xref: /linux/drivers/md/raid5.c (revision 98366c20a275e957416e9516db5dcb7195b4e101)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->bm_write is the number of the last batch successfully written.
31  * conf->bm_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is bm_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/module.h>
47 #include <linux/slab.h>
48 #include <linux/highmem.h>
49 #include <linux/bitops.h>
50 #include <linux/kthread.h>
51 #include <asm/atomic.h>
52 #include "raid6.h"
53 
54 #include <linux/raid/bitmap.h>
55 #include <linux/async_tx.h>
56 
57 /*
58  * Stripe cache
59  */
60 
61 #define NR_STRIPES		256
62 #define STRIPE_SIZE		PAGE_SIZE
63 #define STRIPE_SHIFT		(PAGE_SHIFT - 9)
64 #define STRIPE_SECTORS		(STRIPE_SIZE>>9)
65 #define	IO_THRESHOLD		1
66 #define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
67 #define HASH_MASK		(NR_HASH - 1)
68 
69 #define stripe_hash(conf, sect)	(&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
70 
71 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
72  * order without overlap.  There may be several bio's per stripe+device, and
73  * a bio could span several devices.
74  * When walking this list for a particular stripe+device, we must never proceed
75  * beyond a bio that extends past this device, as the next bio might no longer
76  * be valid.
77  * This macro is used to determine the 'next' bio in the list, given the sector
78  * of the current stripe+device
79  */
80 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
81 /*
82  * The following can be used to debug the driver
83  */
84 #define RAID5_PARANOIA	1
85 #if RAID5_PARANOIA && defined(CONFIG_SMP)
86 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
87 #else
88 # define CHECK_DEVLOCK()
89 #endif
90 
91 #ifdef DEBUG
92 #define inline
93 #define __inline__
94 #endif
95 
96 #if !RAID6_USE_EMPTY_ZERO_PAGE
97 /* In .bss so it's zeroed */
98 const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
99 #endif
100 
101 static inline int raid6_next_disk(int disk, int raid_disks)
102 {
103 	disk++;
104 	return (disk < raid_disks) ? disk : 0;
105 }
106 
107 static void return_io(struct bio *return_bi)
108 {
109 	struct bio *bi = return_bi;
110 	while (bi) {
111 
112 		return_bi = bi->bi_next;
113 		bi->bi_next = NULL;
114 		bi->bi_size = 0;
115 		bi->bi_end_io(bi,
116 			      test_bit(BIO_UPTODATE, &bi->bi_flags)
117 			        ? 0 : -EIO);
118 		bi = return_bi;
119 	}
120 }
121 
122 static void print_raid5_conf (raid5_conf_t *conf);
123 
124 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
125 {
126 	if (atomic_dec_and_test(&sh->count)) {
127 		BUG_ON(!list_empty(&sh->lru));
128 		BUG_ON(atomic_read(&conf->active_stripes)==0);
129 		if (test_bit(STRIPE_HANDLE, &sh->state)) {
130 			if (test_bit(STRIPE_DELAYED, &sh->state)) {
131 				list_add_tail(&sh->lru, &conf->delayed_list);
132 				blk_plug_device(conf->mddev->queue);
133 			} else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
134 				   sh->bm_seq - conf->seq_write > 0) {
135 				list_add_tail(&sh->lru, &conf->bitmap_list);
136 				blk_plug_device(conf->mddev->queue);
137 			} else {
138 				clear_bit(STRIPE_BIT_DELAY, &sh->state);
139 				list_add_tail(&sh->lru, &conf->handle_list);
140 			}
141 			md_wakeup_thread(conf->mddev->thread);
142 		} else {
143 			BUG_ON(sh->ops.pending);
144 			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
145 				atomic_dec(&conf->preread_active_stripes);
146 				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
147 					md_wakeup_thread(conf->mddev->thread);
148 			}
149 			atomic_dec(&conf->active_stripes);
150 			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
151 				list_add_tail(&sh->lru, &conf->inactive_list);
152 				wake_up(&conf->wait_for_stripe);
153 				if (conf->retry_read_aligned)
154 					md_wakeup_thread(conf->mddev->thread);
155 			}
156 		}
157 	}
158 }
159 static void release_stripe(struct stripe_head *sh)
160 {
161 	raid5_conf_t *conf = sh->raid_conf;
162 	unsigned long flags;
163 
164 	spin_lock_irqsave(&conf->device_lock, flags);
165 	__release_stripe(conf, sh);
166 	spin_unlock_irqrestore(&conf->device_lock, flags);
167 }
168 
169 static inline void remove_hash(struct stripe_head *sh)
170 {
171 	pr_debug("remove_hash(), stripe %llu\n",
172 		(unsigned long long)sh->sector);
173 
174 	hlist_del_init(&sh->hash);
175 }
176 
177 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
178 {
179 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
180 
181 	pr_debug("insert_hash(), stripe %llu\n",
182 		(unsigned long long)sh->sector);
183 
184 	CHECK_DEVLOCK();
185 	hlist_add_head(&sh->hash, hp);
186 }
187 
188 
189 /* find an idle stripe, make sure it is unhashed, and return it. */
190 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
191 {
192 	struct stripe_head *sh = NULL;
193 	struct list_head *first;
194 
195 	CHECK_DEVLOCK();
196 	if (list_empty(&conf->inactive_list))
197 		goto out;
198 	first = conf->inactive_list.next;
199 	sh = list_entry(first, struct stripe_head, lru);
200 	list_del_init(first);
201 	remove_hash(sh);
202 	atomic_inc(&conf->active_stripes);
203 out:
204 	return sh;
205 }
206 
207 static void shrink_buffers(struct stripe_head *sh, int num)
208 {
209 	struct page *p;
210 	int i;
211 
212 	for (i=0; i<num ; i++) {
213 		p = sh->dev[i].page;
214 		if (!p)
215 			continue;
216 		sh->dev[i].page = NULL;
217 		put_page(p);
218 	}
219 }
220 
221 static int grow_buffers(struct stripe_head *sh, int num)
222 {
223 	int i;
224 
225 	for (i=0; i<num; i++) {
226 		struct page *page;
227 
228 		if (!(page = alloc_page(GFP_KERNEL))) {
229 			return 1;
230 		}
231 		sh->dev[i].page = page;
232 	}
233 	return 0;
234 }
235 
236 static void raid5_build_block (struct stripe_head *sh, int i);
237 
238 static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks)
239 {
240 	raid5_conf_t *conf = sh->raid_conf;
241 	int i;
242 
243 	BUG_ON(atomic_read(&sh->count) != 0);
244 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
245 	BUG_ON(sh->ops.pending || sh->ops.ack || sh->ops.complete);
246 
247 	CHECK_DEVLOCK();
248 	pr_debug("init_stripe called, stripe %llu\n",
249 		(unsigned long long)sh->sector);
250 
251 	remove_hash(sh);
252 
253 	sh->sector = sector;
254 	sh->pd_idx = pd_idx;
255 	sh->state = 0;
256 
257 	sh->disks = disks;
258 
259 	for (i = sh->disks; i--; ) {
260 		struct r5dev *dev = &sh->dev[i];
261 
262 		if (dev->toread || dev->read || dev->towrite || dev->written ||
263 		    test_bit(R5_LOCKED, &dev->flags)) {
264 			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
265 			       (unsigned long long)sh->sector, i, dev->toread,
266 			       dev->read, dev->towrite, dev->written,
267 			       test_bit(R5_LOCKED, &dev->flags));
268 			BUG();
269 		}
270 		dev->flags = 0;
271 		raid5_build_block(sh, i);
272 	}
273 	insert_hash(conf, sh);
274 }
275 
276 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
277 {
278 	struct stripe_head *sh;
279 	struct hlist_node *hn;
280 
281 	CHECK_DEVLOCK();
282 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
283 	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
284 		if (sh->sector == sector && sh->disks == disks)
285 			return sh;
286 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
287 	return NULL;
288 }
289 
290 static void unplug_slaves(mddev_t *mddev);
291 static void raid5_unplug_device(struct request_queue *q);
292 
293 static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks,
294 					     int pd_idx, int noblock)
295 {
296 	struct stripe_head *sh;
297 
298 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
299 
300 	spin_lock_irq(&conf->device_lock);
301 
302 	do {
303 		wait_event_lock_irq(conf->wait_for_stripe,
304 				    conf->quiesce == 0,
305 				    conf->device_lock, /* nothing */);
306 		sh = __find_stripe(conf, sector, disks);
307 		if (!sh) {
308 			if (!conf->inactive_blocked)
309 				sh = get_free_stripe(conf);
310 			if (noblock && sh == NULL)
311 				break;
312 			if (!sh) {
313 				conf->inactive_blocked = 1;
314 				wait_event_lock_irq(conf->wait_for_stripe,
315 						    !list_empty(&conf->inactive_list) &&
316 						    (atomic_read(&conf->active_stripes)
317 						     < (conf->max_nr_stripes *3/4)
318 						     || !conf->inactive_blocked),
319 						    conf->device_lock,
320 						    raid5_unplug_device(conf->mddev->queue)
321 					);
322 				conf->inactive_blocked = 0;
323 			} else
324 				init_stripe(sh, sector, pd_idx, disks);
325 		} else {
326 			if (atomic_read(&sh->count)) {
327 			  BUG_ON(!list_empty(&sh->lru));
328 			} else {
329 				if (!test_bit(STRIPE_HANDLE, &sh->state))
330 					atomic_inc(&conf->active_stripes);
331 				if (list_empty(&sh->lru) &&
332 				    !test_bit(STRIPE_EXPANDING, &sh->state))
333 					BUG();
334 				list_del_init(&sh->lru);
335 			}
336 		}
337 	} while (sh == NULL);
338 
339 	if (sh)
340 		atomic_inc(&sh->count);
341 
342 	spin_unlock_irq(&conf->device_lock);
343 	return sh;
344 }
345 
346 /* test_and_ack_op() ensures that we only dequeue an operation once */
347 #define test_and_ack_op(op, pend) \
348 do {							\
349 	if (test_bit(op, &sh->ops.pending) &&		\
350 		!test_bit(op, &sh->ops.complete)) {	\
351 		if (test_and_set_bit(op, &sh->ops.ack)) \
352 			clear_bit(op, &pend);		\
353 		else					\
354 			ack++;				\
355 	} else						\
356 		clear_bit(op, &pend);			\
357 } while (0)
358 
359 /* find new work to run, do not resubmit work that is already
360  * in flight
361  */
362 static unsigned long get_stripe_work(struct stripe_head *sh)
363 {
364 	unsigned long pending;
365 	int ack = 0;
366 
367 	pending = sh->ops.pending;
368 
369 	test_and_ack_op(STRIPE_OP_BIOFILL, pending);
370 	test_and_ack_op(STRIPE_OP_COMPUTE_BLK, pending);
371 	test_and_ack_op(STRIPE_OP_PREXOR, pending);
372 	test_and_ack_op(STRIPE_OP_BIODRAIN, pending);
373 	test_and_ack_op(STRIPE_OP_POSTXOR, pending);
374 	test_and_ack_op(STRIPE_OP_CHECK, pending);
375 	if (test_and_clear_bit(STRIPE_OP_IO, &sh->ops.pending))
376 		ack++;
377 
378 	sh->ops.count -= ack;
379 	if (unlikely(sh->ops.count < 0)) {
380 		printk(KERN_ERR "pending: %#lx ops.pending: %#lx ops.ack: %#lx "
381 			"ops.complete: %#lx\n", pending, sh->ops.pending,
382 			sh->ops.ack, sh->ops.complete);
383 		BUG();
384 	}
385 
386 	return pending;
387 }
388 
389 static void
390 raid5_end_read_request(struct bio *bi, int error);
391 static void
392 raid5_end_write_request(struct bio *bi, int error);
393 
394 static void ops_run_io(struct stripe_head *sh)
395 {
396 	raid5_conf_t *conf = sh->raid_conf;
397 	int i, disks = sh->disks;
398 
399 	might_sleep();
400 
401 	for (i = disks; i--; ) {
402 		int rw;
403 		struct bio *bi;
404 		mdk_rdev_t *rdev;
405 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
406 			rw = WRITE;
407 		else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
408 			rw = READ;
409 		else
410 			continue;
411 
412 		bi = &sh->dev[i].req;
413 
414 		bi->bi_rw = rw;
415 		if (rw == WRITE)
416 			bi->bi_end_io = raid5_end_write_request;
417 		else
418 			bi->bi_end_io = raid5_end_read_request;
419 
420 		rcu_read_lock();
421 		rdev = rcu_dereference(conf->disks[i].rdev);
422 		if (rdev && test_bit(Faulty, &rdev->flags))
423 			rdev = NULL;
424 		if (rdev)
425 			atomic_inc(&rdev->nr_pending);
426 		rcu_read_unlock();
427 
428 		if (rdev) {
429 			if (test_bit(STRIPE_SYNCING, &sh->state) ||
430 				test_bit(STRIPE_EXPAND_SOURCE, &sh->state) ||
431 				test_bit(STRIPE_EXPAND_READY, &sh->state))
432 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
433 
434 			bi->bi_bdev = rdev->bdev;
435 			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
436 				__FUNCTION__, (unsigned long long)sh->sector,
437 				bi->bi_rw, i);
438 			atomic_inc(&sh->count);
439 			bi->bi_sector = sh->sector + rdev->data_offset;
440 			bi->bi_flags = 1 << BIO_UPTODATE;
441 			bi->bi_vcnt = 1;
442 			bi->bi_max_vecs = 1;
443 			bi->bi_idx = 0;
444 			bi->bi_io_vec = &sh->dev[i].vec;
445 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
446 			bi->bi_io_vec[0].bv_offset = 0;
447 			bi->bi_size = STRIPE_SIZE;
448 			bi->bi_next = NULL;
449 			if (rw == WRITE &&
450 			    test_bit(R5_ReWrite, &sh->dev[i].flags))
451 				atomic_add(STRIPE_SECTORS,
452 					&rdev->corrected_errors);
453 			generic_make_request(bi);
454 		} else {
455 			if (rw == WRITE)
456 				set_bit(STRIPE_DEGRADED, &sh->state);
457 			pr_debug("skip op %ld on disc %d for sector %llu\n",
458 				bi->bi_rw, i, (unsigned long long)sh->sector);
459 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
460 			set_bit(STRIPE_HANDLE, &sh->state);
461 		}
462 	}
463 }
464 
465 static struct dma_async_tx_descriptor *
466 async_copy_data(int frombio, struct bio *bio, struct page *page,
467 	sector_t sector, struct dma_async_tx_descriptor *tx)
468 {
469 	struct bio_vec *bvl;
470 	struct page *bio_page;
471 	int i;
472 	int page_offset;
473 
474 	if (bio->bi_sector >= sector)
475 		page_offset = (signed)(bio->bi_sector - sector) * 512;
476 	else
477 		page_offset = (signed)(sector - bio->bi_sector) * -512;
478 	bio_for_each_segment(bvl, bio, i) {
479 		int len = bio_iovec_idx(bio, i)->bv_len;
480 		int clen;
481 		int b_offset = 0;
482 
483 		if (page_offset < 0) {
484 			b_offset = -page_offset;
485 			page_offset += b_offset;
486 			len -= b_offset;
487 		}
488 
489 		if (len > 0 && page_offset + len > STRIPE_SIZE)
490 			clen = STRIPE_SIZE - page_offset;
491 		else
492 			clen = len;
493 
494 		if (clen > 0) {
495 			b_offset += bio_iovec_idx(bio, i)->bv_offset;
496 			bio_page = bio_iovec_idx(bio, i)->bv_page;
497 			if (frombio)
498 				tx = async_memcpy(page, bio_page, page_offset,
499 					b_offset, clen,
500 					ASYNC_TX_DEP_ACK,
501 					tx, NULL, NULL);
502 			else
503 				tx = async_memcpy(bio_page, page, b_offset,
504 					page_offset, clen,
505 					ASYNC_TX_DEP_ACK,
506 					tx, NULL, NULL);
507 		}
508 		if (clen < len) /* hit end of page */
509 			break;
510 		page_offset +=  len;
511 	}
512 
513 	return tx;
514 }
515 
516 static void ops_complete_biofill(void *stripe_head_ref)
517 {
518 	struct stripe_head *sh = stripe_head_ref;
519 	struct bio *return_bi = NULL;
520 	raid5_conf_t *conf = sh->raid_conf;
521 	int i;
522 
523 	pr_debug("%s: stripe %llu\n", __FUNCTION__,
524 		(unsigned long long)sh->sector);
525 
526 	/* clear completed biofills */
527 	for (i = sh->disks; i--; ) {
528 		struct r5dev *dev = &sh->dev[i];
529 
530 		/* acknowledge completion of a biofill operation */
531 		/* and check if we need to reply to a read request,
532 		 * new R5_Wantfill requests are held off until
533 		 * !test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending)
534 		 */
535 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
536 			struct bio *rbi, *rbi2;
537 
538 			/* The access to dev->read is outside of the
539 			 * spin_lock_irq(&conf->device_lock), but is protected
540 			 * by the STRIPE_OP_BIOFILL pending bit
541 			 */
542 			BUG_ON(!dev->read);
543 			rbi = dev->read;
544 			dev->read = NULL;
545 			while (rbi && rbi->bi_sector <
546 				dev->sector + STRIPE_SECTORS) {
547 				rbi2 = r5_next_bio(rbi, dev->sector);
548 				spin_lock_irq(&conf->device_lock);
549 				if (--rbi->bi_phys_segments == 0) {
550 					rbi->bi_next = return_bi;
551 					return_bi = rbi;
552 				}
553 				spin_unlock_irq(&conf->device_lock);
554 				rbi = rbi2;
555 			}
556 		}
557 	}
558 	set_bit(STRIPE_OP_BIOFILL, &sh->ops.complete);
559 
560 	return_io(return_bi);
561 
562 	set_bit(STRIPE_HANDLE, &sh->state);
563 	release_stripe(sh);
564 }
565 
566 static void ops_run_biofill(struct stripe_head *sh)
567 {
568 	struct dma_async_tx_descriptor *tx = NULL;
569 	raid5_conf_t *conf = sh->raid_conf;
570 	int i;
571 
572 	pr_debug("%s: stripe %llu\n", __FUNCTION__,
573 		(unsigned long long)sh->sector);
574 
575 	for (i = sh->disks; i--; ) {
576 		struct r5dev *dev = &sh->dev[i];
577 		if (test_bit(R5_Wantfill, &dev->flags)) {
578 			struct bio *rbi;
579 			spin_lock_irq(&conf->device_lock);
580 			dev->read = rbi = dev->toread;
581 			dev->toread = NULL;
582 			spin_unlock_irq(&conf->device_lock);
583 			while (rbi && rbi->bi_sector <
584 				dev->sector + STRIPE_SECTORS) {
585 				tx = async_copy_data(0, rbi, dev->page,
586 					dev->sector, tx);
587 				rbi = r5_next_bio(rbi, dev->sector);
588 			}
589 		}
590 	}
591 
592 	atomic_inc(&sh->count);
593 	async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
594 		ops_complete_biofill, sh);
595 }
596 
597 static void ops_complete_compute5(void *stripe_head_ref)
598 {
599 	struct stripe_head *sh = stripe_head_ref;
600 	int target = sh->ops.target;
601 	struct r5dev *tgt = &sh->dev[target];
602 
603 	pr_debug("%s: stripe %llu\n", __FUNCTION__,
604 		(unsigned long long)sh->sector);
605 
606 	set_bit(R5_UPTODATE, &tgt->flags);
607 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
608 	clear_bit(R5_Wantcompute, &tgt->flags);
609 	set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
610 	set_bit(STRIPE_HANDLE, &sh->state);
611 	release_stripe(sh);
612 }
613 
614 static struct dma_async_tx_descriptor *
615 ops_run_compute5(struct stripe_head *sh, unsigned long pending)
616 {
617 	/* kernel stack size limits the total number of disks */
618 	int disks = sh->disks;
619 	struct page *xor_srcs[disks];
620 	int target = sh->ops.target;
621 	struct r5dev *tgt = &sh->dev[target];
622 	struct page *xor_dest = tgt->page;
623 	int count = 0;
624 	struct dma_async_tx_descriptor *tx;
625 	int i;
626 
627 	pr_debug("%s: stripe %llu block: %d\n",
628 		__FUNCTION__, (unsigned long long)sh->sector, target);
629 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
630 
631 	for (i = disks; i--; )
632 		if (i != target)
633 			xor_srcs[count++] = sh->dev[i].page;
634 
635 	atomic_inc(&sh->count);
636 
637 	if (unlikely(count == 1))
638 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
639 			0, NULL, ops_complete_compute5, sh);
640 	else
641 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
642 			ASYNC_TX_XOR_ZERO_DST, NULL,
643 			ops_complete_compute5, sh);
644 
645 	/* ack now if postxor is not set to be run */
646 	if (tx && !test_bit(STRIPE_OP_POSTXOR, &pending))
647 		async_tx_ack(tx);
648 
649 	return tx;
650 }
651 
652 static void ops_complete_prexor(void *stripe_head_ref)
653 {
654 	struct stripe_head *sh = stripe_head_ref;
655 
656 	pr_debug("%s: stripe %llu\n", __FUNCTION__,
657 		(unsigned long long)sh->sector);
658 
659 	set_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
660 }
661 
662 static struct dma_async_tx_descriptor *
663 ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
664 {
665 	/* kernel stack size limits the total number of disks */
666 	int disks = sh->disks;
667 	struct page *xor_srcs[disks];
668 	int count = 0, pd_idx = sh->pd_idx, i;
669 
670 	/* existing parity data subtracted */
671 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
672 
673 	pr_debug("%s: stripe %llu\n", __FUNCTION__,
674 		(unsigned long long)sh->sector);
675 
676 	for (i = disks; i--; ) {
677 		struct r5dev *dev = &sh->dev[i];
678 		/* Only process blocks that are known to be uptodate */
679 		if (dev->towrite && test_bit(R5_Wantprexor, &dev->flags))
680 			xor_srcs[count++] = dev->page;
681 	}
682 
683 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
684 		ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
685 		ops_complete_prexor, sh);
686 
687 	return tx;
688 }
689 
690 static struct dma_async_tx_descriptor *
691 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
692 {
693 	int disks = sh->disks;
694 	int pd_idx = sh->pd_idx, i;
695 
696 	/* check if prexor is active which means only process blocks
697 	 * that are part of a read-modify-write (Wantprexor)
698 	 */
699 	int prexor = test_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
700 
701 	pr_debug("%s: stripe %llu\n", __FUNCTION__,
702 		(unsigned long long)sh->sector);
703 
704 	for (i = disks; i--; ) {
705 		struct r5dev *dev = &sh->dev[i];
706 		struct bio *chosen;
707 		int towrite;
708 
709 		towrite = 0;
710 		if (prexor) { /* rmw */
711 			if (dev->towrite &&
712 			    test_bit(R5_Wantprexor, &dev->flags))
713 				towrite = 1;
714 		} else { /* rcw */
715 			if (i != pd_idx && dev->towrite &&
716 				test_bit(R5_LOCKED, &dev->flags))
717 				towrite = 1;
718 		}
719 
720 		if (towrite) {
721 			struct bio *wbi;
722 
723 			spin_lock(&sh->lock);
724 			chosen = dev->towrite;
725 			dev->towrite = NULL;
726 			BUG_ON(dev->written);
727 			wbi = dev->written = chosen;
728 			spin_unlock(&sh->lock);
729 
730 			while (wbi && wbi->bi_sector <
731 				dev->sector + STRIPE_SECTORS) {
732 				tx = async_copy_data(1, wbi, dev->page,
733 					dev->sector, tx);
734 				wbi = r5_next_bio(wbi, dev->sector);
735 			}
736 		}
737 	}
738 
739 	return tx;
740 }
741 
742 static void ops_complete_postxor(void *stripe_head_ref)
743 {
744 	struct stripe_head *sh = stripe_head_ref;
745 
746 	pr_debug("%s: stripe %llu\n", __FUNCTION__,
747 		(unsigned long long)sh->sector);
748 
749 	set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
750 	set_bit(STRIPE_HANDLE, &sh->state);
751 	release_stripe(sh);
752 }
753 
754 static void ops_complete_write(void *stripe_head_ref)
755 {
756 	struct stripe_head *sh = stripe_head_ref;
757 	int disks = sh->disks, i, pd_idx = sh->pd_idx;
758 
759 	pr_debug("%s: stripe %llu\n", __FUNCTION__,
760 		(unsigned long long)sh->sector);
761 
762 	for (i = disks; i--; ) {
763 		struct r5dev *dev = &sh->dev[i];
764 		if (dev->written || i == pd_idx)
765 			set_bit(R5_UPTODATE, &dev->flags);
766 	}
767 
768 	set_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
769 	set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
770 
771 	set_bit(STRIPE_HANDLE, &sh->state);
772 	release_stripe(sh);
773 }
774 
775 static void
776 ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
777 {
778 	/* kernel stack size limits the total number of disks */
779 	int disks = sh->disks;
780 	struct page *xor_srcs[disks];
781 
782 	int count = 0, pd_idx = sh->pd_idx, i;
783 	struct page *xor_dest;
784 	int prexor = test_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
785 	unsigned long flags;
786 	dma_async_tx_callback callback;
787 
788 	pr_debug("%s: stripe %llu\n", __FUNCTION__,
789 		(unsigned long long)sh->sector);
790 
791 	/* check if prexor is active which means only process blocks
792 	 * that are part of a read-modify-write (written)
793 	 */
794 	if (prexor) {
795 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
796 		for (i = disks; i--; ) {
797 			struct r5dev *dev = &sh->dev[i];
798 			if (dev->written)
799 				xor_srcs[count++] = dev->page;
800 		}
801 	} else {
802 		xor_dest = sh->dev[pd_idx].page;
803 		for (i = disks; i--; ) {
804 			struct r5dev *dev = &sh->dev[i];
805 			if (i != pd_idx)
806 				xor_srcs[count++] = dev->page;
807 		}
808 	}
809 
810 	/* check whether this postxor is part of a write */
811 	callback = test_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending) ?
812 		ops_complete_write : ops_complete_postxor;
813 
814 	/* 1/ if we prexor'd then the dest is reused as a source
815 	 * 2/ if we did not prexor then we are redoing the parity
816 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
817 	 * for the synchronous xor case
818 	 */
819 	flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
820 		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
821 
822 	atomic_inc(&sh->count);
823 
824 	if (unlikely(count == 1)) {
825 		flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
826 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
827 			flags, tx, callback, sh);
828 	} else
829 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
830 			flags, tx, callback, sh);
831 }
832 
833 static void ops_complete_check(void *stripe_head_ref)
834 {
835 	struct stripe_head *sh = stripe_head_ref;
836 	int pd_idx = sh->pd_idx;
837 
838 	pr_debug("%s: stripe %llu\n", __FUNCTION__,
839 		(unsigned long long)sh->sector);
840 
841 	if (test_and_clear_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending) &&
842 		sh->ops.zero_sum_result == 0)
843 		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
844 
845 	set_bit(STRIPE_OP_CHECK, &sh->ops.complete);
846 	set_bit(STRIPE_HANDLE, &sh->state);
847 	release_stripe(sh);
848 }
849 
850 static void ops_run_check(struct stripe_head *sh)
851 {
852 	/* kernel stack size limits the total number of disks */
853 	int disks = sh->disks;
854 	struct page *xor_srcs[disks];
855 	struct dma_async_tx_descriptor *tx;
856 
857 	int count = 0, pd_idx = sh->pd_idx, i;
858 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
859 
860 	pr_debug("%s: stripe %llu\n", __FUNCTION__,
861 		(unsigned long long)sh->sector);
862 
863 	for (i = disks; i--; ) {
864 		struct r5dev *dev = &sh->dev[i];
865 		if (i != pd_idx)
866 			xor_srcs[count++] = dev->page;
867 	}
868 
869 	tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
870 		&sh->ops.zero_sum_result, 0, NULL, NULL, NULL);
871 
872 	if (tx)
873 		set_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending);
874 	else
875 		clear_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending);
876 
877 	atomic_inc(&sh->count);
878 	tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
879 		ops_complete_check, sh);
880 }
881 
882 static void raid5_run_ops(struct stripe_head *sh, unsigned long pending)
883 {
884 	int overlap_clear = 0, i, disks = sh->disks;
885 	struct dma_async_tx_descriptor *tx = NULL;
886 
887 	if (test_bit(STRIPE_OP_BIOFILL, &pending)) {
888 		ops_run_biofill(sh);
889 		overlap_clear++;
890 	}
891 
892 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &pending))
893 		tx = ops_run_compute5(sh, pending);
894 
895 	if (test_bit(STRIPE_OP_PREXOR, &pending))
896 		tx = ops_run_prexor(sh, tx);
897 
898 	if (test_bit(STRIPE_OP_BIODRAIN, &pending)) {
899 		tx = ops_run_biodrain(sh, tx);
900 		overlap_clear++;
901 	}
902 
903 	if (test_bit(STRIPE_OP_POSTXOR, &pending))
904 		ops_run_postxor(sh, tx);
905 
906 	if (test_bit(STRIPE_OP_CHECK, &pending))
907 		ops_run_check(sh);
908 
909 	if (test_bit(STRIPE_OP_IO, &pending))
910 		ops_run_io(sh);
911 
912 	if (overlap_clear)
913 		for (i = disks; i--; ) {
914 			struct r5dev *dev = &sh->dev[i];
915 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
916 				wake_up(&sh->raid_conf->wait_for_overlap);
917 		}
918 }
919 
920 static int grow_one_stripe(raid5_conf_t *conf)
921 {
922 	struct stripe_head *sh;
923 	sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
924 	if (!sh)
925 		return 0;
926 	memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
927 	sh->raid_conf = conf;
928 	spin_lock_init(&sh->lock);
929 
930 	if (grow_buffers(sh, conf->raid_disks)) {
931 		shrink_buffers(sh, conf->raid_disks);
932 		kmem_cache_free(conf->slab_cache, sh);
933 		return 0;
934 	}
935 	sh->disks = conf->raid_disks;
936 	/* we just created an active stripe so... */
937 	atomic_set(&sh->count, 1);
938 	atomic_inc(&conf->active_stripes);
939 	INIT_LIST_HEAD(&sh->lru);
940 	release_stripe(sh);
941 	return 1;
942 }
943 
944 static int grow_stripes(raid5_conf_t *conf, int num)
945 {
946 	struct kmem_cache *sc;
947 	int devs = conf->raid_disks;
948 
949 	sprintf(conf->cache_name[0], "raid5-%s", mdname(conf->mddev));
950 	sprintf(conf->cache_name[1], "raid5-%s-alt", mdname(conf->mddev));
951 	conf->active_name = 0;
952 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
953 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
954 			       0, 0, NULL);
955 	if (!sc)
956 		return 1;
957 	conf->slab_cache = sc;
958 	conf->pool_size = devs;
959 	while (num--)
960 		if (!grow_one_stripe(conf))
961 			return 1;
962 	return 0;
963 }
964 
965 #ifdef CONFIG_MD_RAID5_RESHAPE
966 static int resize_stripes(raid5_conf_t *conf, int newsize)
967 {
968 	/* Make all the stripes able to hold 'newsize' devices.
969 	 * New slots in each stripe get 'page' set to a new page.
970 	 *
971 	 * This happens in stages:
972 	 * 1/ create a new kmem_cache and allocate the required number of
973 	 *    stripe_heads.
974 	 * 2/ gather all the old stripe_heads and tranfer the pages across
975 	 *    to the new stripe_heads.  This will have the side effect of
976 	 *    freezing the array as once all stripe_heads have been collected,
977 	 *    no IO will be possible.  Old stripe heads are freed once their
978 	 *    pages have been transferred over, and the old kmem_cache is
979 	 *    freed when all stripes are done.
980 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
981 	 *    we simple return a failre status - no need to clean anything up.
982 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
983 	 *    If this fails, we don't bother trying the shrink the
984 	 *    stripe_heads down again, we just leave them as they are.
985 	 *    As each stripe_head is processed the new one is released into
986 	 *    active service.
987 	 *
988 	 * Once step2 is started, we cannot afford to wait for a write,
989 	 * so we use GFP_NOIO allocations.
990 	 */
991 	struct stripe_head *osh, *nsh;
992 	LIST_HEAD(newstripes);
993 	struct disk_info *ndisks;
994 	int err = 0;
995 	struct kmem_cache *sc;
996 	int i;
997 
998 	if (newsize <= conf->pool_size)
999 		return 0; /* never bother to shrink */
1000 
1001 	md_allow_write(conf->mddev);
1002 
1003 	/* Step 1 */
1004 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1005 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1006 			       0, 0, NULL);
1007 	if (!sc)
1008 		return -ENOMEM;
1009 
1010 	for (i = conf->max_nr_stripes; i; i--) {
1011 		nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1012 		if (!nsh)
1013 			break;
1014 
1015 		memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1016 
1017 		nsh->raid_conf = conf;
1018 		spin_lock_init(&nsh->lock);
1019 
1020 		list_add(&nsh->lru, &newstripes);
1021 	}
1022 	if (i) {
1023 		/* didn't get enough, give up */
1024 		while (!list_empty(&newstripes)) {
1025 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
1026 			list_del(&nsh->lru);
1027 			kmem_cache_free(sc, nsh);
1028 		}
1029 		kmem_cache_destroy(sc);
1030 		return -ENOMEM;
1031 	}
1032 	/* Step 2 - Must use GFP_NOIO now.
1033 	 * OK, we have enough stripes, start collecting inactive
1034 	 * stripes and copying them over
1035 	 */
1036 	list_for_each_entry(nsh, &newstripes, lru) {
1037 		spin_lock_irq(&conf->device_lock);
1038 		wait_event_lock_irq(conf->wait_for_stripe,
1039 				    !list_empty(&conf->inactive_list),
1040 				    conf->device_lock,
1041 				    unplug_slaves(conf->mddev)
1042 			);
1043 		osh = get_free_stripe(conf);
1044 		spin_unlock_irq(&conf->device_lock);
1045 		atomic_set(&nsh->count, 1);
1046 		for(i=0; i<conf->pool_size; i++)
1047 			nsh->dev[i].page = osh->dev[i].page;
1048 		for( ; i<newsize; i++)
1049 			nsh->dev[i].page = NULL;
1050 		kmem_cache_free(conf->slab_cache, osh);
1051 	}
1052 	kmem_cache_destroy(conf->slab_cache);
1053 
1054 	/* Step 3.
1055 	 * At this point, we are holding all the stripes so the array
1056 	 * is completely stalled, so now is a good time to resize
1057 	 * conf->disks.
1058 	 */
1059 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1060 	if (ndisks) {
1061 		for (i=0; i<conf->raid_disks; i++)
1062 			ndisks[i] = conf->disks[i];
1063 		kfree(conf->disks);
1064 		conf->disks = ndisks;
1065 	} else
1066 		err = -ENOMEM;
1067 
1068 	/* Step 4, return new stripes to service */
1069 	while(!list_empty(&newstripes)) {
1070 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
1071 		list_del_init(&nsh->lru);
1072 		for (i=conf->raid_disks; i < newsize; i++)
1073 			if (nsh->dev[i].page == NULL) {
1074 				struct page *p = alloc_page(GFP_NOIO);
1075 				nsh->dev[i].page = p;
1076 				if (!p)
1077 					err = -ENOMEM;
1078 			}
1079 		release_stripe(nsh);
1080 	}
1081 	/* critical section pass, GFP_NOIO no longer needed */
1082 
1083 	conf->slab_cache = sc;
1084 	conf->active_name = 1-conf->active_name;
1085 	conf->pool_size = newsize;
1086 	return err;
1087 }
1088 #endif
1089 
1090 static int drop_one_stripe(raid5_conf_t *conf)
1091 {
1092 	struct stripe_head *sh;
1093 
1094 	spin_lock_irq(&conf->device_lock);
1095 	sh = get_free_stripe(conf);
1096 	spin_unlock_irq(&conf->device_lock);
1097 	if (!sh)
1098 		return 0;
1099 	BUG_ON(atomic_read(&sh->count));
1100 	shrink_buffers(sh, conf->pool_size);
1101 	kmem_cache_free(conf->slab_cache, sh);
1102 	atomic_dec(&conf->active_stripes);
1103 	return 1;
1104 }
1105 
1106 static void shrink_stripes(raid5_conf_t *conf)
1107 {
1108 	while (drop_one_stripe(conf))
1109 		;
1110 
1111 	if (conf->slab_cache)
1112 		kmem_cache_destroy(conf->slab_cache);
1113 	conf->slab_cache = NULL;
1114 }
1115 
1116 static void raid5_end_read_request(struct bio * bi, int error)
1117 {
1118  	struct stripe_head *sh = bi->bi_private;
1119 	raid5_conf_t *conf = sh->raid_conf;
1120 	int disks = sh->disks, i;
1121 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1122 	char b[BDEVNAME_SIZE];
1123 	mdk_rdev_t *rdev;
1124 
1125 
1126 	for (i=0 ; i<disks; i++)
1127 		if (bi == &sh->dev[i].req)
1128 			break;
1129 
1130 	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1131 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1132 		uptodate);
1133 	if (i == disks) {
1134 		BUG();
1135 		return;
1136 	}
1137 
1138 	if (uptodate) {
1139 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1140 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1141 			rdev = conf->disks[i].rdev;
1142 			printk(KERN_INFO "raid5:%s: read error corrected (%lu sectors at %llu on %s)\n",
1143 			       mdname(conf->mddev), STRIPE_SECTORS,
1144 			       (unsigned long long)sh->sector + rdev->data_offset,
1145 			       bdevname(rdev->bdev, b));
1146 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1147 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1148 		}
1149 		if (atomic_read(&conf->disks[i].rdev->read_errors))
1150 			atomic_set(&conf->disks[i].rdev->read_errors, 0);
1151 	} else {
1152 		const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1153 		int retry = 0;
1154 		rdev = conf->disks[i].rdev;
1155 
1156 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1157 		atomic_inc(&rdev->read_errors);
1158 		if (conf->mddev->degraded)
1159 			printk(KERN_WARNING "raid5:%s: read error not correctable (sector %llu on %s).\n",
1160 			       mdname(conf->mddev),
1161 			       (unsigned long long)sh->sector + rdev->data_offset,
1162 			       bdn);
1163 		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1164 			/* Oh, no!!! */
1165 			printk(KERN_WARNING "raid5:%s: read error NOT corrected!! (sector %llu on %s).\n",
1166 			       mdname(conf->mddev),
1167 			       (unsigned long long)sh->sector + rdev->data_offset,
1168 			       bdn);
1169 		else if (atomic_read(&rdev->read_errors)
1170 			 > conf->max_nr_stripes)
1171 			printk(KERN_WARNING
1172 			       "raid5:%s: Too many read errors, failing device %s.\n",
1173 			       mdname(conf->mddev), bdn);
1174 		else
1175 			retry = 1;
1176 		if (retry)
1177 			set_bit(R5_ReadError, &sh->dev[i].flags);
1178 		else {
1179 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1180 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1181 			md_error(conf->mddev, rdev);
1182 		}
1183 	}
1184 	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1185 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1186 	set_bit(STRIPE_HANDLE, &sh->state);
1187 	release_stripe(sh);
1188 }
1189 
1190 static void raid5_end_write_request (struct bio *bi, int error)
1191 {
1192  	struct stripe_head *sh = bi->bi_private;
1193 	raid5_conf_t *conf = sh->raid_conf;
1194 	int disks = sh->disks, i;
1195 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1196 
1197 	for (i=0 ; i<disks; i++)
1198 		if (bi == &sh->dev[i].req)
1199 			break;
1200 
1201 	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1202 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1203 		uptodate);
1204 	if (i == disks) {
1205 		BUG();
1206 		return;
1207 	}
1208 
1209 	if (!uptodate)
1210 		md_error(conf->mddev, conf->disks[i].rdev);
1211 
1212 	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1213 
1214 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1215 	set_bit(STRIPE_HANDLE, &sh->state);
1216 	release_stripe(sh);
1217 }
1218 
1219 
1220 static sector_t compute_blocknr(struct stripe_head *sh, int i);
1221 
1222 static void raid5_build_block (struct stripe_head *sh, int i)
1223 {
1224 	struct r5dev *dev = &sh->dev[i];
1225 
1226 	bio_init(&dev->req);
1227 	dev->req.bi_io_vec = &dev->vec;
1228 	dev->req.bi_vcnt++;
1229 	dev->req.bi_max_vecs++;
1230 	dev->vec.bv_page = dev->page;
1231 	dev->vec.bv_len = STRIPE_SIZE;
1232 	dev->vec.bv_offset = 0;
1233 
1234 	dev->req.bi_sector = sh->sector;
1235 	dev->req.bi_private = sh;
1236 
1237 	dev->flags = 0;
1238 	dev->sector = compute_blocknr(sh, i);
1239 }
1240 
1241 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1242 {
1243 	char b[BDEVNAME_SIZE];
1244 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1245 	pr_debug("raid5: error called\n");
1246 
1247 	if (!test_bit(Faulty, &rdev->flags)) {
1248 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1249 		if (test_and_clear_bit(In_sync, &rdev->flags)) {
1250 			unsigned long flags;
1251 			spin_lock_irqsave(&conf->device_lock, flags);
1252 			mddev->degraded++;
1253 			spin_unlock_irqrestore(&conf->device_lock, flags);
1254 			/*
1255 			 * if recovery was running, make sure it aborts.
1256 			 */
1257 			set_bit(MD_RECOVERY_ERR, &mddev->recovery);
1258 		}
1259 		set_bit(Faulty, &rdev->flags);
1260 		printk (KERN_ALERT
1261 			"raid5: Disk failure on %s, disabling device."
1262 			" Operation continuing on %d devices\n",
1263 			bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1264 	}
1265 }
1266 
1267 /*
1268  * Input: a 'big' sector number,
1269  * Output: index of the data and parity disk, and the sector # in them.
1270  */
1271 static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
1272 			unsigned int data_disks, unsigned int * dd_idx,
1273 			unsigned int * pd_idx, raid5_conf_t *conf)
1274 {
1275 	long stripe;
1276 	unsigned long chunk_number;
1277 	unsigned int chunk_offset;
1278 	sector_t new_sector;
1279 	int sectors_per_chunk = conf->chunk_size >> 9;
1280 
1281 	/* First compute the information on this sector */
1282 
1283 	/*
1284 	 * Compute the chunk number and the sector offset inside the chunk
1285 	 */
1286 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
1287 	chunk_number = r_sector;
1288 	BUG_ON(r_sector != chunk_number);
1289 
1290 	/*
1291 	 * Compute the stripe number
1292 	 */
1293 	stripe = chunk_number / data_disks;
1294 
1295 	/*
1296 	 * Compute the data disk and parity disk indexes inside the stripe
1297 	 */
1298 	*dd_idx = chunk_number % data_disks;
1299 
1300 	/*
1301 	 * Select the parity disk based on the user selected algorithm.
1302 	 */
1303 	switch(conf->level) {
1304 	case 4:
1305 		*pd_idx = data_disks;
1306 		break;
1307 	case 5:
1308 		switch (conf->algorithm) {
1309 		case ALGORITHM_LEFT_ASYMMETRIC:
1310 			*pd_idx = data_disks - stripe % raid_disks;
1311 			if (*dd_idx >= *pd_idx)
1312 				(*dd_idx)++;
1313 			break;
1314 		case ALGORITHM_RIGHT_ASYMMETRIC:
1315 			*pd_idx = stripe % raid_disks;
1316 			if (*dd_idx >= *pd_idx)
1317 				(*dd_idx)++;
1318 			break;
1319 		case ALGORITHM_LEFT_SYMMETRIC:
1320 			*pd_idx = data_disks - stripe % raid_disks;
1321 			*dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1322 			break;
1323 		case ALGORITHM_RIGHT_SYMMETRIC:
1324 			*pd_idx = stripe % raid_disks;
1325 			*dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1326 			break;
1327 		default:
1328 			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1329 				conf->algorithm);
1330 		}
1331 		break;
1332 	case 6:
1333 
1334 		/**** FIX THIS ****/
1335 		switch (conf->algorithm) {
1336 		case ALGORITHM_LEFT_ASYMMETRIC:
1337 			*pd_idx = raid_disks - 1 - (stripe % raid_disks);
1338 			if (*pd_idx == raid_disks-1)
1339 				(*dd_idx)++; 	/* Q D D D P */
1340 			else if (*dd_idx >= *pd_idx)
1341 				(*dd_idx) += 2; /* D D P Q D */
1342 			break;
1343 		case ALGORITHM_RIGHT_ASYMMETRIC:
1344 			*pd_idx = stripe % raid_disks;
1345 			if (*pd_idx == raid_disks-1)
1346 				(*dd_idx)++; 	/* Q D D D P */
1347 			else if (*dd_idx >= *pd_idx)
1348 				(*dd_idx) += 2; /* D D P Q D */
1349 			break;
1350 		case ALGORITHM_LEFT_SYMMETRIC:
1351 			*pd_idx = raid_disks - 1 - (stripe % raid_disks);
1352 			*dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1353 			break;
1354 		case ALGORITHM_RIGHT_SYMMETRIC:
1355 			*pd_idx = stripe % raid_disks;
1356 			*dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1357 			break;
1358 		default:
1359 			printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1360 				conf->algorithm);
1361 		}
1362 		break;
1363 	}
1364 
1365 	/*
1366 	 * Finally, compute the new sector number
1367 	 */
1368 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1369 	return new_sector;
1370 }
1371 
1372 
1373 static sector_t compute_blocknr(struct stripe_head *sh, int i)
1374 {
1375 	raid5_conf_t *conf = sh->raid_conf;
1376 	int raid_disks = sh->disks;
1377 	int data_disks = raid_disks - conf->max_degraded;
1378 	sector_t new_sector = sh->sector, check;
1379 	int sectors_per_chunk = conf->chunk_size >> 9;
1380 	sector_t stripe;
1381 	int chunk_offset;
1382 	int chunk_number, dummy1, dummy2, dd_idx = i;
1383 	sector_t r_sector;
1384 
1385 
1386 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
1387 	stripe = new_sector;
1388 	BUG_ON(new_sector != stripe);
1389 
1390 	if (i == sh->pd_idx)
1391 		return 0;
1392 	switch(conf->level) {
1393 	case 4: break;
1394 	case 5:
1395 		switch (conf->algorithm) {
1396 		case ALGORITHM_LEFT_ASYMMETRIC:
1397 		case ALGORITHM_RIGHT_ASYMMETRIC:
1398 			if (i > sh->pd_idx)
1399 				i--;
1400 			break;
1401 		case ALGORITHM_LEFT_SYMMETRIC:
1402 		case ALGORITHM_RIGHT_SYMMETRIC:
1403 			if (i < sh->pd_idx)
1404 				i += raid_disks;
1405 			i -= (sh->pd_idx + 1);
1406 			break;
1407 		default:
1408 			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1409 			       conf->algorithm);
1410 		}
1411 		break;
1412 	case 6:
1413 		if (i == raid6_next_disk(sh->pd_idx, raid_disks))
1414 			return 0; /* It is the Q disk */
1415 		switch (conf->algorithm) {
1416 		case ALGORITHM_LEFT_ASYMMETRIC:
1417 		case ALGORITHM_RIGHT_ASYMMETRIC:
1418 		  	if (sh->pd_idx == raid_disks-1)
1419 				i--; 	/* Q D D D P */
1420 			else if (i > sh->pd_idx)
1421 				i -= 2; /* D D P Q D */
1422 			break;
1423 		case ALGORITHM_LEFT_SYMMETRIC:
1424 		case ALGORITHM_RIGHT_SYMMETRIC:
1425 			if (sh->pd_idx == raid_disks-1)
1426 				i--; /* Q D D D P */
1427 			else {
1428 				/* D D P Q D */
1429 				if (i < sh->pd_idx)
1430 					i += raid_disks;
1431 				i -= (sh->pd_idx + 2);
1432 			}
1433 			break;
1434 		default:
1435 			printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1436 				conf->algorithm);
1437 		}
1438 		break;
1439 	}
1440 
1441 	chunk_number = stripe * data_disks + i;
1442 	r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1443 
1444 	check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
1445 	if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
1446 		printk(KERN_ERR "compute_blocknr: map not correct\n");
1447 		return 0;
1448 	}
1449 	return r_sector;
1450 }
1451 
1452 
1453 
1454 /*
1455  * Copy data between a page in the stripe cache, and one or more bion
1456  * The page could align with the middle of the bio, or there could be
1457  * several bion, each with several bio_vecs, which cover part of the page
1458  * Multiple bion are linked together on bi_next.  There may be extras
1459  * at the end of this list.  We ignore them.
1460  */
1461 static void copy_data(int frombio, struct bio *bio,
1462 		     struct page *page,
1463 		     sector_t sector)
1464 {
1465 	char *pa = page_address(page);
1466 	struct bio_vec *bvl;
1467 	int i;
1468 	int page_offset;
1469 
1470 	if (bio->bi_sector >= sector)
1471 		page_offset = (signed)(bio->bi_sector - sector) * 512;
1472 	else
1473 		page_offset = (signed)(sector - bio->bi_sector) * -512;
1474 	bio_for_each_segment(bvl, bio, i) {
1475 		int len = bio_iovec_idx(bio,i)->bv_len;
1476 		int clen;
1477 		int b_offset = 0;
1478 
1479 		if (page_offset < 0) {
1480 			b_offset = -page_offset;
1481 			page_offset += b_offset;
1482 			len -= b_offset;
1483 		}
1484 
1485 		if (len > 0 && page_offset + len > STRIPE_SIZE)
1486 			clen = STRIPE_SIZE - page_offset;
1487 		else clen = len;
1488 
1489 		if (clen > 0) {
1490 			char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1491 			if (frombio)
1492 				memcpy(pa+page_offset, ba+b_offset, clen);
1493 			else
1494 				memcpy(ba+b_offset, pa+page_offset, clen);
1495 			__bio_kunmap_atomic(ba, KM_USER0);
1496 		}
1497 		if (clen < len) /* hit end of page */
1498 			break;
1499 		page_offset +=  len;
1500 	}
1501 }
1502 
1503 #define check_xor()	do {						  \
1504 				if (count == MAX_XOR_BLOCKS) {		  \
1505 				xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1506 				count = 0;				  \
1507 			   }						  \
1508 			} while(0)
1509 
1510 static void compute_parity6(struct stripe_head *sh, int method)
1511 {
1512 	raid6_conf_t *conf = sh->raid_conf;
1513 	int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
1514 	struct bio *chosen;
1515 	/**** FIX THIS: This could be very bad if disks is close to 256 ****/
1516 	void *ptrs[disks];
1517 
1518 	qd_idx = raid6_next_disk(pd_idx, disks);
1519 	d0_idx = raid6_next_disk(qd_idx, disks);
1520 
1521 	pr_debug("compute_parity, stripe %llu, method %d\n",
1522 		(unsigned long long)sh->sector, method);
1523 
1524 	switch(method) {
1525 	case READ_MODIFY_WRITE:
1526 		BUG();		/* READ_MODIFY_WRITE N/A for RAID-6 */
1527 	case RECONSTRUCT_WRITE:
1528 		for (i= disks; i-- ;)
1529 			if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1530 				chosen = sh->dev[i].towrite;
1531 				sh->dev[i].towrite = NULL;
1532 
1533 				if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1534 					wake_up(&conf->wait_for_overlap);
1535 
1536 				BUG_ON(sh->dev[i].written);
1537 				sh->dev[i].written = chosen;
1538 			}
1539 		break;
1540 	case CHECK_PARITY:
1541 		BUG();		/* Not implemented yet */
1542 	}
1543 
1544 	for (i = disks; i--;)
1545 		if (sh->dev[i].written) {
1546 			sector_t sector = sh->dev[i].sector;
1547 			struct bio *wbi = sh->dev[i].written;
1548 			while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1549 				copy_data(1, wbi, sh->dev[i].page, sector);
1550 				wbi = r5_next_bio(wbi, sector);
1551 			}
1552 
1553 			set_bit(R5_LOCKED, &sh->dev[i].flags);
1554 			set_bit(R5_UPTODATE, &sh->dev[i].flags);
1555 		}
1556 
1557 //	switch(method) {
1558 //	case RECONSTRUCT_WRITE:
1559 //	case CHECK_PARITY:
1560 //	case UPDATE_PARITY:
1561 		/* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1562 		/* FIX: Is this ordering of drives even remotely optimal? */
1563 		count = 0;
1564 		i = d0_idx;
1565 		do {
1566 			ptrs[count++] = page_address(sh->dev[i].page);
1567 			if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1568 				printk("block %d/%d not uptodate on parity calc\n", i,count);
1569 			i = raid6_next_disk(i, disks);
1570 		} while ( i != d0_idx );
1571 //		break;
1572 //	}
1573 
1574 	raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);
1575 
1576 	switch(method) {
1577 	case RECONSTRUCT_WRITE:
1578 		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1579 		set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1580 		set_bit(R5_LOCKED,   &sh->dev[pd_idx].flags);
1581 		set_bit(R5_LOCKED,   &sh->dev[qd_idx].flags);
1582 		break;
1583 	case UPDATE_PARITY:
1584 		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1585 		set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1586 		break;
1587 	}
1588 }
1589 
1590 
1591 /* Compute one missing block */
1592 static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1593 {
1594 	int i, count, disks = sh->disks;
1595 	void *ptr[MAX_XOR_BLOCKS], *dest, *p;
1596 	int pd_idx = sh->pd_idx;
1597 	int qd_idx = raid6_next_disk(pd_idx, disks);
1598 
1599 	pr_debug("compute_block_1, stripe %llu, idx %d\n",
1600 		(unsigned long long)sh->sector, dd_idx);
1601 
1602 	if ( dd_idx == qd_idx ) {
1603 		/* We're actually computing the Q drive */
1604 		compute_parity6(sh, UPDATE_PARITY);
1605 	} else {
1606 		dest = page_address(sh->dev[dd_idx].page);
1607 		if (!nozero) memset(dest, 0, STRIPE_SIZE);
1608 		count = 0;
1609 		for (i = disks ; i--; ) {
1610 			if (i == dd_idx || i == qd_idx)
1611 				continue;
1612 			p = page_address(sh->dev[i].page);
1613 			if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1614 				ptr[count++] = p;
1615 			else
1616 				printk("compute_block() %d, stripe %llu, %d"
1617 				       " not present\n", dd_idx,
1618 				       (unsigned long long)sh->sector, i);
1619 
1620 			check_xor();
1621 		}
1622 		if (count)
1623 			xor_blocks(count, STRIPE_SIZE, dest, ptr);
1624 		if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1625 		else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1626 	}
1627 }
1628 
1629 /* Compute two missing blocks */
1630 static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1631 {
1632 	int i, count, disks = sh->disks;
1633 	int pd_idx = sh->pd_idx;
1634 	int qd_idx = raid6_next_disk(pd_idx, disks);
1635 	int d0_idx = raid6_next_disk(qd_idx, disks);
1636 	int faila, failb;
1637 
1638 	/* faila and failb are disk numbers relative to d0_idx */
1639 	/* pd_idx become disks-2 and qd_idx become disks-1 */
1640 	faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx;
1641 	failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx;
1642 
1643 	BUG_ON(faila == failb);
1644 	if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1645 
1646 	pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1647 	       (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb);
1648 
1649 	if ( failb == disks-1 ) {
1650 		/* Q disk is one of the missing disks */
1651 		if ( faila == disks-2 ) {
1652 			/* Missing P+Q, just recompute */
1653 			compute_parity6(sh, UPDATE_PARITY);
1654 			return;
1655 		} else {
1656 			/* We're missing D+Q; recompute D from P */
1657 			compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0);
1658 			compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1659 			return;
1660 		}
1661 	}
1662 
1663 	/* We're missing D+P or D+D; build pointer table */
1664 	{
1665 		/**** FIX THIS: This could be very bad if disks is close to 256 ****/
1666 		void *ptrs[disks];
1667 
1668 		count = 0;
1669 		i = d0_idx;
1670 		do {
1671 			ptrs[count++] = page_address(sh->dev[i].page);
1672 			i = raid6_next_disk(i, disks);
1673 			if (i != dd_idx1 && i != dd_idx2 &&
1674 			    !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1675 				printk("compute_2 with missing block %d/%d\n", count, i);
1676 		} while ( i != d0_idx );
1677 
1678 		if ( failb == disks-2 ) {
1679 			/* We're missing D+P. */
1680 			raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
1681 		} else {
1682 			/* We're missing D+D. */
1683 			raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
1684 		}
1685 
1686 		/* Both the above update both missing blocks */
1687 		set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1688 		set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1689 	}
1690 }
1691 
1692 static int
1693 handle_write_operations5(struct stripe_head *sh, int rcw, int expand)
1694 {
1695 	int i, pd_idx = sh->pd_idx, disks = sh->disks;
1696 	int locked = 0;
1697 
1698 	if (rcw) {
1699 		/* if we are not expanding this is a proper write request, and
1700 		 * there will be bios with new data to be drained into the
1701 		 * stripe cache
1702 		 */
1703 		if (!expand) {
1704 			set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1705 			sh->ops.count++;
1706 		}
1707 
1708 		set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1709 		sh->ops.count++;
1710 
1711 		for (i = disks; i--; ) {
1712 			struct r5dev *dev = &sh->dev[i];
1713 
1714 			if (dev->towrite) {
1715 				set_bit(R5_LOCKED, &dev->flags);
1716 				if (!expand)
1717 					clear_bit(R5_UPTODATE, &dev->flags);
1718 				locked++;
1719 			}
1720 		}
1721 	} else {
1722 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1723 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1724 
1725 		set_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
1726 		set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1727 		set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1728 
1729 		sh->ops.count += 3;
1730 
1731 		for (i = disks; i--; ) {
1732 			struct r5dev *dev = &sh->dev[i];
1733 			if (i == pd_idx)
1734 				continue;
1735 
1736 			/* For a read-modify write there may be blocks that are
1737 			 * locked for reading while others are ready to be
1738 			 * written so we distinguish these blocks by the
1739 			 * R5_Wantprexor bit
1740 			 */
1741 			if (dev->towrite &&
1742 			    (test_bit(R5_UPTODATE, &dev->flags) ||
1743 			    test_bit(R5_Wantcompute, &dev->flags))) {
1744 				set_bit(R5_Wantprexor, &dev->flags);
1745 				set_bit(R5_LOCKED, &dev->flags);
1746 				clear_bit(R5_UPTODATE, &dev->flags);
1747 				locked++;
1748 			}
1749 		}
1750 	}
1751 
1752 	/* keep the parity disk locked while asynchronous operations
1753 	 * are in flight
1754 	 */
1755 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1756 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1757 	locked++;
1758 
1759 	pr_debug("%s: stripe %llu locked: %d pending: %lx\n",
1760 		__FUNCTION__, (unsigned long long)sh->sector,
1761 		locked, sh->ops.pending);
1762 
1763 	return locked;
1764 }
1765 
1766 /*
1767  * Each stripe/dev can have one or more bion attached.
1768  * toread/towrite point to the first in a chain.
1769  * The bi_next chain must be in order.
1770  */
1771 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1772 {
1773 	struct bio **bip;
1774 	raid5_conf_t *conf = sh->raid_conf;
1775 	int firstwrite=0;
1776 
1777 	pr_debug("adding bh b#%llu to stripe s#%llu\n",
1778 		(unsigned long long)bi->bi_sector,
1779 		(unsigned long long)sh->sector);
1780 
1781 
1782 	spin_lock(&sh->lock);
1783 	spin_lock_irq(&conf->device_lock);
1784 	if (forwrite) {
1785 		bip = &sh->dev[dd_idx].towrite;
1786 		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1787 			firstwrite = 1;
1788 	} else
1789 		bip = &sh->dev[dd_idx].toread;
1790 	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1791 		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1792 			goto overlap;
1793 		bip = & (*bip)->bi_next;
1794 	}
1795 	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1796 		goto overlap;
1797 
1798 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1799 	if (*bip)
1800 		bi->bi_next = *bip;
1801 	*bip = bi;
1802 	bi->bi_phys_segments ++;
1803 	spin_unlock_irq(&conf->device_lock);
1804 	spin_unlock(&sh->lock);
1805 
1806 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1807 		(unsigned long long)bi->bi_sector,
1808 		(unsigned long long)sh->sector, dd_idx);
1809 
1810 	if (conf->mddev->bitmap && firstwrite) {
1811 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1812 				  STRIPE_SECTORS, 0);
1813 		sh->bm_seq = conf->seq_flush+1;
1814 		set_bit(STRIPE_BIT_DELAY, &sh->state);
1815 	}
1816 
1817 	if (forwrite) {
1818 		/* check if page is covered */
1819 		sector_t sector = sh->dev[dd_idx].sector;
1820 		for (bi=sh->dev[dd_idx].towrite;
1821 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1822 			     bi && bi->bi_sector <= sector;
1823 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1824 			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1825 				sector = bi->bi_sector + (bi->bi_size>>9);
1826 		}
1827 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1828 			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1829 	}
1830 	return 1;
1831 
1832  overlap:
1833 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1834 	spin_unlock_irq(&conf->device_lock);
1835 	spin_unlock(&sh->lock);
1836 	return 0;
1837 }
1838 
1839 static void end_reshape(raid5_conf_t *conf);
1840 
1841 static int page_is_zero(struct page *p)
1842 {
1843 	char *a = page_address(p);
1844 	return ((*(u32*)a) == 0 &&
1845 		memcmp(a, a+4, STRIPE_SIZE-4)==0);
1846 }
1847 
1848 static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks)
1849 {
1850 	int sectors_per_chunk = conf->chunk_size >> 9;
1851 	int pd_idx, dd_idx;
1852 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
1853 
1854 	raid5_compute_sector(stripe * (disks - conf->max_degraded)
1855 			     *sectors_per_chunk + chunk_offset,
1856 			     disks, disks - conf->max_degraded,
1857 			     &dd_idx, &pd_idx, conf);
1858 	return pd_idx;
1859 }
1860 
1861 static void
1862 handle_requests_to_failed_array(raid5_conf_t *conf, struct stripe_head *sh,
1863 				struct stripe_head_state *s, int disks,
1864 				struct bio **return_bi)
1865 {
1866 	int i;
1867 	for (i = disks; i--; ) {
1868 		struct bio *bi;
1869 		int bitmap_end = 0;
1870 
1871 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1872 			mdk_rdev_t *rdev;
1873 			rcu_read_lock();
1874 			rdev = rcu_dereference(conf->disks[i].rdev);
1875 			if (rdev && test_bit(In_sync, &rdev->flags))
1876 				/* multiple read failures in one stripe */
1877 				md_error(conf->mddev, rdev);
1878 			rcu_read_unlock();
1879 		}
1880 		spin_lock_irq(&conf->device_lock);
1881 		/* fail all writes first */
1882 		bi = sh->dev[i].towrite;
1883 		sh->dev[i].towrite = NULL;
1884 		if (bi) {
1885 			s->to_write--;
1886 			bitmap_end = 1;
1887 		}
1888 
1889 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1890 			wake_up(&conf->wait_for_overlap);
1891 
1892 		while (bi && bi->bi_sector <
1893 			sh->dev[i].sector + STRIPE_SECTORS) {
1894 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1895 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
1896 			if (--bi->bi_phys_segments == 0) {
1897 				md_write_end(conf->mddev);
1898 				bi->bi_next = *return_bi;
1899 				*return_bi = bi;
1900 			}
1901 			bi = nextbi;
1902 		}
1903 		/* and fail all 'written' */
1904 		bi = sh->dev[i].written;
1905 		sh->dev[i].written = NULL;
1906 		if (bi) bitmap_end = 1;
1907 		while (bi && bi->bi_sector <
1908 		       sh->dev[i].sector + STRIPE_SECTORS) {
1909 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
1910 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
1911 			if (--bi->bi_phys_segments == 0) {
1912 				md_write_end(conf->mddev);
1913 				bi->bi_next = *return_bi;
1914 				*return_bi = bi;
1915 			}
1916 			bi = bi2;
1917 		}
1918 
1919 		/* fail any reads if this device is non-operational and
1920 		 * the data has not reached the cache yet.
1921 		 */
1922 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
1923 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
1924 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
1925 			bi = sh->dev[i].toread;
1926 			sh->dev[i].toread = NULL;
1927 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1928 				wake_up(&conf->wait_for_overlap);
1929 			if (bi) s->to_read--;
1930 			while (bi && bi->bi_sector <
1931 			       sh->dev[i].sector + STRIPE_SECTORS) {
1932 				struct bio *nextbi =
1933 					r5_next_bio(bi, sh->dev[i].sector);
1934 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
1935 				if (--bi->bi_phys_segments == 0) {
1936 					bi->bi_next = *return_bi;
1937 					*return_bi = bi;
1938 				}
1939 				bi = nextbi;
1940 			}
1941 		}
1942 		spin_unlock_irq(&conf->device_lock);
1943 		if (bitmap_end)
1944 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1945 					STRIPE_SECTORS, 0, 0);
1946 	}
1947 
1948 }
1949 
1950 /* __handle_issuing_new_read_requests5 - returns 0 if there are no more disks
1951  * to process
1952  */
1953 static int __handle_issuing_new_read_requests5(struct stripe_head *sh,
1954 			struct stripe_head_state *s, int disk_idx, int disks)
1955 {
1956 	struct r5dev *dev = &sh->dev[disk_idx];
1957 	struct r5dev *failed_dev = &sh->dev[s->failed_num];
1958 
1959 	/* don't schedule compute operations or reads on the parity block while
1960 	 * a check is in flight
1961 	 */
1962 	if ((disk_idx == sh->pd_idx) &&
1963 	     test_bit(STRIPE_OP_CHECK, &sh->ops.pending))
1964 		return ~0;
1965 
1966 	/* is the data in this block needed, and can we get it? */
1967 	if (!test_bit(R5_LOCKED, &dev->flags) &&
1968 	    !test_bit(R5_UPTODATE, &dev->flags) && (dev->toread ||
1969 	    (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
1970 	     s->syncing || s->expanding || (s->failed &&
1971 	     (failed_dev->toread || (failed_dev->towrite &&
1972 	     !test_bit(R5_OVERWRITE, &failed_dev->flags)
1973 	     ))))) {
1974 		/* 1/ We would like to get this block, possibly by computing it,
1975 		 * but we might not be able to.
1976 		 *
1977 		 * 2/ Since parity check operations potentially make the parity
1978 		 * block !uptodate it will need to be refreshed before any
1979 		 * compute operations on data disks are scheduled.
1980 		 *
1981 		 * 3/ We hold off parity block re-reads until check operations
1982 		 * have quiesced.
1983 		 */
1984 		if ((s->uptodate == disks - 1) &&
1985 		    !test_bit(STRIPE_OP_CHECK, &sh->ops.pending)) {
1986 			set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
1987 			set_bit(R5_Wantcompute, &dev->flags);
1988 			sh->ops.target = disk_idx;
1989 			s->req_compute = 1;
1990 			sh->ops.count++;
1991 			/* Careful: from this point on 'uptodate' is in the eye
1992 			 * of raid5_run_ops which services 'compute' operations
1993 			 * before writes. R5_Wantcompute flags a block that will
1994 			 * be R5_UPTODATE by the time it is needed for a
1995 			 * subsequent operation.
1996 			 */
1997 			s->uptodate++;
1998 			return 0; /* uptodate + compute == disks */
1999 		} else if ((s->uptodate < disks - 1) &&
2000 			test_bit(R5_Insync, &dev->flags)) {
2001 			/* Note: we hold off compute operations while checks are
2002 			 * in flight, but we still prefer 'compute' over 'read'
2003 			 * hence we only read if (uptodate < * disks-1)
2004 			 */
2005 			set_bit(R5_LOCKED, &dev->flags);
2006 			set_bit(R5_Wantread, &dev->flags);
2007 			if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2008 				sh->ops.count++;
2009 			s->locked++;
2010 			pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2011 				s->syncing);
2012 		}
2013 	}
2014 
2015 	return ~0;
2016 }
2017 
2018 static void handle_issuing_new_read_requests5(struct stripe_head *sh,
2019 			struct stripe_head_state *s, int disks)
2020 {
2021 	int i;
2022 
2023 	/* Clear completed compute operations.  Parity recovery
2024 	 * (STRIPE_OP_MOD_REPAIR_PD) implies a write-back which is handled
2025 	 * later on in this routine
2026 	 */
2027 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) &&
2028 		!test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2029 		clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
2030 		clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack);
2031 		clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2032 	}
2033 
2034 	/* look for blocks to read/compute, skip this if a compute
2035 	 * is already in flight, or if the stripe contents are in the
2036 	 * midst of changing due to a write
2037 	 */
2038 	if (!test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
2039 		!test_bit(STRIPE_OP_PREXOR, &sh->ops.pending) &&
2040 		!test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2041 		for (i = disks; i--; )
2042 			if (__handle_issuing_new_read_requests5(
2043 				sh, s, i, disks) == 0)
2044 				break;
2045 	}
2046 	set_bit(STRIPE_HANDLE, &sh->state);
2047 }
2048 
2049 static void handle_issuing_new_read_requests6(struct stripe_head *sh,
2050 			struct stripe_head_state *s, struct r6_state *r6s,
2051 			int disks)
2052 {
2053 	int i;
2054 	for (i = disks; i--; ) {
2055 		struct r5dev *dev = &sh->dev[i];
2056 		if (!test_bit(R5_LOCKED, &dev->flags) &&
2057 		    !test_bit(R5_UPTODATE, &dev->flags) &&
2058 		    (dev->toread || (dev->towrite &&
2059 		     !test_bit(R5_OVERWRITE, &dev->flags)) ||
2060 		     s->syncing || s->expanding ||
2061 		     (s->failed >= 1 &&
2062 		      (sh->dev[r6s->failed_num[0]].toread ||
2063 		       s->to_write)) ||
2064 		     (s->failed >= 2 &&
2065 		      (sh->dev[r6s->failed_num[1]].toread ||
2066 		       s->to_write)))) {
2067 			/* we would like to get this block, possibly
2068 			 * by computing it, but we might not be able to
2069 			 */
2070 			if (s->uptodate == disks-1) {
2071 				pr_debug("Computing stripe %llu block %d\n",
2072 				       (unsigned long long)sh->sector, i);
2073 				compute_block_1(sh, i, 0);
2074 				s->uptodate++;
2075 			} else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
2076 				/* Computing 2-failure is *very* expensive; only
2077 				 * do it if failed >= 2
2078 				 */
2079 				int other;
2080 				for (other = disks; other--; ) {
2081 					if (other == i)
2082 						continue;
2083 					if (!test_bit(R5_UPTODATE,
2084 					      &sh->dev[other].flags))
2085 						break;
2086 				}
2087 				BUG_ON(other < 0);
2088 				pr_debug("Computing stripe %llu blocks %d,%d\n",
2089 				       (unsigned long long)sh->sector,
2090 				       i, other);
2091 				compute_block_2(sh, i, other);
2092 				s->uptodate += 2;
2093 			} else if (test_bit(R5_Insync, &dev->flags)) {
2094 				set_bit(R5_LOCKED, &dev->flags);
2095 				set_bit(R5_Wantread, &dev->flags);
2096 				s->locked++;
2097 				pr_debug("Reading block %d (sync=%d)\n",
2098 					i, s->syncing);
2099 			}
2100 		}
2101 	}
2102 	set_bit(STRIPE_HANDLE, &sh->state);
2103 }
2104 
2105 
2106 /* handle_completed_write_requests
2107  * any written block on an uptodate or failed drive can be returned.
2108  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2109  * never LOCKED, so we don't need to test 'failed' directly.
2110  */
2111 static void handle_completed_write_requests(raid5_conf_t *conf,
2112 	struct stripe_head *sh, int disks, struct bio **return_bi)
2113 {
2114 	int i;
2115 	struct r5dev *dev;
2116 
2117 	for (i = disks; i--; )
2118 		if (sh->dev[i].written) {
2119 			dev = &sh->dev[i];
2120 			if (!test_bit(R5_LOCKED, &dev->flags) &&
2121 				test_bit(R5_UPTODATE, &dev->flags)) {
2122 				/* We can return any write requests */
2123 				struct bio *wbi, *wbi2;
2124 				int bitmap_end = 0;
2125 				pr_debug("Return write for disc %d\n", i);
2126 				spin_lock_irq(&conf->device_lock);
2127 				wbi = dev->written;
2128 				dev->written = NULL;
2129 				while (wbi && wbi->bi_sector <
2130 					dev->sector + STRIPE_SECTORS) {
2131 					wbi2 = r5_next_bio(wbi, dev->sector);
2132 					if (--wbi->bi_phys_segments == 0) {
2133 						md_write_end(conf->mddev);
2134 						wbi->bi_next = *return_bi;
2135 						*return_bi = wbi;
2136 					}
2137 					wbi = wbi2;
2138 				}
2139 				if (dev->towrite == NULL)
2140 					bitmap_end = 1;
2141 				spin_unlock_irq(&conf->device_lock);
2142 				if (bitmap_end)
2143 					bitmap_endwrite(conf->mddev->bitmap,
2144 							sh->sector,
2145 							STRIPE_SECTORS,
2146 					 !test_bit(STRIPE_DEGRADED, &sh->state),
2147 							0);
2148 			}
2149 		}
2150 }
2151 
2152 static void handle_issuing_new_write_requests5(raid5_conf_t *conf,
2153 		struct stripe_head *sh,	struct stripe_head_state *s, int disks)
2154 {
2155 	int rmw = 0, rcw = 0, i;
2156 	for (i = disks; i--; ) {
2157 		/* would I have to read this buffer for read_modify_write */
2158 		struct r5dev *dev = &sh->dev[i];
2159 		if ((dev->towrite || i == sh->pd_idx) &&
2160 		    !test_bit(R5_LOCKED, &dev->flags) &&
2161 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2162 		      test_bit(R5_Wantcompute, &dev->flags))) {
2163 			if (test_bit(R5_Insync, &dev->flags))
2164 				rmw++;
2165 			else
2166 				rmw += 2*disks;  /* cannot read it */
2167 		}
2168 		/* Would I have to read this buffer for reconstruct_write */
2169 		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2170 		    !test_bit(R5_LOCKED, &dev->flags) &&
2171 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2172 		    test_bit(R5_Wantcompute, &dev->flags))) {
2173 			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2174 			else
2175 				rcw += 2*disks;
2176 		}
2177 	}
2178 	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2179 		(unsigned long long)sh->sector, rmw, rcw);
2180 	set_bit(STRIPE_HANDLE, &sh->state);
2181 	if (rmw < rcw && rmw > 0)
2182 		/* prefer read-modify-write, but need to get some data */
2183 		for (i = disks; i--; ) {
2184 			struct r5dev *dev = &sh->dev[i];
2185 			if ((dev->towrite || i == sh->pd_idx) &&
2186 			    !test_bit(R5_LOCKED, &dev->flags) &&
2187 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2188 			    test_bit(R5_Wantcompute, &dev->flags)) &&
2189 			    test_bit(R5_Insync, &dev->flags)) {
2190 				if (
2191 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2192 					pr_debug("Read_old block "
2193 						"%d for r-m-w\n", i);
2194 					set_bit(R5_LOCKED, &dev->flags);
2195 					set_bit(R5_Wantread, &dev->flags);
2196 					if (!test_and_set_bit(
2197 						STRIPE_OP_IO, &sh->ops.pending))
2198 						sh->ops.count++;
2199 					s->locked++;
2200 				} else {
2201 					set_bit(STRIPE_DELAYED, &sh->state);
2202 					set_bit(STRIPE_HANDLE, &sh->state);
2203 				}
2204 			}
2205 		}
2206 	if (rcw <= rmw && rcw > 0)
2207 		/* want reconstruct write, but need to get some data */
2208 		for (i = disks; i--; ) {
2209 			struct r5dev *dev = &sh->dev[i];
2210 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2211 			    i != sh->pd_idx &&
2212 			    !test_bit(R5_LOCKED, &dev->flags) &&
2213 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2214 			    test_bit(R5_Wantcompute, &dev->flags)) &&
2215 			    test_bit(R5_Insync, &dev->flags)) {
2216 				if (
2217 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2218 					pr_debug("Read_old block "
2219 						"%d for Reconstruct\n", i);
2220 					set_bit(R5_LOCKED, &dev->flags);
2221 					set_bit(R5_Wantread, &dev->flags);
2222 					if (!test_and_set_bit(
2223 						STRIPE_OP_IO, &sh->ops.pending))
2224 						sh->ops.count++;
2225 					s->locked++;
2226 				} else {
2227 					set_bit(STRIPE_DELAYED, &sh->state);
2228 					set_bit(STRIPE_HANDLE, &sh->state);
2229 				}
2230 			}
2231 		}
2232 	/* now if nothing is locked, and if we have enough data,
2233 	 * we can start a write request
2234 	 */
2235 	/* since handle_stripe can be called at any time we need to handle the
2236 	 * case where a compute block operation has been submitted and then a
2237 	 * subsequent call wants to start a write request.  raid5_run_ops only
2238 	 * handles the case where compute block and postxor are requested
2239 	 * simultaneously.  If this is not the case then new writes need to be
2240 	 * held off until the compute completes.
2241 	 */
2242 	if ((s->req_compute ||
2243 	    !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) &&
2244 		(s->locked == 0 && (rcw == 0 || rmw == 0) &&
2245 		!test_bit(STRIPE_BIT_DELAY, &sh->state)))
2246 		s->locked += handle_write_operations5(sh, rcw == 0, 0);
2247 }
2248 
2249 static void handle_issuing_new_write_requests6(raid5_conf_t *conf,
2250 		struct stripe_head *sh,	struct stripe_head_state *s,
2251 		struct r6_state *r6s, int disks)
2252 {
2253 	int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
2254 	int qd_idx = r6s->qd_idx;
2255 	for (i = disks; i--; ) {
2256 		struct r5dev *dev = &sh->dev[i];
2257 		/* Would I have to read this buffer for reconstruct_write */
2258 		if (!test_bit(R5_OVERWRITE, &dev->flags)
2259 		    && i != pd_idx && i != qd_idx
2260 		    && (!test_bit(R5_LOCKED, &dev->flags)
2261 			    ) &&
2262 		    !test_bit(R5_UPTODATE, &dev->flags)) {
2263 			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2264 			else {
2265 				pr_debug("raid6: must_compute: "
2266 					"disk %d flags=%#lx\n", i, dev->flags);
2267 				must_compute++;
2268 			}
2269 		}
2270 	}
2271 	pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2272 	       (unsigned long long)sh->sector, rcw, must_compute);
2273 	set_bit(STRIPE_HANDLE, &sh->state);
2274 
2275 	if (rcw > 0)
2276 		/* want reconstruct write, but need to get some data */
2277 		for (i = disks; i--; ) {
2278 			struct r5dev *dev = &sh->dev[i];
2279 			if (!test_bit(R5_OVERWRITE, &dev->flags)
2280 			    && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2281 			    && !test_bit(R5_LOCKED, &dev->flags) &&
2282 			    !test_bit(R5_UPTODATE, &dev->flags) &&
2283 			    test_bit(R5_Insync, &dev->flags)) {
2284 				if (
2285 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2286 					pr_debug("Read_old stripe %llu "
2287 						"block %d for Reconstruct\n",
2288 					     (unsigned long long)sh->sector, i);
2289 					set_bit(R5_LOCKED, &dev->flags);
2290 					set_bit(R5_Wantread, &dev->flags);
2291 					s->locked++;
2292 				} else {
2293 					pr_debug("Request delayed stripe %llu "
2294 						"block %d for Reconstruct\n",
2295 					     (unsigned long long)sh->sector, i);
2296 					set_bit(STRIPE_DELAYED, &sh->state);
2297 					set_bit(STRIPE_HANDLE, &sh->state);
2298 				}
2299 			}
2300 		}
2301 	/* now if nothing is locked, and if we have enough data, we can start a
2302 	 * write request
2303 	 */
2304 	if (s->locked == 0 && rcw == 0 &&
2305 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2306 		if (must_compute > 0) {
2307 			/* We have failed blocks and need to compute them */
2308 			switch (s->failed) {
2309 			case 0:
2310 				BUG();
2311 			case 1:
2312 				compute_block_1(sh, r6s->failed_num[0], 0);
2313 				break;
2314 			case 2:
2315 				compute_block_2(sh, r6s->failed_num[0],
2316 						r6s->failed_num[1]);
2317 				break;
2318 			default: /* This request should have been failed? */
2319 				BUG();
2320 			}
2321 		}
2322 
2323 		pr_debug("Computing parity for stripe %llu\n",
2324 			(unsigned long long)sh->sector);
2325 		compute_parity6(sh, RECONSTRUCT_WRITE);
2326 		/* now every locked buffer is ready to be written */
2327 		for (i = disks; i--; )
2328 			if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2329 				pr_debug("Writing stripe %llu block %d\n",
2330 				       (unsigned long long)sh->sector, i);
2331 				s->locked++;
2332 				set_bit(R5_Wantwrite, &sh->dev[i].flags);
2333 			}
2334 		/* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2335 		set_bit(STRIPE_INSYNC, &sh->state);
2336 
2337 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2338 			atomic_dec(&conf->preread_active_stripes);
2339 			if (atomic_read(&conf->preread_active_stripes) <
2340 			    IO_THRESHOLD)
2341 				md_wakeup_thread(conf->mddev->thread);
2342 		}
2343 	}
2344 }
2345 
2346 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2347 				struct stripe_head_state *s, int disks)
2348 {
2349 	set_bit(STRIPE_HANDLE, &sh->state);
2350 	/* Take one of the following actions:
2351 	 * 1/ start a check parity operation if (uptodate == disks)
2352 	 * 2/ finish a check parity operation and act on the result
2353 	 * 3/ skip to the writeback section if we previously
2354 	 *    initiated a recovery operation
2355 	 */
2356 	if (s->failed == 0 &&
2357 	    !test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2358 		if (!test_and_set_bit(STRIPE_OP_CHECK, &sh->ops.pending)) {
2359 			BUG_ON(s->uptodate != disks);
2360 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2361 			sh->ops.count++;
2362 			s->uptodate--;
2363 		} else if (
2364 		       test_and_clear_bit(STRIPE_OP_CHECK, &sh->ops.complete)) {
2365 			clear_bit(STRIPE_OP_CHECK, &sh->ops.ack);
2366 			clear_bit(STRIPE_OP_CHECK, &sh->ops.pending);
2367 
2368 			if (sh->ops.zero_sum_result == 0)
2369 				/* parity is correct (on disc,
2370 				 * not in buffer any more)
2371 				 */
2372 				set_bit(STRIPE_INSYNC, &sh->state);
2373 			else {
2374 				conf->mddev->resync_mismatches +=
2375 					STRIPE_SECTORS;
2376 				if (test_bit(
2377 				     MD_RECOVERY_CHECK, &conf->mddev->recovery))
2378 					/* don't try to repair!! */
2379 					set_bit(STRIPE_INSYNC, &sh->state);
2380 				else {
2381 					set_bit(STRIPE_OP_COMPUTE_BLK,
2382 						&sh->ops.pending);
2383 					set_bit(STRIPE_OP_MOD_REPAIR_PD,
2384 						&sh->ops.pending);
2385 					set_bit(R5_Wantcompute,
2386 						&sh->dev[sh->pd_idx].flags);
2387 					sh->ops.target = sh->pd_idx;
2388 					sh->ops.count++;
2389 					s->uptodate++;
2390 				}
2391 			}
2392 		}
2393 	}
2394 
2395 	/* check if we can clear a parity disk reconstruct */
2396 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) &&
2397 		test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2398 
2399 		clear_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending);
2400 		clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
2401 		clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack);
2402 		clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2403 	}
2404 
2405 	/* Wait for check parity and compute block operations to complete
2406 	 * before write-back
2407 	 */
2408 	if (!test_bit(STRIPE_INSYNC, &sh->state) &&
2409 		!test_bit(STRIPE_OP_CHECK, &sh->ops.pending) &&
2410 		!test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) {
2411 		struct r5dev *dev;
2412 		/* either failed parity check, or recovery is happening */
2413 		if (s->failed == 0)
2414 			s->failed_num = sh->pd_idx;
2415 		dev = &sh->dev[s->failed_num];
2416 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2417 		BUG_ON(s->uptodate != disks);
2418 
2419 		set_bit(R5_LOCKED, &dev->flags);
2420 		set_bit(R5_Wantwrite, &dev->flags);
2421 		if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2422 			sh->ops.count++;
2423 
2424 		clear_bit(STRIPE_DEGRADED, &sh->state);
2425 		s->locked++;
2426 		set_bit(STRIPE_INSYNC, &sh->state);
2427 	}
2428 }
2429 
2430 
2431 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2432 				struct stripe_head_state *s,
2433 				struct r6_state *r6s, struct page *tmp_page,
2434 				int disks)
2435 {
2436 	int update_p = 0, update_q = 0;
2437 	struct r5dev *dev;
2438 	int pd_idx = sh->pd_idx;
2439 	int qd_idx = r6s->qd_idx;
2440 
2441 	set_bit(STRIPE_HANDLE, &sh->state);
2442 
2443 	BUG_ON(s->failed > 2);
2444 	BUG_ON(s->uptodate < disks);
2445 	/* Want to check and possibly repair P and Q.
2446 	 * However there could be one 'failed' device, in which
2447 	 * case we can only check one of them, possibly using the
2448 	 * other to generate missing data
2449 	 */
2450 
2451 	/* If !tmp_page, we cannot do the calculations,
2452 	 * but as we have set STRIPE_HANDLE, we will soon be called
2453 	 * by stripe_handle with a tmp_page - just wait until then.
2454 	 */
2455 	if (tmp_page) {
2456 		if (s->failed == r6s->q_failed) {
2457 			/* The only possible failed device holds 'Q', so it
2458 			 * makes sense to check P (If anything else were failed,
2459 			 * we would have used P to recreate it).
2460 			 */
2461 			compute_block_1(sh, pd_idx, 1);
2462 			if (!page_is_zero(sh->dev[pd_idx].page)) {
2463 				compute_block_1(sh, pd_idx, 0);
2464 				update_p = 1;
2465 			}
2466 		}
2467 		if (!r6s->q_failed && s->failed < 2) {
2468 			/* q is not failed, and we didn't use it to generate
2469 			 * anything, so it makes sense to check it
2470 			 */
2471 			memcpy(page_address(tmp_page),
2472 			       page_address(sh->dev[qd_idx].page),
2473 			       STRIPE_SIZE);
2474 			compute_parity6(sh, UPDATE_PARITY);
2475 			if (memcmp(page_address(tmp_page),
2476 				   page_address(sh->dev[qd_idx].page),
2477 				   STRIPE_SIZE) != 0) {
2478 				clear_bit(STRIPE_INSYNC, &sh->state);
2479 				update_q = 1;
2480 			}
2481 		}
2482 		if (update_p || update_q) {
2483 			conf->mddev->resync_mismatches += STRIPE_SECTORS;
2484 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2485 				/* don't try to repair!! */
2486 				update_p = update_q = 0;
2487 		}
2488 
2489 		/* now write out any block on a failed drive,
2490 		 * or P or Q if they need it
2491 		 */
2492 
2493 		if (s->failed == 2) {
2494 			dev = &sh->dev[r6s->failed_num[1]];
2495 			s->locked++;
2496 			set_bit(R5_LOCKED, &dev->flags);
2497 			set_bit(R5_Wantwrite, &dev->flags);
2498 		}
2499 		if (s->failed >= 1) {
2500 			dev = &sh->dev[r6s->failed_num[0]];
2501 			s->locked++;
2502 			set_bit(R5_LOCKED, &dev->flags);
2503 			set_bit(R5_Wantwrite, &dev->flags);
2504 		}
2505 
2506 		if (update_p) {
2507 			dev = &sh->dev[pd_idx];
2508 			s->locked++;
2509 			set_bit(R5_LOCKED, &dev->flags);
2510 			set_bit(R5_Wantwrite, &dev->flags);
2511 		}
2512 		if (update_q) {
2513 			dev = &sh->dev[qd_idx];
2514 			s->locked++;
2515 			set_bit(R5_LOCKED, &dev->flags);
2516 			set_bit(R5_Wantwrite, &dev->flags);
2517 		}
2518 		clear_bit(STRIPE_DEGRADED, &sh->state);
2519 
2520 		set_bit(STRIPE_INSYNC, &sh->state);
2521 	}
2522 }
2523 
2524 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2525 				struct r6_state *r6s)
2526 {
2527 	int i;
2528 
2529 	/* We have read all the blocks in this stripe and now we need to
2530 	 * copy some of them into a target stripe for expand.
2531 	 */
2532 	struct dma_async_tx_descriptor *tx = NULL;
2533 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2534 	for (i = 0; i < sh->disks; i++)
2535 		if (i != sh->pd_idx && (!r6s || i != r6s->qd_idx)) {
2536 			int dd_idx, pd_idx, j;
2537 			struct stripe_head *sh2;
2538 
2539 			sector_t bn = compute_blocknr(sh, i);
2540 			sector_t s = raid5_compute_sector(bn, conf->raid_disks,
2541 						conf->raid_disks -
2542 						conf->max_degraded, &dd_idx,
2543 						&pd_idx, conf);
2544 			sh2 = get_active_stripe(conf, s, conf->raid_disks,
2545 						pd_idx, 1);
2546 			if (sh2 == NULL)
2547 				/* so far only the early blocks of this stripe
2548 				 * have been requested.  When later blocks
2549 				 * get requested, we will try again
2550 				 */
2551 				continue;
2552 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2553 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2554 				/* must have already done this block */
2555 				release_stripe(sh2);
2556 				continue;
2557 			}
2558 
2559 			/* place all the copies on one channel */
2560 			tx = async_memcpy(sh2->dev[dd_idx].page,
2561 				sh->dev[i].page, 0, 0, STRIPE_SIZE,
2562 				ASYNC_TX_DEP_ACK, tx, NULL, NULL);
2563 
2564 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2565 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2566 			for (j = 0; j < conf->raid_disks; j++)
2567 				if (j != sh2->pd_idx &&
2568 				    (!r6s || j != raid6_next_disk(sh2->pd_idx,
2569 								 sh2->disks)) &&
2570 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
2571 					break;
2572 			if (j == conf->raid_disks) {
2573 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
2574 				set_bit(STRIPE_HANDLE, &sh2->state);
2575 			}
2576 			release_stripe(sh2);
2577 
2578 		}
2579 	/* done submitting copies, wait for them to complete */
2580 	if (tx) {
2581 		async_tx_ack(tx);
2582 		dma_wait_for_async_tx(tx);
2583 	}
2584 }
2585 
2586 /*
2587  * handle_stripe - do things to a stripe.
2588  *
2589  * We lock the stripe and then examine the state of various bits
2590  * to see what needs to be done.
2591  * Possible results:
2592  *    return some read request which now have data
2593  *    return some write requests which are safely on disc
2594  *    schedule a read on some buffers
2595  *    schedule a write of some buffers
2596  *    return confirmation of parity correctness
2597  *
2598  * buffers are taken off read_list or write_list, and bh_cache buffers
2599  * get BH_Lock set before the stripe lock is released.
2600  *
2601  */
2602 
2603 static void handle_stripe5(struct stripe_head *sh)
2604 {
2605 	raid5_conf_t *conf = sh->raid_conf;
2606 	int disks = sh->disks, i;
2607 	struct bio *return_bi = NULL;
2608 	struct stripe_head_state s;
2609 	struct r5dev *dev;
2610 	unsigned long pending = 0;
2611 
2612 	memset(&s, 0, sizeof(s));
2613 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d "
2614 		"ops=%lx:%lx:%lx\n", (unsigned long long)sh->sector, sh->state,
2615 		atomic_read(&sh->count), sh->pd_idx,
2616 		sh->ops.pending, sh->ops.ack, sh->ops.complete);
2617 
2618 	spin_lock(&sh->lock);
2619 	clear_bit(STRIPE_HANDLE, &sh->state);
2620 	clear_bit(STRIPE_DELAYED, &sh->state);
2621 
2622 	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2623 	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2624 	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2625 	/* Now to look around and see what can be done */
2626 
2627 	/* clean-up completed biofill operations */
2628 	if (test_bit(STRIPE_OP_BIOFILL, &sh->ops.complete)) {
2629 		clear_bit(STRIPE_OP_BIOFILL, &sh->ops.pending);
2630 		clear_bit(STRIPE_OP_BIOFILL, &sh->ops.ack);
2631 		clear_bit(STRIPE_OP_BIOFILL, &sh->ops.complete);
2632 	}
2633 
2634 	rcu_read_lock();
2635 	for (i=disks; i--; ) {
2636 		mdk_rdev_t *rdev;
2637 		struct r5dev *dev = &sh->dev[i];
2638 		clear_bit(R5_Insync, &dev->flags);
2639 
2640 		pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2641 			"written %p\n",	i, dev->flags, dev->toread, dev->read,
2642 			dev->towrite, dev->written);
2643 
2644 		/* maybe we can request a biofill operation
2645 		 *
2646 		 * new wantfill requests are only permitted while
2647 		 * STRIPE_OP_BIOFILL is clear
2648 		 */
2649 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2650 			!test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
2651 			set_bit(R5_Wantfill, &dev->flags);
2652 
2653 		/* now count some things */
2654 		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2655 		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2656 		if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2657 
2658 		if (test_bit(R5_Wantfill, &dev->flags))
2659 			s.to_fill++;
2660 		else if (dev->toread)
2661 			s.to_read++;
2662 		if (dev->towrite) {
2663 			s.to_write++;
2664 			if (!test_bit(R5_OVERWRITE, &dev->flags))
2665 				s.non_overwrite++;
2666 		}
2667 		if (dev->written)
2668 			s.written++;
2669 		rdev = rcu_dereference(conf->disks[i].rdev);
2670 		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2671 			/* The ReadError flag will just be confusing now */
2672 			clear_bit(R5_ReadError, &dev->flags);
2673 			clear_bit(R5_ReWrite, &dev->flags);
2674 		}
2675 		if (!rdev || !test_bit(In_sync, &rdev->flags)
2676 		    || test_bit(R5_ReadError, &dev->flags)) {
2677 			s.failed++;
2678 			s.failed_num = i;
2679 		} else
2680 			set_bit(R5_Insync, &dev->flags);
2681 	}
2682 	rcu_read_unlock();
2683 
2684 	if (s.to_fill && !test_and_set_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
2685 		sh->ops.count++;
2686 
2687 	pr_debug("locked=%d uptodate=%d to_read=%d"
2688 		" to_write=%d failed=%d failed_num=%d\n",
2689 		s.locked, s.uptodate, s.to_read, s.to_write,
2690 		s.failed, s.failed_num);
2691 	/* check if the array has lost two devices and, if so, some requests might
2692 	 * need to be failed
2693 	 */
2694 	if (s.failed > 1 && s.to_read+s.to_write+s.written)
2695 		handle_requests_to_failed_array(conf, sh, &s, disks,
2696 						&return_bi);
2697 	if (s.failed > 1 && s.syncing) {
2698 		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2699 		clear_bit(STRIPE_SYNCING, &sh->state);
2700 		s.syncing = 0;
2701 	}
2702 
2703 	/* might be able to return some write requests if the parity block
2704 	 * is safe, or on a failed drive
2705 	 */
2706 	dev = &sh->dev[sh->pd_idx];
2707 	if ( s.written &&
2708 	     ((test_bit(R5_Insync, &dev->flags) &&
2709 	       !test_bit(R5_LOCKED, &dev->flags) &&
2710 	       test_bit(R5_UPTODATE, &dev->flags)) ||
2711 	       (s.failed == 1 && s.failed_num == sh->pd_idx)))
2712 		handle_completed_write_requests(conf, sh, disks, &return_bi);
2713 
2714 	/* Now we might consider reading some blocks, either to check/generate
2715 	 * parity, or to satisfy requests
2716 	 * or to load a block that is being partially written.
2717 	 */
2718 	if (s.to_read || s.non_overwrite ||
2719 	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding ||
2720 	    test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
2721 		handle_issuing_new_read_requests5(sh, &s, disks);
2722 
2723 	/* Now we check to see if any write operations have recently
2724 	 * completed
2725 	 */
2726 
2727 	/* leave prexor set until postxor is done, allows us to distinguish
2728 	 * a rmw from a rcw during biodrain
2729 	 */
2730 	if (test_bit(STRIPE_OP_PREXOR, &sh->ops.complete) &&
2731 		test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2732 
2733 		clear_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
2734 		clear_bit(STRIPE_OP_PREXOR, &sh->ops.ack);
2735 		clear_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
2736 
2737 		for (i = disks; i--; )
2738 			clear_bit(R5_Wantprexor, &sh->dev[i].flags);
2739 	}
2740 
2741 	/* if only POSTXOR is set then this is an 'expand' postxor */
2742 	if (test_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete) &&
2743 		test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2744 
2745 		clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
2746 		clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.ack);
2747 		clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
2748 
2749 		clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2750 		clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2751 		clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2752 
2753 		/* All the 'written' buffers and the parity block are ready to
2754 		 * be written back to disk
2755 		 */
2756 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
2757 		for (i = disks; i--; ) {
2758 			dev = &sh->dev[i];
2759 			if (test_bit(R5_LOCKED, &dev->flags) &&
2760 				(i == sh->pd_idx || dev->written)) {
2761 				pr_debug("Writing block %d\n", i);
2762 				set_bit(R5_Wantwrite, &dev->flags);
2763 				if (!test_and_set_bit(
2764 				    STRIPE_OP_IO, &sh->ops.pending))
2765 					sh->ops.count++;
2766 				if (!test_bit(R5_Insync, &dev->flags) ||
2767 				    (i == sh->pd_idx && s.failed == 0))
2768 					set_bit(STRIPE_INSYNC, &sh->state);
2769 			}
2770 		}
2771 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2772 			atomic_dec(&conf->preread_active_stripes);
2773 			if (atomic_read(&conf->preread_active_stripes) <
2774 				IO_THRESHOLD)
2775 				md_wakeup_thread(conf->mddev->thread);
2776 		}
2777 	}
2778 
2779 	/* Now to consider new write requests and what else, if anything
2780 	 * should be read.  We do not handle new writes when:
2781 	 * 1/ A 'write' operation (copy+xor) is already in flight.
2782 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
2783 	 *    block.
2784 	 */
2785 	if (s.to_write && !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending) &&
2786 			  !test_bit(STRIPE_OP_CHECK, &sh->ops.pending))
2787 		handle_issuing_new_write_requests5(conf, sh, &s, disks);
2788 
2789 	/* maybe we need to check and possibly fix the parity for this stripe
2790 	 * Any reads will already have been scheduled, so we just see if enough
2791 	 * data is available.  The parity check is held off while parity
2792 	 * dependent operations are in flight.
2793 	 */
2794 	if ((s.syncing && s.locked == 0 &&
2795 	     !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
2796 	     !test_bit(STRIPE_INSYNC, &sh->state)) ||
2797 	      test_bit(STRIPE_OP_CHECK, &sh->ops.pending) ||
2798 	      test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending))
2799 		handle_parity_checks5(conf, sh, &s, disks);
2800 
2801 	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2802 		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2803 		clear_bit(STRIPE_SYNCING, &sh->state);
2804 	}
2805 
2806 	/* If the failed drive is just a ReadError, then we might need to progress
2807 	 * the repair/check process
2808 	 */
2809 	if (s.failed == 1 && !conf->mddev->ro &&
2810 	    test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2811 	    && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2812 	    && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
2813 		) {
2814 		dev = &sh->dev[s.failed_num];
2815 		if (!test_bit(R5_ReWrite, &dev->flags)) {
2816 			set_bit(R5_Wantwrite, &dev->flags);
2817 			if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2818 				sh->ops.count++;
2819 			set_bit(R5_ReWrite, &dev->flags);
2820 			set_bit(R5_LOCKED, &dev->flags);
2821 			s.locked++;
2822 		} else {
2823 			/* let's read it back */
2824 			set_bit(R5_Wantread, &dev->flags);
2825 			if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2826 				sh->ops.count++;
2827 			set_bit(R5_LOCKED, &dev->flags);
2828 			s.locked++;
2829 		}
2830 	}
2831 
2832 	/* Finish postxor operations initiated by the expansion
2833 	 * process
2834 	 */
2835 	if (test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete) &&
2836 		!test_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending)) {
2837 
2838 		clear_bit(STRIPE_EXPANDING, &sh->state);
2839 
2840 		clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2841 		clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2842 		clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2843 
2844 		for (i = conf->raid_disks; i--; ) {
2845 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
2846 			if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2847 				sh->ops.count++;
2848 		}
2849 	}
2850 
2851 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
2852 		!test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2853 		/* Need to write out all blocks after computing parity */
2854 		sh->disks = conf->raid_disks;
2855 		sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
2856 			conf->raid_disks);
2857 		s.locked += handle_write_operations5(sh, 1, 1);
2858 	} else if (s.expanded &&
2859 		!test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2860 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
2861 		atomic_dec(&conf->reshape_stripes);
2862 		wake_up(&conf->wait_for_overlap);
2863 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2864 	}
2865 
2866 	if (s.expanding && s.locked == 0)
2867 		handle_stripe_expansion(conf, sh, NULL);
2868 
2869 	if (sh->ops.count)
2870 		pending = get_stripe_work(sh);
2871 
2872 	spin_unlock(&sh->lock);
2873 
2874 	if (pending)
2875 		raid5_run_ops(sh, pending);
2876 
2877 	return_io(return_bi);
2878 
2879 }
2880 
2881 static void handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
2882 {
2883 	raid6_conf_t *conf = sh->raid_conf;
2884 	int disks = sh->disks;
2885 	struct bio *return_bi = NULL;
2886 	int i, pd_idx = sh->pd_idx;
2887 	struct stripe_head_state s;
2888 	struct r6_state r6s;
2889 	struct r5dev *dev, *pdev, *qdev;
2890 
2891 	r6s.qd_idx = raid6_next_disk(pd_idx, disks);
2892 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
2893 		"pd_idx=%d, qd_idx=%d\n",
2894 	       (unsigned long long)sh->sector, sh->state,
2895 	       atomic_read(&sh->count), pd_idx, r6s.qd_idx);
2896 	memset(&s, 0, sizeof(s));
2897 
2898 	spin_lock(&sh->lock);
2899 	clear_bit(STRIPE_HANDLE, &sh->state);
2900 	clear_bit(STRIPE_DELAYED, &sh->state);
2901 
2902 	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2903 	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2904 	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2905 	/* Now to look around and see what can be done */
2906 
2907 	rcu_read_lock();
2908 	for (i=disks; i--; ) {
2909 		mdk_rdev_t *rdev;
2910 		dev = &sh->dev[i];
2911 		clear_bit(R5_Insync, &dev->flags);
2912 
2913 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
2914 			i, dev->flags, dev->toread, dev->towrite, dev->written);
2915 		/* maybe we can reply to a read */
2916 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
2917 			struct bio *rbi, *rbi2;
2918 			pr_debug("Return read for disc %d\n", i);
2919 			spin_lock_irq(&conf->device_lock);
2920 			rbi = dev->toread;
2921 			dev->toread = NULL;
2922 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
2923 				wake_up(&conf->wait_for_overlap);
2924 			spin_unlock_irq(&conf->device_lock);
2925 			while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
2926 				copy_data(0, rbi, dev->page, dev->sector);
2927 				rbi2 = r5_next_bio(rbi, dev->sector);
2928 				spin_lock_irq(&conf->device_lock);
2929 				if (--rbi->bi_phys_segments == 0) {
2930 					rbi->bi_next = return_bi;
2931 					return_bi = rbi;
2932 				}
2933 				spin_unlock_irq(&conf->device_lock);
2934 				rbi = rbi2;
2935 			}
2936 		}
2937 
2938 		/* now count some things */
2939 		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2940 		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2941 
2942 
2943 		if (dev->toread)
2944 			s.to_read++;
2945 		if (dev->towrite) {
2946 			s.to_write++;
2947 			if (!test_bit(R5_OVERWRITE, &dev->flags))
2948 				s.non_overwrite++;
2949 		}
2950 		if (dev->written)
2951 			s.written++;
2952 		rdev = rcu_dereference(conf->disks[i].rdev);
2953 		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2954 			/* The ReadError flag will just be confusing now */
2955 			clear_bit(R5_ReadError, &dev->flags);
2956 			clear_bit(R5_ReWrite, &dev->flags);
2957 		}
2958 		if (!rdev || !test_bit(In_sync, &rdev->flags)
2959 		    || test_bit(R5_ReadError, &dev->flags)) {
2960 			if (s.failed < 2)
2961 				r6s.failed_num[s.failed] = i;
2962 			s.failed++;
2963 		} else
2964 			set_bit(R5_Insync, &dev->flags);
2965 	}
2966 	rcu_read_unlock();
2967 	pr_debug("locked=%d uptodate=%d to_read=%d"
2968 	       " to_write=%d failed=%d failed_num=%d,%d\n",
2969 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
2970 	       r6s.failed_num[0], r6s.failed_num[1]);
2971 	/* check if the array has lost >2 devices and, if so, some requests
2972 	 * might need to be failed
2973 	 */
2974 	if (s.failed > 2 && s.to_read+s.to_write+s.written)
2975 		handle_requests_to_failed_array(conf, sh, &s, disks,
2976 						&return_bi);
2977 	if (s.failed > 2 && s.syncing) {
2978 		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2979 		clear_bit(STRIPE_SYNCING, &sh->state);
2980 		s.syncing = 0;
2981 	}
2982 
2983 	/*
2984 	 * might be able to return some write requests if the parity blocks
2985 	 * are safe, or on a failed drive
2986 	 */
2987 	pdev = &sh->dev[pd_idx];
2988 	r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
2989 		|| (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
2990 	qdev = &sh->dev[r6s.qd_idx];
2991 	r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == r6s.qd_idx)
2992 		|| (s.failed >= 2 && r6s.failed_num[1] == r6s.qd_idx);
2993 
2994 	if ( s.written &&
2995 	     ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
2996 			     && !test_bit(R5_LOCKED, &pdev->flags)
2997 			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
2998 	     ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
2999 			     && !test_bit(R5_LOCKED, &qdev->flags)
3000 			     && test_bit(R5_UPTODATE, &qdev->flags)))))
3001 		handle_completed_write_requests(conf, sh, disks, &return_bi);
3002 
3003 	/* Now we might consider reading some blocks, either to check/generate
3004 	 * parity, or to satisfy requests
3005 	 * or to load a block that is being partially written.
3006 	 */
3007 	if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3008 	    (s.syncing && (s.uptodate < disks)) || s.expanding)
3009 		handle_issuing_new_read_requests6(sh, &s, &r6s, disks);
3010 
3011 	/* now to consider writing and what else, if anything should be read */
3012 	if (s.to_write)
3013 		handle_issuing_new_write_requests6(conf, sh, &s, &r6s, disks);
3014 
3015 	/* maybe we need to check and possibly fix the parity for this stripe
3016 	 * Any reads will already have been scheduled, so we just see if enough
3017 	 * data is available
3018 	 */
3019 	if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
3020 		handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
3021 
3022 	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3023 		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3024 		clear_bit(STRIPE_SYNCING, &sh->state);
3025 	}
3026 
3027 	/* If the failed drives are just a ReadError, then we might need
3028 	 * to progress the repair/check process
3029 	 */
3030 	if (s.failed <= 2 && !conf->mddev->ro)
3031 		for (i = 0; i < s.failed; i++) {
3032 			dev = &sh->dev[r6s.failed_num[i]];
3033 			if (test_bit(R5_ReadError, &dev->flags)
3034 			    && !test_bit(R5_LOCKED, &dev->flags)
3035 			    && test_bit(R5_UPTODATE, &dev->flags)
3036 				) {
3037 				if (!test_bit(R5_ReWrite, &dev->flags)) {
3038 					set_bit(R5_Wantwrite, &dev->flags);
3039 					set_bit(R5_ReWrite, &dev->flags);
3040 					set_bit(R5_LOCKED, &dev->flags);
3041 				} else {
3042 					/* let's read it back */
3043 					set_bit(R5_Wantread, &dev->flags);
3044 					set_bit(R5_LOCKED, &dev->flags);
3045 				}
3046 			}
3047 		}
3048 
3049 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
3050 		/* Need to write out all blocks after computing P&Q */
3051 		sh->disks = conf->raid_disks;
3052 		sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
3053 					     conf->raid_disks);
3054 		compute_parity6(sh, RECONSTRUCT_WRITE);
3055 		for (i = conf->raid_disks ; i-- ;  ) {
3056 			set_bit(R5_LOCKED, &sh->dev[i].flags);
3057 			s.locked++;
3058 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
3059 		}
3060 		clear_bit(STRIPE_EXPANDING, &sh->state);
3061 	} else if (s.expanded) {
3062 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3063 		atomic_dec(&conf->reshape_stripes);
3064 		wake_up(&conf->wait_for_overlap);
3065 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3066 	}
3067 
3068 	if (s.expanding && s.locked == 0)
3069 		handle_stripe_expansion(conf, sh, &r6s);
3070 
3071 	spin_unlock(&sh->lock);
3072 
3073 	return_io(return_bi);
3074 
3075 	for (i=disks; i-- ;) {
3076 		int rw;
3077 		struct bio *bi;
3078 		mdk_rdev_t *rdev;
3079 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
3080 			rw = WRITE;
3081 		else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
3082 			rw = READ;
3083 		else
3084 			continue;
3085 
3086 		bi = &sh->dev[i].req;
3087 
3088 		bi->bi_rw = rw;
3089 		if (rw == WRITE)
3090 			bi->bi_end_io = raid5_end_write_request;
3091 		else
3092 			bi->bi_end_io = raid5_end_read_request;
3093 
3094 		rcu_read_lock();
3095 		rdev = rcu_dereference(conf->disks[i].rdev);
3096 		if (rdev && test_bit(Faulty, &rdev->flags))
3097 			rdev = NULL;
3098 		if (rdev)
3099 			atomic_inc(&rdev->nr_pending);
3100 		rcu_read_unlock();
3101 
3102 		if (rdev) {
3103 			if (s.syncing || s.expanding || s.expanded)
3104 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
3105 
3106 			bi->bi_bdev = rdev->bdev;
3107 			pr_debug("for %llu schedule op %ld on disc %d\n",
3108 				(unsigned long long)sh->sector, bi->bi_rw, i);
3109 			atomic_inc(&sh->count);
3110 			bi->bi_sector = sh->sector + rdev->data_offset;
3111 			bi->bi_flags = 1 << BIO_UPTODATE;
3112 			bi->bi_vcnt = 1;
3113 			bi->bi_max_vecs = 1;
3114 			bi->bi_idx = 0;
3115 			bi->bi_io_vec = &sh->dev[i].vec;
3116 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
3117 			bi->bi_io_vec[0].bv_offset = 0;
3118 			bi->bi_size = STRIPE_SIZE;
3119 			bi->bi_next = NULL;
3120 			if (rw == WRITE &&
3121 			    test_bit(R5_ReWrite, &sh->dev[i].flags))
3122 				atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
3123 			generic_make_request(bi);
3124 		} else {
3125 			if (rw == WRITE)
3126 				set_bit(STRIPE_DEGRADED, &sh->state);
3127 			pr_debug("skip op %ld on disc %d for sector %llu\n",
3128 				bi->bi_rw, i, (unsigned long long)sh->sector);
3129 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
3130 			set_bit(STRIPE_HANDLE, &sh->state);
3131 		}
3132 	}
3133 }
3134 
3135 static void handle_stripe(struct stripe_head *sh, struct page *tmp_page)
3136 {
3137 	if (sh->raid_conf->level == 6)
3138 		handle_stripe6(sh, tmp_page);
3139 	else
3140 		handle_stripe5(sh);
3141 }
3142 
3143 
3144 
3145 static void raid5_activate_delayed(raid5_conf_t *conf)
3146 {
3147 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3148 		while (!list_empty(&conf->delayed_list)) {
3149 			struct list_head *l = conf->delayed_list.next;
3150 			struct stripe_head *sh;
3151 			sh = list_entry(l, struct stripe_head, lru);
3152 			list_del_init(l);
3153 			clear_bit(STRIPE_DELAYED, &sh->state);
3154 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3155 				atomic_inc(&conf->preread_active_stripes);
3156 			list_add_tail(&sh->lru, &conf->handle_list);
3157 		}
3158 	}
3159 }
3160 
3161 static void activate_bit_delay(raid5_conf_t *conf)
3162 {
3163 	/* device_lock is held */
3164 	struct list_head head;
3165 	list_add(&head, &conf->bitmap_list);
3166 	list_del_init(&conf->bitmap_list);
3167 	while (!list_empty(&head)) {
3168 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3169 		list_del_init(&sh->lru);
3170 		atomic_inc(&sh->count);
3171 		__release_stripe(conf, sh);
3172 	}
3173 }
3174 
3175 static void unplug_slaves(mddev_t *mddev)
3176 {
3177 	raid5_conf_t *conf = mddev_to_conf(mddev);
3178 	int i;
3179 
3180 	rcu_read_lock();
3181 	for (i=0; i<mddev->raid_disks; i++) {
3182 		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3183 		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3184 			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3185 
3186 			atomic_inc(&rdev->nr_pending);
3187 			rcu_read_unlock();
3188 
3189 			if (r_queue->unplug_fn)
3190 				r_queue->unplug_fn(r_queue);
3191 
3192 			rdev_dec_pending(rdev, mddev);
3193 			rcu_read_lock();
3194 		}
3195 	}
3196 	rcu_read_unlock();
3197 }
3198 
3199 static void raid5_unplug_device(struct request_queue *q)
3200 {
3201 	mddev_t *mddev = q->queuedata;
3202 	raid5_conf_t *conf = mddev_to_conf(mddev);
3203 	unsigned long flags;
3204 
3205 	spin_lock_irqsave(&conf->device_lock, flags);
3206 
3207 	if (blk_remove_plug(q)) {
3208 		conf->seq_flush++;
3209 		raid5_activate_delayed(conf);
3210 	}
3211 	md_wakeup_thread(mddev->thread);
3212 
3213 	spin_unlock_irqrestore(&conf->device_lock, flags);
3214 
3215 	unplug_slaves(mddev);
3216 }
3217 
3218 static int raid5_congested(void *data, int bits)
3219 {
3220 	mddev_t *mddev = data;
3221 	raid5_conf_t *conf = mddev_to_conf(mddev);
3222 
3223 	/* No difference between reads and writes.  Just check
3224 	 * how busy the stripe_cache is
3225 	 */
3226 	if (conf->inactive_blocked)
3227 		return 1;
3228 	if (conf->quiesce)
3229 		return 1;
3230 	if (list_empty_careful(&conf->inactive_list))
3231 		return 1;
3232 
3233 	return 0;
3234 }
3235 
3236 /* We want read requests to align with chunks where possible,
3237  * but write requests don't need to.
3238  */
3239 static int raid5_mergeable_bvec(struct request_queue *q, struct bio *bio, struct bio_vec *biovec)
3240 {
3241 	mddev_t *mddev = q->queuedata;
3242 	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3243 	int max;
3244 	unsigned int chunk_sectors = mddev->chunk_size >> 9;
3245 	unsigned int bio_sectors = bio->bi_size >> 9;
3246 
3247 	if (bio_data_dir(bio) == WRITE)
3248 		return biovec->bv_len; /* always allow writes to be mergeable */
3249 
3250 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3251 	if (max < 0) max = 0;
3252 	if (max <= biovec->bv_len && bio_sectors == 0)
3253 		return biovec->bv_len;
3254 	else
3255 		return max;
3256 }
3257 
3258 
3259 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3260 {
3261 	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3262 	unsigned int chunk_sectors = mddev->chunk_size >> 9;
3263 	unsigned int bio_sectors = bio->bi_size >> 9;
3264 
3265 	return  chunk_sectors >=
3266 		((sector & (chunk_sectors - 1)) + bio_sectors);
3267 }
3268 
3269 /*
3270  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3271  *  later sampled by raid5d.
3272  */
3273 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3274 {
3275 	unsigned long flags;
3276 
3277 	spin_lock_irqsave(&conf->device_lock, flags);
3278 
3279 	bi->bi_next = conf->retry_read_aligned_list;
3280 	conf->retry_read_aligned_list = bi;
3281 
3282 	spin_unlock_irqrestore(&conf->device_lock, flags);
3283 	md_wakeup_thread(conf->mddev->thread);
3284 }
3285 
3286 
3287 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3288 {
3289 	struct bio *bi;
3290 
3291 	bi = conf->retry_read_aligned;
3292 	if (bi) {
3293 		conf->retry_read_aligned = NULL;
3294 		return bi;
3295 	}
3296 	bi = conf->retry_read_aligned_list;
3297 	if(bi) {
3298 		conf->retry_read_aligned_list = bi->bi_next;
3299 		bi->bi_next = NULL;
3300 		bi->bi_phys_segments = 1; /* biased count of active stripes */
3301 		bi->bi_hw_segments = 0; /* count of processed stripes */
3302 	}
3303 
3304 	return bi;
3305 }
3306 
3307 
3308 /*
3309  *  The "raid5_align_endio" should check if the read succeeded and if it
3310  *  did, call bio_endio on the original bio (having bio_put the new bio
3311  *  first).
3312  *  If the read failed..
3313  */
3314 static void raid5_align_endio(struct bio *bi, int error)
3315 {
3316 	struct bio* raid_bi  = bi->bi_private;
3317 	mddev_t *mddev;
3318 	raid5_conf_t *conf;
3319 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3320 	mdk_rdev_t *rdev;
3321 
3322 	bio_put(bi);
3323 
3324 	mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3325 	conf = mddev_to_conf(mddev);
3326 	rdev = (void*)raid_bi->bi_next;
3327 	raid_bi->bi_next = NULL;
3328 
3329 	rdev_dec_pending(rdev, conf->mddev);
3330 
3331 	if (!error && uptodate) {
3332 		bio_endio(raid_bi, 0);
3333 		if (atomic_dec_and_test(&conf->active_aligned_reads))
3334 			wake_up(&conf->wait_for_stripe);
3335 		return;
3336 	}
3337 
3338 
3339 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3340 
3341 	add_bio_to_retry(raid_bi, conf);
3342 }
3343 
3344 static int bio_fits_rdev(struct bio *bi)
3345 {
3346 	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3347 
3348 	if ((bi->bi_size>>9) > q->max_sectors)
3349 		return 0;
3350 	blk_recount_segments(q, bi);
3351 	if (bi->bi_phys_segments > q->max_phys_segments ||
3352 	    bi->bi_hw_segments > q->max_hw_segments)
3353 		return 0;
3354 
3355 	if (q->merge_bvec_fn)
3356 		/* it's too hard to apply the merge_bvec_fn at this stage,
3357 		 * just just give up
3358 		 */
3359 		return 0;
3360 
3361 	return 1;
3362 }
3363 
3364 
3365 static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3366 {
3367 	mddev_t *mddev = q->queuedata;
3368 	raid5_conf_t *conf = mddev_to_conf(mddev);
3369 	const unsigned int raid_disks = conf->raid_disks;
3370 	const unsigned int data_disks = raid_disks - conf->max_degraded;
3371 	unsigned int dd_idx, pd_idx;
3372 	struct bio* align_bi;
3373 	mdk_rdev_t *rdev;
3374 
3375 	if (!in_chunk_boundary(mddev, raid_bio)) {
3376 		pr_debug("chunk_aligned_read : non aligned\n");
3377 		return 0;
3378 	}
3379 	/*
3380  	 * use bio_clone to make a copy of the bio
3381 	 */
3382 	align_bi = bio_clone(raid_bio, GFP_NOIO);
3383 	if (!align_bi)
3384 		return 0;
3385 	/*
3386 	 *   set bi_end_io to a new function, and set bi_private to the
3387 	 *     original bio.
3388 	 */
3389 	align_bi->bi_end_io  = raid5_align_endio;
3390 	align_bi->bi_private = raid_bio;
3391 	/*
3392 	 *	compute position
3393 	 */
3394 	align_bi->bi_sector =  raid5_compute_sector(raid_bio->bi_sector,
3395 					raid_disks,
3396 					data_disks,
3397 					&dd_idx,
3398 					&pd_idx,
3399 					conf);
3400 
3401 	rcu_read_lock();
3402 	rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3403 	if (rdev && test_bit(In_sync, &rdev->flags)) {
3404 		atomic_inc(&rdev->nr_pending);
3405 		rcu_read_unlock();
3406 		raid_bio->bi_next = (void*)rdev;
3407 		align_bi->bi_bdev =  rdev->bdev;
3408 		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3409 		align_bi->bi_sector += rdev->data_offset;
3410 
3411 		if (!bio_fits_rdev(align_bi)) {
3412 			/* too big in some way */
3413 			bio_put(align_bi);
3414 			rdev_dec_pending(rdev, mddev);
3415 			return 0;
3416 		}
3417 
3418 		spin_lock_irq(&conf->device_lock);
3419 		wait_event_lock_irq(conf->wait_for_stripe,
3420 				    conf->quiesce == 0,
3421 				    conf->device_lock, /* nothing */);
3422 		atomic_inc(&conf->active_aligned_reads);
3423 		spin_unlock_irq(&conf->device_lock);
3424 
3425 		generic_make_request(align_bi);
3426 		return 1;
3427 	} else {
3428 		rcu_read_unlock();
3429 		bio_put(align_bi);
3430 		return 0;
3431 	}
3432 }
3433 
3434 
3435 static int make_request(struct request_queue *q, struct bio * bi)
3436 {
3437 	mddev_t *mddev = q->queuedata;
3438 	raid5_conf_t *conf = mddev_to_conf(mddev);
3439 	unsigned int dd_idx, pd_idx;
3440 	sector_t new_sector;
3441 	sector_t logical_sector, last_sector;
3442 	struct stripe_head *sh;
3443 	const int rw = bio_data_dir(bi);
3444 	int remaining;
3445 
3446 	if (unlikely(bio_barrier(bi))) {
3447 		bio_endio(bi, -EOPNOTSUPP);
3448 		return 0;
3449 	}
3450 
3451 	md_write_start(mddev, bi);
3452 
3453 	disk_stat_inc(mddev->gendisk, ios[rw]);
3454 	disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi));
3455 
3456 	if (rw == READ &&
3457 	     mddev->reshape_position == MaxSector &&
3458 	     chunk_aligned_read(q,bi))
3459             	return 0;
3460 
3461 	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3462 	last_sector = bi->bi_sector + (bi->bi_size>>9);
3463 	bi->bi_next = NULL;
3464 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
3465 
3466 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3467 		DEFINE_WAIT(w);
3468 		int disks, data_disks;
3469 
3470 	retry:
3471 		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3472 		if (likely(conf->expand_progress == MaxSector))
3473 			disks = conf->raid_disks;
3474 		else {
3475 			/* spinlock is needed as expand_progress may be
3476 			 * 64bit on a 32bit platform, and so it might be
3477 			 * possible to see a half-updated value
3478 			 * Ofcourse expand_progress could change after
3479 			 * the lock is dropped, so once we get a reference
3480 			 * to the stripe that we think it is, we will have
3481 			 * to check again.
3482 			 */
3483 			spin_lock_irq(&conf->device_lock);
3484 			disks = conf->raid_disks;
3485 			if (logical_sector >= conf->expand_progress)
3486 				disks = conf->previous_raid_disks;
3487 			else {
3488 				if (logical_sector >= conf->expand_lo) {
3489 					spin_unlock_irq(&conf->device_lock);
3490 					schedule();
3491 					goto retry;
3492 				}
3493 			}
3494 			spin_unlock_irq(&conf->device_lock);
3495 		}
3496 		data_disks = disks - conf->max_degraded;
3497 
3498  		new_sector = raid5_compute_sector(logical_sector, disks, data_disks,
3499 						  &dd_idx, &pd_idx, conf);
3500 		pr_debug("raid5: make_request, sector %llu logical %llu\n",
3501 			(unsigned long long)new_sector,
3502 			(unsigned long long)logical_sector);
3503 
3504 		sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK));
3505 		if (sh) {
3506 			if (unlikely(conf->expand_progress != MaxSector)) {
3507 				/* expansion might have moved on while waiting for a
3508 				 * stripe, so we must do the range check again.
3509 				 * Expansion could still move past after this
3510 				 * test, but as we are holding a reference to
3511 				 * 'sh', we know that if that happens,
3512 				 *  STRIPE_EXPANDING will get set and the expansion
3513 				 * won't proceed until we finish with the stripe.
3514 				 */
3515 				int must_retry = 0;
3516 				spin_lock_irq(&conf->device_lock);
3517 				if (logical_sector <  conf->expand_progress &&
3518 				    disks == conf->previous_raid_disks)
3519 					/* mismatch, need to try again */
3520 					must_retry = 1;
3521 				spin_unlock_irq(&conf->device_lock);
3522 				if (must_retry) {
3523 					release_stripe(sh);
3524 					goto retry;
3525 				}
3526 			}
3527 			/* FIXME what if we get a false positive because these
3528 			 * are being updated.
3529 			 */
3530 			if (logical_sector >= mddev->suspend_lo &&
3531 			    logical_sector < mddev->suspend_hi) {
3532 				release_stripe(sh);
3533 				schedule();
3534 				goto retry;
3535 			}
3536 
3537 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3538 			    !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3539 				/* Stripe is busy expanding or
3540 				 * add failed due to overlap.  Flush everything
3541 				 * and wait a while
3542 				 */
3543 				raid5_unplug_device(mddev->queue);
3544 				release_stripe(sh);
3545 				schedule();
3546 				goto retry;
3547 			}
3548 			finish_wait(&conf->wait_for_overlap, &w);
3549 			handle_stripe(sh, NULL);
3550 			release_stripe(sh);
3551 		} else {
3552 			/* cannot get stripe for read-ahead, just give-up */
3553 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
3554 			finish_wait(&conf->wait_for_overlap, &w);
3555 			break;
3556 		}
3557 
3558 	}
3559 	spin_lock_irq(&conf->device_lock);
3560 	remaining = --bi->bi_phys_segments;
3561 	spin_unlock_irq(&conf->device_lock);
3562 	if (remaining == 0) {
3563 
3564 		if ( rw == WRITE )
3565 			md_write_end(mddev);
3566 
3567 		bi->bi_end_io(bi,
3568 			      test_bit(BIO_UPTODATE, &bi->bi_flags)
3569 			        ? 0 : -EIO);
3570 	}
3571 	return 0;
3572 }
3573 
3574 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3575 {
3576 	/* reshaping is quite different to recovery/resync so it is
3577 	 * handled quite separately ... here.
3578 	 *
3579 	 * On each call to sync_request, we gather one chunk worth of
3580 	 * destination stripes and flag them as expanding.
3581 	 * Then we find all the source stripes and request reads.
3582 	 * As the reads complete, handle_stripe will copy the data
3583 	 * into the destination stripe and release that stripe.
3584 	 */
3585 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3586 	struct stripe_head *sh;
3587 	int pd_idx;
3588 	sector_t first_sector, last_sector;
3589 	int raid_disks = conf->previous_raid_disks;
3590 	int data_disks = raid_disks - conf->max_degraded;
3591 	int new_data_disks = conf->raid_disks - conf->max_degraded;
3592 	int i;
3593 	int dd_idx;
3594 	sector_t writepos, safepos, gap;
3595 
3596 	if (sector_nr == 0 &&
3597 	    conf->expand_progress != 0) {
3598 		/* restarting in the middle, skip the initial sectors */
3599 		sector_nr = conf->expand_progress;
3600 		sector_div(sector_nr, new_data_disks);
3601 		*skipped = 1;
3602 		return sector_nr;
3603 	}
3604 
3605 	/* we update the metadata when there is more than 3Meg
3606 	 * in the block range (that is rather arbitrary, should
3607 	 * probably be time based) or when the data about to be
3608 	 * copied would over-write the source of the data at
3609 	 * the front of the range.
3610 	 * i.e. one new_stripe forward from expand_progress new_maps
3611 	 * to after where expand_lo old_maps to
3612 	 */
3613 	writepos = conf->expand_progress +
3614 		conf->chunk_size/512*(new_data_disks);
3615 	sector_div(writepos, new_data_disks);
3616 	safepos = conf->expand_lo;
3617 	sector_div(safepos, data_disks);
3618 	gap = conf->expand_progress - conf->expand_lo;
3619 
3620 	if (writepos >= safepos ||
3621 	    gap > (new_data_disks)*3000*2 /*3Meg*/) {
3622 		/* Cannot proceed until we've updated the superblock... */
3623 		wait_event(conf->wait_for_overlap,
3624 			   atomic_read(&conf->reshape_stripes)==0);
3625 		mddev->reshape_position = conf->expand_progress;
3626 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
3627 		md_wakeup_thread(mddev->thread);
3628 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
3629 			   kthread_should_stop());
3630 		spin_lock_irq(&conf->device_lock);
3631 		conf->expand_lo = mddev->reshape_position;
3632 		spin_unlock_irq(&conf->device_lock);
3633 		wake_up(&conf->wait_for_overlap);
3634 	}
3635 
3636 	for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
3637 		int j;
3638 		int skipped = 0;
3639 		pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks);
3640 		sh = get_active_stripe(conf, sector_nr+i,
3641 				       conf->raid_disks, pd_idx, 0);
3642 		set_bit(STRIPE_EXPANDING, &sh->state);
3643 		atomic_inc(&conf->reshape_stripes);
3644 		/* If any of this stripe is beyond the end of the old
3645 		 * array, then we need to zero those blocks
3646 		 */
3647 		for (j=sh->disks; j--;) {
3648 			sector_t s;
3649 			if (j == sh->pd_idx)
3650 				continue;
3651 			if (conf->level == 6 &&
3652 			    j == raid6_next_disk(sh->pd_idx, sh->disks))
3653 				continue;
3654 			s = compute_blocknr(sh, j);
3655 			if (s < (mddev->array_size<<1)) {
3656 				skipped = 1;
3657 				continue;
3658 			}
3659 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3660 			set_bit(R5_Expanded, &sh->dev[j].flags);
3661 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
3662 		}
3663 		if (!skipped) {
3664 			set_bit(STRIPE_EXPAND_READY, &sh->state);
3665 			set_bit(STRIPE_HANDLE, &sh->state);
3666 		}
3667 		release_stripe(sh);
3668 	}
3669 	spin_lock_irq(&conf->device_lock);
3670 	conf->expand_progress = (sector_nr + i) * new_data_disks;
3671 	spin_unlock_irq(&conf->device_lock);
3672 	/* Ok, those stripe are ready. We can start scheduling
3673 	 * reads on the source stripes.
3674 	 * The source stripes are determined by mapping the first and last
3675 	 * block on the destination stripes.
3676 	 */
3677 	first_sector =
3678 		raid5_compute_sector(sector_nr*(new_data_disks),
3679 				     raid_disks, data_disks,
3680 				     &dd_idx, &pd_idx, conf);
3681 	last_sector =
3682 		raid5_compute_sector((sector_nr+conf->chunk_size/512)
3683 				     *(new_data_disks) -1,
3684 				     raid_disks, data_disks,
3685 				     &dd_idx, &pd_idx, conf);
3686 	if (last_sector >= (mddev->size<<1))
3687 		last_sector = (mddev->size<<1)-1;
3688 	while (first_sector <= last_sector) {
3689 		pd_idx = stripe_to_pdidx(first_sector, conf,
3690 					 conf->previous_raid_disks);
3691 		sh = get_active_stripe(conf, first_sector,
3692 				       conf->previous_raid_disks, pd_idx, 0);
3693 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3694 		set_bit(STRIPE_HANDLE, &sh->state);
3695 		release_stripe(sh);
3696 		first_sector += STRIPE_SECTORS;
3697 	}
3698 	return conf->chunk_size>>9;
3699 }
3700 
3701 /* FIXME go_faster isn't used */
3702 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3703 {
3704 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3705 	struct stripe_head *sh;
3706 	int pd_idx;
3707 	int raid_disks = conf->raid_disks;
3708 	sector_t max_sector = mddev->size << 1;
3709 	int sync_blocks;
3710 	int still_degraded = 0;
3711 	int i;
3712 
3713 	if (sector_nr >= max_sector) {
3714 		/* just being told to finish up .. nothing much to do */
3715 		unplug_slaves(mddev);
3716 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3717 			end_reshape(conf);
3718 			return 0;
3719 		}
3720 
3721 		if (mddev->curr_resync < max_sector) /* aborted */
3722 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3723 					&sync_blocks, 1);
3724 		else /* completed sync */
3725 			conf->fullsync = 0;
3726 		bitmap_close_sync(mddev->bitmap);
3727 
3728 		return 0;
3729 	}
3730 
3731 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3732 		return reshape_request(mddev, sector_nr, skipped);
3733 
3734 	/* if there is too many failed drives and we are trying
3735 	 * to resync, then assert that we are finished, because there is
3736 	 * nothing we can do.
3737 	 */
3738 	if (mddev->degraded >= conf->max_degraded &&
3739 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3740 		sector_t rv = (mddev->size << 1) - sector_nr;
3741 		*skipped = 1;
3742 		return rv;
3743 	}
3744 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3745 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3746 	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
3747 		/* we can skip this block, and probably more */
3748 		sync_blocks /= STRIPE_SECTORS;
3749 		*skipped = 1;
3750 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
3751 	}
3752 
3753 	pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks);
3754 	sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1);
3755 	if (sh == NULL) {
3756 		sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0);
3757 		/* make sure we don't swamp the stripe cache if someone else
3758 		 * is trying to get access
3759 		 */
3760 		schedule_timeout_uninterruptible(1);
3761 	}
3762 	/* Need to check if array will still be degraded after recovery/resync
3763 	 * We don't need to check the 'failed' flag as when that gets set,
3764 	 * recovery aborts.
3765 	 */
3766 	for (i=0; i<mddev->raid_disks; i++)
3767 		if (conf->disks[i].rdev == NULL)
3768 			still_degraded = 1;
3769 
3770 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
3771 
3772 	spin_lock(&sh->lock);
3773 	set_bit(STRIPE_SYNCING, &sh->state);
3774 	clear_bit(STRIPE_INSYNC, &sh->state);
3775 	spin_unlock(&sh->lock);
3776 
3777 	handle_stripe(sh, NULL);
3778 	release_stripe(sh);
3779 
3780 	return STRIPE_SECTORS;
3781 }
3782 
3783 static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
3784 {
3785 	/* We may not be able to submit a whole bio at once as there
3786 	 * may not be enough stripe_heads available.
3787 	 * We cannot pre-allocate enough stripe_heads as we may need
3788 	 * more than exist in the cache (if we allow ever large chunks).
3789 	 * So we do one stripe head at a time and record in
3790 	 * ->bi_hw_segments how many have been done.
3791 	 *
3792 	 * We *know* that this entire raid_bio is in one chunk, so
3793 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
3794 	 */
3795 	struct stripe_head *sh;
3796 	int dd_idx, pd_idx;
3797 	sector_t sector, logical_sector, last_sector;
3798 	int scnt = 0;
3799 	int remaining;
3800 	int handled = 0;
3801 
3802 	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3803 	sector = raid5_compute_sector(	logical_sector,
3804 					conf->raid_disks,
3805 					conf->raid_disks - conf->max_degraded,
3806 					&dd_idx,
3807 					&pd_idx,
3808 					conf);
3809 	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
3810 
3811 	for (; logical_sector < last_sector;
3812 	     logical_sector += STRIPE_SECTORS,
3813 		     sector += STRIPE_SECTORS,
3814 		     scnt++) {
3815 
3816 		if (scnt < raid_bio->bi_hw_segments)
3817 			/* already done this stripe */
3818 			continue;
3819 
3820 		sh = get_active_stripe(conf, sector, conf->raid_disks, pd_idx, 1);
3821 
3822 		if (!sh) {
3823 			/* failed to get a stripe - must wait */
3824 			raid_bio->bi_hw_segments = scnt;
3825 			conf->retry_read_aligned = raid_bio;
3826 			return handled;
3827 		}
3828 
3829 		set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
3830 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
3831 			release_stripe(sh);
3832 			raid_bio->bi_hw_segments = scnt;
3833 			conf->retry_read_aligned = raid_bio;
3834 			return handled;
3835 		}
3836 
3837 		handle_stripe(sh, NULL);
3838 		release_stripe(sh);
3839 		handled++;
3840 	}
3841 	spin_lock_irq(&conf->device_lock);
3842 	remaining = --raid_bio->bi_phys_segments;
3843 	spin_unlock_irq(&conf->device_lock);
3844 	if (remaining == 0) {
3845 
3846 		raid_bio->bi_end_io(raid_bio,
3847 			      test_bit(BIO_UPTODATE, &raid_bio->bi_flags)
3848 			        ? 0 : -EIO);
3849 	}
3850 	if (atomic_dec_and_test(&conf->active_aligned_reads))
3851 		wake_up(&conf->wait_for_stripe);
3852 	return handled;
3853 }
3854 
3855 
3856 
3857 /*
3858  * This is our raid5 kernel thread.
3859  *
3860  * We scan the hash table for stripes which can be handled now.
3861  * During the scan, completed stripes are saved for us by the interrupt
3862  * handler, so that they will not have to wait for our next wakeup.
3863  */
3864 static void raid5d (mddev_t *mddev)
3865 {
3866 	struct stripe_head *sh;
3867 	raid5_conf_t *conf = mddev_to_conf(mddev);
3868 	int handled;
3869 
3870 	pr_debug("+++ raid5d active\n");
3871 
3872 	md_check_recovery(mddev);
3873 
3874 	handled = 0;
3875 	spin_lock_irq(&conf->device_lock);
3876 	while (1) {
3877 		struct list_head *first;
3878 		struct bio *bio;
3879 
3880 		if (conf->seq_flush != conf->seq_write) {
3881 			int seq = conf->seq_flush;
3882 			spin_unlock_irq(&conf->device_lock);
3883 			bitmap_unplug(mddev->bitmap);
3884 			spin_lock_irq(&conf->device_lock);
3885 			conf->seq_write = seq;
3886 			activate_bit_delay(conf);
3887 		}
3888 
3889 		if (list_empty(&conf->handle_list) &&
3890 		    atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD &&
3891 		    !blk_queue_plugged(mddev->queue) &&
3892 		    !list_empty(&conf->delayed_list))
3893 			raid5_activate_delayed(conf);
3894 
3895 		while ((bio = remove_bio_from_retry(conf))) {
3896 			int ok;
3897 			spin_unlock_irq(&conf->device_lock);
3898 			ok = retry_aligned_read(conf, bio);
3899 			spin_lock_irq(&conf->device_lock);
3900 			if (!ok)
3901 				break;
3902 			handled++;
3903 		}
3904 
3905 		if (list_empty(&conf->handle_list)) {
3906 			async_tx_issue_pending_all();
3907 			break;
3908 		}
3909 
3910 		first = conf->handle_list.next;
3911 		sh = list_entry(first, struct stripe_head, lru);
3912 
3913 		list_del_init(first);
3914 		atomic_inc(&sh->count);
3915 		BUG_ON(atomic_read(&sh->count)!= 1);
3916 		spin_unlock_irq(&conf->device_lock);
3917 
3918 		handled++;
3919 		handle_stripe(sh, conf->spare_page);
3920 		release_stripe(sh);
3921 
3922 		spin_lock_irq(&conf->device_lock);
3923 	}
3924 	pr_debug("%d stripes handled\n", handled);
3925 
3926 	spin_unlock_irq(&conf->device_lock);
3927 
3928 	unplug_slaves(mddev);
3929 
3930 	pr_debug("--- raid5d inactive\n");
3931 }
3932 
3933 static ssize_t
3934 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
3935 {
3936 	raid5_conf_t *conf = mddev_to_conf(mddev);
3937 	if (conf)
3938 		return sprintf(page, "%d\n", conf->max_nr_stripes);
3939 	else
3940 		return 0;
3941 }
3942 
3943 static ssize_t
3944 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
3945 {
3946 	raid5_conf_t *conf = mddev_to_conf(mddev);
3947 	char *end;
3948 	int new;
3949 	if (len >= PAGE_SIZE)
3950 		return -EINVAL;
3951 	if (!conf)
3952 		return -ENODEV;
3953 
3954 	new = simple_strtoul(page, &end, 10);
3955 	if (!*page || (*end && *end != '\n') )
3956 		return -EINVAL;
3957 	if (new <= 16 || new > 32768)
3958 		return -EINVAL;
3959 	while (new < conf->max_nr_stripes) {
3960 		if (drop_one_stripe(conf))
3961 			conf->max_nr_stripes--;
3962 		else
3963 			break;
3964 	}
3965 	md_allow_write(mddev);
3966 	while (new > conf->max_nr_stripes) {
3967 		if (grow_one_stripe(conf))
3968 			conf->max_nr_stripes++;
3969 		else break;
3970 	}
3971 	return len;
3972 }
3973 
3974 static struct md_sysfs_entry
3975 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
3976 				raid5_show_stripe_cache_size,
3977 				raid5_store_stripe_cache_size);
3978 
3979 static ssize_t
3980 stripe_cache_active_show(mddev_t *mddev, char *page)
3981 {
3982 	raid5_conf_t *conf = mddev_to_conf(mddev);
3983 	if (conf)
3984 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
3985 	else
3986 		return 0;
3987 }
3988 
3989 static struct md_sysfs_entry
3990 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3991 
3992 static struct attribute *raid5_attrs[] =  {
3993 	&raid5_stripecache_size.attr,
3994 	&raid5_stripecache_active.attr,
3995 	NULL,
3996 };
3997 static struct attribute_group raid5_attrs_group = {
3998 	.name = NULL,
3999 	.attrs = raid5_attrs,
4000 };
4001 
4002 static int run(mddev_t *mddev)
4003 {
4004 	raid5_conf_t *conf;
4005 	int raid_disk, memory;
4006 	mdk_rdev_t *rdev;
4007 	struct disk_info *disk;
4008 	struct list_head *tmp;
4009 	int working_disks = 0;
4010 
4011 	if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) {
4012 		printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
4013 		       mdname(mddev), mddev->level);
4014 		return -EIO;
4015 	}
4016 
4017 	if (mddev->reshape_position != MaxSector) {
4018 		/* Check that we can continue the reshape.
4019 		 * Currently only disks can change, it must
4020 		 * increase, and we must be past the point where
4021 		 * a stripe over-writes itself
4022 		 */
4023 		sector_t here_new, here_old;
4024 		int old_disks;
4025 		int max_degraded = (mddev->level == 5 ? 1 : 2);
4026 
4027 		if (mddev->new_level != mddev->level ||
4028 		    mddev->new_layout != mddev->layout ||
4029 		    mddev->new_chunk != mddev->chunk_size) {
4030 			printk(KERN_ERR "raid5: %s: unsupported reshape "
4031 			       "required - aborting.\n",
4032 			       mdname(mddev));
4033 			return -EINVAL;
4034 		}
4035 		if (mddev->delta_disks <= 0) {
4036 			printk(KERN_ERR "raid5: %s: unsupported reshape "
4037 			       "(reduce disks) required - aborting.\n",
4038 			       mdname(mddev));
4039 			return -EINVAL;
4040 		}
4041 		old_disks = mddev->raid_disks - mddev->delta_disks;
4042 		/* reshape_position must be on a new-stripe boundary, and one
4043 		 * further up in new geometry must map after here in old
4044 		 * geometry.
4045 		 */
4046 		here_new = mddev->reshape_position;
4047 		if (sector_div(here_new, (mddev->chunk_size>>9)*
4048 			       (mddev->raid_disks - max_degraded))) {
4049 			printk(KERN_ERR "raid5: reshape_position not "
4050 			       "on a stripe boundary\n");
4051 			return -EINVAL;
4052 		}
4053 		/* here_new is the stripe we will write to */
4054 		here_old = mddev->reshape_position;
4055 		sector_div(here_old, (mddev->chunk_size>>9)*
4056 			   (old_disks-max_degraded));
4057 		/* here_old is the first stripe that we might need to read
4058 		 * from */
4059 		if (here_new >= here_old) {
4060 			/* Reading from the same stripe as writing to - bad */
4061 			printk(KERN_ERR "raid5: reshape_position too early for "
4062 			       "auto-recovery - aborting.\n");
4063 			return -EINVAL;
4064 		}
4065 		printk(KERN_INFO "raid5: reshape will continue\n");
4066 		/* OK, we should be able to continue; */
4067 	}
4068 
4069 
4070 	mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
4071 	if ((conf = mddev->private) == NULL)
4072 		goto abort;
4073 	if (mddev->reshape_position == MaxSector) {
4074 		conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
4075 	} else {
4076 		conf->raid_disks = mddev->raid_disks;
4077 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4078 	}
4079 
4080 	conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4081 			      GFP_KERNEL);
4082 	if (!conf->disks)
4083 		goto abort;
4084 
4085 	conf->mddev = mddev;
4086 
4087 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4088 		goto abort;
4089 
4090 	if (mddev->level == 6) {
4091 		conf->spare_page = alloc_page(GFP_KERNEL);
4092 		if (!conf->spare_page)
4093 			goto abort;
4094 	}
4095 	spin_lock_init(&conf->device_lock);
4096 	init_waitqueue_head(&conf->wait_for_stripe);
4097 	init_waitqueue_head(&conf->wait_for_overlap);
4098 	INIT_LIST_HEAD(&conf->handle_list);
4099 	INIT_LIST_HEAD(&conf->delayed_list);
4100 	INIT_LIST_HEAD(&conf->bitmap_list);
4101 	INIT_LIST_HEAD(&conf->inactive_list);
4102 	atomic_set(&conf->active_stripes, 0);
4103 	atomic_set(&conf->preread_active_stripes, 0);
4104 	atomic_set(&conf->active_aligned_reads, 0);
4105 
4106 	pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4107 
4108 	ITERATE_RDEV(mddev,rdev,tmp) {
4109 		raid_disk = rdev->raid_disk;
4110 		if (raid_disk >= conf->raid_disks
4111 		    || raid_disk < 0)
4112 			continue;
4113 		disk = conf->disks + raid_disk;
4114 
4115 		disk->rdev = rdev;
4116 
4117 		if (test_bit(In_sync, &rdev->flags)) {
4118 			char b[BDEVNAME_SIZE];
4119 			printk(KERN_INFO "raid5: device %s operational as raid"
4120 				" disk %d\n", bdevname(rdev->bdev,b),
4121 				raid_disk);
4122 			working_disks++;
4123 		}
4124 	}
4125 
4126 	/*
4127 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
4128 	 */
4129 	mddev->degraded = conf->raid_disks - working_disks;
4130 	conf->mddev = mddev;
4131 	conf->chunk_size = mddev->chunk_size;
4132 	conf->level = mddev->level;
4133 	if (conf->level == 6)
4134 		conf->max_degraded = 2;
4135 	else
4136 		conf->max_degraded = 1;
4137 	conf->algorithm = mddev->layout;
4138 	conf->max_nr_stripes = NR_STRIPES;
4139 	conf->expand_progress = mddev->reshape_position;
4140 
4141 	/* device size must be a multiple of chunk size */
4142 	mddev->size &= ~(mddev->chunk_size/1024 -1);
4143 	mddev->resync_max_sectors = mddev->size << 1;
4144 
4145 	if (conf->level == 6 && conf->raid_disks < 4) {
4146 		printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4147 		       mdname(mddev), conf->raid_disks);
4148 		goto abort;
4149 	}
4150 	if (!conf->chunk_size || conf->chunk_size % 4) {
4151 		printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4152 			conf->chunk_size, mdname(mddev));
4153 		goto abort;
4154 	}
4155 	if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
4156 		printk(KERN_ERR
4157 			"raid5: unsupported parity algorithm %d for %s\n",
4158 			conf->algorithm, mdname(mddev));
4159 		goto abort;
4160 	}
4161 	if (mddev->degraded > conf->max_degraded) {
4162 		printk(KERN_ERR "raid5: not enough operational devices for %s"
4163 			" (%d/%d failed)\n",
4164 			mdname(mddev), mddev->degraded, conf->raid_disks);
4165 		goto abort;
4166 	}
4167 
4168 	if (mddev->degraded > 0 &&
4169 	    mddev->recovery_cp != MaxSector) {
4170 		if (mddev->ok_start_degraded)
4171 			printk(KERN_WARNING
4172 			       "raid5: starting dirty degraded array: %s"
4173 			       "- data corruption possible.\n",
4174 			       mdname(mddev));
4175 		else {
4176 			printk(KERN_ERR
4177 			       "raid5: cannot start dirty degraded array for %s\n",
4178 			       mdname(mddev));
4179 			goto abort;
4180 		}
4181 	}
4182 
4183 	{
4184 		mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4185 		if (!mddev->thread) {
4186 			printk(KERN_ERR
4187 				"raid5: couldn't allocate thread for %s\n",
4188 				mdname(mddev));
4189 			goto abort;
4190 		}
4191 	}
4192 	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4193 		 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4194 	if (grow_stripes(conf, conf->max_nr_stripes)) {
4195 		printk(KERN_ERR
4196 			"raid5: couldn't allocate %dkB for buffers\n", memory);
4197 		shrink_stripes(conf);
4198 		md_unregister_thread(mddev->thread);
4199 		goto abort;
4200 	} else
4201 		printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4202 			memory, mdname(mddev));
4203 
4204 	if (mddev->degraded == 0)
4205 		printk("raid5: raid level %d set %s active with %d out of %d"
4206 			" devices, algorithm %d\n", conf->level, mdname(mddev),
4207 			mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4208 			conf->algorithm);
4209 	else
4210 		printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4211 			" out of %d devices, algorithm %d\n", conf->level,
4212 			mdname(mddev), mddev->raid_disks - mddev->degraded,
4213 			mddev->raid_disks, conf->algorithm);
4214 
4215 	print_raid5_conf(conf);
4216 
4217 	if (conf->expand_progress != MaxSector) {
4218 		printk("...ok start reshape thread\n");
4219 		conf->expand_lo = conf->expand_progress;
4220 		atomic_set(&conf->reshape_stripes, 0);
4221 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4222 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4223 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4224 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4225 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4226 							"%s_reshape");
4227 	}
4228 
4229 	/* read-ahead size must cover two whole stripes, which is
4230 	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4231 	 */
4232 	{
4233 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
4234 		int stripe = data_disks *
4235 			(mddev->chunk_size / PAGE_SIZE);
4236 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4237 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4238 	}
4239 
4240 	/* Ok, everything is just fine now */
4241 	if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4242 		printk(KERN_WARNING
4243 		       "raid5: failed to create sysfs attributes for %s\n",
4244 		       mdname(mddev));
4245 
4246 	mddev->queue->unplug_fn = raid5_unplug_device;
4247 	mddev->queue->backing_dev_info.congested_data = mddev;
4248 	mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4249 
4250 	mddev->array_size =  mddev->size * (conf->previous_raid_disks -
4251 					    conf->max_degraded);
4252 
4253 	blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4254 
4255 	return 0;
4256 abort:
4257 	if (conf) {
4258 		print_raid5_conf(conf);
4259 		safe_put_page(conf->spare_page);
4260 		kfree(conf->disks);
4261 		kfree(conf->stripe_hashtbl);
4262 		kfree(conf);
4263 	}
4264 	mddev->private = NULL;
4265 	printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
4266 	return -EIO;
4267 }
4268 
4269 
4270 
4271 static int stop(mddev_t *mddev)
4272 {
4273 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4274 
4275 	md_unregister_thread(mddev->thread);
4276 	mddev->thread = NULL;
4277 	shrink_stripes(conf);
4278 	kfree(conf->stripe_hashtbl);
4279 	mddev->queue->backing_dev_info.congested_fn = NULL;
4280 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
4281 	sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
4282 	kfree(conf->disks);
4283 	kfree(conf);
4284 	mddev->private = NULL;
4285 	return 0;
4286 }
4287 
4288 #ifdef DEBUG
4289 static void print_sh (struct seq_file *seq, struct stripe_head *sh)
4290 {
4291 	int i;
4292 
4293 	seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4294 		   (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4295 	seq_printf(seq, "sh %llu,  count %d.\n",
4296 		   (unsigned long long)sh->sector, atomic_read(&sh->count));
4297 	seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4298 	for (i = 0; i < sh->disks; i++) {
4299 		seq_printf(seq, "(cache%d: %p %ld) ",
4300 			   i, sh->dev[i].page, sh->dev[i].flags);
4301 	}
4302 	seq_printf(seq, "\n");
4303 }
4304 
4305 static void printall (struct seq_file *seq, raid5_conf_t *conf)
4306 {
4307 	struct stripe_head *sh;
4308 	struct hlist_node *hn;
4309 	int i;
4310 
4311 	spin_lock_irq(&conf->device_lock);
4312 	for (i = 0; i < NR_HASH; i++) {
4313 		hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4314 			if (sh->raid_conf != conf)
4315 				continue;
4316 			print_sh(seq, sh);
4317 		}
4318 	}
4319 	spin_unlock_irq(&conf->device_lock);
4320 }
4321 #endif
4322 
4323 static void status (struct seq_file *seq, mddev_t *mddev)
4324 {
4325 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4326 	int i;
4327 
4328 	seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
4329 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4330 	for (i = 0; i < conf->raid_disks; i++)
4331 		seq_printf (seq, "%s",
4332 			       conf->disks[i].rdev &&
4333 			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
4334 	seq_printf (seq, "]");
4335 #ifdef DEBUG
4336 	seq_printf (seq, "\n");
4337 	printall(seq, conf);
4338 #endif
4339 }
4340 
4341 static void print_raid5_conf (raid5_conf_t *conf)
4342 {
4343 	int i;
4344 	struct disk_info *tmp;
4345 
4346 	printk("RAID5 conf printout:\n");
4347 	if (!conf) {
4348 		printk("(conf==NULL)\n");
4349 		return;
4350 	}
4351 	printk(" --- rd:%d wd:%d\n", conf->raid_disks,
4352 		 conf->raid_disks - conf->mddev->degraded);
4353 
4354 	for (i = 0; i < conf->raid_disks; i++) {
4355 		char b[BDEVNAME_SIZE];
4356 		tmp = conf->disks + i;
4357 		if (tmp->rdev)
4358 		printk(" disk %d, o:%d, dev:%s\n",
4359 			i, !test_bit(Faulty, &tmp->rdev->flags),
4360 			bdevname(tmp->rdev->bdev,b));
4361 	}
4362 }
4363 
4364 static int raid5_spare_active(mddev_t *mddev)
4365 {
4366 	int i;
4367 	raid5_conf_t *conf = mddev->private;
4368 	struct disk_info *tmp;
4369 
4370 	for (i = 0; i < conf->raid_disks; i++) {
4371 		tmp = conf->disks + i;
4372 		if (tmp->rdev
4373 		    && !test_bit(Faulty, &tmp->rdev->flags)
4374 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4375 			unsigned long flags;
4376 			spin_lock_irqsave(&conf->device_lock, flags);
4377 			mddev->degraded--;
4378 			spin_unlock_irqrestore(&conf->device_lock, flags);
4379 		}
4380 	}
4381 	print_raid5_conf(conf);
4382 	return 0;
4383 }
4384 
4385 static int raid5_remove_disk(mddev_t *mddev, int number)
4386 {
4387 	raid5_conf_t *conf = mddev->private;
4388 	int err = 0;
4389 	mdk_rdev_t *rdev;
4390 	struct disk_info *p = conf->disks + number;
4391 
4392 	print_raid5_conf(conf);
4393 	rdev = p->rdev;
4394 	if (rdev) {
4395 		if (test_bit(In_sync, &rdev->flags) ||
4396 		    atomic_read(&rdev->nr_pending)) {
4397 			err = -EBUSY;
4398 			goto abort;
4399 		}
4400 		p->rdev = NULL;
4401 		synchronize_rcu();
4402 		if (atomic_read(&rdev->nr_pending)) {
4403 			/* lost the race, try later */
4404 			err = -EBUSY;
4405 			p->rdev = rdev;
4406 		}
4407 	}
4408 abort:
4409 
4410 	print_raid5_conf(conf);
4411 	return err;
4412 }
4413 
4414 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4415 {
4416 	raid5_conf_t *conf = mddev->private;
4417 	int found = 0;
4418 	int disk;
4419 	struct disk_info *p;
4420 
4421 	if (mddev->degraded > conf->max_degraded)
4422 		/* no point adding a device */
4423 		return 0;
4424 
4425 	/*
4426 	 * find the disk ... but prefer rdev->saved_raid_disk
4427 	 * if possible.
4428 	 */
4429 	if (rdev->saved_raid_disk >= 0 &&
4430 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
4431 		disk = rdev->saved_raid_disk;
4432 	else
4433 		disk = 0;
4434 	for ( ; disk < conf->raid_disks; disk++)
4435 		if ((p=conf->disks + disk)->rdev == NULL) {
4436 			clear_bit(In_sync, &rdev->flags);
4437 			rdev->raid_disk = disk;
4438 			found = 1;
4439 			if (rdev->saved_raid_disk != disk)
4440 				conf->fullsync = 1;
4441 			rcu_assign_pointer(p->rdev, rdev);
4442 			break;
4443 		}
4444 	print_raid5_conf(conf);
4445 	return found;
4446 }
4447 
4448 static int raid5_resize(mddev_t *mddev, sector_t sectors)
4449 {
4450 	/* no resync is happening, and there is enough space
4451 	 * on all devices, so we can resize.
4452 	 * We need to make sure resync covers any new space.
4453 	 * If the array is shrinking we should possibly wait until
4454 	 * any io in the removed space completes, but it hardly seems
4455 	 * worth it.
4456 	 */
4457 	raid5_conf_t *conf = mddev_to_conf(mddev);
4458 
4459 	sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4460 	mddev->array_size = (sectors * (mddev->raid_disks-conf->max_degraded))>>1;
4461 	set_capacity(mddev->gendisk, mddev->array_size << 1);
4462 	mddev->changed = 1;
4463 	if (sectors/2  > mddev->size && mddev->recovery_cp == MaxSector) {
4464 		mddev->recovery_cp = mddev->size << 1;
4465 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4466 	}
4467 	mddev->size = sectors /2;
4468 	mddev->resync_max_sectors = sectors;
4469 	return 0;
4470 }
4471 
4472 #ifdef CONFIG_MD_RAID5_RESHAPE
4473 static int raid5_check_reshape(mddev_t *mddev)
4474 {
4475 	raid5_conf_t *conf = mddev_to_conf(mddev);
4476 	int err;
4477 
4478 	if (mddev->delta_disks < 0 ||
4479 	    mddev->new_level != mddev->level)
4480 		return -EINVAL; /* Cannot shrink array or change level yet */
4481 	if (mddev->delta_disks == 0)
4482 		return 0; /* nothing to do */
4483 
4484 	/* Can only proceed if there are plenty of stripe_heads.
4485 	 * We need a minimum of one full stripe,, and for sensible progress
4486 	 * it is best to have about 4 times that.
4487 	 * If we require 4 times, then the default 256 4K stripe_heads will
4488 	 * allow for chunk sizes up to 256K, which is probably OK.
4489 	 * If the chunk size is greater, user-space should request more
4490 	 * stripe_heads first.
4491 	 */
4492 	if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
4493 	    (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
4494 		printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n",
4495 		       (mddev->chunk_size / STRIPE_SIZE)*4);
4496 		return -ENOSPC;
4497 	}
4498 
4499 	err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
4500 	if (err)
4501 		return err;
4502 
4503 	if (mddev->degraded > conf->max_degraded)
4504 		return -EINVAL;
4505 	/* looks like we might be able to manage this */
4506 	return 0;
4507 }
4508 
4509 static int raid5_start_reshape(mddev_t *mddev)
4510 {
4511 	raid5_conf_t *conf = mddev_to_conf(mddev);
4512 	mdk_rdev_t *rdev;
4513 	struct list_head *rtmp;
4514 	int spares = 0;
4515 	int added_devices = 0;
4516 	unsigned long flags;
4517 
4518 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4519 		return -EBUSY;
4520 
4521 	ITERATE_RDEV(mddev, rdev, rtmp)
4522 		if (rdev->raid_disk < 0 &&
4523 		    !test_bit(Faulty, &rdev->flags))
4524 			spares++;
4525 
4526 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
4527 		/* Not enough devices even to make a degraded array
4528 		 * of that size
4529 		 */
4530 		return -EINVAL;
4531 
4532 	atomic_set(&conf->reshape_stripes, 0);
4533 	spin_lock_irq(&conf->device_lock);
4534 	conf->previous_raid_disks = conf->raid_disks;
4535 	conf->raid_disks += mddev->delta_disks;
4536 	conf->expand_progress = 0;
4537 	conf->expand_lo = 0;
4538 	spin_unlock_irq(&conf->device_lock);
4539 
4540 	/* Add some new drives, as many as will fit.
4541 	 * We know there are enough to make the newly sized array work.
4542 	 */
4543 	ITERATE_RDEV(mddev, rdev, rtmp)
4544 		if (rdev->raid_disk < 0 &&
4545 		    !test_bit(Faulty, &rdev->flags)) {
4546 			if (raid5_add_disk(mddev, rdev)) {
4547 				char nm[20];
4548 				set_bit(In_sync, &rdev->flags);
4549 				added_devices++;
4550 				rdev->recovery_offset = 0;
4551 				sprintf(nm, "rd%d", rdev->raid_disk);
4552 				if (sysfs_create_link(&mddev->kobj,
4553 						      &rdev->kobj, nm))
4554 					printk(KERN_WARNING
4555 					       "raid5: failed to create "
4556 					       " link %s for %s\n",
4557 					       nm, mdname(mddev));
4558 			} else
4559 				break;
4560 		}
4561 
4562 	spin_lock_irqsave(&conf->device_lock, flags);
4563 	mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
4564 	spin_unlock_irqrestore(&conf->device_lock, flags);
4565 	mddev->raid_disks = conf->raid_disks;
4566 	mddev->reshape_position = 0;
4567 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
4568 
4569 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4570 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4571 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4572 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4573 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4574 						"%s_reshape");
4575 	if (!mddev->sync_thread) {
4576 		mddev->recovery = 0;
4577 		spin_lock_irq(&conf->device_lock);
4578 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
4579 		conf->expand_progress = MaxSector;
4580 		spin_unlock_irq(&conf->device_lock);
4581 		return -EAGAIN;
4582 	}
4583 	md_wakeup_thread(mddev->sync_thread);
4584 	md_new_event(mddev);
4585 	return 0;
4586 }
4587 #endif
4588 
4589 static void end_reshape(raid5_conf_t *conf)
4590 {
4591 	struct block_device *bdev;
4592 
4593 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
4594 		conf->mddev->array_size = conf->mddev->size *
4595 			(conf->raid_disks - conf->max_degraded);
4596 		set_capacity(conf->mddev->gendisk, conf->mddev->array_size << 1);
4597 		conf->mddev->changed = 1;
4598 
4599 		bdev = bdget_disk(conf->mddev->gendisk, 0);
4600 		if (bdev) {
4601 			mutex_lock(&bdev->bd_inode->i_mutex);
4602 			i_size_write(bdev->bd_inode, (loff_t)conf->mddev->array_size << 10);
4603 			mutex_unlock(&bdev->bd_inode->i_mutex);
4604 			bdput(bdev);
4605 		}
4606 		spin_lock_irq(&conf->device_lock);
4607 		conf->expand_progress = MaxSector;
4608 		spin_unlock_irq(&conf->device_lock);
4609 		conf->mddev->reshape_position = MaxSector;
4610 
4611 		/* read-ahead size must cover two whole stripes, which is
4612 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4613 		 */
4614 		{
4615 			int data_disks = conf->previous_raid_disks - conf->max_degraded;
4616 			int stripe = data_disks *
4617 				(conf->mddev->chunk_size / PAGE_SIZE);
4618 			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4619 				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4620 		}
4621 	}
4622 }
4623 
4624 static void raid5_quiesce(mddev_t *mddev, int state)
4625 {
4626 	raid5_conf_t *conf = mddev_to_conf(mddev);
4627 
4628 	switch(state) {
4629 	case 2: /* resume for a suspend */
4630 		wake_up(&conf->wait_for_overlap);
4631 		break;
4632 
4633 	case 1: /* stop all writes */
4634 		spin_lock_irq(&conf->device_lock);
4635 		conf->quiesce = 1;
4636 		wait_event_lock_irq(conf->wait_for_stripe,
4637 				    atomic_read(&conf->active_stripes) == 0 &&
4638 				    atomic_read(&conf->active_aligned_reads) == 0,
4639 				    conf->device_lock, /* nothing */);
4640 		spin_unlock_irq(&conf->device_lock);
4641 		break;
4642 
4643 	case 0: /* re-enable writes */
4644 		spin_lock_irq(&conf->device_lock);
4645 		conf->quiesce = 0;
4646 		wake_up(&conf->wait_for_stripe);
4647 		wake_up(&conf->wait_for_overlap);
4648 		spin_unlock_irq(&conf->device_lock);
4649 		break;
4650 	}
4651 }
4652 
4653 static struct mdk_personality raid6_personality =
4654 {
4655 	.name		= "raid6",
4656 	.level		= 6,
4657 	.owner		= THIS_MODULE,
4658 	.make_request	= make_request,
4659 	.run		= run,
4660 	.stop		= stop,
4661 	.status		= status,
4662 	.error_handler	= error,
4663 	.hot_add_disk	= raid5_add_disk,
4664 	.hot_remove_disk= raid5_remove_disk,
4665 	.spare_active	= raid5_spare_active,
4666 	.sync_request	= sync_request,
4667 	.resize		= raid5_resize,
4668 #ifdef CONFIG_MD_RAID5_RESHAPE
4669 	.check_reshape	= raid5_check_reshape,
4670 	.start_reshape  = raid5_start_reshape,
4671 #endif
4672 	.quiesce	= raid5_quiesce,
4673 };
4674 static struct mdk_personality raid5_personality =
4675 {
4676 	.name		= "raid5",
4677 	.level		= 5,
4678 	.owner		= THIS_MODULE,
4679 	.make_request	= make_request,
4680 	.run		= run,
4681 	.stop		= stop,
4682 	.status		= status,
4683 	.error_handler	= error,
4684 	.hot_add_disk	= raid5_add_disk,
4685 	.hot_remove_disk= raid5_remove_disk,
4686 	.spare_active	= raid5_spare_active,
4687 	.sync_request	= sync_request,
4688 	.resize		= raid5_resize,
4689 #ifdef CONFIG_MD_RAID5_RESHAPE
4690 	.check_reshape	= raid5_check_reshape,
4691 	.start_reshape  = raid5_start_reshape,
4692 #endif
4693 	.quiesce	= raid5_quiesce,
4694 };
4695 
4696 static struct mdk_personality raid4_personality =
4697 {
4698 	.name		= "raid4",
4699 	.level		= 4,
4700 	.owner		= THIS_MODULE,
4701 	.make_request	= make_request,
4702 	.run		= run,
4703 	.stop		= stop,
4704 	.status		= status,
4705 	.error_handler	= error,
4706 	.hot_add_disk	= raid5_add_disk,
4707 	.hot_remove_disk= raid5_remove_disk,
4708 	.spare_active	= raid5_spare_active,
4709 	.sync_request	= sync_request,
4710 	.resize		= raid5_resize,
4711 #ifdef CONFIG_MD_RAID5_RESHAPE
4712 	.check_reshape	= raid5_check_reshape,
4713 	.start_reshape  = raid5_start_reshape,
4714 #endif
4715 	.quiesce	= raid5_quiesce,
4716 };
4717 
4718 static int __init raid5_init(void)
4719 {
4720 	int e;
4721 
4722 	e = raid6_select_algo();
4723 	if ( e )
4724 		return e;
4725 	register_md_personality(&raid6_personality);
4726 	register_md_personality(&raid5_personality);
4727 	register_md_personality(&raid4_personality);
4728 	return 0;
4729 }
4730 
4731 static void raid5_exit(void)
4732 {
4733 	unregister_md_personality(&raid6_personality);
4734 	unregister_md_personality(&raid5_personality);
4735 	unregister_md_personality(&raid4_personality);
4736 }
4737 
4738 module_init(raid5_init);
4739 module_exit(raid5_exit);
4740 MODULE_LICENSE("GPL");
4741 MODULE_ALIAS("md-personality-4"); /* RAID5 */
4742 MODULE_ALIAS("md-raid5");
4743 MODULE_ALIAS("md-raid4");
4744 MODULE_ALIAS("md-level-5");
4745 MODULE_ALIAS("md-level-4");
4746 MODULE_ALIAS("md-personality-8"); /* RAID6 */
4747 MODULE_ALIAS("md-raid6");
4748 MODULE_ALIAS("md-level-6");
4749 
4750 /* This used to be two separate modules, they were: */
4751 MODULE_ALIAS("raid5");
4752 MODULE_ALIAS("raid6");
4753