1 /* 2 * raid5.c : Multiple Devices driver for Linux 3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman 4 * Copyright (C) 1999, 2000 Ingo Molnar 5 * Copyright (C) 2002, 2003 H. Peter Anvin 6 * 7 * RAID-4/5/6 management functions. 8 * Thanks to Penguin Computing for making the RAID-6 development possible 9 * by donating a test server! 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 /* 22 * BITMAP UNPLUGGING: 23 * 24 * The sequencing for updating the bitmap reliably is a little 25 * subtle (and I got it wrong the first time) so it deserves some 26 * explanation. 27 * 28 * We group bitmap updates into batches. Each batch has a number. 29 * We may write out several batches at once, but that isn't very important. 30 * conf->seq_write is the number of the last batch successfully written. 31 * conf->seq_flush is the number of the last batch that was closed to 32 * new additions. 33 * When we discover that we will need to write to any block in a stripe 34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq 35 * the number of the batch it will be in. This is seq_flush+1. 36 * When we are ready to do a write, if that batch hasn't been written yet, 37 * we plug the array and queue the stripe for later. 38 * When an unplug happens, we increment bm_flush, thus closing the current 39 * batch. 40 * When we notice that bm_flush > bm_write, we write out all pending updates 41 * to the bitmap, and advance bm_write to where bm_flush was. 42 * This may occasionally write a bit out twice, but is sure never to 43 * miss any bits. 44 */ 45 46 #include <linux/blkdev.h> 47 #include <linux/kthread.h> 48 #include <linux/raid/pq.h> 49 #include <linux/async_tx.h> 50 #include <linux/module.h> 51 #include <linux/async.h> 52 #include <linux/seq_file.h> 53 #include <linux/cpu.h> 54 #include <linux/slab.h> 55 #include <linux/ratelimit.h> 56 #include "md.h" 57 #include "raid5.h" 58 #include "raid0.h" 59 #include "bitmap.h" 60 61 /* 62 * Stripe cache 63 */ 64 65 #define NR_STRIPES 256 66 #define STRIPE_SIZE PAGE_SIZE 67 #define STRIPE_SHIFT (PAGE_SHIFT - 9) 68 #define STRIPE_SECTORS (STRIPE_SIZE>>9) 69 #define IO_THRESHOLD 1 70 #define BYPASS_THRESHOLD 1 71 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head)) 72 #define HASH_MASK (NR_HASH - 1) 73 74 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect) 75 { 76 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK; 77 return &conf->stripe_hashtbl[hash]; 78 } 79 80 /* bio's attached to a stripe+device for I/O are linked together in bi_sector 81 * order without overlap. There may be several bio's per stripe+device, and 82 * a bio could span several devices. 83 * When walking this list for a particular stripe+device, we must never proceed 84 * beyond a bio that extends past this device, as the next bio might no longer 85 * be valid. 86 * This function is used to determine the 'next' bio in the list, given the sector 87 * of the current stripe+device 88 */ 89 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector) 90 { 91 int sectors = bio->bi_size >> 9; 92 if (bio->bi_sector + sectors < sector + STRIPE_SECTORS) 93 return bio->bi_next; 94 else 95 return NULL; 96 } 97 98 /* 99 * We maintain a biased count of active stripes in the bottom 16 bits of 100 * bi_phys_segments, and a count of processed stripes in the upper 16 bits 101 */ 102 static inline int raid5_bi_processed_stripes(struct bio *bio) 103 { 104 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 105 return (atomic_read(segments) >> 16) & 0xffff; 106 } 107 108 static inline int raid5_dec_bi_active_stripes(struct bio *bio) 109 { 110 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 111 return atomic_sub_return(1, segments) & 0xffff; 112 } 113 114 static inline void raid5_inc_bi_active_stripes(struct bio *bio) 115 { 116 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 117 atomic_inc(segments); 118 } 119 120 static inline void raid5_set_bi_processed_stripes(struct bio *bio, 121 unsigned int cnt) 122 { 123 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 124 int old, new; 125 126 do { 127 old = atomic_read(segments); 128 new = (old & 0xffff) | (cnt << 16); 129 } while (atomic_cmpxchg(segments, old, new) != old); 130 } 131 132 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt) 133 { 134 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 135 atomic_set(segments, cnt); 136 } 137 138 /* Find first data disk in a raid6 stripe */ 139 static inline int raid6_d0(struct stripe_head *sh) 140 { 141 if (sh->ddf_layout) 142 /* ddf always start from first device */ 143 return 0; 144 /* md starts just after Q block */ 145 if (sh->qd_idx == sh->disks - 1) 146 return 0; 147 else 148 return sh->qd_idx + 1; 149 } 150 static inline int raid6_next_disk(int disk, int raid_disks) 151 { 152 disk++; 153 return (disk < raid_disks) ? disk : 0; 154 } 155 156 /* When walking through the disks in a raid5, starting at raid6_d0, 157 * We need to map each disk to a 'slot', where the data disks are slot 158 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk 159 * is raid_disks-1. This help does that mapping. 160 */ 161 static int raid6_idx_to_slot(int idx, struct stripe_head *sh, 162 int *count, int syndrome_disks) 163 { 164 int slot = *count; 165 166 if (sh->ddf_layout) 167 (*count)++; 168 if (idx == sh->pd_idx) 169 return syndrome_disks; 170 if (idx == sh->qd_idx) 171 return syndrome_disks + 1; 172 if (!sh->ddf_layout) 173 (*count)++; 174 return slot; 175 } 176 177 static void return_io(struct bio *return_bi) 178 { 179 struct bio *bi = return_bi; 180 while (bi) { 181 182 return_bi = bi->bi_next; 183 bi->bi_next = NULL; 184 bi->bi_size = 0; 185 bio_endio(bi, 0); 186 bi = return_bi; 187 } 188 } 189 190 static void print_raid5_conf (struct r5conf *conf); 191 192 static int stripe_operations_active(struct stripe_head *sh) 193 { 194 return sh->check_state || sh->reconstruct_state || 195 test_bit(STRIPE_BIOFILL_RUN, &sh->state) || 196 test_bit(STRIPE_COMPUTE_RUN, &sh->state); 197 } 198 199 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh) 200 { 201 BUG_ON(!list_empty(&sh->lru)); 202 BUG_ON(atomic_read(&conf->active_stripes)==0); 203 if (test_bit(STRIPE_HANDLE, &sh->state)) { 204 if (test_bit(STRIPE_DELAYED, &sh->state) && 205 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 206 list_add_tail(&sh->lru, &conf->delayed_list); 207 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) && 208 sh->bm_seq - conf->seq_write > 0) 209 list_add_tail(&sh->lru, &conf->bitmap_list); 210 else { 211 clear_bit(STRIPE_DELAYED, &sh->state); 212 clear_bit(STRIPE_BIT_DELAY, &sh->state); 213 list_add_tail(&sh->lru, &conf->handle_list); 214 } 215 md_wakeup_thread(conf->mddev->thread); 216 } else { 217 BUG_ON(stripe_operations_active(sh)); 218 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 219 if (atomic_dec_return(&conf->preread_active_stripes) 220 < IO_THRESHOLD) 221 md_wakeup_thread(conf->mddev->thread); 222 atomic_dec(&conf->active_stripes); 223 if (!test_bit(STRIPE_EXPANDING, &sh->state)) { 224 list_add_tail(&sh->lru, &conf->inactive_list); 225 wake_up(&conf->wait_for_stripe); 226 if (conf->retry_read_aligned) 227 md_wakeup_thread(conf->mddev->thread); 228 } 229 } 230 } 231 232 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh) 233 { 234 if (atomic_dec_and_test(&sh->count)) 235 do_release_stripe(conf, sh); 236 } 237 238 static void release_stripe(struct stripe_head *sh) 239 { 240 struct r5conf *conf = sh->raid_conf; 241 unsigned long flags; 242 243 local_irq_save(flags); 244 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) { 245 do_release_stripe(conf, sh); 246 spin_unlock(&conf->device_lock); 247 } 248 local_irq_restore(flags); 249 } 250 251 static inline void remove_hash(struct stripe_head *sh) 252 { 253 pr_debug("remove_hash(), stripe %llu\n", 254 (unsigned long long)sh->sector); 255 256 hlist_del_init(&sh->hash); 257 } 258 259 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh) 260 { 261 struct hlist_head *hp = stripe_hash(conf, sh->sector); 262 263 pr_debug("insert_hash(), stripe %llu\n", 264 (unsigned long long)sh->sector); 265 266 hlist_add_head(&sh->hash, hp); 267 } 268 269 270 /* find an idle stripe, make sure it is unhashed, and return it. */ 271 static struct stripe_head *get_free_stripe(struct r5conf *conf) 272 { 273 struct stripe_head *sh = NULL; 274 struct list_head *first; 275 276 if (list_empty(&conf->inactive_list)) 277 goto out; 278 first = conf->inactive_list.next; 279 sh = list_entry(first, struct stripe_head, lru); 280 list_del_init(first); 281 remove_hash(sh); 282 atomic_inc(&conf->active_stripes); 283 out: 284 return sh; 285 } 286 287 static void shrink_buffers(struct stripe_head *sh) 288 { 289 struct page *p; 290 int i; 291 int num = sh->raid_conf->pool_size; 292 293 for (i = 0; i < num ; i++) { 294 p = sh->dev[i].page; 295 if (!p) 296 continue; 297 sh->dev[i].page = NULL; 298 put_page(p); 299 } 300 } 301 302 static int grow_buffers(struct stripe_head *sh) 303 { 304 int i; 305 int num = sh->raid_conf->pool_size; 306 307 for (i = 0; i < num; i++) { 308 struct page *page; 309 310 if (!(page = alloc_page(GFP_KERNEL))) { 311 return 1; 312 } 313 sh->dev[i].page = page; 314 } 315 return 0; 316 } 317 318 static void raid5_build_block(struct stripe_head *sh, int i, int previous); 319 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 320 struct stripe_head *sh); 321 322 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous) 323 { 324 struct r5conf *conf = sh->raid_conf; 325 int i; 326 327 BUG_ON(atomic_read(&sh->count) != 0); 328 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); 329 BUG_ON(stripe_operations_active(sh)); 330 331 pr_debug("init_stripe called, stripe %llu\n", 332 (unsigned long long)sh->sector); 333 334 remove_hash(sh); 335 336 sh->generation = conf->generation - previous; 337 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks; 338 sh->sector = sector; 339 stripe_set_idx(sector, conf, previous, sh); 340 sh->state = 0; 341 342 343 for (i = sh->disks; i--; ) { 344 struct r5dev *dev = &sh->dev[i]; 345 346 if (dev->toread || dev->read || dev->towrite || dev->written || 347 test_bit(R5_LOCKED, &dev->flags)) { 348 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n", 349 (unsigned long long)sh->sector, i, dev->toread, 350 dev->read, dev->towrite, dev->written, 351 test_bit(R5_LOCKED, &dev->flags)); 352 WARN_ON(1); 353 } 354 dev->flags = 0; 355 raid5_build_block(sh, i, previous); 356 } 357 insert_hash(conf, sh); 358 } 359 360 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector, 361 short generation) 362 { 363 struct stripe_head *sh; 364 struct hlist_node *hn; 365 366 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector); 367 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash) 368 if (sh->sector == sector && sh->generation == generation) 369 return sh; 370 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector); 371 return NULL; 372 } 373 374 /* 375 * Need to check if array has failed when deciding whether to: 376 * - start an array 377 * - remove non-faulty devices 378 * - add a spare 379 * - allow a reshape 380 * This determination is simple when no reshape is happening. 381 * However if there is a reshape, we need to carefully check 382 * both the before and after sections. 383 * This is because some failed devices may only affect one 384 * of the two sections, and some non-in_sync devices may 385 * be insync in the section most affected by failed devices. 386 */ 387 static int calc_degraded(struct r5conf *conf) 388 { 389 int degraded, degraded2; 390 int i; 391 392 rcu_read_lock(); 393 degraded = 0; 394 for (i = 0; i < conf->previous_raid_disks; i++) { 395 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 396 if (rdev && test_bit(Faulty, &rdev->flags)) 397 rdev = rcu_dereference(conf->disks[i].replacement); 398 if (!rdev || test_bit(Faulty, &rdev->flags)) 399 degraded++; 400 else if (test_bit(In_sync, &rdev->flags)) 401 ; 402 else 403 /* not in-sync or faulty. 404 * If the reshape increases the number of devices, 405 * this is being recovered by the reshape, so 406 * this 'previous' section is not in_sync. 407 * If the number of devices is being reduced however, 408 * the device can only be part of the array if 409 * we are reverting a reshape, so this section will 410 * be in-sync. 411 */ 412 if (conf->raid_disks >= conf->previous_raid_disks) 413 degraded++; 414 } 415 rcu_read_unlock(); 416 if (conf->raid_disks == conf->previous_raid_disks) 417 return degraded; 418 rcu_read_lock(); 419 degraded2 = 0; 420 for (i = 0; i < conf->raid_disks; i++) { 421 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 422 if (rdev && test_bit(Faulty, &rdev->flags)) 423 rdev = rcu_dereference(conf->disks[i].replacement); 424 if (!rdev || test_bit(Faulty, &rdev->flags)) 425 degraded2++; 426 else if (test_bit(In_sync, &rdev->flags)) 427 ; 428 else 429 /* not in-sync or faulty. 430 * If reshape increases the number of devices, this 431 * section has already been recovered, else it 432 * almost certainly hasn't. 433 */ 434 if (conf->raid_disks <= conf->previous_raid_disks) 435 degraded2++; 436 } 437 rcu_read_unlock(); 438 if (degraded2 > degraded) 439 return degraded2; 440 return degraded; 441 } 442 443 static int has_failed(struct r5conf *conf) 444 { 445 int degraded; 446 447 if (conf->mddev->reshape_position == MaxSector) 448 return conf->mddev->degraded > conf->max_degraded; 449 450 degraded = calc_degraded(conf); 451 if (degraded > conf->max_degraded) 452 return 1; 453 return 0; 454 } 455 456 static struct stripe_head * 457 get_active_stripe(struct r5conf *conf, sector_t sector, 458 int previous, int noblock, int noquiesce) 459 { 460 struct stripe_head *sh; 461 462 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector); 463 464 spin_lock_irq(&conf->device_lock); 465 466 do { 467 wait_event_lock_irq(conf->wait_for_stripe, 468 conf->quiesce == 0 || noquiesce, 469 conf->device_lock, /* nothing */); 470 sh = __find_stripe(conf, sector, conf->generation - previous); 471 if (!sh) { 472 if (!conf->inactive_blocked) 473 sh = get_free_stripe(conf); 474 if (noblock && sh == NULL) 475 break; 476 if (!sh) { 477 conf->inactive_blocked = 1; 478 wait_event_lock_irq(conf->wait_for_stripe, 479 !list_empty(&conf->inactive_list) && 480 (atomic_read(&conf->active_stripes) 481 < (conf->max_nr_stripes *3/4) 482 || !conf->inactive_blocked), 483 conf->device_lock, 484 ); 485 conf->inactive_blocked = 0; 486 } else 487 init_stripe(sh, sector, previous); 488 } else { 489 if (atomic_read(&sh->count)) { 490 BUG_ON(!list_empty(&sh->lru) 491 && !test_bit(STRIPE_EXPANDING, &sh->state) 492 && !test_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)); 493 } else { 494 if (!test_bit(STRIPE_HANDLE, &sh->state)) 495 atomic_inc(&conf->active_stripes); 496 if (list_empty(&sh->lru) && 497 !test_bit(STRIPE_EXPANDING, &sh->state)) 498 BUG(); 499 list_del_init(&sh->lru); 500 } 501 } 502 } while (sh == NULL); 503 504 if (sh) 505 atomic_inc(&sh->count); 506 507 spin_unlock_irq(&conf->device_lock); 508 return sh; 509 } 510 511 /* Determine if 'data_offset' or 'new_data_offset' should be used 512 * in this stripe_head. 513 */ 514 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh) 515 { 516 sector_t progress = conf->reshape_progress; 517 /* Need a memory barrier to make sure we see the value 518 * of conf->generation, or ->data_offset that was set before 519 * reshape_progress was updated. 520 */ 521 smp_rmb(); 522 if (progress == MaxSector) 523 return 0; 524 if (sh->generation == conf->generation - 1) 525 return 0; 526 /* We are in a reshape, and this is a new-generation stripe, 527 * so use new_data_offset. 528 */ 529 return 1; 530 } 531 532 static void 533 raid5_end_read_request(struct bio *bi, int error); 534 static void 535 raid5_end_write_request(struct bio *bi, int error); 536 537 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s) 538 { 539 struct r5conf *conf = sh->raid_conf; 540 int i, disks = sh->disks; 541 542 might_sleep(); 543 544 for (i = disks; i--; ) { 545 int rw; 546 int replace_only = 0; 547 struct bio *bi, *rbi; 548 struct md_rdev *rdev, *rrdev = NULL; 549 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) { 550 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags)) 551 rw = WRITE_FUA; 552 else 553 rw = WRITE; 554 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags)) 555 rw = READ; 556 else if (test_and_clear_bit(R5_WantReplace, 557 &sh->dev[i].flags)) { 558 rw = WRITE; 559 replace_only = 1; 560 } else 561 continue; 562 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags)) 563 rw |= REQ_SYNC; 564 565 bi = &sh->dev[i].req; 566 rbi = &sh->dev[i].rreq; /* For writing to replacement */ 567 568 bi->bi_rw = rw; 569 rbi->bi_rw = rw; 570 if (rw & WRITE) { 571 bi->bi_end_io = raid5_end_write_request; 572 rbi->bi_end_io = raid5_end_write_request; 573 } else 574 bi->bi_end_io = raid5_end_read_request; 575 576 rcu_read_lock(); 577 rrdev = rcu_dereference(conf->disks[i].replacement); 578 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */ 579 rdev = rcu_dereference(conf->disks[i].rdev); 580 if (!rdev) { 581 rdev = rrdev; 582 rrdev = NULL; 583 } 584 if (rw & WRITE) { 585 if (replace_only) 586 rdev = NULL; 587 if (rdev == rrdev) 588 /* We raced and saw duplicates */ 589 rrdev = NULL; 590 } else { 591 if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev) 592 rdev = rrdev; 593 rrdev = NULL; 594 } 595 596 if (rdev && test_bit(Faulty, &rdev->flags)) 597 rdev = NULL; 598 if (rdev) 599 atomic_inc(&rdev->nr_pending); 600 if (rrdev && test_bit(Faulty, &rrdev->flags)) 601 rrdev = NULL; 602 if (rrdev) 603 atomic_inc(&rrdev->nr_pending); 604 rcu_read_unlock(); 605 606 /* We have already checked bad blocks for reads. Now 607 * need to check for writes. We never accept write errors 608 * on the replacement, so we don't to check rrdev. 609 */ 610 while ((rw & WRITE) && rdev && 611 test_bit(WriteErrorSeen, &rdev->flags)) { 612 sector_t first_bad; 613 int bad_sectors; 614 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS, 615 &first_bad, &bad_sectors); 616 if (!bad) 617 break; 618 619 if (bad < 0) { 620 set_bit(BlockedBadBlocks, &rdev->flags); 621 if (!conf->mddev->external && 622 conf->mddev->flags) { 623 /* It is very unlikely, but we might 624 * still need to write out the 625 * bad block log - better give it 626 * a chance*/ 627 md_check_recovery(conf->mddev); 628 } 629 /* 630 * Because md_wait_for_blocked_rdev 631 * will dec nr_pending, we must 632 * increment it first. 633 */ 634 atomic_inc(&rdev->nr_pending); 635 md_wait_for_blocked_rdev(rdev, conf->mddev); 636 } else { 637 /* Acknowledged bad block - skip the write */ 638 rdev_dec_pending(rdev, conf->mddev); 639 rdev = NULL; 640 } 641 } 642 643 if (rdev) { 644 if (s->syncing || s->expanding || s->expanded 645 || s->replacing) 646 md_sync_acct(rdev->bdev, STRIPE_SECTORS); 647 648 set_bit(STRIPE_IO_STARTED, &sh->state); 649 650 bi->bi_bdev = rdev->bdev; 651 pr_debug("%s: for %llu schedule op %ld on disc %d\n", 652 __func__, (unsigned long long)sh->sector, 653 bi->bi_rw, i); 654 atomic_inc(&sh->count); 655 if (use_new_offset(conf, sh)) 656 bi->bi_sector = (sh->sector 657 + rdev->new_data_offset); 658 else 659 bi->bi_sector = (sh->sector 660 + rdev->data_offset); 661 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 662 bi->bi_rw |= REQ_FLUSH; 663 664 bi->bi_flags = 1 << BIO_UPTODATE; 665 bi->bi_idx = 0; 666 bi->bi_io_vec[0].bv_len = STRIPE_SIZE; 667 bi->bi_io_vec[0].bv_offset = 0; 668 bi->bi_size = STRIPE_SIZE; 669 bi->bi_next = NULL; 670 if (rrdev) 671 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags); 672 generic_make_request(bi); 673 } 674 if (rrdev) { 675 if (s->syncing || s->expanding || s->expanded 676 || s->replacing) 677 md_sync_acct(rrdev->bdev, STRIPE_SECTORS); 678 679 set_bit(STRIPE_IO_STARTED, &sh->state); 680 681 rbi->bi_bdev = rrdev->bdev; 682 pr_debug("%s: for %llu schedule op %ld on " 683 "replacement disc %d\n", 684 __func__, (unsigned long long)sh->sector, 685 rbi->bi_rw, i); 686 atomic_inc(&sh->count); 687 if (use_new_offset(conf, sh)) 688 rbi->bi_sector = (sh->sector 689 + rrdev->new_data_offset); 690 else 691 rbi->bi_sector = (sh->sector 692 + rrdev->data_offset); 693 rbi->bi_flags = 1 << BIO_UPTODATE; 694 rbi->bi_idx = 0; 695 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE; 696 rbi->bi_io_vec[0].bv_offset = 0; 697 rbi->bi_size = STRIPE_SIZE; 698 rbi->bi_next = NULL; 699 generic_make_request(rbi); 700 } 701 if (!rdev && !rrdev) { 702 if (rw & WRITE) 703 set_bit(STRIPE_DEGRADED, &sh->state); 704 pr_debug("skip op %ld on disc %d for sector %llu\n", 705 bi->bi_rw, i, (unsigned long long)sh->sector); 706 clear_bit(R5_LOCKED, &sh->dev[i].flags); 707 set_bit(STRIPE_HANDLE, &sh->state); 708 } 709 } 710 } 711 712 static struct dma_async_tx_descriptor * 713 async_copy_data(int frombio, struct bio *bio, struct page *page, 714 sector_t sector, struct dma_async_tx_descriptor *tx) 715 { 716 struct bio_vec *bvl; 717 struct page *bio_page; 718 int i; 719 int page_offset; 720 struct async_submit_ctl submit; 721 enum async_tx_flags flags = 0; 722 723 if (bio->bi_sector >= sector) 724 page_offset = (signed)(bio->bi_sector - sector) * 512; 725 else 726 page_offset = (signed)(sector - bio->bi_sector) * -512; 727 728 if (frombio) 729 flags |= ASYNC_TX_FENCE; 730 init_async_submit(&submit, flags, tx, NULL, NULL, NULL); 731 732 bio_for_each_segment(bvl, bio, i) { 733 int len = bvl->bv_len; 734 int clen; 735 int b_offset = 0; 736 737 if (page_offset < 0) { 738 b_offset = -page_offset; 739 page_offset += b_offset; 740 len -= b_offset; 741 } 742 743 if (len > 0 && page_offset + len > STRIPE_SIZE) 744 clen = STRIPE_SIZE - page_offset; 745 else 746 clen = len; 747 748 if (clen > 0) { 749 b_offset += bvl->bv_offset; 750 bio_page = bvl->bv_page; 751 if (frombio) 752 tx = async_memcpy(page, bio_page, page_offset, 753 b_offset, clen, &submit); 754 else 755 tx = async_memcpy(bio_page, page, b_offset, 756 page_offset, clen, &submit); 757 } 758 /* chain the operations */ 759 submit.depend_tx = tx; 760 761 if (clen < len) /* hit end of page */ 762 break; 763 page_offset += len; 764 } 765 766 return tx; 767 } 768 769 static void ops_complete_biofill(void *stripe_head_ref) 770 { 771 struct stripe_head *sh = stripe_head_ref; 772 struct bio *return_bi = NULL; 773 int i; 774 775 pr_debug("%s: stripe %llu\n", __func__, 776 (unsigned long long)sh->sector); 777 778 /* clear completed biofills */ 779 for (i = sh->disks; i--; ) { 780 struct r5dev *dev = &sh->dev[i]; 781 782 /* acknowledge completion of a biofill operation */ 783 /* and check if we need to reply to a read request, 784 * new R5_Wantfill requests are held off until 785 * !STRIPE_BIOFILL_RUN 786 */ 787 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) { 788 struct bio *rbi, *rbi2; 789 790 BUG_ON(!dev->read); 791 rbi = dev->read; 792 dev->read = NULL; 793 while (rbi && rbi->bi_sector < 794 dev->sector + STRIPE_SECTORS) { 795 rbi2 = r5_next_bio(rbi, dev->sector); 796 if (!raid5_dec_bi_active_stripes(rbi)) { 797 rbi->bi_next = return_bi; 798 return_bi = rbi; 799 } 800 rbi = rbi2; 801 } 802 } 803 } 804 clear_bit(STRIPE_BIOFILL_RUN, &sh->state); 805 806 return_io(return_bi); 807 808 set_bit(STRIPE_HANDLE, &sh->state); 809 release_stripe(sh); 810 } 811 812 static void ops_run_biofill(struct stripe_head *sh) 813 { 814 struct dma_async_tx_descriptor *tx = NULL; 815 struct async_submit_ctl submit; 816 int i; 817 818 pr_debug("%s: stripe %llu\n", __func__, 819 (unsigned long long)sh->sector); 820 821 for (i = sh->disks; i--; ) { 822 struct r5dev *dev = &sh->dev[i]; 823 if (test_bit(R5_Wantfill, &dev->flags)) { 824 struct bio *rbi; 825 spin_lock_irq(&sh->stripe_lock); 826 dev->read = rbi = dev->toread; 827 dev->toread = NULL; 828 spin_unlock_irq(&sh->stripe_lock); 829 while (rbi && rbi->bi_sector < 830 dev->sector + STRIPE_SECTORS) { 831 tx = async_copy_data(0, rbi, dev->page, 832 dev->sector, tx); 833 rbi = r5_next_bio(rbi, dev->sector); 834 } 835 } 836 } 837 838 atomic_inc(&sh->count); 839 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL); 840 async_trigger_callback(&submit); 841 } 842 843 static void mark_target_uptodate(struct stripe_head *sh, int target) 844 { 845 struct r5dev *tgt; 846 847 if (target < 0) 848 return; 849 850 tgt = &sh->dev[target]; 851 set_bit(R5_UPTODATE, &tgt->flags); 852 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 853 clear_bit(R5_Wantcompute, &tgt->flags); 854 } 855 856 static void ops_complete_compute(void *stripe_head_ref) 857 { 858 struct stripe_head *sh = stripe_head_ref; 859 860 pr_debug("%s: stripe %llu\n", __func__, 861 (unsigned long long)sh->sector); 862 863 /* mark the computed target(s) as uptodate */ 864 mark_target_uptodate(sh, sh->ops.target); 865 mark_target_uptodate(sh, sh->ops.target2); 866 867 clear_bit(STRIPE_COMPUTE_RUN, &sh->state); 868 if (sh->check_state == check_state_compute_run) 869 sh->check_state = check_state_compute_result; 870 set_bit(STRIPE_HANDLE, &sh->state); 871 release_stripe(sh); 872 } 873 874 /* return a pointer to the address conversion region of the scribble buffer */ 875 static addr_conv_t *to_addr_conv(struct stripe_head *sh, 876 struct raid5_percpu *percpu) 877 { 878 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2); 879 } 880 881 static struct dma_async_tx_descriptor * 882 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu) 883 { 884 int disks = sh->disks; 885 struct page **xor_srcs = percpu->scribble; 886 int target = sh->ops.target; 887 struct r5dev *tgt = &sh->dev[target]; 888 struct page *xor_dest = tgt->page; 889 int count = 0; 890 struct dma_async_tx_descriptor *tx; 891 struct async_submit_ctl submit; 892 int i; 893 894 pr_debug("%s: stripe %llu block: %d\n", 895 __func__, (unsigned long long)sh->sector, target); 896 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 897 898 for (i = disks; i--; ) 899 if (i != target) 900 xor_srcs[count++] = sh->dev[i].page; 901 902 atomic_inc(&sh->count); 903 904 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL, 905 ops_complete_compute, sh, to_addr_conv(sh, percpu)); 906 if (unlikely(count == 1)) 907 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); 908 else 909 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 910 911 return tx; 912 } 913 914 /* set_syndrome_sources - populate source buffers for gen_syndrome 915 * @srcs - (struct page *) array of size sh->disks 916 * @sh - stripe_head to parse 917 * 918 * Populates srcs in proper layout order for the stripe and returns the 919 * 'count' of sources to be used in a call to async_gen_syndrome. The P 920 * destination buffer is recorded in srcs[count] and the Q destination 921 * is recorded in srcs[count+1]]. 922 */ 923 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh) 924 { 925 int disks = sh->disks; 926 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2); 927 int d0_idx = raid6_d0(sh); 928 int count; 929 int i; 930 931 for (i = 0; i < disks; i++) 932 srcs[i] = NULL; 933 934 count = 0; 935 i = d0_idx; 936 do { 937 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 938 939 srcs[slot] = sh->dev[i].page; 940 i = raid6_next_disk(i, disks); 941 } while (i != d0_idx); 942 943 return syndrome_disks; 944 } 945 946 static struct dma_async_tx_descriptor * 947 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu) 948 { 949 int disks = sh->disks; 950 struct page **blocks = percpu->scribble; 951 int target; 952 int qd_idx = sh->qd_idx; 953 struct dma_async_tx_descriptor *tx; 954 struct async_submit_ctl submit; 955 struct r5dev *tgt; 956 struct page *dest; 957 int i; 958 int count; 959 960 if (sh->ops.target < 0) 961 target = sh->ops.target2; 962 else if (sh->ops.target2 < 0) 963 target = sh->ops.target; 964 else 965 /* we should only have one valid target */ 966 BUG(); 967 BUG_ON(target < 0); 968 pr_debug("%s: stripe %llu block: %d\n", 969 __func__, (unsigned long long)sh->sector, target); 970 971 tgt = &sh->dev[target]; 972 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 973 dest = tgt->page; 974 975 atomic_inc(&sh->count); 976 977 if (target == qd_idx) { 978 count = set_syndrome_sources(blocks, sh); 979 blocks[count] = NULL; /* regenerating p is not necessary */ 980 BUG_ON(blocks[count+1] != dest); /* q should already be set */ 981 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 982 ops_complete_compute, sh, 983 to_addr_conv(sh, percpu)); 984 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 985 } else { 986 /* Compute any data- or p-drive using XOR */ 987 count = 0; 988 for (i = disks; i-- ; ) { 989 if (i == target || i == qd_idx) 990 continue; 991 blocks[count++] = sh->dev[i].page; 992 } 993 994 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 995 NULL, ops_complete_compute, sh, 996 to_addr_conv(sh, percpu)); 997 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit); 998 } 999 1000 return tx; 1001 } 1002 1003 static struct dma_async_tx_descriptor * 1004 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu) 1005 { 1006 int i, count, disks = sh->disks; 1007 int syndrome_disks = sh->ddf_layout ? disks : disks-2; 1008 int d0_idx = raid6_d0(sh); 1009 int faila = -1, failb = -1; 1010 int target = sh->ops.target; 1011 int target2 = sh->ops.target2; 1012 struct r5dev *tgt = &sh->dev[target]; 1013 struct r5dev *tgt2 = &sh->dev[target2]; 1014 struct dma_async_tx_descriptor *tx; 1015 struct page **blocks = percpu->scribble; 1016 struct async_submit_ctl submit; 1017 1018 pr_debug("%s: stripe %llu block1: %d block2: %d\n", 1019 __func__, (unsigned long long)sh->sector, target, target2); 1020 BUG_ON(target < 0 || target2 < 0); 1021 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1022 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags)); 1023 1024 /* we need to open-code set_syndrome_sources to handle the 1025 * slot number conversion for 'faila' and 'failb' 1026 */ 1027 for (i = 0; i < disks ; i++) 1028 blocks[i] = NULL; 1029 count = 0; 1030 i = d0_idx; 1031 do { 1032 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1033 1034 blocks[slot] = sh->dev[i].page; 1035 1036 if (i == target) 1037 faila = slot; 1038 if (i == target2) 1039 failb = slot; 1040 i = raid6_next_disk(i, disks); 1041 } while (i != d0_idx); 1042 1043 BUG_ON(faila == failb); 1044 if (failb < faila) 1045 swap(faila, failb); 1046 pr_debug("%s: stripe: %llu faila: %d failb: %d\n", 1047 __func__, (unsigned long long)sh->sector, faila, failb); 1048 1049 atomic_inc(&sh->count); 1050 1051 if (failb == syndrome_disks+1) { 1052 /* Q disk is one of the missing disks */ 1053 if (faila == syndrome_disks) { 1054 /* Missing P+Q, just recompute */ 1055 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1056 ops_complete_compute, sh, 1057 to_addr_conv(sh, percpu)); 1058 return async_gen_syndrome(blocks, 0, syndrome_disks+2, 1059 STRIPE_SIZE, &submit); 1060 } else { 1061 struct page *dest; 1062 int data_target; 1063 int qd_idx = sh->qd_idx; 1064 1065 /* Missing D+Q: recompute D from P, then recompute Q */ 1066 if (target == qd_idx) 1067 data_target = target2; 1068 else 1069 data_target = target; 1070 1071 count = 0; 1072 for (i = disks; i-- ; ) { 1073 if (i == data_target || i == qd_idx) 1074 continue; 1075 blocks[count++] = sh->dev[i].page; 1076 } 1077 dest = sh->dev[data_target].page; 1078 init_async_submit(&submit, 1079 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1080 NULL, NULL, NULL, 1081 to_addr_conv(sh, percpu)); 1082 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, 1083 &submit); 1084 1085 count = set_syndrome_sources(blocks, sh); 1086 init_async_submit(&submit, ASYNC_TX_FENCE, tx, 1087 ops_complete_compute, sh, 1088 to_addr_conv(sh, percpu)); 1089 return async_gen_syndrome(blocks, 0, count+2, 1090 STRIPE_SIZE, &submit); 1091 } 1092 } else { 1093 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1094 ops_complete_compute, sh, 1095 to_addr_conv(sh, percpu)); 1096 if (failb == syndrome_disks) { 1097 /* We're missing D+P. */ 1098 return async_raid6_datap_recov(syndrome_disks+2, 1099 STRIPE_SIZE, faila, 1100 blocks, &submit); 1101 } else { 1102 /* We're missing D+D. */ 1103 return async_raid6_2data_recov(syndrome_disks+2, 1104 STRIPE_SIZE, faila, failb, 1105 blocks, &submit); 1106 } 1107 } 1108 } 1109 1110 1111 static void ops_complete_prexor(void *stripe_head_ref) 1112 { 1113 struct stripe_head *sh = stripe_head_ref; 1114 1115 pr_debug("%s: stripe %llu\n", __func__, 1116 (unsigned long long)sh->sector); 1117 } 1118 1119 static struct dma_async_tx_descriptor * 1120 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu, 1121 struct dma_async_tx_descriptor *tx) 1122 { 1123 int disks = sh->disks; 1124 struct page **xor_srcs = percpu->scribble; 1125 int count = 0, pd_idx = sh->pd_idx, i; 1126 struct async_submit_ctl submit; 1127 1128 /* existing parity data subtracted */ 1129 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1130 1131 pr_debug("%s: stripe %llu\n", __func__, 1132 (unsigned long long)sh->sector); 1133 1134 for (i = disks; i--; ) { 1135 struct r5dev *dev = &sh->dev[i]; 1136 /* Only process blocks that are known to be uptodate */ 1137 if (test_bit(R5_Wantdrain, &dev->flags)) 1138 xor_srcs[count++] = dev->page; 1139 } 1140 1141 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx, 1142 ops_complete_prexor, sh, to_addr_conv(sh, percpu)); 1143 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1144 1145 return tx; 1146 } 1147 1148 static struct dma_async_tx_descriptor * 1149 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) 1150 { 1151 int disks = sh->disks; 1152 int i; 1153 1154 pr_debug("%s: stripe %llu\n", __func__, 1155 (unsigned long long)sh->sector); 1156 1157 for (i = disks; i--; ) { 1158 struct r5dev *dev = &sh->dev[i]; 1159 struct bio *chosen; 1160 1161 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) { 1162 struct bio *wbi; 1163 1164 spin_lock_irq(&sh->stripe_lock); 1165 chosen = dev->towrite; 1166 dev->towrite = NULL; 1167 BUG_ON(dev->written); 1168 wbi = dev->written = chosen; 1169 spin_unlock_irq(&sh->stripe_lock); 1170 1171 while (wbi && wbi->bi_sector < 1172 dev->sector + STRIPE_SECTORS) { 1173 if (wbi->bi_rw & REQ_FUA) 1174 set_bit(R5_WantFUA, &dev->flags); 1175 if (wbi->bi_rw & REQ_SYNC) 1176 set_bit(R5_SyncIO, &dev->flags); 1177 tx = async_copy_data(1, wbi, dev->page, 1178 dev->sector, tx); 1179 wbi = r5_next_bio(wbi, dev->sector); 1180 } 1181 } 1182 } 1183 1184 return tx; 1185 } 1186 1187 static void ops_complete_reconstruct(void *stripe_head_ref) 1188 { 1189 struct stripe_head *sh = stripe_head_ref; 1190 int disks = sh->disks; 1191 int pd_idx = sh->pd_idx; 1192 int qd_idx = sh->qd_idx; 1193 int i; 1194 bool fua = false, sync = false; 1195 1196 pr_debug("%s: stripe %llu\n", __func__, 1197 (unsigned long long)sh->sector); 1198 1199 for (i = disks; i--; ) { 1200 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags); 1201 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags); 1202 } 1203 1204 for (i = disks; i--; ) { 1205 struct r5dev *dev = &sh->dev[i]; 1206 1207 if (dev->written || i == pd_idx || i == qd_idx) { 1208 set_bit(R5_UPTODATE, &dev->flags); 1209 if (fua) 1210 set_bit(R5_WantFUA, &dev->flags); 1211 if (sync) 1212 set_bit(R5_SyncIO, &dev->flags); 1213 } 1214 } 1215 1216 if (sh->reconstruct_state == reconstruct_state_drain_run) 1217 sh->reconstruct_state = reconstruct_state_drain_result; 1218 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) 1219 sh->reconstruct_state = reconstruct_state_prexor_drain_result; 1220 else { 1221 BUG_ON(sh->reconstruct_state != reconstruct_state_run); 1222 sh->reconstruct_state = reconstruct_state_result; 1223 } 1224 1225 set_bit(STRIPE_HANDLE, &sh->state); 1226 release_stripe(sh); 1227 } 1228 1229 static void 1230 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu, 1231 struct dma_async_tx_descriptor *tx) 1232 { 1233 int disks = sh->disks; 1234 struct page **xor_srcs = percpu->scribble; 1235 struct async_submit_ctl submit; 1236 int count = 0, pd_idx = sh->pd_idx, i; 1237 struct page *xor_dest; 1238 int prexor = 0; 1239 unsigned long flags; 1240 1241 pr_debug("%s: stripe %llu\n", __func__, 1242 (unsigned long long)sh->sector); 1243 1244 /* check if prexor is active which means only process blocks 1245 * that are part of a read-modify-write (written) 1246 */ 1247 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 1248 prexor = 1; 1249 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1250 for (i = disks; i--; ) { 1251 struct r5dev *dev = &sh->dev[i]; 1252 if (dev->written) 1253 xor_srcs[count++] = dev->page; 1254 } 1255 } else { 1256 xor_dest = sh->dev[pd_idx].page; 1257 for (i = disks; i--; ) { 1258 struct r5dev *dev = &sh->dev[i]; 1259 if (i != pd_idx) 1260 xor_srcs[count++] = dev->page; 1261 } 1262 } 1263 1264 /* 1/ if we prexor'd then the dest is reused as a source 1265 * 2/ if we did not prexor then we are redoing the parity 1266 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST 1267 * for the synchronous xor case 1268 */ 1269 flags = ASYNC_TX_ACK | 1270 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST); 1271 1272 atomic_inc(&sh->count); 1273 1274 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh, 1275 to_addr_conv(sh, percpu)); 1276 if (unlikely(count == 1)) 1277 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); 1278 else 1279 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1280 } 1281 1282 static void 1283 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu, 1284 struct dma_async_tx_descriptor *tx) 1285 { 1286 struct async_submit_ctl submit; 1287 struct page **blocks = percpu->scribble; 1288 int count; 1289 1290 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); 1291 1292 count = set_syndrome_sources(blocks, sh); 1293 1294 atomic_inc(&sh->count); 1295 1296 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct, 1297 sh, to_addr_conv(sh, percpu)); 1298 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1299 } 1300 1301 static void ops_complete_check(void *stripe_head_ref) 1302 { 1303 struct stripe_head *sh = stripe_head_ref; 1304 1305 pr_debug("%s: stripe %llu\n", __func__, 1306 (unsigned long long)sh->sector); 1307 1308 sh->check_state = check_state_check_result; 1309 set_bit(STRIPE_HANDLE, &sh->state); 1310 release_stripe(sh); 1311 } 1312 1313 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu) 1314 { 1315 int disks = sh->disks; 1316 int pd_idx = sh->pd_idx; 1317 int qd_idx = sh->qd_idx; 1318 struct page *xor_dest; 1319 struct page **xor_srcs = percpu->scribble; 1320 struct dma_async_tx_descriptor *tx; 1321 struct async_submit_ctl submit; 1322 int count; 1323 int i; 1324 1325 pr_debug("%s: stripe %llu\n", __func__, 1326 (unsigned long long)sh->sector); 1327 1328 count = 0; 1329 xor_dest = sh->dev[pd_idx].page; 1330 xor_srcs[count++] = xor_dest; 1331 for (i = disks; i--; ) { 1332 if (i == pd_idx || i == qd_idx) 1333 continue; 1334 xor_srcs[count++] = sh->dev[i].page; 1335 } 1336 1337 init_async_submit(&submit, 0, NULL, NULL, NULL, 1338 to_addr_conv(sh, percpu)); 1339 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, 1340 &sh->ops.zero_sum_result, &submit); 1341 1342 atomic_inc(&sh->count); 1343 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL); 1344 tx = async_trigger_callback(&submit); 1345 } 1346 1347 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp) 1348 { 1349 struct page **srcs = percpu->scribble; 1350 struct async_submit_ctl submit; 1351 int count; 1352 1353 pr_debug("%s: stripe %llu checkp: %d\n", __func__, 1354 (unsigned long long)sh->sector, checkp); 1355 1356 count = set_syndrome_sources(srcs, sh); 1357 if (!checkp) 1358 srcs[count] = NULL; 1359 1360 atomic_inc(&sh->count); 1361 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check, 1362 sh, to_addr_conv(sh, percpu)); 1363 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE, 1364 &sh->ops.zero_sum_result, percpu->spare_page, &submit); 1365 } 1366 1367 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request) 1368 { 1369 int overlap_clear = 0, i, disks = sh->disks; 1370 struct dma_async_tx_descriptor *tx = NULL; 1371 struct r5conf *conf = sh->raid_conf; 1372 int level = conf->level; 1373 struct raid5_percpu *percpu; 1374 unsigned long cpu; 1375 1376 cpu = get_cpu(); 1377 percpu = per_cpu_ptr(conf->percpu, cpu); 1378 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) { 1379 ops_run_biofill(sh); 1380 overlap_clear++; 1381 } 1382 1383 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) { 1384 if (level < 6) 1385 tx = ops_run_compute5(sh, percpu); 1386 else { 1387 if (sh->ops.target2 < 0 || sh->ops.target < 0) 1388 tx = ops_run_compute6_1(sh, percpu); 1389 else 1390 tx = ops_run_compute6_2(sh, percpu); 1391 } 1392 /* terminate the chain if reconstruct is not set to be run */ 1393 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) 1394 async_tx_ack(tx); 1395 } 1396 1397 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) 1398 tx = ops_run_prexor(sh, percpu, tx); 1399 1400 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) { 1401 tx = ops_run_biodrain(sh, tx); 1402 overlap_clear++; 1403 } 1404 1405 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) { 1406 if (level < 6) 1407 ops_run_reconstruct5(sh, percpu, tx); 1408 else 1409 ops_run_reconstruct6(sh, percpu, tx); 1410 } 1411 1412 if (test_bit(STRIPE_OP_CHECK, &ops_request)) { 1413 if (sh->check_state == check_state_run) 1414 ops_run_check_p(sh, percpu); 1415 else if (sh->check_state == check_state_run_q) 1416 ops_run_check_pq(sh, percpu, 0); 1417 else if (sh->check_state == check_state_run_pq) 1418 ops_run_check_pq(sh, percpu, 1); 1419 else 1420 BUG(); 1421 } 1422 1423 if (overlap_clear) 1424 for (i = disks; i--; ) { 1425 struct r5dev *dev = &sh->dev[i]; 1426 if (test_and_clear_bit(R5_Overlap, &dev->flags)) 1427 wake_up(&sh->raid_conf->wait_for_overlap); 1428 } 1429 put_cpu(); 1430 } 1431 1432 #ifdef CONFIG_MULTICORE_RAID456 1433 static void async_run_ops(void *param, async_cookie_t cookie) 1434 { 1435 struct stripe_head *sh = param; 1436 unsigned long ops_request = sh->ops.request; 1437 1438 clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state); 1439 wake_up(&sh->ops.wait_for_ops); 1440 1441 __raid_run_ops(sh, ops_request); 1442 release_stripe(sh); 1443 } 1444 1445 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request) 1446 { 1447 /* since handle_stripe can be called outside of raid5d context 1448 * we need to ensure sh->ops.request is de-staged before another 1449 * request arrives 1450 */ 1451 wait_event(sh->ops.wait_for_ops, 1452 !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state)); 1453 sh->ops.request = ops_request; 1454 1455 atomic_inc(&sh->count); 1456 async_schedule(async_run_ops, sh); 1457 } 1458 #else 1459 #define raid_run_ops __raid_run_ops 1460 #endif 1461 1462 static int grow_one_stripe(struct r5conf *conf) 1463 { 1464 struct stripe_head *sh; 1465 sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL); 1466 if (!sh) 1467 return 0; 1468 1469 sh->raid_conf = conf; 1470 #ifdef CONFIG_MULTICORE_RAID456 1471 init_waitqueue_head(&sh->ops.wait_for_ops); 1472 #endif 1473 1474 spin_lock_init(&sh->stripe_lock); 1475 1476 if (grow_buffers(sh)) { 1477 shrink_buffers(sh); 1478 kmem_cache_free(conf->slab_cache, sh); 1479 return 0; 1480 } 1481 /* we just created an active stripe so... */ 1482 atomic_set(&sh->count, 1); 1483 atomic_inc(&conf->active_stripes); 1484 INIT_LIST_HEAD(&sh->lru); 1485 release_stripe(sh); 1486 return 1; 1487 } 1488 1489 static int grow_stripes(struct r5conf *conf, int num) 1490 { 1491 struct kmem_cache *sc; 1492 int devs = max(conf->raid_disks, conf->previous_raid_disks); 1493 1494 if (conf->mddev->gendisk) 1495 sprintf(conf->cache_name[0], 1496 "raid%d-%s", conf->level, mdname(conf->mddev)); 1497 else 1498 sprintf(conf->cache_name[0], 1499 "raid%d-%p", conf->level, conf->mddev); 1500 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]); 1501 1502 conf->active_name = 0; 1503 sc = kmem_cache_create(conf->cache_name[conf->active_name], 1504 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev), 1505 0, 0, NULL); 1506 if (!sc) 1507 return 1; 1508 conf->slab_cache = sc; 1509 conf->pool_size = devs; 1510 while (num--) 1511 if (!grow_one_stripe(conf)) 1512 return 1; 1513 return 0; 1514 } 1515 1516 /** 1517 * scribble_len - return the required size of the scribble region 1518 * @num - total number of disks in the array 1519 * 1520 * The size must be enough to contain: 1521 * 1/ a struct page pointer for each device in the array +2 1522 * 2/ room to convert each entry in (1) to its corresponding dma 1523 * (dma_map_page()) or page (page_address()) address. 1524 * 1525 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we 1526 * calculate over all devices (not just the data blocks), using zeros in place 1527 * of the P and Q blocks. 1528 */ 1529 static size_t scribble_len(int num) 1530 { 1531 size_t len; 1532 1533 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2); 1534 1535 return len; 1536 } 1537 1538 static int resize_stripes(struct r5conf *conf, int newsize) 1539 { 1540 /* Make all the stripes able to hold 'newsize' devices. 1541 * New slots in each stripe get 'page' set to a new page. 1542 * 1543 * This happens in stages: 1544 * 1/ create a new kmem_cache and allocate the required number of 1545 * stripe_heads. 1546 * 2/ gather all the old stripe_heads and tranfer the pages across 1547 * to the new stripe_heads. This will have the side effect of 1548 * freezing the array as once all stripe_heads have been collected, 1549 * no IO will be possible. Old stripe heads are freed once their 1550 * pages have been transferred over, and the old kmem_cache is 1551 * freed when all stripes are done. 1552 * 3/ reallocate conf->disks to be suitable bigger. If this fails, 1553 * we simple return a failre status - no need to clean anything up. 1554 * 4/ allocate new pages for the new slots in the new stripe_heads. 1555 * If this fails, we don't bother trying the shrink the 1556 * stripe_heads down again, we just leave them as they are. 1557 * As each stripe_head is processed the new one is released into 1558 * active service. 1559 * 1560 * Once step2 is started, we cannot afford to wait for a write, 1561 * so we use GFP_NOIO allocations. 1562 */ 1563 struct stripe_head *osh, *nsh; 1564 LIST_HEAD(newstripes); 1565 struct disk_info *ndisks; 1566 unsigned long cpu; 1567 int err; 1568 struct kmem_cache *sc; 1569 int i; 1570 1571 if (newsize <= conf->pool_size) 1572 return 0; /* never bother to shrink */ 1573 1574 err = md_allow_write(conf->mddev); 1575 if (err) 1576 return err; 1577 1578 /* Step 1 */ 1579 sc = kmem_cache_create(conf->cache_name[1-conf->active_name], 1580 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev), 1581 0, 0, NULL); 1582 if (!sc) 1583 return -ENOMEM; 1584 1585 for (i = conf->max_nr_stripes; i; i--) { 1586 nsh = kmem_cache_zalloc(sc, GFP_KERNEL); 1587 if (!nsh) 1588 break; 1589 1590 nsh->raid_conf = conf; 1591 #ifdef CONFIG_MULTICORE_RAID456 1592 init_waitqueue_head(&nsh->ops.wait_for_ops); 1593 #endif 1594 1595 list_add(&nsh->lru, &newstripes); 1596 } 1597 if (i) { 1598 /* didn't get enough, give up */ 1599 while (!list_empty(&newstripes)) { 1600 nsh = list_entry(newstripes.next, struct stripe_head, lru); 1601 list_del(&nsh->lru); 1602 kmem_cache_free(sc, nsh); 1603 } 1604 kmem_cache_destroy(sc); 1605 return -ENOMEM; 1606 } 1607 /* Step 2 - Must use GFP_NOIO now. 1608 * OK, we have enough stripes, start collecting inactive 1609 * stripes and copying them over 1610 */ 1611 list_for_each_entry(nsh, &newstripes, lru) { 1612 spin_lock_irq(&conf->device_lock); 1613 wait_event_lock_irq(conf->wait_for_stripe, 1614 !list_empty(&conf->inactive_list), 1615 conf->device_lock, 1616 ); 1617 osh = get_free_stripe(conf); 1618 spin_unlock_irq(&conf->device_lock); 1619 atomic_set(&nsh->count, 1); 1620 for(i=0; i<conf->pool_size; i++) 1621 nsh->dev[i].page = osh->dev[i].page; 1622 for( ; i<newsize; i++) 1623 nsh->dev[i].page = NULL; 1624 kmem_cache_free(conf->slab_cache, osh); 1625 } 1626 kmem_cache_destroy(conf->slab_cache); 1627 1628 /* Step 3. 1629 * At this point, we are holding all the stripes so the array 1630 * is completely stalled, so now is a good time to resize 1631 * conf->disks and the scribble region 1632 */ 1633 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO); 1634 if (ndisks) { 1635 for (i=0; i<conf->raid_disks; i++) 1636 ndisks[i] = conf->disks[i]; 1637 kfree(conf->disks); 1638 conf->disks = ndisks; 1639 } else 1640 err = -ENOMEM; 1641 1642 get_online_cpus(); 1643 conf->scribble_len = scribble_len(newsize); 1644 for_each_present_cpu(cpu) { 1645 struct raid5_percpu *percpu; 1646 void *scribble; 1647 1648 percpu = per_cpu_ptr(conf->percpu, cpu); 1649 scribble = kmalloc(conf->scribble_len, GFP_NOIO); 1650 1651 if (scribble) { 1652 kfree(percpu->scribble); 1653 percpu->scribble = scribble; 1654 } else { 1655 err = -ENOMEM; 1656 break; 1657 } 1658 } 1659 put_online_cpus(); 1660 1661 /* Step 4, return new stripes to service */ 1662 while(!list_empty(&newstripes)) { 1663 nsh = list_entry(newstripes.next, struct stripe_head, lru); 1664 list_del_init(&nsh->lru); 1665 1666 for (i=conf->raid_disks; i < newsize; i++) 1667 if (nsh->dev[i].page == NULL) { 1668 struct page *p = alloc_page(GFP_NOIO); 1669 nsh->dev[i].page = p; 1670 if (!p) 1671 err = -ENOMEM; 1672 } 1673 release_stripe(nsh); 1674 } 1675 /* critical section pass, GFP_NOIO no longer needed */ 1676 1677 conf->slab_cache = sc; 1678 conf->active_name = 1-conf->active_name; 1679 conf->pool_size = newsize; 1680 return err; 1681 } 1682 1683 static int drop_one_stripe(struct r5conf *conf) 1684 { 1685 struct stripe_head *sh; 1686 1687 spin_lock_irq(&conf->device_lock); 1688 sh = get_free_stripe(conf); 1689 spin_unlock_irq(&conf->device_lock); 1690 if (!sh) 1691 return 0; 1692 BUG_ON(atomic_read(&sh->count)); 1693 shrink_buffers(sh); 1694 kmem_cache_free(conf->slab_cache, sh); 1695 atomic_dec(&conf->active_stripes); 1696 return 1; 1697 } 1698 1699 static void shrink_stripes(struct r5conf *conf) 1700 { 1701 while (drop_one_stripe(conf)) 1702 ; 1703 1704 if (conf->slab_cache) 1705 kmem_cache_destroy(conf->slab_cache); 1706 conf->slab_cache = NULL; 1707 } 1708 1709 static void raid5_end_read_request(struct bio * bi, int error) 1710 { 1711 struct stripe_head *sh = bi->bi_private; 1712 struct r5conf *conf = sh->raid_conf; 1713 int disks = sh->disks, i; 1714 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); 1715 char b[BDEVNAME_SIZE]; 1716 struct md_rdev *rdev = NULL; 1717 sector_t s; 1718 1719 for (i=0 ; i<disks; i++) 1720 if (bi == &sh->dev[i].req) 1721 break; 1722 1723 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n", 1724 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 1725 uptodate); 1726 if (i == disks) { 1727 BUG(); 1728 return; 1729 } 1730 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 1731 /* If replacement finished while this request was outstanding, 1732 * 'replacement' might be NULL already. 1733 * In that case it moved down to 'rdev'. 1734 * rdev is not removed until all requests are finished. 1735 */ 1736 rdev = conf->disks[i].replacement; 1737 if (!rdev) 1738 rdev = conf->disks[i].rdev; 1739 1740 if (use_new_offset(conf, sh)) 1741 s = sh->sector + rdev->new_data_offset; 1742 else 1743 s = sh->sector + rdev->data_offset; 1744 if (uptodate) { 1745 set_bit(R5_UPTODATE, &sh->dev[i].flags); 1746 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 1747 /* Note that this cannot happen on a 1748 * replacement device. We just fail those on 1749 * any error 1750 */ 1751 printk_ratelimited( 1752 KERN_INFO 1753 "md/raid:%s: read error corrected" 1754 " (%lu sectors at %llu on %s)\n", 1755 mdname(conf->mddev), STRIPE_SECTORS, 1756 (unsigned long long)s, 1757 bdevname(rdev->bdev, b)); 1758 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors); 1759 clear_bit(R5_ReadError, &sh->dev[i].flags); 1760 clear_bit(R5_ReWrite, &sh->dev[i].flags); 1761 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 1762 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 1763 1764 if (atomic_read(&rdev->read_errors)) 1765 atomic_set(&rdev->read_errors, 0); 1766 } else { 1767 const char *bdn = bdevname(rdev->bdev, b); 1768 int retry = 0; 1769 int set_bad = 0; 1770 1771 clear_bit(R5_UPTODATE, &sh->dev[i].flags); 1772 atomic_inc(&rdev->read_errors); 1773 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 1774 printk_ratelimited( 1775 KERN_WARNING 1776 "md/raid:%s: read error on replacement device " 1777 "(sector %llu on %s).\n", 1778 mdname(conf->mddev), 1779 (unsigned long long)s, 1780 bdn); 1781 else if (conf->mddev->degraded >= conf->max_degraded) { 1782 set_bad = 1; 1783 printk_ratelimited( 1784 KERN_WARNING 1785 "md/raid:%s: read error not correctable " 1786 "(sector %llu on %s).\n", 1787 mdname(conf->mddev), 1788 (unsigned long long)s, 1789 bdn); 1790 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) { 1791 /* Oh, no!!! */ 1792 set_bad = 1; 1793 printk_ratelimited( 1794 KERN_WARNING 1795 "md/raid:%s: read error NOT corrected!! " 1796 "(sector %llu on %s).\n", 1797 mdname(conf->mddev), 1798 (unsigned long long)s, 1799 bdn); 1800 } else if (atomic_read(&rdev->read_errors) 1801 > conf->max_nr_stripes) 1802 printk(KERN_WARNING 1803 "md/raid:%s: Too many read errors, failing device %s.\n", 1804 mdname(conf->mddev), bdn); 1805 else 1806 retry = 1; 1807 if (retry) 1808 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) { 1809 set_bit(R5_ReadError, &sh->dev[i].flags); 1810 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 1811 } else 1812 set_bit(R5_ReadNoMerge, &sh->dev[i].flags); 1813 else { 1814 clear_bit(R5_ReadError, &sh->dev[i].flags); 1815 clear_bit(R5_ReWrite, &sh->dev[i].flags); 1816 if (!(set_bad 1817 && test_bit(In_sync, &rdev->flags) 1818 && rdev_set_badblocks( 1819 rdev, sh->sector, STRIPE_SECTORS, 0))) 1820 md_error(conf->mddev, rdev); 1821 } 1822 } 1823 rdev_dec_pending(rdev, conf->mddev); 1824 clear_bit(R5_LOCKED, &sh->dev[i].flags); 1825 set_bit(STRIPE_HANDLE, &sh->state); 1826 release_stripe(sh); 1827 } 1828 1829 static void raid5_end_write_request(struct bio *bi, int error) 1830 { 1831 struct stripe_head *sh = bi->bi_private; 1832 struct r5conf *conf = sh->raid_conf; 1833 int disks = sh->disks, i; 1834 struct md_rdev *uninitialized_var(rdev); 1835 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); 1836 sector_t first_bad; 1837 int bad_sectors; 1838 int replacement = 0; 1839 1840 for (i = 0 ; i < disks; i++) { 1841 if (bi == &sh->dev[i].req) { 1842 rdev = conf->disks[i].rdev; 1843 break; 1844 } 1845 if (bi == &sh->dev[i].rreq) { 1846 rdev = conf->disks[i].replacement; 1847 if (rdev) 1848 replacement = 1; 1849 else 1850 /* rdev was removed and 'replacement' 1851 * replaced it. rdev is not removed 1852 * until all requests are finished. 1853 */ 1854 rdev = conf->disks[i].rdev; 1855 break; 1856 } 1857 } 1858 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n", 1859 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 1860 uptodate); 1861 if (i == disks) { 1862 BUG(); 1863 return; 1864 } 1865 1866 if (replacement) { 1867 if (!uptodate) 1868 md_error(conf->mddev, rdev); 1869 else if (is_badblock(rdev, sh->sector, 1870 STRIPE_SECTORS, 1871 &first_bad, &bad_sectors)) 1872 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags); 1873 } else { 1874 if (!uptodate) { 1875 set_bit(WriteErrorSeen, &rdev->flags); 1876 set_bit(R5_WriteError, &sh->dev[i].flags); 1877 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 1878 set_bit(MD_RECOVERY_NEEDED, 1879 &rdev->mddev->recovery); 1880 } else if (is_badblock(rdev, sh->sector, 1881 STRIPE_SECTORS, 1882 &first_bad, &bad_sectors)) 1883 set_bit(R5_MadeGood, &sh->dev[i].flags); 1884 } 1885 rdev_dec_pending(rdev, conf->mddev); 1886 1887 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags)) 1888 clear_bit(R5_LOCKED, &sh->dev[i].flags); 1889 set_bit(STRIPE_HANDLE, &sh->state); 1890 release_stripe(sh); 1891 } 1892 1893 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous); 1894 1895 static void raid5_build_block(struct stripe_head *sh, int i, int previous) 1896 { 1897 struct r5dev *dev = &sh->dev[i]; 1898 1899 bio_init(&dev->req); 1900 dev->req.bi_io_vec = &dev->vec; 1901 dev->req.bi_vcnt++; 1902 dev->req.bi_max_vecs++; 1903 dev->req.bi_private = sh; 1904 dev->vec.bv_page = dev->page; 1905 1906 bio_init(&dev->rreq); 1907 dev->rreq.bi_io_vec = &dev->rvec; 1908 dev->rreq.bi_vcnt++; 1909 dev->rreq.bi_max_vecs++; 1910 dev->rreq.bi_private = sh; 1911 dev->rvec.bv_page = dev->page; 1912 1913 dev->flags = 0; 1914 dev->sector = compute_blocknr(sh, i, previous); 1915 } 1916 1917 static void error(struct mddev *mddev, struct md_rdev *rdev) 1918 { 1919 char b[BDEVNAME_SIZE]; 1920 struct r5conf *conf = mddev->private; 1921 unsigned long flags; 1922 pr_debug("raid456: error called\n"); 1923 1924 spin_lock_irqsave(&conf->device_lock, flags); 1925 clear_bit(In_sync, &rdev->flags); 1926 mddev->degraded = calc_degraded(conf); 1927 spin_unlock_irqrestore(&conf->device_lock, flags); 1928 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1929 1930 set_bit(Blocked, &rdev->flags); 1931 set_bit(Faulty, &rdev->flags); 1932 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1933 printk(KERN_ALERT 1934 "md/raid:%s: Disk failure on %s, disabling device.\n" 1935 "md/raid:%s: Operation continuing on %d devices.\n", 1936 mdname(mddev), 1937 bdevname(rdev->bdev, b), 1938 mdname(mddev), 1939 conf->raid_disks - mddev->degraded); 1940 } 1941 1942 /* 1943 * Input: a 'big' sector number, 1944 * Output: index of the data and parity disk, and the sector # in them. 1945 */ 1946 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector, 1947 int previous, int *dd_idx, 1948 struct stripe_head *sh) 1949 { 1950 sector_t stripe, stripe2; 1951 sector_t chunk_number; 1952 unsigned int chunk_offset; 1953 int pd_idx, qd_idx; 1954 int ddf_layout = 0; 1955 sector_t new_sector; 1956 int algorithm = previous ? conf->prev_algo 1957 : conf->algorithm; 1958 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 1959 : conf->chunk_sectors; 1960 int raid_disks = previous ? conf->previous_raid_disks 1961 : conf->raid_disks; 1962 int data_disks = raid_disks - conf->max_degraded; 1963 1964 /* First compute the information on this sector */ 1965 1966 /* 1967 * Compute the chunk number and the sector offset inside the chunk 1968 */ 1969 chunk_offset = sector_div(r_sector, sectors_per_chunk); 1970 chunk_number = r_sector; 1971 1972 /* 1973 * Compute the stripe number 1974 */ 1975 stripe = chunk_number; 1976 *dd_idx = sector_div(stripe, data_disks); 1977 stripe2 = stripe; 1978 /* 1979 * Select the parity disk based on the user selected algorithm. 1980 */ 1981 pd_idx = qd_idx = -1; 1982 switch(conf->level) { 1983 case 4: 1984 pd_idx = data_disks; 1985 break; 1986 case 5: 1987 switch (algorithm) { 1988 case ALGORITHM_LEFT_ASYMMETRIC: 1989 pd_idx = data_disks - sector_div(stripe2, raid_disks); 1990 if (*dd_idx >= pd_idx) 1991 (*dd_idx)++; 1992 break; 1993 case ALGORITHM_RIGHT_ASYMMETRIC: 1994 pd_idx = sector_div(stripe2, raid_disks); 1995 if (*dd_idx >= pd_idx) 1996 (*dd_idx)++; 1997 break; 1998 case ALGORITHM_LEFT_SYMMETRIC: 1999 pd_idx = data_disks - sector_div(stripe2, raid_disks); 2000 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2001 break; 2002 case ALGORITHM_RIGHT_SYMMETRIC: 2003 pd_idx = sector_div(stripe2, raid_disks); 2004 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2005 break; 2006 case ALGORITHM_PARITY_0: 2007 pd_idx = 0; 2008 (*dd_idx)++; 2009 break; 2010 case ALGORITHM_PARITY_N: 2011 pd_idx = data_disks; 2012 break; 2013 default: 2014 BUG(); 2015 } 2016 break; 2017 case 6: 2018 2019 switch (algorithm) { 2020 case ALGORITHM_LEFT_ASYMMETRIC: 2021 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2022 qd_idx = pd_idx + 1; 2023 if (pd_idx == raid_disks-1) { 2024 (*dd_idx)++; /* Q D D D P */ 2025 qd_idx = 0; 2026 } else if (*dd_idx >= pd_idx) 2027 (*dd_idx) += 2; /* D D P Q D */ 2028 break; 2029 case ALGORITHM_RIGHT_ASYMMETRIC: 2030 pd_idx = sector_div(stripe2, raid_disks); 2031 qd_idx = pd_idx + 1; 2032 if (pd_idx == raid_disks-1) { 2033 (*dd_idx)++; /* Q D D D P */ 2034 qd_idx = 0; 2035 } else if (*dd_idx >= pd_idx) 2036 (*dd_idx) += 2; /* D D P Q D */ 2037 break; 2038 case ALGORITHM_LEFT_SYMMETRIC: 2039 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2040 qd_idx = (pd_idx + 1) % raid_disks; 2041 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 2042 break; 2043 case ALGORITHM_RIGHT_SYMMETRIC: 2044 pd_idx = sector_div(stripe2, raid_disks); 2045 qd_idx = (pd_idx + 1) % raid_disks; 2046 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 2047 break; 2048 2049 case ALGORITHM_PARITY_0: 2050 pd_idx = 0; 2051 qd_idx = 1; 2052 (*dd_idx) += 2; 2053 break; 2054 case ALGORITHM_PARITY_N: 2055 pd_idx = data_disks; 2056 qd_idx = data_disks + 1; 2057 break; 2058 2059 case ALGORITHM_ROTATING_ZERO_RESTART: 2060 /* Exactly the same as RIGHT_ASYMMETRIC, but or 2061 * of blocks for computing Q is different. 2062 */ 2063 pd_idx = sector_div(stripe2, raid_disks); 2064 qd_idx = pd_idx + 1; 2065 if (pd_idx == raid_disks-1) { 2066 (*dd_idx)++; /* Q D D D P */ 2067 qd_idx = 0; 2068 } else if (*dd_idx >= pd_idx) 2069 (*dd_idx) += 2; /* D D P Q D */ 2070 ddf_layout = 1; 2071 break; 2072 2073 case ALGORITHM_ROTATING_N_RESTART: 2074 /* Same a left_asymmetric, by first stripe is 2075 * D D D P Q rather than 2076 * Q D D D P 2077 */ 2078 stripe2 += 1; 2079 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2080 qd_idx = pd_idx + 1; 2081 if (pd_idx == raid_disks-1) { 2082 (*dd_idx)++; /* Q D D D P */ 2083 qd_idx = 0; 2084 } else if (*dd_idx >= pd_idx) 2085 (*dd_idx) += 2; /* D D P Q D */ 2086 ddf_layout = 1; 2087 break; 2088 2089 case ALGORITHM_ROTATING_N_CONTINUE: 2090 /* Same as left_symmetric but Q is before P */ 2091 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2092 qd_idx = (pd_idx + raid_disks - 1) % raid_disks; 2093 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2094 ddf_layout = 1; 2095 break; 2096 2097 case ALGORITHM_LEFT_ASYMMETRIC_6: 2098 /* RAID5 left_asymmetric, with Q on last device */ 2099 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 2100 if (*dd_idx >= pd_idx) 2101 (*dd_idx)++; 2102 qd_idx = raid_disks - 1; 2103 break; 2104 2105 case ALGORITHM_RIGHT_ASYMMETRIC_6: 2106 pd_idx = sector_div(stripe2, raid_disks-1); 2107 if (*dd_idx >= pd_idx) 2108 (*dd_idx)++; 2109 qd_idx = raid_disks - 1; 2110 break; 2111 2112 case ALGORITHM_LEFT_SYMMETRIC_6: 2113 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 2114 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 2115 qd_idx = raid_disks - 1; 2116 break; 2117 2118 case ALGORITHM_RIGHT_SYMMETRIC_6: 2119 pd_idx = sector_div(stripe2, raid_disks-1); 2120 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 2121 qd_idx = raid_disks - 1; 2122 break; 2123 2124 case ALGORITHM_PARITY_0_6: 2125 pd_idx = 0; 2126 (*dd_idx)++; 2127 qd_idx = raid_disks - 1; 2128 break; 2129 2130 default: 2131 BUG(); 2132 } 2133 break; 2134 } 2135 2136 if (sh) { 2137 sh->pd_idx = pd_idx; 2138 sh->qd_idx = qd_idx; 2139 sh->ddf_layout = ddf_layout; 2140 } 2141 /* 2142 * Finally, compute the new sector number 2143 */ 2144 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset; 2145 return new_sector; 2146 } 2147 2148 2149 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous) 2150 { 2151 struct r5conf *conf = sh->raid_conf; 2152 int raid_disks = sh->disks; 2153 int data_disks = raid_disks - conf->max_degraded; 2154 sector_t new_sector = sh->sector, check; 2155 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 2156 : conf->chunk_sectors; 2157 int algorithm = previous ? conf->prev_algo 2158 : conf->algorithm; 2159 sector_t stripe; 2160 int chunk_offset; 2161 sector_t chunk_number; 2162 int dummy1, dd_idx = i; 2163 sector_t r_sector; 2164 struct stripe_head sh2; 2165 2166 2167 chunk_offset = sector_div(new_sector, sectors_per_chunk); 2168 stripe = new_sector; 2169 2170 if (i == sh->pd_idx) 2171 return 0; 2172 switch(conf->level) { 2173 case 4: break; 2174 case 5: 2175 switch (algorithm) { 2176 case ALGORITHM_LEFT_ASYMMETRIC: 2177 case ALGORITHM_RIGHT_ASYMMETRIC: 2178 if (i > sh->pd_idx) 2179 i--; 2180 break; 2181 case ALGORITHM_LEFT_SYMMETRIC: 2182 case ALGORITHM_RIGHT_SYMMETRIC: 2183 if (i < sh->pd_idx) 2184 i += raid_disks; 2185 i -= (sh->pd_idx + 1); 2186 break; 2187 case ALGORITHM_PARITY_0: 2188 i -= 1; 2189 break; 2190 case ALGORITHM_PARITY_N: 2191 break; 2192 default: 2193 BUG(); 2194 } 2195 break; 2196 case 6: 2197 if (i == sh->qd_idx) 2198 return 0; /* It is the Q disk */ 2199 switch (algorithm) { 2200 case ALGORITHM_LEFT_ASYMMETRIC: 2201 case ALGORITHM_RIGHT_ASYMMETRIC: 2202 case ALGORITHM_ROTATING_ZERO_RESTART: 2203 case ALGORITHM_ROTATING_N_RESTART: 2204 if (sh->pd_idx == raid_disks-1) 2205 i--; /* Q D D D P */ 2206 else if (i > sh->pd_idx) 2207 i -= 2; /* D D P Q D */ 2208 break; 2209 case ALGORITHM_LEFT_SYMMETRIC: 2210 case ALGORITHM_RIGHT_SYMMETRIC: 2211 if (sh->pd_idx == raid_disks-1) 2212 i--; /* Q D D D P */ 2213 else { 2214 /* D D P Q D */ 2215 if (i < sh->pd_idx) 2216 i += raid_disks; 2217 i -= (sh->pd_idx + 2); 2218 } 2219 break; 2220 case ALGORITHM_PARITY_0: 2221 i -= 2; 2222 break; 2223 case ALGORITHM_PARITY_N: 2224 break; 2225 case ALGORITHM_ROTATING_N_CONTINUE: 2226 /* Like left_symmetric, but P is before Q */ 2227 if (sh->pd_idx == 0) 2228 i--; /* P D D D Q */ 2229 else { 2230 /* D D Q P D */ 2231 if (i < sh->pd_idx) 2232 i += raid_disks; 2233 i -= (sh->pd_idx + 1); 2234 } 2235 break; 2236 case ALGORITHM_LEFT_ASYMMETRIC_6: 2237 case ALGORITHM_RIGHT_ASYMMETRIC_6: 2238 if (i > sh->pd_idx) 2239 i--; 2240 break; 2241 case ALGORITHM_LEFT_SYMMETRIC_6: 2242 case ALGORITHM_RIGHT_SYMMETRIC_6: 2243 if (i < sh->pd_idx) 2244 i += data_disks + 1; 2245 i -= (sh->pd_idx + 1); 2246 break; 2247 case ALGORITHM_PARITY_0_6: 2248 i -= 1; 2249 break; 2250 default: 2251 BUG(); 2252 } 2253 break; 2254 } 2255 2256 chunk_number = stripe * data_disks + i; 2257 r_sector = chunk_number * sectors_per_chunk + chunk_offset; 2258 2259 check = raid5_compute_sector(conf, r_sector, 2260 previous, &dummy1, &sh2); 2261 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx 2262 || sh2.qd_idx != sh->qd_idx) { 2263 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n", 2264 mdname(conf->mddev)); 2265 return 0; 2266 } 2267 return r_sector; 2268 } 2269 2270 2271 static void 2272 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s, 2273 int rcw, int expand) 2274 { 2275 int i, pd_idx = sh->pd_idx, disks = sh->disks; 2276 struct r5conf *conf = sh->raid_conf; 2277 int level = conf->level; 2278 2279 if (rcw) { 2280 /* if we are not expanding this is a proper write request, and 2281 * there will be bios with new data to be drained into the 2282 * stripe cache 2283 */ 2284 if (!expand) { 2285 sh->reconstruct_state = reconstruct_state_drain_run; 2286 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 2287 } else 2288 sh->reconstruct_state = reconstruct_state_run; 2289 2290 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 2291 2292 for (i = disks; i--; ) { 2293 struct r5dev *dev = &sh->dev[i]; 2294 2295 if (dev->towrite) { 2296 set_bit(R5_LOCKED, &dev->flags); 2297 set_bit(R5_Wantdrain, &dev->flags); 2298 if (!expand) 2299 clear_bit(R5_UPTODATE, &dev->flags); 2300 s->locked++; 2301 } 2302 } 2303 if (s->locked + conf->max_degraded == disks) 2304 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state)) 2305 atomic_inc(&conf->pending_full_writes); 2306 } else { 2307 BUG_ON(level == 6); 2308 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) || 2309 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags))); 2310 2311 sh->reconstruct_state = reconstruct_state_prexor_drain_run; 2312 set_bit(STRIPE_OP_PREXOR, &s->ops_request); 2313 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 2314 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 2315 2316 for (i = disks; i--; ) { 2317 struct r5dev *dev = &sh->dev[i]; 2318 if (i == pd_idx) 2319 continue; 2320 2321 if (dev->towrite && 2322 (test_bit(R5_UPTODATE, &dev->flags) || 2323 test_bit(R5_Wantcompute, &dev->flags))) { 2324 set_bit(R5_Wantdrain, &dev->flags); 2325 set_bit(R5_LOCKED, &dev->flags); 2326 clear_bit(R5_UPTODATE, &dev->flags); 2327 s->locked++; 2328 } 2329 } 2330 } 2331 2332 /* keep the parity disk(s) locked while asynchronous operations 2333 * are in flight 2334 */ 2335 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); 2336 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 2337 s->locked++; 2338 2339 if (level == 6) { 2340 int qd_idx = sh->qd_idx; 2341 struct r5dev *dev = &sh->dev[qd_idx]; 2342 2343 set_bit(R5_LOCKED, &dev->flags); 2344 clear_bit(R5_UPTODATE, &dev->flags); 2345 s->locked++; 2346 } 2347 2348 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n", 2349 __func__, (unsigned long long)sh->sector, 2350 s->locked, s->ops_request); 2351 } 2352 2353 /* 2354 * Each stripe/dev can have one or more bion attached. 2355 * toread/towrite point to the first in a chain. 2356 * The bi_next chain must be in order. 2357 */ 2358 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite) 2359 { 2360 struct bio **bip; 2361 struct r5conf *conf = sh->raid_conf; 2362 int firstwrite=0; 2363 2364 pr_debug("adding bi b#%llu to stripe s#%llu\n", 2365 (unsigned long long)bi->bi_sector, 2366 (unsigned long long)sh->sector); 2367 2368 /* 2369 * If several bio share a stripe. The bio bi_phys_segments acts as a 2370 * reference count to avoid race. The reference count should already be 2371 * increased before this function is called (for example, in 2372 * make_request()), so other bio sharing this stripe will not free the 2373 * stripe. If a stripe is owned by one stripe, the stripe lock will 2374 * protect it. 2375 */ 2376 spin_lock_irq(&sh->stripe_lock); 2377 if (forwrite) { 2378 bip = &sh->dev[dd_idx].towrite; 2379 if (*bip == NULL) 2380 firstwrite = 1; 2381 } else 2382 bip = &sh->dev[dd_idx].toread; 2383 while (*bip && (*bip)->bi_sector < bi->bi_sector) { 2384 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector) 2385 goto overlap; 2386 bip = & (*bip)->bi_next; 2387 } 2388 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9)) 2389 goto overlap; 2390 2391 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next); 2392 if (*bip) 2393 bi->bi_next = *bip; 2394 *bip = bi; 2395 raid5_inc_bi_active_stripes(bi); 2396 2397 if (forwrite) { 2398 /* check if page is covered */ 2399 sector_t sector = sh->dev[dd_idx].sector; 2400 for (bi=sh->dev[dd_idx].towrite; 2401 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS && 2402 bi && bi->bi_sector <= sector; 2403 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) { 2404 if (bi->bi_sector + (bi->bi_size>>9) >= sector) 2405 sector = bi->bi_sector + (bi->bi_size>>9); 2406 } 2407 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS) 2408 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags); 2409 } 2410 spin_unlock_irq(&sh->stripe_lock); 2411 2412 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n", 2413 (unsigned long long)(*bip)->bi_sector, 2414 (unsigned long long)sh->sector, dd_idx); 2415 2416 if (conf->mddev->bitmap && firstwrite) { 2417 bitmap_startwrite(conf->mddev->bitmap, sh->sector, 2418 STRIPE_SECTORS, 0); 2419 sh->bm_seq = conf->seq_flush+1; 2420 set_bit(STRIPE_BIT_DELAY, &sh->state); 2421 } 2422 return 1; 2423 2424 overlap: 2425 set_bit(R5_Overlap, &sh->dev[dd_idx].flags); 2426 spin_unlock_irq(&sh->stripe_lock); 2427 return 0; 2428 } 2429 2430 static void end_reshape(struct r5conf *conf); 2431 2432 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 2433 struct stripe_head *sh) 2434 { 2435 int sectors_per_chunk = 2436 previous ? conf->prev_chunk_sectors : conf->chunk_sectors; 2437 int dd_idx; 2438 int chunk_offset = sector_div(stripe, sectors_per_chunk); 2439 int disks = previous ? conf->previous_raid_disks : conf->raid_disks; 2440 2441 raid5_compute_sector(conf, 2442 stripe * (disks - conf->max_degraded) 2443 *sectors_per_chunk + chunk_offset, 2444 previous, 2445 &dd_idx, sh); 2446 } 2447 2448 static void 2449 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh, 2450 struct stripe_head_state *s, int disks, 2451 struct bio **return_bi) 2452 { 2453 int i; 2454 for (i = disks; i--; ) { 2455 struct bio *bi; 2456 int bitmap_end = 0; 2457 2458 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 2459 struct md_rdev *rdev; 2460 rcu_read_lock(); 2461 rdev = rcu_dereference(conf->disks[i].rdev); 2462 if (rdev && test_bit(In_sync, &rdev->flags)) 2463 atomic_inc(&rdev->nr_pending); 2464 else 2465 rdev = NULL; 2466 rcu_read_unlock(); 2467 if (rdev) { 2468 if (!rdev_set_badblocks( 2469 rdev, 2470 sh->sector, 2471 STRIPE_SECTORS, 0)) 2472 md_error(conf->mddev, rdev); 2473 rdev_dec_pending(rdev, conf->mddev); 2474 } 2475 } 2476 spin_lock_irq(&sh->stripe_lock); 2477 /* fail all writes first */ 2478 bi = sh->dev[i].towrite; 2479 sh->dev[i].towrite = NULL; 2480 spin_unlock_irq(&sh->stripe_lock); 2481 if (bi) { 2482 s->to_write--; 2483 bitmap_end = 1; 2484 } 2485 2486 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 2487 wake_up(&conf->wait_for_overlap); 2488 2489 while (bi && bi->bi_sector < 2490 sh->dev[i].sector + STRIPE_SECTORS) { 2491 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector); 2492 clear_bit(BIO_UPTODATE, &bi->bi_flags); 2493 if (!raid5_dec_bi_active_stripes(bi)) { 2494 md_write_end(conf->mddev); 2495 bi->bi_next = *return_bi; 2496 *return_bi = bi; 2497 } 2498 bi = nextbi; 2499 } 2500 if (bitmap_end) 2501 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 2502 STRIPE_SECTORS, 0, 0); 2503 bitmap_end = 0; 2504 /* and fail all 'written' */ 2505 bi = sh->dev[i].written; 2506 sh->dev[i].written = NULL; 2507 if (bi) bitmap_end = 1; 2508 while (bi && bi->bi_sector < 2509 sh->dev[i].sector + STRIPE_SECTORS) { 2510 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector); 2511 clear_bit(BIO_UPTODATE, &bi->bi_flags); 2512 if (!raid5_dec_bi_active_stripes(bi)) { 2513 md_write_end(conf->mddev); 2514 bi->bi_next = *return_bi; 2515 *return_bi = bi; 2516 } 2517 bi = bi2; 2518 } 2519 2520 /* fail any reads if this device is non-operational and 2521 * the data has not reached the cache yet. 2522 */ 2523 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) && 2524 (!test_bit(R5_Insync, &sh->dev[i].flags) || 2525 test_bit(R5_ReadError, &sh->dev[i].flags))) { 2526 bi = sh->dev[i].toread; 2527 sh->dev[i].toread = NULL; 2528 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 2529 wake_up(&conf->wait_for_overlap); 2530 if (bi) s->to_read--; 2531 while (bi && bi->bi_sector < 2532 sh->dev[i].sector + STRIPE_SECTORS) { 2533 struct bio *nextbi = 2534 r5_next_bio(bi, sh->dev[i].sector); 2535 clear_bit(BIO_UPTODATE, &bi->bi_flags); 2536 if (!raid5_dec_bi_active_stripes(bi)) { 2537 bi->bi_next = *return_bi; 2538 *return_bi = bi; 2539 } 2540 bi = nextbi; 2541 } 2542 } 2543 if (bitmap_end) 2544 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 2545 STRIPE_SECTORS, 0, 0); 2546 /* If we were in the middle of a write the parity block might 2547 * still be locked - so just clear all R5_LOCKED flags 2548 */ 2549 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2550 } 2551 2552 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 2553 if (atomic_dec_and_test(&conf->pending_full_writes)) 2554 md_wakeup_thread(conf->mddev->thread); 2555 } 2556 2557 static void 2558 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh, 2559 struct stripe_head_state *s) 2560 { 2561 int abort = 0; 2562 int i; 2563 2564 clear_bit(STRIPE_SYNCING, &sh->state); 2565 s->syncing = 0; 2566 s->replacing = 0; 2567 /* There is nothing more to do for sync/check/repair. 2568 * Don't even need to abort as that is handled elsewhere 2569 * if needed, and not always wanted e.g. if there is a known 2570 * bad block here. 2571 * For recover/replace we need to record a bad block on all 2572 * non-sync devices, or abort the recovery 2573 */ 2574 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) { 2575 /* During recovery devices cannot be removed, so 2576 * locking and refcounting of rdevs is not needed 2577 */ 2578 for (i = 0; i < conf->raid_disks; i++) { 2579 struct md_rdev *rdev = conf->disks[i].rdev; 2580 if (rdev 2581 && !test_bit(Faulty, &rdev->flags) 2582 && !test_bit(In_sync, &rdev->flags) 2583 && !rdev_set_badblocks(rdev, sh->sector, 2584 STRIPE_SECTORS, 0)) 2585 abort = 1; 2586 rdev = conf->disks[i].replacement; 2587 if (rdev 2588 && !test_bit(Faulty, &rdev->flags) 2589 && !test_bit(In_sync, &rdev->flags) 2590 && !rdev_set_badblocks(rdev, sh->sector, 2591 STRIPE_SECTORS, 0)) 2592 abort = 1; 2593 } 2594 if (abort) 2595 conf->recovery_disabled = 2596 conf->mddev->recovery_disabled; 2597 } 2598 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort); 2599 } 2600 2601 static int want_replace(struct stripe_head *sh, int disk_idx) 2602 { 2603 struct md_rdev *rdev; 2604 int rv = 0; 2605 /* Doing recovery so rcu locking not required */ 2606 rdev = sh->raid_conf->disks[disk_idx].replacement; 2607 if (rdev 2608 && !test_bit(Faulty, &rdev->flags) 2609 && !test_bit(In_sync, &rdev->flags) 2610 && (rdev->recovery_offset <= sh->sector 2611 || rdev->mddev->recovery_cp <= sh->sector)) 2612 rv = 1; 2613 2614 return rv; 2615 } 2616 2617 /* fetch_block - checks the given member device to see if its data needs 2618 * to be read or computed to satisfy a request. 2619 * 2620 * Returns 1 when no more member devices need to be checked, otherwise returns 2621 * 0 to tell the loop in handle_stripe_fill to continue 2622 */ 2623 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s, 2624 int disk_idx, int disks) 2625 { 2626 struct r5dev *dev = &sh->dev[disk_idx]; 2627 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]], 2628 &sh->dev[s->failed_num[1]] }; 2629 2630 /* is the data in this block needed, and can we get it? */ 2631 if (!test_bit(R5_LOCKED, &dev->flags) && 2632 !test_bit(R5_UPTODATE, &dev->flags) && 2633 (dev->toread || 2634 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) || 2635 s->syncing || s->expanding || 2636 (s->replacing && want_replace(sh, disk_idx)) || 2637 (s->failed >= 1 && fdev[0]->toread) || 2638 (s->failed >= 2 && fdev[1]->toread) || 2639 (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite && 2640 !test_bit(R5_OVERWRITE, &fdev[0]->flags)) || 2641 (sh->raid_conf->level == 6 && s->failed && s->to_write))) { 2642 /* we would like to get this block, possibly by computing it, 2643 * otherwise read it if the backing disk is insync 2644 */ 2645 BUG_ON(test_bit(R5_Wantcompute, &dev->flags)); 2646 BUG_ON(test_bit(R5_Wantread, &dev->flags)); 2647 if ((s->uptodate == disks - 1) && 2648 (s->failed && (disk_idx == s->failed_num[0] || 2649 disk_idx == s->failed_num[1]))) { 2650 /* have disk failed, and we're requested to fetch it; 2651 * do compute it 2652 */ 2653 pr_debug("Computing stripe %llu block %d\n", 2654 (unsigned long long)sh->sector, disk_idx); 2655 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 2656 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 2657 set_bit(R5_Wantcompute, &dev->flags); 2658 sh->ops.target = disk_idx; 2659 sh->ops.target2 = -1; /* no 2nd target */ 2660 s->req_compute = 1; 2661 /* Careful: from this point on 'uptodate' is in the eye 2662 * of raid_run_ops which services 'compute' operations 2663 * before writes. R5_Wantcompute flags a block that will 2664 * be R5_UPTODATE by the time it is needed for a 2665 * subsequent operation. 2666 */ 2667 s->uptodate++; 2668 return 1; 2669 } else if (s->uptodate == disks-2 && s->failed >= 2) { 2670 /* Computing 2-failure is *very* expensive; only 2671 * do it if failed >= 2 2672 */ 2673 int other; 2674 for (other = disks; other--; ) { 2675 if (other == disk_idx) 2676 continue; 2677 if (!test_bit(R5_UPTODATE, 2678 &sh->dev[other].flags)) 2679 break; 2680 } 2681 BUG_ON(other < 0); 2682 pr_debug("Computing stripe %llu blocks %d,%d\n", 2683 (unsigned long long)sh->sector, 2684 disk_idx, other); 2685 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 2686 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 2687 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags); 2688 set_bit(R5_Wantcompute, &sh->dev[other].flags); 2689 sh->ops.target = disk_idx; 2690 sh->ops.target2 = other; 2691 s->uptodate += 2; 2692 s->req_compute = 1; 2693 return 1; 2694 } else if (test_bit(R5_Insync, &dev->flags)) { 2695 set_bit(R5_LOCKED, &dev->flags); 2696 set_bit(R5_Wantread, &dev->flags); 2697 s->locked++; 2698 pr_debug("Reading block %d (sync=%d)\n", 2699 disk_idx, s->syncing); 2700 } 2701 } 2702 2703 return 0; 2704 } 2705 2706 /** 2707 * handle_stripe_fill - read or compute data to satisfy pending requests. 2708 */ 2709 static void handle_stripe_fill(struct stripe_head *sh, 2710 struct stripe_head_state *s, 2711 int disks) 2712 { 2713 int i; 2714 2715 /* look for blocks to read/compute, skip this if a compute 2716 * is already in flight, or if the stripe contents are in the 2717 * midst of changing due to a write 2718 */ 2719 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state && 2720 !sh->reconstruct_state) 2721 for (i = disks; i--; ) 2722 if (fetch_block(sh, s, i, disks)) 2723 break; 2724 set_bit(STRIPE_HANDLE, &sh->state); 2725 } 2726 2727 2728 /* handle_stripe_clean_event 2729 * any written block on an uptodate or failed drive can be returned. 2730 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but 2731 * never LOCKED, so we don't need to test 'failed' directly. 2732 */ 2733 static void handle_stripe_clean_event(struct r5conf *conf, 2734 struct stripe_head *sh, int disks, struct bio **return_bi) 2735 { 2736 int i; 2737 struct r5dev *dev; 2738 2739 for (i = disks; i--; ) 2740 if (sh->dev[i].written) { 2741 dev = &sh->dev[i]; 2742 if (!test_bit(R5_LOCKED, &dev->flags) && 2743 test_bit(R5_UPTODATE, &dev->flags)) { 2744 /* We can return any write requests */ 2745 struct bio *wbi, *wbi2; 2746 pr_debug("Return write for disc %d\n", i); 2747 wbi = dev->written; 2748 dev->written = NULL; 2749 while (wbi && wbi->bi_sector < 2750 dev->sector + STRIPE_SECTORS) { 2751 wbi2 = r5_next_bio(wbi, dev->sector); 2752 if (!raid5_dec_bi_active_stripes(wbi)) { 2753 md_write_end(conf->mddev); 2754 wbi->bi_next = *return_bi; 2755 *return_bi = wbi; 2756 } 2757 wbi = wbi2; 2758 } 2759 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 2760 STRIPE_SECTORS, 2761 !test_bit(STRIPE_DEGRADED, &sh->state), 2762 0); 2763 } 2764 } 2765 2766 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 2767 if (atomic_dec_and_test(&conf->pending_full_writes)) 2768 md_wakeup_thread(conf->mddev->thread); 2769 } 2770 2771 static void handle_stripe_dirtying(struct r5conf *conf, 2772 struct stripe_head *sh, 2773 struct stripe_head_state *s, 2774 int disks) 2775 { 2776 int rmw = 0, rcw = 0, i; 2777 if (conf->max_degraded == 2) { 2778 /* RAID6 requires 'rcw' in current implementation 2779 * Calculate the real rcw later - for now fake it 2780 * look like rcw is cheaper 2781 */ 2782 rcw = 1; rmw = 2; 2783 } else for (i = disks; i--; ) { 2784 /* would I have to read this buffer for read_modify_write */ 2785 struct r5dev *dev = &sh->dev[i]; 2786 if ((dev->towrite || i == sh->pd_idx) && 2787 !test_bit(R5_LOCKED, &dev->flags) && 2788 !(test_bit(R5_UPTODATE, &dev->flags) || 2789 test_bit(R5_Wantcompute, &dev->flags))) { 2790 if (test_bit(R5_Insync, &dev->flags)) 2791 rmw++; 2792 else 2793 rmw += 2*disks; /* cannot read it */ 2794 } 2795 /* Would I have to read this buffer for reconstruct_write */ 2796 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx && 2797 !test_bit(R5_LOCKED, &dev->flags) && 2798 !(test_bit(R5_UPTODATE, &dev->flags) || 2799 test_bit(R5_Wantcompute, &dev->flags))) { 2800 if (test_bit(R5_Insync, &dev->flags)) rcw++; 2801 else 2802 rcw += 2*disks; 2803 } 2804 } 2805 pr_debug("for sector %llu, rmw=%d rcw=%d\n", 2806 (unsigned long long)sh->sector, rmw, rcw); 2807 set_bit(STRIPE_HANDLE, &sh->state); 2808 if (rmw < rcw && rmw > 0) 2809 /* prefer read-modify-write, but need to get some data */ 2810 for (i = disks; i--; ) { 2811 struct r5dev *dev = &sh->dev[i]; 2812 if ((dev->towrite || i == sh->pd_idx) && 2813 !test_bit(R5_LOCKED, &dev->flags) && 2814 !(test_bit(R5_UPTODATE, &dev->flags) || 2815 test_bit(R5_Wantcompute, &dev->flags)) && 2816 test_bit(R5_Insync, &dev->flags)) { 2817 if ( 2818 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { 2819 pr_debug("Read_old block " 2820 "%d for r-m-w\n", i); 2821 set_bit(R5_LOCKED, &dev->flags); 2822 set_bit(R5_Wantread, &dev->flags); 2823 s->locked++; 2824 } else { 2825 set_bit(STRIPE_DELAYED, &sh->state); 2826 set_bit(STRIPE_HANDLE, &sh->state); 2827 } 2828 } 2829 } 2830 if (rcw <= rmw && rcw > 0) { 2831 /* want reconstruct write, but need to get some data */ 2832 rcw = 0; 2833 for (i = disks; i--; ) { 2834 struct r5dev *dev = &sh->dev[i]; 2835 if (!test_bit(R5_OVERWRITE, &dev->flags) && 2836 i != sh->pd_idx && i != sh->qd_idx && 2837 !test_bit(R5_LOCKED, &dev->flags) && 2838 !(test_bit(R5_UPTODATE, &dev->flags) || 2839 test_bit(R5_Wantcompute, &dev->flags))) { 2840 rcw++; 2841 if (!test_bit(R5_Insync, &dev->flags)) 2842 continue; /* it's a failed drive */ 2843 if ( 2844 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { 2845 pr_debug("Read_old block " 2846 "%d for Reconstruct\n", i); 2847 set_bit(R5_LOCKED, &dev->flags); 2848 set_bit(R5_Wantread, &dev->flags); 2849 s->locked++; 2850 } else { 2851 set_bit(STRIPE_DELAYED, &sh->state); 2852 set_bit(STRIPE_HANDLE, &sh->state); 2853 } 2854 } 2855 } 2856 } 2857 /* now if nothing is locked, and if we have enough data, 2858 * we can start a write request 2859 */ 2860 /* since handle_stripe can be called at any time we need to handle the 2861 * case where a compute block operation has been submitted and then a 2862 * subsequent call wants to start a write request. raid_run_ops only 2863 * handles the case where compute block and reconstruct are requested 2864 * simultaneously. If this is not the case then new writes need to be 2865 * held off until the compute completes. 2866 */ 2867 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) && 2868 (s->locked == 0 && (rcw == 0 || rmw == 0) && 2869 !test_bit(STRIPE_BIT_DELAY, &sh->state))) 2870 schedule_reconstruction(sh, s, rcw == 0, 0); 2871 } 2872 2873 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh, 2874 struct stripe_head_state *s, int disks) 2875 { 2876 struct r5dev *dev = NULL; 2877 2878 set_bit(STRIPE_HANDLE, &sh->state); 2879 2880 switch (sh->check_state) { 2881 case check_state_idle: 2882 /* start a new check operation if there are no failures */ 2883 if (s->failed == 0) { 2884 BUG_ON(s->uptodate != disks); 2885 sh->check_state = check_state_run; 2886 set_bit(STRIPE_OP_CHECK, &s->ops_request); 2887 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 2888 s->uptodate--; 2889 break; 2890 } 2891 dev = &sh->dev[s->failed_num[0]]; 2892 /* fall through */ 2893 case check_state_compute_result: 2894 sh->check_state = check_state_idle; 2895 if (!dev) 2896 dev = &sh->dev[sh->pd_idx]; 2897 2898 /* check that a write has not made the stripe insync */ 2899 if (test_bit(STRIPE_INSYNC, &sh->state)) 2900 break; 2901 2902 /* either failed parity check, or recovery is happening */ 2903 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags)); 2904 BUG_ON(s->uptodate != disks); 2905 2906 set_bit(R5_LOCKED, &dev->flags); 2907 s->locked++; 2908 set_bit(R5_Wantwrite, &dev->flags); 2909 2910 clear_bit(STRIPE_DEGRADED, &sh->state); 2911 set_bit(STRIPE_INSYNC, &sh->state); 2912 break; 2913 case check_state_run: 2914 break; /* we will be called again upon completion */ 2915 case check_state_check_result: 2916 sh->check_state = check_state_idle; 2917 2918 /* if a failure occurred during the check operation, leave 2919 * STRIPE_INSYNC not set and let the stripe be handled again 2920 */ 2921 if (s->failed) 2922 break; 2923 2924 /* handle a successful check operation, if parity is correct 2925 * we are done. Otherwise update the mismatch count and repair 2926 * parity if !MD_RECOVERY_CHECK 2927 */ 2928 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0) 2929 /* parity is correct (on disc, 2930 * not in buffer any more) 2931 */ 2932 set_bit(STRIPE_INSYNC, &sh->state); 2933 else { 2934 conf->mddev->resync_mismatches += STRIPE_SECTORS; 2935 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) 2936 /* don't try to repair!! */ 2937 set_bit(STRIPE_INSYNC, &sh->state); 2938 else { 2939 sh->check_state = check_state_compute_run; 2940 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 2941 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 2942 set_bit(R5_Wantcompute, 2943 &sh->dev[sh->pd_idx].flags); 2944 sh->ops.target = sh->pd_idx; 2945 sh->ops.target2 = -1; 2946 s->uptodate++; 2947 } 2948 } 2949 break; 2950 case check_state_compute_run: 2951 break; 2952 default: 2953 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n", 2954 __func__, sh->check_state, 2955 (unsigned long long) sh->sector); 2956 BUG(); 2957 } 2958 } 2959 2960 2961 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh, 2962 struct stripe_head_state *s, 2963 int disks) 2964 { 2965 int pd_idx = sh->pd_idx; 2966 int qd_idx = sh->qd_idx; 2967 struct r5dev *dev; 2968 2969 set_bit(STRIPE_HANDLE, &sh->state); 2970 2971 BUG_ON(s->failed > 2); 2972 2973 /* Want to check and possibly repair P and Q. 2974 * However there could be one 'failed' device, in which 2975 * case we can only check one of them, possibly using the 2976 * other to generate missing data 2977 */ 2978 2979 switch (sh->check_state) { 2980 case check_state_idle: 2981 /* start a new check operation if there are < 2 failures */ 2982 if (s->failed == s->q_failed) { 2983 /* The only possible failed device holds Q, so it 2984 * makes sense to check P (If anything else were failed, 2985 * we would have used P to recreate it). 2986 */ 2987 sh->check_state = check_state_run; 2988 } 2989 if (!s->q_failed && s->failed < 2) { 2990 /* Q is not failed, and we didn't use it to generate 2991 * anything, so it makes sense to check it 2992 */ 2993 if (sh->check_state == check_state_run) 2994 sh->check_state = check_state_run_pq; 2995 else 2996 sh->check_state = check_state_run_q; 2997 } 2998 2999 /* discard potentially stale zero_sum_result */ 3000 sh->ops.zero_sum_result = 0; 3001 3002 if (sh->check_state == check_state_run) { 3003 /* async_xor_zero_sum destroys the contents of P */ 3004 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 3005 s->uptodate--; 3006 } 3007 if (sh->check_state >= check_state_run && 3008 sh->check_state <= check_state_run_pq) { 3009 /* async_syndrome_zero_sum preserves P and Q, so 3010 * no need to mark them !uptodate here 3011 */ 3012 set_bit(STRIPE_OP_CHECK, &s->ops_request); 3013 break; 3014 } 3015 3016 /* we have 2-disk failure */ 3017 BUG_ON(s->failed != 2); 3018 /* fall through */ 3019 case check_state_compute_result: 3020 sh->check_state = check_state_idle; 3021 3022 /* check that a write has not made the stripe insync */ 3023 if (test_bit(STRIPE_INSYNC, &sh->state)) 3024 break; 3025 3026 /* now write out any block on a failed drive, 3027 * or P or Q if they were recomputed 3028 */ 3029 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */ 3030 if (s->failed == 2) { 3031 dev = &sh->dev[s->failed_num[1]]; 3032 s->locked++; 3033 set_bit(R5_LOCKED, &dev->flags); 3034 set_bit(R5_Wantwrite, &dev->flags); 3035 } 3036 if (s->failed >= 1) { 3037 dev = &sh->dev[s->failed_num[0]]; 3038 s->locked++; 3039 set_bit(R5_LOCKED, &dev->flags); 3040 set_bit(R5_Wantwrite, &dev->flags); 3041 } 3042 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 3043 dev = &sh->dev[pd_idx]; 3044 s->locked++; 3045 set_bit(R5_LOCKED, &dev->flags); 3046 set_bit(R5_Wantwrite, &dev->flags); 3047 } 3048 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 3049 dev = &sh->dev[qd_idx]; 3050 s->locked++; 3051 set_bit(R5_LOCKED, &dev->flags); 3052 set_bit(R5_Wantwrite, &dev->flags); 3053 } 3054 clear_bit(STRIPE_DEGRADED, &sh->state); 3055 3056 set_bit(STRIPE_INSYNC, &sh->state); 3057 break; 3058 case check_state_run: 3059 case check_state_run_q: 3060 case check_state_run_pq: 3061 break; /* we will be called again upon completion */ 3062 case check_state_check_result: 3063 sh->check_state = check_state_idle; 3064 3065 /* handle a successful check operation, if parity is correct 3066 * we are done. Otherwise update the mismatch count and repair 3067 * parity if !MD_RECOVERY_CHECK 3068 */ 3069 if (sh->ops.zero_sum_result == 0) { 3070 /* both parities are correct */ 3071 if (!s->failed) 3072 set_bit(STRIPE_INSYNC, &sh->state); 3073 else { 3074 /* in contrast to the raid5 case we can validate 3075 * parity, but still have a failure to write 3076 * back 3077 */ 3078 sh->check_state = check_state_compute_result; 3079 /* Returning at this point means that we may go 3080 * off and bring p and/or q uptodate again so 3081 * we make sure to check zero_sum_result again 3082 * to verify if p or q need writeback 3083 */ 3084 } 3085 } else { 3086 conf->mddev->resync_mismatches += STRIPE_SECTORS; 3087 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) 3088 /* don't try to repair!! */ 3089 set_bit(STRIPE_INSYNC, &sh->state); 3090 else { 3091 int *target = &sh->ops.target; 3092 3093 sh->ops.target = -1; 3094 sh->ops.target2 = -1; 3095 sh->check_state = check_state_compute_run; 3096 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3097 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3098 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 3099 set_bit(R5_Wantcompute, 3100 &sh->dev[pd_idx].flags); 3101 *target = pd_idx; 3102 target = &sh->ops.target2; 3103 s->uptodate++; 3104 } 3105 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 3106 set_bit(R5_Wantcompute, 3107 &sh->dev[qd_idx].flags); 3108 *target = qd_idx; 3109 s->uptodate++; 3110 } 3111 } 3112 } 3113 break; 3114 case check_state_compute_run: 3115 break; 3116 default: 3117 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n", 3118 __func__, sh->check_state, 3119 (unsigned long long) sh->sector); 3120 BUG(); 3121 } 3122 } 3123 3124 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh) 3125 { 3126 int i; 3127 3128 /* We have read all the blocks in this stripe and now we need to 3129 * copy some of them into a target stripe for expand. 3130 */ 3131 struct dma_async_tx_descriptor *tx = NULL; 3132 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state); 3133 for (i = 0; i < sh->disks; i++) 3134 if (i != sh->pd_idx && i != sh->qd_idx) { 3135 int dd_idx, j; 3136 struct stripe_head *sh2; 3137 struct async_submit_ctl submit; 3138 3139 sector_t bn = compute_blocknr(sh, i, 1); 3140 sector_t s = raid5_compute_sector(conf, bn, 0, 3141 &dd_idx, NULL); 3142 sh2 = get_active_stripe(conf, s, 0, 1, 1); 3143 if (sh2 == NULL) 3144 /* so far only the early blocks of this stripe 3145 * have been requested. When later blocks 3146 * get requested, we will try again 3147 */ 3148 continue; 3149 if (!test_bit(STRIPE_EXPANDING, &sh2->state) || 3150 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) { 3151 /* must have already done this block */ 3152 release_stripe(sh2); 3153 continue; 3154 } 3155 3156 /* place all the copies on one channel */ 3157 init_async_submit(&submit, 0, tx, NULL, NULL, NULL); 3158 tx = async_memcpy(sh2->dev[dd_idx].page, 3159 sh->dev[i].page, 0, 0, STRIPE_SIZE, 3160 &submit); 3161 3162 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags); 3163 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags); 3164 for (j = 0; j < conf->raid_disks; j++) 3165 if (j != sh2->pd_idx && 3166 j != sh2->qd_idx && 3167 !test_bit(R5_Expanded, &sh2->dev[j].flags)) 3168 break; 3169 if (j == conf->raid_disks) { 3170 set_bit(STRIPE_EXPAND_READY, &sh2->state); 3171 set_bit(STRIPE_HANDLE, &sh2->state); 3172 } 3173 release_stripe(sh2); 3174 3175 } 3176 /* done submitting copies, wait for them to complete */ 3177 if (tx) { 3178 async_tx_ack(tx); 3179 dma_wait_for_async_tx(tx); 3180 } 3181 } 3182 3183 /* 3184 * handle_stripe - do things to a stripe. 3185 * 3186 * We lock the stripe by setting STRIPE_ACTIVE and then examine the 3187 * state of various bits to see what needs to be done. 3188 * Possible results: 3189 * return some read requests which now have data 3190 * return some write requests which are safely on storage 3191 * schedule a read on some buffers 3192 * schedule a write of some buffers 3193 * return confirmation of parity correctness 3194 * 3195 */ 3196 3197 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s) 3198 { 3199 struct r5conf *conf = sh->raid_conf; 3200 int disks = sh->disks; 3201 struct r5dev *dev; 3202 int i; 3203 int do_recovery = 0; 3204 3205 memset(s, 0, sizeof(*s)); 3206 3207 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state); 3208 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state); 3209 s->failed_num[0] = -1; 3210 s->failed_num[1] = -1; 3211 3212 /* Now to look around and see what can be done */ 3213 rcu_read_lock(); 3214 for (i=disks; i--; ) { 3215 struct md_rdev *rdev; 3216 sector_t first_bad; 3217 int bad_sectors; 3218 int is_bad = 0; 3219 3220 dev = &sh->dev[i]; 3221 3222 pr_debug("check %d: state 0x%lx read %p write %p written %p\n", 3223 i, dev->flags, 3224 dev->toread, dev->towrite, dev->written); 3225 /* maybe we can reply to a read 3226 * 3227 * new wantfill requests are only permitted while 3228 * ops_complete_biofill is guaranteed to be inactive 3229 */ 3230 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread && 3231 !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) 3232 set_bit(R5_Wantfill, &dev->flags); 3233 3234 /* now count some things */ 3235 if (test_bit(R5_LOCKED, &dev->flags)) 3236 s->locked++; 3237 if (test_bit(R5_UPTODATE, &dev->flags)) 3238 s->uptodate++; 3239 if (test_bit(R5_Wantcompute, &dev->flags)) { 3240 s->compute++; 3241 BUG_ON(s->compute > 2); 3242 } 3243 3244 if (test_bit(R5_Wantfill, &dev->flags)) 3245 s->to_fill++; 3246 else if (dev->toread) 3247 s->to_read++; 3248 if (dev->towrite) { 3249 s->to_write++; 3250 if (!test_bit(R5_OVERWRITE, &dev->flags)) 3251 s->non_overwrite++; 3252 } 3253 if (dev->written) 3254 s->written++; 3255 /* Prefer to use the replacement for reads, but only 3256 * if it is recovered enough and has no bad blocks. 3257 */ 3258 rdev = rcu_dereference(conf->disks[i].replacement); 3259 if (rdev && !test_bit(Faulty, &rdev->flags) && 3260 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS && 3261 !is_badblock(rdev, sh->sector, STRIPE_SECTORS, 3262 &first_bad, &bad_sectors)) 3263 set_bit(R5_ReadRepl, &dev->flags); 3264 else { 3265 if (rdev) 3266 set_bit(R5_NeedReplace, &dev->flags); 3267 rdev = rcu_dereference(conf->disks[i].rdev); 3268 clear_bit(R5_ReadRepl, &dev->flags); 3269 } 3270 if (rdev && test_bit(Faulty, &rdev->flags)) 3271 rdev = NULL; 3272 if (rdev) { 3273 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS, 3274 &first_bad, &bad_sectors); 3275 if (s->blocked_rdev == NULL 3276 && (test_bit(Blocked, &rdev->flags) 3277 || is_bad < 0)) { 3278 if (is_bad < 0) 3279 set_bit(BlockedBadBlocks, 3280 &rdev->flags); 3281 s->blocked_rdev = rdev; 3282 atomic_inc(&rdev->nr_pending); 3283 } 3284 } 3285 clear_bit(R5_Insync, &dev->flags); 3286 if (!rdev) 3287 /* Not in-sync */; 3288 else if (is_bad) { 3289 /* also not in-sync */ 3290 if (!test_bit(WriteErrorSeen, &rdev->flags) && 3291 test_bit(R5_UPTODATE, &dev->flags)) { 3292 /* treat as in-sync, but with a read error 3293 * which we can now try to correct 3294 */ 3295 set_bit(R5_Insync, &dev->flags); 3296 set_bit(R5_ReadError, &dev->flags); 3297 } 3298 } else if (test_bit(In_sync, &rdev->flags)) 3299 set_bit(R5_Insync, &dev->flags); 3300 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset) 3301 /* in sync if before recovery_offset */ 3302 set_bit(R5_Insync, &dev->flags); 3303 else if (test_bit(R5_UPTODATE, &dev->flags) && 3304 test_bit(R5_Expanded, &dev->flags)) 3305 /* If we've reshaped into here, we assume it is Insync. 3306 * We will shortly update recovery_offset to make 3307 * it official. 3308 */ 3309 set_bit(R5_Insync, &dev->flags); 3310 3311 if (rdev && test_bit(R5_WriteError, &dev->flags)) { 3312 /* This flag does not apply to '.replacement' 3313 * only to .rdev, so make sure to check that*/ 3314 struct md_rdev *rdev2 = rcu_dereference( 3315 conf->disks[i].rdev); 3316 if (rdev2 == rdev) 3317 clear_bit(R5_Insync, &dev->flags); 3318 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 3319 s->handle_bad_blocks = 1; 3320 atomic_inc(&rdev2->nr_pending); 3321 } else 3322 clear_bit(R5_WriteError, &dev->flags); 3323 } 3324 if (rdev && test_bit(R5_MadeGood, &dev->flags)) { 3325 /* This flag does not apply to '.replacement' 3326 * only to .rdev, so make sure to check that*/ 3327 struct md_rdev *rdev2 = rcu_dereference( 3328 conf->disks[i].rdev); 3329 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 3330 s->handle_bad_blocks = 1; 3331 atomic_inc(&rdev2->nr_pending); 3332 } else 3333 clear_bit(R5_MadeGood, &dev->flags); 3334 } 3335 if (test_bit(R5_MadeGoodRepl, &dev->flags)) { 3336 struct md_rdev *rdev2 = rcu_dereference( 3337 conf->disks[i].replacement); 3338 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 3339 s->handle_bad_blocks = 1; 3340 atomic_inc(&rdev2->nr_pending); 3341 } else 3342 clear_bit(R5_MadeGoodRepl, &dev->flags); 3343 } 3344 if (!test_bit(R5_Insync, &dev->flags)) { 3345 /* The ReadError flag will just be confusing now */ 3346 clear_bit(R5_ReadError, &dev->flags); 3347 clear_bit(R5_ReWrite, &dev->flags); 3348 } 3349 if (test_bit(R5_ReadError, &dev->flags)) 3350 clear_bit(R5_Insync, &dev->flags); 3351 if (!test_bit(R5_Insync, &dev->flags)) { 3352 if (s->failed < 2) 3353 s->failed_num[s->failed] = i; 3354 s->failed++; 3355 if (rdev && !test_bit(Faulty, &rdev->flags)) 3356 do_recovery = 1; 3357 } 3358 } 3359 if (test_bit(STRIPE_SYNCING, &sh->state)) { 3360 /* If there is a failed device being replaced, 3361 * we must be recovering. 3362 * else if we are after recovery_cp, we must be syncing 3363 * else if MD_RECOVERY_REQUESTED is set, we also are syncing. 3364 * else we can only be replacing 3365 * sync and recovery both need to read all devices, and so 3366 * use the same flag. 3367 */ 3368 if (do_recovery || 3369 sh->sector >= conf->mddev->recovery_cp || 3370 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery))) 3371 s->syncing = 1; 3372 else 3373 s->replacing = 1; 3374 } 3375 rcu_read_unlock(); 3376 } 3377 3378 static void handle_stripe(struct stripe_head *sh) 3379 { 3380 struct stripe_head_state s; 3381 struct r5conf *conf = sh->raid_conf; 3382 int i; 3383 int prexor; 3384 int disks = sh->disks; 3385 struct r5dev *pdev, *qdev; 3386 3387 clear_bit(STRIPE_HANDLE, &sh->state); 3388 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) { 3389 /* already being handled, ensure it gets handled 3390 * again when current action finishes */ 3391 set_bit(STRIPE_HANDLE, &sh->state); 3392 return; 3393 } 3394 3395 if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) { 3396 set_bit(STRIPE_SYNCING, &sh->state); 3397 clear_bit(STRIPE_INSYNC, &sh->state); 3398 } 3399 clear_bit(STRIPE_DELAYED, &sh->state); 3400 3401 pr_debug("handling stripe %llu, state=%#lx cnt=%d, " 3402 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n", 3403 (unsigned long long)sh->sector, sh->state, 3404 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx, 3405 sh->check_state, sh->reconstruct_state); 3406 3407 analyse_stripe(sh, &s); 3408 3409 if (s.handle_bad_blocks) { 3410 set_bit(STRIPE_HANDLE, &sh->state); 3411 goto finish; 3412 } 3413 3414 if (unlikely(s.blocked_rdev)) { 3415 if (s.syncing || s.expanding || s.expanded || 3416 s.replacing || s.to_write || s.written) { 3417 set_bit(STRIPE_HANDLE, &sh->state); 3418 goto finish; 3419 } 3420 /* There is nothing for the blocked_rdev to block */ 3421 rdev_dec_pending(s.blocked_rdev, conf->mddev); 3422 s.blocked_rdev = NULL; 3423 } 3424 3425 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) { 3426 set_bit(STRIPE_OP_BIOFILL, &s.ops_request); 3427 set_bit(STRIPE_BIOFILL_RUN, &sh->state); 3428 } 3429 3430 pr_debug("locked=%d uptodate=%d to_read=%d" 3431 " to_write=%d failed=%d failed_num=%d,%d\n", 3432 s.locked, s.uptodate, s.to_read, s.to_write, s.failed, 3433 s.failed_num[0], s.failed_num[1]); 3434 /* check if the array has lost more than max_degraded devices and, 3435 * if so, some requests might need to be failed. 3436 */ 3437 if (s.failed > conf->max_degraded) { 3438 sh->check_state = 0; 3439 sh->reconstruct_state = 0; 3440 if (s.to_read+s.to_write+s.written) 3441 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi); 3442 if (s.syncing + s.replacing) 3443 handle_failed_sync(conf, sh, &s); 3444 } 3445 3446 /* 3447 * might be able to return some write requests if the parity blocks 3448 * are safe, or on a failed drive 3449 */ 3450 pdev = &sh->dev[sh->pd_idx]; 3451 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx) 3452 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx); 3453 qdev = &sh->dev[sh->qd_idx]; 3454 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx) 3455 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx) 3456 || conf->level < 6; 3457 3458 if (s.written && 3459 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags) 3460 && !test_bit(R5_LOCKED, &pdev->flags) 3461 && test_bit(R5_UPTODATE, &pdev->flags)))) && 3462 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags) 3463 && !test_bit(R5_LOCKED, &qdev->flags) 3464 && test_bit(R5_UPTODATE, &qdev->flags))))) 3465 handle_stripe_clean_event(conf, sh, disks, &s.return_bi); 3466 3467 /* Now we might consider reading some blocks, either to check/generate 3468 * parity, or to satisfy requests 3469 * or to load a block that is being partially written. 3470 */ 3471 if (s.to_read || s.non_overwrite 3472 || (conf->level == 6 && s.to_write && s.failed) 3473 || (s.syncing && (s.uptodate + s.compute < disks)) 3474 || s.replacing 3475 || s.expanding) 3476 handle_stripe_fill(sh, &s, disks); 3477 3478 /* Now we check to see if any write operations have recently 3479 * completed 3480 */ 3481 prexor = 0; 3482 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result) 3483 prexor = 1; 3484 if (sh->reconstruct_state == reconstruct_state_drain_result || 3485 sh->reconstruct_state == reconstruct_state_prexor_drain_result) { 3486 sh->reconstruct_state = reconstruct_state_idle; 3487 3488 /* All the 'written' buffers and the parity block are ready to 3489 * be written back to disk 3490 */ 3491 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags)); 3492 BUG_ON(sh->qd_idx >= 0 && 3493 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags)); 3494 for (i = disks; i--; ) { 3495 struct r5dev *dev = &sh->dev[i]; 3496 if (test_bit(R5_LOCKED, &dev->flags) && 3497 (i == sh->pd_idx || i == sh->qd_idx || 3498 dev->written)) { 3499 pr_debug("Writing block %d\n", i); 3500 set_bit(R5_Wantwrite, &dev->flags); 3501 if (prexor) 3502 continue; 3503 if (!test_bit(R5_Insync, &dev->flags) || 3504 ((i == sh->pd_idx || i == sh->qd_idx) && 3505 s.failed == 0)) 3506 set_bit(STRIPE_INSYNC, &sh->state); 3507 } 3508 } 3509 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3510 s.dec_preread_active = 1; 3511 } 3512 3513 /* Now to consider new write requests and what else, if anything 3514 * should be read. We do not handle new writes when: 3515 * 1/ A 'write' operation (copy+xor) is already in flight. 3516 * 2/ A 'check' operation is in flight, as it may clobber the parity 3517 * block. 3518 */ 3519 if (s.to_write && !sh->reconstruct_state && !sh->check_state) 3520 handle_stripe_dirtying(conf, sh, &s, disks); 3521 3522 /* maybe we need to check and possibly fix the parity for this stripe 3523 * Any reads will already have been scheduled, so we just see if enough 3524 * data is available. The parity check is held off while parity 3525 * dependent operations are in flight. 3526 */ 3527 if (sh->check_state || 3528 (s.syncing && s.locked == 0 && 3529 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 3530 !test_bit(STRIPE_INSYNC, &sh->state))) { 3531 if (conf->level == 6) 3532 handle_parity_checks6(conf, sh, &s, disks); 3533 else 3534 handle_parity_checks5(conf, sh, &s, disks); 3535 } 3536 3537 if (s.replacing && s.locked == 0 3538 && !test_bit(STRIPE_INSYNC, &sh->state)) { 3539 /* Write out to replacement devices where possible */ 3540 for (i = 0; i < conf->raid_disks; i++) 3541 if (test_bit(R5_UPTODATE, &sh->dev[i].flags) && 3542 test_bit(R5_NeedReplace, &sh->dev[i].flags)) { 3543 set_bit(R5_WantReplace, &sh->dev[i].flags); 3544 set_bit(R5_LOCKED, &sh->dev[i].flags); 3545 s.locked++; 3546 } 3547 set_bit(STRIPE_INSYNC, &sh->state); 3548 } 3549 if ((s.syncing || s.replacing) && s.locked == 0 && 3550 test_bit(STRIPE_INSYNC, &sh->state)) { 3551 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 3552 clear_bit(STRIPE_SYNCING, &sh->state); 3553 } 3554 3555 /* If the failed drives are just a ReadError, then we might need 3556 * to progress the repair/check process 3557 */ 3558 if (s.failed <= conf->max_degraded && !conf->mddev->ro) 3559 for (i = 0; i < s.failed; i++) { 3560 struct r5dev *dev = &sh->dev[s.failed_num[i]]; 3561 if (test_bit(R5_ReadError, &dev->flags) 3562 && !test_bit(R5_LOCKED, &dev->flags) 3563 && test_bit(R5_UPTODATE, &dev->flags) 3564 ) { 3565 if (!test_bit(R5_ReWrite, &dev->flags)) { 3566 set_bit(R5_Wantwrite, &dev->flags); 3567 set_bit(R5_ReWrite, &dev->flags); 3568 set_bit(R5_LOCKED, &dev->flags); 3569 s.locked++; 3570 } else { 3571 /* let's read it back */ 3572 set_bit(R5_Wantread, &dev->flags); 3573 set_bit(R5_LOCKED, &dev->flags); 3574 s.locked++; 3575 } 3576 } 3577 } 3578 3579 3580 /* Finish reconstruct operations initiated by the expansion process */ 3581 if (sh->reconstruct_state == reconstruct_state_result) { 3582 struct stripe_head *sh_src 3583 = get_active_stripe(conf, sh->sector, 1, 1, 1); 3584 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) { 3585 /* sh cannot be written until sh_src has been read. 3586 * so arrange for sh to be delayed a little 3587 */ 3588 set_bit(STRIPE_DELAYED, &sh->state); 3589 set_bit(STRIPE_HANDLE, &sh->state); 3590 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, 3591 &sh_src->state)) 3592 atomic_inc(&conf->preread_active_stripes); 3593 release_stripe(sh_src); 3594 goto finish; 3595 } 3596 if (sh_src) 3597 release_stripe(sh_src); 3598 3599 sh->reconstruct_state = reconstruct_state_idle; 3600 clear_bit(STRIPE_EXPANDING, &sh->state); 3601 for (i = conf->raid_disks; i--; ) { 3602 set_bit(R5_Wantwrite, &sh->dev[i].flags); 3603 set_bit(R5_LOCKED, &sh->dev[i].flags); 3604 s.locked++; 3605 } 3606 } 3607 3608 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) && 3609 !sh->reconstruct_state) { 3610 /* Need to write out all blocks after computing parity */ 3611 sh->disks = conf->raid_disks; 3612 stripe_set_idx(sh->sector, conf, 0, sh); 3613 schedule_reconstruction(sh, &s, 1, 1); 3614 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) { 3615 clear_bit(STRIPE_EXPAND_READY, &sh->state); 3616 atomic_dec(&conf->reshape_stripes); 3617 wake_up(&conf->wait_for_overlap); 3618 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 3619 } 3620 3621 if (s.expanding && s.locked == 0 && 3622 !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) 3623 handle_stripe_expansion(conf, sh); 3624 3625 finish: 3626 /* wait for this device to become unblocked */ 3627 if (unlikely(s.blocked_rdev)) { 3628 if (conf->mddev->external) 3629 md_wait_for_blocked_rdev(s.blocked_rdev, 3630 conf->mddev); 3631 else 3632 /* Internal metadata will immediately 3633 * be written by raid5d, so we don't 3634 * need to wait here. 3635 */ 3636 rdev_dec_pending(s.blocked_rdev, 3637 conf->mddev); 3638 } 3639 3640 if (s.handle_bad_blocks) 3641 for (i = disks; i--; ) { 3642 struct md_rdev *rdev; 3643 struct r5dev *dev = &sh->dev[i]; 3644 if (test_and_clear_bit(R5_WriteError, &dev->flags)) { 3645 /* We own a safe reference to the rdev */ 3646 rdev = conf->disks[i].rdev; 3647 if (!rdev_set_badblocks(rdev, sh->sector, 3648 STRIPE_SECTORS, 0)) 3649 md_error(conf->mddev, rdev); 3650 rdev_dec_pending(rdev, conf->mddev); 3651 } 3652 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) { 3653 rdev = conf->disks[i].rdev; 3654 rdev_clear_badblocks(rdev, sh->sector, 3655 STRIPE_SECTORS, 0); 3656 rdev_dec_pending(rdev, conf->mddev); 3657 } 3658 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) { 3659 rdev = conf->disks[i].replacement; 3660 if (!rdev) 3661 /* rdev have been moved down */ 3662 rdev = conf->disks[i].rdev; 3663 rdev_clear_badblocks(rdev, sh->sector, 3664 STRIPE_SECTORS, 0); 3665 rdev_dec_pending(rdev, conf->mddev); 3666 } 3667 } 3668 3669 if (s.ops_request) 3670 raid_run_ops(sh, s.ops_request); 3671 3672 ops_run_io(sh, &s); 3673 3674 if (s.dec_preread_active) { 3675 /* We delay this until after ops_run_io so that if make_request 3676 * is waiting on a flush, it won't continue until the writes 3677 * have actually been submitted. 3678 */ 3679 atomic_dec(&conf->preread_active_stripes); 3680 if (atomic_read(&conf->preread_active_stripes) < 3681 IO_THRESHOLD) 3682 md_wakeup_thread(conf->mddev->thread); 3683 } 3684 3685 return_io(s.return_bi); 3686 3687 clear_bit_unlock(STRIPE_ACTIVE, &sh->state); 3688 } 3689 3690 static void raid5_activate_delayed(struct r5conf *conf) 3691 { 3692 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) { 3693 while (!list_empty(&conf->delayed_list)) { 3694 struct list_head *l = conf->delayed_list.next; 3695 struct stripe_head *sh; 3696 sh = list_entry(l, struct stripe_head, lru); 3697 list_del_init(l); 3698 clear_bit(STRIPE_DELAYED, &sh->state); 3699 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3700 atomic_inc(&conf->preread_active_stripes); 3701 list_add_tail(&sh->lru, &conf->hold_list); 3702 } 3703 } 3704 } 3705 3706 static void activate_bit_delay(struct r5conf *conf) 3707 { 3708 /* device_lock is held */ 3709 struct list_head head; 3710 list_add(&head, &conf->bitmap_list); 3711 list_del_init(&conf->bitmap_list); 3712 while (!list_empty(&head)) { 3713 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru); 3714 list_del_init(&sh->lru); 3715 atomic_inc(&sh->count); 3716 __release_stripe(conf, sh); 3717 } 3718 } 3719 3720 int md_raid5_congested(struct mddev *mddev, int bits) 3721 { 3722 struct r5conf *conf = mddev->private; 3723 3724 /* No difference between reads and writes. Just check 3725 * how busy the stripe_cache is 3726 */ 3727 3728 if (conf->inactive_blocked) 3729 return 1; 3730 if (conf->quiesce) 3731 return 1; 3732 if (list_empty_careful(&conf->inactive_list)) 3733 return 1; 3734 3735 return 0; 3736 } 3737 EXPORT_SYMBOL_GPL(md_raid5_congested); 3738 3739 static int raid5_congested(void *data, int bits) 3740 { 3741 struct mddev *mddev = data; 3742 3743 return mddev_congested(mddev, bits) || 3744 md_raid5_congested(mddev, bits); 3745 } 3746 3747 /* We want read requests to align with chunks where possible, 3748 * but write requests don't need to. 3749 */ 3750 static int raid5_mergeable_bvec(struct request_queue *q, 3751 struct bvec_merge_data *bvm, 3752 struct bio_vec *biovec) 3753 { 3754 struct mddev *mddev = q->queuedata; 3755 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); 3756 int max; 3757 unsigned int chunk_sectors = mddev->chunk_sectors; 3758 unsigned int bio_sectors = bvm->bi_size >> 9; 3759 3760 if ((bvm->bi_rw & 1) == WRITE) 3761 return biovec->bv_len; /* always allow writes to be mergeable */ 3762 3763 if (mddev->new_chunk_sectors < mddev->chunk_sectors) 3764 chunk_sectors = mddev->new_chunk_sectors; 3765 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9; 3766 if (max < 0) max = 0; 3767 if (max <= biovec->bv_len && bio_sectors == 0) 3768 return biovec->bv_len; 3769 else 3770 return max; 3771 } 3772 3773 3774 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio) 3775 { 3776 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev); 3777 unsigned int chunk_sectors = mddev->chunk_sectors; 3778 unsigned int bio_sectors = bio->bi_size >> 9; 3779 3780 if (mddev->new_chunk_sectors < mddev->chunk_sectors) 3781 chunk_sectors = mddev->new_chunk_sectors; 3782 return chunk_sectors >= 3783 ((sector & (chunk_sectors - 1)) + bio_sectors); 3784 } 3785 3786 /* 3787 * add bio to the retry LIFO ( in O(1) ... we are in interrupt ) 3788 * later sampled by raid5d. 3789 */ 3790 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf) 3791 { 3792 unsigned long flags; 3793 3794 spin_lock_irqsave(&conf->device_lock, flags); 3795 3796 bi->bi_next = conf->retry_read_aligned_list; 3797 conf->retry_read_aligned_list = bi; 3798 3799 spin_unlock_irqrestore(&conf->device_lock, flags); 3800 md_wakeup_thread(conf->mddev->thread); 3801 } 3802 3803 3804 static struct bio *remove_bio_from_retry(struct r5conf *conf) 3805 { 3806 struct bio *bi; 3807 3808 bi = conf->retry_read_aligned; 3809 if (bi) { 3810 conf->retry_read_aligned = NULL; 3811 return bi; 3812 } 3813 bi = conf->retry_read_aligned_list; 3814 if(bi) { 3815 conf->retry_read_aligned_list = bi->bi_next; 3816 bi->bi_next = NULL; 3817 /* 3818 * this sets the active strip count to 1 and the processed 3819 * strip count to zero (upper 8 bits) 3820 */ 3821 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */ 3822 } 3823 3824 return bi; 3825 } 3826 3827 3828 /* 3829 * The "raid5_align_endio" should check if the read succeeded and if it 3830 * did, call bio_endio on the original bio (having bio_put the new bio 3831 * first). 3832 * If the read failed.. 3833 */ 3834 static void raid5_align_endio(struct bio *bi, int error) 3835 { 3836 struct bio* raid_bi = bi->bi_private; 3837 struct mddev *mddev; 3838 struct r5conf *conf; 3839 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); 3840 struct md_rdev *rdev; 3841 3842 bio_put(bi); 3843 3844 rdev = (void*)raid_bi->bi_next; 3845 raid_bi->bi_next = NULL; 3846 mddev = rdev->mddev; 3847 conf = mddev->private; 3848 3849 rdev_dec_pending(rdev, conf->mddev); 3850 3851 if (!error && uptodate) { 3852 bio_endio(raid_bi, 0); 3853 if (atomic_dec_and_test(&conf->active_aligned_reads)) 3854 wake_up(&conf->wait_for_stripe); 3855 return; 3856 } 3857 3858 3859 pr_debug("raid5_align_endio : io error...handing IO for a retry\n"); 3860 3861 add_bio_to_retry(raid_bi, conf); 3862 } 3863 3864 static int bio_fits_rdev(struct bio *bi) 3865 { 3866 struct request_queue *q = bdev_get_queue(bi->bi_bdev); 3867 3868 if ((bi->bi_size>>9) > queue_max_sectors(q)) 3869 return 0; 3870 blk_recount_segments(q, bi); 3871 if (bi->bi_phys_segments > queue_max_segments(q)) 3872 return 0; 3873 3874 if (q->merge_bvec_fn) 3875 /* it's too hard to apply the merge_bvec_fn at this stage, 3876 * just just give up 3877 */ 3878 return 0; 3879 3880 return 1; 3881 } 3882 3883 3884 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio) 3885 { 3886 struct r5conf *conf = mddev->private; 3887 int dd_idx; 3888 struct bio* align_bi; 3889 struct md_rdev *rdev; 3890 sector_t end_sector; 3891 3892 if (!in_chunk_boundary(mddev, raid_bio)) { 3893 pr_debug("chunk_aligned_read : non aligned\n"); 3894 return 0; 3895 } 3896 /* 3897 * use bio_clone_mddev to make a copy of the bio 3898 */ 3899 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev); 3900 if (!align_bi) 3901 return 0; 3902 /* 3903 * set bi_end_io to a new function, and set bi_private to the 3904 * original bio. 3905 */ 3906 align_bi->bi_end_io = raid5_align_endio; 3907 align_bi->bi_private = raid_bio; 3908 /* 3909 * compute position 3910 */ 3911 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector, 3912 0, 3913 &dd_idx, NULL); 3914 3915 end_sector = align_bi->bi_sector + (align_bi->bi_size >> 9); 3916 rcu_read_lock(); 3917 rdev = rcu_dereference(conf->disks[dd_idx].replacement); 3918 if (!rdev || test_bit(Faulty, &rdev->flags) || 3919 rdev->recovery_offset < end_sector) { 3920 rdev = rcu_dereference(conf->disks[dd_idx].rdev); 3921 if (rdev && 3922 (test_bit(Faulty, &rdev->flags) || 3923 !(test_bit(In_sync, &rdev->flags) || 3924 rdev->recovery_offset >= end_sector))) 3925 rdev = NULL; 3926 } 3927 if (rdev) { 3928 sector_t first_bad; 3929 int bad_sectors; 3930 3931 atomic_inc(&rdev->nr_pending); 3932 rcu_read_unlock(); 3933 raid_bio->bi_next = (void*)rdev; 3934 align_bi->bi_bdev = rdev->bdev; 3935 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID); 3936 3937 if (!bio_fits_rdev(align_bi) || 3938 is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9, 3939 &first_bad, &bad_sectors)) { 3940 /* too big in some way, or has a known bad block */ 3941 bio_put(align_bi); 3942 rdev_dec_pending(rdev, mddev); 3943 return 0; 3944 } 3945 3946 /* No reshape active, so we can trust rdev->data_offset */ 3947 align_bi->bi_sector += rdev->data_offset; 3948 3949 spin_lock_irq(&conf->device_lock); 3950 wait_event_lock_irq(conf->wait_for_stripe, 3951 conf->quiesce == 0, 3952 conf->device_lock, /* nothing */); 3953 atomic_inc(&conf->active_aligned_reads); 3954 spin_unlock_irq(&conf->device_lock); 3955 3956 generic_make_request(align_bi); 3957 return 1; 3958 } else { 3959 rcu_read_unlock(); 3960 bio_put(align_bi); 3961 return 0; 3962 } 3963 } 3964 3965 /* __get_priority_stripe - get the next stripe to process 3966 * 3967 * Full stripe writes are allowed to pass preread active stripes up until 3968 * the bypass_threshold is exceeded. In general the bypass_count 3969 * increments when the handle_list is handled before the hold_list; however, it 3970 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a 3971 * stripe with in flight i/o. The bypass_count will be reset when the 3972 * head of the hold_list has changed, i.e. the head was promoted to the 3973 * handle_list. 3974 */ 3975 static struct stripe_head *__get_priority_stripe(struct r5conf *conf) 3976 { 3977 struct stripe_head *sh; 3978 3979 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n", 3980 __func__, 3981 list_empty(&conf->handle_list) ? "empty" : "busy", 3982 list_empty(&conf->hold_list) ? "empty" : "busy", 3983 atomic_read(&conf->pending_full_writes), conf->bypass_count); 3984 3985 if (!list_empty(&conf->handle_list)) { 3986 sh = list_entry(conf->handle_list.next, typeof(*sh), lru); 3987 3988 if (list_empty(&conf->hold_list)) 3989 conf->bypass_count = 0; 3990 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) { 3991 if (conf->hold_list.next == conf->last_hold) 3992 conf->bypass_count++; 3993 else { 3994 conf->last_hold = conf->hold_list.next; 3995 conf->bypass_count -= conf->bypass_threshold; 3996 if (conf->bypass_count < 0) 3997 conf->bypass_count = 0; 3998 } 3999 } 4000 } else if (!list_empty(&conf->hold_list) && 4001 ((conf->bypass_threshold && 4002 conf->bypass_count > conf->bypass_threshold) || 4003 atomic_read(&conf->pending_full_writes) == 0)) { 4004 sh = list_entry(conf->hold_list.next, 4005 typeof(*sh), lru); 4006 conf->bypass_count -= conf->bypass_threshold; 4007 if (conf->bypass_count < 0) 4008 conf->bypass_count = 0; 4009 } else 4010 return NULL; 4011 4012 list_del_init(&sh->lru); 4013 atomic_inc(&sh->count); 4014 BUG_ON(atomic_read(&sh->count) != 1); 4015 return sh; 4016 } 4017 4018 struct raid5_plug_cb { 4019 struct blk_plug_cb cb; 4020 struct list_head list; 4021 }; 4022 4023 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule) 4024 { 4025 struct raid5_plug_cb *cb = container_of( 4026 blk_cb, struct raid5_plug_cb, cb); 4027 struct stripe_head *sh; 4028 struct mddev *mddev = cb->cb.data; 4029 struct r5conf *conf = mddev->private; 4030 4031 if (cb->list.next && !list_empty(&cb->list)) { 4032 spin_lock_irq(&conf->device_lock); 4033 while (!list_empty(&cb->list)) { 4034 sh = list_first_entry(&cb->list, struct stripe_head, lru); 4035 list_del_init(&sh->lru); 4036 /* 4037 * avoid race release_stripe_plug() sees 4038 * STRIPE_ON_UNPLUG_LIST clear but the stripe 4039 * is still in our list 4040 */ 4041 smp_mb__before_clear_bit(); 4042 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state); 4043 __release_stripe(conf, sh); 4044 } 4045 spin_unlock_irq(&conf->device_lock); 4046 } 4047 kfree(cb); 4048 } 4049 4050 static void release_stripe_plug(struct mddev *mddev, 4051 struct stripe_head *sh) 4052 { 4053 struct blk_plug_cb *blk_cb = blk_check_plugged( 4054 raid5_unplug, mddev, 4055 sizeof(struct raid5_plug_cb)); 4056 struct raid5_plug_cb *cb; 4057 4058 if (!blk_cb) { 4059 release_stripe(sh); 4060 return; 4061 } 4062 4063 cb = container_of(blk_cb, struct raid5_plug_cb, cb); 4064 4065 if (cb->list.next == NULL) 4066 INIT_LIST_HEAD(&cb->list); 4067 4068 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)) 4069 list_add_tail(&sh->lru, &cb->list); 4070 else 4071 release_stripe(sh); 4072 } 4073 4074 static void make_request(struct mddev *mddev, struct bio * bi) 4075 { 4076 struct r5conf *conf = mddev->private; 4077 int dd_idx; 4078 sector_t new_sector; 4079 sector_t logical_sector, last_sector; 4080 struct stripe_head *sh; 4081 const int rw = bio_data_dir(bi); 4082 int remaining; 4083 4084 if (unlikely(bi->bi_rw & REQ_FLUSH)) { 4085 md_flush_request(mddev, bi); 4086 return; 4087 } 4088 4089 md_write_start(mddev, bi); 4090 4091 if (rw == READ && 4092 mddev->reshape_position == MaxSector && 4093 chunk_aligned_read(mddev,bi)) 4094 return; 4095 4096 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1); 4097 last_sector = bi->bi_sector + (bi->bi_size>>9); 4098 bi->bi_next = NULL; 4099 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */ 4100 4101 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) { 4102 DEFINE_WAIT(w); 4103 int previous; 4104 4105 retry: 4106 previous = 0; 4107 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE); 4108 if (unlikely(conf->reshape_progress != MaxSector)) { 4109 /* spinlock is needed as reshape_progress may be 4110 * 64bit on a 32bit platform, and so it might be 4111 * possible to see a half-updated value 4112 * Of course reshape_progress could change after 4113 * the lock is dropped, so once we get a reference 4114 * to the stripe that we think it is, we will have 4115 * to check again. 4116 */ 4117 spin_lock_irq(&conf->device_lock); 4118 if (mddev->reshape_backwards 4119 ? logical_sector < conf->reshape_progress 4120 : logical_sector >= conf->reshape_progress) { 4121 previous = 1; 4122 } else { 4123 if (mddev->reshape_backwards 4124 ? logical_sector < conf->reshape_safe 4125 : logical_sector >= conf->reshape_safe) { 4126 spin_unlock_irq(&conf->device_lock); 4127 schedule(); 4128 goto retry; 4129 } 4130 } 4131 spin_unlock_irq(&conf->device_lock); 4132 } 4133 4134 new_sector = raid5_compute_sector(conf, logical_sector, 4135 previous, 4136 &dd_idx, NULL); 4137 pr_debug("raid456: make_request, sector %llu logical %llu\n", 4138 (unsigned long long)new_sector, 4139 (unsigned long long)logical_sector); 4140 4141 sh = get_active_stripe(conf, new_sector, previous, 4142 (bi->bi_rw&RWA_MASK), 0); 4143 if (sh) { 4144 if (unlikely(previous)) { 4145 /* expansion might have moved on while waiting for a 4146 * stripe, so we must do the range check again. 4147 * Expansion could still move past after this 4148 * test, but as we are holding a reference to 4149 * 'sh', we know that if that happens, 4150 * STRIPE_EXPANDING will get set and the expansion 4151 * won't proceed until we finish with the stripe. 4152 */ 4153 int must_retry = 0; 4154 spin_lock_irq(&conf->device_lock); 4155 if (mddev->reshape_backwards 4156 ? logical_sector >= conf->reshape_progress 4157 : logical_sector < conf->reshape_progress) 4158 /* mismatch, need to try again */ 4159 must_retry = 1; 4160 spin_unlock_irq(&conf->device_lock); 4161 if (must_retry) { 4162 release_stripe(sh); 4163 schedule(); 4164 goto retry; 4165 } 4166 } 4167 4168 if (rw == WRITE && 4169 logical_sector >= mddev->suspend_lo && 4170 logical_sector < mddev->suspend_hi) { 4171 release_stripe(sh); 4172 /* As the suspend_* range is controlled by 4173 * userspace, we want an interruptible 4174 * wait. 4175 */ 4176 flush_signals(current); 4177 prepare_to_wait(&conf->wait_for_overlap, 4178 &w, TASK_INTERRUPTIBLE); 4179 if (logical_sector >= mddev->suspend_lo && 4180 logical_sector < mddev->suspend_hi) 4181 schedule(); 4182 goto retry; 4183 } 4184 4185 if (test_bit(STRIPE_EXPANDING, &sh->state) || 4186 !add_stripe_bio(sh, bi, dd_idx, rw)) { 4187 /* Stripe is busy expanding or 4188 * add failed due to overlap. Flush everything 4189 * and wait a while 4190 */ 4191 md_wakeup_thread(mddev->thread); 4192 release_stripe(sh); 4193 schedule(); 4194 goto retry; 4195 } 4196 finish_wait(&conf->wait_for_overlap, &w); 4197 set_bit(STRIPE_HANDLE, &sh->state); 4198 clear_bit(STRIPE_DELAYED, &sh->state); 4199 if ((bi->bi_rw & REQ_SYNC) && 4200 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4201 atomic_inc(&conf->preread_active_stripes); 4202 release_stripe_plug(mddev, sh); 4203 } else { 4204 /* cannot get stripe for read-ahead, just give-up */ 4205 clear_bit(BIO_UPTODATE, &bi->bi_flags); 4206 finish_wait(&conf->wait_for_overlap, &w); 4207 break; 4208 } 4209 } 4210 4211 remaining = raid5_dec_bi_active_stripes(bi); 4212 if (remaining == 0) { 4213 4214 if ( rw == WRITE ) 4215 md_write_end(mddev); 4216 4217 bio_endio(bi, 0); 4218 } 4219 } 4220 4221 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks); 4222 4223 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped) 4224 { 4225 /* reshaping is quite different to recovery/resync so it is 4226 * handled quite separately ... here. 4227 * 4228 * On each call to sync_request, we gather one chunk worth of 4229 * destination stripes and flag them as expanding. 4230 * Then we find all the source stripes and request reads. 4231 * As the reads complete, handle_stripe will copy the data 4232 * into the destination stripe and release that stripe. 4233 */ 4234 struct r5conf *conf = mddev->private; 4235 struct stripe_head *sh; 4236 sector_t first_sector, last_sector; 4237 int raid_disks = conf->previous_raid_disks; 4238 int data_disks = raid_disks - conf->max_degraded; 4239 int new_data_disks = conf->raid_disks - conf->max_degraded; 4240 int i; 4241 int dd_idx; 4242 sector_t writepos, readpos, safepos; 4243 sector_t stripe_addr; 4244 int reshape_sectors; 4245 struct list_head stripes; 4246 4247 if (sector_nr == 0) { 4248 /* If restarting in the middle, skip the initial sectors */ 4249 if (mddev->reshape_backwards && 4250 conf->reshape_progress < raid5_size(mddev, 0, 0)) { 4251 sector_nr = raid5_size(mddev, 0, 0) 4252 - conf->reshape_progress; 4253 } else if (!mddev->reshape_backwards && 4254 conf->reshape_progress > 0) 4255 sector_nr = conf->reshape_progress; 4256 sector_div(sector_nr, new_data_disks); 4257 if (sector_nr) { 4258 mddev->curr_resync_completed = sector_nr; 4259 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4260 *skipped = 1; 4261 return sector_nr; 4262 } 4263 } 4264 4265 /* We need to process a full chunk at a time. 4266 * If old and new chunk sizes differ, we need to process the 4267 * largest of these 4268 */ 4269 if (mddev->new_chunk_sectors > mddev->chunk_sectors) 4270 reshape_sectors = mddev->new_chunk_sectors; 4271 else 4272 reshape_sectors = mddev->chunk_sectors; 4273 4274 /* We update the metadata at least every 10 seconds, or when 4275 * the data about to be copied would over-write the source of 4276 * the data at the front of the range. i.e. one new_stripe 4277 * along from reshape_progress new_maps to after where 4278 * reshape_safe old_maps to 4279 */ 4280 writepos = conf->reshape_progress; 4281 sector_div(writepos, new_data_disks); 4282 readpos = conf->reshape_progress; 4283 sector_div(readpos, data_disks); 4284 safepos = conf->reshape_safe; 4285 sector_div(safepos, data_disks); 4286 if (mddev->reshape_backwards) { 4287 writepos -= min_t(sector_t, reshape_sectors, writepos); 4288 readpos += reshape_sectors; 4289 safepos += reshape_sectors; 4290 } else { 4291 writepos += reshape_sectors; 4292 readpos -= min_t(sector_t, reshape_sectors, readpos); 4293 safepos -= min_t(sector_t, reshape_sectors, safepos); 4294 } 4295 4296 /* Having calculated the 'writepos' possibly use it 4297 * to set 'stripe_addr' which is where we will write to. 4298 */ 4299 if (mddev->reshape_backwards) { 4300 BUG_ON(conf->reshape_progress == 0); 4301 stripe_addr = writepos; 4302 BUG_ON((mddev->dev_sectors & 4303 ~((sector_t)reshape_sectors - 1)) 4304 - reshape_sectors - stripe_addr 4305 != sector_nr); 4306 } else { 4307 BUG_ON(writepos != sector_nr + reshape_sectors); 4308 stripe_addr = sector_nr; 4309 } 4310 4311 /* 'writepos' is the most advanced device address we might write. 4312 * 'readpos' is the least advanced device address we might read. 4313 * 'safepos' is the least address recorded in the metadata as having 4314 * been reshaped. 4315 * If there is a min_offset_diff, these are adjusted either by 4316 * increasing the safepos/readpos if diff is negative, or 4317 * increasing writepos if diff is positive. 4318 * If 'readpos' is then behind 'writepos', there is no way that we can 4319 * ensure safety in the face of a crash - that must be done by userspace 4320 * making a backup of the data. So in that case there is no particular 4321 * rush to update metadata. 4322 * Otherwise if 'safepos' is behind 'writepos', then we really need to 4323 * update the metadata to advance 'safepos' to match 'readpos' so that 4324 * we can be safe in the event of a crash. 4325 * So we insist on updating metadata if safepos is behind writepos and 4326 * readpos is beyond writepos. 4327 * In any case, update the metadata every 10 seconds. 4328 * Maybe that number should be configurable, but I'm not sure it is 4329 * worth it.... maybe it could be a multiple of safemode_delay??? 4330 */ 4331 if (conf->min_offset_diff < 0) { 4332 safepos += -conf->min_offset_diff; 4333 readpos += -conf->min_offset_diff; 4334 } else 4335 writepos += conf->min_offset_diff; 4336 4337 if ((mddev->reshape_backwards 4338 ? (safepos > writepos && readpos < writepos) 4339 : (safepos < writepos && readpos > writepos)) || 4340 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 4341 /* Cannot proceed until we've updated the superblock... */ 4342 wait_event(conf->wait_for_overlap, 4343 atomic_read(&conf->reshape_stripes)==0); 4344 mddev->reshape_position = conf->reshape_progress; 4345 mddev->curr_resync_completed = sector_nr; 4346 conf->reshape_checkpoint = jiffies; 4347 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4348 md_wakeup_thread(mddev->thread); 4349 wait_event(mddev->sb_wait, mddev->flags == 0 || 4350 kthread_should_stop()); 4351 spin_lock_irq(&conf->device_lock); 4352 conf->reshape_safe = mddev->reshape_position; 4353 spin_unlock_irq(&conf->device_lock); 4354 wake_up(&conf->wait_for_overlap); 4355 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4356 } 4357 4358 INIT_LIST_HEAD(&stripes); 4359 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) { 4360 int j; 4361 int skipped_disk = 0; 4362 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1); 4363 set_bit(STRIPE_EXPANDING, &sh->state); 4364 atomic_inc(&conf->reshape_stripes); 4365 /* If any of this stripe is beyond the end of the old 4366 * array, then we need to zero those blocks 4367 */ 4368 for (j=sh->disks; j--;) { 4369 sector_t s; 4370 if (j == sh->pd_idx) 4371 continue; 4372 if (conf->level == 6 && 4373 j == sh->qd_idx) 4374 continue; 4375 s = compute_blocknr(sh, j, 0); 4376 if (s < raid5_size(mddev, 0, 0)) { 4377 skipped_disk = 1; 4378 continue; 4379 } 4380 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE); 4381 set_bit(R5_Expanded, &sh->dev[j].flags); 4382 set_bit(R5_UPTODATE, &sh->dev[j].flags); 4383 } 4384 if (!skipped_disk) { 4385 set_bit(STRIPE_EXPAND_READY, &sh->state); 4386 set_bit(STRIPE_HANDLE, &sh->state); 4387 } 4388 list_add(&sh->lru, &stripes); 4389 } 4390 spin_lock_irq(&conf->device_lock); 4391 if (mddev->reshape_backwards) 4392 conf->reshape_progress -= reshape_sectors * new_data_disks; 4393 else 4394 conf->reshape_progress += reshape_sectors * new_data_disks; 4395 spin_unlock_irq(&conf->device_lock); 4396 /* Ok, those stripe are ready. We can start scheduling 4397 * reads on the source stripes. 4398 * The source stripes are determined by mapping the first and last 4399 * block on the destination stripes. 4400 */ 4401 first_sector = 4402 raid5_compute_sector(conf, stripe_addr*(new_data_disks), 4403 1, &dd_idx, NULL); 4404 last_sector = 4405 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors) 4406 * new_data_disks - 1), 4407 1, &dd_idx, NULL); 4408 if (last_sector >= mddev->dev_sectors) 4409 last_sector = mddev->dev_sectors - 1; 4410 while (first_sector <= last_sector) { 4411 sh = get_active_stripe(conf, first_sector, 1, 0, 1); 4412 set_bit(STRIPE_EXPAND_SOURCE, &sh->state); 4413 set_bit(STRIPE_HANDLE, &sh->state); 4414 release_stripe(sh); 4415 first_sector += STRIPE_SECTORS; 4416 } 4417 /* Now that the sources are clearly marked, we can release 4418 * the destination stripes 4419 */ 4420 while (!list_empty(&stripes)) { 4421 sh = list_entry(stripes.next, struct stripe_head, lru); 4422 list_del_init(&sh->lru); 4423 release_stripe(sh); 4424 } 4425 /* If this takes us to the resync_max point where we have to pause, 4426 * then we need to write out the superblock. 4427 */ 4428 sector_nr += reshape_sectors; 4429 if ((sector_nr - mddev->curr_resync_completed) * 2 4430 >= mddev->resync_max - mddev->curr_resync_completed) { 4431 /* Cannot proceed until we've updated the superblock... */ 4432 wait_event(conf->wait_for_overlap, 4433 atomic_read(&conf->reshape_stripes) == 0); 4434 mddev->reshape_position = conf->reshape_progress; 4435 mddev->curr_resync_completed = sector_nr; 4436 conf->reshape_checkpoint = jiffies; 4437 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4438 md_wakeup_thread(mddev->thread); 4439 wait_event(mddev->sb_wait, 4440 !test_bit(MD_CHANGE_DEVS, &mddev->flags) 4441 || kthread_should_stop()); 4442 spin_lock_irq(&conf->device_lock); 4443 conf->reshape_safe = mddev->reshape_position; 4444 spin_unlock_irq(&conf->device_lock); 4445 wake_up(&conf->wait_for_overlap); 4446 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4447 } 4448 return reshape_sectors; 4449 } 4450 4451 /* FIXME go_faster isn't used */ 4452 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster) 4453 { 4454 struct r5conf *conf = mddev->private; 4455 struct stripe_head *sh; 4456 sector_t max_sector = mddev->dev_sectors; 4457 sector_t sync_blocks; 4458 int still_degraded = 0; 4459 int i; 4460 4461 if (sector_nr >= max_sector) { 4462 /* just being told to finish up .. nothing much to do */ 4463 4464 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 4465 end_reshape(conf); 4466 return 0; 4467 } 4468 4469 if (mddev->curr_resync < max_sector) /* aborted */ 4470 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 4471 &sync_blocks, 1); 4472 else /* completed sync */ 4473 conf->fullsync = 0; 4474 bitmap_close_sync(mddev->bitmap); 4475 4476 return 0; 4477 } 4478 4479 /* Allow raid5_quiesce to complete */ 4480 wait_event(conf->wait_for_overlap, conf->quiesce != 2); 4481 4482 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 4483 return reshape_request(mddev, sector_nr, skipped); 4484 4485 /* No need to check resync_max as we never do more than one 4486 * stripe, and as resync_max will always be on a chunk boundary, 4487 * if the check in md_do_sync didn't fire, there is no chance 4488 * of overstepping resync_max here 4489 */ 4490 4491 /* if there is too many failed drives and we are trying 4492 * to resync, then assert that we are finished, because there is 4493 * nothing we can do. 4494 */ 4495 if (mddev->degraded >= conf->max_degraded && 4496 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 4497 sector_t rv = mddev->dev_sectors - sector_nr; 4498 *skipped = 1; 4499 return rv; 4500 } 4501 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 4502 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 4503 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) { 4504 /* we can skip this block, and probably more */ 4505 sync_blocks /= STRIPE_SECTORS; 4506 *skipped = 1; 4507 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */ 4508 } 4509 4510 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 4511 4512 sh = get_active_stripe(conf, sector_nr, 0, 1, 0); 4513 if (sh == NULL) { 4514 sh = get_active_stripe(conf, sector_nr, 0, 0, 0); 4515 /* make sure we don't swamp the stripe cache if someone else 4516 * is trying to get access 4517 */ 4518 schedule_timeout_uninterruptible(1); 4519 } 4520 /* Need to check if array will still be degraded after recovery/resync 4521 * We don't need to check the 'failed' flag as when that gets set, 4522 * recovery aborts. 4523 */ 4524 for (i = 0; i < conf->raid_disks; i++) 4525 if (conf->disks[i].rdev == NULL) 4526 still_degraded = 1; 4527 4528 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded); 4529 4530 set_bit(STRIPE_SYNC_REQUESTED, &sh->state); 4531 4532 handle_stripe(sh); 4533 release_stripe(sh); 4534 4535 return STRIPE_SECTORS; 4536 } 4537 4538 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio) 4539 { 4540 /* We may not be able to submit a whole bio at once as there 4541 * may not be enough stripe_heads available. 4542 * We cannot pre-allocate enough stripe_heads as we may need 4543 * more than exist in the cache (if we allow ever large chunks). 4544 * So we do one stripe head at a time and record in 4545 * ->bi_hw_segments how many have been done. 4546 * 4547 * We *know* that this entire raid_bio is in one chunk, so 4548 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector. 4549 */ 4550 struct stripe_head *sh; 4551 int dd_idx; 4552 sector_t sector, logical_sector, last_sector; 4553 int scnt = 0; 4554 int remaining; 4555 int handled = 0; 4556 4557 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1); 4558 sector = raid5_compute_sector(conf, logical_sector, 4559 0, &dd_idx, NULL); 4560 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9); 4561 4562 for (; logical_sector < last_sector; 4563 logical_sector += STRIPE_SECTORS, 4564 sector += STRIPE_SECTORS, 4565 scnt++) { 4566 4567 if (scnt < raid5_bi_processed_stripes(raid_bio)) 4568 /* already done this stripe */ 4569 continue; 4570 4571 sh = get_active_stripe(conf, sector, 0, 1, 0); 4572 4573 if (!sh) { 4574 /* failed to get a stripe - must wait */ 4575 raid5_set_bi_processed_stripes(raid_bio, scnt); 4576 conf->retry_read_aligned = raid_bio; 4577 return handled; 4578 } 4579 4580 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) { 4581 release_stripe(sh); 4582 raid5_set_bi_processed_stripes(raid_bio, scnt); 4583 conf->retry_read_aligned = raid_bio; 4584 return handled; 4585 } 4586 4587 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags); 4588 handle_stripe(sh); 4589 release_stripe(sh); 4590 handled++; 4591 } 4592 remaining = raid5_dec_bi_active_stripes(raid_bio); 4593 if (remaining == 0) 4594 bio_endio(raid_bio, 0); 4595 if (atomic_dec_and_test(&conf->active_aligned_reads)) 4596 wake_up(&conf->wait_for_stripe); 4597 return handled; 4598 } 4599 4600 #define MAX_STRIPE_BATCH 8 4601 static int handle_active_stripes(struct r5conf *conf) 4602 { 4603 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh; 4604 int i, batch_size = 0; 4605 4606 while (batch_size < MAX_STRIPE_BATCH && 4607 (sh = __get_priority_stripe(conf)) != NULL) 4608 batch[batch_size++] = sh; 4609 4610 if (batch_size == 0) 4611 return batch_size; 4612 spin_unlock_irq(&conf->device_lock); 4613 4614 for (i = 0; i < batch_size; i++) 4615 handle_stripe(batch[i]); 4616 4617 cond_resched(); 4618 4619 spin_lock_irq(&conf->device_lock); 4620 for (i = 0; i < batch_size; i++) 4621 __release_stripe(conf, batch[i]); 4622 return batch_size; 4623 } 4624 4625 /* 4626 * This is our raid5 kernel thread. 4627 * 4628 * We scan the hash table for stripes which can be handled now. 4629 * During the scan, completed stripes are saved for us by the interrupt 4630 * handler, so that they will not have to wait for our next wakeup. 4631 */ 4632 static void raid5d(struct mddev *mddev) 4633 { 4634 struct r5conf *conf = mddev->private; 4635 int handled; 4636 struct blk_plug plug; 4637 4638 pr_debug("+++ raid5d active\n"); 4639 4640 md_check_recovery(mddev); 4641 4642 blk_start_plug(&plug); 4643 handled = 0; 4644 spin_lock_irq(&conf->device_lock); 4645 while (1) { 4646 struct bio *bio; 4647 int batch_size; 4648 4649 if ( 4650 !list_empty(&conf->bitmap_list)) { 4651 /* Now is a good time to flush some bitmap updates */ 4652 conf->seq_flush++; 4653 spin_unlock_irq(&conf->device_lock); 4654 bitmap_unplug(mddev->bitmap); 4655 spin_lock_irq(&conf->device_lock); 4656 conf->seq_write = conf->seq_flush; 4657 activate_bit_delay(conf); 4658 } 4659 raid5_activate_delayed(conf); 4660 4661 while ((bio = remove_bio_from_retry(conf))) { 4662 int ok; 4663 spin_unlock_irq(&conf->device_lock); 4664 ok = retry_aligned_read(conf, bio); 4665 spin_lock_irq(&conf->device_lock); 4666 if (!ok) 4667 break; 4668 handled++; 4669 } 4670 4671 batch_size = handle_active_stripes(conf); 4672 if (!batch_size) 4673 break; 4674 handled += batch_size; 4675 4676 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) { 4677 spin_unlock_irq(&conf->device_lock); 4678 md_check_recovery(mddev); 4679 spin_lock_irq(&conf->device_lock); 4680 } 4681 } 4682 pr_debug("%d stripes handled\n", handled); 4683 4684 spin_unlock_irq(&conf->device_lock); 4685 4686 async_tx_issue_pending_all(); 4687 blk_finish_plug(&plug); 4688 4689 pr_debug("--- raid5d inactive\n"); 4690 } 4691 4692 static ssize_t 4693 raid5_show_stripe_cache_size(struct mddev *mddev, char *page) 4694 { 4695 struct r5conf *conf = mddev->private; 4696 if (conf) 4697 return sprintf(page, "%d\n", conf->max_nr_stripes); 4698 else 4699 return 0; 4700 } 4701 4702 int 4703 raid5_set_cache_size(struct mddev *mddev, int size) 4704 { 4705 struct r5conf *conf = mddev->private; 4706 int err; 4707 4708 if (size <= 16 || size > 32768) 4709 return -EINVAL; 4710 while (size < conf->max_nr_stripes) { 4711 if (drop_one_stripe(conf)) 4712 conf->max_nr_stripes--; 4713 else 4714 break; 4715 } 4716 err = md_allow_write(mddev); 4717 if (err) 4718 return err; 4719 while (size > conf->max_nr_stripes) { 4720 if (grow_one_stripe(conf)) 4721 conf->max_nr_stripes++; 4722 else break; 4723 } 4724 return 0; 4725 } 4726 EXPORT_SYMBOL(raid5_set_cache_size); 4727 4728 static ssize_t 4729 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len) 4730 { 4731 struct r5conf *conf = mddev->private; 4732 unsigned long new; 4733 int err; 4734 4735 if (len >= PAGE_SIZE) 4736 return -EINVAL; 4737 if (!conf) 4738 return -ENODEV; 4739 4740 if (strict_strtoul(page, 10, &new)) 4741 return -EINVAL; 4742 err = raid5_set_cache_size(mddev, new); 4743 if (err) 4744 return err; 4745 return len; 4746 } 4747 4748 static struct md_sysfs_entry 4749 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR, 4750 raid5_show_stripe_cache_size, 4751 raid5_store_stripe_cache_size); 4752 4753 static ssize_t 4754 raid5_show_preread_threshold(struct mddev *mddev, char *page) 4755 { 4756 struct r5conf *conf = mddev->private; 4757 if (conf) 4758 return sprintf(page, "%d\n", conf->bypass_threshold); 4759 else 4760 return 0; 4761 } 4762 4763 static ssize_t 4764 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len) 4765 { 4766 struct r5conf *conf = mddev->private; 4767 unsigned long new; 4768 if (len >= PAGE_SIZE) 4769 return -EINVAL; 4770 if (!conf) 4771 return -ENODEV; 4772 4773 if (strict_strtoul(page, 10, &new)) 4774 return -EINVAL; 4775 if (new > conf->max_nr_stripes) 4776 return -EINVAL; 4777 conf->bypass_threshold = new; 4778 return len; 4779 } 4780 4781 static struct md_sysfs_entry 4782 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold, 4783 S_IRUGO | S_IWUSR, 4784 raid5_show_preread_threshold, 4785 raid5_store_preread_threshold); 4786 4787 static ssize_t 4788 stripe_cache_active_show(struct mddev *mddev, char *page) 4789 { 4790 struct r5conf *conf = mddev->private; 4791 if (conf) 4792 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes)); 4793 else 4794 return 0; 4795 } 4796 4797 static struct md_sysfs_entry 4798 raid5_stripecache_active = __ATTR_RO(stripe_cache_active); 4799 4800 static struct attribute *raid5_attrs[] = { 4801 &raid5_stripecache_size.attr, 4802 &raid5_stripecache_active.attr, 4803 &raid5_preread_bypass_threshold.attr, 4804 NULL, 4805 }; 4806 static struct attribute_group raid5_attrs_group = { 4807 .name = NULL, 4808 .attrs = raid5_attrs, 4809 }; 4810 4811 static sector_t 4812 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks) 4813 { 4814 struct r5conf *conf = mddev->private; 4815 4816 if (!sectors) 4817 sectors = mddev->dev_sectors; 4818 if (!raid_disks) 4819 /* size is defined by the smallest of previous and new size */ 4820 raid_disks = min(conf->raid_disks, conf->previous_raid_disks); 4821 4822 sectors &= ~((sector_t)mddev->chunk_sectors - 1); 4823 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1); 4824 return sectors * (raid_disks - conf->max_degraded); 4825 } 4826 4827 static void raid5_free_percpu(struct r5conf *conf) 4828 { 4829 struct raid5_percpu *percpu; 4830 unsigned long cpu; 4831 4832 if (!conf->percpu) 4833 return; 4834 4835 get_online_cpus(); 4836 for_each_possible_cpu(cpu) { 4837 percpu = per_cpu_ptr(conf->percpu, cpu); 4838 safe_put_page(percpu->spare_page); 4839 kfree(percpu->scribble); 4840 } 4841 #ifdef CONFIG_HOTPLUG_CPU 4842 unregister_cpu_notifier(&conf->cpu_notify); 4843 #endif 4844 put_online_cpus(); 4845 4846 free_percpu(conf->percpu); 4847 } 4848 4849 static void free_conf(struct r5conf *conf) 4850 { 4851 shrink_stripes(conf); 4852 raid5_free_percpu(conf); 4853 kfree(conf->disks); 4854 kfree(conf->stripe_hashtbl); 4855 kfree(conf); 4856 } 4857 4858 #ifdef CONFIG_HOTPLUG_CPU 4859 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action, 4860 void *hcpu) 4861 { 4862 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify); 4863 long cpu = (long)hcpu; 4864 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu); 4865 4866 switch (action) { 4867 case CPU_UP_PREPARE: 4868 case CPU_UP_PREPARE_FROZEN: 4869 if (conf->level == 6 && !percpu->spare_page) 4870 percpu->spare_page = alloc_page(GFP_KERNEL); 4871 if (!percpu->scribble) 4872 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL); 4873 4874 if (!percpu->scribble || 4875 (conf->level == 6 && !percpu->spare_page)) { 4876 safe_put_page(percpu->spare_page); 4877 kfree(percpu->scribble); 4878 pr_err("%s: failed memory allocation for cpu%ld\n", 4879 __func__, cpu); 4880 return notifier_from_errno(-ENOMEM); 4881 } 4882 break; 4883 case CPU_DEAD: 4884 case CPU_DEAD_FROZEN: 4885 safe_put_page(percpu->spare_page); 4886 kfree(percpu->scribble); 4887 percpu->spare_page = NULL; 4888 percpu->scribble = NULL; 4889 break; 4890 default: 4891 break; 4892 } 4893 return NOTIFY_OK; 4894 } 4895 #endif 4896 4897 static int raid5_alloc_percpu(struct r5conf *conf) 4898 { 4899 unsigned long cpu; 4900 struct page *spare_page; 4901 struct raid5_percpu __percpu *allcpus; 4902 void *scribble; 4903 int err; 4904 4905 allcpus = alloc_percpu(struct raid5_percpu); 4906 if (!allcpus) 4907 return -ENOMEM; 4908 conf->percpu = allcpus; 4909 4910 get_online_cpus(); 4911 err = 0; 4912 for_each_present_cpu(cpu) { 4913 if (conf->level == 6) { 4914 spare_page = alloc_page(GFP_KERNEL); 4915 if (!spare_page) { 4916 err = -ENOMEM; 4917 break; 4918 } 4919 per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page; 4920 } 4921 scribble = kmalloc(conf->scribble_len, GFP_KERNEL); 4922 if (!scribble) { 4923 err = -ENOMEM; 4924 break; 4925 } 4926 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble; 4927 } 4928 #ifdef CONFIG_HOTPLUG_CPU 4929 conf->cpu_notify.notifier_call = raid456_cpu_notify; 4930 conf->cpu_notify.priority = 0; 4931 if (err == 0) 4932 err = register_cpu_notifier(&conf->cpu_notify); 4933 #endif 4934 put_online_cpus(); 4935 4936 return err; 4937 } 4938 4939 static struct r5conf *setup_conf(struct mddev *mddev) 4940 { 4941 struct r5conf *conf; 4942 int raid_disk, memory, max_disks; 4943 struct md_rdev *rdev; 4944 struct disk_info *disk; 4945 char pers_name[6]; 4946 4947 if (mddev->new_level != 5 4948 && mddev->new_level != 4 4949 && mddev->new_level != 6) { 4950 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n", 4951 mdname(mddev), mddev->new_level); 4952 return ERR_PTR(-EIO); 4953 } 4954 if ((mddev->new_level == 5 4955 && !algorithm_valid_raid5(mddev->new_layout)) || 4956 (mddev->new_level == 6 4957 && !algorithm_valid_raid6(mddev->new_layout))) { 4958 printk(KERN_ERR "md/raid:%s: layout %d not supported\n", 4959 mdname(mddev), mddev->new_layout); 4960 return ERR_PTR(-EIO); 4961 } 4962 if (mddev->new_level == 6 && mddev->raid_disks < 4) { 4963 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n", 4964 mdname(mddev), mddev->raid_disks); 4965 return ERR_PTR(-EINVAL); 4966 } 4967 4968 if (!mddev->new_chunk_sectors || 4969 (mddev->new_chunk_sectors << 9) % PAGE_SIZE || 4970 !is_power_of_2(mddev->new_chunk_sectors)) { 4971 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n", 4972 mdname(mddev), mddev->new_chunk_sectors << 9); 4973 return ERR_PTR(-EINVAL); 4974 } 4975 4976 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL); 4977 if (conf == NULL) 4978 goto abort; 4979 spin_lock_init(&conf->device_lock); 4980 init_waitqueue_head(&conf->wait_for_stripe); 4981 init_waitqueue_head(&conf->wait_for_overlap); 4982 INIT_LIST_HEAD(&conf->handle_list); 4983 INIT_LIST_HEAD(&conf->hold_list); 4984 INIT_LIST_HEAD(&conf->delayed_list); 4985 INIT_LIST_HEAD(&conf->bitmap_list); 4986 INIT_LIST_HEAD(&conf->inactive_list); 4987 atomic_set(&conf->active_stripes, 0); 4988 atomic_set(&conf->preread_active_stripes, 0); 4989 atomic_set(&conf->active_aligned_reads, 0); 4990 conf->bypass_threshold = BYPASS_THRESHOLD; 4991 conf->recovery_disabled = mddev->recovery_disabled - 1; 4992 4993 conf->raid_disks = mddev->raid_disks; 4994 if (mddev->reshape_position == MaxSector) 4995 conf->previous_raid_disks = mddev->raid_disks; 4996 else 4997 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks; 4998 max_disks = max(conf->raid_disks, conf->previous_raid_disks); 4999 conf->scribble_len = scribble_len(max_disks); 5000 5001 conf->disks = kzalloc(max_disks * sizeof(struct disk_info), 5002 GFP_KERNEL); 5003 if (!conf->disks) 5004 goto abort; 5005 5006 conf->mddev = mddev; 5007 5008 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL) 5009 goto abort; 5010 5011 conf->level = mddev->new_level; 5012 if (raid5_alloc_percpu(conf) != 0) 5013 goto abort; 5014 5015 pr_debug("raid456: run(%s) called.\n", mdname(mddev)); 5016 5017 rdev_for_each(rdev, mddev) { 5018 raid_disk = rdev->raid_disk; 5019 if (raid_disk >= max_disks 5020 || raid_disk < 0) 5021 continue; 5022 disk = conf->disks + raid_disk; 5023 5024 if (test_bit(Replacement, &rdev->flags)) { 5025 if (disk->replacement) 5026 goto abort; 5027 disk->replacement = rdev; 5028 } else { 5029 if (disk->rdev) 5030 goto abort; 5031 disk->rdev = rdev; 5032 } 5033 5034 if (test_bit(In_sync, &rdev->flags)) { 5035 char b[BDEVNAME_SIZE]; 5036 printk(KERN_INFO "md/raid:%s: device %s operational as raid" 5037 " disk %d\n", 5038 mdname(mddev), bdevname(rdev->bdev, b), raid_disk); 5039 } else if (rdev->saved_raid_disk != raid_disk) 5040 /* Cannot rely on bitmap to complete recovery */ 5041 conf->fullsync = 1; 5042 } 5043 5044 conf->chunk_sectors = mddev->new_chunk_sectors; 5045 conf->level = mddev->new_level; 5046 if (conf->level == 6) 5047 conf->max_degraded = 2; 5048 else 5049 conf->max_degraded = 1; 5050 conf->algorithm = mddev->new_layout; 5051 conf->max_nr_stripes = NR_STRIPES; 5052 conf->reshape_progress = mddev->reshape_position; 5053 if (conf->reshape_progress != MaxSector) { 5054 conf->prev_chunk_sectors = mddev->chunk_sectors; 5055 conf->prev_algo = mddev->layout; 5056 } 5057 5058 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) + 5059 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024; 5060 if (grow_stripes(conf, conf->max_nr_stripes)) { 5061 printk(KERN_ERR 5062 "md/raid:%s: couldn't allocate %dkB for buffers\n", 5063 mdname(mddev), memory); 5064 goto abort; 5065 } else 5066 printk(KERN_INFO "md/raid:%s: allocated %dkB\n", 5067 mdname(mddev), memory); 5068 5069 sprintf(pers_name, "raid%d", mddev->new_level); 5070 conf->thread = md_register_thread(raid5d, mddev, pers_name); 5071 if (!conf->thread) { 5072 printk(KERN_ERR 5073 "md/raid:%s: couldn't allocate thread.\n", 5074 mdname(mddev)); 5075 goto abort; 5076 } 5077 5078 return conf; 5079 5080 abort: 5081 if (conf) { 5082 free_conf(conf); 5083 return ERR_PTR(-EIO); 5084 } else 5085 return ERR_PTR(-ENOMEM); 5086 } 5087 5088 5089 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded) 5090 { 5091 switch (algo) { 5092 case ALGORITHM_PARITY_0: 5093 if (raid_disk < max_degraded) 5094 return 1; 5095 break; 5096 case ALGORITHM_PARITY_N: 5097 if (raid_disk >= raid_disks - max_degraded) 5098 return 1; 5099 break; 5100 case ALGORITHM_PARITY_0_6: 5101 if (raid_disk == 0 || 5102 raid_disk == raid_disks - 1) 5103 return 1; 5104 break; 5105 case ALGORITHM_LEFT_ASYMMETRIC_6: 5106 case ALGORITHM_RIGHT_ASYMMETRIC_6: 5107 case ALGORITHM_LEFT_SYMMETRIC_6: 5108 case ALGORITHM_RIGHT_SYMMETRIC_6: 5109 if (raid_disk == raid_disks - 1) 5110 return 1; 5111 } 5112 return 0; 5113 } 5114 5115 static int run(struct mddev *mddev) 5116 { 5117 struct r5conf *conf; 5118 int working_disks = 0; 5119 int dirty_parity_disks = 0; 5120 struct md_rdev *rdev; 5121 sector_t reshape_offset = 0; 5122 int i; 5123 long long min_offset_diff = 0; 5124 int first = 1; 5125 5126 if (mddev->recovery_cp != MaxSector) 5127 printk(KERN_NOTICE "md/raid:%s: not clean" 5128 " -- starting background reconstruction\n", 5129 mdname(mddev)); 5130 5131 rdev_for_each(rdev, mddev) { 5132 long long diff; 5133 if (rdev->raid_disk < 0) 5134 continue; 5135 diff = (rdev->new_data_offset - rdev->data_offset); 5136 if (first) { 5137 min_offset_diff = diff; 5138 first = 0; 5139 } else if (mddev->reshape_backwards && 5140 diff < min_offset_diff) 5141 min_offset_diff = diff; 5142 else if (!mddev->reshape_backwards && 5143 diff > min_offset_diff) 5144 min_offset_diff = diff; 5145 } 5146 5147 if (mddev->reshape_position != MaxSector) { 5148 /* Check that we can continue the reshape. 5149 * Difficulties arise if the stripe we would write to 5150 * next is at or after the stripe we would read from next. 5151 * For a reshape that changes the number of devices, this 5152 * is only possible for a very short time, and mdadm makes 5153 * sure that time appears to have past before assembling 5154 * the array. So we fail if that time hasn't passed. 5155 * For a reshape that keeps the number of devices the same 5156 * mdadm must be monitoring the reshape can keeping the 5157 * critical areas read-only and backed up. It will start 5158 * the array in read-only mode, so we check for that. 5159 */ 5160 sector_t here_new, here_old; 5161 int old_disks; 5162 int max_degraded = (mddev->level == 6 ? 2 : 1); 5163 5164 if (mddev->new_level != mddev->level) { 5165 printk(KERN_ERR "md/raid:%s: unsupported reshape " 5166 "required - aborting.\n", 5167 mdname(mddev)); 5168 return -EINVAL; 5169 } 5170 old_disks = mddev->raid_disks - mddev->delta_disks; 5171 /* reshape_position must be on a new-stripe boundary, and one 5172 * further up in new geometry must map after here in old 5173 * geometry. 5174 */ 5175 here_new = mddev->reshape_position; 5176 if (sector_div(here_new, mddev->new_chunk_sectors * 5177 (mddev->raid_disks - max_degraded))) { 5178 printk(KERN_ERR "md/raid:%s: reshape_position not " 5179 "on a stripe boundary\n", mdname(mddev)); 5180 return -EINVAL; 5181 } 5182 reshape_offset = here_new * mddev->new_chunk_sectors; 5183 /* here_new is the stripe we will write to */ 5184 here_old = mddev->reshape_position; 5185 sector_div(here_old, mddev->chunk_sectors * 5186 (old_disks-max_degraded)); 5187 /* here_old is the first stripe that we might need to read 5188 * from */ 5189 if (mddev->delta_disks == 0) { 5190 if ((here_new * mddev->new_chunk_sectors != 5191 here_old * mddev->chunk_sectors)) { 5192 printk(KERN_ERR "md/raid:%s: reshape position is" 5193 " confused - aborting\n", mdname(mddev)); 5194 return -EINVAL; 5195 } 5196 /* We cannot be sure it is safe to start an in-place 5197 * reshape. It is only safe if user-space is monitoring 5198 * and taking constant backups. 5199 * mdadm always starts a situation like this in 5200 * readonly mode so it can take control before 5201 * allowing any writes. So just check for that. 5202 */ 5203 if (abs(min_offset_diff) >= mddev->chunk_sectors && 5204 abs(min_offset_diff) >= mddev->new_chunk_sectors) 5205 /* not really in-place - so OK */; 5206 else if (mddev->ro == 0) { 5207 printk(KERN_ERR "md/raid:%s: in-place reshape " 5208 "must be started in read-only mode " 5209 "- aborting\n", 5210 mdname(mddev)); 5211 return -EINVAL; 5212 } 5213 } else if (mddev->reshape_backwards 5214 ? (here_new * mddev->new_chunk_sectors + min_offset_diff <= 5215 here_old * mddev->chunk_sectors) 5216 : (here_new * mddev->new_chunk_sectors >= 5217 here_old * mddev->chunk_sectors + (-min_offset_diff))) { 5218 /* Reading from the same stripe as writing to - bad */ 5219 printk(KERN_ERR "md/raid:%s: reshape_position too early for " 5220 "auto-recovery - aborting.\n", 5221 mdname(mddev)); 5222 return -EINVAL; 5223 } 5224 printk(KERN_INFO "md/raid:%s: reshape will continue\n", 5225 mdname(mddev)); 5226 /* OK, we should be able to continue; */ 5227 } else { 5228 BUG_ON(mddev->level != mddev->new_level); 5229 BUG_ON(mddev->layout != mddev->new_layout); 5230 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors); 5231 BUG_ON(mddev->delta_disks != 0); 5232 } 5233 5234 if (mddev->private == NULL) 5235 conf = setup_conf(mddev); 5236 else 5237 conf = mddev->private; 5238 5239 if (IS_ERR(conf)) 5240 return PTR_ERR(conf); 5241 5242 conf->min_offset_diff = min_offset_diff; 5243 mddev->thread = conf->thread; 5244 conf->thread = NULL; 5245 mddev->private = conf; 5246 5247 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks; 5248 i++) { 5249 rdev = conf->disks[i].rdev; 5250 if (!rdev && conf->disks[i].replacement) { 5251 /* The replacement is all we have yet */ 5252 rdev = conf->disks[i].replacement; 5253 conf->disks[i].replacement = NULL; 5254 clear_bit(Replacement, &rdev->flags); 5255 conf->disks[i].rdev = rdev; 5256 } 5257 if (!rdev) 5258 continue; 5259 if (conf->disks[i].replacement && 5260 conf->reshape_progress != MaxSector) { 5261 /* replacements and reshape simply do not mix. */ 5262 printk(KERN_ERR "md: cannot handle concurrent " 5263 "replacement and reshape.\n"); 5264 goto abort; 5265 } 5266 if (test_bit(In_sync, &rdev->flags)) { 5267 working_disks++; 5268 continue; 5269 } 5270 /* This disc is not fully in-sync. However if it 5271 * just stored parity (beyond the recovery_offset), 5272 * when we don't need to be concerned about the 5273 * array being dirty. 5274 * When reshape goes 'backwards', we never have 5275 * partially completed devices, so we only need 5276 * to worry about reshape going forwards. 5277 */ 5278 /* Hack because v0.91 doesn't store recovery_offset properly. */ 5279 if (mddev->major_version == 0 && 5280 mddev->minor_version > 90) 5281 rdev->recovery_offset = reshape_offset; 5282 5283 if (rdev->recovery_offset < reshape_offset) { 5284 /* We need to check old and new layout */ 5285 if (!only_parity(rdev->raid_disk, 5286 conf->algorithm, 5287 conf->raid_disks, 5288 conf->max_degraded)) 5289 continue; 5290 } 5291 if (!only_parity(rdev->raid_disk, 5292 conf->prev_algo, 5293 conf->previous_raid_disks, 5294 conf->max_degraded)) 5295 continue; 5296 dirty_parity_disks++; 5297 } 5298 5299 /* 5300 * 0 for a fully functional array, 1 or 2 for a degraded array. 5301 */ 5302 mddev->degraded = calc_degraded(conf); 5303 5304 if (has_failed(conf)) { 5305 printk(KERN_ERR "md/raid:%s: not enough operational devices" 5306 " (%d/%d failed)\n", 5307 mdname(mddev), mddev->degraded, conf->raid_disks); 5308 goto abort; 5309 } 5310 5311 /* device size must be a multiple of chunk size */ 5312 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1); 5313 mddev->resync_max_sectors = mddev->dev_sectors; 5314 5315 if (mddev->degraded > dirty_parity_disks && 5316 mddev->recovery_cp != MaxSector) { 5317 if (mddev->ok_start_degraded) 5318 printk(KERN_WARNING 5319 "md/raid:%s: starting dirty degraded array" 5320 " - data corruption possible.\n", 5321 mdname(mddev)); 5322 else { 5323 printk(KERN_ERR 5324 "md/raid:%s: cannot start dirty degraded array.\n", 5325 mdname(mddev)); 5326 goto abort; 5327 } 5328 } 5329 5330 if (mddev->degraded == 0) 5331 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d" 5332 " devices, algorithm %d\n", mdname(mddev), conf->level, 5333 mddev->raid_disks-mddev->degraded, mddev->raid_disks, 5334 mddev->new_layout); 5335 else 5336 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d" 5337 " out of %d devices, algorithm %d\n", 5338 mdname(mddev), conf->level, 5339 mddev->raid_disks - mddev->degraded, 5340 mddev->raid_disks, mddev->new_layout); 5341 5342 print_raid5_conf(conf); 5343 5344 if (conf->reshape_progress != MaxSector) { 5345 conf->reshape_safe = conf->reshape_progress; 5346 atomic_set(&conf->reshape_stripes, 0); 5347 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 5348 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 5349 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 5350 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 5351 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 5352 "reshape"); 5353 } 5354 5355 5356 /* Ok, everything is just fine now */ 5357 if (mddev->to_remove == &raid5_attrs_group) 5358 mddev->to_remove = NULL; 5359 else if (mddev->kobj.sd && 5360 sysfs_create_group(&mddev->kobj, &raid5_attrs_group)) 5361 printk(KERN_WARNING 5362 "raid5: failed to create sysfs attributes for %s\n", 5363 mdname(mddev)); 5364 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 5365 5366 if (mddev->queue) { 5367 int chunk_size; 5368 /* read-ahead size must cover two whole stripes, which 5369 * is 2 * (datadisks) * chunksize where 'n' is the 5370 * number of raid devices 5371 */ 5372 int data_disks = conf->previous_raid_disks - conf->max_degraded; 5373 int stripe = data_disks * 5374 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 5375 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 5376 mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 5377 5378 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec); 5379 5380 mddev->queue->backing_dev_info.congested_data = mddev; 5381 mddev->queue->backing_dev_info.congested_fn = raid5_congested; 5382 5383 chunk_size = mddev->chunk_sectors << 9; 5384 blk_queue_io_min(mddev->queue, chunk_size); 5385 blk_queue_io_opt(mddev->queue, chunk_size * 5386 (conf->raid_disks - conf->max_degraded)); 5387 5388 rdev_for_each(rdev, mddev) { 5389 disk_stack_limits(mddev->gendisk, rdev->bdev, 5390 rdev->data_offset << 9); 5391 disk_stack_limits(mddev->gendisk, rdev->bdev, 5392 rdev->new_data_offset << 9); 5393 } 5394 } 5395 5396 return 0; 5397 abort: 5398 md_unregister_thread(&mddev->thread); 5399 print_raid5_conf(conf); 5400 free_conf(conf); 5401 mddev->private = NULL; 5402 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev)); 5403 return -EIO; 5404 } 5405 5406 static int stop(struct mddev *mddev) 5407 { 5408 struct r5conf *conf = mddev->private; 5409 5410 md_unregister_thread(&mddev->thread); 5411 if (mddev->queue) 5412 mddev->queue->backing_dev_info.congested_fn = NULL; 5413 free_conf(conf); 5414 mddev->private = NULL; 5415 mddev->to_remove = &raid5_attrs_group; 5416 return 0; 5417 } 5418 5419 static void status(struct seq_file *seq, struct mddev *mddev) 5420 { 5421 struct r5conf *conf = mddev->private; 5422 int i; 5423 5424 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level, 5425 mddev->chunk_sectors / 2, mddev->layout); 5426 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded); 5427 for (i = 0; i < conf->raid_disks; i++) 5428 seq_printf (seq, "%s", 5429 conf->disks[i].rdev && 5430 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_"); 5431 seq_printf (seq, "]"); 5432 } 5433 5434 static void print_raid5_conf (struct r5conf *conf) 5435 { 5436 int i; 5437 struct disk_info *tmp; 5438 5439 printk(KERN_DEBUG "RAID conf printout:\n"); 5440 if (!conf) { 5441 printk("(conf==NULL)\n"); 5442 return; 5443 } 5444 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level, 5445 conf->raid_disks, 5446 conf->raid_disks - conf->mddev->degraded); 5447 5448 for (i = 0; i < conf->raid_disks; i++) { 5449 char b[BDEVNAME_SIZE]; 5450 tmp = conf->disks + i; 5451 if (tmp->rdev) 5452 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n", 5453 i, !test_bit(Faulty, &tmp->rdev->flags), 5454 bdevname(tmp->rdev->bdev, b)); 5455 } 5456 } 5457 5458 static int raid5_spare_active(struct mddev *mddev) 5459 { 5460 int i; 5461 struct r5conf *conf = mddev->private; 5462 struct disk_info *tmp; 5463 int count = 0; 5464 unsigned long flags; 5465 5466 for (i = 0; i < conf->raid_disks; i++) { 5467 tmp = conf->disks + i; 5468 if (tmp->replacement 5469 && tmp->replacement->recovery_offset == MaxSector 5470 && !test_bit(Faulty, &tmp->replacement->flags) 5471 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 5472 /* Replacement has just become active. */ 5473 if (!tmp->rdev 5474 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 5475 count++; 5476 if (tmp->rdev) { 5477 /* Replaced device not technically faulty, 5478 * but we need to be sure it gets removed 5479 * and never re-added. 5480 */ 5481 set_bit(Faulty, &tmp->rdev->flags); 5482 sysfs_notify_dirent_safe( 5483 tmp->rdev->sysfs_state); 5484 } 5485 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 5486 } else if (tmp->rdev 5487 && tmp->rdev->recovery_offset == MaxSector 5488 && !test_bit(Faulty, &tmp->rdev->flags) 5489 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 5490 count++; 5491 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 5492 } 5493 } 5494 spin_lock_irqsave(&conf->device_lock, flags); 5495 mddev->degraded = calc_degraded(conf); 5496 spin_unlock_irqrestore(&conf->device_lock, flags); 5497 print_raid5_conf(conf); 5498 return count; 5499 } 5500 5501 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 5502 { 5503 struct r5conf *conf = mddev->private; 5504 int err = 0; 5505 int number = rdev->raid_disk; 5506 struct md_rdev **rdevp; 5507 struct disk_info *p = conf->disks + number; 5508 5509 print_raid5_conf(conf); 5510 if (rdev == p->rdev) 5511 rdevp = &p->rdev; 5512 else if (rdev == p->replacement) 5513 rdevp = &p->replacement; 5514 else 5515 return 0; 5516 5517 if (number >= conf->raid_disks && 5518 conf->reshape_progress == MaxSector) 5519 clear_bit(In_sync, &rdev->flags); 5520 5521 if (test_bit(In_sync, &rdev->flags) || 5522 atomic_read(&rdev->nr_pending)) { 5523 err = -EBUSY; 5524 goto abort; 5525 } 5526 /* Only remove non-faulty devices if recovery 5527 * isn't possible. 5528 */ 5529 if (!test_bit(Faulty, &rdev->flags) && 5530 mddev->recovery_disabled != conf->recovery_disabled && 5531 !has_failed(conf) && 5532 (!p->replacement || p->replacement == rdev) && 5533 number < conf->raid_disks) { 5534 err = -EBUSY; 5535 goto abort; 5536 } 5537 *rdevp = NULL; 5538 synchronize_rcu(); 5539 if (atomic_read(&rdev->nr_pending)) { 5540 /* lost the race, try later */ 5541 err = -EBUSY; 5542 *rdevp = rdev; 5543 } else if (p->replacement) { 5544 /* We must have just cleared 'rdev' */ 5545 p->rdev = p->replacement; 5546 clear_bit(Replacement, &p->replacement->flags); 5547 smp_mb(); /* Make sure other CPUs may see both as identical 5548 * but will never see neither - if they are careful 5549 */ 5550 p->replacement = NULL; 5551 clear_bit(WantReplacement, &rdev->flags); 5552 } else 5553 /* We might have just removed the Replacement as faulty- 5554 * clear the bit just in case 5555 */ 5556 clear_bit(WantReplacement, &rdev->flags); 5557 abort: 5558 5559 print_raid5_conf(conf); 5560 return err; 5561 } 5562 5563 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev) 5564 { 5565 struct r5conf *conf = mddev->private; 5566 int err = -EEXIST; 5567 int disk; 5568 struct disk_info *p; 5569 int first = 0; 5570 int last = conf->raid_disks - 1; 5571 5572 if (mddev->recovery_disabled == conf->recovery_disabled) 5573 return -EBUSY; 5574 5575 if (rdev->saved_raid_disk < 0 && has_failed(conf)) 5576 /* no point adding a device */ 5577 return -EINVAL; 5578 5579 if (rdev->raid_disk >= 0) 5580 first = last = rdev->raid_disk; 5581 5582 /* 5583 * find the disk ... but prefer rdev->saved_raid_disk 5584 * if possible. 5585 */ 5586 if (rdev->saved_raid_disk >= 0 && 5587 rdev->saved_raid_disk >= first && 5588 conf->disks[rdev->saved_raid_disk].rdev == NULL) 5589 first = rdev->saved_raid_disk; 5590 5591 for (disk = first; disk <= last; disk++) { 5592 p = conf->disks + disk; 5593 if (p->rdev == NULL) { 5594 clear_bit(In_sync, &rdev->flags); 5595 rdev->raid_disk = disk; 5596 err = 0; 5597 if (rdev->saved_raid_disk != disk) 5598 conf->fullsync = 1; 5599 rcu_assign_pointer(p->rdev, rdev); 5600 goto out; 5601 } 5602 } 5603 for (disk = first; disk <= last; disk++) { 5604 p = conf->disks + disk; 5605 if (test_bit(WantReplacement, &p->rdev->flags) && 5606 p->replacement == NULL) { 5607 clear_bit(In_sync, &rdev->flags); 5608 set_bit(Replacement, &rdev->flags); 5609 rdev->raid_disk = disk; 5610 err = 0; 5611 conf->fullsync = 1; 5612 rcu_assign_pointer(p->replacement, rdev); 5613 break; 5614 } 5615 } 5616 out: 5617 print_raid5_conf(conf); 5618 return err; 5619 } 5620 5621 static int raid5_resize(struct mddev *mddev, sector_t sectors) 5622 { 5623 /* no resync is happening, and there is enough space 5624 * on all devices, so we can resize. 5625 * We need to make sure resync covers any new space. 5626 * If the array is shrinking we should possibly wait until 5627 * any io in the removed space completes, but it hardly seems 5628 * worth it. 5629 */ 5630 sector_t newsize; 5631 sectors &= ~((sector_t)mddev->chunk_sectors - 1); 5632 newsize = raid5_size(mddev, sectors, mddev->raid_disks); 5633 if (mddev->external_size && 5634 mddev->array_sectors > newsize) 5635 return -EINVAL; 5636 if (mddev->bitmap) { 5637 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0); 5638 if (ret) 5639 return ret; 5640 } 5641 md_set_array_sectors(mddev, newsize); 5642 set_capacity(mddev->gendisk, mddev->array_sectors); 5643 revalidate_disk(mddev->gendisk); 5644 if (sectors > mddev->dev_sectors && 5645 mddev->recovery_cp > mddev->dev_sectors) { 5646 mddev->recovery_cp = mddev->dev_sectors; 5647 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5648 } 5649 mddev->dev_sectors = sectors; 5650 mddev->resync_max_sectors = sectors; 5651 return 0; 5652 } 5653 5654 static int check_stripe_cache(struct mddev *mddev) 5655 { 5656 /* Can only proceed if there are plenty of stripe_heads. 5657 * We need a minimum of one full stripe,, and for sensible progress 5658 * it is best to have about 4 times that. 5659 * If we require 4 times, then the default 256 4K stripe_heads will 5660 * allow for chunk sizes up to 256K, which is probably OK. 5661 * If the chunk size is greater, user-space should request more 5662 * stripe_heads first. 5663 */ 5664 struct r5conf *conf = mddev->private; 5665 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4 5666 > conf->max_nr_stripes || 5667 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4 5668 > conf->max_nr_stripes) { 5669 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n", 5670 mdname(mddev), 5671 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9) 5672 / STRIPE_SIZE)*4); 5673 return 0; 5674 } 5675 return 1; 5676 } 5677 5678 static int check_reshape(struct mddev *mddev) 5679 { 5680 struct r5conf *conf = mddev->private; 5681 5682 if (mddev->delta_disks == 0 && 5683 mddev->new_layout == mddev->layout && 5684 mddev->new_chunk_sectors == mddev->chunk_sectors) 5685 return 0; /* nothing to do */ 5686 if (has_failed(conf)) 5687 return -EINVAL; 5688 if (mddev->delta_disks < 0) { 5689 /* We might be able to shrink, but the devices must 5690 * be made bigger first. 5691 * For raid6, 4 is the minimum size. 5692 * Otherwise 2 is the minimum 5693 */ 5694 int min = 2; 5695 if (mddev->level == 6) 5696 min = 4; 5697 if (mddev->raid_disks + mddev->delta_disks < min) 5698 return -EINVAL; 5699 } 5700 5701 if (!check_stripe_cache(mddev)) 5702 return -ENOSPC; 5703 5704 return resize_stripes(conf, conf->raid_disks + mddev->delta_disks); 5705 } 5706 5707 static int raid5_start_reshape(struct mddev *mddev) 5708 { 5709 struct r5conf *conf = mddev->private; 5710 struct md_rdev *rdev; 5711 int spares = 0; 5712 unsigned long flags; 5713 5714 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5715 return -EBUSY; 5716 5717 if (!check_stripe_cache(mddev)) 5718 return -ENOSPC; 5719 5720 if (has_failed(conf)) 5721 return -EINVAL; 5722 5723 rdev_for_each(rdev, mddev) { 5724 if (!test_bit(In_sync, &rdev->flags) 5725 && !test_bit(Faulty, &rdev->flags)) 5726 spares++; 5727 } 5728 5729 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded) 5730 /* Not enough devices even to make a degraded array 5731 * of that size 5732 */ 5733 return -EINVAL; 5734 5735 /* Refuse to reduce size of the array. Any reductions in 5736 * array size must be through explicit setting of array_size 5737 * attribute. 5738 */ 5739 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks) 5740 < mddev->array_sectors) { 5741 printk(KERN_ERR "md/raid:%s: array size must be reduced " 5742 "before number of disks\n", mdname(mddev)); 5743 return -EINVAL; 5744 } 5745 5746 atomic_set(&conf->reshape_stripes, 0); 5747 spin_lock_irq(&conf->device_lock); 5748 conf->previous_raid_disks = conf->raid_disks; 5749 conf->raid_disks += mddev->delta_disks; 5750 conf->prev_chunk_sectors = conf->chunk_sectors; 5751 conf->chunk_sectors = mddev->new_chunk_sectors; 5752 conf->prev_algo = conf->algorithm; 5753 conf->algorithm = mddev->new_layout; 5754 conf->generation++; 5755 /* Code that selects data_offset needs to see the generation update 5756 * if reshape_progress has been set - so a memory barrier needed. 5757 */ 5758 smp_mb(); 5759 if (mddev->reshape_backwards) 5760 conf->reshape_progress = raid5_size(mddev, 0, 0); 5761 else 5762 conf->reshape_progress = 0; 5763 conf->reshape_safe = conf->reshape_progress; 5764 spin_unlock_irq(&conf->device_lock); 5765 5766 /* Add some new drives, as many as will fit. 5767 * We know there are enough to make the newly sized array work. 5768 * Don't add devices if we are reducing the number of 5769 * devices in the array. This is because it is not possible 5770 * to correctly record the "partially reconstructed" state of 5771 * such devices during the reshape and confusion could result. 5772 */ 5773 if (mddev->delta_disks >= 0) { 5774 rdev_for_each(rdev, mddev) 5775 if (rdev->raid_disk < 0 && 5776 !test_bit(Faulty, &rdev->flags)) { 5777 if (raid5_add_disk(mddev, rdev) == 0) { 5778 if (rdev->raid_disk 5779 >= conf->previous_raid_disks) 5780 set_bit(In_sync, &rdev->flags); 5781 else 5782 rdev->recovery_offset = 0; 5783 5784 if (sysfs_link_rdev(mddev, rdev)) 5785 /* Failure here is OK */; 5786 } 5787 } else if (rdev->raid_disk >= conf->previous_raid_disks 5788 && !test_bit(Faulty, &rdev->flags)) { 5789 /* This is a spare that was manually added */ 5790 set_bit(In_sync, &rdev->flags); 5791 } 5792 5793 /* When a reshape changes the number of devices, 5794 * ->degraded is measured against the larger of the 5795 * pre and post number of devices. 5796 */ 5797 spin_lock_irqsave(&conf->device_lock, flags); 5798 mddev->degraded = calc_degraded(conf); 5799 spin_unlock_irqrestore(&conf->device_lock, flags); 5800 } 5801 mddev->raid_disks = conf->raid_disks; 5802 mddev->reshape_position = conf->reshape_progress; 5803 set_bit(MD_CHANGE_DEVS, &mddev->flags); 5804 5805 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 5806 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 5807 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 5808 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 5809 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 5810 "reshape"); 5811 if (!mddev->sync_thread) { 5812 mddev->recovery = 0; 5813 spin_lock_irq(&conf->device_lock); 5814 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks; 5815 rdev_for_each(rdev, mddev) 5816 rdev->new_data_offset = rdev->data_offset; 5817 smp_wmb(); 5818 conf->reshape_progress = MaxSector; 5819 mddev->reshape_position = MaxSector; 5820 spin_unlock_irq(&conf->device_lock); 5821 return -EAGAIN; 5822 } 5823 conf->reshape_checkpoint = jiffies; 5824 md_wakeup_thread(mddev->sync_thread); 5825 md_new_event(mddev); 5826 return 0; 5827 } 5828 5829 /* This is called from the reshape thread and should make any 5830 * changes needed in 'conf' 5831 */ 5832 static void end_reshape(struct r5conf *conf) 5833 { 5834 5835 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 5836 struct md_rdev *rdev; 5837 5838 spin_lock_irq(&conf->device_lock); 5839 conf->previous_raid_disks = conf->raid_disks; 5840 rdev_for_each(rdev, conf->mddev) 5841 rdev->data_offset = rdev->new_data_offset; 5842 smp_wmb(); 5843 conf->reshape_progress = MaxSector; 5844 spin_unlock_irq(&conf->device_lock); 5845 wake_up(&conf->wait_for_overlap); 5846 5847 /* read-ahead size must cover two whole stripes, which is 5848 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 5849 */ 5850 if (conf->mddev->queue) { 5851 int data_disks = conf->raid_disks - conf->max_degraded; 5852 int stripe = data_disks * ((conf->chunk_sectors << 9) 5853 / PAGE_SIZE); 5854 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 5855 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 5856 } 5857 } 5858 } 5859 5860 /* This is called from the raid5d thread with mddev_lock held. 5861 * It makes config changes to the device. 5862 */ 5863 static void raid5_finish_reshape(struct mddev *mddev) 5864 { 5865 struct r5conf *conf = mddev->private; 5866 5867 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 5868 5869 if (mddev->delta_disks > 0) { 5870 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 5871 set_capacity(mddev->gendisk, mddev->array_sectors); 5872 revalidate_disk(mddev->gendisk); 5873 } else { 5874 int d; 5875 spin_lock_irq(&conf->device_lock); 5876 mddev->degraded = calc_degraded(conf); 5877 spin_unlock_irq(&conf->device_lock); 5878 for (d = conf->raid_disks ; 5879 d < conf->raid_disks - mddev->delta_disks; 5880 d++) { 5881 struct md_rdev *rdev = conf->disks[d].rdev; 5882 if (rdev) 5883 clear_bit(In_sync, &rdev->flags); 5884 rdev = conf->disks[d].replacement; 5885 if (rdev) 5886 clear_bit(In_sync, &rdev->flags); 5887 } 5888 } 5889 mddev->layout = conf->algorithm; 5890 mddev->chunk_sectors = conf->chunk_sectors; 5891 mddev->reshape_position = MaxSector; 5892 mddev->delta_disks = 0; 5893 mddev->reshape_backwards = 0; 5894 } 5895 } 5896 5897 static void raid5_quiesce(struct mddev *mddev, int state) 5898 { 5899 struct r5conf *conf = mddev->private; 5900 5901 switch(state) { 5902 case 2: /* resume for a suspend */ 5903 wake_up(&conf->wait_for_overlap); 5904 break; 5905 5906 case 1: /* stop all writes */ 5907 spin_lock_irq(&conf->device_lock); 5908 /* '2' tells resync/reshape to pause so that all 5909 * active stripes can drain 5910 */ 5911 conf->quiesce = 2; 5912 wait_event_lock_irq(conf->wait_for_stripe, 5913 atomic_read(&conf->active_stripes) == 0 && 5914 atomic_read(&conf->active_aligned_reads) == 0, 5915 conf->device_lock, /* nothing */); 5916 conf->quiesce = 1; 5917 spin_unlock_irq(&conf->device_lock); 5918 /* allow reshape to continue */ 5919 wake_up(&conf->wait_for_overlap); 5920 break; 5921 5922 case 0: /* re-enable writes */ 5923 spin_lock_irq(&conf->device_lock); 5924 conf->quiesce = 0; 5925 wake_up(&conf->wait_for_stripe); 5926 wake_up(&conf->wait_for_overlap); 5927 spin_unlock_irq(&conf->device_lock); 5928 break; 5929 } 5930 } 5931 5932 5933 static void *raid45_takeover_raid0(struct mddev *mddev, int level) 5934 { 5935 struct r0conf *raid0_conf = mddev->private; 5936 sector_t sectors; 5937 5938 /* for raid0 takeover only one zone is supported */ 5939 if (raid0_conf->nr_strip_zones > 1) { 5940 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n", 5941 mdname(mddev)); 5942 return ERR_PTR(-EINVAL); 5943 } 5944 5945 sectors = raid0_conf->strip_zone[0].zone_end; 5946 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev); 5947 mddev->dev_sectors = sectors; 5948 mddev->new_level = level; 5949 mddev->new_layout = ALGORITHM_PARITY_N; 5950 mddev->new_chunk_sectors = mddev->chunk_sectors; 5951 mddev->raid_disks += 1; 5952 mddev->delta_disks = 1; 5953 /* make sure it will be not marked as dirty */ 5954 mddev->recovery_cp = MaxSector; 5955 5956 return setup_conf(mddev); 5957 } 5958 5959 5960 static void *raid5_takeover_raid1(struct mddev *mddev) 5961 { 5962 int chunksect; 5963 5964 if (mddev->raid_disks != 2 || 5965 mddev->degraded > 1) 5966 return ERR_PTR(-EINVAL); 5967 5968 /* Should check if there are write-behind devices? */ 5969 5970 chunksect = 64*2; /* 64K by default */ 5971 5972 /* The array must be an exact multiple of chunksize */ 5973 while (chunksect && (mddev->array_sectors & (chunksect-1))) 5974 chunksect >>= 1; 5975 5976 if ((chunksect<<9) < STRIPE_SIZE) 5977 /* array size does not allow a suitable chunk size */ 5978 return ERR_PTR(-EINVAL); 5979 5980 mddev->new_level = 5; 5981 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC; 5982 mddev->new_chunk_sectors = chunksect; 5983 5984 return setup_conf(mddev); 5985 } 5986 5987 static void *raid5_takeover_raid6(struct mddev *mddev) 5988 { 5989 int new_layout; 5990 5991 switch (mddev->layout) { 5992 case ALGORITHM_LEFT_ASYMMETRIC_6: 5993 new_layout = ALGORITHM_LEFT_ASYMMETRIC; 5994 break; 5995 case ALGORITHM_RIGHT_ASYMMETRIC_6: 5996 new_layout = ALGORITHM_RIGHT_ASYMMETRIC; 5997 break; 5998 case ALGORITHM_LEFT_SYMMETRIC_6: 5999 new_layout = ALGORITHM_LEFT_SYMMETRIC; 6000 break; 6001 case ALGORITHM_RIGHT_SYMMETRIC_6: 6002 new_layout = ALGORITHM_RIGHT_SYMMETRIC; 6003 break; 6004 case ALGORITHM_PARITY_0_6: 6005 new_layout = ALGORITHM_PARITY_0; 6006 break; 6007 case ALGORITHM_PARITY_N: 6008 new_layout = ALGORITHM_PARITY_N; 6009 break; 6010 default: 6011 return ERR_PTR(-EINVAL); 6012 } 6013 mddev->new_level = 5; 6014 mddev->new_layout = new_layout; 6015 mddev->delta_disks = -1; 6016 mddev->raid_disks -= 1; 6017 return setup_conf(mddev); 6018 } 6019 6020 6021 static int raid5_check_reshape(struct mddev *mddev) 6022 { 6023 /* For a 2-drive array, the layout and chunk size can be changed 6024 * immediately as not restriping is needed. 6025 * For larger arrays we record the new value - after validation 6026 * to be used by a reshape pass. 6027 */ 6028 struct r5conf *conf = mddev->private; 6029 int new_chunk = mddev->new_chunk_sectors; 6030 6031 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout)) 6032 return -EINVAL; 6033 if (new_chunk > 0) { 6034 if (!is_power_of_2(new_chunk)) 6035 return -EINVAL; 6036 if (new_chunk < (PAGE_SIZE>>9)) 6037 return -EINVAL; 6038 if (mddev->array_sectors & (new_chunk-1)) 6039 /* not factor of array size */ 6040 return -EINVAL; 6041 } 6042 6043 /* They look valid */ 6044 6045 if (mddev->raid_disks == 2) { 6046 /* can make the change immediately */ 6047 if (mddev->new_layout >= 0) { 6048 conf->algorithm = mddev->new_layout; 6049 mddev->layout = mddev->new_layout; 6050 } 6051 if (new_chunk > 0) { 6052 conf->chunk_sectors = new_chunk ; 6053 mddev->chunk_sectors = new_chunk; 6054 } 6055 set_bit(MD_CHANGE_DEVS, &mddev->flags); 6056 md_wakeup_thread(mddev->thread); 6057 } 6058 return check_reshape(mddev); 6059 } 6060 6061 static int raid6_check_reshape(struct mddev *mddev) 6062 { 6063 int new_chunk = mddev->new_chunk_sectors; 6064 6065 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout)) 6066 return -EINVAL; 6067 if (new_chunk > 0) { 6068 if (!is_power_of_2(new_chunk)) 6069 return -EINVAL; 6070 if (new_chunk < (PAGE_SIZE >> 9)) 6071 return -EINVAL; 6072 if (mddev->array_sectors & (new_chunk-1)) 6073 /* not factor of array size */ 6074 return -EINVAL; 6075 } 6076 6077 /* They look valid */ 6078 return check_reshape(mddev); 6079 } 6080 6081 static void *raid5_takeover(struct mddev *mddev) 6082 { 6083 /* raid5 can take over: 6084 * raid0 - if there is only one strip zone - make it a raid4 layout 6085 * raid1 - if there are two drives. We need to know the chunk size 6086 * raid4 - trivial - just use a raid4 layout. 6087 * raid6 - Providing it is a *_6 layout 6088 */ 6089 if (mddev->level == 0) 6090 return raid45_takeover_raid0(mddev, 5); 6091 if (mddev->level == 1) 6092 return raid5_takeover_raid1(mddev); 6093 if (mddev->level == 4) { 6094 mddev->new_layout = ALGORITHM_PARITY_N; 6095 mddev->new_level = 5; 6096 return setup_conf(mddev); 6097 } 6098 if (mddev->level == 6) 6099 return raid5_takeover_raid6(mddev); 6100 6101 return ERR_PTR(-EINVAL); 6102 } 6103 6104 static void *raid4_takeover(struct mddev *mddev) 6105 { 6106 /* raid4 can take over: 6107 * raid0 - if there is only one strip zone 6108 * raid5 - if layout is right 6109 */ 6110 if (mddev->level == 0) 6111 return raid45_takeover_raid0(mddev, 4); 6112 if (mddev->level == 5 && 6113 mddev->layout == ALGORITHM_PARITY_N) { 6114 mddev->new_layout = 0; 6115 mddev->new_level = 4; 6116 return setup_conf(mddev); 6117 } 6118 return ERR_PTR(-EINVAL); 6119 } 6120 6121 static struct md_personality raid5_personality; 6122 6123 static void *raid6_takeover(struct mddev *mddev) 6124 { 6125 /* Currently can only take over a raid5. We map the 6126 * personality to an equivalent raid6 personality 6127 * with the Q block at the end. 6128 */ 6129 int new_layout; 6130 6131 if (mddev->pers != &raid5_personality) 6132 return ERR_PTR(-EINVAL); 6133 if (mddev->degraded > 1) 6134 return ERR_PTR(-EINVAL); 6135 if (mddev->raid_disks > 253) 6136 return ERR_PTR(-EINVAL); 6137 if (mddev->raid_disks < 3) 6138 return ERR_PTR(-EINVAL); 6139 6140 switch (mddev->layout) { 6141 case ALGORITHM_LEFT_ASYMMETRIC: 6142 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6; 6143 break; 6144 case ALGORITHM_RIGHT_ASYMMETRIC: 6145 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6; 6146 break; 6147 case ALGORITHM_LEFT_SYMMETRIC: 6148 new_layout = ALGORITHM_LEFT_SYMMETRIC_6; 6149 break; 6150 case ALGORITHM_RIGHT_SYMMETRIC: 6151 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6; 6152 break; 6153 case ALGORITHM_PARITY_0: 6154 new_layout = ALGORITHM_PARITY_0_6; 6155 break; 6156 case ALGORITHM_PARITY_N: 6157 new_layout = ALGORITHM_PARITY_N; 6158 break; 6159 default: 6160 return ERR_PTR(-EINVAL); 6161 } 6162 mddev->new_level = 6; 6163 mddev->new_layout = new_layout; 6164 mddev->delta_disks = 1; 6165 mddev->raid_disks += 1; 6166 return setup_conf(mddev); 6167 } 6168 6169 6170 static struct md_personality raid6_personality = 6171 { 6172 .name = "raid6", 6173 .level = 6, 6174 .owner = THIS_MODULE, 6175 .make_request = make_request, 6176 .run = run, 6177 .stop = stop, 6178 .status = status, 6179 .error_handler = error, 6180 .hot_add_disk = raid5_add_disk, 6181 .hot_remove_disk= raid5_remove_disk, 6182 .spare_active = raid5_spare_active, 6183 .sync_request = sync_request, 6184 .resize = raid5_resize, 6185 .size = raid5_size, 6186 .check_reshape = raid6_check_reshape, 6187 .start_reshape = raid5_start_reshape, 6188 .finish_reshape = raid5_finish_reshape, 6189 .quiesce = raid5_quiesce, 6190 .takeover = raid6_takeover, 6191 }; 6192 static struct md_personality raid5_personality = 6193 { 6194 .name = "raid5", 6195 .level = 5, 6196 .owner = THIS_MODULE, 6197 .make_request = make_request, 6198 .run = run, 6199 .stop = stop, 6200 .status = status, 6201 .error_handler = error, 6202 .hot_add_disk = raid5_add_disk, 6203 .hot_remove_disk= raid5_remove_disk, 6204 .spare_active = raid5_spare_active, 6205 .sync_request = sync_request, 6206 .resize = raid5_resize, 6207 .size = raid5_size, 6208 .check_reshape = raid5_check_reshape, 6209 .start_reshape = raid5_start_reshape, 6210 .finish_reshape = raid5_finish_reshape, 6211 .quiesce = raid5_quiesce, 6212 .takeover = raid5_takeover, 6213 }; 6214 6215 static struct md_personality raid4_personality = 6216 { 6217 .name = "raid4", 6218 .level = 4, 6219 .owner = THIS_MODULE, 6220 .make_request = make_request, 6221 .run = run, 6222 .stop = stop, 6223 .status = status, 6224 .error_handler = error, 6225 .hot_add_disk = raid5_add_disk, 6226 .hot_remove_disk= raid5_remove_disk, 6227 .spare_active = raid5_spare_active, 6228 .sync_request = sync_request, 6229 .resize = raid5_resize, 6230 .size = raid5_size, 6231 .check_reshape = raid5_check_reshape, 6232 .start_reshape = raid5_start_reshape, 6233 .finish_reshape = raid5_finish_reshape, 6234 .quiesce = raid5_quiesce, 6235 .takeover = raid4_takeover, 6236 }; 6237 6238 static int __init raid5_init(void) 6239 { 6240 register_md_personality(&raid6_personality); 6241 register_md_personality(&raid5_personality); 6242 register_md_personality(&raid4_personality); 6243 return 0; 6244 } 6245 6246 static void raid5_exit(void) 6247 { 6248 unregister_md_personality(&raid6_personality); 6249 unregister_md_personality(&raid5_personality); 6250 unregister_md_personality(&raid4_personality); 6251 } 6252 6253 module_init(raid5_init); 6254 module_exit(raid5_exit); 6255 MODULE_LICENSE("GPL"); 6256 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD"); 6257 MODULE_ALIAS("md-personality-4"); /* RAID5 */ 6258 MODULE_ALIAS("md-raid5"); 6259 MODULE_ALIAS("md-raid4"); 6260 MODULE_ALIAS("md-level-5"); 6261 MODULE_ALIAS("md-level-4"); 6262 MODULE_ALIAS("md-personality-8"); /* RAID6 */ 6263 MODULE_ALIAS("md-raid6"); 6264 MODULE_ALIAS("md-level-6"); 6265 6266 /* This used to be two separate modules, they were: */ 6267 MODULE_ALIAS("raid5"); 6268 MODULE_ALIAS("raid6"); 6269