xref: /linux/drivers/md/raid5.c (revision 7471fb77ce4dc4cb81291189947fcdf621a97987)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <linux/sched/signal.h>
59 
60 #include <trace/events/block.h>
61 #include <linux/list_sort.h>
62 
63 #include "md.h"
64 #include "raid5.h"
65 #include "raid0.h"
66 #include "bitmap.h"
67 #include "raid5-log.h"
68 
69 #define UNSUPPORTED_MDDEV_FLAGS	(1L << MD_FAILFAST_SUPPORTED)
70 
71 #define cpu_to_group(cpu) cpu_to_node(cpu)
72 #define ANY_GROUP NUMA_NO_NODE
73 
74 static bool devices_handle_discard_safely = false;
75 module_param(devices_handle_discard_safely, bool, 0644);
76 MODULE_PARM_DESC(devices_handle_discard_safely,
77 		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
78 static struct workqueue_struct *raid5_wq;
79 
80 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
81 {
82 	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
83 	return &conf->stripe_hashtbl[hash];
84 }
85 
86 static inline int stripe_hash_locks_hash(sector_t sect)
87 {
88 	return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
89 }
90 
91 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
92 {
93 	spin_lock_irq(conf->hash_locks + hash);
94 	spin_lock(&conf->device_lock);
95 }
96 
97 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
98 {
99 	spin_unlock(&conf->device_lock);
100 	spin_unlock_irq(conf->hash_locks + hash);
101 }
102 
103 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
104 {
105 	int i;
106 	local_irq_disable();
107 	spin_lock(conf->hash_locks);
108 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
109 		spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
110 	spin_lock(&conf->device_lock);
111 }
112 
113 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
114 {
115 	int i;
116 	spin_unlock(&conf->device_lock);
117 	for (i = NR_STRIPE_HASH_LOCKS; i; i--)
118 		spin_unlock(conf->hash_locks + i - 1);
119 	local_irq_enable();
120 }
121 
122 /* Find first data disk in a raid6 stripe */
123 static inline int raid6_d0(struct stripe_head *sh)
124 {
125 	if (sh->ddf_layout)
126 		/* ddf always start from first device */
127 		return 0;
128 	/* md starts just after Q block */
129 	if (sh->qd_idx == sh->disks - 1)
130 		return 0;
131 	else
132 		return sh->qd_idx + 1;
133 }
134 static inline int raid6_next_disk(int disk, int raid_disks)
135 {
136 	disk++;
137 	return (disk < raid_disks) ? disk : 0;
138 }
139 
140 /* When walking through the disks in a raid5, starting at raid6_d0,
141  * We need to map each disk to a 'slot', where the data disks are slot
142  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
143  * is raid_disks-1.  This help does that mapping.
144  */
145 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
146 			     int *count, int syndrome_disks)
147 {
148 	int slot = *count;
149 
150 	if (sh->ddf_layout)
151 		(*count)++;
152 	if (idx == sh->pd_idx)
153 		return syndrome_disks;
154 	if (idx == sh->qd_idx)
155 		return syndrome_disks + 1;
156 	if (!sh->ddf_layout)
157 		(*count)++;
158 	return slot;
159 }
160 
161 static void print_raid5_conf (struct r5conf *conf);
162 
163 static int stripe_operations_active(struct stripe_head *sh)
164 {
165 	return sh->check_state || sh->reconstruct_state ||
166 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
167 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
168 }
169 
170 static bool stripe_is_lowprio(struct stripe_head *sh)
171 {
172 	return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
173 		test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
174 	       !test_bit(STRIPE_R5C_CACHING, &sh->state);
175 }
176 
177 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
178 {
179 	struct r5conf *conf = sh->raid_conf;
180 	struct r5worker_group *group;
181 	int thread_cnt;
182 	int i, cpu = sh->cpu;
183 
184 	if (!cpu_online(cpu)) {
185 		cpu = cpumask_any(cpu_online_mask);
186 		sh->cpu = cpu;
187 	}
188 
189 	if (list_empty(&sh->lru)) {
190 		struct r5worker_group *group;
191 		group = conf->worker_groups + cpu_to_group(cpu);
192 		if (stripe_is_lowprio(sh))
193 			list_add_tail(&sh->lru, &group->loprio_list);
194 		else
195 			list_add_tail(&sh->lru, &group->handle_list);
196 		group->stripes_cnt++;
197 		sh->group = group;
198 	}
199 
200 	if (conf->worker_cnt_per_group == 0) {
201 		md_wakeup_thread(conf->mddev->thread);
202 		return;
203 	}
204 
205 	group = conf->worker_groups + cpu_to_group(sh->cpu);
206 
207 	group->workers[0].working = true;
208 	/* at least one worker should run to avoid race */
209 	queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
210 
211 	thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
212 	/* wakeup more workers */
213 	for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
214 		if (group->workers[i].working == false) {
215 			group->workers[i].working = true;
216 			queue_work_on(sh->cpu, raid5_wq,
217 				      &group->workers[i].work);
218 			thread_cnt--;
219 		}
220 	}
221 }
222 
223 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
224 			      struct list_head *temp_inactive_list)
225 {
226 	int i;
227 	int injournal = 0;	/* number of date pages with R5_InJournal */
228 
229 	BUG_ON(!list_empty(&sh->lru));
230 	BUG_ON(atomic_read(&conf->active_stripes)==0);
231 
232 	if (r5c_is_writeback(conf->log))
233 		for (i = sh->disks; i--; )
234 			if (test_bit(R5_InJournal, &sh->dev[i].flags))
235 				injournal++;
236 	/*
237 	 * When quiesce in r5c write back, set STRIPE_HANDLE for stripes with
238 	 * data in journal, so they are not released to cached lists
239 	 */
240 	if (conf->quiesce && r5c_is_writeback(conf->log) &&
241 	    !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0) {
242 		if (test_bit(STRIPE_R5C_CACHING, &sh->state))
243 			r5c_make_stripe_write_out(sh);
244 		set_bit(STRIPE_HANDLE, &sh->state);
245 	}
246 
247 	if (test_bit(STRIPE_HANDLE, &sh->state)) {
248 		if (test_bit(STRIPE_DELAYED, &sh->state) &&
249 		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
250 			list_add_tail(&sh->lru, &conf->delayed_list);
251 		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
252 			   sh->bm_seq - conf->seq_write > 0)
253 			list_add_tail(&sh->lru, &conf->bitmap_list);
254 		else {
255 			clear_bit(STRIPE_DELAYED, &sh->state);
256 			clear_bit(STRIPE_BIT_DELAY, &sh->state);
257 			if (conf->worker_cnt_per_group == 0) {
258 				if (stripe_is_lowprio(sh))
259 					list_add_tail(&sh->lru,
260 							&conf->loprio_list);
261 				else
262 					list_add_tail(&sh->lru,
263 							&conf->handle_list);
264 			} else {
265 				raid5_wakeup_stripe_thread(sh);
266 				return;
267 			}
268 		}
269 		md_wakeup_thread(conf->mddev->thread);
270 	} else {
271 		BUG_ON(stripe_operations_active(sh));
272 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
273 			if (atomic_dec_return(&conf->preread_active_stripes)
274 			    < IO_THRESHOLD)
275 				md_wakeup_thread(conf->mddev->thread);
276 		atomic_dec(&conf->active_stripes);
277 		if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
278 			if (!r5c_is_writeback(conf->log))
279 				list_add_tail(&sh->lru, temp_inactive_list);
280 			else {
281 				WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
282 				if (injournal == 0)
283 					list_add_tail(&sh->lru, temp_inactive_list);
284 				else if (injournal == conf->raid_disks - conf->max_degraded) {
285 					/* full stripe */
286 					if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
287 						atomic_inc(&conf->r5c_cached_full_stripes);
288 					if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
289 						atomic_dec(&conf->r5c_cached_partial_stripes);
290 					list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
291 					r5c_check_cached_full_stripe(conf);
292 				} else
293 					/*
294 					 * STRIPE_R5C_PARTIAL_STRIPE is set in
295 					 * r5c_try_caching_write(). No need to
296 					 * set it again.
297 					 */
298 					list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
299 			}
300 		}
301 	}
302 }
303 
304 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
305 			     struct list_head *temp_inactive_list)
306 {
307 	if (atomic_dec_and_test(&sh->count))
308 		do_release_stripe(conf, sh, temp_inactive_list);
309 }
310 
311 /*
312  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
313  *
314  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
315  * given time. Adding stripes only takes device lock, while deleting stripes
316  * only takes hash lock.
317  */
318 static void release_inactive_stripe_list(struct r5conf *conf,
319 					 struct list_head *temp_inactive_list,
320 					 int hash)
321 {
322 	int size;
323 	bool do_wakeup = false;
324 	unsigned long flags;
325 
326 	if (hash == NR_STRIPE_HASH_LOCKS) {
327 		size = NR_STRIPE_HASH_LOCKS;
328 		hash = NR_STRIPE_HASH_LOCKS - 1;
329 	} else
330 		size = 1;
331 	while (size) {
332 		struct list_head *list = &temp_inactive_list[size - 1];
333 
334 		/*
335 		 * We don't hold any lock here yet, raid5_get_active_stripe() might
336 		 * remove stripes from the list
337 		 */
338 		if (!list_empty_careful(list)) {
339 			spin_lock_irqsave(conf->hash_locks + hash, flags);
340 			if (list_empty(conf->inactive_list + hash) &&
341 			    !list_empty(list))
342 				atomic_dec(&conf->empty_inactive_list_nr);
343 			list_splice_tail_init(list, conf->inactive_list + hash);
344 			do_wakeup = true;
345 			spin_unlock_irqrestore(conf->hash_locks + hash, flags);
346 		}
347 		size--;
348 		hash--;
349 	}
350 
351 	if (do_wakeup) {
352 		wake_up(&conf->wait_for_stripe);
353 		if (atomic_read(&conf->active_stripes) == 0)
354 			wake_up(&conf->wait_for_quiescent);
355 		if (conf->retry_read_aligned)
356 			md_wakeup_thread(conf->mddev->thread);
357 	}
358 }
359 
360 /* should hold conf->device_lock already */
361 static int release_stripe_list(struct r5conf *conf,
362 			       struct list_head *temp_inactive_list)
363 {
364 	struct stripe_head *sh, *t;
365 	int count = 0;
366 	struct llist_node *head;
367 
368 	head = llist_del_all(&conf->released_stripes);
369 	head = llist_reverse_order(head);
370 	llist_for_each_entry_safe(sh, t, head, release_list) {
371 		int hash;
372 
373 		/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
374 		smp_mb();
375 		clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
376 		/*
377 		 * Don't worry the bit is set here, because if the bit is set
378 		 * again, the count is always > 1. This is true for
379 		 * STRIPE_ON_UNPLUG_LIST bit too.
380 		 */
381 		hash = sh->hash_lock_index;
382 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
383 		count++;
384 	}
385 
386 	return count;
387 }
388 
389 void raid5_release_stripe(struct stripe_head *sh)
390 {
391 	struct r5conf *conf = sh->raid_conf;
392 	unsigned long flags;
393 	struct list_head list;
394 	int hash;
395 	bool wakeup;
396 
397 	/* Avoid release_list until the last reference.
398 	 */
399 	if (atomic_add_unless(&sh->count, -1, 1))
400 		return;
401 
402 	if (unlikely(!conf->mddev->thread) ||
403 		test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
404 		goto slow_path;
405 	wakeup = llist_add(&sh->release_list, &conf->released_stripes);
406 	if (wakeup)
407 		md_wakeup_thread(conf->mddev->thread);
408 	return;
409 slow_path:
410 	local_irq_save(flags);
411 	/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
412 	if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
413 		INIT_LIST_HEAD(&list);
414 		hash = sh->hash_lock_index;
415 		do_release_stripe(conf, sh, &list);
416 		spin_unlock(&conf->device_lock);
417 		release_inactive_stripe_list(conf, &list, hash);
418 	}
419 	local_irq_restore(flags);
420 }
421 
422 static inline void remove_hash(struct stripe_head *sh)
423 {
424 	pr_debug("remove_hash(), stripe %llu\n",
425 		(unsigned long long)sh->sector);
426 
427 	hlist_del_init(&sh->hash);
428 }
429 
430 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
431 {
432 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
433 
434 	pr_debug("insert_hash(), stripe %llu\n",
435 		(unsigned long long)sh->sector);
436 
437 	hlist_add_head(&sh->hash, hp);
438 }
439 
440 /* find an idle stripe, make sure it is unhashed, and return it. */
441 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
442 {
443 	struct stripe_head *sh = NULL;
444 	struct list_head *first;
445 
446 	if (list_empty(conf->inactive_list + hash))
447 		goto out;
448 	first = (conf->inactive_list + hash)->next;
449 	sh = list_entry(first, struct stripe_head, lru);
450 	list_del_init(first);
451 	remove_hash(sh);
452 	atomic_inc(&conf->active_stripes);
453 	BUG_ON(hash != sh->hash_lock_index);
454 	if (list_empty(conf->inactive_list + hash))
455 		atomic_inc(&conf->empty_inactive_list_nr);
456 out:
457 	return sh;
458 }
459 
460 static void shrink_buffers(struct stripe_head *sh)
461 {
462 	struct page *p;
463 	int i;
464 	int num = sh->raid_conf->pool_size;
465 
466 	for (i = 0; i < num ; i++) {
467 		WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
468 		p = sh->dev[i].page;
469 		if (!p)
470 			continue;
471 		sh->dev[i].page = NULL;
472 		put_page(p);
473 	}
474 
475 	if (sh->ppl_page) {
476 		put_page(sh->ppl_page);
477 		sh->ppl_page = NULL;
478 	}
479 }
480 
481 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
482 {
483 	int i;
484 	int num = sh->raid_conf->pool_size;
485 
486 	for (i = 0; i < num; i++) {
487 		struct page *page;
488 
489 		if (!(page = alloc_page(gfp))) {
490 			return 1;
491 		}
492 		sh->dev[i].page = page;
493 		sh->dev[i].orig_page = page;
494 	}
495 
496 	if (raid5_has_ppl(sh->raid_conf)) {
497 		sh->ppl_page = alloc_page(gfp);
498 		if (!sh->ppl_page)
499 			return 1;
500 	}
501 
502 	return 0;
503 }
504 
505 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
506 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
507 			    struct stripe_head *sh);
508 
509 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
510 {
511 	struct r5conf *conf = sh->raid_conf;
512 	int i, seq;
513 
514 	BUG_ON(atomic_read(&sh->count) != 0);
515 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
516 	BUG_ON(stripe_operations_active(sh));
517 	BUG_ON(sh->batch_head);
518 
519 	pr_debug("init_stripe called, stripe %llu\n",
520 		(unsigned long long)sector);
521 retry:
522 	seq = read_seqcount_begin(&conf->gen_lock);
523 	sh->generation = conf->generation - previous;
524 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
525 	sh->sector = sector;
526 	stripe_set_idx(sector, conf, previous, sh);
527 	sh->state = 0;
528 
529 	for (i = sh->disks; i--; ) {
530 		struct r5dev *dev = &sh->dev[i];
531 
532 		if (dev->toread || dev->read || dev->towrite || dev->written ||
533 		    test_bit(R5_LOCKED, &dev->flags)) {
534 			pr_err("sector=%llx i=%d %p %p %p %p %d\n",
535 			       (unsigned long long)sh->sector, i, dev->toread,
536 			       dev->read, dev->towrite, dev->written,
537 			       test_bit(R5_LOCKED, &dev->flags));
538 			WARN_ON(1);
539 		}
540 		dev->flags = 0;
541 		raid5_build_block(sh, i, previous);
542 	}
543 	if (read_seqcount_retry(&conf->gen_lock, seq))
544 		goto retry;
545 	sh->overwrite_disks = 0;
546 	insert_hash(conf, sh);
547 	sh->cpu = smp_processor_id();
548 	set_bit(STRIPE_BATCH_READY, &sh->state);
549 }
550 
551 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
552 					 short generation)
553 {
554 	struct stripe_head *sh;
555 
556 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
557 	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
558 		if (sh->sector == sector && sh->generation == generation)
559 			return sh;
560 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
561 	return NULL;
562 }
563 
564 /*
565  * Need to check if array has failed when deciding whether to:
566  *  - start an array
567  *  - remove non-faulty devices
568  *  - add a spare
569  *  - allow a reshape
570  * This determination is simple when no reshape is happening.
571  * However if there is a reshape, we need to carefully check
572  * both the before and after sections.
573  * This is because some failed devices may only affect one
574  * of the two sections, and some non-in_sync devices may
575  * be insync in the section most affected by failed devices.
576  */
577 int raid5_calc_degraded(struct r5conf *conf)
578 {
579 	int degraded, degraded2;
580 	int i;
581 
582 	rcu_read_lock();
583 	degraded = 0;
584 	for (i = 0; i < conf->previous_raid_disks; i++) {
585 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
586 		if (rdev && test_bit(Faulty, &rdev->flags))
587 			rdev = rcu_dereference(conf->disks[i].replacement);
588 		if (!rdev || test_bit(Faulty, &rdev->flags))
589 			degraded++;
590 		else if (test_bit(In_sync, &rdev->flags))
591 			;
592 		else
593 			/* not in-sync or faulty.
594 			 * If the reshape increases the number of devices,
595 			 * this is being recovered by the reshape, so
596 			 * this 'previous' section is not in_sync.
597 			 * If the number of devices is being reduced however,
598 			 * the device can only be part of the array if
599 			 * we are reverting a reshape, so this section will
600 			 * be in-sync.
601 			 */
602 			if (conf->raid_disks >= conf->previous_raid_disks)
603 				degraded++;
604 	}
605 	rcu_read_unlock();
606 	if (conf->raid_disks == conf->previous_raid_disks)
607 		return degraded;
608 	rcu_read_lock();
609 	degraded2 = 0;
610 	for (i = 0; i < conf->raid_disks; i++) {
611 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
612 		if (rdev && test_bit(Faulty, &rdev->flags))
613 			rdev = rcu_dereference(conf->disks[i].replacement);
614 		if (!rdev || test_bit(Faulty, &rdev->flags))
615 			degraded2++;
616 		else if (test_bit(In_sync, &rdev->flags))
617 			;
618 		else
619 			/* not in-sync or faulty.
620 			 * If reshape increases the number of devices, this
621 			 * section has already been recovered, else it
622 			 * almost certainly hasn't.
623 			 */
624 			if (conf->raid_disks <= conf->previous_raid_disks)
625 				degraded2++;
626 	}
627 	rcu_read_unlock();
628 	if (degraded2 > degraded)
629 		return degraded2;
630 	return degraded;
631 }
632 
633 static int has_failed(struct r5conf *conf)
634 {
635 	int degraded;
636 
637 	if (conf->mddev->reshape_position == MaxSector)
638 		return conf->mddev->degraded > conf->max_degraded;
639 
640 	degraded = raid5_calc_degraded(conf);
641 	if (degraded > conf->max_degraded)
642 		return 1;
643 	return 0;
644 }
645 
646 struct stripe_head *
647 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
648 			int previous, int noblock, int noquiesce)
649 {
650 	struct stripe_head *sh;
651 	int hash = stripe_hash_locks_hash(sector);
652 	int inc_empty_inactive_list_flag;
653 
654 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
655 
656 	spin_lock_irq(conf->hash_locks + hash);
657 
658 	do {
659 		wait_event_lock_irq(conf->wait_for_quiescent,
660 				    conf->quiesce == 0 || noquiesce,
661 				    *(conf->hash_locks + hash));
662 		sh = __find_stripe(conf, sector, conf->generation - previous);
663 		if (!sh) {
664 			if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
665 				sh = get_free_stripe(conf, hash);
666 				if (!sh && !test_bit(R5_DID_ALLOC,
667 						     &conf->cache_state))
668 					set_bit(R5_ALLOC_MORE,
669 						&conf->cache_state);
670 			}
671 			if (noblock && sh == NULL)
672 				break;
673 
674 			r5c_check_stripe_cache_usage(conf);
675 			if (!sh) {
676 				set_bit(R5_INACTIVE_BLOCKED,
677 					&conf->cache_state);
678 				r5l_wake_reclaim(conf->log, 0);
679 				wait_event_lock_irq(
680 					conf->wait_for_stripe,
681 					!list_empty(conf->inactive_list + hash) &&
682 					(atomic_read(&conf->active_stripes)
683 					 < (conf->max_nr_stripes * 3 / 4)
684 					 || !test_bit(R5_INACTIVE_BLOCKED,
685 						      &conf->cache_state)),
686 					*(conf->hash_locks + hash));
687 				clear_bit(R5_INACTIVE_BLOCKED,
688 					  &conf->cache_state);
689 			} else {
690 				init_stripe(sh, sector, previous);
691 				atomic_inc(&sh->count);
692 			}
693 		} else if (!atomic_inc_not_zero(&sh->count)) {
694 			spin_lock(&conf->device_lock);
695 			if (!atomic_read(&sh->count)) {
696 				if (!test_bit(STRIPE_HANDLE, &sh->state))
697 					atomic_inc(&conf->active_stripes);
698 				BUG_ON(list_empty(&sh->lru) &&
699 				       !test_bit(STRIPE_EXPANDING, &sh->state));
700 				inc_empty_inactive_list_flag = 0;
701 				if (!list_empty(conf->inactive_list + hash))
702 					inc_empty_inactive_list_flag = 1;
703 				list_del_init(&sh->lru);
704 				if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
705 					atomic_inc(&conf->empty_inactive_list_nr);
706 				if (sh->group) {
707 					sh->group->stripes_cnt--;
708 					sh->group = NULL;
709 				}
710 			}
711 			atomic_inc(&sh->count);
712 			spin_unlock(&conf->device_lock);
713 		}
714 	} while (sh == NULL);
715 
716 	spin_unlock_irq(conf->hash_locks + hash);
717 	return sh;
718 }
719 
720 static bool is_full_stripe_write(struct stripe_head *sh)
721 {
722 	BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
723 	return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
724 }
725 
726 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
727 {
728 	local_irq_disable();
729 	if (sh1 > sh2) {
730 		spin_lock(&sh2->stripe_lock);
731 		spin_lock_nested(&sh1->stripe_lock, 1);
732 	} else {
733 		spin_lock(&sh1->stripe_lock);
734 		spin_lock_nested(&sh2->stripe_lock, 1);
735 	}
736 }
737 
738 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
739 {
740 	spin_unlock(&sh1->stripe_lock);
741 	spin_unlock(&sh2->stripe_lock);
742 	local_irq_enable();
743 }
744 
745 /* Only freshly new full stripe normal write stripe can be added to a batch list */
746 static bool stripe_can_batch(struct stripe_head *sh)
747 {
748 	struct r5conf *conf = sh->raid_conf;
749 
750 	if (conf->log || raid5_has_ppl(conf))
751 		return false;
752 	return test_bit(STRIPE_BATCH_READY, &sh->state) &&
753 		!test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
754 		is_full_stripe_write(sh);
755 }
756 
757 /* we only do back search */
758 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
759 {
760 	struct stripe_head *head;
761 	sector_t head_sector, tmp_sec;
762 	int hash;
763 	int dd_idx;
764 	int inc_empty_inactive_list_flag;
765 
766 	/* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
767 	tmp_sec = sh->sector;
768 	if (!sector_div(tmp_sec, conf->chunk_sectors))
769 		return;
770 	head_sector = sh->sector - STRIPE_SECTORS;
771 
772 	hash = stripe_hash_locks_hash(head_sector);
773 	spin_lock_irq(conf->hash_locks + hash);
774 	head = __find_stripe(conf, head_sector, conf->generation);
775 	if (head && !atomic_inc_not_zero(&head->count)) {
776 		spin_lock(&conf->device_lock);
777 		if (!atomic_read(&head->count)) {
778 			if (!test_bit(STRIPE_HANDLE, &head->state))
779 				atomic_inc(&conf->active_stripes);
780 			BUG_ON(list_empty(&head->lru) &&
781 			       !test_bit(STRIPE_EXPANDING, &head->state));
782 			inc_empty_inactive_list_flag = 0;
783 			if (!list_empty(conf->inactive_list + hash))
784 				inc_empty_inactive_list_flag = 1;
785 			list_del_init(&head->lru);
786 			if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
787 				atomic_inc(&conf->empty_inactive_list_nr);
788 			if (head->group) {
789 				head->group->stripes_cnt--;
790 				head->group = NULL;
791 			}
792 		}
793 		atomic_inc(&head->count);
794 		spin_unlock(&conf->device_lock);
795 	}
796 	spin_unlock_irq(conf->hash_locks + hash);
797 
798 	if (!head)
799 		return;
800 	if (!stripe_can_batch(head))
801 		goto out;
802 
803 	lock_two_stripes(head, sh);
804 	/* clear_batch_ready clear the flag */
805 	if (!stripe_can_batch(head) || !stripe_can_batch(sh))
806 		goto unlock_out;
807 
808 	if (sh->batch_head)
809 		goto unlock_out;
810 
811 	dd_idx = 0;
812 	while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
813 		dd_idx++;
814 	if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
815 	    bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
816 		goto unlock_out;
817 
818 	if (head->batch_head) {
819 		spin_lock(&head->batch_head->batch_lock);
820 		/* This batch list is already running */
821 		if (!stripe_can_batch(head)) {
822 			spin_unlock(&head->batch_head->batch_lock);
823 			goto unlock_out;
824 		}
825 
826 		/*
827 		 * at this point, head's BATCH_READY could be cleared, but we
828 		 * can still add the stripe to batch list
829 		 */
830 		list_add(&sh->batch_list, &head->batch_list);
831 		spin_unlock(&head->batch_head->batch_lock);
832 
833 		sh->batch_head = head->batch_head;
834 	} else {
835 		head->batch_head = head;
836 		sh->batch_head = head->batch_head;
837 		spin_lock(&head->batch_lock);
838 		list_add_tail(&sh->batch_list, &head->batch_list);
839 		spin_unlock(&head->batch_lock);
840 	}
841 
842 	if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
843 		if (atomic_dec_return(&conf->preread_active_stripes)
844 		    < IO_THRESHOLD)
845 			md_wakeup_thread(conf->mddev->thread);
846 
847 	if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
848 		int seq = sh->bm_seq;
849 		if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
850 		    sh->batch_head->bm_seq > seq)
851 			seq = sh->batch_head->bm_seq;
852 		set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
853 		sh->batch_head->bm_seq = seq;
854 	}
855 
856 	atomic_inc(&sh->count);
857 unlock_out:
858 	unlock_two_stripes(head, sh);
859 out:
860 	raid5_release_stripe(head);
861 }
862 
863 /* Determine if 'data_offset' or 'new_data_offset' should be used
864  * in this stripe_head.
865  */
866 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
867 {
868 	sector_t progress = conf->reshape_progress;
869 	/* Need a memory barrier to make sure we see the value
870 	 * of conf->generation, or ->data_offset that was set before
871 	 * reshape_progress was updated.
872 	 */
873 	smp_rmb();
874 	if (progress == MaxSector)
875 		return 0;
876 	if (sh->generation == conf->generation - 1)
877 		return 0;
878 	/* We are in a reshape, and this is a new-generation stripe,
879 	 * so use new_data_offset.
880 	 */
881 	return 1;
882 }
883 
884 static void dispatch_bio_list(struct bio_list *tmp)
885 {
886 	struct bio *bio;
887 
888 	while ((bio = bio_list_pop(tmp)))
889 		generic_make_request(bio);
890 }
891 
892 static int cmp_stripe(void *priv, struct list_head *a, struct list_head *b)
893 {
894 	const struct r5pending_data *da = list_entry(a,
895 				struct r5pending_data, sibling);
896 	const struct r5pending_data *db = list_entry(b,
897 				struct r5pending_data, sibling);
898 	if (da->sector > db->sector)
899 		return 1;
900 	if (da->sector < db->sector)
901 		return -1;
902 	return 0;
903 }
904 
905 static void dispatch_defer_bios(struct r5conf *conf, int target,
906 				struct bio_list *list)
907 {
908 	struct r5pending_data *data;
909 	struct list_head *first, *next = NULL;
910 	int cnt = 0;
911 
912 	if (conf->pending_data_cnt == 0)
913 		return;
914 
915 	list_sort(NULL, &conf->pending_list, cmp_stripe);
916 
917 	first = conf->pending_list.next;
918 
919 	/* temporarily move the head */
920 	if (conf->next_pending_data)
921 		list_move_tail(&conf->pending_list,
922 				&conf->next_pending_data->sibling);
923 
924 	while (!list_empty(&conf->pending_list)) {
925 		data = list_first_entry(&conf->pending_list,
926 			struct r5pending_data, sibling);
927 		if (&data->sibling == first)
928 			first = data->sibling.next;
929 		next = data->sibling.next;
930 
931 		bio_list_merge(list, &data->bios);
932 		list_move(&data->sibling, &conf->free_list);
933 		cnt++;
934 		if (cnt >= target)
935 			break;
936 	}
937 	conf->pending_data_cnt -= cnt;
938 	BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
939 
940 	if (next != &conf->pending_list)
941 		conf->next_pending_data = list_entry(next,
942 				struct r5pending_data, sibling);
943 	else
944 		conf->next_pending_data = NULL;
945 	/* list isn't empty */
946 	if (first != &conf->pending_list)
947 		list_move_tail(&conf->pending_list, first);
948 }
949 
950 static void flush_deferred_bios(struct r5conf *conf)
951 {
952 	struct bio_list tmp = BIO_EMPTY_LIST;
953 
954 	if (conf->pending_data_cnt == 0)
955 		return;
956 
957 	spin_lock(&conf->pending_bios_lock);
958 	dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
959 	BUG_ON(conf->pending_data_cnt != 0);
960 	spin_unlock(&conf->pending_bios_lock);
961 
962 	dispatch_bio_list(&tmp);
963 }
964 
965 static void defer_issue_bios(struct r5conf *conf, sector_t sector,
966 				struct bio_list *bios)
967 {
968 	struct bio_list tmp = BIO_EMPTY_LIST;
969 	struct r5pending_data *ent;
970 
971 	spin_lock(&conf->pending_bios_lock);
972 	ent = list_first_entry(&conf->free_list, struct r5pending_data,
973 							sibling);
974 	list_move_tail(&ent->sibling, &conf->pending_list);
975 	ent->sector = sector;
976 	bio_list_init(&ent->bios);
977 	bio_list_merge(&ent->bios, bios);
978 	conf->pending_data_cnt++;
979 	if (conf->pending_data_cnt >= PENDING_IO_MAX)
980 		dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
981 
982 	spin_unlock(&conf->pending_bios_lock);
983 
984 	dispatch_bio_list(&tmp);
985 }
986 
987 static void
988 raid5_end_read_request(struct bio *bi);
989 static void
990 raid5_end_write_request(struct bio *bi);
991 
992 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
993 {
994 	struct r5conf *conf = sh->raid_conf;
995 	int i, disks = sh->disks;
996 	struct stripe_head *head_sh = sh;
997 	struct bio_list pending_bios = BIO_EMPTY_LIST;
998 	bool should_defer;
999 
1000 	might_sleep();
1001 
1002 	if (log_stripe(sh, s) == 0)
1003 		return;
1004 
1005 	should_defer = conf->batch_bio_dispatch && conf->group_cnt;
1006 
1007 	for (i = disks; i--; ) {
1008 		int op, op_flags = 0;
1009 		int replace_only = 0;
1010 		struct bio *bi, *rbi;
1011 		struct md_rdev *rdev, *rrdev = NULL;
1012 
1013 		sh = head_sh;
1014 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1015 			op = REQ_OP_WRITE;
1016 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1017 				op_flags = REQ_FUA;
1018 			if (test_bit(R5_Discard, &sh->dev[i].flags))
1019 				op = REQ_OP_DISCARD;
1020 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1021 			op = REQ_OP_READ;
1022 		else if (test_and_clear_bit(R5_WantReplace,
1023 					    &sh->dev[i].flags)) {
1024 			op = REQ_OP_WRITE;
1025 			replace_only = 1;
1026 		} else
1027 			continue;
1028 		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1029 			op_flags |= REQ_SYNC;
1030 
1031 again:
1032 		bi = &sh->dev[i].req;
1033 		rbi = &sh->dev[i].rreq; /* For writing to replacement */
1034 
1035 		rcu_read_lock();
1036 		rrdev = rcu_dereference(conf->disks[i].replacement);
1037 		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1038 		rdev = rcu_dereference(conf->disks[i].rdev);
1039 		if (!rdev) {
1040 			rdev = rrdev;
1041 			rrdev = NULL;
1042 		}
1043 		if (op_is_write(op)) {
1044 			if (replace_only)
1045 				rdev = NULL;
1046 			if (rdev == rrdev)
1047 				/* We raced and saw duplicates */
1048 				rrdev = NULL;
1049 		} else {
1050 			if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1051 				rdev = rrdev;
1052 			rrdev = NULL;
1053 		}
1054 
1055 		if (rdev && test_bit(Faulty, &rdev->flags))
1056 			rdev = NULL;
1057 		if (rdev)
1058 			atomic_inc(&rdev->nr_pending);
1059 		if (rrdev && test_bit(Faulty, &rrdev->flags))
1060 			rrdev = NULL;
1061 		if (rrdev)
1062 			atomic_inc(&rrdev->nr_pending);
1063 		rcu_read_unlock();
1064 
1065 		/* We have already checked bad blocks for reads.  Now
1066 		 * need to check for writes.  We never accept write errors
1067 		 * on the replacement, so we don't to check rrdev.
1068 		 */
1069 		while (op_is_write(op) && rdev &&
1070 		       test_bit(WriteErrorSeen, &rdev->flags)) {
1071 			sector_t first_bad;
1072 			int bad_sectors;
1073 			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
1074 					      &first_bad, &bad_sectors);
1075 			if (!bad)
1076 				break;
1077 
1078 			if (bad < 0) {
1079 				set_bit(BlockedBadBlocks, &rdev->flags);
1080 				if (!conf->mddev->external &&
1081 				    conf->mddev->sb_flags) {
1082 					/* It is very unlikely, but we might
1083 					 * still need to write out the
1084 					 * bad block log - better give it
1085 					 * a chance*/
1086 					md_check_recovery(conf->mddev);
1087 				}
1088 				/*
1089 				 * Because md_wait_for_blocked_rdev
1090 				 * will dec nr_pending, we must
1091 				 * increment it first.
1092 				 */
1093 				atomic_inc(&rdev->nr_pending);
1094 				md_wait_for_blocked_rdev(rdev, conf->mddev);
1095 			} else {
1096 				/* Acknowledged bad block - skip the write */
1097 				rdev_dec_pending(rdev, conf->mddev);
1098 				rdev = NULL;
1099 			}
1100 		}
1101 
1102 		if (rdev) {
1103 			if (s->syncing || s->expanding || s->expanded
1104 			    || s->replacing)
1105 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1106 
1107 			set_bit(STRIPE_IO_STARTED, &sh->state);
1108 
1109 			bi->bi_bdev = rdev->bdev;
1110 			bio_set_op_attrs(bi, op, op_flags);
1111 			bi->bi_end_io = op_is_write(op)
1112 				? raid5_end_write_request
1113 				: raid5_end_read_request;
1114 			bi->bi_private = sh;
1115 
1116 			pr_debug("%s: for %llu schedule op %d on disc %d\n",
1117 				__func__, (unsigned long long)sh->sector,
1118 				bi->bi_opf, i);
1119 			atomic_inc(&sh->count);
1120 			if (sh != head_sh)
1121 				atomic_inc(&head_sh->count);
1122 			if (use_new_offset(conf, sh))
1123 				bi->bi_iter.bi_sector = (sh->sector
1124 						 + rdev->new_data_offset);
1125 			else
1126 				bi->bi_iter.bi_sector = (sh->sector
1127 						 + rdev->data_offset);
1128 			if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1129 				bi->bi_opf |= REQ_NOMERGE;
1130 
1131 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1132 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1133 
1134 			if (!op_is_write(op) &&
1135 			    test_bit(R5_InJournal, &sh->dev[i].flags))
1136 				/*
1137 				 * issuing read for a page in journal, this
1138 				 * must be preparing for prexor in rmw; read
1139 				 * the data into orig_page
1140 				 */
1141 				sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1142 			else
1143 				sh->dev[i].vec.bv_page = sh->dev[i].page;
1144 			bi->bi_vcnt = 1;
1145 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1146 			bi->bi_io_vec[0].bv_offset = 0;
1147 			bi->bi_iter.bi_size = STRIPE_SIZE;
1148 			/*
1149 			 * If this is discard request, set bi_vcnt 0. We don't
1150 			 * want to confuse SCSI because SCSI will replace payload
1151 			 */
1152 			if (op == REQ_OP_DISCARD)
1153 				bi->bi_vcnt = 0;
1154 			if (rrdev)
1155 				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1156 
1157 			if (conf->mddev->gendisk)
1158 				trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1159 						      bi, disk_devt(conf->mddev->gendisk),
1160 						      sh->dev[i].sector);
1161 			if (should_defer && op_is_write(op))
1162 				bio_list_add(&pending_bios, bi);
1163 			else
1164 				generic_make_request(bi);
1165 		}
1166 		if (rrdev) {
1167 			if (s->syncing || s->expanding || s->expanded
1168 			    || s->replacing)
1169 				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1170 
1171 			set_bit(STRIPE_IO_STARTED, &sh->state);
1172 
1173 			rbi->bi_bdev = rrdev->bdev;
1174 			bio_set_op_attrs(rbi, op, op_flags);
1175 			BUG_ON(!op_is_write(op));
1176 			rbi->bi_end_io = raid5_end_write_request;
1177 			rbi->bi_private = sh;
1178 
1179 			pr_debug("%s: for %llu schedule op %d on "
1180 				 "replacement disc %d\n",
1181 				__func__, (unsigned long long)sh->sector,
1182 				rbi->bi_opf, i);
1183 			atomic_inc(&sh->count);
1184 			if (sh != head_sh)
1185 				atomic_inc(&head_sh->count);
1186 			if (use_new_offset(conf, sh))
1187 				rbi->bi_iter.bi_sector = (sh->sector
1188 						  + rrdev->new_data_offset);
1189 			else
1190 				rbi->bi_iter.bi_sector = (sh->sector
1191 						  + rrdev->data_offset);
1192 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1193 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1194 			sh->dev[i].rvec.bv_page = sh->dev[i].page;
1195 			rbi->bi_vcnt = 1;
1196 			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1197 			rbi->bi_io_vec[0].bv_offset = 0;
1198 			rbi->bi_iter.bi_size = STRIPE_SIZE;
1199 			/*
1200 			 * If this is discard request, set bi_vcnt 0. We don't
1201 			 * want to confuse SCSI because SCSI will replace payload
1202 			 */
1203 			if (op == REQ_OP_DISCARD)
1204 				rbi->bi_vcnt = 0;
1205 			if (conf->mddev->gendisk)
1206 				trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1207 						      rbi, disk_devt(conf->mddev->gendisk),
1208 						      sh->dev[i].sector);
1209 			if (should_defer && op_is_write(op))
1210 				bio_list_add(&pending_bios, rbi);
1211 			else
1212 				generic_make_request(rbi);
1213 		}
1214 		if (!rdev && !rrdev) {
1215 			if (op_is_write(op))
1216 				set_bit(STRIPE_DEGRADED, &sh->state);
1217 			pr_debug("skip op %d on disc %d for sector %llu\n",
1218 				bi->bi_opf, i, (unsigned long long)sh->sector);
1219 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
1220 			set_bit(STRIPE_HANDLE, &sh->state);
1221 		}
1222 
1223 		if (!head_sh->batch_head)
1224 			continue;
1225 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1226 				      batch_list);
1227 		if (sh != head_sh)
1228 			goto again;
1229 	}
1230 
1231 	if (should_defer && !bio_list_empty(&pending_bios))
1232 		defer_issue_bios(conf, head_sh->sector, &pending_bios);
1233 }
1234 
1235 static struct dma_async_tx_descriptor *
1236 async_copy_data(int frombio, struct bio *bio, struct page **page,
1237 	sector_t sector, struct dma_async_tx_descriptor *tx,
1238 	struct stripe_head *sh, int no_skipcopy)
1239 {
1240 	struct bio_vec bvl;
1241 	struct bvec_iter iter;
1242 	struct page *bio_page;
1243 	int page_offset;
1244 	struct async_submit_ctl submit;
1245 	enum async_tx_flags flags = 0;
1246 
1247 	if (bio->bi_iter.bi_sector >= sector)
1248 		page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1249 	else
1250 		page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1251 
1252 	if (frombio)
1253 		flags |= ASYNC_TX_FENCE;
1254 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1255 
1256 	bio_for_each_segment(bvl, bio, iter) {
1257 		int len = bvl.bv_len;
1258 		int clen;
1259 		int b_offset = 0;
1260 
1261 		if (page_offset < 0) {
1262 			b_offset = -page_offset;
1263 			page_offset += b_offset;
1264 			len -= b_offset;
1265 		}
1266 
1267 		if (len > 0 && page_offset + len > STRIPE_SIZE)
1268 			clen = STRIPE_SIZE - page_offset;
1269 		else
1270 			clen = len;
1271 
1272 		if (clen > 0) {
1273 			b_offset += bvl.bv_offset;
1274 			bio_page = bvl.bv_page;
1275 			if (frombio) {
1276 				if (sh->raid_conf->skip_copy &&
1277 				    b_offset == 0 && page_offset == 0 &&
1278 				    clen == STRIPE_SIZE &&
1279 				    !no_skipcopy)
1280 					*page = bio_page;
1281 				else
1282 					tx = async_memcpy(*page, bio_page, page_offset,
1283 						  b_offset, clen, &submit);
1284 			} else
1285 				tx = async_memcpy(bio_page, *page, b_offset,
1286 						  page_offset, clen, &submit);
1287 		}
1288 		/* chain the operations */
1289 		submit.depend_tx = tx;
1290 
1291 		if (clen < len) /* hit end of page */
1292 			break;
1293 		page_offset +=  len;
1294 	}
1295 
1296 	return tx;
1297 }
1298 
1299 static void ops_complete_biofill(void *stripe_head_ref)
1300 {
1301 	struct stripe_head *sh = stripe_head_ref;
1302 	int i;
1303 
1304 	pr_debug("%s: stripe %llu\n", __func__,
1305 		(unsigned long long)sh->sector);
1306 
1307 	/* clear completed biofills */
1308 	for (i = sh->disks; i--; ) {
1309 		struct r5dev *dev = &sh->dev[i];
1310 
1311 		/* acknowledge completion of a biofill operation */
1312 		/* and check if we need to reply to a read request,
1313 		 * new R5_Wantfill requests are held off until
1314 		 * !STRIPE_BIOFILL_RUN
1315 		 */
1316 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1317 			struct bio *rbi, *rbi2;
1318 
1319 			BUG_ON(!dev->read);
1320 			rbi = dev->read;
1321 			dev->read = NULL;
1322 			while (rbi && rbi->bi_iter.bi_sector <
1323 				dev->sector + STRIPE_SECTORS) {
1324 				rbi2 = r5_next_bio(rbi, dev->sector);
1325 				bio_endio(rbi);
1326 				rbi = rbi2;
1327 			}
1328 		}
1329 	}
1330 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1331 
1332 	set_bit(STRIPE_HANDLE, &sh->state);
1333 	raid5_release_stripe(sh);
1334 }
1335 
1336 static void ops_run_biofill(struct stripe_head *sh)
1337 {
1338 	struct dma_async_tx_descriptor *tx = NULL;
1339 	struct async_submit_ctl submit;
1340 	int i;
1341 
1342 	BUG_ON(sh->batch_head);
1343 	pr_debug("%s: stripe %llu\n", __func__,
1344 		(unsigned long long)sh->sector);
1345 
1346 	for (i = sh->disks; i--; ) {
1347 		struct r5dev *dev = &sh->dev[i];
1348 		if (test_bit(R5_Wantfill, &dev->flags)) {
1349 			struct bio *rbi;
1350 			spin_lock_irq(&sh->stripe_lock);
1351 			dev->read = rbi = dev->toread;
1352 			dev->toread = NULL;
1353 			spin_unlock_irq(&sh->stripe_lock);
1354 			while (rbi && rbi->bi_iter.bi_sector <
1355 				dev->sector + STRIPE_SECTORS) {
1356 				tx = async_copy_data(0, rbi, &dev->page,
1357 						     dev->sector, tx, sh, 0);
1358 				rbi = r5_next_bio(rbi, dev->sector);
1359 			}
1360 		}
1361 	}
1362 
1363 	atomic_inc(&sh->count);
1364 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1365 	async_trigger_callback(&submit);
1366 }
1367 
1368 static void mark_target_uptodate(struct stripe_head *sh, int target)
1369 {
1370 	struct r5dev *tgt;
1371 
1372 	if (target < 0)
1373 		return;
1374 
1375 	tgt = &sh->dev[target];
1376 	set_bit(R5_UPTODATE, &tgt->flags);
1377 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1378 	clear_bit(R5_Wantcompute, &tgt->flags);
1379 }
1380 
1381 static void ops_complete_compute(void *stripe_head_ref)
1382 {
1383 	struct stripe_head *sh = stripe_head_ref;
1384 
1385 	pr_debug("%s: stripe %llu\n", __func__,
1386 		(unsigned long long)sh->sector);
1387 
1388 	/* mark the computed target(s) as uptodate */
1389 	mark_target_uptodate(sh, sh->ops.target);
1390 	mark_target_uptodate(sh, sh->ops.target2);
1391 
1392 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1393 	if (sh->check_state == check_state_compute_run)
1394 		sh->check_state = check_state_compute_result;
1395 	set_bit(STRIPE_HANDLE, &sh->state);
1396 	raid5_release_stripe(sh);
1397 }
1398 
1399 /* return a pointer to the address conversion region of the scribble buffer */
1400 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1401 				 struct raid5_percpu *percpu, int i)
1402 {
1403 	void *addr;
1404 
1405 	addr = flex_array_get(percpu->scribble, i);
1406 	return addr + sizeof(struct page *) * (sh->disks + 2);
1407 }
1408 
1409 /* return a pointer to the address conversion region of the scribble buffer */
1410 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1411 {
1412 	void *addr;
1413 
1414 	addr = flex_array_get(percpu->scribble, i);
1415 	return addr;
1416 }
1417 
1418 static struct dma_async_tx_descriptor *
1419 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1420 {
1421 	int disks = sh->disks;
1422 	struct page **xor_srcs = to_addr_page(percpu, 0);
1423 	int target = sh->ops.target;
1424 	struct r5dev *tgt = &sh->dev[target];
1425 	struct page *xor_dest = tgt->page;
1426 	int count = 0;
1427 	struct dma_async_tx_descriptor *tx;
1428 	struct async_submit_ctl submit;
1429 	int i;
1430 
1431 	BUG_ON(sh->batch_head);
1432 
1433 	pr_debug("%s: stripe %llu block: %d\n",
1434 		__func__, (unsigned long long)sh->sector, target);
1435 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1436 
1437 	for (i = disks; i--; )
1438 		if (i != target)
1439 			xor_srcs[count++] = sh->dev[i].page;
1440 
1441 	atomic_inc(&sh->count);
1442 
1443 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1444 			  ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1445 	if (unlikely(count == 1))
1446 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1447 	else
1448 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1449 
1450 	return tx;
1451 }
1452 
1453 /* set_syndrome_sources - populate source buffers for gen_syndrome
1454  * @srcs - (struct page *) array of size sh->disks
1455  * @sh - stripe_head to parse
1456  *
1457  * Populates srcs in proper layout order for the stripe and returns the
1458  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1459  * destination buffer is recorded in srcs[count] and the Q destination
1460  * is recorded in srcs[count+1]].
1461  */
1462 static int set_syndrome_sources(struct page **srcs,
1463 				struct stripe_head *sh,
1464 				int srctype)
1465 {
1466 	int disks = sh->disks;
1467 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1468 	int d0_idx = raid6_d0(sh);
1469 	int count;
1470 	int i;
1471 
1472 	for (i = 0; i < disks; i++)
1473 		srcs[i] = NULL;
1474 
1475 	count = 0;
1476 	i = d0_idx;
1477 	do {
1478 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1479 		struct r5dev *dev = &sh->dev[i];
1480 
1481 		if (i == sh->qd_idx || i == sh->pd_idx ||
1482 		    (srctype == SYNDROME_SRC_ALL) ||
1483 		    (srctype == SYNDROME_SRC_WANT_DRAIN &&
1484 		     (test_bit(R5_Wantdrain, &dev->flags) ||
1485 		      test_bit(R5_InJournal, &dev->flags))) ||
1486 		    (srctype == SYNDROME_SRC_WRITTEN &&
1487 		     (dev->written ||
1488 		      test_bit(R5_InJournal, &dev->flags)))) {
1489 			if (test_bit(R5_InJournal, &dev->flags))
1490 				srcs[slot] = sh->dev[i].orig_page;
1491 			else
1492 				srcs[slot] = sh->dev[i].page;
1493 		}
1494 		i = raid6_next_disk(i, disks);
1495 	} while (i != d0_idx);
1496 
1497 	return syndrome_disks;
1498 }
1499 
1500 static struct dma_async_tx_descriptor *
1501 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1502 {
1503 	int disks = sh->disks;
1504 	struct page **blocks = to_addr_page(percpu, 0);
1505 	int target;
1506 	int qd_idx = sh->qd_idx;
1507 	struct dma_async_tx_descriptor *tx;
1508 	struct async_submit_ctl submit;
1509 	struct r5dev *tgt;
1510 	struct page *dest;
1511 	int i;
1512 	int count;
1513 
1514 	BUG_ON(sh->batch_head);
1515 	if (sh->ops.target < 0)
1516 		target = sh->ops.target2;
1517 	else if (sh->ops.target2 < 0)
1518 		target = sh->ops.target;
1519 	else
1520 		/* we should only have one valid target */
1521 		BUG();
1522 	BUG_ON(target < 0);
1523 	pr_debug("%s: stripe %llu block: %d\n",
1524 		__func__, (unsigned long long)sh->sector, target);
1525 
1526 	tgt = &sh->dev[target];
1527 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1528 	dest = tgt->page;
1529 
1530 	atomic_inc(&sh->count);
1531 
1532 	if (target == qd_idx) {
1533 		count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1534 		blocks[count] = NULL; /* regenerating p is not necessary */
1535 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
1536 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1537 				  ops_complete_compute, sh,
1538 				  to_addr_conv(sh, percpu, 0));
1539 		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1540 	} else {
1541 		/* Compute any data- or p-drive using XOR */
1542 		count = 0;
1543 		for (i = disks; i-- ; ) {
1544 			if (i == target || i == qd_idx)
1545 				continue;
1546 			blocks[count++] = sh->dev[i].page;
1547 		}
1548 
1549 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1550 				  NULL, ops_complete_compute, sh,
1551 				  to_addr_conv(sh, percpu, 0));
1552 		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1553 	}
1554 
1555 	return tx;
1556 }
1557 
1558 static struct dma_async_tx_descriptor *
1559 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1560 {
1561 	int i, count, disks = sh->disks;
1562 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1563 	int d0_idx = raid6_d0(sh);
1564 	int faila = -1, failb = -1;
1565 	int target = sh->ops.target;
1566 	int target2 = sh->ops.target2;
1567 	struct r5dev *tgt = &sh->dev[target];
1568 	struct r5dev *tgt2 = &sh->dev[target2];
1569 	struct dma_async_tx_descriptor *tx;
1570 	struct page **blocks = to_addr_page(percpu, 0);
1571 	struct async_submit_ctl submit;
1572 
1573 	BUG_ON(sh->batch_head);
1574 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1575 		 __func__, (unsigned long long)sh->sector, target, target2);
1576 	BUG_ON(target < 0 || target2 < 0);
1577 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1578 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1579 
1580 	/* we need to open-code set_syndrome_sources to handle the
1581 	 * slot number conversion for 'faila' and 'failb'
1582 	 */
1583 	for (i = 0; i < disks ; i++)
1584 		blocks[i] = NULL;
1585 	count = 0;
1586 	i = d0_idx;
1587 	do {
1588 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1589 
1590 		blocks[slot] = sh->dev[i].page;
1591 
1592 		if (i == target)
1593 			faila = slot;
1594 		if (i == target2)
1595 			failb = slot;
1596 		i = raid6_next_disk(i, disks);
1597 	} while (i != d0_idx);
1598 
1599 	BUG_ON(faila == failb);
1600 	if (failb < faila)
1601 		swap(faila, failb);
1602 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1603 		 __func__, (unsigned long long)sh->sector, faila, failb);
1604 
1605 	atomic_inc(&sh->count);
1606 
1607 	if (failb == syndrome_disks+1) {
1608 		/* Q disk is one of the missing disks */
1609 		if (faila == syndrome_disks) {
1610 			/* Missing P+Q, just recompute */
1611 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1612 					  ops_complete_compute, sh,
1613 					  to_addr_conv(sh, percpu, 0));
1614 			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1615 						  STRIPE_SIZE, &submit);
1616 		} else {
1617 			struct page *dest;
1618 			int data_target;
1619 			int qd_idx = sh->qd_idx;
1620 
1621 			/* Missing D+Q: recompute D from P, then recompute Q */
1622 			if (target == qd_idx)
1623 				data_target = target2;
1624 			else
1625 				data_target = target;
1626 
1627 			count = 0;
1628 			for (i = disks; i-- ; ) {
1629 				if (i == data_target || i == qd_idx)
1630 					continue;
1631 				blocks[count++] = sh->dev[i].page;
1632 			}
1633 			dest = sh->dev[data_target].page;
1634 			init_async_submit(&submit,
1635 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1636 					  NULL, NULL, NULL,
1637 					  to_addr_conv(sh, percpu, 0));
1638 			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1639 				       &submit);
1640 
1641 			count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1642 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1643 					  ops_complete_compute, sh,
1644 					  to_addr_conv(sh, percpu, 0));
1645 			return async_gen_syndrome(blocks, 0, count+2,
1646 						  STRIPE_SIZE, &submit);
1647 		}
1648 	} else {
1649 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1650 				  ops_complete_compute, sh,
1651 				  to_addr_conv(sh, percpu, 0));
1652 		if (failb == syndrome_disks) {
1653 			/* We're missing D+P. */
1654 			return async_raid6_datap_recov(syndrome_disks+2,
1655 						       STRIPE_SIZE, faila,
1656 						       blocks, &submit);
1657 		} else {
1658 			/* We're missing D+D. */
1659 			return async_raid6_2data_recov(syndrome_disks+2,
1660 						       STRIPE_SIZE, faila, failb,
1661 						       blocks, &submit);
1662 		}
1663 	}
1664 }
1665 
1666 static void ops_complete_prexor(void *stripe_head_ref)
1667 {
1668 	struct stripe_head *sh = stripe_head_ref;
1669 
1670 	pr_debug("%s: stripe %llu\n", __func__,
1671 		(unsigned long long)sh->sector);
1672 
1673 	if (r5c_is_writeback(sh->raid_conf->log))
1674 		/*
1675 		 * raid5-cache write back uses orig_page during prexor.
1676 		 * After prexor, it is time to free orig_page
1677 		 */
1678 		r5c_release_extra_page(sh);
1679 }
1680 
1681 static struct dma_async_tx_descriptor *
1682 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1683 		struct dma_async_tx_descriptor *tx)
1684 {
1685 	int disks = sh->disks;
1686 	struct page **xor_srcs = to_addr_page(percpu, 0);
1687 	int count = 0, pd_idx = sh->pd_idx, i;
1688 	struct async_submit_ctl submit;
1689 
1690 	/* existing parity data subtracted */
1691 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1692 
1693 	BUG_ON(sh->batch_head);
1694 	pr_debug("%s: stripe %llu\n", __func__,
1695 		(unsigned long long)sh->sector);
1696 
1697 	for (i = disks; i--; ) {
1698 		struct r5dev *dev = &sh->dev[i];
1699 		/* Only process blocks that are known to be uptodate */
1700 		if (test_bit(R5_InJournal, &dev->flags))
1701 			xor_srcs[count++] = dev->orig_page;
1702 		else if (test_bit(R5_Wantdrain, &dev->flags))
1703 			xor_srcs[count++] = dev->page;
1704 	}
1705 
1706 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1707 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1708 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1709 
1710 	return tx;
1711 }
1712 
1713 static struct dma_async_tx_descriptor *
1714 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1715 		struct dma_async_tx_descriptor *tx)
1716 {
1717 	struct page **blocks = to_addr_page(percpu, 0);
1718 	int count;
1719 	struct async_submit_ctl submit;
1720 
1721 	pr_debug("%s: stripe %llu\n", __func__,
1722 		(unsigned long long)sh->sector);
1723 
1724 	count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1725 
1726 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1727 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1728 	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1729 
1730 	return tx;
1731 }
1732 
1733 static struct dma_async_tx_descriptor *
1734 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1735 {
1736 	struct r5conf *conf = sh->raid_conf;
1737 	int disks = sh->disks;
1738 	int i;
1739 	struct stripe_head *head_sh = sh;
1740 
1741 	pr_debug("%s: stripe %llu\n", __func__,
1742 		(unsigned long long)sh->sector);
1743 
1744 	for (i = disks; i--; ) {
1745 		struct r5dev *dev;
1746 		struct bio *chosen;
1747 
1748 		sh = head_sh;
1749 		if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1750 			struct bio *wbi;
1751 
1752 again:
1753 			dev = &sh->dev[i];
1754 			/*
1755 			 * clear R5_InJournal, so when rewriting a page in
1756 			 * journal, it is not skipped by r5l_log_stripe()
1757 			 */
1758 			clear_bit(R5_InJournal, &dev->flags);
1759 			spin_lock_irq(&sh->stripe_lock);
1760 			chosen = dev->towrite;
1761 			dev->towrite = NULL;
1762 			sh->overwrite_disks = 0;
1763 			BUG_ON(dev->written);
1764 			wbi = dev->written = chosen;
1765 			spin_unlock_irq(&sh->stripe_lock);
1766 			WARN_ON(dev->page != dev->orig_page);
1767 
1768 			while (wbi && wbi->bi_iter.bi_sector <
1769 				dev->sector + STRIPE_SECTORS) {
1770 				if (wbi->bi_opf & REQ_FUA)
1771 					set_bit(R5_WantFUA, &dev->flags);
1772 				if (wbi->bi_opf & REQ_SYNC)
1773 					set_bit(R5_SyncIO, &dev->flags);
1774 				if (bio_op(wbi) == REQ_OP_DISCARD)
1775 					set_bit(R5_Discard, &dev->flags);
1776 				else {
1777 					tx = async_copy_data(1, wbi, &dev->page,
1778 							     dev->sector, tx, sh,
1779 							     r5c_is_writeback(conf->log));
1780 					if (dev->page != dev->orig_page &&
1781 					    !r5c_is_writeback(conf->log)) {
1782 						set_bit(R5_SkipCopy, &dev->flags);
1783 						clear_bit(R5_UPTODATE, &dev->flags);
1784 						clear_bit(R5_OVERWRITE, &dev->flags);
1785 					}
1786 				}
1787 				wbi = r5_next_bio(wbi, dev->sector);
1788 			}
1789 
1790 			if (head_sh->batch_head) {
1791 				sh = list_first_entry(&sh->batch_list,
1792 						      struct stripe_head,
1793 						      batch_list);
1794 				if (sh == head_sh)
1795 					continue;
1796 				goto again;
1797 			}
1798 		}
1799 	}
1800 
1801 	return tx;
1802 }
1803 
1804 static void ops_complete_reconstruct(void *stripe_head_ref)
1805 {
1806 	struct stripe_head *sh = stripe_head_ref;
1807 	int disks = sh->disks;
1808 	int pd_idx = sh->pd_idx;
1809 	int qd_idx = sh->qd_idx;
1810 	int i;
1811 	bool fua = false, sync = false, discard = false;
1812 
1813 	pr_debug("%s: stripe %llu\n", __func__,
1814 		(unsigned long long)sh->sector);
1815 
1816 	for (i = disks; i--; ) {
1817 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1818 		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1819 		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1820 	}
1821 
1822 	for (i = disks; i--; ) {
1823 		struct r5dev *dev = &sh->dev[i];
1824 
1825 		if (dev->written || i == pd_idx || i == qd_idx) {
1826 			if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1827 				set_bit(R5_UPTODATE, &dev->flags);
1828 			if (fua)
1829 				set_bit(R5_WantFUA, &dev->flags);
1830 			if (sync)
1831 				set_bit(R5_SyncIO, &dev->flags);
1832 		}
1833 	}
1834 
1835 	if (sh->reconstruct_state == reconstruct_state_drain_run)
1836 		sh->reconstruct_state = reconstruct_state_drain_result;
1837 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1838 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1839 	else {
1840 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1841 		sh->reconstruct_state = reconstruct_state_result;
1842 	}
1843 
1844 	set_bit(STRIPE_HANDLE, &sh->state);
1845 	raid5_release_stripe(sh);
1846 }
1847 
1848 static void
1849 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1850 		     struct dma_async_tx_descriptor *tx)
1851 {
1852 	int disks = sh->disks;
1853 	struct page **xor_srcs;
1854 	struct async_submit_ctl submit;
1855 	int count, pd_idx = sh->pd_idx, i;
1856 	struct page *xor_dest;
1857 	int prexor = 0;
1858 	unsigned long flags;
1859 	int j = 0;
1860 	struct stripe_head *head_sh = sh;
1861 	int last_stripe;
1862 
1863 	pr_debug("%s: stripe %llu\n", __func__,
1864 		(unsigned long long)sh->sector);
1865 
1866 	for (i = 0; i < sh->disks; i++) {
1867 		if (pd_idx == i)
1868 			continue;
1869 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1870 			break;
1871 	}
1872 	if (i >= sh->disks) {
1873 		atomic_inc(&sh->count);
1874 		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1875 		ops_complete_reconstruct(sh);
1876 		return;
1877 	}
1878 again:
1879 	count = 0;
1880 	xor_srcs = to_addr_page(percpu, j);
1881 	/* check if prexor is active which means only process blocks
1882 	 * that are part of a read-modify-write (written)
1883 	 */
1884 	if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1885 		prexor = 1;
1886 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1887 		for (i = disks; i--; ) {
1888 			struct r5dev *dev = &sh->dev[i];
1889 			if (head_sh->dev[i].written ||
1890 			    test_bit(R5_InJournal, &head_sh->dev[i].flags))
1891 				xor_srcs[count++] = dev->page;
1892 		}
1893 	} else {
1894 		xor_dest = sh->dev[pd_idx].page;
1895 		for (i = disks; i--; ) {
1896 			struct r5dev *dev = &sh->dev[i];
1897 			if (i != pd_idx)
1898 				xor_srcs[count++] = dev->page;
1899 		}
1900 	}
1901 
1902 	/* 1/ if we prexor'd then the dest is reused as a source
1903 	 * 2/ if we did not prexor then we are redoing the parity
1904 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1905 	 * for the synchronous xor case
1906 	 */
1907 	last_stripe = !head_sh->batch_head ||
1908 		list_first_entry(&sh->batch_list,
1909 				 struct stripe_head, batch_list) == head_sh;
1910 	if (last_stripe) {
1911 		flags = ASYNC_TX_ACK |
1912 			(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1913 
1914 		atomic_inc(&head_sh->count);
1915 		init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1916 				  to_addr_conv(sh, percpu, j));
1917 	} else {
1918 		flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1919 		init_async_submit(&submit, flags, tx, NULL, NULL,
1920 				  to_addr_conv(sh, percpu, j));
1921 	}
1922 
1923 	if (unlikely(count == 1))
1924 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1925 	else
1926 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1927 	if (!last_stripe) {
1928 		j++;
1929 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1930 				      batch_list);
1931 		goto again;
1932 	}
1933 }
1934 
1935 static void
1936 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1937 		     struct dma_async_tx_descriptor *tx)
1938 {
1939 	struct async_submit_ctl submit;
1940 	struct page **blocks;
1941 	int count, i, j = 0;
1942 	struct stripe_head *head_sh = sh;
1943 	int last_stripe;
1944 	int synflags;
1945 	unsigned long txflags;
1946 
1947 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1948 
1949 	for (i = 0; i < sh->disks; i++) {
1950 		if (sh->pd_idx == i || sh->qd_idx == i)
1951 			continue;
1952 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1953 			break;
1954 	}
1955 	if (i >= sh->disks) {
1956 		atomic_inc(&sh->count);
1957 		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1958 		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1959 		ops_complete_reconstruct(sh);
1960 		return;
1961 	}
1962 
1963 again:
1964 	blocks = to_addr_page(percpu, j);
1965 
1966 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1967 		synflags = SYNDROME_SRC_WRITTEN;
1968 		txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1969 	} else {
1970 		synflags = SYNDROME_SRC_ALL;
1971 		txflags = ASYNC_TX_ACK;
1972 	}
1973 
1974 	count = set_syndrome_sources(blocks, sh, synflags);
1975 	last_stripe = !head_sh->batch_head ||
1976 		list_first_entry(&sh->batch_list,
1977 				 struct stripe_head, batch_list) == head_sh;
1978 
1979 	if (last_stripe) {
1980 		atomic_inc(&head_sh->count);
1981 		init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1982 				  head_sh, to_addr_conv(sh, percpu, j));
1983 	} else
1984 		init_async_submit(&submit, 0, tx, NULL, NULL,
1985 				  to_addr_conv(sh, percpu, j));
1986 	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1987 	if (!last_stripe) {
1988 		j++;
1989 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1990 				      batch_list);
1991 		goto again;
1992 	}
1993 }
1994 
1995 static void ops_complete_check(void *stripe_head_ref)
1996 {
1997 	struct stripe_head *sh = stripe_head_ref;
1998 
1999 	pr_debug("%s: stripe %llu\n", __func__,
2000 		(unsigned long long)sh->sector);
2001 
2002 	sh->check_state = check_state_check_result;
2003 	set_bit(STRIPE_HANDLE, &sh->state);
2004 	raid5_release_stripe(sh);
2005 }
2006 
2007 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
2008 {
2009 	int disks = sh->disks;
2010 	int pd_idx = sh->pd_idx;
2011 	int qd_idx = sh->qd_idx;
2012 	struct page *xor_dest;
2013 	struct page **xor_srcs = to_addr_page(percpu, 0);
2014 	struct dma_async_tx_descriptor *tx;
2015 	struct async_submit_ctl submit;
2016 	int count;
2017 	int i;
2018 
2019 	pr_debug("%s: stripe %llu\n", __func__,
2020 		(unsigned long long)sh->sector);
2021 
2022 	BUG_ON(sh->batch_head);
2023 	count = 0;
2024 	xor_dest = sh->dev[pd_idx].page;
2025 	xor_srcs[count++] = xor_dest;
2026 	for (i = disks; i--; ) {
2027 		if (i == pd_idx || i == qd_idx)
2028 			continue;
2029 		xor_srcs[count++] = sh->dev[i].page;
2030 	}
2031 
2032 	init_async_submit(&submit, 0, NULL, NULL, NULL,
2033 			  to_addr_conv(sh, percpu, 0));
2034 	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
2035 			   &sh->ops.zero_sum_result, &submit);
2036 
2037 	atomic_inc(&sh->count);
2038 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2039 	tx = async_trigger_callback(&submit);
2040 }
2041 
2042 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2043 {
2044 	struct page **srcs = to_addr_page(percpu, 0);
2045 	struct async_submit_ctl submit;
2046 	int count;
2047 
2048 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2049 		(unsigned long long)sh->sector, checkp);
2050 
2051 	BUG_ON(sh->batch_head);
2052 	count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
2053 	if (!checkp)
2054 		srcs[count] = NULL;
2055 
2056 	atomic_inc(&sh->count);
2057 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2058 			  sh, to_addr_conv(sh, percpu, 0));
2059 	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
2060 			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
2061 }
2062 
2063 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2064 {
2065 	int overlap_clear = 0, i, disks = sh->disks;
2066 	struct dma_async_tx_descriptor *tx = NULL;
2067 	struct r5conf *conf = sh->raid_conf;
2068 	int level = conf->level;
2069 	struct raid5_percpu *percpu;
2070 	unsigned long cpu;
2071 
2072 	cpu = get_cpu();
2073 	percpu = per_cpu_ptr(conf->percpu, cpu);
2074 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2075 		ops_run_biofill(sh);
2076 		overlap_clear++;
2077 	}
2078 
2079 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2080 		if (level < 6)
2081 			tx = ops_run_compute5(sh, percpu);
2082 		else {
2083 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
2084 				tx = ops_run_compute6_1(sh, percpu);
2085 			else
2086 				tx = ops_run_compute6_2(sh, percpu);
2087 		}
2088 		/* terminate the chain if reconstruct is not set to be run */
2089 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2090 			async_tx_ack(tx);
2091 	}
2092 
2093 	if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2094 		tx = ops_run_partial_parity(sh, percpu, tx);
2095 
2096 	if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2097 		if (level < 6)
2098 			tx = ops_run_prexor5(sh, percpu, tx);
2099 		else
2100 			tx = ops_run_prexor6(sh, percpu, tx);
2101 	}
2102 
2103 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2104 		tx = ops_run_biodrain(sh, tx);
2105 		overlap_clear++;
2106 	}
2107 
2108 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2109 		if (level < 6)
2110 			ops_run_reconstruct5(sh, percpu, tx);
2111 		else
2112 			ops_run_reconstruct6(sh, percpu, tx);
2113 	}
2114 
2115 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2116 		if (sh->check_state == check_state_run)
2117 			ops_run_check_p(sh, percpu);
2118 		else if (sh->check_state == check_state_run_q)
2119 			ops_run_check_pq(sh, percpu, 0);
2120 		else if (sh->check_state == check_state_run_pq)
2121 			ops_run_check_pq(sh, percpu, 1);
2122 		else
2123 			BUG();
2124 	}
2125 
2126 	if (overlap_clear && !sh->batch_head)
2127 		for (i = disks; i--; ) {
2128 			struct r5dev *dev = &sh->dev[i];
2129 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
2130 				wake_up(&sh->raid_conf->wait_for_overlap);
2131 		}
2132 	put_cpu();
2133 }
2134 
2135 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2136 	int disks)
2137 {
2138 	struct stripe_head *sh;
2139 	int i;
2140 
2141 	sh = kmem_cache_zalloc(sc, gfp);
2142 	if (sh) {
2143 		spin_lock_init(&sh->stripe_lock);
2144 		spin_lock_init(&sh->batch_lock);
2145 		INIT_LIST_HEAD(&sh->batch_list);
2146 		INIT_LIST_HEAD(&sh->lru);
2147 		INIT_LIST_HEAD(&sh->r5c);
2148 		INIT_LIST_HEAD(&sh->log_list);
2149 		atomic_set(&sh->count, 1);
2150 		sh->log_start = MaxSector;
2151 		for (i = 0; i < disks; i++) {
2152 			struct r5dev *dev = &sh->dev[i];
2153 
2154 			bio_init(&dev->req, &dev->vec, 1);
2155 			bio_init(&dev->rreq, &dev->rvec, 1);
2156 		}
2157 	}
2158 	return sh;
2159 }
2160 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2161 {
2162 	struct stripe_head *sh;
2163 
2164 	sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size);
2165 	if (!sh)
2166 		return 0;
2167 
2168 	sh->raid_conf = conf;
2169 
2170 	if (grow_buffers(sh, gfp)) {
2171 		shrink_buffers(sh);
2172 		kmem_cache_free(conf->slab_cache, sh);
2173 		return 0;
2174 	}
2175 	sh->hash_lock_index =
2176 		conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2177 	/* we just created an active stripe so... */
2178 	atomic_inc(&conf->active_stripes);
2179 
2180 	raid5_release_stripe(sh);
2181 	conf->max_nr_stripes++;
2182 	return 1;
2183 }
2184 
2185 static int grow_stripes(struct r5conf *conf, int num)
2186 {
2187 	struct kmem_cache *sc;
2188 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
2189 
2190 	if (conf->mddev->gendisk)
2191 		sprintf(conf->cache_name[0],
2192 			"raid%d-%s", conf->level, mdname(conf->mddev));
2193 	else
2194 		sprintf(conf->cache_name[0],
2195 			"raid%d-%p", conf->level, conf->mddev);
2196 	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2197 
2198 	conf->active_name = 0;
2199 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
2200 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2201 			       0, 0, NULL);
2202 	if (!sc)
2203 		return 1;
2204 	conf->slab_cache = sc;
2205 	conf->pool_size = devs;
2206 	while (num--)
2207 		if (!grow_one_stripe(conf, GFP_KERNEL))
2208 			return 1;
2209 
2210 	return 0;
2211 }
2212 
2213 /**
2214  * scribble_len - return the required size of the scribble region
2215  * @num - total number of disks in the array
2216  *
2217  * The size must be enough to contain:
2218  * 1/ a struct page pointer for each device in the array +2
2219  * 2/ room to convert each entry in (1) to its corresponding dma
2220  *    (dma_map_page()) or page (page_address()) address.
2221  *
2222  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2223  * calculate over all devices (not just the data blocks), using zeros in place
2224  * of the P and Q blocks.
2225  */
2226 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2227 {
2228 	struct flex_array *ret;
2229 	size_t len;
2230 
2231 	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2232 	ret = flex_array_alloc(len, cnt, flags);
2233 	if (!ret)
2234 		return NULL;
2235 	/* always prealloc all elements, so no locking is required */
2236 	if (flex_array_prealloc(ret, 0, cnt, flags)) {
2237 		flex_array_free(ret);
2238 		return NULL;
2239 	}
2240 	return ret;
2241 }
2242 
2243 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2244 {
2245 	unsigned long cpu;
2246 	int err = 0;
2247 
2248 	/*
2249 	 * Never shrink. And mddev_suspend() could deadlock if this is called
2250 	 * from raid5d. In that case, scribble_disks and scribble_sectors
2251 	 * should equal to new_disks and new_sectors
2252 	 */
2253 	if (conf->scribble_disks >= new_disks &&
2254 	    conf->scribble_sectors >= new_sectors)
2255 		return 0;
2256 	mddev_suspend(conf->mddev);
2257 	get_online_cpus();
2258 	for_each_present_cpu(cpu) {
2259 		struct raid5_percpu *percpu;
2260 		struct flex_array *scribble;
2261 
2262 		percpu = per_cpu_ptr(conf->percpu, cpu);
2263 		scribble = scribble_alloc(new_disks,
2264 					  new_sectors / STRIPE_SECTORS,
2265 					  GFP_NOIO);
2266 
2267 		if (scribble) {
2268 			flex_array_free(percpu->scribble);
2269 			percpu->scribble = scribble;
2270 		} else {
2271 			err = -ENOMEM;
2272 			break;
2273 		}
2274 	}
2275 	put_online_cpus();
2276 	mddev_resume(conf->mddev);
2277 	if (!err) {
2278 		conf->scribble_disks = new_disks;
2279 		conf->scribble_sectors = new_sectors;
2280 	}
2281 	return err;
2282 }
2283 
2284 static int resize_stripes(struct r5conf *conf, int newsize)
2285 {
2286 	/* Make all the stripes able to hold 'newsize' devices.
2287 	 * New slots in each stripe get 'page' set to a new page.
2288 	 *
2289 	 * This happens in stages:
2290 	 * 1/ create a new kmem_cache and allocate the required number of
2291 	 *    stripe_heads.
2292 	 * 2/ gather all the old stripe_heads and transfer the pages across
2293 	 *    to the new stripe_heads.  This will have the side effect of
2294 	 *    freezing the array as once all stripe_heads have been collected,
2295 	 *    no IO will be possible.  Old stripe heads are freed once their
2296 	 *    pages have been transferred over, and the old kmem_cache is
2297 	 *    freed when all stripes are done.
2298 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2299 	 *    we simple return a failure status - no need to clean anything up.
2300 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
2301 	 *    If this fails, we don't bother trying the shrink the
2302 	 *    stripe_heads down again, we just leave them as they are.
2303 	 *    As each stripe_head is processed the new one is released into
2304 	 *    active service.
2305 	 *
2306 	 * Once step2 is started, we cannot afford to wait for a write,
2307 	 * so we use GFP_NOIO allocations.
2308 	 */
2309 	struct stripe_head *osh, *nsh;
2310 	LIST_HEAD(newstripes);
2311 	struct disk_info *ndisks;
2312 	int err;
2313 	struct kmem_cache *sc;
2314 	int i;
2315 	int hash, cnt;
2316 
2317 	if (newsize <= conf->pool_size)
2318 		return 0; /* never bother to shrink */
2319 
2320 	err = md_allow_write(conf->mddev);
2321 	if (err)
2322 		return err;
2323 
2324 	/* Step 1 */
2325 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2326 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2327 			       0, 0, NULL);
2328 	if (!sc)
2329 		return -ENOMEM;
2330 
2331 	/* Need to ensure auto-resizing doesn't interfere */
2332 	mutex_lock(&conf->cache_size_mutex);
2333 
2334 	for (i = conf->max_nr_stripes; i; i--) {
2335 		nsh = alloc_stripe(sc, GFP_KERNEL, newsize);
2336 		if (!nsh)
2337 			break;
2338 
2339 		nsh->raid_conf = conf;
2340 		list_add(&nsh->lru, &newstripes);
2341 	}
2342 	if (i) {
2343 		/* didn't get enough, give up */
2344 		while (!list_empty(&newstripes)) {
2345 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
2346 			list_del(&nsh->lru);
2347 			kmem_cache_free(sc, nsh);
2348 		}
2349 		kmem_cache_destroy(sc);
2350 		mutex_unlock(&conf->cache_size_mutex);
2351 		return -ENOMEM;
2352 	}
2353 	/* Step 2 - Must use GFP_NOIO now.
2354 	 * OK, we have enough stripes, start collecting inactive
2355 	 * stripes and copying them over
2356 	 */
2357 	hash = 0;
2358 	cnt = 0;
2359 	list_for_each_entry(nsh, &newstripes, lru) {
2360 		lock_device_hash_lock(conf, hash);
2361 		wait_event_cmd(conf->wait_for_stripe,
2362 				    !list_empty(conf->inactive_list + hash),
2363 				    unlock_device_hash_lock(conf, hash),
2364 				    lock_device_hash_lock(conf, hash));
2365 		osh = get_free_stripe(conf, hash);
2366 		unlock_device_hash_lock(conf, hash);
2367 
2368 		for(i=0; i<conf->pool_size; i++) {
2369 			nsh->dev[i].page = osh->dev[i].page;
2370 			nsh->dev[i].orig_page = osh->dev[i].page;
2371 		}
2372 		nsh->hash_lock_index = hash;
2373 		kmem_cache_free(conf->slab_cache, osh);
2374 		cnt++;
2375 		if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2376 		    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2377 			hash++;
2378 			cnt = 0;
2379 		}
2380 	}
2381 	kmem_cache_destroy(conf->slab_cache);
2382 
2383 	/* Step 3.
2384 	 * At this point, we are holding all the stripes so the array
2385 	 * is completely stalled, so now is a good time to resize
2386 	 * conf->disks and the scribble region
2387 	 */
2388 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2389 	if (ndisks) {
2390 		for (i = 0; i < conf->pool_size; i++)
2391 			ndisks[i] = conf->disks[i];
2392 
2393 		for (i = conf->pool_size; i < newsize; i++) {
2394 			ndisks[i].extra_page = alloc_page(GFP_NOIO);
2395 			if (!ndisks[i].extra_page)
2396 				err = -ENOMEM;
2397 		}
2398 
2399 		if (err) {
2400 			for (i = conf->pool_size; i < newsize; i++)
2401 				if (ndisks[i].extra_page)
2402 					put_page(ndisks[i].extra_page);
2403 			kfree(ndisks);
2404 		} else {
2405 			kfree(conf->disks);
2406 			conf->disks = ndisks;
2407 		}
2408 	} else
2409 		err = -ENOMEM;
2410 
2411 	mutex_unlock(&conf->cache_size_mutex);
2412 
2413 	conf->slab_cache = sc;
2414 	conf->active_name = 1-conf->active_name;
2415 
2416 	/* Step 4, return new stripes to service */
2417 	while(!list_empty(&newstripes)) {
2418 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
2419 		list_del_init(&nsh->lru);
2420 
2421 		for (i=conf->raid_disks; i < newsize; i++)
2422 			if (nsh->dev[i].page == NULL) {
2423 				struct page *p = alloc_page(GFP_NOIO);
2424 				nsh->dev[i].page = p;
2425 				nsh->dev[i].orig_page = p;
2426 				if (!p)
2427 					err = -ENOMEM;
2428 			}
2429 		raid5_release_stripe(nsh);
2430 	}
2431 	/* critical section pass, GFP_NOIO no longer needed */
2432 
2433 	if (!err)
2434 		conf->pool_size = newsize;
2435 	return err;
2436 }
2437 
2438 static int drop_one_stripe(struct r5conf *conf)
2439 {
2440 	struct stripe_head *sh;
2441 	int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2442 
2443 	spin_lock_irq(conf->hash_locks + hash);
2444 	sh = get_free_stripe(conf, hash);
2445 	spin_unlock_irq(conf->hash_locks + hash);
2446 	if (!sh)
2447 		return 0;
2448 	BUG_ON(atomic_read(&sh->count));
2449 	shrink_buffers(sh);
2450 	kmem_cache_free(conf->slab_cache, sh);
2451 	atomic_dec(&conf->active_stripes);
2452 	conf->max_nr_stripes--;
2453 	return 1;
2454 }
2455 
2456 static void shrink_stripes(struct r5conf *conf)
2457 {
2458 	while (conf->max_nr_stripes &&
2459 	       drop_one_stripe(conf))
2460 		;
2461 
2462 	kmem_cache_destroy(conf->slab_cache);
2463 	conf->slab_cache = NULL;
2464 }
2465 
2466 static void raid5_end_read_request(struct bio * bi)
2467 {
2468 	struct stripe_head *sh = bi->bi_private;
2469 	struct r5conf *conf = sh->raid_conf;
2470 	int disks = sh->disks, i;
2471 	char b[BDEVNAME_SIZE];
2472 	struct md_rdev *rdev = NULL;
2473 	sector_t s;
2474 
2475 	for (i=0 ; i<disks; i++)
2476 		if (bi == &sh->dev[i].req)
2477 			break;
2478 
2479 	pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2480 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2481 		bi->bi_error);
2482 	if (i == disks) {
2483 		bio_reset(bi);
2484 		BUG();
2485 		return;
2486 	}
2487 	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2488 		/* If replacement finished while this request was outstanding,
2489 		 * 'replacement' might be NULL already.
2490 		 * In that case it moved down to 'rdev'.
2491 		 * rdev is not removed until all requests are finished.
2492 		 */
2493 		rdev = conf->disks[i].replacement;
2494 	if (!rdev)
2495 		rdev = conf->disks[i].rdev;
2496 
2497 	if (use_new_offset(conf, sh))
2498 		s = sh->sector + rdev->new_data_offset;
2499 	else
2500 		s = sh->sector + rdev->data_offset;
2501 	if (!bi->bi_error) {
2502 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
2503 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2504 			/* Note that this cannot happen on a
2505 			 * replacement device.  We just fail those on
2506 			 * any error
2507 			 */
2508 			pr_info_ratelimited(
2509 				"md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
2510 				mdname(conf->mddev), STRIPE_SECTORS,
2511 				(unsigned long long)s,
2512 				bdevname(rdev->bdev, b));
2513 			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2514 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2515 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2516 		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2517 			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2518 
2519 		if (test_bit(R5_InJournal, &sh->dev[i].flags))
2520 			/*
2521 			 * end read for a page in journal, this
2522 			 * must be preparing for prexor in rmw
2523 			 */
2524 			set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2525 
2526 		if (atomic_read(&rdev->read_errors))
2527 			atomic_set(&rdev->read_errors, 0);
2528 	} else {
2529 		const char *bdn = bdevname(rdev->bdev, b);
2530 		int retry = 0;
2531 		int set_bad = 0;
2532 
2533 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2534 		atomic_inc(&rdev->read_errors);
2535 		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2536 			pr_warn_ratelimited(
2537 				"md/raid:%s: read error on replacement device (sector %llu on %s).\n",
2538 				mdname(conf->mddev),
2539 				(unsigned long long)s,
2540 				bdn);
2541 		else if (conf->mddev->degraded >= conf->max_degraded) {
2542 			set_bad = 1;
2543 			pr_warn_ratelimited(
2544 				"md/raid:%s: read error not correctable (sector %llu on %s).\n",
2545 				mdname(conf->mddev),
2546 				(unsigned long long)s,
2547 				bdn);
2548 		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2549 			/* Oh, no!!! */
2550 			set_bad = 1;
2551 			pr_warn_ratelimited(
2552 				"md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
2553 				mdname(conf->mddev),
2554 				(unsigned long long)s,
2555 				bdn);
2556 		} else if (atomic_read(&rdev->read_errors)
2557 			 > conf->max_nr_stripes)
2558 			pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2559 			       mdname(conf->mddev), bdn);
2560 		else
2561 			retry = 1;
2562 		if (set_bad && test_bit(In_sync, &rdev->flags)
2563 		    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2564 			retry = 1;
2565 		if (retry)
2566 			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2567 				set_bit(R5_ReadError, &sh->dev[i].flags);
2568 				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2569 			} else
2570 				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2571 		else {
2572 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2573 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2574 			if (!(set_bad
2575 			      && test_bit(In_sync, &rdev->flags)
2576 			      && rdev_set_badblocks(
2577 				      rdev, sh->sector, STRIPE_SECTORS, 0)))
2578 				md_error(conf->mddev, rdev);
2579 		}
2580 	}
2581 	rdev_dec_pending(rdev, conf->mddev);
2582 	bio_reset(bi);
2583 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
2584 	set_bit(STRIPE_HANDLE, &sh->state);
2585 	raid5_release_stripe(sh);
2586 }
2587 
2588 static void raid5_end_write_request(struct bio *bi)
2589 {
2590 	struct stripe_head *sh = bi->bi_private;
2591 	struct r5conf *conf = sh->raid_conf;
2592 	int disks = sh->disks, i;
2593 	struct md_rdev *uninitialized_var(rdev);
2594 	sector_t first_bad;
2595 	int bad_sectors;
2596 	int replacement = 0;
2597 
2598 	for (i = 0 ; i < disks; i++) {
2599 		if (bi == &sh->dev[i].req) {
2600 			rdev = conf->disks[i].rdev;
2601 			break;
2602 		}
2603 		if (bi == &sh->dev[i].rreq) {
2604 			rdev = conf->disks[i].replacement;
2605 			if (rdev)
2606 				replacement = 1;
2607 			else
2608 				/* rdev was removed and 'replacement'
2609 				 * replaced it.  rdev is not removed
2610 				 * until all requests are finished.
2611 				 */
2612 				rdev = conf->disks[i].rdev;
2613 			break;
2614 		}
2615 	}
2616 	pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2617 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2618 		bi->bi_error);
2619 	if (i == disks) {
2620 		bio_reset(bi);
2621 		BUG();
2622 		return;
2623 	}
2624 
2625 	if (replacement) {
2626 		if (bi->bi_error)
2627 			md_error(conf->mddev, rdev);
2628 		else if (is_badblock(rdev, sh->sector,
2629 				     STRIPE_SECTORS,
2630 				     &first_bad, &bad_sectors))
2631 			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2632 	} else {
2633 		if (bi->bi_error) {
2634 			set_bit(STRIPE_DEGRADED, &sh->state);
2635 			set_bit(WriteErrorSeen, &rdev->flags);
2636 			set_bit(R5_WriteError, &sh->dev[i].flags);
2637 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2638 				set_bit(MD_RECOVERY_NEEDED,
2639 					&rdev->mddev->recovery);
2640 		} else if (is_badblock(rdev, sh->sector,
2641 				       STRIPE_SECTORS,
2642 				       &first_bad, &bad_sectors)) {
2643 			set_bit(R5_MadeGood, &sh->dev[i].flags);
2644 			if (test_bit(R5_ReadError, &sh->dev[i].flags))
2645 				/* That was a successful write so make
2646 				 * sure it looks like we already did
2647 				 * a re-write.
2648 				 */
2649 				set_bit(R5_ReWrite, &sh->dev[i].flags);
2650 		}
2651 	}
2652 	rdev_dec_pending(rdev, conf->mddev);
2653 
2654 	if (sh->batch_head && bi->bi_error && !replacement)
2655 		set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2656 
2657 	bio_reset(bi);
2658 	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2659 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2660 	set_bit(STRIPE_HANDLE, &sh->state);
2661 	raid5_release_stripe(sh);
2662 
2663 	if (sh->batch_head && sh != sh->batch_head)
2664 		raid5_release_stripe(sh->batch_head);
2665 }
2666 
2667 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2668 {
2669 	struct r5dev *dev = &sh->dev[i];
2670 
2671 	dev->flags = 0;
2672 	dev->sector = raid5_compute_blocknr(sh, i, previous);
2673 }
2674 
2675 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2676 {
2677 	char b[BDEVNAME_SIZE];
2678 	struct r5conf *conf = mddev->private;
2679 	unsigned long flags;
2680 	pr_debug("raid456: error called\n");
2681 
2682 	spin_lock_irqsave(&conf->device_lock, flags);
2683 	clear_bit(In_sync, &rdev->flags);
2684 	mddev->degraded = raid5_calc_degraded(conf);
2685 	spin_unlock_irqrestore(&conf->device_lock, flags);
2686 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2687 
2688 	set_bit(Blocked, &rdev->flags);
2689 	set_bit(Faulty, &rdev->flags);
2690 	set_mask_bits(&mddev->sb_flags, 0,
2691 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2692 	pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2693 		"md/raid:%s: Operation continuing on %d devices.\n",
2694 		mdname(mddev),
2695 		bdevname(rdev->bdev, b),
2696 		mdname(mddev),
2697 		conf->raid_disks - mddev->degraded);
2698 	r5c_update_on_rdev_error(mddev);
2699 }
2700 
2701 /*
2702  * Input: a 'big' sector number,
2703  * Output: index of the data and parity disk, and the sector # in them.
2704  */
2705 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2706 			      int previous, int *dd_idx,
2707 			      struct stripe_head *sh)
2708 {
2709 	sector_t stripe, stripe2;
2710 	sector_t chunk_number;
2711 	unsigned int chunk_offset;
2712 	int pd_idx, qd_idx;
2713 	int ddf_layout = 0;
2714 	sector_t new_sector;
2715 	int algorithm = previous ? conf->prev_algo
2716 				 : conf->algorithm;
2717 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2718 					 : conf->chunk_sectors;
2719 	int raid_disks = previous ? conf->previous_raid_disks
2720 				  : conf->raid_disks;
2721 	int data_disks = raid_disks - conf->max_degraded;
2722 
2723 	/* First compute the information on this sector */
2724 
2725 	/*
2726 	 * Compute the chunk number and the sector offset inside the chunk
2727 	 */
2728 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
2729 	chunk_number = r_sector;
2730 
2731 	/*
2732 	 * Compute the stripe number
2733 	 */
2734 	stripe = chunk_number;
2735 	*dd_idx = sector_div(stripe, data_disks);
2736 	stripe2 = stripe;
2737 	/*
2738 	 * Select the parity disk based on the user selected algorithm.
2739 	 */
2740 	pd_idx = qd_idx = -1;
2741 	switch(conf->level) {
2742 	case 4:
2743 		pd_idx = data_disks;
2744 		break;
2745 	case 5:
2746 		switch (algorithm) {
2747 		case ALGORITHM_LEFT_ASYMMETRIC:
2748 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2749 			if (*dd_idx >= pd_idx)
2750 				(*dd_idx)++;
2751 			break;
2752 		case ALGORITHM_RIGHT_ASYMMETRIC:
2753 			pd_idx = sector_div(stripe2, raid_disks);
2754 			if (*dd_idx >= pd_idx)
2755 				(*dd_idx)++;
2756 			break;
2757 		case ALGORITHM_LEFT_SYMMETRIC:
2758 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2759 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2760 			break;
2761 		case ALGORITHM_RIGHT_SYMMETRIC:
2762 			pd_idx = sector_div(stripe2, raid_disks);
2763 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2764 			break;
2765 		case ALGORITHM_PARITY_0:
2766 			pd_idx = 0;
2767 			(*dd_idx)++;
2768 			break;
2769 		case ALGORITHM_PARITY_N:
2770 			pd_idx = data_disks;
2771 			break;
2772 		default:
2773 			BUG();
2774 		}
2775 		break;
2776 	case 6:
2777 
2778 		switch (algorithm) {
2779 		case ALGORITHM_LEFT_ASYMMETRIC:
2780 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2781 			qd_idx = pd_idx + 1;
2782 			if (pd_idx == raid_disks-1) {
2783 				(*dd_idx)++;	/* Q D D D P */
2784 				qd_idx = 0;
2785 			} else if (*dd_idx >= pd_idx)
2786 				(*dd_idx) += 2; /* D D P Q D */
2787 			break;
2788 		case ALGORITHM_RIGHT_ASYMMETRIC:
2789 			pd_idx = sector_div(stripe2, raid_disks);
2790 			qd_idx = pd_idx + 1;
2791 			if (pd_idx == raid_disks-1) {
2792 				(*dd_idx)++;	/* Q D D D P */
2793 				qd_idx = 0;
2794 			} else if (*dd_idx >= pd_idx)
2795 				(*dd_idx) += 2; /* D D P Q D */
2796 			break;
2797 		case ALGORITHM_LEFT_SYMMETRIC:
2798 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2799 			qd_idx = (pd_idx + 1) % raid_disks;
2800 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2801 			break;
2802 		case ALGORITHM_RIGHT_SYMMETRIC:
2803 			pd_idx = sector_div(stripe2, raid_disks);
2804 			qd_idx = (pd_idx + 1) % raid_disks;
2805 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2806 			break;
2807 
2808 		case ALGORITHM_PARITY_0:
2809 			pd_idx = 0;
2810 			qd_idx = 1;
2811 			(*dd_idx) += 2;
2812 			break;
2813 		case ALGORITHM_PARITY_N:
2814 			pd_idx = data_disks;
2815 			qd_idx = data_disks + 1;
2816 			break;
2817 
2818 		case ALGORITHM_ROTATING_ZERO_RESTART:
2819 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
2820 			 * of blocks for computing Q is different.
2821 			 */
2822 			pd_idx = sector_div(stripe2, raid_disks);
2823 			qd_idx = pd_idx + 1;
2824 			if (pd_idx == raid_disks-1) {
2825 				(*dd_idx)++;	/* Q D D D P */
2826 				qd_idx = 0;
2827 			} else if (*dd_idx >= pd_idx)
2828 				(*dd_idx) += 2; /* D D P Q D */
2829 			ddf_layout = 1;
2830 			break;
2831 
2832 		case ALGORITHM_ROTATING_N_RESTART:
2833 			/* Same a left_asymmetric, by first stripe is
2834 			 * D D D P Q  rather than
2835 			 * Q D D D P
2836 			 */
2837 			stripe2 += 1;
2838 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2839 			qd_idx = pd_idx + 1;
2840 			if (pd_idx == raid_disks-1) {
2841 				(*dd_idx)++;	/* Q D D D P */
2842 				qd_idx = 0;
2843 			} else if (*dd_idx >= pd_idx)
2844 				(*dd_idx) += 2; /* D D P Q D */
2845 			ddf_layout = 1;
2846 			break;
2847 
2848 		case ALGORITHM_ROTATING_N_CONTINUE:
2849 			/* Same as left_symmetric but Q is before P */
2850 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2851 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2852 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2853 			ddf_layout = 1;
2854 			break;
2855 
2856 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2857 			/* RAID5 left_asymmetric, with Q on last device */
2858 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2859 			if (*dd_idx >= pd_idx)
2860 				(*dd_idx)++;
2861 			qd_idx = raid_disks - 1;
2862 			break;
2863 
2864 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2865 			pd_idx = sector_div(stripe2, raid_disks-1);
2866 			if (*dd_idx >= pd_idx)
2867 				(*dd_idx)++;
2868 			qd_idx = raid_disks - 1;
2869 			break;
2870 
2871 		case ALGORITHM_LEFT_SYMMETRIC_6:
2872 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2873 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2874 			qd_idx = raid_disks - 1;
2875 			break;
2876 
2877 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2878 			pd_idx = sector_div(stripe2, raid_disks-1);
2879 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2880 			qd_idx = raid_disks - 1;
2881 			break;
2882 
2883 		case ALGORITHM_PARITY_0_6:
2884 			pd_idx = 0;
2885 			(*dd_idx)++;
2886 			qd_idx = raid_disks - 1;
2887 			break;
2888 
2889 		default:
2890 			BUG();
2891 		}
2892 		break;
2893 	}
2894 
2895 	if (sh) {
2896 		sh->pd_idx = pd_idx;
2897 		sh->qd_idx = qd_idx;
2898 		sh->ddf_layout = ddf_layout;
2899 	}
2900 	/*
2901 	 * Finally, compute the new sector number
2902 	 */
2903 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2904 	return new_sector;
2905 }
2906 
2907 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2908 {
2909 	struct r5conf *conf = sh->raid_conf;
2910 	int raid_disks = sh->disks;
2911 	int data_disks = raid_disks - conf->max_degraded;
2912 	sector_t new_sector = sh->sector, check;
2913 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2914 					 : conf->chunk_sectors;
2915 	int algorithm = previous ? conf->prev_algo
2916 				 : conf->algorithm;
2917 	sector_t stripe;
2918 	int chunk_offset;
2919 	sector_t chunk_number;
2920 	int dummy1, dd_idx = i;
2921 	sector_t r_sector;
2922 	struct stripe_head sh2;
2923 
2924 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
2925 	stripe = new_sector;
2926 
2927 	if (i == sh->pd_idx)
2928 		return 0;
2929 	switch(conf->level) {
2930 	case 4: break;
2931 	case 5:
2932 		switch (algorithm) {
2933 		case ALGORITHM_LEFT_ASYMMETRIC:
2934 		case ALGORITHM_RIGHT_ASYMMETRIC:
2935 			if (i > sh->pd_idx)
2936 				i--;
2937 			break;
2938 		case ALGORITHM_LEFT_SYMMETRIC:
2939 		case ALGORITHM_RIGHT_SYMMETRIC:
2940 			if (i < sh->pd_idx)
2941 				i += raid_disks;
2942 			i -= (sh->pd_idx + 1);
2943 			break;
2944 		case ALGORITHM_PARITY_0:
2945 			i -= 1;
2946 			break;
2947 		case ALGORITHM_PARITY_N:
2948 			break;
2949 		default:
2950 			BUG();
2951 		}
2952 		break;
2953 	case 6:
2954 		if (i == sh->qd_idx)
2955 			return 0; /* It is the Q disk */
2956 		switch (algorithm) {
2957 		case ALGORITHM_LEFT_ASYMMETRIC:
2958 		case ALGORITHM_RIGHT_ASYMMETRIC:
2959 		case ALGORITHM_ROTATING_ZERO_RESTART:
2960 		case ALGORITHM_ROTATING_N_RESTART:
2961 			if (sh->pd_idx == raid_disks-1)
2962 				i--;	/* Q D D D P */
2963 			else if (i > sh->pd_idx)
2964 				i -= 2; /* D D P Q D */
2965 			break;
2966 		case ALGORITHM_LEFT_SYMMETRIC:
2967 		case ALGORITHM_RIGHT_SYMMETRIC:
2968 			if (sh->pd_idx == raid_disks-1)
2969 				i--; /* Q D D D P */
2970 			else {
2971 				/* D D P Q D */
2972 				if (i < sh->pd_idx)
2973 					i += raid_disks;
2974 				i -= (sh->pd_idx + 2);
2975 			}
2976 			break;
2977 		case ALGORITHM_PARITY_0:
2978 			i -= 2;
2979 			break;
2980 		case ALGORITHM_PARITY_N:
2981 			break;
2982 		case ALGORITHM_ROTATING_N_CONTINUE:
2983 			/* Like left_symmetric, but P is before Q */
2984 			if (sh->pd_idx == 0)
2985 				i--;	/* P D D D Q */
2986 			else {
2987 				/* D D Q P D */
2988 				if (i < sh->pd_idx)
2989 					i += raid_disks;
2990 				i -= (sh->pd_idx + 1);
2991 			}
2992 			break;
2993 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2994 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2995 			if (i > sh->pd_idx)
2996 				i--;
2997 			break;
2998 		case ALGORITHM_LEFT_SYMMETRIC_6:
2999 		case ALGORITHM_RIGHT_SYMMETRIC_6:
3000 			if (i < sh->pd_idx)
3001 				i += data_disks + 1;
3002 			i -= (sh->pd_idx + 1);
3003 			break;
3004 		case ALGORITHM_PARITY_0_6:
3005 			i -= 1;
3006 			break;
3007 		default:
3008 			BUG();
3009 		}
3010 		break;
3011 	}
3012 
3013 	chunk_number = stripe * data_disks + i;
3014 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3015 
3016 	check = raid5_compute_sector(conf, r_sector,
3017 				     previous, &dummy1, &sh2);
3018 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3019 		|| sh2.qd_idx != sh->qd_idx) {
3020 		pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3021 			mdname(conf->mddev));
3022 		return 0;
3023 	}
3024 	return r_sector;
3025 }
3026 
3027 /*
3028  * There are cases where we want handle_stripe_dirtying() and
3029  * schedule_reconstruction() to delay towrite to some dev of a stripe.
3030  *
3031  * This function checks whether we want to delay the towrite. Specifically,
3032  * we delay the towrite when:
3033  *
3034  *   1. degraded stripe has a non-overwrite to the missing dev, AND this
3035  *      stripe has data in journal (for other devices).
3036  *
3037  *      In this case, when reading data for the non-overwrite dev, it is
3038  *      necessary to handle complex rmw of write back cache (prexor with
3039  *      orig_page, and xor with page). To keep read path simple, we would
3040  *      like to flush data in journal to RAID disks first, so complex rmw
3041  *      is handled in the write patch (handle_stripe_dirtying).
3042  *
3043  *   2. when journal space is critical (R5C_LOG_CRITICAL=1)
3044  *
3045  *      It is important to be able to flush all stripes in raid5-cache.
3046  *      Therefore, we need reserve some space on the journal device for
3047  *      these flushes. If flush operation includes pending writes to the
3048  *      stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3049  *      for the flush out. If we exclude these pending writes from flush
3050  *      operation, we only need (conf->max_degraded + 1) pages per stripe.
3051  *      Therefore, excluding pending writes in these cases enables more
3052  *      efficient use of the journal device.
3053  *
3054  *      Note: To make sure the stripe makes progress, we only delay
3055  *      towrite for stripes with data already in journal (injournal > 0).
3056  *      When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3057  *      no_space_stripes list.
3058  *
3059  */
3060 static inline bool delay_towrite(struct r5conf *conf,
3061 				 struct r5dev *dev,
3062 				 struct stripe_head_state *s)
3063 {
3064 	/* case 1 above */
3065 	if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3066 	    !test_bit(R5_Insync, &dev->flags) && s->injournal)
3067 		return true;
3068 	/* case 2 above */
3069 	if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3070 	    s->injournal > 0)
3071 		return true;
3072 	return false;
3073 }
3074 
3075 static void
3076 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3077 			 int rcw, int expand)
3078 {
3079 	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3080 	struct r5conf *conf = sh->raid_conf;
3081 	int level = conf->level;
3082 
3083 	if (rcw) {
3084 		/*
3085 		 * In some cases, handle_stripe_dirtying initially decided to
3086 		 * run rmw and allocates extra page for prexor. However, rcw is
3087 		 * cheaper later on. We need to free the extra page now,
3088 		 * because we won't be able to do that in ops_complete_prexor().
3089 		 */
3090 		r5c_release_extra_page(sh);
3091 
3092 		for (i = disks; i--; ) {
3093 			struct r5dev *dev = &sh->dev[i];
3094 
3095 			if (dev->towrite && !delay_towrite(conf, dev, s)) {
3096 				set_bit(R5_LOCKED, &dev->flags);
3097 				set_bit(R5_Wantdrain, &dev->flags);
3098 				if (!expand)
3099 					clear_bit(R5_UPTODATE, &dev->flags);
3100 				s->locked++;
3101 			} else if (test_bit(R5_InJournal, &dev->flags)) {
3102 				set_bit(R5_LOCKED, &dev->flags);
3103 				s->locked++;
3104 			}
3105 		}
3106 		/* if we are not expanding this is a proper write request, and
3107 		 * there will be bios with new data to be drained into the
3108 		 * stripe cache
3109 		 */
3110 		if (!expand) {
3111 			if (!s->locked)
3112 				/* False alarm, nothing to do */
3113 				return;
3114 			sh->reconstruct_state = reconstruct_state_drain_run;
3115 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3116 		} else
3117 			sh->reconstruct_state = reconstruct_state_run;
3118 
3119 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3120 
3121 		if (s->locked + conf->max_degraded == disks)
3122 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3123 				atomic_inc(&conf->pending_full_writes);
3124 	} else {
3125 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3126 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3127 		BUG_ON(level == 6 &&
3128 			(!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3129 			   test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3130 
3131 		for (i = disks; i--; ) {
3132 			struct r5dev *dev = &sh->dev[i];
3133 			if (i == pd_idx || i == qd_idx)
3134 				continue;
3135 
3136 			if (dev->towrite &&
3137 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3138 			     test_bit(R5_Wantcompute, &dev->flags))) {
3139 				set_bit(R5_Wantdrain, &dev->flags);
3140 				set_bit(R5_LOCKED, &dev->flags);
3141 				clear_bit(R5_UPTODATE, &dev->flags);
3142 				s->locked++;
3143 			} else if (test_bit(R5_InJournal, &dev->flags)) {
3144 				set_bit(R5_LOCKED, &dev->flags);
3145 				s->locked++;
3146 			}
3147 		}
3148 		if (!s->locked)
3149 			/* False alarm - nothing to do */
3150 			return;
3151 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3152 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3153 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3154 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3155 	}
3156 
3157 	/* keep the parity disk(s) locked while asynchronous operations
3158 	 * are in flight
3159 	 */
3160 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3161 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3162 	s->locked++;
3163 
3164 	if (level == 6) {
3165 		int qd_idx = sh->qd_idx;
3166 		struct r5dev *dev = &sh->dev[qd_idx];
3167 
3168 		set_bit(R5_LOCKED, &dev->flags);
3169 		clear_bit(R5_UPTODATE, &dev->flags);
3170 		s->locked++;
3171 	}
3172 
3173 	if (raid5_has_ppl(sh->raid_conf) &&
3174 	    test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3175 	    !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3176 	    test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3177 		set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3178 
3179 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3180 		__func__, (unsigned long long)sh->sector,
3181 		s->locked, s->ops_request);
3182 }
3183 
3184 /*
3185  * Each stripe/dev can have one or more bion attached.
3186  * toread/towrite point to the first in a chain.
3187  * The bi_next chain must be in order.
3188  */
3189 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3190 			  int forwrite, int previous)
3191 {
3192 	struct bio **bip;
3193 	struct r5conf *conf = sh->raid_conf;
3194 	int firstwrite=0;
3195 
3196 	pr_debug("adding bi b#%llu to stripe s#%llu\n",
3197 		(unsigned long long)bi->bi_iter.bi_sector,
3198 		(unsigned long long)sh->sector);
3199 
3200 	spin_lock_irq(&sh->stripe_lock);
3201 	/* Don't allow new IO added to stripes in batch list */
3202 	if (sh->batch_head)
3203 		goto overlap;
3204 	if (forwrite) {
3205 		bip = &sh->dev[dd_idx].towrite;
3206 		if (*bip == NULL)
3207 			firstwrite = 1;
3208 	} else
3209 		bip = &sh->dev[dd_idx].toread;
3210 	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3211 		if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3212 			goto overlap;
3213 		bip = & (*bip)->bi_next;
3214 	}
3215 	if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3216 		goto overlap;
3217 
3218 	if (forwrite && raid5_has_ppl(conf)) {
3219 		/*
3220 		 * With PPL only writes to consecutive data chunks within a
3221 		 * stripe are allowed because for a single stripe_head we can
3222 		 * only have one PPL entry at a time, which describes one data
3223 		 * range. Not really an overlap, but wait_for_overlap can be
3224 		 * used to handle this.
3225 		 */
3226 		sector_t sector;
3227 		sector_t first = 0;
3228 		sector_t last = 0;
3229 		int count = 0;
3230 		int i;
3231 
3232 		for (i = 0; i < sh->disks; i++) {
3233 			if (i != sh->pd_idx &&
3234 			    (i == dd_idx || sh->dev[i].towrite)) {
3235 				sector = sh->dev[i].sector;
3236 				if (count == 0 || sector < first)
3237 					first = sector;
3238 				if (sector > last)
3239 					last = sector;
3240 				count++;
3241 			}
3242 		}
3243 
3244 		if (first + conf->chunk_sectors * (count - 1) != last)
3245 			goto overlap;
3246 	}
3247 
3248 	if (!forwrite || previous)
3249 		clear_bit(STRIPE_BATCH_READY, &sh->state);
3250 
3251 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3252 	if (*bip)
3253 		bi->bi_next = *bip;
3254 	*bip = bi;
3255 	bio_inc_remaining(bi);
3256 	md_write_inc(conf->mddev, bi);
3257 
3258 	if (forwrite) {
3259 		/* check if page is covered */
3260 		sector_t sector = sh->dev[dd_idx].sector;
3261 		for (bi=sh->dev[dd_idx].towrite;
3262 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3263 			     bi && bi->bi_iter.bi_sector <= sector;
3264 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3265 			if (bio_end_sector(bi) >= sector)
3266 				sector = bio_end_sector(bi);
3267 		}
3268 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3269 			if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3270 				sh->overwrite_disks++;
3271 	}
3272 
3273 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3274 		(unsigned long long)(*bip)->bi_iter.bi_sector,
3275 		(unsigned long long)sh->sector, dd_idx);
3276 
3277 	if (conf->mddev->bitmap && firstwrite) {
3278 		/* Cannot hold spinlock over bitmap_startwrite,
3279 		 * but must ensure this isn't added to a batch until
3280 		 * we have added to the bitmap and set bm_seq.
3281 		 * So set STRIPE_BITMAP_PENDING to prevent
3282 		 * batching.
3283 		 * If multiple add_stripe_bio() calls race here they
3284 		 * much all set STRIPE_BITMAP_PENDING.  So only the first one
3285 		 * to complete "bitmap_startwrite" gets to set
3286 		 * STRIPE_BIT_DELAY.  This is important as once a stripe
3287 		 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3288 		 * any more.
3289 		 */
3290 		set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3291 		spin_unlock_irq(&sh->stripe_lock);
3292 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3293 				  STRIPE_SECTORS, 0);
3294 		spin_lock_irq(&sh->stripe_lock);
3295 		clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3296 		if (!sh->batch_head) {
3297 			sh->bm_seq = conf->seq_flush+1;
3298 			set_bit(STRIPE_BIT_DELAY, &sh->state);
3299 		}
3300 	}
3301 	spin_unlock_irq(&sh->stripe_lock);
3302 
3303 	if (stripe_can_batch(sh))
3304 		stripe_add_to_batch_list(conf, sh);
3305 	return 1;
3306 
3307  overlap:
3308 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3309 	spin_unlock_irq(&sh->stripe_lock);
3310 	return 0;
3311 }
3312 
3313 static void end_reshape(struct r5conf *conf);
3314 
3315 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3316 			    struct stripe_head *sh)
3317 {
3318 	int sectors_per_chunk =
3319 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3320 	int dd_idx;
3321 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
3322 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3323 
3324 	raid5_compute_sector(conf,
3325 			     stripe * (disks - conf->max_degraded)
3326 			     *sectors_per_chunk + chunk_offset,
3327 			     previous,
3328 			     &dd_idx, sh);
3329 }
3330 
3331 static void
3332 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3333 		     struct stripe_head_state *s, int disks)
3334 {
3335 	int i;
3336 	BUG_ON(sh->batch_head);
3337 	for (i = disks; i--; ) {
3338 		struct bio *bi;
3339 		int bitmap_end = 0;
3340 
3341 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3342 			struct md_rdev *rdev;
3343 			rcu_read_lock();
3344 			rdev = rcu_dereference(conf->disks[i].rdev);
3345 			if (rdev && test_bit(In_sync, &rdev->flags) &&
3346 			    !test_bit(Faulty, &rdev->flags))
3347 				atomic_inc(&rdev->nr_pending);
3348 			else
3349 				rdev = NULL;
3350 			rcu_read_unlock();
3351 			if (rdev) {
3352 				if (!rdev_set_badblocks(
3353 					    rdev,
3354 					    sh->sector,
3355 					    STRIPE_SECTORS, 0))
3356 					md_error(conf->mddev, rdev);
3357 				rdev_dec_pending(rdev, conf->mddev);
3358 			}
3359 		}
3360 		spin_lock_irq(&sh->stripe_lock);
3361 		/* fail all writes first */
3362 		bi = sh->dev[i].towrite;
3363 		sh->dev[i].towrite = NULL;
3364 		sh->overwrite_disks = 0;
3365 		spin_unlock_irq(&sh->stripe_lock);
3366 		if (bi)
3367 			bitmap_end = 1;
3368 
3369 		log_stripe_write_finished(sh);
3370 
3371 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3372 			wake_up(&conf->wait_for_overlap);
3373 
3374 		while (bi && bi->bi_iter.bi_sector <
3375 			sh->dev[i].sector + STRIPE_SECTORS) {
3376 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3377 
3378 			bi->bi_error = -EIO;
3379 			md_write_end(conf->mddev);
3380 			bio_endio(bi);
3381 			bi = nextbi;
3382 		}
3383 		if (bitmap_end)
3384 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3385 				STRIPE_SECTORS, 0, 0);
3386 		bitmap_end = 0;
3387 		/* and fail all 'written' */
3388 		bi = sh->dev[i].written;
3389 		sh->dev[i].written = NULL;
3390 		if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3391 			WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3392 			sh->dev[i].page = sh->dev[i].orig_page;
3393 		}
3394 
3395 		if (bi) bitmap_end = 1;
3396 		while (bi && bi->bi_iter.bi_sector <
3397 		       sh->dev[i].sector + STRIPE_SECTORS) {
3398 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3399 
3400 			bi->bi_error = -EIO;
3401 			md_write_end(conf->mddev);
3402 			bio_endio(bi);
3403 			bi = bi2;
3404 		}
3405 
3406 		/* fail any reads if this device is non-operational and
3407 		 * the data has not reached the cache yet.
3408 		 */
3409 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3410 		    s->failed > conf->max_degraded &&
3411 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3412 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
3413 			spin_lock_irq(&sh->stripe_lock);
3414 			bi = sh->dev[i].toread;
3415 			sh->dev[i].toread = NULL;
3416 			spin_unlock_irq(&sh->stripe_lock);
3417 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3418 				wake_up(&conf->wait_for_overlap);
3419 			if (bi)
3420 				s->to_read--;
3421 			while (bi && bi->bi_iter.bi_sector <
3422 			       sh->dev[i].sector + STRIPE_SECTORS) {
3423 				struct bio *nextbi =
3424 					r5_next_bio(bi, sh->dev[i].sector);
3425 
3426 				bi->bi_error = -EIO;
3427 				bio_endio(bi);
3428 				bi = nextbi;
3429 			}
3430 		}
3431 		if (bitmap_end)
3432 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3433 					STRIPE_SECTORS, 0, 0);
3434 		/* If we were in the middle of a write the parity block might
3435 		 * still be locked - so just clear all R5_LOCKED flags
3436 		 */
3437 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
3438 	}
3439 	s->to_write = 0;
3440 	s->written = 0;
3441 
3442 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3443 		if (atomic_dec_and_test(&conf->pending_full_writes))
3444 			md_wakeup_thread(conf->mddev->thread);
3445 }
3446 
3447 static void
3448 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3449 		   struct stripe_head_state *s)
3450 {
3451 	int abort = 0;
3452 	int i;
3453 
3454 	BUG_ON(sh->batch_head);
3455 	clear_bit(STRIPE_SYNCING, &sh->state);
3456 	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3457 		wake_up(&conf->wait_for_overlap);
3458 	s->syncing = 0;
3459 	s->replacing = 0;
3460 	/* There is nothing more to do for sync/check/repair.
3461 	 * Don't even need to abort as that is handled elsewhere
3462 	 * if needed, and not always wanted e.g. if there is a known
3463 	 * bad block here.
3464 	 * For recover/replace we need to record a bad block on all
3465 	 * non-sync devices, or abort the recovery
3466 	 */
3467 	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3468 		/* During recovery devices cannot be removed, so
3469 		 * locking and refcounting of rdevs is not needed
3470 		 */
3471 		rcu_read_lock();
3472 		for (i = 0; i < conf->raid_disks; i++) {
3473 			struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3474 			if (rdev
3475 			    && !test_bit(Faulty, &rdev->flags)
3476 			    && !test_bit(In_sync, &rdev->flags)
3477 			    && !rdev_set_badblocks(rdev, sh->sector,
3478 						   STRIPE_SECTORS, 0))
3479 				abort = 1;
3480 			rdev = rcu_dereference(conf->disks[i].replacement);
3481 			if (rdev
3482 			    && !test_bit(Faulty, &rdev->flags)
3483 			    && !test_bit(In_sync, &rdev->flags)
3484 			    && !rdev_set_badblocks(rdev, sh->sector,
3485 						   STRIPE_SECTORS, 0))
3486 				abort = 1;
3487 		}
3488 		rcu_read_unlock();
3489 		if (abort)
3490 			conf->recovery_disabled =
3491 				conf->mddev->recovery_disabled;
3492 	}
3493 	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3494 }
3495 
3496 static int want_replace(struct stripe_head *sh, int disk_idx)
3497 {
3498 	struct md_rdev *rdev;
3499 	int rv = 0;
3500 
3501 	rcu_read_lock();
3502 	rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3503 	if (rdev
3504 	    && !test_bit(Faulty, &rdev->flags)
3505 	    && !test_bit(In_sync, &rdev->flags)
3506 	    && (rdev->recovery_offset <= sh->sector
3507 		|| rdev->mddev->recovery_cp <= sh->sector))
3508 		rv = 1;
3509 	rcu_read_unlock();
3510 	return rv;
3511 }
3512 
3513 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3514 			   int disk_idx, int disks)
3515 {
3516 	struct r5dev *dev = &sh->dev[disk_idx];
3517 	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3518 				  &sh->dev[s->failed_num[1]] };
3519 	int i;
3520 
3521 
3522 	if (test_bit(R5_LOCKED, &dev->flags) ||
3523 	    test_bit(R5_UPTODATE, &dev->flags))
3524 		/* No point reading this as we already have it or have
3525 		 * decided to get it.
3526 		 */
3527 		return 0;
3528 
3529 	if (dev->toread ||
3530 	    (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3531 		/* We need this block to directly satisfy a request */
3532 		return 1;
3533 
3534 	if (s->syncing || s->expanding ||
3535 	    (s->replacing && want_replace(sh, disk_idx)))
3536 		/* When syncing, or expanding we read everything.
3537 		 * When replacing, we need the replaced block.
3538 		 */
3539 		return 1;
3540 
3541 	if ((s->failed >= 1 && fdev[0]->toread) ||
3542 	    (s->failed >= 2 && fdev[1]->toread))
3543 		/* If we want to read from a failed device, then
3544 		 * we need to actually read every other device.
3545 		 */
3546 		return 1;
3547 
3548 	/* Sometimes neither read-modify-write nor reconstruct-write
3549 	 * cycles can work.  In those cases we read every block we
3550 	 * can.  Then the parity-update is certain to have enough to
3551 	 * work with.
3552 	 * This can only be a problem when we need to write something,
3553 	 * and some device has failed.  If either of those tests
3554 	 * fail we need look no further.
3555 	 */
3556 	if (!s->failed || !s->to_write)
3557 		return 0;
3558 
3559 	if (test_bit(R5_Insync, &dev->flags) &&
3560 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3561 		/* Pre-reads at not permitted until after short delay
3562 		 * to gather multiple requests.  However if this
3563 		 * device is no Insync, the block could only be computed
3564 		 * and there is no need to delay that.
3565 		 */
3566 		return 0;
3567 
3568 	for (i = 0; i < s->failed && i < 2; i++) {
3569 		if (fdev[i]->towrite &&
3570 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3571 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3572 			/* If we have a partial write to a failed
3573 			 * device, then we will need to reconstruct
3574 			 * the content of that device, so all other
3575 			 * devices must be read.
3576 			 */
3577 			return 1;
3578 	}
3579 
3580 	/* If we are forced to do a reconstruct-write, either because
3581 	 * the current RAID6 implementation only supports that, or
3582 	 * because parity cannot be trusted and we are currently
3583 	 * recovering it, there is extra need to be careful.
3584 	 * If one of the devices that we would need to read, because
3585 	 * it is not being overwritten (and maybe not written at all)
3586 	 * is missing/faulty, then we need to read everything we can.
3587 	 */
3588 	if (sh->raid_conf->level != 6 &&
3589 	    sh->sector < sh->raid_conf->mddev->recovery_cp)
3590 		/* reconstruct-write isn't being forced */
3591 		return 0;
3592 	for (i = 0; i < s->failed && i < 2; i++) {
3593 		if (s->failed_num[i] != sh->pd_idx &&
3594 		    s->failed_num[i] != sh->qd_idx &&
3595 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3596 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3597 			return 1;
3598 	}
3599 
3600 	return 0;
3601 }
3602 
3603 /* fetch_block - checks the given member device to see if its data needs
3604  * to be read or computed to satisfy a request.
3605  *
3606  * Returns 1 when no more member devices need to be checked, otherwise returns
3607  * 0 to tell the loop in handle_stripe_fill to continue
3608  */
3609 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3610 		       int disk_idx, int disks)
3611 {
3612 	struct r5dev *dev = &sh->dev[disk_idx];
3613 
3614 	/* is the data in this block needed, and can we get it? */
3615 	if (need_this_block(sh, s, disk_idx, disks)) {
3616 		/* we would like to get this block, possibly by computing it,
3617 		 * otherwise read it if the backing disk is insync
3618 		 */
3619 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3620 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
3621 		BUG_ON(sh->batch_head);
3622 
3623 		/*
3624 		 * In the raid6 case if the only non-uptodate disk is P
3625 		 * then we already trusted P to compute the other failed
3626 		 * drives. It is safe to compute rather than re-read P.
3627 		 * In other cases we only compute blocks from failed
3628 		 * devices, otherwise check/repair might fail to detect
3629 		 * a real inconsistency.
3630 		 */
3631 
3632 		if ((s->uptodate == disks - 1) &&
3633 		    ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3634 		    (s->failed && (disk_idx == s->failed_num[0] ||
3635 				   disk_idx == s->failed_num[1])))) {
3636 			/* have disk failed, and we're requested to fetch it;
3637 			 * do compute it
3638 			 */
3639 			pr_debug("Computing stripe %llu block %d\n",
3640 			       (unsigned long long)sh->sector, disk_idx);
3641 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3642 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3643 			set_bit(R5_Wantcompute, &dev->flags);
3644 			sh->ops.target = disk_idx;
3645 			sh->ops.target2 = -1; /* no 2nd target */
3646 			s->req_compute = 1;
3647 			/* Careful: from this point on 'uptodate' is in the eye
3648 			 * of raid_run_ops which services 'compute' operations
3649 			 * before writes. R5_Wantcompute flags a block that will
3650 			 * be R5_UPTODATE by the time it is needed for a
3651 			 * subsequent operation.
3652 			 */
3653 			s->uptodate++;
3654 			return 1;
3655 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
3656 			/* Computing 2-failure is *very* expensive; only
3657 			 * do it if failed >= 2
3658 			 */
3659 			int other;
3660 			for (other = disks; other--; ) {
3661 				if (other == disk_idx)
3662 					continue;
3663 				if (!test_bit(R5_UPTODATE,
3664 				      &sh->dev[other].flags))
3665 					break;
3666 			}
3667 			BUG_ON(other < 0);
3668 			pr_debug("Computing stripe %llu blocks %d,%d\n",
3669 			       (unsigned long long)sh->sector,
3670 			       disk_idx, other);
3671 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3672 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3673 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3674 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
3675 			sh->ops.target = disk_idx;
3676 			sh->ops.target2 = other;
3677 			s->uptodate += 2;
3678 			s->req_compute = 1;
3679 			return 1;
3680 		} else if (test_bit(R5_Insync, &dev->flags)) {
3681 			set_bit(R5_LOCKED, &dev->flags);
3682 			set_bit(R5_Wantread, &dev->flags);
3683 			s->locked++;
3684 			pr_debug("Reading block %d (sync=%d)\n",
3685 				disk_idx, s->syncing);
3686 		}
3687 	}
3688 
3689 	return 0;
3690 }
3691 
3692 /**
3693  * handle_stripe_fill - read or compute data to satisfy pending requests.
3694  */
3695 static void handle_stripe_fill(struct stripe_head *sh,
3696 			       struct stripe_head_state *s,
3697 			       int disks)
3698 {
3699 	int i;
3700 
3701 	/* look for blocks to read/compute, skip this if a compute
3702 	 * is already in flight, or if the stripe contents are in the
3703 	 * midst of changing due to a write
3704 	 */
3705 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3706 	    !sh->reconstruct_state) {
3707 
3708 		/*
3709 		 * For degraded stripe with data in journal, do not handle
3710 		 * read requests yet, instead, flush the stripe to raid
3711 		 * disks first, this avoids handling complex rmw of write
3712 		 * back cache (prexor with orig_page, and then xor with
3713 		 * page) in the read path
3714 		 */
3715 		if (s->injournal && s->failed) {
3716 			if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3717 				r5c_make_stripe_write_out(sh);
3718 			goto out;
3719 		}
3720 
3721 		for (i = disks; i--; )
3722 			if (fetch_block(sh, s, i, disks))
3723 				break;
3724 	}
3725 out:
3726 	set_bit(STRIPE_HANDLE, &sh->state);
3727 }
3728 
3729 static void break_stripe_batch_list(struct stripe_head *head_sh,
3730 				    unsigned long handle_flags);
3731 /* handle_stripe_clean_event
3732  * any written block on an uptodate or failed drive can be returned.
3733  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3734  * never LOCKED, so we don't need to test 'failed' directly.
3735  */
3736 static void handle_stripe_clean_event(struct r5conf *conf,
3737 	struct stripe_head *sh, int disks)
3738 {
3739 	int i;
3740 	struct r5dev *dev;
3741 	int discard_pending = 0;
3742 	struct stripe_head *head_sh = sh;
3743 	bool do_endio = false;
3744 
3745 	for (i = disks; i--; )
3746 		if (sh->dev[i].written) {
3747 			dev = &sh->dev[i];
3748 			if (!test_bit(R5_LOCKED, &dev->flags) &&
3749 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3750 			     test_bit(R5_Discard, &dev->flags) ||
3751 			     test_bit(R5_SkipCopy, &dev->flags))) {
3752 				/* We can return any write requests */
3753 				struct bio *wbi, *wbi2;
3754 				pr_debug("Return write for disc %d\n", i);
3755 				if (test_and_clear_bit(R5_Discard, &dev->flags))
3756 					clear_bit(R5_UPTODATE, &dev->flags);
3757 				if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3758 					WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3759 				}
3760 				do_endio = true;
3761 
3762 returnbi:
3763 				dev->page = dev->orig_page;
3764 				wbi = dev->written;
3765 				dev->written = NULL;
3766 				while (wbi && wbi->bi_iter.bi_sector <
3767 					dev->sector + STRIPE_SECTORS) {
3768 					wbi2 = r5_next_bio(wbi, dev->sector);
3769 					md_write_end(conf->mddev);
3770 					bio_endio(wbi);
3771 					wbi = wbi2;
3772 				}
3773 				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3774 						STRIPE_SECTORS,
3775 					 !test_bit(STRIPE_DEGRADED, &sh->state),
3776 						0);
3777 				if (head_sh->batch_head) {
3778 					sh = list_first_entry(&sh->batch_list,
3779 							      struct stripe_head,
3780 							      batch_list);
3781 					if (sh != head_sh) {
3782 						dev = &sh->dev[i];
3783 						goto returnbi;
3784 					}
3785 				}
3786 				sh = head_sh;
3787 				dev = &sh->dev[i];
3788 			} else if (test_bit(R5_Discard, &dev->flags))
3789 				discard_pending = 1;
3790 		}
3791 
3792 	log_stripe_write_finished(sh);
3793 
3794 	if (!discard_pending &&
3795 	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3796 		int hash;
3797 		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3798 		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3799 		if (sh->qd_idx >= 0) {
3800 			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3801 			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3802 		}
3803 		/* now that discard is done we can proceed with any sync */
3804 		clear_bit(STRIPE_DISCARD, &sh->state);
3805 		/*
3806 		 * SCSI discard will change some bio fields and the stripe has
3807 		 * no updated data, so remove it from hash list and the stripe
3808 		 * will be reinitialized
3809 		 */
3810 unhash:
3811 		hash = sh->hash_lock_index;
3812 		spin_lock_irq(conf->hash_locks + hash);
3813 		remove_hash(sh);
3814 		spin_unlock_irq(conf->hash_locks + hash);
3815 		if (head_sh->batch_head) {
3816 			sh = list_first_entry(&sh->batch_list,
3817 					      struct stripe_head, batch_list);
3818 			if (sh != head_sh)
3819 					goto unhash;
3820 		}
3821 		sh = head_sh;
3822 
3823 		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3824 			set_bit(STRIPE_HANDLE, &sh->state);
3825 
3826 	}
3827 
3828 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3829 		if (atomic_dec_and_test(&conf->pending_full_writes))
3830 			md_wakeup_thread(conf->mddev->thread);
3831 
3832 	if (head_sh->batch_head && do_endio)
3833 		break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3834 }
3835 
3836 /*
3837  * For RMW in write back cache, we need extra page in prexor to store the
3838  * old data. This page is stored in dev->orig_page.
3839  *
3840  * This function checks whether we have data for prexor. The exact logic
3841  * is:
3842  *       R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
3843  */
3844 static inline bool uptodate_for_rmw(struct r5dev *dev)
3845 {
3846 	return (test_bit(R5_UPTODATE, &dev->flags)) &&
3847 		(!test_bit(R5_InJournal, &dev->flags) ||
3848 		 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
3849 }
3850 
3851 static int handle_stripe_dirtying(struct r5conf *conf,
3852 				  struct stripe_head *sh,
3853 				  struct stripe_head_state *s,
3854 				  int disks)
3855 {
3856 	int rmw = 0, rcw = 0, i;
3857 	sector_t recovery_cp = conf->mddev->recovery_cp;
3858 
3859 	/* Check whether resync is now happening or should start.
3860 	 * If yes, then the array is dirty (after unclean shutdown or
3861 	 * initial creation), so parity in some stripes might be inconsistent.
3862 	 * In this case, we need to always do reconstruct-write, to ensure
3863 	 * that in case of drive failure or read-error correction, we
3864 	 * generate correct data from the parity.
3865 	 */
3866 	if (conf->rmw_level == PARITY_DISABLE_RMW ||
3867 	    (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3868 	     s->failed == 0)) {
3869 		/* Calculate the real rcw later - for now make it
3870 		 * look like rcw is cheaper
3871 		 */
3872 		rcw = 1; rmw = 2;
3873 		pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3874 			 conf->rmw_level, (unsigned long long)recovery_cp,
3875 			 (unsigned long long)sh->sector);
3876 	} else for (i = disks; i--; ) {
3877 		/* would I have to read this buffer for read_modify_write */
3878 		struct r5dev *dev = &sh->dev[i];
3879 		if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3880 		     i == sh->pd_idx || i == sh->qd_idx ||
3881 		     test_bit(R5_InJournal, &dev->flags)) &&
3882 		    !test_bit(R5_LOCKED, &dev->flags) &&
3883 		    !(uptodate_for_rmw(dev) ||
3884 		      test_bit(R5_Wantcompute, &dev->flags))) {
3885 			if (test_bit(R5_Insync, &dev->flags))
3886 				rmw++;
3887 			else
3888 				rmw += 2*disks;  /* cannot read it */
3889 		}
3890 		/* Would I have to read this buffer for reconstruct_write */
3891 		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3892 		    i != sh->pd_idx && i != sh->qd_idx &&
3893 		    !test_bit(R5_LOCKED, &dev->flags) &&
3894 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
3895 		      test_bit(R5_Wantcompute, &dev->flags))) {
3896 			if (test_bit(R5_Insync, &dev->flags))
3897 				rcw++;
3898 			else
3899 				rcw += 2*disks;
3900 		}
3901 	}
3902 
3903 	pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
3904 		 (unsigned long long)sh->sector, sh->state, rmw, rcw);
3905 	set_bit(STRIPE_HANDLE, &sh->state);
3906 	if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
3907 		/* prefer read-modify-write, but need to get some data */
3908 		if (conf->mddev->queue)
3909 			blk_add_trace_msg(conf->mddev->queue,
3910 					  "raid5 rmw %llu %d",
3911 					  (unsigned long long)sh->sector, rmw);
3912 		for (i = disks; i--; ) {
3913 			struct r5dev *dev = &sh->dev[i];
3914 			if (test_bit(R5_InJournal, &dev->flags) &&
3915 			    dev->page == dev->orig_page &&
3916 			    !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
3917 				/* alloc page for prexor */
3918 				struct page *p = alloc_page(GFP_NOIO);
3919 
3920 				if (p) {
3921 					dev->orig_page = p;
3922 					continue;
3923 				}
3924 
3925 				/*
3926 				 * alloc_page() failed, try use
3927 				 * disk_info->extra_page
3928 				 */
3929 				if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
3930 						      &conf->cache_state)) {
3931 					r5c_use_extra_page(sh);
3932 					break;
3933 				}
3934 
3935 				/* extra_page in use, add to delayed_list */
3936 				set_bit(STRIPE_DELAYED, &sh->state);
3937 				s->waiting_extra_page = 1;
3938 				return -EAGAIN;
3939 			}
3940 		}
3941 
3942 		for (i = disks; i--; ) {
3943 			struct r5dev *dev = &sh->dev[i];
3944 			if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3945 			     i == sh->pd_idx || i == sh->qd_idx ||
3946 			     test_bit(R5_InJournal, &dev->flags)) &&
3947 			    !test_bit(R5_LOCKED, &dev->flags) &&
3948 			    !(uptodate_for_rmw(dev) ||
3949 			      test_bit(R5_Wantcompute, &dev->flags)) &&
3950 			    test_bit(R5_Insync, &dev->flags)) {
3951 				if (test_bit(STRIPE_PREREAD_ACTIVE,
3952 					     &sh->state)) {
3953 					pr_debug("Read_old block %d for r-m-w\n",
3954 						 i);
3955 					set_bit(R5_LOCKED, &dev->flags);
3956 					set_bit(R5_Wantread, &dev->flags);
3957 					s->locked++;
3958 				} else {
3959 					set_bit(STRIPE_DELAYED, &sh->state);
3960 					set_bit(STRIPE_HANDLE, &sh->state);
3961 				}
3962 			}
3963 		}
3964 	}
3965 	if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
3966 		/* want reconstruct write, but need to get some data */
3967 		int qread =0;
3968 		rcw = 0;
3969 		for (i = disks; i--; ) {
3970 			struct r5dev *dev = &sh->dev[i];
3971 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3972 			    i != sh->pd_idx && i != sh->qd_idx &&
3973 			    !test_bit(R5_LOCKED, &dev->flags) &&
3974 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3975 			      test_bit(R5_Wantcompute, &dev->flags))) {
3976 				rcw++;
3977 				if (test_bit(R5_Insync, &dev->flags) &&
3978 				    test_bit(STRIPE_PREREAD_ACTIVE,
3979 					     &sh->state)) {
3980 					pr_debug("Read_old block "
3981 						"%d for Reconstruct\n", i);
3982 					set_bit(R5_LOCKED, &dev->flags);
3983 					set_bit(R5_Wantread, &dev->flags);
3984 					s->locked++;
3985 					qread++;
3986 				} else {
3987 					set_bit(STRIPE_DELAYED, &sh->state);
3988 					set_bit(STRIPE_HANDLE, &sh->state);
3989 				}
3990 			}
3991 		}
3992 		if (rcw && conf->mddev->queue)
3993 			blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3994 					  (unsigned long long)sh->sector,
3995 					  rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3996 	}
3997 
3998 	if (rcw > disks && rmw > disks &&
3999 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4000 		set_bit(STRIPE_DELAYED, &sh->state);
4001 
4002 	/* now if nothing is locked, and if we have enough data,
4003 	 * we can start a write request
4004 	 */
4005 	/* since handle_stripe can be called at any time we need to handle the
4006 	 * case where a compute block operation has been submitted and then a
4007 	 * subsequent call wants to start a write request.  raid_run_ops only
4008 	 * handles the case where compute block and reconstruct are requested
4009 	 * simultaneously.  If this is not the case then new writes need to be
4010 	 * held off until the compute completes.
4011 	 */
4012 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4013 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4014 	     !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4015 		schedule_reconstruction(sh, s, rcw == 0, 0);
4016 	return 0;
4017 }
4018 
4019 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4020 				struct stripe_head_state *s, int disks)
4021 {
4022 	struct r5dev *dev = NULL;
4023 
4024 	BUG_ON(sh->batch_head);
4025 	set_bit(STRIPE_HANDLE, &sh->state);
4026 
4027 	switch (sh->check_state) {
4028 	case check_state_idle:
4029 		/* start a new check operation if there are no failures */
4030 		if (s->failed == 0) {
4031 			BUG_ON(s->uptodate != disks);
4032 			sh->check_state = check_state_run;
4033 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
4034 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4035 			s->uptodate--;
4036 			break;
4037 		}
4038 		dev = &sh->dev[s->failed_num[0]];
4039 		/* fall through */
4040 	case check_state_compute_result:
4041 		sh->check_state = check_state_idle;
4042 		if (!dev)
4043 			dev = &sh->dev[sh->pd_idx];
4044 
4045 		/* check that a write has not made the stripe insync */
4046 		if (test_bit(STRIPE_INSYNC, &sh->state))
4047 			break;
4048 
4049 		/* either failed parity check, or recovery is happening */
4050 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4051 		BUG_ON(s->uptodate != disks);
4052 
4053 		set_bit(R5_LOCKED, &dev->flags);
4054 		s->locked++;
4055 		set_bit(R5_Wantwrite, &dev->flags);
4056 
4057 		clear_bit(STRIPE_DEGRADED, &sh->state);
4058 		set_bit(STRIPE_INSYNC, &sh->state);
4059 		break;
4060 	case check_state_run:
4061 		break; /* we will be called again upon completion */
4062 	case check_state_check_result:
4063 		sh->check_state = check_state_idle;
4064 
4065 		/* if a failure occurred during the check operation, leave
4066 		 * STRIPE_INSYNC not set and let the stripe be handled again
4067 		 */
4068 		if (s->failed)
4069 			break;
4070 
4071 		/* handle a successful check operation, if parity is correct
4072 		 * we are done.  Otherwise update the mismatch count and repair
4073 		 * parity if !MD_RECOVERY_CHECK
4074 		 */
4075 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4076 			/* parity is correct (on disc,
4077 			 * not in buffer any more)
4078 			 */
4079 			set_bit(STRIPE_INSYNC, &sh->state);
4080 		else {
4081 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4082 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
4083 				/* don't try to repair!! */
4084 				set_bit(STRIPE_INSYNC, &sh->state);
4085 			else {
4086 				sh->check_state = check_state_compute_run;
4087 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4088 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4089 				set_bit(R5_Wantcompute,
4090 					&sh->dev[sh->pd_idx].flags);
4091 				sh->ops.target = sh->pd_idx;
4092 				sh->ops.target2 = -1;
4093 				s->uptodate++;
4094 			}
4095 		}
4096 		break;
4097 	case check_state_compute_run:
4098 		break;
4099 	default:
4100 		pr_err("%s: unknown check_state: %d sector: %llu\n",
4101 		       __func__, sh->check_state,
4102 		       (unsigned long long) sh->sector);
4103 		BUG();
4104 	}
4105 }
4106 
4107 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4108 				  struct stripe_head_state *s,
4109 				  int disks)
4110 {
4111 	int pd_idx = sh->pd_idx;
4112 	int qd_idx = sh->qd_idx;
4113 	struct r5dev *dev;
4114 
4115 	BUG_ON(sh->batch_head);
4116 	set_bit(STRIPE_HANDLE, &sh->state);
4117 
4118 	BUG_ON(s->failed > 2);
4119 
4120 	/* Want to check and possibly repair P and Q.
4121 	 * However there could be one 'failed' device, in which
4122 	 * case we can only check one of them, possibly using the
4123 	 * other to generate missing data
4124 	 */
4125 
4126 	switch (sh->check_state) {
4127 	case check_state_idle:
4128 		/* start a new check operation if there are < 2 failures */
4129 		if (s->failed == s->q_failed) {
4130 			/* The only possible failed device holds Q, so it
4131 			 * makes sense to check P (If anything else were failed,
4132 			 * we would have used P to recreate it).
4133 			 */
4134 			sh->check_state = check_state_run;
4135 		}
4136 		if (!s->q_failed && s->failed < 2) {
4137 			/* Q is not failed, and we didn't use it to generate
4138 			 * anything, so it makes sense to check it
4139 			 */
4140 			if (sh->check_state == check_state_run)
4141 				sh->check_state = check_state_run_pq;
4142 			else
4143 				sh->check_state = check_state_run_q;
4144 		}
4145 
4146 		/* discard potentially stale zero_sum_result */
4147 		sh->ops.zero_sum_result = 0;
4148 
4149 		if (sh->check_state == check_state_run) {
4150 			/* async_xor_zero_sum destroys the contents of P */
4151 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4152 			s->uptodate--;
4153 		}
4154 		if (sh->check_state >= check_state_run &&
4155 		    sh->check_state <= check_state_run_pq) {
4156 			/* async_syndrome_zero_sum preserves P and Q, so
4157 			 * no need to mark them !uptodate here
4158 			 */
4159 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
4160 			break;
4161 		}
4162 
4163 		/* we have 2-disk failure */
4164 		BUG_ON(s->failed != 2);
4165 		/* fall through */
4166 	case check_state_compute_result:
4167 		sh->check_state = check_state_idle;
4168 
4169 		/* check that a write has not made the stripe insync */
4170 		if (test_bit(STRIPE_INSYNC, &sh->state))
4171 			break;
4172 
4173 		/* now write out any block on a failed drive,
4174 		 * or P or Q if they were recomputed
4175 		 */
4176 		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
4177 		if (s->failed == 2) {
4178 			dev = &sh->dev[s->failed_num[1]];
4179 			s->locked++;
4180 			set_bit(R5_LOCKED, &dev->flags);
4181 			set_bit(R5_Wantwrite, &dev->flags);
4182 		}
4183 		if (s->failed >= 1) {
4184 			dev = &sh->dev[s->failed_num[0]];
4185 			s->locked++;
4186 			set_bit(R5_LOCKED, &dev->flags);
4187 			set_bit(R5_Wantwrite, &dev->flags);
4188 		}
4189 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4190 			dev = &sh->dev[pd_idx];
4191 			s->locked++;
4192 			set_bit(R5_LOCKED, &dev->flags);
4193 			set_bit(R5_Wantwrite, &dev->flags);
4194 		}
4195 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4196 			dev = &sh->dev[qd_idx];
4197 			s->locked++;
4198 			set_bit(R5_LOCKED, &dev->flags);
4199 			set_bit(R5_Wantwrite, &dev->flags);
4200 		}
4201 		clear_bit(STRIPE_DEGRADED, &sh->state);
4202 
4203 		set_bit(STRIPE_INSYNC, &sh->state);
4204 		break;
4205 	case check_state_run:
4206 	case check_state_run_q:
4207 	case check_state_run_pq:
4208 		break; /* we will be called again upon completion */
4209 	case check_state_check_result:
4210 		sh->check_state = check_state_idle;
4211 
4212 		/* handle a successful check operation, if parity is correct
4213 		 * we are done.  Otherwise update the mismatch count and repair
4214 		 * parity if !MD_RECOVERY_CHECK
4215 		 */
4216 		if (sh->ops.zero_sum_result == 0) {
4217 			/* both parities are correct */
4218 			if (!s->failed)
4219 				set_bit(STRIPE_INSYNC, &sh->state);
4220 			else {
4221 				/* in contrast to the raid5 case we can validate
4222 				 * parity, but still have a failure to write
4223 				 * back
4224 				 */
4225 				sh->check_state = check_state_compute_result;
4226 				/* Returning at this point means that we may go
4227 				 * off and bring p and/or q uptodate again so
4228 				 * we make sure to check zero_sum_result again
4229 				 * to verify if p or q need writeback
4230 				 */
4231 			}
4232 		} else {
4233 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4234 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
4235 				/* don't try to repair!! */
4236 				set_bit(STRIPE_INSYNC, &sh->state);
4237 			else {
4238 				int *target = &sh->ops.target;
4239 
4240 				sh->ops.target = -1;
4241 				sh->ops.target2 = -1;
4242 				sh->check_state = check_state_compute_run;
4243 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4244 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4245 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4246 					set_bit(R5_Wantcompute,
4247 						&sh->dev[pd_idx].flags);
4248 					*target = pd_idx;
4249 					target = &sh->ops.target2;
4250 					s->uptodate++;
4251 				}
4252 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4253 					set_bit(R5_Wantcompute,
4254 						&sh->dev[qd_idx].flags);
4255 					*target = qd_idx;
4256 					s->uptodate++;
4257 				}
4258 			}
4259 		}
4260 		break;
4261 	case check_state_compute_run:
4262 		break;
4263 	default:
4264 		pr_warn("%s: unknown check_state: %d sector: %llu\n",
4265 			__func__, sh->check_state,
4266 			(unsigned long long) sh->sector);
4267 		BUG();
4268 	}
4269 }
4270 
4271 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4272 {
4273 	int i;
4274 
4275 	/* We have read all the blocks in this stripe and now we need to
4276 	 * copy some of them into a target stripe for expand.
4277 	 */
4278 	struct dma_async_tx_descriptor *tx = NULL;
4279 	BUG_ON(sh->batch_head);
4280 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4281 	for (i = 0; i < sh->disks; i++)
4282 		if (i != sh->pd_idx && i != sh->qd_idx) {
4283 			int dd_idx, j;
4284 			struct stripe_head *sh2;
4285 			struct async_submit_ctl submit;
4286 
4287 			sector_t bn = raid5_compute_blocknr(sh, i, 1);
4288 			sector_t s = raid5_compute_sector(conf, bn, 0,
4289 							  &dd_idx, NULL);
4290 			sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
4291 			if (sh2 == NULL)
4292 				/* so far only the early blocks of this stripe
4293 				 * have been requested.  When later blocks
4294 				 * get requested, we will try again
4295 				 */
4296 				continue;
4297 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4298 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4299 				/* must have already done this block */
4300 				raid5_release_stripe(sh2);
4301 				continue;
4302 			}
4303 
4304 			/* place all the copies on one channel */
4305 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4306 			tx = async_memcpy(sh2->dev[dd_idx].page,
4307 					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
4308 					  &submit);
4309 
4310 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4311 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4312 			for (j = 0; j < conf->raid_disks; j++)
4313 				if (j != sh2->pd_idx &&
4314 				    j != sh2->qd_idx &&
4315 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
4316 					break;
4317 			if (j == conf->raid_disks) {
4318 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
4319 				set_bit(STRIPE_HANDLE, &sh2->state);
4320 			}
4321 			raid5_release_stripe(sh2);
4322 
4323 		}
4324 	/* done submitting copies, wait for them to complete */
4325 	async_tx_quiesce(&tx);
4326 }
4327 
4328 /*
4329  * handle_stripe - do things to a stripe.
4330  *
4331  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4332  * state of various bits to see what needs to be done.
4333  * Possible results:
4334  *    return some read requests which now have data
4335  *    return some write requests which are safely on storage
4336  *    schedule a read on some buffers
4337  *    schedule a write of some buffers
4338  *    return confirmation of parity correctness
4339  *
4340  */
4341 
4342 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4343 {
4344 	struct r5conf *conf = sh->raid_conf;
4345 	int disks = sh->disks;
4346 	struct r5dev *dev;
4347 	int i;
4348 	int do_recovery = 0;
4349 
4350 	memset(s, 0, sizeof(*s));
4351 
4352 	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4353 	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4354 	s->failed_num[0] = -1;
4355 	s->failed_num[1] = -1;
4356 	s->log_failed = r5l_log_disk_error(conf);
4357 
4358 	/* Now to look around and see what can be done */
4359 	rcu_read_lock();
4360 	for (i=disks; i--; ) {
4361 		struct md_rdev *rdev;
4362 		sector_t first_bad;
4363 		int bad_sectors;
4364 		int is_bad = 0;
4365 
4366 		dev = &sh->dev[i];
4367 
4368 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4369 			 i, dev->flags,
4370 			 dev->toread, dev->towrite, dev->written);
4371 		/* maybe we can reply to a read
4372 		 *
4373 		 * new wantfill requests are only permitted while
4374 		 * ops_complete_biofill is guaranteed to be inactive
4375 		 */
4376 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4377 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4378 			set_bit(R5_Wantfill, &dev->flags);
4379 
4380 		/* now count some things */
4381 		if (test_bit(R5_LOCKED, &dev->flags))
4382 			s->locked++;
4383 		if (test_bit(R5_UPTODATE, &dev->flags))
4384 			s->uptodate++;
4385 		if (test_bit(R5_Wantcompute, &dev->flags)) {
4386 			s->compute++;
4387 			BUG_ON(s->compute > 2);
4388 		}
4389 
4390 		if (test_bit(R5_Wantfill, &dev->flags))
4391 			s->to_fill++;
4392 		else if (dev->toread)
4393 			s->to_read++;
4394 		if (dev->towrite) {
4395 			s->to_write++;
4396 			if (!test_bit(R5_OVERWRITE, &dev->flags))
4397 				s->non_overwrite++;
4398 		}
4399 		if (dev->written)
4400 			s->written++;
4401 		/* Prefer to use the replacement for reads, but only
4402 		 * if it is recovered enough and has no bad blocks.
4403 		 */
4404 		rdev = rcu_dereference(conf->disks[i].replacement);
4405 		if (rdev && !test_bit(Faulty, &rdev->flags) &&
4406 		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4407 		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4408 				 &first_bad, &bad_sectors))
4409 			set_bit(R5_ReadRepl, &dev->flags);
4410 		else {
4411 			if (rdev && !test_bit(Faulty, &rdev->flags))
4412 				set_bit(R5_NeedReplace, &dev->flags);
4413 			else
4414 				clear_bit(R5_NeedReplace, &dev->flags);
4415 			rdev = rcu_dereference(conf->disks[i].rdev);
4416 			clear_bit(R5_ReadRepl, &dev->flags);
4417 		}
4418 		if (rdev && test_bit(Faulty, &rdev->flags))
4419 			rdev = NULL;
4420 		if (rdev) {
4421 			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4422 					     &first_bad, &bad_sectors);
4423 			if (s->blocked_rdev == NULL
4424 			    && (test_bit(Blocked, &rdev->flags)
4425 				|| is_bad < 0)) {
4426 				if (is_bad < 0)
4427 					set_bit(BlockedBadBlocks,
4428 						&rdev->flags);
4429 				s->blocked_rdev = rdev;
4430 				atomic_inc(&rdev->nr_pending);
4431 			}
4432 		}
4433 		clear_bit(R5_Insync, &dev->flags);
4434 		if (!rdev)
4435 			/* Not in-sync */;
4436 		else if (is_bad) {
4437 			/* also not in-sync */
4438 			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4439 			    test_bit(R5_UPTODATE, &dev->flags)) {
4440 				/* treat as in-sync, but with a read error
4441 				 * which we can now try to correct
4442 				 */
4443 				set_bit(R5_Insync, &dev->flags);
4444 				set_bit(R5_ReadError, &dev->flags);
4445 			}
4446 		} else if (test_bit(In_sync, &rdev->flags))
4447 			set_bit(R5_Insync, &dev->flags);
4448 		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4449 			/* in sync if before recovery_offset */
4450 			set_bit(R5_Insync, &dev->flags);
4451 		else if (test_bit(R5_UPTODATE, &dev->flags) &&
4452 			 test_bit(R5_Expanded, &dev->flags))
4453 			/* If we've reshaped into here, we assume it is Insync.
4454 			 * We will shortly update recovery_offset to make
4455 			 * it official.
4456 			 */
4457 			set_bit(R5_Insync, &dev->flags);
4458 
4459 		if (test_bit(R5_WriteError, &dev->flags)) {
4460 			/* This flag does not apply to '.replacement'
4461 			 * only to .rdev, so make sure to check that*/
4462 			struct md_rdev *rdev2 = rcu_dereference(
4463 				conf->disks[i].rdev);
4464 			if (rdev2 == rdev)
4465 				clear_bit(R5_Insync, &dev->flags);
4466 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4467 				s->handle_bad_blocks = 1;
4468 				atomic_inc(&rdev2->nr_pending);
4469 			} else
4470 				clear_bit(R5_WriteError, &dev->flags);
4471 		}
4472 		if (test_bit(R5_MadeGood, &dev->flags)) {
4473 			/* This flag does not apply to '.replacement'
4474 			 * only to .rdev, so make sure to check that*/
4475 			struct md_rdev *rdev2 = rcu_dereference(
4476 				conf->disks[i].rdev);
4477 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4478 				s->handle_bad_blocks = 1;
4479 				atomic_inc(&rdev2->nr_pending);
4480 			} else
4481 				clear_bit(R5_MadeGood, &dev->flags);
4482 		}
4483 		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4484 			struct md_rdev *rdev2 = rcu_dereference(
4485 				conf->disks[i].replacement);
4486 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4487 				s->handle_bad_blocks = 1;
4488 				atomic_inc(&rdev2->nr_pending);
4489 			} else
4490 				clear_bit(R5_MadeGoodRepl, &dev->flags);
4491 		}
4492 		if (!test_bit(R5_Insync, &dev->flags)) {
4493 			/* The ReadError flag will just be confusing now */
4494 			clear_bit(R5_ReadError, &dev->flags);
4495 			clear_bit(R5_ReWrite, &dev->flags);
4496 		}
4497 		if (test_bit(R5_ReadError, &dev->flags))
4498 			clear_bit(R5_Insync, &dev->flags);
4499 		if (!test_bit(R5_Insync, &dev->flags)) {
4500 			if (s->failed < 2)
4501 				s->failed_num[s->failed] = i;
4502 			s->failed++;
4503 			if (rdev && !test_bit(Faulty, &rdev->flags))
4504 				do_recovery = 1;
4505 		}
4506 
4507 		if (test_bit(R5_InJournal, &dev->flags))
4508 			s->injournal++;
4509 		if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4510 			s->just_cached++;
4511 	}
4512 	if (test_bit(STRIPE_SYNCING, &sh->state)) {
4513 		/* If there is a failed device being replaced,
4514 		 *     we must be recovering.
4515 		 * else if we are after recovery_cp, we must be syncing
4516 		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4517 		 * else we can only be replacing
4518 		 * sync and recovery both need to read all devices, and so
4519 		 * use the same flag.
4520 		 */
4521 		if (do_recovery ||
4522 		    sh->sector >= conf->mddev->recovery_cp ||
4523 		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4524 			s->syncing = 1;
4525 		else
4526 			s->replacing = 1;
4527 	}
4528 	rcu_read_unlock();
4529 }
4530 
4531 static int clear_batch_ready(struct stripe_head *sh)
4532 {
4533 	/* Return '1' if this is a member of batch, or
4534 	 * '0' if it is a lone stripe or a head which can now be
4535 	 * handled.
4536 	 */
4537 	struct stripe_head *tmp;
4538 	if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4539 		return (sh->batch_head && sh->batch_head != sh);
4540 	spin_lock(&sh->stripe_lock);
4541 	if (!sh->batch_head) {
4542 		spin_unlock(&sh->stripe_lock);
4543 		return 0;
4544 	}
4545 
4546 	/*
4547 	 * this stripe could be added to a batch list before we check
4548 	 * BATCH_READY, skips it
4549 	 */
4550 	if (sh->batch_head != sh) {
4551 		spin_unlock(&sh->stripe_lock);
4552 		return 1;
4553 	}
4554 	spin_lock(&sh->batch_lock);
4555 	list_for_each_entry(tmp, &sh->batch_list, batch_list)
4556 		clear_bit(STRIPE_BATCH_READY, &tmp->state);
4557 	spin_unlock(&sh->batch_lock);
4558 	spin_unlock(&sh->stripe_lock);
4559 
4560 	/*
4561 	 * BATCH_READY is cleared, no new stripes can be added.
4562 	 * batch_list can be accessed without lock
4563 	 */
4564 	return 0;
4565 }
4566 
4567 static void break_stripe_batch_list(struct stripe_head *head_sh,
4568 				    unsigned long handle_flags)
4569 {
4570 	struct stripe_head *sh, *next;
4571 	int i;
4572 	int do_wakeup = 0;
4573 
4574 	list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4575 
4576 		list_del_init(&sh->batch_list);
4577 
4578 		WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4579 					  (1 << STRIPE_SYNCING) |
4580 					  (1 << STRIPE_REPLACED) |
4581 					  (1 << STRIPE_DELAYED) |
4582 					  (1 << STRIPE_BIT_DELAY) |
4583 					  (1 << STRIPE_FULL_WRITE) |
4584 					  (1 << STRIPE_BIOFILL_RUN) |
4585 					  (1 << STRIPE_COMPUTE_RUN)  |
4586 					  (1 << STRIPE_OPS_REQ_PENDING) |
4587 					  (1 << STRIPE_DISCARD) |
4588 					  (1 << STRIPE_BATCH_READY) |
4589 					  (1 << STRIPE_BATCH_ERR) |
4590 					  (1 << STRIPE_BITMAP_PENDING)),
4591 			"stripe state: %lx\n", sh->state);
4592 		WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4593 					      (1 << STRIPE_REPLACED)),
4594 			"head stripe state: %lx\n", head_sh->state);
4595 
4596 		set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4597 					    (1 << STRIPE_PREREAD_ACTIVE) |
4598 					    (1 << STRIPE_DEGRADED)),
4599 			      head_sh->state & (1 << STRIPE_INSYNC));
4600 
4601 		sh->check_state = head_sh->check_state;
4602 		sh->reconstruct_state = head_sh->reconstruct_state;
4603 		for (i = 0; i < sh->disks; i++) {
4604 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4605 				do_wakeup = 1;
4606 			sh->dev[i].flags = head_sh->dev[i].flags &
4607 				(~((1 << R5_WriteError) | (1 << R5_Overlap)));
4608 		}
4609 		spin_lock_irq(&sh->stripe_lock);
4610 		sh->batch_head = NULL;
4611 		spin_unlock_irq(&sh->stripe_lock);
4612 		if (handle_flags == 0 ||
4613 		    sh->state & handle_flags)
4614 			set_bit(STRIPE_HANDLE, &sh->state);
4615 		raid5_release_stripe(sh);
4616 	}
4617 	spin_lock_irq(&head_sh->stripe_lock);
4618 	head_sh->batch_head = NULL;
4619 	spin_unlock_irq(&head_sh->stripe_lock);
4620 	for (i = 0; i < head_sh->disks; i++)
4621 		if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4622 			do_wakeup = 1;
4623 	if (head_sh->state & handle_flags)
4624 		set_bit(STRIPE_HANDLE, &head_sh->state);
4625 
4626 	if (do_wakeup)
4627 		wake_up(&head_sh->raid_conf->wait_for_overlap);
4628 }
4629 
4630 static void handle_stripe(struct stripe_head *sh)
4631 {
4632 	struct stripe_head_state s;
4633 	struct r5conf *conf = sh->raid_conf;
4634 	int i;
4635 	int prexor;
4636 	int disks = sh->disks;
4637 	struct r5dev *pdev, *qdev;
4638 
4639 	clear_bit(STRIPE_HANDLE, &sh->state);
4640 	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4641 		/* already being handled, ensure it gets handled
4642 		 * again when current action finishes */
4643 		set_bit(STRIPE_HANDLE, &sh->state);
4644 		return;
4645 	}
4646 
4647 	if (clear_batch_ready(sh) ) {
4648 		clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4649 		return;
4650 	}
4651 
4652 	if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4653 		break_stripe_batch_list(sh, 0);
4654 
4655 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4656 		spin_lock(&sh->stripe_lock);
4657 		/* Cannot process 'sync' concurrently with 'discard' */
4658 		if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4659 		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4660 			set_bit(STRIPE_SYNCING, &sh->state);
4661 			clear_bit(STRIPE_INSYNC, &sh->state);
4662 			clear_bit(STRIPE_REPLACED, &sh->state);
4663 		}
4664 		spin_unlock(&sh->stripe_lock);
4665 	}
4666 	clear_bit(STRIPE_DELAYED, &sh->state);
4667 
4668 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4669 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4670 	       (unsigned long long)sh->sector, sh->state,
4671 	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4672 	       sh->check_state, sh->reconstruct_state);
4673 
4674 	analyse_stripe(sh, &s);
4675 
4676 	if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4677 		goto finish;
4678 
4679 	if (s.handle_bad_blocks ||
4680 	    test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4681 		set_bit(STRIPE_HANDLE, &sh->state);
4682 		goto finish;
4683 	}
4684 
4685 	if (unlikely(s.blocked_rdev)) {
4686 		if (s.syncing || s.expanding || s.expanded ||
4687 		    s.replacing || s.to_write || s.written) {
4688 			set_bit(STRIPE_HANDLE, &sh->state);
4689 			goto finish;
4690 		}
4691 		/* There is nothing for the blocked_rdev to block */
4692 		rdev_dec_pending(s.blocked_rdev, conf->mddev);
4693 		s.blocked_rdev = NULL;
4694 	}
4695 
4696 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4697 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4698 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4699 	}
4700 
4701 	pr_debug("locked=%d uptodate=%d to_read=%d"
4702 	       " to_write=%d failed=%d failed_num=%d,%d\n",
4703 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4704 	       s.failed_num[0], s.failed_num[1]);
4705 	/* check if the array has lost more than max_degraded devices and,
4706 	 * if so, some requests might need to be failed.
4707 	 */
4708 	if (s.failed > conf->max_degraded || s.log_failed) {
4709 		sh->check_state = 0;
4710 		sh->reconstruct_state = 0;
4711 		break_stripe_batch_list(sh, 0);
4712 		if (s.to_read+s.to_write+s.written)
4713 			handle_failed_stripe(conf, sh, &s, disks);
4714 		if (s.syncing + s.replacing)
4715 			handle_failed_sync(conf, sh, &s);
4716 	}
4717 
4718 	/* Now we check to see if any write operations have recently
4719 	 * completed
4720 	 */
4721 	prexor = 0;
4722 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4723 		prexor = 1;
4724 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
4725 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4726 		sh->reconstruct_state = reconstruct_state_idle;
4727 
4728 		/* All the 'written' buffers and the parity block are ready to
4729 		 * be written back to disk
4730 		 */
4731 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4732 		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4733 		BUG_ON(sh->qd_idx >= 0 &&
4734 		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4735 		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4736 		for (i = disks; i--; ) {
4737 			struct r5dev *dev = &sh->dev[i];
4738 			if (test_bit(R5_LOCKED, &dev->flags) &&
4739 				(i == sh->pd_idx || i == sh->qd_idx ||
4740 				 dev->written || test_bit(R5_InJournal,
4741 							  &dev->flags))) {
4742 				pr_debug("Writing block %d\n", i);
4743 				set_bit(R5_Wantwrite, &dev->flags);
4744 				if (prexor)
4745 					continue;
4746 				if (s.failed > 1)
4747 					continue;
4748 				if (!test_bit(R5_Insync, &dev->flags) ||
4749 				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
4750 				     s.failed == 0))
4751 					set_bit(STRIPE_INSYNC, &sh->state);
4752 			}
4753 		}
4754 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4755 			s.dec_preread_active = 1;
4756 	}
4757 
4758 	/*
4759 	 * might be able to return some write requests if the parity blocks
4760 	 * are safe, or on a failed drive
4761 	 */
4762 	pdev = &sh->dev[sh->pd_idx];
4763 	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4764 		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4765 	qdev = &sh->dev[sh->qd_idx];
4766 	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4767 		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4768 		|| conf->level < 6;
4769 
4770 	if (s.written &&
4771 	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4772 			     && !test_bit(R5_LOCKED, &pdev->flags)
4773 			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
4774 				 test_bit(R5_Discard, &pdev->flags))))) &&
4775 	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4776 			     && !test_bit(R5_LOCKED, &qdev->flags)
4777 			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
4778 				 test_bit(R5_Discard, &qdev->flags))))))
4779 		handle_stripe_clean_event(conf, sh, disks);
4780 
4781 	if (s.just_cached)
4782 		r5c_handle_cached_data_endio(conf, sh, disks);
4783 	log_stripe_write_finished(sh);
4784 
4785 	/* Now we might consider reading some blocks, either to check/generate
4786 	 * parity, or to satisfy requests
4787 	 * or to load a block that is being partially written.
4788 	 */
4789 	if (s.to_read || s.non_overwrite
4790 	    || (conf->level == 6 && s.to_write && s.failed)
4791 	    || (s.syncing && (s.uptodate + s.compute < disks))
4792 	    || s.replacing
4793 	    || s.expanding)
4794 		handle_stripe_fill(sh, &s, disks);
4795 
4796 	/*
4797 	 * When the stripe finishes full journal write cycle (write to journal
4798 	 * and raid disk), this is the clean up procedure so it is ready for
4799 	 * next operation.
4800 	 */
4801 	r5c_finish_stripe_write_out(conf, sh, &s);
4802 
4803 	/*
4804 	 * Now to consider new write requests, cache write back and what else,
4805 	 * if anything should be read.  We do not handle new writes when:
4806 	 * 1/ A 'write' operation (copy+xor) is already in flight.
4807 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
4808 	 *    block.
4809 	 * 3/ A r5c cache log write is in flight.
4810 	 */
4811 
4812 	if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
4813 		if (!r5c_is_writeback(conf->log)) {
4814 			if (s.to_write)
4815 				handle_stripe_dirtying(conf, sh, &s, disks);
4816 		} else { /* write back cache */
4817 			int ret = 0;
4818 
4819 			/* First, try handle writes in caching phase */
4820 			if (s.to_write)
4821 				ret = r5c_try_caching_write(conf, sh, &s,
4822 							    disks);
4823 			/*
4824 			 * If caching phase failed: ret == -EAGAIN
4825 			 *    OR
4826 			 * stripe under reclaim: !caching && injournal
4827 			 *
4828 			 * fall back to handle_stripe_dirtying()
4829 			 */
4830 			if (ret == -EAGAIN ||
4831 			    /* stripe under reclaim: !caching && injournal */
4832 			    (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
4833 			     s.injournal > 0)) {
4834 				ret = handle_stripe_dirtying(conf, sh, &s,
4835 							     disks);
4836 				if (ret == -EAGAIN)
4837 					goto finish;
4838 			}
4839 		}
4840 	}
4841 
4842 	/* maybe we need to check and possibly fix the parity for this stripe
4843 	 * Any reads will already have been scheduled, so we just see if enough
4844 	 * data is available.  The parity check is held off while parity
4845 	 * dependent operations are in flight.
4846 	 */
4847 	if (sh->check_state ||
4848 	    (s.syncing && s.locked == 0 &&
4849 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4850 	     !test_bit(STRIPE_INSYNC, &sh->state))) {
4851 		if (conf->level == 6)
4852 			handle_parity_checks6(conf, sh, &s, disks);
4853 		else
4854 			handle_parity_checks5(conf, sh, &s, disks);
4855 	}
4856 
4857 	if ((s.replacing || s.syncing) && s.locked == 0
4858 	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4859 	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
4860 		/* Write out to replacement devices where possible */
4861 		for (i = 0; i < conf->raid_disks; i++)
4862 			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4863 				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4864 				set_bit(R5_WantReplace, &sh->dev[i].flags);
4865 				set_bit(R5_LOCKED, &sh->dev[i].flags);
4866 				s.locked++;
4867 			}
4868 		if (s.replacing)
4869 			set_bit(STRIPE_INSYNC, &sh->state);
4870 		set_bit(STRIPE_REPLACED, &sh->state);
4871 	}
4872 	if ((s.syncing || s.replacing) && s.locked == 0 &&
4873 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4874 	    test_bit(STRIPE_INSYNC, &sh->state)) {
4875 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4876 		clear_bit(STRIPE_SYNCING, &sh->state);
4877 		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4878 			wake_up(&conf->wait_for_overlap);
4879 	}
4880 
4881 	/* If the failed drives are just a ReadError, then we might need
4882 	 * to progress the repair/check process
4883 	 */
4884 	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4885 		for (i = 0; i < s.failed; i++) {
4886 			struct r5dev *dev = &sh->dev[s.failed_num[i]];
4887 			if (test_bit(R5_ReadError, &dev->flags)
4888 			    && !test_bit(R5_LOCKED, &dev->flags)
4889 			    && test_bit(R5_UPTODATE, &dev->flags)
4890 				) {
4891 				if (!test_bit(R5_ReWrite, &dev->flags)) {
4892 					set_bit(R5_Wantwrite, &dev->flags);
4893 					set_bit(R5_ReWrite, &dev->flags);
4894 					set_bit(R5_LOCKED, &dev->flags);
4895 					s.locked++;
4896 				} else {
4897 					/* let's read it back */
4898 					set_bit(R5_Wantread, &dev->flags);
4899 					set_bit(R5_LOCKED, &dev->flags);
4900 					s.locked++;
4901 				}
4902 			}
4903 		}
4904 
4905 	/* Finish reconstruct operations initiated by the expansion process */
4906 	if (sh->reconstruct_state == reconstruct_state_result) {
4907 		struct stripe_head *sh_src
4908 			= raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4909 		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4910 			/* sh cannot be written until sh_src has been read.
4911 			 * so arrange for sh to be delayed a little
4912 			 */
4913 			set_bit(STRIPE_DELAYED, &sh->state);
4914 			set_bit(STRIPE_HANDLE, &sh->state);
4915 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4916 					      &sh_src->state))
4917 				atomic_inc(&conf->preread_active_stripes);
4918 			raid5_release_stripe(sh_src);
4919 			goto finish;
4920 		}
4921 		if (sh_src)
4922 			raid5_release_stripe(sh_src);
4923 
4924 		sh->reconstruct_state = reconstruct_state_idle;
4925 		clear_bit(STRIPE_EXPANDING, &sh->state);
4926 		for (i = conf->raid_disks; i--; ) {
4927 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
4928 			set_bit(R5_LOCKED, &sh->dev[i].flags);
4929 			s.locked++;
4930 		}
4931 	}
4932 
4933 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4934 	    !sh->reconstruct_state) {
4935 		/* Need to write out all blocks after computing parity */
4936 		sh->disks = conf->raid_disks;
4937 		stripe_set_idx(sh->sector, conf, 0, sh);
4938 		schedule_reconstruction(sh, &s, 1, 1);
4939 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4940 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
4941 		atomic_dec(&conf->reshape_stripes);
4942 		wake_up(&conf->wait_for_overlap);
4943 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4944 	}
4945 
4946 	if (s.expanding && s.locked == 0 &&
4947 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4948 		handle_stripe_expansion(conf, sh);
4949 
4950 finish:
4951 	/* wait for this device to become unblocked */
4952 	if (unlikely(s.blocked_rdev)) {
4953 		if (conf->mddev->external)
4954 			md_wait_for_blocked_rdev(s.blocked_rdev,
4955 						 conf->mddev);
4956 		else
4957 			/* Internal metadata will immediately
4958 			 * be written by raid5d, so we don't
4959 			 * need to wait here.
4960 			 */
4961 			rdev_dec_pending(s.blocked_rdev,
4962 					 conf->mddev);
4963 	}
4964 
4965 	if (s.handle_bad_blocks)
4966 		for (i = disks; i--; ) {
4967 			struct md_rdev *rdev;
4968 			struct r5dev *dev = &sh->dev[i];
4969 			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4970 				/* We own a safe reference to the rdev */
4971 				rdev = conf->disks[i].rdev;
4972 				if (!rdev_set_badblocks(rdev, sh->sector,
4973 							STRIPE_SECTORS, 0))
4974 					md_error(conf->mddev, rdev);
4975 				rdev_dec_pending(rdev, conf->mddev);
4976 			}
4977 			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4978 				rdev = conf->disks[i].rdev;
4979 				rdev_clear_badblocks(rdev, sh->sector,
4980 						     STRIPE_SECTORS, 0);
4981 				rdev_dec_pending(rdev, conf->mddev);
4982 			}
4983 			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4984 				rdev = conf->disks[i].replacement;
4985 				if (!rdev)
4986 					/* rdev have been moved down */
4987 					rdev = conf->disks[i].rdev;
4988 				rdev_clear_badblocks(rdev, sh->sector,
4989 						     STRIPE_SECTORS, 0);
4990 				rdev_dec_pending(rdev, conf->mddev);
4991 			}
4992 		}
4993 
4994 	if (s.ops_request)
4995 		raid_run_ops(sh, s.ops_request);
4996 
4997 	ops_run_io(sh, &s);
4998 
4999 	if (s.dec_preread_active) {
5000 		/* We delay this until after ops_run_io so that if make_request
5001 		 * is waiting on a flush, it won't continue until the writes
5002 		 * have actually been submitted.
5003 		 */
5004 		atomic_dec(&conf->preread_active_stripes);
5005 		if (atomic_read(&conf->preread_active_stripes) <
5006 		    IO_THRESHOLD)
5007 			md_wakeup_thread(conf->mddev->thread);
5008 	}
5009 
5010 	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5011 }
5012 
5013 static void raid5_activate_delayed(struct r5conf *conf)
5014 {
5015 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5016 		while (!list_empty(&conf->delayed_list)) {
5017 			struct list_head *l = conf->delayed_list.next;
5018 			struct stripe_head *sh;
5019 			sh = list_entry(l, struct stripe_head, lru);
5020 			list_del_init(l);
5021 			clear_bit(STRIPE_DELAYED, &sh->state);
5022 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5023 				atomic_inc(&conf->preread_active_stripes);
5024 			list_add_tail(&sh->lru, &conf->hold_list);
5025 			raid5_wakeup_stripe_thread(sh);
5026 		}
5027 	}
5028 }
5029 
5030 static void activate_bit_delay(struct r5conf *conf,
5031 	struct list_head *temp_inactive_list)
5032 {
5033 	/* device_lock is held */
5034 	struct list_head head;
5035 	list_add(&head, &conf->bitmap_list);
5036 	list_del_init(&conf->bitmap_list);
5037 	while (!list_empty(&head)) {
5038 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5039 		int hash;
5040 		list_del_init(&sh->lru);
5041 		atomic_inc(&sh->count);
5042 		hash = sh->hash_lock_index;
5043 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
5044 	}
5045 }
5046 
5047 static int raid5_congested(struct mddev *mddev, int bits)
5048 {
5049 	struct r5conf *conf = mddev->private;
5050 
5051 	/* No difference between reads and writes.  Just check
5052 	 * how busy the stripe_cache is
5053 	 */
5054 
5055 	if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
5056 		return 1;
5057 
5058 	/* Also checks whether there is pressure on r5cache log space */
5059 	if (test_bit(R5C_LOG_TIGHT, &conf->cache_state))
5060 		return 1;
5061 	if (conf->quiesce)
5062 		return 1;
5063 	if (atomic_read(&conf->empty_inactive_list_nr))
5064 		return 1;
5065 
5066 	return 0;
5067 }
5068 
5069 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5070 {
5071 	struct r5conf *conf = mddev->private;
5072 	sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
5073 	unsigned int chunk_sectors;
5074 	unsigned int bio_sectors = bio_sectors(bio);
5075 
5076 	chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5077 	return  chunk_sectors >=
5078 		((sector & (chunk_sectors - 1)) + bio_sectors);
5079 }
5080 
5081 /*
5082  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
5083  *  later sampled by raid5d.
5084  */
5085 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5086 {
5087 	unsigned long flags;
5088 
5089 	spin_lock_irqsave(&conf->device_lock, flags);
5090 
5091 	bi->bi_next = conf->retry_read_aligned_list;
5092 	conf->retry_read_aligned_list = bi;
5093 
5094 	spin_unlock_irqrestore(&conf->device_lock, flags);
5095 	md_wakeup_thread(conf->mddev->thread);
5096 }
5097 
5098 static struct bio *remove_bio_from_retry(struct r5conf *conf,
5099 					 unsigned int *offset)
5100 {
5101 	struct bio *bi;
5102 
5103 	bi = conf->retry_read_aligned;
5104 	if (bi) {
5105 		*offset = conf->retry_read_offset;
5106 		conf->retry_read_aligned = NULL;
5107 		return bi;
5108 	}
5109 	bi = conf->retry_read_aligned_list;
5110 	if(bi) {
5111 		conf->retry_read_aligned_list = bi->bi_next;
5112 		bi->bi_next = NULL;
5113 		*offset = 0;
5114 	}
5115 
5116 	return bi;
5117 }
5118 
5119 /*
5120  *  The "raid5_align_endio" should check if the read succeeded and if it
5121  *  did, call bio_endio on the original bio (having bio_put the new bio
5122  *  first).
5123  *  If the read failed..
5124  */
5125 static void raid5_align_endio(struct bio *bi)
5126 {
5127 	struct bio* raid_bi  = bi->bi_private;
5128 	struct mddev *mddev;
5129 	struct r5conf *conf;
5130 	struct md_rdev *rdev;
5131 	int error = bi->bi_error;
5132 
5133 	bio_put(bi);
5134 
5135 	rdev = (void*)raid_bi->bi_next;
5136 	raid_bi->bi_next = NULL;
5137 	mddev = rdev->mddev;
5138 	conf = mddev->private;
5139 
5140 	rdev_dec_pending(rdev, conf->mddev);
5141 
5142 	if (!error) {
5143 		trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
5144 					 raid_bi, 0);
5145 		bio_endio(raid_bi);
5146 		if (atomic_dec_and_test(&conf->active_aligned_reads))
5147 			wake_up(&conf->wait_for_quiescent);
5148 		return;
5149 	}
5150 
5151 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5152 
5153 	add_bio_to_retry(raid_bi, conf);
5154 }
5155 
5156 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5157 {
5158 	struct r5conf *conf = mddev->private;
5159 	int dd_idx;
5160 	struct bio* align_bi;
5161 	struct md_rdev *rdev;
5162 	sector_t end_sector;
5163 
5164 	if (!in_chunk_boundary(mddev, raid_bio)) {
5165 		pr_debug("%s: non aligned\n", __func__);
5166 		return 0;
5167 	}
5168 	/*
5169 	 * use bio_clone_fast to make a copy of the bio
5170 	 */
5171 	align_bi = bio_clone_fast(raid_bio, GFP_NOIO, mddev->bio_set);
5172 	if (!align_bi)
5173 		return 0;
5174 	/*
5175 	 *   set bi_end_io to a new function, and set bi_private to the
5176 	 *     original bio.
5177 	 */
5178 	align_bi->bi_end_io  = raid5_align_endio;
5179 	align_bi->bi_private = raid_bio;
5180 	/*
5181 	 *	compute position
5182 	 */
5183 	align_bi->bi_iter.bi_sector =
5184 		raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
5185 				     0, &dd_idx, NULL);
5186 
5187 	end_sector = bio_end_sector(align_bi);
5188 	rcu_read_lock();
5189 	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5190 	if (!rdev || test_bit(Faulty, &rdev->flags) ||
5191 	    rdev->recovery_offset < end_sector) {
5192 		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5193 		if (rdev &&
5194 		    (test_bit(Faulty, &rdev->flags) ||
5195 		    !(test_bit(In_sync, &rdev->flags) ||
5196 		      rdev->recovery_offset >= end_sector)))
5197 			rdev = NULL;
5198 	}
5199 
5200 	if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) {
5201 		rcu_read_unlock();
5202 		bio_put(align_bi);
5203 		return 0;
5204 	}
5205 
5206 	if (rdev) {
5207 		sector_t first_bad;
5208 		int bad_sectors;
5209 
5210 		atomic_inc(&rdev->nr_pending);
5211 		rcu_read_unlock();
5212 		raid_bio->bi_next = (void*)rdev;
5213 		align_bi->bi_bdev =  rdev->bdev;
5214 		bio_clear_flag(align_bi, BIO_SEG_VALID);
5215 
5216 		if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
5217 				bio_sectors(align_bi),
5218 				&first_bad, &bad_sectors)) {
5219 			bio_put(align_bi);
5220 			rdev_dec_pending(rdev, mddev);
5221 			return 0;
5222 		}
5223 
5224 		/* No reshape active, so we can trust rdev->data_offset */
5225 		align_bi->bi_iter.bi_sector += rdev->data_offset;
5226 
5227 		spin_lock_irq(&conf->device_lock);
5228 		wait_event_lock_irq(conf->wait_for_quiescent,
5229 				    conf->quiesce == 0,
5230 				    conf->device_lock);
5231 		atomic_inc(&conf->active_aligned_reads);
5232 		spin_unlock_irq(&conf->device_lock);
5233 
5234 		if (mddev->gendisk)
5235 			trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
5236 					      align_bi, disk_devt(mddev->gendisk),
5237 					      raid_bio->bi_iter.bi_sector);
5238 		generic_make_request(align_bi);
5239 		return 1;
5240 	} else {
5241 		rcu_read_unlock();
5242 		bio_put(align_bi);
5243 		return 0;
5244 	}
5245 }
5246 
5247 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5248 {
5249 	struct bio *split;
5250 
5251 	do {
5252 		sector_t sector = raid_bio->bi_iter.bi_sector;
5253 		unsigned chunk_sects = mddev->chunk_sectors;
5254 		unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5255 
5256 		if (sectors < bio_sectors(raid_bio)) {
5257 			split = bio_split(raid_bio, sectors, GFP_NOIO, fs_bio_set);
5258 			bio_chain(split, raid_bio);
5259 		} else
5260 			split = raid_bio;
5261 
5262 		if (!raid5_read_one_chunk(mddev, split)) {
5263 			if (split != raid_bio)
5264 				generic_make_request(raid_bio);
5265 			return split;
5266 		}
5267 	} while (split != raid_bio);
5268 
5269 	return NULL;
5270 }
5271 
5272 /* __get_priority_stripe - get the next stripe to process
5273  *
5274  * Full stripe writes are allowed to pass preread active stripes up until
5275  * the bypass_threshold is exceeded.  In general the bypass_count
5276  * increments when the handle_list is handled before the hold_list; however, it
5277  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5278  * stripe with in flight i/o.  The bypass_count will be reset when the
5279  * head of the hold_list has changed, i.e. the head was promoted to the
5280  * handle_list.
5281  */
5282 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5283 {
5284 	struct stripe_head *sh, *tmp;
5285 	struct list_head *handle_list = NULL;
5286 	struct r5worker_group *wg;
5287 	bool second_try = !r5c_is_writeback(conf->log);
5288 	bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state);
5289 
5290 again:
5291 	wg = NULL;
5292 	sh = NULL;
5293 	if (conf->worker_cnt_per_group == 0) {
5294 		handle_list = try_loprio ? &conf->loprio_list :
5295 					&conf->handle_list;
5296 	} else if (group != ANY_GROUP) {
5297 		handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5298 				&conf->worker_groups[group].handle_list;
5299 		wg = &conf->worker_groups[group];
5300 	} else {
5301 		int i;
5302 		for (i = 0; i < conf->group_cnt; i++) {
5303 			handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5304 				&conf->worker_groups[i].handle_list;
5305 			wg = &conf->worker_groups[i];
5306 			if (!list_empty(handle_list))
5307 				break;
5308 		}
5309 	}
5310 
5311 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5312 		  __func__,
5313 		  list_empty(handle_list) ? "empty" : "busy",
5314 		  list_empty(&conf->hold_list) ? "empty" : "busy",
5315 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
5316 
5317 	if (!list_empty(handle_list)) {
5318 		sh = list_entry(handle_list->next, typeof(*sh), lru);
5319 
5320 		if (list_empty(&conf->hold_list))
5321 			conf->bypass_count = 0;
5322 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5323 			if (conf->hold_list.next == conf->last_hold)
5324 				conf->bypass_count++;
5325 			else {
5326 				conf->last_hold = conf->hold_list.next;
5327 				conf->bypass_count -= conf->bypass_threshold;
5328 				if (conf->bypass_count < 0)
5329 					conf->bypass_count = 0;
5330 			}
5331 		}
5332 	} else if (!list_empty(&conf->hold_list) &&
5333 		   ((conf->bypass_threshold &&
5334 		     conf->bypass_count > conf->bypass_threshold) ||
5335 		    atomic_read(&conf->pending_full_writes) == 0)) {
5336 
5337 		list_for_each_entry(tmp, &conf->hold_list,  lru) {
5338 			if (conf->worker_cnt_per_group == 0 ||
5339 			    group == ANY_GROUP ||
5340 			    !cpu_online(tmp->cpu) ||
5341 			    cpu_to_group(tmp->cpu) == group) {
5342 				sh = tmp;
5343 				break;
5344 			}
5345 		}
5346 
5347 		if (sh) {
5348 			conf->bypass_count -= conf->bypass_threshold;
5349 			if (conf->bypass_count < 0)
5350 				conf->bypass_count = 0;
5351 		}
5352 		wg = NULL;
5353 	}
5354 
5355 	if (!sh) {
5356 		if (second_try)
5357 			return NULL;
5358 		second_try = true;
5359 		try_loprio = !try_loprio;
5360 		goto again;
5361 	}
5362 
5363 	if (wg) {
5364 		wg->stripes_cnt--;
5365 		sh->group = NULL;
5366 	}
5367 	list_del_init(&sh->lru);
5368 	BUG_ON(atomic_inc_return(&sh->count) != 1);
5369 	return sh;
5370 }
5371 
5372 struct raid5_plug_cb {
5373 	struct blk_plug_cb	cb;
5374 	struct list_head	list;
5375 	struct list_head	temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5376 };
5377 
5378 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5379 {
5380 	struct raid5_plug_cb *cb = container_of(
5381 		blk_cb, struct raid5_plug_cb, cb);
5382 	struct stripe_head *sh;
5383 	struct mddev *mddev = cb->cb.data;
5384 	struct r5conf *conf = mddev->private;
5385 	int cnt = 0;
5386 	int hash;
5387 
5388 	if (cb->list.next && !list_empty(&cb->list)) {
5389 		spin_lock_irq(&conf->device_lock);
5390 		while (!list_empty(&cb->list)) {
5391 			sh = list_first_entry(&cb->list, struct stripe_head, lru);
5392 			list_del_init(&sh->lru);
5393 			/*
5394 			 * avoid race release_stripe_plug() sees
5395 			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5396 			 * is still in our list
5397 			 */
5398 			smp_mb__before_atomic();
5399 			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5400 			/*
5401 			 * STRIPE_ON_RELEASE_LIST could be set here. In that
5402 			 * case, the count is always > 1 here
5403 			 */
5404 			hash = sh->hash_lock_index;
5405 			__release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5406 			cnt++;
5407 		}
5408 		spin_unlock_irq(&conf->device_lock);
5409 	}
5410 	release_inactive_stripe_list(conf, cb->temp_inactive_list,
5411 				     NR_STRIPE_HASH_LOCKS);
5412 	if (mddev->queue)
5413 		trace_block_unplug(mddev->queue, cnt, !from_schedule);
5414 	kfree(cb);
5415 }
5416 
5417 static void release_stripe_plug(struct mddev *mddev,
5418 				struct stripe_head *sh)
5419 {
5420 	struct blk_plug_cb *blk_cb = blk_check_plugged(
5421 		raid5_unplug, mddev,
5422 		sizeof(struct raid5_plug_cb));
5423 	struct raid5_plug_cb *cb;
5424 
5425 	if (!blk_cb) {
5426 		raid5_release_stripe(sh);
5427 		return;
5428 	}
5429 
5430 	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5431 
5432 	if (cb->list.next == NULL) {
5433 		int i;
5434 		INIT_LIST_HEAD(&cb->list);
5435 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5436 			INIT_LIST_HEAD(cb->temp_inactive_list + i);
5437 	}
5438 
5439 	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5440 		list_add_tail(&sh->lru, &cb->list);
5441 	else
5442 		raid5_release_stripe(sh);
5443 }
5444 
5445 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5446 {
5447 	struct r5conf *conf = mddev->private;
5448 	sector_t logical_sector, last_sector;
5449 	struct stripe_head *sh;
5450 	int stripe_sectors;
5451 
5452 	if (mddev->reshape_position != MaxSector)
5453 		/* Skip discard while reshape is happening */
5454 		return;
5455 
5456 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5457 	last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5458 
5459 	bi->bi_next = NULL;
5460 	md_write_start(mddev, bi);
5461 
5462 	stripe_sectors = conf->chunk_sectors *
5463 		(conf->raid_disks - conf->max_degraded);
5464 	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5465 					       stripe_sectors);
5466 	sector_div(last_sector, stripe_sectors);
5467 
5468 	logical_sector *= conf->chunk_sectors;
5469 	last_sector *= conf->chunk_sectors;
5470 
5471 	for (; logical_sector < last_sector;
5472 	     logical_sector += STRIPE_SECTORS) {
5473 		DEFINE_WAIT(w);
5474 		int d;
5475 	again:
5476 		sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5477 		prepare_to_wait(&conf->wait_for_overlap, &w,
5478 				TASK_UNINTERRUPTIBLE);
5479 		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5480 		if (test_bit(STRIPE_SYNCING, &sh->state)) {
5481 			raid5_release_stripe(sh);
5482 			schedule();
5483 			goto again;
5484 		}
5485 		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5486 		spin_lock_irq(&sh->stripe_lock);
5487 		for (d = 0; d < conf->raid_disks; d++) {
5488 			if (d == sh->pd_idx || d == sh->qd_idx)
5489 				continue;
5490 			if (sh->dev[d].towrite || sh->dev[d].toread) {
5491 				set_bit(R5_Overlap, &sh->dev[d].flags);
5492 				spin_unlock_irq(&sh->stripe_lock);
5493 				raid5_release_stripe(sh);
5494 				schedule();
5495 				goto again;
5496 			}
5497 		}
5498 		set_bit(STRIPE_DISCARD, &sh->state);
5499 		finish_wait(&conf->wait_for_overlap, &w);
5500 		sh->overwrite_disks = 0;
5501 		for (d = 0; d < conf->raid_disks; d++) {
5502 			if (d == sh->pd_idx || d == sh->qd_idx)
5503 				continue;
5504 			sh->dev[d].towrite = bi;
5505 			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5506 			bio_inc_remaining(bi);
5507 			md_write_inc(mddev, bi);
5508 			sh->overwrite_disks++;
5509 		}
5510 		spin_unlock_irq(&sh->stripe_lock);
5511 		if (conf->mddev->bitmap) {
5512 			for (d = 0;
5513 			     d < conf->raid_disks - conf->max_degraded;
5514 			     d++)
5515 				bitmap_startwrite(mddev->bitmap,
5516 						  sh->sector,
5517 						  STRIPE_SECTORS,
5518 						  0);
5519 			sh->bm_seq = conf->seq_flush + 1;
5520 			set_bit(STRIPE_BIT_DELAY, &sh->state);
5521 		}
5522 
5523 		set_bit(STRIPE_HANDLE, &sh->state);
5524 		clear_bit(STRIPE_DELAYED, &sh->state);
5525 		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5526 			atomic_inc(&conf->preread_active_stripes);
5527 		release_stripe_plug(mddev, sh);
5528 	}
5529 
5530 	md_write_end(mddev);
5531 	bio_endio(bi);
5532 }
5533 
5534 static void raid5_make_request(struct mddev *mddev, struct bio * bi)
5535 {
5536 	struct r5conf *conf = mddev->private;
5537 	int dd_idx;
5538 	sector_t new_sector;
5539 	sector_t logical_sector, last_sector;
5540 	struct stripe_head *sh;
5541 	const int rw = bio_data_dir(bi);
5542 	DEFINE_WAIT(w);
5543 	bool do_prepare;
5544 	bool do_flush = false;
5545 
5546 	if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5547 		int ret = r5l_handle_flush_request(conf->log, bi);
5548 
5549 		if (ret == 0)
5550 			return;
5551 		if (ret == -ENODEV) {
5552 			md_flush_request(mddev, bi);
5553 			return;
5554 		}
5555 		/* ret == -EAGAIN, fallback */
5556 		/*
5557 		 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5558 		 * we need to flush journal device
5559 		 */
5560 		do_flush = bi->bi_opf & REQ_PREFLUSH;
5561 	}
5562 
5563 	/*
5564 	 * If array is degraded, better not do chunk aligned read because
5565 	 * later we might have to read it again in order to reconstruct
5566 	 * data on failed drives.
5567 	 */
5568 	if (rw == READ && mddev->degraded == 0 &&
5569 	    mddev->reshape_position == MaxSector) {
5570 		bi = chunk_aligned_read(mddev, bi);
5571 		if (!bi)
5572 			return;
5573 	}
5574 
5575 	if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5576 		make_discard_request(mddev, bi);
5577 		return;
5578 	}
5579 
5580 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5581 	last_sector = bio_end_sector(bi);
5582 	bi->bi_next = NULL;
5583 	md_write_start(mddev, bi);
5584 
5585 	prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5586 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5587 		int previous;
5588 		int seq;
5589 
5590 		do_prepare = false;
5591 	retry:
5592 		seq = read_seqcount_begin(&conf->gen_lock);
5593 		previous = 0;
5594 		if (do_prepare)
5595 			prepare_to_wait(&conf->wait_for_overlap, &w,
5596 				TASK_UNINTERRUPTIBLE);
5597 		if (unlikely(conf->reshape_progress != MaxSector)) {
5598 			/* spinlock is needed as reshape_progress may be
5599 			 * 64bit on a 32bit platform, and so it might be
5600 			 * possible to see a half-updated value
5601 			 * Of course reshape_progress could change after
5602 			 * the lock is dropped, so once we get a reference
5603 			 * to the stripe that we think it is, we will have
5604 			 * to check again.
5605 			 */
5606 			spin_lock_irq(&conf->device_lock);
5607 			if (mddev->reshape_backwards
5608 			    ? logical_sector < conf->reshape_progress
5609 			    : logical_sector >= conf->reshape_progress) {
5610 				previous = 1;
5611 			} else {
5612 				if (mddev->reshape_backwards
5613 				    ? logical_sector < conf->reshape_safe
5614 				    : logical_sector >= conf->reshape_safe) {
5615 					spin_unlock_irq(&conf->device_lock);
5616 					schedule();
5617 					do_prepare = true;
5618 					goto retry;
5619 				}
5620 			}
5621 			spin_unlock_irq(&conf->device_lock);
5622 		}
5623 
5624 		new_sector = raid5_compute_sector(conf, logical_sector,
5625 						  previous,
5626 						  &dd_idx, NULL);
5627 		pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5628 			(unsigned long long)new_sector,
5629 			(unsigned long long)logical_sector);
5630 
5631 		sh = raid5_get_active_stripe(conf, new_sector, previous,
5632 				       (bi->bi_opf & REQ_RAHEAD), 0);
5633 		if (sh) {
5634 			if (unlikely(previous)) {
5635 				/* expansion might have moved on while waiting for a
5636 				 * stripe, so we must do the range check again.
5637 				 * Expansion could still move past after this
5638 				 * test, but as we are holding a reference to
5639 				 * 'sh', we know that if that happens,
5640 				 *  STRIPE_EXPANDING will get set and the expansion
5641 				 * won't proceed until we finish with the stripe.
5642 				 */
5643 				int must_retry = 0;
5644 				spin_lock_irq(&conf->device_lock);
5645 				if (mddev->reshape_backwards
5646 				    ? logical_sector >= conf->reshape_progress
5647 				    : logical_sector < conf->reshape_progress)
5648 					/* mismatch, need to try again */
5649 					must_retry = 1;
5650 				spin_unlock_irq(&conf->device_lock);
5651 				if (must_retry) {
5652 					raid5_release_stripe(sh);
5653 					schedule();
5654 					do_prepare = true;
5655 					goto retry;
5656 				}
5657 			}
5658 			if (read_seqcount_retry(&conf->gen_lock, seq)) {
5659 				/* Might have got the wrong stripe_head
5660 				 * by accident
5661 				 */
5662 				raid5_release_stripe(sh);
5663 				goto retry;
5664 			}
5665 
5666 			if (rw == WRITE &&
5667 			    logical_sector >= mddev->suspend_lo &&
5668 			    logical_sector < mddev->suspend_hi) {
5669 				raid5_release_stripe(sh);
5670 				/* As the suspend_* range is controlled by
5671 				 * userspace, we want an interruptible
5672 				 * wait.
5673 				 */
5674 				flush_signals(current);
5675 				prepare_to_wait(&conf->wait_for_overlap,
5676 						&w, TASK_INTERRUPTIBLE);
5677 				if (logical_sector >= mddev->suspend_lo &&
5678 				    logical_sector < mddev->suspend_hi) {
5679 					schedule();
5680 					do_prepare = true;
5681 				}
5682 				goto retry;
5683 			}
5684 
5685 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5686 			    !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5687 				/* Stripe is busy expanding or
5688 				 * add failed due to overlap.  Flush everything
5689 				 * and wait a while
5690 				 */
5691 				md_wakeup_thread(mddev->thread);
5692 				raid5_release_stripe(sh);
5693 				schedule();
5694 				do_prepare = true;
5695 				goto retry;
5696 			}
5697 			if (do_flush) {
5698 				set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5699 				/* we only need flush for one stripe */
5700 				do_flush = false;
5701 			}
5702 
5703 			set_bit(STRIPE_HANDLE, &sh->state);
5704 			clear_bit(STRIPE_DELAYED, &sh->state);
5705 			if ((!sh->batch_head || sh == sh->batch_head) &&
5706 			    (bi->bi_opf & REQ_SYNC) &&
5707 			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5708 				atomic_inc(&conf->preread_active_stripes);
5709 			release_stripe_plug(mddev, sh);
5710 		} else {
5711 			/* cannot get stripe for read-ahead, just give-up */
5712 			bi->bi_error = -EIO;
5713 			break;
5714 		}
5715 	}
5716 	finish_wait(&conf->wait_for_overlap, &w);
5717 
5718 	if (rw == WRITE)
5719 		md_write_end(mddev);
5720 	bio_endio(bi);
5721 }
5722 
5723 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5724 
5725 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5726 {
5727 	/* reshaping is quite different to recovery/resync so it is
5728 	 * handled quite separately ... here.
5729 	 *
5730 	 * On each call to sync_request, we gather one chunk worth of
5731 	 * destination stripes and flag them as expanding.
5732 	 * Then we find all the source stripes and request reads.
5733 	 * As the reads complete, handle_stripe will copy the data
5734 	 * into the destination stripe and release that stripe.
5735 	 */
5736 	struct r5conf *conf = mddev->private;
5737 	struct stripe_head *sh;
5738 	sector_t first_sector, last_sector;
5739 	int raid_disks = conf->previous_raid_disks;
5740 	int data_disks = raid_disks - conf->max_degraded;
5741 	int new_data_disks = conf->raid_disks - conf->max_degraded;
5742 	int i;
5743 	int dd_idx;
5744 	sector_t writepos, readpos, safepos;
5745 	sector_t stripe_addr;
5746 	int reshape_sectors;
5747 	struct list_head stripes;
5748 	sector_t retn;
5749 
5750 	if (sector_nr == 0) {
5751 		/* If restarting in the middle, skip the initial sectors */
5752 		if (mddev->reshape_backwards &&
5753 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5754 			sector_nr = raid5_size(mddev, 0, 0)
5755 				- conf->reshape_progress;
5756 		} else if (mddev->reshape_backwards &&
5757 			   conf->reshape_progress == MaxSector) {
5758 			/* shouldn't happen, but just in case, finish up.*/
5759 			sector_nr = MaxSector;
5760 		} else if (!mddev->reshape_backwards &&
5761 			   conf->reshape_progress > 0)
5762 			sector_nr = conf->reshape_progress;
5763 		sector_div(sector_nr, new_data_disks);
5764 		if (sector_nr) {
5765 			mddev->curr_resync_completed = sector_nr;
5766 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5767 			*skipped = 1;
5768 			retn = sector_nr;
5769 			goto finish;
5770 		}
5771 	}
5772 
5773 	/* We need to process a full chunk at a time.
5774 	 * If old and new chunk sizes differ, we need to process the
5775 	 * largest of these
5776 	 */
5777 
5778 	reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5779 
5780 	/* We update the metadata at least every 10 seconds, or when
5781 	 * the data about to be copied would over-write the source of
5782 	 * the data at the front of the range.  i.e. one new_stripe
5783 	 * along from reshape_progress new_maps to after where
5784 	 * reshape_safe old_maps to
5785 	 */
5786 	writepos = conf->reshape_progress;
5787 	sector_div(writepos, new_data_disks);
5788 	readpos = conf->reshape_progress;
5789 	sector_div(readpos, data_disks);
5790 	safepos = conf->reshape_safe;
5791 	sector_div(safepos, data_disks);
5792 	if (mddev->reshape_backwards) {
5793 		BUG_ON(writepos < reshape_sectors);
5794 		writepos -= reshape_sectors;
5795 		readpos += reshape_sectors;
5796 		safepos += reshape_sectors;
5797 	} else {
5798 		writepos += reshape_sectors;
5799 		/* readpos and safepos are worst-case calculations.
5800 		 * A negative number is overly pessimistic, and causes
5801 		 * obvious problems for unsigned storage.  So clip to 0.
5802 		 */
5803 		readpos -= min_t(sector_t, reshape_sectors, readpos);
5804 		safepos -= min_t(sector_t, reshape_sectors, safepos);
5805 	}
5806 
5807 	/* Having calculated the 'writepos' possibly use it
5808 	 * to set 'stripe_addr' which is where we will write to.
5809 	 */
5810 	if (mddev->reshape_backwards) {
5811 		BUG_ON(conf->reshape_progress == 0);
5812 		stripe_addr = writepos;
5813 		BUG_ON((mddev->dev_sectors &
5814 			~((sector_t)reshape_sectors - 1))
5815 		       - reshape_sectors - stripe_addr
5816 		       != sector_nr);
5817 	} else {
5818 		BUG_ON(writepos != sector_nr + reshape_sectors);
5819 		stripe_addr = sector_nr;
5820 	}
5821 
5822 	/* 'writepos' is the most advanced device address we might write.
5823 	 * 'readpos' is the least advanced device address we might read.
5824 	 * 'safepos' is the least address recorded in the metadata as having
5825 	 *     been reshaped.
5826 	 * If there is a min_offset_diff, these are adjusted either by
5827 	 * increasing the safepos/readpos if diff is negative, or
5828 	 * increasing writepos if diff is positive.
5829 	 * If 'readpos' is then behind 'writepos', there is no way that we can
5830 	 * ensure safety in the face of a crash - that must be done by userspace
5831 	 * making a backup of the data.  So in that case there is no particular
5832 	 * rush to update metadata.
5833 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5834 	 * update the metadata to advance 'safepos' to match 'readpos' so that
5835 	 * we can be safe in the event of a crash.
5836 	 * So we insist on updating metadata if safepos is behind writepos and
5837 	 * readpos is beyond writepos.
5838 	 * In any case, update the metadata every 10 seconds.
5839 	 * Maybe that number should be configurable, but I'm not sure it is
5840 	 * worth it.... maybe it could be a multiple of safemode_delay???
5841 	 */
5842 	if (conf->min_offset_diff < 0) {
5843 		safepos += -conf->min_offset_diff;
5844 		readpos += -conf->min_offset_diff;
5845 	} else
5846 		writepos += conf->min_offset_diff;
5847 
5848 	if ((mddev->reshape_backwards
5849 	     ? (safepos > writepos && readpos < writepos)
5850 	     : (safepos < writepos && readpos > writepos)) ||
5851 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5852 		/* Cannot proceed until we've updated the superblock... */
5853 		wait_event(conf->wait_for_overlap,
5854 			   atomic_read(&conf->reshape_stripes)==0
5855 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5856 		if (atomic_read(&conf->reshape_stripes) != 0)
5857 			return 0;
5858 		mddev->reshape_position = conf->reshape_progress;
5859 		mddev->curr_resync_completed = sector_nr;
5860 		conf->reshape_checkpoint = jiffies;
5861 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5862 		md_wakeup_thread(mddev->thread);
5863 		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
5864 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5865 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5866 			return 0;
5867 		spin_lock_irq(&conf->device_lock);
5868 		conf->reshape_safe = mddev->reshape_position;
5869 		spin_unlock_irq(&conf->device_lock);
5870 		wake_up(&conf->wait_for_overlap);
5871 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5872 	}
5873 
5874 	INIT_LIST_HEAD(&stripes);
5875 	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5876 		int j;
5877 		int skipped_disk = 0;
5878 		sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5879 		set_bit(STRIPE_EXPANDING, &sh->state);
5880 		atomic_inc(&conf->reshape_stripes);
5881 		/* If any of this stripe is beyond the end of the old
5882 		 * array, then we need to zero those blocks
5883 		 */
5884 		for (j=sh->disks; j--;) {
5885 			sector_t s;
5886 			if (j == sh->pd_idx)
5887 				continue;
5888 			if (conf->level == 6 &&
5889 			    j == sh->qd_idx)
5890 				continue;
5891 			s = raid5_compute_blocknr(sh, j, 0);
5892 			if (s < raid5_size(mddev, 0, 0)) {
5893 				skipped_disk = 1;
5894 				continue;
5895 			}
5896 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5897 			set_bit(R5_Expanded, &sh->dev[j].flags);
5898 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
5899 		}
5900 		if (!skipped_disk) {
5901 			set_bit(STRIPE_EXPAND_READY, &sh->state);
5902 			set_bit(STRIPE_HANDLE, &sh->state);
5903 		}
5904 		list_add(&sh->lru, &stripes);
5905 	}
5906 	spin_lock_irq(&conf->device_lock);
5907 	if (mddev->reshape_backwards)
5908 		conf->reshape_progress -= reshape_sectors * new_data_disks;
5909 	else
5910 		conf->reshape_progress += reshape_sectors * new_data_disks;
5911 	spin_unlock_irq(&conf->device_lock);
5912 	/* Ok, those stripe are ready. We can start scheduling
5913 	 * reads on the source stripes.
5914 	 * The source stripes are determined by mapping the first and last
5915 	 * block on the destination stripes.
5916 	 */
5917 	first_sector =
5918 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5919 				     1, &dd_idx, NULL);
5920 	last_sector =
5921 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5922 					    * new_data_disks - 1),
5923 				     1, &dd_idx, NULL);
5924 	if (last_sector >= mddev->dev_sectors)
5925 		last_sector = mddev->dev_sectors - 1;
5926 	while (first_sector <= last_sector) {
5927 		sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5928 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5929 		set_bit(STRIPE_HANDLE, &sh->state);
5930 		raid5_release_stripe(sh);
5931 		first_sector += STRIPE_SECTORS;
5932 	}
5933 	/* Now that the sources are clearly marked, we can release
5934 	 * the destination stripes
5935 	 */
5936 	while (!list_empty(&stripes)) {
5937 		sh = list_entry(stripes.next, struct stripe_head, lru);
5938 		list_del_init(&sh->lru);
5939 		raid5_release_stripe(sh);
5940 	}
5941 	/* If this takes us to the resync_max point where we have to pause,
5942 	 * then we need to write out the superblock.
5943 	 */
5944 	sector_nr += reshape_sectors;
5945 	retn = reshape_sectors;
5946 finish:
5947 	if (mddev->curr_resync_completed > mddev->resync_max ||
5948 	    (sector_nr - mddev->curr_resync_completed) * 2
5949 	    >= mddev->resync_max - mddev->curr_resync_completed) {
5950 		/* Cannot proceed until we've updated the superblock... */
5951 		wait_event(conf->wait_for_overlap,
5952 			   atomic_read(&conf->reshape_stripes) == 0
5953 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5954 		if (atomic_read(&conf->reshape_stripes) != 0)
5955 			goto ret;
5956 		mddev->reshape_position = conf->reshape_progress;
5957 		mddev->curr_resync_completed = sector_nr;
5958 		conf->reshape_checkpoint = jiffies;
5959 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5960 		md_wakeup_thread(mddev->thread);
5961 		wait_event(mddev->sb_wait,
5962 			   !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
5963 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5964 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5965 			goto ret;
5966 		spin_lock_irq(&conf->device_lock);
5967 		conf->reshape_safe = mddev->reshape_position;
5968 		spin_unlock_irq(&conf->device_lock);
5969 		wake_up(&conf->wait_for_overlap);
5970 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5971 	}
5972 ret:
5973 	return retn;
5974 }
5975 
5976 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
5977 					  int *skipped)
5978 {
5979 	struct r5conf *conf = mddev->private;
5980 	struct stripe_head *sh;
5981 	sector_t max_sector = mddev->dev_sectors;
5982 	sector_t sync_blocks;
5983 	int still_degraded = 0;
5984 	int i;
5985 
5986 	if (sector_nr >= max_sector) {
5987 		/* just being told to finish up .. nothing much to do */
5988 
5989 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5990 			end_reshape(conf);
5991 			return 0;
5992 		}
5993 
5994 		if (mddev->curr_resync < max_sector) /* aborted */
5995 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5996 					&sync_blocks, 1);
5997 		else /* completed sync */
5998 			conf->fullsync = 0;
5999 		bitmap_close_sync(mddev->bitmap);
6000 
6001 		return 0;
6002 	}
6003 
6004 	/* Allow raid5_quiesce to complete */
6005 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6006 
6007 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6008 		return reshape_request(mddev, sector_nr, skipped);
6009 
6010 	/* No need to check resync_max as we never do more than one
6011 	 * stripe, and as resync_max will always be on a chunk boundary,
6012 	 * if the check in md_do_sync didn't fire, there is no chance
6013 	 * of overstepping resync_max here
6014 	 */
6015 
6016 	/* if there is too many failed drives and we are trying
6017 	 * to resync, then assert that we are finished, because there is
6018 	 * nothing we can do.
6019 	 */
6020 	if (mddev->degraded >= conf->max_degraded &&
6021 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6022 		sector_t rv = mddev->dev_sectors - sector_nr;
6023 		*skipped = 1;
6024 		return rv;
6025 	}
6026 	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6027 	    !conf->fullsync &&
6028 	    !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6029 	    sync_blocks >= STRIPE_SECTORS) {
6030 		/* we can skip this block, and probably more */
6031 		sync_blocks /= STRIPE_SECTORS;
6032 		*skipped = 1;
6033 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
6034 	}
6035 
6036 	bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
6037 
6038 	sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
6039 	if (sh == NULL) {
6040 		sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
6041 		/* make sure we don't swamp the stripe cache if someone else
6042 		 * is trying to get access
6043 		 */
6044 		schedule_timeout_uninterruptible(1);
6045 	}
6046 	/* Need to check if array will still be degraded after recovery/resync
6047 	 * Note in case of > 1 drive failures it's possible we're rebuilding
6048 	 * one drive while leaving another faulty drive in array.
6049 	 */
6050 	rcu_read_lock();
6051 	for (i = 0; i < conf->raid_disks; i++) {
6052 		struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
6053 
6054 		if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6055 			still_degraded = 1;
6056 	}
6057 	rcu_read_unlock();
6058 
6059 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6060 
6061 	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6062 	set_bit(STRIPE_HANDLE, &sh->state);
6063 
6064 	raid5_release_stripe(sh);
6065 
6066 	return STRIPE_SECTORS;
6067 }
6068 
6069 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6070 			       unsigned int offset)
6071 {
6072 	/* We may not be able to submit a whole bio at once as there
6073 	 * may not be enough stripe_heads available.
6074 	 * We cannot pre-allocate enough stripe_heads as we may need
6075 	 * more than exist in the cache (if we allow ever large chunks).
6076 	 * So we do one stripe head at a time and record in
6077 	 * ->bi_hw_segments how many have been done.
6078 	 *
6079 	 * We *know* that this entire raid_bio is in one chunk, so
6080 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6081 	 */
6082 	struct stripe_head *sh;
6083 	int dd_idx;
6084 	sector_t sector, logical_sector, last_sector;
6085 	int scnt = 0;
6086 	int handled = 0;
6087 
6088 	logical_sector = raid_bio->bi_iter.bi_sector &
6089 		~((sector_t)STRIPE_SECTORS-1);
6090 	sector = raid5_compute_sector(conf, logical_sector,
6091 				      0, &dd_idx, NULL);
6092 	last_sector = bio_end_sector(raid_bio);
6093 
6094 	for (; logical_sector < last_sector;
6095 	     logical_sector += STRIPE_SECTORS,
6096 		     sector += STRIPE_SECTORS,
6097 		     scnt++) {
6098 
6099 		if (scnt < offset)
6100 			/* already done this stripe */
6101 			continue;
6102 
6103 		sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
6104 
6105 		if (!sh) {
6106 			/* failed to get a stripe - must wait */
6107 			conf->retry_read_aligned = raid_bio;
6108 			conf->retry_read_offset = scnt;
6109 			return handled;
6110 		}
6111 
6112 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6113 			raid5_release_stripe(sh);
6114 			conf->retry_read_aligned = raid_bio;
6115 			conf->retry_read_offset = scnt;
6116 			return handled;
6117 		}
6118 
6119 		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6120 		handle_stripe(sh);
6121 		raid5_release_stripe(sh);
6122 		handled++;
6123 	}
6124 
6125 	bio_endio(raid_bio);
6126 
6127 	if (atomic_dec_and_test(&conf->active_aligned_reads))
6128 		wake_up(&conf->wait_for_quiescent);
6129 	return handled;
6130 }
6131 
6132 static int handle_active_stripes(struct r5conf *conf, int group,
6133 				 struct r5worker *worker,
6134 				 struct list_head *temp_inactive_list)
6135 {
6136 	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6137 	int i, batch_size = 0, hash;
6138 	bool release_inactive = false;
6139 
6140 	while (batch_size < MAX_STRIPE_BATCH &&
6141 			(sh = __get_priority_stripe(conf, group)) != NULL)
6142 		batch[batch_size++] = sh;
6143 
6144 	if (batch_size == 0) {
6145 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6146 			if (!list_empty(temp_inactive_list + i))
6147 				break;
6148 		if (i == NR_STRIPE_HASH_LOCKS) {
6149 			spin_unlock_irq(&conf->device_lock);
6150 			r5l_flush_stripe_to_raid(conf->log);
6151 			spin_lock_irq(&conf->device_lock);
6152 			return batch_size;
6153 		}
6154 		release_inactive = true;
6155 	}
6156 	spin_unlock_irq(&conf->device_lock);
6157 
6158 	release_inactive_stripe_list(conf, temp_inactive_list,
6159 				     NR_STRIPE_HASH_LOCKS);
6160 
6161 	r5l_flush_stripe_to_raid(conf->log);
6162 	if (release_inactive) {
6163 		spin_lock_irq(&conf->device_lock);
6164 		return 0;
6165 	}
6166 
6167 	for (i = 0; i < batch_size; i++)
6168 		handle_stripe(batch[i]);
6169 	log_write_stripe_run(conf);
6170 
6171 	cond_resched();
6172 
6173 	spin_lock_irq(&conf->device_lock);
6174 	for (i = 0; i < batch_size; i++) {
6175 		hash = batch[i]->hash_lock_index;
6176 		__release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6177 	}
6178 	return batch_size;
6179 }
6180 
6181 static void raid5_do_work(struct work_struct *work)
6182 {
6183 	struct r5worker *worker = container_of(work, struct r5worker, work);
6184 	struct r5worker_group *group = worker->group;
6185 	struct r5conf *conf = group->conf;
6186 	struct mddev *mddev = conf->mddev;
6187 	int group_id = group - conf->worker_groups;
6188 	int handled;
6189 	struct blk_plug plug;
6190 
6191 	pr_debug("+++ raid5worker active\n");
6192 
6193 	blk_start_plug(&plug);
6194 	handled = 0;
6195 	spin_lock_irq(&conf->device_lock);
6196 	while (1) {
6197 		int batch_size, released;
6198 
6199 		released = release_stripe_list(conf, worker->temp_inactive_list);
6200 
6201 		batch_size = handle_active_stripes(conf, group_id, worker,
6202 						   worker->temp_inactive_list);
6203 		worker->working = false;
6204 		if (!batch_size && !released)
6205 			break;
6206 		handled += batch_size;
6207 		wait_event_lock_irq(mddev->sb_wait,
6208 			!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6209 			conf->device_lock);
6210 	}
6211 	pr_debug("%d stripes handled\n", handled);
6212 
6213 	spin_unlock_irq(&conf->device_lock);
6214 	blk_finish_plug(&plug);
6215 
6216 	pr_debug("--- raid5worker inactive\n");
6217 }
6218 
6219 /*
6220  * This is our raid5 kernel thread.
6221  *
6222  * We scan the hash table for stripes which can be handled now.
6223  * During the scan, completed stripes are saved for us by the interrupt
6224  * handler, so that they will not have to wait for our next wakeup.
6225  */
6226 static void raid5d(struct md_thread *thread)
6227 {
6228 	struct mddev *mddev = thread->mddev;
6229 	struct r5conf *conf = mddev->private;
6230 	int handled;
6231 	struct blk_plug plug;
6232 
6233 	pr_debug("+++ raid5d active\n");
6234 
6235 	md_check_recovery(mddev);
6236 
6237 	blk_start_plug(&plug);
6238 	handled = 0;
6239 	spin_lock_irq(&conf->device_lock);
6240 	while (1) {
6241 		struct bio *bio;
6242 		int batch_size, released;
6243 		unsigned int offset;
6244 
6245 		released = release_stripe_list(conf, conf->temp_inactive_list);
6246 		if (released)
6247 			clear_bit(R5_DID_ALLOC, &conf->cache_state);
6248 
6249 		if (
6250 		    !list_empty(&conf->bitmap_list)) {
6251 			/* Now is a good time to flush some bitmap updates */
6252 			conf->seq_flush++;
6253 			spin_unlock_irq(&conf->device_lock);
6254 			bitmap_unplug(mddev->bitmap);
6255 			spin_lock_irq(&conf->device_lock);
6256 			conf->seq_write = conf->seq_flush;
6257 			activate_bit_delay(conf, conf->temp_inactive_list);
6258 		}
6259 		raid5_activate_delayed(conf);
6260 
6261 		while ((bio = remove_bio_from_retry(conf, &offset))) {
6262 			int ok;
6263 			spin_unlock_irq(&conf->device_lock);
6264 			ok = retry_aligned_read(conf, bio, offset);
6265 			spin_lock_irq(&conf->device_lock);
6266 			if (!ok)
6267 				break;
6268 			handled++;
6269 		}
6270 
6271 		batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6272 						   conf->temp_inactive_list);
6273 		if (!batch_size && !released)
6274 			break;
6275 		handled += batch_size;
6276 
6277 		if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6278 			spin_unlock_irq(&conf->device_lock);
6279 			md_check_recovery(mddev);
6280 			spin_lock_irq(&conf->device_lock);
6281 		}
6282 	}
6283 	pr_debug("%d stripes handled\n", handled);
6284 
6285 	spin_unlock_irq(&conf->device_lock);
6286 	if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6287 	    mutex_trylock(&conf->cache_size_mutex)) {
6288 		grow_one_stripe(conf, __GFP_NOWARN);
6289 		/* Set flag even if allocation failed.  This helps
6290 		 * slow down allocation requests when mem is short
6291 		 */
6292 		set_bit(R5_DID_ALLOC, &conf->cache_state);
6293 		mutex_unlock(&conf->cache_size_mutex);
6294 	}
6295 
6296 	flush_deferred_bios(conf);
6297 
6298 	r5l_flush_stripe_to_raid(conf->log);
6299 
6300 	async_tx_issue_pending_all();
6301 	blk_finish_plug(&plug);
6302 
6303 	pr_debug("--- raid5d inactive\n");
6304 }
6305 
6306 static ssize_t
6307 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6308 {
6309 	struct r5conf *conf;
6310 	int ret = 0;
6311 	spin_lock(&mddev->lock);
6312 	conf = mddev->private;
6313 	if (conf)
6314 		ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6315 	spin_unlock(&mddev->lock);
6316 	return ret;
6317 }
6318 
6319 int
6320 raid5_set_cache_size(struct mddev *mddev, int size)
6321 {
6322 	struct r5conf *conf = mddev->private;
6323 	int err;
6324 
6325 	if (size <= 16 || size > 32768)
6326 		return -EINVAL;
6327 
6328 	conf->min_nr_stripes = size;
6329 	mutex_lock(&conf->cache_size_mutex);
6330 	while (size < conf->max_nr_stripes &&
6331 	       drop_one_stripe(conf))
6332 		;
6333 	mutex_unlock(&conf->cache_size_mutex);
6334 
6335 
6336 	err = md_allow_write(mddev);
6337 	if (err)
6338 		return err;
6339 
6340 	mutex_lock(&conf->cache_size_mutex);
6341 	while (size > conf->max_nr_stripes)
6342 		if (!grow_one_stripe(conf, GFP_KERNEL))
6343 			break;
6344 	mutex_unlock(&conf->cache_size_mutex);
6345 
6346 	return 0;
6347 }
6348 EXPORT_SYMBOL(raid5_set_cache_size);
6349 
6350 static ssize_t
6351 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6352 {
6353 	struct r5conf *conf;
6354 	unsigned long new;
6355 	int err;
6356 
6357 	if (len >= PAGE_SIZE)
6358 		return -EINVAL;
6359 	if (kstrtoul(page, 10, &new))
6360 		return -EINVAL;
6361 	err = mddev_lock(mddev);
6362 	if (err)
6363 		return err;
6364 	conf = mddev->private;
6365 	if (!conf)
6366 		err = -ENODEV;
6367 	else
6368 		err = raid5_set_cache_size(mddev, new);
6369 	mddev_unlock(mddev);
6370 
6371 	return err ?: len;
6372 }
6373 
6374 static struct md_sysfs_entry
6375 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6376 				raid5_show_stripe_cache_size,
6377 				raid5_store_stripe_cache_size);
6378 
6379 static ssize_t
6380 raid5_show_rmw_level(struct mddev  *mddev, char *page)
6381 {
6382 	struct r5conf *conf = mddev->private;
6383 	if (conf)
6384 		return sprintf(page, "%d\n", conf->rmw_level);
6385 	else
6386 		return 0;
6387 }
6388 
6389 static ssize_t
6390 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
6391 {
6392 	struct r5conf *conf = mddev->private;
6393 	unsigned long new;
6394 
6395 	if (!conf)
6396 		return -ENODEV;
6397 
6398 	if (len >= PAGE_SIZE)
6399 		return -EINVAL;
6400 
6401 	if (kstrtoul(page, 10, &new))
6402 		return -EINVAL;
6403 
6404 	if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6405 		return -EINVAL;
6406 
6407 	if (new != PARITY_DISABLE_RMW &&
6408 	    new != PARITY_ENABLE_RMW &&
6409 	    new != PARITY_PREFER_RMW)
6410 		return -EINVAL;
6411 
6412 	conf->rmw_level = new;
6413 	return len;
6414 }
6415 
6416 static struct md_sysfs_entry
6417 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6418 			 raid5_show_rmw_level,
6419 			 raid5_store_rmw_level);
6420 
6421 
6422 static ssize_t
6423 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6424 {
6425 	struct r5conf *conf;
6426 	int ret = 0;
6427 	spin_lock(&mddev->lock);
6428 	conf = mddev->private;
6429 	if (conf)
6430 		ret = sprintf(page, "%d\n", conf->bypass_threshold);
6431 	spin_unlock(&mddev->lock);
6432 	return ret;
6433 }
6434 
6435 static ssize_t
6436 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6437 {
6438 	struct r5conf *conf;
6439 	unsigned long new;
6440 	int err;
6441 
6442 	if (len >= PAGE_SIZE)
6443 		return -EINVAL;
6444 	if (kstrtoul(page, 10, &new))
6445 		return -EINVAL;
6446 
6447 	err = mddev_lock(mddev);
6448 	if (err)
6449 		return err;
6450 	conf = mddev->private;
6451 	if (!conf)
6452 		err = -ENODEV;
6453 	else if (new > conf->min_nr_stripes)
6454 		err = -EINVAL;
6455 	else
6456 		conf->bypass_threshold = new;
6457 	mddev_unlock(mddev);
6458 	return err ?: len;
6459 }
6460 
6461 static struct md_sysfs_entry
6462 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6463 					S_IRUGO | S_IWUSR,
6464 					raid5_show_preread_threshold,
6465 					raid5_store_preread_threshold);
6466 
6467 static ssize_t
6468 raid5_show_skip_copy(struct mddev *mddev, char *page)
6469 {
6470 	struct r5conf *conf;
6471 	int ret = 0;
6472 	spin_lock(&mddev->lock);
6473 	conf = mddev->private;
6474 	if (conf)
6475 		ret = sprintf(page, "%d\n", conf->skip_copy);
6476 	spin_unlock(&mddev->lock);
6477 	return ret;
6478 }
6479 
6480 static ssize_t
6481 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6482 {
6483 	struct r5conf *conf;
6484 	unsigned long new;
6485 	int err;
6486 
6487 	if (len >= PAGE_SIZE)
6488 		return -EINVAL;
6489 	if (kstrtoul(page, 10, &new))
6490 		return -EINVAL;
6491 	new = !!new;
6492 
6493 	err = mddev_lock(mddev);
6494 	if (err)
6495 		return err;
6496 	conf = mddev->private;
6497 	if (!conf)
6498 		err = -ENODEV;
6499 	else if (new != conf->skip_copy) {
6500 		mddev_suspend(mddev);
6501 		conf->skip_copy = new;
6502 		if (new)
6503 			mddev->queue->backing_dev_info->capabilities |=
6504 				BDI_CAP_STABLE_WRITES;
6505 		else
6506 			mddev->queue->backing_dev_info->capabilities &=
6507 				~BDI_CAP_STABLE_WRITES;
6508 		mddev_resume(mddev);
6509 	}
6510 	mddev_unlock(mddev);
6511 	return err ?: len;
6512 }
6513 
6514 static struct md_sysfs_entry
6515 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6516 					raid5_show_skip_copy,
6517 					raid5_store_skip_copy);
6518 
6519 static ssize_t
6520 stripe_cache_active_show(struct mddev *mddev, char *page)
6521 {
6522 	struct r5conf *conf = mddev->private;
6523 	if (conf)
6524 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6525 	else
6526 		return 0;
6527 }
6528 
6529 static struct md_sysfs_entry
6530 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6531 
6532 static ssize_t
6533 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6534 {
6535 	struct r5conf *conf;
6536 	int ret = 0;
6537 	spin_lock(&mddev->lock);
6538 	conf = mddev->private;
6539 	if (conf)
6540 		ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6541 	spin_unlock(&mddev->lock);
6542 	return ret;
6543 }
6544 
6545 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6546 			       int *group_cnt,
6547 			       int *worker_cnt_per_group,
6548 			       struct r5worker_group **worker_groups);
6549 static ssize_t
6550 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6551 {
6552 	struct r5conf *conf;
6553 	unsigned long new;
6554 	int err;
6555 	struct r5worker_group *new_groups, *old_groups;
6556 	int group_cnt, worker_cnt_per_group;
6557 
6558 	if (len >= PAGE_SIZE)
6559 		return -EINVAL;
6560 	if (kstrtoul(page, 10, &new))
6561 		return -EINVAL;
6562 
6563 	err = mddev_lock(mddev);
6564 	if (err)
6565 		return err;
6566 	conf = mddev->private;
6567 	if (!conf)
6568 		err = -ENODEV;
6569 	else if (new != conf->worker_cnt_per_group) {
6570 		mddev_suspend(mddev);
6571 
6572 		old_groups = conf->worker_groups;
6573 		if (old_groups)
6574 			flush_workqueue(raid5_wq);
6575 
6576 		err = alloc_thread_groups(conf, new,
6577 					  &group_cnt, &worker_cnt_per_group,
6578 					  &new_groups);
6579 		if (!err) {
6580 			spin_lock_irq(&conf->device_lock);
6581 			conf->group_cnt = group_cnt;
6582 			conf->worker_cnt_per_group = worker_cnt_per_group;
6583 			conf->worker_groups = new_groups;
6584 			spin_unlock_irq(&conf->device_lock);
6585 
6586 			if (old_groups)
6587 				kfree(old_groups[0].workers);
6588 			kfree(old_groups);
6589 		}
6590 		mddev_resume(mddev);
6591 	}
6592 	mddev_unlock(mddev);
6593 
6594 	return err ?: len;
6595 }
6596 
6597 static struct md_sysfs_entry
6598 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6599 				raid5_show_group_thread_cnt,
6600 				raid5_store_group_thread_cnt);
6601 
6602 static struct attribute *raid5_attrs[] =  {
6603 	&raid5_stripecache_size.attr,
6604 	&raid5_stripecache_active.attr,
6605 	&raid5_preread_bypass_threshold.attr,
6606 	&raid5_group_thread_cnt.attr,
6607 	&raid5_skip_copy.attr,
6608 	&raid5_rmw_level.attr,
6609 	&r5c_journal_mode.attr,
6610 	NULL,
6611 };
6612 static struct attribute_group raid5_attrs_group = {
6613 	.name = NULL,
6614 	.attrs = raid5_attrs,
6615 };
6616 
6617 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6618 			       int *group_cnt,
6619 			       int *worker_cnt_per_group,
6620 			       struct r5worker_group **worker_groups)
6621 {
6622 	int i, j, k;
6623 	ssize_t size;
6624 	struct r5worker *workers;
6625 
6626 	*worker_cnt_per_group = cnt;
6627 	if (cnt == 0) {
6628 		*group_cnt = 0;
6629 		*worker_groups = NULL;
6630 		return 0;
6631 	}
6632 	*group_cnt = num_possible_nodes();
6633 	size = sizeof(struct r5worker) * cnt;
6634 	workers = kzalloc(size * *group_cnt, GFP_NOIO);
6635 	*worker_groups = kzalloc(sizeof(struct r5worker_group) *
6636 				*group_cnt, GFP_NOIO);
6637 	if (!*worker_groups || !workers) {
6638 		kfree(workers);
6639 		kfree(*worker_groups);
6640 		return -ENOMEM;
6641 	}
6642 
6643 	for (i = 0; i < *group_cnt; i++) {
6644 		struct r5worker_group *group;
6645 
6646 		group = &(*worker_groups)[i];
6647 		INIT_LIST_HEAD(&group->handle_list);
6648 		INIT_LIST_HEAD(&group->loprio_list);
6649 		group->conf = conf;
6650 		group->workers = workers + i * cnt;
6651 
6652 		for (j = 0; j < cnt; j++) {
6653 			struct r5worker *worker = group->workers + j;
6654 			worker->group = group;
6655 			INIT_WORK(&worker->work, raid5_do_work);
6656 
6657 			for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6658 				INIT_LIST_HEAD(worker->temp_inactive_list + k);
6659 		}
6660 	}
6661 
6662 	return 0;
6663 }
6664 
6665 static void free_thread_groups(struct r5conf *conf)
6666 {
6667 	if (conf->worker_groups)
6668 		kfree(conf->worker_groups[0].workers);
6669 	kfree(conf->worker_groups);
6670 	conf->worker_groups = NULL;
6671 }
6672 
6673 static sector_t
6674 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6675 {
6676 	struct r5conf *conf = mddev->private;
6677 
6678 	if (!sectors)
6679 		sectors = mddev->dev_sectors;
6680 	if (!raid_disks)
6681 		/* size is defined by the smallest of previous and new size */
6682 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6683 
6684 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
6685 	sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6686 	return sectors * (raid_disks - conf->max_degraded);
6687 }
6688 
6689 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6690 {
6691 	safe_put_page(percpu->spare_page);
6692 	if (percpu->scribble)
6693 		flex_array_free(percpu->scribble);
6694 	percpu->spare_page = NULL;
6695 	percpu->scribble = NULL;
6696 }
6697 
6698 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6699 {
6700 	if (conf->level == 6 && !percpu->spare_page)
6701 		percpu->spare_page = alloc_page(GFP_KERNEL);
6702 	if (!percpu->scribble)
6703 		percpu->scribble = scribble_alloc(max(conf->raid_disks,
6704 						      conf->previous_raid_disks),
6705 						  max(conf->chunk_sectors,
6706 						      conf->prev_chunk_sectors)
6707 						   / STRIPE_SECTORS,
6708 						  GFP_KERNEL);
6709 
6710 	if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6711 		free_scratch_buffer(conf, percpu);
6712 		return -ENOMEM;
6713 	}
6714 
6715 	return 0;
6716 }
6717 
6718 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
6719 {
6720 	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6721 
6722 	free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6723 	return 0;
6724 }
6725 
6726 static void raid5_free_percpu(struct r5conf *conf)
6727 {
6728 	if (!conf->percpu)
6729 		return;
6730 
6731 	cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6732 	free_percpu(conf->percpu);
6733 }
6734 
6735 static void free_conf(struct r5conf *conf)
6736 {
6737 	int i;
6738 
6739 	log_exit(conf);
6740 
6741 	if (conf->shrinker.nr_deferred)
6742 		unregister_shrinker(&conf->shrinker);
6743 
6744 	free_thread_groups(conf);
6745 	shrink_stripes(conf);
6746 	raid5_free_percpu(conf);
6747 	for (i = 0; i < conf->pool_size; i++)
6748 		if (conf->disks[i].extra_page)
6749 			put_page(conf->disks[i].extra_page);
6750 	kfree(conf->disks);
6751 	kfree(conf->stripe_hashtbl);
6752 	kfree(conf->pending_data);
6753 	kfree(conf);
6754 }
6755 
6756 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
6757 {
6758 	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6759 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6760 
6761 	if (alloc_scratch_buffer(conf, percpu)) {
6762 		pr_warn("%s: failed memory allocation for cpu%u\n",
6763 			__func__, cpu);
6764 		return -ENOMEM;
6765 	}
6766 	return 0;
6767 }
6768 
6769 static int raid5_alloc_percpu(struct r5conf *conf)
6770 {
6771 	int err = 0;
6772 
6773 	conf->percpu = alloc_percpu(struct raid5_percpu);
6774 	if (!conf->percpu)
6775 		return -ENOMEM;
6776 
6777 	err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6778 	if (!err) {
6779 		conf->scribble_disks = max(conf->raid_disks,
6780 			conf->previous_raid_disks);
6781 		conf->scribble_sectors = max(conf->chunk_sectors,
6782 			conf->prev_chunk_sectors);
6783 	}
6784 	return err;
6785 }
6786 
6787 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6788 				      struct shrink_control *sc)
6789 {
6790 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6791 	unsigned long ret = SHRINK_STOP;
6792 
6793 	if (mutex_trylock(&conf->cache_size_mutex)) {
6794 		ret= 0;
6795 		while (ret < sc->nr_to_scan &&
6796 		       conf->max_nr_stripes > conf->min_nr_stripes) {
6797 			if (drop_one_stripe(conf) == 0) {
6798 				ret = SHRINK_STOP;
6799 				break;
6800 			}
6801 			ret++;
6802 		}
6803 		mutex_unlock(&conf->cache_size_mutex);
6804 	}
6805 	return ret;
6806 }
6807 
6808 static unsigned long raid5_cache_count(struct shrinker *shrink,
6809 				       struct shrink_control *sc)
6810 {
6811 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6812 
6813 	if (conf->max_nr_stripes < conf->min_nr_stripes)
6814 		/* unlikely, but not impossible */
6815 		return 0;
6816 	return conf->max_nr_stripes - conf->min_nr_stripes;
6817 }
6818 
6819 static struct r5conf *setup_conf(struct mddev *mddev)
6820 {
6821 	struct r5conf *conf;
6822 	int raid_disk, memory, max_disks;
6823 	struct md_rdev *rdev;
6824 	struct disk_info *disk;
6825 	char pers_name[6];
6826 	int i;
6827 	int group_cnt, worker_cnt_per_group;
6828 	struct r5worker_group *new_group;
6829 
6830 	if (mddev->new_level != 5
6831 	    && mddev->new_level != 4
6832 	    && mddev->new_level != 6) {
6833 		pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6834 			mdname(mddev), mddev->new_level);
6835 		return ERR_PTR(-EIO);
6836 	}
6837 	if ((mddev->new_level == 5
6838 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
6839 	    (mddev->new_level == 6
6840 	     && !algorithm_valid_raid6(mddev->new_layout))) {
6841 		pr_warn("md/raid:%s: layout %d not supported\n",
6842 			mdname(mddev), mddev->new_layout);
6843 		return ERR_PTR(-EIO);
6844 	}
6845 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6846 		pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6847 			mdname(mddev), mddev->raid_disks);
6848 		return ERR_PTR(-EINVAL);
6849 	}
6850 
6851 	if (!mddev->new_chunk_sectors ||
6852 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6853 	    !is_power_of_2(mddev->new_chunk_sectors)) {
6854 		pr_warn("md/raid:%s: invalid chunk size %d\n",
6855 			mdname(mddev), mddev->new_chunk_sectors << 9);
6856 		return ERR_PTR(-EINVAL);
6857 	}
6858 
6859 	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6860 	if (conf == NULL)
6861 		goto abort;
6862 	INIT_LIST_HEAD(&conf->free_list);
6863 	INIT_LIST_HEAD(&conf->pending_list);
6864 	conf->pending_data = kzalloc(sizeof(struct r5pending_data) *
6865 		PENDING_IO_MAX, GFP_KERNEL);
6866 	if (!conf->pending_data)
6867 		goto abort;
6868 	for (i = 0; i < PENDING_IO_MAX; i++)
6869 		list_add(&conf->pending_data[i].sibling, &conf->free_list);
6870 	/* Don't enable multi-threading by default*/
6871 	if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6872 				 &new_group)) {
6873 		conf->group_cnt = group_cnt;
6874 		conf->worker_cnt_per_group = worker_cnt_per_group;
6875 		conf->worker_groups = new_group;
6876 	} else
6877 		goto abort;
6878 	spin_lock_init(&conf->device_lock);
6879 	seqcount_init(&conf->gen_lock);
6880 	mutex_init(&conf->cache_size_mutex);
6881 	init_waitqueue_head(&conf->wait_for_quiescent);
6882 	init_waitqueue_head(&conf->wait_for_stripe);
6883 	init_waitqueue_head(&conf->wait_for_overlap);
6884 	INIT_LIST_HEAD(&conf->handle_list);
6885 	INIT_LIST_HEAD(&conf->loprio_list);
6886 	INIT_LIST_HEAD(&conf->hold_list);
6887 	INIT_LIST_HEAD(&conf->delayed_list);
6888 	INIT_LIST_HEAD(&conf->bitmap_list);
6889 	init_llist_head(&conf->released_stripes);
6890 	atomic_set(&conf->active_stripes, 0);
6891 	atomic_set(&conf->preread_active_stripes, 0);
6892 	atomic_set(&conf->active_aligned_reads, 0);
6893 	spin_lock_init(&conf->pending_bios_lock);
6894 	conf->batch_bio_dispatch = true;
6895 	rdev_for_each(rdev, mddev) {
6896 		if (test_bit(Journal, &rdev->flags))
6897 			continue;
6898 		if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
6899 			conf->batch_bio_dispatch = false;
6900 			break;
6901 		}
6902 	}
6903 
6904 	conf->bypass_threshold = BYPASS_THRESHOLD;
6905 	conf->recovery_disabled = mddev->recovery_disabled - 1;
6906 
6907 	conf->raid_disks = mddev->raid_disks;
6908 	if (mddev->reshape_position == MaxSector)
6909 		conf->previous_raid_disks = mddev->raid_disks;
6910 	else
6911 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6912 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6913 
6914 	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6915 			      GFP_KERNEL);
6916 
6917 	if (!conf->disks)
6918 		goto abort;
6919 
6920 	for (i = 0; i < max_disks; i++) {
6921 		conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
6922 		if (!conf->disks[i].extra_page)
6923 			goto abort;
6924 	}
6925 
6926 	conf->mddev = mddev;
6927 
6928 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6929 		goto abort;
6930 
6931 	/* We init hash_locks[0] separately to that it can be used
6932 	 * as the reference lock in the spin_lock_nest_lock() call
6933 	 * in lock_all_device_hash_locks_irq in order to convince
6934 	 * lockdep that we know what we are doing.
6935 	 */
6936 	spin_lock_init(conf->hash_locks);
6937 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6938 		spin_lock_init(conf->hash_locks + i);
6939 
6940 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6941 		INIT_LIST_HEAD(conf->inactive_list + i);
6942 
6943 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6944 		INIT_LIST_HEAD(conf->temp_inactive_list + i);
6945 
6946 	atomic_set(&conf->r5c_cached_full_stripes, 0);
6947 	INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
6948 	atomic_set(&conf->r5c_cached_partial_stripes, 0);
6949 	INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
6950 	atomic_set(&conf->r5c_flushing_full_stripes, 0);
6951 	atomic_set(&conf->r5c_flushing_partial_stripes, 0);
6952 
6953 	conf->level = mddev->new_level;
6954 	conf->chunk_sectors = mddev->new_chunk_sectors;
6955 	if (raid5_alloc_percpu(conf) != 0)
6956 		goto abort;
6957 
6958 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6959 
6960 	rdev_for_each(rdev, mddev) {
6961 		raid_disk = rdev->raid_disk;
6962 		if (raid_disk >= max_disks
6963 		    || raid_disk < 0 || test_bit(Journal, &rdev->flags))
6964 			continue;
6965 		disk = conf->disks + raid_disk;
6966 
6967 		if (test_bit(Replacement, &rdev->flags)) {
6968 			if (disk->replacement)
6969 				goto abort;
6970 			disk->replacement = rdev;
6971 		} else {
6972 			if (disk->rdev)
6973 				goto abort;
6974 			disk->rdev = rdev;
6975 		}
6976 
6977 		if (test_bit(In_sync, &rdev->flags)) {
6978 			char b[BDEVNAME_SIZE];
6979 			pr_info("md/raid:%s: device %s operational as raid disk %d\n",
6980 				mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6981 		} else if (rdev->saved_raid_disk != raid_disk)
6982 			/* Cannot rely on bitmap to complete recovery */
6983 			conf->fullsync = 1;
6984 	}
6985 
6986 	conf->level = mddev->new_level;
6987 	if (conf->level == 6) {
6988 		conf->max_degraded = 2;
6989 		if (raid6_call.xor_syndrome)
6990 			conf->rmw_level = PARITY_ENABLE_RMW;
6991 		else
6992 			conf->rmw_level = PARITY_DISABLE_RMW;
6993 	} else {
6994 		conf->max_degraded = 1;
6995 		conf->rmw_level = PARITY_ENABLE_RMW;
6996 	}
6997 	conf->algorithm = mddev->new_layout;
6998 	conf->reshape_progress = mddev->reshape_position;
6999 	if (conf->reshape_progress != MaxSector) {
7000 		conf->prev_chunk_sectors = mddev->chunk_sectors;
7001 		conf->prev_algo = mddev->layout;
7002 	} else {
7003 		conf->prev_chunk_sectors = conf->chunk_sectors;
7004 		conf->prev_algo = conf->algorithm;
7005 	}
7006 
7007 	conf->min_nr_stripes = NR_STRIPES;
7008 	if (mddev->reshape_position != MaxSector) {
7009 		int stripes = max_t(int,
7010 			((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4,
7011 			((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4);
7012 		conf->min_nr_stripes = max(NR_STRIPES, stripes);
7013 		if (conf->min_nr_stripes != NR_STRIPES)
7014 			pr_info("md/raid:%s: force stripe size %d for reshape\n",
7015 				mdname(mddev), conf->min_nr_stripes);
7016 	}
7017 	memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7018 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7019 	atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7020 	if (grow_stripes(conf, conf->min_nr_stripes)) {
7021 		pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7022 			mdname(mddev), memory);
7023 		goto abort;
7024 	} else
7025 		pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7026 	/*
7027 	 * Losing a stripe head costs more than the time to refill it,
7028 	 * it reduces the queue depth and so can hurt throughput.
7029 	 * So set it rather large, scaled by number of devices.
7030 	 */
7031 	conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7032 	conf->shrinker.scan_objects = raid5_cache_scan;
7033 	conf->shrinker.count_objects = raid5_cache_count;
7034 	conf->shrinker.batch = 128;
7035 	conf->shrinker.flags = 0;
7036 	if (register_shrinker(&conf->shrinker)) {
7037 		pr_warn("md/raid:%s: couldn't register shrinker.\n",
7038 			mdname(mddev));
7039 		goto abort;
7040 	}
7041 
7042 	sprintf(pers_name, "raid%d", mddev->new_level);
7043 	conf->thread = md_register_thread(raid5d, mddev, pers_name);
7044 	if (!conf->thread) {
7045 		pr_warn("md/raid:%s: couldn't allocate thread.\n",
7046 			mdname(mddev));
7047 		goto abort;
7048 	}
7049 
7050 	return conf;
7051 
7052  abort:
7053 	if (conf) {
7054 		free_conf(conf);
7055 		return ERR_PTR(-EIO);
7056 	} else
7057 		return ERR_PTR(-ENOMEM);
7058 }
7059 
7060 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7061 {
7062 	switch (algo) {
7063 	case ALGORITHM_PARITY_0:
7064 		if (raid_disk < max_degraded)
7065 			return 1;
7066 		break;
7067 	case ALGORITHM_PARITY_N:
7068 		if (raid_disk >= raid_disks - max_degraded)
7069 			return 1;
7070 		break;
7071 	case ALGORITHM_PARITY_0_6:
7072 		if (raid_disk == 0 ||
7073 		    raid_disk == raid_disks - 1)
7074 			return 1;
7075 		break;
7076 	case ALGORITHM_LEFT_ASYMMETRIC_6:
7077 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
7078 	case ALGORITHM_LEFT_SYMMETRIC_6:
7079 	case ALGORITHM_RIGHT_SYMMETRIC_6:
7080 		if (raid_disk == raid_disks - 1)
7081 			return 1;
7082 	}
7083 	return 0;
7084 }
7085 
7086 static int raid5_run(struct mddev *mddev)
7087 {
7088 	struct r5conf *conf;
7089 	int working_disks = 0;
7090 	int dirty_parity_disks = 0;
7091 	struct md_rdev *rdev;
7092 	struct md_rdev *journal_dev = NULL;
7093 	sector_t reshape_offset = 0;
7094 	int i;
7095 	long long min_offset_diff = 0;
7096 	int first = 1;
7097 
7098 	if (mddev->recovery_cp != MaxSector)
7099 		pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7100 			  mdname(mddev));
7101 
7102 	rdev_for_each(rdev, mddev) {
7103 		long long diff;
7104 
7105 		if (test_bit(Journal, &rdev->flags)) {
7106 			journal_dev = rdev;
7107 			continue;
7108 		}
7109 		if (rdev->raid_disk < 0)
7110 			continue;
7111 		diff = (rdev->new_data_offset - rdev->data_offset);
7112 		if (first) {
7113 			min_offset_diff = diff;
7114 			first = 0;
7115 		} else if (mddev->reshape_backwards &&
7116 			 diff < min_offset_diff)
7117 			min_offset_diff = diff;
7118 		else if (!mddev->reshape_backwards &&
7119 			 diff > min_offset_diff)
7120 			min_offset_diff = diff;
7121 	}
7122 
7123 	if (mddev->reshape_position != MaxSector) {
7124 		/* Check that we can continue the reshape.
7125 		 * Difficulties arise if the stripe we would write to
7126 		 * next is at or after the stripe we would read from next.
7127 		 * For a reshape that changes the number of devices, this
7128 		 * is only possible for a very short time, and mdadm makes
7129 		 * sure that time appears to have past before assembling
7130 		 * the array.  So we fail if that time hasn't passed.
7131 		 * For a reshape that keeps the number of devices the same
7132 		 * mdadm must be monitoring the reshape can keeping the
7133 		 * critical areas read-only and backed up.  It will start
7134 		 * the array in read-only mode, so we check for that.
7135 		 */
7136 		sector_t here_new, here_old;
7137 		int old_disks;
7138 		int max_degraded = (mddev->level == 6 ? 2 : 1);
7139 		int chunk_sectors;
7140 		int new_data_disks;
7141 
7142 		if (journal_dev) {
7143 			pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7144 				mdname(mddev));
7145 			return -EINVAL;
7146 		}
7147 
7148 		if (mddev->new_level != mddev->level) {
7149 			pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7150 				mdname(mddev));
7151 			return -EINVAL;
7152 		}
7153 		old_disks = mddev->raid_disks - mddev->delta_disks;
7154 		/* reshape_position must be on a new-stripe boundary, and one
7155 		 * further up in new geometry must map after here in old
7156 		 * geometry.
7157 		 * If the chunk sizes are different, then as we perform reshape
7158 		 * in units of the largest of the two, reshape_position needs
7159 		 * be a multiple of the largest chunk size times new data disks.
7160 		 */
7161 		here_new = mddev->reshape_position;
7162 		chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7163 		new_data_disks = mddev->raid_disks - max_degraded;
7164 		if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7165 			pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7166 				mdname(mddev));
7167 			return -EINVAL;
7168 		}
7169 		reshape_offset = here_new * chunk_sectors;
7170 		/* here_new is the stripe we will write to */
7171 		here_old = mddev->reshape_position;
7172 		sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7173 		/* here_old is the first stripe that we might need to read
7174 		 * from */
7175 		if (mddev->delta_disks == 0) {
7176 			/* We cannot be sure it is safe to start an in-place
7177 			 * reshape.  It is only safe if user-space is monitoring
7178 			 * and taking constant backups.
7179 			 * mdadm always starts a situation like this in
7180 			 * readonly mode so it can take control before
7181 			 * allowing any writes.  So just check for that.
7182 			 */
7183 			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7184 			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
7185 				/* not really in-place - so OK */;
7186 			else if (mddev->ro == 0) {
7187 				pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7188 					mdname(mddev));
7189 				return -EINVAL;
7190 			}
7191 		} else if (mddev->reshape_backwards
7192 		    ? (here_new * chunk_sectors + min_offset_diff <=
7193 		       here_old * chunk_sectors)
7194 		    : (here_new * chunk_sectors >=
7195 		       here_old * chunk_sectors + (-min_offset_diff))) {
7196 			/* Reading from the same stripe as writing to - bad */
7197 			pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7198 				mdname(mddev));
7199 			return -EINVAL;
7200 		}
7201 		pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7202 		/* OK, we should be able to continue; */
7203 	} else {
7204 		BUG_ON(mddev->level != mddev->new_level);
7205 		BUG_ON(mddev->layout != mddev->new_layout);
7206 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7207 		BUG_ON(mddev->delta_disks != 0);
7208 	}
7209 
7210 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7211 	    test_bit(MD_HAS_PPL, &mddev->flags)) {
7212 		pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7213 			mdname(mddev));
7214 		clear_bit(MD_HAS_PPL, &mddev->flags);
7215 	}
7216 
7217 	if (mddev->private == NULL)
7218 		conf = setup_conf(mddev);
7219 	else
7220 		conf = mddev->private;
7221 
7222 	if (IS_ERR(conf))
7223 		return PTR_ERR(conf);
7224 
7225 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7226 		if (!journal_dev) {
7227 			pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7228 				mdname(mddev));
7229 			mddev->ro = 1;
7230 			set_disk_ro(mddev->gendisk, 1);
7231 		} else if (mddev->recovery_cp == MaxSector)
7232 			set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7233 	}
7234 
7235 	conf->min_offset_diff = min_offset_diff;
7236 	mddev->thread = conf->thread;
7237 	conf->thread = NULL;
7238 	mddev->private = conf;
7239 
7240 	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7241 	     i++) {
7242 		rdev = conf->disks[i].rdev;
7243 		if (!rdev && conf->disks[i].replacement) {
7244 			/* The replacement is all we have yet */
7245 			rdev = conf->disks[i].replacement;
7246 			conf->disks[i].replacement = NULL;
7247 			clear_bit(Replacement, &rdev->flags);
7248 			conf->disks[i].rdev = rdev;
7249 		}
7250 		if (!rdev)
7251 			continue;
7252 		if (conf->disks[i].replacement &&
7253 		    conf->reshape_progress != MaxSector) {
7254 			/* replacements and reshape simply do not mix. */
7255 			pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7256 			goto abort;
7257 		}
7258 		if (test_bit(In_sync, &rdev->flags)) {
7259 			working_disks++;
7260 			continue;
7261 		}
7262 		/* This disc is not fully in-sync.  However if it
7263 		 * just stored parity (beyond the recovery_offset),
7264 		 * when we don't need to be concerned about the
7265 		 * array being dirty.
7266 		 * When reshape goes 'backwards', we never have
7267 		 * partially completed devices, so we only need
7268 		 * to worry about reshape going forwards.
7269 		 */
7270 		/* Hack because v0.91 doesn't store recovery_offset properly. */
7271 		if (mddev->major_version == 0 &&
7272 		    mddev->minor_version > 90)
7273 			rdev->recovery_offset = reshape_offset;
7274 
7275 		if (rdev->recovery_offset < reshape_offset) {
7276 			/* We need to check old and new layout */
7277 			if (!only_parity(rdev->raid_disk,
7278 					 conf->algorithm,
7279 					 conf->raid_disks,
7280 					 conf->max_degraded))
7281 				continue;
7282 		}
7283 		if (!only_parity(rdev->raid_disk,
7284 				 conf->prev_algo,
7285 				 conf->previous_raid_disks,
7286 				 conf->max_degraded))
7287 			continue;
7288 		dirty_parity_disks++;
7289 	}
7290 
7291 	/*
7292 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
7293 	 */
7294 	mddev->degraded = raid5_calc_degraded(conf);
7295 
7296 	if (has_failed(conf)) {
7297 		pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7298 			mdname(mddev), mddev->degraded, conf->raid_disks);
7299 		goto abort;
7300 	}
7301 
7302 	/* device size must be a multiple of chunk size */
7303 	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
7304 	mddev->resync_max_sectors = mddev->dev_sectors;
7305 
7306 	if (mddev->degraded > dirty_parity_disks &&
7307 	    mddev->recovery_cp != MaxSector) {
7308 		if (test_bit(MD_HAS_PPL, &mddev->flags))
7309 			pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7310 				mdname(mddev));
7311 		else if (mddev->ok_start_degraded)
7312 			pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7313 				mdname(mddev));
7314 		else {
7315 			pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7316 				mdname(mddev));
7317 			goto abort;
7318 		}
7319 	}
7320 
7321 	pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7322 		mdname(mddev), conf->level,
7323 		mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7324 		mddev->new_layout);
7325 
7326 	print_raid5_conf(conf);
7327 
7328 	if (conf->reshape_progress != MaxSector) {
7329 		conf->reshape_safe = conf->reshape_progress;
7330 		atomic_set(&conf->reshape_stripes, 0);
7331 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7332 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7333 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7334 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7335 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7336 							"reshape");
7337 	}
7338 
7339 	/* Ok, everything is just fine now */
7340 	if (mddev->to_remove == &raid5_attrs_group)
7341 		mddev->to_remove = NULL;
7342 	else if (mddev->kobj.sd &&
7343 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
7344 		pr_warn("raid5: failed to create sysfs attributes for %s\n",
7345 			mdname(mddev));
7346 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7347 
7348 	if (mddev->queue) {
7349 		int chunk_size;
7350 		bool discard_supported = true;
7351 		/* read-ahead size must cover two whole stripes, which
7352 		 * is 2 * (datadisks) * chunksize where 'n' is the
7353 		 * number of raid devices
7354 		 */
7355 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
7356 		int stripe = data_disks *
7357 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
7358 		if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7359 			mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
7360 
7361 		chunk_size = mddev->chunk_sectors << 9;
7362 		blk_queue_io_min(mddev->queue, chunk_size);
7363 		blk_queue_io_opt(mddev->queue, chunk_size *
7364 				 (conf->raid_disks - conf->max_degraded));
7365 		mddev->queue->limits.raid_partial_stripes_expensive = 1;
7366 		/*
7367 		 * We can only discard a whole stripe. It doesn't make sense to
7368 		 * discard data disk but write parity disk
7369 		 */
7370 		stripe = stripe * PAGE_SIZE;
7371 		/* Round up to power of 2, as discard handling
7372 		 * currently assumes that */
7373 		while ((stripe-1) & stripe)
7374 			stripe = (stripe | (stripe-1)) + 1;
7375 		mddev->queue->limits.discard_alignment = stripe;
7376 		mddev->queue->limits.discard_granularity = stripe;
7377 		/*
7378 		 * unaligned part of discard request will be ignored, so can't
7379 		 * guarantee discard_zeroes_data
7380 		 */
7381 		mddev->queue->limits.discard_zeroes_data = 0;
7382 
7383 		blk_queue_max_write_same_sectors(mddev->queue, 0);
7384 
7385 		rdev_for_each(rdev, mddev) {
7386 			disk_stack_limits(mddev->gendisk, rdev->bdev,
7387 					  rdev->data_offset << 9);
7388 			disk_stack_limits(mddev->gendisk, rdev->bdev,
7389 					  rdev->new_data_offset << 9);
7390 			/*
7391 			 * discard_zeroes_data is required, otherwise data
7392 			 * could be lost. Consider a scenario: discard a stripe
7393 			 * (the stripe could be inconsistent if
7394 			 * discard_zeroes_data is 0); write one disk of the
7395 			 * stripe (the stripe could be inconsistent again
7396 			 * depending on which disks are used to calculate
7397 			 * parity); the disk is broken; The stripe data of this
7398 			 * disk is lost.
7399 			 */
7400 			if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
7401 			    !bdev_get_queue(rdev->bdev)->
7402 						limits.discard_zeroes_data)
7403 				discard_supported = false;
7404 			/* Unfortunately, discard_zeroes_data is not currently
7405 			 * a guarantee - just a hint.  So we only allow DISCARD
7406 			 * if the sysadmin has confirmed that only safe devices
7407 			 * are in use by setting a module parameter.
7408 			 */
7409 			if (!devices_handle_discard_safely) {
7410 				if (discard_supported) {
7411 					pr_info("md/raid456: discard support disabled due to uncertainty.\n");
7412 					pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
7413 				}
7414 				discard_supported = false;
7415 			}
7416 		}
7417 
7418 		if (discard_supported &&
7419 		    mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7420 		    mddev->queue->limits.discard_granularity >= stripe)
7421 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
7422 						mddev->queue);
7423 		else
7424 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
7425 						mddev->queue);
7426 
7427 		blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
7428 	}
7429 
7430 	if (log_init(conf, journal_dev))
7431 		goto abort;
7432 
7433 	return 0;
7434 abort:
7435 	md_unregister_thread(&mddev->thread);
7436 	print_raid5_conf(conf);
7437 	free_conf(conf);
7438 	mddev->private = NULL;
7439 	pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
7440 	return -EIO;
7441 }
7442 
7443 static void raid5_free(struct mddev *mddev, void *priv)
7444 {
7445 	struct r5conf *conf = priv;
7446 
7447 	free_conf(conf);
7448 	mddev->to_remove = &raid5_attrs_group;
7449 }
7450 
7451 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7452 {
7453 	struct r5conf *conf = mddev->private;
7454 	int i;
7455 
7456 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7457 		conf->chunk_sectors / 2, mddev->layout);
7458 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7459 	rcu_read_lock();
7460 	for (i = 0; i < conf->raid_disks; i++) {
7461 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7462 		seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7463 	}
7464 	rcu_read_unlock();
7465 	seq_printf (seq, "]");
7466 }
7467 
7468 static void print_raid5_conf (struct r5conf *conf)
7469 {
7470 	int i;
7471 	struct disk_info *tmp;
7472 
7473 	pr_debug("RAID conf printout:\n");
7474 	if (!conf) {
7475 		pr_debug("(conf==NULL)\n");
7476 		return;
7477 	}
7478 	pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
7479 	       conf->raid_disks,
7480 	       conf->raid_disks - conf->mddev->degraded);
7481 
7482 	for (i = 0; i < conf->raid_disks; i++) {
7483 		char b[BDEVNAME_SIZE];
7484 		tmp = conf->disks + i;
7485 		if (tmp->rdev)
7486 			pr_debug(" disk %d, o:%d, dev:%s\n",
7487 			       i, !test_bit(Faulty, &tmp->rdev->flags),
7488 			       bdevname(tmp->rdev->bdev, b));
7489 	}
7490 }
7491 
7492 static int raid5_spare_active(struct mddev *mddev)
7493 {
7494 	int i;
7495 	struct r5conf *conf = mddev->private;
7496 	struct disk_info *tmp;
7497 	int count = 0;
7498 	unsigned long flags;
7499 
7500 	for (i = 0; i < conf->raid_disks; i++) {
7501 		tmp = conf->disks + i;
7502 		if (tmp->replacement
7503 		    && tmp->replacement->recovery_offset == MaxSector
7504 		    && !test_bit(Faulty, &tmp->replacement->flags)
7505 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7506 			/* Replacement has just become active. */
7507 			if (!tmp->rdev
7508 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7509 				count++;
7510 			if (tmp->rdev) {
7511 				/* Replaced device not technically faulty,
7512 				 * but we need to be sure it gets removed
7513 				 * and never re-added.
7514 				 */
7515 				set_bit(Faulty, &tmp->rdev->flags);
7516 				sysfs_notify_dirent_safe(
7517 					tmp->rdev->sysfs_state);
7518 			}
7519 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7520 		} else if (tmp->rdev
7521 		    && tmp->rdev->recovery_offset == MaxSector
7522 		    && !test_bit(Faulty, &tmp->rdev->flags)
7523 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7524 			count++;
7525 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7526 		}
7527 	}
7528 	spin_lock_irqsave(&conf->device_lock, flags);
7529 	mddev->degraded = raid5_calc_degraded(conf);
7530 	spin_unlock_irqrestore(&conf->device_lock, flags);
7531 	print_raid5_conf(conf);
7532 	return count;
7533 }
7534 
7535 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7536 {
7537 	struct r5conf *conf = mddev->private;
7538 	int err = 0;
7539 	int number = rdev->raid_disk;
7540 	struct md_rdev **rdevp;
7541 	struct disk_info *p = conf->disks + number;
7542 
7543 	print_raid5_conf(conf);
7544 	if (test_bit(Journal, &rdev->flags) && conf->log) {
7545 		/*
7546 		 * we can't wait pending write here, as this is called in
7547 		 * raid5d, wait will deadlock.
7548 		 * neilb: there is no locking about new writes here,
7549 		 * so this cannot be safe.
7550 		 */
7551 		if (atomic_read(&conf->active_stripes)) {
7552 			return -EBUSY;
7553 		}
7554 		log_exit(conf);
7555 		return 0;
7556 	}
7557 	if (rdev == p->rdev)
7558 		rdevp = &p->rdev;
7559 	else if (rdev == p->replacement)
7560 		rdevp = &p->replacement;
7561 	else
7562 		return 0;
7563 
7564 	if (number >= conf->raid_disks &&
7565 	    conf->reshape_progress == MaxSector)
7566 		clear_bit(In_sync, &rdev->flags);
7567 
7568 	if (test_bit(In_sync, &rdev->flags) ||
7569 	    atomic_read(&rdev->nr_pending)) {
7570 		err = -EBUSY;
7571 		goto abort;
7572 	}
7573 	/* Only remove non-faulty devices if recovery
7574 	 * isn't possible.
7575 	 */
7576 	if (!test_bit(Faulty, &rdev->flags) &&
7577 	    mddev->recovery_disabled != conf->recovery_disabled &&
7578 	    !has_failed(conf) &&
7579 	    (!p->replacement || p->replacement == rdev) &&
7580 	    number < conf->raid_disks) {
7581 		err = -EBUSY;
7582 		goto abort;
7583 	}
7584 	*rdevp = NULL;
7585 	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7586 		synchronize_rcu();
7587 		if (atomic_read(&rdev->nr_pending)) {
7588 			/* lost the race, try later */
7589 			err = -EBUSY;
7590 			*rdevp = rdev;
7591 		}
7592 	}
7593 	if (!err) {
7594 		err = log_modify(conf, rdev, false);
7595 		if (err)
7596 			goto abort;
7597 	}
7598 	if (p->replacement) {
7599 		/* We must have just cleared 'rdev' */
7600 		p->rdev = p->replacement;
7601 		clear_bit(Replacement, &p->replacement->flags);
7602 		smp_mb(); /* Make sure other CPUs may see both as identical
7603 			   * but will never see neither - if they are careful
7604 			   */
7605 		p->replacement = NULL;
7606 		clear_bit(WantReplacement, &rdev->flags);
7607 
7608 		if (!err)
7609 			err = log_modify(conf, p->rdev, true);
7610 	} else
7611 		/* We might have just removed the Replacement as faulty-
7612 		 * clear the bit just in case
7613 		 */
7614 		clear_bit(WantReplacement, &rdev->flags);
7615 abort:
7616 
7617 	print_raid5_conf(conf);
7618 	return err;
7619 }
7620 
7621 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7622 {
7623 	struct r5conf *conf = mddev->private;
7624 	int err = -EEXIST;
7625 	int disk;
7626 	struct disk_info *p;
7627 	int first = 0;
7628 	int last = conf->raid_disks - 1;
7629 
7630 	if (test_bit(Journal, &rdev->flags)) {
7631 		if (conf->log)
7632 			return -EBUSY;
7633 
7634 		rdev->raid_disk = 0;
7635 		/*
7636 		 * The array is in readonly mode if journal is missing, so no
7637 		 * write requests running. We should be safe
7638 		 */
7639 		log_init(conf, rdev);
7640 		return 0;
7641 	}
7642 	if (mddev->recovery_disabled == conf->recovery_disabled)
7643 		return -EBUSY;
7644 
7645 	if (rdev->saved_raid_disk < 0 && has_failed(conf))
7646 		/* no point adding a device */
7647 		return -EINVAL;
7648 
7649 	if (rdev->raid_disk >= 0)
7650 		first = last = rdev->raid_disk;
7651 
7652 	/*
7653 	 * find the disk ... but prefer rdev->saved_raid_disk
7654 	 * if possible.
7655 	 */
7656 	if (rdev->saved_raid_disk >= 0 &&
7657 	    rdev->saved_raid_disk >= first &&
7658 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
7659 		first = rdev->saved_raid_disk;
7660 
7661 	for (disk = first; disk <= last; disk++) {
7662 		p = conf->disks + disk;
7663 		if (p->rdev == NULL) {
7664 			clear_bit(In_sync, &rdev->flags);
7665 			rdev->raid_disk = disk;
7666 			if (rdev->saved_raid_disk != disk)
7667 				conf->fullsync = 1;
7668 			rcu_assign_pointer(p->rdev, rdev);
7669 
7670 			err = log_modify(conf, rdev, true);
7671 
7672 			goto out;
7673 		}
7674 	}
7675 	for (disk = first; disk <= last; disk++) {
7676 		p = conf->disks + disk;
7677 		if (test_bit(WantReplacement, &p->rdev->flags) &&
7678 		    p->replacement == NULL) {
7679 			clear_bit(In_sync, &rdev->flags);
7680 			set_bit(Replacement, &rdev->flags);
7681 			rdev->raid_disk = disk;
7682 			err = 0;
7683 			conf->fullsync = 1;
7684 			rcu_assign_pointer(p->replacement, rdev);
7685 			break;
7686 		}
7687 	}
7688 out:
7689 	print_raid5_conf(conf);
7690 	return err;
7691 }
7692 
7693 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7694 {
7695 	/* no resync is happening, and there is enough space
7696 	 * on all devices, so we can resize.
7697 	 * We need to make sure resync covers any new space.
7698 	 * If the array is shrinking we should possibly wait until
7699 	 * any io in the removed space completes, but it hardly seems
7700 	 * worth it.
7701 	 */
7702 	sector_t newsize;
7703 	struct r5conf *conf = mddev->private;
7704 
7705 	if (conf->log || raid5_has_ppl(conf))
7706 		return -EINVAL;
7707 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
7708 	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7709 	if (mddev->external_size &&
7710 	    mddev->array_sectors > newsize)
7711 		return -EINVAL;
7712 	if (mddev->bitmap) {
7713 		int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7714 		if (ret)
7715 			return ret;
7716 	}
7717 	md_set_array_sectors(mddev, newsize);
7718 	if (sectors > mddev->dev_sectors &&
7719 	    mddev->recovery_cp > mddev->dev_sectors) {
7720 		mddev->recovery_cp = mddev->dev_sectors;
7721 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7722 	}
7723 	mddev->dev_sectors = sectors;
7724 	mddev->resync_max_sectors = sectors;
7725 	return 0;
7726 }
7727 
7728 static int check_stripe_cache(struct mddev *mddev)
7729 {
7730 	/* Can only proceed if there are plenty of stripe_heads.
7731 	 * We need a minimum of one full stripe,, and for sensible progress
7732 	 * it is best to have about 4 times that.
7733 	 * If we require 4 times, then the default 256 4K stripe_heads will
7734 	 * allow for chunk sizes up to 256K, which is probably OK.
7735 	 * If the chunk size is greater, user-space should request more
7736 	 * stripe_heads first.
7737 	 */
7738 	struct r5conf *conf = mddev->private;
7739 	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7740 	    > conf->min_nr_stripes ||
7741 	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7742 	    > conf->min_nr_stripes) {
7743 		pr_warn("md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7744 			mdname(mddev),
7745 			((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7746 			 / STRIPE_SIZE)*4);
7747 		return 0;
7748 	}
7749 	return 1;
7750 }
7751 
7752 static int check_reshape(struct mddev *mddev)
7753 {
7754 	struct r5conf *conf = mddev->private;
7755 
7756 	if (conf->log || raid5_has_ppl(conf))
7757 		return -EINVAL;
7758 	if (mddev->delta_disks == 0 &&
7759 	    mddev->new_layout == mddev->layout &&
7760 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
7761 		return 0; /* nothing to do */
7762 	if (has_failed(conf))
7763 		return -EINVAL;
7764 	if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7765 		/* We might be able to shrink, but the devices must
7766 		 * be made bigger first.
7767 		 * For raid6, 4 is the minimum size.
7768 		 * Otherwise 2 is the minimum
7769 		 */
7770 		int min = 2;
7771 		if (mddev->level == 6)
7772 			min = 4;
7773 		if (mddev->raid_disks + mddev->delta_disks < min)
7774 			return -EINVAL;
7775 	}
7776 
7777 	if (!check_stripe_cache(mddev))
7778 		return -ENOSPC;
7779 
7780 	if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7781 	    mddev->delta_disks > 0)
7782 		if (resize_chunks(conf,
7783 				  conf->previous_raid_disks
7784 				  + max(0, mddev->delta_disks),
7785 				  max(mddev->new_chunk_sectors,
7786 				      mddev->chunk_sectors)
7787 			    ) < 0)
7788 			return -ENOMEM;
7789 	return resize_stripes(conf, (conf->previous_raid_disks
7790 				     + mddev->delta_disks));
7791 }
7792 
7793 static int raid5_start_reshape(struct mddev *mddev)
7794 {
7795 	struct r5conf *conf = mddev->private;
7796 	struct md_rdev *rdev;
7797 	int spares = 0;
7798 	unsigned long flags;
7799 
7800 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7801 		return -EBUSY;
7802 
7803 	if (!check_stripe_cache(mddev))
7804 		return -ENOSPC;
7805 
7806 	if (has_failed(conf))
7807 		return -EINVAL;
7808 
7809 	rdev_for_each(rdev, mddev) {
7810 		if (!test_bit(In_sync, &rdev->flags)
7811 		    && !test_bit(Faulty, &rdev->flags))
7812 			spares++;
7813 	}
7814 
7815 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7816 		/* Not enough devices even to make a degraded array
7817 		 * of that size
7818 		 */
7819 		return -EINVAL;
7820 
7821 	/* Refuse to reduce size of the array.  Any reductions in
7822 	 * array size must be through explicit setting of array_size
7823 	 * attribute.
7824 	 */
7825 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7826 	    < mddev->array_sectors) {
7827 		pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
7828 			mdname(mddev));
7829 		return -EINVAL;
7830 	}
7831 
7832 	atomic_set(&conf->reshape_stripes, 0);
7833 	spin_lock_irq(&conf->device_lock);
7834 	write_seqcount_begin(&conf->gen_lock);
7835 	conf->previous_raid_disks = conf->raid_disks;
7836 	conf->raid_disks += mddev->delta_disks;
7837 	conf->prev_chunk_sectors = conf->chunk_sectors;
7838 	conf->chunk_sectors = mddev->new_chunk_sectors;
7839 	conf->prev_algo = conf->algorithm;
7840 	conf->algorithm = mddev->new_layout;
7841 	conf->generation++;
7842 	/* Code that selects data_offset needs to see the generation update
7843 	 * if reshape_progress has been set - so a memory barrier needed.
7844 	 */
7845 	smp_mb();
7846 	if (mddev->reshape_backwards)
7847 		conf->reshape_progress = raid5_size(mddev, 0, 0);
7848 	else
7849 		conf->reshape_progress = 0;
7850 	conf->reshape_safe = conf->reshape_progress;
7851 	write_seqcount_end(&conf->gen_lock);
7852 	spin_unlock_irq(&conf->device_lock);
7853 
7854 	/* Now make sure any requests that proceeded on the assumption
7855 	 * the reshape wasn't running - like Discard or Read - have
7856 	 * completed.
7857 	 */
7858 	mddev_suspend(mddev);
7859 	mddev_resume(mddev);
7860 
7861 	/* Add some new drives, as many as will fit.
7862 	 * We know there are enough to make the newly sized array work.
7863 	 * Don't add devices if we are reducing the number of
7864 	 * devices in the array.  This is because it is not possible
7865 	 * to correctly record the "partially reconstructed" state of
7866 	 * such devices during the reshape and confusion could result.
7867 	 */
7868 	if (mddev->delta_disks >= 0) {
7869 		rdev_for_each(rdev, mddev)
7870 			if (rdev->raid_disk < 0 &&
7871 			    !test_bit(Faulty, &rdev->flags)) {
7872 				if (raid5_add_disk(mddev, rdev) == 0) {
7873 					if (rdev->raid_disk
7874 					    >= conf->previous_raid_disks)
7875 						set_bit(In_sync, &rdev->flags);
7876 					else
7877 						rdev->recovery_offset = 0;
7878 
7879 					if (sysfs_link_rdev(mddev, rdev))
7880 						/* Failure here is OK */;
7881 				}
7882 			} else if (rdev->raid_disk >= conf->previous_raid_disks
7883 				   && !test_bit(Faulty, &rdev->flags)) {
7884 				/* This is a spare that was manually added */
7885 				set_bit(In_sync, &rdev->flags);
7886 			}
7887 
7888 		/* When a reshape changes the number of devices,
7889 		 * ->degraded is measured against the larger of the
7890 		 * pre and post number of devices.
7891 		 */
7892 		spin_lock_irqsave(&conf->device_lock, flags);
7893 		mddev->degraded = raid5_calc_degraded(conf);
7894 		spin_unlock_irqrestore(&conf->device_lock, flags);
7895 	}
7896 	mddev->raid_disks = conf->raid_disks;
7897 	mddev->reshape_position = conf->reshape_progress;
7898 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7899 
7900 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7901 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7902 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7903 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7904 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7905 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7906 						"reshape");
7907 	if (!mddev->sync_thread) {
7908 		mddev->recovery = 0;
7909 		spin_lock_irq(&conf->device_lock);
7910 		write_seqcount_begin(&conf->gen_lock);
7911 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7912 		mddev->new_chunk_sectors =
7913 			conf->chunk_sectors = conf->prev_chunk_sectors;
7914 		mddev->new_layout = conf->algorithm = conf->prev_algo;
7915 		rdev_for_each(rdev, mddev)
7916 			rdev->new_data_offset = rdev->data_offset;
7917 		smp_wmb();
7918 		conf->generation --;
7919 		conf->reshape_progress = MaxSector;
7920 		mddev->reshape_position = MaxSector;
7921 		write_seqcount_end(&conf->gen_lock);
7922 		spin_unlock_irq(&conf->device_lock);
7923 		return -EAGAIN;
7924 	}
7925 	conf->reshape_checkpoint = jiffies;
7926 	md_wakeup_thread(mddev->sync_thread);
7927 	md_new_event(mddev);
7928 	return 0;
7929 }
7930 
7931 /* This is called from the reshape thread and should make any
7932  * changes needed in 'conf'
7933  */
7934 static void end_reshape(struct r5conf *conf)
7935 {
7936 
7937 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7938 		struct md_rdev *rdev;
7939 
7940 		spin_lock_irq(&conf->device_lock);
7941 		conf->previous_raid_disks = conf->raid_disks;
7942 		rdev_for_each(rdev, conf->mddev)
7943 			rdev->data_offset = rdev->new_data_offset;
7944 		smp_wmb();
7945 		conf->reshape_progress = MaxSector;
7946 		conf->mddev->reshape_position = MaxSector;
7947 		spin_unlock_irq(&conf->device_lock);
7948 		wake_up(&conf->wait_for_overlap);
7949 
7950 		/* read-ahead size must cover two whole stripes, which is
7951 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7952 		 */
7953 		if (conf->mddev->queue) {
7954 			int data_disks = conf->raid_disks - conf->max_degraded;
7955 			int stripe = data_disks * ((conf->chunk_sectors << 9)
7956 						   / PAGE_SIZE);
7957 			if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7958 				conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
7959 		}
7960 	}
7961 }
7962 
7963 /* This is called from the raid5d thread with mddev_lock held.
7964  * It makes config changes to the device.
7965  */
7966 static void raid5_finish_reshape(struct mddev *mddev)
7967 {
7968 	struct r5conf *conf = mddev->private;
7969 
7970 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7971 
7972 		if (mddev->delta_disks > 0) {
7973 			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7974 			if (mddev->queue) {
7975 				set_capacity(mddev->gendisk, mddev->array_sectors);
7976 				revalidate_disk(mddev->gendisk);
7977 			}
7978 		} else {
7979 			int d;
7980 			spin_lock_irq(&conf->device_lock);
7981 			mddev->degraded = raid5_calc_degraded(conf);
7982 			spin_unlock_irq(&conf->device_lock);
7983 			for (d = conf->raid_disks ;
7984 			     d < conf->raid_disks - mddev->delta_disks;
7985 			     d++) {
7986 				struct md_rdev *rdev = conf->disks[d].rdev;
7987 				if (rdev)
7988 					clear_bit(In_sync, &rdev->flags);
7989 				rdev = conf->disks[d].replacement;
7990 				if (rdev)
7991 					clear_bit(In_sync, &rdev->flags);
7992 			}
7993 		}
7994 		mddev->layout = conf->algorithm;
7995 		mddev->chunk_sectors = conf->chunk_sectors;
7996 		mddev->reshape_position = MaxSector;
7997 		mddev->delta_disks = 0;
7998 		mddev->reshape_backwards = 0;
7999 	}
8000 }
8001 
8002 static void raid5_quiesce(struct mddev *mddev, int state)
8003 {
8004 	struct r5conf *conf = mddev->private;
8005 
8006 	switch(state) {
8007 	case 2: /* resume for a suspend */
8008 		wake_up(&conf->wait_for_overlap);
8009 		break;
8010 
8011 	case 1: /* stop all writes */
8012 		lock_all_device_hash_locks_irq(conf);
8013 		/* '2' tells resync/reshape to pause so that all
8014 		 * active stripes can drain
8015 		 */
8016 		r5c_flush_cache(conf, INT_MAX);
8017 		conf->quiesce = 2;
8018 		wait_event_cmd(conf->wait_for_quiescent,
8019 				    atomic_read(&conf->active_stripes) == 0 &&
8020 				    atomic_read(&conf->active_aligned_reads) == 0,
8021 				    unlock_all_device_hash_locks_irq(conf),
8022 				    lock_all_device_hash_locks_irq(conf));
8023 		conf->quiesce = 1;
8024 		unlock_all_device_hash_locks_irq(conf);
8025 		/* allow reshape to continue */
8026 		wake_up(&conf->wait_for_overlap);
8027 		break;
8028 
8029 	case 0: /* re-enable writes */
8030 		lock_all_device_hash_locks_irq(conf);
8031 		conf->quiesce = 0;
8032 		wake_up(&conf->wait_for_quiescent);
8033 		wake_up(&conf->wait_for_overlap);
8034 		unlock_all_device_hash_locks_irq(conf);
8035 		break;
8036 	}
8037 	r5l_quiesce(conf->log, state);
8038 }
8039 
8040 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8041 {
8042 	struct r0conf *raid0_conf = mddev->private;
8043 	sector_t sectors;
8044 
8045 	/* for raid0 takeover only one zone is supported */
8046 	if (raid0_conf->nr_strip_zones > 1) {
8047 		pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8048 			mdname(mddev));
8049 		return ERR_PTR(-EINVAL);
8050 	}
8051 
8052 	sectors = raid0_conf->strip_zone[0].zone_end;
8053 	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8054 	mddev->dev_sectors = sectors;
8055 	mddev->new_level = level;
8056 	mddev->new_layout = ALGORITHM_PARITY_N;
8057 	mddev->new_chunk_sectors = mddev->chunk_sectors;
8058 	mddev->raid_disks += 1;
8059 	mddev->delta_disks = 1;
8060 	/* make sure it will be not marked as dirty */
8061 	mddev->recovery_cp = MaxSector;
8062 
8063 	return setup_conf(mddev);
8064 }
8065 
8066 static void *raid5_takeover_raid1(struct mddev *mddev)
8067 {
8068 	int chunksect;
8069 	void *ret;
8070 
8071 	if (mddev->raid_disks != 2 ||
8072 	    mddev->degraded > 1)
8073 		return ERR_PTR(-EINVAL);
8074 
8075 	/* Should check if there are write-behind devices? */
8076 
8077 	chunksect = 64*2; /* 64K by default */
8078 
8079 	/* The array must be an exact multiple of chunksize */
8080 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
8081 		chunksect >>= 1;
8082 
8083 	if ((chunksect<<9) < STRIPE_SIZE)
8084 		/* array size does not allow a suitable chunk size */
8085 		return ERR_PTR(-EINVAL);
8086 
8087 	mddev->new_level = 5;
8088 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8089 	mddev->new_chunk_sectors = chunksect;
8090 
8091 	ret = setup_conf(mddev);
8092 	if (!IS_ERR(ret))
8093 		mddev_clear_unsupported_flags(mddev,
8094 			UNSUPPORTED_MDDEV_FLAGS);
8095 	return ret;
8096 }
8097 
8098 static void *raid5_takeover_raid6(struct mddev *mddev)
8099 {
8100 	int new_layout;
8101 
8102 	switch (mddev->layout) {
8103 	case ALGORITHM_LEFT_ASYMMETRIC_6:
8104 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8105 		break;
8106 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
8107 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8108 		break;
8109 	case ALGORITHM_LEFT_SYMMETRIC_6:
8110 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
8111 		break;
8112 	case ALGORITHM_RIGHT_SYMMETRIC_6:
8113 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8114 		break;
8115 	case ALGORITHM_PARITY_0_6:
8116 		new_layout = ALGORITHM_PARITY_0;
8117 		break;
8118 	case ALGORITHM_PARITY_N:
8119 		new_layout = ALGORITHM_PARITY_N;
8120 		break;
8121 	default:
8122 		return ERR_PTR(-EINVAL);
8123 	}
8124 	mddev->new_level = 5;
8125 	mddev->new_layout = new_layout;
8126 	mddev->delta_disks = -1;
8127 	mddev->raid_disks -= 1;
8128 	return setup_conf(mddev);
8129 }
8130 
8131 static int raid5_check_reshape(struct mddev *mddev)
8132 {
8133 	/* For a 2-drive array, the layout and chunk size can be changed
8134 	 * immediately as not restriping is needed.
8135 	 * For larger arrays we record the new value - after validation
8136 	 * to be used by a reshape pass.
8137 	 */
8138 	struct r5conf *conf = mddev->private;
8139 	int new_chunk = mddev->new_chunk_sectors;
8140 
8141 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8142 		return -EINVAL;
8143 	if (new_chunk > 0) {
8144 		if (!is_power_of_2(new_chunk))
8145 			return -EINVAL;
8146 		if (new_chunk < (PAGE_SIZE>>9))
8147 			return -EINVAL;
8148 		if (mddev->array_sectors & (new_chunk-1))
8149 			/* not factor of array size */
8150 			return -EINVAL;
8151 	}
8152 
8153 	/* They look valid */
8154 
8155 	if (mddev->raid_disks == 2) {
8156 		/* can make the change immediately */
8157 		if (mddev->new_layout >= 0) {
8158 			conf->algorithm = mddev->new_layout;
8159 			mddev->layout = mddev->new_layout;
8160 		}
8161 		if (new_chunk > 0) {
8162 			conf->chunk_sectors = new_chunk ;
8163 			mddev->chunk_sectors = new_chunk;
8164 		}
8165 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8166 		md_wakeup_thread(mddev->thread);
8167 	}
8168 	return check_reshape(mddev);
8169 }
8170 
8171 static int raid6_check_reshape(struct mddev *mddev)
8172 {
8173 	int new_chunk = mddev->new_chunk_sectors;
8174 
8175 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8176 		return -EINVAL;
8177 	if (new_chunk > 0) {
8178 		if (!is_power_of_2(new_chunk))
8179 			return -EINVAL;
8180 		if (new_chunk < (PAGE_SIZE >> 9))
8181 			return -EINVAL;
8182 		if (mddev->array_sectors & (new_chunk-1))
8183 			/* not factor of array size */
8184 			return -EINVAL;
8185 	}
8186 
8187 	/* They look valid */
8188 	return check_reshape(mddev);
8189 }
8190 
8191 static void *raid5_takeover(struct mddev *mddev)
8192 {
8193 	/* raid5 can take over:
8194 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
8195 	 *  raid1 - if there are two drives.  We need to know the chunk size
8196 	 *  raid4 - trivial - just use a raid4 layout.
8197 	 *  raid6 - Providing it is a *_6 layout
8198 	 */
8199 	if (mddev->level == 0)
8200 		return raid45_takeover_raid0(mddev, 5);
8201 	if (mddev->level == 1)
8202 		return raid5_takeover_raid1(mddev);
8203 	if (mddev->level == 4) {
8204 		mddev->new_layout = ALGORITHM_PARITY_N;
8205 		mddev->new_level = 5;
8206 		return setup_conf(mddev);
8207 	}
8208 	if (mddev->level == 6)
8209 		return raid5_takeover_raid6(mddev);
8210 
8211 	return ERR_PTR(-EINVAL);
8212 }
8213 
8214 static void *raid4_takeover(struct mddev *mddev)
8215 {
8216 	/* raid4 can take over:
8217 	 *  raid0 - if there is only one strip zone
8218 	 *  raid5 - if layout is right
8219 	 */
8220 	if (mddev->level == 0)
8221 		return raid45_takeover_raid0(mddev, 4);
8222 	if (mddev->level == 5 &&
8223 	    mddev->layout == ALGORITHM_PARITY_N) {
8224 		mddev->new_layout = 0;
8225 		mddev->new_level = 4;
8226 		return setup_conf(mddev);
8227 	}
8228 	return ERR_PTR(-EINVAL);
8229 }
8230 
8231 static struct md_personality raid5_personality;
8232 
8233 static void *raid6_takeover(struct mddev *mddev)
8234 {
8235 	/* Currently can only take over a raid5.  We map the
8236 	 * personality to an equivalent raid6 personality
8237 	 * with the Q block at the end.
8238 	 */
8239 	int new_layout;
8240 
8241 	if (mddev->pers != &raid5_personality)
8242 		return ERR_PTR(-EINVAL);
8243 	if (mddev->degraded > 1)
8244 		return ERR_PTR(-EINVAL);
8245 	if (mddev->raid_disks > 253)
8246 		return ERR_PTR(-EINVAL);
8247 	if (mddev->raid_disks < 3)
8248 		return ERR_PTR(-EINVAL);
8249 
8250 	switch (mddev->layout) {
8251 	case ALGORITHM_LEFT_ASYMMETRIC:
8252 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8253 		break;
8254 	case ALGORITHM_RIGHT_ASYMMETRIC:
8255 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8256 		break;
8257 	case ALGORITHM_LEFT_SYMMETRIC:
8258 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8259 		break;
8260 	case ALGORITHM_RIGHT_SYMMETRIC:
8261 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8262 		break;
8263 	case ALGORITHM_PARITY_0:
8264 		new_layout = ALGORITHM_PARITY_0_6;
8265 		break;
8266 	case ALGORITHM_PARITY_N:
8267 		new_layout = ALGORITHM_PARITY_N;
8268 		break;
8269 	default:
8270 		return ERR_PTR(-EINVAL);
8271 	}
8272 	mddev->new_level = 6;
8273 	mddev->new_layout = new_layout;
8274 	mddev->delta_disks = 1;
8275 	mddev->raid_disks += 1;
8276 	return setup_conf(mddev);
8277 }
8278 
8279 static void raid5_reset_stripe_cache(struct mddev *mddev)
8280 {
8281 	struct r5conf *conf = mddev->private;
8282 
8283 	mutex_lock(&conf->cache_size_mutex);
8284 	while (conf->max_nr_stripes &&
8285 	       drop_one_stripe(conf))
8286 		;
8287 	while (conf->min_nr_stripes > conf->max_nr_stripes &&
8288 	       grow_one_stripe(conf, GFP_KERNEL))
8289 		;
8290 	mutex_unlock(&conf->cache_size_mutex);
8291 }
8292 
8293 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8294 {
8295 	struct r5conf *conf;
8296 	int err;
8297 
8298 	err = mddev_lock(mddev);
8299 	if (err)
8300 		return err;
8301 	conf = mddev->private;
8302 	if (!conf) {
8303 		mddev_unlock(mddev);
8304 		return -ENODEV;
8305 	}
8306 
8307 	if (strncmp(buf, "ppl", 3) == 0 && !raid5_has_ppl(conf)) {
8308 		/* ppl only works with RAID 5 */
8309 		if (conf->level == 5) {
8310 			mddev_suspend(mddev);
8311 			set_bit(MD_HAS_PPL, &mddev->flags);
8312 			err = log_init(conf, NULL);
8313 			if (!err)
8314 				raid5_reset_stripe_cache(mddev);
8315 			mddev_resume(mddev);
8316 		} else
8317 			err = -EINVAL;
8318 	} else if (strncmp(buf, "resync", 6) == 0) {
8319 		if (raid5_has_ppl(conf)) {
8320 			mddev_suspend(mddev);
8321 			log_exit(conf);
8322 			raid5_reset_stripe_cache(mddev);
8323 			mddev_resume(mddev);
8324 		} else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8325 			   r5l_log_disk_error(conf)) {
8326 			bool journal_dev_exists = false;
8327 			struct md_rdev *rdev;
8328 
8329 			rdev_for_each(rdev, mddev)
8330 				if (test_bit(Journal, &rdev->flags)) {
8331 					journal_dev_exists = true;
8332 					break;
8333 				}
8334 
8335 			if (!journal_dev_exists) {
8336 				mddev_suspend(mddev);
8337 				clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8338 				mddev_resume(mddev);
8339 			} else  /* need remove journal device first */
8340 				err = -EBUSY;
8341 		} else
8342 			err = -EINVAL;
8343 	} else {
8344 		err = -EINVAL;
8345 	}
8346 
8347 	if (!err)
8348 		md_update_sb(mddev, 1);
8349 
8350 	mddev_unlock(mddev);
8351 
8352 	return err;
8353 }
8354 
8355 static struct md_personality raid6_personality =
8356 {
8357 	.name		= "raid6",
8358 	.level		= 6,
8359 	.owner		= THIS_MODULE,
8360 	.make_request	= raid5_make_request,
8361 	.run		= raid5_run,
8362 	.free		= raid5_free,
8363 	.status		= raid5_status,
8364 	.error_handler	= raid5_error,
8365 	.hot_add_disk	= raid5_add_disk,
8366 	.hot_remove_disk= raid5_remove_disk,
8367 	.spare_active	= raid5_spare_active,
8368 	.sync_request	= raid5_sync_request,
8369 	.resize		= raid5_resize,
8370 	.size		= raid5_size,
8371 	.check_reshape	= raid6_check_reshape,
8372 	.start_reshape  = raid5_start_reshape,
8373 	.finish_reshape = raid5_finish_reshape,
8374 	.quiesce	= raid5_quiesce,
8375 	.takeover	= raid6_takeover,
8376 	.congested	= raid5_congested,
8377 	.change_consistency_policy = raid5_change_consistency_policy,
8378 };
8379 static struct md_personality raid5_personality =
8380 {
8381 	.name		= "raid5",
8382 	.level		= 5,
8383 	.owner		= THIS_MODULE,
8384 	.make_request	= raid5_make_request,
8385 	.run		= raid5_run,
8386 	.free		= raid5_free,
8387 	.status		= raid5_status,
8388 	.error_handler	= raid5_error,
8389 	.hot_add_disk	= raid5_add_disk,
8390 	.hot_remove_disk= raid5_remove_disk,
8391 	.spare_active	= raid5_spare_active,
8392 	.sync_request	= raid5_sync_request,
8393 	.resize		= raid5_resize,
8394 	.size		= raid5_size,
8395 	.check_reshape	= raid5_check_reshape,
8396 	.start_reshape  = raid5_start_reshape,
8397 	.finish_reshape = raid5_finish_reshape,
8398 	.quiesce	= raid5_quiesce,
8399 	.takeover	= raid5_takeover,
8400 	.congested	= raid5_congested,
8401 	.change_consistency_policy = raid5_change_consistency_policy,
8402 };
8403 
8404 static struct md_personality raid4_personality =
8405 {
8406 	.name		= "raid4",
8407 	.level		= 4,
8408 	.owner		= THIS_MODULE,
8409 	.make_request	= raid5_make_request,
8410 	.run		= raid5_run,
8411 	.free		= raid5_free,
8412 	.status		= raid5_status,
8413 	.error_handler	= raid5_error,
8414 	.hot_add_disk	= raid5_add_disk,
8415 	.hot_remove_disk= raid5_remove_disk,
8416 	.spare_active	= raid5_spare_active,
8417 	.sync_request	= raid5_sync_request,
8418 	.resize		= raid5_resize,
8419 	.size		= raid5_size,
8420 	.check_reshape	= raid5_check_reshape,
8421 	.start_reshape  = raid5_start_reshape,
8422 	.finish_reshape = raid5_finish_reshape,
8423 	.quiesce	= raid5_quiesce,
8424 	.takeover	= raid4_takeover,
8425 	.congested	= raid5_congested,
8426 	.change_consistency_policy = raid5_change_consistency_policy,
8427 };
8428 
8429 static int __init raid5_init(void)
8430 {
8431 	int ret;
8432 
8433 	raid5_wq = alloc_workqueue("raid5wq",
8434 		WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8435 	if (!raid5_wq)
8436 		return -ENOMEM;
8437 
8438 	ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8439 				      "md/raid5:prepare",
8440 				      raid456_cpu_up_prepare,
8441 				      raid456_cpu_dead);
8442 	if (ret) {
8443 		destroy_workqueue(raid5_wq);
8444 		return ret;
8445 	}
8446 	register_md_personality(&raid6_personality);
8447 	register_md_personality(&raid5_personality);
8448 	register_md_personality(&raid4_personality);
8449 	return 0;
8450 }
8451 
8452 static void raid5_exit(void)
8453 {
8454 	unregister_md_personality(&raid6_personality);
8455 	unregister_md_personality(&raid5_personality);
8456 	unregister_md_personality(&raid4_personality);
8457 	cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
8458 	destroy_workqueue(raid5_wq);
8459 }
8460 
8461 module_init(raid5_init);
8462 module_exit(raid5_exit);
8463 MODULE_LICENSE("GPL");
8464 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8465 MODULE_ALIAS("md-personality-4"); /* RAID5 */
8466 MODULE_ALIAS("md-raid5");
8467 MODULE_ALIAS("md-raid4");
8468 MODULE_ALIAS("md-level-5");
8469 MODULE_ALIAS("md-level-4");
8470 MODULE_ALIAS("md-personality-8"); /* RAID6 */
8471 MODULE_ALIAS("md-raid6");
8472 MODULE_ALIAS("md-level-6");
8473 
8474 /* This used to be two separate modules, they were: */
8475 MODULE_ALIAS("raid5");
8476 MODULE_ALIAS("raid6");
8477