xref: /linux/drivers/md/raid5.c (revision 95e9fd10f06cb5642028b6b851e32b8c8afb4571)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include "md.h"
57 #include "raid5.h"
58 #include "raid0.h"
59 #include "bitmap.h"
60 
61 /*
62  * Stripe cache
63  */
64 
65 #define NR_STRIPES		256
66 #define STRIPE_SIZE		PAGE_SIZE
67 #define STRIPE_SHIFT		(PAGE_SHIFT - 9)
68 #define STRIPE_SECTORS		(STRIPE_SIZE>>9)
69 #define	IO_THRESHOLD		1
70 #define BYPASS_THRESHOLD	1
71 #define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
72 #define HASH_MASK		(NR_HASH - 1)
73 
74 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
75 {
76 	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
77 	return &conf->stripe_hashtbl[hash];
78 }
79 
80 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
81  * order without overlap.  There may be several bio's per stripe+device, and
82  * a bio could span several devices.
83  * When walking this list for a particular stripe+device, we must never proceed
84  * beyond a bio that extends past this device, as the next bio might no longer
85  * be valid.
86  * This function is used to determine the 'next' bio in the list, given the sector
87  * of the current stripe+device
88  */
89 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
90 {
91 	int sectors = bio->bi_size >> 9;
92 	if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
93 		return bio->bi_next;
94 	else
95 		return NULL;
96 }
97 
98 /*
99  * We maintain a biased count of active stripes in the bottom 16 bits of
100  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
101  */
102 static inline int raid5_bi_processed_stripes(struct bio *bio)
103 {
104 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
105 	return (atomic_read(segments) >> 16) & 0xffff;
106 }
107 
108 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
109 {
110 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
111 	return atomic_sub_return(1, segments) & 0xffff;
112 }
113 
114 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
115 {
116 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
117 	atomic_inc(segments);
118 }
119 
120 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
121 	unsigned int cnt)
122 {
123 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
124 	int old, new;
125 
126 	do {
127 		old = atomic_read(segments);
128 		new = (old & 0xffff) | (cnt << 16);
129 	} while (atomic_cmpxchg(segments, old, new) != old);
130 }
131 
132 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
133 {
134 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
135 	atomic_set(segments, cnt);
136 }
137 
138 /* Find first data disk in a raid6 stripe */
139 static inline int raid6_d0(struct stripe_head *sh)
140 {
141 	if (sh->ddf_layout)
142 		/* ddf always start from first device */
143 		return 0;
144 	/* md starts just after Q block */
145 	if (sh->qd_idx == sh->disks - 1)
146 		return 0;
147 	else
148 		return sh->qd_idx + 1;
149 }
150 static inline int raid6_next_disk(int disk, int raid_disks)
151 {
152 	disk++;
153 	return (disk < raid_disks) ? disk : 0;
154 }
155 
156 /* When walking through the disks in a raid5, starting at raid6_d0,
157  * We need to map each disk to a 'slot', where the data disks are slot
158  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
159  * is raid_disks-1.  This help does that mapping.
160  */
161 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
162 			     int *count, int syndrome_disks)
163 {
164 	int slot = *count;
165 
166 	if (sh->ddf_layout)
167 		(*count)++;
168 	if (idx == sh->pd_idx)
169 		return syndrome_disks;
170 	if (idx == sh->qd_idx)
171 		return syndrome_disks + 1;
172 	if (!sh->ddf_layout)
173 		(*count)++;
174 	return slot;
175 }
176 
177 static void return_io(struct bio *return_bi)
178 {
179 	struct bio *bi = return_bi;
180 	while (bi) {
181 
182 		return_bi = bi->bi_next;
183 		bi->bi_next = NULL;
184 		bi->bi_size = 0;
185 		bio_endio(bi, 0);
186 		bi = return_bi;
187 	}
188 }
189 
190 static void print_raid5_conf (struct r5conf *conf);
191 
192 static int stripe_operations_active(struct stripe_head *sh)
193 {
194 	return sh->check_state || sh->reconstruct_state ||
195 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
196 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
197 }
198 
199 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh)
200 {
201 	BUG_ON(!list_empty(&sh->lru));
202 	BUG_ON(atomic_read(&conf->active_stripes)==0);
203 	if (test_bit(STRIPE_HANDLE, &sh->state)) {
204 		if (test_bit(STRIPE_DELAYED, &sh->state) &&
205 		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
206 			list_add_tail(&sh->lru, &conf->delayed_list);
207 		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
208 			   sh->bm_seq - conf->seq_write > 0)
209 			list_add_tail(&sh->lru, &conf->bitmap_list);
210 		else {
211 			clear_bit(STRIPE_DELAYED, &sh->state);
212 			clear_bit(STRIPE_BIT_DELAY, &sh->state);
213 			list_add_tail(&sh->lru, &conf->handle_list);
214 		}
215 		md_wakeup_thread(conf->mddev->thread);
216 	} else {
217 		BUG_ON(stripe_operations_active(sh));
218 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
219 			if (atomic_dec_return(&conf->preread_active_stripes)
220 			    < IO_THRESHOLD)
221 				md_wakeup_thread(conf->mddev->thread);
222 		atomic_dec(&conf->active_stripes);
223 		if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
224 			list_add_tail(&sh->lru, &conf->inactive_list);
225 			wake_up(&conf->wait_for_stripe);
226 			if (conf->retry_read_aligned)
227 				md_wakeup_thread(conf->mddev->thread);
228 		}
229 	}
230 }
231 
232 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
233 {
234 	if (atomic_dec_and_test(&sh->count))
235 		do_release_stripe(conf, sh);
236 }
237 
238 static void release_stripe(struct stripe_head *sh)
239 {
240 	struct r5conf *conf = sh->raid_conf;
241 	unsigned long flags;
242 
243 	local_irq_save(flags);
244 	if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
245 		do_release_stripe(conf, sh);
246 		spin_unlock(&conf->device_lock);
247 	}
248 	local_irq_restore(flags);
249 }
250 
251 static inline void remove_hash(struct stripe_head *sh)
252 {
253 	pr_debug("remove_hash(), stripe %llu\n",
254 		(unsigned long long)sh->sector);
255 
256 	hlist_del_init(&sh->hash);
257 }
258 
259 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
260 {
261 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
262 
263 	pr_debug("insert_hash(), stripe %llu\n",
264 		(unsigned long long)sh->sector);
265 
266 	hlist_add_head(&sh->hash, hp);
267 }
268 
269 
270 /* find an idle stripe, make sure it is unhashed, and return it. */
271 static struct stripe_head *get_free_stripe(struct r5conf *conf)
272 {
273 	struct stripe_head *sh = NULL;
274 	struct list_head *first;
275 
276 	if (list_empty(&conf->inactive_list))
277 		goto out;
278 	first = conf->inactive_list.next;
279 	sh = list_entry(first, struct stripe_head, lru);
280 	list_del_init(first);
281 	remove_hash(sh);
282 	atomic_inc(&conf->active_stripes);
283 out:
284 	return sh;
285 }
286 
287 static void shrink_buffers(struct stripe_head *sh)
288 {
289 	struct page *p;
290 	int i;
291 	int num = sh->raid_conf->pool_size;
292 
293 	for (i = 0; i < num ; i++) {
294 		p = sh->dev[i].page;
295 		if (!p)
296 			continue;
297 		sh->dev[i].page = NULL;
298 		put_page(p);
299 	}
300 }
301 
302 static int grow_buffers(struct stripe_head *sh)
303 {
304 	int i;
305 	int num = sh->raid_conf->pool_size;
306 
307 	for (i = 0; i < num; i++) {
308 		struct page *page;
309 
310 		if (!(page = alloc_page(GFP_KERNEL))) {
311 			return 1;
312 		}
313 		sh->dev[i].page = page;
314 	}
315 	return 0;
316 }
317 
318 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
319 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
320 			    struct stripe_head *sh);
321 
322 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
323 {
324 	struct r5conf *conf = sh->raid_conf;
325 	int i;
326 
327 	BUG_ON(atomic_read(&sh->count) != 0);
328 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
329 	BUG_ON(stripe_operations_active(sh));
330 
331 	pr_debug("init_stripe called, stripe %llu\n",
332 		(unsigned long long)sh->sector);
333 
334 	remove_hash(sh);
335 
336 	sh->generation = conf->generation - previous;
337 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
338 	sh->sector = sector;
339 	stripe_set_idx(sector, conf, previous, sh);
340 	sh->state = 0;
341 
342 
343 	for (i = sh->disks; i--; ) {
344 		struct r5dev *dev = &sh->dev[i];
345 
346 		if (dev->toread || dev->read || dev->towrite || dev->written ||
347 		    test_bit(R5_LOCKED, &dev->flags)) {
348 			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
349 			       (unsigned long long)sh->sector, i, dev->toread,
350 			       dev->read, dev->towrite, dev->written,
351 			       test_bit(R5_LOCKED, &dev->flags));
352 			WARN_ON(1);
353 		}
354 		dev->flags = 0;
355 		raid5_build_block(sh, i, previous);
356 	}
357 	insert_hash(conf, sh);
358 }
359 
360 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
361 					 short generation)
362 {
363 	struct stripe_head *sh;
364 	struct hlist_node *hn;
365 
366 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
367 	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
368 		if (sh->sector == sector && sh->generation == generation)
369 			return sh;
370 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
371 	return NULL;
372 }
373 
374 /*
375  * Need to check if array has failed when deciding whether to:
376  *  - start an array
377  *  - remove non-faulty devices
378  *  - add a spare
379  *  - allow a reshape
380  * This determination is simple when no reshape is happening.
381  * However if there is a reshape, we need to carefully check
382  * both the before and after sections.
383  * This is because some failed devices may only affect one
384  * of the two sections, and some non-in_sync devices may
385  * be insync in the section most affected by failed devices.
386  */
387 static int calc_degraded(struct r5conf *conf)
388 {
389 	int degraded, degraded2;
390 	int i;
391 
392 	rcu_read_lock();
393 	degraded = 0;
394 	for (i = 0; i < conf->previous_raid_disks; i++) {
395 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
396 		if (!rdev || test_bit(Faulty, &rdev->flags))
397 			degraded++;
398 		else if (test_bit(In_sync, &rdev->flags))
399 			;
400 		else
401 			/* not in-sync or faulty.
402 			 * If the reshape increases the number of devices,
403 			 * this is being recovered by the reshape, so
404 			 * this 'previous' section is not in_sync.
405 			 * If the number of devices is being reduced however,
406 			 * the device can only be part of the array if
407 			 * we are reverting a reshape, so this section will
408 			 * be in-sync.
409 			 */
410 			if (conf->raid_disks >= conf->previous_raid_disks)
411 				degraded++;
412 	}
413 	rcu_read_unlock();
414 	if (conf->raid_disks == conf->previous_raid_disks)
415 		return degraded;
416 	rcu_read_lock();
417 	degraded2 = 0;
418 	for (i = 0; i < conf->raid_disks; i++) {
419 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
420 		if (!rdev || test_bit(Faulty, &rdev->flags))
421 			degraded2++;
422 		else if (test_bit(In_sync, &rdev->flags))
423 			;
424 		else
425 			/* not in-sync or faulty.
426 			 * If reshape increases the number of devices, this
427 			 * section has already been recovered, else it
428 			 * almost certainly hasn't.
429 			 */
430 			if (conf->raid_disks <= conf->previous_raid_disks)
431 				degraded2++;
432 	}
433 	rcu_read_unlock();
434 	if (degraded2 > degraded)
435 		return degraded2;
436 	return degraded;
437 }
438 
439 static int has_failed(struct r5conf *conf)
440 {
441 	int degraded;
442 
443 	if (conf->mddev->reshape_position == MaxSector)
444 		return conf->mddev->degraded > conf->max_degraded;
445 
446 	degraded = calc_degraded(conf);
447 	if (degraded > conf->max_degraded)
448 		return 1;
449 	return 0;
450 }
451 
452 static struct stripe_head *
453 get_active_stripe(struct r5conf *conf, sector_t sector,
454 		  int previous, int noblock, int noquiesce)
455 {
456 	struct stripe_head *sh;
457 
458 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
459 
460 	spin_lock_irq(&conf->device_lock);
461 
462 	do {
463 		wait_event_lock_irq(conf->wait_for_stripe,
464 				    conf->quiesce == 0 || noquiesce,
465 				    conf->device_lock, /* nothing */);
466 		sh = __find_stripe(conf, sector, conf->generation - previous);
467 		if (!sh) {
468 			if (!conf->inactive_blocked)
469 				sh = get_free_stripe(conf);
470 			if (noblock && sh == NULL)
471 				break;
472 			if (!sh) {
473 				conf->inactive_blocked = 1;
474 				wait_event_lock_irq(conf->wait_for_stripe,
475 						    !list_empty(&conf->inactive_list) &&
476 						    (atomic_read(&conf->active_stripes)
477 						     < (conf->max_nr_stripes *3/4)
478 						     || !conf->inactive_blocked),
479 						    conf->device_lock,
480 						    );
481 				conf->inactive_blocked = 0;
482 			} else
483 				init_stripe(sh, sector, previous);
484 		} else {
485 			if (atomic_read(&sh->count)) {
486 				BUG_ON(!list_empty(&sh->lru)
487 				    && !test_bit(STRIPE_EXPANDING, &sh->state)
488 				    && !test_bit(STRIPE_ON_UNPLUG_LIST, &sh->state));
489 			} else {
490 				if (!test_bit(STRIPE_HANDLE, &sh->state))
491 					atomic_inc(&conf->active_stripes);
492 				if (list_empty(&sh->lru) &&
493 				    !test_bit(STRIPE_EXPANDING, &sh->state))
494 					BUG();
495 				list_del_init(&sh->lru);
496 			}
497 		}
498 	} while (sh == NULL);
499 
500 	if (sh)
501 		atomic_inc(&sh->count);
502 
503 	spin_unlock_irq(&conf->device_lock);
504 	return sh;
505 }
506 
507 /* Determine if 'data_offset' or 'new_data_offset' should be used
508  * in this stripe_head.
509  */
510 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
511 {
512 	sector_t progress = conf->reshape_progress;
513 	/* Need a memory barrier to make sure we see the value
514 	 * of conf->generation, or ->data_offset that was set before
515 	 * reshape_progress was updated.
516 	 */
517 	smp_rmb();
518 	if (progress == MaxSector)
519 		return 0;
520 	if (sh->generation == conf->generation - 1)
521 		return 0;
522 	/* We are in a reshape, and this is a new-generation stripe,
523 	 * so use new_data_offset.
524 	 */
525 	return 1;
526 }
527 
528 static void
529 raid5_end_read_request(struct bio *bi, int error);
530 static void
531 raid5_end_write_request(struct bio *bi, int error);
532 
533 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
534 {
535 	struct r5conf *conf = sh->raid_conf;
536 	int i, disks = sh->disks;
537 
538 	might_sleep();
539 
540 	for (i = disks; i--; ) {
541 		int rw;
542 		int replace_only = 0;
543 		struct bio *bi, *rbi;
544 		struct md_rdev *rdev, *rrdev = NULL;
545 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
546 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
547 				rw = WRITE_FUA;
548 			else
549 				rw = WRITE;
550 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
551 			rw = READ;
552 		else if (test_and_clear_bit(R5_WantReplace,
553 					    &sh->dev[i].flags)) {
554 			rw = WRITE;
555 			replace_only = 1;
556 		} else
557 			continue;
558 		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
559 			rw |= REQ_SYNC;
560 
561 		bi = &sh->dev[i].req;
562 		rbi = &sh->dev[i].rreq; /* For writing to replacement */
563 
564 		bi->bi_rw = rw;
565 		rbi->bi_rw = rw;
566 		if (rw & WRITE) {
567 			bi->bi_end_io = raid5_end_write_request;
568 			rbi->bi_end_io = raid5_end_write_request;
569 		} else
570 			bi->bi_end_io = raid5_end_read_request;
571 
572 		rcu_read_lock();
573 		rrdev = rcu_dereference(conf->disks[i].replacement);
574 		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
575 		rdev = rcu_dereference(conf->disks[i].rdev);
576 		if (!rdev) {
577 			rdev = rrdev;
578 			rrdev = NULL;
579 		}
580 		if (rw & WRITE) {
581 			if (replace_only)
582 				rdev = NULL;
583 			if (rdev == rrdev)
584 				/* We raced and saw duplicates */
585 				rrdev = NULL;
586 		} else {
587 			if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
588 				rdev = rrdev;
589 			rrdev = NULL;
590 		}
591 
592 		if (rdev && test_bit(Faulty, &rdev->flags))
593 			rdev = NULL;
594 		if (rdev)
595 			atomic_inc(&rdev->nr_pending);
596 		if (rrdev && test_bit(Faulty, &rrdev->flags))
597 			rrdev = NULL;
598 		if (rrdev)
599 			atomic_inc(&rrdev->nr_pending);
600 		rcu_read_unlock();
601 
602 		/* We have already checked bad blocks for reads.  Now
603 		 * need to check for writes.  We never accept write errors
604 		 * on the replacement, so we don't to check rrdev.
605 		 */
606 		while ((rw & WRITE) && rdev &&
607 		       test_bit(WriteErrorSeen, &rdev->flags)) {
608 			sector_t first_bad;
609 			int bad_sectors;
610 			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
611 					      &first_bad, &bad_sectors);
612 			if (!bad)
613 				break;
614 
615 			if (bad < 0) {
616 				set_bit(BlockedBadBlocks, &rdev->flags);
617 				if (!conf->mddev->external &&
618 				    conf->mddev->flags) {
619 					/* It is very unlikely, but we might
620 					 * still need to write out the
621 					 * bad block log - better give it
622 					 * a chance*/
623 					md_check_recovery(conf->mddev);
624 				}
625 				/*
626 				 * Because md_wait_for_blocked_rdev
627 				 * will dec nr_pending, we must
628 				 * increment it first.
629 				 */
630 				atomic_inc(&rdev->nr_pending);
631 				md_wait_for_blocked_rdev(rdev, conf->mddev);
632 			} else {
633 				/* Acknowledged bad block - skip the write */
634 				rdev_dec_pending(rdev, conf->mddev);
635 				rdev = NULL;
636 			}
637 		}
638 
639 		if (rdev) {
640 			if (s->syncing || s->expanding || s->expanded
641 			    || s->replacing)
642 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
643 
644 			set_bit(STRIPE_IO_STARTED, &sh->state);
645 
646 			bi->bi_bdev = rdev->bdev;
647 			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
648 				__func__, (unsigned long long)sh->sector,
649 				bi->bi_rw, i);
650 			atomic_inc(&sh->count);
651 			if (use_new_offset(conf, sh))
652 				bi->bi_sector = (sh->sector
653 						 + rdev->new_data_offset);
654 			else
655 				bi->bi_sector = (sh->sector
656 						 + rdev->data_offset);
657 			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
658 				bi->bi_rw |= REQ_FLUSH;
659 
660 			bi->bi_flags = 1 << BIO_UPTODATE;
661 			bi->bi_idx = 0;
662 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
663 			bi->bi_io_vec[0].bv_offset = 0;
664 			bi->bi_size = STRIPE_SIZE;
665 			bi->bi_next = NULL;
666 			if (rrdev)
667 				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
668 			generic_make_request(bi);
669 		}
670 		if (rrdev) {
671 			if (s->syncing || s->expanding || s->expanded
672 			    || s->replacing)
673 				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
674 
675 			set_bit(STRIPE_IO_STARTED, &sh->state);
676 
677 			rbi->bi_bdev = rrdev->bdev;
678 			pr_debug("%s: for %llu schedule op %ld on "
679 				 "replacement disc %d\n",
680 				__func__, (unsigned long long)sh->sector,
681 				rbi->bi_rw, i);
682 			atomic_inc(&sh->count);
683 			if (use_new_offset(conf, sh))
684 				rbi->bi_sector = (sh->sector
685 						  + rrdev->new_data_offset);
686 			else
687 				rbi->bi_sector = (sh->sector
688 						  + rrdev->data_offset);
689 			rbi->bi_flags = 1 << BIO_UPTODATE;
690 			rbi->bi_idx = 0;
691 			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
692 			rbi->bi_io_vec[0].bv_offset = 0;
693 			rbi->bi_size = STRIPE_SIZE;
694 			rbi->bi_next = NULL;
695 			generic_make_request(rbi);
696 		}
697 		if (!rdev && !rrdev) {
698 			if (rw & WRITE)
699 				set_bit(STRIPE_DEGRADED, &sh->state);
700 			pr_debug("skip op %ld on disc %d for sector %llu\n",
701 				bi->bi_rw, i, (unsigned long long)sh->sector);
702 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
703 			set_bit(STRIPE_HANDLE, &sh->state);
704 		}
705 	}
706 }
707 
708 static struct dma_async_tx_descriptor *
709 async_copy_data(int frombio, struct bio *bio, struct page *page,
710 	sector_t sector, struct dma_async_tx_descriptor *tx)
711 {
712 	struct bio_vec *bvl;
713 	struct page *bio_page;
714 	int i;
715 	int page_offset;
716 	struct async_submit_ctl submit;
717 	enum async_tx_flags flags = 0;
718 
719 	if (bio->bi_sector >= sector)
720 		page_offset = (signed)(bio->bi_sector - sector) * 512;
721 	else
722 		page_offset = (signed)(sector - bio->bi_sector) * -512;
723 
724 	if (frombio)
725 		flags |= ASYNC_TX_FENCE;
726 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
727 
728 	bio_for_each_segment(bvl, bio, i) {
729 		int len = bvl->bv_len;
730 		int clen;
731 		int b_offset = 0;
732 
733 		if (page_offset < 0) {
734 			b_offset = -page_offset;
735 			page_offset += b_offset;
736 			len -= b_offset;
737 		}
738 
739 		if (len > 0 && page_offset + len > STRIPE_SIZE)
740 			clen = STRIPE_SIZE - page_offset;
741 		else
742 			clen = len;
743 
744 		if (clen > 0) {
745 			b_offset += bvl->bv_offset;
746 			bio_page = bvl->bv_page;
747 			if (frombio)
748 				tx = async_memcpy(page, bio_page, page_offset,
749 						  b_offset, clen, &submit);
750 			else
751 				tx = async_memcpy(bio_page, page, b_offset,
752 						  page_offset, clen, &submit);
753 		}
754 		/* chain the operations */
755 		submit.depend_tx = tx;
756 
757 		if (clen < len) /* hit end of page */
758 			break;
759 		page_offset +=  len;
760 	}
761 
762 	return tx;
763 }
764 
765 static void ops_complete_biofill(void *stripe_head_ref)
766 {
767 	struct stripe_head *sh = stripe_head_ref;
768 	struct bio *return_bi = NULL;
769 	int i;
770 
771 	pr_debug("%s: stripe %llu\n", __func__,
772 		(unsigned long long)sh->sector);
773 
774 	/* clear completed biofills */
775 	for (i = sh->disks; i--; ) {
776 		struct r5dev *dev = &sh->dev[i];
777 
778 		/* acknowledge completion of a biofill operation */
779 		/* and check if we need to reply to a read request,
780 		 * new R5_Wantfill requests are held off until
781 		 * !STRIPE_BIOFILL_RUN
782 		 */
783 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
784 			struct bio *rbi, *rbi2;
785 
786 			BUG_ON(!dev->read);
787 			rbi = dev->read;
788 			dev->read = NULL;
789 			while (rbi && rbi->bi_sector <
790 				dev->sector + STRIPE_SECTORS) {
791 				rbi2 = r5_next_bio(rbi, dev->sector);
792 				if (!raid5_dec_bi_active_stripes(rbi)) {
793 					rbi->bi_next = return_bi;
794 					return_bi = rbi;
795 				}
796 				rbi = rbi2;
797 			}
798 		}
799 	}
800 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
801 
802 	return_io(return_bi);
803 
804 	set_bit(STRIPE_HANDLE, &sh->state);
805 	release_stripe(sh);
806 }
807 
808 static void ops_run_biofill(struct stripe_head *sh)
809 {
810 	struct dma_async_tx_descriptor *tx = NULL;
811 	struct async_submit_ctl submit;
812 	int i;
813 
814 	pr_debug("%s: stripe %llu\n", __func__,
815 		(unsigned long long)sh->sector);
816 
817 	for (i = sh->disks; i--; ) {
818 		struct r5dev *dev = &sh->dev[i];
819 		if (test_bit(R5_Wantfill, &dev->flags)) {
820 			struct bio *rbi;
821 			spin_lock_irq(&sh->stripe_lock);
822 			dev->read = rbi = dev->toread;
823 			dev->toread = NULL;
824 			spin_unlock_irq(&sh->stripe_lock);
825 			while (rbi && rbi->bi_sector <
826 				dev->sector + STRIPE_SECTORS) {
827 				tx = async_copy_data(0, rbi, dev->page,
828 					dev->sector, tx);
829 				rbi = r5_next_bio(rbi, dev->sector);
830 			}
831 		}
832 	}
833 
834 	atomic_inc(&sh->count);
835 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
836 	async_trigger_callback(&submit);
837 }
838 
839 static void mark_target_uptodate(struct stripe_head *sh, int target)
840 {
841 	struct r5dev *tgt;
842 
843 	if (target < 0)
844 		return;
845 
846 	tgt = &sh->dev[target];
847 	set_bit(R5_UPTODATE, &tgt->flags);
848 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
849 	clear_bit(R5_Wantcompute, &tgt->flags);
850 }
851 
852 static void ops_complete_compute(void *stripe_head_ref)
853 {
854 	struct stripe_head *sh = stripe_head_ref;
855 
856 	pr_debug("%s: stripe %llu\n", __func__,
857 		(unsigned long long)sh->sector);
858 
859 	/* mark the computed target(s) as uptodate */
860 	mark_target_uptodate(sh, sh->ops.target);
861 	mark_target_uptodate(sh, sh->ops.target2);
862 
863 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
864 	if (sh->check_state == check_state_compute_run)
865 		sh->check_state = check_state_compute_result;
866 	set_bit(STRIPE_HANDLE, &sh->state);
867 	release_stripe(sh);
868 }
869 
870 /* return a pointer to the address conversion region of the scribble buffer */
871 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
872 				 struct raid5_percpu *percpu)
873 {
874 	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
875 }
876 
877 static struct dma_async_tx_descriptor *
878 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
879 {
880 	int disks = sh->disks;
881 	struct page **xor_srcs = percpu->scribble;
882 	int target = sh->ops.target;
883 	struct r5dev *tgt = &sh->dev[target];
884 	struct page *xor_dest = tgt->page;
885 	int count = 0;
886 	struct dma_async_tx_descriptor *tx;
887 	struct async_submit_ctl submit;
888 	int i;
889 
890 	pr_debug("%s: stripe %llu block: %d\n",
891 		__func__, (unsigned long long)sh->sector, target);
892 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
893 
894 	for (i = disks; i--; )
895 		if (i != target)
896 			xor_srcs[count++] = sh->dev[i].page;
897 
898 	atomic_inc(&sh->count);
899 
900 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
901 			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
902 	if (unlikely(count == 1))
903 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
904 	else
905 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
906 
907 	return tx;
908 }
909 
910 /* set_syndrome_sources - populate source buffers for gen_syndrome
911  * @srcs - (struct page *) array of size sh->disks
912  * @sh - stripe_head to parse
913  *
914  * Populates srcs in proper layout order for the stripe and returns the
915  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
916  * destination buffer is recorded in srcs[count] and the Q destination
917  * is recorded in srcs[count+1]].
918  */
919 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
920 {
921 	int disks = sh->disks;
922 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
923 	int d0_idx = raid6_d0(sh);
924 	int count;
925 	int i;
926 
927 	for (i = 0; i < disks; i++)
928 		srcs[i] = NULL;
929 
930 	count = 0;
931 	i = d0_idx;
932 	do {
933 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
934 
935 		srcs[slot] = sh->dev[i].page;
936 		i = raid6_next_disk(i, disks);
937 	} while (i != d0_idx);
938 
939 	return syndrome_disks;
940 }
941 
942 static struct dma_async_tx_descriptor *
943 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
944 {
945 	int disks = sh->disks;
946 	struct page **blocks = percpu->scribble;
947 	int target;
948 	int qd_idx = sh->qd_idx;
949 	struct dma_async_tx_descriptor *tx;
950 	struct async_submit_ctl submit;
951 	struct r5dev *tgt;
952 	struct page *dest;
953 	int i;
954 	int count;
955 
956 	if (sh->ops.target < 0)
957 		target = sh->ops.target2;
958 	else if (sh->ops.target2 < 0)
959 		target = sh->ops.target;
960 	else
961 		/* we should only have one valid target */
962 		BUG();
963 	BUG_ON(target < 0);
964 	pr_debug("%s: stripe %llu block: %d\n",
965 		__func__, (unsigned long long)sh->sector, target);
966 
967 	tgt = &sh->dev[target];
968 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
969 	dest = tgt->page;
970 
971 	atomic_inc(&sh->count);
972 
973 	if (target == qd_idx) {
974 		count = set_syndrome_sources(blocks, sh);
975 		blocks[count] = NULL; /* regenerating p is not necessary */
976 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
977 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
978 				  ops_complete_compute, sh,
979 				  to_addr_conv(sh, percpu));
980 		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
981 	} else {
982 		/* Compute any data- or p-drive using XOR */
983 		count = 0;
984 		for (i = disks; i-- ; ) {
985 			if (i == target || i == qd_idx)
986 				continue;
987 			blocks[count++] = sh->dev[i].page;
988 		}
989 
990 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
991 				  NULL, ops_complete_compute, sh,
992 				  to_addr_conv(sh, percpu));
993 		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
994 	}
995 
996 	return tx;
997 }
998 
999 static struct dma_async_tx_descriptor *
1000 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1001 {
1002 	int i, count, disks = sh->disks;
1003 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1004 	int d0_idx = raid6_d0(sh);
1005 	int faila = -1, failb = -1;
1006 	int target = sh->ops.target;
1007 	int target2 = sh->ops.target2;
1008 	struct r5dev *tgt = &sh->dev[target];
1009 	struct r5dev *tgt2 = &sh->dev[target2];
1010 	struct dma_async_tx_descriptor *tx;
1011 	struct page **blocks = percpu->scribble;
1012 	struct async_submit_ctl submit;
1013 
1014 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1015 		 __func__, (unsigned long long)sh->sector, target, target2);
1016 	BUG_ON(target < 0 || target2 < 0);
1017 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1018 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1019 
1020 	/* we need to open-code set_syndrome_sources to handle the
1021 	 * slot number conversion for 'faila' and 'failb'
1022 	 */
1023 	for (i = 0; i < disks ; i++)
1024 		blocks[i] = NULL;
1025 	count = 0;
1026 	i = d0_idx;
1027 	do {
1028 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1029 
1030 		blocks[slot] = sh->dev[i].page;
1031 
1032 		if (i == target)
1033 			faila = slot;
1034 		if (i == target2)
1035 			failb = slot;
1036 		i = raid6_next_disk(i, disks);
1037 	} while (i != d0_idx);
1038 
1039 	BUG_ON(faila == failb);
1040 	if (failb < faila)
1041 		swap(faila, failb);
1042 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1043 		 __func__, (unsigned long long)sh->sector, faila, failb);
1044 
1045 	atomic_inc(&sh->count);
1046 
1047 	if (failb == syndrome_disks+1) {
1048 		/* Q disk is one of the missing disks */
1049 		if (faila == syndrome_disks) {
1050 			/* Missing P+Q, just recompute */
1051 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1052 					  ops_complete_compute, sh,
1053 					  to_addr_conv(sh, percpu));
1054 			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1055 						  STRIPE_SIZE, &submit);
1056 		} else {
1057 			struct page *dest;
1058 			int data_target;
1059 			int qd_idx = sh->qd_idx;
1060 
1061 			/* Missing D+Q: recompute D from P, then recompute Q */
1062 			if (target == qd_idx)
1063 				data_target = target2;
1064 			else
1065 				data_target = target;
1066 
1067 			count = 0;
1068 			for (i = disks; i-- ; ) {
1069 				if (i == data_target || i == qd_idx)
1070 					continue;
1071 				blocks[count++] = sh->dev[i].page;
1072 			}
1073 			dest = sh->dev[data_target].page;
1074 			init_async_submit(&submit,
1075 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1076 					  NULL, NULL, NULL,
1077 					  to_addr_conv(sh, percpu));
1078 			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1079 				       &submit);
1080 
1081 			count = set_syndrome_sources(blocks, sh);
1082 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1083 					  ops_complete_compute, sh,
1084 					  to_addr_conv(sh, percpu));
1085 			return async_gen_syndrome(blocks, 0, count+2,
1086 						  STRIPE_SIZE, &submit);
1087 		}
1088 	} else {
1089 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1090 				  ops_complete_compute, sh,
1091 				  to_addr_conv(sh, percpu));
1092 		if (failb == syndrome_disks) {
1093 			/* We're missing D+P. */
1094 			return async_raid6_datap_recov(syndrome_disks+2,
1095 						       STRIPE_SIZE, faila,
1096 						       blocks, &submit);
1097 		} else {
1098 			/* We're missing D+D. */
1099 			return async_raid6_2data_recov(syndrome_disks+2,
1100 						       STRIPE_SIZE, faila, failb,
1101 						       blocks, &submit);
1102 		}
1103 	}
1104 }
1105 
1106 
1107 static void ops_complete_prexor(void *stripe_head_ref)
1108 {
1109 	struct stripe_head *sh = stripe_head_ref;
1110 
1111 	pr_debug("%s: stripe %llu\n", __func__,
1112 		(unsigned long long)sh->sector);
1113 }
1114 
1115 static struct dma_async_tx_descriptor *
1116 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1117 	       struct dma_async_tx_descriptor *tx)
1118 {
1119 	int disks = sh->disks;
1120 	struct page **xor_srcs = percpu->scribble;
1121 	int count = 0, pd_idx = sh->pd_idx, i;
1122 	struct async_submit_ctl submit;
1123 
1124 	/* existing parity data subtracted */
1125 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1126 
1127 	pr_debug("%s: stripe %llu\n", __func__,
1128 		(unsigned long long)sh->sector);
1129 
1130 	for (i = disks; i--; ) {
1131 		struct r5dev *dev = &sh->dev[i];
1132 		/* Only process blocks that are known to be uptodate */
1133 		if (test_bit(R5_Wantdrain, &dev->flags))
1134 			xor_srcs[count++] = dev->page;
1135 	}
1136 
1137 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1138 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1139 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1140 
1141 	return tx;
1142 }
1143 
1144 static struct dma_async_tx_descriptor *
1145 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1146 {
1147 	int disks = sh->disks;
1148 	int i;
1149 
1150 	pr_debug("%s: stripe %llu\n", __func__,
1151 		(unsigned long long)sh->sector);
1152 
1153 	for (i = disks; i--; ) {
1154 		struct r5dev *dev = &sh->dev[i];
1155 		struct bio *chosen;
1156 
1157 		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1158 			struct bio *wbi;
1159 
1160 			spin_lock_irq(&sh->stripe_lock);
1161 			chosen = dev->towrite;
1162 			dev->towrite = NULL;
1163 			BUG_ON(dev->written);
1164 			wbi = dev->written = chosen;
1165 			spin_unlock_irq(&sh->stripe_lock);
1166 
1167 			while (wbi && wbi->bi_sector <
1168 				dev->sector + STRIPE_SECTORS) {
1169 				if (wbi->bi_rw & REQ_FUA)
1170 					set_bit(R5_WantFUA, &dev->flags);
1171 				if (wbi->bi_rw & REQ_SYNC)
1172 					set_bit(R5_SyncIO, &dev->flags);
1173 				tx = async_copy_data(1, wbi, dev->page,
1174 					dev->sector, tx);
1175 				wbi = r5_next_bio(wbi, dev->sector);
1176 			}
1177 		}
1178 	}
1179 
1180 	return tx;
1181 }
1182 
1183 static void ops_complete_reconstruct(void *stripe_head_ref)
1184 {
1185 	struct stripe_head *sh = stripe_head_ref;
1186 	int disks = sh->disks;
1187 	int pd_idx = sh->pd_idx;
1188 	int qd_idx = sh->qd_idx;
1189 	int i;
1190 	bool fua = false, sync = false;
1191 
1192 	pr_debug("%s: stripe %llu\n", __func__,
1193 		(unsigned long long)sh->sector);
1194 
1195 	for (i = disks; i--; ) {
1196 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1197 		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1198 	}
1199 
1200 	for (i = disks; i--; ) {
1201 		struct r5dev *dev = &sh->dev[i];
1202 
1203 		if (dev->written || i == pd_idx || i == qd_idx) {
1204 			set_bit(R5_UPTODATE, &dev->flags);
1205 			if (fua)
1206 				set_bit(R5_WantFUA, &dev->flags);
1207 			if (sync)
1208 				set_bit(R5_SyncIO, &dev->flags);
1209 		}
1210 	}
1211 
1212 	if (sh->reconstruct_state == reconstruct_state_drain_run)
1213 		sh->reconstruct_state = reconstruct_state_drain_result;
1214 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1215 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1216 	else {
1217 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1218 		sh->reconstruct_state = reconstruct_state_result;
1219 	}
1220 
1221 	set_bit(STRIPE_HANDLE, &sh->state);
1222 	release_stripe(sh);
1223 }
1224 
1225 static void
1226 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1227 		     struct dma_async_tx_descriptor *tx)
1228 {
1229 	int disks = sh->disks;
1230 	struct page **xor_srcs = percpu->scribble;
1231 	struct async_submit_ctl submit;
1232 	int count = 0, pd_idx = sh->pd_idx, i;
1233 	struct page *xor_dest;
1234 	int prexor = 0;
1235 	unsigned long flags;
1236 
1237 	pr_debug("%s: stripe %llu\n", __func__,
1238 		(unsigned long long)sh->sector);
1239 
1240 	/* check if prexor is active which means only process blocks
1241 	 * that are part of a read-modify-write (written)
1242 	 */
1243 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1244 		prexor = 1;
1245 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1246 		for (i = disks; i--; ) {
1247 			struct r5dev *dev = &sh->dev[i];
1248 			if (dev->written)
1249 				xor_srcs[count++] = dev->page;
1250 		}
1251 	} else {
1252 		xor_dest = sh->dev[pd_idx].page;
1253 		for (i = disks; i--; ) {
1254 			struct r5dev *dev = &sh->dev[i];
1255 			if (i != pd_idx)
1256 				xor_srcs[count++] = dev->page;
1257 		}
1258 	}
1259 
1260 	/* 1/ if we prexor'd then the dest is reused as a source
1261 	 * 2/ if we did not prexor then we are redoing the parity
1262 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1263 	 * for the synchronous xor case
1264 	 */
1265 	flags = ASYNC_TX_ACK |
1266 		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1267 
1268 	atomic_inc(&sh->count);
1269 
1270 	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1271 			  to_addr_conv(sh, percpu));
1272 	if (unlikely(count == 1))
1273 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1274 	else
1275 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1276 }
1277 
1278 static void
1279 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1280 		     struct dma_async_tx_descriptor *tx)
1281 {
1282 	struct async_submit_ctl submit;
1283 	struct page **blocks = percpu->scribble;
1284 	int count;
1285 
1286 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1287 
1288 	count = set_syndrome_sources(blocks, sh);
1289 
1290 	atomic_inc(&sh->count);
1291 
1292 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1293 			  sh, to_addr_conv(sh, percpu));
1294 	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1295 }
1296 
1297 static void ops_complete_check(void *stripe_head_ref)
1298 {
1299 	struct stripe_head *sh = stripe_head_ref;
1300 
1301 	pr_debug("%s: stripe %llu\n", __func__,
1302 		(unsigned long long)sh->sector);
1303 
1304 	sh->check_state = check_state_check_result;
1305 	set_bit(STRIPE_HANDLE, &sh->state);
1306 	release_stripe(sh);
1307 }
1308 
1309 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1310 {
1311 	int disks = sh->disks;
1312 	int pd_idx = sh->pd_idx;
1313 	int qd_idx = sh->qd_idx;
1314 	struct page *xor_dest;
1315 	struct page **xor_srcs = percpu->scribble;
1316 	struct dma_async_tx_descriptor *tx;
1317 	struct async_submit_ctl submit;
1318 	int count;
1319 	int i;
1320 
1321 	pr_debug("%s: stripe %llu\n", __func__,
1322 		(unsigned long long)sh->sector);
1323 
1324 	count = 0;
1325 	xor_dest = sh->dev[pd_idx].page;
1326 	xor_srcs[count++] = xor_dest;
1327 	for (i = disks; i--; ) {
1328 		if (i == pd_idx || i == qd_idx)
1329 			continue;
1330 		xor_srcs[count++] = sh->dev[i].page;
1331 	}
1332 
1333 	init_async_submit(&submit, 0, NULL, NULL, NULL,
1334 			  to_addr_conv(sh, percpu));
1335 	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1336 			   &sh->ops.zero_sum_result, &submit);
1337 
1338 	atomic_inc(&sh->count);
1339 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1340 	tx = async_trigger_callback(&submit);
1341 }
1342 
1343 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1344 {
1345 	struct page **srcs = percpu->scribble;
1346 	struct async_submit_ctl submit;
1347 	int count;
1348 
1349 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1350 		(unsigned long long)sh->sector, checkp);
1351 
1352 	count = set_syndrome_sources(srcs, sh);
1353 	if (!checkp)
1354 		srcs[count] = NULL;
1355 
1356 	atomic_inc(&sh->count);
1357 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1358 			  sh, to_addr_conv(sh, percpu));
1359 	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1360 			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1361 }
1362 
1363 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1364 {
1365 	int overlap_clear = 0, i, disks = sh->disks;
1366 	struct dma_async_tx_descriptor *tx = NULL;
1367 	struct r5conf *conf = sh->raid_conf;
1368 	int level = conf->level;
1369 	struct raid5_percpu *percpu;
1370 	unsigned long cpu;
1371 
1372 	cpu = get_cpu();
1373 	percpu = per_cpu_ptr(conf->percpu, cpu);
1374 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1375 		ops_run_biofill(sh);
1376 		overlap_clear++;
1377 	}
1378 
1379 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1380 		if (level < 6)
1381 			tx = ops_run_compute5(sh, percpu);
1382 		else {
1383 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
1384 				tx = ops_run_compute6_1(sh, percpu);
1385 			else
1386 				tx = ops_run_compute6_2(sh, percpu);
1387 		}
1388 		/* terminate the chain if reconstruct is not set to be run */
1389 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1390 			async_tx_ack(tx);
1391 	}
1392 
1393 	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1394 		tx = ops_run_prexor(sh, percpu, tx);
1395 
1396 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1397 		tx = ops_run_biodrain(sh, tx);
1398 		overlap_clear++;
1399 	}
1400 
1401 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1402 		if (level < 6)
1403 			ops_run_reconstruct5(sh, percpu, tx);
1404 		else
1405 			ops_run_reconstruct6(sh, percpu, tx);
1406 	}
1407 
1408 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1409 		if (sh->check_state == check_state_run)
1410 			ops_run_check_p(sh, percpu);
1411 		else if (sh->check_state == check_state_run_q)
1412 			ops_run_check_pq(sh, percpu, 0);
1413 		else if (sh->check_state == check_state_run_pq)
1414 			ops_run_check_pq(sh, percpu, 1);
1415 		else
1416 			BUG();
1417 	}
1418 
1419 	if (overlap_clear)
1420 		for (i = disks; i--; ) {
1421 			struct r5dev *dev = &sh->dev[i];
1422 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
1423 				wake_up(&sh->raid_conf->wait_for_overlap);
1424 		}
1425 	put_cpu();
1426 }
1427 
1428 #ifdef CONFIG_MULTICORE_RAID456
1429 static void async_run_ops(void *param, async_cookie_t cookie)
1430 {
1431 	struct stripe_head *sh = param;
1432 	unsigned long ops_request = sh->ops.request;
1433 
1434 	clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1435 	wake_up(&sh->ops.wait_for_ops);
1436 
1437 	__raid_run_ops(sh, ops_request);
1438 	release_stripe(sh);
1439 }
1440 
1441 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1442 {
1443 	/* since handle_stripe can be called outside of raid5d context
1444 	 * we need to ensure sh->ops.request is de-staged before another
1445 	 * request arrives
1446 	 */
1447 	wait_event(sh->ops.wait_for_ops,
1448 		   !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1449 	sh->ops.request = ops_request;
1450 
1451 	atomic_inc(&sh->count);
1452 	async_schedule(async_run_ops, sh);
1453 }
1454 #else
1455 #define raid_run_ops __raid_run_ops
1456 #endif
1457 
1458 static int grow_one_stripe(struct r5conf *conf)
1459 {
1460 	struct stripe_head *sh;
1461 	sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1462 	if (!sh)
1463 		return 0;
1464 
1465 	sh->raid_conf = conf;
1466 	#ifdef CONFIG_MULTICORE_RAID456
1467 	init_waitqueue_head(&sh->ops.wait_for_ops);
1468 	#endif
1469 
1470 	spin_lock_init(&sh->stripe_lock);
1471 
1472 	if (grow_buffers(sh)) {
1473 		shrink_buffers(sh);
1474 		kmem_cache_free(conf->slab_cache, sh);
1475 		return 0;
1476 	}
1477 	/* we just created an active stripe so... */
1478 	atomic_set(&sh->count, 1);
1479 	atomic_inc(&conf->active_stripes);
1480 	INIT_LIST_HEAD(&sh->lru);
1481 	release_stripe(sh);
1482 	return 1;
1483 }
1484 
1485 static int grow_stripes(struct r5conf *conf, int num)
1486 {
1487 	struct kmem_cache *sc;
1488 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
1489 
1490 	if (conf->mddev->gendisk)
1491 		sprintf(conf->cache_name[0],
1492 			"raid%d-%s", conf->level, mdname(conf->mddev));
1493 	else
1494 		sprintf(conf->cache_name[0],
1495 			"raid%d-%p", conf->level, conf->mddev);
1496 	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1497 
1498 	conf->active_name = 0;
1499 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
1500 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1501 			       0, 0, NULL);
1502 	if (!sc)
1503 		return 1;
1504 	conf->slab_cache = sc;
1505 	conf->pool_size = devs;
1506 	while (num--)
1507 		if (!grow_one_stripe(conf))
1508 			return 1;
1509 	return 0;
1510 }
1511 
1512 /**
1513  * scribble_len - return the required size of the scribble region
1514  * @num - total number of disks in the array
1515  *
1516  * The size must be enough to contain:
1517  * 1/ a struct page pointer for each device in the array +2
1518  * 2/ room to convert each entry in (1) to its corresponding dma
1519  *    (dma_map_page()) or page (page_address()) address.
1520  *
1521  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1522  * calculate over all devices (not just the data blocks), using zeros in place
1523  * of the P and Q blocks.
1524  */
1525 static size_t scribble_len(int num)
1526 {
1527 	size_t len;
1528 
1529 	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1530 
1531 	return len;
1532 }
1533 
1534 static int resize_stripes(struct r5conf *conf, int newsize)
1535 {
1536 	/* Make all the stripes able to hold 'newsize' devices.
1537 	 * New slots in each stripe get 'page' set to a new page.
1538 	 *
1539 	 * This happens in stages:
1540 	 * 1/ create a new kmem_cache and allocate the required number of
1541 	 *    stripe_heads.
1542 	 * 2/ gather all the old stripe_heads and tranfer the pages across
1543 	 *    to the new stripe_heads.  This will have the side effect of
1544 	 *    freezing the array as once all stripe_heads have been collected,
1545 	 *    no IO will be possible.  Old stripe heads are freed once their
1546 	 *    pages have been transferred over, and the old kmem_cache is
1547 	 *    freed when all stripes are done.
1548 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1549 	 *    we simple return a failre status - no need to clean anything up.
1550 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
1551 	 *    If this fails, we don't bother trying the shrink the
1552 	 *    stripe_heads down again, we just leave them as they are.
1553 	 *    As each stripe_head is processed the new one is released into
1554 	 *    active service.
1555 	 *
1556 	 * Once step2 is started, we cannot afford to wait for a write,
1557 	 * so we use GFP_NOIO allocations.
1558 	 */
1559 	struct stripe_head *osh, *nsh;
1560 	LIST_HEAD(newstripes);
1561 	struct disk_info *ndisks;
1562 	unsigned long cpu;
1563 	int err;
1564 	struct kmem_cache *sc;
1565 	int i;
1566 
1567 	if (newsize <= conf->pool_size)
1568 		return 0; /* never bother to shrink */
1569 
1570 	err = md_allow_write(conf->mddev);
1571 	if (err)
1572 		return err;
1573 
1574 	/* Step 1 */
1575 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1576 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1577 			       0, 0, NULL);
1578 	if (!sc)
1579 		return -ENOMEM;
1580 
1581 	for (i = conf->max_nr_stripes; i; i--) {
1582 		nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1583 		if (!nsh)
1584 			break;
1585 
1586 		nsh->raid_conf = conf;
1587 		#ifdef CONFIG_MULTICORE_RAID456
1588 		init_waitqueue_head(&nsh->ops.wait_for_ops);
1589 		#endif
1590 
1591 		list_add(&nsh->lru, &newstripes);
1592 	}
1593 	if (i) {
1594 		/* didn't get enough, give up */
1595 		while (!list_empty(&newstripes)) {
1596 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
1597 			list_del(&nsh->lru);
1598 			kmem_cache_free(sc, nsh);
1599 		}
1600 		kmem_cache_destroy(sc);
1601 		return -ENOMEM;
1602 	}
1603 	/* Step 2 - Must use GFP_NOIO now.
1604 	 * OK, we have enough stripes, start collecting inactive
1605 	 * stripes and copying them over
1606 	 */
1607 	list_for_each_entry(nsh, &newstripes, lru) {
1608 		spin_lock_irq(&conf->device_lock);
1609 		wait_event_lock_irq(conf->wait_for_stripe,
1610 				    !list_empty(&conf->inactive_list),
1611 				    conf->device_lock,
1612 				    );
1613 		osh = get_free_stripe(conf);
1614 		spin_unlock_irq(&conf->device_lock);
1615 		atomic_set(&nsh->count, 1);
1616 		for(i=0; i<conf->pool_size; i++)
1617 			nsh->dev[i].page = osh->dev[i].page;
1618 		for( ; i<newsize; i++)
1619 			nsh->dev[i].page = NULL;
1620 		kmem_cache_free(conf->slab_cache, osh);
1621 	}
1622 	kmem_cache_destroy(conf->slab_cache);
1623 
1624 	/* Step 3.
1625 	 * At this point, we are holding all the stripes so the array
1626 	 * is completely stalled, so now is a good time to resize
1627 	 * conf->disks and the scribble region
1628 	 */
1629 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1630 	if (ndisks) {
1631 		for (i=0; i<conf->raid_disks; i++)
1632 			ndisks[i] = conf->disks[i];
1633 		kfree(conf->disks);
1634 		conf->disks = ndisks;
1635 	} else
1636 		err = -ENOMEM;
1637 
1638 	get_online_cpus();
1639 	conf->scribble_len = scribble_len(newsize);
1640 	for_each_present_cpu(cpu) {
1641 		struct raid5_percpu *percpu;
1642 		void *scribble;
1643 
1644 		percpu = per_cpu_ptr(conf->percpu, cpu);
1645 		scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1646 
1647 		if (scribble) {
1648 			kfree(percpu->scribble);
1649 			percpu->scribble = scribble;
1650 		} else {
1651 			err = -ENOMEM;
1652 			break;
1653 		}
1654 	}
1655 	put_online_cpus();
1656 
1657 	/* Step 4, return new stripes to service */
1658 	while(!list_empty(&newstripes)) {
1659 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
1660 		list_del_init(&nsh->lru);
1661 
1662 		for (i=conf->raid_disks; i < newsize; i++)
1663 			if (nsh->dev[i].page == NULL) {
1664 				struct page *p = alloc_page(GFP_NOIO);
1665 				nsh->dev[i].page = p;
1666 				if (!p)
1667 					err = -ENOMEM;
1668 			}
1669 		release_stripe(nsh);
1670 	}
1671 	/* critical section pass, GFP_NOIO no longer needed */
1672 
1673 	conf->slab_cache = sc;
1674 	conf->active_name = 1-conf->active_name;
1675 	conf->pool_size = newsize;
1676 	return err;
1677 }
1678 
1679 static int drop_one_stripe(struct r5conf *conf)
1680 {
1681 	struct stripe_head *sh;
1682 
1683 	spin_lock_irq(&conf->device_lock);
1684 	sh = get_free_stripe(conf);
1685 	spin_unlock_irq(&conf->device_lock);
1686 	if (!sh)
1687 		return 0;
1688 	BUG_ON(atomic_read(&sh->count));
1689 	shrink_buffers(sh);
1690 	kmem_cache_free(conf->slab_cache, sh);
1691 	atomic_dec(&conf->active_stripes);
1692 	return 1;
1693 }
1694 
1695 static void shrink_stripes(struct r5conf *conf)
1696 {
1697 	while (drop_one_stripe(conf))
1698 		;
1699 
1700 	if (conf->slab_cache)
1701 		kmem_cache_destroy(conf->slab_cache);
1702 	conf->slab_cache = NULL;
1703 }
1704 
1705 static void raid5_end_read_request(struct bio * bi, int error)
1706 {
1707 	struct stripe_head *sh = bi->bi_private;
1708 	struct r5conf *conf = sh->raid_conf;
1709 	int disks = sh->disks, i;
1710 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1711 	char b[BDEVNAME_SIZE];
1712 	struct md_rdev *rdev = NULL;
1713 	sector_t s;
1714 
1715 	for (i=0 ; i<disks; i++)
1716 		if (bi == &sh->dev[i].req)
1717 			break;
1718 
1719 	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1720 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1721 		uptodate);
1722 	if (i == disks) {
1723 		BUG();
1724 		return;
1725 	}
1726 	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1727 		/* If replacement finished while this request was outstanding,
1728 		 * 'replacement' might be NULL already.
1729 		 * In that case it moved down to 'rdev'.
1730 		 * rdev is not removed until all requests are finished.
1731 		 */
1732 		rdev = conf->disks[i].replacement;
1733 	if (!rdev)
1734 		rdev = conf->disks[i].rdev;
1735 
1736 	if (use_new_offset(conf, sh))
1737 		s = sh->sector + rdev->new_data_offset;
1738 	else
1739 		s = sh->sector + rdev->data_offset;
1740 	if (uptodate) {
1741 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1742 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1743 			/* Note that this cannot happen on a
1744 			 * replacement device.  We just fail those on
1745 			 * any error
1746 			 */
1747 			printk_ratelimited(
1748 				KERN_INFO
1749 				"md/raid:%s: read error corrected"
1750 				" (%lu sectors at %llu on %s)\n",
1751 				mdname(conf->mddev), STRIPE_SECTORS,
1752 				(unsigned long long)s,
1753 				bdevname(rdev->bdev, b));
1754 			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1755 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1756 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1757 		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
1758 			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1759 
1760 		if (atomic_read(&rdev->read_errors))
1761 			atomic_set(&rdev->read_errors, 0);
1762 	} else {
1763 		const char *bdn = bdevname(rdev->bdev, b);
1764 		int retry = 0;
1765 		int set_bad = 0;
1766 
1767 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1768 		atomic_inc(&rdev->read_errors);
1769 		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1770 			printk_ratelimited(
1771 				KERN_WARNING
1772 				"md/raid:%s: read error on replacement device "
1773 				"(sector %llu on %s).\n",
1774 				mdname(conf->mddev),
1775 				(unsigned long long)s,
1776 				bdn);
1777 		else if (conf->mddev->degraded >= conf->max_degraded) {
1778 			set_bad = 1;
1779 			printk_ratelimited(
1780 				KERN_WARNING
1781 				"md/raid:%s: read error not correctable "
1782 				"(sector %llu on %s).\n",
1783 				mdname(conf->mddev),
1784 				(unsigned long long)s,
1785 				bdn);
1786 		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
1787 			/* Oh, no!!! */
1788 			set_bad = 1;
1789 			printk_ratelimited(
1790 				KERN_WARNING
1791 				"md/raid:%s: read error NOT corrected!! "
1792 				"(sector %llu on %s).\n",
1793 				mdname(conf->mddev),
1794 				(unsigned long long)s,
1795 				bdn);
1796 		} else if (atomic_read(&rdev->read_errors)
1797 			 > conf->max_nr_stripes)
1798 			printk(KERN_WARNING
1799 			       "md/raid:%s: Too many read errors, failing device %s.\n",
1800 			       mdname(conf->mddev), bdn);
1801 		else
1802 			retry = 1;
1803 		if (retry)
1804 			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
1805 				set_bit(R5_ReadError, &sh->dev[i].flags);
1806 				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1807 			} else
1808 				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1809 		else {
1810 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1811 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1812 			if (!(set_bad
1813 			      && test_bit(In_sync, &rdev->flags)
1814 			      && rdev_set_badblocks(
1815 				      rdev, sh->sector, STRIPE_SECTORS, 0)))
1816 				md_error(conf->mddev, rdev);
1817 		}
1818 	}
1819 	rdev_dec_pending(rdev, conf->mddev);
1820 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1821 	set_bit(STRIPE_HANDLE, &sh->state);
1822 	release_stripe(sh);
1823 }
1824 
1825 static void raid5_end_write_request(struct bio *bi, int error)
1826 {
1827 	struct stripe_head *sh = bi->bi_private;
1828 	struct r5conf *conf = sh->raid_conf;
1829 	int disks = sh->disks, i;
1830 	struct md_rdev *uninitialized_var(rdev);
1831 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1832 	sector_t first_bad;
1833 	int bad_sectors;
1834 	int replacement = 0;
1835 
1836 	for (i = 0 ; i < disks; i++) {
1837 		if (bi == &sh->dev[i].req) {
1838 			rdev = conf->disks[i].rdev;
1839 			break;
1840 		}
1841 		if (bi == &sh->dev[i].rreq) {
1842 			rdev = conf->disks[i].replacement;
1843 			if (rdev)
1844 				replacement = 1;
1845 			else
1846 				/* rdev was removed and 'replacement'
1847 				 * replaced it.  rdev is not removed
1848 				 * until all requests are finished.
1849 				 */
1850 				rdev = conf->disks[i].rdev;
1851 			break;
1852 		}
1853 	}
1854 	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1855 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1856 		uptodate);
1857 	if (i == disks) {
1858 		BUG();
1859 		return;
1860 	}
1861 
1862 	if (replacement) {
1863 		if (!uptodate)
1864 			md_error(conf->mddev, rdev);
1865 		else if (is_badblock(rdev, sh->sector,
1866 				     STRIPE_SECTORS,
1867 				     &first_bad, &bad_sectors))
1868 			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
1869 	} else {
1870 		if (!uptodate) {
1871 			set_bit(WriteErrorSeen, &rdev->flags);
1872 			set_bit(R5_WriteError, &sh->dev[i].flags);
1873 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
1874 				set_bit(MD_RECOVERY_NEEDED,
1875 					&rdev->mddev->recovery);
1876 		} else if (is_badblock(rdev, sh->sector,
1877 				       STRIPE_SECTORS,
1878 				       &first_bad, &bad_sectors))
1879 			set_bit(R5_MadeGood, &sh->dev[i].flags);
1880 	}
1881 	rdev_dec_pending(rdev, conf->mddev);
1882 
1883 	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
1884 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
1885 	set_bit(STRIPE_HANDLE, &sh->state);
1886 	release_stripe(sh);
1887 }
1888 
1889 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1890 
1891 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1892 {
1893 	struct r5dev *dev = &sh->dev[i];
1894 
1895 	bio_init(&dev->req);
1896 	dev->req.bi_io_vec = &dev->vec;
1897 	dev->req.bi_vcnt++;
1898 	dev->req.bi_max_vecs++;
1899 	dev->req.bi_private = sh;
1900 	dev->vec.bv_page = dev->page;
1901 
1902 	bio_init(&dev->rreq);
1903 	dev->rreq.bi_io_vec = &dev->rvec;
1904 	dev->rreq.bi_vcnt++;
1905 	dev->rreq.bi_max_vecs++;
1906 	dev->rreq.bi_private = sh;
1907 	dev->rvec.bv_page = dev->page;
1908 
1909 	dev->flags = 0;
1910 	dev->sector = compute_blocknr(sh, i, previous);
1911 }
1912 
1913 static void error(struct mddev *mddev, struct md_rdev *rdev)
1914 {
1915 	char b[BDEVNAME_SIZE];
1916 	struct r5conf *conf = mddev->private;
1917 	unsigned long flags;
1918 	pr_debug("raid456: error called\n");
1919 
1920 	spin_lock_irqsave(&conf->device_lock, flags);
1921 	clear_bit(In_sync, &rdev->flags);
1922 	mddev->degraded = calc_degraded(conf);
1923 	spin_unlock_irqrestore(&conf->device_lock, flags);
1924 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1925 
1926 	set_bit(Blocked, &rdev->flags);
1927 	set_bit(Faulty, &rdev->flags);
1928 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1929 	printk(KERN_ALERT
1930 	       "md/raid:%s: Disk failure on %s, disabling device.\n"
1931 	       "md/raid:%s: Operation continuing on %d devices.\n",
1932 	       mdname(mddev),
1933 	       bdevname(rdev->bdev, b),
1934 	       mdname(mddev),
1935 	       conf->raid_disks - mddev->degraded);
1936 }
1937 
1938 /*
1939  * Input: a 'big' sector number,
1940  * Output: index of the data and parity disk, and the sector # in them.
1941  */
1942 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
1943 				     int previous, int *dd_idx,
1944 				     struct stripe_head *sh)
1945 {
1946 	sector_t stripe, stripe2;
1947 	sector_t chunk_number;
1948 	unsigned int chunk_offset;
1949 	int pd_idx, qd_idx;
1950 	int ddf_layout = 0;
1951 	sector_t new_sector;
1952 	int algorithm = previous ? conf->prev_algo
1953 				 : conf->algorithm;
1954 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1955 					 : conf->chunk_sectors;
1956 	int raid_disks = previous ? conf->previous_raid_disks
1957 				  : conf->raid_disks;
1958 	int data_disks = raid_disks - conf->max_degraded;
1959 
1960 	/* First compute the information on this sector */
1961 
1962 	/*
1963 	 * Compute the chunk number and the sector offset inside the chunk
1964 	 */
1965 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
1966 	chunk_number = r_sector;
1967 
1968 	/*
1969 	 * Compute the stripe number
1970 	 */
1971 	stripe = chunk_number;
1972 	*dd_idx = sector_div(stripe, data_disks);
1973 	stripe2 = stripe;
1974 	/*
1975 	 * Select the parity disk based on the user selected algorithm.
1976 	 */
1977 	pd_idx = qd_idx = -1;
1978 	switch(conf->level) {
1979 	case 4:
1980 		pd_idx = data_disks;
1981 		break;
1982 	case 5:
1983 		switch (algorithm) {
1984 		case ALGORITHM_LEFT_ASYMMETRIC:
1985 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1986 			if (*dd_idx >= pd_idx)
1987 				(*dd_idx)++;
1988 			break;
1989 		case ALGORITHM_RIGHT_ASYMMETRIC:
1990 			pd_idx = sector_div(stripe2, raid_disks);
1991 			if (*dd_idx >= pd_idx)
1992 				(*dd_idx)++;
1993 			break;
1994 		case ALGORITHM_LEFT_SYMMETRIC:
1995 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1996 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1997 			break;
1998 		case ALGORITHM_RIGHT_SYMMETRIC:
1999 			pd_idx = sector_div(stripe2, raid_disks);
2000 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2001 			break;
2002 		case ALGORITHM_PARITY_0:
2003 			pd_idx = 0;
2004 			(*dd_idx)++;
2005 			break;
2006 		case ALGORITHM_PARITY_N:
2007 			pd_idx = data_disks;
2008 			break;
2009 		default:
2010 			BUG();
2011 		}
2012 		break;
2013 	case 6:
2014 
2015 		switch (algorithm) {
2016 		case ALGORITHM_LEFT_ASYMMETRIC:
2017 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2018 			qd_idx = pd_idx + 1;
2019 			if (pd_idx == raid_disks-1) {
2020 				(*dd_idx)++;	/* Q D D D P */
2021 				qd_idx = 0;
2022 			} else if (*dd_idx >= pd_idx)
2023 				(*dd_idx) += 2; /* D D P Q D */
2024 			break;
2025 		case ALGORITHM_RIGHT_ASYMMETRIC:
2026 			pd_idx = sector_div(stripe2, raid_disks);
2027 			qd_idx = pd_idx + 1;
2028 			if (pd_idx == raid_disks-1) {
2029 				(*dd_idx)++;	/* Q D D D P */
2030 				qd_idx = 0;
2031 			} else if (*dd_idx >= pd_idx)
2032 				(*dd_idx) += 2; /* D D P Q D */
2033 			break;
2034 		case ALGORITHM_LEFT_SYMMETRIC:
2035 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2036 			qd_idx = (pd_idx + 1) % raid_disks;
2037 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2038 			break;
2039 		case ALGORITHM_RIGHT_SYMMETRIC:
2040 			pd_idx = sector_div(stripe2, raid_disks);
2041 			qd_idx = (pd_idx + 1) % raid_disks;
2042 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2043 			break;
2044 
2045 		case ALGORITHM_PARITY_0:
2046 			pd_idx = 0;
2047 			qd_idx = 1;
2048 			(*dd_idx) += 2;
2049 			break;
2050 		case ALGORITHM_PARITY_N:
2051 			pd_idx = data_disks;
2052 			qd_idx = data_disks + 1;
2053 			break;
2054 
2055 		case ALGORITHM_ROTATING_ZERO_RESTART:
2056 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
2057 			 * of blocks for computing Q is different.
2058 			 */
2059 			pd_idx = sector_div(stripe2, raid_disks);
2060 			qd_idx = pd_idx + 1;
2061 			if (pd_idx == raid_disks-1) {
2062 				(*dd_idx)++;	/* Q D D D P */
2063 				qd_idx = 0;
2064 			} else if (*dd_idx >= pd_idx)
2065 				(*dd_idx) += 2; /* D D P Q D */
2066 			ddf_layout = 1;
2067 			break;
2068 
2069 		case ALGORITHM_ROTATING_N_RESTART:
2070 			/* Same a left_asymmetric, by first stripe is
2071 			 * D D D P Q  rather than
2072 			 * Q D D D P
2073 			 */
2074 			stripe2 += 1;
2075 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2076 			qd_idx = pd_idx + 1;
2077 			if (pd_idx == raid_disks-1) {
2078 				(*dd_idx)++;	/* Q D D D P */
2079 				qd_idx = 0;
2080 			} else if (*dd_idx >= pd_idx)
2081 				(*dd_idx) += 2; /* D D P Q D */
2082 			ddf_layout = 1;
2083 			break;
2084 
2085 		case ALGORITHM_ROTATING_N_CONTINUE:
2086 			/* Same as left_symmetric but Q is before P */
2087 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2088 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2089 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2090 			ddf_layout = 1;
2091 			break;
2092 
2093 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2094 			/* RAID5 left_asymmetric, with Q on last device */
2095 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2096 			if (*dd_idx >= pd_idx)
2097 				(*dd_idx)++;
2098 			qd_idx = raid_disks - 1;
2099 			break;
2100 
2101 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2102 			pd_idx = sector_div(stripe2, raid_disks-1);
2103 			if (*dd_idx >= pd_idx)
2104 				(*dd_idx)++;
2105 			qd_idx = raid_disks - 1;
2106 			break;
2107 
2108 		case ALGORITHM_LEFT_SYMMETRIC_6:
2109 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2110 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2111 			qd_idx = raid_disks - 1;
2112 			break;
2113 
2114 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2115 			pd_idx = sector_div(stripe2, raid_disks-1);
2116 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2117 			qd_idx = raid_disks - 1;
2118 			break;
2119 
2120 		case ALGORITHM_PARITY_0_6:
2121 			pd_idx = 0;
2122 			(*dd_idx)++;
2123 			qd_idx = raid_disks - 1;
2124 			break;
2125 
2126 		default:
2127 			BUG();
2128 		}
2129 		break;
2130 	}
2131 
2132 	if (sh) {
2133 		sh->pd_idx = pd_idx;
2134 		sh->qd_idx = qd_idx;
2135 		sh->ddf_layout = ddf_layout;
2136 	}
2137 	/*
2138 	 * Finally, compute the new sector number
2139 	 */
2140 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2141 	return new_sector;
2142 }
2143 
2144 
2145 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2146 {
2147 	struct r5conf *conf = sh->raid_conf;
2148 	int raid_disks = sh->disks;
2149 	int data_disks = raid_disks - conf->max_degraded;
2150 	sector_t new_sector = sh->sector, check;
2151 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2152 					 : conf->chunk_sectors;
2153 	int algorithm = previous ? conf->prev_algo
2154 				 : conf->algorithm;
2155 	sector_t stripe;
2156 	int chunk_offset;
2157 	sector_t chunk_number;
2158 	int dummy1, dd_idx = i;
2159 	sector_t r_sector;
2160 	struct stripe_head sh2;
2161 
2162 
2163 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
2164 	stripe = new_sector;
2165 
2166 	if (i == sh->pd_idx)
2167 		return 0;
2168 	switch(conf->level) {
2169 	case 4: break;
2170 	case 5:
2171 		switch (algorithm) {
2172 		case ALGORITHM_LEFT_ASYMMETRIC:
2173 		case ALGORITHM_RIGHT_ASYMMETRIC:
2174 			if (i > sh->pd_idx)
2175 				i--;
2176 			break;
2177 		case ALGORITHM_LEFT_SYMMETRIC:
2178 		case ALGORITHM_RIGHT_SYMMETRIC:
2179 			if (i < sh->pd_idx)
2180 				i += raid_disks;
2181 			i -= (sh->pd_idx + 1);
2182 			break;
2183 		case ALGORITHM_PARITY_0:
2184 			i -= 1;
2185 			break;
2186 		case ALGORITHM_PARITY_N:
2187 			break;
2188 		default:
2189 			BUG();
2190 		}
2191 		break;
2192 	case 6:
2193 		if (i == sh->qd_idx)
2194 			return 0; /* It is the Q disk */
2195 		switch (algorithm) {
2196 		case ALGORITHM_LEFT_ASYMMETRIC:
2197 		case ALGORITHM_RIGHT_ASYMMETRIC:
2198 		case ALGORITHM_ROTATING_ZERO_RESTART:
2199 		case ALGORITHM_ROTATING_N_RESTART:
2200 			if (sh->pd_idx == raid_disks-1)
2201 				i--;	/* Q D D D P */
2202 			else if (i > sh->pd_idx)
2203 				i -= 2; /* D D P Q D */
2204 			break;
2205 		case ALGORITHM_LEFT_SYMMETRIC:
2206 		case ALGORITHM_RIGHT_SYMMETRIC:
2207 			if (sh->pd_idx == raid_disks-1)
2208 				i--; /* Q D D D P */
2209 			else {
2210 				/* D D P Q D */
2211 				if (i < sh->pd_idx)
2212 					i += raid_disks;
2213 				i -= (sh->pd_idx + 2);
2214 			}
2215 			break;
2216 		case ALGORITHM_PARITY_0:
2217 			i -= 2;
2218 			break;
2219 		case ALGORITHM_PARITY_N:
2220 			break;
2221 		case ALGORITHM_ROTATING_N_CONTINUE:
2222 			/* Like left_symmetric, but P is before Q */
2223 			if (sh->pd_idx == 0)
2224 				i--;	/* P D D D Q */
2225 			else {
2226 				/* D D Q P D */
2227 				if (i < sh->pd_idx)
2228 					i += raid_disks;
2229 				i -= (sh->pd_idx + 1);
2230 			}
2231 			break;
2232 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2233 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2234 			if (i > sh->pd_idx)
2235 				i--;
2236 			break;
2237 		case ALGORITHM_LEFT_SYMMETRIC_6:
2238 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2239 			if (i < sh->pd_idx)
2240 				i += data_disks + 1;
2241 			i -= (sh->pd_idx + 1);
2242 			break;
2243 		case ALGORITHM_PARITY_0_6:
2244 			i -= 1;
2245 			break;
2246 		default:
2247 			BUG();
2248 		}
2249 		break;
2250 	}
2251 
2252 	chunk_number = stripe * data_disks + i;
2253 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2254 
2255 	check = raid5_compute_sector(conf, r_sector,
2256 				     previous, &dummy1, &sh2);
2257 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2258 		|| sh2.qd_idx != sh->qd_idx) {
2259 		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2260 		       mdname(conf->mddev));
2261 		return 0;
2262 	}
2263 	return r_sector;
2264 }
2265 
2266 
2267 static void
2268 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2269 			 int rcw, int expand)
2270 {
2271 	int i, pd_idx = sh->pd_idx, disks = sh->disks;
2272 	struct r5conf *conf = sh->raid_conf;
2273 	int level = conf->level;
2274 
2275 	if (rcw) {
2276 		/* if we are not expanding this is a proper write request, and
2277 		 * there will be bios with new data to be drained into the
2278 		 * stripe cache
2279 		 */
2280 		if (!expand) {
2281 			sh->reconstruct_state = reconstruct_state_drain_run;
2282 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2283 		} else
2284 			sh->reconstruct_state = reconstruct_state_run;
2285 
2286 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2287 
2288 		for (i = disks; i--; ) {
2289 			struct r5dev *dev = &sh->dev[i];
2290 
2291 			if (dev->towrite) {
2292 				set_bit(R5_LOCKED, &dev->flags);
2293 				set_bit(R5_Wantdrain, &dev->flags);
2294 				if (!expand)
2295 					clear_bit(R5_UPTODATE, &dev->flags);
2296 				s->locked++;
2297 			}
2298 		}
2299 		if (s->locked + conf->max_degraded == disks)
2300 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2301 				atomic_inc(&conf->pending_full_writes);
2302 	} else {
2303 		BUG_ON(level == 6);
2304 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2305 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2306 
2307 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2308 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2309 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2310 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2311 
2312 		for (i = disks; i--; ) {
2313 			struct r5dev *dev = &sh->dev[i];
2314 			if (i == pd_idx)
2315 				continue;
2316 
2317 			if (dev->towrite &&
2318 			    (test_bit(R5_UPTODATE, &dev->flags) ||
2319 			     test_bit(R5_Wantcompute, &dev->flags))) {
2320 				set_bit(R5_Wantdrain, &dev->flags);
2321 				set_bit(R5_LOCKED, &dev->flags);
2322 				clear_bit(R5_UPTODATE, &dev->flags);
2323 				s->locked++;
2324 			}
2325 		}
2326 	}
2327 
2328 	/* keep the parity disk(s) locked while asynchronous operations
2329 	 * are in flight
2330 	 */
2331 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2332 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2333 	s->locked++;
2334 
2335 	if (level == 6) {
2336 		int qd_idx = sh->qd_idx;
2337 		struct r5dev *dev = &sh->dev[qd_idx];
2338 
2339 		set_bit(R5_LOCKED, &dev->flags);
2340 		clear_bit(R5_UPTODATE, &dev->flags);
2341 		s->locked++;
2342 	}
2343 
2344 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2345 		__func__, (unsigned long long)sh->sector,
2346 		s->locked, s->ops_request);
2347 }
2348 
2349 /*
2350  * Each stripe/dev can have one or more bion attached.
2351  * toread/towrite point to the first in a chain.
2352  * The bi_next chain must be in order.
2353  */
2354 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2355 {
2356 	struct bio **bip;
2357 	struct r5conf *conf = sh->raid_conf;
2358 	int firstwrite=0;
2359 
2360 	pr_debug("adding bi b#%llu to stripe s#%llu\n",
2361 		(unsigned long long)bi->bi_sector,
2362 		(unsigned long long)sh->sector);
2363 
2364 	/*
2365 	 * If several bio share a stripe. The bio bi_phys_segments acts as a
2366 	 * reference count to avoid race. The reference count should already be
2367 	 * increased before this function is called (for example, in
2368 	 * make_request()), so other bio sharing this stripe will not free the
2369 	 * stripe. If a stripe is owned by one stripe, the stripe lock will
2370 	 * protect it.
2371 	 */
2372 	spin_lock_irq(&sh->stripe_lock);
2373 	if (forwrite) {
2374 		bip = &sh->dev[dd_idx].towrite;
2375 		if (*bip == NULL)
2376 			firstwrite = 1;
2377 	} else
2378 		bip = &sh->dev[dd_idx].toread;
2379 	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2380 		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2381 			goto overlap;
2382 		bip = & (*bip)->bi_next;
2383 	}
2384 	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2385 		goto overlap;
2386 
2387 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2388 	if (*bip)
2389 		bi->bi_next = *bip;
2390 	*bip = bi;
2391 	raid5_inc_bi_active_stripes(bi);
2392 
2393 	if (forwrite) {
2394 		/* check if page is covered */
2395 		sector_t sector = sh->dev[dd_idx].sector;
2396 		for (bi=sh->dev[dd_idx].towrite;
2397 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2398 			     bi && bi->bi_sector <= sector;
2399 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2400 			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2401 				sector = bi->bi_sector + (bi->bi_size>>9);
2402 		}
2403 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2404 			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2405 	}
2406 	spin_unlock_irq(&sh->stripe_lock);
2407 
2408 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2409 		(unsigned long long)(*bip)->bi_sector,
2410 		(unsigned long long)sh->sector, dd_idx);
2411 
2412 	if (conf->mddev->bitmap && firstwrite) {
2413 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2414 				  STRIPE_SECTORS, 0);
2415 		sh->bm_seq = conf->seq_flush+1;
2416 		set_bit(STRIPE_BIT_DELAY, &sh->state);
2417 	}
2418 	return 1;
2419 
2420  overlap:
2421 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2422 	spin_unlock_irq(&sh->stripe_lock);
2423 	return 0;
2424 }
2425 
2426 static void end_reshape(struct r5conf *conf);
2427 
2428 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2429 			    struct stripe_head *sh)
2430 {
2431 	int sectors_per_chunk =
2432 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2433 	int dd_idx;
2434 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2435 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2436 
2437 	raid5_compute_sector(conf,
2438 			     stripe * (disks - conf->max_degraded)
2439 			     *sectors_per_chunk + chunk_offset,
2440 			     previous,
2441 			     &dd_idx, sh);
2442 }
2443 
2444 static void
2445 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2446 				struct stripe_head_state *s, int disks,
2447 				struct bio **return_bi)
2448 {
2449 	int i;
2450 	for (i = disks; i--; ) {
2451 		struct bio *bi;
2452 		int bitmap_end = 0;
2453 
2454 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2455 			struct md_rdev *rdev;
2456 			rcu_read_lock();
2457 			rdev = rcu_dereference(conf->disks[i].rdev);
2458 			if (rdev && test_bit(In_sync, &rdev->flags))
2459 				atomic_inc(&rdev->nr_pending);
2460 			else
2461 				rdev = NULL;
2462 			rcu_read_unlock();
2463 			if (rdev) {
2464 				if (!rdev_set_badblocks(
2465 					    rdev,
2466 					    sh->sector,
2467 					    STRIPE_SECTORS, 0))
2468 					md_error(conf->mddev, rdev);
2469 				rdev_dec_pending(rdev, conf->mddev);
2470 			}
2471 		}
2472 		spin_lock_irq(&sh->stripe_lock);
2473 		/* fail all writes first */
2474 		bi = sh->dev[i].towrite;
2475 		sh->dev[i].towrite = NULL;
2476 		spin_unlock_irq(&sh->stripe_lock);
2477 		if (bi) {
2478 			s->to_write--;
2479 			bitmap_end = 1;
2480 		}
2481 
2482 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2483 			wake_up(&conf->wait_for_overlap);
2484 
2485 		while (bi && bi->bi_sector <
2486 			sh->dev[i].sector + STRIPE_SECTORS) {
2487 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2488 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2489 			if (!raid5_dec_bi_active_stripes(bi)) {
2490 				md_write_end(conf->mddev);
2491 				bi->bi_next = *return_bi;
2492 				*return_bi = bi;
2493 			}
2494 			bi = nextbi;
2495 		}
2496 		if (bitmap_end)
2497 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2498 				STRIPE_SECTORS, 0, 0);
2499 		bitmap_end = 0;
2500 		/* and fail all 'written' */
2501 		bi = sh->dev[i].written;
2502 		sh->dev[i].written = NULL;
2503 		if (bi) bitmap_end = 1;
2504 		while (bi && bi->bi_sector <
2505 		       sh->dev[i].sector + STRIPE_SECTORS) {
2506 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2507 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2508 			if (!raid5_dec_bi_active_stripes(bi)) {
2509 				md_write_end(conf->mddev);
2510 				bi->bi_next = *return_bi;
2511 				*return_bi = bi;
2512 			}
2513 			bi = bi2;
2514 		}
2515 
2516 		/* fail any reads if this device is non-operational and
2517 		 * the data has not reached the cache yet.
2518 		 */
2519 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2520 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2521 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2522 			bi = sh->dev[i].toread;
2523 			sh->dev[i].toread = NULL;
2524 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2525 				wake_up(&conf->wait_for_overlap);
2526 			if (bi) s->to_read--;
2527 			while (bi && bi->bi_sector <
2528 			       sh->dev[i].sector + STRIPE_SECTORS) {
2529 				struct bio *nextbi =
2530 					r5_next_bio(bi, sh->dev[i].sector);
2531 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2532 				if (!raid5_dec_bi_active_stripes(bi)) {
2533 					bi->bi_next = *return_bi;
2534 					*return_bi = bi;
2535 				}
2536 				bi = nextbi;
2537 			}
2538 		}
2539 		if (bitmap_end)
2540 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2541 					STRIPE_SECTORS, 0, 0);
2542 		/* If we were in the middle of a write the parity block might
2543 		 * still be locked - so just clear all R5_LOCKED flags
2544 		 */
2545 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2546 	}
2547 
2548 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2549 		if (atomic_dec_and_test(&conf->pending_full_writes))
2550 			md_wakeup_thread(conf->mddev->thread);
2551 }
2552 
2553 static void
2554 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2555 		   struct stripe_head_state *s)
2556 {
2557 	int abort = 0;
2558 	int i;
2559 
2560 	clear_bit(STRIPE_SYNCING, &sh->state);
2561 	s->syncing = 0;
2562 	s->replacing = 0;
2563 	/* There is nothing more to do for sync/check/repair.
2564 	 * Don't even need to abort as that is handled elsewhere
2565 	 * if needed, and not always wanted e.g. if there is a known
2566 	 * bad block here.
2567 	 * For recover/replace we need to record a bad block on all
2568 	 * non-sync devices, or abort the recovery
2569 	 */
2570 	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2571 		/* During recovery devices cannot be removed, so
2572 		 * locking and refcounting of rdevs is not needed
2573 		 */
2574 		for (i = 0; i < conf->raid_disks; i++) {
2575 			struct md_rdev *rdev = conf->disks[i].rdev;
2576 			if (rdev
2577 			    && !test_bit(Faulty, &rdev->flags)
2578 			    && !test_bit(In_sync, &rdev->flags)
2579 			    && !rdev_set_badblocks(rdev, sh->sector,
2580 						   STRIPE_SECTORS, 0))
2581 				abort = 1;
2582 			rdev = conf->disks[i].replacement;
2583 			if (rdev
2584 			    && !test_bit(Faulty, &rdev->flags)
2585 			    && !test_bit(In_sync, &rdev->flags)
2586 			    && !rdev_set_badblocks(rdev, sh->sector,
2587 						   STRIPE_SECTORS, 0))
2588 				abort = 1;
2589 		}
2590 		if (abort)
2591 			conf->recovery_disabled =
2592 				conf->mddev->recovery_disabled;
2593 	}
2594 	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2595 }
2596 
2597 static int want_replace(struct stripe_head *sh, int disk_idx)
2598 {
2599 	struct md_rdev *rdev;
2600 	int rv = 0;
2601 	/* Doing recovery so rcu locking not required */
2602 	rdev = sh->raid_conf->disks[disk_idx].replacement;
2603 	if (rdev
2604 	    && !test_bit(Faulty, &rdev->flags)
2605 	    && !test_bit(In_sync, &rdev->flags)
2606 	    && (rdev->recovery_offset <= sh->sector
2607 		|| rdev->mddev->recovery_cp <= sh->sector))
2608 		rv = 1;
2609 
2610 	return rv;
2611 }
2612 
2613 /* fetch_block - checks the given member device to see if its data needs
2614  * to be read or computed to satisfy a request.
2615  *
2616  * Returns 1 when no more member devices need to be checked, otherwise returns
2617  * 0 to tell the loop in handle_stripe_fill to continue
2618  */
2619 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2620 		       int disk_idx, int disks)
2621 {
2622 	struct r5dev *dev = &sh->dev[disk_idx];
2623 	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2624 				  &sh->dev[s->failed_num[1]] };
2625 
2626 	/* is the data in this block needed, and can we get it? */
2627 	if (!test_bit(R5_LOCKED, &dev->flags) &&
2628 	    !test_bit(R5_UPTODATE, &dev->flags) &&
2629 	    (dev->toread ||
2630 	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2631 	     s->syncing || s->expanding ||
2632 	     (s->replacing && want_replace(sh, disk_idx)) ||
2633 	     (s->failed >= 1 && fdev[0]->toread) ||
2634 	     (s->failed >= 2 && fdev[1]->toread) ||
2635 	     (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2636 	      !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2637 	     (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2638 		/* we would like to get this block, possibly by computing it,
2639 		 * otherwise read it if the backing disk is insync
2640 		 */
2641 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2642 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
2643 		if ((s->uptodate == disks - 1) &&
2644 		    (s->failed && (disk_idx == s->failed_num[0] ||
2645 				   disk_idx == s->failed_num[1]))) {
2646 			/* have disk failed, and we're requested to fetch it;
2647 			 * do compute it
2648 			 */
2649 			pr_debug("Computing stripe %llu block %d\n",
2650 			       (unsigned long long)sh->sector, disk_idx);
2651 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2652 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2653 			set_bit(R5_Wantcompute, &dev->flags);
2654 			sh->ops.target = disk_idx;
2655 			sh->ops.target2 = -1; /* no 2nd target */
2656 			s->req_compute = 1;
2657 			/* Careful: from this point on 'uptodate' is in the eye
2658 			 * of raid_run_ops which services 'compute' operations
2659 			 * before writes. R5_Wantcompute flags a block that will
2660 			 * be R5_UPTODATE by the time it is needed for a
2661 			 * subsequent operation.
2662 			 */
2663 			s->uptodate++;
2664 			return 1;
2665 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
2666 			/* Computing 2-failure is *very* expensive; only
2667 			 * do it if failed >= 2
2668 			 */
2669 			int other;
2670 			for (other = disks; other--; ) {
2671 				if (other == disk_idx)
2672 					continue;
2673 				if (!test_bit(R5_UPTODATE,
2674 				      &sh->dev[other].flags))
2675 					break;
2676 			}
2677 			BUG_ON(other < 0);
2678 			pr_debug("Computing stripe %llu blocks %d,%d\n",
2679 			       (unsigned long long)sh->sector,
2680 			       disk_idx, other);
2681 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2682 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2683 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2684 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
2685 			sh->ops.target = disk_idx;
2686 			sh->ops.target2 = other;
2687 			s->uptodate += 2;
2688 			s->req_compute = 1;
2689 			return 1;
2690 		} else if (test_bit(R5_Insync, &dev->flags)) {
2691 			set_bit(R5_LOCKED, &dev->flags);
2692 			set_bit(R5_Wantread, &dev->flags);
2693 			s->locked++;
2694 			pr_debug("Reading block %d (sync=%d)\n",
2695 				disk_idx, s->syncing);
2696 		}
2697 	}
2698 
2699 	return 0;
2700 }
2701 
2702 /**
2703  * handle_stripe_fill - read or compute data to satisfy pending requests.
2704  */
2705 static void handle_stripe_fill(struct stripe_head *sh,
2706 			       struct stripe_head_state *s,
2707 			       int disks)
2708 {
2709 	int i;
2710 
2711 	/* look for blocks to read/compute, skip this if a compute
2712 	 * is already in flight, or if the stripe contents are in the
2713 	 * midst of changing due to a write
2714 	 */
2715 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2716 	    !sh->reconstruct_state)
2717 		for (i = disks; i--; )
2718 			if (fetch_block(sh, s, i, disks))
2719 				break;
2720 	set_bit(STRIPE_HANDLE, &sh->state);
2721 }
2722 
2723 
2724 /* handle_stripe_clean_event
2725  * any written block on an uptodate or failed drive can be returned.
2726  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2727  * never LOCKED, so we don't need to test 'failed' directly.
2728  */
2729 static void handle_stripe_clean_event(struct r5conf *conf,
2730 	struct stripe_head *sh, int disks, struct bio **return_bi)
2731 {
2732 	int i;
2733 	struct r5dev *dev;
2734 
2735 	for (i = disks; i--; )
2736 		if (sh->dev[i].written) {
2737 			dev = &sh->dev[i];
2738 			if (!test_bit(R5_LOCKED, &dev->flags) &&
2739 				test_bit(R5_UPTODATE, &dev->flags)) {
2740 				/* We can return any write requests */
2741 				struct bio *wbi, *wbi2;
2742 				pr_debug("Return write for disc %d\n", i);
2743 				wbi = dev->written;
2744 				dev->written = NULL;
2745 				while (wbi && wbi->bi_sector <
2746 					dev->sector + STRIPE_SECTORS) {
2747 					wbi2 = r5_next_bio(wbi, dev->sector);
2748 					if (!raid5_dec_bi_active_stripes(wbi)) {
2749 						md_write_end(conf->mddev);
2750 						wbi->bi_next = *return_bi;
2751 						*return_bi = wbi;
2752 					}
2753 					wbi = wbi2;
2754 				}
2755 				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2756 						STRIPE_SECTORS,
2757 					 !test_bit(STRIPE_DEGRADED, &sh->state),
2758 						0);
2759 			}
2760 		}
2761 
2762 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2763 		if (atomic_dec_and_test(&conf->pending_full_writes))
2764 			md_wakeup_thread(conf->mddev->thread);
2765 }
2766 
2767 static void handle_stripe_dirtying(struct r5conf *conf,
2768 				   struct stripe_head *sh,
2769 				   struct stripe_head_state *s,
2770 				   int disks)
2771 {
2772 	int rmw = 0, rcw = 0, i;
2773 	if (conf->max_degraded == 2) {
2774 		/* RAID6 requires 'rcw' in current implementation
2775 		 * Calculate the real rcw later - for now fake it
2776 		 * look like rcw is cheaper
2777 		 */
2778 		rcw = 1; rmw = 2;
2779 	} else for (i = disks; i--; ) {
2780 		/* would I have to read this buffer for read_modify_write */
2781 		struct r5dev *dev = &sh->dev[i];
2782 		if ((dev->towrite || i == sh->pd_idx) &&
2783 		    !test_bit(R5_LOCKED, &dev->flags) &&
2784 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2785 		      test_bit(R5_Wantcompute, &dev->flags))) {
2786 			if (test_bit(R5_Insync, &dev->flags))
2787 				rmw++;
2788 			else
2789 				rmw += 2*disks;  /* cannot read it */
2790 		}
2791 		/* Would I have to read this buffer for reconstruct_write */
2792 		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2793 		    !test_bit(R5_LOCKED, &dev->flags) &&
2794 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2795 		    test_bit(R5_Wantcompute, &dev->flags))) {
2796 			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2797 			else
2798 				rcw += 2*disks;
2799 		}
2800 	}
2801 	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2802 		(unsigned long long)sh->sector, rmw, rcw);
2803 	set_bit(STRIPE_HANDLE, &sh->state);
2804 	if (rmw < rcw && rmw > 0)
2805 		/* prefer read-modify-write, but need to get some data */
2806 		for (i = disks; i--; ) {
2807 			struct r5dev *dev = &sh->dev[i];
2808 			if ((dev->towrite || i == sh->pd_idx) &&
2809 			    !test_bit(R5_LOCKED, &dev->flags) &&
2810 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2811 			    test_bit(R5_Wantcompute, &dev->flags)) &&
2812 			    test_bit(R5_Insync, &dev->flags)) {
2813 				if (
2814 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2815 					pr_debug("Read_old block "
2816 						"%d for r-m-w\n", i);
2817 					set_bit(R5_LOCKED, &dev->flags);
2818 					set_bit(R5_Wantread, &dev->flags);
2819 					s->locked++;
2820 				} else {
2821 					set_bit(STRIPE_DELAYED, &sh->state);
2822 					set_bit(STRIPE_HANDLE, &sh->state);
2823 				}
2824 			}
2825 		}
2826 	if (rcw <= rmw && rcw > 0) {
2827 		/* want reconstruct write, but need to get some data */
2828 		rcw = 0;
2829 		for (i = disks; i--; ) {
2830 			struct r5dev *dev = &sh->dev[i];
2831 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2832 			    i != sh->pd_idx && i != sh->qd_idx &&
2833 			    !test_bit(R5_LOCKED, &dev->flags) &&
2834 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2835 			      test_bit(R5_Wantcompute, &dev->flags))) {
2836 				rcw++;
2837 				if (!test_bit(R5_Insync, &dev->flags))
2838 					continue; /* it's a failed drive */
2839 				if (
2840 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2841 					pr_debug("Read_old block "
2842 						"%d for Reconstruct\n", i);
2843 					set_bit(R5_LOCKED, &dev->flags);
2844 					set_bit(R5_Wantread, &dev->flags);
2845 					s->locked++;
2846 				} else {
2847 					set_bit(STRIPE_DELAYED, &sh->state);
2848 					set_bit(STRIPE_HANDLE, &sh->state);
2849 				}
2850 			}
2851 		}
2852 	}
2853 	/* now if nothing is locked, and if we have enough data,
2854 	 * we can start a write request
2855 	 */
2856 	/* since handle_stripe can be called at any time we need to handle the
2857 	 * case where a compute block operation has been submitted and then a
2858 	 * subsequent call wants to start a write request.  raid_run_ops only
2859 	 * handles the case where compute block and reconstruct are requested
2860 	 * simultaneously.  If this is not the case then new writes need to be
2861 	 * held off until the compute completes.
2862 	 */
2863 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2864 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2865 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2866 		schedule_reconstruction(sh, s, rcw == 0, 0);
2867 }
2868 
2869 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
2870 				struct stripe_head_state *s, int disks)
2871 {
2872 	struct r5dev *dev = NULL;
2873 
2874 	set_bit(STRIPE_HANDLE, &sh->state);
2875 
2876 	switch (sh->check_state) {
2877 	case check_state_idle:
2878 		/* start a new check operation if there are no failures */
2879 		if (s->failed == 0) {
2880 			BUG_ON(s->uptodate != disks);
2881 			sh->check_state = check_state_run;
2882 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2883 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2884 			s->uptodate--;
2885 			break;
2886 		}
2887 		dev = &sh->dev[s->failed_num[0]];
2888 		/* fall through */
2889 	case check_state_compute_result:
2890 		sh->check_state = check_state_idle;
2891 		if (!dev)
2892 			dev = &sh->dev[sh->pd_idx];
2893 
2894 		/* check that a write has not made the stripe insync */
2895 		if (test_bit(STRIPE_INSYNC, &sh->state))
2896 			break;
2897 
2898 		/* either failed parity check, or recovery is happening */
2899 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2900 		BUG_ON(s->uptodate != disks);
2901 
2902 		set_bit(R5_LOCKED, &dev->flags);
2903 		s->locked++;
2904 		set_bit(R5_Wantwrite, &dev->flags);
2905 
2906 		clear_bit(STRIPE_DEGRADED, &sh->state);
2907 		set_bit(STRIPE_INSYNC, &sh->state);
2908 		break;
2909 	case check_state_run:
2910 		break; /* we will be called again upon completion */
2911 	case check_state_check_result:
2912 		sh->check_state = check_state_idle;
2913 
2914 		/* if a failure occurred during the check operation, leave
2915 		 * STRIPE_INSYNC not set and let the stripe be handled again
2916 		 */
2917 		if (s->failed)
2918 			break;
2919 
2920 		/* handle a successful check operation, if parity is correct
2921 		 * we are done.  Otherwise update the mismatch count and repair
2922 		 * parity if !MD_RECOVERY_CHECK
2923 		 */
2924 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2925 			/* parity is correct (on disc,
2926 			 * not in buffer any more)
2927 			 */
2928 			set_bit(STRIPE_INSYNC, &sh->state);
2929 		else {
2930 			conf->mddev->resync_mismatches += STRIPE_SECTORS;
2931 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2932 				/* don't try to repair!! */
2933 				set_bit(STRIPE_INSYNC, &sh->state);
2934 			else {
2935 				sh->check_state = check_state_compute_run;
2936 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2937 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2938 				set_bit(R5_Wantcompute,
2939 					&sh->dev[sh->pd_idx].flags);
2940 				sh->ops.target = sh->pd_idx;
2941 				sh->ops.target2 = -1;
2942 				s->uptodate++;
2943 			}
2944 		}
2945 		break;
2946 	case check_state_compute_run:
2947 		break;
2948 	default:
2949 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2950 		       __func__, sh->check_state,
2951 		       (unsigned long long) sh->sector);
2952 		BUG();
2953 	}
2954 }
2955 
2956 
2957 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
2958 				  struct stripe_head_state *s,
2959 				  int disks)
2960 {
2961 	int pd_idx = sh->pd_idx;
2962 	int qd_idx = sh->qd_idx;
2963 	struct r5dev *dev;
2964 
2965 	set_bit(STRIPE_HANDLE, &sh->state);
2966 
2967 	BUG_ON(s->failed > 2);
2968 
2969 	/* Want to check and possibly repair P and Q.
2970 	 * However there could be one 'failed' device, in which
2971 	 * case we can only check one of them, possibly using the
2972 	 * other to generate missing data
2973 	 */
2974 
2975 	switch (sh->check_state) {
2976 	case check_state_idle:
2977 		/* start a new check operation if there are < 2 failures */
2978 		if (s->failed == s->q_failed) {
2979 			/* The only possible failed device holds Q, so it
2980 			 * makes sense to check P (If anything else were failed,
2981 			 * we would have used P to recreate it).
2982 			 */
2983 			sh->check_state = check_state_run;
2984 		}
2985 		if (!s->q_failed && s->failed < 2) {
2986 			/* Q is not failed, and we didn't use it to generate
2987 			 * anything, so it makes sense to check it
2988 			 */
2989 			if (sh->check_state == check_state_run)
2990 				sh->check_state = check_state_run_pq;
2991 			else
2992 				sh->check_state = check_state_run_q;
2993 		}
2994 
2995 		/* discard potentially stale zero_sum_result */
2996 		sh->ops.zero_sum_result = 0;
2997 
2998 		if (sh->check_state == check_state_run) {
2999 			/* async_xor_zero_sum destroys the contents of P */
3000 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3001 			s->uptodate--;
3002 		}
3003 		if (sh->check_state >= check_state_run &&
3004 		    sh->check_state <= check_state_run_pq) {
3005 			/* async_syndrome_zero_sum preserves P and Q, so
3006 			 * no need to mark them !uptodate here
3007 			 */
3008 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3009 			break;
3010 		}
3011 
3012 		/* we have 2-disk failure */
3013 		BUG_ON(s->failed != 2);
3014 		/* fall through */
3015 	case check_state_compute_result:
3016 		sh->check_state = check_state_idle;
3017 
3018 		/* check that a write has not made the stripe insync */
3019 		if (test_bit(STRIPE_INSYNC, &sh->state))
3020 			break;
3021 
3022 		/* now write out any block on a failed drive,
3023 		 * or P or Q if they were recomputed
3024 		 */
3025 		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3026 		if (s->failed == 2) {
3027 			dev = &sh->dev[s->failed_num[1]];
3028 			s->locked++;
3029 			set_bit(R5_LOCKED, &dev->flags);
3030 			set_bit(R5_Wantwrite, &dev->flags);
3031 		}
3032 		if (s->failed >= 1) {
3033 			dev = &sh->dev[s->failed_num[0]];
3034 			s->locked++;
3035 			set_bit(R5_LOCKED, &dev->flags);
3036 			set_bit(R5_Wantwrite, &dev->flags);
3037 		}
3038 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3039 			dev = &sh->dev[pd_idx];
3040 			s->locked++;
3041 			set_bit(R5_LOCKED, &dev->flags);
3042 			set_bit(R5_Wantwrite, &dev->flags);
3043 		}
3044 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3045 			dev = &sh->dev[qd_idx];
3046 			s->locked++;
3047 			set_bit(R5_LOCKED, &dev->flags);
3048 			set_bit(R5_Wantwrite, &dev->flags);
3049 		}
3050 		clear_bit(STRIPE_DEGRADED, &sh->state);
3051 
3052 		set_bit(STRIPE_INSYNC, &sh->state);
3053 		break;
3054 	case check_state_run:
3055 	case check_state_run_q:
3056 	case check_state_run_pq:
3057 		break; /* we will be called again upon completion */
3058 	case check_state_check_result:
3059 		sh->check_state = check_state_idle;
3060 
3061 		/* handle a successful check operation, if parity is correct
3062 		 * we are done.  Otherwise update the mismatch count and repair
3063 		 * parity if !MD_RECOVERY_CHECK
3064 		 */
3065 		if (sh->ops.zero_sum_result == 0) {
3066 			/* both parities are correct */
3067 			if (!s->failed)
3068 				set_bit(STRIPE_INSYNC, &sh->state);
3069 			else {
3070 				/* in contrast to the raid5 case we can validate
3071 				 * parity, but still have a failure to write
3072 				 * back
3073 				 */
3074 				sh->check_state = check_state_compute_result;
3075 				/* Returning at this point means that we may go
3076 				 * off and bring p and/or q uptodate again so
3077 				 * we make sure to check zero_sum_result again
3078 				 * to verify if p or q need writeback
3079 				 */
3080 			}
3081 		} else {
3082 			conf->mddev->resync_mismatches += STRIPE_SECTORS;
3083 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3084 				/* don't try to repair!! */
3085 				set_bit(STRIPE_INSYNC, &sh->state);
3086 			else {
3087 				int *target = &sh->ops.target;
3088 
3089 				sh->ops.target = -1;
3090 				sh->ops.target2 = -1;
3091 				sh->check_state = check_state_compute_run;
3092 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3093 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3094 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3095 					set_bit(R5_Wantcompute,
3096 						&sh->dev[pd_idx].flags);
3097 					*target = pd_idx;
3098 					target = &sh->ops.target2;
3099 					s->uptodate++;
3100 				}
3101 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3102 					set_bit(R5_Wantcompute,
3103 						&sh->dev[qd_idx].flags);
3104 					*target = qd_idx;
3105 					s->uptodate++;
3106 				}
3107 			}
3108 		}
3109 		break;
3110 	case check_state_compute_run:
3111 		break;
3112 	default:
3113 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3114 		       __func__, sh->check_state,
3115 		       (unsigned long long) sh->sector);
3116 		BUG();
3117 	}
3118 }
3119 
3120 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3121 {
3122 	int i;
3123 
3124 	/* We have read all the blocks in this stripe and now we need to
3125 	 * copy some of them into a target stripe for expand.
3126 	 */
3127 	struct dma_async_tx_descriptor *tx = NULL;
3128 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3129 	for (i = 0; i < sh->disks; i++)
3130 		if (i != sh->pd_idx && i != sh->qd_idx) {
3131 			int dd_idx, j;
3132 			struct stripe_head *sh2;
3133 			struct async_submit_ctl submit;
3134 
3135 			sector_t bn = compute_blocknr(sh, i, 1);
3136 			sector_t s = raid5_compute_sector(conf, bn, 0,
3137 							  &dd_idx, NULL);
3138 			sh2 = get_active_stripe(conf, s, 0, 1, 1);
3139 			if (sh2 == NULL)
3140 				/* so far only the early blocks of this stripe
3141 				 * have been requested.  When later blocks
3142 				 * get requested, we will try again
3143 				 */
3144 				continue;
3145 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3146 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3147 				/* must have already done this block */
3148 				release_stripe(sh2);
3149 				continue;
3150 			}
3151 
3152 			/* place all the copies on one channel */
3153 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3154 			tx = async_memcpy(sh2->dev[dd_idx].page,
3155 					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
3156 					  &submit);
3157 
3158 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3159 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3160 			for (j = 0; j < conf->raid_disks; j++)
3161 				if (j != sh2->pd_idx &&
3162 				    j != sh2->qd_idx &&
3163 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
3164 					break;
3165 			if (j == conf->raid_disks) {
3166 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
3167 				set_bit(STRIPE_HANDLE, &sh2->state);
3168 			}
3169 			release_stripe(sh2);
3170 
3171 		}
3172 	/* done submitting copies, wait for them to complete */
3173 	if (tx) {
3174 		async_tx_ack(tx);
3175 		dma_wait_for_async_tx(tx);
3176 	}
3177 }
3178 
3179 /*
3180  * handle_stripe - do things to a stripe.
3181  *
3182  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3183  * state of various bits to see what needs to be done.
3184  * Possible results:
3185  *    return some read requests which now have data
3186  *    return some write requests which are safely on storage
3187  *    schedule a read on some buffers
3188  *    schedule a write of some buffers
3189  *    return confirmation of parity correctness
3190  *
3191  */
3192 
3193 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3194 {
3195 	struct r5conf *conf = sh->raid_conf;
3196 	int disks = sh->disks;
3197 	struct r5dev *dev;
3198 	int i;
3199 	int do_recovery = 0;
3200 
3201 	memset(s, 0, sizeof(*s));
3202 
3203 	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3204 	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3205 	s->failed_num[0] = -1;
3206 	s->failed_num[1] = -1;
3207 
3208 	/* Now to look around and see what can be done */
3209 	rcu_read_lock();
3210 	for (i=disks; i--; ) {
3211 		struct md_rdev *rdev;
3212 		sector_t first_bad;
3213 		int bad_sectors;
3214 		int is_bad = 0;
3215 
3216 		dev = &sh->dev[i];
3217 
3218 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3219 			 i, dev->flags,
3220 			 dev->toread, dev->towrite, dev->written);
3221 		/* maybe we can reply to a read
3222 		 *
3223 		 * new wantfill requests are only permitted while
3224 		 * ops_complete_biofill is guaranteed to be inactive
3225 		 */
3226 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3227 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3228 			set_bit(R5_Wantfill, &dev->flags);
3229 
3230 		/* now count some things */
3231 		if (test_bit(R5_LOCKED, &dev->flags))
3232 			s->locked++;
3233 		if (test_bit(R5_UPTODATE, &dev->flags))
3234 			s->uptodate++;
3235 		if (test_bit(R5_Wantcompute, &dev->flags)) {
3236 			s->compute++;
3237 			BUG_ON(s->compute > 2);
3238 		}
3239 
3240 		if (test_bit(R5_Wantfill, &dev->flags))
3241 			s->to_fill++;
3242 		else if (dev->toread)
3243 			s->to_read++;
3244 		if (dev->towrite) {
3245 			s->to_write++;
3246 			if (!test_bit(R5_OVERWRITE, &dev->flags))
3247 				s->non_overwrite++;
3248 		}
3249 		if (dev->written)
3250 			s->written++;
3251 		/* Prefer to use the replacement for reads, but only
3252 		 * if it is recovered enough and has no bad blocks.
3253 		 */
3254 		rdev = rcu_dereference(conf->disks[i].replacement);
3255 		if (rdev && !test_bit(Faulty, &rdev->flags) &&
3256 		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3257 		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3258 				 &first_bad, &bad_sectors))
3259 			set_bit(R5_ReadRepl, &dev->flags);
3260 		else {
3261 			if (rdev)
3262 				set_bit(R5_NeedReplace, &dev->flags);
3263 			rdev = rcu_dereference(conf->disks[i].rdev);
3264 			clear_bit(R5_ReadRepl, &dev->flags);
3265 		}
3266 		if (rdev && test_bit(Faulty, &rdev->flags))
3267 			rdev = NULL;
3268 		if (rdev) {
3269 			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3270 					     &first_bad, &bad_sectors);
3271 			if (s->blocked_rdev == NULL
3272 			    && (test_bit(Blocked, &rdev->flags)
3273 				|| is_bad < 0)) {
3274 				if (is_bad < 0)
3275 					set_bit(BlockedBadBlocks,
3276 						&rdev->flags);
3277 				s->blocked_rdev = rdev;
3278 				atomic_inc(&rdev->nr_pending);
3279 			}
3280 		}
3281 		clear_bit(R5_Insync, &dev->flags);
3282 		if (!rdev)
3283 			/* Not in-sync */;
3284 		else if (is_bad) {
3285 			/* also not in-sync */
3286 			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3287 			    test_bit(R5_UPTODATE, &dev->flags)) {
3288 				/* treat as in-sync, but with a read error
3289 				 * which we can now try to correct
3290 				 */
3291 				set_bit(R5_Insync, &dev->flags);
3292 				set_bit(R5_ReadError, &dev->flags);
3293 			}
3294 		} else if (test_bit(In_sync, &rdev->flags))
3295 			set_bit(R5_Insync, &dev->flags);
3296 		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3297 			/* in sync if before recovery_offset */
3298 			set_bit(R5_Insync, &dev->flags);
3299 		else if (test_bit(R5_UPTODATE, &dev->flags) &&
3300 			 test_bit(R5_Expanded, &dev->flags))
3301 			/* If we've reshaped into here, we assume it is Insync.
3302 			 * We will shortly update recovery_offset to make
3303 			 * it official.
3304 			 */
3305 			set_bit(R5_Insync, &dev->flags);
3306 
3307 		if (rdev && test_bit(R5_WriteError, &dev->flags)) {
3308 			/* This flag does not apply to '.replacement'
3309 			 * only to .rdev, so make sure to check that*/
3310 			struct md_rdev *rdev2 = rcu_dereference(
3311 				conf->disks[i].rdev);
3312 			if (rdev2 == rdev)
3313 				clear_bit(R5_Insync, &dev->flags);
3314 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3315 				s->handle_bad_blocks = 1;
3316 				atomic_inc(&rdev2->nr_pending);
3317 			} else
3318 				clear_bit(R5_WriteError, &dev->flags);
3319 		}
3320 		if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
3321 			/* This flag does not apply to '.replacement'
3322 			 * only to .rdev, so make sure to check that*/
3323 			struct md_rdev *rdev2 = rcu_dereference(
3324 				conf->disks[i].rdev);
3325 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3326 				s->handle_bad_blocks = 1;
3327 				atomic_inc(&rdev2->nr_pending);
3328 			} else
3329 				clear_bit(R5_MadeGood, &dev->flags);
3330 		}
3331 		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3332 			struct md_rdev *rdev2 = rcu_dereference(
3333 				conf->disks[i].replacement);
3334 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3335 				s->handle_bad_blocks = 1;
3336 				atomic_inc(&rdev2->nr_pending);
3337 			} else
3338 				clear_bit(R5_MadeGoodRepl, &dev->flags);
3339 		}
3340 		if (!test_bit(R5_Insync, &dev->flags)) {
3341 			/* The ReadError flag will just be confusing now */
3342 			clear_bit(R5_ReadError, &dev->flags);
3343 			clear_bit(R5_ReWrite, &dev->flags);
3344 		}
3345 		if (test_bit(R5_ReadError, &dev->flags))
3346 			clear_bit(R5_Insync, &dev->flags);
3347 		if (!test_bit(R5_Insync, &dev->flags)) {
3348 			if (s->failed < 2)
3349 				s->failed_num[s->failed] = i;
3350 			s->failed++;
3351 			if (rdev && !test_bit(Faulty, &rdev->flags))
3352 				do_recovery = 1;
3353 		}
3354 	}
3355 	if (test_bit(STRIPE_SYNCING, &sh->state)) {
3356 		/* If there is a failed device being replaced,
3357 		 *     we must be recovering.
3358 		 * else if we are after recovery_cp, we must be syncing
3359 		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3360 		 * else we can only be replacing
3361 		 * sync and recovery both need to read all devices, and so
3362 		 * use the same flag.
3363 		 */
3364 		if (do_recovery ||
3365 		    sh->sector >= conf->mddev->recovery_cp ||
3366 		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3367 			s->syncing = 1;
3368 		else
3369 			s->replacing = 1;
3370 	}
3371 	rcu_read_unlock();
3372 }
3373 
3374 static void handle_stripe(struct stripe_head *sh)
3375 {
3376 	struct stripe_head_state s;
3377 	struct r5conf *conf = sh->raid_conf;
3378 	int i;
3379 	int prexor;
3380 	int disks = sh->disks;
3381 	struct r5dev *pdev, *qdev;
3382 
3383 	clear_bit(STRIPE_HANDLE, &sh->state);
3384 	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3385 		/* already being handled, ensure it gets handled
3386 		 * again when current action finishes */
3387 		set_bit(STRIPE_HANDLE, &sh->state);
3388 		return;
3389 	}
3390 
3391 	if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3392 		set_bit(STRIPE_SYNCING, &sh->state);
3393 		clear_bit(STRIPE_INSYNC, &sh->state);
3394 	}
3395 	clear_bit(STRIPE_DELAYED, &sh->state);
3396 
3397 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3398 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3399 	       (unsigned long long)sh->sector, sh->state,
3400 	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3401 	       sh->check_state, sh->reconstruct_state);
3402 
3403 	analyse_stripe(sh, &s);
3404 
3405 	if (s.handle_bad_blocks) {
3406 		set_bit(STRIPE_HANDLE, &sh->state);
3407 		goto finish;
3408 	}
3409 
3410 	if (unlikely(s.blocked_rdev)) {
3411 		if (s.syncing || s.expanding || s.expanded ||
3412 		    s.replacing || s.to_write || s.written) {
3413 			set_bit(STRIPE_HANDLE, &sh->state);
3414 			goto finish;
3415 		}
3416 		/* There is nothing for the blocked_rdev to block */
3417 		rdev_dec_pending(s.blocked_rdev, conf->mddev);
3418 		s.blocked_rdev = NULL;
3419 	}
3420 
3421 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3422 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3423 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3424 	}
3425 
3426 	pr_debug("locked=%d uptodate=%d to_read=%d"
3427 	       " to_write=%d failed=%d failed_num=%d,%d\n",
3428 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3429 	       s.failed_num[0], s.failed_num[1]);
3430 	/* check if the array has lost more than max_degraded devices and,
3431 	 * if so, some requests might need to be failed.
3432 	 */
3433 	if (s.failed > conf->max_degraded) {
3434 		sh->check_state = 0;
3435 		sh->reconstruct_state = 0;
3436 		if (s.to_read+s.to_write+s.written)
3437 			handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3438 		if (s.syncing + s.replacing)
3439 			handle_failed_sync(conf, sh, &s);
3440 	}
3441 
3442 	/*
3443 	 * might be able to return some write requests if the parity blocks
3444 	 * are safe, or on a failed drive
3445 	 */
3446 	pdev = &sh->dev[sh->pd_idx];
3447 	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3448 		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3449 	qdev = &sh->dev[sh->qd_idx];
3450 	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3451 		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3452 		|| conf->level < 6;
3453 
3454 	if (s.written &&
3455 	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3456 			     && !test_bit(R5_LOCKED, &pdev->flags)
3457 			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3458 	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3459 			     && !test_bit(R5_LOCKED, &qdev->flags)
3460 			     && test_bit(R5_UPTODATE, &qdev->flags)))))
3461 		handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3462 
3463 	/* Now we might consider reading some blocks, either to check/generate
3464 	 * parity, or to satisfy requests
3465 	 * or to load a block that is being partially written.
3466 	 */
3467 	if (s.to_read || s.non_overwrite
3468 	    || (conf->level == 6 && s.to_write && s.failed)
3469 	    || (s.syncing && (s.uptodate + s.compute < disks))
3470 	    || s.replacing
3471 	    || s.expanding)
3472 		handle_stripe_fill(sh, &s, disks);
3473 
3474 	/* Now we check to see if any write operations have recently
3475 	 * completed
3476 	 */
3477 	prexor = 0;
3478 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3479 		prexor = 1;
3480 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
3481 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3482 		sh->reconstruct_state = reconstruct_state_idle;
3483 
3484 		/* All the 'written' buffers and the parity block are ready to
3485 		 * be written back to disk
3486 		 */
3487 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3488 		BUG_ON(sh->qd_idx >= 0 &&
3489 		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags));
3490 		for (i = disks; i--; ) {
3491 			struct r5dev *dev = &sh->dev[i];
3492 			if (test_bit(R5_LOCKED, &dev->flags) &&
3493 				(i == sh->pd_idx || i == sh->qd_idx ||
3494 				 dev->written)) {
3495 				pr_debug("Writing block %d\n", i);
3496 				set_bit(R5_Wantwrite, &dev->flags);
3497 				if (prexor)
3498 					continue;
3499 				if (!test_bit(R5_Insync, &dev->flags) ||
3500 				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
3501 				     s.failed == 0))
3502 					set_bit(STRIPE_INSYNC, &sh->state);
3503 			}
3504 		}
3505 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3506 			s.dec_preread_active = 1;
3507 	}
3508 
3509 	/* Now to consider new write requests and what else, if anything
3510 	 * should be read.  We do not handle new writes when:
3511 	 * 1/ A 'write' operation (copy+xor) is already in flight.
3512 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
3513 	 *    block.
3514 	 */
3515 	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3516 		handle_stripe_dirtying(conf, sh, &s, disks);
3517 
3518 	/* maybe we need to check and possibly fix the parity for this stripe
3519 	 * Any reads will already have been scheduled, so we just see if enough
3520 	 * data is available.  The parity check is held off while parity
3521 	 * dependent operations are in flight.
3522 	 */
3523 	if (sh->check_state ||
3524 	    (s.syncing && s.locked == 0 &&
3525 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3526 	     !test_bit(STRIPE_INSYNC, &sh->state))) {
3527 		if (conf->level == 6)
3528 			handle_parity_checks6(conf, sh, &s, disks);
3529 		else
3530 			handle_parity_checks5(conf, sh, &s, disks);
3531 	}
3532 
3533 	if (s.replacing && s.locked == 0
3534 	    && !test_bit(STRIPE_INSYNC, &sh->state)) {
3535 		/* Write out to replacement devices where possible */
3536 		for (i = 0; i < conf->raid_disks; i++)
3537 			if (test_bit(R5_UPTODATE, &sh->dev[i].flags) &&
3538 			    test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3539 				set_bit(R5_WantReplace, &sh->dev[i].flags);
3540 				set_bit(R5_LOCKED, &sh->dev[i].flags);
3541 				s.locked++;
3542 			}
3543 		set_bit(STRIPE_INSYNC, &sh->state);
3544 	}
3545 	if ((s.syncing || s.replacing) && s.locked == 0 &&
3546 	    test_bit(STRIPE_INSYNC, &sh->state)) {
3547 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3548 		clear_bit(STRIPE_SYNCING, &sh->state);
3549 	}
3550 
3551 	/* If the failed drives are just a ReadError, then we might need
3552 	 * to progress the repair/check process
3553 	 */
3554 	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3555 		for (i = 0; i < s.failed; i++) {
3556 			struct r5dev *dev = &sh->dev[s.failed_num[i]];
3557 			if (test_bit(R5_ReadError, &dev->flags)
3558 			    && !test_bit(R5_LOCKED, &dev->flags)
3559 			    && test_bit(R5_UPTODATE, &dev->flags)
3560 				) {
3561 				if (!test_bit(R5_ReWrite, &dev->flags)) {
3562 					set_bit(R5_Wantwrite, &dev->flags);
3563 					set_bit(R5_ReWrite, &dev->flags);
3564 					set_bit(R5_LOCKED, &dev->flags);
3565 					s.locked++;
3566 				} else {
3567 					/* let's read it back */
3568 					set_bit(R5_Wantread, &dev->flags);
3569 					set_bit(R5_LOCKED, &dev->flags);
3570 					s.locked++;
3571 				}
3572 			}
3573 		}
3574 
3575 
3576 	/* Finish reconstruct operations initiated by the expansion process */
3577 	if (sh->reconstruct_state == reconstruct_state_result) {
3578 		struct stripe_head *sh_src
3579 			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3580 		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3581 			/* sh cannot be written until sh_src has been read.
3582 			 * so arrange for sh to be delayed a little
3583 			 */
3584 			set_bit(STRIPE_DELAYED, &sh->state);
3585 			set_bit(STRIPE_HANDLE, &sh->state);
3586 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3587 					      &sh_src->state))
3588 				atomic_inc(&conf->preread_active_stripes);
3589 			release_stripe(sh_src);
3590 			goto finish;
3591 		}
3592 		if (sh_src)
3593 			release_stripe(sh_src);
3594 
3595 		sh->reconstruct_state = reconstruct_state_idle;
3596 		clear_bit(STRIPE_EXPANDING, &sh->state);
3597 		for (i = conf->raid_disks; i--; ) {
3598 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
3599 			set_bit(R5_LOCKED, &sh->dev[i].flags);
3600 			s.locked++;
3601 		}
3602 	}
3603 
3604 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3605 	    !sh->reconstruct_state) {
3606 		/* Need to write out all blocks after computing parity */
3607 		sh->disks = conf->raid_disks;
3608 		stripe_set_idx(sh->sector, conf, 0, sh);
3609 		schedule_reconstruction(sh, &s, 1, 1);
3610 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3611 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3612 		atomic_dec(&conf->reshape_stripes);
3613 		wake_up(&conf->wait_for_overlap);
3614 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3615 	}
3616 
3617 	if (s.expanding && s.locked == 0 &&
3618 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3619 		handle_stripe_expansion(conf, sh);
3620 
3621 finish:
3622 	/* wait for this device to become unblocked */
3623 	if (unlikely(s.blocked_rdev)) {
3624 		if (conf->mddev->external)
3625 			md_wait_for_blocked_rdev(s.blocked_rdev,
3626 						 conf->mddev);
3627 		else
3628 			/* Internal metadata will immediately
3629 			 * be written by raid5d, so we don't
3630 			 * need to wait here.
3631 			 */
3632 			rdev_dec_pending(s.blocked_rdev,
3633 					 conf->mddev);
3634 	}
3635 
3636 	if (s.handle_bad_blocks)
3637 		for (i = disks; i--; ) {
3638 			struct md_rdev *rdev;
3639 			struct r5dev *dev = &sh->dev[i];
3640 			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3641 				/* We own a safe reference to the rdev */
3642 				rdev = conf->disks[i].rdev;
3643 				if (!rdev_set_badblocks(rdev, sh->sector,
3644 							STRIPE_SECTORS, 0))
3645 					md_error(conf->mddev, rdev);
3646 				rdev_dec_pending(rdev, conf->mddev);
3647 			}
3648 			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3649 				rdev = conf->disks[i].rdev;
3650 				rdev_clear_badblocks(rdev, sh->sector,
3651 						     STRIPE_SECTORS, 0);
3652 				rdev_dec_pending(rdev, conf->mddev);
3653 			}
3654 			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3655 				rdev = conf->disks[i].replacement;
3656 				if (!rdev)
3657 					/* rdev have been moved down */
3658 					rdev = conf->disks[i].rdev;
3659 				rdev_clear_badblocks(rdev, sh->sector,
3660 						     STRIPE_SECTORS, 0);
3661 				rdev_dec_pending(rdev, conf->mddev);
3662 			}
3663 		}
3664 
3665 	if (s.ops_request)
3666 		raid_run_ops(sh, s.ops_request);
3667 
3668 	ops_run_io(sh, &s);
3669 
3670 	if (s.dec_preread_active) {
3671 		/* We delay this until after ops_run_io so that if make_request
3672 		 * is waiting on a flush, it won't continue until the writes
3673 		 * have actually been submitted.
3674 		 */
3675 		atomic_dec(&conf->preread_active_stripes);
3676 		if (atomic_read(&conf->preread_active_stripes) <
3677 		    IO_THRESHOLD)
3678 			md_wakeup_thread(conf->mddev->thread);
3679 	}
3680 
3681 	return_io(s.return_bi);
3682 
3683 	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
3684 }
3685 
3686 static void raid5_activate_delayed(struct r5conf *conf)
3687 {
3688 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3689 		while (!list_empty(&conf->delayed_list)) {
3690 			struct list_head *l = conf->delayed_list.next;
3691 			struct stripe_head *sh;
3692 			sh = list_entry(l, struct stripe_head, lru);
3693 			list_del_init(l);
3694 			clear_bit(STRIPE_DELAYED, &sh->state);
3695 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3696 				atomic_inc(&conf->preread_active_stripes);
3697 			list_add_tail(&sh->lru, &conf->hold_list);
3698 		}
3699 	}
3700 }
3701 
3702 static void activate_bit_delay(struct r5conf *conf)
3703 {
3704 	/* device_lock is held */
3705 	struct list_head head;
3706 	list_add(&head, &conf->bitmap_list);
3707 	list_del_init(&conf->bitmap_list);
3708 	while (!list_empty(&head)) {
3709 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3710 		list_del_init(&sh->lru);
3711 		atomic_inc(&sh->count);
3712 		__release_stripe(conf, sh);
3713 	}
3714 }
3715 
3716 int md_raid5_congested(struct mddev *mddev, int bits)
3717 {
3718 	struct r5conf *conf = mddev->private;
3719 
3720 	/* No difference between reads and writes.  Just check
3721 	 * how busy the stripe_cache is
3722 	 */
3723 
3724 	if (conf->inactive_blocked)
3725 		return 1;
3726 	if (conf->quiesce)
3727 		return 1;
3728 	if (list_empty_careful(&conf->inactive_list))
3729 		return 1;
3730 
3731 	return 0;
3732 }
3733 EXPORT_SYMBOL_GPL(md_raid5_congested);
3734 
3735 static int raid5_congested(void *data, int bits)
3736 {
3737 	struct mddev *mddev = data;
3738 
3739 	return mddev_congested(mddev, bits) ||
3740 		md_raid5_congested(mddev, bits);
3741 }
3742 
3743 /* We want read requests to align with chunks where possible,
3744  * but write requests don't need to.
3745  */
3746 static int raid5_mergeable_bvec(struct request_queue *q,
3747 				struct bvec_merge_data *bvm,
3748 				struct bio_vec *biovec)
3749 {
3750 	struct mddev *mddev = q->queuedata;
3751 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3752 	int max;
3753 	unsigned int chunk_sectors = mddev->chunk_sectors;
3754 	unsigned int bio_sectors = bvm->bi_size >> 9;
3755 
3756 	if ((bvm->bi_rw & 1) == WRITE)
3757 		return biovec->bv_len; /* always allow writes to be mergeable */
3758 
3759 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3760 		chunk_sectors = mddev->new_chunk_sectors;
3761 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3762 	if (max < 0) max = 0;
3763 	if (max <= biovec->bv_len && bio_sectors == 0)
3764 		return biovec->bv_len;
3765 	else
3766 		return max;
3767 }
3768 
3769 
3770 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
3771 {
3772 	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3773 	unsigned int chunk_sectors = mddev->chunk_sectors;
3774 	unsigned int bio_sectors = bio->bi_size >> 9;
3775 
3776 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3777 		chunk_sectors = mddev->new_chunk_sectors;
3778 	return  chunk_sectors >=
3779 		((sector & (chunk_sectors - 1)) + bio_sectors);
3780 }
3781 
3782 /*
3783  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3784  *  later sampled by raid5d.
3785  */
3786 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
3787 {
3788 	unsigned long flags;
3789 
3790 	spin_lock_irqsave(&conf->device_lock, flags);
3791 
3792 	bi->bi_next = conf->retry_read_aligned_list;
3793 	conf->retry_read_aligned_list = bi;
3794 
3795 	spin_unlock_irqrestore(&conf->device_lock, flags);
3796 	md_wakeup_thread(conf->mddev->thread);
3797 }
3798 
3799 
3800 static struct bio *remove_bio_from_retry(struct r5conf *conf)
3801 {
3802 	struct bio *bi;
3803 
3804 	bi = conf->retry_read_aligned;
3805 	if (bi) {
3806 		conf->retry_read_aligned = NULL;
3807 		return bi;
3808 	}
3809 	bi = conf->retry_read_aligned_list;
3810 	if(bi) {
3811 		conf->retry_read_aligned_list = bi->bi_next;
3812 		bi->bi_next = NULL;
3813 		/*
3814 		 * this sets the active strip count to 1 and the processed
3815 		 * strip count to zero (upper 8 bits)
3816 		 */
3817 		raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
3818 	}
3819 
3820 	return bi;
3821 }
3822 
3823 
3824 /*
3825  *  The "raid5_align_endio" should check if the read succeeded and if it
3826  *  did, call bio_endio on the original bio (having bio_put the new bio
3827  *  first).
3828  *  If the read failed..
3829  */
3830 static void raid5_align_endio(struct bio *bi, int error)
3831 {
3832 	struct bio* raid_bi  = bi->bi_private;
3833 	struct mddev *mddev;
3834 	struct r5conf *conf;
3835 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3836 	struct md_rdev *rdev;
3837 
3838 	bio_put(bi);
3839 
3840 	rdev = (void*)raid_bi->bi_next;
3841 	raid_bi->bi_next = NULL;
3842 	mddev = rdev->mddev;
3843 	conf = mddev->private;
3844 
3845 	rdev_dec_pending(rdev, conf->mddev);
3846 
3847 	if (!error && uptodate) {
3848 		bio_endio(raid_bi, 0);
3849 		if (atomic_dec_and_test(&conf->active_aligned_reads))
3850 			wake_up(&conf->wait_for_stripe);
3851 		return;
3852 	}
3853 
3854 
3855 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3856 
3857 	add_bio_to_retry(raid_bi, conf);
3858 }
3859 
3860 static int bio_fits_rdev(struct bio *bi)
3861 {
3862 	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3863 
3864 	if ((bi->bi_size>>9) > queue_max_sectors(q))
3865 		return 0;
3866 	blk_recount_segments(q, bi);
3867 	if (bi->bi_phys_segments > queue_max_segments(q))
3868 		return 0;
3869 
3870 	if (q->merge_bvec_fn)
3871 		/* it's too hard to apply the merge_bvec_fn at this stage,
3872 		 * just just give up
3873 		 */
3874 		return 0;
3875 
3876 	return 1;
3877 }
3878 
3879 
3880 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
3881 {
3882 	struct r5conf *conf = mddev->private;
3883 	int dd_idx;
3884 	struct bio* align_bi;
3885 	struct md_rdev *rdev;
3886 	sector_t end_sector;
3887 
3888 	if (!in_chunk_boundary(mddev, raid_bio)) {
3889 		pr_debug("chunk_aligned_read : non aligned\n");
3890 		return 0;
3891 	}
3892 	/*
3893 	 * use bio_clone_mddev to make a copy of the bio
3894 	 */
3895 	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3896 	if (!align_bi)
3897 		return 0;
3898 	/*
3899 	 *   set bi_end_io to a new function, and set bi_private to the
3900 	 *     original bio.
3901 	 */
3902 	align_bi->bi_end_io  = raid5_align_endio;
3903 	align_bi->bi_private = raid_bio;
3904 	/*
3905 	 *	compute position
3906 	 */
3907 	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3908 						    0,
3909 						    &dd_idx, NULL);
3910 
3911 	end_sector = align_bi->bi_sector + (align_bi->bi_size >> 9);
3912 	rcu_read_lock();
3913 	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
3914 	if (!rdev || test_bit(Faulty, &rdev->flags) ||
3915 	    rdev->recovery_offset < end_sector) {
3916 		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3917 		if (rdev &&
3918 		    (test_bit(Faulty, &rdev->flags) ||
3919 		    !(test_bit(In_sync, &rdev->flags) ||
3920 		      rdev->recovery_offset >= end_sector)))
3921 			rdev = NULL;
3922 	}
3923 	if (rdev) {
3924 		sector_t first_bad;
3925 		int bad_sectors;
3926 
3927 		atomic_inc(&rdev->nr_pending);
3928 		rcu_read_unlock();
3929 		raid_bio->bi_next = (void*)rdev;
3930 		align_bi->bi_bdev =  rdev->bdev;
3931 		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3932 
3933 		if (!bio_fits_rdev(align_bi) ||
3934 		    is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
3935 				&first_bad, &bad_sectors)) {
3936 			/* too big in some way, or has a known bad block */
3937 			bio_put(align_bi);
3938 			rdev_dec_pending(rdev, mddev);
3939 			return 0;
3940 		}
3941 
3942 		/* No reshape active, so we can trust rdev->data_offset */
3943 		align_bi->bi_sector += rdev->data_offset;
3944 
3945 		spin_lock_irq(&conf->device_lock);
3946 		wait_event_lock_irq(conf->wait_for_stripe,
3947 				    conf->quiesce == 0,
3948 				    conf->device_lock, /* nothing */);
3949 		atomic_inc(&conf->active_aligned_reads);
3950 		spin_unlock_irq(&conf->device_lock);
3951 
3952 		generic_make_request(align_bi);
3953 		return 1;
3954 	} else {
3955 		rcu_read_unlock();
3956 		bio_put(align_bi);
3957 		return 0;
3958 	}
3959 }
3960 
3961 /* __get_priority_stripe - get the next stripe to process
3962  *
3963  * Full stripe writes are allowed to pass preread active stripes up until
3964  * the bypass_threshold is exceeded.  In general the bypass_count
3965  * increments when the handle_list is handled before the hold_list; however, it
3966  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3967  * stripe with in flight i/o.  The bypass_count will be reset when the
3968  * head of the hold_list has changed, i.e. the head was promoted to the
3969  * handle_list.
3970  */
3971 static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
3972 {
3973 	struct stripe_head *sh;
3974 
3975 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3976 		  __func__,
3977 		  list_empty(&conf->handle_list) ? "empty" : "busy",
3978 		  list_empty(&conf->hold_list) ? "empty" : "busy",
3979 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
3980 
3981 	if (!list_empty(&conf->handle_list)) {
3982 		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3983 
3984 		if (list_empty(&conf->hold_list))
3985 			conf->bypass_count = 0;
3986 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3987 			if (conf->hold_list.next == conf->last_hold)
3988 				conf->bypass_count++;
3989 			else {
3990 				conf->last_hold = conf->hold_list.next;
3991 				conf->bypass_count -= conf->bypass_threshold;
3992 				if (conf->bypass_count < 0)
3993 					conf->bypass_count = 0;
3994 			}
3995 		}
3996 	} else if (!list_empty(&conf->hold_list) &&
3997 		   ((conf->bypass_threshold &&
3998 		     conf->bypass_count > conf->bypass_threshold) ||
3999 		    atomic_read(&conf->pending_full_writes) == 0)) {
4000 		sh = list_entry(conf->hold_list.next,
4001 				typeof(*sh), lru);
4002 		conf->bypass_count -= conf->bypass_threshold;
4003 		if (conf->bypass_count < 0)
4004 			conf->bypass_count = 0;
4005 	} else
4006 		return NULL;
4007 
4008 	list_del_init(&sh->lru);
4009 	atomic_inc(&sh->count);
4010 	BUG_ON(atomic_read(&sh->count) != 1);
4011 	return sh;
4012 }
4013 
4014 struct raid5_plug_cb {
4015 	struct blk_plug_cb	cb;
4016 	struct list_head	list;
4017 };
4018 
4019 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4020 {
4021 	struct raid5_plug_cb *cb = container_of(
4022 		blk_cb, struct raid5_plug_cb, cb);
4023 	struct stripe_head *sh;
4024 	struct mddev *mddev = cb->cb.data;
4025 	struct r5conf *conf = mddev->private;
4026 
4027 	if (cb->list.next && !list_empty(&cb->list)) {
4028 		spin_lock_irq(&conf->device_lock);
4029 		while (!list_empty(&cb->list)) {
4030 			sh = list_first_entry(&cb->list, struct stripe_head, lru);
4031 			list_del_init(&sh->lru);
4032 			/*
4033 			 * avoid race release_stripe_plug() sees
4034 			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
4035 			 * is still in our list
4036 			 */
4037 			smp_mb__before_clear_bit();
4038 			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4039 			__release_stripe(conf, sh);
4040 		}
4041 		spin_unlock_irq(&conf->device_lock);
4042 	}
4043 	kfree(cb);
4044 }
4045 
4046 static void release_stripe_plug(struct mddev *mddev,
4047 				struct stripe_head *sh)
4048 {
4049 	struct blk_plug_cb *blk_cb = blk_check_plugged(
4050 		raid5_unplug, mddev,
4051 		sizeof(struct raid5_plug_cb));
4052 	struct raid5_plug_cb *cb;
4053 
4054 	if (!blk_cb) {
4055 		release_stripe(sh);
4056 		return;
4057 	}
4058 
4059 	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4060 
4061 	if (cb->list.next == NULL)
4062 		INIT_LIST_HEAD(&cb->list);
4063 
4064 	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4065 		list_add_tail(&sh->lru, &cb->list);
4066 	else
4067 		release_stripe(sh);
4068 }
4069 
4070 static void make_request(struct mddev *mddev, struct bio * bi)
4071 {
4072 	struct r5conf *conf = mddev->private;
4073 	int dd_idx;
4074 	sector_t new_sector;
4075 	sector_t logical_sector, last_sector;
4076 	struct stripe_head *sh;
4077 	const int rw = bio_data_dir(bi);
4078 	int remaining;
4079 
4080 	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4081 		md_flush_request(mddev, bi);
4082 		return;
4083 	}
4084 
4085 	md_write_start(mddev, bi);
4086 
4087 	if (rw == READ &&
4088 	     mddev->reshape_position == MaxSector &&
4089 	     chunk_aligned_read(mddev,bi))
4090 		return;
4091 
4092 	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4093 	last_sector = bi->bi_sector + (bi->bi_size>>9);
4094 	bi->bi_next = NULL;
4095 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
4096 
4097 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4098 		DEFINE_WAIT(w);
4099 		int previous;
4100 
4101 	retry:
4102 		previous = 0;
4103 		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4104 		if (unlikely(conf->reshape_progress != MaxSector)) {
4105 			/* spinlock is needed as reshape_progress may be
4106 			 * 64bit on a 32bit platform, and so it might be
4107 			 * possible to see a half-updated value
4108 			 * Of course reshape_progress could change after
4109 			 * the lock is dropped, so once we get a reference
4110 			 * to the stripe that we think it is, we will have
4111 			 * to check again.
4112 			 */
4113 			spin_lock_irq(&conf->device_lock);
4114 			if (mddev->reshape_backwards
4115 			    ? logical_sector < conf->reshape_progress
4116 			    : logical_sector >= conf->reshape_progress) {
4117 				previous = 1;
4118 			} else {
4119 				if (mddev->reshape_backwards
4120 				    ? logical_sector < conf->reshape_safe
4121 				    : logical_sector >= conf->reshape_safe) {
4122 					spin_unlock_irq(&conf->device_lock);
4123 					schedule();
4124 					goto retry;
4125 				}
4126 			}
4127 			spin_unlock_irq(&conf->device_lock);
4128 		}
4129 
4130 		new_sector = raid5_compute_sector(conf, logical_sector,
4131 						  previous,
4132 						  &dd_idx, NULL);
4133 		pr_debug("raid456: make_request, sector %llu logical %llu\n",
4134 			(unsigned long long)new_sector,
4135 			(unsigned long long)logical_sector);
4136 
4137 		sh = get_active_stripe(conf, new_sector, previous,
4138 				       (bi->bi_rw&RWA_MASK), 0);
4139 		if (sh) {
4140 			if (unlikely(previous)) {
4141 				/* expansion might have moved on while waiting for a
4142 				 * stripe, so we must do the range check again.
4143 				 * Expansion could still move past after this
4144 				 * test, but as we are holding a reference to
4145 				 * 'sh', we know that if that happens,
4146 				 *  STRIPE_EXPANDING will get set and the expansion
4147 				 * won't proceed until we finish with the stripe.
4148 				 */
4149 				int must_retry = 0;
4150 				spin_lock_irq(&conf->device_lock);
4151 				if (mddev->reshape_backwards
4152 				    ? logical_sector >= conf->reshape_progress
4153 				    : logical_sector < conf->reshape_progress)
4154 					/* mismatch, need to try again */
4155 					must_retry = 1;
4156 				spin_unlock_irq(&conf->device_lock);
4157 				if (must_retry) {
4158 					release_stripe(sh);
4159 					schedule();
4160 					goto retry;
4161 				}
4162 			}
4163 
4164 			if (rw == WRITE &&
4165 			    logical_sector >= mddev->suspend_lo &&
4166 			    logical_sector < mddev->suspend_hi) {
4167 				release_stripe(sh);
4168 				/* As the suspend_* range is controlled by
4169 				 * userspace, we want an interruptible
4170 				 * wait.
4171 				 */
4172 				flush_signals(current);
4173 				prepare_to_wait(&conf->wait_for_overlap,
4174 						&w, TASK_INTERRUPTIBLE);
4175 				if (logical_sector >= mddev->suspend_lo &&
4176 				    logical_sector < mddev->suspend_hi)
4177 					schedule();
4178 				goto retry;
4179 			}
4180 
4181 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4182 			    !add_stripe_bio(sh, bi, dd_idx, rw)) {
4183 				/* Stripe is busy expanding or
4184 				 * add failed due to overlap.  Flush everything
4185 				 * and wait a while
4186 				 */
4187 				md_wakeup_thread(mddev->thread);
4188 				release_stripe(sh);
4189 				schedule();
4190 				goto retry;
4191 			}
4192 			finish_wait(&conf->wait_for_overlap, &w);
4193 			set_bit(STRIPE_HANDLE, &sh->state);
4194 			clear_bit(STRIPE_DELAYED, &sh->state);
4195 			if ((bi->bi_rw & REQ_NOIDLE) &&
4196 			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4197 				atomic_inc(&conf->preread_active_stripes);
4198 			release_stripe_plug(mddev, sh);
4199 		} else {
4200 			/* cannot get stripe for read-ahead, just give-up */
4201 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
4202 			finish_wait(&conf->wait_for_overlap, &w);
4203 			break;
4204 		}
4205 	}
4206 
4207 	remaining = raid5_dec_bi_active_stripes(bi);
4208 	if (remaining == 0) {
4209 
4210 		if ( rw == WRITE )
4211 			md_write_end(mddev);
4212 
4213 		bio_endio(bi, 0);
4214 	}
4215 }
4216 
4217 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4218 
4219 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4220 {
4221 	/* reshaping is quite different to recovery/resync so it is
4222 	 * handled quite separately ... here.
4223 	 *
4224 	 * On each call to sync_request, we gather one chunk worth of
4225 	 * destination stripes and flag them as expanding.
4226 	 * Then we find all the source stripes and request reads.
4227 	 * As the reads complete, handle_stripe will copy the data
4228 	 * into the destination stripe and release that stripe.
4229 	 */
4230 	struct r5conf *conf = mddev->private;
4231 	struct stripe_head *sh;
4232 	sector_t first_sector, last_sector;
4233 	int raid_disks = conf->previous_raid_disks;
4234 	int data_disks = raid_disks - conf->max_degraded;
4235 	int new_data_disks = conf->raid_disks - conf->max_degraded;
4236 	int i;
4237 	int dd_idx;
4238 	sector_t writepos, readpos, safepos;
4239 	sector_t stripe_addr;
4240 	int reshape_sectors;
4241 	struct list_head stripes;
4242 
4243 	if (sector_nr == 0) {
4244 		/* If restarting in the middle, skip the initial sectors */
4245 		if (mddev->reshape_backwards &&
4246 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4247 			sector_nr = raid5_size(mddev, 0, 0)
4248 				- conf->reshape_progress;
4249 		} else if (!mddev->reshape_backwards &&
4250 			   conf->reshape_progress > 0)
4251 			sector_nr = conf->reshape_progress;
4252 		sector_div(sector_nr, new_data_disks);
4253 		if (sector_nr) {
4254 			mddev->curr_resync_completed = sector_nr;
4255 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4256 			*skipped = 1;
4257 			return sector_nr;
4258 		}
4259 	}
4260 
4261 	/* We need to process a full chunk at a time.
4262 	 * If old and new chunk sizes differ, we need to process the
4263 	 * largest of these
4264 	 */
4265 	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4266 		reshape_sectors = mddev->new_chunk_sectors;
4267 	else
4268 		reshape_sectors = mddev->chunk_sectors;
4269 
4270 	/* We update the metadata at least every 10 seconds, or when
4271 	 * the data about to be copied would over-write the source of
4272 	 * the data at the front of the range.  i.e. one new_stripe
4273 	 * along from reshape_progress new_maps to after where
4274 	 * reshape_safe old_maps to
4275 	 */
4276 	writepos = conf->reshape_progress;
4277 	sector_div(writepos, new_data_disks);
4278 	readpos = conf->reshape_progress;
4279 	sector_div(readpos, data_disks);
4280 	safepos = conf->reshape_safe;
4281 	sector_div(safepos, data_disks);
4282 	if (mddev->reshape_backwards) {
4283 		writepos -= min_t(sector_t, reshape_sectors, writepos);
4284 		readpos += reshape_sectors;
4285 		safepos += reshape_sectors;
4286 	} else {
4287 		writepos += reshape_sectors;
4288 		readpos -= min_t(sector_t, reshape_sectors, readpos);
4289 		safepos -= min_t(sector_t, reshape_sectors, safepos);
4290 	}
4291 
4292 	/* Having calculated the 'writepos' possibly use it
4293 	 * to set 'stripe_addr' which is where we will write to.
4294 	 */
4295 	if (mddev->reshape_backwards) {
4296 		BUG_ON(conf->reshape_progress == 0);
4297 		stripe_addr = writepos;
4298 		BUG_ON((mddev->dev_sectors &
4299 			~((sector_t)reshape_sectors - 1))
4300 		       - reshape_sectors - stripe_addr
4301 		       != sector_nr);
4302 	} else {
4303 		BUG_ON(writepos != sector_nr + reshape_sectors);
4304 		stripe_addr = sector_nr;
4305 	}
4306 
4307 	/* 'writepos' is the most advanced device address we might write.
4308 	 * 'readpos' is the least advanced device address we might read.
4309 	 * 'safepos' is the least address recorded in the metadata as having
4310 	 *     been reshaped.
4311 	 * If there is a min_offset_diff, these are adjusted either by
4312 	 * increasing the safepos/readpos if diff is negative, or
4313 	 * increasing writepos if diff is positive.
4314 	 * If 'readpos' is then behind 'writepos', there is no way that we can
4315 	 * ensure safety in the face of a crash - that must be done by userspace
4316 	 * making a backup of the data.  So in that case there is no particular
4317 	 * rush to update metadata.
4318 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4319 	 * update the metadata to advance 'safepos' to match 'readpos' so that
4320 	 * we can be safe in the event of a crash.
4321 	 * So we insist on updating metadata if safepos is behind writepos and
4322 	 * readpos is beyond writepos.
4323 	 * In any case, update the metadata every 10 seconds.
4324 	 * Maybe that number should be configurable, but I'm not sure it is
4325 	 * worth it.... maybe it could be a multiple of safemode_delay???
4326 	 */
4327 	if (conf->min_offset_diff < 0) {
4328 		safepos += -conf->min_offset_diff;
4329 		readpos += -conf->min_offset_diff;
4330 	} else
4331 		writepos += conf->min_offset_diff;
4332 
4333 	if ((mddev->reshape_backwards
4334 	     ? (safepos > writepos && readpos < writepos)
4335 	     : (safepos < writepos && readpos > writepos)) ||
4336 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4337 		/* Cannot proceed until we've updated the superblock... */
4338 		wait_event(conf->wait_for_overlap,
4339 			   atomic_read(&conf->reshape_stripes)==0);
4340 		mddev->reshape_position = conf->reshape_progress;
4341 		mddev->curr_resync_completed = sector_nr;
4342 		conf->reshape_checkpoint = jiffies;
4343 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4344 		md_wakeup_thread(mddev->thread);
4345 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4346 			   kthread_should_stop());
4347 		spin_lock_irq(&conf->device_lock);
4348 		conf->reshape_safe = mddev->reshape_position;
4349 		spin_unlock_irq(&conf->device_lock);
4350 		wake_up(&conf->wait_for_overlap);
4351 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4352 	}
4353 
4354 	INIT_LIST_HEAD(&stripes);
4355 	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4356 		int j;
4357 		int skipped_disk = 0;
4358 		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4359 		set_bit(STRIPE_EXPANDING, &sh->state);
4360 		atomic_inc(&conf->reshape_stripes);
4361 		/* If any of this stripe is beyond the end of the old
4362 		 * array, then we need to zero those blocks
4363 		 */
4364 		for (j=sh->disks; j--;) {
4365 			sector_t s;
4366 			if (j == sh->pd_idx)
4367 				continue;
4368 			if (conf->level == 6 &&
4369 			    j == sh->qd_idx)
4370 				continue;
4371 			s = compute_blocknr(sh, j, 0);
4372 			if (s < raid5_size(mddev, 0, 0)) {
4373 				skipped_disk = 1;
4374 				continue;
4375 			}
4376 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4377 			set_bit(R5_Expanded, &sh->dev[j].flags);
4378 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
4379 		}
4380 		if (!skipped_disk) {
4381 			set_bit(STRIPE_EXPAND_READY, &sh->state);
4382 			set_bit(STRIPE_HANDLE, &sh->state);
4383 		}
4384 		list_add(&sh->lru, &stripes);
4385 	}
4386 	spin_lock_irq(&conf->device_lock);
4387 	if (mddev->reshape_backwards)
4388 		conf->reshape_progress -= reshape_sectors * new_data_disks;
4389 	else
4390 		conf->reshape_progress += reshape_sectors * new_data_disks;
4391 	spin_unlock_irq(&conf->device_lock);
4392 	/* Ok, those stripe are ready. We can start scheduling
4393 	 * reads on the source stripes.
4394 	 * The source stripes are determined by mapping the first and last
4395 	 * block on the destination stripes.
4396 	 */
4397 	first_sector =
4398 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4399 				     1, &dd_idx, NULL);
4400 	last_sector =
4401 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4402 					    * new_data_disks - 1),
4403 				     1, &dd_idx, NULL);
4404 	if (last_sector >= mddev->dev_sectors)
4405 		last_sector = mddev->dev_sectors - 1;
4406 	while (first_sector <= last_sector) {
4407 		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4408 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4409 		set_bit(STRIPE_HANDLE, &sh->state);
4410 		release_stripe(sh);
4411 		first_sector += STRIPE_SECTORS;
4412 	}
4413 	/* Now that the sources are clearly marked, we can release
4414 	 * the destination stripes
4415 	 */
4416 	while (!list_empty(&stripes)) {
4417 		sh = list_entry(stripes.next, struct stripe_head, lru);
4418 		list_del_init(&sh->lru);
4419 		release_stripe(sh);
4420 	}
4421 	/* If this takes us to the resync_max point where we have to pause,
4422 	 * then we need to write out the superblock.
4423 	 */
4424 	sector_nr += reshape_sectors;
4425 	if ((sector_nr - mddev->curr_resync_completed) * 2
4426 	    >= mddev->resync_max - mddev->curr_resync_completed) {
4427 		/* Cannot proceed until we've updated the superblock... */
4428 		wait_event(conf->wait_for_overlap,
4429 			   atomic_read(&conf->reshape_stripes) == 0);
4430 		mddev->reshape_position = conf->reshape_progress;
4431 		mddev->curr_resync_completed = sector_nr;
4432 		conf->reshape_checkpoint = jiffies;
4433 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4434 		md_wakeup_thread(mddev->thread);
4435 		wait_event(mddev->sb_wait,
4436 			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4437 			   || kthread_should_stop());
4438 		spin_lock_irq(&conf->device_lock);
4439 		conf->reshape_safe = mddev->reshape_position;
4440 		spin_unlock_irq(&conf->device_lock);
4441 		wake_up(&conf->wait_for_overlap);
4442 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4443 	}
4444 	return reshape_sectors;
4445 }
4446 
4447 /* FIXME go_faster isn't used */
4448 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4449 {
4450 	struct r5conf *conf = mddev->private;
4451 	struct stripe_head *sh;
4452 	sector_t max_sector = mddev->dev_sectors;
4453 	sector_t sync_blocks;
4454 	int still_degraded = 0;
4455 	int i;
4456 
4457 	if (sector_nr >= max_sector) {
4458 		/* just being told to finish up .. nothing much to do */
4459 
4460 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4461 			end_reshape(conf);
4462 			return 0;
4463 		}
4464 
4465 		if (mddev->curr_resync < max_sector) /* aborted */
4466 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4467 					&sync_blocks, 1);
4468 		else /* completed sync */
4469 			conf->fullsync = 0;
4470 		bitmap_close_sync(mddev->bitmap);
4471 
4472 		return 0;
4473 	}
4474 
4475 	/* Allow raid5_quiesce to complete */
4476 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4477 
4478 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4479 		return reshape_request(mddev, sector_nr, skipped);
4480 
4481 	/* No need to check resync_max as we never do more than one
4482 	 * stripe, and as resync_max will always be on a chunk boundary,
4483 	 * if the check in md_do_sync didn't fire, there is no chance
4484 	 * of overstepping resync_max here
4485 	 */
4486 
4487 	/* if there is too many failed drives and we are trying
4488 	 * to resync, then assert that we are finished, because there is
4489 	 * nothing we can do.
4490 	 */
4491 	if (mddev->degraded >= conf->max_degraded &&
4492 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4493 		sector_t rv = mddev->dev_sectors - sector_nr;
4494 		*skipped = 1;
4495 		return rv;
4496 	}
4497 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4498 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4499 	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4500 		/* we can skip this block, and probably more */
4501 		sync_blocks /= STRIPE_SECTORS;
4502 		*skipped = 1;
4503 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4504 	}
4505 
4506 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4507 
4508 	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4509 	if (sh == NULL) {
4510 		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4511 		/* make sure we don't swamp the stripe cache if someone else
4512 		 * is trying to get access
4513 		 */
4514 		schedule_timeout_uninterruptible(1);
4515 	}
4516 	/* Need to check if array will still be degraded after recovery/resync
4517 	 * We don't need to check the 'failed' flag as when that gets set,
4518 	 * recovery aborts.
4519 	 */
4520 	for (i = 0; i < conf->raid_disks; i++)
4521 		if (conf->disks[i].rdev == NULL)
4522 			still_degraded = 1;
4523 
4524 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4525 
4526 	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4527 
4528 	handle_stripe(sh);
4529 	release_stripe(sh);
4530 
4531 	return STRIPE_SECTORS;
4532 }
4533 
4534 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
4535 {
4536 	/* We may not be able to submit a whole bio at once as there
4537 	 * may not be enough stripe_heads available.
4538 	 * We cannot pre-allocate enough stripe_heads as we may need
4539 	 * more than exist in the cache (if we allow ever large chunks).
4540 	 * So we do one stripe head at a time and record in
4541 	 * ->bi_hw_segments how many have been done.
4542 	 *
4543 	 * We *know* that this entire raid_bio is in one chunk, so
4544 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4545 	 */
4546 	struct stripe_head *sh;
4547 	int dd_idx;
4548 	sector_t sector, logical_sector, last_sector;
4549 	int scnt = 0;
4550 	int remaining;
4551 	int handled = 0;
4552 
4553 	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4554 	sector = raid5_compute_sector(conf, logical_sector,
4555 				      0, &dd_idx, NULL);
4556 	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4557 
4558 	for (; logical_sector < last_sector;
4559 	     logical_sector += STRIPE_SECTORS,
4560 		     sector += STRIPE_SECTORS,
4561 		     scnt++) {
4562 
4563 		if (scnt < raid5_bi_processed_stripes(raid_bio))
4564 			/* already done this stripe */
4565 			continue;
4566 
4567 		sh = get_active_stripe(conf, sector, 0, 1, 0);
4568 
4569 		if (!sh) {
4570 			/* failed to get a stripe - must wait */
4571 			raid5_set_bi_processed_stripes(raid_bio, scnt);
4572 			conf->retry_read_aligned = raid_bio;
4573 			return handled;
4574 		}
4575 
4576 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4577 			release_stripe(sh);
4578 			raid5_set_bi_processed_stripes(raid_bio, scnt);
4579 			conf->retry_read_aligned = raid_bio;
4580 			return handled;
4581 		}
4582 
4583 		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
4584 		handle_stripe(sh);
4585 		release_stripe(sh);
4586 		handled++;
4587 	}
4588 	remaining = raid5_dec_bi_active_stripes(raid_bio);
4589 	if (remaining == 0)
4590 		bio_endio(raid_bio, 0);
4591 	if (atomic_dec_and_test(&conf->active_aligned_reads))
4592 		wake_up(&conf->wait_for_stripe);
4593 	return handled;
4594 }
4595 
4596 #define MAX_STRIPE_BATCH 8
4597 static int handle_active_stripes(struct r5conf *conf)
4598 {
4599 	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
4600 	int i, batch_size = 0;
4601 
4602 	while (batch_size < MAX_STRIPE_BATCH &&
4603 			(sh = __get_priority_stripe(conf)) != NULL)
4604 		batch[batch_size++] = sh;
4605 
4606 	if (batch_size == 0)
4607 		return batch_size;
4608 	spin_unlock_irq(&conf->device_lock);
4609 
4610 	for (i = 0; i < batch_size; i++)
4611 		handle_stripe(batch[i]);
4612 
4613 	cond_resched();
4614 
4615 	spin_lock_irq(&conf->device_lock);
4616 	for (i = 0; i < batch_size; i++)
4617 		__release_stripe(conf, batch[i]);
4618 	return batch_size;
4619 }
4620 
4621 /*
4622  * This is our raid5 kernel thread.
4623  *
4624  * We scan the hash table for stripes which can be handled now.
4625  * During the scan, completed stripes are saved for us by the interrupt
4626  * handler, so that they will not have to wait for our next wakeup.
4627  */
4628 static void raid5d(struct mddev *mddev)
4629 {
4630 	struct r5conf *conf = mddev->private;
4631 	int handled;
4632 	struct blk_plug plug;
4633 
4634 	pr_debug("+++ raid5d active\n");
4635 
4636 	md_check_recovery(mddev);
4637 
4638 	blk_start_plug(&plug);
4639 	handled = 0;
4640 	spin_lock_irq(&conf->device_lock);
4641 	while (1) {
4642 		struct bio *bio;
4643 		int batch_size;
4644 
4645 		if (
4646 		    !list_empty(&conf->bitmap_list)) {
4647 			/* Now is a good time to flush some bitmap updates */
4648 			conf->seq_flush++;
4649 			spin_unlock_irq(&conf->device_lock);
4650 			bitmap_unplug(mddev->bitmap);
4651 			spin_lock_irq(&conf->device_lock);
4652 			conf->seq_write = conf->seq_flush;
4653 			activate_bit_delay(conf);
4654 		}
4655 		raid5_activate_delayed(conf);
4656 
4657 		while ((bio = remove_bio_from_retry(conf))) {
4658 			int ok;
4659 			spin_unlock_irq(&conf->device_lock);
4660 			ok = retry_aligned_read(conf, bio);
4661 			spin_lock_irq(&conf->device_lock);
4662 			if (!ok)
4663 				break;
4664 			handled++;
4665 		}
4666 
4667 		batch_size = handle_active_stripes(conf);
4668 		if (!batch_size)
4669 			break;
4670 		handled += batch_size;
4671 
4672 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
4673 			spin_unlock_irq(&conf->device_lock);
4674 			md_check_recovery(mddev);
4675 			spin_lock_irq(&conf->device_lock);
4676 		}
4677 	}
4678 	pr_debug("%d stripes handled\n", handled);
4679 
4680 	spin_unlock_irq(&conf->device_lock);
4681 
4682 	async_tx_issue_pending_all();
4683 	blk_finish_plug(&plug);
4684 
4685 	pr_debug("--- raid5d inactive\n");
4686 }
4687 
4688 static ssize_t
4689 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
4690 {
4691 	struct r5conf *conf = mddev->private;
4692 	if (conf)
4693 		return sprintf(page, "%d\n", conf->max_nr_stripes);
4694 	else
4695 		return 0;
4696 }
4697 
4698 int
4699 raid5_set_cache_size(struct mddev *mddev, int size)
4700 {
4701 	struct r5conf *conf = mddev->private;
4702 	int err;
4703 
4704 	if (size <= 16 || size > 32768)
4705 		return -EINVAL;
4706 	while (size < conf->max_nr_stripes) {
4707 		if (drop_one_stripe(conf))
4708 			conf->max_nr_stripes--;
4709 		else
4710 			break;
4711 	}
4712 	err = md_allow_write(mddev);
4713 	if (err)
4714 		return err;
4715 	while (size > conf->max_nr_stripes) {
4716 		if (grow_one_stripe(conf))
4717 			conf->max_nr_stripes++;
4718 		else break;
4719 	}
4720 	return 0;
4721 }
4722 EXPORT_SYMBOL(raid5_set_cache_size);
4723 
4724 static ssize_t
4725 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
4726 {
4727 	struct r5conf *conf = mddev->private;
4728 	unsigned long new;
4729 	int err;
4730 
4731 	if (len >= PAGE_SIZE)
4732 		return -EINVAL;
4733 	if (!conf)
4734 		return -ENODEV;
4735 
4736 	if (strict_strtoul(page, 10, &new))
4737 		return -EINVAL;
4738 	err = raid5_set_cache_size(mddev, new);
4739 	if (err)
4740 		return err;
4741 	return len;
4742 }
4743 
4744 static struct md_sysfs_entry
4745 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4746 				raid5_show_stripe_cache_size,
4747 				raid5_store_stripe_cache_size);
4748 
4749 static ssize_t
4750 raid5_show_preread_threshold(struct mddev *mddev, char *page)
4751 {
4752 	struct r5conf *conf = mddev->private;
4753 	if (conf)
4754 		return sprintf(page, "%d\n", conf->bypass_threshold);
4755 	else
4756 		return 0;
4757 }
4758 
4759 static ssize_t
4760 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
4761 {
4762 	struct r5conf *conf = mddev->private;
4763 	unsigned long new;
4764 	if (len >= PAGE_SIZE)
4765 		return -EINVAL;
4766 	if (!conf)
4767 		return -ENODEV;
4768 
4769 	if (strict_strtoul(page, 10, &new))
4770 		return -EINVAL;
4771 	if (new > conf->max_nr_stripes)
4772 		return -EINVAL;
4773 	conf->bypass_threshold = new;
4774 	return len;
4775 }
4776 
4777 static struct md_sysfs_entry
4778 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4779 					S_IRUGO | S_IWUSR,
4780 					raid5_show_preread_threshold,
4781 					raid5_store_preread_threshold);
4782 
4783 static ssize_t
4784 stripe_cache_active_show(struct mddev *mddev, char *page)
4785 {
4786 	struct r5conf *conf = mddev->private;
4787 	if (conf)
4788 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4789 	else
4790 		return 0;
4791 }
4792 
4793 static struct md_sysfs_entry
4794 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4795 
4796 static struct attribute *raid5_attrs[] =  {
4797 	&raid5_stripecache_size.attr,
4798 	&raid5_stripecache_active.attr,
4799 	&raid5_preread_bypass_threshold.attr,
4800 	NULL,
4801 };
4802 static struct attribute_group raid5_attrs_group = {
4803 	.name = NULL,
4804 	.attrs = raid5_attrs,
4805 };
4806 
4807 static sector_t
4808 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
4809 {
4810 	struct r5conf *conf = mddev->private;
4811 
4812 	if (!sectors)
4813 		sectors = mddev->dev_sectors;
4814 	if (!raid_disks)
4815 		/* size is defined by the smallest of previous and new size */
4816 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4817 
4818 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4819 	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4820 	return sectors * (raid_disks - conf->max_degraded);
4821 }
4822 
4823 static void raid5_free_percpu(struct r5conf *conf)
4824 {
4825 	struct raid5_percpu *percpu;
4826 	unsigned long cpu;
4827 
4828 	if (!conf->percpu)
4829 		return;
4830 
4831 	get_online_cpus();
4832 	for_each_possible_cpu(cpu) {
4833 		percpu = per_cpu_ptr(conf->percpu, cpu);
4834 		safe_put_page(percpu->spare_page);
4835 		kfree(percpu->scribble);
4836 	}
4837 #ifdef CONFIG_HOTPLUG_CPU
4838 	unregister_cpu_notifier(&conf->cpu_notify);
4839 #endif
4840 	put_online_cpus();
4841 
4842 	free_percpu(conf->percpu);
4843 }
4844 
4845 static void free_conf(struct r5conf *conf)
4846 {
4847 	shrink_stripes(conf);
4848 	raid5_free_percpu(conf);
4849 	kfree(conf->disks);
4850 	kfree(conf->stripe_hashtbl);
4851 	kfree(conf);
4852 }
4853 
4854 #ifdef CONFIG_HOTPLUG_CPU
4855 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4856 			      void *hcpu)
4857 {
4858 	struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
4859 	long cpu = (long)hcpu;
4860 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4861 
4862 	switch (action) {
4863 	case CPU_UP_PREPARE:
4864 	case CPU_UP_PREPARE_FROZEN:
4865 		if (conf->level == 6 && !percpu->spare_page)
4866 			percpu->spare_page = alloc_page(GFP_KERNEL);
4867 		if (!percpu->scribble)
4868 			percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4869 
4870 		if (!percpu->scribble ||
4871 		    (conf->level == 6 && !percpu->spare_page)) {
4872 			safe_put_page(percpu->spare_page);
4873 			kfree(percpu->scribble);
4874 			pr_err("%s: failed memory allocation for cpu%ld\n",
4875 			       __func__, cpu);
4876 			return notifier_from_errno(-ENOMEM);
4877 		}
4878 		break;
4879 	case CPU_DEAD:
4880 	case CPU_DEAD_FROZEN:
4881 		safe_put_page(percpu->spare_page);
4882 		kfree(percpu->scribble);
4883 		percpu->spare_page = NULL;
4884 		percpu->scribble = NULL;
4885 		break;
4886 	default:
4887 		break;
4888 	}
4889 	return NOTIFY_OK;
4890 }
4891 #endif
4892 
4893 static int raid5_alloc_percpu(struct r5conf *conf)
4894 {
4895 	unsigned long cpu;
4896 	struct page *spare_page;
4897 	struct raid5_percpu __percpu *allcpus;
4898 	void *scribble;
4899 	int err;
4900 
4901 	allcpus = alloc_percpu(struct raid5_percpu);
4902 	if (!allcpus)
4903 		return -ENOMEM;
4904 	conf->percpu = allcpus;
4905 
4906 	get_online_cpus();
4907 	err = 0;
4908 	for_each_present_cpu(cpu) {
4909 		if (conf->level == 6) {
4910 			spare_page = alloc_page(GFP_KERNEL);
4911 			if (!spare_page) {
4912 				err = -ENOMEM;
4913 				break;
4914 			}
4915 			per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4916 		}
4917 		scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4918 		if (!scribble) {
4919 			err = -ENOMEM;
4920 			break;
4921 		}
4922 		per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4923 	}
4924 #ifdef CONFIG_HOTPLUG_CPU
4925 	conf->cpu_notify.notifier_call = raid456_cpu_notify;
4926 	conf->cpu_notify.priority = 0;
4927 	if (err == 0)
4928 		err = register_cpu_notifier(&conf->cpu_notify);
4929 #endif
4930 	put_online_cpus();
4931 
4932 	return err;
4933 }
4934 
4935 static struct r5conf *setup_conf(struct mddev *mddev)
4936 {
4937 	struct r5conf *conf;
4938 	int raid_disk, memory, max_disks;
4939 	struct md_rdev *rdev;
4940 	struct disk_info *disk;
4941 	char pers_name[6];
4942 
4943 	if (mddev->new_level != 5
4944 	    && mddev->new_level != 4
4945 	    && mddev->new_level != 6) {
4946 		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4947 		       mdname(mddev), mddev->new_level);
4948 		return ERR_PTR(-EIO);
4949 	}
4950 	if ((mddev->new_level == 5
4951 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
4952 	    (mddev->new_level == 6
4953 	     && !algorithm_valid_raid6(mddev->new_layout))) {
4954 		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4955 		       mdname(mddev), mddev->new_layout);
4956 		return ERR_PTR(-EIO);
4957 	}
4958 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4959 		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4960 		       mdname(mddev), mddev->raid_disks);
4961 		return ERR_PTR(-EINVAL);
4962 	}
4963 
4964 	if (!mddev->new_chunk_sectors ||
4965 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4966 	    !is_power_of_2(mddev->new_chunk_sectors)) {
4967 		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4968 		       mdname(mddev), mddev->new_chunk_sectors << 9);
4969 		return ERR_PTR(-EINVAL);
4970 	}
4971 
4972 	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
4973 	if (conf == NULL)
4974 		goto abort;
4975 	spin_lock_init(&conf->device_lock);
4976 	init_waitqueue_head(&conf->wait_for_stripe);
4977 	init_waitqueue_head(&conf->wait_for_overlap);
4978 	INIT_LIST_HEAD(&conf->handle_list);
4979 	INIT_LIST_HEAD(&conf->hold_list);
4980 	INIT_LIST_HEAD(&conf->delayed_list);
4981 	INIT_LIST_HEAD(&conf->bitmap_list);
4982 	INIT_LIST_HEAD(&conf->inactive_list);
4983 	atomic_set(&conf->active_stripes, 0);
4984 	atomic_set(&conf->preread_active_stripes, 0);
4985 	atomic_set(&conf->active_aligned_reads, 0);
4986 	conf->bypass_threshold = BYPASS_THRESHOLD;
4987 	conf->recovery_disabled = mddev->recovery_disabled - 1;
4988 
4989 	conf->raid_disks = mddev->raid_disks;
4990 	if (mddev->reshape_position == MaxSector)
4991 		conf->previous_raid_disks = mddev->raid_disks;
4992 	else
4993 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4994 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4995 	conf->scribble_len = scribble_len(max_disks);
4996 
4997 	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4998 			      GFP_KERNEL);
4999 	if (!conf->disks)
5000 		goto abort;
5001 
5002 	conf->mddev = mddev;
5003 
5004 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
5005 		goto abort;
5006 
5007 	conf->level = mddev->new_level;
5008 	if (raid5_alloc_percpu(conf) != 0)
5009 		goto abort;
5010 
5011 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
5012 
5013 	rdev_for_each(rdev, mddev) {
5014 		raid_disk = rdev->raid_disk;
5015 		if (raid_disk >= max_disks
5016 		    || raid_disk < 0)
5017 			continue;
5018 		disk = conf->disks + raid_disk;
5019 
5020 		if (test_bit(Replacement, &rdev->flags)) {
5021 			if (disk->replacement)
5022 				goto abort;
5023 			disk->replacement = rdev;
5024 		} else {
5025 			if (disk->rdev)
5026 				goto abort;
5027 			disk->rdev = rdev;
5028 		}
5029 
5030 		if (test_bit(In_sync, &rdev->flags)) {
5031 			char b[BDEVNAME_SIZE];
5032 			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5033 			       " disk %d\n",
5034 			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
5035 		} else if (rdev->saved_raid_disk != raid_disk)
5036 			/* Cannot rely on bitmap to complete recovery */
5037 			conf->fullsync = 1;
5038 	}
5039 
5040 	conf->chunk_sectors = mddev->new_chunk_sectors;
5041 	conf->level = mddev->new_level;
5042 	if (conf->level == 6)
5043 		conf->max_degraded = 2;
5044 	else
5045 		conf->max_degraded = 1;
5046 	conf->algorithm = mddev->new_layout;
5047 	conf->max_nr_stripes = NR_STRIPES;
5048 	conf->reshape_progress = mddev->reshape_position;
5049 	if (conf->reshape_progress != MaxSector) {
5050 		conf->prev_chunk_sectors = mddev->chunk_sectors;
5051 		conf->prev_algo = mddev->layout;
5052 	}
5053 
5054 	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5055 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
5056 	if (grow_stripes(conf, conf->max_nr_stripes)) {
5057 		printk(KERN_ERR
5058 		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
5059 		       mdname(mddev), memory);
5060 		goto abort;
5061 	} else
5062 		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5063 		       mdname(mddev), memory);
5064 
5065 	sprintf(pers_name, "raid%d", mddev->new_level);
5066 	conf->thread = md_register_thread(raid5d, mddev, pers_name);
5067 	if (!conf->thread) {
5068 		printk(KERN_ERR
5069 		       "md/raid:%s: couldn't allocate thread.\n",
5070 		       mdname(mddev));
5071 		goto abort;
5072 	}
5073 
5074 	return conf;
5075 
5076  abort:
5077 	if (conf) {
5078 		free_conf(conf);
5079 		return ERR_PTR(-EIO);
5080 	} else
5081 		return ERR_PTR(-ENOMEM);
5082 }
5083 
5084 
5085 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5086 {
5087 	switch (algo) {
5088 	case ALGORITHM_PARITY_0:
5089 		if (raid_disk < max_degraded)
5090 			return 1;
5091 		break;
5092 	case ALGORITHM_PARITY_N:
5093 		if (raid_disk >= raid_disks - max_degraded)
5094 			return 1;
5095 		break;
5096 	case ALGORITHM_PARITY_0_6:
5097 		if (raid_disk == 0 ||
5098 		    raid_disk == raid_disks - 1)
5099 			return 1;
5100 		break;
5101 	case ALGORITHM_LEFT_ASYMMETRIC_6:
5102 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
5103 	case ALGORITHM_LEFT_SYMMETRIC_6:
5104 	case ALGORITHM_RIGHT_SYMMETRIC_6:
5105 		if (raid_disk == raid_disks - 1)
5106 			return 1;
5107 	}
5108 	return 0;
5109 }
5110 
5111 static int run(struct mddev *mddev)
5112 {
5113 	struct r5conf *conf;
5114 	int working_disks = 0;
5115 	int dirty_parity_disks = 0;
5116 	struct md_rdev *rdev;
5117 	sector_t reshape_offset = 0;
5118 	int i;
5119 	long long min_offset_diff = 0;
5120 	int first = 1;
5121 
5122 	if (mddev->recovery_cp != MaxSector)
5123 		printk(KERN_NOTICE "md/raid:%s: not clean"
5124 		       " -- starting background reconstruction\n",
5125 		       mdname(mddev));
5126 
5127 	rdev_for_each(rdev, mddev) {
5128 		long long diff;
5129 		if (rdev->raid_disk < 0)
5130 			continue;
5131 		diff = (rdev->new_data_offset - rdev->data_offset);
5132 		if (first) {
5133 			min_offset_diff = diff;
5134 			first = 0;
5135 		} else if (mddev->reshape_backwards &&
5136 			 diff < min_offset_diff)
5137 			min_offset_diff = diff;
5138 		else if (!mddev->reshape_backwards &&
5139 			 diff > min_offset_diff)
5140 			min_offset_diff = diff;
5141 	}
5142 
5143 	if (mddev->reshape_position != MaxSector) {
5144 		/* Check that we can continue the reshape.
5145 		 * Difficulties arise if the stripe we would write to
5146 		 * next is at or after the stripe we would read from next.
5147 		 * For a reshape that changes the number of devices, this
5148 		 * is only possible for a very short time, and mdadm makes
5149 		 * sure that time appears to have past before assembling
5150 		 * the array.  So we fail if that time hasn't passed.
5151 		 * For a reshape that keeps the number of devices the same
5152 		 * mdadm must be monitoring the reshape can keeping the
5153 		 * critical areas read-only and backed up.  It will start
5154 		 * the array in read-only mode, so we check for that.
5155 		 */
5156 		sector_t here_new, here_old;
5157 		int old_disks;
5158 		int max_degraded = (mddev->level == 6 ? 2 : 1);
5159 
5160 		if (mddev->new_level != mddev->level) {
5161 			printk(KERN_ERR "md/raid:%s: unsupported reshape "
5162 			       "required - aborting.\n",
5163 			       mdname(mddev));
5164 			return -EINVAL;
5165 		}
5166 		old_disks = mddev->raid_disks - mddev->delta_disks;
5167 		/* reshape_position must be on a new-stripe boundary, and one
5168 		 * further up in new geometry must map after here in old
5169 		 * geometry.
5170 		 */
5171 		here_new = mddev->reshape_position;
5172 		if (sector_div(here_new, mddev->new_chunk_sectors *
5173 			       (mddev->raid_disks - max_degraded))) {
5174 			printk(KERN_ERR "md/raid:%s: reshape_position not "
5175 			       "on a stripe boundary\n", mdname(mddev));
5176 			return -EINVAL;
5177 		}
5178 		reshape_offset = here_new * mddev->new_chunk_sectors;
5179 		/* here_new is the stripe we will write to */
5180 		here_old = mddev->reshape_position;
5181 		sector_div(here_old, mddev->chunk_sectors *
5182 			   (old_disks-max_degraded));
5183 		/* here_old is the first stripe that we might need to read
5184 		 * from */
5185 		if (mddev->delta_disks == 0) {
5186 			if ((here_new * mddev->new_chunk_sectors !=
5187 			     here_old * mddev->chunk_sectors)) {
5188 				printk(KERN_ERR "md/raid:%s: reshape position is"
5189 				       " confused - aborting\n", mdname(mddev));
5190 				return -EINVAL;
5191 			}
5192 			/* We cannot be sure it is safe to start an in-place
5193 			 * reshape.  It is only safe if user-space is monitoring
5194 			 * and taking constant backups.
5195 			 * mdadm always starts a situation like this in
5196 			 * readonly mode so it can take control before
5197 			 * allowing any writes.  So just check for that.
5198 			 */
5199 			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
5200 			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
5201 				/* not really in-place - so OK */;
5202 			else if (mddev->ro == 0) {
5203 				printk(KERN_ERR "md/raid:%s: in-place reshape "
5204 				       "must be started in read-only mode "
5205 				       "- aborting\n",
5206 				       mdname(mddev));
5207 				return -EINVAL;
5208 			}
5209 		} else if (mddev->reshape_backwards
5210 		    ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
5211 		       here_old * mddev->chunk_sectors)
5212 		    : (here_new * mddev->new_chunk_sectors >=
5213 		       here_old * mddev->chunk_sectors + (-min_offset_diff))) {
5214 			/* Reading from the same stripe as writing to - bad */
5215 			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5216 			       "auto-recovery - aborting.\n",
5217 			       mdname(mddev));
5218 			return -EINVAL;
5219 		}
5220 		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5221 		       mdname(mddev));
5222 		/* OK, we should be able to continue; */
5223 	} else {
5224 		BUG_ON(mddev->level != mddev->new_level);
5225 		BUG_ON(mddev->layout != mddev->new_layout);
5226 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5227 		BUG_ON(mddev->delta_disks != 0);
5228 	}
5229 
5230 	if (mddev->private == NULL)
5231 		conf = setup_conf(mddev);
5232 	else
5233 		conf = mddev->private;
5234 
5235 	if (IS_ERR(conf))
5236 		return PTR_ERR(conf);
5237 
5238 	conf->min_offset_diff = min_offset_diff;
5239 	mddev->thread = conf->thread;
5240 	conf->thread = NULL;
5241 	mddev->private = conf;
5242 
5243 	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5244 	     i++) {
5245 		rdev = conf->disks[i].rdev;
5246 		if (!rdev && conf->disks[i].replacement) {
5247 			/* The replacement is all we have yet */
5248 			rdev = conf->disks[i].replacement;
5249 			conf->disks[i].replacement = NULL;
5250 			clear_bit(Replacement, &rdev->flags);
5251 			conf->disks[i].rdev = rdev;
5252 		}
5253 		if (!rdev)
5254 			continue;
5255 		if (conf->disks[i].replacement &&
5256 		    conf->reshape_progress != MaxSector) {
5257 			/* replacements and reshape simply do not mix. */
5258 			printk(KERN_ERR "md: cannot handle concurrent "
5259 			       "replacement and reshape.\n");
5260 			goto abort;
5261 		}
5262 		if (test_bit(In_sync, &rdev->flags)) {
5263 			working_disks++;
5264 			continue;
5265 		}
5266 		/* This disc is not fully in-sync.  However if it
5267 		 * just stored parity (beyond the recovery_offset),
5268 		 * when we don't need to be concerned about the
5269 		 * array being dirty.
5270 		 * When reshape goes 'backwards', we never have
5271 		 * partially completed devices, so we only need
5272 		 * to worry about reshape going forwards.
5273 		 */
5274 		/* Hack because v0.91 doesn't store recovery_offset properly. */
5275 		if (mddev->major_version == 0 &&
5276 		    mddev->minor_version > 90)
5277 			rdev->recovery_offset = reshape_offset;
5278 
5279 		if (rdev->recovery_offset < reshape_offset) {
5280 			/* We need to check old and new layout */
5281 			if (!only_parity(rdev->raid_disk,
5282 					 conf->algorithm,
5283 					 conf->raid_disks,
5284 					 conf->max_degraded))
5285 				continue;
5286 		}
5287 		if (!only_parity(rdev->raid_disk,
5288 				 conf->prev_algo,
5289 				 conf->previous_raid_disks,
5290 				 conf->max_degraded))
5291 			continue;
5292 		dirty_parity_disks++;
5293 	}
5294 
5295 	/*
5296 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
5297 	 */
5298 	mddev->degraded = calc_degraded(conf);
5299 
5300 	if (has_failed(conf)) {
5301 		printk(KERN_ERR "md/raid:%s: not enough operational devices"
5302 			" (%d/%d failed)\n",
5303 			mdname(mddev), mddev->degraded, conf->raid_disks);
5304 		goto abort;
5305 	}
5306 
5307 	/* device size must be a multiple of chunk size */
5308 	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5309 	mddev->resync_max_sectors = mddev->dev_sectors;
5310 
5311 	if (mddev->degraded > dirty_parity_disks &&
5312 	    mddev->recovery_cp != MaxSector) {
5313 		if (mddev->ok_start_degraded)
5314 			printk(KERN_WARNING
5315 			       "md/raid:%s: starting dirty degraded array"
5316 			       " - data corruption possible.\n",
5317 			       mdname(mddev));
5318 		else {
5319 			printk(KERN_ERR
5320 			       "md/raid:%s: cannot start dirty degraded array.\n",
5321 			       mdname(mddev));
5322 			goto abort;
5323 		}
5324 	}
5325 
5326 	if (mddev->degraded == 0)
5327 		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5328 		       " devices, algorithm %d\n", mdname(mddev), conf->level,
5329 		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5330 		       mddev->new_layout);
5331 	else
5332 		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5333 		       " out of %d devices, algorithm %d\n",
5334 		       mdname(mddev), conf->level,
5335 		       mddev->raid_disks - mddev->degraded,
5336 		       mddev->raid_disks, mddev->new_layout);
5337 
5338 	print_raid5_conf(conf);
5339 
5340 	if (conf->reshape_progress != MaxSector) {
5341 		conf->reshape_safe = conf->reshape_progress;
5342 		atomic_set(&conf->reshape_stripes, 0);
5343 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5344 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5345 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5346 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5347 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5348 							"reshape");
5349 	}
5350 
5351 
5352 	/* Ok, everything is just fine now */
5353 	if (mddev->to_remove == &raid5_attrs_group)
5354 		mddev->to_remove = NULL;
5355 	else if (mddev->kobj.sd &&
5356 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5357 		printk(KERN_WARNING
5358 		       "raid5: failed to create sysfs attributes for %s\n",
5359 		       mdname(mddev));
5360 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5361 
5362 	if (mddev->queue) {
5363 		int chunk_size;
5364 		/* read-ahead size must cover two whole stripes, which
5365 		 * is 2 * (datadisks) * chunksize where 'n' is the
5366 		 * number of raid devices
5367 		 */
5368 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
5369 		int stripe = data_disks *
5370 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
5371 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5372 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5373 
5374 		blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5375 
5376 		mddev->queue->backing_dev_info.congested_data = mddev;
5377 		mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5378 
5379 		chunk_size = mddev->chunk_sectors << 9;
5380 		blk_queue_io_min(mddev->queue, chunk_size);
5381 		blk_queue_io_opt(mddev->queue, chunk_size *
5382 				 (conf->raid_disks - conf->max_degraded));
5383 
5384 		rdev_for_each(rdev, mddev) {
5385 			disk_stack_limits(mddev->gendisk, rdev->bdev,
5386 					  rdev->data_offset << 9);
5387 			disk_stack_limits(mddev->gendisk, rdev->bdev,
5388 					  rdev->new_data_offset << 9);
5389 		}
5390 	}
5391 
5392 	return 0;
5393 abort:
5394 	md_unregister_thread(&mddev->thread);
5395 	print_raid5_conf(conf);
5396 	free_conf(conf);
5397 	mddev->private = NULL;
5398 	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5399 	return -EIO;
5400 }
5401 
5402 static int stop(struct mddev *mddev)
5403 {
5404 	struct r5conf *conf = mddev->private;
5405 
5406 	md_unregister_thread(&mddev->thread);
5407 	if (mddev->queue)
5408 		mddev->queue->backing_dev_info.congested_fn = NULL;
5409 	free_conf(conf);
5410 	mddev->private = NULL;
5411 	mddev->to_remove = &raid5_attrs_group;
5412 	return 0;
5413 }
5414 
5415 static void status(struct seq_file *seq, struct mddev *mddev)
5416 {
5417 	struct r5conf *conf = mddev->private;
5418 	int i;
5419 
5420 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5421 		mddev->chunk_sectors / 2, mddev->layout);
5422 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5423 	for (i = 0; i < conf->raid_disks; i++)
5424 		seq_printf (seq, "%s",
5425 			       conf->disks[i].rdev &&
5426 			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5427 	seq_printf (seq, "]");
5428 }
5429 
5430 static void print_raid5_conf (struct r5conf *conf)
5431 {
5432 	int i;
5433 	struct disk_info *tmp;
5434 
5435 	printk(KERN_DEBUG "RAID conf printout:\n");
5436 	if (!conf) {
5437 		printk("(conf==NULL)\n");
5438 		return;
5439 	}
5440 	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5441 	       conf->raid_disks,
5442 	       conf->raid_disks - conf->mddev->degraded);
5443 
5444 	for (i = 0; i < conf->raid_disks; i++) {
5445 		char b[BDEVNAME_SIZE];
5446 		tmp = conf->disks + i;
5447 		if (tmp->rdev)
5448 			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5449 			       i, !test_bit(Faulty, &tmp->rdev->flags),
5450 			       bdevname(tmp->rdev->bdev, b));
5451 	}
5452 }
5453 
5454 static int raid5_spare_active(struct mddev *mddev)
5455 {
5456 	int i;
5457 	struct r5conf *conf = mddev->private;
5458 	struct disk_info *tmp;
5459 	int count = 0;
5460 	unsigned long flags;
5461 
5462 	for (i = 0; i < conf->raid_disks; i++) {
5463 		tmp = conf->disks + i;
5464 		if (tmp->replacement
5465 		    && tmp->replacement->recovery_offset == MaxSector
5466 		    && !test_bit(Faulty, &tmp->replacement->flags)
5467 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
5468 			/* Replacement has just become active. */
5469 			if (!tmp->rdev
5470 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
5471 				count++;
5472 			if (tmp->rdev) {
5473 				/* Replaced device not technically faulty,
5474 				 * but we need to be sure it gets removed
5475 				 * and never re-added.
5476 				 */
5477 				set_bit(Faulty, &tmp->rdev->flags);
5478 				sysfs_notify_dirent_safe(
5479 					tmp->rdev->sysfs_state);
5480 			}
5481 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
5482 		} else if (tmp->rdev
5483 		    && tmp->rdev->recovery_offset == MaxSector
5484 		    && !test_bit(Faulty, &tmp->rdev->flags)
5485 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5486 			count++;
5487 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5488 		}
5489 	}
5490 	spin_lock_irqsave(&conf->device_lock, flags);
5491 	mddev->degraded = calc_degraded(conf);
5492 	spin_unlock_irqrestore(&conf->device_lock, flags);
5493 	print_raid5_conf(conf);
5494 	return count;
5495 }
5496 
5497 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
5498 {
5499 	struct r5conf *conf = mddev->private;
5500 	int err = 0;
5501 	int number = rdev->raid_disk;
5502 	struct md_rdev **rdevp;
5503 	struct disk_info *p = conf->disks + number;
5504 
5505 	print_raid5_conf(conf);
5506 	if (rdev == p->rdev)
5507 		rdevp = &p->rdev;
5508 	else if (rdev == p->replacement)
5509 		rdevp = &p->replacement;
5510 	else
5511 		return 0;
5512 
5513 	if (number >= conf->raid_disks &&
5514 	    conf->reshape_progress == MaxSector)
5515 		clear_bit(In_sync, &rdev->flags);
5516 
5517 	if (test_bit(In_sync, &rdev->flags) ||
5518 	    atomic_read(&rdev->nr_pending)) {
5519 		err = -EBUSY;
5520 		goto abort;
5521 	}
5522 	/* Only remove non-faulty devices if recovery
5523 	 * isn't possible.
5524 	 */
5525 	if (!test_bit(Faulty, &rdev->flags) &&
5526 	    mddev->recovery_disabled != conf->recovery_disabled &&
5527 	    !has_failed(conf) &&
5528 	    (!p->replacement || p->replacement == rdev) &&
5529 	    number < conf->raid_disks) {
5530 		err = -EBUSY;
5531 		goto abort;
5532 	}
5533 	*rdevp = NULL;
5534 	synchronize_rcu();
5535 	if (atomic_read(&rdev->nr_pending)) {
5536 		/* lost the race, try later */
5537 		err = -EBUSY;
5538 		*rdevp = rdev;
5539 	} else if (p->replacement) {
5540 		/* We must have just cleared 'rdev' */
5541 		p->rdev = p->replacement;
5542 		clear_bit(Replacement, &p->replacement->flags);
5543 		smp_mb(); /* Make sure other CPUs may see both as identical
5544 			   * but will never see neither - if they are careful
5545 			   */
5546 		p->replacement = NULL;
5547 		clear_bit(WantReplacement, &rdev->flags);
5548 	} else
5549 		/* We might have just removed the Replacement as faulty-
5550 		 * clear the bit just in case
5551 		 */
5552 		clear_bit(WantReplacement, &rdev->flags);
5553 abort:
5554 
5555 	print_raid5_conf(conf);
5556 	return err;
5557 }
5558 
5559 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
5560 {
5561 	struct r5conf *conf = mddev->private;
5562 	int err = -EEXIST;
5563 	int disk;
5564 	struct disk_info *p;
5565 	int first = 0;
5566 	int last = conf->raid_disks - 1;
5567 
5568 	if (mddev->recovery_disabled == conf->recovery_disabled)
5569 		return -EBUSY;
5570 
5571 	if (rdev->saved_raid_disk < 0 && has_failed(conf))
5572 		/* no point adding a device */
5573 		return -EINVAL;
5574 
5575 	if (rdev->raid_disk >= 0)
5576 		first = last = rdev->raid_disk;
5577 
5578 	/*
5579 	 * find the disk ... but prefer rdev->saved_raid_disk
5580 	 * if possible.
5581 	 */
5582 	if (rdev->saved_raid_disk >= 0 &&
5583 	    rdev->saved_raid_disk >= first &&
5584 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
5585 		first = rdev->saved_raid_disk;
5586 
5587 	for (disk = first; disk <= last; disk++) {
5588 		p = conf->disks + disk;
5589 		if (p->rdev == NULL) {
5590 			clear_bit(In_sync, &rdev->flags);
5591 			rdev->raid_disk = disk;
5592 			err = 0;
5593 			if (rdev->saved_raid_disk != disk)
5594 				conf->fullsync = 1;
5595 			rcu_assign_pointer(p->rdev, rdev);
5596 			goto out;
5597 		}
5598 	}
5599 	for (disk = first; disk <= last; disk++) {
5600 		p = conf->disks + disk;
5601 		if (test_bit(WantReplacement, &p->rdev->flags) &&
5602 		    p->replacement == NULL) {
5603 			clear_bit(In_sync, &rdev->flags);
5604 			set_bit(Replacement, &rdev->flags);
5605 			rdev->raid_disk = disk;
5606 			err = 0;
5607 			conf->fullsync = 1;
5608 			rcu_assign_pointer(p->replacement, rdev);
5609 			break;
5610 		}
5611 	}
5612 out:
5613 	print_raid5_conf(conf);
5614 	return err;
5615 }
5616 
5617 static int raid5_resize(struct mddev *mddev, sector_t sectors)
5618 {
5619 	/* no resync is happening, and there is enough space
5620 	 * on all devices, so we can resize.
5621 	 * We need to make sure resync covers any new space.
5622 	 * If the array is shrinking we should possibly wait until
5623 	 * any io in the removed space completes, but it hardly seems
5624 	 * worth it.
5625 	 */
5626 	sector_t newsize;
5627 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5628 	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
5629 	if (mddev->external_size &&
5630 	    mddev->array_sectors > newsize)
5631 		return -EINVAL;
5632 	if (mddev->bitmap) {
5633 		int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
5634 		if (ret)
5635 			return ret;
5636 	}
5637 	md_set_array_sectors(mddev, newsize);
5638 	set_capacity(mddev->gendisk, mddev->array_sectors);
5639 	revalidate_disk(mddev->gendisk);
5640 	if (sectors > mddev->dev_sectors &&
5641 	    mddev->recovery_cp > mddev->dev_sectors) {
5642 		mddev->recovery_cp = mddev->dev_sectors;
5643 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5644 	}
5645 	mddev->dev_sectors = sectors;
5646 	mddev->resync_max_sectors = sectors;
5647 	return 0;
5648 }
5649 
5650 static int check_stripe_cache(struct mddev *mddev)
5651 {
5652 	/* Can only proceed if there are plenty of stripe_heads.
5653 	 * We need a minimum of one full stripe,, and for sensible progress
5654 	 * it is best to have about 4 times that.
5655 	 * If we require 4 times, then the default 256 4K stripe_heads will
5656 	 * allow for chunk sizes up to 256K, which is probably OK.
5657 	 * If the chunk size is greater, user-space should request more
5658 	 * stripe_heads first.
5659 	 */
5660 	struct r5conf *conf = mddev->private;
5661 	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5662 	    > conf->max_nr_stripes ||
5663 	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5664 	    > conf->max_nr_stripes) {
5665 		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
5666 		       mdname(mddev),
5667 		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5668 			/ STRIPE_SIZE)*4);
5669 		return 0;
5670 	}
5671 	return 1;
5672 }
5673 
5674 static int check_reshape(struct mddev *mddev)
5675 {
5676 	struct r5conf *conf = mddev->private;
5677 
5678 	if (mddev->delta_disks == 0 &&
5679 	    mddev->new_layout == mddev->layout &&
5680 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
5681 		return 0; /* nothing to do */
5682 	if (has_failed(conf))
5683 		return -EINVAL;
5684 	if (mddev->delta_disks < 0) {
5685 		/* We might be able to shrink, but the devices must
5686 		 * be made bigger first.
5687 		 * For raid6, 4 is the minimum size.
5688 		 * Otherwise 2 is the minimum
5689 		 */
5690 		int min = 2;
5691 		if (mddev->level == 6)
5692 			min = 4;
5693 		if (mddev->raid_disks + mddev->delta_disks < min)
5694 			return -EINVAL;
5695 	}
5696 
5697 	if (!check_stripe_cache(mddev))
5698 		return -ENOSPC;
5699 
5700 	return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5701 }
5702 
5703 static int raid5_start_reshape(struct mddev *mddev)
5704 {
5705 	struct r5conf *conf = mddev->private;
5706 	struct md_rdev *rdev;
5707 	int spares = 0;
5708 	unsigned long flags;
5709 
5710 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5711 		return -EBUSY;
5712 
5713 	if (!check_stripe_cache(mddev))
5714 		return -ENOSPC;
5715 
5716 	if (has_failed(conf))
5717 		return -EINVAL;
5718 
5719 	rdev_for_each(rdev, mddev) {
5720 		if (!test_bit(In_sync, &rdev->flags)
5721 		    && !test_bit(Faulty, &rdev->flags))
5722 			spares++;
5723 	}
5724 
5725 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5726 		/* Not enough devices even to make a degraded array
5727 		 * of that size
5728 		 */
5729 		return -EINVAL;
5730 
5731 	/* Refuse to reduce size of the array.  Any reductions in
5732 	 * array size must be through explicit setting of array_size
5733 	 * attribute.
5734 	 */
5735 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5736 	    < mddev->array_sectors) {
5737 		printk(KERN_ERR "md/raid:%s: array size must be reduced "
5738 		       "before number of disks\n", mdname(mddev));
5739 		return -EINVAL;
5740 	}
5741 
5742 	atomic_set(&conf->reshape_stripes, 0);
5743 	spin_lock_irq(&conf->device_lock);
5744 	conf->previous_raid_disks = conf->raid_disks;
5745 	conf->raid_disks += mddev->delta_disks;
5746 	conf->prev_chunk_sectors = conf->chunk_sectors;
5747 	conf->chunk_sectors = mddev->new_chunk_sectors;
5748 	conf->prev_algo = conf->algorithm;
5749 	conf->algorithm = mddev->new_layout;
5750 	conf->generation++;
5751 	/* Code that selects data_offset needs to see the generation update
5752 	 * if reshape_progress has been set - so a memory barrier needed.
5753 	 */
5754 	smp_mb();
5755 	if (mddev->reshape_backwards)
5756 		conf->reshape_progress = raid5_size(mddev, 0, 0);
5757 	else
5758 		conf->reshape_progress = 0;
5759 	conf->reshape_safe = conf->reshape_progress;
5760 	spin_unlock_irq(&conf->device_lock);
5761 
5762 	/* Add some new drives, as many as will fit.
5763 	 * We know there are enough to make the newly sized array work.
5764 	 * Don't add devices if we are reducing the number of
5765 	 * devices in the array.  This is because it is not possible
5766 	 * to correctly record the "partially reconstructed" state of
5767 	 * such devices during the reshape and confusion could result.
5768 	 */
5769 	if (mddev->delta_disks >= 0) {
5770 		rdev_for_each(rdev, mddev)
5771 			if (rdev->raid_disk < 0 &&
5772 			    !test_bit(Faulty, &rdev->flags)) {
5773 				if (raid5_add_disk(mddev, rdev) == 0) {
5774 					if (rdev->raid_disk
5775 					    >= conf->previous_raid_disks)
5776 						set_bit(In_sync, &rdev->flags);
5777 					else
5778 						rdev->recovery_offset = 0;
5779 
5780 					if (sysfs_link_rdev(mddev, rdev))
5781 						/* Failure here is OK */;
5782 				}
5783 			} else if (rdev->raid_disk >= conf->previous_raid_disks
5784 				   && !test_bit(Faulty, &rdev->flags)) {
5785 				/* This is a spare that was manually added */
5786 				set_bit(In_sync, &rdev->flags);
5787 			}
5788 
5789 		/* When a reshape changes the number of devices,
5790 		 * ->degraded is measured against the larger of the
5791 		 * pre and post number of devices.
5792 		 */
5793 		spin_lock_irqsave(&conf->device_lock, flags);
5794 		mddev->degraded = calc_degraded(conf);
5795 		spin_unlock_irqrestore(&conf->device_lock, flags);
5796 	}
5797 	mddev->raid_disks = conf->raid_disks;
5798 	mddev->reshape_position = conf->reshape_progress;
5799 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5800 
5801 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5802 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5803 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5804 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5805 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5806 						"reshape");
5807 	if (!mddev->sync_thread) {
5808 		mddev->recovery = 0;
5809 		spin_lock_irq(&conf->device_lock);
5810 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5811 		rdev_for_each(rdev, mddev)
5812 			rdev->new_data_offset = rdev->data_offset;
5813 		smp_wmb();
5814 		conf->reshape_progress = MaxSector;
5815 		mddev->reshape_position = MaxSector;
5816 		spin_unlock_irq(&conf->device_lock);
5817 		return -EAGAIN;
5818 	}
5819 	conf->reshape_checkpoint = jiffies;
5820 	md_wakeup_thread(mddev->sync_thread);
5821 	md_new_event(mddev);
5822 	return 0;
5823 }
5824 
5825 /* This is called from the reshape thread and should make any
5826  * changes needed in 'conf'
5827  */
5828 static void end_reshape(struct r5conf *conf)
5829 {
5830 
5831 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5832 		struct md_rdev *rdev;
5833 
5834 		spin_lock_irq(&conf->device_lock);
5835 		conf->previous_raid_disks = conf->raid_disks;
5836 		rdev_for_each(rdev, conf->mddev)
5837 			rdev->data_offset = rdev->new_data_offset;
5838 		smp_wmb();
5839 		conf->reshape_progress = MaxSector;
5840 		spin_unlock_irq(&conf->device_lock);
5841 		wake_up(&conf->wait_for_overlap);
5842 
5843 		/* read-ahead size must cover two whole stripes, which is
5844 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5845 		 */
5846 		if (conf->mddev->queue) {
5847 			int data_disks = conf->raid_disks - conf->max_degraded;
5848 			int stripe = data_disks * ((conf->chunk_sectors << 9)
5849 						   / PAGE_SIZE);
5850 			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5851 				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5852 		}
5853 	}
5854 }
5855 
5856 /* This is called from the raid5d thread with mddev_lock held.
5857  * It makes config changes to the device.
5858  */
5859 static void raid5_finish_reshape(struct mddev *mddev)
5860 {
5861 	struct r5conf *conf = mddev->private;
5862 
5863 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5864 
5865 		if (mddev->delta_disks > 0) {
5866 			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5867 			set_capacity(mddev->gendisk, mddev->array_sectors);
5868 			revalidate_disk(mddev->gendisk);
5869 		} else {
5870 			int d;
5871 			spin_lock_irq(&conf->device_lock);
5872 			mddev->degraded = calc_degraded(conf);
5873 			spin_unlock_irq(&conf->device_lock);
5874 			for (d = conf->raid_disks ;
5875 			     d < conf->raid_disks - mddev->delta_disks;
5876 			     d++) {
5877 				struct md_rdev *rdev = conf->disks[d].rdev;
5878 				if (rdev)
5879 					clear_bit(In_sync, &rdev->flags);
5880 				rdev = conf->disks[d].replacement;
5881 				if (rdev)
5882 					clear_bit(In_sync, &rdev->flags);
5883 			}
5884 		}
5885 		mddev->layout = conf->algorithm;
5886 		mddev->chunk_sectors = conf->chunk_sectors;
5887 		mddev->reshape_position = MaxSector;
5888 		mddev->delta_disks = 0;
5889 		mddev->reshape_backwards = 0;
5890 	}
5891 }
5892 
5893 static void raid5_quiesce(struct mddev *mddev, int state)
5894 {
5895 	struct r5conf *conf = mddev->private;
5896 
5897 	switch(state) {
5898 	case 2: /* resume for a suspend */
5899 		wake_up(&conf->wait_for_overlap);
5900 		break;
5901 
5902 	case 1: /* stop all writes */
5903 		spin_lock_irq(&conf->device_lock);
5904 		/* '2' tells resync/reshape to pause so that all
5905 		 * active stripes can drain
5906 		 */
5907 		conf->quiesce = 2;
5908 		wait_event_lock_irq(conf->wait_for_stripe,
5909 				    atomic_read(&conf->active_stripes) == 0 &&
5910 				    atomic_read(&conf->active_aligned_reads) == 0,
5911 				    conf->device_lock, /* nothing */);
5912 		conf->quiesce = 1;
5913 		spin_unlock_irq(&conf->device_lock);
5914 		/* allow reshape to continue */
5915 		wake_up(&conf->wait_for_overlap);
5916 		break;
5917 
5918 	case 0: /* re-enable writes */
5919 		spin_lock_irq(&conf->device_lock);
5920 		conf->quiesce = 0;
5921 		wake_up(&conf->wait_for_stripe);
5922 		wake_up(&conf->wait_for_overlap);
5923 		spin_unlock_irq(&conf->device_lock);
5924 		break;
5925 	}
5926 }
5927 
5928 
5929 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
5930 {
5931 	struct r0conf *raid0_conf = mddev->private;
5932 	sector_t sectors;
5933 
5934 	/* for raid0 takeover only one zone is supported */
5935 	if (raid0_conf->nr_strip_zones > 1) {
5936 		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5937 		       mdname(mddev));
5938 		return ERR_PTR(-EINVAL);
5939 	}
5940 
5941 	sectors = raid0_conf->strip_zone[0].zone_end;
5942 	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
5943 	mddev->dev_sectors = sectors;
5944 	mddev->new_level = level;
5945 	mddev->new_layout = ALGORITHM_PARITY_N;
5946 	mddev->new_chunk_sectors = mddev->chunk_sectors;
5947 	mddev->raid_disks += 1;
5948 	mddev->delta_disks = 1;
5949 	/* make sure it will be not marked as dirty */
5950 	mddev->recovery_cp = MaxSector;
5951 
5952 	return setup_conf(mddev);
5953 }
5954 
5955 
5956 static void *raid5_takeover_raid1(struct mddev *mddev)
5957 {
5958 	int chunksect;
5959 
5960 	if (mddev->raid_disks != 2 ||
5961 	    mddev->degraded > 1)
5962 		return ERR_PTR(-EINVAL);
5963 
5964 	/* Should check if there are write-behind devices? */
5965 
5966 	chunksect = 64*2; /* 64K by default */
5967 
5968 	/* The array must be an exact multiple of chunksize */
5969 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
5970 		chunksect >>= 1;
5971 
5972 	if ((chunksect<<9) < STRIPE_SIZE)
5973 		/* array size does not allow a suitable chunk size */
5974 		return ERR_PTR(-EINVAL);
5975 
5976 	mddev->new_level = 5;
5977 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5978 	mddev->new_chunk_sectors = chunksect;
5979 
5980 	return setup_conf(mddev);
5981 }
5982 
5983 static void *raid5_takeover_raid6(struct mddev *mddev)
5984 {
5985 	int new_layout;
5986 
5987 	switch (mddev->layout) {
5988 	case ALGORITHM_LEFT_ASYMMETRIC_6:
5989 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5990 		break;
5991 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
5992 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5993 		break;
5994 	case ALGORITHM_LEFT_SYMMETRIC_6:
5995 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
5996 		break;
5997 	case ALGORITHM_RIGHT_SYMMETRIC_6:
5998 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5999 		break;
6000 	case ALGORITHM_PARITY_0_6:
6001 		new_layout = ALGORITHM_PARITY_0;
6002 		break;
6003 	case ALGORITHM_PARITY_N:
6004 		new_layout = ALGORITHM_PARITY_N;
6005 		break;
6006 	default:
6007 		return ERR_PTR(-EINVAL);
6008 	}
6009 	mddev->new_level = 5;
6010 	mddev->new_layout = new_layout;
6011 	mddev->delta_disks = -1;
6012 	mddev->raid_disks -= 1;
6013 	return setup_conf(mddev);
6014 }
6015 
6016 
6017 static int raid5_check_reshape(struct mddev *mddev)
6018 {
6019 	/* For a 2-drive array, the layout and chunk size can be changed
6020 	 * immediately as not restriping is needed.
6021 	 * For larger arrays we record the new value - after validation
6022 	 * to be used by a reshape pass.
6023 	 */
6024 	struct r5conf *conf = mddev->private;
6025 	int new_chunk = mddev->new_chunk_sectors;
6026 
6027 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
6028 		return -EINVAL;
6029 	if (new_chunk > 0) {
6030 		if (!is_power_of_2(new_chunk))
6031 			return -EINVAL;
6032 		if (new_chunk < (PAGE_SIZE>>9))
6033 			return -EINVAL;
6034 		if (mddev->array_sectors & (new_chunk-1))
6035 			/* not factor of array size */
6036 			return -EINVAL;
6037 	}
6038 
6039 	/* They look valid */
6040 
6041 	if (mddev->raid_disks == 2) {
6042 		/* can make the change immediately */
6043 		if (mddev->new_layout >= 0) {
6044 			conf->algorithm = mddev->new_layout;
6045 			mddev->layout = mddev->new_layout;
6046 		}
6047 		if (new_chunk > 0) {
6048 			conf->chunk_sectors = new_chunk ;
6049 			mddev->chunk_sectors = new_chunk;
6050 		}
6051 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
6052 		md_wakeup_thread(mddev->thread);
6053 	}
6054 	return check_reshape(mddev);
6055 }
6056 
6057 static int raid6_check_reshape(struct mddev *mddev)
6058 {
6059 	int new_chunk = mddev->new_chunk_sectors;
6060 
6061 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
6062 		return -EINVAL;
6063 	if (new_chunk > 0) {
6064 		if (!is_power_of_2(new_chunk))
6065 			return -EINVAL;
6066 		if (new_chunk < (PAGE_SIZE >> 9))
6067 			return -EINVAL;
6068 		if (mddev->array_sectors & (new_chunk-1))
6069 			/* not factor of array size */
6070 			return -EINVAL;
6071 	}
6072 
6073 	/* They look valid */
6074 	return check_reshape(mddev);
6075 }
6076 
6077 static void *raid5_takeover(struct mddev *mddev)
6078 {
6079 	/* raid5 can take over:
6080 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
6081 	 *  raid1 - if there are two drives.  We need to know the chunk size
6082 	 *  raid4 - trivial - just use a raid4 layout.
6083 	 *  raid6 - Providing it is a *_6 layout
6084 	 */
6085 	if (mddev->level == 0)
6086 		return raid45_takeover_raid0(mddev, 5);
6087 	if (mddev->level == 1)
6088 		return raid5_takeover_raid1(mddev);
6089 	if (mddev->level == 4) {
6090 		mddev->new_layout = ALGORITHM_PARITY_N;
6091 		mddev->new_level = 5;
6092 		return setup_conf(mddev);
6093 	}
6094 	if (mddev->level == 6)
6095 		return raid5_takeover_raid6(mddev);
6096 
6097 	return ERR_PTR(-EINVAL);
6098 }
6099 
6100 static void *raid4_takeover(struct mddev *mddev)
6101 {
6102 	/* raid4 can take over:
6103 	 *  raid0 - if there is only one strip zone
6104 	 *  raid5 - if layout is right
6105 	 */
6106 	if (mddev->level == 0)
6107 		return raid45_takeover_raid0(mddev, 4);
6108 	if (mddev->level == 5 &&
6109 	    mddev->layout == ALGORITHM_PARITY_N) {
6110 		mddev->new_layout = 0;
6111 		mddev->new_level = 4;
6112 		return setup_conf(mddev);
6113 	}
6114 	return ERR_PTR(-EINVAL);
6115 }
6116 
6117 static struct md_personality raid5_personality;
6118 
6119 static void *raid6_takeover(struct mddev *mddev)
6120 {
6121 	/* Currently can only take over a raid5.  We map the
6122 	 * personality to an equivalent raid6 personality
6123 	 * with the Q block at the end.
6124 	 */
6125 	int new_layout;
6126 
6127 	if (mddev->pers != &raid5_personality)
6128 		return ERR_PTR(-EINVAL);
6129 	if (mddev->degraded > 1)
6130 		return ERR_PTR(-EINVAL);
6131 	if (mddev->raid_disks > 253)
6132 		return ERR_PTR(-EINVAL);
6133 	if (mddev->raid_disks < 3)
6134 		return ERR_PTR(-EINVAL);
6135 
6136 	switch (mddev->layout) {
6137 	case ALGORITHM_LEFT_ASYMMETRIC:
6138 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
6139 		break;
6140 	case ALGORITHM_RIGHT_ASYMMETRIC:
6141 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
6142 		break;
6143 	case ALGORITHM_LEFT_SYMMETRIC:
6144 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
6145 		break;
6146 	case ALGORITHM_RIGHT_SYMMETRIC:
6147 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
6148 		break;
6149 	case ALGORITHM_PARITY_0:
6150 		new_layout = ALGORITHM_PARITY_0_6;
6151 		break;
6152 	case ALGORITHM_PARITY_N:
6153 		new_layout = ALGORITHM_PARITY_N;
6154 		break;
6155 	default:
6156 		return ERR_PTR(-EINVAL);
6157 	}
6158 	mddev->new_level = 6;
6159 	mddev->new_layout = new_layout;
6160 	mddev->delta_disks = 1;
6161 	mddev->raid_disks += 1;
6162 	return setup_conf(mddev);
6163 }
6164 
6165 
6166 static struct md_personality raid6_personality =
6167 {
6168 	.name		= "raid6",
6169 	.level		= 6,
6170 	.owner		= THIS_MODULE,
6171 	.make_request	= make_request,
6172 	.run		= run,
6173 	.stop		= stop,
6174 	.status		= status,
6175 	.error_handler	= error,
6176 	.hot_add_disk	= raid5_add_disk,
6177 	.hot_remove_disk= raid5_remove_disk,
6178 	.spare_active	= raid5_spare_active,
6179 	.sync_request	= sync_request,
6180 	.resize		= raid5_resize,
6181 	.size		= raid5_size,
6182 	.check_reshape	= raid6_check_reshape,
6183 	.start_reshape  = raid5_start_reshape,
6184 	.finish_reshape = raid5_finish_reshape,
6185 	.quiesce	= raid5_quiesce,
6186 	.takeover	= raid6_takeover,
6187 };
6188 static struct md_personality raid5_personality =
6189 {
6190 	.name		= "raid5",
6191 	.level		= 5,
6192 	.owner		= THIS_MODULE,
6193 	.make_request	= make_request,
6194 	.run		= run,
6195 	.stop		= stop,
6196 	.status		= status,
6197 	.error_handler	= error,
6198 	.hot_add_disk	= raid5_add_disk,
6199 	.hot_remove_disk= raid5_remove_disk,
6200 	.spare_active	= raid5_spare_active,
6201 	.sync_request	= sync_request,
6202 	.resize		= raid5_resize,
6203 	.size		= raid5_size,
6204 	.check_reshape	= raid5_check_reshape,
6205 	.start_reshape  = raid5_start_reshape,
6206 	.finish_reshape = raid5_finish_reshape,
6207 	.quiesce	= raid5_quiesce,
6208 	.takeover	= raid5_takeover,
6209 };
6210 
6211 static struct md_personality raid4_personality =
6212 {
6213 	.name		= "raid4",
6214 	.level		= 4,
6215 	.owner		= THIS_MODULE,
6216 	.make_request	= make_request,
6217 	.run		= run,
6218 	.stop		= stop,
6219 	.status		= status,
6220 	.error_handler	= error,
6221 	.hot_add_disk	= raid5_add_disk,
6222 	.hot_remove_disk= raid5_remove_disk,
6223 	.spare_active	= raid5_spare_active,
6224 	.sync_request	= sync_request,
6225 	.resize		= raid5_resize,
6226 	.size		= raid5_size,
6227 	.check_reshape	= raid5_check_reshape,
6228 	.start_reshape  = raid5_start_reshape,
6229 	.finish_reshape = raid5_finish_reshape,
6230 	.quiesce	= raid5_quiesce,
6231 	.takeover	= raid4_takeover,
6232 };
6233 
6234 static int __init raid5_init(void)
6235 {
6236 	register_md_personality(&raid6_personality);
6237 	register_md_personality(&raid5_personality);
6238 	register_md_personality(&raid4_personality);
6239 	return 0;
6240 }
6241 
6242 static void raid5_exit(void)
6243 {
6244 	unregister_md_personality(&raid6_personality);
6245 	unregister_md_personality(&raid5_personality);
6246 	unregister_md_personality(&raid4_personality);
6247 }
6248 
6249 module_init(raid5_init);
6250 module_exit(raid5_exit);
6251 MODULE_LICENSE("GPL");
6252 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6253 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6254 MODULE_ALIAS("md-raid5");
6255 MODULE_ALIAS("md-raid4");
6256 MODULE_ALIAS("md-level-5");
6257 MODULE_ALIAS("md-level-4");
6258 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6259 MODULE_ALIAS("md-raid6");
6260 MODULE_ALIAS("md-level-6");
6261 
6262 /* This used to be two separate modules, they were: */
6263 MODULE_ALIAS("raid5");
6264 MODULE_ALIAS("raid6");
6265