xref: /linux/drivers/md/raid5.c (revision 8b4a40809e5330c9da5d20107d693d92d73b31dc)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->bm_write is the number of the last batch successfully written.
31  * conf->bm_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is bm_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/module.h>
47 #include <linux/slab.h>
48 #include <linux/highmem.h>
49 #include <linux/bitops.h>
50 #include <linux/kthread.h>
51 #include <asm/atomic.h>
52 #include "raid6.h"
53 
54 #include <linux/raid/bitmap.h>
55 #include <linux/async_tx.h>
56 
57 /*
58  * Stripe cache
59  */
60 
61 #define NR_STRIPES		256
62 #define STRIPE_SIZE		PAGE_SIZE
63 #define STRIPE_SHIFT		(PAGE_SHIFT - 9)
64 #define STRIPE_SECTORS		(STRIPE_SIZE>>9)
65 #define	IO_THRESHOLD		1
66 #define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
67 #define HASH_MASK		(NR_HASH - 1)
68 
69 #define stripe_hash(conf, sect)	(&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
70 
71 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
72  * order without overlap.  There may be several bio's per stripe+device, and
73  * a bio could span several devices.
74  * When walking this list for a particular stripe+device, we must never proceed
75  * beyond a bio that extends past this device, as the next bio might no longer
76  * be valid.
77  * This macro is used to determine the 'next' bio in the list, given the sector
78  * of the current stripe+device
79  */
80 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
81 /*
82  * The following can be used to debug the driver
83  */
84 #define RAID5_PARANOIA	1
85 #if RAID5_PARANOIA && defined(CONFIG_SMP)
86 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
87 #else
88 # define CHECK_DEVLOCK()
89 #endif
90 
91 #ifdef DEBUG
92 #define inline
93 #define __inline__
94 #endif
95 
96 #if !RAID6_USE_EMPTY_ZERO_PAGE
97 /* In .bss so it's zeroed */
98 const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
99 #endif
100 
101 static inline int raid6_next_disk(int disk, int raid_disks)
102 {
103 	disk++;
104 	return (disk < raid_disks) ? disk : 0;
105 }
106 
107 static void return_io(struct bio *return_bi)
108 {
109 	struct bio *bi = return_bi;
110 	while (bi) {
111 		int bytes = bi->bi_size;
112 
113 		return_bi = bi->bi_next;
114 		bi->bi_next = NULL;
115 		bi->bi_size = 0;
116 		bi->bi_end_io(bi, bytes,
117 			      test_bit(BIO_UPTODATE, &bi->bi_flags)
118 			        ? 0 : -EIO);
119 		bi = return_bi;
120 	}
121 }
122 
123 static void print_raid5_conf (raid5_conf_t *conf);
124 
125 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
126 {
127 	if (atomic_dec_and_test(&sh->count)) {
128 		BUG_ON(!list_empty(&sh->lru));
129 		BUG_ON(atomic_read(&conf->active_stripes)==0);
130 		if (test_bit(STRIPE_HANDLE, &sh->state)) {
131 			if (test_bit(STRIPE_DELAYED, &sh->state)) {
132 				list_add_tail(&sh->lru, &conf->delayed_list);
133 				blk_plug_device(conf->mddev->queue);
134 			} else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
135 				   sh->bm_seq - conf->seq_write > 0) {
136 				list_add_tail(&sh->lru, &conf->bitmap_list);
137 				blk_plug_device(conf->mddev->queue);
138 			} else {
139 				clear_bit(STRIPE_BIT_DELAY, &sh->state);
140 				list_add_tail(&sh->lru, &conf->handle_list);
141 			}
142 			md_wakeup_thread(conf->mddev->thread);
143 		} else {
144 			BUG_ON(sh->ops.pending);
145 			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
146 				atomic_dec(&conf->preread_active_stripes);
147 				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
148 					md_wakeup_thread(conf->mddev->thread);
149 			}
150 			atomic_dec(&conf->active_stripes);
151 			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
152 				list_add_tail(&sh->lru, &conf->inactive_list);
153 				wake_up(&conf->wait_for_stripe);
154 				if (conf->retry_read_aligned)
155 					md_wakeup_thread(conf->mddev->thread);
156 			}
157 		}
158 	}
159 }
160 static void release_stripe(struct stripe_head *sh)
161 {
162 	raid5_conf_t *conf = sh->raid_conf;
163 	unsigned long flags;
164 
165 	spin_lock_irqsave(&conf->device_lock, flags);
166 	__release_stripe(conf, sh);
167 	spin_unlock_irqrestore(&conf->device_lock, flags);
168 }
169 
170 static inline void remove_hash(struct stripe_head *sh)
171 {
172 	pr_debug("remove_hash(), stripe %llu\n",
173 		(unsigned long long)sh->sector);
174 
175 	hlist_del_init(&sh->hash);
176 }
177 
178 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
179 {
180 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
181 
182 	pr_debug("insert_hash(), stripe %llu\n",
183 		(unsigned long long)sh->sector);
184 
185 	CHECK_DEVLOCK();
186 	hlist_add_head(&sh->hash, hp);
187 }
188 
189 
190 /* find an idle stripe, make sure it is unhashed, and return it. */
191 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
192 {
193 	struct stripe_head *sh = NULL;
194 	struct list_head *first;
195 
196 	CHECK_DEVLOCK();
197 	if (list_empty(&conf->inactive_list))
198 		goto out;
199 	first = conf->inactive_list.next;
200 	sh = list_entry(first, struct stripe_head, lru);
201 	list_del_init(first);
202 	remove_hash(sh);
203 	atomic_inc(&conf->active_stripes);
204 out:
205 	return sh;
206 }
207 
208 static void shrink_buffers(struct stripe_head *sh, int num)
209 {
210 	struct page *p;
211 	int i;
212 
213 	for (i=0; i<num ; i++) {
214 		p = sh->dev[i].page;
215 		if (!p)
216 			continue;
217 		sh->dev[i].page = NULL;
218 		put_page(p);
219 	}
220 }
221 
222 static int grow_buffers(struct stripe_head *sh, int num)
223 {
224 	int i;
225 
226 	for (i=0; i<num; i++) {
227 		struct page *page;
228 
229 		if (!(page = alloc_page(GFP_KERNEL))) {
230 			return 1;
231 		}
232 		sh->dev[i].page = page;
233 	}
234 	return 0;
235 }
236 
237 static void raid5_build_block (struct stripe_head *sh, int i);
238 
239 static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks)
240 {
241 	raid5_conf_t *conf = sh->raid_conf;
242 	int i;
243 
244 	BUG_ON(atomic_read(&sh->count) != 0);
245 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
246 	BUG_ON(sh->ops.pending || sh->ops.ack || sh->ops.complete);
247 
248 	CHECK_DEVLOCK();
249 	pr_debug("init_stripe called, stripe %llu\n",
250 		(unsigned long long)sh->sector);
251 
252 	remove_hash(sh);
253 
254 	sh->sector = sector;
255 	sh->pd_idx = pd_idx;
256 	sh->state = 0;
257 
258 	sh->disks = disks;
259 
260 	for (i = sh->disks; i--; ) {
261 		struct r5dev *dev = &sh->dev[i];
262 
263 		if (dev->toread || dev->read || dev->towrite || dev->written ||
264 		    test_bit(R5_LOCKED, &dev->flags)) {
265 			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
266 			       (unsigned long long)sh->sector, i, dev->toread,
267 			       dev->read, dev->towrite, dev->written,
268 			       test_bit(R5_LOCKED, &dev->flags));
269 			BUG();
270 		}
271 		dev->flags = 0;
272 		raid5_build_block(sh, i);
273 	}
274 	insert_hash(conf, sh);
275 }
276 
277 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
278 {
279 	struct stripe_head *sh;
280 	struct hlist_node *hn;
281 
282 	CHECK_DEVLOCK();
283 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
284 	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
285 		if (sh->sector == sector && sh->disks == disks)
286 			return sh;
287 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
288 	return NULL;
289 }
290 
291 static void unplug_slaves(mddev_t *mddev);
292 static void raid5_unplug_device(request_queue_t *q);
293 
294 static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks,
295 					     int pd_idx, int noblock)
296 {
297 	struct stripe_head *sh;
298 
299 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
300 
301 	spin_lock_irq(&conf->device_lock);
302 
303 	do {
304 		wait_event_lock_irq(conf->wait_for_stripe,
305 				    conf->quiesce == 0,
306 				    conf->device_lock, /* nothing */);
307 		sh = __find_stripe(conf, sector, disks);
308 		if (!sh) {
309 			if (!conf->inactive_blocked)
310 				sh = get_free_stripe(conf);
311 			if (noblock && sh == NULL)
312 				break;
313 			if (!sh) {
314 				conf->inactive_blocked = 1;
315 				wait_event_lock_irq(conf->wait_for_stripe,
316 						    !list_empty(&conf->inactive_list) &&
317 						    (atomic_read(&conf->active_stripes)
318 						     < (conf->max_nr_stripes *3/4)
319 						     || !conf->inactive_blocked),
320 						    conf->device_lock,
321 						    raid5_unplug_device(conf->mddev->queue)
322 					);
323 				conf->inactive_blocked = 0;
324 			} else
325 				init_stripe(sh, sector, pd_idx, disks);
326 		} else {
327 			if (atomic_read(&sh->count)) {
328 			  BUG_ON(!list_empty(&sh->lru));
329 			} else {
330 				if (!test_bit(STRIPE_HANDLE, &sh->state))
331 					atomic_inc(&conf->active_stripes);
332 				if (list_empty(&sh->lru) &&
333 				    !test_bit(STRIPE_EXPANDING, &sh->state))
334 					BUG();
335 				list_del_init(&sh->lru);
336 			}
337 		}
338 	} while (sh == NULL);
339 
340 	if (sh)
341 		atomic_inc(&sh->count);
342 
343 	spin_unlock_irq(&conf->device_lock);
344 	return sh;
345 }
346 
347 /* test_and_ack_op() ensures that we only dequeue an operation once */
348 #define test_and_ack_op(op, pend) \
349 do {							\
350 	if (test_bit(op, &sh->ops.pending) &&		\
351 		!test_bit(op, &sh->ops.complete)) {	\
352 		if (test_and_set_bit(op, &sh->ops.ack)) \
353 			clear_bit(op, &pend);		\
354 		else					\
355 			ack++;				\
356 	} else						\
357 		clear_bit(op, &pend);			\
358 } while (0)
359 
360 /* find new work to run, do not resubmit work that is already
361  * in flight
362  */
363 static unsigned long get_stripe_work(struct stripe_head *sh)
364 {
365 	unsigned long pending;
366 	int ack = 0;
367 
368 	pending = sh->ops.pending;
369 
370 	test_and_ack_op(STRIPE_OP_BIOFILL, pending);
371 	test_and_ack_op(STRIPE_OP_COMPUTE_BLK, pending);
372 	test_and_ack_op(STRIPE_OP_PREXOR, pending);
373 	test_and_ack_op(STRIPE_OP_BIODRAIN, pending);
374 	test_and_ack_op(STRIPE_OP_POSTXOR, pending);
375 	test_and_ack_op(STRIPE_OP_CHECK, pending);
376 	if (test_and_clear_bit(STRIPE_OP_IO, &sh->ops.pending))
377 		ack++;
378 
379 	sh->ops.count -= ack;
380 	BUG_ON(sh->ops.count < 0);
381 
382 	return pending;
383 }
384 
385 static int
386 raid5_end_read_request(struct bio *bi, unsigned int bytes_done, int error);
387 static int
388 raid5_end_write_request (struct bio *bi, unsigned int bytes_done, int error);
389 
390 static void ops_run_io(struct stripe_head *sh)
391 {
392 	raid5_conf_t *conf = sh->raid_conf;
393 	int i, disks = sh->disks;
394 
395 	might_sleep();
396 
397 	for (i = disks; i--; ) {
398 		int rw;
399 		struct bio *bi;
400 		mdk_rdev_t *rdev;
401 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
402 			rw = WRITE;
403 		else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
404 			rw = READ;
405 		else
406 			continue;
407 
408 		bi = &sh->dev[i].req;
409 
410 		bi->bi_rw = rw;
411 		if (rw == WRITE)
412 			bi->bi_end_io = raid5_end_write_request;
413 		else
414 			bi->bi_end_io = raid5_end_read_request;
415 
416 		rcu_read_lock();
417 		rdev = rcu_dereference(conf->disks[i].rdev);
418 		if (rdev && test_bit(Faulty, &rdev->flags))
419 			rdev = NULL;
420 		if (rdev)
421 			atomic_inc(&rdev->nr_pending);
422 		rcu_read_unlock();
423 
424 		if (rdev) {
425 			if (test_bit(STRIPE_SYNCING, &sh->state) ||
426 				test_bit(STRIPE_EXPAND_SOURCE, &sh->state) ||
427 				test_bit(STRIPE_EXPAND_READY, &sh->state))
428 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
429 
430 			bi->bi_bdev = rdev->bdev;
431 			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
432 				__FUNCTION__, (unsigned long long)sh->sector,
433 				bi->bi_rw, i);
434 			atomic_inc(&sh->count);
435 			bi->bi_sector = sh->sector + rdev->data_offset;
436 			bi->bi_flags = 1 << BIO_UPTODATE;
437 			bi->bi_vcnt = 1;
438 			bi->bi_max_vecs = 1;
439 			bi->bi_idx = 0;
440 			bi->bi_io_vec = &sh->dev[i].vec;
441 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
442 			bi->bi_io_vec[0].bv_offset = 0;
443 			bi->bi_size = STRIPE_SIZE;
444 			bi->bi_next = NULL;
445 			if (rw == WRITE &&
446 			    test_bit(R5_ReWrite, &sh->dev[i].flags))
447 				atomic_add(STRIPE_SECTORS,
448 					&rdev->corrected_errors);
449 			generic_make_request(bi);
450 		} else {
451 			if (rw == WRITE)
452 				set_bit(STRIPE_DEGRADED, &sh->state);
453 			pr_debug("skip op %ld on disc %d for sector %llu\n",
454 				bi->bi_rw, i, (unsigned long long)sh->sector);
455 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
456 			set_bit(STRIPE_HANDLE, &sh->state);
457 		}
458 	}
459 }
460 
461 static struct dma_async_tx_descriptor *
462 async_copy_data(int frombio, struct bio *bio, struct page *page,
463 	sector_t sector, struct dma_async_tx_descriptor *tx)
464 {
465 	struct bio_vec *bvl;
466 	struct page *bio_page;
467 	int i;
468 	int page_offset;
469 
470 	if (bio->bi_sector >= sector)
471 		page_offset = (signed)(bio->bi_sector - sector) * 512;
472 	else
473 		page_offset = (signed)(sector - bio->bi_sector) * -512;
474 	bio_for_each_segment(bvl, bio, i) {
475 		int len = bio_iovec_idx(bio, i)->bv_len;
476 		int clen;
477 		int b_offset = 0;
478 
479 		if (page_offset < 0) {
480 			b_offset = -page_offset;
481 			page_offset += b_offset;
482 			len -= b_offset;
483 		}
484 
485 		if (len > 0 && page_offset + len > STRIPE_SIZE)
486 			clen = STRIPE_SIZE - page_offset;
487 		else
488 			clen = len;
489 
490 		if (clen > 0) {
491 			b_offset += bio_iovec_idx(bio, i)->bv_offset;
492 			bio_page = bio_iovec_idx(bio, i)->bv_page;
493 			if (frombio)
494 				tx = async_memcpy(page, bio_page, page_offset,
495 					b_offset, clen,
496 					ASYNC_TX_DEP_ACK | ASYNC_TX_KMAP_SRC,
497 					tx, NULL, NULL);
498 			else
499 				tx = async_memcpy(bio_page, page, b_offset,
500 					page_offset, clen,
501 					ASYNC_TX_DEP_ACK | ASYNC_TX_KMAP_DST,
502 					tx, NULL, NULL);
503 		}
504 		if (clen < len) /* hit end of page */
505 			break;
506 		page_offset +=  len;
507 	}
508 
509 	return tx;
510 }
511 
512 static void ops_complete_biofill(void *stripe_head_ref)
513 {
514 	struct stripe_head *sh = stripe_head_ref;
515 	struct bio *return_bi = NULL;
516 	raid5_conf_t *conf = sh->raid_conf;
517 	int i, more_to_read = 0;
518 
519 	pr_debug("%s: stripe %llu\n", __FUNCTION__,
520 		(unsigned long long)sh->sector);
521 
522 	/* clear completed biofills */
523 	for (i = sh->disks; i--; ) {
524 		struct r5dev *dev = &sh->dev[i];
525 		/* check if this stripe has new incoming reads */
526 		if (dev->toread)
527 			more_to_read++;
528 
529 		/* acknowledge completion of a biofill operation */
530 		/* and check if we need to reply to a read request
531 		*/
532 		if (test_bit(R5_Wantfill, &dev->flags) && !dev->toread) {
533 			struct bio *rbi, *rbi2;
534 			clear_bit(R5_Wantfill, &dev->flags);
535 
536 			/* The access to dev->read is outside of the
537 			 * spin_lock_irq(&conf->device_lock), but is protected
538 			 * by the STRIPE_OP_BIOFILL pending bit
539 			 */
540 			BUG_ON(!dev->read);
541 			rbi = dev->read;
542 			dev->read = NULL;
543 			while (rbi && rbi->bi_sector <
544 				dev->sector + STRIPE_SECTORS) {
545 				rbi2 = r5_next_bio(rbi, dev->sector);
546 				spin_lock_irq(&conf->device_lock);
547 				if (--rbi->bi_phys_segments == 0) {
548 					rbi->bi_next = return_bi;
549 					return_bi = rbi;
550 				}
551 				spin_unlock_irq(&conf->device_lock);
552 				rbi = rbi2;
553 			}
554 		}
555 	}
556 	clear_bit(STRIPE_OP_BIOFILL, &sh->ops.ack);
557 	clear_bit(STRIPE_OP_BIOFILL, &sh->ops.pending);
558 
559 	return_io(return_bi);
560 
561 	if (more_to_read)
562 		set_bit(STRIPE_HANDLE, &sh->state);
563 	release_stripe(sh);
564 }
565 
566 static void ops_run_biofill(struct stripe_head *sh)
567 {
568 	struct dma_async_tx_descriptor *tx = NULL;
569 	raid5_conf_t *conf = sh->raid_conf;
570 	int i;
571 
572 	pr_debug("%s: stripe %llu\n", __FUNCTION__,
573 		(unsigned long long)sh->sector);
574 
575 	for (i = sh->disks; i--; ) {
576 		struct r5dev *dev = &sh->dev[i];
577 		if (test_bit(R5_Wantfill, &dev->flags)) {
578 			struct bio *rbi;
579 			spin_lock_irq(&conf->device_lock);
580 			dev->read = rbi = dev->toread;
581 			dev->toread = NULL;
582 			spin_unlock_irq(&conf->device_lock);
583 			while (rbi && rbi->bi_sector <
584 				dev->sector + STRIPE_SECTORS) {
585 				tx = async_copy_data(0, rbi, dev->page,
586 					dev->sector, tx);
587 				rbi = r5_next_bio(rbi, dev->sector);
588 			}
589 		}
590 	}
591 
592 	atomic_inc(&sh->count);
593 	async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
594 		ops_complete_biofill, sh);
595 }
596 
597 static void ops_complete_compute5(void *stripe_head_ref)
598 {
599 	struct stripe_head *sh = stripe_head_ref;
600 	int target = sh->ops.target;
601 	struct r5dev *tgt = &sh->dev[target];
602 
603 	pr_debug("%s: stripe %llu\n", __FUNCTION__,
604 		(unsigned long long)sh->sector);
605 
606 	set_bit(R5_UPTODATE, &tgt->flags);
607 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
608 	clear_bit(R5_Wantcompute, &tgt->flags);
609 	set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
610 	set_bit(STRIPE_HANDLE, &sh->state);
611 	release_stripe(sh);
612 }
613 
614 static struct dma_async_tx_descriptor *
615 ops_run_compute5(struct stripe_head *sh, unsigned long pending)
616 {
617 	/* kernel stack size limits the total number of disks */
618 	int disks = sh->disks;
619 	struct page *xor_srcs[disks];
620 	int target = sh->ops.target;
621 	struct r5dev *tgt = &sh->dev[target];
622 	struct page *xor_dest = tgt->page;
623 	int count = 0;
624 	struct dma_async_tx_descriptor *tx;
625 	int i;
626 
627 	pr_debug("%s: stripe %llu block: %d\n",
628 		__FUNCTION__, (unsigned long long)sh->sector, target);
629 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
630 
631 	for (i = disks; i--; )
632 		if (i != target)
633 			xor_srcs[count++] = sh->dev[i].page;
634 
635 	atomic_inc(&sh->count);
636 
637 	if (unlikely(count == 1))
638 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
639 			0, NULL, ops_complete_compute5, sh);
640 	else
641 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
642 			ASYNC_TX_XOR_ZERO_DST, NULL,
643 			ops_complete_compute5, sh);
644 
645 	/* ack now if postxor is not set to be run */
646 	if (tx && !test_bit(STRIPE_OP_POSTXOR, &pending))
647 		async_tx_ack(tx);
648 
649 	return tx;
650 }
651 
652 static void ops_complete_prexor(void *stripe_head_ref)
653 {
654 	struct stripe_head *sh = stripe_head_ref;
655 
656 	pr_debug("%s: stripe %llu\n", __FUNCTION__,
657 		(unsigned long long)sh->sector);
658 
659 	set_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
660 }
661 
662 static struct dma_async_tx_descriptor *
663 ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
664 {
665 	/* kernel stack size limits the total number of disks */
666 	int disks = sh->disks;
667 	struct page *xor_srcs[disks];
668 	int count = 0, pd_idx = sh->pd_idx, i;
669 
670 	/* existing parity data subtracted */
671 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
672 
673 	pr_debug("%s: stripe %llu\n", __FUNCTION__,
674 		(unsigned long long)sh->sector);
675 
676 	for (i = disks; i--; ) {
677 		struct r5dev *dev = &sh->dev[i];
678 		/* Only process blocks that are known to be uptodate */
679 		if (dev->towrite && test_bit(R5_Wantprexor, &dev->flags))
680 			xor_srcs[count++] = dev->page;
681 	}
682 
683 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
684 		ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
685 		ops_complete_prexor, sh);
686 
687 	return tx;
688 }
689 
690 static struct dma_async_tx_descriptor *
691 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
692 {
693 	int disks = sh->disks;
694 	int pd_idx = sh->pd_idx, i;
695 
696 	/* check if prexor is active which means only process blocks
697 	 * that are part of a read-modify-write (Wantprexor)
698 	 */
699 	int prexor = test_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
700 
701 	pr_debug("%s: stripe %llu\n", __FUNCTION__,
702 		(unsigned long long)sh->sector);
703 
704 	for (i = disks; i--; ) {
705 		struct r5dev *dev = &sh->dev[i];
706 		struct bio *chosen;
707 		int towrite;
708 
709 		towrite = 0;
710 		if (prexor) { /* rmw */
711 			if (dev->towrite &&
712 			    test_bit(R5_Wantprexor, &dev->flags))
713 				towrite = 1;
714 		} else { /* rcw */
715 			if (i != pd_idx && dev->towrite &&
716 				test_bit(R5_LOCKED, &dev->flags))
717 				towrite = 1;
718 		}
719 
720 		if (towrite) {
721 			struct bio *wbi;
722 
723 			spin_lock(&sh->lock);
724 			chosen = dev->towrite;
725 			dev->towrite = NULL;
726 			BUG_ON(dev->written);
727 			wbi = dev->written = chosen;
728 			spin_unlock(&sh->lock);
729 
730 			while (wbi && wbi->bi_sector <
731 				dev->sector + STRIPE_SECTORS) {
732 				tx = async_copy_data(1, wbi, dev->page,
733 					dev->sector, tx);
734 				wbi = r5_next_bio(wbi, dev->sector);
735 			}
736 		}
737 	}
738 
739 	return tx;
740 }
741 
742 static void ops_complete_postxor(void *stripe_head_ref)
743 {
744 	struct stripe_head *sh = stripe_head_ref;
745 
746 	pr_debug("%s: stripe %llu\n", __FUNCTION__,
747 		(unsigned long long)sh->sector);
748 
749 	set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
750 	set_bit(STRIPE_HANDLE, &sh->state);
751 	release_stripe(sh);
752 }
753 
754 static void ops_complete_write(void *stripe_head_ref)
755 {
756 	struct stripe_head *sh = stripe_head_ref;
757 	int disks = sh->disks, i, pd_idx = sh->pd_idx;
758 
759 	pr_debug("%s: stripe %llu\n", __FUNCTION__,
760 		(unsigned long long)sh->sector);
761 
762 	for (i = disks; i--; ) {
763 		struct r5dev *dev = &sh->dev[i];
764 		if (dev->written || i == pd_idx)
765 			set_bit(R5_UPTODATE, &dev->flags);
766 	}
767 
768 	set_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
769 	set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
770 
771 	set_bit(STRIPE_HANDLE, &sh->state);
772 	release_stripe(sh);
773 }
774 
775 static void
776 ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
777 {
778 	/* kernel stack size limits the total number of disks */
779 	int disks = sh->disks;
780 	struct page *xor_srcs[disks];
781 
782 	int count = 0, pd_idx = sh->pd_idx, i;
783 	struct page *xor_dest;
784 	int prexor = test_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
785 	unsigned long flags;
786 	dma_async_tx_callback callback;
787 
788 	pr_debug("%s: stripe %llu\n", __FUNCTION__,
789 		(unsigned long long)sh->sector);
790 
791 	/* check if prexor is active which means only process blocks
792 	 * that are part of a read-modify-write (written)
793 	 */
794 	if (prexor) {
795 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
796 		for (i = disks; i--; ) {
797 			struct r5dev *dev = &sh->dev[i];
798 			if (dev->written)
799 				xor_srcs[count++] = dev->page;
800 		}
801 	} else {
802 		xor_dest = sh->dev[pd_idx].page;
803 		for (i = disks; i--; ) {
804 			struct r5dev *dev = &sh->dev[i];
805 			if (i != pd_idx)
806 				xor_srcs[count++] = dev->page;
807 		}
808 	}
809 
810 	/* check whether this postxor is part of a write */
811 	callback = test_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending) ?
812 		ops_complete_write : ops_complete_postxor;
813 
814 	/* 1/ if we prexor'd then the dest is reused as a source
815 	 * 2/ if we did not prexor then we are redoing the parity
816 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
817 	 * for the synchronous xor case
818 	 */
819 	flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
820 		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
821 
822 	atomic_inc(&sh->count);
823 
824 	if (unlikely(count == 1)) {
825 		flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
826 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
827 			flags, tx, callback, sh);
828 	} else
829 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
830 			flags, tx, callback, sh);
831 }
832 
833 static void ops_complete_check(void *stripe_head_ref)
834 {
835 	struct stripe_head *sh = stripe_head_ref;
836 	int pd_idx = sh->pd_idx;
837 
838 	pr_debug("%s: stripe %llu\n", __FUNCTION__,
839 		(unsigned long long)sh->sector);
840 
841 	if (test_and_clear_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending) &&
842 		sh->ops.zero_sum_result == 0)
843 		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
844 
845 	set_bit(STRIPE_OP_CHECK, &sh->ops.complete);
846 	set_bit(STRIPE_HANDLE, &sh->state);
847 	release_stripe(sh);
848 }
849 
850 static void ops_run_check(struct stripe_head *sh)
851 {
852 	/* kernel stack size limits the total number of disks */
853 	int disks = sh->disks;
854 	struct page *xor_srcs[disks];
855 	struct dma_async_tx_descriptor *tx;
856 
857 	int count = 0, pd_idx = sh->pd_idx, i;
858 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
859 
860 	pr_debug("%s: stripe %llu\n", __FUNCTION__,
861 		(unsigned long long)sh->sector);
862 
863 	for (i = disks; i--; ) {
864 		struct r5dev *dev = &sh->dev[i];
865 		if (i != pd_idx)
866 			xor_srcs[count++] = dev->page;
867 	}
868 
869 	tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
870 		&sh->ops.zero_sum_result, 0, NULL, NULL, NULL);
871 
872 	if (tx)
873 		set_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending);
874 	else
875 		clear_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending);
876 
877 	atomic_inc(&sh->count);
878 	tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
879 		ops_complete_check, sh);
880 }
881 
882 static void raid5_run_ops(struct stripe_head *sh, unsigned long pending)
883 {
884 	int overlap_clear = 0, i, disks = sh->disks;
885 	struct dma_async_tx_descriptor *tx = NULL;
886 
887 	if (test_bit(STRIPE_OP_BIOFILL, &pending)) {
888 		ops_run_biofill(sh);
889 		overlap_clear++;
890 	}
891 
892 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &pending))
893 		tx = ops_run_compute5(sh, pending);
894 
895 	if (test_bit(STRIPE_OP_PREXOR, &pending))
896 		tx = ops_run_prexor(sh, tx);
897 
898 	if (test_bit(STRIPE_OP_BIODRAIN, &pending)) {
899 		tx = ops_run_biodrain(sh, tx);
900 		overlap_clear++;
901 	}
902 
903 	if (test_bit(STRIPE_OP_POSTXOR, &pending))
904 		ops_run_postxor(sh, tx);
905 
906 	if (test_bit(STRIPE_OP_CHECK, &pending))
907 		ops_run_check(sh);
908 
909 	if (test_bit(STRIPE_OP_IO, &pending))
910 		ops_run_io(sh);
911 
912 	if (overlap_clear)
913 		for (i = disks; i--; ) {
914 			struct r5dev *dev = &sh->dev[i];
915 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
916 				wake_up(&sh->raid_conf->wait_for_overlap);
917 		}
918 }
919 
920 static int grow_one_stripe(raid5_conf_t *conf)
921 {
922 	struct stripe_head *sh;
923 	sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
924 	if (!sh)
925 		return 0;
926 	memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
927 	sh->raid_conf = conf;
928 	spin_lock_init(&sh->lock);
929 
930 	if (grow_buffers(sh, conf->raid_disks)) {
931 		shrink_buffers(sh, conf->raid_disks);
932 		kmem_cache_free(conf->slab_cache, sh);
933 		return 0;
934 	}
935 	sh->disks = conf->raid_disks;
936 	/* we just created an active stripe so... */
937 	atomic_set(&sh->count, 1);
938 	atomic_inc(&conf->active_stripes);
939 	INIT_LIST_HEAD(&sh->lru);
940 	release_stripe(sh);
941 	return 1;
942 }
943 
944 static int grow_stripes(raid5_conf_t *conf, int num)
945 {
946 	struct kmem_cache *sc;
947 	int devs = conf->raid_disks;
948 
949 	sprintf(conf->cache_name[0], "raid5-%s", mdname(conf->mddev));
950 	sprintf(conf->cache_name[1], "raid5-%s-alt", mdname(conf->mddev));
951 	conf->active_name = 0;
952 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
953 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
954 			       0, 0, NULL, NULL);
955 	if (!sc)
956 		return 1;
957 	conf->slab_cache = sc;
958 	conf->pool_size = devs;
959 	while (num--)
960 		if (!grow_one_stripe(conf))
961 			return 1;
962 	return 0;
963 }
964 
965 #ifdef CONFIG_MD_RAID5_RESHAPE
966 static int resize_stripes(raid5_conf_t *conf, int newsize)
967 {
968 	/* Make all the stripes able to hold 'newsize' devices.
969 	 * New slots in each stripe get 'page' set to a new page.
970 	 *
971 	 * This happens in stages:
972 	 * 1/ create a new kmem_cache and allocate the required number of
973 	 *    stripe_heads.
974 	 * 2/ gather all the old stripe_heads and tranfer the pages across
975 	 *    to the new stripe_heads.  This will have the side effect of
976 	 *    freezing the array as once all stripe_heads have been collected,
977 	 *    no IO will be possible.  Old stripe heads are freed once their
978 	 *    pages have been transferred over, and the old kmem_cache is
979 	 *    freed when all stripes are done.
980 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
981 	 *    we simple return a failre status - no need to clean anything up.
982 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
983 	 *    If this fails, we don't bother trying the shrink the
984 	 *    stripe_heads down again, we just leave them as they are.
985 	 *    As each stripe_head is processed the new one is released into
986 	 *    active service.
987 	 *
988 	 * Once step2 is started, we cannot afford to wait for a write,
989 	 * so we use GFP_NOIO allocations.
990 	 */
991 	struct stripe_head *osh, *nsh;
992 	LIST_HEAD(newstripes);
993 	struct disk_info *ndisks;
994 	int err = 0;
995 	struct kmem_cache *sc;
996 	int i;
997 
998 	if (newsize <= conf->pool_size)
999 		return 0; /* never bother to shrink */
1000 
1001 	md_allow_write(conf->mddev);
1002 
1003 	/* Step 1 */
1004 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1005 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1006 			       0, 0, NULL, NULL);
1007 	if (!sc)
1008 		return -ENOMEM;
1009 
1010 	for (i = conf->max_nr_stripes; i; i--) {
1011 		nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1012 		if (!nsh)
1013 			break;
1014 
1015 		memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1016 
1017 		nsh->raid_conf = conf;
1018 		spin_lock_init(&nsh->lock);
1019 
1020 		list_add(&nsh->lru, &newstripes);
1021 	}
1022 	if (i) {
1023 		/* didn't get enough, give up */
1024 		while (!list_empty(&newstripes)) {
1025 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
1026 			list_del(&nsh->lru);
1027 			kmem_cache_free(sc, nsh);
1028 		}
1029 		kmem_cache_destroy(sc);
1030 		return -ENOMEM;
1031 	}
1032 	/* Step 2 - Must use GFP_NOIO now.
1033 	 * OK, we have enough stripes, start collecting inactive
1034 	 * stripes and copying them over
1035 	 */
1036 	list_for_each_entry(nsh, &newstripes, lru) {
1037 		spin_lock_irq(&conf->device_lock);
1038 		wait_event_lock_irq(conf->wait_for_stripe,
1039 				    !list_empty(&conf->inactive_list),
1040 				    conf->device_lock,
1041 				    unplug_slaves(conf->mddev)
1042 			);
1043 		osh = get_free_stripe(conf);
1044 		spin_unlock_irq(&conf->device_lock);
1045 		atomic_set(&nsh->count, 1);
1046 		for(i=0; i<conf->pool_size; i++)
1047 			nsh->dev[i].page = osh->dev[i].page;
1048 		for( ; i<newsize; i++)
1049 			nsh->dev[i].page = NULL;
1050 		kmem_cache_free(conf->slab_cache, osh);
1051 	}
1052 	kmem_cache_destroy(conf->slab_cache);
1053 
1054 	/* Step 3.
1055 	 * At this point, we are holding all the stripes so the array
1056 	 * is completely stalled, so now is a good time to resize
1057 	 * conf->disks.
1058 	 */
1059 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1060 	if (ndisks) {
1061 		for (i=0; i<conf->raid_disks; i++)
1062 			ndisks[i] = conf->disks[i];
1063 		kfree(conf->disks);
1064 		conf->disks = ndisks;
1065 	} else
1066 		err = -ENOMEM;
1067 
1068 	/* Step 4, return new stripes to service */
1069 	while(!list_empty(&newstripes)) {
1070 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
1071 		list_del_init(&nsh->lru);
1072 		for (i=conf->raid_disks; i < newsize; i++)
1073 			if (nsh->dev[i].page == NULL) {
1074 				struct page *p = alloc_page(GFP_NOIO);
1075 				nsh->dev[i].page = p;
1076 				if (!p)
1077 					err = -ENOMEM;
1078 			}
1079 		release_stripe(nsh);
1080 	}
1081 	/* critical section pass, GFP_NOIO no longer needed */
1082 
1083 	conf->slab_cache = sc;
1084 	conf->active_name = 1-conf->active_name;
1085 	conf->pool_size = newsize;
1086 	return err;
1087 }
1088 #endif
1089 
1090 static int drop_one_stripe(raid5_conf_t *conf)
1091 {
1092 	struct stripe_head *sh;
1093 
1094 	spin_lock_irq(&conf->device_lock);
1095 	sh = get_free_stripe(conf);
1096 	spin_unlock_irq(&conf->device_lock);
1097 	if (!sh)
1098 		return 0;
1099 	BUG_ON(atomic_read(&sh->count));
1100 	shrink_buffers(sh, conf->pool_size);
1101 	kmem_cache_free(conf->slab_cache, sh);
1102 	atomic_dec(&conf->active_stripes);
1103 	return 1;
1104 }
1105 
1106 static void shrink_stripes(raid5_conf_t *conf)
1107 {
1108 	while (drop_one_stripe(conf))
1109 		;
1110 
1111 	if (conf->slab_cache)
1112 		kmem_cache_destroy(conf->slab_cache);
1113 	conf->slab_cache = NULL;
1114 }
1115 
1116 static int raid5_end_read_request(struct bio * bi, unsigned int bytes_done,
1117 				   int error)
1118 {
1119  	struct stripe_head *sh = bi->bi_private;
1120 	raid5_conf_t *conf = sh->raid_conf;
1121 	int disks = sh->disks, i;
1122 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1123 	char b[BDEVNAME_SIZE];
1124 	mdk_rdev_t *rdev;
1125 
1126 	if (bi->bi_size)
1127 		return 1;
1128 
1129 	for (i=0 ; i<disks; i++)
1130 		if (bi == &sh->dev[i].req)
1131 			break;
1132 
1133 	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1134 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1135 		uptodate);
1136 	if (i == disks) {
1137 		BUG();
1138 		return 0;
1139 	}
1140 
1141 	if (uptodate) {
1142 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1143 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1144 			rdev = conf->disks[i].rdev;
1145 			printk(KERN_INFO "raid5:%s: read error corrected (%lu sectors at %llu on %s)\n",
1146 			       mdname(conf->mddev), STRIPE_SECTORS,
1147 			       (unsigned long long)sh->sector + rdev->data_offset,
1148 			       bdevname(rdev->bdev, b));
1149 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1150 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1151 		}
1152 		if (atomic_read(&conf->disks[i].rdev->read_errors))
1153 			atomic_set(&conf->disks[i].rdev->read_errors, 0);
1154 	} else {
1155 		const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1156 		int retry = 0;
1157 		rdev = conf->disks[i].rdev;
1158 
1159 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1160 		atomic_inc(&rdev->read_errors);
1161 		if (conf->mddev->degraded)
1162 			printk(KERN_WARNING "raid5:%s: read error not correctable (sector %llu on %s).\n",
1163 			       mdname(conf->mddev),
1164 			       (unsigned long long)sh->sector + rdev->data_offset,
1165 			       bdn);
1166 		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1167 			/* Oh, no!!! */
1168 			printk(KERN_WARNING "raid5:%s: read error NOT corrected!! (sector %llu on %s).\n",
1169 			       mdname(conf->mddev),
1170 			       (unsigned long long)sh->sector + rdev->data_offset,
1171 			       bdn);
1172 		else if (atomic_read(&rdev->read_errors)
1173 			 > conf->max_nr_stripes)
1174 			printk(KERN_WARNING
1175 			       "raid5:%s: Too many read errors, failing device %s.\n",
1176 			       mdname(conf->mddev), bdn);
1177 		else
1178 			retry = 1;
1179 		if (retry)
1180 			set_bit(R5_ReadError, &sh->dev[i].flags);
1181 		else {
1182 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1183 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1184 			md_error(conf->mddev, rdev);
1185 		}
1186 	}
1187 	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1188 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1189 	set_bit(STRIPE_HANDLE, &sh->state);
1190 	release_stripe(sh);
1191 	return 0;
1192 }
1193 
1194 static int raid5_end_write_request (struct bio *bi, unsigned int bytes_done,
1195 				    int error)
1196 {
1197  	struct stripe_head *sh = bi->bi_private;
1198 	raid5_conf_t *conf = sh->raid_conf;
1199 	int disks = sh->disks, i;
1200 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1201 
1202 	if (bi->bi_size)
1203 		return 1;
1204 
1205 	for (i=0 ; i<disks; i++)
1206 		if (bi == &sh->dev[i].req)
1207 			break;
1208 
1209 	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1210 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1211 		uptodate);
1212 	if (i == disks) {
1213 		BUG();
1214 		return 0;
1215 	}
1216 
1217 	if (!uptodate)
1218 		md_error(conf->mddev, conf->disks[i].rdev);
1219 
1220 	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1221 
1222 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1223 	set_bit(STRIPE_HANDLE, &sh->state);
1224 	release_stripe(sh);
1225 	return 0;
1226 }
1227 
1228 
1229 static sector_t compute_blocknr(struct stripe_head *sh, int i);
1230 
1231 static void raid5_build_block (struct stripe_head *sh, int i)
1232 {
1233 	struct r5dev *dev = &sh->dev[i];
1234 
1235 	bio_init(&dev->req);
1236 	dev->req.bi_io_vec = &dev->vec;
1237 	dev->req.bi_vcnt++;
1238 	dev->req.bi_max_vecs++;
1239 	dev->vec.bv_page = dev->page;
1240 	dev->vec.bv_len = STRIPE_SIZE;
1241 	dev->vec.bv_offset = 0;
1242 
1243 	dev->req.bi_sector = sh->sector;
1244 	dev->req.bi_private = sh;
1245 
1246 	dev->flags = 0;
1247 	dev->sector = compute_blocknr(sh, i);
1248 }
1249 
1250 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1251 {
1252 	char b[BDEVNAME_SIZE];
1253 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1254 	pr_debug("raid5: error called\n");
1255 
1256 	if (!test_bit(Faulty, &rdev->flags)) {
1257 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1258 		if (test_and_clear_bit(In_sync, &rdev->flags)) {
1259 			unsigned long flags;
1260 			spin_lock_irqsave(&conf->device_lock, flags);
1261 			mddev->degraded++;
1262 			spin_unlock_irqrestore(&conf->device_lock, flags);
1263 			/*
1264 			 * if recovery was running, make sure it aborts.
1265 			 */
1266 			set_bit(MD_RECOVERY_ERR, &mddev->recovery);
1267 		}
1268 		set_bit(Faulty, &rdev->flags);
1269 		printk (KERN_ALERT
1270 			"raid5: Disk failure on %s, disabling device."
1271 			" Operation continuing on %d devices\n",
1272 			bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1273 	}
1274 }
1275 
1276 /*
1277  * Input: a 'big' sector number,
1278  * Output: index of the data and parity disk, and the sector # in them.
1279  */
1280 static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
1281 			unsigned int data_disks, unsigned int * dd_idx,
1282 			unsigned int * pd_idx, raid5_conf_t *conf)
1283 {
1284 	long stripe;
1285 	unsigned long chunk_number;
1286 	unsigned int chunk_offset;
1287 	sector_t new_sector;
1288 	int sectors_per_chunk = conf->chunk_size >> 9;
1289 
1290 	/* First compute the information on this sector */
1291 
1292 	/*
1293 	 * Compute the chunk number and the sector offset inside the chunk
1294 	 */
1295 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
1296 	chunk_number = r_sector;
1297 	BUG_ON(r_sector != chunk_number);
1298 
1299 	/*
1300 	 * Compute the stripe number
1301 	 */
1302 	stripe = chunk_number / data_disks;
1303 
1304 	/*
1305 	 * Compute the data disk and parity disk indexes inside the stripe
1306 	 */
1307 	*dd_idx = chunk_number % data_disks;
1308 
1309 	/*
1310 	 * Select the parity disk based on the user selected algorithm.
1311 	 */
1312 	switch(conf->level) {
1313 	case 4:
1314 		*pd_idx = data_disks;
1315 		break;
1316 	case 5:
1317 		switch (conf->algorithm) {
1318 		case ALGORITHM_LEFT_ASYMMETRIC:
1319 			*pd_idx = data_disks - stripe % raid_disks;
1320 			if (*dd_idx >= *pd_idx)
1321 				(*dd_idx)++;
1322 			break;
1323 		case ALGORITHM_RIGHT_ASYMMETRIC:
1324 			*pd_idx = stripe % raid_disks;
1325 			if (*dd_idx >= *pd_idx)
1326 				(*dd_idx)++;
1327 			break;
1328 		case ALGORITHM_LEFT_SYMMETRIC:
1329 			*pd_idx = data_disks - stripe % raid_disks;
1330 			*dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1331 			break;
1332 		case ALGORITHM_RIGHT_SYMMETRIC:
1333 			*pd_idx = stripe % raid_disks;
1334 			*dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1335 			break;
1336 		default:
1337 			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1338 				conf->algorithm);
1339 		}
1340 		break;
1341 	case 6:
1342 
1343 		/**** FIX THIS ****/
1344 		switch (conf->algorithm) {
1345 		case ALGORITHM_LEFT_ASYMMETRIC:
1346 			*pd_idx = raid_disks - 1 - (stripe % raid_disks);
1347 			if (*pd_idx == raid_disks-1)
1348 				(*dd_idx)++; 	/* Q D D D P */
1349 			else if (*dd_idx >= *pd_idx)
1350 				(*dd_idx) += 2; /* D D P Q D */
1351 			break;
1352 		case ALGORITHM_RIGHT_ASYMMETRIC:
1353 			*pd_idx = stripe % raid_disks;
1354 			if (*pd_idx == raid_disks-1)
1355 				(*dd_idx)++; 	/* Q D D D P */
1356 			else if (*dd_idx >= *pd_idx)
1357 				(*dd_idx) += 2; /* D D P Q D */
1358 			break;
1359 		case ALGORITHM_LEFT_SYMMETRIC:
1360 			*pd_idx = raid_disks - 1 - (stripe % raid_disks);
1361 			*dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1362 			break;
1363 		case ALGORITHM_RIGHT_SYMMETRIC:
1364 			*pd_idx = stripe % raid_disks;
1365 			*dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1366 			break;
1367 		default:
1368 			printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1369 				conf->algorithm);
1370 		}
1371 		break;
1372 	}
1373 
1374 	/*
1375 	 * Finally, compute the new sector number
1376 	 */
1377 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1378 	return new_sector;
1379 }
1380 
1381 
1382 static sector_t compute_blocknr(struct stripe_head *sh, int i)
1383 {
1384 	raid5_conf_t *conf = sh->raid_conf;
1385 	int raid_disks = sh->disks;
1386 	int data_disks = raid_disks - conf->max_degraded;
1387 	sector_t new_sector = sh->sector, check;
1388 	int sectors_per_chunk = conf->chunk_size >> 9;
1389 	sector_t stripe;
1390 	int chunk_offset;
1391 	int chunk_number, dummy1, dummy2, dd_idx = i;
1392 	sector_t r_sector;
1393 
1394 
1395 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
1396 	stripe = new_sector;
1397 	BUG_ON(new_sector != stripe);
1398 
1399 	if (i == sh->pd_idx)
1400 		return 0;
1401 	switch(conf->level) {
1402 	case 4: break;
1403 	case 5:
1404 		switch (conf->algorithm) {
1405 		case ALGORITHM_LEFT_ASYMMETRIC:
1406 		case ALGORITHM_RIGHT_ASYMMETRIC:
1407 			if (i > sh->pd_idx)
1408 				i--;
1409 			break;
1410 		case ALGORITHM_LEFT_SYMMETRIC:
1411 		case ALGORITHM_RIGHT_SYMMETRIC:
1412 			if (i < sh->pd_idx)
1413 				i += raid_disks;
1414 			i -= (sh->pd_idx + 1);
1415 			break;
1416 		default:
1417 			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1418 			       conf->algorithm);
1419 		}
1420 		break;
1421 	case 6:
1422 		if (i == raid6_next_disk(sh->pd_idx, raid_disks))
1423 			return 0; /* It is the Q disk */
1424 		switch (conf->algorithm) {
1425 		case ALGORITHM_LEFT_ASYMMETRIC:
1426 		case ALGORITHM_RIGHT_ASYMMETRIC:
1427 		  	if (sh->pd_idx == raid_disks-1)
1428 				i--; 	/* Q D D D P */
1429 			else if (i > sh->pd_idx)
1430 				i -= 2; /* D D P Q D */
1431 			break;
1432 		case ALGORITHM_LEFT_SYMMETRIC:
1433 		case ALGORITHM_RIGHT_SYMMETRIC:
1434 			if (sh->pd_idx == raid_disks-1)
1435 				i--; /* Q D D D P */
1436 			else {
1437 				/* D D P Q D */
1438 				if (i < sh->pd_idx)
1439 					i += raid_disks;
1440 				i -= (sh->pd_idx + 2);
1441 			}
1442 			break;
1443 		default:
1444 			printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1445 				conf->algorithm);
1446 		}
1447 		break;
1448 	}
1449 
1450 	chunk_number = stripe * data_disks + i;
1451 	r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1452 
1453 	check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
1454 	if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
1455 		printk(KERN_ERR "compute_blocknr: map not correct\n");
1456 		return 0;
1457 	}
1458 	return r_sector;
1459 }
1460 
1461 
1462 
1463 /*
1464  * Copy data between a page in the stripe cache, and one or more bion
1465  * The page could align with the middle of the bio, or there could be
1466  * several bion, each with several bio_vecs, which cover part of the page
1467  * Multiple bion are linked together on bi_next.  There may be extras
1468  * at the end of this list.  We ignore them.
1469  */
1470 static void copy_data(int frombio, struct bio *bio,
1471 		     struct page *page,
1472 		     sector_t sector)
1473 {
1474 	char *pa = page_address(page);
1475 	struct bio_vec *bvl;
1476 	int i;
1477 	int page_offset;
1478 
1479 	if (bio->bi_sector >= sector)
1480 		page_offset = (signed)(bio->bi_sector - sector) * 512;
1481 	else
1482 		page_offset = (signed)(sector - bio->bi_sector) * -512;
1483 	bio_for_each_segment(bvl, bio, i) {
1484 		int len = bio_iovec_idx(bio,i)->bv_len;
1485 		int clen;
1486 		int b_offset = 0;
1487 
1488 		if (page_offset < 0) {
1489 			b_offset = -page_offset;
1490 			page_offset += b_offset;
1491 			len -= b_offset;
1492 		}
1493 
1494 		if (len > 0 && page_offset + len > STRIPE_SIZE)
1495 			clen = STRIPE_SIZE - page_offset;
1496 		else clen = len;
1497 
1498 		if (clen > 0) {
1499 			char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1500 			if (frombio)
1501 				memcpy(pa+page_offset, ba+b_offset, clen);
1502 			else
1503 				memcpy(ba+b_offset, pa+page_offset, clen);
1504 			__bio_kunmap_atomic(ba, KM_USER0);
1505 		}
1506 		if (clen < len) /* hit end of page */
1507 			break;
1508 		page_offset +=  len;
1509 	}
1510 }
1511 
1512 #define check_xor()	do {						  \
1513 				if (count == MAX_XOR_BLOCKS) {		  \
1514 				xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1515 				count = 0;				  \
1516 			   }						  \
1517 			} while(0)
1518 
1519 static void compute_parity6(struct stripe_head *sh, int method)
1520 {
1521 	raid6_conf_t *conf = sh->raid_conf;
1522 	int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
1523 	struct bio *chosen;
1524 	/**** FIX THIS: This could be very bad if disks is close to 256 ****/
1525 	void *ptrs[disks];
1526 
1527 	qd_idx = raid6_next_disk(pd_idx, disks);
1528 	d0_idx = raid6_next_disk(qd_idx, disks);
1529 
1530 	pr_debug("compute_parity, stripe %llu, method %d\n",
1531 		(unsigned long long)sh->sector, method);
1532 
1533 	switch(method) {
1534 	case READ_MODIFY_WRITE:
1535 		BUG();		/* READ_MODIFY_WRITE N/A for RAID-6 */
1536 	case RECONSTRUCT_WRITE:
1537 		for (i= disks; i-- ;)
1538 			if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1539 				chosen = sh->dev[i].towrite;
1540 				sh->dev[i].towrite = NULL;
1541 
1542 				if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1543 					wake_up(&conf->wait_for_overlap);
1544 
1545 				BUG_ON(sh->dev[i].written);
1546 				sh->dev[i].written = chosen;
1547 			}
1548 		break;
1549 	case CHECK_PARITY:
1550 		BUG();		/* Not implemented yet */
1551 	}
1552 
1553 	for (i = disks; i--;)
1554 		if (sh->dev[i].written) {
1555 			sector_t sector = sh->dev[i].sector;
1556 			struct bio *wbi = sh->dev[i].written;
1557 			while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1558 				copy_data(1, wbi, sh->dev[i].page, sector);
1559 				wbi = r5_next_bio(wbi, sector);
1560 			}
1561 
1562 			set_bit(R5_LOCKED, &sh->dev[i].flags);
1563 			set_bit(R5_UPTODATE, &sh->dev[i].flags);
1564 		}
1565 
1566 //	switch(method) {
1567 //	case RECONSTRUCT_WRITE:
1568 //	case CHECK_PARITY:
1569 //	case UPDATE_PARITY:
1570 		/* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1571 		/* FIX: Is this ordering of drives even remotely optimal? */
1572 		count = 0;
1573 		i = d0_idx;
1574 		do {
1575 			ptrs[count++] = page_address(sh->dev[i].page);
1576 			if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1577 				printk("block %d/%d not uptodate on parity calc\n", i,count);
1578 			i = raid6_next_disk(i, disks);
1579 		} while ( i != d0_idx );
1580 //		break;
1581 //	}
1582 
1583 	raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);
1584 
1585 	switch(method) {
1586 	case RECONSTRUCT_WRITE:
1587 		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1588 		set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1589 		set_bit(R5_LOCKED,   &sh->dev[pd_idx].flags);
1590 		set_bit(R5_LOCKED,   &sh->dev[qd_idx].flags);
1591 		break;
1592 	case UPDATE_PARITY:
1593 		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1594 		set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1595 		break;
1596 	}
1597 }
1598 
1599 
1600 /* Compute one missing block */
1601 static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1602 {
1603 	int i, count, disks = sh->disks;
1604 	void *ptr[MAX_XOR_BLOCKS], *dest, *p;
1605 	int pd_idx = sh->pd_idx;
1606 	int qd_idx = raid6_next_disk(pd_idx, disks);
1607 
1608 	pr_debug("compute_block_1, stripe %llu, idx %d\n",
1609 		(unsigned long long)sh->sector, dd_idx);
1610 
1611 	if ( dd_idx == qd_idx ) {
1612 		/* We're actually computing the Q drive */
1613 		compute_parity6(sh, UPDATE_PARITY);
1614 	} else {
1615 		dest = page_address(sh->dev[dd_idx].page);
1616 		if (!nozero) memset(dest, 0, STRIPE_SIZE);
1617 		count = 0;
1618 		for (i = disks ; i--; ) {
1619 			if (i == dd_idx || i == qd_idx)
1620 				continue;
1621 			p = page_address(sh->dev[i].page);
1622 			if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1623 				ptr[count++] = p;
1624 			else
1625 				printk("compute_block() %d, stripe %llu, %d"
1626 				       " not present\n", dd_idx,
1627 				       (unsigned long long)sh->sector, i);
1628 
1629 			check_xor();
1630 		}
1631 		if (count)
1632 			xor_blocks(count, STRIPE_SIZE, dest, ptr);
1633 		if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1634 		else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1635 	}
1636 }
1637 
1638 /* Compute two missing blocks */
1639 static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1640 {
1641 	int i, count, disks = sh->disks;
1642 	int pd_idx = sh->pd_idx;
1643 	int qd_idx = raid6_next_disk(pd_idx, disks);
1644 	int d0_idx = raid6_next_disk(qd_idx, disks);
1645 	int faila, failb;
1646 
1647 	/* faila and failb are disk numbers relative to d0_idx */
1648 	/* pd_idx become disks-2 and qd_idx become disks-1 */
1649 	faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx;
1650 	failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx;
1651 
1652 	BUG_ON(faila == failb);
1653 	if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1654 
1655 	pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1656 	       (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb);
1657 
1658 	if ( failb == disks-1 ) {
1659 		/* Q disk is one of the missing disks */
1660 		if ( faila == disks-2 ) {
1661 			/* Missing P+Q, just recompute */
1662 			compute_parity6(sh, UPDATE_PARITY);
1663 			return;
1664 		} else {
1665 			/* We're missing D+Q; recompute D from P */
1666 			compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0);
1667 			compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1668 			return;
1669 		}
1670 	}
1671 
1672 	/* We're missing D+P or D+D; build pointer table */
1673 	{
1674 		/**** FIX THIS: This could be very bad if disks is close to 256 ****/
1675 		void *ptrs[disks];
1676 
1677 		count = 0;
1678 		i = d0_idx;
1679 		do {
1680 			ptrs[count++] = page_address(sh->dev[i].page);
1681 			i = raid6_next_disk(i, disks);
1682 			if (i != dd_idx1 && i != dd_idx2 &&
1683 			    !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1684 				printk("compute_2 with missing block %d/%d\n", count, i);
1685 		} while ( i != d0_idx );
1686 
1687 		if ( failb == disks-2 ) {
1688 			/* We're missing D+P. */
1689 			raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
1690 		} else {
1691 			/* We're missing D+D. */
1692 			raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
1693 		}
1694 
1695 		/* Both the above update both missing blocks */
1696 		set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1697 		set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1698 	}
1699 }
1700 
1701 static int
1702 handle_write_operations5(struct stripe_head *sh, int rcw, int expand)
1703 {
1704 	int i, pd_idx = sh->pd_idx, disks = sh->disks;
1705 	int locked = 0;
1706 
1707 	if (rcw) {
1708 		/* if we are not expanding this is a proper write request, and
1709 		 * there will be bios with new data to be drained into the
1710 		 * stripe cache
1711 		 */
1712 		if (!expand) {
1713 			set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1714 			sh->ops.count++;
1715 		}
1716 
1717 		set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1718 		sh->ops.count++;
1719 
1720 		for (i = disks; i--; ) {
1721 			struct r5dev *dev = &sh->dev[i];
1722 
1723 			if (dev->towrite) {
1724 				set_bit(R5_LOCKED, &dev->flags);
1725 				if (!expand)
1726 					clear_bit(R5_UPTODATE, &dev->flags);
1727 				locked++;
1728 			}
1729 		}
1730 	} else {
1731 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1732 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1733 
1734 		set_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
1735 		set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1736 		set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1737 
1738 		sh->ops.count += 3;
1739 
1740 		for (i = disks; i--; ) {
1741 			struct r5dev *dev = &sh->dev[i];
1742 			if (i == pd_idx)
1743 				continue;
1744 
1745 			/* For a read-modify write there may be blocks that are
1746 			 * locked for reading while others are ready to be
1747 			 * written so we distinguish these blocks by the
1748 			 * R5_Wantprexor bit
1749 			 */
1750 			if (dev->towrite &&
1751 			    (test_bit(R5_UPTODATE, &dev->flags) ||
1752 			    test_bit(R5_Wantcompute, &dev->flags))) {
1753 				set_bit(R5_Wantprexor, &dev->flags);
1754 				set_bit(R5_LOCKED, &dev->flags);
1755 				clear_bit(R5_UPTODATE, &dev->flags);
1756 				locked++;
1757 			}
1758 		}
1759 	}
1760 
1761 	/* keep the parity disk locked while asynchronous operations
1762 	 * are in flight
1763 	 */
1764 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1765 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1766 	locked++;
1767 
1768 	pr_debug("%s: stripe %llu locked: %d pending: %lx\n",
1769 		__FUNCTION__, (unsigned long long)sh->sector,
1770 		locked, sh->ops.pending);
1771 
1772 	return locked;
1773 }
1774 
1775 /*
1776  * Each stripe/dev can have one or more bion attached.
1777  * toread/towrite point to the first in a chain.
1778  * The bi_next chain must be in order.
1779  */
1780 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1781 {
1782 	struct bio **bip;
1783 	raid5_conf_t *conf = sh->raid_conf;
1784 	int firstwrite=0;
1785 
1786 	pr_debug("adding bh b#%llu to stripe s#%llu\n",
1787 		(unsigned long long)bi->bi_sector,
1788 		(unsigned long long)sh->sector);
1789 
1790 
1791 	spin_lock(&sh->lock);
1792 	spin_lock_irq(&conf->device_lock);
1793 	if (forwrite) {
1794 		bip = &sh->dev[dd_idx].towrite;
1795 		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1796 			firstwrite = 1;
1797 	} else
1798 		bip = &sh->dev[dd_idx].toread;
1799 	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1800 		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1801 			goto overlap;
1802 		bip = & (*bip)->bi_next;
1803 	}
1804 	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1805 		goto overlap;
1806 
1807 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1808 	if (*bip)
1809 		bi->bi_next = *bip;
1810 	*bip = bi;
1811 	bi->bi_phys_segments ++;
1812 	spin_unlock_irq(&conf->device_lock);
1813 	spin_unlock(&sh->lock);
1814 
1815 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1816 		(unsigned long long)bi->bi_sector,
1817 		(unsigned long long)sh->sector, dd_idx);
1818 
1819 	if (conf->mddev->bitmap && firstwrite) {
1820 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1821 				  STRIPE_SECTORS, 0);
1822 		sh->bm_seq = conf->seq_flush+1;
1823 		set_bit(STRIPE_BIT_DELAY, &sh->state);
1824 	}
1825 
1826 	if (forwrite) {
1827 		/* check if page is covered */
1828 		sector_t sector = sh->dev[dd_idx].sector;
1829 		for (bi=sh->dev[dd_idx].towrite;
1830 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1831 			     bi && bi->bi_sector <= sector;
1832 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1833 			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1834 				sector = bi->bi_sector + (bi->bi_size>>9);
1835 		}
1836 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1837 			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1838 	}
1839 	return 1;
1840 
1841  overlap:
1842 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1843 	spin_unlock_irq(&conf->device_lock);
1844 	spin_unlock(&sh->lock);
1845 	return 0;
1846 }
1847 
1848 static void end_reshape(raid5_conf_t *conf);
1849 
1850 static int page_is_zero(struct page *p)
1851 {
1852 	char *a = page_address(p);
1853 	return ((*(u32*)a) == 0 &&
1854 		memcmp(a, a+4, STRIPE_SIZE-4)==0);
1855 }
1856 
1857 static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks)
1858 {
1859 	int sectors_per_chunk = conf->chunk_size >> 9;
1860 	int pd_idx, dd_idx;
1861 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
1862 
1863 	raid5_compute_sector(stripe * (disks - conf->max_degraded)
1864 			     *sectors_per_chunk + chunk_offset,
1865 			     disks, disks - conf->max_degraded,
1866 			     &dd_idx, &pd_idx, conf);
1867 	return pd_idx;
1868 }
1869 
1870 static void
1871 handle_requests_to_failed_array(raid5_conf_t *conf, struct stripe_head *sh,
1872 				struct stripe_head_state *s, int disks,
1873 				struct bio **return_bi)
1874 {
1875 	int i;
1876 	for (i = disks; i--; ) {
1877 		struct bio *bi;
1878 		int bitmap_end = 0;
1879 
1880 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1881 			mdk_rdev_t *rdev;
1882 			rcu_read_lock();
1883 			rdev = rcu_dereference(conf->disks[i].rdev);
1884 			if (rdev && test_bit(In_sync, &rdev->flags))
1885 				/* multiple read failures in one stripe */
1886 				md_error(conf->mddev, rdev);
1887 			rcu_read_unlock();
1888 		}
1889 		spin_lock_irq(&conf->device_lock);
1890 		/* fail all writes first */
1891 		bi = sh->dev[i].towrite;
1892 		sh->dev[i].towrite = NULL;
1893 		if (bi) {
1894 			s->to_write--;
1895 			bitmap_end = 1;
1896 		}
1897 
1898 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1899 			wake_up(&conf->wait_for_overlap);
1900 
1901 		while (bi && bi->bi_sector <
1902 			sh->dev[i].sector + STRIPE_SECTORS) {
1903 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1904 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
1905 			if (--bi->bi_phys_segments == 0) {
1906 				md_write_end(conf->mddev);
1907 				bi->bi_next = *return_bi;
1908 				*return_bi = bi;
1909 			}
1910 			bi = nextbi;
1911 		}
1912 		/* and fail all 'written' */
1913 		bi = sh->dev[i].written;
1914 		sh->dev[i].written = NULL;
1915 		if (bi) bitmap_end = 1;
1916 		while (bi && bi->bi_sector <
1917 		       sh->dev[i].sector + STRIPE_SECTORS) {
1918 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
1919 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
1920 			if (--bi->bi_phys_segments == 0) {
1921 				md_write_end(conf->mddev);
1922 				bi->bi_next = *return_bi;
1923 				*return_bi = bi;
1924 			}
1925 			bi = bi2;
1926 		}
1927 
1928 		/* fail any reads if this device is non-operational and
1929 		 * the data has not reached the cache yet.
1930 		 */
1931 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
1932 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
1933 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
1934 			bi = sh->dev[i].toread;
1935 			sh->dev[i].toread = NULL;
1936 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1937 				wake_up(&conf->wait_for_overlap);
1938 			if (bi) s->to_read--;
1939 			while (bi && bi->bi_sector <
1940 			       sh->dev[i].sector + STRIPE_SECTORS) {
1941 				struct bio *nextbi =
1942 					r5_next_bio(bi, sh->dev[i].sector);
1943 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
1944 				if (--bi->bi_phys_segments == 0) {
1945 					bi->bi_next = *return_bi;
1946 					*return_bi = bi;
1947 				}
1948 				bi = nextbi;
1949 			}
1950 		}
1951 		spin_unlock_irq(&conf->device_lock);
1952 		if (bitmap_end)
1953 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1954 					STRIPE_SECTORS, 0, 0);
1955 	}
1956 
1957 }
1958 
1959 /* __handle_issuing_new_read_requests5 - returns 0 if there are no more disks
1960  * to process
1961  */
1962 static int __handle_issuing_new_read_requests5(struct stripe_head *sh,
1963 			struct stripe_head_state *s, int disk_idx, int disks)
1964 {
1965 	struct r5dev *dev = &sh->dev[disk_idx];
1966 	struct r5dev *failed_dev = &sh->dev[s->failed_num];
1967 
1968 	/* don't schedule compute operations or reads on the parity block while
1969 	 * a check is in flight
1970 	 */
1971 	if ((disk_idx == sh->pd_idx) &&
1972 	     test_bit(STRIPE_OP_CHECK, &sh->ops.pending))
1973 		return ~0;
1974 
1975 	/* is the data in this block needed, and can we get it? */
1976 	if (!test_bit(R5_LOCKED, &dev->flags) &&
1977 	    !test_bit(R5_UPTODATE, &dev->flags) && (dev->toread ||
1978 	    (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
1979 	     s->syncing || s->expanding || (s->failed &&
1980 	     (failed_dev->toread || (failed_dev->towrite &&
1981 	     !test_bit(R5_OVERWRITE, &failed_dev->flags)
1982 	     ))))) {
1983 		/* 1/ We would like to get this block, possibly by computing it,
1984 		 * but we might not be able to.
1985 		 *
1986 		 * 2/ Since parity check operations potentially make the parity
1987 		 * block !uptodate it will need to be refreshed before any
1988 		 * compute operations on data disks are scheduled.
1989 		 *
1990 		 * 3/ We hold off parity block re-reads until check operations
1991 		 * have quiesced.
1992 		 */
1993 		if ((s->uptodate == disks - 1) &&
1994 		    !test_bit(STRIPE_OP_CHECK, &sh->ops.pending)) {
1995 			set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
1996 			set_bit(R5_Wantcompute, &dev->flags);
1997 			sh->ops.target = disk_idx;
1998 			s->req_compute = 1;
1999 			sh->ops.count++;
2000 			/* Careful: from this point on 'uptodate' is in the eye
2001 			 * of raid5_run_ops which services 'compute' operations
2002 			 * before writes. R5_Wantcompute flags a block that will
2003 			 * be R5_UPTODATE by the time it is needed for a
2004 			 * subsequent operation.
2005 			 */
2006 			s->uptodate++;
2007 			return 0; /* uptodate + compute == disks */
2008 		} else if ((s->uptodate < disks - 1) &&
2009 			test_bit(R5_Insync, &dev->flags)) {
2010 			/* Note: we hold off compute operations while checks are
2011 			 * in flight, but we still prefer 'compute' over 'read'
2012 			 * hence we only read if (uptodate < * disks-1)
2013 			 */
2014 			set_bit(R5_LOCKED, &dev->flags);
2015 			set_bit(R5_Wantread, &dev->flags);
2016 			if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2017 				sh->ops.count++;
2018 			s->locked++;
2019 			pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2020 				s->syncing);
2021 		}
2022 	}
2023 
2024 	return ~0;
2025 }
2026 
2027 static void handle_issuing_new_read_requests5(struct stripe_head *sh,
2028 			struct stripe_head_state *s, int disks)
2029 {
2030 	int i;
2031 
2032 	/* Clear completed compute operations.  Parity recovery
2033 	 * (STRIPE_OP_MOD_REPAIR_PD) implies a write-back which is handled
2034 	 * later on in this routine
2035 	 */
2036 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) &&
2037 		!test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2038 		clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
2039 		clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack);
2040 		clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2041 	}
2042 
2043 	/* look for blocks to read/compute, skip this if a compute
2044 	 * is already in flight, or if the stripe contents are in the
2045 	 * midst of changing due to a write
2046 	 */
2047 	if (!test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
2048 		!test_bit(STRIPE_OP_PREXOR, &sh->ops.pending) &&
2049 		!test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2050 		for (i = disks; i--; )
2051 			if (__handle_issuing_new_read_requests5(
2052 				sh, s, i, disks) == 0)
2053 				break;
2054 	}
2055 	set_bit(STRIPE_HANDLE, &sh->state);
2056 }
2057 
2058 static void handle_issuing_new_read_requests6(struct stripe_head *sh,
2059 			struct stripe_head_state *s, struct r6_state *r6s,
2060 			int disks)
2061 {
2062 	int i;
2063 	for (i = disks; i--; ) {
2064 		struct r5dev *dev = &sh->dev[i];
2065 		if (!test_bit(R5_LOCKED, &dev->flags) &&
2066 		    !test_bit(R5_UPTODATE, &dev->flags) &&
2067 		    (dev->toread || (dev->towrite &&
2068 		     !test_bit(R5_OVERWRITE, &dev->flags)) ||
2069 		     s->syncing || s->expanding ||
2070 		     (s->failed >= 1 &&
2071 		      (sh->dev[r6s->failed_num[0]].toread ||
2072 		       s->to_write)) ||
2073 		     (s->failed >= 2 &&
2074 		      (sh->dev[r6s->failed_num[1]].toread ||
2075 		       s->to_write)))) {
2076 			/* we would like to get this block, possibly
2077 			 * by computing it, but we might not be able to
2078 			 */
2079 			if (s->uptodate == disks-1) {
2080 				pr_debug("Computing stripe %llu block %d\n",
2081 				       (unsigned long long)sh->sector, i);
2082 				compute_block_1(sh, i, 0);
2083 				s->uptodate++;
2084 			} else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
2085 				/* Computing 2-failure is *very* expensive; only
2086 				 * do it if failed >= 2
2087 				 */
2088 				int other;
2089 				for (other = disks; other--; ) {
2090 					if (other == i)
2091 						continue;
2092 					if (!test_bit(R5_UPTODATE,
2093 					      &sh->dev[other].flags))
2094 						break;
2095 				}
2096 				BUG_ON(other < 0);
2097 				pr_debug("Computing stripe %llu blocks %d,%d\n",
2098 				       (unsigned long long)sh->sector,
2099 				       i, other);
2100 				compute_block_2(sh, i, other);
2101 				s->uptodate += 2;
2102 			} else if (test_bit(R5_Insync, &dev->flags)) {
2103 				set_bit(R5_LOCKED, &dev->flags);
2104 				set_bit(R5_Wantread, &dev->flags);
2105 				s->locked++;
2106 				pr_debug("Reading block %d (sync=%d)\n",
2107 					i, s->syncing);
2108 			}
2109 		}
2110 	}
2111 	set_bit(STRIPE_HANDLE, &sh->state);
2112 }
2113 
2114 
2115 /* handle_completed_write_requests
2116  * any written block on an uptodate or failed drive can be returned.
2117  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2118  * never LOCKED, so we don't need to test 'failed' directly.
2119  */
2120 static void handle_completed_write_requests(raid5_conf_t *conf,
2121 	struct stripe_head *sh, int disks, struct bio **return_bi)
2122 {
2123 	int i;
2124 	struct r5dev *dev;
2125 
2126 	for (i = disks; i--; )
2127 		if (sh->dev[i].written) {
2128 			dev = &sh->dev[i];
2129 			if (!test_bit(R5_LOCKED, &dev->flags) &&
2130 				test_bit(R5_UPTODATE, &dev->flags)) {
2131 				/* We can return any write requests */
2132 				struct bio *wbi, *wbi2;
2133 				int bitmap_end = 0;
2134 				pr_debug("Return write for disc %d\n", i);
2135 				spin_lock_irq(&conf->device_lock);
2136 				wbi = dev->written;
2137 				dev->written = NULL;
2138 				while (wbi && wbi->bi_sector <
2139 					dev->sector + STRIPE_SECTORS) {
2140 					wbi2 = r5_next_bio(wbi, dev->sector);
2141 					if (--wbi->bi_phys_segments == 0) {
2142 						md_write_end(conf->mddev);
2143 						wbi->bi_next = *return_bi;
2144 						*return_bi = wbi;
2145 					}
2146 					wbi = wbi2;
2147 				}
2148 				if (dev->towrite == NULL)
2149 					bitmap_end = 1;
2150 				spin_unlock_irq(&conf->device_lock);
2151 				if (bitmap_end)
2152 					bitmap_endwrite(conf->mddev->bitmap,
2153 							sh->sector,
2154 							STRIPE_SECTORS,
2155 					 !test_bit(STRIPE_DEGRADED, &sh->state),
2156 							0);
2157 			}
2158 		}
2159 }
2160 
2161 static void handle_issuing_new_write_requests5(raid5_conf_t *conf,
2162 		struct stripe_head *sh,	struct stripe_head_state *s, int disks)
2163 {
2164 	int rmw = 0, rcw = 0, i;
2165 	for (i = disks; i--; ) {
2166 		/* would I have to read this buffer for read_modify_write */
2167 		struct r5dev *dev = &sh->dev[i];
2168 		if ((dev->towrite || i == sh->pd_idx) &&
2169 		    !test_bit(R5_LOCKED, &dev->flags) &&
2170 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2171 		      test_bit(R5_Wantcompute, &dev->flags))) {
2172 			if (test_bit(R5_Insync, &dev->flags))
2173 				rmw++;
2174 			else
2175 				rmw += 2*disks;  /* cannot read it */
2176 		}
2177 		/* Would I have to read this buffer for reconstruct_write */
2178 		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2179 		    !test_bit(R5_LOCKED, &dev->flags) &&
2180 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2181 		    test_bit(R5_Wantcompute, &dev->flags))) {
2182 			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2183 			else
2184 				rcw += 2*disks;
2185 		}
2186 	}
2187 	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2188 		(unsigned long long)sh->sector, rmw, rcw);
2189 	set_bit(STRIPE_HANDLE, &sh->state);
2190 	if (rmw < rcw && rmw > 0)
2191 		/* prefer read-modify-write, but need to get some data */
2192 		for (i = disks; i--; ) {
2193 			struct r5dev *dev = &sh->dev[i];
2194 			if ((dev->towrite || i == sh->pd_idx) &&
2195 			    !test_bit(R5_LOCKED, &dev->flags) &&
2196 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2197 			    test_bit(R5_Wantcompute, &dev->flags)) &&
2198 			    test_bit(R5_Insync, &dev->flags)) {
2199 				if (
2200 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2201 					pr_debug("Read_old block "
2202 						"%d for r-m-w\n", i);
2203 					set_bit(R5_LOCKED, &dev->flags);
2204 					set_bit(R5_Wantread, &dev->flags);
2205 					if (!test_and_set_bit(
2206 						STRIPE_OP_IO, &sh->ops.pending))
2207 						sh->ops.count++;
2208 					s->locked++;
2209 				} else {
2210 					set_bit(STRIPE_DELAYED, &sh->state);
2211 					set_bit(STRIPE_HANDLE, &sh->state);
2212 				}
2213 			}
2214 		}
2215 	if (rcw <= rmw && rcw > 0)
2216 		/* want reconstruct write, but need to get some data */
2217 		for (i = disks; i--; ) {
2218 			struct r5dev *dev = &sh->dev[i];
2219 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2220 			    i != sh->pd_idx &&
2221 			    !test_bit(R5_LOCKED, &dev->flags) &&
2222 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2223 			    test_bit(R5_Wantcompute, &dev->flags)) &&
2224 			    test_bit(R5_Insync, &dev->flags)) {
2225 				if (
2226 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2227 					pr_debug("Read_old block "
2228 						"%d for Reconstruct\n", i);
2229 					set_bit(R5_LOCKED, &dev->flags);
2230 					set_bit(R5_Wantread, &dev->flags);
2231 					if (!test_and_set_bit(
2232 						STRIPE_OP_IO, &sh->ops.pending))
2233 						sh->ops.count++;
2234 					s->locked++;
2235 				} else {
2236 					set_bit(STRIPE_DELAYED, &sh->state);
2237 					set_bit(STRIPE_HANDLE, &sh->state);
2238 				}
2239 			}
2240 		}
2241 	/* now if nothing is locked, and if we have enough data,
2242 	 * we can start a write request
2243 	 */
2244 	/* since handle_stripe can be called at any time we need to handle the
2245 	 * case where a compute block operation has been submitted and then a
2246 	 * subsequent call wants to start a write request.  raid5_run_ops only
2247 	 * handles the case where compute block and postxor are requested
2248 	 * simultaneously.  If this is not the case then new writes need to be
2249 	 * held off until the compute completes.
2250 	 */
2251 	if ((s->req_compute ||
2252 	    !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) &&
2253 		(s->locked == 0 && (rcw == 0 || rmw == 0) &&
2254 		!test_bit(STRIPE_BIT_DELAY, &sh->state)))
2255 		s->locked += handle_write_operations5(sh, rcw == 0, 0);
2256 }
2257 
2258 static void handle_issuing_new_write_requests6(raid5_conf_t *conf,
2259 		struct stripe_head *sh,	struct stripe_head_state *s,
2260 		struct r6_state *r6s, int disks)
2261 {
2262 	int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
2263 	int qd_idx = r6s->qd_idx;
2264 	for (i = disks; i--; ) {
2265 		struct r5dev *dev = &sh->dev[i];
2266 		/* Would I have to read this buffer for reconstruct_write */
2267 		if (!test_bit(R5_OVERWRITE, &dev->flags)
2268 		    && i != pd_idx && i != qd_idx
2269 		    && (!test_bit(R5_LOCKED, &dev->flags)
2270 			    ) &&
2271 		    !test_bit(R5_UPTODATE, &dev->flags)) {
2272 			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2273 			else {
2274 				pr_debug("raid6: must_compute: "
2275 					"disk %d flags=%#lx\n", i, dev->flags);
2276 				must_compute++;
2277 			}
2278 		}
2279 	}
2280 	pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2281 	       (unsigned long long)sh->sector, rcw, must_compute);
2282 	set_bit(STRIPE_HANDLE, &sh->state);
2283 
2284 	if (rcw > 0)
2285 		/* want reconstruct write, but need to get some data */
2286 		for (i = disks; i--; ) {
2287 			struct r5dev *dev = &sh->dev[i];
2288 			if (!test_bit(R5_OVERWRITE, &dev->flags)
2289 			    && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2290 			    && !test_bit(R5_LOCKED, &dev->flags) &&
2291 			    !test_bit(R5_UPTODATE, &dev->flags) &&
2292 			    test_bit(R5_Insync, &dev->flags)) {
2293 				if (
2294 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2295 					pr_debug("Read_old stripe %llu "
2296 						"block %d for Reconstruct\n",
2297 					     (unsigned long long)sh->sector, i);
2298 					set_bit(R5_LOCKED, &dev->flags);
2299 					set_bit(R5_Wantread, &dev->flags);
2300 					s->locked++;
2301 				} else {
2302 					pr_debug("Request delayed stripe %llu "
2303 						"block %d for Reconstruct\n",
2304 					     (unsigned long long)sh->sector, i);
2305 					set_bit(STRIPE_DELAYED, &sh->state);
2306 					set_bit(STRIPE_HANDLE, &sh->state);
2307 				}
2308 			}
2309 		}
2310 	/* now if nothing is locked, and if we have enough data, we can start a
2311 	 * write request
2312 	 */
2313 	if (s->locked == 0 && rcw == 0 &&
2314 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2315 		if (must_compute > 0) {
2316 			/* We have failed blocks and need to compute them */
2317 			switch (s->failed) {
2318 			case 0:
2319 				BUG();
2320 			case 1:
2321 				compute_block_1(sh, r6s->failed_num[0], 0);
2322 				break;
2323 			case 2:
2324 				compute_block_2(sh, r6s->failed_num[0],
2325 						r6s->failed_num[1]);
2326 				break;
2327 			default: /* This request should have been failed? */
2328 				BUG();
2329 			}
2330 		}
2331 
2332 		pr_debug("Computing parity for stripe %llu\n",
2333 			(unsigned long long)sh->sector);
2334 		compute_parity6(sh, RECONSTRUCT_WRITE);
2335 		/* now every locked buffer is ready to be written */
2336 		for (i = disks; i--; )
2337 			if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2338 				pr_debug("Writing stripe %llu block %d\n",
2339 				       (unsigned long long)sh->sector, i);
2340 				s->locked++;
2341 				set_bit(R5_Wantwrite, &sh->dev[i].flags);
2342 			}
2343 		/* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2344 		set_bit(STRIPE_INSYNC, &sh->state);
2345 
2346 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2347 			atomic_dec(&conf->preread_active_stripes);
2348 			if (atomic_read(&conf->preread_active_stripes) <
2349 			    IO_THRESHOLD)
2350 				md_wakeup_thread(conf->mddev->thread);
2351 		}
2352 	}
2353 }
2354 
2355 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2356 				struct stripe_head_state *s, int disks)
2357 {
2358 	set_bit(STRIPE_HANDLE, &sh->state);
2359 	/* Take one of the following actions:
2360 	 * 1/ start a check parity operation if (uptodate == disks)
2361 	 * 2/ finish a check parity operation and act on the result
2362 	 * 3/ skip to the writeback section if we previously
2363 	 *    initiated a recovery operation
2364 	 */
2365 	if (s->failed == 0 &&
2366 	    !test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2367 		if (!test_and_set_bit(STRIPE_OP_CHECK, &sh->ops.pending)) {
2368 			BUG_ON(s->uptodate != disks);
2369 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2370 			sh->ops.count++;
2371 			s->uptodate--;
2372 		} else if (
2373 		       test_and_clear_bit(STRIPE_OP_CHECK, &sh->ops.complete)) {
2374 			clear_bit(STRIPE_OP_CHECK, &sh->ops.ack);
2375 			clear_bit(STRIPE_OP_CHECK, &sh->ops.pending);
2376 
2377 			if (sh->ops.zero_sum_result == 0)
2378 				/* parity is correct (on disc,
2379 				 * not in buffer any more)
2380 				 */
2381 				set_bit(STRIPE_INSYNC, &sh->state);
2382 			else {
2383 				conf->mddev->resync_mismatches +=
2384 					STRIPE_SECTORS;
2385 				if (test_bit(
2386 				     MD_RECOVERY_CHECK, &conf->mddev->recovery))
2387 					/* don't try to repair!! */
2388 					set_bit(STRIPE_INSYNC, &sh->state);
2389 				else {
2390 					set_bit(STRIPE_OP_COMPUTE_BLK,
2391 						&sh->ops.pending);
2392 					set_bit(STRIPE_OP_MOD_REPAIR_PD,
2393 						&sh->ops.pending);
2394 					set_bit(R5_Wantcompute,
2395 						&sh->dev[sh->pd_idx].flags);
2396 					sh->ops.target = sh->pd_idx;
2397 					sh->ops.count++;
2398 					s->uptodate++;
2399 				}
2400 			}
2401 		}
2402 	}
2403 
2404 	/* check if we can clear a parity disk reconstruct */
2405 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) &&
2406 		test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2407 
2408 		clear_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending);
2409 		clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
2410 		clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack);
2411 		clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2412 	}
2413 
2414 	/* Wait for check parity and compute block operations to complete
2415 	 * before write-back
2416 	 */
2417 	if (!test_bit(STRIPE_INSYNC, &sh->state) &&
2418 		!test_bit(STRIPE_OP_CHECK, &sh->ops.pending) &&
2419 		!test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) {
2420 		struct r5dev *dev;
2421 		/* either failed parity check, or recovery is happening */
2422 		if (s->failed == 0)
2423 			s->failed_num = sh->pd_idx;
2424 		dev = &sh->dev[s->failed_num];
2425 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2426 		BUG_ON(s->uptodate != disks);
2427 
2428 		set_bit(R5_LOCKED, &dev->flags);
2429 		set_bit(R5_Wantwrite, &dev->flags);
2430 		if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2431 			sh->ops.count++;
2432 
2433 		clear_bit(STRIPE_DEGRADED, &sh->state);
2434 		s->locked++;
2435 		set_bit(STRIPE_INSYNC, &sh->state);
2436 	}
2437 }
2438 
2439 
2440 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2441 				struct stripe_head_state *s,
2442 				struct r6_state *r6s, struct page *tmp_page,
2443 				int disks)
2444 {
2445 	int update_p = 0, update_q = 0;
2446 	struct r5dev *dev;
2447 	int pd_idx = sh->pd_idx;
2448 	int qd_idx = r6s->qd_idx;
2449 
2450 	set_bit(STRIPE_HANDLE, &sh->state);
2451 
2452 	BUG_ON(s->failed > 2);
2453 	BUG_ON(s->uptodate < disks);
2454 	/* Want to check and possibly repair P and Q.
2455 	 * However there could be one 'failed' device, in which
2456 	 * case we can only check one of them, possibly using the
2457 	 * other to generate missing data
2458 	 */
2459 
2460 	/* If !tmp_page, we cannot do the calculations,
2461 	 * but as we have set STRIPE_HANDLE, we will soon be called
2462 	 * by stripe_handle with a tmp_page - just wait until then.
2463 	 */
2464 	if (tmp_page) {
2465 		if (s->failed == r6s->q_failed) {
2466 			/* The only possible failed device holds 'Q', so it
2467 			 * makes sense to check P (If anything else were failed,
2468 			 * we would have used P to recreate it).
2469 			 */
2470 			compute_block_1(sh, pd_idx, 1);
2471 			if (!page_is_zero(sh->dev[pd_idx].page)) {
2472 				compute_block_1(sh, pd_idx, 0);
2473 				update_p = 1;
2474 			}
2475 		}
2476 		if (!r6s->q_failed && s->failed < 2) {
2477 			/* q is not failed, and we didn't use it to generate
2478 			 * anything, so it makes sense to check it
2479 			 */
2480 			memcpy(page_address(tmp_page),
2481 			       page_address(sh->dev[qd_idx].page),
2482 			       STRIPE_SIZE);
2483 			compute_parity6(sh, UPDATE_PARITY);
2484 			if (memcmp(page_address(tmp_page),
2485 				   page_address(sh->dev[qd_idx].page),
2486 				   STRIPE_SIZE) != 0) {
2487 				clear_bit(STRIPE_INSYNC, &sh->state);
2488 				update_q = 1;
2489 			}
2490 		}
2491 		if (update_p || update_q) {
2492 			conf->mddev->resync_mismatches += STRIPE_SECTORS;
2493 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2494 				/* don't try to repair!! */
2495 				update_p = update_q = 0;
2496 		}
2497 
2498 		/* now write out any block on a failed drive,
2499 		 * or P or Q if they need it
2500 		 */
2501 
2502 		if (s->failed == 2) {
2503 			dev = &sh->dev[r6s->failed_num[1]];
2504 			s->locked++;
2505 			set_bit(R5_LOCKED, &dev->flags);
2506 			set_bit(R5_Wantwrite, &dev->flags);
2507 		}
2508 		if (s->failed >= 1) {
2509 			dev = &sh->dev[r6s->failed_num[0]];
2510 			s->locked++;
2511 			set_bit(R5_LOCKED, &dev->flags);
2512 			set_bit(R5_Wantwrite, &dev->flags);
2513 		}
2514 
2515 		if (update_p) {
2516 			dev = &sh->dev[pd_idx];
2517 			s->locked++;
2518 			set_bit(R5_LOCKED, &dev->flags);
2519 			set_bit(R5_Wantwrite, &dev->flags);
2520 		}
2521 		if (update_q) {
2522 			dev = &sh->dev[qd_idx];
2523 			s->locked++;
2524 			set_bit(R5_LOCKED, &dev->flags);
2525 			set_bit(R5_Wantwrite, &dev->flags);
2526 		}
2527 		clear_bit(STRIPE_DEGRADED, &sh->state);
2528 
2529 		set_bit(STRIPE_INSYNC, &sh->state);
2530 	}
2531 }
2532 
2533 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2534 				struct r6_state *r6s)
2535 {
2536 	int i;
2537 
2538 	/* We have read all the blocks in this stripe and now we need to
2539 	 * copy some of them into a target stripe for expand.
2540 	 */
2541 	struct dma_async_tx_descriptor *tx = NULL;
2542 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2543 	for (i = 0; i < sh->disks; i++)
2544 		if (i != sh->pd_idx && (r6s && i != r6s->qd_idx)) {
2545 			int dd_idx, pd_idx, j;
2546 			struct stripe_head *sh2;
2547 
2548 			sector_t bn = compute_blocknr(sh, i);
2549 			sector_t s = raid5_compute_sector(bn, conf->raid_disks,
2550 						conf->raid_disks -
2551 						conf->max_degraded, &dd_idx,
2552 						&pd_idx, conf);
2553 			sh2 = get_active_stripe(conf, s, conf->raid_disks,
2554 						pd_idx, 1);
2555 			if (sh2 == NULL)
2556 				/* so far only the early blocks of this stripe
2557 				 * have been requested.  When later blocks
2558 				 * get requested, we will try again
2559 				 */
2560 				continue;
2561 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2562 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2563 				/* must have already done this block */
2564 				release_stripe(sh2);
2565 				continue;
2566 			}
2567 
2568 			/* place all the copies on one channel */
2569 			tx = async_memcpy(sh2->dev[dd_idx].page,
2570 				sh->dev[i].page, 0, 0, STRIPE_SIZE,
2571 				ASYNC_TX_DEP_ACK, tx, NULL, NULL);
2572 
2573 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2574 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2575 			for (j = 0; j < conf->raid_disks; j++)
2576 				if (j != sh2->pd_idx &&
2577 				    (r6s && j != r6s->qd_idx) &&
2578 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
2579 					break;
2580 			if (j == conf->raid_disks) {
2581 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
2582 				set_bit(STRIPE_HANDLE, &sh2->state);
2583 			}
2584 			release_stripe(sh2);
2585 
2586 			/* done submitting copies, wait for them to complete */
2587 			if (i + 1 >= sh->disks) {
2588 				async_tx_ack(tx);
2589 				dma_wait_for_async_tx(tx);
2590 			}
2591 		}
2592 }
2593 
2594 /*
2595  * handle_stripe - do things to a stripe.
2596  *
2597  * We lock the stripe and then examine the state of various bits
2598  * to see what needs to be done.
2599  * Possible results:
2600  *    return some read request which now have data
2601  *    return some write requests which are safely on disc
2602  *    schedule a read on some buffers
2603  *    schedule a write of some buffers
2604  *    return confirmation of parity correctness
2605  *
2606  * buffers are taken off read_list or write_list, and bh_cache buffers
2607  * get BH_Lock set before the stripe lock is released.
2608  *
2609  */
2610 
2611 static void handle_stripe5(struct stripe_head *sh)
2612 {
2613 	raid5_conf_t *conf = sh->raid_conf;
2614 	int disks = sh->disks, i;
2615 	struct bio *return_bi = NULL;
2616 	struct stripe_head_state s;
2617 	struct r5dev *dev;
2618 	unsigned long pending = 0;
2619 
2620 	memset(&s, 0, sizeof(s));
2621 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d "
2622 		"ops=%lx:%lx:%lx\n", (unsigned long long)sh->sector, sh->state,
2623 		atomic_read(&sh->count), sh->pd_idx,
2624 		sh->ops.pending, sh->ops.ack, sh->ops.complete);
2625 
2626 	spin_lock(&sh->lock);
2627 	clear_bit(STRIPE_HANDLE, &sh->state);
2628 	clear_bit(STRIPE_DELAYED, &sh->state);
2629 
2630 	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2631 	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2632 	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2633 	/* Now to look around and see what can be done */
2634 
2635 	rcu_read_lock();
2636 	for (i=disks; i--; ) {
2637 		mdk_rdev_t *rdev;
2638 		struct r5dev *dev = &sh->dev[i];
2639 		clear_bit(R5_Insync, &dev->flags);
2640 
2641 		pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2642 			"written %p\n",	i, dev->flags, dev->toread, dev->read,
2643 			dev->towrite, dev->written);
2644 
2645 		/* maybe we can request a biofill operation
2646 		 *
2647 		 * new wantfill requests are only permitted while
2648 		 * STRIPE_OP_BIOFILL is clear
2649 		 */
2650 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2651 			!test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
2652 			set_bit(R5_Wantfill, &dev->flags);
2653 
2654 		/* now count some things */
2655 		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2656 		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2657 		if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2658 
2659 		if (test_bit(R5_Wantfill, &dev->flags))
2660 			s.to_fill++;
2661 		else if (dev->toread)
2662 			s.to_read++;
2663 		if (dev->towrite) {
2664 			s.to_write++;
2665 			if (!test_bit(R5_OVERWRITE, &dev->flags))
2666 				s.non_overwrite++;
2667 		}
2668 		if (dev->written)
2669 			s.written++;
2670 		rdev = rcu_dereference(conf->disks[i].rdev);
2671 		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2672 			/* The ReadError flag will just be confusing now */
2673 			clear_bit(R5_ReadError, &dev->flags);
2674 			clear_bit(R5_ReWrite, &dev->flags);
2675 		}
2676 		if (!rdev || !test_bit(In_sync, &rdev->flags)
2677 		    || test_bit(R5_ReadError, &dev->flags)) {
2678 			s.failed++;
2679 			s.failed_num = i;
2680 		} else
2681 			set_bit(R5_Insync, &dev->flags);
2682 	}
2683 	rcu_read_unlock();
2684 
2685 	if (s.to_fill && !test_and_set_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
2686 		sh->ops.count++;
2687 
2688 	pr_debug("locked=%d uptodate=%d to_read=%d"
2689 		" to_write=%d failed=%d failed_num=%d\n",
2690 		s.locked, s.uptodate, s.to_read, s.to_write,
2691 		s.failed, s.failed_num);
2692 	/* check if the array has lost two devices and, if so, some requests might
2693 	 * need to be failed
2694 	 */
2695 	if (s.failed > 1 && s.to_read+s.to_write+s.written)
2696 		handle_requests_to_failed_array(conf, sh, &s, disks,
2697 						&return_bi);
2698 	if (s.failed > 1 && s.syncing) {
2699 		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2700 		clear_bit(STRIPE_SYNCING, &sh->state);
2701 		s.syncing = 0;
2702 	}
2703 
2704 	/* might be able to return some write requests if the parity block
2705 	 * is safe, or on a failed drive
2706 	 */
2707 	dev = &sh->dev[sh->pd_idx];
2708 	if ( s.written &&
2709 	     ((test_bit(R5_Insync, &dev->flags) &&
2710 	       !test_bit(R5_LOCKED, &dev->flags) &&
2711 	       test_bit(R5_UPTODATE, &dev->flags)) ||
2712 	       (s.failed == 1 && s.failed_num == sh->pd_idx)))
2713 		handle_completed_write_requests(conf, sh, disks, &return_bi);
2714 
2715 	/* Now we might consider reading some blocks, either to check/generate
2716 	 * parity, or to satisfy requests
2717 	 * or to load a block that is being partially written.
2718 	 */
2719 	if (s.to_read || s.non_overwrite ||
2720 	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding ||
2721 	    test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
2722 		handle_issuing_new_read_requests5(sh, &s, disks);
2723 
2724 	/* Now we check to see if any write operations have recently
2725 	 * completed
2726 	 */
2727 
2728 	/* leave prexor set until postxor is done, allows us to distinguish
2729 	 * a rmw from a rcw during biodrain
2730 	 */
2731 	if (test_bit(STRIPE_OP_PREXOR, &sh->ops.complete) &&
2732 		test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2733 
2734 		clear_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
2735 		clear_bit(STRIPE_OP_PREXOR, &sh->ops.ack);
2736 		clear_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
2737 
2738 		for (i = disks; i--; )
2739 			clear_bit(R5_Wantprexor, &sh->dev[i].flags);
2740 	}
2741 
2742 	/* if only POSTXOR is set then this is an 'expand' postxor */
2743 	if (test_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete) &&
2744 		test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2745 
2746 		clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
2747 		clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.ack);
2748 		clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
2749 
2750 		clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2751 		clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2752 		clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2753 
2754 		/* All the 'written' buffers and the parity block are ready to
2755 		 * be written back to disk
2756 		 */
2757 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
2758 		for (i = disks; i--; ) {
2759 			dev = &sh->dev[i];
2760 			if (test_bit(R5_LOCKED, &dev->flags) &&
2761 				(i == sh->pd_idx || dev->written)) {
2762 				pr_debug("Writing block %d\n", i);
2763 				set_bit(R5_Wantwrite, &dev->flags);
2764 				if (!test_and_set_bit(
2765 				    STRIPE_OP_IO, &sh->ops.pending))
2766 					sh->ops.count++;
2767 				if (!test_bit(R5_Insync, &dev->flags) ||
2768 				    (i == sh->pd_idx && s.failed == 0))
2769 					set_bit(STRIPE_INSYNC, &sh->state);
2770 			}
2771 		}
2772 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2773 			atomic_dec(&conf->preread_active_stripes);
2774 			if (atomic_read(&conf->preread_active_stripes) <
2775 				IO_THRESHOLD)
2776 				md_wakeup_thread(conf->mddev->thread);
2777 		}
2778 	}
2779 
2780 	/* Now to consider new write requests and what else, if anything
2781 	 * should be read.  We do not handle new writes when:
2782 	 * 1/ A 'write' operation (copy+xor) is already in flight.
2783 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
2784 	 *    block.
2785 	 */
2786 	if (s.to_write && !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending) &&
2787 			  !test_bit(STRIPE_OP_CHECK, &sh->ops.pending))
2788 		handle_issuing_new_write_requests5(conf, sh, &s, disks);
2789 
2790 	/* maybe we need to check and possibly fix the parity for this stripe
2791 	 * Any reads will already have been scheduled, so we just see if enough
2792 	 * data is available.  The parity check is held off while parity
2793 	 * dependent operations are in flight.
2794 	 */
2795 	if ((s.syncing && s.locked == 0 &&
2796 	     !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
2797 	     !test_bit(STRIPE_INSYNC, &sh->state)) ||
2798 	      test_bit(STRIPE_OP_CHECK, &sh->ops.pending) ||
2799 	      test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending))
2800 		handle_parity_checks5(conf, sh, &s, disks);
2801 
2802 	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2803 		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2804 		clear_bit(STRIPE_SYNCING, &sh->state);
2805 	}
2806 
2807 	/* If the failed drive is just a ReadError, then we might need to progress
2808 	 * the repair/check process
2809 	 */
2810 	if (s.failed == 1 && !conf->mddev->ro &&
2811 	    test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2812 	    && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2813 	    && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
2814 		) {
2815 		dev = &sh->dev[s.failed_num];
2816 		if (!test_bit(R5_ReWrite, &dev->flags)) {
2817 			set_bit(R5_Wantwrite, &dev->flags);
2818 			if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2819 				sh->ops.count++;
2820 			set_bit(R5_ReWrite, &dev->flags);
2821 			set_bit(R5_LOCKED, &dev->flags);
2822 			s.locked++;
2823 		} else {
2824 			/* let's read it back */
2825 			set_bit(R5_Wantread, &dev->flags);
2826 			if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2827 				sh->ops.count++;
2828 			set_bit(R5_LOCKED, &dev->flags);
2829 			s.locked++;
2830 		}
2831 	}
2832 
2833 	/* Finish postxor operations initiated by the expansion
2834 	 * process
2835 	 */
2836 	if (test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete) &&
2837 		!test_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending)) {
2838 
2839 		clear_bit(STRIPE_EXPANDING, &sh->state);
2840 
2841 		clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2842 		clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2843 		clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2844 
2845 		for (i = conf->raid_disks; i--; ) {
2846 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
2847 			if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2848 				sh->ops.count++;
2849 		}
2850 	}
2851 
2852 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
2853 		!test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2854 		/* Need to write out all blocks after computing parity */
2855 		sh->disks = conf->raid_disks;
2856 		sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
2857 			conf->raid_disks);
2858 		s.locked += handle_write_operations5(sh, 0, 1);
2859 	} else if (s.expanded &&
2860 		!test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2861 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
2862 		atomic_dec(&conf->reshape_stripes);
2863 		wake_up(&conf->wait_for_overlap);
2864 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2865 	}
2866 
2867 	if (s.expanding && s.locked == 0)
2868 		handle_stripe_expansion(conf, sh, NULL);
2869 
2870 	if (sh->ops.count)
2871 		pending = get_stripe_work(sh);
2872 
2873 	spin_unlock(&sh->lock);
2874 
2875 	if (pending)
2876 		raid5_run_ops(sh, pending);
2877 
2878 	return_io(return_bi);
2879 
2880 }
2881 
2882 static void handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
2883 {
2884 	raid6_conf_t *conf = sh->raid_conf;
2885 	int disks = sh->disks;
2886 	struct bio *return_bi = NULL;
2887 	int i, pd_idx = sh->pd_idx;
2888 	struct stripe_head_state s;
2889 	struct r6_state r6s;
2890 	struct r5dev *dev, *pdev, *qdev;
2891 
2892 	r6s.qd_idx = raid6_next_disk(pd_idx, disks);
2893 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
2894 		"pd_idx=%d, qd_idx=%d\n",
2895 	       (unsigned long long)sh->sector, sh->state,
2896 	       atomic_read(&sh->count), pd_idx, r6s.qd_idx);
2897 	memset(&s, 0, sizeof(s));
2898 
2899 	spin_lock(&sh->lock);
2900 	clear_bit(STRIPE_HANDLE, &sh->state);
2901 	clear_bit(STRIPE_DELAYED, &sh->state);
2902 
2903 	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2904 	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2905 	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2906 	/* Now to look around and see what can be done */
2907 
2908 	rcu_read_lock();
2909 	for (i=disks; i--; ) {
2910 		mdk_rdev_t *rdev;
2911 		dev = &sh->dev[i];
2912 		clear_bit(R5_Insync, &dev->flags);
2913 
2914 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
2915 			i, dev->flags, dev->toread, dev->towrite, dev->written);
2916 		/* maybe we can reply to a read */
2917 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
2918 			struct bio *rbi, *rbi2;
2919 			pr_debug("Return read for disc %d\n", i);
2920 			spin_lock_irq(&conf->device_lock);
2921 			rbi = dev->toread;
2922 			dev->toread = NULL;
2923 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
2924 				wake_up(&conf->wait_for_overlap);
2925 			spin_unlock_irq(&conf->device_lock);
2926 			while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
2927 				copy_data(0, rbi, dev->page, dev->sector);
2928 				rbi2 = r5_next_bio(rbi, dev->sector);
2929 				spin_lock_irq(&conf->device_lock);
2930 				if (--rbi->bi_phys_segments == 0) {
2931 					rbi->bi_next = return_bi;
2932 					return_bi = rbi;
2933 				}
2934 				spin_unlock_irq(&conf->device_lock);
2935 				rbi = rbi2;
2936 			}
2937 		}
2938 
2939 		/* now count some things */
2940 		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2941 		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2942 
2943 
2944 		if (dev->toread)
2945 			s.to_read++;
2946 		if (dev->towrite) {
2947 			s.to_write++;
2948 			if (!test_bit(R5_OVERWRITE, &dev->flags))
2949 				s.non_overwrite++;
2950 		}
2951 		if (dev->written)
2952 			s.written++;
2953 		rdev = rcu_dereference(conf->disks[i].rdev);
2954 		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2955 			/* The ReadError flag will just be confusing now */
2956 			clear_bit(R5_ReadError, &dev->flags);
2957 			clear_bit(R5_ReWrite, &dev->flags);
2958 		}
2959 		if (!rdev || !test_bit(In_sync, &rdev->flags)
2960 		    || test_bit(R5_ReadError, &dev->flags)) {
2961 			if (s.failed < 2)
2962 				r6s.failed_num[s.failed] = i;
2963 			s.failed++;
2964 		} else
2965 			set_bit(R5_Insync, &dev->flags);
2966 	}
2967 	rcu_read_unlock();
2968 	pr_debug("locked=%d uptodate=%d to_read=%d"
2969 	       " to_write=%d failed=%d failed_num=%d,%d\n",
2970 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
2971 	       r6s.failed_num[0], r6s.failed_num[1]);
2972 	/* check if the array has lost >2 devices and, if so, some requests
2973 	 * might need to be failed
2974 	 */
2975 	if (s.failed > 2 && s.to_read+s.to_write+s.written)
2976 		handle_requests_to_failed_array(conf, sh, &s, disks,
2977 						&return_bi);
2978 	if (s.failed > 2 && s.syncing) {
2979 		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2980 		clear_bit(STRIPE_SYNCING, &sh->state);
2981 		s.syncing = 0;
2982 	}
2983 
2984 	/*
2985 	 * might be able to return some write requests if the parity blocks
2986 	 * are safe, or on a failed drive
2987 	 */
2988 	pdev = &sh->dev[pd_idx];
2989 	r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
2990 		|| (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
2991 	qdev = &sh->dev[r6s.qd_idx];
2992 	r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == r6s.qd_idx)
2993 		|| (s.failed >= 2 && r6s.failed_num[1] == r6s.qd_idx);
2994 
2995 	if ( s.written &&
2996 	     ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
2997 			     && !test_bit(R5_LOCKED, &pdev->flags)
2998 			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
2999 	     ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3000 			     && !test_bit(R5_LOCKED, &qdev->flags)
3001 			     && test_bit(R5_UPTODATE, &qdev->flags)))))
3002 		handle_completed_write_requests(conf, sh, disks, &return_bi);
3003 
3004 	/* Now we might consider reading some blocks, either to check/generate
3005 	 * parity, or to satisfy requests
3006 	 * or to load a block that is being partially written.
3007 	 */
3008 	if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3009 	    (s.syncing && (s.uptodate < disks)) || s.expanding)
3010 		handle_issuing_new_read_requests6(sh, &s, &r6s, disks);
3011 
3012 	/* now to consider writing and what else, if anything should be read */
3013 	if (s.to_write)
3014 		handle_issuing_new_write_requests6(conf, sh, &s, &r6s, disks);
3015 
3016 	/* maybe we need to check and possibly fix the parity for this stripe
3017 	 * Any reads will already have been scheduled, so we just see if enough
3018 	 * data is available
3019 	 */
3020 	if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
3021 		handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
3022 
3023 	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3024 		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3025 		clear_bit(STRIPE_SYNCING, &sh->state);
3026 	}
3027 
3028 	/* If the failed drives are just a ReadError, then we might need
3029 	 * to progress the repair/check process
3030 	 */
3031 	if (s.failed <= 2 && !conf->mddev->ro)
3032 		for (i = 0; i < s.failed; i++) {
3033 			dev = &sh->dev[r6s.failed_num[i]];
3034 			if (test_bit(R5_ReadError, &dev->flags)
3035 			    && !test_bit(R5_LOCKED, &dev->flags)
3036 			    && test_bit(R5_UPTODATE, &dev->flags)
3037 				) {
3038 				if (!test_bit(R5_ReWrite, &dev->flags)) {
3039 					set_bit(R5_Wantwrite, &dev->flags);
3040 					set_bit(R5_ReWrite, &dev->flags);
3041 					set_bit(R5_LOCKED, &dev->flags);
3042 				} else {
3043 					/* let's read it back */
3044 					set_bit(R5_Wantread, &dev->flags);
3045 					set_bit(R5_LOCKED, &dev->flags);
3046 				}
3047 			}
3048 		}
3049 
3050 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
3051 		/* Need to write out all blocks after computing P&Q */
3052 		sh->disks = conf->raid_disks;
3053 		sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
3054 					     conf->raid_disks);
3055 		compute_parity6(sh, RECONSTRUCT_WRITE);
3056 		for (i = conf->raid_disks ; i-- ;  ) {
3057 			set_bit(R5_LOCKED, &sh->dev[i].flags);
3058 			s.locked++;
3059 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
3060 		}
3061 		clear_bit(STRIPE_EXPANDING, &sh->state);
3062 	} else if (s.expanded) {
3063 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3064 		atomic_dec(&conf->reshape_stripes);
3065 		wake_up(&conf->wait_for_overlap);
3066 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3067 	}
3068 
3069 	if (s.expanding && s.locked == 0)
3070 		handle_stripe_expansion(conf, sh, &r6s);
3071 
3072 	spin_unlock(&sh->lock);
3073 
3074 	return_io(return_bi);
3075 
3076 	for (i=disks; i-- ;) {
3077 		int rw;
3078 		struct bio *bi;
3079 		mdk_rdev_t *rdev;
3080 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
3081 			rw = WRITE;
3082 		else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
3083 			rw = READ;
3084 		else
3085 			continue;
3086 
3087 		bi = &sh->dev[i].req;
3088 
3089 		bi->bi_rw = rw;
3090 		if (rw == WRITE)
3091 			bi->bi_end_io = raid5_end_write_request;
3092 		else
3093 			bi->bi_end_io = raid5_end_read_request;
3094 
3095 		rcu_read_lock();
3096 		rdev = rcu_dereference(conf->disks[i].rdev);
3097 		if (rdev && test_bit(Faulty, &rdev->flags))
3098 			rdev = NULL;
3099 		if (rdev)
3100 			atomic_inc(&rdev->nr_pending);
3101 		rcu_read_unlock();
3102 
3103 		if (rdev) {
3104 			if (s.syncing || s.expanding || s.expanded)
3105 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
3106 
3107 			bi->bi_bdev = rdev->bdev;
3108 			pr_debug("for %llu schedule op %ld on disc %d\n",
3109 				(unsigned long long)sh->sector, bi->bi_rw, i);
3110 			atomic_inc(&sh->count);
3111 			bi->bi_sector = sh->sector + rdev->data_offset;
3112 			bi->bi_flags = 1 << BIO_UPTODATE;
3113 			bi->bi_vcnt = 1;
3114 			bi->bi_max_vecs = 1;
3115 			bi->bi_idx = 0;
3116 			bi->bi_io_vec = &sh->dev[i].vec;
3117 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
3118 			bi->bi_io_vec[0].bv_offset = 0;
3119 			bi->bi_size = STRIPE_SIZE;
3120 			bi->bi_next = NULL;
3121 			if (rw == WRITE &&
3122 			    test_bit(R5_ReWrite, &sh->dev[i].flags))
3123 				atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
3124 			generic_make_request(bi);
3125 		} else {
3126 			if (rw == WRITE)
3127 				set_bit(STRIPE_DEGRADED, &sh->state);
3128 			pr_debug("skip op %ld on disc %d for sector %llu\n",
3129 				bi->bi_rw, i, (unsigned long long)sh->sector);
3130 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
3131 			set_bit(STRIPE_HANDLE, &sh->state);
3132 		}
3133 	}
3134 }
3135 
3136 static void handle_stripe(struct stripe_head *sh, struct page *tmp_page)
3137 {
3138 	if (sh->raid_conf->level == 6)
3139 		handle_stripe6(sh, tmp_page);
3140 	else
3141 		handle_stripe5(sh);
3142 }
3143 
3144 
3145 
3146 static void raid5_activate_delayed(raid5_conf_t *conf)
3147 {
3148 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3149 		while (!list_empty(&conf->delayed_list)) {
3150 			struct list_head *l = conf->delayed_list.next;
3151 			struct stripe_head *sh;
3152 			sh = list_entry(l, struct stripe_head, lru);
3153 			list_del_init(l);
3154 			clear_bit(STRIPE_DELAYED, &sh->state);
3155 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3156 				atomic_inc(&conf->preread_active_stripes);
3157 			list_add_tail(&sh->lru, &conf->handle_list);
3158 		}
3159 	}
3160 }
3161 
3162 static void activate_bit_delay(raid5_conf_t *conf)
3163 {
3164 	/* device_lock is held */
3165 	struct list_head head;
3166 	list_add(&head, &conf->bitmap_list);
3167 	list_del_init(&conf->bitmap_list);
3168 	while (!list_empty(&head)) {
3169 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3170 		list_del_init(&sh->lru);
3171 		atomic_inc(&sh->count);
3172 		__release_stripe(conf, sh);
3173 	}
3174 }
3175 
3176 static void unplug_slaves(mddev_t *mddev)
3177 {
3178 	raid5_conf_t *conf = mddev_to_conf(mddev);
3179 	int i;
3180 
3181 	rcu_read_lock();
3182 	for (i=0; i<mddev->raid_disks; i++) {
3183 		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3184 		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3185 			request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
3186 
3187 			atomic_inc(&rdev->nr_pending);
3188 			rcu_read_unlock();
3189 
3190 			if (r_queue->unplug_fn)
3191 				r_queue->unplug_fn(r_queue);
3192 
3193 			rdev_dec_pending(rdev, mddev);
3194 			rcu_read_lock();
3195 		}
3196 	}
3197 	rcu_read_unlock();
3198 }
3199 
3200 static void raid5_unplug_device(request_queue_t *q)
3201 {
3202 	mddev_t *mddev = q->queuedata;
3203 	raid5_conf_t *conf = mddev_to_conf(mddev);
3204 	unsigned long flags;
3205 
3206 	spin_lock_irqsave(&conf->device_lock, flags);
3207 
3208 	if (blk_remove_plug(q)) {
3209 		conf->seq_flush++;
3210 		raid5_activate_delayed(conf);
3211 	}
3212 	md_wakeup_thread(mddev->thread);
3213 
3214 	spin_unlock_irqrestore(&conf->device_lock, flags);
3215 
3216 	unplug_slaves(mddev);
3217 }
3218 
3219 static int raid5_issue_flush(request_queue_t *q, struct gendisk *disk,
3220 			     sector_t *error_sector)
3221 {
3222 	mddev_t *mddev = q->queuedata;
3223 	raid5_conf_t *conf = mddev_to_conf(mddev);
3224 	int i, ret = 0;
3225 
3226 	rcu_read_lock();
3227 	for (i=0; i<mddev->raid_disks && ret == 0; i++) {
3228 		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3229 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
3230 			struct block_device *bdev = rdev->bdev;
3231 			request_queue_t *r_queue = bdev_get_queue(bdev);
3232 
3233 			if (!r_queue->issue_flush_fn)
3234 				ret = -EOPNOTSUPP;
3235 			else {
3236 				atomic_inc(&rdev->nr_pending);
3237 				rcu_read_unlock();
3238 				ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
3239 							      error_sector);
3240 				rdev_dec_pending(rdev, mddev);
3241 				rcu_read_lock();
3242 			}
3243 		}
3244 	}
3245 	rcu_read_unlock();
3246 	return ret;
3247 }
3248 
3249 static int raid5_congested(void *data, int bits)
3250 {
3251 	mddev_t *mddev = data;
3252 	raid5_conf_t *conf = mddev_to_conf(mddev);
3253 
3254 	/* No difference between reads and writes.  Just check
3255 	 * how busy the stripe_cache is
3256 	 */
3257 	if (conf->inactive_blocked)
3258 		return 1;
3259 	if (conf->quiesce)
3260 		return 1;
3261 	if (list_empty_careful(&conf->inactive_list))
3262 		return 1;
3263 
3264 	return 0;
3265 }
3266 
3267 /* We want read requests to align with chunks where possible,
3268  * but write requests don't need to.
3269  */
3270 static int raid5_mergeable_bvec(request_queue_t *q, struct bio *bio, struct bio_vec *biovec)
3271 {
3272 	mddev_t *mddev = q->queuedata;
3273 	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3274 	int max;
3275 	unsigned int chunk_sectors = mddev->chunk_size >> 9;
3276 	unsigned int bio_sectors = bio->bi_size >> 9;
3277 
3278 	if (bio_data_dir(bio) == WRITE)
3279 		return biovec->bv_len; /* always allow writes to be mergeable */
3280 
3281 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3282 	if (max < 0) max = 0;
3283 	if (max <= biovec->bv_len && bio_sectors == 0)
3284 		return biovec->bv_len;
3285 	else
3286 		return max;
3287 }
3288 
3289 
3290 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3291 {
3292 	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3293 	unsigned int chunk_sectors = mddev->chunk_size >> 9;
3294 	unsigned int bio_sectors = bio->bi_size >> 9;
3295 
3296 	return  chunk_sectors >=
3297 		((sector & (chunk_sectors - 1)) + bio_sectors);
3298 }
3299 
3300 /*
3301  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3302  *  later sampled by raid5d.
3303  */
3304 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3305 {
3306 	unsigned long flags;
3307 
3308 	spin_lock_irqsave(&conf->device_lock, flags);
3309 
3310 	bi->bi_next = conf->retry_read_aligned_list;
3311 	conf->retry_read_aligned_list = bi;
3312 
3313 	spin_unlock_irqrestore(&conf->device_lock, flags);
3314 	md_wakeup_thread(conf->mddev->thread);
3315 }
3316 
3317 
3318 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3319 {
3320 	struct bio *bi;
3321 
3322 	bi = conf->retry_read_aligned;
3323 	if (bi) {
3324 		conf->retry_read_aligned = NULL;
3325 		return bi;
3326 	}
3327 	bi = conf->retry_read_aligned_list;
3328 	if(bi) {
3329 		conf->retry_read_aligned_list = bi->bi_next;
3330 		bi->bi_next = NULL;
3331 		bi->bi_phys_segments = 1; /* biased count of active stripes */
3332 		bi->bi_hw_segments = 0; /* count of processed stripes */
3333 	}
3334 
3335 	return bi;
3336 }
3337 
3338 
3339 /*
3340  *  The "raid5_align_endio" should check if the read succeeded and if it
3341  *  did, call bio_endio on the original bio (having bio_put the new bio
3342  *  first).
3343  *  If the read failed..
3344  */
3345 static int raid5_align_endio(struct bio *bi, unsigned int bytes, int error)
3346 {
3347 	struct bio* raid_bi  = bi->bi_private;
3348 	mddev_t *mddev;
3349 	raid5_conf_t *conf;
3350 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3351 	mdk_rdev_t *rdev;
3352 
3353 	if (bi->bi_size)
3354 		return 1;
3355 	bio_put(bi);
3356 
3357 	mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3358 	conf = mddev_to_conf(mddev);
3359 	rdev = (void*)raid_bi->bi_next;
3360 	raid_bi->bi_next = NULL;
3361 
3362 	rdev_dec_pending(rdev, conf->mddev);
3363 
3364 	if (!error && uptodate) {
3365 		bio_endio(raid_bi, bytes, 0);
3366 		if (atomic_dec_and_test(&conf->active_aligned_reads))
3367 			wake_up(&conf->wait_for_stripe);
3368 		return 0;
3369 	}
3370 
3371 
3372 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3373 
3374 	add_bio_to_retry(raid_bi, conf);
3375 	return 0;
3376 }
3377 
3378 static int bio_fits_rdev(struct bio *bi)
3379 {
3380 	request_queue_t *q = bdev_get_queue(bi->bi_bdev);
3381 
3382 	if ((bi->bi_size>>9) > q->max_sectors)
3383 		return 0;
3384 	blk_recount_segments(q, bi);
3385 	if (bi->bi_phys_segments > q->max_phys_segments ||
3386 	    bi->bi_hw_segments > q->max_hw_segments)
3387 		return 0;
3388 
3389 	if (q->merge_bvec_fn)
3390 		/* it's too hard to apply the merge_bvec_fn at this stage,
3391 		 * just just give up
3392 		 */
3393 		return 0;
3394 
3395 	return 1;
3396 }
3397 
3398 
3399 static int chunk_aligned_read(request_queue_t *q, struct bio * raid_bio)
3400 {
3401 	mddev_t *mddev = q->queuedata;
3402 	raid5_conf_t *conf = mddev_to_conf(mddev);
3403 	const unsigned int raid_disks = conf->raid_disks;
3404 	const unsigned int data_disks = raid_disks - conf->max_degraded;
3405 	unsigned int dd_idx, pd_idx;
3406 	struct bio* align_bi;
3407 	mdk_rdev_t *rdev;
3408 
3409 	if (!in_chunk_boundary(mddev, raid_bio)) {
3410 		pr_debug("chunk_aligned_read : non aligned\n");
3411 		return 0;
3412 	}
3413 	/*
3414  	 * use bio_clone to make a copy of the bio
3415 	 */
3416 	align_bi = bio_clone(raid_bio, GFP_NOIO);
3417 	if (!align_bi)
3418 		return 0;
3419 	/*
3420 	 *   set bi_end_io to a new function, and set bi_private to the
3421 	 *     original bio.
3422 	 */
3423 	align_bi->bi_end_io  = raid5_align_endio;
3424 	align_bi->bi_private = raid_bio;
3425 	/*
3426 	 *	compute position
3427 	 */
3428 	align_bi->bi_sector =  raid5_compute_sector(raid_bio->bi_sector,
3429 					raid_disks,
3430 					data_disks,
3431 					&dd_idx,
3432 					&pd_idx,
3433 					conf);
3434 
3435 	rcu_read_lock();
3436 	rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3437 	if (rdev && test_bit(In_sync, &rdev->flags)) {
3438 		atomic_inc(&rdev->nr_pending);
3439 		rcu_read_unlock();
3440 		raid_bio->bi_next = (void*)rdev;
3441 		align_bi->bi_bdev =  rdev->bdev;
3442 		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3443 		align_bi->bi_sector += rdev->data_offset;
3444 
3445 		if (!bio_fits_rdev(align_bi)) {
3446 			/* too big in some way */
3447 			bio_put(align_bi);
3448 			rdev_dec_pending(rdev, mddev);
3449 			return 0;
3450 		}
3451 
3452 		spin_lock_irq(&conf->device_lock);
3453 		wait_event_lock_irq(conf->wait_for_stripe,
3454 				    conf->quiesce == 0,
3455 				    conf->device_lock, /* nothing */);
3456 		atomic_inc(&conf->active_aligned_reads);
3457 		spin_unlock_irq(&conf->device_lock);
3458 
3459 		generic_make_request(align_bi);
3460 		return 1;
3461 	} else {
3462 		rcu_read_unlock();
3463 		bio_put(align_bi);
3464 		return 0;
3465 	}
3466 }
3467 
3468 
3469 static int make_request(request_queue_t *q, struct bio * bi)
3470 {
3471 	mddev_t *mddev = q->queuedata;
3472 	raid5_conf_t *conf = mddev_to_conf(mddev);
3473 	unsigned int dd_idx, pd_idx;
3474 	sector_t new_sector;
3475 	sector_t logical_sector, last_sector;
3476 	struct stripe_head *sh;
3477 	const int rw = bio_data_dir(bi);
3478 	int remaining;
3479 
3480 	if (unlikely(bio_barrier(bi))) {
3481 		bio_endio(bi, bi->bi_size, -EOPNOTSUPP);
3482 		return 0;
3483 	}
3484 
3485 	md_write_start(mddev, bi);
3486 
3487 	disk_stat_inc(mddev->gendisk, ios[rw]);
3488 	disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi));
3489 
3490 	if (rw == READ &&
3491 	     mddev->reshape_position == MaxSector &&
3492 	     chunk_aligned_read(q,bi))
3493             	return 0;
3494 
3495 	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3496 	last_sector = bi->bi_sector + (bi->bi_size>>9);
3497 	bi->bi_next = NULL;
3498 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
3499 
3500 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3501 		DEFINE_WAIT(w);
3502 		int disks, data_disks;
3503 
3504 	retry:
3505 		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3506 		if (likely(conf->expand_progress == MaxSector))
3507 			disks = conf->raid_disks;
3508 		else {
3509 			/* spinlock is needed as expand_progress may be
3510 			 * 64bit on a 32bit platform, and so it might be
3511 			 * possible to see a half-updated value
3512 			 * Ofcourse expand_progress could change after
3513 			 * the lock is dropped, so once we get a reference
3514 			 * to the stripe that we think it is, we will have
3515 			 * to check again.
3516 			 */
3517 			spin_lock_irq(&conf->device_lock);
3518 			disks = conf->raid_disks;
3519 			if (logical_sector >= conf->expand_progress)
3520 				disks = conf->previous_raid_disks;
3521 			else {
3522 				if (logical_sector >= conf->expand_lo) {
3523 					spin_unlock_irq(&conf->device_lock);
3524 					schedule();
3525 					goto retry;
3526 				}
3527 			}
3528 			spin_unlock_irq(&conf->device_lock);
3529 		}
3530 		data_disks = disks - conf->max_degraded;
3531 
3532  		new_sector = raid5_compute_sector(logical_sector, disks, data_disks,
3533 						  &dd_idx, &pd_idx, conf);
3534 		pr_debug("raid5: make_request, sector %llu logical %llu\n",
3535 			(unsigned long long)new_sector,
3536 			(unsigned long long)logical_sector);
3537 
3538 		sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK));
3539 		if (sh) {
3540 			if (unlikely(conf->expand_progress != MaxSector)) {
3541 				/* expansion might have moved on while waiting for a
3542 				 * stripe, so we must do the range check again.
3543 				 * Expansion could still move past after this
3544 				 * test, but as we are holding a reference to
3545 				 * 'sh', we know that if that happens,
3546 				 *  STRIPE_EXPANDING will get set and the expansion
3547 				 * won't proceed until we finish with the stripe.
3548 				 */
3549 				int must_retry = 0;
3550 				spin_lock_irq(&conf->device_lock);
3551 				if (logical_sector <  conf->expand_progress &&
3552 				    disks == conf->previous_raid_disks)
3553 					/* mismatch, need to try again */
3554 					must_retry = 1;
3555 				spin_unlock_irq(&conf->device_lock);
3556 				if (must_retry) {
3557 					release_stripe(sh);
3558 					goto retry;
3559 				}
3560 			}
3561 			/* FIXME what if we get a false positive because these
3562 			 * are being updated.
3563 			 */
3564 			if (logical_sector >= mddev->suspend_lo &&
3565 			    logical_sector < mddev->suspend_hi) {
3566 				release_stripe(sh);
3567 				schedule();
3568 				goto retry;
3569 			}
3570 
3571 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3572 			    !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3573 				/* Stripe is busy expanding or
3574 				 * add failed due to overlap.  Flush everything
3575 				 * and wait a while
3576 				 */
3577 				raid5_unplug_device(mddev->queue);
3578 				release_stripe(sh);
3579 				schedule();
3580 				goto retry;
3581 			}
3582 			finish_wait(&conf->wait_for_overlap, &w);
3583 			handle_stripe(sh, NULL);
3584 			release_stripe(sh);
3585 		} else {
3586 			/* cannot get stripe for read-ahead, just give-up */
3587 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
3588 			finish_wait(&conf->wait_for_overlap, &w);
3589 			break;
3590 		}
3591 
3592 	}
3593 	spin_lock_irq(&conf->device_lock);
3594 	remaining = --bi->bi_phys_segments;
3595 	spin_unlock_irq(&conf->device_lock);
3596 	if (remaining == 0) {
3597 		int bytes = bi->bi_size;
3598 
3599 		if ( rw == WRITE )
3600 			md_write_end(mddev);
3601 		bi->bi_size = 0;
3602 		bi->bi_end_io(bi, bytes,
3603 			      test_bit(BIO_UPTODATE, &bi->bi_flags)
3604 			        ? 0 : -EIO);
3605 	}
3606 	return 0;
3607 }
3608 
3609 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3610 {
3611 	/* reshaping is quite different to recovery/resync so it is
3612 	 * handled quite separately ... here.
3613 	 *
3614 	 * On each call to sync_request, we gather one chunk worth of
3615 	 * destination stripes and flag them as expanding.
3616 	 * Then we find all the source stripes and request reads.
3617 	 * As the reads complete, handle_stripe will copy the data
3618 	 * into the destination stripe and release that stripe.
3619 	 */
3620 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3621 	struct stripe_head *sh;
3622 	int pd_idx;
3623 	sector_t first_sector, last_sector;
3624 	int raid_disks = conf->previous_raid_disks;
3625 	int data_disks = raid_disks - conf->max_degraded;
3626 	int new_data_disks = conf->raid_disks - conf->max_degraded;
3627 	int i;
3628 	int dd_idx;
3629 	sector_t writepos, safepos, gap;
3630 
3631 	if (sector_nr == 0 &&
3632 	    conf->expand_progress != 0) {
3633 		/* restarting in the middle, skip the initial sectors */
3634 		sector_nr = conf->expand_progress;
3635 		sector_div(sector_nr, new_data_disks);
3636 		*skipped = 1;
3637 		return sector_nr;
3638 	}
3639 
3640 	/* we update the metadata when there is more than 3Meg
3641 	 * in the block range (that is rather arbitrary, should
3642 	 * probably be time based) or when the data about to be
3643 	 * copied would over-write the source of the data at
3644 	 * the front of the range.
3645 	 * i.e. one new_stripe forward from expand_progress new_maps
3646 	 * to after where expand_lo old_maps to
3647 	 */
3648 	writepos = conf->expand_progress +
3649 		conf->chunk_size/512*(new_data_disks);
3650 	sector_div(writepos, new_data_disks);
3651 	safepos = conf->expand_lo;
3652 	sector_div(safepos, data_disks);
3653 	gap = conf->expand_progress - conf->expand_lo;
3654 
3655 	if (writepos >= safepos ||
3656 	    gap > (new_data_disks)*3000*2 /*3Meg*/) {
3657 		/* Cannot proceed until we've updated the superblock... */
3658 		wait_event(conf->wait_for_overlap,
3659 			   atomic_read(&conf->reshape_stripes)==0);
3660 		mddev->reshape_position = conf->expand_progress;
3661 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
3662 		md_wakeup_thread(mddev->thread);
3663 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
3664 			   kthread_should_stop());
3665 		spin_lock_irq(&conf->device_lock);
3666 		conf->expand_lo = mddev->reshape_position;
3667 		spin_unlock_irq(&conf->device_lock);
3668 		wake_up(&conf->wait_for_overlap);
3669 	}
3670 
3671 	for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
3672 		int j;
3673 		int skipped = 0;
3674 		pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks);
3675 		sh = get_active_stripe(conf, sector_nr+i,
3676 				       conf->raid_disks, pd_idx, 0);
3677 		set_bit(STRIPE_EXPANDING, &sh->state);
3678 		atomic_inc(&conf->reshape_stripes);
3679 		/* If any of this stripe is beyond the end of the old
3680 		 * array, then we need to zero those blocks
3681 		 */
3682 		for (j=sh->disks; j--;) {
3683 			sector_t s;
3684 			if (j == sh->pd_idx)
3685 				continue;
3686 			if (conf->level == 6 &&
3687 			    j == raid6_next_disk(sh->pd_idx, sh->disks))
3688 				continue;
3689 			s = compute_blocknr(sh, j);
3690 			if (s < (mddev->array_size<<1)) {
3691 				skipped = 1;
3692 				continue;
3693 			}
3694 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3695 			set_bit(R5_Expanded, &sh->dev[j].flags);
3696 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
3697 		}
3698 		if (!skipped) {
3699 			set_bit(STRIPE_EXPAND_READY, &sh->state);
3700 			set_bit(STRIPE_HANDLE, &sh->state);
3701 		}
3702 		release_stripe(sh);
3703 	}
3704 	spin_lock_irq(&conf->device_lock);
3705 	conf->expand_progress = (sector_nr + i) * new_data_disks;
3706 	spin_unlock_irq(&conf->device_lock);
3707 	/* Ok, those stripe are ready. We can start scheduling
3708 	 * reads on the source stripes.
3709 	 * The source stripes are determined by mapping the first and last
3710 	 * block on the destination stripes.
3711 	 */
3712 	first_sector =
3713 		raid5_compute_sector(sector_nr*(new_data_disks),
3714 				     raid_disks, data_disks,
3715 				     &dd_idx, &pd_idx, conf);
3716 	last_sector =
3717 		raid5_compute_sector((sector_nr+conf->chunk_size/512)
3718 				     *(new_data_disks) -1,
3719 				     raid_disks, data_disks,
3720 				     &dd_idx, &pd_idx, conf);
3721 	if (last_sector >= (mddev->size<<1))
3722 		last_sector = (mddev->size<<1)-1;
3723 	while (first_sector <= last_sector) {
3724 		pd_idx = stripe_to_pdidx(first_sector, conf,
3725 					 conf->previous_raid_disks);
3726 		sh = get_active_stripe(conf, first_sector,
3727 				       conf->previous_raid_disks, pd_idx, 0);
3728 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3729 		set_bit(STRIPE_HANDLE, &sh->state);
3730 		release_stripe(sh);
3731 		first_sector += STRIPE_SECTORS;
3732 	}
3733 	return conf->chunk_size>>9;
3734 }
3735 
3736 /* FIXME go_faster isn't used */
3737 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3738 {
3739 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3740 	struct stripe_head *sh;
3741 	int pd_idx;
3742 	int raid_disks = conf->raid_disks;
3743 	sector_t max_sector = mddev->size << 1;
3744 	int sync_blocks;
3745 	int still_degraded = 0;
3746 	int i;
3747 
3748 	if (sector_nr >= max_sector) {
3749 		/* just being told to finish up .. nothing much to do */
3750 		unplug_slaves(mddev);
3751 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3752 			end_reshape(conf);
3753 			return 0;
3754 		}
3755 
3756 		if (mddev->curr_resync < max_sector) /* aborted */
3757 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3758 					&sync_blocks, 1);
3759 		else /* completed sync */
3760 			conf->fullsync = 0;
3761 		bitmap_close_sync(mddev->bitmap);
3762 
3763 		return 0;
3764 	}
3765 
3766 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3767 		return reshape_request(mddev, sector_nr, skipped);
3768 
3769 	/* if there is too many failed drives and we are trying
3770 	 * to resync, then assert that we are finished, because there is
3771 	 * nothing we can do.
3772 	 */
3773 	if (mddev->degraded >= conf->max_degraded &&
3774 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3775 		sector_t rv = (mddev->size << 1) - sector_nr;
3776 		*skipped = 1;
3777 		return rv;
3778 	}
3779 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3780 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3781 	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
3782 		/* we can skip this block, and probably more */
3783 		sync_blocks /= STRIPE_SECTORS;
3784 		*skipped = 1;
3785 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
3786 	}
3787 
3788 	pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks);
3789 	sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1);
3790 	if (sh == NULL) {
3791 		sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0);
3792 		/* make sure we don't swamp the stripe cache if someone else
3793 		 * is trying to get access
3794 		 */
3795 		schedule_timeout_uninterruptible(1);
3796 	}
3797 	/* Need to check if array will still be degraded after recovery/resync
3798 	 * We don't need to check the 'failed' flag as when that gets set,
3799 	 * recovery aborts.
3800 	 */
3801 	for (i=0; i<mddev->raid_disks; i++)
3802 		if (conf->disks[i].rdev == NULL)
3803 			still_degraded = 1;
3804 
3805 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
3806 
3807 	spin_lock(&sh->lock);
3808 	set_bit(STRIPE_SYNCING, &sh->state);
3809 	clear_bit(STRIPE_INSYNC, &sh->state);
3810 	spin_unlock(&sh->lock);
3811 
3812 	handle_stripe(sh, NULL);
3813 	release_stripe(sh);
3814 
3815 	return STRIPE_SECTORS;
3816 }
3817 
3818 static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
3819 {
3820 	/* We may not be able to submit a whole bio at once as there
3821 	 * may not be enough stripe_heads available.
3822 	 * We cannot pre-allocate enough stripe_heads as we may need
3823 	 * more than exist in the cache (if we allow ever large chunks).
3824 	 * So we do one stripe head at a time and record in
3825 	 * ->bi_hw_segments how many have been done.
3826 	 *
3827 	 * We *know* that this entire raid_bio is in one chunk, so
3828 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
3829 	 */
3830 	struct stripe_head *sh;
3831 	int dd_idx, pd_idx;
3832 	sector_t sector, logical_sector, last_sector;
3833 	int scnt = 0;
3834 	int remaining;
3835 	int handled = 0;
3836 
3837 	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3838 	sector = raid5_compute_sector(	logical_sector,
3839 					conf->raid_disks,
3840 					conf->raid_disks - conf->max_degraded,
3841 					&dd_idx,
3842 					&pd_idx,
3843 					conf);
3844 	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
3845 
3846 	for (; logical_sector < last_sector;
3847 	     logical_sector += STRIPE_SECTORS,
3848 		     sector += STRIPE_SECTORS,
3849 		     scnt++) {
3850 
3851 		if (scnt < raid_bio->bi_hw_segments)
3852 			/* already done this stripe */
3853 			continue;
3854 
3855 		sh = get_active_stripe(conf, sector, conf->raid_disks, pd_idx, 1);
3856 
3857 		if (!sh) {
3858 			/* failed to get a stripe - must wait */
3859 			raid_bio->bi_hw_segments = scnt;
3860 			conf->retry_read_aligned = raid_bio;
3861 			return handled;
3862 		}
3863 
3864 		set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
3865 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
3866 			release_stripe(sh);
3867 			raid_bio->bi_hw_segments = scnt;
3868 			conf->retry_read_aligned = raid_bio;
3869 			return handled;
3870 		}
3871 
3872 		handle_stripe(sh, NULL);
3873 		release_stripe(sh);
3874 		handled++;
3875 	}
3876 	spin_lock_irq(&conf->device_lock);
3877 	remaining = --raid_bio->bi_phys_segments;
3878 	spin_unlock_irq(&conf->device_lock);
3879 	if (remaining == 0) {
3880 		int bytes = raid_bio->bi_size;
3881 
3882 		raid_bio->bi_size = 0;
3883 		raid_bio->bi_end_io(raid_bio, bytes,
3884 			      test_bit(BIO_UPTODATE, &raid_bio->bi_flags)
3885 			        ? 0 : -EIO);
3886 	}
3887 	if (atomic_dec_and_test(&conf->active_aligned_reads))
3888 		wake_up(&conf->wait_for_stripe);
3889 	return handled;
3890 }
3891 
3892 
3893 
3894 /*
3895  * This is our raid5 kernel thread.
3896  *
3897  * We scan the hash table for stripes which can be handled now.
3898  * During the scan, completed stripes are saved for us by the interrupt
3899  * handler, so that they will not have to wait for our next wakeup.
3900  */
3901 static void raid5d (mddev_t *mddev)
3902 {
3903 	struct stripe_head *sh;
3904 	raid5_conf_t *conf = mddev_to_conf(mddev);
3905 	int handled;
3906 
3907 	pr_debug("+++ raid5d active\n");
3908 
3909 	md_check_recovery(mddev);
3910 
3911 	handled = 0;
3912 	spin_lock_irq(&conf->device_lock);
3913 	while (1) {
3914 		struct list_head *first;
3915 		struct bio *bio;
3916 
3917 		if (conf->seq_flush != conf->seq_write) {
3918 			int seq = conf->seq_flush;
3919 			spin_unlock_irq(&conf->device_lock);
3920 			bitmap_unplug(mddev->bitmap);
3921 			spin_lock_irq(&conf->device_lock);
3922 			conf->seq_write = seq;
3923 			activate_bit_delay(conf);
3924 		}
3925 
3926 		if (list_empty(&conf->handle_list) &&
3927 		    atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD &&
3928 		    !blk_queue_plugged(mddev->queue) &&
3929 		    !list_empty(&conf->delayed_list))
3930 			raid5_activate_delayed(conf);
3931 
3932 		while ((bio = remove_bio_from_retry(conf))) {
3933 			int ok;
3934 			spin_unlock_irq(&conf->device_lock);
3935 			ok = retry_aligned_read(conf, bio);
3936 			spin_lock_irq(&conf->device_lock);
3937 			if (!ok)
3938 				break;
3939 			handled++;
3940 		}
3941 
3942 		if (list_empty(&conf->handle_list)) {
3943 			async_tx_issue_pending_all();
3944 			break;
3945 		}
3946 
3947 		first = conf->handle_list.next;
3948 		sh = list_entry(first, struct stripe_head, lru);
3949 
3950 		list_del_init(first);
3951 		atomic_inc(&sh->count);
3952 		BUG_ON(atomic_read(&sh->count)!= 1);
3953 		spin_unlock_irq(&conf->device_lock);
3954 
3955 		handled++;
3956 		handle_stripe(sh, conf->spare_page);
3957 		release_stripe(sh);
3958 
3959 		spin_lock_irq(&conf->device_lock);
3960 	}
3961 	pr_debug("%d stripes handled\n", handled);
3962 
3963 	spin_unlock_irq(&conf->device_lock);
3964 
3965 	unplug_slaves(mddev);
3966 
3967 	pr_debug("--- raid5d inactive\n");
3968 }
3969 
3970 static ssize_t
3971 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
3972 {
3973 	raid5_conf_t *conf = mddev_to_conf(mddev);
3974 	if (conf)
3975 		return sprintf(page, "%d\n", conf->max_nr_stripes);
3976 	else
3977 		return 0;
3978 }
3979 
3980 static ssize_t
3981 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
3982 {
3983 	raid5_conf_t *conf = mddev_to_conf(mddev);
3984 	char *end;
3985 	int new;
3986 	if (len >= PAGE_SIZE)
3987 		return -EINVAL;
3988 	if (!conf)
3989 		return -ENODEV;
3990 
3991 	new = simple_strtoul(page, &end, 10);
3992 	if (!*page || (*end && *end != '\n') )
3993 		return -EINVAL;
3994 	if (new <= 16 || new > 32768)
3995 		return -EINVAL;
3996 	while (new < conf->max_nr_stripes) {
3997 		if (drop_one_stripe(conf))
3998 			conf->max_nr_stripes--;
3999 		else
4000 			break;
4001 	}
4002 	md_allow_write(mddev);
4003 	while (new > conf->max_nr_stripes) {
4004 		if (grow_one_stripe(conf))
4005 			conf->max_nr_stripes++;
4006 		else break;
4007 	}
4008 	return len;
4009 }
4010 
4011 static struct md_sysfs_entry
4012 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4013 				raid5_show_stripe_cache_size,
4014 				raid5_store_stripe_cache_size);
4015 
4016 static ssize_t
4017 stripe_cache_active_show(mddev_t *mddev, char *page)
4018 {
4019 	raid5_conf_t *conf = mddev_to_conf(mddev);
4020 	if (conf)
4021 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4022 	else
4023 		return 0;
4024 }
4025 
4026 static struct md_sysfs_entry
4027 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4028 
4029 static struct attribute *raid5_attrs[] =  {
4030 	&raid5_stripecache_size.attr,
4031 	&raid5_stripecache_active.attr,
4032 	NULL,
4033 };
4034 static struct attribute_group raid5_attrs_group = {
4035 	.name = NULL,
4036 	.attrs = raid5_attrs,
4037 };
4038 
4039 static int run(mddev_t *mddev)
4040 {
4041 	raid5_conf_t *conf;
4042 	int raid_disk, memory;
4043 	mdk_rdev_t *rdev;
4044 	struct disk_info *disk;
4045 	struct list_head *tmp;
4046 	int working_disks = 0;
4047 
4048 	if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) {
4049 		printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
4050 		       mdname(mddev), mddev->level);
4051 		return -EIO;
4052 	}
4053 
4054 	if (mddev->reshape_position != MaxSector) {
4055 		/* Check that we can continue the reshape.
4056 		 * Currently only disks can change, it must
4057 		 * increase, and we must be past the point where
4058 		 * a stripe over-writes itself
4059 		 */
4060 		sector_t here_new, here_old;
4061 		int old_disks;
4062 		int max_degraded = (mddev->level == 5 ? 1 : 2);
4063 
4064 		if (mddev->new_level != mddev->level ||
4065 		    mddev->new_layout != mddev->layout ||
4066 		    mddev->new_chunk != mddev->chunk_size) {
4067 			printk(KERN_ERR "raid5: %s: unsupported reshape "
4068 			       "required - aborting.\n",
4069 			       mdname(mddev));
4070 			return -EINVAL;
4071 		}
4072 		if (mddev->delta_disks <= 0) {
4073 			printk(KERN_ERR "raid5: %s: unsupported reshape "
4074 			       "(reduce disks) required - aborting.\n",
4075 			       mdname(mddev));
4076 			return -EINVAL;
4077 		}
4078 		old_disks = mddev->raid_disks - mddev->delta_disks;
4079 		/* reshape_position must be on a new-stripe boundary, and one
4080 		 * further up in new geometry must map after here in old
4081 		 * geometry.
4082 		 */
4083 		here_new = mddev->reshape_position;
4084 		if (sector_div(here_new, (mddev->chunk_size>>9)*
4085 			       (mddev->raid_disks - max_degraded))) {
4086 			printk(KERN_ERR "raid5: reshape_position not "
4087 			       "on a stripe boundary\n");
4088 			return -EINVAL;
4089 		}
4090 		/* here_new is the stripe we will write to */
4091 		here_old = mddev->reshape_position;
4092 		sector_div(here_old, (mddev->chunk_size>>9)*
4093 			   (old_disks-max_degraded));
4094 		/* here_old is the first stripe that we might need to read
4095 		 * from */
4096 		if (here_new >= here_old) {
4097 			/* Reading from the same stripe as writing to - bad */
4098 			printk(KERN_ERR "raid5: reshape_position too early for "
4099 			       "auto-recovery - aborting.\n");
4100 			return -EINVAL;
4101 		}
4102 		printk(KERN_INFO "raid5: reshape will continue\n");
4103 		/* OK, we should be able to continue; */
4104 	}
4105 
4106 
4107 	mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
4108 	if ((conf = mddev->private) == NULL)
4109 		goto abort;
4110 	if (mddev->reshape_position == MaxSector) {
4111 		conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
4112 	} else {
4113 		conf->raid_disks = mddev->raid_disks;
4114 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4115 	}
4116 
4117 	conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4118 			      GFP_KERNEL);
4119 	if (!conf->disks)
4120 		goto abort;
4121 
4122 	conf->mddev = mddev;
4123 
4124 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4125 		goto abort;
4126 
4127 	if (mddev->level == 6) {
4128 		conf->spare_page = alloc_page(GFP_KERNEL);
4129 		if (!conf->spare_page)
4130 			goto abort;
4131 	}
4132 	spin_lock_init(&conf->device_lock);
4133 	init_waitqueue_head(&conf->wait_for_stripe);
4134 	init_waitqueue_head(&conf->wait_for_overlap);
4135 	INIT_LIST_HEAD(&conf->handle_list);
4136 	INIT_LIST_HEAD(&conf->delayed_list);
4137 	INIT_LIST_HEAD(&conf->bitmap_list);
4138 	INIT_LIST_HEAD(&conf->inactive_list);
4139 	atomic_set(&conf->active_stripes, 0);
4140 	atomic_set(&conf->preread_active_stripes, 0);
4141 	atomic_set(&conf->active_aligned_reads, 0);
4142 
4143 	pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4144 
4145 	ITERATE_RDEV(mddev,rdev,tmp) {
4146 		raid_disk = rdev->raid_disk;
4147 		if (raid_disk >= conf->raid_disks
4148 		    || raid_disk < 0)
4149 			continue;
4150 		disk = conf->disks + raid_disk;
4151 
4152 		disk->rdev = rdev;
4153 
4154 		if (test_bit(In_sync, &rdev->flags)) {
4155 			char b[BDEVNAME_SIZE];
4156 			printk(KERN_INFO "raid5: device %s operational as raid"
4157 				" disk %d\n", bdevname(rdev->bdev,b),
4158 				raid_disk);
4159 			working_disks++;
4160 		}
4161 	}
4162 
4163 	/*
4164 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
4165 	 */
4166 	mddev->degraded = conf->raid_disks - working_disks;
4167 	conf->mddev = mddev;
4168 	conf->chunk_size = mddev->chunk_size;
4169 	conf->level = mddev->level;
4170 	if (conf->level == 6)
4171 		conf->max_degraded = 2;
4172 	else
4173 		conf->max_degraded = 1;
4174 	conf->algorithm = mddev->layout;
4175 	conf->max_nr_stripes = NR_STRIPES;
4176 	conf->expand_progress = mddev->reshape_position;
4177 
4178 	/* device size must be a multiple of chunk size */
4179 	mddev->size &= ~(mddev->chunk_size/1024 -1);
4180 	mddev->resync_max_sectors = mddev->size << 1;
4181 
4182 	if (conf->level == 6 && conf->raid_disks < 4) {
4183 		printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4184 		       mdname(mddev), conf->raid_disks);
4185 		goto abort;
4186 	}
4187 	if (!conf->chunk_size || conf->chunk_size % 4) {
4188 		printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4189 			conf->chunk_size, mdname(mddev));
4190 		goto abort;
4191 	}
4192 	if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
4193 		printk(KERN_ERR
4194 			"raid5: unsupported parity algorithm %d for %s\n",
4195 			conf->algorithm, mdname(mddev));
4196 		goto abort;
4197 	}
4198 	if (mddev->degraded > conf->max_degraded) {
4199 		printk(KERN_ERR "raid5: not enough operational devices for %s"
4200 			" (%d/%d failed)\n",
4201 			mdname(mddev), mddev->degraded, conf->raid_disks);
4202 		goto abort;
4203 	}
4204 
4205 	if (mddev->degraded > 0 &&
4206 	    mddev->recovery_cp != MaxSector) {
4207 		if (mddev->ok_start_degraded)
4208 			printk(KERN_WARNING
4209 			       "raid5: starting dirty degraded array: %s"
4210 			       "- data corruption possible.\n",
4211 			       mdname(mddev));
4212 		else {
4213 			printk(KERN_ERR
4214 			       "raid5: cannot start dirty degraded array for %s\n",
4215 			       mdname(mddev));
4216 			goto abort;
4217 		}
4218 	}
4219 
4220 	{
4221 		mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4222 		if (!mddev->thread) {
4223 			printk(KERN_ERR
4224 				"raid5: couldn't allocate thread for %s\n",
4225 				mdname(mddev));
4226 			goto abort;
4227 		}
4228 	}
4229 	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4230 		 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4231 	if (grow_stripes(conf, conf->max_nr_stripes)) {
4232 		printk(KERN_ERR
4233 			"raid5: couldn't allocate %dkB for buffers\n", memory);
4234 		shrink_stripes(conf);
4235 		md_unregister_thread(mddev->thread);
4236 		goto abort;
4237 	} else
4238 		printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4239 			memory, mdname(mddev));
4240 
4241 	if (mddev->degraded == 0)
4242 		printk("raid5: raid level %d set %s active with %d out of %d"
4243 			" devices, algorithm %d\n", conf->level, mdname(mddev),
4244 			mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4245 			conf->algorithm);
4246 	else
4247 		printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4248 			" out of %d devices, algorithm %d\n", conf->level,
4249 			mdname(mddev), mddev->raid_disks - mddev->degraded,
4250 			mddev->raid_disks, conf->algorithm);
4251 
4252 	print_raid5_conf(conf);
4253 
4254 	if (conf->expand_progress != MaxSector) {
4255 		printk("...ok start reshape thread\n");
4256 		conf->expand_lo = conf->expand_progress;
4257 		atomic_set(&conf->reshape_stripes, 0);
4258 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4259 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4260 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4261 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4262 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4263 							"%s_reshape");
4264 	}
4265 
4266 	/* read-ahead size must cover two whole stripes, which is
4267 	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4268 	 */
4269 	{
4270 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
4271 		int stripe = data_disks *
4272 			(mddev->chunk_size / PAGE_SIZE);
4273 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4274 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4275 	}
4276 
4277 	/* Ok, everything is just fine now */
4278 	if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4279 		printk(KERN_WARNING
4280 		       "raid5: failed to create sysfs attributes for %s\n",
4281 		       mdname(mddev));
4282 
4283 	mddev->queue->unplug_fn = raid5_unplug_device;
4284 	mddev->queue->issue_flush_fn = raid5_issue_flush;
4285 	mddev->queue->backing_dev_info.congested_data = mddev;
4286 	mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4287 
4288 	mddev->array_size =  mddev->size * (conf->previous_raid_disks -
4289 					    conf->max_degraded);
4290 
4291 	blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4292 
4293 	return 0;
4294 abort:
4295 	if (conf) {
4296 		print_raid5_conf(conf);
4297 		safe_put_page(conf->spare_page);
4298 		kfree(conf->disks);
4299 		kfree(conf->stripe_hashtbl);
4300 		kfree(conf);
4301 	}
4302 	mddev->private = NULL;
4303 	printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
4304 	return -EIO;
4305 }
4306 
4307 
4308 
4309 static int stop(mddev_t *mddev)
4310 {
4311 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4312 
4313 	md_unregister_thread(mddev->thread);
4314 	mddev->thread = NULL;
4315 	shrink_stripes(conf);
4316 	kfree(conf->stripe_hashtbl);
4317 	mddev->queue->backing_dev_info.congested_fn = NULL;
4318 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
4319 	sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
4320 	kfree(conf->disks);
4321 	kfree(conf);
4322 	mddev->private = NULL;
4323 	return 0;
4324 }
4325 
4326 #ifdef DEBUG
4327 static void print_sh (struct seq_file *seq, struct stripe_head *sh)
4328 {
4329 	int i;
4330 
4331 	seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4332 		   (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4333 	seq_printf(seq, "sh %llu,  count %d.\n",
4334 		   (unsigned long long)sh->sector, atomic_read(&sh->count));
4335 	seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4336 	for (i = 0; i < sh->disks; i++) {
4337 		seq_printf(seq, "(cache%d: %p %ld) ",
4338 			   i, sh->dev[i].page, sh->dev[i].flags);
4339 	}
4340 	seq_printf(seq, "\n");
4341 }
4342 
4343 static void printall (struct seq_file *seq, raid5_conf_t *conf)
4344 {
4345 	struct stripe_head *sh;
4346 	struct hlist_node *hn;
4347 	int i;
4348 
4349 	spin_lock_irq(&conf->device_lock);
4350 	for (i = 0; i < NR_HASH; i++) {
4351 		hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4352 			if (sh->raid_conf != conf)
4353 				continue;
4354 			print_sh(seq, sh);
4355 		}
4356 	}
4357 	spin_unlock_irq(&conf->device_lock);
4358 }
4359 #endif
4360 
4361 static void status (struct seq_file *seq, mddev_t *mddev)
4362 {
4363 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4364 	int i;
4365 
4366 	seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
4367 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4368 	for (i = 0; i < conf->raid_disks; i++)
4369 		seq_printf (seq, "%s",
4370 			       conf->disks[i].rdev &&
4371 			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
4372 	seq_printf (seq, "]");
4373 #ifdef DEBUG
4374 	seq_printf (seq, "\n");
4375 	printall(seq, conf);
4376 #endif
4377 }
4378 
4379 static void print_raid5_conf (raid5_conf_t *conf)
4380 {
4381 	int i;
4382 	struct disk_info *tmp;
4383 
4384 	printk("RAID5 conf printout:\n");
4385 	if (!conf) {
4386 		printk("(conf==NULL)\n");
4387 		return;
4388 	}
4389 	printk(" --- rd:%d wd:%d\n", conf->raid_disks,
4390 		 conf->raid_disks - conf->mddev->degraded);
4391 
4392 	for (i = 0; i < conf->raid_disks; i++) {
4393 		char b[BDEVNAME_SIZE];
4394 		tmp = conf->disks + i;
4395 		if (tmp->rdev)
4396 		printk(" disk %d, o:%d, dev:%s\n",
4397 			i, !test_bit(Faulty, &tmp->rdev->flags),
4398 			bdevname(tmp->rdev->bdev,b));
4399 	}
4400 }
4401 
4402 static int raid5_spare_active(mddev_t *mddev)
4403 {
4404 	int i;
4405 	raid5_conf_t *conf = mddev->private;
4406 	struct disk_info *tmp;
4407 
4408 	for (i = 0; i < conf->raid_disks; i++) {
4409 		tmp = conf->disks + i;
4410 		if (tmp->rdev
4411 		    && !test_bit(Faulty, &tmp->rdev->flags)
4412 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4413 			unsigned long flags;
4414 			spin_lock_irqsave(&conf->device_lock, flags);
4415 			mddev->degraded--;
4416 			spin_unlock_irqrestore(&conf->device_lock, flags);
4417 		}
4418 	}
4419 	print_raid5_conf(conf);
4420 	return 0;
4421 }
4422 
4423 static int raid5_remove_disk(mddev_t *mddev, int number)
4424 {
4425 	raid5_conf_t *conf = mddev->private;
4426 	int err = 0;
4427 	mdk_rdev_t *rdev;
4428 	struct disk_info *p = conf->disks + number;
4429 
4430 	print_raid5_conf(conf);
4431 	rdev = p->rdev;
4432 	if (rdev) {
4433 		if (test_bit(In_sync, &rdev->flags) ||
4434 		    atomic_read(&rdev->nr_pending)) {
4435 			err = -EBUSY;
4436 			goto abort;
4437 		}
4438 		p->rdev = NULL;
4439 		synchronize_rcu();
4440 		if (atomic_read(&rdev->nr_pending)) {
4441 			/* lost the race, try later */
4442 			err = -EBUSY;
4443 			p->rdev = rdev;
4444 		}
4445 	}
4446 abort:
4447 
4448 	print_raid5_conf(conf);
4449 	return err;
4450 }
4451 
4452 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4453 {
4454 	raid5_conf_t *conf = mddev->private;
4455 	int found = 0;
4456 	int disk;
4457 	struct disk_info *p;
4458 
4459 	if (mddev->degraded > conf->max_degraded)
4460 		/* no point adding a device */
4461 		return 0;
4462 
4463 	/*
4464 	 * find the disk ... but prefer rdev->saved_raid_disk
4465 	 * if possible.
4466 	 */
4467 	if (rdev->saved_raid_disk >= 0 &&
4468 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
4469 		disk = rdev->saved_raid_disk;
4470 	else
4471 		disk = 0;
4472 	for ( ; disk < conf->raid_disks; disk++)
4473 		if ((p=conf->disks + disk)->rdev == NULL) {
4474 			clear_bit(In_sync, &rdev->flags);
4475 			rdev->raid_disk = disk;
4476 			found = 1;
4477 			if (rdev->saved_raid_disk != disk)
4478 				conf->fullsync = 1;
4479 			rcu_assign_pointer(p->rdev, rdev);
4480 			break;
4481 		}
4482 	print_raid5_conf(conf);
4483 	return found;
4484 }
4485 
4486 static int raid5_resize(mddev_t *mddev, sector_t sectors)
4487 {
4488 	/* no resync is happening, and there is enough space
4489 	 * on all devices, so we can resize.
4490 	 * We need to make sure resync covers any new space.
4491 	 * If the array is shrinking we should possibly wait until
4492 	 * any io in the removed space completes, but it hardly seems
4493 	 * worth it.
4494 	 */
4495 	raid5_conf_t *conf = mddev_to_conf(mddev);
4496 
4497 	sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4498 	mddev->array_size = (sectors * (mddev->raid_disks-conf->max_degraded))>>1;
4499 	set_capacity(mddev->gendisk, mddev->array_size << 1);
4500 	mddev->changed = 1;
4501 	if (sectors/2  > mddev->size && mddev->recovery_cp == MaxSector) {
4502 		mddev->recovery_cp = mddev->size << 1;
4503 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4504 	}
4505 	mddev->size = sectors /2;
4506 	mddev->resync_max_sectors = sectors;
4507 	return 0;
4508 }
4509 
4510 #ifdef CONFIG_MD_RAID5_RESHAPE
4511 static int raid5_check_reshape(mddev_t *mddev)
4512 {
4513 	raid5_conf_t *conf = mddev_to_conf(mddev);
4514 	int err;
4515 
4516 	if (mddev->delta_disks < 0 ||
4517 	    mddev->new_level != mddev->level)
4518 		return -EINVAL; /* Cannot shrink array or change level yet */
4519 	if (mddev->delta_disks == 0)
4520 		return 0; /* nothing to do */
4521 
4522 	/* Can only proceed if there are plenty of stripe_heads.
4523 	 * We need a minimum of one full stripe,, and for sensible progress
4524 	 * it is best to have about 4 times that.
4525 	 * If we require 4 times, then the default 256 4K stripe_heads will
4526 	 * allow for chunk sizes up to 256K, which is probably OK.
4527 	 * If the chunk size is greater, user-space should request more
4528 	 * stripe_heads first.
4529 	 */
4530 	if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
4531 	    (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
4532 		printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n",
4533 		       (mddev->chunk_size / STRIPE_SIZE)*4);
4534 		return -ENOSPC;
4535 	}
4536 
4537 	err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
4538 	if (err)
4539 		return err;
4540 
4541 	if (mddev->degraded > conf->max_degraded)
4542 		return -EINVAL;
4543 	/* looks like we might be able to manage this */
4544 	return 0;
4545 }
4546 
4547 static int raid5_start_reshape(mddev_t *mddev)
4548 {
4549 	raid5_conf_t *conf = mddev_to_conf(mddev);
4550 	mdk_rdev_t *rdev;
4551 	struct list_head *rtmp;
4552 	int spares = 0;
4553 	int added_devices = 0;
4554 	unsigned long flags;
4555 
4556 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4557 		return -EBUSY;
4558 
4559 	ITERATE_RDEV(mddev, rdev, rtmp)
4560 		if (rdev->raid_disk < 0 &&
4561 		    !test_bit(Faulty, &rdev->flags))
4562 			spares++;
4563 
4564 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
4565 		/* Not enough devices even to make a degraded array
4566 		 * of that size
4567 		 */
4568 		return -EINVAL;
4569 
4570 	atomic_set(&conf->reshape_stripes, 0);
4571 	spin_lock_irq(&conf->device_lock);
4572 	conf->previous_raid_disks = conf->raid_disks;
4573 	conf->raid_disks += mddev->delta_disks;
4574 	conf->expand_progress = 0;
4575 	conf->expand_lo = 0;
4576 	spin_unlock_irq(&conf->device_lock);
4577 
4578 	/* Add some new drives, as many as will fit.
4579 	 * We know there are enough to make the newly sized array work.
4580 	 */
4581 	ITERATE_RDEV(mddev, rdev, rtmp)
4582 		if (rdev->raid_disk < 0 &&
4583 		    !test_bit(Faulty, &rdev->flags)) {
4584 			if (raid5_add_disk(mddev, rdev)) {
4585 				char nm[20];
4586 				set_bit(In_sync, &rdev->flags);
4587 				added_devices++;
4588 				rdev->recovery_offset = 0;
4589 				sprintf(nm, "rd%d", rdev->raid_disk);
4590 				if (sysfs_create_link(&mddev->kobj,
4591 						      &rdev->kobj, nm))
4592 					printk(KERN_WARNING
4593 					       "raid5: failed to create "
4594 					       " link %s for %s\n",
4595 					       nm, mdname(mddev));
4596 			} else
4597 				break;
4598 		}
4599 
4600 	spin_lock_irqsave(&conf->device_lock, flags);
4601 	mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
4602 	spin_unlock_irqrestore(&conf->device_lock, flags);
4603 	mddev->raid_disks = conf->raid_disks;
4604 	mddev->reshape_position = 0;
4605 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
4606 
4607 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4608 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4609 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4610 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4611 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4612 						"%s_reshape");
4613 	if (!mddev->sync_thread) {
4614 		mddev->recovery = 0;
4615 		spin_lock_irq(&conf->device_lock);
4616 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
4617 		conf->expand_progress = MaxSector;
4618 		spin_unlock_irq(&conf->device_lock);
4619 		return -EAGAIN;
4620 	}
4621 	md_wakeup_thread(mddev->sync_thread);
4622 	md_new_event(mddev);
4623 	return 0;
4624 }
4625 #endif
4626 
4627 static void end_reshape(raid5_conf_t *conf)
4628 {
4629 	struct block_device *bdev;
4630 
4631 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
4632 		conf->mddev->array_size = conf->mddev->size *
4633 			(conf->raid_disks - conf->max_degraded);
4634 		set_capacity(conf->mddev->gendisk, conf->mddev->array_size << 1);
4635 		conf->mddev->changed = 1;
4636 
4637 		bdev = bdget_disk(conf->mddev->gendisk, 0);
4638 		if (bdev) {
4639 			mutex_lock(&bdev->bd_inode->i_mutex);
4640 			i_size_write(bdev->bd_inode, (loff_t)conf->mddev->array_size << 10);
4641 			mutex_unlock(&bdev->bd_inode->i_mutex);
4642 			bdput(bdev);
4643 		}
4644 		spin_lock_irq(&conf->device_lock);
4645 		conf->expand_progress = MaxSector;
4646 		spin_unlock_irq(&conf->device_lock);
4647 		conf->mddev->reshape_position = MaxSector;
4648 
4649 		/* read-ahead size must cover two whole stripes, which is
4650 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4651 		 */
4652 		{
4653 			int data_disks = conf->previous_raid_disks - conf->max_degraded;
4654 			int stripe = data_disks *
4655 				(conf->mddev->chunk_size / PAGE_SIZE);
4656 			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4657 				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4658 		}
4659 	}
4660 }
4661 
4662 static void raid5_quiesce(mddev_t *mddev, int state)
4663 {
4664 	raid5_conf_t *conf = mddev_to_conf(mddev);
4665 
4666 	switch(state) {
4667 	case 2: /* resume for a suspend */
4668 		wake_up(&conf->wait_for_overlap);
4669 		break;
4670 
4671 	case 1: /* stop all writes */
4672 		spin_lock_irq(&conf->device_lock);
4673 		conf->quiesce = 1;
4674 		wait_event_lock_irq(conf->wait_for_stripe,
4675 				    atomic_read(&conf->active_stripes) == 0 &&
4676 				    atomic_read(&conf->active_aligned_reads) == 0,
4677 				    conf->device_lock, /* nothing */);
4678 		spin_unlock_irq(&conf->device_lock);
4679 		break;
4680 
4681 	case 0: /* re-enable writes */
4682 		spin_lock_irq(&conf->device_lock);
4683 		conf->quiesce = 0;
4684 		wake_up(&conf->wait_for_stripe);
4685 		wake_up(&conf->wait_for_overlap);
4686 		spin_unlock_irq(&conf->device_lock);
4687 		break;
4688 	}
4689 }
4690 
4691 static struct mdk_personality raid6_personality =
4692 {
4693 	.name		= "raid6",
4694 	.level		= 6,
4695 	.owner		= THIS_MODULE,
4696 	.make_request	= make_request,
4697 	.run		= run,
4698 	.stop		= stop,
4699 	.status		= status,
4700 	.error_handler	= error,
4701 	.hot_add_disk	= raid5_add_disk,
4702 	.hot_remove_disk= raid5_remove_disk,
4703 	.spare_active	= raid5_spare_active,
4704 	.sync_request	= sync_request,
4705 	.resize		= raid5_resize,
4706 #ifdef CONFIG_MD_RAID5_RESHAPE
4707 	.check_reshape	= raid5_check_reshape,
4708 	.start_reshape  = raid5_start_reshape,
4709 #endif
4710 	.quiesce	= raid5_quiesce,
4711 };
4712 static struct mdk_personality raid5_personality =
4713 {
4714 	.name		= "raid5",
4715 	.level		= 5,
4716 	.owner		= THIS_MODULE,
4717 	.make_request	= make_request,
4718 	.run		= run,
4719 	.stop		= stop,
4720 	.status		= status,
4721 	.error_handler	= error,
4722 	.hot_add_disk	= raid5_add_disk,
4723 	.hot_remove_disk= raid5_remove_disk,
4724 	.spare_active	= raid5_spare_active,
4725 	.sync_request	= sync_request,
4726 	.resize		= raid5_resize,
4727 #ifdef CONFIG_MD_RAID5_RESHAPE
4728 	.check_reshape	= raid5_check_reshape,
4729 	.start_reshape  = raid5_start_reshape,
4730 #endif
4731 	.quiesce	= raid5_quiesce,
4732 };
4733 
4734 static struct mdk_personality raid4_personality =
4735 {
4736 	.name		= "raid4",
4737 	.level		= 4,
4738 	.owner		= THIS_MODULE,
4739 	.make_request	= make_request,
4740 	.run		= run,
4741 	.stop		= stop,
4742 	.status		= status,
4743 	.error_handler	= error,
4744 	.hot_add_disk	= raid5_add_disk,
4745 	.hot_remove_disk= raid5_remove_disk,
4746 	.spare_active	= raid5_spare_active,
4747 	.sync_request	= sync_request,
4748 	.resize		= raid5_resize,
4749 #ifdef CONFIG_MD_RAID5_RESHAPE
4750 	.check_reshape	= raid5_check_reshape,
4751 	.start_reshape  = raid5_start_reshape,
4752 #endif
4753 	.quiesce	= raid5_quiesce,
4754 };
4755 
4756 static int __init raid5_init(void)
4757 {
4758 	int e;
4759 
4760 	e = raid6_select_algo();
4761 	if ( e )
4762 		return e;
4763 	register_md_personality(&raid6_personality);
4764 	register_md_personality(&raid5_personality);
4765 	register_md_personality(&raid4_personality);
4766 	return 0;
4767 }
4768 
4769 static void raid5_exit(void)
4770 {
4771 	unregister_md_personality(&raid6_personality);
4772 	unregister_md_personality(&raid5_personality);
4773 	unregister_md_personality(&raid4_personality);
4774 }
4775 
4776 module_init(raid5_init);
4777 module_exit(raid5_exit);
4778 MODULE_LICENSE("GPL");
4779 MODULE_ALIAS("md-personality-4"); /* RAID5 */
4780 MODULE_ALIAS("md-raid5");
4781 MODULE_ALIAS("md-raid4");
4782 MODULE_ALIAS("md-level-5");
4783 MODULE_ALIAS("md-level-4");
4784 MODULE_ALIAS("md-personality-8"); /* RAID6 */
4785 MODULE_ALIAS("md-raid6");
4786 MODULE_ALIAS("md-level-6");
4787 
4788 /* This used to be two separate modules, they were: */
4789 MODULE_ALIAS("raid5");
4790 MODULE_ALIAS("raid6");
4791