1 /* 2 * raid5.c : Multiple Devices driver for Linux 3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman 4 * Copyright (C) 1999, 2000 Ingo Molnar 5 * Copyright (C) 2002, 2003 H. Peter Anvin 6 * 7 * RAID-4/5/6 management functions. 8 * Thanks to Penguin Computing for making the RAID-6 development possible 9 * by donating a test server! 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 /* 22 * BITMAP UNPLUGGING: 23 * 24 * The sequencing for updating the bitmap reliably is a little 25 * subtle (and I got it wrong the first time) so it deserves some 26 * explanation. 27 * 28 * We group bitmap updates into batches. Each batch has a number. 29 * We may write out several batches at once, but that isn't very important. 30 * conf->bm_write is the number of the last batch successfully written. 31 * conf->bm_flush is the number of the last batch that was closed to 32 * new additions. 33 * When we discover that we will need to write to any block in a stripe 34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq 35 * the number of the batch it will be in. This is bm_flush+1. 36 * When we are ready to do a write, if that batch hasn't been written yet, 37 * we plug the array and queue the stripe for later. 38 * When an unplug happens, we increment bm_flush, thus closing the current 39 * batch. 40 * When we notice that bm_flush > bm_write, we write out all pending updates 41 * to the bitmap, and advance bm_write to where bm_flush was. 42 * This may occasionally write a bit out twice, but is sure never to 43 * miss any bits. 44 */ 45 46 #include <linux/module.h> 47 #include <linux/slab.h> 48 #include <linux/highmem.h> 49 #include <linux/bitops.h> 50 #include <linux/kthread.h> 51 #include <asm/atomic.h> 52 #include "raid6.h" 53 54 #include <linux/raid/bitmap.h> 55 #include <linux/async_tx.h> 56 57 /* 58 * Stripe cache 59 */ 60 61 #define NR_STRIPES 256 62 #define STRIPE_SIZE PAGE_SIZE 63 #define STRIPE_SHIFT (PAGE_SHIFT - 9) 64 #define STRIPE_SECTORS (STRIPE_SIZE>>9) 65 #define IO_THRESHOLD 1 66 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head)) 67 #define HASH_MASK (NR_HASH - 1) 68 69 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK])) 70 71 /* bio's attached to a stripe+device for I/O are linked together in bi_sector 72 * order without overlap. There may be several bio's per stripe+device, and 73 * a bio could span several devices. 74 * When walking this list for a particular stripe+device, we must never proceed 75 * beyond a bio that extends past this device, as the next bio might no longer 76 * be valid. 77 * This macro is used to determine the 'next' bio in the list, given the sector 78 * of the current stripe+device 79 */ 80 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL) 81 /* 82 * The following can be used to debug the driver 83 */ 84 #define RAID5_PARANOIA 1 85 #if RAID5_PARANOIA && defined(CONFIG_SMP) 86 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock) 87 #else 88 # define CHECK_DEVLOCK() 89 #endif 90 91 #ifdef DEBUG 92 #define inline 93 #define __inline__ 94 #endif 95 96 #if !RAID6_USE_EMPTY_ZERO_PAGE 97 /* In .bss so it's zeroed */ 98 const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256))); 99 #endif 100 101 static inline int raid6_next_disk(int disk, int raid_disks) 102 { 103 disk++; 104 return (disk < raid_disks) ? disk : 0; 105 } 106 107 static void return_io(struct bio *return_bi) 108 { 109 struct bio *bi = return_bi; 110 while (bi) { 111 112 return_bi = bi->bi_next; 113 bi->bi_next = NULL; 114 bi->bi_size = 0; 115 bi->bi_end_io(bi, 116 test_bit(BIO_UPTODATE, &bi->bi_flags) 117 ? 0 : -EIO); 118 bi = return_bi; 119 } 120 } 121 122 static void print_raid5_conf (raid5_conf_t *conf); 123 124 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh) 125 { 126 if (atomic_dec_and_test(&sh->count)) { 127 BUG_ON(!list_empty(&sh->lru)); 128 BUG_ON(atomic_read(&conf->active_stripes)==0); 129 if (test_bit(STRIPE_HANDLE, &sh->state)) { 130 if (test_bit(STRIPE_DELAYED, &sh->state)) { 131 list_add_tail(&sh->lru, &conf->delayed_list); 132 blk_plug_device(conf->mddev->queue); 133 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) && 134 sh->bm_seq - conf->seq_write > 0) { 135 list_add_tail(&sh->lru, &conf->bitmap_list); 136 blk_plug_device(conf->mddev->queue); 137 } else { 138 clear_bit(STRIPE_BIT_DELAY, &sh->state); 139 list_add_tail(&sh->lru, &conf->handle_list); 140 } 141 md_wakeup_thread(conf->mddev->thread); 142 } else { 143 BUG_ON(sh->ops.pending); 144 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { 145 atomic_dec(&conf->preread_active_stripes); 146 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) 147 md_wakeup_thread(conf->mddev->thread); 148 } 149 atomic_dec(&conf->active_stripes); 150 if (!test_bit(STRIPE_EXPANDING, &sh->state)) { 151 list_add_tail(&sh->lru, &conf->inactive_list); 152 wake_up(&conf->wait_for_stripe); 153 if (conf->retry_read_aligned) 154 md_wakeup_thread(conf->mddev->thread); 155 } 156 } 157 } 158 } 159 static void release_stripe(struct stripe_head *sh) 160 { 161 raid5_conf_t *conf = sh->raid_conf; 162 unsigned long flags; 163 164 spin_lock_irqsave(&conf->device_lock, flags); 165 __release_stripe(conf, sh); 166 spin_unlock_irqrestore(&conf->device_lock, flags); 167 } 168 169 static inline void remove_hash(struct stripe_head *sh) 170 { 171 pr_debug("remove_hash(), stripe %llu\n", 172 (unsigned long long)sh->sector); 173 174 hlist_del_init(&sh->hash); 175 } 176 177 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh) 178 { 179 struct hlist_head *hp = stripe_hash(conf, sh->sector); 180 181 pr_debug("insert_hash(), stripe %llu\n", 182 (unsigned long long)sh->sector); 183 184 CHECK_DEVLOCK(); 185 hlist_add_head(&sh->hash, hp); 186 } 187 188 189 /* find an idle stripe, make sure it is unhashed, and return it. */ 190 static struct stripe_head *get_free_stripe(raid5_conf_t *conf) 191 { 192 struct stripe_head *sh = NULL; 193 struct list_head *first; 194 195 CHECK_DEVLOCK(); 196 if (list_empty(&conf->inactive_list)) 197 goto out; 198 first = conf->inactive_list.next; 199 sh = list_entry(first, struct stripe_head, lru); 200 list_del_init(first); 201 remove_hash(sh); 202 atomic_inc(&conf->active_stripes); 203 out: 204 return sh; 205 } 206 207 static void shrink_buffers(struct stripe_head *sh, int num) 208 { 209 struct page *p; 210 int i; 211 212 for (i=0; i<num ; i++) { 213 p = sh->dev[i].page; 214 if (!p) 215 continue; 216 sh->dev[i].page = NULL; 217 put_page(p); 218 } 219 } 220 221 static int grow_buffers(struct stripe_head *sh, int num) 222 { 223 int i; 224 225 for (i=0; i<num; i++) { 226 struct page *page; 227 228 if (!(page = alloc_page(GFP_KERNEL))) { 229 return 1; 230 } 231 sh->dev[i].page = page; 232 } 233 return 0; 234 } 235 236 static void raid5_build_block (struct stripe_head *sh, int i); 237 238 static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks) 239 { 240 raid5_conf_t *conf = sh->raid_conf; 241 int i; 242 243 BUG_ON(atomic_read(&sh->count) != 0); 244 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); 245 BUG_ON(sh->ops.pending || sh->ops.ack || sh->ops.complete); 246 247 CHECK_DEVLOCK(); 248 pr_debug("init_stripe called, stripe %llu\n", 249 (unsigned long long)sh->sector); 250 251 remove_hash(sh); 252 253 sh->sector = sector; 254 sh->pd_idx = pd_idx; 255 sh->state = 0; 256 257 sh->disks = disks; 258 259 for (i = sh->disks; i--; ) { 260 struct r5dev *dev = &sh->dev[i]; 261 262 if (dev->toread || dev->read || dev->towrite || dev->written || 263 test_bit(R5_LOCKED, &dev->flags)) { 264 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n", 265 (unsigned long long)sh->sector, i, dev->toread, 266 dev->read, dev->towrite, dev->written, 267 test_bit(R5_LOCKED, &dev->flags)); 268 BUG(); 269 } 270 dev->flags = 0; 271 raid5_build_block(sh, i); 272 } 273 insert_hash(conf, sh); 274 } 275 276 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks) 277 { 278 struct stripe_head *sh; 279 struct hlist_node *hn; 280 281 CHECK_DEVLOCK(); 282 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector); 283 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash) 284 if (sh->sector == sector && sh->disks == disks) 285 return sh; 286 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector); 287 return NULL; 288 } 289 290 static void unplug_slaves(mddev_t *mddev); 291 static void raid5_unplug_device(struct request_queue *q); 292 293 static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks, 294 int pd_idx, int noblock) 295 { 296 struct stripe_head *sh; 297 298 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector); 299 300 spin_lock_irq(&conf->device_lock); 301 302 do { 303 wait_event_lock_irq(conf->wait_for_stripe, 304 conf->quiesce == 0, 305 conf->device_lock, /* nothing */); 306 sh = __find_stripe(conf, sector, disks); 307 if (!sh) { 308 if (!conf->inactive_blocked) 309 sh = get_free_stripe(conf); 310 if (noblock && sh == NULL) 311 break; 312 if (!sh) { 313 conf->inactive_blocked = 1; 314 wait_event_lock_irq(conf->wait_for_stripe, 315 !list_empty(&conf->inactive_list) && 316 (atomic_read(&conf->active_stripes) 317 < (conf->max_nr_stripes *3/4) 318 || !conf->inactive_blocked), 319 conf->device_lock, 320 raid5_unplug_device(conf->mddev->queue) 321 ); 322 conf->inactive_blocked = 0; 323 } else 324 init_stripe(sh, sector, pd_idx, disks); 325 } else { 326 if (atomic_read(&sh->count)) { 327 BUG_ON(!list_empty(&sh->lru)); 328 } else { 329 if (!test_bit(STRIPE_HANDLE, &sh->state)) 330 atomic_inc(&conf->active_stripes); 331 if (list_empty(&sh->lru) && 332 !test_bit(STRIPE_EXPANDING, &sh->state)) 333 BUG(); 334 list_del_init(&sh->lru); 335 } 336 } 337 } while (sh == NULL); 338 339 if (sh) 340 atomic_inc(&sh->count); 341 342 spin_unlock_irq(&conf->device_lock); 343 return sh; 344 } 345 346 /* test_and_ack_op() ensures that we only dequeue an operation once */ 347 #define test_and_ack_op(op, pend) \ 348 do { \ 349 if (test_bit(op, &sh->ops.pending) && \ 350 !test_bit(op, &sh->ops.complete)) { \ 351 if (test_and_set_bit(op, &sh->ops.ack)) \ 352 clear_bit(op, &pend); \ 353 else \ 354 ack++; \ 355 } else \ 356 clear_bit(op, &pend); \ 357 } while (0) 358 359 /* find new work to run, do not resubmit work that is already 360 * in flight 361 */ 362 static unsigned long get_stripe_work(struct stripe_head *sh) 363 { 364 unsigned long pending; 365 int ack = 0; 366 367 pending = sh->ops.pending; 368 369 test_and_ack_op(STRIPE_OP_BIOFILL, pending); 370 test_and_ack_op(STRIPE_OP_COMPUTE_BLK, pending); 371 test_and_ack_op(STRIPE_OP_PREXOR, pending); 372 test_and_ack_op(STRIPE_OP_BIODRAIN, pending); 373 test_and_ack_op(STRIPE_OP_POSTXOR, pending); 374 test_and_ack_op(STRIPE_OP_CHECK, pending); 375 if (test_and_clear_bit(STRIPE_OP_IO, &sh->ops.pending)) 376 ack++; 377 378 sh->ops.count -= ack; 379 if (unlikely(sh->ops.count < 0)) { 380 printk(KERN_ERR "pending: %#lx ops.pending: %#lx ops.ack: %#lx " 381 "ops.complete: %#lx\n", pending, sh->ops.pending, 382 sh->ops.ack, sh->ops.complete); 383 BUG(); 384 } 385 386 return pending; 387 } 388 389 static void 390 raid5_end_read_request(struct bio *bi, int error); 391 static void 392 raid5_end_write_request(struct bio *bi, int error); 393 394 static void ops_run_io(struct stripe_head *sh) 395 { 396 raid5_conf_t *conf = sh->raid_conf; 397 int i, disks = sh->disks; 398 399 might_sleep(); 400 401 for (i = disks; i--; ) { 402 int rw; 403 struct bio *bi; 404 mdk_rdev_t *rdev; 405 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) 406 rw = WRITE; 407 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags)) 408 rw = READ; 409 else 410 continue; 411 412 bi = &sh->dev[i].req; 413 414 bi->bi_rw = rw; 415 if (rw == WRITE) 416 bi->bi_end_io = raid5_end_write_request; 417 else 418 bi->bi_end_io = raid5_end_read_request; 419 420 rcu_read_lock(); 421 rdev = rcu_dereference(conf->disks[i].rdev); 422 if (rdev && test_bit(Faulty, &rdev->flags)) 423 rdev = NULL; 424 if (rdev) 425 atomic_inc(&rdev->nr_pending); 426 rcu_read_unlock(); 427 428 if (rdev) { 429 if (test_bit(STRIPE_SYNCING, &sh->state) || 430 test_bit(STRIPE_EXPAND_SOURCE, &sh->state) || 431 test_bit(STRIPE_EXPAND_READY, &sh->state)) 432 md_sync_acct(rdev->bdev, STRIPE_SECTORS); 433 434 bi->bi_bdev = rdev->bdev; 435 pr_debug("%s: for %llu schedule op %ld on disc %d\n", 436 __FUNCTION__, (unsigned long long)sh->sector, 437 bi->bi_rw, i); 438 atomic_inc(&sh->count); 439 bi->bi_sector = sh->sector + rdev->data_offset; 440 bi->bi_flags = 1 << BIO_UPTODATE; 441 bi->bi_vcnt = 1; 442 bi->bi_max_vecs = 1; 443 bi->bi_idx = 0; 444 bi->bi_io_vec = &sh->dev[i].vec; 445 bi->bi_io_vec[0].bv_len = STRIPE_SIZE; 446 bi->bi_io_vec[0].bv_offset = 0; 447 bi->bi_size = STRIPE_SIZE; 448 bi->bi_next = NULL; 449 if (rw == WRITE && 450 test_bit(R5_ReWrite, &sh->dev[i].flags)) 451 atomic_add(STRIPE_SECTORS, 452 &rdev->corrected_errors); 453 generic_make_request(bi); 454 } else { 455 if (rw == WRITE) 456 set_bit(STRIPE_DEGRADED, &sh->state); 457 pr_debug("skip op %ld on disc %d for sector %llu\n", 458 bi->bi_rw, i, (unsigned long long)sh->sector); 459 clear_bit(R5_LOCKED, &sh->dev[i].flags); 460 set_bit(STRIPE_HANDLE, &sh->state); 461 } 462 } 463 } 464 465 static struct dma_async_tx_descriptor * 466 async_copy_data(int frombio, struct bio *bio, struct page *page, 467 sector_t sector, struct dma_async_tx_descriptor *tx) 468 { 469 struct bio_vec *bvl; 470 struct page *bio_page; 471 int i; 472 int page_offset; 473 474 if (bio->bi_sector >= sector) 475 page_offset = (signed)(bio->bi_sector - sector) * 512; 476 else 477 page_offset = (signed)(sector - bio->bi_sector) * -512; 478 bio_for_each_segment(bvl, bio, i) { 479 int len = bio_iovec_idx(bio, i)->bv_len; 480 int clen; 481 int b_offset = 0; 482 483 if (page_offset < 0) { 484 b_offset = -page_offset; 485 page_offset += b_offset; 486 len -= b_offset; 487 } 488 489 if (len > 0 && page_offset + len > STRIPE_SIZE) 490 clen = STRIPE_SIZE - page_offset; 491 else 492 clen = len; 493 494 if (clen > 0) { 495 b_offset += bio_iovec_idx(bio, i)->bv_offset; 496 bio_page = bio_iovec_idx(bio, i)->bv_page; 497 if (frombio) 498 tx = async_memcpy(page, bio_page, page_offset, 499 b_offset, clen, 500 ASYNC_TX_DEP_ACK, 501 tx, NULL, NULL); 502 else 503 tx = async_memcpy(bio_page, page, b_offset, 504 page_offset, clen, 505 ASYNC_TX_DEP_ACK, 506 tx, NULL, NULL); 507 } 508 if (clen < len) /* hit end of page */ 509 break; 510 page_offset += len; 511 } 512 513 return tx; 514 } 515 516 static void ops_complete_biofill(void *stripe_head_ref) 517 { 518 struct stripe_head *sh = stripe_head_ref; 519 struct bio *return_bi = NULL; 520 raid5_conf_t *conf = sh->raid_conf; 521 int i; 522 523 pr_debug("%s: stripe %llu\n", __FUNCTION__, 524 (unsigned long long)sh->sector); 525 526 /* clear completed biofills */ 527 for (i = sh->disks; i--; ) { 528 struct r5dev *dev = &sh->dev[i]; 529 530 /* acknowledge completion of a biofill operation */ 531 /* and check if we need to reply to a read request, 532 * new R5_Wantfill requests are held off until 533 * !test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending) 534 */ 535 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) { 536 struct bio *rbi, *rbi2; 537 538 /* The access to dev->read is outside of the 539 * spin_lock_irq(&conf->device_lock), but is protected 540 * by the STRIPE_OP_BIOFILL pending bit 541 */ 542 BUG_ON(!dev->read); 543 rbi = dev->read; 544 dev->read = NULL; 545 while (rbi && rbi->bi_sector < 546 dev->sector + STRIPE_SECTORS) { 547 rbi2 = r5_next_bio(rbi, dev->sector); 548 spin_lock_irq(&conf->device_lock); 549 if (--rbi->bi_phys_segments == 0) { 550 rbi->bi_next = return_bi; 551 return_bi = rbi; 552 } 553 spin_unlock_irq(&conf->device_lock); 554 rbi = rbi2; 555 } 556 } 557 } 558 set_bit(STRIPE_OP_BIOFILL, &sh->ops.complete); 559 560 return_io(return_bi); 561 562 set_bit(STRIPE_HANDLE, &sh->state); 563 release_stripe(sh); 564 } 565 566 static void ops_run_biofill(struct stripe_head *sh) 567 { 568 struct dma_async_tx_descriptor *tx = NULL; 569 raid5_conf_t *conf = sh->raid_conf; 570 int i; 571 572 pr_debug("%s: stripe %llu\n", __FUNCTION__, 573 (unsigned long long)sh->sector); 574 575 for (i = sh->disks; i--; ) { 576 struct r5dev *dev = &sh->dev[i]; 577 if (test_bit(R5_Wantfill, &dev->flags)) { 578 struct bio *rbi; 579 spin_lock_irq(&conf->device_lock); 580 dev->read = rbi = dev->toread; 581 dev->toread = NULL; 582 spin_unlock_irq(&conf->device_lock); 583 while (rbi && rbi->bi_sector < 584 dev->sector + STRIPE_SECTORS) { 585 tx = async_copy_data(0, rbi, dev->page, 586 dev->sector, tx); 587 rbi = r5_next_bio(rbi, dev->sector); 588 } 589 } 590 } 591 592 atomic_inc(&sh->count); 593 async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx, 594 ops_complete_biofill, sh); 595 } 596 597 static void ops_complete_compute5(void *stripe_head_ref) 598 { 599 struct stripe_head *sh = stripe_head_ref; 600 int target = sh->ops.target; 601 struct r5dev *tgt = &sh->dev[target]; 602 603 pr_debug("%s: stripe %llu\n", __FUNCTION__, 604 (unsigned long long)sh->sector); 605 606 set_bit(R5_UPTODATE, &tgt->flags); 607 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 608 clear_bit(R5_Wantcompute, &tgt->flags); 609 set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete); 610 set_bit(STRIPE_HANDLE, &sh->state); 611 release_stripe(sh); 612 } 613 614 static struct dma_async_tx_descriptor * 615 ops_run_compute5(struct stripe_head *sh, unsigned long pending) 616 { 617 /* kernel stack size limits the total number of disks */ 618 int disks = sh->disks; 619 struct page *xor_srcs[disks]; 620 int target = sh->ops.target; 621 struct r5dev *tgt = &sh->dev[target]; 622 struct page *xor_dest = tgt->page; 623 int count = 0; 624 struct dma_async_tx_descriptor *tx; 625 int i; 626 627 pr_debug("%s: stripe %llu block: %d\n", 628 __FUNCTION__, (unsigned long long)sh->sector, target); 629 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 630 631 for (i = disks; i--; ) 632 if (i != target) 633 xor_srcs[count++] = sh->dev[i].page; 634 635 atomic_inc(&sh->count); 636 637 if (unlikely(count == 1)) 638 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, 639 0, NULL, ops_complete_compute5, sh); 640 else 641 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, 642 ASYNC_TX_XOR_ZERO_DST, NULL, 643 ops_complete_compute5, sh); 644 645 /* ack now if postxor is not set to be run */ 646 if (tx && !test_bit(STRIPE_OP_POSTXOR, &pending)) 647 async_tx_ack(tx); 648 649 return tx; 650 } 651 652 static void ops_complete_prexor(void *stripe_head_ref) 653 { 654 struct stripe_head *sh = stripe_head_ref; 655 656 pr_debug("%s: stripe %llu\n", __FUNCTION__, 657 (unsigned long long)sh->sector); 658 659 set_bit(STRIPE_OP_PREXOR, &sh->ops.complete); 660 } 661 662 static struct dma_async_tx_descriptor * 663 ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) 664 { 665 /* kernel stack size limits the total number of disks */ 666 int disks = sh->disks; 667 struct page *xor_srcs[disks]; 668 int count = 0, pd_idx = sh->pd_idx, i; 669 670 /* existing parity data subtracted */ 671 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 672 673 pr_debug("%s: stripe %llu\n", __FUNCTION__, 674 (unsigned long long)sh->sector); 675 676 for (i = disks; i--; ) { 677 struct r5dev *dev = &sh->dev[i]; 678 /* Only process blocks that are known to be uptodate */ 679 if (dev->towrite && test_bit(R5_Wantprexor, &dev->flags)) 680 xor_srcs[count++] = dev->page; 681 } 682 683 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, 684 ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx, 685 ops_complete_prexor, sh); 686 687 return tx; 688 } 689 690 static struct dma_async_tx_descriptor * 691 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) 692 { 693 int disks = sh->disks; 694 int pd_idx = sh->pd_idx, i; 695 696 /* check if prexor is active which means only process blocks 697 * that are part of a read-modify-write (Wantprexor) 698 */ 699 int prexor = test_bit(STRIPE_OP_PREXOR, &sh->ops.pending); 700 701 pr_debug("%s: stripe %llu\n", __FUNCTION__, 702 (unsigned long long)sh->sector); 703 704 for (i = disks; i--; ) { 705 struct r5dev *dev = &sh->dev[i]; 706 struct bio *chosen; 707 int towrite; 708 709 towrite = 0; 710 if (prexor) { /* rmw */ 711 if (dev->towrite && 712 test_bit(R5_Wantprexor, &dev->flags)) 713 towrite = 1; 714 } else { /* rcw */ 715 if (i != pd_idx && dev->towrite && 716 test_bit(R5_LOCKED, &dev->flags)) 717 towrite = 1; 718 } 719 720 if (towrite) { 721 struct bio *wbi; 722 723 spin_lock(&sh->lock); 724 chosen = dev->towrite; 725 dev->towrite = NULL; 726 BUG_ON(dev->written); 727 wbi = dev->written = chosen; 728 spin_unlock(&sh->lock); 729 730 while (wbi && wbi->bi_sector < 731 dev->sector + STRIPE_SECTORS) { 732 tx = async_copy_data(1, wbi, dev->page, 733 dev->sector, tx); 734 wbi = r5_next_bio(wbi, dev->sector); 735 } 736 } 737 } 738 739 return tx; 740 } 741 742 static void ops_complete_postxor(void *stripe_head_ref) 743 { 744 struct stripe_head *sh = stripe_head_ref; 745 746 pr_debug("%s: stripe %llu\n", __FUNCTION__, 747 (unsigned long long)sh->sector); 748 749 set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete); 750 set_bit(STRIPE_HANDLE, &sh->state); 751 release_stripe(sh); 752 } 753 754 static void ops_complete_write(void *stripe_head_ref) 755 { 756 struct stripe_head *sh = stripe_head_ref; 757 int disks = sh->disks, i, pd_idx = sh->pd_idx; 758 759 pr_debug("%s: stripe %llu\n", __FUNCTION__, 760 (unsigned long long)sh->sector); 761 762 for (i = disks; i--; ) { 763 struct r5dev *dev = &sh->dev[i]; 764 if (dev->written || i == pd_idx) 765 set_bit(R5_UPTODATE, &dev->flags); 766 } 767 768 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete); 769 set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete); 770 771 set_bit(STRIPE_HANDLE, &sh->state); 772 release_stripe(sh); 773 } 774 775 static void 776 ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) 777 { 778 /* kernel stack size limits the total number of disks */ 779 int disks = sh->disks; 780 struct page *xor_srcs[disks]; 781 782 int count = 0, pd_idx = sh->pd_idx, i; 783 struct page *xor_dest; 784 int prexor = test_bit(STRIPE_OP_PREXOR, &sh->ops.pending); 785 unsigned long flags; 786 dma_async_tx_callback callback; 787 788 pr_debug("%s: stripe %llu\n", __FUNCTION__, 789 (unsigned long long)sh->sector); 790 791 /* check if prexor is active which means only process blocks 792 * that are part of a read-modify-write (written) 793 */ 794 if (prexor) { 795 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 796 for (i = disks; i--; ) { 797 struct r5dev *dev = &sh->dev[i]; 798 if (dev->written) 799 xor_srcs[count++] = dev->page; 800 } 801 } else { 802 xor_dest = sh->dev[pd_idx].page; 803 for (i = disks; i--; ) { 804 struct r5dev *dev = &sh->dev[i]; 805 if (i != pd_idx) 806 xor_srcs[count++] = dev->page; 807 } 808 } 809 810 /* check whether this postxor is part of a write */ 811 callback = test_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending) ? 812 ops_complete_write : ops_complete_postxor; 813 814 /* 1/ if we prexor'd then the dest is reused as a source 815 * 2/ if we did not prexor then we are redoing the parity 816 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST 817 * for the synchronous xor case 818 */ 819 flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK | 820 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST); 821 822 atomic_inc(&sh->count); 823 824 if (unlikely(count == 1)) { 825 flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST); 826 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, 827 flags, tx, callback, sh); 828 } else 829 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, 830 flags, tx, callback, sh); 831 } 832 833 static void ops_complete_check(void *stripe_head_ref) 834 { 835 struct stripe_head *sh = stripe_head_ref; 836 int pd_idx = sh->pd_idx; 837 838 pr_debug("%s: stripe %llu\n", __FUNCTION__, 839 (unsigned long long)sh->sector); 840 841 if (test_and_clear_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending) && 842 sh->ops.zero_sum_result == 0) 843 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 844 845 set_bit(STRIPE_OP_CHECK, &sh->ops.complete); 846 set_bit(STRIPE_HANDLE, &sh->state); 847 release_stripe(sh); 848 } 849 850 static void ops_run_check(struct stripe_head *sh) 851 { 852 /* kernel stack size limits the total number of disks */ 853 int disks = sh->disks; 854 struct page *xor_srcs[disks]; 855 struct dma_async_tx_descriptor *tx; 856 857 int count = 0, pd_idx = sh->pd_idx, i; 858 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 859 860 pr_debug("%s: stripe %llu\n", __FUNCTION__, 861 (unsigned long long)sh->sector); 862 863 for (i = disks; i--; ) { 864 struct r5dev *dev = &sh->dev[i]; 865 if (i != pd_idx) 866 xor_srcs[count++] = dev->page; 867 } 868 869 tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, 870 &sh->ops.zero_sum_result, 0, NULL, NULL, NULL); 871 872 if (tx) 873 set_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending); 874 else 875 clear_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending); 876 877 atomic_inc(&sh->count); 878 tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx, 879 ops_complete_check, sh); 880 } 881 882 static void raid5_run_ops(struct stripe_head *sh, unsigned long pending) 883 { 884 int overlap_clear = 0, i, disks = sh->disks; 885 struct dma_async_tx_descriptor *tx = NULL; 886 887 if (test_bit(STRIPE_OP_BIOFILL, &pending)) { 888 ops_run_biofill(sh); 889 overlap_clear++; 890 } 891 892 if (test_bit(STRIPE_OP_COMPUTE_BLK, &pending)) 893 tx = ops_run_compute5(sh, pending); 894 895 if (test_bit(STRIPE_OP_PREXOR, &pending)) 896 tx = ops_run_prexor(sh, tx); 897 898 if (test_bit(STRIPE_OP_BIODRAIN, &pending)) { 899 tx = ops_run_biodrain(sh, tx); 900 overlap_clear++; 901 } 902 903 if (test_bit(STRIPE_OP_POSTXOR, &pending)) 904 ops_run_postxor(sh, tx); 905 906 if (test_bit(STRIPE_OP_CHECK, &pending)) 907 ops_run_check(sh); 908 909 if (test_bit(STRIPE_OP_IO, &pending)) 910 ops_run_io(sh); 911 912 if (overlap_clear) 913 for (i = disks; i--; ) { 914 struct r5dev *dev = &sh->dev[i]; 915 if (test_and_clear_bit(R5_Overlap, &dev->flags)) 916 wake_up(&sh->raid_conf->wait_for_overlap); 917 } 918 } 919 920 static int grow_one_stripe(raid5_conf_t *conf) 921 { 922 struct stripe_head *sh; 923 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL); 924 if (!sh) 925 return 0; 926 memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev)); 927 sh->raid_conf = conf; 928 spin_lock_init(&sh->lock); 929 930 if (grow_buffers(sh, conf->raid_disks)) { 931 shrink_buffers(sh, conf->raid_disks); 932 kmem_cache_free(conf->slab_cache, sh); 933 return 0; 934 } 935 sh->disks = conf->raid_disks; 936 /* we just created an active stripe so... */ 937 atomic_set(&sh->count, 1); 938 atomic_inc(&conf->active_stripes); 939 INIT_LIST_HEAD(&sh->lru); 940 release_stripe(sh); 941 return 1; 942 } 943 944 static int grow_stripes(raid5_conf_t *conf, int num) 945 { 946 struct kmem_cache *sc; 947 int devs = conf->raid_disks; 948 949 sprintf(conf->cache_name[0], "raid5-%s", mdname(conf->mddev)); 950 sprintf(conf->cache_name[1], "raid5-%s-alt", mdname(conf->mddev)); 951 conf->active_name = 0; 952 sc = kmem_cache_create(conf->cache_name[conf->active_name], 953 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev), 954 0, 0, NULL); 955 if (!sc) 956 return 1; 957 conf->slab_cache = sc; 958 conf->pool_size = devs; 959 while (num--) 960 if (!grow_one_stripe(conf)) 961 return 1; 962 return 0; 963 } 964 965 #ifdef CONFIG_MD_RAID5_RESHAPE 966 static int resize_stripes(raid5_conf_t *conf, int newsize) 967 { 968 /* Make all the stripes able to hold 'newsize' devices. 969 * New slots in each stripe get 'page' set to a new page. 970 * 971 * This happens in stages: 972 * 1/ create a new kmem_cache and allocate the required number of 973 * stripe_heads. 974 * 2/ gather all the old stripe_heads and tranfer the pages across 975 * to the new stripe_heads. This will have the side effect of 976 * freezing the array as once all stripe_heads have been collected, 977 * no IO will be possible. Old stripe heads are freed once their 978 * pages have been transferred over, and the old kmem_cache is 979 * freed when all stripes are done. 980 * 3/ reallocate conf->disks to be suitable bigger. If this fails, 981 * we simple return a failre status - no need to clean anything up. 982 * 4/ allocate new pages for the new slots in the new stripe_heads. 983 * If this fails, we don't bother trying the shrink the 984 * stripe_heads down again, we just leave them as they are. 985 * As each stripe_head is processed the new one is released into 986 * active service. 987 * 988 * Once step2 is started, we cannot afford to wait for a write, 989 * so we use GFP_NOIO allocations. 990 */ 991 struct stripe_head *osh, *nsh; 992 LIST_HEAD(newstripes); 993 struct disk_info *ndisks; 994 int err = 0; 995 struct kmem_cache *sc; 996 int i; 997 998 if (newsize <= conf->pool_size) 999 return 0; /* never bother to shrink */ 1000 1001 md_allow_write(conf->mddev); 1002 1003 /* Step 1 */ 1004 sc = kmem_cache_create(conf->cache_name[1-conf->active_name], 1005 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev), 1006 0, 0, NULL); 1007 if (!sc) 1008 return -ENOMEM; 1009 1010 for (i = conf->max_nr_stripes; i; i--) { 1011 nsh = kmem_cache_alloc(sc, GFP_KERNEL); 1012 if (!nsh) 1013 break; 1014 1015 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev)); 1016 1017 nsh->raid_conf = conf; 1018 spin_lock_init(&nsh->lock); 1019 1020 list_add(&nsh->lru, &newstripes); 1021 } 1022 if (i) { 1023 /* didn't get enough, give up */ 1024 while (!list_empty(&newstripes)) { 1025 nsh = list_entry(newstripes.next, struct stripe_head, lru); 1026 list_del(&nsh->lru); 1027 kmem_cache_free(sc, nsh); 1028 } 1029 kmem_cache_destroy(sc); 1030 return -ENOMEM; 1031 } 1032 /* Step 2 - Must use GFP_NOIO now. 1033 * OK, we have enough stripes, start collecting inactive 1034 * stripes and copying them over 1035 */ 1036 list_for_each_entry(nsh, &newstripes, lru) { 1037 spin_lock_irq(&conf->device_lock); 1038 wait_event_lock_irq(conf->wait_for_stripe, 1039 !list_empty(&conf->inactive_list), 1040 conf->device_lock, 1041 unplug_slaves(conf->mddev) 1042 ); 1043 osh = get_free_stripe(conf); 1044 spin_unlock_irq(&conf->device_lock); 1045 atomic_set(&nsh->count, 1); 1046 for(i=0; i<conf->pool_size; i++) 1047 nsh->dev[i].page = osh->dev[i].page; 1048 for( ; i<newsize; i++) 1049 nsh->dev[i].page = NULL; 1050 kmem_cache_free(conf->slab_cache, osh); 1051 } 1052 kmem_cache_destroy(conf->slab_cache); 1053 1054 /* Step 3. 1055 * At this point, we are holding all the stripes so the array 1056 * is completely stalled, so now is a good time to resize 1057 * conf->disks. 1058 */ 1059 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO); 1060 if (ndisks) { 1061 for (i=0; i<conf->raid_disks; i++) 1062 ndisks[i] = conf->disks[i]; 1063 kfree(conf->disks); 1064 conf->disks = ndisks; 1065 } else 1066 err = -ENOMEM; 1067 1068 /* Step 4, return new stripes to service */ 1069 while(!list_empty(&newstripes)) { 1070 nsh = list_entry(newstripes.next, struct stripe_head, lru); 1071 list_del_init(&nsh->lru); 1072 for (i=conf->raid_disks; i < newsize; i++) 1073 if (nsh->dev[i].page == NULL) { 1074 struct page *p = alloc_page(GFP_NOIO); 1075 nsh->dev[i].page = p; 1076 if (!p) 1077 err = -ENOMEM; 1078 } 1079 release_stripe(nsh); 1080 } 1081 /* critical section pass, GFP_NOIO no longer needed */ 1082 1083 conf->slab_cache = sc; 1084 conf->active_name = 1-conf->active_name; 1085 conf->pool_size = newsize; 1086 return err; 1087 } 1088 #endif 1089 1090 static int drop_one_stripe(raid5_conf_t *conf) 1091 { 1092 struct stripe_head *sh; 1093 1094 spin_lock_irq(&conf->device_lock); 1095 sh = get_free_stripe(conf); 1096 spin_unlock_irq(&conf->device_lock); 1097 if (!sh) 1098 return 0; 1099 BUG_ON(atomic_read(&sh->count)); 1100 shrink_buffers(sh, conf->pool_size); 1101 kmem_cache_free(conf->slab_cache, sh); 1102 atomic_dec(&conf->active_stripes); 1103 return 1; 1104 } 1105 1106 static void shrink_stripes(raid5_conf_t *conf) 1107 { 1108 while (drop_one_stripe(conf)) 1109 ; 1110 1111 if (conf->slab_cache) 1112 kmem_cache_destroy(conf->slab_cache); 1113 conf->slab_cache = NULL; 1114 } 1115 1116 static void raid5_end_read_request(struct bio * bi, int error) 1117 { 1118 struct stripe_head *sh = bi->bi_private; 1119 raid5_conf_t *conf = sh->raid_conf; 1120 int disks = sh->disks, i; 1121 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); 1122 char b[BDEVNAME_SIZE]; 1123 mdk_rdev_t *rdev; 1124 1125 1126 for (i=0 ; i<disks; i++) 1127 if (bi == &sh->dev[i].req) 1128 break; 1129 1130 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n", 1131 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 1132 uptodate); 1133 if (i == disks) { 1134 BUG(); 1135 return; 1136 } 1137 1138 if (uptodate) { 1139 set_bit(R5_UPTODATE, &sh->dev[i].flags); 1140 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 1141 rdev = conf->disks[i].rdev; 1142 printk(KERN_INFO "raid5:%s: read error corrected (%lu sectors at %llu on %s)\n", 1143 mdname(conf->mddev), STRIPE_SECTORS, 1144 (unsigned long long)sh->sector + rdev->data_offset, 1145 bdevname(rdev->bdev, b)); 1146 clear_bit(R5_ReadError, &sh->dev[i].flags); 1147 clear_bit(R5_ReWrite, &sh->dev[i].flags); 1148 } 1149 if (atomic_read(&conf->disks[i].rdev->read_errors)) 1150 atomic_set(&conf->disks[i].rdev->read_errors, 0); 1151 } else { 1152 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b); 1153 int retry = 0; 1154 rdev = conf->disks[i].rdev; 1155 1156 clear_bit(R5_UPTODATE, &sh->dev[i].flags); 1157 atomic_inc(&rdev->read_errors); 1158 if (conf->mddev->degraded) 1159 printk(KERN_WARNING "raid5:%s: read error not correctable (sector %llu on %s).\n", 1160 mdname(conf->mddev), 1161 (unsigned long long)sh->sector + rdev->data_offset, 1162 bdn); 1163 else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) 1164 /* Oh, no!!! */ 1165 printk(KERN_WARNING "raid5:%s: read error NOT corrected!! (sector %llu on %s).\n", 1166 mdname(conf->mddev), 1167 (unsigned long long)sh->sector + rdev->data_offset, 1168 bdn); 1169 else if (atomic_read(&rdev->read_errors) 1170 > conf->max_nr_stripes) 1171 printk(KERN_WARNING 1172 "raid5:%s: Too many read errors, failing device %s.\n", 1173 mdname(conf->mddev), bdn); 1174 else 1175 retry = 1; 1176 if (retry) 1177 set_bit(R5_ReadError, &sh->dev[i].flags); 1178 else { 1179 clear_bit(R5_ReadError, &sh->dev[i].flags); 1180 clear_bit(R5_ReWrite, &sh->dev[i].flags); 1181 md_error(conf->mddev, rdev); 1182 } 1183 } 1184 rdev_dec_pending(conf->disks[i].rdev, conf->mddev); 1185 clear_bit(R5_LOCKED, &sh->dev[i].flags); 1186 set_bit(STRIPE_HANDLE, &sh->state); 1187 release_stripe(sh); 1188 } 1189 1190 static void raid5_end_write_request (struct bio *bi, int error) 1191 { 1192 struct stripe_head *sh = bi->bi_private; 1193 raid5_conf_t *conf = sh->raid_conf; 1194 int disks = sh->disks, i; 1195 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); 1196 1197 for (i=0 ; i<disks; i++) 1198 if (bi == &sh->dev[i].req) 1199 break; 1200 1201 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n", 1202 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 1203 uptodate); 1204 if (i == disks) { 1205 BUG(); 1206 return; 1207 } 1208 1209 if (!uptodate) 1210 md_error(conf->mddev, conf->disks[i].rdev); 1211 1212 rdev_dec_pending(conf->disks[i].rdev, conf->mddev); 1213 1214 clear_bit(R5_LOCKED, &sh->dev[i].flags); 1215 set_bit(STRIPE_HANDLE, &sh->state); 1216 release_stripe(sh); 1217 } 1218 1219 1220 static sector_t compute_blocknr(struct stripe_head *sh, int i); 1221 1222 static void raid5_build_block (struct stripe_head *sh, int i) 1223 { 1224 struct r5dev *dev = &sh->dev[i]; 1225 1226 bio_init(&dev->req); 1227 dev->req.bi_io_vec = &dev->vec; 1228 dev->req.bi_vcnt++; 1229 dev->req.bi_max_vecs++; 1230 dev->vec.bv_page = dev->page; 1231 dev->vec.bv_len = STRIPE_SIZE; 1232 dev->vec.bv_offset = 0; 1233 1234 dev->req.bi_sector = sh->sector; 1235 dev->req.bi_private = sh; 1236 1237 dev->flags = 0; 1238 dev->sector = compute_blocknr(sh, i); 1239 } 1240 1241 static void error(mddev_t *mddev, mdk_rdev_t *rdev) 1242 { 1243 char b[BDEVNAME_SIZE]; 1244 raid5_conf_t *conf = (raid5_conf_t *) mddev->private; 1245 pr_debug("raid5: error called\n"); 1246 1247 if (!test_bit(Faulty, &rdev->flags)) { 1248 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1249 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1250 unsigned long flags; 1251 spin_lock_irqsave(&conf->device_lock, flags); 1252 mddev->degraded++; 1253 spin_unlock_irqrestore(&conf->device_lock, flags); 1254 /* 1255 * if recovery was running, make sure it aborts. 1256 */ 1257 set_bit(MD_RECOVERY_ERR, &mddev->recovery); 1258 } 1259 set_bit(Faulty, &rdev->flags); 1260 printk (KERN_ALERT 1261 "raid5: Disk failure on %s, disabling device." 1262 " Operation continuing on %d devices\n", 1263 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded); 1264 } 1265 } 1266 1267 /* 1268 * Input: a 'big' sector number, 1269 * Output: index of the data and parity disk, and the sector # in them. 1270 */ 1271 static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks, 1272 unsigned int data_disks, unsigned int * dd_idx, 1273 unsigned int * pd_idx, raid5_conf_t *conf) 1274 { 1275 long stripe; 1276 unsigned long chunk_number; 1277 unsigned int chunk_offset; 1278 sector_t new_sector; 1279 int sectors_per_chunk = conf->chunk_size >> 9; 1280 1281 /* First compute the information on this sector */ 1282 1283 /* 1284 * Compute the chunk number and the sector offset inside the chunk 1285 */ 1286 chunk_offset = sector_div(r_sector, sectors_per_chunk); 1287 chunk_number = r_sector; 1288 BUG_ON(r_sector != chunk_number); 1289 1290 /* 1291 * Compute the stripe number 1292 */ 1293 stripe = chunk_number / data_disks; 1294 1295 /* 1296 * Compute the data disk and parity disk indexes inside the stripe 1297 */ 1298 *dd_idx = chunk_number % data_disks; 1299 1300 /* 1301 * Select the parity disk based on the user selected algorithm. 1302 */ 1303 switch(conf->level) { 1304 case 4: 1305 *pd_idx = data_disks; 1306 break; 1307 case 5: 1308 switch (conf->algorithm) { 1309 case ALGORITHM_LEFT_ASYMMETRIC: 1310 *pd_idx = data_disks - stripe % raid_disks; 1311 if (*dd_idx >= *pd_idx) 1312 (*dd_idx)++; 1313 break; 1314 case ALGORITHM_RIGHT_ASYMMETRIC: 1315 *pd_idx = stripe % raid_disks; 1316 if (*dd_idx >= *pd_idx) 1317 (*dd_idx)++; 1318 break; 1319 case ALGORITHM_LEFT_SYMMETRIC: 1320 *pd_idx = data_disks - stripe % raid_disks; 1321 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks; 1322 break; 1323 case ALGORITHM_RIGHT_SYMMETRIC: 1324 *pd_idx = stripe % raid_disks; 1325 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks; 1326 break; 1327 default: 1328 printk(KERN_ERR "raid5: unsupported algorithm %d\n", 1329 conf->algorithm); 1330 } 1331 break; 1332 case 6: 1333 1334 /**** FIX THIS ****/ 1335 switch (conf->algorithm) { 1336 case ALGORITHM_LEFT_ASYMMETRIC: 1337 *pd_idx = raid_disks - 1 - (stripe % raid_disks); 1338 if (*pd_idx == raid_disks-1) 1339 (*dd_idx)++; /* Q D D D P */ 1340 else if (*dd_idx >= *pd_idx) 1341 (*dd_idx) += 2; /* D D P Q D */ 1342 break; 1343 case ALGORITHM_RIGHT_ASYMMETRIC: 1344 *pd_idx = stripe % raid_disks; 1345 if (*pd_idx == raid_disks-1) 1346 (*dd_idx)++; /* Q D D D P */ 1347 else if (*dd_idx >= *pd_idx) 1348 (*dd_idx) += 2; /* D D P Q D */ 1349 break; 1350 case ALGORITHM_LEFT_SYMMETRIC: 1351 *pd_idx = raid_disks - 1 - (stripe % raid_disks); 1352 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks; 1353 break; 1354 case ALGORITHM_RIGHT_SYMMETRIC: 1355 *pd_idx = stripe % raid_disks; 1356 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks; 1357 break; 1358 default: 1359 printk (KERN_CRIT "raid6: unsupported algorithm %d\n", 1360 conf->algorithm); 1361 } 1362 break; 1363 } 1364 1365 /* 1366 * Finally, compute the new sector number 1367 */ 1368 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset; 1369 return new_sector; 1370 } 1371 1372 1373 static sector_t compute_blocknr(struct stripe_head *sh, int i) 1374 { 1375 raid5_conf_t *conf = sh->raid_conf; 1376 int raid_disks = sh->disks; 1377 int data_disks = raid_disks - conf->max_degraded; 1378 sector_t new_sector = sh->sector, check; 1379 int sectors_per_chunk = conf->chunk_size >> 9; 1380 sector_t stripe; 1381 int chunk_offset; 1382 int chunk_number, dummy1, dummy2, dd_idx = i; 1383 sector_t r_sector; 1384 1385 1386 chunk_offset = sector_div(new_sector, sectors_per_chunk); 1387 stripe = new_sector; 1388 BUG_ON(new_sector != stripe); 1389 1390 if (i == sh->pd_idx) 1391 return 0; 1392 switch(conf->level) { 1393 case 4: break; 1394 case 5: 1395 switch (conf->algorithm) { 1396 case ALGORITHM_LEFT_ASYMMETRIC: 1397 case ALGORITHM_RIGHT_ASYMMETRIC: 1398 if (i > sh->pd_idx) 1399 i--; 1400 break; 1401 case ALGORITHM_LEFT_SYMMETRIC: 1402 case ALGORITHM_RIGHT_SYMMETRIC: 1403 if (i < sh->pd_idx) 1404 i += raid_disks; 1405 i -= (sh->pd_idx + 1); 1406 break; 1407 default: 1408 printk(KERN_ERR "raid5: unsupported algorithm %d\n", 1409 conf->algorithm); 1410 } 1411 break; 1412 case 6: 1413 if (i == raid6_next_disk(sh->pd_idx, raid_disks)) 1414 return 0; /* It is the Q disk */ 1415 switch (conf->algorithm) { 1416 case ALGORITHM_LEFT_ASYMMETRIC: 1417 case ALGORITHM_RIGHT_ASYMMETRIC: 1418 if (sh->pd_idx == raid_disks-1) 1419 i--; /* Q D D D P */ 1420 else if (i > sh->pd_idx) 1421 i -= 2; /* D D P Q D */ 1422 break; 1423 case ALGORITHM_LEFT_SYMMETRIC: 1424 case ALGORITHM_RIGHT_SYMMETRIC: 1425 if (sh->pd_idx == raid_disks-1) 1426 i--; /* Q D D D P */ 1427 else { 1428 /* D D P Q D */ 1429 if (i < sh->pd_idx) 1430 i += raid_disks; 1431 i -= (sh->pd_idx + 2); 1432 } 1433 break; 1434 default: 1435 printk (KERN_CRIT "raid6: unsupported algorithm %d\n", 1436 conf->algorithm); 1437 } 1438 break; 1439 } 1440 1441 chunk_number = stripe * data_disks + i; 1442 r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset; 1443 1444 check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf); 1445 if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) { 1446 printk(KERN_ERR "compute_blocknr: map not correct\n"); 1447 return 0; 1448 } 1449 return r_sector; 1450 } 1451 1452 1453 1454 /* 1455 * Copy data between a page in the stripe cache, and one or more bion 1456 * The page could align with the middle of the bio, or there could be 1457 * several bion, each with several bio_vecs, which cover part of the page 1458 * Multiple bion are linked together on bi_next. There may be extras 1459 * at the end of this list. We ignore them. 1460 */ 1461 static void copy_data(int frombio, struct bio *bio, 1462 struct page *page, 1463 sector_t sector) 1464 { 1465 char *pa = page_address(page); 1466 struct bio_vec *bvl; 1467 int i; 1468 int page_offset; 1469 1470 if (bio->bi_sector >= sector) 1471 page_offset = (signed)(bio->bi_sector - sector) * 512; 1472 else 1473 page_offset = (signed)(sector - bio->bi_sector) * -512; 1474 bio_for_each_segment(bvl, bio, i) { 1475 int len = bio_iovec_idx(bio,i)->bv_len; 1476 int clen; 1477 int b_offset = 0; 1478 1479 if (page_offset < 0) { 1480 b_offset = -page_offset; 1481 page_offset += b_offset; 1482 len -= b_offset; 1483 } 1484 1485 if (len > 0 && page_offset + len > STRIPE_SIZE) 1486 clen = STRIPE_SIZE - page_offset; 1487 else clen = len; 1488 1489 if (clen > 0) { 1490 char *ba = __bio_kmap_atomic(bio, i, KM_USER0); 1491 if (frombio) 1492 memcpy(pa+page_offset, ba+b_offset, clen); 1493 else 1494 memcpy(ba+b_offset, pa+page_offset, clen); 1495 __bio_kunmap_atomic(ba, KM_USER0); 1496 } 1497 if (clen < len) /* hit end of page */ 1498 break; 1499 page_offset += len; 1500 } 1501 } 1502 1503 #define check_xor() do { \ 1504 if (count == MAX_XOR_BLOCKS) { \ 1505 xor_blocks(count, STRIPE_SIZE, dest, ptr);\ 1506 count = 0; \ 1507 } \ 1508 } while(0) 1509 1510 static void compute_parity6(struct stripe_head *sh, int method) 1511 { 1512 raid6_conf_t *conf = sh->raid_conf; 1513 int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = sh->disks, count; 1514 struct bio *chosen; 1515 /**** FIX THIS: This could be very bad if disks is close to 256 ****/ 1516 void *ptrs[disks]; 1517 1518 qd_idx = raid6_next_disk(pd_idx, disks); 1519 d0_idx = raid6_next_disk(qd_idx, disks); 1520 1521 pr_debug("compute_parity, stripe %llu, method %d\n", 1522 (unsigned long long)sh->sector, method); 1523 1524 switch(method) { 1525 case READ_MODIFY_WRITE: 1526 BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */ 1527 case RECONSTRUCT_WRITE: 1528 for (i= disks; i-- ;) 1529 if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) { 1530 chosen = sh->dev[i].towrite; 1531 sh->dev[i].towrite = NULL; 1532 1533 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 1534 wake_up(&conf->wait_for_overlap); 1535 1536 BUG_ON(sh->dev[i].written); 1537 sh->dev[i].written = chosen; 1538 } 1539 break; 1540 case CHECK_PARITY: 1541 BUG(); /* Not implemented yet */ 1542 } 1543 1544 for (i = disks; i--;) 1545 if (sh->dev[i].written) { 1546 sector_t sector = sh->dev[i].sector; 1547 struct bio *wbi = sh->dev[i].written; 1548 while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) { 1549 copy_data(1, wbi, sh->dev[i].page, sector); 1550 wbi = r5_next_bio(wbi, sector); 1551 } 1552 1553 set_bit(R5_LOCKED, &sh->dev[i].flags); 1554 set_bit(R5_UPTODATE, &sh->dev[i].flags); 1555 } 1556 1557 // switch(method) { 1558 // case RECONSTRUCT_WRITE: 1559 // case CHECK_PARITY: 1560 // case UPDATE_PARITY: 1561 /* Note that unlike RAID-5, the ordering of the disks matters greatly. */ 1562 /* FIX: Is this ordering of drives even remotely optimal? */ 1563 count = 0; 1564 i = d0_idx; 1565 do { 1566 ptrs[count++] = page_address(sh->dev[i].page); 1567 if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags)) 1568 printk("block %d/%d not uptodate on parity calc\n", i,count); 1569 i = raid6_next_disk(i, disks); 1570 } while ( i != d0_idx ); 1571 // break; 1572 // } 1573 1574 raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs); 1575 1576 switch(method) { 1577 case RECONSTRUCT_WRITE: 1578 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 1579 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags); 1580 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); 1581 set_bit(R5_LOCKED, &sh->dev[qd_idx].flags); 1582 break; 1583 case UPDATE_PARITY: 1584 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 1585 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags); 1586 break; 1587 } 1588 } 1589 1590 1591 /* Compute one missing block */ 1592 static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero) 1593 { 1594 int i, count, disks = sh->disks; 1595 void *ptr[MAX_XOR_BLOCKS], *dest, *p; 1596 int pd_idx = sh->pd_idx; 1597 int qd_idx = raid6_next_disk(pd_idx, disks); 1598 1599 pr_debug("compute_block_1, stripe %llu, idx %d\n", 1600 (unsigned long long)sh->sector, dd_idx); 1601 1602 if ( dd_idx == qd_idx ) { 1603 /* We're actually computing the Q drive */ 1604 compute_parity6(sh, UPDATE_PARITY); 1605 } else { 1606 dest = page_address(sh->dev[dd_idx].page); 1607 if (!nozero) memset(dest, 0, STRIPE_SIZE); 1608 count = 0; 1609 for (i = disks ; i--; ) { 1610 if (i == dd_idx || i == qd_idx) 1611 continue; 1612 p = page_address(sh->dev[i].page); 1613 if (test_bit(R5_UPTODATE, &sh->dev[i].flags)) 1614 ptr[count++] = p; 1615 else 1616 printk("compute_block() %d, stripe %llu, %d" 1617 " not present\n", dd_idx, 1618 (unsigned long long)sh->sector, i); 1619 1620 check_xor(); 1621 } 1622 if (count) 1623 xor_blocks(count, STRIPE_SIZE, dest, ptr); 1624 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags); 1625 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags); 1626 } 1627 } 1628 1629 /* Compute two missing blocks */ 1630 static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2) 1631 { 1632 int i, count, disks = sh->disks; 1633 int pd_idx = sh->pd_idx; 1634 int qd_idx = raid6_next_disk(pd_idx, disks); 1635 int d0_idx = raid6_next_disk(qd_idx, disks); 1636 int faila, failb; 1637 1638 /* faila and failb are disk numbers relative to d0_idx */ 1639 /* pd_idx become disks-2 and qd_idx become disks-1 */ 1640 faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx; 1641 failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx; 1642 1643 BUG_ON(faila == failb); 1644 if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; } 1645 1646 pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n", 1647 (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb); 1648 1649 if ( failb == disks-1 ) { 1650 /* Q disk is one of the missing disks */ 1651 if ( faila == disks-2 ) { 1652 /* Missing P+Q, just recompute */ 1653 compute_parity6(sh, UPDATE_PARITY); 1654 return; 1655 } else { 1656 /* We're missing D+Q; recompute D from P */ 1657 compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0); 1658 compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */ 1659 return; 1660 } 1661 } 1662 1663 /* We're missing D+P or D+D; build pointer table */ 1664 { 1665 /**** FIX THIS: This could be very bad if disks is close to 256 ****/ 1666 void *ptrs[disks]; 1667 1668 count = 0; 1669 i = d0_idx; 1670 do { 1671 ptrs[count++] = page_address(sh->dev[i].page); 1672 i = raid6_next_disk(i, disks); 1673 if (i != dd_idx1 && i != dd_idx2 && 1674 !test_bit(R5_UPTODATE, &sh->dev[i].flags)) 1675 printk("compute_2 with missing block %d/%d\n", count, i); 1676 } while ( i != d0_idx ); 1677 1678 if ( failb == disks-2 ) { 1679 /* We're missing D+P. */ 1680 raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs); 1681 } else { 1682 /* We're missing D+D. */ 1683 raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs); 1684 } 1685 1686 /* Both the above update both missing blocks */ 1687 set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags); 1688 set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags); 1689 } 1690 } 1691 1692 static int 1693 handle_write_operations5(struct stripe_head *sh, int rcw, int expand) 1694 { 1695 int i, pd_idx = sh->pd_idx, disks = sh->disks; 1696 int locked = 0; 1697 1698 if (rcw) { 1699 /* if we are not expanding this is a proper write request, and 1700 * there will be bios with new data to be drained into the 1701 * stripe cache 1702 */ 1703 if (!expand) { 1704 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending); 1705 sh->ops.count++; 1706 } 1707 1708 set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending); 1709 sh->ops.count++; 1710 1711 for (i = disks; i--; ) { 1712 struct r5dev *dev = &sh->dev[i]; 1713 1714 if (dev->towrite) { 1715 set_bit(R5_LOCKED, &dev->flags); 1716 if (!expand) 1717 clear_bit(R5_UPTODATE, &dev->flags); 1718 locked++; 1719 } 1720 } 1721 } else { 1722 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) || 1723 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags))); 1724 1725 set_bit(STRIPE_OP_PREXOR, &sh->ops.pending); 1726 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending); 1727 set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending); 1728 1729 sh->ops.count += 3; 1730 1731 for (i = disks; i--; ) { 1732 struct r5dev *dev = &sh->dev[i]; 1733 if (i == pd_idx) 1734 continue; 1735 1736 /* For a read-modify write there may be blocks that are 1737 * locked for reading while others are ready to be 1738 * written so we distinguish these blocks by the 1739 * R5_Wantprexor bit 1740 */ 1741 if (dev->towrite && 1742 (test_bit(R5_UPTODATE, &dev->flags) || 1743 test_bit(R5_Wantcompute, &dev->flags))) { 1744 set_bit(R5_Wantprexor, &dev->flags); 1745 set_bit(R5_LOCKED, &dev->flags); 1746 clear_bit(R5_UPTODATE, &dev->flags); 1747 locked++; 1748 } 1749 } 1750 } 1751 1752 /* keep the parity disk locked while asynchronous operations 1753 * are in flight 1754 */ 1755 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); 1756 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 1757 locked++; 1758 1759 pr_debug("%s: stripe %llu locked: %d pending: %lx\n", 1760 __FUNCTION__, (unsigned long long)sh->sector, 1761 locked, sh->ops.pending); 1762 1763 return locked; 1764 } 1765 1766 /* 1767 * Each stripe/dev can have one or more bion attached. 1768 * toread/towrite point to the first in a chain. 1769 * The bi_next chain must be in order. 1770 */ 1771 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite) 1772 { 1773 struct bio **bip; 1774 raid5_conf_t *conf = sh->raid_conf; 1775 int firstwrite=0; 1776 1777 pr_debug("adding bh b#%llu to stripe s#%llu\n", 1778 (unsigned long long)bi->bi_sector, 1779 (unsigned long long)sh->sector); 1780 1781 1782 spin_lock(&sh->lock); 1783 spin_lock_irq(&conf->device_lock); 1784 if (forwrite) { 1785 bip = &sh->dev[dd_idx].towrite; 1786 if (*bip == NULL && sh->dev[dd_idx].written == NULL) 1787 firstwrite = 1; 1788 } else 1789 bip = &sh->dev[dd_idx].toread; 1790 while (*bip && (*bip)->bi_sector < bi->bi_sector) { 1791 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector) 1792 goto overlap; 1793 bip = & (*bip)->bi_next; 1794 } 1795 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9)) 1796 goto overlap; 1797 1798 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next); 1799 if (*bip) 1800 bi->bi_next = *bip; 1801 *bip = bi; 1802 bi->bi_phys_segments ++; 1803 spin_unlock_irq(&conf->device_lock); 1804 spin_unlock(&sh->lock); 1805 1806 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n", 1807 (unsigned long long)bi->bi_sector, 1808 (unsigned long long)sh->sector, dd_idx); 1809 1810 if (conf->mddev->bitmap && firstwrite) { 1811 bitmap_startwrite(conf->mddev->bitmap, sh->sector, 1812 STRIPE_SECTORS, 0); 1813 sh->bm_seq = conf->seq_flush+1; 1814 set_bit(STRIPE_BIT_DELAY, &sh->state); 1815 } 1816 1817 if (forwrite) { 1818 /* check if page is covered */ 1819 sector_t sector = sh->dev[dd_idx].sector; 1820 for (bi=sh->dev[dd_idx].towrite; 1821 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS && 1822 bi && bi->bi_sector <= sector; 1823 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) { 1824 if (bi->bi_sector + (bi->bi_size>>9) >= sector) 1825 sector = bi->bi_sector + (bi->bi_size>>9); 1826 } 1827 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS) 1828 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags); 1829 } 1830 return 1; 1831 1832 overlap: 1833 set_bit(R5_Overlap, &sh->dev[dd_idx].flags); 1834 spin_unlock_irq(&conf->device_lock); 1835 spin_unlock(&sh->lock); 1836 return 0; 1837 } 1838 1839 static void end_reshape(raid5_conf_t *conf); 1840 1841 static int page_is_zero(struct page *p) 1842 { 1843 char *a = page_address(p); 1844 return ((*(u32*)a) == 0 && 1845 memcmp(a, a+4, STRIPE_SIZE-4)==0); 1846 } 1847 1848 static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks) 1849 { 1850 int sectors_per_chunk = conf->chunk_size >> 9; 1851 int pd_idx, dd_idx; 1852 int chunk_offset = sector_div(stripe, sectors_per_chunk); 1853 1854 raid5_compute_sector(stripe * (disks - conf->max_degraded) 1855 *sectors_per_chunk + chunk_offset, 1856 disks, disks - conf->max_degraded, 1857 &dd_idx, &pd_idx, conf); 1858 return pd_idx; 1859 } 1860 1861 static void 1862 handle_requests_to_failed_array(raid5_conf_t *conf, struct stripe_head *sh, 1863 struct stripe_head_state *s, int disks, 1864 struct bio **return_bi) 1865 { 1866 int i; 1867 for (i = disks; i--; ) { 1868 struct bio *bi; 1869 int bitmap_end = 0; 1870 1871 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 1872 mdk_rdev_t *rdev; 1873 rcu_read_lock(); 1874 rdev = rcu_dereference(conf->disks[i].rdev); 1875 if (rdev && test_bit(In_sync, &rdev->flags)) 1876 /* multiple read failures in one stripe */ 1877 md_error(conf->mddev, rdev); 1878 rcu_read_unlock(); 1879 } 1880 spin_lock_irq(&conf->device_lock); 1881 /* fail all writes first */ 1882 bi = sh->dev[i].towrite; 1883 sh->dev[i].towrite = NULL; 1884 if (bi) { 1885 s->to_write--; 1886 bitmap_end = 1; 1887 } 1888 1889 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 1890 wake_up(&conf->wait_for_overlap); 1891 1892 while (bi && bi->bi_sector < 1893 sh->dev[i].sector + STRIPE_SECTORS) { 1894 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector); 1895 clear_bit(BIO_UPTODATE, &bi->bi_flags); 1896 if (--bi->bi_phys_segments == 0) { 1897 md_write_end(conf->mddev); 1898 bi->bi_next = *return_bi; 1899 *return_bi = bi; 1900 } 1901 bi = nextbi; 1902 } 1903 /* and fail all 'written' */ 1904 bi = sh->dev[i].written; 1905 sh->dev[i].written = NULL; 1906 if (bi) bitmap_end = 1; 1907 while (bi && bi->bi_sector < 1908 sh->dev[i].sector + STRIPE_SECTORS) { 1909 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector); 1910 clear_bit(BIO_UPTODATE, &bi->bi_flags); 1911 if (--bi->bi_phys_segments == 0) { 1912 md_write_end(conf->mddev); 1913 bi->bi_next = *return_bi; 1914 *return_bi = bi; 1915 } 1916 bi = bi2; 1917 } 1918 1919 /* fail any reads if this device is non-operational and 1920 * the data has not reached the cache yet. 1921 */ 1922 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) && 1923 (!test_bit(R5_Insync, &sh->dev[i].flags) || 1924 test_bit(R5_ReadError, &sh->dev[i].flags))) { 1925 bi = sh->dev[i].toread; 1926 sh->dev[i].toread = NULL; 1927 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 1928 wake_up(&conf->wait_for_overlap); 1929 if (bi) s->to_read--; 1930 while (bi && bi->bi_sector < 1931 sh->dev[i].sector + STRIPE_SECTORS) { 1932 struct bio *nextbi = 1933 r5_next_bio(bi, sh->dev[i].sector); 1934 clear_bit(BIO_UPTODATE, &bi->bi_flags); 1935 if (--bi->bi_phys_segments == 0) { 1936 bi->bi_next = *return_bi; 1937 *return_bi = bi; 1938 } 1939 bi = nextbi; 1940 } 1941 } 1942 spin_unlock_irq(&conf->device_lock); 1943 if (bitmap_end) 1944 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 1945 STRIPE_SECTORS, 0, 0); 1946 } 1947 1948 } 1949 1950 /* __handle_issuing_new_read_requests5 - returns 0 if there are no more disks 1951 * to process 1952 */ 1953 static int __handle_issuing_new_read_requests5(struct stripe_head *sh, 1954 struct stripe_head_state *s, int disk_idx, int disks) 1955 { 1956 struct r5dev *dev = &sh->dev[disk_idx]; 1957 struct r5dev *failed_dev = &sh->dev[s->failed_num]; 1958 1959 /* don't schedule compute operations or reads on the parity block while 1960 * a check is in flight 1961 */ 1962 if ((disk_idx == sh->pd_idx) && 1963 test_bit(STRIPE_OP_CHECK, &sh->ops.pending)) 1964 return ~0; 1965 1966 /* is the data in this block needed, and can we get it? */ 1967 if (!test_bit(R5_LOCKED, &dev->flags) && 1968 !test_bit(R5_UPTODATE, &dev->flags) && (dev->toread || 1969 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) || 1970 s->syncing || s->expanding || (s->failed && 1971 (failed_dev->toread || (failed_dev->towrite && 1972 !test_bit(R5_OVERWRITE, &failed_dev->flags) 1973 ))))) { 1974 /* 1/ We would like to get this block, possibly by computing it, 1975 * but we might not be able to. 1976 * 1977 * 2/ Since parity check operations potentially make the parity 1978 * block !uptodate it will need to be refreshed before any 1979 * compute operations on data disks are scheduled. 1980 * 1981 * 3/ We hold off parity block re-reads until check operations 1982 * have quiesced. 1983 */ 1984 if ((s->uptodate == disks - 1) && 1985 !test_bit(STRIPE_OP_CHECK, &sh->ops.pending)) { 1986 set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending); 1987 set_bit(R5_Wantcompute, &dev->flags); 1988 sh->ops.target = disk_idx; 1989 s->req_compute = 1; 1990 sh->ops.count++; 1991 /* Careful: from this point on 'uptodate' is in the eye 1992 * of raid5_run_ops which services 'compute' operations 1993 * before writes. R5_Wantcompute flags a block that will 1994 * be R5_UPTODATE by the time it is needed for a 1995 * subsequent operation. 1996 */ 1997 s->uptodate++; 1998 return 0; /* uptodate + compute == disks */ 1999 } else if ((s->uptodate < disks - 1) && 2000 test_bit(R5_Insync, &dev->flags)) { 2001 /* Note: we hold off compute operations while checks are 2002 * in flight, but we still prefer 'compute' over 'read' 2003 * hence we only read if (uptodate < * disks-1) 2004 */ 2005 set_bit(R5_LOCKED, &dev->flags); 2006 set_bit(R5_Wantread, &dev->flags); 2007 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending)) 2008 sh->ops.count++; 2009 s->locked++; 2010 pr_debug("Reading block %d (sync=%d)\n", disk_idx, 2011 s->syncing); 2012 } 2013 } 2014 2015 return ~0; 2016 } 2017 2018 static void handle_issuing_new_read_requests5(struct stripe_head *sh, 2019 struct stripe_head_state *s, int disks) 2020 { 2021 int i; 2022 2023 /* Clear completed compute operations. Parity recovery 2024 * (STRIPE_OP_MOD_REPAIR_PD) implies a write-back which is handled 2025 * later on in this routine 2026 */ 2027 if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) && 2028 !test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) { 2029 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete); 2030 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack); 2031 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending); 2032 } 2033 2034 /* look for blocks to read/compute, skip this if a compute 2035 * is already in flight, or if the stripe contents are in the 2036 * midst of changing due to a write 2037 */ 2038 if (!test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) && 2039 !test_bit(STRIPE_OP_PREXOR, &sh->ops.pending) && 2040 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) { 2041 for (i = disks; i--; ) 2042 if (__handle_issuing_new_read_requests5( 2043 sh, s, i, disks) == 0) 2044 break; 2045 } 2046 set_bit(STRIPE_HANDLE, &sh->state); 2047 } 2048 2049 static void handle_issuing_new_read_requests6(struct stripe_head *sh, 2050 struct stripe_head_state *s, struct r6_state *r6s, 2051 int disks) 2052 { 2053 int i; 2054 for (i = disks; i--; ) { 2055 struct r5dev *dev = &sh->dev[i]; 2056 if (!test_bit(R5_LOCKED, &dev->flags) && 2057 !test_bit(R5_UPTODATE, &dev->flags) && 2058 (dev->toread || (dev->towrite && 2059 !test_bit(R5_OVERWRITE, &dev->flags)) || 2060 s->syncing || s->expanding || 2061 (s->failed >= 1 && 2062 (sh->dev[r6s->failed_num[0]].toread || 2063 s->to_write)) || 2064 (s->failed >= 2 && 2065 (sh->dev[r6s->failed_num[1]].toread || 2066 s->to_write)))) { 2067 /* we would like to get this block, possibly 2068 * by computing it, but we might not be able to 2069 */ 2070 if (s->uptodate == disks-1) { 2071 pr_debug("Computing stripe %llu block %d\n", 2072 (unsigned long long)sh->sector, i); 2073 compute_block_1(sh, i, 0); 2074 s->uptodate++; 2075 } else if ( s->uptodate == disks-2 && s->failed >= 2 ) { 2076 /* Computing 2-failure is *very* expensive; only 2077 * do it if failed >= 2 2078 */ 2079 int other; 2080 for (other = disks; other--; ) { 2081 if (other == i) 2082 continue; 2083 if (!test_bit(R5_UPTODATE, 2084 &sh->dev[other].flags)) 2085 break; 2086 } 2087 BUG_ON(other < 0); 2088 pr_debug("Computing stripe %llu blocks %d,%d\n", 2089 (unsigned long long)sh->sector, 2090 i, other); 2091 compute_block_2(sh, i, other); 2092 s->uptodate += 2; 2093 } else if (test_bit(R5_Insync, &dev->flags)) { 2094 set_bit(R5_LOCKED, &dev->flags); 2095 set_bit(R5_Wantread, &dev->flags); 2096 s->locked++; 2097 pr_debug("Reading block %d (sync=%d)\n", 2098 i, s->syncing); 2099 } 2100 } 2101 } 2102 set_bit(STRIPE_HANDLE, &sh->state); 2103 } 2104 2105 2106 /* handle_completed_write_requests 2107 * any written block on an uptodate or failed drive can be returned. 2108 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but 2109 * never LOCKED, so we don't need to test 'failed' directly. 2110 */ 2111 static void handle_completed_write_requests(raid5_conf_t *conf, 2112 struct stripe_head *sh, int disks, struct bio **return_bi) 2113 { 2114 int i; 2115 struct r5dev *dev; 2116 2117 for (i = disks; i--; ) 2118 if (sh->dev[i].written) { 2119 dev = &sh->dev[i]; 2120 if (!test_bit(R5_LOCKED, &dev->flags) && 2121 test_bit(R5_UPTODATE, &dev->flags)) { 2122 /* We can return any write requests */ 2123 struct bio *wbi, *wbi2; 2124 int bitmap_end = 0; 2125 pr_debug("Return write for disc %d\n", i); 2126 spin_lock_irq(&conf->device_lock); 2127 wbi = dev->written; 2128 dev->written = NULL; 2129 while (wbi && wbi->bi_sector < 2130 dev->sector + STRIPE_SECTORS) { 2131 wbi2 = r5_next_bio(wbi, dev->sector); 2132 if (--wbi->bi_phys_segments == 0) { 2133 md_write_end(conf->mddev); 2134 wbi->bi_next = *return_bi; 2135 *return_bi = wbi; 2136 } 2137 wbi = wbi2; 2138 } 2139 if (dev->towrite == NULL) 2140 bitmap_end = 1; 2141 spin_unlock_irq(&conf->device_lock); 2142 if (bitmap_end) 2143 bitmap_endwrite(conf->mddev->bitmap, 2144 sh->sector, 2145 STRIPE_SECTORS, 2146 !test_bit(STRIPE_DEGRADED, &sh->state), 2147 0); 2148 } 2149 } 2150 } 2151 2152 static void handle_issuing_new_write_requests5(raid5_conf_t *conf, 2153 struct stripe_head *sh, struct stripe_head_state *s, int disks) 2154 { 2155 int rmw = 0, rcw = 0, i; 2156 for (i = disks; i--; ) { 2157 /* would I have to read this buffer for read_modify_write */ 2158 struct r5dev *dev = &sh->dev[i]; 2159 if ((dev->towrite || i == sh->pd_idx) && 2160 !test_bit(R5_LOCKED, &dev->flags) && 2161 !(test_bit(R5_UPTODATE, &dev->flags) || 2162 test_bit(R5_Wantcompute, &dev->flags))) { 2163 if (test_bit(R5_Insync, &dev->flags)) 2164 rmw++; 2165 else 2166 rmw += 2*disks; /* cannot read it */ 2167 } 2168 /* Would I have to read this buffer for reconstruct_write */ 2169 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx && 2170 !test_bit(R5_LOCKED, &dev->flags) && 2171 !(test_bit(R5_UPTODATE, &dev->flags) || 2172 test_bit(R5_Wantcompute, &dev->flags))) { 2173 if (test_bit(R5_Insync, &dev->flags)) rcw++; 2174 else 2175 rcw += 2*disks; 2176 } 2177 } 2178 pr_debug("for sector %llu, rmw=%d rcw=%d\n", 2179 (unsigned long long)sh->sector, rmw, rcw); 2180 set_bit(STRIPE_HANDLE, &sh->state); 2181 if (rmw < rcw && rmw > 0) 2182 /* prefer read-modify-write, but need to get some data */ 2183 for (i = disks; i--; ) { 2184 struct r5dev *dev = &sh->dev[i]; 2185 if ((dev->towrite || i == sh->pd_idx) && 2186 !test_bit(R5_LOCKED, &dev->flags) && 2187 !(test_bit(R5_UPTODATE, &dev->flags) || 2188 test_bit(R5_Wantcompute, &dev->flags)) && 2189 test_bit(R5_Insync, &dev->flags)) { 2190 if ( 2191 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { 2192 pr_debug("Read_old block " 2193 "%d for r-m-w\n", i); 2194 set_bit(R5_LOCKED, &dev->flags); 2195 set_bit(R5_Wantread, &dev->flags); 2196 if (!test_and_set_bit( 2197 STRIPE_OP_IO, &sh->ops.pending)) 2198 sh->ops.count++; 2199 s->locked++; 2200 } else { 2201 set_bit(STRIPE_DELAYED, &sh->state); 2202 set_bit(STRIPE_HANDLE, &sh->state); 2203 } 2204 } 2205 } 2206 if (rcw <= rmw && rcw > 0) 2207 /* want reconstruct write, but need to get some data */ 2208 for (i = disks; i--; ) { 2209 struct r5dev *dev = &sh->dev[i]; 2210 if (!test_bit(R5_OVERWRITE, &dev->flags) && 2211 i != sh->pd_idx && 2212 !test_bit(R5_LOCKED, &dev->flags) && 2213 !(test_bit(R5_UPTODATE, &dev->flags) || 2214 test_bit(R5_Wantcompute, &dev->flags)) && 2215 test_bit(R5_Insync, &dev->flags)) { 2216 if ( 2217 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { 2218 pr_debug("Read_old block " 2219 "%d for Reconstruct\n", i); 2220 set_bit(R5_LOCKED, &dev->flags); 2221 set_bit(R5_Wantread, &dev->flags); 2222 if (!test_and_set_bit( 2223 STRIPE_OP_IO, &sh->ops.pending)) 2224 sh->ops.count++; 2225 s->locked++; 2226 } else { 2227 set_bit(STRIPE_DELAYED, &sh->state); 2228 set_bit(STRIPE_HANDLE, &sh->state); 2229 } 2230 } 2231 } 2232 /* now if nothing is locked, and if we have enough data, 2233 * we can start a write request 2234 */ 2235 /* since handle_stripe can be called at any time we need to handle the 2236 * case where a compute block operation has been submitted and then a 2237 * subsequent call wants to start a write request. raid5_run_ops only 2238 * handles the case where compute block and postxor are requested 2239 * simultaneously. If this is not the case then new writes need to be 2240 * held off until the compute completes. 2241 */ 2242 if ((s->req_compute || 2243 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) && 2244 (s->locked == 0 && (rcw == 0 || rmw == 0) && 2245 !test_bit(STRIPE_BIT_DELAY, &sh->state))) 2246 s->locked += handle_write_operations5(sh, rcw == 0, 0); 2247 } 2248 2249 static void handle_issuing_new_write_requests6(raid5_conf_t *conf, 2250 struct stripe_head *sh, struct stripe_head_state *s, 2251 struct r6_state *r6s, int disks) 2252 { 2253 int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i; 2254 int qd_idx = r6s->qd_idx; 2255 for (i = disks; i--; ) { 2256 struct r5dev *dev = &sh->dev[i]; 2257 /* Would I have to read this buffer for reconstruct_write */ 2258 if (!test_bit(R5_OVERWRITE, &dev->flags) 2259 && i != pd_idx && i != qd_idx 2260 && (!test_bit(R5_LOCKED, &dev->flags) 2261 ) && 2262 !test_bit(R5_UPTODATE, &dev->flags)) { 2263 if (test_bit(R5_Insync, &dev->flags)) rcw++; 2264 else { 2265 pr_debug("raid6: must_compute: " 2266 "disk %d flags=%#lx\n", i, dev->flags); 2267 must_compute++; 2268 } 2269 } 2270 } 2271 pr_debug("for sector %llu, rcw=%d, must_compute=%d\n", 2272 (unsigned long long)sh->sector, rcw, must_compute); 2273 set_bit(STRIPE_HANDLE, &sh->state); 2274 2275 if (rcw > 0) 2276 /* want reconstruct write, but need to get some data */ 2277 for (i = disks; i--; ) { 2278 struct r5dev *dev = &sh->dev[i]; 2279 if (!test_bit(R5_OVERWRITE, &dev->flags) 2280 && !(s->failed == 0 && (i == pd_idx || i == qd_idx)) 2281 && !test_bit(R5_LOCKED, &dev->flags) && 2282 !test_bit(R5_UPTODATE, &dev->flags) && 2283 test_bit(R5_Insync, &dev->flags)) { 2284 if ( 2285 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { 2286 pr_debug("Read_old stripe %llu " 2287 "block %d for Reconstruct\n", 2288 (unsigned long long)sh->sector, i); 2289 set_bit(R5_LOCKED, &dev->flags); 2290 set_bit(R5_Wantread, &dev->flags); 2291 s->locked++; 2292 } else { 2293 pr_debug("Request delayed stripe %llu " 2294 "block %d for Reconstruct\n", 2295 (unsigned long long)sh->sector, i); 2296 set_bit(STRIPE_DELAYED, &sh->state); 2297 set_bit(STRIPE_HANDLE, &sh->state); 2298 } 2299 } 2300 } 2301 /* now if nothing is locked, and if we have enough data, we can start a 2302 * write request 2303 */ 2304 if (s->locked == 0 && rcw == 0 && 2305 !test_bit(STRIPE_BIT_DELAY, &sh->state)) { 2306 if (must_compute > 0) { 2307 /* We have failed blocks and need to compute them */ 2308 switch (s->failed) { 2309 case 0: 2310 BUG(); 2311 case 1: 2312 compute_block_1(sh, r6s->failed_num[0], 0); 2313 break; 2314 case 2: 2315 compute_block_2(sh, r6s->failed_num[0], 2316 r6s->failed_num[1]); 2317 break; 2318 default: /* This request should have been failed? */ 2319 BUG(); 2320 } 2321 } 2322 2323 pr_debug("Computing parity for stripe %llu\n", 2324 (unsigned long long)sh->sector); 2325 compute_parity6(sh, RECONSTRUCT_WRITE); 2326 /* now every locked buffer is ready to be written */ 2327 for (i = disks; i--; ) 2328 if (test_bit(R5_LOCKED, &sh->dev[i].flags)) { 2329 pr_debug("Writing stripe %llu block %d\n", 2330 (unsigned long long)sh->sector, i); 2331 s->locked++; 2332 set_bit(R5_Wantwrite, &sh->dev[i].flags); 2333 } 2334 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */ 2335 set_bit(STRIPE_INSYNC, &sh->state); 2336 2337 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { 2338 atomic_dec(&conf->preread_active_stripes); 2339 if (atomic_read(&conf->preread_active_stripes) < 2340 IO_THRESHOLD) 2341 md_wakeup_thread(conf->mddev->thread); 2342 } 2343 } 2344 } 2345 2346 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh, 2347 struct stripe_head_state *s, int disks) 2348 { 2349 set_bit(STRIPE_HANDLE, &sh->state); 2350 /* Take one of the following actions: 2351 * 1/ start a check parity operation if (uptodate == disks) 2352 * 2/ finish a check parity operation and act on the result 2353 * 3/ skip to the writeback section if we previously 2354 * initiated a recovery operation 2355 */ 2356 if (s->failed == 0 && 2357 !test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) { 2358 if (!test_and_set_bit(STRIPE_OP_CHECK, &sh->ops.pending)) { 2359 BUG_ON(s->uptodate != disks); 2360 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 2361 sh->ops.count++; 2362 s->uptodate--; 2363 } else if ( 2364 test_and_clear_bit(STRIPE_OP_CHECK, &sh->ops.complete)) { 2365 clear_bit(STRIPE_OP_CHECK, &sh->ops.ack); 2366 clear_bit(STRIPE_OP_CHECK, &sh->ops.pending); 2367 2368 if (sh->ops.zero_sum_result == 0) 2369 /* parity is correct (on disc, 2370 * not in buffer any more) 2371 */ 2372 set_bit(STRIPE_INSYNC, &sh->state); 2373 else { 2374 conf->mddev->resync_mismatches += 2375 STRIPE_SECTORS; 2376 if (test_bit( 2377 MD_RECOVERY_CHECK, &conf->mddev->recovery)) 2378 /* don't try to repair!! */ 2379 set_bit(STRIPE_INSYNC, &sh->state); 2380 else { 2381 set_bit(STRIPE_OP_COMPUTE_BLK, 2382 &sh->ops.pending); 2383 set_bit(STRIPE_OP_MOD_REPAIR_PD, 2384 &sh->ops.pending); 2385 set_bit(R5_Wantcompute, 2386 &sh->dev[sh->pd_idx].flags); 2387 sh->ops.target = sh->pd_idx; 2388 sh->ops.count++; 2389 s->uptodate++; 2390 } 2391 } 2392 } 2393 } 2394 2395 /* check if we can clear a parity disk reconstruct */ 2396 if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) && 2397 test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) { 2398 2399 clear_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending); 2400 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete); 2401 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack); 2402 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending); 2403 } 2404 2405 /* Wait for check parity and compute block operations to complete 2406 * before write-back 2407 */ 2408 if (!test_bit(STRIPE_INSYNC, &sh->state) && 2409 !test_bit(STRIPE_OP_CHECK, &sh->ops.pending) && 2410 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) { 2411 struct r5dev *dev; 2412 /* either failed parity check, or recovery is happening */ 2413 if (s->failed == 0) 2414 s->failed_num = sh->pd_idx; 2415 dev = &sh->dev[s->failed_num]; 2416 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags)); 2417 BUG_ON(s->uptodate != disks); 2418 2419 set_bit(R5_LOCKED, &dev->flags); 2420 set_bit(R5_Wantwrite, &dev->flags); 2421 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending)) 2422 sh->ops.count++; 2423 2424 clear_bit(STRIPE_DEGRADED, &sh->state); 2425 s->locked++; 2426 set_bit(STRIPE_INSYNC, &sh->state); 2427 } 2428 } 2429 2430 2431 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh, 2432 struct stripe_head_state *s, 2433 struct r6_state *r6s, struct page *tmp_page, 2434 int disks) 2435 { 2436 int update_p = 0, update_q = 0; 2437 struct r5dev *dev; 2438 int pd_idx = sh->pd_idx; 2439 int qd_idx = r6s->qd_idx; 2440 2441 set_bit(STRIPE_HANDLE, &sh->state); 2442 2443 BUG_ON(s->failed > 2); 2444 BUG_ON(s->uptodate < disks); 2445 /* Want to check and possibly repair P and Q. 2446 * However there could be one 'failed' device, in which 2447 * case we can only check one of them, possibly using the 2448 * other to generate missing data 2449 */ 2450 2451 /* If !tmp_page, we cannot do the calculations, 2452 * but as we have set STRIPE_HANDLE, we will soon be called 2453 * by stripe_handle with a tmp_page - just wait until then. 2454 */ 2455 if (tmp_page) { 2456 if (s->failed == r6s->q_failed) { 2457 /* The only possible failed device holds 'Q', so it 2458 * makes sense to check P (If anything else were failed, 2459 * we would have used P to recreate it). 2460 */ 2461 compute_block_1(sh, pd_idx, 1); 2462 if (!page_is_zero(sh->dev[pd_idx].page)) { 2463 compute_block_1(sh, pd_idx, 0); 2464 update_p = 1; 2465 } 2466 } 2467 if (!r6s->q_failed && s->failed < 2) { 2468 /* q is not failed, and we didn't use it to generate 2469 * anything, so it makes sense to check it 2470 */ 2471 memcpy(page_address(tmp_page), 2472 page_address(sh->dev[qd_idx].page), 2473 STRIPE_SIZE); 2474 compute_parity6(sh, UPDATE_PARITY); 2475 if (memcmp(page_address(tmp_page), 2476 page_address(sh->dev[qd_idx].page), 2477 STRIPE_SIZE) != 0) { 2478 clear_bit(STRIPE_INSYNC, &sh->state); 2479 update_q = 1; 2480 } 2481 } 2482 if (update_p || update_q) { 2483 conf->mddev->resync_mismatches += STRIPE_SECTORS; 2484 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) 2485 /* don't try to repair!! */ 2486 update_p = update_q = 0; 2487 } 2488 2489 /* now write out any block on a failed drive, 2490 * or P or Q if they need it 2491 */ 2492 2493 if (s->failed == 2) { 2494 dev = &sh->dev[r6s->failed_num[1]]; 2495 s->locked++; 2496 set_bit(R5_LOCKED, &dev->flags); 2497 set_bit(R5_Wantwrite, &dev->flags); 2498 } 2499 if (s->failed >= 1) { 2500 dev = &sh->dev[r6s->failed_num[0]]; 2501 s->locked++; 2502 set_bit(R5_LOCKED, &dev->flags); 2503 set_bit(R5_Wantwrite, &dev->flags); 2504 } 2505 2506 if (update_p) { 2507 dev = &sh->dev[pd_idx]; 2508 s->locked++; 2509 set_bit(R5_LOCKED, &dev->flags); 2510 set_bit(R5_Wantwrite, &dev->flags); 2511 } 2512 if (update_q) { 2513 dev = &sh->dev[qd_idx]; 2514 s->locked++; 2515 set_bit(R5_LOCKED, &dev->flags); 2516 set_bit(R5_Wantwrite, &dev->flags); 2517 } 2518 clear_bit(STRIPE_DEGRADED, &sh->state); 2519 2520 set_bit(STRIPE_INSYNC, &sh->state); 2521 } 2522 } 2523 2524 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh, 2525 struct r6_state *r6s) 2526 { 2527 int i; 2528 2529 /* We have read all the blocks in this stripe and now we need to 2530 * copy some of them into a target stripe for expand. 2531 */ 2532 struct dma_async_tx_descriptor *tx = NULL; 2533 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state); 2534 for (i = 0; i < sh->disks; i++) 2535 if (i != sh->pd_idx && (!r6s || i != r6s->qd_idx)) { 2536 int dd_idx, pd_idx, j; 2537 struct stripe_head *sh2; 2538 2539 sector_t bn = compute_blocknr(sh, i); 2540 sector_t s = raid5_compute_sector(bn, conf->raid_disks, 2541 conf->raid_disks - 2542 conf->max_degraded, &dd_idx, 2543 &pd_idx, conf); 2544 sh2 = get_active_stripe(conf, s, conf->raid_disks, 2545 pd_idx, 1); 2546 if (sh2 == NULL) 2547 /* so far only the early blocks of this stripe 2548 * have been requested. When later blocks 2549 * get requested, we will try again 2550 */ 2551 continue; 2552 if (!test_bit(STRIPE_EXPANDING, &sh2->state) || 2553 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) { 2554 /* must have already done this block */ 2555 release_stripe(sh2); 2556 continue; 2557 } 2558 2559 /* place all the copies on one channel */ 2560 tx = async_memcpy(sh2->dev[dd_idx].page, 2561 sh->dev[i].page, 0, 0, STRIPE_SIZE, 2562 ASYNC_TX_DEP_ACK, tx, NULL, NULL); 2563 2564 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags); 2565 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags); 2566 for (j = 0; j < conf->raid_disks; j++) 2567 if (j != sh2->pd_idx && 2568 (!r6s || j != raid6_next_disk(sh2->pd_idx, 2569 sh2->disks)) && 2570 !test_bit(R5_Expanded, &sh2->dev[j].flags)) 2571 break; 2572 if (j == conf->raid_disks) { 2573 set_bit(STRIPE_EXPAND_READY, &sh2->state); 2574 set_bit(STRIPE_HANDLE, &sh2->state); 2575 } 2576 release_stripe(sh2); 2577 2578 } 2579 /* done submitting copies, wait for them to complete */ 2580 if (tx) { 2581 async_tx_ack(tx); 2582 dma_wait_for_async_tx(tx); 2583 } 2584 } 2585 2586 /* 2587 * handle_stripe - do things to a stripe. 2588 * 2589 * We lock the stripe and then examine the state of various bits 2590 * to see what needs to be done. 2591 * Possible results: 2592 * return some read request which now have data 2593 * return some write requests which are safely on disc 2594 * schedule a read on some buffers 2595 * schedule a write of some buffers 2596 * return confirmation of parity correctness 2597 * 2598 * buffers are taken off read_list or write_list, and bh_cache buffers 2599 * get BH_Lock set before the stripe lock is released. 2600 * 2601 */ 2602 2603 static void handle_stripe5(struct stripe_head *sh) 2604 { 2605 raid5_conf_t *conf = sh->raid_conf; 2606 int disks = sh->disks, i; 2607 struct bio *return_bi = NULL; 2608 struct stripe_head_state s; 2609 struct r5dev *dev; 2610 unsigned long pending = 0; 2611 2612 memset(&s, 0, sizeof(s)); 2613 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d " 2614 "ops=%lx:%lx:%lx\n", (unsigned long long)sh->sector, sh->state, 2615 atomic_read(&sh->count), sh->pd_idx, 2616 sh->ops.pending, sh->ops.ack, sh->ops.complete); 2617 2618 spin_lock(&sh->lock); 2619 clear_bit(STRIPE_HANDLE, &sh->state); 2620 clear_bit(STRIPE_DELAYED, &sh->state); 2621 2622 s.syncing = test_bit(STRIPE_SYNCING, &sh->state); 2623 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state); 2624 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state); 2625 /* Now to look around and see what can be done */ 2626 2627 /* clean-up completed biofill operations */ 2628 if (test_bit(STRIPE_OP_BIOFILL, &sh->ops.complete)) { 2629 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.pending); 2630 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.ack); 2631 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.complete); 2632 } 2633 2634 rcu_read_lock(); 2635 for (i=disks; i--; ) { 2636 mdk_rdev_t *rdev; 2637 struct r5dev *dev = &sh->dev[i]; 2638 clear_bit(R5_Insync, &dev->flags); 2639 2640 pr_debug("check %d: state 0x%lx toread %p read %p write %p " 2641 "written %p\n", i, dev->flags, dev->toread, dev->read, 2642 dev->towrite, dev->written); 2643 2644 /* maybe we can request a biofill operation 2645 * 2646 * new wantfill requests are only permitted while 2647 * STRIPE_OP_BIOFILL is clear 2648 */ 2649 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread && 2650 !test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending)) 2651 set_bit(R5_Wantfill, &dev->flags); 2652 2653 /* now count some things */ 2654 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++; 2655 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++; 2656 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++; 2657 2658 if (test_bit(R5_Wantfill, &dev->flags)) 2659 s.to_fill++; 2660 else if (dev->toread) 2661 s.to_read++; 2662 if (dev->towrite) { 2663 s.to_write++; 2664 if (!test_bit(R5_OVERWRITE, &dev->flags)) 2665 s.non_overwrite++; 2666 } 2667 if (dev->written) 2668 s.written++; 2669 rdev = rcu_dereference(conf->disks[i].rdev); 2670 if (!rdev || !test_bit(In_sync, &rdev->flags)) { 2671 /* The ReadError flag will just be confusing now */ 2672 clear_bit(R5_ReadError, &dev->flags); 2673 clear_bit(R5_ReWrite, &dev->flags); 2674 } 2675 if (!rdev || !test_bit(In_sync, &rdev->flags) 2676 || test_bit(R5_ReadError, &dev->flags)) { 2677 s.failed++; 2678 s.failed_num = i; 2679 } else 2680 set_bit(R5_Insync, &dev->flags); 2681 } 2682 rcu_read_unlock(); 2683 2684 if (s.to_fill && !test_and_set_bit(STRIPE_OP_BIOFILL, &sh->ops.pending)) 2685 sh->ops.count++; 2686 2687 pr_debug("locked=%d uptodate=%d to_read=%d" 2688 " to_write=%d failed=%d failed_num=%d\n", 2689 s.locked, s.uptodate, s.to_read, s.to_write, 2690 s.failed, s.failed_num); 2691 /* check if the array has lost two devices and, if so, some requests might 2692 * need to be failed 2693 */ 2694 if (s.failed > 1 && s.to_read+s.to_write+s.written) 2695 handle_requests_to_failed_array(conf, sh, &s, disks, 2696 &return_bi); 2697 if (s.failed > 1 && s.syncing) { 2698 md_done_sync(conf->mddev, STRIPE_SECTORS,0); 2699 clear_bit(STRIPE_SYNCING, &sh->state); 2700 s.syncing = 0; 2701 } 2702 2703 /* might be able to return some write requests if the parity block 2704 * is safe, or on a failed drive 2705 */ 2706 dev = &sh->dev[sh->pd_idx]; 2707 if ( s.written && 2708 ((test_bit(R5_Insync, &dev->flags) && 2709 !test_bit(R5_LOCKED, &dev->flags) && 2710 test_bit(R5_UPTODATE, &dev->flags)) || 2711 (s.failed == 1 && s.failed_num == sh->pd_idx))) 2712 handle_completed_write_requests(conf, sh, disks, &return_bi); 2713 2714 /* Now we might consider reading some blocks, either to check/generate 2715 * parity, or to satisfy requests 2716 * or to load a block that is being partially written. 2717 */ 2718 if (s.to_read || s.non_overwrite || 2719 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding || 2720 test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) 2721 handle_issuing_new_read_requests5(sh, &s, disks); 2722 2723 /* Now we check to see if any write operations have recently 2724 * completed 2725 */ 2726 2727 /* leave prexor set until postxor is done, allows us to distinguish 2728 * a rmw from a rcw during biodrain 2729 */ 2730 if (test_bit(STRIPE_OP_PREXOR, &sh->ops.complete) && 2731 test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) { 2732 2733 clear_bit(STRIPE_OP_PREXOR, &sh->ops.complete); 2734 clear_bit(STRIPE_OP_PREXOR, &sh->ops.ack); 2735 clear_bit(STRIPE_OP_PREXOR, &sh->ops.pending); 2736 2737 for (i = disks; i--; ) 2738 clear_bit(R5_Wantprexor, &sh->dev[i].flags); 2739 } 2740 2741 /* if only POSTXOR is set then this is an 'expand' postxor */ 2742 if (test_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete) && 2743 test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) { 2744 2745 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete); 2746 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.ack); 2747 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending); 2748 2749 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete); 2750 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack); 2751 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending); 2752 2753 /* All the 'written' buffers and the parity block are ready to 2754 * be written back to disk 2755 */ 2756 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags)); 2757 for (i = disks; i--; ) { 2758 dev = &sh->dev[i]; 2759 if (test_bit(R5_LOCKED, &dev->flags) && 2760 (i == sh->pd_idx || dev->written)) { 2761 pr_debug("Writing block %d\n", i); 2762 set_bit(R5_Wantwrite, &dev->flags); 2763 if (!test_and_set_bit( 2764 STRIPE_OP_IO, &sh->ops.pending)) 2765 sh->ops.count++; 2766 if (!test_bit(R5_Insync, &dev->flags) || 2767 (i == sh->pd_idx && s.failed == 0)) 2768 set_bit(STRIPE_INSYNC, &sh->state); 2769 } 2770 } 2771 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { 2772 atomic_dec(&conf->preread_active_stripes); 2773 if (atomic_read(&conf->preread_active_stripes) < 2774 IO_THRESHOLD) 2775 md_wakeup_thread(conf->mddev->thread); 2776 } 2777 } 2778 2779 /* Now to consider new write requests and what else, if anything 2780 * should be read. We do not handle new writes when: 2781 * 1/ A 'write' operation (copy+xor) is already in flight. 2782 * 2/ A 'check' operation is in flight, as it may clobber the parity 2783 * block. 2784 */ 2785 if (s.to_write && !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending) && 2786 !test_bit(STRIPE_OP_CHECK, &sh->ops.pending)) 2787 handle_issuing_new_write_requests5(conf, sh, &s, disks); 2788 2789 /* maybe we need to check and possibly fix the parity for this stripe 2790 * Any reads will already have been scheduled, so we just see if enough 2791 * data is available. The parity check is held off while parity 2792 * dependent operations are in flight. 2793 */ 2794 if ((s.syncing && s.locked == 0 && 2795 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) && 2796 !test_bit(STRIPE_INSYNC, &sh->state)) || 2797 test_bit(STRIPE_OP_CHECK, &sh->ops.pending) || 2798 test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) 2799 handle_parity_checks5(conf, sh, &s, disks); 2800 2801 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) { 2802 md_done_sync(conf->mddev, STRIPE_SECTORS,1); 2803 clear_bit(STRIPE_SYNCING, &sh->state); 2804 } 2805 2806 /* If the failed drive is just a ReadError, then we might need to progress 2807 * the repair/check process 2808 */ 2809 if (s.failed == 1 && !conf->mddev->ro && 2810 test_bit(R5_ReadError, &sh->dev[s.failed_num].flags) 2811 && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags) 2812 && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags) 2813 ) { 2814 dev = &sh->dev[s.failed_num]; 2815 if (!test_bit(R5_ReWrite, &dev->flags)) { 2816 set_bit(R5_Wantwrite, &dev->flags); 2817 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending)) 2818 sh->ops.count++; 2819 set_bit(R5_ReWrite, &dev->flags); 2820 set_bit(R5_LOCKED, &dev->flags); 2821 s.locked++; 2822 } else { 2823 /* let's read it back */ 2824 set_bit(R5_Wantread, &dev->flags); 2825 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending)) 2826 sh->ops.count++; 2827 set_bit(R5_LOCKED, &dev->flags); 2828 s.locked++; 2829 } 2830 } 2831 2832 /* Finish postxor operations initiated by the expansion 2833 * process 2834 */ 2835 if (test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete) && 2836 !test_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending)) { 2837 2838 clear_bit(STRIPE_EXPANDING, &sh->state); 2839 2840 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending); 2841 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack); 2842 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete); 2843 2844 for (i = conf->raid_disks; i--; ) { 2845 set_bit(R5_Wantwrite, &sh->dev[i].flags); 2846 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending)) 2847 sh->ops.count++; 2848 } 2849 } 2850 2851 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) && 2852 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) { 2853 /* Need to write out all blocks after computing parity */ 2854 sh->disks = conf->raid_disks; 2855 sh->pd_idx = stripe_to_pdidx(sh->sector, conf, 2856 conf->raid_disks); 2857 s.locked += handle_write_operations5(sh, 1, 1); 2858 } else if (s.expanded && 2859 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) { 2860 clear_bit(STRIPE_EXPAND_READY, &sh->state); 2861 atomic_dec(&conf->reshape_stripes); 2862 wake_up(&conf->wait_for_overlap); 2863 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 2864 } 2865 2866 if (s.expanding && s.locked == 0) 2867 handle_stripe_expansion(conf, sh, NULL); 2868 2869 if (sh->ops.count) 2870 pending = get_stripe_work(sh); 2871 2872 spin_unlock(&sh->lock); 2873 2874 if (pending) 2875 raid5_run_ops(sh, pending); 2876 2877 return_io(return_bi); 2878 2879 } 2880 2881 static void handle_stripe6(struct stripe_head *sh, struct page *tmp_page) 2882 { 2883 raid6_conf_t *conf = sh->raid_conf; 2884 int disks = sh->disks; 2885 struct bio *return_bi = NULL; 2886 int i, pd_idx = sh->pd_idx; 2887 struct stripe_head_state s; 2888 struct r6_state r6s; 2889 struct r5dev *dev, *pdev, *qdev; 2890 2891 r6s.qd_idx = raid6_next_disk(pd_idx, disks); 2892 pr_debug("handling stripe %llu, state=%#lx cnt=%d, " 2893 "pd_idx=%d, qd_idx=%d\n", 2894 (unsigned long long)sh->sector, sh->state, 2895 atomic_read(&sh->count), pd_idx, r6s.qd_idx); 2896 memset(&s, 0, sizeof(s)); 2897 2898 spin_lock(&sh->lock); 2899 clear_bit(STRIPE_HANDLE, &sh->state); 2900 clear_bit(STRIPE_DELAYED, &sh->state); 2901 2902 s.syncing = test_bit(STRIPE_SYNCING, &sh->state); 2903 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state); 2904 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state); 2905 /* Now to look around and see what can be done */ 2906 2907 rcu_read_lock(); 2908 for (i=disks; i--; ) { 2909 mdk_rdev_t *rdev; 2910 dev = &sh->dev[i]; 2911 clear_bit(R5_Insync, &dev->flags); 2912 2913 pr_debug("check %d: state 0x%lx read %p write %p written %p\n", 2914 i, dev->flags, dev->toread, dev->towrite, dev->written); 2915 /* maybe we can reply to a read */ 2916 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) { 2917 struct bio *rbi, *rbi2; 2918 pr_debug("Return read for disc %d\n", i); 2919 spin_lock_irq(&conf->device_lock); 2920 rbi = dev->toread; 2921 dev->toread = NULL; 2922 if (test_and_clear_bit(R5_Overlap, &dev->flags)) 2923 wake_up(&conf->wait_for_overlap); 2924 spin_unlock_irq(&conf->device_lock); 2925 while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) { 2926 copy_data(0, rbi, dev->page, dev->sector); 2927 rbi2 = r5_next_bio(rbi, dev->sector); 2928 spin_lock_irq(&conf->device_lock); 2929 if (--rbi->bi_phys_segments == 0) { 2930 rbi->bi_next = return_bi; 2931 return_bi = rbi; 2932 } 2933 spin_unlock_irq(&conf->device_lock); 2934 rbi = rbi2; 2935 } 2936 } 2937 2938 /* now count some things */ 2939 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++; 2940 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++; 2941 2942 2943 if (dev->toread) 2944 s.to_read++; 2945 if (dev->towrite) { 2946 s.to_write++; 2947 if (!test_bit(R5_OVERWRITE, &dev->flags)) 2948 s.non_overwrite++; 2949 } 2950 if (dev->written) 2951 s.written++; 2952 rdev = rcu_dereference(conf->disks[i].rdev); 2953 if (!rdev || !test_bit(In_sync, &rdev->flags)) { 2954 /* The ReadError flag will just be confusing now */ 2955 clear_bit(R5_ReadError, &dev->flags); 2956 clear_bit(R5_ReWrite, &dev->flags); 2957 } 2958 if (!rdev || !test_bit(In_sync, &rdev->flags) 2959 || test_bit(R5_ReadError, &dev->flags)) { 2960 if (s.failed < 2) 2961 r6s.failed_num[s.failed] = i; 2962 s.failed++; 2963 } else 2964 set_bit(R5_Insync, &dev->flags); 2965 } 2966 rcu_read_unlock(); 2967 pr_debug("locked=%d uptodate=%d to_read=%d" 2968 " to_write=%d failed=%d failed_num=%d,%d\n", 2969 s.locked, s.uptodate, s.to_read, s.to_write, s.failed, 2970 r6s.failed_num[0], r6s.failed_num[1]); 2971 /* check if the array has lost >2 devices and, if so, some requests 2972 * might need to be failed 2973 */ 2974 if (s.failed > 2 && s.to_read+s.to_write+s.written) 2975 handle_requests_to_failed_array(conf, sh, &s, disks, 2976 &return_bi); 2977 if (s.failed > 2 && s.syncing) { 2978 md_done_sync(conf->mddev, STRIPE_SECTORS,0); 2979 clear_bit(STRIPE_SYNCING, &sh->state); 2980 s.syncing = 0; 2981 } 2982 2983 /* 2984 * might be able to return some write requests if the parity blocks 2985 * are safe, or on a failed drive 2986 */ 2987 pdev = &sh->dev[pd_idx]; 2988 r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx) 2989 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx); 2990 qdev = &sh->dev[r6s.qd_idx]; 2991 r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == r6s.qd_idx) 2992 || (s.failed >= 2 && r6s.failed_num[1] == r6s.qd_idx); 2993 2994 if ( s.written && 2995 ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags) 2996 && !test_bit(R5_LOCKED, &pdev->flags) 2997 && test_bit(R5_UPTODATE, &pdev->flags)))) && 2998 ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags) 2999 && !test_bit(R5_LOCKED, &qdev->flags) 3000 && test_bit(R5_UPTODATE, &qdev->flags))))) 3001 handle_completed_write_requests(conf, sh, disks, &return_bi); 3002 3003 /* Now we might consider reading some blocks, either to check/generate 3004 * parity, or to satisfy requests 3005 * or to load a block that is being partially written. 3006 */ 3007 if (s.to_read || s.non_overwrite || (s.to_write && s.failed) || 3008 (s.syncing && (s.uptodate < disks)) || s.expanding) 3009 handle_issuing_new_read_requests6(sh, &s, &r6s, disks); 3010 3011 /* now to consider writing and what else, if anything should be read */ 3012 if (s.to_write) 3013 handle_issuing_new_write_requests6(conf, sh, &s, &r6s, disks); 3014 3015 /* maybe we need to check and possibly fix the parity for this stripe 3016 * Any reads will already have been scheduled, so we just see if enough 3017 * data is available 3018 */ 3019 if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state)) 3020 handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks); 3021 3022 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) { 3023 md_done_sync(conf->mddev, STRIPE_SECTORS,1); 3024 clear_bit(STRIPE_SYNCING, &sh->state); 3025 } 3026 3027 /* If the failed drives are just a ReadError, then we might need 3028 * to progress the repair/check process 3029 */ 3030 if (s.failed <= 2 && !conf->mddev->ro) 3031 for (i = 0; i < s.failed; i++) { 3032 dev = &sh->dev[r6s.failed_num[i]]; 3033 if (test_bit(R5_ReadError, &dev->flags) 3034 && !test_bit(R5_LOCKED, &dev->flags) 3035 && test_bit(R5_UPTODATE, &dev->flags) 3036 ) { 3037 if (!test_bit(R5_ReWrite, &dev->flags)) { 3038 set_bit(R5_Wantwrite, &dev->flags); 3039 set_bit(R5_ReWrite, &dev->flags); 3040 set_bit(R5_LOCKED, &dev->flags); 3041 } else { 3042 /* let's read it back */ 3043 set_bit(R5_Wantread, &dev->flags); 3044 set_bit(R5_LOCKED, &dev->flags); 3045 } 3046 } 3047 } 3048 3049 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) { 3050 /* Need to write out all blocks after computing P&Q */ 3051 sh->disks = conf->raid_disks; 3052 sh->pd_idx = stripe_to_pdidx(sh->sector, conf, 3053 conf->raid_disks); 3054 compute_parity6(sh, RECONSTRUCT_WRITE); 3055 for (i = conf->raid_disks ; i-- ; ) { 3056 set_bit(R5_LOCKED, &sh->dev[i].flags); 3057 s.locked++; 3058 set_bit(R5_Wantwrite, &sh->dev[i].flags); 3059 } 3060 clear_bit(STRIPE_EXPANDING, &sh->state); 3061 } else if (s.expanded) { 3062 clear_bit(STRIPE_EXPAND_READY, &sh->state); 3063 atomic_dec(&conf->reshape_stripes); 3064 wake_up(&conf->wait_for_overlap); 3065 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 3066 } 3067 3068 if (s.expanding && s.locked == 0) 3069 handle_stripe_expansion(conf, sh, &r6s); 3070 3071 spin_unlock(&sh->lock); 3072 3073 return_io(return_bi); 3074 3075 for (i=disks; i-- ;) { 3076 int rw; 3077 struct bio *bi; 3078 mdk_rdev_t *rdev; 3079 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) 3080 rw = WRITE; 3081 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags)) 3082 rw = READ; 3083 else 3084 continue; 3085 3086 bi = &sh->dev[i].req; 3087 3088 bi->bi_rw = rw; 3089 if (rw == WRITE) 3090 bi->bi_end_io = raid5_end_write_request; 3091 else 3092 bi->bi_end_io = raid5_end_read_request; 3093 3094 rcu_read_lock(); 3095 rdev = rcu_dereference(conf->disks[i].rdev); 3096 if (rdev && test_bit(Faulty, &rdev->flags)) 3097 rdev = NULL; 3098 if (rdev) 3099 atomic_inc(&rdev->nr_pending); 3100 rcu_read_unlock(); 3101 3102 if (rdev) { 3103 if (s.syncing || s.expanding || s.expanded) 3104 md_sync_acct(rdev->bdev, STRIPE_SECTORS); 3105 3106 bi->bi_bdev = rdev->bdev; 3107 pr_debug("for %llu schedule op %ld on disc %d\n", 3108 (unsigned long long)sh->sector, bi->bi_rw, i); 3109 atomic_inc(&sh->count); 3110 bi->bi_sector = sh->sector + rdev->data_offset; 3111 bi->bi_flags = 1 << BIO_UPTODATE; 3112 bi->bi_vcnt = 1; 3113 bi->bi_max_vecs = 1; 3114 bi->bi_idx = 0; 3115 bi->bi_io_vec = &sh->dev[i].vec; 3116 bi->bi_io_vec[0].bv_len = STRIPE_SIZE; 3117 bi->bi_io_vec[0].bv_offset = 0; 3118 bi->bi_size = STRIPE_SIZE; 3119 bi->bi_next = NULL; 3120 if (rw == WRITE && 3121 test_bit(R5_ReWrite, &sh->dev[i].flags)) 3122 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors); 3123 generic_make_request(bi); 3124 } else { 3125 if (rw == WRITE) 3126 set_bit(STRIPE_DEGRADED, &sh->state); 3127 pr_debug("skip op %ld on disc %d for sector %llu\n", 3128 bi->bi_rw, i, (unsigned long long)sh->sector); 3129 clear_bit(R5_LOCKED, &sh->dev[i].flags); 3130 set_bit(STRIPE_HANDLE, &sh->state); 3131 } 3132 } 3133 } 3134 3135 static void handle_stripe(struct stripe_head *sh, struct page *tmp_page) 3136 { 3137 if (sh->raid_conf->level == 6) 3138 handle_stripe6(sh, tmp_page); 3139 else 3140 handle_stripe5(sh); 3141 } 3142 3143 3144 3145 static void raid5_activate_delayed(raid5_conf_t *conf) 3146 { 3147 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) { 3148 while (!list_empty(&conf->delayed_list)) { 3149 struct list_head *l = conf->delayed_list.next; 3150 struct stripe_head *sh; 3151 sh = list_entry(l, struct stripe_head, lru); 3152 list_del_init(l); 3153 clear_bit(STRIPE_DELAYED, &sh->state); 3154 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3155 atomic_inc(&conf->preread_active_stripes); 3156 list_add_tail(&sh->lru, &conf->handle_list); 3157 } 3158 } 3159 } 3160 3161 static void activate_bit_delay(raid5_conf_t *conf) 3162 { 3163 /* device_lock is held */ 3164 struct list_head head; 3165 list_add(&head, &conf->bitmap_list); 3166 list_del_init(&conf->bitmap_list); 3167 while (!list_empty(&head)) { 3168 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru); 3169 list_del_init(&sh->lru); 3170 atomic_inc(&sh->count); 3171 __release_stripe(conf, sh); 3172 } 3173 } 3174 3175 static void unplug_slaves(mddev_t *mddev) 3176 { 3177 raid5_conf_t *conf = mddev_to_conf(mddev); 3178 int i; 3179 3180 rcu_read_lock(); 3181 for (i=0; i<mddev->raid_disks; i++) { 3182 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev); 3183 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) { 3184 struct request_queue *r_queue = bdev_get_queue(rdev->bdev); 3185 3186 atomic_inc(&rdev->nr_pending); 3187 rcu_read_unlock(); 3188 3189 if (r_queue->unplug_fn) 3190 r_queue->unplug_fn(r_queue); 3191 3192 rdev_dec_pending(rdev, mddev); 3193 rcu_read_lock(); 3194 } 3195 } 3196 rcu_read_unlock(); 3197 } 3198 3199 static void raid5_unplug_device(struct request_queue *q) 3200 { 3201 mddev_t *mddev = q->queuedata; 3202 raid5_conf_t *conf = mddev_to_conf(mddev); 3203 unsigned long flags; 3204 3205 spin_lock_irqsave(&conf->device_lock, flags); 3206 3207 if (blk_remove_plug(q)) { 3208 conf->seq_flush++; 3209 raid5_activate_delayed(conf); 3210 } 3211 md_wakeup_thread(mddev->thread); 3212 3213 spin_unlock_irqrestore(&conf->device_lock, flags); 3214 3215 unplug_slaves(mddev); 3216 } 3217 3218 static int raid5_congested(void *data, int bits) 3219 { 3220 mddev_t *mddev = data; 3221 raid5_conf_t *conf = mddev_to_conf(mddev); 3222 3223 /* No difference between reads and writes. Just check 3224 * how busy the stripe_cache is 3225 */ 3226 if (conf->inactive_blocked) 3227 return 1; 3228 if (conf->quiesce) 3229 return 1; 3230 if (list_empty_careful(&conf->inactive_list)) 3231 return 1; 3232 3233 return 0; 3234 } 3235 3236 /* We want read requests to align with chunks where possible, 3237 * but write requests don't need to. 3238 */ 3239 static int raid5_mergeable_bvec(struct request_queue *q, struct bio *bio, struct bio_vec *biovec) 3240 { 3241 mddev_t *mddev = q->queuedata; 3242 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev); 3243 int max; 3244 unsigned int chunk_sectors = mddev->chunk_size >> 9; 3245 unsigned int bio_sectors = bio->bi_size >> 9; 3246 3247 if (bio_data_dir(bio) == WRITE) 3248 return biovec->bv_len; /* always allow writes to be mergeable */ 3249 3250 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9; 3251 if (max < 0) max = 0; 3252 if (max <= biovec->bv_len && bio_sectors == 0) 3253 return biovec->bv_len; 3254 else 3255 return max; 3256 } 3257 3258 3259 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio) 3260 { 3261 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev); 3262 unsigned int chunk_sectors = mddev->chunk_size >> 9; 3263 unsigned int bio_sectors = bio->bi_size >> 9; 3264 3265 return chunk_sectors >= 3266 ((sector & (chunk_sectors - 1)) + bio_sectors); 3267 } 3268 3269 /* 3270 * add bio to the retry LIFO ( in O(1) ... we are in interrupt ) 3271 * later sampled by raid5d. 3272 */ 3273 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf) 3274 { 3275 unsigned long flags; 3276 3277 spin_lock_irqsave(&conf->device_lock, flags); 3278 3279 bi->bi_next = conf->retry_read_aligned_list; 3280 conf->retry_read_aligned_list = bi; 3281 3282 spin_unlock_irqrestore(&conf->device_lock, flags); 3283 md_wakeup_thread(conf->mddev->thread); 3284 } 3285 3286 3287 static struct bio *remove_bio_from_retry(raid5_conf_t *conf) 3288 { 3289 struct bio *bi; 3290 3291 bi = conf->retry_read_aligned; 3292 if (bi) { 3293 conf->retry_read_aligned = NULL; 3294 return bi; 3295 } 3296 bi = conf->retry_read_aligned_list; 3297 if(bi) { 3298 conf->retry_read_aligned_list = bi->bi_next; 3299 bi->bi_next = NULL; 3300 bi->bi_phys_segments = 1; /* biased count of active stripes */ 3301 bi->bi_hw_segments = 0; /* count of processed stripes */ 3302 } 3303 3304 return bi; 3305 } 3306 3307 3308 /* 3309 * The "raid5_align_endio" should check if the read succeeded and if it 3310 * did, call bio_endio on the original bio (having bio_put the new bio 3311 * first). 3312 * If the read failed.. 3313 */ 3314 static void raid5_align_endio(struct bio *bi, int error) 3315 { 3316 struct bio* raid_bi = bi->bi_private; 3317 mddev_t *mddev; 3318 raid5_conf_t *conf; 3319 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); 3320 mdk_rdev_t *rdev; 3321 3322 bio_put(bi); 3323 3324 mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata; 3325 conf = mddev_to_conf(mddev); 3326 rdev = (void*)raid_bi->bi_next; 3327 raid_bi->bi_next = NULL; 3328 3329 rdev_dec_pending(rdev, conf->mddev); 3330 3331 if (!error && uptodate) { 3332 bio_endio(raid_bi, 0); 3333 if (atomic_dec_and_test(&conf->active_aligned_reads)) 3334 wake_up(&conf->wait_for_stripe); 3335 return; 3336 } 3337 3338 3339 pr_debug("raid5_align_endio : io error...handing IO for a retry\n"); 3340 3341 add_bio_to_retry(raid_bi, conf); 3342 } 3343 3344 static int bio_fits_rdev(struct bio *bi) 3345 { 3346 struct request_queue *q = bdev_get_queue(bi->bi_bdev); 3347 3348 if ((bi->bi_size>>9) > q->max_sectors) 3349 return 0; 3350 blk_recount_segments(q, bi); 3351 if (bi->bi_phys_segments > q->max_phys_segments || 3352 bi->bi_hw_segments > q->max_hw_segments) 3353 return 0; 3354 3355 if (q->merge_bvec_fn) 3356 /* it's too hard to apply the merge_bvec_fn at this stage, 3357 * just just give up 3358 */ 3359 return 0; 3360 3361 return 1; 3362 } 3363 3364 3365 static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio) 3366 { 3367 mddev_t *mddev = q->queuedata; 3368 raid5_conf_t *conf = mddev_to_conf(mddev); 3369 const unsigned int raid_disks = conf->raid_disks; 3370 const unsigned int data_disks = raid_disks - conf->max_degraded; 3371 unsigned int dd_idx, pd_idx; 3372 struct bio* align_bi; 3373 mdk_rdev_t *rdev; 3374 3375 if (!in_chunk_boundary(mddev, raid_bio)) { 3376 pr_debug("chunk_aligned_read : non aligned\n"); 3377 return 0; 3378 } 3379 /* 3380 * use bio_clone to make a copy of the bio 3381 */ 3382 align_bi = bio_clone(raid_bio, GFP_NOIO); 3383 if (!align_bi) 3384 return 0; 3385 /* 3386 * set bi_end_io to a new function, and set bi_private to the 3387 * original bio. 3388 */ 3389 align_bi->bi_end_io = raid5_align_endio; 3390 align_bi->bi_private = raid_bio; 3391 /* 3392 * compute position 3393 */ 3394 align_bi->bi_sector = raid5_compute_sector(raid_bio->bi_sector, 3395 raid_disks, 3396 data_disks, 3397 &dd_idx, 3398 &pd_idx, 3399 conf); 3400 3401 rcu_read_lock(); 3402 rdev = rcu_dereference(conf->disks[dd_idx].rdev); 3403 if (rdev && test_bit(In_sync, &rdev->flags)) { 3404 atomic_inc(&rdev->nr_pending); 3405 rcu_read_unlock(); 3406 raid_bio->bi_next = (void*)rdev; 3407 align_bi->bi_bdev = rdev->bdev; 3408 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID); 3409 align_bi->bi_sector += rdev->data_offset; 3410 3411 if (!bio_fits_rdev(align_bi)) { 3412 /* too big in some way */ 3413 bio_put(align_bi); 3414 rdev_dec_pending(rdev, mddev); 3415 return 0; 3416 } 3417 3418 spin_lock_irq(&conf->device_lock); 3419 wait_event_lock_irq(conf->wait_for_stripe, 3420 conf->quiesce == 0, 3421 conf->device_lock, /* nothing */); 3422 atomic_inc(&conf->active_aligned_reads); 3423 spin_unlock_irq(&conf->device_lock); 3424 3425 generic_make_request(align_bi); 3426 return 1; 3427 } else { 3428 rcu_read_unlock(); 3429 bio_put(align_bi); 3430 return 0; 3431 } 3432 } 3433 3434 3435 static int make_request(struct request_queue *q, struct bio * bi) 3436 { 3437 mddev_t *mddev = q->queuedata; 3438 raid5_conf_t *conf = mddev_to_conf(mddev); 3439 unsigned int dd_idx, pd_idx; 3440 sector_t new_sector; 3441 sector_t logical_sector, last_sector; 3442 struct stripe_head *sh; 3443 const int rw = bio_data_dir(bi); 3444 int remaining; 3445 3446 if (unlikely(bio_barrier(bi))) { 3447 bio_endio(bi, -EOPNOTSUPP); 3448 return 0; 3449 } 3450 3451 md_write_start(mddev, bi); 3452 3453 disk_stat_inc(mddev->gendisk, ios[rw]); 3454 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi)); 3455 3456 if (rw == READ && 3457 mddev->reshape_position == MaxSector && 3458 chunk_aligned_read(q,bi)) 3459 return 0; 3460 3461 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1); 3462 last_sector = bi->bi_sector + (bi->bi_size>>9); 3463 bi->bi_next = NULL; 3464 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */ 3465 3466 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) { 3467 DEFINE_WAIT(w); 3468 int disks, data_disks; 3469 3470 retry: 3471 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE); 3472 if (likely(conf->expand_progress == MaxSector)) 3473 disks = conf->raid_disks; 3474 else { 3475 /* spinlock is needed as expand_progress may be 3476 * 64bit on a 32bit platform, and so it might be 3477 * possible to see a half-updated value 3478 * Ofcourse expand_progress could change after 3479 * the lock is dropped, so once we get a reference 3480 * to the stripe that we think it is, we will have 3481 * to check again. 3482 */ 3483 spin_lock_irq(&conf->device_lock); 3484 disks = conf->raid_disks; 3485 if (logical_sector >= conf->expand_progress) 3486 disks = conf->previous_raid_disks; 3487 else { 3488 if (logical_sector >= conf->expand_lo) { 3489 spin_unlock_irq(&conf->device_lock); 3490 schedule(); 3491 goto retry; 3492 } 3493 } 3494 spin_unlock_irq(&conf->device_lock); 3495 } 3496 data_disks = disks - conf->max_degraded; 3497 3498 new_sector = raid5_compute_sector(logical_sector, disks, data_disks, 3499 &dd_idx, &pd_idx, conf); 3500 pr_debug("raid5: make_request, sector %llu logical %llu\n", 3501 (unsigned long long)new_sector, 3502 (unsigned long long)logical_sector); 3503 3504 sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK)); 3505 if (sh) { 3506 if (unlikely(conf->expand_progress != MaxSector)) { 3507 /* expansion might have moved on while waiting for a 3508 * stripe, so we must do the range check again. 3509 * Expansion could still move past after this 3510 * test, but as we are holding a reference to 3511 * 'sh', we know that if that happens, 3512 * STRIPE_EXPANDING will get set and the expansion 3513 * won't proceed until we finish with the stripe. 3514 */ 3515 int must_retry = 0; 3516 spin_lock_irq(&conf->device_lock); 3517 if (logical_sector < conf->expand_progress && 3518 disks == conf->previous_raid_disks) 3519 /* mismatch, need to try again */ 3520 must_retry = 1; 3521 spin_unlock_irq(&conf->device_lock); 3522 if (must_retry) { 3523 release_stripe(sh); 3524 goto retry; 3525 } 3526 } 3527 /* FIXME what if we get a false positive because these 3528 * are being updated. 3529 */ 3530 if (logical_sector >= mddev->suspend_lo && 3531 logical_sector < mddev->suspend_hi) { 3532 release_stripe(sh); 3533 schedule(); 3534 goto retry; 3535 } 3536 3537 if (test_bit(STRIPE_EXPANDING, &sh->state) || 3538 !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) { 3539 /* Stripe is busy expanding or 3540 * add failed due to overlap. Flush everything 3541 * and wait a while 3542 */ 3543 raid5_unplug_device(mddev->queue); 3544 release_stripe(sh); 3545 schedule(); 3546 goto retry; 3547 } 3548 finish_wait(&conf->wait_for_overlap, &w); 3549 handle_stripe(sh, NULL); 3550 release_stripe(sh); 3551 } else { 3552 /* cannot get stripe for read-ahead, just give-up */ 3553 clear_bit(BIO_UPTODATE, &bi->bi_flags); 3554 finish_wait(&conf->wait_for_overlap, &w); 3555 break; 3556 } 3557 3558 } 3559 spin_lock_irq(&conf->device_lock); 3560 remaining = --bi->bi_phys_segments; 3561 spin_unlock_irq(&conf->device_lock); 3562 if (remaining == 0) { 3563 3564 if ( rw == WRITE ) 3565 md_write_end(mddev); 3566 3567 bi->bi_end_io(bi, 3568 test_bit(BIO_UPTODATE, &bi->bi_flags) 3569 ? 0 : -EIO); 3570 } 3571 return 0; 3572 } 3573 3574 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped) 3575 { 3576 /* reshaping is quite different to recovery/resync so it is 3577 * handled quite separately ... here. 3578 * 3579 * On each call to sync_request, we gather one chunk worth of 3580 * destination stripes and flag them as expanding. 3581 * Then we find all the source stripes and request reads. 3582 * As the reads complete, handle_stripe will copy the data 3583 * into the destination stripe and release that stripe. 3584 */ 3585 raid5_conf_t *conf = (raid5_conf_t *) mddev->private; 3586 struct stripe_head *sh; 3587 int pd_idx; 3588 sector_t first_sector, last_sector; 3589 int raid_disks = conf->previous_raid_disks; 3590 int data_disks = raid_disks - conf->max_degraded; 3591 int new_data_disks = conf->raid_disks - conf->max_degraded; 3592 int i; 3593 int dd_idx; 3594 sector_t writepos, safepos, gap; 3595 3596 if (sector_nr == 0 && 3597 conf->expand_progress != 0) { 3598 /* restarting in the middle, skip the initial sectors */ 3599 sector_nr = conf->expand_progress; 3600 sector_div(sector_nr, new_data_disks); 3601 *skipped = 1; 3602 return sector_nr; 3603 } 3604 3605 /* we update the metadata when there is more than 3Meg 3606 * in the block range (that is rather arbitrary, should 3607 * probably be time based) or when the data about to be 3608 * copied would over-write the source of the data at 3609 * the front of the range. 3610 * i.e. one new_stripe forward from expand_progress new_maps 3611 * to after where expand_lo old_maps to 3612 */ 3613 writepos = conf->expand_progress + 3614 conf->chunk_size/512*(new_data_disks); 3615 sector_div(writepos, new_data_disks); 3616 safepos = conf->expand_lo; 3617 sector_div(safepos, data_disks); 3618 gap = conf->expand_progress - conf->expand_lo; 3619 3620 if (writepos >= safepos || 3621 gap > (new_data_disks)*3000*2 /*3Meg*/) { 3622 /* Cannot proceed until we've updated the superblock... */ 3623 wait_event(conf->wait_for_overlap, 3624 atomic_read(&conf->reshape_stripes)==0); 3625 mddev->reshape_position = conf->expand_progress; 3626 set_bit(MD_CHANGE_DEVS, &mddev->flags); 3627 md_wakeup_thread(mddev->thread); 3628 wait_event(mddev->sb_wait, mddev->flags == 0 || 3629 kthread_should_stop()); 3630 spin_lock_irq(&conf->device_lock); 3631 conf->expand_lo = mddev->reshape_position; 3632 spin_unlock_irq(&conf->device_lock); 3633 wake_up(&conf->wait_for_overlap); 3634 } 3635 3636 for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) { 3637 int j; 3638 int skipped = 0; 3639 pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks); 3640 sh = get_active_stripe(conf, sector_nr+i, 3641 conf->raid_disks, pd_idx, 0); 3642 set_bit(STRIPE_EXPANDING, &sh->state); 3643 atomic_inc(&conf->reshape_stripes); 3644 /* If any of this stripe is beyond the end of the old 3645 * array, then we need to zero those blocks 3646 */ 3647 for (j=sh->disks; j--;) { 3648 sector_t s; 3649 if (j == sh->pd_idx) 3650 continue; 3651 if (conf->level == 6 && 3652 j == raid6_next_disk(sh->pd_idx, sh->disks)) 3653 continue; 3654 s = compute_blocknr(sh, j); 3655 if (s < (mddev->array_size<<1)) { 3656 skipped = 1; 3657 continue; 3658 } 3659 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE); 3660 set_bit(R5_Expanded, &sh->dev[j].flags); 3661 set_bit(R5_UPTODATE, &sh->dev[j].flags); 3662 } 3663 if (!skipped) { 3664 set_bit(STRIPE_EXPAND_READY, &sh->state); 3665 set_bit(STRIPE_HANDLE, &sh->state); 3666 } 3667 release_stripe(sh); 3668 } 3669 spin_lock_irq(&conf->device_lock); 3670 conf->expand_progress = (sector_nr + i) * new_data_disks; 3671 spin_unlock_irq(&conf->device_lock); 3672 /* Ok, those stripe are ready. We can start scheduling 3673 * reads on the source stripes. 3674 * The source stripes are determined by mapping the first and last 3675 * block on the destination stripes. 3676 */ 3677 first_sector = 3678 raid5_compute_sector(sector_nr*(new_data_disks), 3679 raid_disks, data_disks, 3680 &dd_idx, &pd_idx, conf); 3681 last_sector = 3682 raid5_compute_sector((sector_nr+conf->chunk_size/512) 3683 *(new_data_disks) -1, 3684 raid_disks, data_disks, 3685 &dd_idx, &pd_idx, conf); 3686 if (last_sector >= (mddev->size<<1)) 3687 last_sector = (mddev->size<<1)-1; 3688 while (first_sector <= last_sector) { 3689 pd_idx = stripe_to_pdidx(first_sector, conf, 3690 conf->previous_raid_disks); 3691 sh = get_active_stripe(conf, first_sector, 3692 conf->previous_raid_disks, pd_idx, 0); 3693 set_bit(STRIPE_EXPAND_SOURCE, &sh->state); 3694 set_bit(STRIPE_HANDLE, &sh->state); 3695 release_stripe(sh); 3696 first_sector += STRIPE_SECTORS; 3697 } 3698 return conf->chunk_size>>9; 3699 } 3700 3701 /* FIXME go_faster isn't used */ 3702 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster) 3703 { 3704 raid5_conf_t *conf = (raid5_conf_t *) mddev->private; 3705 struct stripe_head *sh; 3706 int pd_idx; 3707 int raid_disks = conf->raid_disks; 3708 sector_t max_sector = mddev->size << 1; 3709 int sync_blocks; 3710 int still_degraded = 0; 3711 int i; 3712 3713 if (sector_nr >= max_sector) { 3714 /* just being told to finish up .. nothing much to do */ 3715 unplug_slaves(mddev); 3716 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 3717 end_reshape(conf); 3718 return 0; 3719 } 3720 3721 if (mddev->curr_resync < max_sector) /* aborted */ 3722 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 3723 &sync_blocks, 1); 3724 else /* completed sync */ 3725 conf->fullsync = 0; 3726 bitmap_close_sync(mddev->bitmap); 3727 3728 return 0; 3729 } 3730 3731 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 3732 return reshape_request(mddev, sector_nr, skipped); 3733 3734 /* if there is too many failed drives and we are trying 3735 * to resync, then assert that we are finished, because there is 3736 * nothing we can do. 3737 */ 3738 if (mddev->degraded >= conf->max_degraded && 3739 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3740 sector_t rv = (mddev->size << 1) - sector_nr; 3741 *skipped = 1; 3742 return rv; 3743 } 3744 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 3745 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 3746 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) { 3747 /* we can skip this block, and probably more */ 3748 sync_blocks /= STRIPE_SECTORS; 3749 *skipped = 1; 3750 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */ 3751 } 3752 3753 pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks); 3754 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1); 3755 if (sh == NULL) { 3756 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0); 3757 /* make sure we don't swamp the stripe cache if someone else 3758 * is trying to get access 3759 */ 3760 schedule_timeout_uninterruptible(1); 3761 } 3762 /* Need to check if array will still be degraded after recovery/resync 3763 * We don't need to check the 'failed' flag as when that gets set, 3764 * recovery aborts. 3765 */ 3766 for (i=0; i<mddev->raid_disks; i++) 3767 if (conf->disks[i].rdev == NULL) 3768 still_degraded = 1; 3769 3770 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded); 3771 3772 spin_lock(&sh->lock); 3773 set_bit(STRIPE_SYNCING, &sh->state); 3774 clear_bit(STRIPE_INSYNC, &sh->state); 3775 spin_unlock(&sh->lock); 3776 3777 handle_stripe(sh, NULL); 3778 release_stripe(sh); 3779 3780 return STRIPE_SECTORS; 3781 } 3782 3783 static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio) 3784 { 3785 /* We may not be able to submit a whole bio at once as there 3786 * may not be enough stripe_heads available. 3787 * We cannot pre-allocate enough stripe_heads as we may need 3788 * more than exist in the cache (if we allow ever large chunks). 3789 * So we do one stripe head at a time and record in 3790 * ->bi_hw_segments how many have been done. 3791 * 3792 * We *know* that this entire raid_bio is in one chunk, so 3793 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector. 3794 */ 3795 struct stripe_head *sh; 3796 int dd_idx, pd_idx; 3797 sector_t sector, logical_sector, last_sector; 3798 int scnt = 0; 3799 int remaining; 3800 int handled = 0; 3801 3802 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1); 3803 sector = raid5_compute_sector( logical_sector, 3804 conf->raid_disks, 3805 conf->raid_disks - conf->max_degraded, 3806 &dd_idx, 3807 &pd_idx, 3808 conf); 3809 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9); 3810 3811 for (; logical_sector < last_sector; 3812 logical_sector += STRIPE_SECTORS, 3813 sector += STRIPE_SECTORS, 3814 scnt++) { 3815 3816 if (scnt < raid_bio->bi_hw_segments) 3817 /* already done this stripe */ 3818 continue; 3819 3820 sh = get_active_stripe(conf, sector, conf->raid_disks, pd_idx, 1); 3821 3822 if (!sh) { 3823 /* failed to get a stripe - must wait */ 3824 raid_bio->bi_hw_segments = scnt; 3825 conf->retry_read_aligned = raid_bio; 3826 return handled; 3827 } 3828 3829 set_bit(R5_ReadError, &sh->dev[dd_idx].flags); 3830 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) { 3831 release_stripe(sh); 3832 raid_bio->bi_hw_segments = scnt; 3833 conf->retry_read_aligned = raid_bio; 3834 return handled; 3835 } 3836 3837 handle_stripe(sh, NULL); 3838 release_stripe(sh); 3839 handled++; 3840 } 3841 spin_lock_irq(&conf->device_lock); 3842 remaining = --raid_bio->bi_phys_segments; 3843 spin_unlock_irq(&conf->device_lock); 3844 if (remaining == 0) { 3845 3846 raid_bio->bi_end_io(raid_bio, 3847 test_bit(BIO_UPTODATE, &raid_bio->bi_flags) 3848 ? 0 : -EIO); 3849 } 3850 if (atomic_dec_and_test(&conf->active_aligned_reads)) 3851 wake_up(&conf->wait_for_stripe); 3852 return handled; 3853 } 3854 3855 3856 3857 /* 3858 * This is our raid5 kernel thread. 3859 * 3860 * We scan the hash table for stripes which can be handled now. 3861 * During the scan, completed stripes are saved for us by the interrupt 3862 * handler, so that they will not have to wait for our next wakeup. 3863 */ 3864 static void raid5d (mddev_t *mddev) 3865 { 3866 struct stripe_head *sh; 3867 raid5_conf_t *conf = mddev_to_conf(mddev); 3868 int handled; 3869 3870 pr_debug("+++ raid5d active\n"); 3871 3872 md_check_recovery(mddev); 3873 3874 handled = 0; 3875 spin_lock_irq(&conf->device_lock); 3876 while (1) { 3877 struct list_head *first; 3878 struct bio *bio; 3879 3880 if (conf->seq_flush != conf->seq_write) { 3881 int seq = conf->seq_flush; 3882 spin_unlock_irq(&conf->device_lock); 3883 bitmap_unplug(mddev->bitmap); 3884 spin_lock_irq(&conf->device_lock); 3885 conf->seq_write = seq; 3886 activate_bit_delay(conf); 3887 } 3888 3889 if (list_empty(&conf->handle_list) && 3890 atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD && 3891 !blk_queue_plugged(mddev->queue) && 3892 !list_empty(&conf->delayed_list)) 3893 raid5_activate_delayed(conf); 3894 3895 while ((bio = remove_bio_from_retry(conf))) { 3896 int ok; 3897 spin_unlock_irq(&conf->device_lock); 3898 ok = retry_aligned_read(conf, bio); 3899 spin_lock_irq(&conf->device_lock); 3900 if (!ok) 3901 break; 3902 handled++; 3903 } 3904 3905 if (list_empty(&conf->handle_list)) { 3906 async_tx_issue_pending_all(); 3907 break; 3908 } 3909 3910 first = conf->handle_list.next; 3911 sh = list_entry(first, struct stripe_head, lru); 3912 3913 list_del_init(first); 3914 atomic_inc(&sh->count); 3915 BUG_ON(atomic_read(&sh->count)!= 1); 3916 spin_unlock_irq(&conf->device_lock); 3917 3918 handled++; 3919 handle_stripe(sh, conf->spare_page); 3920 release_stripe(sh); 3921 3922 spin_lock_irq(&conf->device_lock); 3923 } 3924 pr_debug("%d stripes handled\n", handled); 3925 3926 spin_unlock_irq(&conf->device_lock); 3927 3928 unplug_slaves(mddev); 3929 3930 pr_debug("--- raid5d inactive\n"); 3931 } 3932 3933 static ssize_t 3934 raid5_show_stripe_cache_size(mddev_t *mddev, char *page) 3935 { 3936 raid5_conf_t *conf = mddev_to_conf(mddev); 3937 if (conf) 3938 return sprintf(page, "%d\n", conf->max_nr_stripes); 3939 else 3940 return 0; 3941 } 3942 3943 static ssize_t 3944 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len) 3945 { 3946 raid5_conf_t *conf = mddev_to_conf(mddev); 3947 char *end; 3948 int new; 3949 if (len >= PAGE_SIZE) 3950 return -EINVAL; 3951 if (!conf) 3952 return -ENODEV; 3953 3954 new = simple_strtoul(page, &end, 10); 3955 if (!*page || (*end && *end != '\n') ) 3956 return -EINVAL; 3957 if (new <= 16 || new > 32768) 3958 return -EINVAL; 3959 while (new < conf->max_nr_stripes) { 3960 if (drop_one_stripe(conf)) 3961 conf->max_nr_stripes--; 3962 else 3963 break; 3964 } 3965 md_allow_write(mddev); 3966 while (new > conf->max_nr_stripes) { 3967 if (grow_one_stripe(conf)) 3968 conf->max_nr_stripes++; 3969 else break; 3970 } 3971 return len; 3972 } 3973 3974 static struct md_sysfs_entry 3975 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR, 3976 raid5_show_stripe_cache_size, 3977 raid5_store_stripe_cache_size); 3978 3979 static ssize_t 3980 stripe_cache_active_show(mddev_t *mddev, char *page) 3981 { 3982 raid5_conf_t *conf = mddev_to_conf(mddev); 3983 if (conf) 3984 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes)); 3985 else 3986 return 0; 3987 } 3988 3989 static struct md_sysfs_entry 3990 raid5_stripecache_active = __ATTR_RO(stripe_cache_active); 3991 3992 static struct attribute *raid5_attrs[] = { 3993 &raid5_stripecache_size.attr, 3994 &raid5_stripecache_active.attr, 3995 NULL, 3996 }; 3997 static struct attribute_group raid5_attrs_group = { 3998 .name = NULL, 3999 .attrs = raid5_attrs, 4000 }; 4001 4002 static int run(mddev_t *mddev) 4003 { 4004 raid5_conf_t *conf; 4005 int raid_disk, memory; 4006 mdk_rdev_t *rdev; 4007 struct disk_info *disk; 4008 struct list_head *tmp; 4009 int working_disks = 0; 4010 4011 if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) { 4012 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n", 4013 mdname(mddev), mddev->level); 4014 return -EIO; 4015 } 4016 4017 if (mddev->reshape_position != MaxSector) { 4018 /* Check that we can continue the reshape. 4019 * Currently only disks can change, it must 4020 * increase, and we must be past the point where 4021 * a stripe over-writes itself 4022 */ 4023 sector_t here_new, here_old; 4024 int old_disks; 4025 int max_degraded = (mddev->level == 5 ? 1 : 2); 4026 4027 if (mddev->new_level != mddev->level || 4028 mddev->new_layout != mddev->layout || 4029 mddev->new_chunk != mddev->chunk_size) { 4030 printk(KERN_ERR "raid5: %s: unsupported reshape " 4031 "required - aborting.\n", 4032 mdname(mddev)); 4033 return -EINVAL; 4034 } 4035 if (mddev->delta_disks <= 0) { 4036 printk(KERN_ERR "raid5: %s: unsupported reshape " 4037 "(reduce disks) required - aborting.\n", 4038 mdname(mddev)); 4039 return -EINVAL; 4040 } 4041 old_disks = mddev->raid_disks - mddev->delta_disks; 4042 /* reshape_position must be on a new-stripe boundary, and one 4043 * further up in new geometry must map after here in old 4044 * geometry. 4045 */ 4046 here_new = mddev->reshape_position; 4047 if (sector_div(here_new, (mddev->chunk_size>>9)* 4048 (mddev->raid_disks - max_degraded))) { 4049 printk(KERN_ERR "raid5: reshape_position not " 4050 "on a stripe boundary\n"); 4051 return -EINVAL; 4052 } 4053 /* here_new is the stripe we will write to */ 4054 here_old = mddev->reshape_position; 4055 sector_div(here_old, (mddev->chunk_size>>9)* 4056 (old_disks-max_degraded)); 4057 /* here_old is the first stripe that we might need to read 4058 * from */ 4059 if (here_new >= here_old) { 4060 /* Reading from the same stripe as writing to - bad */ 4061 printk(KERN_ERR "raid5: reshape_position too early for " 4062 "auto-recovery - aborting.\n"); 4063 return -EINVAL; 4064 } 4065 printk(KERN_INFO "raid5: reshape will continue\n"); 4066 /* OK, we should be able to continue; */ 4067 } 4068 4069 4070 mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL); 4071 if ((conf = mddev->private) == NULL) 4072 goto abort; 4073 if (mddev->reshape_position == MaxSector) { 4074 conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks; 4075 } else { 4076 conf->raid_disks = mddev->raid_disks; 4077 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks; 4078 } 4079 4080 conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info), 4081 GFP_KERNEL); 4082 if (!conf->disks) 4083 goto abort; 4084 4085 conf->mddev = mddev; 4086 4087 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL) 4088 goto abort; 4089 4090 if (mddev->level == 6) { 4091 conf->spare_page = alloc_page(GFP_KERNEL); 4092 if (!conf->spare_page) 4093 goto abort; 4094 } 4095 spin_lock_init(&conf->device_lock); 4096 init_waitqueue_head(&conf->wait_for_stripe); 4097 init_waitqueue_head(&conf->wait_for_overlap); 4098 INIT_LIST_HEAD(&conf->handle_list); 4099 INIT_LIST_HEAD(&conf->delayed_list); 4100 INIT_LIST_HEAD(&conf->bitmap_list); 4101 INIT_LIST_HEAD(&conf->inactive_list); 4102 atomic_set(&conf->active_stripes, 0); 4103 atomic_set(&conf->preread_active_stripes, 0); 4104 atomic_set(&conf->active_aligned_reads, 0); 4105 4106 pr_debug("raid5: run(%s) called.\n", mdname(mddev)); 4107 4108 ITERATE_RDEV(mddev,rdev,tmp) { 4109 raid_disk = rdev->raid_disk; 4110 if (raid_disk >= conf->raid_disks 4111 || raid_disk < 0) 4112 continue; 4113 disk = conf->disks + raid_disk; 4114 4115 disk->rdev = rdev; 4116 4117 if (test_bit(In_sync, &rdev->flags)) { 4118 char b[BDEVNAME_SIZE]; 4119 printk(KERN_INFO "raid5: device %s operational as raid" 4120 " disk %d\n", bdevname(rdev->bdev,b), 4121 raid_disk); 4122 working_disks++; 4123 } 4124 } 4125 4126 /* 4127 * 0 for a fully functional array, 1 or 2 for a degraded array. 4128 */ 4129 mddev->degraded = conf->raid_disks - working_disks; 4130 conf->mddev = mddev; 4131 conf->chunk_size = mddev->chunk_size; 4132 conf->level = mddev->level; 4133 if (conf->level == 6) 4134 conf->max_degraded = 2; 4135 else 4136 conf->max_degraded = 1; 4137 conf->algorithm = mddev->layout; 4138 conf->max_nr_stripes = NR_STRIPES; 4139 conf->expand_progress = mddev->reshape_position; 4140 4141 /* device size must be a multiple of chunk size */ 4142 mddev->size &= ~(mddev->chunk_size/1024 -1); 4143 mddev->resync_max_sectors = mddev->size << 1; 4144 4145 if (conf->level == 6 && conf->raid_disks < 4) { 4146 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n", 4147 mdname(mddev), conf->raid_disks); 4148 goto abort; 4149 } 4150 if (!conf->chunk_size || conf->chunk_size % 4) { 4151 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n", 4152 conf->chunk_size, mdname(mddev)); 4153 goto abort; 4154 } 4155 if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) { 4156 printk(KERN_ERR 4157 "raid5: unsupported parity algorithm %d for %s\n", 4158 conf->algorithm, mdname(mddev)); 4159 goto abort; 4160 } 4161 if (mddev->degraded > conf->max_degraded) { 4162 printk(KERN_ERR "raid5: not enough operational devices for %s" 4163 " (%d/%d failed)\n", 4164 mdname(mddev), mddev->degraded, conf->raid_disks); 4165 goto abort; 4166 } 4167 4168 if (mddev->degraded > 0 && 4169 mddev->recovery_cp != MaxSector) { 4170 if (mddev->ok_start_degraded) 4171 printk(KERN_WARNING 4172 "raid5: starting dirty degraded array: %s" 4173 "- data corruption possible.\n", 4174 mdname(mddev)); 4175 else { 4176 printk(KERN_ERR 4177 "raid5: cannot start dirty degraded array for %s\n", 4178 mdname(mddev)); 4179 goto abort; 4180 } 4181 } 4182 4183 { 4184 mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5"); 4185 if (!mddev->thread) { 4186 printk(KERN_ERR 4187 "raid5: couldn't allocate thread for %s\n", 4188 mdname(mddev)); 4189 goto abort; 4190 } 4191 } 4192 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) + 4193 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024; 4194 if (grow_stripes(conf, conf->max_nr_stripes)) { 4195 printk(KERN_ERR 4196 "raid5: couldn't allocate %dkB for buffers\n", memory); 4197 shrink_stripes(conf); 4198 md_unregister_thread(mddev->thread); 4199 goto abort; 4200 } else 4201 printk(KERN_INFO "raid5: allocated %dkB for %s\n", 4202 memory, mdname(mddev)); 4203 4204 if (mddev->degraded == 0) 4205 printk("raid5: raid level %d set %s active with %d out of %d" 4206 " devices, algorithm %d\n", conf->level, mdname(mddev), 4207 mddev->raid_disks-mddev->degraded, mddev->raid_disks, 4208 conf->algorithm); 4209 else 4210 printk(KERN_ALERT "raid5: raid level %d set %s active with %d" 4211 " out of %d devices, algorithm %d\n", conf->level, 4212 mdname(mddev), mddev->raid_disks - mddev->degraded, 4213 mddev->raid_disks, conf->algorithm); 4214 4215 print_raid5_conf(conf); 4216 4217 if (conf->expand_progress != MaxSector) { 4218 printk("...ok start reshape thread\n"); 4219 conf->expand_lo = conf->expand_progress; 4220 atomic_set(&conf->reshape_stripes, 0); 4221 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4222 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4223 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4224 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 4225 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 4226 "%s_reshape"); 4227 } 4228 4229 /* read-ahead size must cover two whole stripes, which is 4230 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 4231 */ 4232 { 4233 int data_disks = conf->previous_raid_disks - conf->max_degraded; 4234 int stripe = data_disks * 4235 (mddev->chunk_size / PAGE_SIZE); 4236 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 4237 mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 4238 } 4239 4240 /* Ok, everything is just fine now */ 4241 if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group)) 4242 printk(KERN_WARNING 4243 "raid5: failed to create sysfs attributes for %s\n", 4244 mdname(mddev)); 4245 4246 mddev->queue->unplug_fn = raid5_unplug_device; 4247 mddev->queue->backing_dev_info.congested_data = mddev; 4248 mddev->queue->backing_dev_info.congested_fn = raid5_congested; 4249 4250 mddev->array_size = mddev->size * (conf->previous_raid_disks - 4251 conf->max_degraded); 4252 4253 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec); 4254 4255 return 0; 4256 abort: 4257 if (conf) { 4258 print_raid5_conf(conf); 4259 safe_put_page(conf->spare_page); 4260 kfree(conf->disks); 4261 kfree(conf->stripe_hashtbl); 4262 kfree(conf); 4263 } 4264 mddev->private = NULL; 4265 printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev)); 4266 return -EIO; 4267 } 4268 4269 4270 4271 static int stop(mddev_t *mddev) 4272 { 4273 raid5_conf_t *conf = (raid5_conf_t *) mddev->private; 4274 4275 md_unregister_thread(mddev->thread); 4276 mddev->thread = NULL; 4277 shrink_stripes(conf); 4278 kfree(conf->stripe_hashtbl); 4279 mddev->queue->backing_dev_info.congested_fn = NULL; 4280 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 4281 sysfs_remove_group(&mddev->kobj, &raid5_attrs_group); 4282 kfree(conf->disks); 4283 kfree(conf); 4284 mddev->private = NULL; 4285 return 0; 4286 } 4287 4288 #ifdef DEBUG 4289 static void print_sh (struct seq_file *seq, struct stripe_head *sh) 4290 { 4291 int i; 4292 4293 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n", 4294 (unsigned long long)sh->sector, sh->pd_idx, sh->state); 4295 seq_printf(seq, "sh %llu, count %d.\n", 4296 (unsigned long long)sh->sector, atomic_read(&sh->count)); 4297 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector); 4298 for (i = 0; i < sh->disks; i++) { 4299 seq_printf(seq, "(cache%d: %p %ld) ", 4300 i, sh->dev[i].page, sh->dev[i].flags); 4301 } 4302 seq_printf(seq, "\n"); 4303 } 4304 4305 static void printall (struct seq_file *seq, raid5_conf_t *conf) 4306 { 4307 struct stripe_head *sh; 4308 struct hlist_node *hn; 4309 int i; 4310 4311 spin_lock_irq(&conf->device_lock); 4312 for (i = 0; i < NR_HASH; i++) { 4313 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) { 4314 if (sh->raid_conf != conf) 4315 continue; 4316 print_sh(seq, sh); 4317 } 4318 } 4319 spin_unlock_irq(&conf->device_lock); 4320 } 4321 #endif 4322 4323 static void status (struct seq_file *seq, mddev_t *mddev) 4324 { 4325 raid5_conf_t *conf = (raid5_conf_t *) mddev->private; 4326 int i; 4327 4328 seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout); 4329 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded); 4330 for (i = 0; i < conf->raid_disks; i++) 4331 seq_printf (seq, "%s", 4332 conf->disks[i].rdev && 4333 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_"); 4334 seq_printf (seq, "]"); 4335 #ifdef DEBUG 4336 seq_printf (seq, "\n"); 4337 printall(seq, conf); 4338 #endif 4339 } 4340 4341 static void print_raid5_conf (raid5_conf_t *conf) 4342 { 4343 int i; 4344 struct disk_info *tmp; 4345 4346 printk("RAID5 conf printout:\n"); 4347 if (!conf) { 4348 printk("(conf==NULL)\n"); 4349 return; 4350 } 4351 printk(" --- rd:%d wd:%d\n", conf->raid_disks, 4352 conf->raid_disks - conf->mddev->degraded); 4353 4354 for (i = 0; i < conf->raid_disks; i++) { 4355 char b[BDEVNAME_SIZE]; 4356 tmp = conf->disks + i; 4357 if (tmp->rdev) 4358 printk(" disk %d, o:%d, dev:%s\n", 4359 i, !test_bit(Faulty, &tmp->rdev->flags), 4360 bdevname(tmp->rdev->bdev,b)); 4361 } 4362 } 4363 4364 static int raid5_spare_active(mddev_t *mddev) 4365 { 4366 int i; 4367 raid5_conf_t *conf = mddev->private; 4368 struct disk_info *tmp; 4369 4370 for (i = 0; i < conf->raid_disks; i++) { 4371 tmp = conf->disks + i; 4372 if (tmp->rdev 4373 && !test_bit(Faulty, &tmp->rdev->flags) 4374 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 4375 unsigned long flags; 4376 spin_lock_irqsave(&conf->device_lock, flags); 4377 mddev->degraded--; 4378 spin_unlock_irqrestore(&conf->device_lock, flags); 4379 } 4380 } 4381 print_raid5_conf(conf); 4382 return 0; 4383 } 4384 4385 static int raid5_remove_disk(mddev_t *mddev, int number) 4386 { 4387 raid5_conf_t *conf = mddev->private; 4388 int err = 0; 4389 mdk_rdev_t *rdev; 4390 struct disk_info *p = conf->disks + number; 4391 4392 print_raid5_conf(conf); 4393 rdev = p->rdev; 4394 if (rdev) { 4395 if (test_bit(In_sync, &rdev->flags) || 4396 atomic_read(&rdev->nr_pending)) { 4397 err = -EBUSY; 4398 goto abort; 4399 } 4400 p->rdev = NULL; 4401 synchronize_rcu(); 4402 if (atomic_read(&rdev->nr_pending)) { 4403 /* lost the race, try later */ 4404 err = -EBUSY; 4405 p->rdev = rdev; 4406 } 4407 } 4408 abort: 4409 4410 print_raid5_conf(conf); 4411 return err; 4412 } 4413 4414 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) 4415 { 4416 raid5_conf_t *conf = mddev->private; 4417 int found = 0; 4418 int disk; 4419 struct disk_info *p; 4420 4421 if (mddev->degraded > conf->max_degraded) 4422 /* no point adding a device */ 4423 return 0; 4424 4425 /* 4426 * find the disk ... but prefer rdev->saved_raid_disk 4427 * if possible. 4428 */ 4429 if (rdev->saved_raid_disk >= 0 && 4430 conf->disks[rdev->saved_raid_disk].rdev == NULL) 4431 disk = rdev->saved_raid_disk; 4432 else 4433 disk = 0; 4434 for ( ; disk < conf->raid_disks; disk++) 4435 if ((p=conf->disks + disk)->rdev == NULL) { 4436 clear_bit(In_sync, &rdev->flags); 4437 rdev->raid_disk = disk; 4438 found = 1; 4439 if (rdev->saved_raid_disk != disk) 4440 conf->fullsync = 1; 4441 rcu_assign_pointer(p->rdev, rdev); 4442 break; 4443 } 4444 print_raid5_conf(conf); 4445 return found; 4446 } 4447 4448 static int raid5_resize(mddev_t *mddev, sector_t sectors) 4449 { 4450 /* no resync is happening, and there is enough space 4451 * on all devices, so we can resize. 4452 * We need to make sure resync covers any new space. 4453 * If the array is shrinking we should possibly wait until 4454 * any io in the removed space completes, but it hardly seems 4455 * worth it. 4456 */ 4457 raid5_conf_t *conf = mddev_to_conf(mddev); 4458 4459 sectors &= ~((sector_t)mddev->chunk_size/512 - 1); 4460 mddev->array_size = (sectors * (mddev->raid_disks-conf->max_degraded))>>1; 4461 set_capacity(mddev->gendisk, mddev->array_size << 1); 4462 mddev->changed = 1; 4463 if (sectors/2 > mddev->size && mddev->recovery_cp == MaxSector) { 4464 mddev->recovery_cp = mddev->size << 1; 4465 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4466 } 4467 mddev->size = sectors /2; 4468 mddev->resync_max_sectors = sectors; 4469 return 0; 4470 } 4471 4472 #ifdef CONFIG_MD_RAID5_RESHAPE 4473 static int raid5_check_reshape(mddev_t *mddev) 4474 { 4475 raid5_conf_t *conf = mddev_to_conf(mddev); 4476 int err; 4477 4478 if (mddev->delta_disks < 0 || 4479 mddev->new_level != mddev->level) 4480 return -EINVAL; /* Cannot shrink array or change level yet */ 4481 if (mddev->delta_disks == 0) 4482 return 0; /* nothing to do */ 4483 4484 /* Can only proceed if there are plenty of stripe_heads. 4485 * We need a minimum of one full stripe,, and for sensible progress 4486 * it is best to have about 4 times that. 4487 * If we require 4 times, then the default 256 4K stripe_heads will 4488 * allow for chunk sizes up to 256K, which is probably OK. 4489 * If the chunk size is greater, user-space should request more 4490 * stripe_heads first. 4491 */ 4492 if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes || 4493 (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) { 4494 printk(KERN_WARNING "raid5: reshape: not enough stripes. Needed %lu\n", 4495 (mddev->chunk_size / STRIPE_SIZE)*4); 4496 return -ENOSPC; 4497 } 4498 4499 err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks); 4500 if (err) 4501 return err; 4502 4503 if (mddev->degraded > conf->max_degraded) 4504 return -EINVAL; 4505 /* looks like we might be able to manage this */ 4506 return 0; 4507 } 4508 4509 static int raid5_start_reshape(mddev_t *mddev) 4510 { 4511 raid5_conf_t *conf = mddev_to_conf(mddev); 4512 mdk_rdev_t *rdev; 4513 struct list_head *rtmp; 4514 int spares = 0; 4515 int added_devices = 0; 4516 unsigned long flags; 4517 4518 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4519 return -EBUSY; 4520 4521 ITERATE_RDEV(mddev, rdev, rtmp) 4522 if (rdev->raid_disk < 0 && 4523 !test_bit(Faulty, &rdev->flags)) 4524 spares++; 4525 4526 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded) 4527 /* Not enough devices even to make a degraded array 4528 * of that size 4529 */ 4530 return -EINVAL; 4531 4532 atomic_set(&conf->reshape_stripes, 0); 4533 spin_lock_irq(&conf->device_lock); 4534 conf->previous_raid_disks = conf->raid_disks; 4535 conf->raid_disks += mddev->delta_disks; 4536 conf->expand_progress = 0; 4537 conf->expand_lo = 0; 4538 spin_unlock_irq(&conf->device_lock); 4539 4540 /* Add some new drives, as many as will fit. 4541 * We know there are enough to make the newly sized array work. 4542 */ 4543 ITERATE_RDEV(mddev, rdev, rtmp) 4544 if (rdev->raid_disk < 0 && 4545 !test_bit(Faulty, &rdev->flags)) { 4546 if (raid5_add_disk(mddev, rdev)) { 4547 char nm[20]; 4548 set_bit(In_sync, &rdev->flags); 4549 added_devices++; 4550 rdev->recovery_offset = 0; 4551 sprintf(nm, "rd%d", rdev->raid_disk); 4552 if (sysfs_create_link(&mddev->kobj, 4553 &rdev->kobj, nm)) 4554 printk(KERN_WARNING 4555 "raid5: failed to create " 4556 " link %s for %s\n", 4557 nm, mdname(mddev)); 4558 } else 4559 break; 4560 } 4561 4562 spin_lock_irqsave(&conf->device_lock, flags); 4563 mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices; 4564 spin_unlock_irqrestore(&conf->device_lock, flags); 4565 mddev->raid_disks = conf->raid_disks; 4566 mddev->reshape_position = 0; 4567 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4568 4569 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4570 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4571 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4572 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 4573 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 4574 "%s_reshape"); 4575 if (!mddev->sync_thread) { 4576 mddev->recovery = 0; 4577 spin_lock_irq(&conf->device_lock); 4578 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks; 4579 conf->expand_progress = MaxSector; 4580 spin_unlock_irq(&conf->device_lock); 4581 return -EAGAIN; 4582 } 4583 md_wakeup_thread(mddev->sync_thread); 4584 md_new_event(mddev); 4585 return 0; 4586 } 4587 #endif 4588 4589 static void end_reshape(raid5_conf_t *conf) 4590 { 4591 struct block_device *bdev; 4592 4593 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 4594 conf->mddev->array_size = conf->mddev->size * 4595 (conf->raid_disks - conf->max_degraded); 4596 set_capacity(conf->mddev->gendisk, conf->mddev->array_size << 1); 4597 conf->mddev->changed = 1; 4598 4599 bdev = bdget_disk(conf->mddev->gendisk, 0); 4600 if (bdev) { 4601 mutex_lock(&bdev->bd_inode->i_mutex); 4602 i_size_write(bdev->bd_inode, (loff_t)conf->mddev->array_size << 10); 4603 mutex_unlock(&bdev->bd_inode->i_mutex); 4604 bdput(bdev); 4605 } 4606 spin_lock_irq(&conf->device_lock); 4607 conf->expand_progress = MaxSector; 4608 spin_unlock_irq(&conf->device_lock); 4609 conf->mddev->reshape_position = MaxSector; 4610 4611 /* read-ahead size must cover two whole stripes, which is 4612 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 4613 */ 4614 { 4615 int data_disks = conf->previous_raid_disks - conf->max_degraded; 4616 int stripe = data_disks * 4617 (conf->mddev->chunk_size / PAGE_SIZE); 4618 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 4619 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 4620 } 4621 } 4622 } 4623 4624 static void raid5_quiesce(mddev_t *mddev, int state) 4625 { 4626 raid5_conf_t *conf = mddev_to_conf(mddev); 4627 4628 switch(state) { 4629 case 2: /* resume for a suspend */ 4630 wake_up(&conf->wait_for_overlap); 4631 break; 4632 4633 case 1: /* stop all writes */ 4634 spin_lock_irq(&conf->device_lock); 4635 conf->quiesce = 1; 4636 wait_event_lock_irq(conf->wait_for_stripe, 4637 atomic_read(&conf->active_stripes) == 0 && 4638 atomic_read(&conf->active_aligned_reads) == 0, 4639 conf->device_lock, /* nothing */); 4640 spin_unlock_irq(&conf->device_lock); 4641 break; 4642 4643 case 0: /* re-enable writes */ 4644 spin_lock_irq(&conf->device_lock); 4645 conf->quiesce = 0; 4646 wake_up(&conf->wait_for_stripe); 4647 wake_up(&conf->wait_for_overlap); 4648 spin_unlock_irq(&conf->device_lock); 4649 break; 4650 } 4651 } 4652 4653 static struct mdk_personality raid6_personality = 4654 { 4655 .name = "raid6", 4656 .level = 6, 4657 .owner = THIS_MODULE, 4658 .make_request = make_request, 4659 .run = run, 4660 .stop = stop, 4661 .status = status, 4662 .error_handler = error, 4663 .hot_add_disk = raid5_add_disk, 4664 .hot_remove_disk= raid5_remove_disk, 4665 .spare_active = raid5_spare_active, 4666 .sync_request = sync_request, 4667 .resize = raid5_resize, 4668 #ifdef CONFIG_MD_RAID5_RESHAPE 4669 .check_reshape = raid5_check_reshape, 4670 .start_reshape = raid5_start_reshape, 4671 #endif 4672 .quiesce = raid5_quiesce, 4673 }; 4674 static struct mdk_personality raid5_personality = 4675 { 4676 .name = "raid5", 4677 .level = 5, 4678 .owner = THIS_MODULE, 4679 .make_request = make_request, 4680 .run = run, 4681 .stop = stop, 4682 .status = status, 4683 .error_handler = error, 4684 .hot_add_disk = raid5_add_disk, 4685 .hot_remove_disk= raid5_remove_disk, 4686 .spare_active = raid5_spare_active, 4687 .sync_request = sync_request, 4688 .resize = raid5_resize, 4689 #ifdef CONFIG_MD_RAID5_RESHAPE 4690 .check_reshape = raid5_check_reshape, 4691 .start_reshape = raid5_start_reshape, 4692 #endif 4693 .quiesce = raid5_quiesce, 4694 }; 4695 4696 static struct mdk_personality raid4_personality = 4697 { 4698 .name = "raid4", 4699 .level = 4, 4700 .owner = THIS_MODULE, 4701 .make_request = make_request, 4702 .run = run, 4703 .stop = stop, 4704 .status = status, 4705 .error_handler = error, 4706 .hot_add_disk = raid5_add_disk, 4707 .hot_remove_disk= raid5_remove_disk, 4708 .spare_active = raid5_spare_active, 4709 .sync_request = sync_request, 4710 .resize = raid5_resize, 4711 #ifdef CONFIG_MD_RAID5_RESHAPE 4712 .check_reshape = raid5_check_reshape, 4713 .start_reshape = raid5_start_reshape, 4714 #endif 4715 .quiesce = raid5_quiesce, 4716 }; 4717 4718 static int __init raid5_init(void) 4719 { 4720 int e; 4721 4722 e = raid6_select_algo(); 4723 if ( e ) 4724 return e; 4725 register_md_personality(&raid6_personality); 4726 register_md_personality(&raid5_personality); 4727 register_md_personality(&raid4_personality); 4728 return 0; 4729 } 4730 4731 static void raid5_exit(void) 4732 { 4733 unregister_md_personality(&raid6_personality); 4734 unregister_md_personality(&raid5_personality); 4735 unregister_md_personality(&raid4_personality); 4736 } 4737 4738 module_init(raid5_init); 4739 module_exit(raid5_exit); 4740 MODULE_LICENSE("GPL"); 4741 MODULE_ALIAS("md-personality-4"); /* RAID5 */ 4742 MODULE_ALIAS("md-raid5"); 4743 MODULE_ALIAS("md-raid4"); 4744 MODULE_ALIAS("md-level-5"); 4745 MODULE_ALIAS("md-level-4"); 4746 MODULE_ALIAS("md-personality-8"); /* RAID6 */ 4747 MODULE_ALIAS("md-raid6"); 4748 MODULE_ALIAS("md-level-6"); 4749 4750 /* This used to be two separate modules, they were: */ 4751 MODULE_ALIAS("raid5"); 4752 MODULE_ALIAS("raid6"); 4753