1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid5.c : Multiple Devices driver for Linux 4 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman 5 * Copyright (C) 1999, 2000 Ingo Molnar 6 * Copyright (C) 2002, 2003 H. Peter Anvin 7 * 8 * RAID-4/5/6 management functions. 9 * Thanks to Penguin Computing for making the RAID-6 development possible 10 * by donating a test server! 11 */ 12 13 /* 14 * BITMAP UNPLUGGING: 15 * 16 * The sequencing for updating the bitmap reliably is a little 17 * subtle (and I got it wrong the first time) so it deserves some 18 * explanation. 19 * 20 * We group bitmap updates into batches. Each batch has a number. 21 * We may write out several batches at once, but that isn't very important. 22 * conf->seq_write is the number of the last batch successfully written. 23 * conf->seq_flush is the number of the last batch that was closed to 24 * new additions. 25 * When we discover that we will need to write to any block in a stripe 26 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq 27 * the number of the batch it will be in. This is seq_flush+1. 28 * When we are ready to do a write, if that batch hasn't been written yet, 29 * we plug the array and queue the stripe for later. 30 * When an unplug happens, we increment bm_flush, thus closing the current 31 * batch. 32 * When we notice that bm_flush > bm_write, we write out all pending updates 33 * to the bitmap, and advance bm_write to where bm_flush was. 34 * This may occasionally write a bit out twice, but is sure never to 35 * miss any bits. 36 */ 37 38 #include <linux/blkdev.h> 39 #include <linux/kthread.h> 40 #include <linux/raid/pq.h> 41 #include <linux/async_tx.h> 42 #include <linux/module.h> 43 #include <linux/async.h> 44 #include <linux/seq_file.h> 45 #include <linux/cpu.h> 46 #include <linux/slab.h> 47 #include <linux/ratelimit.h> 48 #include <linux/nodemask.h> 49 50 #include <trace/events/block.h> 51 #include <linux/list_sort.h> 52 53 #include "md.h" 54 #include "raid5.h" 55 #include "raid0.h" 56 #include "md-bitmap.h" 57 #include "raid5-log.h" 58 59 #define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED) 60 61 #define cpu_to_group(cpu) cpu_to_node(cpu) 62 #define ANY_GROUP NUMA_NO_NODE 63 64 static bool devices_handle_discard_safely = false; 65 module_param(devices_handle_discard_safely, bool, 0644); 66 MODULE_PARM_DESC(devices_handle_discard_safely, 67 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions"); 68 static struct workqueue_struct *raid5_wq; 69 70 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect) 71 { 72 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK; 73 return &conf->stripe_hashtbl[hash]; 74 } 75 76 static inline int stripe_hash_locks_hash(sector_t sect) 77 { 78 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK; 79 } 80 81 static inline void lock_device_hash_lock(struct r5conf *conf, int hash) 82 { 83 spin_lock_irq(conf->hash_locks + hash); 84 spin_lock(&conf->device_lock); 85 } 86 87 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash) 88 { 89 spin_unlock(&conf->device_lock); 90 spin_unlock_irq(conf->hash_locks + hash); 91 } 92 93 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf) 94 { 95 int i; 96 spin_lock_irq(conf->hash_locks); 97 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 98 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks); 99 spin_lock(&conf->device_lock); 100 } 101 102 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf) 103 { 104 int i; 105 spin_unlock(&conf->device_lock); 106 for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--) 107 spin_unlock(conf->hash_locks + i); 108 spin_unlock_irq(conf->hash_locks); 109 } 110 111 /* Find first data disk in a raid6 stripe */ 112 static inline int raid6_d0(struct stripe_head *sh) 113 { 114 if (sh->ddf_layout) 115 /* ddf always start from first device */ 116 return 0; 117 /* md starts just after Q block */ 118 if (sh->qd_idx == sh->disks - 1) 119 return 0; 120 else 121 return sh->qd_idx + 1; 122 } 123 static inline int raid6_next_disk(int disk, int raid_disks) 124 { 125 disk++; 126 return (disk < raid_disks) ? disk : 0; 127 } 128 129 /* When walking through the disks in a raid5, starting at raid6_d0, 130 * We need to map each disk to a 'slot', where the data disks are slot 131 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk 132 * is raid_disks-1. This help does that mapping. 133 */ 134 static int raid6_idx_to_slot(int idx, struct stripe_head *sh, 135 int *count, int syndrome_disks) 136 { 137 int slot = *count; 138 139 if (sh->ddf_layout) 140 (*count)++; 141 if (idx == sh->pd_idx) 142 return syndrome_disks; 143 if (idx == sh->qd_idx) 144 return syndrome_disks + 1; 145 if (!sh->ddf_layout) 146 (*count)++; 147 return slot; 148 } 149 150 static void print_raid5_conf (struct r5conf *conf); 151 152 static int stripe_operations_active(struct stripe_head *sh) 153 { 154 return sh->check_state || sh->reconstruct_state || 155 test_bit(STRIPE_BIOFILL_RUN, &sh->state) || 156 test_bit(STRIPE_COMPUTE_RUN, &sh->state); 157 } 158 159 static bool stripe_is_lowprio(struct stripe_head *sh) 160 { 161 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) || 162 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) && 163 !test_bit(STRIPE_R5C_CACHING, &sh->state); 164 } 165 166 static void raid5_wakeup_stripe_thread(struct stripe_head *sh) 167 { 168 struct r5conf *conf = sh->raid_conf; 169 struct r5worker_group *group; 170 int thread_cnt; 171 int i, cpu = sh->cpu; 172 173 if (!cpu_online(cpu)) { 174 cpu = cpumask_any(cpu_online_mask); 175 sh->cpu = cpu; 176 } 177 178 if (list_empty(&sh->lru)) { 179 struct r5worker_group *group; 180 group = conf->worker_groups + cpu_to_group(cpu); 181 if (stripe_is_lowprio(sh)) 182 list_add_tail(&sh->lru, &group->loprio_list); 183 else 184 list_add_tail(&sh->lru, &group->handle_list); 185 group->stripes_cnt++; 186 sh->group = group; 187 } 188 189 if (conf->worker_cnt_per_group == 0) { 190 md_wakeup_thread(conf->mddev->thread); 191 return; 192 } 193 194 group = conf->worker_groups + cpu_to_group(sh->cpu); 195 196 group->workers[0].working = true; 197 /* at least one worker should run to avoid race */ 198 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work); 199 200 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1; 201 /* wakeup more workers */ 202 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) { 203 if (group->workers[i].working == false) { 204 group->workers[i].working = true; 205 queue_work_on(sh->cpu, raid5_wq, 206 &group->workers[i].work); 207 thread_cnt--; 208 } 209 } 210 } 211 212 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh, 213 struct list_head *temp_inactive_list) 214 { 215 int i; 216 int injournal = 0; /* number of date pages with R5_InJournal */ 217 218 BUG_ON(!list_empty(&sh->lru)); 219 BUG_ON(atomic_read(&conf->active_stripes)==0); 220 221 if (r5c_is_writeback(conf->log)) 222 for (i = sh->disks; i--; ) 223 if (test_bit(R5_InJournal, &sh->dev[i].flags)) 224 injournal++; 225 /* 226 * In the following cases, the stripe cannot be released to cached 227 * lists. Therefore, we make the stripe write out and set 228 * STRIPE_HANDLE: 229 * 1. when quiesce in r5c write back; 230 * 2. when resync is requested fot the stripe. 231 */ 232 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) || 233 (conf->quiesce && r5c_is_writeback(conf->log) && 234 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) { 235 if (test_bit(STRIPE_R5C_CACHING, &sh->state)) 236 r5c_make_stripe_write_out(sh); 237 set_bit(STRIPE_HANDLE, &sh->state); 238 } 239 240 if (test_bit(STRIPE_HANDLE, &sh->state)) { 241 if (test_bit(STRIPE_DELAYED, &sh->state) && 242 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 243 list_add_tail(&sh->lru, &conf->delayed_list); 244 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) && 245 sh->bm_seq - conf->seq_write > 0) 246 list_add_tail(&sh->lru, &conf->bitmap_list); 247 else { 248 clear_bit(STRIPE_DELAYED, &sh->state); 249 clear_bit(STRIPE_BIT_DELAY, &sh->state); 250 if (conf->worker_cnt_per_group == 0) { 251 if (stripe_is_lowprio(sh)) 252 list_add_tail(&sh->lru, 253 &conf->loprio_list); 254 else 255 list_add_tail(&sh->lru, 256 &conf->handle_list); 257 } else { 258 raid5_wakeup_stripe_thread(sh); 259 return; 260 } 261 } 262 md_wakeup_thread(conf->mddev->thread); 263 } else { 264 BUG_ON(stripe_operations_active(sh)); 265 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 266 if (atomic_dec_return(&conf->preread_active_stripes) 267 < IO_THRESHOLD) 268 md_wakeup_thread(conf->mddev->thread); 269 atomic_dec(&conf->active_stripes); 270 if (!test_bit(STRIPE_EXPANDING, &sh->state)) { 271 if (!r5c_is_writeback(conf->log)) 272 list_add_tail(&sh->lru, temp_inactive_list); 273 else { 274 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags)); 275 if (injournal == 0) 276 list_add_tail(&sh->lru, temp_inactive_list); 277 else if (injournal == conf->raid_disks - conf->max_degraded) { 278 /* full stripe */ 279 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) 280 atomic_inc(&conf->r5c_cached_full_stripes); 281 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) 282 atomic_dec(&conf->r5c_cached_partial_stripes); 283 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list); 284 r5c_check_cached_full_stripe(conf); 285 } else 286 /* 287 * STRIPE_R5C_PARTIAL_STRIPE is set in 288 * r5c_try_caching_write(). No need to 289 * set it again. 290 */ 291 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list); 292 } 293 } 294 } 295 } 296 297 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh, 298 struct list_head *temp_inactive_list) 299 { 300 if (atomic_dec_and_test(&sh->count)) 301 do_release_stripe(conf, sh, temp_inactive_list); 302 } 303 304 /* 305 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list 306 * 307 * Be careful: Only one task can add/delete stripes from temp_inactive_list at 308 * given time. Adding stripes only takes device lock, while deleting stripes 309 * only takes hash lock. 310 */ 311 static void release_inactive_stripe_list(struct r5conf *conf, 312 struct list_head *temp_inactive_list, 313 int hash) 314 { 315 int size; 316 bool do_wakeup = false; 317 unsigned long flags; 318 319 if (hash == NR_STRIPE_HASH_LOCKS) { 320 size = NR_STRIPE_HASH_LOCKS; 321 hash = NR_STRIPE_HASH_LOCKS - 1; 322 } else 323 size = 1; 324 while (size) { 325 struct list_head *list = &temp_inactive_list[size - 1]; 326 327 /* 328 * We don't hold any lock here yet, raid5_get_active_stripe() might 329 * remove stripes from the list 330 */ 331 if (!list_empty_careful(list)) { 332 spin_lock_irqsave(conf->hash_locks + hash, flags); 333 if (list_empty(conf->inactive_list + hash) && 334 !list_empty(list)) 335 atomic_dec(&conf->empty_inactive_list_nr); 336 list_splice_tail_init(list, conf->inactive_list + hash); 337 do_wakeup = true; 338 spin_unlock_irqrestore(conf->hash_locks + hash, flags); 339 } 340 size--; 341 hash--; 342 } 343 344 if (do_wakeup) { 345 wake_up(&conf->wait_for_stripe); 346 if (atomic_read(&conf->active_stripes) == 0) 347 wake_up(&conf->wait_for_quiescent); 348 if (conf->retry_read_aligned) 349 md_wakeup_thread(conf->mddev->thread); 350 } 351 } 352 353 /* should hold conf->device_lock already */ 354 static int release_stripe_list(struct r5conf *conf, 355 struct list_head *temp_inactive_list) 356 { 357 struct stripe_head *sh, *t; 358 int count = 0; 359 struct llist_node *head; 360 361 head = llist_del_all(&conf->released_stripes); 362 head = llist_reverse_order(head); 363 llist_for_each_entry_safe(sh, t, head, release_list) { 364 int hash; 365 366 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */ 367 smp_mb(); 368 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state); 369 /* 370 * Don't worry the bit is set here, because if the bit is set 371 * again, the count is always > 1. This is true for 372 * STRIPE_ON_UNPLUG_LIST bit too. 373 */ 374 hash = sh->hash_lock_index; 375 __release_stripe(conf, sh, &temp_inactive_list[hash]); 376 count++; 377 } 378 379 return count; 380 } 381 382 void raid5_release_stripe(struct stripe_head *sh) 383 { 384 struct r5conf *conf = sh->raid_conf; 385 unsigned long flags; 386 struct list_head list; 387 int hash; 388 bool wakeup; 389 390 /* Avoid release_list until the last reference. 391 */ 392 if (atomic_add_unless(&sh->count, -1, 1)) 393 return; 394 395 if (unlikely(!conf->mddev->thread) || 396 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state)) 397 goto slow_path; 398 wakeup = llist_add(&sh->release_list, &conf->released_stripes); 399 if (wakeup) 400 md_wakeup_thread(conf->mddev->thread); 401 return; 402 slow_path: 403 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */ 404 if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) { 405 INIT_LIST_HEAD(&list); 406 hash = sh->hash_lock_index; 407 do_release_stripe(conf, sh, &list); 408 spin_unlock_irqrestore(&conf->device_lock, flags); 409 release_inactive_stripe_list(conf, &list, hash); 410 } 411 } 412 413 static inline void remove_hash(struct stripe_head *sh) 414 { 415 pr_debug("remove_hash(), stripe %llu\n", 416 (unsigned long long)sh->sector); 417 418 hlist_del_init(&sh->hash); 419 } 420 421 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh) 422 { 423 struct hlist_head *hp = stripe_hash(conf, sh->sector); 424 425 pr_debug("insert_hash(), stripe %llu\n", 426 (unsigned long long)sh->sector); 427 428 hlist_add_head(&sh->hash, hp); 429 } 430 431 /* find an idle stripe, make sure it is unhashed, and return it. */ 432 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash) 433 { 434 struct stripe_head *sh = NULL; 435 struct list_head *first; 436 437 if (list_empty(conf->inactive_list + hash)) 438 goto out; 439 first = (conf->inactive_list + hash)->next; 440 sh = list_entry(first, struct stripe_head, lru); 441 list_del_init(first); 442 remove_hash(sh); 443 atomic_inc(&conf->active_stripes); 444 BUG_ON(hash != sh->hash_lock_index); 445 if (list_empty(conf->inactive_list + hash)) 446 atomic_inc(&conf->empty_inactive_list_nr); 447 out: 448 return sh; 449 } 450 451 static void shrink_buffers(struct stripe_head *sh) 452 { 453 struct page *p; 454 int i; 455 int num = sh->raid_conf->pool_size; 456 457 for (i = 0; i < num ; i++) { 458 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page); 459 p = sh->dev[i].page; 460 if (!p) 461 continue; 462 sh->dev[i].page = NULL; 463 put_page(p); 464 } 465 } 466 467 static int grow_buffers(struct stripe_head *sh, gfp_t gfp) 468 { 469 int i; 470 int num = sh->raid_conf->pool_size; 471 472 for (i = 0; i < num; i++) { 473 struct page *page; 474 475 if (!(page = alloc_page(gfp))) { 476 return 1; 477 } 478 sh->dev[i].page = page; 479 sh->dev[i].orig_page = page; 480 } 481 482 return 0; 483 } 484 485 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 486 struct stripe_head *sh); 487 488 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous) 489 { 490 struct r5conf *conf = sh->raid_conf; 491 int i, seq; 492 493 BUG_ON(atomic_read(&sh->count) != 0); 494 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); 495 BUG_ON(stripe_operations_active(sh)); 496 BUG_ON(sh->batch_head); 497 498 pr_debug("init_stripe called, stripe %llu\n", 499 (unsigned long long)sector); 500 retry: 501 seq = read_seqcount_begin(&conf->gen_lock); 502 sh->generation = conf->generation - previous; 503 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks; 504 sh->sector = sector; 505 stripe_set_idx(sector, conf, previous, sh); 506 sh->state = 0; 507 508 for (i = sh->disks; i--; ) { 509 struct r5dev *dev = &sh->dev[i]; 510 511 if (dev->toread || dev->read || dev->towrite || dev->written || 512 test_bit(R5_LOCKED, &dev->flags)) { 513 pr_err("sector=%llx i=%d %p %p %p %p %d\n", 514 (unsigned long long)sh->sector, i, dev->toread, 515 dev->read, dev->towrite, dev->written, 516 test_bit(R5_LOCKED, &dev->flags)); 517 WARN_ON(1); 518 } 519 dev->flags = 0; 520 dev->sector = raid5_compute_blocknr(sh, i, previous); 521 } 522 if (read_seqcount_retry(&conf->gen_lock, seq)) 523 goto retry; 524 sh->overwrite_disks = 0; 525 insert_hash(conf, sh); 526 sh->cpu = smp_processor_id(); 527 set_bit(STRIPE_BATCH_READY, &sh->state); 528 } 529 530 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector, 531 short generation) 532 { 533 struct stripe_head *sh; 534 535 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector); 536 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash) 537 if (sh->sector == sector && sh->generation == generation) 538 return sh; 539 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector); 540 return NULL; 541 } 542 543 /* 544 * Need to check if array has failed when deciding whether to: 545 * - start an array 546 * - remove non-faulty devices 547 * - add a spare 548 * - allow a reshape 549 * This determination is simple when no reshape is happening. 550 * However if there is a reshape, we need to carefully check 551 * both the before and after sections. 552 * This is because some failed devices may only affect one 553 * of the two sections, and some non-in_sync devices may 554 * be insync in the section most affected by failed devices. 555 */ 556 int raid5_calc_degraded(struct r5conf *conf) 557 { 558 int degraded, degraded2; 559 int i; 560 561 rcu_read_lock(); 562 degraded = 0; 563 for (i = 0; i < conf->previous_raid_disks; i++) { 564 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 565 if (rdev && test_bit(Faulty, &rdev->flags)) 566 rdev = rcu_dereference(conf->disks[i].replacement); 567 if (!rdev || test_bit(Faulty, &rdev->flags)) 568 degraded++; 569 else if (test_bit(In_sync, &rdev->flags)) 570 ; 571 else 572 /* not in-sync or faulty. 573 * If the reshape increases the number of devices, 574 * this is being recovered by the reshape, so 575 * this 'previous' section is not in_sync. 576 * If the number of devices is being reduced however, 577 * the device can only be part of the array if 578 * we are reverting a reshape, so this section will 579 * be in-sync. 580 */ 581 if (conf->raid_disks >= conf->previous_raid_disks) 582 degraded++; 583 } 584 rcu_read_unlock(); 585 if (conf->raid_disks == conf->previous_raid_disks) 586 return degraded; 587 rcu_read_lock(); 588 degraded2 = 0; 589 for (i = 0; i < conf->raid_disks; i++) { 590 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 591 if (rdev && test_bit(Faulty, &rdev->flags)) 592 rdev = rcu_dereference(conf->disks[i].replacement); 593 if (!rdev || test_bit(Faulty, &rdev->flags)) 594 degraded2++; 595 else if (test_bit(In_sync, &rdev->flags)) 596 ; 597 else 598 /* not in-sync or faulty. 599 * If reshape increases the number of devices, this 600 * section has already been recovered, else it 601 * almost certainly hasn't. 602 */ 603 if (conf->raid_disks <= conf->previous_raid_disks) 604 degraded2++; 605 } 606 rcu_read_unlock(); 607 if (degraded2 > degraded) 608 return degraded2; 609 return degraded; 610 } 611 612 static int has_failed(struct r5conf *conf) 613 { 614 int degraded; 615 616 if (conf->mddev->reshape_position == MaxSector) 617 return conf->mddev->degraded > conf->max_degraded; 618 619 degraded = raid5_calc_degraded(conf); 620 if (degraded > conf->max_degraded) 621 return 1; 622 return 0; 623 } 624 625 struct stripe_head * 626 raid5_get_active_stripe(struct r5conf *conf, sector_t sector, 627 int previous, int noblock, int noquiesce) 628 { 629 struct stripe_head *sh; 630 int hash = stripe_hash_locks_hash(sector); 631 int inc_empty_inactive_list_flag; 632 633 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector); 634 635 spin_lock_irq(conf->hash_locks + hash); 636 637 do { 638 wait_event_lock_irq(conf->wait_for_quiescent, 639 conf->quiesce == 0 || noquiesce, 640 *(conf->hash_locks + hash)); 641 sh = __find_stripe(conf, sector, conf->generation - previous); 642 if (!sh) { 643 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) { 644 sh = get_free_stripe(conf, hash); 645 if (!sh && !test_bit(R5_DID_ALLOC, 646 &conf->cache_state)) 647 set_bit(R5_ALLOC_MORE, 648 &conf->cache_state); 649 } 650 if (noblock && sh == NULL) 651 break; 652 653 r5c_check_stripe_cache_usage(conf); 654 if (!sh) { 655 set_bit(R5_INACTIVE_BLOCKED, 656 &conf->cache_state); 657 r5l_wake_reclaim(conf->log, 0); 658 wait_event_lock_irq( 659 conf->wait_for_stripe, 660 !list_empty(conf->inactive_list + hash) && 661 (atomic_read(&conf->active_stripes) 662 < (conf->max_nr_stripes * 3 / 4) 663 || !test_bit(R5_INACTIVE_BLOCKED, 664 &conf->cache_state)), 665 *(conf->hash_locks + hash)); 666 clear_bit(R5_INACTIVE_BLOCKED, 667 &conf->cache_state); 668 } else { 669 init_stripe(sh, sector, previous); 670 atomic_inc(&sh->count); 671 } 672 } else if (!atomic_inc_not_zero(&sh->count)) { 673 spin_lock(&conf->device_lock); 674 if (!atomic_read(&sh->count)) { 675 if (!test_bit(STRIPE_HANDLE, &sh->state)) 676 atomic_inc(&conf->active_stripes); 677 BUG_ON(list_empty(&sh->lru) && 678 !test_bit(STRIPE_EXPANDING, &sh->state)); 679 inc_empty_inactive_list_flag = 0; 680 if (!list_empty(conf->inactive_list + hash)) 681 inc_empty_inactive_list_flag = 1; 682 list_del_init(&sh->lru); 683 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag) 684 atomic_inc(&conf->empty_inactive_list_nr); 685 if (sh->group) { 686 sh->group->stripes_cnt--; 687 sh->group = NULL; 688 } 689 } 690 atomic_inc(&sh->count); 691 spin_unlock(&conf->device_lock); 692 } 693 } while (sh == NULL); 694 695 spin_unlock_irq(conf->hash_locks + hash); 696 return sh; 697 } 698 699 static bool is_full_stripe_write(struct stripe_head *sh) 700 { 701 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded)); 702 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded); 703 } 704 705 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) 706 __acquires(&sh1->stripe_lock) 707 __acquires(&sh2->stripe_lock) 708 { 709 if (sh1 > sh2) { 710 spin_lock_irq(&sh2->stripe_lock); 711 spin_lock_nested(&sh1->stripe_lock, 1); 712 } else { 713 spin_lock_irq(&sh1->stripe_lock); 714 spin_lock_nested(&sh2->stripe_lock, 1); 715 } 716 } 717 718 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) 719 __releases(&sh1->stripe_lock) 720 __releases(&sh2->stripe_lock) 721 { 722 spin_unlock(&sh1->stripe_lock); 723 spin_unlock_irq(&sh2->stripe_lock); 724 } 725 726 /* Only freshly new full stripe normal write stripe can be added to a batch list */ 727 static bool stripe_can_batch(struct stripe_head *sh) 728 { 729 struct r5conf *conf = sh->raid_conf; 730 731 if (raid5_has_log(conf) || raid5_has_ppl(conf)) 732 return false; 733 return test_bit(STRIPE_BATCH_READY, &sh->state) && 734 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) && 735 is_full_stripe_write(sh); 736 } 737 738 /* we only do back search */ 739 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh) 740 { 741 struct stripe_head *head; 742 sector_t head_sector, tmp_sec; 743 int hash; 744 int dd_idx; 745 int inc_empty_inactive_list_flag; 746 747 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */ 748 tmp_sec = sh->sector; 749 if (!sector_div(tmp_sec, conf->chunk_sectors)) 750 return; 751 head_sector = sh->sector - STRIPE_SECTORS; 752 753 hash = stripe_hash_locks_hash(head_sector); 754 spin_lock_irq(conf->hash_locks + hash); 755 head = __find_stripe(conf, head_sector, conf->generation); 756 if (head && !atomic_inc_not_zero(&head->count)) { 757 spin_lock(&conf->device_lock); 758 if (!atomic_read(&head->count)) { 759 if (!test_bit(STRIPE_HANDLE, &head->state)) 760 atomic_inc(&conf->active_stripes); 761 BUG_ON(list_empty(&head->lru) && 762 !test_bit(STRIPE_EXPANDING, &head->state)); 763 inc_empty_inactive_list_flag = 0; 764 if (!list_empty(conf->inactive_list + hash)) 765 inc_empty_inactive_list_flag = 1; 766 list_del_init(&head->lru); 767 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag) 768 atomic_inc(&conf->empty_inactive_list_nr); 769 if (head->group) { 770 head->group->stripes_cnt--; 771 head->group = NULL; 772 } 773 } 774 atomic_inc(&head->count); 775 spin_unlock(&conf->device_lock); 776 } 777 spin_unlock_irq(conf->hash_locks + hash); 778 779 if (!head) 780 return; 781 if (!stripe_can_batch(head)) 782 goto out; 783 784 lock_two_stripes(head, sh); 785 /* clear_batch_ready clear the flag */ 786 if (!stripe_can_batch(head) || !stripe_can_batch(sh)) 787 goto unlock_out; 788 789 if (sh->batch_head) 790 goto unlock_out; 791 792 dd_idx = 0; 793 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx) 794 dd_idx++; 795 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf || 796 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite)) 797 goto unlock_out; 798 799 if (head->batch_head) { 800 spin_lock(&head->batch_head->batch_lock); 801 /* This batch list is already running */ 802 if (!stripe_can_batch(head)) { 803 spin_unlock(&head->batch_head->batch_lock); 804 goto unlock_out; 805 } 806 /* 807 * We must assign batch_head of this stripe within the 808 * batch_lock, otherwise clear_batch_ready of batch head 809 * stripe could clear BATCH_READY bit of this stripe and 810 * this stripe->batch_head doesn't get assigned, which 811 * could confuse clear_batch_ready for this stripe 812 */ 813 sh->batch_head = head->batch_head; 814 815 /* 816 * at this point, head's BATCH_READY could be cleared, but we 817 * can still add the stripe to batch list 818 */ 819 list_add(&sh->batch_list, &head->batch_list); 820 spin_unlock(&head->batch_head->batch_lock); 821 } else { 822 head->batch_head = head; 823 sh->batch_head = head->batch_head; 824 spin_lock(&head->batch_lock); 825 list_add_tail(&sh->batch_list, &head->batch_list); 826 spin_unlock(&head->batch_lock); 827 } 828 829 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 830 if (atomic_dec_return(&conf->preread_active_stripes) 831 < IO_THRESHOLD) 832 md_wakeup_thread(conf->mddev->thread); 833 834 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) { 835 int seq = sh->bm_seq; 836 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) && 837 sh->batch_head->bm_seq > seq) 838 seq = sh->batch_head->bm_seq; 839 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state); 840 sh->batch_head->bm_seq = seq; 841 } 842 843 atomic_inc(&sh->count); 844 unlock_out: 845 unlock_two_stripes(head, sh); 846 out: 847 raid5_release_stripe(head); 848 } 849 850 /* Determine if 'data_offset' or 'new_data_offset' should be used 851 * in this stripe_head. 852 */ 853 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh) 854 { 855 sector_t progress = conf->reshape_progress; 856 /* Need a memory barrier to make sure we see the value 857 * of conf->generation, or ->data_offset that was set before 858 * reshape_progress was updated. 859 */ 860 smp_rmb(); 861 if (progress == MaxSector) 862 return 0; 863 if (sh->generation == conf->generation - 1) 864 return 0; 865 /* We are in a reshape, and this is a new-generation stripe, 866 * so use new_data_offset. 867 */ 868 return 1; 869 } 870 871 static void dispatch_bio_list(struct bio_list *tmp) 872 { 873 struct bio *bio; 874 875 while ((bio = bio_list_pop(tmp))) 876 generic_make_request(bio); 877 } 878 879 static int cmp_stripe(void *priv, struct list_head *a, struct list_head *b) 880 { 881 const struct r5pending_data *da = list_entry(a, 882 struct r5pending_data, sibling); 883 const struct r5pending_data *db = list_entry(b, 884 struct r5pending_data, sibling); 885 if (da->sector > db->sector) 886 return 1; 887 if (da->sector < db->sector) 888 return -1; 889 return 0; 890 } 891 892 static void dispatch_defer_bios(struct r5conf *conf, int target, 893 struct bio_list *list) 894 { 895 struct r5pending_data *data; 896 struct list_head *first, *next = NULL; 897 int cnt = 0; 898 899 if (conf->pending_data_cnt == 0) 900 return; 901 902 list_sort(NULL, &conf->pending_list, cmp_stripe); 903 904 first = conf->pending_list.next; 905 906 /* temporarily move the head */ 907 if (conf->next_pending_data) 908 list_move_tail(&conf->pending_list, 909 &conf->next_pending_data->sibling); 910 911 while (!list_empty(&conf->pending_list)) { 912 data = list_first_entry(&conf->pending_list, 913 struct r5pending_data, sibling); 914 if (&data->sibling == first) 915 first = data->sibling.next; 916 next = data->sibling.next; 917 918 bio_list_merge(list, &data->bios); 919 list_move(&data->sibling, &conf->free_list); 920 cnt++; 921 if (cnt >= target) 922 break; 923 } 924 conf->pending_data_cnt -= cnt; 925 BUG_ON(conf->pending_data_cnt < 0 || cnt < target); 926 927 if (next != &conf->pending_list) 928 conf->next_pending_data = list_entry(next, 929 struct r5pending_data, sibling); 930 else 931 conf->next_pending_data = NULL; 932 /* list isn't empty */ 933 if (first != &conf->pending_list) 934 list_move_tail(&conf->pending_list, first); 935 } 936 937 static void flush_deferred_bios(struct r5conf *conf) 938 { 939 struct bio_list tmp = BIO_EMPTY_LIST; 940 941 if (conf->pending_data_cnt == 0) 942 return; 943 944 spin_lock(&conf->pending_bios_lock); 945 dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp); 946 BUG_ON(conf->pending_data_cnt != 0); 947 spin_unlock(&conf->pending_bios_lock); 948 949 dispatch_bio_list(&tmp); 950 } 951 952 static void defer_issue_bios(struct r5conf *conf, sector_t sector, 953 struct bio_list *bios) 954 { 955 struct bio_list tmp = BIO_EMPTY_LIST; 956 struct r5pending_data *ent; 957 958 spin_lock(&conf->pending_bios_lock); 959 ent = list_first_entry(&conf->free_list, struct r5pending_data, 960 sibling); 961 list_move_tail(&ent->sibling, &conf->pending_list); 962 ent->sector = sector; 963 bio_list_init(&ent->bios); 964 bio_list_merge(&ent->bios, bios); 965 conf->pending_data_cnt++; 966 if (conf->pending_data_cnt >= PENDING_IO_MAX) 967 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp); 968 969 spin_unlock(&conf->pending_bios_lock); 970 971 dispatch_bio_list(&tmp); 972 } 973 974 static void 975 raid5_end_read_request(struct bio *bi); 976 static void 977 raid5_end_write_request(struct bio *bi); 978 979 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s) 980 { 981 struct r5conf *conf = sh->raid_conf; 982 int i, disks = sh->disks; 983 struct stripe_head *head_sh = sh; 984 struct bio_list pending_bios = BIO_EMPTY_LIST; 985 bool should_defer; 986 987 might_sleep(); 988 989 if (log_stripe(sh, s) == 0) 990 return; 991 992 should_defer = conf->batch_bio_dispatch && conf->group_cnt; 993 994 for (i = disks; i--; ) { 995 int op, op_flags = 0; 996 int replace_only = 0; 997 struct bio *bi, *rbi; 998 struct md_rdev *rdev, *rrdev = NULL; 999 1000 sh = head_sh; 1001 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) { 1002 op = REQ_OP_WRITE; 1003 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags)) 1004 op_flags = REQ_FUA; 1005 if (test_bit(R5_Discard, &sh->dev[i].flags)) 1006 op = REQ_OP_DISCARD; 1007 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags)) 1008 op = REQ_OP_READ; 1009 else if (test_and_clear_bit(R5_WantReplace, 1010 &sh->dev[i].flags)) { 1011 op = REQ_OP_WRITE; 1012 replace_only = 1; 1013 } else 1014 continue; 1015 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags)) 1016 op_flags |= REQ_SYNC; 1017 1018 again: 1019 bi = &sh->dev[i].req; 1020 rbi = &sh->dev[i].rreq; /* For writing to replacement */ 1021 1022 rcu_read_lock(); 1023 rrdev = rcu_dereference(conf->disks[i].replacement); 1024 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */ 1025 rdev = rcu_dereference(conf->disks[i].rdev); 1026 if (!rdev) { 1027 rdev = rrdev; 1028 rrdev = NULL; 1029 } 1030 if (op_is_write(op)) { 1031 if (replace_only) 1032 rdev = NULL; 1033 if (rdev == rrdev) 1034 /* We raced and saw duplicates */ 1035 rrdev = NULL; 1036 } else { 1037 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev) 1038 rdev = rrdev; 1039 rrdev = NULL; 1040 } 1041 1042 if (rdev && test_bit(Faulty, &rdev->flags)) 1043 rdev = NULL; 1044 if (rdev) 1045 atomic_inc(&rdev->nr_pending); 1046 if (rrdev && test_bit(Faulty, &rrdev->flags)) 1047 rrdev = NULL; 1048 if (rrdev) 1049 atomic_inc(&rrdev->nr_pending); 1050 rcu_read_unlock(); 1051 1052 /* We have already checked bad blocks for reads. Now 1053 * need to check for writes. We never accept write errors 1054 * on the replacement, so we don't to check rrdev. 1055 */ 1056 while (op_is_write(op) && rdev && 1057 test_bit(WriteErrorSeen, &rdev->flags)) { 1058 sector_t first_bad; 1059 int bad_sectors; 1060 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS, 1061 &first_bad, &bad_sectors); 1062 if (!bad) 1063 break; 1064 1065 if (bad < 0) { 1066 set_bit(BlockedBadBlocks, &rdev->flags); 1067 if (!conf->mddev->external && 1068 conf->mddev->sb_flags) { 1069 /* It is very unlikely, but we might 1070 * still need to write out the 1071 * bad block log - better give it 1072 * a chance*/ 1073 md_check_recovery(conf->mddev); 1074 } 1075 /* 1076 * Because md_wait_for_blocked_rdev 1077 * will dec nr_pending, we must 1078 * increment it first. 1079 */ 1080 atomic_inc(&rdev->nr_pending); 1081 md_wait_for_blocked_rdev(rdev, conf->mddev); 1082 } else { 1083 /* Acknowledged bad block - skip the write */ 1084 rdev_dec_pending(rdev, conf->mddev); 1085 rdev = NULL; 1086 } 1087 } 1088 1089 if (rdev) { 1090 if (s->syncing || s->expanding || s->expanded 1091 || s->replacing) 1092 md_sync_acct(rdev->bdev, STRIPE_SECTORS); 1093 1094 set_bit(STRIPE_IO_STARTED, &sh->state); 1095 1096 bio_set_dev(bi, rdev->bdev); 1097 bio_set_op_attrs(bi, op, op_flags); 1098 bi->bi_end_io = op_is_write(op) 1099 ? raid5_end_write_request 1100 : raid5_end_read_request; 1101 bi->bi_private = sh; 1102 1103 pr_debug("%s: for %llu schedule op %d on disc %d\n", 1104 __func__, (unsigned long long)sh->sector, 1105 bi->bi_opf, i); 1106 atomic_inc(&sh->count); 1107 if (sh != head_sh) 1108 atomic_inc(&head_sh->count); 1109 if (use_new_offset(conf, sh)) 1110 bi->bi_iter.bi_sector = (sh->sector 1111 + rdev->new_data_offset); 1112 else 1113 bi->bi_iter.bi_sector = (sh->sector 1114 + rdev->data_offset); 1115 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags)) 1116 bi->bi_opf |= REQ_NOMERGE; 1117 1118 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 1119 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 1120 1121 if (!op_is_write(op) && 1122 test_bit(R5_InJournal, &sh->dev[i].flags)) 1123 /* 1124 * issuing read for a page in journal, this 1125 * must be preparing for prexor in rmw; read 1126 * the data into orig_page 1127 */ 1128 sh->dev[i].vec.bv_page = sh->dev[i].orig_page; 1129 else 1130 sh->dev[i].vec.bv_page = sh->dev[i].page; 1131 bi->bi_vcnt = 1; 1132 bi->bi_io_vec[0].bv_len = STRIPE_SIZE; 1133 bi->bi_io_vec[0].bv_offset = 0; 1134 bi->bi_iter.bi_size = STRIPE_SIZE; 1135 bi->bi_write_hint = sh->dev[i].write_hint; 1136 if (!rrdev) 1137 sh->dev[i].write_hint = RWF_WRITE_LIFE_NOT_SET; 1138 /* 1139 * If this is discard request, set bi_vcnt 0. We don't 1140 * want to confuse SCSI because SCSI will replace payload 1141 */ 1142 if (op == REQ_OP_DISCARD) 1143 bi->bi_vcnt = 0; 1144 if (rrdev) 1145 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags); 1146 1147 if (conf->mddev->gendisk) 1148 trace_block_bio_remap(bi->bi_disk->queue, 1149 bi, disk_devt(conf->mddev->gendisk), 1150 sh->dev[i].sector); 1151 if (should_defer && op_is_write(op)) 1152 bio_list_add(&pending_bios, bi); 1153 else 1154 generic_make_request(bi); 1155 } 1156 if (rrdev) { 1157 if (s->syncing || s->expanding || s->expanded 1158 || s->replacing) 1159 md_sync_acct(rrdev->bdev, STRIPE_SECTORS); 1160 1161 set_bit(STRIPE_IO_STARTED, &sh->state); 1162 1163 bio_set_dev(rbi, rrdev->bdev); 1164 bio_set_op_attrs(rbi, op, op_flags); 1165 BUG_ON(!op_is_write(op)); 1166 rbi->bi_end_io = raid5_end_write_request; 1167 rbi->bi_private = sh; 1168 1169 pr_debug("%s: for %llu schedule op %d on " 1170 "replacement disc %d\n", 1171 __func__, (unsigned long long)sh->sector, 1172 rbi->bi_opf, i); 1173 atomic_inc(&sh->count); 1174 if (sh != head_sh) 1175 atomic_inc(&head_sh->count); 1176 if (use_new_offset(conf, sh)) 1177 rbi->bi_iter.bi_sector = (sh->sector 1178 + rrdev->new_data_offset); 1179 else 1180 rbi->bi_iter.bi_sector = (sh->sector 1181 + rrdev->data_offset); 1182 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 1183 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 1184 sh->dev[i].rvec.bv_page = sh->dev[i].page; 1185 rbi->bi_vcnt = 1; 1186 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE; 1187 rbi->bi_io_vec[0].bv_offset = 0; 1188 rbi->bi_iter.bi_size = STRIPE_SIZE; 1189 rbi->bi_write_hint = sh->dev[i].write_hint; 1190 sh->dev[i].write_hint = RWF_WRITE_LIFE_NOT_SET; 1191 /* 1192 * If this is discard request, set bi_vcnt 0. We don't 1193 * want to confuse SCSI because SCSI will replace payload 1194 */ 1195 if (op == REQ_OP_DISCARD) 1196 rbi->bi_vcnt = 0; 1197 if (conf->mddev->gendisk) 1198 trace_block_bio_remap(rbi->bi_disk->queue, 1199 rbi, disk_devt(conf->mddev->gendisk), 1200 sh->dev[i].sector); 1201 if (should_defer && op_is_write(op)) 1202 bio_list_add(&pending_bios, rbi); 1203 else 1204 generic_make_request(rbi); 1205 } 1206 if (!rdev && !rrdev) { 1207 if (op_is_write(op)) 1208 set_bit(STRIPE_DEGRADED, &sh->state); 1209 pr_debug("skip op %d on disc %d for sector %llu\n", 1210 bi->bi_opf, i, (unsigned long long)sh->sector); 1211 clear_bit(R5_LOCKED, &sh->dev[i].flags); 1212 set_bit(STRIPE_HANDLE, &sh->state); 1213 } 1214 1215 if (!head_sh->batch_head) 1216 continue; 1217 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1218 batch_list); 1219 if (sh != head_sh) 1220 goto again; 1221 } 1222 1223 if (should_defer && !bio_list_empty(&pending_bios)) 1224 defer_issue_bios(conf, head_sh->sector, &pending_bios); 1225 } 1226 1227 static struct dma_async_tx_descriptor * 1228 async_copy_data(int frombio, struct bio *bio, struct page **page, 1229 sector_t sector, struct dma_async_tx_descriptor *tx, 1230 struct stripe_head *sh, int no_skipcopy) 1231 { 1232 struct bio_vec bvl; 1233 struct bvec_iter iter; 1234 struct page *bio_page; 1235 int page_offset; 1236 struct async_submit_ctl submit; 1237 enum async_tx_flags flags = 0; 1238 1239 if (bio->bi_iter.bi_sector >= sector) 1240 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512; 1241 else 1242 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512; 1243 1244 if (frombio) 1245 flags |= ASYNC_TX_FENCE; 1246 init_async_submit(&submit, flags, tx, NULL, NULL, NULL); 1247 1248 bio_for_each_segment(bvl, bio, iter) { 1249 int len = bvl.bv_len; 1250 int clen; 1251 int b_offset = 0; 1252 1253 if (page_offset < 0) { 1254 b_offset = -page_offset; 1255 page_offset += b_offset; 1256 len -= b_offset; 1257 } 1258 1259 if (len > 0 && page_offset + len > STRIPE_SIZE) 1260 clen = STRIPE_SIZE - page_offset; 1261 else 1262 clen = len; 1263 1264 if (clen > 0) { 1265 b_offset += bvl.bv_offset; 1266 bio_page = bvl.bv_page; 1267 if (frombio) { 1268 if (sh->raid_conf->skip_copy && 1269 b_offset == 0 && page_offset == 0 && 1270 clen == STRIPE_SIZE && 1271 !no_skipcopy) 1272 *page = bio_page; 1273 else 1274 tx = async_memcpy(*page, bio_page, page_offset, 1275 b_offset, clen, &submit); 1276 } else 1277 tx = async_memcpy(bio_page, *page, b_offset, 1278 page_offset, clen, &submit); 1279 } 1280 /* chain the operations */ 1281 submit.depend_tx = tx; 1282 1283 if (clen < len) /* hit end of page */ 1284 break; 1285 page_offset += len; 1286 } 1287 1288 return tx; 1289 } 1290 1291 static void ops_complete_biofill(void *stripe_head_ref) 1292 { 1293 struct stripe_head *sh = stripe_head_ref; 1294 int i; 1295 1296 pr_debug("%s: stripe %llu\n", __func__, 1297 (unsigned long long)sh->sector); 1298 1299 /* clear completed biofills */ 1300 for (i = sh->disks; i--; ) { 1301 struct r5dev *dev = &sh->dev[i]; 1302 1303 /* acknowledge completion of a biofill operation */ 1304 /* and check if we need to reply to a read request, 1305 * new R5_Wantfill requests are held off until 1306 * !STRIPE_BIOFILL_RUN 1307 */ 1308 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) { 1309 struct bio *rbi, *rbi2; 1310 1311 BUG_ON(!dev->read); 1312 rbi = dev->read; 1313 dev->read = NULL; 1314 while (rbi && rbi->bi_iter.bi_sector < 1315 dev->sector + STRIPE_SECTORS) { 1316 rbi2 = r5_next_bio(rbi, dev->sector); 1317 bio_endio(rbi); 1318 rbi = rbi2; 1319 } 1320 } 1321 } 1322 clear_bit(STRIPE_BIOFILL_RUN, &sh->state); 1323 1324 set_bit(STRIPE_HANDLE, &sh->state); 1325 raid5_release_stripe(sh); 1326 } 1327 1328 static void ops_run_biofill(struct stripe_head *sh) 1329 { 1330 struct dma_async_tx_descriptor *tx = NULL; 1331 struct async_submit_ctl submit; 1332 int i; 1333 1334 BUG_ON(sh->batch_head); 1335 pr_debug("%s: stripe %llu\n", __func__, 1336 (unsigned long long)sh->sector); 1337 1338 for (i = sh->disks; i--; ) { 1339 struct r5dev *dev = &sh->dev[i]; 1340 if (test_bit(R5_Wantfill, &dev->flags)) { 1341 struct bio *rbi; 1342 spin_lock_irq(&sh->stripe_lock); 1343 dev->read = rbi = dev->toread; 1344 dev->toread = NULL; 1345 spin_unlock_irq(&sh->stripe_lock); 1346 while (rbi && rbi->bi_iter.bi_sector < 1347 dev->sector + STRIPE_SECTORS) { 1348 tx = async_copy_data(0, rbi, &dev->page, 1349 dev->sector, tx, sh, 0); 1350 rbi = r5_next_bio(rbi, dev->sector); 1351 } 1352 } 1353 } 1354 1355 atomic_inc(&sh->count); 1356 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL); 1357 async_trigger_callback(&submit); 1358 } 1359 1360 static void mark_target_uptodate(struct stripe_head *sh, int target) 1361 { 1362 struct r5dev *tgt; 1363 1364 if (target < 0) 1365 return; 1366 1367 tgt = &sh->dev[target]; 1368 set_bit(R5_UPTODATE, &tgt->flags); 1369 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1370 clear_bit(R5_Wantcompute, &tgt->flags); 1371 } 1372 1373 static void ops_complete_compute(void *stripe_head_ref) 1374 { 1375 struct stripe_head *sh = stripe_head_ref; 1376 1377 pr_debug("%s: stripe %llu\n", __func__, 1378 (unsigned long long)sh->sector); 1379 1380 /* mark the computed target(s) as uptodate */ 1381 mark_target_uptodate(sh, sh->ops.target); 1382 mark_target_uptodate(sh, sh->ops.target2); 1383 1384 clear_bit(STRIPE_COMPUTE_RUN, &sh->state); 1385 if (sh->check_state == check_state_compute_run) 1386 sh->check_state = check_state_compute_result; 1387 set_bit(STRIPE_HANDLE, &sh->state); 1388 raid5_release_stripe(sh); 1389 } 1390 1391 /* return a pointer to the address conversion region of the scribble buffer */ 1392 static struct page **to_addr_page(struct raid5_percpu *percpu, int i) 1393 { 1394 return percpu->scribble + i * percpu->scribble_obj_size; 1395 } 1396 1397 /* return a pointer to the address conversion region of the scribble buffer */ 1398 static addr_conv_t *to_addr_conv(struct stripe_head *sh, 1399 struct raid5_percpu *percpu, int i) 1400 { 1401 return (void *) (to_addr_page(percpu, i) + sh->disks + 2); 1402 } 1403 1404 static struct dma_async_tx_descriptor * 1405 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu) 1406 { 1407 int disks = sh->disks; 1408 struct page **xor_srcs = to_addr_page(percpu, 0); 1409 int target = sh->ops.target; 1410 struct r5dev *tgt = &sh->dev[target]; 1411 struct page *xor_dest = tgt->page; 1412 int count = 0; 1413 struct dma_async_tx_descriptor *tx; 1414 struct async_submit_ctl submit; 1415 int i; 1416 1417 BUG_ON(sh->batch_head); 1418 1419 pr_debug("%s: stripe %llu block: %d\n", 1420 __func__, (unsigned long long)sh->sector, target); 1421 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1422 1423 for (i = disks; i--; ) 1424 if (i != target) 1425 xor_srcs[count++] = sh->dev[i].page; 1426 1427 atomic_inc(&sh->count); 1428 1429 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL, 1430 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0)); 1431 if (unlikely(count == 1)) 1432 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); 1433 else 1434 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1435 1436 return tx; 1437 } 1438 1439 /* set_syndrome_sources - populate source buffers for gen_syndrome 1440 * @srcs - (struct page *) array of size sh->disks 1441 * @sh - stripe_head to parse 1442 * 1443 * Populates srcs in proper layout order for the stripe and returns the 1444 * 'count' of sources to be used in a call to async_gen_syndrome. The P 1445 * destination buffer is recorded in srcs[count] and the Q destination 1446 * is recorded in srcs[count+1]]. 1447 */ 1448 static int set_syndrome_sources(struct page **srcs, 1449 struct stripe_head *sh, 1450 int srctype) 1451 { 1452 int disks = sh->disks; 1453 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2); 1454 int d0_idx = raid6_d0(sh); 1455 int count; 1456 int i; 1457 1458 for (i = 0; i < disks; i++) 1459 srcs[i] = NULL; 1460 1461 count = 0; 1462 i = d0_idx; 1463 do { 1464 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1465 struct r5dev *dev = &sh->dev[i]; 1466 1467 if (i == sh->qd_idx || i == sh->pd_idx || 1468 (srctype == SYNDROME_SRC_ALL) || 1469 (srctype == SYNDROME_SRC_WANT_DRAIN && 1470 (test_bit(R5_Wantdrain, &dev->flags) || 1471 test_bit(R5_InJournal, &dev->flags))) || 1472 (srctype == SYNDROME_SRC_WRITTEN && 1473 (dev->written || 1474 test_bit(R5_InJournal, &dev->flags)))) { 1475 if (test_bit(R5_InJournal, &dev->flags)) 1476 srcs[slot] = sh->dev[i].orig_page; 1477 else 1478 srcs[slot] = sh->dev[i].page; 1479 } 1480 i = raid6_next_disk(i, disks); 1481 } while (i != d0_idx); 1482 1483 return syndrome_disks; 1484 } 1485 1486 static struct dma_async_tx_descriptor * 1487 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu) 1488 { 1489 int disks = sh->disks; 1490 struct page **blocks = to_addr_page(percpu, 0); 1491 int target; 1492 int qd_idx = sh->qd_idx; 1493 struct dma_async_tx_descriptor *tx; 1494 struct async_submit_ctl submit; 1495 struct r5dev *tgt; 1496 struct page *dest; 1497 int i; 1498 int count; 1499 1500 BUG_ON(sh->batch_head); 1501 if (sh->ops.target < 0) 1502 target = sh->ops.target2; 1503 else if (sh->ops.target2 < 0) 1504 target = sh->ops.target; 1505 else 1506 /* we should only have one valid target */ 1507 BUG(); 1508 BUG_ON(target < 0); 1509 pr_debug("%s: stripe %llu block: %d\n", 1510 __func__, (unsigned long long)sh->sector, target); 1511 1512 tgt = &sh->dev[target]; 1513 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1514 dest = tgt->page; 1515 1516 atomic_inc(&sh->count); 1517 1518 if (target == qd_idx) { 1519 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL); 1520 blocks[count] = NULL; /* regenerating p is not necessary */ 1521 BUG_ON(blocks[count+1] != dest); /* q should already be set */ 1522 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1523 ops_complete_compute, sh, 1524 to_addr_conv(sh, percpu, 0)); 1525 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1526 } else { 1527 /* Compute any data- or p-drive using XOR */ 1528 count = 0; 1529 for (i = disks; i-- ; ) { 1530 if (i == target || i == qd_idx) 1531 continue; 1532 blocks[count++] = sh->dev[i].page; 1533 } 1534 1535 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1536 NULL, ops_complete_compute, sh, 1537 to_addr_conv(sh, percpu, 0)); 1538 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit); 1539 } 1540 1541 return tx; 1542 } 1543 1544 static struct dma_async_tx_descriptor * 1545 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu) 1546 { 1547 int i, count, disks = sh->disks; 1548 int syndrome_disks = sh->ddf_layout ? disks : disks-2; 1549 int d0_idx = raid6_d0(sh); 1550 int faila = -1, failb = -1; 1551 int target = sh->ops.target; 1552 int target2 = sh->ops.target2; 1553 struct r5dev *tgt = &sh->dev[target]; 1554 struct r5dev *tgt2 = &sh->dev[target2]; 1555 struct dma_async_tx_descriptor *tx; 1556 struct page **blocks = to_addr_page(percpu, 0); 1557 struct async_submit_ctl submit; 1558 1559 BUG_ON(sh->batch_head); 1560 pr_debug("%s: stripe %llu block1: %d block2: %d\n", 1561 __func__, (unsigned long long)sh->sector, target, target2); 1562 BUG_ON(target < 0 || target2 < 0); 1563 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1564 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags)); 1565 1566 /* we need to open-code set_syndrome_sources to handle the 1567 * slot number conversion for 'faila' and 'failb' 1568 */ 1569 for (i = 0; i < disks ; i++) 1570 blocks[i] = NULL; 1571 count = 0; 1572 i = d0_idx; 1573 do { 1574 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1575 1576 blocks[slot] = sh->dev[i].page; 1577 1578 if (i == target) 1579 faila = slot; 1580 if (i == target2) 1581 failb = slot; 1582 i = raid6_next_disk(i, disks); 1583 } while (i != d0_idx); 1584 1585 BUG_ON(faila == failb); 1586 if (failb < faila) 1587 swap(faila, failb); 1588 pr_debug("%s: stripe: %llu faila: %d failb: %d\n", 1589 __func__, (unsigned long long)sh->sector, faila, failb); 1590 1591 atomic_inc(&sh->count); 1592 1593 if (failb == syndrome_disks+1) { 1594 /* Q disk is one of the missing disks */ 1595 if (faila == syndrome_disks) { 1596 /* Missing P+Q, just recompute */ 1597 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1598 ops_complete_compute, sh, 1599 to_addr_conv(sh, percpu, 0)); 1600 return async_gen_syndrome(blocks, 0, syndrome_disks+2, 1601 STRIPE_SIZE, &submit); 1602 } else { 1603 struct page *dest; 1604 int data_target; 1605 int qd_idx = sh->qd_idx; 1606 1607 /* Missing D+Q: recompute D from P, then recompute Q */ 1608 if (target == qd_idx) 1609 data_target = target2; 1610 else 1611 data_target = target; 1612 1613 count = 0; 1614 for (i = disks; i-- ; ) { 1615 if (i == data_target || i == qd_idx) 1616 continue; 1617 blocks[count++] = sh->dev[i].page; 1618 } 1619 dest = sh->dev[data_target].page; 1620 init_async_submit(&submit, 1621 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1622 NULL, NULL, NULL, 1623 to_addr_conv(sh, percpu, 0)); 1624 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, 1625 &submit); 1626 1627 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL); 1628 init_async_submit(&submit, ASYNC_TX_FENCE, tx, 1629 ops_complete_compute, sh, 1630 to_addr_conv(sh, percpu, 0)); 1631 return async_gen_syndrome(blocks, 0, count+2, 1632 STRIPE_SIZE, &submit); 1633 } 1634 } else { 1635 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1636 ops_complete_compute, sh, 1637 to_addr_conv(sh, percpu, 0)); 1638 if (failb == syndrome_disks) { 1639 /* We're missing D+P. */ 1640 return async_raid6_datap_recov(syndrome_disks+2, 1641 STRIPE_SIZE, faila, 1642 blocks, &submit); 1643 } else { 1644 /* We're missing D+D. */ 1645 return async_raid6_2data_recov(syndrome_disks+2, 1646 STRIPE_SIZE, faila, failb, 1647 blocks, &submit); 1648 } 1649 } 1650 } 1651 1652 static void ops_complete_prexor(void *stripe_head_ref) 1653 { 1654 struct stripe_head *sh = stripe_head_ref; 1655 1656 pr_debug("%s: stripe %llu\n", __func__, 1657 (unsigned long long)sh->sector); 1658 1659 if (r5c_is_writeback(sh->raid_conf->log)) 1660 /* 1661 * raid5-cache write back uses orig_page during prexor. 1662 * After prexor, it is time to free orig_page 1663 */ 1664 r5c_release_extra_page(sh); 1665 } 1666 1667 static struct dma_async_tx_descriptor * 1668 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu, 1669 struct dma_async_tx_descriptor *tx) 1670 { 1671 int disks = sh->disks; 1672 struct page **xor_srcs = to_addr_page(percpu, 0); 1673 int count = 0, pd_idx = sh->pd_idx, i; 1674 struct async_submit_ctl submit; 1675 1676 /* existing parity data subtracted */ 1677 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1678 1679 BUG_ON(sh->batch_head); 1680 pr_debug("%s: stripe %llu\n", __func__, 1681 (unsigned long long)sh->sector); 1682 1683 for (i = disks; i--; ) { 1684 struct r5dev *dev = &sh->dev[i]; 1685 /* Only process blocks that are known to be uptodate */ 1686 if (test_bit(R5_InJournal, &dev->flags)) 1687 xor_srcs[count++] = dev->orig_page; 1688 else if (test_bit(R5_Wantdrain, &dev->flags)) 1689 xor_srcs[count++] = dev->page; 1690 } 1691 1692 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx, 1693 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); 1694 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1695 1696 return tx; 1697 } 1698 1699 static struct dma_async_tx_descriptor * 1700 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu, 1701 struct dma_async_tx_descriptor *tx) 1702 { 1703 struct page **blocks = to_addr_page(percpu, 0); 1704 int count; 1705 struct async_submit_ctl submit; 1706 1707 pr_debug("%s: stripe %llu\n", __func__, 1708 (unsigned long long)sh->sector); 1709 1710 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN); 1711 1712 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx, 1713 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); 1714 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1715 1716 return tx; 1717 } 1718 1719 static struct dma_async_tx_descriptor * 1720 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) 1721 { 1722 struct r5conf *conf = sh->raid_conf; 1723 int disks = sh->disks; 1724 int i; 1725 struct stripe_head *head_sh = sh; 1726 1727 pr_debug("%s: stripe %llu\n", __func__, 1728 (unsigned long long)sh->sector); 1729 1730 for (i = disks; i--; ) { 1731 struct r5dev *dev; 1732 struct bio *chosen; 1733 1734 sh = head_sh; 1735 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) { 1736 struct bio *wbi; 1737 1738 again: 1739 dev = &sh->dev[i]; 1740 /* 1741 * clear R5_InJournal, so when rewriting a page in 1742 * journal, it is not skipped by r5l_log_stripe() 1743 */ 1744 clear_bit(R5_InJournal, &dev->flags); 1745 spin_lock_irq(&sh->stripe_lock); 1746 chosen = dev->towrite; 1747 dev->towrite = NULL; 1748 sh->overwrite_disks = 0; 1749 BUG_ON(dev->written); 1750 wbi = dev->written = chosen; 1751 spin_unlock_irq(&sh->stripe_lock); 1752 WARN_ON(dev->page != dev->orig_page); 1753 1754 while (wbi && wbi->bi_iter.bi_sector < 1755 dev->sector + STRIPE_SECTORS) { 1756 if (wbi->bi_opf & REQ_FUA) 1757 set_bit(R5_WantFUA, &dev->flags); 1758 if (wbi->bi_opf & REQ_SYNC) 1759 set_bit(R5_SyncIO, &dev->flags); 1760 if (bio_op(wbi) == REQ_OP_DISCARD) 1761 set_bit(R5_Discard, &dev->flags); 1762 else { 1763 tx = async_copy_data(1, wbi, &dev->page, 1764 dev->sector, tx, sh, 1765 r5c_is_writeback(conf->log)); 1766 if (dev->page != dev->orig_page && 1767 !r5c_is_writeback(conf->log)) { 1768 set_bit(R5_SkipCopy, &dev->flags); 1769 clear_bit(R5_UPTODATE, &dev->flags); 1770 clear_bit(R5_OVERWRITE, &dev->flags); 1771 } 1772 } 1773 wbi = r5_next_bio(wbi, dev->sector); 1774 } 1775 1776 if (head_sh->batch_head) { 1777 sh = list_first_entry(&sh->batch_list, 1778 struct stripe_head, 1779 batch_list); 1780 if (sh == head_sh) 1781 continue; 1782 goto again; 1783 } 1784 } 1785 } 1786 1787 return tx; 1788 } 1789 1790 static void ops_complete_reconstruct(void *stripe_head_ref) 1791 { 1792 struct stripe_head *sh = stripe_head_ref; 1793 int disks = sh->disks; 1794 int pd_idx = sh->pd_idx; 1795 int qd_idx = sh->qd_idx; 1796 int i; 1797 bool fua = false, sync = false, discard = false; 1798 1799 pr_debug("%s: stripe %llu\n", __func__, 1800 (unsigned long long)sh->sector); 1801 1802 for (i = disks; i--; ) { 1803 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags); 1804 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags); 1805 discard |= test_bit(R5_Discard, &sh->dev[i].flags); 1806 } 1807 1808 for (i = disks; i--; ) { 1809 struct r5dev *dev = &sh->dev[i]; 1810 1811 if (dev->written || i == pd_idx || i == qd_idx) { 1812 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) { 1813 set_bit(R5_UPTODATE, &dev->flags); 1814 if (test_bit(STRIPE_EXPAND_READY, &sh->state)) 1815 set_bit(R5_Expanded, &dev->flags); 1816 } 1817 if (fua) 1818 set_bit(R5_WantFUA, &dev->flags); 1819 if (sync) 1820 set_bit(R5_SyncIO, &dev->flags); 1821 } 1822 } 1823 1824 if (sh->reconstruct_state == reconstruct_state_drain_run) 1825 sh->reconstruct_state = reconstruct_state_drain_result; 1826 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) 1827 sh->reconstruct_state = reconstruct_state_prexor_drain_result; 1828 else { 1829 BUG_ON(sh->reconstruct_state != reconstruct_state_run); 1830 sh->reconstruct_state = reconstruct_state_result; 1831 } 1832 1833 set_bit(STRIPE_HANDLE, &sh->state); 1834 raid5_release_stripe(sh); 1835 } 1836 1837 static void 1838 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu, 1839 struct dma_async_tx_descriptor *tx) 1840 { 1841 int disks = sh->disks; 1842 struct page **xor_srcs; 1843 struct async_submit_ctl submit; 1844 int count, pd_idx = sh->pd_idx, i; 1845 struct page *xor_dest; 1846 int prexor = 0; 1847 unsigned long flags; 1848 int j = 0; 1849 struct stripe_head *head_sh = sh; 1850 int last_stripe; 1851 1852 pr_debug("%s: stripe %llu\n", __func__, 1853 (unsigned long long)sh->sector); 1854 1855 for (i = 0; i < sh->disks; i++) { 1856 if (pd_idx == i) 1857 continue; 1858 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 1859 break; 1860 } 1861 if (i >= sh->disks) { 1862 atomic_inc(&sh->count); 1863 set_bit(R5_Discard, &sh->dev[pd_idx].flags); 1864 ops_complete_reconstruct(sh); 1865 return; 1866 } 1867 again: 1868 count = 0; 1869 xor_srcs = to_addr_page(percpu, j); 1870 /* check if prexor is active which means only process blocks 1871 * that are part of a read-modify-write (written) 1872 */ 1873 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 1874 prexor = 1; 1875 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1876 for (i = disks; i--; ) { 1877 struct r5dev *dev = &sh->dev[i]; 1878 if (head_sh->dev[i].written || 1879 test_bit(R5_InJournal, &head_sh->dev[i].flags)) 1880 xor_srcs[count++] = dev->page; 1881 } 1882 } else { 1883 xor_dest = sh->dev[pd_idx].page; 1884 for (i = disks; i--; ) { 1885 struct r5dev *dev = &sh->dev[i]; 1886 if (i != pd_idx) 1887 xor_srcs[count++] = dev->page; 1888 } 1889 } 1890 1891 /* 1/ if we prexor'd then the dest is reused as a source 1892 * 2/ if we did not prexor then we are redoing the parity 1893 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST 1894 * for the synchronous xor case 1895 */ 1896 last_stripe = !head_sh->batch_head || 1897 list_first_entry(&sh->batch_list, 1898 struct stripe_head, batch_list) == head_sh; 1899 if (last_stripe) { 1900 flags = ASYNC_TX_ACK | 1901 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST); 1902 1903 atomic_inc(&head_sh->count); 1904 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh, 1905 to_addr_conv(sh, percpu, j)); 1906 } else { 1907 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST; 1908 init_async_submit(&submit, flags, tx, NULL, NULL, 1909 to_addr_conv(sh, percpu, j)); 1910 } 1911 1912 if (unlikely(count == 1)) 1913 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); 1914 else 1915 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1916 if (!last_stripe) { 1917 j++; 1918 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1919 batch_list); 1920 goto again; 1921 } 1922 } 1923 1924 static void 1925 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu, 1926 struct dma_async_tx_descriptor *tx) 1927 { 1928 struct async_submit_ctl submit; 1929 struct page **blocks; 1930 int count, i, j = 0; 1931 struct stripe_head *head_sh = sh; 1932 int last_stripe; 1933 int synflags; 1934 unsigned long txflags; 1935 1936 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); 1937 1938 for (i = 0; i < sh->disks; i++) { 1939 if (sh->pd_idx == i || sh->qd_idx == i) 1940 continue; 1941 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 1942 break; 1943 } 1944 if (i >= sh->disks) { 1945 atomic_inc(&sh->count); 1946 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 1947 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 1948 ops_complete_reconstruct(sh); 1949 return; 1950 } 1951 1952 again: 1953 blocks = to_addr_page(percpu, j); 1954 1955 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 1956 synflags = SYNDROME_SRC_WRITTEN; 1957 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST; 1958 } else { 1959 synflags = SYNDROME_SRC_ALL; 1960 txflags = ASYNC_TX_ACK; 1961 } 1962 1963 count = set_syndrome_sources(blocks, sh, synflags); 1964 last_stripe = !head_sh->batch_head || 1965 list_first_entry(&sh->batch_list, 1966 struct stripe_head, batch_list) == head_sh; 1967 1968 if (last_stripe) { 1969 atomic_inc(&head_sh->count); 1970 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct, 1971 head_sh, to_addr_conv(sh, percpu, j)); 1972 } else 1973 init_async_submit(&submit, 0, tx, NULL, NULL, 1974 to_addr_conv(sh, percpu, j)); 1975 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1976 if (!last_stripe) { 1977 j++; 1978 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1979 batch_list); 1980 goto again; 1981 } 1982 } 1983 1984 static void ops_complete_check(void *stripe_head_ref) 1985 { 1986 struct stripe_head *sh = stripe_head_ref; 1987 1988 pr_debug("%s: stripe %llu\n", __func__, 1989 (unsigned long long)sh->sector); 1990 1991 sh->check_state = check_state_check_result; 1992 set_bit(STRIPE_HANDLE, &sh->state); 1993 raid5_release_stripe(sh); 1994 } 1995 1996 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu) 1997 { 1998 int disks = sh->disks; 1999 int pd_idx = sh->pd_idx; 2000 int qd_idx = sh->qd_idx; 2001 struct page *xor_dest; 2002 struct page **xor_srcs = to_addr_page(percpu, 0); 2003 struct dma_async_tx_descriptor *tx; 2004 struct async_submit_ctl submit; 2005 int count; 2006 int i; 2007 2008 pr_debug("%s: stripe %llu\n", __func__, 2009 (unsigned long long)sh->sector); 2010 2011 BUG_ON(sh->batch_head); 2012 count = 0; 2013 xor_dest = sh->dev[pd_idx].page; 2014 xor_srcs[count++] = xor_dest; 2015 for (i = disks; i--; ) { 2016 if (i == pd_idx || i == qd_idx) 2017 continue; 2018 xor_srcs[count++] = sh->dev[i].page; 2019 } 2020 2021 init_async_submit(&submit, 0, NULL, NULL, NULL, 2022 to_addr_conv(sh, percpu, 0)); 2023 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, 2024 &sh->ops.zero_sum_result, &submit); 2025 2026 atomic_inc(&sh->count); 2027 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL); 2028 tx = async_trigger_callback(&submit); 2029 } 2030 2031 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp) 2032 { 2033 struct page **srcs = to_addr_page(percpu, 0); 2034 struct async_submit_ctl submit; 2035 int count; 2036 2037 pr_debug("%s: stripe %llu checkp: %d\n", __func__, 2038 (unsigned long long)sh->sector, checkp); 2039 2040 BUG_ON(sh->batch_head); 2041 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL); 2042 if (!checkp) 2043 srcs[count] = NULL; 2044 2045 atomic_inc(&sh->count); 2046 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check, 2047 sh, to_addr_conv(sh, percpu, 0)); 2048 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE, 2049 &sh->ops.zero_sum_result, percpu->spare_page, &submit); 2050 } 2051 2052 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request) 2053 { 2054 int overlap_clear = 0, i, disks = sh->disks; 2055 struct dma_async_tx_descriptor *tx = NULL; 2056 struct r5conf *conf = sh->raid_conf; 2057 int level = conf->level; 2058 struct raid5_percpu *percpu; 2059 unsigned long cpu; 2060 2061 cpu = get_cpu(); 2062 percpu = per_cpu_ptr(conf->percpu, cpu); 2063 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) { 2064 ops_run_biofill(sh); 2065 overlap_clear++; 2066 } 2067 2068 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) { 2069 if (level < 6) 2070 tx = ops_run_compute5(sh, percpu); 2071 else { 2072 if (sh->ops.target2 < 0 || sh->ops.target < 0) 2073 tx = ops_run_compute6_1(sh, percpu); 2074 else 2075 tx = ops_run_compute6_2(sh, percpu); 2076 } 2077 /* terminate the chain if reconstruct is not set to be run */ 2078 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) 2079 async_tx_ack(tx); 2080 } 2081 2082 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) { 2083 if (level < 6) 2084 tx = ops_run_prexor5(sh, percpu, tx); 2085 else 2086 tx = ops_run_prexor6(sh, percpu, tx); 2087 } 2088 2089 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request)) 2090 tx = ops_run_partial_parity(sh, percpu, tx); 2091 2092 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) { 2093 tx = ops_run_biodrain(sh, tx); 2094 overlap_clear++; 2095 } 2096 2097 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) { 2098 if (level < 6) 2099 ops_run_reconstruct5(sh, percpu, tx); 2100 else 2101 ops_run_reconstruct6(sh, percpu, tx); 2102 } 2103 2104 if (test_bit(STRIPE_OP_CHECK, &ops_request)) { 2105 if (sh->check_state == check_state_run) 2106 ops_run_check_p(sh, percpu); 2107 else if (sh->check_state == check_state_run_q) 2108 ops_run_check_pq(sh, percpu, 0); 2109 else if (sh->check_state == check_state_run_pq) 2110 ops_run_check_pq(sh, percpu, 1); 2111 else 2112 BUG(); 2113 } 2114 2115 if (overlap_clear && !sh->batch_head) 2116 for (i = disks; i--; ) { 2117 struct r5dev *dev = &sh->dev[i]; 2118 if (test_and_clear_bit(R5_Overlap, &dev->flags)) 2119 wake_up(&sh->raid_conf->wait_for_overlap); 2120 } 2121 put_cpu(); 2122 } 2123 2124 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh) 2125 { 2126 if (sh->ppl_page) 2127 __free_page(sh->ppl_page); 2128 kmem_cache_free(sc, sh); 2129 } 2130 2131 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp, 2132 int disks, struct r5conf *conf) 2133 { 2134 struct stripe_head *sh; 2135 int i; 2136 2137 sh = kmem_cache_zalloc(sc, gfp); 2138 if (sh) { 2139 spin_lock_init(&sh->stripe_lock); 2140 spin_lock_init(&sh->batch_lock); 2141 INIT_LIST_HEAD(&sh->batch_list); 2142 INIT_LIST_HEAD(&sh->lru); 2143 INIT_LIST_HEAD(&sh->r5c); 2144 INIT_LIST_HEAD(&sh->log_list); 2145 atomic_set(&sh->count, 1); 2146 sh->raid_conf = conf; 2147 sh->log_start = MaxSector; 2148 for (i = 0; i < disks; i++) { 2149 struct r5dev *dev = &sh->dev[i]; 2150 2151 bio_init(&dev->req, &dev->vec, 1); 2152 bio_init(&dev->rreq, &dev->rvec, 1); 2153 } 2154 2155 if (raid5_has_ppl(conf)) { 2156 sh->ppl_page = alloc_page(gfp); 2157 if (!sh->ppl_page) { 2158 free_stripe(sc, sh); 2159 sh = NULL; 2160 } 2161 } 2162 } 2163 return sh; 2164 } 2165 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp) 2166 { 2167 struct stripe_head *sh; 2168 2169 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf); 2170 if (!sh) 2171 return 0; 2172 2173 if (grow_buffers(sh, gfp)) { 2174 shrink_buffers(sh); 2175 free_stripe(conf->slab_cache, sh); 2176 return 0; 2177 } 2178 sh->hash_lock_index = 2179 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS; 2180 /* we just created an active stripe so... */ 2181 atomic_inc(&conf->active_stripes); 2182 2183 raid5_release_stripe(sh); 2184 conf->max_nr_stripes++; 2185 return 1; 2186 } 2187 2188 static int grow_stripes(struct r5conf *conf, int num) 2189 { 2190 struct kmem_cache *sc; 2191 size_t namelen = sizeof(conf->cache_name[0]); 2192 int devs = max(conf->raid_disks, conf->previous_raid_disks); 2193 2194 if (conf->mddev->gendisk) 2195 snprintf(conf->cache_name[0], namelen, 2196 "raid%d-%s", conf->level, mdname(conf->mddev)); 2197 else 2198 snprintf(conf->cache_name[0], namelen, 2199 "raid%d-%p", conf->level, conf->mddev); 2200 snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]); 2201 2202 conf->active_name = 0; 2203 sc = kmem_cache_create(conf->cache_name[conf->active_name], 2204 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev), 2205 0, 0, NULL); 2206 if (!sc) 2207 return 1; 2208 conf->slab_cache = sc; 2209 conf->pool_size = devs; 2210 while (num--) 2211 if (!grow_one_stripe(conf, GFP_KERNEL)) 2212 return 1; 2213 2214 return 0; 2215 } 2216 2217 /** 2218 * scribble_len - return the required size of the scribble region 2219 * @num - total number of disks in the array 2220 * 2221 * The size must be enough to contain: 2222 * 1/ a struct page pointer for each device in the array +2 2223 * 2/ room to convert each entry in (1) to its corresponding dma 2224 * (dma_map_page()) or page (page_address()) address. 2225 * 2226 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we 2227 * calculate over all devices (not just the data blocks), using zeros in place 2228 * of the P and Q blocks. 2229 */ 2230 static int scribble_alloc(struct raid5_percpu *percpu, 2231 int num, int cnt, gfp_t flags) 2232 { 2233 size_t obj_size = 2234 sizeof(struct page *) * (num+2) + 2235 sizeof(addr_conv_t) * (num+2); 2236 void *scribble; 2237 2238 scribble = kvmalloc_array(cnt, obj_size, flags); 2239 if (!scribble) 2240 return -ENOMEM; 2241 2242 kvfree(percpu->scribble); 2243 2244 percpu->scribble = scribble; 2245 percpu->scribble_obj_size = obj_size; 2246 return 0; 2247 } 2248 2249 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors) 2250 { 2251 unsigned long cpu; 2252 int err = 0; 2253 2254 /* 2255 * Never shrink. And mddev_suspend() could deadlock if this is called 2256 * from raid5d. In that case, scribble_disks and scribble_sectors 2257 * should equal to new_disks and new_sectors 2258 */ 2259 if (conf->scribble_disks >= new_disks && 2260 conf->scribble_sectors >= new_sectors) 2261 return 0; 2262 mddev_suspend(conf->mddev); 2263 get_online_cpus(); 2264 2265 for_each_present_cpu(cpu) { 2266 struct raid5_percpu *percpu; 2267 2268 percpu = per_cpu_ptr(conf->percpu, cpu); 2269 err = scribble_alloc(percpu, new_disks, 2270 new_sectors / STRIPE_SECTORS, 2271 GFP_NOIO); 2272 if (err) 2273 break; 2274 } 2275 2276 put_online_cpus(); 2277 mddev_resume(conf->mddev); 2278 if (!err) { 2279 conf->scribble_disks = new_disks; 2280 conf->scribble_sectors = new_sectors; 2281 } 2282 return err; 2283 } 2284 2285 static int resize_stripes(struct r5conf *conf, int newsize) 2286 { 2287 /* Make all the stripes able to hold 'newsize' devices. 2288 * New slots in each stripe get 'page' set to a new page. 2289 * 2290 * This happens in stages: 2291 * 1/ create a new kmem_cache and allocate the required number of 2292 * stripe_heads. 2293 * 2/ gather all the old stripe_heads and transfer the pages across 2294 * to the new stripe_heads. This will have the side effect of 2295 * freezing the array as once all stripe_heads have been collected, 2296 * no IO will be possible. Old stripe heads are freed once their 2297 * pages have been transferred over, and the old kmem_cache is 2298 * freed when all stripes are done. 2299 * 3/ reallocate conf->disks to be suitable bigger. If this fails, 2300 * we simple return a failure status - no need to clean anything up. 2301 * 4/ allocate new pages for the new slots in the new stripe_heads. 2302 * If this fails, we don't bother trying the shrink the 2303 * stripe_heads down again, we just leave them as they are. 2304 * As each stripe_head is processed the new one is released into 2305 * active service. 2306 * 2307 * Once step2 is started, we cannot afford to wait for a write, 2308 * so we use GFP_NOIO allocations. 2309 */ 2310 struct stripe_head *osh, *nsh; 2311 LIST_HEAD(newstripes); 2312 struct disk_info *ndisks; 2313 int err = 0; 2314 struct kmem_cache *sc; 2315 int i; 2316 int hash, cnt; 2317 2318 md_allow_write(conf->mddev); 2319 2320 /* Step 1 */ 2321 sc = kmem_cache_create(conf->cache_name[1-conf->active_name], 2322 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev), 2323 0, 0, NULL); 2324 if (!sc) 2325 return -ENOMEM; 2326 2327 /* Need to ensure auto-resizing doesn't interfere */ 2328 mutex_lock(&conf->cache_size_mutex); 2329 2330 for (i = conf->max_nr_stripes; i; i--) { 2331 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf); 2332 if (!nsh) 2333 break; 2334 2335 list_add(&nsh->lru, &newstripes); 2336 } 2337 if (i) { 2338 /* didn't get enough, give up */ 2339 while (!list_empty(&newstripes)) { 2340 nsh = list_entry(newstripes.next, struct stripe_head, lru); 2341 list_del(&nsh->lru); 2342 free_stripe(sc, nsh); 2343 } 2344 kmem_cache_destroy(sc); 2345 mutex_unlock(&conf->cache_size_mutex); 2346 return -ENOMEM; 2347 } 2348 /* Step 2 - Must use GFP_NOIO now. 2349 * OK, we have enough stripes, start collecting inactive 2350 * stripes and copying them over 2351 */ 2352 hash = 0; 2353 cnt = 0; 2354 list_for_each_entry(nsh, &newstripes, lru) { 2355 lock_device_hash_lock(conf, hash); 2356 wait_event_cmd(conf->wait_for_stripe, 2357 !list_empty(conf->inactive_list + hash), 2358 unlock_device_hash_lock(conf, hash), 2359 lock_device_hash_lock(conf, hash)); 2360 osh = get_free_stripe(conf, hash); 2361 unlock_device_hash_lock(conf, hash); 2362 2363 for(i=0; i<conf->pool_size; i++) { 2364 nsh->dev[i].page = osh->dev[i].page; 2365 nsh->dev[i].orig_page = osh->dev[i].page; 2366 } 2367 nsh->hash_lock_index = hash; 2368 free_stripe(conf->slab_cache, osh); 2369 cnt++; 2370 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS + 2371 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) { 2372 hash++; 2373 cnt = 0; 2374 } 2375 } 2376 kmem_cache_destroy(conf->slab_cache); 2377 2378 /* Step 3. 2379 * At this point, we are holding all the stripes so the array 2380 * is completely stalled, so now is a good time to resize 2381 * conf->disks and the scribble region 2382 */ 2383 ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO); 2384 if (ndisks) { 2385 for (i = 0; i < conf->pool_size; i++) 2386 ndisks[i] = conf->disks[i]; 2387 2388 for (i = conf->pool_size; i < newsize; i++) { 2389 ndisks[i].extra_page = alloc_page(GFP_NOIO); 2390 if (!ndisks[i].extra_page) 2391 err = -ENOMEM; 2392 } 2393 2394 if (err) { 2395 for (i = conf->pool_size; i < newsize; i++) 2396 if (ndisks[i].extra_page) 2397 put_page(ndisks[i].extra_page); 2398 kfree(ndisks); 2399 } else { 2400 kfree(conf->disks); 2401 conf->disks = ndisks; 2402 } 2403 } else 2404 err = -ENOMEM; 2405 2406 mutex_unlock(&conf->cache_size_mutex); 2407 2408 conf->slab_cache = sc; 2409 conf->active_name = 1-conf->active_name; 2410 2411 /* Step 4, return new stripes to service */ 2412 while(!list_empty(&newstripes)) { 2413 nsh = list_entry(newstripes.next, struct stripe_head, lru); 2414 list_del_init(&nsh->lru); 2415 2416 for (i=conf->raid_disks; i < newsize; i++) 2417 if (nsh->dev[i].page == NULL) { 2418 struct page *p = alloc_page(GFP_NOIO); 2419 nsh->dev[i].page = p; 2420 nsh->dev[i].orig_page = p; 2421 if (!p) 2422 err = -ENOMEM; 2423 } 2424 raid5_release_stripe(nsh); 2425 } 2426 /* critical section pass, GFP_NOIO no longer needed */ 2427 2428 if (!err) 2429 conf->pool_size = newsize; 2430 return err; 2431 } 2432 2433 static int drop_one_stripe(struct r5conf *conf) 2434 { 2435 struct stripe_head *sh; 2436 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK; 2437 2438 spin_lock_irq(conf->hash_locks + hash); 2439 sh = get_free_stripe(conf, hash); 2440 spin_unlock_irq(conf->hash_locks + hash); 2441 if (!sh) 2442 return 0; 2443 BUG_ON(atomic_read(&sh->count)); 2444 shrink_buffers(sh); 2445 free_stripe(conf->slab_cache, sh); 2446 atomic_dec(&conf->active_stripes); 2447 conf->max_nr_stripes--; 2448 return 1; 2449 } 2450 2451 static void shrink_stripes(struct r5conf *conf) 2452 { 2453 while (conf->max_nr_stripes && 2454 drop_one_stripe(conf)) 2455 ; 2456 2457 kmem_cache_destroy(conf->slab_cache); 2458 conf->slab_cache = NULL; 2459 } 2460 2461 static void raid5_end_read_request(struct bio * bi) 2462 { 2463 struct stripe_head *sh = bi->bi_private; 2464 struct r5conf *conf = sh->raid_conf; 2465 int disks = sh->disks, i; 2466 char b[BDEVNAME_SIZE]; 2467 struct md_rdev *rdev = NULL; 2468 sector_t s; 2469 2470 for (i=0 ; i<disks; i++) 2471 if (bi == &sh->dev[i].req) 2472 break; 2473 2474 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n", 2475 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2476 bi->bi_status); 2477 if (i == disks) { 2478 bio_reset(bi); 2479 BUG(); 2480 return; 2481 } 2482 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2483 /* If replacement finished while this request was outstanding, 2484 * 'replacement' might be NULL already. 2485 * In that case it moved down to 'rdev'. 2486 * rdev is not removed until all requests are finished. 2487 */ 2488 rdev = conf->disks[i].replacement; 2489 if (!rdev) 2490 rdev = conf->disks[i].rdev; 2491 2492 if (use_new_offset(conf, sh)) 2493 s = sh->sector + rdev->new_data_offset; 2494 else 2495 s = sh->sector + rdev->data_offset; 2496 if (!bi->bi_status) { 2497 set_bit(R5_UPTODATE, &sh->dev[i].flags); 2498 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 2499 /* Note that this cannot happen on a 2500 * replacement device. We just fail those on 2501 * any error 2502 */ 2503 pr_info_ratelimited( 2504 "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n", 2505 mdname(conf->mddev), STRIPE_SECTORS, 2506 (unsigned long long)s, 2507 bdevname(rdev->bdev, b)); 2508 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors); 2509 clear_bit(R5_ReadError, &sh->dev[i].flags); 2510 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2511 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2512 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2513 2514 if (test_bit(R5_InJournal, &sh->dev[i].flags)) 2515 /* 2516 * end read for a page in journal, this 2517 * must be preparing for prexor in rmw 2518 */ 2519 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags); 2520 2521 if (atomic_read(&rdev->read_errors)) 2522 atomic_set(&rdev->read_errors, 0); 2523 } else { 2524 const char *bdn = bdevname(rdev->bdev, b); 2525 int retry = 0; 2526 int set_bad = 0; 2527 2528 clear_bit(R5_UPTODATE, &sh->dev[i].flags); 2529 atomic_inc(&rdev->read_errors); 2530 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2531 pr_warn_ratelimited( 2532 "md/raid:%s: read error on replacement device (sector %llu on %s).\n", 2533 mdname(conf->mddev), 2534 (unsigned long long)s, 2535 bdn); 2536 else if (conf->mddev->degraded >= conf->max_degraded) { 2537 set_bad = 1; 2538 pr_warn_ratelimited( 2539 "md/raid:%s: read error not correctable (sector %llu on %s).\n", 2540 mdname(conf->mddev), 2541 (unsigned long long)s, 2542 bdn); 2543 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) { 2544 /* Oh, no!!! */ 2545 set_bad = 1; 2546 pr_warn_ratelimited( 2547 "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n", 2548 mdname(conf->mddev), 2549 (unsigned long long)s, 2550 bdn); 2551 } else if (atomic_read(&rdev->read_errors) 2552 > conf->max_nr_stripes) 2553 pr_warn("md/raid:%s: Too many read errors, failing device %s.\n", 2554 mdname(conf->mddev), bdn); 2555 else 2556 retry = 1; 2557 if (set_bad && test_bit(In_sync, &rdev->flags) 2558 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2559 retry = 1; 2560 if (retry) 2561 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) { 2562 set_bit(R5_ReadError, &sh->dev[i].flags); 2563 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2564 } else 2565 set_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2566 else { 2567 clear_bit(R5_ReadError, &sh->dev[i].flags); 2568 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2569 if (!(set_bad 2570 && test_bit(In_sync, &rdev->flags) 2571 && rdev_set_badblocks( 2572 rdev, sh->sector, STRIPE_SECTORS, 0))) 2573 md_error(conf->mddev, rdev); 2574 } 2575 } 2576 rdev_dec_pending(rdev, conf->mddev); 2577 bio_reset(bi); 2578 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2579 set_bit(STRIPE_HANDLE, &sh->state); 2580 raid5_release_stripe(sh); 2581 } 2582 2583 static void raid5_end_write_request(struct bio *bi) 2584 { 2585 struct stripe_head *sh = bi->bi_private; 2586 struct r5conf *conf = sh->raid_conf; 2587 int disks = sh->disks, i; 2588 struct md_rdev *uninitialized_var(rdev); 2589 sector_t first_bad; 2590 int bad_sectors; 2591 int replacement = 0; 2592 2593 for (i = 0 ; i < disks; i++) { 2594 if (bi == &sh->dev[i].req) { 2595 rdev = conf->disks[i].rdev; 2596 break; 2597 } 2598 if (bi == &sh->dev[i].rreq) { 2599 rdev = conf->disks[i].replacement; 2600 if (rdev) 2601 replacement = 1; 2602 else 2603 /* rdev was removed and 'replacement' 2604 * replaced it. rdev is not removed 2605 * until all requests are finished. 2606 */ 2607 rdev = conf->disks[i].rdev; 2608 break; 2609 } 2610 } 2611 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n", 2612 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2613 bi->bi_status); 2614 if (i == disks) { 2615 bio_reset(bi); 2616 BUG(); 2617 return; 2618 } 2619 2620 if (replacement) { 2621 if (bi->bi_status) 2622 md_error(conf->mddev, rdev); 2623 else if (is_badblock(rdev, sh->sector, 2624 STRIPE_SECTORS, 2625 &first_bad, &bad_sectors)) 2626 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags); 2627 } else { 2628 if (bi->bi_status) { 2629 set_bit(STRIPE_DEGRADED, &sh->state); 2630 set_bit(WriteErrorSeen, &rdev->flags); 2631 set_bit(R5_WriteError, &sh->dev[i].flags); 2632 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2633 set_bit(MD_RECOVERY_NEEDED, 2634 &rdev->mddev->recovery); 2635 } else if (is_badblock(rdev, sh->sector, 2636 STRIPE_SECTORS, 2637 &first_bad, &bad_sectors)) { 2638 set_bit(R5_MadeGood, &sh->dev[i].flags); 2639 if (test_bit(R5_ReadError, &sh->dev[i].flags)) 2640 /* That was a successful write so make 2641 * sure it looks like we already did 2642 * a re-write. 2643 */ 2644 set_bit(R5_ReWrite, &sh->dev[i].flags); 2645 } 2646 } 2647 rdev_dec_pending(rdev, conf->mddev); 2648 2649 if (sh->batch_head && bi->bi_status && !replacement) 2650 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state); 2651 2652 bio_reset(bi); 2653 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags)) 2654 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2655 set_bit(STRIPE_HANDLE, &sh->state); 2656 raid5_release_stripe(sh); 2657 2658 if (sh->batch_head && sh != sh->batch_head) 2659 raid5_release_stripe(sh->batch_head); 2660 } 2661 2662 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev) 2663 { 2664 char b[BDEVNAME_SIZE]; 2665 struct r5conf *conf = mddev->private; 2666 unsigned long flags; 2667 pr_debug("raid456: error called\n"); 2668 2669 spin_lock_irqsave(&conf->device_lock, flags); 2670 2671 if (test_bit(In_sync, &rdev->flags) && 2672 mddev->degraded == conf->max_degraded) { 2673 /* 2674 * Don't allow to achieve failed state 2675 * Don't try to recover this device 2676 */ 2677 conf->recovery_disabled = mddev->recovery_disabled; 2678 spin_unlock_irqrestore(&conf->device_lock, flags); 2679 return; 2680 } 2681 2682 set_bit(Faulty, &rdev->flags); 2683 clear_bit(In_sync, &rdev->flags); 2684 mddev->degraded = raid5_calc_degraded(conf); 2685 spin_unlock_irqrestore(&conf->device_lock, flags); 2686 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2687 2688 set_bit(Blocked, &rdev->flags); 2689 set_mask_bits(&mddev->sb_flags, 0, 2690 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 2691 pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n" 2692 "md/raid:%s: Operation continuing on %d devices.\n", 2693 mdname(mddev), 2694 bdevname(rdev->bdev, b), 2695 mdname(mddev), 2696 conf->raid_disks - mddev->degraded); 2697 r5c_update_on_rdev_error(mddev, rdev); 2698 } 2699 2700 /* 2701 * Input: a 'big' sector number, 2702 * Output: index of the data and parity disk, and the sector # in them. 2703 */ 2704 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector, 2705 int previous, int *dd_idx, 2706 struct stripe_head *sh) 2707 { 2708 sector_t stripe, stripe2; 2709 sector_t chunk_number; 2710 unsigned int chunk_offset; 2711 int pd_idx, qd_idx; 2712 int ddf_layout = 0; 2713 sector_t new_sector; 2714 int algorithm = previous ? conf->prev_algo 2715 : conf->algorithm; 2716 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 2717 : conf->chunk_sectors; 2718 int raid_disks = previous ? conf->previous_raid_disks 2719 : conf->raid_disks; 2720 int data_disks = raid_disks - conf->max_degraded; 2721 2722 /* First compute the information on this sector */ 2723 2724 /* 2725 * Compute the chunk number and the sector offset inside the chunk 2726 */ 2727 chunk_offset = sector_div(r_sector, sectors_per_chunk); 2728 chunk_number = r_sector; 2729 2730 /* 2731 * Compute the stripe number 2732 */ 2733 stripe = chunk_number; 2734 *dd_idx = sector_div(stripe, data_disks); 2735 stripe2 = stripe; 2736 /* 2737 * Select the parity disk based on the user selected algorithm. 2738 */ 2739 pd_idx = qd_idx = -1; 2740 switch(conf->level) { 2741 case 4: 2742 pd_idx = data_disks; 2743 break; 2744 case 5: 2745 switch (algorithm) { 2746 case ALGORITHM_LEFT_ASYMMETRIC: 2747 pd_idx = data_disks - sector_div(stripe2, raid_disks); 2748 if (*dd_idx >= pd_idx) 2749 (*dd_idx)++; 2750 break; 2751 case ALGORITHM_RIGHT_ASYMMETRIC: 2752 pd_idx = sector_div(stripe2, raid_disks); 2753 if (*dd_idx >= pd_idx) 2754 (*dd_idx)++; 2755 break; 2756 case ALGORITHM_LEFT_SYMMETRIC: 2757 pd_idx = data_disks - sector_div(stripe2, raid_disks); 2758 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2759 break; 2760 case ALGORITHM_RIGHT_SYMMETRIC: 2761 pd_idx = sector_div(stripe2, raid_disks); 2762 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2763 break; 2764 case ALGORITHM_PARITY_0: 2765 pd_idx = 0; 2766 (*dd_idx)++; 2767 break; 2768 case ALGORITHM_PARITY_N: 2769 pd_idx = data_disks; 2770 break; 2771 default: 2772 BUG(); 2773 } 2774 break; 2775 case 6: 2776 2777 switch (algorithm) { 2778 case ALGORITHM_LEFT_ASYMMETRIC: 2779 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2780 qd_idx = pd_idx + 1; 2781 if (pd_idx == raid_disks-1) { 2782 (*dd_idx)++; /* Q D D D P */ 2783 qd_idx = 0; 2784 } else if (*dd_idx >= pd_idx) 2785 (*dd_idx) += 2; /* D D P Q D */ 2786 break; 2787 case ALGORITHM_RIGHT_ASYMMETRIC: 2788 pd_idx = sector_div(stripe2, raid_disks); 2789 qd_idx = pd_idx + 1; 2790 if (pd_idx == raid_disks-1) { 2791 (*dd_idx)++; /* Q D D D P */ 2792 qd_idx = 0; 2793 } else if (*dd_idx >= pd_idx) 2794 (*dd_idx) += 2; /* D D P Q D */ 2795 break; 2796 case ALGORITHM_LEFT_SYMMETRIC: 2797 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2798 qd_idx = (pd_idx + 1) % raid_disks; 2799 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 2800 break; 2801 case ALGORITHM_RIGHT_SYMMETRIC: 2802 pd_idx = sector_div(stripe2, raid_disks); 2803 qd_idx = (pd_idx + 1) % raid_disks; 2804 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 2805 break; 2806 2807 case ALGORITHM_PARITY_0: 2808 pd_idx = 0; 2809 qd_idx = 1; 2810 (*dd_idx) += 2; 2811 break; 2812 case ALGORITHM_PARITY_N: 2813 pd_idx = data_disks; 2814 qd_idx = data_disks + 1; 2815 break; 2816 2817 case ALGORITHM_ROTATING_ZERO_RESTART: 2818 /* Exactly the same as RIGHT_ASYMMETRIC, but or 2819 * of blocks for computing Q is different. 2820 */ 2821 pd_idx = sector_div(stripe2, raid_disks); 2822 qd_idx = pd_idx + 1; 2823 if (pd_idx == raid_disks-1) { 2824 (*dd_idx)++; /* Q D D D P */ 2825 qd_idx = 0; 2826 } else if (*dd_idx >= pd_idx) 2827 (*dd_idx) += 2; /* D D P Q D */ 2828 ddf_layout = 1; 2829 break; 2830 2831 case ALGORITHM_ROTATING_N_RESTART: 2832 /* Same a left_asymmetric, by first stripe is 2833 * D D D P Q rather than 2834 * Q D D D P 2835 */ 2836 stripe2 += 1; 2837 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2838 qd_idx = pd_idx + 1; 2839 if (pd_idx == raid_disks-1) { 2840 (*dd_idx)++; /* Q D D D P */ 2841 qd_idx = 0; 2842 } else if (*dd_idx >= pd_idx) 2843 (*dd_idx) += 2; /* D D P Q D */ 2844 ddf_layout = 1; 2845 break; 2846 2847 case ALGORITHM_ROTATING_N_CONTINUE: 2848 /* Same as left_symmetric but Q is before P */ 2849 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2850 qd_idx = (pd_idx + raid_disks - 1) % raid_disks; 2851 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2852 ddf_layout = 1; 2853 break; 2854 2855 case ALGORITHM_LEFT_ASYMMETRIC_6: 2856 /* RAID5 left_asymmetric, with Q on last device */ 2857 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 2858 if (*dd_idx >= pd_idx) 2859 (*dd_idx)++; 2860 qd_idx = raid_disks - 1; 2861 break; 2862 2863 case ALGORITHM_RIGHT_ASYMMETRIC_6: 2864 pd_idx = sector_div(stripe2, raid_disks-1); 2865 if (*dd_idx >= pd_idx) 2866 (*dd_idx)++; 2867 qd_idx = raid_disks - 1; 2868 break; 2869 2870 case ALGORITHM_LEFT_SYMMETRIC_6: 2871 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 2872 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 2873 qd_idx = raid_disks - 1; 2874 break; 2875 2876 case ALGORITHM_RIGHT_SYMMETRIC_6: 2877 pd_idx = sector_div(stripe2, raid_disks-1); 2878 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 2879 qd_idx = raid_disks - 1; 2880 break; 2881 2882 case ALGORITHM_PARITY_0_6: 2883 pd_idx = 0; 2884 (*dd_idx)++; 2885 qd_idx = raid_disks - 1; 2886 break; 2887 2888 default: 2889 BUG(); 2890 } 2891 break; 2892 } 2893 2894 if (sh) { 2895 sh->pd_idx = pd_idx; 2896 sh->qd_idx = qd_idx; 2897 sh->ddf_layout = ddf_layout; 2898 } 2899 /* 2900 * Finally, compute the new sector number 2901 */ 2902 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset; 2903 return new_sector; 2904 } 2905 2906 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous) 2907 { 2908 struct r5conf *conf = sh->raid_conf; 2909 int raid_disks = sh->disks; 2910 int data_disks = raid_disks - conf->max_degraded; 2911 sector_t new_sector = sh->sector, check; 2912 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 2913 : conf->chunk_sectors; 2914 int algorithm = previous ? conf->prev_algo 2915 : conf->algorithm; 2916 sector_t stripe; 2917 int chunk_offset; 2918 sector_t chunk_number; 2919 int dummy1, dd_idx = i; 2920 sector_t r_sector; 2921 struct stripe_head sh2; 2922 2923 chunk_offset = sector_div(new_sector, sectors_per_chunk); 2924 stripe = new_sector; 2925 2926 if (i == sh->pd_idx) 2927 return 0; 2928 switch(conf->level) { 2929 case 4: break; 2930 case 5: 2931 switch (algorithm) { 2932 case ALGORITHM_LEFT_ASYMMETRIC: 2933 case ALGORITHM_RIGHT_ASYMMETRIC: 2934 if (i > sh->pd_idx) 2935 i--; 2936 break; 2937 case ALGORITHM_LEFT_SYMMETRIC: 2938 case ALGORITHM_RIGHT_SYMMETRIC: 2939 if (i < sh->pd_idx) 2940 i += raid_disks; 2941 i -= (sh->pd_idx + 1); 2942 break; 2943 case ALGORITHM_PARITY_0: 2944 i -= 1; 2945 break; 2946 case ALGORITHM_PARITY_N: 2947 break; 2948 default: 2949 BUG(); 2950 } 2951 break; 2952 case 6: 2953 if (i == sh->qd_idx) 2954 return 0; /* It is the Q disk */ 2955 switch (algorithm) { 2956 case ALGORITHM_LEFT_ASYMMETRIC: 2957 case ALGORITHM_RIGHT_ASYMMETRIC: 2958 case ALGORITHM_ROTATING_ZERO_RESTART: 2959 case ALGORITHM_ROTATING_N_RESTART: 2960 if (sh->pd_idx == raid_disks-1) 2961 i--; /* Q D D D P */ 2962 else if (i > sh->pd_idx) 2963 i -= 2; /* D D P Q D */ 2964 break; 2965 case ALGORITHM_LEFT_SYMMETRIC: 2966 case ALGORITHM_RIGHT_SYMMETRIC: 2967 if (sh->pd_idx == raid_disks-1) 2968 i--; /* Q D D D P */ 2969 else { 2970 /* D D P Q D */ 2971 if (i < sh->pd_idx) 2972 i += raid_disks; 2973 i -= (sh->pd_idx + 2); 2974 } 2975 break; 2976 case ALGORITHM_PARITY_0: 2977 i -= 2; 2978 break; 2979 case ALGORITHM_PARITY_N: 2980 break; 2981 case ALGORITHM_ROTATING_N_CONTINUE: 2982 /* Like left_symmetric, but P is before Q */ 2983 if (sh->pd_idx == 0) 2984 i--; /* P D D D Q */ 2985 else { 2986 /* D D Q P D */ 2987 if (i < sh->pd_idx) 2988 i += raid_disks; 2989 i -= (sh->pd_idx + 1); 2990 } 2991 break; 2992 case ALGORITHM_LEFT_ASYMMETRIC_6: 2993 case ALGORITHM_RIGHT_ASYMMETRIC_6: 2994 if (i > sh->pd_idx) 2995 i--; 2996 break; 2997 case ALGORITHM_LEFT_SYMMETRIC_6: 2998 case ALGORITHM_RIGHT_SYMMETRIC_6: 2999 if (i < sh->pd_idx) 3000 i += data_disks + 1; 3001 i -= (sh->pd_idx + 1); 3002 break; 3003 case ALGORITHM_PARITY_0_6: 3004 i -= 1; 3005 break; 3006 default: 3007 BUG(); 3008 } 3009 break; 3010 } 3011 3012 chunk_number = stripe * data_disks + i; 3013 r_sector = chunk_number * sectors_per_chunk + chunk_offset; 3014 3015 check = raid5_compute_sector(conf, r_sector, 3016 previous, &dummy1, &sh2); 3017 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx 3018 || sh2.qd_idx != sh->qd_idx) { 3019 pr_warn("md/raid:%s: compute_blocknr: map not correct\n", 3020 mdname(conf->mddev)); 3021 return 0; 3022 } 3023 return r_sector; 3024 } 3025 3026 /* 3027 * There are cases where we want handle_stripe_dirtying() and 3028 * schedule_reconstruction() to delay towrite to some dev of a stripe. 3029 * 3030 * This function checks whether we want to delay the towrite. Specifically, 3031 * we delay the towrite when: 3032 * 3033 * 1. degraded stripe has a non-overwrite to the missing dev, AND this 3034 * stripe has data in journal (for other devices). 3035 * 3036 * In this case, when reading data for the non-overwrite dev, it is 3037 * necessary to handle complex rmw of write back cache (prexor with 3038 * orig_page, and xor with page). To keep read path simple, we would 3039 * like to flush data in journal to RAID disks first, so complex rmw 3040 * is handled in the write patch (handle_stripe_dirtying). 3041 * 3042 * 2. when journal space is critical (R5C_LOG_CRITICAL=1) 3043 * 3044 * It is important to be able to flush all stripes in raid5-cache. 3045 * Therefore, we need reserve some space on the journal device for 3046 * these flushes. If flush operation includes pending writes to the 3047 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe 3048 * for the flush out. If we exclude these pending writes from flush 3049 * operation, we only need (conf->max_degraded + 1) pages per stripe. 3050 * Therefore, excluding pending writes in these cases enables more 3051 * efficient use of the journal device. 3052 * 3053 * Note: To make sure the stripe makes progress, we only delay 3054 * towrite for stripes with data already in journal (injournal > 0). 3055 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to 3056 * no_space_stripes list. 3057 * 3058 * 3. during journal failure 3059 * In journal failure, we try to flush all cached data to raid disks 3060 * based on data in stripe cache. The array is read-only to upper 3061 * layers, so we would skip all pending writes. 3062 * 3063 */ 3064 static inline bool delay_towrite(struct r5conf *conf, 3065 struct r5dev *dev, 3066 struct stripe_head_state *s) 3067 { 3068 /* case 1 above */ 3069 if (!test_bit(R5_OVERWRITE, &dev->flags) && 3070 !test_bit(R5_Insync, &dev->flags) && s->injournal) 3071 return true; 3072 /* case 2 above */ 3073 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) && 3074 s->injournal > 0) 3075 return true; 3076 /* case 3 above */ 3077 if (s->log_failed && s->injournal) 3078 return true; 3079 return false; 3080 } 3081 3082 static void 3083 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s, 3084 int rcw, int expand) 3085 { 3086 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks; 3087 struct r5conf *conf = sh->raid_conf; 3088 int level = conf->level; 3089 3090 if (rcw) { 3091 /* 3092 * In some cases, handle_stripe_dirtying initially decided to 3093 * run rmw and allocates extra page for prexor. However, rcw is 3094 * cheaper later on. We need to free the extra page now, 3095 * because we won't be able to do that in ops_complete_prexor(). 3096 */ 3097 r5c_release_extra_page(sh); 3098 3099 for (i = disks; i--; ) { 3100 struct r5dev *dev = &sh->dev[i]; 3101 3102 if (dev->towrite && !delay_towrite(conf, dev, s)) { 3103 set_bit(R5_LOCKED, &dev->flags); 3104 set_bit(R5_Wantdrain, &dev->flags); 3105 if (!expand) 3106 clear_bit(R5_UPTODATE, &dev->flags); 3107 s->locked++; 3108 } else if (test_bit(R5_InJournal, &dev->flags)) { 3109 set_bit(R5_LOCKED, &dev->flags); 3110 s->locked++; 3111 } 3112 } 3113 /* if we are not expanding this is a proper write request, and 3114 * there will be bios with new data to be drained into the 3115 * stripe cache 3116 */ 3117 if (!expand) { 3118 if (!s->locked) 3119 /* False alarm, nothing to do */ 3120 return; 3121 sh->reconstruct_state = reconstruct_state_drain_run; 3122 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 3123 } else 3124 sh->reconstruct_state = reconstruct_state_run; 3125 3126 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 3127 3128 if (s->locked + conf->max_degraded == disks) 3129 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state)) 3130 atomic_inc(&conf->pending_full_writes); 3131 } else { 3132 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) || 3133 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags))); 3134 BUG_ON(level == 6 && 3135 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) || 3136 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags)))); 3137 3138 for (i = disks; i--; ) { 3139 struct r5dev *dev = &sh->dev[i]; 3140 if (i == pd_idx || i == qd_idx) 3141 continue; 3142 3143 if (dev->towrite && 3144 (test_bit(R5_UPTODATE, &dev->flags) || 3145 test_bit(R5_Wantcompute, &dev->flags))) { 3146 set_bit(R5_Wantdrain, &dev->flags); 3147 set_bit(R5_LOCKED, &dev->flags); 3148 clear_bit(R5_UPTODATE, &dev->flags); 3149 s->locked++; 3150 } else if (test_bit(R5_InJournal, &dev->flags)) { 3151 set_bit(R5_LOCKED, &dev->flags); 3152 s->locked++; 3153 } 3154 } 3155 if (!s->locked) 3156 /* False alarm - nothing to do */ 3157 return; 3158 sh->reconstruct_state = reconstruct_state_prexor_drain_run; 3159 set_bit(STRIPE_OP_PREXOR, &s->ops_request); 3160 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 3161 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 3162 } 3163 3164 /* keep the parity disk(s) locked while asynchronous operations 3165 * are in flight 3166 */ 3167 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); 3168 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 3169 s->locked++; 3170 3171 if (level == 6) { 3172 int qd_idx = sh->qd_idx; 3173 struct r5dev *dev = &sh->dev[qd_idx]; 3174 3175 set_bit(R5_LOCKED, &dev->flags); 3176 clear_bit(R5_UPTODATE, &dev->flags); 3177 s->locked++; 3178 } 3179 3180 if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page && 3181 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) && 3182 !test_bit(STRIPE_FULL_WRITE, &sh->state) && 3183 test_bit(R5_Insync, &sh->dev[pd_idx].flags)) 3184 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request); 3185 3186 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n", 3187 __func__, (unsigned long long)sh->sector, 3188 s->locked, s->ops_request); 3189 } 3190 3191 /* 3192 * Each stripe/dev can have one or more bion attached. 3193 * toread/towrite point to the first in a chain. 3194 * The bi_next chain must be in order. 3195 */ 3196 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, 3197 int forwrite, int previous) 3198 { 3199 struct bio **bip; 3200 struct r5conf *conf = sh->raid_conf; 3201 int firstwrite=0; 3202 3203 pr_debug("adding bi b#%llu to stripe s#%llu\n", 3204 (unsigned long long)bi->bi_iter.bi_sector, 3205 (unsigned long long)sh->sector); 3206 3207 spin_lock_irq(&sh->stripe_lock); 3208 sh->dev[dd_idx].write_hint = bi->bi_write_hint; 3209 /* Don't allow new IO added to stripes in batch list */ 3210 if (sh->batch_head) 3211 goto overlap; 3212 if (forwrite) { 3213 bip = &sh->dev[dd_idx].towrite; 3214 if (*bip == NULL) 3215 firstwrite = 1; 3216 } else 3217 bip = &sh->dev[dd_idx].toread; 3218 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) { 3219 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector) 3220 goto overlap; 3221 bip = & (*bip)->bi_next; 3222 } 3223 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi)) 3224 goto overlap; 3225 3226 if (forwrite && raid5_has_ppl(conf)) { 3227 /* 3228 * With PPL only writes to consecutive data chunks within a 3229 * stripe are allowed because for a single stripe_head we can 3230 * only have one PPL entry at a time, which describes one data 3231 * range. Not really an overlap, but wait_for_overlap can be 3232 * used to handle this. 3233 */ 3234 sector_t sector; 3235 sector_t first = 0; 3236 sector_t last = 0; 3237 int count = 0; 3238 int i; 3239 3240 for (i = 0; i < sh->disks; i++) { 3241 if (i != sh->pd_idx && 3242 (i == dd_idx || sh->dev[i].towrite)) { 3243 sector = sh->dev[i].sector; 3244 if (count == 0 || sector < first) 3245 first = sector; 3246 if (sector > last) 3247 last = sector; 3248 count++; 3249 } 3250 } 3251 3252 if (first + conf->chunk_sectors * (count - 1) != last) 3253 goto overlap; 3254 } 3255 3256 if (!forwrite || previous) 3257 clear_bit(STRIPE_BATCH_READY, &sh->state); 3258 3259 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next); 3260 if (*bip) 3261 bi->bi_next = *bip; 3262 *bip = bi; 3263 bio_inc_remaining(bi); 3264 md_write_inc(conf->mddev, bi); 3265 3266 if (forwrite) { 3267 /* check if page is covered */ 3268 sector_t sector = sh->dev[dd_idx].sector; 3269 for (bi=sh->dev[dd_idx].towrite; 3270 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS && 3271 bi && bi->bi_iter.bi_sector <= sector; 3272 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) { 3273 if (bio_end_sector(bi) >= sector) 3274 sector = bio_end_sector(bi); 3275 } 3276 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS) 3277 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags)) 3278 sh->overwrite_disks++; 3279 } 3280 3281 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n", 3282 (unsigned long long)(*bip)->bi_iter.bi_sector, 3283 (unsigned long long)sh->sector, dd_idx); 3284 3285 if (conf->mddev->bitmap && firstwrite) { 3286 /* Cannot hold spinlock over bitmap_startwrite, 3287 * but must ensure this isn't added to a batch until 3288 * we have added to the bitmap and set bm_seq. 3289 * So set STRIPE_BITMAP_PENDING to prevent 3290 * batching. 3291 * If multiple add_stripe_bio() calls race here they 3292 * much all set STRIPE_BITMAP_PENDING. So only the first one 3293 * to complete "bitmap_startwrite" gets to set 3294 * STRIPE_BIT_DELAY. This is important as once a stripe 3295 * is added to a batch, STRIPE_BIT_DELAY cannot be changed 3296 * any more. 3297 */ 3298 set_bit(STRIPE_BITMAP_PENDING, &sh->state); 3299 spin_unlock_irq(&sh->stripe_lock); 3300 md_bitmap_startwrite(conf->mddev->bitmap, sh->sector, 3301 STRIPE_SECTORS, 0); 3302 spin_lock_irq(&sh->stripe_lock); 3303 clear_bit(STRIPE_BITMAP_PENDING, &sh->state); 3304 if (!sh->batch_head) { 3305 sh->bm_seq = conf->seq_flush+1; 3306 set_bit(STRIPE_BIT_DELAY, &sh->state); 3307 } 3308 } 3309 spin_unlock_irq(&sh->stripe_lock); 3310 3311 if (stripe_can_batch(sh)) 3312 stripe_add_to_batch_list(conf, sh); 3313 return 1; 3314 3315 overlap: 3316 set_bit(R5_Overlap, &sh->dev[dd_idx].flags); 3317 spin_unlock_irq(&sh->stripe_lock); 3318 return 0; 3319 } 3320 3321 static void end_reshape(struct r5conf *conf); 3322 3323 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 3324 struct stripe_head *sh) 3325 { 3326 int sectors_per_chunk = 3327 previous ? conf->prev_chunk_sectors : conf->chunk_sectors; 3328 int dd_idx; 3329 int chunk_offset = sector_div(stripe, sectors_per_chunk); 3330 int disks = previous ? conf->previous_raid_disks : conf->raid_disks; 3331 3332 raid5_compute_sector(conf, 3333 stripe * (disks - conf->max_degraded) 3334 *sectors_per_chunk + chunk_offset, 3335 previous, 3336 &dd_idx, sh); 3337 } 3338 3339 static void 3340 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh, 3341 struct stripe_head_state *s, int disks) 3342 { 3343 int i; 3344 BUG_ON(sh->batch_head); 3345 for (i = disks; i--; ) { 3346 struct bio *bi; 3347 int bitmap_end = 0; 3348 3349 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 3350 struct md_rdev *rdev; 3351 rcu_read_lock(); 3352 rdev = rcu_dereference(conf->disks[i].rdev); 3353 if (rdev && test_bit(In_sync, &rdev->flags) && 3354 !test_bit(Faulty, &rdev->flags)) 3355 atomic_inc(&rdev->nr_pending); 3356 else 3357 rdev = NULL; 3358 rcu_read_unlock(); 3359 if (rdev) { 3360 if (!rdev_set_badblocks( 3361 rdev, 3362 sh->sector, 3363 STRIPE_SECTORS, 0)) 3364 md_error(conf->mddev, rdev); 3365 rdev_dec_pending(rdev, conf->mddev); 3366 } 3367 } 3368 spin_lock_irq(&sh->stripe_lock); 3369 /* fail all writes first */ 3370 bi = sh->dev[i].towrite; 3371 sh->dev[i].towrite = NULL; 3372 sh->overwrite_disks = 0; 3373 spin_unlock_irq(&sh->stripe_lock); 3374 if (bi) 3375 bitmap_end = 1; 3376 3377 log_stripe_write_finished(sh); 3378 3379 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 3380 wake_up(&conf->wait_for_overlap); 3381 3382 while (bi && bi->bi_iter.bi_sector < 3383 sh->dev[i].sector + STRIPE_SECTORS) { 3384 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector); 3385 3386 md_write_end(conf->mddev); 3387 bio_io_error(bi); 3388 bi = nextbi; 3389 } 3390 if (bitmap_end) 3391 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3392 STRIPE_SECTORS, 0, 0); 3393 bitmap_end = 0; 3394 /* and fail all 'written' */ 3395 bi = sh->dev[i].written; 3396 sh->dev[i].written = NULL; 3397 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) { 3398 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 3399 sh->dev[i].page = sh->dev[i].orig_page; 3400 } 3401 3402 if (bi) bitmap_end = 1; 3403 while (bi && bi->bi_iter.bi_sector < 3404 sh->dev[i].sector + STRIPE_SECTORS) { 3405 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector); 3406 3407 md_write_end(conf->mddev); 3408 bio_io_error(bi); 3409 bi = bi2; 3410 } 3411 3412 /* fail any reads if this device is non-operational and 3413 * the data has not reached the cache yet. 3414 */ 3415 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) && 3416 s->failed > conf->max_degraded && 3417 (!test_bit(R5_Insync, &sh->dev[i].flags) || 3418 test_bit(R5_ReadError, &sh->dev[i].flags))) { 3419 spin_lock_irq(&sh->stripe_lock); 3420 bi = sh->dev[i].toread; 3421 sh->dev[i].toread = NULL; 3422 spin_unlock_irq(&sh->stripe_lock); 3423 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 3424 wake_up(&conf->wait_for_overlap); 3425 if (bi) 3426 s->to_read--; 3427 while (bi && bi->bi_iter.bi_sector < 3428 sh->dev[i].sector + STRIPE_SECTORS) { 3429 struct bio *nextbi = 3430 r5_next_bio(bi, sh->dev[i].sector); 3431 3432 bio_io_error(bi); 3433 bi = nextbi; 3434 } 3435 } 3436 if (bitmap_end) 3437 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3438 STRIPE_SECTORS, 0, 0); 3439 /* If we were in the middle of a write the parity block might 3440 * still be locked - so just clear all R5_LOCKED flags 3441 */ 3442 clear_bit(R5_LOCKED, &sh->dev[i].flags); 3443 } 3444 s->to_write = 0; 3445 s->written = 0; 3446 3447 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 3448 if (atomic_dec_and_test(&conf->pending_full_writes)) 3449 md_wakeup_thread(conf->mddev->thread); 3450 } 3451 3452 static void 3453 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh, 3454 struct stripe_head_state *s) 3455 { 3456 int abort = 0; 3457 int i; 3458 3459 BUG_ON(sh->batch_head); 3460 clear_bit(STRIPE_SYNCING, &sh->state); 3461 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 3462 wake_up(&conf->wait_for_overlap); 3463 s->syncing = 0; 3464 s->replacing = 0; 3465 /* There is nothing more to do for sync/check/repair. 3466 * Don't even need to abort as that is handled elsewhere 3467 * if needed, and not always wanted e.g. if there is a known 3468 * bad block here. 3469 * For recover/replace we need to record a bad block on all 3470 * non-sync devices, or abort the recovery 3471 */ 3472 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) { 3473 /* During recovery devices cannot be removed, so 3474 * locking and refcounting of rdevs is not needed 3475 */ 3476 rcu_read_lock(); 3477 for (i = 0; i < conf->raid_disks; i++) { 3478 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 3479 if (rdev 3480 && !test_bit(Faulty, &rdev->flags) 3481 && !test_bit(In_sync, &rdev->flags) 3482 && !rdev_set_badblocks(rdev, sh->sector, 3483 STRIPE_SECTORS, 0)) 3484 abort = 1; 3485 rdev = rcu_dereference(conf->disks[i].replacement); 3486 if (rdev 3487 && !test_bit(Faulty, &rdev->flags) 3488 && !test_bit(In_sync, &rdev->flags) 3489 && !rdev_set_badblocks(rdev, sh->sector, 3490 STRIPE_SECTORS, 0)) 3491 abort = 1; 3492 } 3493 rcu_read_unlock(); 3494 if (abort) 3495 conf->recovery_disabled = 3496 conf->mddev->recovery_disabled; 3497 } 3498 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort); 3499 } 3500 3501 static int want_replace(struct stripe_head *sh, int disk_idx) 3502 { 3503 struct md_rdev *rdev; 3504 int rv = 0; 3505 3506 rcu_read_lock(); 3507 rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement); 3508 if (rdev 3509 && !test_bit(Faulty, &rdev->flags) 3510 && !test_bit(In_sync, &rdev->flags) 3511 && (rdev->recovery_offset <= sh->sector 3512 || rdev->mddev->recovery_cp <= sh->sector)) 3513 rv = 1; 3514 rcu_read_unlock(); 3515 return rv; 3516 } 3517 3518 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s, 3519 int disk_idx, int disks) 3520 { 3521 struct r5dev *dev = &sh->dev[disk_idx]; 3522 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]], 3523 &sh->dev[s->failed_num[1]] }; 3524 int i; 3525 3526 3527 if (test_bit(R5_LOCKED, &dev->flags) || 3528 test_bit(R5_UPTODATE, &dev->flags)) 3529 /* No point reading this as we already have it or have 3530 * decided to get it. 3531 */ 3532 return 0; 3533 3534 if (dev->toread || 3535 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags))) 3536 /* We need this block to directly satisfy a request */ 3537 return 1; 3538 3539 if (s->syncing || s->expanding || 3540 (s->replacing && want_replace(sh, disk_idx))) 3541 /* When syncing, or expanding we read everything. 3542 * When replacing, we need the replaced block. 3543 */ 3544 return 1; 3545 3546 if ((s->failed >= 1 && fdev[0]->toread) || 3547 (s->failed >= 2 && fdev[1]->toread)) 3548 /* If we want to read from a failed device, then 3549 * we need to actually read every other device. 3550 */ 3551 return 1; 3552 3553 /* Sometimes neither read-modify-write nor reconstruct-write 3554 * cycles can work. In those cases we read every block we 3555 * can. Then the parity-update is certain to have enough to 3556 * work with. 3557 * This can only be a problem when we need to write something, 3558 * and some device has failed. If either of those tests 3559 * fail we need look no further. 3560 */ 3561 if (!s->failed || !s->to_write) 3562 return 0; 3563 3564 if (test_bit(R5_Insync, &dev->flags) && 3565 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3566 /* Pre-reads at not permitted until after short delay 3567 * to gather multiple requests. However if this 3568 * device is no Insync, the block could only be computed 3569 * and there is no need to delay that. 3570 */ 3571 return 0; 3572 3573 for (i = 0; i < s->failed && i < 2; i++) { 3574 if (fdev[i]->towrite && 3575 !test_bit(R5_UPTODATE, &fdev[i]->flags) && 3576 !test_bit(R5_OVERWRITE, &fdev[i]->flags)) 3577 /* If we have a partial write to a failed 3578 * device, then we will need to reconstruct 3579 * the content of that device, so all other 3580 * devices must be read. 3581 */ 3582 return 1; 3583 } 3584 3585 /* If we are forced to do a reconstruct-write, either because 3586 * the current RAID6 implementation only supports that, or 3587 * because parity cannot be trusted and we are currently 3588 * recovering it, there is extra need to be careful. 3589 * If one of the devices that we would need to read, because 3590 * it is not being overwritten (and maybe not written at all) 3591 * is missing/faulty, then we need to read everything we can. 3592 */ 3593 if (sh->raid_conf->level != 6 && 3594 sh->sector < sh->raid_conf->mddev->recovery_cp) 3595 /* reconstruct-write isn't being forced */ 3596 return 0; 3597 for (i = 0; i < s->failed && i < 2; i++) { 3598 if (s->failed_num[i] != sh->pd_idx && 3599 s->failed_num[i] != sh->qd_idx && 3600 !test_bit(R5_UPTODATE, &fdev[i]->flags) && 3601 !test_bit(R5_OVERWRITE, &fdev[i]->flags)) 3602 return 1; 3603 } 3604 3605 return 0; 3606 } 3607 3608 /* fetch_block - checks the given member device to see if its data needs 3609 * to be read or computed to satisfy a request. 3610 * 3611 * Returns 1 when no more member devices need to be checked, otherwise returns 3612 * 0 to tell the loop in handle_stripe_fill to continue 3613 */ 3614 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s, 3615 int disk_idx, int disks) 3616 { 3617 struct r5dev *dev = &sh->dev[disk_idx]; 3618 3619 /* is the data in this block needed, and can we get it? */ 3620 if (need_this_block(sh, s, disk_idx, disks)) { 3621 /* we would like to get this block, possibly by computing it, 3622 * otherwise read it if the backing disk is insync 3623 */ 3624 BUG_ON(test_bit(R5_Wantcompute, &dev->flags)); 3625 BUG_ON(test_bit(R5_Wantread, &dev->flags)); 3626 BUG_ON(sh->batch_head); 3627 3628 /* 3629 * In the raid6 case if the only non-uptodate disk is P 3630 * then we already trusted P to compute the other failed 3631 * drives. It is safe to compute rather than re-read P. 3632 * In other cases we only compute blocks from failed 3633 * devices, otherwise check/repair might fail to detect 3634 * a real inconsistency. 3635 */ 3636 3637 if ((s->uptodate == disks - 1) && 3638 ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) || 3639 (s->failed && (disk_idx == s->failed_num[0] || 3640 disk_idx == s->failed_num[1])))) { 3641 /* have disk failed, and we're requested to fetch it; 3642 * do compute it 3643 */ 3644 pr_debug("Computing stripe %llu block %d\n", 3645 (unsigned long long)sh->sector, disk_idx); 3646 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3647 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3648 set_bit(R5_Wantcompute, &dev->flags); 3649 sh->ops.target = disk_idx; 3650 sh->ops.target2 = -1; /* no 2nd target */ 3651 s->req_compute = 1; 3652 /* Careful: from this point on 'uptodate' is in the eye 3653 * of raid_run_ops which services 'compute' operations 3654 * before writes. R5_Wantcompute flags a block that will 3655 * be R5_UPTODATE by the time it is needed for a 3656 * subsequent operation. 3657 */ 3658 s->uptodate++; 3659 return 1; 3660 } else if (s->uptodate == disks-2 && s->failed >= 2) { 3661 /* Computing 2-failure is *very* expensive; only 3662 * do it if failed >= 2 3663 */ 3664 int other; 3665 for (other = disks; other--; ) { 3666 if (other == disk_idx) 3667 continue; 3668 if (!test_bit(R5_UPTODATE, 3669 &sh->dev[other].flags)) 3670 break; 3671 } 3672 BUG_ON(other < 0); 3673 pr_debug("Computing stripe %llu blocks %d,%d\n", 3674 (unsigned long long)sh->sector, 3675 disk_idx, other); 3676 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3677 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3678 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags); 3679 set_bit(R5_Wantcompute, &sh->dev[other].flags); 3680 sh->ops.target = disk_idx; 3681 sh->ops.target2 = other; 3682 s->uptodate += 2; 3683 s->req_compute = 1; 3684 return 1; 3685 } else if (test_bit(R5_Insync, &dev->flags)) { 3686 set_bit(R5_LOCKED, &dev->flags); 3687 set_bit(R5_Wantread, &dev->flags); 3688 s->locked++; 3689 pr_debug("Reading block %d (sync=%d)\n", 3690 disk_idx, s->syncing); 3691 } 3692 } 3693 3694 return 0; 3695 } 3696 3697 /** 3698 * handle_stripe_fill - read or compute data to satisfy pending requests. 3699 */ 3700 static void handle_stripe_fill(struct stripe_head *sh, 3701 struct stripe_head_state *s, 3702 int disks) 3703 { 3704 int i; 3705 3706 /* look for blocks to read/compute, skip this if a compute 3707 * is already in flight, or if the stripe contents are in the 3708 * midst of changing due to a write 3709 */ 3710 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state && 3711 !sh->reconstruct_state) { 3712 3713 /* 3714 * For degraded stripe with data in journal, do not handle 3715 * read requests yet, instead, flush the stripe to raid 3716 * disks first, this avoids handling complex rmw of write 3717 * back cache (prexor with orig_page, and then xor with 3718 * page) in the read path 3719 */ 3720 if (s->injournal && s->failed) { 3721 if (test_bit(STRIPE_R5C_CACHING, &sh->state)) 3722 r5c_make_stripe_write_out(sh); 3723 goto out; 3724 } 3725 3726 for (i = disks; i--; ) 3727 if (fetch_block(sh, s, i, disks)) 3728 break; 3729 } 3730 out: 3731 set_bit(STRIPE_HANDLE, &sh->state); 3732 } 3733 3734 static void break_stripe_batch_list(struct stripe_head *head_sh, 3735 unsigned long handle_flags); 3736 /* handle_stripe_clean_event 3737 * any written block on an uptodate or failed drive can be returned. 3738 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but 3739 * never LOCKED, so we don't need to test 'failed' directly. 3740 */ 3741 static void handle_stripe_clean_event(struct r5conf *conf, 3742 struct stripe_head *sh, int disks) 3743 { 3744 int i; 3745 struct r5dev *dev; 3746 int discard_pending = 0; 3747 struct stripe_head *head_sh = sh; 3748 bool do_endio = false; 3749 3750 for (i = disks; i--; ) 3751 if (sh->dev[i].written) { 3752 dev = &sh->dev[i]; 3753 if (!test_bit(R5_LOCKED, &dev->flags) && 3754 (test_bit(R5_UPTODATE, &dev->flags) || 3755 test_bit(R5_Discard, &dev->flags) || 3756 test_bit(R5_SkipCopy, &dev->flags))) { 3757 /* We can return any write requests */ 3758 struct bio *wbi, *wbi2; 3759 pr_debug("Return write for disc %d\n", i); 3760 if (test_and_clear_bit(R5_Discard, &dev->flags)) 3761 clear_bit(R5_UPTODATE, &dev->flags); 3762 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) { 3763 WARN_ON(test_bit(R5_UPTODATE, &dev->flags)); 3764 } 3765 do_endio = true; 3766 3767 returnbi: 3768 dev->page = dev->orig_page; 3769 wbi = dev->written; 3770 dev->written = NULL; 3771 while (wbi && wbi->bi_iter.bi_sector < 3772 dev->sector + STRIPE_SECTORS) { 3773 wbi2 = r5_next_bio(wbi, dev->sector); 3774 md_write_end(conf->mddev); 3775 bio_endio(wbi); 3776 wbi = wbi2; 3777 } 3778 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3779 STRIPE_SECTORS, 3780 !test_bit(STRIPE_DEGRADED, &sh->state), 3781 0); 3782 if (head_sh->batch_head) { 3783 sh = list_first_entry(&sh->batch_list, 3784 struct stripe_head, 3785 batch_list); 3786 if (sh != head_sh) { 3787 dev = &sh->dev[i]; 3788 goto returnbi; 3789 } 3790 } 3791 sh = head_sh; 3792 dev = &sh->dev[i]; 3793 } else if (test_bit(R5_Discard, &dev->flags)) 3794 discard_pending = 1; 3795 } 3796 3797 log_stripe_write_finished(sh); 3798 3799 if (!discard_pending && 3800 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) { 3801 int hash; 3802 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 3803 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 3804 if (sh->qd_idx >= 0) { 3805 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 3806 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags); 3807 } 3808 /* now that discard is done we can proceed with any sync */ 3809 clear_bit(STRIPE_DISCARD, &sh->state); 3810 /* 3811 * SCSI discard will change some bio fields and the stripe has 3812 * no updated data, so remove it from hash list and the stripe 3813 * will be reinitialized 3814 */ 3815 unhash: 3816 hash = sh->hash_lock_index; 3817 spin_lock_irq(conf->hash_locks + hash); 3818 remove_hash(sh); 3819 spin_unlock_irq(conf->hash_locks + hash); 3820 if (head_sh->batch_head) { 3821 sh = list_first_entry(&sh->batch_list, 3822 struct stripe_head, batch_list); 3823 if (sh != head_sh) 3824 goto unhash; 3825 } 3826 sh = head_sh; 3827 3828 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) 3829 set_bit(STRIPE_HANDLE, &sh->state); 3830 3831 } 3832 3833 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 3834 if (atomic_dec_and_test(&conf->pending_full_writes)) 3835 md_wakeup_thread(conf->mddev->thread); 3836 3837 if (head_sh->batch_head && do_endio) 3838 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS); 3839 } 3840 3841 /* 3842 * For RMW in write back cache, we need extra page in prexor to store the 3843 * old data. This page is stored in dev->orig_page. 3844 * 3845 * This function checks whether we have data for prexor. The exact logic 3846 * is: 3847 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE) 3848 */ 3849 static inline bool uptodate_for_rmw(struct r5dev *dev) 3850 { 3851 return (test_bit(R5_UPTODATE, &dev->flags)) && 3852 (!test_bit(R5_InJournal, &dev->flags) || 3853 test_bit(R5_OrigPageUPTDODATE, &dev->flags)); 3854 } 3855 3856 static int handle_stripe_dirtying(struct r5conf *conf, 3857 struct stripe_head *sh, 3858 struct stripe_head_state *s, 3859 int disks) 3860 { 3861 int rmw = 0, rcw = 0, i; 3862 sector_t recovery_cp = conf->mddev->recovery_cp; 3863 3864 /* Check whether resync is now happening or should start. 3865 * If yes, then the array is dirty (after unclean shutdown or 3866 * initial creation), so parity in some stripes might be inconsistent. 3867 * In this case, we need to always do reconstruct-write, to ensure 3868 * that in case of drive failure or read-error correction, we 3869 * generate correct data from the parity. 3870 */ 3871 if (conf->rmw_level == PARITY_DISABLE_RMW || 3872 (recovery_cp < MaxSector && sh->sector >= recovery_cp && 3873 s->failed == 0)) { 3874 /* Calculate the real rcw later - for now make it 3875 * look like rcw is cheaper 3876 */ 3877 rcw = 1; rmw = 2; 3878 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n", 3879 conf->rmw_level, (unsigned long long)recovery_cp, 3880 (unsigned long long)sh->sector); 3881 } else for (i = disks; i--; ) { 3882 /* would I have to read this buffer for read_modify_write */ 3883 struct r5dev *dev = &sh->dev[i]; 3884 if (((dev->towrite && !delay_towrite(conf, dev, s)) || 3885 i == sh->pd_idx || i == sh->qd_idx || 3886 test_bit(R5_InJournal, &dev->flags)) && 3887 !test_bit(R5_LOCKED, &dev->flags) && 3888 !(uptodate_for_rmw(dev) || 3889 test_bit(R5_Wantcompute, &dev->flags))) { 3890 if (test_bit(R5_Insync, &dev->flags)) 3891 rmw++; 3892 else 3893 rmw += 2*disks; /* cannot read it */ 3894 } 3895 /* Would I have to read this buffer for reconstruct_write */ 3896 if (!test_bit(R5_OVERWRITE, &dev->flags) && 3897 i != sh->pd_idx && i != sh->qd_idx && 3898 !test_bit(R5_LOCKED, &dev->flags) && 3899 !(test_bit(R5_UPTODATE, &dev->flags) || 3900 test_bit(R5_Wantcompute, &dev->flags))) { 3901 if (test_bit(R5_Insync, &dev->flags)) 3902 rcw++; 3903 else 3904 rcw += 2*disks; 3905 } 3906 } 3907 3908 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n", 3909 (unsigned long long)sh->sector, sh->state, rmw, rcw); 3910 set_bit(STRIPE_HANDLE, &sh->state); 3911 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) { 3912 /* prefer read-modify-write, but need to get some data */ 3913 if (conf->mddev->queue) 3914 blk_add_trace_msg(conf->mddev->queue, 3915 "raid5 rmw %llu %d", 3916 (unsigned long long)sh->sector, rmw); 3917 for (i = disks; i--; ) { 3918 struct r5dev *dev = &sh->dev[i]; 3919 if (test_bit(R5_InJournal, &dev->flags) && 3920 dev->page == dev->orig_page && 3921 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) { 3922 /* alloc page for prexor */ 3923 struct page *p = alloc_page(GFP_NOIO); 3924 3925 if (p) { 3926 dev->orig_page = p; 3927 continue; 3928 } 3929 3930 /* 3931 * alloc_page() failed, try use 3932 * disk_info->extra_page 3933 */ 3934 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE, 3935 &conf->cache_state)) { 3936 r5c_use_extra_page(sh); 3937 break; 3938 } 3939 3940 /* extra_page in use, add to delayed_list */ 3941 set_bit(STRIPE_DELAYED, &sh->state); 3942 s->waiting_extra_page = 1; 3943 return -EAGAIN; 3944 } 3945 } 3946 3947 for (i = disks; i--; ) { 3948 struct r5dev *dev = &sh->dev[i]; 3949 if (((dev->towrite && !delay_towrite(conf, dev, s)) || 3950 i == sh->pd_idx || i == sh->qd_idx || 3951 test_bit(R5_InJournal, &dev->flags)) && 3952 !test_bit(R5_LOCKED, &dev->flags) && 3953 !(uptodate_for_rmw(dev) || 3954 test_bit(R5_Wantcompute, &dev->flags)) && 3955 test_bit(R5_Insync, &dev->flags)) { 3956 if (test_bit(STRIPE_PREREAD_ACTIVE, 3957 &sh->state)) { 3958 pr_debug("Read_old block %d for r-m-w\n", 3959 i); 3960 set_bit(R5_LOCKED, &dev->flags); 3961 set_bit(R5_Wantread, &dev->flags); 3962 s->locked++; 3963 } else { 3964 set_bit(STRIPE_DELAYED, &sh->state); 3965 set_bit(STRIPE_HANDLE, &sh->state); 3966 } 3967 } 3968 } 3969 } 3970 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) { 3971 /* want reconstruct write, but need to get some data */ 3972 int qread =0; 3973 rcw = 0; 3974 for (i = disks; i--; ) { 3975 struct r5dev *dev = &sh->dev[i]; 3976 if (!test_bit(R5_OVERWRITE, &dev->flags) && 3977 i != sh->pd_idx && i != sh->qd_idx && 3978 !test_bit(R5_LOCKED, &dev->flags) && 3979 !(test_bit(R5_UPTODATE, &dev->flags) || 3980 test_bit(R5_Wantcompute, &dev->flags))) { 3981 rcw++; 3982 if (test_bit(R5_Insync, &dev->flags) && 3983 test_bit(STRIPE_PREREAD_ACTIVE, 3984 &sh->state)) { 3985 pr_debug("Read_old block " 3986 "%d for Reconstruct\n", i); 3987 set_bit(R5_LOCKED, &dev->flags); 3988 set_bit(R5_Wantread, &dev->flags); 3989 s->locked++; 3990 qread++; 3991 } else { 3992 set_bit(STRIPE_DELAYED, &sh->state); 3993 set_bit(STRIPE_HANDLE, &sh->state); 3994 } 3995 } 3996 } 3997 if (rcw && conf->mddev->queue) 3998 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d", 3999 (unsigned long long)sh->sector, 4000 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state)); 4001 } 4002 4003 if (rcw > disks && rmw > disks && 4004 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4005 set_bit(STRIPE_DELAYED, &sh->state); 4006 4007 /* now if nothing is locked, and if we have enough data, 4008 * we can start a write request 4009 */ 4010 /* since handle_stripe can be called at any time we need to handle the 4011 * case where a compute block operation has been submitted and then a 4012 * subsequent call wants to start a write request. raid_run_ops only 4013 * handles the case where compute block and reconstruct are requested 4014 * simultaneously. If this is not the case then new writes need to be 4015 * held off until the compute completes. 4016 */ 4017 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) && 4018 (s->locked == 0 && (rcw == 0 || rmw == 0) && 4019 !test_bit(STRIPE_BIT_DELAY, &sh->state))) 4020 schedule_reconstruction(sh, s, rcw == 0, 0); 4021 return 0; 4022 } 4023 4024 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh, 4025 struct stripe_head_state *s, int disks) 4026 { 4027 struct r5dev *dev = NULL; 4028 4029 BUG_ON(sh->batch_head); 4030 set_bit(STRIPE_HANDLE, &sh->state); 4031 4032 switch (sh->check_state) { 4033 case check_state_idle: 4034 /* start a new check operation if there are no failures */ 4035 if (s->failed == 0) { 4036 BUG_ON(s->uptodate != disks); 4037 sh->check_state = check_state_run; 4038 set_bit(STRIPE_OP_CHECK, &s->ops_request); 4039 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 4040 s->uptodate--; 4041 break; 4042 } 4043 dev = &sh->dev[s->failed_num[0]]; 4044 /* fall through */ 4045 case check_state_compute_result: 4046 sh->check_state = check_state_idle; 4047 if (!dev) 4048 dev = &sh->dev[sh->pd_idx]; 4049 4050 /* check that a write has not made the stripe insync */ 4051 if (test_bit(STRIPE_INSYNC, &sh->state)) 4052 break; 4053 4054 /* either failed parity check, or recovery is happening */ 4055 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags)); 4056 BUG_ON(s->uptodate != disks); 4057 4058 set_bit(R5_LOCKED, &dev->flags); 4059 s->locked++; 4060 set_bit(R5_Wantwrite, &dev->flags); 4061 4062 clear_bit(STRIPE_DEGRADED, &sh->state); 4063 set_bit(STRIPE_INSYNC, &sh->state); 4064 break; 4065 case check_state_run: 4066 break; /* we will be called again upon completion */ 4067 case check_state_check_result: 4068 sh->check_state = check_state_idle; 4069 4070 /* if a failure occurred during the check operation, leave 4071 * STRIPE_INSYNC not set and let the stripe be handled again 4072 */ 4073 if (s->failed) 4074 break; 4075 4076 /* handle a successful check operation, if parity is correct 4077 * we are done. Otherwise update the mismatch count and repair 4078 * parity if !MD_RECOVERY_CHECK 4079 */ 4080 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0) 4081 /* parity is correct (on disc, 4082 * not in buffer any more) 4083 */ 4084 set_bit(STRIPE_INSYNC, &sh->state); 4085 else { 4086 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches); 4087 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) { 4088 /* don't try to repair!! */ 4089 set_bit(STRIPE_INSYNC, &sh->state); 4090 pr_warn_ratelimited("%s: mismatch sector in range " 4091 "%llu-%llu\n", mdname(conf->mddev), 4092 (unsigned long long) sh->sector, 4093 (unsigned long long) sh->sector + 4094 STRIPE_SECTORS); 4095 } else { 4096 sh->check_state = check_state_compute_run; 4097 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 4098 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 4099 set_bit(R5_Wantcompute, 4100 &sh->dev[sh->pd_idx].flags); 4101 sh->ops.target = sh->pd_idx; 4102 sh->ops.target2 = -1; 4103 s->uptodate++; 4104 } 4105 } 4106 break; 4107 case check_state_compute_run: 4108 break; 4109 default: 4110 pr_err("%s: unknown check_state: %d sector: %llu\n", 4111 __func__, sh->check_state, 4112 (unsigned long long) sh->sector); 4113 BUG(); 4114 } 4115 } 4116 4117 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh, 4118 struct stripe_head_state *s, 4119 int disks) 4120 { 4121 int pd_idx = sh->pd_idx; 4122 int qd_idx = sh->qd_idx; 4123 struct r5dev *dev; 4124 4125 BUG_ON(sh->batch_head); 4126 set_bit(STRIPE_HANDLE, &sh->state); 4127 4128 BUG_ON(s->failed > 2); 4129 4130 /* Want to check and possibly repair P and Q. 4131 * However there could be one 'failed' device, in which 4132 * case we can only check one of them, possibly using the 4133 * other to generate missing data 4134 */ 4135 4136 switch (sh->check_state) { 4137 case check_state_idle: 4138 /* start a new check operation if there are < 2 failures */ 4139 if (s->failed == s->q_failed) { 4140 /* The only possible failed device holds Q, so it 4141 * makes sense to check P (If anything else were failed, 4142 * we would have used P to recreate it). 4143 */ 4144 sh->check_state = check_state_run; 4145 } 4146 if (!s->q_failed && s->failed < 2) { 4147 /* Q is not failed, and we didn't use it to generate 4148 * anything, so it makes sense to check it 4149 */ 4150 if (sh->check_state == check_state_run) 4151 sh->check_state = check_state_run_pq; 4152 else 4153 sh->check_state = check_state_run_q; 4154 } 4155 4156 /* discard potentially stale zero_sum_result */ 4157 sh->ops.zero_sum_result = 0; 4158 4159 if (sh->check_state == check_state_run) { 4160 /* async_xor_zero_sum destroys the contents of P */ 4161 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 4162 s->uptodate--; 4163 } 4164 if (sh->check_state >= check_state_run && 4165 sh->check_state <= check_state_run_pq) { 4166 /* async_syndrome_zero_sum preserves P and Q, so 4167 * no need to mark them !uptodate here 4168 */ 4169 set_bit(STRIPE_OP_CHECK, &s->ops_request); 4170 break; 4171 } 4172 4173 /* we have 2-disk failure */ 4174 BUG_ON(s->failed != 2); 4175 /* fall through */ 4176 case check_state_compute_result: 4177 sh->check_state = check_state_idle; 4178 4179 /* check that a write has not made the stripe insync */ 4180 if (test_bit(STRIPE_INSYNC, &sh->state)) 4181 break; 4182 4183 /* now write out any block on a failed drive, 4184 * or P or Q if they were recomputed 4185 */ 4186 dev = NULL; 4187 if (s->failed == 2) { 4188 dev = &sh->dev[s->failed_num[1]]; 4189 s->locked++; 4190 set_bit(R5_LOCKED, &dev->flags); 4191 set_bit(R5_Wantwrite, &dev->flags); 4192 } 4193 if (s->failed >= 1) { 4194 dev = &sh->dev[s->failed_num[0]]; 4195 s->locked++; 4196 set_bit(R5_LOCKED, &dev->flags); 4197 set_bit(R5_Wantwrite, &dev->flags); 4198 } 4199 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 4200 dev = &sh->dev[pd_idx]; 4201 s->locked++; 4202 set_bit(R5_LOCKED, &dev->flags); 4203 set_bit(R5_Wantwrite, &dev->flags); 4204 } 4205 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 4206 dev = &sh->dev[qd_idx]; 4207 s->locked++; 4208 set_bit(R5_LOCKED, &dev->flags); 4209 set_bit(R5_Wantwrite, &dev->flags); 4210 } 4211 if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags), 4212 "%s: disk%td not up to date\n", 4213 mdname(conf->mddev), 4214 dev - (struct r5dev *) &sh->dev)) { 4215 clear_bit(R5_LOCKED, &dev->flags); 4216 clear_bit(R5_Wantwrite, &dev->flags); 4217 s->locked--; 4218 } 4219 clear_bit(STRIPE_DEGRADED, &sh->state); 4220 4221 set_bit(STRIPE_INSYNC, &sh->state); 4222 break; 4223 case check_state_run: 4224 case check_state_run_q: 4225 case check_state_run_pq: 4226 break; /* we will be called again upon completion */ 4227 case check_state_check_result: 4228 sh->check_state = check_state_idle; 4229 4230 /* handle a successful check operation, if parity is correct 4231 * we are done. Otherwise update the mismatch count and repair 4232 * parity if !MD_RECOVERY_CHECK 4233 */ 4234 if (sh->ops.zero_sum_result == 0) { 4235 /* both parities are correct */ 4236 if (!s->failed) 4237 set_bit(STRIPE_INSYNC, &sh->state); 4238 else { 4239 /* in contrast to the raid5 case we can validate 4240 * parity, but still have a failure to write 4241 * back 4242 */ 4243 sh->check_state = check_state_compute_result; 4244 /* Returning at this point means that we may go 4245 * off and bring p and/or q uptodate again so 4246 * we make sure to check zero_sum_result again 4247 * to verify if p or q need writeback 4248 */ 4249 } 4250 } else { 4251 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches); 4252 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) { 4253 /* don't try to repair!! */ 4254 set_bit(STRIPE_INSYNC, &sh->state); 4255 pr_warn_ratelimited("%s: mismatch sector in range " 4256 "%llu-%llu\n", mdname(conf->mddev), 4257 (unsigned long long) sh->sector, 4258 (unsigned long long) sh->sector + 4259 STRIPE_SECTORS); 4260 } else { 4261 int *target = &sh->ops.target; 4262 4263 sh->ops.target = -1; 4264 sh->ops.target2 = -1; 4265 sh->check_state = check_state_compute_run; 4266 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 4267 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 4268 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 4269 set_bit(R5_Wantcompute, 4270 &sh->dev[pd_idx].flags); 4271 *target = pd_idx; 4272 target = &sh->ops.target2; 4273 s->uptodate++; 4274 } 4275 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 4276 set_bit(R5_Wantcompute, 4277 &sh->dev[qd_idx].flags); 4278 *target = qd_idx; 4279 s->uptodate++; 4280 } 4281 } 4282 } 4283 break; 4284 case check_state_compute_run: 4285 break; 4286 default: 4287 pr_warn("%s: unknown check_state: %d sector: %llu\n", 4288 __func__, sh->check_state, 4289 (unsigned long long) sh->sector); 4290 BUG(); 4291 } 4292 } 4293 4294 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh) 4295 { 4296 int i; 4297 4298 /* We have read all the blocks in this stripe and now we need to 4299 * copy some of them into a target stripe for expand. 4300 */ 4301 struct dma_async_tx_descriptor *tx = NULL; 4302 BUG_ON(sh->batch_head); 4303 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state); 4304 for (i = 0; i < sh->disks; i++) 4305 if (i != sh->pd_idx && i != sh->qd_idx) { 4306 int dd_idx, j; 4307 struct stripe_head *sh2; 4308 struct async_submit_ctl submit; 4309 4310 sector_t bn = raid5_compute_blocknr(sh, i, 1); 4311 sector_t s = raid5_compute_sector(conf, bn, 0, 4312 &dd_idx, NULL); 4313 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1); 4314 if (sh2 == NULL) 4315 /* so far only the early blocks of this stripe 4316 * have been requested. When later blocks 4317 * get requested, we will try again 4318 */ 4319 continue; 4320 if (!test_bit(STRIPE_EXPANDING, &sh2->state) || 4321 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) { 4322 /* must have already done this block */ 4323 raid5_release_stripe(sh2); 4324 continue; 4325 } 4326 4327 /* place all the copies on one channel */ 4328 init_async_submit(&submit, 0, tx, NULL, NULL, NULL); 4329 tx = async_memcpy(sh2->dev[dd_idx].page, 4330 sh->dev[i].page, 0, 0, STRIPE_SIZE, 4331 &submit); 4332 4333 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags); 4334 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags); 4335 for (j = 0; j < conf->raid_disks; j++) 4336 if (j != sh2->pd_idx && 4337 j != sh2->qd_idx && 4338 !test_bit(R5_Expanded, &sh2->dev[j].flags)) 4339 break; 4340 if (j == conf->raid_disks) { 4341 set_bit(STRIPE_EXPAND_READY, &sh2->state); 4342 set_bit(STRIPE_HANDLE, &sh2->state); 4343 } 4344 raid5_release_stripe(sh2); 4345 4346 } 4347 /* done submitting copies, wait for them to complete */ 4348 async_tx_quiesce(&tx); 4349 } 4350 4351 /* 4352 * handle_stripe - do things to a stripe. 4353 * 4354 * We lock the stripe by setting STRIPE_ACTIVE and then examine the 4355 * state of various bits to see what needs to be done. 4356 * Possible results: 4357 * return some read requests which now have data 4358 * return some write requests which are safely on storage 4359 * schedule a read on some buffers 4360 * schedule a write of some buffers 4361 * return confirmation of parity correctness 4362 * 4363 */ 4364 4365 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s) 4366 { 4367 struct r5conf *conf = sh->raid_conf; 4368 int disks = sh->disks; 4369 struct r5dev *dev; 4370 int i; 4371 int do_recovery = 0; 4372 4373 memset(s, 0, sizeof(*s)); 4374 4375 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head; 4376 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head; 4377 s->failed_num[0] = -1; 4378 s->failed_num[1] = -1; 4379 s->log_failed = r5l_log_disk_error(conf); 4380 4381 /* Now to look around and see what can be done */ 4382 rcu_read_lock(); 4383 for (i=disks; i--; ) { 4384 struct md_rdev *rdev; 4385 sector_t first_bad; 4386 int bad_sectors; 4387 int is_bad = 0; 4388 4389 dev = &sh->dev[i]; 4390 4391 pr_debug("check %d: state 0x%lx read %p write %p written %p\n", 4392 i, dev->flags, 4393 dev->toread, dev->towrite, dev->written); 4394 /* maybe we can reply to a read 4395 * 4396 * new wantfill requests are only permitted while 4397 * ops_complete_biofill is guaranteed to be inactive 4398 */ 4399 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread && 4400 !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) 4401 set_bit(R5_Wantfill, &dev->flags); 4402 4403 /* now count some things */ 4404 if (test_bit(R5_LOCKED, &dev->flags)) 4405 s->locked++; 4406 if (test_bit(R5_UPTODATE, &dev->flags)) 4407 s->uptodate++; 4408 if (test_bit(R5_Wantcompute, &dev->flags)) { 4409 s->compute++; 4410 BUG_ON(s->compute > 2); 4411 } 4412 4413 if (test_bit(R5_Wantfill, &dev->flags)) 4414 s->to_fill++; 4415 else if (dev->toread) 4416 s->to_read++; 4417 if (dev->towrite) { 4418 s->to_write++; 4419 if (!test_bit(R5_OVERWRITE, &dev->flags)) 4420 s->non_overwrite++; 4421 } 4422 if (dev->written) 4423 s->written++; 4424 /* Prefer to use the replacement for reads, but only 4425 * if it is recovered enough and has no bad blocks. 4426 */ 4427 rdev = rcu_dereference(conf->disks[i].replacement); 4428 if (rdev && !test_bit(Faulty, &rdev->flags) && 4429 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS && 4430 !is_badblock(rdev, sh->sector, STRIPE_SECTORS, 4431 &first_bad, &bad_sectors)) 4432 set_bit(R5_ReadRepl, &dev->flags); 4433 else { 4434 if (rdev && !test_bit(Faulty, &rdev->flags)) 4435 set_bit(R5_NeedReplace, &dev->flags); 4436 else 4437 clear_bit(R5_NeedReplace, &dev->flags); 4438 rdev = rcu_dereference(conf->disks[i].rdev); 4439 clear_bit(R5_ReadRepl, &dev->flags); 4440 } 4441 if (rdev && test_bit(Faulty, &rdev->flags)) 4442 rdev = NULL; 4443 if (rdev) { 4444 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS, 4445 &first_bad, &bad_sectors); 4446 if (s->blocked_rdev == NULL 4447 && (test_bit(Blocked, &rdev->flags) 4448 || is_bad < 0)) { 4449 if (is_bad < 0) 4450 set_bit(BlockedBadBlocks, 4451 &rdev->flags); 4452 s->blocked_rdev = rdev; 4453 atomic_inc(&rdev->nr_pending); 4454 } 4455 } 4456 clear_bit(R5_Insync, &dev->flags); 4457 if (!rdev) 4458 /* Not in-sync */; 4459 else if (is_bad) { 4460 /* also not in-sync */ 4461 if (!test_bit(WriteErrorSeen, &rdev->flags) && 4462 test_bit(R5_UPTODATE, &dev->flags)) { 4463 /* treat as in-sync, but with a read error 4464 * which we can now try to correct 4465 */ 4466 set_bit(R5_Insync, &dev->flags); 4467 set_bit(R5_ReadError, &dev->flags); 4468 } 4469 } else if (test_bit(In_sync, &rdev->flags)) 4470 set_bit(R5_Insync, &dev->flags); 4471 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset) 4472 /* in sync if before recovery_offset */ 4473 set_bit(R5_Insync, &dev->flags); 4474 else if (test_bit(R5_UPTODATE, &dev->flags) && 4475 test_bit(R5_Expanded, &dev->flags)) 4476 /* If we've reshaped into here, we assume it is Insync. 4477 * We will shortly update recovery_offset to make 4478 * it official. 4479 */ 4480 set_bit(R5_Insync, &dev->flags); 4481 4482 if (test_bit(R5_WriteError, &dev->flags)) { 4483 /* This flag does not apply to '.replacement' 4484 * only to .rdev, so make sure to check that*/ 4485 struct md_rdev *rdev2 = rcu_dereference( 4486 conf->disks[i].rdev); 4487 if (rdev2 == rdev) 4488 clear_bit(R5_Insync, &dev->flags); 4489 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4490 s->handle_bad_blocks = 1; 4491 atomic_inc(&rdev2->nr_pending); 4492 } else 4493 clear_bit(R5_WriteError, &dev->flags); 4494 } 4495 if (test_bit(R5_MadeGood, &dev->flags)) { 4496 /* This flag does not apply to '.replacement' 4497 * only to .rdev, so make sure to check that*/ 4498 struct md_rdev *rdev2 = rcu_dereference( 4499 conf->disks[i].rdev); 4500 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4501 s->handle_bad_blocks = 1; 4502 atomic_inc(&rdev2->nr_pending); 4503 } else 4504 clear_bit(R5_MadeGood, &dev->flags); 4505 } 4506 if (test_bit(R5_MadeGoodRepl, &dev->flags)) { 4507 struct md_rdev *rdev2 = rcu_dereference( 4508 conf->disks[i].replacement); 4509 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4510 s->handle_bad_blocks = 1; 4511 atomic_inc(&rdev2->nr_pending); 4512 } else 4513 clear_bit(R5_MadeGoodRepl, &dev->flags); 4514 } 4515 if (!test_bit(R5_Insync, &dev->flags)) { 4516 /* The ReadError flag will just be confusing now */ 4517 clear_bit(R5_ReadError, &dev->flags); 4518 clear_bit(R5_ReWrite, &dev->flags); 4519 } 4520 if (test_bit(R5_ReadError, &dev->flags)) 4521 clear_bit(R5_Insync, &dev->flags); 4522 if (!test_bit(R5_Insync, &dev->flags)) { 4523 if (s->failed < 2) 4524 s->failed_num[s->failed] = i; 4525 s->failed++; 4526 if (rdev && !test_bit(Faulty, &rdev->flags)) 4527 do_recovery = 1; 4528 else if (!rdev) { 4529 rdev = rcu_dereference( 4530 conf->disks[i].replacement); 4531 if (rdev && !test_bit(Faulty, &rdev->flags)) 4532 do_recovery = 1; 4533 } 4534 } 4535 4536 if (test_bit(R5_InJournal, &dev->flags)) 4537 s->injournal++; 4538 if (test_bit(R5_InJournal, &dev->flags) && dev->written) 4539 s->just_cached++; 4540 } 4541 if (test_bit(STRIPE_SYNCING, &sh->state)) { 4542 /* If there is a failed device being replaced, 4543 * we must be recovering. 4544 * else if we are after recovery_cp, we must be syncing 4545 * else if MD_RECOVERY_REQUESTED is set, we also are syncing. 4546 * else we can only be replacing 4547 * sync and recovery both need to read all devices, and so 4548 * use the same flag. 4549 */ 4550 if (do_recovery || 4551 sh->sector >= conf->mddev->recovery_cp || 4552 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery))) 4553 s->syncing = 1; 4554 else 4555 s->replacing = 1; 4556 } 4557 rcu_read_unlock(); 4558 } 4559 4560 static int clear_batch_ready(struct stripe_head *sh) 4561 { 4562 /* Return '1' if this is a member of batch, or 4563 * '0' if it is a lone stripe or a head which can now be 4564 * handled. 4565 */ 4566 struct stripe_head *tmp; 4567 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state)) 4568 return (sh->batch_head && sh->batch_head != sh); 4569 spin_lock(&sh->stripe_lock); 4570 if (!sh->batch_head) { 4571 spin_unlock(&sh->stripe_lock); 4572 return 0; 4573 } 4574 4575 /* 4576 * this stripe could be added to a batch list before we check 4577 * BATCH_READY, skips it 4578 */ 4579 if (sh->batch_head != sh) { 4580 spin_unlock(&sh->stripe_lock); 4581 return 1; 4582 } 4583 spin_lock(&sh->batch_lock); 4584 list_for_each_entry(tmp, &sh->batch_list, batch_list) 4585 clear_bit(STRIPE_BATCH_READY, &tmp->state); 4586 spin_unlock(&sh->batch_lock); 4587 spin_unlock(&sh->stripe_lock); 4588 4589 /* 4590 * BATCH_READY is cleared, no new stripes can be added. 4591 * batch_list can be accessed without lock 4592 */ 4593 return 0; 4594 } 4595 4596 static void break_stripe_batch_list(struct stripe_head *head_sh, 4597 unsigned long handle_flags) 4598 { 4599 struct stripe_head *sh, *next; 4600 int i; 4601 int do_wakeup = 0; 4602 4603 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) { 4604 4605 list_del_init(&sh->batch_list); 4606 4607 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) | 4608 (1 << STRIPE_SYNCING) | 4609 (1 << STRIPE_REPLACED) | 4610 (1 << STRIPE_DELAYED) | 4611 (1 << STRIPE_BIT_DELAY) | 4612 (1 << STRIPE_FULL_WRITE) | 4613 (1 << STRIPE_BIOFILL_RUN) | 4614 (1 << STRIPE_COMPUTE_RUN) | 4615 (1 << STRIPE_OPS_REQ_PENDING) | 4616 (1 << STRIPE_DISCARD) | 4617 (1 << STRIPE_BATCH_READY) | 4618 (1 << STRIPE_BATCH_ERR) | 4619 (1 << STRIPE_BITMAP_PENDING)), 4620 "stripe state: %lx\n", sh->state); 4621 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) | 4622 (1 << STRIPE_REPLACED)), 4623 "head stripe state: %lx\n", head_sh->state); 4624 4625 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS | 4626 (1 << STRIPE_PREREAD_ACTIVE) | 4627 (1 << STRIPE_DEGRADED) | 4628 (1 << STRIPE_ON_UNPLUG_LIST)), 4629 head_sh->state & (1 << STRIPE_INSYNC)); 4630 4631 sh->check_state = head_sh->check_state; 4632 sh->reconstruct_state = head_sh->reconstruct_state; 4633 spin_lock_irq(&sh->stripe_lock); 4634 sh->batch_head = NULL; 4635 spin_unlock_irq(&sh->stripe_lock); 4636 for (i = 0; i < sh->disks; i++) { 4637 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 4638 do_wakeup = 1; 4639 sh->dev[i].flags = head_sh->dev[i].flags & 4640 (~((1 << R5_WriteError) | (1 << R5_Overlap))); 4641 } 4642 if (handle_flags == 0 || 4643 sh->state & handle_flags) 4644 set_bit(STRIPE_HANDLE, &sh->state); 4645 raid5_release_stripe(sh); 4646 } 4647 spin_lock_irq(&head_sh->stripe_lock); 4648 head_sh->batch_head = NULL; 4649 spin_unlock_irq(&head_sh->stripe_lock); 4650 for (i = 0; i < head_sh->disks; i++) 4651 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags)) 4652 do_wakeup = 1; 4653 if (head_sh->state & handle_flags) 4654 set_bit(STRIPE_HANDLE, &head_sh->state); 4655 4656 if (do_wakeup) 4657 wake_up(&head_sh->raid_conf->wait_for_overlap); 4658 } 4659 4660 static void handle_stripe(struct stripe_head *sh) 4661 { 4662 struct stripe_head_state s; 4663 struct r5conf *conf = sh->raid_conf; 4664 int i; 4665 int prexor; 4666 int disks = sh->disks; 4667 struct r5dev *pdev, *qdev; 4668 4669 clear_bit(STRIPE_HANDLE, &sh->state); 4670 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) { 4671 /* already being handled, ensure it gets handled 4672 * again when current action finishes */ 4673 set_bit(STRIPE_HANDLE, &sh->state); 4674 return; 4675 } 4676 4677 if (clear_batch_ready(sh) ) { 4678 clear_bit_unlock(STRIPE_ACTIVE, &sh->state); 4679 return; 4680 } 4681 4682 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state)) 4683 break_stripe_batch_list(sh, 0); 4684 4685 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) { 4686 spin_lock(&sh->stripe_lock); 4687 /* 4688 * Cannot process 'sync' concurrently with 'discard'. 4689 * Flush data in r5cache before 'sync'. 4690 */ 4691 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) && 4692 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) && 4693 !test_bit(STRIPE_DISCARD, &sh->state) && 4694 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) { 4695 set_bit(STRIPE_SYNCING, &sh->state); 4696 clear_bit(STRIPE_INSYNC, &sh->state); 4697 clear_bit(STRIPE_REPLACED, &sh->state); 4698 } 4699 spin_unlock(&sh->stripe_lock); 4700 } 4701 clear_bit(STRIPE_DELAYED, &sh->state); 4702 4703 pr_debug("handling stripe %llu, state=%#lx cnt=%d, " 4704 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n", 4705 (unsigned long long)sh->sector, sh->state, 4706 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx, 4707 sh->check_state, sh->reconstruct_state); 4708 4709 analyse_stripe(sh, &s); 4710 4711 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state)) 4712 goto finish; 4713 4714 if (s.handle_bad_blocks || 4715 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) { 4716 set_bit(STRIPE_HANDLE, &sh->state); 4717 goto finish; 4718 } 4719 4720 if (unlikely(s.blocked_rdev)) { 4721 if (s.syncing || s.expanding || s.expanded || 4722 s.replacing || s.to_write || s.written) { 4723 set_bit(STRIPE_HANDLE, &sh->state); 4724 goto finish; 4725 } 4726 /* There is nothing for the blocked_rdev to block */ 4727 rdev_dec_pending(s.blocked_rdev, conf->mddev); 4728 s.blocked_rdev = NULL; 4729 } 4730 4731 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) { 4732 set_bit(STRIPE_OP_BIOFILL, &s.ops_request); 4733 set_bit(STRIPE_BIOFILL_RUN, &sh->state); 4734 } 4735 4736 pr_debug("locked=%d uptodate=%d to_read=%d" 4737 " to_write=%d failed=%d failed_num=%d,%d\n", 4738 s.locked, s.uptodate, s.to_read, s.to_write, s.failed, 4739 s.failed_num[0], s.failed_num[1]); 4740 /* 4741 * check if the array has lost more than max_degraded devices and, 4742 * if so, some requests might need to be failed. 4743 * 4744 * When journal device failed (log_failed), we will only process 4745 * the stripe if there is data need write to raid disks 4746 */ 4747 if (s.failed > conf->max_degraded || 4748 (s.log_failed && s.injournal == 0)) { 4749 sh->check_state = 0; 4750 sh->reconstruct_state = 0; 4751 break_stripe_batch_list(sh, 0); 4752 if (s.to_read+s.to_write+s.written) 4753 handle_failed_stripe(conf, sh, &s, disks); 4754 if (s.syncing + s.replacing) 4755 handle_failed_sync(conf, sh, &s); 4756 } 4757 4758 /* Now we check to see if any write operations have recently 4759 * completed 4760 */ 4761 prexor = 0; 4762 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result) 4763 prexor = 1; 4764 if (sh->reconstruct_state == reconstruct_state_drain_result || 4765 sh->reconstruct_state == reconstruct_state_prexor_drain_result) { 4766 sh->reconstruct_state = reconstruct_state_idle; 4767 4768 /* All the 'written' buffers and the parity block are ready to 4769 * be written back to disk 4770 */ 4771 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) && 4772 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)); 4773 BUG_ON(sh->qd_idx >= 0 && 4774 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) && 4775 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags)); 4776 for (i = disks; i--; ) { 4777 struct r5dev *dev = &sh->dev[i]; 4778 if (test_bit(R5_LOCKED, &dev->flags) && 4779 (i == sh->pd_idx || i == sh->qd_idx || 4780 dev->written || test_bit(R5_InJournal, 4781 &dev->flags))) { 4782 pr_debug("Writing block %d\n", i); 4783 set_bit(R5_Wantwrite, &dev->flags); 4784 if (prexor) 4785 continue; 4786 if (s.failed > 1) 4787 continue; 4788 if (!test_bit(R5_Insync, &dev->flags) || 4789 ((i == sh->pd_idx || i == sh->qd_idx) && 4790 s.failed == 0)) 4791 set_bit(STRIPE_INSYNC, &sh->state); 4792 } 4793 } 4794 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4795 s.dec_preread_active = 1; 4796 } 4797 4798 /* 4799 * might be able to return some write requests if the parity blocks 4800 * are safe, or on a failed drive 4801 */ 4802 pdev = &sh->dev[sh->pd_idx]; 4803 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx) 4804 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx); 4805 qdev = &sh->dev[sh->qd_idx]; 4806 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx) 4807 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx) 4808 || conf->level < 6; 4809 4810 if (s.written && 4811 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags) 4812 && !test_bit(R5_LOCKED, &pdev->flags) 4813 && (test_bit(R5_UPTODATE, &pdev->flags) || 4814 test_bit(R5_Discard, &pdev->flags))))) && 4815 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags) 4816 && !test_bit(R5_LOCKED, &qdev->flags) 4817 && (test_bit(R5_UPTODATE, &qdev->flags) || 4818 test_bit(R5_Discard, &qdev->flags)))))) 4819 handle_stripe_clean_event(conf, sh, disks); 4820 4821 if (s.just_cached) 4822 r5c_handle_cached_data_endio(conf, sh, disks); 4823 log_stripe_write_finished(sh); 4824 4825 /* Now we might consider reading some blocks, either to check/generate 4826 * parity, or to satisfy requests 4827 * or to load a block that is being partially written. 4828 */ 4829 if (s.to_read || s.non_overwrite 4830 || (conf->level == 6 && s.to_write && s.failed) 4831 || (s.syncing && (s.uptodate + s.compute < disks)) 4832 || s.replacing 4833 || s.expanding) 4834 handle_stripe_fill(sh, &s, disks); 4835 4836 /* 4837 * When the stripe finishes full journal write cycle (write to journal 4838 * and raid disk), this is the clean up procedure so it is ready for 4839 * next operation. 4840 */ 4841 r5c_finish_stripe_write_out(conf, sh, &s); 4842 4843 /* 4844 * Now to consider new write requests, cache write back and what else, 4845 * if anything should be read. We do not handle new writes when: 4846 * 1/ A 'write' operation (copy+xor) is already in flight. 4847 * 2/ A 'check' operation is in flight, as it may clobber the parity 4848 * block. 4849 * 3/ A r5c cache log write is in flight. 4850 */ 4851 4852 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) { 4853 if (!r5c_is_writeback(conf->log)) { 4854 if (s.to_write) 4855 handle_stripe_dirtying(conf, sh, &s, disks); 4856 } else { /* write back cache */ 4857 int ret = 0; 4858 4859 /* First, try handle writes in caching phase */ 4860 if (s.to_write) 4861 ret = r5c_try_caching_write(conf, sh, &s, 4862 disks); 4863 /* 4864 * If caching phase failed: ret == -EAGAIN 4865 * OR 4866 * stripe under reclaim: !caching && injournal 4867 * 4868 * fall back to handle_stripe_dirtying() 4869 */ 4870 if (ret == -EAGAIN || 4871 /* stripe under reclaim: !caching && injournal */ 4872 (!test_bit(STRIPE_R5C_CACHING, &sh->state) && 4873 s.injournal > 0)) { 4874 ret = handle_stripe_dirtying(conf, sh, &s, 4875 disks); 4876 if (ret == -EAGAIN) 4877 goto finish; 4878 } 4879 } 4880 } 4881 4882 /* maybe we need to check and possibly fix the parity for this stripe 4883 * Any reads will already have been scheduled, so we just see if enough 4884 * data is available. The parity check is held off while parity 4885 * dependent operations are in flight. 4886 */ 4887 if (sh->check_state || 4888 (s.syncing && s.locked == 0 && 4889 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 4890 !test_bit(STRIPE_INSYNC, &sh->state))) { 4891 if (conf->level == 6) 4892 handle_parity_checks6(conf, sh, &s, disks); 4893 else 4894 handle_parity_checks5(conf, sh, &s, disks); 4895 } 4896 4897 if ((s.replacing || s.syncing) && s.locked == 0 4898 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state) 4899 && !test_bit(STRIPE_REPLACED, &sh->state)) { 4900 /* Write out to replacement devices where possible */ 4901 for (i = 0; i < conf->raid_disks; i++) 4902 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) { 4903 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags)); 4904 set_bit(R5_WantReplace, &sh->dev[i].flags); 4905 set_bit(R5_LOCKED, &sh->dev[i].flags); 4906 s.locked++; 4907 } 4908 if (s.replacing) 4909 set_bit(STRIPE_INSYNC, &sh->state); 4910 set_bit(STRIPE_REPLACED, &sh->state); 4911 } 4912 if ((s.syncing || s.replacing) && s.locked == 0 && 4913 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 4914 test_bit(STRIPE_INSYNC, &sh->state)) { 4915 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 4916 clear_bit(STRIPE_SYNCING, &sh->state); 4917 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 4918 wake_up(&conf->wait_for_overlap); 4919 } 4920 4921 /* If the failed drives are just a ReadError, then we might need 4922 * to progress the repair/check process 4923 */ 4924 if (s.failed <= conf->max_degraded && !conf->mddev->ro) 4925 for (i = 0; i < s.failed; i++) { 4926 struct r5dev *dev = &sh->dev[s.failed_num[i]]; 4927 if (test_bit(R5_ReadError, &dev->flags) 4928 && !test_bit(R5_LOCKED, &dev->flags) 4929 && test_bit(R5_UPTODATE, &dev->flags) 4930 ) { 4931 if (!test_bit(R5_ReWrite, &dev->flags)) { 4932 set_bit(R5_Wantwrite, &dev->flags); 4933 set_bit(R5_ReWrite, &dev->flags); 4934 set_bit(R5_LOCKED, &dev->flags); 4935 s.locked++; 4936 } else { 4937 /* let's read it back */ 4938 set_bit(R5_Wantread, &dev->flags); 4939 set_bit(R5_LOCKED, &dev->flags); 4940 s.locked++; 4941 } 4942 } 4943 } 4944 4945 /* Finish reconstruct operations initiated by the expansion process */ 4946 if (sh->reconstruct_state == reconstruct_state_result) { 4947 struct stripe_head *sh_src 4948 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1); 4949 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) { 4950 /* sh cannot be written until sh_src has been read. 4951 * so arrange for sh to be delayed a little 4952 */ 4953 set_bit(STRIPE_DELAYED, &sh->state); 4954 set_bit(STRIPE_HANDLE, &sh->state); 4955 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, 4956 &sh_src->state)) 4957 atomic_inc(&conf->preread_active_stripes); 4958 raid5_release_stripe(sh_src); 4959 goto finish; 4960 } 4961 if (sh_src) 4962 raid5_release_stripe(sh_src); 4963 4964 sh->reconstruct_state = reconstruct_state_idle; 4965 clear_bit(STRIPE_EXPANDING, &sh->state); 4966 for (i = conf->raid_disks; i--; ) { 4967 set_bit(R5_Wantwrite, &sh->dev[i].flags); 4968 set_bit(R5_LOCKED, &sh->dev[i].flags); 4969 s.locked++; 4970 } 4971 } 4972 4973 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) && 4974 !sh->reconstruct_state) { 4975 /* Need to write out all blocks after computing parity */ 4976 sh->disks = conf->raid_disks; 4977 stripe_set_idx(sh->sector, conf, 0, sh); 4978 schedule_reconstruction(sh, &s, 1, 1); 4979 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) { 4980 clear_bit(STRIPE_EXPAND_READY, &sh->state); 4981 atomic_dec(&conf->reshape_stripes); 4982 wake_up(&conf->wait_for_overlap); 4983 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 4984 } 4985 4986 if (s.expanding && s.locked == 0 && 4987 !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) 4988 handle_stripe_expansion(conf, sh); 4989 4990 finish: 4991 /* wait for this device to become unblocked */ 4992 if (unlikely(s.blocked_rdev)) { 4993 if (conf->mddev->external) 4994 md_wait_for_blocked_rdev(s.blocked_rdev, 4995 conf->mddev); 4996 else 4997 /* Internal metadata will immediately 4998 * be written by raid5d, so we don't 4999 * need to wait here. 5000 */ 5001 rdev_dec_pending(s.blocked_rdev, 5002 conf->mddev); 5003 } 5004 5005 if (s.handle_bad_blocks) 5006 for (i = disks; i--; ) { 5007 struct md_rdev *rdev; 5008 struct r5dev *dev = &sh->dev[i]; 5009 if (test_and_clear_bit(R5_WriteError, &dev->flags)) { 5010 /* We own a safe reference to the rdev */ 5011 rdev = conf->disks[i].rdev; 5012 if (!rdev_set_badblocks(rdev, sh->sector, 5013 STRIPE_SECTORS, 0)) 5014 md_error(conf->mddev, rdev); 5015 rdev_dec_pending(rdev, conf->mddev); 5016 } 5017 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) { 5018 rdev = conf->disks[i].rdev; 5019 rdev_clear_badblocks(rdev, sh->sector, 5020 STRIPE_SECTORS, 0); 5021 rdev_dec_pending(rdev, conf->mddev); 5022 } 5023 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) { 5024 rdev = conf->disks[i].replacement; 5025 if (!rdev) 5026 /* rdev have been moved down */ 5027 rdev = conf->disks[i].rdev; 5028 rdev_clear_badblocks(rdev, sh->sector, 5029 STRIPE_SECTORS, 0); 5030 rdev_dec_pending(rdev, conf->mddev); 5031 } 5032 } 5033 5034 if (s.ops_request) 5035 raid_run_ops(sh, s.ops_request); 5036 5037 ops_run_io(sh, &s); 5038 5039 if (s.dec_preread_active) { 5040 /* We delay this until after ops_run_io so that if make_request 5041 * is waiting on a flush, it won't continue until the writes 5042 * have actually been submitted. 5043 */ 5044 atomic_dec(&conf->preread_active_stripes); 5045 if (atomic_read(&conf->preread_active_stripes) < 5046 IO_THRESHOLD) 5047 md_wakeup_thread(conf->mddev->thread); 5048 } 5049 5050 clear_bit_unlock(STRIPE_ACTIVE, &sh->state); 5051 } 5052 5053 static void raid5_activate_delayed(struct r5conf *conf) 5054 { 5055 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) { 5056 while (!list_empty(&conf->delayed_list)) { 5057 struct list_head *l = conf->delayed_list.next; 5058 struct stripe_head *sh; 5059 sh = list_entry(l, struct stripe_head, lru); 5060 list_del_init(l); 5061 clear_bit(STRIPE_DELAYED, &sh->state); 5062 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5063 atomic_inc(&conf->preread_active_stripes); 5064 list_add_tail(&sh->lru, &conf->hold_list); 5065 raid5_wakeup_stripe_thread(sh); 5066 } 5067 } 5068 } 5069 5070 static void activate_bit_delay(struct r5conf *conf, 5071 struct list_head *temp_inactive_list) 5072 { 5073 /* device_lock is held */ 5074 struct list_head head; 5075 list_add(&head, &conf->bitmap_list); 5076 list_del_init(&conf->bitmap_list); 5077 while (!list_empty(&head)) { 5078 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru); 5079 int hash; 5080 list_del_init(&sh->lru); 5081 atomic_inc(&sh->count); 5082 hash = sh->hash_lock_index; 5083 __release_stripe(conf, sh, &temp_inactive_list[hash]); 5084 } 5085 } 5086 5087 static int raid5_congested(struct mddev *mddev, int bits) 5088 { 5089 struct r5conf *conf = mddev->private; 5090 5091 /* No difference between reads and writes. Just check 5092 * how busy the stripe_cache is 5093 */ 5094 5095 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) 5096 return 1; 5097 5098 /* Also checks whether there is pressure on r5cache log space */ 5099 if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) 5100 return 1; 5101 if (conf->quiesce) 5102 return 1; 5103 if (atomic_read(&conf->empty_inactive_list_nr)) 5104 return 1; 5105 5106 return 0; 5107 } 5108 5109 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio) 5110 { 5111 struct r5conf *conf = mddev->private; 5112 sector_t sector = bio->bi_iter.bi_sector; 5113 unsigned int chunk_sectors; 5114 unsigned int bio_sectors = bio_sectors(bio); 5115 5116 WARN_ON_ONCE(bio->bi_partno); 5117 5118 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors); 5119 return chunk_sectors >= 5120 ((sector & (chunk_sectors - 1)) + bio_sectors); 5121 } 5122 5123 /* 5124 * add bio to the retry LIFO ( in O(1) ... we are in interrupt ) 5125 * later sampled by raid5d. 5126 */ 5127 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf) 5128 { 5129 unsigned long flags; 5130 5131 spin_lock_irqsave(&conf->device_lock, flags); 5132 5133 bi->bi_next = conf->retry_read_aligned_list; 5134 conf->retry_read_aligned_list = bi; 5135 5136 spin_unlock_irqrestore(&conf->device_lock, flags); 5137 md_wakeup_thread(conf->mddev->thread); 5138 } 5139 5140 static struct bio *remove_bio_from_retry(struct r5conf *conf, 5141 unsigned int *offset) 5142 { 5143 struct bio *bi; 5144 5145 bi = conf->retry_read_aligned; 5146 if (bi) { 5147 *offset = conf->retry_read_offset; 5148 conf->retry_read_aligned = NULL; 5149 return bi; 5150 } 5151 bi = conf->retry_read_aligned_list; 5152 if(bi) { 5153 conf->retry_read_aligned_list = bi->bi_next; 5154 bi->bi_next = NULL; 5155 *offset = 0; 5156 } 5157 5158 return bi; 5159 } 5160 5161 /* 5162 * The "raid5_align_endio" should check if the read succeeded and if it 5163 * did, call bio_endio on the original bio (having bio_put the new bio 5164 * first). 5165 * If the read failed.. 5166 */ 5167 static void raid5_align_endio(struct bio *bi) 5168 { 5169 struct bio* raid_bi = bi->bi_private; 5170 struct mddev *mddev; 5171 struct r5conf *conf; 5172 struct md_rdev *rdev; 5173 blk_status_t error = bi->bi_status; 5174 5175 bio_put(bi); 5176 5177 rdev = (void*)raid_bi->bi_next; 5178 raid_bi->bi_next = NULL; 5179 mddev = rdev->mddev; 5180 conf = mddev->private; 5181 5182 rdev_dec_pending(rdev, conf->mddev); 5183 5184 if (!error) { 5185 bio_endio(raid_bi); 5186 if (atomic_dec_and_test(&conf->active_aligned_reads)) 5187 wake_up(&conf->wait_for_quiescent); 5188 return; 5189 } 5190 5191 pr_debug("raid5_align_endio : io error...handing IO for a retry\n"); 5192 5193 add_bio_to_retry(raid_bi, conf); 5194 } 5195 5196 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio) 5197 { 5198 struct r5conf *conf = mddev->private; 5199 int dd_idx; 5200 struct bio* align_bi; 5201 struct md_rdev *rdev; 5202 sector_t end_sector; 5203 5204 if (!in_chunk_boundary(mddev, raid_bio)) { 5205 pr_debug("%s: non aligned\n", __func__); 5206 return 0; 5207 } 5208 /* 5209 * use bio_clone_fast to make a copy of the bio 5210 */ 5211 align_bi = bio_clone_fast(raid_bio, GFP_NOIO, &mddev->bio_set); 5212 if (!align_bi) 5213 return 0; 5214 /* 5215 * set bi_end_io to a new function, and set bi_private to the 5216 * original bio. 5217 */ 5218 align_bi->bi_end_io = raid5_align_endio; 5219 align_bi->bi_private = raid_bio; 5220 /* 5221 * compute position 5222 */ 5223 align_bi->bi_iter.bi_sector = 5224 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 5225 0, &dd_idx, NULL); 5226 5227 end_sector = bio_end_sector(align_bi); 5228 rcu_read_lock(); 5229 rdev = rcu_dereference(conf->disks[dd_idx].replacement); 5230 if (!rdev || test_bit(Faulty, &rdev->flags) || 5231 rdev->recovery_offset < end_sector) { 5232 rdev = rcu_dereference(conf->disks[dd_idx].rdev); 5233 if (rdev && 5234 (test_bit(Faulty, &rdev->flags) || 5235 !(test_bit(In_sync, &rdev->flags) || 5236 rdev->recovery_offset >= end_sector))) 5237 rdev = NULL; 5238 } 5239 5240 if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) { 5241 rcu_read_unlock(); 5242 bio_put(align_bi); 5243 return 0; 5244 } 5245 5246 if (rdev) { 5247 sector_t first_bad; 5248 int bad_sectors; 5249 5250 atomic_inc(&rdev->nr_pending); 5251 rcu_read_unlock(); 5252 raid_bio->bi_next = (void*)rdev; 5253 bio_set_dev(align_bi, rdev->bdev); 5254 bio_clear_flag(align_bi, BIO_SEG_VALID); 5255 5256 if (is_badblock(rdev, align_bi->bi_iter.bi_sector, 5257 bio_sectors(align_bi), 5258 &first_bad, &bad_sectors)) { 5259 bio_put(align_bi); 5260 rdev_dec_pending(rdev, mddev); 5261 return 0; 5262 } 5263 5264 /* No reshape active, so we can trust rdev->data_offset */ 5265 align_bi->bi_iter.bi_sector += rdev->data_offset; 5266 5267 spin_lock_irq(&conf->device_lock); 5268 wait_event_lock_irq(conf->wait_for_quiescent, 5269 conf->quiesce == 0, 5270 conf->device_lock); 5271 atomic_inc(&conf->active_aligned_reads); 5272 spin_unlock_irq(&conf->device_lock); 5273 5274 if (mddev->gendisk) 5275 trace_block_bio_remap(align_bi->bi_disk->queue, 5276 align_bi, disk_devt(mddev->gendisk), 5277 raid_bio->bi_iter.bi_sector); 5278 generic_make_request(align_bi); 5279 return 1; 5280 } else { 5281 rcu_read_unlock(); 5282 bio_put(align_bi); 5283 return 0; 5284 } 5285 } 5286 5287 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio) 5288 { 5289 struct bio *split; 5290 sector_t sector = raid_bio->bi_iter.bi_sector; 5291 unsigned chunk_sects = mddev->chunk_sectors; 5292 unsigned sectors = chunk_sects - (sector & (chunk_sects-1)); 5293 5294 if (sectors < bio_sectors(raid_bio)) { 5295 struct r5conf *conf = mddev->private; 5296 split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split); 5297 bio_chain(split, raid_bio); 5298 generic_make_request(raid_bio); 5299 raid_bio = split; 5300 } 5301 5302 if (!raid5_read_one_chunk(mddev, raid_bio)) 5303 return raid_bio; 5304 5305 return NULL; 5306 } 5307 5308 /* __get_priority_stripe - get the next stripe to process 5309 * 5310 * Full stripe writes are allowed to pass preread active stripes up until 5311 * the bypass_threshold is exceeded. In general the bypass_count 5312 * increments when the handle_list is handled before the hold_list; however, it 5313 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a 5314 * stripe with in flight i/o. The bypass_count will be reset when the 5315 * head of the hold_list has changed, i.e. the head was promoted to the 5316 * handle_list. 5317 */ 5318 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group) 5319 { 5320 struct stripe_head *sh, *tmp; 5321 struct list_head *handle_list = NULL; 5322 struct r5worker_group *wg; 5323 bool second_try = !r5c_is_writeback(conf->log) && 5324 !r5l_log_disk_error(conf); 5325 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) || 5326 r5l_log_disk_error(conf); 5327 5328 again: 5329 wg = NULL; 5330 sh = NULL; 5331 if (conf->worker_cnt_per_group == 0) { 5332 handle_list = try_loprio ? &conf->loprio_list : 5333 &conf->handle_list; 5334 } else if (group != ANY_GROUP) { 5335 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list : 5336 &conf->worker_groups[group].handle_list; 5337 wg = &conf->worker_groups[group]; 5338 } else { 5339 int i; 5340 for (i = 0; i < conf->group_cnt; i++) { 5341 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list : 5342 &conf->worker_groups[i].handle_list; 5343 wg = &conf->worker_groups[i]; 5344 if (!list_empty(handle_list)) 5345 break; 5346 } 5347 } 5348 5349 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n", 5350 __func__, 5351 list_empty(handle_list) ? "empty" : "busy", 5352 list_empty(&conf->hold_list) ? "empty" : "busy", 5353 atomic_read(&conf->pending_full_writes), conf->bypass_count); 5354 5355 if (!list_empty(handle_list)) { 5356 sh = list_entry(handle_list->next, typeof(*sh), lru); 5357 5358 if (list_empty(&conf->hold_list)) 5359 conf->bypass_count = 0; 5360 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) { 5361 if (conf->hold_list.next == conf->last_hold) 5362 conf->bypass_count++; 5363 else { 5364 conf->last_hold = conf->hold_list.next; 5365 conf->bypass_count -= conf->bypass_threshold; 5366 if (conf->bypass_count < 0) 5367 conf->bypass_count = 0; 5368 } 5369 } 5370 } else if (!list_empty(&conf->hold_list) && 5371 ((conf->bypass_threshold && 5372 conf->bypass_count > conf->bypass_threshold) || 5373 atomic_read(&conf->pending_full_writes) == 0)) { 5374 5375 list_for_each_entry(tmp, &conf->hold_list, lru) { 5376 if (conf->worker_cnt_per_group == 0 || 5377 group == ANY_GROUP || 5378 !cpu_online(tmp->cpu) || 5379 cpu_to_group(tmp->cpu) == group) { 5380 sh = tmp; 5381 break; 5382 } 5383 } 5384 5385 if (sh) { 5386 conf->bypass_count -= conf->bypass_threshold; 5387 if (conf->bypass_count < 0) 5388 conf->bypass_count = 0; 5389 } 5390 wg = NULL; 5391 } 5392 5393 if (!sh) { 5394 if (second_try) 5395 return NULL; 5396 second_try = true; 5397 try_loprio = !try_loprio; 5398 goto again; 5399 } 5400 5401 if (wg) { 5402 wg->stripes_cnt--; 5403 sh->group = NULL; 5404 } 5405 list_del_init(&sh->lru); 5406 BUG_ON(atomic_inc_return(&sh->count) != 1); 5407 return sh; 5408 } 5409 5410 struct raid5_plug_cb { 5411 struct blk_plug_cb cb; 5412 struct list_head list; 5413 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS]; 5414 }; 5415 5416 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule) 5417 { 5418 struct raid5_plug_cb *cb = container_of( 5419 blk_cb, struct raid5_plug_cb, cb); 5420 struct stripe_head *sh; 5421 struct mddev *mddev = cb->cb.data; 5422 struct r5conf *conf = mddev->private; 5423 int cnt = 0; 5424 int hash; 5425 5426 if (cb->list.next && !list_empty(&cb->list)) { 5427 spin_lock_irq(&conf->device_lock); 5428 while (!list_empty(&cb->list)) { 5429 sh = list_first_entry(&cb->list, struct stripe_head, lru); 5430 list_del_init(&sh->lru); 5431 /* 5432 * avoid race release_stripe_plug() sees 5433 * STRIPE_ON_UNPLUG_LIST clear but the stripe 5434 * is still in our list 5435 */ 5436 smp_mb__before_atomic(); 5437 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state); 5438 /* 5439 * STRIPE_ON_RELEASE_LIST could be set here. In that 5440 * case, the count is always > 1 here 5441 */ 5442 hash = sh->hash_lock_index; 5443 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]); 5444 cnt++; 5445 } 5446 spin_unlock_irq(&conf->device_lock); 5447 } 5448 release_inactive_stripe_list(conf, cb->temp_inactive_list, 5449 NR_STRIPE_HASH_LOCKS); 5450 if (mddev->queue) 5451 trace_block_unplug(mddev->queue, cnt, !from_schedule); 5452 kfree(cb); 5453 } 5454 5455 static void release_stripe_plug(struct mddev *mddev, 5456 struct stripe_head *sh) 5457 { 5458 struct blk_plug_cb *blk_cb = blk_check_plugged( 5459 raid5_unplug, mddev, 5460 sizeof(struct raid5_plug_cb)); 5461 struct raid5_plug_cb *cb; 5462 5463 if (!blk_cb) { 5464 raid5_release_stripe(sh); 5465 return; 5466 } 5467 5468 cb = container_of(blk_cb, struct raid5_plug_cb, cb); 5469 5470 if (cb->list.next == NULL) { 5471 int i; 5472 INIT_LIST_HEAD(&cb->list); 5473 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 5474 INIT_LIST_HEAD(cb->temp_inactive_list + i); 5475 } 5476 5477 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)) 5478 list_add_tail(&sh->lru, &cb->list); 5479 else 5480 raid5_release_stripe(sh); 5481 } 5482 5483 static void make_discard_request(struct mddev *mddev, struct bio *bi) 5484 { 5485 struct r5conf *conf = mddev->private; 5486 sector_t logical_sector, last_sector; 5487 struct stripe_head *sh; 5488 int stripe_sectors; 5489 5490 if (mddev->reshape_position != MaxSector) 5491 /* Skip discard while reshape is happening */ 5492 return; 5493 5494 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1); 5495 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9); 5496 5497 bi->bi_next = NULL; 5498 5499 stripe_sectors = conf->chunk_sectors * 5500 (conf->raid_disks - conf->max_degraded); 5501 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector, 5502 stripe_sectors); 5503 sector_div(last_sector, stripe_sectors); 5504 5505 logical_sector *= conf->chunk_sectors; 5506 last_sector *= conf->chunk_sectors; 5507 5508 for (; logical_sector < last_sector; 5509 logical_sector += STRIPE_SECTORS) { 5510 DEFINE_WAIT(w); 5511 int d; 5512 again: 5513 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0); 5514 prepare_to_wait(&conf->wait_for_overlap, &w, 5515 TASK_UNINTERRUPTIBLE); 5516 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 5517 if (test_bit(STRIPE_SYNCING, &sh->state)) { 5518 raid5_release_stripe(sh); 5519 schedule(); 5520 goto again; 5521 } 5522 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 5523 spin_lock_irq(&sh->stripe_lock); 5524 for (d = 0; d < conf->raid_disks; d++) { 5525 if (d == sh->pd_idx || d == sh->qd_idx) 5526 continue; 5527 if (sh->dev[d].towrite || sh->dev[d].toread) { 5528 set_bit(R5_Overlap, &sh->dev[d].flags); 5529 spin_unlock_irq(&sh->stripe_lock); 5530 raid5_release_stripe(sh); 5531 schedule(); 5532 goto again; 5533 } 5534 } 5535 set_bit(STRIPE_DISCARD, &sh->state); 5536 finish_wait(&conf->wait_for_overlap, &w); 5537 sh->overwrite_disks = 0; 5538 for (d = 0; d < conf->raid_disks; d++) { 5539 if (d == sh->pd_idx || d == sh->qd_idx) 5540 continue; 5541 sh->dev[d].towrite = bi; 5542 set_bit(R5_OVERWRITE, &sh->dev[d].flags); 5543 bio_inc_remaining(bi); 5544 md_write_inc(mddev, bi); 5545 sh->overwrite_disks++; 5546 } 5547 spin_unlock_irq(&sh->stripe_lock); 5548 if (conf->mddev->bitmap) { 5549 for (d = 0; 5550 d < conf->raid_disks - conf->max_degraded; 5551 d++) 5552 md_bitmap_startwrite(mddev->bitmap, 5553 sh->sector, 5554 STRIPE_SECTORS, 5555 0); 5556 sh->bm_seq = conf->seq_flush + 1; 5557 set_bit(STRIPE_BIT_DELAY, &sh->state); 5558 } 5559 5560 set_bit(STRIPE_HANDLE, &sh->state); 5561 clear_bit(STRIPE_DELAYED, &sh->state); 5562 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5563 atomic_inc(&conf->preread_active_stripes); 5564 release_stripe_plug(mddev, sh); 5565 } 5566 5567 bio_endio(bi); 5568 } 5569 5570 static bool raid5_make_request(struct mddev *mddev, struct bio * bi) 5571 { 5572 struct r5conf *conf = mddev->private; 5573 int dd_idx; 5574 sector_t new_sector; 5575 sector_t logical_sector, last_sector; 5576 struct stripe_head *sh; 5577 const int rw = bio_data_dir(bi); 5578 DEFINE_WAIT(w); 5579 bool do_prepare; 5580 bool do_flush = false; 5581 5582 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) { 5583 int ret = log_handle_flush_request(conf, bi); 5584 5585 if (ret == 0) 5586 return true; 5587 if (ret == -ENODEV) { 5588 md_flush_request(mddev, bi); 5589 return true; 5590 } 5591 /* ret == -EAGAIN, fallback */ 5592 /* 5593 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH, 5594 * we need to flush journal device 5595 */ 5596 do_flush = bi->bi_opf & REQ_PREFLUSH; 5597 } 5598 5599 if (!md_write_start(mddev, bi)) 5600 return false; 5601 /* 5602 * If array is degraded, better not do chunk aligned read because 5603 * later we might have to read it again in order to reconstruct 5604 * data on failed drives. 5605 */ 5606 if (rw == READ && mddev->degraded == 0 && 5607 mddev->reshape_position == MaxSector) { 5608 bi = chunk_aligned_read(mddev, bi); 5609 if (!bi) 5610 return true; 5611 } 5612 5613 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) { 5614 make_discard_request(mddev, bi); 5615 md_write_end(mddev); 5616 return true; 5617 } 5618 5619 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1); 5620 last_sector = bio_end_sector(bi); 5621 bi->bi_next = NULL; 5622 5623 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE); 5624 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) { 5625 int previous; 5626 int seq; 5627 5628 do_prepare = false; 5629 retry: 5630 seq = read_seqcount_begin(&conf->gen_lock); 5631 previous = 0; 5632 if (do_prepare) 5633 prepare_to_wait(&conf->wait_for_overlap, &w, 5634 TASK_UNINTERRUPTIBLE); 5635 if (unlikely(conf->reshape_progress != MaxSector)) { 5636 /* spinlock is needed as reshape_progress may be 5637 * 64bit on a 32bit platform, and so it might be 5638 * possible to see a half-updated value 5639 * Of course reshape_progress could change after 5640 * the lock is dropped, so once we get a reference 5641 * to the stripe that we think it is, we will have 5642 * to check again. 5643 */ 5644 spin_lock_irq(&conf->device_lock); 5645 if (mddev->reshape_backwards 5646 ? logical_sector < conf->reshape_progress 5647 : logical_sector >= conf->reshape_progress) { 5648 previous = 1; 5649 } else { 5650 if (mddev->reshape_backwards 5651 ? logical_sector < conf->reshape_safe 5652 : logical_sector >= conf->reshape_safe) { 5653 spin_unlock_irq(&conf->device_lock); 5654 schedule(); 5655 do_prepare = true; 5656 goto retry; 5657 } 5658 } 5659 spin_unlock_irq(&conf->device_lock); 5660 } 5661 5662 new_sector = raid5_compute_sector(conf, logical_sector, 5663 previous, 5664 &dd_idx, NULL); 5665 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n", 5666 (unsigned long long)new_sector, 5667 (unsigned long long)logical_sector); 5668 5669 sh = raid5_get_active_stripe(conf, new_sector, previous, 5670 (bi->bi_opf & REQ_RAHEAD), 0); 5671 if (sh) { 5672 if (unlikely(previous)) { 5673 /* expansion might have moved on while waiting for a 5674 * stripe, so we must do the range check again. 5675 * Expansion could still move past after this 5676 * test, but as we are holding a reference to 5677 * 'sh', we know that if that happens, 5678 * STRIPE_EXPANDING will get set and the expansion 5679 * won't proceed until we finish with the stripe. 5680 */ 5681 int must_retry = 0; 5682 spin_lock_irq(&conf->device_lock); 5683 if (mddev->reshape_backwards 5684 ? logical_sector >= conf->reshape_progress 5685 : logical_sector < conf->reshape_progress) 5686 /* mismatch, need to try again */ 5687 must_retry = 1; 5688 spin_unlock_irq(&conf->device_lock); 5689 if (must_retry) { 5690 raid5_release_stripe(sh); 5691 schedule(); 5692 do_prepare = true; 5693 goto retry; 5694 } 5695 } 5696 if (read_seqcount_retry(&conf->gen_lock, seq)) { 5697 /* Might have got the wrong stripe_head 5698 * by accident 5699 */ 5700 raid5_release_stripe(sh); 5701 goto retry; 5702 } 5703 5704 if (test_bit(STRIPE_EXPANDING, &sh->state) || 5705 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) { 5706 /* Stripe is busy expanding or 5707 * add failed due to overlap. Flush everything 5708 * and wait a while 5709 */ 5710 md_wakeup_thread(mddev->thread); 5711 raid5_release_stripe(sh); 5712 schedule(); 5713 do_prepare = true; 5714 goto retry; 5715 } 5716 if (do_flush) { 5717 set_bit(STRIPE_R5C_PREFLUSH, &sh->state); 5718 /* we only need flush for one stripe */ 5719 do_flush = false; 5720 } 5721 5722 set_bit(STRIPE_HANDLE, &sh->state); 5723 clear_bit(STRIPE_DELAYED, &sh->state); 5724 if ((!sh->batch_head || sh == sh->batch_head) && 5725 (bi->bi_opf & REQ_SYNC) && 5726 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5727 atomic_inc(&conf->preread_active_stripes); 5728 release_stripe_plug(mddev, sh); 5729 } else { 5730 /* cannot get stripe for read-ahead, just give-up */ 5731 bi->bi_status = BLK_STS_IOERR; 5732 break; 5733 } 5734 } 5735 finish_wait(&conf->wait_for_overlap, &w); 5736 5737 if (rw == WRITE) 5738 md_write_end(mddev); 5739 bio_endio(bi); 5740 return true; 5741 } 5742 5743 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks); 5744 5745 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped) 5746 { 5747 /* reshaping is quite different to recovery/resync so it is 5748 * handled quite separately ... here. 5749 * 5750 * On each call to sync_request, we gather one chunk worth of 5751 * destination stripes and flag them as expanding. 5752 * Then we find all the source stripes and request reads. 5753 * As the reads complete, handle_stripe will copy the data 5754 * into the destination stripe and release that stripe. 5755 */ 5756 struct r5conf *conf = mddev->private; 5757 struct stripe_head *sh; 5758 struct md_rdev *rdev; 5759 sector_t first_sector, last_sector; 5760 int raid_disks = conf->previous_raid_disks; 5761 int data_disks = raid_disks - conf->max_degraded; 5762 int new_data_disks = conf->raid_disks - conf->max_degraded; 5763 int i; 5764 int dd_idx; 5765 sector_t writepos, readpos, safepos; 5766 sector_t stripe_addr; 5767 int reshape_sectors; 5768 struct list_head stripes; 5769 sector_t retn; 5770 5771 if (sector_nr == 0) { 5772 /* If restarting in the middle, skip the initial sectors */ 5773 if (mddev->reshape_backwards && 5774 conf->reshape_progress < raid5_size(mddev, 0, 0)) { 5775 sector_nr = raid5_size(mddev, 0, 0) 5776 - conf->reshape_progress; 5777 } else if (mddev->reshape_backwards && 5778 conf->reshape_progress == MaxSector) { 5779 /* shouldn't happen, but just in case, finish up.*/ 5780 sector_nr = MaxSector; 5781 } else if (!mddev->reshape_backwards && 5782 conf->reshape_progress > 0) 5783 sector_nr = conf->reshape_progress; 5784 sector_div(sector_nr, new_data_disks); 5785 if (sector_nr) { 5786 mddev->curr_resync_completed = sector_nr; 5787 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 5788 *skipped = 1; 5789 retn = sector_nr; 5790 goto finish; 5791 } 5792 } 5793 5794 /* We need to process a full chunk at a time. 5795 * If old and new chunk sizes differ, we need to process the 5796 * largest of these 5797 */ 5798 5799 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors); 5800 5801 /* We update the metadata at least every 10 seconds, or when 5802 * the data about to be copied would over-write the source of 5803 * the data at the front of the range. i.e. one new_stripe 5804 * along from reshape_progress new_maps to after where 5805 * reshape_safe old_maps to 5806 */ 5807 writepos = conf->reshape_progress; 5808 sector_div(writepos, new_data_disks); 5809 readpos = conf->reshape_progress; 5810 sector_div(readpos, data_disks); 5811 safepos = conf->reshape_safe; 5812 sector_div(safepos, data_disks); 5813 if (mddev->reshape_backwards) { 5814 BUG_ON(writepos < reshape_sectors); 5815 writepos -= reshape_sectors; 5816 readpos += reshape_sectors; 5817 safepos += reshape_sectors; 5818 } else { 5819 writepos += reshape_sectors; 5820 /* readpos and safepos are worst-case calculations. 5821 * A negative number is overly pessimistic, and causes 5822 * obvious problems for unsigned storage. So clip to 0. 5823 */ 5824 readpos -= min_t(sector_t, reshape_sectors, readpos); 5825 safepos -= min_t(sector_t, reshape_sectors, safepos); 5826 } 5827 5828 /* Having calculated the 'writepos' possibly use it 5829 * to set 'stripe_addr' which is where we will write to. 5830 */ 5831 if (mddev->reshape_backwards) { 5832 BUG_ON(conf->reshape_progress == 0); 5833 stripe_addr = writepos; 5834 BUG_ON((mddev->dev_sectors & 5835 ~((sector_t)reshape_sectors - 1)) 5836 - reshape_sectors - stripe_addr 5837 != sector_nr); 5838 } else { 5839 BUG_ON(writepos != sector_nr + reshape_sectors); 5840 stripe_addr = sector_nr; 5841 } 5842 5843 /* 'writepos' is the most advanced device address we might write. 5844 * 'readpos' is the least advanced device address we might read. 5845 * 'safepos' is the least address recorded in the metadata as having 5846 * been reshaped. 5847 * If there is a min_offset_diff, these are adjusted either by 5848 * increasing the safepos/readpos if diff is negative, or 5849 * increasing writepos if diff is positive. 5850 * If 'readpos' is then behind 'writepos', there is no way that we can 5851 * ensure safety in the face of a crash - that must be done by userspace 5852 * making a backup of the data. So in that case there is no particular 5853 * rush to update metadata. 5854 * Otherwise if 'safepos' is behind 'writepos', then we really need to 5855 * update the metadata to advance 'safepos' to match 'readpos' so that 5856 * we can be safe in the event of a crash. 5857 * So we insist on updating metadata if safepos is behind writepos and 5858 * readpos is beyond writepos. 5859 * In any case, update the metadata every 10 seconds. 5860 * Maybe that number should be configurable, but I'm not sure it is 5861 * worth it.... maybe it could be a multiple of safemode_delay??? 5862 */ 5863 if (conf->min_offset_diff < 0) { 5864 safepos += -conf->min_offset_diff; 5865 readpos += -conf->min_offset_diff; 5866 } else 5867 writepos += conf->min_offset_diff; 5868 5869 if ((mddev->reshape_backwards 5870 ? (safepos > writepos && readpos < writepos) 5871 : (safepos < writepos && readpos > writepos)) || 5872 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 5873 /* Cannot proceed until we've updated the superblock... */ 5874 wait_event(conf->wait_for_overlap, 5875 atomic_read(&conf->reshape_stripes)==0 5876 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5877 if (atomic_read(&conf->reshape_stripes) != 0) 5878 return 0; 5879 mddev->reshape_position = conf->reshape_progress; 5880 mddev->curr_resync_completed = sector_nr; 5881 if (!mddev->reshape_backwards) 5882 /* Can update recovery_offset */ 5883 rdev_for_each(rdev, mddev) 5884 if (rdev->raid_disk >= 0 && 5885 !test_bit(Journal, &rdev->flags) && 5886 !test_bit(In_sync, &rdev->flags) && 5887 rdev->recovery_offset < sector_nr) 5888 rdev->recovery_offset = sector_nr; 5889 5890 conf->reshape_checkpoint = jiffies; 5891 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 5892 md_wakeup_thread(mddev->thread); 5893 wait_event(mddev->sb_wait, mddev->sb_flags == 0 || 5894 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5895 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 5896 return 0; 5897 spin_lock_irq(&conf->device_lock); 5898 conf->reshape_safe = mddev->reshape_position; 5899 spin_unlock_irq(&conf->device_lock); 5900 wake_up(&conf->wait_for_overlap); 5901 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 5902 } 5903 5904 INIT_LIST_HEAD(&stripes); 5905 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) { 5906 int j; 5907 int skipped_disk = 0; 5908 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1); 5909 set_bit(STRIPE_EXPANDING, &sh->state); 5910 atomic_inc(&conf->reshape_stripes); 5911 /* If any of this stripe is beyond the end of the old 5912 * array, then we need to zero those blocks 5913 */ 5914 for (j=sh->disks; j--;) { 5915 sector_t s; 5916 if (j == sh->pd_idx) 5917 continue; 5918 if (conf->level == 6 && 5919 j == sh->qd_idx) 5920 continue; 5921 s = raid5_compute_blocknr(sh, j, 0); 5922 if (s < raid5_size(mddev, 0, 0)) { 5923 skipped_disk = 1; 5924 continue; 5925 } 5926 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE); 5927 set_bit(R5_Expanded, &sh->dev[j].flags); 5928 set_bit(R5_UPTODATE, &sh->dev[j].flags); 5929 } 5930 if (!skipped_disk) { 5931 set_bit(STRIPE_EXPAND_READY, &sh->state); 5932 set_bit(STRIPE_HANDLE, &sh->state); 5933 } 5934 list_add(&sh->lru, &stripes); 5935 } 5936 spin_lock_irq(&conf->device_lock); 5937 if (mddev->reshape_backwards) 5938 conf->reshape_progress -= reshape_sectors * new_data_disks; 5939 else 5940 conf->reshape_progress += reshape_sectors * new_data_disks; 5941 spin_unlock_irq(&conf->device_lock); 5942 /* Ok, those stripe are ready. We can start scheduling 5943 * reads on the source stripes. 5944 * The source stripes are determined by mapping the first and last 5945 * block on the destination stripes. 5946 */ 5947 first_sector = 5948 raid5_compute_sector(conf, stripe_addr*(new_data_disks), 5949 1, &dd_idx, NULL); 5950 last_sector = 5951 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors) 5952 * new_data_disks - 1), 5953 1, &dd_idx, NULL); 5954 if (last_sector >= mddev->dev_sectors) 5955 last_sector = mddev->dev_sectors - 1; 5956 while (first_sector <= last_sector) { 5957 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1); 5958 set_bit(STRIPE_EXPAND_SOURCE, &sh->state); 5959 set_bit(STRIPE_HANDLE, &sh->state); 5960 raid5_release_stripe(sh); 5961 first_sector += STRIPE_SECTORS; 5962 } 5963 /* Now that the sources are clearly marked, we can release 5964 * the destination stripes 5965 */ 5966 while (!list_empty(&stripes)) { 5967 sh = list_entry(stripes.next, struct stripe_head, lru); 5968 list_del_init(&sh->lru); 5969 raid5_release_stripe(sh); 5970 } 5971 /* If this takes us to the resync_max point where we have to pause, 5972 * then we need to write out the superblock. 5973 */ 5974 sector_nr += reshape_sectors; 5975 retn = reshape_sectors; 5976 finish: 5977 if (mddev->curr_resync_completed > mddev->resync_max || 5978 (sector_nr - mddev->curr_resync_completed) * 2 5979 >= mddev->resync_max - mddev->curr_resync_completed) { 5980 /* Cannot proceed until we've updated the superblock... */ 5981 wait_event(conf->wait_for_overlap, 5982 atomic_read(&conf->reshape_stripes) == 0 5983 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5984 if (atomic_read(&conf->reshape_stripes) != 0) 5985 goto ret; 5986 mddev->reshape_position = conf->reshape_progress; 5987 mddev->curr_resync_completed = sector_nr; 5988 if (!mddev->reshape_backwards) 5989 /* Can update recovery_offset */ 5990 rdev_for_each(rdev, mddev) 5991 if (rdev->raid_disk >= 0 && 5992 !test_bit(Journal, &rdev->flags) && 5993 !test_bit(In_sync, &rdev->flags) && 5994 rdev->recovery_offset < sector_nr) 5995 rdev->recovery_offset = sector_nr; 5996 conf->reshape_checkpoint = jiffies; 5997 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 5998 md_wakeup_thread(mddev->thread); 5999 wait_event(mddev->sb_wait, 6000 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) 6001 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 6002 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6003 goto ret; 6004 spin_lock_irq(&conf->device_lock); 6005 conf->reshape_safe = mddev->reshape_position; 6006 spin_unlock_irq(&conf->device_lock); 6007 wake_up(&conf->wait_for_overlap); 6008 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 6009 } 6010 ret: 6011 return retn; 6012 } 6013 6014 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr, 6015 int *skipped) 6016 { 6017 struct r5conf *conf = mddev->private; 6018 struct stripe_head *sh; 6019 sector_t max_sector = mddev->dev_sectors; 6020 sector_t sync_blocks; 6021 int still_degraded = 0; 6022 int i; 6023 6024 if (sector_nr >= max_sector) { 6025 /* just being told to finish up .. nothing much to do */ 6026 6027 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 6028 end_reshape(conf); 6029 return 0; 6030 } 6031 6032 if (mddev->curr_resync < max_sector) /* aborted */ 6033 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 6034 &sync_blocks, 1); 6035 else /* completed sync */ 6036 conf->fullsync = 0; 6037 md_bitmap_close_sync(mddev->bitmap); 6038 6039 return 0; 6040 } 6041 6042 /* Allow raid5_quiesce to complete */ 6043 wait_event(conf->wait_for_overlap, conf->quiesce != 2); 6044 6045 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 6046 return reshape_request(mddev, sector_nr, skipped); 6047 6048 /* No need to check resync_max as we never do more than one 6049 * stripe, and as resync_max will always be on a chunk boundary, 6050 * if the check in md_do_sync didn't fire, there is no chance 6051 * of overstepping resync_max here 6052 */ 6053 6054 /* if there is too many failed drives and we are trying 6055 * to resync, then assert that we are finished, because there is 6056 * nothing we can do. 6057 */ 6058 if (mddev->degraded >= conf->max_degraded && 6059 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 6060 sector_t rv = mddev->dev_sectors - sector_nr; 6061 *skipped = 1; 6062 return rv; 6063 } 6064 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 6065 !conf->fullsync && 6066 !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 6067 sync_blocks >= STRIPE_SECTORS) { 6068 /* we can skip this block, and probably more */ 6069 sync_blocks /= STRIPE_SECTORS; 6070 *skipped = 1; 6071 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */ 6072 } 6073 6074 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false); 6075 6076 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0); 6077 if (sh == NULL) { 6078 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0); 6079 /* make sure we don't swamp the stripe cache if someone else 6080 * is trying to get access 6081 */ 6082 schedule_timeout_uninterruptible(1); 6083 } 6084 /* Need to check if array will still be degraded after recovery/resync 6085 * Note in case of > 1 drive failures it's possible we're rebuilding 6086 * one drive while leaving another faulty drive in array. 6087 */ 6088 rcu_read_lock(); 6089 for (i = 0; i < conf->raid_disks; i++) { 6090 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev); 6091 6092 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) 6093 still_degraded = 1; 6094 } 6095 rcu_read_unlock(); 6096 6097 md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded); 6098 6099 set_bit(STRIPE_SYNC_REQUESTED, &sh->state); 6100 set_bit(STRIPE_HANDLE, &sh->state); 6101 6102 raid5_release_stripe(sh); 6103 6104 return STRIPE_SECTORS; 6105 } 6106 6107 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio, 6108 unsigned int offset) 6109 { 6110 /* We may not be able to submit a whole bio at once as there 6111 * may not be enough stripe_heads available. 6112 * We cannot pre-allocate enough stripe_heads as we may need 6113 * more than exist in the cache (if we allow ever large chunks). 6114 * So we do one stripe head at a time and record in 6115 * ->bi_hw_segments how many have been done. 6116 * 6117 * We *know* that this entire raid_bio is in one chunk, so 6118 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector. 6119 */ 6120 struct stripe_head *sh; 6121 int dd_idx; 6122 sector_t sector, logical_sector, last_sector; 6123 int scnt = 0; 6124 int handled = 0; 6125 6126 logical_sector = raid_bio->bi_iter.bi_sector & 6127 ~((sector_t)STRIPE_SECTORS-1); 6128 sector = raid5_compute_sector(conf, logical_sector, 6129 0, &dd_idx, NULL); 6130 last_sector = bio_end_sector(raid_bio); 6131 6132 for (; logical_sector < last_sector; 6133 logical_sector += STRIPE_SECTORS, 6134 sector += STRIPE_SECTORS, 6135 scnt++) { 6136 6137 if (scnt < offset) 6138 /* already done this stripe */ 6139 continue; 6140 6141 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1); 6142 6143 if (!sh) { 6144 /* failed to get a stripe - must wait */ 6145 conf->retry_read_aligned = raid_bio; 6146 conf->retry_read_offset = scnt; 6147 return handled; 6148 } 6149 6150 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) { 6151 raid5_release_stripe(sh); 6152 conf->retry_read_aligned = raid_bio; 6153 conf->retry_read_offset = scnt; 6154 return handled; 6155 } 6156 6157 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags); 6158 handle_stripe(sh); 6159 raid5_release_stripe(sh); 6160 handled++; 6161 } 6162 6163 bio_endio(raid_bio); 6164 6165 if (atomic_dec_and_test(&conf->active_aligned_reads)) 6166 wake_up(&conf->wait_for_quiescent); 6167 return handled; 6168 } 6169 6170 static int handle_active_stripes(struct r5conf *conf, int group, 6171 struct r5worker *worker, 6172 struct list_head *temp_inactive_list) 6173 __releases(&conf->device_lock) 6174 __acquires(&conf->device_lock) 6175 { 6176 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh; 6177 int i, batch_size = 0, hash; 6178 bool release_inactive = false; 6179 6180 while (batch_size < MAX_STRIPE_BATCH && 6181 (sh = __get_priority_stripe(conf, group)) != NULL) 6182 batch[batch_size++] = sh; 6183 6184 if (batch_size == 0) { 6185 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 6186 if (!list_empty(temp_inactive_list + i)) 6187 break; 6188 if (i == NR_STRIPE_HASH_LOCKS) { 6189 spin_unlock_irq(&conf->device_lock); 6190 log_flush_stripe_to_raid(conf); 6191 spin_lock_irq(&conf->device_lock); 6192 return batch_size; 6193 } 6194 release_inactive = true; 6195 } 6196 spin_unlock_irq(&conf->device_lock); 6197 6198 release_inactive_stripe_list(conf, temp_inactive_list, 6199 NR_STRIPE_HASH_LOCKS); 6200 6201 r5l_flush_stripe_to_raid(conf->log); 6202 if (release_inactive) { 6203 spin_lock_irq(&conf->device_lock); 6204 return 0; 6205 } 6206 6207 for (i = 0; i < batch_size; i++) 6208 handle_stripe(batch[i]); 6209 log_write_stripe_run(conf); 6210 6211 cond_resched(); 6212 6213 spin_lock_irq(&conf->device_lock); 6214 for (i = 0; i < batch_size; i++) { 6215 hash = batch[i]->hash_lock_index; 6216 __release_stripe(conf, batch[i], &temp_inactive_list[hash]); 6217 } 6218 return batch_size; 6219 } 6220 6221 static void raid5_do_work(struct work_struct *work) 6222 { 6223 struct r5worker *worker = container_of(work, struct r5worker, work); 6224 struct r5worker_group *group = worker->group; 6225 struct r5conf *conf = group->conf; 6226 struct mddev *mddev = conf->mddev; 6227 int group_id = group - conf->worker_groups; 6228 int handled; 6229 struct blk_plug plug; 6230 6231 pr_debug("+++ raid5worker active\n"); 6232 6233 blk_start_plug(&plug); 6234 handled = 0; 6235 spin_lock_irq(&conf->device_lock); 6236 while (1) { 6237 int batch_size, released; 6238 6239 released = release_stripe_list(conf, worker->temp_inactive_list); 6240 6241 batch_size = handle_active_stripes(conf, group_id, worker, 6242 worker->temp_inactive_list); 6243 worker->working = false; 6244 if (!batch_size && !released) 6245 break; 6246 handled += batch_size; 6247 wait_event_lock_irq(mddev->sb_wait, 6248 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags), 6249 conf->device_lock); 6250 } 6251 pr_debug("%d stripes handled\n", handled); 6252 6253 spin_unlock_irq(&conf->device_lock); 6254 6255 flush_deferred_bios(conf); 6256 6257 r5l_flush_stripe_to_raid(conf->log); 6258 6259 async_tx_issue_pending_all(); 6260 blk_finish_plug(&plug); 6261 6262 pr_debug("--- raid5worker inactive\n"); 6263 } 6264 6265 /* 6266 * This is our raid5 kernel thread. 6267 * 6268 * We scan the hash table for stripes which can be handled now. 6269 * During the scan, completed stripes are saved for us by the interrupt 6270 * handler, so that they will not have to wait for our next wakeup. 6271 */ 6272 static void raid5d(struct md_thread *thread) 6273 { 6274 struct mddev *mddev = thread->mddev; 6275 struct r5conf *conf = mddev->private; 6276 int handled; 6277 struct blk_plug plug; 6278 6279 pr_debug("+++ raid5d active\n"); 6280 6281 md_check_recovery(mddev); 6282 6283 blk_start_plug(&plug); 6284 handled = 0; 6285 spin_lock_irq(&conf->device_lock); 6286 while (1) { 6287 struct bio *bio; 6288 int batch_size, released; 6289 unsigned int offset; 6290 6291 released = release_stripe_list(conf, conf->temp_inactive_list); 6292 if (released) 6293 clear_bit(R5_DID_ALLOC, &conf->cache_state); 6294 6295 if ( 6296 !list_empty(&conf->bitmap_list)) { 6297 /* Now is a good time to flush some bitmap updates */ 6298 conf->seq_flush++; 6299 spin_unlock_irq(&conf->device_lock); 6300 md_bitmap_unplug(mddev->bitmap); 6301 spin_lock_irq(&conf->device_lock); 6302 conf->seq_write = conf->seq_flush; 6303 activate_bit_delay(conf, conf->temp_inactive_list); 6304 } 6305 raid5_activate_delayed(conf); 6306 6307 while ((bio = remove_bio_from_retry(conf, &offset))) { 6308 int ok; 6309 spin_unlock_irq(&conf->device_lock); 6310 ok = retry_aligned_read(conf, bio, offset); 6311 spin_lock_irq(&conf->device_lock); 6312 if (!ok) 6313 break; 6314 handled++; 6315 } 6316 6317 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL, 6318 conf->temp_inactive_list); 6319 if (!batch_size && !released) 6320 break; 6321 handled += batch_size; 6322 6323 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) { 6324 spin_unlock_irq(&conf->device_lock); 6325 md_check_recovery(mddev); 6326 spin_lock_irq(&conf->device_lock); 6327 } 6328 } 6329 pr_debug("%d stripes handled\n", handled); 6330 6331 spin_unlock_irq(&conf->device_lock); 6332 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) && 6333 mutex_trylock(&conf->cache_size_mutex)) { 6334 grow_one_stripe(conf, __GFP_NOWARN); 6335 /* Set flag even if allocation failed. This helps 6336 * slow down allocation requests when mem is short 6337 */ 6338 set_bit(R5_DID_ALLOC, &conf->cache_state); 6339 mutex_unlock(&conf->cache_size_mutex); 6340 } 6341 6342 flush_deferred_bios(conf); 6343 6344 r5l_flush_stripe_to_raid(conf->log); 6345 6346 async_tx_issue_pending_all(); 6347 blk_finish_plug(&plug); 6348 6349 pr_debug("--- raid5d inactive\n"); 6350 } 6351 6352 static ssize_t 6353 raid5_show_stripe_cache_size(struct mddev *mddev, char *page) 6354 { 6355 struct r5conf *conf; 6356 int ret = 0; 6357 spin_lock(&mddev->lock); 6358 conf = mddev->private; 6359 if (conf) 6360 ret = sprintf(page, "%d\n", conf->min_nr_stripes); 6361 spin_unlock(&mddev->lock); 6362 return ret; 6363 } 6364 6365 int 6366 raid5_set_cache_size(struct mddev *mddev, int size) 6367 { 6368 int result = 0; 6369 struct r5conf *conf = mddev->private; 6370 6371 if (size <= 16 || size > 32768) 6372 return -EINVAL; 6373 6374 conf->min_nr_stripes = size; 6375 mutex_lock(&conf->cache_size_mutex); 6376 while (size < conf->max_nr_stripes && 6377 drop_one_stripe(conf)) 6378 ; 6379 mutex_unlock(&conf->cache_size_mutex); 6380 6381 md_allow_write(mddev); 6382 6383 mutex_lock(&conf->cache_size_mutex); 6384 while (size > conf->max_nr_stripes) 6385 if (!grow_one_stripe(conf, GFP_KERNEL)) { 6386 conf->min_nr_stripes = conf->max_nr_stripes; 6387 result = -ENOMEM; 6388 break; 6389 } 6390 mutex_unlock(&conf->cache_size_mutex); 6391 6392 return result; 6393 } 6394 EXPORT_SYMBOL(raid5_set_cache_size); 6395 6396 static ssize_t 6397 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len) 6398 { 6399 struct r5conf *conf; 6400 unsigned long new; 6401 int err; 6402 6403 if (len >= PAGE_SIZE) 6404 return -EINVAL; 6405 if (kstrtoul(page, 10, &new)) 6406 return -EINVAL; 6407 err = mddev_lock(mddev); 6408 if (err) 6409 return err; 6410 conf = mddev->private; 6411 if (!conf) 6412 err = -ENODEV; 6413 else 6414 err = raid5_set_cache_size(mddev, new); 6415 mddev_unlock(mddev); 6416 6417 return err ?: len; 6418 } 6419 6420 static struct md_sysfs_entry 6421 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR, 6422 raid5_show_stripe_cache_size, 6423 raid5_store_stripe_cache_size); 6424 6425 static ssize_t 6426 raid5_show_rmw_level(struct mddev *mddev, char *page) 6427 { 6428 struct r5conf *conf = mddev->private; 6429 if (conf) 6430 return sprintf(page, "%d\n", conf->rmw_level); 6431 else 6432 return 0; 6433 } 6434 6435 static ssize_t 6436 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len) 6437 { 6438 struct r5conf *conf = mddev->private; 6439 unsigned long new; 6440 6441 if (!conf) 6442 return -ENODEV; 6443 6444 if (len >= PAGE_SIZE) 6445 return -EINVAL; 6446 6447 if (kstrtoul(page, 10, &new)) 6448 return -EINVAL; 6449 6450 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome) 6451 return -EINVAL; 6452 6453 if (new != PARITY_DISABLE_RMW && 6454 new != PARITY_ENABLE_RMW && 6455 new != PARITY_PREFER_RMW) 6456 return -EINVAL; 6457 6458 conf->rmw_level = new; 6459 return len; 6460 } 6461 6462 static struct md_sysfs_entry 6463 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR, 6464 raid5_show_rmw_level, 6465 raid5_store_rmw_level); 6466 6467 6468 static ssize_t 6469 raid5_show_preread_threshold(struct mddev *mddev, char *page) 6470 { 6471 struct r5conf *conf; 6472 int ret = 0; 6473 spin_lock(&mddev->lock); 6474 conf = mddev->private; 6475 if (conf) 6476 ret = sprintf(page, "%d\n", conf->bypass_threshold); 6477 spin_unlock(&mddev->lock); 6478 return ret; 6479 } 6480 6481 static ssize_t 6482 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len) 6483 { 6484 struct r5conf *conf; 6485 unsigned long new; 6486 int err; 6487 6488 if (len >= PAGE_SIZE) 6489 return -EINVAL; 6490 if (kstrtoul(page, 10, &new)) 6491 return -EINVAL; 6492 6493 err = mddev_lock(mddev); 6494 if (err) 6495 return err; 6496 conf = mddev->private; 6497 if (!conf) 6498 err = -ENODEV; 6499 else if (new > conf->min_nr_stripes) 6500 err = -EINVAL; 6501 else 6502 conf->bypass_threshold = new; 6503 mddev_unlock(mddev); 6504 return err ?: len; 6505 } 6506 6507 static struct md_sysfs_entry 6508 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold, 6509 S_IRUGO | S_IWUSR, 6510 raid5_show_preread_threshold, 6511 raid5_store_preread_threshold); 6512 6513 static ssize_t 6514 raid5_show_skip_copy(struct mddev *mddev, char *page) 6515 { 6516 struct r5conf *conf; 6517 int ret = 0; 6518 spin_lock(&mddev->lock); 6519 conf = mddev->private; 6520 if (conf) 6521 ret = sprintf(page, "%d\n", conf->skip_copy); 6522 spin_unlock(&mddev->lock); 6523 return ret; 6524 } 6525 6526 static ssize_t 6527 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len) 6528 { 6529 struct r5conf *conf; 6530 unsigned long new; 6531 int err; 6532 6533 if (len >= PAGE_SIZE) 6534 return -EINVAL; 6535 if (kstrtoul(page, 10, &new)) 6536 return -EINVAL; 6537 new = !!new; 6538 6539 err = mddev_lock(mddev); 6540 if (err) 6541 return err; 6542 conf = mddev->private; 6543 if (!conf) 6544 err = -ENODEV; 6545 else if (new != conf->skip_copy) { 6546 mddev_suspend(mddev); 6547 conf->skip_copy = new; 6548 if (new) 6549 mddev->queue->backing_dev_info->capabilities |= 6550 BDI_CAP_STABLE_WRITES; 6551 else 6552 mddev->queue->backing_dev_info->capabilities &= 6553 ~BDI_CAP_STABLE_WRITES; 6554 mddev_resume(mddev); 6555 } 6556 mddev_unlock(mddev); 6557 return err ?: len; 6558 } 6559 6560 static struct md_sysfs_entry 6561 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR, 6562 raid5_show_skip_copy, 6563 raid5_store_skip_copy); 6564 6565 static ssize_t 6566 stripe_cache_active_show(struct mddev *mddev, char *page) 6567 { 6568 struct r5conf *conf = mddev->private; 6569 if (conf) 6570 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes)); 6571 else 6572 return 0; 6573 } 6574 6575 static struct md_sysfs_entry 6576 raid5_stripecache_active = __ATTR_RO(stripe_cache_active); 6577 6578 static ssize_t 6579 raid5_show_group_thread_cnt(struct mddev *mddev, char *page) 6580 { 6581 struct r5conf *conf; 6582 int ret = 0; 6583 spin_lock(&mddev->lock); 6584 conf = mddev->private; 6585 if (conf) 6586 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group); 6587 spin_unlock(&mddev->lock); 6588 return ret; 6589 } 6590 6591 static int alloc_thread_groups(struct r5conf *conf, int cnt, 6592 int *group_cnt, 6593 int *worker_cnt_per_group, 6594 struct r5worker_group **worker_groups); 6595 static ssize_t 6596 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len) 6597 { 6598 struct r5conf *conf; 6599 unsigned int new; 6600 int err; 6601 struct r5worker_group *new_groups, *old_groups; 6602 int group_cnt, worker_cnt_per_group; 6603 6604 if (len >= PAGE_SIZE) 6605 return -EINVAL; 6606 if (kstrtouint(page, 10, &new)) 6607 return -EINVAL; 6608 /* 8192 should be big enough */ 6609 if (new > 8192) 6610 return -EINVAL; 6611 6612 err = mddev_lock(mddev); 6613 if (err) 6614 return err; 6615 conf = mddev->private; 6616 if (!conf) 6617 err = -ENODEV; 6618 else if (new != conf->worker_cnt_per_group) { 6619 mddev_suspend(mddev); 6620 6621 old_groups = conf->worker_groups; 6622 if (old_groups) 6623 flush_workqueue(raid5_wq); 6624 6625 err = alloc_thread_groups(conf, new, 6626 &group_cnt, &worker_cnt_per_group, 6627 &new_groups); 6628 if (!err) { 6629 spin_lock_irq(&conf->device_lock); 6630 conf->group_cnt = group_cnt; 6631 conf->worker_cnt_per_group = worker_cnt_per_group; 6632 conf->worker_groups = new_groups; 6633 spin_unlock_irq(&conf->device_lock); 6634 6635 if (old_groups) 6636 kfree(old_groups[0].workers); 6637 kfree(old_groups); 6638 } 6639 mddev_resume(mddev); 6640 } 6641 mddev_unlock(mddev); 6642 6643 return err ?: len; 6644 } 6645 6646 static struct md_sysfs_entry 6647 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR, 6648 raid5_show_group_thread_cnt, 6649 raid5_store_group_thread_cnt); 6650 6651 static struct attribute *raid5_attrs[] = { 6652 &raid5_stripecache_size.attr, 6653 &raid5_stripecache_active.attr, 6654 &raid5_preread_bypass_threshold.attr, 6655 &raid5_group_thread_cnt.attr, 6656 &raid5_skip_copy.attr, 6657 &raid5_rmw_level.attr, 6658 &r5c_journal_mode.attr, 6659 &ppl_write_hint.attr, 6660 NULL, 6661 }; 6662 static struct attribute_group raid5_attrs_group = { 6663 .name = NULL, 6664 .attrs = raid5_attrs, 6665 }; 6666 6667 static int alloc_thread_groups(struct r5conf *conf, int cnt, 6668 int *group_cnt, 6669 int *worker_cnt_per_group, 6670 struct r5worker_group **worker_groups) 6671 { 6672 int i, j, k; 6673 ssize_t size; 6674 struct r5worker *workers; 6675 6676 *worker_cnt_per_group = cnt; 6677 if (cnt == 0) { 6678 *group_cnt = 0; 6679 *worker_groups = NULL; 6680 return 0; 6681 } 6682 *group_cnt = num_possible_nodes(); 6683 size = sizeof(struct r5worker) * cnt; 6684 workers = kcalloc(size, *group_cnt, GFP_NOIO); 6685 *worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group), 6686 GFP_NOIO); 6687 if (!*worker_groups || !workers) { 6688 kfree(workers); 6689 kfree(*worker_groups); 6690 return -ENOMEM; 6691 } 6692 6693 for (i = 0; i < *group_cnt; i++) { 6694 struct r5worker_group *group; 6695 6696 group = &(*worker_groups)[i]; 6697 INIT_LIST_HEAD(&group->handle_list); 6698 INIT_LIST_HEAD(&group->loprio_list); 6699 group->conf = conf; 6700 group->workers = workers + i * cnt; 6701 6702 for (j = 0; j < cnt; j++) { 6703 struct r5worker *worker = group->workers + j; 6704 worker->group = group; 6705 INIT_WORK(&worker->work, raid5_do_work); 6706 6707 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++) 6708 INIT_LIST_HEAD(worker->temp_inactive_list + k); 6709 } 6710 } 6711 6712 return 0; 6713 } 6714 6715 static void free_thread_groups(struct r5conf *conf) 6716 { 6717 if (conf->worker_groups) 6718 kfree(conf->worker_groups[0].workers); 6719 kfree(conf->worker_groups); 6720 conf->worker_groups = NULL; 6721 } 6722 6723 static sector_t 6724 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks) 6725 { 6726 struct r5conf *conf = mddev->private; 6727 6728 if (!sectors) 6729 sectors = mddev->dev_sectors; 6730 if (!raid_disks) 6731 /* size is defined by the smallest of previous and new size */ 6732 raid_disks = min(conf->raid_disks, conf->previous_raid_disks); 6733 6734 sectors &= ~((sector_t)conf->chunk_sectors - 1); 6735 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1); 6736 return sectors * (raid_disks - conf->max_degraded); 6737 } 6738 6739 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 6740 { 6741 safe_put_page(percpu->spare_page); 6742 percpu->spare_page = NULL; 6743 kvfree(percpu->scribble); 6744 percpu->scribble = NULL; 6745 } 6746 6747 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 6748 { 6749 if (conf->level == 6 && !percpu->spare_page) { 6750 percpu->spare_page = alloc_page(GFP_KERNEL); 6751 if (!percpu->spare_page) 6752 return -ENOMEM; 6753 } 6754 6755 if (scribble_alloc(percpu, 6756 max(conf->raid_disks, 6757 conf->previous_raid_disks), 6758 max(conf->chunk_sectors, 6759 conf->prev_chunk_sectors) 6760 / STRIPE_SECTORS, 6761 GFP_KERNEL)) { 6762 free_scratch_buffer(conf, percpu); 6763 return -ENOMEM; 6764 } 6765 6766 return 0; 6767 } 6768 6769 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node) 6770 { 6771 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node); 6772 6773 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu)); 6774 return 0; 6775 } 6776 6777 static void raid5_free_percpu(struct r5conf *conf) 6778 { 6779 if (!conf->percpu) 6780 return; 6781 6782 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node); 6783 free_percpu(conf->percpu); 6784 } 6785 6786 static void free_conf(struct r5conf *conf) 6787 { 6788 int i; 6789 6790 log_exit(conf); 6791 6792 unregister_shrinker(&conf->shrinker); 6793 free_thread_groups(conf); 6794 shrink_stripes(conf); 6795 raid5_free_percpu(conf); 6796 for (i = 0; i < conf->pool_size; i++) 6797 if (conf->disks[i].extra_page) 6798 put_page(conf->disks[i].extra_page); 6799 kfree(conf->disks); 6800 bioset_exit(&conf->bio_split); 6801 kfree(conf->stripe_hashtbl); 6802 kfree(conf->pending_data); 6803 kfree(conf); 6804 } 6805 6806 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node) 6807 { 6808 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node); 6809 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu); 6810 6811 if (alloc_scratch_buffer(conf, percpu)) { 6812 pr_warn("%s: failed memory allocation for cpu%u\n", 6813 __func__, cpu); 6814 return -ENOMEM; 6815 } 6816 return 0; 6817 } 6818 6819 static int raid5_alloc_percpu(struct r5conf *conf) 6820 { 6821 int err = 0; 6822 6823 conf->percpu = alloc_percpu(struct raid5_percpu); 6824 if (!conf->percpu) 6825 return -ENOMEM; 6826 6827 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node); 6828 if (!err) { 6829 conf->scribble_disks = max(conf->raid_disks, 6830 conf->previous_raid_disks); 6831 conf->scribble_sectors = max(conf->chunk_sectors, 6832 conf->prev_chunk_sectors); 6833 } 6834 return err; 6835 } 6836 6837 static unsigned long raid5_cache_scan(struct shrinker *shrink, 6838 struct shrink_control *sc) 6839 { 6840 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker); 6841 unsigned long ret = SHRINK_STOP; 6842 6843 if (mutex_trylock(&conf->cache_size_mutex)) { 6844 ret= 0; 6845 while (ret < sc->nr_to_scan && 6846 conf->max_nr_stripes > conf->min_nr_stripes) { 6847 if (drop_one_stripe(conf) == 0) { 6848 ret = SHRINK_STOP; 6849 break; 6850 } 6851 ret++; 6852 } 6853 mutex_unlock(&conf->cache_size_mutex); 6854 } 6855 return ret; 6856 } 6857 6858 static unsigned long raid5_cache_count(struct shrinker *shrink, 6859 struct shrink_control *sc) 6860 { 6861 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker); 6862 6863 if (conf->max_nr_stripes < conf->min_nr_stripes) 6864 /* unlikely, but not impossible */ 6865 return 0; 6866 return conf->max_nr_stripes - conf->min_nr_stripes; 6867 } 6868 6869 static struct r5conf *setup_conf(struct mddev *mddev) 6870 { 6871 struct r5conf *conf; 6872 int raid_disk, memory, max_disks; 6873 struct md_rdev *rdev; 6874 struct disk_info *disk; 6875 char pers_name[6]; 6876 int i; 6877 int group_cnt, worker_cnt_per_group; 6878 struct r5worker_group *new_group; 6879 int ret; 6880 6881 if (mddev->new_level != 5 6882 && mddev->new_level != 4 6883 && mddev->new_level != 6) { 6884 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n", 6885 mdname(mddev), mddev->new_level); 6886 return ERR_PTR(-EIO); 6887 } 6888 if ((mddev->new_level == 5 6889 && !algorithm_valid_raid5(mddev->new_layout)) || 6890 (mddev->new_level == 6 6891 && !algorithm_valid_raid6(mddev->new_layout))) { 6892 pr_warn("md/raid:%s: layout %d not supported\n", 6893 mdname(mddev), mddev->new_layout); 6894 return ERR_PTR(-EIO); 6895 } 6896 if (mddev->new_level == 6 && mddev->raid_disks < 4) { 6897 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n", 6898 mdname(mddev), mddev->raid_disks); 6899 return ERR_PTR(-EINVAL); 6900 } 6901 6902 if (!mddev->new_chunk_sectors || 6903 (mddev->new_chunk_sectors << 9) % PAGE_SIZE || 6904 !is_power_of_2(mddev->new_chunk_sectors)) { 6905 pr_warn("md/raid:%s: invalid chunk size %d\n", 6906 mdname(mddev), mddev->new_chunk_sectors << 9); 6907 return ERR_PTR(-EINVAL); 6908 } 6909 6910 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL); 6911 if (conf == NULL) 6912 goto abort; 6913 INIT_LIST_HEAD(&conf->free_list); 6914 INIT_LIST_HEAD(&conf->pending_list); 6915 conf->pending_data = kcalloc(PENDING_IO_MAX, 6916 sizeof(struct r5pending_data), 6917 GFP_KERNEL); 6918 if (!conf->pending_data) 6919 goto abort; 6920 for (i = 0; i < PENDING_IO_MAX; i++) 6921 list_add(&conf->pending_data[i].sibling, &conf->free_list); 6922 /* Don't enable multi-threading by default*/ 6923 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group, 6924 &new_group)) { 6925 conf->group_cnt = group_cnt; 6926 conf->worker_cnt_per_group = worker_cnt_per_group; 6927 conf->worker_groups = new_group; 6928 } else 6929 goto abort; 6930 spin_lock_init(&conf->device_lock); 6931 seqcount_init(&conf->gen_lock); 6932 mutex_init(&conf->cache_size_mutex); 6933 init_waitqueue_head(&conf->wait_for_quiescent); 6934 init_waitqueue_head(&conf->wait_for_stripe); 6935 init_waitqueue_head(&conf->wait_for_overlap); 6936 INIT_LIST_HEAD(&conf->handle_list); 6937 INIT_LIST_HEAD(&conf->loprio_list); 6938 INIT_LIST_HEAD(&conf->hold_list); 6939 INIT_LIST_HEAD(&conf->delayed_list); 6940 INIT_LIST_HEAD(&conf->bitmap_list); 6941 init_llist_head(&conf->released_stripes); 6942 atomic_set(&conf->active_stripes, 0); 6943 atomic_set(&conf->preread_active_stripes, 0); 6944 atomic_set(&conf->active_aligned_reads, 0); 6945 spin_lock_init(&conf->pending_bios_lock); 6946 conf->batch_bio_dispatch = true; 6947 rdev_for_each(rdev, mddev) { 6948 if (test_bit(Journal, &rdev->flags)) 6949 continue; 6950 if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) { 6951 conf->batch_bio_dispatch = false; 6952 break; 6953 } 6954 } 6955 6956 conf->bypass_threshold = BYPASS_THRESHOLD; 6957 conf->recovery_disabled = mddev->recovery_disabled - 1; 6958 6959 conf->raid_disks = mddev->raid_disks; 6960 if (mddev->reshape_position == MaxSector) 6961 conf->previous_raid_disks = mddev->raid_disks; 6962 else 6963 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks; 6964 max_disks = max(conf->raid_disks, conf->previous_raid_disks); 6965 6966 conf->disks = kcalloc(max_disks, sizeof(struct disk_info), 6967 GFP_KERNEL); 6968 6969 if (!conf->disks) 6970 goto abort; 6971 6972 for (i = 0; i < max_disks; i++) { 6973 conf->disks[i].extra_page = alloc_page(GFP_KERNEL); 6974 if (!conf->disks[i].extra_page) 6975 goto abort; 6976 } 6977 6978 ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 6979 if (ret) 6980 goto abort; 6981 conf->mddev = mddev; 6982 6983 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL) 6984 goto abort; 6985 6986 /* We init hash_locks[0] separately to that it can be used 6987 * as the reference lock in the spin_lock_nest_lock() call 6988 * in lock_all_device_hash_locks_irq in order to convince 6989 * lockdep that we know what we are doing. 6990 */ 6991 spin_lock_init(conf->hash_locks); 6992 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 6993 spin_lock_init(conf->hash_locks + i); 6994 6995 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 6996 INIT_LIST_HEAD(conf->inactive_list + i); 6997 6998 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 6999 INIT_LIST_HEAD(conf->temp_inactive_list + i); 7000 7001 atomic_set(&conf->r5c_cached_full_stripes, 0); 7002 INIT_LIST_HEAD(&conf->r5c_full_stripe_list); 7003 atomic_set(&conf->r5c_cached_partial_stripes, 0); 7004 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list); 7005 atomic_set(&conf->r5c_flushing_full_stripes, 0); 7006 atomic_set(&conf->r5c_flushing_partial_stripes, 0); 7007 7008 conf->level = mddev->new_level; 7009 conf->chunk_sectors = mddev->new_chunk_sectors; 7010 if (raid5_alloc_percpu(conf) != 0) 7011 goto abort; 7012 7013 pr_debug("raid456: run(%s) called.\n", mdname(mddev)); 7014 7015 rdev_for_each(rdev, mddev) { 7016 raid_disk = rdev->raid_disk; 7017 if (raid_disk >= max_disks 7018 || raid_disk < 0 || test_bit(Journal, &rdev->flags)) 7019 continue; 7020 disk = conf->disks + raid_disk; 7021 7022 if (test_bit(Replacement, &rdev->flags)) { 7023 if (disk->replacement) 7024 goto abort; 7025 disk->replacement = rdev; 7026 } else { 7027 if (disk->rdev) 7028 goto abort; 7029 disk->rdev = rdev; 7030 } 7031 7032 if (test_bit(In_sync, &rdev->flags)) { 7033 char b[BDEVNAME_SIZE]; 7034 pr_info("md/raid:%s: device %s operational as raid disk %d\n", 7035 mdname(mddev), bdevname(rdev->bdev, b), raid_disk); 7036 } else if (rdev->saved_raid_disk != raid_disk) 7037 /* Cannot rely on bitmap to complete recovery */ 7038 conf->fullsync = 1; 7039 } 7040 7041 conf->level = mddev->new_level; 7042 if (conf->level == 6) { 7043 conf->max_degraded = 2; 7044 if (raid6_call.xor_syndrome) 7045 conf->rmw_level = PARITY_ENABLE_RMW; 7046 else 7047 conf->rmw_level = PARITY_DISABLE_RMW; 7048 } else { 7049 conf->max_degraded = 1; 7050 conf->rmw_level = PARITY_ENABLE_RMW; 7051 } 7052 conf->algorithm = mddev->new_layout; 7053 conf->reshape_progress = mddev->reshape_position; 7054 if (conf->reshape_progress != MaxSector) { 7055 conf->prev_chunk_sectors = mddev->chunk_sectors; 7056 conf->prev_algo = mddev->layout; 7057 } else { 7058 conf->prev_chunk_sectors = conf->chunk_sectors; 7059 conf->prev_algo = conf->algorithm; 7060 } 7061 7062 conf->min_nr_stripes = NR_STRIPES; 7063 if (mddev->reshape_position != MaxSector) { 7064 int stripes = max_t(int, 7065 ((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4, 7066 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4); 7067 conf->min_nr_stripes = max(NR_STRIPES, stripes); 7068 if (conf->min_nr_stripes != NR_STRIPES) 7069 pr_info("md/raid:%s: force stripe size %d for reshape\n", 7070 mdname(mddev), conf->min_nr_stripes); 7071 } 7072 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) + 7073 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024; 7074 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS); 7075 if (grow_stripes(conf, conf->min_nr_stripes)) { 7076 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n", 7077 mdname(mddev), memory); 7078 goto abort; 7079 } else 7080 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory); 7081 /* 7082 * Losing a stripe head costs more than the time to refill it, 7083 * it reduces the queue depth and so can hurt throughput. 7084 * So set it rather large, scaled by number of devices. 7085 */ 7086 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4; 7087 conf->shrinker.scan_objects = raid5_cache_scan; 7088 conf->shrinker.count_objects = raid5_cache_count; 7089 conf->shrinker.batch = 128; 7090 conf->shrinker.flags = 0; 7091 if (register_shrinker(&conf->shrinker)) { 7092 pr_warn("md/raid:%s: couldn't register shrinker.\n", 7093 mdname(mddev)); 7094 goto abort; 7095 } 7096 7097 sprintf(pers_name, "raid%d", mddev->new_level); 7098 conf->thread = md_register_thread(raid5d, mddev, pers_name); 7099 if (!conf->thread) { 7100 pr_warn("md/raid:%s: couldn't allocate thread.\n", 7101 mdname(mddev)); 7102 goto abort; 7103 } 7104 7105 return conf; 7106 7107 abort: 7108 if (conf) { 7109 free_conf(conf); 7110 return ERR_PTR(-EIO); 7111 } else 7112 return ERR_PTR(-ENOMEM); 7113 } 7114 7115 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded) 7116 { 7117 switch (algo) { 7118 case ALGORITHM_PARITY_0: 7119 if (raid_disk < max_degraded) 7120 return 1; 7121 break; 7122 case ALGORITHM_PARITY_N: 7123 if (raid_disk >= raid_disks - max_degraded) 7124 return 1; 7125 break; 7126 case ALGORITHM_PARITY_0_6: 7127 if (raid_disk == 0 || 7128 raid_disk == raid_disks - 1) 7129 return 1; 7130 break; 7131 case ALGORITHM_LEFT_ASYMMETRIC_6: 7132 case ALGORITHM_RIGHT_ASYMMETRIC_6: 7133 case ALGORITHM_LEFT_SYMMETRIC_6: 7134 case ALGORITHM_RIGHT_SYMMETRIC_6: 7135 if (raid_disk == raid_disks - 1) 7136 return 1; 7137 } 7138 return 0; 7139 } 7140 7141 static int raid5_run(struct mddev *mddev) 7142 { 7143 struct r5conf *conf; 7144 int working_disks = 0; 7145 int dirty_parity_disks = 0; 7146 struct md_rdev *rdev; 7147 struct md_rdev *journal_dev = NULL; 7148 sector_t reshape_offset = 0; 7149 int i; 7150 long long min_offset_diff = 0; 7151 int first = 1; 7152 7153 if (mddev_init_writes_pending(mddev) < 0) 7154 return -ENOMEM; 7155 7156 if (mddev->recovery_cp != MaxSector) 7157 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n", 7158 mdname(mddev)); 7159 7160 rdev_for_each(rdev, mddev) { 7161 long long diff; 7162 7163 if (test_bit(Journal, &rdev->flags)) { 7164 journal_dev = rdev; 7165 continue; 7166 } 7167 if (rdev->raid_disk < 0) 7168 continue; 7169 diff = (rdev->new_data_offset - rdev->data_offset); 7170 if (first) { 7171 min_offset_diff = diff; 7172 first = 0; 7173 } else if (mddev->reshape_backwards && 7174 diff < min_offset_diff) 7175 min_offset_diff = diff; 7176 else if (!mddev->reshape_backwards && 7177 diff > min_offset_diff) 7178 min_offset_diff = diff; 7179 } 7180 7181 if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) && 7182 (mddev->bitmap_info.offset || mddev->bitmap_info.file)) { 7183 pr_notice("md/raid:%s: array cannot have both journal and bitmap\n", 7184 mdname(mddev)); 7185 return -EINVAL; 7186 } 7187 7188 if (mddev->reshape_position != MaxSector) { 7189 /* Check that we can continue the reshape. 7190 * Difficulties arise if the stripe we would write to 7191 * next is at or after the stripe we would read from next. 7192 * For a reshape that changes the number of devices, this 7193 * is only possible for a very short time, and mdadm makes 7194 * sure that time appears to have past before assembling 7195 * the array. So we fail if that time hasn't passed. 7196 * For a reshape that keeps the number of devices the same 7197 * mdadm must be monitoring the reshape can keeping the 7198 * critical areas read-only and backed up. It will start 7199 * the array in read-only mode, so we check for that. 7200 */ 7201 sector_t here_new, here_old; 7202 int old_disks; 7203 int max_degraded = (mddev->level == 6 ? 2 : 1); 7204 int chunk_sectors; 7205 int new_data_disks; 7206 7207 if (journal_dev) { 7208 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n", 7209 mdname(mddev)); 7210 return -EINVAL; 7211 } 7212 7213 if (mddev->new_level != mddev->level) { 7214 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n", 7215 mdname(mddev)); 7216 return -EINVAL; 7217 } 7218 old_disks = mddev->raid_disks - mddev->delta_disks; 7219 /* reshape_position must be on a new-stripe boundary, and one 7220 * further up in new geometry must map after here in old 7221 * geometry. 7222 * If the chunk sizes are different, then as we perform reshape 7223 * in units of the largest of the two, reshape_position needs 7224 * be a multiple of the largest chunk size times new data disks. 7225 */ 7226 here_new = mddev->reshape_position; 7227 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors); 7228 new_data_disks = mddev->raid_disks - max_degraded; 7229 if (sector_div(here_new, chunk_sectors * new_data_disks)) { 7230 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n", 7231 mdname(mddev)); 7232 return -EINVAL; 7233 } 7234 reshape_offset = here_new * chunk_sectors; 7235 /* here_new is the stripe we will write to */ 7236 here_old = mddev->reshape_position; 7237 sector_div(here_old, chunk_sectors * (old_disks-max_degraded)); 7238 /* here_old is the first stripe that we might need to read 7239 * from */ 7240 if (mddev->delta_disks == 0) { 7241 /* We cannot be sure it is safe to start an in-place 7242 * reshape. It is only safe if user-space is monitoring 7243 * and taking constant backups. 7244 * mdadm always starts a situation like this in 7245 * readonly mode so it can take control before 7246 * allowing any writes. So just check for that. 7247 */ 7248 if (abs(min_offset_diff) >= mddev->chunk_sectors && 7249 abs(min_offset_diff) >= mddev->new_chunk_sectors) 7250 /* not really in-place - so OK */; 7251 else if (mddev->ro == 0) { 7252 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n", 7253 mdname(mddev)); 7254 return -EINVAL; 7255 } 7256 } else if (mddev->reshape_backwards 7257 ? (here_new * chunk_sectors + min_offset_diff <= 7258 here_old * chunk_sectors) 7259 : (here_new * chunk_sectors >= 7260 here_old * chunk_sectors + (-min_offset_diff))) { 7261 /* Reading from the same stripe as writing to - bad */ 7262 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n", 7263 mdname(mddev)); 7264 return -EINVAL; 7265 } 7266 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev)); 7267 /* OK, we should be able to continue; */ 7268 } else { 7269 BUG_ON(mddev->level != mddev->new_level); 7270 BUG_ON(mddev->layout != mddev->new_layout); 7271 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors); 7272 BUG_ON(mddev->delta_disks != 0); 7273 } 7274 7275 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && 7276 test_bit(MD_HAS_PPL, &mddev->flags)) { 7277 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n", 7278 mdname(mddev)); 7279 clear_bit(MD_HAS_PPL, &mddev->flags); 7280 clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags); 7281 } 7282 7283 if (mddev->private == NULL) 7284 conf = setup_conf(mddev); 7285 else 7286 conf = mddev->private; 7287 7288 if (IS_ERR(conf)) 7289 return PTR_ERR(conf); 7290 7291 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 7292 if (!journal_dev) { 7293 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n", 7294 mdname(mddev)); 7295 mddev->ro = 1; 7296 set_disk_ro(mddev->gendisk, 1); 7297 } else if (mddev->recovery_cp == MaxSector) 7298 set_bit(MD_JOURNAL_CLEAN, &mddev->flags); 7299 } 7300 7301 conf->min_offset_diff = min_offset_diff; 7302 mddev->thread = conf->thread; 7303 conf->thread = NULL; 7304 mddev->private = conf; 7305 7306 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks; 7307 i++) { 7308 rdev = conf->disks[i].rdev; 7309 if (!rdev && conf->disks[i].replacement) { 7310 /* The replacement is all we have yet */ 7311 rdev = conf->disks[i].replacement; 7312 conf->disks[i].replacement = NULL; 7313 clear_bit(Replacement, &rdev->flags); 7314 conf->disks[i].rdev = rdev; 7315 } 7316 if (!rdev) 7317 continue; 7318 if (conf->disks[i].replacement && 7319 conf->reshape_progress != MaxSector) { 7320 /* replacements and reshape simply do not mix. */ 7321 pr_warn("md: cannot handle concurrent replacement and reshape.\n"); 7322 goto abort; 7323 } 7324 if (test_bit(In_sync, &rdev->flags)) { 7325 working_disks++; 7326 continue; 7327 } 7328 /* This disc is not fully in-sync. However if it 7329 * just stored parity (beyond the recovery_offset), 7330 * when we don't need to be concerned about the 7331 * array being dirty. 7332 * When reshape goes 'backwards', we never have 7333 * partially completed devices, so we only need 7334 * to worry about reshape going forwards. 7335 */ 7336 /* Hack because v0.91 doesn't store recovery_offset properly. */ 7337 if (mddev->major_version == 0 && 7338 mddev->minor_version > 90) 7339 rdev->recovery_offset = reshape_offset; 7340 7341 if (rdev->recovery_offset < reshape_offset) { 7342 /* We need to check old and new layout */ 7343 if (!only_parity(rdev->raid_disk, 7344 conf->algorithm, 7345 conf->raid_disks, 7346 conf->max_degraded)) 7347 continue; 7348 } 7349 if (!only_parity(rdev->raid_disk, 7350 conf->prev_algo, 7351 conf->previous_raid_disks, 7352 conf->max_degraded)) 7353 continue; 7354 dirty_parity_disks++; 7355 } 7356 7357 /* 7358 * 0 for a fully functional array, 1 or 2 for a degraded array. 7359 */ 7360 mddev->degraded = raid5_calc_degraded(conf); 7361 7362 if (has_failed(conf)) { 7363 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n", 7364 mdname(mddev), mddev->degraded, conf->raid_disks); 7365 goto abort; 7366 } 7367 7368 /* device size must be a multiple of chunk size */ 7369 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1); 7370 mddev->resync_max_sectors = mddev->dev_sectors; 7371 7372 if (mddev->degraded > dirty_parity_disks && 7373 mddev->recovery_cp != MaxSector) { 7374 if (test_bit(MD_HAS_PPL, &mddev->flags)) 7375 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n", 7376 mdname(mddev)); 7377 else if (mddev->ok_start_degraded) 7378 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n", 7379 mdname(mddev)); 7380 else { 7381 pr_crit("md/raid:%s: cannot start dirty degraded array.\n", 7382 mdname(mddev)); 7383 goto abort; 7384 } 7385 } 7386 7387 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n", 7388 mdname(mddev), conf->level, 7389 mddev->raid_disks-mddev->degraded, mddev->raid_disks, 7390 mddev->new_layout); 7391 7392 print_raid5_conf(conf); 7393 7394 if (conf->reshape_progress != MaxSector) { 7395 conf->reshape_safe = conf->reshape_progress; 7396 atomic_set(&conf->reshape_stripes, 0); 7397 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7398 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7399 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7400 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7401 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 7402 "reshape"); 7403 if (!mddev->sync_thread) 7404 goto abort; 7405 } 7406 7407 /* Ok, everything is just fine now */ 7408 if (mddev->to_remove == &raid5_attrs_group) 7409 mddev->to_remove = NULL; 7410 else if (mddev->kobj.sd && 7411 sysfs_create_group(&mddev->kobj, &raid5_attrs_group)) 7412 pr_warn("raid5: failed to create sysfs attributes for %s\n", 7413 mdname(mddev)); 7414 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 7415 7416 if (mddev->queue) { 7417 int chunk_size; 7418 /* read-ahead size must cover two whole stripes, which 7419 * is 2 * (datadisks) * chunksize where 'n' is the 7420 * number of raid devices 7421 */ 7422 int data_disks = conf->previous_raid_disks - conf->max_degraded; 7423 int stripe = data_disks * 7424 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 7425 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe) 7426 mddev->queue->backing_dev_info->ra_pages = 2 * stripe; 7427 7428 chunk_size = mddev->chunk_sectors << 9; 7429 blk_queue_io_min(mddev->queue, chunk_size); 7430 blk_queue_io_opt(mddev->queue, chunk_size * 7431 (conf->raid_disks - conf->max_degraded)); 7432 mddev->queue->limits.raid_partial_stripes_expensive = 1; 7433 /* 7434 * We can only discard a whole stripe. It doesn't make sense to 7435 * discard data disk but write parity disk 7436 */ 7437 stripe = stripe * PAGE_SIZE; 7438 /* Round up to power of 2, as discard handling 7439 * currently assumes that */ 7440 while ((stripe-1) & stripe) 7441 stripe = (stripe | (stripe-1)) + 1; 7442 mddev->queue->limits.discard_alignment = stripe; 7443 mddev->queue->limits.discard_granularity = stripe; 7444 7445 blk_queue_max_write_same_sectors(mddev->queue, 0); 7446 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 7447 7448 rdev_for_each(rdev, mddev) { 7449 disk_stack_limits(mddev->gendisk, rdev->bdev, 7450 rdev->data_offset << 9); 7451 disk_stack_limits(mddev->gendisk, rdev->bdev, 7452 rdev->new_data_offset << 9); 7453 } 7454 7455 /* 7456 * zeroing is required, otherwise data 7457 * could be lost. Consider a scenario: discard a stripe 7458 * (the stripe could be inconsistent if 7459 * discard_zeroes_data is 0); write one disk of the 7460 * stripe (the stripe could be inconsistent again 7461 * depending on which disks are used to calculate 7462 * parity); the disk is broken; The stripe data of this 7463 * disk is lost. 7464 * 7465 * We only allow DISCARD if the sysadmin has confirmed that 7466 * only safe devices are in use by setting a module parameter. 7467 * A better idea might be to turn DISCARD into WRITE_ZEROES 7468 * requests, as that is required to be safe. 7469 */ 7470 if (devices_handle_discard_safely && 7471 mddev->queue->limits.max_discard_sectors >= (stripe >> 9) && 7472 mddev->queue->limits.discard_granularity >= stripe) 7473 blk_queue_flag_set(QUEUE_FLAG_DISCARD, 7474 mddev->queue); 7475 else 7476 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, 7477 mddev->queue); 7478 7479 blk_queue_max_hw_sectors(mddev->queue, UINT_MAX); 7480 } 7481 7482 if (log_init(conf, journal_dev, raid5_has_ppl(conf))) 7483 goto abort; 7484 7485 return 0; 7486 abort: 7487 md_unregister_thread(&mddev->thread); 7488 print_raid5_conf(conf); 7489 free_conf(conf); 7490 mddev->private = NULL; 7491 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev)); 7492 return -EIO; 7493 } 7494 7495 static void raid5_free(struct mddev *mddev, void *priv) 7496 { 7497 struct r5conf *conf = priv; 7498 7499 free_conf(conf); 7500 mddev->to_remove = &raid5_attrs_group; 7501 } 7502 7503 static void raid5_status(struct seq_file *seq, struct mddev *mddev) 7504 { 7505 struct r5conf *conf = mddev->private; 7506 int i; 7507 7508 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level, 7509 conf->chunk_sectors / 2, mddev->layout); 7510 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded); 7511 rcu_read_lock(); 7512 for (i = 0; i < conf->raid_disks; i++) { 7513 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 7514 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 7515 } 7516 rcu_read_unlock(); 7517 seq_printf (seq, "]"); 7518 } 7519 7520 static void print_raid5_conf (struct r5conf *conf) 7521 { 7522 int i; 7523 struct disk_info *tmp; 7524 7525 pr_debug("RAID conf printout:\n"); 7526 if (!conf) { 7527 pr_debug("(conf==NULL)\n"); 7528 return; 7529 } 7530 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level, 7531 conf->raid_disks, 7532 conf->raid_disks - conf->mddev->degraded); 7533 7534 for (i = 0; i < conf->raid_disks; i++) { 7535 char b[BDEVNAME_SIZE]; 7536 tmp = conf->disks + i; 7537 if (tmp->rdev) 7538 pr_debug(" disk %d, o:%d, dev:%s\n", 7539 i, !test_bit(Faulty, &tmp->rdev->flags), 7540 bdevname(tmp->rdev->bdev, b)); 7541 } 7542 } 7543 7544 static int raid5_spare_active(struct mddev *mddev) 7545 { 7546 int i; 7547 struct r5conf *conf = mddev->private; 7548 struct disk_info *tmp; 7549 int count = 0; 7550 unsigned long flags; 7551 7552 for (i = 0; i < conf->raid_disks; i++) { 7553 tmp = conf->disks + i; 7554 if (tmp->replacement 7555 && tmp->replacement->recovery_offset == MaxSector 7556 && !test_bit(Faulty, &tmp->replacement->flags) 7557 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 7558 /* Replacement has just become active. */ 7559 if (!tmp->rdev 7560 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 7561 count++; 7562 if (tmp->rdev) { 7563 /* Replaced device not technically faulty, 7564 * but we need to be sure it gets removed 7565 * and never re-added. 7566 */ 7567 set_bit(Faulty, &tmp->rdev->flags); 7568 sysfs_notify_dirent_safe( 7569 tmp->rdev->sysfs_state); 7570 } 7571 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 7572 } else if (tmp->rdev 7573 && tmp->rdev->recovery_offset == MaxSector 7574 && !test_bit(Faulty, &tmp->rdev->flags) 7575 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 7576 count++; 7577 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 7578 } 7579 } 7580 spin_lock_irqsave(&conf->device_lock, flags); 7581 mddev->degraded = raid5_calc_degraded(conf); 7582 spin_unlock_irqrestore(&conf->device_lock, flags); 7583 print_raid5_conf(conf); 7584 return count; 7585 } 7586 7587 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 7588 { 7589 struct r5conf *conf = mddev->private; 7590 int err = 0; 7591 int number = rdev->raid_disk; 7592 struct md_rdev **rdevp; 7593 struct disk_info *p = conf->disks + number; 7594 7595 print_raid5_conf(conf); 7596 if (test_bit(Journal, &rdev->flags) && conf->log) { 7597 /* 7598 * we can't wait pending write here, as this is called in 7599 * raid5d, wait will deadlock. 7600 * neilb: there is no locking about new writes here, 7601 * so this cannot be safe. 7602 */ 7603 if (atomic_read(&conf->active_stripes) || 7604 atomic_read(&conf->r5c_cached_full_stripes) || 7605 atomic_read(&conf->r5c_cached_partial_stripes)) { 7606 return -EBUSY; 7607 } 7608 log_exit(conf); 7609 return 0; 7610 } 7611 if (rdev == p->rdev) 7612 rdevp = &p->rdev; 7613 else if (rdev == p->replacement) 7614 rdevp = &p->replacement; 7615 else 7616 return 0; 7617 7618 if (number >= conf->raid_disks && 7619 conf->reshape_progress == MaxSector) 7620 clear_bit(In_sync, &rdev->flags); 7621 7622 if (test_bit(In_sync, &rdev->flags) || 7623 atomic_read(&rdev->nr_pending)) { 7624 err = -EBUSY; 7625 goto abort; 7626 } 7627 /* Only remove non-faulty devices if recovery 7628 * isn't possible. 7629 */ 7630 if (!test_bit(Faulty, &rdev->flags) && 7631 mddev->recovery_disabled != conf->recovery_disabled && 7632 !has_failed(conf) && 7633 (!p->replacement || p->replacement == rdev) && 7634 number < conf->raid_disks) { 7635 err = -EBUSY; 7636 goto abort; 7637 } 7638 *rdevp = NULL; 7639 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 7640 synchronize_rcu(); 7641 if (atomic_read(&rdev->nr_pending)) { 7642 /* lost the race, try later */ 7643 err = -EBUSY; 7644 *rdevp = rdev; 7645 } 7646 } 7647 if (!err) { 7648 err = log_modify(conf, rdev, false); 7649 if (err) 7650 goto abort; 7651 } 7652 if (p->replacement) { 7653 /* We must have just cleared 'rdev' */ 7654 p->rdev = p->replacement; 7655 clear_bit(Replacement, &p->replacement->flags); 7656 smp_mb(); /* Make sure other CPUs may see both as identical 7657 * but will never see neither - if they are careful 7658 */ 7659 p->replacement = NULL; 7660 7661 if (!err) 7662 err = log_modify(conf, p->rdev, true); 7663 } 7664 7665 clear_bit(WantReplacement, &rdev->flags); 7666 abort: 7667 7668 print_raid5_conf(conf); 7669 return err; 7670 } 7671 7672 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev) 7673 { 7674 struct r5conf *conf = mddev->private; 7675 int err = -EEXIST; 7676 int disk; 7677 struct disk_info *p; 7678 int first = 0; 7679 int last = conf->raid_disks - 1; 7680 7681 if (test_bit(Journal, &rdev->flags)) { 7682 if (conf->log) 7683 return -EBUSY; 7684 7685 rdev->raid_disk = 0; 7686 /* 7687 * The array is in readonly mode if journal is missing, so no 7688 * write requests running. We should be safe 7689 */ 7690 log_init(conf, rdev, false); 7691 return 0; 7692 } 7693 if (mddev->recovery_disabled == conf->recovery_disabled) 7694 return -EBUSY; 7695 7696 if (rdev->saved_raid_disk < 0 && has_failed(conf)) 7697 /* no point adding a device */ 7698 return -EINVAL; 7699 7700 if (rdev->raid_disk >= 0) 7701 first = last = rdev->raid_disk; 7702 7703 /* 7704 * find the disk ... but prefer rdev->saved_raid_disk 7705 * if possible. 7706 */ 7707 if (rdev->saved_raid_disk >= 0 && 7708 rdev->saved_raid_disk >= first && 7709 conf->disks[rdev->saved_raid_disk].rdev == NULL) 7710 first = rdev->saved_raid_disk; 7711 7712 for (disk = first; disk <= last; disk++) { 7713 p = conf->disks + disk; 7714 if (p->rdev == NULL) { 7715 clear_bit(In_sync, &rdev->flags); 7716 rdev->raid_disk = disk; 7717 if (rdev->saved_raid_disk != disk) 7718 conf->fullsync = 1; 7719 rcu_assign_pointer(p->rdev, rdev); 7720 7721 err = log_modify(conf, rdev, true); 7722 7723 goto out; 7724 } 7725 } 7726 for (disk = first; disk <= last; disk++) { 7727 p = conf->disks + disk; 7728 if (test_bit(WantReplacement, &p->rdev->flags) && 7729 p->replacement == NULL) { 7730 clear_bit(In_sync, &rdev->flags); 7731 set_bit(Replacement, &rdev->flags); 7732 rdev->raid_disk = disk; 7733 err = 0; 7734 conf->fullsync = 1; 7735 rcu_assign_pointer(p->replacement, rdev); 7736 break; 7737 } 7738 } 7739 out: 7740 print_raid5_conf(conf); 7741 return err; 7742 } 7743 7744 static int raid5_resize(struct mddev *mddev, sector_t sectors) 7745 { 7746 /* no resync is happening, and there is enough space 7747 * on all devices, so we can resize. 7748 * We need to make sure resync covers any new space. 7749 * If the array is shrinking we should possibly wait until 7750 * any io in the removed space completes, but it hardly seems 7751 * worth it. 7752 */ 7753 sector_t newsize; 7754 struct r5conf *conf = mddev->private; 7755 7756 if (raid5_has_log(conf) || raid5_has_ppl(conf)) 7757 return -EINVAL; 7758 sectors &= ~((sector_t)conf->chunk_sectors - 1); 7759 newsize = raid5_size(mddev, sectors, mddev->raid_disks); 7760 if (mddev->external_size && 7761 mddev->array_sectors > newsize) 7762 return -EINVAL; 7763 if (mddev->bitmap) { 7764 int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0); 7765 if (ret) 7766 return ret; 7767 } 7768 md_set_array_sectors(mddev, newsize); 7769 if (sectors > mddev->dev_sectors && 7770 mddev->recovery_cp > mddev->dev_sectors) { 7771 mddev->recovery_cp = mddev->dev_sectors; 7772 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7773 } 7774 mddev->dev_sectors = sectors; 7775 mddev->resync_max_sectors = sectors; 7776 return 0; 7777 } 7778 7779 static int check_stripe_cache(struct mddev *mddev) 7780 { 7781 /* Can only proceed if there are plenty of stripe_heads. 7782 * We need a minimum of one full stripe,, and for sensible progress 7783 * it is best to have about 4 times that. 7784 * If we require 4 times, then the default 256 4K stripe_heads will 7785 * allow for chunk sizes up to 256K, which is probably OK. 7786 * If the chunk size is greater, user-space should request more 7787 * stripe_heads first. 7788 */ 7789 struct r5conf *conf = mddev->private; 7790 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4 7791 > conf->min_nr_stripes || 7792 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4 7793 > conf->min_nr_stripes) { 7794 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n", 7795 mdname(mddev), 7796 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9) 7797 / STRIPE_SIZE)*4); 7798 return 0; 7799 } 7800 return 1; 7801 } 7802 7803 static int check_reshape(struct mddev *mddev) 7804 { 7805 struct r5conf *conf = mddev->private; 7806 7807 if (raid5_has_log(conf) || raid5_has_ppl(conf)) 7808 return -EINVAL; 7809 if (mddev->delta_disks == 0 && 7810 mddev->new_layout == mddev->layout && 7811 mddev->new_chunk_sectors == mddev->chunk_sectors) 7812 return 0; /* nothing to do */ 7813 if (has_failed(conf)) 7814 return -EINVAL; 7815 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) { 7816 /* We might be able to shrink, but the devices must 7817 * be made bigger first. 7818 * For raid6, 4 is the minimum size. 7819 * Otherwise 2 is the minimum 7820 */ 7821 int min = 2; 7822 if (mddev->level == 6) 7823 min = 4; 7824 if (mddev->raid_disks + mddev->delta_disks < min) 7825 return -EINVAL; 7826 } 7827 7828 if (!check_stripe_cache(mddev)) 7829 return -ENOSPC; 7830 7831 if (mddev->new_chunk_sectors > mddev->chunk_sectors || 7832 mddev->delta_disks > 0) 7833 if (resize_chunks(conf, 7834 conf->previous_raid_disks 7835 + max(0, mddev->delta_disks), 7836 max(mddev->new_chunk_sectors, 7837 mddev->chunk_sectors) 7838 ) < 0) 7839 return -ENOMEM; 7840 7841 if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size) 7842 return 0; /* never bother to shrink */ 7843 return resize_stripes(conf, (conf->previous_raid_disks 7844 + mddev->delta_disks)); 7845 } 7846 7847 static int raid5_start_reshape(struct mddev *mddev) 7848 { 7849 struct r5conf *conf = mddev->private; 7850 struct md_rdev *rdev; 7851 int spares = 0; 7852 unsigned long flags; 7853 7854 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 7855 return -EBUSY; 7856 7857 if (!check_stripe_cache(mddev)) 7858 return -ENOSPC; 7859 7860 if (has_failed(conf)) 7861 return -EINVAL; 7862 7863 rdev_for_each(rdev, mddev) { 7864 if (!test_bit(In_sync, &rdev->flags) 7865 && !test_bit(Faulty, &rdev->flags)) 7866 spares++; 7867 } 7868 7869 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded) 7870 /* Not enough devices even to make a degraded array 7871 * of that size 7872 */ 7873 return -EINVAL; 7874 7875 /* Refuse to reduce size of the array. Any reductions in 7876 * array size must be through explicit setting of array_size 7877 * attribute. 7878 */ 7879 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks) 7880 < mddev->array_sectors) { 7881 pr_warn("md/raid:%s: array size must be reduced before number of disks\n", 7882 mdname(mddev)); 7883 return -EINVAL; 7884 } 7885 7886 atomic_set(&conf->reshape_stripes, 0); 7887 spin_lock_irq(&conf->device_lock); 7888 write_seqcount_begin(&conf->gen_lock); 7889 conf->previous_raid_disks = conf->raid_disks; 7890 conf->raid_disks += mddev->delta_disks; 7891 conf->prev_chunk_sectors = conf->chunk_sectors; 7892 conf->chunk_sectors = mddev->new_chunk_sectors; 7893 conf->prev_algo = conf->algorithm; 7894 conf->algorithm = mddev->new_layout; 7895 conf->generation++; 7896 /* Code that selects data_offset needs to see the generation update 7897 * if reshape_progress has been set - so a memory barrier needed. 7898 */ 7899 smp_mb(); 7900 if (mddev->reshape_backwards) 7901 conf->reshape_progress = raid5_size(mddev, 0, 0); 7902 else 7903 conf->reshape_progress = 0; 7904 conf->reshape_safe = conf->reshape_progress; 7905 write_seqcount_end(&conf->gen_lock); 7906 spin_unlock_irq(&conf->device_lock); 7907 7908 /* Now make sure any requests that proceeded on the assumption 7909 * the reshape wasn't running - like Discard or Read - have 7910 * completed. 7911 */ 7912 mddev_suspend(mddev); 7913 mddev_resume(mddev); 7914 7915 /* Add some new drives, as many as will fit. 7916 * We know there are enough to make the newly sized array work. 7917 * Don't add devices if we are reducing the number of 7918 * devices in the array. This is because it is not possible 7919 * to correctly record the "partially reconstructed" state of 7920 * such devices during the reshape and confusion could result. 7921 */ 7922 if (mddev->delta_disks >= 0) { 7923 rdev_for_each(rdev, mddev) 7924 if (rdev->raid_disk < 0 && 7925 !test_bit(Faulty, &rdev->flags)) { 7926 if (raid5_add_disk(mddev, rdev) == 0) { 7927 if (rdev->raid_disk 7928 >= conf->previous_raid_disks) 7929 set_bit(In_sync, &rdev->flags); 7930 else 7931 rdev->recovery_offset = 0; 7932 7933 if (sysfs_link_rdev(mddev, rdev)) 7934 /* Failure here is OK */; 7935 } 7936 } else if (rdev->raid_disk >= conf->previous_raid_disks 7937 && !test_bit(Faulty, &rdev->flags)) { 7938 /* This is a spare that was manually added */ 7939 set_bit(In_sync, &rdev->flags); 7940 } 7941 7942 /* When a reshape changes the number of devices, 7943 * ->degraded is measured against the larger of the 7944 * pre and post number of devices. 7945 */ 7946 spin_lock_irqsave(&conf->device_lock, flags); 7947 mddev->degraded = raid5_calc_degraded(conf); 7948 spin_unlock_irqrestore(&conf->device_lock, flags); 7949 } 7950 mddev->raid_disks = conf->raid_disks; 7951 mddev->reshape_position = conf->reshape_progress; 7952 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 7953 7954 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7955 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7956 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 7957 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7958 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7959 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 7960 "reshape"); 7961 if (!mddev->sync_thread) { 7962 mddev->recovery = 0; 7963 spin_lock_irq(&conf->device_lock); 7964 write_seqcount_begin(&conf->gen_lock); 7965 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks; 7966 mddev->new_chunk_sectors = 7967 conf->chunk_sectors = conf->prev_chunk_sectors; 7968 mddev->new_layout = conf->algorithm = conf->prev_algo; 7969 rdev_for_each(rdev, mddev) 7970 rdev->new_data_offset = rdev->data_offset; 7971 smp_wmb(); 7972 conf->generation --; 7973 conf->reshape_progress = MaxSector; 7974 mddev->reshape_position = MaxSector; 7975 write_seqcount_end(&conf->gen_lock); 7976 spin_unlock_irq(&conf->device_lock); 7977 return -EAGAIN; 7978 } 7979 conf->reshape_checkpoint = jiffies; 7980 md_wakeup_thread(mddev->sync_thread); 7981 md_new_event(mddev); 7982 return 0; 7983 } 7984 7985 /* This is called from the reshape thread and should make any 7986 * changes needed in 'conf' 7987 */ 7988 static void end_reshape(struct r5conf *conf) 7989 { 7990 7991 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 7992 struct md_rdev *rdev; 7993 7994 spin_lock_irq(&conf->device_lock); 7995 conf->previous_raid_disks = conf->raid_disks; 7996 md_finish_reshape(conf->mddev); 7997 smp_wmb(); 7998 conf->reshape_progress = MaxSector; 7999 conf->mddev->reshape_position = MaxSector; 8000 rdev_for_each(rdev, conf->mddev) 8001 if (rdev->raid_disk >= 0 && 8002 !test_bit(Journal, &rdev->flags) && 8003 !test_bit(In_sync, &rdev->flags)) 8004 rdev->recovery_offset = MaxSector; 8005 spin_unlock_irq(&conf->device_lock); 8006 wake_up(&conf->wait_for_overlap); 8007 8008 /* read-ahead size must cover two whole stripes, which is 8009 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 8010 */ 8011 if (conf->mddev->queue) { 8012 int data_disks = conf->raid_disks - conf->max_degraded; 8013 int stripe = data_disks * ((conf->chunk_sectors << 9) 8014 / PAGE_SIZE); 8015 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe) 8016 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe; 8017 } 8018 } 8019 } 8020 8021 /* This is called from the raid5d thread with mddev_lock held. 8022 * It makes config changes to the device. 8023 */ 8024 static void raid5_finish_reshape(struct mddev *mddev) 8025 { 8026 struct r5conf *conf = mddev->private; 8027 8028 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8029 8030 if (mddev->delta_disks <= 0) { 8031 int d; 8032 spin_lock_irq(&conf->device_lock); 8033 mddev->degraded = raid5_calc_degraded(conf); 8034 spin_unlock_irq(&conf->device_lock); 8035 for (d = conf->raid_disks ; 8036 d < conf->raid_disks - mddev->delta_disks; 8037 d++) { 8038 struct md_rdev *rdev = conf->disks[d].rdev; 8039 if (rdev) 8040 clear_bit(In_sync, &rdev->flags); 8041 rdev = conf->disks[d].replacement; 8042 if (rdev) 8043 clear_bit(In_sync, &rdev->flags); 8044 } 8045 } 8046 mddev->layout = conf->algorithm; 8047 mddev->chunk_sectors = conf->chunk_sectors; 8048 mddev->reshape_position = MaxSector; 8049 mddev->delta_disks = 0; 8050 mddev->reshape_backwards = 0; 8051 } 8052 } 8053 8054 static void raid5_quiesce(struct mddev *mddev, int quiesce) 8055 { 8056 struct r5conf *conf = mddev->private; 8057 8058 if (quiesce) { 8059 /* stop all writes */ 8060 lock_all_device_hash_locks_irq(conf); 8061 /* '2' tells resync/reshape to pause so that all 8062 * active stripes can drain 8063 */ 8064 r5c_flush_cache(conf, INT_MAX); 8065 conf->quiesce = 2; 8066 wait_event_cmd(conf->wait_for_quiescent, 8067 atomic_read(&conf->active_stripes) == 0 && 8068 atomic_read(&conf->active_aligned_reads) == 0, 8069 unlock_all_device_hash_locks_irq(conf), 8070 lock_all_device_hash_locks_irq(conf)); 8071 conf->quiesce = 1; 8072 unlock_all_device_hash_locks_irq(conf); 8073 /* allow reshape to continue */ 8074 wake_up(&conf->wait_for_overlap); 8075 } else { 8076 /* re-enable writes */ 8077 lock_all_device_hash_locks_irq(conf); 8078 conf->quiesce = 0; 8079 wake_up(&conf->wait_for_quiescent); 8080 wake_up(&conf->wait_for_overlap); 8081 unlock_all_device_hash_locks_irq(conf); 8082 } 8083 log_quiesce(conf, quiesce); 8084 } 8085 8086 static void *raid45_takeover_raid0(struct mddev *mddev, int level) 8087 { 8088 struct r0conf *raid0_conf = mddev->private; 8089 sector_t sectors; 8090 8091 /* for raid0 takeover only one zone is supported */ 8092 if (raid0_conf->nr_strip_zones > 1) { 8093 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n", 8094 mdname(mddev)); 8095 return ERR_PTR(-EINVAL); 8096 } 8097 8098 sectors = raid0_conf->strip_zone[0].zone_end; 8099 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev); 8100 mddev->dev_sectors = sectors; 8101 mddev->new_level = level; 8102 mddev->new_layout = ALGORITHM_PARITY_N; 8103 mddev->new_chunk_sectors = mddev->chunk_sectors; 8104 mddev->raid_disks += 1; 8105 mddev->delta_disks = 1; 8106 /* make sure it will be not marked as dirty */ 8107 mddev->recovery_cp = MaxSector; 8108 8109 return setup_conf(mddev); 8110 } 8111 8112 static void *raid5_takeover_raid1(struct mddev *mddev) 8113 { 8114 int chunksect; 8115 void *ret; 8116 8117 if (mddev->raid_disks != 2 || 8118 mddev->degraded > 1) 8119 return ERR_PTR(-EINVAL); 8120 8121 /* Should check if there are write-behind devices? */ 8122 8123 chunksect = 64*2; /* 64K by default */ 8124 8125 /* The array must be an exact multiple of chunksize */ 8126 while (chunksect && (mddev->array_sectors & (chunksect-1))) 8127 chunksect >>= 1; 8128 8129 if ((chunksect<<9) < STRIPE_SIZE) 8130 /* array size does not allow a suitable chunk size */ 8131 return ERR_PTR(-EINVAL); 8132 8133 mddev->new_level = 5; 8134 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC; 8135 mddev->new_chunk_sectors = chunksect; 8136 8137 ret = setup_conf(mddev); 8138 if (!IS_ERR(ret)) 8139 mddev_clear_unsupported_flags(mddev, 8140 UNSUPPORTED_MDDEV_FLAGS); 8141 return ret; 8142 } 8143 8144 static void *raid5_takeover_raid6(struct mddev *mddev) 8145 { 8146 int new_layout; 8147 8148 switch (mddev->layout) { 8149 case ALGORITHM_LEFT_ASYMMETRIC_6: 8150 new_layout = ALGORITHM_LEFT_ASYMMETRIC; 8151 break; 8152 case ALGORITHM_RIGHT_ASYMMETRIC_6: 8153 new_layout = ALGORITHM_RIGHT_ASYMMETRIC; 8154 break; 8155 case ALGORITHM_LEFT_SYMMETRIC_6: 8156 new_layout = ALGORITHM_LEFT_SYMMETRIC; 8157 break; 8158 case ALGORITHM_RIGHT_SYMMETRIC_6: 8159 new_layout = ALGORITHM_RIGHT_SYMMETRIC; 8160 break; 8161 case ALGORITHM_PARITY_0_6: 8162 new_layout = ALGORITHM_PARITY_0; 8163 break; 8164 case ALGORITHM_PARITY_N: 8165 new_layout = ALGORITHM_PARITY_N; 8166 break; 8167 default: 8168 return ERR_PTR(-EINVAL); 8169 } 8170 mddev->new_level = 5; 8171 mddev->new_layout = new_layout; 8172 mddev->delta_disks = -1; 8173 mddev->raid_disks -= 1; 8174 return setup_conf(mddev); 8175 } 8176 8177 static int raid5_check_reshape(struct mddev *mddev) 8178 { 8179 /* For a 2-drive array, the layout and chunk size can be changed 8180 * immediately as not restriping is needed. 8181 * For larger arrays we record the new value - after validation 8182 * to be used by a reshape pass. 8183 */ 8184 struct r5conf *conf = mddev->private; 8185 int new_chunk = mddev->new_chunk_sectors; 8186 8187 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout)) 8188 return -EINVAL; 8189 if (new_chunk > 0) { 8190 if (!is_power_of_2(new_chunk)) 8191 return -EINVAL; 8192 if (new_chunk < (PAGE_SIZE>>9)) 8193 return -EINVAL; 8194 if (mddev->array_sectors & (new_chunk-1)) 8195 /* not factor of array size */ 8196 return -EINVAL; 8197 } 8198 8199 /* They look valid */ 8200 8201 if (mddev->raid_disks == 2) { 8202 /* can make the change immediately */ 8203 if (mddev->new_layout >= 0) { 8204 conf->algorithm = mddev->new_layout; 8205 mddev->layout = mddev->new_layout; 8206 } 8207 if (new_chunk > 0) { 8208 conf->chunk_sectors = new_chunk ; 8209 mddev->chunk_sectors = new_chunk; 8210 } 8211 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8212 md_wakeup_thread(mddev->thread); 8213 } 8214 return check_reshape(mddev); 8215 } 8216 8217 static int raid6_check_reshape(struct mddev *mddev) 8218 { 8219 int new_chunk = mddev->new_chunk_sectors; 8220 8221 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout)) 8222 return -EINVAL; 8223 if (new_chunk > 0) { 8224 if (!is_power_of_2(new_chunk)) 8225 return -EINVAL; 8226 if (new_chunk < (PAGE_SIZE >> 9)) 8227 return -EINVAL; 8228 if (mddev->array_sectors & (new_chunk-1)) 8229 /* not factor of array size */ 8230 return -EINVAL; 8231 } 8232 8233 /* They look valid */ 8234 return check_reshape(mddev); 8235 } 8236 8237 static void *raid5_takeover(struct mddev *mddev) 8238 { 8239 /* raid5 can take over: 8240 * raid0 - if there is only one strip zone - make it a raid4 layout 8241 * raid1 - if there are two drives. We need to know the chunk size 8242 * raid4 - trivial - just use a raid4 layout. 8243 * raid6 - Providing it is a *_6 layout 8244 */ 8245 if (mddev->level == 0) 8246 return raid45_takeover_raid0(mddev, 5); 8247 if (mddev->level == 1) 8248 return raid5_takeover_raid1(mddev); 8249 if (mddev->level == 4) { 8250 mddev->new_layout = ALGORITHM_PARITY_N; 8251 mddev->new_level = 5; 8252 return setup_conf(mddev); 8253 } 8254 if (mddev->level == 6) 8255 return raid5_takeover_raid6(mddev); 8256 8257 return ERR_PTR(-EINVAL); 8258 } 8259 8260 static void *raid4_takeover(struct mddev *mddev) 8261 { 8262 /* raid4 can take over: 8263 * raid0 - if there is only one strip zone 8264 * raid5 - if layout is right 8265 */ 8266 if (mddev->level == 0) 8267 return raid45_takeover_raid0(mddev, 4); 8268 if (mddev->level == 5 && 8269 mddev->layout == ALGORITHM_PARITY_N) { 8270 mddev->new_layout = 0; 8271 mddev->new_level = 4; 8272 return setup_conf(mddev); 8273 } 8274 return ERR_PTR(-EINVAL); 8275 } 8276 8277 static struct md_personality raid5_personality; 8278 8279 static void *raid6_takeover(struct mddev *mddev) 8280 { 8281 /* Currently can only take over a raid5. We map the 8282 * personality to an equivalent raid6 personality 8283 * with the Q block at the end. 8284 */ 8285 int new_layout; 8286 8287 if (mddev->pers != &raid5_personality) 8288 return ERR_PTR(-EINVAL); 8289 if (mddev->degraded > 1) 8290 return ERR_PTR(-EINVAL); 8291 if (mddev->raid_disks > 253) 8292 return ERR_PTR(-EINVAL); 8293 if (mddev->raid_disks < 3) 8294 return ERR_PTR(-EINVAL); 8295 8296 switch (mddev->layout) { 8297 case ALGORITHM_LEFT_ASYMMETRIC: 8298 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6; 8299 break; 8300 case ALGORITHM_RIGHT_ASYMMETRIC: 8301 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6; 8302 break; 8303 case ALGORITHM_LEFT_SYMMETRIC: 8304 new_layout = ALGORITHM_LEFT_SYMMETRIC_6; 8305 break; 8306 case ALGORITHM_RIGHT_SYMMETRIC: 8307 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6; 8308 break; 8309 case ALGORITHM_PARITY_0: 8310 new_layout = ALGORITHM_PARITY_0_6; 8311 break; 8312 case ALGORITHM_PARITY_N: 8313 new_layout = ALGORITHM_PARITY_N; 8314 break; 8315 default: 8316 return ERR_PTR(-EINVAL); 8317 } 8318 mddev->new_level = 6; 8319 mddev->new_layout = new_layout; 8320 mddev->delta_disks = 1; 8321 mddev->raid_disks += 1; 8322 return setup_conf(mddev); 8323 } 8324 8325 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf) 8326 { 8327 struct r5conf *conf; 8328 int err; 8329 8330 err = mddev_lock(mddev); 8331 if (err) 8332 return err; 8333 conf = mddev->private; 8334 if (!conf) { 8335 mddev_unlock(mddev); 8336 return -ENODEV; 8337 } 8338 8339 if (strncmp(buf, "ppl", 3) == 0) { 8340 /* ppl only works with RAID 5 */ 8341 if (!raid5_has_ppl(conf) && conf->level == 5) { 8342 err = log_init(conf, NULL, true); 8343 if (!err) { 8344 err = resize_stripes(conf, conf->pool_size); 8345 if (err) 8346 log_exit(conf); 8347 } 8348 } else 8349 err = -EINVAL; 8350 } else if (strncmp(buf, "resync", 6) == 0) { 8351 if (raid5_has_ppl(conf)) { 8352 mddev_suspend(mddev); 8353 log_exit(conf); 8354 mddev_resume(mddev); 8355 err = resize_stripes(conf, conf->pool_size); 8356 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) && 8357 r5l_log_disk_error(conf)) { 8358 bool journal_dev_exists = false; 8359 struct md_rdev *rdev; 8360 8361 rdev_for_each(rdev, mddev) 8362 if (test_bit(Journal, &rdev->flags)) { 8363 journal_dev_exists = true; 8364 break; 8365 } 8366 8367 if (!journal_dev_exists) { 8368 mddev_suspend(mddev); 8369 clear_bit(MD_HAS_JOURNAL, &mddev->flags); 8370 mddev_resume(mddev); 8371 } else /* need remove journal device first */ 8372 err = -EBUSY; 8373 } else 8374 err = -EINVAL; 8375 } else { 8376 err = -EINVAL; 8377 } 8378 8379 if (!err) 8380 md_update_sb(mddev, 1); 8381 8382 mddev_unlock(mddev); 8383 8384 return err; 8385 } 8386 8387 static int raid5_start(struct mddev *mddev) 8388 { 8389 struct r5conf *conf = mddev->private; 8390 8391 return r5l_start(conf->log); 8392 } 8393 8394 static struct md_personality raid6_personality = 8395 { 8396 .name = "raid6", 8397 .level = 6, 8398 .owner = THIS_MODULE, 8399 .make_request = raid5_make_request, 8400 .run = raid5_run, 8401 .start = raid5_start, 8402 .free = raid5_free, 8403 .status = raid5_status, 8404 .error_handler = raid5_error, 8405 .hot_add_disk = raid5_add_disk, 8406 .hot_remove_disk= raid5_remove_disk, 8407 .spare_active = raid5_spare_active, 8408 .sync_request = raid5_sync_request, 8409 .resize = raid5_resize, 8410 .size = raid5_size, 8411 .check_reshape = raid6_check_reshape, 8412 .start_reshape = raid5_start_reshape, 8413 .finish_reshape = raid5_finish_reshape, 8414 .quiesce = raid5_quiesce, 8415 .takeover = raid6_takeover, 8416 .congested = raid5_congested, 8417 .change_consistency_policy = raid5_change_consistency_policy, 8418 }; 8419 static struct md_personality raid5_personality = 8420 { 8421 .name = "raid5", 8422 .level = 5, 8423 .owner = THIS_MODULE, 8424 .make_request = raid5_make_request, 8425 .run = raid5_run, 8426 .start = raid5_start, 8427 .free = raid5_free, 8428 .status = raid5_status, 8429 .error_handler = raid5_error, 8430 .hot_add_disk = raid5_add_disk, 8431 .hot_remove_disk= raid5_remove_disk, 8432 .spare_active = raid5_spare_active, 8433 .sync_request = raid5_sync_request, 8434 .resize = raid5_resize, 8435 .size = raid5_size, 8436 .check_reshape = raid5_check_reshape, 8437 .start_reshape = raid5_start_reshape, 8438 .finish_reshape = raid5_finish_reshape, 8439 .quiesce = raid5_quiesce, 8440 .takeover = raid5_takeover, 8441 .congested = raid5_congested, 8442 .change_consistency_policy = raid5_change_consistency_policy, 8443 }; 8444 8445 static struct md_personality raid4_personality = 8446 { 8447 .name = "raid4", 8448 .level = 4, 8449 .owner = THIS_MODULE, 8450 .make_request = raid5_make_request, 8451 .run = raid5_run, 8452 .start = raid5_start, 8453 .free = raid5_free, 8454 .status = raid5_status, 8455 .error_handler = raid5_error, 8456 .hot_add_disk = raid5_add_disk, 8457 .hot_remove_disk= raid5_remove_disk, 8458 .spare_active = raid5_spare_active, 8459 .sync_request = raid5_sync_request, 8460 .resize = raid5_resize, 8461 .size = raid5_size, 8462 .check_reshape = raid5_check_reshape, 8463 .start_reshape = raid5_start_reshape, 8464 .finish_reshape = raid5_finish_reshape, 8465 .quiesce = raid5_quiesce, 8466 .takeover = raid4_takeover, 8467 .congested = raid5_congested, 8468 .change_consistency_policy = raid5_change_consistency_policy, 8469 }; 8470 8471 static int __init raid5_init(void) 8472 { 8473 int ret; 8474 8475 raid5_wq = alloc_workqueue("raid5wq", 8476 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0); 8477 if (!raid5_wq) 8478 return -ENOMEM; 8479 8480 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE, 8481 "md/raid5:prepare", 8482 raid456_cpu_up_prepare, 8483 raid456_cpu_dead); 8484 if (ret) { 8485 destroy_workqueue(raid5_wq); 8486 return ret; 8487 } 8488 register_md_personality(&raid6_personality); 8489 register_md_personality(&raid5_personality); 8490 register_md_personality(&raid4_personality); 8491 return 0; 8492 } 8493 8494 static void raid5_exit(void) 8495 { 8496 unregister_md_personality(&raid6_personality); 8497 unregister_md_personality(&raid5_personality); 8498 unregister_md_personality(&raid4_personality); 8499 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE); 8500 destroy_workqueue(raid5_wq); 8501 } 8502 8503 module_init(raid5_init); 8504 module_exit(raid5_exit); 8505 MODULE_LICENSE("GPL"); 8506 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD"); 8507 MODULE_ALIAS("md-personality-4"); /* RAID5 */ 8508 MODULE_ALIAS("md-raid5"); 8509 MODULE_ALIAS("md-raid4"); 8510 MODULE_ALIAS("md-level-5"); 8511 MODULE_ALIAS("md-level-4"); 8512 MODULE_ALIAS("md-personality-8"); /* RAID6 */ 8513 MODULE_ALIAS("md-raid6"); 8514 MODULE_ALIAS("md-level-6"); 8515 8516 /* This used to be two separate modules, they were: */ 8517 MODULE_ALIAS("raid5"); 8518 MODULE_ALIAS("raid6"); 8519