xref: /linux/drivers/md/raid5.c (revision 9429ec96c2718c0d1e3317cf60a87a0405223814)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include "md.h"
57 #include "raid5.h"
58 #include "raid0.h"
59 #include "bitmap.h"
60 
61 /*
62  * Stripe cache
63  */
64 
65 #define NR_STRIPES		256
66 #define STRIPE_SIZE		PAGE_SIZE
67 #define STRIPE_SHIFT		(PAGE_SHIFT - 9)
68 #define STRIPE_SECTORS		(STRIPE_SIZE>>9)
69 #define	IO_THRESHOLD		1
70 #define BYPASS_THRESHOLD	1
71 #define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
72 #define HASH_MASK		(NR_HASH - 1)
73 
74 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
75 {
76 	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
77 	return &conf->stripe_hashtbl[hash];
78 }
79 
80 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
81  * order without overlap.  There may be several bio's per stripe+device, and
82  * a bio could span several devices.
83  * When walking this list for a particular stripe+device, we must never proceed
84  * beyond a bio that extends past this device, as the next bio might no longer
85  * be valid.
86  * This function is used to determine the 'next' bio in the list, given the sector
87  * of the current stripe+device
88  */
89 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
90 {
91 	int sectors = bio->bi_size >> 9;
92 	if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
93 		return bio->bi_next;
94 	else
95 		return NULL;
96 }
97 
98 /*
99  * We maintain a biased count of active stripes in the bottom 16 bits of
100  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
101  */
102 static inline int raid5_bi_processed_stripes(struct bio *bio)
103 {
104 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
105 	return (atomic_read(segments) >> 16) & 0xffff;
106 }
107 
108 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
109 {
110 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
111 	return atomic_sub_return(1, segments) & 0xffff;
112 }
113 
114 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
115 {
116 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
117 	atomic_inc(segments);
118 }
119 
120 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
121 	unsigned int cnt)
122 {
123 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
124 	int old, new;
125 
126 	do {
127 		old = atomic_read(segments);
128 		new = (old & 0xffff) | (cnt << 16);
129 	} while (atomic_cmpxchg(segments, old, new) != old);
130 }
131 
132 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
133 {
134 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
135 	atomic_set(segments, cnt);
136 }
137 
138 /* Find first data disk in a raid6 stripe */
139 static inline int raid6_d0(struct stripe_head *sh)
140 {
141 	if (sh->ddf_layout)
142 		/* ddf always start from first device */
143 		return 0;
144 	/* md starts just after Q block */
145 	if (sh->qd_idx == sh->disks - 1)
146 		return 0;
147 	else
148 		return sh->qd_idx + 1;
149 }
150 static inline int raid6_next_disk(int disk, int raid_disks)
151 {
152 	disk++;
153 	return (disk < raid_disks) ? disk : 0;
154 }
155 
156 /* When walking through the disks in a raid5, starting at raid6_d0,
157  * We need to map each disk to a 'slot', where the data disks are slot
158  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
159  * is raid_disks-1.  This help does that mapping.
160  */
161 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
162 			     int *count, int syndrome_disks)
163 {
164 	int slot = *count;
165 
166 	if (sh->ddf_layout)
167 		(*count)++;
168 	if (idx == sh->pd_idx)
169 		return syndrome_disks;
170 	if (idx == sh->qd_idx)
171 		return syndrome_disks + 1;
172 	if (!sh->ddf_layout)
173 		(*count)++;
174 	return slot;
175 }
176 
177 static void return_io(struct bio *return_bi)
178 {
179 	struct bio *bi = return_bi;
180 	while (bi) {
181 
182 		return_bi = bi->bi_next;
183 		bi->bi_next = NULL;
184 		bi->bi_size = 0;
185 		bio_endio(bi, 0);
186 		bi = return_bi;
187 	}
188 }
189 
190 static void print_raid5_conf (struct r5conf *conf);
191 
192 static int stripe_operations_active(struct stripe_head *sh)
193 {
194 	return sh->check_state || sh->reconstruct_state ||
195 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
196 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
197 }
198 
199 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh)
200 {
201 	BUG_ON(!list_empty(&sh->lru));
202 	BUG_ON(atomic_read(&conf->active_stripes)==0);
203 	if (test_bit(STRIPE_HANDLE, &sh->state)) {
204 		if (test_bit(STRIPE_DELAYED, &sh->state) &&
205 		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
206 			list_add_tail(&sh->lru, &conf->delayed_list);
207 		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
208 			   sh->bm_seq - conf->seq_write > 0)
209 			list_add_tail(&sh->lru, &conf->bitmap_list);
210 		else {
211 			clear_bit(STRIPE_DELAYED, &sh->state);
212 			clear_bit(STRIPE_BIT_DELAY, &sh->state);
213 			list_add_tail(&sh->lru, &conf->handle_list);
214 		}
215 		md_wakeup_thread(conf->mddev->thread);
216 	} else {
217 		BUG_ON(stripe_operations_active(sh));
218 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
219 			if (atomic_dec_return(&conf->preread_active_stripes)
220 			    < IO_THRESHOLD)
221 				md_wakeup_thread(conf->mddev->thread);
222 		atomic_dec(&conf->active_stripes);
223 		if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
224 			list_add_tail(&sh->lru, &conf->inactive_list);
225 			wake_up(&conf->wait_for_stripe);
226 			if (conf->retry_read_aligned)
227 				md_wakeup_thread(conf->mddev->thread);
228 		}
229 	}
230 }
231 
232 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
233 {
234 	if (atomic_dec_and_test(&sh->count))
235 		do_release_stripe(conf, sh);
236 }
237 
238 static void release_stripe(struct stripe_head *sh)
239 {
240 	struct r5conf *conf = sh->raid_conf;
241 	unsigned long flags;
242 
243 	local_irq_save(flags);
244 	if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
245 		do_release_stripe(conf, sh);
246 		spin_unlock(&conf->device_lock);
247 	}
248 	local_irq_restore(flags);
249 }
250 
251 static inline void remove_hash(struct stripe_head *sh)
252 {
253 	pr_debug("remove_hash(), stripe %llu\n",
254 		(unsigned long long)sh->sector);
255 
256 	hlist_del_init(&sh->hash);
257 }
258 
259 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
260 {
261 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
262 
263 	pr_debug("insert_hash(), stripe %llu\n",
264 		(unsigned long long)sh->sector);
265 
266 	hlist_add_head(&sh->hash, hp);
267 }
268 
269 
270 /* find an idle stripe, make sure it is unhashed, and return it. */
271 static struct stripe_head *get_free_stripe(struct r5conf *conf)
272 {
273 	struct stripe_head *sh = NULL;
274 	struct list_head *first;
275 
276 	if (list_empty(&conf->inactive_list))
277 		goto out;
278 	first = conf->inactive_list.next;
279 	sh = list_entry(first, struct stripe_head, lru);
280 	list_del_init(first);
281 	remove_hash(sh);
282 	atomic_inc(&conf->active_stripes);
283 out:
284 	return sh;
285 }
286 
287 static void shrink_buffers(struct stripe_head *sh)
288 {
289 	struct page *p;
290 	int i;
291 	int num = sh->raid_conf->pool_size;
292 
293 	for (i = 0; i < num ; i++) {
294 		p = sh->dev[i].page;
295 		if (!p)
296 			continue;
297 		sh->dev[i].page = NULL;
298 		put_page(p);
299 	}
300 }
301 
302 static int grow_buffers(struct stripe_head *sh)
303 {
304 	int i;
305 	int num = sh->raid_conf->pool_size;
306 
307 	for (i = 0; i < num; i++) {
308 		struct page *page;
309 
310 		if (!(page = alloc_page(GFP_KERNEL))) {
311 			return 1;
312 		}
313 		sh->dev[i].page = page;
314 	}
315 	return 0;
316 }
317 
318 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
319 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
320 			    struct stripe_head *sh);
321 
322 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
323 {
324 	struct r5conf *conf = sh->raid_conf;
325 	int i;
326 
327 	BUG_ON(atomic_read(&sh->count) != 0);
328 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
329 	BUG_ON(stripe_operations_active(sh));
330 
331 	pr_debug("init_stripe called, stripe %llu\n",
332 		(unsigned long long)sh->sector);
333 
334 	remove_hash(sh);
335 
336 	sh->generation = conf->generation - previous;
337 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
338 	sh->sector = sector;
339 	stripe_set_idx(sector, conf, previous, sh);
340 	sh->state = 0;
341 
342 
343 	for (i = sh->disks; i--; ) {
344 		struct r5dev *dev = &sh->dev[i];
345 
346 		if (dev->toread || dev->read || dev->towrite || dev->written ||
347 		    test_bit(R5_LOCKED, &dev->flags)) {
348 			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
349 			       (unsigned long long)sh->sector, i, dev->toread,
350 			       dev->read, dev->towrite, dev->written,
351 			       test_bit(R5_LOCKED, &dev->flags));
352 			WARN_ON(1);
353 		}
354 		dev->flags = 0;
355 		raid5_build_block(sh, i, previous);
356 	}
357 	insert_hash(conf, sh);
358 }
359 
360 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
361 					 short generation)
362 {
363 	struct stripe_head *sh;
364 	struct hlist_node *hn;
365 
366 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
367 	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
368 		if (sh->sector == sector && sh->generation == generation)
369 			return sh;
370 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
371 	return NULL;
372 }
373 
374 /*
375  * Need to check if array has failed when deciding whether to:
376  *  - start an array
377  *  - remove non-faulty devices
378  *  - add a spare
379  *  - allow a reshape
380  * This determination is simple when no reshape is happening.
381  * However if there is a reshape, we need to carefully check
382  * both the before and after sections.
383  * This is because some failed devices may only affect one
384  * of the two sections, and some non-in_sync devices may
385  * be insync in the section most affected by failed devices.
386  */
387 static int calc_degraded(struct r5conf *conf)
388 {
389 	int degraded, degraded2;
390 	int i;
391 
392 	rcu_read_lock();
393 	degraded = 0;
394 	for (i = 0; i < conf->previous_raid_disks; i++) {
395 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
396 		if (rdev && test_bit(Faulty, &rdev->flags))
397 			rdev = rcu_dereference(conf->disks[i].replacement);
398 		if (!rdev || test_bit(Faulty, &rdev->flags))
399 			degraded++;
400 		else if (test_bit(In_sync, &rdev->flags))
401 			;
402 		else
403 			/* not in-sync or faulty.
404 			 * If the reshape increases the number of devices,
405 			 * this is being recovered by the reshape, so
406 			 * this 'previous' section is not in_sync.
407 			 * If the number of devices is being reduced however,
408 			 * the device can only be part of the array if
409 			 * we are reverting a reshape, so this section will
410 			 * be in-sync.
411 			 */
412 			if (conf->raid_disks >= conf->previous_raid_disks)
413 				degraded++;
414 	}
415 	rcu_read_unlock();
416 	if (conf->raid_disks == conf->previous_raid_disks)
417 		return degraded;
418 	rcu_read_lock();
419 	degraded2 = 0;
420 	for (i = 0; i < conf->raid_disks; i++) {
421 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
422 		if (rdev && test_bit(Faulty, &rdev->flags))
423 			rdev = rcu_dereference(conf->disks[i].replacement);
424 		if (!rdev || test_bit(Faulty, &rdev->flags))
425 			degraded2++;
426 		else if (test_bit(In_sync, &rdev->flags))
427 			;
428 		else
429 			/* not in-sync or faulty.
430 			 * If reshape increases the number of devices, this
431 			 * section has already been recovered, else it
432 			 * almost certainly hasn't.
433 			 */
434 			if (conf->raid_disks <= conf->previous_raid_disks)
435 				degraded2++;
436 	}
437 	rcu_read_unlock();
438 	if (degraded2 > degraded)
439 		return degraded2;
440 	return degraded;
441 }
442 
443 static int has_failed(struct r5conf *conf)
444 {
445 	int degraded;
446 
447 	if (conf->mddev->reshape_position == MaxSector)
448 		return conf->mddev->degraded > conf->max_degraded;
449 
450 	degraded = calc_degraded(conf);
451 	if (degraded > conf->max_degraded)
452 		return 1;
453 	return 0;
454 }
455 
456 static struct stripe_head *
457 get_active_stripe(struct r5conf *conf, sector_t sector,
458 		  int previous, int noblock, int noquiesce)
459 {
460 	struct stripe_head *sh;
461 
462 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
463 
464 	spin_lock_irq(&conf->device_lock);
465 
466 	do {
467 		wait_event_lock_irq(conf->wait_for_stripe,
468 				    conf->quiesce == 0 || noquiesce,
469 				    conf->device_lock, /* nothing */);
470 		sh = __find_stripe(conf, sector, conf->generation - previous);
471 		if (!sh) {
472 			if (!conf->inactive_blocked)
473 				sh = get_free_stripe(conf);
474 			if (noblock && sh == NULL)
475 				break;
476 			if (!sh) {
477 				conf->inactive_blocked = 1;
478 				wait_event_lock_irq(conf->wait_for_stripe,
479 						    !list_empty(&conf->inactive_list) &&
480 						    (atomic_read(&conf->active_stripes)
481 						     < (conf->max_nr_stripes *3/4)
482 						     || !conf->inactive_blocked),
483 						    conf->device_lock,
484 						    );
485 				conf->inactive_blocked = 0;
486 			} else
487 				init_stripe(sh, sector, previous);
488 		} else {
489 			if (atomic_read(&sh->count)) {
490 				BUG_ON(!list_empty(&sh->lru)
491 				    && !test_bit(STRIPE_EXPANDING, &sh->state)
492 				    && !test_bit(STRIPE_ON_UNPLUG_LIST, &sh->state));
493 			} else {
494 				if (!test_bit(STRIPE_HANDLE, &sh->state))
495 					atomic_inc(&conf->active_stripes);
496 				if (list_empty(&sh->lru) &&
497 				    !test_bit(STRIPE_EXPANDING, &sh->state))
498 					BUG();
499 				list_del_init(&sh->lru);
500 			}
501 		}
502 	} while (sh == NULL);
503 
504 	if (sh)
505 		atomic_inc(&sh->count);
506 
507 	spin_unlock_irq(&conf->device_lock);
508 	return sh;
509 }
510 
511 /* Determine if 'data_offset' or 'new_data_offset' should be used
512  * in this stripe_head.
513  */
514 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
515 {
516 	sector_t progress = conf->reshape_progress;
517 	/* Need a memory barrier to make sure we see the value
518 	 * of conf->generation, or ->data_offset that was set before
519 	 * reshape_progress was updated.
520 	 */
521 	smp_rmb();
522 	if (progress == MaxSector)
523 		return 0;
524 	if (sh->generation == conf->generation - 1)
525 		return 0;
526 	/* We are in a reshape, and this is a new-generation stripe,
527 	 * so use new_data_offset.
528 	 */
529 	return 1;
530 }
531 
532 static void
533 raid5_end_read_request(struct bio *bi, int error);
534 static void
535 raid5_end_write_request(struct bio *bi, int error);
536 
537 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
538 {
539 	struct r5conf *conf = sh->raid_conf;
540 	int i, disks = sh->disks;
541 
542 	might_sleep();
543 
544 	for (i = disks; i--; ) {
545 		int rw;
546 		int replace_only = 0;
547 		struct bio *bi, *rbi;
548 		struct md_rdev *rdev, *rrdev = NULL;
549 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
550 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
551 				rw = WRITE_FUA;
552 			else
553 				rw = WRITE;
554 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
555 			rw = READ;
556 		else if (test_and_clear_bit(R5_WantReplace,
557 					    &sh->dev[i].flags)) {
558 			rw = WRITE;
559 			replace_only = 1;
560 		} else
561 			continue;
562 		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
563 			rw |= REQ_SYNC;
564 
565 		bi = &sh->dev[i].req;
566 		rbi = &sh->dev[i].rreq; /* For writing to replacement */
567 
568 		bi->bi_rw = rw;
569 		rbi->bi_rw = rw;
570 		if (rw & WRITE) {
571 			bi->bi_end_io = raid5_end_write_request;
572 			rbi->bi_end_io = raid5_end_write_request;
573 		} else
574 			bi->bi_end_io = raid5_end_read_request;
575 
576 		rcu_read_lock();
577 		rrdev = rcu_dereference(conf->disks[i].replacement);
578 		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
579 		rdev = rcu_dereference(conf->disks[i].rdev);
580 		if (!rdev) {
581 			rdev = rrdev;
582 			rrdev = NULL;
583 		}
584 		if (rw & WRITE) {
585 			if (replace_only)
586 				rdev = NULL;
587 			if (rdev == rrdev)
588 				/* We raced and saw duplicates */
589 				rrdev = NULL;
590 		} else {
591 			if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
592 				rdev = rrdev;
593 			rrdev = NULL;
594 		}
595 
596 		if (rdev && test_bit(Faulty, &rdev->flags))
597 			rdev = NULL;
598 		if (rdev)
599 			atomic_inc(&rdev->nr_pending);
600 		if (rrdev && test_bit(Faulty, &rrdev->flags))
601 			rrdev = NULL;
602 		if (rrdev)
603 			atomic_inc(&rrdev->nr_pending);
604 		rcu_read_unlock();
605 
606 		/* We have already checked bad blocks for reads.  Now
607 		 * need to check for writes.  We never accept write errors
608 		 * on the replacement, so we don't to check rrdev.
609 		 */
610 		while ((rw & WRITE) && rdev &&
611 		       test_bit(WriteErrorSeen, &rdev->flags)) {
612 			sector_t first_bad;
613 			int bad_sectors;
614 			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
615 					      &first_bad, &bad_sectors);
616 			if (!bad)
617 				break;
618 
619 			if (bad < 0) {
620 				set_bit(BlockedBadBlocks, &rdev->flags);
621 				if (!conf->mddev->external &&
622 				    conf->mddev->flags) {
623 					/* It is very unlikely, but we might
624 					 * still need to write out the
625 					 * bad block log - better give it
626 					 * a chance*/
627 					md_check_recovery(conf->mddev);
628 				}
629 				/*
630 				 * Because md_wait_for_blocked_rdev
631 				 * will dec nr_pending, we must
632 				 * increment it first.
633 				 */
634 				atomic_inc(&rdev->nr_pending);
635 				md_wait_for_blocked_rdev(rdev, conf->mddev);
636 			} else {
637 				/* Acknowledged bad block - skip the write */
638 				rdev_dec_pending(rdev, conf->mddev);
639 				rdev = NULL;
640 			}
641 		}
642 
643 		if (rdev) {
644 			if (s->syncing || s->expanding || s->expanded
645 			    || s->replacing)
646 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
647 
648 			set_bit(STRIPE_IO_STARTED, &sh->state);
649 
650 			bi->bi_bdev = rdev->bdev;
651 			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
652 				__func__, (unsigned long long)sh->sector,
653 				bi->bi_rw, i);
654 			atomic_inc(&sh->count);
655 			if (use_new_offset(conf, sh))
656 				bi->bi_sector = (sh->sector
657 						 + rdev->new_data_offset);
658 			else
659 				bi->bi_sector = (sh->sector
660 						 + rdev->data_offset);
661 			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
662 				bi->bi_rw |= REQ_FLUSH;
663 
664 			bi->bi_flags = 1 << BIO_UPTODATE;
665 			bi->bi_idx = 0;
666 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
667 			bi->bi_io_vec[0].bv_offset = 0;
668 			bi->bi_size = STRIPE_SIZE;
669 			bi->bi_next = NULL;
670 			if (rrdev)
671 				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
672 			generic_make_request(bi);
673 		}
674 		if (rrdev) {
675 			if (s->syncing || s->expanding || s->expanded
676 			    || s->replacing)
677 				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
678 
679 			set_bit(STRIPE_IO_STARTED, &sh->state);
680 
681 			rbi->bi_bdev = rrdev->bdev;
682 			pr_debug("%s: for %llu schedule op %ld on "
683 				 "replacement disc %d\n",
684 				__func__, (unsigned long long)sh->sector,
685 				rbi->bi_rw, i);
686 			atomic_inc(&sh->count);
687 			if (use_new_offset(conf, sh))
688 				rbi->bi_sector = (sh->sector
689 						  + rrdev->new_data_offset);
690 			else
691 				rbi->bi_sector = (sh->sector
692 						  + rrdev->data_offset);
693 			rbi->bi_flags = 1 << BIO_UPTODATE;
694 			rbi->bi_idx = 0;
695 			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
696 			rbi->bi_io_vec[0].bv_offset = 0;
697 			rbi->bi_size = STRIPE_SIZE;
698 			rbi->bi_next = NULL;
699 			generic_make_request(rbi);
700 		}
701 		if (!rdev && !rrdev) {
702 			if (rw & WRITE)
703 				set_bit(STRIPE_DEGRADED, &sh->state);
704 			pr_debug("skip op %ld on disc %d for sector %llu\n",
705 				bi->bi_rw, i, (unsigned long long)sh->sector);
706 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
707 			set_bit(STRIPE_HANDLE, &sh->state);
708 		}
709 	}
710 }
711 
712 static struct dma_async_tx_descriptor *
713 async_copy_data(int frombio, struct bio *bio, struct page *page,
714 	sector_t sector, struct dma_async_tx_descriptor *tx)
715 {
716 	struct bio_vec *bvl;
717 	struct page *bio_page;
718 	int i;
719 	int page_offset;
720 	struct async_submit_ctl submit;
721 	enum async_tx_flags flags = 0;
722 
723 	if (bio->bi_sector >= sector)
724 		page_offset = (signed)(bio->bi_sector - sector) * 512;
725 	else
726 		page_offset = (signed)(sector - bio->bi_sector) * -512;
727 
728 	if (frombio)
729 		flags |= ASYNC_TX_FENCE;
730 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
731 
732 	bio_for_each_segment(bvl, bio, i) {
733 		int len = bvl->bv_len;
734 		int clen;
735 		int b_offset = 0;
736 
737 		if (page_offset < 0) {
738 			b_offset = -page_offset;
739 			page_offset += b_offset;
740 			len -= b_offset;
741 		}
742 
743 		if (len > 0 && page_offset + len > STRIPE_SIZE)
744 			clen = STRIPE_SIZE - page_offset;
745 		else
746 			clen = len;
747 
748 		if (clen > 0) {
749 			b_offset += bvl->bv_offset;
750 			bio_page = bvl->bv_page;
751 			if (frombio)
752 				tx = async_memcpy(page, bio_page, page_offset,
753 						  b_offset, clen, &submit);
754 			else
755 				tx = async_memcpy(bio_page, page, b_offset,
756 						  page_offset, clen, &submit);
757 		}
758 		/* chain the operations */
759 		submit.depend_tx = tx;
760 
761 		if (clen < len) /* hit end of page */
762 			break;
763 		page_offset +=  len;
764 	}
765 
766 	return tx;
767 }
768 
769 static void ops_complete_biofill(void *stripe_head_ref)
770 {
771 	struct stripe_head *sh = stripe_head_ref;
772 	struct bio *return_bi = NULL;
773 	int i;
774 
775 	pr_debug("%s: stripe %llu\n", __func__,
776 		(unsigned long long)sh->sector);
777 
778 	/* clear completed biofills */
779 	for (i = sh->disks; i--; ) {
780 		struct r5dev *dev = &sh->dev[i];
781 
782 		/* acknowledge completion of a biofill operation */
783 		/* and check if we need to reply to a read request,
784 		 * new R5_Wantfill requests are held off until
785 		 * !STRIPE_BIOFILL_RUN
786 		 */
787 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
788 			struct bio *rbi, *rbi2;
789 
790 			BUG_ON(!dev->read);
791 			rbi = dev->read;
792 			dev->read = NULL;
793 			while (rbi && rbi->bi_sector <
794 				dev->sector + STRIPE_SECTORS) {
795 				rbi2 = r5_next_bio(rbi, dev->sector);
796 				if (!raid5_dec_bi_active_stripes(rbi)) {
797 					rbi->bi_next = return_bi;
798 					return_bi = rbi;
799 				}
800 				rbi = rbi2;
801 			}
802 		}
803 	}
804 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
805 
806 	return_io(return_bi);
807 
808 	set_bit(STRIPE_HANDLE, &sh->state);
809 	release_stripe(sh);
810 }
811 
812 static void ops_run_biofill(struct stripe_head *sh)
813 {
814 	struct dma_async_tx_descriptor *tx = NULL;
815 	struct async_submit_ctl submit;
816 	int i;
817 
818 	pr_debug("%s: stripe %llu\n", __func__,
819 		(unsigned long long)sh->sector);
820 
821 	for (i = sh->disks; i--; ) {
822 		struct r5dev *dev = &sh->dev[i];
823 		if (test_bit(R5_Wantfill, &dev->flags)) {
824 			struct bio *rbi;
825 			spin_lock_irq(&sh->stripe_lock);
826 			dev->read = rbi = dev->toread;
827 			dev->toread = NULL;
828 			spin_unlock_irq(&sh->stripe_lock);
829 			while (rbi && rbi->bi_sector <
830 				dev->sector + STRIPE_SECTORS) {
831 				tx = async_copy_data(0, rbi, dev->page,
832 					dev->sector, tx);
833 				rbi = r5_next_bio(rbi, dev->sector);
834 			}
835 		}
836 	}
837 
838 	atomic_inc(&sh->count);
839 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
840 	async_trigger_callback(&submit);
841 }
842 
843 static void mark_target_uptodate(struct stripe_head *sh, int target)
844 {
845 	struct r5dev *tgt;
846 
847 	if (target < 0)
848 		return;
849 
850 	tgt = &sh->dev[target];
851 	set_bit(R5_UPTODATE, &tgt->flags);
852 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
853 	clear_bit(R5_Wantcompute, &tgt->flags);
854 }
855 
856 static void ops_complete_compute(void *stripe_head_ref)
857 {
858 	struct stripe_head *sh = stripe_head_ref;
859 
860 	pr_debug("%s: stripe %llu\n", __func__,
861 		(unsigned long long)sh->sector);
862 
863 	/* mark the computed target(s) as uptodate */
864 	mark_target_uptodate(sh, sh->ops.target);
865 	mark_target_uptodate(sh, sh->ops.target2);
866 
867 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
868 	if (sh->check_state == check_state_compute_run)
869 		sh->check_state = check_state_compute_result;
870 	set_bit(STRIPE_HANDLE, &sh->state);
871 	release_stripe(sh);
872 }
873 
874 /* return a pointer to the address conversion region of the scribble buffer */
875 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
876 				 struct raid5_percpu *percpu)
877 {
878 	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
879 }
880 
881 static struct dma_async_tx_descriptor *
882 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
883 {
884 	int disks = sh->disks;
885 	struct page **xor_srcs = percpu->scribble;
886 	int target = sh->ops.target;
887 	struct r5dev *tgt = &sh->dev[target];
888 	struct page *xor_dest = tgt->page;
889 	int count = 0;
890 	struct dma_async_tx_descriptor *tx;
891 	struct async_submit_ctl submit;
892 	int i;
893 
894 	pr_debug("%s: stripe %llu block: %d\n",
895 		__func__, (unsigned long long)sh->sector, target);
896 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
897 
898 	for (i = disks; i--; )
899 		if (i != target)
900 			xor_srcs[count++] = sh->dev[i].page;
901 
902 	atomic_inc(&sh->count);
903 
904 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
905 			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
906 	if (unlikely(count == 1))
907 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
908 	else
909 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
910 
911 	return tx;
912 }
913 
914 /* set_syndrome_sources - populate source buffers for gen_syndrome
915  * @srcs - (struct page *) array of size sh->disks
916  * @sh - stripe_head to parse
917  *
918  * Populates srcs in proper layout order for the stripe and returns the
919  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
920  * destination buffer is recorded in srcs[count] and the Q destination
921  * is recorded in srcs[count+1]].
922  */
923 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
924 {
925 	int disks = sh->disks;
926 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
927 	int d0_idx = raid6_d0(sh);
928 	int count;
929 	int i;
930 
931 	for (i = 0; i < disks; i++)
932 		srcs[i] = NULL;
933 
934 	count = 0;
935 	i = d0_idx;
936 	do {
937 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
938 
939 		srcs[slot] = sh->dev[i].page;
940 		i = raid6_next_disk(i, disks);
941 	} while (i != d0_idx);
942 
943 	return syndrome_disks;
944 }
945 
946 static struct dma_async_tx_descriptor *
947 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
948 {
949 	int disks = sh->disks;
950 	struct page **blocks = percpu->scribble;
951 	int target;
952 	int qd_idx = sh->qd_idx;
953 	struct dma_async_tx_descriptor *tx;
954 	struct async_submit_ctl submit;
955 	struct r5dev *tgt;
956 	struct page *dest;
957 	int i;
958 	int count;
959 
960 	if (sh->ops.target < 0)
961 		target = sh->ops.target2;
962 	else if (sh->ops.target2 < 0)
963 		target = sh->ops.target;
964 	else
965 		/* we should only have one valid target */
966 		BUG();
967 	BUG_ON(target < 0);
968 	pr_debug("%s: stripe %llu block: %d\n",
969 		__func__, (unsigned long long)sh->sector, target);
970 
971 	tgt = &sh->dev[target];
972 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
973 	dest = tgt->page;
974 
975 	atomic_inc(&sh->count);
976 
977 	if (target == qd_idx) {
978 		count = set_syndrome_sources(blocks, sh);
979 		blocks[count] = NULL; /* regenerating p is not necessary */
980 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
981 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
982 				  ops_complete_compute, sh,
983 				  to_addr_conv(sh, percpu));
984 		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
985 	} else {
986 		/* Compute any data- or p-drive using XOR */
987 		count = 0;
988 		for (i = disks; i-- ; ) {
989 			if (i == target || i == qd_idx)
990 				continue;
991 			blocks[count++] = sh->dev[i].page;
992 		}
993 
994 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
995 				  NULL, ops_complete_compute, sh,
996 				  to_addr_conv(sh, percpu));
997 		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
998 	}
999 
1000 	return tx;
1001 }
1002 
1003 static struct dma_async_tx_descriptor *
1004 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1005 {
1006 	int i, count, disks = sh->disks;
1007 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1008 	int d0_idx = raid6_d0(sh);
1009 	int faila = -1, failb = -1;
1010 	int target = sh->ops.target;
1011 	int target2 = sh->ops.target2;
1012 	struct r5dev *tgt = &sh->dev[target];
1013 	struct r5dev *tgt2 = &sh->dev[target2];
1014 	struct dma_async_tx_descriptor *tx;
1015 	struct page **blocks = percpu->scribble;
1016 	struct async_submit_ctl submit;
1017 
1018 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1019 		 __func__, (unsigned long long)sh->sector, target, target2);
1020 	BUG_ON(target < 0 || target2 < 0);
1021 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1022 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1023 
1024 	/* we need to open-code set_syndrome_sources to handle the
1025 	 * slot number conversion for 'faila' and 'failb'
1026 	 */
1027 	for (i = 0; i < disks ; i++)
1028 		blocks[i] = NULL;
1029 	count = 0;
1030 	i = d0_idx;
1031 	do {
1032 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1033 
1034 		blocks[slot] = sh->dev[i].page;
1035 
1036 		if (i == target)
1037 			faila = slot;
1038 		if (i == target2)
1039 			failb = slot;
1040 		i = raid6_next_disk(i, disks);
1041 	} while (i != d0_idx);
1042 
1043 	BUG_ON(faila == failb);
1044 	if (failb < faila)
1045 		swap(faila, failb);
1046 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1047 		 __func__, (unsigned long long)sh->sector, faila, failb);
1048 
1049 	atomic_inc(&sh->count);
1050 
1051 	if (failb == syndrome_disks+1) {
1052 		/* Q disk is one of the missing disks */
1053 		if (faila == syndrome_disks) {
1054 			/* Missing P+Q, just recompute */
1055 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1056 					  ops_complete_compute, sh,
1057 					  to_addr_conv(sh, percpu));
1058 			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1059 						  STRIPE_SIZE, &submit);
1060 		} else {
1061 			struct page *dest;
1062 			int data_target;
1063 			int qd_idx = sh->qd_idx;
1064 
1065 			/* Missing D+Q: recompute D from P, then recompute Q */
1066 			if (target == qd_idx)
1067 				data_target = target2;
1068 			else
1069 				data_target = target;
1070 
1071 			count = 0;
1072 			for (i = disks; i-- ; ) {
1073 				if (i == data_target || i == qd_idx)
1074 					continue;
1075 				blocks[count++] = sh->dev[i].page;
1076 			}
1077 			dest = sh->dev[data_target].page;
1078 			init_async_submit(&submit,
1079 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1080 					  NULL, NULL, NULL,
1081 					  to_addr_conv(sh, percpu));
1082 			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1083 				       &submit);
1084 
1085 			count = set_syndrome_sources(blocks, sh);
1086 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1087 					  ops_complete_compute, sh,
1088 					  to_addr_conv(sh, percpu));
1089 			return async_gen_syndrome(blocks, 0, count+2,
1090 						  STRIPE_SIZE, &submit);
1091 		}
1092 	} else {
1093 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1094 				  ops_complete_compute, sh,
1095 				  to_addr_conv(sh, percpu));
1096 		if (failb == syndrome_disks) {
1097 			/* We're missing D+P. */
1098 			return async_raid6_datap_recov(syndrome_disks+2,
1099 						       STRIPE_SIZE, faila,
1100 						       blocks, &submit);
1101 		} else {
1102 			/* We're missing D+D. */
1103 			return async_raid6_2data_recov(syndrome_disks+2,
1104 						       STRIPE_SIZE, faila, failb,
1105 						       blocks, &submit);
1106 		}
1107 	}
1108 }
1109 
1110 
1111 static void ops_complete_prexor(void *stripe_head_ref)
1112 {
1113 	struct stripe_head *sh = stripe_head_ref;
1114 
1115 	pr_debug("%s: stripe %llu\n", __func__,
1116 		(unsigned long long)sh->sector);
1117 }
1118 
1119 static struct dma_async_tx_descriptor *
1120 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1121 	       struct dma_async_tx_descriptor *tx)
1122 {
1123 	int disks = sh->disks;
1124 	struct page **xor_srcs = percpu->scribble;
1125 	int count = 0, pd_idx = sh->pd_idx, i;
1126 	struct async_submit_ctl submit;
1127 
1128 	/* existing parity data subtracted */
1129 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1130 
1131 	pr_debug("%s: stripe %llu\n", __func__,
1132 		(unsigned long long)sh->sector);
1133 
1134 	for (i = disks; i--; ) {
1135 		struct r5dev *dev = &sh->dev[i];
1136 		/* Only process blocks that are known to be uptodate */
1137 		if (test_bit(R5_Wantdrain, &dev->flags))
1138 			xor_srcs[count++] = dev->page;
1139 	}
1140 
1141 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1142 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1143 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1144 
1145 	return tx;
1146 }
1147 
1148 static struct dma_async_tx_descriptor *
1149 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1150 {
1151 	int disks = sh->disks;
1152 	int i;
1153 
1154 	pr_debug("%s: stripe %llu\n", __func__,
1155 		(unsigned long long)sh->sector);
1156 
1157 	for (i = disks; i--; ) {
1158 		struct r5dev *dev = &sh->dev[i];
1159 		struct bio *chosen;
1160 
1161 		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1162 			struct bio *wbi;
1163 
1164 			spin_lock_irq(&sh->stripe_lock);
1165 			chosen = dev->towrite;
1166 			dev->towrite = NULL;
1167 			BUG_ON(dev->written);
1168 			wbi = dev->written = chosen;
1169 			spin_unlock_irq(&sh->stripe_lock);
1170 
1171 			while (wbi && wbi->bi_sector <
1172 				dev->sector + STRIPE_SECTORS) {
1173 				if (wbi->bi_rw & REQ_FUA)
1174 					set_bit(R5_WantFUA, &dev->flags);
1175 				if (wbi->bi_rw & REQ_SYNC)
1176 					set_bit(R5_SyncIO, &dev->flags);
1177 				tx = async_copy_data(1, wbi, dev->page,
1178 					dev->sector, tx);
1179 				wbi = r5_next_bio(wbi, dev->sector);
1180 			}
1181 		}
1182 	}
1183 
1184 	return tx;
1185 }
1186 
1187 static void ops_complete_reconstruct(void *stripe_head_ref)
1188 {
1189 	struct stripe_head *sh = stripe_head_ref;
1190 	int disks = sh->disks;
1191 	int pd_idx = sh->pd_idx;
1192 	int qd_idx = sh->qd_idx;
1193 	int i;
1194 	bool fua = false, sync = false;
1195 
1196 	pr_debug("%s: stripe %llu\n", __func__,
1197 		(unsigned long long)sh->sector);
1198 
1199 	for (i = disks; i--; ) {
1200 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1201 		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1202 	}
1203 
1204 	for (i = disks; i--; ) {
1205 		struct r5dev *dev = &sh->dev[i];
1206 
1207 		if (dev->written || i == pd_idx || i == qd_idx) {
1208 			set_bit(R5_UPTODATE, &dev->flags);
1209 			if (fua)
1210 				set_bit(R5_WantFUA, &dev->flags);
1211 			if (sync)
1212 				set_bit(R5_SyncIO, &dev->flags);
1213 		}
1214 	}
1215 
1216 	if (sh->reconstruct_state == reconstruct_state_drain_run)
1217 		sh->reconstruct_state = reconstruct_state_drain_result;
1218 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1219 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1220 	else {
1221 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1222 		sh->reconstruct_state = reconstruct_state_result;
1223 	}
1224 
1225 	set_bit(STRIPE_HANDLE, &sh->state);
1226 	release_stripe(sh);
1227 }
1228 
1229 static void
1230 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1231 		     struct dma_async_tx_descriptor *tx)
1232 {
1233 	int disks = sh->disks;
1234 	struct page **xor_srcs = percpu->scribble;
1235 	struct async_submit_ctl submit;
1236 	int count = 0, pd_idx = sh->pd_idx, i;
1237 	struct page *xor_dest;
1238 	int prexor = 0;
1239 	unsigned long flags;
1240 
1241 	pr_debug("%s: stripe %llu\n", __func__,
1242 		(unsigned long long)sh->sector);
1243 
1244 	/* check if prexor is active which means only process blocks
1245 	 * that are part of a read-modify-write (written)
1246 	 */
1247 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1248 		prexor = 1;
1249 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1250 		for (i = disks; i--; ) {
1251 			struct r5dev *dev = &sh->dev[i];
1252 			if (dev->written)
1253 				xor_srcs[count++] = dev->page;
1254 		}
1255 	} else {
1256 		xor_dest = sh->dev[pd_idx].page;
1257 		for (i = disks; i--; ) {
1258 			struct r5dev *dev = &sh->dev[i];
1259 			if (i != pd_idx)
1260 				xor_srcs[count++] = dev->page;
1261 		}
1262 	}
1263 
1264 	/* 1/ if we prexor'd then the dest is reused as a source
1265 	 * 2/ if we did not prexor then we are redoing the parity
1266 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1267 	 * for the synchronous xor case
1268 	 */
1269 	flags = ASYNC_TX_ACK |
1270 		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1271 
1272 	atomic_inc(&sh->count);
1273 
1274 	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1275 			  to_addr_conv(sh, percpu));
1276 	if (unlikely(count == 1))
1277 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1278 	else
1279 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1280 }
1281 
1282 static void
1283 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1284 		     struct dma_async_tx_descriptor *tx)
1285 {
1286 	struct async_submit_ctl submit;
1287 	struct page **blocks = percpu->scribble;
1288 	int count;
1289 
1290 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1291 
1292 	count = set_syndrome_sources(blocks, sh);
1293 
1294 	atomic_inc(&sh->count);
1295 
1296 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1297 			  sh, to_addr_conv(sh, percpu));
1298 	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1299 }
1300 
1301 static void ops_complete_check(void *stripe_head_ref)
1302 {
1303 	struct stripe_head *sh = stripe_head_ref;
1304 
1305 	pr_debug("%s: stripe %llu\n", __func__,
1306 		(unsigned long long)sh->sector);
1307 
1308 	sh->check_state = check_state_check_result;
1309 	set_bit(STRIPE_HANDLE, &sh->state);
1310 	release_stripe(sh);
1311 }
1312 
1313 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1314 {
1315 	int disks = sh->disks;
1316 	int pd_idx = sh->pd_idx;
1317 	int qd_idx = sh->qd_idx;
1318 	struct page *xor_dest;
1319 	struct page **xor_srcs = percpu->scribble;
1320 	struct dma_async_tx_descriptor *tx;
1321 	struct async_submit_ctl submit;
1322 	int count;
1323 	int i;
1324 
1325 	pr_debug("%s: stripe %llu\n", __func__,
1326 		(unsigned long long)sh->sector);
1327 
1328 	count = 0;
1329 	xor_dest = sh->dev[pd_idx].page;
1330 	xor_srcs[count++] = xor_dest;
1331 	for (i = disks; i--; ) {
1332 		if (i == pd_idx || i == qd_idx)
1333 			continue;
1334 		xor_srcs[count++] = sh->dev[i].page;
1335 	}
1336 
1337 	init_async_submit(&submit, 0, NULL, NULL, NULL,
1338 			  to_addr_conv(sh, percpu));
1339 	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1340 			   &sh->ops.zero_sum_result, &submit);
1341 
1342 	atomic_inc(&sh->count);
1343 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1344 	tx = async_trigger_callback(&submit);
1345 }
1346 
1347 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1348 {
1349 	struct page **srcs = percpu->scribble;
1350 	struct async_submit_ctl submit;
1351 	int count;
1352 
1353 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1354 		(unsigned long long)sh->sector, checkp);
1355 
1356 	count = set_syndrome_sources(srcs, sh);
1357 	if (!checkp)
1358 		srcs[count] = NULL;
1359 
1360 	atomic_inc(&sh->count);
1361 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1362 			  sh, to_addr_conv(sh, percpu));
1363 	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1364 			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1365 }
1366 
1367 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1368 {
1369 	int overlap_clear = 0, i, disks = sh->disks;
1370 	struct dma_async_tx_descriptor *tx = NULL;
1371 	struct r5conf *conf = sh->raid_conf;
1372 	int level = conf->level;
1373 	struct raid5_percpu *percpu;
1374 	unsigned long cpu;
1375 
1376 	cpu = get_cpu();
1377 	percpu = per_cpu_ptr(conf->percpu, cpu);
1378 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1379 		ops_run_biofill(sh);
1380 		overlap_clear++;
1381 	}
1382 
1383 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1384 		if (level < 6)
1385 			tx = ops_run_compute5(sh, percpu);
1386 		else {
1387 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
1388 				tx = ops_run_compute6_1(sh, percpu);
1389 			else
1390 				tx = ops_run_compute6_2(sh, percpu);
1391 		}
1392 		/* terminate the chain if reconstruct is not set to be run */
1393 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1394 			async_tx_ack(tx);
1395 	}
1396 
1397 	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1398 		tx = ops_run_prexor(sh, percpu, tx);
1399 
1400 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1401 		tx = ops_run_biodrain(sh, tx);
1402 		overlap_clear++;
1403 	}
1404 
1405 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1406 		if (level < 6)
1407 			ops_run_reconstruct5(sh, percpu, tx);
1408 		else
1409 			ops_run_reconstruct6(sh, percpu, tx);
1410 	}
1411 
1412 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1413 		if (sh->check_state == check_state_run)
1414 			ops_run_check_p(sh, percpu);
1415 		else if (sh->check_state == check_state_run_q)
1416 			ops_run_check_pq(sh, percpu, 0);
1417 		else if (sh->check_state == check_state_run_pq)
1418 			ops_run_check_pq(sh, percpu, 1);
1419 		else
1420 			BUG();
1421 	}
1422 
1423 	if (overlap_clear)
1424 		for (i = disks; i--; ) {
1425 			struct r5dev *dev = &sh->dev[i];
1426 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
1427 				wake_up(&sh->raid_conf->wait_for_overlap);
1428 		}
1429 	put_cpu();
1430 }
1431 
1432 #ifdef CONFIG_MULTICORE_RAID456
1433 static void async_run_ops(void *param, async_cookie_t cookie)
1434 {
1435 	struct stripe_head *sh = param;
1436 	unsigned long ops_request = sh->ops.request;
1437 
1438 	clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1439 	wake_up(&sh->ops.wait_for_ops);
1440 
1441 	__raid_run_ops(sh, ops_request);
1442 	release_stripe(sh);
1443 }
1444 
1445 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1446 {
1447 	/* since handle_stripe can be called outside of raid5d context
1448 	 * we need to ensure sh->ops.request is de-staged before another
1449 	 * request arrives
1450 	 */
1451 	wait_event(sh->ops.wait_for_ops,
1452 		   !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1453 	sh->ops.request = ops_request;
1454 
1455 	atomic_inc(&sh->count);
1456 	async_schedule(async_run_ops, sh);
1457 }
1458 #else
1459 #define raid_run_ops __raid_run_ops
1460 #endif
1461 
1462 static int grow_one_stripe(struct r5conf *conf)
1463 {
1464 	struct stripe_head *sh;
1465 	sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1466 	if (!sh)
1467 		return 0;
1468 
1469 	sh->raid_conf = conf;
1470 	#ifdef CONFIG_MULTICORE_RAID456
1471 	init_waitqueue_head(&sh->ops.wait_for_ops);
1472 	#endif
1473 
1474 	spin_lock_init(&sh->stripe_lock);
1475 
1476 	if (grow_buffers(sh)) {
1477 		shrink_buffers(sh);
1478 		kmem_cache_free(conf->slab_cache, sh);
1479 		return 0;
1480 	}
1481 	/* we just created an active stripe so... */
1482 	atomic_set(&sh->count, 1);
1483 	atomic_inc(&conf->active_stripes);
1484 	INIT_LIST_HEAD(&sh->lru);
1485 	release_stripe(sh);
1486 	return 1;
1487 }
1488 
1489 static int grow_stripes(struct r5conf *conf, int num)
1490 {
1491 	struct kmem_cache *sc;
1492 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
1493 
1494 	if (conf->mddev->gendisk)
1495 		sprintf(conf->cache_name[0],
1496 			"raid%d-%s", conf->level, mdname(conf->mddev));
1497 	else
1498 		sprintf(conf->cache_name[0],
1499 			"raid%d-%p", conf->level, conf->mddev);
1500 	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1501 
1502 	conf->active_name = 0;
1503 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
1504 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1505 			       0, 0, NULL);
1506 	if (!sc)
1507 		return 1;
1508 	conf->slab_cache = sc;
1509 	conf->pool_size = devs;
1510 	while (num--)
1511 		if (!grow_one_stripe(conf))
1512 			return 1;
1513 	return 0;
1514 }
1515 
1516 /**
1517  * scribble_len - return the required size of the scribble region
1518  * @num - total number of disks in the array
1519  *
1520  * The size must be enough to contain:
1521  * 1/ a struct page pointer for each device in the array +2
1522  * 2/ room to convert each entry in (1) to its corresponding dma
1523  *    (dma_map_page()) or page (page_address()) address.
1524  *
1525  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1526  * calculate over all devices (not just the data blocks), using zeros in place
1527  * of the P and Q blocks.
1528  */
1529 static size_t scribble_len(int num)
1530 {
1531 	size_t len;
1532 
1533 	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1534 
1535 	return len;
1536 }
1537 
1538 static int resize_stripes(struct r5conf *conf, int newsize)
1539 {
1540 	/* Make all the stripes able to hold 'newsize' devices.
1541 	 * New slots in each stripe get 'page' set to a new page.
1542 	 *
1543 	 * This happens in stages:
1544 	 * 1/ create a new kmem_cache and allocate the required number of
1545 	 *    stripe_heads.
1546 	 * 2/ gather all the old stripe_heads and tranfer the pages across
1547 	 *    to the new stripe_heads.  This will have the side effect of
1548 	 *    freezing the array as once all stripe_heads have been collected,
1549 	 *    no IO will be possible.  Old stripe heads are freed once their
1550 	 *    pages have been transferred over, and the old kmem_cache is
1551 	 *    freed when all stripes are done.
1552 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1553 	 *    we simple return a failre status - no need to clean anything up.
1554 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
1555 	 *    If this fails, we don't bother trying the shrink the
1556 	 *    stripe_heads down again, we just leave them as they are.
1557 	 *    As each stripe_head is processed the new one is released into
1558 	 *    active service.
1559 	 *
1560 	 * Once step2 is started, we cannot afford to wait for a write,
1561 	 * so we use GFP_NOIO allocations.
1562 	 */
1563 	struct stripe_head *osh, *nsh;
1564 	LIST_HEAD(newstripes);
1565 	struct disk_info *ndisks;
1566 	unsigned long cpu;
1567 	int err;
1568 	struct kmem_cache *sc;
1569 	int i;
1570 
1571 	if (newsize <= conf->pool_size)
1572 		return 0; /* never bother to shrink */
1573 
1574 	err = md_allow_write(conf->mddev);
1575 	if (err)
1576 		return err;
1577 
1578 	/* Step 1 */
1579 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1580 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1581 			       0, 0, NULL);
1582 	if (!sc)
1583 		return -ENOMEM;
1584 
1585 	for (i = conf->max_nr_stripes; i; i--) {
1586 		nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1587 		if (!nsh)
1588 			break;
1589 
1590 		nsh->raid_conf = conf;
1591 		#ifdef CONFIG_MULTICORE_RAID456
1592 		init_waitqueue_head(&nsh->ops.wait_for_ops);
1593 		#endif
1594 
1595 		list_add(&nsh->lru, &newstripes);
1596 	}
1597 	if (i) {
1598 		/* didn't get enough, give up */
1599 		while (!list_empty(&newstripes)) {
1600 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
1601 			list_del(&nsh->lru);
1602 			kmem_cache_free(sc, nsh);
1603 		}
1604 		kmem_cache_destroy(sc);
1605 		return -ENOMEM;
1606 	}
1607 	/* Step 2 - Must use GFP_NOIO now.
1608 	 * OK, we have enough stripes, start collecting inactive
1609 	 * stripes and copying them over
1610 	 */
1611 	list_for_each_entry(nsh, &newstripes, lru) {
1612 		spin_lock_irq(&conf->device_lock);
1613 		wait_event_lock_irq(conf->wait_for_stripe,
1614 				    !list_empty(&conf->inactive_list),
1615 				    conf->device_lock,
1616 				    );
1617 		osh = get_free_stripe(conf);
1618 		spin_unlock_irq(&conf->device_lock);
1619 		atomic_set(&nsh->count, 1);
1620 		for(i=0; i<conf->pool_size; i++)
1621 			nsh->dev[i].page = osh->dev[i].page;
1622 		for( ; i<newsize; i++)
1623 			nsh->dev[i].page = NULL;
1624 		kmem_cache_free(conf->slab_cache, osh);
1625 	}
1626 	kmem_cache_destroy(conf->slab_cache);
1627 
1628 	/* Step 3.
1629 	 * At this point, we are holding all the stripes so the array
1630 	 * is completely stalled, so now is a good time to resize
1631 	 * conf->disks and the scribble region
1632 	 */
1633 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1634 	if (ndisks) {
1635 		for (i=0; i<conf->raid_disks; i++)
1636 			ndisks[i] = conf->disks[i];
1637 		kfree(conf->disks);
1638 		conf->disks = ndisks;
1639 	} else
1640 		err = -ENOMEM;
1641 
1642 	get_online_cpus();
1643 	conf->scribble_len = scribble_len(newsize);
1644 	for_each_present_cpu(cpu) {
1645 		struct raid5_percpu *percpu;
1646 		void *scribble;
1647 
1648 		percpu = per_cpu_ptr(conf->percpu, cpu);
1649 		scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1650 
1651 		if (scribble) {
1652 			kfree(percpu->scribble);
1653 			percpu->scribble = scribble;
1654 		} else {
1655 			err = -ENOMEM;
1656 			break;
1657 		}
1658 	}
1659 	put_online_cpus();
1660 
1661 	/* Step 4, return new stripes to service */
1662 	while(!list_empty(&newstripes)) {
1663 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
1664 		list_del_init(&nsh->lru);
1665 
1666 		for (i=conf->raid_disks; i < newsize; i++)
1667 			if (nsh->dev[i].page == NULL) {
1668 				struct page *p = alloc_page(GFP_NOIO);
1669 				nsh->dev[i].page = p;
1670 				if (!p)
1671 					err = -ENOMEM;
1672 			}
1673 		release_stripe(nsh);
1674 	}
1675 	/* critical section pass, GFP_NOIO no longer needed */
1676 
1677 	conf->slab_cache = sc;
1678 	conf->active_name = 1-conf->active_name;
1679 	conf->pool_size = newsize;
1680 	return err;
1681 }
1682 
1683 static int drop_one_stripe(struct r5conf *conf)
1684 {
1685 	struct stripe_head *sh;
1686 
1687 	spin_lock_irq(&conf->device_lock);
1688 	sh = get_free_stripe(conf);
1689 	spin_unlock_irq(&conf->device_lock);
1690 	if (!sh)
1691 		return 0;
1692 	BUG_ON(atomic_read(&sh->count));
1693 	shrink_buffers(sh);
1694 	kmem_cache_free(conf->slab_cache, sh);
1695 	atomic_dec(&conf->active_stripes);
1696 	return 1;
1697 }
1698 
1699 static void shrink_stripes(struct r5conf *conf)
1700 {
1701 	while (drop_one_stripe(conf))
1702 		;
1703 
1704 	if (conf->slab_cache)
1705 		kmem_cache_destroy(conf->slab_cache);
1706 	conf->slab_cache = NULL;
1707 }
1708 
1709 static void raid5_end_read_request(struct bio * bi, int error)
1710 {
1711 	struct stripe_head *sh = bi->bi_private;
1712 	struct r5conf *conf = sh->raid_conf;
1713 	int disks = sh->disks, i;
1714 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1715 	char b[BDEVNAME_SIZE];
1716 	struct md_rdev *rdev = NULL;
1717 	sector_t s;
1718 
1719 	for (i=0 ; i<disks; i++)
1720 		if (bi == &sh->dev[i].req)
1721 			break;
1722 
1723 	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1724 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1725 		uptodate);
1726 	if (i == disks) {
1727 		BUG();
1728 		return;
1729 	}
1730 	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1731 		/* If replacement finished while this request was outstanding,
1732 		 * 'replacement' might be NULL already.
1733 		 * In that case it moved down to 'rdev'.
1734 		 * rdev is not removed until all requests are finished.
1735 		 */
1736 		rdev = conf->disks[i].replacement;
1737 	if (!rdev)
1738 		rdev = conf->disks[i].rdev;
1739 
1740 	if (use_new_offset(conf, sh))
1741 		s = sh->sector + rdev->new_data_offset;
1742 	else
1743 		s = sh->sector + rdev->data_offset;
1744 	if (uptodate) {
1745 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1746 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1747 			/* Note that this cannot happen on a
1748 			 * replacement device.  We just fail those on
1749 			 * any error
1750 			 */
1751 			printk_ratelimited(
1752 				KERN_INFO
1753 				"md/raid:%s: read error corrected"
1754 				" (%lu sectors at %llu on %s)\n",
1755 				mdname(conf->mddev), STRIPE_SECTORS,
1756 				(unsigned long long)s,
1757 				bdevname(rdev->bdev, b));
1758 			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1759 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1760 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1761 		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
1762 			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1763 
1764 		if (atomic_read(&rdev->read_errors))
1765 			atomic_set(&rdev->read_errors, 0);
1766 	} else {
1767 		const char *bdn = bdevname(rdev->bdev, b);
1768 		int retry = 0;
1769 		int set_bad = 0;
1770 
1771 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1772 		atomic_inc(&rdev->read_errors);
1773 		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1774 			printk_ratelimited(
1775 				KERN_WARNING
1776 				"md/raid:%s: read error on replacement device "
1777 				"(sector %llu on %s).\n",
1778 				mdname(conf->mddev),
1779 				(unsigned long long)s,
1780 				bdn);
1781 		else if (conf->mddev->degraded >= conf->max_degraded) {
1782 			set_bad = 1;
1783 			printk_ratelimited(
1784 				KERN_WARNING
1785 				"md/raid:%s: read error not correctable "
1786 				"(sector %llu on %s).\n",
1787 				mdname(conf->mddev),
1788 				(unsigned long long)s,
1789 				bdn);
1790 		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
1791 			/* Oh, no!!! */
1792 			set_bad = 1;
1793 			printk_ratelimited(
1794 				KERN_WARNING
1795 				"md/raid:%s: read error NOT corrected!! "
1796 				"(sector %llu on %s).\n",
1797 				mdname(conf->mddev),
1798 				(unsigned long long)s,
1799 				bdn);
1800 		} else if (atomic_read(&rdev->read_errors)
1801 			 > conf->max_nr_stripes)
1802 			printk(KERN_WARNING
1803 			       "md/raid:%s: Too many read errors, failing device %s.\n",
1804 			       mdname(conf->mddev), bdn);
1805 		else
1806 			retry = 1;
1807 		if (retry)
1808 			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
1809 				set_bit(R5_ReadError, &sh->dev[i].flags);
1810 				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1811 			} else
1812 				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1813 		else {
1814 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1815 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1816 			if (!(set_bad
1817 			      && test_bit(In_sync, &rdev->flags)
1818 			      && rdev_set_badblocks(
1819 				      rdev, sh->sector, STRIPE_SECTORS, 0)))
1820 				md_error(conf->mddev, rdev);
1821 		}
1822 	}
1823 	rdev_dec_pending(rdev, conf->mddev);
1824 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1825 	set_bit(STRIPE_HANDLE, &sh->state);
1826 	release_stripe(sh);
1827 }
1828 
1829 static void raid5_end_write_request(struct bio *bi, int error)
1830 {
1831 	struct stripe_head *sh = bi->bi_private;
1832 	struct r5conf *conf = sh->raid_conf;
1833 	int disks = sh->disks, i;
1834 	struct md_rdev *uninitialized_var(rdev);
1835 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1836 	sector_t first_bad;
1837 	int bad_sectors;
1838 	int replacement = 0;
1839 
1840 	for (i = 0 ; i < disks; i++) {
1841 		if (bi == &sh->dev[i].req) {
1842 			rdev = conf->disks[i].rdev;
1843 			break;
1844 		}
1845 		if (bi == &sh->dev[i].rreq) {
1846 			rdev = conf->disks[i].replacement;
1847 			if (rdev)
1848 				replacement = 1;
1849 			else
1850 				/* rdev was removed and 'replacement'
1851 				 * replaced it.  rdev is not removed
1852 				 * until all requests are finished.
1853 				 */
1854 				rdev = conf->disks[i].rdev;
1855 			break;
1856 		}
1857 	}
1858 	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1859 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1860 		uptodate);
1861 	if (i == disks) {
1862 		BUG();
1863 		return;
1864 	}
1865 
1866 	if (replacement) {
1867 		if (!uptodate)
1868 			md_error(conf->mddev, rdev);
1869 		else if (is_badblock(rdev, sh->sector,
1870 				     STRIPE_SECTORS,
1871 				     &first_bad, &bad_sectors))
1872 			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
1873 	} else {
1874 		if (!uptodate) {
1875 			set_bit(WriteErrorSeen, &rdev->flags);
1876 			set_bit(R5_WriteError, &sh->dev[i].flags);
1877 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
1878 				set_bit(MD_RECOVERY_NEEDED,
1879 					&rdev->mddev->recovery);
1880 		} else if (is_badblock(rdev, sh->sector,
1881 				       STRIPE_SECTORS,
1882 				       &first_bad, &bad_sectors))
1883 			set_bit(R5_MadeGood, &sh->dev[i].flags);
1884 	}
1885 	rdev_dec_pending(rdev, conf->mddev);
1886 
1887 	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
1888 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
1889 	set_bit(STRIPE_HANDLE, &sh->state);
1890 	release_stripe(sh);
1891 }
1892 
1893 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1894 
1895 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1896 {
1897 	struct r5dev *dev = &sh->dev[i];
1898 
1899 	bio_init(&dev->req);
1900 	dev->req.bi_io_vec = &dev->vec;
1901 	dev->req.bi_vcnt++;
1902 	dev->req.bi_max_vecs++;
1903 	dev->req.bi_private = sh;
1904 	dev->vec.bv_page = dev->page;
1905 
1906 	bio_init(&dev->rreq);
1907 	dev->rreq.bi_io_vec = &dev->rvec;
1908 	dev->rreq.bi_vcnt++;
1909 	dev->rreq.bi_max_vecs++;
1910 	dev->rreq.bi_private = sh;
1911 	dev->rvec.bv_page = dev->page;
1912 
1913 	dev->flags = 0;
1914 	dev->sector = compute_blocknr(sh, i, previous);
1915 }
1916 
1917 static void error(struct mddev *mddev, struct md_rdev *rdev)
1918 {
1919 	char b[BDEVNAME_SIZE];
1920 	struct r5conf *conf = mddev->private;
1921 	unsigned long flags;
1922 	pr_debug("raid456: error called\n");
1923 
1924 	spin_lock_irqsave(&conf->device_lock, flags);
1925 	clear_bit(In_sync, &rdev->flags);
1926 	mddev->degraded = calc_degraded(conf);
1927 	spin_unlock_irqrestore(&conf->device_lock, flags);
1928 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1929 
1930 	set_bit(Blocked, &rdev->flags);
1931 	set_bit(Faulty, &rdev->flags);
1932 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1933 	printk(KERN_ALERT
1934 	       "md/raid:%s: Disk failure on %s, disabling device.\n"
1935 	       "md/raid:%s: Operation continuing on %d devices.\n",
1936 	       mdname(mddev),
1937 	       bdevname(rdev->bdev, b),
1938 	       mdname(mddev),
1939 	       conf->raid_disks - mddev->degraded);
1940 }
1941 
1942 /*
1943  * Input: a 'big' sector number,
1944  * Output: index of the data and parity disk, and the sector # in them.
1945  */
1946 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
1947 				     int previous, int *dd_idx,
1948 				     struct stripe_head *sh)
1949 {
1950 	sector_t stripe, stripe2;
1951 	sector_t chunk_number;
1952 	unsigned int chunk_offset;
1953 	int pd_idx, qd_idx;
1954 	int ddf_layout = 0;
1955 	sector_t new_sector;
1956 	int algorithm = previous ? conf->prev_algo
1957 				 : conf->algorithm;
1958 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1959 					 : conf->chunk_sectors;
1960 	int raid_disks = previous ? conf->previous_raid_disks
1961 				  : conf->raid_disks;
1962 	int data_disks = raid_disks - conf->max_degraded;
1963 
1964 	/* First compute the information on this sector */
1965 
1966 	/*
1967 	 * Compute the chunk number and the sector offset inside the chunk
1968 	 */
1969 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
1970 	chunk_number = r_sector;
1971 
1972 	/*
1973 	 * Compute the stripe number
1974 	 */
1975 	stripe = chunk_number;
1976 	*dd_idx = sector_div(stripe, data_disks);
1977 	stripe2 = stripe;
1978 	/*
1979 	 * Select the parity disk based on the user selected algorithm.
1980 	 */
1981 	pd_idx = qd_idx = -1;
1982 	switch(conf->level) {
1983 	case 4:
1984 		pd_idx = data_disks;
1985 		break;
1986 	case 5:
1987 		switch (algorithm) {
1988 		case ALGORITHM_LEFT_ASYMMETRIC:
1989 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1990 			if (*dd_idx >= pd_idx)
1991 				(*dd_idx)++;
1992 			break;
1993 		case ALGORITHM_RIGHT_ASYMMETRIC:
1994 			pd_idx = sector_div(stripe2, raid_disks);
1995 			if (*dd_idx >= pd_idx)
1996 				(*dd_idx)++;
1997 			break;
1998 		case ALGORITHM_LEFT_SYMMETRIC:
1999 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2000 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2001 			break;
2002 		case ALGORITHM_RIGHT_SYMMETRIC:
2003 			pd_idx = sector_div(stripe2, raid_disks);
2004 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2005 			break;
2006 		case ALGORITHM_PARITY_0:
2007 			pd_idx = 0;
2008 			(*dd_idx)++;
2009 			break;
2010 		case ALGORITHM_PARITY_N:
2011 			pd_idx = data_disks;
2012 			break;
2013 		default:
2014 			BUG();
2015 		}
2016 		break;
2017 	case 6:
2018 
2019 		switch (algorithm) {
2020 		case ALGORITHM_LEFT_ASYMMETRIC:
2021 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2022 			qd_idx = pd_idx + 1;
2023 			if (pd_idx == raid_disks-1) {
2024 				(*dd_idx)++;	/* Q D D D P */
2025 				qd_idx = 0;
2026 			} else if (*dd_idx >= pd_idx)
2027 				(*dd_idx) += 2; /* D D P Q D */
2028 			break;
2029 		case ALGORITHM_RIGHT_ASYMMETRIC:
2030 			pd_idx = sector_div(stripe2, raid_disks);
2031 			qd_idx = pd_idx + 1;
2032 			if (pd_idx == raid_disks-1) {
2033 				(*dd_idx)++;	/* Q D D D P */
2034 				qd_idx = 0;
2035 			} else if (*dd_idx >= pd_idx)
2036 				(*dd_idx) += 2; /* D D P Q D */
2037 			break;
2038 		case ALGORITHM_LEFT_SYMMETRIC:
2039 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2040 			qd_idx = (pd_idx + 1) % raid_disks;
2041 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2042 			break;
2043 		case ALGORITHM_RIGHT_SYMMETRIC:
2044 			pd_idx = sector_div(stripe2, raid_disks);
2045 			qd_idx = (pd_idx + 1) % raid_disks;
2046 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2047 			break;
2048 
2049 		case ALGORITHM_PARITY_0:
2050 			pd_idx = 0;
2051 			qd_idx = 1;
2052 			(*dd_idx) += 2;
2053 			break;
2054 		case ALGORITHM_PARITY_N:
2055 			pd_idx = data_disks;
2056 			qd_idx = data_disks + 1;
2057 			break;
2058 
2059 		case ALGORITHM_ROTATING_ZERO_RESTART:
2060 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
2061 			 * of blocks for computing Q is different.
2062 			 */
2063 			pd_idx = sector_div(stripe2, raid_disks);
2064 			qd_idx = pd_idx + 1;
2065 			if (pd_idx == raid_disks-1) {
2066 				(*dd_idx)++;	/* Q D D D P */
2067 				qd_idx = 0;
2068 			} else if (*dd_idx >= pd_idx)
2069 				(*dd_idx) += 2; /* D D P Q D */
2070 			ddf_layout = 1;
2071 			break;
2072 
2073 		case ALGORITHM_ROTATING_N_RESTART:
2074 			/* Same a left_asymmetric, by first stripe is
2075 			 * D D D P Q  rather than
2076 			 * Q D D D P
2077 			 */
2078 			stripe2 += 1;
2079 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2080 			qd_idx = pd_idx + 1;
2081 			if (pd_idx == raid_disks-1) {
2082 				(*dd_idx)++;	/* Q D D D P */
2083 				qd_idx = 0;
2084 			} else if (*dd_idx >= pd_idx)
2085 				(*dd_idx) += 2; /* D D P Q D */
2086 			ddf_layout = 1;
2087 			break;
2088 
2089 		case ALGORITHM_ROTATING_N_CONTINUE:
2090 			/* Same as left_symmetric but Q is before P */
2091 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2092 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2093 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2094 			ddf_layout = 1;
2095 			break;
2096 
2097 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2098 			/* RAID5 left_asymmetric, with Q on last device */
2099 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2100 			if (*dd_idx >= pd_idx)
2101 				(*dd_idx)++;
2102 			qd_idx = raid_disks - 1;
2103 			break;
2104 
2105 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2106 			pd_idx = sector_div(stripe2, raid_disks-1);
2107 			if (*dd_idx >= pd_idx)
2108 				(*dd_idx)++;
2109 			qd_idx = raid_disks - 1;
2110 			break;
2111 
2112 		case ALGORITHM_LEFT_SYMMETRIC_6:
2113 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2114 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2115 			qd_idx = raid_disks - 1;
2116 			break;
2117 
2118 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2119 			pd_idx = sector_div(stripe2, raid_disks-1);
2120 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2121 			qd_idx = raid_disks - 1;
2122 			break;
2123 
2124 		case ALGORITHM_PARITY_0_6:
2125 			pd_idx = 0;
2126 			(*dd_idx)++;
2127 			qd_idx = raid_disks - 1;
2128 			break;
2129 
2130 		default:
2131 			BUG();
2132 		}
2133 		break;
2134 	}
2135 
2136 	if (sh) {
2137 		sh->pd_idx = pd_idx;
2138 		sh->qd_idx = qd_idx;
2139 		sh->ddf_layout = ddf_layout;
2140 	}
2141 	/*
2142 	 * Finally, compute the new sector number
2143 	 */
2144 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2145 	return new_sector;
2146 }
2147 
2148 
2149 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2150 {
2151 	struct r5conf *conf = sh->raid_conf;
2152 	int raid_disks = sh->disks;
2153 	int data_disks = raid_disks - conf->max_degraded;
2154 	sector_t new_sector = sh->sector, check;
2155 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2156 					 : conf->chunk_sectors;
2157 	int algorithm = previous ? conf->prev_algo
2158 				 : conf->algorithm;
2159 	sector_t stripe;
2160 	int chunk_offset;
2161 	sector_t chunk_number;
2162 	int dummy1, dd_idx = i;
2163 	sector_t r_sector;
2164 	struct stripe_head sh2;
2165 
2166 
2167 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
2168 	stripe = new_sector;
2169 
2170 	if (i == sh->pd_idx)
2171 		return 0;
2172 	switch(conf->level) {
2173 	case 4: break;
2174 	case 5:
2175 		switch (algorithm) {
2176 		case ALGORITHM_LEFT_ASYMMETRIC:
2177 		case ALGORITHM_RIGHT_ASYMMETRIC:
2178 			if (i > sh->pd_idx)
2179 				i--;
2180 			break;
2181 		case ALGORITHM_LEFT_SYMMETRIC:
2182 		case ALGORITHM_RIGHT_SYMMETRIC:
2183 			if (i < sh->pd_idx)
2184 				i += raid_disks;
2185 			i -= (sh->pd_idx + 1);
2186 			break;
2187 		case ALGORITHM_PARITY_0:
2188 			i -= 1;
2189 			break;
2190 		case ALGORITHM_PARITY_N:
2191 			break;
2192 		default:
2193 			BUG();
2194 		}
2195 		break;
2196 	case 6:
2197 		if (i == sh->qd_idx)
2198 			return 0; /* It is the Q disk */
2199 		switch (algorithm) {
2200 		case ALGORITHM_LEFT_ASYMMETRIC:
2201 		case ALGORITHM_RIGHT_ASYMMETRIC:
2202 		case ALGORITHM_ROTATING_ZERO_RESTART:
2203 		case ALGORITHM_ROTATING_N_RESTART:
2204 			if (sh->pd_idx == raid_disks-1)
2205 				i--;	/* Q D D D P */
2206 			else if (i > sh->pd_idx)
2207 				i -= 2; /* D D P Q D */
2208 			break;
2209 		case ALGORITHM_LEFT_SYMMETRIC:
2210 		case ALGORITHM_RIGHT_SYMMETRIC:
2211 			if (sh->pd_idx == raid_disks-1)
2212 				i--; /* Q D D D P */
2213 			else {
2214 				/* D D P Q D */
2215 				if (i < sh->pd_idx)
2216 					i += raid_disks;
2217 				i -= (sh->pd_idx + 2);
2218 			}
2219 			break;
2220 		case ALGORITHM_PARITY_0:
2221 			i -= 2;
2222 			break;
2223 		case ALGORITHM_PARITY_N:
2224 			break;
2225 		case ALGORITHM_ROTATING_N_CONTINUE:
2226 			/* Like left_symmetric, but P is before Q */
2227 			if (sh->pd_idx == 0)
2228 				i--;	/* P D D D Q */
2229 			else {
2230 				/* D D Q P D */
2231 				if (i < sh->pd_idx)
2232 					i += raid_disks;
2233 				i -= (sh->pd_idx + 1);
2234 			}
2235 			break;
2236 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2237 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2238 			if (i > sh->pd_idx)
2239 				i--;
2240 			break;
2241 		case ALGORITHM_LEFT_SYMMETRIC_6:
2242 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2243 			if (i < sh->pd_idx)
2244 				i += data_disks + 1;
2245 			i -= (sh->pd_idx + 1);
2246 			break;
2247 		case ALGORITHM_PARITY_0_6:
2248 			i -= 1;
2249 			break;
2250 		default:
2251 			BUG();
2252 		}
2253 		break;
2254 	}
2255 
2256 	chunk_number = stripe * data_disks + i;
2257 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2258 
2259 	check = raid5_compute_sector(conf, r_sector,
2260 				     previous, &dummy1, &sh2);
2261 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2262 		|| sh2.qd_idx != sh->qd_idx) {
2263 		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2264 		       mdname(conf->mddev));
2265 		return 0;
2266 	}
2267 	return r_sector;
2268 }
2269 
2270 
2271 static void
2272 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2273 			 int rcw, int expand)
2274 {
2275 	int i, pd_idx = sh->pd_idx, disks = sh->disks;
2276 	struct r5conf *conf = sh->raid_conf;
2277 	int level = conf->level;
2278 
2279 	if (rcw) {
2280 		/* if we are not expanding this is a proper write request, and
2281 		 * there will be bios with new data to be drained into the
2282 		 * stripe cache
2283 		 */
2284 		if (!expand) {
2285 			sh->reconstruct_state = reconstruct_state_drain_run;
2286 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2287 		} else
2288 			sh->reconstruct_state = reconstruct_state_run;
2289 
2290 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2291 
2292 		for (i = disks; i--; ) {
2293 			struct r5dev *dev = &sh->dev[i];
2294 
2295 			if (dev->towrite) {
2296 				set_bit(R5_LOCKED, &dev->flags);
2297 				set_bit(R5_Wantdrain, &dev->flags);
2298 				if (!expand)
2299 					clear_bit(R5_UPTODATE, &dev->flags);
2300 				s->locked++;
2301 			}
2302 		}
2303 		if (s->locked + conf->max_degraded == disks)
2304 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2305 				atomic_inc(&conf->pending_full_writes);
2306 	} else {
2307 		BUG_ON(level == 6);
2308 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2309 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2310 
2311 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2312 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2313 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2314 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2315 
2316 		for (i = disks; i--; ) {
2317 			struct r5dev *dev = &sh->dev[i];
2318 			if (i == pd_idx)
2319 				continue;
2320 
2321 			if (dev->towrite &&
2322 			    (test_bit(R5_UPTODATE, &dev->flags) ||
2323 			     test_bit(R5_Wantcompute, &dev->flags))) {
2324 				set_bit(R5_Wantdrain, &dev->flags);
2325 				set_bit(R5_LOCKED, &dev->flags);
2326 				clear_bit(R5_UPTODATE, &dev->flags);
2327 				s->locked++;
2328 			}
2329 		}
2330 	}
2331 
2332 	/* keep the parity disk(s) locked while asynchronous operations
2333 	 * are in flight
2334 	 */
2335 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2336 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2337 	s->locked++;
2338 
2339 	if (level == 6) {
2340 		int qd_idx = sh->qd_idx;
2341 		struct r5dev *dev = &sh->dev[qd_idx];
2342 
2343 		set_bit(R5_LOCKED, &dev->flags);
2344 		clear_bit(R5_UPTODATE, &dev->flags);
2345 		s->locked++;
2346 	}
2347 
2348 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2349 		__func__, (unsigned long long)sh->sector,
2350 		s->locked, s->ops_request);
2351 }
2352 
2353 /*
2354  * Each stripe/dev can have one or more bion attached.
2355  * toread/towrite point to the first in a chain.
2356  * The bi_next chain must be in order.
2357  */
2358 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2359 {
2360 	struct bio **bip;
2361 	struct r5conf *conf = sh->raid_conf;
2362 	int firstwrite=0;
2363 
2364 	pr_debug("adding bi b#%llu to stripe s#%llu\n",
2365 		(unsigned long long)bi->bi_sector,
2366 		(unsigned long long)sh->sector);
2367 
2368 	/*
2369 	 * If several bio share a stripe. The bio bi_phys_segments acts as a
2370 	 * reference count to avoid race. The reference count should already be
2371 	 * increased before this function is called (for example, in
2372 	 * make_request()), so other bio sharing this stripe will not free the
2373 	 * stripe. If a stripe is owned by one stripe, the stripe lock will
2374 	 * protect it.
2375 	 */
2376 	spin_lock_irq(&sh->stripe_lock);
2377 	if (forwrite) {
2378 		bip = &sh->dev[dd_idx].towrite;
2379 		if (*bip == NULL)
2380 			firstwrite = 1;
2381 	} else
2382 		bip = &sh->dev[dd_idx].toread;
2383 	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2384 		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2385 			goto overlap;
2386 		bip = & (*bip)->bi_next;
2387 	}
2388 	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2389 		goto overlap;
2390 
2391 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2392 	if (*bip)
2393 		bi->bi_next = *bip;
2394 	*bip = bi;
2395 	raid5_inc_bi_active_stripes(bi);
2396 
2397 	if (forwrite) {
2398 		/* check if page is covered */
2399 		sector_t sector = sh->dev[dd_idx].sector;
2400 		for (bi=sh->dev[dd_idx].towrite;
2401 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2402 			     bi && bi->bi_sector <= sector;
2403 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2404 			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2405 				sector = bi->bi_sector + (bi->bi_size>>9);
2406 		}
2407 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2408 			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2409 	}
2410 	spin_unlock_irq(&sh->stripe_lock);
2411 
2412 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2413 		(unsigned long long)(*bip)->bi_sector,
2414 		(unsigned long long)sh->sector, dd_idx);
2415 
2416 	if (conf->mddev->bitmap && firstwrite) {
2417 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2418 				  STRIPE_SECTORS, 0);
2419 		sh->bm_seq = conf->seq_flush+1;
2420 		set_bit(STRIPE_BIT_DELAY, &sh->state);
2421 	}
2422 	return 1;
2423 
2424  overlap:
2425 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2426 	spin_unlock_irq(&sh->stripe_lock);
2427 	return 0;
2428 }
2429 
2430 static void end_reshape(struct r5conf *conf);
2431 
2432 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2433 			    struct stripe_head *sh)
2434 {
2435 	int sectors_per_chunk =
2436 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2437 	int dd_idx;
2438 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2439 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2440 
2441 	raid5_compute_sector(conf,
2442 			     stripe * (disks - conf->max_degraded)
2443 			     *sectors_per_chunk + chunk_offset,
2444 			     previous,
2445 			     &dd_idx, sh);
2446 }
2447 
2448 static void
2449 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2450 				struct stripe_head_state *s, int disks,
2451 				struct bio **return_bi)
2452 {
2453 	int i;
2454 	for (i = disks; i--; ) {
2455 		struct bio *bi;
2456 		int bitmap_end = 0;
2457 
2458 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2459 			struct md_rdev *rdev;
2460 			rcu_read_lock();
2461 			rdev = rcu_dereference(conf->disks[i].rdev);
2462 			if (rdev && test_bit(In_sync, &rdev->flags))
2463 				atomic_inc(&rdev->nr_pending);
2464 			else
2465 				rdev = NULL;
2466 			rcu_read_unlock();
2467 			if (rdev) {
2468 				if (!rdev_set_badblocks(
2469 					    rdev,
2470 					    sh->sector,
2471 					    STRIPE_SECTORS, 0))
2472 					md_error(conf->mddev, rdev);
2473 				rdev_dec_pending(rdev, conf->mddev);
2474 			}
2475 		}
2476 		spin_lock_irq(&sh->stripe_lock);
2477 		/* fail all writes first */
2478 		bi = sh->dev[i].towrite;
2479 		sh->dev[i].towrite = NULL;
2480 		spin_unlock_irq(&sh->stripe_lock);
2481 		if (bi) {
2482 			s->to_write--;
2483 			bitmap_end = 1;
2484 		}
2485 
2486 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2487 			wake_up(&conf->wait_for_overlap);
2488 
2489 		while (bi && bi->bi_sector <
2490 			sh->dev[i].sector + STRIPE_SECTORS) {
2491 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2492 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2493 			if (!raid5_dec_bi_active_stripes(bi)) {
2494 				md_write_end(conf->mddev);
2495 				bi->bi_next = *return_bi;
2496 				*return_bi = bi;
2497 			}
2498 			bi = nextbi;
2499 		}
2500 		if (bitmap_end)
2501 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2502 				STRIPE_SECTORS, 0, 0);
2503 		bitmap_end = 0;
2504 		/* and fail all 'written' */
2505 		bi = sh->dev[i].written;
2506 		sh->dev[i].written = NULL;
2507 		if (bi) bitmap_end = 1;
2508 		while (bi && bi->bi_sector <
2509 		       sh->dev[i].sector + STRIPE_SECTORS) {
2510 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2511 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2512 			if (!raid5_dec_bi_active_stripes(bi)) {
2513 				md_write_end(conf->mddev);
2514 				bi->bi_next = *return_bi;
2515 				*return_bi = bi;
2516 			}
2517 			bi = bi2;
2518 		}
2519 
2520 		/* fail any reads if this device is non-operational and
2521 		 * the data has not reached the cache yet.
2522 		 */
2523 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2524 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2525 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2526 			bi = sh->dev[i].toread;
2527 			sh->dev[i].toread = NULL;
2528 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2529 				wake_up(&conf->wait_for_overlap);
2530 			if (bi) s->to_read--;
2531 			while (bi && bi->bi_sector <
2532 			       sh->dev[i].sector + STRIPE_SECTORS) {
2533 				struct bio *nextbi =
2534 					r5_next_bio(bi, sh->dev[i].sector);
2535 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2536 				if (!raid5_dec_bi_active_stripes(bi)) {
2537 					bi->bi_next = *return_bi;
2538 					*return_bi = bi;
2539 				}
2540 				bi = nextbi;
2541 			}
2542 		}
2543 		if (bitmap_end)
2544 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2545 					STRIPE_SECTORS, 0, 0);
2546 		/* If we were in the middle of a write the parity block might
2547 		 * still be locked - so just clear all R5_LOCKED flags
2548 		 */
2549 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2550 	}
2551 
2552 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2553 		if (atomic_dec_and_test(&conf->pending_full_writes))
2554 			md_wakeup_thread(conf->mddev->thread);
2555 }
2556 
2557 static void
2558 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2559 		   struct stripe_head_state *s)
2560 {
2561 	int abort = 0;
2562 	int i;
2563 
2564 	clear_bit(STRIPE_SYNCING, &sh->state);
2565 	s->syncing = 0;
2566 	s->replacing = 0;
2567 	/* There is nothing more to do for sync/check/repair.
2568 	 * Don't even need to abort as that is handled elsewhere
2569 	 * if needed, and not always wanted e.g. if there is a known
2570 	 * bad block here.
2571 	 * For recover/replace we need to record a bad block on all
2572 	 * non-sync devices, or abort the recovery
2573 	 */
2574 	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2575 		/* During recovery devices cannot be removed, so
2576 		 * locking and refcounting of rdevs is not needed
2577 		 */
2578 		for (i = 0; i < conf->raid_disks; i++) {
2579 			struct md_rdev *rdev = conf->disks[i].rdev;
2580 			if (rdev
2581 			    && !test_bit(Faulty, &rdev->flags)
2582 			    && !test_bit(In_sync, &rdev->flags)
2583 			    && !rdev_set_badblocks(rdev, sh->sector,
2584 						   STRIPE_SECTORS, 0))
2585 				abort = 1;
2586 			rdev = conf->disks[i].replacement;
2587 			if (rdev
2588 			    && !test_bit(Faulty, &rdev->flags)
2589 			    && !test_bit(In_sync, &rdev->flags)
2590 			    && !rdev_set_badblocks(rdev, sh->sector,
2591 						   STRIPE_SECTORS, 0))
2592 				abort = 1;
2593 		}
2594 		if (abort)
2595 			conf->recovery_disabled =
2596 				conf->mddev->recovery_disabled;
2597 	}
2598 	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2599 }
2600 
2601 static int want_replace(struct stripe_head *sh, int disk_idx)
2602 {
2603 	struct md_rdev *rdev;
2604 	int rv = 0;
2605 	/* Doing recovery so rcu locking not required */
2606 	rdev = sh->raid_conf->disks[disk_idx].replacement;
2607 	if (rdev
2608 	    && !test_bit(Faulty, &rdev->flags)
2609 	    && !test_bit(In_sync, &rdev->flags)
2610 	    && (rdev->recovery_offset <= sh->sector
2611 		|| rdev->mddev->recovery_cp <= sh->sector))
2612 		rv = 1;
2613 
2614 	return rv;
2615 }
2616 
2617 /* fetch_block - checks the given member device to see if its data needs
2618  * to be read or computed to satisfy a request.
2619  *
2620  * Returns 1 when no more member devices need to be checked, otherwise returns
2621  * 0 to tell the loop in handle_stripe_fill to continue
2622  */
2623 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2624 		       int disk_idx, int disks)
2625 {
2626 	struct r5dev *dev = &sh->dev[disk_idx];
2627 	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2628 				  &sh->dev[s->failed_num[1]] };
2629 
2630 	/* is the data in this block needed, and can we get it? */
2631 	if (!test_bit(R5_LOCKED, &dev->flags) &&
2632 	    !test_bit(R5_UPTODATE, &dev->flags) &&
2633 	    (dev->toread ||
2634 	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2635 	     s->syncing || s->expanding ||
2636 	     (s->replacing && want_replace(sh, disk_idx)) ||
2637 	     (s->failed >= 1 && fdev[0]->toread) ||
2638 	     (s->failed >= 2 && fdev[1]->toread) ||
2639 	     (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2640 	      !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2641 	     (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2642 		/* we would like to get this block, possibly by computing it,
2643 		 * otherwise read it if the backing disk is insync
2644 		 */
2645 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2646 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
2647 		if ((s->uptodate == disks - 1) &&
2648 		    (s->failed && (disk_idx == s->failed_num[0] ||
2649 				   disk_idx == s->failed_num[1]))) {
2650 			/* have disk failed, and we're requested to fetch it;
2651 			 * do compute it
2652 			 */
2653 			pr_debug("Computing stripe %llu block %d\n",
2654 			       (unsigned long long)sh->sector, disk_idx);
2655 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2656 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2657 			set_bit(R5_Wantcompute, &dev->flags);
2658 			sh->ops.target = disk_idx;
2659 			sh->ops.target2 = -1; /* no 2nd target */
2660 			s->req_compute = 1;
2661 			/* Careful: from this point on 'uptodate' is in the eye
2662 			 * of raid_run_ops which services 'compute' operations
2663 			 * before writes. R5_Wantcompute flags a block that will
2664 			 * be R5_UPTODATE by the time it is needed for a
2665 			 * subsequent operation.
2666 			 */
2667 			s->uptodate++;
2668 			return 1;
2669 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
2670 			/* Computing 2-failure is *very* expensive; only
2671 			 * do it if failed >= 2
2672 			 */
2673 			int other;
2674 			for (other = disks; other--; ) {
2675 				if (other == disk_idx)
2676 					continue;
2677 				if (!test_bit(R5_UPTODATE,
2678 				      &sh->dev[other].flags))
2679 					break;
2680 			}
2681 			BUG_ON(other < 0);
2682 			pr_debug("Computing stripe %llu blocks %d,%d\n",
2683 			       (unsigned long long)sh->sector,
2684 			       disk_idx, other);
2685 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2686 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2687 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2688 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
2689 			sh->ops.target = disk_idx;
2690 			sh->ops.target2 = other;
2691 			s->uptodate += 2;
2692 			s->req_compute = 1;
2693 			return 1;
2694 		} else if (test_bit(R5_Insync, &dev->flags)) {
2695 			set_bit(R5_LOCKED, &dev->flags);
2696 			set_bit(R5_Wantread, &dev->flags);
2697 			s->locked++;
2698 			pr_debug("Reading block %d (sync=%d)\n",
2699 				disk_idx, s->syncing);
2700 		}
2701 	}
2702 
2703 	return 0;
2704 }
2705 
2706 /**
2707  * handle_stripe_fill - read or compute data to satisfy pending requests.
2708  */
2709 static void handle_stripe_fill(struct stripe_head *sh,
2710 			       struct stripe_head_state *s,
2711 			       int disks)
2712 {
2713 	int i;
2714 
2715 	/* look for blocks to read/compute, skip this if a compute
2716 	 * is already in flight, or if the stripe contents are in the
2717 	 * midst of changing due to a write
2718 	 */
2719 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2720 	    !sh->reconstruct_state)
2721 		for (i = disks; i--; )
2722 			if (fetch_block(sh, s, i, disks))
2723 				break;
2724 	set_bit(STRIPE_HANDLE, &sh->state);
2725 }
2726 
2727 
2728 /* handle_stripe_clean_event
2729  * any written block on an uptodate or failed drive can be returned.
2730  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2731  * never LOCKED, so we don't need to test 'failed' directly.
2732  */
2733 static void handle_stripe_clean_event(struct r5conf *conf,
2734 	struct stripe_head *sh, int disks, struct bio **return_bi)
2735 {
2736 	int i;
2737 	struct r5dev *dev;
2738 
2739 	for (i = disks; i--; )
2740 		if (sh->dev[i].written) {
2741 			dev = &sh->dev[i];
2742 			if (!test_bit(R5_LOCKED, &dev->flags) &&
2743 				test_bit(R5_UPTODATE, &dev->flags)) {
2744 				/* We can return any write requests */
2745 				struct bio *wbi, *wbi2;
2746 				pr_debug("Return write for disc %d\n", i);
2747 				wbi = dev->written;
2748 				dev->written = NULL;
2749 				while (wbi && wbi->bi_sector <
2750 					dev->sector + STRIPE_SECTORS) {
2751 					wbi2 = r5_next_bio(wbi, dev->sector);
2752 					if (!raid5_dec_bi_active_stripes(wbi)) {
2753 						md_write_end(conf->mddev);
2754 						wbi->bi_next = *return_bi;
2755 						*return_bi = wbi;
2756 					}
2757 					wbi = wbi2;
2758 				}
2759 				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2760 						STRIPE_SECTORS,
2761 					 !test_bit(STRIPE_DEGRADED, &sh->state),
2762 						0);
2763 			}
2764 		}
2765 
2766 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2767 		if (atomic_dec_and_test(&conf->pending_full_writes))
2768 			md_wakeup_thread(conf->mddev->thread);
2769 }
2770 
2771 static void handle_stripe_dirtying(struct r5conf *conf,
2772 				   struct stripe_head *sh,
2773 				   struct stripe_head_state *s,
2774 				   int disks)
2775 {
2776 	int rmw = 0, rcw = 0, i;
2777 	if (conf->max_degraded == 2) {
2778 		/* RAID6 requires 'rcw' in current implementation
2779 		 * Calculate the real rcw later - for now fake it
2780 		 * look like rcw is cheaper
2781 		 */
2782 		rcw = 1; rmw = 2;
2783 	} else for (i = disks; i--; ) {
2784 		/* would I have to read this buffer for read_modify_write */
2785 		struct r5dev *dev = &sh->dev[i];
2786 		if ((dev->towrite || i == sh->pd_idx) &&
2787 		    !test_bit(R5_LOCKED, &dev->flags) &&
2788 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2789 		      test_bit(R5_Wantcompute, &dev->flags))) {
2790 			if (test_bit(R5_Insync, &dev->flags))
2791 				rmw++;
2792 			else
2793 				rmw += 2*disks;  /* cannot read it */
2794 		}
2795 		/* Would I have to read this buffer for reconstruct_write */
2796 		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2797 		    !test_bit(R5_LOCKED, &dev->flags) &&
2798 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2799 		    test_bit(R5_Wantcompute, &dev->flags))) {
2800 			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2801 			else
2802 				rcw += 2*disks;
2803 		}
2804 	}
2805 	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2806 		(unsigned long long)sh->sector, rmw, rcw);
2807 	set_bit(STRIPE_HANDLE, &sh->state);
2808 	if (rmw < rcw && rmw > 0)
2809 		/* prefer read-modify-write, but need to get some data */
2810 		for (i = disks; i--; ) {
2811 			struct r5dev *dev = &sh->dev[i];
2812 			if ((dev->towrite || i == sh->pd_idx) &&
2813 			    !test_bit(R5_LOCKED, &dev->flags) &&
2814 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2815 			    test_bit(R5_Wantcompute, &dev->flags)) &&
2816 			    test_bit(R5_Insync, &dev->flags)) {
2817 				if (
2818 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2819 					pr_debug("Read_old block "
2820 						"%d for r-m-w\n", i);
2821 					set_bit(R5_LOCKED, &dev->flags);
2822 					set_bit(R5_Wantread, &dev->flags);
2823 					s->locked++;
2824 				} else {
2825 					set_bit(STRIPE_DELAYED, &sh->state);
2826 					set_bit(STRIPE_HANDLE, &sh->state);
2827 				}
2828 			}
2829 		}
2830 	if (rcw <= rmw && rcw > 0) {
2831 		/* want reconstruct write, but need to get some data */
2832 		rcw = 0;
2833 		for (i = disks; i--; ) {
2834 			struct r5dev *dev = &sh->dev[i];
2835 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2836 			    i != sh->pd_idx && i != sh->qd_idx &&
2837 			    !test_bit(R5_LOCKED, &dev->flags) &&
2838 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2839 			      test_bit(R5_Wantcompute, &dev->flags))) {
2840 				rcw++;
2841 				if (!test_bit(R5_Insync, &dev->flags))
2842 					continue; /* it's a failed drive */
2843 				if (
2844 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2845 					pr_debug("Read_old block "
2846 						"%d for Reconstruct\n", i);
2847 					set_bit(R5_LOCKED, &dev->flags);
2848 					set_bit(R5_Wantread, &dev->flags);
2849 					s->locked++;
2850 				} else {
2851 					set_bit(STRIPE_DELAYED, &sh->state);
2852 					set_bit(STRIPE_HANDLE, &sh->state);
2853 				}
2854 			}
2855 		}
2856 	}
2857 	/* now if nothing is locked, and if we have enough data,
2858 	 * we can start a write request
2859 	 */
2860 	/* since handle_stripe can be called at any time we need to handle the
2861 	 * case where a compute block operation has been submitted and then a
2862 	 * subsequent call wants to start a write request.  raid_run_ops only
2863 	 * handles the case where compute block and reconstruct are requested
2864 	 * simultaneously.  If this is not the case then new writes need to be
2865 	 * held off until the compute completes.
2866 	 */
2867 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2868 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2869 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2870 		schedule_reconstruction(sh, s, rcw == 0, 0);
2871 }
2872 
2873 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
2874 				struct stripe_head_state *s, int disks)
2875 {
2876 	struct r5dev *dev = NULL;
2877 
2878 	set_bit(STRIPE_HANDLE, &sh->state);
2879 
2880 	switch (sh->check_state) {
2881 	case check_state_idle:
2882 		/* start a new check operation if there are no failures */
2883 		if (s->failed == 0) {
2884 			BUG_ON(s->uptodate != disks);
2885 			sh->check_state = check_state_run;
2886 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2887 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2888 			s->uptodate--;
2889 			break;
2890 		}
2891 		dev = &sh->dev[s->failed_num[0]];
2892 		/* fall through */
2893 	case check_state_compute_result:
2894 		sh->check_state = check_state_idle;
2895 		if (!dev)
2896 			dev = &sh->dev[sh->pd_idx];
2897 
2898 		/* check that a write has not made the stripe insync */
2899 		if (test_bit(STRIPE_INSYNC, &sh->state))
2900 			break;
2901 
2902 		/* either failed parity check, or recovery is happening */
2903 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2904 		BUG_ON(s->uptodate != disks);
2905 
2906 		set_bit(R5_LOCKED, &dev->flags);
2907 		s->locked++;
2908 		set_bit(R5_Wantwrite, &dev->flags);
2909 
2910 		clear_bit(STRIPE_DEGRADED, &sh->state);
2911 		set_bit(STRIPE_INSYNC, &sh->state);
2912 		break;
2913 	case check_state_run:
2914 		break; /* we will be called again upon completion */
2915 	case check_state_check_result:
2916 		sh->check_state = check_state_idle;
2917 
2918 		/* if a failure occurred during the check operation, leave
2919 		 * STRIPE_INSYNC not set and let the stripe be handled again
2920 		 */
2921 		if (s->failed)
2922 			break;
2923 
2924 		/* handle a successful check operation, if parity is correct
2925 		 * we are done.  Otherwise update the mismatch count and repair
2926 		 * parity if !MD_RECOVERY_CHECK
2927 		 */
2928 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2929 			/* parity is correct (on disc,
2930 			 * not in buffer any more)
2931 			 */
2932 			set_bit(STRIPE_INSYNC, &sh->state);
2933 		else {
2934 			conf->mddev->resync_mismatches += STRIPE_SECTORS;
2935 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2936 				/* don't try to repair!! */
2937 				set_bit(STRIPE_INSYNC, &sh->state);
2938 			else {
2939 				sh->check_state = check_state_compute_run;
2940 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2941 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2942 				set_bit(R5_Wantcompute,
2943 					&sh->dev[sh->pd_idx].flags);
2944 				sh->ops.target = sh->pd_idx;
2945 				sh->ops.target2 = -1;
2946 				s->uptodate++;
2947 			}
2948 		}
2949 		break;
2950 	case check_state_compute_run:
2951 		break;
2952 	default:
2953 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2954 		       __func__, sh->check_state,
2955 		       (unsigned long long) sh->sector);
2956 		BUG();
2957 	}
2958 }
2959 
2960 
2961 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
2962 				  struct stripe_head_state *s,
2963 				  int disks)
2964 {
2965 	int pd_idx = sh->pd_idx;
2966 	int qd_idx = sh->qd_idx;
2967 	struct r5dev *dev;
2968 
2969 	set_bit(STRIPE_HANDLE, &sh->state);
2970 
2971 	BUG_ON(s->failed > 2);
2972 
2973 	/* Want to check and possibly repair P and Q.
2974 	 * However there could be one 'failed' device, in which
2975 	 * case we can only check one of them, possibly using the
2976 	 * other to generate missing data
2977 	 */
2978 
2979 	switch (sh->check_state) {
2980 	case check_state_idle:
2981 		/* start a new check operation if there are < 2 failures */
2982 		if (s->failed == s->q_failed) {
2983 			/* The only possible failed device holds Q, so it
2984 			 * makes sense to check P (If anything else were failed,
2985 			 * we would have used P to recreate it).
2986 			 */
2987 			sh->check_state = check_state_run;
2988 		}
2989 		if (!s->q_failed && s->failed < 2) {
2990 			/* Q is not failed, and we didn't use it to generate
2991 			 * anything, so it makes sense to check it
2992 			 */
2993 			if (sh->check_state == check_state_run)
2994 				sh->check_state = check_state_run_pq;
2995 			else
2996 				sh->check_state = check_state_run_q;
2997 		}
2998 
2999 		/* discard potentially stale zero_sum_result */
3000 		sh->ops.zero_sum_result = 0;
3001 
3002 		if (sh->check_state == check_state_run) {
3003 			/* async_xor_zero_sum destroys the contents of P */
3004 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3005 			s->uptodate--;
3006 		}
3007 		if (sh->check_state >= check_state_run &&
3008 		    sh->check_state <= check_state_run_pq) {
3009 			/* async_syndrome_zero_sum preserves P and Q, so
3010 			 * no need to mark them !uptodate here
3011 			 */
3012 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3013 			break;
3014 		}
3015 
3016 		/* we have 2-disk failure */
3017 		BUG_ON(s->failed != 2);
3018 		/* fall through */
3019 	case check_state_compute_result:
3020 		sh->check_state = check_state_idle;
3021 
3022 		/* check that a write has not made the stripe insync */
3023 		if (test_bit(STRIPE_INSYNC, &sh->state))
3024 			break;
3025 
3026 		/* now write out any block on a failed drive,
3027 		 * or P or Q if they were recomputed
3028 		 */
3029 		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3030 		if (s->failed == 2) {
3031 			dev = &sh->dev[s->failed_num[1]];
3032 			s->locked++;
3033 			set_bit(R5_LOCKED, &dev->flags);
3034 			set_bit(R5_Wantwrite, &dev->flags);
3035 		}
3036 		if (s->failed >= 1) {
3037 			dev = &sh->dev[s->failed_num[0]];
3038 			s->locked++;
3039 			set_bit(R5_LOCKED, &dev->flags);
3040 			set_bit(R5_Wantwrite, &dev->flags);
3041 		}
3042 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3043 			dev = &sh->dev[pd_idx];
3044 			s->locked++;
3045 			set_bit(R5_LOCKED, &dev->flags);
3046 			set_bit(R5_Wantwrite, &dev->flags);
3047 		}
3048 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3049 			dev = &sh->dev[qd_idx];
3050 			s->locked++;
3051 			set_bit(R5_LOCKED, &dev->flags);
3052 			set_bit(R5_Wantwrite, &dev->flags);
3053 		}
3054 		clear_bit(STRIPE_DEGRADED, &sh->state);
3055 
3056 		set_bit(STRIPE_INSYNC, &sh->state);
3057 		break;
3058 	case check_state_run:
3059 	case check_state_run_q:
3060 	case check_state_run_pq:
3061 		break; /* we will be called again upon completion */
3062 	case check_state_check_result:
3063 		sh->check_state = check_state_idle;
3064 
3065 		/* handle a successful check operation, if parity is correct
3066 		 * we are done.  Otherwise update the mismatch count and repair
3067 		 * parity if !MD_RECOVERY_CHECK
3068 		 */
3069 		if (sh->ops.zero_sum_result == 0) {
3070 			/* both parities are correct */
3071 			if (!s->failed)
3072 				set_bit(STRIPE_INSYNC, &sh->state);
3073 			else {
3074 				/* in contrast to the raid5 case we can validate
3075 				 * parity, but still have a failure to write
3076 				 * back
3077 				 */
3078 				sh->check_state = check_state_compute_result;
3079 				/* Returning at this point means that we may go
3080 				 * off and bring p and/or q uptodate again so
3081 				 * we make sure to check zero_sum_result again
3082 				 * to verify if p or q need writeback
3083 				 */
3084 			}
3085 		} else {
3086 			conf->mddev->resync_mismatches += STRIPE_SECTORS;
3087 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3088 				/* don't try to repair!! */
3089 				set_bit(STRIPE_INSYNC, &sh->state);
3090 			else {
3091 				int *target = &sh->ops.target;
3092 
3093 				sh->ops.target = -1;
3094 				sh->ops.target2 = -1;
3095 				sh->check_state = check_state_compute_run;
3096 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3097 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3098 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3099 					set_bit(R5_Wantcompute,
3100 						&sh->dev[pd_idx].flags);
3101 					*target = pd_idx;
3102 					target = &sh->ops.target2;
3103 					s->uptodate++;
3104 				}
3105 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3106 					set_bit(R5_Wantcompute,
3107 						&sh->dev[qd_idx].flags);
3108 					*target = qd_idx;
3109 					s->uptodate++;
3110 				}
3111 			}
3112 		}
3113 		break;
3114 	case check_state_compute_run:
3115 		break;
3116 	default:
3117 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3118 		       __func__, sh->check_state,
3119 		       (unsigned long long) sh->sector);
3120 		BUG();
3121 	}
3122 }
3123 
3124 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3125 {
3126 	int i;
3127 
3128 	/* We have read all the blocks in this stripe and now we need to
3129 	 * copy some of them into a target stripe for expand.
3130 	 */
3131 	struct dma_async_tx_descriptor *tx = NULL;
3132 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3133 	for (i = 0; i < sh->disks; i++)
3134 		if (i != sh->pd_idx && i != sh->qd_idx) {
3135 			int dd_idx, j;
3136 			struct stripe_head *sh2;
3137 			struct async_submit_ctl submit;
3138 
3139 			sector_t bn = compute_blocknr(sh, i, 1);
3140 			sector_t s = raid5_compute_sector(conf, bn, 0,
3141 							  &dd_idx, NULL);
3142 			sh2 = get_active_stripe(conf, s, 0, 1, 1);
3143 			if (sh2 == NULL)
3144 				/* so far only the early blocks of this stripe
3145 				 * have been requested.  When later blocks
3146 				 * get requested, we will try again
3147 				 */
3148 				continue;
3149 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3150 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3151 				/* must have already done this block */
3152 				release_stripe(sh2);
3153 				continue;
3154 			}
3155 
3156 			/* place all the copies on one channel */
3157 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3158 			tx = async_memcpy(sh2->dev[dd_idx].page,
3159 					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
3160 					  &submit);
3161 
3162 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3163 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3164 			for (j = 0; j < conf->raid_disks; j++)
3165 				if (j != sh2->pd_idx &&
3166 				    j != sh2->qd_idx &&
3167 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
3168 					break;
3169 			if (j == conf->raid_disks) {
3170 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
3171 				set_bit(STRIPE_HANDLE, &sh2->state);
3172 			}
3173 			release_stripe(sh2);
3174 
3175 		}
3176 	/* done submitting copies, wait for them to complete */
3177 	if (tx) {
3178 		async_tx_ack(tx);
3179 		dma_wait_for_async_tx(tx);
3180 	}
3181 }
3182 
3183 /*
3184  * handle_stripe - do things to a stripe.
3185  *
3186  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3187  * state of various bits to see what needs to be done.
3188  * Possible results:
3189  *    return some read requests which now have data
3190  *    return some write requests which are safely on storage
3191  *    schedule a read on some buffers
3192  *    schedule a write of some buffers
3193  *    return confirmation of parity correctness
3194  *
3195  */
3196 
3197 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3198 {
3199 	struct r5conf *conf = sh->raid_conf;
3200 	int disks = sh->disks;
3201 	struct r5dev *dev;
3202 	int i;
3203 	int do_recovery = 0;
3204 
3205 	memset(s, 0, sizeof(*s));
3206 
3207 	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3208 	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3209 	s->failed_num[0] = -1;
3210 	s->failed_num[1] = -1;
3211 
3212 	/* Now to look around and see what can be done */
3213 	rcu_read_lock();
3214 	for (i=disks; i--; ) {
3215 		struct md_rdev *rdev;
3216 		sector_t first_bad;
3217 		int bad_sectors;
3218 		int is_bad = 0;
3219 
3220 		dev = &sh->dev[i];
3221 
3222 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3223 			 i, dev->flags,
3224 			 dev->toread, dev->towrite, dev->written);
3225 		/* maybe we can reply to a read
3226 		 *
3227 		 * new wantfill requests are only permitted while
3228 		 * ops_complete_biofill is guaranteed to be inactive
3229 		 */
3230 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3231 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3232 			set_bit(R5_Wantfill, &dev->flags);
3233 
3234 		/* now count some things */
3235 		if (test_bit(R5_LOCKED, &dev->flags))
3236 			s->locked++;
3237 		if (test_bit(R5_UPTODATE, &dev->flags))
3238 			s->uptodate++;
3239 		if (test_bit(R5_Wantcompute, &dev->flags)) {
3240 			s->compute++;
3241 			BUG_ON(s->compute > 2);
3242 		}
3243 
3244 		if (test_bit(R5_Wantfill, &dev->flags))
3245 			s->to_fill++;
3246 		else if (dev->toread)
3247 			s->to_read++;
3248 		if (dev->towrite) {
3249 			s->to_write++;
3250 			if (!test_bit(R5_OVERWRITE, &dev->flags))
3251 				s->non_overwrite++;
3252 		}
3253 		if (dev->written)
3254 			s->written++;
3255 		/* Prefer to use the replacement for reads, but only
3256 		 * if it is recovered enough and has no bad blocks.
3257 		 */
3258 		rdev = rcu_dereference(conf->disks[i].replacement);
3259 		if (rdev && !test_bit(Faulty, &rdev->flags) &&
3260 		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3261 		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3262 				 &first_bad, &bad_sectors))
3263 			set_bit(R5_ReadRepl, &dev->flags);
3264 		else {
3265 			if (rdev)
3266 				set_bit(R5_NeedReplace, &dev->flags);
3267 			rdev = rcu_dereference(conf->disks[i].rdev);
3268 			clear_bit(R5_ReadRepl, &dev->flags);
3269 		}
3270 		if (rdev && test_bit(Faulty, &rdev->flags))
3271 			rdev = NULL;
3272 		if (rdev) {
3273 			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3274 					     &first_bad, &bad_sectors);
3275 			if (s->blocked_rdev == NULL
3276 			    && (test_bit(Blocked, &rdev->flags)
3277 				|| is_bad < 0)) {
3278 				if (is_bad < 0)
3279 					set_bit(BlockedBadBlocks,
3280 						&rdev->flags);
3281 				s->blocked_rdev = rdev;
3282 				atomic_inc(&rdev->nr_pending);
3283 			}
3284 		}
3285 		clear_bit(R5_Insync, &dev->flags);
3286 		if (!rdev)
3287 			/* Not in-sync */;
3288 		else if (is_bad) {
3289 			/* also not in-sync */
3290 			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3291 			    test_bit(R5_UPTODATE, &dev->flags)) {
3292 				/* treat as in-sync, but with a read error
3293 				 * which we can now try to correct
3294 				 */
3295 				set_bit(R5_Insync, &dev->flags);
3296 				set_bit(R5_ReadError, &dev->flags);
3297 			}
3298 		} else if (test_bit(In_sync, &rdev->flags))
3299 			set_bit(R5_Insync, &dev->flags);
3300 		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3301 			/* in sync if before recovery_offset */
3302 			set_bit(R5_Insync, &dev->flags);
3303 		else if (test_bit(R5_UPTODATE, &dev->flags) &&
3304 			 test_bit(R5_Expanded, &dev->flags))
3305 			/* If we've reshaped into here, we assume it is Insync.
3306 			 * We will shortly update recovery_offset to make
3307 			 * it official.
3308 			 */
3309 			set_bit(R5_Insync, &dev->flags);
3310 
3311 		if (rdev && test_bit(R5_WriteError, &dev->flags)) {
3312 			/* This flag does not apply to '.replacement'
3313 			 * only to .rdev, so make sure to check that*/
3314 			struct md_rdev *rdev2 = rcu_dereference(
3315 				conf->disks[i].rdev);
3316 			if (rdev2 == rdev)
3317 				clear_bit(R5_Insync, &dev->flags);
3318 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3319 				s->handle_bad_blocks = 1;
3320 				atomic_inc(&rdev2->nr_pending);
3321 			} else
3322 				clear_bit(R5_WriteError, &dev->flags);
3323 		}
3324 		if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
3325 			/* This flag does not apply to '.replacement'
3326 			 * only to .rdev, so make sure to check that*/
3327 			struct md_rdev *rdev2 = rcu_dereference(
3328 				conf->disks[i].rdev);
3329 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3330 				s->handle_bad_blocks = 1;
3331 				atomic_inc(&rdev2->nr_pending);
3332 			} else
3333 				clear_bit(R5_MadeGood, &dev->flags);
3334 		}
3335 		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3336 			struct md_rdev *rdev2 = rcu_dereference(
3337 				conf->disks[i].replacement);
3338 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3339 				s->handle_bad_blocks = 1;
3340 				atomic_inc(&rdev2->nr_pending);
3341 			} else
3342 				clear_bit(R5_MadeGoodRepl, &dev->flags);
3343 		}
3344 		if (!test_bit(R5_Insync, &dev->flags)) {
3345 			/* The ReadError flag will just be confusing now */
3346 			clear_bit(R5_ReadError, &dev->flags);
3347 			clear_bit(R5_ReWrite, &dev->flags);
3348 		}
3349 		if (test_bit(R5_ReadError, &dev->flags))
3350 			clear_bit(R5_Insync, &dev->flags);
3351 		if (!test_bit(R5_Insync, &dev->flags)) {
3352 			if (s->failed < 2)
3353 				s->failed_num[s->failed] = i;
3354 			s->failed++;
3355 			if (rdev && !test_bit(Faulty, &rdev->flags))
3356 				do_recovery = 1;
3357 		}
3358 	}
3359 	if (test_bit(STRIPE_SYNCING, &sh->state)) {
3360 		/* If there is a failed device being replaced,
3361 		 *     we must be recovering.
3362 		 * else if we are after recovery_cp, we must be syncing
3363 		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3364 		 * else we can only be replacing
3365 		 * sync and recovery both need to read all devices, and so
3366 		 * use the same flag.
3367 		 */
3368 		if (do_recovery ||
3369 		    sh->sector >= conf->mddev->recovery_cp ||
3370 		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3371 			s->syncing = 1;
3372 		else
3373 			s->replacing = 1;
3374 	}
3375 	rcu_read_unlock();
3376 }
3377 
3378 static void handle_stripe(struct stripe_head *sh)
3379 {
3380 	struct stripe_head_state s;
3381 	struct r5conf *conf = sh->raid_conf;
3382 	int i;
3383 	int prexor;
3384 	int disks = sh->disks;
3385 	struct r5dev *pdev, *qdev;
3386 
3387 	clear_bit(STRIPE_HANDLE, &sh->state);
3388 	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3389 		/* already being handled, ensure it gets handled
3390 		 * again when current action finishes */
3391 		set_bit(STRIPE_HANDLE, &sh->state);
3392 		return;
3393 	}
3394 
3395 	if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3396 		set_bit(STRIPE_SYNCING, &sh->state);
3397 		clear_bit(STRIPE_INSYNC, &sh->state);
3398 	}
3399 	clear_bit(STRIPE_DELAYED, &sh->state);
3400 
3401 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3402 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3403 	       (unsigned long long)sh->sector, sh->state,
3404 	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3405 	       sh->check_state, sh->reconstruct_state);
3406 
3407 	analyse_stripe(sh, &s);
3408 
3409 	if (s.handle_bad_blocks) {
3410 		set_bit(STRIPE_HANDLE, &sh->state);
3411 		goto finish;
3412 	}
3413 
3414 	if (unlikely(s.blocked_rdev)) {
3415 		if (s.syncing || s.expanding || s.expanded ||
3416 		    s.replacing || s.to_write || s.written) {
3417 			set_bit(STRIPE_HANDLE, &sh->state);
3418 			goto finish;
3419 		}
3420 		/* There is nothing for the blocked_rdev to block */
3421 		rdev_dec_pending(s.blocked_rdev, conf->mddev);
3422 		s.blocked_rdev = NULL;
3423 	}
3424 
3425 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3426 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3427 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3428 	}
3429 
3430 	pr_debug("locked=%d uptodate=%d to_read=%d"
3431 	       " to_write=%d failed=%d failed_num=%d,%d\n",
3432 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3433 	       s.failed_num[0], s.failed_num[1]);
3434 	/* check if the array has lost more than max_degraded devices and,
3435 	 * if so, some requests might need to be failed.
3436 	 */
3437 	if (s.failed > conf->max_degraded) {
3438 		sh->check_state = 0;
3439 		sh->reconstruct_state = 0;
3440 		if (s.to_read+s.to_write+s.written)
3441 			handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3442 		if (s.syncing + s.replacing)
3443 			handle_failed_sync(conf, sh, &s);
3444 	}
3445 
3446 	/*
3447 	 * might be able to return some write requests if the parity blocks
3448 	 * are safe, or on a failed drive
3449 	 */
3450 	pdev = &sh->dev[sh->pd_idx];
3451 	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3452 		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3453 	qdev = &sh->dev[sh->qd_idx];
3454 	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3455 		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3456 		|| conf->level < 6;
3457 
3458 	if (s.written &&
3459 	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3460 			     && !test_bit(R5_LOCKED, &pdev->flags)
3461 			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3462 	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3463 			     && !test_bit(R5_LOCKED, &qdev->flags)
3464 			     && test_bit(R5_UPTODATE, &qdev->flags)))))
3465 		handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3466 
3467 	/* Now we might consider reading some blocks, either to check/generate
3468 	 * parity, or to satisfy requests
3469 	 * or to load a block that is being partially written.
3470 	 */
3471 	if (s.to_read || s.non_overwrite
3472 	    || (conf->level == 6 && s.to_write && s.failed)
3473 	    || (s.syncing && (s.uptodate + s.compute < disks))
3474 	    || s.replacing
3475 	    || s.expanding)
3476 		handle_stripe_fill(sh, &s, disks);
3477 
3478 	/* Now we check to see if any write operations have recently
3479 	 * completed
3480 	 */
3481 	prexor = 0;
3482 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3483 		prexor = 1;
3484 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
3485 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3486 		sh->reconstruct_state = reconstruct_state_idle;
3487 
3488 		/* All the 'written' buffers and the parity block are ready to
3489 		 * be written back to disk
3490 		 */
3491 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3492 		BUG_ON(sh->qd_idx >= 0 &&
3493 		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags));
3494 		for (i = disks; i--; ) {
3495 			struct r5dev *dev = &sh->dev[i];
3496 			if (test_bit(R5_LOCKED, &dev->flags) &&
3497 				(i == sh->pd_idx || i == sh->qd_idx ||
3498 				 dev->written)) {
3499 				pr_debug("Writing block %d\n", i);
3500 				set_bit(R5_Wantwrite, &dev->flags);
3501 				if (prexor)
3502 					continue;
3503 				if (!test_bit(R5_Insync, &dev->flags) ||
3504 				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
3505 				     s.failed == 0))
3506 					set_bit(STRIPE_INSYNC, &sh->state);
3507 			}
3508 		}
3509 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3510 			s.dec_preread_active = 1;
3511 	}
3512 
3513 	/* Now to consider new write requests and what else, if anything
3514 	 * should be read.  We do not handle new writes when:
3515 	 * 1/ A 'write' operation (copy+xor) is already in flight.
3516 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
3517 	 *    block.
3518 	 */
3519 	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3520 		handle_stripe_dirtying(conf, sh, &s, disks);
3521 
3522 	/* maybe we need to check and possibly fix the parity for this stripe
3523 	 * Any reads will already have been scheduled, so we just see if enough
3524 	 * data is available.  The parity check is held off while parity
3525 	 * dependent operations are in flight.
3526 	 */
3527 	if (sh->check_state ||
3528 	    (s.syncing && s.locked == 0 &&
3529 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3530 	     !test_bit(STRIPE_INSYNC, &sh->state))) {
3531 		if (conf->level == 6)
3532 			handle_parity_checks6(conf, sh, &s, disks);
3533 		else
3534 			handle_parity_checks5(conf, sh, &s, disks);
3535 	}
3536 
3537 	if (s.replacing && s.locked == 0
3538 	    && !test_bit(STRIPE_INSYNC, &sh->state)) {
3539 		/* Write out to replacement devices where possible */
3540 		for (i = 0; i < conf->raid_disks; i++)
3541 			if (test_bit(R5_UPTODATE, &sh->dev[i].flags) &&
3542 			    test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3543 				set_bit(R5_WantReplace, &sh->dev[i].flags);
3544 				set_bit(R5_LOCKED, &sh->dev[i].flags);
3545 				s.locked++;
3546 			}
3547 		set_bit(STRIPE_INSYNC, &sh->state);
3548 	}
3549 	if ((s.syncing || s.replacing) && s.locked == 0 &&
3550 	    test_bit(STRIPE_INSYNC, &sh->state)) {
3551 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3552 		clear_bit(STRIPE_SYNCING, &sh->state);
3553 	}
3554 
3555 	/* If the failed drives are just a ReadError, then we might need
3556 	 * to progress the repair/check process
3557 	 */
3558 	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3559 		for (i = 0; i < s.failed; i++) {
3560 			struct r5dev *dev = &sh->dev[s.failed_num[i]];
3561 			if (test_bit(R5_ReadError, &dev->flags)
3562 			    && !test_bit(R5_LOCKED, &dev->flags)
3563 			    && test_bit(R5_UPTODATE, &dev->flags)
3564 				) {
3565 				if (!test_bit(R5_ReWrite, &dev->flags)) {
3566 					set_bit(R5_Wantwrite, &dev->flags);
3567 					set_bit(R5_ReWrite, &dev->flags);
3568 					set_bit(R5_LOCKED, &dev->flags);
3569 					s.locked++;
3570 				} else {
3571 					/* let's read it back */
3572 					set_bit(R5_Wantread, &dev->flags);
3573 					set_bit(R5_LOCKED, &dev->flags);
3574 					s.locked++;
3575 				}
3576 			}
3577 		}
3578 
3579 
3580 	/* Finish reconstruct operations initiated by the expansion process */
3581 	if (sh->reconstruct_state == reconstruct_state_result) {
3582 		struct stripe_head *sh_src
3583 			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3584 		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3585 			/* sh cannot be written until sh_src has been read.
3586 			 * so arrange for sh to be delayed a little
3587 			 */
3588 			set_bit(STRIPE_DELAYED, &sh->state);
3589 			set_bit(STRIPE_HANDLE, &sh->state);
3590 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3591 					      &sh_src->state))
3592 				atomic_inc(&conf->preread_active_stripes);
3593 			release_stripe(sh_src);
3594 			goto finish;
3595 		}
3596 		if (sh_src)
3597 			release_stripe(sh_src);
3598 
3599 		sh->reconstruct_state = reconstruct_state_idle;
3600 		clear_bit(STRIPE_EXPANDING, &sh->state);
3601 		for (i = conf->raid_disks; i--; ) {
3602 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
3603 			set_bit(R5_LOCKED, &sh->dev[i].flags);
3604 			s.locked++;
3605 		}
3606 	}
3607 
3608 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3609 	    !sh->reconstruct_state) {
3610 		/* Need to write out all blocks after computing parity */
3611 		sh->disks = conf->raid_disks;
3612 		stripe_set_idx(sh->sector, conf, 0, sh);
3613 		schedule_reconstruction(sh, &s, 1, 1);
3614 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3615 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3616 		atomic_dec(&conf->reshape_stripes);
3617 		wake_up(&conf->wait_for_overlap);
3618 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3619 	}
3620 
3621 	if (s.expanding && s.locked == 0 &&
3622 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3623 		handle_stripe_expansion(conf, sh);
3624 
3625 finish:
3626 	/* wait for this device to become unblocked */
3627 	if (unlikely(s.blocked_rdev)) {
3628 		if (conf->mddev->external)
3629 			md_wait_for_blocked_rdev(s.blocked_rdev,
3630 						 conf->mddev);
3631 		else
3632 			/* Internal metadata will immediately
3633 			 * be written by raid5d, so we don't
3634 			 * need to wait here.
3635 			 */
3636 			rdev_dec_pending(s.blocked_rdev,
3637 					 conf->mddev);
3638 	}
3639 
3640 	if (s.handle_bad_blocks)
3641 		for (i = disks; i--; ) {
3642 			struct md_rdev *rdev;
3643 			struct r5dev *dev = &sh->dev[i];
3644 			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3645 				/* We own a safe reference to the rdev */
3646 				rdev = conf->disks[i].rdev;
3647 				if (!rdev_set_badblocks(rdev, sh->sector,
3648 							STRIPE_SECTORS, 0))
3649 					md_error(conf->mddev, rdev);
3650 				rdev_dec_pending(rdev, conf->mddev);
3651 			}
3652 			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3653 				rdev = conf->disks[i].rdev;
3654 				rdev_clear_badblocks(rdev, sh->sector,
3655 						     STRIPE_SECTORS, 0);
3656 				rdev_dec_pending(rdev, conf->mddev);
3657 			}
3658 			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3659 				rdev = conf->disks[i].replacement;
3660 				if (!rdev)
3661 					/* rdev have been moved down */
3662 					rdev = conf->disks[i].rdev;
3663 				rdev_clear_badblocks(rdev, sh->sector,
3664 						     STRIPE_SECTORS, 0);
3665 				rdev_dec_pending(rdev, conf->mddev);
3666 			}
3667 		}
3668 
3669 	if (s.ops_request)
3670 		raid_run_ops(sh, s.ops_request);
3671 
3672 	ops_run_io(sh, &s);
3673 
3674 	if (s.dec_preread_active) {
3675 		/* We delay this until after ops_run_io so that if make_request
3676 		 * is waiting on a flush, it won't continue until the writes
3677 		 * have actually been submitted.
3678 		 */
3679 		atomic_dec(&conf->preread_active_stripes);
3680 		if (atomic_read(&conf->preread_active_stripes) <
3681 		    IO_THRESHOLD)
3682 			md_wakeup_thread(conf->mddev->thread);
3683 	}
3684 
3685 	return_io(s.return_bi);
3686 
3687 	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
3688 }
3689 
3690 static void raid5_activate_delayed(struct r5conf *conf)
3691 {
3692 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3693 		while (!list_empty(&conf->delayed_list)) {
3694 			struct list_head *l = conf->delayed_list.next;
3695 			struct stripe_head *sh;
3696 			sh = list_entry(l, struct stripe_head, lru);
3697 			list_del_init(l);
3698 			clear_bit(STRIPE_DELAYED, &sh->state);
3699 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3700 				atomic_inc(&conf->preread_active_stripes);
3701 			list_add_tail(&sh->lru, &conf->hold_list);
3702 		}
3703 	}
3704 }
3705 
3706 static void activate_bit_delay(struct r5conf *conf)
3707 {
3708 	/* device_lock is held */
3709 	struct list_head head;
3710 	list_add(&head, &conf->bitmap_list);
3711 	list_del_init(&conf->bitmap_list);
3712 	while (!list_empty(&head)) {
3713 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3714 		list_del_init(&sh->lru);
3715 		atomic_inc(&sh->count);
3716 		__release_stripe(conf, sh);
3717 	}
3718 }
3719 
3720 int md_raid5_congested(struct mddev *mddev, int bits)
3721 {
3722 	struct r5conf *conf = mddev->private;
3723 
3724 	/* No difference between reads and writes.  Just check
3725 	 * how busy the stripe_cache is
3726 	 */
3727 
3728 	if (conf->inactive_blocked)
3729 		return 1;
3730 	if (conf->quiesce)
3731 		return 1;
3732 	if (list_empty_careful(&conf->inactive_list))
3733 		return 1;
3734 
3735 	return 0;
3736 }
3737 EXPORT_SYMBOL_GPL(md_raid5_congested);
3738 
3739 static int raid5_congested(void *data, int bits)
3740 {
3741 	struct mddev *mddev = data;
3742 
3743 	return mddev_congested(mddev, bits) ||
3744 		md_raid5_congested(mddev, bits);
3745 }
3746 
3747 /* We want read requests to align with chunks where possible,
3748  * but write requests don't need to.
3749  */
3750 static int raid5_mergeable_bvec(struct request_queue *q,
3751 				struct bvec_merge_data *bvm,
3752 				struct bio_vec *biovec)
3753 {
3754 	struct mddev *mddev = q->queuedata;
3755 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3756 	int max;
3757 	unsigned int chunk_sectors = mddev->chunk_sectors;
3758 	unsigned int bio_sectors = bvm->bi_size >> 9;
3759 
3760 	if ((bvm->bi_rw & 1) == WRITE)
3761 		return biovec->bv_len; /* always allow writes to be mergeable */
3762 
3763 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3764 		chunk_sectors = mddev->new_chunk_sectors;
3765 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3766 	if (max < 0) max = 0;
3767 	if (max <= biovec->bv_len && bio_sectors == 0)
3768 		return biovec->bv_len;
3769 	else
3770 		return max;
3771 }
3772 
3773 
3774 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
3775 {
3776 	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3777 	unsigned int chunk_sectors = mddev->chunk_sectors;
3778 	unsigned int bio_sectors = bio->bi_size >> 9;
3779 
3780 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3781 		chunk_sectors = mddev->new_chunk_sectors;
3782 	return  chunk_sectors >=
3783 		((sector & (chunk_sectors - 1)) + bio_sectors);
3784 }
3785 
3786 /*
3787  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3788  *  later sampled by raid5d.
3789  */
3790 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
3791 {
3792 	unsigned long flags;
3793 
3794 	spin_lock_irqsave(&conf->device_lock, flags);
3795 
3796 	bi->bi_next = conf->retry_read_aligned_list;
3797 	conf->retry_read_aligned_list = bi;
3798 
3799 	spin_unlock_irqrestore(&conf->device_lock, flags);
3800 	md_wakeup_thread(conf->mddev->thread);
3801 }
3802 
3803 
3804 static struct bio *remove_bio_from_retry(struct r5conf *conf)
3805 {
3806 	struct bio *bi;
3807 
3808 	bi = conf->retry_read_aligned;
3809 	if (bi) {
3810 		conf->retry_read_aligned = NULL;
3811 		return bi;
3812 	}
3813 	bi = conf->retry_read_aligned_list;
3814 	if(bi) {
3815 		conf->retry_read_aligned_list = bi->bi_next;
3816 		bi->bi_next = NULL;
3817 		/*
3818 		 * this sets the active strip count to 1 and the processed
3819 		 * strip count to zero (upper 8 bits)
3820 		 */
3821 		raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
3822 	}
3823 
3824 	return bi;
3825 }
3826 
3827 
3828 /*
3829  *  The "raid5_align_endio" should check if the read succeeded and if it
3830  *  did, call bio_endio on the original bio (having bio_put the new bio
3831  *  first).
3832  *  If the read failed..
3833  */
3834 static void raid5_align_endio(struct bio *bi, int error)
3835 {
3836 	struct bio* raid_bi  = bi->bi_private;
3837 	struct mddev *mddev;
3838 	struct r5conf *conf;
3839 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3840 	struct md_rdev *rdev;
3841 
3842 	bio_put(bi);
3843 
3844 	rdev = (void*)raid_bi->bi_next;
3845 	raid_bi->bi_next = NULL;
3846 	mddev = rdev->mddev;
3847 	conf = mddev->private;
3848 
3849 	rdev_dec_pending(rdev, conf->mddev);
3850 
3851 	if (!error && uptodate) {
3852 		bio_endio(raid_bi, 0);
3853 		if (atomic_dec_and_test(&conf->active_aligned_reads))
3854 			wake_up(&conf->wait_for_stripe);
3855 		return;
3856 	}
3857 
3858 
3859 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3860 
3861 	add_bio_to_retry(raid_bi, conf);
3862 }
3863 
3864 static int bio_fits_rdev(struct bio *bi)
3865 {
3866 	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3867 
3868 	if ((bi->bi_size>>9) > queue_max_sectors(q))
3869 		return 0;
3870 	blk_recount_segments(q, bi);
3871 	if (bi->bi_phys_segments > queue_max_segments(q))
3872 		return 0;
3873 
3874 	if (q->merge_bvec_fn)
3875 		/* it's too hard to apply the merge_bvec_fn at this stage,
3876 		 * just just give up
3877 		 */
3878 		return 0;
3879 
3880 	return 1;
3881 }
3882 
3883 
3884 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
3885 {
3886 	struct r5conf *conf = mddev->private;
3887 	int dd_idx;
3888 	struct bio* align_bi;
3889 	struct md_rdev *rdev;
3890 	sector_t end_sector;
3891 
3892 	if (!in_chunk_boundary(mddev, raid_bio)) {
3893 		pr_debug("chunk_aligned_read : non aligned\n");
3894 		return 0;
3895 	}
3896 	/*
3897 	 * use bio_clone_mddev to make a copy of the bio
3898 	 */
3899 	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3900 	if (!align_bi)
3901 		return 0;
3902 	/*
3903 	 *   set bi_end_io to a new function, and set bi_private to the
3904 	 *     original bio.
3905 	 */
3906 	align_bi->bi_end_io  = raid5_align_endio;
3907 	align_bi->bi_private = raid_bio;
3908 	/*
3909 	 *	compute position
3910 	 */
3911 	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3912 						    0,
3913 						    &dd_idx, NULL);
3914 
3915 	end_sector = align_bi->bi_sector + (align_bi->bi_size >> 9);
3916 	rcu_read_lock();
3917 	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
3918 	if (!rdev || test_bit(Faulty, &rdev->flags) ||
3919 	    rdev->recovery_offset < end_sector) {
3920 		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3921 		if (rdev &&
3922 		    (test_bit(Faulty, &rdev->flags) ||
3923 		    !(test_bit(In_sync, &rdev->flags) ||
3924 		      rdev->recovery_offset >= end_sector)))
3925 			rdev = NULL;
3926 	}
3927 	if (rdev) {
3928 		sector_t first_bad;
3929 		int bad_sectors;
3930 
3931 		atomic_inc(&rdev->nr_pending);
3932 		rcu_read_unlock();
3933 		raid_bio->bi_next = (void*)rdev;
3934 		align_bi->bi_bdev =  rdev->bdev;
3935 		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3936 
3937 		if (!bio_fits_rdev(align_bi) ||
3938 		    is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
3939 				&first_bad, &bad_sectors)) {
3940 			/* too big in some way, or has a known bad block */
3941 			bio_put(align_bi);
3942 			rdev_dec_pending(rdev, mddev);
3943 			return 0;
3944 		}
3945 
3946 		/* No reshape active, so we can trust rdev->data_offset */
3947 		align_bi->bi_sector += rdev->data_offset;
3948 
3949 		spin_lock_irq(&conf->device_lock);
3950 		wait_event_lock_irq(conf->wait_for_stripe,
3951 				    conf->quiesce == 0,
3952 				    conf->device_lock, /* nothing */);
3953 		atomic_inc(&conf->active_aligned_reads);
3954 		spin_unlock_irq(&conf->device_lock);
3955 
3956 		generic_make_request(align_bi);
3957 		return 1;
3958 	} else {
3959 		rcu_read_unlock();
3960 		bio_put(align_bi);
3961 		return 0;
3962 	}
3963 }
3964 
3965 /* __get_priority_stripe - get the next stripe to process
3966  *
3967  * Full stripe writes are allowed to pass preread active stripes up until
3968  * the bypass_threshold is exceeded.  In general the bypass_count
3969  * increments when the handle_list is handled before the hold_list; however, it
3970  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3971  * stripe with in flight i/o.  The bypass_count will be reset when the
3972  * head of the hold_list has changed, i.e. the head was promoted to the
3973  * handle_list.
3974  */
3975 static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
3976 {
3977 	struct stripe_head *sh;
3978 
3979 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3980 		  __func__,
3981 		  list_empty(&conf->handle_list) ? "empty" : "busy",
3982 		  list_empty(&conf->hold_list) ? "empty" : "busy",
3983 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
3984 
3985 	if (!list_empty(&conf->handle_list)) {
3986 		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3987 
3988 		if (list_empty(&conf->hold_list))
3989 			conf->bypass_count = 0;
3990 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3991 			if (conf->hold_list.next == conf->last_hold)
3992 				conf->bypass_count++;
3993 			else {
3994 				conf->last_hold = conf->hold_list.next;
3995 				conf->bypass_count -= conf->bypass_threshold;
3996 				if (conf->bypass_count < 0)
3997 					conf->bypass_count = 0;
3998 			}
3999 		}
4000 	} else if (!list_empty(&conf->hold_list) &&
4001 		   ((conf->bypass_threshold &&
4002 		     conf->bypass_count > conf->bypass_threshold) ||
4003 		    atomic_read(&conf->pending_full_writes) == 0)) {
4004 		sh = list_entry(conf->hold_list.next,
4005 				typeof(*sh), lru);
4006 		conf->bypass_count -= conf->bypass_threshold;
4007 		if (conf->bypass_count < 0)
4008 			conf->bypass_count = 0;
4009 	} else
4010 		return NULL;
4011 
4012 	list_del_init(&sh->lru);
4013 	atomic_inc(&sh->count);
4014 	BUG_ON(atomic_read(&sh->count) != 1);
4015 	return sh;
4016 }
4017 
4018 struct raid5_plug_cb {
4019 	struct blk_plug_cb	cb;
4020 	struct list_head	list;
4021 };
4022 
4023 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4024 {
4025 	struct raid5_plug_cb *cb = container_of(
4026 		blk_cb, struct raid5_plug_cb, cb);
4027 	struct stripe_head *sh;
4028 	struct mddev *mddev = cb->cb.data;
4029 	struct r5conf *conf = mddev->private;
4030 
4031 	if (cb->list.next && !list_empty(&cb->list)) {
4032 		spin_lock_irq(&conf->device_lock);
4033 		while (!list_empty(&cb->list)) {
4034 			sh = list_first_entry(&cb->list, struct stripe_head, lru);
4035 			list_del_init(&sh->lru);
4036 			/*
4037 			 * avoid race release_stripe_plug() sees
4038 			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
4039 			 * is still in our list
4040 			 */
4041 			smp_mb__before_clear_bit();
4042 			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4043 			__release_stripe(conf, sh);
4044 		}
4045 		spin_unlock_irq(&conf->device_lock);
4046 	}
4047 	kfree(cb);
4048 }
4049 
4050 static void release_stripe_plug(struct mddev *mddev,
4051 				struct stripe_head *sh)
4052 {
4053 	struct blk_plug_cb *blk_cb = blk_check_plugged(
4054 		raid5_unplug, mddev,
4055 		sizeof(struct raid5_plug_cb));
4056 	struct raid5_plug_cb *cb;
4057 
4058 	if (!blk_cb) {
4059 		release_stripe(sh);
4060 		return;
4061 	}
4062 
4063 	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4064 
4065 	if (cb->list.next == NULL)
4066 		INIT_LIST_HEAD(&cb->list);
4067 
4068 	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4069 		list_add_tail(&sh->lru, &cb->list);
4070 	else
4071 		release_stripe(sh);
4072 }
4073 
4074 static void make_request(struct mddev *mddev, struct bio * bi)
4075 {
4076 	struct r5conf *conf = mddev->private;
4077 	int dd_idx;
4078 	sector_t new_sector;
4079 	sector_t logical_sector, last_sector;
4080 	struct stripe_head *sh;
4081 	const int rw = bio_data_dir(bi);
4082 	int remaining;
4083 
4084 	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4085 		md_flush_request(mddev, bi);
4086 		return;
4087 	}
4088 
4089 	md_write_start(mddev, bi);
4090 
4091 	if (rw == READ &&
4092 	     mddev->reshape_position == MaxSector &&
4093 	     chunk_aligned_read(mddev,bi))
4094 		return;
4095 
4096 	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4097 	last_sector = bi->bi_sector + (bi->bi_size>>9);
4098 	bi->bi_next = NULL;
4099 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
4100 
4101 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4102 		DEFINE_WAIT(w);
4103 		int previous;
4104 
4105 	retry:
4106 		previous = 0;
4107 		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4108 		if (unlikely(conf->reshape_progress != MaxSector)) {
4109 			/* spinlock is needed as reshape_progress may be
4110 			 * 64bit on a 32bit platform, and so it might be
4111 			 * possible to see a half-updated value
4112 			 * Of course reshape_progress could change after
4113 			 * the lock is dropped, so once we get a reference
4114 			 * to the stripe that we think it is, we will have
4115 			 * to check again.
4116 			 */
4117 			spin_lock_irq(&conf->device_lock);
4118 			if (mddev->reshape_backwards
4119 			    ? logical_sector < conf->reshape_progress
4120 			    : logical_sector >= conf->reshape_progress) {
4121 				previous = 1;
4122 			} else {
4123 				if (mddev->reshape_backwards
4124 				    ? logical_sector < conf->reshape_safe
4125 				    : logical_sector >= conf->reshape_safe) {
4126 					spin_unlock_irq(&conf->device_lock);
4127 					schedule();
4128 					goto retry;
4129 				}
4130 			}
4131 			spin_unlock_irq(&conf->device_lock);
4132 		}
4133 
4134 		new_sector = raid5_compute_sector(conf, logical_sector,
4135 						  previous,
4136 						  &dd_idx, NULL);
4137 		pr_debug("raid456: make_request, sector %llu logical %llu\n",
4138 			(unsigned long long)new_sector,
4139 			(unsigned long long)logical_sector);
4140 
4141 		sh = get_active_stripe(conf, new_sector, previous,
4142 				       (bi->bi_rw&RWA_MASK), 0);
4143 		if (sh) {
4144 			if (unlikely(previous)) {
4145 				/* expansion might have moved on while waiting for a
4146 				 * stripe, so we must do the range check again.
4147 				 * Expansion could still move past after this
4148 				 * test, but as we are holding a reference to
4149 				 * 'sh', we know that if that happens,
4150 				 *  STRIPE_EXPANDING will get set and the expansion
4151 				 * won't proceed until we finish with the stripe.
4152 				 */
4153 				int must_retry = 0;
4154 				spin_lock_irq(&conf->device_lock);
4155 				if (mddev->reshape_backwards
4156 				    ? logical_sector >= conf->reshape_progress
4157 				    : logical_sector < conf->reshape_progress)
4158 					/* mismatch, need to try again */
4159 					must_retry = 1;
4160 				spin_unlock_irq(&conf->device_lock);
4161 				if (must_retry) {
4162 					release_stripe(sh);
4163 					schedule();
4164 					goto retry;
4165 				}
4166 			}
4167 
4168 			if (rw == WRITE &&
4169 			    logical_sector >= mddev->suspend_lo &&
4170 			    logical_sector < mddev->suspend_hi) {
4171 				release_stripe(sh);
4172 				/* As the suspend_* range is controlled by
4173 				 * userspace, we want an interruptible
4174 				 * wait.
4175 				 */
4176 				flush_signals(current);
4177 				prepare_to_wait(&conf->wait_for_overlap,
4178 						&w, TASK_INTERRUPTIBLE);
4179 				if (logical_sector >= mddev->suspend_lo &&
4180 				    logical_sector < mddev->suspend_hi)
4181 					schedule();
4182 				goto retry;
4183 			}
4184 
4185 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4186 			    !add_stripe_bio(sh, bi, dd_idx, rw)) {
4187 				/* Stripe is busy expanding or
4188 				 * add failed due to overlap.  Flush everything
4189 				 * and wait a while
4190 				 */
4191 				md_wakeup_thread(mddev->thread);
4192 				release_stripe(sh);
4193 				schedule();
4194 				goto retry;
4195 			}
4196 			finish_wait(&conf->wait_for_overlap, &w);
4197 			set_bit(STRIPE_HANDLE, &sh->state);
4198 			clear_bit(STRIPE_DELAYED, &sh->state);
4199 			if ((bi->bi_rw & REQ_SYNC) &&
4200 			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4201 				atomic_inc(&conf->preread_active_stripes);
4202 			release_stripe_plug(mddev, sh);
4203 		} else {
4204 			/* cannot get stripe for read-ahead, just give-up */
4205 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
4206 			finish_wait(&conf->wait_for_overlap, &w);
4207 			break;
4208 		}
4209 	}
4210 
4211 	remaining = raid5_dec_bi_active_stripes(bi);
4212 	if (remaining == 0) {
4213 
4214 		if ( rw == WRITE )
4215 			md_write_end(mddev);
4216 
4217 		bio_endio(bi, 0);
4218 	}
4219 }
4220 
4221 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4222 
4223 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4224 {
4225 	/* reshaping is quite different to recovery/resync so it is
4226 	 * handled quite separately ... here.
4227 	 *
4228 	 * On each call to sync_request, we gather one chunk worth of
4229 	 * destination stripes and flag them as expanding.
4230 	 * Then we find all the source stripes and request reads.
4231 	 * As the reads complete, handle_stripe will copy the data
4232 	 * into the destination stripe and release that stripe.
4233 	 */
4234 	struct r5conf *conf = mddev->private;
4235 	struct stripe_head *sh;
4236 	sector_t first_sector, last_sector;
4237 	int raid_disks = conf->previous_raid_disks;
4238 	int data_disks = raid_disks - conf->max_degraded;
4239 	int new_data_disks = conf->raid_disks - conf->max_degraded;
4240 	int i;
4241 	int dd_idx;
4242 	sector_t writepos, readpos, safepos;
4243 	sector_t stripe_addr;
4244 	int reshape_sectors;
4245 	struct list_head stripes;
4246 
4247 	if (sector_nr == 0) {
4248 		/* If restarting in the middle, skip the initial sectors */
4249 		if (mddev->reshape_backwards &&
4250 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4251 			sector_nr = raid5_size(mddev, 0, 0)
4252 				- conf->reshape_progress;
4253 		} else if (!mddev->reshape_backwards &&
4254 			   conf->reshape_progress > 0)
4255 			sector_nr = conf->reshape_progress;
4256 		sector_div(sector_nr, new_data_disks);
4257 		if (sector_nr) {
4258 			mddev->curr_resync_completed = sector_nr;
4259 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4260 			*skipped = 1;
4261 			return sector_nr;
4262 		}
4263 	}
4264 
4265 	/* We need to process a full chunk at a time.
4266 	 * If old and new chunk sizes differ, we need to process the
4267 	 * largest of these
4268 	 */
4269 	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4270 		reshape_sectors = mddev->new_chunk_sectors;
4271 	else
4272 		reshape_sectors = mddev->chunk_sectors;
4273 
4274 	/* We update the metadata at least every 10 seconds, or when
4275 	 * the data about to be copied would over-write the source of
4276 	 * the data at the front of the range.  i.e. one new_stripe
4277 	 * along from reshape_progress new_maps to after where
4278 	 * reshape_safe old_maps to
4279 	 */
4280 	writepos = conf->reshape_progress;
4281 	sector_div(writepos, new_data_disks);
4282 	readpos = conf->reshape_progress;
4283 	sector_div(readpos, data_disks);
4284 	safepos = conf->reshape_safe;
4285 	sector_div(safepos, data_disks);
4286 	if (mddev->reshape_backwards) {
4287 		writepos -= min_t(sector_t, reshape_sectors, writepos);
4288 		readpos += reshape_sectors;
4289 		safepos += reshape_sectors;
4290 	} else {
4291 		writepos += reshape_sectors;
4292 		readpos -= min_t(sector_t, reshape_sectors, readpos);
4293 		safepos -= min_t(sector_t, reshape_sectors, safepos);
4294 	}
4295 
4296 	/* Having calculated the 'writepos' possibly use it
4297 	 * to set 'stripe_addr' which is where we will write to.
4298 	 */
4299 	if (mddev->reshape_backwards) {
4300 		BUG_ON(conf->reshape_progress == 0);
4301 		stripe_addr = writepos;
4302 		BUG_ON((mddev->dev_sectors &
4303 			~((sector_t)reshape_sectors - 1))
4304 		       - reshape_sectors - stripe_addr
4305 		       != sector_nr);
4306 	} else {
4307 		BUG_ON(writepos != sector_nr + reshape_sectors);
4308 		stripe_addr = sector_nr;
4309 	}
4310 
4311 	/* 'writepos' is the most advanced device address we might write.
4312 	 * 'readpos' is the least advanced device address we might read.
4313 	 * 'safepos' is the least address recorded in the metadata as having
4314 	 *     been reshaped.
4315 	 * If there is a min_offset_diff, these are adjusted either by
4316 	 * increasing the safepos/readpos if diff is negative, or
4317 	 * increasing writepos if diff is positive.
4318 	 * If 'readpos' is then behind 'writepos', there is no way that we can
4319 	 * ensure safety in the face of a crash - that must be done by userspace
4320 	 * making a backup of the data.  So in that case there is no particular
4321 	 * rush to update metadata.
4322 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4323 	 * update the metadata to advance 'safepos' to match 'readpos' so that
4324 	 * we can be safe in the event of a crash.
4325 	 * So we insist on updating metadata if safepos is behind writepos and
4326 	 * readpos is beyond writepos.
4327 	 * In any case, update the metadata every 10 seconds.
4328 	 * Maybe that number should be configurable, but I'm not sure it is
4329 	 * worth it.... maybe it could be a multiple of safemode_delay???
4330 	 */
4331 	if (conf->min_offset_diff < 0) {
4332 		safepos += -conf->min_offset_diff;
4333 		readpos += -conf->min_offset_diff;
4334 	} else
4335 		writepos += conf->min_offset_diff;
4336 
4337 	if ((mddev->reshape_backwards
4338 	     ? (safepos > writepos && readpos < writepos)
4339 	     : (safepos < writepos && readpos > writepos)) ||
4340 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4341 		/* Cannot proceed until we've updated the superblock... */
4342 		wait_event(conf->wait_for_overlap,
4343 			   atomic_read(&conf->reshape_stripes)==0);
4344 		mddev->reshape_position = conf->reshape_progress;
4345 		mddev->curr_resync_completed = sector_nr;
4346 		conf->reshape_checkpoint = jiffies;
4347 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4348 		md_wakeup_thread(mddev->thread);
4349 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4350 			   kthread_should_stop());
4351 		spin_lock_irq(&conf->device_lock);
4352 		conf->reshape_safe = mddev->reshape_position;
4353 		spin_unlock_irq(&conf->device_lock);
4354 		wake_up(&conf->wait_for_overlap);
4355 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4356 	}
4357 
4358 	INIT_LIST_HEAD(&stripes);
4359 	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4360 		int j;
4361 		int skipped_disk = 0;
4362 		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4363 		set_bit(STRIPE_EXPANDING, &sh->state);
4364 		atomic_inc(&conf->reshape_stripes);
4365 		/* If any of this stripe is beyond the end of the old
4366 		 * array, then we need to zero those blocks
4367 		 */
4368 		for (j=sh->disks; j--;) {
4369 			sector_t s;
4370 			if (j == sh->pd_idx)
4371 				continue;
4372 			if (conf->level == 6 &&
4373 			    j == sh->qd_idx)
4374 				continue;
4375 			s = compute_blocknr(sh, j, 0);
4376 			if (s < raid5_size(mddev, 0, 0)) {
4377 				skipped_disk = 1;
4378 				continue;
4379 			}
4380 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4381 			set_bit(R5_Expanded, &sh->dev[j].flags);
4382 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
4383 		}
4384 		if (!skipped_disk) {
4385 			set_bit(STRIPE_EXPAND_READY, &sh->state);
4386 			set_bit(STRIPE_HANDLE, &sh->state);
4387 		}
4388 		list_add(&sh->lru, &stripes);
4389 	}
4390 	spin_lock_irq(&conf->device_lock);
4391 	if (mddev->reshape_backwards)
4392 		conf->reshape_progress -= reshape_sectors * new_data_disks;
4393 	else
4394 		conf->reshape_progress += reshape_sectors * new_data_disks;
4395 	spin_unlock_irq(&conf->device_lock);
4396 	/* Ok, those stripe are ready. We can start scheduling
4397 	 * reads on the source stripes.
4398 	 * The source stripes are determined by mapping the first and last
4399 	 * block on the destination stripes.
4400 	 */
4401 	first_sector =
4402 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4403 				     1, &dd_idx, NULL);
4404 	last_sector =
4405 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4406 					    * new_data_disks - 1),
4407 				     1, &dd_idx, NULL);
4408 	if (last_sector >= mddev->dev_sectors)
4409 		last_sector = mddev->dev_sectors - 1;
4410 	while (first_sector <= last_sector) {
4411 		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4412 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4413 		set_bit(STRIPE_HANDLE, &sh->state);
4414 		release_stripe(sh);
4415 		first_sector += STRIPE_SECTORS;
4416 	}
4417 	/* Now that the sources are clearly marked, we can release
4418 	 * the destination stripes
4419 	 */
4420 	while (!list_empty(&stripes)) {
4421 		sh = list_entry(stripes.next, struct stripe_head, lru);
4422 		list_del_init(&sh->lru);
4423 		release_stripe(sh);
4424 	}
4425 	/* If this takes us to the resync_max point where we have to pause,
4426 	 * then we need to write out the superblock.
4427 	 */
4428 	sector_nr += reshape_sectors;
4429 	if ((sector_nr - mddev->curr_resync_completed) * 2
4430 	    >= mddev->resync_max - mddev->curr_resync_completed) {
4431 		/* Cannot proceed until we've updated the superblock... */
4432 		wait_event(conf->wait_for_overlap,
4433 			   atomic_read(&conf->reshape_stripes) == 0);
4434 		mddev->reshape_position = conf->reshape_progress;
4435 		mddev->curr_resync_completed = sector_nr;
4436 		conf->reshape_checkpoint = jiffies;
4437 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4438 		md_wakeup_thread(mddev->thread);
4439 		wait_event(mddev->sb_wait,
4440 			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4441 			   || kthread_should_stop());
4442 		spin_lock_irq(&conf->device_lock);
4443 		conf->reshape_safe = mddev->reshape_position;
4444 		spin_unlock_irq(&conf->device_lock);
4445 		wake_up(&conf->wait_for_overlap);
4446 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4447 	}
4448 	return reshape_sectors;
4449 }
4450 
4451 /* FIXME go_faster isn't used */
4452 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4453 {
4454 	struct r5conf *conf = mddev->private;
4455 	struct stripe_head *sh;
4456 	sector_t max_sector = mddev->dev_sectors;
4457 	sector_t sync_blocks;
4458 	int still_degraded = 0;
4459 	int i;
4460 
4461 	if (sector_nr >= max_sector) {
4462 		/* just being told to finish up .. nothing much to do */
4463 
4464 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4465 			end_reshape(conf);
4466 			return 0;
4467 		}
4468 
4469 		if (mddev->curr_resync < max_sector) /* aborted */
4470 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4471 					&sync_blocks, 1);
4472 		else /* completed sync */
4473 			conf->fullsync = 0;
4474 		bitmap_close_sync(mddev->bitmap);
4475 
4476 		return 0;
4477 	}
4478 
4479 	/* Allow raid5_quiesce to complete */
4480 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4481 
4482 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4483 		return reshape_request(mddev, sector_nr, skipped);
4484 
4485 	/* No need to check resync_max as we never do more than one
4486 	 * stripe, and as resync_max will always be on a chunk boundary,
4487 	 * if the check in md_do_sync didn't fire, there is no chance
4488 	 * of overstepping resync_max here
4489 	 */
4490 
4491 	/* if there is too many failed drives and we are trying
4492 	 * to resync, then assert that we are finished, because there is
4493 	 * nothing we can do.
4494 	 */
4495 	if (mddev->degraded >= conf->max_degraded &&
4496 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4497 		sector_t rv = mddev->dev_sectors - sector_nr;
4498 		*skipped = 1;
4499 		return rv;
4500 	}
4501 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4502 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4503 	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4504 		/* we can skip this block, and probably more */
4505 		sync_blocks /= STRIPE_SECTORS;
4506 		*skipped = 1;
4507 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4508 	}
4509 
4510 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4511 
4512 	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4513 	if (sh == NULL) {
4514 		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4515 		/* make sure we don't swamp the stripe cache if someone else
4516 		 * is trying to get access
4517 		 */
4518 		schedule_timeout_uninterruptible(1);
4519 	}
4520 	/* Need to check if array will still be degraded after recovery/resync
4521 	 * We don't need to check the 'failed' flag as when that gets set,
4522 	 * recovery aborts.
4523 	 */
4524 	for (i = 0; i < conf->raid_disks; i++)
4525 		if (conf->disks[i].rdev == NULL)
4526 			still_degraded = 1;
4527 
4528 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4529 
4530 	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4531 
4532 	handle_stripe(sh);
4533 	release_stripe(sh);
4534 
4535 	return STRIPE_SECTORS;
4536 }
4537 
4538 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
4539 {
4540 	/* We may not be able to submit a whole bio at once as there
4541 	 * may not be enough stripe_heads available.
4542 	 * We cannot pre-allocate enough stripe_heads as we may need
4543 	 * more than exist in the cache (if we allow ever large chunks).
4544 	 * So we do one stripe head at a time and record in
4545 	 * ->bi_hw_segments how many have been done.
4546 	 *
4547 	 * We *know* that this entire raid_bio is in one chunk, so
4548 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4549 	 */
4550 	struct stripe_head *sh;
4551 	int dd_idx;
4552 	sector_t sector, logical_sector, last_sector;
4553 	int scnt = 0;
4554 	int remaining;
4555 	int handled = 0;
4556 
4557 	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4558 	sector = raid5_compute_sector(conf, logical_sector,
4559 				      0, &dd_idx, NULL);
4560 	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4561 
4562 	for (; logical_sector < last_sector;
4563 	     logical_sector += STRIPE_SECTORS,
4564 		     sector += STRIPE_SECTORS,
4565 		     scnt++) {
4566 
4567 		if (scnt < raid5_bi_processed_stripes(raid_bio))
4568 			/* already done this stripe */
4569 			continue;
4570 
4571 		sh = get_active_stripe(conf, sector, 0, 1, 0);
4572 
4573 		if (!sh) {
4574 			/* failed to get a stripe - must wait */
4575 			raid5_set_bi_processed_stripes(raid_bio, scnt);
4576 			conf->retry_read_aligned = raid_bio;
4577 			return handled;
4578 		}
4579 
4580 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4581 			release_stripe(sh);
4582 			raid5_set_bi_processed_stripes(raid_bio, scnt);
4583 			conf->retry_read_aligned = raid_bio;
4584 			return handled;
4585 		}
4586 
4587 		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
4588 		handle_stripe(sh);
4589 		release_stripe(sh);
4590 		handled++;
4591 	}
4592 	remaining = raid5_dec_bi_active_stripes(raid_bio);
4593 	if (remaining == 0)
4594 		bio_endio(raid_bio, 0);
4595 	if (atomic_dec_and_test(&conf->active_aligned_reads))
4596 		wake_up(&conf->wait_for_stripe);
4597 	return handled;
4598 }
4599 
4600 #define MAX_STRIPE_BATCH 8
4601 static int handle_active_stripes(struct r5conf *conf)
4602 {
4603 	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
4604 	int i, batch_size = 0;
4605 
4606 	while (batch_size < MAX_STRIPE_BATCH &&
4607 			(sh = __get_priority_stripe(conf)) != NULL)
4608 		batch[batch_size++] = sh;
4609 
4610 	if (batch_size == 0)
4611 		return batch_size;
4612 	spin_unlock_irq(&conf->device_lock);
4613 
4614 	for (i = 0; i < batch_size; i++)
4615 		handle_stripe(batch[i]);
4616 
4617 	cond_resched();
4618 
4619 	spin_lock_irq(&conf->device_lock);
4620 	for (i = 0; i < batch_size; i++)
4621 		__release_stripe(conf, batch[i]);
4622 	return batch_size;
4623 }
4624 
4625 /*
4626  * This is our raid5 kernel thread.
4627  *
4628  * We scan the hash table for stripes which can be handled now.
4629  * During the scan, completed stripes are saved for us by the interrupt
4630  * handler, so that they will not have to wait for our next wakeup.
4631  */
4632 static void raid5d(struct mddev *mddev)
4633 {
4634 	struct r5conf *conf = mddev->private;
4635 	int handled;
4636 	struct blk_plug plug;
4637 
4638 	pr_debug("+++ raid5d active\n");
4639 
4640 	md_check_recovery(mddev);
4641 
4642 	blk_start_plug(&plug);
4643 	handled = 0;
4644 	spin_lock_irq(&conf->device_lock);
4645 	while (1) {
4646 		struct bio *bio;
4647 		int batch_size;
4648 
4649 		if (
4650 		    !list_empty(&conf->bitmap_list)) {
4651 			/* Now is a good time to flush some bitmap updates */
4652 			conf->seq_flush++;
4653 			spin_unlock_irq(&conf->device_lock);
4654 			bitmap_unplug(mddev->bitmap);
4655 			spin_lock_irq(&conf->device_lock);
4656 			conf->seq_write = conf->seq_flush;
4657 			activate_bit_delay(conf);
4658 		}
4659 		raid5_activate_delayed(conf);
4660 
4661 		while ((bio = remove_bio_from_retry(conf))) {
4662 			int ok;
4663 			spin_unlock_irq(&conf->device_lock);
4664 			ok = retry_aligned_read(conf, bio);
4665 			spin_lock_irq(&conf->device_lock);
4666 			if (!ok)
4667 				break;
4668 			handled++;
4669 		}
4670 
4671 		batch_size = handle_active_stripes(conf);
4672 		if (!batch_size)
4673 			break;
4674 		handled += batch_size;
4675 
4676 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
4677 			spin_unlock_irq(&conf->device_lock);
4678 			md_check_recovery(mddev);
4679 			spin_lock_irq(&conf->device_lock);
4680 		}
4681 	}
4682 	pr_debug("%d stripes handled\n", handled);
4683 
4684 	spin_unlock_irq(&conf->device_lock);
4685 
4686 	async_tx_issue_pending_all();
4687 	blk_finish_plug(&plug);
4688 
4689 	pr_debug("--- raid5d inactive\n");
4690 }
4691 
4692 static ssize_t
4693 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
4694 {
4695 	struct r5conf *conf = mddev->private;
4696 	if (conf)
4697 		return sprintf(page, "%d\n", conf->max_nr_stripes);
4698 	else
4699 		return 0;
4700 }
4701 
4702 int
4703 raid5_set_cache_size(struct mddev *mddev, int size)
4704 {
4705 	struct r5conf *conf = mddev->private;
4706 	int err;
4707 
4708 	if (size <= 16 || size > 32768)
4709 		return -EINVAL;
4710 	while (size < conf->max_nr_stripes) {
4711 		if (drop_one_stripe(conf))
4712 			conf->max_nr_stripes--;
4713 		else
4714 			break;
4715 	}
4716 	err = md_allow_write(mddev);
4717 	if (err)
4718 		return err;
4719 	while (size > conf->max_nr_stripes) {
4720 		if (grow_one_stripe(conf))
4721 			conf->max_nr_stripes++;
4722 		else break;
4723 	}
4724 	return 0;
4725 }
4726 EXPORT_SYMBOL(raid5_set_cache_size);
4727 
4728 static ssize_t
4729 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
4730 {
4731 	struct r5conf *conf = mddev->private;
4732 	unsigned long new;
4733 	int err;
4734 
4735 	if (len >= PAGE_SIZE)
4736 		return -EINVAL;
4737 	if (!conf)
4738 		return -ENODEV;
4739 
4740 	if (strict_strtoul(page, 10, &new))
4741 		return -EINVAL;
4742 	err = raid5_set_cache_size(mddev, new);
4743 	if (err)
4744 		return err;
4745 	return len;
4746 }
4747 
4748 static struct md_sysfs_entry
4749 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4750 				raid5_show_stripe_cache_size,
4751 				raid5_store_stripe_cache_size);
4752 
4753 static ssize_t
4754 raid5_show_preread_threshold(struct mddev *mddev, char *page)
4755 {
4756 	struct r5conf *conf = mddev->private;
4757 	if (conf)
4758 		return sprintf(page, "%d\n", conf->bypass_threshold);
4759 	else
4760 		return 0;
4761 }
4762 
4763 static ssize_t
4764 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
4765 {
4766 	struct r5conf *conf = mddev->private;
4767 	unsigned long new;
4768 	if (len >= PAGE_SIZE)
4769 		return -EINVAL;
4770 	if (!conf)
4771 		return -ENODEV;
4772 
4773 	if (strict_strtoul(page, 10, &new))
4774 		return -EINVAL;
4775 	if (new > conf->max_nr_stripes)
4776 		return -EINVAL;
4777 	conf->bypass_threshold = new;
4778 	return len;
4779 }
4780 
4781 static struct md_sysfs_entry
4782 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4783 					S_IRUGO | S_IWUSR,
4784 					raid5_show_preread_threshold,
4785 					raid5_store_preread_threshold);
4786 
4787 static ssize_t
4788 stripe_cache_active_show(struct mddev *mddev, char *page)
4789 {
4790 	struct r5conf *conf = mddev->private;
4791 	if (conf)
4792 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4793 	else
4794 		return 0;
4795 }
4796 
4797 static struct md_sysfs_entry
4798 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4799 
4800 static struct attribute *raid5_attrs[] =  {
4801 	&raid5_stripecache_size.attr,
4802 	&raid5_stripecache_active.attr,
4803 	&raid5_preread_bypass_threshold.attr,
4804 	NULL,
4805 };
4806 static struct attribute_group raid5_attrs_group = {
4807 	.name = NULL,
4808 	.attrs = raid5_attrs,
4809 };
4810 
4811 static sector_t
4812 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
4813 {
4814 	struct r5conf *conf = mddev->private;
4815 
4816 	if (!sectors)
4817 		sectors = mddev->dev_sectors;
4818 	if (!raid_disks)
4819 		/* size is defined by the smallest of previous and new size */
4820 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4821 
4822 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4823 	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4824 	return sectors * (raid_disks - conf->max_degraded);
4825 }
4826 
4827 static void raid5_free_percpu(struct r5conf *conf)
4828 {
4829 	struct raid5_percpu *percpu;
4830 	unsigned long cpu;
4831 
4832 	if (!conf->percpu)
4833 		return;
4834 
4835 	get_online_cpus();
4836 	for_each_possible_cpu(cpu) {
4837 		percpu = per_cpu_ptr(conf->percpu, cpu);
4838 		safe_put_page(percpu->spare_page);
4839 		kfree(percpu->scribble);
4840 	}
4841 #ifdef CONFIG_HOTPLUG_CPU
4842 	unregister_cpu_notifier(&conf->cpu_notify);
4843 #endif
4844 	put_online_cpus();
4845 
4846 	free_percpu(conf->percpu);
4847 }
4848 
4849 static void free_conf(struct r5conf *conf)
4850 {
4851 	shrink_stripes(conf);
4852 	raid5_free_percpu(conf);
4853 	kfree(conf->disks);
4854 	kfree(conf->stripe_hashtbl);
4855 	kfree(conf);
4856 }
4857 
4858 #ifdef CONFIG_HOTPLUG_CPU
4859 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4860 			      void *hcpu)
4861 {
4862 	struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
4863 	long cpu = (long)hcpu;
4864 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4865 
4866 	switch (action) {
4867 	case CPU_UP_PREPARE:
4868 	case CPU_UP_PREPARE_FROZEN:
4869 		if (conf->level == 6 && !percpu->spare_page)
4870 			percpu->spare_page = alloc_page(GFP_KERNEL);
4871 		if (!percpu->scribble)
4872 			percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4873 
4874 		if (!percpu->scribble ||
4875 		    (conf->level == 6 && !percpu->spare_page)) {
4876 			safe_put_page(percpu->spare_page);
4877 			kfree(percpu->scribble);
4878 			pr_err("%s: failed memory allocation for cpu%ld\n",
4879 			       __func__, cpu);
4880 			return notifier_from_errno(-ENOMEM);
4881 		}
4882 		break;
4883 	case CPU_DEAD:
4884 	case CPU_DEAD_FROZEN:
4885 		safe_put_page(percpu->spare_page);
4886 		kfree(percpu->scribble);
4887 		percpu->spare_page = NULL;
4888 		percpu->scribble = NULL;
4889 		break;
4890 	default:
4891 		break;
4892 	}
4893 	return NOTIFY_OK;
4894 }
4895 #endif
4896 
4897 static int raid5_alloc_percpu(struct r5conf *conf)
4898 {
4899 	unsigned long cpu;
4900 	struct page *spare_page;
4901 	struct raid5_percpu __percpu *allcpus;
4902 	void *scribble;
4903 	int err;
4904 
4905 	allcpus = alloc_percpu(struct raid5_percpu);
4906 	if (!allcpus)
4907 		return -ENOMEM;
4908 	conf->percpu = allcpus;
4909 
4910 	get_online_cpus();
4911 	err = 0;
4912 	for_each_present_cpu(cpu) {
4913 		if (conf->level == 6) {
4914 			spare_page = alloc_page(GFP_KERNEL);
4915 			if (!spare_page) {
4916 				err = -ENOMEM;
4917 				break;
4918 			}
4919 			per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4920 		}
4921 		scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4922 		if (!scribble) {
4923 			err = -ENOMEM;
4924 			break;
4925 		}
4926 		per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4927 	}
4928 #ifdef CONFIG_HOTPLUG_CPU
4929 	conf->cpu_notify.notifier_call = raid456_cpu_notify;
4930 	conf->cpu_notify.priority = 0;
4931 	if (err == 0)
4932 		err = register_cpu_notifier(&conf->cpu_notify);
4933 #endif
4934 	put_online_cpus();
4935 
4936 	return err;
4937 }
4938 
4939 static struct r5conf *setup_conf(struct mddev *mddev)
4940 {
4941 	struct r5conf *conf;
4942 	int raid_disk, memory, max_disks;
4943 	struct md_rdev *rdev;
4944 	struct disk_info *disk;
4945 	char pers_name[6];
4946 
4947 	if (mddev->new_level != 5
4948 	    && mddev->new_level != 4
4949 	    && mddev->new_level != 6) {
4950 		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4951 		       mdname(mddev), mddev->new_level);
4952 		return ERR_PTR(-EIO);
4953 	}
4954 	if ((mddev->new_level == 5
4955 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
4956 	    (mddev->new_level == 6
4957 	     && !algorithm_valid_raid6(mddev->new_layout))) {
4958 		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4959 		       mdname(mddev), mddev->new_layout);
4960 		return ERR_PTR(-EIO);
4961 	}
4962 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4963 		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4964 		       mdname(mddev), mddev->raid_disks);
4965 		return ERR_PTR(-EINVAL);
4966 	}
4967 
4968 	if (!mddev->new_chunk_sectors ||
4969 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4970 	    !is_power_of_2(mddev->new_chunk_sectors)) {
4971 		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4972 		       mdname(mddev), mddev->new_chunk_sectors << 9);
4973 		return ERR_PTR(-EINVAL);
4974 	}
4975 
4976 	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
4977 	if (conf == NULL)
4978 		goto abort;
4979 	spin_lock_init(&conf->device_lock);
4980 	init_waitqueue_head(&conf->wait_for_stripe);
4981 	init_waitqueue_head(&conf->wait_for_overlap);
4982 	INIT_LIST_HEAD(&conf->handle_list);
4983 	INIT_LIST_HEAD(&conf->hold_list);
4984 	INIT_LIST_HEAD(&conf->delayed_list);
4985 	INIT_LIST_HEAD(&conf->bitmap_list);
4986 	INIT_LIST_HEAD(&conf->inactive_list);
4987 	atomic_set(&conf->active_stripes, 0);
4988 	atomic_set(&conf->preread_active_stripes, 0);
4989 	atomic_set(&conf->active_aligned_reads, 0);
4990 	conf->bypass_threshold = BYPASS_THRESHOLD;
4991 	conf->recovery_disabled = mddev->recovery_disabled - 1;
4992 
4993 	conf->raid_disks = mddev->raid_disks;
4994 	if (mddev->reshape_position == MaxSector)
4995 		conf->previous_raid_disks = mddev->raid_disks;
4996 	else
4997 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4998 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4999 	conf->scribble_len = scribble_len(max_disks);
5000 
5001 	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
5002 			      GFP_KERNEL);
5003 	if (!conf->disks)
5004 		goto abort;
5005 
5006 	conf->mddev = mddev;
5007 
5008 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
5009 		goto abort;
5010 
5011 	conf->level = mddev->new_level;
5012 	if (raid5_alloc_percpu(conf) != 0)
5013 		goto abort;
5014 
5015 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
5016 
5017 	rdev_for_each(rdev, mddev) {
5018 		raid_disk = rdev->raid_disk;
5019 		if (raid_disk >= max_disks
5020 		    || raid_disk < 0)
5021 			continue;
5022 		disk = conf->disks + raid_disk;
5023 
5024 		if (test_bit(Replacement, &rdev->flags)) {
5025 			if (disk->replacement)
5026 				goto abort;
5027 			disk->replacement = rdev;
5028 		} else {
5029 			if (disk->rdev)
5030 				goto abort;
5031 			disk->rdev = rdev;
5032 		}
5033 
5034 		if (test_bit(In_sync, &rdev->flags)) {
5035 			char b[BDEVNAME_SIZE];
5036 			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5037 			       " disk %d\n",
5038 			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
5039 		} else if (rdev->saved_raid_disk != raid_disk)
5040 			/* Cannot rely on bitmap to complete recovery */
5041 			conf->fullsync = 1;
5042 	}
5043 
5044 	conf->chunk_sectors = mddev->new_chunk_sectors;
5045 	conf->level = mddev->new_level;
5046 	if (conf->level == 6)
5047 		conf->max_degraded = 2;
5048 	else
5049 		conf->max_degraded = 1;
5050 	conf->algorithm = mddev->new_layout;
5051 	conf->max_nr_stripes = NR_STRIPES;
5052 	conf->reshape_progress = mddev->reshape_position;
5053 	if (conf->reshape_progress != MaxSector) {
5054 		conf->prev_chunk_sectors = mddev->chunk_sectors;
5055 		conf->prev_algo = mddev->layout;
5056 	}
5057 
5058 	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5059 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
5060 	if (grow_stripes(conf, conf->max_nr_stripes)) {
5061 		printk(KERN_ERR
5062 		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
5063 		       mdname(mddev), memory);
5064 		goto abort;
5065 	} else
5066 		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5067 		       mdname(mddev), memory);
5068 
5069 	sprintf(pers_name, "raid%d", mddev->new_level);
5070 	conf->thread = md_register_thread(raid5d, mddev, pers_name);
5071 	if (!conf->thread) {
5072 		printk(KERN_ERR
5073 		       "md/raid:%s: couldn't allocate thread.\n",
5074 		       mdname(mddev));
5075 		goto abort;
5076 	}
5077 
5078 	return conf;
5079 
5080  abort:
5081 	if (conf) {
5082 		free_conf(conf);
5083 		return ERR_PTR(-EIO);
5084 	} else
5085 		return ERR_PTR(-ENOMEM);
5086 }
5087 
5088 
5089 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5090 {
5091 	switch (algo) {
5092 	case ALGORITHM_PARITY_0:
5093 		if (raid_disk < max_degraded)
5094 			return 1;
5095 		break;
5096 	case ALGORITHM_PARITY_N:
5097 		if (raid_disk >= raid_disks - max_degraded)
5098 			return 1;
5099 		break;
5100 	case ALGORITHM_PARITY_0_6:
5101 		if (raid_disk == 0 ||
5102 		    raid_disk == raid_disks - 1)
5103 			return 1;
5104 		break;
5105 	case ALGORITHM_LEFT_ASYMMETRIC_6:
5106 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
5107 	case ALGORITHM_LEFT_SYMMETRIC_6:
5108 	case ALGORITHM_RIGHT_SYMMETRIC_6:
5109 		if (raid_disk == raid_disks - 1)
5110 			return 1;
5111 	}
5112 	return 0;
5113 }
5114 
5115 static int run(struct mddev *mddev)
5116 {
5117 	struct r5conf *conf;
5118 	int working_disks = 0;
5119 	int dirty_parity_disks = 0;
5120 	struct md_rdev *rdev;
5121 	sector_t reshape_offset = 0;
5122 	int i;
5123 	long long min_offset_diff = 0;
5124 	int first = 1;
5125 
5126 	if (mddev->recovery_cp != MaxSector)
5127 		printk(KERN_NOTICE "md/raid:%s: not clean"
5128 		       " -- starting background reconstruction\n",
5129 		       mdname(mddev));
5130 
5131 	rdev_for_each(rdev, mddev) {
5132 		long long diff;
5133 		if (rdev->raid_disk < 0)
5134 			continue;
5135 		diff = (rdev->new_data_offset - rdev->data_offset);
5136 		if (first) {
5137 			min_offset_diff = diff;
5138 			first = 0;
5139 		} else if (mddev->reshape_backwards &&
5140 			 diff < min_offset_diff)
5141 			min_offset_diff = diff;
5142 		else if (!mddev->reshape_backwards &&
5143 			 diff > min_offset_diff)
5144 			min_offset_diff = diff;
5145 	}
5146 
5147 	if (mddev->reshape_position != MaxSector) {
5148 		/* Check that we can continue the reshape.
5149 		 * Difficulties arise if the stripe we would write to
5150 		 * next is at or after the stripe we would read from next.
5151 		 * For a reshape that changes the number of devices, this
5152 		 * is only possible for a very short time, and mdadm makes
5153 		 * sure that time appears to have past before assembling
5154 		 * the array.  So we fail if that time hasn't passed.
5155 		 * For a reshape that keeps the number of devices the same
5156 		 * mdadm must be monitoring the reshape can keeping the
5157 		 * critical areas read-only and backed up.  It will start
5158 		 * the array in read-only mode, so we check for that.
5159 		 */
5160 		sector_t here_new, here_old;
5161 		int old_disks;
5162 		int max_degraded = (mddev->level == 6 ? 2 : 1);
5163 
5164 		if (mddev->new_level != mddev->level) {
5165 			printk(KERN_ERR "md/raid:%s: unsupported reshape "
5166 			       "required - aborting.\n",
5167 			       mdname(mddev));
5168 			return -EINVAL;
5169 		}
5170 		old_disks = mddev->raid_disks - mddev->delta_disks;
5171 		/* reshape_position must be on a new-stripe boundary, and one
5172 		 * further up in new geometry must map after here in old
5173 		 * geometry.
5174 		 */
5175 		here_new = mddev->reshape_position;
5176 		if (sector_div(here_new, mddev->new_chunk_sectors *
5177 			       (mddev->raid_disks - max_degraded))) {
5178 			printk(KERN_ERR "md/raid:%s: reshape_position not "
5179 			       "on a stripe boundary\n", mdname(mddev));
5180 			return -EINVAL;
5181 		}
5182 		reshape_offset = here_new * mddev->new_chunk_sectors;
5183 		/* here_new is the stripe we will write to */
5184 		here_old = mddev->reshape_position;
5185 		sector_div(here_old, mddev->chunk_sectors *
5186 			   (old_disks-max_degraded));
5187 		/* here_old is the first stripe that we might need to read
5188 		 * from */
5189 		if (mddev->delta_disks == 0) {
5190 			if ((here_new * mddev->new_chunk_sectors !=
5191 			     here_old * mddev->chunk_sectors)) {
5192 				printk(KERN_ERR "md/raid:%s: reshape position is"
5193 				       " confused - aborting\n", mdname(mddev));
5194 				return -EINVAL;
5195 			}
5196 			/* We cannot be sure it is safe to start an in-place
5197 			 * reshape.  It is only safe if user-space is monitoring
5198 			 * and taking constant backups.
5199 			 * mdadm always starts a situation like this in
5200 			 * readonly mode so it can take control before
5201 			 * allowing any writes.  So just check for that.
5202 			 */
5203 			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
5204 			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
5205 				/* not really in-place - so OK */;
5206 			else if (mddev->ro == 0) {
5207 				printk(KERN_ERR "md/raid:%s: in-place reshape "
5208 				       "must be started in read-only mode "
5209 				       "- aborting\n",
5210 				       mdname(mddev));
5211 				return -EINVAL;
5212 			}
5213 		} else if (mddev->reshape_backwards
5214 		    ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
5215 		       here_old * mddev->chunk_sectors)
5216 		    : (here_new * mddev->new_chunk_sectors >=
5217 		       here_old * mddev->chunk_sectors + (-min_offset_diff))) {
5218 			/* Reading from the same stripe as writing to - bad */
5219 			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5220 			       "auto-recovery - aborting.\n",
5221 			       mdname(mddev));
5222 			return -EINVAL;
5223 		}
5224 		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5225 		       mdname(mddev));
5226 		/* OK, we should be able to continue; */
5227 	} else {
5228 		BUG_ON(mddev->level != mddev->new_level);
5229 		BUG_ON(mddev->layout != mddev->new_layout);
5230 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5231 		BUG_ON(mddev->delta_disks != 0);
5232 	}
5233 
5234 	if (mddev->private == NULL)
5235 		conf = setup_conf(mddev);
5236 	else
5237 		conf = mddev->private;
5238 
5239 	if (IS_ERR(conf))
5240 		return PTR_ERR(conf);
5241 
5242 	conf->min_offset_diff = min_offset_diff;
5243 	mddev->thread = conf->thread;
5244 	conf->thread = NULL;
5245 	mddev->private = conf;
5246 
5247 	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5248 	     i++) {
5249 		rdev = conf->disks[i].rdev;
5250 		if (!rdev && conf->disks[i].replacement) {
5251 			/* The replacement is all we have yet */
5252 			rdev = conf->disks[i].replacement;
5253 			conf->disks[i].replacement = NULL;
5254 			clear_bit(Replacement, &rdev->flags);
5255 			conf->disks[i].rdev = rdev;
5256 		}
5257 		if (!rdev)
5258 			continue;
5259 		if (conf->disks[i].replacement &&
5260 		    conf->reshape_progress != MaxSector) {
5261 			/* replacements and reshape simply do not mix. */
5262 			printk(KERN_ERR "md: cannot handle concurrent "
5263 			       "replacement and reshape.\n");
5264 			goto abort;
5265 		}
5266 		if (test_bit(In_sync, &rdev->flags)) {
5267 			working_disks++;
5268 			continue;
5269 		}
5270 		/* This disc is not fully in-sync.  However if it
5271 		 * just stored parity (beyond the recovery_offset),
5272 		 * when we don't need to be concerned about the
5273 		 * array being dirty.
5274 		 * When reshape goes 'backwards', we never have
5275 		 * partially completed devices, so we only need
5276 		 * to worry about reshape going forwards.
5277 		 */
5278 		/* Hack because v0.91 doesn't store recovery_offset properly. */
5279 		if (mddev->major_version == 0 &&
5280 		    mddev->minor_version > 90)
5281 			rdev->recovery_offset = reshape_offset;
5282 
5283 		if (rdev->recovery_offset < reshape_offset) {
5284 			/* We need to check old and new layout */
5285 			if (!only_parity(rdev->raid_disk,
5286 					 conf->algorithm,
5287 					 conf->raid_disks,
5288 					 conf->max_degraded))
5289 				continue;
5290 		}
5291 		if (!only_parity(rdev->raid_disk,
5292 				 conf->prev_algo,
5293 				 conf->previous_raid_disks,
5294 				 conf->max_degraded))
5295 			continue;
5296 		dirty_parity_disks++;
5297 	}
5298 
5299 	/*
5300 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
5301 	 */
5302 	mddev->degraded = calc_degraded(conf);
5303 
5304 	if (has_failed(conf)) {
5305 		printk(KERN_ERR "md/raid:%s: not enough operational devices"
5306 			" (%d/%d failed)\n",
5307 			mdname(mddev), mddev->degraded, conf->raid_disks);
5308 		goto abort;
5309 	}
5310 
5311 	/* device size must be a multiple of chunk size */
5312 	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5313 	mddev->resync_max_sectors = mddev->dev_sectors;
5314 
5315 	if (mddev->degraded > dirty_parity_disks &&
5316 	    mddev->recovery_cp != MaxSector) {
5317 		if (mddev->ok_start_degraded)
5318 			printk(KERN_WARNING
5319 			       "md/raid:%s: starting dirty degraded array"
5320 			       " - data corruption possible.\n",
5321 			       mdname(mddev));
5322 		else {
5323 			printk(KERN_ERR
5324 			       "md/raid:%s: cannot start dirty degraded array.\n",
5325 			       mdname(mddev));
5326 			goto abort;
5327 		}
5328 	}
5329 
5330 	if (mddev->degraded == 0)
5331 		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5332 		       " devices, algorithm %d\n", mdname(mddev), conf->level,
5333 		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5334 		       mddev->new_layout);
5335 	else
5336 		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5337 		       " out of %d devices, algorithm %d\n",
5338 		       mdname(mddev), conf->level,
5339 		       mddev->raid_disks - mddev->degraded,
5340 		       mddev->raid_disks, mddev->new_layout);
5341 
5342 	print_raid5_conf(conf);
5343 
5344 	if (conf->reshape_progress != MaxSector) {
5345 		conf->reshape_safe = conf->reshape_progress;
5346 		atomic_set(&conf->reshape_stripes, 0);
5347 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5348 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5349 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5350 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5351 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5352 							"reshape");
5353 	}
5354 
5355 
5356 	/* Ok, everything is just fine now */
5357 	if (mddev->to_remove == &raid5_attrs_group)
5358 		mddev->to_remove = NULL;
5359 	else if (mddev->kobj.sd &&
5360 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5361 		printk(KERN_WARNING
5362 		       "raid5: failed to create sysfs attributes for %s\n",
5363 		       mdname(mddev));
5364 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5365 
5366 	if (mddev->queue) {
5367 		int chunk_size;
5368 		/* read-ahead size must cover two whole stripes, which
5369 		 * is 2 * (datadisks) * chunksize where 'n' is the
5370 		 * number of raid devices
5371 		 */
5372 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
5373 		int stripe = data_disks *
5374 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
5375 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5376 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5377 
5378 		blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5379 
5380 		mddev->queue->backing_dev_info.congested_data = mddev;
5381 		mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5382 
5383 		chunk_size = mddev->chunk_sectors << 9;
5384 		blk_queue_io_min(mddev->queue, chunk_size);
5385 		blk_queue_io_opt(mddev->queue, chunk_size *
5386 				 (conf->raid_disks - conf->max_degraded));
5387 
5388 		rdev_for_each(rdev, mddev) {
5389 			disk_stack_limits(mddev->gendisk, rdev->bdev,
5390 					  rdev->data_offset << 9);
5391 			disk_stack_limits(mddev->gendisk, rdev->bdev,
5392 					  rdev->new_data_offset << 9);
5393 		}
5394 	}
5395 
5396 	return 0;
5397 abort:
5398 	md_unregister_thread(&mddev->thread);
5399 	print_raid5_conf(conf);
5400 	free_conf(conf);
5401 	mddev->private = NULL;
5402 	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5403 	return -EIO;
5404 }
5405 
5406 static int stop(struct mddev *mddev)
5407 {
5408 	struct r5conf *conf = mddev->private;
5409 
5410 	md_unregister_thread(&mddev->thread);
5411 	if (mddev->queue)
5412 		mddev->queue->backing_dev_info.congested_fn = NULL;
5413 	free_conf(conf);
5414 	mddev->private = NULL;
5415 	mddev->to_remove = &raid5_attrs_group;
5416 	return 0;
5417 }
5418 
5419 static void status(struct seq_file *seq, struct mddev *mddev)
5420 {
5421 	struct r5conf *conf = mddev->private;
5422 	int i;
5423 
5424 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5425 		mddev->chunk_sectors / 2, mddev->layout);
5426 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5427 	for (i = 0; i < conf->raid_disks; i++)
5428 		seq_printf (seq, "%s",
5429 			       conf->disks[i].rdev &&
5430 			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5431 	seq_printf (seq, "]");
5432 }
5433 
5434 static void print_raid5_conf (struct r5conf *conf)
5435 {
5436 	int i;
5437 	struct disk_info *tmp;
5438 
5439 	printk(KERN_DEBUG "RAID conf printout:\n");
5440 	if (!conf) {
5441 		printk("(conf==NULL)\n");
5442 		return;
5443 	}
5444 	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5445 	       conf->raid_disks,
5446 	       conf->raid_disks - conf->mddev->degraded);
5447 
5448 	for (i = 0; i < conf->raid_disks; i++) {
5449 		char b[BDEVNAME_SIZE];
5450 		tmp = conf->disks + i;
5451 		if (tmp->rdev)
5452 			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5453 			       i, !test_bit(Faulty, &tmp->rdev->flags),
5454 			       bdevname(tmp->rdev->bdev, b));
5455 	}
5456 }
5457 
5458 static int raid5_spare_active(struct mddev *mddev)
5459 {
5460 	int i;
5461 	struct r5conf *conf = mddev->private;
5462 	struct disk_info *tmp;
5463 	int count = 0;
5464 	unsigned long flags;
5465 
5466 	for (i = 0; i < conf->raid_disks; i++) {
5467 		tmp = conf->disks + i;
5468 		if (tmp->replacement
5469 		    && tmp->replacement->recovery_offset == MaxSector
5470 		    && !test_bit(Faulty, &tmp->replacement->flags)
5471 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
5472 			/* Replacement has just become active. */
5473 			if (!tmp->rdev
5474 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
5475 				count++;
5476 			if (tmp->rdev) {
5477 				/* Replaced device not technically faulty,
5478 				 * but we need to be sure it gets removed
5479 				 * and never re-added.
5480 				 */
5481 				set_bit(Faulty, &tmp->rdev->flags);
5482 				sysfs_notify_dirent_safe(
5483 					tmp->rdev->sysfs_state);
5484 			}
5485 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
5486 		} else if (tmp->rdev
5487 		    && tmp->rdev->recovery_offset == MaxSector
5488 		    && !test_bit(Faulty, &tmp->rdev->flags)
5489 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5490 			count++;
5491 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5492 		}
5493 	}
5494 	spin_lock_irqsave(&conf->device_lock, flags);
5495 	mddev->degraded = calc_degraded(conf);
5496 	spin_unlock_irqrestore(&conf->device_lock, flags);
5497 	print_raid5_conf(conf);
5498 	return count;
5499 }
5500 
5501 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
5502 {
5503 	struct r5conf *conf = mddev->private;
5504 	int err = 0;
5505 	int number = rdev->raid_disk;
5506 	struct md_rdev **rdevp;
5507 	struct disk_info *p = conf->disks + number;
5508 
5509 	print_raid5_conf(conf);
5510 	if (rdev == p->rdev)
5511 		rdevp = &p->rdev;
5512 	else if (rdev == p->replacement)
5513 		rdevp = &p->replacement;
5514 	else
5515 		return 0;
5516 
5517 	if (number >= conf->raid_disks &&
5518 	    conf->reshape_progress == MaxSector)
5519 		clear_bit(In_sync, &rdev->flags);
5520 
5521 	if (test_bit(In_sync, &rdev->flags) ||
5522 	    atomic_read(&rdev->nr_pending)) {
5523 		err = -EBUSY;
5524 		goto abort;
5525 	}
5526 	/* Only remove non-faulty devices if recovery
5527 	 * isn't possible.
5528 	 */
5529 	if (!test_bit(Faulty, &rdev->flags) &&
5530 	    mddev->recovery_disabled != conf->recovery_disabled &&
5531 	    !has_failed(conf) &&
5532 	    (!p->replacement || p->replacement == rdev) &&
5533 	    number < conf->raid_disks) {
5534 		err = -EBUSY;
5535 		goto abort;
5536 	}
5537 	*rdevp = NULL;
5538 	synchronize_rcu();
5539 	if (atomic_read(&rdev->nr_pending)) {
5540 		/* lost the race, try later */
5541 		err = -EBUSY;
5542 		*rdevp = rdev;
5543 	} else if (p->replacement) {
5544 		/* We must have just cleared 'rdev' */
5545 		p->rdev = p->replacement;
5546 		clear_bit(Replacement, &p->replacement->flags);
5547 		smp_mb(); /* Make sure other CPUs may see both as identical
5548 			   * but will never see neither - if they are careful
5549 			   */
5550 		p->replacement = NULL;
5551 		clear_bit(WantReplacement, &rdev->flags);
5552 	} else
5553 		/* We might have just removed the Replacement as faulty-
5554 		 * clear the bit just in case
5555 		 */
5556 		clear_bit(WantReplacement, &rdev->flags);
5557 abort:
5558 
5559 	print_raid5_conf(conf);
5560 	return err;
5561 }
5562 
5563 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
5564 {
5565 	struct r5conf *conf = mddev->private;
5566 	int err = -EEXIST;
5567 	int disk;
5568 	struct disk_info *p;
5569 	int first = 0;
5570 	int last = conf->raid_disks - 1;
5571 
5572 	if (mddev->recovery_disabled == conf->recovery_disabled)
5573 		return -EBUSY;
5574 
5575 	if (rdev->saved_raid_disk < 0 && has_failed(conf))
5576 		/* no point adding a device */
5577 		return -EINVAL;
5578 
5579 	if (rdev->raid_disk >= 0)
5580 		first = last = rdev->raid_disk;
5581 
5582 	/*
5583 	 * find the disk ... but prefer rdev->saved_raid_disk
5584 	 * if possible.
5585 	 */
5586 	if (rdev->saved_raid_disk >= 0 &&
5587 	    rdev->saved_raid_disk >= first &&
5588 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
5589 		first = rdev->saved_raid_disk;
5590 
5591 	for (disk = first; disk <= last; disk++) {
5592 		p = conf->disks + disk;
5593 		if (p->rdev == NULL) {
5594 			clear_bit(In_sync, &rdev->flags);
5595 			rdev->raid_disk = disk;
5596 			err = 0;
5597 			if (rdev->saved_raid_disk != disk)
5598 				conf->fullsync = 1;
5599 			rcu_assign_pointer(p->rdev, rdev);
5600 			goto out;
5601 		}
5602 	}
5603 	for (disk = first; disk <= last; disk++) {
5604 		p = conf->disks + disk;
5605 		if (test_bit(WantReplacement, &p->rdev->flags) &&
5606 		    p->replacement == NULL) {
5607 			clear_bit(In_sync, &rdev->flags);
5608 			set_bit(Replacement, &rdev->flags);
5609 			rdev->raid_disk = disk;
5610 			err = 0;
5611 			conf->fullsync = 1;
5612 			rcu_assign_pointer(p->replacement, rdev);
5613 			break;
5614 		}
5615 	}
5616 out:
5617 	print_raid5_conf(conf);
5618 	return err;
5619 }
5620 
5621 static int raid5_resize(struct mddev *mddev, sector_t sectors)
5622 {
5623 	/* no resync is happening, and there is enough space
5624 	 * on all devices, so we can resize.
5625 	 * We need to make sure resync covers any new space.
5626 	 * If the array is shrinking we should possibly wait until
5627 	 * any io in the removed space completes, but it hardly seems
5628 	 * worth it.
5629 	 */
5630 	sector_t newsize;
5631 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5632 	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
5633 	if (mddev->external_size &&
5634 	    mddev->array_sectors > newsize)
5635 		return -EINVAL;
5636 	if (mddev->bitmap) {
5637 		int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
5638 		if (ret)
5639 			return ret;
5640 	}
5641 	md_set_array_sectors(mddev, newsize);
5642 	set_capacity(mddev->gendisk, mddev->array_sectors);
5643 	revalidate_disk(mddev->gendisk);
5644 	if (sectors > mddev->dev_sectors &&
5645 	    mddev->recovery_cp > mddev->dev_sectors) {
5646 		mddev->recovery_cp = mddev->dev_sectors;
5647 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5648 	}
5649 	mddev->dev_sectors = sectors;
5650 	mddev->resync_max_sectors = sectors;
5651 	return 0;
5652 }
5653 
5654 static int check_stripe_cache(struct mddev *mddev)
5655 {
5656 	/* Can only proceed if there are plenty of stripe_heads.
5657 	 * We need a minimum of one full stripe,, and for sensible progress
5658 	 * it is best to have about 4 times that.
5659 	 * If we require 4 times, then the default 256 4K stripe_heads will
5660 	 * allow for chunk sizes up to 256K, which is probably OK.
5661 	 * If the chunk size is greater, user-space should request more
5662 	 * stripe_heads first.
5663 	 */
5664 	struct r5conf *conf = mddev->private;
5665 	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5666 	    > conf->max_nr_stripes ||
5667 	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5668 	    > conf->max_nr_stripes) {
5669 		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
5670 		       mdname(mddev),
5671 		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5672 			/ STRIPE_SIZE)*4);
5673 		return 0;
5674 	}
5675 	return 1;
5676 }
5677 
5678 static int check_reshape(struct mddev *mddev)
5679 {
5680 	struct r5conf *conf = mddev->private;
5681 
5682 	if (mddev->delta_disks == 0 &&
5683 	    mddev->new_layout == mddev->layout &&
5684 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
5685 		return 0; /* nothing to do */
5686 	if (has_failed(conf))
5687 		return -EINVAL;
5688 	if (mddev->delta_disks < 0) {
5689 		/* We might be able to shrink, but the devices must
5690 		 * be made bigger first.
5691 		 * For raid6, 4 is the minimum size.
5692 		 * Otherwise 2 is the minimum
5693 		 */
5694 		int min = 2;
5695 		if (mddev->level == 6)
5696 			min = 4;
5697 		if (mddev->raid_disks + mddev->delta_disks < min)
5698 			return -EINVAL;
5699 	}
5700 
5701 	if (!check_stripe_cache(mddev))
5702 		return -ENOSPC;
5703 
5704 	return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5705 }
5706 
5707 static int raid5_start_reshape(struct mddev *mddev)
5708 {
5709 	struct r5conf *conf = mddev->private;
5710 	struct md_rdev *rdev;
5711 	int spares = 0;
5712 	unsigned long flags;
5713 
5714 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5715 		return -EBUSY;
5716 
5717 	if (!check_stripe_cache(mddev))
5718 		return -ENOSPC;
5719 
5720 	if (has_failed(conf))
5721 		return -EINVAL;
5722 
5723 	rdev_for_each(rdev, mddev) {
5724 		if (!test_bit(In_sync, &rdev->flags)
5725 		    && !test_bit(Faulty, &rdev->flags))
5726 			spares++;
5727 	}
5728 
5729 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5730 		/* Not enough devices even to make a degraded array
5731 		 * of that size
5732 		 */
5733 		return -EINVAL;
5734 
5735 	/* Refuse to reduce size of the array.  Any reductions in
5736 	 * array size must be through explicit setting of array_size
5737 	 * attribute.
5738 	 */
5739 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5740 	    < mddev->array_sectors) {
5741 		printk(KERN_ERR "md/raid:%s: array size must be reduced "
5742 		       "before number of disks\n", mdname(mddev));
5743 		return -EINVAL;
5744 	}
5745 
5746 	atomic_set(&conf->reshape_stripes, 0);
5747 	spin_lock_irq(&conf->device_lock);
5748 	conf->previous_raid_disks = conf->raid_disks;
5749 	conf->raid_disks += mddev->delta_disks;
5750 	conf->prev_chunk_sectors = conf->chunk_sectors;
5751 	conf->chunk_sectors = mddev->new_chunk_sectors;
5752 	conf->prev_algo = conf->algorithm;
5753 	conf->algorithm = mddev->new_layout;
5754 	conf->generation++;
5755 	/* Code that selects data_offset needs to see the generation update
5756 	 * if reshape_progress has been set - so a memory barrier needed.
5757 	 */
5758 	smp_mb();
5759 	if (mddev->reshape_backwards)
5760 		conf->reshape_progress = raid5_size(mddev, 0, 0);
5761 	else
5762 		conf->reshape_progress = 0;
5763 	conf->reshape_safe = conf->reshape_progress;
5764 	spin_unlock_irq(&conf->device_lock);
5765 
5766 	/* Add some new drives, as many as will fit.
5767 	 * We know there are enough to make the newly sized array work.
5768 	 * Don't add devices if we are reducing the number of
5769 	 * devices in the array.  This is because it is not possible
5770 	 * to correctly record the "partially reconstructed" state of
5771 	 * such devices during the reshape and confusion could result.
5772 	 */
5773 	if (mddev->delta_disks >= 0) {
5774 		rdev_for_each(rdev, mddev)
5775 			if (rdev->raid_disk < 0 &&
5776 			    !test_bit(Faulty, &rdev->flags)) {
5777 				if (raid5_add_disk(mddev, rdev) == 0) {
5778 					if (rdev->raid_disk
5779 					    >= conf->previous_raid_disks)
5780 						set_bit(In_sync, &rdev->flags);
5781 					else
5782 						rdev->recovery_offset = 0;
5783 
5784 					if (sysfs_link_rdev(mddev, rdev))
5785 						/* Failure here is OK */;
5786 				}
5787 			} else if (rdev->raid_disk >= conf->previous_raid_disks
5788 				   && !test_bit(Faulty, &rdev->flags)) {
5789 				/* This is a spare that was manually added */
5790 				set_bit(In_sync, &rdev->flags);
5791 			}
5792 
5793 		/* When a reshape changes the number of devices,
5794 		 * ->degraded is measured against the larger of the
5795 		 * pre and post number of devices.
5796 		 */
5797 		spin_lock_irqsave(&conf->device_lock, flags);
5798 		mddev->degraded = calc_degraded(conf);
5799 		spin_unlock_irqrestore(&conf->device_lock, flags);
5800 	}
5801 	mddev->raid_disks = conf->raid_disks;
5802 	mddev->reshape_position = conf->reshape_progress;
5803 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5804 
5805 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5806 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5807 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5808 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5809 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5810 						"reshape");
5811 	if (!mddev->sync_thread) {
5812 		mddev->recovery = 0;
5813 		spin_lock_irq(&conf->device_lock);
5814 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5815 		rdev_for_each(rdev, mddev)
5816 			rdev->new_data_offset = rdev->data_offset;
5817 		smp_wmb();
5818 		conf->reshape_progress = MaxSector;
5819 		mddev->reshape_position = MaxSector;
5820 		spin_unlock_irq(&conf->device_lock);
5821 		return -EAGAIN;
5822 	}
5823 	conf->reshape_checkpoint = jiffies;
5824 	md_wakeup_thread(mddev->sync_thread);
5825 	md_new_event(mddev);
5826 	return 0;
5827 }
5828 
5829 /* This is called from the reshape thread and should make any
5830  * changes needed in 'conf'
5831  */
5832 static void end_reshape(struct r5conf *conf)
5833 {
5834 
5835 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5836 		struct md_rdev *rdev;
5837 
5838 		spin_lock_irq(&conf->device_lock);
5839 		conf->previous_raid_disks = conf->raid_disks;
5840 		rdev_for_each(rdev, conf->mddev)
5841 			rdev->data_offset = rdev->new_data_offset;
5842 		smp_wmb();
5843 		conf->reshape_progress = MaxSector;
5844 		spin_unlock_irq(&conf->device_lock);
5845 		wake_up(&conf->wait_for_overlap);
5846 
5847 		/* read-ahead size must cover two whole stripes, which is
5848 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5849 		 */
5850 		if (conf->mddev->queue) {
5851 			int data_disks = conf->raid_disks - conf->max_degraded;
5852 			int stripe = data_disks * ((conf->chunk_sectors << 9)
5853 						   / PAGE_SIZE);
5854 			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5855 				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5856 		}
5857 	}
5858 }
5859 
5860 /* This is called from the raid5d thread with mddev_lock held.
5861  * It makes config changes to the device.
5862  */
5863 static void raid5_finish_reshape(struct mddev *mddev)
5864 {
5865 	struct r5conf *conf = mddev->private;
5866 
5867 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5868 
5869 		if (mddev->delta_disks > 0) {
5870 			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5871 			set_capacity(mddev->gendisk, mddev->array_sectors);
5872 			revalidate_disk(mddev->gendisk);
5873 		} else {
5874 			int d;
5875 			spin_lock_irq(&conf->device_lock);
5876 			mddev->degraded = calc_degraded(conf);
5877 			spin_unlock_irq(&conf->device_lock);
5878 			for (d = conf->raid_disks ;
5879 			     d < conf->raid_disks - mddev->delta_disks;
5880 			     d++) {
5881 				struct md_rdev *rdev = conf->disks[d].rdev;
5882 				if (rdev)
5883 					clear_bit(In_sync, &rdev->flags);
5884 				rdev = conf->disks[d].replacement;
5885 				if (rdev)
5886 					clear_bit(In_sync, &rdev->flags);
5887 			}
5888 		}
5889 		mddev->layout = conf->algorithm;
5890 		mddev->chunk_sectors = conf->chunk_sectors;
5891 		mddev->reshape_position = MaxSector;
5892 		mddev->delta_disks = 0;
5893 		mddev->reshape_backwards = 0;
5894 	}
5895 }
5896 
5897 static void raid5_quiesce(struct mddev *mddev, int state)
5898 {
5899 	struct r5conf *conf = mddev->private;
5900 
5901 	switch(state) {
5902 	case 2: /* resume for a suspend */
5903 		wake_up(&conf->wait_for_overlap);
5904 		break;
5905 
5906 	case 1: /* stop all writes */
5907 		spin_lock_irq(&conf->device_lock);
5908 		/* '2' tells resync/reshape to pause so that all
5909 		 * active stripes can drain
5910 		 */
5911 		conf->quiesce = 2;
5912 		wait_event_lock_irq(conf->wait_for_stripe,
5913 				    atomic_read(&conf->active_stripes) == 0 &&
5914 				    atomic_read(&conf->active_aligned_reads) == 0,
5915 				    conf->device_lock, /* nothing */);
5916 		conf->quiesce = 1;
5917 		spin_unlock_irq(&conf->device_lock);
5918 		/* allow reshape to continue */
5919 		wake_up(&conf->wait_for_overlap);
5920 		break;
5921 
5922 	case 0: /* re-enable writes */
5923 		spin_lock_irq(&conf->device_lock);
5924 		conf->quiesce = 0;
5925 		wake_up(&conf->wait_for_stripe);
5926 		wake_up(&conf->wait_for_overlap);
5927 		spin_unlock_irq(&conf->device_lock);
5928 		break;
5929 	}
5930 }
5931 
5932 
5933 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
5934 {
5935 	struct r0conf *raid0_conf = mddev->private;
5936 	sector_t sectors;
5937 
5938 	/* for raid0 takeover only one zone is supported */
5939 	if (raid0_conf->nr_strip_zones > 1) {
5940 		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5941 		       mdname(mddev));
5942 		return ERR_PTR(-EINVAL);
5943 	}
5944 
5945 	sectors = raid0_conf->strip_zone[0].zone_end;
5946 	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
5947 	mddev->dev_sectors = sectors;
5948 	mddev->new_level = level;
5949 	mddev->new_layout = ALGORITHM_PARITY_N;
5950 	mddev->new_chunk_sectors = mddev->chunk_sectors;
5951 	mddev->raid_disks += 1;
5952 	mddev->delta_disks = 1;
5953 	/* make sure it will be not marked as dirty */
5954 	mddev->recovery_cp = MaxSector;
5955 
5956 	return setup_conf(mddev);
5957 }
5958 
5959 
5960 static void *raid5_takeover_raid1(struct mddev *mddev)
5961 {
5962 	int chunksect;
5963 
5964 	if (mddev->raid_disks != 2 ||
5965 	    mddev->degraded > 1)
5966 		return ERR_PTR(-EINVAL);
5967 
5968 	/* Should check if there are write-behind devices? */
5969 
5970 	chunksect = 64*2; /* 64K by default */
5971 
5972 	/* The array must be an exact multiple of chunksize */
5973 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
5974 		chunksect >>= 1;
5975 
5976 	if ((chunksect<<9) < STRIPE_SIZE)
5977 		/* array size does not allow a suitable chunk size */
5978 		return ERR_PTR(-EINVAL);
5979 
5980 	mddev->new_level = 5;
5981 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5982 	mddev->new_chunk_sectors = chunksect;
5983 
5984 	return setup_conf(mddev);
5985 }
5986 
5987 static void *raid5_takeover_raid6(struct mddev *mddev)
5988 {
5989 	int new_layout;
5990 
5991 	switch (mddev->layout) {
5992 	case ALGORITHM_LEFT_ASYMMETRIC_6:
5993 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5994 		break;
5995 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
5996 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5997 		break;
5998 	case ALGORITHM_LEFT_SYMMETRIC_6:
5999 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
6000 		break;
6001 	case ALGORITHM_RIGHT_SYMMETRIC_6:
6002 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
6003 		break;
6004 	case ALGORITHM_PARITY_0_6:
6005 		new_layout = ALGORITHM_PARITY_0;
6006 		break;
6007 	case ALGORITHM_PARITY_N:
6008 		new_layout = ALGORITHM_PARITY_N;
6009 		break;
6010 	default:
6011 		return ERR_PTR(-EINVAL);
6012 	}
6013 	mddev->new_level = 5;
6014 	mddev->new_layout = new_layout;
6015 	mddev->delta_disks = -1;
6016 	mddev->raid_disks -= 1;
6017 	return setup_conf(mddev);
6018 }
6019 
6020 
6021 static int raid5_check_reshape(struct mddev *mddev)
6022 {
6023 	/* For a 2-drive array, the layout and chunk size can be changed
6024 	 * immediately as not restriping is needed.
6025 	 * For larger arrays we record the new value - after validation
6026 	 * to be used by a reshape pass.
6027 	 */
6028 	struct r5conf *conf = mddev->private;
6029 	int new_chunk = mddev->new_chunk_sectors;
6030 
6031 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
6032 		return -EINVAL;
6033 	if (new_chunk > 0) {
6034 		if (!is_power_of_2(new_chunk))
6035 			return -EINVAL;
6036 		if (new_chunk < (PAGE_SIZE>>9))
6037 			return -EINVAL;
6038 		if (mddev->array_sectors & (new_chunk-1))
6039 			/* not factor of array size */
6040 			return -EINVAL;
6041 	}
6042 
6043 	/* They look valid */
6044 
6045 	if (mddev->raid_disks == 2) {
6046 		/* can make the change immediately */
6047 		if (mddev->new_layout >= 0) {
6048 			conf->algorithm = mddev->new_layout;
6049 			mddev->layout = mddev->new_layout;
6050 		}
6051 		if (new_chunk > 0) {
6052 			conf->chunk_sectors = new_chunk ;
6053 			mddev->chunk_sectors = new_chunk;
6054 		}
6055 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
6056 		md_wakeup_thread(mddev->thread);
6057 	}
6058 	return check_reshape(mddev);
6059 }
6060 
6061 static int raid6_check_reshape(struct mddev *mddev)
6062 {
6063 	int new_chunk = mddev->new_chunk_sectors;
6064 
6065 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
6066 		return -EINVAL;
6067 	if (new_chunk > 0) {
6068 		if (!is_power_of_2(new_chunk))
6069 			return -EINVAL;
6070 		if (new_chunk < (PAGE_SIZE >> 9))
6071 			return -EINVAL;
6072 		if (mddev->array_sectors & (new_chunk-1))
6073 			/* not factor of array size */
6074 			return -EINVAL;
6075 	}
6076 
6077 	/* They look valid */
6078 	return check_reshape(mddev);
6079 }
6080 
6081 static void *raid5_takeover(struct mddev *mddev)
6082 {
6083 	/* raid5 can take over:
6084 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
6085 	 *  raid1 - if there are two drives.  We need to know the chunk size
6086 	 *  raid4 - trivial - just use a raid4 layout.
6087 	 *  raid6 - Providing it is a *_6 layout
6088 	 */
6089 	if (mddev->level == 0)
6090 		return raid45_takeover_raid0(mddev, 5);
6091 	if (mddev->level == 1)
6092 		return raid5_takeover_raid1(mddev);
6093 	if (mddev->level == 4) {
6094 		mddev->new_layout = ALGORITHM_PARITY_N;
6095 		mddev->new_level = 5;
6096 		return setup_conf(mddev);
6097 	}
6098 	if (mddev->level == 6)
6099 		return raid5_takeover_raid6(mddev);
6100 
6101 	return ERR_PTR(-EINVAL);
6102 }
6103 
6104 static void *raid4_takeover(struct mddev *mddev)
6105 {
6106 	/* raid4 can take over:
6107 	 *  raid0 - if there is only one strip zone
6108 	 *  raid5 - if layout is right
6109 	 */
6110 	if (mddev->level == 0)
6111 		return raid45_takeover_raid0(mddev, 4);
6112 	if (mddev->level == 5 &&
6113 	    mddev->layout == ALGORITHM_PARITY_N) {
6114 		mddev->new_layout = 0;
6115 		mddev->new_level = 4;
6116 		return setup_conf(mddev);
6117 	}
6118 	return ERR_PTR(-EINVAL);
6119 }
6120 
6121 static struct md_personality raid5_personality;
6122 
6123 static void *raid6_takeover(struct mddev *mddev)
6124 {
6125 	/* Currently can only take over a raid5.  We map the
6126 	 * personality to an equivalent raid6 personality
6127 	 * with the Q block at the end.
6128 	 */
6129 	int new_layout;
6130 
6131 	if (mddev->pers != &raid5_personality)
6132 		return ERR_PTR(-EINVAL);
6133 	if (mddev->degraded > 1)
6134 		return ERR_PTR(-EINVAL);
6135 	if (mddev->raid_disks > 253)
6136 		return ERR_PTR(-EINVAL);
6137 	if (mddev->raid_disks < 3)
6138 		return ERR_PTR(-EINVAL);
6139 
6140 	switch (mddev->layout) {
6141 	case ALGORITHM_LEFT_ASYMMETRIC:
6142 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
6143 		break;
6144 	case ALGORITHM_RIGHT_ASYMMETRIC:
6145 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
6146 		break;
6147 	case ALGORITHM_LEFT_SYMMETRIC:
6148 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
6149 		break;
6150 	case ALGORITHM_RIGHT_SYMMETRIC:
6151 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
6152 		break;
6153 	case ALGORITHM_PARITY_0:
6154 		new_layout = ALGORITHM_PARITY_0_6;
6155 		break;
6156 	case ALGORITHM_PARITY_N:
6157 		new_layout = ALGORITHM_PARITY_N;
6158 		break;
6159 	default:
6160 		return ERR_PTR(-EINVAL);
6161 	}
6162 	mddev->new_level = 6;
6163 	mddev->new_layout = new_layout;
6164 	mddev->delta_disks = 1;
6165 	mddev->raid_disks += 1;
6166 	return setup_conf(mddev);
6167 }
6168 
6169 
6170 static struct md_personality raid6_personality =
6171 {
6172 	.name		= "raid6",
6173 	.level		= 6,
6174 	.owner		= THIS_MODULE,
6175 	.make_request	= make_request,
6176 	.run		= run,
6177 	.stop		= stop,
6178 	.status		= status,
6179 	.error_handler	= error,
6180 	.hot_add_disk	= raid5_add_disk,
6181 	.hot_remove_disk= raid5_remove_disk,
6182 	.spare_active	= raid5_spare_active,
6183 	.sync_request	= sync_request,
6184 	.resize		= raid5_resize,
6185 	.size		= raid5_size,
6186 	.check_reshape	= raid6_check_reshape,
6187 	.start_reshape  = raid5_start_reshape,
6188 	.finish_reshape = raid5_finish_reshape,
6189 	.quiesce	= raid5_quiesce,
6190 	.takeover	= raid6_takeover,
6191 };
6192 static struct md_personality raid5_personality =
6193 {
6194 	.name		= "raid5",
6195 	.level		= 5,
6196 	.owner		= THIS_MODULE,
6197 	.make_request	= make_request,
6198 	.run		= run,
6199 	.stop		= stop,
6200 	.status		= status,
6201 	.error_handler	= error,
6202 	.hot_add_disk	= raid5_add_disk,
6203 	.hot_remove_disk= raid5_remove_disk,
6204 	.spare_active	= raid5_spare_active,
6205 	.sync_request	= sync_request,
6206 	.resize		= raid5_resize,
6207 	.size		= raid5_size,
6208 	.check_reshape	= raid5_check_reshape,
6209 	.start_reshape  = raid5_start_reshape,
6210 	.finish_reshape = raid5_finish_reshape,
6211 	.quiesce	= raid5_quiesce,
6212 	.takeover	= raid5_takeover,
6213 };
6214 
6215 static struct md_personality raid4_personality =
6216 {
6217 	.name		= "raid4",
6218 	.level		= 4,
6219 	.owner		= THIS_MODULE,
6220 	.make_request	= make_request,
6221 	.run		= run,
6222 	.stop		= stop,
6223 	.status		= status,
6224 	.error_handler	= error,
6225 	.hot_add_disk	= raid5_add_disk,
6226 	.hot_remove_disk= raid5_remove_disk,
6227 	.spare_active	= raid5_spare_active,
6228 	.sync_request	= sync_request,
6229 	.resize		= raid5_resize,
6230 	.size		= raid5_size,
6231 	.check_reshape	= raid5_check_reshape,
6232 	.start_reshape  = raid5_start_reshape,
6233 	.finish_reshape = raid5_finish_reshape,
6234 	.quiesce	= raid5_quiesce,
6235 	.takeover	= raid4_takeover,
6236 };
6237 
6238 static int __init raid5_init(void)
6239 {
6240 	register_md_personality(&raid6_personality);
6241 	register_md_personality(&raid5_personality);
6242 	register_md_personality(&raid4_personality);
6243 	return 0;
6244 }
6245 
6246 static void raid5_exit(void)
6247 {
6248 	unregister_md_personality(&raid6_personality);
6249 	unregister_md_personality(&raid5_personality);
6250 	unregister_md_personality(&raid4_personality);
6251 }
6252 
6253 module_init(raid5_init);
6254 module_exit(raid5_exit);
6255 MODULE_LICENSE("GPL");
6256 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6257 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6258 MODULE_ALIAS("md-raid5");
6259 MODULE_ALIAS("md-raid4");
6260 MODULE_ALIAS("md-level-5");
6261 MODULE_ALIAS("md-level-4");
6262 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6263 MODULE_ALIAS("md-raid6");
6264 MODULE_ALIAS("md-level-6");
6265 
6266 /* This used to be two separate modules, they were: */
6267 MODULE_ALIAS("raid5");
6268 MODULE_ALIAS("raid6");
6269