1 /* 2 * raid5.c : Multiple Devices driver for Linux 3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman 4 * Copyright (C) 1999, 2000 Ingo Molnar 5 * Copyright (C) 2002, 2003 H. Peter Anvin 6 * 7 * RAID-4/5/6 management functions. 8 * Thanks to Penguin Computing for making the RAID-6 development possible 9 * by donating a test server! 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 /* 22 * BITMAP UNPLUGGING: 23 * 24 * The sequencing for updating the bitmap reliably is a little 25 * subtle (and I got it wrong the first time) so it deserves some 26 * explanation. 27 * 28 * We group bitmap updates into batches. Each batch has a number. 29 * We may write out several batches at once, but that isn't very important. 30 * conf->seq_write is the number of the last batch successfully written. 31 * conf->seq_flush is the number of the last batch that was closed to 32 * new additions. 33 * When we discover that we will need to write to any block in a stripe 34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq 35 * the number of the batch it will be in. This is seq_flush+1. 36 * When we are ready to do a write, if that batch hasn't been written yet, 37 * we plug the array and queue the stripe for later. 38 * When an unplug happens, we increment bm_flush, thus closing the current 39 * batch. 40 * When we notice that bm_flush > bm_write, we write out all pending updates 41 * to the bitmap, and advance bm_write to where bm_flush was. 42 * This may occasionally write a bit out twice, but is sure never to 43 * miss any bits. 44 */ 45 46 #include <linux/blkdev.h> 47 #include <linux/kthread.h> 48 #include <linux/raid/pq.h> 49 #include <linux/async_tx.h> 50 #include <linux/module.h> 51 #include <linux/async.h> 52 #include <linux/seq_file.h> 53 #include <linux/cpu.h> 54 #include <linux/slab.h> 55 #include <linux/ratelimit.h> 56 #include <linux/nodemask.h> 57 #include <linux/flex_array.h> 58 #include <linux/sched/signal.h> 59 60 #include <trace/events/block.h> 61 #include <linux/list_sort.h> 62 63 #include "md.h" 64 #include "raid5.h" 65 #include "raid0.h" 66 #include "bitmap.h" 67 #include "raid5-log.h" 68 69 #define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED) 70 71 #define cpu_to_group(cpu) cpu_to_node(cpu) 72 #define ANY_GROUP NUMA_NO_NODE 73 74 static bool devices_handle_discard_safely = false; 75 module_param(devices_handle_discard_safely, bool, 0644); 76 MODULE_PARM_DESC(devices_handle_discard_safely, 77 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions"); 78 static struct workqueue_struct *raid5_wq; 79 80 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect) 81 { 82 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK; 83 return &conf->stripe_hashtbl[hash]; 84 } 85 86 static inline int stripe_hash_locks_hash(sector_t sect) 87 { 88 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK; 89 } 90 91 static inline void lock_device_hash_lock(struct r5conf *conf, int hash) 92 { 93 spin_lock_irq(conf->hash_locks + hash); 94 spin_lock(&conf->device_lock); 95 } 96 97 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash) 98 { 99 spin_unlock(&conf->device_lock); 100 spin_unlock_irq(conf->hash_locks + hash); 101 } 102 103 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf) 104 { 105 int i; 106 spin_lock_irq(conf->hash_locks); 107 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 108 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks); 109 spin_lock(&conf->device_lock); 110 } 111 112 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf) 113 { 114 int i; 115 spin_unlock(&conf->device_lock); 116 for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--) 117 spin_unlock(conf->hash_locks + i); 118 spin_unlock_irq(conf->hash_locks); 119 } 120 121 /* Find first data disk in a raid6 stripe */ 122 static inline int raid6_d0(struct stripe_head *sh) 123 { 124 if (sh->ddf_layout) 125 /* ddf always start from first device */ 126 return 0; 127 /* md starts just after Q block */ 128 if (sh->qd_idx == sh->disks - 1) 129 return 0; 130 else 131 return sh->qd_idx + 1; 132 } 133 static inline int raid6_next_disk(int disk, int raid_disks) 134 { 135 disk++; 136 return (disk < raid_disks) ? disk : 0; 137 } 138 139 /* When walking through the disks in a raid5, starting at raid6_d0, 140 * We need to map each disk to a 'slot', where the data disks are slot 141 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk 142 * is raid_disks-1. This help does that mapping. 143 */ 144 static int raid6_idx_to_slot(int idx, struct stripe_head *sh, 145 int *count, int syndrome_disks) 146 { 147 int slot = *count; 148 149 if (sh->ddf_layout) 150 (*count)++; 151 if (idx == sh->pd_idx) 152 return syndrome_disks; 153 if (idx == sh->qd_idx) 154 return syndrome_disks + 1; 155 if (!sh->ddf_layout) 156 (*count)++; 157 return slot; 158 } 159 160 static void print_raid5_conf (struct r5conf *conf); 161 162 static int stripe_operations_active(struct stripe_head *sh) 163 { 164 return sh->check_state || sh->reconstruct_state || 165 test_bit(STRIPE_BIOFILL_RUN, &sh->state) || 166 test_bit(STRIPE_COMPUTE_RUN, &sh->state); 167 } 168 169 static bool stripe_is_lowprio(struct stripe_head *sh) 170 { 171 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) || 172 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) && 173 !test_bit(STRIPE_R5C_CACHING, &sh->state); 174 } 175 176 static void raid5_wakeup_stripe_thread(struct stripe_head *sh) 177 { 178 struct r5conf *conf = sh->raid_conf; 179 struct r5worker_group *group; 180 int thread_cnt; 181 int i, cpu = sh->cpu; 182 183 if (!cpu_online(cpu)) { 184 cpu = cpumask_any(cpu_online_mask); 185 sh->cpu = cpu; 186 } 187 188 if (list_empty(&sh->lru)) { 189 struct r5worker_group *group; 190 group = conf->worker_groups + cpu_to_group(cpu); 191 if (stripe_is_lowprio(sh)) 192 list_add_tail(&sh->lru, &group->loprio_list); 193 else 194 list_add_tail(&sh->lru, &group->handle_list); 195 group->stripes_cnt++; 196 sh->group = group; 197 } 198 199 if (conf->worker_cnt_per_group == 0) { 200 md_wakeup_thread(conf->mddev->thread); 201 return; 202 } 203 204 group = conf->worker_groups + cpu_to_group(sh->cpu); 205 206 group->workers[0].working = true; 207 /* at least one worker should run to avoid race */ 208 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work); 209 210 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1; 211 /* wakeup more workers */ 212 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) { 213 if (group->workers[i].working == false) { 214 group->workers[i].working = true; 215 queue_work_on(sh->cpu, raid5_wq, 216 &group->workers[i].work); 217 thread_cnt--; 218 } 219 } 220 } 221 222 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh, 223 struct list_head *temp_inactive_list) 224 { 225 int i; 226 int injournal = 0; /* number of date pages with R5_InJournal */ 227 228 BUG_ON(!list_empty(&sh->lru)); 229 BUG_ON(atomic_read(&conf->active_stripes)==0); 230 231 if (r5c_is_writeback(conf->log)) 232 for (i = sh->disks; i--; ) 233 if (test_bit(R5_InJournal, &sh->dev[i].flags)) 234 injournal++; 235 /* 236 * In the following cases, the stripe cannot be released to cached 237 * lists. Therefore, we make the stripe write out and set 238 * STRIPE_HANDLE: 239 * 1. when quiesce in r5c write back; 240 * 2. when resync is requested fot the stripe. 241 */ 242 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) || 243 (conf->quiesce && r5c_is_writeback(conf->log) && 244 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) { 245 if (test_bit(STRIPE_R5C_CACHING, &sh->state)) 246 r5c_make_stripe_write_out(sh); 247 set_bit(STRIPE_HANDLE, &sh->state); 248 } 249 250 if (test_bit(STRIPE_HANDLE, &sh->state)) { 251 if (test_bit(STRIPE_DELAYED, &sh->state) && 252 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 253 list_add_tail(&sh->lru, &conf->delayed_list); 254 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) && 255 sh->bm_seq - conf->seq_write > 0) 256 list_add_tail(&sh->lru, &conf->bitmap_list); 257 else { 258 clear_bit(STRIPE_DELAYED, &sh->state); 259 clear_bit(STRIPE_BIT_DELAY, &sh->state); 260 if (conf->worker_cnt_per_group == 0) { 261 if (stripe_is_lowprio(sh)) 262 list_add_tail(&sh->lru, 263 &conf->loprio_list); 264 else 265 list_add_tail(&sh->lru, 266 &conf->handle_list); 267 } else { 268 raid5_wakeup_stripe_thread(sh); 269 return; 270 } 271 } 272 md_wakeup_thread(conf->mddev->thread); 273 } else { 274 BUG_ON(stripe_operations_active(sh)); 275 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 276 if (atomic_dec_return(&conf->preread_active_stripes) 277 < IO_THRESHOLD) 278 md_wakeup_thread(conf->mddev->thread); 279 atomic_dec(&conf->active_stripes); 280 if (!test_bit(STRIPE_EXPANDING, &sh->state)) { 281 if (!r5c_is_writeback(conf->log)) 282 list_add_tail(&sh->lru, temp_inactive_list); 283 else { 284 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags)); 285 if (injournal == 0) 286 list_add_tail(&sh->lru, temp_inactive_list); 287 else if (injournal == conf->raid_disks - conf->max_degraded) { 288 /* full stripe */ 289 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) 290 atomic_inc(&conf->r5c_cached_full_stripes); 291 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) 292 atomic_dec(&conf->r5c_cached_partial_stripes); 293 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list); 294 r5c_check_cached_full_stripe(conf); 295 } else 296 /* 297 * STRIPE_R5C_PARTIAL_STRIPE is set in 298 * r5c_try_caching_write(). No need to 299 * set it again. 300 */ 301 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list); 302 } 303 } 304 } 305 } 306 307 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh, 308 struct list_head *temp_inactive_list) 309 { 310 if (atomic_dec_and_test(&sh->count)) 311 do_release_stripe(conf, sh, temp_inactive_list); 312 } 313 314 /* 315 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list 316 * 317 * Be careful: Only one task can add/delete stripes from temp_inactive_list at 318 * given time. Adding stripes only takes device lock, while deleting stripes 319 * only takes hash lock. 320 */ 321 static void release_inactive_stripe_list(struct r5conf *conf, 322 struct list_head *temp_inactive_list, 323 int hash) 324 { 325 int size; 326 bool do_wakeup = false; 327 unsigned long flags; 328 329 if (hash == NR_STRIPE_HASH_LOCKS) { 330 size = NR_STRIPE_HASH_LOCKS; 331 hash = NR_STRIPE_HASH_LOCKS - 1; 332 } else 333 size = 1; 334 while (size) { 335 struct list_head *list = &temp_inactive_list[size - 1]; 336 337 /* 338 * We don't hold any lock here yet, raid5_get_active_stripe() might 339 * remove stripes from the list 340 */ 341 if (!list_empty_careful(list)) { 342 spin_lock_irqsave(conf->hash_locks + hash, flags); 343 if (list_empty(conf->inactive_list + hash) && 344 !list_empty(list)) 345 atomic_dec(&conf->empty_inactive_list_nr); 346 list_splice_tail_init(list, conf->inactive_list + hash); 347 do_wakeup = true; 348 spin_unlock_irqrestore(conf->hash_locks + hash, flags); 349 } 350 size--; 351 hash--; 352 } 353 354 if (do_wakeup) { 355 wake_up(&conf->wait_for_stripe); 356 if (atomic_read(&conf->active_stripes) == 0) 357 wake_up(&conf->wait_for_quiescent); 358 if (conf->retry_read_aligned) 359 md_wakeup_thread(conf->mddev->thread); 360 } 361 } 362 363 /* should hold conf->device_lock already */ 364 static int release_stripe_list(struct r5conf *conf, 365 struct list_head *temp_inactive_list) 366 { 367 struct stripe_head *sh, *t; 368 int count = 0; 369 struct llist_node *head; 370 371 head = llist_del_all(&conf->released_stripes); 372 head = llist_reverse_order(head); 373 llist_for_each_entry_safe(sh, t, head, release_list) { 374 int hash; 375 376 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */ 377 smp_mb(); 378 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state); 379 /* 380 * Don't worry the bit is set here, because if the bit is set 381 * again, the count is always > 1. This is true for 382 * STRIPE_ON_UNPLUG_LIST bit too. 383 */ 384 hash = sh->hash_lock_index; 385 __release_stripe(conf, sh, &temp_inactive_list[hash]); 386 count++; 387 } 388 389 return count; 390 } 391 392 void raid5_release_stripe(struct stripe_head *sh) 393 { 394 struct r5conf *conf = sh->raid_conf; 395 unsigned long flags; 396 struct list_head list; 397 int hash; 398 bool wakeup; 399 400 /* Avoid release_list until the last reference. 401 */ 402 if (atomic_add_unless(&sh->count, -1, 1)) 403 return; 404 405 if (unlikely(!conf->mddev->thread) || 406 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state)) 407 goto slow_path; 408 wakeup = llist_add(&sh->release_list, &conf->released_stripes); 409 if (wakeup) 410 md_wakeup_thread(conf->mddev->thread); 411 return; 412 slow_path: 413 local_irq_save(flags); 414 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */ 415 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) { 416 INIT_LIST_HEAD(&list); 417 hash = sh->hash_lock_index; 418 do_release_stripe(conf, sh, &list); 419 spin_unlock(&conf->device_lock); 420 release_inactive_stripe_list(conf, &list, hash); 421 } 422 local_irq_restore(flags); 423 } 424 425 static inline void remove_hash(struct stripe_head *sh) 426 { 427 pr_debug("remove_hash(), stripe %llu\n", 428 (unsigned long long)sh->sector); 429 430 hlist_del_init(&sh->hash); 431 } 432 433 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh) 434 { 435 struct hlist_head *hp = stripe_hash(conf, sh->sector); 436 437 pr_debug("insert_hash(), stripe %llu\n", 438 (unsigned long long)sh->sector); 439 440 hlist_add_head(&sh->hash, hp); 441 } 442 443 /* find an idle stripe, make sure it is unhashed, and return it. */ 444 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash) 445 { 446 struct stripe_head *sh = NULL; 447 struct list_head *first; 448 449 if (list_empty(conf->inactive_list + hash)) 450 goto out; 451 first = (conf->inactive_list + hash)->next; 452 sh = list_entry(first, struct stripe_head, lru); 453 list_del_init(first); 454 remove_hash(sh); 455 atomic_inc(&conf->active_stripes); 456 BUG_ON(hash != sh->hash_lock_index); 457 if (list_empty(conf->inactive_list + hash)) 458 atomic_inc(&conf->empty_inactive_list_nr); 459 out: 460 return sh; 461 } 462 463 static void shrink_buffers(struct stripe_head *sh) 464 { 465 struct page *p; 466 int i; 467 int num = sh->raid_conf->pool_size; 468 469 for (i = 0; i < num ; i++) { 470 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page); 471 p = sh->dev[i].page; 472 if (!p) 473 continue; 474 sh->dev[i].page = NULL; 475 put_page(p); 476 } 477 } 478 479 static int grow_buffers(struct stripe_head *sh, gfp_t gfp) 480 { 481 int i; 482 int num = sh->raid_conf->pool_size; 483 484 for (i = 0; i < num; i++) { 485 struct page *page; 486 487 if (!(page = alloc_page(gfp))) { 488 return 1; 489 } 490 sh->dev[i].page = page; 491 sh->dev[i].orig_page = page; 492 } 493 494 return 0; 495 } 496 497 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 498 struct stripe_head *sh); 499 500 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous) 501 { 502 struct r5conf *conf = sh->raid_conf; 503 int i, seq; 504 505 BUG_ON(atomic_read(&sh->count) != 0); 506 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); 507 BUG_ON(stripe_operations_active(sh)); 508 BUG_ON(sh->batch_head); 509 510 pr_debug("init_stripe called, stripe %llu\n", 511 (unsigned long long)sector); 512 retry: 513 seq = read_seqcount_begin(&conf->gen_lock); 514 sh->generation = conf->generation - previous; 515 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks; 516 sh->sector = sector; 517 stripe_set_idx(sector, conf, previous, sh); 518 sh->state = 0; 519 520 for (i = sh->disks; i--; ) { 521 struct r5dev *dev = &sh->dev[i]; 522 523 if (dev->toread || dev->read || dev->towrite || dev->written || 524 test_bit(R5_LOCKED, &dev->flags)) { 525 pr_err("sector=%llx i=%d %p %p %p %p %d\n", 526 (unsigned long long)sh->sector, i, dev->toread, 527 dev->read, dev->towrite, dev->written, 528 test_bit(R5_LOCKED, &dev->flags)); 529 WARN_ON(1); 530 } 531 dev->flags = 0; 532 dev->sector = raid5_compute_blocknr(sh, i, previous); 533 } 534 if (read_seqcount_retry(&conf->gen_lock, seq)) 535 goto retry; 536 sh->overwrite_disks = 0; 537 insert_hash(conf, sh); 538 sh->cpu = smp_processor_id(); 539 set_bit(STRIPE_BATCH_READY, &sh->state); 540 } 541 542 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector, 543 short generation) 544 { 545 struct stripe_head *sh; 546 547 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector); 548 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash) 549 if (sh->sector == sector && sh->generation == generation) 550 return sh; 551 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector); 552 return NULL; 553 } 554 555 /* 556 * Need to check if array has failed when deciding whether to: 557 * - start an array 558 * - remove non-faulty devices 559 * - add a spare 560 * - allow a reshape 561 * This determination is simple when no reshape is happening. 562 * However if there is a reshape, we need to carefully check 563 * both the before and after sections. 564 * This is because some failed devices may only affect one 565 * of the two sections, and some non-in_sync devices may 566 * be insync in the section most affected by failed devices. 567 */ 568 int raid5_calc_degraded(struct r5conf *conf) 569 { 570 int degraded, degraded2; 571 int i; 572 573 rcu_read_lock(); 574 degraded = 0; 575 for (i = 0; i < conf->previous_raid_disks; i++) { 576 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 577 if (rdev && test_bit(Faulty, &rdev->flags)) 578 rdev = rcu_dereference(conf->disks[i].replacement); 579 if (!rdev || test_bit(Faulty, &rdev->flags)) 580 degraded++; 581 else if (test_bit(In_sync, &rdev->flags)) 582 ; 583 else 584 /* not in-sync or faulty. 585 * If the reshape increases the number of devices, 586 * this is being recovered by the reshape, so 587 * this 'previous' section is not in_sync. 588 * If the number of devices is being reduced however, 589 * the device can only be part of the array if 590 * we are reverting a reshape, so this section will 591 * be in-sync. 592 */ 593 if (conf->raid_disks >= conf->previous_raid_disks) 594 degraded++; 595 } 596 rcu_read_unlock(); 597 if (conf->raid_disks == conf->previous_raid_disks) 598 return degraded; 599 rcu_read_lock(); 600 degraded2 = 0; 601 for (i = 0; i < conf->raid_disks; i++) { 602 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 603 if (rdev && test_bit(Faulty, &rdev->flags)) 604 rdev = rcu_dereference(conf->disks[i].replacement); 605 if (!rdev || test_bit(Faulty, &rdev->flags)) 606 degraded2++; 607 else if (test_bit(In_sync, &rdev->flags)) 608 ; 609 else 610 /* not in-sync or faulty. 611 * If reshape increases the number of devices, this 612 * section has already been recovered, else it 613 * almost certainly hasn't. 614 */ 615 if (conf->raid_disks <= conf->previous_raid_disks) 616 degraded2++; 617 } 618 rcu_read_unlock(); 619 if (degraded2 > degraded) 620 return degraded2; 621 return degraded; 622 } 623 624 static int has_failed(struct r5conf *conf) 625 { 626 int degraded; 627 628 if (conf->mddev->reshape_position == MaxSector) 629 return conf->mddev->degraded > conf->max_degraded; 630 631 degraded = raid5_calc_degraded(conf); 632 if (degraded > conf->max_degraded) 633 return 1; 634 return 0; 635 } 636 637 struct stripe_head * 638 raid5_get_active_stripe(struct r5conf *conf, sector_t sector, 639 int previous, int noblock, int noquiesce) 640 { 641 struct stripe_head *sh; 642 int hash = stripe_hash_locks_hash(sector); 643 int inc_empty_inactive_list_flag; 644 645 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector); 646 647 spin_lock_irq(conf->hash_locks + hash); 648 649 do { 650 wait_event_lock_irq(conf->wait_for_quiescent, 651 conf->quiesce == 0 || noquiesce, 652 *(conf->hash_locks + hash)); 653 sh = __find_stripe(conf, sector, conf->generation - previous); 654 if (!sh) { 655 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) { 656 sh = get_free_stripe(conf, hash); 657 if (!sh && !test_bit(R5_DID_ALLOC, 658 &conf->cache_state)) 659 set_bit(R5_ALLOC_MORE, 660 &conf->cache_state); 661 } 662 if (noblock && sh == NULL) 663 break; 664 665 r5c_check_stripe_cache_usage(conf); 666 if (!sh) { 667 set_bit(R5_INACTIVE_BLOCKED, 668 &conf->cache_state); 669 r5l_wake_reclaim(conf->log, 0); 670 wait_event_lock_irq( 671 conf->wait_for_stripe, 672 !list_empty(conf->inactive_list + hash) && 673 (atomic_read(&conf->active_stripes) 674 < (conf->max_nr_stripes * 3 / 4) 675 || !test_bit(R5_INACTIVE_BLOCKED, 676 &conf->cache_state)), 677 *(conf->hash_locks + hash)); 678 clear_bit(R5_INACTIVE_BLOCKED, 679 &conf->cache_state); 680 } else { 681 init_stripe(sh, sector, previous); 682 atomic_inc(&sh->count); 683 } 684 } else if (!atomic_inc_not_zero(&sh->count)) { 685 spin_lock(&conf->device_lock); 686 if (!atomic_read(&sh->count)) { 687 if (!test_bit(STRIPE_HANDLE, &sh->state)) 688 atomic_inc(&conf->active_stripes); 689 BUG_ON(list_empty(&sh->lru) && 690 !test_bit(STRIPE_EXPANDING, &sh->state)); 691 inc_empty_inactive_list_flag = 0; 692 if (!list_empty(conf->inactive_list + hash)) 693 inc_empty_inactive_list_flag = 1; 694 list_del_init(&sh->lru); 695 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag) 696 atomic_inc(&conf->empty_inactive_list_nr); 697 if (sh->group) { 698 sh->group->stripes_cnt--; 699 sh->group = NULL; 700 } 701 } 702 atomic_inc(&sh->count); 703 spin_unlock(&conf->device_lock); 704 } 705 } while (sh == NULL); 706 707 spin_unlock_irq(conf->hash_locks + hash); 708 return sh; 709 } 710 711 static bool is_full_stripe_write(struct stripe_head *sh) 712 { 713 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded)); 714 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded); 715 } 716 717 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) 718 { 719 if (sh1 > sh2) { 720 spin_lock_irq(&sh2->stripe_lock); 721 spin_lock_nested(&sh1->stripe_lock, 1); 722 } else { 723 spin_lock_irq(&sh1->stripe_lock); 724 spin_lock_nested(&sh2->stripe_lock, 1); 725 } 726 } 727 728 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) 729 { 730 spin_unlock(&sh1->stripe_lock); 731 spin_unlock_irq(&sh2->stripe_lock); 732 } 733 734 /* Only freshly new full stripe normal write stripe can be added to a batch list */ 735 static bool stripe_can_batch(struct stripe_head *sh) 736 { 737 struct r5conf *conf = sh->raid_conf; 738 739 if (conf->log || raid5_has_ppl(conf)) 740 return false; 741 return test_bit(STRIPE_BATCH_READY, &sh->state) && 742 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) && 743 is_full_stripe_write(sh); 744 } 745 746 /* we only do back search */ 747 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh) 748 { 749 struct stripe_head *head; 750 sector_t head_sector, tmp_sec; 751 int hash; 752 int dd_idx; 753 int inc_empty_inactive_list_flag; 754 755 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */ 756 tmp_sec = sh->sector; 757 if (!sector_div(tmp_sec, conf->chunk_sectors)) 758 return; 759 head_sector = sh->sector - STRIPE_SECTORS; 760 761 hash = stripe_hash_locks_hash(head_sector); 762 spin_lock_irq(conf->hash_locks + hash); 763 head = __find_stripe(conf, head_sector, conf->generation); 764 if (head && !atomic_inc_not_zero(&head->count)) { 765 spin_lock(&conf->device_lock); 766 if (!atomic_read(&head->count)) { 767 if (!test_bit(STRIPE_HANDLE, &head->state)) 768 atomic_inc(&conf->active_stripes); 769 BUG_ON(list_empty(&head->lru) && 770 !test_bit(STRIPE_EXPANDING, &head->state)); 771 inc_empty_inactive_list_flag = 0; 772 if (!list_empty(conf->inactive_list + hash)) 773 inc_empty_inactive_list_flag = 1; 774 list_del_init(&head->lru); 775 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag) 776 atomic_inc(&conf->empty_inactive_list_nr); 777 if (head->group) { 778 head->group->stripes_cnt--; 779 head->group = NULL; 780 } 781 } 782 atomic_inc(&head->count); 783 spin_unlock(&conf->device_lock); 784 } 785 spin_unlock_irq(conf->hash_locks + hash); 786 787 if (!head) 788 return; 789 if (!stripe_can_batch(head)) 790 goto out; 791 792 lock_two_stripes(head, sh); 793 /* clear_batch_ready clear the flag */ 794 if (!stripe_can_batch(head) || !stripe_can_batch(sh)) 795 goto unlock_out; 796 797 if (sh->batch_head) 798 goto unlock_out; 799 800 dd_idx = 0; 801 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx) 802 dd_idx++; 803 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf || 804 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite)) 805 goto unlock_out; 806 807 if (head->batch_head) { 808 spin_lock(&head->batch_head->batch_lock); 809 /* This batch list is already running */ 810 if (!stripe_can_batch(head)) { 811 spin_unlock(&head->batch_head->batch_lock); 812 goto unlock_out; 813 } 814 815 /* 816 * at this point, head's BATCH_READY could be cleared, but we 817 * can still add the stripe to batch list 818 */ 819 list_add(&sh->batch_list, &head->batch_list); 820 spin_unlock(&head->batch_head->batch_lock); 821 822 sh->batch_head = head->batch_head; 823 } else { 824 head->batch_head = head; 825 sh->batch_head = head->batch_head; 826 spin_lock(&head->batch_lock); 827 list_add_tail(&sh->batch_list, &head->batch_list); 828 spin_unlock(&head->batch_lock); 829 } 830 831 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 832 if (atomic_dec_return(&conf->preread_active_stripes) 833 < IO_THRESHOLD) 834 md_wakeup_thread(conf->mddev->thread); 835 836 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) { 837 int seq = sh->bm_seq; 838 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) && 839 sh->batch_head->bm_seq > seq) 840 seq = sh->batch_head->bm_seq; 841 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state); 842 sh->batch_head->bm_seq = seq; 843 } 844 845 atomic_inc(&sh->count); 846 unlock_out: 847 unlock_two_stripes(head, sh); 848 out: 849 raid5_release_stripe(head); 850 } 851 852 /* Determine if 'data_offset' or 'new_data_offset' should be used 853 * in this stripe_head. 854 */ 855 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh) 856 { 857 sector_t progress = conf->reshape_progress; 858 /* Need a memory barrier to make sure we see the value 859 * of conf->generation, or ->data_offset that was set before 860 * reshape_progress was updated. 861 */ 862 smp_rmb(); 863 if (progress == MaxSector) 864 return 0; 865 if (sh->generation == conf->generation - 1) 866 return 0; 867 /* We are in a reshape, and this is a new-generation stripe, 868 * so use new_data_offset. 869 */ 870 return 1; 871 } 872 873 static void dispatch_bio_list(struct bio_list *tmp) 874 { 875 struct bio *bio; 876 877 while ((bio = bio_list_pop(tmp))) 878 generic_make_request(bio); 879 } 880 881 static int cmp_stripe(void *priv, struct list_head *a, struct list_head *b) 882 { 883 const struct r5pending_data *da = list_entry(a, 884 struct r5pending_data, sibling); 885 const struct r5pending_data *db = list_entry(b, 886 struct r5pending_data, sibling); 887 if (da->sector > db->sector) 888 return 1; 889 if (da->sector < db->sector) 890 return -1; 891 return 0; 892 } 893 894 static void dispatch_defer_bios(struct r5conf *conf, int target, 895 struct bio_list *list) 896 { 897 struct r5pending_data *data; 898 struct list_head *first, *next = NULL; 899 int cnt = 0; 900 901 if (conf->pending_data_cnt == 0) 902 return; 903 904 list_sort(NULL, &conf->pending_list, cmp_stripe); 905 906 first = conf->pending_list.next; 907 908 /* temporarily move the head */ 909 if (conf->next_pending_data) 910 list_move_tail(&conf->pending_list, 911 &conf->next_pending_data->sibling); 912 913 while (!list_empty(&conf->pending_list)) { 914 data = list_first_entry(&conf->pending_list, 915 struct r5pending_data, sibling); 916 if (&data->sibling == first) 917 first = data->sibling.next; 918 next = data->sibling.next; 919 920 bio_list_merge(list, &data->bios); 921 list_move(&data->sibling, &conf->free_list); 922 cnt++; 923 if (cnt >= target) 924 break; 925 } 926 conf->pending_data_cnt -= cnt; 927 BUG_ON(conf->pending_data_cnt < 0 || cnt < target); 928 929 if (next != &conf->pending_list) 930 conf->next_pending_data = list_entry(next, 931 struct r5pending_data, sibling); 932 else 933 conf->next_pending_data = NULL; 934 /* list isn't empty */ 935 if (first != &conf->pending_list) 936 list_move_tail(&conf->pending_list, first); 937 } 938 939 static void flush_deferred_bios(struct r5conf *conf) 940 { 941 struct bio_list tmp = BIO_EMPTY_LIST; 942 943 if (conf->pending_data_cnt == 0) 944 return; 945 946 spin_lock(&conf->pending_bios_lock); 947 dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp); 948 BUG_ON(conf->pending_data_cnt != 0); 949 spin_unlock(&conf->pending_bios_lock); 950 951 dispatch_bio_list(&tmp); 952 } 953 954 static void defer_issue_bios(struct r5conf *conf, sector_t sector, 955 struct bio_list *bios) 956 { 957 struct bio_list tmp = BIO_EMPTY_LIST; 958 struct r5pending_data *ent; 959 960 spin_lock(&conf->pending_bios_lock); 961 ent = list_first_entry(&conf->free_list, struct r5pending_data, 962 sibling); 963 list_move_tail(&ent->sibling, &conf->pending_list); 964 ent->sector = sector; 965 bio_list_init(&ent->bios); 966 bio_list_merge(&ent->bios, bios); 967 conf->pending_data_cnt++; 968 if (conf->pending_data_cnt >= PENDING_IO_MAX) 969 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp); 970 971 spin_unlock(&conf->pending_bios_lock); 972 973 dispatch_bio_list(&tmp); 974 } 975 976 static void 977 raid5_end_read_request(struct bio *bi); 978 static void 979 raid5_end_write_request(struct bio *bi); 980 981 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s) 982 { 983 struct r5conf *conf = sh->raid_conf; 984 int i, disks = sh->disks; 985 struct stripe_head *head_sh = sh; 986 struct bio_list pending_bios = BIO_EMPTY_LIST; 987 bool should_defer; 988 989 might_sleep(); 990 991 if (log_stripe(sh, s) == 0) 992 return; 993 994 should_defer = conf->batch_bio_dispatch && conf->group_cnt; 995 996 for (i = disks; i--; ) { 997 int op, op_flags = 0; 998 int replace_only = 0; 999 struct bio *bi, *rbi; 1000 struct md_rdev *rdev, *rrdev = NULL; 1001 1002 sh = head_sh; 1003 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) { 1004 op = REQ_OP_WRITE; 1005 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags)) 1006 op_flags = REQ_FUA; 1007 if (test_bit(R5_Discard, &sh->dev[i].flags)) 1008 op = REQ_OP_DISCARD; 1009 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags)) 1010 op = REQ_OP_READ; 1011 else if (test_and_clear_bit(R5_WantReplace, 1012 &sh->dev[i].flags)) { 1013 op = REQ_OP_WRITE; 1014 replace_only = 1; 1015 } else 1016 continue; 1017 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags)) 1018 op_flags |= REQ_SYNC; 1019 1020 again: 1021 bi = &sh->dev[i].req; 1022 rbi = &sh->dev[i].rreq; /* For writing to replacement */ 1023 1024 rcu_read_lock(); 1025 rrdev = rcu_dereference(conf->disks[i].replacement); 1026 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */ 1027 rdev = rcu_dereference(conf->disks[i].rdev); 1028 if (!rdev) { 1029 rdev = rrdev; 1030 rrdev = NULL; 1031 } 1032 if (op_is_write(op)) { 1033 if (replace_only) 1034 rdev = NULL; 1035 if (rdev == rrdev) 1036 /* We raced and saw duplicates */ 1037 rrdev = NULL; 1038 } else { 1039 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev) 1040 rdev = rrdev; 1041 rrdev = NULL; 1042 } 1043 1044 if (rdev && test_bit(Faulty, &rdev->flags)) 1045 rdev = NULL; 1046 if (rdev) 1047 atomic_inc(&rdev->nr_pending); 1048 if (rrdev && test_bit(Faulty, &rrdev->flags)) 1049 rrdev = NULL; 1050 if (rrdev) 1051 atomic_inc(&rrdev->nr_pending); 1052 rcu_read_unlock(); 1053 1054 /* We have already checked bad blocks for reads. Now 1055 * need to check for writes. We never accept write errors 1056 * on the replacement, so we don't to check rrdev. 1057 */ 1058 while (op_is_write(op) && rdev && 1059 test_bit(WriteErrorSeen, &rdev->flags)) { 1060 sector_t first_bad; 1061 int bad_sectors; 1062 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS, 1063 &first_bad, &bad_sectors); 1064 if (!bad) 1065 break; 1066 1067 if (bad < 0) { 1068 set_bit(BlockedBadBlocks, &rdev->flags); 1069 if (!conf->mddev->external && 1070 conf->mddev->sb_flags) { 1071 /* It is very unlikely, but we might 1072 * still need to write out the 1073 * bad block log - better give it 1074 * a chance*/ 1075 md_check_recovery(conf->mddev); 1076 } 1077 /* 1078 * Because md_wait_for_blocked_rdev 1079 * will dec nr_pending, we must 1080 * increment it first. 1081 */ 1082 atomic_inc(&rdev->nr_pending); 1083 md_wait_for_blocked_rdev(rdev, conf->mddev); 1084 } else { 1085 /* Acknowledged bad block - skip the write */ 1086 rdev_dec_pending(rdev, conf->mddev); 1087 rdev = NULL; 1088 } 1089 } 1090 1091 if (rdev) { 1092 if (s->syncing || s->expanding || s->expanded 1093 || s->replacing) 1094 md_sync_acct(rdev->bdev, STRIPE_SECTORS); 1095 1096 set_bit(STRIPE_IO_STARTED, &sh->state); 1097 1098 bio_set_dev(bi, rdev->bdev); 1099 bio_set_op_attrs(bi, op, op_flags); 1100 bi->bi_end_io = op_is_write(op) 1101 ? raid5_end_write_request 1102 : raid5_end_read_request; 1103 bi->bi_private = sh; 1104 1105 pr_debug("%s: for %llu schedule op %d on disc %d\n", 1106 __func__, (unsigned long long)sh->sector, 1107 bi->bi_opf, i); 1108 atomic_inc(&sh->count); 1109 if (sh != head_sh) 1110 atomic_inc(&head_sh->count); 1111 if (use_new_offset(conf, sh)) 1112 bi->bi_iter.bi_sector = (sh->sector 1113 + rdev->new_data_offset); 1114 else 1115 bi->bi_iter.bi_sector = (sh->sector 1116 + rdev->data_offset); 1117 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags)) 1118 bi->bi_opf |= REQ_NOMERGE; 1119 1120 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 1121 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 1122 1123 if (!op_is_write(op) && 1124 test_bit(R5_InJournal, &sh->dev[i].flags)) 1125 /* 1126 * issuing read for a page in journal, this 1127 * must be preparing for prexor in rmw; read 1128 * the data into orig_page 1129 */ 1130 sh->dev[i].vec.bv_page = sh->dev[i].orig_page; 1131 else 1132 sh->dev[i].vec.bv_page = sh->dev[i].page; 1133 bi->bi_vcnt = 1; 1134 bi->bi_io_vec[0].bv_len = STRIPE_SIZE; 1135 bi->bi_io_vec[0].bv_offset = 0; 1136 bi->bi_iter.bi_size = STRIPE_SIZE; 1137 /* 1138 * If this is discard request, set bi_vcnt 0. We don't 1139 * want to confuse SCSI because SCSI will replace payload 1140 */ 1141 if (op == REQ_OP_DISCARD) 1142 bi->bi_vcnt = 0; 1143 if (rrdev) 1144 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags); 1145 1146 if (conf->mddev->gendisk) 1147 trace_block_bio_remap(bi->bi_disk->queue, 1148 bi, disk_devt(conf->mddev->gendisk), 1149 sh->dev[i].sector); 1150 if (should_defer && op_is_write(op)) 1151 bio_list_add(&pending_bios, bi); 1152 else 1153 generic_make_request(bi); 1154 } 1155 if (rrdev) { 1156 if (s->syncing || s->expanding || s->expanded 1157 || s->replacing) 1158 md_sync_acct(rrdev->bdev, STRIPE_SECTORS); 1159 1160 set_bit(STRIPE_IO_STARTED, &sh->state); 1161 1162 bio_set_dev(rbi, rrdev->bdev); 1163 bio_set_op_attrs(rbi, op, op_flags); 1164 BUG_ON(!op_is_write(op)); 1165 rbi->bi_end_io = raid5_end_write_request; 1166 rbi->bi_private = sh; 1167 1168 pr_debug("%s: for %llu schedule op %d on " 1169 "replacement disc %d\n", 1170 __func__, (unsigned long long)sh->sector, 1171 rbi->bi_opf, i); 1172 atomic_inc(&sh->count); 1173 if (sh != head_sh) 1174 atomic_inc(&head_sh->count); 1175 if (use_new_offset(conf, sh)) 1176 rbi->bi_iter.bi_sector = (sh->sector 1177 + rrdev->new_data_offset); 1178 else 1179 rbi->bi_iter.bi_sector = (sh->sector 1180 + rrdev->data_offset); 1181 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 1182 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 1183 sh->dev[i].rvec.bv_page = sh->dev[i].page; 1184 rbi->bi_vcnt = 1; 1185 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE; 1186 rbi->bi_io_vec[0].bv_offset = 0; 1187 rbi->bi_iter.bi_size = STRIPE_SIZE; 1188 /* 1189 * If this is discard request, set bi_vcnt 0. We don't 1190 * want to confuse SCSI because SCSI will replace payload 1191 */ 1192 if (op == REQ_OP_DISCARD) 1193 rbi->bi_vcnt = 0; 1194 if (conf->mddev->gendisk) 1195 trace_block_bio_remap(rbi->bi_disk->queue, 1196 rbi, disk_devt(conf->mddev->gendisk), 1197 sh->dev[i].sector); 1198 if (should_defer && op_is_write(op)) 1199 bio_list_add(&pending_bios, rbi); 1200 else 1201 generic_make_request(rbi); 1202 } 1203 if (!rdev && !rrdev) { 1204 if (op_is_write(op)) 1205 set_bit(STRIPE_DEGRADED, &sh->state); 1206 pr_debug("skip op %d on disc %d for sector %llu\n", 1207 bi->bi_opf, i, (unsigned long long)sh->sector); 1208 clear_bit(R5_LOCKED, &sh->dev[i].flags); 1209 set_bit(STRIPE_HANDLE, &sh->state); 1210 } 1211 1212 if (!head_sh->batch_head) 1213 continue; 1214 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1215 batch_list); 1216 if (sh != head_sh) 1217 goto again; 1218 } 1219 1220 if (should_defer && !bio_list_empty(&pending_bios)) 1221 defer_issue_bios(conf, head_sh->sector, &pending_bios); 1222 } 1223 1224 static struct dma_async_tx_descriptor * 1225 async_copy_data(int frombio, struct bio *bio, struct page **page, 1226 sector_t sector, struct dma_async_tx_descriptor *tx, 1227 struct stripe_head *sh, int no_skipcopy) 1228 { 1229 struct bio_vec bvl; 1230 struct bvec_iter iter; 1231 struct page *bio_page; 1232 int page_offset; 1233 struct async_submit_ctl submit; 1234 enum async_tx_flags flags = 0; 1235 1236 if (bio->bi_iter.bi_sector >= sector) 1237 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512; 1238 else 1239 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512; 1240 1241 if (frombio) 1242 flags |= ASYNC_TX_FENCE; 1243 init_async_submit(&submit, flags, tx, NULL, NULL, NULL); 1244 1245 bio_for_each_segment(bvl, bio, iter) { 1246 int len = bvl.bv_len; 1247 int clen; 1248 int b_offset = 0; 1249 1250 if (page_offset < 0) { 1251 b_offset = -page_offset; 1252 page_offset += b_offset; 1253 len -= b_offset; 1254 } 1255 1256 if (len > 0 && page_offset + len > STRIPE_SIZE) 1257 clen = STRIPE_SIZE - page_offset; 1258 else 1259 clen = len; 1260 1261 if (clen > 0) { 1262 b_offset += bvl.bv_offset; 1263 bio_page = bvl.bv_page; 1264 if (frombio) { 1265 if (sh->raid_conf->skip_copy && 1266 b_offset == 0 && page_offset == 0 && 1267 clen == STRIPE_SIZE && 1268 !no_skipcopy) 1269 *page = bio_page; 1270 else 1271 tx = async_memcpy(*page, bio_page, page_offset, 1272 b_offset, clen, &submit); 1273 } else 1274 tx = async_memcpy(bio_page, *page, b_offset, 1275 page_offset, clen, &submit); 1276 } 1277 /* chain the operations */ 1278 submit.depend_tx = tx; 1279 1280 if (clen < len) /* hit end of page */ 1281 break; 1282 page_offset += len; 1283 } 1284 1285 return tx; 1286 } 1287 1288 static void ops_complete_biofill(void *stripe_head_ref) 1289 { 1290 struct stripe_head *sh = stripe_head_ref; 1291 int i; 1292 1293 pr_debug("%s: stripe %llu\n", __func__, 1294 (unsigned long long)sh->sector); 1295 1296 /* clear completed biofills */ 1297 for (i = sh->disks; i--; ) { 1298 struct r5dev *dev = &sh->dev[i]; 1299 1300 /* acknowledge completion of a biofill operation */ 1301 /* and check if we need to reply to a read request, 1302 * new R5_Wantfill requests are held off until 1303 * !STRIPE_BIOFILL_RUN 1304 */ 1305 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) { 1306 struct bio *rbi, *rbi2; 1307 1308 BUG_ON(!dev->read); 1309 rbi = dev->read; 1310 dev->read = NULL; 1311 while (rbi && rbi->bi_iter.bi_sector < 1312 dev->sector + STRIPE_SECTORS) { 1313 rbi2 = r5_next_bio(rbi, dev->sector); 1314 bio_endio(rbi); 1315 rbi = rbi2; 1316 } 1317 } 1318 } 1319 clear_bit(STRIPE_BIOFILL_RUN, &sh->state); 1320 1321 set_bit(STRIPE_HANDLE, &sh->state); 1322 raid5_release_stripe(sh); 1323 } 1324 1325 static void ops_run_biofill(struct stripe_head *sh) 1326 { 1327 struct dma_async_tx_descriptor *tx = NULL; 1328 struct async_submit_ctl submit; 1329 int i; 1330 1331 BUG_ON(sh->batch_head); 1332 pr_debug("%s: stripe %llu\n", __func__, 1333 (unsigned long long)sh->sector); 1334 1335 for (i = sh->disks; i--; ) { 1336 struct r5dev *dev = &sh->dev[i]; 1337 if (test_bit(R5_Wantfill, &dev->flags)) { 1338 struct bio *rbi; 1339 spin_lock_irq(&sh->stripe_lock); 1340 dev->read = rbi = dev->toread; 1341 dev->toread = NULL; 1342 spin_unlock_irq(&sh->stripe_lock); 1343 while (rbi && rbi->bi_iter.bi_sector < 1344 dev->sector + STRIPE_SECTORS) { 1345 tx = async_copy_data(0, rbi, &dev->page, 1346 dev->sector, tx, sh, 0); 1347 rbi = r5_next_bio(rbi, dev->sector); 1348 } 1349 } 1350 } 1351 1352 atomic_inc(&sh->count); 1353 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL); 1354 async_trigger_callback(&submit); 1355 } 1356 1357 static void mark_target_uptodate(struct stripe_head *sh, int target) 1358 { 1359 struct r5dev *tgt; 1360 1361 if (target < 0) 1362 return; 1363 1364 tgt = &sh->dev[target]; 1365 set_bit(R5_UPTODATE, &tgt->flags); 1366 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1367 clear_bit(R5_Wantcompute, &tgt->flags); 1368 } 1369 1370 static void ops_complete_compute(void *stripe_head_ref) 1371 { 1372 struct stripe_head *sh = stripe_head_ref; 1373 1374 pr_debug("%s: stripe %llu\n", __func__, 1375 (unsigned long long)sh->sector); 1376 1377 /* mark the computed target(s) as uptodate */ 1378 mark_target_uptodate(sh, sh->ops.target); 1379 mark_target_uptodate(sh, sh->ops.target2); 1380 1381 clear_bit(STRIPE_COMPUTE_RUN, &sh->state); 1382 if (sh->check_state == check_state_compute_run) 1383 sh->check_state = check_state_compute_result; 1384 set_bit(STRIPE_HANDLE, &sh->state); 1385 raid5_release_stripe(sh); 1386 } 1387 1388 /* return a pointer to the address conversion region of the scribble buffer */ 1389 static addr_conv_t *to_addr_conv(struct stripe_head *sh, 1390 struct raid5_percpu *percpu, int i) 1391 { 1392 void *addr; 1393 1394 addr = flex_array_get(percpu->scribble, i); 1395 return addr + sizeof(struct page *) * (sh->disks + 2); 1396 } 1397 1398 /* return a pointer to the address conversion region of the scribble buffer */ 1399 static struct page **to_addr_page(struct raid5_percpu *percpu, int i) 1400 { 1401 void *addr; 1402 1403 addr = flex_array_get(percpu->scribble, i); 1404 return addr; 1405 } 1406 1407 static struct dma_async_tx_descriptor * 1408 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu) 1409 { 1410 int disks = sh->disks; 1411 struct page **xor_srcs = to_addr_page(percpu, 0); 1412 int target = sh->ops.target; 1413 struct r5dev *tgt = &sh->dev[target]; 1414 struct page *xor_dest = tgt->page; 1415 int count = 0; 1416 struct dma_async_tx_descriptor *tx; 1417 struct async_submit_ctl submit; 1418 int i; 1419 1420 BUG_ON(sh->batch_head); 1421 1422 pr_debug("%s: stripe %llu block: %d\n", 1423 __func__, (unsigned long long)sh->sector, target); 1424 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1425 1426 for (i = disks; i--; ) 1427 if (i != target) 1428 xor_srcs[count++] = sh->dev[i].page; 1429 1430 atomic_inc(&sh->count); 1431 1432 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL, 1433 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0)); 1434 if (unlikely(count == 1)) 1435 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); 1436 else 1437 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1438 1439 return tx; 1440 } 1441 1442 /* set_syndrome_sources - populate source buffers for gen_syndrome 1443 * @srcs - (struct page *) array of size sh->disks 1444 * @sh - stripe_head to parse 1445 * 1446 * Populates srcs in proper layout order for the stripe and returns the 1447 * 'count' of sources to be used in a call to async_gen_syndrome. The P 1448 * destination buffer is recorded in srcs[count] and the Q destination 1449 * is recorded in srcs[count+1]]. 1450 */ 1451 static int set_syndrome_sources(struct page **srcs, 1452 struct stripe_head *sh, 1453 int srctype) 1454 { 1455 int disks = sh->disks; 1456 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2); 1457 int d0_idx = raid6_d0(sh); 1458 int count; 1459 int i; 1460 1461 for (i = 0; i < disks; i++) 1462 srcs[i] = NULL; 1463 1464 count = 0; 1465 i = d0_idx; 1466 do { 1467 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1468 struct r5dev *dev = &sh->dev[i]; 1469 1470 if (i == sh->qd_idx || i == sh->pd_idx || 1471 (srctype == SYNDROME_SRC_ALL) || 1472 (srctype == SYNDROME_SRC_WANT_DRAIN && 1473 (test_bit(R5_Wantdrain, &dev->flags) || 1474 test_bit(R5_InJournal, &dev->flags))) || 1475 (srctype == SYNDROME_SRC_WRITTEN && 1476 (dev->written || 1477 test_bit(R5_InJournal, &dev->flags)))) { 1478 if (test_bit(R5_InJournal, &dev->flags)) 1479 srcs[slot] = sh->dev[i].orig_page; 1480 else 1481 srcs[slot] = sh->dev[i].page; 1482 } 1483 i = raid6_next_disk(i, disks); 1484 } while (i != d0_idx); 1485 1486 return syndrome_disks; 1487 } 1488 1489 static struct dma_async_tx_descriptor * 1490 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu) 1491 { 1492 int disks = sh->disks; 1493 struct page **blocks = to_addr_page(percpu, 0); 1494 int target; 1495 int qd_idx = sh->qd_idx; 1496 struct dma_async_tx_descriptor *tx; 1497 struct async_submit_ctl submit; 1498 struct r5dev *tgt; 1499 struct page *dest; 1500 int i; 1501 int count; 1502 1503 BUG_ON(sh->batch_head); 1504 if (sh->ops.target < 0) 1505 target = sh->ops.target2; 1506 else if (sh->ops.target2 < 0) 1507 target = sh->ops.target; 1508 else 1509 /* we should only have one valid target */ 1510 BUG(); 1511 BUG_ON(target < 0); 1512 pr_debug("%s: stripe %llu block: %d\n", 1513 __func__, (unsigned long long)sh->sector, target); 1514 1515 tgt = &sh->dev[target]; 1516 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1517 dest = tgt->page; 1518 1519 atomic_inc(&sh->count); 1520 1521 if (target == qd_idx) { 1522 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL); 1523 blocks[count] = NULL; /* regenerating p is not necessary */ 1524 BUG_ON(blocks[count+1] != dest); /* q should already be set */ 1525 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1526 ops_complete_compute, sh, 1527 to_addr_conv(sh, percpu, 0)); 1528 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1529 } else { 1530 /* Compute any data- or p-drive using XOR */ 1531 count = 0; 1532 for (i = disks; i-- ; ) { 1533 if (i == target || i == qd_idx) 1534 continue; 1535 blocks[count++] = sh->dev[i].page; 1536 } 1537 1538 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1539 NULL, ops_complete_compute, sh, 1540 to_addr_conv(sh, percpu, 0)); 1541 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit); 1542 } 1543 1544 return tx; 1545 } 1546 1547 static struct dma_async_tx_descriptor * 1548 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu) 1549 { 1550 int i, count, disks = sh->disks; 1551 int syndrome_disks = sh->ddf_layout ? disks : disks-2; 1552 int d0_idx = raid6_d0(sh); 1553 int faila = -1, failb = -1; 1554 int target = sh->ops.target; 1555 int target2 = sh->ops.target2; 1556 struct r5dev *tgt = &sh->dev[target]; 1557 struct r5dev *tgt2 = &sh->dev[target2]; 1558 struct dma_async_tx_descriptor *tx; 1559 struct page **blocks = to_addr_page(percpu, 0); 1560 struct async_submit_ctl submit; 1561 1562 BUG_ON(sh->batch_head); 1563 pr_debug("%s: stripe %llu block1: %d block2: %d\n", 1564 __func__, (unsigned long long)sh->sector, target, target2); 1565 BUG_ON(target < 0 || target2 < 0); 1566 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1567 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags)); 1568 1569 /* we need to open-code set_syndrome_sources to handle the 1570 * slot number conversion for 'faila' and 'failb' 1571 */ 1572 for (i = 0; i < disks ; i++) 1573 blocks[i] = NULL; 1574 count = 0; 1575 i = d0_idx; 1576 do { 1577 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1578 1579 blocks[slot] = sh->dev[i].page; 1580 1581 if (i == target) 1582 faila = slot; 1583 if (i == target2) 1584 failb = slot; 1585 i = raid6_next_disk(i, disks); 1586 } while (i != d0_idx); 1587 1588 BUG_ON(faila == failb); 1589 if (failb < faila) 1590 swap(faila, failb); 1591 pr_debug("%s: stripe: %llu faila: %d failb: %d\n", 1592 __func__, (unsigned long long)sh->sector, faila, failb); 1593 1594 atomic_inc(&sh->count); 1595 1596 if (failb == syndrome_disks+1) { 1597 /* Q disk is one of the missing disks */ 1598 if (faila == syndrome_disks) { 1599 /* Missing P+Q, just recompute */ 1600 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1601 ops_complete_compute, sh, 1602 to_addr_conv(sh, percpu, 0)); 1603 return async_gen_syndrome(blocks, 0, syndrome_disks+2, 1604 STRIPE_SIZE, &submit); 1605 } else { 1606 struct page *dest; 1607 int data_target; 1608 int qd_idx = sh->qd_idx; 1609 1610 /* Missing D+Q: recompute D from P, then recompute Q */ 1611 if (target == qd_idx) 1612 data_target = target2; 1613 else 1614 data_target = target; 1615 1616 count = 0; 1617 for (i = disks; i-- ; ) { 1618 if (i == data_target || i == qd_idx) 1619 continue; 1620 blocks[count++] = sh->dev[i].page; 1621 } 1622 dest = sh->dev[data_target].page; 1623 init_async_submit(&submit, 1624 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1625 NULL, NULL, NULL, 1626 to_addr_conv(sh, percpu, 0)); 1627 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, 1628 &submit); 1629 1630 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL); 1631 init_async_submit(&submit, ASYNC_TX_FENCE, tx, 1632 ops_complete_compute, sh, 1633 to_addr_conv(sh, percpu, 0)); 1634 return async_gen_syndrome(blocks, 0, count+2, 1635 STRIPE_SIZE, &submit); 1636 } 1637 } else { 1638 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1639 ops_complete_compute, sh, 1640 to_addr_conv(sh, percpu, 0)); 1641 if (failb == syndrome_disks) { 1642 /* We're missing D+P. */ 1643 return async_raid6_datap_recov(syndrome_disks+2, 1644 STRIPE_SIZE, faila, 1645 blocks, &submit); 1646 } else { 1647 /* We're missing D+D. */ 1648 return async_raid6_2data_recov(syndrome_disks+2, 1649 STRIPE_SIZE, faila, failb, 1650 blocks, &submit); 1651 } 1652 } 1653 } 1654 1655 static void ops_complete_prexor(void *stripe_head_ref) 1656 { 1657 struct stripe_head *sh = stripe_head_ref; 1658 1659 pr_debug("%s: stripe %llu\n", __func__, 1660 (unsigned long long)sh->sector); 1661 1662 if (r5c_is_writeback(sh->raid_conf->log)) 1663 /* 1664 * raid5-cache write back uses orig_page during prexor. 1665 * After prexor, it is time to free orig_page 1666 */ 1667 r5c_release_extra_page(sh); 1668 } 1669 1670 static struct dma_async_tx_descriptor * 1671 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu, 1672 struct dma_async_tx_descriptor *tx) 1673 { 1674 int disks = sh->disks; 1675 struct page **xor_srcs = to_addr_page(percpu, 0); 1676 int count = 0, pd_idx = sh->pd_idx, i; 1677 struct async_submit_ctl submit; 1678 1679 /* existing parity data subtracted */ 1680 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1681 1682 BUG_ON(sh->batch_head); 1683 pr_debug("%s: stripe %llu\n", __func__, 1684 (unsigned long long)sh->sector); 1685 1686 for (i = disks; i--; ) { 1687 struct r5dev *dev = &sh->dev[i]; 1688 /* Only process blocks that are known to be uptodate */ 1689 if (test_bit(R5_InJournal, &dev->flags)) 1690 xor_srcs[count++] = dev->orig_page; 1691 else if (test_bit(R5_Wantdrain, &dev->flags)) 1692 xor_srcs[count++] = dev->page; 1693 } 1694 1695 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx, 1696 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); 1697 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1698 1699 return tx; 1700 } 1701 1702 static struct dma_async_tx_descriptor * 1703 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu, 1704 struct dma_async_tx_descriptor *tx) 1705 { 1706 struct page **blocks = to_addr_page(percpu, 0); 1707 int count; 1708 struct async_submit_ctl submit; 1709 1710 pr_debug("%s: stripe %llu\n", __func__, 1711 (unsigned long long)sh->sector); 1712 1713 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN); 1714 1715 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx, 1716 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); 1717 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1718 1719 return tx; 1720 } 1721 1722 static struct dma_async_tx_descriptor * 1723 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) 1724 { 1725 struct r5conf *conf = sh->raid_conf; 1726 int disks = sh->disks; 1727 int i; 1728 struct stripe_head *head_sh = sh; 1729 1730 pr_debug("%s: stripe %llu\n", __func__, 1731 (unsigned long long)sh->sector); 1732 1733 for (i = disks; i--; ) { 1734 struct r5dev *dev; 1735 struct bio *chosen; 1736 1737 sh = head_sh; 1738 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) { 1739 struct bio *wbi; 1740 1741 again: 1742 dev = &sh->dev[i]; 1743 /* 1744 * clear R5_InJournal, so when rewriting a page in 1745 * journal, it is not skipped by r5l_log_stripe() 1746 */ 1747 clear_bit(R5_InJournal, &dev->flags); 1748 spin_lock_irq(&sh->stripe_lock); 1749 chosen = dev->towrite; 1750 dev->towrite = NULL; 1751 sh->overwrite_disks = 0; 1752 BUG_ON(dev->written); 1753 wbi = dev->written = chosen; 1754 spin_unlock_irq(&sh->stripe_lock); 1755 WARN_ON(dev->page != dev->orig_page); 1756 1757 while (wbi && wbi->bi_iter.bi_sector < 1758 dev->sector + STRIPE_SECTORS) { 1759 if (wbi->bi_opf & REQ_FUA) 1760 set_bit(R5_WantFUA, &dev->flags); 1761 if (wbi->bi_opf & REQ_SYNC) 1762 set_bit(R5_SyncIO, &dev->flags); 1763 if (bio_op(wbi) == REQ_OP_DISCARD) 1764 set_bit(R5_Discard, &dev->flags); 1765 else { 1766 tx = async_copy_data(1, wbi, &dev->page, 1767 dev->sector, tx, sh, 1768 r5c_is_writeback(conf->log)); 1769 if (dev->page != dev->orig_page && 1770 !r5c_is_writeback(conf->log)) { 1771 set_bit(R5_SkipCopy, &dev->flags); 1772 clear_bit(R5_UPTODATE, &dev->flags); 1773 clear_bit(R5_OVERWRITE, &dev->flags); 1774 } 1775 } 1776 wbi = r5_next_bio(wbi, dev->sector); 1777 } 1778 1779 if (head_sh->batch_head) { 1780 sh = list_first_entry(&sh->batch_list, 1781 struct stripe_head, 1782 batch_list); 1783 if (sh == head_sh) 1784 continue; 1785 goto again; 1786 } 1787 } 1788 } 1789 1790 return tx; 1791 } 1792 1793 static void ops_complete_reconstruct(void *stripe_head_ref) 1794 { 1795 struct stripe_head *sh = stripe_head_ref; 1796 int disks = sh->disks; 1797 int pd_idx = sh->pd_idx; 1798 int qd_idx = sh->qd_idx; 1799 int i; 1800 bool fua = false, sync = false, discard = false; 1801 1802 pr_debug("%s: stripe %llu\n", __func__, 1803 (unsigned long long)sh->sector); 1804 1805 for (i = disks; i--; ) { 1806 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags); 1807 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags); 1808 discard |= test_bit(R5_Discard, &sh->dev[i].flags); 1809 } 1810 1811 for (i = disks; i--; ) { 1812 struct r5dev *dev = &sh->dev[i]; 1813 1814 if (dev->written || i == pd_idx || i == qd_idx) { 1815 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) 1816 set_bit(R5_UPTODATE, &dev->flags); 1817 if (fua) 1818 set_bit(R5_WantFUA, &dev->flags); 1819 if (sync) 1820 set_bit(R5_SyncIO, &dev->flags); 1821 } 1822 } 1823 1824 if (sh->reconstruct_state == reconstruct_state_drain_run) 1825 sh->reconstruct_state = reconstruct_state_drain_result; 1826 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) 1827 sh->reconstruct_state = reconstruct_state_prexor_drain_result; 1828 else { 1829 BUG_ON(sh->reconstruct_state != reconstruct_state_run); 1830 sh->reconstruct_state = reconstruct_state_result; 1831 } 1832 1833 set_bit(STRIPE_HANDLE, &sh->state); 1834 raid5_release_stripe(sh); 1835 } 1836 1837 static void 1838 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu, 1839 struct dma_async_tx_descriptor *tx) 1840 { 1841 int disks = sh->disks; 1842 struct page **xor_srcs; 1843 struct async_submit_ctl submit; 1844 int count, pd_idx = sh->pd_idx, i; 1845 struct page *xor_dest; 1846 int prexor = 0; 1847 unsigned long flags; 1848 int j = 0; 1849 struct stripe_head *head_sh = sh; 1850 int last_stripe; 1851 1852 pr_debug("%s: stripe %llu\n", __func__, 1853 (unsigned long long)sh->sector); 1854 1855 for (i = 0; i < sh->disks; i++) { 1856 if (pd_idx == i) 1857 continue; 1858 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 1859 break; 1860 } 1861 if (i >= sh->disks) { 1862 atomic_inc(&sh->count); 1863 set_bit(R5_Discard, &sh->dev[pd_idx].flags); 1864 ops_complete_reconstruct(sh); 1865 return; 1866 } 1867 again: 1868 count = 0; 1869 xor_srcs = to_addr_page(percpu, j); 1870 /* check if prexor is active which means only process blocks 1871 * that are part of a read-modify-write (written) 1872 */ 1873 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 1874 prexor = 1; 1875 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1876 for (i = disks; i--; ) { 1877 struct r5dev *dev = &sh->dev[i]; 1878 if (head_sh->dev[i].written || 1879 test_bit(R5_InJournal, &head_sh->dev[i].flags)) 1880 xor_srcs[count++] = dev->page; 1881 } 1882 } else { 1883 xor_dest = sh->dev[pd_idx].page; 1884 for (i = disks; i--; ) { 1885 struct r5dev *dev = &sh->dev[i]; 1886 if (i != pd_idx) 1887 xor_srcs[count++] = dev->page; 1888 } 1889 } 1890 1891 /* 1/ if we prexor'd then the dest is reused as a source 1892 * 2/ if we did not prexor then we are redoing the parity 1893 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST 1894 * for the synchronous xor case 1895 */ 1896 last_stripe = !head_sh->batch_head || 1897 list_first_entry(&sh->batch_list, 1898 struct stripe_head, batch_list) == head_sh; 1899 if (last_stripe) { 1900 flags = ASYNC_TX_ACK | 1901 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST); 1902 1903 atomic_inc(&head_sh->count); 1904 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh, 1905 to_addr_conv(sh, percpu, j)); 1906 } else { 1907 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST; 1908 init_async_submit(&submit, flags, tx, NULL, NULL, 1909 to_addr_conv(sh, percpu, j)); 1910 } 1911 1912 if (unlikely(count == 1)) 1913 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); 1914 else 1915 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1916 if (!last_stripe) { 1917 j++; 1918 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1919 batch_list); 1920 goto again; 1921 } 1922 } 1923 1924 static void 1925 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu, 1926 struct dma_async_tx_descriptor *tx) 1927 { 1928 struct async_submit_ctl submit; 1929 struct page **blocks; 1930 int count, i, j = 0; 1931 struct stripe_head *head_sh = sh; 1932 int last_stripe; 1933 int synflags; 1934 unsigned long txflags; 1935 1936 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); 1937 1938 for (i = 0; i < sh->disks; i++) { 1939 if (sh->pd_idx == i || sh->qd_idx == i) 1940 continue; 1941 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 1942 break; 1943 } 1944 if (i >= sh->disks) { 1945 atomic_inc(&sh->count); 1946 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 1947 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 1948 ops_complete_reconstruct(sh); 1949 return; 1950 } 1951 1952 again: 1953 blocks = to_addr_page(percpu, j); 1954 1955 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 1956 synflags = SYNDROME_SRC_WRITTEN; 1957 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST; 1958 } else { 1959 synflags = SYNDROME_SRC_ALL; 1960 txflags = ASYNC_TX_ACK; 1961 } 1962 1963 count = set_syndrome_sources(blocks, sh, synflags); 1964 last_stripe = !head_sh->batch_head || 1965 list_first_entry(&sh->batch_list, 1966 struct stripe_head, batch_list) == head_sh; 1967 1968 if (last_stripe) { 1969 atomic_inc(&head_sh->count); 1970 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct, 1971 head_sh, to_addr_conv(sh, percpu, j)); 1972 } else 1973 init_async_submit(&submit, 0, tx, NULL, NULL, 1974 to_addr_conv(sh, percpu, j)); 1975 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1976 if (!last_stripe) { 1977 j++; 1978 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1979 batch_list); 1980 goto again; 1981 } 1982 } 1983 1984 static void ops_complete_check(void *stripe_head_ref) 1985 { 1986 struct stripe_head *sh = stripe_head_ref; 1987 1988 pr_debug("%s: stripe %llu\n", __func__, 1989 (unsigned long long)sh->sector); 1990 1991 sh->check_state = check_state_check_result; 1992 set_bit(STRIPE_HANDLE, &sh->state); 1993 raid5_release_stripe(sh); 1994 } 1995 1996 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu) 1997 { 1998 int disks = sh->disks; 1999 int pd_idx = sh->pd_idx; 2000 int qd_idx = sh->qd_idx; 2001 struct page *xor_dest; 2002 struct page **xor_srcs = to_addr_page(percpu, 0); 2003 struct dma_async_tx_descriptor *tx; 2004 struct async_submit_ctl submit; 2005 int count; 2006 int i; 2007 2008 pr_debug("%s: stripe %llu\n", __func__, 2009 (unsigned long long)sh->sector); 2010 2011 BUG_ON(sh->batch_head); 2012 count = 0; 2013 xor_dest = sh->dev[pd_idx].page; 2014 xor_srcs[count++] = xor_dest; 2015 for (i = disks; i--; ) { 2016 if (i == pd_idx || i == qd_idx) 2017 continue; 2018 xor_srcs[count++] = sh->dev[i].page; 2019 } 2020 2021 init_async_submit(&submit, 0, NULL, NULL, NULL, 2022 to_addr_conv(sh, percpu, 0)); 2023 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, 2024 &sh->ops.zero_sum_result, &submit); 2025 2026 atomic_inc(&sh->count); 2027 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL); 2028 tx = async_trigger_callback(&submit); 2029 } 2030 2031 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp) 2032 { 2033 struct page **srcs = to_addr_page(percpu, 0); 2034 struct async_submit_ctl submit; 2035 int count; 2036 2037 pr_debug("%s: stripe %llu checkp: %d\n", __func__, 2038 (unsigned long long)sh->sector, checkp); 2039 2040 BUG_ON(sh->batch_head); 2041 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL); 2042 if (!checkp) 2043 srcs[count] = NULL; 2044 2045 atomic_inc(&sh->count); 2046 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check, 2047 sh, to_addr_conv(sh, percpu, 0)); 2048 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE, 2049 &sh->ops.zero_sum_result, percpu->spare_page, &submit); 2050 } 2051 2052 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request) 2053 { 2054 int overlap_clear = 0, i, disks = sh->disks; 2055 struct dma_async_tx_descriptor *tx = NULL; 2056 struct r5conf *conf = sh->raid_conf; 2057 int level = conf->level; 2058 struct raid5_percpu *percpu; 2059 unsigned long cpu; 2060 2061 cpu = get_cpu(); 2062 percpu = per_cpu_ptr(conf->percpu, cpu); 2063 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) { 2064 ops_run_biofill(sh); 2065 overlap_clear++; 2066 } 2067 2068 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) { 2069 if (level < 6) 2070 tx = ops_run_compute5(sh, percpu); 2071 else { 2072 if (sh->ops.target2 < 0 || sh->ops.target < 0) 2073 tx = ops_run_compute6_1(sh, percpu); 2074 else 2075 tx = ops_run_compute6_2(sh, percpu); 2076 } 2077 /* terminate the chain if reconstruct is not set to be run */ 2078 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) 2079 async_tx_ack(tx); 2080 } 2081 2082 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) { 2083 if (level < 6) 2084 tx = ops_run_prexor5(sh, percpu, tx); 2085 else 2086 tx = ops_run_prexor6(sh, percpu, tx); 2087 } 2088 2089 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request)) 2090 tx = ops_run_partial_parity(sh, percpu, tx); 2091 2092 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) { 2093 tx = ops_run_biodrain(sh, tx); 2094 overlap_clear++; 2095 } 2096 2097 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) { 2098 if (level < 6) 2099 ops_run_reconstruct5(sh, percpu, tx); 2100 else 2101 ops_run_reconstruct6(sh, percpu, tx); 2102 } 2103 2104 if (test_bit(STRIPE_OP_CHECK, &ops_request)) { 2105 if (sh->check_state == check_state_run) 2106 ops_run_check_p(sh, percpu); 2107 else if (sh->check_state == check_state_run_q) 2108 ops_run_check_pq(sh, percpu, 0); 2109 else if (sh->check_state == check_state_run_pq) 2110 ops_run_check_pq(sh, percpu, 1); 2111 else 2112 BUG(); 2113 } 2114 2115 if (overlap_clear && !sh->batch_head) 2116 for (i = disks; i--; ) { 2117 struct r5dev *dev = &sh->dev[i]; 2118 if (test_and_clear_bit(R5_Overlap, &dev->flags)) 2119 wake_up(&sh->raid_conf->wait_for_overlap); 2120 } 2121 put_cpu(); 2122 } 2123 2124 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh) 2125 { 2126 if (sh->ppl_page) 2127 __free_page(sh->ppl_page); 2128 kmem_cache_free(sc, sh); 2129 } 2130 2131 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp, 2132 int disks, struct r5conf *conf) 2133 { 2134 struct stripe_head *sh; 2135 int i; 2136 2137 sh = kmem_cache_zalloc(sc, gfp); 2138 if (sh) { 2139 spin_lock_init(&sh->stripe_lock); 2140 spin_lock_init(&sh->batch_lock); 2141 INIT_LIST_HEAD(&sh->batch_list); 2142 INIT_LIST_HEAD(&sh->lru); 2143 INIT_LIST_HEAD(&sh->r5c); 2144 INIT_LIST_HEAD(&sh->log_list); 2145 atomic_set(&sh->count, 1); 2146 sh->raid_conf = conf; 2147 sh->log_start = MaxSector; 2148 for (i = 0; i < disks; i++) { 2149 struct r5dev *dev = &sh->dev[i]; 2150 2151 bio_init(&dev->req, &dev->vec, 1); 2152 bio_init(&dev->rreq, &dev->rvec, 1); 2153 } 2154 2155 if (raid5_has_ppl(conf)) { 2156 sh->ppl_page = alloc_page(gfp); 2157 if (!sh->ppl_page) { 2158 free_stripe(sc, sh); 2159 sh = NULL; 2160 } 2161 } 2162 } 2163 return sh; 2164 } 2165 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp) 2166 { 2167 struct stripe_head *sh; 2168 2169 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf); 2170 if (!sh) 2171 return 0; 2172 2173 if (grow_buffers(sh, gfp)) { 2174 shrink_buffers(sh); 2175 free_stripe(conf->slab_cache, sh); 2176 return 0; 2177 } 2178 sh->hash_lock_index = 2179 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS; 2180 /* we just created an active stripe so... */ 2181 atomic_inc(&conf->active_stripes); 2182 2183 raid5_release_stripe(sh); 2184 conf->max_nr_stripes++; 2185 return 1; 2186 } 2187 2188 static int grow_stripes(struct r5conf *conf, int num) 2189 { 2190 struct kmem_cache *sc; 2191 int devs = max(conf->raid_disks, conf->previous_raid_disks); 2192 2193 if (conf->mddev->gendisk) 2194 sprintf(conf->cache_name[0], 2195 "raid%d-%s", conf->level, mdname(conf->mddev)); 2196 else 2197 sprintf(conf->cache_name[0], 2198 "raid%d-%p", conf->level, conf->mddev); 2199 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]); 2200 2201 conf->active_name = 0; 2202 sc = kmem_cache_create(conf->cache_name[conf->active_name], 2203 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev), 2204 0, 0, NULL); 2205 if (!sc) 2206 return 1; 2207 conf->slab_cache = sc; 2208 conf->pool_size = devs; 2209 while (num--) 2210 if (!grow_one_stripe(conf, GFP_KERNEL)) 2211 return 1; 2212 2213 return 0; 2214 } 2215 2216 /** 2217 * scribble_len - return the required size of the scribble region 2218 * @num - total number of disks in the array 2219 * 2220 * The size must be enough to contain: 2221 * 1/ a struct page pointer for each device in the array +2 2222 * 2/ room to convert each entry in (1) to its corresponding dma 2223 * (dma_map_page()) or page (page_address()) address. 2224 * 2225 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we 2226 * calculate over all devices (not just the data blocks), using zeros in place 2227 * of the P and Q blocks. 2228 */ 2229 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags) 2230 { 2231 struct flex_array *ret; 2232 size_t len; 2233 2234 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2); 2235 ret = flex_array_alloc(len, cnt, flags); 2236 if (!ret) 2237 return NULL; 2238 /* always prealloc all elements, so no locking is required */ 2239 if (flex_array_prealloc(ret, 0, cnt, flags)) { 2240 flex_array_free(ret); 2241 return NULL; 2242 } 2243 return ret; 2244 } 2245 2246 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors) 2247 { 2248 unsigned long cpu; 2249 int err = 0; 2250 2251 /* 2252 * Never shrink. And mddev_suspend() could deadlock if this is called 2253 * from raid5d. In that case, scribble_disks and scribble_sectors 2254 * should equal to new_disks and new_sectors 2255 */ 2256 if (conf->scribble_disks >= new_disks && 2257 conf->scribble_sectors >= new_sectors) 2258 return 0; 2259 mddev_suspend(conf->mddev); 2260 get_online_cpus(); 2261 for_each_present_cpu(cpu) { 2262 struct raid5_percpu *percpu; 2263 struct flex_array *scribble; 2264 2265 percpu = per_cpu_ptr(conf->percpu, cpu); 2266 scribble = scribble_alloc(new_disks, 2267 new_sectors / STRIPE_SECTORS, 2268 GFP_NOIO); 2269 2270 if (scribble) { 2271 flex_array_free(percpu->scribble); 2272 percpu->scribble = scribble; 2273 } else { 2274 err = -ENOMEM; 2275 break; 2276 } 2277 } 2278 put_online_cpus(); 2279 mddev_resume(conf->mddev); 2280 if (!err) { 2281 conf->scribble_disks = new_disks; 2282 conf->scribble_sectors = new_sectors; 2283 } 2284 return err; 2285 } 2286 2287 static int resize_stripes(struct r5conf *conf, int newsize) 2288 { 2289 /* Make all the stripes able to hold 'newsize' devices. 2290 * New slots in each stripe get 'page' set to a new page. 2291 * 2292 * This happens in stages: 2293 * 1/ create a new kmem_cache and allocate the required number of 2294 * stripe_heads. 2295 * 2/ gather all the old stripe_heads and transfer the pages across 2296 * to the new stripe_heads. This will have the side effect of 2297 * freezing the array as once all stripe_heads have been collected, 2298 * no IO will be possible. Old stripe heads are freed once their 2299 * pages have been transferred over, and the old kmem_cache is 2300 * freed when all stripes are done. 2301 * 3/ reallocate conf->disks to be suitable bigger. If this fails, 2302 * we simple return a failure status - no need to clean anything up. 2303 * 4/ allocate new pages for the new slots in the new stripe_heads. 2304 * If this fails, we don't bother trying the shrink the 2305 * stripe_heads down again, we just leave them as they are. 2306 * As each stripe_head is processed the new one is released into 2307 * active service. 2308 * 2309 * Once step2 is started, we cannot afford to wait for a write, 2310 * so we use GFP_NOIO allocations. 2311 */ 2312 struct stripe_head *osh, *nsh; 2313 LIST_HEAD(newstripes); 2314 struct disk_info *ndisks; 2315 int err = 0; 2316 struct kmem_cache *sc; 2317 int i; 2318 int hash, cnt; 2319 2320 md_allow_write(conf->mddev); 2321 2322 /* Step 1 */ 2323 sc = kmem_cache_create(conf->cache_name[1-conf->active_name], 2324 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev), 2325 0, 0, NULL); 2326 if (!sc) 2327 return -ENOMEM; 2328 2329 /* Need to ensure auto-resizing doesn't interfere */ 2330 mutex_lock(&conf->cache_size_mutex); 2331 2332 for (i = conf->max_nr_stripes; i; i--) { 2333 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf); 2334 if (!nsh) 2335 break; 2336 2337 list_add(&nsh->lru, &newstripes); 2338 } 2339 if (i) { 2340 /* didn't get enough, give up */ 2341 while (!list_empty(&newstripes)) { 2342 nsh = list_entry(newstripes.next, struct stripe_head, lru); 2343 list_del(&nsh->lru); 2344 free_stripe(sc, nsh); 2345 } 2346 kmem_cache_destroy(sc); 2347 mutex_unlock(&conf->cache_size_mutex); 2348 return -ENOMEM; 2349 } 2350 /* Step 2 - Must use GFP_NOIO now. 2351 * OK, we have enough stripes, start collecting inactive 2352 * stripes and copying them over 2353 */ 2354 hash = 0; 2355 cnt = 0; 2356 list_for_each_entry(nsh, &newstripes, lru) { 2357 lock_device_hash_lock(conf, hash); 2358 wait_event_cmd(conf->wait_for_stripe, 2359 !list_empty(conf->inactive_list + hash), 2360 unlock_device_hash_lock(conf, hash), 2361 lock_device_hash_lock(conf, hash)); 2362 osh = get_free_stripe(conf, hash); 2363 unlock_device_hash_lock(conf, hash); 2364 2365 for(i=0; i<conf->pool_size; i++) { 2366 nsh->dev[i].page = osh->dev[i].page; 2367 nsh->dev[i].orig_page = osh->dev[i].page; 2368 } 2369 nsh->hash_lock_index = hash; 2370 free_stripe(conf->slab_cache, osh); 2371 cnt++; 2372 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS + 2373 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) { 2374 hash++; 2375 cnt = 0; 2376 } 2377 } 2378 kmem_cache_destroy(conf->slab_cache); 2379 2380 /* Step 3. 2381 * At this point, we are holding all the stripes so the array 2382 * is completely stalled, so now is a good time to resize 2383 * conf->disks and the scribble region 2384 */ 2385 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO); 2386 if (ndisks) { 2387 for (i = 0; i < conf->pool_size; i++) 2388 ndisks[i] = conf->disks[i]; 2389 2390 for (i = conf->pool_size; i < newsize; i++) { 2391 ndisks[i].extra_page = alloc_page(GFP_NOIO); 2392 if (!ndisks[i].extra_page) 2393 err = -ENOMEM; 2394 } 2395 2396 if (err) { 2397 for (i = conf->pool_size; i < newsize; i++) 2398 if (ndisks[i].extra_page) 2399 put_page(ndisks[i].extra_page); 2400 kfree(ndisks); 2401 } else { 2402 kfree(conf->disks); 2403 conf->disks = ndisks; 2404 } 2405 } else 2406 err = -ENOMEM; 2407 2408 mutex_unlock(&conf->cache_size_mutex); 2409 2410 conf->slab_cache = sc; 2411 conf->active_name = 1-conf->active_name; 2412 2413 /* Step 4, return new stripes to service */ 2414 while(!list_empty(&newstripes)) { 2415 nsh = list_entry(newstripes.next, struct stripe_head, lru); 2416 list_del_init(&nsh->lru); 2417 2418 for (i=conf->raid_disks; i < newsize; i++) 2419 if (nsh->dev[i].page == NULL) { 2420 struct page *p = alloc_page(GFP_NOIO); 2421 nsh->dev[i].page = p; 2422 nsh->dev[i].orig_page = p; 2423 if (!p) 2424 err = -ENOMEM; 2425 } 2426 raid5_release_stripe(nsh); 2427 } 2428 /* critical section pass, GFP_NOIO no longer needed */ 2429 2430 if (!err) 2431 conf->pool_size = newsize; 2432 return err; 2433 } 2434 2435 static int drop_one_stripe(struct r5conf *conf) 2436 { 2437 struct stripe_head *sh; 2438 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK; 2439 2440 spin_lock_irq(conf->hash_locks + hash); 2441 sh = get_free_stripe(conf, hash); 2442 spin_unlock_irq(conf->hash_locks + hash); 2443 if (!sh) 2444 return 0; 2445 BUG_ON(atomic_read(&sh->count)); 2446 shrink_buffers(sh); 2447 free_stripe(conf->slab_cache, sh); 2448 atomic_dec(&conf->active_stripes); 2449 conf->max_nr_stripes--; 2450 return 1; 2451 } 2452 2453 static void shrink_stripes(struct r5conf *conf) 2454 { 2455 while (conf->max_nr_stripes && 2456 drop_one_stripe(conf)) 2457 ; 2458 2459 kmem_cache_destroy(conf->slab_cache); 2460 conf->slab_cache = NULL; 2461 } 2462 2463 static void raid5_end_read_request(struct bio * bi) 2464 { 2465 struct stripe_head *sh = bi->bi_private; 2466 struct r5conf *conf = sh->raid_conf; 2467 int disks = sh->disks, i; 2468 char b[BDEVNAME_SIZE]; 2469 struct md_rdev *rdev = NULL; 2470 sector_t s; 2471 2472 for (i=0 ; i<disks; i++) 2473 if (bi == &sh->dev[i].req) 2474 break; 2475 2476 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n", 2477 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2478 bi->bi_status); 2479 if (i == disks) { 2480 bio_reset(bi); 2481 BUG(); 2482 return; 2483 } 2484 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2485 /* If replacement finished while this request was outstanding, 2486 * 'replacement' might be NULL already. 2487 * In that case it moved down to 'rdev'. 2488 * rdev is not removed until all requests are finished. 2489 */ 2490 rdev = conf->disks[i].replacement; 2491 if (!rdev) 2492 rdev = conf->disks[i].rdev; 2493 2494 if (use_new_offset(conf, sh)) 2495 s = sh->sector + rdev->new_data_offset; 2496 else 2497 s = sh->sector + rdev->data_offset; 2498 if (!bi->bi_status) { 2499 set_bit(R5_UPTODATE, &sh->dev[i].flags); 2500 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 2501 /* Note that this cannot happen on a 2502 * replacement device. We just fail those on 2503 * any error 2504 */ 2505 pr_info_ratelimited( 2506 "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n", 2507 mdname(conf->mddev), STRIPE_SECTORS, 2508 (unsigned long long)s, 2509 bdevname(rdev->bdev, b)); 2510 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors); 2511 clear_bit(R5_ReadError, &sh->dev[i].flags); 2512 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2513 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2514 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2515 2516 if (test_bit(R5_InJournal, &sh->dev[i].flags)) 2517 /* 2518 * end read for a page in journal, this 2519 * must be preparing for prexor in rmw 2520 */ 2521 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags); 2522 2523 if (atomic_read(&rdev->read_errors)) 2524 atomic_set(&rdev->read_errors, 0); 2525 } else { 2526 const char *bdn = bdevname(rdev->bdev, b); 2527 int retry = 0; 2528 int set_bad = 0; 2529 2530 clear_bit(R5_UPTODATE, &sh->dev[i].flags); 2531 atomic_inc(&rdev->read_errors); 2532 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2533 pr_warn_ratelimited( 2534 "md/raid:%s: read error on replacement device (sector %llu on %s).\n", 2535 mdname(conf->mddev), 2536 (unsigned long long)s, 2537 bdn); 2538 else if (conf->mddev->degraded >= conf->max_degraded) { 2539 set_bad = 1; 2540 pr_warn_ratelimited( 2541 "md/raid:%s: read error not correctable (sector %llu on %s).\n", 2542 mdname(conf->mddev), 2543 (unsigned long long)s, 2544 bdn); 2545 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) { 2546 /* Oh, no!!! */ 2547 set_bad = 1; 2548 pr_warn_ratelimited( 2549 "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n", 2550 mdname(conf->mddev), 2551 (unsigned long long)s, 2552 bdn); 2553 } else if (atomic_read(&rdev->read_errors) 2554 > conf->max_nr_stripes) 2555 pr_warn("md/raid:%s: Too many read errors, failing device %s.\n", 2556 mdname(conf->mddev), bdn); 2557 else 2558 retry = 1; 2559 if (set_bad && test_bit(In_sync, &rdev->flags) 2560 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2561 retry = 1; 2562 if (retry) 2563 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) { 2564 set_bit(R5_ReadError, &sh->dev[i].flags); 2565 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2566 } else 2567 set_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2568 else { 2569 clear_bit(R5_ReadError, &sh->dev[i].flags); 2570 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2571 if (!(set_bad 2572 && test_bit(In_sync, &rdev->flags) 2573 && rdev_set_badblocks( 2574 rdev, sh->sector, STRIPE_SECTORS, 0))) 2575 md_error(conf->mddev, rdev); 2576 } 2577 } 2578 rdev_dec_pending(rdev, conf->mddev); 2579 bio_reset(bi); 2580 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2581 set_bit(STRIPE_HANDLE, &sh->state); 2582 raid5_release_stripe(sh); 2583 } 2584 2585 static void raid5_end_write_request(struct bio *bi) 2586 { 2587 struct stripe_head *sh = bi->bi_private; 2588 struct r5conf *conf = sh->raid_conf; 2589 int disks = sh->disks, i; 2590 struct md_rdev *uninitialized_var(rdev); 2591 sector_t first_bad; 2592 int bad_sectors; 2593 int replacement = 0; 2594 2595 for (i = 0 ; i < disks; i++) { 2596 if (bi == &sh->dev[i].req) { 2597 rdev = conf->disks[i].rdev; 2598 break; 2599 } 2600 if (bi == &sh->dev[i].rreq) { 2601 rdev = conf->disks[i].replacement; 2602 if (rdev) 2603 replacement = 1; 2604 else 2605 /* rdev was removed and 'replacement' 2606 * replaced it. rdev is not removed 2607 * until all requests are finished. 2608 */ 2609 rdev = conf->disks[i].rdev; 2610 break; 2611 } 2612 } 2613 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n", 2614 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2615 bi->bi_status); 2616 if (i == disks) { 2617 bio_reset(bi); 2618 BUG(); 2619 return; 2620 } 2621 2622 if (replacement) { 2623 if (bi->bi_status) 2624 md_error(conf->mddev, rdev); 2625 else if (is_badblock(rdev, sh->sector, 2626 STRIPE_SECTORS, 2627 &first_bad, &bad_sectors)) 2628 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags); 2629 } else { 2630 if (bi->bi_status) { 2631 set_bit(STRIPE_DEGRADED, &sh->state); 2632 set_bit(WriteErrorSeen, &rdev->flags); 2633 set_bit(R5_WriteError, &sh->dev[i].flags); 2634 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2635 set_bit(MD_RECOVERY_NEEDED, 2636 &rdev->mddev->recovery); 2637 } else if (is_badblock(rdev, sh->sector, 2638 STRIPE_SECTORS, 2639 &first_bad, &bad_sectors)) { 2640 set_bit(R5_MadeGood, &sh->dev[i].flags); 2641 if (test_bit(R5_ReadError, &sh->dev[i].flags)) 2642 /* That was a successful write so make 2643 * sure it looks like we already did 2644 * a re-write. 2645 */ 2646 set_bit(R5_ReWrite, &sh->dev[i].flags); 2647 } 2648 } 2649 rdev_dec_pending(rdev, conf->mddev); 2650 2651 if (sh->batch_head && bi->bi_status && !replacement) 2652 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state); 2653 2654 bio_reset(bi); 2655 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags)) 2656 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2657 set_bit(STRIPE_HANDLE, &sh->state); 2658 raid5_release_stripe(sh); 2659 2660 if (sh->batch_head && sh != sh->batch_head) 2661 raid5_release_stripe(sh->batch_head); 2662 } 2663 2664 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev) 2665 { 2666 char b[BDEVNAME_SIZE]; 2667 struct r5conf *conf = mddev->private; 2668 unsigned long flags; 2669 pr_debug("raid456: error called\n"); 2670 2671 spin_lock_irqsave(&conf->device_lock, flags); 2672 clear_bit(In_sync, &rdev->flags); 2673 mddev->degraded = raid5_calc_degraded(conf); 2674 spin_unlock_irqrestore(&conf->device_lock, flags); 2675 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2676 2677 set_bit(Blocked, &rdev->flags); 2678 set_bit(Faulty, &rdev->flags); 2679 set_mask_bits(&mddev->sb_flags, 0, 2680 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 2681 pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n" 2682 "md/raid:%s: Operation continuing on %d devices.\n", 2683 mdname(mddev), 2684 bdevname(rdev->bdev, b), 2685 mdname(mddev), 2686 conf->raid_disks - mddev->degraded); 2687 r5c_update_on_rdev_error(mddev, rdev); 2688 } 2689 2690 /* 2691 * Input: a 'big' sector number, 2692 * Output: index of the data and parity disk, and the sector # in them. 2693 */ 2694 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector, 2695 int previous, int *dd_idx, 2696 struct stripe_head *sh) 2697 { 2698 sector_t stripe, stripe2; 2699 sector_t chunk_number; 2700 unsigned int chunk_offset; 2701 int pd_idx, qd_idx; 2702 int ddf_layout = 0; 2703 sector_t new_sector; 2704 int algorithm = previous ? conf->prev_algo 2705 : conf->algorithm; 2706 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 2707 : conf->chunk_sectors; 2708 int raid_disks = previous ? conf->previous_raid_disks 2709 : conf->raid_disks; 2710 int data_disks = raid_disks - conf->max_degraded; 2711 2712 /* First compute the information on this sector */ 2713 2714 /* 2715 * Compute the chunk number and the sector offset inside the chunk 2716 */ 2717 chunk_offset = sector_div(r_sector, sectors_per_chunk); 2718 chunk_number = r_sector; 2719 2720 /* 2721 * Compute the stripe number 2722 */ 2723 stripe = chunk_number; 2724 *dd_idx = sector_div(stripe, data_disks); 2725 stripe2 = stripe; 2726 /* 2727 * Select the parity disk based on the user selected algorithm. 2728 */ 2729 pd_idx = qd_idx = -1; 2730 switch(conf->level) { 2731 case 4: 2732 pd_idx = data_disks; 2733 break; 2734 case 5: 2735 switch (algorithm) { 2736 case ALGORITHM_LEFT_ASYMMETRIC: 2737 pd_idx = data_disks - sector_div(stripe2, raid_disks); 2738 if (*dd_idx >= pd_idx) 2739 (*dd_idx)++; 2740 break; 2741 case ALGORITHM_RIGHT_ASYMMETRIC: 2742 pd_idx = sector_div(stripe2, raid_disks); 2743 if (*dd_idx >= pd_idx) 2744 (*dd_idx)++; 2745 break; 2746 case ALGORITHM_LEFT_SYMMETRIC: 2747 pd_idx = data_disks - sector_div(stripe2, raid_disks); 2748 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2749 break; 2750 case ALGORITHM_RIGHT_SYMMETRIC: 2751 pd_idx = sector_div(stripe2, raid_disks); 2752 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2753 break; 2754 case ALGORITHM_PARITY_0: 2755 pd_idx = 0; 2756 (*dd_idx)++; 2757 break; 2758 case ALGORITHM_PARITY_N: 2759 pd_idx = data_disks; 2760 break; 2761 default: 2762 BUG(); 2763 } 2764 break; 2765 case 6: 2766 2767 switch (algorithm) { 2768 case ALGORITHM_LEFT_ASYMMETRIC: 2769 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2770 qd_idx = pd_idx + 1; 2771 if (pd_idx == raid_disks-1) { 2772 (*dd_idx)++; /* Q D D D P */ 2773 qd_idx = 0; 2774 } else if (*dd_idx >= pd_idx) 2775 (*dd_idx) += 2; /* D D P Q D */ 2776 break; 2777 case ALGORITHM_RIGHT_ASYMMETRIC: 2778 pd_idx = sector_div(stripe2, raid_disks); 2779 qd_idx = pd_idx + 1; 2780 if (pd_idx == raid_disks-1) { 2781 (*dd_idx)++; /* Q D D D P */ 2782 qd_idx = 0; 2783 } else if (*dd_idx >= pd_idx) 2784 (*dd_idx) += 2; /* D D P Q D */ 2785 break; 2786 case ALGORITHM_LEFT_SYMMETRIC: 2787 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2788 qd_idx = (pd_idx + 1) % raid_disks; 2789 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 2790 break; 2791 case ALGORITHM_RIGHT_SYMMETRIC: 2792 pd_idx = sector_div(stripe2, raid_disks); 2793 qd_idx = (pd_idx + 1) % raid_disks; 2794 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 2795 break; 2796 2797 case ALGORITHM_PARITY_0: 2798 pd_idx = 0; 2799 qd_idx = 1; 2800 (*dd_idx) += 2; 2801 break; 2802 case ALGORITHM_PARITY_N: 2803 pd_idx = data_disks; 2804 qd_idx = data_disks + 1; 2805 break; 2806 2807 case ALGORITHM_ROTATING_ZERO_RESTART: 2808 /* Exactly the same as RIGHT_ASYMMETRIC, but or 2809 * of blocks for computing Q is different. 2810 */ 2811 pd_idx = sector_div(stripe2, raid_disks); 2812 qd_idx = pd_idx + 1; 2813 if (pd_idx == raid_disks-1) { 2814 (*dd_idx)++; /* Q D D D P */ 2815 qd_idx = 0; 2816 } else if (*dd_idx >= pd_idx) 2817 (*dd_idx) += 2; /* D D P Q D */ 2818 ddf_layout = 1; 2819 break; 2820 2821 case ALGORITHM_ROTATING_N_RESTART: 2822 /* Same a left_asymmetric, by first stripe is 2823 * D D D P Q rather than 2824 * Q D D D P 2825 */ 2826 stripe2 += 1; 2827 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2828 qd_idx = pd_idx + 1; 2829 if (pd_idx == raid_disks-1) { 2830 (*dd_idx)++; /* Q D D D P */ 2831 qd_idx = 0; 2832 } else if (*dd_idx >= pd_idx) 2833 (*dd_idx) += 2; /* D D P Q D */ 2834 ddf_layout = 1; 2835 break; 2836 2837 case ALGORITHM_ROTATING_N_CONTINUE: 2838 /* Same as left_symmetric but Q is before P */ 2839 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2840 qd_idx = (pd_idx + raid_disks - 1) % raid_disks; 2841 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2842 ddf_layout = 1; 2843 break; 2844 2845 case ALGORITHM_LEFT_ASYMMETRIC_6: 2846 /* RAID5 left_asymmetric, with Q on last device */ 2847 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 2848 if (*dd_idx >= pd_idx) 2849 (*dd_idx)++; 2850 qd_idx = raid_disks - 1; 2851 break; 2852 2853 case ALGORITHM_RIGHT_ASYMMETRIC_6: 2854 pd_idx = sector_div(stripe2, raid_disks-1); 2855 if (*dd_idx >= pd_idx) 2856 (*dd_idx)++; 2857 qd_idx = raid_disks - 1; 2858 break; 2859 2860 case ALGORITHM_LEFT_SYMMETRIC_6: 2861 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 2862 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 2863 qd_idx = raid_disks - 1; 2864 break; 2865 2866 case ALGORITHM_RIGHT_SYMMETRIC_6: 2867 pd_idx = sector_div(stripe2, raid_disks-1); 2868 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 2869 qd_idx = raid_disks - 1; 2870 break; 2871 2872 case ALGORITHM_PARITY_0_6: 2873 pd_idx = 0; 2874 (*dd_idx)++; 2875 qd_idx = raid_disks - 1; 2876 break; 2877 2878 default: 2879 BUG(); 2880 } 2881 break; 2882 } 2883 2884 if (sh) { 2885 sh->pd_idx = pd_idx; 2886 sh->qd_idx = qd_idx; 2887 sh->ddf_layout = ddf_layout; 2888 } 2889 /* 2890 * Finally, compute the new sector number 2891 */ 2892 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset; 2893 return new_sector; 2894 } 2895 2896 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous) 2897 { 2898 struct r5conf *conf = sh->raid_conf; 2899 int raid_disks = sh->disks; 2900 int data_disks = raid_disks - conf->max_degraded; 2901 sector_t new_sector = sh->sector, check; 2902 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 2903 : conf->chunk_sectors; 2904 int algorithm = previous ? conf->prev_algo 2905 : conf->algorithm; 2906 sector_t stripe; 2907 int chunk_offset; 2908 sector_t chunk_number; 2909 int dummy1, dd_idx = i; 2910 sector_t r_sector; 2911 struct stripe_head sh2; 2912 2913 chunk_offset = sector_div(new_sector, sectors_per_chunk); 2914 stripe = new_sector; 2915 2916 if (i == sh->pd_idx) 2917 return 0; 2918 switch(conf->level) { 2919 case 4: break; 2920 case 5: 2921 switch (algorithm) { 2922 case ALGORITHM_LEFT_ASYMMETRIC: 2923 case ALGORITHM_RIGHT_ASYMMETRIC: 2924 if (i > sh->pd_idx) 2925 i--; 2926 break; 2927 case ALGORITHM_LEFT_SYMMETRIC: 2928 case ALGORITHM_RIGHT_SYMMETRIC: 2929 if (i < sh->pd_idx) 2930 i += raid_disks; 2931 i -= (sh->pd_idx + 1); 2932 break; 2933 case ALGORITHM_PARITY_0: 2934 i -= 1; 2935 break; 2936 case ALGORITHM_PARITY_N: 2937 break; 2938 default: 2939 BUG(); 2940 } 2941 break; 2942 case 6: 2943 if (i == sh->qd_idx) 2944 return 0; /* It is the Q disk */ 2945 switch (algorithm) { 2946 case ALGORITHM_LEFT_ASYMMETRIC: 2947 case ALGORITHM_RIGHT_ASYMMETRIC: 2948 case ALGORITHM_ROTATING_ZERO_RESTART: 2949 case ALGORITHM_ROTATING_N_RESTART: 2950 if (sh->pd_idx == raid_disks-1) 2951 i--; /* Q D D D P */ 2952 else if (i > sh->pd_idx) 2953 i -= 2; /* D D P Q D */ 2954 break; 2955 case ALGORITHM_LEFT_SYMMETRIC: 2956 case ALGORITHM_RIGHT_SYMMETRIC: 2957 if (sh->pd_idx == raid_disks-1) 2958 i--; /* Q D D D P */ 2959 else { 2960 /* D D P Q D */ 2961 if (i < sh->pd_idx) 2962 i += raid_disks; 2963 i -= (sh->pd_idx + 2); 2964 } 2965 break; 2966 case ALGORITHM_PARITY_0: 2967 i -= 2; 2968 break; 2969 case ALGORITHM_PARITY_N: 2970 break; 2971 case ALGORITHM_ROTATING_N_CONTINUE: 2972 /* Like left_symmetric, but P is before Q */ 2973 if (sh->pd_idx == 0) 2974 i--; /* P D D D Q */ 2975 else { 2976 /* D D Q P D */ 2977 if (i < sh->pd_idx) 2978 i += raid_disks; 2979 i -= (sh->pd_idx + 1); 2980 } 2981 break; 2982 case ALGORITHM_LEFT_ASYMMETRIC_6: 2983 case ALGORITHM_RIGHT_ASYMMETRIC_6: 2984 if (i > sh->pd_idx) 2985 i--; 2986 break; 2987 case ALGORITHM_LEFT_SYMMETRIC_6: 2988 case ALGORITHM_RIGHT_SYMMETRIC_6: 2989 if (i < sh->pd_idx) 2990 i += data_disks + 1; 2991 i -= (sh->pd_idx + 1); 2992 break; 2993 case ALGORITHM_PARITY_0_6: 2994 i -= 1; 2995 break; 2996 default: 2997 BUG(); 2998 } 2999 break; 3000 } 3001 3002 chunk_number = stripe * data_disks + i; 3003 r_sector = chunk_number * sectors_per_chunk + chunk_offset; 3004 3005 check = raid5_compute_sector(conf, r_sector, 3006 previous, &dummy1, &sh2); 3007 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx 3008 || sh2.qd_idx != sh->qd_idx) { 3009 pr_warn("md/raid:%s: compute_blocknr: map not correct\n", 3010 mdname(conf->mddev)); 3011 return 0; 3012 } 3013 return r_sector; 3014 } 3015 3016 /* 3017 * There are cases where we want handle_stripe_dirtying() and 3018 * schedule_reconstruction() to delay towrite to some dev of a stripe. 3019 * 3020 * This function checks whether we want to delay the towrite. Specifically, 3021 * we delay the towrite when: 3022 * 3023 * 1. degraded stripe has a non-overwrite to the missing dev, AND this 3024 * stripe has data in journal (for other devices). 3025 * 3026 * In this case, when reading data for the non-overwrite dev, it is 3027 * necessary to handle complex rmw of write back cache (prexor with 3028 * orig_page, and xor with page). To keep read path simple, we would 3029 * like to flush data in journal to RAID disks first, so complex rmw 3030 * is handled in the write patch (handle_stripe_dirtying). 3031 * 3032 * 2. when journal space is critical (R5C_LOG_CRITICAL=1) 3033 * 3034 * It is important to be able to flush all stripes in raid5-cache. 3035 * Therefore, we need reserve some space on the journal device for 3036 * these flushes. If flush operation includes pending writes to the 3037 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe 3038 * for the flush out. If we exclude these pending writes from flush 3039 * operation, we only need (conf->max_degraded + 1) pages per stripe. 3040 * Therefore, excluding pending writes in these cases enables more 3041 * efficient use of the journal device. 3042 * 3043 * Note: To make sure the stripe makes progress, we only delay 3044 * towrite for stripes with data already in journal (injournal > 0). 3045 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to 3046 * no_space_stripes list. 3047 * 3048 * 3. during journal failure 3049 * In journal failure, we try to flush all cached data to raid disks 3050 * based on data in stripe cache. The array is read-only to upper 3051 * layers, so we would skip all pending writes. 3052 * 3053 */ 3054 static inline bool delay_towrite(struct r5conf *conf, 3055 struct r5dev *dev, 3056 struct stripe_head_state *s) 3057 { 3058 /* case 1 above */ 3059 if (!test_bit(R5_OVERWRITE, &dev->flags) && 3060 !test_bit(R5_Insync, &dev->flags) && s->injournal) 3061 return true; 3062 /* case 2 above */ 3063 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) && 3064 s->injournal > 0) 3065 return true; 3066 /* case 3 above */ 3067 if (s->log_failed && s->injournal) 3068 return true; 3069 return false; 3070 } 3071 3072 static void 3073 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s, 3074 int rcw, int expand) 3075 { 3076 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks; 3077 struct r5conf *conf = sh->raid_conf; 3078 int level = conf->level; 3079 3080 if (rcw) { 3081 /* 3082 * In some cases, handle_stripe_dirtying initially decided to 3083 * run rmw and allocates extra page for prexor. However, rcw is 3084 * cheaper later on. We need to free the extra page now, 3085 * because we won't be able to do that in ops_complete_prexor(). 3086 */ 3087 r5c_release_extra_page(sh); 3088 3089 for (i = disks; i--; ) { 3090 struct r5dev *dev = &sh->dev[i]; 3091 3092 if (dev->towrite && !delay_towrite(conf, dev, s)) { 3093 set_bit(R5_LOCKED, &dev->flags); 3094 set_bit(R5_Wantdrain, &dev->flags); 3095 if (!expand) 3096 clear_bit(R5_UPTODATE, &dev->flags); 3097 s->locked++; 3098 } else if (test_bit(R5_InJournal, &dev->flags)) { 3099 set_bit(R5_LOCKED, &dev->flags); 3100 s->locked++; 3101 } 3102 } 3103 /* if we are not expanding this is a proper write request, and 3104 * there will be bios with new data to be drained into the 3105 * stripe cache 3106 */ 3107 if (!expand) { 3108 if (!s->locked) 3109 /* False alarm, nothing to do */ 3110 return; 3111 sh->reconstruct_state = reconstruct_state_drain_run; 3112 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 3113 } else 3114 sh->reconstruct_state = reconstruct_state_run; 3115 3116 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 3117 3118 if (s->locked + conf->max_degraded == disks) 3119 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state)) 3120 atomic_inc(&conf->pending_full_writes); 3121 } else { 3122 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) || 3123 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags))); 3124 BUG_ON(level == 6 && 3125 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) || 3126 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags)))); 3127 3128 for (i = disks; i--; ) { 3129 struct r5dev *dev = &sh->dev[i]; 3130 if (i == pd_idx || i == qd_idx) 3131 continue; 3132 3133 if (dev->towrite && 3134 (test_bit(R5_UPTODATE, &dev->flags) || 3135 test_bit(R5_Wantcompute, &dev->flags))) { 3136 set_bit(R5_Wantdrain, &dev->flags); 3137 set_bit(R5_LOCKED, &dev->flags); 3138 clear_bit(R5_UPTODATE, &dev->flags); 3139 s->locked++; 3140 } else if (test_bit(R5_InJournal, &dev->flags)) { 3141 set_bit(R5_LOCKED, &dev->flags); 3142 s->locked++; 3143 } 3144 } 3145 if (!s->locked) 3146 /* False alarm - nothing to do */ 3147 return; 3148 sh->reconstruct_state = reconstruct_state_prexor_drain_run; 3149 set_bit(STRIPE_OP_PREXOR, &s->ops_request); 3150 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 3151 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 3152 } 3153 3154 /* keep the parity disk(s) locked while asynchronous operations 3155 * are in flight 3156 */ 3157 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); 3158 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 3159 s->locked++; 3160 3161 if (level == 6) { 3162 int qd_idx = sh->qd_idx; 3163 struct r5dev *dev = &sh->dev[qd_idx]; 3164 3165 set_bit(R5_LOCKED, &dev->flags); 3166 clear_bit(R5_UPTODATE, &dev->flags); 3167 s->locked++; 3168 } 3169 3170 if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page && 3171 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) && 3172 !test_bit(STRIPE_FULL_WRITE, &sh->state) && 3173 test_bit(R5_Insync, &sh->dev[pd_idx].flags)) 3174 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request); 3175 3176 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n", 3177 __func__, (unsigned long long)sh->sector, 3178 s->locked, s->ops_request); 3179 } 3180 3181 /* 3182 * Each stripe/dev can have one or more bion attached. 3183 * toread/towrite point to the first in a chain. 3184 * The bi_next chain must be in order. 3185 */ 3186 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, 3187 int forwrite, int previous) 3188 { 3189 struct bio **bip; 3190 struct r5conf *conf = sh->raid_conf; 3191 int firstwrite=0; 3192 3193 pr_debug("adding bi b#%llu to stripe s#%llu\n", 3194 (unsigned long long)bi->bi_iter.bi_sector, 3195 (unsigned long long)sh->sector); 3196 3197 spin_lock_irq(&sh->stripe_lock); 3198 /* Don't allow new IO added to stripes in batch list */ 3199 if (sh->batch_head) 3200 goto overlap; 3201 if (forwrite) { 3202 bip = &sh->dev[dd_idx].towrite; 3203 if (*bip == NULL) 3204 firstwrite = 1; 3205 } else 3206 bip = &sh->dev[dd_idx].toread; 3207 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) { 3208 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector) 3209 goto overlap; 3210 bip = & (*bip)->bi_next; 3211 } 3212 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi)) 3213 goto overlap; 3214 3215 if (forwrite && raid5_has_ppl(conf)) { 3216 /* 3217 * With PPL only writes to consecutive data chunks within a 3218 * stripe are allowed because for a single stripe_head we can 3219 * only have one PPL entry at a time, which describes one data 3220 * range. Not really an overlap, but wait_for_overlap can be 3221 * used to handle this. 3222 */ 3223 sector_t sector; 3224 sector_t first = 0; 3225 sector_t last = 0; 3226 int count = 0; 3227 int i; 3228 3229 for (i = 0; i < sh->disks; i++) { 3230 if (i != sh->pd_idx && 3231 (i == dd_idx || sh->dev[i].towrite)) { 3232 sector = sh->dev[i].sector; 3233 if (count == 0 || sector < first) 3234 first = sector; 3235 if (sector > last) 3236 last = sector; 3237 count++; 3238 } 3239 } 3240 3241 if (first + conf->chunk_sectors * (count - 1) != last) 3242 goto overlap; 3243 } 3244 3245 if (!forwrite || previous) 3246 clear_bit(STRIPE_BATCH_READY, &sh->state); 3247 3248 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next); 3249 if (*bip) 3250 bi->bi_next = *bip; 3251 *bip = bi; 3252 bio_inc_remaining(bi); 3253 md_write_inc(conf->mddev, bi); 3254 3255 if (forwrite) { 3256 /* check if page is covered */ 3257 sector_t sector = sh->dev[dd_idx].sector; 3258 for (bi=sh->dev[dd_idx].towrite; 3259 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS && 3260 bi && bi->bi_iter.bi_sector <= sector; 3261 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) { 3262 if (bio_end_sector(bi) >= sector) 3263 sector = bio_end_sector(bi); 3264 } 3265 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS) 3266 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags)) 3267 sh->overwrite_disks++; 3268 } 3269 3270 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n", 3271 (unsigned long long)(*bip)->bi_iter.bi_sector, 3272 (unsigned long long)sh->sector, dd_idx); 3273 3274 if (conf->mddev->bitmap && firstwrite) { 3275 /* Cannot hold spinlock over bitmap_startwrite, 3276 * but must ensure this isn't added to a batch until 3277 * we have added to the bitmap and set bm_seq. 3278 * So set STRIPE_BITMAP_PENDING to prevent 3279 * batching. 3280 * If multiple add_stripe_bio() calls race here they 3281 * much all set STRIPE_BITMAP_PENDING. So only the first one 3282 * to complete "bitmap_startwrite" gets to set 3283 * STRIPE_BIT_DELAY. This is important as once a stripe 3284 * is added to a batch, STRIPE_BIT_DELAY cannot be changed 3285 * any more. 3286 */ 3287 set_bit(STRIPE_BITMAP_PENDING, &sh->state); 3288 spin_unlock_irq(&sh->stripe_lock); 3289 bitmap_startwrite(conf->mddev->bitmap, sh->sector, 3290 STRIPE_SECTORS, 0); 3291 spin_lock_irq(&sh->stripe_lock); 3292 clear_bit(STRIPE_BITMAP_PENDING, &sh->state); 3293 if (!sh->batch_head) { 3294 sh->bm_seq = conf->seq_flush+1; 3295 set_bit(STRIPE_BIT_DELAY, &sh->state); 3296 } 3297 } 3298 spin_unlock_irq(&sh->stripe_lock); 3299 3300 if (stripe_can_batch(sh)) 3301 stripe_add_to_batch_list(conf, sh); 3302 return 1; 3303 3304 overlap: 3305 set_bit(R5_Overlap, &sh->dev[dd_idx].flags); 3306 spin_unlock_irq(&sh->stripe_lock); 3307 return 0; 3308 } 3309 3310 static void end_reshape(struct r5conf *conf); 3311 3312 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 3313 struct stripe_head *sh) 3314 { 3315 int sectors_per_chunk = 3316 previous ? conf->prev_chunk_sectors : conf->chunk_sectors; 3317 int dd_idx; 3318 int chunk_offset = sector_div(stripe, sectors_per_chunk); 3319 int disks = previous ? conf->previous_raid_disks : conf->raid_disks; 3320 3321 raid5_compute_sector(conf, 3322 stripe * (disks - conf->max_degraded) 3323 *sectors_per_chunk + chunk_offset, 3324 previous, 3325 &dd_idx, sh); 3326 } 3327 3328 static void 3329 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh, 3330 struct stripe_head_state *s, int disks) 3331 { 3332 int i; 3333 BUG_ON(sh->batch_head); 3334 for (i = disks; i--; ) { 3335 struct bio *bi; 3336 int bitmap_end = 0; 3337 3338 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 3339 struct md_rdev *rdev; 3340 rcu_read_lock(); 3341 rdev = rcu_dereference(conf->disks[i].rdev); 3342 if (rdev && test_bit(In_sync, &rdev->flags) && 3343 !test_bit(Faulty, &rdev->flags)) 3344 atomic_inc(&rdev->nr_pending); 3345 else 3346 rdev = NULL; 3347 rcu_read_unlock(); 3348 if (rdev) { 3349 if (!rdev_set_badblocks( 3350 rdev, 3351 sh->sector, 3352 STRIPE_SECTORS, 0)) 3353 md_error(conf->mddev, rdev); 3354 rdev_dec_pending(rdev, conf->mddev); 3355 } 3356 } 3357 spin_lock_irq(&sh->stripe_lock); 3358 /* fail all writes first */ 3359 bi = sh->dev[i].towrite; 3360 sh->dev[i].towrite = NULL; 3361 sh->overwrite_disks = 0; 3362 spin_unlock_irq(&sh->stripe_lock); 3363 if (bi) 3364 bitmap_end = 1; 3365 3366 log_stripe_write_finished(sh); 3367 3368 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 3369 wake_up(&conf->wait_for_overlap); 3370 3371 while (bi && bi->bi_iter.bi_sector < 3372 sh->dev[i].sector + STRIPE_SECTORS) { 3373 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector); 3374 3375 md_write_end(conf->mddev); 3376 bio_io_error(bi); 3377 bi = nextbi; 3378 } 3379 if (bitmap_end) 3380 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3381 STRIPE_SECTORS, 0, 0); 3382 bitmap_end = 0; 3383 /* and fail all 'written' */ 3384 bi = sh->dev[i].written; 3385 sh->dev[i].written = NULL; 3386 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) { 3387 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 3388 sh->dev[i].page = sh->dev[i].orig_page; 3389 } 3390 3391 if (bi) bitmap_end = 1; 3392 while (bi && bi->bi_iter.bi_sector < 3393 sh->dev[i].sector + STRIPE_SECTORS) { 3394 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector); 3395 3396 md_write_end(conf->mddev); 3397 bio_io_error(bi); 3398 bi = bi2; 3399 } 3400 3401 /* fail any reads if this device is non-operational and 3402 * the data has not reached the cache yet. 3403 */ 3404 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) && 3405 s->failed > conf->max_degraded && 3406 (!test_bit(R5_Insync, &sh->dev[i].flags) || 3407 test_bit(R5_ReadError, &sh->dev[i].flags))) { 3408 spin_lock_irq(&sh->stripe_lock); 3409 bi = sh->dev[i].toread; 3410 sh->dev[i].toread = NULL; 3411 spin_unlock_irq(&sh->stripe_lock); 3412 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 3413 wake_up(&conf->wait_for_overlap); 3414 if (bi) 3415 s->to_read--; 3416 while (bi && bi->bi_iter.bi_sector < 3417 sh->dev[i].sector + STRIPE_SECTORS) { 3418 struct bio *nextbi = 3419 r5_next_bio(bi, sh->dev[i].sector); 3420 3421 bio_io_error(bi); 3422 bi = nextbi; 3423 } 3424 } 3425 if (bitmap_end) 3426 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3427 STRIPE_SECTORS, 0, 0); 3428 /* If we were in the middle of a write the parity block might 3429 * still be locked - so just clear all R5_LOCKED flags 3430 */ 3431 clear_bit(R5_LOCKED, &sh->dev[i].flags); 3432 } 3433 s->to_write = 0; 3434 s->written = 0; 3435 3436 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 3437 if (atomic_dec_and_test(&conf->pending_full_writes)) 3438 md_wakeup_thread(conf->mddev->thread); 3439 } 3440 3441 static void 3442 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh, 3443 struct stripe_head_state *s) 3444 { 3445 int abort = 0; 3446 int i; 3447 3448 BUG_ON(sh->batch_head); 3449 clear_bit(STRIPE_SYNCING, &sh->state); 3450 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 3451 wake_up(&conf->wait_for_overlap); 3452 s->syncing = 0; 3453 s->replacing = 0; 3454 /* There is nothing more to do for sync/check/repair. 3455 * Don't even need to abort as that is handled elsewhere 3456 * if needed, and not always wanted e.g. if there is a known 3457 * bad block here. 3458 * For recover/replace we need to record a bad block on all 3459 * non-sync devices, or abort the recovery 3460 */ 3461 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) { 3462 /* During recovery devices cannot be removed, so 3463 * locking and refcounting of rdevs is not needed 3464 */ 3465 rcu_read_lock(); 3466 for (i = 0; i < conf->raid_disks; i++) { 3467 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 3468 if (rdev 3469 && !test_bit(Faulty, &rdev->flags) 3470 && !test_bit(In_sync, &rdev->flags) 3471 && !rdev_set_badblocks(rdev, sh->sector, 3472 STRIPE_SECTORS, 0)) 3473 abort = 1; 3474 rdev = rcu_dereference(conf->disks[i].replacement); 3475 if (rdev 3476 && !test_bit(Faulty, &rdev->flags) 3477 && !test_bit(In_sync, &rdev->flags) 3478 && !rdev_set_badblocks(rdev, sh->sector, 3479 STRIPE_SECTORS, 0)) 3480 abort = 1; 3481 } 3482 rcu_read_unlock(); 3483 if (abort) 3484 conf->recovery_disabled = 3485 conf->mddev->recovery_disabled; 3486 } 3487 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort); 3488 } 3489 3490 static int want_replace(struct stripe_head *sh, int disk_idx) 3491 { 3492 struct md_rdev *rdev; 3493 int rv = 0; 3494 3495 rcu_read_lock(); 3496 rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement); 3497 if (rdev 3498 && !test_bit(Faulty, &rdev->flags) 3499 && !test_bit(In_sync, &rdev->flags) 3500 && (rdev->recovery_offset <= sh->sector 3501 || rdev->mddev->recovery_cp <= sh->sector)) 3502 rv = 1; 3503 rcu_read_unlock(); 3504 return rv; 3505 } 3506 3507 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s, 3508 int disk_idx, int disks) 3509 { 3510 struct r5dev *dev = &sh->dev[disk_idx]; 3511 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]], 3512 &sh->dev[s->failed_num[1]] }; 3513 int i; 3514 3515 3516 if (test_bit(R5_LOCKED, &dev->flags) || 3517 test_bit(R5_UPTODATE, &dev->flags)) 3518 /* No point reading this as we already have it or have 3519 * decided to get it. 3520 */ 3521 return 0; 3522 3523 if (dev->toread || 3524 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags))) 3525 /* We need this block to directly satisfy a request */ 3526 return 1; 3527 3528 if (s->syncing || s->expanding || 3529 (s->replacing && want_replace(sh, disk_idx))) 3530 /* When syncing, or expanding we read everything. 3531 * When replacing, we need the replaced block. 3532 */ 3533 return 1; 3534 3535 if ((s->failed >= 1 && fdev[0]->toread) || 3536 (s->failed >= 2 && fdev[1]->toread)) 3537 /* If we want to read from a failed device, then 3538 * we need to actually read every other device. 3539 */ 3540 return 1; 3541 3542 /* Sometimes neither read-modify-write nor reconstruct-write 3543 * cycles can work. In those cases we read every block we 3544 * can. Then the parity-update is certain to have enough to 3545 * work with. 3546 * This can only be a problem when we need to write something, 3547 * and some device has failed. If either of those tests 3548 * fail we need look no further. 3549 */ 3550 if (!s->failed || !s->to_write) 3551 return 0; 3552 3553 if (test_bit(R5_Insync, &dev->flags) && 3554 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3555 /* Pre-reads at not permitted until after short delay 3556 * to gather multiple requests. However if this 3557 * device is no Insync, the block could only be computed 3558 * and there is no need to delay that. 3559 */ 3560 return 0; 3561 3562 for (i = 0; i < s->failed && i < 2; i++) { 3563 if (fdev[i]->towrite && 3564 !test_bit(R5_UPTODATE, &fdev[i]->flags) && 3565 !test_bit(R5_OVERWRITE, &fdev[i]->flags)) 3566 /* If we have a partial write to a failed 3567 * device, then we will need to reconstruct 3568 * the content of that device, so all other 3569 * devices must be read. 3570 */ 3571 return 1; 3572 } 3573 3574 /* If we are forced to do a reconstruct-write, either because 3575 * the current RAID6 implementation only supports that, or 3576 * because parity cannot be trusted and we are currently 3577 * recovering it, there is extra need to be careful. 3578 * If one of the devices that we would need to read, because 3579 * it is not being overwritten (and maybe not written at all) 3580 * is missing/faulty, then we need to read everything we can. 3581 */ 3582 if (sh->raid_conf->level != 6 && 3583 sh->sector < sh->raid_conf->mddev->recovery_cp) 3584 /* reconstruct-write isn't being forced */ 3585 return 0; 3586 for (i = 0; i < s->failed && i < 2; i++) { 3587 if (s->failed_num[i] != sh->pd_idx && 3588 s->failed_num[i] != sh->qd_idx && 3589 !test_bit(R5_UPTODATE, &fdev[i]->flags) && 3590 !test_bit(R5_OVERWRITE, &fdev[i]->flags)) 3591 return 1; 3592 } 3593 3594 return 0; 3595 } 3596 3597 /* fetch_block - checks the given member device to see if its data needs 3598 * to be read or computed to satisfy a request. 3599 * 3600 * Returns 1 when no more member devices need to be checked, otherwise returns 3601 * 0 to tell the loop in handle_stripe_fill to continue 3602 */ 3603 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s, 3604 int disk_idx, int disks) 3605 { 3606 struct r5dev *dev = &sh->dev[disk_idx]; 3607 3608 /* is the data in this block needed, and can we get it? */ 3609 if (need_this_block(sh, s, disk_idx, disks)) { 3610 /* we would like to get this block, possibly by computing it, 3611 * otherwise read it if the backing disk is insync 3612 */ 3613 BUG_ON(test_bit(R5_Wantcompute, &dev->flags)); 3614 BUG_ON(test_bit(R5_Wantread, &dev->flags)); 3615 BUG_ON(sh->batch_head); 3616 3617 /* 3618 * In the raid6 case if the only non-uptodate disk is P 3619 * then we already trusted P to compute the other failed 3620 * drives. It is safe to compute rather than re-read P. 3621 * In other cases we only compute blocks from failed 3622 * devices, otherwise check/repair might fail to detect 3623 * a real inconsistency. 3624 */ 3625 3626 if ((s->uptodate == disks - 1) && 3627 ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) || 3628 (s->failed && (disk_idx == s->failed_num[0] || 3629 disk_idx == s->failed_num[1])))) { 3630 /* have disk failed, and we're requested to fetch it; 3631 * do compute it 3632 */ 3633 pr_debug("Computing stripe %llu block %d\n", 3634 (unsigned long long)sh->sector, disk_idx); 3635 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3636 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3637 set_bit(R5_Wantcompute, &dev->flags); 3638 sh->ops.target = disk_idx; 3639 sh->ops.target2 = -1; /* no 2nd target */ 3640 s->req_compute = 1; 3641 /* Careful: from this point on 'uptodate' is in the eye 3642 * of raid_run_ops which services 'compute' operations 3643 * before writes. R5_Wantcompute flags a block that will 3644 * be R5_UPTODATE by the time it is needed for a 3645 * subsequent operation. 3646 */ 3647 s->uptodate++; 3648 return 1; 3649 } else if (s->uptodate == disks-2 && s->failed >= 2) { 3650 /* Computing 2-failure is *very* expensive; only 3651 * do it if failed >= 2 3652 */ 3653 int other; 3654 for (other = disks; other--; ) { 3655 if (other == disk_idx) 3656 continue; 3657 if (!test_bit(R5_UPTODATE, 3658 &sh->dev[other].flags)) 3659 break; 3660 } 3661 BUG_ON(other < 0); 3662 pr_debug("Computing stripe %llu blocks %d,%d\n", 3663 (unsigned long long)sh->sector, 3664 disk_idx, other); 3665 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3666 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3667 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags); 3668 set_bit(R5_Wantcompute, &sh->dev[other].flags); 3669 sh->ops.target = disk_idx; 3670 sh->ops.target2 = other; 3671 s->uptodate += 2; 3672 s->req_compute = 1; 3673 return 1; 3674 } else if (test_bit(R5_Insync, &dev->flags)) { 3675 set_bit(R5_LOCKED, &dev->flags); 3676 set_bit(R5_Wantread, &dev->flags); 3677 s->locked++; 3678 pr_debug("Reading block %d (sync=%d)\n", 3679 disk_idx, s->syncing); 3680 } 3681 } 3682 3683 return 0; 3684 } 3685 3686 /** 3687 * handle_stripe_fill - read or compute data to satisfy pending requests. 3688 */ 3689 static void handle_stripe_fill(struct stripe_head *sh, 3690 struct stripe_head_state *s, 3691 int disks) 3692 { 3693 int i; 3694 3695 /* look for blocks to read/compute, skip this if a compute 3696 * is already in flight, or if the stripe contents are in the 3697 * midst of changing due to a write 3698 */ 3699 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state && 3700 !sh->reconstruct_state) { 3701 3702 /* 3703 * For degraded stripe with data in journal, do not handle 3704 * read requests yet, instead, flush the stripe to raid 3705 * disks first, this avoids handling complex rmw of write 3706 * back cache (prexor with orig_page, and then xor with 3707 * page) in the read path 3708 */ 3709 if (s->injournal && s->failed) { 3710 if (test_bit(STRIPE_R5C_CACHING, &sh->state)) 3711 r5c_make_stripe_write_out(sh); 3712 goto out; 3713 } 3714 3715 for (i = disks; i--; ) 3716 if (fetch_block(sh, s, i, disks)) 3717 break; 3718 } 3719 out: 3720 set_bit(STRIPE_HANDLE, &sh->state); 3721 } 3722 3723 static void break_stripe_batch_list(struct stripe_head *head_sh, 3724 unsigned long handle_flags); 3725 /* handle_stripe_clean_event 3726 * any written block on an uptodate or failed drive can be returned. 3727 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but 3728 * never LOCKED, so we don't need to test 'failed' directly. 3729 */ 3730 static void handle_stripe_clean_event(struct r5conf *conf, 3731 struct stripe_head *sh, int disks) 3732 { 3733 int i; 3734 struct r5dev *dev; 3735 int discard_pending = 0; 3736 struct stripe_head *head_sh = sh; 3737 bool do_endio = false; 3738 3739 for (i = disks; i--; ) 3740 if (sh->dev[i].written) { 3741 dev = &sh->dev[i]; 3742 if (!test_bit(R5_LOCKED, &dev->flags) && 3743 (test_bit(R5_UPTODATE, &dev->flags) || 3744 test_bit(R5_Discard, &dev->flags) || 3745 test_bit(R5_SkipCopy, &dev->flags))) { 3746 /* We can return any write requests */ 3747 struct bio *wbi, *wbi2; 3748 pr_debug("Return write for disc %d\n", i); 3749 if (test_and_clear_bit(R5_Discard, &dev->flags)) 3750 clear_bit(R5_UPTODATE, &dev->flags); 3751 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) { 3752 WARN_ON(test_bit(R5_UPTODATE, &dev->flags)); 3753 } 3754 do_endio = true; 3755 3756 returnbi: 3757 dev->page = dev->orig_page; 3758 wbi = dev->written; 3759 dev->written = NULL; 3760 while (wbi && wbi->bi_iter.bi_sector < 3761 dev->sector + STRIPE_SECTORS) { 3762 wbi2 = r5_next_bio(wbi, dev->sector); 3763 md_write_end(conf->mddev); 3764 bio_endio(wbi); 3765 wbi = wbi2; 3766 } 3767 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3768 STRIPE_SECTORS, 3769 !test_bit(STRIPE_DEGRADED, &sh->state), 3770 0); 3771 if (head_sh->batch_head) { 3772 sh = list_first_entry(&sh->batch_list, 3773 struct stripe_head, 3774 batch_list); 3775 if (sh != head_sh) { 3776 dev = &sh->dev[i]; 3777 goto returnbi; 3778 } 3779 } 3780 sh = head_sh; 3781 dev = &sh->dev[i]; 3782 } else if (test_bit(R5_Discard, &dev->flags)) 3783 discard_pending = 1; 3784 } 3785 3786 log_stripe_write_finished(sh); 3787 3788 if (!discard_pending && 3789 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) { 3790 int hash; 3791 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 3792 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 3793 if (sh->qd_idx >= 0) { 3794 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 3795 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags); 3796 } 3797 /* now that discard is done we can proceed with any sync */ 3798 clear_bit(STRIPE_DISCARD, &sh->state); 3799 /* 3800 * SCSI discard will change some bio fields and the stripe has 3801 * no updated data, so remove it from hash list and the stripe 3802 * will be reinitialized 3803 */ 3804 unhash: 3805 hash = sh->hash_lock_index; 3806 spin_lock_irq(conf->hash_locks + hash); 3807 remove_hash(sh); 3808 spin_unlock_irq(conf->hash_locks + hash); 3809 if (head_sh->batch_head) { 3810 sh = list_first_entry(&sh->batch_list, 3811 struct stripe_head, batch_list); 3812 if (sh != head_sh) 3813 goto unhash; 3814 } 3815 sh = head_sh; 3816 3817 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) 3818 set_bit(STRIPE_HANDLE, &sh->state); 3819 3820 } 3821 3822 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 3823 if (atomic_dec_and_test(&conf->pending_full_writes)) 3824 md_wakeup_thread(conf->mddev->thread); 3825 3826 if (head_sh->batch_head && do_endio) 3827 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS); 3828 } 3829 3830 /* 3831 * For RMW in write back cache, we need extra page in prexor to store the 3832 * old data. This page is stored in dev->orig_page. 3833 * 3834 * This function checks whether we have data for prexor. The exact logic 3835 * is: 3836 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE) 3837 */ 3838 static inline bool uptodate_for_rmw(struct r5dev *dev) 3839 { 3840 return (test_bit(R5_UPTODATE, &dev->flags)) && 3841 (!test_bit(R5_InJournal, &dev->flags) || 3842 test_bit(R5_OrigPageUPTDODATE, &dev->flags)); 3843 } 3844 3845 static int handle_stripe_dirtying(struct r5conf *conf, 3846 struct stripe_head *sh, 3847 struct stripe_head_state *s, 3848 int disks) 3849 { 3850 int rmw = 0, rcw = 0, i; 3851 sector_t recovery_cp = conf->mddev->recovery_cp; 3852 3853 /* Check whether resync is now happening or should start. 3854 * If yes, then the array is dirty (after unclean shutdown or 3855 * initial creation), so parity in some stripes might be inconsistent. 3856 * In this case, we need to always do reconstruct-write, to ensure 3857 * that in case of drive failure or read-error correction, we 3858 * generate correct data from the parity. 3859 */ 3860 if (conf->rmw_level == PARITY_DISABLE_RMW || 3861 (recovery_cp < MaxSector && sh->sector >= recovery_cp && 3862 s->failed == 0)) { 3863 /* Calculate the real rcw later - for now make it 3864 * look like rcw is cheaper 3865 */ 3866 rcw = 1; rmw = 2; 3867 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n", 3868 conf->rmw_level, (unsigned long long)recovery_cp, 3869 (unsigned long long)sh->sector); 3870 } else for (i = disks; i--; ) { 3871 /* would I have to read this buffer for read_modify_write */ 3872 struct r5dev *dev = &sh->dev[i]; 3873 if (((dev->towrite && !delay_towrite(conf, dev, s)) || 3874 i == sh->pd_idx || i == sh->qd_idx || 3875 test_bit(R5_InJournal, &dev->flags)) && 3876 !test_bit(R5_LOCKED, &dev->flags) && 3877 !(uptodate_for_rmw(dev) || 3878 test_bit(R5_Wantcompute, &dev->flags))) { 3879 if (test_bit(R5_Insync, &dev->flags)) 3880 rmw++; 3881 else 3882 rmw += 2*disks; /* cannot read it */ 3883 } 3884 /* Would I have to read this buffer for reconstruct_write */ 3885 if (!test_bit(R5_OVERWRITE, &dev->flags) && 3886 i != sh->pd_idx && i != sh->qd_idx && 3887 !test_bit(R5_LOCKED, &dev->flags) && 3888 !(test_bit(R5_UPTODATE, &dev->flags) || 3889 test_bit(R5_Wantcompute, &dev->flags))) { 3890 if (test_bit(R5_Insync, &dev->flags)) 3891 rcw++; 3892 else 3893 rcw += 2*disks; 3894 } 3895 } 3896 3897 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n", 3898 (unsigned long long)sh->sector, sh->state, rmw, rcw); 3899 set_bit(STRIPE_HANDLE, &sh->state); 3900 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) { 3901 /* prefer read-modify-write, but need to get some data */ 3902 if (conf->mddev->queue) 3903 blk_add_trace_msg(conf->mddev->queue, 3904 "raid5 rmw %llu %d", 3905 (unsigned long long)sh->sector, rmw); 3906 for (i = disks; i--; ) { 3907 struct r5dev *dev = &sh->dev[i]; 3908 if (test_bit(R5_InJournal, &dev->flags) && 3909 dev->page == dev->orig_page && 3910 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) { 3911 /* alloc page for prexor */ 3912 struct page *p = alloc_page(GFP_NOIO); 3913 3914 if (p) { 3915 dev->orig_page = p; 3916 continue; 3917 } 3918 3919 /* 3920 * alloc_page() failed, try use 3921 * disk_info->extra_page 3922 */ 3923 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE, 3924 &conf->cache_state)) { 3925 r5c_use_extra_page(sh); 3926 break; 3927 } 3928 3929 /* extra_page in use, add to delayed_list */ 3930 set_bit(STRIPE_DELAYED, &sh->state); 3931 s->waiting_extra_page = 1; 3932 return -EAGAIN; 3933 } 3934 } 3935 3936 for (i = disks; i--; ) { 3937 struct r5dev *dev = &sh->dev[i]; 3938 if (((dev->towrite && !delay_towrite(conf, dev, s)) || 3939 i == sh->pd_idx || i == sh->qd_idx || 3940 test_bit(R5_InJournal, &dev->flags)) && 3941 !test_bit(R5_LOCKED, &dev->flags) && 3942 !(uptodate_for_rmw(dev) || 3943 test_bit(R5_Wantcompute, &dev->flags)) && 3944 test_bit(R5_Insync, &dev->flags)) { 3945 if (test_bit(STRIPE_PREREAD_ACTIVE, 3946 &sh->state)) { 3947 pr_debug("Read_old block %d for r-m-w\n", 3948 i); 3949 set_bit(R5_LOCKED, &dev->flags); 3950 set_bit(R5_Wantread, &dev->flags); 3951 s->locked++; 3952 } else { 3953 set_bit(STRIPE_DELAYED, &sh->state); 3954 set_bit(STRIPE_HANDLE, &sh->state); 3955 } 3956 } 3957 } 3958 } 3959 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) { 3960 /* want reconstruct write, but need to get some data */ 3961 int qread =0; 3962 rcw = 0; 3963 for (i = disks; i--; ) { 3964 struct r5dev *dev = &sh->dev[i]; 3965 if (!test_bit(R5_OVERWRITE, &dev->flags) && 3966 i != sh->pd_idx && i != sh->qd_idx && 3967 !test_bit(R5_LOCKED, &dev->flags) && 3968 !(test_bit(R5_UPTODATE, &dev->flags) || 3969 test_bit(R5_Wantcompute, &dev->flags))) { 3970 rcw++; 3971 if (test_bit(R5_Insync, &dev->flags) && 3972 test_bit(STRIPE_PREREAD_ACTIVE, 3973 &sh->state)) { 3974 pr_debug("Read_old block " 3975 "%d for Reconstruct\n", i); 3976 set_bit(R5_LOCKED, &dev->flags); 3977 set_bit(R5_Wantread, &dev->flags); 3978 s->locked++; 3979 qread++; 3980 } else { 3981 set_bit(STRIPE_DELAYED, &sh->state); 3982 set_bit(STRIPE_HANDLE, &sh->state); 3983 } 3984 } 3985 } 3986 if (rcw && conf->mddev->queue) 3987 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d", 3988 (unsigned long long)sh->sector, 3989 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state)); 3990 } 3991 3992 if (rcw > disks && rmw > disks && 3993 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3994 set_bit(STRIPE_DELAYED, &sh->state); 3995 3996 /* now if nothing is locked, and if we have enough data, 3997 * we can start a write request 3998 */ 3999 /* since handle_stripe can be called at any time we need to handle the 4000 * case where a compute block operation has been submitted and then a 4001 * subsequent call wants to start a write request. raid_run_ops only 4002 * handles the case where compute block and reconstruct are requested 4003 * simultaneously. If this is not the case then new writes need to be 4004 * held off until the compute completes. 4005 */ 4006 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) && 4007 (s->locked == 0 && (rcw == 0 || rmw == 0) && 4008 !test_bit(STRIPE_BIT_DELAY, &sh->state))) 4009 schedule_reconstruction(sh, s, rcw == 0, 0); 4010 return 0; 4011 } 4012 4013 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh, 4014 struct stripe_head_state *s, int disks) 4015 { 4016 struct r5dev *dev = NULL; 4017 4018 BUG_ON(sh->batch_head); 4019 set_bit(STRIPE_HANDLE, &sh->state); 4020 4021 switch (sh->check_state) { 4022 case check_state_idle: 4023 /* start a new check operation if there are no failures */ 4024 if (s->failed == 0) { 4025 BUG_ON(s->uptodate != disks); 4026 sh->check_state = check_state_run; 4027 set_bit(STRIPE_OP_CHECK, &s->ops_request); 4028 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 4029 s->uptodate--; 4030 break; 4031 } 4032 dev = &sh->dev[s->failed_num[0]]; 4033 /* fall through */ 4034 case check_state_compute_result: 4035 sh->check_state = check_state_idle; 4036 if (!dev) 4037 dev = &sh->dev[sh->pd_idx]; 4038 4039 /* check that a write has not made the stripe insync */ 4040 if (test_bit(STRIPE_INSYNC, &sh->state)) 4041 break; 4042 4043 /* either failed parity check, or recovery is happening */ 4044 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags)); 4045 BUG_ON(s->uptodate != disks); 4046 4047 set_bit(R5_LOCKED, &dev->flags); 4048 s->locked++; 4049 set_bit(R5_Wantwrite, &dev->flags); 4050 4051 clear_bit(STRIPE_DEGRADED, &sh->state); 4052 set_bit(STRIPE_INSYNC, &sh->state); 4053 break; 4054 case check_state_run: 4055 break; /* we will be called again upon completion */ 4056 case check_state_check_result: 4057 sh->check_state = check_state_idle; 4058 4059 /* if a failure occurred during the check operation, leave 4060 * STRIPE_INSYNC not set and let the stripe be handled again 4061 */ 4062 if (s->failed) 4063 break; 4064 4065 /* handle a successful check operation, if parity is correct 4066 * we are done. Otherwise update the mismatch count and repair 4067 * parity if !MD_RECOVERY_CHECK 4068 */ 4069 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0) 4070 /* parity is correct (on disc, 4071 * not in buffer any more) 4072 */ 4073 set_bit(STRIPE_INSYNC, &sh->state); 4074 else { 4075 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches); 4076 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) { 4077 /* don't try to repair!! */ 4078 set_bit(STRIPE_INSYNC, &sh->state); 4079 pr_warn_ratelimited("%s: mismatch sector in range " 4080 "%llu-%llu\n", mdname(conf->mddev), 4081 (unsigned long long) sh->sector, 4082 (unsigned long long) sh->sector + 4083 STRIPE_SECTORS); 4084 } else { 4085 sh->check_state = check_state_compute_run; 4086 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 4087 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 4088 set_bit(R5_Wantcompute, 4089 &sh->dev[sh->pd_idx].flags); 4090 sh->ops.target = sh->pd_idx; 4091 sh->ops.target2 = -1; 4092 s->uptodate++; 4093 } 4094 } 4095 break; 4096 case check_state_compute_run: 4097 break; 4098 default: 4099 pr_err("%s: unknown check_state: %d sector: %llu\n", 4100 __func__, sh->check_state, 4101 (unsigned long long) sh->sector); 4102 BUG(); 4103 } 4104 } 4105 4106 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh, 4107 struct stripe_head_state *s, 4108 int disks) 4109 { 4110 int pd_idx = sh->pd_idx; 4111 int qd_idx = sh->qd_idx; 4112 struct r5dev *dev; 4113 4114 BUG_ON(sh->batch_head); 4115 set_bit(STRIPE_HANDLE, &sh->state); 4116 4117 BUG_ON(s->failed > 2); 4118 4119 /* Want to check and possibly repair P and Q. 4120 * However there could be one 'failed' device, in which 4121 * case we can only check one of them, possibly using the 4122 * other to generate missing data 4123 */ 4124 4125 switch (sh->check_state) { 4126 case check_state_idle: 4127 /* start a new check operation if there are < 2 failures */ 4128 if (s->failed == s->q_failed) { 4129 /* The only possible failed device holds Q, so it 4130 * makes sense to check P (If anything else were failed, 4131 * we would have used P to recreate it). 4132 */ 4133 sh->check_state = check_state_run; 4134 } 4135 if (!s->q_failed && s->failed < 2) { 4136 /* Q is not failed, and we didn't use it to generate 4137 * anything, so it makes sense to check it 4138 */ 4139 if (sh->check_state == check_state_run) 4140 sh->check_state = check_state_run_pq; 4141 else 4142 sh->check_state = check_state_run_q; 4143 } 4144 4145 /* discard potentially stale zero_sum_result */ 4146 sh->ops.zero_sum_result = 0; 4147 4148 if (sh->check_state == check_state_run) { 4149 /* async_xor_zero_sum destroys the contents of P */ 4150 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 4151 s->uptodate--; 4152 } 4153 if (sh->check_state >= check_state_run && 4154 sh->check_state <= check_state_run_pq) { 4155 /* async_syndrome_zero_sum preserves P and Q, so 4156 * no need to mark them !uptodate here 4157 */ 4158 set_bit(STRIPE_OP_CHECK, &s->ops_request); 4159 break; 4160 } 4161 4162 /* we have 2-disk failure */ 4163 BUG_ON(s->failed != 2); 4164 /* fall through */ 4165 case check_state_compute_result: 4166 sh->check_state = check_state_idle; 4167 4168 /* check that a write has not made the stripe insync */ 4169 if (test_bit(STRIPE_INSYNC, &sh->state)) 4170 break; 4171 4172 /* now write out any block on a failed drive, 4173 * or P or Q if they were recomputed 4174 */ 4175 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */ 4176 if (s->failed == 2) { 4177 dev = &sh->dev[s->failed_num[1]]; 4178 s->locked++; 4179 set_bit(R5_LOCKED, &dev->flags); 4180 set_bit(R5_Wantwrite, &dev->flags); 4181 } 4182 if (s->failed >= 1) { 4183 dev = &sh->dev[s->failed_num[0]]; 4184 s->locked++; 4185 set_bit(R5_LOCKED, &dev->flags); 4186 set_bit(R5_Wantwrite, &dev->flags); 4187 } 4188 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 4189 dev = &sh->dev[pd_idx]; 4190 s->locked++; 4191 set_bit(R5_LOCKED, &dev->flags); 4192 set_bit(R5_Wantwrite, &dev->flags); 4193 } 4194 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 4195 dev = &sh->dev[qd_idx]; 4196 s->locked++; 4197 set_bit(R5_LOCKED, &dev->flags); 4198 set_bit(R5_Wantwrite, &dev->flags); 4199 } 4200 clear_bit(STRIPE_DEGRADED, &sh->state); 4201 4202 set_bit(STRIPE_INSYNC, &sh->state); 4203 break; 4204 case check_state_run: 4205 case check_state_run_q: 4206 case check_state_run_pq: 4207 break; /* we will be called again upon completion */ 4208 case check_state_check_result: 4209 sh->check_state = check_state_idle; 4210 4211 /* handle a successful check operation, if parity is correct 4212 * we are done. Otherwise update the mismatch count and repair 4213 * parity if !MD_RECOVERY_CHECK 4214 */ 4215 if (sh->ops.zero_sum_result == 0) { 4216 /* both parities are correct */ 4217 if (!s->failed) 4218 set_bit(STRIPE_INSYNC, &sh->state); 4219 else { 4220 /* in contrast to the raid5 case we can validate 4221 * parity, but still have a failure to write 4222 * back 4223 */ 4224 sh->check_state = check_state_compute_result; 4225 /* Returning at this point means that we may go 4226 * off and bring p and/or q uptodate again so 4227 * we make sure to check zero_sum_result again 4228 * to verify if p or q need writeback 4229 */ 4230 } 4231 } else { 4232 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches); 4233 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) { 4234 /* don't try to repair!! */ 4235 set_bit(STRIPE_INSYNC, &sh->state); 4236 pr_warn_ratelimited("%s: mismatch sector in range " 4237 "%llu-%llu\n", mdname(conf->mddev), 4238 (unsigned long long) sh->sector, 4239 (unsigned long long) sh->sector + 4240 STRIPE_SECTORS); 4241 } else { 4242 int *target = &sh->ops.target; 4243 4244 sh->ops.target = -1; 4245 sh->ops.target2 = -1; 4246 sh->check_state = check_state_compute_run; 4247 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 4248 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 4249 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 4250 set_bit(R5_Wantcompute, 4251 &sh->dev[pd_idx].flags); 4252 *target = pd_idx; 4253 target = &sh->ops.target2; 4254 s->uptodate++; 4255 } 4256 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 4257 set_bit(R5_Wantcompute, 4258 &sh->dev[qd_idx].flags); 4259 *target = qd_idx; 4260 s->uptodate++; 4261 } 4262 } 4263 } 4264 break; 4265 case check_state_compute_run: 4266 break; 4267 default: 4268 pr_warn("%s: unknown check_state: %d sector: %llu\n", 4269 __func__, sh->check_state, 4270 (unsigned long long) sh->sector); 4271 BUG(); 4272 } 4273 } 4274 4275 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh) 4276 { 4277 int i; 4278 4279 /* We have read all the blocks in this stripe and now we need to 4280 * copy some of them into a target stripe for expand. 4281 */ 4282 struct dma_async_tx_descriptor *tx = NULL; 4283 BUG_ON(sh->batch_head); 4284 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state); 4285 for (i = 0; i < sh->disks; i++) 4286 if (i != sh->pd_idx && i != sh->qd_idx) { 4287 int dd_idx, j; 4288 struct stripe_head *sh2; 4289 struct async_submit_ctl submit; 4290 4291 sector_t bn = raid5_compute_blocknr(sh, i, 1); 4292 sector_t s = raid5_compute_sector(conf, bn, 0, 4293 &dd_idx, NULL); 4294 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1); 4295 if (sh2 == NULL) 4296 /* so far only the early blocks of this stripe 4297 * have been requested. When later blocks 4298 * get requested, we will try again 4299 */ 4300 continue; 4301 if (!test_bit(STRIPE_EXPANDING, &sh2->state) || 4302 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) { 4303 /* must have already done this block */ 4304 raid5_release_stripe(sh2); 4305 continue; 4306 } 4307 4308 /* place all the copies on one channel */ 4309 init_async_submit(&submit, 0, tx, NULL, NULL, NULL); 4310 tx = async_memcpy(sh2->dev[dd_idx].page, 4311 sh->dev[i].page, 0, 0, STRIPE_SIZE, 4312 &submit); 4313 4314 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags); 4315 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags); 4316 for (j = 0; j < conf->raid_disks; j++) 4317 if (j != sh2->pd_idx && 4318 j != sh2->qd_idx && 4319 !test_bit(R5_Expanded, &sh2->dev[j].flags)) 4320 break; 4321 if (j == conf->raid_disks) { 4322 set_bit(STRIPE_EXPAND_READY, &sh2->state); 4323 set_bit(STRIPE_HANDLE, &sh2->state); 4324 } 4325 raid5_release_stripe(sh2); 4326 4327 } 4328 /* done submitting copies, wait for them to complete */ 4329 async_tx_quiesce(&tx); 4330 } 4331 4332 /* 4333 * handle_stripe - do things to a stripe. 4334 * 4335 * We lock the stripe by setting STRIPE_ACTIVE and then examine the 4336 * state of various bits to see what needs to be done. 4337 * Possible results: 4338 * return some read requests which now have data 4339 * return some write requests which are safely on storage 4340 * schedule a read on some buffers 4341 * schedule a write of some buffers 4342 * return confirmation of parity correctness 4343 * 4344 */ 4345 4346 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s) 4347 { 4348 struct r5conf *conf = sh->raid_conf; 4349 int disks = sh->disks; 4350 struct r5dev *dev; 4351 int i; 4352 int do_recovery = 0; 4353 4354 memset(s, 0, sizeof(*s)); 4355 4356 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head; 4357 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head; 4358 s->failed_num[0] = -1; 4359 s->failed_num[1] = -1; 4360 s->log_failed = r5l_log_disk_error(conf); 4361 4362 /* Now to look around and see what can be done */ 4363 rcu_read_lock(); 4364 for (i=disks; i--; ) { 4365 struct md_rdev *rdev; 4366 sector_t first_bad; 4367 int bad_sectors; 4368 int is_bad = 0; 4369 4370 dev = &sh->dev[i]; 4371 4372 pr_debug("check %d: state 0x%lx read %p write %p written %p\n", 4373 i, dev->flags, 4374 dev->toread, dev->towrite, dev->written); 4375 /* maybe we can reply to a read 4376 * 4377 * new wantfill requests are only permitted while 4378 * ops_complete_biofill is guaranteed to be inactive 4379 */ 4380 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread && 4381 !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) 4382 set_bit(R5_Wantfill, &dev->flags); 4383 4384 /* now count some things */ 4385 if (test_bit(R5_LOCKED, &dev->flags)) 4386 s->locked++; 4387 if (test_bit(R5_UPTODATE, &dev->flags)) 4388 s->uptodate++; 4389 if (test_bit(R5_Wantcompute, &dev->flags)) { 4390 s->compute++; 4391 BUG_ON(s->compute > 2); 4392 } 4393 4394 if (test_bit(R5_Wantfill, &dev->flags)) 4395 s->to_fill++; 4396 else if (dev->toread) 4397 s->to_read++; 4398 if (dev->towrite) { 4399 s->to_write++; 4400 if (!test_bit(R5_OVERWRITE, &dev->flags)) 4401 s->non_overwrite++; 4402 } 4403 if (dev->written) 4404 s->written++; 4405 /* Prefer to use the replacement for reads, but only 4406 * if it is recovered enough and has no bad blocks. 4407 */ 4408 rdev = rcu_dereference(conf->disks[i].replacement); 4409 if (rdev && !test_bit(Faulty, &rdev->flags) && 4410 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS && 4411 !is_badblock(rdev, sh->sector, STRIPE_SECTORS, 4412 &first_bad, &bad_sectors)) 4413 set_bit(R5_ReadRepl, &dev->flags); 4414 else { 4415 if (rdev && !test_bit(Faulty, &rdev->flags)) 4416 set_bit(R5_NeedReplace, &dev->flags); 4417 else 4418 clear_bit(R5_NeedReplace, &dev->flags); 4419 rdev = rcu_dereference(conf->disks[i].rdev); 4420 clear_bit(R5_ReadRepl, &dev->flags); 4421 } 4422 if (rdev && test_bit(Faulty, &rdev->flags)) 4423 rdev = NULL; 4424 if (rdev) { 4425 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS, 4426 &first_bad, &bad_sectors); 4427 if (s->blocked_rdev == NULL 4428 && (test_bit(Blocked, &rdev->flags) 4429 || is_bad < 0)) { 4430 if (is_bad < 0) 4431 set_bit(BlockedBadBlocks, 4432 &rdev->flags); 4433 s->blocked_rdev = rdev; 4434 atomic_inc(&rdev->nr_pending); 4435 } 4436 } 4437 clear_bit(R5_Insync, &dev->flags); 4438 if (!rdev) 4439 /* Not in-sync */; 4440 else if (is_bad) { 4441 /* also not in-sync */ 4442 if (!test_bit(WriteErrorSeen, &rdev->flags) && 4443 test_bit(R5_UPTODATE, &dev->flags)) { 4444 /* treat as in-sync, but with a read error 4445 * which we can now try to correct 4446 */ 4447 set_bit(R5_Insync, &dev->flags); 4448 set_bit(R5_ReadError, &dev->flags); 4449 } 4450 } else if (test_bit(In_sync, &rdev->flags)) 4451 set_bit(R5_Insync, &dev->flags); 4452 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset) 4453 /* in sync if before recovery_offset */ 4454 set_bit(R5_Insync, &dev->flags); 4455 else if (test_bit(R5_UPTODATE, &dev->flags) && 4456 test_bit(R5_Expanded, &dev->flags)) 4457 /* If we've reshaped into here, we assume it is Insync. 4458 * We will shortly update recovery_offset to make 4459 * it official. 4460 */ 4461 set_bit(R5_Insync, &dev->flags); 4462 4463 if (test_bit(R5_WriteError, &dev->flags)) { 4464 /* This flag does not apply to '.replacement' 4465 * only to .rdev, so make sure to check that*/ 4466 struct md_rdev *rdev2 = rcu_dereference( 4467 conf->disks[i].rdev); 4468 if (rdev2 == rdev) 4469 clear_bit(R5_Insync, &dev->flags); 4470 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4471 s->handle_bad_blocks = 1; 4472 atomic_inc(&rdev2->nr_pending); 4473 } else 4474 clear_bit(R5_WriteError, &dev->flags); 4475 } 4476 if (test_bit(R5_MadeGood, &dev->flags)) { 4477 /* This flag does not apply to '.replacement' 4478 * only to .rdev, so make sure to check that*/ 4479 struct md_rdev *rdev2 = rcu_dereference( 4480 conf->disks[i].rdev); 4481 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4482 s->handle_bad_blocks = 1; 4483 atomic_inc(&rdev2->nr_pending); 4484 } else 4485 clear_bit(R5_MadeGood, &dev->flags); 4486 } 4487 if (test_bit(R5_MadeGoodRepl, &dev->flags)) { 4488 struct md_rdev *rdev2 = rcu_dereference( 4489 conf->disks[i].replacement); 4490 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4491 s->handle_bad_blocks = 1; 4492 atomic_inc(&rdev2->nr_pending); 4493 } else 4494 clear_bit(R5_MadeGoodRepl, &dev->flags); 4495 } 4496 if (!test_bit(R5_Insync, &dev->flags)) { 4497 /* The ReadError flag will just be confusing now */ 4498 clear_bit(R5_ReadError, &dev->flags); 4499 clear_bit(R5_ReWrite, &dev->flags); 4500 } 4501 if (test_bit(R5_ReadError, &dev->flags)) 4502 clear_bit(R5_Insync, &dev->flags); 4503 if (!test_bit(R5_Insync, &dev->flags)) { 4504 if (s->failed < 2) 4505 s->failed_num[s->failed] = i; 4506 s->failed++; 4507 if (rdev && !test_bit(Faulty, &rdev->flags)) 4508 do_recovery = 1; 4509 } 4510 4511 if (test_bit(R5_InJournal, &dev->flags)) 4512 s->injournal++; 4513 if (test_bit(R5_InJournal, &dev->flags) && dev->written) 4514 s->just_cached++; 4515 } 4516 if (test_bit(STRIPE_SYNCING, &sh->state)) { 4517 /* If there is a failed device being replaced, 4518 * we must be recovering. 4519 * else if we are after recovery_cp, we must be syncing 4520 * else if MD_RECOVERY_REQUESTED is set, we also are syncing. 4521 * else we can only be replacing 4522 * sync and recovery both need to read all devices, and so 4523 * use the same flag. 4524 */ 4525 if (do_recovery || 4526 sh->sector >= conf->mddev->recovery_cp || 4527 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery))) 4528 s->syncing = 1; 4529 else 4530 s->replacing = 1; 4531 } 4532 rcu_read_unlock(); 4533 } 4534 4535 static int clear_batch_ready(struct stripe_head *sh) 4536 { 4537 /* Return '1' if this is a member of batch, or 4538 * '0' if it is a lone stripe or a head which can now be 4539 * handled. 4540 */ 4541 struct stripe_head *tmp; 4542 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state)) 4543 return (sh->batch_head && sh->batch_head != sh); 4544 spin_lock(&sh->stripe_lock); 4545 if (!sh->batch_head) { 4546 spin_unlock(&sh->stripe_lock); 4547 return 0; 4548 } 4549 4550 /* 4551 * this stripe could be added to a batch list before we check 4552 * BATCH_READY, skips it 4553 */ 4554 if (sh->batch_head != sh) { 4555 spin_unlock(&sh->stripe_lock); 4556 return 1; 4557 } 4558 spin_lock(&sh->batch_lock); 4559 list_for_each_entry(tmp, &sh->batch_list, batch_list) 4560 clear_bit(STRIPE_BATCH_READY, &tmp->state); 4561 spin_unlock(&sh->batch_lock); 4562 spin_unlock(&sh->stripe_lock); 4563 4564 /* 4565 * BATCH_READY is cleared, no new stripes can be added. 4566 * batch_list can be accessed without lock 4567 */ 4568 return 0; 4569 } 4570 4571 static void break_stripe_batch_list(struct stripe_head *head_sh, 4572 unsigned long handle_flags) 4573 { 4574 struct stripe_head *sh, *next; 4575 int i; 4576 int do_wakeup = 0; 4577 4578 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) { 4579 4580 list_del_init(&sh->batch_list); 4581 4582 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) | 4583 (1 << STRIPE_SYNCING) | 4584 (1 << STRIPE_REPLACED) | 4585 (1 << STRIPE_DELAYED) | 4586 (1 << STRIPE_BIT_DELAY) | 4587 (1 << STRIPE_FULL_WRITE) | 4588 (1 << STRIPE_BIOFILL_RUN) | 4589 (1 << STRIPE_COMPUTE_RUN) | 4590 (1 << STRIPE_OPS_REQ_PENDING) | 4591 (1 << STRIPE_DISCARD) | 4592 (1 << STRIPE_BATCH_READY) | 4593 (1 << STRIPE_BATCH_ERR) | 4594 (1 << STRIPE_BITMAP_PENDING)), 4595 "stripe state: %lx\n", sh->state); 4596 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) | 4597 (1 << STRIPE_REPLACED)), 4598 "head stripe state: %lx\n", head_sh->state); 4599 4600 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS | 4601 (1 << STRIPE_PREREAD_ACTIVE) | 4602 (1 << STRIPE_DEGRADED)), 4603 head_sh->state & (1 << STRIPE_INSYNC)); 4604 4605 sh->check_state = head_sh->check_state; 4606 sh->reconstruct_state = head_sh->reconstruct_state; 4607 for (i = 0; i < sh->disks; i++) { 4608 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 4609 do_wakeup = 1; 4610 sh->dev[i].flags = head_sh->dev[i].flags & 4611 (~((1 << R5_WriteError) | (1 << R5_Overlap))); 4612 } 4613 spin_lock_irq(&sh->stripe_lock); 4614 sh->batch_head = NULL; 4615 spin_unlock_irq(&sh->stripe_lock); 4616 if (handle_flags == 0 || 4617 sh->state & handle_flags) 4618 set_bit(STRIPE_HANDLE, &sh->state); 4619 raid5_release_stripe(sh); 4620 } 4621 spin_lock_irq(&head_sh->stripe_lock); 4622 head_sh->batch_head = NULL; 4623 spin_unlock_irq(&head_sh->stripe_lock); 4624 for (i = 0; i < head_sh->disks; i++) 4625 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags)) 4626 do_wakeup = 1; 4627 if (head_sh->state & handle_flags) 4628 set_bit(STRIPE_HANDLE, &head_sh->state); 4629 4630 if (do_wakeup) 4631 wake_up(&head_sh->raid_conf->wait_for_overlap); 4632 } 4633 4634 static void handle_stripe(struct stripe_head *sh) 4635 { 4636 struct stripe_head_state s; 4637 struct r5conf *conf = sh->raid_conf; 4638 int i; 4639 int prexor; 4640 int disks = sh->disks; 4641 struct r5dev *pdev, *qdev; 4642 4643 clear_bit(STRIPE_HANDLE, &sh->state); 4644 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) { 4645 /* already being handled, ensure it gets handled 4646 * again when current action finishes */ 4647 set_bit(STRIPE_HANDLE, &sh->state); 4648 return; 4649 } 4650 4651 if (clear_batch_ready(sh) ) { 4652 clear_bit_unlock(STRIPE_ACTIVE, &sh->state); 4653 return; 4654 } 4655 4656 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state)) 4657 break_stripe_batch_list(sh, 0); 4658 4659 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) { 4660 spin_lock(&sh->stripe_lock); 4661 /* 4662 * Cannot process 'sync' concurrently with 'discard'. 4663 * Flush data in r5cache before 'sync'. 4664 */ 4665 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) && 4666 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) && 4667 !test_bit(STRIPE_DISCARD, &sh->state) && 4668 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) { 4669 set_bit(STRIPE_SYNCING, &sh->state); 4670 clear_bit(STRIPE_INSYNC, &sh->state); 4671 clear_bit(STRIPE_REPLACED, &sh->state); 4672 } 4673 spin_unlock(&sh->stripe_lock); 4674 } 4675 clear_bit(STRIPE_DELAYED, &sh->state); 4676 4677 pr_debug("handling stripe %llu, state=%#lx cnt=%d, " 4678 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n", 4679 (unsigned long long)sh->sector, sh->state, 4680 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx, 4681 sh->check_state, sh->reconstruct_state); 4682 4683 analyse_stripe(sh, &s); 4684 4685 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state)) 4686 goto finish; 4687 4688 if (s.handle_bad_blocks || 4689 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) { 4690 set_bit(STRIPE_HANDLE, &sh->state); 4691 goto finish; 4692 } 4693 4694 if (unlikely(s.blocked_rdev)) { 4695 if (s.syncing || s.expanding || s.expanded || 4696 s.replacing || s.to_write || s.written) { 4697 set_bit(STRIPE_HANDLE, &sh->state); 4698 goto finish; 4699 } 4700 /* There is nothing for the blocked_rdev to block */ 4701 rdev_dec_pending(s.blocked_rdev, conf->mddev); 4702 s.blocked_rdev = NULL; 4703 } 4704 4705 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) { 4706 set_bit(STRIPE_OP_BIOFILL, &s.ops_request); 4707 set_bit(STRIPE_BIOFILL_RUN, &sh->state); 4708 } 4709 4710 pr_debug("locked=%d uptodate=%d to_read=%d" 4711 " to_write=%d failed=%d failed_num=%d,%d\n", 4712 s.locked, s.uptodate, s.to_read, s.to_write, s.failed, 4713 s.failed_num[0], s.failed_num[1]); 4714 /* 4715 * check if the array has lost more than max_degraded devices and, 4716 * if so, some requests might need to be failed. 4717 * 4718 * When journal device failed (log_failed), we will only process 4719 * the stripe if there is data need write to raid disks 4720 */ 4721 if (s.failed > conf->max_degraded || 4722 (s.log_failed && s.injournal == 0)) { 4723 sh->check_state = 0; 4724 sh->reconstruct_state = 0; 4725 break_stripe_batch_list(sh, 0); 4726 if (s.to_read+s.to_write+s.written) 4727 handle_failed_stripe(conf, sh, &s, disks); 4728 if (s.syncing + s.replacing) 4729 handle_failed_sync(conf, sh, &s); 4730 } 4731 4732 /* Now we check to see if any write operations have recently 4733 * completed 4734 */ 4735 prexor = 0; 4736 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result) 4737 prexor = 1; 4738 if (sh->reconstruct_state == reconstruct_state_drain_result || 4739 sh->reconstruct_state == reconstruct_state_prexor_drain_result) { 4740 sh->reconstruct_state = reconstruct_state_idle; 4741 4742 /* All the 'written' buffers and the parity block are ready to 4743 * be written back to disk 4744 */ 4745 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) && 4746 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)); 4747 BUG_ON(sh->qd_idx >= 0 && 4748 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) && 4749 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags)); 4750 for (i = disks; i--; ) { 4751 struct r5dev *dev = &sh->dev[i]; 4752 if (test_bit(R5_LOCKED, &dev->flags) && 4753 (i == sh->pd_idx || i == sh->qd_idx || 4754 dev->written || test_bit(R5_InJournal, 4755 &dev->flags))) { 4756 pr_debug("Writing block %d\n", i); 4757 set_bit(R5_Wantwrite, &dev->flags); 4758 if (prexor) 4759 continue; 4760 if (s.failed > 1) 4761 continue; 4762 if (!test_bit(R5_Insync, &dev->flags) || 4763 ((i == sh->pd_idx || i == sh->qd_idx) && 4764 s.failed == 0)) 4765 set_bit(STRIPE_INSYNC, &sh->state); 4766 } 4767 } 4768 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4769 s.dec_preread_active = 1; 4770 } 4771 4772 /* 4773 * might be able to return some write requests if the parity blocks 4774 * are safe, or on a failed drive 4775 */ 4776 pdev = &sh->dev[sh->pd_idx]; 4777 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx) 4778 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx); 4779 qdev = &sh->dev[sh->qd_idx]; 4780 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx) 4781 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx) 4782 || conf->level < 6; 4783 4784 if (s.written && 4785 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags) 4786 && !test_bit(R5_LOCKED, &pdev->flags) 4787 && (test_bit(R5_UPTODATE, &pdev->flags) || 4788 test_bit(R5_Discard, &pdev->flags))))) && 4789 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags) 4790 && !test_bit(R5_LOCKED, &qdev->flags) 4791 && (test_bit(R5_UPTODATE, &qdev->flags) || 4792 test_bit(R5_Discard, &qdev->flags)))))) 4793 handle_stripe_clean_event(conf, sh, disks); 4794 4795 if (s.just_cached) 4796 r5c_handle_cached_data_endio(conf, sh, disks); 4797 log_stripe_write_finished(sh); 4798 4799 /* Now we might consider reading some blocks, either to check/generate 4800 * parity, or to satisfy requests 4801 * or to load a block that is being partially written. 4802 */ 4803 if (s.to_read || s.non_overwrite 4804 || (conf->level == 6 && s.to_write && s.failed) 4805 || (s.syncing && (s.uptodate + s.compute < disks)) 4806 || s.replacing 4807 || s.expanding) 4808 handle_stripe_fill(sh, &s, disks); 4809 4810 /* 4811 * When the stripe finishes full journal write cycle (write to journal 4812 * and raid disk), this is the clean up procedure so it is ready for 4813 * next operation. 4814 */ 4815 r5c_finish_stripe_write_out(conf, sh, &s); 4816 4817 /* 4818 * Now to consider new write requests, cache write back and what else, 4819 * if anything should be read. We do not handle new writes when: 4820 * 1/ A 'write' operation (copy+xor) is already in flight. 4821 * 2/ A 'check' operation is in flight, as it may clobber the parity 4822 * block. 4823 * 3/ A r5c cache log write is in flight. 4824 */ 4825 4826 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) { 4827 if (!r5c_is_writeback(conf->log)) { 4828 if (s.to_write) 4829 handle_stripe_dirtying(conf, sh, &s, disks); 4830 } else { /* write back cache */ 4831 int ret = 0; 4832 4833 /* First, try handle writes in caching phase */ 4834 if (s.to_write) 4835 ret = r5c_try_caching_write(conf, sh, &s, 4836 disks); 4837 /* 4838 * If caching phase failed: ret == -EAGAIN 4839 * OR 4840 * stripe under reclaim: !caching && injournal 4841 * 4842 * fall back to handle_stripe_dirtying() 4843 */ 4844 if (ret == -EAGAIN || 4845 /* stripe under reclaim: !caching && injournal */ 4846 (!test_bit(STRIPE_R5C_CACHING, &sh->state) && 4847 s.injournal > 0)) { 4848 ret = handle_stripe_dirtying(conf, sh, &s, 4849 disks); 4850 if (ret == -EAGAIN) 4851 goto finish; 4852 } 4853 } 4854 } 4855 4856 /* maybe we need to check and possibly fix the parity for this stripe 4857 * Any reads will already have been scheduled, so we just see if enough 4858 * data is available. The parity check is held off while parity 4859 * dependent operations are in flight. 4860 */ 4861 if (sh->check_state || 4862 (s.syncing && s.locked == 0 && 4863 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 4864 !test_bit(STRIPE_INSYNC, &sh->state))) { 4865 if (conf->level == 6) 4866 handle_parity_checks6(conf, sh, &s, disks); 4867 else 4868 handle_parity_checks5(conf, sh, &s, disks); 4869 } 4870 4871 if ((s.replacing || s.syncing) && s.locked == 0 4872 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state) 4873 && !test_bit(STRIPE_REPLACED, &sh->state)) { 4874 /* Write out to replacement devices where possible */ 4875 for (i = 0; i < conf->raid_disks; i++) 4876 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) { 4877 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags)); 4878 set_bit(R5_WantReplace, &sh->dev[i].flags); 4879 set_bit(R5_LOCKED, &sh->dev[i].flags); 4880 s.locked++; 4881 } 4882 if (s.replacing) 4883 set_bit(STRIPE_INSYNC, &sh->state); 4884 set_bit(STRIPE_REPLACED, &sh->state); 4885 } 4886 if ((s.syncing || s.replacing) && s.locked == 0 && 4887 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 4888 test_bit(STRIPE_INSYNC, &sh->state)) { 4889 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 4890 clear_bit(STRIPE_SYNCING, &sh->state); 4891 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 4892 wake_up(&conf->wait_for_overlap); 4893 } 4894 4895 /* If the failed drives are just a ReadError, then we might need 4896 * to progress the repair/check process 4897 */ 4898 if (s.failed <= conf->max_degraded && !conf->mddev->ro) 4899 for (i = 0; i < s.failed; i++) { 4900 struct r5dev *dev = &sh->dev[s.failed_num[i]]; 4901 if (test_bit(R5_ReadError, &dev->flags) 4902 && !test_bit(R5_LOCKED, &dev->flags) 4903 && test_bit(R5_UPTODATE, &dev->flags) 4904 ) { 4905 if (!test_bit(R5_ReWrite, &dev->flags)) { 4906 set_bit(R5_Wantwrite, &dev->flags); 4907 set_bit(R5_ReWrite, &dev->flags); 4908 set_bit(R5_LOCKED, &dev->flags); 4909 s.locked++; 4910 } else { 4911 /* let's read it back */ 4912 set_bit(R5_Wantread, &dev->flags); 4913 set_bit(R5_LOCKED, &dev->flags); 4914 s.locked++; 4915 } 4916 } 4917 } 4918 4919 /* Finish reconstruct operations initiated by the expansion process */ 4920 if (sh->reconstruct_state == reconstruct_state_result) { 4921 struct stripe_head *sh_src 4922 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1); 4923 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) { 4924 /* sh cannot be written until sh_src has been read. 4925 * so arrange for sh to be delayed a little 4926 */ 4927 set_bit(STRIPE_DELAYED, &sh->state); 4928 set_bit(STRIPE_HANDLE, &sh->state); 4929 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, 4930 &sh_src->state)) 4931 atomic_inc(&conf->preread_active_stripes); 4932 raid5_release_stripe(sh_src); 4933 goto finish; 4934 } 4935 if (sh_src) 4936 raid5_release_stripe(sh_src); 4937 4938 sh->reconstruct_state = reconstruct_state_idle; 4939 clear_bit(STRIPE_EXPANDING, &sh->state); 4940 for (i = conf->raid_disks; i--; ) { 4941 set_bit(R5_Wantwrite, &sh->dev[i].flags); 4942 set_bit(R5_LOCKED, &sh->dev[i].flags); 4943 s.locked++; 4944 } 4945 } 4946 4947 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) && 4948 !sh->reconstruct_state) { 4949 /* Need to write out all blocks after computing parity */ 4950 sh->disks = conf->raid_disks; 4951 stripe_set_idx(sh->sector, conf, 0, sh); 4952 schedule_reconstruction(sh, &s, 1, 1); 4953 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) { 4954 clear_bit(STRIPE_EXPAND_READY, &sh->state); 4955 atomic_dec(&conf->reshape_stripes); 4956 wake_up(&conf->wait_for_overlap); 4957 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 4958 } 4959 4960 if (s.expanding && s.locked == 0 && 4961 !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) 4962 handle_stripe_expansion(conf, sh); 4963 4964 finish: 4965 /* wait for this device to become unblocked */ 4966 if (unlikely(s.blocked_rdev)) { 4967 if (conf->mddev->external) 4968 md_wait_for_blocked_rdev(s.blocked_rdev, 4969 conf->mddev); 4970 else 4971 /* Internal metadata will immediately 4972 * be written by raid5d, so we don't 4973 * need to wait here. 4974 */ 4975 rdev_dec_pending(s.blocked_rdev, 4976 conf->mddev); 4977 } 4978 4979 if (s.handle_bad_blocks) 4980 for (i = disks; i--; ) { 4981 struct md_rdev *rdev; 4982 struct r5dev *dev = &sh->dev[i]; 4983 if (test_and_clear_bit(R5_WriteError, &dev->flags)) { 4984 /* We own a safe reference to the rdev */ 4985 rdev = conf->disks[i].rdev; 4986 if (!rdev_set_badblocks(rdev, sh->sector, 4987 STRIPE_SECTORS, 0)) 4988 md_error(conf->mddev, rdev); 4989 rdev_dec_pending(rdev, conf->mddev); 4990 } 4991 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) { 4992 rdev = conf->disks[i].rdev; 4993 rdev_clear_badblocks(rdev, sh->sector, 4994 STRIPE_SECTORS, 0); 4995 rdev_dec_pending(rdev, conf->mddev); 4996 } 4997 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) { 4998 rdev = conf->disks[i].replacement; 4999 if (!rdev) 5000 /* rdev have been moved down */ 5001 rdev = conf->disks[i].rdev; 5002 rdev_clear_badblocks(rdev, sh->sector, 5003 STRIPE_SECTORS, 0); 5004 rdev_dec_pending(rdev, conf->mddev); 5005 } 5006 } 5007 5008 if (s.ops_request) 5009 raid_run_ops(sh, s.ops_request); 5010 5011 ops_run_io(sh, &s); 5012 5013 if (s.dec_preread_active) { 5014 /* We delay this until after ops_run_io so that if make_request 5015 * is waiting on a flush, it won't continue until the writes 5016 * have actually been submitted. 5017 */ 5018 atomic_dec(&conf->preread_active_stripes); 5019 if (atomic_read(&conf->preread_active_stripes) < 5020 IO_THRESHOLD) 5021 md_wakeup_thread(conf->mddev->thread); 5022 } 5023 5024 clear_bit_unlock(STRIPE_ACTIVE, &sh->state); 5025 } 5026 5027 static void raid5_activate_delayed(struct r5conf *conf) 5028 { 5029 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) { 5030 while (!list_empty(&conf->delayed_list)) { 5031 struct list_head *l = conf->delayed_list.next; 5032 struct stripe_head *sh; 5033 sh = list_entry(l, struct stripe_head, lru); 5034 list_del_init(l); 5035 clear_bit(STRIPE_DELAYED, &sh->state); 5036 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5037 atomic_inc(&conf->preread_active_stripes); 5038 list_add_tail(&sh->lru, &conf->hold_list); 5039 raid5_wakeup_stripe_thread(sh); 5040 } 5041 } 5042 } 5043 5044 static void activate_bit_delay(struct r5conf *conf, 5045 struct list_head *temp_inactive_list) 5046 { 5047 /* device_lock is held */ 5048 struct list_head head; 5049 list_add(&head, &conf->bitmap_list); 5050 list_del_init(&conf->bitmap_list); 5051 while (!list_empty(&head)) { 5052 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru); 5053 int hash; 5054 list_del_init(&sh->lru); 5055 atomic_inc(&sh->count); 5056 hash = sh->hash_lock_index; 5057 __release_stripe(conf, sh, &temp_inactive_list[hash]); 5058 } 5059 } 5060 5061 static int raid5_congested(struct mddev *mddev, int bits) 5062 { 5063 struct r5conf *conf = mddev->private; 5064 5065 /* No difference between reads and writes. Just check 5066 * how busy the stripe_cache is 5067 */ 5068 5069 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) 5070 return 1; 5071 5072 /* Also checks whether there is pressure on r5cache log space */ 5073 if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) 5074 return 1; 5075 if (conf->quiesce) 5076 return 1; 5077 if (atomic_read(&conf->empty_inactive_list_nr)) 5078 return 1; 5079 5080 return 0; 5081 } 5082 5083 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio) 5084 { 5085 struct r5conf *conf = mddev->private; 5086 sector_t sector = bio->bi_iter.bi_sector; 5087 unsigned int chunk_sectors; 5088 unsigned int bio_sectors = bio_sectors(bio); 5089 5090 WARN_ON_ONCE(bio->bi_partno); 5091 5092 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors); 5093 return chunk_sectors >= 5094 ((sector & (chunk_sectors - 1)) + bio_sectors); 5095 } 5096 5097 /* 5098 * add bio to the retry LIFO ( in O(1) ... we are in interrupt ) 5099 * later sampled by raid5d. 5100 */ 5101 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf) 5102 { 5103 unsigned long flags; 5104 5105 spin_lock_irqsave(&conf->device_lock, flags); 5106 5107 bi->bi_next = conf->retry_read_aligned_list; 5108 conf->retry_read_aligned_list = bi; 5109 5110 spin_unlock_irqrestore(&conf->device_lock, flags); 5111 md_wakeup_thread(conf->mddev->thread); 5112 } 5113 5114 static struct bio *remove_bio_from_retry(struct r5conf *conf, 5115 unsigned int *offset) 5116 { 5117 struct bio *bi; 5118 5119 bi = conf->retry_read_aligned; 5120 if (bi) { 5121 *offset = conf->retry_read_offset; 5122 conf->retry_read_aligned = NULL; 5123 return bi; 5124 } 5125 bi = conf->retry_read_aligned_list; 5126 if(bi) { 5127 conf->retry_read_aligned_list = bi->bi_next; 5128 bi->bi_next = NULL; 5129 *offset = 0; 5130 } 5131 5132 return bi; 5133 } 5134 5135 /* 5136 * The "raid5_align_endio" should check if the read succeeded and if it 5137 * did, call bio_endio on the original bio (having bio_put the new bio 5138 * first). 5139 * If the read failed.. 5140 */ 5141 static void raid5_align_endio(struct bio *bi) 5142 { 5143 struct bio* raid_bi = bi->bi_private; 5144 struct mddev *mddev; 5145 struct r5conf *conf; 5146 struct md_rdev *rdev; 5147 blk_status_t error = bi->bi_status; 5148 5149 bio_put(bi); 5150 5151 rdev = (void*)raid_bi->bi_next; 5152 raid_bi->bi_next = NULL; 5153 mddev = rdev->mddev; 5154 conf = mddev->private; 5155 5156 rdev_dec_pending(rdev, conf->mddev); 5157 5158 if (!error) { 5159 bio_endio(raid_bi); 5160 if (atomic_dec_and_test(&conf->active_aligned_reads)) 5161 wake_up(&conf->wait_for_quiescent); 5162 return; 5163 } 5164 5165 pr_debug("raid5_align_endio : io error...handing IO for a retry\n"); 5166 5167 add_bio_to_retry(raid_bi, conf); 5168 } 5169 5170 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio) 5171 { 5172 struct r5conf *conf = mddev->private; 5173 int dd_idx; 5174 struct bio* align_bi; 5175 struct md_rdev *rdev; 5176 sector_t end_sector; 5177 5178 if (!in_chunk_boundary(mddev, raid_bio)) { 5179 pr_debug("%s: non aligned\n", __func__); 5180 return 0; 5181 } 5182 /* 5183 * use bio_clone_fast to make a copy of the bio 5184 */ 5185 align_bi = bio_clone_fast(raid_bio, GFP_NOIO, mddev->bio_set); 5186 if (!align_bi) 5187 return 0; 5188 /* 5189 * set bi_end_io to a new function, and set bi_private to the 5190 * original bio. 5191 */ 5192 align_bi->bi_end_io = raid5_align_endio; 5193 align_bi->bi_private = raid_bio; 5194 /* 5195 * compute position 5196 */ 5197 align_bi->bi_iter.bi_sector = 5198 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 5199 0, &dd_idx, NULL); 5200 5201 end_sector = bio_end_sector(align_bi); 5202 rcu_read_lock(); 5203 rdev = rcu_dereference(conf->disks[dd_idx].replacement); 5204 if (!rdev || test_bit(Faulty, &rdev->flags) || 5205 rdev->recovery_offset < end_sector) { 5206 rdev = rcu_dereference(conf->disks[dd_idx].rdev); 5207 if (rdev && 5208 (test_bit(Faulty, &rdev->flags) || 5209 !(test_bit(In_sync, &rdev->flags) || 5210 rdev->recovery_offset >= end_sector))) 5211 rdev = NULL; 5212 } 5213 5214 if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) { 5215 rcu_read_unlock(); 5216 bio_put(align_bi); 5217 return 0; 5218 } 5219 5220 if (rdev) { 5221 sector_t first_bad; 5222 int bad_sectors; 5223 5224 atomic_inc(&rdev->nr_pending); 5225 rcu_read_unlock(); 5226 raid_bio->bi_next = (void*)rdev; 5227 bio_set_dev(align_bi, rdev->bdev); 5228 bio_clear_flag(align_bi, BIO_SEG_VALID); 5229 5230 if (is_badblock(rdev, align_bi->bi_iter.bi_sector, 5231 bio_sectors(align_bi), 5232 &first_bad, &bad_sectors)) { 5233 bio_put(align_bi); 5234 rdev_dec_pending(rdev, mddev); 5235 return 0; 5236 } 5237 5238 /* No reshape active, so we can trust rdev->data_offset */ 5239 align_bi->bi_iter.bi_sector += rdev->data_offset; 5240 5241 spin_lock_irq(&conf->device_lock); 5242 wait_event_lock_irq(conf->wait_for_quiescent, 5243 conf->quiesce == 0, 5244 conf->device_lock); 5245 atomic_inc(&conf->active_aligned_reads); 5246 spin_unlock_irq(&conf->device_lock); 5247 5248 if (mddev->gendisk) 5249 trace_block_bio_remap(align_bi->bi_disk->queue, 5250 align_bi, disk_devt(mddev->gendisk), 5251 raid_bio->bi_iter.bi_sector); 5252 generic_make_request(align_bi); 5253 return 1; 5254 } else { 5255 rcu_read_unlock(); 5256 bio_put(align_bi); 5257 return 0; 5258 } 5259 } 5260 5261 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio) 5262 { 5263 struct bio *split; 5264 sector_t sector = raid_bio->bi_iter.bi_sector; 5265 unsigned chunk_sects = mddev->chunk_sectors; 5266 unsigned sectors = chunk_sects - (sector & (chunk_sects-1)); 5267 5268 if (sectors < bio_sectors(raid_bio)) { 5269 struct r5conf *conf = mddev->private; 5270 split = bio_split(raid_bio, sectors, GFP_NOIO, conf->bio_split); 5271 bio_chain(split, raid_bio); 5272 generic_make_request(raid_bio); 5273 raid_bio = split; 5274 } 5275 5276 if (!raid5_read_one_chunk(mddev, raid_bio)) 5277 return raid_bio; 5278 5279 return NULL; 5280 } 5281 5282 /* __get_priority_stripe - get the next stripe to process 5283 * 5284 * Full stripe writes are allowed to pass preread active stripes up until 5285 * the bypass_threshold is exceeded. In general the bypass_count 5286 * increments when the handle_list is handled before the hold_list; however, it 5287 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a 5288 * stripe with in flight i/o. The bypass_count will be reset when the 5289 * head of the hold_list has changed, i.e. the head was promoted to the 5290 * handle_list. 5291 */ 5292 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group) 5293 { 5294 struct stripe_head *sh, *tmp; 5295 struct list_head *handle_list = NULL; 5296 struct r5worker_group *wg; 5297 bool second_try = !r5c_is_writeback(conf->log) && 5298 !r5l_log_disk_error(conf); 5299 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) || 5300 r5l_log_disk_error(conf); 5301 5302 again: 5303 wg = NULL; 5304 sh = NULL; 5305 if (conf->worker_cnt_per_group == 0) { 5306 handle_list = try_loprio ? &conf->loprio_list : 5307 &conf->handle_list; 5308 } else if (group != ANY_GROUP) { 5309 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list : 5310 &conf->worker_groups[group].handle_list; 5311 wg = &conf->worker_groups[group]; 5312 } else { 5313 int i; 5314 for (i = 0; i < conf->group_cnt; i++) { 5315 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list : 5316 &conf->worker_groups[i].handle_list; 5317 wg = &conf->worker_groups[i]; 5318 if (!list_empty(handle_list)) 5319 break; 5320 } 5321 } 5322 5323 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n", 5324 __func__, 5325 list_empty(handle_list) ? "empty" : "busy", 5326 list_empty(&conf->hold_list) ? "empty" : "busy", 5327 atomic_read(&conf->pending_full_writes), conf->bypass_count); 5328 5329 if (!list_empty(handle_list)) { 5330 sh = list_entry(handle_list->next, typeof(*sh), lru); 5331 5332 if (list_empty(&conf->hold_list)) 5333 conf->bypass_count = 0; 5334 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) { 5335 if (conf->hold_list.next == conf->last_hold) 5336 conf->bypass_count++; 5337 else { 5338 conf->last_hold = conf->hold_list.next; 5339 conf->bypass_count -= conf->bypass_threshold; 5340 if (conf->bypass_count < 0) 5341 conf->bypass_count = 0; 5342 } 5343 } 5344 } else if (!list_empty(&conf->hold_list) && 5345 ((conf->bypass_threshold && 5346 conf->bypass_count > conf->bypass_threshold) || 5347 atomic_read(&conf->pending_full_writes) == 0)) { 5348 5349 list_for_each_entry(tmp, &conf->hold_list, lru) { 5350 if (conf->worker_cnt_per_group == 0 || 5351 group == ANY_GROUP || 5352 !cpu_online(tmp->cpu) || 5353 cpu_to_group(tmp->cpu) == group) { 5354 sh = tmp; 5355 break; 5356 } 5357 } 5358 5359 if (sh) { 5360 conf->bypass_count -= conf->bypass_threshold; 5361 if (conf->bypass_count < 0) 5362 conf->bypass_count = 0; 5363 } 5364 wg = NULL; 5365 } 5366 5367 if (!sh) { 5368 if (second_try) 5369 return NULL; 5370 second_try = true; 5371 try_loprio = !try_loprio; 5372 goto again; 5373 } 5374 5375 if (wg) { 5376 wg->stripes_cnt--; 5377 sh->group = NULL; 5378 } 5379 list_del_init(&sh->lru); 5380 BUG_ON(atomic_inc_return(&sh->count) != 1); 5381 return sh; 5382 } 5383 5384 struct raid5_plug_cb { 5385 struct blk_plug_cb cb; 5386 struct list_head list; 5387 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS]; 5388 }; 5389 5390 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule) 5391 { 5392 struct raid5_plug_cb *cb = container_of( 5393 blk_cb, struct raid5_plug_cb, cb); 5394 struct stripe_head *sh; 5395 struct mddev *mddev = cb->cb.data; 5396 struct r5conf *conf = mddev->private; 5397 int cnt = 0; 5398 int hash; 5399 5400 if (cb->list.next && !list_empty(&cb->list)) { 5401 spin_lock_irq(&conf->device_lock); 5402 while (!list_empty(&cb->list)) { 5403 sh = list_first_entry(&cb->list, struct stripe_head, lru); 5404 list_del_init(&sh->lru); 5405 /* 5406 * avoid race release_stripe_plug() sees 5407 * STRIPE_ON_UNPLUG_LIST clear but the stripe 5408 * is still in our list 5409 */ 5410 smp_mb__before_atomic(); 5411 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state); 5412 /* 5413 * STRIPE_ON_RELEASE_LIST could be set here. In that 5414 * case, the count is always > 1 here 5415 */ 5416 hash = sh->hash_lock_index; 5417 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]); 5418 cnt++; 5419 } 5420 spin_unlock_irq(&conf->device_lock); 5421 } 5422 release_inactive_stripe_list(conf, cb->temp_inactive_list, 5423 NR_STRIPE_HASH_LOCKS); 5424 if (mddev->queue) 5425 trace_block_unplug(mddev->queue, cnt, !from_schedule); 5426 kfree(cb); 5427 } 5428 5429 static void release_stripe_plug(struct mddev *mddev, 5430 struct stripe_head *sh) 5431 { 5432 struct blk_plug_cb *blk_cb = blk_check_plugged( 5433 raid5_unplug, mddev, 5434 sizeof(struct raid5_plug_cb)); 5435 struct raid5_plug_cb *cb; 5436 5437 if (!blk_cb) { 5438 raid5_release_stripe(sh); 5439 return; 5440 } 5441 5442 cb = container_of(blk_cb, struct raid5_plug_cb, cb); 5443 5444 if (cb->list.next == NULL) { 5445 int i; 5446 INIT_LIST_HEAD(&cb->list); 5447 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 5448 INIT_LIST_HEAD(cb->temp_inactive_list + i); 5449 } 5450 5451 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)) 5452 list_add_tail(&sh->lru, &cb->list); 5453 else 5454 raid5_release_stripe(sh); 5455 } 5456 5457 static void make_discard_request(struct mddev *mddev, struct bio *bi) 5458 { 5459 struct r5conf *conf = mddev->private; 5460 sector_t logical_sector, last_sector; 5461 struct stripe_head *sh; 5462 int stripe_sectors; 5463 5464 if (mddev->reshape_position != MaxSector) 5465 /* Skip discard while reshape is happening */ 5466 return; 5467 5468 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1); 5469 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9); 5470 5471 bi->bi_next = NULL; 5472 5473 stripe_sectors = conf->chunk_sectors * 5474 (conf->raid_disks - conf->max_degraded); 5475 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector, 5476 stripe_sectors); 5477 sector_div(last_sector, stripe_sectors); 5478 5479 logical_sector *= conf->chunk_sectors; 5480 last_sector *= conf->chunk_sectors; 5481 5482 for (; logical_sector < last_sector; 5483 logical_sector += STRIPE_SECTORS) { 5484 DEFINE_WAIT(w); 5485 int d; 5486 again: 5487 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0); 5488 prepare_to_wait(&conf->wait_for_overlap, &w, 5489 TASK_UNINTERRUPTIBLE); 5490 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 5491 if (test_bit(STRIPE_SYNCING, &sh->state)) { 5492 raid5_release_stripe(sh); 5493 schedule(); 5494 goto again; 5495 } 5496 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 5497 spin_lock_irq(&sh->stripe_lock); 5498 for (d = 0; d < conf->raid_disks; d++) { 5499 if (d == sh->pd_idx || d == sh->qd_idx) 5500 continue; 5501 if (sh->dev[d].towrite || sh->dev[d].toread) { 5502 set_bit(R5_Overlap, &sh->dev[d].flags); 5503 spin_unlock_irq(&sh->stripe_lock); 5504 raid5_release_stripe(sh); 5505 schedule(); 5506 goto again; 5507 } 5508 } 5509 set_bit(STRIPE_DISCARD, &sh->state); 5510 finish_wait(&conf->wait_for_overlap, &w); 5511 sh->overwrite_disks = 0; 5512 for (d = 0; d < conf->raid_disks; d++) { 5513 if (d == sh->pd_idx || d == sh->qd_idx) 5514 continue; 5515 sh->dev[d].towrite = bi; 5516 set_bit(R5_OVERWRITE, &sh->dev[d].flags); 5517 bio_inc_remaining(bi); 5518 md_write_inc(mddev, bi); 5519 sh->overwrite_disks++; 5520 } 5521 spin_unlock_irq(&sh->stripe_lock); 5522 if (conf->mddev->bitmap) { 5523 for (d = 0; 5524 d < conf->raid_disks - conf->max_degraded; 5525 d++) 5526 bitmap_startwrite(mddev->bitmap, 5527 sh->sector, 5528 STRIPE_SECTORS, 5529 0); 5530 sh->bm_seq = conf->seq_flush + 1; 5531 set_bit(STRIPE_BIT_DELAY, &sh->state); 5532 } 5533 5534 set_bit(STRIPE_HANDLE, &sh->state); 5535 clear_bit(STRIPE_DELAYED, &sh->state); 5536 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5537 atomic_inc(&conf->preread_active_stripes); 5538 release_stripe_plug(mddev, sh); 5539 } 5540 5541 bio_endio(bi); 5542 } 5543 5544 static bool raid5_make_request(struct mddev *mddev, struct bio * bi) 5545 { 5546 struct r5conf *conf = mddev->private; 5547 int dd_idx; 5548 sector_t new_sector; 5549 sector_t logical_sector, last_sector; 5550 struct stripe_head *sh; 5551 const int rw = bio_data_dir(bi); 5552 DEFINE_WAIT(w); 5553 bool do_prepare; 5554 bool do_flush = false; 5555 5556 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) { 5557 int ret = r5l_handle_flush_request(conf->log, bi); 5558 5559 if (ret == 0) 5560 return true; 5561 if (ret == -ENODEV) { 5562 md_flush_request(mddev, bi); 5563 return true; 5564 } 5565 /* ret == -EAGAIN, fallback */ 5566 /* 5567 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH, 5568 * we need to flush journal device 5569 */ 5570 do_flush = bi->bi_opf & REQ_PREFLUSH; 5571 } 5572 5573 if (!md_write_start(mddev, bi)) 5574 return false; 5575 /* 5576 * If array is degraded, better not do chunk aligned read because 5577 * later we might have to read it again in order to reconstruct 5578 * data on failed drives. 5579 */ 5580 if (rw == READ && mddev->degraded == 0 && 5581 mddev->reshape_position == MaxSector) { 5582 bi = chunk_aligned_read(mddev, bi); 5583 if (!bi) 5584 return true; 5585 } 5586 5587 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) { 5588 make_discard_request(mddev, bi); 5589 md_write_end(mddev); 5590 return true; 5591 } 5592 5593 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1); 5594 last_sector = bio_end_sector(bi); 5595 bi->bi_next = NULL; 5596 5597 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE); 5598 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) { 5599 int previous; 5600 int seq; 5601 5602 do_prepare = false; 5603 retry: 5604 seq = read_seqcount_begin(&conf->gen_lock); 5605 previous = 0; 5606 if (do_prepare) 5607 prepare_to_wait(&conf->wait_for_overlap, &w, 5608 TASK_UNINTERRUPTIBLE); 5609 if (unlikely(conf->reshape_progress != MaxSector)) { 5610 /* spinlock is needed as reshape_progress may be 5611 * 64bit on a 32bit platform, and so it might be 5612 * possible to see a half-updated value 5613 * Of course reshape_progress could change after 5614 * the lock is dropped, so once we get a reference 5615 * to the stripe that we think it is, we will have 5616 * to check again. 5617 */ 5618 spin_lock_irq(&conf->device_lock); 5619 if (mddev->reshape_backwards 5620 ? logical_sector < conf->reshape_progress 5621 : logical_sector >= conf->reshape_progress) { 5622 previous = 1; 5623 } else { 5624 if (mddev->reshape_backwards 5625 ? logical_sector < conf->reshape_safe 5626 : logical_sector >= conf->reshape_safe) { 5627 spin_unlock_irq(&conf->device_lock); 5628 schedule(); 5629 do_prepare = true; 5630 goto retry; 5631 } 5632 } 5633 spin_unlock_irq(&conf->device_lock); 5634 } 5635 5636 new_sector = raid5_compute_sector(conf, logical_sector, 5637 previous, 5638 &dd_idx, NULL); 5639 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n", 5640 (unsigned long long)new_sector, 5641 (unsigned long long)logical_sector); 5642 5643 sh = raid5_get_active_stripe(conf, new_sector, previous, 5644 (bi->bi_opf & REQ_RAHEAD), 0); 5645 if (sh) { 5646 if (unlikely(previous)) { 5647 /* expansion might have moved on while waiting for a 5648 * stripe, so we must do the range check again. 5649 * Expansion could still move past after this 5650 * test, but as we are holding a reference to 5651 * 'sh', we know that if that happens, 5652 * STRIPE_EXPANDING will get set and the expansion 5653 * won't proceed until we finish with the stripe. 5654 */ 5655 int must_retry = 0; 5656 spin_lock_irq(&conf->device_lock); 5657 if (mddev->reshape_backwards 5658 ? logical_sector >= conf->reshape_progress 5659 : logical_sector < conf->reshape_progress) 5660 /* mismatch, need to try again */ 5661 must_retry = 1; 5662 spin_unlock_irq(&conf->device_lock); 5663 if (must_retry) { 5664 raid5_release_stripe(sh); 5665 schedule(); 5666 do_prepare = true; 5667 goto retry; 5668 } 5669 } 5670 if (read_seqcount_retry(&conf->gen_lock, seq)) { 5671 /* Might have got the wrong stripe_head 5672 * by accident 5673 */ 5674 raid5_release_stripe(sh); 5675 goto retry; 5676 } 5677 5678 if (rw == WRITE && 5679 logical_sector >= mddev->suspend_lo && 5680 logical_sector < mddev->suspend_hi) { 5681 raid5_release_stripe(sh); 5682 /* As the suspend_* range is controlled by 5683 * userspace, we want an interruptible 5684 * wait. 5685 */ 5686 prepare_to_wait(&conf->wait_for_overlap, 5687 &w, TASK_INTERRUPTIBLE); 5688 if (logical_sector >= mddev->suspend_lo && 5689 logical_sector < mddev->suspend_hi) { 5690 sigset_t full, old; 5691 sigfillset(&full); 5692 sigprocmask(SIG_BLOCK, &full, &old); 5693 schedule(); 5694 sigprocmask(SIG_SETMASK, &old, NULL); 5695 do_prepare = true; 5696 } 5697 goto retry; 5698 } 5699 5700 if (test_bit(STRIPE_EXPANDING, &sh->state) || 5701 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) { 5702 /* Stripe is busy expanding or 5703 * add failed due to overlap. Flush everything 5704 * and wait a while 5705 */ 5706 md_wakeup_thread(mddev->thread); 5707 raid5_release_stripe(sh); 5708 schedule(); 5709 do_prepare = true; 5710 goto retry; 5711 } 5712 if (do_flush) { 5713 set_bit(STRIPE_R5C_PREFLUSH, &sh->state); 5714 /* we only need flush for one stripe */ 5715 do_flush = false; 5716 } 5717 5718 set_bit(STRIPE_HANDLE, &sh->state); 5719 clear_bit(STRIPE_DELAYED, &sh->state); 5720 if ((!sh->batch_head || sh == sh->batch_head) && 5721 (bi->bi_opf & REQ_SYNC) && 5722 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5723 atomic_inc(&conf->preread_active_stripes); 5724 release_stripe_plug(mddev, sh); 5725 } else { 5726 /* cannot get stripe for read-ahead, just give-up */ 5727 bi->bi_status = BLK_STS_IOERR; 5728 break; 5729 } 5730 } 5731 finish_wait(&conf->wait_for_overlap, &w); 5732 5733 if (rw == WRITE) 5734 md_write_end(mddev); 5735 bio_endio(bi); 5736 return true; 5737 } 5738 5739 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks); 5740 5741 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped) 5742 { 5743 /* reshaping is quite different to recovery/resync so it is 5744 * handled quite separately ... here. 5745 * 5746 * On each call to sync_request, we gather one chunk worth of 5747 * destination stripes and flag them as expanding. 5748 * Then we find all the source stripes and request reads. 5749 * As the reads complete, handle_stripe will copy the data 5750 * into the destination stripe and release that stripe. 5751 */ 5752 struct r5conf *conf = mddev->private; 5753 struct stripe_head *sh; 5754 sector_t first_sector, last_sector; 5755 int raid_disks = conf->previous_raid_disks; 5756 int data_disks = raid_disks - conf->max_degraded; 5757 int new_data_disks = conf->raid_disks - conf->max_degraded; 5758 int i; 5759 int dd_idx; 5760 sector_t writepos, readpos, safepos; 5761 sector_t stripe_addr; 5762 int reshape_sectors; 5763 struct list_head stripes; 5764 sector_t retn; 5765 5766 if (sector_nr == 0) { 5767 /* If restarting in the middle, skip the initial sectors */ 5768 if (mddev->reshape_backwards && 5769 conf->reshape_progress < raid5_size(mddev, 0, 0)) { 5770 sector_nr = raid5_size(mddev, 0, 0) 5771 - conf->reshape_progress; 5772 } else if (mddev->reshape_backwards && 5773 conf->reshape_progress == MaxSector) { 5774 /* shouldn't happen, but just in case, finish up.*/ 5775 sector_nr = MaxSector; 5776 } else if (!mddev->reshape_backwards && 5777 conf->reshape_progress > 0) 5778 sector_nr = conf->reshape_progress; 5779 sector_div(sector_nr, new_data_disks); 5780 if (sector_nr) { 5781 mddev->curr_resync_completed = sector_nr; 5782 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 5783 *skipped = 1; 5784 retn = sector_nr; 5785 goto finish; 5786 } 5787 } 5788 5789 /* We need to process a full chunk at a time. 5790 * If old and new chunk sizes differ, we need to process the 5791 * largest of these 5792 */ 5793 5794 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors); 5795 5796 /* We update the metadata at least every 10 seconds, or when 5797 * the data about to be copied would over-write the source of 5798 * the data at the front of the range. i.e. one new_stripe 5799 * along from reshape_progress new_maps to after where 5800 * reshape_safe old_maps to 5801 */ 5802 writepos = conf->reshape_progress; 5803 sector_div(writepos, new_data_disks); 5804 readpos = conf->reshape_progress; 5805 sector_div(readpos, data_disks); 5806 safepos = conf->reshape_safe; 5807 sector_div(safepos, data_disks); 5808 if (mddev->reshape_backwards) { 5809 BUG_ON(writepos < reshape_sectors); 5810 writepos -= reshape_sectors; 5811 readpos += reshape_sectors; 5812 safepos += reshape_sectors; 5813 } else { 5814 writepos += reshape_sectors; 5815 /* readpos and safepos are worst-case calculations. 5816 * A negative number is overly pessimistic, and causes 5817 * obvious problems for unsigned storage. So clip to 0. 5818 */ 5819 readpos -= min_t(sector_t, reshape_sectors, readpos); 5820 safepos -= min_t(sector_t, reshape_sectors, safepos); 5821 } 5822 5823 /* Having calculated the 'writepos' possibly use it 5824 * to set 'stripe_addr' which is where we will write to. 5825 */ 5826 if (mddev->reshape_backwards) { 5827 BUG_ON(conf->reshape_progress == 0); 5828 stripe_addr = writepos; 5829 BUG_ON((mddev->dev_sectors & 5830 ~((sector_t)reshape_sectors - 1)) 5831 - reshape_sectors - stripe_addr 5832 != sector_nr); 5833 } else { 5834 BUG_ON(writepos != sector_nr + reshape_sectors); 5835 stripe_addr = sector_nr; 5836 } 5837 5838 /* 'writepos' is the most advanced device address we might write. 5839 * 'readpos' is the least advanced device address we might read. 5840 * 'safepos' is the least address recorded in the metadata as having 5841 * been reshaped. 5842 * If there is a min_offset_diff, these are adjusted either by 5843 * increasing the safepos/readpos if diff is negative, or 5844 * increasing writepos if diff is positive. 5845 * If 'readpos' is then behind 'writepos', there is no way that we can 5846 * ensure safety in the face of a crash - that must be done by userspace 5847 * making a backup of the data. So in that case there is no particular 5848 * rush to update metadata. 5849 * Otherwise if 'safepos' is behind 'writepos', then we really need to 5850 * update the metadata to advance 'safepos' to match 'readpos' so that 5851 * we can be safe in the event of a crash. 5852 * So we insist on updating metadata if safepos is behind writepos and 5853 * readpos is beyond writepos. 5854 * In any case, update the metadata every 10 seconds. 5855 * Maybe that number should be configurable, but I'm not sure it is 5856 * worth it.... maybe it could be a multiple of safemode_delay??? 5857 */ 5858 if (conf->min_offset_diff < 0) { 5859 safepos += -conf->min_offset_diff; 5860 readpos += -conf->min_offset_diff; 5861 } else 5862 writepos += conf->min_offset_diff; 5863 5864 if ((mddev->reshape_backwards 5865 ? (safepos > writepos && readpos < writepos) 5866 : (safepos < writepos && readpos > writepos)) || 5867 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 5868 /* Cannot proceed until we've updated the superblock... */ 5869 wait_event(conf->wait_for_overlap, 5870 atomic_read(&conf->reshape_stripes)==0 5871 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5872 if (atomic_read(&conf->reshape_stripes) != 0) 5873 return 0; 5874 mddev->reshape_position = conf->reshape_progress; 5875 mddev->curr_resync_completed = sector_nr; 5876 conf->reshape_checkpoint = jiffies; 5877 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 5878 md_wakeup_thread(mddev->thread); 5879 wait_event(mddev->sb_wait, mddev->sb_flags == 0 || 5880 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5881 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 5882 return 0; 5883 spin_lock_irq(&conf->device_lock); 5884 conf->reshape_safe = mddev->reshape_position; 5885 spin_unlock_irq(&conf->device_lock); 5886 wake_up(&conf->wait_for_overlap); 5887 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 5888 } 5889 5890 INIT_LIST_HEAD(&stripes); 5891 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) { 5892 int j; 5893 int skipped_disk = 0; 5894 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1); 5895 set_bit(STRIPE_EXPANDING, &sh->state); 5896 atomic_inc(&conf->reshape_stripes); 5897 /* If any of this stripe is beyond the end of the old 5898 * array, then we need to zero those blocks 5899 */ 5900 for (j=sh->disks; j--;) { 5901 sector_t s; 5902 if (j == sh->pd_idx) 5903 continue; 5904 if (conf->level == 6 && 5905 j == sh->qd_idx) 5906 continue; 5907 s = raid5_compute_blocknr(sh, j, 0); 5908 if (s < raid5_size(mddev, 0, 0)) { 5909 skipped_disk = 1; 5910 continue; 5911 } 5912 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE); 5913 set_bit(R5_Expanded, &sh->dev[j].flags); 5914 set_bit(R5_UPTODATE, &sh->dev[j].flags); 5915 } 5916 if (!skipped_disk) { 5917 set_bit(STRIPE_EXPAND_READY, &sh->state); 5918 set_bit(STRIPE_HANDLE, &sh->state); 5919 } 5920 list_add(&sh->lru, &stripes); 5921 } 5922 spin_lock_irq(&conf->device_lock); 5923 if (mddev->reshape_backwards) 5924 conf->reshape_progress -= reshape_sectors * new_data_disks; 5925 else 5926 conf->reshape_progress += reshape_sectors * new_data_disks; 5927 spin_unlock_irq(&conf->device_lock); 5928 /* Ok, those stripe are ready. We can start scheduling 5929 * reads on the source stripes. 5930 * The source stripes are determined by mapping the first and last 5931 * block on the destination stripes. 5932 */ 5933 first_sector = 5934 raid5_compute_sector(conf, stripe_addr*(new_data_disks), 5935 1, &dd_idx, NULL); 5936 last_sector = 5937 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors) 5938 * new_data_disks - 1), 5939 1, &dd_idx, NULL); 5940 if (last_sector >= mddev->dev_sectors) 5941 last_sector = mddev->dev_sectors - 1; 5942 while (first_sector <= last_sector) { 5943 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1); 5944 set_bit(STRIPE_EXPAND_SOURCE, &sh->state); 5945 set_bit(STRIPE_HANDLE, &sh->state); 5946 raid5_release_stripe(sh); 5947 first_sector += STRIPE_SECTORS; 5948 } 5949 /* Now that the sources are clearly marked, we can release 5950 * the destination stripes 5951 */ 5952 while (!list_empty(&stripes)) { 5953 sh = list_entry(stripes.next, struct stripe_head, lru); 5954 list_del_init(&sh->lru); 5955 raid5_release_stripe(sh); 5956 } 5957 /* If this takes us to the resync_max point where we have to pause, 5958 * then we need to write out the superblock. 5959 */ 5960 sector_nr += reshape_sectors; 5961 retn = reshape_sectors; 5962 finish: 5963 if (mddev->curr_resync_completed > mddev->resync_max || 5964 (sector_nr - mddev->curr_resync_completed) * 2 5965 >= mddev->resync_max - mddev->curr_resync_completed) { 5966 /* Cannot proceed until we've updated the superblock... */ 5967 wait_event(conf->wait_for_overlap, 5968 atomic_read(&conf->reshape_stripes) == 0 5969 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5970 if (atomic_read(&conf->reshape_stripes) != 0) 5971 goto ret; 5972 mddev->reshape_position = conf->reshape_progress; 5973 mddev->curr_resync_completed = sector_nr; 5974 conf->reshape_checkpoint = jiffies; 5975 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 5976 md_wakeup_thread(mddev->thread); 5977 wait_event(mddev->sb_wait, 5978 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) 5979 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5980 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 5981 goto ret; 5982 spin_lock_irq(&conf->device_lock); 5983 conf->reshape_safe = mddev->reshape_position; 5984 spin_unlock_irq(&conf->device_lock); 5985 wake_up(&conf->wait_for_overlap); 5986 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 5987 } 5988 ret: 5989 return retn; 5990 } 5991 5992 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr, 5993 int *skipped) 5994 { 5995 struct r5conf *conf = mddev->private; 5996 struct stripe_head *sh; 5997 sector_t max_sector = mddev->dev_sectors; 5998 sector_t sync_blocks; 5999 int still_degraded = 0; 6000 int i; 6001 6002 if (sector_nr >= max_sector) { 6003 /* just being told to finish up .. nothing much to do */ 6004 6005 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 6006 end_reshape(conf); 6007 return 0; 6008 } 6009 6010 if (mddev->curr_resync < max_sector) /* aborted */ 6011 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 6012 &sync_blocks, 1); 6013 else /* completed sync */ 6014 conf->fullsync = 0; 6015 bitmap_close_sync(mddev->bitmap); 6016 6017 return 0; 6018 } 6019 6020 /* Allow raid5_quiesce to complete */ 6021 wait_event(conf->wait_for_overlap, conf->quiesce != 2); 6022 6023 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 6024 return reshape_request(mddev, sector_nr, skipped); 6025 6026 /* No need to check resync_max as we never do more than one 6027 * stripe, and as resync_max will always be on a chunk boundary, 6028 * if the check in md_do_sync didn't fire, there is no chance 6029 * of overstepping resync_max here 6030 */ 6031 6032 /* if there is too many failed drives and we are trying 6033 * to resync, then assert that we are finished, because there is 6034 * nothing we can do. 6035 */ 6036 if (mddev->degraded >= conf->max_degraded && 6037 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 6038 sector_t rv = mddev->dev_sectors - sector_nr; 6039 *skipped = 1; 6040 return rv; 6041 } 6042 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 6043 !conf->fullsync && 6044 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 6045 sync_blocks >= STRIPE_SECTORS) { 6046 /* we can skip this block, and probably more */ 6047 sync_blocks /= STRIPE_SECTORS; 6048 *skipped = 1; 6049 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */ 6050 } 6051 6052 bitmap_cond_end_sync(mddev->bitmap, sector_nr, false); 6053 6054 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0); 6055 if (sh == NULL) { 6056 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0); 6057 /* make sure we don't swamp the stripe cache if someone else 6058 * is trying to get access 6059 */ 6060 schedule_timeout_uninterruptible(1); 6061 } 6062 /* Need to check if array will still be degraded after recovery/resync 6063 * Note in case of > 1 drive failures it's possible we're rebuilding 6064 * one drive while leaving another faulty drive in array. 6065 */ 6066 rcu_read_lock(); 6067 for (i = 0; i < conf->raid_disks; i++) { 6068 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev); 6069 6070 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) 6071 still_degraded = 1; 6072 } 6073 rcu_read_unlock(); 6074 6075 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded); 6076 6077 set_bit(STRIPE_SYNC_REQUESTED, &sh->state); 6078 set_bit(STRIPE_HANDLE, &sh->state); 6079 6080 raid5_release_stripe(sh); 6081 6082 return STRIPE_SECTORS; 6083 } 6084 6085 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio, 6086 unsigned int offset) 6087 { 6088 /* We may not be able to submit a whole bio at once as there 6089 * may not be enough stripe_heads available. 6090 * We cannot pre-allocate enough stripe_heads as we may need 6091 * more than exist in the cache (if we allow ever large chunks). 6092 * So we do one stripe head at a time and record in 6093 * ->bi_hw_segments how many have been done. 6094 * 6095 * We *know* that this entire raid_bio is in one chunk, so 6096 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector. 6097 */ 6098 struct stripe_head *sh; 6099 int dd_idx; 6100 sector_t sector, logical_sector, last_sector; 6101 int scnt = 0; 6102 int handled = 0; 6103 6104 logical_sector = raid_bio->bi_iter.bi_sector & 6105 ~((sector_t)STRIPE_SECTORS-1); 6106 sector = raid5_compute_sector(conf, logical_sector, 6107 0, &dd_idx, NULL); 6108 last_sector = bio_end_sector(raid_bio); 6109 6110 for (; logical_sector < last_sector; 6111 logical_sector += STRIPE_SECTORS, 6112 sector += STRIPE_SECTORS, 6113 scnt++) { 6114 6115 if (scnt < offset) 6116 /* already done this stripe */ 6117 continue; 6118 6119 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1); 6120 6121 if (!sh) { 6122 /* failed to get a stripe - must wait */ 6123 conf->retry_read_aligned = raid_bio; 6124 conf->retry_read_offset = scnt; 6125 return handled; 6126 } 6127 6128 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) { 6129 raid5_release_stripe(sh); 6130 conf->retry_read_aligned = raid_bio; 6131 conf->retry_read_offset = scnt; 6132 return handled; 6133 } 6134 6135 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags); 6136 handle_stripe(sh); 6137 raid5_release_stripe(sh); 6138 handled++; 6139 } 6140 6141 bio_endio(raid_bio); 6142 6143 if (atomic_dec_and_test(&conf->active_aligned_reads)) 6144 wake_up(&conf->wait_for_quiescent); 6145 return handled; 6146 } 6147 6148 static int handle_active_stripes(struct r5conf *conf, int group, 6149 struct r5worker *worker, 6150 struct list_head *temp_inactive_list) 6151 { 6152 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh; 6153 int i, batch_size = 0, hash; 6154 bool release_inactive = false; 6155 6156 while (batch_size < MAX_STRIPE_BATCH && 6157 (sh = __get_priority_stripe(conf, group)) != NULL) 6158 batch[batch_size++] = sh; 6159 6160 if (batch_size == 0) { 6161 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 6162 if (!list_empty(temp_inactive_list + i)) 6163 break; 6164 if (i == NR_STRIPE_HASH_LOCKS) { 6165 spin_unlock_irq(&conf->device_lock); 6166 r5l_flush_stripe_to_raid(conf->log); 6167 spin_lock_irq(&conf->device_lock); 6168 return batch_size; 6169 } 6170 release_inactive = true; 6171 } 6172 spin_unlock_irq(&conf->device_lock); 6173 6174 release_inactive_stripe_list(conf, temp_inactive_list, 6175 NR_STRIPE_HASH_LOCKS); 6176 6177 r5l_flush_stripe_to_raid(conf->log); 6178 if (release_inactive) { 6179 spin_lock_irq(&conf->device_lock); 6180 return 0; 6181 } 6182 6183 for (i = 0; i < batch_size; i++) 6184 handle_stripe(batch[i]); 6185 log_write_stripe_run(conf); 6186 6187 cond_resched(); 6188 6189 spin_lock_irq(&conf->device_lock); 6190 for (i = 0; i < batch_size; i++) { 6191 hash = batch[i]->hash_lock_index; 6192 __release_stripe(conf, batch[i], &temp_inactive_list[hash]); 6193 } 6194 return batch_size; 6195 } 6196 6197 static void raid5_do_work(struct work_struct *work) 6198 { 6199 struct r5worker *worker = container_of(work, struct r5worker, work); 6200 struct r5worker_group *group = worker->group; 6201 struct r5conf *conf = group->conf; 6202 struct mddev *mddev = conf->mddev; 6203 int group_id = group - conf->worker_groups; 6204 int handled; 6205 struct blk_plug plug; 6206 6207 pr_debug("+++ raid5worker active\n"); 6208 6209 blk_start_plug(&plug); 6210 handled = 0; 6211 spin_lock_irq(&conf->device_lock); 6212 while (1) { 6213 int batch_size, released; 6214 6215 released = release_stripe_list(conf, worker->temp_inactive_list); 6216 6217 batch_size = handle_active_stripes(conf, group_id, worker, 6218 worker->temp_inactive_list); 6219 worker->working = false; 6220 if (!batch_size && !released) 6221 break; 6222 handled += batch_size; 6223 wait_event_lock_irq(mddev->sb_wait, 6224 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags), 6225 conf->device_lock); 6226 } 6227 pr_debug("%d stripes handled\n", handled); 6228 6229 spin_unlock_irq(&conf->device_lock); 6230 6231 flush_deferred_bios(conf); 6232 6233 r5l_flush_stripe_to_raid(conf->log); 6234 6235 async_tx_issue_pending_all(); 6236 blk_finish_plug(&plug); 6237 6238 pr_debug("--- raid5worker inactive\n"); 6239 } 6240 6241 /* 6242 * This is our raid5 kernel thread. 6243 * 6244 * We scan the hash table for stripes which can be handled now. 6245 * During the scan, completed stripes are saved for us by the interrupt 6246 * handler, so that they will not have to wait for our next wakeup. 6247 */ 6248 static void raid5d(struct md_thread *thread) 6249 { 6250 struct mddev *mddev = thread->mddev; 6251 struct r5conf *conf = mddev->private; 6252 int handled; 6253 struct blk_plug plug; 6254 6255 pr_debug("+++ raid5d active\n"); 6256 6257 md_check_recovery(mddev); 6258 6259 blk_start_plug(&plug); 6260 handled = 0; 6261 spin_lock_irq(&conf->device_lock); 6262 while (1) { 6263 struct bio *bio; 6264 int batch_size, released; 6265 unsigned int offset; 6266 6267 released = release_stripe_list(conf, conf->temp_inactive_list); 6268 if (released) 6269 clear_bit(R5_DID_ALLOC, &conf->cache_state); 6270 6271 if ( 6272 !list_empty(&conf->bitmap_list)) { 6273 /* Now is a good time to flush some bitmap updates */ 6274 conf->seq_flush++; 6275 spin_unlock_irq(&conf->device_lock); 6276 bitmap_unplug(mddev->bitmap); 6277 spin_lock_irq(&conf->device_lock); 6278 conf->seq_write = conf->seq_flush; 6279 activate_bit_delay(conf, conf->temp_inactive_list); 6280 } 6281 raid5_activate_delayed(conf); 6282 6283 while ((bio = remove_bio_from_retry(conf, &offset))) { 6284 int ok; 6285 spin_unlock_irq(&conf->device_lock); 6286 ok = retry_aligned_read(conf, bio, offset); 6287 spin_lock_irq(&conf->device_lock); 6288 if (!ok) 6289 break; 6290 handled++; 6291 } 6292 6293 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL, 6294 conf->temp_inactive_list); 6295 if (!batch_size && !released) 6296 break; 6297 handled += batch_size; 6298 6299 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) { 6300 spin_unlock_irq(&conf->device_lock); 6301 md_check_recovery(mddev); 6302 spin_lock_irq(&conf->device_lock); 6303 } 6304 } 6305 pr_debug("%d stripes handled\n", handled); 6306 6307 spin_unlock_irq(&conf->device_lock); 6308 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) && 6309 mutex_trylock(&conf->cache_size_mutex)) { 6310 grow_one_stripe(conf, __GFP_NOWARN); 6311 /* Set flag even if allocation failed. This helps 6312 * slow down allocation requests when mem is short 6313 */ 6314 set_bit(R5_DID_ALLOC, &conf->cache_state); 6315 mutex_unlock(&conf->cache_size_mutex); 6316 } 6317 6318 flush_deferred_bios(conf); 6319 6320 r5l_flush_stripe_to_raid(conf->log); 6321 6322 async_tx_issue_pending_all(); 6323 blk_finish_plug(&plug); 6324 6325 pr_debug("--- raid5d inactive\n"); 6326 } 6327 6328 static ssize_t 6329 raid5_show_stripe_cache_size(struct mddev *mddev, char *page) 6330 { 6331 struct r5conf *conf; 6332 int ret = 0; 6333 spin_lock(&mddev->lock); 6334 conf = mddev->private; 6335 if (conf) 6336 ret = sprintf(page, "%d\n", conf->min_nr_stripes); 6337 spin_unlock(&mddev->lock); 6338 return ret; 6339 } 6340 6341 int 6342 raid5_set_cache_size(struct mddev *mddev, int size) 6343 { 6344 struct r5conf *conf = mddev->private; 6345 6346 if (size <= 16 || size > 32768) 6347 return -EINVAL; 6348 6349 conf->min_nr_stripes = size; 6350 mutex_lock(&conf->cache_size_mutex); 6351 while (size < conf->max_nr_stripes && 6352 drop_one_stripe(conf)) 6353 ; 6354 mutex_unlock(&conf->cache_size_mutex); 6355 6356 md_allow_write(mddev); 6357 6358 mutex_lock(&conf->cache_size_mutex); 6359 while (size > conf->max_nr_stripes) 6360 if (!grow_one_stripe(conf, GFP_KERNEL)) 6361 break; 6362 mutex_unlock(&conf->cache_size_mutex); 6363 6364 return 0; 6365 } 6366 EXPORT_SYMBOL(raid5_set_cache_size); 6367 6368 static ssize_t 6369 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len) 6370 { 6371 struct r5conf *conf; 6372 unsigned long new; 6373 int err; 6374 6375 if (len >= PAGE_SIZE) 6376 return -EINVAL; 6377 if (kstrtoul(page, 10, &new)) 6378 return -EINVAL; 6379 err = mddev_lock(mddev); 6380 if (err) 6381 return err; 6382 conf = mddev->private; 6383 if (!conf) 6384 err = -ENODEV; 6385 else 6386 err = raid5_set_cache_size(mddev, new); 6387 mddev_unlock(mddev); 6388 6389 return err ?: len; 6390 } 6391 6392 static struct md_sysfs_entry 6393 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR, 6394 raid5_show_stripe_cache_size, 6395 raid5_store_stripe_cache_size); 6396 6397 static ssize_t 6398 raid5_show_rmw_level(struct mddev *mddev, char *page) 6399 { 6400 struct r5conf *conf = mddev->private; 6401 if (conf) 6402 return sprintf(page, "%d\n", conf->rmw_level); 6403 else 6404 return 0; 6405 } 6406 6407 static ssize_t 6408 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len) 6409 { 6410 struct r5conf *conf = mddev->private; 6411 unsigned long new; 6412 6413 if (!conf) 6414 return -ENODEV; 6415 6416 if (len >= PAGE_SIZE) 6417 return -EINVAL; 6418 6419 if (kstrtoul(page, 10, &new)) 6420 return -EINVAL; 6421 6422 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome) 6423 return -EINVAL; 6424 6425 if (new != PARITY_DISABLE_RMW && 6426 new != PARITY_ENABLE_RMW && 6427 new != PARITY_PREFER_RMW) 6428 return -EINVAL; 6429 6430 conf->rmw_level = new; 6431 return len; 6432 } 6433 6434 static struct md_sysfs_entry 6435 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR, 6436 raid5_show_rmw_level, 6437 raid5_store_rmw_level); 6438 6439 6440 static ssize_t 6441 raid5_show_preread_threshold(struct mddev *mddev, char *page) 6442 { 6443 struct r5conf *conf; 6444 int ret = 0; 6445 spin_lock(&mddev->lock); 6446 conf = mddev->private; 6447 if (conf) 6448 ret = sprintf(page, "%d\n", conf->bypass_threshold); 6449 spin_unlock(&mddev->lock); 6450 return ret; 6451 } 6452 6453 static ssize_t 6454 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len) 6455 { 6456 struct r5conf *conf; 6457 unsigned long new; 6458 int err; 6459 6460 if (len >= PAGE_SIZE) 6461 return -EINVAL; 6462 if (kstrtoul(page, 10, &new)) 6463 return -EINVAL; 6464 6465 err = mddev_lock(mddev); 6466 if (err) 6467 return err; 6468 conf = mddev->private; 6469 if (!conf) 6470 err = -ENODEV; 6471 else if (new > conf->min_nr_stripes) 6472 err = -EINVAL; 6473 else 6474 conf->bypass_threshold = new; 6475 mddev_unlock(mddev); 6476 return err ?: len; 6477 } 6478 6479 static struct md_sysfs_entry 6480 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold, 6481 S_IRUGO | S_IWUSR, 6482 raid5_show_preread_threshold, 6483 raid5_store_preread_threshold); 6484 6485 static ssize_t 6486 raid5_show_skip_copy(struct mddev *mddev, char *page) 6487 { 6488 struct r5conf *conf; 6489 int ret = 0; 6490 spin_lock(&mddev->lock); 6491 conf = mddev->private; 6492 if (conf) 6493 ret = sprintf(page, "%d\n", conf->skip_copy); 6494 spin_unlock(&mddev->lock); 6495 return ret; 6496 } 6497 6498 static ssize_t 6499 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len) 6500 { 6501 struct r5conf *conf; 6502 unsigned long new; 6503 int err; 6504 6505 if (len >= PAGE_SIZE) 6506 return -EINVAL; 6507 if (kstrtoul(page, 10, &new)) 6508 return -EINVAL; 6509 new = !!new; 6510 6511 err = mddev_lock(mddev); 6512 if (err) 6513 return err; 6514 conf = mddev->private; 6515 if (!conf) 6516 err = -ENODEV; 6517 else if (new != conf->skip_copy) { 6518 mddev_suspend(mddev); 6519 conf->skip_copy = new; 6520 if (new) 6521 mddev->queue->backing_dev_info->capabilities |= 6522 BDI_CAP_STABLE_WRITES; 6523 else 6524 mddev->queue->backing_dev_info->capabilities &= 6525 ~BDI_CAP_STABLE_WRITES; 6526 mddev_resume(mddev); 6527 } 6528 mddev_unlock(mddev); 6529 return err ?: len; 6530 } 6531 6532 static struct md_sysfs_entry 6533 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR, 6534 raid5_show_skip_copy, 6535 raid5_store_skip_copy); 6536 6537 static ssize_t 6538 stripe_cache_active_show(struct mddev *mddev, char *page) 6539 { 6540 struct r5conf *conf = mddev->private; 6541 if (conf) 6542 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes)); 6543 else 6544 return 0; 6545 } 6546 6547 static struct md_sysfs_entry 6548 raid5_stripecache_active = __ATTR_RO(stripe_cache_active); 6549 6550 static ssize_t 6551 raid5_show_group_thread_cnt(struct mddev *mddev, char *page) 6552 { 6553 struct r5conf *conf; 6554 int ret = 0; 6555 spin_lock(&mddev->lock); 6556 conf = mddev->private; 6557 if (conf) 6558 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group); 6559 spin_unlock(&mddev->lock); 6560 return ret; 6561 } 6562 6563 static int alloc_thread_groups(struct r5conf *conf, int cnt, 6564 int *group_cnt, 6565 int *worker_cnt_per_group, 6566 struct r5worker_group **worker_groups); 6567 static ssize_t 6568 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len) 6569 { 6570 struct r5conf *conf; 6571 unsigned long new; 6572 int err; 6573 struct r5worker_group *new_groups, *old_groups; 6574 int group_cnt, worker_cnt_per_group; 6575 6576 if (len >= PAGE_SIZE) 6577 return -EINVAL; 6578 if (kstrtoul(page, 10, &new)) 6579 return -EINVAL; 6580 6581 err = mddev_lock(mddev); 6582 if (err) 6583 return err; 6584 conf = mddev->private; 6585 if (!conf) 6586 err = -ENODEV; 6587 else if (new != conf->worker_cnt_per_group) { 6588 mddev_suspend(mddev); 6589 6590 old_groups = conf->worker_groups; 6591 if (old_groups) 6592 flush_workqueue(raid5_wq); 6593 6594 err = alloc_thread_groups(conf, new, 6595 &group_cnt, &worker_cnt_per_group, 6596 &new_groups); 6597 if (!err) { 6598 spin_lock_irq(&conf->device_lock); 6599 conf->group_cnt = group_cnt; 6600 conf->worker_cnt_per_group = worker_cnt_per_group; 6601 conf->worker_groups = new_groups; 6602 spin_unlock_irq(&conf->device_lock); 6603 6604 if (old_groups) 6605 kfree(old_groups[0].workers); 6606 kfree(old_groups); 6607 } 6608 mddev_resume(mddev); 6609 } 6610 mddev_unlock(mddev); 6611 6612 return err ?: len; 6613 } 6614 6615 static struct md_sysfs_entry 6616 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR, 6617 raid5_show_group_thread_cnt, 6618 raid5_store_group_thread_cnt); 6619 6620 static struct attribute *raid5_attrs[] = { 6621 &raid5_stripecache_size.attr, 6622 &raid5_stripecache_active.attr, 6623 &raid5_preread_bypass_threshold.attr, 6624 &raid5_group_thread_cnt.attr, 6625 &raid5_skip_copy.attr, 6626 &raid5_rmw_level.attr, 6627 &r5c_journal_mode.attr, 6628 NULL, 6629 }; 6630 static struct attribute_group raid5_attrs_group = { 6631 .name = NULL, 6632 .attrs = raid5_attrs, 6633 }; 6634 6635 static int alloc_thread_groups(struct r5conf *conf, int cnt, 6636 int *group_cnt, 6637 int *worker_cnt_per_group, 6638 struct r5worker_group **worker_groups) 6639 { 6640 int i, j, k; 6641 ssize_t size; 6642 struct r5worker *workers; 6643 6644 *worker_cnt_per_group = cnt; 6645 if (cnt == 0) { 6646 *group_cnt = 0; 6647 *worker_groups = NULL; 6648 return 0; 6649 } 6650 *group_cnt = num_possible_nodes(); 6651 size = sizeof(struct r5worker) * cnt; 6652 workers = kzalloc(size * *group_cnt, GFP_NOIO); 6653 *worker_groups = kzalloc(sizeof(struct r5worker_group) * 6654 *group_cnt, GFP_NOIO); 6655 if (!*worker_groups || !workers) { 6656 kfree(workers); 6657 kfree(*worker_groups); 6658 return -ENOMEM; 6659 } 6660 6661 for (i = 0; i < *group_cnt; i++) { 6662 struct r5worker_group *group; 6663 6664 group = &(*worker_groups)[i]; 6665 INIT_LIST_HEAD(&group->handle_list); 6666 INIT_LIST_HEAD(&group->loprio_list); 6667 group->conf = conf; 6668 group->workers = workers + i * cnt; 6669 6670 for (j = 0; j < cnt; j++) { 6671 struct r5worker *worker = group->workers + j; 6672 worker->group = group; 6673 INIT_WORK(&worker->work, raid5_do_work); 6674 6675 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++) 6676 INIT_LIST_HEAD(worker->temp_inactive_list + k); 6677 } 6678 } 6679 6680 return 0; 6681 } 6682 6683 static void free_thread_groups(struct r5conf *conf) 6684 { 6685 if (conf->worker_groups) 6686 kfree(conf->worker_groups[0].workers); 6687 kfree(conf->worker_groups); 6688 conf->worker_groups = NULL; 6689 } 6690 6691 static sector_t 6692 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks) 6693 { 6694 struct r5conf *conf = mddev->private; 6695 6696 if (!sectors) 6697 sectors = mddev->dev_sectors; 6698 if (!raid_disks) 6699 /* size is defined by the smallest of previous and new size */ 6700 raid_disks = min(conf->raid_disks, conf->previous_raid_disks); 6701 6702 sectors &= ~((sector_t)conf->chunk_sectors - 1); 6703 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1); 6704 return sectors * (raid_disks - conf->max_degraded); 6705 } 6706 6707 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 6708 { 6709 safe_put_page(percpu->spare_page); 6710 if (percpu->scribble) 6711 flex_array_free(percpu->scribble); 6712 percpu->spare_page = NULL; 6713 percpu->scribble = NULL; 6714 } 6715 6716 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 6717 { 6718 if (conf->level == 6 && !percpu->spare_page) 6719 percpu->spare_page = alloc_page(GFP_KERNEL); 6720 if (!percpu->scribble) 6721 percpu->scribble = scribble_alloc(max(conf->raid_disks, 6722 conf->previous_raid_disks), 6723 max(conf->chunk_sectors, 6724 conf->prev_chunk_sectors) 6725 / STRIPE_SECTORS, 6726 GFP_KERNEL); 6727 6728 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) { 6729 free_scratch_buffer(conf, percpu); 6730 return -ENOMEM; 6731 } 6732 6733 return 0; 6734 } 6735 6736 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node) 6737 { 6738 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node); 6739 6740 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu)); 6741 return 0; 6742 } 6743 6744 static void raid5_free_percpu(struct r5conf *conf) 6745 { 6746 if (!conf->percpu) 6747 return; 6748 6749 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node); 6750 free_percpu(conf->percpu); 6751 } 6752 6753 static void free_conf(struct r5conf *conf) 6754 { 6755 int i; 6756 6757 log_exit(conf); 6758 6759 if (conf->shrinker.nr_deferred) 6760 unregister_shrinker(&conf->shrinker); 6761 6762 free_thread_groups(conf); 6763 shrink_stripes(conf); 6764 raid5_free_percpu(conf); 6765 for (i = 0; i < conf->pool_size; i++) 6766 if (conf->disks[i].extra_page) 6767 put_page(conf->disks[i].extra_page); 6768 kfree(conf->disks); 6769 if (conf->bio_split) 6770 bioset_free(conf->bio_split); 6771 kfree(conf->stripe_hashtbl); 6772 kfree(conf->pending_data); 6773 kfree(conf); 6774 } 6775 6776 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node) 6777 { 6778 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node); 6779 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu); 6780 6781 if (alloc_scratch_buffer(conf, percpu)) { 6782 pr_warn("%s: failed memory allocation for cpu%u\n", 6783 __func__, cpu); 6784 return -ENOMEM; 6785 } 6786 return 0; 6787 } 6788 6789 static int raid5_alloc_percpu(struct r5conf *conf) 6790 { 6791 int err = 0; 6792 6793 conf->percpu = alloc_percpu(struct raid5_percpu); 6794 if (!conf->percpu) 6795 return -ENOMEM; 6796 6797 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node); 6798 if (!err) { 6799 conf->scribble_disks = max(conf->raid_disks, 6800 conf->previous_raid_disks); 6801 conf->scribble_sectors = max(conf->chunk_sectors, 6802 conf->prev_chunk_sectors); 6803 } 6804 return err; 6805 } 6806 6807 static unsigned long raid5_cache_scan(struct shrinker *shrink, 6808 struct shrink_control *sc) 6809 { 6810 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker); 6811 unsigned long ret = SHRINK_STOP; 6812 6813 if (mutex_trylock(&conf->cache_size_mutex)) { 6814 ret= 0; 6815 while (ret < sc->nr_to_scan && 6816 conf->max_nr_stripes > conf->min_nr_stripes) { 6817 if (drop_one_stripe(conf) == 0) { 6818 ret = SHRINK_STOP; 6819 break; 6820 } 6821 ret++; 6822 } 6823 mutex_unlock(&conf->cache_size_mutex); 6824 } 6825 return ret; 6826 } 6827 6828 static unsigned long raid5_cache_count(struct shrinker *shrink, 6829 struct shrink_control *sc) 6830 { 6831 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker); 6832 6833 if (conf->max_nr_stripes < conf->min_nr_stripes) 6834 /* unlikely, but not impossible */ 6835 return 0; 6836 return conf->max_nr_stripes - conf->min_nr_stripes; 6837 } 6838 6839 static struct r5conf *setup_conf(struct mddev *mddev) 6840 { 6841 struct r5conf *conf; 6842 int raid_disk, memory, max_disks; 6843 struct md_rdev *rdev; 6844 struct disk_info *disk; 6845 char pers_name[6]; 6846 int i; 6847 int group_cnt, worker_cnt_per_group; 6848 struct r5worker_group *new_group; 6849 6850 if (mddev->new_level != 5 6851 && mddev->new_level != 4 6852 && mddev->new_level != 6) { 6853 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n", 6854 mdname(mddev), mddev->new_level); 6855 return ERR_PTR(-EIO); 6856 } 6857 if ((mddev->new_level == 5 6858 && !algorithm_valid_raid5(mddev->new_layout)) || 6859 (mddev->new_level == 6 6860 && !algorithm_valid_raid6(mddev->new_layout))) { 6861 pr_warn("md/raid:%s: layout %d not supported\n", 6862 mdname(mddev), mddev->new_layout); 6863 return ERR_PTR(-EIO); 6864 } 6865 if (mddev->new_level == 6 && mddev->raid_disks < 4) { 6866 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n", 6867 mdname(mddev), mddev->raid_disks); 6868 return ERR_PTR(-EINVAL); 6869 } 6870 6871 if (!mddev->new_chunk_sectors || 6872 (mddev->new_chunk_sectors << 9) % PAGE_SIZE || 6873 !is_power_of_2(mddev->new_chunk_sectors)) { 6874 pr_warn("md/raid:%s: invalid chunk size %d\n", 6875 mdname(mddev), mddev->new_chunk_sectors << 9); 6876 return ERR_PTR(-EINVAL); 6877 } 6878 6879 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL); 6880 if (conf == NULL) 6881 goto abort; 6882 INIT_LIST_HEAD(&conf->free_list); 6883 INIT_LIST_HEAD(&conf->pending_list); 6884 conf->pending_data = kzalloc(sizeof(struct r5pending_data) * 6885 PENDING_IO_MAX, GFP_KERNEL); 6886 if (!conf->pending_data) 6887 goto abort; 6888 for (i = 0; i < PENDING_IO_MAX; i++) 6889 list_add(&conf->pending_data[i].sibling, &conf->free_list); 6890 /* Don't enable multi-threading by default*/ 6891 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group, 6892 &new_group)) { 6893 conf->group_cnt = group_cnt; 6894 conf->worker_cnt_per_group = worker_cnt_per_group; 6895 conf->worker_groups = new_group; 6896 } else 6897 goto abort; 6898 spin_lock_init(&conf->device_lock); 6899 seqcount_init(&conf->gen_lock); 6900 mutex_init(&conf->cache_size_mutex); 6901 init_waitqueue_head(&conf->wait_for_quiescent); 6902 init_waitqueue_head(&conf->wait_for_stripe); 6903 init_waitqueue_head(&conf->wait_for_overlap); 6904 INIT_LIST_HEAD(&conf->handle_list); 6905 INIT_LIST_HEAD(&conf->loprio_list); 6906 INIT_LIST_HEAD(&conf->hold_list); 6907 INIT_LIST_HEAD(&conf->delayed_list); 6908 INIT_LIST_HEAD(&conf->bitmap_list); 6909 init_llist_head(&conf->released_stripes); 6910 atomic_set(&conf->active_stripes, 0); 6911 atomic_set(&conf->preread_active_stripes, 0); 6912 atomic_set(&conf->active_aligned_reads, 0); 6913 spin_lock_init(&conf->pending_bios_lock); 6914 conf->batch_bio_dispatch = true; 6915 rdev_for_each(rdev, mddev) { 6916 if (test_bit(Journal, &rdev->flags)) 6917 continue; 6918 if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) { 6919 conf->batch_bio_dispatch = false; 6920 break; 6921 } 6922 } 6923 6924 conf->bypass_threshold = BYPASS_THRESHOLD; 6925 conf->recovery_disabled = mddev->recovery_disabled - 1; 6926 6927 conf->raid_disks = mddev->raid_disks; 6928 if (mddev->reshape_position == MaxSector) 6929 conf->previous_raid_disks = mddev->raid_disks; 6930 else 6931 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks; 6932 max_disks = max(conf->raid_disks, conf->previous_raid_disks); 6933 6934 conf->disks = kzalloc(max_disks * sizeof(struct disk_info), 6935 GFP_KERNEL); 6936 6937 if (!conf->disks) 6938 goto abort; 6939 6940 for (i = 0; i < max_disks; i++) { 6941 conf->disks[i].extra_page = alloc_page(GFP_KERNEL); 6942 if (!conf->disks[i].extra_page) 6943 goto abort; 6944 } 6945 6946 conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0); 6947 if (!conf->bio_split) 6948 goto abort; 6949 conf->mddev = mddev; 6950 6951 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL) 6952 goto abort; 6953 6954 /* We init hash_locks[0] separately to that it can be used 6955 * as the reference lock in the spin_lock_nest_lock() call 6956 * in lock_all_device_hash_locks_irq in order to convince 6957 * lockdep that we know what we are doing. 6958 */ 6959 spin_lock_init(conf->hash_locks); 6960 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 6961 spin_lock_init(conf->hash_locks + i); 6962 6963 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 6964 INIT_LIST_HEAD(conf->inactive_list + i); 6965 6966 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 6967 INIT_LIST_HEAD(conf->temp_inactive_list + i); 6968 6969 atomic_set(&conf->r5c_cached_full_stripes, 0); 6970 INIT_LIST_HEAD(&conf->r5c_full_stripe_list); 6971 atomic_set(&conf->r5c_cached_partial_stripes, 0); 6972 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list); 6973 atomic_set(&conf->r5c_flushing_full_stripes, 0); 6974 atomic_set(&conf->r5c_flushing_partial_stripes, 0); 6975 6976 conf->level = mddev->new_level; 6977 conf->chunk_sectors = mddev->new_chunk_sectors; 6978 if (raid5_alloc_percpu(conf) != 0) 6979 goto abort; 6980 6981 pr_debug("raid456: run(%s) called.\n", mdname(mddev)); 6982 6983 rdev_for_each(rdev, mddev) { 6984 raid_disk = rdev->raid_disk; 6985 if (raid_disk >= max_disks 6986 || raid_disk < 0 || test_bit(Journal, &rdev->flags)) 6987 continue; 6988 disk = conf->disks + raid_disk; 6989 6990 if (test_bit(Replacement, &rdev->flags)) { 6991 if (disk->replacement) 6992 goto abort; 6993 disk->replacement = rdev; 6994 } else { 6995 if (disk->rdev) 6996 goto abort; 6997 disk->rdev = rdev; 6998 } 6999 7000 if (test_bit(In_sync, &rdev->flags)) { 7001 char b[BDEVNAME_SIZE]; 7002 pr_info("md/raid:%s: device %s operational as raid disk %d\n", 7003 mdname(mddev), bdevname(rdev->bdev, b), raid_disk); 7004 } else if (rdev->saved_raid_disk != raid_disk) 7005 /* Cannot rely on bitmap to complete recovery */ 7006 conf->fullsync = 1; 7007 } 7008 7009 conf->level = mddev->new_level; 7010 if (conf->level == 6) { 7011 conf->max_degraded = 2; 7012 if (raid6_call.xor_syndrome) 7013 conf->rmw_level = PARITY_ENABLE_RMW; 7014 else 7015 conf->rmw_level = PARITY_DISABLE_RMW; 7016 } else { 7017 conf->max_degraded = 1; 7018 conf->rmw_level = PARITY_ENABLE_RMW; 7019 } 7020 conf->algorithm = mddev->new_layout; 7021 conf->reshape_progress = mddev->reshape_position; 7022 if (conf->reshape_progress != MaxSector) { 7023 conf->prev_chunk_sectors = mddev->chunk_sectors; 7024 conf->prev_algo = mddev->layout; 7025 } else { 7026 conf->prev_chunk_sectors = conf->chunk_sectors; 7027 conf->prev_algo = conf->algorithm; 7028 } 7029 7030 conf->min_nr_stripes = NR_STRIPES; 7031 if (mddev->reshape_position != MaxSector) { 7032 int stripes = max_t(int, 7033 ((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4, 7034 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4); 7035 conf->min_nr_stripes = max(NR_STRIPES, stripes); 7036 if (conf->min_nr_stripes != NR_STRIPES) 7037 pr_info("md/raid:%s: force stripe size %d for reshape\n", 7038 mdname(mddev), conf->min_nr_stripes); 7039 } 7040 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) + 7041 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024; 7042 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS); 7043 if (grow_stripes(conf, conf->min_nr_stripes)) { 7044 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n", 7045 mdname(mddev), memory); 7046 goto abort; 7047 } else 7048 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory); 7049 /* 7050 * Losing a stripe head costs more than the time to refill it, 7051 * it reduces the queue depth and so can hurt throughput. 7052 * So set it rather large, scaled by number of devices. 7053 */ 7054 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4; 7055 conf->shrinker.scan_objects = raid5_cache_scan; 7056 conf->shrinker.count_objects = raid5_cache_count; 7057 conf->shrinker.batch = 128; 7058 conf->shrinker.flags = 0; 7059 if (register_shrinker(&conf->shrinker)) { 7060 pr_warn("md/raid:%s: couldn't register shrinker.\n", 7061 mdname(mddev)); 7062 goto abort; 7063 } 7064 7065 sprintf(pers_name, "raid%d", mddev->new_level); 7066 conf->thread = md_register_thread(raid5d, mddev, pers_name); 7067 if (!conf->thread) { 7068 pr_warn("md/raid:%s: couldn't allocate thread.\n", 7069 mdname(mddev)); 7070 goto abort; 7071 } 7072 7073 return conf; 7074 7075 abort: 7076 if (conf) { 7077 free_conf(conf); 7078 return ERR_PTR(-EIO); 7079 } else 7080 return ERR_PTR(-ENOMEM); 7081 } 7082 7083 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded) 7084 { 7085 switch (algo) { 7086 case ALGORITHM_PARITY_0: 7087 if (raid_disk < max_degraded) 7088 return 1; 7089 break; 7090 case ALGORITHM_PARITY_N: 7091 if (raid_disk >= raid_disks - max_degraded) 7092 return 1; 7093 break; 7094 case ALGORITHM_PARITY_0_6: 7095 if (raid_disk == 0 || 7096 raid_disk == raid_disks - 1) 7097 return 1; 7098 break; 7099 case ALGORITHM_LEFT_ASYMMETRIC_6: 7100 case ALGORITHM_RIGHT_ASYMMETRIC_6: 7101 case ALGORITHM_LEFT_SYMMETRIC_6: 7102 case ALGORITHM_RIGHT_SYMMETRIC_6: 7103 if (raid_disk == raid_disks - 1) 7104 return 1; 7105 } 7106 return 0; 7107 } 7108 7109 static int raid5_run(struct mddev *mddev) 7110 { 7111 struct r5conf *conf; 7112 int working_disks = 0; 7113 int dirty_parity_disks = 0; 7114 struct md_rdev *rdev; 7115 struct md_rdev *journal_dev = NULL; 7116 sector_t reshape_offset = 0; 7117 int i; 7118 long long min_offset_diff = 0; 7119 int first = 1; 7120 7121 if (mddev_init_writes_pending(mddev) < 0) 7122 return -ENOMEM; 7123 7124 if (mddev->recovery_cp != MaxSector) 7125 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n", 7126 mdname(mddev)); 7127 7128 rdev_for_each(rdev, mddev) { 7129 long long diff; 7130 7131 if (test_bit(Journal, &rdev->flags)) { 7132 journal_dev = rdev; 7133 continue; 7134 } 7135 if (rdev->raid_disk < 0) 7136 continue; 7137 diff = (rdev->new_data_offset - rdev->data_offset); 7138 if (first) { 7139 min_offset_diff = diff; 7140 first = 0; 7141 } else if (mddev->reshape_backwards && 7142 diff < min_offset_diff) 7143 min_offset_diff = diff; 7144 else if (!mddev->reshape_backwards && 7145 diff > min_offset_diff) 7146 min_offset_diff = diff; 7147 } 7148 7149 if (mddev->reshape_position != MaxSector) { 7150 /* Check that we can continue the reshape. 7151 * Difficulties arise if the stripe we would write to 7152 * next is at or after the stripe we would read from next. 7153 * For a reshape that changes the number of devices, this 7154 * is only possible for a very short time, and mdadm makes 7155 * sure that time appears to have past before assembling 7156 * the array. So we fail if that time hasn't passed. 7157 * For a reshape that keeps the number of devices the same 7158 * mdadm must be monitoring the reshape can keeping the 7159 * critical areas read-only and backed up. It will start 7160 * the array in read-only mode, so we check for that. 7161 */ 7162 sector_t here_new, here_old; 7163 int old_disks; 7164 int max_degraded = (mddev->level == 6 ? 2 : 1); 7165 int chunk_sectors; 7166 int new_data_disks; 7167 7168 if (journal_dev) { 7169 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n", 7170 mdname(mddev)); 7171 return -EINVAL; 7172 } 7173 7174 if (mddev->new_level != mddev->level) { 7175 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n", 7176 mdname(mddev)); 7177 return -EINVAL; 7178 } 7179 old_disks = mddev->raid_disks - mddev->delta_disks; 7180 /* reshape_position must be on a new-stripe boundary, and one 7181 * further up in new geometry must map after here in old 7182 * geometry. 7183 * If the chunk sizes are different, then as we perform reshape 7184 * in units of the largest of the two, reshape_position needs 7185 * be a multiple of the largest chunk size times new data disks. 7186 */ 7187 here_new = mddev->reshape_position; 7188 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors); 7189 new_data_disks = mddev->raid_disks - max_degraded; 7190 if (sector_div(here_new, chunk_sectors * new_data_disks)) { 7191 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n", 7192 mdname(mddev)); 7193 return -EINVAL; 7194 } 7195 reshape_offset = here_new * chunk_sectors; 7196 /* here_new is the stripe we will write to */ 7197 here_old = mddev->reshape_position; 7198 sector_div(here_old, chunk_sectors * (old_disks-max_degraded)); 7199 /* here_old is the first stripe that we might need to read 7200 * from */ 7201 if (mddev->delta_disks == 0) { 7202 /* We cannot be sure it is safe to start an in-place 7203 * reshape. It is only safe if user-space is monitoring 7204 * and taking constant backups. 7205 * mdadm always starts a situation like this in 7206 * readonly mode so it can take control before 7207 * allowing any writes. So just check for that. 7208 */ 7209 if (abs(min_offset_diff) >= mddev->chunk_sectors && 7210 abs(min_offset_diff) >= mddev->new_chunk_sectors) 7211 /* not really in-place - so OK */; 7212 else if (mddev->ro == 0) { 7213 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n", 7214 mdname(mddev)); 7215 return -EINVAL; 7216 } 7217 } else if (mddev->reshape_backwards 7218 ? (here_new * chunk_sectors + min_offset_diff <= 7219 here_old * chunk_sectors) 7220 : (here_new * chunk_sectors >= 7221 here_old * chunk_sectors + (-min_offset_diff))) { 7222 /* Reading from the same stripe as writing to - bad */ 7223 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n", 7224 mdname(mddev)); 7225 return -EINVAL; 7226 } 7227 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev)); 7228 /* OK, we should be able to continue; */ 7229 } else { 7230 BUG_ON(mddev->level != mddev->new_level); 7231 BUG_ON(mddev->layout != mddev->new_layout); 7232 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors); 7233 BUG_ON(mddev->delta_disks != 0); 7234 } 7235 7236 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && 7237 test_bit(MD_HAS_PPL, &mddev->flags)) { 7238 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n", 7239 mdname(mddev)); 7240 clear_bit(MD_HAS_PPL, &mddev->flags); 7241 clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags); 7242 } 7243 7244 if (mddev->private == NULL) 7245 conf = setup_conf(mddev); 7246 else 7247 conf = mddev->private; 7248 7249 if (IS_ERR(conf)) 7250 return PTR_ERR(conf); 7251 7252 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 7253 if (!journal_dev) { 7254 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n", 7255 mdname(mddev)); 7256 mddev->ro = 1; 7257 set_disk_ro(mddev->gendisk, 1); 7258 } else if (mddev->recovery_cp == MaxSector) 7259 set_bit(MD_JOURNAL_CLEAN, &mddev->flags); 7260 } 7261 7262 conf->min_offset_diff = min_offset_diff; 7263 mddev->thread = conf->thread; 7264 conf->thread = NULL; 7265 mddev->private = conf; 7266 7267 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks; 7268 i++) { 7269 rdev = conf->disks[i].rdev; 7270 if (!rdev && conf->disks[i].replacement) { 7271 /* The replacement is all we have yet */ 7272 rdev = conf->disks[i].replacement; 7273 conf->disks[i].replacement = NULL; 7274 clear_bit(Replacement, &rdev->flags); 7275 conf->disks[i].rdev = rdev; 7276 } 7277 if (!rdev) 7278 continue; 7279 if (conf->disks[i].replacement && 7280 conf->reshape_progress != MaxSector) { 7281 /* replacements and reshape simply do not mix. */ 7282 pr_warn("md: cannot handle concurrent replacement and reshape.\n"); 7283 goto abort; 7284 } 7285 if (test_bit(In_sync, &rdev->flags)) { 7286 working_disks++; 7287 continue; 7288 } 7289 /* This disc is not fully in-sync. However if it 7290 * just stored parity (beyond the recovery_offset), 7291 * when we don't need to be concerned about the 7292 * array being dirty. 7293 * When reshape goes 'backwards', we never have 7294 * partially completed devices, so we only need 7295 * to worry about reshape going forwards. 7296 */ 7297 /* Hack because v0.91 doesn't store recovery_offset properly. */ 7298 if (mddev->major_version == 0 && 7299 mddev->minor_version > 90) 7300 rdev->recovery_offset = reshape_offset; 7301 7302 if (rdev->recovery_offset < reshape_offset) { 7303 /* We need to check old and new layout */ 7304 if (!only_parity(rdev->raid_disk, 7305 conf->algorithm, 7306 conf->raid_disks, 7307 conf->max_degraded)) 7308 continue; 7309 } 7310 if (!only_parity(rdev->raid_disk, 7311 conf->prev_algo, 7312 conf->previous_raid_disks, 7313 conf->max_degraded)) 7314 continue; 7315 dirty_parity_disks++; 7316 } 7317 7318 /* 7319 * 0 for a fully functional array, 1 or 2 for a degraded array. 7320 */ 7321 mddev->degraded = raid5_calc_degraded(conf); 7322 7323 if (has_failed(conf)) { 7324 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n", 7325 mdname(mddev), mddev->degraded, conf->raid_disks); 7326 goto abort; 7327 } 7328 7329 /* device size must be a multiple of chunk size */ 7330 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1); 7331 mddev->resync_max_sectors = mddev->dev_sectors; 7332 7333 if (mddev->degraded > dirty_parity_disks && 7334 mddev->recovery_cp != MaxSector) { 7335 if (test_bit(MD_HAS_PPL, &mddev->flags)) 7336 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n", 7337 mdname(mddev)); 7338 else if (mddev->ok_start_degraded) 7339 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n", 7340 mdname(mddev)); 7341 else { 7342 pr_crit("md/raid:%s: cannot start dirty degraded array.\n", 7343 mdname(mddev)); 7344 goto abort; 7345 } 7346 } 7347 7348 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n", 7349 mdname(mddev), conf->level, 7350 mddev->raid_disks-mddev->degraded, mddev->raid_disks, 7351 mddev->new_layout); 7352 7353 print_raid5_conf(conf); 7354 7355 if (conf->reshape_progress != MaxSector) { 7356 conf->reshape_safe = conf->reshape_progress; 7357 atomic_set(&conf->reshape_stripes, 0); 7358 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7359 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7360 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7361 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7362 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 7363 "reshape"); 7364 } 7365 7366 /* Ok, everything is just fine now */ 7367 if (mddev->to_remove == &raid5_attrs_group) 7368 mddev->to_remove = NULL; 7369 else if (mddev->kobj.sd && 7370 sysfs_create_group(&mddev->kobj, &raid5_attrs_group)) 7371 pr_warn("raid5: failed to create sysfs attributes for %s\n", 7372 mdname(mddev)); 7373 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 7374 7375 if (mddev->queue) { 7376 int chunk_size; 7377 /* read-ahead size must cover two whole stripes, which 7378 * is 2 * (datadisks) * chunksize where 'n' is the 7379 * number of raid devices 7380 */ 7381 int data_disks = conf->previous_raid_disks - conf->max_degraded; 7382 int stripe = data_disks * 7383 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 7384 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe) 7385 mddev->queue->backing_dev_info->ra_pages = 2 * stripe; 7386 7387 chunk_size = mddev->chunk_sectors << 9; 7388 blk_queue_io_min(mddev->queue, chunk_size); 7389 blk_queue_io_opt(mddev->queue, chunk_size * 7390 (conf->raid_disks - conf->max_degraded)); 7391 mddev->queue->limits.raid_partial_stripes_expensive = 1; 7392 /* 7393 * We can only discard a whole stripe. It doesn't make sense to 7394 * discard data disk but write parity disk 7395 */ 7396 stripe = stripe * PAGE_SIZE; 7397 /* Round up to power of 2, as discard handling 7398 * currently assumes that */ 7399 while ((stripe-1) & stripe) 7400 stripe = (stripe | (stripe-1)) + 1; 7401 mddev->queue->limits.discard_alignment = stripe; 7402 mddev->queue->limits.discard_granularity = stripe; 7403 7404 blk_queue_max_write_same_sectors(mddev->queue, 0); 7405 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 7406 7407 rdev_for_each(rdev, mddev) { 7408 disk_stack_limits(mddev->gendisk, rdev->bdev, 7409 rdev->data_offset << 9); 7410 disk_stack_limits(mddev->gendisk, rdev->bdev, 7411 rdev->new_data_offset << 9); 7412 } 7413 7414 /* 7415 * zeroing is required, otherwise data 7416 * could be lost. Consider a scenario: discard a stripe 7417 * (the stripe could be inconsistent if 7418 * discard_zeroes_data is 0); write one disk of the 7419 * stripe (the stripe could be inconsistent again 7420 * depending on which disks are used to calculate 7421 * parity); the disk is broken; The stripe data of this 7422 * disk is lost. 7423 * 7424 * We only allow DISCARD if the sysadmin has confirmed that 7425 * only safe devices are in use by setting a module parameter. 7426 * A better idea might be to turn DISCARD into WRITE_ZEROES 7427 * requests, as that is required to be safe. 7428 */ 7429 if (devices_handle_discard_safely && 7430 mddev->queue->limits.max_discard_sectors >= (stripe >> 9) && 7431 mddev->queue->limits.discard_granularity >= stripe) 7432 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 7433 mddev->queue); 7434 else 7435 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 7436 mddev->queue); 7437 7438 blk_queue_max_hw_sectors(mddev->queue, UINT_MAX); 7439 } 7440 7441 if (log_init(conf, journal_dev, raid5_has_ppl(conf))) 7442 goto abort; 7443 7444 return 0; 7445 abort: 7446 md_unregister_thread(&mddev->thread); 7447 print_raid5_conf(conf); 7448 free_conf(conf); 7449 mddev->private = NULL; 7450 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev)); 7451 return -EIO; 7452 } 7453 7454 static void raid5_free(struct mddev *mddev, void *priv) 7455 { 7456 struct r5conf *conf = priv; 7457 7458 free_conf(conf); 7459 mddev->to_remove = &raid5_attrs_group; 7460 } 7461 7462 static void raid5_status(struct seq_file *seq, struct mddev *mddev) 7463 { 7464 struct r5conf *conf = mddev->private; 7465 int i; 7466 7467 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level, 7468 conf->chunk_sectors / 2, mddev->layout); 7469 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded); 7470 rcu_read_lock(); 7471 for (i = 0; i < conf->raid_disks; i++) { 7472 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 7473 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 7474 } 7475 rcu_read_unlock(); 7476 seq_printf (seq, "]"); 7477 } 7478 7479 static void print_raid5_conf (struct r5conf *conf) 7480 { 7481 int i; 7482 struct disk_info *tmp; 7483 7484 pr_debug("RAID conf printout:\n"); 7485 if (!conf) { 7486 pr_debug("(conf==NULL)\n"); 7487 return; 7488 } 7489 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level, 7490 conf->raid_disks, 7491 conf->raid_disks - conf->mddev->degraded); 7492 7493 for (i = 0; i < conf->raid_disks; i++) { 7494 char b[BDEVNAME_SIZE]; 7495 tmp = conf->disks + i; 7496 if (tmp->rdev) 7497 pr_debug(" disk %d, o:%d, dev:%s\n", 7498 i, !test_bit(Faulty, &tmp->rdev->flags), 7499 bdevname(tmp->rdev->bdev, b)); 7500 } 7501 } 7502 7503 static int raid5_spare_active(struct mddev *mddev) 7504 { 7505 int i; 7506 struct r5conf *conf = mddev->private; 7507 struct disk_info *tmp; 7508 int count = 0; 7509 unsigned long flags; 7510 7511 for (i = 0; i < conf->raid_disks; i++) { 7512 tmp = conf->disks + i; 7513 if (tmp->replacement 7514 && tmp->replacement->recovery_offset == MaxSector 7515 && !test_bit(Faulty, &tmp->replacement->flags) 7516 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 7517 /* Replacement has just become active. */ 7518 if (!tmp->rdev 7519 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 7520 count++; 7521 if (tmp->rdev) { 7522 /* Replaced device not technically faulty, 7523 * but we need to be sure it gets removed 7524 * and never re-added. 7525 */ 7526 set_bit(Faulty, &tmp->rdev->flags); 7527 sysfs_notify_dirent_safe( 7528 tmp->rdev->sysfs_state); 7529 } 7530 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 7531 } else if (tmp->rdev 7532 && tmp->rdev->recovery_offset == MaxSector 7533 && !test_bit(Faulty, &tmp->rdev->flags) 7534 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 7535 count++; 7536 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 7537 } 7538 } 7539 spin_lock_irqsave(&conf->device_lock, flags); 7540 mddev->degraded = raid5_calc_degraded(conf); 7541 spin_unlock_irqrestore(&conf->device_lock, flags); 7542 print_raid5_conf(conf); 7543 return count; 7544 } 7545 7546 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 7547 { 7548 struct r5conf *conf = mddev->private; 7549 int err = 0; 7550 int number = rdev->raid_disk; 7551 struct md_rdev **rdevp; 7552 struct disk_info *p = conf->disks + number; 7553 7554 print_raid5_conf(conf); 7555 if (test_bit(Journal, &rdev->flags) && conf->log) { 7556 /* 7557 * we can't wait pending write here, as this is called in 7558 * raid5d, wait will deadlock. 7559 * neilb: there is no locking about new writes here, 7560 * so this cannot be safe. 7561 */ 7562 if (atomic_read(&conf->active_stripes) || 7563 atomic_read(&conf->r5c_cached_full_stripes) || 7564 atomic_read(&conf->r5c_cached_partial_stripes)) { 7565 return -EBUSY; 7566 } 7567 log_exit(conf); 7568 return 0; 7569 } 7570 if (rdev == p->rdev) 7571 rdevp = &p->rdev; 7572 else if (rdev == p->replacement) 7573 rdevp = &p->replacement; 7574 else 7575 return 0; 7576 7577 if (number >= conf->raid_disks && 7578 conf->reshape_progress == MaxSector) 7579 clear_bit(In_sync, &rdev->flags); 7580 7581 if (test_bit(In_sync, &rdev->flags) || 7582 atomic_read(&rdev->nr_pending)) { 7583 err = -EBUSY; 7584 goto abort; 7585 } 7586 /* Only remove non-faulty devices if recovery 7587 * isn't possible. 7588 */ 7589 if (!test_bit(Faulty, &rdev->flags) && 7590 mddev->recovery_disabled != conf->recovery_disabled && 7591 !has_failed(conf) && 7592 (!p->replacement || p->replacement == rdev) && 7593 number < conf->raid_disks) { 7594 err = -EBUSY; 7595 goto abort; 7596 } 7597 *rdevp = NULL; 7598 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 7599 synchronize_rcu(); 7600 if (atomic_read(&rdev->nr_pending)) { 7601 /* lost the race, try later */ 7602 err = -EBUSY; 7603 *rdevp = rdev; 7604 } 7605 } 7606 if (!err) { 7607 err = log_modify(conf, rdev, false); 7608 if (err) 7609 goto abort; 7610 } 7611 if (p->replacement) { 7612 /* We must have just cleared 'rdev' */ 7613 p->rdev = p->replacement; 7614 clear_bit(Replacement, &p->replacement->flags); 7615 smp_mb(); /* Make sure other CPUs may see both as identical 7616 * but will never see neither - if they are careful 7617 */ 7618 p->replacement = NULL; 7619 7620 if (!err) 7621 err = log_modify(conf, p->rdev, true); 7622 } 7623 7624 clear_bit(WantReplacement, &rdev->flags); 7625 abort: 7626 7627 print_raid5_conf(conf); 7628 return err; 7629 } 7630 7631 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev) 7632 { 7633 struct r5conf *conf = mddev->private; 7634 int err = -EEXIST; 7635 int disk; 7636 struct disk_info *p; 7637 int first = 0; 7638 int last = conf->raid_disks - 1; 7639 7640 if (test_bit(Journal, &rdev->flags)) { 7641 if (conf->log) 7642 return -EBUSY; 7643 7644 rdev->raid_disk = 0; 7645 /* 7646 * The array is in readonly mode if journal is missing, so no 7647 * write requests running. We should be safe 7648 */ 7649 log_init(conf, rdev, false); 7650 return 0; 7651 } 7652 if (mddev->recovery_disabled == conf->recovery_disabled) 7653 return -EBUSY; 7654 7655 if (rdev->saved_raid_disk < 0 && has_failed(conf)) 7656 /* no point adding a device */ 7657 return -EINVAL; 7658 7659 if (rdev->raid_disk >= 0) 7660 first = last = rdev->raid_disk; 7661 7662 /* 7663 * find the disk ... but prefer rdev->saved_raid_disk 7664 * if possible. 7665 */ 7666 if (rdev->saved_raid_disk >= 0 && 7667 rdev->saved_raid_disk >= first && 7668 conf->disks[rdev->saved_raid_disk].rdev == NULL) 7669 first = rdev->saved_raid_disk; 7670 7671 for (disk = first; disk <= last; disk++) { 7672 p = conf->disks + disk; 7673 if (p->rdev == NULL) { 7674 clear_bit(In_sync, &rdev->flags); 7675 rdev->raid_disk = disk; 7676 if (rdev->saved_raid_disk != disk) 7677 conf->fullsync = 1; 7678 rcu_assign_pointer(p->rdev, rdev); 7679 7680 err = log_modify(conf, rdev, true); 7681 7682 goto out; 7683 } 7684 } 7685 for (disk = first; disk <= last; disk++) { 7686 p = conf->disks + disk; 7687 if (test_bit(WantReplacement, &p->rdev->flags) && 7688 p->replacement == NULL) { 7689 clear_bit(In_sync, &rdev->flags); 7690 set_bit(Replacement, &rdev->flags); 7691 rdev->raid_disk = disk; 7692 err = 0; 7693 conf->fullsync = 1; 7694 rcu_assign_pointer(p->replacement, rdev); 7695 break; 7696 } 7697 } 7698 out: 7699 print_raid5_conf(conf); 7700 return err; 7701 } 7702 7703 static int raid5_resize(struct mddev *mddev, sector_t sectors) 7704 { 7705 /* no resync is happening, and there is enough space 7706 * on all devices, so we can resize. 7707 * We need to make sure resync covers any new space. 7708 * If the array is shrinking we should possibly wait until 7709 * any io in the removed space completes, but it hardly seems 7710 * worth it. 7711 */ 7712 sector_t newsize; 7713 struct r5conf *conf = mddev->private; 7714 7715 if (conf->log || raid5_has_ppl(conf)) 7716 return -EINVAL; 7717 sectors &= ~((sector_t)conf->chunk_sectors - 1); 7718 newsize = raid5_size(mddev, sectors, mddev->raid_disks); 7719 if (mddev->external_size && 7720 mddev->array_sectors > newsize) 7721 return -EINVAL; 7722 if (mddev->bitmap) { 7723 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0); 7724 if (ret) 7725 return ret; 7726 } 7727 md_set_array_sectors(mddev, newsize); 7728 if (sectors > mddev->dev_sectors && 7729 mddev->recovery_cp > mddev->dev_sectors) { 7730 mddev->recovery_cp = mddev->dev_sectors; 7731 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7732 } 7733 mddev->dev_sectors = sectors; 7734 mddev->resync_max_sectors = sectors; 7735 return 0; 7736 } 7737 7738 static int check_stripe_cache(struct mddev *mddev) 7739 { 7740 /* Can only proceed if there are plenty of stripe_heads. 7741 * We need a minimum of one full stripe,, and for sensible progress 7742 * it is best to have about 4 times that. 7743 * If we require 4 times, then the default 256 4K stripe_heads will 7744 * allow for chunk sizes up to 256K, which is probably OK. 7745 * If the chunk size is greater, user-space should request more 7746 * stripe_heads first. 7747 */ 7748 struct r5conf *conf = mddev->private; 7749 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4 7750 > conf->min_nr_stripes || 7751 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4 7752 > conf->min_nr_stripes) { 7753 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n", 7754 mdname(mddev), 7755 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9) 7756 / STRIPE_SIZE)*4); 7757 return 0; 7758 } 7759 return 1; 7760 } 7761 7762 static int check_reshape(struct mddev *mddev) 7763 { 7764 struct r5conf *conf = mddev->private; 7765 7766 if (conf->log || raid5_has_ppl(conf)) 7767 return -EINVAL; 7768 if (mddev->delta_disks == 0 && 7769 mddev->new_layout == mddev->layout && 7770 mddev->new_chunk_sectors == mddev->chunk_sectors) 7771 return 0; /* nothing to do */ 7772 if (has_failed(conf)) 7773 return -EINVAL; 7774 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) { 7775 /* We might be able to shrink, but the devices must 7776 * be made bigger first. 7777 * For raid6, 4 is the minimum size. 7778 * Otherwise 2 is the minimum 7779 */ 7780 int min = 2; 7781 if (mddev->level == 6) 7782 min = 4; 7783 if (mddev->raid_disks + mddev->delta_disks < min) 7784 return -EINVAL; 7785 } 7786 7787 if (!check_stripe_cache(mddev)) 7788 return -ENOSPC; 7789 7790 if (mddev->new_chunk_sectors > mddev->chunk_sectors || 7791 mddev->delta_disks > 0) 7792 if (resize_chunks(conf, 7793 conf->previous_raid_disks 7794 + max(0, mddev->delta_disks), 7795 max(mddev->new_chunk_sectors, 7796 mddev->chunk_sectors) 7797 ) < 0) 7798 return -ENOMEM; 7799 7800 if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size) 7801 return 0; /* never bother to shrink */ 7802 return resize_stripes(conf, (conf->previous_raid_disks 7803 + mddev->delta_disks)); 7804 } 7805 7806 static int raid5_start_reshape(struct mddev *mddev) 7807 { 7808 struct r5conf *conf = mddev->private; 7809 struct md_rdev *rdev; 7810 int spares = 0; 7811 unsigned long flags; 7812 7813 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 7814 return -EBUSY; 7815 7816 if (!check_stripe_cache(mddev)) 7817 return -ENOSPC; 7818 7819 if (has_failed(conf)) 7820 return -EINVAL; 7821 7822 rdev_for_each(rdev, mddev) { 7823 if (!test_bit(In_sync, &rdev->flags) 7824 && !test_bit(Faulty, &rdev->flags)) 7825 spares++; 7826 } 7827 7828 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded) 7829 /* Not enough devices even to make a degraded array 7830 * of that size 7831 */ 7832 return -EINVAL; 7833 7834 /* Refuse to reduce size of the array. Any reductions in 7835 * array size must be through explicit setting of array_size 7836 * attribute. 7837 */ 7838 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks) 7839 < mddev->array_sectors) { 7840 pr_warn("md/raid:%s: array size must be reduced before number of disks\n", 7841 mdname(mddev)); 7842 return -EINVAL; 7843 } 7844 7845 atomic_set(&conf->reshape_stripes, 0); 7846 spin_lock_irq(&conf->device_lock); 7847 write_seqcount_begin(&conf->gen_lock); 7848 conf->previous_raid_disks = conf->raid_disks; 7849 conf->raid_disks += mddev->delta_disks; 7850 conf->prev_chunk_sectors = conf->chunk_sectors; 7851 conf->chunk_sectors = mddev->new_chunk_sectors; 7852 conf->prev_algo = conf->algorithm; 7853 conf->algorithm = mddev->new_layout; 7854 conf->generation++; 7855 /* Code that selects data_offset needs to see the generation update 7856 * if reshape_progress has been set - so a memory barrier needed. 7857 */ 7858 smp_mb(); 7859 if (mddev->reshape_backwards) 7860 conf->reshape_progress = raid5_size(mddev, 0, 0); 7861 else 7862 conf->reshape_progress = 0; 7863 conf->reshape_safe = conf->reshape_progress; 7864 write_seqcount_end(&conf->gen_lock); 7865 spin_unlock_irq(&conf->device_lock); 7866 7867 /* Now make sure any requests that proceeded on the assumption 7868 * the reshape wasn't running - like Discard or Read - have 7869 * completed. 7870 */ 7871 mddev_suspend(mddev); 7872 mddev_resume(mddev); 7873 7874 /* Add some new drives, as many as will fit. 7875 * We know there are enough to make the newly sized array work. 7876 * Don't add devices if we are reducing the number of 7877 * devices in the array. This is because it is not possible 7878 * to correctly record the "partially reconstructed" state of 7879 * such devices during the reshape and confusion could result. 7880 */ 7881 if (mddev->delta_disks >= 0) { 7882 rdev_for_each(rdev, mddev) 7883 if (rdev->raid_disk < 0 && 7884 !test_bit(Faulty, &rdev->flags)) { 7885 if (raid5_add_disk(mddev, rdev) == 0) { 7886 if (rdev->raid_disk 7887 >= conf->previous_raid_disks) 7888 set_bit(In_sync, &rdev->flags); 7889 else 7890 rdev->recovery_offset = 0; 7891 7892 if (sysfs_link_rdev(mddev, rdev)) 7893 /* Failure here is OK */; 7894 } 7895 } else if (rdev->raid_disk >= conf->previous_raid_disks 7896 && !test_bit(Faulty, &rdev->flags)) { 7897 /* This is a spare that was manually added */ 7898 set_bit(In_sync, &rdev->flags); 7899 } 7900 7901 /* When a reshape changes the number of devices, 7902 * ->degraded is measured against the larger of the 7903 * pre and post number of devices. 7904 */ 7905 spin_lock_irqsave(&conf->device_lock, flags); 7906 mddev->degraded = raid5_calc_degraded(conf); 7907 spin_unlock_irqrestore(&conf->device_lock, flags); 7908 } 7909 mddev->raid_disks = conf->raid_disks; 7910 mddev->reshape_position = conf->reshape_progress; 7911 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 7912 7913 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7914 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7915 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 7916 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7917 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7918 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 7919 "reshape"); 7920 if (!mddev->sync_thread) { 7921 mddev->recovery = 0; 7922 spin_lock_irq(&conf->device_lock); 7923 write_seqcount_begin(&conf->gen_lock); 7924 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks; 7925 mddev->new_chunk_sectors = 7926 conf->chunk_sectors = conf->prev_chunk_sectors; 7927 mddev->new_layout = conf->algorithm = conf->prev_algo; 7928 rdev_for_each(rdev, mddev) 7929 rdev->new_data_offset = rdev->data_offset; 7930 smp_wmb(); 7931 conf->generation --; 7932 conf->reshape_progress = MaxSector; 7933 mddev->reshape_position = MaxSector; 7934 write_seqcount_end(&conf->gen_lock); 7935 spin_unlock_irq(&conf->device_lock); 7936 return -EAGAIN; 7937 } 7938 conf->reshape_checkpoint = jiffies; 7939 md_wakeup_thread(mddev->sync_thread); 7940 md_new_event(mddev); 7941 return 0; 7942 } 7943 7944 /* This is called from the reshape thread and should make any 7945 * changes needed in 'conf' 7946 */ 7947 static void end_reshape(struct r5conf *conf) 7948 { 7949 7950 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 7951 7952 spin_lock_irq(&conf->device_lock); 7953 conf->previous_raid_disks = conf->raid_disks; 7954 md_finish_reshape(conf->mddev); 7955 smp_wmb(); 7956 conf->reshape_progress = MaxSector; 7957 conf->mddev->reshape_position = MaxSector; 7958 spin_unlock_irq(&conf->device_lock); 7959 wake_up(&conf->wait_for_overlap); 7960 7961 /* read-ahead size must cover two whole stripes, which is 7962 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 7963 */ 7964 if (conf->mddev->queue) { 7965 int data_disks = conf->raid_disks - conf->max_degraded; 7966 int stripe = data_disks * ((conf->chunk_sectors << 9) 7967 / PAGE_SIZE); 7968 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe) 7969 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe; 7970 } 7971 } 7972 } 7973 7974 /* This is called from the raid5d thread with mddev_lock held. 7975 * It makes config changes to the device. 7976 */ 7977 static void raid5_finish_reshape(struct mddev *mddev) 7978 { 7979 struct r5conf *conf = mddev->private; 7980 7981 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 7982 7983 if (mddev->delta_disks > 0) { 7984 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 7985 if (mddev->queue) { 7986 set_capacity(mddev->gendisk, mddev->array_sectors); 7987 revalidate_disk(mddev->gendisk); 7988 } 7989 } else { 7990 int d; 7991 spin_lock_irq(&conf->device_lock); 7992 mddev->degraded = raid5_calc_degraded(conf); 7993 spin_unlock_irq(&conf->device_lock); 7994 for (d = conf->raid_disks ; 7995 d < conf->raid_disks - mddev->delta_disks; 7996 d++) { 7997 struct md_rdev *rdev = conf->disks[d].rdev; 7998 if (rdev) 7999 clear_bit(In_sync, &rdev->flags); 8000 rdev = conf->disks[d].replacement; 8001 if (rdev) 8002 clear_bit(In_sync, &rdev->flags); 8003 } 8004 } 8005 mddev->layout = conf->algorithm; 8006 mddev->chunk_sectors = conf->chunk_sectors; 8007 mddev->reshape_position = MaxSector; 8008 mddev->delta_disks = 0; 8009 mddev->reshape_backwards = 0; 8010 } 8011 } 8012 8013 static void raid5_quiesce(struct mddev *mddev, int state) 8014 { 8015 struct r5conf *conf = mddev->private; 8016 8017 switch(state) { 8018 case 2: /* resume for a suspend */ 8019 wake_up(&conf->wait_for_overlap); 8020 break; 8021 8022 case 1: /* stop all writes */ 8023 lock_all_device_hash_locks_irq(conf); 8024 /* '2' tells resync/reshape to pause so that all 8025 * active stripes can drain 8026 */ 8027 r5c_flush_cache(conf, INT_MAX); 8028 conf->quiesce = 2; 8029 wait_event_cmd(conf->wait_for_quiescent, 8030 atomic_read(&conf->active_stripes) == 0 && 8031 atomic_read(&conf->active_aligned_reads) == 0, 8032 unlock_all_device_hash_locks_irq(conf), 8033 lock_all_device_hash_locks_irq(conf)); 8034 conf->quiesce = 1; 8035 unlock_all_device_hash_locks_irq(conf); 8036 /* allow reshape to continue */ 8037 wake_up(&conf->wait_for_overlap); 8038 break; 8039 8040 case 0: /* re-enable writes */ 8041 lock_all_device_hash_locks_irq(conf); 8042 conf->quiesce = 0; 8043 wake_up(&conf->wait_for_quiescent); 8044 wake_up(&conf->wait_for_overlap); 8045 unlock_all_device_hash_locks_irq(conf); 8046 break; 8047 } 8048 r5l_quiesce(conf->log, state); 8049 } 8050 8051 static void *raid45_takeover_raid0(struct mddev *mddev, int level) 8052 { 8053 struct r0conf *raid0_conf = mddev->private; 8054 sector_t sectors; 8055 8056 /* for raid0 takeover only one zone is supported */ 8057 if (raid0_conf->nr_strip_zones > 1) { 8058 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n", 8059 mdname(mddev)); 8060 return ERR_PTR(-EINVAL); 8061 } 8062 8063 sectors = raid0_conf->strip_zone[0].zone_end; 8064 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev); 8065 mddev->dev_sectors = sectors; 8066 mddev->new_level = level; 8067 mddev->new_layout = ALGORITHM_PARITY_N; 8068 mddev->new_chunk_sectors = mddev->chunk_sectors; 8069 mddev->raid_disks += 1; 8070 mddev->delta_disks = 1; 8071 /* make sure it will be not marked as dirty */ 8072 mddev->recovery_cp = MaxSector; 8073 8074 return setup_conf(mddev); 8075 } 8076 8077 static void *raid5_takeover_raid1(struct mddev *mddev) 8078 { 8079 int chunksect; 8080 void *ret; 8081 8082 if (mddev->raid_disks != 2 || 8083 mddev->degraded > 1) 8084 return ERR_PTR(-EINVAL); 8085 8086 /* Should check if there are write-behind devices? */ 8087 8088 chunksect = 64*2; /* 64K by default */ 8089 8090 /* The array must be an exact multiple of chunksize */ 8091 while (chunksect && (mddev->array_sectors & (chunksect-1))) 8092 chunksect >>= 1; 8093 8094 if ((chunksect<<9) < STRIPE_SIZE) 8095 /* array size does not allow a suitable chunk size */ 8096 return ERR_PTR(-EINVAL); 8097 8098 mddev->new_level = 5; 8099 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC; 8100 mddev->new_chunk_sectors = chunksect; 8101 8102 ret = setup_conf(mddev); 8103 if (!IS_ERR(ret)) 8104 mddev_clear_unsupported_flags(mddev, 8105 UNSUPPORTED_MDDEV_FLAGS); 8106 return ret; 8107 } 8108 8109 static void *raid5_takeover_raid6(struct mddev *mddev) 8110 { 8111 int new_layout; 8112 8113 switch (mddev->layout) { 8114 case ALGORITHM_LEFT_ASYMMETRIC_6: 8115 new_layout = ALGORITHM_LEFT_ASYMMETRIC; 8116 break; 8117 case ALGORITHM_RIGHT_ASYMMETRIC_6: 8118 new_layout = ALGORITHM_RIGHT_ASYMMETRIC; 8119 break; 8120 case ALGORITHM_LEFT_SYMMETRIC_6: 8121 new_layout = ALGORITHM_LEFT_SYMMETRIC; 8122 break; 8123 case ALGORITHM_RIGHT_SYMMETRIC_6: 8124 new_layout = ALGORITHM_RIGHT_SYMMETRIC; 8125 break; 8126 case ALGORITHM_PARITY_0_6: 8127 new_layout = ALGORITHM_PARITY_0; 8128 break; 8129 case ALGORITHM_PARITY_N: 8130 new_layout = ALGORITHM_PARITY_N; 8131 break; 8132 default: 8133 return ERR_PTR(-EINVAL); 8134 } 8135 mddev->new_level = 5; 8136 mddev->new_layout = new_layout; 8137 mddev->delta_disks = -1; 8138 mddev->raid_disks -= 1; 8139 return setup_conf(mddev); 8140 } 8141 8142 static int raid5_check_reshape(struct mddev *mddev) 8143 { 8144 /* For a 2-drive array, the layout and chunk size can be changed 8145 * immediately as not restriping is needed. 8146 * For larger arrays we record the new value - after validation 8147 * to be used by a reshape pass. 8148 */ 8149 struct r5conf *conf = mddev->private; 8150 int new_chunk = mddev->new_chunk_sectors; 8151 8152 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout)) 8153 return -EINVAL; 8154 if (new_chunk > 0) { 8155 if (!is_power_of_2(new_chunk)) 8156 return -EINVAL; 8157 if (new_chunk < (PAGE_SIZE>>9)) 8158 return -EINVAL; 8159 if (mddev->array_sectors & (new_chunk-1)) 8160 /* not factor of array size */ 8161 return -EINVAL; 8162 } 8163 8164 /* They look valid */ 8165 8166 if (mddev->raid_disks == 2) { 8167 /* can make the change immediately */ 8168 if (mddev->new_layout >= 0) { 8169 conf->algorithm = mddev->new_layout; 8170 mddev->layout = mddev->new_layout; 8171 } 8172 if (new_chunk > 0) { 8173 conf->chunk_sectors = new_chunk ; 8174 mddev->chunk_sectors = new_chunk; 8175 } 8176 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8177 md_wakeup_thread(mddev->thread); 8178 } 8179 return check_reshape(mddev); 8180 } 8181 8182 static int raid6_check_reshape(struct mddev *mddev) 8183 { 8184 int new_chunk = mddev->new_chunk_sectors; 8185 8186 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout)) 8187 return -EINVAL; 8188 if (new_chunk > 0) { 8189 if (!is_power_of_2(new_chunk)) 8190 return -EINVAL; 8191 if (new_chunk < (PAGE_SIZE >> 9)) 8192 return -EINVAL; 8193 if (mddev->array_sectors & (new_chunk-1)) 8194 /* not factor of array size */ 8195 return -EINVAL; 8196 } 8197 8198 /* They look valid */ 8199 return check_reshape(mddev); 8200 } 8201 8202 static void *raid5_takeover(struct mddev *mddev) 8203 { 8204 /* raid5 can take over: 8205 * raid0 - if there is only one strip zone - make it a raid4 layout 8206 * raid1 - if there are two drives. We need to know the chunk size 8207 * raid4 - trivial - just use a raid4 layout. 8208 * raid6 - Providing it is a *_6 layout 8209 */ 8210 if (mddev->level == 0) 8211 return raid45_takeover_raid0(mddev, 5); 8212 if (mddev->level == 1) 8213 return raid5_takeover_raid1(mddev); 8214 if (mddev->level == 4) { 8215 mddev->new_layout = ALGORITHM_PARITY_N; 8216 mddev->new_level = 5; 8217 return setup_conf(mddev); 8218 } 8219 if (mddev->level == 6) 8220 return raid5_takeover_raid6(mddev); 8221 8222 return ERR_PTR(-EINVAL); 8223 } 8224 8225 static void *raid4_takeover(struct mddev *mddev) 8226 { 8227 /* raid4 can take over: 8228 * raid0 - if there is only one strip zone 8229 * raid5 - if layout is right 8230 */ 8231 if (mddev->level == 0) 8232 return raid45_takeover_raid0(mddev, 4); 8233 if (mddev->level == 5 && 8234 mddev->layout == ALGORITHM_PARITY_N) { 8235 mddev->new_layout = 0; 8236 mddev->new_level = 4; 8237 return setup_conf(mddev); 8238 } 8239 return ERR_PTR(-EINVAL); 8240 } 8241 8242 static struct md_personality raid5_personality; 8243 8244 static void *raid6_takeover(struct mddev *mddev) 8245 { 8246 /* Currently can only take over a raid5. We map the 8247 * personality to an equivalent raid6 personality 8248 * with the Q block at the end. 8249 */ 8250 int new_layout; 8251 8252 if (mddev->pers != &raid5_personality) 8253 return ERR_PTR(-EINVAL); 8254 if (mddev->degraded > 1) 8255 return ERR_PTR(-EINVAL); 8256 if (mddev->raid_disks > 253) 8257 return ERR_PTR(-EINVAL); 8258 if (mddev->raid_disks < 3) 8259 return ERR_PTR(-EINVAL); 8260 8261 switch (mddev->layout) { 8262 case ALGORITHM_LEFT_ASYMMETRIC: 8263 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6; 8264 break; 8265 case ALGORITHM_RIGHT_ASYMMETRIC: 8266 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6; 8267 break; 8268 case ALGORITHM_LEFT_SYMMETRIC: 8269 new_layout = ALGORITHM_LEFT_SYMMETRIC_6; 8270 break; 8271 case ALGORITHM_RIGHT_SYMMETRIC: 8272 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6; 8273 break; 8274 case ALGORITHM_PARITY_0: 8275 new_layout = ALGORITHM_PARITY_0_6; 8276 break; 8277 case ALGORITHM_PARITY_N: 8278 new_layout = ALGORITHM_PARITY_N; 8279 break; 8280 default: 8281 return ERR_PTR(-EINVAL); 8282 } 8283 mddev->new_level = 6; 8284 mddev->new_layout = new_layout; 8285 mddev->delta_disks = 1; 8286 mddev->raid_disks += 1; 8287 return setup_conf(mddev); 8288 } 8289 8290 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf) 8291 { 8292 struct r5conf *conf; 8293 int err; 8294 8295 err = mddev_lock(mddev); 8296 if (err) 8297 return err; 8298 conf = mddev->private; 8299 if (!conf) { 8300 mddev_unlock(mddev); 8301 return -ENODEV; 8302 } 8303 8304 if (strncmp(buf, "ppl", 3) == 0) { 8305 /* ppl only works with RAID 5 */ 8306 if (!raid5_has_ppl(conf) && conf->level == 5) { 8307 err = log_init(conf, NULL, true); 8308 if (!err) { 8309 err = resize_stripes(conf, conf->pool_size); 8310 if (err) 8311 log_exit(conf); 8312 } 8313 } else 8314 err = -EINVAL; 8315 } else if (strncmp(buf, "resync", 6) == 0) { 8316 if (raid5_has_ppl(conf)) { 8317 mddev_suspend(mddev); 8318 log_exit(conf); 8319 mddev_resume(mddev); 8320 err = resize_stripes(conf, conf->pool_size); 8321 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) && 8322 r5l_log_disk_error(conf)) { 8323 bool journal_dev_exists = false; 8324 struct md_rdev *rdev; 8325 8326 rdev_for_each(rdev, mddev) 8327 if (test_bit(Journal, &rdev->flags)) { 8328 journal_dev_exists = true; 8329 break; 8330 } 8331 8332 if (!journal_dev_exists) { 8333 mddev_suspend(mddev); 8334 clear_bit(MD_HAS_JOURNAL, &mddev->flags); 8335 mddev_resume(mddev); 8336 } else /* need remove journal device first */ 8337 err = -EBUSY; 8338 } else 8339 err = -EINVAL; 8340 } else { 8341 err = -EINVAL; 8342 } 8343 8344 if (!err) 8345 md_update_sb(mddev, 1); 8346 8347 mddev_unlock(mddev); 8348 8349 return err; 8350 } 8351 8352 static struct md_personality raid6_personality = 8353 { 8354 .name = "raid6", 8355 .level = 6, 8356 .owner = THIS_MODULE, 8357 .make_request = raid5_make_request, 8358 .run = raid5_run, 8359 .free = raid5_free, 8360 .status = raid5_status, 8361 .error_handler = raid5_error, 8362 .hot_add_disk = raid5_add_disk, 8363 .hot_remove_disk= raid5_remove_disk, 8364 .spare_active = raid5_spare_active, 8365 .sync_request = raid5_sync_request, 8366 .resize = raid5_resize, 8367 .size = raid5_size, 8368 .check_reshape = raid6_check_reshape, 8369 .start_reshape = raid5_start_reshape, 8370 .finish_reshape = raid5_finish_reshape, 8371 .quiesce = raid5_quiesce, 8372 .takeover = raid6_takeover, 8373 .congested = raid5_congested, 8374 .change_consistency_policy = raid5_change_consistency_policy, 8375 }; 8376 static struct md_personality raid5_personality = 8377 { 8378 .name = "raid5", 8379 .level = 5, 8380 .owner = THIS_MODULE, 8381 .make_request = raid5_make_request, 8382 .run = raid5_run, 8383 .free = raid5_free, 8384 .status = raid5_status, 8385 .error_handler = raid5_error, 8386 .hot_add_disk = raid5_add_disk, 8387 .hot_remove_disk= raid5_remove_disk, 8388 .spare_active = raid5_spare_active, 8389 .sync_request = raid5_sync_request, 8390 .resize = raid5_resize, 8391 .size = raid5_size, 8392 .check_reshape = raid5_check_reshape, 8393 .start_reshape = raid5_start_reshape, 8394 .finish_reshape = raid5_finish_reshape, 8395 .quiesce = raid5_quiesce, 8396 .takeover = raid5_takeover, 8397 .congested = raid5_congested, 8398 .change_consistency_policy = raid5_change_consistency_policy, 8399 }; 8400 8401 static struct md_personality raid4_personality = 8402 { 8403 .name = "raid4", 8404 .level = 4, 8405 .owner = THIS_MODULE, 8406 .make_request = raid5_make_request, 8407 .run = raid5_run, 8408 .free = raid5_free, 8409 .status = raid5_status, 8410 .error_handler = raid5_error, 8411 .hot_add_disk = raid5_add_disk, 8412 .hot_remove_disk= raid5_remove_disk, 8413 .spare_active = raid5_spare_active, 8414 .sync_request = raid5_sync_request, 8415 .resize = raid5_resize, 8416 .size = raid5_size, 8417 .check_reshape = raid5_check_reshape, 8418 .start_reshape = raid5_start_reshape, 8419 .finish_reshape = raid5_finish_reshape, 8420 .quiesce = raid5_quiesce, 8421 .takeover = raid4_takeover, 8422 .congested = raid5_congested, 8423 .change_consistency_policy = raid5_change_consistency_policy, 8424 }; 8425 8426 static int __init raid5_init(void) 8427 { 8428 int ret; 8429 8430 raid5_wq = alloc_workqueue("raid5wq", 8431 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0); 8432 if (!raid5_wq) 8433 return -ENOMEM; 8434 8435 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE, 8436 "md/raid5:prepare", 8437 raid456_cpu_up_prepare, 8438 raid456_cpu_dead); 8439 if (ret) { 8440 destroy_workqueue(raid5_wq); 8441 return ret; 8442 } 8443 register_md_personality(&raid6_personality); 8444 register_md_personality(&raid5_personality); 8445 register_md_personality(&raid4_personality); 8446 return 0; 8447 } 8448 8449 static void raid5_exit(void) 8450 { 8451 unregister_md_personality(&raid6_personality); 8452 unregister_md_personality(&raid5_personality); 8453 unregister_md_personality(&raid4_personality); 8454 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE); 8455 destroy_workqueue(raid5_wq); 8456 } 8457 8458 module_init(raid5_init); 8459 module_exit(raid5_exit); 8460 MODULE_LICENSE("GPL"); 8461 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD"); 8462 MODULE_ALIAS("md-personality-4"); /* RAID5 */ 8463 MODULE_ALIAS("md-raid5"); 8464 MODULE_ALIAS("md-raid4"); 8465 MODULE_ALIAS("md-level-5"); 8466 MODULE_ALIAS("md-level-4"); 8467 MODULE_ALIAS("md-personality-8"); /* RAID6 */ 8468 MODULE_ALIAS("md-raid6"); 8469 MODULE_ALIAS("md-level-6"); 8470 8471 /* This used to be two separate modules, they were: */ 8472 MODULE_ALIAS("raid5"); 8473 MODULE_ALIAS("raid6"); 8474