xref: /linux/drivers/md/raid5.c (revision 6faadbbb7f9da70ce484f98f72223c20125a1009)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <linux/sched/signal.h>
59 
60 #include <trace/events/block.h>
61 #include <linux/list_sort.h>
62 
63 #include "md.h"
64 #include "raid5.h"
65 #include "raid0.h"
66 #include "bitmap.h"
67 #include "raid5-log.h"
68 
69 #define UNSUPPORTED_MDDEV_FLAGS	(1L << MD_FAILFAST_SUPPORTED)
70 
71 #define cpu_to_group(cpu) cpu_to_node(cpu)
72 #define ANY_GROUP NUMA_NO_NODE
73 
74 static bool devices_handle_discard_safely = false;
75 module_param(devices_handle_discard_safely, bool, 0644);
76 MODULE_PARM_DESC(devices_handle_discard_safely,
77 		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
78 static struct workqueue_struct *raid5_wq;
79 
80 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
81 {
82 	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
83 	return &conf->stripe_hashtbl[hash];
84 }
85 
86 static inline int stripe_hash_locks_hash(sector_t sect)
87 {
88 	return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
89 }
90 
91 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
92 {
93 	spin_lock_irq(conf->hash_locks + hash);
94 	spin_lock(&conf->device_lock);
95 }
96 
97 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
98 {
99 	spin_unlock(&conf->device_lock);
100 	spin_unlock_irq(conf->hash_locks + hash);
101 }
102 
103 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
104 {
105 	int i;
106 	spin_lock_irq(conf->hash_locks);
107 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
108 		spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
109 	spin_lock(&conf->device_lock);
110 }
111 
112 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
113 {
114 	int i;
115 	spin_unlock(&conf->device_lock);
116 	for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
117 		spin_unlock(conf->hash_locks + i);
118 	spin_unlock_irq(conf->hash_locks);
119 }
120 
121 /* Find first data disk in a raid6 stripe */
122 static inline int raid6_d0(struct stripe_head *sh)
123 {
124 	if (sh->ddf_layout)
125 		/* ddf always start from first device */
126 		return 0;
127 	/* md starts just after Q block */
128 	if (sh->qd_idx == sh->disks - 1)
129 		return 0;
130 	else
131 		return sh->qd_idx + 1;
132 }
133 static inline int raid6_next_disk(int disk, int raid_disks)
134 {
135 	disk++;
136 	return (disk < raid_disks) ? disk : 0;
137 }
138 
139 /* When walking through the disks in a raid5, starting at raid6_d0,
140  * We need to map each disk to a 'slot', where the data disks are slot
141  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
142  * is raid_disks-1.  This help does that mapping.
143  */
144 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
145 			     int *count, int syndrome_disks)
146 {
147 	int slot = *count;
148 
149 	if (sh->ddf_layout)
150 		(*count)++;
151 	if (idx == sh->pd_idx)
152 		return syndrome_disks;
153 	if (idx == sh->qd_idx)
154 		return syndrome_disks + 1;
155 	if (!sh->ddf_layout)
156 		(*count)++;
157 	return slot;
158 }
159 
160 static void print_raid5_conf (struct r5conf *conf);
161 
162 static int stripe_operations_active(struct stripe_head *sh)
163 {
164 	return sh->check_state || sh->reconstruct_state ||
165 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
166 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
167 }
168 
169 static bool stripe_is_lowprio(struct stripe_head *sh)
170 {
171 	return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
172 		test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
173 	       !test_bit(STRIPE_R5C_CACHING, &sh->state);
174 }
175 
176 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
177 {
178 	struct r5conf *conf = sh->raid_conf;
179 	struct r5worker_group *group;
180 	int thread_cnt;
181 	int i, cpu = sh->cpu;
182 
183 	if (!cpu_online(cpu)) {
184 		cpu = cpumask_any(cpu_online_mask);
185 		sh->cpu = cpu;
186 	}
187 
188 	if (list_empty(&sh->lru)) {
189 		struct r5worker_group *group;
190 		group = conf->worker_groups + cpu_to_group(cpu);
191 		if (stripe_is_lowprio(sh))
192 			list_add_tail(&sh->lru, &group->loprio_list);
193 		else
194 			list_add_tail(&sh->lru, &group->handle_list);
195 		group->stripes_cnt++;
196 		sh->group = group;
197 	}
198 
199 	if (conf->worker_cnt_per_group == 0) {
200 		md_wakeup_thread(conf->mddev->thread);
201 		return;
202 	}
203 
204 	group = conf->worker_groups + cpu_to_group(sh->cpu);
205 
206 	group->workers[0].working = true;
207 	/* at least one worker should run to avoid race */
208 	queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
209 
210 	thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
211 	/* wakeup more workers */
212 	for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
213 		if (group->workers[i].working == false) {
214 			group->workers[i].working = true;
215 			queue_work_on(sh->cpu, raid5_wq,
216 				      &group->workers[i].work);
217 			thread_cnt--;
218 		}
219 	}
220 }
221 
222 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
223 			      struct list_head *temp_inactive_list)
224 {
225 	int i;
226 	int injournal = 0;	/* number of date pages with R5_InJournal */
227 
228 	BUG_ON(!list_empty(&sh->lru));
229 	BUG_ON(atomic_read(&conf->active_stripes)==0);
230 
231 	if (r5c_is_writeback(conf->log))
232 		for (i = sh->disks; i--; )
233 			if (test_bit(R5_InJournal, &sh->dev[i].flags))
234 				injournal++;
235 	/*
236 	 * In the following cases, the stripe cannot be released to cached
237 	 * lists. Therefore, we make the stripe write out and set
238 	 * STRIPE_HANDLE:
239 	 *   1. when quiesce in r5c write back;
240 	 *   2. when resync is requested fot the stripe.
241 	 */
242 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
243 	    (conf->quiesce && r5c_is_writeback(conf->log) &&
244 	     !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
245 		if (test_bit(STRIPE_R5C_CACHING, &sh->state))
246 			r5c_make_stripe_write_out(sh);
247 		set_bit(STRIPE_HANDLE, &sh->state);
248 	}
249 
250 	if (test_bit(STRIPE_HANDLE, &sh->state)) {
251 		if (test_bit(STRIPE_DELAYED, &sh->state) &&
252 		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
253 			list_add_tail(&sh->lru, &conf->delayed_list);
254 		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
255 			   sh->bm_seq - conf->seq_write > 0)
256 			list_add_tail(&sh->lru, &conf->bitmap_list);
257 		else {
258 			clear_bit(STRIPE_DELAYED, &sh->state);
259 			clear_bit(STRIPE_BIT_DELAY, &sh->state);
260 			if (conf->worker_cnt_per_group == 0) {
261 				if (stripe_is_lowprio(sh))
262 					list_add_tail(&sh->lru,
263 							&conf->loprio_list);
264 				else
265 					list_add_tail(&sh->lru,
266 							&conf->handle_list);
267 			} else {
268 				raid5_wakeup_stripe_thread(sh);
269 				return;
270 			}
271 		}
272 		md_wakeup_thread(conf->mddev->thread);
273 	} else {
274 		BUG_ON(stripe_operations_active(sh));
275 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
276 			if (atomic_dec_return(&conf->preread_active_stripes)
277 			    < IO_THRESHOLD)
278 				md_wakeup_thread(conf->mddev->thread);
279 		atomic_dec(&conf->active_stripes);
280 		if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
281 			if (!r5c_is_writeback(conf->log))
282 				list_add_tail(&sh->lru, temp_inactive_list);
283 			else {
284 				WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
285 				if (injournal == 0)
286 					list_add_tail(&sh->lru, temp_inactive_list);
287 				else if (injournal == conf->raid_disks - conf->max_degraded) {
288 					/* full stripe */
289 					if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
290 						atomic_inc(&conf->r5c_cached_full_stripes);
291 					if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
292 						atomic_dec(&conf->r5c_cached_partial_stripes);
293 					list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
294 					r5c_check_cached_full_stripe(conf);
295 				} else
296 					/*
297 					 * STRIPE_R5C_PARTIAL_STRIPE is set in
298 					 * r5c_try_caching_write(). No need to
299 					 * set it again.
300 					 */
301 					list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
302 			}
303 		}
304 	}
305 }
306 
307 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
308 			     struct list_head *temp_inactive_list)
309 {
310 	if (atomic_dec_and_test(&sh->count))
311 		do_release_stripe(conf, sh, temp_inactive_list);
312 }
313 
314 /*
315  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
316  *
317  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
318  * given time. Adding stripes only takes device lock, while deleting stripes
319  * only takes hash lock.
320  */
321 static void release_inactive_stripe_list(struct r5conf *conf,
322 					 struct list_head *temp_inactive_list,
323 					 int hash)
324 {
325 	int size;
326 	bool do_wakeup = false;
327 	unsigned long flags;
328 
329 	if (hash == NR_STRIPE_HASH_LOCKS) {
330 		size = NR_STRIPE_HASH_LOCKS;
331 		hash = NR_STRIPE_HASH_LOCKS - 1;
332 	} else
333 		size = 1;
334 	while (size) {
335 		struct list_head *list = &temp_inactive_list[size - 1];
336 
337 		/*
338 		 * We don't hold any lock here yet, raid5_get_active_stripe() might
339 		 * remove stripes from the list
340 		 */
341 		if (!list_empty_careful(list)) {
342 			spin_lock_irqsave(conf->hash_locks + hash, flags);
343 			if (list_empty(conf->inactive_list + hash) &&
344 			    !list_empty(list))
345 				atomic_dec(&conf->empty_inactive_list_nr);
346 			list_splice_tail_init(list, conf->inactive_list + hash);
347 			do_wakeup = true;
348 			spin_unlock_irqrestore(conf->hash_locks + hash, flags);
349 		}
350 		size--;
351 		hash--;
352 	}
353 
354 	if (do_wakeup) {
355 		wake_up(&conf->wait_for_stripe);
356 		if (atomic_read(&conf->active_stripes) == 0)
357 			wake_up(&conf->wait_for_quiescent);
358 		if (conf->retry_read_aligned)
359 			md_wakeup_thread(conf->mddev->thread);
360 	}
361 }
362 
363 /* should hold conf->device_lock already */
364 static int release_stripe_list(struct r5conf *conf,
365 			       struct list_head *temp_inactive_list)
366 {
367 	struct stripe_head *sh, *t;
368 	int count = 0;
369 	struct llist_node *head;
370 
371 	head = llist_del_all(&conf->released_stripes);
372 	head = llist_reverse_order(head);
373 	llist_for_each_entry_safe(sh, t, head, release_list) {
374 		int hash;
375 
376 		/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
377 		smp_mb();
378 		clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
379 		/*
380 		 * Don't worry the bit is set here, because if the bit is set
381 		 * again, the count is always > 1. This is true for
382 		 * STRIPE_ON_UNPLUG_LIST bit too.
383 		 */
384 		hash = sh->hash_lock_index;
385 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
386 		count++;
387 	}
388 
389 	return count;
390 }
391 
392 void raid5_release_stripe(struct stripe_head *sh)
393 {
394 	struct r5conf *conf = sh->raid_conf;
395 	unsigned long flags;
396 	struct list_head list;
397 	int hash;
398 	bool wakeup;
399 
400 	/* Avoid release_list until the last reference.
401 	 */
402 	if (atomic_add_unless(&sh->count, -1, 1))
403 		return;
404 
405 	if (unlikely(!conf->mddev->thread) ||
406 		test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
407 		goto slow_path;
408 	wakeup = llist_add(&sh->release_list, &conf->released_stripes);
409 	if (wakeup)
410 		md_wakeup_thread(conf->mddev->thread);
411 	return;
412 slow_path:
413 	local_irq_save(flags);
414 	/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
415 	if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
416 		INIT_LIST_HEAD(&list);
417 		hash = sh->hash_lock_index;
418 		do_release_stripe(conf, sh, &list);
419 		spin_unlock(&conf->device_lock);
420 		release_inactive_stripe_list(conf, &list, hash);
421 	}
422 	local_irq_restore(flags);
423 }
424 
425 static inline void remove_hash(struct stripe_head *sh)
426 {
427 	pr_debug("remove_hash(), stripe %llu\n",
428 		(unsigned long long)sh->sector);
429 
430 	hlist_del_init(&sh->hash);
431 }
432 
433 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
434 {
435 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
436 
437 	pr_debug("insert_hash(), stripe %llu\n",
438 		(unsigned long long)sh->sector);
439 
440 	hlist_add_head(&sh->hash, hp);
441 }
442 
443 /* find an idle stripe, make sure it is unhashed, and return it. */
444 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
445 {
446 	struct stripe_head *sh = NULL;
447 	struct list_head *first;
448 
449 	if (list_empty(conf->inactive_list + hash))
450 		goto out;
451 	first = (conf->inactive_list + hash)->next;
452 	sh = list_entry(first, struct stripe_head, lru);
453 	list_del_init(first);
454 	remove_hash(sh);
455 	atomic_inc(&conf->active_stripes);
456 	BUG_ON(hash != sh->hash_lock_index);
457 	if (list_empty(conf->inactive_list + hash))
458 		atomic_inc(&conf->empty_inactive_list_nr);
459 out:
460 	return sh;
461 }
462 
463 static void shrink_buffers(struct stripe_head *sh)
464 {
465 	struct page *p;
466 	int i;
467 	int num = sh->raid_conf->pool_size;
468 
469 	for (i = 0; i < num ; i++) {
470 		WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
471 		p = sh->dev[i].page;
472 		if (!p)
473 			continue;
474 		sh->dev[i].page = NULL;
475 		put_page(p);
476 	}
477 }
478 
479 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
480 {
481 	int i;
482 	int num = sh->raid_conf->pool_size;
483 
484 	for (i = 0; i < num; i++) {
485 		struct page *page;
486 
487 		if (!(page = alloc_page(gfp))) {
488 			return 1;
489 		}
490 		sh->dev[i].page = page;
491 		sh->dev[i].orig_page = page;
492 	}
493 
494 	return 0;
495 }
496 
497 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
498 			    struct stripe_head *sh);
499 
500 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
501 {
502 	struct r5conf *conf = sh->raid_conf;
503 	int i, seq;
504 
505 	BUG_ON(atomic_read(&sh->count) != 0);
506 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
507 	BUG_ON(stripe_operations_active(sh));
508 	BUG_ON(sh->batch_head);
509 
510 	pr_debug("init_stripe called, stripe %llu\n",
511 		(unsigned long long)sector);
512 retry:
513 	seq = read_seqcount_begin(&conf->gen_lock);
514 	sh->generation = conf->generation - previous;
515 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
516 	sh->sector = sector;
517 	stripe_set_idx(sector, conf, previous, sh);
518 	sh->state = 0;
519 
520 	for (i = sh->disks; i--; ) {
521 		struct r5dev *dev = &sh->dev[i];
522 
523 		if (dev->toread || dev->read || dev->towrite || dev->written ||
524 		    test_bit(R5_LOCKED, &dev->flags)) {
525 			pr_err("sector=%llx i=%d %p %p %p %p %d\n",
526 			       (unsigned long long)sh->sector, i, dev->toread,
527 			       dev->read, dev->towrite, dev->written,
528 			       test_bit(R5_LOCKED, &dev->flags));
529 			WARN_ON(1);
530 		}
531 		dev->flags = 0;
532 		dev->sector = raid5_compute_blocknr(sh, i, previous);
533 	}
534 	if (read_seqcount_retry(&conf->gen_lock, seq))
535 		goto retry;
536 	sh->overwrite_disks = 0;
537 	insert_hash(conf, sh);
538 	sh->cpu = smp_processor_id();
539 	set_bit(STRIPE_BATCH_READY, &sh->state);
540 }
541 
542 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
543 					 short generation)
544 {
545 	struct stripe_head *sh;
546 
547 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
548 	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
549 		if (sh->sector == sector && sh->generation == generation)
550 			return sh;
551 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
552 	return NULL;
553 }
554 
555 /*
556  * Need to check if array has failed when deciding whether to:
557  *  - start an array
558  *  - remove non-faulty devices
559  *  - add a spare
560  *  - allow a reshape
561  * This determination is simple when no reshape is happening.
562  * However if there is a reshape, we need to carefully check
563  * both the before and after sections.
564  * This is because some failed devices may only affect one
565  * of the two sections, and some non-in_sync devices may
566  * be insync in the section most affected by failed devices.
567  */
568 int raid5_calc_degraded(struct r5conf *conf)
569 {
570 	int degraded, degraded2;
571 	int i;
572 
573 	rcu_read_lock();
574 	degraded = 0;
575 	for (i = 0; i < conf->previous_raid_disks; i++) {
576 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
577 		if (rdev && test_bit(Faulty, &rdev->flags))
578 			rdev = rcu_dereference(conf->disks[i].replacement);
579 		if (!rdev || test_bit(Faulty, &rdev->flags))
580 			degraded++;
581 		else if (test_bit(In_sync, &rdev->flags))
582 			;
583 		else
584 			/* not in-sync or faulty.
585 			 * If the reshape increases the number of devices,
586 			 * this is being recovered by the reshape, so
587 			 * this 'previous' section is not in_sync.
588 			 * If the number of devices is being reduced however,
589 			 * the device can only be part of the array if
590 			 * we are reverting a reshape, so this section will
591 			 * be in-sync.
592 			 */
593 			if (conf->raid_disks >= conf->previous_raid_disks)
594 				degraded++;
595 	}
596 	rcu_read_unlock();
597 	if (conf->raid_disks == conf->previous_raid_disks)
598 		return degraded;
599 	rcu_read_lock();
600 	degraded2 = 0;
601 	for (i = 0; i < conf->raid_disks; i++) {
602 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
603 		if (rdev && test_bit(Faulty, &rdev->flags))
604 			rdev = rcu_dereference(conf->disks[i].replacement);
605 		if (!rdev || test_bit(Faulty, &rdev->flags))
606 			degraded2++;
607 		else if (test_bit(In_sync, &rdev->flags))
608 			;
609 		else
610 			/* not in-sync or faulty.
611 			 * If reshape increases the number of devices, this
612 			 * section has already been recovered, else it
613 			 * almost certainly hasn't.
614 			 */
615 			if (conf->raid_disks <= conf->previous_raid_disks)
616 				degraded2++;
617 	}
618 	rcu_read_unlock();
619 	if (degraded2 > degraded)
620 		return degraded2;
621 	return degraded;
622 }
623 
624 static int has_failed(struct r5conf *conf)
625 {
626 	int degraded;
627 
628 	if (conf->mddev->reshape_position == MaxSector)
629 		return conf->mddev->degraded > conf->max_degraded;
630 
631 	degraded = raid5_calc_degraded(conf);
632 	if (degraded > conf->max_degraded)
633 		return 1;
634 	return 0;
635 }
636 
637 struct stripe_head *
638 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
639 			int previous, int noblock, int noquiesce)
640 {
641 	struct stripe_head *sh;
642 	int hash = stripe_hash_locks_hash(sector);
643 	int inc_empty_inactive_list_flag;
644 
645 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
646 
647 	spin_lock_irq(conf->hash_locks + hash);
648 
649 	do {
650 		wait_event_lock_irq(conf->wait_for_quiescent,
651 				    conf->quiesce == 0 || noquiesce,
652 				    *(conf->hash_locks + hash));
653 		sh = __find_stripe(conf, sector, conf->generation - previous);
654 		if (!sh) {
655 			if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
656 				sh = get_free_stripe(conf, hash);
657 				if (!sh && !test_bit(R5_DID_ALLOC,
658 						     &conf->cache_state))
659 					set_bit(R5_ALLOC_MORE,
660 						&conf->cache_state);
661 			}
662 			if (noblock && sh == NULL)
663 				break;
664 
665 			r5c_check_stripe_cache_usage(conf);
666 			if (!sh) {
667 				set_bit(R5_INACTIVE_BLOCKED,
668 					&conf->cache_state);
669 				r5l_wake_reclaim(conf->log, 0);
670 				wait_event_lock_irq(
671 					conf->wait_for_stripe,
672 					!list_empty(conf->inactive_list + hash) &&
673 					(atomic_read(&conf->active_stripes)
674 					 < (conf->max_nr_stripes * 3 / 4)
675 					 || !test_bit(R5_INACTIVE_BLOCKED,
676 						      &conf->cache_state)),
677 					*(conf->hash_locks + hash));
678 				clear_bit(R5_INACTIVE_BLOCKED,
679 					  &conf->cache_state);
680 			} else {
681 				init_stripe(sh, sector, previous);
682 				atomic_inc(&sh->count);
683 			}
684 		} else if (!atomic_inc_not_zero(&sh->count)) {
685 			spin_lock(&conf->device_lock);
686 			if (!atomic_read(&sh->count)) {
687 				if (!test_bit(STRIPE_HANDLE, &sh->state))
688 					atomic_inc(&conf->active_stripes);
689 				BUG_ON(list_empty(&sh->lru) &&
690 				       !test_bit(STRIPE_EXPANDING, &sh->state));
691 				inc_empty_inactive_list_flag = 0;
692 				if (!list_empty(conf->inactive_list + hash))
693 					inc_empty_inactive_list_flag = 1;
694 				list_del_init(&sh->lru);
695 				if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
696 					atomic_inc(&conf->empty_inactive_list_nr);
697 				if (sh->group) {
698 					sh->group->stripes_cnt--;
699 					sh->group = NULL;
700 				}
701 			}
702 			atomic_inc(&sh->count);
703 			spin_unlock(&conf->device_lock);
704 		}
705 	} while (sh == NULL);
706 
707 	spin_unlock_irq(conf->hash_locks + hash);
708 	return sh;
709 }
710 
711 static bool is_full_stripe_write(struct stripe_head *sh)
712 {
713 	BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
714 	return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
715 }
716 
717 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
718 {
719 	if (sh1 > sh2) {
720 		spin_lock_irq(&sh2->stripe_lock);
721 		spin_lock_nested(&sh1->stripe_lock, 1);
722 	} else {
723 		spin_lock_irq(&sh1->stripe_lock);
724 		spin_lock_nested(&sh2->stripe_lock, 1);
725 	}
726 }
727 
728 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
729 {
730 	spin_unlock(&sh1->stripe_lock);
731 	spin_unlock_irq(&sh2->stripe_lock);
732 }
733 
734 /* Only freshly new full stripe normal write stripe can be added to a batch list */
735 static bool stripe_can_batch(struct stripe_head *sh)
736 {
737 	struct r5conf *conf = sh->raid_conf;
738 
739 	if (conf->log || raid5_has_ppl(conf))
740 		return false;
741 	return test_bit(STRIPE_BATCH_READY, &sh->state) &&
742 		!test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
743 		is_full_stripe_write(sh);
744 }
745 
746 /* we only do back search */
747 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
748 {
749 	struct stripe_head *head;
750 	sector_t head_sector, tmp_sec;
751 	int hash;
752 	int dd_idx;
753 	int inc_empty_inactive_list_flag;
754 
755 	/* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
756 	tmp_sec = sh->sector;
757 	if (!sector_div(tmp_sec, conf->chunk_sectors))
758 		return;
759 	head_sector = sh->sector - STRIPE_SECTORS;
760 
761 	hash = stripe_hash_locks_hash(head_sector);
762 	spin_lock_irq(conf->hash_locks + hash);
763 	head = __find_stripe(conf, head_sector, conf->generation);
764 	if (head && !atomic_inc_not_zero(&head->count)) {
765 		spin_lock(&conf->device_lock);
766 		if (!atomic_read(&head->count)) {
767 			if (!test_bit(STRIPE_HANDLE, &head->state))
768 				atomic_inc(&conf->active_stripes);
769 			BUG_ON(list_empty(&head->lru) &&
770 			       !test_bit(STRIPE_EXPANDING, &head->state));
771 			inc_empty_inactive_list_flag = 0;
772 			if (!list_empty(conf->inactive_list + hash))
773 				inc_empty_inactive_list_flag = 1;
774 			list_del_init(&head->lru);
775 			if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
776 				atomic_inc(&conf->empty_inactive_list_nr);
777 			if (head->group) {
778 				head->group->stripes_cnt--;
779 				head->group = NULL;
780 			}
781 		}
782 		atomic_inc(&head->count);
783 		spin_unlock(&conf->device_lock);
784 	}
785 	spin_unlock_irq(conf->hash_locks + hash);
786 
787 	if (!head)
788 		return;
789 	if (!stripe_can_batch(head))
790 		goto out;
791 
792 	lock_two_stripes(head, sh);
793 	/* clear_batch_ready clear the flag */
794 	if (!stripe_can_batch(head) || !stripe_can_batch(sh))
795 		goto unlock_out;
796 
797 	if (sh->batch_head)
798 		goto unlock_out;
799 
800 	dd_idx = 0;
801 	while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
802 		dd_idx++;
803 	if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
804 	    bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
805 		goto unlock_out;
806 
807 	if (head->batch_head) {
808 		spin_lock(&head->batch_head->batch_lock);
809 		/* This batch list is already running */
810 		if (!stripe_can_batch(head)) {
811 			spin_unlock(&head->batch_head->batch_lock);
812 			goto unlock_out;
813 		}
814 
815 		/*
816 		 * at this point, head's BATCH_READY could be cleared, but we
817 		 * can still add the stripe to batch list
818 		 */
819 		list_add(&sh->batch_list, &head->batch_list);
820 		spin_unlock(&head->batch_head->batch_lock);
821 
822 		sh->batch_head = head->batch_head;
823 	} else {
824 		head->batch_head = head;
825 		sh->batch_head = head->batch_head;
826 		spin_lock(&head->batch_lock);
827 		list_add_tail(&sh->batch_list, &head->batch_list);
828 		spin_unlock(&head->batch_lock);
829 	}
830 
831 	if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
832 		if (atomic_dec_return(&conf->preread_active_stripes)
833 		    < IO_THRESHOLD)
834 			md_wakeup_thread(conf->mddev->thread);
835 
836 	if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
837 		int seq = sh->bm_seq;
838 		if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
839 		    sh->batch_head->bm_seq > seq)
840 			seq = sh->batch_head->bm_seq;
841 		set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
842 		sh->batch_head->bm_seq = seq;
843 	}
844 
845 	atomic_inc(&sh->count);
846 unlock_out:
847 	unlock_two_stripes(head, sh);
848 out:
849 	raid5_release_stripe(head);
850 }
851 
852 /* Determine if 'data_offset' or 'new_data_offset' should be used
853  * in this stripe_head.
854  */
855 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
856 {
857 	sector_t progress = conf->reshape_progress;
858 	/* Need a memory barrier to make sure we see the value
859 	 * of conf->generation, or ->data_offset that was set before
860 	 * reshape_progress was updated.
861 	 */
862 	smp_rmb();
863 	if (progress == MaxSector)
864 		return 0;
865 	if (sh->generation == conf->generation - 1)
866 		return 0;
867 	/* We are in a reshape, and this is a new-generation stripe,
868 	 * so use new_data_offset.
869 	 */
870 	return 1;
871 }
872 
873 static void dispatch_bio_list(struct bio_list *tmp)
874 {
875 	struct bio *bio;
876 
877 	while ((bio = bio_list_pop(tmp)))
878 		generic_make_request(bio);
879 }
880 
881 static int cmp_stripe(void *priv, struct list_head *a, struct list_head *b)
882 {
883 	const struct r5pending_data *da = list_entry(a,
884 				struct r5pending_data, sibling);
885 	const struct r5pending_data *db = list_entry(b,
886 				struct r5pending_data, sibling);
887 	if (da->sector > db->sector)
888 		return 1;
889 	if (da->sector < db->sector)
890 		return -1;
891 	return 0;
892 }
893 
894 static void dispatch_defer_bios(struct r5conf *conf, int target,
895 				struct bio_list *list)
896 {
897 	struct r5pending_data *data;
898 	struct list_head *first, *next = NULL;
899 	int cnt = 0;
900 
901 	if (conf->pending_data_cnt == 0)
902 		return;
903 
904 	list_sort(NULL, &conf->pending_list, cmp_stripe);
905 
906 	first = conf->pending_list.next;
907 
908 	/* temporarily move the head */
909 	if (conf->next_pending_data)
910 		list_move_tail(&conf->pending_list,
911 				&conf->next_pending_data->sibling);
912 
913 	while (!list_empty(&conf->pending_list)) {
914 		data = list_first_entry(&conf->pending_list,
915 			struct r5pending_data, sibling);
916 		if (&data->sibling == first)
917 			first = data->sibling.next;
918 		next = data->sibling.next;
919 
920 		bio_list_merge(list, &data->bios);
921 		list_move(&data->sibling, &conf->free_list);
922 		cnt++;
923 		if (cnt >= target)
924 			break;
925 	}
926 	conf->pending_data_cnt -= cnt;
927 	BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
928 
929 	if (next != &conf->pending_list)
930 		conf->next_pending_data = list_entry(next,
931 				struct r5pending_data, sibling);
932 	else
933 		conf->next_pending_data = NULL;
934 	/* list isn't empty */
935 	if (first != &conf->pending_list)
936 		list_move_tail(&conf->pending_list, first);
937 }
938 
939 static void flush_deferred_bios(struct r5conf *conf)
940 {
941 	struct bio_list tmp = BIO_EMPTY_LIST;
942 
943 	if (conf->pending_data_cnt == 0)
944 		return;
945 
946 	spin_lock(&conf->pending_bios_lock);
947 	dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
948 	BUG_ON(conf->pending_data_cnt != 0);
949 	spin_unlock(&conf->pending_bios_lock);
950 
951 	dispatch_bio_list(&tmp);
952 }
953 
954 static void defer_issue_bios(struct r5conf *conf, sector_t sector,
955 				struct bio_list *bios)
956 {
957 	struct bio_list tmp = BIO_EMPTY_LIST;
958 	struct r5pending_data *ent;
959 
960 	spin_lock(&conf->pending_bios_lock);
961 	ent = list_first_entry(&conf->free_list, struct r5pending_data,
962 							sibling);
963 	list_move_tail(&ent->sibling, &conf->pending_list);
964 	ent->sector = sector;
965 	bio_list_init(&ent->bios);
966 	bio_list_merge(&ent->bios, bios);
967 	conf->pending_data_cnt++;
968 	if (conf->pending_data_cnt >= PENDING_IO_MAX)
969 		dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
970 
971 	spin_unlock(&conf->pending_bios_lock);
972 
973 	dispatch_bio_list(&tmp);
974 }
975 
976 static void
977 raid5_end_read_request(struct bio *bi);
978 static void
979 raid5_end_write_request(struct bio *bi);
980 
981 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
982 {
983 	struct r5conf *conf = sh->raid_conf;
984 	int i, disks = sh->disks;
985 	struct stripe_head *head_sh = sh;
986 	struct bio_list pending_bios = BIO_EMPTY_LIST;
987 	bool should_defer;
988 
989 	might_sleep();
990 
991 	if (log_stripe(sh, s) == 0)
992 		return;
993 
994 	should_defer = conf->batch_bio_dispatch && conf->group_cnt;
995 
996 	for (i = disks; i--; ) {
997 		int op, op_flags = 0;
998 		int replace_only = 0;
999 		struct bio *bi, *rbi;
1000 		struct md_rdev *rdev, *rrdev = NULL;
1001 
1002 		sh = head_sh;
1003 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1004 			op = REQ_OP_WRITE;
1005 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1006 				op_flags = REQ_FUA;
1007 			if (test_bit(R5_Discard, &sh->dev[i].flags))
1008 				op = REQ_OP_DISCARD;
1009 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1010 			op = REQ_OP_READ;
1011 		else if (test_and_clear_bit(R5_WantReplace,
1012 					    &sh->dev[i].flags)) {
1013 			op = REQ_OP_WRITE;
1014 			replace_only = 1;
1015 		} else
1016 			continue;
1017 		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1018 			op_flags |= REQ_SYNC;
1019 
1020 again:
1021 		bi = &sh->dev[i].req;
1022 		rbi = &sh->dev[i].rreq; /* For writing to replacement */
1023 
1024 		rcu_read_lock();
1025 		rrdev = rcu_dereference(conf->disks[i].replacement);
1026 		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1027 		rdev = rcu_dereference(conf->disks[i].rdev);
1028 		if (!rdev) {
1029 			rdev = rrdev;
1030 			rrdev = NULL;
1031 		}
1032 		if (op_is_write(op)) {
1033 			if (replace_only)
1034 				rdev = NULL;
1035 			if (rdev == rrdev)
1036 				/* We raced and saw duplicates */
1037 				rrdev = NULL;
1038 		} else {
1039 			if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1040 				rdev = rrdev;
1041 			rrdev = NULL;
1042 		}
1043 
1044 		if (rdev && test_bit(Faulty, &rdev->flags))
1045 			rdev = NULL;
1046 		if (rdev)
1047 			atomic_inc(&rdev->nr_pending);
1048 		if (rrdev && test_bit(Faulty, &rrdev->flags))
1049 			rrdev = NULL;
1050 		if (rrdev)
1051 			atomic_inc(&rrdev->nr_pending);
1052 		rcu_read_unlock();
1053 
1054 		/* We have already checked bad blocks for reads.  Now
1055 		 * need to check for writes.  We never accept write errors
1056 		 * on the replacement, so we don't to check rrdev.
1057 		 */
1058 		while (op_is_write(op) && rdev &&
1059 		       test_bit(WriteErrorSeen, &rdev->flags)) {
1060 			sector_t first_bad;
1061 			int bad_sectors;
1062 			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
1063 					      &first_bad, &bad_sectors);
1064 			if (!bad)
1065 				break;
1066 
1067 			if (bad < 0) {
1068 				set_bit(BlockedBadBlocks, &rdev->flags);
1069 				if (!conf->mddev->external &&
1070 				    conf->mddev->sb_flags) {
1071 					/* It is very unlikely, but we might
1072 					 * still need to write out the
1073 					 * bad block log - better give it
1074 					 * a chance*/
1075 					md_check_recovery(conf->mddev);
1076 				}
1077 				/*
1078 				 * Because md_wait_for_blocked_rdev
1079 				 * will dec nr_pending, we must
1080 				 * increment it first.
1081 				 */
1082 				atomic_inc(&rdev->nr_pending);
1083 				md_wait_for_blocked_rdev(rdev, conf->mddev);
1084 			} else {
1085 				/* Acknowledged bad block - skip the write */
1086 				rdev_dec_pending(rdev, conf->mddev);
1087 				rdev = NULL;
1088 			}
1089 		}
1090 
1091 		if (rdev) {
1092 			if (s->syncing || s->expanding || s->expanded
1093 			    || s->replacing)
1094 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1095 
1096 			set_bit(STRIPE_IO_STARTED, &sh->state);
1097 
1098 			bio_set_dev(bi, rdev->bdev);
1099 			bio_set_op_attrs(bi, op, op_flags);
1100 			bi->bi_end_io = op_is_write(op)
1101 				? raid5_end_write_request
1102 				: raid5_end_read_request;
1103 			bi->bi_private = sh;
1104 
1105 			pr_debug("%s: for %llu schedule op %d on disc %d\n",
1106 				__func__, (unsigned long long)sh->sector,
1107 				bi->bi_opf, i);
1108 			atomic_inc(&sh->count);
1109 			if (sh != head_sh)
1110 				atomic_inc(&head_sh->count);
1111 			if (use_new_offset(conf, sh))
1112 				bi->bi_iter.bi_sector = (sh->sector
1113 						 + rdev->new_data_offset);
1114 			else
1115 				bi->bi_iter.bi_sector = (sh->sector
1116 						 + rdev->data_offset);
1117 			if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1118 				bi->bi_opf |= REQ_NOMERGE;
1119 
1120 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1121 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1122 
1123 			if (!op_is_write(op) &&
1124 			    test_bit(R5_InJournal, &sh->dev[i].flags))
1125 				/*
1126 				 * issuing read for a page in journal, this
1127 				 * must be preparing for prexor in rmw; read
1128 				 * the data into orig_page
1129 				 */
1130 				sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1131 			else
1132 				sh->dev[i].vec.bv_page = sh->dev[i].page;
1133 			bi->bi_vcnt = 1;
1134 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1135 			bi->bi_io_vec[0].bv_offset = 0;
1136 			bi->bi_iter.bi_size = STRIPE_SIZE;
1137 			/*
1138 			 * If this is discard request, set bi_vcnt 0. We don't
1139 			 * want to confuse SCSI because SCSI will replace payload
1140 			 */
1141 			if (op == REQ_OP_DISCARD)
1142 				bi->bi_vcnt = 0;
1143 			if (rrdev)
1144 				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1145 
1146 			if (conf->mddev->gendisk)
1147 				trace_block_bio_remap(bi->bi_disk->queue,
1148 						      bi, disk_devt(conf->mddev->gendisk),
1149 						      sh->dev[i].sector);
1150 			if (should_defer && op_is_write(op))
1151 				bio_list_add(&pending_bios, bi);
1152 			else
1153 				generic_make_request(bi);
1154 		}
1155 		if (rrdev) {
1156 			if (s->syncing || s->expanding || s->expanded
1157 			    || s->replacing)
1158 				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1159 
1160 			set_bit(STRIPE_IO_STARTED, &sh->state);
1161 
1162 			bio_set_dev(rbi, rrdev->bdev);
1163 			bio_set_op_attrs(rbi, op, op_flags);
1164 			BUG_ON(!op_is_write(op));
1165 			rbi->bi_end_io = raid5_end_write_request;
1166 			rbi->bi_private = sh;
1167 
1168 			pr_debug("%s: for %llu schedule op %d on "
1169 				 "replacement disc %d\n",
1170 				__func__, (unsigned long long)sh->sector,
1171 				rbi->bi_opf, i);
1172 			atomic_inc(&sh->count);
1173 			if (sh != head_sh)
1174 				atomic_inc(&head_sh->count);
1175 			if (use_new_offset(conf, sh))
1176 				rbi->bi_iter.bi_sector = (sh->sector
1177 						  + rrdev->new_data_offset);
1178 			else
1179 				rbi->bi_iter.bi_sector = (sh->sector
1180 						  + rrdev->data_offset);
1181 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1182 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1183 			sh->dev[i].rvec.bv_page = sh->dev[i].page;
1184 			rbi->bi_vcnt = 1;
1185 			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1186 			rbi->bi_io_vec[0].bv_offset = 0;
1187 			rbi->bi_iter.bi_size = STRIPE_SIZE;
1188 			/*
1189 			 * If this is discard request, set bi_vcnt 0. We don't
1190 			 * want to confuse SCSI because SCSI will replace payload
1191 			 */
1192 			if (op == REQ_OP_DISCARD)
1193 				rbi->bi_vcnt = 0;
1194 			if (conf->mddev->gendisk)
1195 				trace_block_bio_remap(rbi->bi_disk->queue,
1196 						      rbi, disk_devt(conf->mddev->gendisk),
1197 						      sh->dev[i].sector);
1198 			if (should_defer && op_is_write(op))
1199 				bio_list_add(&pending_bios, rbi);
1200 			else
1201 				generic_make_request(rbi);
1202 		}
1203 		if (!rdev && !rrdev) {
1204 			if (op_is_write(op))
1205 				set_bit(STRIPE_DEGRADED, &sh->state);
1206 			pr_debug("skip op %d on disc %d for sector %llu\n",
1207 				bi->bi_opf, i, (unsigned long long)sh->sector);
1208 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
1209 			set_bit(STRIPE_HANDLE, &sh->state);
1210 		}
1211 
1212 		if (!head_sh->batch_head)
1213 			continue;
1214 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1215 				      batch_list);
1216 		if (sh != head_sh)
1217 			goto again;
1218 	}
1219 
1220 	if (should_defer && !bio_list_empty(&pending_bios))
1221 		defer_issue_bios(conf, head_sh->sector, &pending_bios);
1222 }
1223 
1224 static struct dma_async_tx_descriptor *
1225 async_copy_data(int frombio, struct bio *bio, struct page **page,
1226 	sector_t sector, struct dma_async_tx_descriptor *tx,
1227 	struct stripe_head *sh, int no_skipcopy)
1228 {
1229 	struct bio_vec bvl;
1230 	struct bvec_iter iter;
1231 	struct page *bio_page;
1232 	int page_offset;
1233 	struct async_submit_ctl submit;
1234 	enum async_tx_flags flags = 0;
1235 
1236 	if (bio->bi_iter.bi_sector >= sector)
1237 		page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1238 	else
1239 		page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1240 
1241 	if (frombio)
1242 		flags |= ASYNC_TX_FENCE;
1243 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1244 
1245 	bio_for_each_segment(bvl, bio, iter) {
1246 		int len = bvl.bv_len;
1247 		int clen;
1248 		int b_offset = 0;
1249 
1250 		if (page_offset < 0) {
1251 			b_offset = -page_offset;
1252 			page_offset += b_offset;
1253 			len -= b_offset;
1254 		}
1255 
1256 		if (len > 0 && page_offset + len > STRIPE_SIZE)
1257 			clen = STRIPE_SIZE - page_offset;
1258 		else
1259 			clen = len;
1260 
1261 		if (clen > 0) {
1262 			b_offset += bvl.bv_offset;
1263 			bio_page = bvl.bv_page;
1264 			if (frombio) {
1265 				if (sh->raid_conf->skip_copy &&
1266 				    b_offset == 0 && page_offset == 0 &&
1267 				    clen == STRIPE_SIZE &&
1268 				    !no_skipcopy)
1269 					*page = bio_page;
1270 				else
1271 					tx = async_memcpy(*page, bio_page, page_offset,
1272 						  b_offset, clen, &submit);
1273 			} else
1274 				tx = async_memcpy(bio_page, *page, b_offset,
1275 						  page_offset, clen, &submit);
1276 		}
1277 		/* chain the operations */
1278 		submit.depend_tx = tx;
1279 
1280 		if (clen < len) /* hit end of page */
1281 			break;
1282 		page_offset +=  len;
1283 	}
1284 
1285 	return tx;
1286 }
1287 
1288 static void ops_complete_biofill(void *stripe_head_ref)
1289 {
1290 	struct stripe_head *sh = stripe_head_ref;
1291 	int i;
1292 
1293 	pr_debug("%s: stripe %llu\n", __func__,
1294 		(unsigned long long)sh->sector);
1295 
1296 	/* clear completed biofills */
1297 	for (i = sh->disks; i--; ) {
1298 		struct r5dev *dev = &sh->dev[i];
1299 
1300 		/* acknowledge completion of a biofill operation */
1301 		/* and check if we need to reply to a read request,
1302 		 * new R5_Wantfill requests are held off until
1303 		 * !STRIPE_BIOFILL_RUN
1304 		 */
1305 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1306 			struct bio *rbi, *rbi2;
1307 
1308 			BUG_ON(!dev->read);
1309 			rbi = dev->read;
1310 			dev->read = NULL;
1311 			while (rbi && rbi->bi_iter.bi_sector <
1312 				dev->sector + STRIPE_SECTORS) {
1313 				rbi2 = r5_next_bio(rbi, dev->sector);
1314 				bio_endio(rbi);
1315 				rbi = rbi2;
1316 			}
1317 		}
1318 	}
1319 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1320 
1321 	set_bit(STRIPE_HANDLE, &sh->state);
1322 	raid5_release_stripe(sh);
1323 }
1324 
1325 static void ops_run_biofill(struct stripe_head *sh)
1326 {
1327 	struct dma_async_tx_descriptor *tx = NULL;
1328 	struct async_submit_ctl submit;
1329 	int i;
1330 
1331 	BUG_ON(sh->batch_head);
1332 	pr_debug("%s: stripe %llu\n", __func__,
1333 		(unsigned long long)sh->sector);
1334 
1335 	for (i = sh->disks; i--; ) {
1336 		struct r5dev *dev = &sh->dev[i];
1337 		if (test_bit(R5_Wantfill, &dev->flags)) {
1338 			struct bio *rbi;
1339 			spin_lock_irq(&sh->stripe_lock);
1340 			dev->read = rbi = dev->toread;
1341 			dev->toread = NULL;
1342 			spin_unlock_irq(&sh->stripe_lock);
1343 			while (rbi && rbi->bi_iter.bi_sector <
1344 				dev->sector + STRIPE_SECTORS) {
1345 				tx = async_copy_data(0, rbi, &dev->page,
1346 						     dev->sector, tx, sh, 0);
1347 				rbi = r5_next_bio(rbi, dev->sector);
1348 			}
1349 		}
1350 	}
1351 
1352 	atomic_inc(&sh->count);
1353 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1354 	async_trigger_callback(&submit);
1355 }
1356 
1357 static void mark_target_uptodate(struct stripe_head *sh, int target)
1358 {
1359 	struct r5dev *tgt;
1360 
1361 	if (target < 0)
1362 		return;
1363 
1364 	tgt = &sh->dev[target];
1365 	set_bit(R5_UPTODATE, &tgt->flags);
1366 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1367 	clear_bit(R5_Wantcompute, &tgt->flags);
1368 }
1369 
1370 static void ops_complete_compute(void *stripe_head_ref)
1371 {
1372 	struct stripe_head *sh = stripe_head_ref;
1373 
1374 	pr_debug("%s: stripe %llu\n", __func__,
1375 		(unsigned long long)sh->sector);
1376 
1377 	/* mark the computed target(s) as uptodate */
1378 	mark_target_uptodate(sh, sh->ops.target);
1379 	mark_target_uptodate(sh, sh->ops.target2);
1380 
1381 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1382 	if (sh->check_state == check_state_compute_run)
1383 		sh->check_state = check_state_compute_result;
1384 	set_bit(STRIPE_HANDLE, &sh->state);
1385 	raid5_release_stripe(sh);
1386 }
1387 
1388 /* return a pointer to the address conversion region of the scribble buffer */
1389 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1390 				 struct raid5_percpu *percpu, int i)
1391 {
1392 	void *addr;
1393 
1394 	addr = flex_array_get(percpu->scribble, i);
1395 	return addr + sizeof(struct page *) * (sh->disks + 2);
1396 }
1397 
1398 /* return a pointer to the address conversion region of the scribble buffer */
1399 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1400 {
1401 	void *addr;
1402 
1403 	addr = flex_array_get(percpu->scribble, i);
1404 	return addr;
1405 }
1406 
1407 static struct dma_async_tx_descriptor *
1408 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1409 {
1410 	int disks = sh->disks;
1411 	struct page **xor_srcs = to_addr_page(percpu, 0);
1412 	int target = sh->ops.target;
1413 	struct r5dev *tgt = &sh->dev[target];
1414 	struct page *xor_dest = tgt->page;
1415 	int count = 0;
1416 	struct dma_async_tx_descriptor *tx;
1417 	struct async_submit_ctl submit;
1418 	int i;
1419 
1420 	BUG_ON(sh->batch_head);
1421 
1422 	pr_debug("%s: stripe %llu block: %d\n",
1423 		__func__, (unsigned long long)sh->sector, target);
1424 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1425 
1426 	for (i = disks; i--; )
1427 		if (i != target)
1428 			xor_srcs[count++] = sh->dev[i].page;
1429 
1430 	atomic_inc(&sh->count);
1431 
1432 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1433 			  ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1434 	if (unlikely(count == 1))
1435 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1436 	else
1437 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1438 
1439 	return tx;
1440 }
1441 
1442 /* set_syndrome_sources - populate source buffers for gen_syndrome
1443  * @srcs - (struct page *) array of size sh->disks
1444  * @sh - stripe_head to parse
1445  *
1446  * Populates srcs in proper layout order for the stripe and returns the
1447  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1448  * destination buffer is recorded in srcs[count] and the Q destination
1449  * is recorded in srcs[count+1]].
1450  */
1451 static int set_syndrome_sources(struct page **srcs,
1452 				struct stripe_head *sh,
1453 				int srctype)
1454 {
1455 	int disks = sh->disks;
1456 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1457 	int d0_idx = raid6_d0(sh);
1458 	int count;
1459 	int i;
1460 
1461 	for (i = 0; i < disks; i++)
1462 		srcs[i] = NULL;
1463 
1464 	count = 0;
1465 	i = d0_idx;
1466 	do {
1467 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1468 		struct r5dev *dev = &sh->dev[i];
1469 
1470 		if (i == sh->qd_idx || i == sh->pd_idx ||
1471 		    (srctype == SYNDROME_SRC_ALL) ||
1472 		    (srctype == SYNDROME_SRC_WANT_DRAIN &&
1473 		     (test_bit(R5_Wantdrain, &dev->flags) ||
1474 		      test_bit(R5_InJournal, &dev->flags))) ||
1475 		    (srctype == SYNDROME_SRC_WRITTEN &&
1476 		     (dev->written ||
1477 		      test_bit(R5_InJournal, &dev->flags)))) {
1478 			if (test_bit(R5_InJournal, &dev->flags))
1479 				srcs[slot] = sh->dev[i].orig_page;
1480 			else
1481 				srcs[slot] = sh->dev[i].page;
1482 		}
1483 		i = raid6_next_disk(i, disks);
1484 	} while (i != d0_idx);
1485 
1486 	return syndrome_disks;
1487 }
1488 
1489 static struct dma_async_tx_descriptor *
1490 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1491 {
1492 	int disks = sh->disks;
1493 	struct page **blocks = to_addr_page(percpu, 0);
1494 	int target;
1495 	int qd_idx = sh->qd_idx;
1496 	struct dma_async_tx_descriptor *tx;
1497 	struct async_submit_ctl submit;
1498 	struct r5dev *tgt;
1499 	struct page *dest;
1500 	int i;
1501 	int count;
1502 
1503 	BUG_ON(sh->batch_head);
1504 	if (sh->ops.target < 0)
1505 		target = sh->ops.target2;
1506 	else if (sh->ops.target2 < 0)
1507 		target = sh->ops.target;
1508 	else
1509 		/* we should only have one valid target */
1510 		BUG();
1511 	BUG_ON(target < 0);
1512 	pr_debug("%s: stripe %llu block: %d\n",
1513 		__func__, (unsigned long long)sh->sector, target);
1514 
1515 	tgt = &sh->dev[target];
1516 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1517 	dest = tgt->page;
1518 
1519 	atomic_inc(&sh->count);
1520 
1521 	if (target == qd_idx) {
1522 		count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1523 		blocks[count] = NULL; /* regenerating p is not necessary */
1524 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
1525 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1526 				  ops_complete_compute, sh,
1527 				  to_addr_conv(sh, percpu, 0));
1528 		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1529 	} else {
1530 		/* Compute any data- or p-drive using XOR */
1531 		count = 0;
1532 		for (i = disks; i-- ; ) {
1533 			if (i == target || i == qd_idx)
1534 				continue;
1535 			blocks[count++] = sh->dev[i].page;
1536 		}
1537 
1538 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1539 				  NULL, ops_complete_compute, sh,
1540 				  to_addr_conv(sh, percpu, 0));
1541 		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1542 	}
1543 
1544 	return tx;
1545 }
1546 
1547 static struct dma_async_tx_descriptor *
1548 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1549 {
1550 	int i, count, disks = sh->disks;
1551 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1552 	int d0_idx = raid6_d0(sh);
1553 	int faila = -1, failb = -1;
1554 	int target = sh->ops.target;
1555 	int target2 = sh->ops.target2;
1556 	struct r5dev *tgt = &sh->dev[target];
1557 	struct r5dev *tgt2 = &sh->dev[target2];
1558 	struct dma_async_tx_descriptor *tx;
1559 	struct page **blocks = to_addr_page(percpu, 0);
1560 	struct async_submit_ctl submit;
1561 
1562 	BUG_ON(sh->batch_head);
1563 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1564 		 __func__, (unsigned long long)sh->sector, target, target2);
1565 	BUG_ON(target < 0 || target2 < 0);
1566 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1567 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1568 
1569 	/* we need to open-code set_syndrome_sources to handle the
1570 	 * slot number conversion for 'faila' and 'failb'
1571 	 */
1572 	for (i = 0; i < disks ; i++)
1573 		blocks[i] = NULL;
1574 	count = 0;
1575 	i = d0_idx;
1576 	do {
1577 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1578 
1579 		blocks[slot] = sh->dev[i].page;
1580 
1581 		if (i == target)
1582 			faila = slot;
1583 		if (i == target2)
1584 			failb = slot;
1585 		i = raid6_next_disk(i, disks);
1586 	} while (i != d0_idx);
1587 
1588 	BUG_ON(faila == failb);
1589 	if (failb < faila)
1590 		swap(faila, failb);
1591 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1592 		 __func__, (unsigned long long)sh->sector, faila, failb);
1593 
1594 	atomic_inc(&sh->count);
1595 
1596 	if (failb == syndrome_disks+1) {
1597 		/* Q disk is one of the missing disks */
1598 		if (faila == syndrome_disks) {
1599 			/* Missing P+Q, just recompute */
1600 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1601 					  ops_complete_compute, sh,
1602 					  to_addr_conv(sh, percpu, 0));
1603 			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1604 						  STRIPE_SIZE, &submit);
1605 		} else {
1606 			struct page *dest;
1607 			int data_target;
1608 			int qd_idx = sh->qd_idx;
1609 
1610 			/* Missing D+Q: recompute D from P, then recompute Q */
1611 			if (target == qd_idx)
1612 				data_target = target2;
1613 			else
1614 				data_target = target;
1615 
1616 			count = 0;
1617 			for (i = disks; i-- ; ) {
1618 				if (i == data_target || i == qd_idx)
1619 					continue;
1620 				blocks[count++] = sh->dev[i].page;
1621 			}
1622 			dest = sh->dev[data_target].page;
1623 			init_async_submit(&submit,
1624 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1625 					  NULL, NULL, NULL,
1626 					  to_addr_conv(sh, percpu, 0));
1627 			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1628 				       &submit);
1629 
1630 			count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1631 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1632 					  ops_complete_compute, sh,
1633 					  to_addr_conv(sh, percpu, 0));
1634 			return async_gen_syndrome(blocks, 0, count+2,
1635 						  STRIPE_SIZE, &submit);
1636 		}
1637 	} else {
1638 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1639 				  ops_complete_compute, sh,
1640 				  to_addr_conv(sh, percpu, 0));
1641 		if (failb == syndrome_disks) {
1642 			/* We're missing D+P. */
1643 			return async_raid6_datap_recov(syndrome_disks+2,
1644 						       STRIPE_SIZE, faila,
1645 						       blocks, &submit);
1646 		} else {
1647 			/* We're missing D+D. */
1648 			return async_raid6_2data_recov(syndrome_disks+2,
1649 						       STRIPE_SIZE, faila, failb,
1650 						       blocks, &submit);
1651 		}
1652 	}
1653 }
1654 
1655 static void ops_complete_prexor(void *stripe_head_ref)
1656 {
1657 	struct stripe_head *sh = stripe_head_ref;
1658 
1659 	pr_debug("%s: stripe %llu\n", __func__,
1660 		(unsigned long long)sh->sector);
1661 
1662 	if (r5c_is_writeback(sh->raid_conf->log))
1663 		/*
1664 		 * raid5-cache write back uses orig_page during prexor.
1665 		 * After prexor, it is time to free orig_page
1666 		 */
1667 		r5c_release_extra_page(sh);
1668 }
1669 
1670 static struct dma_async_tx_descriptor *
1671 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1672 		struct dma_async_tx_descriptor *tx)
1673 {
1674 	int disks = sh->disks;
1675 	struct page **xor_srcs = to_addr_page(percpu, 0);
1676 	int count = 0, pd_idx = sh->pd_idx, i;
1677 	struct async_submit_ctl submit;
1678 
1679 	/* existing parity data subtracted */
1680 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1681 
1682 	BUG_ON(sh->batch_head);
1683 	pr_debug("%s: stripe %llu\n", __func__,
1684 		(unsigned long long)sh->sector);
1685 
1686 	for (i = disks; i--; ) {
1687 		struct r5dev *dev = &sh->dev[i];
1688 		/* Only process blocks that are known to be uptodate */
1689 		if (test_bit(R5_InJournal, &dev->flags))
1690 			xor_srcs[count++] = dev->orig_page;
1691 		else if (test_bit(R5_Wantdrain, &dev->flags))
1692 			xor_srcs[count++] = dev->page;
1693 	}
1694 
1695 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1696 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1697 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1698 
1699 	return tx;
1700 }
1701 
1702 static struct dma_async_tx_descriptor *
1703 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1704 		struct dma_async_tx_descriptor *tx)
1705 {
1706 	struct page **blocks = to_addr_page(percpu, 0);
1707 	int count;
1708 	struct async_submit_ctl submit;
1709 
1710 	pr_debug("%s: stripe %llu\n", __func__,
1711 		(unsigned long long)sh->sector);
1712 
1713 	count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1714 
1715 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1716 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1717 	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1718 
1719 	return tx;
1720 }
1721 
1722 static struct dma_async_tx_descriptor *
1723 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1724 {
1725 	struct r5conf *conf = sh->raid_conf;
1726 	int disks = sh->disks;
1727 	int i;
1728 	struct stripe_head *head_sh = sh;
1729 
1730 	pr_debug("%s: stripe %llu\n", __func__,
1731 		(unsigned long long)sh->sector);
1732 
1733 	for (i = disks; i--; ) {
1734 		struct r5dev *dev;
1735 		struct bio *chosen;
1736 
1737 		sh = head_sh;
1738 		if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1739 			struct bio *wbi;
1740 
1741 again:
1742 			dev = &sh->dev[i];
1743 			/*
1744 			 * clear R5_InJournal, so when rewriting a page in
1745 			 * journal, it is not skipped by r5l_log_stripe()
1746 			 */
1747 			clear_bit(R5_InJournal, &dev->flags);
1748 			spin_lock_irq(&sh->stripe_lock);
1749 			chosen = dev->towrite;
1750 			dev->towrite = NULL;
1751 			sh->overwrite_disks = 0;
1752 			BUG_ON(dev->written);
1753 			wbi = dev->written = chosen;
1754 			spin_unlock_irq(&sh->stripe_lock);
1755 			WARN_ON(dev->page != dev->orig_page);
1756 
1757 			while (wbi && wbi->bi_iter.bi_sector <
1758 				dev->sector + STRIPE_SECTORS) {
1759 				if (wbi->bi_opf & REQ_FUA)
1760 					set_bit(R5_WantFUA, &dev->flags);
1761 				if (wbi->bi_opf & REQ_SYNC)
1762 					set_bit(R5_SyncIO, &dev->flags);
1763 				if (bio_op(wbi) == REQ_OP_DISCARD)
1764 					set_bit(R5_Discard, &dev->flags);
1765 				else {
1766 					tx = async_copy_data(1, wbi, &dev->page,
1767 							     dev->sector, tx, sh,
1768 							     r5c_is_writeback(conf->log));
1769 					if (dev->page != dev->orig_page &&
1770 					    !r5c_is_writeback(conf->log)) {
1771 						set_bit(R5_SkipCopy, &dev->flags);
1772 						clear_bit(R5_UPTODATE, &dev->flags);
1773 						clear_bit(R5_OVERWRITE, &dev->flags);
1774 					}
1775 				}
1776 				wbi = r5_next_bio(wbi, dev->sector);
1777 			}
1778 
1779 			if (head_sh->batch_head) {
1780 				sh = list_first_entry(&sh->batch_list,
1781 						      struct stripe_head,
1782 						      batch_list);
1783 				if (sh == head_sh)
1784 					continue;
1785 				goto again;
1786 			}
1787 		}
1788 	}
1789 
1790 	return tx;
1791 }
1792 
1793 static void ops_complete_reconstruct(void *stripe_head_ref)
1794 {
1795 	struct stripe_head *sh = stripe_head_ref;
1796 	int disks = sh->disks;
1797 	int pd_idx = sh->pd_idx;
1798 	int qd_idx = sh->qd_idx;
1799 	int i;
1800 	bool fua = false, sync = false, discard = false;
1801 
1802 	pr_debug("%s: stripe %llu\n", __func__,
1803 		(unsigned long long)sh->sector);
1804 
1805 	for (i = disks; i--; ) {
1806 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1807 		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1808 		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1809 	}
1810 
1811 	for (i = disks; i--; ) {
1812 		struct r5dev *dev = &sh->dev[i];
1813 
1814 		if (dev->written || i == pd_idx || i == qd_idx) {
1815 			if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1816 				set_bit(R5_UPTODATE, &dev->flags);
1817 			if (fua)
1818 				set_bit(R5_WantFUA, &dev->flags);
1819 			if (sync)
1820 				set_bit(R5_SyncIO, &dev->flags);
1821 		}
1822 	}
1823 
1824 	if (sh->reconstruct_state == reconstruct_state_drain_run)
1825 		sh->reconstruct_state = reconstruct_state_drain_result;
1826 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1827 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1828 	else {
1829 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1830 		sh->reconstruct_state = reconstruct_state_result;
1831 	}
1832 
1833 	set_bit(STRIPE_HANDLE, &sh->state);
1834 	raid5_release_stripe(sh);
1835 }
1836 
1837 static void
1838 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1839 		     struct dma_async_tx_descriptor *tx)
1840 {
1841 	int disks = sh->disks;
1842 	struct page **xor_srcs;
1843 	struct async_submit_ctl submit;
1844 	int count, pd_idx = sh->pd_idx, i;
1845 	struct page *xor_dest;
1846 	int prexor = 0;
1847 	unsigned long flags;
1848 	int j = 0;
1849 	struct stripe_head *head_sh = sh;
1850 	int last_stripe;
1851 
1852 	pr_debug("%s: stripe %llu\n", __func__,
1853 		(unsigned long long)sh->sector);
1854 
1855 	for (i = 0; i < sh->disks; i++) {
1856 		if (pd_idx == i)
1857 			continue;
1858 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1859 			break;
1860 	}
1861 	if (i >= sh->disks) {
1862 		atomic_inc(&sh->count);
1863 		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1864 		ops_complete_reconstruct(sh);
1865 		return;
1866 	}
1867 again:
1868 	count = 0;
1869 	xor_srcs = to_addr_page(percpu, j);
1870 	/* check if prexor is active which means only process blocks
1871 	 * that are part of a read-modify-write (written)
1872 	 */
1873 	if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1874 		prexor = 1;
1875 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1876 		for (i = disks; i--; ) {
1877 			struct r5dev *dev = &sh->dev[i];
1878 			if (head_sh->dev[i].written ||
1879 			    test_bit(R5_InJournal, &head_sh->dev[i].flags))
1880 				xor_srcs[count++] = dev->page;
1881 		}
1882 	} else {
1883 		xor_dest = sh->dev[pd_idx].page;
1884 		for (i = disks; i--; ) {
1885 			struct r5dev *dev = &sh->dev[i];
1886 			if (i != pd_idx)
1887 				xor_srcs[count++] = dev->page;
1888 		}
1889 	}
1890 
1891 	/* 1/ if we prexor'd then the dest is reused as a source
1892 	 * 2/ if we did not prexor then we are redoing the parity
1893 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1894 	 * for the synchronous xor case
1895 	 */
1896 	last_stripe = !head_sh->batch_head ||
1897 		list_first_entry(&sh->batch_list,
1898 				 struct stripe_head, batch_list) == head_sh;
1899 	if (last_stripe) {
1900 		flags = ASYNC_TX_ACK |
1901 			(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1902 
1903 		atomic_inc(&head_sh->count);
1904 		init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1905 				  to_addr_conv(sh, percpu, j));
1906 	} else {
1907 		flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1908 		init_async_submit(&submit, flags, tx, NULL, NULL,
1909 				  to_addr_conv(sh, percpu, j));
1910 	}
1911 
1912 	if (unlikely(count == 1))
1913 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1914 	else
1915 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1916 	if (!last_stripe) {
1917 		j++;
1918 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1919 				      batch_list);
1920 		goto again;
1921 	}
1922 }
1923 
1924 static void
1925 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1926 		     struct dma_async_tx_descriptor *tx)
1927 {
1928 	struct async_submit_ctl submit;
1929 	struct page **blocks;
1930 	int count, i, j = 0;
1931 	struct stripe_head *head_sh = sh;
1932 	int last_stripe;
1933 	int synflags;
1934 	unsigned long txflags;
1935 
1936 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1937 
1938 	for (i = 0; i < sh->disks; i++) {
1939 		if (sh->pd_idx == i || sh->qd_idx == i)
1940 			continue;
1941 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1942 			break;
1943 	}
1944 	if (i >= sh->disks) {
1945 		atomic_inc(&sh->count);
1946 		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1947 		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1948 		ops_complete_reconstruct(sh);
1949 		return;
1950 	}
1951 
1952 again:
1953 	blocks = to_addr_page(percpu, j);
1954 
1955 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1956 		synflags = SYNDROME_SRC_WRITTEN;
1957 		txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1958 	} else {
1959 		synflags = SYNDROME_SRC_ALL;
1960 		txflags = ASYNC_TX_ACK;
1961 	}
1962 
1963 	count = set_syndrome_sources(blocks, sh, synflags);
1964 	last_stripe = !head_sh->batch_head ||
1965 		list_first_entry(&sh->batch_list,
1966 				 struct stripe_head, batch_list) == head_sh;
1967 
1968 	if (last_stripe) {
1969 		atomic_inc(&head_sh->count);
1970 		init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1971 				  head_sh, to_addr_conv(sh, percpu, j));
1972 	} else
1973 		init_async_submit(&submit, 0, tx, NULL, NULL,
1974 				  to_addr_conv(sh, percpu, j));
1975 	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1976 	if (!last_stripe) {
1977 		j++;
1978 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1979 				      batch_list);
1980 		goto again;
1981 	}
1982 }
1983 
1984 static void ops_complete_check(void *stripe_head_ref)
1985 {
1986 	struct stripe_head *sh = stripe_head_ref;
1987 
1988 	pr_debug("%s: stripe %llu\n", __func__,
1989 		(unsigned long long)sh->sector);
1990 
1991 	sh->check_state = check_state_check_result;
1992 	set_bit(STRIPE_HANDLE, &sh->state);
1993 	raid5_release_stripe(sh);
1994 }
1995 
1996 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1997 {
1998 	int disks = sh->disks;
1999 	int pd_idx = sh->pd_idx;
2000 	int qd_idx = sh->qd_idx;
2001 	struct page *xor_dest;
2002 	struct page **xor_srcs = to_addr_page(percpu, 0);
2003 	struct dma_async_tx_descriptor *tx;
2004 	struct async_submit_ctl submit;
2005 	int count;
2006 	int i;
2007 
2008 	pr_debug("%s: stripe %llu\n", __func__,
2009 		(unsigned long long)sh->sector);
2010 
2011 	BUG_ON(sh->batch_head);
2012 	count = 0;
2013 	xor_dest = sh->dev[pd_idx].page;
2014 	xor_srcs[count++] = xor_dest;
2015 	for (i = disks; i--; ) {
2016 		if (i == pd_idx || i == qd_idx)
2017 			continue;
2018 		xor_srcs[count++] = sh->dev[i].page;
2019 	}
2020 
2021 	init_async_submit(&submit, 0, NULL, NULL, NULL,
2022 			  to_addr_conv(sh, percpu, 0));
2023 	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
2024 			   &sh->ops.zero_sum_result, &submit);
2025 
2026 	atomic_inc(&sh->count);
2027 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2028 	tx = async_trigger_callback(&submit);
2029 }
2030 
2031 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2032 {
2033 	struct page **srcs = to_addr_page(percpu, 0);
2034 	struct async_submit_ctl submit;
2035 	int count;
2036 
2037 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2038 		(unsigned long long)sh->sector, checkp);
2039 
2040 	BUG_ON(sh->batch_head);
2041 	count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
2042 	if (!checkp)
2043 		srcs[count] = NULL;
2044 
2045 	atomic_inc(&sh->count);
2046 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2047 			  sh, to_addr_conv(sh, percpu, 0));
2048 	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
2049 			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
2050 }
2051 
2052 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2053 {
2054 	int overlap_clear = 0, i, disks = sh->disks;
2055 	struct dma_async_tx_descriptor *tx = NULL;
2056 	struct r5conf *conf = sh->raid_conf;
2057 	int level = conf->level;
2058 	struct raid5_percpu *percpu;
2059 	unsigned long cpu;
2060 
2061 	cpu = get_cpu();
2062 	percpu = per_cpu_ptr(conf->percpu, cpu);
2063 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2064 		ops_run_biofill(sh);
2065 		overlap_clear++;
2066 	}
2067 
2068 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2069 		if (level < 6)
2070 			tx = ops_run_compute5(sh, percpu);
2071 		else {
2072 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
2073 				tx = ops_run_compute6_1(sh, percpu);
2074 			else
2075 				tx = ops_run_compute6_2(sh, percpu);
2076 		}
2077 		/* terminate the chain if reconstruct is not set to be run */
2078 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2079 			async_tx_ack(tx);
2080 	}
2081 
2082 	if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2083 		if (level < 6)
2084 			tx = ops_run_prexor5(sh, percpu, tx);
2085 		else
2086 			tx = ops_run_prexor6(sh, percpu, tx);
2087 	}
2088 
2089 	if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2090 		tx = ops_run_partial_parity(sh, percpu, tx);
2091 
2092 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2093 		tx = ops_run_biodrain(sh, tx);
2094 		overlap_clear++;
2095 	}
2096 
2097 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2098 		if (level < 6)
2099 			ops_run_reconstruct5(sh, percpu, tx);
2100 		else
2101 			ops_run_reconstruct6(sh, percpu, tx);
2102 	}
2103 
2104 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2105 		if (sh->check_state == check_state_run)
2106 			ops_run_check_p(sh, percpu);
2107 		else if (sh->check_state == check_state_run_q)
2108 			ops_run_check_pq(sh, percpu, 0);
2109 		else if (sh->check_state == check_state_run_pq)
2110 			ops_run_check_pq(sh, percpu, 1);
2111 		else
2112 			BUG();
2113 	}
2114 
2115 	if (overlap_clear && !sh->batch_head)
2116 		for (i = disks; i--; ) {
2117 			struct r5dev *dev = &sh->dev[i];
2118 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
2119 				wake_up(&sh->raid_conf->wait_for_overlap);
2120 		}
2121 	put_cpu();
2122 }
2123 
2124 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2125 {
2126 	if (sh->ppl_page)
2127 		__free_page(sh->ppl_page);
2128 	kmem_cache_free(sc, sh);
2129 }
2130 
2131 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2132 	int disks, struct r5conf *conf)
2133 {
2134 	struct stripe_head *sh;
2135 	int i;
2136 
2137 	sh = kmem_cache_zalloc(sc, gfp);
2138 	if (sh) {
2139 		spin_lock_init(&sh->stripe_lock);
2140 		spin_lock_init(&sh->batch_lock);
2141 		INIT_LIST_HEAD(&sh->batch_list);
2142 		INIT_LIST_HEAD(&sh->lru);
2143 		INIT_LIST_HEAD(&sh->r5c);
2144 		INIT_LIST_HEAD(&sh->log_list);
2145 		atomic_set(&sh->count, 1);
2146 		sh->raid_conf = conf;
2147 		sh->log_start = MaxSector;
2148 		for (i = 0; i < disks; i++) {
2149 			struct r5dev *dev = &sh->dev[i];
2150 
2151 			bio_init(&dev->req, &dev->vec, 1);
2152 			bio_init(&dev->rreq, &dev->rvec, 1);
2153 		}
2154 
2155 		if (raid5_has_ppl(conf)) {
2156 			sh->ppl_page = alloc_page(gfp);
2157 			if (!sh->ppl_page) {
2158 				free_stripe(sc, sh);
2159 				sh = NULL;
2160 			}
2161 		}
2162 	}
2163 	return sh;
2164 }
2165 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2166 {
2167 	struct stripe_head *sh;
2168 
2169 	sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2170 	if (!sh)
2171 		return 0;
2172 
2173 	if (grow_buffers(sh, gfp)) {
2174 		shrink_buffers(sh);
2175 		free_stripe(conf->slab_cache, sh);
2176 		return 0;
2177 	}
2178 	sh->hash_lock_index =
2179 		conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2180 	/* we just created an active stripe so... */
2181 	atomic_inc(&conf->active_stripes);
2182 
2183 	raid5_release_stripe(sh);
2184 	conf->max_nr_stripes++;
2185 	return 1;
2186 }
2187 
2188 static int grow_stripes(struct r5conf *conf, int num)
2189 {
2190 	struct kmem_cache *sc;
2191 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
2192 
2193 	if (conf->mddev->gendisk)
2194 		sprintf(conf->cache_name[0],
2195 			"raid%d-%s", conf->level, mdname(conf->mddev));
2196 	else
2197 		sprintf(conf->cache_name[0],
2198 			"raid%d-%p", conf->level, conf->mddev);
2199 	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2200 
2201 	conf->active_name = 0;
2202 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
2203 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2204 			       0, 0, NULL);
2205 	if (!sc)
2206 		return 1;
2207 	conf->slab_cache = sc;
2208 	conf->pool_size = devs;
2209 	while (num--)
2210 		if (!grow_one_stripe(conf, GFP_KERNEL))
2211 			return 1;
2212 
2213 	return 0;
2214 }
2215 
2216 /**
2217  * scribble_len - return the required size of the scribble region
2218  * @num - total number of disks in the array
2219  *
2220  * The size must be enough to contain:
2221  * 1/ a struct page pointer for each device in the array +2
2222  * 2/ room to convert each entry in (1) to its corresponding dma
2223  *    (dma_map_page()) or page (page_address()) address.
2224  *
2225  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2226  * calculate over all devices (not just the data blocks), using zeros in place
2227  * of the P and Q blocks.
2228  */
2229 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2230 {
2231 	struct flex_array *ret;
2232 	size_t len;
2233 
2234 	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2235 	ret = flex_array_alloc(len, cnt, flags);
2236 	if (!ret)
2237 		return NULL;
2238 	/* always prealloc all elements, so no locking is required */
2239 	if (flex_array_prealloc(ret, 0, cnt, flags)) {
2240 		flex_array_free(ret);
2241 		return NULL;
2242 	}
2243 	return ret;
2244 }
2245 
2246 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2247 {
2248 	unsigned long cpu;
2249 	int err = 0;
2250 
2251 	/*
2252 	 * Never shrink. And mddev_suspend() could deadlock if this is called
2253 	 * from raid5d. In that case, scribble_disks and scribble_sectors
2254 	 * should equal to new_disks and new_sectors
2255 	 */
2256 	if (conf->scribble_disks >= new_disks &&
2257 	    conf->scribble_sectors >= new_sectors)
2258 		return 0;
2259 	mddev_suspend(conf->mddev);
2260 	get_online_cpus();
2261 	for_each_present_cpu(cpu) {
2262 		struct raid5_percpu *percpu;
2263 		struct flex_array *scribble;
2264 
2265 		percpu = per_cpu_ptr(conf->percpu, cpu);
2266 		scribble = scribble_alloc(new_disks,
2267 					  new_sectors / STRIPE_SECTORS,
2268 					  GFP_NOIO);
2269 
2270 		if (scribble) {
2271 			flex_array_free(percpu->scribble);
2272 			percpu->scribble = scribble;
2273 		} else {
2274 			err = -ENOMEM;
2275 			break;
2276 		}
2277 	}
2278 	put_online_cpus();
2279 	mddev_resume(conf->mddev);
2280 	if (!err) {
2281 		conf->scribble_disks = new_disks;
2282 		conf->scribble_sectors = new_sectors;
2283 	}
2284 	return err;
2285 }
2286 
2287 static int resize_stripes(struct r5conf *conf, int newsize)
2288 {
2289 	/* Make all the stripes able to hold 'newsize' devices.
2290 	 * New slots in each stripe get 'page' set to a new page.
2291 	 *
2292 	 * This happens in stages:
2293 	 * 1/ create a new kmem_cache and allocate the required number of
2294 	 *    stripe_heads.
2295 	 * 2/ gather all the old stripe_heads and transfer the pages across
2296 	 *    to the new stripe_heads.  This will have the side effect of
2297 	 *    freezing the array as once all stripe_heads have been collected,
2298 	 *    no IO will be possible.  Old stripe heads are freed once their
2299 	 *    pages have been transferred over, and the old kmem_cache is
2300 	 *    freed when all stripes are done.
2301 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2302 	 *    we simple return a failure status - no need to clean anything up.
2303 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
2304 	 *    If this fails, we don't bother trying the shrink the
2305 	 *    stripe_heads down again, we just leave them as they are.
2306 	 *    As each stripe_head is processed the new one is released into
2307 	 *    active service.
2308 	 *
2309 	 * Once step2 is started, we cannot afford to wait for a write,
2310 	 * so we use GFP_NOIO allocations.
2311 	 */
2312 	struct stripe_head *osh, *nsh;
2313 	LIST_HEAD(newstripes);
2314 	struct disk_info *ndisks;
2315 	int err = 0;
2316 	struct kmem_cache *sc;
2317 	int i;
2318 	int hash, cnt;
2319 
2320 	md_allow_write(conf->mddev);
2321 
2322 	/* Step 1 */
2323 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2324 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2325 			       0, 0, NULL);
2326 	if (!sc)
2327 		return -ENOMEM;
2328 
2329 	/* Need to ensure auto-resizing doesn't interfere */
2330 	mutex_lock(&conf->cache_size_mutex);
2331 
2332 	for (i = conf->max_nr_stripes; i; i--) {
2333 		nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2334 		if (!nsh)
2335 			break;
2336 
2337 		list_add(&nsh->lru, &newstripes);
2338 	}
2339 	if (i) {
2340 		/* didn't get enough, give up */
2341 		while (!list_empty(&newstripes)) {
2342 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
2343 			list_del(&nsh->lru);
2344 			free_stripe(sc, nsh);
2345 		}
2346 		kmem_cache_destroy(sc);
2347 		mutex_unlock(&conf->cache_size_mutex);
2348 		return -ENOMEM;
2349 	}
2350 	/* Step 2 - Must use GFP_NOIO now.
2351 	 * OK, we have enough stripes, start collecting inactive
2352 	 * stripes and copying them over
2353 	 */
2354 	hash = 0;
2355 	cnt = 0;
2356 	list_for_each_entry(nsh, &newstripes, lru) {
2357 		lock_device_hash_lock(conf, hash);
2358 		wait_event_cmd(conf->wait_for_stripe,
2359 				    !list_empty(conf->inactive_list + hash),
2360 				    unlock_device_hash_lock(conf, hash),
2361 				    lock_device_hash_lock(conf, hash));
2362 		osh = get_free_stripe(conf, hash);
2363 		unlock_device_hash_lock(conf, hash);
2364 
2365 		for(i=0; i<conf->pool_size; i++) {
2366 			nsh->dev[i].page = osh->dev[i].page;
2367 			nsh->dev[i].orig_page = osh->dev[i].page;
2368 		}
2369 		nsh->hash_lock_index = hash;
2370 		free_stripe(conf->slab_cache, osh);
2371 		cnt++;
2372 		if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2373 		    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2374 			hash++;
2375 			cnt = 0;
2376 		}
2377 	}
2378 	kmem_cache_destroy(conf->slab_cache);
2379 
2380 	/* Step 3.
2381 	 * At this point, we are holding all the stripes so the array
2382 	 * is completely stalled, so now is a good time to resize
2383 	 * conf->disks and the scribble region
2384 	 */
2385 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2386 	if (ndisks) {
2387 		for (i = 0; i < conf->pool_size; i++)
2388 			ndisks[i] = conf->disks[i];
2389 
2390 		for (i = conf->pool_size; i < newsize; i++) {
2391 			ndisks[i].extra_page = alloc_page(GFP_NOIO);
2392 			if (!ndisks[i].extra_page)
2393 				err = -ENOMEM;
2394 		}
2395 
2396 		if (err) {
2397 			for (i = conf->pool_size; i < newsize; i++)
2398 				if (ndisks[i].extra_page)
2399 					put_page(ndisks[i].extra_page);
2400 			kfree(ndisks);
2401 		} else {
2402 			kfree(conf->disks);
2403 			conf->disks = ndisks;
2404 		}
2405 	} else
2406 		err = -ENOMEM;
2407 
2408 	mutex_unlock(&conf->cache_size_mutex);
2409 
2410 	conf->slab_cache = sc;
2411 	conf->active_name = 1-conf->active_name;
2412 
2413 	/* Step 4, return new stripes to service */
2414 	while(!list_empty(&newstripes)) {
2415 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
2416 		list_del_init(&nsh->lru);
2417 
2418 		for (i=conf->raid_disks; i < newsize; i++)
2419 			if (nsh->dev[i].page == NULL) {
2420 				struct page *p = alloc_page(GFP_NOIO);
2421 				nsh->dev[i].page = p;
2422 				nsh->dev[i].orig_page = p;
2423 				if (!p)
2424 					err = -ENOMEM;
2425 			}
2426 		raid5_release_stripe(nsh);
2427 	}
2428 	/* critical section pass, GFP_NOIO no longer needed */
2429 
2430 	if (!err)
2431 		conf->pool_size = newsize;
2432 	return err;
2433 }
2434 
2435 static int drop_one_stripe(struct r5conf *conf)
2436 {
2437 	struct stripe_head *sh;
2438 	int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2439 
2440 	spin_lock_irq(conf->hash_locks + hash);
2441 	sh = get_free_stripe(conf, hash);
2442 	spin_unlock_irq(conf->hash_locks + hash);
2443 	if (!sh)
2444 		return 0;
2445 	BUG_ON(atomic_read(&sh->count));
2446 	shrink_buffers(sh);
2447 	free_stripe(conf->slab_cache, sh);
2448 	atomic_dec(&conf->active_stripes);
2449 	conf->max_nr_stripes--;
2450 	return 1;
2451 }
2452 
2453 static void shrink_stripes(struct r5conf *conf)
2454 {
2455 	while (conf->max_nr_stripes &&
2456 	       drop_one_stripe(conf))
2457 		;
2458 
2459 	kmem_cache_destroy(conf->slab_cache);
2460 	conf->slab_cache = NULL;
2461 }
2462 
2463 static void raid5_end_read_request(struct bio * bi)
2464 {
2465 	struct stripe_head *sh = bi->bi_private;
2466 	struct r5conf *conf = sh->raid_conf;
2467 	int disks = sh->disks, i;
2468 	char b[BDEVNAME_SIZE];
2469 	struct md_rdev *rdev = NULL;
2470 	sector_t s;
2471 
2472 	for (i=0 ; i<disks; i++)
2473 		if (bi == &sh->dev[i].req)
2474 			break;
2475 
2476 	pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2477 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2478 		bi->bi_status);
2479 	if (i == disks) {
2480 		bio_reset(bi);
2481 		BUG();
2482 		return;
2483 	}
2484 	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2485 		/* If replacement finished while this request was outstanding,
2486 		 * 'replacement' might be NULL already.
2487 		 * In that case it moved down to 'rdev'.
2488 		 * rdev is not removed until all requests are finished.
2489 		 */
2490 		rdev = conf->disks[i].replacement;
2491 	if (!rdev)
2492 		rdev = conf->disks[i].rdev;
2493 
2494 	if (use_new_offset(conf, sh))
2495 		s = sh->sector + rdev->new_data_offset;
2496 	else
2497 		s = sh->sector + rdev->data_offset;
2498 	if (!bi->bi_status) {
2499 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
2500 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2501 			/* Note that this cannot happen on a
2502 			 * replacement device.  We just fail those on
2503 			 * any error
2504 			 */
2505 			pr_info_ratelimited(
2506 				"md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
2507 				mdname(conf->mddev), STRIPE_SECTORS,
2508 				(unsigned long long)s,
2509 				bdevname(rdev->bdev, b));
2510 			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2511 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2512 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2513 		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2514 			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2515 
2516 		if (test_bit(R5_InJournal, &sh->dev[i].flags))
2517 			/*
2518 			 * end read for a page in journal, this
2519 			 * must be preparing for prexor in rmw
2520 			 */
2521 			set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2522 
2523 		if (atomic_read(&rdev->read_errors))
2524 			atomic_set(&rdev->read_errors, 0);
2525 	} else {
2526 		const char *bdn = bdevname(rdev->bdev, b);
2527 		int retry = 0;
2528 		int set_bad = 0;
2529 
2530 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2531 		atomic_inc(&rdev->read_errors);
2532 		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2533 			pr_warn_ratelimited(
2534 				"md/raid:%s: read error on replacement device (sector %llu on %s).\n",
2535 				mdname(conf->mddev),
2536 				(unsigned long long)s,
2537 				bdn);
2538 		else if (conf->mddev->degraded >= conf->max_degraded) {
2539 			set_bad = 1;
2540 			pr_warn_ratelimited(
2541 				"md/raid:%s: read error not correctable (sector %llu on %s).\n",
2542 				mdname(conf->mddev),
2543 				(unsigned long long)s,
2544 				bdn);
2545 		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2546 			/* Oh, no!!! */
2547 			set_bad = 1;
2548 			pr_warn_ratelimited(
2549 				"md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
2550 				mdname(conf->mddev),
2551 				(unsigned long long)s,
2552 				bdn);
2553 		} else if (atomic_read(&rdev->read_errors)
2554 			 > conf->max_nr_stripes)
2555 			pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2556 			       mdname(conf->mddev), bdn);
2557 		else
2558 			retry = 1;
2559 		if (set_bad && test_bit(In_sync, &rdev->flags)
2560 		    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2561 			retry = 1;
2562 		if (retry)
2563 			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2564 				set_bit(R5_ReadError, &sh->dev[i].flags);
2565 				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2566 			} else
2567 				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2568 		else {
2569 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2570 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2571 			if (!(set_bad
2572 			      && test_bit(In_sync, &rdev->flags)
2573 			      && rdev_set_badblocks(
2574 				      rdev, sh->sector, STRIPE_SECTORS, 0)))
2575 				md_error(conf->mddev, rdev);
2576 		}
2577 	}
2578 	rdev_dec_pending(rdev, conf->mddev);
2579 	bio_reset(bi);
2580 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
2581 	set_bit(STRIPE_HANDLE, &sh->state);
2582 	raid5_release_stripe(sh);
2583 }
2584 
2585 static void raid5_end_write_request(struct bio *bi)
2586 {
2587 	struct stripe_head *sh = bi->bi_private;
2588 	struct r5conf *conf = sh->raid_conf;
2589 	int disks = sh->disks, i;
2590 	struct md_rdev *uninitialized_var(rdev);
2591 	sector_t first_bad;
2592 	int bad_sectors;
2593 	int replacement = 0;
2594 
2595 	for (i = 0 ; i < disks; i++) {
2596 		if (bi == &sh->dev[i].req) {
2597 			rdev = conf->disks[i].rdev;
2598 			break;
2599 		}
2600 		if (bi == &sh->dev[i].rreq) {
2601 			rdev = conf->disks[i].replacement;
2602 			if (rdev)
2603 				replacement = 1;
2604 			else
2605 				/* rdev was removed and 'replacement'
2606 				 * replaced it.  rdev is not removed
2607 				 * until all requests are finished.
2608 				 */
2609 				rdev = conf->disks[i].rdev;
2610 			break;
2611 		}
2612 	}
2613 	pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2614 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2615 		bi->bi_status);
2616 	if (i == disks) {
2617 		bio_reset(bi);
2618 		BUG();
2619 		return;
2620 	}
2621 
2622 	if (replacement) {
2623 		if (bi->bi_status)
2624 			md_error(conf->mddev, rdev);
2625 		else if (is_badblock(rdev, sh->sector,
2626 				     STRIPE_SECTORS,
2627 				     &first_bad, &bad_sectors))
2628 			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2629 	} else {
2630 		if (bi->bi_status) {
2631 			set_bit(STRIPE_DEGRADED, &sh->state);
2632 			set_bit(WriteErrorSeen, &rdev->flags);
2633 			set_bit(R5_WriteError, &sh->dev[i].flags);
2634 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2635 				set_bit(MD_RECOVERY_NEEDED,
2636 					&rdev->mddev->recovery);
2637 		} else if (is_badblock(rdev, sh->sector,
2638 				       STRIPE_SECTORS,
2639 				       &first_bad, &bad_sectors)) {
2640 			set_bit(R5_MadeGood, &sh->dev[i].flags);
2641 			if (test_bit(R5_ReadError, &sh->dev[i].flags))
2642 				/* That was a successful write so make
2643 				 * sure it looks like we already did
2644 				 * a re-write.
2645 				 */
2646 				set_bit(R5_ReWrite, &sh->dev[i].flags);
2647 		}
2648 	}
2649 	rdev_dec_pending(rdev, conf->mddev);
2650 
2651 	if (sh->batch_head && bi->bi_status && !replacement)
2652 		set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2653 
2654 	bio_reset(bi);
2655 	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2656 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2657 	set_bit(STRIPE_HANDLE, &sh->state);
2658 	raid5_release_stripe(sh);
2659 
2660 	if (sh->batch_head && sh != sh->batch_head)
2661 		raid5_release_stripe(sh->batch_head);
2662 }
2663 
2664 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2665 {
2666 	char b[BDEVNAME_SIZE];
2667 	struct r5conf *conf = mddev->private;
2668 	unsigned long flags;
2669 	pr_debug("raid456: error called\n");
2670 
2671 	spin_lock_irqsave(&conf->device_lock, flags);
2672 	clear_bit(In_sync, &rdev->flags);
2673 	mddev->degraded = raid5_calc_degraded(conf);
2674 	spin_unlock_irqrestore(&conf->device_lock, flags);
2675 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2676 
2677 	set_bit(Blocked, &rdev->flags);
2678 	set_bit(Faulty, &rdev->flags);
2679 	set_mask_bits(&mddev->sb_flags, 0,
2680 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2681 	pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2682 		"md/raid:%s: Operation continuing on %d devices.\n",
2683 		mdname(mddev),
2684 		bdevname(rdev->bdev, b),
2685 		mdname(mddev),
2686 		conf->raid_disks - mddev->degraded);
2687 	r5c_update_on_rdev_error(mddev, rdev);
2688 }
2689 
2690 /*
2691  * Input: a 'big' sector number,
2692  * Output: index of the data and parity disk, and the sector # in them.
2693  */
2694 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2695 			      int previous, int *dd_idx,
2696 			      struct stripe_head *sh)
2697 {
2698 	sector_t stripe, stripe2;
2699 	sector_t chunk_number;
2700 	unsigned int chunk_offset;
2701 	int pd_idx, qd_idx;
2702 	int ddf_layout = 0;
2703 	sector_t new_sector;
2704 	int algorithm = previous ? conf->prev_algo
2705 				 : conf->algorithm;
2706 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2707 					 : conf->chunk_sectors;
2708 	int raid_disks = previous ? conf->previous_raid_disks
2709 				  : conf->raid_disks;
2710 	int data_disks = raid_disks - conf->max_degraded;
2711 
2712 	/* First compute the information on this sector */
2713 
2714 	/*
2715 	 * Compute the chunk number and the sector offset inside the chunk
2716 	 */
2717 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
2718 	chunk_number = r_sector;
2719 
2720 	/*
2721 	 * Compute the stripe number
2722 	 */
2723 	stripe = chunk_number;
2724 	*dd_idx = sector_div(stripe, data_disks);
2725 	stripe2 = stripe;
2726 	/*
2727 	 * Select the parity disk based on the user selected algorithm.
2728 	 */
2729 	pd_idx = qd_idx = -1;
2730 	switch(conf->level) {
2731 	case 4:
2732 		pd_idx = data_disks;
2733 		break;
2734 	case 5:
2735 		switch (algorithm) {
2736 		case ALGORITHM_LEFT_ASYMMETRIC:
2737 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2738 			if (*dd_idx >= pd_idx)
2739 				(*dd_idx)++;
2740 			break;
2741 		case ALGORITHM_RIGHT_ASYMMETRIC:
2742 			pd_idx = sector_div(stripe2, raid_disks);
2743 			if (*dd_idx >= pd_idx)
2744 				(*dd_idx)++;
2745 			break;
2746 		case ALGORITHM_LEFT_SYMMETRIC:
2747 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2748 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2749 			break;
2750 		case ALGORITHM_RIGHT_SYMMETRIC:
2751 			pd_idx = sector_div(stripe2, raid_disks);
2752 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2753 			break;
2754 		case ALGORITHM_PARITY_0:
2755 			pd_idx = 0;
2756 			(*dd_idx)++;
2757 			break;
2758 		case ALGORITHM_PARITY_N:
2759 			pd_idx = data_disks;
2760 			break;
2761 		default:
2762 			BUG();
2763 		}
2764 		break;
2765 	case 6:
2766 
2767 		switch (algorithm) {
2768 		case ALGORITHM_LEFT_ASYMMETRIC:
2769 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2770 			qd_idx = pd_idx + 1;
2771 			if (pd_idx == raid_disks-1) {
2772 				(*dd_idx)++;	/* Q D D D P */
2773 				qd_idx = 0;
2774 			} else if (*dd_idx >= pd_idx)
2775 				(*dd_idx) += 2; /* D D P Q D */
2776 			break;
2777 		case ALGORITHM_RIGHT_ASYMMETRIC:
2778 			pd_idx = sector_div(stripe2, raid_disks);
2779 			qd_idx = pd_idx + 1;
2780 			if (pd_idx == raid_disks-1) {
2781 				(*dd_idx)++;	/* Q D D D P */
2782 				qd_idx = 0;
2783 			} else if (*dd_idx >= pd_idx)
2784 				(*dd_idx) += 2; /* D D P Q D */
2785 			break;
2786 		case ALGORITHM_LEFT_SYMMETRIC:
2787 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2788 			qd_idx = (pd_idx + 1) % raid_disks;
2789 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2790 			break;
2791 		case ALGORITHM_RIGHT_SYMMETRIC:
2792 			pd_idx = sector_div(stripe2, raid_disks);
2793 			qd_idx = (pd_idx + 1) % raid_disks;
2794 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2795 			break;
2796 
2797 		case ALGORITHM_PARITY_0:
2798 			pd_idx = 0;
2799 			qd_idx = 1;
2800 			(*dd_idx) += 2;
2801 			break;
2802 		case ALGORITHM_PARITY_N:
2803 			pd_idx = data_disks;
2804 			qd_idx = data_disks + 1;
2805 			break;
2806 
2807 		case ALGORITHM_ROTATING_ZERO_RESTART:
2808 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
2809 			 * of blocks for computing Q is different.
2810 			 */
2811 			pd_idx = sector_div(stripe2, raid_disks);
2812 			qd_idx = pd_idx + 1;
2813 			if (pd_idx == raid_disks-1) {
2814 				(*dd_idx)++;	/* Q D D D P */
2815 				qd_idx = 0;
2816 			} else if (*dd_idx >= pd_idx)
2817 				(*dd_idx) += 2; /* D D P Q D */
2818 			ddf_layout = 1;
2819 			break;
2820 
2821 		case ALGORITHM_ROTATING_N_RESTART:
2822 			/* Same a left_asymmetric, by first stripe is
2823 			 * D D D P Q  rather than
2824 			 * Q D D D P
2825 			 */
2826 			stripe2 += 1;
2827 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2828 			qd_idx = pd_idx + 1;
2829 			if (pd_idx == raid_disks-1) {
2830 				(*dd_idx)++;	/* Q D D D P */
2831 				qd_idx = 0;
2832 			} else if (*dd_idx >= pd_idx)
2833 				(*dd_idx) += 2; /* D D P Q D */
2834 			ddf_layout = 1;
2835 			break;
2836 
2837 		case ALGORITHM_ROTATING_N_CONTINUE:
2838 			/* Same as left_symmetric but Q is before P */
2839 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2840 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2841 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2842 			ddf_layout = 1;
2843 			break;
2844 
2845 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2846 			/* RAID5 left_asymmetric, with Q on last device */
2847 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2848 			if (*dd_idx >= pd_idx)
2849 				(*dd_idx)++;
2850 			qd_idx = raid_disks - 1;
2851 			break;
2852 
2853 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2854 			pd_idx = sector_div(stripe2, raid_disks-1);
2855 			if (*dd_idx >= pd_idx)
2856 				(*dd_idx)++;
2857 			qd_idx = raid_disks - 1;
2858 			break;
2859 
2860 		case ALGORITHM_LEFT_SYMMETRIC_6:
2861 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2862 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2863 			qd_idx = raid_disks - 1;
2864 			break;
2865 
2866 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2867 			pd_idx = sector_div(stripe2, raid_disks-1);
2868 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2869 			qd_idx = raid_disks - 1;
2870 			break;
2871 
2872 		case ALGORITHM_PARITY_0_6:
2873 			pd_idx = 0;
2874 			(*dd_idx)++;
2875 			qd_idx = raid_disks - 1;
2876 			break;
2877 
2878 		default:
2879 			BUG();
2880 		}
2881 		break;
2882 	}
2883 
2884 	if (sh) {
2885 		sh->pd_idx = pd_idx;
2886 		sh->qd_idx = qd_idx;
2887 		sh->ddf_layout = ddf_layout;
2888 	}
2889 	/*
2890 	 * Finally, compute the new sector number
2891 	 */
2892 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2893 	return new_sector;
2894 }
2895 
2896 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2897 {
2898 	struct r5conf *conf = sh->raid_conf;
2899 	int raid_disks = sh->disks;
2900 	int data_disks = raid_disks - conf->max_degraded;
2901 	sector_t new_sector = sh->sector, check;
2902 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2903 					 : conf->chunk_sectors;
2904 	int algorithm = previous ? conf->prev_algo
2905 				 : conf->algorithm;
2906 	sector_t stripe;
2907 	int chunk_offset;
2908 	sector_t chunk_number;
2909 	int dummy1, dd_idx = i;
2910 	sector_t r_sector;
2911 	struct stripe_head sh2;
2912 
2913 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
2914 	stripe = new_sector;
2915 
2916 	if (i == sh->pd_idx)
2917 		return 0;
2918 	switch(conf->level) {
2919 	case 4: break;
2920 	case 5:
2921 		switch (algorithm) {
2922 		case ALGORITHM_LEFT_ASYMMETRIC:
2923 		case ALGORITHM_RIGHT_ASYMMETRIC:
2924 			if (i > sh->pd_idx)
2925 				i--;
2926 			break;
2927 		case ALGORITHM_LEFT_SYMMETRIC:
2928 		case ALGORITHM_RIGHT_SYMMETRIC:
2929 			if (i < sh->pd_idx)
2930 				i += raid_disks;
2931 			i -= (sh->pd_idx + 1);
2932 			break;
2933 		case ALGORITHM_PARITY_0:
2934 			i -= 1;
2935 			break;
2936 		case ALGORITHM_PARITY_N:
2937 			break;
2938 		default:
2939 			BUG();
2940 		}
2941 		break;
2942 	case 6:
2943 		if (i == sh->qd_idx)
2944 			return 0; /* It is the Q disk */
2945 		switch (algorithm) {
2946 		case ALGORITHM_LEFT_ASYMMETRIC:
2947 		case ALGORITHM_RIGHT_ASYMMETRIC:
2948 		case ALGORITHM_ROTATING_ZERO_RESTART:
2949 		case ALGORITHM_ROTATING_N_RESTART:
2950 			if (sh->pd_idx == raid_disks-1)
2951 				i--;	/* Q D D D P */
2952 			else if (i > sh->pd_idx)
2953 				i -= 2; /* D D P Q D */
2954 			break;
2955 		case ALGORITHM_LEFT_SYMMETRIC:
2956 		case ALGORITHM_RIGHT_SYMMETRIC:
2957 			if (sh->pd_idx == raid_disks-1)
2958 				i--; /* Q D D D P */
2959 			else {
2960 				/* D D P Q D */
2961 				if (i < sh->pd_idx)
2962 					i += raid_disks;
2963 				i -= (sh->pd_idx + 2);
2964 			}
2965 			break;
2966 		case ALGORITHM_PARITY_0:
2967 			i -= 2;
2968 			break;
2969 		case ALGORITHM_PARITY_N:
2970 			break;
2971 		case ALGORITHM_ROTATING_N_CONTINUE:
2972 			/* Like left_symmetric, but P is before Q */
2973 			if (sh->pd_idx == 0)
2974 				i--;	/* P D D D Q */
2975 			else {
2976 				/* D D Q P D */
2977 				if (i < sh->pd_idx)
2978 					i += raid_disks;
2979 				i -= (sh->pd_idx + 1);
2980 			}
2981 			break;
2982 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2983 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2984 			if (i > sh->pd_idx)
2985 				i--;
2986 			break;
2987 		case ALGORITHM_LEFT_SYMMETRIC_6:
2988 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2989 			if (i < sh->pd_idx)
2990 				i += data_disks + 1;
2991 			i -= (sh->pd_idx + 1);
2992 			break;
2993 		case ALGORITHM_PARITY_0_6:
2994 			i -= 1;
2995 			break;
2996 		default:
2997 			BUG();
2998 		}
2999 		break;
3000 	}
3001 
3002 	chunk_number = stripe * data_disks + i;
3003 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3004 
3005 	check = raid5_compute_sector(conf, r_sector,
3006 				     previous, &dummy1, &sh2);
3007 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3008 		|| sh2.qd_idx != sh->qd_idx) {
3009 		pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3010 			mdname(conf->mddev));
3011 		return 0;
3012 	}
3013 	return r_sector;
3014 }
3015 
3016 /*
3017  * There are cases where we want handle_stripe_dirtying() and
3018  * schedule_reconstruction() to delay towrite to some dev of a stripe.
3019  *
3020  * This function checks whether we want to delay the towrite. Specifically,
3021  * we delay the towrite when:
3022  *
3023  *   1. degraded stripe has a non-overwrite to the missing dev, AND this
3024  *      stripe has data in journal (for other devices).
3025  *
3026  *      In this case, when reading data for the non-overwrite dev, it is
3027  *      necessary to handle complex rmw of write back cache (prexor with
3028  *      orig_page, and xor with page). To keep read path simple, we would
3029  *      like to flush data in journal to RAID disks first, so complex rmw
3030  *      is handled in the write patch (handle_stripe_dirtying).
3031  *
3032  *   2. when journal space is critical (R5C_LOG_CRITICAL=1)
3033  *
3034  *      It is important to be able to flush all stripes in raid5-cache.
3035  *      Therefore, we need reserve some space on the journal device for
3036  *      these flushes. If flush operation includes pending writes to the
3037  *      stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3038  *      for the flush out. If we exclude these pending writes from flush
3039  *      operation, we only need (conf->max_degraded + 1) pages per stripe.
3040  *      Therefore, excluding pending writes in these cases enables more
3041  *      efficient use of the journal device.
3042  *
3043  *      Note: To make sure the stripe makes progress, we only delay
3044  *      towrite for stripes with data already in journal (injournal > 0).
3045  *      When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3046  *      no_space_stripes list.
3047  *
3048  *   3. during journal failure
3049  *      In journal failure, we try to flush all cached data to raid disks
3050  *      based on data in stripe cache. The array is read-only to upper
3051  *      layers, so we would skip all pending writes.
3052  *
3053  */
3054 static inline bool delay_towrite(struct r5conf *conf,
3055 				 struct r5dev *dev,
3056 				 struct stripe_head_state *s)
3057 {
3058 	/* case 1 above */
3059 	if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3060 	    !test_bit(R5_Insync, &dev->flags) && s->injournal)
3061 		return true;
3062 	/* case 2 above */
3063 	if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3064 	    s->injournal > 0)
3065 		return true;
3066 	/* case 3 above */
3067 	if (s->log_failed && s->injournal)
3068 		return true;
3069 	return false;
3070 }
3071 
3072 static void
3073 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3074 			 int rcw, int expand)
3075 {
3076 	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3077 	struct r5conf *conf = sh->raid_conf;
3078 	int level = conf->level;
3079 
3080 	if (rcw) {
3081 		/*
3082 		 * In some cases, handle_stripe_dirtying initially decided to
3083 		 * run rmw and allocates extra page for prexor. However, rcw is
3084 		 * cheaper later on. We need to free the extra page now,
3085 		 * because we won't be able to do that in ops_complete_prexor().
3086 		 */
3087 		r5c_release_extra_page(sh);
3088 
3089 		for (i = disks; i--; ) {
3090 			struct r5dev *dev = &sh->dev[i];
3091 
3092 			if (dev->towrite && !delay_towrite(conf, dev, s)) {
3093 				set_bit(R5_LOCKED, &dev->flags);
3094 				set_bit(R5_Wantdrain, &dev->flags);
3095 				if (!expand)
3096 					clear_bit(R5_UPTODATE, &dev->flags);
3097 				s->locked++;
3098 			} else if (test_bit(R5_InJournal, &dev->flags)) {
3099 				set_bit(R5_LOCKED, &dev->flags);
3100 				s->locked++;
3101 			}
3102 		}
3103 		/* if we are not expanding this is a proper write request, and
3104 		 * there will be bios with new data to be drained into the
3105 		 * stripe cache
3106 		 */
3107 		if (!expand) {
3108 			if (!s->locked)
3109 				/* False alarm, nothing to do */
3110 				return;
3111 			sh->reconstruct_state = reconstruct_state_drain_run;
3112 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3113 		} else
3114 			sh->reconstruct_state = reconstruct_state_run;
3115 
3116 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3117 
3118 		if (s->locked + conf->max_degraded == disks)
3119 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3120 				atomic_inc(&conf->pending_full_writes);
3121 	} else {
3122 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3123 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3124 		BUG_ON(level == 6 &&
3125 			(!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3126 			   test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3127 
3128 		for (i = disks; i--; ) {
3129 			struct r5dev *dev = &sh->dev[i];
3130 			if (i == pd_idx || i == qd_idx)
3131 				continue;
3132 
3133 			if (dev->towrite &&
3134 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3135 			     test_bit(R5_Wantcompute, &dev->flags))) {
3136 				set_bit(R5_Wantdrain, &dev->flags);
3137 				set_bit(R5_LOCKED, &dev->flags);
3138 				clear_bit(R5_UPTODATE, &dev->flags);
3139 				s->locked++;
3140 			} else if (test_bit(R5_InJournal, &dev->flags)) {
3141 				set_bit(R5_LOCKED, &dev->flags);
3142 				s->locked++;
3143 			}
3144 		}
3145 		if (!s->locked)
3146 			/* False alarm - nothing to do */
3147 			return;
3148 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3149 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3150 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3151 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3152 	}
3153 
3154 	/* keep the parity disk(s) locked while asynchronous operations
3155 	 * are in flight
3156 	 */
3157 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3158 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3159 	s->locked++;
3160 
3161 	if (level == 6) {
3162 		int qd_idx = sh->qd_idx;
3163 		struct r5dev *dev = &sh->dev[qd_idx];
3164 
3165 		set_bit(R5_LOCKED, &dev->flags);
3166 		clear_bit(R5_UPTODATE, &dev->flags);
3167 		s->locked++;
3168 	}
3169 
3170 	if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3171 	    test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3172 	    !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3173 	    test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3174 		set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3175 
3176 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3177 		__func__, (unsigned long long)sh->sector,
3178 		s->locked, s->ops_request);
3179 }
3180 
3181 /*
3182  * Each stripe/dev can have one or more bion attached.
3183  * toread/towrite point to the first in a chain.
3184  * The bi_next chain must be in order.
3185  */
3186 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3187 			  int forwrite, int previous)
3188 {
3189 	struct bio **bip;
3190 	struct r5conf *conf = sh->raid_conf;
3191 	int firstwrite=0;
3192 
3193 	pr_debug("adding bi b#%llu to stripe s#%llu\n",
3194 		(unsigned long long)bi->bi_iter.bi_sector,
3195 		(unsigned long long)sh->sector);
3196 
3197 	spin_lock_irq(&sh->stripe_lock);
3198 	/* Don't allow new IO added to stripes in batch list */
3199 	if (sh->batch_head)
3200 		goto overlap;
3201 	if (forwrite) {
3202 		bip = &sh->dev[dd_idx].towrite;
3203 		if (*bip == NULL)
3204 			firstwrite = 1;
3205 	} else
3206 		bip = &sh->dev[dd_idx].toread;
3207 	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3208 		if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3209 			goto overlap;
3210 		bip = & (*bip)->bi_next;
3211 	}
3212 	if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3213 		goto overlap;
3214 
3215 	if (forwrite && raid5_has_ppl(conf)) {
3216 		/*
3217 		 * With PPL only writes to consecutive data chunks within a
3218 		 * stripe are allowed because for a single stripe_head we can
3219 		 * only have one PPL entry at a time, which describes one data
3220 		 * range. Not really an overlap, but wait_for_overlap can be
3221 		 * used to handle this.
3222 		 */
3223 		sector_t sector;
3224 		sector_t first = 0;
3225 		sector_t last = 0;
3226 		int count = 0;
3227 		int i;
3228 
3229 		for (i = 0; i < sh->disks; i++) {
3230 			if (i != sh->pd_idx &&
3231 			    (i == dd_idx || sh->dev[i].towrite)) {
3232 				sector = sh->dev[i].sector;
3233 				if (count == 0 || sector < first)
3234 					first = sector;
3235 				if (sector > last)
3236 					last = sector;
3237 				count++;
3238 			}
3239 		}
3240 
3241 		if (first + conf->chunk_sectors * (count - 1) != last)
3242 			goto overlap;
3243 	}
3244 
3245 	if (!forwrite || previous)
3246 		clear_bit(STRIPE_BATCH_READY, &sh->state);
3247 
3248 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3249 	if (*bip)
3250 		bi->bi_next = *bip;
3251 	*bip = bi;
3252 	bio_inc_remaining(bi);
3253 	md_write_inc(conf->mddev, bi);
3254 
3255 	if (forwrite) {
3256 		/* check if page is covered */
3257 		sector_t sector = sh->dev[dd_idx].sector;
3258 		for (bi=sh->dev[dd_idx].towrite;
3259 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3260 			     bi && bi->bi_iter.bi_sector <= sector;
3261 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3262 			if (bio_end_sector(bi) >= sector)
3263 				sector = bio_end_sector(bi);
3264 		}
3265 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3266 			if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3267 				sh->overwrite_disks++;
3268 	}
3269 
3270 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3271 		(unsigned long long)(*bip)->bi_iter.bi_sector,
3272 		(unsigned long long)sh->sector, dd_idx);
3273 
3274 	if (conf->mddev->bitmap && firstwrite) {
3275 		/* Cannot hold spinlock over bitmap_startwrite,
3276 		 * but must ensure this isn't added to a batch until
3277 		 * we have added to the bitmap and set bm_seq.
3278 		 * So set STRIPE_BITMAP_PENDING to prevent
3279 		 * batching.
3280 		 * If multiple add_stripe_bio() calls race here they
3281 		 * much all set STRIPE_BITMAP_PENDING.  So only the first one
3282 		 * to complete "bitmap_startwrite" gets to set
3283 		 * STRIPE_BIT_DELAY.  This is important as once a stripe
3284 		 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3285 		 * any more.
3286 		 */
3287 		set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3288 		spin_unlock_irq(&sh->stripe_lock);
3289 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3290 				  STRIPE_SECTORS, 0);
3291 		spin_lock_irq(&sh->stripe_lock);
3292 		clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3293 		if (!sh->batch_head) {
3294 			sh->bm_seq = conf->seq_flush+1;
3295 			set_bit(STRIPE_BIT_DELAY, &sh->state);
3296 		}
3297 	}
3298 	spin_unlock_irq(&sh->stripe_lock);
3299 
3300 	if (stripe_can_batch(sh))
3301 		stripe_add_to_batch_list(conf, sh);
3302 	return 1;
3303 
3304  overlap:
3305 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3306 	spin_unlock_irq(&sh->stripe_lock);
3307 	return 0;
3308 }
3309 
3310 static void end_reshape(struct r5conf *conf);
3311 
3312 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3313 			    struct stripe_head *sh)
3314 {
3315 	int sectors_per_chunk =
3316 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3317 	int dd_idx;
3318 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
3319 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3320 
3321 	raid5_compute_sector(conf,
3322 			     stripe * (disks - conf->max_degraded)
3323 			     *sectors_per_chunk + chunk_offset,
3324 			     previous,
3325 			     &dd_idx, sh);
3326 }
3327 
3328 static void
3329 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3330 		     struct stripe_head_state *s, int disks)
3331 {
3332 	int i;
3333 	BUG_ON(sh->batch_head);
3334 	for (i = disks; i--; ) {
3335 		struct bio *bi;
3336 		int bitmap_end = 0;
3337 
3338 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3339 			struct md_rdev *rdev;
3340 			rcu_read_lock();
3341 			rdev = rcu_dereference(conf->disks[i].rdev);
3342 			if (rdev && test_bit(In_sync, &rdev->flags) &&
3343 			    !test_bit(Faulty, &rdev->flags))
3344 				atomic_inc(&rdev->nr_pending);
3345 			else
3346 				rdev = NULL;
3347 			rcu_read_unlock();
3348 			if (rdev) {
3349 				if (!rdev_set_badblocks(
3350 					    rdev,
3351 					    sh->sector,
3352 					    STRIPE_SECTORS, 0))
3353 					md_error(conf->mddev, rdev);
3354 				rdev_dec_pending(rdev, conf->mddev);
3355 			}
3356 		}
3357 		spin_lock_irq(&sh->stripe_lock);
3358 		/* fail all writes first */
3359 		bi = sh->dev[i].towrite;
3360 		sh->dev[i].towrite = NULL;
3361 		sh->overwrite_disks = 0;
3362 		spin_unlock_irq(&sh->stripe_lock);
3363 		if (bi)
3364 			bitmap_end = 1;
3365 
3366 		log_stripe_write_finished(sh);
3367 
3368 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3369 			wake_up(&conf->wait_for_overlap);
3370 
3371 		while (bi && bi->bi_iter.bi_sector <
3372 			sh->dev[i].sector + STRIPE_SECTORS) {
3373 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3374 
3375 			md_write_end(conf->mddev);
3376 			bio_io_error(bi);
3377 			bi = nextbi;
3378 		}
3379 		if (bitmap_end)
3380 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3381 				STRIPE_SECTORS, 0, 0);
3382 		bitmap_end = 0;
3383 		/* and fail all 'written' */
3384 		bi = sh->dev[i].written;
3385 		sh->dev[i].written = NULL;
3386 		if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3387 			WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3388 			sh->dev[i].page = sh->dev[i].orig_page;
3389 		}
3390 
3391 		if (bi) bitmap_end = 1;
3392 		while (bi && bi->bi_iter.bi_sector <
3393 		       sh->dev[i].sector + STRIPE_SECTORS) {
3394 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3395 
3396 			md_write_end(conf->mddev);
3397 			bio_io_error(bi);
3398 			bi = bi2;
3399 		}
3400 
3401 		/* fail any reads if this device is non-operational and
3402 		 * the data has not reached the cache yet.
3403 		 */
3404 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3405 		    s->failed > conf->max_degraded &&
3406 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3407 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
3408 			spin_lock_irq(&sh->stripe_lock);
3409 			bi = sh->dev[i].toread;
3410 			sh->dev[i].toread = NULL;
3411 			spin_unlock_irq(&sh->stripe_lock);
3412 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3413 				wake_up(&conf->wait_for_overlap);
3414 			if (bi)
3415 				s->to_read--;
3416 			while (bi && bi->bi_iter.bi_sector <
3417 			       sh->dev[i].sector + STRIPE_SECTORS) {
3418 				struct bio *nextbi =
3419 					r5_next_bio(bi, sh->dev[i].sector);
3420 
3421 				bio_io_error(bi);
3422 				bi = nextbi;
3423 			}
3424 		}
3425 		if (bitmap_end)
3426 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3427 					STRIPE_SECTORS, 0, 0);
3428 		/* If we were in the middle of a write the parity block might
3429 		 * still be locked - so just clear all R5_LOCKED flags
3430 		 */
3431 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
3432 	}
3433 	s->to_write = 0;
3434 	s->written = 0;
3435 
3436 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3437 		if (atomic_dec_and_test(&conf->pending_full_writes))
3438 			md_wakeup_thread(conf->mddev->thread);
3439 }
3440 
3441 static void
3442 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3443 		   struct stripe_head_state *s)
3444 {
3445 	int abort = 0;
3446 	int i;
3447 
3448 	BUG_ON(sh->batch_head);
3449 	clear_bit(STRIPE_SYNCING, &sh->state);
3450 	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3451 		wake_up(&conf->wait_for_overlap);
3452 	s->syncing = 0;
3453 	s->replacing = 0;
3454 	/* There is nothing more to do for sync/check/repair.
3455 	 * Don't even need to abort as that is handled elsewhere
3456 	 * if needed, and not always wanted e.g. if there is a known
3457 	 * bad block here.
3458 	 * For recover/replace we need to record a bad block on all
3459 	 * non-sync devices, or abort the recovery
3460 	 */
3461 	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3462 		/* During recovery devices cannot be removed, so
3463 		 * locking and refcounting of rdevs is not needed
3464 		 */
3465 		rcu_read_lock();
3466 		for (i = 0; i < conf->raid_disks; i++) {
3467 			struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3468 			if (rdev
3469 			    && !test_bit(Faulty, &rdev->flags)
3470 			    && !test_bit(In_sync, &rdev->flags)
3471 			    && !rdev_set_badblocks(rdev, sh->sector,
3472 						   STRIPE_SECTORS, 0))
3473 				abort = 1;
3474 			rdev = rcu_dereference(conf->disks[i].replacement);
3475 			if (rdev
3476 			    && !test_bit(Faulty, &rdev->flags)
3477 			    && !test_bit(In_sync, &rdev->flags)
3478 			    && !rdev_set_badblocks(rdev, sh->sector,
3479 						   STRIPE_SECTORS, 0))
3480 				abort = 1;
3481 		}
3482 		rcu_read_unlock();
3483 		if (abort)
3484 			conf->recovery_disabled =
3485 				conf->mddev->recovery_disabled;
3486 	}
3487 	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3488 }
3489 
3490 static int want_replace(struct stripe_head *sh, int disk_idx)
3491 {
3492 	struct md_rdev *rdev;
3493 	int rv = 0;
3494 
3495 	rcu_read_lock();
3496 	rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3497 	if (rdev
3498 	    && !test_bit(Faulty, &rdev->flags)
3499 	    && !test_bit(In_sync, &rdev->flags)
3500 	    && (rdev->recovery_offset <= sh->sector
3501 		|| rdev->mddev->recovery_cp <= sh->sector))
3502 		rv = 1;
3503 	rcu_read_unlock();
3504 	return rv;
3505 }
3506 
3507 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3508 			   int disk_idx, int disks)
3509 {
3510 	struct r5dev *dev = &sh->dev[disk_idx];
3511 	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3512 				  &sh->dev[s->failed_num[1]] };
3513 	int i;
3514 
3515 
3516 	if (test_bit(R5_LOCKED, &dev->flags) ||
3517 	    test_bit(R5_UPTODATE, &dev->flags))
3518 		/* No point reading this as we already have it or have
3519 		 * decided to get it.
3520 		 */
3521 		return 0;
3522 
3523 	if (dev->toread ||
3524 	    (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3525 		/* We need this block to directly satisfy a request */
3526 		return 1;
3527 
3528 	if (s->syncing || s->expanding ||
3529 	    (s->replacing && want_replace(sh, disk_idx)))
3530 		/* When syncing, or expanding we read everything.
3531 		 * When replacing, we need the replaced block.
3532 		 */
3533 		return 1;
3534 
3535 	if ((s->failed >= 1 && fdev[0]->toread) ||
3536 	    (s->failed >= 2 && fdev[1]->toread))
3537 		/* If we want to read from a failed device, then
3538 		 * we need to actually read every other device.
3539 		 */
3540 		return 1;
3541 
3542 	/* Sometimes neither read-modify-write nor reconstruct-write
3543 	 * cycles can work.  In those cases we read every block we
3544 	 * can.  Then the parity-update is certain to have enough to
3545 	 * work with.
3546 	 * This can only be a problem when we need to write something,
3547 	 * and some device has failed.  If either of those tests
3548 	 * fail we need look no further.
3549 	 */
3550 	if (!s->failed || !s->to_write)
3551 		return 0;
3552 
3553 	if (test_bit(R5_Insync, &dev->flags) &&
3554 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3555 		/* Pre-reads at not permitted until after short delay
3556 		 * to gather multiple requests.  However if this
3557 		 * device is no Insync, the block could only be computed
3558 		 * and there is no need to delay that.
3559 		 */
3560 		return 0;
3561 
3562 	for (i = 0; i < s->failed && i < 2; i++) {
3563 		if (fdev[i]->towrite &&
3564 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3565 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3566 			/* If we have a partial write to a failed
3567 			 * device, then we will need to reconstruct
3568 			 * the content of that device, so all other
3569 			 * devices must be read.
3570 			 */
3571 			return 1;
3572 	}
3573 
3574 	/* If we are forced to do a reconstruct-write, either because
3575 	 * the current RAID6 implementation only supports that, or
3576 	 * because parity cannot be trusted and we are currently
3577 	 * recovering it, there is extra need to be careful.
3578 	 * If one of the devices that we would need to read, because
3579 	 * it is not being overwritten (and maybe not written at all)
3580 	 * is missing/faulty, then we need to read everything we can.
3581 	 */
3582 	if (sh->raid_conf->level != 6 &&
3583 	    sh->sector < sh->raid_conf->mddev->recovery_cp)
3584 		/* reconstruct-write isn't being forced */
3585 		return 0;
3586 	for (i = 0; i < s->failed && i < 2; i++) {
3587 		if (s->failed_num[i] != sh->pd_idx &&
3588 		    s->failed_num[i] != sh->qd_idx &&
3589 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3590 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3591 			return 1;
3592 	}
3593 
3594 	return 0;
3595 }
3596 
3597 /* fetch_block - checks the given member device to see if its data needs
3598  * to be read or computed to satisfy a request.
3599  *
3600  * Returns 1 when no more member devices need to be checked, otherwise returns
3601  * 0 to tell the loop in handle_stripe_fill to continue
3602  */
3603 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3604 		       int disk_idx, int disks)
3605 {
3606 	struct r5dev *dev = &sh->dev[disk_idx];
3607 
3608 	/* is the data in this block needed, and can we get it? */
3609 	if (need_this_block(sh, s, disk_idx, disks)) {
3610 		/* we would like to get this block, possibly by computing it,
3611 		 * otherwise read it if the backing disk is insync
3612 		 */
3613 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3614 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
3615 		BUG_ON(sh->batch_head);
3616 
3617 		/*
3618 		 * In the raid6 case if the only non-uptodate disk is P
3619 		 * then we already trusted P to compute the other failed
3620 		 * drives. It is safe to compute rather than re-read P.
3621 		 * In other cases we only compute blocks from failed
3622 		 * devices, otherwise check/repair might fail to detect
3623 		 * a real inconsistency.
3624 		 */
3625 
3626 		if ((s->uptodate == disks - 1) &&
3627 		    ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3628 		    (s->failed && (disk_idx == s->failed_num[0] ||
3629 				   disk_idx == s->failed_num[1])))) {
3630 			/* have disk failed, and we're requested to fetch it;
3631 			 * do compute it
3632 			 */
3633 			pr_debug("Computing stripe %llu block %d\n",
3634 			       (unsigned long long)sh->sector, disk_idx);
3635 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3636 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3637 			set_bit(R5_Wantcompute, &dev->flags);
3638 			sh->ops.target = disk_idx;
3639 			sh->ops.target2 = -1; /* no 2nd target */
3640 			s->req_compute = 1;
3641 			/* Careful: from this point on 'uptodate' is in the eye
3642 			 * of raid_run_ops which services 'compute' operations
3643 			 * before writes. R5_Wantcompute flags a block that will
3644 			 * be R5_UPTODATE by the time it is needed for a
3645 			 * subsequent operation.
3646 			 */
3647 			s->uptodate++;
3648 			return 1;
3649 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
3650 			/* Computing 2-failure is *very* expensive; only
3651 			 * do it if failed >= 2
3652 			 */
3653 			int other;
3654 			for (other = disks; other--; ) {
3655 				if (other == disk_idx)
3656 					continue;
3657 				if (!test_bit(R5_UPTODATE,
3658 				      &sh->dev[other].flags))
3659 					break;
3660 			}
3661 			BUG_ON(other < 0);
3662 			pr_debug("Computing stripe %llu blocks %d,%d\n",
3663 			       (unsigned long long)sh->sector,
3664 			       disk_idx, other);
3665 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3666 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3667 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3668 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
3669 			sh->ops.target = disk_idx;
3670 			sh->ops.target2 = other;
3671 			s->uptodate += 2;
3672 			s->req_compute = 1;
3673 			return 1;
3674 		} else if (test_bit(R5_Insync, &dev->flags)) {
3675 			set_bit(R5_LOCKED, &dev->flags);
3676 			set_bit(R5_Wantread, &dev->flags);
3677 			s->locked++;
3678 			pr_debug("Reading block %d (sync=%d)\n",
3679 				disk_idx, s->syncing);
3680 		}
3681 	}
3682 
3683 	return 0;
3684 }
3685 
3686 /**
3687  * handle_stripe_fill - read or compute data to satisfy pending requests.
3688  */
3689 static void handle_stripe_fill(struct stripe_head *sh,
3690 			       struct stripe_head_state *s,
3691 			       int disks)
3692 {
3693 	int i;
3694 
3695 	/* look for blocks to read/compute, skip this if a compute
3696 	 * is already in flight, or if the stripe contents are in the
3697 	 * midst of changing due to a write
3698 	 */
3699 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3700 	    !sh->reconstruct_state) {
3701 
3702 		/*
3703 		 * For degraded stripe with data in journal, do not handle
3704 		 * read requests yet, instead, flush the stripe to raid
3705 		 * disks first, this avoids handling complex rmw of write
3706 		 * back cache (prexor with orig_page, and then xor with
3707 		 * page) in the read path
3708 		 */
3709 		if (s->injournal && s->failed) {
3710 			if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3711 				r5c_make_stripe_write_out(sh);
3712 			goto out;
3713 		}
3714 
3715 		for (i = disks; i--; )
3716 			if (fetch_block(sh, s, i, disks))
3717 				break;
3718 	}
3719 out:
3720 	set_bit(STRIPE_HANDLE, &sh->state);
3721 }
3722 
3723 static void break_stripe_batch_list(struct stripe_head *head_sh,
3724 				    unsigned long handle_flags);
3725 /* handle_stripe_clean_event
3726  * any written block on an uptodate or failed drive can be returned.
3727  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3728  * never LOCKED, so we don't need to test 'failed' directly.
3729  */
3730 static void handle_stripe_clean_event(struct r5conf *conf,
3731 	struct stripe_head *sh, int disks)
3732 {
3733 	int i;
3734 	struct r5dev *dev;
3735 	int discard_pending = 0;
3736 	struct stripe_head *head_sh = sh;
3737 	bool do_endio = false;
3738 
3739 	for (i = disks; i--; )
3740 		if (sh->dev[i].written) {
3741 			dev = &sh->dev[i];
3742 			if (!test_bit(R5_LOCKED, &dev->flags) &&
3743 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3744 			     test_bit(R5_Discard, &dev->flags) ||
3745 			     test_bit(R5_SkipCopy, &dev->flags))) {
3746 				/* We can return any write requests */
3747 				struct bio *wbi, *wbi2;
3748 				pr_debug("Return write for disc %d\n", i);
3749 				if (test_and_clear_bit(R5_Discard, &dev->flags))
3750 					clear_bit(R5_UPTODATE, &dev->flags);
3751 				if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3752 					WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3753 				}
3754 				do_endio = true;
3755 
3756 returnbi:
3757 				dev->page = dev->orig_page;
3758 				wbi = dev->written;
3759 				dev->written = NULL;
3760 				while (wbi && wbi->bi_iter.bi_sector <
3761 					dev->sector + STRIPE_SECTORS) {
3762 					wbi2 = r5_next_bio(wbi, dev->sector);
3763 					md_write_end(conf->mddev);
3764 					bio_endio(wbi);
3765 					wbi = wbi2;
3766 				}
3767 				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3768 						STRIPE_SECTORS,
3769 					 !test_bit(STRIPE_DEGRADED, &sh->state),
3770 						0);
3771 				if (head_sh->batch_head) {
3772 					sh = list_first_entry(&sh->batch_list,
3773 							      struct stripe_head,
3774 							      batch_list);
3775 					if (sh != head_sh) {
3776 						dev = &sh->dev[i];
3777 						goto returnbi;
3778 					}
3779 				}
3780 				sh = head_sh;
3781 				dev = &sh->dev[i];
3782 			} else if (test_bit(R5_Discard, &dev->flags))
3783 				discard_pending = 1;
3784 		}
3785 
3786 	log_stripe_write_finished(sh);
3787 
3788 	if (!discard_pending &&
3789 	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3790 		int hash;
3791 		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3792 		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3793 		if (sh->qd_idx >= 0) {
3794 			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3795 			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3796 		}
3797 		/* now that discard is done we can proceed with any sync */
3798 		clear_bit(STRIPE_DISCARD, &sh->state);
3799 		/*
3800 		 * SCSI discard will change some bio fields and the stripe has
3801 		 * no updated data, so remove it from hash list and the stripe
3802 		 * will be reinitialized
3803 		 */
3804 unhash:
3805 		hash = sh->hash_lock_index;
3806 		spin_lock_irq(conf->hash_locks + hash);
3807 		remove_hash(sh);
3808 		spin_unlock_irq(conf->hash_locks + hash);
3809 		if (head_sh->batch_head) {
3810 			sh = list_first_entry(&sh->batch_list,
3811 					      struct stripe_head, batch_list);
3812 			if (sh != head_sh)
3813 					goto unhash;
3814 		}
3815 		sh = head_sh;
3816 
3817 		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3818 			set_bit(STRIPE_HANDLE, &sh->state);
3819 
3820 	}
3821 
3822 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3823 		if (atomic_dec_and_test(&conf->pending_full_writes))
3824 			md_wakeup_thread(conf->mddev->thread);
3825 
3826 	if (head_sh->batch_head && do_endio)
3827 		break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3828 }
3829 
3830 /*
3831  * For RMW in write back cache, we need extra page in prexor to store the
3832  * old data. This page is stored in dev->orig_page.
3833  *
3834  * This function checks whether we have data for prexor. The exact logic
3835  * is:
3836  *       R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
3837  */
3838 static inline bool uptodate_for_rmw(struct r5dev *dev)
3839 {
3840 	return (test_bit(R5_UPTODATE, &dev->flags)) &&
3841 		(!test_bit(R5_InJournal, &dev->flags) ||
3842 		 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
3843 }
3844 
3845 static int handle_stripe_dirtying(struct r5conf *conf,
3846 				  struct stripe_head *sh,
3847 				  struct stripe_head_state *s,
3848 				  int disks)
3849 {
3850 	int rmw = 0, rcw = 0, i;
3851 	sector_t recovery_cp = conf->mddev->recovery_cp;
3852 
3853 	/* Check whether resync is now happening or should start.
3854 	 * If yes, then the array is dirty (after unclean shutdown or
3855 	 * initial creation), so parity in some stripes might be inconsistent.
3856 	 * In this case, we need to always do reconstruct-write, to ensure
3857 	 * that in case of drive failure or read-error correction, we
3858 	 * generate correct data from the parity.
3859 	 */
3860 	if (conf->rmw_level == PARITY_DISABLE_RMW ||
3861 	    (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3862 	     s->failed == 0)) {
3863 		/* Calculate the real rcw later - for now make it
3864 		 * look like rcw is cheaper
3865 		 */
3866 		rcw = 1; rmw = 2;
3867 		pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3868 			 conf->rmw_level, (unsigned long long)recovery_cp,
3869 			 (unsigned long long)sh->sector);
3870 	} else for (i = disks; i--; ) {
3871 		/* would I have to read this buffer for read_modify_write */
3872 		struct r5dev *dev = &sh->dev[i];
3873 		if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3874 		     i == sh->pd_idx || i == sh->qd_idx ||
3875 		     test_bit(R5_InJournal, &dev->flags)) &&
3876 		    !test_bit(R5_LOCKED, &dev->flags) &&
3877 		    !(uptodate_for_rmw(dev) ||
3878 		      test_bit(R5_Wantcompute, &dev->flags))) {
3879 			if (test_bit(R5_Insync, &dev->flags))
3880 				rmw++;
3881 			else
3882 				rmw += 2*disks;  /* cannot read it */
3883 		}
3884 		/* Would I have to read this buffer for reconstruct_write */
3885 		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3886 		    i != sh->pd_idx && i != sh->qd_idx &&
3887 		    !test_bit(R5_LOCKED, &dev->flags) &&
3888 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
3889 		      test_bit(R5_Wantcompute, &dev->flags))) {
3890 			if (test_bit(R5_Insync, &dev->flags))
3891 				rcw++;
3892 			else
3893 				rcw += 2*disks;
3894 		}
3895 	}
3896 
3897 	pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
3898 		 (unsigned long long)sh->sector, sh->state, rmw, rcw);
3899 	set_bit(STRIPE_HANDLE, &sh->state);
3900 	if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
3901 		/* prefer read-modify-write, but need to get some data */
3902 		if (conf->mddev->queue)
3903 			blk_add_trace_msg(conf->mddev->queue,
3904 					  "raid5 rmw %llu %d",
3905 					  (unsigned long long)sh->sector, rmw);
3906 		for (i = disks; i--; ) {
3907 			struct r5dev *dev = &sh->dev[i];
3908 			if (test_bit(R5_InJournal, &dev->flags) &&
3909 			    dev->page == dev->orig_page &&
3910 			    !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
3911 				/* alloc page for prexor */
3912 				struct page *p = alloc_page(GFP_NOIO);
3913 
3914 				if (p) {
3915 					dev->orig_page = p;
3916 					continue;
3917 				}
3918 
3919 				/*
3920 				 * alloc_page() failed, try use
3921 				 * disk_info->extra_page
3922 				 */
3923 				if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
3924 						      &conf->cache_state)) {
3925 					r5c_use_extra_page(sh);
3926 					break;
3927 				}
3928 
3929 				/* extra_page in use, add to delayed_list */
3930 				set_bit(STRIPE_DELAYED, &sh->state);
3931 				s->waiting_extra_page = 1;
3932 				return -EAGAIN;
3933 			}
3934 		}
3935 
3936 		for (i = disks; i--; ) {
3937 			struct r5dev *dev = &sh->dev[i];
3938 			if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3939 			     i == sh->pd_idx || i == sh->qd_idx ||
3940 			     test_bit(R5_InJournal, &dev->flags)) &&
3941 			    !test_bit(R5_LOCKED, &dev->flags) &&
3942 			    !(uptodate_for_rmw(dev) ||
3943 			      test_bit(R5_Wantcompute, &dev->flags)) &&
3944 			    test_bit(R5_Insync, &dev->flags)) {
3945 				if (test_bit(STRIPE_PREREAD_ACTIVE,
3946 					     &sh->state)) {
3947 					pr_debug("Read_old block %d for r-m-w\n",
3948 						 i);
3949 					set_bit(R5_LOCKED, &dev->flags);
3950 					set_bit(R5_Wantread, &dev->flags);
3951 					s->locked++;
3952 				} else {
3953 					set_bit(STRIPE_DELAYED, &sh->state);
3954 					set_bit(STRIPE_HANDLE, &sh->state);
3955 				}
3956 			}
3957 		}
3958 	}
3959 	if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
3960 		/* want reconstruct write, but need to get some data */
3961 		int qread =0;
3962 		rcw = 0;
3963 		for (i = disks; i--; ) {
3964 			struct r5dev *dev = &sh->dev[i];
3965 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3966 			    i != sh->pd_idx && i != sh->qd_idx &&
3967 			    !test_bit(R5_LOCKED, &dev->flags) &&
3968 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3969 			      test_bit(R5_Wantcompute, &dev->flags))) {
3970 				rcw++;
3971 				if (test_bit(R5_Insync, &dev->flags) &&
3972 				    test_bit(STRIPE_PREREAD_ACTIVE,
3973 					     &sh->state)) {
3974 					pr_debug("Read_old block "
3975 						"%d for Reconstruct\n", i);
3976 					set_bit(R5_LOCKED, &dev->flags);
3977 					set_bit(R5_Wantread, &dev->flags);
3978 					s->locked++;
3979 					qread++;
3980 				} else {
3981 					set_bit(STRIPE_DELAYED, &sh->state);
3982 					set_bit(STRIPE_HANDLE, &sh->state);
3983 				}
3984 			}
3985 		}
3986 		if (rcw && conf->mddev->queue)
3987 			blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3988 					  (unsigned long long)sh->sector,
3989 					  rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3990 	}
3991 
3992 	if (rcw > disks && rmw > disks &&
3993 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3994 		set_bit(STRIPE_DELAYED, &sh->state);
3995 
3996 	/* now if nothing is locked, and if we have enough data,
3997 	 * we can start a write request
3998 	 */
3999 	/* since handle_stripe can be called at any time we need to handle the
4000 	 * case where a compute block operation has been submitted and then a
4001 	 * subsequent call wants to start a write request.  raid_run_ops only
4002 	 * handles the case where compute block and reconstruct are requested
4003 	 * simultaneously.  If this is not the case then new writes need to be
4004 	 * held off until the compute completes.
4005 	 */
4006 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4007 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4008 	     !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4009 		schedule_reconstruction(sh, s, rcw == 0, 0);
4010 	return 0;
4011 }
4012 
4013 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4014 				struct stripe_head_state *s, int disks)
4015 {
4016 	struct r5dev *dev = NULL;
4017 
4018 	BUG_ON(sh->batch_head);
4019 	set_bit(STRIPE_HANDLE, &sh->state);
4020 
4021 	switch (sh->check_state) {
4022 	case check_state_idle:
4023 		/* start a new check operation if there are no failures */
4024 		if (s->failed == 0) {
4025 			BUG_ON(s->uptodate != disks);
4026 			sh->check_state = check_state_run;
4027 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
4028 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4029 			s->uptodate--;
4030 			break;
4031 		}
4032 		dev = &sh->dev[s->failed_num[0]];
4033 		/* fall through */
4034 	case check_state_compute_result:
4035 		sh->check_state = check_state_idle;
4036 		if (!dev)
4037 			dev = &sh->dev[sh->pd_idx];
4038 
4039 		/* check that a write has not made the stripe insync */
4040 		if (test_bit(STRIPE_INSYNC, &sh->state))
4041 			break;
4042 
4043 		/* either failed parity check, or recovery is happening */
4044 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4045 		BUG_ON(s->uptodate != disks);
4046 
4047 		set_bit(R5_LOCKED, &dev->flags);
4048 		s->locked++;
4049 		set_bit(R5_Wantwrite, &dev->flags);
4050 
4051 		clear_bit(STRIPE_DEGRADED, &sh->state);
4052 		set_bit(STRIPE_INSYNC, &sh->state);
4053 		break;
4054 	case check_state_run:
4055 		break; /* we will be called again upon completion */
4056 	case check_state_check_result:
4057 		sh->check_state = check_state_idle;
4058 
4059 		/* if a failure occurred during the check operation, leave
4060 		 * STRIPE_INSYNC not set and let the stripe be handled again
4061 		 */
4062 		if (s->failed)
4063 			break;
4064 
4065 		/* handle a successful check operation, if parity is correct
4066 		 * we are done.  Otherwise update the mismatch count and repair
4067 		 * parity if !MD_RECOVERY_CHECK
4068 		 */
4069 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4070 			/* parity is correct (on disc,
4071 			 * not in buffer any more)
4072 			 */
4073 			set_bit(STRIPE_INSYNC, &sh->state);
4074 		else {
4075 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4076 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4077 				/* don't try to repair!! */
4078 				set_bit(STRIPE_INSYNC, &sh->state);
4079 				pr_warn_ratelimited("%s: mismatch sector in range "
4080 						    "%llu-%llu\n", mdname(conf->mddev),
4081 						    (unsigned long long) sh->sector,
4082 						    (unsigned long long) sh->sector +
4083 						    STRIPE_SECTORS);
4084 			} else {
4085 				sh->check_state = check_state_compute_run;
4086 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4087 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4088 				set_bit(R5_Wantcompute,
4089 					&sh->dev[sh->pd_idx].flags);
4090 				sh->ops.target = sh->pd_idx;
4091 				sh->ops.target2 = -1;
4092 				s->uptodate++;
4093 			}
4094 		}
4095 		break;
4096 	case check_state_compute_run:
4097 		break;
4098 	default:
4099 		pr_err("%s: unknown check_state: %d sector: %llu\n",
4100 		       __func__, sh->check_state,
4101 		       (unsigned long long) sh->sector);
4102 		BUG();
4103 	}
4104 }
4105 
4106 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4107 				  struct stripe_head_state *s,
4108 				  int disks)
4109 {
4110 	int pd_idx = sh->pd_idx;
4111 	int qd_idx = sh->qd_idx;
4112 	struct r5dev *dev;
4113 
4114 	BUG_ON(sh->batch_head);
4115 	set_bit(STRIPE_HANDLE, &sh->state);
4116 
4117 	BUG_ON(s->failed > 2);
4118 
4119 	/* Want to check and possibly repair P and Q.
4120 	 * However there could be one 'failed' device, in which
4121 	 * case we can only check one of them, possibly using the
4122 	 * other to generate missing data
4123 	 */
4124 
4125 	switch (sh->check_state) {
4126 	case check_state_idle:
4127 		/* start a new check operation if there are < 2 failures */
4128 		if (s->failed == s->q_failed) {
4129 			/* The only possible failed device holds Q, so it
4130 			 * makes sense to check P (If anything else were failed,
4131 			 * we would have used P to recreate it).
4132 			 */
4133 			sh->check_state = check_state_run;
4134 		}
4135 		if (!s->q_failed && s->failed < 2) {
4136 			/* Q is not failed, and we didn't use it to generate
4137 			 * anything, so it makes sense to check it
4138 			 */
4139 			if (sh->check_state == check_state_run)
4140 				sh->check_state = check_state_run_pq;
4141 			else
4142 				sh->check_state = check_state_run_q;
4143 		}
4144 
4145 		/* discard potentially stale zero_sum_result */
4146 		sh->ops.zero_sum_result = 0;
4147 
4148 		if (sh->check_state == check_state_run) {
4149 			/* async_xor_zero_sum destroys the contents of P */
4150 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4151 			s->uptodate--;
4152 		}
4153 		if (sh->check_state >= check_state_run &&
4154 		    sh->check_state <= check_state_run_pq) {
4155 			/* async_syndrome_zero_sum preserves P and Q, so
4156 			 * no need to mark them !uptodate here
4157 			 */
4158 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
4159 			break;
4160 		}
4161 
4162 		/* we have 2-disk failure */
4163 		BUG_ON(s->failed != 2);
4164 		/* fall through */
4165 	case check_state_compute_result:
4166 		sh->check_state = check_state_idle;
4167 
4168 		/* check that a write has not made the stripe insync */
4169 		if (test_bit(STRIPE_INSYNC, &sh->state))
4170 			break;
4171 
4172 		/* now write out any block on a failed drive,
4173 		 * or P or Q if they were recomputed
4174 		 */
4175 		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
4176 		if (s->failed == 2) {
4177 			dev = &sh->dev[s->failed_num[1]];
4178 			s->locked++;
4179 			set_bit(R5_LOCKED, &dev->flags);
4180 			set_bit(R5_Wantwrite, &dev->flags);
4181 		}
4182 		if (s->failed >= 1) {
4183 			dev = &sh->dev[s->failed_num[0]];
4184 			s->locked++;
4185 			set_bit(R5_LOCKED, &dev->flags);
4186 			set_bit(R5_Wantwrite, &dev->flags);
4187 		}
4188 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4189 			dev = &sh->dev[pd_idx];
4190 			s->locked++;
4191 			set_bit(R5_LOCKED, &dev->flags);
4192 			set_bit(R5_Wantwrite, &dev->flags);
4193 		}
4194 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4195 			dev = &sh->dev[qd_idx];
4196 			s->locked++;
4197 			set_bit(R5_LOCKED, &dev->flags);
4198 			set_bit(R5_Wantwrite, &dev->flags);
4199 		}
4200 		clear_bit(STRIPE_DEGRADED, &sh->state);
4201 
4202 		set_bit(STRIPE_INSYNC, &sh->state);
4203 		break;
4204 	case check_state_run:
4205 	case check_state_run_q:
4206 	case check_state_run_pq:
4207 		break; /* we will be called again upon completion */
4208 	case check_state_check_result:
4209 		sh->check_state = check_state_idle;
4210 
4211 		/* handle a successful check operation, if parity is correct
4212 		 * we are done.  Otherwise update the mismatch count and repair
4213 		 * parity if !MD_RECOVERY_CHECK
4214 		 */
4215 		if (sh->ops.zero_sum_result == 0) {
4216 			/* both parities are correct */
4217 			if (!s->failed)
4218 				set_bit(STRIPE_INSYNC, &sh->state);
4219 			else {
4220 				/* in contrast to the raid5 case we can validate
4221 				 * parity, but still have a failure to write
4222 				 * back
4223 				 */
4224 				sh->check_state = check_state_compute_result;
4225 				/* Returning at this point means that we may go
4226 				 * off and bring p and/or q uptodate again so
4227 				 * we make sure to check zero_sum_result again
4228 				 * to verify if p or q need writeback
4229 				 */
4230 			}
4231 		} else {
4232 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4233 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4234 				/* don't try to repair!! */
4235 				set_bit(STRIPE_INSYNC, &sh->state);
4236 				pr_warn_ratelimited("%s: mismatch sector in range "
4237 						    "%llu-%llu\n", mdname(conf->mddev),
4238 						    (unsigned long long) sh->sector,
4239 						    (unsigned long long) sh->sector +
4240 						    STRIPE_SECTORS);
4241 			} else {
4242 				int *target = &sh->ops.target;
4243 
4244 				sh->ops.target = -1;
4245 				sh->ops.target2 = -1;
4246 				sh->check_state = check_state_compute_run;
4247 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4248 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4249 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4250 					set_bit(R5_Wantcompute,
4251 						&sh->dev[pd_idx].flags);
4252 					*target = pd_idx;
4253 					target = &sh->ops.target2;
4254 					s->uptodate++;
4255 				}
4256 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4257 					set_bit(R5_Wantcompute,
4258 						&sh->dev[qd_idx].flags);
4259 					*target = qd_idx;
4260 					s->uptodate++;
4261 				}
4262 			}
4263 		}
4264 		break;
4265 	case check_state_compute_run:
4266 		break;
4267 	default:
4268 		pr_warn("%s: unknown check_state: %d sector: %llu\n",
4269 			__func__, sh->check_state,
4270 			(unsigned long long) sh->sector);
4271 		BUG();
4272 	}
4273 }
4274 
4275 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4276 {
4277 	int i;
4278 
4279 	/* We have read all the blocks in this stripe and now we need to
4280 	 * copy some of them into a target stripe for expand.
4281 	 */
4282 	struct dma_async_tx_descriptor *tx = NULL;
4283 	BUG_ON(sh->batch_head);
4284 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4285 	for (i = 0; i < sh->disks; i++)
4286 		if (i != sh->pd_idx && i != sh->qd_idx) {
4287 			int dd_idx, j;
4288 			struct stripe_head *sh2;
4289 			struct async_submit_ctl submit;
4290 
4291 			sector_t bn = raid5_compute_blocknr(sh, i, 1);
4292 			sector_t s = raid5_compute_sector(conf, bn, 0,
4293 							  &dd_idx, NULL);
4294 			sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
4295 			if (sh2 == NULL)
4296 				/* so far only the early blocks of this stripe
4297 				 * have been requested.  When later blocks
4298 				 * get requested, we will try again
4299 				 */
4300 				continue;
4301 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4302 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4303 				/* must have already done this block */
4304 				raid5_release_stripe(sh2);
4305 				continue;
4306 			}
4307 
4308 			/* place all the copies on one channel */
4309 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4310 			tx = async_memcpy(sh2->dev[dd_idx].page,
4311 					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
4312 					  &submit);
4313 
4314 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4315 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4316 			for (j = 0; j < conf->raid_disks; j++)
4317 				if (j != sh2->pd_idx &&
4318 				    j != sh2->qd_idx &&
4319 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
4320 					break;
4321 			if (j == conf->raid_disks) {
4322 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
4323 				set_bit(STRIPE_HANDLE, &sh2->state);
4324 			}
4325 			raid5_release_stripe(sh2);
4326 
4327 		}
4328 	/* done submitting copies, wait for them to complete */
4329 	async_tx_quiesce(&tx);
4330 }
4331 
4332 /*
4333  * handle_stripe - do things to a stripe.
4334  *
4335  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4336  * state of various bits to see what needs to be done.
4337  * Possible results:
4338  *    return some read requests which now have data
4339  *    return some write requests which are safely on storage
4340  *    schedule a read on some buffers
4341  *    schedule a write of some buffers
4342  *    return confirmation of parity correctness
4343  *
4344  */
4345 
4346 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4347 {
4348 	struct r5conf *conf = sh->raid_conf;
4349 	int disks = sh->disks;
4350 	struct r5dev *dev;
4351 	int i;
4352 	int do_recovery = 0;
4353 
4354 	memset(s, 0, sizeof(*s));
4355 
4356 	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4357 	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4358 	s->failed_num[0] = -1;
4359 	s->failed_num[1] = -1;
4360 	s->log_failed = r5l_log_disk_error(conf);
4361 
4362 	/* Now to look around and see what can be done */
4363 	rcu_read_lock();
4364 	for (i=disks; i--; ) {
4365 		struct md_rdev *rdev;
4366 		sector_t first_bad;
4367 		int bad_sectors;
4368 		int is_bad = 0;
4369 
4370 		dev = &sh->dev[i];
4371 
4372 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4373 			 i, dev->flags,
4374 			 dev->toread, dev->towrite, dev->written);
4375 		/* maybe we can reply to a read
4376 		 *
4377 		 * new wantfill requests are only permitted while
4378 		 * ops_complete_biofill is guaranteed to be inactive
4379 		 */
4380 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4381 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4382 			set_bit(R5_Wantfill, &dev->flags);
4383 
4384 		/* now count some things */
4385 		if (test_bit(R5_LOCKED, &dev->flags))
4386 			s->locked++;
4387 		if (test_bit(R5_UPTODATE, &dev->flags))
4388 			s->uptodate++;
4389 		if (test_bit(R5_Wantcompute, &dev->flags)) {
4390 			s->compute++;
4391 			BUG_ON(s->compute > 2);
4392 		}
4393 
4394 		if (test_bit(R5_Wantfill, &dev->flags))
4395 			s->to_fill++;
4396 		else if (dev->toread)
4397 			s->to_read++;
4398 		if (dev->towrite) {
4399 			s->to_write++;
4400 			if (!test_bit(R5_OVERWRITE, &dev->flags))
4401 				s->non_overwrite++;
4402 		}
4403 		if (dev->written)
4404 			s->written++;
4405 		/* Prefer to use the replacement for reads, but only
4406 		 * if it is recovered enough and has no bad blocks.
4407 		 */
4408 		rdev = rcu_dereference(conf->disks[i].replacement);
4409 		if (rdev && !test_bit(Faulty, &rdev->flags) &&
4410 		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4411 		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4412 				 &first_bad, &bad_sectors))
4413 			set_bit(R5_ReadRepl, &dev->flags);
4414 		else {
4415 			if (rdev && !test_bit(Faulty, &rdev->flags))
4416 				set_bit(R5_NeedReplace, &dev->flags);
4417 			else
4418 				clear_bit(R5_NeedReplace, &dev->flags);
4419 			rdev = rcu_dereference(conf->disks[i].rdev);
4420 			clear_bit(R5_ReadRepl, &dev->flags);
4421 		}
4422 		if (rdev && test_bit(Faulty, &rdev->flags))
4423 			rdev = NULL;
4424 		if (rdev) {
4425 			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4426 					     &first_bad, &bad_sectors);
4427 			if (s->blocked_rdev == NULL
4428 			    && (test_bit(Blocked, &rdev->flags)
4429 				|| is_bad < 0)) {
4430 				if (is_bad < 0)
4431 					set_bit(BlockedBadBlocks,
4432 						&rdev->flags);
4433 				s->blocked_rdev = rdev;
4434 				atomic_inc(&rdev->nr_pending);
4435 			}
4436 		}
4437 		clear_bit(R5_Insync, &dev->flags);
4438 		if (!rdev)
4439 			/* Not in-sync */;
4440 		else if (is_bad) {
4441 			/* also not in-sync */
4442 			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4443 			    test_bit(R5_UPTODATE, &dev->flags)) {
4444 				/* treat as in-sync, but with a read error
4445 				 * which we can now try to correct
4446 				 */
4447 				set_bit(R5_Insync, &dev->flags);
4448 				set_bit(R5_ReadError, &dev->flags);
4449 			}
4450 		} else if (test_bit(In_sync, &rdev->flags))
4451 			set_bit(R5_Insync, &dev->flags);
4452 		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4453 			/* in sync if before recovery_offset */
4454 			set_bit(R5_Insync, &dev->flags);
4455 		else if (test_bit(R5_UPTODATE, &dev->flags) &&
4456 			 test_bit(R5_Expanded, &dev->flags))
4457 			/* If we've reshaped into here, we assume it is Insync.
4458 			 * We will shortly update recovery_offset to make
4459 			 * it official.
4460 			 */
4461 			set_bit(R5_Insync, &dev->flags);
4462 
4463 		if (test_bit(R5_WriteError, &dev->flags)) {
4464 			/* This flag does not apply to '.replacement'
4465 			 * only to .rdev, so make sure to check that*/
4466 			struct md_rdev *rdev2 = rcu_dereference(
4467 				conf->disks[i].rdev);
4468 			if (rdev2 == rdev)
4469 				clear_bit(R5_Insync, &dev->flags);
4470 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4471 				s->handle_bad_blocks = 1;
4472 				atomic_inc(&rdev2->nr_pending);
4473 			} else
4474 				clear_bit(R5_WriteError, &dev->flags);
4475 		}
4476 		if (test_bit(R5_MadeGood, &dev->flags)) {
4477 			/* This flag does not apply to '.replacement'
4478 			 * only to .rdev, so make sure to check that*/
4479 			struct md_rdev *rdev2 = rcu_dereference(
4480 				conf->disks[i].rdev);
4481 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4482 				s->handle_bad_blocks = 1;
4483 				atomic_inc(&rdev2->nr_pending);
4484 			} else
4485 				clear_bit(R5_MadeGood, &dev->flags);
4486 		}
4487 		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4488 			struct md_rdev *rdev2 = rcu_dereference(
4489 				conf->disks[i].replacement);
4490 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4491 				s->handle_bad_blocks = 1;
4492 				atomic_inc(&rdev2->nr_pending);
4493 			} else
4494 				clear_bit(R5_MadeGoodRepl, &dev->flags);
4495 		}
4496 		if (!test_bit(R5_Insync, &dev->flags)) {
4497 			/* The ReadError flag will just be confusing now */
4498 			clear_bit(R5_ReadError, &dev->flags);
4499 			clear_bit(R5_ReWrite, &dev->flags);
4500 		}
4501 		if (test_bit(R5_ReadError, &dev->flags))
4502 			clear_bit(R5_Insync, &dev->flags);
4503 		if (!test_bit(R5_Insync, &dev->flags)) {
4504 			if (s->failed < 2)
4505 				s->failed_num[s->failed] = i;
4506 			s->failed++;
4507 			if (rdev && !test_bit(Faulty, &rdev->flags))
4508 				do_recovery = 1;
4509 		}
4510 
4511 		if (test_bit(R5_InJournal, &dev->flags))
4512 			s->injournal++;
4513 		if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4514 			s->just_cached++;
4515 	}
4516 	if (test_bit(STRIPE_SYNCING, &sh->state)) {
4517 		/* If there is a failed device being replaced,
4518 		 *     we must be recovering.
4519 		 * else if we are after recovery_cp, we must be syncing
4520 		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4521 		 * else we can only be replacing
4522 		 * sync and recovery both need to read all devices, and so
4523 		 * use the same flag.
4524 		 */
4525 		if (do_recovery ||
4526 		    sh->sector >= conf->mddev->recovery_cp ||
4527 		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4528 			s->syncing = 1;
4529 		else
4530 			s->replacing = 1;
4531 	}
4532 	rcu_read_unlock();
4533 }
4534 
4535 static int clear_batch_ready(struct stripe_head *sh)
4536 {
4537 	/* Return '1' if this is a member of batch, or
4538 	 * '0' if it is a lone stripe or a head which can now be
4539 	 * handled.
4540 	 */
4541 	struct stripe_head *tmp;
4542 	if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4543 		return (sh->batch_head && sh->batch_head != sh);
4544 	spin_lock(&sh->stripe_lock);
4545 	if (!sh->batch_head) {
4546 		spin_unlock(&sh->stripe_lock);
4547 		return 0;
4548 	}
4549 
4550 	/*
4551 	 * this stripe could be added to a batch list before we check
4552 	 * BATCH_READY, skips it
4553 	 */
4554 	if (sh->batch_head != sh) {
4555 		spin_unlock(&sh->stripe_lock);
4556 		return 1;
4557 	}
4558 	spin_lock(&sh->batch_lock);
4559 	list_for_each_entry(tmp, &sh->batch_list, batch_list)
4560 		clear_bit(STRIPE_BATCH_READY, &tmp->state);
4561 	spin_unlock(&sh->batch_lock);
4562 	spin_unlock(&sh->stripe_lock);
4563 
4564 	/*
4565 	 * BATCH_READY is cleared, no new stripes can be added.
4566 	 * batch_list can be accessed without lock
4567 	 */
4568 	return 0;
4569 }
4570 
4571 static void break_stripe_batch_list(struct stripe_head *head_sh,
4572 				    unsigned long handle_flags)
4573 {
4574 	struct stripe_head *sh, *next;
4575 	int i;
4576 	int do_wakeup = 0;
4577 
4578 	list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4579 
4580 		list_del_init(&sh->batch_list);
4581 
4582 		WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4583 					  (1 << STRIPE_SYNCING) |
4584 					  (1 << STRIPE_REPLACED) |
4585 					  (1 << STRIPE_DELAYED) |
4586 					  (1 << STRIPE_BIT_DELAY) |
4587 					  (1 << STRIPE_FULL_WRITE) |
4588 					  (1 << STRIPE_BIOFILL_RUN) |
4589 					  (1 << STRIPE_COMPUTE_RUN)  |
4590 					  (1 << STRIPE_OPS_REQ_PENDING) |
4591 					  (1 << STRIPE_DISCARD) |
4592 					  (1 << STRIPE_BATCH_READY) |
4593 					  (1 << STRIPE_BATCH_ERR) |
4594 					  (1 << STRIPE_BITMAP_PENDING)),
4595 			"stripe state: %lx\n", sh->state);
4596 		WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4597 					      (1 << STRIPE_REPLACED)),
4598 			"head stripe state: %lx\n", head_sh->state);
4599 
4600 		set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4601 					    (1 << STRIPE_PREREAD_ACTIVE) |
4602 					    (1 << STRIPE_DEGRADED)),
4603 			      head_sh->state & (1 << STRIPE_INSYNC));
4604 
4605 		sh->check_state = head_sh->check_state;
4606 		sh->reconstruct_state = head_sh->reconstruct_state;
4607 		for (i = 0; i < sh->disks; i++) {
4608 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4609 				do_wakeup = 1;
4610 			sh->dev[i].flags = head_sh->dev[i].flags &
4611 				(~((1 << R5_WriteError) | (1 << R5_Overlap)));
4612 		}
4613 		spin_lock_irq(&sh->stripe_lock);
4614 		sh->batch_head = NULL;
4615 		spin_unlock_irq(&sh->stripe_lock);
4616 		if (handle_flags == 0 ||
4617 		    sh->state & handle_flags)
4618 			set_bit(STRIPE_HANDLE, &sh->state);
4619 		raid5_release_stripe(sh);
4620 	}
4621 	spin_lock_irq(&head_sh->stripe_lock);
4622 	head_sh->batch_head = NULL;
4623 	spin_unlock_irq(&head_sh->stripe_lock);
4624 	for (i = 0; i < head_sh->disks; i++)
4625 		if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4626 			do_wakeup = 1;
4627 	if (head_sh->state & handle_flags)
4628 		set_bit(STRIPE_HANDLE, &head_sh->state);
4629 
4630 	if (do_wakeup)
4631 		wake_up(&head_sh->raid_conf->wait_for_overlap);
4632 }
4633 
4634 static void handle_stripe(struct stripe_head *sh)
4635 {
4636 	struct stripe_head_state s;
4637 	struct r5conf *conf = sh->raid_conf;
4638 	int i;
4639 	int prexor;
4640 	int disks = sh->disks;
4641 	struct r5dev *pdev, *qdev;
4642 
4643 	clear_bit(STRIPE_HANDLE, &sh->state);
4644 	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4645 		/* already being handled, ensure it gets handled
4646 		 * again when current action finishes */
4647 		set_bit(STRIPE_HANDLE, &sh->state);
4648 		return;
4649 	}
4650 
4651 	if (clear_batch_ready(sh) ) {
4652 		clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4653 		return;
4654 	}
4655 
4656 	if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4657 		break_stripe_batch_list(sh, 0);
4658 
4659 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4660 		spin_lock(&sh->stripe_lock);
4661 		/*
4662 		 * Cannot process 'sync' concurrently with 'discard'.
4663 		 * Flush data in r5cache before 'sync'.
4664 		 */
4665 		if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4666 		    !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4667 		    !test_bit(STRIPE_DISCARD, &sh->state) &&
4668 		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4669 			set_bit(STRIPE_SYNCING, &sh->state);
4670 			clear_bit(STRIPE_INSYNC, &sh->state);
4671 			clear_bit(STRIPE_REPLACED, &sh->state);
4672 		}
4673 		spin_unlock(&sh->stripe_lock);
4674 	}
4675 	clear_bit(STRIPE_DELAYED, &sh->state);
4676 
4677 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4678 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4679 	       (unsigned long long)sh->sector, sh->state,
4680 	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4681 	       sh->check_state, sh->reconstruct_state);
4682 
4683 	analyse_stripe(sh, &s);
4684 
4685 	if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4686 		goto finish;
4687 
4688 	if (s.handle_bad_blocks ||
4689 	    test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4690 		set_bit(STRIPE_HANDLE, &sh->state);
4691 		goto finish;
4692 	}
4693 
4694 	if (unlikely(s.blocked_rdev)) {
4695 		if (s.syncing || s.expanding || s.expanded ||
4696 		    s.replacing || s.to_write || s.written) {
4697 			set_bit(STRIPE_HANDLE, &sh->state);
4698 			goto finish;
4699 		}
4700 		/* There is nothing for the blocked_rdev to block */
4701 		rdev_dec_pending(s.blocked_rdev, conf->mddev);
4702 		s.blocked_rdev = NULL;
4703 	}
4704 
4705 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4706 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4707 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4708 	}
4709 
4710 	pr_debug("locked=%d uptodate=%d to_read=%d"
4711 	       " to_write=%d failed=%d failed_num=%d,%d\n",
4712 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4713 	       s.failed_num[0], s.failed_num[1]);
4714 	/*
4715 	 * check if the array has lost more than max_degraded devices and,
4716 	 * if so, some requests might need to be failed.
4717 	 *
4718 	 * When journal device failed (log_failed), we will only process
4719 	 * the stripe if there is data need write to raid disks
4720 	 */
4721 	if (s.failed > conf->max_degraded ||
4722 	    (s.log_failed && s.injournal == 0)) {
4723 		sh->check_state = 0;
4724 		sh->reconstruct_state = 0;
4725 		break_stripe_batch_list(sh, 0);
4726 		if (s.to_read+s.to_write+s.written)
4727 			handle_failed_stripe(conf, sh, &s, disks);
4728 		if (s.syncing + s.replacing)
4729 			handle_failed_sync(conf, sh, &s);
4730 	}
4731 
4732 	/* Now we check to see if any write operations have recently
4733 	 * completed
4734 	 */
4735 	prexor = 0;
4736 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4737 		prexor = 1;
4738 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
4739 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4740 		sh->reconstruct_state = reconstruct_state_idle;
4741 
4742 		/* All the 'written' buffers and the parity block are ready to
4743 		 * be written back to disk
4744 		 */
4745 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4746 		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4747 		BUG_ON(sh->qd_idx >= 0 &&
4748 		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4749 		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4750 		for (i = disks; i--; ) {
4751 			struct r5dev *dev = &sh->dev[i];
4752 			if (test_bit(R5_LOCKED, &dev->flags) &&
4753 				(i == sh->pd_idx || i == sh->qd_idx ||
4754 				 dev->written || test_bit(R5_InJournal,
4755 							  &dev->flags))) {
4756 				pr_debug("Writing block %d\n", i);
4757 				set_bit(R5_Wantwrite, &dev->flags);
4758 				if (prexor)
4759 					continue;
4760 				if (s.failed > 1)
4761 					continue;
4762 				if (!test_bit(R5_Insync, &dev->flags) ||
4763 				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
4764 				     s.failed == 0))
4765 					set_bit(STRIPE_INSYNC, &sh->state);
4766 			}
4767 		}
4768 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4769 			s.dec_preread_active = 1;
4770 	}
4771 
4772 	/*
4773 	 * might be able to return some write requests if the parity blocks
4774 	 * are safe, or on a failed drive
4775 	 */
4776 	pdev = &sh->dev[sh->pd_idx];
4777 	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4778 		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4779 	qdev = &sh->dev[sh->qd_idx];
4780 	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4781 		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4782 		|| conf->level < 6;
4783 
4784 	if (s.written &&
4785 	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4786 			     && !test_bit(R5_LOCKED, &pdev->flags)
4787 			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
4788 				 test_bit(R5_Discard, &pdev->flags))))) &&
4789 	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4790 			     && !test_bit(R5_LOCKED, &qdev->flags)
4791 			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
4792 				 test_bit(R5_Discard, &qdev->flags))))))
4793 		handle_stripe_clean_event(conf, sh, disks);
4794 
4795 	if (s.just_cached)
4796 		r5c_handle_cached_data_endio(conf, sh, disks);
4797 	log_stripe_write_finished(sh);
4798 
4799 	/* Now we might consider reading some blocks, either to check/generate
4800 	 * parity, or to satisfy requests
4801 	 * or to load a block that is being partially written.
4802 	 */
4803 	if (s.to_read || s.non_overwrite
4804 	    || (conf->level == 6 && s.to_write && s.failed)
4805 	    || (s.syncing && (s.uptodate + s.compute < disks))
4806 	    || s.replacing
4807 	    || s.expanding)
4808 		handle_stripe_fill(sh, &s, disks);
4809 
4810 	/*
4811 	 * When the stripe finishes full journal write cycle (write to journal
4812 	 * and raid disk), this is the clean up procedure so it is ready for
4813 	 * next operation.
4814 	 */
4815 	r5c_finish_stripe_write_out(conf, sh, &s);
4816 
4817 	/*
4818 	 * Now to consider new write requests, cache write back and what else,
4819 	 * if anything should be read.  We do not handle new writes when:
4820 	 * 1/ A 'write' operation (copy+xor) is already in flight.
4821 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
4822 	 *    block.
4823 	 * 3/ A r5c cache log write is in flight.
4824 	 */
4825 
4826 	if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
4827 		if (!r5c_is_writeback(conf->log)) {
4828 			if (s.to_write)
4829 				handle_stripe_dirtying(conf, sh, &s, disks);
4830 		} else { /* write back cache */
4831 			int ret = 0;
4832 
4833 			/* First, try handle writes in caching phase */
4834 			if (s.to_write)
4835 				ret = r5c_try_caching_write(conf, sh, &s,
4836 							    disks);
4837 			/*
4838 			 * If caching phase failed: ret == -EAGAIN
4839 			 *    OR
4840 			 * stripe under reclaim: !caching && injournal
4841 			 *
4842 			 * fall back to handle_stripe_dirtying()
4843 			 */
4844 			if (ret == -EAGAIN ||
4845 			    /* stripe under reclaim: !caching && injournal */
4846 			    (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
4847 			     s.injournal > 0)) {
4848 				ret = handle_stripe_dirtying(conf, sh, &s,
4849 							     disks);
4850 				if (ret == -EAGAIN)
4851 					goto finish;
4852 			}
4853 		}
4854 	}
4855 
4856 	/* maybe we need to check and possibly fix the parity for this stripe
4857 	 * Any reads will already have been scheduled, so we just see if enough
4858 	 * data is available.  The parity check is held off while parity
4859 	 * dependent operations are in flight.
4860 	 */
4861 	if (sh->check_state ||
4862 	    (s.syncing && s.locked == 0 &&
4863 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4864 	     !test_bit(STRIPE_INSYNC, &sh->state))) {
4865 		if (conf->level == 6)
4866 			handle_parity_checks6(conf, sh, &s, disks);
4867 		else
4868 			handle_parity_checks5(conf, sh, &s, disks);
4869 	}
4870 
4871 	if ((s.replacing || s.syncing) && s.locked == 0
4872 	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4873 	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
4874 		/* Write out to replacement devices where possible */
4875 		for (i = 0; i < conf->raid_disks; i++)
4876 			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4877 				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4878 				set_bit(R5_WantReplace, &sh->dev[i].flags);
4879 				set_bit(R5_LOCKED, &sh->dev[i].flags);
4880 				s.locked++;
4881 			}
4882 		if (s.replacing)
4883 			set_bit(STRIPE_INSYNC, &sh->state);
4884 		set_bit(STRIPE_REPLACED, &sh->state);
4885 	}
4886 	if ((s.syncing || s.replacing) && s.locked == 0 &&
4887 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4888 	    test_bit(STRIPE_INSYNC, &sh->state)) {
4889 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4890 		clear_bit(STRIPE_SYNCING, &sh->state);
4891 		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4892 			wake_up(&conf->wait_for_overlap);
4893 	}
4894 
4895 	/* If the failed drives are just a ReadError, then we might need
4896 	 * to progress the repair/check process
4897 	 */
4898 	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4899 		for (i = 0; i < s.failed; i++) {
4900 			struct r5dev *dev = &sh->dev[s.failed_num[i]];
4901 			if (test_bit(R5_ReadError, &dev->flags)
4902 			    && !test_bit(R5_LOCKED, &dev->flags)
4903 			    && test_bit(R5_UPTODATE, &dev->flags)
4904 				) {
4905 				if (!test_bit(R5_ReWrite, &dev->flags)) {
4906 					set_bit(R5_Wantwrite, &dev->flags);
4907 					set_bit(R5_ReWrite, &dev->flags);
4908 					set_bit(R5_LOCKED, &dev->flags);
4909 					s.locked++;
4910 				} else {
4911 					/* let's read it back */
4912 					set_bit(R5_Wantread, &dev->flags);
4913 					set_bit(R5_LOCKED, &dev->flags);
4914 					s.locked++;
4915 				}
4916 			}
4917 		}
4918 
4919 	/* Finish reconstruct operations initiated by the expansion process */
4920 	if (sh->reconstruct_state == reconstruct_state_result) {
4921 		struct stripe_head *sh_src
4922 			= raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4923 		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4924 			/* sh cannot be written until sh_src has been read.
4925 			 * so arrange for sh to be delayed a little
4926 			 */
4927 			set_bit(STRIPE_DELAYED, &sh->state);
4928 			set_bit(STRIPE_HANDLE, &sh->state);
4929 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4930 					      &sh_src->state))
4931 				atomic_inc(&conf->preread_active_stripes);
4932 			raid5_release_stripe(sh_src);
4933 			goto finish;
4934 		}
4935 		if (sh_src)
4936 			raid5_release_stripe(sh_src);
4937 
4938 		sh->reconstruct_state = reconstruct_state_idle;
4939 		clear_bit(STRIPE_EXPANDING, &sh->state);
4940 		for (i = conf->raid_disks; i--; ) {
4941 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
4942 			set_bit(R5_LOCKED, &sh->dev[i].flags);
4943 			s.locked++;
4944 		}
4945 	}
4946 
4947 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4948 	    !sh->reconstruct_state) {
4949 		/* Need to write out all blocks after computing parity */
4950 		sh->disks = conf->raid_disks;
4951 		stripe_set_idx(sh->sector, conf, 0, sh);
4952 		schedule_reconstruction(sh, &s, 1, 1);
4953 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4954 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
4955 		atomic_dec(&conf->reshape_stripes);
4956 		wake_up(&conf->wait_for_overlap);
4957 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4958 	}
4959 
4960 	if (s.expanding && s.locked == 0 &&
4961 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4962 		handle_stripe_expansion(conf, sh);
4963 
4964 finish:
4965 	/* wait for this device to become unblocked */
4966 	if (unlikely(s.blocked_rdev)) {
4967 		if (conf->mddev->external)
4968 			md_wait_for_blocked_rdev(s.blocked_rdev,
4969 						 conf->mddev);
4970 		else
4971 			/* Internal metadata will immediately
4972 			 * be written by raid5d, so we don't
4973 			 * need to wait here.
4974 			 */
4975 			rdev_dec_pending(s.blocked_rdev,
4976 					 conf->mddev);
4977 	}
4978 
4979 	if (s.handle_bad_blocks)
4980 		for (i = disks; i--; ) {
4981 			struct md_rdev *rdev;
4982 			struct r5dev *dev = &sh->dev[i];
4983 			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4984 				/* We own a safe reference to the rdev */
4985 				rdev = conf->disks[i].rdev;
4986 				if (!rdev_set_badblocks(rdev, sh->sector,
4987 							STRIPE_SECTORS, 0))
4988 					md_error(conf->mddev, rdev);
4989 				rdev_dec_pending(rdev, conf->mddev);
4990 			}
4991 			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4992 				rdev = conf->disks[i].rdev;
4993 				rdev_clear_badblocks(rdev, sh->sector,
4994 						     STRIPE_SECTORS, 0);
4995 				rdev_dec_pending(rdev, conf->mddev);
4996 			}
4997 			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4998 				rdev = conf->disks[i].replacement;
4999 				if (!rdev)
5000 					/* rdev have been moved down */
5001 					rdev = conf->disks[i].rdev;
5002 				rdev_clear_badblocks(rdev, sh->sector,
5003 						     STRIPE_SECTORS, 0);
5004 				rdev_dec_pending(rdev, conf->mddev);
5005 			}
5006 		}
5007 
5008 	if (s.ops_request)
5009 		raid_run_ops(sh, s.ops_request);
5010 
5011 	ops_run_io(sh, &s);
5012 
5013 	if (s.dec_preread_active) {
5014 		/* We delay this until after ops_run_io so that if make_request
5015 		 * is waiting on a flush, it won't continue until the writes
5016 		 * have actually been submitted.
5017 		 */
5018 		atomic_dec(&conf->preread_active_stripes);
5019 		if (atomic_read(&conf->preread_active_stripes) <
5020 		    IO_THRESHOLD)
5021 			md_wakeup_thread(conf->mddev->thread);
5022 	}
5023 
5024 	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5025 }
5026 
5027 static void raid5_activate_delayed(struct r5conf *conf)
5028 {
5029 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5030 		while (!list_empty(&conf->delayed_list)) {
5031 			struct list_head *l = conf->delayed_list.next;
5032 			struct stripe_head *sh;
5033 			sh = list_entry(l, struct stripe_head, lru);
5034 			list_del_init(l);
5035 			clear_bit(STRIPE_DELAYED, &sh->state);
5036 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5037 				atomic_inc(&conf->preread_active_stripes);
5038 			list_add_tail(&sh->lru, &conf->hold_list);
5039 			raid5_wakeup_stripe_thread(sh);
5040 		}
5041 	}
5042 }
5043 
5044 static void activate_bit_delay(struct r5conf *conf,
5045 	struct list_head *temp_inactive_list)
5046 {
5047 	/* device_lock is held */
5048 	struct list_head head;
5049 	list_add(&head, &conf->bitmap_list);
5050 	list_del_init(&conf->bitmap_list);
5051 	while (!list_empty(&head)) {
5052 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5053 		int hash;
5054 		list_del_init(&sh->lru);
5055 		atomic_inc(&sh->count);
5056 		hash = sh->hash_lock_index;
5057 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
5058 	}
5059 }
5060 
5061 static int raid5_congested(struct mddev *mddev, int bits)
5062 {
5063 	struct r5conf *conf = mddev->private;
5064 
5065 	/* No difference between reads and writes.  Just check
5066 	 * how busy the stripe_cache is
5067 	 */
5068 
5069 	if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
5070 		return 1;
5071 
5072 	/* Also checks whether there is pressure on r5cache log space */
5073 	if (test_bit(R5C_LOG_TIGHT, &conf->cache_state))
5074 		return 1;
5075 	if (conf->quiesce)
5076 		return 1;
5077 	if (atomic_read(&conf->empty_inactive_list_nr))
5078 		return 1;
5079 
5080 	return 0;
5081 }
5082 
5083 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5084 {
5085 	struct r5conf *conf = mddev->private;
5086 	sector_t sector = bio->bi_iter.bi_sector;
5087 	unsigned int chunk_sectors;
5088 	unsigned int bio_sectors = bio_sectors(bio);
5089 
5090 	WARN_ON_ONCE(bio->bi_partno);
5091 
5092 	chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5093 	return  chunk_sectors >=
5094 		((sector & (chunk_sectors - 1)) + bio_sectors);
5095 }
5096 
5097 /*
5098  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
5099  *  later sampled by raid5d.
5100  */
5101 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5102 {
5103 	unsigned long flags;
5104 
5105 	spin_lock_irqsave(&conf->device_lock, flags);
5106 
5107 	bi->bi_next = conf->retry_read_aligned_list;
5108 	conf->retry_read_aligned_list = bi;
5109 
5110 	spin_unlock_irqrestore(&conf->device_lock, flags);
5111 	md_wakeup_thread(conf->mddev->thread);
5112 }
5113 
5114 static struct bio *remove_bio_from_retry(struct r5conf *conf,
5115 					 unsigned int *offset)
5116 {
5117 	struct bio *bi;
5118 
5119 	bi = conf->retry_read_aligned;
5120 	if (bi) {
5121 		*offset = conf->retry_read_offset;
5122 		conf->retry_read_aligned = NULL;
5123 		return bi;
5124 	}
5125 	bi = conf->retry_read_aligned_list;
5126 	if(bi) {
5127 		conf->retry_read_aligned_list = bi->bi_next;
5128 		bi->bi_next = NULL;
5129 		*offset = 0;
5130 	}
5131 
5132 	return bi;
5133 }
5134 
5135 /*
5136  *  The "raid5_align_endio" should check if the read succeeded and if it
5137  *  did, call bio_endio on the original bio (having bio_put the new bio
5138  *  first).
5139  *  If the read failed..
5140  */
5141 static void raid5_align_endio(struct bio *bi)
5142 {
5143 	struct bio* raid_bi  = bi->bi_private;
5144 	struct mddev *mddev;
5145 	struct r5conf *conf;
5146 	struct md_rdev *rdev;
5147 	blk_status_t error = bi->bi_status;
5148 
5149 	bio_put(bi);
5150 
5151 	rdev = (void*)raid_bi->bi_next;
5152 	raid_bi->bi_next = NULL;
5153 	mddev = rdev->mddev;
5154 	conf = mddev->private;
5155 
5156 	rdev_dec_pending(rdev, conf->mddev);
5157 
5158 	if (!error) {
5159 		bio_endio(raid_bi);
5160 		if (atomic_dec_and_test(&conf->active_aligned_reads))
5161 			wake_up(&conf->wait_for_quiescent);
5162 		return;
5163 	}
5164 
5165 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5166 
5167 	add_bio_to_retry(raid_bi, conf);
5168 }
5169 
5170 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5171 {
5172 	struct r5conf *conf = mddev->private;
5173 	int dd_idx;
5174 	struct bio* align_bi;
5175 	struct md_rdev *rdev;
5176 	sector_t end_sector;
5177 
5178 	if (!in_chunk_boundary(mddev, raid_bio)) {
5179 		pr_debug("%s: non aligned\n", __func__);
5180 		return 0;
5181 	}
5182 	/*
5183 	 * use bio_clone_fast to make a copy of the bio
5184 	 */
5185 	align_bi = bio_clone_fast(raid_bio, GFP_NOIO, mddev->bio_set);
5186 	if (!align_bi)
5187 		return 0;
5188 	/*
5189 	 *   set bi_end_io to a new function, and set bi_private to the
5190 	 *     original bio.
5191 	 */
5192 	align_bi->bi_end_io  = raid5_align_endio;
5193 	align_bi->bi_private = raid_bio;
5194 	/*
5195 	 *	compute position
5196 	 */
5197 	align_bi->bi_iter.bi_sector =
5198 		raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
5199 				     0, &dd_idx, NULL);
5200 
5201 	end_sector = bio_end_sector(align_bi);
5202 	rcu_read_lock();
5203 	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5204 	if (!rdev || test_bit(Faulty, &rdev->flags) ||
5205 	    rdev->recovery_offset < end_sector) {
5206 		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5207 		if (rdev &&
5208 		    (test_bit(Faulty, &rdev->flags) ||
5209 		    !(test_bit(In_sync, &rdev->flags) ||
5210 		      rdev->recovery_offset >= end_sector)))
5211 			rdev = NULL;
5212 	}
5213 
5214 	if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) {
5215 		rcu_read_unlock();
5216 		bio_put(align_bi);
5217 		return 0;
5218 	}
5219 
5220 	if (rdev) {
5221 		sector_t first_bad;
5222 		int bad_sectors;
5223 
5224 		atomic_inc(&rdev->nr_pending);
5225 		rcu_read_unlock();
5226 		raid_bio->bi_next = (void*)rdev;
5227 		bio_set_dev(align_bi, rdev->bdev);
5228 		bio_clear_flag(align_bi, BIO_SEG_VALID);
5229 
5230 		if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
5231 				bio_sectors(align_bi),
5232 				&first_bad, &bad_sectors)) {
5233 			bio_put(align_bi);
5234 			rdev_dec_pending(rdev, mddev);
5235 			return 0;
5236 		}
5237 
5238 		/* No reshape active, so we can trust rdev->data_offset */
5239 		align_bi->bi_iter.bi_sector += rdev->data_offset;
5240 
5241 		spin_lock_irq(&conf->device_lock);
5242 		wait_event_lock_irq(conf->wait_for_quiescent,
5243 				    conf->quiesce == 0,
5244 				    conf->device_lock);
5245 		atomic_inc(&conf->active_aligned_reads);
5246 		spin_unlock_irq(&conf->device_lock);
5247 
5248 		if (mddev->gendisk)
5249 			trace_block_bio_remap(align_bi->bi_disk->queue,
5250 					      align_bi, disk_devt(mddev->gendisk),
5251 					      raid_bio->bi_iter.bi_sector);
5252 		generic_make_request(align_bi);
5253 		return 1;
5254 	} else {
5255 		rcu_read_unlock();
5256 		bio_put(align_bi);
5257 		return 0;
5258 	}
5259 }
5260 
5261 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5262 {
5263 	struct bio *split;
5264 	sector_t sector = raid_bio->bi_iter.bi_sector;
5265 	unsigned chunk_sects = mddev->chunk_sectors;
5266 	unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5267 
5268 	if (sectors < bio_sectors(raid_bio)) {
5269 		struct r5conf *conf = mddev->private;
5270 		split = bio_split(raid_bio, sectors, GFP_NOIO, conf->bio_split);
5271 		bio_chain(split, raid_bio);
5272 		generic_make_request(raid_bio);
5273 		raid_bio = split;
5274 	}
5275 
5276 	if (!raid5_read_one_chunk(mddev, raid_bio))
5277 		return raid_bio;
5278 
5279 	return NULL;
5280 }
5281 
5282 /* __get_priority_stripe - get the next stripe to process
5283  *
5284  * Full stripe writes are allowed to pass preread active stripes up until
5285  * the bypass_threshold is exceeded.  In general the bypass_count
5286  * increments when the handle_list is handled before the hold_list; however, it
5287  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5288  * stripe with in flight i/o.  The bypass_count will be reset when the
5289  * head of the hold_list has changed, i.e. the head was promoted to the
5290  * handle_list.
5291  */
5292 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5293 {
5294 	struct stripe_head *sh, *tmp;
5295 	struct list_head *handle_list = NULL;
5296 	struct r5worker_group *wg;
5297 	bool second_try = !r5c_is_writeback(conf->log) &&
5298 		!r5l_log_disk_error(conf);
5299 	bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5300 		r5l_log_disk_error(conf);
5301 
5302 again:
5303 	wg = NULL;
5304 	sh = NULL;
5305 	if (conf->worker_cnt_per_group == 0) {
5306 		handle_list = try_loprio ? &conf->loprio_list :
5307 					&conf->handle_list;
5308 	} else if (group != ANY_GROUP) {
5309 		handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5310 				&conf->worker_groups[group].handle_list;
5311 		wg = &conf->worker_groups[group];
5312 	} else {
5313 		int i;
5314 		for (i = 0; i < conf->group_cnt; i++) {
5315 			handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5316 				&conf->worker_groups[i].handle_list;
5317 			wg = &conf->worker_groups[i];
5318 			if (!list_empty(handle_list))
5319 				break;
5320 		}
5321 	}
5322 
5323 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5324 		  __func__,
5325 		  list_empty(handle_list) ? "empty" : "busy",
5326 		  list_empty(&conf->hold_list) ? "empty" : "busy",
5327 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
5328 
5329 	if (!list_empty(handle_list)) {
5330 		sh = list_entry(handle_list->next, typeof(*sh), lru);
5331 
5332 		if (list_empty(&conf->hold_list))
5333 			conf->bypass_count = 0;
5334 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5335 			if (conf->hold_list.next == conf->last_hold)
5336 				conf->bypass_count++;
5337 			else {
5338 				conf->last_hold = conf->hold_list.next;
5339 				conf->bypass_count -= conf->bypass_threshold;
5340 				if (conf->bypass_count < 0)
5341 					conf->bypass_count = 0;
5342 			}
5343 		}
5344 	} else if (!list_empty(&conf->hold_list) &&
5345 		   ((conf->bypass_threshold &&
5346 		     conf->bypass_count > conf->bypass_threshold) ||
5347 		    atomic_read(&conf->pending_full_writes) == 0)) {
5348 
5349 		list_for_each_entry(tmp, &conf->hold_list,  lru) {
5350 			if (conf->worker_cnt_per_group == 0 ||
5351 			    group == ANY_GROUP ||
5352 			    !cpu_online(tmp->cpu) ||
5353 			    cpu_to_group(tmp->cpu) == group) {
5354 				sh = tmp;
5355 				break;
5356 			}
5357 		}
5358 
5359 		if (sh) {
5360 			conf->bypass_count -= conf->bypass_threshold;
5361 			if (conf->bypass_count < 0)
5362 				conf->bypass_count = 0;
5363 		}
5364 		wg = NULL;
5365 	}
5366 
5367 	if (!sh) {
5368 		if (second_try)
5369 			return NULL;
5370 		second_try = true;
5371 		try_loprio = !try_loprio;
5372 		goto again;
5373 	}
5374 
5375 	if (wg) {
5376 		wg->stripes_cnt--;
5377 		sh->group = NULL;
5378 	}
5379 	list_del_init(&sh->lru);
5380 	BUG_ON(atomic_inc_return(&sh->count) != 1);
5381 	return sh;
5382 }
5383 
5384 struct raid5_plug_cb {
5385 	struct blk_plug_cb	cb;
5386 	struct list_head	list;
5387 	struct list_head	temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5388 };
5389 
5390 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5391 {
5392 	struct raid5_plug_cb *cb = container_of(
5393 		blk_cb, struct raid5_plug_cb, cb);
5394 	struct stripe_head *sh;
5395 	struct mddev *mddev = cb->cb.data;
5396 	struct r5conf *conf = mddev->private;
5397 	int cnt = 0;
5398 	int hash;
5399 
5400 	if (cb->list.next && !list_empty(&cb->list)) {
5401 		spin_lock_irq(&conf->device_lock);
5402 		while (!list_empty(&cb->list)) {
5403 			sh = list_first_entry(&cb->list, struct stripe_head, lru);
5404 			list_del_init(&sh->lru);
5405 			/*
5406 			 * avoid race release_stripe_plug() sees
5407 			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5408 			 * is still in our list
5409 			 */
5410 			smp_mb__before_atomic();
5411 			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5412 			/*
5413 			 * STRIPE_ON_RELEASE_LIST could be set here. In that
5414 			 * case, the count is always > 1 here
5415 			 */
5416 			hash = sh->hash_lock_index;
5417 			__release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5418 			cnt++;
5419 		}
5420 		spin_unlock_irq(&conf->device_lock);
5421 	}
5422 	release_inactive_stripe_list(conf, cb->temp_inactive_list,
5423 				     NR_STRIPE_HASH_LOCKS);
5424 	if (mddev->queue)
5425 		trace_block_unplug(mddev->queue, cnt, !from_schedule);
5426 	kfree(cb);
5427 }
5428 
5429 static void release_stripe_plug(struct mddev *mddev,
5430 				struct stripe_head *sh)
5431 {
5432 	struct blk_plug_cb *blk_cb = blk_check_plugged(
5433 		raid5_unplug, mddev,
5434 		sizeof(struct raid5_plug_cb));
5435 	struct raid5_plug_cb *cb;
5436 
5437 	if (!blk_cb) {
5438 		raid5_release_stripe(sh);
5439 		return;
5440 	}
5441 
5442 	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5443 
5444 	if (cb->list.next == NULL) {
5445 		int i;
5446 		INIT_LIST_HEAD(&cb->list);
5447 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5448 			INIT_LIST_HEAD(cb->temp_inactive_list + i);
5449 	}
5450 
5451 	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5452 		list_add_tail(&sh->lru, &cb->list);
5453 	else
5454 		raid5_release_stripe(sh);
5455 }
5456 
5457 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5458 {
5459 	struct r5conf *conf = mddev->private;
5460 	sector_t logical_sector, last_sector;
5461 	struct stripe_head *sh;
5462 	int stripe_sectors;
5463 
5464 	if (mddev->reshape_position != MaxSector)
5465 		/* Skip discard while reshape is happening */
5466 		return;
5467 
5468 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5469 	last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5470 
5471 	bi->bi_next = NULL;
5472 
5473 	stripe_sectors = conf->chunk_sectors *
5474 		(conf->raid_disks - conf->max_degraded);
5475 	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5476 					       stripe_sectors);
5477 	sector_div(last_sector, stripe_sectors);
5478 
5479 	logical_sector *= conf->chunk_sectors;
5480 	last_sector *= conf->chunk_sectors;
5481 
5482 	for (; logical_sector < last_sector;
5483 	     logical_sector += STRIPE_SECTORS) {
5484 		DEFINE_WAIT(w);
5485 		int d;
5486 	again:
5487 		sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5488 		prepare_to_wait(&conf->wait_for_overlap, &w,
5489 				TASK_UNINTERRUPTIBLE);
5490 		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5491 		if (test_bit(STRIPE_SYNCING, &sh->state)) {
5492 			raid5_release_stripe(sh);
5493 			schedule();
5494 			goto again;
5495 		}
5496 		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5497 		spin_lock_irq(&sh->stripe_lock);
5498 		for (d = 0; d < conf->raid_disks; d++) {
5499 			if (d == sh->pd_idx || d == sh->qd_idx)
5500 				continue;
5501 			if (sh->dev[d].towrite || sh->dev[d].toread) {
5502 				set_bit(R5_Overlap, &sh->dev[d].flags);
5503 				spin_unlock_irq(&sh->stripe_lock);
5504 				raid5_release_stripe(sh);
5505 				schedule();
5506 				goto again;
5507 			}
5508 		}
5509 		set_bit(STRIPE_DISCARD, &sh->state);
5510 		finish_wait(&conf->wait_for_overlap, &w);
5511 		sh->overwrite_disks = 0;
5512 		for (d = 0; d < conf->raid_disks; d++) {
5513 			if (d == sh->pd_idx || d == sh->qd_idx)
5514 				continue;
5515 			sh->dev[d].towrite = bi;
5516 			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5517 			bio_inc_remaining(bi);
5518 			md_write_inc(mddev, bi);
5519 			sh->overwrite_disks++;
5520 		}
5521 		spin_unlock_irq(&sh->stripe_lock);
5522 		if (conf->mddev->bitmap) {
5523 			for (d = 0;
5524 			     d < conf->raid_disks - conf->max_degraded;
5525 			     d++)
5526 				bitmap_startwrite(mddev->bitmap,
5527 						  sh->sector,
5528 						  STRIPE_SECTORS,
5529 						  0);
5530 			sh->bm_seq = conf->seq_flush + 1;
5531 			set_bit(STRIPE_BIT_DELAY, &sh->state);
5532 		}
5533 
5534 		set_bit(STRIPE_HANDLE, &sh->state);
5535 		clear_bit(STRIPE_DELAYED, &sh->state);
5536 		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5537 			atomic_inc(&conf->preread_active_stripes);
5538 		release_stripe_plug(mddev, sh);
5539 	}
5540 
5541 	bio_endio(bi);
5542 }
5543 
5544 static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
5545 {
5546 	struct r5conf *conf = mddev->private;
5547 	int dd_idx;
5548 	sector_t new_sector;
5549 	sector_t logical_sector, last_sector;
5550 	struct stripe_head *sh;
5551 	const int rw = bio_data_dir(bi);
5552 	DEFINE_WAIT(w);
5553 	bool do_prepare;
5554 	bool do_flush = false;
5555 
5556 	if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5557 		int ret = r5l_handle_flush_request(conf->log, bi);
5558 
5559 		if (ret == 0)
5560 			return true;
5561 		if (ret == -ENODEV) {
5562 			md_flush_request(mddev, bi);
5563 			return true;
5564 		}
5565 		/* ret == -EAGAIN, fallback */
5566 		/*
5567 		 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5568 		 * we need to flush journal device
5569 		 */
5570 		do_flush = bi->bi_opf & REQ_PREFLUSH;
5571 	}
5572 
5573 	if (!md_write_start(mddev, bi))
5574 		return false;
5575 	/*
5576 	 * If array is degraded, better not do chunk aligned read because
5577 	 * later we might have to read it again in order to reconstruct
5578 	 * data on failed drives.
5579 	 */
5580 	if (rw == READ && mddev->degraded == 0 &&
5581 	    mddev->reshape_position == MaxSector) {
5582 		bi = chunk_aligned_read(mddev, bi);
5583 		if (!bi)
5584 			return true;
5585 	}
5586 
5587 	if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5588 		make_discard_request(mddev, bi);
5589 		md_write_end(mddev);
5590 		return true;
5591 	}
5592 
5593 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5594 	last_sector = bio_end_sector(bi);
5595 	bi->bi_next = NULL;
5596 
5597 	prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5598 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5599 		int previous;
5600 		int seq;
5601 
5602 		do_prepare = false;
5603 	retry:
5604 		seq = read_seqcount_begin(&conf->gen_lock);
5605 		previous = 0;
5606 		if (do_prepare)
5607 			prepare_to_wait(&conf->wait_for_overlap, &w,
5608 				TASK_UNINTERRUPTIBLE);
5609 		if (unlikely(conf->reshape_progress != MaxSector)) {
5610 			/* spinlock is needed as reshape_progress may be
5611 			 * 64bit on a 32bit platform, and so it might be
5612 			 * possible to see a half-updated value
5613 			 * Of course reshape_progress could change after
5614 			 * the lock is dropped, so once we get a reference
5615 			 * to the stripe that we think it is, we will have
5616 			 * to check again.
5617 			 */
5618 			spin_lock_irq(&conf->device_lock);
5619 			if (mddev->reshape_backwards
5620 			    ? logical_sector < conf->reshape_progress
5621 			    : logical_sector >= conf->reshape_progress) {
5622 				previous = 1;
5623 			} else {
5624 				if (mddev->reshape_backwards
5625 				    ? logical_sector < conf->reshape_safe
5626 				    : logical_sector >= conf->reshape_safe) {
5627 					spin_unlock_irq(&conf->device_lock);
5628 					schedule();
5629 					do_prepare = true;
5630 					goto retry;
5631 				}
5632 			}
5633 			spin_unlock_irq(&conf->device_lock);
5634 		}
5635 
5636 		new_sector = raid5_compute_sector(conf, logical_sector,
5637 						  previous,
5638 						  &dd_idx, NULL);
5639 		pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5640 			(unsigned long long)new_sector,
5641 			(unsigned long long)logical_sector);
5642 
5643 		sh = raid5_get_active_stripe(conf, new_sector, previous,
5644 				       (bi->bi_opf & REQ_RAHEAD), 0);
5645 		if (sh) {
5646 			if (unlikely(previous)) {
5647 				/* expansion might have moved on while waiting for a
5648 				 * stripe, so we must do the range check again.
5649 				 * Expansion could still move past after this
5650 				 * test, but as we are holding a reference to
5651 				 * 'sh', we know that if that happens,
5652 				 *  STRIPE_EXPANDING will get set and the expansion
5653 				 * won't proceed until we finish with the stripe.
5654 				 */
5655 				int must_retry = 0;
5656 				spin_lock_irq(&conf->device_lock);
5657 				if (mddev->reshape_backwards
5658 				    ? logical_sector >= conf->reshape_progress
5659 				    : logical_sector < conf->reshape_progress)
5660 					/* mismatch, need to try again */
5661 					must_retry = 1;
5662 				spin_unlock_irq(&conf->device_lock);
5663 				if (must_retry) {
5664 					raid5_release_stripe(sh);
5665 					schedule();
5666 					do_prepare = true;
5667 					goto retry;
5668 				}
5669 			}
5670 			if (read_seqcount_retry(&conf->gen_lock, seq)) {
5671 				/* Might have got the wrong stripe_head
5672 				 * by accident
5673 				 */
5674 				raid5_release_stripe(sh);
5675 				goto retry;
5676 			}
5677 
5678 			if (rw == WRITE &&
5679 			    logical_sector >= mddev->suspend_lo &&
5680 			    logical_sector < mddev->suspend_hi) {
5681 				raid5_release_stripe(sh);
5682 				/* As the suspend_* range is controlled by
5683 				 * userspace, we want an interruptible
5684 				 * wait.
5685 				 */
5686 				prepare_to_wait(&conf->wait_for_overlap,
5687 						&w, TASK_INTERRUPTIBLE);
5688 				if (logical_sector >= mddev->suspend_lo &&
5689 				    logical_sector < mddev->suspend_hi) {
5690 					sigset_t full, old;
5691 					sigfillset(&full);
5692 					sigprocmask(SIG_BLOCK, &full, &old);
5693 					schedule();
5694 					sigprocmask(SIG_SETMASK, &old, NULL);
5695 					do_prepare = true;
5696 				}
5697 				goto retry;
5698 			}
5699 
5700 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5701 			    !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5702 				/* Stripe is busy expanding or
5703 				 * add failed due to overlap.  Flush everything
5704 				 * and wait a while
5705 				 */
5706 				md_wakeup_thread(mddev->thread);
5707 				raid5_release_stripe(sh);
5708 				schedule();
5709 				do_prepare = true;
5710 				goto retry;
5711 			}
5712 			if (do_flush) {
5713 				set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5714 				/* we only need flush for one stripe */
5715 				do_flush = false;
5716 			}
5717 
5718 			set_bit(STRIPE_HANDLE, &sh->state);
5719 			clear_bit(STRIPE_DELAYED, &sh->state);
5720 			if ((!sh->batch_head || sh == sh->batch_head) &&
5721 			    (bi->bi_opf & REQ_SYNC) &&
5722 			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5723 				atomic_inc(&conf->preread_active_stripes);
5724 			release_stripe_plug(mddev, sh);
5725 		} else {
5726 			/* cannot get stripe for read-ahead, just give-up */
5727 			bi->bi_status = BLK_STS_IOERR;
5728 			break;
5729 		}
5730 	}
5731 	finish_wait(&conf->wait_for_overlap, &w);
5732 
5733 	if (rw == WRITE)
5734 		md_write_end(mddev);
5735 	bio_endio(bi);
5736 	return true;
5737 }
5738 
5739 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5740 
5741 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5742 {
5743 	/* reshaping is quite different to recovery/resync so it is
5744 	 * handled quite separately ... here.
5745 	 *
5746 	 * On each call to sync_request, we gather one chunk worth of
5747 	 * destination stripes and flag them as expanding.
5748 	 * Then we find all the source stripes and request reads.
5749 	 * As the reads complete, handle_stripe will copy the data
5750 	 * into the destination stripe and release that stripe.
5751 	 */
5752 	struct r5conf *conf = mddev->private;
5753 	struct stripe_head *sh;
5754 	sector_t first_sector, last_sector;
5755 	int raid_disks = conf->previous_raid_disks;
5756 	int data_disks = raid_disks - conf->max_degraded;
5757 	int new_data_disks = conf->raid_disks - conf->max_degraded;
5758 	int i;
5759 	int dd_idx;
5760 	sector_t writepos, readpos, safepos;
5761 	sector_t stripe_addr;
5762 	int reshape_sectors;
5763 	struct list_head stripes;
5764 	sector_t retn;
5765 
5766 	if (sector_nr == 0) {
5767 		/* If restarting in the middle, skip the initial sectors */
5768 		if (mddev->reshape_backwards &&
5769 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5770 			sector_nr = raid5_size(mddev, 0, 0)
5771 				- conf->reshape_progress;
5772 		} else if (mddev->reshape_backwards &&
5773 			   conf->reshape_progress == MaxSector) {
5774 			/* shouldn't happen, but just in case, finish up.*/
5775 			sector_nr = MaxSector;
5776 		} else if (!mddev->reshape_backwards &&
5777 			   conf->reshape_progress > 0)
5778 			sector_nr = conf->reshape_progress;
5779 		sector_div(sector_nr, new_data_disks);
5780 		if (sector_nr) {
5781 			mddev->curr_resync_completed = sector_nr;
5782 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5783 			*skipped = 1;
5784 			retn = sector_nr;
5785 			goto finish;
5786 		}
5787 	}
5788 
5789 	/* We need to process a full chunk at a time.
5790 	 * If old and new chunk sizes differ, we need to process the
5791 	 * largest of these
5792 	 */
5793 
5794 	reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5795 
5796 	/* We update the metadata at least every 10 seconds, or when
5797 	 * the data about to be copied would over-write the source of
5798 	 * the data at the front of the range.  i.e. one new_stripe
5799 	 * along from reshape_progress new_maps to after where
5800 	 * reshape_safe old_maps to
5801 	 */
5802 	writepos = conf->reshape_progress;
5803 	sector_div(writepos, new_data_disks);
5804 	readpos = conf->reshape_progress;
5805 	sector_div(readpos, data_disks);
5806 	safepos = conf->reshape_safe;
5807 	sector_div(safepos, data_disks);
5808 	if (mddev->reshape_backwards) {
5809 		BUG_ON(writepos < reshape_sectors);
5810 		writepos -= reshape_sectors;
5811 		readpos += reshape_sectors;
5812 		safepos += reshape_sectors;
5813 	} else {
5814 		writepos += reshape_sectors;
5815 		/* readpos and safepos are worst-case calculations.
5816 		 * A negative number is overly pessimistic, and causes
5817 		 * obvious problems for unsigned storage.  So clip to 0.
5818 		 */
5819 		readpos -= min_t(sector_t, reshape_sectors, readpos);
5820 		safepos -= min_t(sector_t, reshape_sectors, safepos);
5821 	}
5822 
5823 	/* Having calculated the 'writepos' possibly use it
5824 	 * to set 'stripe_addr' which is where we will write to.
5825 	 */
5826 	if (mddev->reshape_backwards) {
5827 		BUG_ON(conf->reshape_progress == 0);
5828 		stripe_addr = writepos;
5829 		BUG_ON((mddev->dev_sectors &
5830 			~((sector_t)reshape_sectors - 1))
5831 		       - reshape_sectors - stripe_addr
5832 		       != sector_nr);
5833 	} else {
5834 		BUG_ON(writepos != sector_nr + reshape_sectors);
5835 		stripe_addr = sector_nr;
5836 	}
5837 
5838 	/* 'writepos' is the most advanced device address we might write.
5839 	 * 'readpos' is the least advanced device address we might read.
5840 	 * 'safepos' is the least address recorded in the metadata as having
5841 	 *     been reshaped.
5842 	 * If there is a min_offset_diff, these are adjusted either by
5843 	 * increasing the safepos/readpos if diff is negative, or
5844 	 * increasing writepos if diff is positive.
5845 	 * If 'readpos' is then behind 'writepos', there is no way that we can
5846 	 * ensure safety in the face of a crash - that must be done by userspace
5847 	 * making a backup of the data.  So in that case there is no particular
5848 	 * rush to update metadata.
5849 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5850 	 * update the metadata to advance 'safepos' to match 'readpos' so that
5851 	 * we can be safe in the event of a crash.
5852 	 * So we insist on updating metadata if safepos is behind writepos and
5853 	 * readpos is beyond writepos.
5854 	 * In any case, update the metadata every 10 seconds.
5855 	 * Maybe that number should be configurable, but I'm not sure it is
5856 	 * worth it.... maybe it could be a multiple of safemode_delay???
5857 	 */
5858 	if (conf->min_offset_diff < 0) {
5859 		safepos += -conf->min_offset_diff;
5860 		readpos += -conf->min_offset_diff;
5861 	} else
5862 		writepos += conf->min_offset_diff;
5863 
5864 	if ((mddev->reshape_backwards
5865 	     ? (safepos > writepos && readpos < writepos)
5866 	     : (safepos < writepos && readpos > writepos)) ||
5867 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5868 		/* Cannot proceed until we've updated the superblock... */
5869 		wait_event(conf->wait_for_overlap,
5870 			   atomic_read(&conf->reshape_stripes)==0
5871 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5872 		if (atomic_read(&conf->reshape_stripes) != 0)
5873 			return 0;
5874 		mddev->reshape_position = conf->reshape_progress;
5875 		mddev->curr_resync_completed = sector_nr;
5876 		conf->reshape_checkpoint = jiffies;
5877 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5878 		md_wakeup_thread(mddev->thread);
5879 		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
5880 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5881 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5882 			return 0;
5883 		spin_lock_irq(&conf->device_lock);
5884 		conf->reshape_safe = mddev->reshape_position;
5885 		spin_unlock_irq(&conf->device_lock);
5886 		wake_up(&conf->wait_for_overlap);
5887 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5888 	}
5889 
5890 	INIT_LIST_HEAD(&stripes);
5891 	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5892 		int j;
5893 		int skipped_disk = 0;
5894 		sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5895 		set_bit(STRIPE_EXPANDING, &sh->state);
5896 		atomic_inc(&conf->reshape_stripes);
5897 		/* If any of this stripe is beyond the end of the old
5898 		 * array, then we need to zero those blocks
5899 		 */
5900 		for (j=sh->disks; j--;) {
5901 			sector_t s;
5902 			if (j == sh->pd_idx)
5903 				continue;
5904 			if (conf->level == 6 &&
5905 			    j == sh->qd_idx)
5906 				continue;
5907 			s = raid5_compute_blocknr(sh, j, 0);
5908 			if (s < raid5_size(mddev, 0, 0)) {
5909 				skipped_disk = 1;
5910 				continue;
5911 			}
5912 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5913 			set_bit(R5_Expanded, &sh->dev[j].flags);
5914 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
5915 		}
5916 		if (!skipped_disk) {
5917 			set_bit(STRIPE_EXPAND_READY, &sh->state);
5918 			set_bit(STRIPE_HANDLE, &sh->state);
5919 		}
5920 		list_add(&sh->lru, &stripes);
5921 	}
5922 	spin_lock_irq(&conf->device_lock);
5923 	if (mddev->reshape_backwards)
5924 		conf->reshape_progress -= reshape_sectors * new_data_disks;
5925 	else
5926 		conf->reshape_progress += reshape_sectors * new_data_disks;
5927 	spin_unlock_irq(&conf->device_lock);
5928 	/* Ok, those stripe are ready. We can start scheduling
5929 	 * reads on the source stripes.
5930 	 * The source stripes are determined by mapping the first and last
5931 	 * block on the destination stripes.
5932 	 */
5933 	first_sector =
5934 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5935 				     1, &dd_idx, NULL);
5936 	last_sector =
5937 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5938 					    * new_data_disks - 1),
5939 				     1, &dd_idx, NULL);
5940 	if (last_sector >= mddev->dev_sectors)
5941 		last_sector = mddev->dev_sectors - 1;
5942 	while (first_sector <= last_sector) {
5943 		sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5944 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5945 		set_bit(STRIPE_HANDLE, &sh->state);
5946 		raid5_release_stripe(sh);
5947 		first_sector += STRIPE_SECTORS;
5948 	}
5949 	/* Now that the sources are clearly marked, we can release
5950 	 * the destination stripes
5951 	 */
5952 	while (!list_empty(&stripes)) {
5953 		sh = list_entry(stripes.next, struct stripe_head, lru);
5954 		list_del_init(&sh->lru);
5955 		raid5_release_stripe(sh);
5956 	}
5957 	/* If this takes us to the resync_max point where we have to pause,
5958 	 * then we need to write out the superblock.
5959 	 */
5960 	sector_nr += reshape_sectors;
5961 	retn = reshape_sectors;
5962 finish:
5963 	if (mddev->curr_resync_completed > mddev->resync_max ||
5964 	    (sector_nr - mddev->curr_resync_completed) * 2
5965 	    >= mddev->resync_max - mddev->curr_resync_completed) {
5966 		/* Cannot proceed until we've updated the superblock... */
5967 		wait_event(conf->wait_for_overlap,
5968 			   atomic_read(&conf->reshape_stripes) == 0
5969 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5970 		if (atomic_read(&conf->reshape_stripes) != 0)
5971 			goto ret;
5972 		mddev->reshape_position = conf->reshape_progress;
5973 		mddev->curr_resync_completed = sector_nr;
5974 		conf->reshape_checkpoint = jiffies;
5975 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5976 		md_wakeup_thread(mddev->thread);
5977 		wait_event(mddev->sb_wait,
5978 			   !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
5979 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5980 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5981 			goto ret;
5982 		spin_lock_irq(&conf->device_lock);
5983 		conf->reshape_safe = mddev->reshape_position;
5984 		spin_unlock_irq(&conf->device_lock);
5985 		wake_up(&conf->wait_for_overlap);
5986 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5987 	}
5988 ret:
5989 	return retn;
5990 }
5991 
5992 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
5993 					  int *skipped)
5994 {
5995 	struct r5conf *conf = mddev->private;
5996 	struct stripe_head *sh;
5997 	sector_t max_sector = mddev->dev_sectors;
5998 	sector_t sync_blocks;
5999 	int still_degraded = 0;
6000 	int i;
6001 
6002 	if (sector_nr >= max_sector) {
6003 		/* just being told to finish up .. nothing much to do */
6004 
6005 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6006 			end_reshape(conf);
6007 			return 0;
6008 		}
6009 
6010 		if (mddev->curr_resync < max_sector) /* aborted */
6011 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6012 					&sync_blocks, 1);
6013 		else /* completed sync */
6014 			conf->fullsync = 0;
6015 		bitmap_close_sync(mddev->bitmap);
6016 
6017 		return 0;
6018 	}
6019 
6020 	/* Allow raid5_quiesce to complete */
6021 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6022 
6023 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6024 		return reshape_request(mddev, sector_nr, skipped);
6025 
6026 	/* No need to check resync_max as we never do more than one
6027 	 * stripe, and as resync_max will always be on a chunk boundary,
6028 	 * if the check in md_do_sync didn't fire, there is no chance
6029 	 * of overstepping resync_max here
6030 	 */
6031 
6032 	/* if there is too many failed drives and we are trying
6033 	 * to resync, then assert that we are finished, because there is
6034 	 * nothing we can do.
6035 	 */
6036 	if (mddev->degraded >= conf->max_degraded &&
6037 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6038 		sector_t rv = mddev->dev_sectors - sector_nr;
6039 		*skipped = 1;
6040 		return rv;
6041 	}
6042 	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6043 	    !conf->fullsync &&
6044 	    !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6045 	    sync_blocks >= STRIPE_SECTORS) {
6046 		/* we can skip this block, and probably more */
6047 		sync_blocks /= STRIPE_SECTORS;
6048 		*skipped = 1;
6049 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
6050 	}
6051 
6052 	bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
6053 
6054 	sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
6055 	if (sh == NULL) {
6056 		sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
6057 		/* make sure we don't swamp the stripe cache if someone else
6058 		 * is trying to get access
6059 		 */
6060 		schedule_timeout_uninterruptible(1);
6061 	}
6062 	/* Need to check if array will still be degraded after recovery/resync
6063 	 * Note in case of > 1 drive failures it's possible we're rebuilding
6064 	 * one drive while leaving another faulty drive in array.
6065 	 */
6066 	rcu_read_lock();
6067 	for (i = 0; i < conf->raid_disks; i++) {
6068 		struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
6069 
6070 		if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6071 			still_degraded = 1;
6072 	}
6073 	rcu_read_unlock();
6074 
6075 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6076 
6077 	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6078 	set_bit(STRIPE_HANDLE, &sh->state);
6079 
6080 	raid5_release_stripe(sh);
6081 
6082 	return STRIPE_SECTORS;
6083 }
6084 
6085 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6086 			       unsigned int offset)
6087 {
6088 	/* We may not be able to submit a whole bio at once as there
6089 	 * may not be enough stripe_heads available.
6090 	 * We cannot pre-allocate enough stripe_heads as we may need
6091 	 * more than exist in the cache (if we allow ever large chunks).
6092 	 * So we do one stripe head at a time and record in
6093 	 * ->bi_hw_segments how many have been done.
6094 	 *
6095 	 * We *know* that this entire raid_bio is in one chunk, so
6096 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6097 	 */
6098 	struct stripe_head *sh;
6099 	int dd_idx;
6100 	sector_t sector, logical_sector, last_sector;
6101 	int scnt = 0;
6102 	int handled = 0;
6103 
6104 	logical_sector = raid_bio->bi_iter.bi_sector &
6105 		~((sector_t)STRIPE_SECTORS-1);
6106 	sector = raid5_compute_sector(conf, logical_sector,
6107 				      0, &dd_idx, NULL);
6108 	last_sector = bio_end_sector(raid_bio);
6109 
6110 	for (; logical_sector < last_sector;
6111 	     logical_sector += STRIPE_SECTORS,
6112 		     sector += STRIPE_SECTORS,
6113 		     scnt++) {
6114 
6115 		if (scnt < offset)
6116 			/* already done this stripe */
6117 			continue;
6118 
6119 		sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
6120 
6121 		if (!sh) {
6122 			/* failed to get a stripe - must wait */
6123 			conf->retry_read_aligned = raid_bio;
6124 			conf->retry_read_offset = scnt;
6125 			return handled;
6126 		}
6127 
6128 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6129 			raid5_release_stripe(sh);
6130 			conf->retry_read_aligned = raid_bio;
6131 			conf->retry_read_offset = scnt;
6132 			return handled;
6133 		}
6134 
6135 		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6136 		handle_stripe(sh);
6137 		raid5_release_stripe(sh);
6138 		handled++;
6139 	}
6140 
6141 	bio_endio(raid_bio);
6142 
6143 	if (atomic_dec_and_test(&conf->active_aligned_reads))
6144 		wake_up(&conf->wait_for_quiescent);
6145 	return handled;
6146 }
6147 
6148 static int handle_active_stripes(struct r5conf *conf, int group,
6149 				 struct r5worker *worker,
6150 				 struct list_head *temp_inactive_list)
6151 {
6152 	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6153 	int i, batch_size = 0, hash;
6154 	bool release_inactive = false;
6155 
6156 	while (batch_size < MAX_STRIPE_BATCH &&
6157 			(sh = __get_priority_stripe(conf, group)) != NULL)
6158 		batch[batch_size++] = sh;
6159 
6160 	if (batch_size == 0) {
6161 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6162 			if (!list_empty(temp_inactive_list + i))
6163 				break;
6164 		if (i == NR_STRIPE_HASH_LOCKS) {
6165 			spin_unlock_irq(&conf->device_lock);
6166 			r5l_flush_stripe_to_raid(conf->log);
6167 			spin_lock_irq(&conf->device_lock);
6168 			return batch_size;
6169 		}
6170 		release_inactive = true;
6171 	}
6172 	spin_unlock_irq(&conf->device_lock);
6173 
6174 	release_inactive_stripe_list(conf, temp_inactive_list,
6175 				     NR_STRIPE_HASH_LOCKS);
6176 
6177 	r5l_flush_stripe_to_raid(conf->log);
6178 	if (release_inactive) {
6179 		spin_lock_irq(&conf->device_lock);
6180 		return 0;
6181 	}
6182 
6183 	for (i = 0; i < batch_size; i++)
6184 		handle_stripe(batch[i]);
6185 	log_write_stripe_run(conf);
6186 
6187 	cond_resched();
6188 
6189 	spin_lock_irq(&conf->device_lock);
6190 	for (i = 0; i < batch_size; i++) {
6191 		hash = batch[i]->hash_lock_index;
6192 		__release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6193 	}
6194 	return batch_size;
6195 }
6196 
6197 static void raid5_do_work(struct work_struct *work)
6198 {
6199 	struct r5worker *worker = container_of(work, struct r5worker, work);
6200 	struct r5worker_group *group = worker->group;
6201 	struct r5conf *conf = group->conf;
6202 	struct mddev *mddev = conf->mddev;
6203 	int group_id = group - conf->worker_groups;
6204 	int handled;
6205 	struct blk_plug plug;
6206 
6207 	pr_debug("+++ raid5worker active\n");
6208 
6209 	blk_start_plug(&plug);
6210 	handled = 0;
6211 	spin_lock_irq(&conf->device_lock);
6212 	while (1) {
6213 		int batch_size, released;
6214 
6215 		released = release_stripe_list(conf, worker->temp_inactive_list);
6216 
6217 		batch_size = handle_active_stripes(conf, group_id, worker,
6218 						   worker->temp_inactive_list);
6219 		worker->working = false;
6220 		if (!batch_size && !released)
6221 			break;
6222 		handled += batch_size;
6223 		wait_event_lock_irq(mddev->sb_wait,
6224 			!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6225 			conf->device_lock);
6226 	}
6227 	pr_debug("%d stripes handled\n", handled);
6228 
6229 	spin_unlock_irq(&conf->device_lock);
6230 
6231 	flush_deferred_bios(conf);
6232 
6233 	r5l_flush_stripe_to_raid(conf->log);
6234 
6235 	async_tx_issue_pending_all();
6236 	blk_finish_plug(&plug);
6237 
6238 	pr_debug("--- raid5worker inactive\n");
6239 }
6240 
6241 /*
6242  * This is our raid5 kernel thread.
6243  *
6244  * We scan the hash table for stripes which can be handled now.
6245  * During the scan, completed stripes are saved for us by the interrupt
6246  * handler, so that they will not have to wait for our next wakeup.
6247  */
6248 static void raid5d(struct md_thread *thread)
6249 {
6250 	struct mddev *mddev = thread->mddev;
6251 	struct r5conf *conf = mddev->private;
6252 	int handled;
6253 	struct blk_plug plug;
6254 
6255 	pr_debug("+++ raid5d active\n");
6256 
6257 	md_check_recovery(mddev);
6258 
6259 	blk_start_plug(&plug);
6260 	handled = 0;
6261 	spin_lock_irq(&conf->device_lock);
6262 	while (1) {
6263 		struct bio *bio;
6264 		int batch_size, released;
6265 		unsigned int offset;
6266 
6267 		released = release_stripe_list(conf, conf->temp_inactive_list);
6268 		if (released)
6269 			clear_bit(R5_DID_ALLOC, &conf->cache_state);
6270 
6271 		if (
6272 		    !list_empty(&conf->bitmap_list)) {
6273 			/* Now is a good time to flush some bitmap updates */
6274 			conf->seq_flush++;
6275 			spin_unlock_irq(&conf->device_lock);
6276 			bitmap_unplug(mddev->bitmap);
6277 			spin_lock_irq(&conf->device_lock);
6278 			conf->seq_write = conf->seq_flush;
6279 			activate_bit_delay(conf, conf->temp_inactive_list);
6280 		}
6281 		raid5_activate_delayed(conf);
6282 
6283 		while ((bio = remove_bio_from_retry(conf, &offset))) {
6284 			int ok;
6285 			spin_unlock_irq(&conf->device_lock);
6286 			ok = retry_aligned_read(conf, bio, offset);
6287 			spin_lock_irq(&conf->device_lock);
6288 			if (!ok)
6289 				break;
6290 			handled++;
6291 		}
6292 
6293 		batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6294 						   conf->temp_inactive_list);
6295 		if (!batch_size && !released)
6296 			break;
6297 		handled += batch_size;
6298 
6299 		if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6300 			spin_unlock_irq(&conf->device_lock);
6301 			md_check_recovery(mddev);
6302 			spin_lock_irq(&conf->device_lock);
6303 		}
6304 	}
6305 	pr_debug("%d stripes handled\n", handled);
6306 
6307 	spin_unlock_irq(&conf->device_lock);
6308 	if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6309 	    mutex_trylock(&conf->cache_size_mutex)) {
6310 		grow_one_stripe(conf, __GFP_NOWARN);
6311 		/* Set flag even if allocation failed.  This helps
6312 		 * slow down allocation requests when mem is short
6313 		 */
6314 		set_bit(R5_DID_ALLOC, &conf->cache_state);
6315 		mutex_unlock(&conf->cache_size_mutex);
6316 	}
6317 
6318 	flush_deferred_bios(conf);
6319 
6320 	r5l_flush_stripe_to_raid(conf->log);
6321 
6322 	async_tx_issue_pending_all();
6323 	blk_finish_plug(&plug);
6324 
6325 	pr_debug("--- raid5d inactive\n");
6326 }
6327 
6328 static ssize_t
6329 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6330 {
6331 	struct r5conf *conf;
6332 	int ret = 0;
6333 	spin_lock(&mddev->lock);
6334 	conf = mddev->private;
6335 	if (conf)
6336 		ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6337 	spin_unlock(&mddev->lock);
6338 	return ret;
6339 }
6340 
6341 int
6342 raid5_set_cache_size(struct mddev *mddev, int size)
6343 {
6344 	struct r5conf *conf = mddev->private;
6345 
6346 	if (size <= 16 || size > 32768)
6347 		return -EINVAL;
6348 
6349 	conf->min_nr_stripes = size;
6350 	mutex_lock(&conf->cache_size_mutex);
6351 	while (size < conf->max_nr_stripes &&
6352 	       drop_one_stripe(conf))
6353 		;
6354 	mutex_unlock(&conf->cache_size_mutex);
6355 
6356 	md_allow_write(mddev);
6357 
6358 	mutex_lock(&conf->cache_size_mutex);
6359 	while (size > conf->max_nr_stripes)
6360 		if (!grow_one_stripe(conf, GFP_KERNEL))
6361 			break;
6362 	mutex_unlock(&conf->cache_size_mutex);
6363 
6364 	return 0;
6365 }
6366 EXPORT_SYMBOL(raid5_set_cache_size);
6367 
6368 static ssize_t
6369 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6370 {
6371 	struct r5conf *conf;
6372 	unsigned long new;
6373 	int err;
6374 
6375 	if (len >= PAGE_SIZE)
6376 		return -EINVAL;
6377 	if (kstrtoul(page, 10, &new))
6378 		return -EINVAL;
6379 	err = mddev_lock(mddev);
6380 	if (err)
6381 		return err;
6382 	conf = mddev->private;
6383 	if (!conf)
6384 		err = -ENODEV;
6385 	else
6386 		err = raid5_set_cache_size(mddev, new);
6387 	mddev_unlock(mddev);
6388 
6389 	return err ?: len;
6390 }
6391 
6392 static struct md_sysfs_entry
6393 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6394 				raid5_show_stripe_cache_size,
6395 				raid5_store_stripe_cache_size);
6396 
6397 static ssize_t
6398 raid5_show_rmw_level(struct mddev  *mddev, char *page)
6399 {
6400 	struct r5conf *conf = mddev->private;
6401 	if (conf)
6402 		return sprintf(page, "%d\n", conf->rmw_level);
6403 	else
6404 		return 0;
6405 }
6406 
6407 static ssize_t
6408 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
6409 {
6410 	struct r5conf *conf = mddev->private;
6411 	unsigned long new;
6412 
6413 	if (!conf)
6414 		return -ENODEV;
6415 
6416 	if (len >= PAGE_SIZE)
6417 		return -EINVAL;
6418 
6419 	if (kstrtoul(page, 10, &new))
6420 		return -EINVAL;
6421 
6422 	if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6423 		return -EINVAL;
6424 
6425 	if (new != PARITY_DISABLE_RMW &&
6426 	    new != PARITY_ENABLE_RMW &&
6427 	    new != PARITY_PREFER_RMW)
6428 		return -EINVAL;
6429 
6430 	conf->rmw_level = new;
6431 	return len;
6432 }
6433 
6434 static struct md_sysfs_entry
6435 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6436 			 raid5_show_rmw_level,
6437 			 raid5_store_rmw_level);
6438 
6439 
6440 static ssize_t
6441 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6442 {
6443 	struct r5conf *conf;
6444 	int ret = 0;
6445 	spin_lock(&mddev->lock);
6446 	conf = mddev->private;
6447 	if (conf)
6448 		ret = sprintf(page, "%d\n", conf->bypass_threshold);
6449 	spin_unlock(&mddev->lock);
6450 	return ret;
6451 }
6452 
6453 static ssize_t
6454 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6455 {
6456 	struct r5conf *conf;
6457 	unsigned long new;
6458 	int err;
6459 
6460 	if (len >= PAGE_SIZE)
6461 		return -EINVAL;
6462 	if (kstrtoul(page, 10, &new))
6463 		return -EINVAL;
6464 
6465 	err = mddev_lock(mddev);
6466 	if (err)
6467 		return err;
6468 	conf = mddev->private;
6469 	if (!conf)
6470 		err = -ENODEV;
6471 	else if (new > conf->min_nr_stripes)
6472 		err = -EINVAL;
6473 	else
6474 		conf->bypass_threshold = new;
6475 	mddev_unlock(mddev);
6476 	return err ?: len;
6477 }
6478 
6479 static struct md_sysfs_entry
6480 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6481 					S_IRUGO | S_IWUSR,
6482 					raid5_show_preread_threshold,
6483 					raid5_store_preread_threshold);
6484 
6485 static ssize_t
6486 raid5_show_skip_copy(struct mddev *mddev, char *page)
6487 {
6488 	struct r5conf *conf;
6489 	int ret = 0;
6490 	spin_lock(&mddev->lock);
6491 	conf = mddev->private;
6492 	if (conf)
6493 		ret = sprintf(page, "%d\n", conf->skip_copy);
6494 	spin_unlock(&mddev->lock);
6495 	return ret;
6496 }
6497 
6498 static ssize_t
6499 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6500 {
6501 	struct r5conf *conf;
6502 	unsigned long new;
6503 	int err;
6504 
6505 	if (len >= PAGE_SIZE)
6506 		return -EINVAL;
6507 	if (kstrtoul(page, 10, &new))
6508 		return -EINVAL;
6509 	new = !!new;
6510 
6511 	err = mddev_lock(mddev);
6512 	if (err)
6513 		return err;
6514 	conf = mddev->private;
6515 	if (!conf)
6516 		err = -ENODEV;
6517 	else if (new != conf->skip_copy) {
6518 		mddev_suspend(mddev);
6519 		conf->skip_copy = new;
6520 		if (new)
6521 			mddev->queue->backing_dev_info->capabilities |=
6522 				BDI_CAP_STABLE_WRITES;
6523 		else
6524 			mddev->queue->backing_dev_info->capabilities &=
6525 				~BDI_CAP_STABLE_WRITES;
6526 		mddev_resume(mddev);
6527 	}
6528 	mddev_unlock(mddev);
6529 	return err ?: len;
6530 }
6531 
6532 static struct md_sysfs_entry
6533 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6534 					raid5_show_skip_copy,
6535 					raid5_store_skip_copy);
6536 
6537 static ssize_t
6538 stripe_cache_active_show(struct mddev *mddev, char *page)
6539 {
6540 	struct r5conf *conf = mddev->private;
6541 	if (conf)
6542 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6543 	else
6544 		return 0;
6545 }
6546 
6547 static struct md_sysfs_entry
6548 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6549 
6550 static ssize_t
6551 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6552 {
6553 	struct r5conf *conf;
6554 	int ret = 0;
6555 	spin_lock(&mddev->lock);
6556 	conf = mddev->private;
6557 	if (conf)
6558 		ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6559 	spin_unlock(&mddev->lock);
6560 	return ret;
6561 }
6562 
6563 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6564 			       int *group_cnt,
6565 			       int *worker_cnt_per_group,
6566 			       struct r5worker_group **worker_groups);
6567 static ssize_t
6568 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6569 {
6570 	struct r5conf *conf;
6571 	unsigned long new;
6572 	int err;
6573 	struct r5worker_group *new_groups, *old_groups;
6574 	int group_cnt, worker_cnt_per_group;
6575 
6576 	if (len >= PAGE_SIZE)
6577 		return -EINVAL;
6578 	if (kstrtoul(page, 10, &new))
6579 		return -EINVAL;
6580 
6581 	err = mddev_lock(mddev);
6582 	if (err)
6583 		return err;
6584 	conf = mddev->private;
6585 	if (!conf)
6586 		err = -ENODEV;
6587 	else if (new != conf->worker_cnt_per_group) {
6588 		mddev_suspend(mddev);
6589 
6590 		old_groups = conf->worker_groups;
6591 		if (old_groups)
6592 			flush_workqueue(raid5_wq);
6593 
6594 		err = alloc_thread_groups(conf, new,
6595 					  &group_cnt, &worker_cnt_per_group,
6596 					  &new_groups);
6597 		if (!err) {
6598 			spin_lock_irq(&conf->device_lock);
6599 			conf->group_cnt = group_cnt;
6600 			conf->worker_cnt_per_group = worker_cnt_per_group;
6601 			conf->worker_groups = new_groups;
6602 			spin_unlock_irq(&conf->device_lock);
6603 
6604 			if (old_groups)
6605 				kfree(old_groups[0].workers);
6606 			kfree(old_groups);
6607 		}
6608 		mddev_resume(mddev);
6609 	}
6610 	mddev_unlock(mddev);
6611 
6612 	return err ?: len;
6613 }
6614 
6615 static struct md_sysfs_entry
6616 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6617 				raid5_show_group_thread_cnt,
6618 				raid5_store_group_thread_cnt);
6619 
6620 static struct attribute *raid5_attrs[] =  {
6621 	&raid5_stripecache_size.attr,
6622 	&raid5_stripecache_active.attr,
6623 	&raid5_preread_bypass_threshold.attr,
6624 	&raid5_group_thread_cnt.attr,
6625 	&raid5_skip_copy.attr,
6626 	&raid5_rmw_level.attr,
6627 	&r5c_journal_mode.attr,
6628 	NULL,
6629 };
6630 static struct attribute_group raid5_attrs_group = {
6631 	.name = NULL,
6632 	.attrs = raid5_attrs,
6633 };
6634 
6635 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6636 			       int *group_cnt,
6637 			       int *worker_cnt_per_group,
6638 			       struct r5worker_group **worker_groups)
6639 {
6640 	int i, j, k;
6641 	ssize_t size;
6642 	struct r5worker *workers;
6643 
6644 	*worker_cnt_per_group = cnt;
6645 	if (cnt == 0) {
6646 		*group_cnt = 0;
6647 		*worker_groups = NULL;
6648 		return 0;
6649 	}
6650 	*group_cnt = num_possible_nodes();
6651 	size = sizeof(struct r5worker) * cnt;
6652 	workers = kzalloc(size * *group_cnt, GFP_NOIO);
6653 	*worker_groups = kzalloc(sizeof(struct r5worker_group) *
6654 				*group_cnt, GFP_NOIO);
6655 	if (!*worker_groups || !workers) {
6656 		kfree(workers);
6657 		kfree(*worker_groups);
6658 		return -ENOMEM;
6659 	}
6660 
6661 	for (i = 0; i < *group_cnt; i++) {
6662 		struct r5worker_group *group;
6663 
6664 		group = &(*worker_groups)[i];
6665 		INIT_LIST_HEAD(&group->handle_list);
6666 		INIT_LIST_HEAD(&group->loprio_list);
6667 		group->conf = conf;
6668 		group->workers = workers + i * cnt;
6669 
6670 		for (j = 0; j < cnt; j++) {
6671 			struct r5worker *worker = group->workers + j;
6672 			worker->group = group;
6673 			INIT_WORK(&worker->work, raid5_do_work);
6674 
6675 			for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6676 				INIT_LIST_HEAD(worker->temp_inactive_list + k);
6677 		}
6678 	}
6679 
6680 	return 0;
6681 }
6682 
6683 static void free_thread_groups(struct r5conf *conf)
6684 {
6685 	if (conf->worker_groups)
6686 		kfree(conf->worker_groups[0].workers);
6687 	kfree(conf->worker_groups);
6688 	conf->worker_groups = NULL;
6689 }
6690 
6691 static sector_t
6692 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6693 {
6694 	struct r5conf *conf = mddev->private;
6695 
6696 	if (!sectors)
6697 		sectors = mddev->dev_sectors;
6698 	if (!raid_disks)
6699 		/* size is defined by the smallest of previous and new size */
6700 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6701 
6702 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
6703 	sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6704 	return sectors * (raid_disks - conf->max_degraded);
6705 }
6706 
6707 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6708 {
6709 	safe_put_page(percpu->spare_page);
6710 	if (percpu->scribble)
6711 		flex_array_free(percpu->scribble);
6712 	percpu->spare_page = NULL;
6713 	percpu->scribble = NULL;
6714 }
6715 
6716 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6717 {
6718 	if (conf->level == 6 && !percpu->spare_page)
6719 		percpu->spare_page = alloc_page(GFP_KERNEL);
6720 	if (!percpu->scribble)
6721 		percpu->scribble = scribble_alloc(max(conf->raid_disks,
6722 						      conf->previous_raid_disks),
6723 						  max(conf->chunk_sectors,
6724 						      conf->prev_chunk_sectors)
6725 						   / STRIPE_SECTORS,
6726 						  GFP_KERNEL);
6727 
6728 	if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6729 		free_scratch_buffer(conf, percpu);
6730 		return -ENOMEM;
6731 	}
6732 
6733 	return 0;
6734 }
6735 
6736 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
6737 {
6738 	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6739 
6740 	free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6741 	return 0;
6742 }
6743 
6744 static void raid5_free_percpu(struct r5conf *conf)
6745 {
6746 	if (!conf->percpu)
6747 		return;
6748 
6749 	cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6750 	free_percpu(conf->percpu);
6751 }
6752 
6753 static void free_conf(struct r5conf *conf)
6754 {
6755 	int i;
6756 
6757 	log_exit(conf);
6758 
6759 	if (conf->shrinker.nr_deferred)
6760 		unregister_shrinker(&conf->shrinker);
6761 
6762 	free_thread_groups(conf);
6763 	shrink_stripes(conf);
6764 	raid5_free_percpu(conf);
6765 	for (i = 0; i < conf->pool_size; i++)
6766 		if (conf->disks[i].extra_page)
6767 			put_page(conf->disks[i].extra_page);
6768 	kfree(conf->disks);
6769 	if (conf->bio_split)
6770 		bioset_free(conf->bio_split);
6771 	kfree(conf->stripe_hashtbl);
6772 	kfree(conf->pending_data);
6773 	kfree(conf);
6774 }
6775 
6776 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
6777 {
6778 	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6779 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6780 
6781 	if (alloc_scratch_buffer(conf, percpu)) {
6782 		pr_warn("%s: failed memory allocation for cpu%u\n",
6783 			__func__, cpu);
6784 		return -ENOMEM;
6785 	}
6786 	return 0;
6787 }
6788 
6789 static int raid5_alloc_percpu(struct r5conf *conf)
6790 {
6791 	int err = 0;
6792 
6793 	conf->percpu = alloc_percpu(struct raid5_percpu);
6794 	if (!conf->percpu)
6795 		return -ENOMEM;
6796 
6797 	err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6798 	if (!err) {
6799 		conf->scribble_disks = max(conf->raid_disks,
6800 			conf->previous_raid_disks);
6801 		conf->scribble_sectors = max(conf->chunk_sectors,
6802 			conf->prev_chunk_sectors);
6803 	}
6804 	return err;
6805 }
6806 
6807 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6808 				      struct shrink_control *sc)
6809 {
6810 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6811 	unsigned long ret = SHRINK_STOP;
6812 
6813 	if (mutex_trylock(&conf->cache_size_mutex)) {
6814 		ret= 0;
6815 		while (ret < sc->nr_to_scan &&
6816 		       conf->max_nr_stripes > conf->min_nr_stripes) {
6817 			if (drop_one_stripe(conf) == 0) {
6818 				ret = SHRINK_STOP;
6819 				break;
6820 			}
6821 			ret++;
6822 		}
6823 		mutex_unlock(&conf->cache_size_mutex);
6824 	}
6825 	return ret;
6826 }
6827 
6828 static unsigned long raid5_cache_count(struct shrinker *shrink,
6829 				       struct shrink_control *sc)
6830 {
6831 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6832 
6833 	if (conf->max_nr_stripes < conf->min_nr_stripes)
6834 		/* unlikely, but not impossible */
6835 		return 0;
6836 	return conf->max_nr_stripes - conf->min_nr_stripes;
6837 }
6838 
6839 static struct r5conf *setup_conf(struct mddev *mddev)
6840 {
6841 	struct r5conf *conf;
6842 	int raid_disk, memory, max_disks;
6843 	struct md_rdev *rdev;
6844 	struct disk_info *disk;
6845 	char pers_name[6];
6846 	int i;
6847 	int group_cnt, worker_cnt_per_group;
6848 	struct r5worker_group *new_group;
6849 
6850 	if (mddev->new_level != 5
6851 	    && mddev->new_level != 4
6852 	    && mddev->new_level != 6) {
6853 		pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6854 			mdname(mddev), mddev->new_level);
6855 		return ERR_PTR(-EIO);
6856 	}
6857 	if ((mddev->new_level == 5
6858 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
6859 	    (mddev->new_level == 6
6860 	     && !algorithm_valid_raid6(mddev->new_layout))) {
6861 		pr_warn("md/raid:%s: layout %d not supported\n",
6862 			mdname(mddev), mddev->new_layout);
6863 		return ERR_PTR(-EIO);
6864 	}
6865 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6866 		pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6867 			mdname(mddev), mddev->raid_disks);
6868 		return ERR_PTR(-EINVAL);
6869 	}
6870 
6871 	if (!mddev->new_chunk_sectors ||
6872 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6873 	    !is_power_of_2(mddev->new_chunk_sectors)) {
6874 		pr_warn("md/raid:%s: invalid chunk size %d\n",
6875 			mdname(mddev), mddev->new_chunk_sectors << 9);
6876 		return ERR_PTR(-EINVAL);
6877 	}
6878 
6879 	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6880 	if (conf == NULL)
6881 		goto abort;
6882 	INIT_LIST_HEAD(&conf->free_list);
6883 	INIT_LIST_HEAD(&conf->pending_list);
6884 	conf->pending_data = kzalloc(sizeof(struct r5pending_data) *
6885 		PENDING_IO_MAX, GFP_KERNEL);
6886 	if (!conf->pending_data)
6887 		goto abort;
6888 	for (i = 0; i < PENDING_IO_MAX; i++)
6889 		list_add(&conf->pending_data[i].sibling, &conf->free_list);
6890 	/* Don't enable multi-threading by default*/
6891 	if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6892 				 &new_group)) {
6893 		conf->group_cnt = group_cnt;
6894 		conf->worker_cnt_per_group = worker_cnt_per_group;
6895 		conf->worker_groups = new_group;
6896 	} else
6897 		goto abort;
6898 	spin_lock_init(&conf->device_lock);
6899 	seqcount_init(&conf->gen_lock);
6900 	mutex_init(&conf->cache_size_mutex);
6901 	init_waitqueue_head(&conf->wait_for_quiescent);
6902 	init_waitqueue_head(&conf->wait_for_stripe);
6903 	init_waitqueue_head(&conf->wait_for_overlap);
6904 	INIT_LIST_HEAD(&conf->handle_list);
6905 	INIT_LIST_HEAD(&conf->loprio_list);
6906 	INIT_LIST_HEAD(&conf->hold_list);
6907 	INIT_LIST_HEAD(&conf->delayed_list);
6908 	INIT_LIST_HEAD(&conf->bitmap_list);
6909 	init_llist_head(&conf->released_stripes);
6910 	atomic_set(&conf->active_stripes, 0);
6911 	atomic_set(&conf->preread_active_stripes, 0);
6912 	atomic_set(&conf->active_aligned_reads, 0);
6913 	spin_lock_init(&conf->pending_bios_lock);
6914 	conf->batch_bio_dispatch = true;
6915 	rdev_for_each(rdev, mddev) {
6916 		if (test_bit(Journal, &rdev->flags))
6917 			continue;
6918 		if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
6919 			conf->batch_bio_dispatch = false;
6920 			break;
6921 		}
6922 	}
6923 
6924 	conf->bypass_threshold = BYPASS_THRESHOLD;
6925 	conf->recovery_disabled = mddev->recovery_disabled - 1;
6926 
6927 	conf->raid_disks = mddev->raid_disks;
6928 	if (mddev->reshape_position == MaxSector)
6929 		conf->previous_raid_disks = mddev->raid_disks;
6930 	else
6931 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6932 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6933 
6934 	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6935 			      GFP_KERNEL);
6936 
6937 	if (!conf->disks)
6938 		goto abort;
6939 
6940 	for (i = 0; i < max_disks; i++) {
6941 		conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
6942 		if (!conf->disks[i].extra_page)
6943 			goto abort;
6944 	}
6945 
6946 	conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0);
6947 	if (!conf->bio_split)
6948 		goto abort;
6949 	conf->mddev = mddev;
6950 
6951 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6952 		goto abort;
6953 
6954 	/* We init hash_locks[0] separately to that it can be used
6955 	 * as the reference lock in the spin_lock_nest_lock() call
6956 	 * in lock_all_device_hash_locks_irq in order to convince
6957 	 * lockdep that we know what we are doing.
6958 	 */
6959 	spin_lock_init(conf->hash_locks);
6960 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6961 		spin_lock_init(conf->hash_locks + i);
6962 
6963 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6964 		INIT_LIST_HEAD(conf->inactive_list + i);
6965 
6966 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6967 		INIT_LIST_HEAD(conf->temp_inactive_list + i);
6968 
6969 	atomic_set(&conf->r5c_cached_full_stripes, 0);
6970 	INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
6971 	atomic_set(&conf->r5c_cached_partial_stripes, 0);
6972 	INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
6973 	atomic_set(&conf->r5c_flushing_full_stripes, 0);
6974 	atomic_set(&conf->r5c_flushing_partial_stripes, 0);
6975 
6976 	conf->level = mddev->new_level;
6977 	conf->chunk_sectors = mddev->new_chunk_sectors;
6978 	if (raid5_alloc_percpu(conf) != 0)
6979 		goto abort;
6980 
6981 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6982 
6983 	rdev_for_each(rdev, mddev) {
6984 		raid_disk = rdev->raid_disk;
6985 		if (raid_disk >= max_disks
6986 		    || raid_disk < 0 || test_bit(Journal, &rdev->flags))
6987 			continue;
6988 		disk = conf->disks + raid_disk;
6989 
6990 		if (test_bit(Replacement, &rdev->flags)) {
6991 			if (disk->replacement)
6992 				goto abort;
6993 			disk->replacement = rdev;
6994 		} else {
6995 			if (disk->rdev)
6996 				goto abort;
6997 			disk->rdev = rdev;
6998 		}
6999 
7000 		if (test_bit(In_sync, &rdev->flags)) {
7001 			char b[BDEVNAME_SIZE];
7002 			pr_info("md/raid:%s: device %s operational as raid disk %d\n",
7003 				mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
7004 		} else if (rdev->saved_raid_disk != raid_disk)
7005 			/* Cannot rely on bitmap to complete recovery */
7006 			conf->fullsync = 1;
7007 	}
7008 
7009 	conf->level = mddev->new_level;
7010 	if (conf->level == 6) {
7011 		conf->max_degraded = 2;
7012 		if (raid6_call.xor_syndrome)
7013 			conf->rmw_level = PARITY_ENABLE_RMW;
7014 		else
7015 			conf->rmw_level = PARITY_DISABLE_RMW;
7016 	} else {
7017 		conf->max_degraded = 1;
7018 		conf->rmw_level = PARITY_ENABLE_RMW;
7019 	}
7020 	conf->algorithm = mddev->new_layout;
7021 	conf->reshape_progress = mddev->reshape_position;
7022 	if (conf->reshape_progress != MaxSector) {
7023 		conf->prev_chunk_sectors = mddev->chunk_sectors;
7024 		conf->prev_algo = mddev->layout;
7025 	} else {
7026 		conf->prev_chunk_sectors = conf->chunk_sectors;
7027 		conf->prev_algo = conf->algorithm;
7028 	}
7029 
7030 	conf->min_nr_stripes = NR_STRIPES;
7031 	if (mddev->reshape_position != MaxSector) {
7032 		int stripes = max_t(int,
7033 			((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4,
7034 			((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4);
7035 		conf->min_nr_stripes = max(NR_STRIPES, stripes);
7036 		if (conf->min_nr_stripes != NR_STRIPES)
7037 			pr_info("md/raid:%s: force stripe size %d for reshape\n",
7038 				mdname(mddev), conf->min_nr_stripes);
7039 	}
7040 	memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7041 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7042 	atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7043 	if (grow_stripes(conf, conf->min_nr_stripes)) {
7044 		pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7045 			mdname(mddev), memory);
7046 		goto abort;
7047 	} else
7048 		pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7049 	/*
7050 	 * Losing a stripe head costs more than the time to refill it,
7051 	 * it reduces the queue depth and so can hurt throughput.
7052 	 * So set it rather large, scaled by number of devices.
7053 	 */
7054 	conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7055 	conf->shrinker.scan_objects = raid5_cache_scan;
7056 	conf->shrinker.count_objects = raid5_cache_count;
7057 	conf->shrinker.batch = 128;
7058 	conf->shrinker.flags = 0;
7059 	if (register_shrinker(&conf->shrinker)) {
7060 		pr_warn("md/raid:%s: couldn't register shrinker.\n",
7061 			mdname(mddev));
7062 		goto abort;
7063 	}
7064 
7065 	sprintf(pers_name, "raid%d", mddev->new_level);
7066 	conf->thread = md_register_thread(raid5d, mddev, pers_name);
7067 	if (!conf->thread) {
7068 		pr_warn("md/raid:%s: couldn't allocate thread.\n",
7069 			mdname(mddev));
7070 		goto abort;
7071 	}
7072 
7073 	return conf;
7074 
7075  abort:
7076 	if (conf) {
7077 		free_conf(conf);
7078 		return ERR_PTR(-EIO);
7079 	} else
7080 		return ERR_PTR(-ENOMEM);
7081 }
7082 
7083 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7084 {
7085 	switch (algo) {
7086 	case ALGORITHM_PARITY_0:
7087 		if (raid_disk < max_degraded)
7088 			return 1;
7089 		break;
7090 	case ALGORITHM_PARITY_N:
7091 		if (raid_disk >= raid_disks - max_degraded)
7092 			return 1;
7093 		break;
7094 	case ALGORITHM_PARITY_0_6:
7095 		if (raid_disk == 0 ||
7096 		    raid_disk == raid_disks - 1)
7097 			return 1;
7098 		break;
7099 	case ALGORITHM_LEFT_ASYMMETRIC_6:
7100 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
7101 	case ALGORITHM_LEFT_SYMMETRIC_6:
7102 	case ALGORITHM_RIGHT_SYMMETRIC_6:
7103 		if (raid_disk == raid_disks - 1)
7104 			return 1;
7105 	}
7106 	return 0;
7107 }
7108 
7109 static int raid5_run(struct mddev *mddev)
7110 {
7111 	struct r5conf *conf;
7112 	int working_disks = 0;
7113 	int dirty_parity_disks = 0;
7114 	struct md_rdev *rdev;
7115 	struct md_rdev *journal_dev = NULL;
7116 	sector_t reshape_offset = 0;
7117 	int i;
7118 	long long min_offset_diff = 0;
7119 	int first = 1;
7120 
7121 	if (mddev_init_writes_pending(mddev) < 0)
7122 		return -ENOMEM;
7123 
7124 	if (mddev->recovery_cp != MaxSector)
7125 		pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7126 			  mdname(mddev));
7127 
7128 	rdev_for_each(rdev, mddev) {
7129 		long long diff;
7130 
7131 		if (test_bit(Journal, &rdev->flags)) {
7132 			journal_dev = rdev;
7133 			continue;
7134 		}
7135 		if (rdev->raid_disk < 0)
7136 			continue;
7137 		diff = (rdev->new_data_offset - rdev->data_offset);
7138 		if (first) {
7139 			min_offset_diff = diff;
7140 			first = 0;
7141 		} else if (mddev->reshape_backwards &&
7142 			 diff < min_offset_diff)
7143 			min_offset_diff = diff;
7144 		else if (!mddev->reshape_backwards &&
7145 			 diff > min_offset_diff)
7146 			min_offset_diff = diff;
7147 	}
7148 
7149 	if (mddev->reshape_position != MaxSector) {
7150 		/* Check that we can continue the reshape.
7151 		 * Difficulties arise if the stripe we would write to
7152 		 * next is at or after the stripe we would read from next.
7153 		 * For a reshape that changes the number of devices, this
7154 		 * is only possible for a very short time, and mdadm makes
7155 		 * sure that time appears to have past before assembling
7156 		 * the array.  So we fail if that time hasn't passed.
7157 		 * For a reshape that keeps the number of devices the same
7158 		 * mdadm must be monitoring the reshape can keeping the
7159 		 * critical areas read-only and backed up.  It will start
7160 		 * the array in read-only mode, so we check for that.
7161 		 */
7162 		sector_t here_new, here_old;
7163 		int old_disks;
7164 		int max_degraded = (mddev->level == 6 ? 2 : 1);
7165 		int chunk_sectors;
7166 		int new_data_disks;
7167 
7168 		if (journal_dev) {
7169 			pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7170 				mdname(mddev));
7171 			return -EINVAL;
7172 		}
7173 
7174 		if (mddev->new_level != mddev->level) {
7175 			pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7176 				mdname(mddev));
7177 			return -EINVAL;
7178 		}
7179 		old_disks = mddev->raid_disks - mddev->delta_disks;
7180 		/* reshape_position must be on a new-stripe boundary, and one
7181 		 * further up in new geometry must map after here in old
7182 		 * geometry.
7183 		 * If the chunk sizes are different, then as we perform reshape
7184 		 * in units of the largest of the two, reshape_position needs
7185 		 * be a multiple of the largest chunk size times new data disks.
7186 		 */
7187 		here_new = mddev->reshape_position;
7188 		chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7189 		new_data_disks = mddev->raid_disks - max_degraded;
7190 		if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7191 			pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7192 				mdname(mddev));
7193 			return -EINVAL;
7194 		}
7195 		reshape_offset = here_new * chunk_sectors;
7196 		/* here_new is the stripe we will write to */
7197 		here_old = mddev->reshape_position;
7198 		sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7199 		/* here_old is the first stripe that we might need to read
7200 		 * from */
7201 		if (mddev->delta_disks == 0) {
7202 			/* We cannot be sure it is safe to start an in-place
7203 			 * reshape.  It is only safe if user-space is monitoring
7204 			 * and taking constant backups.
7205 			 * mdadm always starts a situation like this in
7206 			 * readonly mode so it can take control before
7207 			 * allowing any writes.  So just check for that.
7208 			 */
7209 			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7210 			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
7211 				/* not really in-place - so OK */;
7212 			else if (mddev->ro == 0) {
7213 				pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7214 					mdname(mddev));
7215 				return -EINVAL;
7216 			}
7217 		} else if (mddev->reshape_backwards
7218 		    ? (here_new * chunk_sectors + min_offset_diff <=
7219 		       here_old * chunk_sectors)
7220 		    : (here_new * chunk_sectors >=
7221 		       here_old * chunk_sectors + (-min_offset_diff))) {
7222 			/* Reading from the same stripe as writing to - bad */
7223 			pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7224 				mdname(mddev));
7225 			return -EINVAL;
7226 		}
7227 		pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7228 		/* OK, we should be able to continue; */
7229 	} else {
7230 		BUG_ON(mddev->level != mddev->new_level);
7231 		BUG_ON(mddev->layout != mddev->new_layout);
7232 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7233 		BUG_ON(mddev->delta_disks != 0);
7234 	}
7235 
7236 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7237 	    test_bit(MD_HAS_PPL, &mddev->flags)) {
7238 		pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7239 			mdname(mddev));
7240 		clear_bit(MD_HAS_PPL, &mddev->flags);
7241 		clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
7242 	}
7243 
7244 	if (mddev->private == NULL)
7245 		conf = setup_conf(mddev);
7246 	else
7247 		conf = mddev->private;
7248 
7249 	if (IS_ERR(conf))
7250 		return PTR_ERR(conf);
7251 
7252 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7253 		if (!journal_dev) {
7254 			pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7255 				mdname(mddev));
7256 			mddev->ro = 1;
7257 			set_disk_ro(mddev->gendisk, 1);
7258 		} else if (mddev->recovery_cp == MaxSector)
7259 			set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7260 	}
7261 
7262 	conf->min_offset_diff = min_offset_diff;
7263 	mddev->thread = conf->thread;
7264 	conf->thread = NULL;
7265 	mddev->private = conf;
7266 
7267 	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7268 	     i++) {
7269 		rdev = conf->disks[i].rdev;
7270 		if (!rdev && conf->disks[i].replacement) {
7271 			/* The replacement is all we have yet */
7272 			rdev = conf->disks[i].replacement;
7273 			conf->disks[i].replacement = NULL;
7274 			clear_bit(Replacement, &rdev->flags);
7275 			conf->disks[i].rdev = rdev;
7276 		}
7277 		if (!rdev)
7278 			continue;
7279 		if (conf->disks[i].replacement &&
7280 		    conf->reshape_progress != MaxSector) {
7281 			/* replacements and reshape simply do not mix. */
7282 			pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7283 			goto abort;
7284 		}
7285 		if (test_bit(In_sync, &rdev->flags)) {
7286 			working_disks++;
7287 			continue;
7288 		}
7289 		/* This disc is not fully in-sync.  However if it
7290 		 * just stored parity (beyond the recovery_offset),
7291 		 * when we don't need to be concerned about the
7292 		 * array being dirty.
7293 		 * When reshape goes 'backwards', we never have
7294 		 * partially completed devices, so we only need
7295 		 * to worry about reshape going forwards.
7296 		 */
7297 		/* Hack because v0.91 doesn't store recovery_offset properly. */
7298 		if (mddev->major_version == 0 &&
7299 		    mddev->minor_version > 90)
7300 			rdev->recovery_offset = reshape_offset;
7301 
7302 		if (rdev->recovery_offset < reshape_offset) {
7303 			/* We need to check old and new layout */
7304 			if (!only_parity(rdev->raid_disk,
7305 					 conf->algorithm,
7306 					 conf->raid_disks,
7307 					 conf->max_degraded))
7308 				continue;
7309 		}
7310 		if (!only_parity(rdev->raid_disk,
7311 				 conf->prev_algo,
7312 				 conf->previous_raid_disks,
7313 				 conf->max_degraded))
7314 			continue;
7315 		dirty_parity_disks++;
7316 	}
7317 
7318 	/*
7319 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
7320 	 */
7321 	mddev->degraded = raid5_calc_degraded(conf);
7322 
7323 	if (has_failed(conf)) {
7324 		pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7325 			mdname(mddev), mddev->degraded, conf->raid_disks);
7326 		goto abort;
7327 	}
7328 
7329 	/* device size must be a multiple of chunk size */
7330 	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
7331 	mddev->resync_max_sectors = mddev->dev_sectors;
7332 
7333 	if (mddev->degraded > dirty_parity_disks &&
7334 	    mddev->recovery_cp != MaxSector) {
7335 		if (test_bit(MD_HAS_PPL, &mddev->flags))
7336 			pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7337 				mdname(mddev));
7338 		else if (mddev->ok_start_degraded)
7339 			pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7340 				mdname(mddev));
7341 		else {
7342 			pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7343 				mdname(mddev));
7344 			goto abort;
7345 		}
7346 	}
7347 
7348 	pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7349 		mdname(mddev), conf->level,
7350 		mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7351 		mddev->new_layout);
7352 
7353 	print_raid5_conf(conf);
7354 
7355 	if (conf->reshape_progress != MaxSector) {
7356 		conf->reshape_safe = conf->reshape_progress;
7357 		atomic_set(&conf->reshape_stripes, 0);
7358 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7359 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7360 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7361 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7362 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7363 							"reshape");
7364 	}
7365 
7366 	/* Ok, everything is just fine now */
7367 	if (mddev->to_remove == &raid5_attrs_group)
7368 		mddev->to_remove = NULL;
7369 	else if (mddev->kobj.sd &&
7370 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
7371 		pr_warn("raid5: failed to create sysfs attributes for %s\n",
7372 			mdname(mddev));
7373 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7374 
7375 	if (mddev->queue) {
7376 		int chunk_size;
7377 		/* read-ahead size must cover two whole stripes, which
7378 		 * is 2 * (datadisks) * chunksize where 'n' is the
7379 		 * number of raid devices
7380 		 */
7381 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
7382 		int stripe = data_disks *
7383 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
7384 		if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7385 			mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
7386 
7387 		chunk_size = mddev->chunk_sectors << 9;
7388 		blk_queue_io_min(mddev->queue, chunk_size);
7389 		blk_queue_io_opt(mddev->queue, chunk_size *
7390 				 (conf->raid_disks - conf->max_degraded));
7391 		mddev->queue->limits.raid_partial_stripes_expensive = 1;
7392 		/*
7393 		 * We can only discard a whole stripe. It doesn't make sense to
7394 		 * discard data disk but write parity disk
7395 		 */
7396 		stripe = stripe * PAGE_SIZE;
7397 		/* Round up to power of 2, as discard handling
7398 		 * currently assumes that */
7399 		while ((stripe-1) & stripe)
7400 			stripe = (stripe | (stripe-1)) + 1;
7401 		mddev->queue->limits.discard_alignment = stripe;
7402 		mddev->queue->limits.discard_granularity = stripe;
7403 
7404 		blk_queue_max_write_same_sectors(mddev->queue, 0);
7405 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
7406 
7407 		rdev_for_each(rdev, mddev) {
7408 			disk_stack_limits(mddev->gendisk, rdev->bdev,
7409 					  rdev->data_offset << 9);
7410 			disk_stack_limits(mddev->gendisk, rdev->bdev,
7411 					  rdev->new_data_offset << 9);
7412 		}
7413 
7414 		/*
7415 		 * zeroing is required, otherwise data
7416 		 * could be lost. Consider a scenario: discard a stripe
7417 		 * (the stripe could be inconsistent if
7418 		 * discard_zeroes_data is 0); write one disk of the
7419 		 * stripe (the stripe could be inconsistent again
7420 		 * depending on which disks are used to calculate
7421 		 * parity); the disk is broken; The stripe data of this
7422 		 * disk is lost.
7423 		 *
7424 		 * We only allow DISCARD if the sysadmin has confirmed that
7425 		 * only safe devices are in use by setting a module parameter.
7426 		 * A better idea might be to turn DISCARD into WRITE_ZEROES
7427 		 * requests, as that is required to be safe.
7428 		 */
7429 		if (devices_handle_discard_safely &&
7430 		    mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7431 		    mddev->queue->limits.discard_granularity >= stripe)
7432 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
7433 						mddev->queue);
7434 		else
7435 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
7436 						mddev->queue);
7437 
7438 		blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
7439 	}
7440 
7441 	if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
7442 		goto abort;
7443 
7444 	return 0;
7445 abort:
7446 	md_unregister_thread(&mddev->thread);
7447 	print_raid5_conf(conf);
7448 	free_conf(conf);
7449 	mddev->private = NULL;
7450 	pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
7451 	return -EIO;
7452 }
7453 
7454 static void raid5_free(struct mddev *mddev, void *priv)
7455 {
7456 	struct r5conf *conf = priv;
7457 
7458 	free_conf(conf);
7459 	mddev->to_remove = &raid5_attrs_group;
7460 }
7461 
7462 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7463 {
7464 	struct r5conf *conf = mddev->private;
7465 	int i;
7466 
7467 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7468 		conf->chunk_sectors / 2, mddev->layout);
7469 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7470 	rcu_read_lock();
7471 	for (i = 0; i < conf->raid_disks; i++) {
7472 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7473 		seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7474 	}
7475 	rcu_read_unlock();
7476 	seq_printf (seq, "]");
7477 }
7478 
7479 static void print_raid5_conf (struct r5conf *conf)
7480 {
7481 	int i;
7482 	struct disk_info *tmp;
7483 
7484 	pr_debug("RAID conf printout:\n");
7485 	if (!conf) {
7486 		pr_debug("(conf==NULL)\n");
7487 		return;
7488 	}
7489 	pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
7490 	       conf->raid_disks,
7491 	       conf->raid_disks - conf->mddev->degraded);
7492 
7493 	for (i = 0; i < conf->raid_disks; i++) {
7494 		char b[BDEVNAME_SIZE];
7495 		tmp = conf->disks + i;
7496 		if (tmp->rdev)
7497 			pr_debug(" disk %d, o:%d, dev:%s\n",
7498 			       i, !test_bit(Faulty, &tmp->rdev->flags),
7499 			       bdevname(tmp->rdev->bdev, b));
7500 	}
7501 }
7502 
7503 static int raid5_spare_active(struct mddev *mddev)
7504 {
7505 	int i;
7506 	struct r5conf *conf = mddev->private;
7507 	struct disk_info *tmp;
7508 	int count = 0;
7509 	unsigned long flags;
7510 
7511 	for (i = 0; i < conf->raid_disks; i++) {
7512 		tmp = conf->disks + i;
7513 		if (tmp->replacement
7514 		    && tmp->replacement->recovery_offset == MaxSector
7515 		    && !test_bit(Faulty, &tmp->replacement->flags)
7516 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7517 			/* Replacement has just become active. */
7518 			if (!tmp->rdev
7519 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7520 				count++;
7521 			if (tmp->rdev) {
7522 				/* Replaced device not technically faulty,
7523 				 * but we need to be sure it gets removed
7524 				 * and never re-added.
7525 				 */
7526 				set_bit(Faulty, &tmp->rdev->flags);
7527 				sysfs_notify_dirent_safe(
7528 					tmp->rdev->sysfs_state);
7529 			}
7530 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7531 		} else if (tmp->rdev
7532 		    && tmp->rdev->recovery_offset == MaxSector
7533 		    && !test_bit(Faulty, &tmp->rdev->flags)
7534 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7535 			count++;
7536 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7537 		}
7538 	}
7539 	spin_lock_irqsave(&conf->device_lock, flags);
7540 	mddev->degraded = raid5_calc_degraded(conf);
7541 	spin_unlock_irqrestore(&conf->device_lock, flags);
7542 	print_raid5_conf(conf);
7543 	return count;
7544 }
7545 
7546 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7547 {
7548 	struct r5conf *conf = mddev->private;
7549 	int err = 0;
7550 	int number = rdev->raid_disk;
7551 	struct md_rdev **rdevp;
7552 	struct disk_info *p = conf->disks + number;
7553 
7554 	print_raid5_conf(conf);
7555 	if (test_bit(Journal, &rdev->flags) && conf->log) {
7556 		/*
7557 		 * we can't wait pending write here, as this is called in
7558 		 * raid5d, wait will deadlock.
7559 		 * neilb: there is no locking about new writes here,
7560 		 * so this cannot be safe.
7561 		 */
7562 		if (atomic_read(&conf->active_stripes) ||
7563 		    atomic_read(&conf->r5c_cached_full_stripes) ||
7564 		    atomic_read(&conf->r5c_cached_partial_stripes)) {
7565 			return -EBUSY;
7566 		}
7567 		log_exit(conf);
7568 		return 0;
7569 	}
7570 	if (rdev == p->rdev)
7571 		rdevp = &p->rdev;
7572 	else if (rdev == p->replacement)
7573 		rdevp = &p->replacement;
7574 	else
7575 		return 0;
7576 
7577 	if (number >= conf->raid_disks &&
7578 	    conf->reshape_progress == MaxSector)
7579 		clear_bit(In_sync, &rdev->flags);
7580 
7581 	if (test_bit(In_sync, &rdev->flags) ||
7582 	    atomic_read(&rdev->nr_pending)) {
7583 		err = -EBUSY;
7584 		goto abort;
7585 	}
7586 	/* Only remove non-faulty devices if recovery
7587 	 * isn't possible.
7588 	 */
7589 	if (!test_bit(Faulty, &rdev->flags) &&
7590 	    mddev->recovery_disabled != conf->recovery_disabled &&
7591 	    !has_failed(conf) &&
7592 	    (!p->replacement || p->replacement == rdev) &&
7593 	    number < conf->raid_disks) {
7594 		err = -EBUSY;
7595 		goto abort;
7596 	}
7597 	*rdevp = NULL;
7598 	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7599 		synchronize_rcu();
7600 		if (atomic_read(&rdev->nr_pending)) {
7601 			/* lost the race, try later */
7602 			err = -EBUSY;
7603 			*rdevp = rdev;
7604 		}
7605 	}
7606 	if (!err) {
7607 		err = log_modify(conf, rdev, false);
7608 		if (err)
7609 			goto abort;
7610 	}
7611 	if (p->replacement) {
7612 		/* We must have just cleared 'rdev' */
7613 		p->rdev = p->replacement;
7614 		clear_bit(Replacement, &p->replacement->flags);
7615 		smp_mb(); /* Make sure other CPUs may see both as identical
7616 			   * but will never see neither - if they are careful
7617 			   */
7618 		p->replacement = NULL;
7619 
7620 		if (!err)
7621 			err = log_modify(conf, p->rdev, true);
7622 	}
7623 
7624 	clear_bit(WantReplacement, &rdev->flags);
7625 abort:
7626 
7627 	print_raid5_conf(conf);
7628 	return err;
7629 }
7630 
7631 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7632 {
7633 	struct r5conf *conf = mddev->private;
7634 	int err = -EEXIST;
7635 	int disk;
7636 	struct disk_info *p;
7637 	int first = 0;
7638 	int last = conf->raid_disks - 1;
7639 
7640 	if (test_bit(Journal, &rdev->flags)) {
7641 		if (conf->log)
7642 			return -EBUSY;
7643 
7644 		rdev->raid_disk = 0;
7645 		/*
7646 		 * The array is in readonly mode if journal is missing, so no
7647 		 * write requests running. We should be safe
7648 		 */
7649 		log_init(conf, rdev, false);
7650 		return 0;
7651 	}
7652 	if (mddev->recovery_disabled == conf->recovery_disabled)
7653 		return -EBUSY;
7654 
7655 	if (rdev->saved_raid_disk < 0 && has_failed(conf))
7656 		/* no point adding a device */
7657 		return -EINVAL;
7658 
7659 	if (rdev->raid_disk >= 0)
7660 		first = last = rdev->raid_disk;
7661 
7662 	/*
7663 	 * find the disk ... but prefer rdev->saved_raid_disk
7664 	 * if possible.
7665 	 */
7666 	if (rdev->saved_raid_disk >= 0 &&
7667 	    rdev->saved_raid_disk >= first &&
7668 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
7669 		first = rdev->saved_raid_disk;
7670 
7671 	for (disk = first; disk <= last; disk++) {
7672 		p = conf->disks + disk;
7673 		if (p->rdev == NULL) {
7674 			clear_bit(In_sync, &rdev->flags);
7675 			rdev->raid_disk = disk;
7676 			if (rdev->saved_raid_disk != disk)
7677 				conf->fullsync = 1;
7678 			rcu_assign_pointer(p->rdev, rdev);
7679 
7680 			err = log_modify(conf, rdev, true);
7681 
7682 			goto out;
7683 		}
7684 	}
7685 	for (disk = first; disk <= last; disk++) {
7686 		p = conf->disks + disk;
7687 		if (test_bit(WantReplacement, &p->rdev->flags) &&
7688 		    p->replacement == NULL) {
7689 			clear_bit(In_sync, &rdev->flags);
7690 			set_bit(Replacement, &rdev->flags);
7691 			rdev->raid_disk = disk;
7692 			err = 0;
7693 			conf->fullsync = 1;
7694 			rcu_assign_pointer(p->replacement, rdev);
7695 			break;
7696 		}
7697 	}
7698 out:
7699 	print_raid5_conf(conf);
7700 	return err;
7701 }
7702 
7703 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7704 {
7705 	/* no resync is happening, and there is enough space
7706 	 * on all devices, so we can resize.
7707 	 * We need to make sure resync covers any new space.
7708 	 * If the array is shrinking we should possibly wait until
7709 	 * any io in the removed space completes, but it hardly seems
7710 	 * worth it.
7711 	 */
7712 	sector_t newsize;
7713 	struct r5conf *conf = mddev->private;
7714 
7715 	if (conf->log || raid5_has_ppl(conf))
7716 		return -EINVAL;
7717 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
7718 	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7719 	if (mddev->external_size &&
7720 	    mddev->array_sectors > newsize)
7721 		return -EINVAL;
7722 	if (mddev->bitmap) {
7723 		int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7724 		if (ret)
7725 			return ret;
7726 	}
7727 	md_set_array_sectors(mddev, newsize);
7728 	if (sectors > mddev->dev_sectors &&
7729 	    mddev->recovery_cp > mddev->dev_sectors) {
7730 		mddev->recovery_cp = mddev->dev_sectors;
7731 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7732 	}
7733 	mddev->dev_sectors = sectors;
7734 	mddev->resync_max_sectors = sectors;
7735 	return 0;
7736 }
7737 
7738 static int check_stripe_cache(struct mddev *mddev)
7739 {
7740 	/* Can only proceed if there are plenty of stripe_heads.
7741 	 * We need a minimum of one full stripe,, and for sensible progress
7742 	 * it is best to have about 4 times that.
7743 	 * If we require 4 times, then the default 256 4K stripe_heads will
7744 	 * allow for chunk sizes up to 256K, which is probably OK.
7745 	 * If the chunk size is greater, user-space should request more
7746 	 * stripe_heads first.
7747 	 */
7748 	struct r5conf *conf = mddev->private;
7749 	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7750 	    > conf->min_nr_stripes ||
7751 	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7752 	    > conf->min_nr_stripes) {
7753 		pr_warn("md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7754 			mdname(mddev),
7755 			((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7756 			 / STRIPE_SIZE)*4);
7757 		return 0;
7758 	}
7759 	return 1;
7760 }
7761 
7762 static int check_reshape(struct mddev *mddev)
7763 {
7764 	struct r5conf *conf = mddev->private;
7765 
7766 	if (conf->log || raid5_has_ppl(conf))
7767 		return -EINVAL;
7768 	if (mddev->delta_disks == 0 &&
7769 	    mddev->new_layout == mddev->layout &&
7770 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
7771 		return 0; /* nothing to do */
7772 	if (has_failed(conf))
7773 		return -EINVAL;
7774 	if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7775 		/* We might be able to shrink, but the devices must
7776 		 * be made bigger first.
7777 		 * For raid6, 4 is the minimum size.
7778 		 * Otherwise 2 is the minimum
7779 		 */
7780 		int min = 2;
7781 		if (mddev->level == 6)
7782 			min = 4;
7783 		if (mddev->raid_disks + mddev->delta_disks < min)
7784 			return -EINVAL;
7785 	}
7786 
7787 	if (!check_stripe_cache(mddev))
7788 		return -ENOSPC;
7789 
7790 	if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7791 	    mddev->delta_disks > 0)
7792 		if (resize_chunks(conf,
7793 				  conf->previous_raid_disks
7794 				  + max(0, mddev->delta_disks),
7795 				  max(mddev->new_chunk_sectors,
7796 				      mddev->chunk_sectors)
7797 			    ) < 0)
7798 			return -ENOMEM;
7799 
7800 	if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
7801 		return 0; /* never bother to shrink */
7802 	return resize_stripes(conf, (conf->previous_raid_disks
7803 				     + mddev->delta_disks));
7804 }
7805 
7806 static int raid5_start_reshape(struct mddev *mddev)
7807 {
7808 	struct r5conf *conf = mddev->private;
7809 	struct md_rdev *rdev;
7810 	int spares = 0;
7811 	unsigned long flags;
7812 
7813 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7814 		return -EBUSY;
7815 
7816 	if (!check_stripe_cache(mddev))
7817 		return -ENOSPC;
7818 
7819 	if (has_failed(conf))
7820 		return -EINVAL;
7821 
7822 	rdev_for_each(rdev, mddev) {
7823 		if (!test_bit(In_sync, &rdev->flags)
7824 		    && !test_bit(Faulty, &rdev->flags))
7825 			spares++;
7826 	}
7827 
7828 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7829 		/* Not enough devices even to make a degraded array
7830 		 * of that size
7831 		 */
7832 		return -EINVAL;
7833 
7834 	/* Refuse to reduce size of the array.  Any reductions in
7835 	 * array size must be through explicit setting of array_size
7836 	 * attribute.
7837 	 */
7838 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7839 	    < mddev->array_sectors) {
7840 		pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
7841 			mdname(mddev));
7842 		return -EINVAL;
7843 	}
7844 
7845 	atomic_set(&conf->reshape_stripes, 0);
7846 	spin_lock_irq(&conf->device_lock);
7847 	write_seqcount_begin(&conf->gen_lock);
7848 	conf->previous_raid_disks = conf->raid_disks;
7849 	conf->raid_disks += mddev->delta_disks;
7850 	conf->prev_chunk_sectors = conf->chunk_sectors;
7851 	conf->chunk_sectors = mddev->new_chunk_sectors;
7852 	conf->prev_algo = conf->algorithm;
7853 	conf->algorithm = mddev->new_layout;
7854 	conf->generation++;
7855 	/* Code that selects data_offset needs to see the generation update
7856 	 * if reshape_progress has been set - so a memory barrier needed.
7857 	 */
7858 	smp_mb();
7859 	if (mddev->reshape_backwards)
7860 		conf->reshape_progress = raid5_size(mddev, 0, 0);
7861 	else
7862 		conf->reshape_progress = 0;
7863 	conf->reshape_safe = conf->reshape_progress;
7864 	write_seqcount_end(&conf->gen_lock);
7865 	spin_unlock_irq(&conf->device_lock);
7866 
7867 	/* Now make sure any requests that proceeded on the assumption
7868 	 * the reshape wasn't running - like Discard or Read - have
7869 	 * completed.
7870 	 */
7871 	mddev_suspend(mddev);
7872 	mddev_resume(mddev);
7873 
7874 	/* Add some new drives, as many as will fit.
7875 	 * We know there are enough to make the newly sized array work.
7876 	 * Don't add devices if we are reducing the number of
7877 	 * devices in the array.  This is because it is not possible
7878 	 * to correctly record the "partially reconstructed" state of
7879 	 * such devices during the reshape and confusion could result.
7880 	 */
7881 	if (mddev->delta_disks >= 0) {
7882 		rdev_for_each(rdev, mddev)
7883 			if (rdev->raid_disk < 0 &&
7884 			    !test_bit(Faulty, &rdev->flags)) {
7885 				if (raid5_add_disk(mddev, rdev) == 0) {
7886 					if (rdev->raid_disk
7887 					    >= conf->previous_raid_disks)
7888 						set_bit(In_sync, &rdev->flags);
7889 					else
7890 						rdev->recovery_offset = 0;
7891 
7892 					if (sysfs_link_rdev(mddev, rdev))
7893 						/* Failure here is OK */;
7894 				}
7895 			} else if (rdev->raid_disk >= conf->previous_raid_disks
7896 				   && !test_bit(Faulty, &rdev->flags)) {
7897 				/* This is a spare that was manually added */
7898 				set_bit(In_sync, &rdev->flags);
7899 			}
7900 
7901 		/* When a reshape changes the number of devices,
7902 		 * ->degraded is measured against the larger of the
7903 		 * pre and post number of devices.
7904 		 */
7905 		spin_lock_irqsave(&conf->device_lock, flags);
7906 		mddev->degraded = raid5_calc_degraded(conf);
7907 		spin_unlock_irqrestore(&conf->device_lock, flags);
7908 	}
7909 	mddev->raid_disks = conf->raid_disks;
7910 	mddev->reshape_position = conf->reshape_progress;
7911 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7912 
7913 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7914 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7915 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7916 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7917 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7918 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7919 						"reshape");
7920 	if (!mddev->sync_thread) {
7921 		mddev->recovery = 0;
7922 		spin_lock_irq(&conf->device_lock);
7923 		write_seqcount_begin(&conf->gen_lock);
7924 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7925 		mddev->new_chunk_sectors =
7926 			conf->chunk_sectors = conf->prev_chunk_sectors;
7927 		mddev->new_layout = conf->algorithm = conf->prev_algo;
7928 		rdev_for_each(rdev, mddev)
7929 			rdev->new_data_offset = rdev->data_offset;
7930 		smp_wmb();
7931 		conf->generation --;
7932 		conf->reshape_progress = MaxSector;
7933 		mddev->reshape_position = MaxSector;
7934 		write_seqcount_end(&conf->gen_lock);
7935 		spin_unlock_irq(&conf->device_lock);
7936 		return -EAGAIN;
7937 	}
7938 	conf->reshape_checkpoint = jiffies;
7939 	md_wakeup_thread(mddev->sync_thread);
7940 	md_new_event(mddev);
7941 	return 0;
7942 }
7943 
7944 /* This is called from the reshape thread and should make any
7945  * changes needed in 'conf'
7946  */
7947 static void end_reshape(struct r5conf *conf)
7948 {
7949 
7950 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7951 
7952 		spin_lock_irq(&conf->device_lock);
7953 		conf->previous_raid_disks = conf->raid_disks;
7954 		md_finish_reshape(conf->mddev);
7955 		smp_wmb();
7956 		conf->reshape_progress = MaxSector;
7957 		conf->mddev->reshape_position = MaxSector;
7958 		spin_unlock_irq(&conf->device_lock);
7959 		wake_up(&conf->wait_for_overlap);
7960 
7961 		/* read-ahead size must cover two whole stripes, which is
7962 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7963 		 */
7964 		if (conf->mddev->queue) {
7965 			int data_disks = conf->raid_disks - conf->max_degraded;
7966 			int stripe = data_disks * ((conf->chunk_sectors << 9)
7967 						   / PAGE_SIZE);
7968 			if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7969 				conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
7970 		}
7971 	}
7972 }
7973 
7974 /* This is called from the raid5d thread with mddev_lock held.
7975  * It makes config changes to the device.
7976  */
7977 static void raid5_finish_reshape(struct mddev *mddev)
7978 {
7979 	struct r5conf *conf = mddev->private;
7980 
7981 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7982 
7983 		if (mddev->delta_disks > 0) {
7984 			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7985 			if (mddev->queue) {
7986 				set_capacity(mddev->gendisk, mddev->array_sectors);
7987 				revalidate_disk(mddev->gendisk);
7988 			}
7989 		} else {
7990 			int d;
7991 			spin_lock_irq(&conf->device_lock);
7992 			mddev->degraded = raid5_calc_degraded(conf);
7993 			spin_unlock_irq(&conf->device_lock);
7994 			for (d = conf->raid_disks ;
7995 			     d < conf->raid_disks - mddev->delta_disks;
7996 			     d++) {
7997 				struct md_rdev *rdev = conf->disks[d].rdev;
7998 				if (rdev)
7999 					clear_bit(In_sync, &rdev->flags);
8000 				rdev = conf->disks[d].replacement;
8001 				if (rdev)
8002 					clear_bit(In_sync, &rdev->flags);
8003 			}
8004 		}
8005 		mddev->layout = conf->algorithm;
8006 		mddev->chunk_sectors = conf->chunk_sectors;
8007 		mddev->reshape_position = MaxSector;
8008 		mddev->delta_disks = 0;
8009 		mddev->reshape_backwards = 0;
8010 	}
8011 }
8012 
8013 static void raid5_quiesce(struct mddev *mddev, int state)
8014 {
8015 	struct r5conf *conf = mddev->private;
8016 
8017 	switch(state) {
8018 	case 2: /* resume for a suspend */
8019 		wake_up(&conf->wait_for_overlap);
8020 		break;
8021 
8022 	case 1: /* stop all writes */
8023 		lock_all_device_hash_locks_irq(conf);
8024 		/* '2' tells resync/reshape to pause so that all
8025 		 * active stripes can drain
8026 		 */
8027 		r5c_flush_cache(conf, INT_MAX);
8028 		conf->quiesce = 2;
8029 		wait_event_cmd(conf->wait_for_quiescent,
8030 				    atomic_read(&conf->active_stripes) == 0 &&
8031 				    atomic_read(&conf->active_aligned_reads) == 0,
8032 				    unlock_all_device_hash_locks_irq(conf),
8033 				    lock_all_device_hash_locks_irq(conf));
8034 		conf->quiesce = 1;
8035 		unlock_all_device_hash_locks_irq(conf);
8036 		/* allow reshape to continue */
8037 		wake_up(&conf->wait_for_overlap);
8038 		break;
8039 
8040 	case 0: /* re-enable writes */
8041 		lock_all_device_hash_locks_irq(conf);
8042 		conf->quiesce = 0;
8043 		wake_up(&conf->wait_for_quiescent);
8044 		wake_up(&conf->wait_for_overlap);
8045 		unlock_all_device_hash_locks_irq(conf);
8046 		break;
8047 	}
8048 	r5l_quiesce(conf->log, state);
8049 }
8050 
8051 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8052 {
8053 	struct r0conf *raid0_conf = mddev->private;
8054 	sector_t sectors;
8055 
8056 	/* for raid0 takeover only one zone is supported */
8057 	if (raid0_conf->nr_strip_zones > 1) {
8058 		pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8059 			mdname(mddev));
8060 		return ERR_PTR(-EINVAL);
8061 	}
8062 
8063 	sectors = raid0_conf->strip_zone[0].zone_end;
8064 	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8065 	mddev->dev_sectors = sectors;
8066 	mddev->new_level = level;
8067 	mddev->new_layout = ALGORITHM_PARITY_N;
8068 	mddev->new_chunk_sectors = mddev->chunk_sectors;
8069 	mddev->raid_disks += 1;
8070 	mddev->delta_disks = 1;
8071 	/* make sure it will be not marked as dirty */
8072 	mddev->recovery_cp = MaxSector;
8073 
8074 	return setup_conf(mddev);
8075 }
8076 
8077 static void *raid5_takeover_raid1(struct mddev *mddev)
8078 {
8079 	int chunksect;
8080 	void *ret;
8081 
8082 	if (mddev->raid_disks != 2 ||
8083 	    mddev->degraded > 1)
8084 		return ERR_PTR(-EINVAL);
8085 
8086 	/* Should check if there are write-behind devices? */
8087 
8088 	chunksect = 64*2; /* 64K by default */
8089 
8090 	/* The array must be an exact multiple of chunksize */
8091 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
8092 		chunksect >>= 1;
8093 
8094 	if ((chunksect<<9) < STRIPE_SIZE)
8095 		/* array size does not allow a suitable chunk size */
8096 		return ERR_PTR(-EINVAL);
8097 
8098 	mddev->new_level = 5;
8099 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8100 	mddev->new_chunk_sectors = chunksect;
8101 
8102 	ret = setup_conf(mddev);
8103 	if (!IS_ERR(ret))
8104 		mddev_clear_unsupported_flags(mddev,
8105 			UNSUPPORTED_MDDEV_FLAGS);
8106 	return ret;
8107 }
8108 
8109 static void *raid5_takeover_raid6(struct mddev *mddev)
8110 {
8111 	int new_layout;
8112 
8113 	switch (mddev->layout) {
8114 	case ALGORITHM_LEFT_ASYMMETRIC_6:
8115 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8116 		break;
8117 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
8118 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8119 		break;
8120 	case ALGORITHM_LEFT_SYMMETRIC_6:
8121 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
8122 		break;
8123 	case ALGORITHM_RIGHT_SYMMETRIC_6:
8124 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8125 		break;
8126 	case ALGORITHM_PARITY_0_6:
8127 		new_layout = ALGORITHM_PARITY_0;
8128 		break;
8129 	case ALGORITHM_PARITY_N:
8130 		new_layout = ALGORITHM_PARITY_N;
8131 		break;
8132 	default:
8133 		return ERR_PTR(-EINVAL);
8134 	}
8135 	mddev->new_level = 5;
8136 	mddev->new_layout = new_layout;
8137 	mddev->delta_disks = -1;
8138 	mddev->raid_disks -= 1;
8139 	return setup_conf(mddev);
8140 }
8141 
8142 static int raid5_check_reshape(struct mddev *mddev)
8143 {
8144 	/* For a 2-drive array, the layout and chunk size can be changed
8145 	 * immediately as not restriping is needed.
8146 	 * For larger arrays we record the new value - after validation
8147 	 * to be used by a reshape pass.
8148 	 */
8149 	struct r5conf *conf = mddev->private;
8150 	int new_chunk = mddev->new_chunk_sectors;
8151 
8152 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8153 		return -EINVAL;
8154 	if (new_chunk > 0) {
8155 		if (!is_power_of_2(new_chunk))
8156 			return -EINVAL;
8157 		if (new_chunk < (PAGE_SIZE>>9))
8158 			return -EINVAL;
8159 		if (mddev->array_sectors & (new_chunk-1))
8160 			/* not factor of array size */
8161 			return -EINVAL;
8162 	}
8163 
8164 	/* They look valid */
8165 
8166 	if (mddev->raid_disks == 2) {
8167 		/* can make the change immediately */
8168 		if (mddev->new_layout >= 0) {
8169 			conf->algorithm = mddev->new_layout;
8170 			mddev->layout = mddev->new_layout;
8171 		}
8172 		if (new_chunk > 0) {
8173 			conf->chunk_sectors = new_chunk ;
8174 			mddev->chunk_sectors = new_chunk;
8175 		}
8176 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8177 		md_wakeup_thread(mddev->thread);
8178 	}
8179 	return check_reshape(mddev);
8180 }
8181 
8182 static int raid6_check_reshape(struct mddev *mddev)
8183 {
8184 	int new_chunk = mddev->new_chunk_sectors;
8185 
8186 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8187 		return -EINVAL;
8188 	if (new_chunk > 0) {
8189 		if (!is_power_of_2(new_chunk))
8190 			return -EINVAL;
8191 		if (new_chunk < (PAGE_SIZE >> 9))
8192 			return -EINVAL;
8193 		if (mddev->array_sectors & (new_chunk-1))
8194 			/* not factor of array size */
8195 			return -EINVAL;
8196 	}
8197 
8198 	/* They look valid */
8199 	return check_reshape(mddev);
8200 }
8201 
8202 static void *raid5_takeover(struct mddev *mddev)
8203 {
8204 	/* raid5 can take over:
8205 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
8206 	 *  raid1 - if there are two drives.  We need to know the chunk size
8207 	 *  raid4 - trivial - just use a raid4 layout.
8208 	 *  raid6 - Providing it is a *_6 layout
8209 	 */
8210 	if (mddev->level == 0)
8211 		return raid45_takeover_raid0(mddev, 5);
8212 	if (mddev->level == 1)
8213 		return raid5_takeover_raid1(mddev);
8214 	if (mddev->level == 4) {
8215 		mddev->new_layout = ALGORITHM_PARITY_N;
8216 		mddev->new_level = 5;
8217 		return setup_conf(mddev);
8218 	}
8219 	if (mddev->level == 6)
8220 		return raid5_takeover_raid6(mddev);
8221 
8222 	return ERR_PTR(-EINVAL);
8223 }
8224 
8225 static void *raid4_takeover(struct mddev *mddev)
8226 {
8227 	/* raid4 can take over:
8228 	 *  raid0 - if there is only one strip zone
8229 	 *  raid5 - if layout is right
8230 	 */
8231 	if (mddev->level == 0)
8232 		return raid45_takeover_raid0(mddev, 4);
8233 	if (mddev->level == 5 &&
8234 	    mddev->layout == ALGORITHM_PARITY_N) {
8235 		mddev->new_layout = 0;
8236 		mddev->new_level = 4;
8237 		return setup_conf(mddev);
8238 	}
8239 	return ERR_PTR(-EINVAL);
8240 }
8241 
8242 static struct md_personality raid5_personality;
8243 
8244 static void *raid6_takeover(struct mddev *mddev)
8245 {
8246 	/* Currently can only take over a raid5.  We map the
8247 	 * personality to an equivalent raid6 personality
8248 	 * with the Q block at the end.
8249 	 */
8250 	int new_layout;
8251 
8252 	if (mddev->pers != &raid5_personality)
8253 		return ERR_PTR(-EINVAL);
8254 	if (mddev->degraded > 1)
8255 		return ERR_PTR(-EINVAL);
8256 	if (mddev->raid_disks > 253)
8257 		return ERR_PTR(-EINVAL);
8258 	if (mddev->raid_disks < 3)
8259 		return ERR_PTR(-EINVAL);
8260 
8261 	switch (mddev->layout) {
8262 	case ALGORITHM_LEFT_ASYMMETRIC:
8263 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8264 		break;
8265 	case ALGORITHM_RIGHT_ASYMMETRIC:
8266 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8267 		break;
8268 	case ALGORITHM_LEFT_SYMMETRIC:
8269 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8270 		break;
8271 	case ALGORITHM_RIGHT_SYMMETRIC:
8272 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8273 		break;
8274 	case ALGORITHM_PARITY_0:
8275 		new_layout = ALGORITHM_PARITY_0_6;
8276 		break;
8277 	case ALGORITHM_PARITY_N:
8278 		new_layout = ALGORITHM_PARITY_N;
8279 		break;
8280 	default:
8281 		return ERR_PTR(-EINVAL);
8282 	}
8283 	mddev->new_level = 6;
8284 	mddev->new_layout = new_layout;
8285 	mddev->delta_disks = 1;
8286 	mddev->raid_disks += 1;
8287 	return setup_conf(mddev);
8288 }
8289 
8290 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8291 {
8292 	struct r5conf *conf;
8293 	int err;
8294 
8295 	err = mddev_lock(mddev);
8296 	if (err)
8297 		return err;
8298 	conf = mddev->private;
8299 	if (!conf) {
8300 		mddev_unlock(mddev);
8301 		return -ENODEV;
8302 	}
8303 
8304 	if (strncmp(buf, "ppl", 3) == 0) {
8305 		/* ppl only works with RAID 5 */
8306 		if (!raid5_has_ppl(conf) && conf->level == 5) {
8307 			err = log_init(conf, NULL, true);
8308 			if (!err) {
8309 				err = resize_stripes(conf, conf->pool_size);
8310 				if (err)
8311 					log_exit(conf);
8312 			}
8313 		} else
8314 			err = -EINVAL;
8315 	} else if (strncmp(buf, "resync", 6) == 0) {
8316 		if (raid5_has_ppl(conf)) {
8317 			mddev_suspend(mddev);
8318 			log_exit(conf);
8319 			mddev_resume(mddev);
8320 			err = resize_stripes(conf, conf->pool_size);
8321 		} else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8322 			   r5l_log_disk_error(conf)) {
8323 			bool journal_dev_exists = false;
8324 			struct md_rdev *rdev;
8325 
8326 			rdev_for_each(rdev, mddev)
8327 				if (test_bit(Journal, &rdev->flags)) {
8328 					journal_dev_exists = true;
8329 					break;
8330 				}
8331 
8332 			if (!journal_dev_exists) {
8333 				mddev_suspend(mddev);
8334 				clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8335 				mddev_resume(mddev);
8336 			} else  /* need remove journal device first */
8337 				err = -EBUSY;
8338 		} else
8339 			err = -EINVAL;
8340 	} else {
8341 		err = -EINVAL;
8342 	}
8343 
8344 	if (!err)
8345 		md_update_sb(mddev, 1);
8346 
8347 	mddev_unlock(mddev);
8348 
8349 	return err;
8350 }
8351 
8352 static struct md_personality raid6_personality =
8353 {
8354 	.name		= "raid6",
8355 	.level		= 6,
8356 	.owner		= THIS_MODULE,
8357 	.make_request	= raid5_make_request,
8358 	.run		= raid5_run,
8359 	.free		= raid5_free,
8360 	.status		= raid5_status,
8361 	.error_handler	= raid5_error,
8362 	.hot_add_disk	= raid5_add_disk,
8363 	.hot_remove_disk= raid5_remove_disk,
8364 	.spare_active	= raid5_spare_active,
8365 	.sync_request	= raid5_sync_request,
8366 	.resize		= raid5_resize,
8367 	.size		= raid5_size,
8368 	.check_reshape	= raid6_check_reshape,
8369 	.start_reshape  = raid5_start_reshape,
8370 	.finish_reshape = raid5_finish_reshape,
8371 	.quiesce	= raid5_quiesce,
8372 	.takeover	= raid6_takeover,
8373 	.congested	= raid5_congested,
8374 	.change_consistency_policy = raid5_change_consistency_policy,
8375 };
8376 static struct md_personality raid5_personality =
8377 {
8378 	.name		= "raid5",
8379 	.level		= 5,
8380 	.owner		= THIS_MODULE,
8381 	.make_request	= raid5_make_request,
8382 	.run		= raid5_run,
8383 	.free		= raid5_free,
8384 	.status		= raid5_status,
8385 	.error_handler	= raid5_error,
8386 	.hot_add_disk	= raid5_add_disk,
8387 	.hot_remove_disk= raid5_remove_disk,
8388 	.spare_active	= raid5_spare_active,
8389 	.sync_request	= raid5_sync_request,
8390 	.resize		= raid5_resize,
8391 	.size		= raid5_size,
8392 	.check_reshape	= raid5_check_reshape,
8393 	.start_reshape  = raid5_start_reshape,
8394 	.finish_reshape = raid5_finish_reshape,
8395 	.quiesce	= raid5_quiesce,
8396 	.takeover	= raid5_takeover,
8397 	.congested	= raid5_congested,
8398 	.change_consistency_policy = raid5_change_consistency_policy,
8399 };
8400 
8401 static struct md_personality raid4_personality =
8402 {
8403 	.name		= "raid4",
8404 	.level		= 4,
8405 	.owner		= THIS_MODULE,
8406 	.make_request	= raid5_make_request,
8407 	.run		= raid5_run,
8408 	.free		= raid5_free,
8409 	.status		= raid5_status,
8410 	.error_handler	= raid5_error,
8411 	.hot_add_disk	= raid5_add_disk,
8412 	.hot_remove_disk= raid5_remove_disk,
8413 	.spare_active	= raid5_spare_active,
8414 	.sync_request	= raid5_sync_request,
8415 	.resize		= raid5_resize,
8416 	.size		= raid5_size,
8417 	.check_reshape	= raid5_check_reshape,
8418 	.start_reshape  = raid5_start_reshape,
8419 	.finish_reshape = raid5_finish_reshape,
8420 	.quiesce	= raid5_quiesce,
8421 	.takeover	= raid4_takeover,
8422 	.congested	= raid5_congested,
8423 	.change_consistency_policy = raid5_change_consistency_policy,
8424 };
8425 
8426 static int __init raid5_init(void)
8427 {
8428 	int ret;
8429 
8430 	raid5_wq = alloc_workqueue("raid5wq",
8431 		WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8432 	if (!raid5_wq)
8433 		return -ENOMEM;
8434 
8435 	ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8436 				      "md/raid5:prepare",
8437 				      raid456_cpu_up_prepare,
8438 				      raid456_cpu_dead);
8439 	if (ret) {
8440 		destroy_workqueue(raid5_wq);
8441 		return ret;
8442 	}
8443 	register_md_personality(&raid6_personality);
8444 	register_md_personality(&raid5_personality);
8445 	register_md_personality(&raid4_personality);
8446 	return 0;
8447 }
8448 
8449 static void raid5_exit(void)
8450 {
8451 	unregister_md_personality(&raid6_personality);
8452 	unregister_md_personality(&raid5_personality);
8453 	unregister_md_personality(&raid4_personality);
8454 	cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
8455 	destroy_workqueue(raid5_wq);
8456 }
8457 
8458 module_init(raid5_init);
8459 module_exit(raid5_exit);
8460 MODULE_LICENSE("GPL");
8461 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8462 MODULE_ALIAS("md-personality-4"); /* RAID5 */
8463 MODULE_ALIAS("md-raid5");
8464 MODULE_ALIAS("md-raid4");
8465 MODULE_ALIAS("md-level-5");
8466 MODULE_ALIAS("md-level-4");
8467 MODULE_ALIAS("md-personality-8"); /* RAID6 */
8468 MODULE_ALIAS("md-raid6");
8469 MODULE_ALIAS("md-level-6");
8470 
8471 /* This used to be two separate modules, they were: */
8472 MODULE_ALIAS("raid5");
8473 MODULE_ALIAS("raid6");
8474