xref: /linux/drivers/md/raid5.c (revision 962fad301c33dec69324dc2d9320fd84a119a24c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid5.c : Multiple Devices driver for Linux
4  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
5  *	   Copyright (C) 1999, 2000 Ingo Molnar
6  *	   Copyright (C) 2002, 2003 H. Peter Anvin
7  *
8  * RAID-4/5/6 management functions.
9  * Thanks to Penguin Computing for making the RAID-6 development possible
10  * by donating a test server!
11  */
12 
13 /*
14  * BITMAP UNPLUGGING:
15  *
16  * The sequencing for updating the bitmap reliably is a little
17  * subtle (and I got it wrong the first time) so it deserves some
18  * explanation.
19  *
20  * We group bitmap updates into batches.  Each batch has a number.
21  * We may write out several batches at once, but that isn't very important.
22  * conf->seq_write is the number of the last batch successfully written.
23  * conf->seq_flush is the number of the last batch that was closed to
24  *    new additions.
25  * When we discover that we will need to write to any block in a stripe
26  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
27  * the number of the batch it will be in. This is seq_flush+1.
28  * When we are ready to do a write, if that batch hasn't been written yet,
29  *   we plug the array and queue the stripe for later.
30  * When an unplug happens, we increment bm_flush, thus closing the current
31  *   batch.
32  * When we notice that bm_flush > bm_write, we write out all pending updates
33  * to the bitmap, and advance bm_write to where bm_flush was.
34  * This may occasionally write a bit out twice, but is sure never to
35  * miss any bits.
36  */
37 
38 #include <linux/blkdev.h>
39 #include <linux/kthread.h>
40 #include <linux/raid/pq.h>
41 #include <linux/async_tx.h>
42 #include <linux/module.h>
43 #include <linux/async.h>
44 #include <linux/seq_file.h>
45 #include <linux/cpu.h>
46 #include <linux/slab.h>
47 #include <linux/ratelimit.h>
48 #include <linux/nodemask.h>
49 
50 #include <trace/events/block.h>
51 #include <linux/list_sort.h>
52 
53 #include "md.h"
54 #include "raid5.h"
55 #include "raid0.h"
56 #include "md-bitmap.h"
57 #include "raid5-log.h"
58 
59 #define UNSUPPORTED_MDDEV_FLAGS	(1L << MD_FAILFAST_SUPPORTED)
60 
61 #define cpu_to_group(cpu) cpu_to_node(cpu)
62 #define ANY_GROUP NUMA_NO_NODE
63 
64 static bool devices_handle_discard_safely = false;
65 module_param(devices_handle_discard_safely, bool, 0644);
66 MODULE_PARM_DESC(devices_handle_discard_safely,
67 		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
68 static struct workqueue_struct *raid5_wq;
69 
70 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
71 {
72 	int hash = (sect >> RAID5_STRIPE_SHIFT(conf)) & HASH_MASK;
73 	return &conf->stripe_hashtbl[hash];
74 }
75 
76 static inline int stripe_hash_locks_hash(struct r5conf *conf, sector_t sect)
77 {
78 	return (sect >> RAID5_STRIPE_SHIFT(conf)) & STRIPE_HASH_LOCKS_MASK;
79 }
80 
81 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
82 {
83 	spin_lock_irq(conf->hash_locks + hash);
84 	spin_lock(&conf->device_lock);
85 }
86 
87 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
88 {
89 	spin_unlock(&conf->device_lock);
90 	spin_unlock_irq(conf->hash_locks + hash);
91 }
92 
93 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
94 {
95 	int i;
96 	spin_lock_irq(conf->hash_locks);
97 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
98 		spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
99 	spin_lock(&conf->device_lock);
100 }
101 
102 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
103 {
104 	int i;
105 	spin_unlock(&conf->device_lock);
106 	for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
107 		spin_unlock(conf->hash_locks + i);
108 	spin_unlock_irq(conf->hash_locks);
109 }
110 
111 /* Find first data disk in a raid6 stripe */
112 static inline int raid6_d0(struct stripe_head *sh)
113 {
114 	if (sh->ddf_layout)
115 		/* ddf always start from first device */
116 		return 0;
117 	/* md starts just after Q block */
118 	if (sh->qd_idx == sh->disks - 1)
119 		return 0;
120 	else
121 		return sh->qd_idx + 1;
122 }
123 static inline int raid6_next_disk(int disk, int raid_disks)
124 {
125 	disk++;
126 	return (disk < raid_disks) ? disk : 0;
127 }
128 
129 /* When walking through the disks in a raid5, starting at raid6_d0,
130  * We need to map each disk to a 'slot', where the data disks are slot
131  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
132  * is raid_disks-1.  This help does that mapping.
133  */
134 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
135 			     int *count, int syndrome_disks)
136 {
137 	int slot = *count;
138 
139 	if (sh->ddf_layout)
140 		(*count)++;
141 	if (idx == sh->pd_idx)
142 		return syndrome_disks;
143 	if (idx == sh->qd_idx)
144 		return syndrome_disks + 1;
145 	if (!sh->ddf_layout)
146 		(*count)++;
147 	return slot;
148 }
149 
150 static void print_raid5_conf (struct r5conf *conf);
151 
152 static int stripe_operations_active(struct stripe_head *sh)
153 {
154 	return sh->check_state || sh->reconstruct_state ||
155 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
156 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
157 }
158 
159 static bool stripe_is_lowprio(struct stripe_head *sh)
160 {
161 	return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
162 		test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
163 	       !test_bit(STRIPE_R5C_CACHING, &sh->state);
164 }
165 
166 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
167 {
168 	struct r5conf *conf = sh->raid_conf;
169 	struct r5worker_group *group;
170 	int thread_cnt;
171 	int i, cpu = sh->cpu;
172 
173 	if (!cpu_online(cpu)) {
174 		cpu = cpumask_any(cpu_online_mask);
175 		sh->cpu = cpu;
176 	}
177 
178 	if (list_empty(&sh->lru)) {
179 		struct r5worker_group *group;
180 		group = conf->worker_groups + cpu_to_group(cpu);
181 		if (stripe_is_lowprio(sh))
182 			list_add_tail(&sh->lru, &group->loprio_list);
183 		else
184 			list_add_tail(&sh->lru, &group->handle_list);
185 		group->stripes_cnt++;
186 		sh->group = group;
187 	}
188 
189 	if (conf->worker_cnt_per_group == 0) {
190 		md_wakeup_thread(conf->mddev->thread);
191 		return;
192 	}
193 
194 	group = conf->worker_groups + cpu_to_group(sh->cpu);
195 
196 	group->workers[0].working = true;
197 	/* at least one worker should run to avoid race */
198 	queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
199 
200 	thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
201 	/* wakeup more workers */
202 	for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
203 		if (group->workers[i].working == false) {
204 			group->workers[i].working = true;
205 			queue_work_on(sh->cpu, raid5_wq,
206 				      &group->workers[i].work);
207 			thread_cnt--;
208 		}
209 	}
210 }
211 
212 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
213 			      struct list_head *temp_inactive_list)
214 {
215 	int i;
216 	int injournal = 0;	/* number of date pages with R5_InJournal */
217 
218 	BUG_ON(!list_empty(&sh->lru));
219 	BUG_ON(atomic_read(&conf->active_stripes)==0);
220 
221 	if (r5c_is_writeback(conf->log))
222 		for (i = sh->disks; i--; )
223 			if (test_bit(R5_InJournal, &sh->dev[i].flags))
224 				injournal++;
225 	/*
226 	 * In the following cases, the stripe cannot be released to cached
227 	 * lists. Therefore, we make the stripe write out and set
228 	 * STRIPE_HANDLE:
229 	 *   1. when quiesce in r5c write back;
230 	 *   2. when resync is requested fot the stripe.
231 	 */
232 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
233 	    (conf->quiesce && r5c_is_writeback(conf->log) &&
234 	     !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
235 		if (test_bit(STRIPE_R5C_CACHING, &sh->state))
236 			r5c_make_stripe_write_out(sh);
237 		set_bit(STRIPE_HANDLE, &sh->state);
238 	}
239 
240 	if (test_bit(STRIPE_HANDLE, &sh->state)) {
241 		if (test_bit(STRIPE_DELAYED, &sh->state) &&
242 		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
243 			list_add_tail(&sh->lru, &conf->delayed_list);
244 		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
245 			   sh->bm_seq - conf->seq_write > 0)
246 			list_add_tail(&sh->lru, &conf->bitmap_list);
247 		else {
248 			clear_bit(STRIPE_DELAYED, &sh->state);
249 			clear_bit(STRIPE_BIT_DELAY, &sh->state);
250 			if (conf->worker_cnt_per_group == 0) {
251 				if (stripe_is_lowprio(sh))
252 					list_add_tail(&sh->lru,
253 							&conf->loprio_list);
254 				else
255 					list_add_tail(&sh->lru,
256 							&conf->handle_list);
257 			} else {
258 				raid5_wakeup_stripe_thread(sh);
259 				return;
260 			}
261 		}
262 		md_wakeup_thread(conf->mddev->thread);
263 	} else {
264 		BUG_ON(stripe_operations_active(sh));
265 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
266 			if (atomic_dec_return(&conf->preread_active_stripes)
267 			    < IO_THRESHOLD)
268 				md_wakeup_thread(conf->mddev->thread);
269 		atomic_dec(&conf->active_stripes);
270 		if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
271 			if (!r5c_is_writeback(conf->log))
272 				list_add_tail(&sh->lru, temp_inactive_list);
273 			else {
274 				WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
275 				if (injournal == 0)
276 					list_add_tail(&sh->lru, temp_inactive_list);
277 				else if (injournal == conf->raid_disks - conf->max_degraded) {
278 					/* full stripe */
279 					if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
280 						atomic_inc(&conf->r5c_cached_full_stripes);
281 					if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
282 						atomic_dec(&conf->r5c_cached_partial_stripes);
283 					list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
284 					r5c_check_cached_full_stripe(conf);
285 				} else
286 					/*
287 					 * STRIPE_R5C_PARTIAL_STRIPE is set in
288 					 * r5c_try_caching_write(). No need to
289 					 * set it again.
290 					 */
291 					list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
292 			}
293 		}
294 	}
295 }
296 
297 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
298 			     struct list_head *temp_inactive_list)
299 {
300 	if (atomic_dec_and_test(&sh->count))
301 		do_release_stripe(conf, sh, temp_inactive_list);
302 }
303 
304 /*
305  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
306  *
307  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
308  * given time. Adding stripes only takes device lock, while deleting stripes
309  * only takes hash lock.
310  */
311 static void release_inactive_stripe_list(struct r5conf *conf,
312 					 struct list_head *temp_inactive_list,
313 					 int hash)
314 {
315 	int size;
316 	bool do_wakeup = false;
317 	unsigned long flags;
318 
319 	if (hash == NR_STRIPE_HASH_LOCKS) {
320 		size = NR_STRIPE_HASH_LOCKS;
321 		hash = NR_STRIPE_HASH_LOCKS - 1;
322 	} else
323 		size = 1;
324 	while (size) {
325 		struct list_head *list = &temp_inactive_list[size - 1];
326 
327 		/*
328 		 * We don't hold any lock here yet, raid5_get_active_stripe() might
329 		 * remove stripes from the list
330 		 */
331 		if (!list_empty_careful(list)) {
332 			spin_lock_irqsave(conf->hash_locks + hash, flags);
333 			if (list_empty(conf->inactive_list + hash) &&
334 			    !list_empty(list))
335 				atomic_dec(&conf->empty_inactive_list_nr);
336 			list_splice_tail_init(list, conf->inactive_list + hash);
337 			do_wakeup = true;
338 			spin_unlock_irqrestore(conf->hash_locks + hash, flags);
339 		}
340 		size--;
341 		hash--;
342 	}
343 
344 	if (do_wakeup) {
345 		wake_up(&conf->wait_for_stripe);
346 		if (atomic_read(&conf->active_stripes) == 0)
347 			wake_up(&conf->wait_for_quiescent);
348 		if (conf->retry_read_aligned)
349 			md_wakeup_thread(conf->mddev->thread);
350 	}
351 }
352 
353 /* should hold conf->device_lock already */
354 static int release_stripe_list(struct r5conf *conf,
355 			       struct list_head *temp_inactive_list)
356 {
357 	struct stripe_head *sh, *t;
358 	int count = 0;
359 	struct llist_node *head;
360 
361 	head = llist_del_all(&conf->released_stripes);
362 	head = llist_reverse_order(head);
363 	llist_for_each_entry_safe(sh, t, head, release_list) {
364 		int hash;
365 
366 		/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
367 		smp_mb();
368 		clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
369 		/*
370 		 * Don't worry the bit is set here, because if the bit is set
371 		 * again, the count is always > 1. This is true for
372 		 * STRIPE_ON_UNPLUG_LIST bit too.
373 		 */
374 		hash = sh->hash_lock_index;
375 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
376 		count++;
377 	}
378 
379 	return count;
380 }
381 
382 void raid5_release_stripe(struct stripe_head *sh)
383 {
384 	struct r5conf *conf = sh->raid_conf;
385 	unsigned long flags;
386 	struct list_head list;
387 	int hash;
388 	bool wakeup;
389 
390 	/* Avoid release_list until the last reference.
391 	 */
392 	if (atomic_add_unless(&sh->count, -1, 1))
393 		return;
394 
395 	if (unlikely(!conf->mddev->thread) ||
396 		test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
397 		goto slow_path;
398 	wakeup = llist_add(&sh->release_list, &conf->released_stripes);
399 	if (wakeup)
400 		md_wakeup_thread(conf->mddev->thread);
401 	return;
402 slow_path:
403 	/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
404 	if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) {
405 		INIT_LIST_HEAD(&list);
406 		hash = sh->hash_lock_index;
407 		do_release_stripe(conf, sh, &list);
408 		spin_unlock_irqrestore(&conf->device_lock, flags);
409 		release_inactive_stripe_list(conf, &list, hash);
410 	}
411 }
412 
413 static inline void remove_hash(struct stripe_head *sh)
414 {
415 	pr_debug("remove_hash(), stripe %llu\n",
416 		(unsigned long long)sh->sector);
417 
418 	hlist_del_init(&sh->hash);
419 }
420 
421 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
422 {
423 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
424 
425 	pr_debug("insert_hash(), stripe %llu\n",
426 		(unsigned long long)sh->sector);
427 
428 	hlist_add_head(&sh->hash, hp);
429 }
430 
431 /* find an idle stripe, make sure it is unhashed, and return it. */
432 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
433 {
434 	struct stripe_head *sh = NULL;
435 	struct list_head *first;
436 
437 	if (list_empty(conf->inactive_list + hash))
438 		goto out;
439 	first = (conf->inactive_list + hash)->next;
440 	sh = list_entry(first, struct stripe_head, lru);
441 	list_del_init(first);
442 	remove_hash(sh);
443 	atomic_inc(&conf->active_stripes);
444 	BUG_ON(hash != sh->hash_lock_index);
445 	if (list_empty(conf->inactive_list + hash))
446 		atomic_inc(&conf->empty_inactive_list_nr);
447 out:
448 	return sh;
449 }
450 
451 static void shrink_buffers(struct stripe_head *sh)
452 {
453 	struct page *p;
454 	int i;
455 	int num = sh->raid_conf->pool_size;
456 
457 	for (i = 0; i < num ; i++) {
458 		WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
459 		p = sh->dev[i].page;
460 		if (!p)
461 			continue;
462 		sh->dev[i].page = NULL;
463 		put_page(p);
464 	}
465 }
466 
467 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
468 {
469 	int i;
470 	int num = sh->raid_conf->pool_size;
471 
472 	for (i = 0; i < num; i++) {
473 		struct page *page;
474 
475 		if (!(page = alloc_page(gfp))) {
476 			return 1;
477 		}
478 		sh->dev[i].page = page;
479 		sh->dev[i].orig_page = page;
480 	}
481 
482 	return 0;
483 }
484 
485 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
486 			    struct stripe_head *sh);
487 
488 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
489 {
490 	struct r5conf *conf = sh->raid_conf;
491 	int i, seq;
492 
493 	BUG_ON(atomic_read(&sh->count) != 0);
494 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
495 	BUG_ON(stripe_operations_active(sh));
496 	BUG_ON(sh->batch_head);
497 
498 	pr_debug("init_stripe called, stripe %llu\n",
499 		(unsigned long long)sector);
500 retry:
501 	seq = read_seqcount_begin(&conf->gen_lock);
502 	sh->generation = conf->generation - previous;
503 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
504 	sh->sector = sector;
505 	stripe_set_idx(sector, conf, previous, sh);
506 	sh->state = 0;
507 
508 	for (i = sh->disks; i--; ) {
509 		struct r5dev *dev = &sh->dev[i];
510 
511 		if (dev->toread || dev->read || dev->towrite || dev->written ||
512 		    test_bit(R5_LOCKED, &dev->flags)) {
513 			pr_err("sector=%llx i=%d %p %p %p %p %d\n",
514 			       (unsigned long long)sh->sector, i, dev->toread,
515 			       dev->read, dev->towrite, dev->written,
516 			       test_bit(R5_LOCKED, &dev->flags));
517 			WARN_ON(1);
518 		}
519 		dev->flags = 0;
520 		dev->sector = raid5_compute_blocknr(sh, i, previous);
521 	}
522 	if (read_seqcount_retry(&conf->gen_lock, seq))
523 		goto retry;
524 	sh->overwrite_disks = 0;
525 	insert_hash(conf, sh);
526 	sh->cpu = smp_processor_id();
527 	set_bit(STRIPE_BATCH_READY, &sh->state);
528 }
529 
530 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
531 					 short generation)
532 {
533 	struct stripe_head *sh;
534 
535 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
536 	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
537 		if (sh->sector == sector && sh->generation == generation)
538 			return sh;
539 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
540 	return NULL;
541 }
542 
543 /*
544  * Need to check if array has failed when deciding whether to:
545  *  - start an array
546  *  - remove non-faulty devices
547  *  - add a spare
548  *  - allow a reshape
549  * This determination is simple when no reshape is happening.
550  * However if there is a reshape, we need to carefully check
551  * both the before and after sections.
552  * This is because some failed devices may only affect one
553  * of the two sections, and some non-in_sync devices may
554  * be insync in the section most affected by failed devices.
555  */
556 int raid5_calc_degraded(struct r5conf *conf)
557 {
558 	int degraded, degraded2;
559 	int i;
560 
561 	rcu_read_lock();
562 	degraded = 0;
563 	for (i = 0; i < conf->previous_raid_disks; i++) {
564 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
565 		if (rdev && test_bit(Faulty, &rdev->flags))
566 			rdev = rcu_dereference(conf->disks[i].replacement);
567 		if (!rdev || test_bit(Faulty, &rdev->flags))
568 			degraded++;
569 		else if (test_bit(In_sync, &rdev->flags))
570 			;
571 		else
572 			/* not in-sync or faulty.
573 			 * If the reshape increases the number of devices,
574 			 * this is being recovered by the reshape, so
575 			 * this 'previous' section is not in_sync.
576 			 * If the number of devices is being reduced however,
577 			 * the device can only be part of the array if
578 			 * we are reverting a reshape, so this section will
579 			 * be in-sync.
580 			 */
581 			if (conf->raid_disks >= conf->previous_raid_disks)
582 				degraded++;
583 	}
584 	rcu_read_unlock();
585 	if (conf->raid_disks == conf->previous_raid_disks)
586 		return degraded;
587 	rcu_read_lock();
588 	degraded2 = 0;
589 	for (i = 0; i < conf->raid_disks; i++) {
590 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
591 		if (rdev && test_bit(Faulty, &rdev->flags))
592 			rdev = rcu_dereference(conf->disks[i].replacement);
593 		if (!rdev || test_bit(Faulty, &rdev->flags))
594 			degraded2++;
595 		else if (test_bit(In_sync, &rdev->flags))
596 			;
597 		else
598 			/* not in-sync or faulty.
599 			 * If reshape increases the number of devices, this
600 			 * section has already been recovered, else it
601 			 * almost certainly hasn't.
602 			 */
603 			if (conf->raid_disks <= conf->previous_raid_disks)
604 				degraded2++;
605 	}
606 	rcu_read_unlock();
607 	if (degraded2 > degraded)
608 		return degraded2;
609 	return degraded;
610 }
611 
612 static int has_failed(struct r5conf *conf)
613 {
614 	int degraded;
615 
616 	if (conf->mddev->reshape_position == MaxSector)
617 		return conf->mddev->degraded > conf->max_degraded;
618 
619 	degraded = raid5_calc_degraded(conf);
620 	if (degraded > conf->max_degraded)
621 		return 1;
622 	return 0;
623 }
624 
625 struct stripe_head *
626 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
627 			int previous, int noblock, int noquiesce)
628 {
629 	struct stripe_head *sh;
630 	int hash = stripe_hash_locks_hash(conf, sector);
631 	int inc_empty_inactive_list_flag;
632 
633 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
634 
635 	spin_lock_irq(conf->hash_locks + hash);
636 
637 	do {
638 		wait_event_lock_irq(conf->wait_for_quiescent,
639 				    conf->quiesce == 0 || noquiesce,
640 				    *(conf->hash_locks + hash));
641 		sh = __find_stripe(conf, sector, conf->generation - previous);
642 		if (!sh) {
643 			if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
644 				sh = get_free_stripe(conf, hash);
645 				if (!sh && !test_bit(R5_DID_ALLOC,
646 						     &conf->cache_state))
647 					set_bit(R5_ALLOC_MORE,
648 						&conf->cache_state);
649 			}
650 			if (noblock && sh == NULL)
651 				break;
652 
653 			r5c_check_stripe_cache_usage(conf);
654 			if (!sh) {
655 				set_bit(R5_INACTIVE_BLOCKED,
656 					&conf->cache_state);
657 				r5l_wake_reclaim(conf->log, 0);
658 				wait_event_lock_irq(
659 					conf->wait_for_stripe,
660 					!list_empty(conf->inactive_list + hash) &&
661 					(atomic_read(&conf->active_stripes)
662 					 < (conf->max_nr_stripes * 3 / 4)
663 					 || !test_bit(R5_INACTIVE_BLOCKED,
664 						      &conf->cache_state)),
665 					*(conf->hash_locks + hash));
666 				clear_bit(R5_INACTIVE_BLOCKED,
667 					  &conf->cache_state);
668 			} else {
669 				init_stripe(sh, sector, previous);
670 				atomic_inc(&sh->count);
671 			}
672 		} else if (!atomic_inc_not_zero(&sh->count)) {
673 			spin_lock(&conf->device_lock);
674 			if (!atomic_read(&sh->count)) {
675 				if (!test_bit(STRIPE_HANDLE, &sh->state))
676 					atomic_inc(&conf->active_stripes);
677 				BUG_ON(list_empty(&sh->lru) &&
678 				       !test_bit(STRIPE_EXPANDING, &sh->state));
679 				inc_empty_inactive_list_flag = 0;
680 				if (!list_empty(conf->inactive_list + hash))
681 					inc_empty_inactive_list_flag = 1;
682 				list_del_init(&sh->lru);
683 				if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
684 					atomic_inc(&conf->empty_inactive_list_nr);
685 				if (sh->group) {
686 					sh->group->stripes_cnt--;
687 					sh->group = NULL;
688 				}
689 			}
690 			atomic_inc(&sh->count);
691 			spin_unlock(&conf->device_lock);
692 		}
693 	} while (sh == NULL);
694 
695 	spin_unlock_irq(conf->hash_locks + hash);
696 	return sh;
697 }
698 
699 static bool is_full_stripe_write(struct stripe_head *sh)
700 {
701 	BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
702 	return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
703 }
704 
705 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
706 		__acquires(&sh1->stripe_lock)
707 		__acquires(&sh2->stripe_lock)
708 {
709 	if (sh1 > sh2) {
710 		spin_lock_irq(&sh2->stripe_lock);
711 		spin_lock_nested(&sh1->stripe_lock, 1);
712 	} else {
713 		spin_lock_irq(&sh1->stripe_lock);
714 		spin_lock_nested(&sh2->stripe_lock, 1);
715 	}
716 }
717 
718 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
719 		__releases(&sh1->stripe_lock)
720 		__releases(&sh2->stripe_lock)
721 {
722 	spin_unlock(&sh1->stripe_lock);
723 	spin_unlock_irq(&sh2->stripe_lock);
724 }
725 
726 /* Only freshly new full stripe normal write stripe can be added to a batch list */
727 static bool stripe_can_batch(struct stripe_head *sh)
728 {
729 	struct r5conf *conf = sh->raid_conf;
730 
731 	if (raid5_has_log(conf) || raid5_has_ppl(conf))
732 		return false;
733 	return test_bit(STRIPE_BATCH_READY, &sh->state) &&
734 		!test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
735 		is_full_stripe_write(sh);
736 }
737 
738 /* we only do back search */
739 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
740 {
741 	struct stripe_head *head;
742 	sector_t head_sector, tmp_sec;
743 	int hash;
744 	int dd_idx;
745 	int inc_empty_inactive_list_flag;
746 
747 	/* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
748 	tmp_sec = sh->sector;
749 	if (!sector_div(tmp_sec, conf->chunk_sectors))
750 		return;
751 	head_sector = sh->sector - RAID5_STRIPE_SECTORS(conf);
752 
753 	hash = stripe_hash_locks_hash(conf, head_sector);
754 	spin_lock_irq(conf->hash_locks + hash);
755 	head = __find_stripe(conf, head_sector, conf->generation);
756 	if (head && !atomic_inc_not_zero(&head->count)) {
757 		spin_lock(&conf->device_lock);
758 		if (!atomic_read(&head->count)) {
759 			if (!test_bit(STRIPE_HANDLE, &head->state))
760 				atomic_inc(&conf->active_stripes);
761 			BUG_ON(list_empty(&head->lru) &&
762 			       !test_bit(STRIPE_EXPANDING, &head->state));
763 			inc_empty_inactive_list_flag = 0;
764 			if (!list_empty(conf->inactive_list + hash))
765 				inc_empty_inactive_list_flag = 1;
766 			list_del_init(&head->lru);
767 			if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
768 				atomic_inc(&conf->empty_inactive_list_nr);
769 			if (head->group) {
770 				head->group->stripes_cnt--;
771 				head->group = NULL;
772 			}
773 		}
774 		atomic_inc(&head->count);
775 		spin_unlock(&conf->device_lock);
776 	}
777 	spin_unlock_irq(conf->hash_locks + hash);
778 
779 	if (!head)
780 		return;
781 	if (!stripe_can_batch(head))
782 		goto out;
783 
784 	lock_two_stripes(head, sh);
785 	/* clear_batch_ready clear the flag */
786 	if (!stripe_can_batch(head) || !stripe_can_batch(sh))
787 		goto unlock_out;
788 
789 	if (sh->batch_head)
790 		goto unlock_out;
791 
792 	dd_idx = 0;
793 	while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
794 		dd_idx++;
795 	if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
796 	    bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
797 		goto unlock_out;
798 
799 	if (head->batch_head) {
800 		spin_lock(&head->batch_head->batch_lock);
801 		/* This batch list is already running */
802 		if (!stripe_can_batch(head)) {
803 			spin_unlock(&head->batch_head->batch_lock);
804 			goto unlock_out;
805 		}
806 		/*
807 		 * We must assign batch_head of this stripe within the
808 		 * batch_lock, otherwise clear_batch_ready of batch head
809 		 * stripe could clear BATCH_READY bit of this stripe and
810 		 * this stripe->batch_head doesn't get assigned, which
811 		 * could confuse clear_batch_ready for this stripe
812 		 */
813 		sh->batch_head = head->batch_head;
814 
815 		/*
816 		 * at this point, head's BATCH_READY could be cleared, but we
817 		 * can still add the stripe to batch list
818 		 */
819 		list_add(&sh->batch_list, &head->batch_list);
820 		spin_unlock(&head->batch_head->batch_lock);
821 	} else {
822 		head->batch_head = head;
823 		sh->batch_head = head->batch_head;
824 		spin_lock(&head->batch_lock);
825 		list_add_tail(&sh->batch_list, &head->batch_list);
826 		spin_unlock(&head->batch_lock);
827 	}
828 
829 	if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
830 		if (atomic_dec_return(&conf->preread_active_stripes)
831 		    < IO_THRESHOLD)
832 			md_wakeup_thread(conf->mddev->thread);
833 
834 	if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
835 		int seq = sh->bm_seq;
836 		if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
837 		    sh->batch_head->bm_seq > seq)
838 			seq = sh->batch_head->bm_seq;
839 		set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
840 		sh->batch_head->bm_seq = seq;
841 	}
842 
843 	atomic_inc(&sh->count);
844 unlock_out:
845 	unlock_two_stripes(head, sh);
846 out:
847 	raid5_release_stripe(head);
848 }
849 
850 /* Determine if 'data_offset' or 'new_data_offset' should be used
851  * in this stripe_head.
852  */
853 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
854 {
855 	sector_t progress = conf->reshape_progress;
856 	/* Need a memory barrier to make sure we see the value
857 	 * of conf->generation, or ->data_offset that was set before
858 	 * reshape_progress was updated.
859 	 */
860 	smp_rmb();
861 	if (progress == MaxSector)
862 		return 0;
863 	if (sh->generation == conf->generation - 1)
864 		return 0;
865 	/* We are in a reshape, and this is a new-generation stripe,
866 	 * so use new_data_offset.
867 	 */
868 	return 1;
869 }
870 
871 static void dispatch_bio_list(struct bio_list *tmp)
872 {
873 	struct bio *bio;
874 
875 	while ((bio = bio_list_pop(tmp)))
876 		submit_bio_noacct(bio);
877 }
878 
879 static int cmp_stripe(void *priv, struct list_head *a, struct list_head *b)
880 {
881 	const struct r5pending_data *da = list_entry(a,
882 				struct r5pending_data, sibling);
883 	const struct r5pending_data *db = list_entry(b,
884 				struct r5pending_data, sibling);
885 	if (da->sector > db->sector)
886 		return 1;
887 	if (da->sector < db->sector)
888 		return -1;
889 	return 0;
890 }
891 
892 static void dispatch_defer_bios(struct r5conf *conf, int target,
893 				struct bio_list *list)
894 {
895 	struct r5pending_data *data;
896 	struct list_head *first, *next = NULL;
897 	int cnt = 0;
898 
899 	if (conf->pending_data_cnt == 0)
900 		return;
901 
902 	list_sort(NULL, &conf->pending_list, cmp_stripe);
903 
904 	first = conf->pending_list.next;
905 
906 	/* temporarily move the head */
907 	if (conf->next_pending_data)
908 		list_move_tail(&conf->pending_list,
909 				&conf->next_pending_data->sibling);
910 
911 	while (!list_empty(&conf->pending_list)) {
912 		data = list_first_entry(&conf->pending_list,
913 			struct r5pending_data, sibling);
914 		if (&data->sibling == first)
915 			first = data->sibling.next;
916 		next = data->sibling.next;
917 
918 		bio_list_merge(list, &data->bios);
919 		list_move(&data->sibling, &conf->free_list);
920 		cnt++;
921 		if (cnt >= target)
922 			break;
923 	}
924 	conf->pending_data_cnt -= cnt;
925 	BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
926 
927 	if (next != &conf->pending_list)
928 		conf->next_pending_data = list_entry(next,
929 				struct r5pending_data, sibling);
930 	else
931 		conf->next_pending_data = NULL;
932 	/* list isn't empty */
933 	if (first != &conf->pending_list)
934 		list_move_tail(&conf->pending_list, first);
935 }
936 
937 static void flush_deferred_bios(struct r5conf *conf)
938 {
939 	struct bio_list tmp = BIO_EMPTY_LIST;
940 
941 	if (conf->pending_data_cnt == 0)
942 		return;
943 
944 	spin_lock(&conf->pending_bios_lock);
945 	dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
946 	BUG_ON(conf->pending_data_cnt != 0);
947 	spin_unlock(&conf->pending_bios_lock);
948 
949 	dispatch_bio_list(&tmp);
950 }
951 
952 static void defer_issue_bios(struct r5conf *conf, sector_t sector,
953 				struct bio_list *bios)
954 {
955 	struct bio_list tmp = BIO_EMPTY_LIST;
956 	struct r5pending_data *ent;
957 
958 	spin_lock(&conf->pending_bios_lock);
959 	ent = list_first_entry(&conf->free_list, struct r5pending_data,
960 							sibling);
961 	list_move_tail(&ent->sibling, &conf->pending_list);
962 	ent->sector = sector;
963 	bio_list_init(&ent->bios);
964 	bio_list_merge(&ent->bios, bios);
965 	conf->pending_data_cnt++;
966 	if (conf->pending_data_cnt >= PENDING_IO_MAX)
967 		dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
968 
969 	spin_unlock(&conf->pending_bios_lock);
970 
971 	dispatch_bio_list(&tmp);
972 }
973 
974 static void
975 raid5_end_read_request(struct bio *bi);
976 static void
977 raid5_end_write_request(struct bio *bi);
978 
979 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
980 {
981 	struct r5conf *conf = sh->raid_conf;
982 	int i, disks = sh->disks;
983 	struct stripe_head *head_sh = sh;
984 	struct bio_list pending_bios = BIO_EMPTY_LIST;
985 	bool should_defer;
986 
987 	might_sleep();
988 
989 	if (log_stripe(sh, s) == 0)
990 		return;
991 
992 	should_defer = conf->batch_bio_dispatch && conf->group_cnt;
993 
994 	for (i = disks; i--; ) {
995 		int op, op_flags = 0;
996 		int replace_only = 0;
997 		struct bio *bi, *rbi;
998 		struct md_rdev *rdev, *rrdev = NULL;
999 
1000 		sh = head_sh;
1001 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1002 			op = REQ_OP_WRITE;
1003 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1004 				op_flags = REQ_FUA;
1005 			if (test_bit(R5_Discard, &sh->dev[i].flags))
1006 				op = REQ_OP_DISCARD;
1007 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1008 			op = REQ_OP_READ;
1009 		else if (test_and_clear_bit(R5_WantReplace,
1010 					    &sh->dev[i].flags)) {
1011 			op = REQ_OP_WRITE;
1012 			replace_only = 1;
1013 		} else
1014 			continue;
1015 		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1016 			op_flags |= REQ_SYNC;
1017 
1018 again:
1019 		bi = &sh->dev[i].req;
1020 		rbi = &sh->dev[i].rreq; /* For writing to replacement */
1021 
1022 		rcu_read_lock();
1023 		rrdev = rcu_dereference(conf->disks[i].replacement);
1024 		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1025 		rdev = rcu_dereference(conf->disks[i].rdev);
1026 		if (!rdev) {
1027 			rdev = rrdev;
1028 			rrdev = NULL;
1029 		}
1030 		if (op_is_write(op)) {
1031 			if (replace_only)
1032 				rdev = NULL;
1033 			if (rdev == rrdev)
1034 				/* We raced and saw duplicates */
1035 				rrdev = NULL;
1036 		} else {
1037 			if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1038 				rdev = rrdev;
1039 			rrdev = NULL;
1040 		}
1041 
1042 		if (rdev && test_bit(Faulty, &rdev->flags))
1043 			rdev = NULL;
1044 		if (rdev)
1045 			atomic_inc(&rdev->nr_pending);
1046 		if (rrdev && test_bit(Faulty, &rrdev->flags))
1047 			rrdev = NULL;
1048 		if (rrdev)
1049 			atomic_inc(&rrdev->nr_pending);
1050 		rcu_read_unlock();
1051 
1052 		/* We have already checked bad blocks for reads.  Now
1053 		 * need to check for writes.  We never accept write errors
1054 		 * on the replacement, so we don't to check rrdev.
1055 		 */
1056 		while (op_is_write(op) && rdev &&
1057 		       test_bit(WriteErrorSeen, &rdev->flags)) {
1058 			sector_t first_bad;
1059 			int bad_sectors;
1060 			int bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
1061 					      &first_bad, &bad_sectors);
1062 			if (!bad)
1063 				break;
1064 
1065 			if (bad < 0) {
1066 				set_bit(BlockedBadBlocks, &rdev->flags);
1067 				if (!conf->mddev->external &&
1068 				    conf->mddev->sb_flags) {
1069 					/* It is very unlikely, but we might
1070 					 * still need to write out the
1071 					 * bad block log - better give it
1072 					 * a chance*/
1073 					md_check_recovery(conf->mddev);
1074 				}
1075 				/*
1076 				 * Because md_wait_for_blocked_rdev
1077 				 * will dec nr_pending, we must
1078 				 * increment it first.
1079 				 */
1080 				atomic_inc(&rdev->nr_pending);
1081 				md_wait_for_blocked_rdev(rdev, conf->mddev);
1082 			} else {
1083 				/* Acknowledged bad block - skip the write */
1084 				rdev_dec_pending(rdev, conf->mddev);
1085 				rdev = NULL;
1086 			}
1087 		}
1088 
1089 		if (rdev) {
1090 			if (s->syncing || s->expanding || s->expanded
1091 			    || s->replacing)
1092 				md_sync_acct(rdev->bdev, RAID5_STRIPE_SECTORS(conf));
1093 
1094 			set_bit(STRIPE_IO_STARTED, &sh->state);
1095 
1096 			bio_set_dev(bi, rdev->bdev);
1097 			bio_set_op_attrs(bi, op, op_flags);
1098 			bi->bi_end_io = op_is_write(op)
1099 				? raid5_end_write_request
1100 				: raid5_end_read_request;
1101 			bi->bi_private = sh;
1102 
1103 			pr_debug("%s: for %llu schedule op %d on disc %d\n",
1104 				__func__, (unsigned long long)sh->sector,
1105 				bi->bi_opf, i);
1106 			atomic_inc(&sh->count);
1107 			if (sh != head_sh)
1108 				atomic_inc(&head_sh->count);
1109 			if (use_new_offset(conf, sh))
1110 				bi->bi_iter.bi_sector = (sh->sector
1111 						 + rdev->new_data_offset);
1112 			else
1113 				bi->bi_iter.bi_sector = (sh->sector
1114 						 + rdev->data_offset);
1115 			if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1116 				bi->bi_opf |= REQ_NOMERGE;
1117 
1118 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1119 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1120 
1121 			if (!op_is_write(op) &&
1122 			    test_bit(R5_InJournal, &sh->dev[i].flags))
1123 				/*
1124 				 * issuing read for a page in journal, this
1125 				 * must be preparing for prexor in rmw; read
1126 				 * the data into orig_page
1127 				 */
1128 				sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1129 			else
1130 				sh->dev[i].vec.bv_page = sh->dev[i].page;
1131 			bi->bi_vcnt = 1;
1132 			bi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1133 			bi->bi_io_vec[0].bv_offset = 0;
1134 			bi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1135 			bi->bi_write_hint = sh->dev[i].write_hint;
1136 			if (!rrdev)
1137 				sh->dev[i].write_hint = RWH_WRITE_LIFE_NOT_SET;
1138 			/*
1139 			 * If this is discard request, set bi_vcnt 0. We don't
1140 			 * want to confuse SCSI because SCSI will replace payload
1141 			 */
1142 			if (op == REQ_OP_DISCARD)
1143 				bi->bi_vcnt = 0;
1144 			if (rrdev)
1145 				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1146 
1147 			if (conf->mddev->gendisk)
1148 				trace_block_bio_remap(bi->bi_disk->queue,
1149 						      bi, disk_devt(conf->mddev->gendisk),
1150 						      sh->dev[i].sector);
1151 			if (should_defer && op_is_write(op))
1152 				bio_list_add(&pending_bios, bi);
1153 			else
1154 				submit_bio_noacct(bi);
1155 		}
1156 		if (rrdev) {
1157 			if (s->syncing || s->expanding || s->expanded
1158 			    || s->replacing)
1159 				md_sync_acct(rrdev->bdev, RAID5_STRIPE_SECTORS(conf));
1160 
1161 			set_bit(STRIPE_IO_STARTED, &sh->state);
1162 
1163 			bio_set_dev(rbi, rrdev->bdev);
1164 			bio_set_op_attrs(rbi, op, op_flags);
1165 			BUG_ON(!op_is_write(op));
1166 			rbi->bi_end_io = raid5_end_write_request;
1167 			rbi->bi_private = sh;
1168 
1169 			pr_debug("%s: for %llu schedule op %d on "
1170 				 "replacement disc %d\n",
1171 				__func__, (unsigned long long)sh->sector,
1172 				rbi->bi_opf, i);
1173 			atomic_inc(&sh->count);
1174 			if (sh != head_sh)
1175 				atomic_inc(&head_sh->count);
1176 			if (use_new_offset(conf, sh))
1177 				rbi->bi_iter.bi_sector = (sh->sector
1178 						  + rrdev->new_data_offset);
1179 			else
1180 				rbi->bi_iter.bi_sector = (sh->sector
1181 						  + rrdev->data_offset);
1182 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1183 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1184 			sh->dev[i].rvec.bv_page = sh->dev[i].page;
1185 			rbi->bi_vcnt = 1;
1186 			rbi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1187 			rbi->bi_io_vec[0].bv_offset = 0;
1188 			rbi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1189 			rbi->bi_write_hint = sh->dev[i].write_hint;
1190 			sh->dev[i].write_hint = RWH_WRITE_LIFE_NOT_SET;
1191 			/*
1192 			 * If this is discard request, set bi_vcnt 0. We don't
1193 			 * want to confuse SCSI because SCSI will replace payload
1194 			 */
1195 			if (op == REQ_OP_DISCARD)
1196 				rbi->bi_vcnt = 0;
1197 			if (conf->mddev->gendisk)
1198 				trace_block_bio_remap(rbi->bi_disk->queue,
1199 						      rbi, disk_devt(conf->mddev->gendisk),
1200 						      sh->dev[i].sector);
1201 			if (should_defer && op_is_write(op))
1202 				bio_list_add(&pending_bios, rbi);
1203 			else
1204 				submit_bio_noacct(rbi);
1205 		}
1206 		if (!rdev && !rrdev) {
1207 			if (op_is_write(op))
1208 				set_bit(STRIPE_DEGRADED, &sh->state);
1209 			pr_debug("skip op %d on disc %d for sector %llu\n",
1210 				bi->bi_opf, i, (unsigned long long)sh->sector);
1211 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
1212 			set_bit(STRIPE_HANDLE, &sh->state);
1213 		}
1214 
1215 		if (!head_sh->batch_head)
1216 			continue;
1217 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1218 				      batch_list);
1219 		if (sh != head_sh)
1220 			goto again;
1221 	}
1222 
1223 	if (should_defer && !bio_list_empty(&pending_bios))
1224 		defer_issue_bios(conf, head_sh->sector, &pending_bios);
1225 }
1226 
1227 static struct dma_async_tx_descriptor *
1228 async_copy_data(int frombio, struct bio *bio, struct page **page,
1229 	sector_t sector, struct dma_async_tx_descriptor *tx,
1230 	struct stripe_head *sh, int no_skipcopy)
1231 {
1232 	struct bio_vec bvl;
1233 	struct bvec_iter iter;
1234 	struct page *bio_page;
1235 	int page_offset;
1236 	struct async_submit_ctl submit;
1237 	enum async_tx_flags flags = 0;
1238 	struct r5conf *conf = sh->raid_conf;
1239 
1240 	if (bio->bi_iter.bi_sector >= sector)
1241 		page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1242 	else
1243 		page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1244 
1245 	if (frombio)
1246 		flags |= ASYNC_TX_FENCE;
1247 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1248 
1249 	bio_for_each_segment(bvl, bio, iter) {
1250 		int len = bvl.bv_len;
1251 		int clen;
1252 		int b_offset = 0;
1253 
1254 		if (page_offset < 0) {
1255 			b_offset = -page_offset;
1256 			page_offset += b_offset;
1257 			len -= b_offset;
1258 		}
1259 
1260 		if (len > 0 && page_offset + len > RAID5_STRIPE_SIZE(conf))
1261 			clen = RAID5_STRIPE_SIZE(conf) - page_offset;
1262 		else
1263 			clen = len;
1264 
1265 		if (clen > 0) {
1266 			b_offset += bvl.bv_offset;
1267 			bio_page = bvl.bv_page;
1268 			if (frombio) {
1269 				if (conf->skip_copy &&
1270 				    b_offset == 0 && page_offset == 0 &&
1271 				    clen == RAID5_STRIPE_SIZE(conf) &&
1272 				    !no_skipcopy)
1273 					*page = bio_page;
1274 				else
1275 					tx = async_memcpy(*page, bio_page, page_offset,
1276 						  b_offset, clen, &submit);
1277 			} else
1278 				tx = async_memcpy(bio_page, *page, b_offset,
1279 						  page_offset, clen, &submit);
1280 		}
1281 		/* chain the operations */
1282 		submit.depend_tx = tx;
1283 
1284 		if (clen < len) /* hit end of page */
1285 			break;
1286 		page_offset +=  len;
1287 	}
1288 
1289 	return tx;
1290 }
1291 
1292 static void ops_complete_biofill(void *stripe_head_ref)
1293 {
1294 	struct stripe_head *sh = stripe_head_ref;
1295 	int i;
1296 	struct r5conf *conf = sh->raid_conf;
1297 
1298 	pr_debug("%s: stripe %llu\n", __func__,
1299 		(unsigned long long)sh->sector);
1300 
1301 	/* clear completed biofills */
1302 	for (i = sh->disks; i--; ) {
1303 		struct r5dev *dev = &sh->dev[i];
1304 
1305 		/* acknowledge completion of a biofill operation */
1306 		/* and check if we need to reply to a read request,
1307 		 * new R5_Wantfill requests are held off until
1308 		 * !STRIPE_BIOFILL_RUN
1309 		 */
1310 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1311 			struct bio *rbi, *rbi2;
1312 
1313 			BUG_ON(!dev->read);
1314 			rbi = dev->read;
1315 			dev->read = NULL;
1316 			while (rbi && rbi->bi_iter.bi_sector <
1317 				dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1318 				rbi2 = r5_next_bio(conf, rbi, dev->sector);
1319 				bio_endio(rbi);
1320 				rbi = rbi2;
1321 			}
1322 		}
1323 	}
1324 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1325 
1326 	set_bit(STRIPE_HANDLE, &sh->state);
1327 	raid5_release_stripe(sh);
1328 }
1329 
1330 static void ops_run_biofill(struct stripe_head *sh)
1331 {
1332 	struct dma_async_tx_descriptor *tx = NULL;
1333 	struct async_submit_ctl submit;
1334 	int i;
1335 	struct r5conf *conf = sh->raid_conf;
1336 
1337 	BUG_ON(sh->batch_head);
1338 	pr_debug("%s: stripe %llu\n", __func__,
1339 		(unsigned long long)sh->sector);
1340 
1341 	for (i = sh->disks; i--; ) {
1342 		struct r5dev *dev = &sh->dev[i];
1343 		if (test_bit(R5_Wantfill, &dev->flags)) {
1344 			struct bio *rbi;
1345 			spin_lock_irq(&sh->stripe_lock);
1346 			dev->read = rbi = dev->toread;
1347 			dev->toread = NULL;
1348 			spin_unlock_irq(&sh->stripe_lock);
1349 			while (rbi && rbi->bi_iter.bi_sector <
1350 				dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1351 				tx = async_copy_data(0, rbi, &dev->page,
1352 						     dev->sector, tx, sh, 0);
1353 				rbi = r5_next_bio(conf, rbi, dev->sector);
1354 			}
1355 		}
1356 	}
1357 
1358 	atomic_inc(&sh->count);
1359 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1360 	async_trigger_callback(&submit);
1361 }
1362 
1363 static void mark_target_uptodate(struct stripe_head *sh, int target)
1364 {
1365 	struct r5dev *tgt;
1366 
1367 	if (target < 0)
1368 		return;
1369 
1370 	tgt = &sh->dev[target];
1371 	set_bit(R5_UPTODATE, &tgt->flags);
1372 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1373 	clear_bit(R5_Wantcompute, &tgt->flags);
1374 }
1375 
1376 static void ops_complete_compute(void *stripe_head_ref)
1377 {
1378 	struct stripe_head *sh = stripe_head_ref;
1379 
1380 	pr_debug("%s: stripe %llu\n", __func__,
1381 		(unsigned long long)sh->sector);
1382 
1383 	/* mark the computed target(s) as uptodate */
1384 	mark_target_uptodate(sh, sh->ops.target);
1385 	mark_target_uptodate(sh, sh->ops.target2);
1386 
1387 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1388 	if (sh->check_state == check_state_compute_run)
1389 		sh->check_state = check_state_compute_result;
1390 	set_bit(STRIPE_HANDLE, &sh->state);
1391 	raid5_release_stripe(sh);
1392 }
1393 
1394 /* return a pointer to the address conversion region of the scribble buffer */
1395 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1396 {
1397 	return percpu->scribble + i * percpu->scribble_obj_size;
1398 }
1399 
1400 /* return a pointer to the address conversion region of the scribble buffer */
1401 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1402 				 struct raid5_percpu *percpu, int i)
1403 {
1404 	return (void *) (to_addr_page(percpu, i) + sh->disks + 2);
1405 }
1406 
1407 static struct dma_async_tx_descriptor *
1408 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1409 {
1410 	int disks = sh->disks;
1411 	struct page **xor_srcs = to_addr_page(percpu, 0);
1412 	int target = sh->ops.target;
1413 	struct r5dev *tgt = &sh->dev[target];
1414 	struct page *xor_dest = tgt->page;
1415 	int count = 0;
1416 	struct dma_async_tx_descriptor *tx;
1417 	struct async_submit_ctl submit;
1418 	int i;
1419 
1420 	BUG_ON(sh->batch_head);
1421 
1422 	pr_debug("%s: stripe %llu block: %d\n",
1423 		__func__, (unsigned long long)sh->sector, target);
1424 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1425 
1426 	for (i = disks; i--; )
1427 		if (i != target)
1428 			xor_srcs[count++] = sh->dev[i].page;
1429 
1430 	atomic_inc(&sh->count);
1431 
1432 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1433 			  ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1434 	if (unlikely(count == 1))
1435 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0,
1436 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1437 	else
1438 		tx = async_xor(xor_dest, xor_srcs, 0, count,
1439 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1440 
1441 	return tx;
1442 }
1443 
1444 /* set_syndrome_sources - populate source buffers for gen_syndrome
1445  * @srcs - (struct page *) array of size sh->disks
1446  * @sh - stripe_head to parse
1447  *
1448  * Populates srcs in proper layout order for the stripe and returns the
1449  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1450  * destination buffer is recorded in srcs[count] and the Q destination
1451  * is recorded in srcs[count+1]].
1452  */
1453 static int set_syndrome_sources(struct page **srcs,
1454 				struct stripe_head *sh,
1455 				int srctype)
1456 {
1457 	int disks = sh->disks;
1458 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1459 	int d0_idx = raid6_d0(sh);
1460 	int count;
1461 	int i;
1462 
1463 	for (i = 0; i < disks; i++)
1464 		srcs[i] = NULL;
1465 
1466 	count = 0;
1467 	i = d0_idx;
1468 	do {
1469 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1470 		struct r5dev *dev = &sh->dev[i];
1471 
1472 		if (i == sh->qd_idx || i == sh->pd_idx ||
1473 		    (srctype == SYNDROME_SRC_ALL) ||
1474 		    (srctype == SYNDROME_SRC_WANT_DRAIN &&
1475 		     (test_bit(R5_Wantdrain, &dev->flags) ||
1476 		      test_bit(R5_InJournal, &dev->flags))) ||
1477 		    (srctype == SYNDROME_SRC_WRITTEN &&
1478 		     (dev->written ||
1479 		      test_bit(R5_InJournal, &dev->flags)))) {
1480 			if (test_bit(R5_InJournal, &dev->flags))
1481 				srcs[slot] = sh->dev[i].orig_page;
1482 			else
1483 				srcs[slot] = sh->dev[i].page;
1484 		}
1485 		i = raid6_next_disk(i, disks);
1486 	} while (i != d0_idx);
1487 
1488 	return syndrome_disks;
1489 }
1490 
1491 static struct dma_async_tx_descriptor *
1492 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1493 {
1494 	int disks = sh->disks;
1495 	struct page **blocks = to_addr_page(percpu, 0);
1496 	int target;
1497 	int qd_idx = sh->qd_idx;
1498 	struct dma_async_tx_descriptor *tx;
1499 	struct async_submit_ctl submit;
1500 	struct r5dev *tgt;
1501 	struct page *dest;
1502 	int i;
1503 	int count;
1504 
1505 	BUG_ON(sh->batch_head);
1506 	if (sh->ops.target < 0)
1507 		target = sh->ops.target2;
1508 	else if (sh->ops.target2 < 0)
1509 		target = sh->ops.target;
1510 	else
1511 		/* we should only have one valid target */
1512 		BUG();
1513 	BUG_ON(target < 0);
1514 	pr_debug("%s: stripe %llu block: %d\n",
1515 		__func__, (unsigned long long)sh->sector, target);
1516 
1517 	tgt = &sh->dev[target];
1518 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1519 	dest = tgt->page;
1520 
1521 	atomic_inc(&sh->count);
1522 
1523 	if (target == qd_idx) {
1524 		count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1525 		blocks[count] = NULL; /* regenerating p is not necessary */
1526 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
1527 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1528 				  ops_complete_compute, sh,
1529 				  to_addr_conv(sh, percpu, 0));
1530 		tx = async_gen_syndrome(blocks, 0, count+2,
1531 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1532 	} else {
1533 		/* Compute any data- or p-drive using XOR */
1534 		count = 0;
1535 		for (i = disks; i-- ; ) {
1536 			if (i == target || i == qd_idx)
1537 				continue;
1538 			blocks[count++] = sh->dev[i].page;
1539 		}
1540 
1541 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1542 				  NULL, ops_complete_compute, sh,
1543 				  to_addr_conv(sh, percpu, 0));
1544 		tx = async_xor(dest, blocks, 0, count,
1545 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1546 	}
1547 
1548 	return tx;
1549 }
1550 
1551 static struct dma_async_tx_descriptor *
1552 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1553 {
1554 	int i, count, disks = sh->disks;
1555 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1556 	int d0_idx = raid6_d0(sh);
1557 	int faila = -1, failb = -1;
1558 	int target = sh->ops.target;
1559 	int target2 = sh->ops.target2;
1560 	struct r5dev *tgt = &sh->dev[target];
1561 	struct r5dev *tgt2 = &sh->dev[target2];
1562 	struct dma_async_tx_descriptor *tx;
1563 	struct page **blocks = to_addr_page(percpu, 0);
1564 	struct async_submit_ctl submit;
1565 
1566 	BUG_ON(sh->batch_head);
1567 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1568 		 __func__, (unsigned long long)sh->sector, target, target2);
1569 	BUG_ON(target < 0 || target2 < 0);
1570 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1571 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1572 
1573 	/* we need to open-code set_syndrome_sources to handle the
1574 	 * slot number conversion for 'faila' and 'failb'
1575 	 */
1576 	for (i = 0; i < disks ; i++)
1577 		blocks[i] = NULL;
1578 	count = 0;
1579 	i = d0_idx;
1580 	do {
1581 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1582 
1583 		blocks[slot] = sh->dev[i].page;
1584 
1585 		if (i == target)
1586 			faila = slot;
1587 		if (i == target2)
1588 			failb = slot;
1589 		i = raid6_next_disk(i, disks);
1590 	} while (i != d0_idx);
1591 
1592 	BUG_ON(faila == failb);
1593 	if (failb < faila)
1594 		swap(faila, failb);
1595 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1596 		 __func__, (unsigned long long)sh->sector, faila, failb);
1597 
1598 	atomic_inc(&sh->count);
1599 
1600 	if (failb == syndrome_disks+1) {
1601 		/* Q disk is one of the missing disks */
1602 		if (faila == syndrome_disks) {
1603 			/* Missing P+Q, just recompute */
1604 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1605 					  ops_complete_compute, sh,
1606 					  to_addr_conv(sh, percpu, 0));
1607 			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1608 						  RAID5_STRIPE_SIZE(sh->raid_conf),
1609 						  &submit);
1610 		} else {
1611 			struct page *dest;
1612 			int data_target;
1613 			int qd_idx = sh->qd_idx;
1614 
1615 			/* Missing D+Q: recompute D from P, then recompute Q */
1616 			if (target == qd_idx)
1617 				data_target = target2;
1618 			else
1619 				data_target = target;
1620 
1621 			count = 0;
1622 			for (i = disks; i-- ; ) {
1623 				if (i == data_target || i == qd_idx)
1624 					continue;
1625 				blocks[count++] = sh->dev[i].page;
1626 			}
1627 			dest = sh->dev[data_target].page;
1628 			init_async_submit(&submit,
1629 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1630 					  NULL, NULL, NULL,
1631 					  to_addr_conv(sh, percpu, 0));
1632 			tx = async_xor(dest, blocks, 0, count,
1633 				       RAID5_STRIPE_SIZE(sh->raid_conf),
1634 				       &submit);
1635 
1636 			count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1637 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1638 					  ops_complete_compute, sh,
1639 					  to_addr_conv(sh, percpu, 0));
1640 			return async_gen_syndrome(blocks, 0, count+2,
1641 						  RAID5_STRIPE_SIZE(sh->raid_conf),
1642 						  &submit);
1643 		}
1644 	} else {
1645 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1646 				  ops_complete_compute, sh,
1647 				  to_addr_conv(sh, percpu, 0));
1648 		if (failb == syndrome_disks) {
1649 			/* We're missing D+P. */
1650 			return async_raid6_datap_recov(syndrome_disks+2,
1651 						RAID5_STRIPE_SIZE(sh->raid_conf),
1652 						faila,
1653 						blocks, &submit);
1654 		} else {
1655 			/* We're missing D+D. */
1656 			return async_raid6_2data_recov(syndrome_disks+2,
1657 						RAID5_STRIPE_SIZE(sh->raid_conf),
1658 						faila, failb,
1659 						blocks, &submit);
1660 		}
1661 	}
1662 }
1663 
1664 static void ops_complete_prexor(void *stripe_head_ref)
1665 {
1666 	struct stripe_head *sh = stripe_head_ref;
1667 
1668 	pr_debug("%s: stripe %llu\n", __func__,
1669 		(unsigned long long)sh->sector);
1670 
1671 	if (r5c_is_writeback(sh->raid_conf->log))
1672 		/*
1673 		 * raid5-cache write back uses orig_page during prexor.
1674 		 * After prexor, it is time to free orig_page
1675 		 */
1676 		r5c_release_extra_page(sh);
1677 }
1678 
1679 static struct dma_async_tx_descriptor *
1680 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1681 		struct dma_async_tx_descriptor *tx)
1682 {
1683 	int disks = sh->disks;
1684 	struct page **xor_srcs = to_addr_page(percpu, 0);
1685 	int count = 0, pd_idx = sh->pd_idx, i;
1686 	struct async_submit_ctl submit;
1687 
1688 	/* existing parity data subtracted */
1689 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1690 
1691 	BUG_ON(sh->batch_head);
1692 	pr_debug("%s: stripe %llu\n", __func__,
1693 		(unsigned long long)sh->sector);
1694 
1695 	for (i = disks; i--; ) {
1696 		struct r5dev *dev = &sh->dev[i];
1697 		/* Only process blocks that are known to be uptodate */
1698 		if (test_bit(R5_InJournal, &dev->flags))
1699 			xor_srcs[count++] = dev->orig_page;
1700 		else if (test_bit(R5_Wantdrain, &dev->flags))
1701 			xor_srcs[count++] = dev->page;
1702 	}
1703 
1704 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1705 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1706 	tx = async_xor(xor_dest, xor_srcs, 0, count,
1707 			RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1708 
1709 	return tx;
1710 }
1711 
1712 static struct dma_async_tx_descriptor *
1713 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1714 		struct dma_async_tx_descriptor *tx)
1715 {
1716 	struct page **blocks = to_addr_page(percpu, 0);
1717 	int count;
1718 	struct async_submit_ctl submit;
1719 
1720 	pr_debug("%s: stripe %llu\n", __func__,
1721 		(unsigned long long)sh->sector);
1722 
1723 	count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1724 
1725 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1726 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1727 	tx = async_gen_syndrome(blocks, 0, count+2,
1728 			RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1729 
1730 	return tx;
1731 }
1732 
1733 static struct dma_async_tx_descriptor *
1734 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1735 {
1736 	struct r5conf *conf = sh->raid_conf;
1737 	int disks = sh->disks;
1738 	int i;
1739 	struct stripe_head *head_sh = sh;
1740 
1741 	pr_debug("%s: stripe %llu\n", __func__,
1742 		(unsigned long long)sh->sector);
1743 
1744 	for (i = disks; i--; ) {
1745 		struct r5dev *dev;
1746 		struct bio *chosen;
1747 
1748 		sh = head_sh;
1749 		if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1750 			struct bio *wbi;
1751 
1752 again:
1753 			dev = &sh->dev[i];
1754 			/*
1755 			 * clear R5_InJournal, so when rewriting a page in
1756 			 * journal, it is not skipped by r5l_log_stripe()
1757 			 */
1758 			clear_bit(R5_InJournal, &dev->flags);
1759 			spin_lock_irq(&sh->stripe_lock);
1760 			chosen = dev->towrite;
1761 			dev->towrite = NULL;
1762 			sh->overwrite_disks = 0;
1763 			BUG_ON(dev->written);
1764 			wbi = dev->written = chosen;
1765 			spin_unlock_irq(&sh->stripe_lock);
1766 			WARN_ON(dev->page != dev->orig_page);
1767 
1768 			while (wbi && wbi->bi_iter.bi_sector <
1769 				dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1770 				if (wbi->bi_opf & REQ_FUA)
1771 					set_bit(R5_WantFUA, &dev->flags);
1772 				if (wbi->bi_opf & REQ_SYNC)
1773 					set_bit(R5_SyncIO, &dev->flags);
1774 				if (bio_op(wbi) == REQ_OP_DISCARD)
1775 					set_bit(R5_Discard, &dev->flags);
1776 				else {
1777 					tx = async_copy_data(1, wbi, &dev->page,
1778 							     dev->sector, tx, sh,
1779 							     r5c_is_writeback(conf->log));
1780 					if (dev->page != dev->orig_page &&
1781 					    !r5c_is_writeback(conf->log)) {
1782 						set_bit(R5_SkipCopy, &dev->flags);
1783 						clear_bit(R5_UPTODATE, &dev->flags);
1784 						clear_bit(R5_OVERWRITE, &dev->flags);
1785 					}
1786 				}
1787 				wbi = r5_next_bio(conf, wbi, dev->sector);
1788 			}
1789 
1790 			if (head_sh->batch_head) {
1791 				sh = list_first_entry(&sh->batch_list,
1792 						      struct stripe_head,
1793 						      batch_list);
1794 				if (sh == head_sh)
1795 					continue;
1796 				goto again;
1797 			}
1798 		}
1799 	}
1800 
1801 	return tx;
1802 }
1803 
1804 static void ops_complete_reconstruct(void *stripe_head_ref)
1805 {
1806 	struct stripe_head *sh = stripe_head_ref;
1807 	int disks = sh->disks;
1808 	int pd_idx = sh->pd_idx;
1809 	int qd_idx = sh->qd_idx;
1810 	int i;
1811 	bool fua = false, sync = false, discard = false;
1812 
1813 	pr_debug("%s: stripe %llu\n", __func__,
1814 		(unsigned long long)sh->sector);
1815 
1816 	for (i = disks; i--; ) {
1817 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1818 		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1819 		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1820 	}
1821 
1822 	for (i = disks; i--; ) {
1823 		struct r5dev *dev = &sh->dev[i];
1824 
1825 		if (dev->written || i == pd_idx || i == qd_idx) {
1826 			if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
1827 				set_bit(R5_UPTODATE, &dev->flags);
1828 				if (test_bit(STRIPE_EXPAND_READY, &sh->state))
1829 					set_bit(R5_Expanded, &dev->flags);
1830 			}
1831 			if (fua)
1832 				set_bit(R5_WantFUA, &dev->flags);
1833 			if (sync)
1834 				set_bit(R5_SyncIO, &dev->flags);
1835 		}
1836 	}
1837 
1838 	if (sh->reconstruct_state == reconstruct_state_drain_run)
1839 		sh->reconstruct_state = reconstruct_state_drain_result;
1840 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1841 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1842 	else {
1843 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1844 		sh->reconstruct_state = reconstruct_state_result;
1845 	}
1846 
1847 	set_bit(STRIPE_HANDLE, &sh->state);
1848 	raid5_release_stripe(sh);
1849 }
1850 
1851 static void
1852 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1853 		     struct dma_async_tx_descriptor *tx)
1854 {
1855 	int disks = sh->disks;
1856 	struct page **xor_srcs;
1857 	struct async_submit_ctl submit;
1858 	int count, pd_idx = sh->pd_idx, i;
1859 	struct page *xor_dest;
1860 	int prexor = 0;
1861 	unsigned long flags;
1862 	int j = 0;
1863 	struct stripe_head *head_sh = sh;
1864 	int last_stripe;
1865 
1866 	pr_debug("%s: stripe %llu\n", __func__,
1867 		(unsigned long long)sh->sector);
1868 
1869 	for (i = 0; i < sh->disks; i++) {
1870 		if (pd_idx == i)
1871 			continue;
1872 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1873 			break;
1874 	}
1875 	if (i >= sh->disks) {
1876 		atomic_inc(&sh->count);
1877 		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1878 		ops_complete_reconstruct(sh);
1879 		return;
1880 	}
1881 again:
1882 	count = 0;
1883 	xor_srcs = to_addr_page(percpu, j);
1884 	/* check if prexor is active which means only process blocks
1885 	 * that are part of a read-modify-write (written)
1886 	 */
1887 	if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1888 		prexor = 1;
1889 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1890 		for (i = disks; i--; ) {
1891 			struct r5dev *dev = &sh->dev[i];
1892 			if (head_sh->dev[i].written ||
1893 			    test_bit(R5_InJournal, &head_sh->dev[i].flags))
1894 				xor_srcs[count++] = dev->page;
1895 		}
1896 	} else {
1897 		xor_dest = sh->dev[pd_idx].page;
1898 		for (i = disks; i--; ) {
1899 			struct r5dev *dev = &sh->dev[i];
1900 			if (i != pd_idx)
1901 				xor_srcs[count++] = dev->page;
1902 		}
1903 	}
1904 
1905 	/* 1/ if we prexor'd then the dest is reused as a source
1906 	 * 2/ if we did not prexor then we are redoing the parity
1907 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1908 	 * for the synchronous xor case
1909 	 */
1910 	last_stripe = !head_sh->batch_head ||
1911 		list_first_entry(&sh->batch_list,
1912 				 struct stripe_head, batch_list) == head_sh;
1913 	if (last_stripe) {
1914 		flags = ASYNC_TX_ACK |
1915 			(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1916 
1917 		atomic_inc(&head_sh->count);
1918 		init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1919 				  to_addr_conv(sh, percpu, j));
1920 	} else {
1921 		flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1922 		init_async_submit(&submit, flags, tx, NULL, NULL,
1923 				  to_addr_conv(sh, percpu, j));
1924 	}
1925 
1926 	if (unlikely(count == 1))
1927 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0,
1928 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1929 	else
1930 		tx = async_xor(xor_dest, xor_srcs, 0, count,
1931 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1932 	if (!last_stripe) {
1933 		j++;
1934 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1935 				      batch_list);
1936 		goto again;
1937 	}
1938 }
1939 
1940 static void
1941 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1942 		     struct dma_async_tx_descriptor *tx)
1943 {
1944 	struct async_submit_ctl submit;
1945 	struct page **blocks;
1946 	int count, i, j = 0;
1947 	struct stripe_head *head_sh = sh;
1948 	int last_stripe;
1949 	int synflags;
1950 	unsigned long txflags;
1951 
1952 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1953 
1954 	for (i = 0; i < sh->disks; i++) {
1955 		if (sh->pd_idx == i || sh->qd_idx == i)
1956 			continue;
1957 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1958 			break;
1959 	}
1960 	if (i >= sh->disks) {
1961 		atomic_inc(&sh->count);
1962 		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1963 		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1964 		ops_complete_reconstruct(sh);
1965 		return;
1966 	}
1967 
1968 again:
1969 	blocks = to_addr_page(percpu, j);
1970 
1971 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1972 		synflags = SYNDROME_SRC_WRITTEN;
1973 		txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1974 	} else {
1975 		synflags = SYNDROME_SRC_ALL;
1976 		txflags = ASYNC_TX_ACK;
1977 	}
1978 
1979 	count = set_syndrome_sources(blocks, sh, synflags);
1980 	last_stripe = !head_sh->batch_head ||
1981 		list_first_entry(&sh->batch_list,
1982 				 struct stripe_head, batch_list) == head_sh;
1983 
1984 	if (last_stripe) {
1985 		atomic_inc(&head_sh->count);
1986 		init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1987 				  head_sh, to_addr_conv(sh, percpu, j));
1988 	} else
1989 		init_async_submit(&submit, 0, tx, NULL, NULL,
1990 				  to_addr_conv(sh, percpu, j));
1991 	tx = async_gen_syndrome(blocks, 0, count+2,
1992 			RAID5_STRIPE_SIZE(sh->raid_conf),  &submit);
1993 	if (!last_stripe) {
1994 		j++;
1995 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1996 				      batch_list);
1997 		goto again;
1998 	}
1999 }
2000 
2001 static void ops_complete_check(void *stripe_head_ref)
2002 {
2003 	struct stripe_head *sh = stripe_head_ref;
2004 
2005 	pr_debug("%s: stripe %llu\n", __func__,
2006 		(unsigned long long)sh->sector);
2007 
2008 	sh->check_state = check_state_check_result;
2009 	set_bit(STRIPE_HANDLE, &sh->state);
2010 	raid5_release_stripe(sh);
2011 }
2012 
2013 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
2014 {
2015 	int disks = sh->disks;
2016 	int pd_idx = sh->pd_idx;
2017 	int qd_idx = sh->qd_idx;
2018 	struct page *xor_dest;
2019 	struct page **xor_srcs = to_addr_page(percpu, 0);
2020 	struct dma_async_tx_descriptor *tx;
2021 	struct async_submit_ctl submit;
2022 	int count;
2023 	int i;
2024 
2025 	pr_debug("%s: stripe %llu\n", __func__,
2026 		(unsigned long long)sh->sector);
2027 
2028 	BUG_ON(sh->batch_head);
2029 	count = 0;
2030 	xor_dest = sh->dev[pd_idx].page;
2031 	xor_srcs[count++] = xor_dest;
2032 	for (i = disks; i--; ) {
2033 		if (i == pd_idx || i == qd_idx)
2034 			continue;
2035 		xor_srcs[count++] = sh->dev[i].page;
2036 	}
2037 
2038 	init_async_submit(&submit, 0, NULL, NULL, NULL,
2039 			  to_addr_conv(sh, percpu, 0));
2040 	tx = async_xor_val(xor_dest, xor_srcs, 0, count,
2041 			   RAID5_STRIPE_SIZE(sh->raid_conf),
2042 			   &sh->ops.zero_sum_result, &submit);
2043 
2044 	atomic_inc(&sh->count);
2045 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2046 	tx = async_trigger_callback(&submit);
2047 }
2048 
2049 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2050 {
2051 	struct page **srcs = to_addr_page(percpu, 0);
2052 	struct async_submit_ctl submit;
2053 	int count;
2054 
2055 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2056 		(unsigned long long)sh->sector, checkp);
2057 
2058 	BUG_ON(sh->batch_head);
2059 	count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
2060 	if (!checkp)
2061 		srcs[count] = NULL;
2062 
2063 	atomic_inc(&sh->count);
2064 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2065 			  sh, to_addr_conv(sh, percpu, 0));
2066 	async_syndrome_val(srcs, 0, count+2,
2067 			   RAID5_STRIPE_SIZE(sh->raid_conf),
2068 			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
2069 }
2070 
2071 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2072 {
2073 	int overlap_clear = 0, i, disks = sh->disks;
2074 	struct dma_async_tx_descriptor *tx = NULL;
2075 	struct r5conf *conf = sh->raid_conf;
2076 	int level = conf->level;
2077 	struct raid5_percpu *percpu;
2078 	unsigned long cpu;
2079 
2080 	cpu = get_cpu();
2081 	percpu = per_cpu_ptr(conf->percpu, cpu);
2082 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2083 		ops_run_biofill(sh);
2084 		overlap_clear++;
2085 	}
2086 
2087 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2088 		if (level < 6)
2089 			tx = ops_run_compute5(sh, percpu);
2090 		else {
2091 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
2092 				tx = ops_run_compute6_1(sh, percpu);
2093 			else
2094 				tx = ops_run_compute6_2(sh, percpu);
2095 		}
2096 		/* terminate the chain if reconstruct is not set to be run */
2097 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2098 			async_tx_ack(tx);
2099 	}
2100 
2101 	if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2102 		if (level < 6)
2103 			tx = ops_run_prexor5(sh, percpu, tx);
2104 		else
2105 			tx = ops_run_prexor6(sh, percpu, tx);
2106 	}
2107 
2108 	if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2109 		tx = ops_run_partial_parity(sh, percpu, tx);
2110 
2111 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2112 		tx = ops_run_biodrain(sh, tx);
2113 		overlap_clear++;
2114 	}
2115 
2116 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2117 		if (level < 6)
2118 			ops_run_reconstruct5(sh, percpu, tx);
2119 		else
2120 			ops_run_reconstruct6(sh, percpu, tx);
2121 	}
2122 
2123 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2124 		if (sh->check_state == check_state_run)
2125 			ops_run_check_p(sh, percpu);
2126 		else if (sh->check_state == check_state_run_q)
2127 			ops_run_check_pq(sh, percpu, 0);
2128 		else if (sh->check_state == check_state_run_pq)
2129 			ops_run_check_pq(sh, percpu, 1);
2130 		else
2131 			BUG();
2132 	}
2133 
2134 	if (overlap_clear && !sh->batch_head)
2135 		for (i = disks; i--; ) {
2136 			struct r5dev *dev = &sh->dev[i];
2137 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
2138 				wake_up(&sh->raid_conf->wait_for_overlap);
2139 		}
2140 	put_cpu();
2141 }
2142 
2143 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2144 {
2145 	if (sh->ppl_page)
2146 		__free_page(sh->ppl_page);
2147 	kmem_cache_free(sc, sh);
2148 }
2149 
2150 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2151 	int disks, struct r5conf *conf)
2152 {
2153 	struct stripe_head *sh;
2154 	int i;
2155 
2156 	sh = kmem_cache_zalloc(sc, gfp);
2157 	if (sh) {
2158 		spin_lock_init(&sh->stripe_lock);
2159 		spin_lock_init(&sh->batch_lock);
2160 		INIT_LIST_HEAD(&sh->batch_list);
2161 		INIT_LIST_HEAD(&sh->lru);
2162 		INIT_LIST_HEAD(&sh->r5c);
2163 		INIT_LIST_HEAD(&sh->log_list);
2164 		atomic_set(&sh->count, 1);
2165 		sh->raid_conf = conf;
2166 		sh->log_start = MaxSector;
2167 		for (i = 0; i < disks; i++) {
2168 			struct r5dev *dev = &sh->dev[i];
2169 
2170 			bio_init(&dev->req, &dev->vec, 1);
2171 			bio_init(&dev->rreq, &dev->rvec, 1);
2172 		}
2173 
2174 		if (raid5_has_ppl(conf)) {
2175 			sh->ppl_page = alloc_page(gfp);
2176 			if (!sh->ppl_page) {
2177 				free_stripe(sc, sh);
2178 				sh = NULL;
2179 			}
2180 		}
2181 	}
2182 	return sh;
2183 }
2184 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2185 {
2186 	struct stripe_head *sh;
2187 
2188 	sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2189 	if (!sh)
2190 		return 0;
2191 
2192 	if (grow_buffers(sh, gfp)) {
2193 		shrink_buffers(sh);
2194 		free_stripe(conf->slab_cache, sh);
2195 		return 0;
2196 	}
2197 	sh->hash_lock_index =
2198 		conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2199 	/* we just created an active stripe so... */
2200 	atomic_inc(&conf->active_stripes);
2201 
2202 	raid5_release_stripe(sh);
2203 	conf->max_nr_stripes++;
2204 	return 1;
2205 }
2206 
2207 static int grow_stripes(struct r5conf *conf, int num)
2208 {
2209 	struct kmem_cache *sc;
2210 	size_t namelen = sizeof(conf->cache_name[0]);
2211 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
2212 
2213 	if (conf->mddev->gendisk)
2214 		snprintf(conf->cache_name[0], namelen,
2215 			"raid%d-%s", conf->level, mdname(conf->mddev));
2216 	else
2217 		snprintf(conf->cache_name[0], namelen,
2218 			"raid%d-%p", conf->level, conf->mddev);
2219 	snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
2220 
2221 	conf->active_name = 0;
2222 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
2223 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2224 			       0, 0, NULL);
2225 	if (!sc)
2226 		return 1;
2227 	conf->slab_cache = sc;
2228 	conf->pool_size = devs;
2229 	while (num--)
2230 		if (!grow_one_stripe(conf, GFP_KERNEL))
2231 			return 1;
2232 
2233 	return 0;
2234 }
2235 
2236 /**
2237  * scribble_alloc - allocate percpu scribble buffer for required size
2238  *		    of the scribble region
2239  * @percpu: from for_each_present_cpu() of the caller
2240  * @num: total number of disks in the array
2241  * @cnt: scribble objs count for required size of the scribble region
2242  *
2243  * The scribble buffer size must be enough to contain:
2244  * 1/ a struct page pointer for each device in the array +2
2245  * 2/ room to convert each entry in (1) to its corresponding dma
2246  *    (dma_map_page()) or page (page_address()) address.
2247  *
2248  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2249  * calculate over all devices (not just the data blocks), using zeros in place
2250  * of the P and Q blocks.
2251  */
2252 static int scribble_alloc(struct raid5_percpu *percpu,
2253 			  int num, int cnt)
2254 {
2255 	size_t obj_size =
2256 		sizeof(struct page *) * (num+2) +
2257 		sizeof(addr_conv_t) * (num+2);
2258 	void *scribble;
2259 
2260 	/*
2261 	 * If here is in raid array suspend context, it is in memalloc noio
2262 	 * context as well, there is no potential recursive memory reclaim
2263 	 * I/Os with the GFP_KERNEL flag.
2264 	 */
2265 	scribble = kvmalloc_array(cnt, obj_size, GFP_KERNEL);
2266 	if (!scribble)
2267 		return -ENOMEM;
2268 
2269 	kvfree(percpu->scribble);
2270 
2271 	percpu->scribble = scribble;
2272 	percpu->scribble_obj_size = obj_size;
2273 	return 0;
2274 }
2275 
2276 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2277 {
2278 	unsigned long cpu;
2279 	int err = 0;
2280 
2281 	/*
2282 	 * Never shrink. And mddev_suspend() could deadlock if this is called
2283 	 * from raid5d. In that case, scribble_disks and scribble_sectors
2284 	 * should equal to new_disks and new_sectors
2285 	 */
2286 	if (conf->scribble_disks >= new_disks &&
2287 	    conf->scribble_sectors >= new_sectors)
2288 		return 0;
2289 	mddev_suspend(conf->mddev);
2290 	get_online_cpus();
2291 
2292 	for_each_present_cpu(cpu) {
2293 		struct raid5_percpu *percpu;
2294 
2295 		percpu = per_cpu_ptr(conf->percpu, cpu);
2296 		err = scribble_alloc(percpu, new_disks,
2297 				     new_sectors / RAID5_STRIPE_SECTORS(conf));
2298 		if (err)
2299 			break;
2300 	}
2301 
2302 	put_online_cpus();
2303 	mddev_resume(conf->mddev);
2304 	if (!err) {
2305 		conf->scribble_disks = new_disks;
2306 		conf->scribble_sectors = new_sectors;
2307 	}
2308 	return err;
2309 }
2310 
2311 static int resize_stripes(struct r5conf *conf, int newsize)
2312 {
2313 	/* Make all the stripes able to hold 'newsize' devices.
2314 	 * New slots in each stripe get 'page' set to a new page.
2315 	 *
2316 	 * This happens in stages:
2317 	 * 1/ create a new kmem_cache and allocate the required number of
2318 	 *    stripe_heads.
2319 	 * 2/ gather all the old stripe_heads and transfer the pages across
2320 	 *    to the new stripe_heads.  This will have the side effect of
2321 	 *    freezing the array as once all stripe_heads have been collected,
2322 	 *    no IO will be possible.  Old stripe heads are freed once their
2323 	 *    pages have been transferred over, and the old kmem_cache is
2324 	 *    freed when all stripes are done.
2325 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2326 	 *    we simple return a failure status - no need to clean anything up.
2327 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
2328 	 *    If this fails, we don't bother trying the shrink the
2329 	 *    stripe_heads down again, we just leave them as they are.
2330 	 *    As each stripe_head is processed the new one is released into
2331 	 *    active service.
2332 	 *
2333 	 * Once step2 is started, we cannot afford to wait for a write,
2334 	 * so we use GFP_NOIO allocations.
2335 	 */
2336 	struct stripe_head *osh, *nsh;
2337 	LIST_HEAD(newstripes);
2338 	struct disk_info *ndisks;
2339 	int err = 0;
2340 	struct kmem_cache *sc;
2341 	int i;
2342 	int hash, cnt;
2343 
2344 	md_allow_write(conf->mddev);
2345 
2346 	/* Step 1 */
2347 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2348 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2349 			       0, 0, NULL);
2350 	if (!sc)
2351 		return -ENOMEM;
2352 
2353 	/* Need to ensure auto-resizing doesn't interfere */
2354 	mutex_lock(&conf->cache_size_mutex);
2355 
2356 	for (i = conf->max_nr_stripes; i; i--) {
2357 		nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2358 		if (!nsh)
2359 			break;
2360 
2361 		list_add(&nsh->lru, &newstripes);
2362 	}
2363 	if (i) {
2364 		/* didn't get enough, give up */
2365 		while (!list_empty(&newstripes)) {
2366 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
2367 			list_del(&nsh->lru);
2368 			free_stripe(sc, nsh);
2369 		}
2370 		kmem_cache_destroy(sc);
2371 		mutex_unlock(&conf->cache_size_mutex);
2372 		return -ENOMEM;
2373 	}
2374 	/* Step 2 - Must use GFP_NOIO now.
2375 	 * OK, we have enough stripes, start collecting inactive
2376 	 * stripes and copying them over
2377 	 */
2378 	hash = 0;
2379 	cnt = 0;
2380 	list_for_each_entry(nsh, &newstripes, lru) {
2381 		lock_device_hash_lock(conf, hash);
2382 		wait_event_cmd(conf->wait_for_stripe,
2383 				    !list_empty(conf->inactive_list + hash),
2384 				    unlock_device_hash_lock(conf, hash),
2385 				    lock_device_hash_lock(conf, hash));
2386 		osh = get_free_stripe(conf, hash);
2387 		unlock_device_hash_lock(conf, hash);
2388 
2389 		for(i=0; i<conf->pool_size; i++) {
2390 			nsh->dev[i].page = osh->dev[i].page;
2391 			nsh->dev[i].orig_page = osh->dev[i].page;
2392 		}
2393 		nsh->hash_lock_index = hash;
2394 		free_stripe(conf->slab_cache, osh);
2395 		cnt++;
2396 		if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2397 		    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2398 			hash++;
2399 			cnt = 0;
2400 		}
2401 	}
2402 	kmem_cache_destroy(conf->slab_cache);
2403 
2404 	/* Step 3.
2405 	 * At this point, we are holding all the stripes so the array
2406 	 * is completely stalled, so now is a good time to resize
2407 	 * conf->disks and the scribble region
2408 	 */
2409 	ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO);
2410 	if (ndisks) {
2411 		for (i = 0; i < conf->pool_size; i++)
2412 			ndisks[i] = conf->disks[i];
2413 
2414 		for (i = conf->pool_size; i < newsize; i++) {
2415 			ndisks[i].extra_page = alloc_page(GFP_NOIO);
2416 			if (!ndisks[i].extra_page)
2417 				err = -ENOMEM;
2418 		}
2419 
2420 		if (err) {
2421 			for (i = conf->pool_size; i < newsize; i++)
2422 				if (ndisks[i].extra_page)
2423 					put_page(ndisks[i].extra_page);
2424 			kfree(ndisks);
2425 		} else {
2426 			kfree(conf->disks);
2427 			conf->disks = ndisks;
2428 		}
2429 	} else
2430 		err = -ENOMEM;
2431 
2432 	mutex_unlock(&conf->cache_size_mutex);
2433 
2434 	conf->slab_cache = sc;
2435 	conf->active_name = 1-conf->active_name;
2436 
2437 	/* Step 4, return new stripes to service */
2438 	while(!list_empty(&newstripes)) {
2439 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
2440 		list_del_init(&nsh->lru);
2441 
2442 		for (i=conf->raid_disks; i < newsize; i++)
2443 			if (nsh->dev[i].page == NULL) {
2444 				struct page *p = alloc_page(GFP_NOIO);
2445 				nsh->dev[i].page = p;
2446 				nsh->dev[i].orig_page = p;
2447 				if (!p)
2448 					err = -ENOMEM;
2449 			}
2450 		raid5_release_stripe(nsh);
2451 	}
2452 	/* critical section pass, GFP_NOIO no longer needed */
2453 
2454 	if (!err)
2455 		conf->pool_size = newsize;
2456 	return err;
2457 }
2458 
2459 static int drop_one_stripe(struct r5conf *conf)
2460 {
2461 	struct stripe_head *sh;
2462 	int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2463 
2464 	spin_lock_irq(conf->hash_locks + hash);
2465 	sh = get_free_stripe(conf, hash);
2466 	spin_unlock_irq(conf->hash_locks + hash);
2467 	if (!sh)
2468 		return 0;
2469 	BUG_ON(atomic_read(&sh->count));
2470 	shrink_buffers(sh);
2471 	free_stripe(conf->slab_cache, sh);
2472 	atomic_dec(&conf->active_stripes);
2473 	conf->max_nr_stripes--;
2474 	return 1;
2475 }
2476 
2477 static void shrink_stripes(struct r5conf *conf)
2478 {
2479 	while (conf->max_nr_stripes &&
2480 	       drop_one_stripe(conf))
2481 		;
2482 
2483 	kmem_cache_destroy(conf->slab_cache);
2484 	conf->slab_cache = NULL;
2485 }
2486 
2487 static void raid5_end_read_request(struct bio * bi)
2488 {
2489 	struct stripe_head *sh = bi->bi_private;
2490 	struct r5conf *conf = sh->raid_conf;
2491 	int disks = sh->disks, i;
2492 	char b[BDEVNAME_SIZE];
2493 	struct md_rdev *rdev = NULL;
2494 	sector_t s;
2495 
2496 	for (i=0 ; i<disks; i++)
2497 		if (bi == &sh->dev[i].req)
2498 			break;
2499 
2500 	pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2501 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2502 		bi->bi_status);
2503 	if (i == disks) {
2504 		bio_reset(bi);
2505 		BUG();
2506 		return;
2507 	}
2508 	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2509 		/* If replacement finished while this request was outstanding,
2510 		 * 'replacement' might be NULL already.
2511 		 * In that case it moved down to 'rdev'.
2512 		 * rdev is not removed until all requests are finished.
2513 		 */
2514 		rdev = conf->disks[i].replacement;
2515 	if (!rdev)
2516 		rdev = conf->disks[i].rdev;
2517 
2518 	if (use_new_offset(conf, sh))
2519 		s = sh->sector + rdev->new_data_offset;
2520 	else
2521 		s = sh->sector + rdev->data_offset;
2522 	if (!bi->bi_status) {
2523 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
2524 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2525 			/* Note that this cannot happen on a
2526 			 * replacement device.  We just fail those on
2527 			 * any error
2528 			 */
2529 			pr_info_ratelimited(
2530 				"md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
2531 				mdname(conf->mddev), RAID5_STRIPE_SECTORS(conf),
2532 				(unsigned long long)s,
2533 				bdevname(rdev->bdev, b));
2534 			atomic_add(RAID5_STRIPE_SECTORS(conf), &rdev->corrected_errors);
2535 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2536 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2537 		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2538 			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2539 
2540 		if (test_bit(R5_InJournal, &sh->dev[i].flags))
2541 			/*
2542 			 * end read for a page in journal, this
2543 			 * must be preparing for prexor in rmw
2544 			 */
2545 			set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2546 
2547 		if (atomic_read(&rdev->read_errors))
2548 			atomic_set(&rdev->read_errors, 0);
2549 	} else {
2550 		const char *bdn = bdevname(rdev->bdev, b);
2551 		int retry = 0;
2552 		int set_bad = 0;
2553 
2554 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2555 		if (!(bi->bi_status == BLK_STS_PROTECTION))
2556 			atomic_inc(&rdev->read_errors);
2557 		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2558 			pr_warn_ratelimited(
2559 				"md/raid:%s: read error on replacement device (sector %llu on %s).\n",
2560 				mdname(conf->mddev),
2561 				(unsigned long long)s,
2562 				bdn);
2563 		else if (conf->mddev->degraded >= conf->max_degraded) {
2564 			set_bad = 1;
2565 			pr_warn_ratelimited(
2566 				"md/raid:%s: read error not correctable (sector %llu on %s).\n",
2567 				mdname(conf->mddev),
2568 				(unsigned long long)s,
2569 				bdn);
2570 		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2571 			/* Oh, no!!! */
2572 			set_bad = 1;
2573 			pr_warn_ratelimited(
2574 				"md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
2575 				mdname(conf->mddev),
2576 				(unsigned long long)s,
2577 				bdn);
2578 		} else if (atomic_read(&rdev->read_errors)
2579 			 > conf->max_nr_stripes) {
2580 			if (!test_bit(Faulty, &rdev->flags)) {
2581 				pr_warn("md/raid:%s: %d read_errors > %d stripes\n",
2582 				    mdname(conf->mddev),
2583 				    atomic_read(&rdev->read_errors),
2584 				    conf->max_nr_stripes);
2585 				pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2586 				    mdname(conf->mddev), bdn);
2587 			}
2588 		} else
2589 			retry = 1;
2590 		if (set_bad && test_bit(In_sync, &rdev->flags)
2591 		    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2592 			retry = 1;
2593 		if (retry)
2594 			if (sh->qd_idx >= 0 && sh->pd_idx == i)
2595 				set_bit(R5_ReadError, &sh->dev[i].flags);
2596 			else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2597 				set_bit(R5_ReadError, &sh->dev[i].flags);
2598 				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2599 			} else
2600 				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2601 		else {
2602 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2603 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2604 			if (!(set_bad
2605 			      && test_bit(In_sync, &rdev->flags)
2606 			      && rdev_set_badblocks(
2607 				      rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 0)))
2608 				md_error(conf->mddev, rdev);
2609 		}
2610 	}
2611 	rdev_dec_pending(rdev, conf->mddev);
2612 	bio_reset(bi);
2613 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
2614 	set_bit(STRIPE_HANDLE, &sh->state);
2615 	raid5_release_stripe(sh);
2616 }
2617 
2618 static void raid5_end_write_request(struct bio *bi)
2619 {
2620 	struct stripe_head *sh = bi->bi_private;
2621 	struct r5conf *conf = sh->raid_conf;
2622 	int disks = sh->disks, i;
2623 	struct md_rdev *rdev;
2624 	sector_t first_bad;
2625 	int bad_sectors;
2626 	int replacement = 0;
2627 
2628 	for (i = 0 ; i < disks; i++) {
2629 		if (bi == &sh->dev[i].req) {
2630 			rdev = conf->disks[i].rdev;
2631 			break;
2632 		}
2633 		if (bi == &sh->dev[i].rreq) {
2634 			rdev = conf->disks[i].replacement;
2635 			if (rdev)
2636 				replacement = 1;
2637 			else
2638 				/* rdev was removed and 'replacement'
2639 				 * replaced it.  rdev is not removed
2640 				 * until all requests are finished.
2641 				 */
2642 				rdev = conf->disks[i].rdev;
2643 			break;
2644 		}
2645 	}
2646 	pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2647 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2648 		bi->bi_status);
2649 	if (i == disks) {
2650 		bio_reset(bi);
2651 		BUG();
2652 		return;
2653 	}
2654 
2655 	if (replacement) {
2656 		if (bi->bi_status)
2657 			md_error(conf->mddev, rdev);
2658 		else if (is_badblock(rdev, sh->sector,
2659 				     RAID5_STRIPE_SECTORS(conf),
2660 				     &first_bad, &bad_sectors))
2661 			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2662 	} else {
2663 		if (bi->bi_status) {
2664 			set_bit(STRIPE_DEGRADED, &sh->state);
2665 			set_bit(WriteErrorSeen, &rdev->flags);
2666 			set_bit(R5_WriteError, &sh->dev[i].flags);
2667 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2668 				set_bit(MD_RECOVERY_NEEDED,
2669 					&rdev->mddev->recovery);
2670 		} else if (is_badblock(rdev, sh->sector,
2671 				       RAID5_STRIPE_SECTORS(conf),
2672 				       &first_bad, &bad_sectors)) {
2673 			set_bit(R5_MadeGood, &sh->dev[i].flags);
2674 			if (test_bit(R5_ReadError, &sh->dev[i].flags))
2675 				/* That was a successful write so make
2676 				 * sure it looks like we already did
2677 				 * a re-write.
2678 				 */
2679 				set_bit(R5_ReWrite, &sh->dev[i].flags);
2680 		}
2681 	}
2682 	rdev_dec_pending(rdev, conf->mddev);
2683 
2684 	if (sh->batch_head && bi->bi_status && !replacement)
2685 		set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2686 
2687 	bio_reset(bi);
2688 	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2689 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2690 	set_bit(STRIPE_HANDLE, &sh->state);
2691 	raid5_release_stripe(sh);
2692 
2693 	if (sh->batch_head && sh != sh->batch_head)
2694 		raid5_release_stripe(sh->batch_head);
2695 }
2696 
2697 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2698 {
2699 	char b[BDEVNAME_SIZE];
2700 	struct r5conf *conf = mddev->private;
2701 	unsigned long flags;
2702 	pr_debug("raid456: error called\n");
2703 
2704 	spin_lock_irqsave(&conf->device_lock, flags);
2705 
2706 	if (test_bit(In_sync, &rdev->flags) &&
2707 	    mddev->degraded == conf->max_degraded) {
2708 		/*
2709 		 * Don't allow to achieve failed state
2710 		 * Don't try to recover this device
2711 		 */
2712 		conf->recovery_disabled = mddev->recovery_disabled;
2713 		spin_unlock_irqrestore(&conf->device_lock, flags);
2714 		return;
2715 	}
2716 
2717 	set_bit(Faulty, &rdev->flags);
2718 	clear_bit(In_sync, &rdev->flags);
2719 	mddev->degraded = raid5_calc_degraded(conf);
2720 	spin_unlock_irqrestore(&conf->device_lock, flags);
2721 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2722 
2723 	set_bit(Blocked, &rdev->flags);
2724 	set_mask_bits(&mddev->sb_flags, 0,
2725 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2726 	pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2727 		"md/raid:%s: Operation continuing on %d devices.\n",
2728 		mdname(mddev),
2729 		bdevname(rdev->bdev, b),
2730 		mdname(mddev),
2731 		conf->raid_disks - mddev->degraded);
2732 	r5c_update_on_rdev_error(mddev, rdev);
2733 }
2734 
2735 /*
2736  * Input: a 'big' sector number,
2737  * Output: index of the data and parity disk, and the sector # in them.
2738  */
2739 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2740 			      int previous, int *dd_idx,
2741 			      struct stripe_head *sh)
2742 {
2743 	sector_t stripe, stripe2;
2744 	sector_t chunk_number;
2745 	unsigned int chunk_offset;
2746 	int pd_idx, qd_idx;
2747 	int ddf_layout = 0;
2748 	sector_t new_sector;
2749 	int algorithm = previous ? conf->prev_algo
2750 				 : conf->algorithm;
2751 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2752 					 : conf->chunk_sectors;
2753 	int raid_disks = previous ? conf->previous_raid_disks
2754 				  : conf->raid_disks;
2755 	int data_disks = raid_disks - conf->max_degraded;
2756 
2757 	/* First compute the information on this sector */
2758 
2759 	/*
2760 	 * Compute the chunk number and the sector offset inside the chunk
2761 	 */
2762 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
2763 	chunk_number = r_sector;
2764 
2765 	/*
2766 	 * Compute the stripe number
2767 	 */
2768 	stripe = chunk_number;
2769 	*dd_idx = sector_div(stripe, data_disks);
2770 	stripe2 = stripe;
2771 	/*
2772 	 * Select the parity disk based on the user selected algorithm.
2773 	 */
2774 	pd_idx = qd_idx = -1;
2775 	switch(conf->level) {
2776 	case 4:
2777 		pd_idx = data_disks;
2778 		break;
2779 	case 5:
2780 		switch (algorithm) {
2781 		case ALGORITHM_LEFT_ASYMMETRIC:
2782 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2783 			if (*dd_idx >= pd_idx)
2784 				(*dd_idx)++;
2785 			break;
2786 		case ALGORITHM_RIGHT_ASYMMETRIC:
2787 			pd_idx = sector_div(stripe2, raid_disks);
2788 			if (*dd_idx >= pd_idx)
2789 				(*dd_idx)++;
2790 			break;
2791 		case ALGORITHM_LEFT_SYMMETRIC:
2792 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2793 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2794 			break;
2795 		case ALGORITHM_RIGHT_SYMMETRIC:
2796 			pd_idx = sector_div(stripe2, raid_disks);
2797 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2798 			break;
2799 		case ALGORITHM_PARITY_0:
2800 			pd_idx = 0;
2801 			(*dd_idx)++;
2802 			break;
2803 		case ALGORITHM_PARITY_N:
2804 			pd_idx = data_disks;
2805 			break;
2806 		default:
2807 			BUG();
2808 		}
2809 		break;
2810 	case 6:
2811 
2812 		switch (algorithm) {
2813 		case ALGORITHM_LEFT_ASYMMETRIC:
2814 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2815 			qd_idx = pd_idx + 1;
2816 			if (pd_idx == raid_disks-1) {
2817 				(*dd_idx)++;	/* Q D D D P */
2818 				qd_idx = 0;
2819 			} else if (*dd_idx >= pd_idx)
2820 				(*dd_idx) += 2; /* D D P Q D */
2821 			break;
2822 		case ALGORITHM_RIGHT_ASYMMETRIC:
2823 			pd_idx = sector_div(stripe2, raid_disks);
2824 			qd_idx = pd_idx + 1;
2825 			if (pd_idx == raid_disks-1) {
2826 				(*dd_idx)++;	/* Q D D D P */
2827 				qd_idx = 0;
2828 			} else if (*dd_idx >= pd_idx)
2829 				(*dd_idx) += 2; /* D D P Q D */
2830 			break;
2831 		case ALGORITHM_LEFT_SYMMETRIC:
2832 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2833 			qd_idx = (pd_idx + 1) % raid_disks;
2834 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2835 			break;
2836 		case ALGORITHM_RIGHT_SYMMETRIC:
2837 			pd_idx = sector_div(stripe2, raid_disks);
2838 			qd_idx = (pd_idx + 1) % raid_disks;
2839 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2840 			break;
2841 
2842 		case ALGORITHM_PARITY_0:
2843 			pd_idx = 0;
2844 			qd_idx = 1;
2845 			(*dd_idx) += 2;
2846 			break;
2847 		case ALGORITHM_PARITY_N:
2848 			pd_idx = data_disks;
2849 			qd_idx = data_disks + 1;
2850 			break;
2851 
2852 		case ALGORITHM_ROTATING_ZERO_RESTART:
2853 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
2854 			 * of blocks for computing Q is different.
2855 			 */
2856 			pd_idx = sector_div(stripe2, raid_disks);
2857 			qd_idx = pd_idx + 1;
2858 			if (pd_idx == raid_disks-1) {
2859 				(*dd_idx)++;	/* Q D D D P */
2860 				qd_idx = 0;
2861 			} else if (*dd_idx >= pd_idx)
2862 				(*dd_idx) += 2; /* D D P Q D */
2863 			ddf_layout = 1;
2864 			break;
2865 
2866 		case ALGORITHM_ROTATING_N_RESTART:
2867 			/* Same a left_asymmetric, by first stripe is
2868 			 * D D D P Q  rather than
2869 			 * Q D D D P
2870 			 */
2871 			stripe2 += 1;
2872 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2873 			qd_idx = pd_idx + 1;
2874 			if (pd_idx == raid_disks-1) {
2875 				(*dd_idx)++;	/* Q D D D P */
2876 				qd_idx = 0;
2877 			} else if (*dd_idx >= pd_idx)
2878 				(*dd_idx) += 2; /* D D P Q D */
2879 			ddf_layout = 1;
2880 			break;
2881 
2882 		case ALGORITHM_ROTATING_N_CONTINUE:
2883 			/* Same as left_symmetric but Q is before P */
2884 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2885 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2886 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2887 			ddf_layout = 1;
2888 			break;
2889 
2890 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2891 			/* RAID5 left_asymmetric, with Q on last device */
2892 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2893 			if (*dd_idx >= pd_idx)
2894 				(*dd_idx)++;
2895 			qd_idx = raid_disks - 1;
2896 			break;
2897 
2898 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2899 			pd_idx = sector_div(stripe2, raid_disks-1);
2900 			if (*dd_idx >= pd_idx)
2901 				(*dd_idx)++;
2902 			qd_idx = raid_disks - 1;
2903 			break;
2904 
2905 		case ALGORITHM_LEFT_SYMMETRIC_6:
2906 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2907 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2908 			qd_idx = raid_disks - 1;
2909 			break;
2910 
2911 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2912 			pd_idx = sector_div(stripe2, raid_disks-1);
2913 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2914 			qd_idx = raid_disks - 1;
2915 			break;
2916 
2917 		case ALGORITHM_PARITY_0_6:
2918 			pd_idx = 0;
2919 			(*dd_idx)++;
2920 			qd_idx = raid_disks - 1;
2921 			break;
2922 
2923 		default:
2924 			BUG();
2925 		}
2926 		break;
2927 	}
2928 
2929 	if (sh) {
2930 		sh->pd_idx = pd_idx;
2931 		sh->qd_idx = qd_idx;
2932 		sh->ddf_layout = ddf_layout;
2933 	}
2934 	/*
2935 	 * Finally, compute the new sector number
2936 	 */
2937 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2938 	return new_sector;
2939 }
2940 
2941 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2942 {
2943 	struct r5conf *conf = sh->raid_conf;
2944 	int raid_disks = sh->disks;
2945 	int data_disks = raid_disks - conf->max_degraded;
2946 	sector_t new_sector = sh->sector, check;
2947 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2948 					 : conf->chunk_sectors;
2949 	int algorithm = previous ? conf->prev_algo
2950 				 : conf->algorithm;
2951 	sector_t stripe;
2952 	int chunk_offset;
2953 	sector_t chunk_number;
2954 	int dummy1, dd_idx = i;
2955 	sector_t r_sector;
2956 	struct stripe_head sh2;
2957 
2958 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
2959 	stripe = new_sector;
2960 
2961 	if (i == sh->pd_idx)
2962 		return 0;
2963 	switch(conf->level) {
2964 	case 4: break;
2965 	case 5:
2966 		switch (algorithm) {
2967 		case ALGORITHM_LEFT_ASYMMETRIC:
2968 		case ALGORITHM_RIGHT_ASYMMETRIC:
2969 			if (i > sh->pd_idx)
2970 				i--;
2971 			break;
2972 		case ALGORITHM_LEFT_SYMMETRIC:
2973 		case ALGORITHM_RIGHT_SYMMETRIC:
2974 			if (i < sh->pd_idx)
2975 				i += raid_disks;
2976 			i -= (sh->pd_idx + 1);
2977 			break;
2978 		case ALGORITHM_PARITY_0:
2979 			i -= 1;
2980 			break;
2981 		case ALGORITHM_PARITY_N:
2982 			break;
2983 		default:
2984 			BUG();
2985 		}
2986 		break;
2987 	case 6:
2988 		if (i == sh->qd_idx)
2989 			return 0; /* It is the Q disk */
2990 		switch (algorithm) {
2991 		case ALGORITHM_LEFT_ASYMMETRIC:
2992 		case ALGORITHM_RIGHT_ASYMMETRIC:
2993 		case ALGORITHM_ROTATING_ZERO_RESTART:
2994 		case ALGORITHM_ROTATING_N_RESTART:
2995 			if (sh->pd_idx == raid_disks-1)
2996 				i--;	/* Q D D D P */
2997 			else if (i > sh->pd_idx)
2998 				i -= 2; /* D D P Q D */
2999 			break;
3000 		case ALGORITHM_LEFT_SYMMETRIC:
3001 		case ALGORITHM_RIGHT_SYMMETRIC:
3002 			if (sh->pd_idx == raid_disks-1)
3003 				i--; /* Q D D D P */
3004 			else {
3005 				/* D D P Q D */
3006 				if (i < sh->pd_idx)
3007 					i += raid_disks;
3008 				i -= (sh->pd_idx + 2);
3009 			}
3010 			break;
3011 		case ALGORITHM_PARITY_0:
3012 			i -= 2;
3013 			break;
3014 		case ALGORITHM_PARITY_N:
3015 			break;
3016 		case ALGORITHM_ROTATING_N_CONTINUE:
3017 			/* Like left_symmetric, but P is before Q */
3018 			if (sh->pd_idx == 0)
3019 				i--;	/* P D D D Q */
3020 			else {
3021 				/* D D Q P D */
3022 				if (i < sh->pd_idx)
3023 					i += raid_disks;
3024 				i -= (sh->pd_idx + 1);
3025 			}
3026 			break;
3027 		case ALGORITHM_LEFT_ASYMMETRIC_6:
3028 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
3029 			if (i > sh->pd_idx)
3030 				i--;
3031 			break;
3032 		case ALGORITHM_LEFT_SYMMETRIC_6:
3033 		case ALGORITHM_RIGHT_SYMMETRIC_6:
3034 			if (i < sh->pd_idx)
3035 				i += data_disks + 1;
3036 			i -= (sh->pd_idx + 1);
3037 			break;
3038 		case ALGORITHM_PARITY_0_6:
3039 			i -= 1;
3040 			break;
3041 		default:
3042 			BUG();
3043 		}
3044 		break;
3045 	}
3046 
3047 	chunk_number = stripe * data_disks + i;
3048 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3049 
3050 	check = raid5_compute_sector(conf, r_sector,
3051 				     previous, &dummy1, &sh2);
3052 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3053 		|| sh2.qd_idx != sh->qd_idx) {
3054 		pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3055 			mdname(conf->mddev));
3056 		return 0;
3057 	}
3058 	return r_sector;
3059 }
3060 
3061 /*
3062  * There are cases where we want handle_stripe_dirtying() and
3063  * schedule_reconstruction() to delay towrite to some dev of a stripe.
3064  *
3065  * This function checks whether we want to delay the towrite. Specifically,
3066  * we delay the towrite when:
3067  *
3068  *   1. degraded stripe has a non-overwrite to the missing dev, AND this
3069  *      stripe has data in journal (for other devices).
3070  *
3071  *      In this case, when reading data for the non-overwrite dev, it is
3072  *      necessary to handle complex rmw of write back cache (prexor with
3073  *      orig_page, and xor with page). To keep read path simple, we would
3074  *      like to flush data in journal to RAID disks first, so complex rmw
3075  *      is handled in the write patch (handle_stripe_dirtying).
3076  *
3077  *   2. when journal space is critical (R5C_LOG_CRITICAL=1)
3078  *
3079  *      It is important to be able to flush all stripes in raid5-cache.
3080  *      Therefore, we need reserve some space on the journal device for
3081  *      these flushes. If flush operation includes pending writes to the
3082  *      stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3083  *      for the flush out. If we exclude these pending writes from flush
3084  *      operation, we only need (conf->max_degraded + 1) pages per stripe.
3085  *      Therefore, excluding pending writes in these cases enables more
3086  *      efficient use of the journal device.
3087  *
3088  *      Note: To make sure the stripe makes progress, we only delay
3089  *      towrite for stripes with data already in journal (injournal > 0).
3090  *      When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3091  *      no_space_stripes list.
3092  *
3093  *   3. during journal failure
3094  *      In journal failure, we try to flush all cached data to raid disks
3095  *      based on data in stripe cache. The array is read-only to upper
3096  *      layers, so we would skip all pending writes.
3097  *
3098  */
3099 static inline bool delay_towrite(struct r5conf *conf,
3100 				 struct r5dev *dev,
3101 				 struct stripe_head_state *s)
3102 {
3103 	/* case 1 above */
3104 	if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3105 	    !test_bit(R5_Insync, &dev->flags) && s->injournal)
3106 		return true;
3107 	/* case 2 above */
3108 	if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3109 	    s->injournal > 0)
3110 		return true;
3111 	/* case 3 above */
3112 	if (s->log_failed && s->injournal)
3113 		return true;
3114 	return false;
3115 }
3116 
3117 static void
3118 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3119 			 int rcw, int expand)
3120 {
3121 	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3122 	struct r5conf *conf = sh->raid_conf;
3123 	int level = conf->level;
3124 
3125 	if (rcw) {
3126 		/*
3127 		 * In some cases, handle_stripe_dirtying initially decided to
3128 		 * run rmw and allocates extra page for prexor. However, rcw is
3129 		 * cheaper later on. We need to free the extra page now,
3130 		 * because we won't be able to do that in ops_complete_prexor().
3131 		 */
3132 		r5c_release_extra_page(sh);
3133 
3134 		for (i = disks; i--; ) {
3135 			struct r5dev *dev = &sh->dev[i];
3136 
3137 			if (dev->towrite && !delay_towrite(conf, dev, s)) {
3138 				set_bit(R5_LOCKED, &dev->flags);
3139 				set_bit(R5_Wantdrain, &dev->flags);
3140 				if (!expand)
3141 					clear_bit(R5_UPTODATE, &dev->flags);
3142 				s->locked++;
3143 			} else if (test_bit(R5_InJournal, &dev->flags)) {
3144 				set_bit(R5_LOCKED, &dev->flags);
3145 				s->locked++;
3146 			}
3147 		}
3148 		/* if we are not expanding this is a proper write request, and
3149 		 * there will be bios with new data to be drained into the
3150 		 * stripe cache
3151 		 */
3152 		if (!expand) {
3153 			if (!s->locked)
3154 				/* False alarm, nothing to do */
3155 				return;
3156 			sh->reconstruct_state = reconstruct_state_drain_run;
3157 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3158 		} else
3159 			sh->reconstruct_state = reconstruct_state_run;
3160 
3161 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3162 
3163 		if (s->locked + conf->max_degraded == disks)
3164 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3165 				atomic_inc(&conf->pending_full_writes);
3166 	} else {
3167 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3168 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3169 		BUG_ON(level == 6 &&
3170 			(!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3171 			   test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3172 
3173 		for (i = disks; i--; ) {
3174 			struct r5dev *dev = &sh->dev[i];
3175 			if (i == pd_idx || i == qd_idx)
3176 				continue;
3177 
3178 			if (dev->towrite &&
3179 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3180 			     test_bit(R5_Wantcompute, &dev->flags))) {
3181 				set_bit(R5_Wantdrain, &dev->flags);
3182 				set_bit(R5_LOCKED, &dev->flags);
3183 				clear_bit(R5_UPTODATE, &dev->flags);
3184 				s->locked++;
3185 			} else if (test_bit(R5_InJournal, &dev->flags)) {
3186 				set_bit(R5_LOCKED, &dev->flags);
3187 				s->locked++;
3188 			}
3189 		}
3190 		if (!s->locked)
3191 			/* False alarm - nothing to do */
3192 			return;
3193 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3194 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3195 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3196 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3197 	}
3198 
3199 	/* keep the parity disk(s) locked while asynchronous operations
3200 	 * are in flight
3201 	 */
3202 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3203 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3204 	s->locked++;
3205 
3206 	if (level == 6) {
3207 		int qd_idx = sh->qd_idx;
3208 		struct r5dev *dev = &sh->dev[qd_idx];
3209 
3210 		set_bit(R5_LOCKED, &dev->flags);
3211 		clear_bit(R5_UPTODATE, &dev->flags);
3212 		s->locked++;
3213 	}
3214 
3215 	if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3216 	    test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3217 	    !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3218 	    test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3219 		set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3220 
3221 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3222 		__func__, (unsigned long long)sh->sector,
3223 		s->locked, s->ops_request);
3224 }
3225 
3226 /*
3227  * Each stripe/dev can have one or more bion attached.
3228  * toread/towrite point to the first in a chain.
3229  * The bi_next chain must be in order.
3230  */
3231 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3232 			  int forwrite, int previous)
3233 {
3234 	struct bio **bip;
3235 	struct r5conf *conf = sh->raid_conf;
3236 	int firstwrite=0;
3237 
3238 	pr_debug("adding bi b#%llu to stripe s#%llu\n",
3239 		(unsigned long long)bi->bi_iter.bi_sector,
3240 		(unsigned long long)sh->sector);
3241 
3242 	spin_lock_irq(&sh->stripe_lock);
3243 	sh->dev[dd_idx].write_hint = bi->bi_write_hint;
3244 	/* Don't allow new IO added to stripes in batch list */
3245 	if (sh->batch_head)
3246 		goto overlap;
3247 	if (forwrite) {
3248 		bip = &sh->dev[dd_idx].towrite;
3249 		if (*bip == NULL)
3250 			firstwrite = 1;
3251 	} else
3252 		bip = &sh->dev[dd_idx].toread;
3253 	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3254 		if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3255 			goto overlap;
3256 		bip = & (*bip)->bi_next;
3257 	}
3258 	if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3259 		goto overlap;
3260 
3261 	if (forwrite && raid5_has_ppl(conf)) {
3262 		/*
3263 		 * With PPL only writes to consecutive data chunks within a
3264 		 * stripe are allowed because for a single stripe_head we can
3265 		 * only have one PPL entry at a time, which describes one data
3266 		 * range. Not really an overlap, but wait_for_overlap can be
3267 		 * used to handle this.
3268 		 */
3269 		sector_t sector;
3270 		sector_t first = 0;
3271 		sector_t last = 0;
3272 		int count = 0;
3273 		int i;
3274 
3275 		for (i = 0; i < sh->disks; i++) {
3276 			if (i != sh->pd_idx &&
3277 			    (i == dd_idx || sh->dev[i].towrite)) {
3278 				sector = sh->dev[i].sector;
3279 				if (count == 0 || sector < first)
3280 					first = sector;
3281 				if (sector > last)
3282 					last = sector;
3283 				count++;
3284 			}
3285 		}
3286 
3287 		if (first + conf->chunk_sectors * (count - 1) != last)
3288 			goto overlap;
3289 	}
3290 
3291 	if (!forwrite || previous)
3292 		clear_bit(STRIPE_BATCH_READY, &sh->state);
3293 
3294 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3295 	if (*bip)
3296 		bi->bi_next = *bip;
3297 	*bip = bi;
3298 	bio_inc_remaining(bi);
3299 	md_write_inc(conf->mddev, bi);
3300 
3301 	if (forwrite) {
3302 		/* check if page is covered */
3303 		sector_t sector = sh->dev[dd_idx].sector;
3304 		for (bi=sh->dev[dd_idx].towrite;
3305 		     sector < sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf) &&
3306 			     bi && bi->bi_iter.bi_sector <= sector;
3307 		     bi = r5_next_bio(conf, bi, sh->dev[dd_idx].sector)) {
3308 			if (bio_end_sector(bi) >= sector)
3309 				sector = bio_end_sector(bi);
3310 		}
3311 		if (sector >= sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf))
3312 			if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3313 				sh->overwrite_disks++;
3314 	}
3315 
3316 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3317 		(unsigned long long)(*bip)->bi_iter.bi_sector,
3318 		(unsigned long long)sh->sector, dd_idx);
3319 
3320 	if (conf->mddev->bitmap && firstwrite) {
3321 		/* Cannot hold spinlock over bitmap_startwrite,
3322 		 * but must ensure this isn't added to a batch until
3323 		 * we have added to the bitmap and set bm_seq.
3324 		 * So set STRIPE_BITMAP_PENDING to prevent
3325 		 * batching.
3326 		 * If multiple add_stripe_bio() calls race here they
3327 		 * much all set STRIPE_BITMAP_PENDING.  So only the first one
3328 		 * to complete "bitmap_startwrite" gets to set
3329 		 * STRIPE_BIT_DELAY.  This is important as once a stripe
3330 		 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3331 		 * any more.
3332 		 */
3333 		set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3334 		spin_unlock_irq(&sh->stripe_lock);
3335 		md_bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3336 				     RAID5_STRIPE_SECTORS(conf), 0);
3337 		spin_lock_irq(&sh->stripe_lock);
3338 		clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3339 		if (!sh->batch_head) {
3340 			sh->bm_seq = conf->seq_flush+1;
3341 			set_bit(STRIPE_BIT_DELAY, &sh->state);
3342 		}
3343 	}
3344 	spin_unlock_irq(&sh->stripe_lock);
3345 
3346 	if (stripe_can_batch(sh))
3347 		stripe_add_to_batch_list(conf, sh);
3348 	return 1;
3349 
3350  overlap:
3351 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3352 	spin_unlock_irq(&sh->stripe_lock);
3353 	return 0;
3354 }
3355 
3356 static void end_reshape(struct r5conf *conf);
3357 
3358 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3359 			    struct stripe_head *sh)
3360 {
3361 	int sectors_per_chunk =
3362 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3363 	int dd_idx;
3364 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
3365 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3366 
3367 	raid5_compute_sector(conf,
3368 			     stripe * (disks - conf->max_degraded)
3369 			     *sectors_per_chunk + chunk_offset,
3370 			     previous,
3371 			     &dd_idx, sh);
3372 }
3373 
3374 static void
3375 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3376 		     struct stripe_head_state *s, int disks)
3377 {
3378 	int i;
3379 	BUG_ON(sh->batch_head);
3380 	for (i = disks; i--; ) {
3381 		struct bio *bi;
3382 		int bitmap_end = 0;
3383 
3384 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3385 			struct md_rdev *rdev;
3386 			rcu_read_lock();
3387 			rdev = rcu_dereference(conf->disks[i].rdev);
3388 			if (rdev && test_bit(In_sync, &rdev->flags) &&
3389 			    !test_bit(Faulty, &rdev->flags))
3390 				atomic_inc(&rdev->nr_pending);
3391 			else
3392 				rdev = NULL;
3393 			rcu_read_unlock();
3394 			if (rdev) {
3395 				if (!rdev_set_badblocks(
3396 					    rdev,
3397 					    sh->sector,
3398 					    RAID5_STRIPE_SECTORS(conf), 0))
3399 					md_error(conf->mddev, rdev);
3400 				rdev_dec_pending(rdev, conf->mddev);
3401 			}
3402 		}
3403 		spin_lock_irq(&sh->stripe_lock);
3404 		/* fail all writes first */
3405 		bi = sh->dev[i].towrite;
3406 		sh->dev[i].towrite = NULL;
3407 		sh->overwrite_disks = 0;
3408 		spin_unlock_irq(&sh->stripe_lock);
3409 		if (bi)
3410 			bitmap_end = 1;
3411 
3412 		log_stripe_write_finished(sh);
3413 
3414 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3415 			wake_up(&conf->wait_for_overlap);
3416 
3417 		while (bi && bi->bi_iter.bi_sector <
3418 			sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3419 			struct bio *nextbi = r5_next_bio(conf, bi, sh->dev[i].sector);
3420 
3421 			md_write_end(conf->mddev);
3422 			bio_io_error(bi);
3423 			bi = nextbi;
3424 		}
3425 		if (bitmap_end)
3426 			md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3427 					   RAID5_STRIPE_SECTORS(conf), 0, 0);
3428 		bitmap_end = 0;
3429 		/* and fail all 'written' */
3430 		bi = sh->dev[i].written;
3431 		sh->dev[i].written = NULL;
3432 		if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3433 			WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3434 			sh->dev[i].page = sh->dev[i].orig_page;
3435 		}
3436 
3437 		if (bi) bitmap_end = 1;
3438 		while (bi && bi->bi_iter.bi_sector <
3439 		       sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3440 			struct bio *bi2 = r5_next_bio(conf, bi, sh->dev[i].sector);
3441 
3442 			md_write_end(conf->mddev);
3443 			bio_io_error(bi);
3444 			bi = bi2;
3445 		}
3446 
3447 		/* fail any reads if this device is non-operational and
3448 		 * the data has not reached the cache yet.
3449 		 */
3450 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3451 		    s->failed > conf->max_degraded &&
3452 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3453 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
3454 			spin_lock_irq(&sh->stripe_lock);
3455 			bi = sh->dev[i].toread;
3456 			sh->dev[i].toread = NULL;
3457 			spin_unlock_irq(&sh->stripe_lock);
3458 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3459 				wake_up(&conf->wait_for_overlap);
3460 			if (bi)
3461 				s->to_read--;
3462 			while (bi && bi->bi_iter.bi_sector <
3463 			       sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3464 				struct bio *nextbi =
3465 					r5_next_bio(conf, bi, sh->dev[i].sector);
3466 
3467 				bio_io_error(bi);
3468 				bi = nextbi;
3469 			}
3470 		}
3471 		if (bitmap_end)
3472 			md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3473 					   RAID5_STRIPE_SECTORS(conf), 0, 0);
3474 		/* If we were in the middle of a write the parity block might
3475 		 * still be locked - so just clear all R5_LOCKED flags
3476 		 */
3477 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
3478 	}
3479 	s->to_write = 0;
3480 	s->written = 0;
3481 
3482 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3483 		if (atomic_dec_and_test(&conf->pending_full_writes))
3484 			md_wakeup_thread(conf->mddev->thread);
3485 }
3486 
3487 static void
3488 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3489 		   struct stripe_head_state *s)
3490 {
3491 	int abort = 0;
3492 	int i;
3493 
3494 	BUG_ON(sh->batch_head);
3495 	clear_bit(STRIPE_SYNCING, &sh->state);
3496 	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3497 		wake_up(&conf->wait_for_overlap);
3498 	s->syncing = 0;
3499 	s->replacing = 0;
3500 	/* There is nothing more to do for sync/check/repair.
3501 	 * Don't even need to abort as that is handled elsewhere
3502 	 * if needed, and not always wanted e.g. if there is a known
3503 	 * bad block here.
3504 	 * For recover/replace we need to record a bad block on all
3505 	 * non-sync devices, or abort the recovery
3506 	 */
3507 	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3508 		/* During recovery devices cannot be removed, so
3509 		 * locking and refcounting of rdevs is not needed
3510 		 */
3511 		rcu_read_lock();
3512 		for (i = 0; i < conf->raid_disks; i++) {
3513 			struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3514 			if (rdev
3515 			    && !test_bit(Faulty, &rdev->flags)
3516 			    && !test_bit(In_sync, &rdev->flags)
3517 			    && !rdev_set_badblocks(rdev, sh->sector,
3518 						   RAID5_STRIPE_SECTORS(conf), 0))
3519 				abort = 1;
3520 			rdev = rcu_dereference(conf->disks[i].replacement);
3521 			if (rdev
3522 			    && !test_bit(Faulty, &rdev->flags)
3523 			    && !test_bit(In_sync, &rdev->flags)
3524 			    && !rdev_set_badblocks(rdev, sh->sector,
3525 						   RAID5_STRIPE_SECTORS(conf), 0))
3526 				abort = 1;
3527 		}
3528 		rcu_read_unlock();
3529 		if (abort)
3530 			conf->recovery_disabled =
3531 				conf->mddev->recovery_disabled;
3532 	}
3533 	md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), !abort);
3534 }
3535 
3536 static int want_replace(struct stripe_head *sh, int disk_idx)
3537 {
3538 	struct md_rdev *rdev;
3539 	int rv = 0;
3540 
3541 	rcu_read_lock();
3542 	rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3543 	if (rdev
3544 	    && !test_bit(Faulty, &rdev->flags)
3545 	    && !test_bit(In_sync, &rdev->flags)
3546 	    && (rdev->recovery_offset <= sh->sector
3547 		|| rdev->mddev->recovery_cp <= sh->sector))
3548 		rv = 1;
3549 	rcu_read_unlock();
3550 	return rv;
3551 }
3552 
3553 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3554 			   int disk_idx, int disks)
3555 {
3556 	struct r5dev *dev = &sh->dev[disk_idx];
3557 	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3558 				  &sh->dev[s->failed_num[1]] };
3559 	int i;
3560 	bool force_rcw = (sh->raid_conf->rmw_level == PARITY_DISABLE_RMW);
3561 
3562 
3563 	if (test_bit(R5_LOCKED, &dev->flags) ||
3564 	    test_bit(R5_UPTODATE, &dev->flags))
3565 		/* No point reading this as we already have it or have
3566 		 * decided to get it.
3567 		 */
3568 		return 0;
3569 
3570 	if (dev->toread ||
3571 	    (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3572 		/* We need this block to directly satisfy a request */
3573 		return 1;
3574 
3575 	if (s->syncing || s->expanding ||
3576 	    (s->replacing && want_replace(sh, disk_idx)))
3577 		/* When syncing, or expanding we read everything.
3578 		 * When replacing, we need the replaced block.
3579 		 */
3580 		return 1;
3581 
3582 	if ((s->failed >= 1 && fdev[0]->toread) ||
3583 	    (s->failed >= 2 && fdev[1]->toread))
3584 		/* If we want to read from a failed device, then
3585 		 * we need to actually read every other device.
3586 		 */
3587 		return 1;
3588 
3589 	/* Sometimes neither read-modify-write nor reconstruct-write
3590 	 * cycles can work.  In those cases we read every block we
3591 	 * can.  Then the parity-update is certain to have enough to
3592 	 * work with.
3593 	 * This can only be a problem when we need to write something,
3594 	 * and some device has failed.  If either of those tests
3595 	 * fail we need look no further.
3596 	 */
3597 	if (!s->failed || !s->to_write)
3598 		return 0;
3599 
3600 	if (test_bit(R5_Insync, &dev->flags) &&
3601 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3602 		/* Pre-reads at not permitted until after short delay
3603 		 * to gather multiple requests.  However if this
3604 		 * device is no Insync, the block could only be computed
3605 		 * and there is no need to delay that.
3606 		 */
3607 		return 0;
3608 
3609 	for (i = 0; i < s->failed && i < 2; i++) {
3610 		if (fdev[i]->towrite &&
3611 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3612 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3613 			/* If we have a partial write to a failed
3614 			 * device, then we will need to reconstruct
3615 			 * the content of that device, so all other
3616 			 * devices must be read.
3617 			 */
3618 			return 1;
3619 
3620 		if (s->failed >= 2 &&
3621 		    (fdev[i]->towrite ||
3622 		     s->failed_num[i] == sh->pd_idx ||
3623 		     s->failed_num[i] == sh->qd_idx) &&
3624 		    !test_bit(R5_UPTODATE, &fdev[i]->flags))
3625 			/* In max degraded raid6, If the failed disk is P, Q,
3626 			 * or we want to read the failed disk, we need to do
3627 			 * reconstruct-write.
3628 			 */
3629 			force_rcw = true;
3630 	}
3631 
3632 	/* If we are forced to do a reconstruct-write, because parity
3633 	 * cannot be trusted and we are currently recovering it, there
3634 	 * is extra need to be careful.
3635 	 * If one of the devices that we would need to read, because
3636 	 * it is not being overwritten (and maybe not written at all)
3637 	 * is missing/faulty, then we need to read everything we can.
3638 	 */
3639 	if (!force_rcw &&
3640 	    sh->sector < sh->raid_conf->mddev->recovery_cp)
3641 		/* reconstruct-write isn't being forced */
3642 		return 0;
3643 	for (i = 0; i < s->failed && i < 2; i++) {
3644 		if (s->failed_num[i] != sh->pd_idx &&
3645 		    s->failed_num[i] != sh->qd_idx &&
3646 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3647 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3648 			return 1;
3649 	}
3650 
3651 	return 0;
3652 }
3653 
3654 /* fetch_block - checks the given member device to see if its data needs
3655  * to be read or computed to satisfy a request.
3656  *
3657  * Returns 1 when no more member devices need to be checked, otherwise returns
3658  * 0 to tell the loop in handle_stripe_fill to continue
3659  */
3660 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3661 		       int disk_idx, int disks)
3662 {
3663 	struct r5dev *dev = &sh->dev[disk_idx];
3664 
3665 	/* is the data in this block needed, and can we get it? */
3666 	if (need_this_block(sh, s, disk_idx, disks)) {
3667 		/* we would like to get this block, possibly by computing it,
3668 		 * otherwise read it if the backing disk is insync
3669 		 */
3670 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3671 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
3672 		BUG_ON(sh->batch_head);
3673 
3674 		/*
3675 		 * In the raid6 case if the only non-uptodate disk is P
3676 		 * then we already trusted P to compute the other failed
3677 		 * drives. It is safe to compute rather than re-read P.
3678 		 * In other cases we only compute blocks from failed
3679 		 * devices, otherwise check/repair might fail to detect
3680 		 * a real inconsistency.
3681 		 */
3682 
3683 		if ((s->uptodate == disks - 1) &&
3684 		    ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3685 		    (s->failed && (disk_idx == s->failed_num[0] ||
3686 				   disk_idx == s->failed_num[1])))) {
3687 			/* have disk failed, and we're requested to fetch it;
3688 			 * do compute it
3689 			 */
3690 			pr_debug("Computing stripe %llu block %d\n",
3691 			       (unsigned long long)sh->sector, disk_idx);
3692 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3693 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3694 			set_bit(R5_Wantcompute, &dev->flags);
3695 			sh->ops.target = disk_idx;
3696 			sh->ops.target2 = -1; /* no 2nd target */
3697 			s->req_compute = 1;
3698 			/* Careful: from this point on 'uptodate' is in the eye
3699 			 * of raid_run_ops which services 'compute' operations
3700 			 * before writes. R5_Wantcompute flags a block that will
3701 			 * be R5_UPTODATE by the time it is needed for a
3702 			 * subsequent operation.
3703 			 */
3704 			s->uptodate++;
3705 			return 1;
3706 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
3707 			/* Computing 2-failure is *very* expensive; only
3708 			 * do it if failed >= 2
3709 			 */
3710 			int other;
3711 			for (other = disks; other--; ) {
3712 				if (other == disk_idx)
3713 					continue;
3714 				if (!test_bit(R5_UPTODATE,
3715 				      &sh->dev[other].flags))
3716 					break;
3717 			}
3718 			BUG_ON(other < 0);
3719 			pr_debug("Computing stripe %llu blocks %d,%d\n",
3720 			       (unsigned long long)sh->sector,
3721 			       disk_idx, other);
3722 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3723 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3724 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3725 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
3726 			sh->ops.target = disk_idx;
3727 			sh->ops.target2 = other;
3728 			s->uptodate += 2;
3729 			s->req_compute = 1;
3730 			return 1;
3731 		} else if (test_bit(R5_Insync, &dev->flags)) {
3732 			set_bit(R5_LOCKED, &dev->flags);
3733 			set_bit(R5_Wantread, &dev->flags);
3734 			s->locked++;
3735 			pr_debug("Reading block %d (sync=%d)\n",
3736 				disk_idx, s->syncing);
3737 		}
3738 	}
3739 
3740 	return 0;
3741 }
3742 
3743 /*
3744  * handle_stripe_fill - read or compute data to satisfy pending requests.
3745  */
3746 static void handle_stripe_fill(struct stripe_head *sh,
3747 			       struct stripe_head_state *s,
3748 			       int disks)
3749 {
3750 	int i;
3751 
3752 	/* look for blocks to read/compute, skip this if a compute
3753 	 * is already in flight, or if the stripe contents are in the
3754 	 * midst of changing due to a write
3755 	 */
3756 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3757 	    !sh->reconstruct_state) {
3758 
3759 		/*
3760 		 * For degraded stripe with data in journal, do not handle
3761 		 * read requests yet, instead, flush the stripe to raid
3762 		 * disks first, this avoids handling complex rmw of write
3763 		 * back cache (prexor with orig_page, and then xor with
3764 		 * page) in the read path
3765 		 */
3766 		if (s->injournal && s->failed) {
3767 			if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3768 				r5c_make_stripe_write_out(sh);
3769 			goto out;
3770 		}
3771 
3772 		for (i = disks; i--; )
3773 			if (fetch_block(sh, s, i, disks))
3774 				break;
3775 	}
3776 out:
3777 	set_bit(STRIPE_HANDLE, &sh->state);
3778 }
3779 
3780 static void break_stripe_batch_list(struct stripe_head *head_sh,
3781 				    unsigned long handle_flags);
3782 /* handle_stripe_clean_event
3783  * any written block on an uptodate or failed drive can be returned.
3784  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3785  * never LOCKED, so we don't need to test 'failed' directly.
3786  */
3787 static void handle_stripe_clean_event(struct r5conf *conf,
3788 	struct stripe_head *sh, int disks)
3789 {
3790 	int i;
3791 	struct r5dev *dev;
3792 	int discard_pending = 0;
3793 	struct stripe_head *head_sh = sh;
3794 	bool do_endio = false;
3795 
3796 	for (i = disks; i--; )
3797 		if (sh->dev[i].written) {
3798 			dev = &sh->dev[i];
3799 			if (!test_bit(R5_LOCKED, &dev->flags) &&
3800 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3801 			     test_bit(R5_Discard, &dev->flags) ||
3802 			     test_bit(R5_SkipCopy, &dev->flags))) {
3803 				/* We can return any write requests */
3804 				struct bio *wbi, *wbi2;
3805 				pr_debug("Return write for disc %d\n", i);
3806 				if (test_and_clear_bit(R5_Discard, &dev->flags))
3807 					clear_bit(R5_UPTODATE, &dev->flags);
3808 				if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3809 					WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3810 				}
3811 				do_endio = true;
3812 
3813 returnbi:
3814 				dev->page = dev->orig_page;
3815 				wbi = dev->written;
3816 				dev->written = NULL;
3817 				while (wbi && wbi->bi_iter.bi_sector <
3818 					dev->sector + RAID5_STRIPE_SECTORS(conf)) {
3819 					wbi2 = r5_next_bio(conf, wbi, dev->sector);
3820 					md_write_end(conf->mddev);
3821 					bio_endio(wbi);
3822 					wbi = wbi2;
3823 				}
3824 				md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3825 						   RAID5_STRIPE_SECTORS(conf),
3826 						   !test_bit(STRIPE_DEGRADED, &sh->state),
3827 						   0);
3828 				if (head_sh->batch_head) {
3829 					sh = list_first_entry(&sh->batch_list,
3830 							      struct stripe_head,
3831 							      batch_list);
3832 					if (sh != head_sh) {
3833 						dev = &sh->dev[i];
3834 						goto returnbi;
3835 					}
3836 				}
3837 				sh = head_sh;
3838 				dev = &sh->dev[i];
3839 			} else if (test_bit(R5_Discard, &dev->flags))
3840 				discard_pending = 1;
3841 		}
3842 
3843 	log_stripe_write_finished(sh);
3844 
3845 	if (!discard_pending &&
3846 	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3847 		int hash;
3848 		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3849 		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3850 		if (sh->qd_idx >= 0) {
3851 			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3852 			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3853 		}
3854 		/* now that discard is done we can proceed with any sync */
3855 		clear_bit(STRIPE_DISCARD, &sh->state);
3856 		/*
3857 		 * SCSI discard will change some bio fields and the stripe has
3858 		 * no updated data, so remove it from hash list and the stripe
3859 		 * will be reinitialized
3860 		 */
3861 unhash:
3862 		hash = sh->hash_lock_index;
3863 		spin_lock_irq(conf->hash_locks + hash);
3864 		remove_hash(sh);
3865 		spin_unlock_irq(conf->hash_locks + hash);
3866 		if (head_sh->batch_head) {
3867 			sh = list_first_entry(&sh->batch_list,
3868 					      struct stripe_head, batch_list);
3869 			if (sh != head_sh)
3870 					goto unhash;
3871 		}
3872 		sh = head_sh;
3873 
3874 		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3875 			set_bit(STRIPE_HANDLE, &sh->state);
3876 
3877 	}
3878 
3879 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3880 		if (atomic_dec_and_test(&conf->pending_full_writes))
3881 			md_wakeup_thread(conf->mddev->thread);
3882 
3883 	if (head_sh->batch_head && do_endio)
3884 		break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3885 }
3886 
3887 /*
3888  * For RMW in write back cache, we need extra page in prexor to store the
3889  * old data. This page is stored in dev->orig_page.
3890  *
3891  * This function checks whether we have data for prexor. The exact logic
3892  * is:
3893  *       R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
3894  */
3895 static inline bool uptodate_for_rmw(struct r5dev *dev)
3896 {
3897 	return (test_bit(R5_UPTODATE, &dev->flags)) &&
3898 		(!test_bit(R5_InJournal, &dev->flags) ||
3899 		 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
3900 }
3901 
3902 static int handle_stripe_dirtying(struct r5conf *conf,
3903 				  struct stripe_head *sh,
3904 				  struct stripe_head_state *s,
3905 				  int disks)
3906 {
3907 	int rmw = 0, rcw = 0, i;
3908 	sector_t recovery_cp = conf->mddev->recovery_cp;
3909 
3910 	/* Check whether resync is now happening or should start.
3911 	 * If yes, then the array is dirty (after unclean shutdown or
3912 	 * initial creation), so parity in some stripes might be inconsistent.
3913 	 * In this case, we need to always do reconstruct-write, to ensure
3914 	 * that in case of drive failure or read-error correction, we
3915 	 * generate correct data from the parity.
3916 	 */
3917 	if (conf->rmw_level == PARITY_DISABLE_RMW ||
3918 	    (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3919 	     s->failed == 0)) {
3920 		/* Calculate the real rcw later - for now make it
3921 		 * look like rcw is cheaper
3922 		 */
3923 		rcw = 1; rmw = 2;
3924 		pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3925 			 conf->rmw_level, (unsigned long long)recovery_cp,
3926 			 (unsigned long long)sh->sector);
3927 	} else for (i = disks; i--; ) {
3928 		/* would I have to read this buffer for read_modify_write */
3929 		struct r5dev *dev = &sh->dev[i];
3930 		if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3931 		     i == sh->pd_idx || i == sh->qd_idx ||
3932 		     test_bit(R5_InJournal, &dev->flags)) &&
3933 		    !test_bit(R5_LOCKED, &dev->flags) &&
3934 		    !(uptodate_for_rmw(dev) ||
3935 		      test_bit(R5_Wantcompute, &dev->flags))) {
3936 			if (test_bit(R5_Insync, &dev->flags))
3937 				rmw++;
3938 			else
3939 				rmw += 2*disks;  /* cannot read it */
3940 		}
3941 		/* Would I have to read this buffer for reconstruct_write */
3942 		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3943 		    i != sh->pd_idx && i != sh->qd_idx &&
3944 		    !test_bit(R5_LOCKED, &dev->flags) &&
3945 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
3946 		      test_bit(R5_Wantcompute, &dev->flags))) {
3947 			if (test_bit(R5_Insync, &dev->flags))
3948 				rcw++;
3949 			else
3950 				rcw += 2*disks;
3951 		}
3952 	}
3953 
3954 	pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
3955 		 (unsigned long long)sh->sector, sh->state, rmw, rcw);
3956 	set_bit(STRIPE_HANDLE, &sh->state);
3957 	if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
3958 		/* prefer read-modify-write, but need to get some data */
3959 		if (conf->mddev->queue)
3960 			blk_add_trace_msg(conf->mddev->queue,
3961 					  "raid5 rmw %llu %d",
3962 					  (unsigned long long)sh->sector, rmw);
3963 		for (i = disks; i--; ) {
3964 			struct r5dev *dev = &sh->dev[i];
3965 			if (test_bit(R5_InJournal, &dev->flags) &&
3966 			    dev->page == dev->orig_page &&
3967 			    !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
3968 				/* alloc page for prexor */
3969 				struct page *p = alloc_page(GFP_NOIO);
3970 
3971 				if (p) {
3972 					dev->orig_page = p;
3973 					continue;
3974 				}
3975 
3976 				/*
3977 				 * alloc_page() failed, try use
3978 				 * disk_info->extra_page
3979 				 */
3980 				if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
3981 						      &conf->cache_state)) {
3982 					r5c_use_extra_page(sh);
3983 					break;
3984 				}
3985 
3986 				/* extra_page in use, add to delayed_list */
3987 				set_bit(STRIPE_DELAYED, &sh->state);
3988 				s->waiting_extra_page = 1;
3989 				return -EAGAIN;
3990 			}
3991 		}
3992 
3993 		for (i = disks; i--; ) {
3994 			struct r5dev *dev = &sh->dev[i];
3995 			if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3996 			     i == sh->pd_idx || i == sh->qd_idx ||
3997 			     test_bit(R5_InJournal, &dev->flags)) &&
3998 			    !test_bit(R5_LOCKED, &dev->flags) &&
3999 			    !(uptodate_for_rmw(dev) ||
4000 			      test_bit(R5_Wantcompute, &dev->flags)) &&
4001 			    test_bit(R5_Insync, &dev->flags)) {
4002 				if (test_bit(STRIPE_PREREAD_ACTIVE,
4003 					     &sh->state)) {
4004 					pr_debug("Read_old block %d for r-m-w\n",
4005 						 i);
4006 					set_bit(R5_LOCKED, &dev->flags);
4007 					set_bit(R5_Wantread, &dev->flags);
4008 					s->locked++;
4009 				} else
4010 					set_bit(STRIPE_DELAYED, &sh->state);
4011 			}
4012 		}
4013 	}
4014 	if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
4015 		/* want reconstruct write, but need to get some data */
4016 		int qread =0;
4017 		rcw = 0;
4018 		for (i = disks; i--; ) {
4019 			struct r5dev *dev = &sh->dev[i];
4020 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4021 			    i != sh->pd_idx && i != sh->qd_idx &&
4022 			    !test_bit(R5_LOCKED, &dev->flags) &&
4023 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
4024 			      test_bit(R5_Wantcompute, &dev->flags))) {
4025 				rcw++;
4026 				if (test_bit(R5_Insync, &dev->flags) &&
4027 				    test_bit(STRIPE_PREREAD_ACTIVE,
4028 					     &sh->state)) {
4029 					pr_debug("Read_old block "
4030 						"%d for Reconstruct\n", i);
4031 					set_bit(R5_LOCKED, &dev->flags);
4032 					set_bit(R5_Wantread, &dev->flags);
4033 					s->locked++;
4034 					qread++;
4035 				} else
4036 					set_bit(STRIPE_DELAYED, &sh->state);
4037 			}
4038 		}
4039 		if (rcw && conf->mddev->queue)
4040 			blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
4041 					  (unsigned long long)sh->sector,
4042 					  rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
4043 	}
4044 
4045 	if (rcw > disks && rmw > disks &&
4046 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4047 		set_bit(STRIPE_DELAYED, &sh->state);
4048 
4049 	/* now if nothing is locked, and if we have enough data,
4050 	 * we can start a write request
4051 	 */
4052 	/* since handle_stripe can be called at any time we need to handle the
4053 	 * case where a compute block operation has been submitted and then a
4054 	 * subsequent call wants to start a write request.  raid_run_ops only
4055 	 * handles the case where compute block and reconstruct are requested
4056 	 * simultaneously.  If this is not the case then new writes need to be
4057 	 * held off until the compute completes.
4058 	 */
4059 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4060 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4061 	     !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4062 		schedule_reconstruction(sh, s, rcw == 0, 0);
4063 	return 0;
4064 }
4065 
4066 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4067 				struct stripe_head_state *s, int disks)
4068 {
4069 	struct r5dev *dev = NULL;
4070 
4071 	BUG_ON(sh->batch_head);
4072 	set_bit(STRIPE_HANDLE, &sh->state);
4073 
4074 	switch (sh->check_state) {
4075 	case check_state_idle:
4076 		/* start a new check operation if there are no failures */
4077 		if (s->failed == 0) {
4078 			BUG_ON(s->uptodate != disks);
4079 			sh->check_state = check_state_run;
4080 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
4081 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4082 			s->uptodate--;
4083 			break;
4084 		}
4085 		dev = &sh->dev[s->failed_num[0]];
4086 		/* fall through */
4087 	case check_state_compute_result:
4088 		sh->check_state = check_state_idle;
4089 		if (!dev)
4090 			dev = &sh->dev[sh->pd_idx];
4091 
4092 		/* check that a write has not made the stripe insync */
4093 		if (test_bit(STRIPE_INSYNC, &sh->state))
4094 			break;
4095 
4096 		/* either failed parity check, or recovery is happening */
4097 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4098 		BUG_ON(s->uptodate != disks);
4099 
4100 		set_bit(R5_LOCKED, &dev->flags);
4101 		s->locked++;
4102 		set_bit(R5_Wantwrite, &dev->flags);
4103 
4104 		clear_bit(STRIPE_DEGRADED, &sh->state);
4105 		set_bit(STRIPE_INSYNC, &sh->state);
4106 		break;
4107 	case check_state_run:
4108 		break; /* we will be called again upon completion */
4109 	case check_state_check_result:
4110 		sh->check_state = check_state_idle;
4111 
4112 		/* if a failure occurred during the check operation, leave
4113 		 * STRIPE_INSYNC not set and let the stripe be handled again
4114 		 */
4115 		if (s->failed)
4116 			break;
4117 
4118 		/* handle a successful check operation, if parity is correct
4119 		 * we are done.  Otherwise update the mismatch count and repair
4120 		 * parity if !MD_RECOVERY_CHECK
4121 		 */
4122 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4123 			/* parity is correct (on disc,
4124 			 * not in buffer any more)
4125 			 */
4126 			set_bit(STRIPE_INSYNC, &sh->state);
4127 		else {
4128 			atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4129 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4130 				/* don't try to repair!! */
4131 				set_bit(STRIPE_INSYNC, &sh->state);
4132 				pr_warn_ratelimited("%s: mismatch sector in range "
4133 						    "%llu-%llu\n", mdname(conf->mddev),
4134 						    (unsigned long long) sh->sector,
4135 						    (unsigned long long) sh->sector +
4136 						    RAID5_STRIPE_SECTORS(conf));
4137 			} else {
4138 				sh->check_state = check_state_compute_run;
4139 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4140 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4141 				set_bit(R5_Wantcompute,
4142 					&sh->dev[sh->pd_idx].flags);
4143 				sh->ops.target = sh->pd_idx;
4144 				sh->ops.target2 = -1;
4145 				s->uptodate++;
4146 			}
4147 		}
4148 		break;
4149 	case check_state_compute_run:
4150 		break;
4151 	default:
4152 		pr_err("%s: unknown check_state: %d sector: %llu\n",
4153 		       __func__, sh->check_state,
4154 		       (unsigned long long) sh->sector);
4155 		BUG();
4156 	}
4157 }
4158 
4159 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4160 				  struct stripe_head_state *s,
4161 				  int disks)
4162 {
4163 	int pd_idx = sh->pd_idx;
4164 	int qd_idx = sh->qd_idx;
4165 	struct r5dev *dev;
4166 
4167 	BUG_ON(sh->batch_head);
4168 	set_bit(STRIPE_HANDLE, &sh->state);
4169 
4170 	BUG_ON(s->failed > 2);
4171 
4172 	/* Want to check and possibly repair P and Q.
4173 	 * However there could be one 'failed' device, in which
4174 	 * case we can only check one of them, possibly using the
4175 	 * other to generate missing data
4176 	 */
4177 
4178 	switch (sh->check_state) {
4179 	case check_state_idle:
4180 		/* start a new check operation if there are < 2 failures */
4181 		if (s->failed == s->q_failed) {
4182 			/* The only possible failed device holds Q, so it
4183 			 * makes sense to check P (If anything else were failed,
4184 			 * we would have used P to recreate it).
4185 			 */
4186 			sh->check_state = check_state_run;
4187 		}
4188 		if (!s->q_failed && s->failed < 2) {
4189 			/* Q is not failed, and we didn't use it to generate
4190 			 * anything, so it makes sense to check it
4191 			 */
4192 			if (sh->check_state == check_state_run)
4193 				sh->check_state = check_state_run_pq;
4194 			else
4195 				sh->check_state = check_state_run_q;
4196 		}
4197 
4198 		/* discard potentially stale zero_sum_result */
4199 		sh->ops.zero_sum_result = 0;
4200 
4201 		if (sh->check_state == check_state_run) {
4202 			/* async_xor_zero_sum destroys the contents of P */
4203 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4204 			s->uptodate--;
4205 		}
4206 		if (sh->check_state >= check_state_run &&
4207 		    sh->check_state <= check_state_run_pq) {
4208 			/* async_syndrome_zero_sum preserves P and Q, so
4209 			 * no need to mark them !uptodate here
4210 			 */
4211 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
4212 			break;
4213 		}
4214 
4215 		/* we have 2-disk failure */
4216 		BUG_ON(s->failed != 2);
4217 		/* fall through */
4218 	case check_state_compute_result:
4219 		sh->check_state = check_state_idle;
4220 
4221 		/* check that a write has not made the stripe insync */
4222 		if (test_bit(STRIPE_INSYNC, &sh->state))
4223 			break;
4224 
4225 		/* now write out any block on a failed drive,
4226 		 * or P or Q if they were recomputed
4227 		 */
4228 		dev = NULL;
4229 		if (s->failed == 2) {
4230 			dev = &sh->dev[s->failed_num[1]];
4231 			s->locked++;
4232 			set_bit(R5_LOCKED, &dev->flags);
4233 			set_bit(R5_Wantwrite, &dev->flags);
4234 		}
4235 		if (s->failed >= 1) {
4236 			dev = &sh->dev[s->failed_num[0]];
4237 			s->locked++;
4238 			set_bit(R5_LOCKED, &dev->flags);
4239 			set_bit(R5_Wantwrite, &dev->flags);
4240 		}
4241 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4242 			dev = &sh->dev[pd_idx];
4243 			s->locked++;
4244 			set_bit(R5_LOCKED, &dev->flags);
4245 			set_bit(R5_Wantwrite, &dev->flags);
4246 		}
4247 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4248 			dev = &sh->dev[qd_idx];
4249 			s->locked++;
4250 			set_bit(R5_LOCKED, &dev->flags);
4251 			set_bit(R5_Wantwrite, &dev->flags);
4252 		}
4253 		if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags),
4254 			      "%s: disk%td not up to date\n",
4255 			      mdname(conf->mddev),
4256 			      dev - (struct r5dev *) &sh->dev)) {
4257 			clear_bit(R5_LOCKED, &dev->flags);
4258 			clear_bit(R5_Wantwrite, &dev->flags);
4259 			s->locked--;
4260 		}
4261 		clear_bit(STRIPE_DEGRADED, &sh->state);
4262 
4263 		set_bit(STRIPE_INSYNC, &sh->state);
4264 		break;
4265 	case check_state_run:
4266 	case check_state_run_q:
4267 	case check_state_run_pq:
4268 		break; /* we will be called again upon completion */
4269 	case check_state_check_result:
4270 		sh->check_state = check_state_idle;
4271 
4272 		/* handle a successful check operation, if parity is correct
4273 		 * we are done.  Otherwise update the mismatch count and repair
4274 		 * parity if !MD_RECOVERY_CHECK
4275 		 */
4276 		if (sh->ops.zero_sum_result == 0) {
4277 			/* both parities are correct */
4278 			if (!s->failed)
4279 				set_bit(STRIPE_INSYNC, &sh->state);
4280 			else {
4281 				/* in contrast to the raid5 case we can validate
4282 				 * parity, but still have a failure to write
4283 				 * back
4284 				 */
4285 				sh->check_state = check_state_compute_result;
4286 				/* Returning at this point means that we may go
4287 				 * off and bring p and/or q uptodate again so
4288 				 * we make sure to check zero_sum_result again
4289 				 * to verify if p or q need writeback
4290 				 */
4291 			}
4292 		} else {
4293 			atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4294 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4295 				/* don't try to repair!! */
4296 				set_bit(STRIPE_INSYNC, &sh->state);
4297 				pr_warn_ratelimited("%s: mismatch sector in range "
4298 						    "%llu-%llu\n", mdname(conf->mddev),
4299 						    (unsigned long long) sh->sector,
4300 						    (unsigned long long) sh->sector +
4301 						    RAID5_STRIPE_SECTORS(conf));
4302 			} else {
4303 				int *target = &sh->ops.target;
4304 
4305 				sh->ops.target = -1;
4306 				sh->ops.target2 = -1;
4307 				sh->check_state = check_state_compute_run;
4308 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4309 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4310 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4311 					set_bit(R5_Wantcompute,
4312 						&sh->dev[pd_idx].flags);
4313 					*target = pd_idx;
4314 					target = &sh->ops.target2;
4315 					s->uptodate++;
4316 				}
4317 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4318 					set_bit(R5_Wantcompute,
4319 						&sh->dev[qd_idx].flags);
4320 					*target = qd_idx;
4321 					s->uptodate++;
4322 				}
4323 			}
4324 		}
4325 		break;
4326 	case check_state_compute_run:
4327 		break;
4328 	default:
4329 		pr_warn("%s: unknown check_state: %d sector: %llu\n",
4330 			__func__, sh->check_state,
4331 			(unsigned long long) sh->sector);
4332 		BUG();
4333 	}
4334 }
4335 
4336 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4337 {
4338 	int i;
4339 
4340 	/* We have read all the blocks in this stripe and now we need to
4341 	 * copy some of them into a target stripe for expand.
4342 	 */
4343 	struct dma_async_tx_descriptor *tx = NULL;
4344 	BUG_ON(sh->batch_head);
4345 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4346 	for (i = 0; i < sh->disks; i++)
4347 		if (i != sh->pd_idx && i != sh->qd_idx) {
4348 			int dd_idx, j;
4349 			struct stripe_head *sh2;
4350 			struct async_submit_ctl submit;
4351 
4352 			sector_t bn = raid5_compute_blocknr(sh, i, 1);
4353 			sector_t s = raid5_compute_sector(conf, bn, 0,
4354 							  &dd_idx, NULL);
4355 			sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
4356 			if (sh2 == NULL)
4357 				/* so far only the early blocks of this stripe
4358 				 * have been requested.  When later blocks
4359 				 * get requested, we will try again
4360 				 */
4361 				continue;
4362 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4363 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4364 				/* must have already done this block */
4365 				raid5_release_stripe(sh2);
4366 				continue;
4367 			}
4368 
4369 			/* place all the copies on one channel */
4370 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4371 			tx = async_memcpy(sh2->dev[dd_idx].page,
4372 					  sh->dev[i].page, 0, 0, RAID5_STRIPE_SIZE(conf),
4373 					  &submit);
4374 
4375 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4376 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4377 			for (j = 0; j < conf->raid_disks; j++)
4378 				if (j != sh2->pd_idx &&
4379 				    j != sh2->qd_idx &&
4380 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
4381 					break;
4382 			if (j == conf->raid_disks) {
4383 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
4384 				set_bit(STRIPE_HANDLE, &sh2->state);
4385 			}
4386 			raid5_release_stripe(sh2);
4387 
4388 		}
4389 	/* done submitting copies, wait for them to complete */
4390 	async_tx_quiesce(&tx);
4391 }
4392 
4393 /*
4394  * handle_stripe - do things to a stripe.
4395  *
4396  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4397  * state of various bits to see what needs to be done.
4398  * Possible results:
4399  *    return some read requests which now have data
4400  *    return some write requests which are safely on storage
4401  *    schedule a read on some buffers
4402  *    schedule a write of some buffers
4403  *    return confirmation of parity correctness
4404  *
4405  */
4406 
4407 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4408 {
4409 	struct r5conf *conf = sh->raid_conf;
4410 	int disks = sh->disks;
4411 	struct r5dev *dev;
4412 	int i;
4413 	int do_recovery = 0;
4414 
4415 	memset(s, 0, sizeof(*s));
4416 
4417 	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4418 	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4419 	s->failed_num[0] = -1;
4420 	s->failed_num[1] = -1;
4421 	s->log_failed = r5l_log_disk_error(conf);
4422 
4423 	/* Now to look around and see what can be done */
4424 	rcu_read_lock();
4425 	for (i=disks; i--; ) {
4426 		struct md_rdev *rdev;
4427 		sector_t first_bad;
4428 		int bad_sectors;
4429 		int is_bad = 0;
4430 
4431 		dev = &sh->dev[i];
4432 
4433 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4434 			 i, dev->flags,
4435 			 dev->toread, dev->towrite, dev->written);
4436 		/* maybe we can reply to a read
4437 		 *
4438 		 * new wantfill requests are only permitted while
4439 		 * ops_complete_biofill is guaranteed to be inactive
4440 		 */
4441 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4442 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4443 			set_bit(R5_Wantfill, &dev->flags);
4444 
4445 		/* now count some things */
4446 		if (test_bit(R5_LOCKED, &dev->flags))
4447 			s->locked++;
4448 		if (test_bit(R5_UPTODATE, &dev->flags))
4449 			s->uptodate++;
4450 		if (test_bit(R5_Wantcompute, &dev->flags)) {
4451 			s->compute++;
4452 			BUG_ON(s->compute > 2);
4453 		}
4454 
4455 		if (test_bit(R5_Wantfill, &dev->flags))
4456 			s->to_fill++;
4457 		else if (dev->toread)
4458 			s->to_read++;
4459 		if (dev->towrite) {
4460 			s->to_write++;
4461 			if (!test_bit(R5_OVERWRITE, &dev->flags))
4462 				s->non_overwrite++;
4463 		}
4464 		if (dev->written)
4465 			s->written++;
4466 		/* Prefer to use the replacement for reads, but only
4467 		 * if it is recovered enough and has no bad blocks.
4468 		 */
4469 		rdev = rcu_dereference(conf->disks[i].replacement);
4470 		if (rdev && !test_bit(Faulty, &rdev->flags) &&
4471 		    rdev->recovery_offset >= sh->sector + RAID5_STRIPE_SECTORS(conf) &&
4472 		    !is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
4473 				 &first_bad, &bad_sectors))
4474 			set_bit(R5_ReadRepl, &dev->flags);
4475 		else {
4476 			if (rdev && !test_bit(Faulty, &rdev->flags))
4477 				set_bit(R5_NeedReplace, &dev->flags);
4478 			else
4479 				clear_bit(R5_NeedReplace, &dev->flags);
4480 			rdev = rcu_dereference(conf->disks[i].rdev);
4481 			clear_bit(R5_ReadRepl, &dev->flags);
4482 		}
4483 		if (rdev && test_bit(Faulty, &rdev->flags))
4484 			rdev = NULL;
4485 		if (rdev) {
4486 			is_bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
4487 					     &first_bad, &bad_sectors);
4488 			if (s->blocked_rdev == NULL
4489 			    && (test_bit(Blocked, &rdev->flags)
4490 				|| is_bad < 0)) {
4491 				if (is_bad < 0)
4492 					set_bit(BlockedBadBlocks,
4493 						&rdev->flags);
4494 				s->blocked_rdev = rdev;
4495 				atomic_inc(&rdev->nr_pending);
4496 			}
4497 		}
4498 		clear_bit(R5_Insync, &dev->flags);
4499 		if (!rdev)
4500 			/* Not in-sync */;
4501 		else if (is_bad) {
4502 			/* also not in-sync */
4503 			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4504 			    test_bit(R5_UPTODATE, &dev->flags)) {
4505 				/* treat as in-sync, but with a read error
4506 				 * which we can now try to correct
4507 				 */
4508 				set_bit(R5_Insync, &dev->flags);
4509 				set_bit(R5_ReadError, &dev->flags);
4510 			}
4511 		} else if (test_bit(In_sync, &rdev->flags))
4512 			set_bit(R5_Insync, &dev->flags);
4513 		else if (sh->sector + RAID5_STRIPE_SECTORS(conf) <= rdev->recovery_offset)
4514 			/* in sync if before recovery_offset */
4515 			set_bit(R5_Insync, &dev->flags);
4516 		else if (test_bit(R5_UPTODATE, &dev->flags) &&
4517 			 test_bit(R5_Expanded, &dev->flags))
4518 			/* If we've reshaped into here, we assume it is Insync.
4519 			 * We will shortly update recovery_offset to make
4520 			 * it official.
4521 			 */
4522 			set_bit(R5_Insync, &dev->flags);
4523 
4524 		if (test_bit(R5_WriteError, &dev->flags)) {
4525 			/* This flag does not apply to '.replacement'
4526 			 * only to .rdev, so make sure to check that*/
4527 			struct md_rdev *rdev2 = rcu_dereference(
4528 				conf->disks[i].rdev);
4529 			if (rdev2 == rdev)
4530 				clear_bit(R5_Insync, &dev->flags);
4531 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4532 				s->handle_bad_blocks = 1;
4533 				atomic_inc(&rdev2->nr_pending);
4534 			} else
4535 				clear_bit(R5_WriteError, &dev->flags);
4536 		}
4537 		if (test_bit(R5_MadeGood, &dev->flags)) {
4538 			/* This flag does not apply to '.replacement'
4539 			 * only to .rdev, so make sure to check that*/
4540 			struct md_rdev *rdev2 = rcu_dereference(
4541 				conf->disks[i].rdev);
4542 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4543 				s->handle_bad_blocks = 1;
4544 				atomic_inc(&rdev2->nr_pending);
4545 			} else
4546 				clear_bit(R5_MadeGood, &dev->flags);
4547 		}
4548 		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4549 			struct md_rdev *rdev2 = rcu_dereference(
4550 				conf->disks[i].replacement);
4551 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4552 				s->handle_bad_blocks = 1;
4553 				atomic_inc(&rdev2->nr_pending);
4554 			} else
4555 				clear_bit(R5_MadeGoodRepl, &dev->flags);
4556 		}
4557 		if (!test_bit(R5_Insync, &dev->flags)) {
4558 			/* The ReadError flag will just be confusing now */
4559 			clear_bit(R5_ReadError, &dev->flags);
4560 			clear_bit(R5_ReWrite, &dev->flags);
4561 		}
4562 		if (test_bit(R5_ReadError, &dev->flags))
4563 			clear_bit(R5_Insync, &dev->flags);
4564 		if (!test_bit(R5_Insync, &dev->flags)) {
4565 			if (s->failed < 2)
4566 				s->failed_num[s->failed] = i;
4567 			s->failed++;
4568 			if (rdev && !test_bit(Faulty, &rdev->flags))
4569 				do_recovery = 1;
4570 			else if (!rdev) {
4571 				rdev = rcu_dereference(
4572 				    conf->disks[i].replacement);
4573 				if (rdev && !test_bit(Faulty, &rdev->flags))
4574 					do_recovery = 1;
4575 			}
4576 		}
4577 
4578 		if (test_bit(R5_InJournal, &dev->flags))
4579 			s->injournal++;
4580 		if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4581 			s->just_cached++;
4582 	}
4583 	if (test_bit(STRIPE_SYNCING, &sh->state)) {
4584 		/* If there is a failed device being replaced,
4585 		 *     we must be recovering.
4586 		 * else if we are after recovery_cp, we must be syncing
4587 		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4588 		 * else we can only be replacing
4589 		 * sync and recovery both need to read all devices, and so
4590 		 * use the same flag.
4591 		 */
4592 		if (do_recovery ||
4593 		    sh->sector >= conf->mddev->recovery_cp ||
4594 		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4595 			s->syncing = 1;
4596 		else
4597 			s->replacing = 1;
4598 	}
4599 	rcu_read_unlock();
4600 }
4601 
4602 /*
4603  * Return '1' if this is a member of batch, or '0' if it is a lone stripe or
4604  * a head which can now be handled.
4605  */
4606 static int clear_batch_ready(struct stripe_head *sh)
4607 {
4608 	struct stripe_head *tmp;
4609 	if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4610 		return (sh->batch_head && sh->batch_head != sh);
4611 	spin_lock(&sh->stripe_lock);
4612 	if (!sh->batch_head) {
4613 		spin_unlock(&sh->stripe_lock);
4614 		return 0;
4615 	}
4616 
4617 	/*
4618 	 * this stripe could be added to a batch list before we check
4619 	 * BATCH_READY, skips it
4620 	 */
4621 	if (sh->batch_head != sh) {
4622 		spin_unlock(&sh->stripe_lock);
4623 		return 1;
4624 	}
4625 	spin_lock(&sh->batch_lock);
4626 	list_for_each_entry(tmp, &sh->batch_list, batch_list)
4627 		clear_bit(STRIPE_BATCH_READY, &tmp->state);
4628 	spin_unlock(&sh->batch_lock);
4629 	spin_unlock(&sh->stripe_lock);
4630 
4631 	/*
4632 	 * BATCH_READY is cleared, no new stripes can be added.
4633 	 * batch_list can be accessed without lock
4634 	 */
4635 	return 0;
4636 }
4637 
4638 static void break_stripe_batch_list(struct stripe_head *head_sh,
4639 				    unsigned long handle_flags)
4640 {
4641 	struct stripe_head *sh, *next;
4642 	int i;
4643 	int do_wakeup = 0;
4644 
4645 	list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4646 
4647 		list_del_init(&sh->batch_list);
4648 
4649 		WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4650 					  (1 << STRIPE_SYNCING) |
4651 					  (1 << STRIPE_REPLACED) |
4652 					  (1 << STRIPE_DELAYED) |
4653 					  (1 << STRIPE_BIT_DELAY) |
4654 					  (1 << STRIPE_FULL_WRITE) |
4655 					  (1 << STRIPE_BIOFILL_RUN) |
4656 					  (1 << STRIPE_COMPUTE_RUN)  |
4657 					  (1 << STRIPE_DISCARD) |
4658 					  (1 << STRIPE_BATCH_READY) |
4659 					  (1 << STRIPE_BATCH_ERR) |
4660 					  (1 << STRIPE_BITMAP_PENDING)),
4661 			"stripe state: %lx\n", sh->state);
4662 		WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4663 					      (1 << STRIPE_REPLACED)),
4664 			"head stripe state: %lx\n", head_sh->state);
4665 
4666 		set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4667 					    (1 << STRIPE_PREREAD_ACTIVE) |
4668 					    (1 << STRIPE_DEGRADED) |
4669 					    (1 << STRIPE_ON_UNPLUG_LIST)),
4670 			      head_sh->state & (1 << STRIPE_INSYNC));
4671 
4672 		sh->check_state = head_sh->check_state;
4673 		sh->reconstruct_state = head_sh->reconstruct_state;
4674 		spin_lock_irq(&sh->stripe_lock);
4675 		sh->batch_head = NULL;
4676 		spin_unlock_irq(&sh->stripe_lock);
4677 		for (i = 0; i < sh->disks; i++) {
4678 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4679 				do_wakeup = 1;
4680 			sh->dev[i].flags = head_sh->dev[i].flags &
4681 				(~((1 << R5_WriteError) | (1 << R5_Overlap)));
4682 		}
4683 		if (handle_flags == 0 ||
4684 		    sh->state & handle_flags)
4685 			set_bit(STRIPE_HANDLE, &sh->state);
4686 		raid5_release_stripe(sh);
4687 	}
4688 	spin_lock_irq(&head_sh->stripe_lock);
4689 	head_sh->batch_head = NULL;
4690 	spin_unlock_irq(&head_sh->stripe_lock);
4691 	for (i = 0; i < head_sh->disks; i++)
4692 		if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4693 			do_wakeup = 1;
4694 	if (head_sh->state & handle_flags)
4695 		set_bit(STRIPE_HANDLE, &head_sh->state);
4696 
4697 	if (do_wakeup)
4698 		wake_up(&head_sh->raid_conf->wait_for_overlap);
4699 }
4700 
4701 static void handle_stripe(struct stripe_head *sh)
4702 {
4703 	struct stripe_head_state s;
4704 	struct r5conf *conf = sh->raid_conf;
4705 	int i;
4706 	int prexor;
4707 	int disks = sh->disks;
4708 	struct r5dev *pdev, *qdev;
4709 
4710 	clear_bit(STRIPE_HANDLE, &sh->state);
4711 
4712 	/*
4713 	 * handle_stripe should not continue handle the batched stripe, only
4714 	 * the head of batch list or lone stripe can continue. Otherwise we
4715 	 * could see break_stripe_batch_list warns about the STRIPE_ACTIVE
4716 	 * is set for the batched stripe.
4717 	 */
4718 	if (clear_batch_ready(sh))
4719 		return;
4720 
4721 	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4722 		/* already being handled, ensure it gets handled
4723 		 * again when current action finishes */
4724 		set_bit(STRIPE_HANDLE, &sh->state);
4725 		return;
4726 	}
4727 
4728 	if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4729 		break_stripe_batch_list(sh, 0);
4730 
4731 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4732 		spin_lock(&sh->stripe_lock);
4733 		/*
4734 		 * Cannot process 'sync' concurrently with 'discard'.
4735 		 * Flush data in r5cache before 'sync'.
4736 		 */
4737 		if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4738 		    !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4739 		    !test_bit(STRIPE_DISCARD, &sh->state) &&
4740 		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4741 			set_bit(STRIPE_SYNCING, &sh->state);
4742 			clear_bit(STRIPE_INSYNC, &sh->state);
4743 			clear_bit(STRIPE_REPLACED, &sh->state);
4744 		}
4745 		spin_unlock(&sh->stripe_lock);
4746 	}
4747 	clear_bit(STRIPE_DELAYED, &sh->state);
4748 
4749 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4750 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4751 	       (unsigned long long)sh->sector, sh->state,
4752 	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4753 	       sh->check_state, sh->reconstruct_state);
4754 
4755 	analyse_stripe(sh, &s);
4756 
4757 	if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4758 		goto finish;
4759 
4760 	if (s.handle_bad_blocks ||
4761 	    test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4762 		set_bit(STRIPE_HANDLE, &sh->state);
4763 		goto finish;
4764 	}
4765 
4766 	if (unlikely(s.blocked_rdev)) {
4767 		if (s.syncing || s.expanding || s.expanded ||
4768 		    s.replacing || s.to_write || s.written) {
4769 			set_bit(STRIPE_HANDLE, &sh->state);
4770 			goto finish;
4771 		}
4772 		/* There is nothing for the blocked_rdev to block */
4773 		rdev_dec_pending(s.blocked_rdev, conf->mddev);
4774 		s.blocked_rdev = NULL;
4775 	}
4776 
4777 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4778 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4779 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4780 	}
4781 
4782 	pr_debug("locked=%d uptodate=%d to_read=%d"
4783 	       " to_write=%d failed=%d failed_num=%d,%d\n",
4784 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4785 	       s.failed_num[0], s.failed_num[1]);
4786 	/*
4787 	 * check if the array has lost more than max_degraded devices and,
4788 	 * if so, some requests might need to be failed.
4789 	 *
4790 	 * When journal device failed (log_failed), we will only process
4791 	 * the stripe if there is data need write to raid disks
4792 	 */
4793 	if (s.failed > conf->max_degraded ||
4794 	    (s.log_failed && s.injournal == 0)) {
4795 		sh->check_state = 0;
4796 		sh->reconstruct_state = 0;
4797 		break_stripe_batch_list(sh, 0);
4798 		if (s.to_read+s.to_write+s.written)
4799 			handle_failed_stripe(conf, sh, &s, disks);
4800 		if (s.syncing + s.replacing)
4801 			handle_failed_sync(conf, sh, &s);
4802 	}
4803 
4804 	/* Now we check to see if any write operations have recently
4805 	 * completed
4806 	 */
4807 	prexor = 0;
4808 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4809 		prexor = 1;
4810 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
4811 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4812 		sh->reconstruct_state = reconstruct_state_idle;
4813 
4814 		/* All the 'written' buffers and the parity block are ready to
4815 		 * be written back to disk
4816 		 */
4817 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4818 		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4819 		BUG_ON(sh->qd_idx >= 0 &&
4820 		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4821 		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4822 		for (i = disks; i--; ) {
4823 			struct r5dev *dev = &sh->dev[i];
4824 			if (test_bit(R5_LOCKED, &dev->flags) &&
4825 				(i == sh->pd_idx || i == sh->qd_idx ||
4826 				 dev->written || test_bit(R5_InJournal,
4827 							  &dev->flags))) {
4828 				pr_debug("Writing block %d\n", i);
4829 				set_bit(R5_Wantwrite, &dev->flags);
4830 				if (prexor)
4831 					continue;
4832 				if (s.failed > 1)
4833 					continue;
4834 				if (!test_bit(R5_Insync, &dev->flags) ||
4835 				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
4836 				     s.failed == 0))
4837 					set_bit(STRIPE_INSYNC, &sh->state);
4838 			}
4839 		}
4840 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4841 			s.dec_preread_active = 1;
4842 	}
4843 
4844 	/*
4845 	 * might be able to return some write requests if the parity blocks
4846 	 * are safe, or on a failed drive
4847 	 */
4848 	pdev = &sh->dev[sh->pd_idx];
4849 	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4850 		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4851 	qdev = &sh->dev[sh->qd_idx];
4852 	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4853 		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4854 		|| conf->level < 6;
4855 
4856 	if (s.written &&
4857 	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4858 			     && !test_bit(R5_LOCKED, &pdev->flags)
4859 			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
4860 				 test_bit(R5_Discard, &pdev->flags))))) &&
4861 	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4862 			     && !test_bit(R5_LOCKED, &qdev->flags)
4863 			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
4864 				 test_bit(R5_Discard, &qdev->flags))))))
4865 		handle_stripe_clean_event(conf, sh, disks);
4866 
4867 	if (s.just_cached)
4868 		r5c_handle_cached_data_endio(conf, sh, disks);
4869 	log_stripe_write_finished(sh);
4870 
4871 	/* Now we might consider reading some blocks, either to check/generate
4872 	 * parity, or to satisfy requests
4873 	 * or to load a block that is being partially written.
4874 	 */
4875 	if (s.to_read || s.non_overwrite
4876 	    || (s.to_write && s.failed)
4877 	    || (s.syncing && (s.uptodate + s.compute < disks))
4878 	    || s.replacing
4879 	    || s.expanding)
4880 		handle_stripe_fill(sh, &s, disks);
4881 
4882 	/*
4883 	 * When the stripe finishes full journal write cycle (write to journal
4884 	 * and raid disk), this is the clean up procedure so it is ready for
4885 	 * next operation.
4886 	 */
4887 	r5c_finish_stripe_write_out(conf, sh, &s);
4888 
4889 	/*
4890 	 * Now to consider new write requests, cache write back and what else,
4891 	 * if anything should be read.  We do not handle new writes when:
4892 	 * 1/ A 'write' operation (copy+xor) is already in flight.
4893 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
4894 	 *    block.
4895 	 * 3/ A r5c cache log write is in flight.
4896 	 */
4897 
4898 	if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
4899 		if (!r5c_is_writeback(conf->log)) {
4900 			if (s.to_write)
4901 				handle_stripe_dirtying(conf, sh, &s, disks);
4902 		} else { /* write back cache */
4903 			int ret = 0;
4904 
4905 			/* First, try handle writes in caching phase */
4906 			if (s.to_write)
4907 				ret = r5c_try_caching_write(conf, sh, &s,
4908 							    disks);
4909 			/*
4910 			 * If caching phase failed: ret == -EAGAIN
4911 			 *    OR
4912 			 * stripe under reclaim: !caching && injournal
4913 			 *
4914 			 * fall back to handle_stripe_dirtying()
4915 			 */
4916 			if (ret == -EAGAIN ||
4917 			    /* stripe under reclaim: !caching && injournal */
4918 			    (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
4919 			     s.injournal > 0)) {
4920 				ret = handle_stripe_dirtying(conf, sh, &s,
4921 							     disks);
4922 				if (ret == -EAGAIN)
4923 					goto finish;
4924 			}
4925 		}
4926 	}
4927 
4928 	/* maybe we need to check and possibly fix the parity for this stripe
4929 	 * Any reads will already have been scheduled, so we just see if enough
4930 	 * data is available.  The parity check is held off while parity
4931 	 * dependent operations are in flight.
4932 	 */
4933 	if (sh->check_state ||
4934 	    (s.syncing && s.locked == 0 &&
4935 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4936 	     !test_bit(STRIPE_INSYNC, &sh->state))) {
4937 		if (conf->level == 6)
4938 			handle_parity_checks6(conf, sh, &s, disks);
4939 		else
4940 			handle_parity_checks5(conf, sh, &s, disks);
4941 	}
4942 
4943 	if ((s.replacing || s.syncing) && s.locked == 0
4944 	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4945 	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
4946 		/* Write out to replacement devices where possible */
4947 		for (i = 0; i < conf->raid_disks; i++)
4948 			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4949 				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4950 				set_bit(R5_WantReplace, &sh->dev[i].flags);
4951 				set_bit(R5_LOCKED, &sh->dev[i].flags);
4952 				s.locked++;
4953 			}
4954 		if (s.replacing)
4955 			set_bit(STRIPE_INSYNC, &sh->state);
4956 		set_bit(STRIPE_REPLACED, &sh->state);
4957 	}
4958 	if ((s.syncing || s.replacing) && s.locked == 0 &&
4959 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4960 	    test_bit(STRIPE_INSYNC, &sh->state)) {
4961 		md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
4962 		clear_bit(STRIPE_SYNCING, &sh->state);
4963 		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4964 			wake_up(&conf->wait_for_overlap);
4965 	}
4966 
4967 	/* If the failed drives are just a ReadError, then we might need
4968 	 * to progress the repair/check process
4969 	 */
4970 	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4971 		for (i = 0; i < s.failed; i++) {
4972 			struct r5dev *dev = &sh->dev[s.failed_num[i]];
4973 			if (test_bit(R5_ReadError, &dev->flags)
4974 			    && !test_bit(R5_LOCKED, &dev->flags)
4975 			    && test_bit(R5_UPTODATE, &dev->flags)
4976 				) {
4977 				if (!test_bit(R5_ReWrite, &dev->flags)) {
4978 					set_bit(R5_Wantwrite, &dev->flags);
4979 					set_bit(R5_ReWrite, &dev->flags);
4980 				} else
4981 					/* let's read it back */
4982 					set_bit(R5_Wantread, &dev->flags);
4983 				set_bit(R5_LOCKED, &dev->flags);
4984 				s.locked++;
4985 			}
4986 		}
4987 
4988 	/* Finish reconstruct operations initiated by the expansion process */
4989 	if (sh->reconstruct_state == reconstruct_state_result) {
4990 		struct stripe_head *sh_src
4991 			= raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4992 		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4993 			/* sh cannot be written until sh_src has been read.
4994 			 * so arrange for sh to be delayed a little
4995 			 */
4996 			set_bit(STRIPE_DELAYED, &sh->state);
4997 			set_bit(STRIPE_HANDLE, &sh->state);
4998 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4999 					      &sh_src->state))
5000 				atomic_inc(&conf->preread_active_stripes);
5001 			raid5_release_stripe(sh_src);
5002 			goto finish;
5003 		}
5004 		if (sh_src)
5005 			raid5_release_stripe(sh_src);
5006 
5007 		sh->reconstruct_state = reconstruct_state_idle;
5008 		clear_bit(STRIPE_EXPANDING, &sh->state);
5009 		for (i = conf->raid_disks; i--; ) {
5010 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
5011 			set_bit(R5_LOCKED, &sh->dev[i].flags);
5012 			s.locked++;
5013 		}
5014 	}
5015 
5016 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
5017 	    !sh->reconstruct_state) {
5018 		/* Need to write out all blocks after computing parity */
5019 		sh->disks = conf->raid_disks;
5020 		stripe_set_idx(sh->sector, conf, 0, sh);
5021 		schedule_reconstruction(sh, &s, 1, 1);
5022 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
5023 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
5024 		atomic_dec(&conf->reshape_stripes);
5025 		wake_up(&conf->wait_for_overlap);
5026 		md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
5027 	}
5028 
5029 	if (s.expanding && s.locked == 0 &&
5030 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
5031 		handle_stripe_expansion(conf, sh);
5032 
5033 finish:
5034 	/* wait for this device to become unblocked */
5035 	if (unlikely(s.blocked_rdev)) {
5036 		if (conf->mddev->external)
5037 			md_wait_for_blocked_rdev(s.blocked_rdev,
5038 						 conf->mddev);
5039 		else
5040 			/* Internal metadata will immediately
5041 			 * be written by raid5d, so we don't
5042 			 * need to wait here.
5043 			 */
5044 			rdev_dec_pending(s.blocked_rdev,
5045 					 conf->mddev);
5046 	}
5047 
5048 	if (s.handle_bad_blocks)
5049 		for (i = disks; i--; ) {
5050 			struct md_rdev *rdev;
5051 			struct r5dev *dev = &sh->dev[i];
5052 			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
5053 				/* We own a safe reference to the rdev */
5054 				rdev = conf->disks[i].rdev;
5055 				if (!rdev_set_badblocks(rdev, sh->sector,
5056 							RAID5_STRIPE_SECTORS(conf), 0))
5057 					md_error(conf->mddev, rdev);
5058 				rdev_dec_pending(rdev, conf->mddev);
5059 			}
5060 			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5061 				rdev = conf->disks[i].rdev;
5062 				rdev_clear_badblocks(rdev, sh->sector,
5063 						     RAID5_STRIPE_SECTORS(conf), 0);
5064 				rdev_dec_pending(rdev, conf->mddev);
5065 			}
5066 			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5067 				rdev = conf->disks[i].replacement;
5068 				if (!rdev)
5069 					/* rdev have been moved down */
5070 					rdev = conf->disks[i].rdev;
5071 				rdev_clear_badblocks(rdev, sh->sector,
5072 						     RAID5_STRIPE_SECTORS(conf), 0);
5073 				rdev_dec_pending(rdev, conf->mddev);
5074 			}
5075 		}
5076 
5077 	if (s.ops_request)
5078 		raid_run_ops(sh, s.ops_request);
5079 
5080 	ops_run_io(sh, &s);
5081 
5082 	if (s.dec_preread_active) {
5083 		/* We delay this until after ops_run_io so that if make_request
5084 		 * is waiting on a flush, it won't continue until the writes
5085 		 * have actually been submitted.
5086 		 */
5087 		atomic_dec(&conf->preread_active_stripes);
5088 		if (atomic_read(&conf->preread_active_stripes) <
5089 		    IO_THRESHOLD)
5090 			md_wakeup_thread(conf->mddev->thread);
5091 	}
5092 
5093 	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5094 }
5095 
5096 static void raid5_activate_delayed(struct r5conf *conf)
5097 {
5098 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5099 		while (!list_empty(&conf->delayed_list)) {
5100 			struct list_head *l = conf->delayed_list.next;
5101 			struct stripe_head *sh;
5102 			sh = list_entry(l, struct stripe_head, lru);
5103 			list_del_init(l);
5104 			clear_bit(STRIPE_DELAYED, &sh->state);
5105 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5106 				atomic_inc(&conf->preread_active_stripes);
5107 			list_add_tail(&sh->lru, &conf->hold_list);
5108 			raid5_wakeup_stripe_thread(sh);
5109 		}
5110 	}
5111 }
5112 
5113 static void activate_bit_delay(struct r5conf *conf,
5114 	struct list_head *temp_inactive_list)
5115 {
5116 	/* device_lock is held */
5117 	struct list_head head;
5118 	list_add(&head, &conf->bitmap_list);
5119 	list_del_init(&conf->bitmap_list);
5120 	while (!list_empty(&head)) {
5121 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5122 		int hash;
5123 		list_del_init(&sh->lru);
5124 		atomic_inc(&sh->count);
5125 		hash = sh->hash_lock_index;
5126 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
5127 	}
5128 }
5129 
5130 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5131 {
5132 	struct r5conf *conf = mddev->private;
5133 	sector_t sector = bio->bi_iter.bi_sector;
5134 	unsigned int chunk_sectors;
5135 	unsigned int bio_sectors = bio_sectors(bio);
5136 
5137 	WARN_ON_ONCE(bio->bi_partno);
5138 
5139 	chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5140 	return  chunk_sectors >=
5141 		((sector & (chunk_sectors - 1)) + bio_sectors);
5142 }
5143 
5144 /*
5145  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
5146  *  later sampled by raid5d.
5147  */
5148 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5149 {
5150 	unsigned long flags;
5151 
5152 	spin_lock_irqsave(&conf->device_lock, flags);
5153 
5154 	bi->bi_next = conf->retry_read_aligned_list;
5155 	conf->retry_read_aligned_list = bi;
5156 
5157 	spin_unlock_irqrestore(&conf->device_lock, flags);
5158 	md_wakeup_thread(conf->mddev->thread);
5159 }
5160 
5161 static struct bio *remove_bio_from_retry(struct r5conf *conf,
5162 					 unsigned int *offset)
5163 {
5164 	struct bio *bi;
5165 
5166 	bi = conf->retry_read_aligned;
5167 	if (bi) {
5168 		*offset = conf->retry_read_offset;
5169 		conf->retry_read_aligned = NULL;
5170 		return bi;
5171 	}
5172 	bi = conf->retry_read_aligned_list;
5173 	if(bi) {
5174 		conf->retry_read_aligned_list = bi->bi_next;
5175 		bi->bi_next = NULL;
5176 		*offset = 0;
5177 	}
5178 
5179 	return bi;
5180 }
5181 
5182 /*
5183  *  The "raid5_align_endio" should check if the read succeeded and if it
5184  *  did, call bio_endio on the original bio (having bio_put the new bio
5185  *  first).
5186  *  If the read failed..
5187  */
5188 static void raid5_align_endio(struct bio *bi)
5189 {
5190 	struct bio* raid_bi  = bi->bi_private;
5191 	struct mddev *mddev;
5192 	struct r5conf *conf;
5193 	struct md_rdev *rdev;
5194 	blk_status_t error = bi->bi_status;
5195 
5196 	bio_put(bi);
5197 
5198 	rdev = (void*)raid_bi->bi_next;
5199 	raid_bi->bi_next = NULL;
5200 	mddev = rdev->mddev;
5201 	conf = mddev->private;
5202 
5203 	rdev_dec_pending(rdev, conf->mddev);
5204 
5205 	if (!error) {
5206 		bio_endio(raid_bi);
5207 		if (atomic_dec_and_test(&conf->active_aligned_reads))
5208 			wake_up(&conf->wait_for_quiescent);
5209 		return;
5210 	}
5211 
5212 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5213 
5214 	add_bio_to_retry(raid_bi, conf);
5215 }
5216 
5217 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5218 {
5219 	struct r5conf *conf = mddev->private;
5220 	int dd_idx;
5221 	struct bio* align_bi;
5222 	struct md_rdev *rdev;
5223 	sector_t end_sector;
5224 
5225 	if (!in_chunk_boundary(mddev, raid_bio)) {
5226 		pr_debug("%s: non aligned\n", __func__);
5227 		return 0;
5228 	}
5229 	/*
5230 	 * use bio_clone_fast to make a copy of the bio
5231 	 */
5232 	align_bi = bio_clone_fast(raid_bio, GFP_NOIO, &mddev->bio_set);
5233 	if (!align_bi)
5234 		return 0;
5235 	/*
5236 	 *   set bi_end_io to a new function, and set bi_private to the
5237 	 *     original bio.
5238 	 */
5239 	align_bi->bi_end_io  = raid5_align_endio;
5240 	align_bi->bi_private = raid_bio;
5241 	/*
5242 	 *	compute position
5243 	 */
5244 	align_bi->bi_iter.bi_sector =
5245 		raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
5246 				     0, &dd_idx, NULL);
5247 
5248 	end_sector = bio_end_sector(align_bi);
5249 	rcu_read_lock();
5250 	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5251 	if (!rdev || test_bit(Faulty, &rdev->flags) ||
5252 	    rdev->recovery_offset < end_sector) {
5253 		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5254 		if (rdev &&
5255 		    (test_bit(Faulty, &rdev->flags) ||
5256 		    !(test_bit(In_sync, &rdev->flags) ||
5257 		      rdev->recovery_offset >= end_sector)))
5258 			rdev = NULL;
5259 	}
5260 
5261 	if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) {
5262 		rcu_read_unlock();
5263 		bio_put(align_bi);
5264 		return 0;
5265 	}
5266 
5267 	if (rdev) {
5268 		sector_t first_bad;
5269 		int bad_sectors;
5270 
5271 		atomic_inc(&rdev->nr_pending);
5272 		rcu_read_unlock();
5273 		raid_bio->bi_next = (void*)rdev;
5274 		bio_set_dev(align_bi, rdev->bdev);
5275 
5276 		if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
5277 				bio_sectors(align_bi),
5278 				&first_bad, &bad_sectors)) {
5279 			bio_put(align_bi);
5280 			rdev_dec_pending(rdev, mddev);
5281 			return 0;
5282 		}
5283 
5284 		/* No reshape active, so we can trust rdev->data_offset */
5285 		align_bi->bi_iter.bi_sector += rdev->data_offset;
5286 
5287 		spin_lock_irq(&conf->device_lock);
5288 		wait_event_lock_irq(conf->wait_for_quiescent,
5289 				    conf->quiesce == 0,
5290 				    conf->device_lock);
5291 		atomic_inc(&conf->active_aligned_reads);
5292 		spin_unlock_irq(&conf->device_lock);
5293 
5294 		if (mddev->gendisk)
5295 			trace_block_bio_remap(align_bi->bi_disk->queue,
5296 					      align_bi, disk_devt(mddev->gendisk),
5297 					      raid_bio->bi_iter.bi_sector);
5298 		submit_bio_noacct(align_bi);
5299 		return 1;
5300 	} else {
5301 		rcu_read_unlock();
5302 		bio_put(align_bi);
5303 		return 0;
5304 	}
5305 }
5306 
5307 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5308 {
5309 	struct bio *split;
5310 	sector_t sector = raid_bio->bi_iter.bi_sector;
5311 	unsigned chunk_sects = mddev->chunk_sectors;
5312 	unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5313 
5314 	if (sectors < bio_sectors(raid_bio)) {
5315 		struct r5conf *conf = mddev->private;
5316 		split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split);
5317 		bio_chain(split, raid_bio);
5318 		submit_bio_noacct(raid_bio);
5319 		raid_bio = split;
5320 	}
5321 
5322 	if (!raid5_read_one_chunk(mddev, raid_bio))
5323 		return raid_bio;
5324 
5325 	return NULL;
5326 }
5327 
5328 /* __get_priority_stripe - get the next stripe to process
5329  *
5330  * Full stripe writes are allowed to pass preread active stripes up until
5331  * the bypass_threshold is exceeded.  In general the bypass_count
5332  * increments when the handle_list is handled before the hold_list; however, it
5333  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5334  * stripe with in flight i/o.  The bypass_count will be reset when the
5335  * head of the hold_list has changed, i.e. the head was promoted to the
5336  * handle_list.
5337  */
5338 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5339 {
5340 	struct stripe_head *sh, *tmp;
5341 	struct list_head *handle_list = NULL;
5342 	struct r5worker_group *wg;
5343 	bool second_try = !r5c_is_writeback(conf->log) &&
5344 		!r5l_log_disk_error(conf);
5345 	bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5346 		r5l_log_disk_error(conf);
5347 
5348 again:
5349 	wg = NULL;
5350 	sh = NULL;
5351 	if (conf->worker_cnt_per_group == 0) {
5352 		handle_list = try_loprio ? &conf->loprio_list :
5353 					&conf->handle_list;
5354 	} else if (group != ANY_GROUP) {
5355 		handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5356 				&conf->worker_groups[group].handle_list;
5357 		wg = &conf->worker_groups[group];
5358 	} else {
5359 		int i;
5360 		for (i = 0; i < conf->group_cnt; i++) {
5361 			handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5362 				&conf->worker_groups[i].handle_list;
5363 			wg = &conf->worker_groups[i];
5364 			if (!list_empty(handle_list))
5365 				break;
5366 		}
5367 	}
5368 
5369 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5370 		  __func__,
5371 		  list_empty(handle_list) ? "empty" : "busy",
5372 		  list_empty(&conf->hold_list) ? "empty" : "busy",
5373 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
5374 
5375 	if (!list_empty(handle_list)) {
5376 		sh = list_entry(handle_list->next, typeof(*sh), lru);
5377 
5378 		if (list_empty(&conf->hold_list))
5379 			conf->bypass_count = 0;
5380 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5381 			if (conf->hold_list.next == conf->last_hold)
5382 				conf->bypass_count++;
5383 			else {
5384 				conf->last_hold = conf->hold_list.next;
5385 				conf->bypass_count -= conf->bypass_threshold;
5386 				if (conf->bypass_count < 0)
5387 					conf->bypass_count = 0;
5388 			}
5389 		}
5390 	} else if (!list_empty(&conf->hold_list) &&
5391 		   ((conf->bypass_threshold &&
5392 		     conf->bypass_count > conf->bypass_threshold) ||
5393 		    atomic_read(&conf->pending_full_writes) == 0)) {
5394 
5395 		list_for_each_entry(tmp, &conf->hold_list,  lru) {
5396 			if (conf->worker_cnt_per_group == 0 ||
5397 			    group == ANY_GROUP ||
5398 			    !cpu_online(tmp->cpu) ||
5399 			    cpu_to_group(tmp->cpu) == group) {
5400 				sh = tmp;
5401 				break;
5402 			}
5403 		}
5404 
5405 		if (sh) {
5406 			conf->bypass_count -= conf->bypass_threshold;
5407 			if (conf->bypass_count < 0)
5408 				conf->bypass_count = 0;
5409 		}
5410 		wg = NULL;
5411 	}
5412 
5413 	if (!sh) {
5414 		if (second_try)
5415 			return NULL;
5416 		second_try = true;
5417 		try_loprio = !try_loprio;
5418 		goto again;
5419 	}
5420 
5421 	if (wg) {
5422 		wg->stripes_cnt--;
5423 		sh->group = NULL;
5424 	}
5425 	list_del_init(&sh->lru);
5426 	BUG_ON(atomic_inc_return(&sh->count) != 1);
5427 	return sh;
5428 }
5429 
5430 struct raid5_plug_cb {
5431 	struct blk_plug_cb	cb;
5432 	struct list_head	list;
5433 	struct list_head	temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5434 };
5435 
5436 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5437 {
5438 	struct raid5_plug_cb *cb = container_of(
5439 		blk_cb, struct raid5_plug_cb, cb);
5440 	struct stripe_head *sh;
5441 	struct mddev *mddev = cb->cb.data;
5442 	struct r5conf *conf = mddev->private;
5443 	int cnt = 0;
5444 	int hash;
5445 
5446 	if (cb->list.next && !list_empty(&cb->list)) {
5447 		spin_lock_irq(&conf->device_lock);
5448 		while (!list_empty(&cb->list)) {
5449 			sh = list_first_entry(&cb->list, struct stripe_head, lru);
5450 			list_del_init(&sh->lru);
5451 			/*
5452 			 * avoid race release_stripe_plug() sees
5453 			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5454 			 * is still in our list
5455 			 */
5456 			smp_mb__before_atomic();
5457 			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5458 			/*
5459 			 * STRIPE_ON_RELEASE_LIST could be set here. In that
5460 			 * case, the count is always > 1 here
5461 			 */
5462 			hash = sh->hash_lock_index;
5463 			__release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5464 			cnt++;
5465 		}
5466 		spin_unlock_irq(&conf->device_lock);
5467 	}
5468 	release_inactive_stripe_list(conf, cb->temp_inactive_list,
5469 				     NR_STRIPE_HASH_LOCKS);
5470 	if (mddev->queue)
5471 		trace_block_unplug(mddev->queue, cnt, !from_schedule);
5472 	kfree(cb);
5473 }
5474 
5475 static void release_stripe_plug(struct mddev *mddev,
5476 				struct stripe_head *sh)
5477 {
5478 	struct blk_plug_cb *blk_cb = blk_check_plugged(
5479 		raid5_unplug, mddev,
5480 		sizeof(struct raid5_plug_cb));
5481 	struct raid5_plug_cb *cb;
5482 
5483 	if (!blk_cb) {
5484 		raid5_release_stripe(sh);
5485 		return;
5486 	}
5487 
5488 	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5489 
5490 	if (cb->list.next == NULL) {
5491 		int i;
5492 		INIT_LIST_HEAD(&cb->list);
5493 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5494 			INIT_LIST_HEAD(cb->temp_inactive_list + i);
5495 	}
5496 
5497 	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5498 		list_add_tail(&sh->lru, &cb->list);
5499 	else
5500 		raid5_release_stripe(sh);
5501 }
5502 
5503 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5504 {
5505 	struct r5conf *conf = mddev->private;
5506 	sector_t logical_sector, last_sector;
5507 	struct stripe_head *sh;
5508 	int stripe_sectors;
5509 
5510 	if (mddev->reshape_position != MaxSector)
5511 		/* Skip discard while reshape is happening */
5512 		return;
5513 
5514 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
5515 	last_sector = bio_end_sector(bi);
5516 
5517 	bi->bi_next = NULL;
5518 
5519 	stripe_sectors = conf->chunk_sectors *
5520 		(conf->raid_disks - conf->max_degraded);
5521 	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5522 					       stripe_sectors);
5523 	sector_div(last_sector, stripe_sectors);
5524 
5525 	logical_sector *= conf->chunk_sectors;
5526 	last_sector *= conf->chunk_sectors;
5527 
5528 	for (; logical_sector < last_sector;
5529 	     logical_sector += RAID5_STRIPE_SECTORS(conf)) {
5530 		DEFINE_WAIT(w);
5531 		int d;
5532 	again:
5533 		sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5534 		prepare_to_wait(&conf->wait_for_overlap, &w,
5535 				TASK_UNINTERRUPTIBLE);
5536 		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5537 		if (test_bit(STRIPE_SYNCING, &sh->state)) {
5538 			raid5_release_stripe(sh);
5539 			schedule();
5540 			goto again;
5541 		}
5542 		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5543 		spin_lock_irq(&sh->stripe_lock);
5544 		for (d = 0; d < conf->raid_disks; d++) {
5545 			if (d == sh->pd_idx || d == sh->qd_idx)
5546 				continue;
5547 			if (sh->dev[d].towrite || sh->dev[d].toread) {
5548 				set_bit(R5_Overlap, &sh->dev[d].flags);
5549 				spin_unlock_irq(&sh->stripe_lock);
5550 				raid5_release_stripe(sh);
5551 				schedule();
5552 				goto again;
5553 			}
5554 		}
5555 		set_bit(STRIPE_DISCARD, &sh->state);
5556 		finish_wait(&conf->wait_for_overlap, &w);
5557 		sh->overwrite_disks = 0;
5558 		for (d = 0; d < conf->raid_disks; d++) {
5559 			if (d == sh->pd_idx || d == sh->qd_idx)
5560 				continue;
5561 			sh->dev[d].towrite = bi;
5562 			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5563 			bio_inc_remaining(bi);
5564 			md_write_inc(mddev, bi);
5565 			sh->overwrite_disks++;
5566 		}
5567 		spin_unlock_irq(&sh->stripe_lock);
5568 		if (conf->mddev->bitmap) {
5569 			for (d = 0;
5570 			     d < conf->raid_disks - conf->max_degraded;
5571 			     d++)
5572 				md_bitmap_startwrite(mddev->bitmap,
5573 						     sh->sector,
5574 						     RAID5_STRIPE_SECTORS(conf),
5575 						     0);
5576 			sh->bm_seq = conf->seq_flush + 1;
5577 			set_bit(STRIPE_BIT_DELAY, &sh->state);
5578 		}
5579 
5580 		set_bit(STRIPE_HANDLE, &sh->state);
5581 		clear_bit(STRIPE_DELAYED, &sh->state);
5582 		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5583 			atomic_inc(&conf->preread_active_stripes);
5584 		release_stripe_plug(mddev, sh);
5585 	}
5586 
5587 	bio_endio(bi);
5588 }
5589 
5590 static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
5591 {
5592 	struct r5conf *conf = mddev->private;
5593 	int dd_idx;
5594 	sector_t new_sector;
5595 	sector_t logical_sector, last_sector;
5596 	struct stripe_head *sh;
5597 	const int rw = bio_data_dir(bi);
5598 	DEFINE_WAIT(w);
5599 	bool do_prepare;
5600 	bool do_flush = false;
5601 
5602 	if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5603 		int ret = log_handle_flush_request(conf, bi);
5604 
5605 		if (ret == 0)
5606 			return true;
5607 		if (ret == -ENODEV) {
5608 			if (md_flush_request(mddev, bi))
5609 				return true;
5610 		}
5611 		/* ret == -EAGAIN, fallback */
5612 		/*
5613 		 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5614 		 * we need to flush journal device
5615 		 */
5616 		do_flush = bi->bi_opf & REQ_PREFLUSH;
5617 	}
5618 
5619 	if (!md_write_start(mddev, bi))
5620 		return false;
5621 	/*
5622 	 * If array is degraded, better not do chunk aligned read because
5623 	 * later we might have to read it again in order to reconstruct
5624 	 * data on failed drives.
5625 	 */
5626 	if (rw == READ && mddev->degraded == 0 &&
5627 	    mddev->reshape_position == MaxSector) {
5628 		bi = chunk_aligned_read(mddev, bi);
5629 		if (!bi)
5630 			return true;
5631 	}
5632 
5633 	if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5634 		make_discard_request(mddev, bi);
5635 		md_write_end(mddev);
5636 		return true;
5637 	}
5638 
5639 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
5640 	last_sector = bio_end_sector(bi);
5641 	bi->bi_next = NULL;
5642 
5643 	prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5644 	for (; logical_sector < last_sector; logical_sector += RAID5_STRIPE_SECTORS(conf)) {
5645 		int previous;
5646 		int seq;
5647 
5648 		do_prepare = false;
5649 	retry:
5650 		seq = read_seqcount_begin(&conf->gen_lock);
5651 		previous = 0;
5652 		if (do_prepare)
5653 			prepare_to_wait(&conf->wait_for_overlap, &w,
5654 				TASK_UNINTERRUPTIBLE);
5655 		if (unlikely(conf->reshape_progress != MaxSector)) {
5656 			/* spinlock is needed as reshape_progress may be
5657 			 * 64bit on a 32bit platform, and so it might be
5658 			 * possible to see a half-updated value
5659 			 * Of course reshape_progress could change after
5660 			 * the lock is dropped, so once we get a reference
5661 			 * to the stripe that we think it is, we will have
5662 			 * to check again.
5663 			 */
5664 			spin_lock_irq(&conf->device_lock);
5665 			if (mddev->reshape_backwards
5666 			    ? logical_sector < conf->reshape_progress
5667 			    : logical_sector >= conf->reshape_progress) {
5668 				previous = 1;
5669 			} else {
5670 				if (mddev->reshape_backwards
5671 				    ? logical_sector < conf->reshape_safe
5672 				    : logical_sector >= conf->reshape_safe) {
5673 					spin_unlock_irq(&conf->device_lock);
5674 					schedule();
5675 					do_prepare = true;
5676 					goto retry;
5677 				}
5678 			}
5679 			spin_unlock_irq(&conf->device_lock);
5680 		}
5681 
5682 		new_sector = raid5_compute_sector(conf, logical_sector,
5683 						  previous,
5684 						  &dd_idx, NULL);
5685 		pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5686 			(unsigned long long)new_sector,
5687 			(unsigned long long)logical_sector);
5688 
5689 		sh = raid5_get_active_stripe(conf, new_sector, previous,
5690 				       (bi->bi_opf & REQ_RAHEAD), 0);
5691 		if (sh) {
5692 			if (unlikely(previous)) {
5693 				/* expansion might have moved on while waiting for a
5694 				 * stripe, so we must do the range check again.
5695 				 * Expansion could still move past after this
5696 				 * test, but as we are holding a reference to
5697 				 * 'sh', we know that if that happens,
5698 				 *  STRIPE_EXPANDING will get set and the expansion
5699 				 * won't proceed until we finish with the stripe.
5700 				 */
5701 				int must_retry = 0;
5702 				spin_lock_irq(&conf->device_lock);
5703 				if (mddev->reshape_backwards
5704 				    ? logical_sector >= conf->reshape_progress
5705 				    : logical_sector < conf->reshape_progress)
5706 					/* mismatch, need to try again */
5707 					must_retry = 1;
5708 				spin_unlock_irq(&conf->device_lock);
5709 				if (must_retry) {
5710 					raid5_release_stripe(sh);
5711 					schedule();
5712 					do_prepare = true;
5713 					goto retry;
5714 				}
5715 			}
5716 			if (read_seqcount_retry(&conf->gen_lock, seq)) {
5717 				/* Might have got the wrong stripe_head
5718 				 * by accident
5719 				 */
5720 				raid5_release_stripe(sh);
5721 				goto retry;
5722 			}
5723 
5724 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5725 			    !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5726 				/* Stripe is busy expanding or
5727 				 * add failed due to overlap.  Flush everything
5728 				 * and wait a while
5729 				 */
5730 				md_wakeup_thread(mddev->thread);
5731 				raid5_release_stripe(sh);
5732 				schedule();
5733 				do_prepare = true;
5734 				goto retry;
5735 			}
5736 			if (do_flush) {
5737 				set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5738 				/* we only need flush for one stripe */
5739 				do_flush = false;
5740 			}
5741 
5742 			set_bit(STRIPE_HANDLE, &sh->state);
5743 			clear_bit(STRIPE_DELAYED, &sh->state);
5744 			if ((!sh->batch_head || sh == sh->batch_head) &&
5745 			    (bi->bi_opf & REQ_SYNC) &&
5746 			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5747 				atomic_inc(&conf->preread_active_stripes);
5748 			release_stripe_plug(mddev, sh);
5749 		} else {
5750 			/* cannot get stripe for read-ahead, just give-up */
5751 			bi->bi_status = BLK_STS_IOERR;
5752 			break;
5753 		}
5754 	}
5755 	finish_wait(&conf->wait_for_overlap, &w);
5756 
5757 	if (rw == WRITE)
5758 		md_write_end(mddev);
5759 	bio_endio(bi);
5760 	return true;
5761 }
5762 
5763 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5764 
5765 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5766 {
5767 	/* reshaping is quite different to recovery/resync so it is
5768 	 * handled quite separately ... here.
5769 	 *
5770 	 * On each call to sync_request, we gather one chunk worth of
5771 	 * destination stripes and flag them as expanding.
5772 	 * Then we find all the source stripes and request reads.
5773 	 * As the reads complete, handle_stripe will copy the data
5774 	 * into the destination stripe and release that stripe.
5775 	 */
5776 	struct r5conf *conf = mddev->private;
5777 	struct stripe_head *sh;
5778 	struct md_rdev *rdev;
5779 	sector_t first_sector, last_sector;
5780 	int raid_disks = conf->previous_raid_disks;
5781 	int data_disks = raid_disks - conf->max_degraded;
5782 	int new_data_disks = conf->raid_disks - conf->max_degraded;
5783 	int i;
5784 	int dd_idx;
5785 	sector_t writepos, readpos, safepos;
5786 	sector_t stripe_addr;
5787 	int reshape_sectors;
5788 	struct list_head stripes;
5789 	sector_t retn;
5790 
5791 	if (sector_nr == 0) {
5792 		/* If restarting in the middle, skip the initial sectors */
5793 		if (mddev->reshape_backwards &&
5794 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5795 			sector_nr = raid5_size(mddev, 0, 0)
5796 				- conf->reshape_progress;
5797 		} else if (mddev->reshape_backwards &&
5798 			   conf->reshape_progress == MaxSector) {
5799 			/* shouldn't happen, but just in case, finish up.*/
5800 			sector_nr = MaxSector;
5801 		} else if (!mddev->reshape_backwards &&
5802 			   conf->reshape_progress > 0)
5803 			sector_nr = conf->reshape_progress;
5804 		sector_div(sector_nr, new_data_disks);
5805 		if (sector_nr) {
5806 			mddev->curr_resync_completed = sector_nr;
5807 			sysfs_notify_dirent_safe(mddev->sysfs_completed);
5808 			*skipped = 1;
5809 			retn = sector_nr;
5810 			goto finish;
5811 		}
5812 	}
5813 
5814 	/* We need to process a full chunk at a time.
5815 	 * If old and new chunk sizes differ, we need to process the
5816 	 * largest of these
5817 	 */
5818 
5819 	reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5820 
5821 	/* We update the metadata at least every 10 seconds, or when
5822 	 * the data about to be copied would over-write the source of
5823 	 * the data at the front of the range.  i.e. one new_stripe
5824 	 * along from reshape_progress new_maps to after where
5825 	 * reshape_safe old_maps to
5826 	 */
5827 	writepos = conf->reshape_progress;
5828 	sector_div(writepos, new_data_disks);
5829 	readpos = conf->reshape_progress;
5830 	sector_div(readpos, data_disks);
5831 	safepos = conf->reshape_safe;
5832 	sector_div(safepos, data_disks);
5833 	if (mddev->reshape_backwards) {
5834 		BUG_ON(writepos < reshape_sectors);
5835 		writepos -= reshape_sectors;
5836 		readpos += reshape_sectors;
5837 		safepos += reshape_sectors;
5838 	} else {
5839 		writepos += reshape_sectors;
5840 		/* readpos and safepos are worst-case calculations.
5841 		 * A negative number is overly pessimistic, and causes
5842 		 * obvious problems for unsigned storage.  So clip to 0.
5843 		 */
5844 		readpos -= min_t(sector_t, reshape_sectors, readpos);
5845 		safepos -= min_t(sector_t, reshape_sectors, safepos);
5846 	}
5847 
5848 	/* Having calculated the 'writepos' possibly use it
5849 	 * to set 'stripe_addr' which is where we will write to.
5850 	 */
5851 	if (mddev->reshape_backwards) {
5852 		BUG_ON(conf->reshape_progress == 0);
5853 		stripe_addr = writepos;
5854 		BUG_ON((mddev->dev_sectors &
5855 			~((sector_t)reshape_sectors - 1))
5856 		       - reshape_sectors - stripe_addr
5857 		       != sector_nr);
5858 	} else {
5859 		BUG_ON(writepos != sector_nr + reshape_sectors);
5860 		stripe_addr = sector_nr;
5861 	}
5862 
5863 	/* 'writepos' is the most advanced device address we might write.
5864 	 * 'readpos' is the least advanced device address we might read.
5865 	 * 'safepos' is the least address recorded in the metadata as having
5866 	 *     been reshaped.
5867 	 * If there is a min_offset_diff, these are adjusted either by
5868 	 * increasing the safepos/readpos if diff is negative, or
5869 	 * increasing writepos if diff is positive.
5870 	 * If 'readpos' is then behind 'writepos', there is no way that we can
5871 	 * ensure safety in the face of a crash - that must be done by userspace
5872 	 * making a backup of the data.  So in that case there is no particular
5873 	 * rush to update metadata.
5874 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5875 	 * update the metadata to advance 'safepos' to match 'readpos' so that
5876 	 * we can be safe in the event of a crash.
5877 	 * So we insist on updating metadata if safepos is behind writepos and
5878 	 * readpos is beyond writepos.
5879 	 * In any case, update the metadata every 10 seconds.
5880 	 * Maybe that number should be configurable, but I'm not sure it is
5881 	 * worth it.... maybe it could be a multiple of safemode_delay???
5882 	 */
5883 	if (conf->min_offset_diff < 0) {
5884 		safepos += -conf->min_offset_diff;
5885 		readpos += -conf->min_offset_diff;
5886 	} else
5887 		writepos += conf->min_offset_diff;
5888 
5889 	if ((mddev->reshape_backwards
5890 	     ? (safepos > writepos && readpos < writepos)
5891 	     : (safepos < writepos && readpos > writepos)) ||
5892 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5893 		/* Cannot proceed until we've updated the superblock... */
5894 		wait_event(conf->wait_for_overlap,
5895 			   atomic_read(&conf->reshape_stripes)==0
5896 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5897 		if (atomic_read(&conf->reshape_stripes) != 0)
5898 			return 0;
5899 		mddev->reshape_position = conf->reshape_progress;
5900 		mddev->curr_resync_completed = sector_nr;
5901 		if (!mddev->reshape_backwards)
5902 			/* Can update recovery_offset */
5903 			rdev_for_each(rdev, mddev)
5904 				if (rdev->raid_disk >= 0 &&
5905 				    !test_bit(Journal, &rdev->flags) &&
5906 				    !test_bit(In_sync, &rdev->flags) &&
5907 				    rdev->recovery_offset < sector_nr)
5908 					rdev->recovery_offset = sector_nr;
5909 
5910 		conf->reshape_checkpoint = jiffies;
5911 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5912 		md_wakeup_thread(mddev->thread);
5913 		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
5914 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5915 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5916 			return 0;
5917 		spin_lock_irq(&conf->device_lock);
5918 		conf->reshape_safe = mddev->reshape_position;
5919 		spin_unlock_irq(&conf->device_lock);
5920 		wake_up(&conf->wait_for_overlap);
5921 		sysfs_notify_dirent_safe(mddev->sysfs_completed);
5922 	}
5923 
5924 	INIT_LIST_HEAD(&stripes);
5925 	for (i = 0; i < reshape_sectors; i += RAID5_STRIPE_SECTORS(conf)) {
5926 		int j;
5927 		int skipped_disk = 0;
5928 		sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5929 		set_bit(STRIPE_EXPANDING, &sh->state);
5930 		atomic_inc(&conf->reshape_stripes);
5931 		/* If any of this stripe is beyond the end of the old
5932 		 * array, then we need to zero those blocks
5933 		 */
5934 		for (j=sh->disks; j--;) {
5935 			sector_t s;
5936 			if (j == sh->pd_idx)
5937 				continue;
5938 			if (conf->level == 6 &&
5939 			    j == sh->qd_idx)
5940 				continue;
5941 			s = raid5_compute_blocknr(sh, j, 0);
5942 			if (s < raid5_size(mddev, 0, 0)) {
5943 				skipped_disk = 1;
5944 				continue;
5945 			}
5946 			memset(page_address(sh->dev[j].page), 0, RAID5_STRIPE_SIZE(conf));
5947 			set_bit(R5_Expanded, &sh->dev[j].flags);
5948 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
5949 		}
5950 		if (!skipped_disk) {
5951 			set_bit(STRIPE_EXPAND_READY, &sh->state);
5952 			set_bit(STRIPE_HANDLE, &sh->state);
5953 		}
5954 		list_add(&sh->lru, &stripes);
5955 	}
5956 	spin_lock_irq(&conf->device_lock);
5957 	if (mddev->reshape_backwards)
5958 		conf->reshape_progress -= reshape_sectors * new_data_disks;
5959 	else
5960 		conf->reshape_progress += reshape_sectors * new_data_disks;
5961 	spin_unlock_irq(&conf->device_lock);
5962 	/* Ok, those stripe are ready. We can start scheduling
5963 	 * reads on the source stripes.
5964 	 * The source stripes are determined by mapping the first and last
5965 	 * block on the destination stripes.
5966 	 */
5967 	first_sector =
5968 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5969 				     1, &dd_idx, NULL);
5970 	last_sector =
5971 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5972 					    * new_data_disks - 1),
5973 				     1, &dd_idx, NULL);
5974 	if (last_sector >= mddev->dev_sectors)
5975 		last_sector = mddev->dev_sectors - 1;
5976 	while (first_sector <= last_sector) {
5977 		sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5978 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5979 		set_bit(STRIPE_HANDLE, &sh->state);
5980 		raid5_release_stripe(sh);
5981 		first_sector += RAID5_STRIPE_SECTORS(conf);
5982 	}
5983 	/* Now that the sources are clearly marked, we can release
5984 	 * the destination stripes
5985 	 */
5986 	while (!list_empty(&stripes)) {
5987 		sh = list_entry(stripes.next, struct stripe_head, lru);
5988 		list_del_init(&sh->lru);
5989 		raid5_release_stripe(sh);
5990 	}
5991 	/* If this takes us to the resync_max point where we have to pause,
5992 	 * then we need to write out the superblock.
5993 	 */
5994 	sector_nr += reshape_sectors;
5995 	retn = reshape_sectors;
5996 finish:
5997 	if (mddev->curr_resync_completed > mddev->resync_max ||
5998 	    (sector_nr - mddev->curr_resync_completed) * 2
5999 	    >= mddev->resync_max - mddev->curr_resync_completed) {
6000 		/* Cannot proceed until we've updated the superblock... */
6001 		wait_event(conf->wait_for_overlap,
6002 			   atomic_read(&conf->reshape_stripes) == 0
6003 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6004 		if (atomic_read(&conf->reshape_stripes) != 0)
6005 			goto ret;
6006 		mddev->reshape_position = conf->reshape_progress;
6007 		mddev->curr_resync_completed = sector_nr;
6008 		if (!mddev->reshape_backwards)
6009 			/* Can update recovery_offset */
6010 			rdev_for_each(rdev, mddev)
6011 				if (rdev->raid_disk >= 0 &&
6012 				    !test_bit(Journal, &rdev->flags) &&
6013 				    !test_bit(In_sync, &rdev->flags) &&
6014 				    rdev->recovery_offset < sector_nr)
6015 					rdev->recovery_offset = sector_nr;
6016 		conf->reshape_checkpoint = jiffies;
6017 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6018 		md_wakeup_thread(mddev->thread);
6019 		wait_event(mddev->sb_wait,
6020 			   !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
6021 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6022 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6023 			goto ret;
6024 		spin_lock_irq(&conf->device_lock);
6025 		conf->reshape_safe = mddev->reshape_position;
6026 		spin_unlock_irq(&conf->device_lock);
6027 		wake_up(&conf->wait_for_overlap);
6028 		sysfs_notify_dirent_safe(mddev->sysfs_completed);
6029 	}
6030 ret:
6031 	return retn;
6032 }
6033 
6034 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6035 					  int *skipped)
6036 {
6037 	struct r5conf *conf = mddev->private;
6038 	struct stripe_head *sh;
6039 	sector_t max_sector = mddev->dev_sectors;
6040 	sector_t sync_blocks;
6041 	int still_degraded = 0;
6042 	int i;
6043 
6044 	if (sector_nr >= max_sector) {
6045 		/* just being told to finish up .. nothing much to do */
6046 
6047 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6048 			end_reshape(conf);
6049 			return 0;
6050 		}
6051 
6052 		if (mddev->curr_resync < max_sector) /* aborted */
6053 			md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6054 					   &sync_blocks, 1);
6055 		else /* completed sync */
6056 			conf->fullsync = 0;
6057 		md_bitmap_close_sync(mddev->bitmap);
6058 
6059 		return 0;
6060 	}
6061 
6062 	/* Allow raid5_quiesce to complete */
6063 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6064 
6065 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6066 		return reshape_request(mddev, sector_nr, skipped);
6067 
6068 	/* No need to check resync_max as we never do more than one
6069 	 * stripe, and as resync_max will always be on a chunk boundary,
6070 	 * if the check in md_do_sync didn't fire, there is no chance
6071 	 * of overstepping resync_max here
6072 	 */
6073 
6074 	/* if there is too many failed drives and we are trying
6075 	 * to resync, then assert that we are finished, because there is
6076 	 * nothing we can do.
6077 	 */
6078 	if (mddev->degraded >= conf->max_degraded &&
6079 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6080 		sector_t rv = mddev->dev_sectors - sector_nr;
6081 		*skipped = 1;
6082 		return rv;
6083 	}
6084 	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6085 	    !conf->fullsync &&
6086 	    !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6087 	    sync_blocks >= RAID5_STRIPE_SECTORS(conf)) {
6088 		/* we can skip this block, and probably more */
6089 		do_div(sync_blocks, RAID5_STRIPE_SECTORS(conf));
6090 		*skipped = 1;
6091 		/* keep things rounded to whole stripes */
6092 		return sync_blocks * RAID5_STRIPE_SECTORS(conf);
6093 	}
6094 
6095 	md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
6096 
6097 	sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
6098 	if (sh == NULL) {
6099 		sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
6100 		/* make sure we don't swamp the stripe cache if someone else
6101 		 * is trying to get access
6102 		 */
6103 		schedule_timeout_uninterruptible(1);
6104 	}
6105 	/* Need to check if array will still be degraded after recovery/resync
6106 	 * Note in case of > 1 drive failures it's possible we're rebuilding
6107 	 * one drive while leaving another faulty drive in array.
6108 	 */
6109 	rcu_read_lock();
6110 	for (i = 0; i < conf->raid_disks; i++) {
6111 		struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
6112 
6113 		if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6114 			still_degraded = 1;
6115 	}
6116 	rcu_read_unlock();
6117 
6118 	md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6119 
6120 	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6121 	set_bit(STRIPE_HANDLE, &sh->state);
6122 
6123 	raid5_release_stripe(sh);
6124 
6125 	return RAID5_STRIPE_SECTORS(conf);
6126 }
6127 
6128 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6129 			       unsigned int offset)
6130 {
6131 	/* We may not be able to submit a whole bio at once as there
6132 	 * may not be enough stripe_heads available.
6133 	 * We cannot pre-allocate enough stripe_heads as we may need
6134 	 * more than exist in the cache (if we allow ever large chunks).
6135 	 * So we do one stripe head at a time and record in
6136 	 * ->bi_hw_segments how many have been done.
6137 	 *
6138 	 * We *know* that this entire raid_bio is in one chunk, so
6139 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6140 	 */
6141 	struct stripe_head *sh;
6142 	int dd_idx;
6143 	sector_t sector, logical_sector, last_sector;
6144 	int scnt = 0;
6145 	int handled = 0;
6146 
6147 	logical_sector = raid_bio->bi_iter.bi_sector &
6148 		~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6149 	sector = raid5_compute_sector(conf, logical_sector,
6150 				      0, &dd_idx, NULL);
6151 	last_sector = bio_end_sector(raid_bio);
6152 
6153 	for (; logical_sector < last_sector;
6154 	     logical_sector += RAID5_STRIPE_SECTORS(conf),
6155 		     sector += RAID5_STRIPE_SECTORS(conf),
6156 		     scnt++) {
6157 
6158 		if (scnt < offset)
6159 			/* already done this stripe */
6160 			continue;
6161 
6162 		sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
6163 
6164 		if (!sh) {
6165 			/* failed to get a stripe - must wait */
6166 			conf->retry_read_aligned = raid_bio;
6167 			conf->retry_read_offset = scnt;
6168 			return handled;
6169 		}
6170 
6171 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6172 			raid5_release_stripe(sh);
6173 			conf->retry_read_aligned = raid_bio;
6174 			conf->retry_read_offset = scnt;
6175 			return handled;
6176 		}
6177 
6178 		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6179 		handle_stripe(sh);
6180 		raid5_release_stripe(sh);
6181 		handled++;
6182 	}
6183 
6184 	bio_endio(raid_bio);
6185 
6186 	if (atomic_dec_and_test(&conf->active_aligned_reads))
6187 		wake_up(&conf->wait_for_quiescent);
6188 	return handled;
6189 }
6190 
6191 static int handle_active_stripes(struct r5conf *conf, int group,
6192 				 struct r5worker *worker,
6193 				 struct list_head *temp_inactive_list)
6194 		__releases(&conf->device_lock)
6195 		__acquires(&conf->device_lock)
6196 {
6197 	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6198 	int i, batch_size = 0, hash;
6199 	bool release_inactive = false;
6200 
6201 	while (batch_size < MAX_STRIPE_BATCH &&
6202 			(sh = __get_priority_stripe(conf, group)) != NULL)
6203 		batch[batch_size++] = sh;
6204 
6205 	if (batch_size == 0) {
6206 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6207 			if (!list_empty(temp_inactive_list + i))
6208 				break;
6209 		if (i == NR_STRIPE_HASH_LOCKS) {
6210 			spin_unlock_irq(&conf->device_lock);
6211 			log_flush_stripe_to_raid(conf);
6212 			spin_lock_irq(&conf->device_lock);
6213 			return batch_size;
6214 		}
6215 		release_inactive = true;
6216 	}
6217 	spin_unlock_irq(&conf->device_lock);
6218 
6219 	release_inactive_stripe_list(conf, temp_inactive_list,
6220 				     NR_STRIPE_HASH_LOCKS);
6221 
6222 	r5l_flush_stripe_to_raid(conf->log);
6223 	if (release_inactive) {
6224 		spin_lock_irq(&conf->device_lock);
6225 		return 0;
6226 	}
6227 
6228 	for (i = 0; i < batch_size; i++)
6229 		handle_stripe(batch[i]);
6230 	log_write_stripe_run(conf);
6231 
6232 	cond_resched();
6233 
6234 	spin_lock_irq(&conf->device_lock);
6235 	for (i = 0; i < batch_size; i++) {
6236 		hash = batch[i]->hash_lock_index;
6237 		__release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6238 	}
6239 	return batch_size;
6240 }
6241 
6242 static void raid5_do_work(struct work_struct *work)
6243 {
6244 	struct r5worker *worker = container_of(work, struct r5worker, work);
6245 	struct r5worker_group *group = worker->group;
6246 	struct r5conf *conf = group->conf;
6247 	struct mddev *mddev = conf->mddev;
6248 	int group_id = group - conf->worker_groups;
6249 	int handled;
6250 	struct blk_plug plug;
6251 
6252 	pr_debug("+++ raid5worker active\n");
6253 
6254 	blk_start_plug(&plug);
6255 	handled = 0;
6256 	spin_lock_irq(&conf->device_lock);
6257 	while (1) {
6258 		int batch_size, released;
6259 
6260 		released = release_stripe_list(conf, worker->temp_inactive_list);
6261 
6262 		batch_size = handle_active_stripes(conf, group_id, worker,
6263 						   worker->temp_inactive_list);
6264 		worker->working = false;
6265 		if (!batch_size && !released)
6266 			break;
6267 		handled += batch_size;
6268 		wait_event_lock_irq(mddev->sb_wait,
6269 			!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6270 			conf->device_lock);
6271 	}
6272 	pr_debug("%d stripes handled\n", handled);
6273 
6274 	spin_unlock_irq(&conf->device_lock);
6275 
6276 	flush_deferred_bios(conf);
6277 
6278 	r5l_flush_stripe_to_raid(conf->log);
6279 
6280 	async_tx_issue_pending_all();
6281 	blk_finish_plug(&plug);
6282 
6283 	pr_debug("--- raid5worker inactive\n");
6284 }
6285 
6286 /*
6287  * This is our raid5 kernel thread.
6288  *
6289  * We scan the hash table for stripes which can be handled now.
6290  * During the scan, completed stripes are saved for us by the interrupt
6291  * handler, so that they will not have to wait for our next wakeup.
6292  */
6293 static void raid5d(struct md_thread *thread)
6294 {
6295 	struct mddev *mddev = thread->mddev;
6296 	struct r5conf *conf = mddev->private;
6297 	int handled;
6298 	struct blk_plug plug;
6299 
6300 	pr_debug("+++ raid5d active\n");
6301 
6302 	md_check_recovery(mddev);
6303 
6304 	blk_start_plug(&plug);
6305 	handled = 0;
6306 	spin_lock_irq(&conf->device_lock);
6307 	while (1) {
6308 		struct bio *bio;
6309 		int batch_size, released;
6310 		unsigned int offset;
6311 
6312 		released = release_stripe_list(conf, conf->temp_inactive_list);
6313 		if (released)
6314 			clear_bit(R5_DID_ALLOC, &conf->cache_state);
6315 
6316 		if (
6317 		    !list_empty(&conf->bitmap_list)) {
6318 			/* Now is a good time to flush some bitmap updates */
6319 			conf->seq_flush++;
6320 			spin_unlock_irq(&conf->device_lock);
6321 			md_bitmap_unplug(mddev->bitmap);
6322 			spin_lock_irq(&conf->device_lock);
6323 			conf->seq_write = conf->seq_flush;
6324 			activate_bit_delay(conf, conf->temp_inactive_list);
6325 		}
6326 		raid5_activate_delayed(conf);
6327 
6328 		while ((bio = remove_bio_from_retry(conf, &offset))) {
6329 			int ok;
6330 			spin_unlock_irq(&conf->device_lock);
6331 			ok = retry_aligned_read(conf, bio, offset);
6332 			spin_lock_irq(&conf->device_lock);
6333 			if (!ok)
6334 				break;
6335 			handled++;
6336 		}
6337 
6338 		batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6339 						   conf->temp_inactive_list);
6340 		if (!batch_size && !released)
6341 			break;
6342 		handled += batch_size;
6343 
6344 		if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6345 			spin_unlock_irq(&conf->device_lock);
6346 			md_check_recovery(mddev);
6347 			spin_lock_irq(&conf->device_lock);
6348 		}
6349 	}
6350 	pr_debug("%d stripes handled\n", handled);
6351 
6352 	spin_unlock_irq(&conf->device_lock);
6353 	if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6354 	    mutex_trylock(&conf->cache_size_mutex)) {
6355 		grow_one_stripe(conf, __GFP_NOWARN);
6356 		/* Set flag even if allocation failed.  This helps
6357 		 * slow down allocation requests when mem is short
6358 		 */
6359 		set_bit(R5_DID_ALLOC, &conf->cache_state);
6360 		mutex_unlock(&conf->cache_size_mutex);
6361 	}
6362 
6363 	flush_deferred_bios(conf);
6364 
6365 	r5l_flush_stripe_to_raid(conf->log);
6366 
6367 	async_tx_issue_pending_all();
6368 	blk_finish_plug(&plug);
6369 
6370 	pr_debug("--- raid5d inactive\n");
6371 }
6372 
6373 static ssize_t
6374 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6375 {
6376 	struct r5conf *conf;
6377 	int ret = 0;
6378 	spin_lock(&mddev->lock);
6379 	conf = mddev->private;
6380 	if (conf)
6381 		ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6382 	spin_unlock(&mddev->lock);
6383 	return ret;
6384 }
6385 
6386 int
6387 raid5_set_cache_size(struct mddev *mddev, int size)
6388 {
6389 	int result = 0;
6390 	struct r5conf *conf = mddev->private;
6391 
6392 	if (size <= 16 || size > 32768)
6393 		return -EINVAL;
6394 
6395 	conf->min_nr_stripes = size;
6396 	mutex_lock(&conf->cache_size_mutex);
6397 	while (size < conf->max_nr_stripes &&
6398 	       drop_one_stripe(conf))
6399 		;
6400 	mutex_unlock(&conf->cache_size_mutex);
6401 
6402 	md_allow_write(mddev);
6403 
6404 	mutex_lock(&conf->cache_size_mutex);
6405 	while (size > conf->max_nr_stripes)
6406 		if (!grow_one_stripe(conf, GFP_KERNEL)) {
6407 			conf->min_nr_stripes = conf->max_nr_stripes;
6408 			result = -ENOMEM;
6409 			break;
6410 		}
6411 	mutex_unlock(&conf->cache_size_mutex);
6412 
6413 	return result;
6414 }
6415 EXPORT_SYMBOL(raid5_set_cache_size);
6416 
6417 static ssize_t
6418 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6419 {
6420 	struct r5conf *conf;
6421 	unsigned long new;
6422 	int err;
6423 
6424 	if (len >= PAGE_SIZE)
6425 		return -EINVAL;
6426 	if (kstrtoul(page, 10, &new))
6427 		return -EINVAL;
6428 	err = mddev_lock(mddev);
6429 	if (err)
6430 		return err;
6431 	conf = mddev->private;
6432 	if (!conf)
6433 		err = -ENODEV;
6434 	else
6435 		err = raid5_set_cache_size(mddev, new);
6436 	mddev_unlock(mddev);
6437 
6438 	return err ?: len;
6439 }
6440 
6441 static struct md_sysfs_entry
6442 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6443 				raid5_show_stripe_cache_size,
6444 				raid5_store_stripe_cache_size);
6445 
6446 static ssize_t
6447 raid5_show_rmw_level(struct mddev  *mddev, char *page)
6448 {
6449 	struct r5conf *conf = mddev->private;
6450 	if (conf)
6451 		return sprintf(page, "%d\n", conf->rmw_level);
6452 	else
6453 		return 0;
6454 }
6455 
6456 static ssize_t
6457 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
6458 {
6459 	struct r5conf *conf = mddev->private;
6460 	unsigned long new;
6461 
6462 	if (!conf)
6463 		return -ENODEV;
6464 
6465 	if (len >= PAGE_SIZE)
6466 		return -EINVAL;
6467 
6468 	if (kstrtoul(page, 10, &new))
6469 		return -EINVAL;
6470 
6471 	if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6472 		return -EINVAL;
6473 
6474 	if (new != PARITY_DISABLE_RMW &&
6475 	    new != PARITY_ENABLE_RMW &&
6476 	    new != PARITY_PREFER_RMW)
6477 		return -EINVAL;
6478 
6479 	conf->rmw_level = new;
6480 	return len;
6481 }
6482 
6483 static struct md_sysfs_entry
6484 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6485 			 raid5_show_rmw_level,
6486 			 raid5_store_rmw_level);
6487 
6488 static ssize_t
6489 raid5_show_stripe_size(struct mddev  *mddev, char *page)
6490 {
6491 	struct r5conf *conf;
6492 	int ret = 0;
6493 
6494 	spin_lock(&mddev->lock);
6495 	conf = mddev->private;
6496 	if (conf)
6497 		ret = sprintf(page, "%lu\n", RAID5_STRIPE_SIZE(conf));
6498 	spin_unlock(&mddev->lock);
6499 	return ret;
6500 }
6501 
6502 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
6503 static ssize_t
6504 raid5_store_stripe_size(struct mddev  *mddev, const char *page, size_t len)
6505 {
6506 	struct r5conf *conf;
6507 	unsigned long new;
6508 	int err;
6509 
6510 	if (len >= PAGE_SIZE)
6511 		return -EINVAL;
6512 	if (kstrtoul(page, 10, &new))
6513 		return -EINVAL;
6514 
6515 	/*
6516 	 * The value should not be bigger than PAGE_SIZE. It requires to
6517 	 * be multiple of DEFAULT_STRIPE_SIZE.
6518 	 */
6519 	if (new % DEFAULT_STRIPE_SIZE != 0 || new > PAGE_SIZE || new == 0)
6520 		return -EINVAL;
6521 
6522 	err = mddev_lock(mddev);
6523 	if (err)
6524 		return err;
6525 
6526 	conf = mddev->private;
6527 	if (!conf) {
6528 		err = -ENODEV;
6529 		goto out_unlock;
6530 	}
6531 
6532 	if (new == conf->stripe_size)
6533 		goto out_unlock;
6534 
6535 	pr_debug("md/raid: change stripe_size from %lu to %lu\n",
6536 			conf->stripe_size, new);
6537 
6538 	mddev_suspend(mddev);
6539 	conf->stripe_size = new;
6540 	conf->stripe_shift = ilog2(new) - 9;
6541 	conf->stripe_sectors = new >> 9;
6542 	mddev_resume(mddev);
6543 
6544 out_unlock:
6545 	mddev_unlock(mddev);
6546 	return err ?: len;
6547 }
6548 
6549 static struct md_sysfs_entry
6550 raid5_stripe_size = __ATTR(stripe_size, 0644,
6551 			 raid5_show_stripe_size,
6552 			 raid5_store_stripe_size);
6553 #else
6554 static struct md_sysfs_entry
6555 raid5_stripe_size = __ATTR(stripe_size, 0444,
6556 			 raid5_show_stripe_size,
6557 			 NULL);
6558 #endif
6559 
6560 static ssize_t
6561 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6562 {
6563 	struct r5conf *conf;
6564 	int ret = 0;
6565 	spin_lock(&mddev->lock);
6566 	conf = mddev->private;
6567 	if (conf)
6568 		ret = sprintf(page, "%d\n", conf->bypass_threshold);
6569 	spin_unlock(&mddev->lock);
6570 	return ret;
6571 }
6572 
6573 static ssize_t
6574 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6575 {
6576 	struct r5conf *conf;
6577 	unsigned long new;
6578 	int err;
6579 
6580 	if (len >= PAGE_SIZE)
6581 		return -EINVAL;
6582 	if (kstrtoul(page, 10, &new))
6583 		return -EINVAL;
6584 
6585 	err = mddev_lock(mddev);
6586 	if (err)
6587 		return err;
6588 	conf = mddev->private;
6589 	if (!conf)
6590 		err = -ENODEV;
6591 	else if (new > conf->min_nr_stripes)
6592 		err = -EINVAL;
6593 	else
6594 		conf->bypass_threshold = new;
6595 	mddev_unlock(mddev);
6596 	return err ?: len;
6597 }
6598 
6599 static struct md_sysfs_entry
6600 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6601 					S_IRUGO | S_IWUSR,
6602 					raid5_show_preread_threshold,
6603 					raid5_store_preread_threshold);
6604 
6605 static ssize_t
6606 raid5_show_skip_copy(struct mddev *mddev, char *page)
6607 {
6608 	struct r5conf *conf;
6609 	int ret = 0;
6610 	spin_lock(&mddev->lock);
6611 	conf = mddev->private;
6612 	if (conf)
6613 		ret = sprintf(page, "%d\n", conf->skip_copy);
6614 	spin_unlock(&mddev->lock);
6615 	return ret;
6616 }
6617 
6618 static ssize_t
6619 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6620 {
6621 	struct r5conf *conf;
6622 	unsigned long new;
6623 	int err;
6624 
6625 	if (len >= PAGE_SIZE)
6626 		return -EINVAL;
6627 	if (kstrtoul(page, 10, &new))
6628 		return -EINVAL;
6629 	new = !!new;
6630 
6631 	err = mddev_lock(mddev);
6632 	if (err)
6633 		return err;
6634 	conf = mddev->private;
6635 	if (!conf)
6636 		err = -ENODEV;
6637 	else if (new != conf->skip_copy) {
6638 		mddev_suspend(mddev);
6639 		conf->skip_copy = new;
6640 		if (new)
6641 			mddev->queue->backing_dev_info->capabilities |=
6642 				BDI_CAP_STABLE_WRITES;
6643 		else
6644 			mddev->queue->backing_dev_info->capabilities &=
6645 				~BDI_CAP_STABLE_WRITES;
6646 		mddev_resume(mddev);
6647 	}
6648 	mddev_unlock(mddev);
6649 	return err ?: len;
6650 }
6651 
6652 static struct md_sysfs_entry
6653 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6654 					raid5_show_skip_copy,
6655 					raid5_store_skip_copy);
6656 
6657 static ssize_t
6658 stripe_cache_active_show(struct mddev *mddev, char *page)
6659 {
6660 	struct r5conf *conf = mddev->private;
6661 	if (conf)
6662 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6663 	else
6664 		return 0;
6665 }
6666 
6667 static struct md_sysfs_entry
6668 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6669 
6670 static ssize_t
6671 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6672 {
6673 	struct r5conf *conf;
6674 	int ret = 0;
6675 	spin_lock(&mddev->lock);
6676 	conf = mddev->private;
6677 	if (conf)
6678 		ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6679 	spin_unlock(&mddev->lock);
6680 	return ret;
6681 }
6682 
6683 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6684 			       int *group_cnt,
6685 			       struct r5worker_group **worker_groups);
6686 static ssize_t
6687 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6688 {
6689 	struct r5conf *conf;
6690 	unsigned int new;
6691 	int err;
6692 	struct r5worker_group *new_groups, *old_groups;
6693 	int group_cnt;
6694 
6695 	if (len >= PAGE_SIZE)
6696 		return -EINVAL;
6697 	if (kstrtouint(page, 10, &new))
6698 		return -EINVAL;
6699 	/* 8192 should be big enough */
6700 	if (new > 8192)
6701 		return -EINVAL;
6702 
6703 	err = mddev_lock(mddev);
6704 	if (err)
6705 		return err;
6706 	conf = mddev->private;
6707 	if (!conf)
6708 		err = -ENODEV;
6709 	else if (new != conf->worker_cnt_per_group) {
6710 		mddev_suspend(mddev);
6711 
6712 		old_groups = conf->worker_groups;
6713 		if (old_groups)
6714 			flush_workqueue(raid5_wq);
6715 
6716 		err = alloc_thread_groups(conf, new, &group_cnt, &new_groups);
6717 		if (!err) {
6718 			spin_lock_irq(&conf->device_lock);
6719 			conf->group_cnt = group_cnt;
6720 			conf->worker_cnt_per_group = new;
6721 			conf->worker_groups = new_groups;
6722 			spin_unlock_irq(&conf->device_lock);
6723 
6724 			if (old_groups)
6725 				kfree(old_groups[0].workers);
6726 			kfree(old_groups);
6727 		}
6728 		mddev_resume(mddev);
6729 	}
6730 	mddev_unlock(mddev);
6731 
6732 	return err ?: len;
6733 }
6734 
6735 static struct md_sysfs_entry
6736 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6737 				raid5_show_group_thread_cnt,
6738 				raid5_store_group_thread_cnt);
6739 
6740 static struct attribute *raid5_attrs[] =  {
6741 	&raid5_stripecache_size.attr,
6742 	&raid5_stripecache_active.attr,
6743 	&raid5_preread_bypass_threshold.attr,
6744 	&raid5_group_thread_cnt.attr,
6745 	&raid5_skip_copy.attr,
6746 	&raid5_rmw_level.attr,
6747 	&raid5_stripe_size.attr,
6748 	&r5c_journal_mode.attr,
6749 	&ppl_write_hint.attr,
6750 	NULL,
6751 };
6752 static struct attribute_group raid5_attrs_group = {
6753 	.name = NULL,
6754 	.attrs = raid5_attrs,
6755 };
6756 
6757 static int alloc_thread_groups(struct r5conf *conf, int cnt, int *group_cnt,
6758 			       struct r5worker_group **worker_groups)
6759 {
6760 	int i, j, k;
6761 	ssize_t size;
6762 	struct r5worker *workers;
6763 
6764 	if (cnt == 0) {
6765 		*group_cnt = 0;
6766 		*worker_groups = NULL;
6767 		return 0;
6768 	}
6769 	*group_cnt = num_possible_nodes();
6770 	size = sizeof(struct r5worker) * cnt;
6771 	workers = kcalloc(size, *group_cnt, GFP_NOIO);
6772 	*worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group),
6773 				 GFP_NOIO);
6774 	if (!*worker_groups || !workers) {
6775 		kfree(workers);
6776 		kfree(*worker_groups);
6777 		return -ENOMEM;
6778 	}
6779 
6780 	for (i = 0; i < *group_cnt; i++) {
6781 		struct r5worker_group *group;
6782 
6783 		group = &(*worker_groups)[i];
6784 		INIT_LIST_HEAD(&group->handle_list);
6785 		INIT_LIST_HEAD(&group->loprio_list);
6786 		group->conf = conf;
6787 		group->workers = workers + i * cnt;
6788 
6789 		for (j = 0; j < cnt; j++) {
6790 			struct r5worker *worker = group->workers + j;
6791 			worker->group = group;
6792 			INIT_WORK(&worker->work, raid5_do_work);
6793 
6794 			for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6795 				INIT_LIST_HEAD(worker->temp_inactive_list + k);
6796 		}
6797 	}
6798 
6799 	return 0;
6800 }
6801 
6802 static void free_thread_groups(struct r5conf *conf)
6803 {
6804 	if (conf->worker_groups)
6805 		kfree(conf->worker_groups[0].workers);
6806 	kfree(conf->worker_groups);
6807 	conf->worker_groups = NULL;
6808 }
6809 
6810 static sector_t
6811 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6812 {
6813 	struct r5conf *conf = mddev->private;
6814 
6815 	if (!sectors)
6816 		sectors = mddev->dev_sectors;
6817 	if (!raid_disks)
6818 		/* size is defined by the smallest of previous and new size */
6819 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6820 
6821 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
6822 	sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6823 	return sectors * (raid_disks - conf->max_degraded);
6824 }
6825 
6826 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6827 {
6828 	safe_put_page(percpu->spare_page);
6829 	percpu->spare_page = NULL;
6830 	kvfree(percpu->scribble);
6831 	percpu->scribble = NULL;
6832 }
6833 
6834 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6835 {
6836 	if (conf->level == 6 && !percpu->spare_page) {
6837 		percpu->spare_page = alloc_page(GFP_KERNEL);
6838 		if (!percpu->spare_page)
6839 			return -ENOMEM;
6840 	}
6841 
6842 	if (scribble_alloc(percpu,
6843 			   max(conf->raid_disks,
6844 			       conf->previous_raid_disks),
6845 			   max(conf->chunk_sectors,
6846 			       conf->prev_chunk_sectors)
6847 			   / RAID5_STRIPE_SECTORS(conf))) {
6848 		free_scratch_buffer(conf, percpu);
6849 		return -ENOMEM;
6850 	}
6851 
6852 	return 0;
6853 }
6854 
6855 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
6856 {
6857 	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6858 
6859 	free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6860 	return 0;
6861 }
6862 
6863 static void raid5_free_percpu(struct r5conf *conf)
6864 {
6865 	if (!conf->percpu)
6866 		return;
6867 
6868 	cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6869 	free_percpu(conf->percpu);
6870 }
6871 
6872 static void free_conf(struct r5conf *conf)
6873 {
6874 	int i;
6875 
6876 	log_exit(conf);
6877 
6878 	unregister_shrinker(&conf->shrinker);
6879 	free_thread_groups(conf);
6880 	shrink_stripes(conf);
6881 	raid5_free_percpu(conf);
6882 	for (i = 0; i < conf->pool_size; i++)
6883 		if (conf->disks[i].extra_page)
6884 			put_page(conf->disks[i].extra_page);
6885 	kfree(conf->disks);
6886 	bioset_exit(&conf->bio_split);
6887 	kfree(conf->stripe_hashtbl);
6888 	kfree(conf->pending_data);
6889 	kfree(conf);
6890 }
6891 
6892 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
6893 {
6894 	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6895 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6896 
6897 	if (alloc_scratch_buffer(conf, percpu)) {
6898 		pr_warn("%s: failed memory allocation for cpu%u\n",
6899 			__func__, cpu);
6900 		return -ENOMEM;
6901 	}
6902 	return 0;
6903 }
6904 
6905 static int raid5_alloc_percpu(struct r5conf *conf)
6906 {
6907 	int err = 0;
6908 
6909 	conf->percpu = alloc_percpu(struct raid5_percpu);
6910 	if (!conf->percpu)
6911 		return -ENOMEM;
6912 
6913 	err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6914 	if (!err) {
6915 		conf->scribble_disks = max(conf->raid_disks,
6916 			conf->previous_raid_disks);
6917 		conf->scribble_sectors = max(conf->chunk_sectors,
6918 			conf->prev_chunk_sectors);
6919 	}
6920 	return err;
6921 }
6922 
6923 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6924 				      struct shrink_control *sc)
6925 {
6926 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6927 	unsigned long ret = SHRINK_STOP;
6928 
6929 	if (mutex_trylock(&conf->cache_size_mutex)) {
6930 		ret= 0;
6931 		while (ret < sc->nr_to_scan &&
6932 		       conf->max_nr_stripes > conf->min_nr_stripes) {
6933 			if (drop_one_stripe(conf) == 0) {
6934 				ret = SHRINK_STOP;
6935 				break;
6936 			}
6937 			ret++;
6938 		}
6939 		mutex_unlock(&conf->cache_size_mutex);
6940 	}
6941 	return ret;
6942 }
6943 
6944 static unsigned long raid5_cache_count(struct shrinker *shrink,
6945 				       struct shrink_control *sc)
6946 {
6947 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6948 
6949 	if (conf->max_nr_stripes < conf->min_nr_stripes)
6950 		/* unlikely, but not impossible */
6951 		return 0;
6952 	return conf->max_nr_stripes - conf->min_nr_stripes;
6953 }
6954 
6955 static struct r5conf *setup_conf(struct mddev *mddev)
6956 {
6957 	struct r5conf *conf;
6958 	int raid_disk, memory, max_disks;
6959 	struct md_rdev *rdev;
6960 	struct disk_info *disk;
6961 	char pers_name[6];
6962 	int i;
6963 	int group_cnt;
6964 	struct r5worker_group *new_group;
6965 	int ret;
6966 
6967 	if (mddev->new_level != 5
6968 	    && mddev->new_level != 4
6969 	    && mddev->new_level != 6) {
6970 		pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6971 			mdname(mddev), mddev->new_level);
6972 		return ERR_PTR(-EIO);
6973 	}
6974 	if ((mddev->new_level == 5
6975 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
6976 	    (mddev->new_level == 6
6977 	     && !algorithm_valid_raid6(mddev->new_layout))) {
6978 		pr_warn("md/raid:%s: layout %d not supported\n",
6979 			mdname(mddev), mddev->new_layout);
6980 		return ERR_PTR(-EIO);
6981 	}
6982 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6983 		pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6984 			mdname(mddev), mddev->raid_disks);
6985 		return ERR_PTR(-EINVAL);
6986 	}
6987 
6988 	if (!mddev->new_chunk_sectors ||
6989 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6990 	    !is_power_of_2(mddev->new_chunk_sectors)) {
6991 		pr_warn("md/raid:%s: invalid chunk size %d\n",
6992 			mdname(mddev), mddev->new_chunk_sectors << 9);
6993 		return ERR_PTR(-EINVAL);
6994 	}
6995 
6996 	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6997 	if (conf == NULL)
6998 		goto abort;
6999 
7000 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
7001 	conf->stripe_size = DEFAULT_STRIPE_SIZE;
7002 	conf->stripe_shift = ilog2(DEFAULT_STRIPE_SIZE) - 9;
7003 	conf->stripe_sectors = DEFAULT_STRIPE_SIZE >> 9;
7004 #endif
7005 	INIT_LIST_HEAD(&conf->free_list);
7006 	INIT_LIST_HEAD(&conf->pending_list);
7007 	conf->pending_data = kcalloc(PENDING_IO_MAX,
7008 				     sizeof(struct r5pending_data),
7009 				     GFP_KERNEL);
7010 	if (!conf->pending_data)
7011 		goto abort;
7012 	for (i = 0; i < PENDING_IO_MAX; i++)
7013 		list_add(&conf->pending_data[i].sibling, &conf->free_list);
7014 	/* Don't enable multi-threading by default*/
7015 	if (!alloc_thread_groups(conf, 0, &group_cnt, &new_group)) {
7016 		conf->group_cnt = group_cnt;
7017 		conf->worker_cnt_per_group = 0;
7018 		conf->worker_groups = new_group;
7019 	} else
7020 		goto abort;
7021 	spin_lock_init(&conf->device_lock);
7022 	seqcount_spinlock_init(&conf->gen_lock, &conf->device_lock);
7023 	mutex_init(&conf->cache_size_mutex);
7024 	init_waitqueue_head(&conf->wait_for_quiescent);
7025 	init_waitqueue_head(&conf->wait_for_stripe);
7026 	init_waitqueue_head(&conf->wait_for_overlap);
7027 	INIT_LIST_HEAD(&conf->handle_list);
7028 	INIT_LIST_HEAD(&conf->loprio_list);
7029 	INIT_LIST_HEAD(&conf->hold_list);
7030 	INIT_LIST_HEAD(&conf->delayed_list);
7031 	INIT_LIST_HEAD(&conf->bitmap_list);
7032 	init_llist_head(&conf->released_stripes);
7033 	atomic_set(&conf->active_stripes, 0);
7034 	atomic_set(&conf->preread_active_stripes, 0);
7035 	atomic_set(&conf->active_aligned_reads, 0);
7036 	spin_lock_init(&conf->pending_bios_lock);
7037 	conf->batch_bio_dispatch = true;
7038 	rdev_for_each(rdev, mddev) {
7039 		if (test_bit(Journal, &rdev->flags))
7040 			continue;
7041 		if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
7042 			conf->batch_bio_dispatch = false;
7043 			break;
7044 		}
7045 	}
7046 
7047 	conf->bypass_threshold = BYPASS_THRESHOLD;
7048 	conf->recovery_disabled = mddev->recovery_disabled - 1;
7049 
7050 	conf->raid_disks = mddev->raid_disks;
7051 	if (mddev->reshape_position == MaxSector)
7052 		conf->previous_raid_disks = mddev->raid_disks;
7053 	else
7054 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
7055 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
7056 
7057 	conf->disks = kcalloc(max_disks, sizeof(struct disk_info),
7058 			      GFP_KERNEL);
7059 
7060 	if (!conf->disks)
7061 		goto abort;
7062 
7063 	for (i = 0; i < max_disks; i++) {
7064 		conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
7065 		if (!conf->disks[i].extra_page)
7066 			goto abort;
7067 	}
7068 
7069 	ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
7070 	if (ret)
7071 		goto abort;
7072 	conf->mddev = mddev;
7073 
7074 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
7075 		goto abort;
7076 
7077 	/* We init hash_locks[0] separately to that it can be used
7078 	 * as the reference lock in the spin_lock_nest_lock() call
7079 	 * in lock_all_device_hash_locks_irq in order to convince
7080 	 * lockdep that we know what we are doing.
7081 	 */
7082 	spin_lock_init(conf->hash_locks);
7083 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
7084 		spin_lock_init(conf->hash_locks + i);
7085 
7086 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7087 		INIT_LIST_HEAD(conf->inactive_list + i);
7088 
7089 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7090 		INIT_LIST_HEAD(conf->temp_inactive_list + i);
7091 
7092 	atomic_set(&conf->r5c_cached_full_stripes, 0);
7093 	INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
7094 	atomic_set(&conf->r5c_cached_partial_stripes, 0);
7095 	INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
7096 	atomic_set(&conf->r5c_flushing_full_stripes, 0);
7097 	atomic_set(&conf->r5c_flushing_partial_stripes, 0);
7098 
7099 	conf->level = mddev->new_level;
7100 	conf->chunk_sectors = mddev->new_chunk_sectors;
7101 	if (raid5_alloc_percpu(conf) != 0)
7102 		goto abort;
7103 
7104 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
7105 
7106 	rdev_for_each(rdev, mddev) {
7107 		raid_disk = rdev->raid_disk;
7108 		if (raid_disk >= max_disks
7109 		    || raid_disk < 0 || test_bit(Journal, &rdev->flags))
7110 			continue;
7111 		disk = conf->disks + raid_disk;
7112 
7113 		if (test_bit(Replacement, &rdev->flags)) {
7114 			if (disk->replacement)
7115 				goto abort;
7116 			disk->replacement = rdev;
7117 		} else {
7118 			if (disk->rdev)
7119 				goto abort;
7120 			disk->rdev = rdev;
7121 		}
7122 
7123 		if (test_bit(In_sync, &rdev->flags)) {
7124 			char b[BDEVNAME_SIZE];
7125 			pr_info("md/raid:%s: device %s operational as raid disk %d\n",
7126 				mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
7127 		} else if (rdev->saved_raid_disk != raid_disk)
7128 			/* Cannot rely on bitmap to complete recovery */
7129 			conf->fullsync = 1;
7130 	}
7131 
7132 	conf->level = mddev->new_level;
7133 	if (conf->level == 6) {
7134 		conf->max_degraded = 2;
7135 		if (raid6_call.xor_syndrome)
7136 			conf->rmw_level = PARITY_ENABLE_RMW;
7137 		else
7138 			conf->rmw_level = PARITY_DISABLE_RMW;
7139 	} else {
7140 		conf->max_degraded = 1;
7141 		conf->rmw_level = PARITY_ENABLE_RMW;
7142 	}
7143 	conf->algorithm = mddev->new_layout;
7144 	conf->reshape_progress = mddev->reshape_position;
7145 	if (conf->reshape_progress != MaxSector) {
7146 		conf->prev_chunk_sectors = mddev->chunk_sectors;
7147 		conf->prev_algo = mddev->layout;
7148 	} else {
7149 		conf->prev_chunk_sectors = conf->chunk_sectors;
7150 		conf->prev_algo = conf->algorithm;
7151 	}
7152 
7153 	conf->min_nr_stripes = NR_STRIPES;
7154 	if (mddev->reshape_position != MaxSector) {
7155 		int stripes = max_t(int,
7156 			((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4,
7157 			((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4);
7158 		conf->min_nr_stripes = max(NR_STRIPES, stripes);
7159 		if (conf->min_nr_stripes != NR_STRIPES)
7160 			pr_info("md/raid:%s: force stripe size %d for reshape\n",
7161 				mdname(mddev), conf->min_nr_stripes);
7162 	}
7163 	memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7164 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7165 	atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7166 	if (grow_stripes(conf, conf->min_nr_stripes)) {
7167 		pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7168 			mdname(mddev), memory);
7169 		goto abort;
7170 	} else
7171 		pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7172 	/*
7173 	 * Losing a stripe head costs more than the time to refill it,
7174 	 * it reduces the queue depth and so can hurt throughput.
7175 	 * So set it rather large, scaled by number of devices.
7176 	 */
7177 	conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7178 	conf->shrinker.scan_objects = raid5_cache_scan;
7179 	conf->shrinker.count_objects = raid5_cache_count;
7180 	conf->shrinker.batch = 128;
7181 	conf->shrinker.flags = 0;
7182 	if (register_shrinker(&conf->shrinker)) {
7183 		pr_warn("md/raid:%s: couldn't register shrinker.\n",
7184 			mdname(mddev));
7185 		goto abort;
7186 	}
7187 
7188 	sprintf(pers_name, "raid%d", mddev->new_level);
7189 	conf->thread = md_register_thread(raid5d, mddev, pers_name);
7190 	if (!conf->thread) {
7191 		pr_warn("md/raid:%s: couldn't allocate thread.\n",
7192 			mdname(mddev));
7193 		goto abort;
7194 	}
7195 
7196 	return conf;
7197 
7198  abort:
7199 	if (conf) {
7200 		free_conf(conf);
7201 		return ERR_PTR(-EIO);
7202 	} else
7203 		return ERR_PTR(-ENOMEM);
7204 }
7205 
7206 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7207 {
7208 	switch (algo) {
7209 	case ALGORITHM_PARITY_0:
7210 		if (raid_disk < max_degraded)
7211 			return 1;
7212 		break;
7213 	case ALGORITHM_PARITY_N:
7214 		if (raid_disk >= raid_disks - max_degraded)
7215 			return 1;
7216 		break;
7217 	case ALGORITHM_PARITY_0_6:
7218 		if (raid_disk == 0 ||
7219 		    raid_disk == raid_disks - 1)
7220 			return 1;
7221 		break;
7222 	case ALGORITHM_LEFT_ASYMMETRIC_6:
7223 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
7224 	case ALGORITHM_LEFT_SYMMETRIC_6:
7225 	case ALGORITHM_RIGHT_SYMMETRIC_6:
7226 		if (raid_disk == raid_disks - 1)
7227 			return 1;
7228 	}
7229 	return 0;
7230 }
7231 
7232 static int raid5_run(struct mddev *mddev)
7233 {
7234 	struct r5conf *conf;
7235 	int working_disks = 0;
7236 	int dirty_parity_disks = 0;
7237 	struct md_rdev *rdev;
7238 	struct md_rdev *journal_dev = NULL;
7239 	sector_t reshape_offset = 0;
7240 	int i;
7241 	long long min_offset_diff = 0;
7242 	int first = 1;
7243 
7244 	if (mddev_init_writes_pending(mddev) < 0)
7245 		return -ENOMEM;
7246 
7247 	if (mddev->recovery_cp != MaxSector)
7248 		pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7249 			  mdname(mddev));
7250 
7251 	rdev_for_each(rdev, mddev) {
7252 		long long diff;
7253 
7254 		if (test_bit(Journal, &rdev->flags)) {
7255 			journal_dev = rdev;
7256 			continue;
7257 		}
7258 		if (rdev->raid_disk < 0)
7259 			continue;
7260 		diff = (rdev->new_data_offset - rdev->data_offset);
7261 		if (first) {
7262 			min_offset_diff = diff;
7263 			first = 0;
7264 		} else if (mddev->reshape_backwards &&
7265 			 diff < min_offset_diff)
7266 			min_offset_diff = diff;
7267 		else if (!mddev->reshape_backwards &&
7268 			 diff > min_offset_diff)
7269 			min_offset_diff = diff;
7270 	}
7271 
7272 	if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7273 	    (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7274 		pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7275 			  mdname(mddev));
7276 		return -EINVAL;
7277 	}
7278 
7279 	if (mddev->reshape_position != MaxSector) {
7280 		/* Check that we can continue the reshape.
7281 		 * Difficulties arise if the stripe we would write to
7282 		 * next is at or after the stripe we would read from next.
7283 		 * For a reshape that changes the number of devices, this
7284 		 * is only possible for a very short time, and mdadm makes
7285 		 * sure that time appears to have past before assembling
7286 		 * the array.  So we fail if that time hasn't passed.
7287 		 * For a reshape that keeps the number of devices the same
7288 		 * mdadm must be monitoring the reshape can keeping the
7289 		 * critical areas read-only and backed up.  It will start
7290 		 * the array in read-only mode, so we check for that.
7291 		 */
7292 		sector_t here_new, here_old;
7293 		int old_disks;
7294 		int max_degraded = (mddev->level == 6 ? 2 : 1);
7295 		int chunk_sectors;
7296 		int new_data_disks;
7297 
7298 		if (journal_dev) {
7299 			pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7300 				mdname(mddev));
7301 			return -EINVAL;
7302 		}
7303 
7304 		if (mddev->new_level != mddev->level) {
7305 			pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7306 				mdname(mddev));
7307 			return -EINVAL;
7308 		}
7309 		old_disks = mddev->raid_disks - mddev->delta_disks;
7310 		/* reshape_position must be on a new-stripe boundary, and one
7311 		 * further up in new geometry must map after here in old
7312 		 * geometry.
7313 		 * If the chunk sizes are different, then as we perform reshape
7314 		 * in units of the largest of the two, reshape_position needs
7315 		 * be a multiple of the largest chunk size times new data disks.
7316 		 */
7317 		here_new = mddev->reshape_position;
7318 		chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7319 		new_data_disks = mddev->raid_disks - max_degraded;
7320 		if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7321 			pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7322 				mdname(mddev));
7323 			return -EINVAL;
7324 		}
7325 		reshape_offset = here_new * chunk_sectors;
7326 		/* here_new is the stripe we will write to */
7327 		here_old = mddev->reshape_position;
7328 		sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7329 		/* here_old is the first stripe that we might need to read
7330 		 * from */
7331 		if (mddev->delta_disks == 0) {
7332 			/* We cannot be sure it is safe to start an in-place
7333 			 * reshape.  It is only safe if user-space is monitoring
7334 			 * and taking constant backups.
7335 			 * mdadm always starts a situation like this in
7336 			 * readonly mode so it can take control before
7337 			 * allowing any writes.  So just check for that.
7338 			 */
7339 			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7340 			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
7341 				/* not really in-place - so OK */;
7342 			else if (mddev->ro == 0) {
7343 				pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7344 					mdname(mddev));
7345 				return -EINVAL;
7346 			}
7347 		} else if (mddev->reshape_backwards
7348 		    ? (here_new * chunk_sectors + min_offset_diff <=
7349 		       here_old * chunk_sectors)
7350 		    : (here_new * chunk_sectors >=
7351 		       here_old * chunk_sectors + (-min_offset_diff))) {
7352 			/* Reading from the same stripe as writing to - bad */
7353 			pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7354 				mdname(mddev));
7355 			return -EINVAL;
7356 		}
7357 		pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7358 		/* OK, we should be able to continue; */
7359 	} else {
7360 		BUG_ON(mddev->level != mddev->new_level);
7361 		BUG_ON(mddev->layout != mddev->new_layout);
7362 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7363 		BUG_ON(mddev->delta_disks != 0);
7364 	}
7365 
7366 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7367 	    test_bit(MD_HAS_PPL, &mddev->flags)) {
7368 		pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7369 			mdname(mddev));
7370 		clear_bit(MD_HAS_PPL, &mddev->flags);
7371 		clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
7372 	}
7373 
7374 	if (mddev->private == NULL)
7375 		conf = setup_conf(mddev);
7376 	else
7377 		conf = mddev->private;
7378 
7379 	if (IS_ERR(conf))
7380 		return PTR_ERR(conf);
7381 
7382 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7383 		if (!journal_dev) {
7384 			pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7385 				mdname(mddev));
7386 			mddev->ro = 1;
7387 			set_disk_ro(mddev->gendisk, 1);
7388 		} else if (mddev->recovery_cp == MaxSector)
7389 			set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7390 	}
7391 
7392 	conf->min_offset_diff = min_offset_diff;
7393 	mddev->thread = conf->thread;
7394 	conf->thread = NULL;
7395 	mddev->private = conf;
7396 
7397 	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7398 	     i++) {
7399 		rdev = conf->disks[i].rdev;
7400 		if (!rdev && conf->disks[i].replacement) {
7401 			/* The replacement is all we have yet */
7402 			rdev = conf->disks[i].replacement;
7403 			conf->disks[i].replacement = NULL;
7404 			clear_bit(Replacement, &rdev->flags);
7405 			conf->disks[i].rdev = rdev;
7406 		}
7407 		if (!rdev)
7408 			continue;
7409 		if (conf->disks[i].replacement &&
7410 		    conf->reshape_progress != MaxSector) {
7411 			/* replacements and reshape simply do not mix. */
7412 			pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7413 			goto abort;
7414 		}
7415 		if (test_bit(In_sync, &rdev->flags)) {
7416 			working_disks++;
7417 			continue;
7418 		}
7419 		/* This disc is not fully in-sync.  However if it
7420 		 * just stored parity (beyond the recovery_offset),
7421 		 * when we don't need to be concerned about the
7422 		 * array being dirty.
7423 		 * When reshape goes 'backwards', we never have
7424 		 * partially completed devices, so we only need
7425 		 * to worry about reshape going forwards.
7426 		 */
7427 		/* Hack because v0.91 doesn't store recovery_offset properly. */
7428 		if (mddev->major_version == 0 &&
7429 		    mddev->minor_version > 90)
7430 			rdev->recovery_offset = reshape_offset;
7431 
7432 		if (rdev->recovery_offset < reshape_offset) {
7433 			/* We need to check old and new layout */
7434 			if (!only_parity(rdev->raid_disk,
7435 					 conf->algorithm,
7436 					 conf->raid_disks,
7437 					 conf->max_degraded))
7438 				continue;
7439 		}
7440 		if (!only_parity(rdev->raid_disk,
7441 				 conf->prev_algo,
7442 				 conf->previous_raid_disks,
7443 				 conf->max_degraded))
7444 			continue;
7445 		dirty_parity_disks++;
7446 	}
7447 
7448 	/*
7449 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
7450 	 */
7451 	mddev->degraded = raid5_calc_degraded(conf);
7452 
7453 	if (has_failed(conf)) {
7454 		pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7455 			mdname(mddev), mddev->degraded, conf->raid_disks);
7456 		goto abort;
7457 	}
7458 
7459 	/* device size must be a multiple of chunk size */
7460 	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
7461 	mddev->resync_max_sectors = mddev->dev_sectors;
7462 
7463 	if (mddev->degraded > dirty_parity_disks &&
7464 	    mddev->recovery_cp != MaxSector) {
7465 		if (test_bit(MD_HAS_PPL, &mddev->flags))
7466 			pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7467 				mdname(mddev));
7468 		else if (mddev->ok_start_degraded)
7469 			pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7470 				mdname(mddev));
7471 		else {
7472 			pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7473 				mdname(mddev));
7474 			goto abort;
7475 		}
7476 	}
7477 
7478 	pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7479 		mdname(mddev), conf->level,
7480 		mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7481 		mddev->new_layout);
7482 
7483 	print_raid5_conf(conf);
7484 
7485 	if (conf->reshape_progress != MaxSector) {
7486 		conf->reshape_safe = conf->reshape_progress;
7487 		atomic_set(&conf->reshape_stripes, 0);
7488 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7489 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7490 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7491 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7492 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7493 							"reshape");
7494 		if (!mddev->sync_thread)
7495 			goto abort;
7496 	}
7497 
7498 	/* Ok, everything is just fine now */
7499 	if (mddev->to_remove == &raid5_attrs_group)
7500 		mddev->to_remove = NULL;
7501 	else if (mddev->kobj.sd &&
7502 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
7503 		pr_warn("raid5: failed to create sysfs attributes for %s\n",
7504 			mdname(mddev));
7505 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7506 
7507 	if (mddev->queue) {
7508 		int chunk_size;
7509 		/* read-ahead size must cover two whole stripes, which
7510 		 * is 2 * (datadisks) * chunksize where 'n' is the
7511 		 * number of raid devices
7512 		 */
7513 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
7514 		int stripe = data_disks *
7515 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
7516 		if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7517 			mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
7518 
7519 		chunk_size = mddev->chunk_sectors << 9;
7520 		blk_queue_io_min(mddev->queue, chunk_size);
7521 		blk_queue_io_opt(mddev->queue, chunk_size *
7522 				 (conf->raid_disks - conf->max_degraded));
7523 		mddev->queue->limits.raid_partial_stripes_expensive = 1;
7524 		/*
7525 		 * We can only discard a whole stripe. It doesn't make sense to
7526 		 * discard data disk but write parity disk
7527 		 */
7528 		stripe = stripe * PAGE_SIZE;
7529 		/* Round up to power of 2, as discard handling
7530 		 * currently assumes that */
7531 		while ((stripe-1) & stripe)
7532 			stripe = (stripe | (stripe-1)) + 1;
7533 		mddev->queue->limits.discard_alignment = stripe;
7534 		mddev->queue->limits.discard_granularity = stripe;
7535 
7536 		blk_queue_max_write_same_sectors(mddev->queue, 0);
7537 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
7538 
7539 		rdev_for_each(rdev, mddev) {
7540 			disk_stack_limits(mddev->gendisk, rdev->bdev,
7541 					  rdev->data_offset << 9);
7542 			disk_stack_limits(mddev->gendisk, rdev->bdev,
7543 					  rdev->new_data_offset << 9);
7544 		}
7545 
7546 		/*
7547 		 * zeroing is required, otherwise data
7548 		 * could be lost. Consider a scenario: discard a stripe
7549 		 * (the stripe could be inconsistent if
7550 		 * discard_zeroes_data is 0); write one disk of the
7551 		 * stripe (the stripe could be inconsistent again
7552 		 * depending on which disks are used to calculate
7553 		 * parity); the disk is broken; The stripe data of this
7554 		 * disk is lost.
7555 		 *
7556 		 * We only allow DISCARD if the sysadmin has confirmed that
7557 		 * only safe devices are in use by setting a module parameter.
7558 		 * A better idea might be to turn DISCARD into WRITE_ZEROES
7559 		 * requests, as that is required to be safe.
7560 		 */
7561 		if (devices_handle_discard_safely &&
7562 		    mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7563 		    mddev->queue->limits.discard_granularity >= stripe)
7564 			blk_queue_flag_set(QUEUE_FLAG_DISCARD,
7565 						mddev->queue);
7566 		else
7567 			blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
7568 						mddev->queue);
7569 
7570 		blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
7571 	}
7572 
7573 	if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
7574 		goto abort;
7575 
7576 	return 0;
7577 abort:
7578 	md_unregister_thread(&mddev->thread);
7579 	print_raid5_conf(conf);
7580 	free_conf(conf);
7581 	mddev->private = NULL;
7582 	pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
7583 	return -EIO;
7584 }
7585 
7586 static void raid5_free(struct mddev *mddev, void *priv)
7587 {
7588 	struct r5conf *conf = priv;
7589 
7590 	free_conf(conf);
7591 	mddev->to_remove = &raid5_attrs_group;
7592 }
7593 
7594 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7595 {
7596 	struct r5conf *conf = mddev->private;
7597 	int i;
7598 
7599 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7600 		conf->chunk_sectors / 2, mddev->layout);
7601 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7602 	rcu_read_lock();
7603 	for (i = 0; i < conf->raid_disks; i++) {
7604 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7605 		seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7606 	}
7607 	rcu_read_unlock();
7608 	seq_printf (seq, "]");
7609 }
7610 
7611 static void print_raid5_conf (struct r5conf *conf)
7612 {
7613 	int i;
7614 	struct disk_info *tmp;
7615 
7616 	pr_debug("RAID conf printout:\n");
7617 	if (!conf) {
7618 		pr_debug("(conf==NULL)\n");
7619 		return;
7620 	}
7621 	pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
7622 	       conf->raid_disks,
7623 	       conf->raid_disks - conf->mddev->degraded);
7624 
7625 	for (i = 0; i < conf->raid_disks; i++) {
7626 		char b[BDEVNAME_SIZE];
7627 		tmp = conf->disks + i;
7628 		if (tmp->rdev)
7629 			pr_debug(" disk %d, o:%d, dev:%s\n",
7630 			       i, !test_bit(Faulty, &tmp->rdev->flags),
7631 			       bdevname(tmp->rdev->bdev, b));
7632 	}
7633 }
7634 
7635 static int raid5_spare_active(struct mddev *mddev)
7636 {
7637 	int i;
7638 	struct r5conf *conf = mddev->private;
7639 	struct disk_info *tmp;
7640 	int count = 0;
7641 	unsigned long flags;
7642 
7643 	for (i = 0; i < conf->raid_disks; i++) {
7644 		tmp = conf->disks + i;
7645 		if (tmp->replacement
7646 		    && tmp->replacement->recovery_offset == MaxSector
7647 		    && !test_bit(Faulty, &tmp->replacement->flags)
7648 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7649 			/* Replacement has just become active. */
7650 			if (!tmp->rdev
7651 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7652 				count++;
7653 			if (tmp->rdev) {
7654 				/* Replaced device not technically faulty,
7655 				 * but we need to be sure it gets removed
7656 				 * and never re-added.
7657 				 */
7658 				set_bit(Faulty, &tmp->rdev->flags);
7659 				sysfs_notify_dirent_safe(
7660 					tmp->rdev->sysfs_state);
7661 			}
7662 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7663 		} else if (tmp->rdev
7664 		    && tmp->rdev->recovery_offset == MaxSector
7665 		    && !test_bit(Faulty, &tmp->rdev->flags)
7666 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7667 			count++;
7668 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7669 		}
7670 	}
7671 	spin_lock_irqsave(&conf->device_lock, flags);
7672 	mddev->degraded = raid5_calc_degraded(conf);
7673 	spin_unlock_irqrestore(&conf->device_lock, flags);
7674 	print_raid5_conf(conf);
7675 	return count;
7676 }
7677 
7678 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7679 {
7680 	struct r5conf *conf = mddev->private;
7681 	int err = 0;
7682 	int number = rdev->raid_disk;
7683 	struct md_rdev **rdevp;
7684 	struct disk_info *p = conf->disks + number;
7685 
7686 	print_raid5_conf(conf);
7687 	if (test_bit(Journal, &rdev->flags) && conf->log) {
7688 		/*
7689 		 * we can't wait pending write here, as this is called in
7690 		 * raid5d, wait will deadlock.
7691 		 * neilb: there is no locking about new writes here,
7692 		 * so this cannot be safe.
7693 		 */
7694 		if (atomic_read(&conf->active_stripes) ||
7695 		    atomic_read(&conf->r5c_cached_full_stripes) ||
7696 		    atomic_read(&conf->r5c_cached_partial_stripes)) {
7697 			return -EBUSY;
7698 		}
7699 		log_exit(conf);
7700 		return 0;
7701 	}
7702 	if (rdev == p->rdev)
7703 		rdevp = &p->rdev;
7704 	else if (rdev == p->replacement)
7705 		rdevp = &p->replacement;
7706 	else
7707 		return 0;
7708 
7709 	if (number >= conf->raid_disks &&
7710 	    conf->reshape_progress == MaxSector)
7711 		clear_bit(In_sync, &rdev->flags);
7712 
7713 	if (test_bit(In_sync, &rdev->flags) ||
7714 	    atomic_read(&rdev->nr_pending)) {
7715 		err = -EBUSY;
7716 		goto abort;
7717 	}
7718 	/* Only remove non-faulty devices if recovery
7719 	 * isn't possible.
7720 	 */
7721 	if (!test_bit(Faulty, &rdev->flags) &&
7722 	    mddev->recovery_disabled != conf->recovery_disabled &&
7723 	    !has_failed(conf) &&
7724 	    (!p->replacement || p->replacement == rdev) &&
7725 	    number < conf->raid_disks) {
7726 		err = -EBUSY;
7727 		goto abort;
7728 	}
7729 	*rdevp = NULL;
7730 	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7731 		synchronize_rcu();
7732 		if (atomic_read(&rdev->nr_pending)) {
7733 			/* lost the race, try later */
7734 			err = -EBUSY;
7735 			*rdevp = rdev;
7736 		}
7737 	}
7738 	if (!err) {
7739 		err = log_modify(conf, rdev, false);
7740 		if (err)
7741 			goto abort;
7742 	}
7743 	if (p->replacement) {
7744 		/* We must have just cleared 'rdev' */
7745 		p->rdev = p->replacement;
7746 		clear_bit(Replacement, &p->replacement->flags);
7747 		smp_mb(); /* Make sure other CPUs may see both as identical
7748 			   * but will never see neither - if they are careful
7749 			   */
7750 		p->replacement = NULL;
7751 
7752 		if (!err)
7753 			err = log_modify(conf, p->rdev, true);
7754 	}
7755 
7756 	clear_bit(WantReplacement, &rdev->flags);
7757 abort:
7758 
7759 	print_raid5_conf(conf);
7760 	return err;
7761 }
7762 
7763 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7764 {
7765 	struct r5conf *conf = mddev->private;
7766 	int ret, err = -EEXIST;
7767 	int disk;
7768 	struct disk_info *p;
7769 	int first = 0;
7770 	int last = conf->raid_disks - 1;
7771 
7772 	if (test_bit(Journal, &rdev->flags)) {
7773 		if (conf->log)
7774 			return -EBUSY;
7775 
7776 		rdev->raid_disk = 0;
7777 		/*
7778 		 * The array is in readonly mode if journal is missing, so no
7779 		 * write requests running. We should be safe
7780 		 */
7781 		ret = log_init(conf, rdev, false);
7782 		if (ret)
7783 			return ret;
7784 
7785 		ret = r5l_start(conf->log);
7786 		if (ret)
7787 			return ret;
7788 
7789 		return 0;
7790 	}
7791 	if (mddev->recovery_disabled == conf->recovery_disabled)
7792 		return -EBUSY;
7793 
7794 	if (rdev->saved_raid_disk < 0 && has_failed(conf))
7795 		/* no point adding a device */
7796 		return -EINVAL;
7797 
7798 	if (rdev->raid_disk >= 0)
7799 		first = last = rdev->raid_disk;
7800 
7801 	/*
7802 	 * find the disk ... but prefer rdev->saved_raid_disk
7803 	 * if possible.
7804 	 */
7805 	if (rdev->saved_raid_disk >= 0 &&
7806 	    rdev->saved_raid_disk >= first &&
7807 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
7808 		first = rdev->saved_raid_disk;
7809 
7810 	for (disk = first; disk <= last; disk++) {
7811 		p = conf->disks + disk;
7812 		if (p->rdev == NULL) {
7813 			clear_bit(In_sync, &rdev->flags);
7814 			rdev->raid_disk = disk;
7815 			if (rdev->saved_raid_disk != disk)
7816 				conf->fullsync = 1;
7817 			rcu_assign_pointer(p->rdev, rdev);
7818 
7819 			err = log_modify(conf, rdev, true);
7820 
7821 			goto out;
7822 		}
7823 	}
7824 	for (disk = first; disk <= last; disk++) {
7825 		p = conf->disks + disk;
7826 		if (test_bit(WantReplacement, &p->rdev->flags) &&
7827 		    p->replacement == NULL) {
7828 			clear_bit(In_sync, &rdev->flags);
7829 			set_bit(Replacement, &rdev->flags);
7830 			rdev->raid_disk = disk;
7831 			err = 0;
7832 			conf->fullsync = 1;
7833 			rcu_assign_pointer(p->replacement, rdev);
7834 			break;
7835 		}
7836 	}
7837 out:
7838 	print_raid5_conf(conf);
7839 	return err;
7840 }
7841 
7842 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7843 {
7844 	/* no resync is happening, and there is enough space
7845 	 * on all devices, so we can resize.
7846 	 * We need to make sure resync covers any new space.
7847 	 * If the array is shrinking we should possibly wait until
7848 	 * any io in the removed space completes, but it hardly seems
7849 	 * worth it.
7850 	 */
7851 	sector_t newsize;
7852 	struct r5conf *conf = mddev->private;
7853 
7854 	if (raid5_has_log(conf) || raid5_has_ppl(conf))
7855 		return -EINVAL;
7856 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
7857 	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7858 	if (mddev->external_size &&
7859 	    mddev->array_sectors > newsize)
7860 		return -EINVAL;
7861 	if (mddev->bitmap) {
7862 		int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0);
7863 		if (ret)
7864 			return ret;
7865 	}
7866 	md_set_array_sectors(mddev, newsize);
7867 	if (sectors > mddev->dev_sectors &&
7868 	    mddev->recovery_cp > mddev->dev_sectors) {
7869 		mddev->recovery_cp = mddev->dev_sectors;
7870 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7871 	}
7872 	mddev->dev_sectors = sectors;
7873 	mddev->resync_max_sectors = sectors;
7874 	return 0;
7875 }
7876 
7877 static int check_stripe_cache(struct mddev *mddev)
7878 {
7879 	/* Can only proceed if there are plenty of stripe_heads.
7880 	 * We need a minimum of one full stripe,, and for sensible progress
7881 	 * it is best to have about 4 times that.
7882 	 * If we require 4 times, then the default 256 4K stripe_heads will
7883 	 * allow for chunk sizes up to 256K, which is probably OK.
7884 	 * If the chunk size is greater, user-space should request more
7885 	 * stripe_heads first.
7886 	 */
7887 	struct r5conf *conf = mddev->private;
7888 	if (((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
7889 	    > conf->min_nr_stripes ||
7890 	    ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
7891 	    > conf->min_nr_stripes) {
7892 		pr_warn("md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7893 			mdname(mddev),
7894 			((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7895 			 / RAID5_STRIPE_SIZE(conf))*4);
7896 		return 0;
7897 	}
7898 	return 1;
7899 }
7900 
7901 static int check_reshape(struct mddev *mddev)
7902 {
7903 	struct r5conf *conf = mddev->private;
7904 
7905 	if (raid5_has_log(conf) || raid5_has_ppl(conf))
7906 		return -EINVAL;
7907 	if (mddev->delta_disks == 0 &&
7908 	    mddev->new_layout == mddev->layout &&
7909 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
7910 		return 0; /* nothing to do */
7911 	if (has_failed(conf))
7912 		return -EINVAL;
7913 	if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7914 		/* We might be able to shrink, but the devices must
7915 		 * be made bigger first.
7916 		 * For raid6, 4 is the minimum size.
7917 		 * Otherwise 2 is the minimum
7918 		 */
7919 		int min = 2;
7920 		if (mddev->level == 6)
7921 			min = 4;
7922 		if (mddev->raid_disks + mddev->delta_disks < min)
7923 			return -EINVAL;
7924 	}
7925 
7926 	if (!check_stripe_cache(mddev))
7927 		return -ENOSPC;
7928 
7929 	if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7930 	    mddev->delta_disks > 0)
7931 		if (resize_chunks(conf,
7932 				  conf->previous_raid_disks
7933 				  + max(0, mddev->delta_disks),
7934 				  max(mddev->new_chunk_sectors,
7935 				      mddev->chunk_sectors)
7936 			    ) < 0)
7937 			return -ENOMEM;
7938 
7939 	if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
7940 		return 0; /* never bother to shrink */
7941 	return resize_stripes(conf, (conf->previous_raid_disks
7942 				     + mddev->delta_disks));
7943 }
7944 
7945 static int raid5_start_reshape(struct mddev *mddev)
7946 {
7947 	struct r5conf *conf = mddev->private;
7948 	struct md_rdev *rdev;
7949 	int spares = 0;
7950 	unsigned long flags;
7951 
7952 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7953 		return -EBUSY;
7954 
7955 	if (!check_stripe_cache(mddev))
7956 		return -ENOSPC;
7957 
7958 	if (has_failed(conf))
7959 		return -EINVAL;
7960 
7961 	rdev_for_each(rdev, mddev) {
7962 		if (!test_bit(In_sync, &rdev->flags)
7963 		    && !test_bit(Faulty, &rdev->flags))
7964 			spares++;
7965 	}
7966 
7967 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7968 		/* Not enough devices even to make a degraded array
7969 		 * of that size
7970 		 */
7971 		return -EINVAL;
7972 
7973 	/* Refuse to reduce size of the array.  Any reductions in
7974 	 * array size must be through explicit setting of array_size
7975 	 * attribute.
7976 	 */
7977 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7978 	    < mddev->array_sectors) {
7979 		pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
7980 			mdname(mddev));
7981 		return -EINVAL;
7982 	}
7983 
7984 	atomic_set(&conf->reshape_stripes, 0);
7985 	spin_lock_irq(&conf->device_lock);
7986 	write_seqcount_begin(&conf->gen_lock);
7987 	conf->previous_raid_disks = conf->raid_disks;
7988 	conf->raid_disks += mddev->delta_disks;
7989 	conf->prev_chunk_sectors = conf->chunk_sectors;
7990 	conf->chunk_sectors = mddev->new_chunk_sectors;
7991 	conf->prev_algo = conf->algorithm;
7992 	conf->algorithm = mddev->new_layout;
7993 	conf->generation++;
7994 	/* Code that selects data_offset needs to see the generation update
7995 	 * if reshape_progress has been set - so a memory barrier needed.
7996 	 */
7997 	smp_mb();
7998 	if (mddev->reshape_backwards)
7999 		conf->reshape_progress = raid5_size(mddev, 0, 0);
8000 	else
8001 		conf->reshape_progress = 0;
8002 	conf->reshape_safe = conf->reshape_progress;
8003 	write_seqcount_end(&conf->gen_lock);
8004 	spin_unlock_irq(&conf->device_lock);
8005 
8006 	/* Now make sure any requests that proceeded on the assumption
8007 	 * the reshape wasn't running - like Discard or Read - have
8008 	 * completed.
8009 	 */
8010 	mddev_suspend(mddev);
8011 	mddev_resume(mddev);
8012 
8013 	/* Add some new drives, as many as will fit.
8014 	 * We know there are enough to make the newly sized array work.
8015 	 * Don't add devices if we are reducing the number of
8016 	 * devices in the array.  This is because it is not possible
8017 	 * to correctly record the "partially reconstructed" state of
8018 	 * such devices during the reshape and confusion could result.
8019 	 */
8020 	if (mddev->delta_disks >= 0) {
8021 		rdev_for_each(rdev, mddev)
8022 			if (rdev->raid_disk < 0 &&
8023 			    !test_bit(Faulty, &rdev->flags)) {
8024 				if (raid5_add_disk(mddev, rdev) == 0) {
8025 					if (rdev->raid_disk
8026 					    >= conf->previous_raid_disks)
8027 						set_bit(In_sync, &rdev->flags);
8028 					else
8029 						rdev->recovery_offset = 0;
8030 
8031 					/* Failure here is OK */
8032 					sysfs_link_rdev(mddev, rdev);
8033 				}
8034 			} else if (rdev->raid_disk >= conf->previous_raid_disks
8035 				   && !test_bit(Faulty, &rdev->flags)) {
8036 				/* This is a spare that was manually added */
8037 				set_bit(In_sync, &rdev->flags);
8038 			}
8039 
8040 		/* When a reshape changes the number of devices,
8041 		 * ->degraded is measured against the larger of the
8042 		 * pre and post number of devices.
8043 		 */
8044 		spin_lock_irqsave(&conf->device_lock, flags);
8045 		mddev->degraded = raid5_calc_degraded(conf);
8046 		spin_unlock_irqrestore(&conf->device_lock, flags);
8047 	}
8048 	mddev->raid_disks = conf->raid_disks;
8049 	mddev->reshape_position = conf->reshape_progress;
8050 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8051 
8052 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8053 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8054 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8055 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8056 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8057 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
8058 						"reshape");
8059 	if (!mddev->sync_thread) {
8060 		mddev->recovery = 0;
8061 		spin_lock_irq(&conf->device_lock);
8062 		write_seqcount_begin(&conf->gen_lock);
8063 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
8064 		mddev->new_chunk_sectors =
8065 			conf->chunk_sectors = conf->prev_chunk_sectors;
8066 		mddev->new_layout = conf->algorithm = conf->prev_algo;
8067 		rdev_for_each(rdev, mddev)
8068 			rdev->new_data_offset = rdev->data_offset;
8069 		smp_wmb();
8070 		conf->generation --;
8071 		conf->reshape_progress = MaxSector;
8072 		mddev->reshape_position = MaxSector;
8073 		write_seqcount_end(&conf->gen_lock);
8074 		spin_unlock_irq(&conf->device_lock);
8075 		return -EAGAIN;
8076 	}
8077 	conf->reshape_checkpoint = jiffies;
8078 	md_wakeup_thread(mddev->sync_thread);
8079 	md_new_event(mddev);
8080 	return 0;
8081 }
8082 
8083 /* This is called from the reshape thread and should make any
8084  * changes needed in 'conf'
8085  */
8086 static void end_reshape(struct r5conf *conf)
8087 {
8088 
8089 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
8090 		struct md_rdev *rdev;
8091 
8092 		spin_lock_irq(&conf->device_lock);
8093 		conf->previous_raid_disks = conf->raid_disks;
8094 		md_finish_reshape(conf->mddev);
8095 		smp_wmb();
8096 		conf->reshape_progress = MaxSector;
8097 		conf->mddev->reshape_position = MaxSector;
8098 		rdev_for_each(rdev, conf->mddev)
8099 			if (rdev->raid_disk >= 0 &&
8100 			    !test_bit(Journal, &rdev->flags) &&
8101 			    !test_bit(In_sync, &rdev->flags))
8102 				rdev->recovery_offset = MaxSector;
8103 		spin_unlock_irq(&conf->device_lock);
8104 		wake_up(&conf->wait_for_overlap);
8105 
8106 		/* read-ahead size must cover two whole stripes, which is
8107 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
8108 		 */
8109 		if (conf->mddev->queue) {
8110 			int data_disks = conf->raid_disks - conf->max_degraded;
8111 			int stripe = data_disks * ((conf->chunk_sectors << 9)
8112 						   / PAGE_SIZE);
8113 			if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
8114 				conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
8115 		}
8116 	}
8117 }
8118 
8119 /* This is called from the raid5d thread with mddev_lock held.
8120  * It makes config changes to the device.
8121  */
8122 static void raid5_finish_reshape(struct mddev *mddev)
8123 {
8124 	struct r5conf *conf = mddev->private;
8125 
8126 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8127 
8128 		if (mddev->delta_disks <= 0) {
8129 			int d;
8130 			spin_lock_irq(&conf->device_lock);
8131 			mddev->degraded = raid5_calc_degraded(conf);
8132 			spin_unlock_irq(&conf->device_lock);
8133 			for (d = conf->raid_disks ;
8134 			     d < conf->raid_disks - mddev->delta_disks;
8135 			     d++) {
8136 				struct md_rdev *rdev = conf->disks[d].rdev;
8137 				if (rdev)
8138 					clear_bit(In_sync, &rdev->flags);
8139 				rdev = conf->disks[d].replacement;
8140 				if (rdev)
8141 					clear_bit(In_sync, &rdev->flags);
8142 			}
8143 		}
8144 		mddev->layout = conf->algorithm;
8145 		mddev->chunk_sectors = conf->chunk_sectors;
8146 		mddev->reshape_position = MaxSector;
8147 		mddev->delta_disks = 0;
8148 		mddev->reshape_backwards = 0;
8149 	}
8150 }
8151 
8152 static void raid5_quiesce(struct mddev *mddev, int quiesce)
8153 {
8154 	struct r5conf *conf = mddev->private;
8155 
8156 	if (quiesce) {
8157 		/* stop all writes */
8158 		lock_all_device_hash_locks_irq(conf);
8159 		/* '2' tells resync/reshape to pause so that all
8160 		 * active stripes can drain
8161 		 */
8162 		r5c_flush_cache(conf, INT_MAX);
8163 		conf->quiesce = 2;
8164 		wait_event_cmd(conf->wait_for_quiescent,
8165 				    atomic_read(&conf->active_stripes) == 0 &&
8166 				    atomic_read(&conf->active_aligned_reads) == 0,
8167 				    unlock_all_device_hash_locks_irq(conf),
8168 				    lock_all_device_hash_locks_irq(conf));
8169 		conf->quiesce = 1;
8170 		unlock_all_device_hash_locks_irq(conf);
8171 		/* allow reshape to continue */
8172 		wake_up(&conf->wait_for_overlap);
8173 	} else {
8174 		/* re-enable writes */
8175 		lock_all_device_hash_locks_irq(conf);
8176 		conf->quiesce = 0;
8177 		wake_up(&conf->wait_for_quiescent);
8178 		wake_up(&conf->wait_for_overlap);
8179 		unlock_all_device_hash_locks_irq(conf);
8180 	}
8181 	log_quiesce(conf, quiesce);
8182 }
8183 
8184 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8185 {
8186 	struct r0conf *raid0_conf = mddev->private;
8187 	sector_t sectors;
8188 
8189 	/* for raid0 takeover only one zone is supported */
8190 	if (raid0_conf->nr_strip_zones > 1) {
8191 		pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8192 			mdname(mddev));
8193 		return ERR_PTR(-EINVAL);
8194 	}
8195 
8196 	sectors = raid0_conf->strip_zone[0].zone_end;
8197 	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8198 	mddev->dev_sectors = sectors;
8199 	mddev->new_level = level;
8200 	mddev->new_layout = ALGORITHM_PARITY_N;
8201 	mddev->new_chunk_sectors = mddev->chunk_sectors;
8202 	mddev->raid_disks += 1;
8203 	mddev->delta_disks = 1;
8204 	/* make sure it will be not marked as dirty */
8205 	mddev->recovery_cp = MaxSector;
8206 
8207 	return setup_conf(mddev);
8208 }
8209 
8210 static void *raid5_takeover_raid1(struct mddev *mddev)
8211 {
8212 	int chunksect;
8213 	void *ret;
8214 
8215 	if (mddev->raid_disks != 2 ||
8216 	    mddev->degraded > 1)
8217 		return ERR_PTR(-EINVAL);
8218 
8219 	/* Should check if there are write-behind devices? */
8220 
8221 	chunksect = 64*2; /* 64K by default */
8222 
8223 	/* The array must be an exact multiple of chunksize */
8224 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
8225 		chunksect >>= 1;
8226 
8227 	if ((chunksect<<9) < RAID5_STRIPE_SIZE((struct r5conf *)mddev->private))
8228 		/* array size does not allow a suitable chunk size */
8229 		return ERR_PTR(-EINVAL);
8230 
8231 	mddev->new_level = 5;
8232 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8233 	mddev->new_chunk_sectors = chunksect;
8234 
8235 	ret = setup_conf(mddev);
8236 	if (!IS_ERR(ret))
8237 		mddev_clear_unsupported_flags(mddev,
8238 			UNSUPPORTED_MDDEV_FLAGS);
8239 	return ret;
8240 }
8241 
8242 static void *raid5_takeover_raid6(struct mddev *mddev)
8243 {
8244 	int new_layout;
8245 
8246 	switch (mddev->layout) {
8247 	case ALGORITHM_LEFT_ASYMMETRIC_6:
8248 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8249 		break;
8250 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
8251 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8252 		break;
8253 	case ALGORITHM_LEFT_SYMMETRIC_6:
8254 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
8255 		break;
8256 	case ALGORITHM_RIGHT_SYMMETRIC_6:
8257 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8258 		break;
8259 	case ALGORITHM_PARITY_0_6:
8260 		new_layout = ALGORITHM_PARITY_0;
8261 		break;
8262 	case ALGORITHM_PARITY_N:
8263 		new_layout = ALGORITHM_PARITY_N;
8264 		break;
8265 	default:
8266 		return ERR_PTR(-EINVAL);
8267 	}
8268 	mddev->new_level = 5;
8269 	mddev->new_layout = new_layout;
8270 	mddev->delta_disks = -1;
8271 	mddev->raid_disks -= 1;
8272 	return setup_conf(mddev);
8273 }
8274 
8275 static int raid5_check_reshape(struct mddev *mddev)
8276 {
8277 	/* For a 2-drive array, the layout and chunk size can be changed
8278 	 * immediately as not restriping is needed.
8279 	 * For larger arrays we record the new value - after validation
8280 	 * to be used by a reshape pass.
8281 	 */
8282 	struct r5conf *conf = mddev->private;
8283 	int new_chunk = mddev->new_chunk_sectors;
8284 
8285 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8286 		return -EINVAL;
8287 	if (new_chunk > 0) {
8288 		if (!is_power_of_2(new_chunk))
8289 			return -EINVAL;
8290 		if (new_chunk < (PAGE_SIZE>>9))
8291 			return -EINVAL;
8292 		if (mddev->array_sectors & (new_chunk-1))
8293 			/* not factor of array size */
8294 			return -EINVAL;
8295 	}
8296 
8297 	/* They look valid */
8298 
8299 	if (mddev->raid_disks == 2) {
8300 		/* can make the change immediately */
8301 		if (mddev->new_layout >= 0) {
8302 			conf->algorithm = mddev->new_layout;
8303 			mddev->layout = mddev->new_layout;
8304 		}
8305 		if (new_chunk > 0) {
8306 			conf->chunk_sectors = new_chunk ;
8307 			mddev->chunk_sectors = new_chunk;
8308 		}
8309 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8310 		md_wakeup_thread(mddev->thread);
8311 	}
8312 	return check_reshape(mddev);
8313 }
8314 
8315 static int raid6_check_reshape(struct mddev *mddev)
8316 {
8317 	int new_chunk = mddev->new_chunk_sectors;
8318 
8319 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8320 		return -EINVAL;
8321 	if (new_chunk > 0) {
8322 		if (!is_power_of_2(new_chunk))
8323 			return -EINVAL;
8324 		if (new_chunk < (PAGE_SIZE >> 9))
8325 			return -EINVAL;
8326 		if (mddev->array_sectors & (new_chunk-1))
8327 			/* not factor of array size */
8328 			return -EINVAL;
8329 	}
8330 
8331 	/* They look valid */
8332 	return check_reshape(mddev);
8333 }
8334 
8335 static void *raid5_takeover(struct mddev *mddev)
8336 {
8337 	/* raid5 can take over:
8338 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
8339 	 *  raid1 - if there are two drives.  We need to know the chunk size
8340 	 *  raid4 - trivial - just use a raid4 layout.
8341 	 *  raid6 - Providing it is a *_6 layout
8342 	 */
8343 	if (mddev->level == 0)
8344 		return raid45_takeover_raid0(mddev, 5);
8345 	if (mddev->level == 1)
8346 		return raid5_takeover_raid1(mddev);
8347 	if (mddev->level == 4) {
8348 		mddev->new_layout = ALGORITHM_PARITY_N;
8349 		mddev->new_level = 5;
8350 		return setup_conf(mddev);
8351 	}
8352 	if (mddev->level == 6)
8353 		return raid5_takeover_raid6(mddev);
8354 
8355 	return ERR_PTR(-EINVAL);
8356 }
8357 
8358 static void *raid4_takeover(struct mddev *mddev)
8359 {
8360 	/* raid4 can take over:
8361 	 *  raid0 - if there is only one strip zone
8362 	 *  raid5 - if layout is right
8363 	 */
8364 	if (mddev->level == 0)
8365 		return raid45_takeover_raid0(mddev, 4);
8366 	if (mddev->level == 5 &&
8367 	    mddev->layout == ALGORITHM_PARITY_N) {
8368 		mddev->new_layout = 0;
8369 		mddev->new_level = 4;
8370 		return setup_conf(mddev);
8371 	}
8372 	return ERR_PTR(-EINVAL);
8373 }
8374 
8375 static struct md_personality raid5_personality;
8376 
8377 static void *raid6_takeover(struct mddev *mddev)
8378 {
8379 	/* Currently can only take over a raid5.  We map the
8380 	 * personality to an equivalent raid6 personality
8381 	 * with the Q block at the end.
8382 	 */
8383 	int new_layout;
8384 
8385 	if (mddev->pers != &raid5_personality)
8386 		return ERR_PTR(-EINVAL);
8387 	if (mddev->degraded > 1)
8388 		return ERR_PTR(-EINVAL);
8389 	if (mddev->raid_disks > 253)
8390 		return ERR_PTR(-EINVAL);
8391 	if (mddev->raid_disks < 3)
8392 		return ERR_PTR(-EINVAL);
8393 
8394 	switch (mddev->layout) {
8395 	case ALGORITHM_LEFT_ASYMMETRIC:
8396 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8397 		break;
8398 	case ALGORITHM_RIGHT_ASYMMETRIC:
8399 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8400 		break;
8401 	case ALGORITHM_LEFT_SYMMETRIC:
8402 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8403 		break;
8404 	case ALGORITHM_RIGHT_SYMMETRIC:
8405 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8406 		break;
8407 	case ALGORITHM_PARITY_0:
8408 		new_layout = ALGORITHM_PARITY_0_6;
8409 		break;
8410 	case ALGORITHM_PARITY_N:
8411 		new_layout = ALGORITHM_PARITY_N;
8412 		break;
8413 	default:
8414 		return ERR_PTR(-EINVAL);
8415 	}
8416 	mddev->new_level = 6;
8417 	mddev->new_layout = new_layout;
8418 	mddev->delta_disks = 1;
8419 	mddev->raid_disks += 1;
8420 	return setup_conf(mddev);
8421 }
8422 
8423 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8424 {
8425 	struct r5conf *conf;
8426 	int err;
8427 
8428 	err = mddev_lock(mddev);
8429 	if (err)
8430 		return err;
8431 	conf = mddev->private;
8432 	if (!conf) {
8433 		mddev_unlock(mddev);
8434 		return -ENODEV;
8435 	}
8436 
8437 	if (strncmp(buf, "ppl", 3) == 0) {
8438 		/* ppl only works with RAID 5 */
8439 		if (!raid5_has_ppl(conf) && conf->level == 5) {
8440 			err = log_init(conf, NULL, true);
8441 			if (!err) {
8442 				err = resize_stripes(conf, conf->pool_size);
8443 				if (err)
8444 					log_exit(conf);
8445 			}
8446 		} else
8447 			err = -EINVAL;
8448 	} else if (strncmp(buf, "resync", 6) == 0) {
8449 		if (raid5_has_ppl(conf)) {
8450 			mddev_suspend(mddev);
8451 			log_exit(conf);
8452 			mddev_resume(mddev);
8453 			err = resize_stripes(conf, conf->pool_size);
8454 		} else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8455 			   r5l_log_disk_error(conf)) {
8456 			bool journal_dev_exists = false;
8457 			struct md_rdev *rdev;
8458 
8459 			rdev_for_each(rdev, mddev)
8460 				if (test_bit(Journal, &rdev->flags)) {
8461 					journal_dev_exists = true;
8462 					break;
8463 				}
8464 
8465 			if (!journal_dev_exists) {
8466 				mddev_suspend(mddev);
8467 				clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8468 				mddev_resume(mddev);
8469 			} else  /* need remove journal device first */
8470 				err = -EBUSY;
8471 		} else
8472 			err = -EINVAL;
8473 	} else {
8474 		err = -EINVAL;
8475 	}
8476 
8477 	if (!err)
8478 		md_update_sb(mddev, 1);
8479 
8480 	mddev_unlock(mddev);
8481 
8482 	return err;
8483 }
8484 
8485 static int raid5_start(struct mddev *mddev)
8486 {
8487 	struct r5conf *conf = mddev->private;
8488 
8489 	return r5l_start(conf->log);
8490 }
8491 
8492 static struct md_personality raid6_personality =
8493 {
8494 	.name		= "raid6",
8495 	.level		= 6,
8496 	.owner		= THIS_MODULE,
8497 	.make_request	= raid5_make_request,
8498 	.run		= raid5_run,
8499 	.start		= raid5_start,
8500 	.free		= raid5_free,
8501 	.status		= raid5_status,
8502 	.error_handler	= raid5_error,
8503 	.hot_add_disk	= raid5_add_disk,
8504 	.hot_remove_disk= raid5_remove_disk,
8505 	.spare_active	= raid5_spare_active,
8506 	.sync_request	= raid5_sync_request,
8507 	.resize		= raid5_resize,
8508 	.size		= raid5_size,
8509 	.check_reshape	= raid6_check_reshape,
8510 	.start_reshape  = raid5_start_reshape,
8511 	.finish_reshape = raid5_finish_reshape,
8512 	.quiesce	= raid5_quiesce,
8513 	.takeover	= raid6_takeover,
8514 	.change_consistency_policy = raid5_change_consistency_policy,
8515 };
8516 static struct md_personality raid5_personality =
8517 {
8518 	.name		= "raid5",
8519 	.level		= 5,
8520 	.owner		= THIS_MODULE,
8521 	.make_request	= raid5_make_request,
8522 	.run		= raid5_run,
8523 	.start		= raid5_start,
8524 	.free		= raid5_free,
8525 	.status		= raid5_status,
8526 	.error_handler	= raid5_error,
8527 	.hot_add_disk	= raid5_add_disk,
8528 	.hot_remove_disk= raid5_remove_disk,
8529 	.spare_active	= raid5_spare_active,
8530 	.sync_request	= raid5_sync_request,
8531 	.resize		= raid5_resize,
8532 	.size		= raid5_size,
8533 	.check_reshape	= raid5_check_reshape,
8534 	.start_reshape  = raid5_start_reshape,
8535 	.finish_reshape = raid5_finish_reshape,
8536 	.quiesce	= raid5_quiesce,
8537 	.takeover	= raid5_takeover,
8538 	.change_consistency_policy = raid5_change_consistency_policy,
8539 };
8540 
8541 static struct md_personality raid4_personality =
8542 {
8543 	.name		= "raid4",
8544 	.level		= 4,
8545 	.owner		= THIS_MODULE,
8546 	.make_request	= raid5_make_request,
8547 	.run		= raid5_run,
8548 	.start		= raid5_start,
8549 	.free		= raid5_free,
8550 	.status		= raid5_status,
8551 	.error_handler	= raid5_error,
8552 	.hot_add_disk	= raid5_add_disk,
8553 	.hot_remove_disk= raid5_remove_disk,
8554 	.spare_active	= raid5_spare_active,
8555 	.sync_request	= raid5_sync_request,
8556 	.resize		= raid5_resize,
8557 	.size		= raid5_size,
8558 	.check_reshape	= raid5_check_reshape,
8559 	.start_reshape  = raid5_start_reshape,
8560 	.finish_reshape = raid5_finish_reshape,
8561 	.quiesce	= raid5_quiesce,
8562 	.takeover	= raid4_takeover,
8563 	.change_consistency_policy = raid5_change_consistency_policy,
8564 };
8565 
8566 static int __init raid5_init(void)
8567 {
8568 	int ret;
8569 
8570 	raid5_wq = alloc_workqueue("raid5wq",
8571 		WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8572 	if (!raid5_wq)
8573 		return -ENOMEM;
8574 
8575 	ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8576 				      "md/raid5:prepare",
8577 				      raid456_cpu_up_prepare,
8578 				      raid456_cpu_dead);
8579 	if (ret) {
8580 		destroy_workqueue(raid5_wq);
8581 		return ret;
8582 	}
8583 	register_md_personality(&raid6_personality);
8584 	register_md_personality(&raid5_personality);
8585 	register_md_personality(&raid4_personality);
8586 	return 0;
8587 }
8588 
8589 static void raid5_exit(void)
8590 {
8591 	unregister_md_personality(&raid6_personality);
8592 	unregister_md_personality(&raid5_personality);
8593 	unregister_md_personality(&raid4_personality);
8594 	cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
8595 	destroy_workqueue(raid5_wq);
8596 }
8597 
8598 module_init(raid5_init);
8599 module_exit(raid5_exit);
8600 MODULE_LICENSE("GPL");
8601 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8602 MODULE_ALIAS("md-personality-4"); /* RAID5 */
8603 MODULE_ALIAS("md-raid5");
8604 MODULE_ALIAS("md-raid4");
8605 MODULE_ALIAS("md-level-5");
8606 MODULE_ALIAS("md-level-4");
8607 MODULE_ALIAS("md-personality-8"); /* RAID6 */
8608 MODULE_ALIAS("md-raid6");
8609 MODULE_ALIAS("md-level-6");
8610 
8611 /* This used to be two separate modules, they were: */
8612 MODULE_ALIAS("raid5");
8613 MODULE_ALIAS("raid6");
8614