if (test_bit(R5_Wantdrain, &dev->flags))
930 			xor_srcs[count++] = dev->page;
931 	}
932 
933 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
934 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
935 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
936 
937 	return tx;
938 }
939 
940 static struct dma_async_tx_descriptor *
941 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
942 {
943 	int disks = sh->disks;
944 	int i;
945 
946 	pr_debug("%s: stripe %llu\n", __func__,
947 		(unsigned long long)sh->sector);
948 
949 	for (i = disks; i--; ) {
950 		struct r5dev *dev = &sh->dev[i];
951 		struct bio *chosen;
952 
953 		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
954 			struct bio *wbi;
955 
956 			spin_lock(&sh->lock);
957 			chosen = dev->towrite;
958 			dev->towrite = NULL;
959 			BUG_ON(dev->written);
960 			wbi = dev->written = chosen;
961 			spin_unlock(&sh->lock);
962 
963 			while (wbi && wbi->bi_sector <
964 				dev->sector + STRIPE_SECTORS) {
965 				tx = async_copy_data(1, wbi, dev->page,
966 					dev->sector, tx);
967 				wbi = r5_next_bio(wbi, dev->sector);
968 			}
969 		}
970 	}
971 
972 	return tx;
973 }
974 
975 static void ops_complete_reconstruct(void *stripe_head_ref)
976 {
977 	struct stripe_head *sh = stripe_head_ref;
978 	int disks = sh->disks;
979 	int pd_idx = sh->pd_idx;
980 	int qd_idx = sh->qd_idx;
981 	int i;
982 
983 	pr_debug("%s: stripe %llu\n", __func__,
984 		(unsigned long long)sh->sector);
985 
986 	for (i = disks; i--; ) {
987 		struct r5dev *dev = &sh->dev[i];
988 
989 		if (dev->written || i == pd_idx || i == qd_idx)
990 			set_bit(R5_UPTODATE, &dev->flags);
991 	}
992 
993 	if (sh->reconstruct_state == reconstruct_state_drain_run)
994 		sh->reconstruct_state = reconstruct_state_drain_result;
995 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
996 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
997 	else {
998 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
999 		sh->reconstruct_state = reconstruct_state_result;
1000 	}
1001 
1002 	set_bit(STRIPE_HANDLE, &sh->state);
1003 	release_stripe(sh);
1004 }
1005 
1006 static void
1007 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1008 		     struct dma_async_tx_descriptor *tx)
1009 {
1010 	int disks = sh->disks;
1011 	struct page **xor_srcs = percpu->scribble;
1012 	struct async_submit_ctl submit;
1013 	int count = 0, pd_idx = sh->pd_idx, i;
1014 	struct page *xor_dest;
1015 	int prexor = 0;
1016 	unsigned long flags;
1017 
1018 	pr_debug("%s: stripe %llu\n", __func__,
1019 		(unsigned long long)sh->sector);
1020 
1021 	/* check if prexor is active which means only process blocks
1022 	 * that are part of a read-modify-write (written)
1023 	 */
1024 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1025 		prexor = 1;
1026 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1027 		for (i = disks; i--; ) {
1028 			struct r5dev *dev = &sh->dev[i];
1029 			if (dev->written)
1030 				xor_srcs[count++] = dev->page;
1031 		}
1032 	} else {
1033 		xor_dest = sh->dev[pd_idx].page;
1034 		for (i = disks; i--; ) {
1035 			struct r5dev *dev = &sh->dev[i];
1036 			if (i != pd_idx)
1037 				xor_srcs[count++] = dev->page;
1038 		}
1039 	}
1040 
1041 	/* 1/ if we prexor'd then the dest is reused as a source
1042 	 * 2/ if we did not prexor then we are redoing the parity
1043 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1044 	 * for the synchronous xor case
1045 	 */
1046 	flags = ASYNC_TX_ACK |
1047 		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1048 
1049 	atomic_inc(&sh->count);
1050 
1051 	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1052 			  to_addr_conv(sh, percpu));
1053 	if (unlikely(count == 1))
1054 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1055 	else
1056 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1057 }
1058 
1059 static void
1060 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1061 		     struct dma_async_tx_descriptor *tx)
1062 {
1063 	struct async_submit_ctl submit;
1064 	struct page **blocks = percpu->scribble;
1065 	int count;
1066 
1067 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1068 
1069 	count = set_syndrome_sources(blocks, sh);
1070 
1071 	atomic_inc(&sh->count);
1072 
1073 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1074 			  sh, to_addr_conv(sh, percpu));
1075 	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1076 }
1077 
1078 static void ops_complete_check(void *stripe_head_ref)
1079 {
1080 	struct stripe_head *sh = stripe_head_ref;
1081 
1082 	pr_debug("%s: stripe %llu\n", __func__,
1083 		(unsigned long long)sh->sector);
1084 
1085 	sh->check_state = check_state_check_result;
1086 	set_bit(STRIPE_HANDLE, &sh->state);
1087 	release_stripe(sh);
1088 }
1089 
1090 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1091 {
1092 	int disks = sh->disks;
1093 	int pd_idx = sh->pd_idx;
1094 	int qd_idx = sh->qd_idx;
1095 	struct page *xor_dest;
1096 	struct page **xor_srcs = percpu->scribble;
1097 	struct dma_async_tx_descriptor *tx;
1098 	struct async_submit_ctl submit;
1099 	int count;
1100 	int i;
1101 
1102 	pr_debug("%s: stripe %llu\n", __func__,
1103 		(unsigned long long)sh->sector);
1104 
1105 	count = 0;
1106 	xor_dest = sh->dev[pd_idx].page;
1107 	xor_srcs[count++] = xor_dest;
1108 	for (i = disks; i--; ) {
1109 		if (i == pd_idx || i == qd_idx)
1110 			continue;
1111 		xor_srcs[count++] = sh->dev[i].page;
1112 	}
1113 
1114 	init_async_submit(&submit, 0, NULL, NULL, NULL,
1115 			  to_addr_conv(sh, percpu));
1116 	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1117 			   &sh->ops.zero_sum_result, &submit);
1118 
1119 	atomic_inc(&sh->count);
1120 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1121 	tx = async_trigger_callback(&submit);
1122 }
1123 
1124 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1125 {
1126 	struct page **srcs = percpu->scribble;
1127 	struct async_submit_ctl submit;
1128 	int count;
1129 
1130 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1131 		(unsigned long long)sh->sector, checkp);
1132 
1133 	count = set_syndrome_sources(srcs, sh);
1134 	if (!checkp)
1135 		srcs[count] = NULL;
1136 
1137 	atomic_inc(&sh->count);
1138 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1139 			  sh, to_addr_conv(sh, percpu));
1140 	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1141 			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1142 }
1143 
1144 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1145 {
1146 	int overlap_clear = 0, i, disks = sh->disks;
1147 	struct dma_async_tx_descriptor *tx = NULL;
1148 	raid5_conf_t *conf = sh->raid_conf;
1149 	int level = conf->level;
1150 	struct raid5_percpu *percpu;
1151 	unsigned long cpu;
1152 
1153 	cpu = get_cpu();
1154 	percpu = per_cpu_ptr(conf->percpu, cpu);
1155 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1156 		ops_run_biofill(sh);
1157 		overlap_clear++;
1158 	}
1159 
1160 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1161 		if (level < 6)
1162 			tx = ops_run_compute5(sh, percpu);
1163 		else {
1164 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
1165 				tx = ops_run_compute6_1(sh, percpu);
1166 			else
1167 				tx = ops_run_compute6_2(sh, percpu);
1168 		}
1169 		/* terminate the chain if reconstruct is not set to be run */
1170 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1171 			async_tx_ack(tx);
1172 	}
1173 
1174 	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1175 		tx = ops_run_prexor(sh, percpu, tx);
1176 
1177 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1178 		tx = ops_run_biodrain(sh, tx);
1179 		overlap_clear++;
1180 	}
1181 
1182 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1183 		if (level < 6)
1184 			ops_run_reconstruct5(sh, percpu, tx);
1185 		else
1186 			ops_run_reconstruct6(sh, percpu, tx);
1187 	}
1188 
1189 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1190 		if (sh->check_state == check_state_run)
1191 			ops_run_check_p(sh, percpu);
1192 		else if (sh->check_state == check_state_run_q)
1193 			ops_run_check_pq(sh, percpu, 0);
1194 		else if (sh->check_state == check_state_run_pq)
1195 			ops_run_check_pq(sh, percpu, 1);
1196 		else
1197 			BUG();
1198 	}
1199 
1200 	if (overlap_clear)
1201 		for (i = disks; i--; ) {
1202 			struct r5dev *dev = &sh->dev[i];
1203 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
1204 				wake_up(&sh->raid_conf->wait_for_overlap);
1205 		}
1206 	put_cpu();
1207 }
1208 
1209 #ifdef CONFIG_MULTICORE_RAID456
1210 static void async_run_ops(void *param, async_cookie_t cookie)
1211 {
1212 	struct stripe_head *sh = param;
1213 	unsigned long ops_request = sh->ops.request;
1214 
1215 	clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1216 	wake_up(&sh->ops.wait_for_ops);
1217 
1218 	__raid_run_ops(sh, ops_request);
1219 	release_stripe(sh);
1220 }
1221 
1222 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1223 {
1224 	/* since handle_stripe can be called outside of raid5d context
1225 	 * we need to ensure sh->ops.request is de-staged before another
1226 	 * request arrives
1227 	 */
1228 	wait_event(sh->ops.wait_for_ops,
1229 		   !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1230 	sh->ops.request = ops_request;
1231 
1232 	atomic_inc(&sh->count);
1233 	async_schedule(async_run_ops, sh);
1234 }
1235 #else
1236 #define raid_run_ops __raid_run_ops
1237 #endif
1238 
1239 static int grow_one_stripe(raid5_conf_t *conf)
1240 {
1241 	struct stripe_head *sh;
1242 	int disks = max(conf->raid_disks, conf->previous_raid_disks);
1243 	sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
1244 	if (!sh)
1245 		return 0;
1246 	memset(sh, 0, sizeof(*sh) + (disks-1)*sizeof(struct r5dev));
1247 	sh->raid_conf = conf;
1248 	spin_lock_init(&sh->lock);
1249 	#ifdef CONFIG_MULTICORE_RAID456
1250 	init_waitqueue_head(&sh->ops.wait_for_ops);
1251 	#endif
1252 
1253 	if (grow_buffers(sh, disks)) {
1254 		shrink_buffers(sh, disks);
1255 		kmem_cache_free(conf->slab_cache, sh);
1256 		return 0;
1257 	}
1258 	/* we just created an active stripe so... */
1259 	atomic_set(&sh->count, 1);
1260 	atomic_inc(&conf->active_stripes);
1261 	INIT_LIST_HEAD(&sh->lru);
1262 	release_stripe(sh);
1263 	return 1;
1264 }
1265 
1266 static int grow_stripes(raid5_conf_t *conf, int num)
1267 {
1268 	struct kmem_cache *sc;
1269 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
1270 
1271 	sprintf(conf->cache_name[0],
1272 		"raid%d-%s", conf->level, mdname(conf->mddev));
1273 	sprintf(conf->cache_name[1],
1274 		"raid%d-%s-alt", conf->level, mdname(conf->mddev));
1275 	conf->active_name = 0;
1276 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
1277 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1278 			       0, 0, NULL);
1279 	if (!sc)
1280 		return 1;
1281 	conf->slab_cache = sc;
1282 	conf->pool_size = devs;
1283 	while (num--)
1284 		if (!grow_one_stripe(conf))
1285 			return 1;
1286 	return 0;
1287 }
1288 
1289 /**
1290  * scribble_len - return the required size of the scribble region
1291  * @num - total number of disks in the array
1292  *
1293  * The size must be enough to contain:
1294  * 1/ a struct page pointer for each device in the array +2
1295  * 2/ room to convert each entry in (1) to its corresponding dma
1296  *    (dma_map_page()) or page (page_address()) address.
1297  *
1298  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1299  * calculate over all devices (not just the data blocks), using zeros in place
1300  * of the P and Q blocks.
1301  */
1302 static size_t scribble_len(int num)
1303 {
1304 	size_t len;
1305 
1306 	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1307 
1308 	return len;
1309 }
1310 
1311 static int resize_stripes(raid5_conf_t *conf, int newsize)
1312 {
1313 	/* Make all the stripes able to hold 'newsize' devices.
1314 	 * New slots in each stripe get 'page' set to a new page.
1315 	 *
1316 	 * This happens in stages:
1317 	 * 1/ create a new kmem_cache and allocate the required number of
1318 	 *    stripe_heads.
1319 	 * 2/ gather all the old stripe_heads and tranfer the pages across
1320 	 *    to the new stripe_heads.  This will have the side effect of
1321 	 *    freezing the array as once all stripe_heads have been collected,
1322 	 *    no IO will be possible.  Old stripe heads are freed once their
1323 	 *    pages have been transferred over, and the old kmem_cache is
1324 	 *    freed when all stripes are done.
1325 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1326 	 *    we simple return a failre status - no need to clean anything up.
1327 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
1328 	 *    If this fails, we don't bother trying the shrink the
1329 	 *    stripe_heads down again, we just leave them as they are.
1330 	 *    As each stripe_head is processed the new one is released into
1331 	 *    active service.
1332 	 *
1333 	 * Once step2 is started, we cannot afford to wait for a write,
1334 	 * so we use GFP_NOIO allocations.
1335 	 */
1336 	struct stripe_head *osh, *nsh;
1337 	LIST_HEAD(newstripes);
1338 	struct disk_info *ndisks;
1339 	unsigned long cpu;
1340 	int err;
1341 	struct kmem_cache *sc;
1342 	int i;
1343 
1344 	if (newsize <= conf->pool_size)
1345 		return 0; /* never bother to shrink */
1346 
1347 	err = md_allow_write(conf->mddev);
1348 	if (err)
1349 		return err;
1350 
1351 	/* Step 1 */
1352 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1353 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1354 			       0, 0, NULL);
1355 	if (!sc)
1356 		return -ENOMEM;
1357 
1358 	for (i = conf->max_nr_stripes; i; i--) {
1359 		nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1360 		if (!nsh)
1361 			break;
1362 
1363 		memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1364 
1365 		nsh->raid_conf = conf;
1366 		spin_lock_init(&nsh->lock);
1367 		#ifdef CONFIG_MULTICORE_RAID456
1368 		init_waitqueue_head(&nsh->ops.wait_for_ops);
1369 		#endif
1370 
1371 		list_add(&nsh->lru, &newstripes);
1372 	}
1373 	if (i) {
1374 		/* didn't get enough, give up */
1375 		while (!list_empty(&newstripes)) {
1376 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
1377 			list_del(&nsh->lru);
1378 			kmem_cache_free(sc, nsh);
1379 		}
1380 		kmem_cache_destroy(sc);
1381 		return -ENOMEM;
1382 	}
1383 	/* Step 2 - Must use GFP_NOIO now.
1384 	 * OK, we have enough stripes, start collecting inactive
1385 	 * stripes and copying them over
1386 	 */
1387 	list_for_each_entry(nsh, &newstripes, lru) {
1388 		spin_lock_irq(&conf->device_lock);
1389 		wait_event_lock_irq(conf->wait_for_stripe,
1390 				    !list_empty(&conf->inactive_list),
1391 				    conf->device_lock,
1392 				    unplug_slaves(conf->mddev)
1393 			);
1394 		osh = get_free_stripe(conf);
1395 		spin_unlock_irq(&conf->device_lock);
1396 		atomic_set(&nsh->count, 1);
1397 		for(i=0; i<conf->pool_size; i++)
1398 			nsh->dev[i].page = osh->dev[i].page;
1399 		for( ; i<newsize; i++)
1400 			nsh->dev[i].page = NULL;
1401 		kmem_cache_free(conf->slab_cache, osh);
1402 	}
1403 	kmem_cache_destroy(conf->slab_cache);
1404 
1405 	/* Step 3.
1406 	 * At this point, we are holding all the stripes so the array
1407 	 * is completely stalled, so now is a good time to resize
1408 	 * conf->disks and the scribble region
1409 	 */
1410 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1411 	if (ndisks) {
1412 		for (i=0; i<conf->raid_disks; i++)
1413 			ndisks[i] = conf->disks[i];
1414 		kfree(conf->disks);
1415 		conf->disks = ndisks;
1416 	} else
1417 		err = -ENOMEM;
1418 
1419 	get_online_cpus();
1420 	conf->scribble_len = scribble_len(newsize);
1421 	for_each_present_cpu(cpu) {
1422 		struct raid5_percpu *percpu;
1423 		void *scribble;
1424 
1425 		percpu = per_cpu_ptr(conf->percpu, cpu);
1426 		scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1427 
1428 		if (scribble) {
1429 			kfree(percpu->scribble);
1430 			percpu->scribble = scribble;
1431 		} else {
1432 			err = -ENOMEM;
1433 			break;
1434 		}
1435 	}
1436 	put_online_cpus();
1437 
1438 	/* Step 4, return new stripes to service */
1439 	while(!list_empty(&newstripes)) {
1440 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
1441 		list_del_init(&nsh->lru);
1442 
1443 		for (i=conf->raid_disks; i < newsize; i++)
1444 			if (nsh->dev[i].page == NULL) {
1445 				struct page *p = alloc_page(GFP_NOIO);
1446 				nsh->dev[i].page = p;
1447 				if (!p)
1448 					err = -ENOMEM;
1449 			}
1450 		release_stripe(nsh);
1451 	}
1452 	/* critical section pass, GFP_NOIO no longer needed */
1453 
1454 	conf->slab_cache = sc;
1455 	conf->active_name = 1-conf->active_name;
1456 	conf->pool_size = newsize;
1457 	return err;
1458 }
1459 
1460 static int drop_one_stripe(raid5_conf_t *conf)
1461 {
1462 	struct stripe_head *sh;
1463 
1464 	spin_lock_irq(&conf->device_lock);
1465 	sh = get_free_stripe(conf);
1466 	spin_unlock_irq(&conf->device_lock);
1467 	if (!sh)
1468 		return 0;
1469 	BUG_ON(atomic_read(&sh->count));
1470 	shrink_buffers(sh, conf->pool_size);
1471 	kmem_cache_free(conf->slab_cache, sh);
1472 	atomic_dec(&conf->active_stripes);
1473 	return 1;
1474 }
1475 
1476 static void shrink_stripes(raid5_conf_t *conf)
1477 {
1478 	while (drop_one_stripe(conf))
1479 		;
1480 
1481 	if (conf->slab_cache)
1482 		kmem_cache_destroy(conf->slab_cache);
1483 	conf->slab_cache = NULL;
1484 }
1485 
1486 static void raid5_end_read_request(struct bio * bi, int error)
1487 {
1488 	struct stripe_head *sh = bi->bi_private;
1489 	raid5_conf_t *conf = sh->raid_conf;
1490 	int disks = sh->disks, i;
1491 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1492 	char b[BDEVNAME_SIZE];
1493 	mdk_rdev_t *rdev;
1494 
1495 
1496 	for (i=0 ; i<disks; i++)
1497 		if (bi == &sh->dev[i].req)
1498 			break;
1499 
1500 	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1501 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1502 		uptodate);
1503 	if (i == disks) {
1504 		BUG();
1505 		return;
1506 	}
1507 
1508 	if (uptodate) {
1509 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1510 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1511 			rdev = conf->disks[i].rdev;
1512 			printk_rl(KERN_INFO "raid5:%s: read error corrected"
1513 				  " (%lu sectors at %llu on %s)\n",
1514 				  mdname(conf->mddev), STRIPE_SECTORS,
1515 				  (unsigned long long)(sh->sector
1516 						       + rdev->data_offset),
1517 				  bdevname(rdev->bdev, b));
1518 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1519 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1520 		}
1521 		if (atomic_read(&conf->disks[i].rdev->read_errors))
1522 			atomic_set(&conf->disks[i].rdev->read_errors, 0);
1523 	} else {
1524 		const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1525 		int retry = 0;
1526 		rdev = conf->disks[i].rdev;
1527 
1528 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1529 		atomic_inc(&rdev->read_errors);
1530 		if (conf->mddev->degraded)
1531 			printk_rl(KERN_WARNING
1532 				  "raid5:%s: read error not correctable "
1533 				  "(sector %llu on %s).\n",
1534 				  mdname(conf->mddev),
1535 				  (unsigned long long)(sh->sector
1536 						       + rdev->data_offset),
1537 				  bdn);
1538 		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1539 			/* Oh, no!!! */
1540 			printk_rl(KERN_WARNING
1541 				  "raid5:%s: read error NOT corrected!! "
1542 				  "(sector %llu on %s).\n",
1543 				  mdname(conf->mddev),
1544 				  (unsigned long long)(sh->sector
1545 						       + rdev->data_offset),
1546 				  bdn);
1547 		else if (atomic_read(&rdev->read_errors)
1548 			 > conf->max_nr_stripes)
1549 			printk(KERN_WARNING
1550 			       "raid5:%s: Too many read errors, failing device %s.\n",
1551 			       mdname(conf->mddev), bdn);
1552 		else
1553 			retry = 1;
1554 		if (retry)
1555 			set_bit(R5_ReadError, &sh->dev[i].flags);
1556 		else {
1557 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1558 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1559 			md_error(conf->mddev, rdev);
1560 		}
1561 	}
1562 	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1563 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1564 	set_bit(STRIPE_HANDLE, &sh->state);
1565 	release_stripe(sh);
1566 }
1567 
1568 static void raid5_end_write_request(struct bio *bi, int error)
1569 {
1570 	struct stripe_head *sh = bi->bi_private;
1571 	raid5_conf_t *conf = sh->raid_conf;
1572 	int disks = sh->disks, i;
1573 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1574 
1575 	for (i=0 ; i<disks; i++)
1576 		if (bi == &sh->dev[i].req)
1577 			break;
1578 
1579 	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1580 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1581 		uptodate);
1582 	if (i == disks) {
1583 		BUG();
1584 		return;
1585 	}
1586 
1587 	if (!uptodate)
1588 		md_error(conf->mddev, conf->disks[i].rdev);
1589 
1590 	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1591 
1592 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1593 	set_bit(STRIPE_HANDLE, &sh->state);
1594 	release_stripe(sh);
1595 }
1596 
1597 
1598 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1599 
1600 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1601 {
1602 	struct r5dev *dev = &sh->dev[i];
1603 
1604 	bio_init(&dev->req);
1605 	dev->req.bi_io_vec = &dev->vec;
1606 	dev->req.bi_vcnt++;
1607 	dev->req.bi_max_vecs++;
1608 	dev->vec.bv_page = dev->page;
1609 	dev->vec.bv_len = STRIPE_SIZE;
1610 	dev->vec.bv_offset = 0;
1611 
1612 	dev->req.bi_sector = sh->sector;
1613 	dev->req.bi_private = sh;
1614 
1615 	dev->flags = 0;
1616 	dev->sector = compute_blocknr(sh, i, previous);
1617 }
1618 
1619 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1620 {
1621 	char b[BDEVNAME_SIZE];
1622 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1623 	pr_debug("raid5: error called\n");
1624 
1625 	if (!test_bit(Faulty, &rdev->flags)) {
1626 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1627 		if (test_and_clear_bit(In_sync, &rdev->flags)) {
1628 			unsigned long flags;
1629 			spin_lock_irqsave(&conf->device_lock, flags);
1630 			mddev->degraded++;
1631 			spin_unlock_irqrestore(&conf->device_lock, flags);
1632 			/*
1633 			 * if recovery was running, make sure it aborts.
1634 			 */
1635 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1636 		}
1637 		set_bit(Faulty, &rdev->flags);
1638 		printk(KERN_ALERT
1639 		       "raid5: Disk failure on %s, disabling device.\n"
1640 		       "raid5: Operation continuing on %d devices.\n",
1641 		       bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1642 	}
1643 }
1644 
1645 /*
1646  * Input: a 'big' sector number,
1647  * Output: index of the data and parity disk, and the sector # in them.
1648  */
1649 static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1650 				     int previous, int *dd_idx,
1651 				     struct stripe_head *sh)
1652 {
1653 	sector_t stripe;
1654 	sector_t chunk_number;
1655 	unsigned int chunk_offset;
1656 	int pd_idx, qd_idx;
1657 	int ddf_layout = 0;
1658 	sector_t new_sector;
1659 	int algorithm = previous ? conf->prev_algo
1660 				 : conf->algorithm;
1661 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1662 					 : conf->chunk_sectors;
1663 	int raid_disks = previous ? conf->previous_raid_disks
1664 				  : conf->raid_disks;
1665 	int data_disks = raid_disks - conf->max_degraded;
1666 
1667 	/* First compute the information on this sector */
1668 
1669 	/*
1670 	 * Compute the chunk number and the sector offset inside the chunk
1671 	 */
1672 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
1673 	chunk_number = r_sector;
1674 
1675 	/*
1676 	 * Compute the stripe number
1677 	 */
1678 	stripe = chunk_number;
1679 	*dd_idx = sector_div(stripe, data_disks);
1680 
1681 	/*
1682 	 * Select the parity disk based on the user selected algorithm.
1683 	 */
1684 	pd_idx = qd_idx = ~0;
1685 	switch(conf->level) {
1686 	case 4:
1687 		pd_idx = data_disks;
1688 		break;
1689 	case 5:
1690 		switch (algorithm) {
1691 		case ALGORITHM_LEFT_ASYMMETRIC:
1692 			pd_idx = data_disks - stripe % raid_disks;
1693 			if (*dd_idx >= pd_idx)
1694 				(*dd_idx)++;
1695 			break;
1696 		case ALGORITHM_RIGHT_ASYMMETRIC:
1697 			pd_idx = stripe % raid_disks;
1698 			if (*dd_idx >= pd_idx)
1699 				(*dd_idx)++;
1700 			break;
1701 		case ALGORITHM_LEFT_SYMMETRIC:
1702 			pd_idx = data_disks - stripe % raid_disks;
1703 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1704 			break;
1705 		case ALGORITHM_RIGHT_SYMMETRIC:
1706 			pd_idx = stripe % raid_disks;
1707 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1708 			break;
1709 		case ALGORITHM_PARITY_0:
1710 			pd_idx = 0;
1711 			(*dd_idx)++;
1712 			break;
1713 		case ALGORITHM_PARITY_N:
1714 			pd_idx = data_disks;
1715 			break;
1716 		default:
1717 			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1718 				algorithm);
1719 			BUG();
1720 		}
1721 		break;
1722 	case 6:
1723 
1724 		switch (algorithm) {
1725 		case ALGORITHM_LEFT_ASYMMETRIC:
1726 			pd_idx = raid_disks - 1 - (stripe % raid_disks);
1727 			qd_idx = pd_idx + 1;
1728 			if (pd_idx == raid_disks-1) {
1729 				(*dd_idx)++;	/* Q D D D P */
1730 				qd_idx = 0;
1731 			} else if (*dd_idx >= pd_idx)
1732 				(*dd_idx) += 2; /* D D P Q D */
1733 			break;
1734 		case ALGORITHM_RIGHT_ASYMMETRIC:
1735 			pd_idx = stripe % raid_disks;
1736 			qd_idx = pd_idx + 1;
1737 			if (pd_idx == raid_disks-1) {
1738 				(*dd_idx)++;	/* Q D D D P */
1739 				qd_idx = 0;
1740 			} else if (*dd_idx >= pd_idx)
1741 				(*dd_idx) += 2; /* D D P Q D */
1742 			break;
1743 		case ALGORITHM_LEFT_SYMMETRIC:
1744 			pd_idx = raid_disks - 1 - (stripe % raid_disks);
1745 			qd_idx = (pd_idx + 1) % raid_disks;
1746 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1747 			break;
1748 		case ALGORITHM_RIGHT_SYMMETRIC:
1749 			pd_idx = stripe % raid_disks;
1750 			qd_idx = (pd_idx + 1) % raid_disks;
1751 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1752 			break;
1753 
1754 		case ALGORITHM_PARITY_0:
1755 			pd_idx = 0;
1756 			qd_idx = 1;
1757 			(*dd_idx) += 2;
1758 			break;
1759 		case ALGORITHM_PARITY_N:
1760 			pd_idx = data_disks;
1761 			qd_idx = data_disks + 1;
1762 			break;
1763 
1764 		case ALGORITHM_ROTATING_ZERO_RESTART:
1765 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
1766 			 * of blocks for computing Q is different.
1767 			 */
1768 			pd_idx = stripe % raid_disks;
1769 			qd_idx = pd_idx + 1;
1770 			if (pd_idx == raid_disks-1) {
1771 				(*dd_idx)++;	/* Q D D D P */
1772 				qd_idx = 0;
1773 			} else if (*dd_idx >= pd_idx)
1774 				(*dd_idx) += 2; /* D D P Q D */
1775 			ddf_layout = 1;
1776 			break;
1777 
1778 		case ALGORITHM_ROTATING_N_RESTART:
1779 			/* Same a left_asymmetric, by first stripe is
1780 			 * D D D P Q  rather than
1781 			 * Q D D D P
1782 			 */
1783 			pd_idx = raid_disks - 1 - ((stripe + 1) % raid_disks);
1784 			qd_idx = pd_idx + 1;
1785 			if (pd_idx == raid_disks-1) {
1786 				(*dd_idx)++;	/* Q D D D P */
1787 				qd_idx = 0;
1788 			} else if (*dd_idx >= pd_idx)
1789 				(*dd_idx) += 2; /* D D P Q D */
1790 			ddf_layout = 1;
1791 			break;
1792 
1793 		case ALGORITHM_ROTATING_N_CONTINUE:
1794 			/* Same as left_symmetric but Q is before P */
1795 			pd_idx = raid_disks - 1 - (stripe % raid_disks);
1796 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1797 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1798 			ddf_layout = 1;
1799 			break;
1800 
1801 		case ALGORITHM_LEFT_ASYMMETRIC_6:
1802 			/* RAID5 left_asymmetric, with Q on last device */
1803 			pd_idx = data_disks - stripe % (raid_disks-1);
1804 			if (*dd_idx >= pd_idx)
1805 				(*dd_idx)++;
1806 			qd_idx = raid_disks - 1;
1807 			break;
1808 
1809 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
1810 			pd_idx = stripe % (raid_disks-1);
1811 			if (*dd_idx >= pd_idx)
1812 				(*dd_idx)++;
1813 			qd_idx = raid_disks - 1;
1814 			break;
1815 
1816 		case ALGORITHM_LEFT_SYMMETRIC_6:
1817 			pd_idx = data_disks - stripe % (raid_disks-1);
1818 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1819 			qd_idx = raid_disks - 1;
1820 			break;
1821 
1822 		case ALGORITHM_RIGHT_SYMMETRIC_6:
1823 			pd_idx = stripe % (raid_disks-1);
1824 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1825 			qd_idx = raid_disks - 1;
1826 			break;
1827 
1828 		case ALGORITHM_PARITY_0_6:
1829 			pd_idx = 0;
1830 			(*dd_idx)++;
1831 			qd_idx = raid_disks - 1;
1832 			break;
1833 
1834 
1835 		default:
1836 			printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1837 			       algorithm);
1838 			BUG();
1839 		}
1840 		break;
1841 	}
1842 
1843 	if (sh) {
1844 		sh->pd_idx = pd_idx;
1845 		sh->qd_idx = qd_idx;
1846 		sh->ddf_layout = ddf_layout;
1847 	}
1848 	/*
1849 	 * Finally, compute the new sector number
1850 	 */
1851 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1852 	return new_sector;
1853 }
1854 
1855 
1856 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1857 {
1858 	raid5_conf_t *conf = sh->raid_conf;
1859 	int raid_disks = sh->disks;
1860 	int data_disks = raid_disks - conf->max_degraded;
1861 	sector_t new_sector = sh->sector, check;
1862 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1863 					 : conf->chunk_sectors;
1864 	int algorithm = previous ? conf->prev_algo
1865 				 : conf->algorithm;
1866 	sector_t stripe;
1867 	int chunk_offset;
1868 	sector_t chunk_number;
1869 	int dummy1, dd_idx = i;
1870 	sector_t r_sector;
1871 	struct stripe_head sh2;
1872 
1873 
1874 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
1875 	stripe = new_sector;
1876 
1877 	if (i == sh->pd_idx)
1878 		return 0;
1879 	switch(conf->level) {
1880 	case 4: break;
1881 	case 5:
1882 		switch (algorithm) {
1883 		case ALGORITHM_LEFT_ASYMMETRIC:
1884 		case ALGORITHM_RIGHT_ASYMMETRIC:
1885 			if (i > sh->pd_idx)
1886 				i--;
1887 			break;
1888 		case ALGORITHM_LEFT_SYMMETRIC:
1889 		case ALGORITHM_RIGHT_SYMMETRIC:
1890 			if (i < sh->pd_idx)
1891 				i += raid_disks;
1892 			i -= (sh->pd_idx + 1);
1893 			break;
1894 		case ALGORITHM_PARITY_0:
1895 			i -= 1;
1896 			break;
1897 		case ALGORITHM_PARITY_N:
1898 			break;
1899 		default:
1900 			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1901 			       algorithm);
1902 			BUG();
1903 		}
1904 		break;
1905 	case 6:
1906 		if (i == sh->qd_idx)
1907 			return 0; /* It is the Q disk */
1908 		switch (algorithm) {
1909 		case ALGORITHM_LEFT_ASYMMETRIC:
1910 		case ALGORITHM_RIGHT_ASYMMETRIC:
1911 		case ALGORITHM_ROTATING_ZERO_RESTART:
1912 		case ALGORITHM_ROTATING_N_RESTART:
1913 			if (sh->pd_idx == raid_disks-1)
1914 				i--;	/* Q D D D P */
1915 			else if (i > sh->pd_idx)
1916 				i -= 2; /* D D P Q D */
1917 			break;
1918 		case ALGORITHM_LEFT_SYMMETRIC:
1919 		case ALGORITHM_RIGHT_SYMMETRIC:
1920 			if (sh->pd_idx == raid_disks-1)
1921 				i--; /* Q D D D P */
1922 			else {
1923 				/* D D P Q D */
1924 				if (i < sh->pd_idx)
1925 					i += raid_disks;
1926 				i -= (sh->pd_idx + 2);
1927 			}
1928 			break;
1929 		case ALGORITHM_PARITY_0:
1930 			i -= 2;
1931 			break;
1932 		case ALGORITHM_PARITY_N:
1933 			break;
1934 		case ALGORITHM_ROTATING_N_CONTINUE:
1935 			/* Like left_symmetric, but P is before Q */
1936 			if (sh->pd_idx == 0)
1937 				i--;	/* P D D D Q */
1938 			else {
1939 				/* D D Q P D */
1940 				if (i < sh->pd_idx)
1941 					i += raid_disks;
1942 				i -= (sh->pd_idx + 1);
1943 			}
1944 			break;
1945 		case ALGORITHM_LEFT_ASYMMETRIC_6:
1946 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
1947 			if (i > sh->pd_idx)
1948 				i--;
1949 			break;
1950 		case ALGORITHM_LEFT_SYMMETRIC_6:
1951 		case ALGORITHM_RIGHT_SYMMETRIC_6:
1952 			if (i < sh->pd_idx)
1953 				i += data_disks + 1;
1954 			i -= (sh->pd_idx + 1);
1955 			break;
1956 		case ALGORITHM_PARITY_0_6:
1957 			i -= 1;
1958 			break;
1959 		default:
1960 			printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1961 			       algorithm);
1962 			BUG();
1963 		}
1964 		break;
1965 	}
1966 
1967 	chunk_number = stripe * data_disks + i;
1968 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
1969 
1970 	check = raid5_compute_sector(conf, r_sector,
1971 				     previous, &dummy1, &sh2);
1972 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
1973 		|| sh2.qd_idx != sh->qd_idx) {
1974 		printk(KERN_ERR "compute_blocknr: map not correct\n");
1975 		return 0;
1976 	}
1977 	return r_sector;
1978 }
1979 
1980 
1981 static void
1982 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
1983 			 int rcw, int expand)
1984 {
1985 	int i, pd_idx = sh->pd_idx, disks = sh->disks;
1986 	raid5_conf_t *conf = sh->raid_conf;
1987 	int level = conf->level;
1988 
1989 	if (rcw) {
1990 		/* if we are not expanding this is a proper write request, and
1991 		 * there will be bios with new data to be drained into the
1992 		 * stripe cache
1993 		 */
1994 		if (!expand) {
1995 			sh->reconstruct_state = reconstruct_state_drain_run;
1996 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1997 		} else
1998 			sh->reconstruct_state = reconstruct_state_run;
1999 
2000 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2001 
2002 		for (i = disks; i--; ) {
2003 			struct r5dev *dev = &sh->dev[i];
2004 
2005 			if (dev->towrite) {
2006 				set_bit(R5_LOCKED, &dev->flags);
2007 				set_bit(R5_Wantdrain, &dev->flags);
2008 				if (!expand)
2009 					clear_bit(R5_UPTODATE, &dev->flags);
2010 				s->locked++;
2011 			}
2012 		}
2013 		if (s->locked + conf->max_degraded == disks)
2014 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2015 				atomic_inc(&conf->pending_full_writes);
2016 	} else {
2017 		BUG_ON(level == 6);
2018 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2019 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2020 
2021 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2022 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2023 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2024 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2025 
2026 		for (i = disks; i--; ) {
2027 			struct r5dev *dev = &sh->dev[i];
2028 			if (i == pd_idx)
2029 				continue;
2030 
2031 			if (dev->towrite &&
2032 			    (test_bit(R5_UPTODATE, &dev->flags) ||
2033 			     test_bit(R5_Wantcompute, &dev->flags))) {
2034 				set_bit(R5_Wantdrain, &dev->flags);
2035 				set_bit(R5_LOCKED, &dev->flags);
2036 				clear_bit(R5_UPTODATE, &dev->flags);
2037 				s->locked++;
2038 			}
2039 		}
2040 	}
2041 
2042 	/* keep the parity disk(s) locked while asynchronous operations
2043 	 * are in flight
2044 	 */
2045 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2046 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2047 	s->locked++;
2048 
2049 	if (level == 6) {
2050 		int qd_idx = sh->qd_idx;
2051 		struct r5dev *dev = &sh->dev[qd_idx];
2052 
2053 		set_bit(R5_LOCKED, &dev->flags);
2054 		clear_bit(R5_UPTODATE, &dev->flags);
2055 		s->locked++;
2056 	}
2057 
2058 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2059 		__func__, (unsigned long long)sh->sector,
2060 		s->locked, s->ops_request);
2061 }
2062 
2063 /*
2064  * Each stripe/dev can have one or more bion attached.
2065  * toread/towrite point to the first in a chain.
2066  * The bi_next chain must be in order.
2067  */
2068 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2069 {
2070 	struct bio **bip;
2071 	raid5_conf_t *conf = sh->raid_conf;
2072 	int firstwrite=0;
2073 
2074 	pr_debug("adding bh b#%llu to stripe s#%llu\n",
2075 		(unsigned long long)bi->bi_sector,
2076 		(unsigned long long)sh->sector);
2077 
2078 
2079 	spin_lock(&sh->lock);
2080 	spin_lock_irq(&conf->device_lock);
2081 	if (forwrite) {
2082 		bip = &sh->dev[dd_idx].towrite;
2083 		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2084 			firstwrite = 1;
2085 	} else
2086 		bip = &sh->dev[dd_idx].toread;
2087 	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2088 		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2089 			goto overlap;
2090 		bip = & (*bip)->bi_next;
2091 	}
2092 	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2093 		goto overlap;
2094 
2095 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2096 	if (*bip)
2097 		bi->bi_next = *bip;
2098 	*bip = bi;
2099 	bi->bi_phys_segments++;
2100 	spin_unlock_irq(&conf->device_lock);
2101 	spin_unlock(&sh->lock);
2102 
2103 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2104 		(unsigned long long)bi->bi_sector,
2105 		(unsigned long long)sh->sector, dd_idx);
2106 
2107 	if (conf->mddev->bitmap && firstwrite) {
2108 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2109 				  STRIPE_SECTORS, 0);
2110 		sh->bm_seq = conf->seq_flush+1;
2111 		set_bit(STRIPE_BIT_DELAY, &sh->state);
2112 	}
2113 
2114 	if (forwrite) {
2115 		/* check if page is covered */
2116 		sector_t sector = sh->dev[dd_idx].sector;
2117 		for (bi=sh->dev[dd_idx].towrite;
2118 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2119 			     bi && bi->bi_sector <= sector;
2120 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2121 			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2122 				sector = bi->bi_sector + (bi->bi_size>>9);
2123 		}
2124 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2125 			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2126 	}
2127 	return 1;
2128 
2129  overlap:
2130 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2131 	spin_unlock_irq(&conf->device_lock);
2132 	spin_unlock(&sh->lock);
2133 	return 0;
2134 }
2135 
2136 static void end_reshape(raid5_conf_t *conf);
2137 
2138 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2139 			    struct stripe_head *sh)
2140 {
2141 	int sectors_per_chunk =
2142 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2143 	int dd_idx;
2144 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2145 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2146 
2147 	raid5_compute_sector(conf,
2148 			     stripe * (disks - conf->max_degraded)
2149 			     *sectors_per_chunk + chunk_offset,
2150 			     previous,
2151 			     &dd_idx, sh);
2152 }
2153 
2154 static void
2155 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2156 				struct stripe_head_state *s, int disks,
2157 				struct bio **return_bi)
2158 {
2159 	int i;
2160 	for (i = disks; i--; ) {
2161 		struct bio *bi;
2162 		int bitmap_end = 0;
2163 
2164 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2165 			mdk_rdev_t *rdev;
2166 			rcu_read_lock();
2167 			rdev = rcu_dereference(conf->disks[i].rdev);
2168 			if (rdev && test_bit(In_sync, &rdev->flags))
2169 				/* multiple read failures in one stripe */
2170 				md_error(conf->mddev, rdev);
2171 			rcu_read_unlock();
2172 		}
2173 		spin_lock_irq(&conf->device_lock);
2174 		/* fail all writes first */
2175 		bi = sh->dev[i].towrite;
2176 		sh->dev[i].towrite = NULL;
2177 		if (bi) {
2178 			s->to_write--;
2179 			bitmap_end = 1;
2180 		}
2181 
2182 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2183 			wake_up(&conf->wait_for_overlap);
2184 
2185 		while (bi && bi->bi_sector <
2186 			sh->dev[i].sector + STRIPE_SECTORS) {
2187 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2188 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2189 			if (!raid5_dec_bi_phys_segments(bi)) {
2190 				md_write_end(conf->mddev);
2191 				bi->bi_next = *return_bi;
2192 				*return_bi = bi;
2193 			}
2194 			bi = nextbi;
2195 		}
2196 		/* and fail all 'written' */
2197 		bi = sh->dev[i].written;
2198 		sh->dev[i].written = NULL;
2199 		if (bi) bitmap_end = 1;
2200 		while (bi && bi->bi_sector <
2201 		       sh->dev[i].sector + STRIPE_SECTORS) {
2202 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2203 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2204 			if (!raid5_dec_bi_phys_segments(bi)) {
2205 				md_write_end(conf->mddev);
2206 				bi->bi_next = *return_bi;
2207 				*return_bi = bi;
2208 			}
2209 			bi = bi2;
2210 		}
2211 
2212 		/* fail any reads if this device is non-operational and
2213 		 * the data has not reached the cache yet.
2214 		 */
2215 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2216 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2217 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2218 			bi = sh->dev[i].toread;
2219 			sh->dev[i].toread = NULL;
2220 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2221 				wake_up(&conf->wait_for_overlap);
2222 			if (bi) s->to_read--;
2223 			while (bi && bi->bi_sector <
2224 			       sh->dev[i].sector + STRIPE_SECTORS) {
2225 				struct bio *nextbi =
2226 					r5_next_bio(bi, sh->dev[i].sector);
2227 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2228 				if (!raid5_dec_bi_phys_segments(bi)) {
2229 					bi->bi_next = *return_bi;
2230 					*return_bi = bi;
2231 				}
2232 				bi = nextbi;
2233 			}
2234 		}
2235 		spin_unlock_irq(&conf->device_lock);
2236 		if (bitmap_end)
2237 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2238 					STRIPE_SECTORS, 0, 0);
2239 	}
2240 
2241 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2242 		if (atomic_dec_and_test(&conf->pending_full_writes))
2243 			md_wakeup_thread(conf->mddev->thread);
2244 }
2245 
2246 /* fetch_block5 - checks the given member device to see if its data needs
2247  * to be read or computed to satisfy a request.
2248  *
2249  * Returns 1 when no more member devices need to be checked, otherwise returns
2250  * 0 to tell the loop in handle_stripe_fill5 to continue
2251  */
2252 static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2253 			int disk_idx, int disks)
2254 {
2255 	struct r5dev *dev = &sh->dev[disk_idx];
2256 	struct r5dev *failed_dev = &sh->dev[s->failed_num];
2257 
2258 	/* is the data in this block needed, and can we get it? */
2259 	if (!test_bit(R5_LOCKED, &dev->flags) &&
2260 	    !test_bit(R5_UPTODATE, &dev->flags) &&
2261 	    (dev->toread ||
2262 	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2263 	     s->syncing || s->expanding ||
2264 	     (s->failed &&
2265 	      (failed_dev->toread ||
2266 	       (failed_dev->towrite &&
2267 		!test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2268 		/* We would like to get this block, possibly by computing it,
2269 		 * otherwise read it if the backing disk is insync
2270 		 */
2271 		if ((s->uptodate == disks - 1) &&
2272 		    (s->failed && disk_idx == s->failed_num)) {
2273 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2274 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2275 			set_bit(R5_Wantcompute, &dev->flags);
2276 			sh->ops.target = disk_idx;
2277 			sh->ops.target2 = -1;
2278 			s->req_compute = 1;
2279 			/* Careful: from this point on 'uptodate' is in the eye
2280 			 * of raid_run_ops which services 'compute' operations
2281 			 * before writes. R5_Wantcompute flags a block that will
2282 			 * be R5_UPTODATE by the time it is needed for a
2283 			 * subsequent operation.
2284 			 */
2285 			s->uptodate++;
2286 			return 1; /* uptodate + compute == disks */
2287 		} else if (test_bit(R5_Insync, &dev->flags)) {
2288 			set_bit(R5_LOCKED, &dev->flags);
2289 			set_bit(R5_Wantread, &dev->flags);
2290 			s->locked++;
2291 			pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2292 				s->syncing);
2293 		}
2294 	}
2295 
2296 	return 0;
2297 }
2298 
2299 /**
2300  * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2301  */
2302 static void handle_stripe_fill5(struct stripe_head *sh,
2303 			struct stripe_head_state *s, int disks)
2304 {
2305 	int i;
2306 
2307 	/* look for blocks to read/compute, skip this if a compute
2308 	 * is already in flight, or if the stripe contents are in the
2309 	 * midst of changing due to a write
2310 	 */
2311 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2312 	    !sh->reconstruct_state)
2313 		for (i = disks; i--; )
2314 			if (fetch_block5(sh, s, i, disks))
2315 				break;
2316 	set_bit(STRIPE_HANDLE, &sh->state);
2317 }
2318 
2319 /* fetch_block6 - checks the given member device to see if its data needs
2320  * to be read or computed to satisfy a request.
2321  *
2322  * Returns 1 when no more member devices need to be checked, otherwise returns
2323  * 0 to tell the loop in handle_stripe_fill6 to continue
2324  */
2325 static int fetch_block6(struct stripe_head *sh, struct stripe_head_state *s,
2326 			 struct r6_state *r6s, int disk_idx, int disks)
2327 {
2328 	struct r5dev *dev = &sh->dev[disk_idx];
2329 	struct r5dev *fdev[2] = { &sh->dev[r6s->failed_num[0]],
2330 				  &sh->dev[r6s->failed_num[1]] };
2331 
2332 	if (!test_bit(R5_LOCKED, &dev->flags) &&
2333 	    !test_bit(R5_UPTODATE, &dev->flags) &&
2334 	    (dev->toread ||
2335 	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2336 	     s->syncing || s->expanding ||
2337 	     (s->failed >= 1 &&
2338 	      (fdev[0]->toread || s->to_write)) ||
2339 	     (s->failed >= 2 &&
2340 	      (fdev[1]->toread || s->to_write)))) {
2341 		/* we would like to get this block, possibly by computing it,
2342 		 * otherwise read it if the backing disk is insync
2343 		 */
2344 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2345 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
2346 		if ((s->uptodate == disks - 1) &&
2347 		    (s->failed && (disk_idx == r6s->failed_num[0] ||
2348 				   disk_idx == r6s->failed_num[1]))) {
2349 			/* have disk failed, and we're requested to fetch it;
2350 			 * do compute it
2351 			 */
2352 			pr_debug("Computing stripe %llu block %d\n",
2353 			       (unsigned long long)sh->sector, disk_idx);
2354 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2355 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2356 			set_bit(R5_Wantcompute, &dev->flags);
2357 			sh->ops.target = disk_idx;
2358 			sh->ops.target2 = -1; /* no 2nd target */
2359 			s->req_compute = 1;
2360 			s->uptodate++;
2361 			return 1;
2362 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
2363 			/* Computing 2-failure is *very* expensive; only
2364 			 * do it if failed >= 2
2365 			 */
2366 			int other;
2367 			for (other = disks; other--; ) {
2368 				if (other == disk_idx)
2369 					continue;
2370 				if (!test_bit(R5_UPTODATE,
2371 				      &sh->dev[other].flags))
2372 					break;
2373 			}
2374 			BUG_ON(other < 0);
2375 			pr_debug("Computing stripe %llu blocks %d,%d\n",
2376 			       (unsigned long long)sh->sector,
2377 			       disk_idx, other);
2378 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2379 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2380 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2381 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
2382 			sh->ops.target = disk_idx;
2383 			sh->ops.target2 = other;
2384 			s->uptodate += 2;
2385 			s->req_compute = 1;
2386 			return 1;
2387 		} else if (test_bit(R5_Insync, &dev->flags)) {
2388 			set_bit(R5_LOCKED, &dev->flags);
2389 			set_bit(R5_Wantread, &dev->flags);
2390 			s->locked++;
2391 			pr_debug("Reading block %d (sync=%d)\n",
2392 				disk_idx, s->syncing);
2393 		}
2394 	}
2395 
2396 	return 0;
2397 }
2398 
2399 /**
2400  * handle_stripe_fill6 - read or compute data to satisfy pending requests.
2401  */
2402 static void handle_stripe_fill6(struct stripe_head *sh,
2403 			struct stripe_head_state *s, struct r6_state *r6s,
2404 			int disks)
2405 {
2406 	int i;
2407 
2408 	/* look for blocks to read/compute, skip this if a compute
2409 	 * is already in flight, or if the stripe contents are in the
2410 	 * midst of changing due to a write
2411 	 */
2412 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2413 	    !sh->reconstruct_state)
2414 		for (i = disks; i--; )
2415 			if (fetch_block6(sh, s, r6s, i, disks))
2416 				break;
2417 	set_bit(STRIPE_HANDLE, &sh->state);
2418 }
2419 
2420 
2421 /* handle_stripe_clean_event
2422  * any written block on an uptodate or failed drive can be returned.
2423  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2424  * never LOCKED, so we don't need to test 'failed' directly.
2425  */
2426 static void handle_stripe_clean_event(raid5_conf_t *conf,
2427 	struct stripe_head *sh, int disks, struct bio **return_bi)
2428 {
2429 	int i;
2430 	struct r5dev *dev;
2431 
2432 	for (i = disks; i--; )
2433 		if (sh->dev[i].written) {
2434 			dev = &sh->dev[i];
2435 			if (!test_bit(R5_LOCKED, &dev->flags) &&
2436 				test_bit(R5_UPTODATE, &dev->flags)) {
2437 				/* We can return any write requests */
2438 				struct bio *wbi, *wbi2;
2439 				int bitmap_end = 0;
2440 				pr_debug("Return write for disc %d\n", i);
2441 				spin_lock_irq(&conf->device_lock);
2442 				wbi = dev->written;
2443 				dev->written = NULL;
2444 				while (wbi && wbi->bi_sector <
2445 					dev->sector + STRIPE_SECTORS) {
2446 					wbi2 = r5_next_bio(wbi, dev->sector);
2447 					if (!raid5_dec_bi_phys_segments(wbi)) {
2448 						md_write_end(conf->mddev);
2449 						wbi->bi_next = *return_bi;
2450 						*return_bi = wbi;
2451 					}
2452 					wbi = wbi2;
2453 				}
2454 				if (dev->towrite == NULL)
2455 					bitmap_end = 1;
2456 				spin_unlock_irq(&conf->device_lock);
2457 				if (bitmap_end)
2458 					bitmap_endwrite(conf->mddev->bitmap,
2459 							sh->sector,
2460 							STRIPE_SECTORS,
2461 					 !test_bit(STRIPE_DEGRADED, &sh->state),
2462 							0);
2463 			}
2464 		}
2465 
2466 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2467 		if (atomic_dec_and_test(&conf->pending_full_writes))
2468 			md_wakeup_thread(conf->mddev->thread);
2469 }
2470 
2471 static void handle_stripe_dirtying5(raid5_conf_t *conf,
2472 		struct stripe_head *sh,	struct stripe_head_state *s, int disks)
2473 {
2474 	int rmw = 0, rcw = 0, i;
2475 	for (i = disks; i--; ) {
2476 		/* would I have to read this buffer for read_modify_write */
2477 		struct r5dev *dev = &sh->dev[i];
2478 		if ((dev->towrite || i == sh->pd_idx) &&
2479 		    !test_bit(R5_LOCKED, &dev->flags) &&
2480 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2481 		      test_bit(R5_Wantcompute, &dev->flags))) {
2482 			if (test_bit(R5_Insync, &dev->flags))
2483 				rmw++;
2484 			else
2485 				rmw += 2*disks;  /* cannot read it */
2486 		}
2487 		/* Would I have to read this buffer for reconstruct_write */
2488 		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2489 		    !test_bit(R5_LOCKED, &dev->flags) &&
2490 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2491 		    test_bit(R5_Wantcompute, &dev->flags))) {
2492 			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2493 			else
2494 				rcw += 2*disks;
2495 		}
2496 	}
2497 	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2498 		(unsigned long long)sh->sector, rmw, rcw);
2499 	set_bit(STRIPE_HANDLE, &sh->state);
2500 	if (rmw < rcw && rmw > 0)
2501 		/* prefer read-modify-write, but need to get some data */
2502 		for (i = disks; i--; ) {
2503 			struct r5dev *dev = &sh->dev[i];
2504 			if ((dev->towrite || i == sh->pd_idx) &&
2505 			    !test_bit(R5_LOCKED, &dev->flags) &&
2506 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2507 			    test_bit(R5_Wantcompute, &dev->flags)) &&
2508 			    test_bit(R5_Insync, &dev->flags)) {
2509 				if (
2510 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2511 					pr_debug("Read_old block "
2512 						"%d for r-m-w\n", i);
2513 					set_bit(R5_LOCKED, &dev->flags);
2514 					set_bit(R5_Wantread, &dev->flags);
2515 					s->locked++;
2516 				} else {
2517 					set_bit(STRIPE_DELAYED, &sh->state);
2518 					set_bit(STRIPE_HANDLE, &sh->state);
2519 				}
2520 			}
2521 		}
2522 	if (rcw <= rmw && rcw > 0)
2523 		/* want reconstruct write, but need to get some data */
2524 		for (i = disks; i--; ) {
2525 			struct r5dev *dev = &sh->dev[i];
2526 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2527 			    i != sh->pd_idx &&
2528 			    !test_bit(R5_LOCKED, &dev->flags) &&
2529 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2530 			    test_bit(R5_Wantcompute, &dev->flags)) &&
2531 			    test_bit(R5_Insync, &dev->flags)) {
2532 				if (
2533 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2534 					pr_debug("Read_old block "
2535 						"%d for Reconstruct\n", i);
2536 					set_bit(R5_LOCKED, &dev->flags);
2537 					set_bit(R5_Wantread, &dev->flags);
2538 					s->locked++;
2539 				} else {
2540 					set_bit(STRIPE_DELAYED, &sh->state);
2541 					set_bit(STRIPE_HANDLE, &sh->state);
2542 				}
2543 			}
2544 		}
2545 	/* now if nothing is locked, and if we have enough data,
2546 	 * we can start a write request
2547 	 */
2548 	/* since handle_stripe can be called at any time we need to handle the
2549 	 * case where a compute block operation has been submitted and then a
2550 	 * subsequent call wants to start a write request.  raid_run_ops only
2551 	 * handles the case where compute block and reconstruct are requested
2552 	 * simultaneously.  If this is not the case then new writes need to be
2553 	 * held off until the compute completes.
2554 	 */
2555 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2556 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2557 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2558 		schedule_reconstruction(sh, s, rcw == 0, 0);
2559 }
2560 
2561 static void handle_stripe_dirtying6(raid5_conf_t *conf,
2562 		struct stripe_head *sh,	struct stripe_head_state *s,
2563 		struct r6_state *r6s, int disks)
2564 {
2565 	int rcw = 0, pd_idx = sh->pd_idx, i;
2566 	int qd_idx = sh->qd_idx;
2567 
2568 	set_bit(STRIPE_HANDLE, &sh->state);
2569 	for (i = disks; i--; ) {
2570 		struct r5dev *dev = &sh->dev[i];
2571 		/* check if we haven't enough data */
2572 		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2573 		    i != pd_idx && i != qd_idx &&
2574 		    !test_bit(R5_LOCKED, &dev->flags) &&
2575 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2576 		      test_bit(R5_Wantcompute, &dev->flags))) {
2577 			rcw++;
2578 			if (!test_bit(R5_Insync, &dev->flags))
2579 				continue; /* it's a failed drive */
2580 
2581 			if (
2582 			  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2583 				pr_debug("Read_old stripe %llu "
2584 					"block %d for Reconstruct\n",
2585 				     (unsigned long long)sh->sector, i);
2586 				set_bit(R5_LOCKED, &dev->flags);
2587 				set_bit(R5_Wantread, &dev->flags);
2588 				s->locked++;
2589 			} else {
2590 				pr_debug("Request delayed stripe %llu "
2591 					"block %d for Reconstruct\n",
2592 				     (unsigned long long)sh->sector, i);
2593 				set_bit(STRIPE_DELAYED, &sh->state);
2594 				set_bit(STRIPE_HANDLE, &sh->state);
2595 			}
2596 		}
2597 	}
2598 	/* now if nothing is locked, and if we have enough data, we can start a
2599 	 * write request
2600 	 */
2601 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2602 	    s->locked == 0 && rcw == 0 &&
2603 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2604 		schedule_reconstruction(sh, s, 1, 0);
2605 	}
2606 }
2607 
2608 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2609 				struct stripe_head_state *s, int disks)
2610 {
2611 	struct r5dev *dev = NULL;
2612 
2613 	set_bit(STRIPE_HANDLE, &sh->state);
2614 
2615 	switch (sh->check_state) {
2616 	case check_state_idle:
2617 		/* start a new check operation if there are no failures */
2618 		if (s->failed == 0) {
2619 			BUG_ON(s->uptodate != disks);
2620 			sh->check_state = check_state_run;
2621 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2622 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2623 			s->uptodate--;
2624 			break;
2625 		}
2626 		dev = &sh->dev[s->failed_num];
2627 		/* fall through */
2628 	case check_state_compute_result:
2629 		sh->check_state = check_state_idle;
2630 		if (!dev)
2631 			dev = &sh->dev[sh->pd_idx];
2632 
2633 		/* check that a write has not made the stripe insync */
2634 		if (test_bit(STRIPE_INSYNC, &sh->state))
2635 			break;
2636 
2637 		/* either failed parity check, or recovery is happening */
2638 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2639 		BUG_ON(s->uptodate != disks);
2640 
2641 		set_bit(R5_LOCKED, &dev->flags);
2642 		s->locked++;
2643 		set_bit(R5_Wantwrite, &dev->flags);
2644 
2645 		clear_bit(STRIPE_DEGRADED, &sh->state);
2646 		set_bit(STRIPE_INSYNC, &sh->state);
2647 		break;
2648 	case check_state_run:
2649 		break; /* we will be called again upon completion */
2650 	case check_state_check_result:
2651 		sh->check_state = check_state_idle;
2652 
2653 		/* if a failure occurred during the check operation, leave
2654 		 * STRIPE_INSYNC not set and let the stripe be handled again
2655 		 */
2656 		if (s->failed)
2657 			break;
2658 
2659 		/* handle a successful check operation, if parity is correct
2660 		 * we are done.  Otherwise update the mismatch count and repair
2661 		 * parity if !MD_RECOVERY_CHECK
2662 		 */
2663 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2664 			/* parity is correct (on disc,
2665 			 * not in buffer any more)
2666 			 */
2667 			set_bit(STRIPE_INSYNC, &sh->state);
2668 		else {
2669 			conf->mddev->resync_mismatches += STRIPE_SECTORS;
2670 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2671 				/* don't try to repair!! */
2672 				set_bit(STRIPE_INSYNC, &sh->state);
2673 			else {
2674 				sh->check_state = check_state_compute_run;
2675 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2676 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2677 				set_bit(R5_Wantcompute,
2678 					&sh->dev[sh->pd_idx].flags);
2679 				sh->ops.target = sh->pd_idx;
2680 				sh->ops.target2 = -1;
2681 				s->uptodate++;
2682 			}
2683 		}
2684 		break;
2685 	case check_state_compute_run:
2686 		break;
2687 	default:
2688 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2689 		       __func__, sh->check_state,
2690 		       (unsigned long long) sh->sector);
2691 		BUG();
2692 	}
2693 }
2694 
2695 
2696 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2697 				  struct stripe_head_state *s,
2698 				  struct r6_state *r6s, int disks)
2699 {
2700 	int pd_idx = sh->pd_idx;
2701 	int qd_idx = sh->qd_idx;
2702 	struct r5dev *dev;
2703 
2704 	set_bit(STRIPE_HANDLE, &sh->state);
2705 
2706 	BUG_ON(s->failed > 2);
2707 
2708 	/* Want to check and possibly repair P and Q.
2709 	 * However there could be one 'failed' device, in which
2710 	 * case we can only check one of them, possibly using the
2711 	 * other to generate missing data
2712 	 */
2713 
2714 	switch (sh->check_state) {
2715 	case check_state_idle:
2716 		/* start a new check operation if there are < 2 failures */
2717 		if (s->failed == r6s->q_failed) {
2718 			/* The only possible failed device holds Q, so it
2719 			 * makes sense to check P (If anything else were failed,
2720 			 * we would have used P to recreate it).
2721 			 */
2722 			sh->check_state = check_state_run;
2723 		}
2724 		if (!r6s->q_failed && s->failed < 2) {
2725 			/* Q is not failed, and we didn't use it to generate
2726 			 * anything, so it makes sense to check it
2727 			 */
2728 			if (sh->check_state == check_state_run)
2729 				sh->check_state = check_state_run_pq;
2730 			else
2731 				sh->check_state = check_state_run_q;
2732 		}
2733 
2734 		/* discard potentially stale zero_sum_result */
2735 		sh->ops.zero_sum_result = 0;
2736 
2737 		if (sh->check_state == check_state_run) {
2738 			/* async_xor_zero_sum destroys the contents of P */
2739 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2740 			s->uptodate--;
2741 		}
2742 		if (sh->check_state >= check_state_run &&
2743 		    sh->check_state <= check_state_run_pq) {
2744 			/* async_syndrome_zero_sum preserves P and Q, so
2745 			 * no need to mark them !uptodate here
2746 			 */
2747 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2748 			break;
2749 		}
2750 
2751 		/* we have 2-disk failure */
2752 		BUG_ON(s->failed != 2);
2753 		/* fall through */
2754 	case check_state_compute_result:
2755 		sh->check_state = check_state_idle;
2756 
2757 		/* check that a write has not made the stripe insync */
2758 		if (test_bit(STRIPE_INSYNC, &sh->state))
2759 			break;
2760 
2761 		/* now write out any block on a failed drive,
2762 		 * or P or Q if they were recomputed
2763 		 */
2764 		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2765 		if (s->failed == 2) {
2766 			dev = &sh->dev[r6s->failed_num[1]];
2767 			s->locked++;
2768 			set_bit(R5_LOCKED, &dev->flags);
2769 			set_bit(R5_Wantwrite, &dev->flags);
2770 		}
2771 		if (s->failed >= 1) {
2772 			dev = &sh->dev[r6s->failed_num[0]];
2773 			s->locked++;
2774 			set_bit(R5_LOCKED, &dev->flags);
2775 			set_bit(R5_Wantwrite, &dev->flags);
2776 		}
2777 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2778 			dev = &sh->dev[pd_idx];
2779 			s->locked++;
2780 			set_bit(R5_LOCKED, &dev->flags);
2781 			set_bit(R5_Wantwrite, &dev->flags);
2782 		}
2783 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2784 			dev = &sh->dev[qd_idx];
2785 			s->locked++;
2786 			set_bit(R5_LOCKED, &dev->flags);
2787 			set_bit(R5_Wantwrite, &dev->flags);
2788 		}
2789 		clear_bit(STRIPE_DEGRADED, &sh->state);
2790 
2791 		set_bit(STRIPE_INSYNC, &sh->state);
2792 		break;
2793 	case check_state_run:
2794 	case check_state_run_q:
2795 	case check_state_run_pq:
2796 		break; /* we will be called again upon completion */
2797 	case check_state_check_result:
2798 		sh->check_state = check_state_idle;
2799 
2800 		/* handle a successful check operation, if parity is correct
2801 		 * we are done.  Otherwise update the mismatch count and repair
2802 		 * parity if !MD_RECOVERY_CHECK
2803 		 */
2804 		if (sh->ops.zero_sum_result == 0) {
2805 			/* both parities are correct */
2806 			if (!s->failed)
2807 				set_bit(STRIPE_INSYNC, &sh->state);
2808 			else {
2809 				/* in contrast to the raid5 case we can validate
2810 				 * parity, but still have a failure to write
2811 				 * back
2812 				 */
2813 				sh->check_state = check_state_compute_result;
2814 				/* Returning at this point means that we may go
2815 				 * off and bring p and/or q uptodate again so
2816 				 * we make sure to check zero_sum_result again
2817 				 * to verify if p or q need writeback
2818 				 */
2819 			}
2820 		} else {
2821 			conf->mddev->resync_mismatches += STRIPE_SECTORS;
2822 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2823 				/* don't try to repair!! */
2824 				set_bit(STRIPE_INSYNC, &sh->state);
2825 			else {
2826 				int *target = &sh->ops.target;
2827 
2828 				sh->ops.target = -1;
2829 				sh->ops.target2 = -1;
2830 				sh->check_state = check_state_compute_run;
2831 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2832 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2833 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2834 					set_bit(R5_Wantcompute,
2835 						&sh->dev[pd_idx].flags);
2836 					*target = pd_idx;
2837 					target = &sh->ops.target2;
2838 					s->uptodate++;
2839 				}
2840 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2841 					set_bit(R5_Wantcompute,
2842 						&sh->dev[qd_idx].flags);
2843 					*target = qd_idx;
2844 					s->uptodate++;
2845 				}
2846 			}
2847 		}
2848 		break;
2849 	case check_state_compute_run:
2850 		break;
2851 	default:
2852 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2853 		       __func__, sh->check_state,
2854 		       (unsigned long long) sh->sector);
2855 		BUG();
2856 	}
2857 }
2858 
2859 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2860 				struct r6_state *r6s)
2861 {
2862 	int i;
2863 
2864 	/* We have read all the blocks in this stripe and now we need to
2865 	 * copy some of them into a target stripe for expand.
2866 	 */
2867 	struct dma_async_tx_descriptor *tx = NULL;
2868 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2869 	for (i = 0; i < sh->disks; i++)
2870 		if (i != sh->pd_idx && i != sh->qd_idx) {
2871 			int dd_idx, j;
2872 			struct stripe_head *sh2;
2873 			struct async_submit_ctl submit;
2874 
2875 			sector_t bn = compute_blocknr(sh, i, 1);
2876 			sector_t s = raid5_compute_sector(conf, bn, 0,
2877 							  &dd_idx, NULL);
2878 			sh2 = get_active_stripe(conf, s, 0, 1, 1);
2879 			if (sh2 == NULL)
2880 				/* so far only the early blocks of this stripe
2881 				 * have been requested.  When later blocks
2882 				 * get requested, we will try again
2883 				 */
2884 				continue;
2885 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2886 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2887 				/* must have already done this block */
2888 				release_stripe(sh2);
2889 				continue;
2890 			}
2891 
2892 			/* place all the copies on one channel */
2893 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2894 			tx = async_memcpy(sh2->dev[dd_idx].page,
2895 					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
2896 					  &submit);
2897 
2898 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2899 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2900 			for (j = 0; j < conf->raid_disks; j++)
2901 				if (j != sh2->pd_idx &&
2902 				    (!r6s || j != sh2->qd_idx) &&
2903 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
2904 					break;
2905 			if (j == conf->raid_disks) {
2906 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
2907 				set_bit(STRIPE_HANDLE, &sh2->state);
2908 			}
2909 			release_stripe(sh2);
2910 
2911 		}
2912 	/* done submitting copies, wait for them to complete */
2913 	if (tx) {
2914 		async_tx_ack(tx);
2915 		dma_wait_for_async_tx(tx);
2916 	}
2917 }
2918 
2919 
2920 /*
2921  * handle_stripe - do things to a stripe.
2922  *
2923  * We lock the stripe and then examine the state of various bits
2924  * to see what needs to be done.
2925  * Possible results:
2926  *    return some read request which now have data
2927  *    return some write requests which are safely on disc
2928  *    schedule a read on some buffers
2929  *    schedule a write of some buffers
2930  *    return confirmation of parity correctness
2931  *
2932  * buffers are taken off read_list or write_list, and bh_cache buffers
2933  * get BH_Lock set before the stripe lock is released.
2934  *
2935  */
2936 
2937 static void handle_stripe5(struct stripe_head *sh)
2938 {
2939 	raid5_conf_t *conf = sh->raid_conf;
2940 	int disks = sh->disks, i;
2941 	struct bio *return_bi = NULL;
2942 	struct stripe_head_state s;
2943 	struct r5dev *dev;
2944 	mdk_rdev_t *blocked_rdev = NULL;
2945 	int prexor;
2946 	int dec_preread_active = 0;
2947 
2948 	memset(&s, 0, sizeof(s));
2949 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
2950 		 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
2951 		 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
2952 		 sh->reconstruct_state);
2953 
2954 	spin_lock(&sh->lock);
2955 	clear_bit(STRIPE_HANDLE, &sh->state);
2956 	clear_bit(STRIPE_DELAYED, &sh->state);
2957 
2958 	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2959 	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2960 	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2961 
2962 	/* Now to look around and see what can be done */
2963 	rcu_read_lock();
2964 	for (i=disks; i--; ) {
2965 		mdk_rdev_t *rdev;
2966 
2967 		dev = &sh->dev[i];
2968 		clear_bit(R5_Insync, &dev->flags);
2969 
2970 		pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2971 			"written %p\n",	i, dev->flags, dev->toread, dev->read,
2972 			dev->towrite, dev->written);
2973 
2974 		/* maybe we can request a biofill operation
2975 		 *
2976 		 * new wantfill requests are only permitted while
2977 		 * ops_complete_biofill is guaranteed to be inactive
2978 		 */
2979 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2980 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2981 			set_bit(R5_Wantfill, &dev->flags);
2982 
2983 		/* now count some things */
2984 		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2985 		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2986 		if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2987 
2988 		if (test_bit(R5_Wantfill, &dev->flags))
2989 			s.to_fill++;
2990 		else if (dev->toread)
2991 			s.to_read++;
2992 		if (dev->towrite) {
2993 			s.to_write++;
2994 			if (!test_bit(R5_OVERWRITE, &dev->flags))
2995 				s.non_overwrite++;
2996 		}
2997 		if (dev->written)
2998 			s.written++;
2999 		rdev = rcu_dereference(conf->disks[i].rdev);
3000 		if (blocked_rdev == NULL &&
3001 		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3002 			blocked_rdev = rdev;
3003 			atomic_inc(&rdev->nr_pending);
3004 		}
3005 		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3006 			/* The ReadError flag will just be confusing now */
3007 			clear_bit(R5_ReadError, &dev->flags);
3008 			clear_bit(R5_ReWrite, &dev->flags);
3009 		}
3010 		if (!rdev || !test_bit(In_sync, &rdev->flags)
3011 		    || test_bit(R5_ReadError, &dev->flags)) {
3012 			s.failed++;
3013 			s.failed_num = i;
3014 		} else
3015 			set_bit(R5_Insync, &dev->flags);
3016 	}
3017 	rcu_read_unlock();
3018 
3019 	if (unlikely(blocked_rdev)) {
3020 		if (s.syncing || s.expanding || s.expanded ||
3021 		    s.to_write || s.written) {
3022 			set_bit(STRIPE_HANDLE, &sh->state);
3023 			goto unlock;
3024 		}
3025 		/* There is nothing for the blocked_rdev to block */
3026 		rdev_dec_pending(blocked_rdev, conf->mddev);
3027 		blocked_rdev = NULL;
3028 	}
3029 
3030 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3031 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3032 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3033 	}
3034 
3035 	pr_debug("locked=%d uptodate=%d to_read=%d"
3036 		" to_write=%d failed=%d failed_num=%d\n",
3037 		s.locked, s.uptodate, s.to_read, s.to_write,
3038 		s.failed, s.failed_num);
3039 	/* check if the array has lost two devices and, if so, some requests might
3040 	 * need to be failed
3041 	 */
3042 	if (s.failed > 1 && s.to_read+s.to_write+s.written)
3043 		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3044 	if (s.failed > 1 && s.syncing) {
3045 		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3046 		clear_bit(STRIPE_SYNCING, &sh->state);
3047 		s.syncing = 0;
3048 	}
3049 
3050 	/* might be able to return some write requests if the parity block
3051 	 * is safe, or on a failed drive
3052 	 */
3053 	dev = &sh->dev[sh->pd_idx];
3054 	if ( s.written &&
3055 	     ((test_bit(R5_Insync, &dev->flags) &&
3056 	       !test_bit(R5_LOCKED, &dev->flags) &&
3057 	       test_bit(R5_UPTODATE, &dev->flags)) ||
3058 	       (s.failed == 1 && s.failed_num == sh->pd_idx)))
3059 		handle_stripe_clean_event(conf, sh, disks, &return_bi);
3060 
3061 	/* Now we might consider reading some blocks, either to check/generate
3062 	 * parity, or to satisfy requests
3063 	 * or to load a block that is being partially written.
3064 	 */
3065 	if (s.to_read || s.non_overwrite ||
3066 	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3067 		handle_stripe_fill5(sh, &s, disks);
3068 
3069 	/* Now we check to see if any write operations have recently
3070 	 * completed
3071 	 */
3072 	prexor = 0;
3073 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3074 		prexor = 1;
3075 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
3076 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3077 		sh->reconstruct_state = reconstruct_state_idle;
3078 
3079 		/* All the 'written' buffers and the parity block are ready to
3080 		 * be written back to disk
3081 		 */
3082 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3083 		for (i = disks; i--; ) {
3084 			dev = &sh->dev[i];
3085 			if (test_bit(R5_LOCKED, &dev->flags) &&
3086 				(i == sh->pd_idx || dev->written)) {
3087 				pr_debug("Writing block %d\n", i);
3088 				set_bit(R5_Wantwrite, &dev->flags);
3089 				if (prexor)
3090 					continue;
3091 				if (!test_bit(R5_Insync, &dev->flags) ||
3092 				    (i == sh->pd_idx && s.failed == 0))
3093 					set_bit(STRIPE_INSYNC, &sh->state);
3094 			}
3095 		}
3096 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3097 			dec_preread_active = 1;
3098 	}
3099 
3100 	/* Now to consider new write requests and what else, if anything
3101 	 * should be read.  We do not handle new writes when:
3102 	 * 1/ A 'write' operation (copy+xor) is already in flight.
3103 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
3104 	 *    block.
3105 	 */
3106 	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3107 		handle_stripe_dirtying5(conf, sh, &s, disks);
3108 
3109 	/* maybe we need to check and possibly fix the parity for this stripe
3110 	 * Any reads will already have been scheduled, so we just see if enough
3111 	 * data is available.  The parity check is held off while parity
3112 	 * dependent operations are in flight.
3113 	 */
3114 	if (sh->check_state ||
3115 	    (s.syncing && s.locked == 0 &&
3116 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3117 	     !test_bit(STRIPE_INSYNC, &sh->state)))
3118 		handle_parity_checks5(conf, sh, &s, disks);
3119 
3120 	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3121 		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3122 		clear_bit(STRIPE_SYNCING, &sh->state);
3123 	}
3124 
3125 	/* If the failed drive is just a ReadError, then we might need to progress
3126 	 * the repair/check process
3127 	 */
3128 	if (s.failed == 1 && !conf->mddev->ro &&
3129 	    test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
3130 	    && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
3131 	    && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
3132 		) {
3133 		dev = &sh->dev[s.failed_num];
3134 		if (!test_bit(R5_ReWrite, &dev->flags)) {
3135 			set_bit(R5_Wantwrite, &dev->flags);
3136 			set_bit(R5_ReWrite, &dev->flags);
3137 			set_bit(R5_LOCKED, &dev->flags);
3138 			s.locked++;
3139 		} else {
3140 			/* let's read it back */
3141 			set_bit(R5_Wantread, &dev->flags);
3142 			set_bit(R5_LOCKED, &dev->flags);
3143 			s.locked++;
3144 		}
3145 	}
3146 
3147 	/* Finish reconstruct operations initiated by the expansion process */
3148 	if (sh->reconstruct_state == reconstruct_state_result) {
3149 		struct stripe_head *sh2
3150 			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3151 		if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3152 			/* sh cannot be written until sh2 has been read.
3153 			 * so arrange for sh to be delayed a little
3154 			 */
3155 			set_bit(STRIPE_DELAYED, &sh->state);
3156 			set_bit(STRIPE_HANDLE, &sh->state);
3157 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3158 					      &sh2->state))
3159 				atomic_inc(&conf->preread_active_stripes);
3160 			release_stripe(sh2);
3161 			goto unlock;
3162 		}
3163 		if (sh2)
3164 			release_stripe(sh2);
3165 
3166 		sh->reconstruct_state = reconstruct_state_idle;
3167 		clear_bit(STRIPE_EXPANDING, &sh->state);
3168 		for (i = conf->raid_disks; i--; ) {
3169 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
3170 			set_bit(R5_LOCKED, &sh->dev[i].flags);
3171 			s.locked++;
3172 		}
3173 	}
3174 
3175 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3176 	    !sh->reconstruct_state) {
3177 		/* Need to write out all blocks after computing parity */
3178 		sh->disks = conf->raid_disks;
3179 		stripe_set_idx(sh->sector, conf, 0, sh);
3180 		schedule_reconstruction(sh, &s, 1, 1);
3181 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3182 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3183 		atomic_dec(&conf->reshape_stripes);
3184 		wake_up(&conf->wait_for_overlap);
3185 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3186 	}
3187 
3188 	if (s.expanding && s.locked == 0 &&
3189 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3190 		handle_stripe_expansion(conf, sh, NULL);
3191 
3192  unlock:
3193 	spin_unlock(&sh->lock);
3194 
3195 	/* wait for this device to become unblocked */
3196 	if (unlikely(blocked_rdev))
3197 		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3198 
3199 	if (s.ops_request)
3200 		raid_run_ops(sh, s.ops_request);
3201 
3202 	ops_run_io(sh, &s);
3203 
3204 	if (dec_preread_active) {
3205 		/* We delay this until after ops_run_io so that if make_request
3206 		 * is waiting on a barrier, it won't continue until the writes
3207 		 * have actually been submitted.
3208 		 */
3209 		atomic_dec(&conf->preread_active_stripes);
3210 		if (atomic_read(&conf->preread_active_stripes) <
3211 		    IO_THRESHOLD)
3212 			md_wakeup_thread(conf->mddev->thread);
3213 	}
3214 	return_io(return_bi);
3215 }
3216 
3217 static void handle_stripe6(struct stripe_head *sh)
3218 {
3219 	raid5_conf_t *conf = sh->raid_conf;
3220 	int disks = sh->disks;
3221 	struct bio *return_bi = NULL;
3222 	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3223 	struct stripe_head_state s;
3224 	struct r6_state r6s;
3225 	struct r5dev *dev, *pdev, *qdev;
3226 	mdk_rdev_t *blocked_rdev = NULL;
3227 	int dec_preread_active = 0;
3228 
3229 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3230 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3231 	       (unsigned long long)sh->sector, sh->state,
3232 	       atomic_read(&sh->count), pd_idx, qd_idx,
3233 	       sh->check_state, sh->reconstruct_state);
3234 	memset(&s, 0, sizeof(s));
3235 
3236 	spin_lock(&sh->lock);
3237 	clear_bit(STRIPE_HANDLE, &sh->state);
3238 	clear_bit(STRIPE_DELAYED, &sh->state);
3239 
3240 	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3241 	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3242 	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3243 	/* Now to look around and see what can be done */
3244 
3245 	rcu_read_lock();
3246 	for (i=disks; i--; ) {
3247 		mdk_rdev_t *rdev;
3248 		dev = &sh->dev[i];
3249 		clear_bit(R5_Insync, &dev->flags);
3250 
3251 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3252 			i, dev->flags, dev->toread, dev->towrite, dev->written);
3253 		/* maybe we can reply to a read
3254 		 *
3255 		 * new wantfill requests are only permitted while
3256 		 * ops_complete_biofill is guaranteed to be inactive
3257 		 */
3258 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3259 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3260 			set_bit(R5_Wantfill, &dev->flags);
3261 
3262 		/* now count some things */
3263 		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3264 		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3265 		if (test_bit(R5_Wantcompute, &dev->flags)) {
3266 			s.compute++;
3267 			BUG_ON(s.compute > 2);
3268 		}
3269 
3270 		if (test_bit(R5_Wantfill, &dev->flags)) {
3271 			s.to_fill++;
3272 		} else if (dev->toread)
3273 			s.to_read++;
3274 		if (dev->towrite) {
3275 			s.to_write++;
3276 			if (!test_bit(R5_OVERWRITE, &dev->flags))
3277 				s.non_overwrite++;
3278 		}
3279 		if (dev->written)
3280 			s.written++;
3281 		rdev = rcu_dereference(conf->disks[i].rdev);
3282 		if (blocked_rdev == NULL &&
3283 		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3284 			blocked_rdev = rdev;
3285 			atomic_inc(&rdev->nr_pending);
3286 		}
3287 		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3288 			/* The ReadError flag will just be confusing now */
3289 			clear_bit(R5_ReadError, &dev->flags);
3290 			clear_bit(R5_ReWrite, &dev->flags);
3291 		}
3292 		if (!rdev || !test_bit(In_sync, &rdev->flags)
3293 		    || test_bit(R5_ReadError, &dev->flags)) {
3294 			if (s.failed < 2)
3295 				r6s.failed_num[s.failed] = i;
3296 			s.failed++;
3297 		} else
3298 			set_bit(R5_Insync, &dev->flags);
3299 	}
3300 	rcu_read_unlock();
3301 
3302 	if (unlikely(blocked_rdev)) {
3303 		if (s.syncing || s.expanding || s.expanded ||
3304 		    s.to_write || s.written) {
3305 			set_bit(STRIPE_HANDLE, &sh->state);
3306 			goto unlock;
3307 		}
3308 		/* There is nothing for the blocked_rdev to block */
3309 		rdev_dec_pending(blocked_rdev, conf->mddev);
3310 		blocked_rdev = NULL;
3311 	}
3312 
3313 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3314 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3315 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3316 	}
3317 
3318 	pr_debug("locked=%d uptodate=%d to_read=%d"
3319 	       " to_write=%d failed=%d failed_num=%d,%d\n",
3320 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3321 	       r6s.failed_num[0], r6s.failed_num[1]);
3322 	/* check if the array has lost >2 devices and, if so, some requests
3323 	 * might need to be failed
3324 	 */
3325 	if (s.failed > 2 && s.to_read+s.to_write+s.written)
3326 		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3327 	if (s.failed > 2 && s.syncing) {
3328 		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3329 		clear_bit(STRIPE_SYNCING, &sh->state);
3330 		s.syncing = 0;
3331 	}
3332 
3333 	/*
3334 	 * might be able to return some write requests if the parity blocks
3335 	 * are safe, or on a failed drive
3336 	 */
3337 	pdev = &sh->dev[pd_idx];
3338 	r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3339 		|| (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3340 	qdev = &sh->dev[qd_idx];
3341 	r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
3342 		|| (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3343 
3344 	if ( s.written &&
3345 	     ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3346 			     && !test_bit(R5_LOCKED, &pdev->flags)
3347 			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3348 	     ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3349 			     && !test_bit(R5_LOCKED, &qdev->flags)
3350 			     && test_bit(R5_UPTODATE, &qdev->flags)))))
3351 		handle_stripe_clean_event(conf, sh, disks, &return_bi);
3352 
3353 	/* Now we might consider reading some blocks, either to check/generate
3354 	 * parity, or to satisfy requests
3355 	 * or to load a block that is being partially written.
3356 	 */
3357 	if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3358 	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3359 		handle_stripe_fill6(sh, &s, &r6s, disks);
3360 
3361 	/* Now we check to see if any write operations have recently
3362 	 * completed
3363 	 */
3364 	if (sh->reconstruct_state == reconstruct_state_drain_result) {
3365 
3366 		sh->reconstruct_state = reconstruct_state_idle;
3367 		/* All the 'written' buffers and the parity blocks are ready to
3368 		 * be written back to disk
3369 		 */
3370 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3371 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags));
3372 		for (i = disks; i--; ) {
3373 			dev = &sh->dev[i];
3374 			if (test_bit(R5_LOCKED, &dev->flags) &&
3375 			    (i == sh->pd_idx || i == qd_idx ||
3376 			     dev->written)) {
3377 				pr_debug("Writing block %d\n", i);
3378 				BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3379 				set_bit(R5_Wantwrite, &dev->flags);
3380 				if (!test_bit(R5_Insync, &dev->flags) ||
3381 				    ((i == sh->pd_idx || i == qd_idx) &&
3382 				      s.failed == 0))
3383 					set_bit(STRIPE_INSYNC, &sh->state);
3384 			}
3385 		}
3386 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3387 			dec_preread_active = 1;
3388 	}
3389 
3390 	/* Now to consider new write requests and what else, if anything
3391 	 * should be read.  We do not handle new writes when:
3392 	 * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
3393 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
3394 	 *    block.
3395 	 */
3396 	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3397 		handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3398 
3399 	/* maybe we need to check and possibly fix the parity for this stripe
3400 	 * Any reads will already have been scheduled, so we just see if enough
3401 	 * data is available.  The parity check is held off while parity
3402 	 * dependent operations are in flight.
3403 	 */
3404 	if (sh->check_state ||
3405 	    (s.syncing && s.locked == 0 &&
3406 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3407 	     !test_bit(STRIPE_INSYNC, &sh->state)))
3408 		handle_parity_checks6(conf, sh, &s, &r6s, disks);
3409 
3410 	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3411 		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3412 		clear_bit(STRIPE_SYNCING, &sh->state);
3413 	}
3414 
3415 	/* If the failed drives are just a ReadError, then we might need
3416 	 * to progress the repair/check process
3417 	 */
3418 	if (s.failed <= 2 && !conf->mddev->ro)
3419 		for (i = 0; i < s.failed; i++) {
3420 			dev = &sh->dev[r6s.failed_num[i]];
3421 			if (test_bit(R5_ReadError, &dev->flags)
3422 			    && !test_bit(R5_LOCKED, &dev->flags)
3423 			    && test_bit(R5_UPTODATE, &dev->flags)
3424 				) {
3425 				if (!test_bit(R5_ReWrite, &dev->flags)) {
3426 					set_bit(R5_Wantwrite, &dev->flags);
3427 					set_bit(R5_ReWrite, &dev->flags);
3428 					set_bit(R5_LOCKED, &dev->flags);
3429 					s.locked++;
3430 				} else {
3431 					/* let's read it back */
3432 					set_bit(R5_Wantread, &dev->flags);
3433 					set_bit(R5_LOCKED, &dev->flags);
3434 					s.locked++;
3435 				}
3436 			}
3437 		}
3438 
3439 	/* Finish reconstruct operations initiated by the expansion process */
3440 	if (sh->reconstruct_state == reconstruct_state_result) {
3441 		sh->reconstruct_state = reconstruct_state_idle;
3442 		clear_bit(STRIPE_EXPANDING, &sh->state);
3443 		for (i = conf->raid_disks; i--; ) {
3444 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
3445 			set_bit(R5_LOCKED, &sh->dev[i].flags);
3446 			s.locked++;
3447 		}
3448 	}
3449 
3450 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3451 	    !sh->reconstruct_state) {
3452 		struct stripe_head *sh2
3453 			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3454 		if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3455 			/* sh cannot be written until sh2 has been read.
3456 			 * so arrange for sh to be delayed a little
3457 			 */
3458 			set_bit(STRIPE_DELAYED, &sh->state);
3459 			set_bit(STRIPE_HANDLE, &sh->state);
3460 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3461 					      &sh2->state))
3462 				atomic_inc(&conf->preread_active_stripes);
3463 			release_stripe(sh2);
3464 			goto unlock;
3465 		}
3466 		if (sh2)
3467 			release_stripe(sh2);
3468 
3469 		/* Need to write out all blocks after computing P&Q */
3470 		sh->disks = conf->raid_disks;
3471 		stripe_set_idx(sh->sector, conf, 0, sh);
3472 		schedule_reconstruction(sh, &s, 1, 1);
3473 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3474 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3475 		atomic_dec(&conf->reshape_stripes);
3476 		wake_up(&conf->wait_for_overlap);
3477 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3478 	}
3479 
3480 	if (s.expanding && s.locked == 0 &&
3481 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3482 		handle_stripe_expansion(conf, sh, &r6s);
3483 
3484  unlock:
3485 	spin_unlock(&sh->lock);
3486 
3487 	/* wait for this device to become unblocked */
3488 	if (unlikely(blocked_rdev))
3489 		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3490 
3491 	if (s.ops_request)
3492 		raid_run_ops(sh, s.ops_request);
3493 
3494 	ops_run_io(sh, &s);
3495 
3496 
3497 	if (dec_preread_active) {
3498 		/* We delay this until after ops_run_io so that if make_request
3499 		 * is waiting on a barrier, it won't continue until the writes
3500 		 * have actually been submitted.
3501 		 */
3502 		atomic_dec(&conf->preread_active_stripes);
3503 		if (atomic_read(&conf->preread_active_stripes) <
3504 		    IO_THRESHOLD)
3505 			md_wakeup_thread(conf->mddev->thread);
3506 	}
3507 
3508 	return_io(return_bi);
3509 }
3510 
3511 static void handle_stripe(struct stripe_head *sh)
3512 {
3513 	if (sh->raid_conf->level == 6)
3514 		handle_stripe6(sh);
3515 	else
3516 		handle_stripe5(sh);
3517 }
3518 
3519 static void raid5_activate_delayed(raid5_conf_t *conf)
3520 {
3521 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3522 		while (!list_empty(&conf->delayed_list)) {
3523 			struct list_head *l = conf->delayed_list.next;
3524 			struct stripe_head *sh;
3525 			sh = list_entry(l, struct stripe_head, lru);
3526 			list_del_init(l);
3527 			clear_bit(STRIPE_DELAYED, &sh->state);
3528 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3529 				atomic_inc(&conf->preread_active_stripes);
3530 			list_add_tail(&sh->lru, &conf->hold_list);
3531 		}
3532 	} else
3533 		blk_plug_device(conf->mddev->queue);
3534 }
3535 
3536 static void activate_bit_delay(raid5_conf_t *conf)
3537 {
3538 	/* device_lock is held */
3539 	struct list_head head;
3540 	list_add(&head, &conf->bitmap_list);
3541 	list_del_init(&conf->bitmap_list);
3542 	while (!list_empty(&head)) {
3543 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3544 		list_del_init(&sh->lru);
3545 		atomic_inc(&sh->count);
3546 		__release_stripe(conf, sh);
3547 	}
3548 }
3549 
3550 static void unplug_slaves(mddev_t *mddev)
3551 {
3552 	raid5_conf_t *conf = mddev->private;
3553 	int i;
3554 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
3555 
3556 	rcu_read_lock();
3557 	for (i = 0; i < devs; i++) {
3558 		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3559 		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3560 			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3561 
3562 			atomic_inc(&rdev->nr_pending);
3563 			rcu_read_unlock();
3564 
3565 			blk_unplug(r_queue);
3566 
3567 			rdev_dec_pending(rdev, mddev);
3568 			rcu_read_lock();
3569 		}
3570 	}
3571 	rcu_read_unlock();
3572 }
3573 
3574 static void raid5_unplug_device(struct request_queue *q)
3575 {
3576 	mddev_t *mddev = q->queuedata;
3577 	raid5_conf_t *conf = mddev->private;
3578 	unsigned long flags;
3579 
3580 	spin_lock_irqsave(&conf->device_lock, flags);
3581 
3582 	if (blk_remove_plug(q)) {
3583 		conf->seq_flush++;
3584 		raid5_activate_delayed(conf);
3585 	}
3586 	md_wakeup_thread(mddev->thread);
3587 
3588 	spin_unlock_irqrestore(&conf->device_lock, flags);
3589 
3590 	unplug_slaves(mddev);
3591 }
3592 
3593 static int raid5_congested(void *data, int bits)
3594 {
3595 	mddev_t *mddev = data;
3596 	raid5_conf_t *conf = mddev->private;
3597 
3598 	/* No difference between reads and writes.  Just check
3599 	 * how busy the stripe_cache is
3600 	 */
3601 
3602 	if (mddev_congested(mddev, bits))
3603 		return 1;
3604 	if (conf->inactive_blocked)
3605 		return 1;
3606 	if (conf->quiesce)
3607 		return 1;
3608 	if (list_empty_careful(&conf->inactive_list))
3609 		return 1;
3610 
3611 	return 0;
3612 }
3613 
3614 /* We want read requests to align with chunks where possible,
3615  * but write requests don't need to.
3616  */
3617 static int raid5_mergeable_bvec(struct request_queue *q,
3618 				struct bvec_merge_data *bvm,
3619 				struct bio_vec *biovec)
3620 {
3621 	mddev_t *mddev = q->queuedata;
3622 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3623 	int max;
3624 	unsigned int chunk_sectors = mddev->chunk_sectors;
3625 	unsigned int bio_sectors = bvm->bi_size >> 9;
3626 
3627 	if ((bvm->bi_rw & 1) == WRITE)
3628 		return biovec->bv_len; /* always allow writes to be mergeable */
3629 
3630 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3631 		chunk_sectors = mddev->new_chunk_sectors;
3632 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3633 	if (max < 0) max = 0;
3634 	if (max <= biovec->bv_len && bio_sectors == 0)
3635 		return biovec->bv_len;
3636 	else
3637 		return max;
3638 }
3639 
3640 
3641 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3642 {
3643 	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3644 	unsigned int chunk_sectors = mddev->chunk_sectors;
3645 	unsigned int bio_sectors = bio->bi_size >> 9;
3646 
3647 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3648 		chunk_sectors = mddev->new_chunk_sectors;
3649 	return  chunk_sectors >=
3650 		((sector & (chunk_sectors - 1)) + bio_sectors);
3651 }
3652 
3653 /*
3654  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3655  *  later sampled by raid5d.
3656  */
3657 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3658 {
3659 	unsigned long flags;
3660 
3661 	spin_lock_irqsave(&conf->device_lock, flags);
3662 
3663 	bi->bi_next = conf->retry_read_aligned_list;
3664 	conf->retry_read_aligned_list = bi;
3665 
3666 	spin_unlock_irqrestore(&conf->device_lock, flags);
3667 	md_wakeup_thread(conf->mddev->thread);
3668 }
3669 
3670 
3671 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3672 {
3673 	struct bio *bi;
3674 
3675 	bi = conf->retry_read_aligned;
3676 	if (bi) {
3677 		conf->retry_read_aligned = NULL;
3678 		return bi;
3679 	}
3680 	bi = conf->retry_read_aligned_list;
3681 	if(bi) {
3682 		conf->retry_read_aligned_list = bi->bi_next;
3683 		bi->bi_next = NULL;
3684 		/*
3685 		 * this sets the active strip count to 1 and the processed
3686 		 * strip count to zero (upper 8 bits)
3687 		 */
3688 		bi->bi_phys_segments = 1; /* biased count of active stripes */
3689 	}
3690 
3691 	return bi;
3692 }
3693 
3694 
3695 /*
3696  *  The "raid5_align_endio" should check if the read succeeded and if it
3697  *  did, call bio_endio on the original bio (having bio_put the new bio
3698  *  first).
3699  *  If the read failed..
3700  */
3701 static void raid5_align_endio(struct bio *bi, int error)
3702 {
3703 	struct bio* raid_bi  = bi->bi_private;
3704 	mddev_t *mddev;
3705 	raid5_conf_t *conf;
3706 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3707 	mdk_rdev_t *rdev;
3708 
3709 	bio_put(bi);
3710 
3711 	mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3712 	conf = mddev->private;
3713 	rdev = (void*)raid_bi->bi_next;
3714 	raid_bi->bi_next = NULL;
3715 
3716 	rdev_dec_pending(rdev, conf->mddev);
3717 
3718 	if (!error && uptodate) {
3719 		bio_endio(raid_bi, 0);
3720 		if (atomic_dec_and_test(&conf->active_aligned_reads))
3721 			wake_up(&conf->wait_for_stripe);
3722 		return;
3723 	}
3724 
3725 
3726 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3727 
3728 	add_bio_to_retry(raid_bi, conf);
3729 }
3730 
3731 static int bio_fits_rdev(struct bio *bi)
3732 {
3733 	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3734 
3735 	if ((bi->bi_size>>9) > queue_max_sectors(q))
3736 		return 0;
3737 	blk_recount_segments(q, bi);
3738 	if (bi->bi_phys_segments > queue_max_segments(q))
3739 		return 0;
3740 
3741 	if (q->merge_bvec_fn)
3742 		/* it's too hard to apply the merge_bvec_fn at this stage,
3743 		 * just just give up
3744 		 */
3745 		return 0;
3746 
3747 	return 1;
3748 }
3749 
3750 
3751 static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3752 {
3753 	mddev_t *mddev = q->queuedata;
3754 	raid5_conf_t *conf = mddev->private;
3755 	int dd_idx;
3756 	struct bio* align_bi;
3757 	mdk_rdev_t *rdev;
3758 
3759 	if (!in_chunk_boundary(mddev, raid_bio)) {
3760 		pr_debug("chunk_aligned_read : non aligned\n");
3761 		return 0;
3762 	}
3763 	/*
3764 	 * use bio_clone to make a copy of the bio
3765 	 */
3766 	align_bi = bio_clone(raid_bio, GFP_NOIO);
3767 	if (!align_bi)
3768 		return 0;
3769 	/*
3770 	 *   set bi_end_io to a new function, and set bi_private to the
3771 	 *     original bio.
3772 	 */
3773 	align_bi->bi_end_io  = raid5_align_endio;
3774 	align_bi->bi_private = raid_bio;
3775 	/*
3776 	 *	compute position
3777 	 */
3778 	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3779 						    0,
3780 						    &dd_idx, NULL);
3781 
3782 	rcu_read_lock();
3783 	rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3784 	if (rdev && test_bit(In_sync, &rdev->flags)) {
3785 		atomic_inc(&rdev->nr_pending);
3786 		rcu_read_unlock();
3787 		raid_bio->bi_next = (void*)rdev;
3788 		align_bi->bi_bdev =  rdev->bdev;
3789 		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3790 		align_bi->bi_sector += rdev->data_offset;
3791 
3792 		if (!bio_fits_rdev(align_bi)) {
3793 			/* too big in some way */
3794 			bio_put(align_bi);
3795 			rdev_dec_pending(rdev, mddev);
3796 			return 0;
3797 		}
3798 
3799 		spin_lock_irq(&conf->device_lock);
3800 		wait_event_lock_irq(conf->wait_for_stripe,
3801 				    conf->quiesce == 0,
3802 				    conf->device_lock, /* nothing */);
3803 		atomic_inc(&conf->active_aligned_reads);
3804 		spin_unlock_irq(&conf->device_lock);
3805 
3806 		generic_make_request(align_bi);
3807 		return 1;
3808 	} else {
3809 		rcu_read_unlock();
3810 		bio_put(align_bi);
3811 		return 0;
3812 	}
3813 }
3814 
3815 /* __get_priority_stripe - get the next stripe to process
3816  *
3817  * Full stripe writes are allowed to pass preread active stripes up until
3818  * the bypass_threshold is exceeded.  In general the bypass_count
3819  * increments when the handle_list is handled before the hold_list; however, it
3820  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3821  * stripe with in flight i/o.  The bypass_count will be reset when the
3822  * head of the hold_list has changed, i.e. the head was promoted to the
3823  * handle_list.
3824  */
3825 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3826 {
3827 	struct stripe_head *sh;
3828 
3829 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3830 		  __func__,
3831 		  list_empty(&conf->handle_list) ? "empty" : "busy",
3832 		  list_empty(&conf->hold_list) ? "empty" : "busy",
3833 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
3834 
3835 	if (!list_empty(&conf->handle_list)) {
3836 		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3837 
3838 		if (list_empty(&conf->hold_list))
3839 			conf->bypass_count = 0;
3840 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3841 			if (conf->hold_list.next == conf->last_hold)
3842 				conf->bypass_count++;
3843 			else {
3844 				conf->last_hold = conf->hold_list.next;
3845 				conf->bypass_count -= conf->bypass_threshold;
3846 				if (conf->bypass_count < 0)
3847 					conf->bypass_count = 0;
3848 			}
3849 		}
3850 	} else if (!list_empty(&conf->hold_list) &&
3851 		   ((conf->bypass_threshold &&
3852 		     conf->bypass_count > conf->bypass_threshold) ||
3853 		    atomic_read(&conf->pending_full_writes) == 0)) {
3854 		sh = list_entry(conf->hold_list.next,
3855 				typeof(*sh), lru);
3856 		conf->bypass_count -= conf->bypass_threshold;
3857 		if (conf->bypass_count < 0)
3858 			conf->bypass_count = 0;
3859 	} else
3860 		return NULL;
3861 
3862 	list_del_init(&sh->lru);
3863 	atomic_inc(&sh->count);
3864 	BUG_ON(atomic_read(&sh->count) != 1);
3865 	return sh;
3866 }
3867 
3868 static int make_request(struct request_queue *q, struct bio * bi)
3869 {
3870 	mddev_t *mddev = q->queuedata;
3871 	raid5_conf_t *conf = mddev->private;
3872 	int dd_idx;
3873 	sector_t new_sector;
3874 	sector_t logical_sector, last_sector;
3875 	struct stripe_head *sh;
3876 	const int rw = bio_data_dir(bi);
3877 	int cpu, remaining;
3878 
3879 	if (unlikely(bio_rw_flagged(bi, BIO_RW_BARRIER))) {
3880 		/* Drain all pending writes.  We only really need
3881 		 * to ensure they have been submitted, but this is
3882 		 * easier.
3883 		 */
3884 		mddev->pers->quiesce(mddev, 1);
3885 		mddev->pers->quiesce(mddev, 0);
3886 		md_barrier_request(mddev, bi);
3887 		return 0;
3888 	}
3889 
3890 	md_write_start(mddev, bi);
3891 
3892 	cpu = part_stat_lock();
3893 	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
3894 	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
3895 		      bio_sectors(bi));
3896 	part_stat_unlock();
3897 
3898 	if (rw == READ &&
3899 	     mddev->reshape_position == MaxSector &&
3900 	     chunk_aligned_read(q,bi))
3901 		return 0;
3902 
3903 	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3904 	last_sector = bi->bi_sector + (bi->bi_size>>9);
3905 	bi->bi_next = NULL;
3906 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
3907 
3908 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3909 		DEFINE_WAIT(w);
3910 		int disks, data_disks;
3911 		int previous;
3912 
3913 	retry:
3914 		previous = 0;
3915 		disks = conf->raid_disks;
3916 		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3917 		if (unlikely(conf->reshape_progress != MaxSector)) {
3918 			/* spinlock is needed as reshape_progress may be
3919 			 * 64bit on a 32bit platform, and so it might be
3920 			 * possible to see a half-updated value
3921 			 * Ofcourse reshape_progress could change after
3922 			 * the lock is dropped, so once we get a reference
3923 			 * to the stripe that we think it is, we will have
3924 			 * to check again.
3925 			 */
3926 			spin_lock_irq(&conf->device_lock);
3927 			if (mddev->delta_disks < 0
3928 			    ? logical_sector < conf->reshape_progress
3929 			    : logical_sector >= conf->reshape_progress) {
3930 				disks = conf->previous_raid_disks;
3931 				previous = 1;
3932 			} else {
3933 				if (mddev->delta_disks < 0
3934 				    ? logical_sector < conf->reshape_safe
3935 				    : logical_sector >= conf->reshape_safe) {
3936 					spin_unlock_irq(&conf->device_lock);
3937 					schedule();
3938 					goto retry;
3939 				}
3940 			}
3941 			spin_unlock_irq(&conf->device_lock);
3942 		}
3943 		data_disks = disks - conf->max_degraded;
3944 
3945 		new_sector = raid5_compute_sector(conf, logical_sector,
3946 						  previous,
3947 						  &dd_idx, NULL);
3948 		pr_debug("raid5: make_request, sector %llu logical %llu\n",
3949 			(unsigned long long)new_sector,
3950 			(unsigned long long)logical_sector);
3951 
3952 		sh = get_active_stripe(conf, new_sector, previous,
3953 				       (bi->bi_rw&RWA_MASK), 0);
3954 		if (sh) {
3955 			if (unlikely(previous)) {
3956 				/* expansion might have moved on while waiting for a
3957 				 * stripe, so we must do the range check again.
3958 				 * Expansion could still move past after this
3959 				 * test, but as we are holding a reference to
3960 				 * 'sh', we know that if that happens,
3961 				 *  STRIPE_EXPANDING will get set and the expansion
3962 				 * won't proceed until we finish with the stripe.
3963 				 */
3964 				int must_retry = 0;
3965 				spin_lock_irq(&conf->device_lock);
3966 				if (mddev->delta_disks < 0
3967 				    ? logical_sector >= conf->reshape_progress
3968 				    : logical_sector < conf->reshape_progress)
3969 					/* mismatch, need to try again */
3970 					must_retry = 1;
3971 				spin_unlock_irq(&conf->device_lock);
3972 				if (must_retry) {
3973 					release_stripe(sh);
3974 					schedule();
3975 					goto retry;
3976 				}
3977 			}
3978 
3979 			if (bio_data_dir(bi) == WRITE &&
3980 			    logical_sector >= mddev->suspend_lo &&
3981 			    logical_sector < mddev->suspend_hi) {
3982 				release_stripe(sh);
3983 				/* As the suspend_* range is controlled by
3984 				 * userspace, we want an interruptible
3985 				 * wait.
3986 				 */
3987 				flush_signals(current);
3988 				prepare_to_wait(&conf->wait_for_overlap,
3989 						&w, TASK_INTERRUPTIBLE);
3990 				if (logical_sector >= mddev->suspend_lo &&
3991 				    logical_sector < mddev->suspend_hi)
3992 					schedule();
3993 				goto retry;
3994 			}
3995 
3996 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3997 			    !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3998 				/* Stripe is busy expanding or
3999 				 * add failed due to overlap.  Flush everything
4000 				 * and wait a while
4001 				 */
4002 				raid5_unplug_device(mddev->queue);
4003 				release_stripe(sh);
4004 				schedule();
4005 				goto retry;
4006 			}
4007 			finish_wait(&conf->wait_for_overlap, &w);
4008 			set_bit(STRIPE_HANDLE, &sh->state);
4009 			clear_bit(STRIPE_DELAYED, &sh->state);
4010 			if (mddev->barrier &&
4011 			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4012 				atomic_inc(&conf->preread_active_stripes);
4013 			release_stripe(sh);
4014 		} else {
4015 			/* cannot get stripe for read-ahead, just give-up */
4016 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
4017 			finish_wait(&conf->wait_for_overlap, &w);
4018 			break;
4019 		}
4020 
4021 	}
4022 	spin_lock_irq(&conf->device_lock);
4023 	remaining = raid5_dec_bi_phys_segments(bi);
4024 	spin_unlock_irq(&conf->device_lock);
4025 	if (remaining == 0) {
4026 
4027 		if ( rw == WRITE )
4028 			md_write_end(mddev);
4029 
4030 		bio_endio(bi, 0);
4031 	}
4032 
4033 	if (mddev->barrier) {
4034 		/* We need to wait for the stripes to all be handled.
4035 		 * So: wait for preread_active_stripes to drop to 0.
4036 		 */
4037 		wait_event(mddev->thread->wqueue,
4038 			   atomic_read(&conf->preread_active_stripes) == 0);
4039 	}
4040 	return 0;
4041 }
4042 
4043 static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
4044 
4045 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
4046 {
4047 	/* reshaping is quite different to recovery/resync so it is
4048 	 * handled quite separately ... here.
4049 	 *
4050 	 * On each call to sync_request, we gather one chunk worth of
4051 	 * destination stripes and flag them as expanding.
4052 	 * Then we find all the source stripes and request reads.
4053 	 * As the reads complete, handle_stripe will copy the data
4054 	 * into the destination stripe and release that stripe.
4055 	 */
4056 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4057 	struct stripe_head *sh;
4058 	sector_t first_sector, last_sector;
4059 	int raid_disks = conf->previous_raid_disks;
4060 	int data_disks = raid_disks - conf->max_degraded;
4061 	int new_data_disks = conf->raid_disks - conf->max_degraded;
4062 	int i;
4063 	int dd_idx;
4064 	sector_t writepos, readpos, safepos;
4065 	sector_t stripe_addr;
4066 	int reshape_sectors;
4067 	struct list_head stripes;
4068 
4069 	if (sector_nr == 0) {
4070 		/* If restarting in the middle, skip the initial sectors */
4071 		if (mddev->delta_disks < 0 &&
4072 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4073 			sector_nr = raid5_size(mddev, 0, 0)
4074 				- conf->reshape_progress;
4075 		} else if (mddev->delta_disks >= 0 &&
4076 			   conf->reshape_progress > 0)
4077 			sector_nr = conf->reshape_progress;
4078 		sector_div(sector_nr, new_data_disks);
4079 		if (sector_nr) {
4080 			mddev->curr_resync_completed = sector_nr;
4081 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4082 			*skipped = 1;
4083 			return sector_nr;
4084 		}
4085 	}
4086 
4087 	/* We need to process a full chunk at a time.
4088 	 * If old and new chunk sizes differ, we need to process the
4089 	 * largest of these
4090 	 */
4091 	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4092 		reshape_sectors = mddev->new_chunk_sectors;
4093 	else
4094 		reshape_sectors = mddev->chunk_sectors;
4095 
4096 	/* we update the metadata when there is more than 3Meg
4097 	 * in the block range (that is rather arbitrary, should
4098 	 * probably be time based) or when the data about to be
4099 	 * copied would over-write the source of the data at
4100 	 * the front of the range.
4101 	 * i.e. one new_stripe along from reshape_progress new_maps
4102 	 * to after where reshape_safe old_maps to
4103 	 */
4104 	writepos = conf->reshape_progress;
4105 	sector_div(writepos, new_data_disks);
4106 	readpos = conf->reshape_progress;
4107 	sector_div(readpos, data_disks);
4108 	safepos = conf->reshape_safe;
4109 	sector_div(safepos, data_disks);
4110 	if (mddev->delta_disks < 0) {
4111 		writepos -= min_t(sector_t, reshape_sectors, writepos);
4112 		readpos += reshape_sectors;
4113 		safepos += reshape_sectors;
4114 	} else {
4115 		writepos += reshape_sectors;
4116 		readpos -= min_t(sector_t, reshape_sectors, readpos);
4117 		safepos -= min_t(sector_t, reshape_sectors, safepos);
4118 	}
4119 
4120 	/* 'writepos' is the most advanced device address we might write.
4121 	 * 'readpos' is the least advanced device address we might read.
4122 	 * 'safepos' is the least address recorded in the metadata as having
4123 	 *     been reshaped.
4124 	 * If 'readpos' is behind 'writepos', then there is no way that we can
4125 	 * ensure safety in the face of a crash - that must be done by userspace
4126 	 * making a backup of the data.  So in that case there is no particular
4127 	 * rush to update metadata.
4128 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4129 	 * update the metadata to advance 'safepos' to match 'readpos' so that
4130 	 * we can be safe in the event of a crash.
4131 	 * So we insist on updating metadata if safepos is behind writepos and
4132 	 * readpos is beyond writepos.
4133 	 * In any case, update the metadata every 10 seconds.
4134 	 * Maybe that number should be configurable, but I'm not sure it is
4135 	 * worth it.... maybe it could be a multiple of safemode_delay???
4136 	 */
4137 	if ((mddev->delta_disks < 0
4138 	     ? (safepos > writepos && readpos < writepos)
4139 	     : (safepos < writepos && readpos > writepos)) ||
4140 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4141 		/* Cannot proceed until we've updated the superblock... */
4142 		wait_event(conf->wait_for_overlap,
4143 			   atomic_read(&conf->reshape_stripes)==0);
4144 		mddev->reshape_position = conf->reshape_progress;
4145 		mddev->curr_resync_completed = mddev->curr_resync;
4146 		conf->reshape_checkpoint = jiffies;
4147 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4148 		md_wakeup_thread(mddev->thread);
4149 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4150 			   kthread_should_stop());
4151 		spin_lock_irq(&conf->device_lock);
4152 		conf->reshape_safe = mddev->reshape_position;
4153 		spin_unlock_irq(&conf->device_lock);
4154 		wake_up(&conf->wait_for_overlap);
4155 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4156 	}
4157 
4158 	if (mddev->delta_disks < 0) {
4159 		BUG_ON(conf->reshape_progress == 0);
4160 		stripe_addr = writepos;
4161 		BUG_ON((mddev->dev_sectors &
4162 			~((sector_t)reshape_sectors - 1))
4163 		       - reshape_sectors - stripe_addr
4164 		       != sector_nr);
4165 	} else {
4166 		BUG_ON(writepos != sector_nr + reshape_sectors);
4167 		stripe_addr = sector_nr;
4168 	}
4169 	INIT_LIST_HEAD(&stripes);
4170 	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4171 		int j;
4172 		int skipped_disk = 0;
4173 		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4174 		set_bit(STRIPE_EXPANDING, &sh->state);
4175 		atomic_inc(&conf->reshape_stripes);
4176 		/* If any of this stripe is beyond the end of the old
4177 		 * array, then we need to zero those blocks
4178 		 */
4179 		for (j=sh->disks; j--;) {
4180 			sector_t s;
4181 			if (j == sh->pd_idx)
4182 				continue;
4183 			if (conf->level == 6 &&
4184 			    j == sh->qd_idx)
4185 				continue;
4186 			s = compute_blocknr(sh, j, 0);
4187 			if (s < raid5_size(mddev, 0, 0)) {
4188 				skipped_disk = 1;
4189 				continue;
4190 			}
4191 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4192 			set_bit(R5_Expanded, &sh->dev[j].flags);
4193 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
4194 		}
4195 		if (!skipped_disk) {
4196 			set_bit(STRIPE_EXPAND_READY, &sh->state);
4197 			set_bit(STRIPE_HANDLE, &sh->state);
4198 		}
4199 		list_add(&sh->lru, &stripes);
4200 	}
4201 	spin_lock_irq(&conf->device_lock);
4202 	if (mddev->delta_disks < 0)
4203 		conf->reshape_progress -= reshape_sectors * new_data_disks;
4204 	else
4205 		conf->reshape_progress += reshape_sectors * new_data_disks;
4206 	spin_unlock_irq(&conf->device_lock);
4207 	/* Ok, those stripe are ready. We can start scheduling
4208 	 * reads on the source stripes.
4209 	 * The source stripes are determined by mapping the first and last
4210 	 * block on the destination stripes.
4211 	 */
4212 	first_sector =
4213 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4214 				     1, &dd_idx, NULL);
4215 	last_sector =
4216 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4217 					    * new_data_disks - 1),
4218 				     1, &dd_idx, NULL);
4219 	if (last_sector >= mddev->dev_sectors)
4220 		last_sector = mddev->dev_sectors - 1;
4221 	while (first_sector <= last_sector) {
4222 		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4223 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4224 		set_bit(STRIPE_HANDLE, &sh->state);
4225 		release_stripe(sh);
4226 		first_sector += STRIPE_SECTORS;
4227 	}
4228 	/* Now that the sources are clearly marked, we can release
4229 	 * the destination stripes
4230 	 */
4231 	while (!list_empty(&stripes)) {
4232 		sh = list_entry(stripes.next, struct stripe_head, lru);
4233 		list_del_init(&sh->lru);
4234 		release_stripe(sh);
4235 	}
4236 	/* If this takes us to the resync_max point where we have to pause,
4237 	 * then we need to write out the superblock.
4238 	 */
4239 	sector_nr += reshape_sectors;
4240 	if ((sector_nr - mddev->curr_resync_completed) * 2
4241 	    >= mddev->resync_max - mddev->curr_resync_completed) {
4242 		/* Cannot proceed until we've updated the superblock... */
4243 		wait_event(conf->wait_for_overlap,
4244 			   atomic_read(&conf->reshape_stripes) == 0);
4245 		mddev->reshape_position = conf->reshape_progress;
4246 		mddev->curr_resync_completed = mddev->curr_resync + reshape_sectors;
4247 		conf->reshape_checkpoint = jiffies;
4248 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4249 		md_wakeup_thread(mddev->thread);
4250 		wait_event(mddev->sb_wait,
4251 			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4252 			   || kthread_should_stop());
4253 		spin_lock_irq(&conf->device_lock);
4254 		conf->reshape_safe = mddev->reshape_position;
4255 		spin_unlock_irq(&conf->device_lock);
4256 		wake_up(&conf->wait_for_overlap);
4257 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4258 	}
4259 	return reshape_sectors;
4260 }
4261 
4262 /* FIXME go_faster isn't used */
4263 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
4264 {
4265 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4266 	struct stripe_head *sh;
4267 	sector_t max_sector = mddev->dev_sectors;
4268 	int sync_blocks;
4269 	int still_degraded = 0;
4270 	int i;
4271 
4272 	if (sector_nr >= max_sector) {
4273 		/* just being told to finish up .. nothing much to do */
4274 		unplug_slaves(mddev);
4275 
4276 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4277 			end_reshape(conf);
4278 			return 0;
4279 		}
4280 
4281 		if (mddev->curr_resync < max_sector) /* aborted */
4282 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4283 					&sync_blocks, 1);
4284 		else /* completed sync */
4285 			conf->fullsync = 0;
4286 		bitmap_close_sync(mddev->bitmap);
4287 
4288 		return 0;
4289 	}
4290 
4291 	/* Allow raid5_quiesce to complete */
4292 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4293 
4294 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4295 		return reshape_request(mddev, sector_nr, skipped);
4296 
4297 	/* No need to check resync_max as we never do more than one
4298 	 * stripe, and as resync_max will always be on a chunk boundary,
4299 	 * if the check in md_do_sync didn't fire, there is no chance
4300 	 * of overstepping resync_max here
4301 	 */
4302 
4303 	/* if there is too many failed drives and we are trying
4304 	 * to resync, then assert that we are finished, because there is
4305 	 * nothing we can do.
4306 	 */
4307 	if (mddev->degraded >= conf->max_degraded &&
4308 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4309 		sector_t rv = mddev->dev_sectors - sector_nr;
4310 		*skipped = 1;
4311 		return rv;
4312 	}
4313 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4314 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4315 	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4316 		/* we can skip this block, and probably more */
4317 		sync_blocks /= STRIPE_SECTORS;
4318 		*skipped = 1;
4319 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4320 	}
4321 
4322 
4323 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4324 
4325 	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4326 	if (sh == NULL) {
4327 		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4328 		/* make sure we don't swamp the stripe cache if someone else
4329 		 * is trying to get access
4330 		 */
4331 		schedule_timeout_uninterruptible(1);
4332 	}
4333 	/* Need to check if array will still be degraded after recovery/resync
4334 	 * We don't need to check the 'failed' flag as when that gets set,
4335 	 * recovery aborts.
4336 	 */
4337 	for (i = 0; i < conf->raid_disks; i++)
4338 		if (conf->disks[i].rdev == NULL)
4339 			still_degraded = 1;
4340 
4341 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4342 
4343 	spin_lock(&sh->lock);
4344 	set_bit(STRIPE_SYNCING, &sh->state);
4345 	clear_bit(STRIPE_INSYNC, &sh->state);
4346 	spin_unlock(&sh->lock);
4347 
4348 	handle_stripe(sh);
4349 	release_stripe(sh);
4350 
4351 	return STRIPE_SECTORS;
4352 }
4353 
4354 static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4355 {
4356 	/* We may not be able to submit a whole bio at once as there
4357 	 * may not be enough stripe_heads available.
4358 	 * We cannot pre-allocate enough stripe_heads as we may need
4359 	 * more than exist in the cache (if we allow ever large chunks).
4360 	 * So we do one stripe head at a time and record in
4361 	 * ->bi_hw_segments how many have been done.
4362 	 *
4363 	 * We *know* that this entire raid_bio is in one chunk, so
4364 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4365 	 */
4366 	struct stripe_head *sh;
4367 	int dd_idx;
4368 	sector_t sector, logical_sector, last_sector;
4369 	int scnt = 0;
4370 	int remaining;
4371 	int handled = 0;
4372 
4373 	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4374 	sector = raid5_compute_sector(conf, logical_sector,
4375 				      0, &dd_idx, NULL);
4376 	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4377 
4378 	for (; logical_sector < last_sector;
4379 	     logical_sector += STRIPE_SECTORS,
4380 		     sector += STRIPE_SECTORS,
4381 		     scnt++) {
4382 
4383 		if (scnt < raid5_bi_hw_segments(raid_bio))
4384 			/* already done this stripe */
4385 			continue;
4386 
4387 		sh = get_active_stripe(conf, sector, 0, 1, 0);
4388 
4389 		if (!sh) {
4390 			/* failed to get a stripe - must wait */
4391 			raid5_set_bi_hw_segments(raid_bio, scnt);
4392 			conf->retry_read_aligned = raid_bio;
4393 			return handled;
4394 		}
4395 
4396 		set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4397 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4398 			release_stripe(sh);
4399 			raid5_set_bi_hw_segments(raid_bio, scnt);
4400 			conf->retry_read_aligned = raid_bio;
4401 			return handled;
4402 		}
4403 
4404 		handle_stripe(sh);
4405 		release_stripe(sh);
4406 		handled++;
4407 	}
4408 	spin_lock_irq(&conf->device_lock);
4409 	remaining = raid5_dec_bi_phys_segments(raid_bio);
4410 	spin_unlock_irq(&conf->device_lock);
4411 	if (remaining == 0)
4412 		bio_endio(raid_bio, 0);
4413 	if (atomic_dec_and_test(&conf->active_aligned_reads))
4414 		wake_up(&conf->wait_for_stripe);
4415 	return handled;
4416 }
4417 
4418 
4419 /*
4420  * This is our raid5 kernel thread.
4421  *
4422  * We scan the hash table for stripes which can be handled now.
4423  * During the scan, completed stripes are saved for us by the interrupt
4424  * handler, so that they will not have to wait for our next wakeup.
4425  */
4426 static void raid5d(mddev_t *mddev)
4427 {
4428 	struct stripe_head *sh;
4429 	raid5_conf_t *conf = mddev->private;
4430 	int handled;
4431 
4432 	pr_debug("+++ raid5d active\n");
4433 
4434 	md_check_recovery(mddev);
4435 
4436 	handled = 0;
4437 	spin_lock_irq(&conf->device_lock);
4438 	while (1) {
4439 		struct bio *bio;
4440 
4441 		if (conf->seq_flush != conf->seq_write) {
4442 			int seq = conf->seq_flush;
4443 			spin_unlock_irq(&conf->device_lock);
4444 			bitmap_unplug(mddev->bitmap);
4445 			spin_lock_irq(&conf->device_lock);
4446 			conf->seq_write = seq;
4447 			activate_bit_delay(conf);
4448 		}
4449 
4450 		while ((bio = remove_bio_from_retry(conf))) {
4451 			int ok;
4452 			spin_unlock_irq(&conf->device_lock);
4453 			ok = retry_aligned_read(conf, bio);
4454 			spin_lock_irq(&conf->device_lock);
4455 			if (!ok)
4456 				break;
4457 			handled++;
4458 		}
4459 
4460 		sh = __get_priority_stripe(conf);
4461 
4462 		if (!sh)
4463 			break;
4464 		spin_unlock_irq(&conf->device_lock);
4465 
4466 		handled++;
4467 		handle_stripe(sh);
4468 		release_stripe(sh);
4469 		cond_resched();
4470 
4471 		spin_lock_irq(&conf->device_lock);
4472 	}
4473 	pr_debug("%d stripes handled\n", handled);
4474 
4475 	spin_unlock_irq(&conf->device_lock);
4476 
4477 	async_tx_issue_pending_all();
4478 	unplug_slaves(mddev);
4479 
4480 	pr_debug("--- raid5d inactive\n");
4481 }
4482 
4483 static ssize_t
4484 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4485 {
4486 	raid5_conf_t *conf = mddev->private;
4487 	if (conf)
4488 		return sprintf(page, "%d\n", conf->max_nr_stripes);
4489 	else
4490 		return 0;
4491 }
4492 
4493 static ssize_t
4494 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4495 {
4496 	raid5_conf_t *conf = mddev->private;
4497 	unsigned long new;
4498 	int err;
4499 
4500 	if (len >= PAGE_SIZE)
4501 		return -EINVAL;
4502 	if (!conf)
4503 		return -ENODEV;
4504 
4505 	if (strict_strtoul(page, 10, &new))
4506 		return -EINVAL;
4507 	if (new <= 16 || new > 32768)
4508 		return -EINVAL;
4509 	while (new < conf->max_nr_stripes) {
4510 		if (drop_one_stripe(conf))
4511 			conf->max_nr_stripes--;
4512 		else
4513 			break;
4514 	}
4515 	err = md_allow_write(mddev);
4516 	if (err)
4517 		return err;
4518 	while (new > conf->max_nr_stripes) {
4519 		if (grow_one_stripe(conf))
4520 			conf->max_nr_stripes++;
4521 		else break;
4522 	}
4523 	return len;
4524 }
4525 
4526 static struct md_sysfs_entry
4527 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4528 				raid5_show_stripe_cache_size,
4529 				raid5_store_stripe_cache_size);
4530 
4531 static ssize_t
4532 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4533 {
4534 	raid5_conf_t *conf = mddev->private;
4535 	if (conf)
4536 		return sprintf(page, "%d\n", conf->bypass_threshold);
4537 	else
4538 		return 0;
4539 }
4540 
4541 static ssize_t
4542 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4543 {
4544 	raid5_conf_t *conf = mddev->private;
4545 	unsigned long new;
4546 	if (len >= PAGE_SIZE)
4547 		return -EINVAL;
4548 	if (!conf)
4549 		return -ENODEV;
4550 
4551 	if (strict_strtoul(page, 10, &new))
4552 		return -EINVAL;
4553 	if (new > conf->max_nr_stripes)
4554 		return -EINVAL;
4555 	conf->bypass_threshold = new;
4556 	return len;
4557 }
4558 
4559 static struct md_sysfs_entry
4560 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4561 					S_IRUGO | S_IWUSR,
4562 					raid5_show_preread_threshold,
4563 					raid5_store_preread_threshold);
4564 
4565 static ssize_t
4566 stripe_cache_active_show(mddev_t *mddev, char *page)
4567 {
4568 	raid5_conf_t *conf = mddev->private;
4569 	if (conf)
4570 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4571 	else
4572 		return 0;
4573 }
4574 
4575 static struct md_sysfs_entry
4576 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4577 
4578 static struct attribute *raid5_attrs[] =  {
4579 	&raid5_stripecache_size.attr,
4580 	&raid5_stripecache_active.attr,
4581 	&raid5_preread_bypass_threshold.attr,
4582 	NULL,
4583 };
4584 static struct attribute_group raid5_attrs_group = {
4585 	.name = NULL,
4586 	.attrs = raid5_attrs,
4587 };
4588 
4589 static sector_t
4590 raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4591 {
4592 	raid5_conf_t *conf = mddev->private;
4593 
4594 	if (!sectors)
4595 		sectors = mddev->dev_sectors;
4596 	if (!raid_disks)
4597 		/* size is defined by the smallest of previous and new size */
4598 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4599 
4600 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4601 	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4602 	return sectors * (raid_disks - conf->max_degraded);
4603 }
4604 
4605 static void raid5_free_percpu(raid5_conf_t *conf)
4606 {
4607 	struct raid5_percpu *percpu;
4608 	unsigned long cpu;
4609 
4610 	if (!conf->percpu)
4611 		return;
4612 
4613 	get_online_cpus();
4614 	for_each_possible_cpu(cpu) {
4615 		percpu = per_cpu_ptr(conf->percpu, cpu);
4616 		safe_put_page(percpu->spare_page);
4617 		kfree(percpu->scribble);
4618 	}
4619 #ifdef CONFIG_HOTPLUG_CPU
4620 	unregister_cpu_notifier(&conf->cpu_notify);
4621 #endif
4622 	put_online_cpus();
4623 
4624 	free_percpu(conf->percpu);
4625 }
4626 
4627 static void free_conf(raid5_conf_t *conf)
4628 {
4629 	shrink_stripes(conf);
4630 	raid5_free_percpu(conf);
4631 	kfree(conf->disks);
4632 	kfree(conf->stripe_hashtbl);
4633 	kfree(conf);
4634 }
4635 
4636 #ifdef CONFIG_HOTPLUG_CPU
4637 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4638 			      void *hcpu)
4639 {
4640 	raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4641 	long cpu = (long)hcpu;
4642 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4643 
4644 	switch (action) {
4645 	case CPU_UP_PREPARE:
4646 	case CPU_UP_PREPARE_FROZEN:
4647 		if (conf->level == 6 && !percpu->spare_page)
4648 			percpu->spare_page = alloc_page(GFP_KERNEL);
4649 		if (!percpu->scribble)
4650 			percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4651 
4652 		if (!percpu->scribble ||
4653 		    (conf->level == 6 && !percpu->spare_page)) {
4654 			safe_put_page(percpu->spare_page);
4655 			kfree(percpu->scribble);
4656 			pr_err("%s: failed memory allocation for cpu%ld\n",
4657 			       __func__, cpu);
4658 			return NOTIFY_BAD;
4659 		}
4660 		break;
4661 	case CPU_DEAD:
4662 	case CPU_DEAD_FROZEN:
4663 		safe_put_page(percpu->spare_page);
4664 		kfree(percpu->scribble);
4665 		percpu->spare_page = NULL;
4666 		percpu->scribble = NULL;
4667 		break;
4668 	default:
4669 		break;
4670 	}
4671 	return NOTIFY_OK;
4672 }
4673 #endif
4674 
4675 static int raid5_alloc_percpu(raid5_conf_t *conf)
4676 {
4677 	unsigned long cpu;
4678 	struct page *spare_page;
4679 	struct raid5_percpu __percpu *allcpus;
4680 	void *scribble;
4681 	int err;
4682 
4683 	allcpus = alloc_percpu(struct raid5_percpu);
4684 	if (!allcpus)
4685 		return -ENOMEM;
4686 	conf->percpu = allcpus;
4687 
4688 	get_online_cpus();
4689 	err = 0;
4690 	for_each_present_cpu(cpu) {
4691 		if (conf->level == 6) {
4692 			spare_page = alloc_page(GFP_KERNEL);
4693 			if (!spare_page) {
4694 				err = -ENOMEM;
4695 				break;
4696 			}
4697 			per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4698 		}
4699 		scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4700 		if (!scribble) {
4701 			err = -ENOMEM;
4702 			break;
4703 		}
4704 		per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4705 	}
4706 #ifdef CONFIG_HOTPLUG_CPU
4707 	conf->cpu_notify.notifier_call = raid456_cpu_notify;
4708 	conf->cpu_notify.priority = 0;
4709 	if (err == 0)
4710 		err = register_cpu_notifier(&conf->cpu_notify);
4711 #endif
4712 	put_online_cpus();
4713 
4714 	return err;
4715 }
4716 
4717 static raid5_conf_t *setup_conf(mddev_t *mddev)
4718 {
4719 	raid5_conf_t *conf;
4720 	int raid_disk, memory, max_disks;
4721 	mdk_rdev_t *rdev;
4722 	struct disk_info *disk;
4723 
4724 	if (mddev->new_level != 5
4725 	    && mddev->new_level != 4
4726 	    && mddev->new_level != 6) {
4727 		printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
4728 		       mdname(mddev), mddev->new_level);
4729 		return ERR_PTR(-EIO);
4730 	}
4731 	if ((mddev->new_level == 5
4732 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
4733 	    (mddev->new_level == 6
4734 	     && !algorithm_valid_raid6(mddev->new_layout))) {
4735 		printk(KERN_ERR "raid5: %s: layout %d not supported\n",
4736 		       mdname(mddev), mddev->new_layout);
4737 		return ERR_PTR(-EIO);
4738 	}
4739 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4740 		printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4741 		       mdname(mddev), mddev->raid_disks);
4742 		return ERR_PTR(-EINVAL);
4743 	}
4744 
4745 	if (!mddev->new_chunk_sectors ||
4746 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4747 	    !is_power_of_2(mddev->new_chunk_sectors)) {
4748 		printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4749 		       mddev->new_chunk_sectors << 9, mdname(mddev));
4750 		return ERR_PTR(-EINVAL);
4751 	}
4752 
4753 	conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4754 	if (conf == NULL)
4755 		goto abort;
4756 	spin_lock_init(&conf->device_lock);
4757 	init_waitqueue_head(&conf->wait_for_stripe);
4758 	init_waitqueue_head(&conf->wait_for_overlap);
4759 	INIT_LIST_HEAD(&conf->handle_list);
4760 	INIT_LIST_HEAD(&conf->hold_list);
4761 	INIT_LIST_HEAD(&conf->delayed_list);
4762 	INIT_LIST_HEAD(&conf->bitmap_list);
4763 	INIT_LIST_HEAD(&conf->inactive_list);
4764 	atomic_set(&conf->active_stripes, 0);
4765 	atomic_set(&conf->preread_active_stripes, 0);
4766 	atomic_set(&conf->active_aligned_reads, 0);
4767 	conf->bypass_threshold = BYPASS_THRESHOLD;
4768 
4769 	conf->raid_disks = mddev->raid_disks;
4770 	if (mddev->reshape_position == MaxSector)
4771 		conf->previous_raid_disks = mddev->raid_disks;
4772 	else
4773 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4774 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4775 	conf->scribble_len = scribble_len(max_disks);
4776 
4777 	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4778 			      GFP_KERNEL);
4779 	if (!conf->disks)
4780 		goto abort;
4781 
4782 	conf->mddev = mddev;
4783 
4784 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4785 		goto abort;
4786 
4787 	conf->level = mddev->new_level;
4788 	if (raid5_alloc_percpu(conf) != 0)
4789 		goto abort;
4790 
4791 	pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4792 
4793 	list_for_each_entry(rdev, &mddev->disks, same_set) {
4794 		raid_disk = rdev->raid_disk;
4795 		if (raid_disk >= max_disks
4796 		    || raid_disk < 0)
4797 			continue;
4798 		disk = conf->disks + raid_disk;
4799 
4800 		disk->rdev = rdev;
4801 
4802 		if (test_bit(In_sync, &rdev->flags)) {
4803 			char b[BDEVNAME_SIZE];
4804 			printk(KERN_INFO "raid5: device %s operational as raid"
4805 				" disk %d\n", bdevname(rdev->bdev,b),
4806 				raid_disk);
4807 		} else
4808 			/* Cannot rely on bitmap to complete recovery */
4809 			conf->fullsync = 1;
4810 	}
4811 
4812 	conf->chunk_sectors = mddev->new_chunk_sectors;
4813 	conf->level = mddev->new_level;
4814 	if (conf->level == 6)
4815 		conf->max_degraded = 2;
4816 	else
4817 		conf->max_degraded = 1;
4818 	conf->algorithm = mddev->new_layout;
4819 	conf->max_nr_stripes = NR_STRIPES;
4820 	conf->reshape_progress = mddev->reshape_position;
4821 	if (conf->reshape_progress != MaxSector) {
4822 		conf->prev_chunk_sectors = mddev->chunk_sectors;
4823 		conf->prev_algo = mddev->layout;
4824 	}
4825 
4826 	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4827 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4828 	if (grow_stripes(conf, conf->max_nr_stripes)) {
4829 		printk(KERN_ERR
4830 			"raid5: couldn't allocate %dkB for buffers\n", memory);
4831 		goto abort;
4832 	} else
4833 		printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4834 			memory, mdname(mddev));
4835 
4836 	conf->thread = md_register_thread(raid5d, mddev, NULL);
4837 	if (!conf->thread) {
4838 		printk(KERN_ERR
4839 		       "raid5: couldn't allocate thread for %s\n",
4840 		       mdname(mddev));
4841 		goto abort;
4842 	}
4843 
4844 	return conf;
4845 
4846  abort:
4847 	if (conf) {
4848 		free_conf(conf);
4849 		return ERR_PTR(-EIO);
4850 	} else
4851 		return ERR_PTR(-ENOMEM);
4852 }
4853 
4854 
4855 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4856 {
4857 	switch (algo) {
4858 	case ALGORITHM_PARITY_0:
4859 		if (raid_disk < max_degraded)
4860 			return 1;
4861 		break;
4862 	case ALGORITHM_PARITY_N:
4863 		if (raid_disk >= raid_disks - max_degraded)
4864 			return 1;
4865 		break;
4866 	case ALGORITHM_PARITY_0_6:
4867 		if (raid_disk == 0 ||
4868 		    raid_disk == raid_disks - 1)
4869 			return 1;
4870 		break;
4871 	case ALGORITHM_LEFT_ASYMMETRIC_6:
4872 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
4873 	case ALGORITHM_LEFT_SYMMETRIC_6:
4874 	case ALGORITHM_RIGHT_SYMMETRIC_6:
4875 		if (raid_disk == raid_disks - 1)
4876 			return 1;
4877 	}
4878 	return 0;
4879 }
4880 
4881 static int run(mddev_t *mddev)
4882 {
4883 	raid5_conf_t *conf;
4884 	int working_disks = 0, chunk_size;
4885 	int dirty_parity_disks = 0;
4886 	mdk_rdev_t *rdev;
4887 	sector_t reshape_offset = 0;
4888 
4889 	if (mddev->recovery_cp != MaxSector)
4890 		printk(KERN_NOTICE "raid5: %s is not clean"
4891 		       " -- starting background reconstruction\n",
4892 		       mdname(mddev));
4893 	if (mddev->reshape_position != MaxSector) {
4894 		/* Check that we can continue the reshape.
4895 		 * Currently only disks can change, it must
4896 		 * increase, and we must be past the point where
4897 		 * a stripe over-writes itself
4898 		 */
4899 		sector_t here_new, here_old;
4900 		int old_disks;
4901 		int max_degraded = (mddev->level == 6 ? 2 : 1);
4902 
4903 		if (mddev->new_level != mddev->level) {
4904 			printk(KERN_ERR "raid5: %s: unsupported reshape "
4905 			       "required - aborting.\n",
4906 			       mdname(mddev));
4907 			return -EINVAL;
4908 		}
4909 		old_disks = mddev->raid_disks - mddev->delta_disks;
4910 		/* reshape_position must be on a new-stripe boundary, and one
4911 		 * further up in new geometry must map after here in old
4912 		 * geometry.
4913 		 */
4914 		here_new = mddev->reshape_position;
4915 		if (sector_div(here_new, mddev->new_chunk_sectors *
4916 			       (mddev->raid_disks - max_degraded))) {
4917 			printk(KERN_ERR "raid5: reshape_position not "
4918 			       "on a stripe boundary\n");
4919 			return -EINVAL;
4920 		}
4921 		reshape_offset = here_new * mddev->new_chunk_sectors;
4922 		/* here_new is the stripe we will write to */
4923 		here_old = mddev->reshape_position;
4924 		sector_div(here_old, mddev->chunk_sectors *
4925 			   (old_disks-max_degraded));
4926 		/* here_old is the first stripe that we might need to read
4927 		 * from */
4928 		if (mddev->delta_disks == 0) {
4929 			/* We cannot be sure it is safe to start an in-place
4930 			 * reshape.  It is only safe if user-space if monitoring
4931 			 * and taking constant backups.
4932 			 * mdadm always starts a situation like this in
4933 			 * readonly mode so it can take control before
4934 			 * allowing any writes.  So just check for that.
4935 			 */
4936 			if ((here_new * mddev->new_chunk_sectors !=
4937 			     here_old * mddev->chunk_sectors) ||
4938 			    mddev->ro == 0) {
4939 				printk(KERN_ERR "raid5: in-place reshape must be started"
4940 				       " in read-only mode - aborting\n");
4941 				return -EINVAL;
4942 			}
4943 		} else if (mddev->delta_disks < 0
4944 		    ? (here_new * mddev->new_chunk_sectors <=
4945 		       here_old * mddev->chunk_sectors)
4946 		    : (here_new * mddev->new_chunk_sectors >=
4947 		       here_old * mddev->chunk_sectors)) {
4948 			/* Reading from the same stripe as writing to - bad */
4949 			printk(KERN_ERR "raid5: reshape_position too early for "
4950 			       "auto-recovery - aborting.\n");
4951 			return -EINVAL;
4952 		}
4953 		printk(KERN_INFO "raid5: reshape will continue\n");
4954 		/* OK, we should be able to continue; */
4955 	} else {
4956 		BUG_ON(mddev->level != mddev->new_level);
4957 		BUG_ON(mddev->layout != mddev->new_layout);
4958 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
4959 		BUG_ON(mddev->delta_disks != 0);
4960 	}
4961 
4962 	if (mddev->private == NULL)
4963 		conf = setup_conf(mddev);
4964 	else
4965 		conf = mddev->private;
4966 
4967 	if (IS_ERR(conf))
4968 		return PTR_ERR(conf);
4969 
4970 	mddev->thread = conf->thread;
4971 	conf->thread = NULL;
4972 	mddev->private = conf;
4973 
4974 	/*
4975 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
4976 	 */
4977 	list_for_each_entry(rdev, &mddev->disks, same_set) {
4978 		if (rdev->raid_disk < 0)
4979 			continue;
4980 		if (test_bit(In_sync, &rdev->flags))
4981 			working_disks++;
4982 		/* This disc is not fully in-sync.  However if it
4983 		 * just stored parity (beyond the recovery_offset),
4984 		 * when we don't need to be concerned about the
4985 		 * array being dirty.
4986 		 * When reshape goes 'backwards', we never have
4987 		 * partially completed devices, so we only need
4988 		 * to worry about reshape going forwards.
4989 		 */
4990 		/* Hack because v0.91 doesn't store recovery_offset properly. */
4991 		if (mddev->major_version == 0 &&
4992 		    mddev->minor_version > 90)
4993 			rdev->recovery_offset = reshape_offset;
4994 
4995 		printk("%d: w=%d pa=%d pr=%d m=%d a=%d r=%d op1=%d op2=%d\n",
4996 		       rdev->raid_disk, working_disks, conf->prev_algo,
4997 		       conf->previous_raid_disks, conf->max_degraded,
4998 		       conf->algorithm, conf->raid_disks,
4999 		       only_parity(rdev->raid_disk,
5000 				   conf->prev_algo,
5001 				   conf->previous_raid_disks,
5002 				   conf->max_degraded),
5003 		       only_parity(rdev->raid_disk,
5004 				   conf->algorithm,
5005 				   conf->raid_disks,
5006 				   conf->max_degraded));
5007 		if (rdev->recovery_offset < reshape_offset) {
5008 			/* We need to check old and new layout */
5009 			if (!only_parity(rdev->raid_disk,
5010 					 conf->algorithm,
5011 					 conf->raid_disks,
5012 					 conf->max_degraded))
5013 				continue;
5014 		}
5015 		if (!only_parity(rdev->raid_disk,
5016 				 conf->prev_algo,
5017 				 conf->previous_raid_disks,
5018 				 conf->max_degraded))
5019 			continue;
5020 		dirty_parity_disks++;
5021 	}
5022 
5023 	mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
5024 			   - working_disks);
5025 
5026 	if (mddev->degraded > conf->max_degraded) {
5027 		printk(KERN_ERR "raid5: not enough operational devices for %s"
5028 			" (%d/%d failed)\n",
5029 			mdname(mddev), mddev->degraded, conf->raid_disks);
5030 		goto abort;
5031 	}
5032 
5033 	/* device size must be a multiple of chunk size */
5034 	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5035 	mddev->resync_max_sectors = mddev->dev_sectors;
5036 
5037 	if (mddev->degraded > dirty_parity_disks &&
5038 	    mddev->recovery_cp != MaxSector) {
5039 		if (mddev->ok_start_degraded)
5040 			printk(KERN_WARNING
5041 			       "raid5: starting dirty degraded array: %s"
5042 			       "- data corruption possible.\n",
5043 			       mdname(mddev));
5044 		else {
5045 			printk(KERN_ERR
5046 			       "raid5: cannot start dirty degraded array for %s\n",
5047 			       mdname(mddev));
5048 			goto abort;
5049 		}
5050 	}
5051 
5052 	if (mddev->degraded == 0)
5053 		printk("raid5: raid level %d set %s active with %d out of %d"
5054 		       " devices, algorithm %d\n", conf->level, mdname(mddev),
5055 		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5056 		       mddev->new_layout);
5057 	else
5058 		printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
5059 			" out of %d devices, algorithm %d\n", conf->level,
5060 			mdname(mddev), mddev->raid_disks - mddev->degraded,
5061 			mddev->raid_disks, mddev->new_layout);
5062 
5063 	print_raid5_conf(conf);
5064 
5065 	if (conf->reshape_progress != MaxSector) {
5066 		printk("...ok start reshape thread\n");
5067 		conf->reshape_safe = conf->reshape_progress;
5068 		atomic_set(&conf->reshape_stripes, 0);
5069 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5070 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5071 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5072 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5073 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5074 							"reshape");
5075 	}
5076 
5077 	/* read-ahead size must cover two whole stripes, which is
5078 	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5079 	 */
5080 	{
5081 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
5082 		int stripe = data_disks *
5083 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
5084 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5085 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5086 	}
5087 
5088 	/* Ok, everything is just fine now */
5089 	if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5090 		printk(KERN_WARNING
5091 		       "raid5: failed to create sysfs attributes for %s\n",
5092 		       mdname(mddev));
5093 
5094 	mddev->queue->queue_lock = &conf->device_lock;
5095 
5096 	mddev->queue->unplug_fn = raid5_unplug_device;
5097 	mddev->queue->backing_dev_info.congested_data = mddev;
5098 	mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5099 
5100 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5101 
5102 	blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5103 	chunk_size = mddev->chunk_sectors << 9;
5104 	blk_queue_io_min(mddev->queue, chunk_size);
5105 	blk_queue_io_opt(mddev->queue, chunk_size *
5106 			 (conf->raid_disks - conf->max_degraded));
5107 
5108 	list_for_each_entry(rdev, &mddev->disks, same_set)
5109 		disk_stack_limits(mddev->gendisk, rdev->bdev,
5110 				  rdev->data_offset << 9);
5111 
5112 	return 0;
5113 abort:
5114 	md_unregister_thread(mddev->thread);
5115 	mddev->thread = NULL;
5116 	if (conf) {
5117 		print_raid5_conf(conf);
5118 		free_conf(conf);
5119 	}
5120 	mddev->private = NULL;
5121 	printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
5122 	return -EIO;
5123 }
5124 
5125 
5126 
5127 static int stop(mddev_t *mddev)
5128 {
5129 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
5130 
5131 	md_unregister_thread(mddev->thread);
5132 	mddev->thread = NULL;
5133 	mddev->queue->backing_dev_info.congested_fn = NULL;
5134 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5135 	free_conf(conf);
5136 	mddev->private = &raid5_attrs_group;
5137 	return 0;
5138 }
5139 
5140 #ifdef DEBUG
5141 static void print_sh(struct seq_file *seq, struct stripe_head *sh)
5142 {
5143 	int i;
5144 
5145 	seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
5146 		   (unsigned long long)sh->sector, sh->pd_idx, sh->state);
5147 	seq_printf(seq, "sh %llu,  count %d.\n",
5148 		   (unsigned long long)sh->sector, atomic_read(&sh->count));
5149 	seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
5150 	for (i = 0; i < sh->disks; i++) {
5151 		seq_printf(seq, "(cache%d: %p %ld) ",
5152 			   i, sh->dev[i].page, sh->dev[i].flags);
5153 	}
5154 	seq_printf(seq, "\n");
5155 }
5156 
5157 static void printall(struct seq_file *seq, raid5_conf_t *conf)
5158 {
5159 	struct stripe_head *sh;
5160 	struct hlist_node *hn;
5161 	int i;
5162 
5163 	spin_lock_irq(&conf->device_lock);
5164 	for (i = 0; i < NR_HASH; i++) {
5165 		hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
5166 			if (sh->raid_conf != conf)
5167 				continue;
5168 			print_sh(seq, sh);
5169 		}
5170 	}
5171 	spin_unlock_irq(&conf->device_lock);
5172 }
5173 #endif
5174 
5175 static void status(struct seq_file *seq, mddev_t *mddev)
5176 {
5177 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
5178 	int i;
5179 
5180 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5181 		mddev->chunk_sectors / 2, mddev->layout);
5182 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5183 	for (i = 0; i < conf->raid_disks; i++)
5184 		seq_printf (seq, "%s",
5185 			       conf->disks[i].rdev &&
5186 			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5187 	seq_printf (seq, "]");
5188 #ifdef DEBUG
5189 	seq_printf (seq, "\n");
5190 	printall(seq, conf);
5191 #endif
5192 }
5193 
5194 static void print_raid5_conf (raid5_conf_t *conf)
5195 {
5196 	int i;
5197 	struct disk_info *tmp;
5198 
5199 	printk("RAID5 conf printout:\n");
5200 	if (!conf) {
5201 		printk("(conf==NULL)\n");
5202 		return;
5203 	}
5204 	printk(" --- rd:%d wd:%d\n", conf->raid_disks,
5205 		 conf->raid_disks - conf->mddev->degraded);
5206 
5207 	for (i = 0; i < conf->raid_disks; i++) {
5208 		char b[BDEVNAME_SIZE];
5209 		tmp = conf->disks + i;
5210 		if (tmp->rdev)
5211 		printk(" disk %d, o:%d, dev:%s\n",
5212 			i, !test_bit(Faulty, &tmp->rdev->flags),
5213 			bdevname(tmp->rdev->bdev,b));
5214 	}
5215 }
5216 
5217 static int raid5_spare_active(mddev_t *mddev)
5218 {
5219 	int i;
5220 	raid5_conf_t *conf = mddev->private;
5221 	struct disk_info *tmp;
5222 
5223 	for (i = 0; i < conf->raid_disks; i++) {
5224 		tmp = conf->disks + i;
5225 		if (tmp->rdev
5226 		    && !test_bit(Faulty, &tmp->rdev->flags)
5227 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5228 			unsigned long flags;
5229 			spin_lock_irqsave(&conf->device_lock, flags);
5230 			mddev->degraded--;
5231 			spin_unlock_irqrestore(&conf->device_lock, flags);
5232 		}
5233 	}
5234 	print_raid5_conf(conf);
5235 	return 0;
5236 }
5237 
5238 static int raid5_remove_disk(mddev_t *mddev, int number)
5239 {
5240 	raid5_conf_t *conf = mddev->private;
5241 	int err = 0;
5242 	mdk_rdev_t *rdev;
5243 	struct disk_info *p = conf->disks + number;
5244 
5245 	print_raid5_conf(conf);
5246 	rdev = p->rdev;
5247 	if (rdev) {
5248 		if (number >= conf->raid_disks &&
5249 		    conf->reshape_progress == MaxSector)
5250 			clear_bit(In_sync, &rdev->flags);
5251 
5252 		if (test_bit(In_sync, &rdev->flags) ||
5253 		    atomic_read(&rdev->nr_pending)) {
5254 			err = -EBUSY;
5255 			goto abort;
5256 		}
5257 		/* Only remove non-faulty devices if recovery
5258 		 * isn't possible.
5259 		 */
5260 		if (!test_bit(Faulty, &rdev->flags) &&
5261 		    mddev->degraded <= conf->max_degraded &&
5262 		    number < conf->raid_disks) {
5263 			err = -EBUSY;
5264 			goto abort;
5265 		}
5266 		p->rdev = NULL;
5267 		synchronize_rcu();
5268 		if (atomic_read(&rdev->nr_pending)) {
5269 			/* lost the race, try later */
5270 			err = -EBUSY;
5271 			p->rdev = rdev;
5272 		}
5273 	}
5274 abort:
5275 
5276 	print_raid5_conf(conf);
5277 	return err;
5278 }
5279 
5280 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
5281 {
5282 	raid5_conf_t *conf = mddev->private;
5283 	int err = -EEXIST;
5284 	int disk;
5285 	struct disk_info *p;
5286 	int first = 0;
5287 	int last = conf->raid_disks - 1;
5288 
5289 	if (mddev->degraded > conf->max_degraded)
5290 		/* no point adding a device */
5291 		return -EINVAL;
5292 
5293 	if (rdev->raid_disk >= 0)
5294 		first = last = rdev->raid_disk;
5295 
5296 	/*
5297 	 * find the disk ... but prefer rdev->saved_raid_disk
5298 	 * if possible.
5299 	 */
5300 	if (rdev->saved_raid_disk >= 0 &&
5301 	    rdev->saved_raid_disk >= first &&
5302 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
5303 		disk = rdev->saved_raid_disk;
5304 	else
5305 		disk = first;
5306 	for ( ; disk <= last ; disk++)
5307 		if ((p=conf->disks + disk)->rdev == NULL) {
5308 			clear_bit(In_sync, &rdev->flags);
5309 			rdev->raid_disk = disk;
5310 			err = 0;
5311 			if (rdev->saved_raid_disk != disk)
5312 				conf->fullsync = 1;
5313 			rcu_assign_pointer(p->rdev, rdev);
5314 			break;
5315 		}
5316 	print_raid5_conf(conf);
5317 	return err;
5318 }
5319 
5320 static int raid5_resize(mddev_t *mddev, sector_t sectors)
5321 {
5322 	/* no resync is happening, and there is enough space
5323 	 * on all devices, so we can resize.
5324 	 * We need to make sure resync covers any new space.
5325 	 * If the array is shrinking we should possibly wait until
5326 	 * any io in the removed space completes, but it hardly seems
5327 	 * worth it.
5328 	 */
5329 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5330 	md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5331 					       mddev->raid_disks));
5332 	if (mddev->array_sectors >
5333 	    raid5_size(mddev, sectors, mddev->raid_disks))
5334 		return -EINVAL;
5335 	set_capacity(mddev->gendisk, mddev->array_sectors);
5336 	mddev->changed = 1;
5337 	revalidate_disk(mddev->gendisk);
5338 	if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
5339 		mddev->recovery_cp = mddev->dev_sectors;
5340 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5341 	}
5342 	mddev->dev_sectors = sectors;
5343 	mddev->resync_max_sectors = sectors;
5344 	return 0;
5345 }
5346 
5347 static int check_stripe_cache(mddev_t *mddev)
5348 {
5349 	/* Can only proceed if there are plenty of stripe_heads.
5350 	 * We need a minimum of one full stripe,, and for sensible progress
5351 	 * it is best to have about 4 times that.
5352 	 * If we require 4 times, then the default 256 4K stripe_heads will
5353 	 * allow for chunk sizes up to 256K, which is probably OK.
5354 	 * If the chunk size is greater, user-space should request more
5355 	 * stripe_heads first.
5356 	 */
5357 	raid5_conf_t *conf = mddev->private;
5358 	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5359 	    > conf->max_nr_stripes ||
5360 	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5361 	    > conf->max_nr_stripes) {
5362 		printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n",
5363 		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5364 			/ STRIPE_SIZE)*4);
5365 		return 0;
5366 	}
5367 	return 1;
5368 }
5369 
5370 static int check_reshape(mddev_t *mddev)
5371 {
5372 	raid5_conf_t *conf = mddev->private;
5373 
5374 	if (mddev->delta_disks == 0 &&
5375 	    mddev->new_layout == mddev->layout &&
5376 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
5377 		return 0; /* nothing to do */
5378 	if (mddev->bitmap)
5379 		/* Cannot grow a bitmap yet */
5380 		return -EBUSY;
5381 	if (mddev->degraded > conf->max_degraded)
5382 		return -EINVAL;
5383 	if (mddev->delta_disks < 0) {
5384 		/* We might be able to shrink, but the devices must
5385 		 * be made bigger first.
5386 		 * For raid6, 4 is the minimum size.
5387 		 * Otherwise 2 is the minimum
5388 		 */
5389 		int min = 2;
5390 		if (mddev->level == 6)
5391 			min = 4;
5392 		if (mddev->raid_disks + mddev->delta_disks < min)
5393 			return -EINVAL;
5394 	}
5395 
5396 	if (!check_stripe_cache(mddev))
5397 		return -ENOSPC;
5398 
5399 	return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5400 }
5401 
5402 static int raid5_start_reshape(mddev_t *mddev)
5403 {
5404 	raid5_conf_t *conf = mddev->private;
5405 	mdk_rdev_t *rdev;
5406 	int spares = 0;
5407 	int added_devices = 0;
5408 	unsigned long flags;
5409 
5410 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5411 		return -EBUSY;
5412 
5413 	if (!check_stripe_cache(mddev))
5414 		return -ENOSPC;
5415 
5416 	list_for_each_entry(rdev, &mddev->disks, same_set)
5417 		if (rdev->raid_disk < 0 &&
5418 		    !test_bit(Faulty, &rdev->flags))
5419 			spares++;
5420 
5421 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5422 		/* Not enough devices even to make a degraded array
5423 		 * of that size
5424 		 */
5425 		return -EINVAL;
5426 
5427 	/* Refuse to reduce size of the array.  Any reductions in
5428 	 * array size must be through explicit setting of array_size
5429 	 * attribute.
5430 	 */
5431 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5432 	    < mddev->array_sectors) {
5433 		printk(KERN_ERR "md: %s: array size must be reduced "
5434 		       "before number of disks\n", mdname(mddev));
5435 		return -EINVAL;
5436 	}
5437 
5438 	atomic_set(&conf->reshape_stripes, 0);
5439 	spin_lock_irq(&conf->device_lock);
5440 	conf->previous_raid_disks = conf->raid_disks;
5441 	conf->raid_disks += mddev->delta_disks;
5442 	conf->prev_chunk_sectors = conf->chunk_sectors;
5443 	conf->chunk_sectors = mddev->new_chunk_sectors;
5444 	conf->prev_algo = conf->algorithm;
5445 	conf->algorithm = mddev->new_layout;
5446 	if (mddev->delta_disks < 0)
5447 		conf->reshape_progress = raid5_size(mddev, 0, 0);
5448 	else
5449 		conf->reshape_progress = 0;
5450 	conf->reshape_safe = conf->reshape_progress;
5451 	conf->generation++;
5452 	spin_unlock_irq(&conf->device_lock);
5453 
5454 	/* Add some new drives, as many as will fit.
5455 	 * We know there are enough to make the newly sized array work.
5456 	 */
5457 	list_for_each_entry(rdev, &mddev->disks, same_set)
5458 		if (rdev->raid_disk < 0 &&
5459 		    !test_bit(Faulty, &rdev->flags)) {
5460 			if (raid5_add_disk(mddev, rdev) == 0) {
5461 				char nm[20];
5462 				if (rdev->raid_disk >= conf->previous_raid_disks) {
5463 					set_bit(In_sync, &rdev->flags);
5464 					added_devices++;
5465 				} else
5466 					rdev->recovery_offset = 0;
5467 				sprintf(nm, "rd%d", rdev->raid_disk);
5468 				if (sysfs_create_link(&mddev->kobj,
5469 						      &rdev->kobj, nm))
5470 					printk(KERN_WARNING
5471 					       "raid5: failed to create "
5472 					       " link %s for %s\n",
5473 					       nm, mdname(mddev));
5474 			} else
5475 				break;
5476 		}
5477 
5478 	/* When a reshape changes the number of devices, ->degraded
5479 	 * is measured against the large of the pre and post number of
5480 	 * devices.*/
5481 	if (mddev->delta_disks > 0) {
5482 		spin_lock_irqsave(&conf->device_lock, flags);
5483 		mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5484 			- added_devices;
5485 		spin_unlock_irqrestore(&conf->device_lock, flags);
5486 	}
5487 	mddev->raid_disks = conf->raid_disks;
5488 	mddev->reshape_position = conf->reshape_progress;
5489 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5490 
5491 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5492 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5493 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5494 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5495 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5496 						"reshape");
5497 	if (!mddev->sync_thread) {
5498 		mddev->recovery = 0;
5499 		spin_lock_irq(&conf->device_lock);
5500 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5501 		conf->reshape_progress = MaxSector;
5502 		spin_unlock_irq(&conf->device_lock);
5503 		return -EAGAIN;
5504 	}
5505 	conf->reshape_checkpoint = jiffies;
5506 	md_wakeup_thread(mddev->sync_thread);
5507 	md_new_event(mddev);
5508 	return 0;
5509 }
5510 
5511 /* This is called from the reshape thread and should make any
5512  * changes needed in 'conf'
5513  */
5514 static void end_reshape(raid5_conf_t *conf)
5515 {
5516 
5517 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5518 
5519 		spin_lock_irq(&conf->device_lock);
5520 		conf->previous_raid_disks = conf->raid_disks;
5521 		conf->reshape_progress = MaxSector;
5522 		spin_unlock_irq(&conf->device_lock);
5523 		wake_up(&conf->wait_for_overlap);
5524 
5525 		/* read-ahead size must cover two whole stripes, which is
5526 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5527 		 */
5528 		{
5529 			int data_disks = conf->raid_disks - conf->max_degraded;
5530 			int stripe = data_disks * ((conf->chunk_sectors << 9)
5531 						   / PAGE_SIZE);
5532 			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5533 				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5534 		}
5535 	}
5536 }
5537 
5538 /* This is called from the raid5d thread with mddev_lock held.
5539  * It makes config changes to the device.
5540  */
5541 static void raid5_finish_reshape(mddev_t *mddev)
5542 {
5543 	raid5_conf_t *conf = mddev->private;
5544 
5545 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5546 
5547 		if (mddev->delta_disks > 0) {
5548 			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5549 			set_capacity(mddev->gendisk, mddev->array_sectors);
5550 			mddev->changed = 1;
5551 			revalidate_disk(mddev->gendisk);
5552 		} else {
5553 			int d;
5554 			mddev->degraded = conf->raid_disks;
5555 			for (d = 0; d < conf->raid_disks ; d++)
5556 				if (conf->disks[d].rdev &&
5557 				    test_bit(In_sync,
5558 					     &conf->disks[d].rdev->flags))
5559 					mddev->degraded--;
5560 			for (d = conf->raid_disks ;
5561 			     d < conf->raid_disks - mddev->delta_disks;
5562 			     d++) {
5563 				mdk_rdev_t *rdev = conf->disks[d].rdev;
5564 				if (rdev && raid5_remove_disk(mddev, d) == 0) {
5565 					char nm[20];
5566 					sprintf(nm, "rd%d", rdev->raid_disk);
5567 					sysfs_remove_link(&mddev->kobj, nm);
5568 					rdev->raid_disk = -1;
5569 				}
5570 			}
5571 		}
5572 		mddev->layout = conf->algorithm;
5573 		mddev->chunk_sectors = conf->chunk_sectors;
5574 		mddev->reshape_position = MaxSector;
5575 		mddev->delta_disks = 0;
5576 	}
5577 }
5578 
5579 static void raid5_quiesce(mddev_t *mddev, int state)
5580 {
5581 	raid5_conf_t *conf = mddev->private;
5582 
5583 	switch(state) {
5584 	case 2: /* resume for a suspend */
5585 		wake_up(&conf->wait_for_overlap);
5586 		break;
5587 
5588 	case 1: /* stop all writes */
5589 		spin_lock_irq(&conf->device_lock);
5590 		/* '2' tells resync/reshape to pause so that all
5591 		 * active stripes can drain
5592 		 */
5593 		conf->quiesce = 2;
5594 		wait_event_lock_irq(conf->wait_for_stripe,
5595 				    atomic_read(&conf->active_stripes) == 0 &&
5596 				    atomic_read(&conf->active_aligned_reads) == 0,
5597 				    conf->device_lock, /* nothing */);
5598 		conf->quiesce = 1;
5599 		spin_unlock_irq(&conf->device_lock);
5600 		/* allow reshape to continue */
5601 		wake_up(&conf->wait_for_overlap);
5602 		break;
5603 
5604 	case 0: /* re-enable writes */
5605 		spin_lock_irq(&conf->device_lock);
5606 		conf->quiesce = 0;
5607 		wake_up(&conf->wait_for_stripe);
5608 		wake_up(&conf->wait_for_overlap);
5609 		spin_unlock_irq(&conf->device_lock);
5610 		break;
5611 	}
5612 }
5613 
5614 
5615 static void *raid5_takeover_raid1(mddev_t *mddev)
5616 {
5617 	int chunksect;
5618 
5619 	if (mddev->raid_disks != 2 ||
5620 	    mddev->degraded > 1)
5621 		return ERR_PTR(-EINVAL);
5622 
5623 	/* Should check if there are write-behind devices? */
5624 
5625 	chunksect = 64*2; /* 64K by default */
5626 
5627 	/* The array must be an exact multiple of chunksize */
5628 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
5629 		chunksect >>= 1;
5630 
5631 	if ((chunksect<<9) < STRIPE_SIZE)
5632 		/* array size does not allow a suitable chunk size */
5633 		return ERR_PTR(-EINVAL);
5634 
5635 	mddev->new_level = 5;
5636 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5637 	mddev->new_chunk_sectors = chunksect;
5638 
5639 	return setup_conf(mddev);
5640 }
5641 
5642 static void *raid5_takeover_raid6(mddev_t *mddev)
5643 {
5644 	int new_layout;
5645 
5646 	switch (mddev->layout) {
5647 	case ALGORITHM_LEFT_ASYMMETRIC_6:
5648 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5649 		break;
5650 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
5651 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5652 		break;
5653 	case ALGORITHM_LEFT_SYMMETRIC_6:
5654 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
5655 		break;
5656 	case ALGORITHM_RIGHT_SYMMETRIC_6:
5657 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5658 		break;
5659 	case ALGORITHM_PARITY_0_6:
5660 		new_layout = ALGORITHM_PARITY_0;
5661 		break;
5662 	case ALGORITHM_PARITY_N:
5663 		new_layout = ALGORITHM_PARITY_N;
5664 		break;
5665 	default:
5666 		return ERR_PTR(-EINVAL);
5667 	}
5668 	mddev->new_level = 5;
5669 	mddev->new_layout = new_layout;
5670 	mddev->delta_disks = -1;
5671 	mddev->raid_disks -= 1;
5672 	return setup_conf(mddev);
5673 }
5674 
5675 
5676 static int raid5_check_reshape(mddev_t *mddev)
5677 {
5678 	/* For a 2-drive array, the layout and chunk size can be changed
5679 	 * immediately as not restriping is needed.
5680 	 * For larger arrays we record the new value - after validation
5681 	 * to be used by a reshape pass.
5682 	 */
5683 	raid5_conf_t *conf = mddev->private;
5684 	int new_chunk = mddev->new_chunk_sectors;
5685 
5686 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5687 		return -EINVAL;
5688 	if (new_chunk > 0) {
5689 		if (!is_power_of_2(new_chunk))
5690 			return -EINVAL;
5691 		if (new_chunk < (PAGE_SIZE>>9))
5692 			return -EINVAL;
5693 		if (mddev->array_sectors & (new_chunk-1))
5694 			/* not factor of array size */
5695 			return -EINVAL;
5696 	}
5697 
5698 	/* They look valid */
5699 
5700 	if (mddev->raid_disks == 2) {
5701 		/* can make the change immediately */
5702 		if (mddev->new_layout >= 0) {
5703 			conf->algorithm = mddev->new_layout;
5704 			mddev->layout = mddev->new_layout;
5705 		}
5706 		if (new_chunk > 0) {
5707 			conf->chunk_sectors = new_chunk ;
5708 			mddev->chunk_sectors = new_chunk;
5709 		}
5710 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
5711 		md_wakeup_thread(mddev->thread);
5712 	}
5713 	return check_reshape(mddev);
5714 }
5715 
5716 static int raid6_check_reshape(mddev_t *mddev)
5717 {
5718 	int new_chunk = mddev->new_chunk_sectors;
5719 
5720 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5721 		return -EINVAL;
5722 	if (new_chunk > 0) {
5723 		if (!is_power_of_2(new_chunk))
5724 			return -EINVAL;
5725 		if (new_chunk < (PAGE_SIZE >> 9))
5726 			return -EINVAL;
5727 		if (mddev->array_sectors & (new_chunk-1))
5728 			/* not factor of array size */
5729 			return -EINVAL;
5730 	}
5731 
5732 	/* They look valid */
5733 	return check_reshape(mddev);
5734 }
5735 
5736 static void *raid5_takeover(mddev_t *mddev)
5737 {
5738 	/* raid5 can take over:
5739 	 *  raid0 - if all devices are the same - make it a raid4 layout
5740 	 *  raid1 - if there are two drives.  We need to know the chunk size
5741 	 *  raid4 - trivial - just use a raid4 layout.
5742 	 *  raid6 - Providing it is a *_6 layout
5743 	 */
5744 
5745 	if (mddev->level == 1)
5746 		return raid5_takeover_raid1(mddev);
5747 	if (mddev->level == 4) {
5748 		mddev->new_layout = ALGORITHM_PARITY_N;
5749 		mddev->new_level = 5;
5750 		return setup_conf(mddev);
5751 	}
5752 	if (mddev->level == 6)
5753 		return raid5_takeover_raid6(mddev);
5754 
5755 	return ERR_PTR(-EINVAL);
5756 }
5757 
5758 
5759 static struct mdk_personality raid5_personality;
5760 
5761 static void *raid6_takeover(mddev_t *mddev)
5762 {
5763 	/* Currently can only take over a raid5.  We map the
5764 	 * personality to an equivalent raid6 personality
5765 	 * with the Q block at the end.
5766 	 */
5767 	int new_layout;
5768 
5769 	if (mddev->pers != &raid5_personality)
5770 		return ERR_PTR(-EINVAL);
5771 	if (mddev->degraded > 1)
5772 		return ERR_PTR(-EINVAL);
5773 	if (mddev->raid_disks > 253)
5774 		return ERR_PTR(-EINVAL);
5775 	if (mddev->raid_disks < 3)
5776 		return ERR_PTR(-EINVAL);
5777 
5778 	switch (mddev->layout) {
5779 	case ALGORITHM_LEFT_ASYMMETRIC:
5780 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5781 		break;
5782 	case ALGORITHM_RIGHT_ASYMMETRIC:
5783 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5784 		break;
5785 	case ALGORITHM_LEFT_SYMMETRIC:
5786 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5787 		break;
5788 	case ALGORITHM_RIGHT_SYMMETRIC:
5789 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5790 		break;
5791 	case ALGORITHM_PARITY_0:
5792 		new_layout = ALGORITHM_PARITY_0_6;
5793 		break;
5794 	case ALGORITHM_PARITY_N:
5795 		new_layout = ALGORITHM_PARITY_N;
5796 		break;
5797 	default:
5798 		return ERR_PTR(-EINVAL);
5799 	}
5800 	mddev->new_level = 6;
5801 	mddev->new_layout = new_layout;
5802 	mddev->delta_disks = 1;
5803 	mddev->raid_disks += 1;
5804 	return setup_conf(mddev);
5805 }
5806 
5807 
5808 static struct mdk_personality raid6_personality =
5809 {
5810 	.name		= "raid6",
5811 	.level		= 6,
5812 	.owner		= THIS_MODULE,
5813 	.make_request	= make_request,
5814 	.run		= run,
5815 	.stop		= stop,
5816 	.status		= status,
5817 	.error_handler	= error,
5818 	.hot_add_disk	= raid5_add_disk,
5819 	.hot_remove_disk= raid5_remove_disk,
5820 	.spare_active	= raid5_spare_active,
5821 	.sync_request	= sync_request,
5822 	.resize		= raid5_resize,
5823 	.size		= raid5_size,
5824 	.check_reshape	= raid6_check_reshape,
5825 	.start_reshape  = raid5_start_reshape,
5826 	.finish_reshape = raid5_finish_reshape,
5827 	.quiesce	= raid5_quiesce,
5828 	.takeover	= raid6_takeover,
5829 };
5830 static struct mdk_personality raid5_personality =
5831 {
5832 	.name		= "raid5",
5833 	.level		= 5,
5834 	.owner		= THIS_MODULE,
5835 	.make_request	= make_request,
5836 	.run		= run,
5837 	.stop		= stop,
5838 	.status		= status,
5839 	.error_handler	= error,
5840 	.hot_add_disk	= raid5_add_disk,
5841 	.hot_remove_disk= raid5_remove_disk,
5842 	.spare_active	= raid5_spare_active,
5843 	.sync_request	= sync_request,
5844 	.resize		= raid5_resize,
5845 	.size		= raid5_size,
5846 	.check_reshape	= raid5_check_reshape,
5847 	.start_reshape  = raid5_start_reshape,
5848 	.finish_reshape = raid5_finish_reshape,
5849 	.quiesce	= raid5_quiesce,
5850 	.takeover	= raid5_takeover,
5851 };
5852 
5853 static struct mdk_personality raid4_personality =
5854 {
5855 	.name		= "raid4",
5856 	.level		= 4,
5857 	.owner		= THIS_MODULE,
5858 	.make_request	= make_request,
5859 	.run		= run,
5860 	.stop		= stop,
5861 	.status		= status,
5862 	.error_handler	= error,
5863 	.hot_add_disk	= raid5_add_disk,
5864 	.hot_remove_disk= raid5_remove_disk,
5865 	.spare_active	= raid5_spare_active,
5866 	.sync_request	= sync_request,
5867 	.resize		= raid5_resize,
5868 	.size		= raid5_size,
5869 	.check_reshape	= raid5_check_reshape,
5870 	.start_reshape  = raid5_start_reshape,
5871 	.finish_reshape = raid5_finish_reshape,
5872 	.quiesce	= raid5_quiesce,
5873 };
5874 
5875 static int __init raid5_init(void)
5876 {
5877 	register_md_personality(&raid6_personality);
5878 	register_md_personality(&raid5_personality);
5879 	register_md_personality(&raid4_personality);
5880 	return 0;
5881 }
5882 
5883 static void raid5_exit(void)
5884 {
5885 	unregister_md_personality(&raid6_personality);
5886 	unregister_md_personality(&raid5_personality);
5887 	unregister_md_personality(&raid4_personality);
5888 }
5889 
5890 module_init(raid5_init);
5891 module_exit(raid5_exit);
5892 MODULE_LICENSE("GPL");
5893 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
5894 MODULE_ALIAS("md-personality-4"); /* RAID5 */
5895 MODULE_ALIAS("md-raid5");
5896 MODULE_ALIAS("md-raid4");
5897 MODULE_ALIAS("md-level-5");
5898 MODULE_ALIAS("md-level-4");
5899 MODULE_ALIAS("md-personality-8"); /* RAID6 */
5900 MODULE_ALIAS("md-raid6");
5901 MODULE_ALIAS("md-level-6");
5902 
5903 /* This used to be two separate modules, they were: */
5904 MODULE_ALIAS("raid5");
5905 MODULE_ALIAS("raid6");
5906