xref: /linux/drivers/md/raid5.c (revision 9ce7677cfd7cd871adb457c80bea3b581b839641)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *
6  * RAID-5 management functions.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2, or (at your option)
11  * any later version.
12  *
13  * You should have received a copy of the GNU General Public License
14  * (for example /usr/src/linux/COPYING); if not, write to the Free
15  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
16  */
17 
18 
19 #include <linux/config.h>
20 #include <linux/module.h>
21 #include <linux/slab.h>
22 #include <linux/raid/raid5.h>
23 #include <linux/highmem.h>
24 #include <linux/bitops.h>
25 #include <asm/atomic.h>
26 
27 #include <linux/raid/bitmap.h>
28 
29 /*
30  * Stripe cache
31  */
32 
33 #define NR_STRIPES		256
34 #define STRIPE_SIZE		PAGE_SIZE
35 #define STRIPE_SHIFT		(PAGE_SHIFT - 9)
36 #define STRIPE_SECTORS		(STRIPE_SIZE>>9)
37 #define	IO_THRESHOLD		1
38 #define HASH_PAGES		1
39 #define HASH_PAGES_ORDER	0
40 #define NR_HASH			(HASH_PAGES * PAGE_SIZE / sizeof(struct stripe_head *))
41 #define HASH_MASK		(NR_HASH - 1)
42 
43 #define stripe_hash(conf, sect)	((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK])
44 
45 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
46  * order without overlap.  There may be several bio's per stripe+device, and
47  * a bio could span several devices.
48  * When walking this list for a particular stripe+device, we must never proceed
49  * beyond a bio that extends past this device, as the next bio might no longer
50  * be valid.
51  * This macro is used to determine the 'next' bio in the list, given the sector
52  * of the current stripe+device
53  */
54 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
55 /*
56  * The following can be used to debug the driver
57  */
58 #define RAID5_DEBUG	0
59 #define RAID5_PARANOIA	1
60 #if RAID5_PARANOIA && defined(CONFIG_SMP)
61 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
62 #else
63 # define CHECK_DEVLOCK()
64 #endif
65 
66 #define PRINTK(x...) ((void)(RAID5_DEBUG && printk(x)))
67 #if RAID5_DEBUG
68 #define inline
69 #define __inline__
70 #endif
71 
72 static void print_raid5_conf (raid5_conf_t *conf);
73 
74 static inline void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
75 {
76 	if (atomic_dec_and_test(&sh->count)) {
77 		if (!list_empty(&sh->lru))
78 			BUG();
79 		if (atomic_read(&conf->active_stripes)==0)
80 			BUG();
81 		if (test_bit(STRIPE_HANDLE, &sh->state)) {
82 			if (test_bit(STRIPE_DELAYED, &sh->state))
83 				list_add_tail(&sh->lru, &conf->delayed_list);
84 			else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
85 				 conf->seq_write == sh->bm_seq)
86 				list_add_tail(&sh->lru, &conf->bitmap_list);
87 			else {
88 				clear_bit(STRIPE_BIT_DELAY, &sh->state);
89 				list_add_tail(&sh->lru, &conf->handle_list);
90 			}
91 			md_wakeup_thread(conf->mddev->thread);
92 		} else {
93 			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
94 				atomic_dec(&conf->preread_active_stripes);
95 				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
96 					md_wakeup_thread(conf->mddev->thread);
97 			}
98 			list_add_tail(&sh->lru, &conf->inactive_list);
99 			atomic_dec(&conf->active_stripes);
100 			if (!conf->inactive_blocked ||
101 			    atomic_read(&conf->active_stripes) < (conf->max_nr_stripes*3/4))
102 				wake_up(&conf->wait_for_stripe);
103 		}
104 	}
105 }
106 static void release_stripe(struct stripe_head *sh)
107 {
108 	raid5_conf_t *conf = sh->raid_conf;
109 	unsigned long flags;
110 
111 	spin_lock_irqsave(&conf->device_lock, flags);
112 	__release_stripe(conf, sh);
113 	spin_unlock_irqrestore(&conf->device_lock, flags);
114 }
115 
116 static void remove_hash(struct stripe_head *sh)
117 {
118 	PRINTK("remove_hash(), stripe %llu\n", (unsigned long long)sh->sector);
119 
120 	if (sh->hash_pprev) {
121 		if (sh->hash_next)
122 			sh->hash_next->hash_pprev = sh->hash_pprev;
123 		*sh->hash_pprev = sh->hash_next;
124 		sh->hash_pprev = NULL;
125 	}
126 }
127 
128 static __inline__ void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
129 {
130 	struct stripe_head **shp = &stripe_hash(conf, sh->sector);
131 
132 	PRINTK("insert_hash(), stripe %llu\n", (unsigned long long)sh->sector);
133 
134 	CHECK_DEVLOCK();
135 	if ((sh->hash_next = *shp) != NULL)
136 		(*shp)->hash_pprev = &sh->hash_next;
137 	*shp = sh;
138 	sh->hash_pprev = shp;
139 }
140 
141 
142 /* find an idle stripe, make sure it is unhashed, and return it. */
143 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
144 {
145 	struct stripe_head *sh = NULL;
146 	struct list_head *first;
147 
148 	CHECK_DEVLOCK();
149 	if (list_empty(&conf->inactive_list))
150 		goto out;
151 	first = conf->inactive_list.next;
152 	sh = list_entry(first, struct stripe_head, lru);
153 	list_del_init(first);
154 	remove_hash(sh);
155 	atomic_inc(&conf->active_stripes);
156 out:
157 	return sh;
158 }
159 
160 static void shrink_buffers(struct stripe_head *sh, int num)
161 {
162 	struct page *p;
163 	int i;
164 
165 	for (i=0; i<num ; i++) {
166 		p = sh->dev[i].page;
167 		if (!p)
168 			continue;
169 		sh->dev[i].page = NULL;
170 		page_cache_release(p);
171 	}
172 }
173 
174 static int grow_buffers(struct stripe_head *sh, int num)
175 {
176 	int i;
177 
178 	for (i=0; i<num; i++) {
179 		struct page *page;
180 
181 		if (!(page = alloc_page(GFP_KERNEL))) {
182 			return 1;
183 		}
184 		sh->dev[i].page = page;
185 	}
186 	return 0;
187 }
188 
189 static void raid5_build_block (struct stripe_head *sh, int i);
190 
191 static inline void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx)
192 {
193 	raid5_conf_t *conf = sh->raid_conf;
194 	int disks = conf->raid_disks, i;
195 
196 	if (atomic_read(&sh->count) != 0)
197 		BUG();
198 	if (test_bit(STRIPE_HANDLE, &sh->state))
199 		BUG();
200 
201 	CHECK_DEVLOCK();
202 	PRINTK("init_stripe called, stripe %llu\n",
203 		(unsigned long long)sh->sector);
204 
205 	remove_hash(sh);
206 
207 	sh->sector = sector;
208 	sh->pd_idx = pd_idx;
209 	sh->state = 0;
210 
211 	for (i=disks; i--; ) {
212 		struct r5dev *dev = &sh->dev[i];
213 
214 		if (dev->toread || dev->towrite || dev->written ||
215 		    test_bit(R5_LOCKED, &dev->flags)) {
216 			printk("sector=%llx i=%d %p %p %p %d\n",
217 			       (unsigned long long)sh->sector, i, dev->toread,
218 			       dev->towrite, dev->written,
219 			       test_bit(R5_LOCKED, &dev->flags));
220 			BUG();
221 		}
222 		dev->flags = 0;
223 		raid5_build_block(sh, i);
224 	}
225 	insert_hash(conf, sh);
226 }
227 
228 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector)
229 {
230 	struct stripe_head *sh;
231 
232 	CHECK_DEVLOCK();
233 	PRINTK("__find_stripe, sector %llu\n", (unsigned long long)sector);
234 	for (sh = stripe_hash(conf, sector); sh; sh = sh->hash_next)
235 		if (sh->sector == sector)
236 			return sh;
237 	PRINTK("__stripe %llu not in cache\n", (unsigned long long)sector);
238 	return NULL;
239 }
240 
241 static void unplug_slaves(mddev_t *mddev);
242 static void raid5_unplug_device(request_queue_t *q);
243 
244 static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector,
245 					     int pd_idx, int noblock)
246 {
247 	struct stripe_head *sh;
248 
249 	PRINTK("get_stripe, sector %llu\n", (unsigned long long)sector);
250 
251 	spin_lock_irq(&conf->device_lock);
252 
253 	do {
254 		wait_event_lock_irq(conf->wait_for_stripe,
255 				    conf->quiesce == 0,
256 				    conf->device_lock, /* nothing */);
257 		sh = __find_stripe(conf, sector);
258 		if (!sh) {
259 			if (!conf->inactive_blocked)
260 				sh = get_free_stripe(conf);
261 			if (noblock && sh == NULL)
262 				break;
263 			if (!sh) {
264 				conf->inactive_blocked = 1;
265 				wait_event_lock_irq(conf->wait_for_stripe,
266 						    !list_empty(&conf->inactive_list) &&
267 						    (atomic_read(&conf->active_stripes)
268 						     < (conf->max_nr_stripes *3/4)
269 						     || !conf->inactive_blocked),
270 						    conf->device_lock,
271 						    unplug_slaves(conf->mddev);
272 					);
273 				conf->inactive_blocked = 0;
274 			} else
275 				init_stripe(sh, sector, pd_idx);
276 		} else {
277 			if (atomic_read(&sh->count)) {
278 				if (!list_empty(&sh->lru))
279 					BUG();
280 			} else {
281 				if (!test_bit(STRIPE_HANDLE, &sh->state))
282 					atomic_inc(&conf->active_stripes);
283 				if (list_empty(&sh->lru))
284 					BUG();
285 				list_del_init(&sh->lru);
286 			}
287 		}
288 	} while (sh == NULL);
289 
290 	if (sh)
291 		atomic_inc(&sh->count);
292 
293 	spin_unlock_irq(&conf->device_lock);
294 	return sh;
295 }
296 
297 static int grow_one_stripe(raid5_conf_t *conf)
298 {
299 	struct stripe_head *sh;
300 	sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
301 	if (!sh)
302 		return 0;
303 	memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
304 	sh->raid_conf = conf;
305 	spin_lock_init(&sh->lock);
306 
307 	if (grow_buffers(sh, conf->raid_disks)) {
308 		shrink_buffers(sh, conf->raid_disks);
309 		kmem_cache_free(conf->slab_cache, sh);
310 		return 0;
311 	}
312 	/* we just created an active stripe so... */
313 	atomic_set(&sh->count, 1);
314 	atomic_inc(&conf->active_stripes);
315 	INIT_LIST_HEAD(&sh->lru);
316 	release_stripe(sh);
317 	return 1;
318 }
319 
320 static int grow_stripes(raid5_conf_t *conf, int num)
321 {
322 	kmem_cache_t *sc;
323 	int devs = conf->raid_disks;
324 
325 	sprintf(conf->cache_name, "raid5/%s", mdname(conf->mddev));
326 
327 	sc = kmem_cache_create(conf->cache_name,
328 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
329 			       0, 0, NULL, NULL);
330 	if (!sc)
331 		return 1;
332 	conf->slab_cache = sc;
333 	while (num--) {
334 		if (!grow_one_stripe(conf))
335 			return 1;
336 	}
337 	return 0;
338 }
339 
340 static int drop_one_stripe(raid5_conf_t *conf)
341 {
342 	struct stripe_head *sh;
343 
344 	spin_lock_irq(&conf->device_lock);
345 	sh = get_free_stripe(conf);
346 	spin_unlock_irq(&conf->device_lock);
347 	if (!sh)
348 		return 0;
349 	if (atomic_read(&sh->count))
350 		BUG();
351 	shrink_buffers(sh, conf->raid_disks);
352 	kmem_cache_free(conf->slab_cache, sh);
353 	atomic_dec(&conf->active_stripes);
354 	return 1;
355 }
356 
357 static void shrink_stripes(raid5_conf_t *conf)
358 {
359 	while (drop_one_stripe(conf))
360 		;
361 
362 	kmem_cache_destroy(conf->slab_cache);
363 	conf->slab_cache = NULL;
364 }
365 
366 static int raid5_end_read_request(struct bio * bi, unsigned int bytes_done,
367 				   int error)
368 {
369  	struct stripe_head *sh = bi->bi_private;
370 	raid5_conf_t *conf = sh->raid_conf;
371 	int disks = conf->raid_disks, i;
372 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
373 
374 	if (bi->bi_size)
375 		return 1;
376 
377 	for (i=0 ; i<disks; i++)
378 		if (bi == &sh->dev[i].req)
379 			break;
380 
381 	PRINTK("end_read_request %llu/%d, count: %d, uptodate %d.\n",
382 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
383 		uptodate);
384 	if (i == disks) {
385 		BUG();
386 		return 0;
387 	}
388 
389 	if (uptodate) {
390 #if 0
391 		struct bio *bio;
392 		unsigned long flags;
393 		spin_lock_irqsave(&conf->device_lock, flags);
394 		/* we can return a buffer if we bypassed the cache or
395 		 * if the top buffer is not in highmem.  If there are
396 		 * multiple buffers, leave the extra work to
397 		 * handle_stripe
398 		 */
399 		buffer = sh->bh_read[i];
400 		if (buffer &&
401 		    (!PageHighMem(buffer->b_page)
402 		     || buffer->b_page == bh->b_page )
403 			) {
404 			sh->bh_read[i] = buffer->b_reqnext;
405 			buffer->b_reqnext = NULL;
406 		} else
407 			buffer = NULL;
408 		spin_unlock_irqrestore(&conf->device_lock, flags);
409 		if (sh->bh_page[i]==bh->b_page)
410 			set_buffer_uptodate(bh);
411 		if (buffer) {
412 			if (buffer->b_page != bh->b_page)
413 				memcpy(buffer->b_data, bh->b_data, bh->b_size);
414 			buffer->b_end_io(buffer, 1);
415 		}
416 #else
417 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
418 #endif
419 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
420 			printk("R5: read error corrected!!\n");
421 			clear_bit(R5_ReadError, &sh->dev[i].flags);
422 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
423 		}
424 		if (atomic_read(&conf->disks[i].rdev->read_errors))
425 			atomic_set(&conf->disks[i].rdev->read_errors, 0);
426 	} else {
427 		int retry = 0;
428 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
429 		atomic_inc(&conf->disks[i].rdev->read_errors);
430 		if (conf->mddev->degraded)
431 			printk("R5: read error not correctable.\n");
432 		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
433 			/* Oh, no!!! */
434 			printk("R5: read error NOT corrected!!\n");
435 		else if (atomic_read(&conf->disks[i].rdev->read_errors)
436 			 > conf->max_nr_stripes)
437 			printk("raid5: Too many read errors, failing device.\n");
438 		else
439 			retry = 1;
440 		if (retry)
441 			set_bit(R5_ReadError, &sh->dev[i].flags);
442 		else {
443 			clear_bit(R5_ReadError, &sh->dev[i].flags);
444 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
445 			md_error(conf->mddev, conf->disks[i].rdev);
446 		}
447 	}
448 	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
449 #if 0
450 	/* must restore b_page before unlocking buffer... */
451 	if (sh->bh_page[i] != bh->b_page) {
452 		bh->b_page = sh->bh_page[i];
453 		bh->b_data = page_address(bh->b_page);
454 		clear_buffer_uptodate(bh);
455 	}
456 #endif
457 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
458 	set_bit(STRIPE_HANDLE, &sh->state);
459 	release_stripe(sh);
460 	return 0;
461 }
462 
463 static int raid5_end_write_request (struct bio *bi, unsigned int bytes_done,
464 				    int error)
465 {
466  	struct stripe_head *sh = bi->bi_private;
467 	raid5_conf_t *conf = sh->raid_conf;
468 	int disks = conf->raid_disks, i;
469 	unsigned long flags;
470 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
471 
472 	if (bi->bi_size)
473 		return 1;
474 
475 	for (i=0 ; i<disks; i++)
476 		if (bi == &sh->dev[i].req)
477 			break;
478 
479 	PRINTK("end_write_request %llu/%d, count %d, uptodate: %d.\n",
480 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
481 		uptodate);
482 	if (i == disks) {
483 		BUG();
484 		return 0;
485 	}
486 
487 	spin_lock_irqsave(&conf->device_lock, flags);
488 	if (!uptodate)
489 		md_error(conf->mddev, conf->disks[i].rdev);
490 
491 	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
492 
493 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
494 	set_bit(STRIPE_HANDLE, &sh->state);
495 	__release_stripe(conf, sh);
496 	spin_unlock_irqrestore(&conf->device_lock, flags);
497 	return 0;
498 }
499 
500 
501 static sector_t compute_blocknr(struct stripe_head *sh, int i);
502 
503 static void raid5_build_block (struct stripe_head *sh, int i)
504 {
505 	struct r5dev *dev = &sh->dev[i];
506 
507 	bio_init(&dev->req);
508 	dev->req.bi_io_vec = &dev->vec;
509 	dev->req.bi_vcnt++;
510 	dev->req.bi_max_vecs++;
511 	dev->vec.bv_page = dev->page;
512 	dev->vec.bv_len = STRIPE_SIZE;
513 	dev->vec.bv_offset = 0;
514 
515 	dev->req.bi_sector = sh->sector;
516 	dev->req.bi_private = sh;
517 
518 	dev->flags = 0;
519 	if (i != sh->pd_idx)
520 		dev->sector = compute_blocknr(sh, i);
521 }
522 
523 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
524 {
525 	char b[BDEVNAME_SIZE];
526 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
527 	PRINTK("raid5: error called\n");
528 
529 	if (!test_bit(Faulty, &rdev->flags)) {
530 		mddev->sb_dirty = 1;
531 		if (test_bit(In_sync, &rdev->flags)) {
532 			conf->working_disks--;
533 			mddev->degraded++;
534 			conf->failed_disks++;
535 			clear_bit(In_sync, &rdev->flags);
536 			/*
537 			 * if recovery was running, make sure it aborts.
538 			 */
539 			set_bit(MD_RECOVERY_ERR, &mddev->recovery);
540 		}
541 		set_bit(Faulty, &rdev->flags);
542 		printk (KERN_ALERT
543 			"raid5: Disk failure on %s, disabling device."
544 			" Operation continuing on %d devices\n",
545 			bdevname(rdev->bdev,b), conf->working_disks);
546 	}
547 }
548 
549 /*
550  * Input: a 'big' sector number,
551  * Output: index of the data and parity disk, and the sector # in them.
552  */
553 static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
554 			unsigned int data_disks, unsigned int * dd_idx,
555 			unsigned int * pd_idx, raid5_conf_t *conf)
556 {
557 	long stripe;
558 	unsigned long chunk_number;
559 	unsigned int chunk_offset;
560 	sector_t new_sector;
561 	int sectors_per_chunk = conf->chunk_size >> 9;
562 
563 	/* First compute the information on this sector */
564 
565 	/*
566 	 * Compute the chunk number and the sector offset inside the chunk
567 	 */
568 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
569 	chunk_number = r_sector;
570 	BUG_ON(r_sector != chunk_number);
571 
572 	/*
573 	 * Compute the stripe number
574 	 */
575 	stripe = chunk_number / data_disks;
576 
577 	/*
578 	 * Compute the data disk and parity disk indexes inside the stripe
579 	 */
580 	*dd_idx = chunk_number % data_disks;
581 
582 	/*
583 	 * Select the parity disk based on the user selected algorithm.
584 	 */
585 	if (conf->level == 4)
586 		*pd_idx = data_disks;
587 	else switch (conf->algorithm) {
588 		case ALGORITHM_LEFT_ASYMMETRIC:
589 			*pd_idx = data_disks - stripe % raid_disks;
590 			if (*dd_idx >= *pd_idx)
591 				(*dd_idx)++;
592 			break;
593 		case ALGORITHM_RIGHT_ASYMMETRIC:
594 			*pd_idx = stripe % raid_disks;
595 			if (*dd_idx >= *pd_idx)
596 				(*dd_idx)++;
597 			break;
598 		case ALGORITHM_LEFT_SYMMETRIC:
599 			*pd_idx = data_disks - stripe % raid_disks;
600 			*dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
601 			break;
602 		case ALGORITHM_RIGHT_SYMMETRIC:
603 			*pd_idx = stripe % raid_disks;
604 			*dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
605 			break;
606 		default:
607 			printk("raid5: unsupported algorithm %d\n",
608 				conf->algorithm);
609 	}
610 
611 	/*
612 	 * Finally, compute the new sector number
613 	 */
614 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
615 	return new_sector;
616 }
617 
618 
619 static sector_t compute_blocknr(struct stripe_head *sh, int i)
620 {
621 	raid5_conf_t *conf = sh->raid_conf;
622 	int raid_disks = conf->raid_disks, data_disks = raid_disks - 1;
623 	sector_t new_sector = sh->sector, check;
624 	int sectors_per_chunk = conf->chunk_size >> 9;
625 	sector_t stripe;
626 	int chunk_offset;
627 	int chunk_number, dummy1, dummy2, dd_idx = i;
628 	sector_t r_sector;
629 
630 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
631 	stripe = new_sector;
632 	BUG_ON(new_sector != stripe);
633 
634 
635 	switch (conf->algorithm) {
636 		case ALGORITHM_LEFT_ASYMMETRIC:
637 		case ALGORITHM_RIGHT_ASYMMETRIC:
638 			if (i > sh->pd_idx)
639 				i--;
640 			break;
641 		case ALGORITHM_LEFT_SYMMETRIC:
642 		case ALGORITHM_RIGHT_SYMMETRIC:
643 			if (i < sh->pd_idx)
644 				i += raid_disks;
645 			i -= (sh->pd_idx + 1);
646 			break;
647 		default:
648 			printk("raid5: unsupported algorithm %d\n",
649 				conf->algorithm);
650 	}
651 
652 	chunk_number = stripe * data_disks + i;
653 	r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
654 
655 	check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
656 	if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
657 		printk("compute_blocknr: map not correct\n");
658 		return 0;
659 	}
660 	return r_sector;
661 }
662 
663 
664 
665 /*
666  * Copy data between a page in the stripe cache, and a bio.
667  * There are no alignment or size guarantees between the page or the
668  * bio except that there is some overlap.
669  * All iovecs in the bio must be considered.
670  */
671 static void copy_data(int frombio, struct bio *bio,
672 		     struct page *page,
673 		     sector_t sector)
674 {
675 	char *pa = page_address(page);
676 	struct bio_vec *bvl;
677 	int i;
678 	int page_offset;
679 
680 	if (bio->bi_sector >= sector)
681 		page_offset = (signed)(bio->bi_sector - sector) * 512;
682 	else
683 		page_offset = (signed)(sector - bio->bi_sector) * -512;
684 	bio_for_each_segment(bvl, bio, i) {
685 		int len = bio_iovec_idx(bio,i)->bv_len;
686 		int clen;
687 		int b_offset = 0;
688 
689 		if (page_offset < 0) {
690 			b_offset = -page_offset;
691 			page_offset += b_offset;
692 			len -= b_offset;
693 		}
694 
695 		if (len > 0 && page_offset + len > STRIPE_SIZE)
696 			clen = STRIPE_SIZE - page_offset;
697 		else clen = len;
698 
699 		if (clen > 0) {
700 			char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
701 			if (frombio)
702 				memcpy(pa+page_offset, ba+b_offset, clen);
703 			else
704 				memcpy(ba+b_offset, pa+page_offset, clen);
705 			__bio_kunmap_atomic(ba, KM_USER0);
706 		}
707 		if (clen < len) /* hit end of page */
708 			break;
709 		page_offset +=  len;
710 	}
711 }
712 
713 #define check_xor() 	do { 						\
714 			   if (count == MAX_XOR_BLOCKS) {		\
715 				xor_block(count, STRIPE_SIZE, ptr);	\
716 				count = 1;				\
717 			   }						\
718 			} while(0)
719 
720 
721 static void compute_block(struct stripe_head *sh, int dd_idx)
722 {
723 	raid5_conf_t *conf = sh->raid_conf;
724 	int i, count, disks = conf->raid_disks;
725 	void *ptr[MAX_XOR_BLOCKS], *p;
726 
727 	PRINTK("compute_block, stripe %llu, idx %d\n",
728 		(unsigned long long)sh->sector, dd_idx);
729 
730 	ptr[0] = page_address(sh->dev[dd_idx].page);
731 	memset(ptr[0], 0, STRIPE_SIZE);
732 	count = 1;
733 	for (i = disks ; i--; ) {
734 		if (i == dd_idx)
735 			continue;
736 		p = page_address(sh->dev[i].page);
737 		if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
738 			ptr[count++] = p;
739 		else
740 			printk("compute_block() %d, stripe %llu, %d"
741 				" not present\n", dd_idx,
742 				(unsigned long long)sh->sector, i);
743 
744 		check_xor();
745 	}
746 	if (count != 1)
747 		xor_block(count, STRIPE_SIZE, ptr);
748 	set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
749 }
750 
751 static void compute_parity(struct stripe_head *sh, int method)
752 {
753 	raid5_conf_t *conf = sh->raid_conf;
754 	int i, pd_idx = sh->pd_idx, disks = conf->raid_disks, count;
755 	void *ptr[MAX_XOR_BLOCKS];
756 	struct bio *chosen;
757 
758 	PRINTK("compute_parity, stripe %llu, method %d\n",
759 		(unsigned long long)sh->sector, method);
760 
761 	count = 1;
762 	ptr[0] = page_address(sh->dev[pd_idx].page);
763 	switch(method) {
764 	case READ_MODIFY_WRITE:
765 		if (!test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags))
766 			BUG();
767 		for (i=disks ; i-- ;) {
768 			if (i==pd_idx)
769 				continue;
770 			if (sh->dev[i].towrite &&
771 			    test_bit(R5_UPTODATE, &sh->dev[i].flags)) {
772 				ptr[count++] = page_address(sh->dev[i].page);
773 				chosen = sh->dev[i].towrite;
774 				sh->dev[i].towrite = NULL;
775 
776 				if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
777 					wake_up(&conf->wait_for_overlap);
778 
779 				if (sh->dev[i].written) BUG();
780 				sh->dev[i].written = chosen;
781 				check_xor();
782 			}
783 		}
784 		break;
785 	case RECONSTRUCT_WRITE:
786 		memset(ptr[0], 0, STRIPE_SIZE);
787 		for (i= disks; i-- ;)
788 			if (i!=pd_idx && sh->dev[i].towrite) {
789 				chosen = sh->dev[i].towrite;
790 				sh->dev[i].towrite = NULL;
791 
792 				if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
793 					wake_up(&conf->wait_for_overlap);
794 
795 				if (sh->dev[i].written) BUG();
796 				sh->dev[i].written = chosen;
797 			}
798 		break;
799 	case CHECK_PARITY:
800 		break;
801 	}
802 	if (count>1) {
803 		xor_block(count, STRIPE_SIZE, ptr);
804 		count = 1;
805 	}
806 
807 	for (i = disks; i--;)
808 		if (sh->dev[i].written) {
809 			sector_t sector = sh->dev[i].sector;
810 			struct bio *wbi = sh->dev[i].written;
811 			while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
812 				copy_data(1, wbi, sh->dev[i].page, sector);
813 				wbi = r5_next_bio(wbi, sector);
814 			}
815 
816 			set_bit(R5_LOCKED, &sh->dev[i].flags);
817 			set_bit(R5_UPTODATE, &sh->dev[i].flags);
818 		}
819 
820 	switch(method) {
821 	case RECONSTRUCT_WRITE:
822 	case CHECK_PARITY:
823 		for (i=disks; i--;)
824 			if (i != pd_idx) {
825 				ptr[count++] = page_address(sh->dev[i].page);
826 				check_xor();
827 			}
828 		break;
829 	case READ_MODIFY_WRITE:
830 		for (i = disks; i--;)
831 			if (sh->dev[i].written) {
832 				ptr[count++] = page_address(sh->dev[i].page);
833 				check_xor();
834 			}
835 	}
836 	if (count != 1)
837 		xor_block(count, STRIPE_SIZE, ptr);
838 
839 	if (method != CHECK_PARITY) {
840 		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
841 		set_bit(R5_LOCKED,   &sh->dev[pd_idx].flags);
842 	} else
843 		clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
844 }
845 
846 /*
847  * Each stripe/dev can have one or more bion attached.
848  * toread/towrite point to the first in a chain.
849  * The bi_next chain must be in order.
850  */
851 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
852 {
853 	struct bio **bip;
854 	raid5_conf_t *conf = sh->raid_conf;
855 	int firstwrite=0;
856 
857 	PRINTK("adding bh b#%llu to stripe s#%llu\n",
858 		(unsigned long long)bi->bi_sector,
859 		(unsigned long long)sh->sector);
860 
861 
862 	spin_lock(&sh->lock);
863 	spin_lock_irq(&conf->device_lock);
864 	if (forwrite) {
865 		bip = &sh->dev[dd_idx].towrite;
866 		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
867 			firstwrite = 1;
868 	} else
869 		bip = &sh->dev[dd_idx].toread;
870 	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
871 		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
872 			goto overlap;
873 		bip = & (*bip)->bi_next;
874 	}
875 	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
876 		goto overlap;
877 
878 	if (*bip && bi->bi_next && (*bip) != bi->bi_next)
879 		BUG();
880 	if (*bip)
881 		bi->bi_next = *bip;
882 	*bip = bi;
883 	bi->bi_phys_segments ++;
884 	spin_unlock_irq(&conf->device_lock);
885 	spin_unlock(&sh->lock);
886 
887 	PRINTK("added bi b#%llu to stripe s#%llu, disk %d.\n",
888 		(unsigned long long)bi->bi_sector,
889 		(unsigned long long)sh->sector, dd_idx);
890 
891 	if (conf->mddev->bitmap && firstwrite) {
892 		sh->bm_seq = conf->seq_write;
893 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
894 				  STRIPE_SECTORS, 0);
895 		set_bit(STRIPE_BIT_DELAY, &sh->state);
896 	}
897 
898 	if (forwrite) {
899 		/* check if page is covered */
900 		sector_t sector = sh->dev[dd_idx].sector;
901 		for (bi=sh->dev[dd_idx].towrite;
902 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
903 			     bi && bi->bi_sector <= sector;
904 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
905 			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
906 				sector = bi->bi_sector + (bi->bi_size>>9);
907 		}
908 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
909 			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
910 	}
911 	return 1;
912 
913  overlap:
914 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
915 	spin_unlock_irq(&conf->device_lock);
916 	spin_unlock(&sh->lock);
917 	return 0;
918 }
919 
920 
921 /*
922  * handle_stripe - do things to a stripe.
923  *
924  * We lock the stripe and then examine the state of various bits
925  * to see what needs to be done.
926  * Possible results:
927  *    return some read request which now have data
928  *    return some write requests which are safely on disc
929  *    schedule a read on some buffers
930  *    schedule a write of some buffers
931  *    return confirmation of parity correctness
932  *
933  * Parity calculations are done inside the stripe lock
934  * buffers are taken off read_list or write_list, and bh_cache buffers
935  * get BH_Lock set before the stripe lock is released.
936  *
937  */
938 
939 static void handle_stripe(struct stripe_head *sh)
940 {
941 	raid5_conf_t *conf = sh->raid_conf;
942 	int disks = conf->raid_disks;
943 	struct bio *return_bi= NULL;
944 	struct bio *bi;
945 	int i;
946 	int syncing;
947 	int locked=0, uptodate=0, to_read=0, to_write=0, failed=0, written=0;
948 	int non_overwrite = 0;
949 	int failed_num=0;
950 	struct r5dev *dev;
951 
952 	PRINTK("handling stripe %llu, cnt=%d, pd_idx=%d\n",
953 		(unsigned long long)sh->sector, atomic_read(&sh->count),
954 		sh->pd_idx);
955 
956 	spin_lock(&sh->lock);
957 	clear_bit(STRIPE_HANDLE, &sh->state);
958 	clear_bit(STRIPE_DELAYED, &sh->state);
959 
960 	syncing = test_bit(STRIPE_SYNCING, &sh->state);
961 	/* Now to look around and see what can be done */
962 
963 	for (i=disks; i--; ) {
964 		mdk_rdev_t *rdev;
965 		dev = &sh->dev[i];
966 		clear_bit(R5_Insync, &dev->flags);
967 		clear_bit(R5_Syncio, &dev->flags);
968 
969 		PRINTK("check %d: state 0x%lx read %p write %p written %p\n",
970 			i, dev->flags, dev->toread, dev->towrite, dev->written);
971 		/* maybe we can reply to a read */
972 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
973 			struct bio *rbi, *rbi2;
974 			PRINTK("Return read for disc %d\n", i);
975 			spin_lock_irq(&conf->device_lock);
976 			rbi = dev->toread;
977 			dev->toread = NULL;
978 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
979 				wake_up(&conf->wait_for_overlap);
980 			spin_unlock_irq(&conf->device_lock);
981 			while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
982 				copy_data(0, rbi, dev->page, dev->sector);
983 				rbi2 = r5_next_bio(rbi, dev->sector);
984 				spin_lock_irq(&conf->device_lock);
985 				if (--rbi->bi_phys_segments == 0) {
986 					rbi->bi_next = return_bi;
987 					return_bi = rbi;
988 				}
989 				spin_unlock_irq(&conf->device_lock);
990 				rbi = rbi2;
991 			}
992 		}
993 
994 		/* now count some things */
995 		if (test_bit(R5_LOCKED, &dev->flags)) locked++;
996 		if (test_bit(R5_UPTODATE, &dev->flags)) uptodate++;
997 
998 
999 		if (dev->toread) to_read++;
1000 		if (dev->towrite) {
1001 			to_write++;
1002 			if (!test_bit(R5_OVERWRITE, &dev->flags))
1003 				non_overwrite++;
1004 		}
1005 		if (dev->written) written++;
1006 		rdev = conf->disks[i].rdev; /* FIXME, should I be looking rdev */
1007 		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
1008 			/* The ReadError flag wil just be confusing now */
1009 			clear_bit(R5_ReadError, &dev->flags);
1010 			clear_bit(R5_ReWrite, &dev->flags);
1011 		}
1012 		if (!rdev || !test_bit(In_sync, &rdev->flags)
1013 		    || test_bit(R5_ReadError, &dev->flags)) {
1014 			failed++;
1015 			failed_num = i;
1016 		} else
1017 			set_bit(R5_Insync, &dev->flags);
1018 	}
1019 	PRINTK("locked=%d uptodate=%d to_read=%d"
1020 		" to_write=%d failed=%d failed_num=%d\n",
1021 		locked, uptodate, to_read, to_write, failed, failed_num);
1022 	/* check if the array has lost two devices and, if so, some requests might
1023 	 * need to be failed
1024 	 */
1025 	if (failed > 1 && to_read+to_write+written) {
1026 		for (i=disks; i--; ) {
1027 			int bitmap_end = 0;
1028 
1029 			if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1030 				mdk_rdev_t *rdev = conf->disks[i].rdev;
1031 				if (rdev && test_bit(In_sync, &rdev->flags))
1032 					/* multiple read failures in one stripe */
1033 					md_error(conf->mddev, rdev);
1034 			}
1035 
1036 			spin_lock_irq(&conf->device_lock);
1037 			/* fail all writes first */
1038 			bi = sh->dev[i].towrite;
1039 			sh->dev[i].towrite = NULL;
1040 			if (bi) { to_write--; bitmap_end = 1; }
1041 
1042 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1043 				wake_up(&conf->wait_for_overlap);
1044 
1045 			while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
1046 				struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1047 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
1048 				if (--bi->bi_phys_segments == 0) {
1049 					md_write_end(conf->mddev);
1050 					bi->bi_next = return_bi;
1051 					return_bi = bi;
1052 				}
1053 				bi = nextbi;
1054 			}
1055 			/* and fail all 'written' */
1056 			bi = sh->dev[i].written;
1057 			sh->dev[i].written = NULL;
1058 			if (bi) bitmap_end = 1;
1059 			while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS) {
1060 				struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
1061 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
1062 				if (--bi->bi_phys_segments == 0) {
1063 					md_write_end(conf->mddev);
1064 					bi->bi_next = return_bi;
1065 					return_bi = bi;
1066 				}
1067 				bi = bi2;
1068 			}
1069 
1070 			/* fail any reads if this device is non-operational */
1071 			if (!test_bit(R5_Insync, &sh->dev[i].flags) ||
1072 			    test_bit(R5_ReadError, &sh->dev[i].flags)) {
1073 				bi = sh->dev[i].toread;
1074 				sh->dev[i].toread = NULL;
1075 				if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1076 					wake_up(&conf->wait_for_overlap);
1077 				if (bi) to_read--;
1078 				while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
1079 					struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1080 					clear_bit(BIO_UPTODATE, &bi->bi_flags);
1081 					if (--bi->bi_phys_segments == 0) {
1082 						bi->bi_next = return_bi;
1083 						return_bi = bi;
1084 					}
1085 					bi = nextbi;
1086 				}
1087 			}
1088 			spin_unlock_irq(&conf->device_lock);
1089 			if (bitmap_end)
1090 				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1091 						STRIPE_SECTORS, 0, 0);
1092 		}
1093 	}
1094 	if (failed > 1 && syncing) {
1095 		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
1096 		clear_bit(STRIPE_SYNCING, &sh->state);
1097 		syncing = 0;
1098 	}
1099 
1100 	/* might be able to return some write requests if the parity block
1101 	 * is safe, or on a failed drive
1102 	 */
1103 	dev = &sh->dev[sh->pd_idx];
1104 	if ( written &&
1105 	     ( (test_bit(R5_Insync, &dev->flags) && !test_bit(R5_LOCKED, &dev->flags) &&
1106 		test_bit(R5_UPTODATE, &dev->flags))
1107 	       || (failed == 1 && failed_num == sh->pd_idx))
1108 	    ) {
1109 	    /* any written block on an uptodate or failed drive can be returned.
1110 	     * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
1111 	     * never LOCKED, so we don't need to test 'failed' directly.
1112 	     */
1113 	    for (i=disks; i--; )
1114 		if (sh->dev[i].written) {
1115 		    dev = &sh->dev[i];
1116 		    if (!test_bit(R5_LOCKED, &dev->flags) &&
1117 			 test_bit(R5_UPTODATE, &dev->flags) ) {
1118 			/* We can return any write requests */
1119 			    struct bio *wbi, *wbi2;
1120 			    int bitmap_end = 0;
1121 			    PRINTK("Return write for disc %d\n", i);
1122 			    spin_lock_irq(&conf->device_lock);
1123 			    wbi = dev->written;
1124 			    dev->written = NULL;
1125 			    while (wbi && wbi->bi_sector < dev->sector + STRIPE_SECTORS) {
1126 				    wbi2 = r5_next_bio(wbi, dev->sector);
1127 				    if (--wbi->bi_phys_segments == 0) {
1128 					    md_write_end(conf->mddev);
1129 					    wbi->bi_next = return_bi;
1130 					    return_bi = wbi;
1131 				    }
1132 				    wbi = wbi2;
1133 			    }
1134 			    if (dev->towrite == NULL)
1135 				    bitmap_end = 1;
1136 			    spin_unlock_irq(&conf->device_lock);
1137 			    if (bitmap_end)
1138 				    bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1139 						    STRIPE_SECTORS,
1140 						    !test_bit(STRIPE_DEGRADED, &sh->state), 0);
1141 		    }
1142 		}
1143 	}
1144 
1145 	/* Now we might consider reading some blocks, either to check/generate
1146 	 * parity, or to satisfy requests
1147 	 * or to load a block that is being partially written.
1148 	 */
1149 	if (to_read || non_overwrite || (syncing && (uptodate < disks))) {
1150 		for (i=disks; i--;) {
1151 			dev = &sh->dev[i];
1152 			if (!test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
1153 			    (dev->toread ||
1154 			     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
1155 			     syncing ||
1156 			     (failed && (sh->dev[failed_num].toread ||
1157 					 (sh->dev[failed_num].towrite && !test_bit(R5_OVERWRITE, &sh->dev[failed_num].flags))))
1158 				    )
1159 				) {
1160 				/* we would like to get this block, possibly
1161 				 * by computing it, but we might not be able to
1162 				 */
1163 				if (uptodate == disks-1) {
1164 					PRINTK("Computing block %d\n", i);
1165 					compute_block(sh, i);
1166 					uptodate++;
1167 				} else if (test_bit(R5_Insync, &dev->flags)) {
1168 					set_bit(R5_LOCKED, &dev->flags);
1169 					set_bit(R5_Wantread, &dev->flags);
1170 #if 0
1171 					/* if I am just reading this block and we don't have
1172 					   a failed drive, or any pending writes then sidestep the cache */
1173 					if (sh->bh_read[i] && !sh->bh_read[i]->b_reqnext &&
1174 					    ! syncing && !failed && !to_write) {
1175 						sh->bh_cache[i]->b_page =  sh->bh_read[i]->b_page;
1176 						sh->bh_cache[i]->b_data =  sh->bh_read[i]->b_data;
1177 					}
1178 #endif
1179 					locked++;
1180 					PRINTK("Reading block %d (sync=%d)\n",
1181 						i, syncing);
1182 					if (syncing)
1183 						md_sync_acct(conf->disks[i].rdev->bdev,
1184 							     STRIPE_SECTORS);
1185 				}
1186 			}
1187 		}
1188 		set_bit(STRIPE_HANDLE, &sh->state);
1189 	}
1190 
1191 	/* now to consider writing and what else, if anything should be read */
1192 	if (to_write) {
1193 		int rmw=0, rcw=0;
1194 		for (i=disks ; i--;) {
1195 			/* would I have to read this buffer for read_modify_write */
1196 			dev = &sh->dev[i];
1197 			if ((dev->towrite || i == sh->pd_idx) &&
1198 			    (!test_bit(R5_LOCKED, &dev->flags)
1199 #if 0
1200 || sh->bh_page[i]!=bh->b_page
1201 #endif
1202 				    ) &&
1203 			    !test_bit(R5_UPTODATE, &dev->flags)) {
1204 				if (test_bit(R5_Insync, &dev->flags)
1205 /*				    && !(!mddev->insync && i == sh->pd_idx) */
1206 					)
1207 					rmw++;
1208 				else rmw += 2*disks;  /* cannot read it */
1209 			}
1210 			/* Would I have to read this buffer for reconstruct_write */
1211 			if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
1212 			    (!test_bit(R5_LOCKED, &dev->flags)
1213 #if 0
1214 || sh->bh_page[i] != bh->b_page
1215 #endif
1216 				    ) &&
1217 			    !test_bit(R5_UPTODATE, &dev->flags)) {
1218 				if (test_bit(R5_Insync, &dev->flags)) rcw++;
1219 				else rcw += 2*disks;
1220 			}
1221 		}
1222 		PRINTK("for sector %llu, rmw=%d rcw=%d\n",
1223 			(unsigned long long)sh->sector, rmw, rcw);
1224 		set_bit(STRIPE_HANDLE, &sh->state);
1225 		if (rmw < rcw && rmw > 0)
1226 			/* prefer read-modify-write, but need to get some data */
1227 			for (i=disks; i--;) {
1228 				dev = &sh->dev[i];
1229 				if ((dev->towrite || i == sh->pd_idx) &&
1230 				    !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
1231 				    test_bit(R5_Insync, &dev->flags)) {
1232 					if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
1233 					{
1234 						PRINTK("Read_old block %d for r-m-w\n", i);
1235 						set_bit(R5_LOCKED, &dev->flags);
1236 						set_bit(R5_Wantread, &dev->flags);
1237 						locked++;
1238 					} else {
1239 						set_bit(STRIPE_DELAYED, &sh->state);
1240 						set_bit(STRIPE_HANDLE, &sh->state);
1241 					}
1242 				}
1243 			}
1244 		if (rcw <= rmw && rcw > 0)
1245 			/* want reconstruct write, but need to get some data */
1246 			for (i=disks; i--;) {
1247 				dev = &sh->dev[i];
1248 				if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
1249 				    !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
1250 				    test_bit(R5_Insync, &dev->flags)) {
1251 					if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
1252 					{
1253 						PRINTK("Read_old block %d for Reconstruct\n", i);
1254 						set_bit(R5_LOCKED, &dev->flags);
1255 						set_bit(R5_Wantread, &dev->flags);
1256 						locked++;
1257 					} else {
1258 						set_bit(STRIPE_DELAYED, &sh->state);
1259 						set_bit(STRIPE_HANDLE, &sh->state);
1260 					}
1261 				}
1262 			}
1263 		/* now if nothing is locked, and if we have enough data, we can start a write request */
1264 		if (locked == 0 && (rcw == 0 ||rmw == 0) &&
1265 		    !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
1266 			PRINTK("Computing parity...\n");
1267 			compute_parity(sh, rcw==0 ? RECONSTRUCT_WRITE : READ_MODIFY_WRITE);
1268 			/* now every locked buffer is ready to be written */
1269 			for (i=disks; i--;)
1270 				if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
1271 					PRINTK("Writing block %d\n", i);
1272 					locked++;
1273 					set_bit(R5_Wantwrite, &sh->dev[i].flags);
1274 					if (!test_bit(R5_Insync, &sh->dev[i].flags)
1275 					    || (i==sh->pd_idx && failed == 0))
1276 						set_bit(STRIPE_INSYNC, &sh->state);
1277 				}
1278 			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
1279 				atomic_dec(&conf->preread_active_stripes);
1280 				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
1281 					md_wakeup_thread(conf->mddev->thread);
1282 			}
1283 		}
1284 	}
1285 
1286 	/* maybe we need to check and possibly fix the parity for this stripe
1287 	 * Any reads will already have been scheduled, so we just see if enough data
1288 	 * is available
1289 	 */
1290 	if (syncing && locked == 0 &&
1291 	    !test_bit(STRIPE_INSYNC, &sh->state) && failed <= 1) {
1292 		set_bit(STRIPE_HANDLE, &sh->state);
1293 		if (failed == 0) {
1294 			char *pagea;
1295 			if (uptodate != disks)
1296 				BUG();
1297 			compute_parity(sh, CHECK_PARITY);
1298 			uptodate--;
1299 			pagea = page_address(sh->dev[sh->pd_idx].page);
1300 			if ((*(u32*)pagea) == 0 &&
1301 			    !memcmp(pagea, pagea+4, STRIPE_SIZE-4)) {
1302 				/* parity is correct (on disc, not in buffer any more) */
1303 				set_bit(STRIPE_INSYNC, &sh->state);
1304 			} else {
1305 				conf->mddev->resync_mismatches += STRIPE_SECTORS;
1306 				if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
1307 					/* don't try to repair!! */
1308 					set_bit(STRIPE_INSYNC, &sh->state);
1309 			}
1310 		}
1311 		if (!test_bit(STRIPE_INSYNC, &sh->state)) {
1312 			if (failed==0)
1313 				failed_num = sh->pd_idx;
1314 			/* should be able to compute the missing block and write it to spare */
1315 			if (!test_bit(R5_UPTODATE, &sh->dev[failed_num].flags)) {
1316 				if (uptodate+1 != disks)
1317 					BUG();
1318 				compute_block(sh, failed_num);
1319 				uptodate++;
1320 			}
1321 			if (uptodate != disks)
1322 				BUG();
1323 			dev = &sh->dev[failed_num];
1324 			set_bit(R5_LOCKED, &dev->flags);
1325 			set_bit(R5_Wantwrite, &dev->flags);
1326 			clear_bit(STRIPE_DEGRADED, &sh->state);
1327 			locked++;
1328 			set_bit(STRIPE_INSYNC, &sh->state);
1329 			set_bit(R5_Syncio, &dev->flags);
1330 		}
1331 	}
1332 	if (syncing && locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
1333 		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
1334 		clear_bit(STRIPE_SYNCING, &sh->state);
1335 	}
1336 
1337 	/* If the failed drive is just a ReadError, then we might need to progress
1338 	 * the repair/check process
1339 	 */
1340 	if (failed == 1 && ! conf->mddev->ro &&
1341 	    test_bit(R5_ReadError, &sh->dev[failed_num].flags)
1342 	    && !test_bit(R5_LOCKED, &sh->dev[failed_num].flags)
1343 	    && test_bit(R5_UPTODATE, &sh->dev[failed_num].flags)
1344 		) {
1345 		dev = &sh->dev[failed_num];
1346 		if (!test_bit(R5_ReWrite, &dev->flags)) {
1347 			set_bit(R5_Wantwrite, &dev->flags);
1348 			set_bit(R5_ReWrite, &dev->flags);
1349 			set_bit(R5_LOCKED, &dev->flags);
1350 		} else {
1351 			/* let's read it back */
1352 			set_bit(R5_Wantread, &dev->flags);
1353 			set_bit(R5_LOCKED, &dev->flags);
1354 		}
1355 	}
1356 
1357 	spin_unlock(&sh->lock);
1358 
1359 	while ((bi=return_bi)) {
1360 		int bytes = bi->bi_size;
1361 
1362 		return_bi = bi->bi_next;
1363 		bi->bi_next = NULL;
1364 		bi->bi_size = 0;
1365 		bi->bi_end_io(bi, bytes, 0);
1366 	}
1367 	for (i=disks; i-- ;) {
1368 		int rw;
1369 		struct bio *bi;
1370 		mdk_rdev_t *rdev;
1371 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
1372 			rw = 1;
1373 		else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1374 			rw = 0;
1375 		else
1376 			continue;
1377 
1378 		bi = &sh->dev[i].req;
1379 
1380 		bi->bi_rw = rw;
1381 		if (rw)
1382 			bi->bi_end_io = raid5_end_write_request;
1383 		else
1384 			bi->bi_end_io = raid5_end_read_request;
1385 
1386 		rcu_read_lock();
1387 		rdev = rcu_dereference(conf->disks[i].rdev);
1388 		if (rdev && test_bit(Faulty, &rdev->flags))
1389 			rdev = NULL;
1390 		if (rdev)
1391 			atomic_inc(&rdev->nr_pending);
1392 		rcu_read_unlock();
1393 
1394 		if (rdev) {
1395 			if (test_bit(R5_Syncio, &sh->dev[i].flags))
1396 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1397 
1398 			bi->bi_bdev = rdev->bdev;
1399 			PRINTK("for %llu schedule op %ld on disc %d\n",
1400 				(unsigned long long)sh->sector, bi->bi_rw, i);
1401 			atomic_inc(&sh->count);
1402 			bi->bi_sector = sh->sector + rdev->data_offset;
1403 			bi->bi_flags = 1 << BIO_UPTODATE;
1404 			bi->bi_vcnt = 1;
1405 			bi->bi_max_vecs = 1;
1406 			bi->bi_idx = 0;
1407 			bi->bi_io_vec = &sh->dev[i].vec;
1408 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1409 			bi->bi_io_vec[0].bv_offset = 0;
1410 			bi->bi_size = STRIPE_SIZE;
1411 			bi->bi_next = NULL;
1412 			generic_make_request(bi);
1413 		} else {
1414 			if (rw == 1)
1415 				set_bit(STRIPE_DEGRADED, &sh->state);
1416 			PRINTK("skip op %ld on disc %d for sector %llu\n",
1417 				bi->bi_rw, i, (unsigned long long)sh->sector);
1418 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
1419 			set_bit(STRIPE_HANDLE, &sh->state);
1420 		}
1421 	}
1422 }
1423 
1424 static inline void raid5_activate_delayed(raid5_conf_t *conf)
1425 {
1426 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
1427 		while (!list_empty(&conf->delayed_list)) {
1428 			struct list_head *l = conf->delayed_list.next;
1429 			struct stripe_head *sh;
1430 			sh = list_entry(l, struct stripe_head, lru);
1431 			list_del_init(l);
1432 			clear_bit(STRIPE_DELAYED, &sh->state);
1433 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
1434 				atomic_inc(&conf->preread_active_stripes);
1435 			list_add_tail(&sh->lru, &conf->handle_list);
1436 		}
1437 	}
1438 }
1439 
1440 static inline void activate_bit_delay(raid5_conf_t *conf)
1441 {
1442 	/* device_lock is held */
1443 	struct list_head head;
1444 	list_add(&head, &conf->bitmap_list);
1445 	list_del_init(&conf->bitmap_list);
1446 	while (!list_empty(&head)) {
1447 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
1448 		list_del_init(&sh->lru);
1449 		atomic_inc(&sh->count);
1450 		__release_stripe(conf, sh);
1451 	}
1452 }
1453 
1454 static void unplug_slaves(mddev_t *mddev)
1455 {
1456 	raid5_conf_t *conf = mddev_to_conf(mddev);
1457 	int i;
1458 
1459 	rcu_read_lock();
1460 	for (i=0; i<mddev->raid_disks; i++) {
1461 		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
1462 		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
1463 			request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
1464 
1465 			atomic_inc(&rdev->nr_pending);
1466 			rcu_read_unlock();
1467 
1468 			if (r_queue->unplug_fn)
1469 				r_queue->unplug_fn(r_queue);
1470 
1471 			rdev_dec_pending(rdev, mddev);
1472 			rcu_read_lock();
1473 		}
1474 	}
1475 	rcu_read_unlock();
1476 }
1477 
1478 static void raid5_unplug_device(request_queue_t *q)
1479 {
1480 	mddev_t *mddev = q->queuedata;
1481 	raid5_conf_t *conf = mddev_to_conf(mddev);
1482 	unsigned long flags;
1483 
1484 	spin_lock_irqsave(&conf->device_lock, flags);
1485 
1486 	if (blk_remove_plug(q)) {
1487 		conf->seq_flush++;
1488 		raid5_activate_delayed(conf);
1489 	}
1490 	md_wakeup_thread(mddev->thread);
1491 
1492 	spin_unlock_irqrestore(&conf->device_lock, flags);
1493 
1494 	unplug_slaves(mddev);
1495 }
1496 
1497 static int raid5_issue_flush(request_queue_t *q, struct gendisk *disk,
1498 			     sector_t *error_sector)
1499 {
1500 	mddev_t *mddev = q->queuedata;
1501 	raid5_conf_t *conf = mddev_to_conf(mddev);
1502 	int i, ret = 0;
1503 
1504 	rcu_read_lock();
1505 	for (i=0; i<mddev->raid_disks && ret == 0; i++) {
1506 		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
1507 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
1508 			struct block_device *bdev = rdev->bdev;
1509 			request_queue_t *r_queue = bdev_get_queue(bdev);
1510 
1511 			if (!r_queue->issue_flush_fn)
1512 				ret = -EOPNOTSUPP;
1513 			else {
1514 				atomic_inc(&rdev->nr_pending);
1515 				rcu_read_unlock();
1516 				ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
1517 							      error_sector);
1518 				rdev_dec_pending(rdev, mddev);
1519 				rcu_read_lock();
1520 			}
1521 		}
1522 	}
1523 	rcu_read_unlock();
1524 	return ret;
1525 }
1526 
1527 static inline void raid5_plug_device(raid5_conf_t *conf)
1528 {
1529 	spin_lock_irq(&conf->device_lock);
1530 	blk_plug_device(conf->mddev->queue);
1531 	spin_unlock_irq(&conf->device_lock);
1532 }
1533 
1534 static int make_request (request_queue_t *q, struct bio * bi)
1535 {
1536 	mddev_t *mddev = q->queuedata;
1537 	raid5_conf_t *conf = mddev_to_conf(mddev);
1538 	const unsigned int raid_disks = conf->raid_disks;
1539 	const unsigned int data_disks = raid_disks - 1;
1540 	unsigned int dd_idx, pd_idx;
1541 	sector_t new_sector;
1542 	sector_t logical_sector, last_sector;
1543 	struct stripe_head *sh;
1544 	const int rw = bio_data_dir(bi);
1545 
1546 	if (unlikely(bio_barrier(bi))) {
1547 		bio_endio(bi, bi->bi_size, -EOPNOTSUPP);
1548 		return 0;
1549 	}
1550 
1551 	md_write_start(mddev, bi);
1552 
1553 	disk_stat_inc(mddev->gendisk, ios[rw]);
1554 	disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi));
1555 
1556 	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
1557 	last_sector = bi->bi_sector + (bi->bi_size>>9);
1558 	bi->bi_next = NULL;
1559 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
1560 
1561 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
1562 		DEFINE_WAIT(w);
1563 
1564 		new_sector = raid5_compute_sector(logical_sector,
1565 						  raid_disks, data_disks, &dd_idx, &pd_idx, conf);
1566 
1567 		PRINTK("raid5: make_request, sector %llu logical %llu\n",
1568 			(unsigned long long)new_sector,
1569 			(unsigned long long)logical_sector);
1570 
1571 	retry:
1572 		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
1573 		sh = get_active_stripe(conf, new_sector, pd_idx, (bi->bi_rw&RWA_MASK));
1574 		if (sh) {
1575 			if (!add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
1576 				/* Add failed due to overlap.  Flush everything
1577 				 * and wait a while
1578 				 */
1579 				raid5_unplug_device(mddev->queue);
1580 				release_stripe(sh);
1581 				schedule();
1582 				goto retry;
1583 			}
1584 			finish_wait(&conf->wait_for_overlap, &w);
1585 			raid5_plug_device(conf);
1586 			handle_stripe(sh);
1587 			release_stripe(sh);
1588 
1589 		} else {
1590 			/* cannot get stripe for read-ahead, just give-up */
1591 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
1592 			finish_wait(&conf->wait_for_overlap, &w);
1593 			break;
1594 		}
1595 
1596 	}
1597 	spin_lock_irq(&conf->device_lock);
1598 	if (--bi->bi_phys_segments == 0) {
1599 		int bytes = bi->bi_size;
1600 
1601 		if ( bio_data_dir(bi) == WRITE )
1602 			md_write_end(mddev);
1603 		bi->bi_size = 0;
1604 		bi->bi_end_io(bi, bytes, 0);
1605 	}
1606 	spin_unlock_irq(&conf->device_lock);
1607 	return 0;
1608 }
1609 
1610 /* FIXME go_faster isn't used */
1611 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1612 {
1613 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1614 	struct stripe_head *sh;
1615 	int sectors_per_chunk = conf->chunk_size >> 9;
1616 	sector_t x;
1617 	unsigned long stripe;
1618 	int chunk_offset;
1619 	int dd_idx, pd_idx;
1620 	sector_t first_sector;
1621 	int raid_disks = conf->raid_disks;
1622 	int data_disks = raid_disks-1;
1623 	sector_t max_sector = mddev->size << 1;
1624 	int sync_blocks;
1625 
1626 	if (sector_nr >= max_sector) {
1627 		/* just being told to finish up .. nothing much to do */
1628 		unplug_slaves(mddev);
1629 
1630 		if (mddev->curr_resync < max_sector) /* aborted */
1631 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1632 					&sync_blocks, 1);
1633 		else /* compelted sync */
1634 			conf->fullsync = 0;
1635 		bitmap_close_sync(mddev->bitmap);
1636 
1637 		return 0;
1638 	}
1639 	/* if there is 1 or more failed drives and we are trying
1640 	 * to resync, then assert that we are finished, because there is
1641 	 * nothing we can do.
1642 	 */
1643 	if (mddev->degraded >= 1 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1644 		sector_t rv = (mddev->size << 1) - sector_nr;
1645 		*skipped = 1;
1646 		return rv;
1647 	}
1648 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
1649 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
1650 	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
1651 		/* we can skip this block, and probably more */
1652 		sync_blocks /= STRIPE_SECTORS;
1653 		*skipped = 1;
1654 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
1655 	}
1656 
1657 	x = sector_nr;
1658 	chunk_offset = sector_div(x, sectors_per_chunk);
1659 	stripe = x;
1660 	BUG_ON(x != stripe);
1661 
1662 	first_sector = raid5_compute_sector((sector_t)stripe*data_disks*sectors_per_chunk
1663 		+ chunk_offset, raid_disks, data_disks, &dd_idx, &pd_idx, conf);
1664 	sh = get_active_stripe(conf, sector_nr, pd_idx, 1);
1665 	if (sh == NULL) {
1666 		sh = get_active_stripe(conf, sector_nr, pd_idx, 0);
1667 		/* make sure we don't swamp the stripe cache if someone else
1668 		 * is trying to get access
1669 		 */
1670 		schedule_timeout_uninterruptible(1);
1671 	}
1672 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 0);
1673 	spin_lock(&sh->lock);
1674 	set_bit(STRIPE_SYNCING, &sh->state);
1675 	clear_bit(STRIPE_INSYNC, &sh->state);
1676 	spin_unlock(&sh->lock);
1677 
1678 	handle_stripe(sh);
1679 	release_stripe(sh);
1680 
1681 	return STRIPE_SECTORS;
1682 }
1683 
1684 /*
1685  * This is our raid5 kernel thread.
1686  *
1687  * We scan the hash table for stripes which can be handled now.
1688  * During the scan, completed stripes are saved for us by the interrupt
1689  * handler, so that they will not have to wait for our next wakeup.
1690  */
1691 static void raid5d (mddev_t *mddev)
1692 {
1693 	struct stripe_head *sh;
1694 	raid5_conf_t *conf = mddev_to_conf(mddev);
1695 	int handled;
1696 
1697 	PRINTK("+++ raid5d active\n");
1698 
1699 	md_check_recovery(mddev);
1700 
1701 	handled = 0;
1702 	spin_lock_irq(&conf->device_lock);
1703 	while (1) {
1704 		struct list_head *first;
1705 
1706 		if (conf->seq_flush - conf->seq_write > 0) {
1707 			int seq = conf->seq_flush;
1708 			spin_unlock_irq(&conf->device_lock);
1709 			bitmap_unplug(mddev->bitmap);
1710 			spin_lock_irq(&conf->device_lock);
1711 			conf->seq_write = seq;
1712 			activate_bit_delay(conf);
1713 		}
1714 
1715 		if (list_empty(&conf->handle_list) &&
1716 		    atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD &&
1717 		    !blk_queue_plugged(mddev->queue) &&
1718 		    !list_empty(&conf->delayed_list))
1719 			raid5_activate_delayed(conf);
1720 
1721 		if (list_empty(&conf->handle_list))
1722 			break;
1723 
1724 		first = conf->handle_list.next;
1725 		sh = list_entry(first, struct stripe_head, lru);
1726 
1727 		list_del_init(first);
1728 		atomic_inc(&sh->count);
1729 		if (atomic_read(&sh->count)!= 1)
1730 			BUG();
1731 		spin_unlock_irq(&conf->device_lock);
1732 
1733 		handled++;
1734 		handle_stripe(sh);
1735 		release_stripe(sh);
1736 
1737 		spin_lock_irq(&conf->device_lock);
1738 	}
1739 	PRINTK("%d stripes handled\n", handled);
1740 
1741 	spin_unlock_irq(&conf->device_lock);
1742 
1743 	unplug_slaves(mddev);
1744 
1745 	PRINTK("--- raid5d inactive\n");
1746 }
1747 
1748 static ssize_t
1749 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
1750 {
1751 	raid5_conf_t *conf = mddev_to_conf(mddev);
1752 	if (conf)
1753 		return sprintf(page, "%d\n", conf->max_nr_stripes);
1754 	else
1755 		return 0;
1756 }
1757 
1758 static ssize_t
1759 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
1760 {
1761 	raid5_conf_t *conf = mddev_to_conf(mddev);
1762 	char *end;
1763 	int new;
1764 	if (len >= PAGE_SIZE)
1765 		return -EINVAL;
1766 	if (!conf)
1767 		return -ENODEV;
1768 
1769 	new = simple_strtoul(page, &end, 10);
1770 	if (!*page || (*end && *end != '\n') )
1771 		return -EINVAL;
1772 	if (new <= 16 || new > 32768)
1773 		return -EINVAL;
1774 	while (new < conf->max_nr_stripes) {
1775 		if (drop_one_stripe(conf))
1776 			conf->max_nr_stripes--;
1777 		else
1778 			break;
1779 	}
1780 	while (new > conf->max_nr_stripes) {
1781 		if (grow_one_stripe(conf))
1782 			conf->max_nr_stripes++;
1783 		else break;
1784 	}
1785 	return len;
1786 }
1787 
1788 static struct md_sysfs_entry
1789 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
1790 				raid5_show_stripe_cache_size,
1791 				raid5_store_stripe_cache_size);
1792 
1793 static ssize_t
1794 stripe_cache_active_show(mddev_t *mddev, char *page)
1795 {
1796 	raid5_conf_t *conf = mddev_to_conf(mddev);
1797 	if (conf)
1798 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
1799 	else
1800 		return 0;
1801 }
1802 
1803 static struct md_sysfs_entry
1804 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
1805 
1806 static struct attribute *raid5_attrs[] =  {
1807 	&raid5_stripecache_size.attr,
1808 	&raid5_stripecache_active.attr,
1809 	NULL,
1810 };
1811 static struct attribute_group raid5_attrs_group = {
1812 	.name = NULL,
1813 	.attrs = raid5_attrs,
1814 };
1815 
1816 static int run(mddev_t *mddev)
1817 {
1818 	raid5_conf_t *conf;
1819 	int raid_disk, memory;
1820 	mdk_rdev_t *rdev;
1821 	struct disk_info *disk;
1822 	struct list_head *tmp;
1823 
1824 	if (mddev->level != 5 && mddev->level != 4) {
1825 		printk("raid5: %s: raid level not set to 4/5 (%d)\n", mdname(mddev), mddev->level);
1826 		return -EIO;
1827 	}
1828 
1829 	mddev->private = kmalloc (sizeof (raid5_conf_t)
1830 				  + mddev->raid_disks * sizeof(struct disk_info),
1831 				  GFP_KERNEL);
1832 	if ((conf = mddev->private) == NULL)
1833 		goto abort;
1834 	memset (conf, 0, sizeof (*conf) + mddev->raid_disks * sizeof(struct disk_info) );
1835 	conf->mddev = mddev;
1836 
1837 	if ((conf->stripe_hashtbl = (struct stripe_head **) __get_free_pages(GFP_ATOMIC, HASH_PAGES_ORDER)) == NULL)
1838 		goto abort;
1839 	memset(conf->stripe_hashtbl, 0, HASH_PAGES * PAGE_SIZE);
1840 
1841 	spin_lock_init(&conf->device_lock);
1842 	init_waitqueue_head(&conf->wait_for_stripe);
1843 	init_waitqueue_head(&conf->wait_for_overlap);
1844 	INIT_LIST_HEAD(&conf->handle_list);
1845 	INIT_LIST_HEAD(&conf->delayed_list);
1846 	INIT_LIST_HEAD(&conf->bitmap_list);
1847 	INIT_LIST_HEAD(&conf->inactive_list);
1848 	atomic_set(&conf->active_stripes, 0);
1849 	atomic_set(&conf->preread_active_stripes, 0);
1850 
1851 	PRINTK("raid5: run(%s) called.\n", mdname(mddev));
1852 
1853 	ITERATE_RDEV(mddev,rdev,tmp) {
1854 		raid_disk = rdev->raid_disk;
1855 		if (raid_disk >= mddev->raid_disks
1856 		    || raid_disk < 0)
1857 			continue;
1858 		disk = conf->disks + raid_disk;
1859 
1860 		disk->rdev = rdev;
1861 
1862 		if (test_bit(In_sync, &rdev->flags)) {
1863 			char b[BDEVNAME_SIZE];
1864 			printk(KERN_INFO "raid5: device %s operational as raid"
1865 				" disk %d\n", bdevname(rdev->bdev,b),
1866 				raid_disk);
1867 			conf->working_disks++;
1868 		}
1869 	}
1870 
1871 	conf->raid_disks = mddev->raid_disks;
1872 	/*
1873 	 * 0 for a fully functional array, 1 for a degraded array.
1874 	 */
1875 	mddev->degraded = conf->failed_disks = conf->raid_disks - conf->working_disks;
1876 	conf->mddev = mddev;
1877 	conf->chunk_size = mddev->chunk_size;
1878 	conf->level = mddev->level;
1879 	conf->algorithm = mddev->layout;
1880 	conf->max_nr_stripes = NR_STRIPES;
1881 
1882 	/* device size must be a multiple of chunk size */
1883 	mddev->size &= ~(mddev->chunk_size/1024 -1);
1884 	mddev->resync_max_sectors = mddev->size << 1;
1885 
1886 	if (!conf->chunk_size || conf->chunk_size % 4) {
1887 		printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
1888 			conf->chunk_size, mdname(mddev));
1889 		goto abort;
1890 	}
1891 	if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
1892 		printk(KERN_ERR
1893 			"raid5: unsupported parity algorithm %d for %s\n",
1894 			conf->algorithm, mdname(mddev));
1895 		goto abort;
1896 	}
1897 	if (mddev->degraded > 1) {
1898 		printk(KERN_ERR "raid5: not enough operational devices for %s"
1899 			" (%d/%d failed)\n",
1900 			mdname(mddev), conf->failed_disks, conf->raid_disks);
1901 		goto abort;
1902 	}
1903 
1904 	if (mddev->degraded == 1 &&
1905 	    mddev->recovery_cp != MaxSector) {
1906 		printk(KERN_ERR
1907 			"raid5: cannot start dirty degraded array for %s\n",
1908 			mdname(mddev));
1909 		goto abort;
1910 	}
1911 
1912 	{
1913 		mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
1914 		if (!mddev->thread) {
1915 			printk(KERN_ERR
1916 				"raid5: couldn't allocate thread for %s\n",
1917 				mdname(mddev));
1918 			goto abort;
1919 		}
1920 	}
1921 	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
1922 		 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
1923 	if (grow_stripes(conf, conf->max_nr_stripes)) {
1924 		printk(KERN_ERR
1925 			"raid5: couldn't allocate %dkB for buffers\n", memory);
1926 		shrink_stripes(conf);
1927 		md_unregister_thread(mddev->thread);
1928 		goto abort;
1929 	} else
1930 		printk(KERN_INFO "raid5: allocated %dkB for %s\n",
1931 			memory, mdname(mddev));
1932 
1933 	if (mddev->degraded == 0)
1934 		printk("raid5: raid level %d set %s active with %d out of %d"
1935 			" devices, algorithm %d\n", conf->level, mdname(mddev),
1936 			mddev->raid_disks-mddev->degraded, mddev->raid_disks,
1937 			conf->algorithm);
1938 	else
1939 		printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
1940 			" out of %d devices, algorithm %d\n", conf->level,
1941 			mdname(mddev), mddev->raid_disks - mddev->degraded,
1942 			mddev->raid_disks, conf->algorithm);
1943 
1944 	print_raid5_conf(conf);
1945 
1946 	/* read-ahead size must cover two whole stripes, which is
1947 	 * 2 * (n-1) * chunksize where 'n' is the number of raid devices
1948 	 */
1949 	{
1950 		int stripe = (mddev->raid_disks-1) * mddev->chunk_size
1951 			/ PAGE_CACHE_SIZE;
1952 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
1953 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
1954 	}
1955 
1956 	/* Ok, everything is just fine now */
1957 	sysfs_create_group(&mddev->kobj, &raid5_attrs_group);
1958 
1959 	if (mddev->bitmap)
1960 		mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ;
1961 
1962 	mddev->queue->unplug_fn = raid5_unplug_device;
1963 	mddev->queue->issue_flush_fn = raid5_issue_flush;
1964 
1965 	mddev->array_size =  mddev->size * (mddev->raid_disks - 1);
1966 	return 0;
1967 abort:
1968 	if (conf) {
1969 		print_raid5_conf(conf);
1970 		if (conf->stripe_hashtbl)
1971 			free_pages((unsigned long) conf->stripe_hashtbl,
1972 							HASH_PAGES_ORDER);
1973 		kfree(conf);
1974 	}
1975 	mddev->private = NULL;
1976 	printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
1977 	return -EIO;
1978 }
1979 
1980 
1981 
1982 static int stop(mddev_t *mddev)
1983 {
1984 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1985 
1986 	md_unregister_thread(mddev->thread);
1987 	mddev->thread = NULL;
1988 	shrink_stripes(conf);
1989 	free_pages((unsigned long) conf->stripe_hashtbl, HASH_PAGES_ORDER);
1990 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
1991 	sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
1992 	kfree(conf);
1993 	mddev->private = NULL;
1994 	return 0;
1995 }
1996 
1997 #if RAID5_DEBUG
1998 static void print_sh (struct stripe_head *sh)
1999 {
2000 	int i;
2001 
2002 	printk("sh %llu, pd_idx %d, state %ld.\n",
2003 		(unsigned long long)sh->sector, sh->pd_idx, sh->state);
2004 	printk("sh %llu,  count %d.\n",
2005 		(unsigned long long)sh->sector, atomic_read(&sh->count));
2006 	printk("sh %llu, ", (unsigned long long)sh->sector);
2007 	for (i = 0; i < sh->raid_conf->raid_disks; i++) {
2008 		printk("(cache%d: %p %ld) ",
2009 			i, sh->dev[i].page, sh->dev[i].flags);
2010 	}
2011 	printk("\n");
2012 }
2013 
2014 static void printall (raid5_conf_t *conf)
2015 {
2016 	struct stripe_head *sh;
2017 	int i;
2018 
2019 	spin_lock_irq(&conf->device_lock);
2020 	for (i = 0; i < NR_HASH; i++) {
2021 		sh = conf->stripe_hashtbl[i];
2022 		for (; sh; sh = sh->hash_next) {
2023 			if (sh->raid_conf != conf)
2024 				continue;
2025 			print_sh(sh);
2026 		}
2027 	}
2028 	spin_unlock_irq(&conf->device_lock);
2029 }
2030 #endif
2031 
2032 static void status (struct seq_file *seq, mddev_t *mddev)
2033 {
2034 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
2035 	int i;
2036 
2037 	seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
2038 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->working_disks);
2039 	for (i = 0; i < conf->raid_disks; i++)
2040 		seq_printf (seq, "%s",
2041 			       conf->disks[i].rdev &&
2042 			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
2043 	seq_printf (seq, "]");
2044 #if RAID5_DEBUG
2045 #define D(x) \
2046 	seq_printf (seq, "<"#x":%d>", atomic_read(&conf->x))
2047 	printall(conf);
2048 #endif
2049 }
2050 
2051 static void print_raid5_conf (raid5_conf_t *conf)
2052 {
2053 	int i;
2054 	struct disk_info *tmp;
2055 
2056 	printk("RAID5 conf printout:\n");
2057 	if (!conf) {
2058 		printk("(conf==NULL)\n");
2059 		return;
2060 	}
2061 	printk(" --- rd:%d wd:%d fd:%d\n", conf->raid_disks,
2062 		 conf->working_disks, conf->failed_disks);
2063 
2064 	for (i = 0; i < conf->raid_disks; i++) {
2065 		char b[BDEVNAME_SIZE];
2066 		tmp = conf->disks + i;
2067 		if (tmp->rdev)
2068 		printk(" disk %d, o:%d, dev:%s\n",
2069 			i, !test_bit(Faulty, &tmp->rdev->flags),
2070 			bdevname(tmp->rdev->bdev,b));
2071 	}
2072 }
2073 
2074 static int raid5_spare_active(mddev_t *mddev)
2075 {
2076 	int i;
2077 	raid5_conf_t *conf = mddev->private;
2078 	struct disk_info *tmp;
2079 
2080 	for (i = 0; i < conf->raid_disks; i++) {
2081 		tmp = conf->disks + i;
2082 		if (tmp->rdev
2083 		    && !test_bit(Faulty, &tmp->rdev->flags)
2084 		    && !test_bit(In_sync, &tmp->rdev->flags)) {
2085 			mddev->degraded--;
2086 			conf->failed_disks--;
2087 			conf->working_disks++;
2088 			set_bit(In_sync, &tmp->rdev->flags);
2089 		}
2090 	}
2091 	print_raid5_conf(conf);
2092 	return 0;
2093 }
2094 
2095 static int raid5_remove_disk(mddev_t *mddev, int number)
2096 {
2097 	raid5_conf_t *conf = mddev->private;
2098 	int err = 0;
2099 	mdk_rdev_t *rdev;
2100 	struct disk_info *p = conf->disks + number;
2101 
2102 	print_raid5_conf(conf);
2103 	rdev = p->rdev;
2104 	if (rdev) {
2105 		if (test_bit(In_sync, &rdev->flags) ||
2106 		    atomic_read(&rdev->nr_pending)) {
2107 			err = -EBUSY;
2108 			goto abort;
2109 		}
2110 		p->rdev = NULL;
2111 		synchronize_rcu();
2112 		if (atomic_read(&rdev->nr_pending)) {
2113 			/* lost the race, try later */
2114 			err = -EBUSY;
2115 			p->rdev = rdev;
2116 		}
2117 	}
2118 abort:
2119 
2120 	print_raid5_conf(conf);
2121 	return err;
2122 }
2123 
2124 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
2125 {
2126 	raid5_conf_t *conf = mddev->private;
2127 	int found = 0;
2128 	int disk;
2129 	struct disk_info *p;
2130 
2131 	if (mddev->degraded > 1)
2132 		/* no point adding a device */
2133 		return 0;
2134 
2135 	/*
2136 	 * find the disk ...
2137 	 */
2138 	for (disk=0; disk < mddev->raid_disks; disk++)
2139 		if ((p=conf->disks + disk)->rdev == NULL) {
2140 			clear_bit(In_sync, &rdev->flags);
2141 			rdev->raid_disk = disk;
2142 			found = 1;
2143 			if (rdev->saved_raid_disk != disk)
2144 				conf->fullsync = 1;
2145 			rcu_assign_pointer(p->rdev, rdev);
2146 			break;
2147 		}
2148 	print_raid5_conf(conf);
2149 	return found;
2150 }
2151 
2152 static int raid5_resize(mddev_t *mddev, sector_t sectors)
2153 {
2154 	/* no resync is happening, and there is enough space
2155 	 * on all devices, so we can resize.
2156 	 * We need to make sure resync covers any new space.
2157 	 * If the array is shrinking we should possibly wait until
2158 	 * any io in the removed space completes, but it hardly seems
2159 	 * worth it.
2160 	 */
2161 	sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
2162 	mddev->array_size = (sectors * (mddev->raid_disks-1))>>1;
2163 	set_capacity(mddev->gendisk, mddev->array_size << 1);
2164 	mddev->changed = 1;
2165 	if (sectors/2  > mddev->size && mddev->recovery_cp == MaxSector) {
2166 		mddev->recovery_cp = mddev->size << 1;
2167 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2168 	}
2169 	mddev->size = sectors /2;
2170 	mddev->resync_max_sectors = sectors;
2171 	return 0;
2172 }
2173 
2174 static void raid5_quiesce(mddev_t *mddev, int state)
2175 {
2176 	raid5_conf_t *conf = mddev_to_conf(mddev);
2177 
2178 	switch(state) {
2179 	case 1: /* stop all writes */
2180 		spin_lock_irq(&conf->device_lock);
2181 		conf->quiesce = 1;
2182 		wait_event_lock_irq(conf->wait_for_stripe,
2183 				    atomic_read(&conf->active_stripes) == 0,
2184 				    conf->device_lock, /* nothing */);
2185 		spin_unlock_irq(&conf->device_lock);
2186 		break;
2187 
2188 	case 0: /* re-enable writes */
2189 		spin_lock_irq(&conf->device_lock);
2190 		conf->quiesce = 0;
2191 		wake_up(&conf->wait_for_stripe);
2192 		spin_unlock_irq(&conf->device_lock);
2193 		break;
2194 	}
2195 	if (mddev->thread) {
2196 		if (mddev->bitmap)
2197 			mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ;
2198 		else
2199 			mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT;
2200 		md_wakeup_thread(mddev->thread);
2201 	}
2202 }
2203 static mdk_personality_t raid5_personality=
2204 {
2205 	.name		= "raid5",
2206 	.owner		= THIS_MODULE,
2207 	.make_request	= make_request,
2208 	.run		= run,
2209 	.stop		= stop,
2210 	.status		= status,
2211 	.error_handler	= error,
2212 	.hot_add_disk	= raid5_add_disk,
2213 	.hot_remove_disk= raid5_remove_disk,
2214 	.spare_active	= raid5_spare_active,
2215 	.sync_request	= sync_request,
2216 	.resize		= raid5_resize,
2217 	.quiesce	= raid5_quiesce,
2218 };
2219 
2220 static int __init raid5_init (void)
2221 {
2222 	return register_md_personality (RAID5, &raid5_personality);
2223 }
2224 
2225 static void raid5_exit (void)
2226 {
2227 	unregister_md_personality (RAID5);
2228 }
2229 
2230 module_init(raid5_init);
2231 module_exit(raid5_exit);
2232 MODULE_LICENSE("GPL");
2233 MODULE_ALIAS("md-personality-4"); /* RAID5 */
2234