1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid5.c : Multiple Devices driver for Linux 4 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman 5 * Copyright (C) 1999, 2000 Ingo Molnar 6 * Copyright (C) 2002, 2003 H. Peter Anvin 7 * 8 * RAID-4/5/6 management functions. 9 * Thanks to Penguin Computing for making the RAID-6 development possible 10 * by donating a test server! 11 */ 12 13 /* 14 * BITMAP UNPLUGGING: 15 * 16 * The sequencing for updating the bitmap reliably is a little 17 * subtle (and I got it wrong the first time) so it deserves some 18 * explanation. 19 * 20 * We group bitmap updates into batches. Each batch has a number. 21 * We may write out several batches at once, but that isn't very important. 22 * conf->seq_write is the number of the last batch successfully written. 23 * conf->seq_flush is the number of the last batch that was closed to 24 * new additions. 25 * When we discover that we will need to write to any block in a stripe 26 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq 27 * the number of the batch it will be in. This is seq_flush+1. 28 * When we are ready to do a write, if that batch hasn't been written yet, 29 * we plug the array and queue the stripe for later. 30 * When an unplug happens, we increment bm_flush, thus closing the current 31 * batch. 32 * When we notice that bm_flush > bm_write, we write out all pending updates 33 * to the bitmap, and advance bm_write to where bm_flush was. 34 * This may occasionally write a bit out twice, but is sure never to 35 * miss any bits. 36 */ 37 38 #include <linux/blkdev.h> 39 #include <linux/kthread.h> 40 #include <linux/raid/pq.h> 41 #include <linux/async_tx.h> 42 #include <linux/module.h> 43 #include <linux/async.h> 44 #include <linux/seq_file.h> 45 #include <linux/cpu.h> 46 #include <linux/slab.h> 47 #include <linux/ratelimit.h> 48 #include <linux/nodemask.h> 49 50 #include <trace/events/block.h> 51 #include <linux/list_sort.h> 52 53 #include "md.h" 54 #include "raid5.h" 55 #include "raid0.h" 56 #include "md-bitmap.h" 57 #include "raid5-log.h" 58 59 #define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED) 60 61 #define cpu_to_group(cpu) cpu_to_node(cpu) 62 #define ANY_GROUP NUMA_NO_NODE 63 64 static bool devices_handle_discard_safely = false; 65 module_param(devices_handle_discard_safely, bool, 0644); 66 MODULE_PARM_DESC(devices_handle_discard_safely, 67 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions"); 68 static struct workqueue_struct *raid5_wq; 69 70 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect) 71 { 72 int hash = (sect >> RAID5_STRIPE_SHIFT(conf)) & HASH_MASK; 73 return &conf->stripe_hashtbl[hash]; 74 } 75 76 static inline int stripe_hash_locks_hash(struct r5conf *conf, sector_t sect) 77 { 78 return (sect >> RAID5_STRIPE_SHIFT(conf)) & STRIPE_HASH_LOCKS_MASK; 79 } 80 81 static inline void lock_device_hash_lock(struct r5conf *conf, int hash) 82 { 83 spin_lock_irq(conf->hash_locks + hash); 84 spin_lock(&conf->device_lock); 85 } 86 87 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash) 88 { 89 spin_unlock(&conf->device_lock); 90 spin_unlock_irq(conf->hash_locks + hash); 91 } 92 93 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf) 94 { 95 int i; 96 spin_lock_irq(conf->hash_locks); 97 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 98 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks); 99 spin_lock(&conf->device_lock); 100 } 101 102 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf) 103 { 104 int i; 105 spin_unlock(&conf->device_lock); 106 for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--) 107 spin_unlock(conf->hash_locks + i); 108 spin_unlock_irq(conf->hash_locks); 109 } 110 111 /* Find first data disk in a raid6 stripe */ 112 static inline int raid6_d0(struct stripe_head *sh) 113 { 114 if (sh->ddf_layout) 115 /* ddf always start from first device */ 116 return 0; 117 /* md starts just after Q block */ 118 if (sh->qd_idx == sh->disks - 1) 119 return 0; 120 else 121 return sh->qd_idx + 1; 122 } 123 static inline int raid6_next_disk(int disk, int raid_disks) 124 { 125 disk++; 126 return (disk < raid_disks) ? disk : 0; 127 } 128 129 /* When walking through the disks in a raid5, starting at raid6_d0, 130 * We need to map each disk to a 'slot', where the data disks are slot 131 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk 132 * is raid_disks-1. This help does that mapping. 133 */ 134 static int raid6_idx_to_slot(int idx, struct stripe_head *sh, 135 int *count, int syndrome_disks) 136 { 137 int slot = *count; 138 139 if (sh->ddf_layout) 140 (*count)++; 141 if (idx == sh->pd_idx) 142 return syndrome_disks; 143 if (idx == sh->qd_idx) 144 return syndrome_disks + 1; 145 if (!sh->ddf_layout) 146 (*count)++; 147 return slot; 148 } 149 150 static void print_raid5_conf (struct r5conf *conf); 151 152 static int stripe_operations_active(struct stripe_head *sh) 153 { 154 return sh->check_state || sh->reconstruct_state || 155 test_bit(STRIPE_BIOFILL_RUN, &sh->state) || 156 test_bit(STRIPE_COMPUTE_RUN, &sh->state); 157 } 158 159 static bool stripe_is_lowprio(struct stripe_head *sh) 160 { 161 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) || 162 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) && 163 !test_bit(STRIPE_R5C_CACHING, &sh->state); 164 } 165 166 static void raid5_wakeup_stripe_thread(struct stripe_head *sh) 167 { 168 struct r5conf *conf = sh->raid_conf; 169 struct r5worker_group *group; 170 int thread_cnt; 171 int i, cpu = sh->cpu; 172 173 if (!cpu_online(cpu)) { 174 cpu = cpumask_any(cpu_online_mask); 175 sh->cpu = cpu; 176 } 177 178 if (list_empty(&sh->lru)) { 179 struct r5worker_group *group; 180 group = conf->worker_groups + cpu_to_group(cpu); 181 if (stripe_is_lowprio(sh)) 182 list_add_tail(&sh->lru, &group->loprio_list); 183 else 184 list_add_tail(&sh->lru, &group->handle_list); 185 group->stripes_cnt++; 186 sh->group = group; 187 } 188 189 if (conf->worker_cnt_per_group == 0) { 190 md_wakeup_thread(conf->mddev->thread); 191 return; 192 } 193 194 group = conf->worker_groups + cpu_to_group(sh->cpu); 195 196 group->workers[0].working = true; 197 /* at least one worker should run to avoid race */ 198 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work); 199 200 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1; 201 /* wakeup more workers */ 202 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) { 203 if (group->workers[i].working == false) { 204 group->workers[i].working = true; 205 queue_work_on(sh->cpu, raid5_wq, 206 &group->workers[i].work); 207 thread_cnt--; 208 } 209 } 210 } 211 212 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh, 213 struct list_head *temp_inactive_list) 214 { 215 int i; 216 int injournal = 0; /* number of date pages with R5_InJournal */ 217 218 BUG_ON(!list_empty(&sh->lru)); 219 BUG_ON(atomic_read(&conf->active_stripes)==0); 220 221 if (r5c_is_writeback(conf->log)) 222 for (i = sh->disks; i--; ) 223 if (test_bit(R5_InJournal, &sh->dev[i].flags)) 224 injournal++; 225 /* 226 * In the following cases, the stripe cannot be released to cached 227 * lists. Therefore, we make the stripe write out and set 228 * STRIPE_HANDLE: 229 * 1. when quiesce in r5c write back; 230 * 2. when resync is requested fot the stripe. 231 */ 232 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) || 233 (conf->quiesce && r5c_is_writeback(conf->log) && 234 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) { 235 if (test_bit(STRIPE_R5C_CACHING, &sh->state)) 236 r5c_make_stripe_write_out(sh); 237 set_bit(STRIPE_HANDLE, &sh->state); 238 } 239 240 if (test_bit(STRIPE_HANDLE, &sh->state)) { 241 if (test_bit(STRIPE_DELAYED, &sh->state) && 242 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 243 list_add_tail(&sh->lru, &conf->delayed_list); 244 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) && 245 sh->bm_seq - conf->seq_write > 0) 246 list_add_tail(&sh->lru, &conf->bitmap_list); 247 else { 248 clear_bit(STRIPE_DELAYED, &sh->state); 249 clear_bit(STRIPE_BIT_DELAY, &sh->state); 250 if (conf->worker_cnt_per_group == 0) { 251 if (stripe_is_lowprio(sh)) 252 list_add_tail(&sh->lru, 253 &conf->loprio_list); 254 else 255 list_add_tail(&sh->lru, 256 &conf->handle_list); 257 } else { 258 raid5_wakeup_stripe_thread(sh); 259 return; 260 } 261 } 262 md_wakeup_thread(conf->mddev->thread); 263 } else { 264 BUG_ON(stripe_operations_active(sh)); 265 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 266 if (atomic_dec_return(&conf->preread_active_stripes) 267 < IO_THRESHOLD) 268 md_wakeup_thread(conf->mddev->thread); 269 atomic_dec(&conf->active_stripes); 270 if (!test_bit(STRIPE_EXPANDING, &sh->state)) { 271 if (!r5c_is_writeback(conf->log)) 272 list_add_tail(&sh->lru, temp_inactive_list); 273 else { 274 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags)); 275 if (injournal == 0) 276 list_add_tail(&sh->lru, temp_inactive_list); 277 else if (injournal == conf->raid_disks - conf->max_degraded) { 278 /* full stripe */ 279 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) 280 atomic_inc(&conf->r5c_cached_full_stripes); 281 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) 282 atomic_dec(&conf->r5c_cached_partial_stripes); 283 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list); 284 r5c_check_cached_full_stripe(conf); 285 } else 286 /* 287 * STRIPE_R5C_PARTIAL_STRIPE is set in 288 * r5c_try_caching_write(). No need to 289 * set it again. 290 */ 291 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list); 292 } 293 } 294 } 295 } 296 297 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh, 298 struct list_head *temp_inactive_list) 299 { 300 if (atomic_dec_and_test(&sh->count)) 301 do_release_stripe(conf, sh, temp_inactive_list); 302 } 303 304 /* 305 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list 306 * 307 * Be careful: Only one task can add/delete stripes from temp_inactive_list at 308 * given time. Adding stripes only takes device lock, while deleting stripes 309 * only takes hash lock. 310 */ 311 static void release_inactive_stripe_list(struct r5conf *conf, 312 struct list_head *temp_inactive_list, 313 int hash) 314 { 315 int size; 316 bool do_wakeup = false; 317 unsigned long flags; 318 319 if (hash == NR_STRIPE_HASH_LOCKS) { 320 size = NR_STRIPE_HASH_LOCKS; 321 hash = NR_STRIPE_HASH_LOCKS - 1; 322 } else 323 size = 1; 324 while (size) { 325 struct list_head *list = &temp_inactive_list[size - 1]; 326 327 /* 328 * We don't hold any lock here yet, raid5_get_active_stripe() might 329 * remove stripes from the list 330 */ 331 if (!list_empty_careful(list)) { 332 spin_lock_irqsave(conf->hash_locks + hash, flags); 333 if (list_empty(conf->inactive_list + hash) && 334 !list_empty(list)) 335 atomic_dec(&conf->empty_inactive_list_nr); 336 list_splice_tail_init(list, conf->inactive_list + hash); 337 do_wakeup = true; 338 spin_unlock_irqrestore(conf->hash_locks + hash, flags); 339 } 340 size--; 341 hash--; 342 } 343 344 if (do_wakeup) { 345 wake_up(&conf->wait_for_stripe); 346 if (atomic_read(&conf->active_stripes) == 0) 347 wake_up(&conf->wait_for_quiescent); 348 if (conf->retry_read_aligned) 349 md_wakeup_thread(conf->mddev->thread); 350 } 351 } 352 353 /* should hold conf->device_lock already */ 354 static int release_stripe_list(struct r5conf *conf, 355 struct list_head *temp_inactive_list) 356 { 357 struct stripe_head *sh, *t; 358 int count = 0; 359 struct llist_node *head; 360 361 head = llist_del_all(&conf->released_stripes); 362 head = llist_reverse_order(head); 363 llist_for_each_entry_safe(sh, t, head, release_list) { 364 int hash; 365 366 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */ 367 smp_mb(); 368 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state); 369 /* 370 * Don't worry the bit is set here, because if the bit is set 371 * again, the count is always > 1. This is true for 372 * STRIPE_ON_UNPLUG_LIST bit too. 373 */ 374 hash = sh->hash_lock_index; 375 __release_stripe(conf, sh, &temp_inactive_list[hash]); 376 count++; 377 } 378 379 return count; 380 } 381 382 void raid5_release_stripe(struct stripe_head *sh) 383 { 384 struct r5conf *conf = sh->raid_conf; 385 unsigned long flags; 386 struct list_head list; 387 int hash; 388 bool wakeup; 389 390 /* Avoid release_list until the last reference. 391 */ 392 if (atomic_add_unless(&sh->count, -1, 1)) 393 return; 394 395 if (unlikely(!conf->mddev->thread) || 396 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state)) 397 goto slow_path; 398 wakeup = llist_add(&sh->release_list, &conf->released_stripes); 399 if (wakeup) 400 md_wakeup_thread(conf->mddev->thread); 401 return; 402 slow_path: 403 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */ 404 if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) { 405 INIT_LIST_HEAD(&list); 406 hash = sh->hash_lock_index; 407 do_release_stripe(conf, sh, &list); 408 spin_unlock_irqrestore(&conf->device_lock, flags); 409 release_inactive_stripe_list(conf, &list, hash); 410 } 411 } 412 413 static inline void remove_hash(struct stripe_head *sh) 414 { 415 pr_debug("remove_hash(), stripe %llu\n", 416 (unsigned long long)sh->sector); 417 418 hlist_del_init(&sh->hash); 419 } 420 421 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh) 422 { 423 struct hlist_head *hp = stripe_hash(conf, sh->sector); 424 425 pr_debug("insert_hash(), stripe %llu\n", 426 (unsigned long long)sh->sector); 427 428 hlist_add_head(&sh->hash, hp); 429 } 430 431 /* find an idle stripe, make sure it is unhashed, and return it. */ 432 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash) 433 { 434 struct stripe_head *sh = NULL; 435 struct list_head *first; 436 437 if (list_empty(conf->inactive_list + hash)) 438 goto out; 439 first = (conf->inactive_list + hash)->next; 440 sh = list_entry(first, struct stripe_head, lru); 441 list_del_init(first); 442 remove_hash(sh); 443 atomic_inc(&conf->active_stripes); 444 BUG_ON(hash != sh->hash_lock_index); 445 if (list_empty(conf->inactive_list + hash)) 446 atomic_inc(&conf->empty_inactive_list_nr); 447 out: 448 return sh; 449 } 450 451 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 452 static void free_stripe_pages(struct stripe_head *sh) 453 { 454 int i; 455 struct page *p; 456 457 /* Have not allocate page pool */ 458 if (!sh->pages) 459 return; 460 461 for (i = 0; i < sh->nr_pages; i++) { 462 p = sh->pages[i]; 463 if (p) 464 put_page(p); 465 sh->pages[i] = NULL; 466 } 467 } 468 469 static int alloc_stripe_pages(struct stripe_head *sh, gfp_t gfp) 470 { 471 int i; 472 struct page *p; 473 474 for (i = 0; i < sh->nr_pages; i++) { 475 /* The page have allocated. */ 476 if (sh->pages[i]) 477 continue; 478 479 p = alloc_page(gfp); 480 if (!p) { 481 free_stripe_pages(sh); 482 return -ENOMEM; 483 } 484 sh->pages[i] = p; 485 } 486 return 0; 487 } 488 489 static int 490 init_stripe_shared_pages(struct stripe_head *sh, struct r5conf *conf, int disks) 491 { 492 int nr_pages, cnt; 493 494 if (sh->pages) 495 return 0; 496 497 /* Each of the sh->dev[i] need one conf->stripe_size */ 498 cnt = PAGE_SIZE / conf->stripe_size; 499 nr_pages = (disks + cnt - 1) / cnt; 500 501 sh->pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL); 502 if (!sh->pages) 503 return -ENOMEM; 504 sh->nr_pages = nr_pages; 505 sh->stripes_per_page = cnt; 506 return 0; 507 } 508 #endif 509 510 static void shrink_buffers(struct stripe_head *sh) 511 { 512 int i; 513 int num = sh->raid_conf->pool_size; 514 515 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE 516 for (i = 0; i < num ; i++) { 517 struct page *p; 518 519 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page); 520 p = sh->dev[i].page; 521 if (!p) 522 continue; 523 sh->dev[i].page = NULL; 524 put_page(p); 525 } 526 #else 527 for (i = 0; i < num; i++) 528 sh->dev[i].page = NULL; 529 free_stripe_pages(sh); /* Free pages */ 530 #endif 531 } 532 533 static int grow_buffers(struct stripe_head *sh, gfp_t gfp) 534 { 535 int i; 536 int num = sh->raid_conf->pool_size; 537 538 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE 539 for (i = 0; i < num; i++) { 540 struct page *page; 541 542 if (!(page = alloc_page(gfp))) { 543 return 1; 544 } 545 sh->dev[i].page = page; 546 sh->dev[i].orig_page = page; 547 sh->dev[i].offset = 0; 548 } 549 #else 550 if (alloc_stripe_pages(sh, gfp)) 551 return -ENOMEM; 552 553 for (i = 0; i < num; i++) { 554 sh->dev[i].page = raid5_get_dev_page(sh, i); 555 sh->dev[i].orig_page = sh->dev[i].page; 556 sh->dev[i].offset = raid5_get_page_offset(sh, i); 557 } 558 #endif 559 return 0; 560 } 561 562 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 563 struct stripe_head *sh); 564 565 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous) 566 { 567 struct r5conf *conf = sh->raid_conf; 568 int i, seq; 569 570 BUG_ON(atomic_read(&sh->count) != 0); 571 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); 572 BUG_ON(stripe_operations_active(sh)); 573 BUG_ON(sh->batch_head); 574 575 pr_debug("init_stripe called, stripe %llu\n", 576 (unsigned long long)sector); 577 retry: 578 seq = read_seqcount_begin(&conf->gen_lock); 579 sh->generation = conf->generation - previous; 580 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks; 581 sh->sector = sector; 582 stripe_set_idx(sector, conf, previous, sh); 583 sh->state = 0; 584 585 for (i = sh->disks; i--; ) { 586 struct r5dev *dev = &sh->dev[i]; 587 588 if (dev->toread || dev->read || dev->towrite || dev->written || 589 test_bit(R5_LOCKED, &dev->flags)) { 590 pr_err("sector=%llx i=%d %p %p %p %p %d\n", 591 (unsigned long long)sh->sector, i, dev->toread, 592 dev->read, dev->towrite, dev->written, 593 test_bit(R5_LOCKED, &dev->flags)); 594 WARN_ON(1); 595 } 596 dev->flags = 0; 597 dev->sector = raid5_compute_blocknr(sh, i, previous); 598 } 599 if (read_seqcount_retry(&conf->gen_lock, seq)) 600 goto retry; 601 sh->overwrite_disks = 0; 602 insert_hash(conf, sh); 603 sh->cpu = smp_processor_id(); 604 set_bit(STRIPE_BATCH_READY, &sh->state); 605 } 606 607 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector, 608 short generation) 609 { 610 struct stripe_head *sh; 611 612 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector); 613 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash) 614 if (sh->sector == sector && sh->generation == generation) 615 return sh; 616 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector); 617 return NULL; 618 } 619 620 /* 621 * Need to check if array has failed when deciding whether to: 622 * - start an array 623 * - remove non-faulty devices 624 * - add a spare 625 * - allow a reshape 626 * This determination is simple when no reshape is happening. 627 * However if there is a reshape, we need to carefully check 628 * both the before and after sections. 629 * This is because some failed devices may only affect one 630 * of the two sections, and some non-in_sync devices may 631 * be insync in the section most affected by failed devices. 632 */ 633 int raid5_calc_degraded(struct r5conf *conf) 634 { 635 int degraded, degraded2; 636 int i; 637 638 rcu_read_lock(); 639 degraded = 0; 640 for (i = 0; i < conf->previous_raid_disks; i++) { 641 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 642 if (rdev && test_bit(Faulty, &rdev->flags)) 643 rdev = rcu_dereference(conf->disks[i].replacement); 644 if (!rdev || test_bit(Faulty, &rdev->flags)) 645 degraded++; 646 else if (test_bit(In_sync, &rdev->flags)) 647 ; 648 else 649 /* not in-sync or faulty. 650 * If the reshape increases the number of devices, 651 * this is being recovered by the reshape, so 652 * this 'previous' section is not in_sync. 653 * If the number of devices is being reduced however, 654 * the device can only be part of the array if 655 * we are reverting a reshape, so this section will 656 * be in-sync. 657 */ 658 if (conf->raid_disks >= conf->previous_raid_disks) 659 degraded++; 660 } 661 rcu_read_unlock(); 662 if (conf->raid_disks == conf->previous_raid_disks) 663 return degraded; 664 rcu_read_lock(); 665 degraded2 = 0; 666 for (i = 0; i < conf->raid_disks; i++) { 667 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 668 if (rdev && test_bit(Faulty, &rdev->flags)) 669 rdev = rcu_dereference(conf->disks[i].replacement); 670 if (!rdev || test_bit(Faulty, &rdev->flags)) 671 degraded2++; 672 else if (test_bit(In_sync, &rdev->flags)) 673 ; 674 else 675 /* not in-sync or faulty. 676 * If reshape increases the number of devices, this 677 * section has already been recovered, else it 678 * almost certainly hasn't. 679 */ 680 if (conf->raid_disks <= conf->previous_raid_disks) 681 degraded2++; 682 } 683 rcu_read_unlock(); 684 if (degraded2 > degraded) 685 return degraded2; 686 return degraded; 687 } 688 689 static int has_failed(struct r5conf *conf) 690 { 691 int degraded; 692 693 if (conf->mddev->reshape_position == MaxSector) 694 return conf->mddev->degraded > conf->max_degraded; 695 696 degraded = raid5_calc_degraded(conf); 697 if (degraded > conf->max_degraded) 698 return 1; 699 return 0; 700 } 701 702 struct stripe_head * 703 raid5_get_active_stripe(struct r5conf *conf, sector_t sector, 704 int previous, int noblock, int noquiesce) 705 { 706 struct stripe_head *sh; 707 int hash = stripe_hash_locks_hash(conf, sector); 708 int inc_empty_inactive_list_flag; 709 710 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector); 711 712 spin_lock_irq(conf->hash_locks + hash); 713 714 do { 715 wait_event_lock_irq(conf->wait_for_quiescent, 716 conf->quiesce == 0 || noquiesce, 717 *(conf->hash_locks + hash)); 718 sh = __find_stripe(conf, sector, conf->generation - previous); 719 if (!sh) { 720 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) { 721 sh = get_free_stripe(conf, hash); 722 if (!sh && !test_bit(R5_DID_ALLOC, 723 &conf->cache_state)) 724 set_bit(R5_ALLOC_MORE, 725 &conf->cache_state); 726 } 727 if (noblock && sh == NULL) 728 break; 729 730 r5c_check_stripe_cache_usage(conf); 731 if (!sh) { 732 set_bit(R5_INACTIVE_BLOCKED, 733 &conf->cache_state); 734 r5l_wake_reclaim(conf->log, 0); 735 wait_event_lock_irq( 736 conf->wait_for_stripe, 737 !list_empty(conf->inactive_list + hash) && 738 (atomic_read(&conf->active_stripes) 739 < (conf->max_nr_stripes * 3 / 4) 740 || !test_bit(R5_INACTIVE_BLOCKED, 741 &conf->cache_state)), 742 *(conf->hash_locks + hash)); 743 clear_bit(R5_INACTIVE_BLOCKED, 744 &conf->cache_state); 745 } else { 746 init_stripe(sh, sector, previous); 747 atomic_inc(&sh->count); 748 } 749 } else if (!atomic_inc_not_zero(&sh->count)) { 750 spin_lock(&conf->device_lock); 751 if (!atomic_read(&sh->count)) { 752 if (!test_bit(STRIPE_HANDLE, &sh->state)) 753 atomic_inc(&conf->active_stripes); 754 BUG_ON(list_empty(&sh->lru) && 755 !test_bit(STRIPE_EXPANDING, &sh->state)); 756 inc_empty_inactive_list_flag = 0; 757 if (!list_empty(conf->inactive_list + hash)) 758 inc_empty_inactive_list_flag = 1; 759 list_del_init(&sh->lru); 760 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag) 761 atomic_inc(&conf->empty_inactive_list_nr); 762 if (sh->group) { 763 sh->group->stripes_cnt--; 764 sh->group = NULL; 765 } 766 } 767 atomic_inc(&sh->count); 768 spin_unlock(&conf->device_lock); 769 } 770 } while (sh == NULL); 771 772 spin_unlock_irq(conf->hash_locks + hash); 773 return sh; 774 } 775 776 static bool is_full_stripe_write(struct stripe_head *sh) 777 { 778 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded)); 779 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded); 780 } 781 782 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) 783 __acquires(&sh1->stripe_lock) 784 __acquires(&sh2->stripe_lock) 785 { 786 if (sh1 > sh2) { 787 spin_lock_irq(&sh2->stripe_lock); 788 spin_lock_nested(&sh1->stripe_lock, 1); 789 } else { 790 spin_lock_irq(&sh1->stripe_lock); 791 spin_lock_nested(&sh2->stripe_lock, 1); 792 } 793 } 794 795 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) 796 __releases(&sh1->stripe_lock) 797 __releases(&sh2->stripe_lock) 798 { 799 spin_unlock(&sh1->stripe_lock); 800 spin_unlock_irq(&sh2->stripe_lock); 801 } 802 803 /* Only freshly new full stripe normal write stripe can be added to a batch list */ 804 static bool stripe_can_batch(struct stripe_head *sh) 805 { 806 struct r5conf *conf = sh->raid_conf; 807 808 if (raid5_has_log(conf) || raid5_has_ppl(conf)) 809 return false; 810 return test_bit(STRIPE_BATCH_READY, &sh->state) && 811 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) && 812 is_full_stripe_write(sh); 813 } 814 815 /* we only do back search */ 816 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh) 817 { 818 struct stripe_head *head; 819 sector_t head_sector, tmp_sec; 820 int hash; 821 int dd_idx; 822 int inc_empty_inactive_list_flag; 823 824 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */ 825 tmp_sec = sh->sector; 826 if (!sector_div(tmp_sec, conf->chunk_sectors)) 827 return; 828 head_sector = sh->sector - RAID5_STRIPE_SECTORS(conf); 829 830 hash = stripe_hash_locks_hash(conf, head_sector); 831 spin_lock_irq(conf->hash_locks + hash); 832 head = __find_stripe(conf, head_sector, conf->generation); 833 if (head && !atomic_inc_not_zero(&head->count)) { 834 spin_lock(&conf->device_lock); 835 if (!atomic_read(&head->count)) { 836 if (!test_bit(STRIPE_HANDLE, &head->state)) 837 atomic_inc(&conf->active_stripes); 838 BUG_ON(list_empty(&head->lru) && 839 !test_bit(STRIPE_EXPANDING, &head->state)); 840 inc_empty_inactive_list_flag = 0; 841 if (!list_empty(conf->inactive_list + hash)) 842 inc_empty_inactive_list_flag = 1; 843 list_del_init(&head->lru); 844 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag) 845 atomic_inc(&conf->empty_inactive_list_nr); 846 if (head->group) { 847 head->group->stripes_cnt--; 848 head->group = NULL; 849 } 850 } 851 atomic_inc(&head->count); 852 spin_unlock(&conf->device_lock); 853 } 854 spin_unlock_irq(conf->hash_locks + hash); 855 856 if (!head) 857 return; 858 if (!stripe_can_batch(head)) 859 goto out; 860 861 lock_two_stripes(head, sh); 862 /* clear_batch_ready clear the flag */ 863 if (!stripe_can_batch(head) || !stripe_can_batch(sh)) 864 goto unlock_out; 865 866 if (sh->batch_head) 867 goto unlock_out; 868 869 dd_idx = 0; 870 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx) 871 dd_idx++; 872 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf || 873 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite)) 874 goto unlock_out; 875 876 if (head->batch_head) { 877 spin_lock(&head->batch_head->batch_lock); 878 /* This batch list is already running */ 879 if (!stripe_can_batch(head)) { 880 spin_unlock(&head->batch_head->batch_lock); 881 goto unlock_out; 882 } 883 /* 884 * We must assign batch_head of this stripe within the 885 * batch_lock, otherwise clear_batch_ready of batch head 886 * stripe could clear BATCH_READY bit of this stripe and 887 * this stripe->batch_head doesn't get assigned, which 888 * could confuse clear_batch_ready for this stripe 889 */ 890 sh->batch_head = head->batch_head; 891 892 /* 893 * at this point, head's BATCH_READY could be cleared, but we 894 * can still add the stripe to batch list 895 */ 896 list_add(&sh->batch_list, &head->batch_list); 897 spin_unlock(&head->batch_head->batch_lock); 898 } else { 899 head->batch_head = head; 900 sh->batch_head = head->batch_head; 901 spin_lock(&head->batch_lock); 902 list_add_tail(&sh->batch_list, &head->batch_list); 903 spin_unlock(&head->batch_lock); 904 } 905 906 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 907 if (atomic_dec_return(&conf->preread_active_stripes) 908 < IO_THRESHOLD) 909 md_wakeup_thread(conf->mddev->thread); 910 911 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) { 912 int seq = sh->bm_seq; 913 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) && 914 sh->batch_head->bm_seq > seq) 915 seq = sh->batch_head->bm_seq; 916 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state); 917 sh->batch_head->bm_seq = seq; 918 } 919 920 atomic_inc(&sh->count); 921 unlock_out: 922 unlock_two_stripes(head, sh); 923 out: 924 raid5_release_stripe(head); 925 } 926 927 /* Determine if 'data_offset' or 'new_data_offset' should be used 928 * in this stripe_head. 929 */ 930 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh) 931 { 932 sector_t progress = conf->reshape_progress; 933 /* Need a memory barrier to make sure we see the value 934 * of conf->generation, or ->data_offset that was set before 935 * reshape_progress was updated. 936 */ 937 smp_rmb(); 938 if (progress == MaxSector) 939 return 0; 940 if (sh->generation == conf->generation - 1) 941 return 0; 942 /* We are in a reshape, and this is a new-generation stripe, 943 * so use new_data_offset. 944 */ 945 return 1; 946 } 947 948 static void dispatch_bio_list(struct bio_list *tmp) 949 { 950 struct bio *bio; 951 952 while ((bio = bio_list_pop(tmp))) 953 submit_bio_noacct(bio); 954 } 955 956 static int cmp_stripe(void *priv, const struct list_head *a, 957 const struct list_head *b) 958 { 959 const struct r5pending_data *da = list_entry(a, 960 struct r5pending_data, sibling); 961 const struct r5pending_data *db = list_entry(b, 962 struct r5pending_data, sibling); 963 if (da->sector > db->sector) 964 return 1; 965 if (da->sector < db->sector) 966 return -1; 967 return 0; 968 } 969 970 static void dispatch_defer_bios(struct r5conf *conf, int target, 971 struct bio_list *list) 972 { 973 struct r5pending_data *data; 974 struct list_head *first, *next = NULL; 975 int cnt = 0; 976 977 if (conf->pending_data_cnt == 0) 978 return; 979 980 list_sort(NULL, &conf->pending_list, cmp_stripe); 981 982 first = conf->pending_list.next; 983 984 /* temporarily move the head */ 985 if (conf->next_pending_data) 986 list_move_tail(&conf->pending_list, 987 &conf->next_pending_data->sibling); 988 989 while (!list_empty(&conf->pending_list)) { 990 data = list_first_entry(&conf->pending_list, 991 struct r5pending_data, sibling); 992 if (&data->sibling == first) 993 first = data->sibling.next; 994 next = data->sibling.next; 995 996 bio_list_merge(list, &data->bios); 997 list_move(&data->sibling, &conf->free_list); 998 cnt++; 999 if (cnt >= target) 1000 break; 1001 } 1002 conf->pending_data_cnt -= cnt; 1003 BUG_ON(conf->pending_data_cnt < 0 || cnt < target); 1004 1005 if (next != &conf->pending_list) 1006 conf->next_pending_data = list_entry(next, 1007 struct r5pending_data, sibling); 1008 else 1009 conf->next_pending_data = NULL; 1010 /* list isn't empty */ 1011 if (first != &conf->pending_list) 1012 list_move_tail(&conf->pending_list, first); 1013 } 1014 1015 static void flush_deferred_bios(struct r5conf *conf) 1016 { 1017 struct bio_list tmp = BIO_EMPTY_LIST; 1018 1019 if (conf->pending_data_cnt == 0) 1020 return; 1021 1022 spin_lock(&conf->pending_bios_lock); 1023 dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp); 1024 BUG_ON(conf->pending_data_cnt != 0); 1025 spin_unlock(&conf->pending_bios_lock); 1026 1027 dispatch_bio_list(&tmp); 1028 } 1029 1030 static void defer_issue_bios(struct r5conf *conf, sector_t sector, 1031 struct bio_list *bios) 1032 { 1033 struct bio_list tmp = BIO_EMPTY_LIST; 1034 struct r5pending_data *ent; 1035 1036 spin_lock(&conf->pending_bios_lock); 1037 ent = list_first_entry(&conf->free_list, struct r5pending_data, 1038 sibling); 1039 list_move_tail(&ent->sibling, &conf->pending_list); 1040 ent->sector = sector; 1041 bio_list_init(&ent->bios); 1042 bio_list_merge(&ent->bios, bios); 1043 conf->pending_data_cnt++; 1044 if (conf->pending_data_cnt >= PENDING_IO_MAX) 1045 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp); 1046 1047 spin_unlock(&conf->pending_bios_lock); 1048 1049 dispatch_bio_list(&tmp); 1050 } 1051 1052 static void 1053 raid5_end_read_request(struct bio *bi); 1054 static void 1055 raid5_end_write_request(struct bio *bi); 1056 1057 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s) 1058 { 1059 struct r5conf *conf = sh->raid_conf; 1060 int i, disks = sh->disks; 1061 struct stripe_head *head_sh = sh; 1062 struct bio_list pending_bios = BIO_EMPTY_LIST; 1063 bool should_defer; 1064 1065 might_sleep(); 1066 1067 if (log_stripe(sh, s) == 0) 1068 return; 1069 1070 should_defer = conf->batch_bio_dispatch && conf->group_cnt; 1071 1072 for (i = disks; i--; ) { 1073 int op, op_flags = 0; 1074 int replace_only = 0; 1075 struct bio *bi, *rbi; 1076 struct md_rdev *rdev, *rrdev = NULL; 1077 1078 sh = head_sh; 1079 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) { 1080 op = REQ_OP_WRITE; 1081 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags)) 1082 op_flags = REQ_FUA; 1083 if (test_bit(R5_Discard, &sh->dev[i].flags)) 1084 op = REQ_OP_DISCARD; 1085 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags)) 1086 op = REQ_OP_READ; 1087 else if (test_and_clear_bit(R5_WantReplace, 1088 &sh->dev[i].flags)) { 1089 op = REQ_OP_WRITE; 1090 replace_only = 1; 1091 } else 1092 continue; 1093 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags)) 1094 op_flags |= REQ_SYNC; 1095 1096 again: 1097 bi = &sh->dev[i].req; 1098 rbi = &sh->dev[i].rreq; /* For writing to replacement */ 1099 1100 rcu_read_lock(); 1101 rrdev = rcu_dereference(conf->disks[i].replacement); 1102 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */ 1103 rdev = rcu_dereference(conf->disks[i].rdev); 1104 if (!rdev) { 1105 rdev = rrdev; 1106 rrdev = NULL; 1107 } 1108 if (op_is_write(op)) { 1109 if (replace_only) 1110 rdev = NULL; 1111 if (rdev == rrdev) 1112 /* We raced and saw duplicates */ 1113 rrdev = NULL; 1114 } else { 1115 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev) 1116 rdev = rrdev; 1117 rrdev = NULL; 1118 } 1119 1120 if (rdev && test_bit(Faulty, &rdev->flags)) 1121 rdev = NULL; 1122 if (rdev) 1123 atomic_inc(&rdev->nr_pending); 1124 if (rrdev && test_bit(Faulty, &rrdev->flags)) 1125 rrdev = NULL; 1126 if (rrdev) 1127 atomic_inc(&rrdev->nr_pending); 1128 rcu_read_unlock(); 1129 1130 /* We have already checked bad blocks for reads. Now 1131 * need to check for writes. We never accept write errors 1132 * on the replacement, so we don't to check rrdev. 1133 */ 1134 while (op_is_write(op) && rdev && 1135 test_bit(WriteErrorSeen, &rdev->flags)) { 1136 sector_t first_bad; 1137 int bad_sectors; 1138 int bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 1139 &first_bad, &bad_sectors); 1140 if (!bad) 1141 break; 1142 1143 if (bad < 0) { 1144 set_bit(BlockedBadBlocks, &rdev->flags); 1145 if (!conf->mddev->external && 1146 conf->mddev->sb_flags) { 1147 /* It is very unlikely, but we might 1148 * still need to write out the 1149 * bad block log - better give it 1150 * a chance*/ 1151 md_check_recovery(conf->mddev); 1152 } 1153 /* 1154 * Because md_wait_for_blocked_rdev 1155 * will dec nr_pending, we must 1156 * increment it first. 1157 */ 1158 atomic_inc(&rdev->nr_pending); 1159 md_wait_for_blocked_rdev(rdev, conf->mddev); 1160 } else { 1161 /* Acknowledged bad block - skip the write */ 1162 rdev_dec_pending(rdev, conf->mddev); 1163 rdev = NULL; 1164 } 1165 } 1166 1167 if (rdev) { 1168 if (s->syncing || s->expanding || s->expanded 1169 || s->replacing) 1170 md_sync_acct(rdev->bdev, RAID5_STRIPE_SECTORS(conf)); 1171 1172 set_bit(STRIPE_IO_STARTED, &sh->state); 1173 1174 bio_set_dev(bi, rdev->bdev); 1175 bio_set_op_attrs(bi, op, op_flags); 1176 bi->bi_end_io = op_is_write(op) 1177 ? raid5_end_write_request 1178 : raid5_end_read_request; 1179 bi->bi_private = sh; 1180 1181 pr_debug("%s: for %llu schedule op %d on disc %d\n", 1182 __func__, (unsigned long long)sh->sector, 1183 bi->bi_opf, i); 1184 atomic_inc(&sh->count); 1185 if (sh != head_sh) 1186 atomic_inc(&head_sh->count); 1187 if (use_new_offset(conf, sh)) 1188 bi->bi_iter.bi_sector = (sh->sector 1189 + rdev->new_data_offset); 1190 else 1191 bi->bi_iter.bi_sector = (sh->sector 1192 + rdev->data_offset); 1193 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags)) 1194 bi->bi_opf |= REQ_NOMERGE; 1195 1196 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 1197 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 1198 1199 if (!op_is_write(op) && 1200 test_bit(R5_InJournal, &sh->dev[i].flags)) 1201 /* 1202 * issuing read for a page in journal, this 1203 * must be preparing for prexor in rmw; read 1204 * the data into orig_page 1205 */ 1206 sh->dev[i].vec.bv_page = sh->dev[i].orig_page; 1207 else 1208 sh->dev[i].vec.bv_page = sh->dev[i].page; 1209 bi->bi_vcnt = 1; 1210 bi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf); 1211 bi->bi_io_vec[0].bv_offset = sh->dev[i].offset; 1212 bi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf); 1213 bi->bi_write_hint = sh->dev[i].write_hint; 1214 if (!rrdev) 1215 sh->dev[i].write_hint = RWH_WRITE_LIFE_NOT_SET; 1216 /* 1217 * If this is discard request, set bi_vcnt 0. We don't 1218 * want to confuse SCSI because SCSI will replace payload 1219 */ 1220 if (op == REQ_OP_DISCARD) 1221 bi->bi_vcnt = 0; 1222 if (rrdev) 1223 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags); 1224 1225 if (conf->mddev->gendisk) 1226 trace_block_bio_remap(bi, 1227 disk_devt(conf->mddev->gendisk), 1228 sh->dev[i].sector); 1229 if (should_defer && op_is_write(op)) 1230 bio_list_add(&pending_bios, bi); 1231 else 1232 submit_bio_noacct(bi); 1233 } 1234 if (rrdev) { 1235 if (s->syncing || s->expanding || s->expanded 1236 || s->replacing) 1237 md_sync_acct(rrdev->bdev, RAID5_STRIPE_SECTORS(conf)); 1238 1239 set_bit(STRIPE_IO_STARTED, &sh->state); 1240 1241 bio_set_dev(rbi, rrdev->bdev); 1242 bio_set_op_attrs(rbi, op, op_flags); 1243 BUG_ON(!op_is_write(op)); 1244 rbi->bi_end_io = raid5_end_write_request; 1245 rbi->bi_private = sh; 1246 1247 pr_debug("%s: for %llu schedule op %d on " 1248 "replacement disc %d\n", 1249 __func__, (unsigned long long)sh->sector, 1250 rbi->bi_opf, i); 1251 atomic_inc(&sh->count); 1252 if (sh != head_sh) 1253 atomic_inc(&head_sh->count); 1254 if (use_new_offset(conf, sh)) 1255 rbi->bi_iter.bi_sector = (sh->sector 1256 + rrdev->new_data_offset); 1257 else 1258 rbi->bi_iter.bi_sector = (sh->sector 1259 + rrdev->data_offset); 1260 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 1261 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 1262 sh->dev[i].rvec.bv_page = sh->dev[i].page; 1263 rbi->bi_vcnt = 1; 1264 rbi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf); 1265 rbi->bi_io_vec[0].bv_offset = sh->dev[i].offset; 1266 rbi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf); 1267 rbi->bi_write_hint = sh->dev[i].write_hint; 1268 sh->dev[i].write_hint = RWH_WRITE_LIFE_NOT_SET; 1269 /* 1270 * If this is discard request, set bi_vcnt 0. We don't 1271 * want to confuse SCSI because SCSI will replace payload 1272 */ 1273 if (op == REQ_OP_DISCARD) 1274 rbi->bi_vcnt = 0; 1275 if (conf->mddev->gendisk) 1276 trace_block_bio_remap(rbi, 1277 disk_devt(conf->mddev->gendisk), 1278 sh->dev[i].sector); 1279 if (should_defer && op_is_write(op)) 1280 bio_list_add(&pending_bios, rbi); 1281 else 1282 submit_bio_noacct(rbi); 1283 } 1284 if (!rdev && !rrdev) { 1285 if (op_is_write(op)) 1286 set_bit(STRIPE_DEGRADED, &sh->state); 1287 pr_debug("skip op %d on disc %d for sector %llu\n", 1288 bi->bi_opf, i, (unsigned long long)sh->sector); 1289 clear_bit(R5_LOCKED, &sh->dev[i].flags); 1290 set_bit(STRIPE_HANDLE, &sh->state); 1291 } 1292 1293 if (!head_sh->batch_head) 1294 continue; 1295 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1296 batch_list); 1297 if (sh != head_sh) 1298 goto again; 1299 } 1300 1301 if (should_defer && !bio_list_empty(&pending_bios)) 1302 defer_issue_bios(conf, head_sh->sector, &pending_bios); 1303 } 1304 1305 static struct dma_async_tx_descriptor * 1306 async_copy_data(int frombio, struct bio *bio, struct page **page, 1307 unsigned int poff, sector_t sector, struct dma_async_tx_descriptor *tx, 1308 struct stripe_head *sh, int no_skipcopy) 1309 { 1310 struct bio_vec bvl; 1311 struct bvec_iter iter; 1312 struct page *bio_page; 1313 int page_offset; 1314 struct async_submit_ctl submit; 1315 enum async_tx_flags flags = 0; 1316 struct r5conf *conf = sh->raid_conf; 1317 1318 if (bio->bi_iter.bi_sector >= sector) 1319 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512; 1320 else 1321 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512; 1322 1323 if (frombio) 1324 flags |= ASYNC_TX_FENCE; 1325 init_async_submit(&submit, flags, tx, NULL, NULL, NULL); 1326 1327 bio_for_each_segment(bvl, bio, iter) { 1328 int len = bvl.bv_len; 1329 int clen; 1330 int b_offset = 0; 1331 1332 if (page_offset < 0) { 1333 b_offset = -page_offset; 1334 page_offset += b_offset; 1335 len -= b_offset; 1336 } 1337 1338 if (len > 0 && page_offset + len > RAID5_STRIPE_SIZE(conf)) 1339 clen = RAID5_STRIPE_SIZE(conf) - page_offset; 1340 else 1341 clen = len; 1342 1343 if (clen > 0) { 1344 b_offset += bvl.bv_offset; 1345 bio_page = bvl.bv_page; 1346 if (frombio) { 1347 if (conf->skip_copy && 1348 b_offset == 0 && page_offset == 0 && 1349 clen == RAID5_STRIPE_SIZE(conf) && 1350 !no_skipcopy) 1351 *page = bio_page; 1352 else 1353 tx = async_memcpy(*page, bio_page, page_offset + poff, 1354 b_offset, clen, &submit); 1355 } else 1356 tx = async_memcpy(bio_page, *page, b_offset, 1357 page_offset + poff, clen, &submit); 1358 } 1359 /* chain the operations */ 1360 submit.depend_tx = tx; 1361 1362 if (clen < len) /* hit end of page */ 1363 break; 1364 page_offset += len; 1365 } 1366 1367 return tx; 1368 } 1369 1370 static void ops_complete_biofill(void *stripe_head_ref) 1371 { 1372 struct stripe_head *sh = stripe_head_ref; 1373 int i; 1374 struct r5conf *conf = sh->raid_conf; 1375 1376 pr_debug("%s: stripe %llu\n", __func__, 1377 (unsigned long long)sh->sector); 1378 1379 /* clear completed biofills */ 1380 for (i = sh->disks; i--; ) { 1381 struct r5dev *dev = &sh->dev[i]; 1382 1383 /* acknowledge completion of a biofill operation */ 1384 /* and check if we need to reply to a read request, 1385 * new R5_Wantfill requests are held off until 1386 * !STRIPE_BIOFILL_RUN 1387 */ 1388 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) { 1389 struct bio *rbi, *rbi2; 1390 1391 BUG_ON(!dev->read); 1392 rbi = dev->read; 1393 dev->read = NULL; 1394 while (rbi && rbi->bi_iter.bi_sector < 1395 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 1396 rbi2 = r5_next_bio(conf, rbi, dev->sector); 1397 bio_endio(rbi); 1398 rbi = rbi2; 1399 } 1400 } 1401 } 1402 clear_bit(STRIPE_BIOFILL_RUN, &sh->state); 1403 1404 set_bit(STRIPE_HANDLE, &sh->state); 1405 raid5_release_stripe(sh); 1406 } 1407 1408 static void ops_run_biofill(struct stripe_head *sh) 1409 { 1410 struct dma_async_tx_descriptor *tx = NULL; 1411 struct async_submit_ctl submit; 1412 int i; 1413 struct r5conf *conf = sh->raid_conf; 1414 1415 BUG_ON(sh->batch_head); 1416 pr_debug("%s: stripe %llu\n", __func__, 1417 (unsigned long long)sh->sector); 1418 1419 for (i = sh->disks; i--; ) { 1420 struct r5dev *dev = &sh->dev[i]; 1421 if (test_bit(R5_Wantfill, &dev->flags)) { 1422 struct bio *rbi; 1423 spin_lock_irq(&sh->stripe_lock); 1424 dev->read = rbi = dev->toread; 1425 dev->toread = NULL; 1426 spin_unlock_irq(&sh->stripe_lock); 1427 while (rbi && rbi->bi_iter.bi_sector < 1428 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 1429 tx = async_copy_data(0, rbi, &dev->page, 1430 dev->offset, 1431 dev->sector, tx, sh, 0); 1432 rbi = r5_next_bio(conf, rbi, dev->sector); 1433 } 1434 } 1435 } 1436 1437 atomic_inc(&sh->count); 1438 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL); 1439 async_trigger_callback(&submit); 1440 } 1441 1442 static void mark_target_uptodate(struct stripe_head *sh, int target) 1443 { 1444 struct r5dev *tgt; 1445 1446 if (target < 0) 1447 return; 1448 1449 tgt = &sh->dev[target]; 1450 set_bit(R5_UPTODATE, &tgt->flags); 1451 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1452 clear_bit(R5_Wantcompute, &tgt->flags); 1453 } 1454 1455 static void ops_complete_compute(void *stripe_head_ref) 1456 { 1457 struct stripe_head *sh = stripe_head_ref; 1458 1459 pr_debug("%s: stripe %llu\n", __func__, 1460 (unsigned long long)sh->sector); 1461 1462 /* mark the computed target(s) as uptodate */ 1463 mark_target_uptodate(sh, sh->ops.target); 1464 mark_target_uptodate(sh, sh->ops.target2); 1465 1466 clear_bit(STRIPE_COMPUTE_RUN, &sh->state); 1467 if (sh->check_state == check_state_compute_run) 1468 sh->check_state = check_state_compute_result; 1469 set_bit(STRIPE_HANDLE, &sh->state); 1470 raid5_release_stripe(sh); 1471 } 1472 1473 /* return a pointer to the address conversion region of the scribble buffer */ 1474 static struct page **to_addr_page(struct raid5_percpu *percpu, int i) 1475 { 1476 return percpu->scribble + i * percpu->scribble_obj_size; 1477 } 1478 1479 /* return a pointer to the address conversion region of the scribble buffer */ 1480 static addr_conv_t *to_addr_conv(struct stripe_head *sh, 1481 struct raid5_percpu *percpu, int i) 1482 { 1483 return (void *) (to_addr_page(percpu, i) + sh->disks + 2); 1484 } 1485 1486 /* 1487 * Return a pointer to record offset address. 1488 */ 1489 static unsigned int * 1490 to_addr_offs(struct stripe_head *sh, struct raid5_percpu *percpu) 1491 { 1492 return (unsigned int *) (to_addr_conv(sh, percpu, 0) + sh->disks + 2); 1493 } 1494 1495 static struct dma_async_tx_descriptor * 1496 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu) 1497 { 1498 int disks = sh->disks; 1499 struct page **xor_srcs = to_addr_page(percpu, 0); 1500 unsigned int *off_srcs = to_addr_offs(sh, percpu); 1501 int target = sh->ops.target; 1502 struct r5dev *tgt = &sh->dev[target]; 1503 struct page *xor_dest = tgt->page; 1504 unsigned int off_dest = tgt->offset; 1505 int count = 0; 1506 struct dma_async_tx_descriptor *tx; 1507 struct async_submit_ctl submit; 1508 int i; 1509 1510 BUG_ON(sh->batch_head); 1511 1512 pr_debug("%s: stripe %llu block: %d\n", 1513 __func__, (unsigned long long)sh->sector, target); 1514 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1515 1516 for (i = disks; i--; ) { 1517 if (i != target) { 1518 off_srcs[count] = sh->dev[i].offset; 1519 xor_srcs[count++] = sh->dev[i].page; 1520 } 1521 } 1522 1523 atomic_inc(&sh->count); 1524 1525 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL, 1526 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0)); 1527 if (unlikely(count == 1)) 1528 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0], 1529 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1530 else 1531 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count, 1532 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1533 1534 return tx; 1535 } 1536 1537 /* set_syndrome_sources - populate source buffers for gen_syndrome 1538 * @srcs - (struct page *) array of size sh->disks 1539 * @offs - (unsigned int) array of offset for each page 1540 * @sh - stripe_head to parse 1541 * 1542 * Populates srcs in proper layout order for the stripe and returns the 1543 * 'count' of sources to be used in a call to async_gen_syndrome. The P 1544 * destination buffer is recorded in srcs[count] and the Q destination 1545 * is recorded in srcs[count+1]]. 1546 */ 1547 static int set_syndrome_sources(struct page **srcs, 1548 unsigned int *offs, 1549 struct stripe_head *sh, 1550 int srctype) 1551 { 1552 int disks = sh->disks; 1553 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2); 1554 int d0_idx = raid6_d0(sh); 1555 int count; 1556 int i; 1557 1558 for (i = 0; i < disks; i++) 1559 srcs[i] = NULL; 1560 1561 count = 0; 1562 i = d0_idx; 1563 do { 1564 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1565 struct r5dev *dev = &sh->dev[i]; 1566 1567 if (i == sh->qd_idx || i == sh->pd_idx || 1568 (srctype == SYNDROME_SRC_ALL) || 1569 (srctype == SYNDROME_SRC_WANT_DRAIN && 1570 (test_bit(R5_Wantdrain, &dev->flags) || 1571 test_bit(R5_InJournal, &dev->flags))) || 1572 (srctype == SYNDROME_SRC_WRITTEN && 1573 (dev->written || 1574 test_bit(R5_InJournal, &dev->flags)))) { 1575 if (test_bit(R5_InJournal, &dev->flags)) 1576 srcs[slot] = sh->dev[i].orig_page; 1577 else 1578 srcs[slot] = sh->dev[i].page; 1579 /* 1580 * For R5_InJournal, PAGE_SIZE must be 4KB and will 1581 * not shared page. In that case, dev[i].offset 1582 * is 0. 1583 */ 1584 offs[slot] = sh->dev[i].offset; 1585 } 1586 i = raid6_next_disk(i, disks); 1587 } while (i != d0_idx); 1588 1589 return syndrome_disks; 1590 } 1591 1592 static struct dma_async_tx_descriptor * 1593 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu) 1594 { 1595 int disks = sh->disks; 1596 struct page **blocks = to_addr_page(percpu, 0); 1597 unsigned int *offs = to_addr_offs(sh, percpu); 1598 int target; 1599 int qd_idx = sh->qd_idx; 1600 struct dma_async_tx_descriptor *tx; 1601 struct async_submit_ctl submit; 1602 struct r5dev *tgt; 1603 struct page *dest; 1604 unsigned int dest_off; 1605 int i; 1606 int count; 1607 1608 BUG_ON(sh->batch_head); 1609 if (sh->ops.target < 0) 1610 target = sh->ops.target2; 1611 else if (sh->ops.target2 < 0) 1612 target = sh->ops.target; 1613 else 1614 /* we should only have one valid target */ 1615 BUG(); 1616 BUG_ON(target < 0); 1617 pr_debug("%s: stripe %llu block: %d\n", 1618 __func__, (unsigned long long)sh->sector, target); 1619 1620 tgt = &sh->dev[target]; 1621 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1622 dest = tgt->page; 1623 dest_off = tgt->offset; 1624 1625 atomic_inc(&sh->count); 1626 1627 if (target == qd_idx) { 1628 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL); 1629 blocks[count] = NULL; /* regenerating p is not necessary */ 1630 BUG_ON(blocks[count+1] != dest); /* q should already be set */ 1631 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1632 ops_complete_compute, sh, 1633 to_addr_conv(sh, percpu, 0)); 1634 tx = async_gen_syndrome(blocks, offs, count+2, 1635 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1636 } else { 1637 /* Compute any data- or p-drive using XOR */ 1638 count = 0; 1639 for (i = disks; i-- ; ) { 1640 if (i == target || i == qd_idx) 1641 continue; 1642 offs[count] = sh->dev[i].offset; 1643 blocks[count++] = sh->dev[i].page; 1644 } 1645 1646 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1647 NULL, ops_complete_compute, sh, 1648 to_addr_conv(sh, percpu, 0)); 1649 tx = async_xor_offs(dest, dest_off, blocks, offs, count, 1650 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1651 } 1652 1653 return tx; 1654 } 1655 1656 static struct dma_async_tx_descriptor * 1657 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu) 1658 { 1659 int i, count, disks = sh->disks; 1660 int syndrome_disks = sh->ddf_layout ? disks : disks-2; 1661 int d0_idx = raid6_d0(sh); 1662 int faila = -1, failb = -1; 1663 int target = sh->ops.target; 1664 int target2 = sh->ops.target2; 1665 struct r5dev *tgt = &sh->dev[target]; 1666 struct r5dev *tgt2 = &sh->dev[target2]; 1667 struct dma_async_tx_descriptor *tx; 1668 struct page **blocks = to_addr_page(percpu, 0); 1669 unsigned int *offs = to_addr_offs(sh, percpu); 1670 struct async_submit_ctl submit; 1671 1672 BUG_ON(sh->batch_head); 1673 pr_debug("%s: stripe %llu block1: %d block2: %d\n", 1674 __func__, (unsigned long long)sh->sector, target, target2); 1675 BUG_ON(target < 0 || target2 < 0); 1676 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1677 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags)); 1678 1679 /* we need to open-code set_syndrome_sources to handle the 1680 * slot number conversion for 'faila' and 'failb' 1681 */ 1682 for (i = 0; i < disks ; i++) { 1683 offs[i] = 0; 1684 blocks[i] = NULL; 1685 } 1686 count = 0; 1687 i = d0_idx; 1688 do { 1689 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1690 1691 offs[slot] = sh->dev[i].offset; 1692 blocks[slot] = sh->dev[i].page; 1693 1694 if (i == target) 1695 faila = slot; 1696 if (i == target2) 1697 failb = slot; 1698 i = raid6_next_disk(i, disks); 1699 } while (i != d0_idx); 1700 1701 BUG_ON(faila == failb); 1702 if (failb < faila) 1703 swap(faila, failb); 1704 pr_debug("%s: stripe: %llu faila: %d failb: %d\n", 1705 __func__, (unsigned long long)sh->sector, faila, failb); 1706 1707 atomic_inc(&sh->count); 1708 1709 if (failb == syndrome_disks+1) { 1710 /* Q disk is one of the missing disks */ 1711 if (faila == syndrome_disks) { 1712 /* Missing P+Q, just recompute */ 1713 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1714 ops_complete_compute, sh, 1715 to_addr_conv(sh, percpu, 0)); 1716 return async_gen_syndrome(blocks, offs, syndrome_disks+2, 1717 RAID5_STRIPE_SIZE(sh->raid_conf), 1718 &submit); 1719 } else { 1720 struct page *dest; 1721 unsigned int dest_off; 1722 int data_target; 1723 int qd_idx = sh->qd_idx; 1724 1725 /* Missing D+Q: recompute D from P, then recompute Q */ 1726 if (target == qd_idx) 1727 data_target = target2; 1728 else 1729 data_target = target; 1730 1731 count = 0; 1732 for (i = disks; i-- ; ) { 1733 if (i == data_target || i == qd_idx) 1734 continue; 1735 offs[count] = sh->dev[i].offset; 1736 blocks[count++] = sh->dev[i].page; 1737 } 1738 dest = sh->dev[data_target].page; 1739 dest_off = sh->dev[data_target].offset; 1740 init_async_submit(&submit, 1741 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1742 NULL, NULL, NULL, 1743 to_addr_conv(sh, percpu, 0)); 1744 tx = async_xor_offs(dest, dest_off, blocks, offs, count, 1745 RAID5_STRIPE_SIZE(sh->raid_conf), 1746 &submit); 1747 1748 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL); 1749 init_async_submit(&submit, ASYNC_TX_FENCE, tx, 1750 ops_complete_compute, sh, 1751 to_addr_conv(sh, percpu, 0)); 1752 return async_gen_syndrome(blocks, offs, count+2, 1753 RAID5_STRIPE_SIZE(sh->raid_conf), 1754 &submit); 1755 } 1756 } else { 1757 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1758 ops_complete_compute, sh, 1759 to_addr_conv(sh, percpu, 0)); 1760 if (failb == syndrome_disks) { 1761 /* We're missing D+P. */ 1762 return async_raid6_datap_recov(syndrome_disks+2, 1763 RAID5_STRIPE_SIZE(sh->raid_conf), 1764 faila, 1765 blocks, offs, &submit); 1766 } else { 1767 /* We're missing D+D. */ 1768 return async_raid6_2data_recov(syndrome_disks+2, 1769 RAID5_STRIPE_SIZE(sh->raid_conf), 1770 faila, failb, 1771 blocks, offs, &submit); 1772 } 1773 } 1774 } 1775 1776 static void ops_complete_prexor(void *stripe_head_ref) 1777 { 1778 struct stripe_head *sh = stripe_head_ref; 1779 1780 pr_debug("%s: stripe %llu\n", __func__, 1781 (unsigned long long)sh->sector); 1782 1783 if (r5c_is_writeback(sh->raid_conf->log)) 1784 /* 1785 * raid5-cache write back uses orig_page during prexor. 1786 * After prexor, it is time to free orig_page 1787 */ 1788 r5c_release_extra_page(sh); 1789 } 1790 1791 static struct dma_async_tx_descriptor * 1792 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu, 1793 struct dma_async_tx_descriptor *tx) 1794 { 1795 int disks = sh->disks; 1796 struct page **xor_srcs = to_addr_page(percpu, 0); 1797 unsigned int *off_srcs = to_addr_offs(sh, percpu); 1798 int count = 0, pd_idx = sh->pd_idx, i; 1799 struct async_submit_ctl submit; 1800 1801 /* existing parity data subtracted */ 1802 unsigned int off_dest = off_srcs[count] = sh->dev[pd_idx].offset; 1803 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1804 1805 BUG_ON(sh->batch_head); 1806 pr_debug("%s: stripe %llu\n", __func__, 1807 (unsigned long long)sh->sector); 1808 1809 for (i = disks; i--; ) { 1810 struct r5dev *dev = &sh->dev[i]; 1811 /* Only process blocks that are known to be uptodate */ 1812 if (test_bit(R5_InJournal, &dev->flags)) { 1813 /* 1814 * For this case, PAGE_SIZE must be equal to 4KB and 1815 * page offset is zero. 1816 */ 1817 off_srcs[count] = dev->offset; 1818 xor_srcs[count++] = dev->orig_page; 1819 } else if (test_bit(R5_Wantdrain, &dev->flags)) { 1820 off_srcs[count] = dev->offset; 1821 xor_srcs[count++] = dev->page; 1822 } 1823 } 1824 1825 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx, 1826 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); 1827 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count, 1828 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1829 1830 return tx; 1831 } 1832 1833 static struct dma_async_tx_descriptor * 1834 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu, 1835 struct dma_async_tx_descriptor *tx) 1836 { 1837 struct page **blocks = to_addr_page(percpu, 0); 1838 unsigned int *offs = to_addr_offs(sh, percpu); 1839 int count; 1840 struct async_submit_ctl submit; 1841 1842 pr_debug("%s: stripe %llu\n", __func__, 1843 (unsigned long long)sh->sector); 1844 1845 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_WANT_DRAIN); 1846 1847 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx, 1848 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); 1849 tx = async_gen_syndrome(blocks, offs, count+2, 1850 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1851 1852 return tx; 1853 } 1854 1855 static struct dma_async_tx_descriptor * 1856 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) 1857 { 1858 struct r5conf *conf = sh->raid_conf; 1859 int disks = sh->disks; 1860 int i; 1861 struct stripe_head *head_sh = sh; 1862 1863 pr_debug("%s: stripe %llu\n", __func__, 1864 (unsigned long long)sh->sector); 1865 1866 for (i = disks; i--; ) { 1867 struct r5dev *dev; 1868 struct bio *chosen; 1869 1870 sh = head_sh; 1871 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) { 1872 struct bio *wbi; 1873 1874 again: 1875 dev = &sh->dev[i]; 1876 /* 1877 * clear R5_InJournal, so when rewriting a page in 1878 * journal, it is not skipped by r5l_log_stripe() 1879 */ 1880 clear_bit(R5_InJournal, &dev->flags); 1881 spin_lock_irq(&sh->stripe_lock); 1882 chosen = dev->towrite; 1883 dev->towrite = NULL; 1884 sh->overwrite_disks = 0; 1885 BUG_ON(dev->written); 1886 wbi = dev->written = chosen; 1887 spin_unlock_irq(&sh->stripe_lock); 1888 WARN_ON(dev->page != dev->orig_page); 1889 1890 while (wbi && wbi->bi_iter.bi_sector < 1891 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 1892 if (wbi->bi_opf & REQ_FUA) 1893 set_bit(R5_WantFUA, &dev->flags); 1894 if (wbi->bi_opf & REQ_SYNC) 1895 set_bit(R5_SyncIO, &dev->flags); 1896 if (bio_op(wbi) == REQ_OP_DISCARD) 1897 set_bit(R5_Discard, &dev->flags); 1898 else { 1899 tx = async_copy_data(1, wbi, &dev->page, 1900 dev->offset, 1901 dev->sector, tx, sh, 1902 r5c_is_writeback(conf->log)); 1903 if (dev->page != dev->orig_page && 1904 !r5c_is_writeback(conf->log)) { 1905 set_bit(R5_SkipCopy, &dev->flags); 1906 clear_bit(R5_UPTODATE, &dev->flags); 1907 clear_bit(R5_OVERWRITE, &dev->flags); 1908 } 1909 } 1910 wbi = r5_next_bio(conf, wbi, dev->sector); 1911 } 1912 1913 if (head_sh->batch_head) { 1914 sh = list_first_entry(&sh->batch_list, 1915 struct stripe_head, 1916 batch_list); 1917 if (sh == head_sh) 1918 continue; 1919 goto again; 1920 } 1921 } 1922 } 1923 1924 return tx; 1925 } 1926 1927 static void ops_complete_reconstruct(void *stripe_head_ref) 1928 { 1929 struct stripe_head *sh = stripe_head_ref; 1930 int disks = sh->disks; 1931 int pd_idx = sh->pd_idx; 1932 int qd_idx = sh->qd_idx; 1933 int i; 1934 bool fua = false, sync = false, discard = false; 1935 1936 pr_debug("%s: stripe %llu\n", __func__, 1937 (unsigned long long)sh->sector); 1938 1939 for (i = disks; i--; ) { 1940 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags); 1941 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags); 1942 discard |= test_bit(R5_Discard, &sh->dev[i].flags); 1943 } 1944 1945 for (i = disks; i--; ) { 1946 struct r5dev *dev = &sh->dev[i]; 1947 1948 if (dev->written || i == pd_idx || i == qd_idx) { 1949 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) { 1950 set_bit(R5_UPTODATE, &dev->flags); 1951 if (test_bit(STRIPE_EXPAND_READY, &sh->state)) 1952 set_bit(R5_Expanded, &dev->flags); 1953 } 1954 if (fua) 1955 set_bit(R5_WantFUA, &dev->flags); 1956 if (sync) 1957 set_bit(R5_SyncIO, &dev->flags); 1958 } 1959 } 1960 1961 if (sh->reconstruct_state == reconstruct_state_drain_run) 1962 sh->reconstruct_state = reconstruct_state_drain_result; 1963 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) 1964 sh->reconstruct_state = reconstruct_state_prexor_drain_result; 1965 else { 1966 BUG_ON(sh->reconstruct_state != reconstruct_state_run); 1967 sh->reconstruct_state = reconstruct_state_result; 1968 } 1969 1970 set_bit(STRIPE_HANDLE, &sh->state); 1971 raid5_release_stripe(sh); 1972 } 1973 1974 static void 1975 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu, 1976 struct dma_async_tx_descriptor *tx) 1977 { 1978 int disks = sh->disks; 1979 struct page **xor_srcs; 1980 unsigned int *off_srcs; 1981 struct async_submit_ctl submit; 1982 int count, pd_idx = sh->pd_idx, i; 1983 struct page *xor_dest; 1984 unsigned int off_dest; 1985 int prexor = 0; 1986 unsigned long flags; 1987 int j = 0; 1988 struct stripe_head *head_sh = sh; 1989 int last_stripe; 1990 1991 pr_debug("%s: stripe %llu\n", __func__, 1992 (unsigned long long)sh->sector); 1993 1994 for (i = 0; i < sh->disks; i++) { 1995 if (pd_idx == i) 1996 continue; 1997 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 1998 break; 1999 } 2000 if (i >= sh->disks) { 2001 atomic_inc(&sh->count); 2002 set_bit(R5_Discard, &sh->dev[pd_idx].flags); 2003 ops_complete_reconstruct(sh); 2004 return; 2005 } 2006 again: 2007 count = 0; 2008 xor_srcs = to_addr_page(percpu, j); 2009 off_srcs = to_addr_offs(sh, percpu); 2010 /* check if prexor is active which means only process blocks 2011 * that are part of a read-modify-write (written) 2012 */ 2013 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 2014 prexor = 1; 2015 off_dest = off_srcs[count] = sh->dev[pd_idx].offset; 2016 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 2017 for (i = disks; i--; ) { 2018 struct r5dev *dev = &sh->dev[i]; 2019 if (head_sh->dev[i].written || 2020 test_bit(R5_InJournal, &head_sh->dev[i].flags)) { 2021 off_srcs[count] = dev->offset; 2022 xor_srcs[count++] = dev->page; 2023 } 2024 } 2025 } else { 2026 xor_dest = sh->dev[pd_idx].page; 2027 off_dest = sh->dev[pd_idx].offset; 2028 for (i = disks; i--; ) { 2029 struct r5dev *dev = &sh->dev[i]; 2030 if (i != pd_idx) { 2031 off_srcs[count] = dev->offset; 2032 xor_srcs[count++] = dev->page; 2033 } 2034 } 2035 } 2036 2037 /* 1/ if we prexor'd then the dest is reused as a source 2038 * 2/ if we did not prexor then we are redoing the parity 2039 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST 2040 * for the synchronous xor case 2041 */ 2042 last_stripe = !head_sh->batch_head || 2043 list_first_entry(&sh->batch_list, 2044 struct stripe_head, batch_list) == head_sh; 2045 if (last_stripe) { 2046 flags = ASYNC_TX_ACK | 2047 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST); 2048 2049 atomic_inc(&head_sh->count); 2050 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh, 2051 to_addr_conv(sh, percpu, j)); 2052 } else { 2053 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST; 2054 init_async_submit(&submit, flags, tx, NULL, NULL, 2055 to_addr_conv(sh, percpu, j)); 2056 } 2057 2058 if (unlikely(count == 1)) 2059 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0], 2060 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 2061 else 2062 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count, 2063 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 2064 if (!last_stripe) { 2065 j++; 2066 sh = list_first_entry(&sh->batch_list, struct stripe_head, 2067 batch_list); 2068 goto again; 2069 } 2070 } 2071 2072 static void 2073 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu, 2074 struct dma_async_tx_descriptor *tx) 2075 { 2076 struct async_submit_ctl submit; 2077 struct page **blocks; 2078 unsigned int *offs; 2079 int count, i, j = 0; 2080 struct stripe_head *head_sh = sh; 2081 int last_stripe; 2082 int synflags; 2083 unsigned long txflags; 2084 2085 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); 2086 2087 for (i = 0; i < sh->disks; i++) { 2088 if (sh->pd_idx == i || sh->qd_idx == i) 2089 continue; 2090 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 2091 break; 2092 } 2093 if (i >= sh->disks) { 2094 atomic_inc(&sh->count); 2095 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 2096 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 2097 ops_complete_reconstruct(sh); 2098 return; 2099 } 2100 2101 again: 2102 blocks = to_addr_page(percpu, j); 2103 offs = to_addr_offs(sh, percpu); 2104 2105 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 2106 synflags = SYNDROME_SRC_WRITTEN; 2107 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST; 2108 } else { 2109 synflags = SYNDROME_SRC_ALL; 2110 txflags = ASYNC_TX_ACK; 2111 } 2112 2113 count = set_syndrome_sources(blocks, offs, sh, synflags); 2114 last_stripe = !head_sh->batch_head || 2115 list_first_entry(&sh->batch_list, 2116 struct stripe_head, batch_list) == head_sh; 2117 2118 if (last_stripe) { 2119 atomic_inc(&head_sh->count); 2120 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct, 2121 head_sh, to_addr_conv(sh, percpu, j)); 2122 } else 2123 init_async_submit(&submit, 0, tx, NULL, NULL, 2124 to_addr_conv(sh, percpu, j)); 2125 tx = async_gen_syndrome(blocks, offs, count+2, 2126 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 2127 if (!last_stripe) { 2128 j++; 2129 sh = list_first_entry(&sh->batch_list, struct stripe_head, 2130 batch_list); 2131 goto again; 2132 } 2133 } 2134 2135 static void ops_complete_check(void *stripe_head_ref) 2136 { 2137 struct stripe_head *sh = stripe_head_ref; 2138 2139 pr_debug("%s: stripe %llu\n", __func__, 2140 (unsigned long long)sh->sector); 2141 2142 sh->check_state = check_state_check_result; 2143 set_bit(STRIPE_HANDLE, &sh->state); 2144 raid5_release_stripe(sh); 2145 } 2146 2147 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu) 2148 { 2149 int disks = sh->disks; 2150 int pd_idx = sh->pd_idx; 2151 int qd_idx = sh->qd_idx; 2152 struct page *xor_dest; 2153 unsigned int off_dest; 2154 struct page **xor_srcs = to_addr_page(percpu, 0); 2155 unsigned int *off_srcs = to_addr_offs(sh, percpu); 2156 struct dma_async_tx_descriptor *tx; 2157 struct async_submit_ctl submit; 2158 int count; 2159 int i; 2160 2161 pr_debug("%s: stripe %llu\n", __func__, 2162 (unsigned long long)sh->sector); 2163 2164 BUG_ON(sh->batch_head); 2165 count = 0; 2166 xor_dest = sh->dev[pd_idx].page; 2167 off_dest = sh->dev[pd_idx].offset; 2168 off_srcs[count] = off_dest; 2169 xor_srcs[count++] = xor_dest; 2170 for (i = disks; i--; ) { 2171 if (i == pd_idx || i == qd_idx) 2172 continue; 2173 off_srcs[count] = sh->dev[i].offset; 2174 xor_srcs[count++] = sh->dev[i].page; 2175 } 2176 2177 init_async_submit(&submit, 0, NULL, NULL, NULL, 2178 to_addr_conv(sh, percpu, 0)); 2179 tx = async_xor_val_offs(xor_dest, off_dest, xor_srcs, off_srcs, count, 2180 RAID5_STRIPE_SIZE(sh->raid_conf), 2181 &sh->ops.zero_sum_result, &submit); 2182 2183 atomic_inc(&sh->count); 2184 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL); 2185 tx = async_trigger_callback(&submit); 2186 } 2187 2188 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp) 2189 { 2190 struct page **srcs = to_addr_page(percpu, 0); 2191 unsigned int *offs = to_addr_offs(sh, percpu); 2192 struct async_submit_ctl submit; 2193 int count; 2194 2195 pr_debug("%s: stripe %llu checkp: %d\n", __func__, 2196 (unsigned long long)sh->sector, checkp); 2197 2198 BUG_ON(sh->batch_head); 2199 count = set_syndrome_sources(srcs, offs, sh, SYNDROME_SRC_ALL); 2200 if (!checkp) 2201 srcs[count] = NULL; 2202 2203 atomic_inc(&sh->count); 2204 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check, 2205 sh, to_addr_conv(sh, percpu, 0)); 2206 async_syndrome_val(srcs, offs, count+2, 2207 RAID5_STRIPE_SIZE(sh->raid_conf), 2208 &sh->ops.zero_sum_result, percpu->spare_page, 0, &submit); 2209 } 2210 2211 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request) 2212 { 2213 int overlap_clear = 0, i, disks = sh->disks; 2214 struct dma_async_tx_descriptor *tx = NULL; 2215 struct r5conf *conf = sh->raid_conf; 2216 int level = conf->level; 2217 struct raid5_percpu *percpu; 2218 unsigned long cpu; 2219 2220 cpu = get_cpu(); 2221 percpu = per_cpu_ptr(conf->percpu, cpu); 2222 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) { 2223 ops_run_biofill(sh); 2224 overlap_clear++; 2225 } 2226 2227 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) { 2228 if (level < 6) 2229 tx = ops_run_compute5(sh, percpu); 2230 else { 2231 if (sh->ops.target2 < 0 || sh->ops.target < 0) 2232 tx = ops_run_compute6_1(sh, percpu); 2233 else 2234 tx = ops_run_compute6_2(sh, percpu); 2235 } 2236 /* terminate the chain if reconstruct is not set to be run */ 2237 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) 2238 async_tx_ack(tx); 2239 } 2240 2241 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) { 2242 if (level < 6) 2243 tx = ops_run_prexor5(sh, percpu, tx); 2244 else 2245 tx = ops_run_prexor6(sh, percpu, tx); 2246 } 2247 2248 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request)) 2249 tx = ops_run_partial_parity(sh, percpu, tx); 2250 2251 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) { 2252 tx = ops_run_biodrain(sh, tx); 2253 overlap_clear++; 2254 } 2255 2256 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) { 2257 if (level < 6) 2258 ops_run_reconstruct5(sh, percpu, tx); 2259 else 2260 ops_run_reconstruct6(sh, percpu, tx); 2261 } 2262 2263 if (test_bit(STRIPE_OP_CHECK, &ops_request)) { 2264 if (sh->check_state == check_state_run) 2265 ops_run_check_p(sh, percpu); 2266 else if (sh->check_state == check_state_run_q) 2267 ops_run_check_pq(sh, percpu, 0); 2268 else if (sh->check_state == check_state_run_pq) 2269 ops_run_check_pq(sh, percpu, 1); 2270 else 2271 BUG(); 2272 } 2273 2274 if (overlap_clear && !sh->batch_head) 2275 for (i = disks; i--; ) { 2276 struct r5dev *dev = &sh->dev[i]; 2277 if (test_and_clear_bit(R5_Overlap, &dev->flags)) 2278 wake_up(&sh->raid_conf->wait_for_overlap); 2279 } 2280 put_cpu(); 2281 } 2282 2283 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh) 2284 { 2285 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 2286 kfree(sh->pages); 2287 #endif 2288 if (sh->ppl_page) 2289 __free_page(sh->ppl_page); 2290 kmem_cache_free(sc, sh); 2291 } 2292 2293 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp, 2294 int disks, struct r5conf *conf) 2295 { 2296 struct stripe_head *sh; 2297 int i; 2298 2299 sh = kmem_cache_zalloc(sc, gfp); 2300 if (sh) { 2301 spin_lock_init(&sh->stripe_lock); 2302 spin_lock_init(&sh->batch_lock); 2303 INIT_LIST_HEAD(&sh->batch_list); 2304 INIT_LIST_HEAD(&sh->lru); 2305 INIT_LIST_HEAD(&sh->r5c); 2306 INIT_LIST_HEAD(&sh->log_list); 2307 atomic_set(&sh->count, 1); 2308 sh->raid_conf = conf; 2309 sh->log_start = MaxSector; 2310 for (i = 0; i < disks; i++) { 2311 struct r5dev *dev = &sh->dev[i]; 2312 2313 bio_init(&dev->req, &dev->vec, 1); 2314 bio_init(&dev->rreq, &dev->rvec, 1); 2315 } 2316 2317 if (raid5_has_ppl(conf)) { 2318 sh->ppl_page = alloc_page(gfp); 2319 if (!sh->ppl_page) { 2320 free_stripe(sc, sh); 2321 return NULL; 2322 } 2323 } 2324 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 2325 if (init_stripe_shared_pages(sh, conf, disks)) { 2326 free_stripe(sc, sh); 2327 return NULL; 2328 } 2329 #endif 2330 } 2331 return sh; 2332 } 2333 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp) 2334 { 2335 struct stripe_head *sh; 2336 2337 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf); 2338 if (!sh) 2339 return 0; 2340 2341 if (grow_buffers(sh, gfp)) { 2342 shrink_buffers(sh); 2343 free_stripe(conf->slab_cache, sh); 2344 return 0; 2345 } 2346 sh->hash_lock_index = 2347 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS; 2348 /* we just created an active stripe so... */ 2349 atomic_inc(&conf->active_stripes); 2350 2351 raid5_release_stripe(sh); 2352 conf->max_nr_stripes++; 2353 return 1; 2354 } 2355 2356 static int grow_stripes(struct r5conf *conf, int num) 2357 { 2358 struct kmem_cache *sc; 2359 size_t namelen = sizeof(conf->cache_name[0]); 2360 int devs = max(conf->raid_disks, conf->previous_raid_disks); 2361 2362 if (conf->mddev->gendisk) 2363 snprintf(conf->cache_name[0], namelen, 2364 "raid%d-%s", conf->level, mdname(conf->mddev)); 2365 else 2366 snprintf(conf->cache_name[0], namelen, 2367 "raid%d-%p", conf->level, conf->mddev); 2368 snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]); 2369 2370 conf->active_name = 0; 2371 sc = kmem_cache_create(conf->cache_name[conf->active_name], 2372 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev), 2373 0, 0, NULL); 2374 if (!sc) 2375 return 1; 2376 conf->slab_cache = sc; 2377 conf->pool_size = devs; 2378 while (num--) 2379 if (!grow_one_stripe(conf, GFP_KERNEL)) 2380 return 1; 2381 2382 return 0; 2383 } 2384 2385 /** 2386 * scribble_alloc - allocate percpu scribble buffer for required size 2387 * of the scribble region 2388 * @percpu: from for_each_present_cpu() of the caller 2389 * @num: total number of disks in the array 2390 * @cnt: scribble objs count for required size of the scribble region 2391 * 2392 * The scribble buffer size must be enough to contain: 2393 * 1/ a struct page pointer for each device in the array +2 2394 * 2/ room to convert each entry in (1) to its corresponding dma 2395 * (dma_map_page()) or page (page_address()) address. 2396 * 2397 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we 2398 * calculate over all devices (not just the data blocks), using zeros in place 2399 * of the P and Q blocks. 2400 */ 2401 static int scribble_alloc(struct raid5_percpu *percpu, 2402 int num, int cnt) 2403 { 2404 size_t obj_size = 2405 sizeof(struct page *) * (num + 2) + 2406 sizeof(addr_conv_t) * (num + 2) + 2407 sizeof(unsigned int) * (num + 2); 2408 void *scribble; 2409 2410 /* 2411 * If here is in raid array suspend context, it is in memalloc noio 2412 * context as well, there is no potential recursive memory reclaim 2413 * I/Os with the GFP_KERNEL flag. 2414 */ 2415 scribble = kvmalloc_array(cnt, obj_size, GFP_KERNEL); 2416 if (!scribble) 2417 return -ENOMEM; 2418 2419 kvfree(percpu->scribble); 2420 2421 percpu->scribble = scribble; 2422 percpu->scribble_obj_size = obj_size; 2423 return 0; 2424 } 2425 2426 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors) 2427 { 2428 unsigned long cpu; 2429 int err = 0; 2430 2431 /* 2432 * Never shrink. And mddev_suspend() could deadlock if this is called 2433 * from raid5d. In that case, scribble_disks and scribble_sectors 2434 * should equal to new_disks and new_sectors 2435 */ 2436 if (conf->scribble_disks >= new_disks && 2437 conf->scribble_sectors >= new_sectors) 2438 return 0; 2439 mddev_suspend(conf->mddev); 2440 cpus_read_lock(); 2441 2442 for_each_present_cpu(cpu) { 2443 struct raid5_percpu *percpu; 2444 2445 percpu = per_cpu_ptr(conf->percpu, cpu); 2446 err = scribble_alloc(percpu, new_disks, 2447 new_sectors / RAID5_STRIPE_SECTORS(conf)); 2448 if (err) 2449 break; 2450 } 2451 2452 cpus_read_unlock(); 2453 mddev_resume(conf->mddev); 2454 if (!err) { 2455 conf->scribble_disks = new_disks; 2456 conf->scribble_sectors = new_sectors; 2457 } 2458 return err; 2459 } 2460 2461 static int resize_stripes(struct r5conf *conf, int newsize) 2462 { 2463 /* Make all the stripes able to hold 'newsize' devices. 2464 * New slots in each stripe get 'page' set to a new page. 2465 * 2466 * This happens in stages: 2467 * 1/ create a new kmem_cache and allocate the required number of 2468 * stripe_heads. 2469 * 2/ gather all the old stripe_heads and transfer the pages across 2470 * to the new stripe_heads. This will have the side effect of 2471 * freezing the array as once all stripe_heads have been collected, 2472 * no IO will be possible. Old stripe heads are freed once their 2473 * pages have been transferred over, and the old kmem_cache is 2474 * freed when all stripes are done. 2475 * 3/ reallocate conf->disks to be suitable bigger. If this fails, 2476 * we simple return a failure status - no need to clean anything up. 2477 * 4/ allocate new pages for the new slots in the new stripe_heads. 2478 * If this fails, we don't bother trying the shrink the 2479 * stripe_heads down again, we just leave them as they are. 2480 * As each stripe_head is processed the new one is released into 2481 * active service. 2482 * 2483 * Once step2 is started, we cannot afford to wait for a write, 2484 * so we use GFP_NOIO allocations. 2485 */ 2486 struct stripe_head *osh, *nsh; 2487 LIST_HEAD(newstripes); 2488 struct disk_info *ndisks; 2489 int err = 0; 2490 struct kmem_cache *sc; 2491 int i; 2492 int hash, cnt; 2493 2494 md_allow_write(conf->mddev); 2495 2496 /* Step 1 */ 2497 sc = kmem_cache_create(conf->cache_name[1-conf->active_name], 2498 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev), 2499 0, 0, NULL); 2500 if (!sc) 2501 return -ENOMEM; 2502 2503 /* Need to ensure auto-resizing doesn't interfere */ 2504 mutex_lock(&conf->cache_size_mutex); 2505 2506 for (i = conf->max_nr_stripes; i; i--) { 2507 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf); 2508 if (!nsh) 2509 break; 2510 2511 list_add(&nsh->lru, &newstripes); 2512 } 2513 if (i) { 2514 /* didn't get enough, give up */ 2515 while (!list_empty(&newstripes)) { 2516 nsh = list_entry(newstripes.next, struct stripe_head, lru); 2517 list_del(&nsh->lru); 2518 free_stripe(sc, nsh); 2519 } 2520 kmem_cache_destroy(sc); 2521 mutex_unlock(&conf->cache_size_mutex); 2522 return -ENOMEM; 2523 } 2524 /* Step 2 - Must use GFP_NOIO now. 2525 * OK, we have enough stripes, start collecting inactive 2526 * stripes and copying them over 2527 */ 2528 hash = 0; 2529 cnt = 0; 2530 list_for_each_entry(nsh, &newstripes, lru) { 2531 lock_device_hash_lock(conf, hash); 2532 wait_event_cmd(conf->wait_for_stripe, 2533 !list_empty(conf->inactive_list + hash), 2534 unlock_device_hash_lock(conf, hash), 2535 lock_device_hash_lock(conf, hash)); 2536 osh = get_free_stripe(conf, hash); 2537 unlock_device_hash_lock(conf, hash); 2538 2539 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 2540 for (i = 0; i < osh->nr_pages; i++) { 2541 nsh->pages[i] = osh->pages[i]; 2542 osh->pages[i] = NULL; 2543 } 2544 #endif 2545 for(i=0; i<conf->pool_size; i++) { 2546 nsh->dev[i].page = osh->dev[i].page; 2547 nsh->dev[i].orig_page = osh->dev[i].page; 2548 nsh->dev[i].offset = osh->dev[i].offset; 2549 } 2550 nsh->hash_lock_index = hash; 2551 free_stripe(conf->slab_cache, osh); 2552 cnt++; 2553 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS + 2554 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) { 2555 hash++; 2556 cnt = 0; 2557 } 2558 } 2559 kmem_cache_destroy(conf->slab_cache); 2560 2561 /* Step 3. 2562 * At this point, we are holding all the stripes so the array 2563 * is completely stalled, so now is a good time to resize 2564 * conf->disks and the scribble region 2565 */ 2566 ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO); 2567 if (ndisks) { 2568 for (i = 0; i < conf->pool_size; i++) 2569 ndisks[i] = conf->disks[i]; 2570 2571 for (i = conf->pool_size; i < newsize; i++) { 2572 ndisks[i].extra_page = alloc_page(GFP_NOIO); 2573 if (!ndisks[i].extra_page) 2574 err = -ENOMEM; 2575 } 2576 2577 if (err) { 2578 for (i = conf->pool_size; i < newsize; i++) 2579 if (ndisks[i].extra_page) 2580 put_page(ndisks[i].extra_page); 2581 kfree(ndisks); 2582 } else { 2583 kfree(conf->disks); 2584 conf->disks = ndisks; 2585 } 2586 } else 2587 err = -ENOMEM; 2588 2589 conf->slab_cache = sc; 2590 conf->active_name = 1-conf->active_name; 2591 2592 /* Step 4, return new stripes to service */ 2593 while(!list_empty(&newstripes)) { 2594 nsh = list_entry(newstripes.next, struct stripe_head, lru); 2595 list_del_init(&nsh->lru); 2596 2597 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 2598 for (i = 0; i < nsh->nr_pages; i++) { 2599 if (nsh->pages[i]) 2600 continue; 2601 nsh->pages[i] = alloc_page(GFP_NOIO); 2602 if (!nsh->pages[i]) 2603 err = -ENOMEM; 2604 } 2605 2606 for (i = conf->raid_disks; i < newsize; i++) { 2607 if (nsh->dev[i].page) 2608 continue; 2609 nsh->dev[i].page = raid5_get_dev_page(nsh, i); 2610 nsh->dev[i].orig_page = nsh->dev[i].page; 2611 nsh->dev[i].offset = raid5_get_page_offset(nsh, i); 2612 } 2613 #else 2614 for (i=conf->raid_disks; i < newsize; i++) 2615 if (nsh->dev[i].page == NULL) { 2616 struct page *p = alloc_page(GFP_NOIO); 2617 nsh->dev[i].page = p; 2618 nsh->dev[i].orig_page = p; 2619 nsh->dev[i].offset = 0; 2620 if (!p) 2621 err = -ENOMEM; 2622 } 2623 #endif 2624 raid5_release_stripe(nsh); 2625 } 2626 /* critical section pass, GFP_NOIO no longer needed */ 2627 2628 if (!err) 2629 conf->pool_size = newsize; 2630 mutex_unlock(&conf->cache_size_mutex); 2631 2632 return err; 2633 } 2634 2635 static int drop_one_stripe(struct r5conf *conf) 2636 { 2637 struct stripe_head *sh; 2638 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK; 2639 2640 spin_lock_irq(conf->hash_locks + hash); 2641 sh = get_free_stripe(conf, hash); 2642 spin_unlock_irq(conf->hash_locks + hash); 2643 if (!sh) 2644 return 0; 2645 BUG_ON(atomic_read(&sh->count)); 2646 shrink_buffers(sh); 2647 free_stripe(conf->slab_cache, sh); 2648 atomic_dec(&conf->active_stripes); 2649 conf->max_nr_stripes--; 2650 return 1; 2651 } 2652 2653 static void shrink_stripes(struct r5conf *conf) 2654 { 2655 while (conf->max_nr_stripes && 2656 drop_one_stripe(conf)) 2657 ; 2658 2659 kmem_cache_destroy(conf->slab_cache); 2660 conf->slab_cache = NULL; 2661 } 2662 2663 static void raid5_end_read_request(struct bio * bi) 2664 { 2665 struct stripe_head *sh = bi->bi_private; 2666 struct r5conf *conf = sh->raid_conf; 2667 int disks = sh->disks, i; 2668 char b[BDEVNAME_SIZE]; 2669 struct md_rdev *rdev = NULL; 2670 sector_t s; 2671 2672 for (i=0 ; i<disks; i++) 2673 if (bi == &sh->dev[i].req) 2674 break; 2675 2676 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n", 2677 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2678 bi->bi_status); 2679 if (i == disks) { 2680 bio_reset(bi); 2681 BUG(); 2682 return; 2683 } 2684 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2685 /* If replacement finished while this request was outstanding, 2686 * 'replacement' might be NULL already. 2687 * In that case it moved down to 'rdev'. 2688 * rdev is not removed until all requests are finished. 2689 */ 2690 rdev = conf->disks[i].replacement; 2691 if (!rdev) 2692 rdev = conf->disks[i].rdev; 2693 2694 if (use_new_offset(conf, sh)) 2695 s = sh->sector + rdev->new_data_offset; 2696 else 2697 s = sh->sector + rdev->data_offset; 2698 if (!bi->bi_status) { 2699 set_bit(R5_UPTODATE, &sh->dev[i].flags); 2700 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 2701 /* Note that this cannot happen on a 2702 * replacement device. We just fail those on 2703 * any error 2704 */ 2705 pr_info_ratelimited( 2706 "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n", 2707 mdname(conf->mddev), RAID5_STRIPE_SECTORS(conf), 2708 (unsigned long long)s, 2709 bdevname(rdev->bdev, b)); 2710 atomic_add(RAID5_STRIPE_SECTORS(conf), &rdev->corrected_errors); 2711 clear_bit(R5_ReadError, &sh->dev[i].flags); 2712 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2713 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2714 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2715 2716 if (test_bit(R5_InJournal, &sh->dev[i].flags)) 2717 /* 2718 * end read for a page in journal, this 2719 * must be preparing for prexor in rmw 2720 */ 2721 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags); 2722 2723 if (atomic_read(&rdev->read_errors)) 2724 atomic_set(&rdev->read_errors, 0); 2725 } else { 2726 const char *bdn = bdevname(rdev->bdev, b); 2727 int retry = 0; 2728 int set_bad = 0; 2729 2730 clear_bit(R5_UPTODATE, &sh->dev[i].flags); 2731 if (!(bi->bi_status == BLK_STS_PROTECTION)) 2732 atomic_inc(&rdev->read_errors); 2733 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2734 pr_warn_ratelimited( 2735 "md/raid:%s: read error on replacement device (sector %llu on %s).\n", 2736 mdname(conf->mddev), 2737 (unsigned long long)s, 2738 bdn); 2739 else if (conf->mddev->degraded >= conf->max_degraded) { 2740 set_bad = 1; 2741 pr_warn_ratelimited( 2742 "md/raid:%s: read error not correctable (sector %llu on %s).\n", 2743 mdname(conf->mddev), 2744 (unsigned long long)s, 2745 bdn); 2746 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) { 2747 /* Oh, no!!! */ 2748 set_bad = 1; 2749 pr_warn_ratelimited( 2750 "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n", 2751 mdname(conf->mddev), 2752 (unsigned long long)s, 2753 bdn); 2754 } else if (atomic_read(&rdev->read_errors) 2755 > conf->max_nr_stripes) { 2756 if (!test_bit(Faulty, &rdev->flags)) { 2757 pr_warn("md/raid:%s: %d read_errors > %d stripes\n", 2758 mdname(conf->mddev), 2759 atomic_read(&rdev->read_errors), 2760 conf->max_nr_stripes); 2761 pr_warn("md/raid:%s: Too many read errors, failing device %s.\n", 2762 mdname(conf->mddev), bdn); 2763 } 2764 } else 2765 retry = 1; 2766 if (set_bad && test_bit(In_sync, &rdev->flags) 2767 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2768 retry = 1; 2769 if (retry) 2770 if (sh->qd_idx >= 0 && sh->pd_idx == i) 2771 set_bit(R5_ReadError, &sh->dev[i].flags); 2772 else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) { 2773 set_bit(R5_ReadError, &sh->dev[i].flags); 2774 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2775 } else 2776 set_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2777 else { 2778 clear_bit(R5_ReadError, &sh->dev[i].flags); 2779 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2780 if (!(set_bad 2781 && test_bit(In_sync, &rdev->flags) 2782 && rdev_set_badblocks( 2783 rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 0))) 2784 md_error(conf->mddev, rdev); 2785 } 2786 } 2787 rdev_dec_pending(rdev, conf->mddev); 2788 bio_reset(bi); 2789 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2790 set_bit(STRIPE_HANDLE, &sh->state); 2791 raid5_release_stripe(sh); 2792 } 2793 2794 static void raid5_end_write_request(struct bio *bi) 2795 { 2796 struct stripe_head *sh = bi->bi_private; 2797 struct r5conf *conf = sh->raid_conf; 2798 int disks = sh->disks, i; 2799 struct md_rdev *rdev; 2800 sector_t first_bad; 2801 int bad_sectors; 2802 int replacement = 0; 2803 2804 for (i = 0 ; i < disks; i++) { 2805 if (bi == &sh->dev[i].req) { 2806 rdev = conf->disks[i].rdev; 2807 break; 2808 } 2809 if (bi == &sh->dev[i].rreq) { 2810 rdev = conf->disks[i].replacement; 2811 if (rdev) 2812 replacement = 1; 2813 else 2814 /* rdev was removed and 'replacement' 2815 * replaced it. rdev is not removed 2816 * until all requests are finished. 2817 */ 2818 rdev = conf->disks[i].rdev; 2819 break; 2820 } 2821 } 2822 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n", 2823 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2824 bi->bi_status); 2825 if (i == disks) { 2826 bio_reset(bi); 2827 BUG(); 2828 return; 2829 } 2830 2831 if (replacement) { 2832 if (bi->bi_status) 2833 md_error(conf->mddev, rdev); 2834 else if (is_badblock(rdev, sh->sector, 2835 RAID5_STRIPE_SECTORS(conf), 2836 &first_bad, &bad_sectors)) 2837 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags); 2838 } else { 2839 if (bi->bi_status) { 2840 set_bit(STRIPE_DEGRADED, &sh->state); 2841 set_bit(WriteErrorSeen, &rdev->flags); 2842 set_bit(R5_WriteError, &sh->dev[i].flags); 2843 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2844 set_bit(MD_RECOVERY_NEEDED, 2845 &rdev->mddev->recovery); 2846 } else if (is_badblock(rdev, sh->sector, 2847 RAID5_STRIPE_SECTORS(conf), 2848 &first_bad, &bad_sectors)) { 2849 set_bit(R5_MadeGood, &sh->dev[i].flags); 2850 if (test_bit(R5_ReadError, &sh->dev[i].flags)) 2851 /* That was a successful write so make 2852 * sure it looks like we already did 2853 * a re-write. 2854 */ 2855 set_bit(R5_ReWrite, &sh->dev[i].flags); 2856 } 2857 } 2858 rdev_dec_pending(rdev, conf->mddev); 2859 2860 if (sh->batch_head && bi->bi_status && !replacement) 2861 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state); 2862 2863 bio_reset(bi); 2864 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags)) 2865 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2866 set_bit(STRIPE_HANDLE, &sh->state); 2867 raid5_release_stripe(sh); 2868 2869 if (sh->batch_head && sh != sh->batch_head) 2870 raid5_release_stripe(sh->batch_head); 2871 } 2872 2873 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev) 2874 { 2875 char b[BDEVNAME_SIZE]; 2876 struct r5conf *conf = mddev->private; 2877 unsigned long flags; 2878 pr_debug("raid456: error called\n"); 2879 2880 spin_lock_irqsave(&conf->device_lock, flags); 2881 2882 if (test_bit(In_sync, &rdev->flags) && 2883 mddev->degraded == conf->max_degraded) { 2884 /* 2885 * Don't allow to achieve failed state 2886 * Don't try to recover this device 2887 */ 2888 conf->recovery_disabled = mddev->recovery_disabled; 2889 spin_unlock_irqrestore(&conf->device_lock, flags); 2890 return; 2891 } 2892 2893 set_bit(Faulty, &rdev->flags); 2894 clear_bit(In_sync, &rdev->flags); 2895 mddev->degraded = raid5_calc_degraded(conf); 2896 spin_unlock_irqrestore(&conf->device_lock, flags); 2897 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2898 2899 set_bit(Blocked, &rdev->flags); 2900 set_mask_bits(&mddev->sb_flags, 0, 2901 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 2902 pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n" 2903 "md/raid:%s: Operation continuing on %d devices.\n", 2904 mdname(mddev), 2905 bdevname(rdev->bdev, b), 2906 mdname(mddev), 2907 conf->raid_disks - mddev->degraded); 2908 r5c_update_on_rdev_error(mddev, rdev); 2909 } 2910 2911 /* 2912 * Input: a 'big' sector number, 2913 * Output: index of the data and parity disk, and the sector # in them. 2914 */ 2915 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector, 2916 int previous, int *dd_idx, 2917 struct stripe_head *sh) 2918 { 2919 sector_t stripe, stripe2; 2920 sector_t chunk_number; 2921 unsigned int chunk_offset; 2922 int pd_idx, qd_idx; 2923 int ddf_layout = 0; 2924 sector_t new_sector; 2925 int algorithm = previous ? conf->prev_algo 2926 : conf->algorithm; 2927 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 2928 : conf->chunk_sectors; 2929 int raid_disks = previous ? conf->previous_raid_disks 2930 : conf->raid_disks; 2931 int data_disks = raid_disks - conf->max_degraded; 2932 2933 /* First compute the information on this sector */ 2934 2935 /* 2936 * Compute the chunk number and the sector offset inside the chunk 2937 */ 2938 chunk_offset = sector_div(r_sector, sectors_per_chunk); 2939 chunk_number = r_sector; 2940 2941 /* 2942 * Compute the stripe number 2943 */ 2944 stripe = chunk_number; 2945 *dd_idx = sector_div(stripe, data_disks); 2946 stripe2 = stripe; 2947 /* 2948 * Select the parity disk based on the user selected algorithm. 2949 */ 2950 pd_idx = qd_idx = -1; 2951 switch(conf->level) { 2952 case 4: 2953 pd_idx = data_disks; 2954 break; 2955 case 5: 2956 switch (algorithm) { 2957 case ALGORITHM_LEFT_ASYMMETRIC: 2958 pd_idx = data_disks - sector_div(stripe2, raid_disks); 2959 if (*dd_idx >= pd_idx) 2960 (*dd_idx)++; 2961 break; 2962 case ALGORITHM_RIGHT_ASYMMETRIC: 2963 pd_idx = sector_div(stripe2, raid_disks); 2964 if (*dd_idx >= pd_idx) 2965 (*dd_idx)++; 2966 break; 2967 case ALGORITHM_LEFT_SYMMETRIC: 2968 pd_idx = data_disks - sector_div(stripe2, raid_disks); 2969 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2970 break; 2971 case ALGORITHM_RIGHT_SYMMETRIC: 2972 pd_idx = sector_div(stripe2, raid_disks); 2973 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2974 break; 2975 case ALGORITHM_PARITY_0: 2976 pd_idx = 0; 2977 (*dd_idx)++; 2978 break; 2979 case ALGORITHM_PARITY_N: 2980 pd_idx = data_disks; 2981 break; 2982 default: 2983 BUG(); 2984 } 2985 break; 2986 case 6: 2987 2988 switch (algorithm) { 2989 case ALGORITHM_LEFT_ASYMMETRIC: 2990 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2991 qd_idx = pd_idx + 1; 2992 if (pd_idx == raid_disks-1) { 2993 (*dd_idx)++; /* Q D D D P */ 2994 qd_idx = 0; 2995 } else if (*dd_idx >= pd_idx) 2996 (*dd_idx) += 2; /* D D P Q D */ 2997 break; 2998 case ALGORITHM_RIGHT_ASYMMETRIC: 2999 pd_idx = sector_div(stripe2, raid_disks); 3000 qd_idx = pd_idx + 1; 3001 if (pd_idx == raid_disks-1) { 3002 (*dd_idx)++; /* Q D D D P */ 3003 qd_idx = 0; 3004 } else if (*dd_idx >= pd_idx) 3005 (*dd_idx) += 2; /* D D P Q D */ 3006 break; 3007 case ALGORITHM_LEFT_SYMMETRIC: 3008 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 3009 qd_idx = (pd_idx + 1) % raid_disks; 3010 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 3011 break; 3012 case ALGORITHM_RIGHT_SYMMETRIC: 3013 pd_idx = sector_div(stripe2, raid_disks); 3014 qd_idx = (pd_idx + 1) % raid_disks; 3015 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 3016 break; 3017 3018 case ALGORITHM_PARITY_0: 3019 pd_idx = 0; 3020 qd_idx = 1; 3021 (*dd_idx) += 2; 3022 break; 3023 case ALGORITHM_PARITY_N: 3024 pd_idx = data_disks; 3025 qd_idx = data_disks + 1; 3026 break; 3027 3028 case ALGORITHM_ROTATING_ZERO_RESTART: 3029 /* Exactly the same as RIGHT_ASYMMETRIC, but or 3030 * of blocks for computing Q is different. 3031 */ 3032 pd_idx = sector_div(stripe2, raid_disks); 3033 qd_idx = pd_idx + 1; 3034 if (pd_idx == raid_disks-1) { 3035 (*dd_idx)++; /* Q D D D P */ 3036 qd_idx = 0; 3037 } else if (*dd_idx >= pd_idx) 3038 (*dd_idx) += 2; /* D D P Q D */ 3039 ddf_layout = 1; 3040 break; 3041 3042 case ALGORITHM_ROTATING_N_RESTART: 3043 /* Same a left_asymmetric, by first stripe is 3044 * D D D P Q rather than 3045 * Q D D D P 3046 */ 3047 stripe2 += 1; 3048 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 3049 qd_idx = pd_idx + 1; 3050 if (pd_idx == raid_disks-1) { 3051 (*dd_idx)++; /* Q D D D P */ 3052 qd_idx = 0; 3053 } else if (*dd_idx >= pd_idx) 3054 (*dd_idx) += 2; /* D D P Q D */ 3055 ddf_layout = 1; 3056 break; 3057 3058 case ALGORITHM_ROTATING_N_CONTINUE: 3059 /* Same as left_symmetric but Q is before P */ 3060 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 3061 qd_idx = (pd_idx + raid_disks - 1) % raid_disks; 3062 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 3063 ddf_layout = 1; 3064 break; 3065 3066 case ALGORITHM_LEFT_ASYMMETRIC_6: 3067 /* RAID5 left_asymmetric, with Q on last device */ 3068 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 3069 if (*dd_idx >= pd_idx) 3070 (*dd_idx)++; 3071 qd_idx = raid_disks - 1; 3072 break; 3073 3074 case ALGORITHM_RIGHT_ASYMMETRIC_6: 3075 pd_idx = sector_div(stripe2, raid_disks-1); 3076 if (*dd_idx >= pd_idx) 3077 (*dd_idx)++; 3078 qd_idx = raid_disks - 1; 3079 break; 3080 3081 case ALGORITHM_LEFT_SYMMETRIC_6: 3082 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 3083 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 3084 qd_idx = raid_disks - 1; 3085 break; 3086 3087 case ALGORITHM_RIGHT_SYMMETRIC_6: 3088 pd_idx = sector_div(stripe2, raid_disks-1); 3089 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 3090 qd_idx = raid_disks - 1; 3091 break; 3092 3093 case ALGORITHM_PARITY_0_6: 3094 pd_idx = 0; 3095 (*dd_idx)++; 3096 qd_idx = raid_disks - 1; 3097 break; 3098 3099 default: 3100 BUG(); 3101 } 3102 break; 3103 } 3104 3105 if (sh) { 3106 sh->pd_idx = pd_idx; 3107 sh->qd_idx = qd_idx; 3108 sh->ddf_layout = ddf_layout; 3109 } 3110 /* 3111 * Finally, compute the new sector number 3112 */ 3113 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset; 3114 return new_sector; 3115 } 3116 3117 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous) 3118 { 3119 struct r5conf *conf = sh->raid_conf; 3120 int raid_disks = sh->disks; 3121 int data_disks = raid_disks - conf->max_degraded; 3122 sector_t new_sector = sh->sector, check; 3123 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 3124 : conf->chunk_sectors; 3125 int algorithm = previous ? conf->prev_algo 3126 : conf->algorithm; 3127 sector_t stripe; 3128 int chunk_offset; 3129 sector_t chunk_number; 3130 int dummy1, dd_idx = i; 3131 sector_t r_sector; 3132 struct stripe_head sh2; 3133 3134 chunk_offset = sector_div(new_sector, sectors_per_chunk); 3135 stripe = new_sector; 3136 3137 if (i == sh->pd_idx) 3138 return 0; 3139 switch(conf->level) { 3140 case 4: break; 3141 case 5: 3142 switch (algorithm) { 3143 case ALGORITHM_LEFT_ASYMMETRIC: 3144 case ALGORITHM_RIGHT_ASYMMETRIC: 3145 if (i > sh->pd_idx) 3146 i--; 3147 break; 3148 case ALGORITHM_LEFT_SYMMETRIC: 3149 case ALGORITHM_RIGHT_SYMMETRIC: 3150 if (i < sh->pd_idx) 3151 i += raid_disks; 3152 i -= (sh->pd_idx + 1); 3153 break; 3154 case ALGORITHM_PARITY_0: 3155 i -= 1; 3156 break; 3157 case ALGORITHM_PARITY_N: 3158 break; 3159 default: 3160 BUG(); 3161 } 3162 break; 3163 case 6: 3164 if (i == sh->qd_idx) 3165 return 0; /* It is the Q disk */ 3166 switch (algorithm) { 3167 case ALGORITHM_LEFT_ASYMMETRIC: 3168 case ALGORITHM_RIGHT_ASYMMETRIC: 3169 case ALGORITHM_ROTATING_ZERO_RESTART: 3170 case ALGORITHM_ROTATING_N_RESTART: 3171 if (sh->pd_idx == raid_disks-1) 3172 i--; /* Q D D D P */ 3173 else if (i > sh->pd_idx) 3174 i -= 2; /* D D P Q D */ 3175 break; 3176 case ALGORITHM_LEFT_SYMMETRIC: 3177 case ALGORITHM_RIGHT_SYMMETRIC: 3178 if (sh->pd_idx == raid_disks-1) 3179 i--; /* Q D D D P */ 3180 else { 3181 /* D D P Q D */ 3182 if (i < sh->pd_idx) 3183 i += raid_disks; 3184 i -= (sh->pd_idx + 2); 3185 } 3186 break; 3187 case ALGORITHM_PARITY_0: 3188 i -= 2; 3189 break; 3190 case ALGORITHM_PARITY_N: 3191 break; 3192 case ALGORITHM_ROTATING_N_CONTINUE: 3193 /* Like left_symmetric, but P is before Q */ 3194 if (sh->pd_idx == 0) 3195 i--; /* P D D D Q */ 3196 else { 3197 /* D D Q P D */ 3198 if (i < sh->pd_idx) 3199 i += raid_disks; 3200 i -= (sh->pd_idx + 1); 3201 } 3202 break; 3203 case ALGORITHM_LEFT_ASYMMETRIC_6: 3204 case ALGORITHM_RIGHT_ASYMMETRIC_6: 3205 if (i > sh->pd_idx) 3206 i--; 3207 break; 3208 case ALGORITHM_LEFT_SYMMETRIC_6: 3209 case ALGORITHM_RIGHT_SYMMETRIC_6: 3210 if (i < sh->pd_idx) 3211 i += data_disks + 1; 3212 i -= (sh->pd_idx + 1); 3213 break; 3214 case ALGORITHM_PARITY_0_6: 3215 i -= 1; 3216 break; 3217 default: 3218 BUG(); 3219 } 3220 break; 3221 } 3222 3223 chunk_number = stripe * data_disks + i; 3224 r_sector = chunk_number * sectors_per_chunk + chunk_offset; 3225 3226 check = raid5_compute_sector(conf, r_sector, 3227 previous, &dummy1, &sh2); 3228 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx 3229 || sh2.qd_idx != sh->qd_idx) { 3230 pr_warn("md/raid:%s: compute_blocknr: map not correct\n", 3231 mdname(conf->mddev)); 3232 return 0; 3233 } 3234 return r_sector; 3235 } 3236 3237 /* 3238 * There are cases where we want handle_stripe_dirtying() and 3239 * schedule_reconstruction() to delay towrite to some dev of a stripe. 3240 * 3241 * This function checks whether we want to delay the towrite. Specifically, 3242 * we delay the towrite when: 3243 * 3244 * 1. degraded stripe has a non-overwrite to the missing dev, AND this 3245 * stripe has data in journal (for other devices). 3246 * 3247 * In this case, when reading data for the non-overwrite dev, it is 3248 * necessary to handle complex rmw of write back cache (prexor with 3249 * orig_page, and xor with page). To keep read path simple, we would 3250 * like to flush data in journal to RAID disks first, so complex rmw 3251 * is handled in the write patch (handle_stripe_dirtying). 3252 * 3253 * 2. when journal space is critical (R5C_LOG_CRITICAL=1) 3254 * 3255 * It is important to be able to flush all stripes in raid5-cache. 3256 * Therefore, we need reserve some space on the journal device for 3257 * these flushes. If flush operation includes pending writes to the 3258 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe 3259 * for the flush out. If we exclude these pending writes from flush 3260 * operation, we only need (conf->max_degraded + 1) pages per stripe. 3261 * Therefore, excluding pending writes in these cases enables more 3262 * efficient use of the journal device. 3263 * 3264 * Note: To make sure the stripe makes progress, we only delay 3265 * towrite for stripes with data already in journal (injournal > 0). 3266 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to 3267 * no_space_stripes list. 3268 * 3269 * 3. during journal failure 3270 * In journal failure, we try to flush all cached data to raid disks 3271 * based on data in stripe cache. The array is read-only to upper 3272 * layers, so we would skip all pending writes. 3273 * 3274 */ 3275 static inline bool delay_towrite(struct r5conf *conf, 3276 struct r5dev *dev, 3277 struct stripe_head_state *s) 3278 { 3279 /* case 1 above */ 3280 if (!test_bit(R5_OVERWRITE, &dev->flags) && 3281 !test_bit(R5_Insync, &dev->flags) && s->injournal) 3282 return true; 3283 /* case 2 above */ 3284 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) && 3285 s->injournal > 0) 3286 return true; 3287 /* case 3 above */ 3288 if (s->log_failed && s->injournal) 3289 return true; 3290 return false; 3291 } 3292 3293 static void 3294 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s, 3295 int rcw, int expand) 3296 { 3297 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks; 3298 struct r5conf *conf = sh->raid_conf; 3299 int level = conf->level; 3300 3301 if (rcw) { 3302 /* 3303 * In some cases, handle_stripe_dirtying initially decided to 3304 * run rmw and allocates extra page for prexor. However, rcw is 3305 * cheaper later on. We need to free the extra page now, 3306 * because we won't be able to do that in ops_complete_prexor(). 3307 */ 3308 r5c_release_extra_page(sh); 3309 3310 for (i = disks; i--; ) { 3311 struct r5dev *dev = &sh->dev[i]; 3312 3313 if (dev->towrite && !delay_towrite(conf, dev, s)) { 3314 set_bit(R5_LOCKED, &dev->flags); 3315 set_bit(R5_Wantdrain, &dev->flags); 3316 if (!expand) 3317 clear_bit(R5_UPTODATE, &dev->flags); 3318 s->locked++; 3319 } else if (test_bit(R5_InJournal, &dev->flags)) { 3320 set_bit(R5_LOCKED, &dev->flags); 3321 s->locked++; 3322 } 3323 } 3324 /* if we are not expanding this is a proper write request, and 3325 * there will be bios with new data to be drained into the 3326 * stripe cache 3327 */ 3328 if (!expand) { 3329 if (!s->locked) 3330 /* False alarm, nothing to do */ 3331 return; 3332 sh->reconstruct_state = reconstruct_state_drain_run; 3333 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 3334 } else 3335 sh->reconstruct_state = reconstruct_state_run; 3336 3337 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 3338 3339 if (s->locked + conf->max_degraded == disks) 3340 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state)) 3341 atomic_inc(&conf->pending_full_writes); 3342 } else { 3343 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) || 3344 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags))); 3345 BUG_ON(level == 6 && 3346 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) || 3347 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags)))); 3348 3349 for (i = disks; i--; ) { 3350 struct r5dev *dev = &sh->dev[i]; 3351 if (i == pd_idx || i == qd_idx) 3352 continue; 3353 3354 if (dev->towrite && 3355 (test_bit(R5_UPTODATE, &dev->flags) || 3356 test_bit(R5_Wantcompute, &dev->flags))) { 3357 set_bit(R5_Wantdrain, &dev->flags); 3358 set_bit(R5_LOCKED, &dev->flags); 3359 clear_bit(R5_UPTODATE, &dev->flags); 3360 s->locked++; 3361 } else if (test_bit(R5_InJournal, &dev->flags)) { 3362 set_bit(R5_LOCKED, &dev->flags); 3363 s->locked++; 3364 } 3365 } 3366 if (!s->locked) 3367 /* False alarm - nothing to do */ 3368 return; 3369 sh->reconstruct_state = reconstruct_state_prexor_drain_run; 3370 set_bit(STRIPE_OP_PREXOR, &s->ops_request); 3371 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 3372 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 3373 } 3374 3375 /* keep the parity disk(s) locked while asynchronous operations 3376 * are in flight 3377 */ 3378 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); 3379 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 3380 s->locked++; 3381 3382 if (level == 6) { 3383 int qd_idx = sh->qd_idx; 3384 struct r5dev *dev = &sh->dev[qd_idx]; 3385 3386 set_bit(R5_LOCKED, &dev->flags); 3387 clear_bit(R5_UPTODATE, &dev->flags); 3388 s->locked++; 3389 } 3390 3391 if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page && 3392 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) && 3393 !test_bit(STRIPE_FULL_WRITE, &sh->state) && 3394 test_bit(R5_Insync, &sh->dev[pd_idx].flags)) 3395 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request); 3396 3397 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n", 3398 __func__, (unsigned long long)sh->sector, 3399 s->locked, s->ops_request); 3400 } 3401 3402 /* 3403 * Each stripe/dev can have one or more bion attached. 3404 * toread/towrite point to the first in a chain. 3405 * The bi_next chain must be in order. 3406 */ 3407 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, 3408 int forwrite, int previous) 3409 { 3410 struct bio **bip; 3411 struct r5conf *conf = sh->raid_conf; 3412 int firstwrite=0; 3413 3414 pr_debug("adding bi b#%llu to stripe s#%llu\n", 3415 (unsigned long long)bi->bi_iter.bi_sector, 3416 (unsigned long long)sh->sector); 3417 3418 spin_lock_irq(&sh->stripe_lock); 3419 sh->dev[dd_idx].write_hint = bi->bi_write_hint; 3420 /* Don't allow new IO added to stripes in batch list */ 3421 if (sh->batch_head) 3422 goto overlap; 3423 if (forwrite) { 3424 bip = &sh->dev[dd_idx].towrite; 3425 if (*bip == NULL) 3426 firstwrite = 1; 3427 } else 3428 bip = &sh->dev[dd_idx].toread; 3429 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) { 3430 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector) 3431 goto overlap; 3432 bip = & (*bip)->bi_next; 3433 } 3434 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi)) 3435 goto overlap; 3436 3437 if (forwrite && raid5_has_ppl(conf)) { 3438 /* 3439 * With PPL only writes to consecutive data chunks within a 3440 * stripe are allowed because for a single stripe_head we can 3441 * only have one PPL entry at a time, which describes one data 3442 * range. Not really an overlap, but wait_for_overlap can be 3443 * used to handle this. 3444 */ 3445 sector_t sector; 3446 sector_t first = 0; 3447 sector_t last = 0; 3448 int count = 0; 3449 int i; 3450 3451 for (i = 0; i < sh->disks; i++) { 3452 if (i != sh->pd_idx && 3453 (i == dd_idx || sh->dev[i].towrite)) { 3454 sector = sh->dev[i].sector; 3455 if (count == 0 || sector < first) 3456 first = sector; 3457 if (sector > last) 3458 last = sector; 3459 count++; 3460 } 3461 } 3462 3463 if (first + conf->chunk_sectors * (count - 1) != last) 3464 goto overlap; 3465 } 3466 3467 if (!forwrite || previous) 3468 clear_bit(STRIPE_BATCH_READY, &sh->state); 3469 3470 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next); 3471 if (*bip) 3472 bi->bi_next = *bip; 3473 *bip = bi; 3474 bio_inc_remaining(bi); 3475 md_write_inc(conf->mddev, bi); 3476 3477 if (forwrite) { 3478 /* check if page is covered */ 3479 sector_t sector = sh->dev[dd_idx].sector; 3480 for (bi=sh->dev[dd_idx].towrite; 3481 sector < sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf) && 3482 bi && bi->bi_iter.bi_sector <= sector; 3483 bi = r5_next_bio(conf, bi, sh->dev[dd_idx].sector)) { 3484 if (bio_end_sector(bi) >= sector) 3485 sector = bio_end_sector(bi); 3486 } 3487 if (sector >= sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf)) 3488 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags)) 3489 sh->overwrite_disks++; 3490 } 3491 3492 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n", 3493 (unsigned long long)(*bip)->bi_iter.bi_sector, 3494 (unsigned long long)sh->sector, dd_idx); 3495 3496 if (conf->mddev->bitmap && firstwrite) { 3497 /* Cannot hold spinlock over bitmap_startwrite, 3498 * but must ensure this isn't added to a batch until 3499 * we have added to the bitmap and set bm_seq. 3500 * So set STRIPE_BITMAP_PENDING to prevent 3501 * batching. 3502 * If multiple add_stripe_bio() calls race here they 3503 * much all set STRIPE_BITMAP_PENDING. So only the first one 3504 * to complete "bitmap_startwrite" gets to set 3505 * STRIPE_BIT_DELAY. This is important as once a stripe 3506 * is added to a batch, STRIPE_BIT_DELAY cannot be changed 3507 * any more. 3508 */ 3509 set_bit(STRIPE_BITMAP_PENDING, &sh->state); 3510 spin_unlock_irq(&sh->stripe_lock); 3511 md_bitmap_startwrite(conf->mddev->bitmap, sh->sector, 3512 RAID5_STRIPE_SECTORS(conf), 0); 3513 spin_lock_irq(&sh->stripe_lock); 3514 clear_bit(STRIPE_BITMAP_PENDING, &sh->state); 3515 if (!sh->batch_head) { 3516 sh->bm_seq = conf->seq_flush+1; 3517 set_bit(STRIPE_BIT_DELAY, &sh->state); 3518 } 3519 } 3520 spin_unlock_irq(&sh->stripe_lock); 3521 3522 if (stripe_can_batch(sh)) 3523 stripe_add_to_batch_list(conf, sh); 3524 return 1; 3525 3526 overlap: 3527 set_bit(R5_Overlap, &sh->dev[dd_idx].flags); 3528 spin_unlock_irq(&sh->stripe_lock); 3529 return 0; 3530 } 3531 3532 static void end_reshape(struct r5conf *conf); 3533 3534 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 3535 struct stripe_head *sh) 3536 { 3537 int sectors_per_chunk = 3538 previous ? conf->prev_chunk_sectors : conf->chunk_sectors; 3539 int dd_idx; 3540 int chunk_offset = sector_div(stripe, sectors_per_chunk); 3541 int disks = previous ? conf->previous_raid_disks : conf->raid_disks; 3542 3543 raid5_compute_sector(conf, 3544 stripe * (disks - conf->max_degraded) 3545 *sectors_per_chunk + chunk_offset, 3546 previous, 3547 &dd_idx, sh); 3548 } 3549 3550 static void 3551 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh, 3552 struct stripe_head_state *s, int disks) 3553 { 3554 int i; 3555 BUG_ON(sh->batch_head); 3556 for (i = disks; i--; ) { 3557 struct bio *bi; 3558 int bitmap_end = 0; 3559 3560 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 3561 struct md_rdev *rdev; 3562 rcu_read_lock(); 3563 rdev = rcu_dereference(conf->disks[i].rdev); 3564 if (rdev && test_bit(In_sync, &rdev->flags) && 3565 !test_bit(Faulty, &rdev->flags)) 3566 atomic_inc(&rdev->nr_pending); 3567 else 3568 rdev = NULL; 3569 rcu_read_unlock(); 3570 if (rdev) { 3571 if (!rdev_set_badblocks( 3572 rdev, 3573 sh->sector, 3574 RAID5_STRIPE_SECTORS(conf), 0)) 3575 md_error(conf->mddev, rdev); 3576 rdev_dec_pending(rdev, conf->mddev); 3577 } 3578 } 3579 spin_lock_irq(&sh->stripe_lock); 3580 /* fail all writes first */ 3581 bi = sh->dev[i].towrite; 3582 sh->dev[i].towrite = NULL; 3583 sh->overwrite_disks = 0; 3584 spin_unlock_irq(&sh->stripe_lock); 3585 if (bi) 3586 bitmap_end = 1; 3587 3588 log_stripe_write_finished(sh); 3589 3590 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 3591 wake_up(&conf->wait_for_overlap); 3592 3593 while (bi && bi->bi_iter.bi_sector < 3594 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) { 3595 struct bio *nextbi = r5_next_bio(conf, bi, sh->dev[i].sector); 3596 3597 md_write_end(conf->mddev); 3598 bio_io_error(bi); 3599 bi = nextbi; 3600 } 3601 if (bitmap_end) 3602 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3603 RAID5_STRIPE_SECTORS(conf), 0, 0); 3604 bitmap_end = 0; 3605 /* and fail all 'written' */ 3606 bi = sh->dev[i].written; 3607 sh->dev[i].written = NULL; 3608 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) { 3609 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 3610 sh->dev[i].page = sh->dev[i].orig_page; 3611 } 3612 3613 if (bi) bitmap_end = 1; 3614 while (bi && bi->bi_iter.bi_sector < 3615 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) { 3616 struct bio *bi2 = r5_next_bio(conf, bi, sh->dev[i].sector); 3617 3618 md_write_end(conf->mddev); 3619 bio_io_error(bi); 3620 bi = bi2; 3621 } 3622 3623 /* fail any reads if this device is non-operational and 3624 * the data has not reached the cache yet. 3625 */ 3626 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) && 3627 s->failed > conf->max_degraded && 3628 (!test_bit(R5_Insync, &sh->dev[i].flags) || 3629 test_bit(R5_ReadError, &sh->dev[i].flags))) { 3630 spin_lock_irq(&sh->stripe_lock); 3631 bi = sh->dev[i].toread; 3632 sh->dev[i].toread = NULL; 3633 spin_unlock_irq(&sh->stripe_lock); 3634 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 3635 wake_up(&conf->wait_for_overlap); 3636 if (bi) 3637 s->to_read--; 3638 while (bi && bi->bi_iter.bi_sector < 3639 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) { 3640 struct bio *nextbi = 3641 r5_next_bio(conf, bi, sh->dev[i].sector); 3642 3643 bio_io_error(bi); 3644 bi = nextbi; 3645 } 3646 } 3647 if (bitmap_end) 3648 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3649 RAID5_STRIPE_SECTORS(conf), 0, 0); 3650 /* If we were in the middle of a write the parity block might 3651 * still be locked - so just clear all R5_LOCKED flags 3652 */ 3653 clear_bit(R5_LOCKED, &sh->dev[i].flags); 3654 } 3655 s->to_write = 0; 3656 s->written = 0; 3657 3658 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 3659 if (atomic_dec_and_test(&conf->pending_full_writes)) 3660 md_wakeup_thread(conf->mddev->thread); 3661 } 3662 3663 static void 3664 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh, 3665 struct stripe_head_state *s) 3666 { 3667 int abort = 0; 3668 int i; 3669 3670 BUG_ON(sh->batch_head); 3671 clear_bit(STRIPE_SYNCING, &sh->state); 3672 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 3673 wake_up(&conf->wait_for_overlap); 3674 s->syncing = 0; 3675 s->replacing = 0; 3676 /* There is nothing more to do for sync/check/repair. 3677 * Don't even need to abort as that is handled elsewhere 3678 * if needed, and not always wanted e.g. if there is a known 3679 * bad block here. 3680 * For recover/replace we need to record a bad block on all 3681 * non-sync devices, or abort the recovery 3682 */ 3683 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) { 3684 /* During recovery devices cannot be removed, so 3685 * locking and refcounting of rdevs is not needed 3686 */ 3687 rcu_read_lock(); 3688 for (i = 0; i < conf->raid_disks; i++) { 3689 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 3690 if (rdev 3691 && !test_bit(Faulty, &rdev->flags) 3692 && !test_bit(In_sync, &rdev->flags) 3693 && !rdev_set_badblocks(rdev, sh->sector, 3694 RAID5_STRIPE_SECTORS(conf), 0)) 3695 abort = 1; 3696 rdev = rcu_dereference(conf->disks[i].replacement); 3697 if (rdev 3698 && !test_bit(Faulty, &rdev->flags) 3699 && !test_bit(In_sync, &rdev->flags) 3700 && !rdev_set_badblocks(rdev, sh->sector, 3701 RAID5_STRIPE_SECTORS(conf), 0)) 3702 abort = 1; 3703 } 3704 rcu_read_unlock(); 3705 if (abort) 3706 conf->recovery_disabled = 3707 conf->mddev->recovery_disabled; 3708 } 3709 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), !abort); 3710 } 3711 3712 static int want_replace(struct stripe_head *sh, int disk_idx) 3713 { 3714 struct md_rdev *rdev; 3715 int rv = 0; 3716 3717 rcu_read_lock(); 3718 rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement); 3719 if (rdev 3720 && !test_bit(Faulty, &rdev->flags) 3721 && !test_bit(In_sync, &rdev->flags) 3722 && (rdev->recovery_offset <= sh->sector 3723 || rdev->mddev->recovery_cp <= sh->sector)) 3724 rv = 1; 3725 rcu_read_unlock(); 3726 return rv; 3727 } 3728 3729 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s, 3730 int disk_idx, int disks) 3731 { 3732 struct r5dev *dev = &sh->dev[disk_idx]; 3733 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]], 3734 &sh->dev[s->failed_num[1]] }; 3735 int i; 3736 bool force_rcw = (sh->raid_conf->rmw_level == PARITY_DISABLE_RMW); 3737 3738 3739 if (test_bit(R5_LOCKED, &dev->flags) || 3740 test_bit(R5_UPTODATE, &dev->flags)) 3741 /* No point reading this as we already have it or have 3742 * decided to get it. 3743 */ 3744 return 0; 3745 3746 if (dev->toread || 3747 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags))) 3748 /* We need this block to directly satisfy a request */ 3749 return 1; 3750 3751 if (s->syncing || s->expanding || 3752 (s->replacing && want_replace(sh, disk_idx))) 3753 /* When syncing, or expanding we read everything. 3754 * When replacing, we need the replaced block. 3755 */ 3756 return 1; 3757 3758 if ((s->failed >= 1 && fdev[0]->toread) || 3759 (s->failed >= 2 && fdev[1]->toread)) 3760 /* If we want to read from a failed device, then 3761 * we need to actually read every other device. 3762 */ 3763 return 1; 3764 3765 /* Sometimes neither read-modify-write nor reconstruct-write 3766 * cycles can work. In those cases we read every block we 3767 * can. Then the parity-update is certain to have enough to 3768 * work with. 3769 * This can only be a problem when we need to write something, 3770 * and some device has failed. If either of those tests 3771 * fail we need look no further. 3772 */ 3773 if (!s->failed || !s->to_write) 3774 return 0; 3775 3776 if (test_bit(R5_Insync, &dev->flags) && 3777 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3778 /* Pre-reads at not permitted until after short delay 3779 * to gather multiple requests. However if this 3780 * device is no Insync, the block could only be computed 3781 * and there is no need to delay that. 3782 */ 3783 return 0; 3784 3785 for (i = 0; i < s->failed && i < 2; i++) { 3786 if (fdev[i]->towrite && 3787 !test_bit(R5_UPTODATE, &fdev[i]->flags) && 3788 !test_bit(R5_OVERWRITE, &fdev[i]->flags)) 3789 /* If we have a partial write to a failed 3790 * device, then we will need to reconstruct 3791 * the content of that device, so all other 3792 * devices must be read. 3793 */ 3794 return 1; 3795 3796 if (s->failed >= 2 && 3797 (fdev[i]->towrite || 3798 s->failed_num[i] == sh->pd_idx || 3799 s->failed_num[i] == sh->qd_idx) && 3800 !test_bit(R5_UPTODATE, &fdev[i]->flags)) 3801 /* In max degraded raid6, If the failed disk is P, Q, 3802 * or we want to read the failed disk, we need to do 3803 * reconstruct-write. 3804 */ 3805 force_rcw = true; 3806 } 3807 3808 /* If we are forced to do a reconstruct-write, because parity 3809 * cannot be trusted and we are currently recovering it, there 3810 * is extra need to be careful. 3811 * If one of the devices that we would need to read, because 3812 * it is not being overwritten (and maybe not written at all) 3813 * is missing/faulty, then we need to read everything we can. 3814 */ 3815 if (!force_rcw && 3816 sh->sector < sh->raid_conf->mddev->recovery_cp) 3817 /* reconstruct-write isn't being forced */ 3818 return 0; 3819 for (i = 0; i < s->failed && i < 2; i++) { 3820 if (s->failed_num[i] != sh->pd_idx && 3821 s->failed_num[i] != sh->qd_idx && 3822 !test_bit(R5_UPTODATE, &fdev[i]->flags) && 3823 !test_bit(R5_OVERWRITE, &fdev[i]->flags)) 3824 return 1; 3825 } 3826 3827 return 0; 3828 } 3829 3830 /* fetch_block - checks the given member device to see if its data needs 3831 * to be read or computed to satisfy a request. 3832 * 3833 * Returns 1 when no more member devices need to be checked, otherwise returns 3834 * 0 to tell the loop in handle_stripe_fill to continue 3835 */ 3836 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s, 3837 int disk_idx, int disks) 3838 { 3839 struct r5dev *dev = &sh->dev[disk_idx]; 3840 3841 /* is the data in this block needed, and can we get it? */ 3842 if (need_this_block(sh, s, disk_idx, disks)) { 3843 /* we would like to get this block, possibly by computing it, 3844 * otherwise read it if the backing disk is insync 3845 */ 3846 BUG_ON(test_bit(R5_Wantcompute, &dev->flags)); 3847 BUG_ON(test_bit(R5_Wantread, &dev->flags)); 3848 BUG_ON(sh->batch_head); 3849 3850 /* 3851 * In the raid6 case if the only non-uptodate disk is P 3852 * then we already trusted P to compute the other failed 3853 * drives. It is safe to compute rather than re-read P. 3854 * In other cases we only compute blocks from failed 3855 * devices, otherwise check/repair might fail to detect 3856 * a real inconsistency. 3857 */ 3858 3859 if ((s->uptodate == disks - 1) && 3860 ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) || 3861 (s->failed && (disk_idx == s->failed_num[0] || 3862 disk_idx == s->failed_num[1])))) { 3863 /* have disk failed, and we're requested to fetch it; 3864 * do compute it 3865 */ 3866 pr_debug("Computing stripe %llu block %d\n", 3867 (unsigned long long)sh->sector, disk_idx); 3868 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3869 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3870 set_bit(R5_Wantcompute, &dev->flags); 3871 sh->ops.target = disk_idx; 3872 sh->ops.target2 = -1; /* no 2nd target */ 3873 s->req_compute = 1; 3874 /* Careful: from this point on 'uptodate' is in the eye 3875 * of raid_run_ops which services 'compute' operations 3876 * before writes. R5_Wantcompute flags a block that will 3877 * be R5_UPTODATE by the time it is needed for a 3878 * subsequent operation. 3879 */ 3880 s->uptodate++; 3881 return 1; 3882 } else if (s->uptodate == disks-2 && s->failed >= 2) { 3883 /* Computing 2-failure is *very* expensive; only 3884 * do it if failed >= 2 3885 */ 3886 int other; 3887 for (other = disks; other--; ) { 3888 if (other == disk_idx) 3889 continue; 3890 if (!test_bit(R5_UPTODATE, 3891 &sh->dev[other].flags)) 3892 break; 3893 } 3894 BUG_ON(other < 0); 3895 pr_debug("Computing stripe %llu blocks %d,%d\n", 3896 (unsigned long long)sh->sector, 3897 disk_idx, other); 3898 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3899 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3900 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags); 3901 set_bit(R5_Wantcompute, &sh->dev[other].flags); 3902 sh->ops.target = disk_idx; 3903 sh->ops.target2 = other; 3904 s->uptodate += 2; 3905 s->req_compute = 1; 3906 return 1; 3907 } else if (test_bit(R5_Insync, &dev->flags)) { 3908 set_bit(R5_LOCKED, &dev->flags); 3909 set_bit(R5_Wantread, &dev->flags); 3910 s->locked++; 3911 pr_debug("Reading block %d (sync=%d)\n", 3912 disk_idx, s->syncing); 3913 } 3914 } 3915 3916 return 0; 3917 } 3918 3919 /* 3920 * handle_stripe_fill - read or compute data to satisfy pending requests. 3921 */ 3922 static void handle_stripe_fill(struct stripe_head *sh, 3923 struct stripe_head_state *s, 3924 int disks) 3925 { 3926 int i; 3927 3928 /* look for blocks to read/compute, skip this if a compute 3929 * is already in flight, or if the stripe contents are in the 3930 * midst of changing due to a write 3931 */ 3932 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state && 3933 !sh->reconstruct_state) { 3934 3935 /* 3936 * For degraded stripe with data in journal, do not handle 3937 * read requests yet, instead, flush the stripe to raid 3938 * disks first, this avoids handling complex rmw of write 3939 * back cache (prexor with orig_page, and then xor with 3940 * page) in the read path 3941 */ 3942 if (s->injournal && s->failed) { 3943 if (test_bit(STRIPE_R5C_CACHING, &sh->state)) 3944 r5c_make_stripe_write_out(sh); 3945 goto out; 3946 } 3947 3948 for (i = disks; i--; ) 3949 if (fetch_block(sh, s, i, disks)) 3950 break; 3951 } 3952 out: 3953 set_bit(STRIPE_HANDLE, &sh->state); 3954 } 3955 3956 static void break_stripe_batch_list(struct stripe_head *head_sh, 3957 unsigned long handle_flags); 3958 /* handle_stripe_clean_event 3959 * any written block on an uptodate or failed drive can be returned. 3960 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but 3961 * never LOCKED, so we don't need to test 'failed' directly. 3962 */ 3963 static void handle_stripe_clean_event(struct r5conf *conf, 3964 struct stripe_head *sh, int disks) 3965 { 3966 int i; 3967 struct r5dev *dev; 3968 int discard_pending = 0; 3969 struct stripe_head *head_sh = sh; 3970 bool do_endio = false; 3971 3972 for (i = disks; i--; ) 3973 if (sh->dev[i].written) { 3974 dev = &sh->dev[i]; 3975 if (!test_bit(R5_LOCKED, &dev->flags) && 3976 (test_bit(R5_UPTODATE, &dev->flags) || 3977 test_bit(R5_Discard, &dev->flags) || 3978 test_bit(R5_SkipCopy, &dev->flags))) { 3979 /* We can return any write requests */ 3980 struct bio *wbi, *wbi2; 3981 pr_debug("Return write for disc %d\n", i); 3982 if (test_and_clear_bit(R5_Discard, &dev->flags)) 3983 clear_bit(R5_UPTODATE, &dev->flags); 3984 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) { 3985 WARN_ON(test_bit(R5_UPTODATE, &dev->flags)); 3986 } 3987 do_endio = true; 3988 3989 returnbi: 3990 dev->page = dev->orig_page; 3991 wbi = dev->written; 3992 dev->written = NULL; 3993 while (wbi && wbi->bi_iter.bi_sector < 3994 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 3995 wbi2 = r5_next_bio(conf, wbi, dev->sector); 3996 md_write_end(conf->mddev); 3997 bio_endio(wbi); 3998 wbi = wbi2; 3999 } 4000 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector, 4001 RAID5_STRIPE_SECTORS(conf), 4002 !test_bit(STRIPE_DEGRADED, &sh->state), 4003 0); 4004 if (head_sh->batch_head) { 4005 sh = list_first_entry(&sh->batch_list, 4006 struct stripe_head, 4007 batch_list); 4008 if (sh != head_sh) { 4009 dev = &sh->dev[i]; 4010 goto returnbi; 4011 } 4012 } 4013 sh = head_sh; 4014 dev = &sh->dev[i]; 4015 } else if (test_bit(R5_Discard, &dev->flags)) 4016 discard_pending = 1; 4017 } 4018 4019 log_stripe_write_finished(sh); 4020 4021 if (!discard_pending && 4022 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) { 4023 int hash; 4024 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 4025 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 4026 if (sh->qd_idx >= 0) { 4027 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 4028 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags); 4029 } 4030 /* now that discard is done we can proceed with any sync */ 4031 clear_bit(STRIPE_DISCARD, &sh->state); 4032 /* 4033 * SCSI discard will change some bio fields and the stripe has 4034 * no updated data, so remove it from hash list and the stripe 4035 * will be reinitialized 4036 */ 4037 unhash: 4038 hash = sh->hash_lock_index; 4039 spin_lock_irq(conf->hash_locks + hash); 4040 remove_hash(sh); 4041 spin_unlock_irq(conf->hash_locks + hash); 4042 if (head_sh->batch_head) { 4043 sh = list_first_entry(&sh->batch_list, 4044 struct stripe_head, batch_list); 4045 if (sh != head_sh) 4046 goto unhash; 4047 } 4048 sh = head_sh; 4049 4050 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) 4051 set_bit(STRIPE_HANDLE, &sh->state); 4052 4053 } 4054 4055 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 4056 if (atomic_dec_and_test(&conf->pending_full_writes)) 4057 md_wakeup_thread(conf->mddev->thread); 4058 4059 if (head_sh->batch_head && do_endio) 4060 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS); 4061 } 4062 4063 /* 4064 * For RMW in write back cache, we need extra page in prexor to store the 4065 * old data. This page is stored in dev->orig_page. 4066 * 4067 * This function checks whether we have data for prexor. The exact logic 4068 * is: 4069 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE) 4070 */ 4071 static inline bool uptodate_for_rmw(struct r5dev *dev) 4072 { 4073 return (test_bit(R5_UPTODATE, &dev->flags)) && 4074 (!test_bit(R5_InJournal, &dev->flags) || 4075 test_bit(R5_OrigPageUPTDODATE, &dev->flags)); 4076 } 4077 4078 static int handle_stripe_dirtying(struct r5conf *conf, 4079 struct stripe_head *sh, 4080 struct stripe_head_state *s, 4081 int disks) 4082 { 4083 int rmw = 0, rcw = 0, i; 4084 sector_t recovery_cp = conf->mddev->recovery_cp; 4085 4086 /* Check whether resync is now happening or should start. 4087 * If yes, then the array is dirty (after unclean shutdown or 4088 * initial creation), so parity in some stripes might be inconsistent. 4089 * In this case, we need to always do reconstruct-write, to ensure 4090 * that in case of drive failure or read-error correction, we 4091 * generate correct data from the parity. 4092 */ 4093 if (conf->rmw_level == PARITY_DISABLE_RMW || 4094 (recovery_cp < MaxSector && sh->sector >= recovery_cp && 4095 s->failed == 0)) { 4096 /* Calculate the real rcw later - for now make it 4097 * look like rcw is cheaper 4098 */ 4099 rcw = 1; rmw = 2; 4100 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n", 4101 conf->rmw_level, (unsigned long long)recovery_cp, 4102 (unsigned long long)sh->sector); 4103 } else for (i = disks; i--; ) { 4104 /* would I have to read this buffer for read_modify_write */ 4105 struct r5dev *dev = &sh->dev[i]; 4106 if (((dev->towrite && !delay_towrite(conf, dev, s)) || 4107 i == sh->pd_idx || i == sh->qd_idx || 4108 test_bit(R5_InJournal, &dev->flags)) && 4109 !test_bit(R5_LOCKED, &dev->flags) && 4110 !(uptodate_for_rmw(dev) || 4111 test_bit(R5_Wantcompute, &dev->flags))) { 4112 if (test_bit(R5_Insync, &dev->flags)) 4113 rmw++; 4114 else 4115 rmw += 2*disks; /* cannot read it */ 4116 } 4117 /* Would I have to read this buffer for reconstruct_write */ 4118 if (!test_bit(R5_OVERWRITE, &dev->flags) && 4119 i != sh->pd_idx && i != sh->qd_idx && 4120 !test_bit(R5_LOCKED, &dev->flags) && 4121 !(test_bit(R5_UPTODATE, &dev->flags) || 4122 test_bit(R5_Wantcompute, &dev->flags))) { 4123 if (test_bit(R5_Insync, &dev->flags)) 4124 rcw++; 4125 else 4126 rcw += 2*disks; 4127 } 4128 } 4129 4130 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n", 4131 (unsigned long long)sh->sector, sh->state, rmw, rcw); 4132 set_bit(STRIPE_HANDLE, &sh->state); 4133 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) { 4134 /* prefer read-modify-write, but need to get some data */ 4135 if (conf->mddev->queue) 4136 blk_add_trace_msg(conf->mddev->queue, 4137 "raid5 rmw %llu %d", 4138 (unsigned long long)sh->sector, rmw); 4139 for (i = disks; i--; ) { 4140 struct r5dev *dev = &sh->dev[i]; 4141 if (test_bit(R5_InJournal, &dev->flags) && 4142 dev->page == dev->orig_page && 4143 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) { 4144 /* alloc page for prexor */ 4145 struct page *p = alloc_page(GFP_NOIO); 4146 4147 if (p) { 4148 dev->orig_page = p; 4149 continue; 4150 } 4151 4152 /* 4153 * alloc_page() failed, try use 4154 * disk_info->extra_page 4155 */ 4156 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE, 4157 &conf->cache_state)) { 4158 r5c_use_extra_page(sh); 4159 break; 4160 } 4161 4162 /* extra_page in use, add to delayed_list */ 4163 set_bit(STRIPE_DELAYED, &sh->state); 4164 s->waiting_extra_page = 1; 4165 return -EAGAIN; 4166 } 4167 } 4168 4169 for (i = disks; i--; ) { 4170 struct r5dev *dev = &sh->dev[i]; 4171 if (((dev->towrite && !delay_towrite(conf, dev, s)) || 4172 i == sh->pd_idx || i == sh->qd_idx || 4173 test_bit(R5_InJournal, &dev->flags)) && 4174 !test_bit(R5_LOCKED, &dev->flags) && 4175 !(uptodate_for_rmw(dev) || 4176 test_bit(R5_Wantcompute, &dev->flags)) && 4177 test_bit(R5_Insync, &dev->flags)) { 4178 if (test_bit(STRIPE_PREREAD_ACTIVE, 4179 &sh->state)) { 4180 pr_debug("Read_old block %d for r-m-w\n", 4181 i); 4182 set_bit(R5_LOCKED, &dev->flags); 4183 set_bit(R5_Wantread, &dev->flags); 4184 s->locked++; 4185 } else 4186 set_bit(STRIPE_DELAYED, &sh->state); 4187 } 4188 } 4189 } 4190 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) { 4191 /* want reconstruct write, but need to get some data */ 4192 int qread =0; 4193 rcw = 0; 4194 for (i = disks; i--; ) { 4195 struct r5dev *dev = &sh->dev[i]; 4196 if (!test_bit(R5_OVERWRITE, &dev->flags) && 4197 i != sh->pd_idx && i != sh->qd_idx && 4198 !test_bit(R5_LOCKED, &dev->flags) && 4199 !(test_bit(R5_UPTODATE, &dev->flags) || 4200 test_bit(R5_Wantcompute, &dev->flags))) { 4201 rcw++; 4202 if (test_bit(R5_Insync, &dev->flags) && 4203 test_bit(STRIPE_PREREAD_ACTIVE, 4204 &sh->state)) { 4205 pr_debug("Read_old block " 4206 "%d for Reconstruct\n", i); 4207 set_bit(R5_LOCKED, &dev->flags); 4208 set_bit(R5_Wantread, &dev->flags); 4209 s->locked++; 4210 qread++; 4211 } else 4212 set_bit(STRIPE_DELAYED, &sh->state); 4213 } 4214 } 4215 if (rcw && conf->mddev->queue) 4216 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d", 4217 (unsigned long long)sh->sector, 4218 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state)); 4219 } 4220 4221 if (rcw > disks && rmw > disks && 4222 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4223 set_bit(STRIPE_DELAYED, &sh->state); 4224 4225 /* now if nothing is locked, and if we have enough data, 4226 * we can start a write request 4227 */ 4228 /* since handle_stripe can be called at any time we need to handle the 4229 * case where a compute block operation has been submitted and then a 4230 * subsequent call wants to start a write request. raid_run_ops only 4231 * handles the case where compute block and reconstruct are requested 4232 * simultaneously. If this is not the case then new writes need to be 4233 * held off until the compute completes. 4234 */ 4235 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) && 4236 (s->locked == 0 && (rcw == 0 || rmw == 0) && 4237 !test_bit(STRIPE_BIT_DELAY, &sh->state))) 4238 schedule_reconstruction(sh, s, rcw == 0, 0); 4239 return 0; 4240 } 4241 4242 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh, 4243 struct stripe_head_state *s, int disks) 4244 { 4245 struct r5dev *dev = NULL; 4246 4247 BUG_ON(sh->batch_head); 4248 set_bit(STRIPE_HANDLE, &sh->state); 4249 4250 switch (sh->check_state) { 4251 case check_state_idle: 4252 /* start a new check operation if there are no failures */ 4253 if (s->failed == 0) { 4254 BUG_ON(s->uptodate != disks); 4255 sh->check_state = check_state_run; 4256 set_bit(STRIPE_OP_CHECK, &s->ops_request); 4257 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 4258 s->uptodate--; 4259 break; 4260 } 4261 dev = &sh->dev[s->failed_num[0]]; 4262 fallthrough; 4263 case check_state_compute_result: 4264 sh->check_state = check_state_idle; 4265 if (!dev) 4266 dev = &sh->dev[sh->pd_idx]; 4267 4268 /* check that a write has not made the stripe insync */ 4269 if (test_bit(STRIPE_INSYNC, &sh->state)) 4270 break; 4271 4272 /* either failed parity check, or recovery is happening */ 4273 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags)); 4274 BUG_ON(s->uptodate != disks); 4275 4276 set_bit(R5_LOCKED, &dev->flags); 4277 s->locked++; 4278 set_bit(R5_Wantwrite, &dev->flags); 4279 4280 clear_bit(STRIPE_DEGRADED, &sh->state); 4281 set_bit(STRIPE_INSYNC, &sh->state); 4282 break; 4283 case check_state_run: 4284 break; /* we will be called again upon completion */ 4285 case check_state_check_result: 4286 sh->check_state = check_state_idle; 4287 4288 /* if a failure occurred during the check operation, leave 4289 * STRIPE_INSYNC not set and let the stripe be handled again 4290 */ 4291 if (s->failed) 4292 break; 4293 4294 /* handle a successful check operation, if parity is correct 4295 * we are done. Otherwise update the mismatch count and repair 4296 * parity if !MD_RECOVERY_CHECK 4297 */ 4298 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0) 4299 /* parity is correct (on disc, 4300 * not in buffer any more) 4301 */ 4302 set_bit(STRIPE_INSYNC, &sh->state); 4303 else { 4304 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches); 4305 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) { 4306 /* don't try to repair!! */ 4307 set_bit(STRIPE_INSYNC, &sh->state); 4308 pr_warn_ratelimited("%s: mismatch sector in range " 4309 "%llu-%llu\n", mdname(conf->mddev), 4310 (unsigned long long) sh->sector, 4311 (unsigned long long) sh->sector + 4312 RAID5_STRIPE_SECTORS(conf)); 4313 } else { 4314 sh->check_state = check_state_compute_run; 4315 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 4316 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 4317 set_bit(R5_Wantcompute, 4318 &sh->dev[sh->pd_idx].flags); 4319 sh->ops.target = sh->pd_idx; 4320 sh->ops.target2 = -1; 4321 s->uptodate++; 4322 } 4323 } 4324 break; 4325 case check_state_compute_run: 4326 break; 4327 default: 4328 pr_err("%s: unknown check_state: %d sector: %llu\n", 4329 __func__, sh->check_state, 4330 (unsigned long long) sh->sector); 4331 BUG(); 4332 } 4333 } 4334 4335 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh, 4336 struct stripe_head_state *s, 4337 int disks) 4338 { 4339 int pd_idx = sh->pd_idx; 4340 int qd_idx = sh->qd_idx; 4341 struct r5dev *dev; 4342 4343 BUG_ON(sh->batch_head); 4344 set_bit(STRIPE_HANDLE, &sh->state); 4345 4346 BUG_ON(s->failed > 2); 4347 4348 /* Want to check and possibly repair P and Q. 4349 * However there could be one 'failed' device, in which 4350 * case we can only check one of them, possibly using the 4351 * other to generate missing data 4352 */ 4353 4354 switch (sh->check_state) { 4355 case check_state_idle: 4356 /* start a new check operation if there are < 2 failures */ 4357 if (s->failed == s->q_failed) { 4358 /* The only possible failed device holds Q, so it 4359 * makes sense to check P (If anything else were failed, 4360 * we would have used P to recreate it). 4361 */ 4362 sh->check_state = check_state_run; 4363 } 4364 if (!s->q_failed && s->failed < 2) { 4365 /* Q is not failed, and we didn't use it to generate 4366 * anything, so it makes sense to check it 4367 */ 4368 if (sh->check_state == check_state_run) 4369 sh->check_state = check_state_run_pq; 4370 else 4371 sh->check_state = check_state_run_q; 4372 } 4373 4374 /* discard potentially stale zero_sum_result */ 4375 sh->ops.zero_sum_result = 0; 4376 4377 if (sh->check_state == check_state_run) { 4378 /* async_xor_zero_sum destroys the contents of P */ 4379 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 4380 s->uptodate--; 4381 } 4382 if (sh->check_state >= check_state_run && 4383 sh->check_state <= check_state_run_pq) { 4384 /* async_syndrome_zero_sum preserves P and Q, so 4385 * no need to mark them !uptodate here 4386 */ 4387 set_bit(STRIPE_OP_CHECK, &s->ops_request); 4388 break; 4389 } 4390 4391 /* we have 2-disk failure */ 4392 BUG_ON(s->failed != 2); 4393 fallthrough; 4394 case check_state_compute_result: 4395 sh->check_state = check_state_idle; 4396 4397 /* check that a write has not made the stripe insync */ 4398 if (test_bit(STRIPE_INSYNC, &sh->state)) 4399 break; 4400 4401 /* now write out any block on a failed drive, 4402 * or P or Q if they were recomputed 4403 */ 4404 dev = NULL; 4405 if (s->failed == 2) { 4406 dev = &sh->dev[s->failed_num[1]]; 4407 s->locked++; 4408 set_bit(R5_LOCKED, &dev->flags); 4409 set_bit(R5_Wantwrite, &dev->flags); 4410 } 4411 if (s->failed >= 1) { 4412 dev = &sh->dev[s->failed_num[0]]; 4413 s->locked++; 4414 set_bit(R5_LOCKED, &dev->flags); 4415 set_bit(R5_Wantwrite, &dev->flags); 4416 } 4417 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 4418 dev = &sh->dev[pd_idx]; 4419 s->locked++; 4420 set_bit(R5_LOCKED, &dev->flags); 4421 set_bit(R5_Wantwrite, &dev->flags); 4422 } 4423 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 4424 dev = &sh->dev[qd_idx]; 4425 s->locked++; 4426 set_bit(R5_LOCKED, &dev->flags); 4427 set_bit(R5_Wantwrite, &dev->flags); 4428 } 4429 if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags), 4430 "%s: disk%td not up to date\n", 4431 mdname(conf->mddev), 4432 dev - (struct r5dev *) &sh->dev)) { 4433 clear_bit(R5_LOCKED, &dev->flags); 4434 clear_bit(R5_Wantwrite, &dev->flags); 4435 s->locked--; 4436 } 4437 clear_bit(STRIPE_DEGRADED, &sh->state); 4438 4439 set_bit(STRIPE_INSYNC, &sh->state); 4440 break; 4441 case check_state_run: 4442 case check_state_run_q: 4443 case check_state_run_pq: 4444 break; /* we will be called again upon completion */ 4445 case check_state_check_result: 4446 sh->check_state = check_state_idle; 4447 4448 /* handle a successful check operation, if parity is correct 4449 * we are done. Otherwise update the mismatch count and repair 4450 * parity if !MD_RECOVERY_CHECK 4451 */ 4452 if (sh->ops.zero_sum_result == 0) { 4453 /* both parities are correct */ 4454 if (!s->failed) 4455 set_bit(STRIPE_INSYNC, &sh->state); 4456 else { 4457 /* in contrast to the raid5 case we can validate 4458 * parity, but still have a failure to write 4459 * back 4460 */ 4461 sh->check_state = check_state_compute_result; 4462 /* Returning at this point means that we may go 4463 * off and bring p and/or q uptodate again so 4464 * we make sure to check zero_sum_result again 4465 * to verify if p or q need writeback 4466 */ 4467 } 4468 } else { 4469 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches); 4470 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) { 4471 /* don't try to repair!! */ 4472 set_bit(STRIPE_INSYNC, &sh->state); 4473 pr_warn_ratelimited("%s: mismatch sector in range " 4474 "%llu-%llu\n", mdname(conf->mddev), 4475 (unsigned long long) sh->sector, 4476 (unsigned long long) sh->sector + 4477 RAID5_STRIPE_SECTORS(conf)); 4478 } else { 4479 int *target = &sh->ops.target; 4480 4481 sh->ops.target = -1; 4482 sh->ops.target2 = -1; 4483 sh->check_state = check_state_compute_run; 4484 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 4485 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 4486 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 4487 set_bit(R5_Wantcompute, 4488 &sh->dev[pd_idx].flags); 4489 *target = pd_idx; 4490 target = &sh->ops.target2; 4491 s->uptodate++; 4492 } 4493 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 4494 set_bit(R5_Wantcompute, 4495 &sh->dev[qd_idx].flags); 4496 *target = qd_idx; 4497 s->uptodate++; 4498 } 4499 } 4500 } 4501 break; 4502 case check_state_compute_run: 4503 break; 4504 default: 4505 pr_warn("%s: unknown check_state: %d sector: %llu\n", 4506 __func__, sh->check_state, 4507 (unsigned long long) sh->sector); 4508 BUG(); 4509 } 4510 } 4511 4512 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh) 4513 { 4514 int i; 4515 4516 /* We have read all the blocks in this stripe and now we need to 4517 * copy some of them into a target stripe for expand. 4518 */ 4519 struct dma_async_tx_descriptor *tx = NULL; 4520 BUG_ON(sh->batch_head); 4521 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state); 4522 for (i = 0; i < sh->disks; i++) 4523 if (i != sh->pd_idx && i != sh->qd_idx) { 4524 int dd_idx, j; 4525 struct stripe_head *sh2; 4526 struct async_submit_ctl submit; 4527 4528 sector_t bn = raid5_compute_blocknr(sh, i, 1); 4529 sector_t s = raid5_compute_sector(conf, bn, 0, 4530 &dd_idx, NULL); 4531 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1); 4532 if (sh2 == NULL) 4533 /* so far only the early blocks of this stripe 4534 * have been requested. When later blocks 4535 * get requested, we will try again 4536 */ 4537 continue; 4538 if (!test_bit(STRIPE_EXPANDING, &sh2->state) || 4539 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) { 4540 /* must have already done this block */ 4541 raid5_release_stripe(sh2); 4542 continue; 4543 } 4544 4545 /* place all the copies on one channel */ 4546 init_async_submit(&submit, 0, tx, NULL, NULL, NULL); 4547 tx = async_memcpy(sh2->dev[dd_idx].page, 4548 sh->dev[i].page, sh2->dev[dd_idx].offset, 4549 sh->dev[i].offset, RAID5_STRIPE_SIZE(conf), 4550 &submit); 4551 4552 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags); 4553 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags); 4554 for (j = 0; j < conf->raid_disks; j++) 4555 if (j != sh2->pd_idx && 4556 j != sh2->qd_idx && 4557 !test_bit(R5_Expanded, &sh2->dev[j].flags)) 4558 break; 4559 if (j == conf->raid_disks) { 4560 set_bit(STRIPE_EXPAND_READY, &sh2->state); 4561 set_bit(STRIPE_HANDLE, &sh2->state); 4562 } 4563 raid5_release_stripe(sh2); 4564 4565 } 4566 /* done submitting copies, wait for them to complete */ 4567 async_tx_quiesce(&tx); 4568 } 4569 4570 /* 4571 * handle_stripe - do things to a stripe. 4572 * 4573 * We lock the stripe by setting STRIPE_ACTIVE and then examine the 4574 * state of various bits to see what needs to be done. 4575 * Possible results: 4576 * return some read requests which now have data 4577 * return some write requests which are safely on storage 4578 * schedule a read on some buffers 4579 * schedule a write of some buffers 4580 * return confirmation of parity correctness 4581 * 4582 */ 4583 4584 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s) 4585 { 4586 struct r5conf *conf = sh->raid_conf; 4587 int disks = sh->disks; 4588 struct r5dev *dev; 4589 int i; 4590 int do_recovery = 0; 4591 4592 memset(s, 0, sizeof(*s)); 4593 4594 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head; 4595 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head; 4596 s->failed_num[0] = -1; 4597 s->failed_num[1] = -1; 4598 s->log_failed = r5l_log_disk_error(conf); 4599 4600 /* Now to look around and see what can be done */ 4601 rcu_read_lock(); 4602 for (i=disks; i--; ) { 4603 struct md_rdev *rdev; 4604 sector_t first_bad; 4605 int bad_sectors; 4606 int is_bad = 0; 4607 4608 dev = &sh->dev[i]; 4609 4610 pr_debug("check %d: state 0x%lx read %p write %p written %p\n", 4611 i, dev->flags, 4612 dev->toread, dev->towrite, dev->written); 4613 /* maybe we can reply to a read 4614 * 4615 * new wantfill requests are only permitted while 4616 * ops_complete_biofill is guaranteed to be inactive 4617 */ 4618 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread && 4619 !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) 4620 set_bit(R5_Wantfill, &dev->flags); 4621 4622 /* now count some things */ 4623 if (test_bit(R5_LOCKED, &dev->flags)) 4624 s->locked++; 4625 if (test_bit(R5_UPTODATE, &dev->flags)) 4626 s->uptodate++; 4627 if (test_bit(R5_Wantcompute, &dev->flags)) { 4628 s->compute++; 4629 BUG_ON(s->compute > 2); 4630 } 4631 4632 if (test_bit(R5_Wantfill, &dev->flags)) 4633 s->to_fill++; 4634 else if (dev->toread) 4635 s->to_read++; 4636 if (dev->towrite) { 4637 s->to_write++; 4638 if (!test_bit(R5_OVERWRITE, &dev->flags)) 4639 s->non_overwrite++; 4640 } 4641 if (dev->written) 4642 s->written++; 4643 /* Prefer to use the replacement for reads, but only 4644 * if it is recovered enough and has no bad blocks. 4645 */ 4646 rdev = rcu_dereference(conf->disks[i].replacement); 4647 if (rdev && !test_bit(Faulty, &rdev->flags) && 4648 rdev->recovery_offset >= sh->sector + RAID5_STRIPE_SECTORS(conf) && 4649 !is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 4650 &first_bad, &bad_sectors)) 4651 set_bit(R5_ReadRepl, &dev->flags); 4652 else { 4653 if (rdev && !test_bit(Faulty, &rdev->flags)) 4654 set_bit(R5_NeedReplace, &dev->flags); 4655 else 4656 clear_bit(R5_NeedReplace, &dev->flags); 4657 rdev = rcu_dereference(conf->disks[i].rdev); 4658 clear_bit(R5_ReadRepl, &dev->flags); 4659 } 4660 if (rdev && test_bit(Faulty, &rdev->flags)) 4661 rdev = NULL; 4662 if (rdev) { 4663 is_bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 4664 &first_bad, &bad_sectors); 4665 if (s->blocked_rdev == NULL 4666 && (test_bit(Blocked, &rdev->flags) 4667 || is_bad < 0)) { 4668 if (is_bad < 0) 4669 set_bit(BlockedBadBlocks, 4670 &rdev->flags); 4671 s->blocked_rdev = rdev; 4672 atomic_inc(&rdev->nr_pending); 4673 } 4674 } 4675 clear_bit(R5_Insync, &dev->flags); 4676 if (!rdev) 4677 /* Not in-sync */; 4678 else if (is_bad) { 4679 /* also not in-sync */ 4680 if (!test_bit(WriteErrorSeen, &rdev->flags) && 4681 test_bit(R5_UPTODATE, &dev->flags)) { 4682 /* treat as in-sync, but with a read error 4683 * which we can now try to correct 4684 */ 4685 set_bit(R5_Insync, &dev->flags); 4686 set_bit(R5_ReadError, &dev->flags); 4687 } 4688 } else if (test_bit(In_sync, &rdev->flags)) 4689 set_bit(R5_Insync, &dev->flags); 4690 else if (sh->sector + RAID5_STRIPE_SECTORS(conf) <= rdev->recovery_offset) 4691 /* in sync if before recovery_offset */ 4692 set_bit(R5_Insync, &dev->flags); 4693 else if (test_bit(R5_UPTODATE, &dev->flags) && 4694 test_bit(R5_Expanded, &dev->flags)) 4695 /* If we've reshaped into here, we assume it is Insync. 4696 * We will shortly update recovery_offset to make 4697 * it official. 4698 */ 4699 set_bit(R5_Insync, &dev->flags); 4700 4701 if (test_bit(R5_WriteError, &dev->flags)) { 4702 /* This flag does not apply to '.replacement' 4703 * only to .rdev, so make sure to check that*/ 4704 struct md_rdev *rdev2 = rcu_dereference( 4705 conf->disks[i].rdev); 4706 if (rdev2 == rdev) 4707 clear_bit(R5_Insync, &dev->flags); 4708 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4709 s->handle_bad_blocks = 1; 4710 atomic_inc(&rdev2->nr_pending); 4711 } else 4712 clear_bit(R5_WriteError, &dev->flags); 4713 } 4714 if (test_bit(R5_MadeGood, &dev->flags)) { 4715 /* This flag does not apply to '.replacement' 4716 * only to .rdev, so make sure to check that*/ 4717 struct md_rdev *rdev2 = rcu_dereference( 4718 conf->disks[i].rdev); 4719 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4720 s->handle_bad_blocks = 1; 4721 atomic_inc(&rdev2->nr_pending); 4722 } else 4723 clear_bit(R5_MadeGood, &dev->flags); 4724 } 4725 if (test_bit(R5_MadeGoodRepl, &dev->flags)) { 4726 struct md_rdev *rdev2 = rcu_dereference( 4727 conf->disks[i].replacement); 4728 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4729 s->handle_bad_blocks = 1; 4730 atomic_inc(&rdev2->nr_pending); 4731 } else 4732 clear_bit(R5_MadeGoodRepl, &dev->flags); 4733 } 4734 if (!test_bit(R5_Insync, &dev->flags)) { 4735 /* The ReadError flag will just be confusing now */ 4736 clear_bit(R5_ReadError, &dev->flags); 4737 clear_bit(R5_ReWrite, &dev->flags); 4738 } 4739 if (test_bit(R5_ReadError, &dev->flags)) 4740 clear_bit(R5_Insync, &dev->flags); 4741 if (!test_bit(R5_Insync, &dev->flags)) { 4742 if (s->failed < 2) 4743 s->failed_num[s->failed] = i; 4744 s->failed++; 4745 if (rdev && !test_bit(Faulty, &rdev->flags)) 4746 do_recovery = 1; 4747 else if (!rdev) { 4748 rdev = rcu_dereference( 4749 conf->disks[i].replacement); 4750 if (rdev && !test_bit(Faulty, &rdev->flags)) 4751 do_recovery = 1; 4752 } 4753 } 4754 4755 if (test_bit(R5_InJournal, &dev->flags)) 4756 s->injournal++; 4757 if (test_bit(R5_InJournal, &dev->flags) && dev->written) 4758 s->just_cached++; 4759 } 4760 if (test_bit(STRIPE_SYNCING, &sh->state)) { 4761 /* If there is a failed device being replaced, 4762 * we must be recovering. 4763 * else if we are after recovery_cp, we must be syncing 4764 * else if MD_RECOVERY_REQUESTED is set, we also are syncing. 4765 * else we can only be replacing 4766 * sync and recovery both need to read all devices, and so 4767 * use the same flag. 4768 */ 4769 if (do_recovery || 4770 sh->sector >= conf->mddev->recovery_cp || 4771 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery))) 4772 s->syncing = 1; 4773 else 4774 s->replacing = 1; 4775 } 4776 rcu_read_unlock(); 4777 } 4778 4779 /* 4780 * Return '1' if this is a member of batch, or '0' if it is a lone stripe or 4781 * a head which can now be handled. 4782 */ 4783 static int clear_batch_ready(struct stripe_head *sh) 4784 { 4785 struct stripe_head *tmp; 4786 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state)) 4787 return (sh->batch_head && sh->batch_head != sh); 4788 spin_lock(&sh->stripe_lock); 4789 if (!sh->batch_head) { 4790 spin_unlock(&sh->stripe_lock); 4791 return 0; 4792 } 4793 4794 /* 4795 * this stripe could be added to a batch list before we check 4796 * BATCH_READY, skips it 4797 */ 4798 if (sh->batch_head != sh) { 4799 spin_unlock(&sh->stripe_lock); 4800 return 1; 4801 } 4802 spin_lock(&sh->batch_lock); 4803 list_for_each_entry(tmp, &sh->batch_list, batch_list) 4804 clear_bit(STRIPE_BATCH_READY, &tmp->state); 4805 spin_unlock(&sh->batch_lock); 4806 spin_unlock(&sh->stripe_lock); 4807 4808 /* 4809 * BATCH_READY is cleared, no new stripes can be added. 4810 * batch_list can be accessed without lock 4811 */ 4812 return 0; 4813 } 4814 4815 static void break_stripe_batch_list(struct stripe_head *head_sh, 4816 unsigned long handle_flags) 4817 { 4818 struct stripe_head *sh, *next; 4819 int i; 4820 int do_wakeup = 0; 4821 4822 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) { 4823 4824 list_del_init(&sh->batch_list); 4825 4826 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) | 4827 (1 << STRIPE_SYNCING) | 4828 (1 << STRIPE_REPLACED) | 4829 (1 << STRIPE_DELAYED) | 4830 (1 << STRIPE_BIT_DELAY) | 4831 (1 << STRIPE_FULL_WRITE) | 4832 (1 << STRIPE_BIOFILL_RUN) | 4833 (1 << STRIPE_COMPUTE_RUN) | 4834 (1 << STRIPE_DISCARD) | 4835 (1 << STRIPE_BATCH_READY) | 4836 (1 << STRIPE_BATCH_ERR) | 4837 (1 << STRIPE_BITMAP_PENDING)), 4838 "stripe state: %lx\n", sh->state); 4839 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) | 4840 (1 << STRIPE_REPLACED)), 4841 "head stripe state: %lx\n", head_sh->state); 4842 4843 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS | 4844 (1 << STRIPE_PREREAD_ACTIVE) | 4845 (1 << STRIPE_DEGRADED) | 4846 (1 << STRIPE_ON_UNPLUG_LIST)), 4847 head_sh->state & (1 << STRIPE_INSYNC)); 4848 4849 sh->check_state = head_sh->check_state; 4850 sh->reconstruct_state = head_sh->reconstruct_state; 4851 spin_lock_irq(&sh->stripe_lock); 4852 sh->batch_head = NULL; 4853 spin_unlock_irq(&sh->stripe_lock); 4854 for (i = 0; i < sh->disks; i++) { 4855 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 4856 do_wakeup = 1; 4857 sh->dev[i].flags = head_sh->dev[i].flags & 4858 (~((1 << R5_WriteError) | (1 << R5_Overlap))); 4859 } 4860 if (handle_flags == 0 || 4861 sh->state & handle_flags) 4862 set_bit(STRIPE_HANDLE, &sh->state); 4863 raid5_release_stripe(sh); 4864 } 4865 spin_lock_irq(&head_sh->stripe_lock); 4866 head_sh->batch_head = NULL; 4867 spin_unlock_irq(&head_sh->stripe_lock); 4868 for (i = 0; i < head_sh->disks; i++) 4869 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags)) 4870 do_wakeup = 1; 4871 if (head_sh->state & handle_flags) 4872 set_bit(STRIPE_HANDLE, &head_sh->state); 4873 4874 if (do_wakeup) 4875 wake_up(&head_sh->raid_conf->wait_for_overlap); 4876 } 4877 4878 static void handle_stripe(struct stripe_head *sh) 4879 { 4880 struct stripe_head_state s; 4881 struct r5conf *conf = sh->raid_conf; 4882 int i; 4883 int prexor; 4884 int disks = sh->disks; 4885 struct r5dev *pdev, *qdev; 4886 4887 clear_bit(STRIPE_HANDLE, &sh->state); 4888 4889 /* 4890 * handle_stripe should not continue handle the batched stripe, only 4891 * the head of batch list or lone stripe can continue. Otherwise we 4892 * could see break_stripe_batch_list warns about the STRIPE_ACTIVE 4893 * is set for the batched stripe. 4894 */ 4895 if (clear_batch_ready(sh)) 4896 return; 4897 4898 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) { 4899 /* already being handled, ensure it gets handled 4900 * again when current action finishes */ 4901 set_bit(STRIPE_HANDLE, &sh->state); 4902 return; 4903 } 4904 4905 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state)) 4906 break_stripe_batch_list(sh, 0); 4907 4908 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) { 4909 spin_lock(&sh->stripe_lock); 4910 /* 4911 * Cannot process 'sync' concurrently with 'discard'. 4912 * Flush data in r5cache before 'sync'. 4913 */ 4914 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) && 4915 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) && 4916 !test_bit(STRIPE_DISCARD, &sh->state) && 4917 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) { 4918 set_bit(STRIPE_SYNCING, &sh->state); 4919 clear_bit(STRIPE_INSYNC, &sh->state); 4920 clear_bit(STRIPE_REPLACED, &sh->state); 4921 } 4922 spin_unlock(&sh->stripe_lock); 4923 } 4924 clear_bit(STRIPE_DELAYED, &sh->state); 4925 4926 pr_debug("handling stripe %llu, state=%#lx cnt=%d, " 4927 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n", 4928 (unsigned long long)sh->sector, sh->state, 4929 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx, 4930 sh->check_state, sh->reconstruct_state); 4931 4932 analyse_stripe(sh, &s); 4933 4934 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state)) 4935 goto finish; 4936 4937 if (s.handle_bad_blocks || 4938 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) { 4939 set_bit(STRIPE_HANDLE, &sh->state); 4940 goto finish; 4941 } 4942 4943 if (unlikely(s.blocked_rdev)) { 4944 if (s.syncing || s.expanding || s.expanded || 4945 s.replacing || s.to_write || s.written) { 4946 set_bit(STRIPE_HANDLE, &sh->state); 4947 goto finish; 4948 } 4949 /* There is nothing for the blocked_rdev to block */ 4950 rdev_dec_pending(s.blocked_rdev, conf->mddev); 4951 s.blocked_rdev = NULL; 4952 } 4953 4954 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) { 4955 set_bit(STRIPE_OP_BIOFILL, &s.ops_request); 4956 set_bit(STRIPE_BIOFILL_RUN, &sh->state); 4957 } 4958 4959 pr_debug("locked=%d uptodate=%d to_read=%d" 4960 " to_write=%d failed=%d failed_num=%d,%d\n", 4961 s.locked, s.uptodate, s.to_read, s.to_write, s.failed, 4962 s.failed_num[0], s.failed_num[1]); 4963 /* 4964 * check if the array has lost more than max_degraded devices and, 4965 * if so, some requests might need to be failed. 4966 * 4967 * When journal device failed (log_failed), we will only process 4968 * the stripe if there is data need write to raid disks 4969 */ 4970 if (s.failed > conf->max_degraded || 4971 (s.log_failed && s.injournal == 0)) { 4972 sh->check_state = 0; 4973 sh->reconstruct_state = 0; 4974 break_stripe_batch_list(sh, 0); 4975 if (s.to_read+s.to_write+s.written) 4976 handle_failed_stripe(conf, sh, &s, disks); 4977 if (s.syncing + s.replacing) 4978 handle_failed_sync(conf, sh, &s); 4979 } 4980 4981 /* Now we check to see if any write operations have recently 4982 * completed 4983 */ 4984 prexor = 0; 4985 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result) 4986 prexor = 1; 4987 if (sh->reconstruct_state == reconstruct_state_drain_result || 4988 sh->reconstruct_state == reconstruct_state_prexor_drain_result) { 4989 sh->reconstruct_state = reconstruct_state_idle; 4990 4991 /* All the 'written' buffers and the parity block are ready to 4992 * be written back to disk 4993 */ 4994 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) && 4995 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)); 4996 BUG_ON(sh->qd_idx >= 0 && 4997 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) && 4998 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags)); 4999 for (i = disks; i--; ) { 5000 struct r5dev *dev = &sh->dev[i]; 5001 if (test_bit(R5_LOCKED, &dev->flags) && 5002 (i == sh->pd_idx || i == sh->qd_idx || 5003 dev->written || test_bit(R5_InJournal, 5004 &dev->flags))) { 5005 pr_debug("Writing block %d\n", i); 5006 set_bit(R5_Wantwrite, &dev->flags); 5007 if (prexor) 5008 continue; 5009 if (s.failed > 1) 5010 continue; 5011 if (!test_bit(R5_Insync, &dev->flags) || 5012 ((i == sh->pd_idx || i == sh->qd_idx) && 5013 s.failed == 0)) 5014 set_bit(STRIPE_INSYNC, &sh->state); 5015 } 5016 } 5017 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5018 s.dec_preread_active = 1; 5019 } 5020 5021 /* 5022 * might be able to return some write requests if the parity blocks 5023 * are safe, or on a failed drive 5024 */ 5025 pdev = &sh->dev[sh->pd_idx]; 5026 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx) 5027 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx); 5028 qdev = &sh->dev[sh->qd_idx]; 5029 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx) 5030 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx) 5031 || conf->level < 6; 5032 5033 if (s.written && 5034 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags) 5035 && !test_bit(R5_LOCKED, &pdev->flags) 5036 && (test_bit(R5_UPTODATE, &pdev->flags) || 5037 test_bit(R5_Discard, &pdev->flags))))) && 5038 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags) 5039 && !test_bit(R5_LOCKED, &qdev->flags) 5040 && (test_bit(R5_UPTODATE, &qdev->flags) || 5041 test_bit(R5_Discard, &qdev->flags)))))) 5042 handle_stripe_clean_event(conf, sh, disks); 5043 5044 if (s.just_cached) 5045 r5c_handle_cached_data_endio(conf, sh, disks); 5046 log_stripe_write_finished(sh); 5047 5048 /* Now we might consider reading some blocks, either to check/generate 5049 * parity, or to satisfy requests 5050 * or to load a block that is being partially written. 5051 */ 5052 if (s.to_read || s.non_overwrite 5053 || (s.to_write && s.failed) 5054 || (s.syncing && (s.uptodate + s.compute < disks)) 5055 || s.replacing 5056 || s.expanding) 5057 handle_stripe_fill(sh, &s, disks); 5058 5059 /* 5060 * When the stripe finishes full journal write cycle (write to journal 5061 * and raid disk), this is the clean up procedure so it is ready for 5062 * next operation. 5063 */ 5064 r5c_finish_stripe_write_out(conf, sh, &s); 5065 5066 /* 5067 * Now to consider new write requests, cache write back and what else, 5068 * if anything should be read. We do not handle new writes when: 5069 * 1/ A 'write' operation (copy+xor) is already in flight. 5070 * 2/ A 'check' operation is in flight, as it may clobber the parity 5071 * block. 5072 * 3/ A r5c cache log write is in flight. 5073 */ 5074 5075 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) { 5076 if (!r5c_is_writeback(conf->log)) { 5077 if (s.to_write) 5078 handle_stripe_dirtying(conf, sh, &s, disks); 5079 } else { /* write back cache */ 5080 int ret = 0; 5081 5082 /* First, try handle writes in caching phase */ 5083 if (s.to_write) 5084 ret = r5c_try_caching_write(conf, sh, &s, 5085 disks); 5086 /* 5087 * If caching phase failed: ret == -EAGAIN 5088 * OR 5089 * stripe under reclaim: !caching && injournal 5090 * 5091 * fall back to handle_stripe_dirtying() 5092 */ 5093 if (ret == -EAGAIN || 5094 /* stripe under reclaim: !caching && injournal */ 5095 (!test_bit(STRIPE_R5C_CACHING, &sh->state) && 5096 s.injournal > 0)) { 5097 ret = handle_stripe_dirtying(conf, sh, &s, 5098 disks); 5099 if (ret == -EAGAIN) 5100 goto finish; 5101 } 5102 } 5103 } 5104 5105 /* maybe we need to check and possibly fix the parity for this stripe 5106 * Any reads will already have been scheduled, so we just see if enough 5107 * data is available. The parity check is held off while parity 5108 * dependent operations are in flight. 5109 */ 5110 if (sh->check_state || 5111 (s.syncing && s.locked == 0 && 5112 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 5113 !test_bit(STRIPE_INSYNC, &sh->state))) { 5114 if (conf->level == 6) 5115 handle_parity_checks6(conf, sh, &s, disks); 5116 else 5117 handle_parity_checks5(conf, sh, &s, disks); 5118 } 5119 5120 if ((s.replacing || s.syncing) && s.locked == 0 5121 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state) 5122 && !test_bit(STRIPE_REPLACED, &sh->state)) { 5123 /* Write out to replacement devices where possible */ 5124 for (i = 0; i < conf->raid_disks; i++) 5125 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) { 5126 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags)); 5127 set_bit(R5_WantReplace, &sh->dev[i].flags); 5128 set_bit(R5_LOCKED, &sh->dev[i].flags); 5129 s.locked++; 5130 } 5131 if (s.replacing) 5132 set_bit(STRIPE_INSYNC, &sh->state); 5133 set_bit(STRIPE_REPLACED, &sh->state); 5134 } 5135 if ((s.syncing || s.replacing) && s.locked == 0 && 5136 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 5137 test_bit(STRIPE_INSYNC, &sh->state)) { 5138 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1); 5139 clear_bit(STRIPE_SYNCING, &sh->state); 5140 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 5141 wake_up(&conf->wait_for_overlap); 5142 } 5143 5144 /* If the failed drives are just a ReadError, then we might need 5145 * to progress the repair/check process 5146 */ 5147 if (s.failed <= conf->max_degraded && !conf->mddev->ro) 5148 for (i = 0; i < s.failed; i++) { 5149 struct r5dev *dev = &sh->dev[s.failed_num[i]]; 5150 if (test_bit(R5_ReadError, &dev->flags) 5151 && !test_bit(R5_LOCKED, &dev->flags) 5152 && test_bit(R5_UPTODATE, &dev->flags) 5153 ) { 5154 if (!test_bit(R5_ReWrite, &dev->flags)) { 5155 set_bit(R5_Wantwrite, &dev->flags); 5156 set_bit(R5_ReWrite, &dev->flags); 5157 } else 5158 /* let's read it back */ 5159 set_bit(R5_Wantread, &dev->flags); 5160 set_bit(R5_LOCKED, &dev->flags); 5161 s.locked++; 5162 } 5163 } 5164 5165 /* Finish reconstruct operations initiated by the expansion process */ 5166 if (sh->reconstruct_state == reconstruct_state_result) { 5167 struct stripe_head *sh_src 5168 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1); 5169 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) { 5170 /* sh cannot be written until sh_src has been read. 5171 * so arrange for sh to be delayed a little 5172 */ 5173 set_bit(STRIPE_DELAYED, &sh->state); 5174 set_bit(STRIPE_HANDLE, &sh->state); 5175 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, 5176 &sh_src->state)) 5177 atomic_inc(&conf->preread_active_stripes); 5178 raid5_release_stripe(sh_src); 5179 goto finish; 5180 } 5181 if (sh_src) 5182 raid5_release_stripe(sh_src); 5183 5184 sh->reconstruct_state = reconstruct_state_idle; 5185 clear_bit(STRIPE_EXPANDING, &sh->state); 5186 for (i = conf->raid_disks; i--; ) { 5187 set_bit(R5_Wantwrite, &sh->dev[i].flags); 5188 set_bit(R5_LOCKED, &sh->dev[i].flags); 5189 s.locked++; 5190 } 5191 } 5192 5193 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) && 5194 !sh->reconstruct_state) { 5195 /* Need to write out all blocks after computing parity */ 5196 sh->disks = conf->raid_disks; 5197 stripe_set_idx(sh->sector, conf, 0, sh); 5198 schedule_reconstruction(sh, &s, 1, 1); 5199 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) { 5200 clear_bit(STRIPE_EXPAND_READY, &sh->state); 5201 atomic_dec(&conf->reshape_stripes); 5202 wake_up(&conf->wait_for_overlap); 5203 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1); 5204 } 5205 5206 if (s.expanding && s.locked == 0 && 5207 !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) 5208 handle_stripe_expansion(conf, sh); 5209 5210 finish: 5211 /* wait for this device to become unblocked */ 5212 if (unlikely(s.blocked_rdev)) { 5213 if (conf->mddev->external) 5214 md_wait_for_blocked_rdev(s.blocked_rdev, 5215 conf->mddev); 5216 else 5217 /* Internal metadata will immediately 5218 * be written by raid5d, so we don't 5219 * need to wait here. 5220 */ 5221 rdev_dec_pending(s.blocked_rdev, 5222 conf->mddev); 5223 } 5224 5225 if (s.handle_bad_blocks) 5226 for (i = disks; i--; ) { 5227 struct md_rdev *rdev; 5228 struct r5dev *dev = &sh->dev[i]; 5229 if (test_and_clear_bit(R5_WriteError, &dev->flags)) { 5230 /* We own a safe reference to the rdev */ 5231 rdev = conf->disks[i].rdev; 5232 if (!rdev_set_badblocks(rdev, sh->sector, 5233 RAID5_STRIPE_SECTORS(conf), 0)) 5234 md_error(conf->mddev, rdev); 5235 rdev_dec_pending(rdev, conf->mddev); 5236 } 5237 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) { 5238 rdev = conf->disks[i].rdev; 5239 rdev_clear_badblocks(rdev, sh->sector, 5240 RAID5_STRIPE_SECTORS(conf), 0); 5241 rdev_dec_pending(rdev, conf->mddev); 5242 } 5243 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) { 5244 rdev = conf->disks[i].replacement; 5245 if (!rdev) 5246 /* rdev have been moved down */ 5247 rdev = conf->disks[i].rdev; 5248 rdev_clear_badblocks(rdev, sh->sector, 5249 RAID5_STRIPE_SECTORS(conf), 0); 5250 rdev_dec_pending(rdev, conf->mddev); 5251 } 5252 } 5253 5254 if (s.ops_request) 5255 raid_run_ops(sh, s.ops_request); 5256 5257 ops_run_io(sh, &s); 5258 5259 if (s.dec_preread_active) { 5260 /* We delay this until after ops_run_io so that if make_request 5261 * is waiting on a flush, it won't continue until the writes 5262 * have actually been submitted. 5263 */ 5264 atomic_dec(&conf->preread_active_stripes); 5265 if (atomic_read(&conf->preread_active_stripes) < 5266 IO_THRESHOLD) 5267 md_wakeup_thread(conf->mddev->thread); 5268 } 5269 5270 clear_bit_unlock(STRIPE_ACTIVE, &sh->state); 5271 } 5272 5273 static void raid5_activate_delayed(struct r5conf *conf) 5274 { 5275 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) { 5276 while (!list_empty(&conf->delayed_list)) { 5277 struct list_head *l = conf->delayed_list.next; 5278 struct stripe_head *sh; 5279 sh = list_entry(l, struct stripe_head, lru); 5280 list_del_init(l); 5281 clear_bit(STRIPE_DELAYED, &sh->state); 5282 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5283 atomic_inc(&conf->preread_active_stripes); 5284 list_add_tail(&sh->lru, &conf->hold_list); 5285 raid5_wakeup_stripe_thread(sh); 5286 } 5287 } 5288 } 5289 5290 static void activate_bit_delay(struct r5conf *conf, 5291 struct list_head *temp_inactive_list) 5292 { 5293 /* device_lock is held */ 5294 struct list_head head; 5295 list_add(&head, &conf->bitmap_list); 5296 list_del_init(&conf->bitmap_list); 5297 while (!list_empty(&head)) { 5298 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru); 5299 int hash; 5300 list_del_init(&sh->lru); 5301 atomic_inc(&sh->count); 5302 hash = sh->hash_lock_index; 5303 __release_stripe(conf, sh, &temp_inactive_list[hash]); 5304 } 5305 } 5306 5307 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio) 5308 { 5309 struct r5conf *conf = mddev->private; 5310 sector_t sector = bio->bi_iter.bi_sector; 5311 unsigned int chunk_sectors; 5312 unsigned int bio_sectors = bio_sectors(bio); 5313 5314 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors); 5315 return chunk_sectors >= 5316 ((sector & (chunk_sectors - 1)) + bio_sectors); 5317 } 5318 5319 /* 5320 * add bio to the retry LIFO ( in O(1) ... we are in interrupt ) 5321 * later sampled by raid5d. 5322 */ 5323 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf) 5324 { 5325 unsigned long flags; 5326 5327 spin_lock_irqsave(&conf->device_lock, flags); 5328 5329 bi->bi_next = conf->retry_read_aligned_list; 5330 conf->retry_read_aligned_list = bi; 5331 5332 spin_unlock_irqrestore(&conf->device_lock, flags); 5333 md_wakeup_thread(conf->mddev->thread); 5334 } 5335 5336 static struct bio *remove_bio_from_retry(struct r5conf *conf, 5337 unsigned int *offset) 5338 { 5339 struct bio *bi; 5340 5341 bi = conf->retry_read_aligned; 5342 if (bi) { 5343 *offset = conf->retry_read_offset; 5344 conf->retry_read_aligned = NULL; 5345 return bi; 5346 } 5347 bi = conf->retry_read_aligned_list; 5348 if(bi) { 5349 conf->retry_read_aligned_list = bi->bi_next; 5350 bi->bi_next = NULL; 5351 *offset = 0; 5352 } 5353 5354 return bi; 5355 } 5356 5357 /* 5358 * The "raid5_align_endio" should check if the read succeeded and if it 5359 * did, call bio_endio on the original bio (having bio_put the new bio 5360 * first). 5361 * If the read failed.. 5362 */ 5363 static void raid5_align_endio(struct bio *bi) 5364 { 5365 struct md_io_acct *md_io_acct = bi->bi_private; 5366 struct bio *raid_bi = md_io_acct->orig_bio; 5367 struct mddev *mddev; 5368 struct r5conf *conf; 5369 struct md_rdev *rdev; 5370 blk_status_t error = bi->bi_status; 5371 unsigned long start_time = md_io_acct->start_time; 5372 5373 bio_put(bi); 5374 5375 rdev = (void*)raid_bi->bi_next; 5376 raid_bi->bi_next = NULL; 5377 mddev = rdev->mddev; 5378 conf = mddev->private; 5379 5380 rdev_dec_pending(rdev, conf->mddev); 5381 5382 if (!error) { 5383 if (blk_queue_io_stat(raid_bi->bi_bdev->bd_disk->queue)) 5384 bio_end_io_acct(raid_bi, start_time); 5385 bio_endio(raid_bi); 5386 if (atomic_dec_and_test(&conf->active_aligned_reads)) 5387 wake_up(&conf->wait_for_quiescent); 5388 return; 5389 } 5390 5391 pr_debug("raid5_align_endio : io error...handing IO for a retry\n"); 5392 5393 add_bio_to_retry(raid_bi, conf); 5394 } 5395 5396 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio) 5397 { 5398 struct r5conf *conf = mddev->private; 5399 struct bio *align_bio; 5400 struct md_rdev *rdev; 5401 sector_t sector, end_sector, first_bad; 5402 int bad_sectors, dd_idx; 5403 struct md_io_acct *md_io_acct; 5404 bool did_inc; 5405 5406 if (!in_chunk_boundary(mddev, raid_bio)) { 5407 pr_debug("%s: non aligned\n", __func__); 5408 return 0; 5409 } 5410 5411 sector = raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 0, 5412 &dd_idx, NULL); 5413 end_sector = bio_end_sector(raid_bio); 5414 5415 rcu_read_lock(); 5416 if (r5c_big_stripe_cached(conf, sector)) 5417 goto out_rcu_unlock; 5418 5419 rdev = rcu_dereference(conf->disks[dd_idx].replacement); 5420 if (!rdev || test_bit(Faulty, &rdev->flags) || 5421 rdev->recovery_offset < end_sector) { 5422 rdev = rcu_dereference(conf->disks[dd_idx].rdev); 5423 if (!rdev) 5424 goto out_rcu_unlock; 5425 if (test_bit(Faulty, &rdev->flags) || 5426 !(test_bit(In_sync, &rdev->flags) || 5427 rdev->recovery_offset >= end_sector)) 5428 goto out_rcu_unlock; 5429 } 5430 5431 atomic_inc(&rdev->nr_pending); 5432 rcu_read_unlock(); 5433 5434 if (is_badblock(rdev, sector, bio_sectors(raid_bio), &first_bad, 5435 &bad_sectors)) { 5436 bio_put(raid_bio); 5437 rdev_dec_pending(rdev, mddev); 5438 return 0; 5439 } 5440 5441 align_bio = bio_clone_fast(raid_bio, GFP_NOIO, &mddev->io_acct_set); 5442 md_io_acct = container_of(align_bio, struct md_io_acct, bio_clone); 5443 raid_bio->bi_next = (void *)rdev; 5444 if (blk_queue_io_stat(raid_bio->bi_bdev->bd_disk->queue)) 5445 md_io_acct->start_time = bio_start_io_acct(raid_bio); 5446 md_io_acct->orig_bio = raid_bio; 5447 5448 bio_set_dev(align_bio, rdev->bdev); 5449 align_bio->bi_end_io = raid5_align_endio; 5450 align_bio->bi_private = md_io_acct; 5451 align_bio->bi_iter.bi_sector = sector; 5452 5453 /* No reshape active, so we can trust rdev->data_offset */ 5454 align_bio->bi_iter.bi_sector += rdev->data_offset; 5455 5456 did_inc = false; 5457 if (conf->quiesce == 0) { 5458 atomic_inc(&conf->active_aligned_reads); 5459 did_inc = true; 5460 } 5461 /* need a memory barrier to detect the race with raid5_quiesce() */ 5462 if (!did_inc || smp_load_acquire(&conf->quiesce) != 0) { 5463 /* quiesce is in progress, so we need to undo io activation and wait 5464 * for it to finish 5465 */ 5466 if (did_inc && atomic_dec_and_test(&conf->active_aligned_reads)) 5467 wake_up(&conf->wait_for_quiescent); 5468 spin_lock_irq(&conf->device_lock); 5469 wait_event_lock_irq(conf->wait_for_quiescent, conf->quiesce == 0, 5470 conf->device_lock); 5471 atomic_inc(&conf->active_aligned_reads); 5472 spin_unlock_irq(&conf->device_lock); 5473 } 5474 5475 if (mddev->gendisk) 5476 trace_block_bio_remap(align_bio, disk_devt(mddev->gendisk), 5477 raid_bio->bi_iter.bi_sector); 5478 submit_bio_noacct(align_bio); 5479 return 1; 5480 5481 out_rcu_unlock: 5482 rcu_read_unlock(); 5483 return 0; 5484 } 5485 5486 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio) 5487 { 5488 struct bio *split; 5489 sector_t sector = raid_bio->bi_iter.bi_sector; 5490 unsigned chunk_sects = mddev->chunk_sectors; 5491 unsigned sectors = chunk_sects - (sector & (chunk_sects-1)); 5492 5493 if (sectors < bio_sectors(raid_bio)) { 5494 struct r5conf *conf = mddev->private; 5495 split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split); 5496 bio_chain(split, raid_bio); 5497 submit_bio_noacct(raid_bio); 5498 raid_bio = split; 5499 } 5500 5501 if (!raid5_read_one_chunk(mddev, raid_bio)) 5502 return raid_bio; 5503 5504 return NULL; 5505 } 5506 5507 /* __get_priority_stripe - get the next stripe to process 5508 * 5509 * Full stripe writes are allowed to pass preread active stripes up until 5510 * the bypass_threshold is exceeded. In general the bypass_count 5511 * increments when the handle_list is handled before the hold_list; however, it 5512 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a 5513 * stripe with in flight i/o. The bypass_count will be reset when the 5514 * head of the hold_list has changed, i.e. the head was promoted to the 5515 * handle_list. 5516 */ 5517 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group) 5518 { 5519 struct stripe_head *sh, *tmp; 5520 struct list_head *handle_list = NULL; 5521 struct r5worker_group *wg; 5522 bool second_try = !r5c_is_writeback(conf->log) && 5523 !r5l_log_disk_error(conf); 5524 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) || 5525 r5l_log_disk_error(conf); 5526 5527 again: 5528 wg = NULL; 5529 sh = NULL; 5530 if (conf->worker_cnt_per_group == 0) { 5531 handle_list = try_loprio ? &conf->loprio_list : 5532 &conf->handle_list; 5533 } else if (group != ANY_GROUP) { 5534 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list : 5535 &conf->worker_groups[group].handle_list; 5536 wg = &conf->worker_groups[group]; 5537 } else { 5538 int i; 5539 for (i = 0; i < conf->group_cnt; i++) { 5540 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list : 5541 &conf->worker_groups[i].handle_list; 5542 wg = &conf->worker_groups[i]; 5543 if (!list_empty(handle_list)) 5544 break; 5545 } 5546 } 5547 5548 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n", 5549 __func__, 5550 list_empty(handle_list) ? "empty" : "busy", 5551 list_empty(&conf->hold_list) ? "empty" : "busy", 5552 atomic_read(&conf->pending_full_writes), conf->bypass_count); 5553 5554 if (!list_empty(handle_list)) { 5555 sh = list_entry(handle_list->next, typeof(*sh), lru); 5556 5557 if (list_empty(&conf->hold_list)) 5558 conf->bypass_count = 0; 5559 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) { 5560 if (conf->hold_list.next == conf->last_hold) 5561 conf->bypass_count++; 5562 else { 5563 conf->last_hold = conf->hold_list.next; 5564 conf->bypass_count -= conf->bypass_threshold; 5565 if (conf->bypass_count < 0) 5566 conf->bypass_count = 0; 5567 } 5568 } 5569 } else if (!list_empty(&conf->hold_list) && 5570 ((conf->bypass_threshold && 5571 conf->bypass_count > conf->bypass_threshold) || 5572 atomic_read(&conf->pending_full_writes) == 0)) { 5573 5574 list_for_each_entry(tmp, &conf->hold_list, lru) { 5575 if (conf->worker_cnt_per_group == 0 || 5576 group == ANY_GROUP || 5577 !cpu_online(tmp->cpu) || 5578 cpu_to_group(tmp->cpu) == group) { 5579 sh = tmp; 5580 break; 5581 } 5582 } 5583 5584 if (sh) { 5585 conf->bypass_count -= conf->bypass_threshold; 5586 if (conf->bypass_count < 0) 5587 conf->bypass_count = 0; 5588 } 5589 wg = NULL; 5590 } 5591 5592 if (!sh) { 5593 if (second_try) 5594 return NULL; 5595 second_try = true; 5596 try_loprio = !try_loprio; 5597 goto again; 5598 } 5599 5600 if (wg) { 5601 wg->stripes_cnt--; 5602 sh->group = NULL; 5603 } 5604 list_del_init(&sh->lru); 5605 BUG_ON(atomic_inc_return(&sh->count) != 1); 5606 return sh; 5607 } 5608 5609 struct raid5_plug_cb { 5610 struct blk_plug_cb cb; 5611 struct list_head list; 5612 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS]; 5613 }; 5614 5615 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule) 5616 { 5617 struct raid5_plug_cb *cb = container_of( 5618 blk_cb, struct raid5_plug_cb, cb); 5619 struct stripe_head *sh; 5620 struct mddev *mddev = cb->cb.data; 5621 struct r5conf *conf = mddev->private; 5622 int cnt = 0; 5623 int hash; 5624 5625 if (cb->list.next && !list_empty(&cb->list)) { 5626 spin_lock_irq(&conf->device_lock); 5627 while (!list_empty(&cb->list)) { 5628 sh = list_first_entry(&cb->list, struct stripe_head, lru); 5629 list_del_init(&sh->lru); 5630 /* 5631 * avoid race release_stripe_plug() sees 5632 * STRIPE_ON_UNPLUG_LIST clear but the stripe 5633 * is still in our list 5634 */ 5635 smp_mb__before_atomic(); 5636 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state); 5637 /* 5638 * STRIPE_ON_RELEASE_LIST could be set here. In that 5639 * case, the count is always > 1 here 5640 */ 5641 hash = sh->hash_lock_index; 5642 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]); 5643 cnt++; 5644 } 5645 spin_unlock_irq(&conf->device_lock); 5646 } 5647 release_inactive_stripe_list(conf, cb->temp_inactive_list, 5648 NR_STRIPE_HASH_LOCKS); 5649 if (mddev->queue) 5650 trace_block_unplug(mddev->queue, cnt, !from_schedule); 5651 kfree(cb); 5652 } 5653 5654 static void release_stripe_plug(struct mddev *mddev, 5655 struct stripe_head *sh) 5656 { 5657 struct blk_plug_cb *blk_cb = blk_check_plugged( 5658 raid5_unplug, mddev, 5659 sizeof(struct raid5_plug_cb)); 5660 struct raid5_plug_cb *cb; 5661 5662 if (!blk_cb) { 5663 raid5_release_stripe(sh); 5664 return; 5665 } 5666 5667 cb = container_of(blk_cb, struct raid5_plug_cb, cb); 5668 5669 if (cb->list.next == NULL) { 5670 int i; 5671 INIT_LIST_HEAD(&cb->list); 5672 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 5673 INIT_LIST_HEAD(cb->temp_inactive_list + i); 5674 } 5675 5676 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)) 5677 list_add_tail(&sh->lru, &cb->list); 5678 else 5679 raid5_release_stripe(sh); 5680 } 5681 5682 static void make_discard_request(struct mddev *mddev, struct bio *bi) 5683 { 5684 struct r5conf *conf = mddev->private; 5685 sector_t logical_sector, last_sector; 5686 struct stripe_head *sh; 5687 int stripe_sectors; 5688 5689 if (mddev->reshape_position != MaxSector) 5690 /* Skip discard while reshape is happening */ 5691 return; 5692 5693 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1); 5694 last_sector = bio_end_sector(bi); 5695 5696 bi->bi_next = NULL; 5697 5698 stripe_sectors = conf->chunk_sectors * 5699 (conf->raid_disks - conf->max_degraded); 5700 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector, 5701 stripe_sectors); 5702 sector_div(last_sector, stripe_sectors); 5703 5704 logical_sector *= conf->chunk_sectors; 5705 last_sector *= conf->chunk_sectors; 5706 5707 for (; logical_sector < last_sector; 5708 logical_sector += RAID5_STRIPE_SECTORS(conf)) { 5709 DEFINE_WAIT(w); 5710 int d; 5711 again: 5712 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0); 5713 prepare_to_wait(&conf->wait_for_overlap, &w, 5714 TASK_UNINTERRUPTIBLE); 5715 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 5716 if (test_bit(STRIPE_SYNCING, &sh->state)) { 5717 raid5_release_stripe(sh); 5718 schedule(); 5719 goto again; 5720 } 5721 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 5722 spin_lock_irq(&sh->stripe_lock); 5723 for (d = 0; d < conf->raid_disks; d++) { 5724 if (d == sh->pd_idx || d == sh->qd_idx) 5725 continue; 5726 if (sh->dev[d].towrite || sh->dev[d].toread) { 5727 set_bit(R5_Overlap, &sh->dev[d].flags); 5728 spin_unlock_irq(&sh->stripe_lock); 5729 raid5_release_stripe(sh); 5730 schedule(); 5731 goto again; 5732 } 5733 } 5734 set_bit(STRIPE_DISCARD, &sh->state); 5735 finish_wait(&conf->wait_for_overlap, &w); 5736 sh->overwrite_disks = 0; 5737 for (d = 0; d < conf->raid_disks; d++) { 5738 if (d == sh->pd_idx || d == sh->qd_idx) 5739 continue; 5740 sh->dev[d].towrite = bi; 5741 set_bit(R5_OVERWRITE, &sh->dev[d].flags); 5742 bio_inc_remaining(bi); 5743 md_write_inc(mddev, bi); 5744 sh->overwrite_disks++; 5745 } 5746 spin_unlock_irq(&sh->stripe_lock); 5747 if (conf->mddev->bitmap) { 5748 for (d = 0; 5749 d < conf->raid_disks - conf->max_degraded; 5750 d++) 5751 md_bitmap_startwrite(mddev->bitmap, 5752 sh->sector, 5753 RAID5_STRIPE_SECTORS(conf), 5754 0); 5755 sh->bm_seq = conf->seq_flush + 1; 5756 set_bit(STRIPE_BIT_DELAY, &sh->state); 5757 } 5758 5759 set_bit(STRIPE_HANDLE, &sh->state); 5760 clear_bit(STRIPE_DELAYED, &sh->state); 5761 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5762 atomic_inc(&conf->preread_active_stripes); 5763 release_stripe_plug(mddev, sh); 5764 } 5765 5766 bio_endio(bi); 5767 } 5768 5769 static bool raid5_make_request(struct mddev *mddev, struct bio * bi) 5770 { 5771 struct r5conf *conf = mddev->private; 5772 int dd_idx; 5773 sector_t new_sector; 5774 sector_t logical_sector, last_sector; 5775 struct stripe_head *sh; 5776 const int rw = bio_data_dir(bi); 5777 DEFINE_WAIT(w); 5778 bool do_prepare; 5779 bool do_flush = false; 5780 5781 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) { 5782 int ret = log_handle_flush_request(conf, bi); 5783 5784 if (ret == 0) 5785 return true; 5786 if (ret == -ENODEV) { 5787 if (md_flush_request(mddev, bi)) 5788 return true; 5789 } 5790 /* ret == -EAGAIN, fallback */ 5791 /* 5792 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH, 5793 * we need to flush journal device 5794 */ 5795 do_flush = bi->bi_opf & REQ_PREFLUSH; 5796 } 5797 5798 if (!md_write_start(mddev, bi)) 5799 return false; 5800 /* 5801 * If array is degraded, better not do chunk aligned read because 5802 * later we might have to read it again in order to reconstruct 5803 * data on failed drives. 5804 */ 5805 if (rw == READ && mddev->degraded == 0 && 5806 mddev->reshape_position == MaxSector) { 5807 bi = chunk_aligned_read(mddev, bi); 5808 if (!bi) 5809 return true; 5810 } 5811 5812 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) { 5813 make_discard_request(mddev, bi); 5814 md_write_end(mddev); 5815 return true; 5816 } 5817 5818 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1); 5819 last_sector = bio_end_sector(bi); 5820 bi->bi_next = NULL; 5821 5822 md_account_bio(mddev, &bi); 5823 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE); 5824 for (; logical_sector < last_sector; logical_sector += RAID5_STRIPE_SECTORS(conf)) { 5825 int previous; 5826 int seq; 5827 5828 do_prepare = false; 5829 retry: 5830 seq = read_seqcount_begin(&conf->gen_lock); 5831 previous = 0; 5832 if (do_prepare) 5833 prepare_to_wait(&conf->wait_for_overlap, &w, 5834 TASK_UNINTERRUPTIBLE); 5835 if (unlikely(conf->reshape_progress != MaxSector)) { 5836 /* spinlock is needed as reshape_progress may be 5837 * 64bit on a 32bit platform, and so it might be 5838 * possible to see a half-updated value 5839 * Of course reshape_progress could change after 5840 * the lock is dropped, so once we get a reference 5841 * to the stripe that we think it is, we will have 5842 * to check again. 5843 */ 5844 spin_lock_irq(&conf->device_lock); 5845 if (mddev->reshape_backwards 5846 ? logical_sector < conf->reshape_progress 5847 : logical_sector >= conf->reshape_progress) { 5848 previous = 1; 5849 } else { 5850 if (mddev->reshape_backwards 5851 ? logical_sector < conf->reshape_safe 5852 : logical_sector >= conf->reshape_safe) { 5853 spin_unlock_irq(&conf->device_lock); 5854 schedule(); 5855 do_prepare = true; 5856 goto retry; 5857 } 5858 } 5859 spin_unlock_irq(&conf->device_lock); 5860 } 5861 5862 new_sector = raid5_compute_sector(conf, logical_sector, 5863 previous, 5864 &dd_idx, NULL); 5865 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n", 5866 (unsigned long long)new_sector, 5867 (unsigned long long)logical_sector); 5868 5869 sh = raid5_get_active_stripe(conf, new_sector, previous, 5870 (bi->bi_opf & REQ_RAHEAD), 0); 5871 if (sh) { 5872 if (unlikely(previous)) { 5873 /* expansion might have moved on while waiting for a 5874 * stripe, so we must do the range check again. 5875 * Expansion could still move past after this 5876 * test, but as we are holding a reference to 5877 * 'sh', we know that if that happens, 5878 * STRIPE_EXPANDING will get set and the expansion 5879 * won't proceed until we finish with the stripe. 5880 */ 5881 int must_retry = 0; 5882 spin_lock_irq(&conf->device_lock); 5883 if (mddev->reshape_backwards 5884 ? logical_sector >= conf->reshape_progress 5885 : logical_sector < conf->reshape_progress) 5886 /* mismatch, need to try again */ 5887 must_retry = 1; 5888 spin_unlock_irq(&conf->device_lock); 5889 if (must_retry) { 5890 raid5_release_stripe(sh); 5891 schedule(); 5892 do_prepare = true; 5893 goto retry; 5894 } 5895 } 5896 if (read_seqcount_retry(&conf->gen_lock, seq)) { 5897 /* Might have got the wrong stripe_head 5898 * by accident 5899 */ 5900 raid5_release_stripe(sh); 5901 goto retry; 5902 } 5903 5904 if (test_bit(STRIPE_EXPANDING, &sh->state) || 5905 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) { 5906 /* Stripe is busy expanding or 5907 * add failed due to overlap. Flush everything 5908 * and wait a while 5909 */ 5910 md_wakeup_thread(mddev->thread); 5911 raid5_release_stripe(sh); 5912 schedule(); 5913 do_prepare = true; 5914 goto retry; 5915 } 5916 if (do_flush) { 5917 set_bit(STRIPE_R5C_PREFLUSH, &sh->state); 5918 /* we only need flush for one stripe */ 5919 do_flush = false; 5920 } 5921 5922 set_bit(STRIPE_HANDLE, &sh->state); 5923 clear_bit(STRIPE_DELAYED, &sh->state); 5924 if ((!sh->batch_head || sh == sh->batch_head) && 5925 (bi->bi_opf & REQ_SYNC) && 5926 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5927 atomic_inc(&conf->preread_active_stripes); 5928 release_stripe_plug(mddev, sh); 5929 } else { 5930 /* cannot get stripe for read-ahead, just give-up */ 5931 bi->bi_status = BLK_STS_IOERR; 5932 break; 5933 } 5934 } 5935 finish_wait(&conf->wait_for_overlap, &w); 5936 5937 if (rw == WRITE) 5938 md_write_end(mddev); 5939 bio_endio(bi); 5940 return true; 5941 } 5942 5943 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks); 5944 5945 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped) 5946 { 5947 /* reshaping is quite different to recovery/resync so it is 5948 * handled quite separately ... here. 5949 * 5950 * On each call to sync_request, we gather one chunk worth of 5951 * destination stripes and flag them as expanding. 5952 * Then we find all the source stripes and request reads. 5953 * As the reads complete, handle_stripe will copy the data 5954 * into the destination stripe and release that stripe. 5955 */ 5956 struct r5conf *conf = mddev->private; 5957 struct stripe_head *sh; 5958 struct md_rdev *rdev; 5959 sector_t first_sector, last_sector; 5960 int raid_disks = conf->previous_raid_disks; 5961 int data_disks = raid_disks - conf->max_degraded; 5962 int new_data_disks = conf->raid_disks - conf->max_degraded; 5963 int i; 5964 int dd_idx; 5965 sector_t writepos, readpos, safepos; 5966 sector_t stripe_addr; 5967 int reshape_sectors; 5968 struct list_head stripes; 5969 sector_t retn; 5970 5971 if (sector_nr == 0) { 5972 /* If restarting in the middle, skip the initial sectors */ 5973 if (mddev->reshape_backwards && 5974 conf->reshape_progress < raid5_size(mddev, 0, 0)) { 5975 sector_nr = raid5_size(mddev, 0, 0) 5976 - conf->reshape_progress; 5977 } else if (mddev->reshape_backwards && 5978 conf->reshape_progress == MaxSector) { 5979 /* shouldn't happen, but just in case, finish up.*/ 5980 sector_nr = MaxSector; 5981 } else if (!mddev->reshape_backwards && 5982 conf->reshape_progress > 0) 5983 sector_nr = conf->reshape_progress; 5984 sector_div(sector_nr, new_data_disks); 5985 if (sector_nr) { 5986 mddev->curr_resync_completed = sector_nr; 5987 sysfs_notify_dirent_safe(mddev->sysfs_completed); 5988 *skipped = 1; 5989 retn = sector_nr; 5990 goto finish; 5991 } 5992 } 5993 5994 /* We need to process a full chunk at a time. 5995 * If old and new chunk sizes differ, we need to process the 5996 * largest of these 5997 */ 5998 5999 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors); 6000 6001 /* We update the metadata at least every 10 seconds, or when 6002 * the data about to be copied would over-write the source of 6003 * the data at the front of the range. i.e. one new_stripe 6004 * along from reshape_progress new_maps to after where 6005 * reshape_safe old_maps to 6006 */ 6007 writepos = conf->reshape_progress; 6008 sector_div(writepos, new_data_disks); 6009 readpos = conf->reshape_progress; 6010 sector_div(readpos, data_disks); 6011 safepos = conf->reshape_safe; 6012 sector_div(safepos, data_disks); 6013 if (mddev->reshape_backwards) { 6014 BUG_ON(writepos < reshape_sectors); 6015 writepos -= reshape_sectors; 6016 readpos += reshape_sectors; 6017 safepos += reshape_sectors; 6018 } else { 6019 writepos += reshape_sectors; 6020 /* readpos and safepos are worst-case calculations. 6021 * A negative number is overly pessimistic, and causes 6022 * obvious problems for unsigned storage. So clip to 0. 6023 */ 6024 readpos -= min_t(sector_t, reshape_sectors, readpos); 6025 safepos -= min_t(sector_t, reshape_sectors, safepos); 6026 } 6027 6028 /* Having calculated the 'writepos' possibly use it 6029 * to set 'stripe_addr' which is where we will write to. 6030 */ 6031 if (mddev->reshape_backwards) { 6032 BUG_ON(conf->reshape_progress == 0); 6033 stripe_addr = writepos; 6034 BUG_ON((mddev->dev_sectors & 6035 ~((sector_t)reshape_sectors - 1)) 6036 - reshape_sectors - stripe_addr 6037 != sector_nr); 6038 } else { 6039 BUG_ON(writepos != sector_nr + reshape_sectors); 6040 stripe_addr = sector_nr; 6041 } 6042 6043 /* 'writepos' is the most advanced device address we might write. 6044 * 'readpos' is the least advanced device address we might read. 6045 * 'safepos' is the least address recorded in the metadata as having 6046 * been reshaped. 6047 * If there is a min_offset_diff, these are adjusted either by 6048 * increasing the safepos/readpos if diff is negative, or 6049 * increasing writepos if diff is positive. 6050 * If 'readpos' is then behind 'writepos', there is no way that we can 6051 * ensure safety in the face of a crash - that must be done by userspace 6052 * making a backup of the data. So in that case there is no particular 6053 * rush to update metadata. 6054 * Otherwise if 'safepos' is behind 'writepos', then we really need to 6055 * update the metadata to advance 'safepos' to match 'readpos' so that 6056 * we can be safe in the event of a crash. 6057 * So we insist on updating metadata if safepos is behind writepos and 6058 * readpos is beyond writepos. 6059 * In any case, update the metadata every 10 seconds. 6060 * Maybe that number should be configurable, but I'm not sure it is 6061 * worth it.... maybe it could be a multiple of safemode_delay??? 6062 */ 6063 if (conf->min_offset_diff < 0) { 6064 safepos += -conf->min_offset_diff; 6065 readpos += -conf->min_offset_diff; 6066 } else 6067 writepos += conf->min_offset_diff; 6068 6069 if ((mddev->reshape_backwards 6070 ? (safepos > writepos && readpos < writepos) 6071 : (safepos < writepos && readpos > writepos)) || 6072 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 6073 /* Cannot proceed until we've updated the superblock... */ 6074 wait_event(conf->wait_for_overlap, 6075 atomic_read(&conf->reshape_stripes)==0 6076 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 6077 if (atomic_read(&conf->reshape_stripes) != 0) 6078 return 0; 6079 mddev->reshape_position = conf->reshape_progress; 6080 mddev->curr_resync_completed = sector_nr; 6081 if (!mddev->reshape_backwards) 6082 /* Can update recovery_offset */ 6083 rdev_for_each(rdev, mddev) 6084 if (rdev->raid_disk >= 0 && 6085 !test_bit(Journal, &rdev->flags) && 6086 !test_bit(In_sync, &rdev->flags) && 6087 rdev->recovery_offset < sector_nr) 6088 rdev->recovery_offset = sector_nr; 6089 6090 conf->reshape_checkpoint = jiffies; 6091 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6092 md_wakeup_thread(mddev->thread); 6093 wait_event(mddev->sb_wait, mddev->sb_flags == 0 || 6094 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 6095 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6096 return 0; 6097 spin_lock_irq(&conf->device_lock); 6098 conf->reshape_safe = mddev->reshape_position; 6099 spin_unlock_irq(&conf->device_lock); 6100 wake_up(&conf->wait_for_overlap); 6101 sysfs_notify_dirent_safe(mddev->sysfs_completed); 6102 } 6103 6104 INIT_LIST_HEAD(&stripes); 6105 for (i = 0; i < reshape_sectors; i += RAID5_STRIPE_SECTORS(conf)) { 6106 int j; 6107 int skipped_disk = 0; 6108 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1); 6109 set_bit(STRIPE_EXPANDING, &sh->state); 6110 atomic_inc(&conf->reshape_stripes); 6111 /* If any of this stripe is beyond the end of the old 6112 * array, then we need to zero those blocks 6113 */ 6114 for (j=sh->disks; j--;) { 6115 sector_t s; 6116 if (j == sh->pd_idx) 6117 continue; 6118 if (conf->level == 6 && 6119 j == sh->qd_idx) 6120 continue; 6121 s = raid5_compute_blocknr(sh, j, 0); 6122 if (s < raid5_size(mddev, 0, 0)) { 6123 skipped_disk = 1; 6124 continue; 6125 } 6126 memset(page_address(sh->dev[j].page), 0, RAID5_STRIPE_SIZE(conf)); 6127 set_bit(R5_Expanded, &sh->dev[j].flags); 6128 set_bit(R5_UPTODATE, &sh->dev[j].flags); 6129 } 6130 if (!skipped_disk) { 6131 set_bit(STRIPE_EXPAND_READY, &sh->state); 6132 set_bit(STRIPE_HANDLE, &sh->state); 6133 } 6134 list_add(&sh->lru, &stripes); 6135 } 6136 spin_lock_irq(&conf->device_lock); 6137 if (mddev->reshape_backwards) 6138 conf->reshape_progress -= reshape_sectors * new_data_disks; 6139 else 6140 conf->reshape_progress += reshape_sectors * new_data_disks; 6141 spin_unlock_irq(&conf->device_lock); 6142 /* Ok, those stripe are ready. We can start scheduling 6143 * reads on the source stripes. 6144 * The source stripes are determined by mapping the first and last 6145 * block on the destination stripes. 6146 */ 6147 first_sector = 6148 raid5_compute_sector(conf, stripe_addr*(new_data_disks), 6149 1, &dd_idx, NULL); 6150 last_sector = 6151 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors) 6152 * new_data_disks - 1), 6153 1, &dd_idx, NULL); 6154 if (last_sector >= mddev->dev_sectors) 6155 last_sector = mddev->dev_sectors - 1; 6156 while (first_sector <= last_sector) { 6157 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1); 6158 set_bit(STRIPE_EXPAND_SOURCE, &sh->state); 6159 set_bit(STRIPE_HANDLE, &sh->state); 6160 raid5_release_stripe(sh); 6161 first_sector += RAID5_STRIPE_SECTORS(conf); 6162 } 6163 /* Now that the sources are clearly marked, we can release 6164 * the destination stripes 6165 */ 6166 while (!list_empty(&stripes)) { 6167 sh = list_entry(stripes.next, struct stripe_head, lru); 6168 list_del_init(&sh->lru); 6169 raid5_release_stripe(sh); 6170 } 6171 /* If this takes us to the resync_max point where we have to pause, 6172 * then we need to write out the superblock. 6173 */ 6174 sector_nr += reshape_sectors; 6175 retn = reshape_sectors; 6176 finish: 6177 if (mddev->curr_resync_completed > mddev->resync_max || 6178 (sector_nr - mddev->curr_resync_completed) * 2 6179 >= mddev->resync_max - mddev->curr_resync_completed) { 6180 /* Cannot proceed until we've updated the superblock... */ 6181 wait_event(conf->wait_for_overlap, 6182 atomic_read(&conf->reshape_stripes) == 0 6183 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 6184 if (atomic_read(&conf->reshape_stripes) != 0) 6185 goto ret; 6186 mddev->reshape_position = conf->reshape_progress; 6187 mddev->curr_resync_completed = sector_nr; 6188 if (!mddev->reshape_backwards) 6189 /* Can update recovery_offset */ 6190 rdev_for_each(rdev, mddev) 6191 if (rdev->raid_disk >= 0 && 6192 !test_bit(Journal, &rdev->flags) && 6193 !test_bit(In_sync, &rdev->flags) && 6194 rdev->recovery_offset < sector_nr) 6195 rdev->recovery_offset = sector_nr; 6196 conf->reshape_checkpoint = jiffies; 6197 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6198 md_wakeup_thread(mddev->thread); 6199 wait_event(mddev->sb_wait, 6200 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) 6201 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 6202 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6203 goto ret; 6204 spin_lock_irq(&conf->device_lock); 6205 conf->reshape_safe = mddev->reshape_position; 6206 spin_unlock_irq(&conf->device_lock); 6207 wake_up(&conf->wait_for_overlap); 6208 sysfs_notify_dirent_safe(mddev->sysfs_completed); 6209 } 6210 ret: 6211 return retn; 6212 } 6213 6214 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr, 6215 int *skipped) 6216 { 6217 struct r5conf *conf = mddev->private; 6218 struct stripe_head *sh; 6219 sector_t max_sector = mddev->dev_sectors; 6220 sector_t sync_blocks; 6221 int still_degraded = 0; 6222 int i; 6223 6224 if (sector_nr >= max_sector) { 6225 /* just being told to finish up .. nothing much to do */ 6226 6227 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 6228 end_reshape(conf); 6229 return 0; 6230 } 6231 6232 if (mddev->curr_resync < max_sector) /* aborted */ 6233 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 6234 &sync_blocks, 1); 6235 else /* completed sync */ 6236 conf->fullsync = 0; 6237 md_bitmap_close_sync(mddev->bitmap); 6238 6239 return 0; 6240 } 6241 6242 /* Allow raid5_quiesce to complete */ 6243 wait_event(conf->wait_for_overlap, conf->quiesce != 2); 6244 6245 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 6246 return reshape_request(mddev, sector_nr, skipped); 6247 6248 /* No need to check resync_max as we never do more than one 6249 * stripe, and as resync_max will always be on a chunk boundary, 6250 * if the check in md_do_sync didn't fire, there is no chance 6251 * of overstepping resync_max here 6252 */ 6253 6254 /* if there is too many failed drives and we are trying 6255 * to resync, then assert that we are finished, because there is 6256 * nothing we can do. 6257 */ 6258 if (mddev->degraded >= conf->max_degraded && 6259 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 6260 sector_t rv = mddev->dev_sectors - sector_nr; 6261 *skipped = 1; 6262 return rv; 6263 } 6264 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 6265 !conf->fullsync && 6266 !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 6267 sync_blocks >= RAID5_STRIPE_SECTORS(conf)) { 6268 /* we can skip this block, and probably more */ 6269 do_div(sync_blocks, RAID5_STRIPE_SECTORS(conf)); 6270 *skipped = 1; 6271 /* keep things rounded to whole stripes */ 6272 return sync_blocks * RAID5_STRIPE_SECTORS(conf); 6273 } 6274 6275 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false); 6276 6277 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0); 6278 if (sh == NULL) { 6279 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0); 6280 /* make sure we don't swamp the stripe cache if someone else 6281 * is trying to get access 6282 */ 6283 schedule_timeout_uninterruptible(1); 6284 } 6285 /* Need to check if array will still be degraded after recovery/resync 6286 * Note in case of > 1 drive failures it's possible we're rebuilding 6287 * one drive while leaving another faulty drive in array. 6288 */ 6289 rcu_read_lock(); 6290 for (i = 0; i < conf->raid_disks; i++) { 6291 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev); 6292 6293 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) 6294 still_degraded = 1; 6295 } 6296 rcu_read_unlock(); 6297 6298 md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded); 6299 6300 set_bit(STRIPE_SYNC_REQUESTED, &sh->state); 6301 set_bit(STRIPE_HANDLE, &sh->state); 6302 6303 raid5_release_stripe(sh); 6304 6305 return RAID5_STRIPE_SECTORS(conf); 6306 } 6307 6308 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio, 6309 unsigned int offset) 6310 { 6311 /* We may not be able to submit a whole bio at once as there 6312 * may not be enough stripe_heads available. 6313 * We cannot pre-allocate enough stripe_heads as we may need 6314 * more than exist in the cache (if we allow ever large chunks). 6315 * So we do one stripe head at a time and record in 6316 * ->bi_hw_segments how many have been done. 6317 * 6318 * We *know* that this entire raid_bio is in one chunk, so 6319 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector. 6320 */ 6321 struct stripe_head *sh; 6322 int dd_idx; 6323 sector_t sector, logical_sector, last_sector; 6324 int scnt = 0; 6325 int handled = 0; 6326 6327 logical_sector = raid_bio->bi_iter.bi_sector & 6328 ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1); 6329 sector = raid5_compute_sector(conf, logical_sector, 6330 0, &dd_idx, NULL); 6331 last_sector = bio_end_sector(raid_bio); 6332 6333 for (; logical_sector < last_sector; 6334 logical_sector += RAID5_STRIPE_SECTORS(conf), 6335 sector += RAID5_STRIPE_SECTORS(conf), 6336 scnt++) { 6337 6338 if (scnt < offset) 6339 /* already done this stripe */ 6340 continue; 6341 6342 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1); 6343 6344 if (!sh) { 6345 /* failed to get a stripe - must wait */ 6346 conf->retry_read_aligned = raid_bio; 6347 conf->retry_read_offset = scnt; 6348 return handled; 6349 } 6350 6351 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) { 6352 raid5_release_stripe(sh); 6353 conf->retry_read_aligned = raid_bio; 6354 conf->retry_read_offset = scnt; 6355 return handled; 6356 } 6357 6358 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags); 6359 handle_stripe(sh); 6360 raid5_release_stripe(sh); 6361 handled++; 6362 } 6363 6364 bio_endio(raid_bio); 6365 6366 if (atomic_dec_and_test(&conf->active_aligned_reads)) 6367 wake_up(&conf->wait_for_quiescent); 6368 return handled; 6369 } 6370 6371 static int handle_active_stripes(struct r5conf *conf, int group, 6372 struct r5worker *worker, 6373 struct list_head *temp_inactive_list) 6374 __releases(&conf->device_lock) 6375 __acquires(&conf->device_lock) 6376 { 6377 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh; 6378 int i, batch_size = 0, hash; 6379 bool release_inactive = false; 6380 6381 while (batch_size < MAX_STRIPE_BATCH && 6382 (sh = __get_priority_stripe(conf, group)) != NULL) 6383 batch[batch_size++] = sh; 6384 6385 if (batch_size == 0) { 6386 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 6387 if (!list_empty(temp_inactive_list + i)) 6388 break; 6389 if (i == NR_STRIPE_HASH_LOCKS) { 6390 spin_unlock_irq(&conf->device_lock); 6391 log_flush_stripe_to_raid(conf); 6392 spin_lock_irq(&conf->device_lock); 6393 return batch_size; 6394 } 6395 release_inactive = true; 6396 } 6397 spin_unlock_irq(&conf->device_lock); 6398 6399 release_inactive_stripe_list(conf, temp_inactive_list, 6400 NR_STRIPE_HASH_LOCKS); 6401 6402 r5l_flush_stripe_to_raid(conf->log); 6403 if (release_inactive) { 6404 spin_lock_irq(&conf->device_lock); 6405 return 0; 6406 } 6407 6408 for (i = 0; i < batch_size; i++) 6409 handle_stripe(batch[i]); 6410 log_write_stripe_run(conf); 6411 6412 cond_resched(); 6413 6414 spin_lock_irq(&conf->device_lock); 6415 for (i = 0; i < batch_size; i++) { 6416 hash = batch[i]->hash_lock_index; 6417 __release_stripe(conf, batch[i], &temp_inactive_list[hash]); 6418 } 6419 return batch_size; 6420 } 6421 6422 static void raid5_do_work(struct work_struct *work) 6423 { 6424 struct r5worker *worker = container_of(work, struct r5worker, work); 6425 struct r5worker_group *group = worker->group; 6426 struct r5conf *conf = group->conf; 6427 struct mddev *mddev = conf->mddev; 6428 int group_id = group - conf->worker_groups; 6429 int handled; 6430 struct blk_plug plug; 6431 6432 pr_debug("+++ raid5worker active\n"); 6433 6434 blk_start_plug(&plug); 6435 handled = 0; 6436 spin_lock_irq(&conf->device_lock); 6437 while (1) { 6438 int batch_size, released; 6439 6440 released = release_stripe_list(conf, worker->temp_inactive_list); 6441 6442 batch_size = handle_active_stripes(conf, group_id, worker, 6443 worker->temp_inactive_list); 6444 worker->working = false; 6445 if (!batch_size && !released) 6446 break; 6447 handled += batch_size; 6448 wait_event_lock_irq(mddev->sb_wait, 6449 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags), 6450 conf->device_lock); 6451 } 6452 pr_debug("%d stripes handled\n", handled); 6453 6454 spin_unlock_irq(&conf->device_lock); 6455 6456 flush_deferred_bios(conf); 6457 6458 r5l_flush_stripe_to_raid(conf->log); 6459 6460 async_tx_issue_pending_all(); 6461 blk_finish_plug(&plug); 6462 6463 pr_debug("--- raid5worker inactive\n"); 6464 } 6465 6466 /* 6467 * This is our raid5 kernel thread. 6468 * 6469 * We scan the hash table for stripes which can be handled now. 6470 * During the scan, completed stripes are saved for us by the interrupt 6471 * handler, so that they will not have to wait for our next wakeup. 6472 */ 6473 static void raid5d(struct md_thread *thread) 6474 { 6475 struct mddev *mddev = thread->mddev; 6476 struct r5conf *conf = mddev->private; 6477 int handled; 6478 struct blk_plug plug; 6479 6480 pr_debug("+++ raid5d active\n"); 6481 6482 md_check_recovery(mddev); 6483 6484 blk_start_plug(&plug); 6485 handled = 0; 6486 spin_lock_irq(&conf->device_lock); 6487 while (1) { 6488 struct bio *bio; 6489 int batch_size, released; 6490 unsigned int offset; 6491 6492 released = release_stripe_list(conf, conf->temp_inactive_list); 6493 if (released) 6494 clear_bit(R5_DID_ALLOC, &conf->cache_state); 6495 6496 if ( 6497 !list_empty(&conf->bitmap_list)) { 6498 /* Now is a good time to flush some bitmap updates */ 6499 conf->seq_flush++; 6500 spin_unlock_irq(&conf->device_lock); 6501 md_bitmap_unplug(mddev->bitmap); 6502 spin_lock_irq(&conf->device_lock); 6503 conf->seq_write = conf->seq_flush; 6504 activate_bit_delay(conf, conf->temp_inactive_list); 6505 } 6506 raid5_activate_delayed(conf); 6507 6508 while ((bio = remove_bio_from_retry(conf, &offset))) { 6509 int ok; 6510 spin_unlock_irq(&conf->device_lock); 6511 ok = retry_aligned_read(conf, bio, offset); 6512 spin_lock_irq(&conf->device_lock); 6513 if (!ok) 6514 break; 6515 handled++; 6516 } 6517 6518 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL, 6519 conf->temp_inactive_list); 6520 if (!batch_size && !released) 6521 break; 6522 handled += batch_size; 6523 6524 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) { 6525 spin_unlock_irq(&conf->device_lock); 6526 md_check_recovery(mddev); 6527 spin_lock_irq(&conf->device_lock); 6528 } 6529 } 6530 pr_debug("%d stripes handled\n", handled); 6531 6532 spin_unlock_irq(&conf->device_lock); 6533 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) && 6534 mutex_trylock(&conf->cache_size_mutex)) { 6535 grow_one_stripe(conf, __GFP_NOWARN); 6536 /* Set flag even if allocation failed. This helps 6537 * slow down allocation requests when mem is short 6538 */ 6539 set_bit(R5_DID_ALLOC, &conf->cache_state); 6540 mutex_unlock(&conf->cache_size_mutex); 6541 } 6542 6543 flush_deferred_bios(conf); 6544 6545 r5l_flush_stripe_to_raid(conf->log); 6546 6547 async_tx_issue_pending_all(); 6548 blk_finish_plug(&plug); 6549 6550 pr_debug("--- raid5d inactive\n"); 6551 } 6552 6553 static ssize_t 6554 raid5_show_stripe_cache_size(struct mddev *mddev, char *page) 6555 { 6556 struct r5conf *conf; 6557 int ret = 0; 6558 spin_lock(&mddev->lock); 6559 conf = mddev->private; 6560 if (conf) 6561 ret = sprintf(page, "%d\n", conf->min_nr_stripes); 6562 spin_unlock(&mddev->lock); 6563 return ret; 6564 } 6565 6566 int 6567 raid5_set_cache_size(struct mddev *mddev, int size) 6568 { 6569 int result = 0; 6570 struct r5conf *conf = mddev->private; 6571 6572 if (size <= 16 || size > 32768) 6573 return -EINVAL; 6574 6575 conf->min_nr_stripes = size; 6576 mutex_lock(&conf->cache_size_mutex); 6577 while (size < conf->max_nr_stripes && 6578 drop_one_stripe(conf)) 6579 ; 6580 mutex_unlock(&conf->cache_size_mutex); 6581 6582 md_allow_write(mddev); 6583 6584 mutex_lock(&conf->cache_size_mutex); 6585 while (size > conf->max_nr_stripes) 6586 if (!grow_one_stripe(conf, GFP_KERNEL)) { 6587 conf->min_nr_stripes = conf->max_nr_stripes; 6588 result = -ENOMEM; 6589 break; 6590 } 6591 mutex_unlock(&conf->cache_size_mutex); 6592 6593 return result; 6594 } 6595 EXPORT_SYMBOL(raid5_set_cache_size); 6596 6597 static ssize_t 6598 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len) 6599 { 6600 struct r5conf *conf; 6601 unsigned long new; 6602 int err; 6603 6604 if (len >= PAGE_SIZE) 6605 return -EINVAL; 6606 if (kstrtoul(page, 10, &new)) 6607 return -EINVAL; 6608 err = mddev_lock(mddev); 6609 if (err) 6610 return err; 6611 conf = mddev->private; 6612 if (!conf) 6613 err = -ENODEV; 6614 else 6615 err = raid5_set_cache_size(mddev, new); 6616 mddev_unlock(mddev); 6617 6618 return err ?: len; 6619 } 6620 6621 static struct md_sysfs_entry 6622 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR, 6623 raid5_show_stripe_cache_size, 6624 raid5_store_stripe_cache_size); 6625 6626 static ssize_t 6627 raid5_show_rmw_level(struct mddev *mddev, char *page) 6628 { 6629 struct r5conf *conf = mddev->private; 6630 if (conf) 6631 return sprintf(page, "%d\n", conf->rmw_level); 6632 else 6633 return 0; 6634 } 6635 6636 static ssize_t 6637 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len) 6638 { 6639 struct r5conf *conf = mddev->private; 6640 unsigned long new; 6641 6642 if (!conf) 6643 return -ENODEV; 6644 6645 if (len >= PAGE_SIZE) 6646 return -EINVAL; 6647 6648 if (kstrtoul(page, 10, &new)) 6649 return -EINVAL; 6650 6651 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome) 6652 return -EINVAL; 6653 6654 if (new != PARITY_DISABLE_RMW && 6655 new != PARITY_ENABLE_RMW && 6656 new != PARITY_PREFER_RMW) 6657 return -EINVAL; 6658 6659 conf->rmw_level = new; 6660 return len; 6661 } 6662 6663 static struct md_sysfs_entry 6664 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR, 6665 raid5_show_rmw_level, 6666 raid5_store_rmw_level); 6667 6668 static ssize_t 6669 raid5_show_stripe_size(struct mddev *mddev, char *page) 6670 { 6671 struct r5conf *conf; 6672 int ret = 0; 6673 6674 spin_lock(&mddev->lock); 6675 conf = mddev->private; 6676 if (conf) 6677 ret = sprintf(page, "%lu\n", RAID5_STRIPE_SIZE(conf)); 6678 spin_unlock(&mddev->lock); 6679 return ret; 6680 } 6681 6682 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 6683 static ssize_t 6684 raid5_store_stripe_size(struct mddev *mddev, const char *page, size_t len) 6685 { 6686 struct r5conf *conf; 6687 unsigned long new; 6688 int err; 6689 int size; 6690 6691 if (len >= PAGE_SIZE) 6692 return -EINVAL; 6693 if (kstrtoul(page, 10, &new)) 6694 return -EINVAL; 6695 6696 /* 6697 * The value should not be bigger than PAGE_SIZE. It requires to 6698 * be multiple of DEFAULT_STRIPE_SIZE and the value should be power 6699 * of two. 6700 */ 6701 if (new % DEFAULT_STRIPE_SIZE != 0 || 6702 new > PAGE_SIZE || new == 0 || 6703 new != roundup_pow_of_two(new)) 6704 return -EINVAL; 6705 6706 err = mddev_lock(mddev); 6707 if (err) 6708 return err; 6709 6710 conf = mddev->private; 6711 if (!conf) { 6712 err = -ENODEV; 6713 goto out_unlock; 6714 } 6715 6716 if (new == conf->stripe_size) 6717 goto out_unlock; 6718 6719 pr_debug("md/raid: change stripe_size from %lu to %lu\n", 6720 conf->stripe_size, new); 6721 6722 if (mddev->sync_thread || 6723 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 6724 mddev->reshape_position != MaxSector || 6725 mddev->sysfs_active) { 6726 err = -EBUSY; 6727 goto out_unlock; 6728 } 6729 6730 mddev_suspend(mddev); 6731 mutex_lock(&conf->cache_size_mutex); 6732 size = conf->max_nr_stripes; 6733 6734 shrink_stripes(conf); 6735 6736 conf->stripe_size = new; 6737 conf->stripe_shift = ilog2(new) - 9; 6738 conf->stripe_sectors = new >> 9; 6739 if (grow_stripes(conf, size)) { 6740 pr_warn("md/raid:%s: couldn't allocate buffers\n", 6741 mdname(mddev)); 6742 err = -ENOMEM; 6743 } 6744 mutex_unlock(&conf->cache_size_mutex); 6745 mddev_resume(mddev); 6746 6747 out_unlock: 6748 mddev_unlock(mddev); 6749 return err ?: len; 6750 } 6751 6752 static struct md_sysfs_entry 6753 raid5_stripe_size = __ATTR(stripe_size, 0644, 6754 raid5_show_stripe_size, 6755 raid5_store_stripe_size); 6756 #else 6757 static struct md_sysfs_entry 6758 raid5_stripe_size = __ATTR(stripe_size, 0444, 6759 raid5_show_stripe_size, 6760 NULL); 6761 #endif 6762 6763 static ssize_t 6764 raid5_show_preread_threshold(struct mddev *mddev, char *page) 6765 { 6766 struct r5conf *conf; 6767 int ret = 0; 6768 spin_lock(&mddev->lock); 6769 conf = mddev->private; 6770 if (conf) 6771 ret = sprintf(page, "%d\n", conf->bypass_threshold); 6772 spin_unlock(&mddev->lock); 6773 return ret; 6774 } 6775 6776 static ssize_t 6777 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len) 6778 { 6779 struct r5conf *conf; 6780 unsigned long new; 6781 int err; 6782 6783 if (len >= PAGE_SIZE) 6784 return -EINVAL; 6785 if (kstrtoul(page, 10, &new)) 6786 return -EINVAL; 6787 6788 err = mddev_lock(mddev); 6789 if (err) 6790 return err; 6791 conf = mddev->private; 6792 if (!conf) 6793 err = -ENODEV; 6794 else if (new > conf->min_nr_stripes) 6795 err = -EINVAL; 6796 else 6797 conf->bypass_threshold = new; 6798 mddev_unlock(mddev); 6799 return err ?: len; 6800 } 6801 6802 static struct md_sysfs_entry 6803 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold, 6804 S_IRUGO | S_IWUSR, 6805 raid5_show_preread_threshold, 6806 raid5_store_preread_threshold); 6807 6808 static ssize_t 6809 raid5_show_skip_copy(struct mddev *mddev, char *page) 6810 { 6811 struct r5conf *conf; 6812 int ret = 0; 6813 spin_lock(&mddev->lock); 6814 conf = mddev->private; 6815 if (conf) 6816 ret = sprintf(page, "%d\n", conf->skip_copy); 6817 spin_unlock(&mddev->lock); 6818 return ret; 6819 } 6820 6821 static ssize_t 6822 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len) 6823 { 6824 struct r5conf *conf; 6825 unsigned long new; 6826 int err; 6827 6828 if (len >= PAGE_SIZE) 6829 return -EINVAL; 6830 if (kstrtoul(page, 10, &new)) 6831 return -EINVAL; 6832 new = !!new; 6833 6834 err = mddev_lock(mddev); 6835 if (err) 6836 return err; 6837 conf = mddev->private; 6838 if (!conf) 6839 err = -ENODEV; 6840 else if (new != conf->skip_copy) { 6841 struct request_queue *q = mddev->queue; 6842 6843 mddev_suspend(mddev); 6844 conf->skip_copy = new; 6845 if (new) 6846 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q); 6847 else 6848 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q); 6849 mddev_resume(mddev); 6850 } 6851 mddev_unlock(mddev); 6852 return err ?: len; 6853 } 6854 6855 static struct md_sysfs_entry 6856 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR, 6857 raid5_show_skip_copy, 6858 raid5_store_skip_copy); 6859 6860 static ssize_t 6861 stripe_cache_active_show(struct mddev *mddev, char *page) 6862 { 6863 struct r5conf *conf = mddev->private; 6864 if (conf) 6865 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes)); 6866 else 6867 return 0; 6868 } 6869 6870 static struct md_sysfs_entry 6871 raid5_stripecache_active = __ATTR_RO(stripe_cache_active); 6872 6873 static ssize_t 6874 raid5_show_group_thread_cnt(struct mddev *mddev, char *page) 6875 { 6876 struct r5conf *conf; 6877 int ret = 0; 6878 spin_lock(&mddev->lock); 6879 conf = mddev->private; 6880 if (conf) 6881 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group); 6882 spin_unlock(&mddev->lock); 6883 return ret; 6884 } 6885 6886 static int alloc_thread_groups(struct r5conf *conf, int cnt, 6887 int *group_cnt, 6888 struct r5worker_group **worker_groups); 6889 static ssize_t 6890 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len) 6891 { 6892 struct r5conf *conf; 6893 unsigned int new; 6894 int err; 6895 struct r5worker_group *new_groups, *old_groups; 6896 int group_cnt; 6897 6898 if (len >= PAGE_SIZE) 6899 return -EINVAL; 6900 if (kstrtouint(page, 10, &new)) 6901 return -EINVAL; 6902 /* 8192 should be big enough */ 6903 if (new > 8192) 6904 return -EINVAL; 6905 6906 err = mddev_lock(mddev); 6907 if (err) 6908 return err; 6909 conf = mddev->private; 6910 if (!conf) 6911 err = -ENODEV; 6912 else if (new != conf->worker_cnt_per_group) { 6913 mddev_suspend(mddev); 6914 6915 old_groups = conf->worker_groups; 6916 if (old_groups) 6917 flush_workqueue(raid5_wq); 6918 6919 err = alloc_thread_groups(conf, new, &group_cnt, &new_groups); 6920 if (!err) { 6921 spin_lock_irq(&conf->device_lock); 6922 conf->group_cnt = group_cnt; 6923 conf->worker_cnt_per_group = new; 6924 conf->worker_groups = new_groups; 6925 spin_unlock_irq(&conf->device_lock); 6926 6927 if (old_groups) 6928 kfree(old_groups[0].workers); 6929 kfree(old_groups); 6930 } 6931 mddev_resume(mddev); 6932 } 6933 mddev_unlock(mddev); 6934 6935 return err ?: len; 6936 } 6937 6938 static struct md_sysfs_entry 6939 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR, 6940 raid5_show_group_thread_cnt, 6941 raid5_store_group_thread_cnt); 6942 6943 static struct attribute *raid5_attrs[] = { 6944 &raid5_stripecache_size.attr, 6945 &raid5_stripecache_active.attr, 6946 &raid5_preread_bypass_threshold.attr, 6947 &raid5_group_thread_cnt.attr, 6948 &raid5_skip_copy.attr, 6949 &raid5_rmw_level.attr, 6950 &raid5_stripe_size.attr, 6951 &r5c_journal_mode.attr, 6952 &ppl_write_hint.attr, 6953 NULL, 6954 }; 6955 static const struct attribute_group raid5_attrs_group = { 6956 .name = NULL, 6957 .attrs = raid5_attrs, 6958 }; 6959 6960 static int alloc_thread_groups(struct r5conf *conf, int cnt, int *group_cnt, 6961 struct r5worker_group **worker_groups) 6962 { 6963 int i, j, k; 6964 ssize_t size; 6965 struct r5worker *workers; 6966 6967 if (cnt == 0) { 6968 *group_cnt = 0; 6969 *worker_groups = NULL; 6970 return 0; 6971 } 6972 *group_cnt = num_possible_nodes(); 6973 size = sizeof(struct r5worker) * cnt; 6974 workers = kcalloc(size, *group_cnt, GFP_NOIO); 6975 *worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group), 6976 GFP_NOIO); 6977 if (!*worker_groups || !workers) { 6978 kfree(workers); 6979 kfree(*worker_groups); 6980 return -ENOMEM; 6981 } 6982 6983 for (i = 0; i < *group_cnt; i++) { 6984 struct r5worker_group *group; 6985 6986 group = &(*worker_groups)[i]; 6987 INIT_LIST_HEAD(&group->handle_list); 6988 INIT_LIST_HEAD(&group->loprio_list); 6989 group->conf = conf; 6990 group->workers = workers + i * cnt; 6991 6992 for (j = 0; j < cnt; j++) { 6993 struct r5worker *worker = group->workers + j; 6994 worker->group = group; 6995 INIT_WORK(&worker->work, raid5_do_work); 6996 6997 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++) 6998 INIT_LIST_HEAD(worker->temp_inactive_list + k); 6999 } 7000 } 7001 7002 return 0; 7003 } 7004 7005 static void free_thread_groups(struct r5conf *conf) 7006 { 7007 if (conf->worker_groups) 7008 kfree(conf->worker_groups[0].workers); 7009 kfree(conf->worker_groups); 7010 conf->worker_groups = NULL; 7011 } 7012 7013 static sector_t 7014 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks) 7015 { 7016 struct r5conf *conf = mddev->private; 7017 7018 if (!sectors) 7019 sectors = mddev->dev_sectors; 7020 if (!raid_disks) 7021 /* size is defined by the smallest of previous and new size */ 7022 raid_disks = min(conf->raid_disks, conf->previous_raid_disks); 7023 7024 sectors &= ~((sector_t)conf->chunk_sectors - 1); 7025 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1); 7026 return sectors * (raid_disks - conf->max_degraded); 7027 } 7028 7029 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 7030 { 7031 safe_put_page(percpu->spare_page); 7032 percpu->spare_page = NULL; 7033 kvfree(percpu->scribble); 7034 percpu->scribble = NULL; 7035 } 7036 7037 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 7038 { 7039 if (conf->level == 6 && !percpu->spare_page) { 7040 percpu->spare_page = alloc_page(GFP_KERNEL); 7041 if (!percpu->spare_page) 7042 return -ENOMEM; 7043 } 7044 7045 if (scribble_alloc(percpu, 7046 max(conf->raid_disks, 7047 conf->previous_raid_disks), 7048 max(conf->chunk_sectors, 7049 conf->prev_chunk_sectors) 7050 / RAID5_STRIPE_SECTORS(conf))) { 7051 free_scratch_buffer(conf, percpu); 7052 return -ENOMEM; 7053 } 7054 7055 return 0; 7056 } 7057 7058 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node) 7059 { 7060 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node); 7061 7062 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu)); 7063 return 0; 7064 } 7065 7066 static void raid5_free_percpu(struct r5conf *conf) 7067 { 7068 if (!conf->percpu) 7069 return; 7070 7071 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node); 7072 free_percpu(conf->percpu); 7073 } 7074 7075 static void free_conf(struct r5conf *conf) 7076 { 7077 int i; 7078 7079 log_exit(conf); 7080 7081 unregister_shrinker(&conf->shrinker); 7082 free_thread_groups(conf); 7083 shrink_stripes(conf); 7084 raid5_free_percpu(conf); 7085 for (i = 0; i < conf->pool_size; i++) 7086 if (conf->disks[i].extra_page) 7087 put_page(conf->disks[i].extra_page); 7088 kfree(conf->disks); 7089 bioset_exit(&conf->bio_split); 7090 kfree(conf->stripe_hashtbl); 7091 kfree(conf->pending_data); 7092 kfree(conf); 7093 } 7094 7095 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node) 7096 { 7097 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node); 7098 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu); 7099 7100 if (alloc_scratch_buffer(conf, percpu)) { 7101 pr_warn("%s: failed memory allocation for cpu%u\n", 7102 __func__, cpu); 7103 return -ENOMEM; 7104 } 7105 return 0; 7106 } 7107 7108 static int raid5_alloc_percpu(struct r5conf *conf) 7109 { 7110 int err = 0; 7111 7112 conf->percpu = alloc_percpu(struct raid5_percpu); 7113 if (!conf->percpu) 7114 return -ENOMEM; 7115 7116 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node); 7117 if (!err) { 7118 conf->scribble_disks = max(conf->raid_disks, 7119 conf->previous_raid_disks); 7120 conf->scribble_sectors = max(conf->chunk_sectors, 7121 conf->prev_chunk_sectors); 7122 } 7123 return err; 7124 } 7125 7126 static unsigned long raid5_cache_scan(struct shrinker *shrink, 7127 struct shrink_control *sc) 7128 { 7129 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker); 7130 unsigned long ret = SHRINK_STOP; 7131 7132 if (mutex_trylock(&conf->cache_size_mutex)) { 7133 ret= 0; 7134 while (ret < sc->nr_to_scan && 7135 conf->max_nr_stripes > conf->min_nr_stripes) { 7136 if (drop_one_stripe(conf) == 0) { 7137 ret = SHRINK_STOP; 7138 break; 7139 } 7140 ret++; 7141 } 7142 mutex_unlock(&conf->cache_size_mutex); 7143 } 7144 return ret; 7145 } 7146 7147 static unsigned long raid5_cache_count(struct shrinker *shrink, 7148 struct shrink_control *sc) 7149 { 7150 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker); 7151 7152 if (conf->max_nr_stripes < conf->min_nr_stripes) 7153 /* unlikely, but not impossible */ 7154 return 0; 7155 return conf->max_nr_stripes - conf->min_nr_stripes; 7156 } 7157 7158 static struct r5conf *setup_conf(struct mddev *mddev) 7159 { 7160 struct r5conf *conf; 7161 int raid_disk, memory, max_disks; 7162 struct md_rdev *rdev; 7163 struct disk_info *disk; 7164 char pers_name[6]; 7165 int i; 7166 int group_cnt; 7167 struct r5worker_group *new_group; 7168 int ret; 7169 7170 if (mddev->new_level != 5 7171 && mddev->new_level != 4 7172 && mddev->new_level != 6) { 7173 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n", 7174 mdname(mddev), mddev->new_level); 7175 return ERR_PTR(-EIO); 7176 } 7177 if ((mddev->new_level == 5 7178 && !algorithm_valid_raid5(mddev->new_layout)) || 7179 (mddev->new_level == 6 7180 && !algorithm_valid_raid6(mddev->new_layout))) { 7181 pr_warn("md/raid:%s: layout %d not supported\n", 7182 mdname(mddev), mddev->new_layout); 7183 return ERR_PTR(-EIO); 7184 } 7185 if (mddev->new_level == 6 && mddev->raid_disks < 4) { 7186 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n", 7187 mdname(mddev), mddev->raid_disks); 7188 return ERR_PTR(-EINVAL); 7189 } 7190 7191 if (!mddev->new_chunk_sectors || 7192 (mddev->new_chunk_sectors << 9) % PAGE_SIZE || 7193 !is_power_of_2(mddev->new_chunk_sectors)) { 7194 pr_warn("md/raid:%s: invalid chunk size %d\n", 7195 mdname(mddev), mddev->new_chunk_sectors << 9); 7196 return ERR_PTR(-EINVAL); 7197 } 7198 7199 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL); 7200 if (conf == NULL) 7201 goto abort; 7202 7203 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 7204 conf->stripe_size = DEFAULT_STRIPE_SIZE; 7205 conf->stripe_shift = ilog2(DEFAULT_STRIPE_SIZE) - 9; 7206 conf->stripe_sectors = DEFAULT_STRIPE_SIZE >> 9; 7207 #endif 7208 INIT_LIST_HEAD(&conf->free_list); 7209 INIT_LIST_HEAD(&conf->pending_list); 7210 conf->pending_data = kcalloc(PENDING_IO_MAX, 7211 sizeof(struct r5pending_data), 7212 GFP_KERNEL); 7213 if (!conf->pending_data) 7214 goto abort; 7215 for (i = 0; i < PENDING_IO_MAX; i++) 7216 list_add(&conf->pending_data[i].sibling, &conf->free_list); 7217 /* Don't enable multi-threading by default*/ 7218 if (!alloc_thread_groups(conf, 0, &group_cnt, &new_group)) { 7219 conf->group_cnt = group_cnt; 7220 conf->worker_cnt_per_group = 0; 7221 conf->worker_groups = new_group; 7222 } else 7223 goto abort; 7224 spin_lock_init(&conf->device_lock); 7225 seqcount_spinlock_init(&conf->gen_lock, &conf->device_lock); 7226 mutex_init(&conf->cache_size_mutex); 7227 init_waitqueue_head(&conf->wait_for_quiescent); 7228 init_waitqueue_head(&conf->wait_for_stripe); 7229 init_waitqueue_head(&conf->wait_for_overlap); 7230 INIT_LIST_HEAD(&conf->handle_list); 7231 INIT_LIST_HEAD(&conf->loprio_list); 7232 INIT_LIST_HEAD(&conf->hold_list); 7233 INIT_LIST_HEAD(&conf->delayed_list); 7234 INIT_LIST_HEAD(&conf->bitmap_list); 7235 init_llist_head(&conf->released_stripes); 7236 atomic_set(&conf->active_stripes, 0); 7237 atomic_set(&conf->preread_active_stripes, 0); 7238 atomic_set(&conf->active_aligned_reads, 0); 7239 spin_lock_init(&conf->pending_bios_lock); 7240 conf->batch_bio_dispatch = true; 7241 rdev_for_each(rdev, mddev) { 7242 if (test_bit(Journal, &rdev->flags)) 7243 continue; 7244 if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) { 7245 conf->batch_bio_dispatch = false; 7246 break; 7247 } 7248 } 7249 7250 conf->bypass_threshold = BYPASS_THRESHOLD; 7251 conf->recovery_disabled = mddev->recovery_disabled - 1; 7252 7253 conf->raid_disks = mddev->raid_disks; 7254 if (mddev->reshape_position == MaxSector) 7255 conf->previous_raid_disks = mddev->raid_disks; 7256 else 7257 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks; 7258 max_disks = max(conf->raid_disks, conf->previous_raid_disks); 7259 7260 conf->disks = kcalloc(max_disks, sizeof(struct disk_info), 7261 GFP_KERNEL); 7262 7263 if (!conf->disks) 7264 goto abort; 7265 7266 for (i = 0; i < max_disks; i++) { 7267 conf->disks[i].extra_page = alloc_page(GFP_KERNEL); 7268 if (!conf->disks[i].extra_page) 7269 goto abort; 7270 } 7271 7272 ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 7273 if (ret) 7274 goto abort; 7275 conf->mddev = mddev; 7276 7277 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL) 7278 goto abort; 7279 7280 /* We init hash_locks[0] separately to that it can be used 7281 * as the reference lock in the spin_lock_nest_lock() call 7282 * in lock_all_device_hash_locks_irq in order to convince 7283 * lockdep that we know what we are doing. 7284 */ 7285 spin_lock_init(conf->hash_locks); 7286 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 7287 spin_lock_init(conf->hash_locks + i); 7288 7289 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 7290 INIT_LIST_HEAD(conf->inactive_list + i); 7291 7292 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 7293 INIT_LIST_HEAD(conf->temp_inactive_list + i); 7294 7295 atomic_set(&conf->r5c_cached_full_stripes, 0); 7296 INIT_LIST_HEAD(&conf->r5c_full_stripe_list); 7297 atomic_set(&conf->r5c_cached_partial_stripes, 0); 7298 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list); 7299 atomic_set(&conf->r5c_flushing_full_stripes, 0); 7300 atomic_set(&conf->r5c_flushing_partial_stripes, 0); 7301 7302 conf->level = mddev->new_level; 7303 conf->chunk_sectors = mddev->new_chunk_sectors; 7304 if (raid5_alloc_percpu(conf) != 0) 7305 goto abort; 7306 7307 pr_debug("raid456: run(%s) called.\n", mdname(mddev)); 7308 7309 rdev_for_each(rdev, mddev) { 7310 raid_disk = rdev->raid_disk; 7311 if (raid_disk >= max_disks 7312 || raid_disk < 0 || test_bit(Journal, &rdev->flags)) 7313 continue; 7314 disk = conf->disks + raid_disk; 7315 7316 if (test_bit(Replacement, &rdev->flags)) { 7317 if (disk->replacement) 7318 goto abort; 7319 disk->replacement = rdev; 7320 } else { 7321 if (disk->rdev) 7322 goto abort; 7323 disk->rdev = rdev; 7324 } 7325 7326 if (test_bit(In_sync, &rdev->flags)) { 7327 char b[BDEVNAME_SIZE]; 7328 pr_info("md/raid:%s: device %s operational as raid disk %d\n", 7329 mdname(mddev), bdevname(rdev->bdev, b), raid_disk); 7330 } else if (rdev->saved_raid_disk != raid_disk) 7331 /* Cannot rely on bitmap to complete recovery */ 7332 conf->fullsync = 1; 7333 } 7334 7335 conf->level = mddev->new_level; 7336 if (conf->level == 6) { 7337 conf->max_degraded = 2; 7338 if (raid6_call.xor_syndrome) 7339 conf->rmw_level = PARITY_ENABLE_RMW; 7340 else 7341 conf->rmw_level = PARITY_DISABLE_RMW; 7342 } else { 7343 conf->max_degraded = 1; 7344 conf->rmw_level = PARITY_ENABLE_RMW; 7345 } 7346 conf->algorithm = mddev->new_layout; 7347 conf->reshape_progress = mddev->reshape_position; 7348 if (conf->reshape_progress != MaxSector) { 7349 conf->prev_chunk_sectors = mddev->chunk_sectors; 7350 conf->prev_algo = mddev->layout; 7351 } else { 7352 conf->prev_chunk_sectors = conf->chunk_sectors; 7353 conf->prev_algo = conf->algorithm; 7354 } 7355 7356 conf->min_nr_stripes = NR_STRIPES; 7357 if (mddev->reshape_position != MaxSector) { 7358 int stripes = max_t(int, 7359 ((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4, 7360 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4); 7361 conf->min_nr_stripes = max(NR_STRIPES, stripes); 7362 if (conf->min_nr_stripes != NR_STRIPES) 7363 pr_info("md/raid:%s: force stripe size %d for reshape\n", 7364 mdname(mddev), conf->min_nr_stripes); 7365 } 7366 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) + 7367 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024; 7368 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS); 7369 if (grow_stripes(conf, conf->min_nr_stripes)) { 7370 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n", 7371 mdname(mddev), memory); 7372 goto abort; 7373 } else 7374 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory); 7375 /* 7376 * Losing a stripe head costs more than the time to refill it, 7377 * it reduces the queue depth and so can hurt throughput. 7378 * So set it rather large, scaled by number of devices. 7379 */ 7380 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4; 7381 conf->shrinker.scan_objects = raid5_cache_scan; 7382 conf->shrinker.count_objects = raid5_cache_count; 7383 conf->shrinker.batch = 128; 7384 conf->shrinker.flags = 0; 7385 if (register_shrinker(&conf->shrinker)) { 7386 pr_warn("md/raid:%s: couldn't register shrinker.\n", 7387 mdname(mddev)); 7388 goto abort; 7389 } 7390 7391 sprintf(pers_name, "raid%d", mddev->new_level); 7392 conf->thread = md_register_thread(raid5d, mddev, pers_name); 7393 if (!conf->thread) { 7394 pr_warn("md/raid:%s: couldn't allocate thread.\n", 7395 mdname(mddev)); 7396 goto abort; 7397 } 7398 7399 return conf; 7400 7401 abort: 7402 if (conf) { 7403 free_conf(conf); 7404 return ERR_PTR(-EIO); 7405 } else 7406 return ERR_PTR(-ENOMEM); 7407 } 7408 7409 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded) 7410 { 7411 switch (algo) { 7412 case ALGORITHM_PARITY_0: 7413 if (raid_disk < max_degraded) 7414 return 1; 7415 break; 7416 case ALGORITHM_PARITY_N: 7417 if (raid_disk >= raid_disks - max_degraded) 7418 return 1; 7419 break; 7420 case ALGORITHM_PARITY_0_6: 7421 if (raid_disk == 0 || 7422 raid_disk == raid_disks - 1) 7423 return 1; 7424 break; 7425 case ALGORITHM_LEFT_ASYMMETRIC_6: 7426 case ALGORITHM_RIGHT_ASYMMETRIC_6: 7427 case ALGORITHM_LEFT_SYMMETRIC_6: 7428 case ALGORITHM_RIGHT_SYMMETRIC_6: 7429 if (raid_disk == raid_disks - 1) 7430 return 1; 7431 } 7432 return 0; 7433 } 7434 7435 static void raid5_set_io_opt(struct r5conf *conf) 7436 { 7437 blk_queue_io_opt(conf->mddev->queue, (conf->chunk_sectors << 9) * 7438 (conf->raid_disks - conf->max_degraded)); 7439 } 7440 7441 static int raid5_run(struct mddev *mddev) 7442 { 7443 struct r5conf *conf; 7444 int working_disks = 0; 7445 int dirty_parity_disks = 0; 7446 struct md_rdev *rdev; 7447 struct md_rdev *journal_dev = NULL; 7448 sector_t reshape_offset = 0; 7449 int i; 7450 long long min_offset_diff = 0; 7451 int first = 1; 7452 7453 if (mddev_init_writes_pending(mddev) < 0) 7454 return -ENOMEM; 7455 7456 if (mddev->recovery_cp != MaxSector) 7457 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n", 7458 mdname(mddev)); 7459 7460 rdev_for_each(rdev, mddev) { 7461 long long diff; 7462 7463 if (test_bit(Journal, &rdev->flags)) { 7464 journal_dev = rdev; 7465 continue; 7466 } 7467 if (rdev->raid_disk < 0) 7468 continue; 7469 diff = (rdev->new_data_offset - rdev->data_offset); 7470 if (first) { 7471 min_offset_diff = diff; 7472 first = 0; 7473 } else if (mddev->reshape_backwards && 7474 diff < min_offset_diff) 7475 min_offset_diff = diff; 7476 else if (!mddev->reshape_backwards && 7477 diff > min_offset_diff) 7478 min_offset_diff = diff; 7479 } 7480 7481 if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) && 7482 (mddev->bitmap_info.offset || mddev->bitmap_info.file)) { 7483 pr_notice("md/raid:%s: array cannot have both journal and bitmap\n", 7484 mdname(mddev)); 7485 return -EINVAL; 7486 } 7487 7488 if (mddev->reshape_position != MaxSector) { 7489 /* Check that we can continue the reshape. 7490 * Difficulties arise if the stripe we would write to 7491 * next is at or after the stripe we would read from next. 7492 * For a reshape that changes the number of devices, this 7493 * is only possible for a very short time, and mdadm makes 7494 * sure that time appears to have past before assembling 7495 * the array. So we fail if that time hasn't passed. 7496 * For a reshape that keeps the number of devices the same 7497 * mdadm must be monitoring the reshape can keeping the 7498 * critical areas read-only and backed up. It will start 7499 * the array in read-only mode, so we check for that. 7500 */ 7501 sector_t here_new, here_old; 7502 int old_disks; 7503 int max_degraded = (mddev->level == 6 ? 2 : 1); 7504 int chunk_sectors; 7505 int new_data_disks; 7506 7507 if (journal_dev) { 7508 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n", 7509 mdname(mddev)); 7510 return -EINVAL; 7511 } 7512 7513 if (mddev->new_level != mddev->level) { 7514 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n", 7515 mdname(mddev)); 7516 return -EINVAL; 7517 } 7518 old_disks = mddev->raid_disks - mddev->delta_disks; 7519 /* reshape_position must be on a new-stripe boundary, and one 7520 * further up in new geometry must map after here in old 7521 * geometry. 7522 * If the chunk sizes are different, then as we perform reshape 7523 * in units of the largest of the two, reshape_position needs 7524 * be a multiple of the largest chunk size times new data disks. 7525 */ 7526 here_new = mddev->reshape_position; 7527 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors); 7528 new_data_disks = mddev->raid_disks - max_degraded; 7529 if (sector_div(here_new, chunk_sectors * new_data_disks)) { 7530 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n", 7531 mdname(mddev)); 7532 return -EINVAL; 7533 } 7534 reshape_offset = here_new * chunk_sectors; 7535 /* here_new is the stripe we will write to */ 7536 here_old = mddev->reshape_position; 7537 sector_div(here_old, chunk_sectors * (old_disks-max_degraded)); 7538 /* here_old is the first stripe that we might need to read 7539 * from */ 7540 if (mddev->delta_disks == 0) { 7541 /* We cannot be sure it is safe to start an in-place 7542 * reshape. It is only safe if user-space is monitoring 7543 * and taking constant backups. 7544 * mdadm always starts a situation like this in 7545 * readonly mode so it can take control before 7546 * allowing any writes. So just check for that. 7547 */ 7548 if (abs(min_offset_diff) >= mddev->chunk_sectors && 7549 abs(min_offset_diff) >= mddev->new_chunk_sectors) 7550 /* not really in-place - so OK */; 7551 else if (mddev->ro == 0) { 7552 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n", 7553 mdname(mddev)); 7554 return -EINVAL; 7555 } 7556 } else if (mddev->reshape_backwards 7557 ? (here_new * chunk_sectors + min_offset_diff <= 7558 here_old * chunk_sectors) 7559 : (here_new * chunk_sectors >= 7560 here_old * chunk_sectors + (-min_offset_diff))) { 7561 /* Reading from the same stripe as writing to - bad */ 7562 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n", 7563 mdname(mddev)); 7564 return -EINVAL; 7565 } 7566 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev)); 7567 /* OK, we should be able to continue; */ 7568 } else { 7569 BUG_ON(mddev->level != mddev->new_level); 7570 BUG_ON(mddev->layout != mddev->new_layout); 7571 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors); 7572 BUG_ON(mddev->delta_disks != 0); 7573 } 7574 7575 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && 7576 test_bit(MD_HAS_PPL, &mddev->flags)) { 7577 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n", 7578 mdname(mddev)); 7579 clear_bit(MD_HAS_PPL, &mddev->flags); 7580 clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags); 7581 } 7582 7583 if (mddev->private == NULL) 7584 conf = setup_conf(mddev); 7585 else 7586 conf = mddev->private; 7587 7588 if (IS_ERR(conf)) 7589 return PTR_ERR(conf); 7590 7591 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 7592 if (!journal_dev) { 7593 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n", 7594 mdname(mddev)); 7595 mddev->ro = 1; 7596 set_disk_ro(mddev->gendisk, 1); 7597 } else if (mddev->recovery_cp == MaxSector) 7598 set_bit(MD_JOURNAL_CLEAN, &mddev->flags); 7599 } 7600 7601 conf->min_offset_diff = min_offset_diff; 7602 mddev->thread = conf->thread; 7603 conf->thread = NULL; 7604 mddev->private = conf; 7605 7606 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks; 7607 i++) { 7608 rdev = conf->disks[i].rdev; 7609 if (!rdev && conf->disks[i].replacement) { 7610 /* The replacement is all we have yet */ 7611 rdev = conf->disks[i].replacement; 7612 conf->disks[i].replacement = NULL; 7613 clear_bit(Replacement, &rdev->flags); 7614 conf->disks[i].rdev = rdev; 7615 } 7616 if (!rdev) 7617 continue; 7618 if (conf->disks[i].replacement && 7619 conf->reshape_progress != MaxSector) { 7620 /* replacements and reshape simply do not mix. */ 7621 pr_warn("md: cannot handle concurrent replacement and reshape.\n"); 7622 goto abort; 7623 } 7624 if (test_bit(In_sync, &rdev->flags)) { 7625 working_disks++; 7626 continue; 7627 } 7628 /* This disc is not fully in-sync. However if it 7629 * just stored parity (beyond the recovery_offset), 7630 * when we don't need to be concerned about the 7631 * array being dirty. 7632 * When reshape goes 'backwards', we never have 7633 * partially completed devices, so we only need 7634 * to worry about reshape going forwards. 7635 */ 7636 /* Hack because v0.91 doesn't store recovery_offset properly. */ 7637 if (mddev->major_version == 0 && 7638 mddev->minor_version > 90) 7639 rdev->recovery_offset = reshape_offset; 7640 7641 if (rdev->recovery_offset < reshape_offset) { 7642 /* We need to check old and new layout */ 7643 if (!only_parity(rdev->raid_disk, 7644 conf->algorithm, 7645 conf->raid_disks, 7646 conf->max_degraded)) 7647 continue; 7648 } 7649 if (!only_parity(rdev->raid_disk, 7650 conf->prev_algo, 7651 conf->previous_raid_disks, 7652 conf->max_degraded)) 7653 continue; 7654 dirty_parity_disks++; 7655 } 7656 7657 /* 7658 * 0 for a fully functional array, 1 or 2 for a degraded array. 7659 */ 7660 mddev->degraded = raid5_calc_degraded(conf); 7661 7662 if (has_failed(conf)) { 7663 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n", 7664 mdname(mddev), mddev->degraded, conf->raid_disks); 7665 goto abort; 7666 } 7667 7668 /* device size must be a multiple of chunk size */ 7669 mddev->dev_sectors &= ~((sector_t)mddev->chunk_sectors - 1); 7670 mddev->resync_max_sectors = mddev->dev_sectors; 7671 7672 if (mddev->degraded > dirty_parity_disks && 7673 mddev->recovery_cp != MaxSector) { 7674 if (test_bit(MD_HAS_PPL, &mddev->flags)) 7675 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n", 7676 mdname(mddev)); 7677 else if (mddev->ok_start_degraded) 7678 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n", 7679 mdname(mddev)); 7680 else { 7681 pr_crit("md/raid:%s: cannot start dirty degraded array.\n", 7682 mdname(mddev)); 7683 goto abort; 7684 } 7685 } 7686 7687 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n", 7688 mdname(mddev), conf->level, 7689 mddev->raid_disks-mddev->degraded, mddev->raid_disks, 7690 mddev->new_layout); 7691 7692 print_raid5_conf(conf); 7693 7694 if (conf->reshape_progress != MaxSector) { 7695 conf->reshape_safe = conf->reshape_progress; 7696 atomic_set(&conf->reshape_stripes, 0); 7697 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7698 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7699 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7700 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7701 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 7702 "reshape"); 7703 if (!mddev->sync_thread) 7704 goto abort; 7705 } 7706 7707 /* Ok, everything is just fine now */ 7708 if (mddev->to_remove == &raid5_attrs_group) 7709 mddev->to_remove = NULL; 7710 else if (mddev->kobj.sd && 7711 sysfs_create_group(&mddev->kobj, &raid5_attrs_group)) 7712 pr_warn("raid5: failed to create sysfs attributes for %s\n", 7713 mdname(mddev)); 7714 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 7715 7716 if (mddev->queue) { 7717 int chunk_size; 7718 /* read-ahead size must cover two whole stripes, which 7719 * is 2 * (datadisks) * chunksize where 'n' is the 7720 * number of raid devices 7721 */ 7722 int data_disks = conf->previous_raid_disks - conf->max_degraded; 7723 int stripe = data_disks * 7724 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 7725 7726 chunk_size = mddev->chunk_sectors << 9; 7727 blk_queue_io_min(mddev->queue, chunk_size); 7728 raid5_set_io_opt(conf); 7729 mddev->queue->limits.raid_partial_stripes_expensive = 1; 7730 /* 7731 * We can only discard a whole stripe. It doesn't make sense to 7732 * discard data disk but write parity disk 7733 */ 7734 stripe = stripe * PAGE_SIZE; 7735 stripe = roundup_pow_of_two(stripe); 7736 mddev->queue->limits.discard_alignment = stripe; 7737 mddev->queue->limits.discard_granularity = stripe; 7738 7739 blk_queue_max_write_same_sectors(mddev->queue, 0); 7740 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 7741 7742 rdev_for_each(rdev, mddev) { 7743 disk_stack_limits(mddev->gendisk, rdev->bdev, 7744 rdev->data_offset << 9); 7745 disk_stack_limits(mddev->gendisk, rdev->bdev, 7746 rdev->new_data_offset << 9); 7747 } 7748 7749 /* 7750 * zeroing is required, otherwise data 7751 * could be lost. Consider a scenario: discard a stripe 7752 * (the stripe could be inconsistent if 7753 * discard_zeroes_data is 0); write one disk of the 7754 * stripe (the stripe could be inconsistent again 7755 * depending on which disks are used to calculate 7756 * parity); the disk is broken; The stripe data of this 7757 * disk is lost. 7758 * 7759 * We only allow DISCARD if the sysadmin has confirmed that 7760 * only safe devices are in use by setting a module parameter. 7761 * A better idea might be to turn DISCARD into WRITE_ZEROES 7762 * requests, as that is required to be safe. 7763 */ 7764 if (devices_handle_discard_safely && 7765 mddev->queue->limits.max_discard_sectors >= (stripe >> 9) && 7766 mddev->queue->limits.discard_granularity >= stripe) 7767 blk_queue_flag_set(QUEUE_FLAG_DISCARD, 7768 mddev->queue); 7769 else 7770 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, 7771 mddev->queue); 7772 7773 blk_queue_max_hw_sectors(mddev->queue, UINT_MAX); 7774 } 7775 7776 if (log_init(conf, journal_dev, raid5_has_ppl(conf))) 7777 goto abort; 7778 7779 return 0; 7780 abort: 7781 md_unregister_thread(&mddev->thread); 7782 print_raid5_conf(conf); 7783 free_conf(conf); 7784 mddev->private = NULL; 7785 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev)); 7786 return -EIO; 7787 } 7788 7789 static void raid5_free(struct mddev *mddev, void *priv) 7790 { 7791 struct r5conf *conf = priv; 7792 7793 free_conf(conf); 7794 mddev->to_remove = &raid5_attrs_group; 7795 } 7796 7797 static void raid5_status(struct seq_file *seq, struct mddev *mddev) 7798 { 7799 struct r5conf *conf = mddev->private; 7800 int i; 7801 7802 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level, 7803 conf->chunk_sectors / 2, mddev->layout); 7804 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded); 7805 rcu_read_lock(); 7806 for (i = 0; i < conf->raid_disks; i++) { 7807 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 7808 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 7809 } 7810 rcu_read_unlock(); 7811 seq_printf (seq, "]"); 7812 } 7813 7814 static void print_raid5_conf (struct r5conf *conf) 7815 { 7816 int i; 7817 struct disk_info *tmp; 7818 7819 pr_debug("RAID conf printout:\n"); 7820 if (!conf) { 7821 pr_debug("(conf==NULL)\n"); 7822 return; 7823 } 7824 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level, 7825 conf->raid_disks, 7826 conf->raid_disks - conf->mddev->degraded); 7827 7828 for (i = 0; i < conf->raid_disks; i++) { 7829 char b[BDEVNAME_SIZE]; 7830 tmp = conf->disks + i; 7831 if (tmp->rdev) 7832 pr_debug(" disk %d, o:%d, dev:%s\n", 7833 i, !test_bit(Faulty, &tmp->rdev->flags), 7834 bdevname(tmp->rdev->bdev, b)); 7835 } 7836 } 7837 7838 static int raid5_spare_active(struct mddev *mddev) 7839 { 7840 int i; 7841 struct r5conf *conf = mddev->private; 7842 struct disk_info *tmp; 7843 int count = 0; 7844 unsigned long flags; 7845 7846 for (i = 0; i < conf->raid_disks; i++) { 7847 tmp = conf->disks + i; 7848 if (tmp->replacement 7849 && tmp->replacement->recovery_offset == MaxSector 7850 && !test_bit(Faulty, &tmp->replacement->flags) 7851 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 7852 /* Replacement has just become active. */ 7853 if (!tmp->rdev 7854 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 7855 count++; 7856 if (tmp->rdev) { 7857 /* Replaced device not technically faulty, 7858 * but we need to be sure it gets removed 7859 * and never re-added. 7860 */ 7861 set_bit(Faulty, &tmp->rdev->flags); 7862 sysfs_notify_dirent_safe( 7863 tmp->rdev->sysfs_state); 7864 } 7865 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 7866 } else if (tmp->rdev 7867 && tmp->rdev->recovery_offset == MaxSector 7868 && !test_bit(Faulty, &tmp->rdev->flags) 7869 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 7870 count++; 7871 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 7872 } 7873 } 7874 spin_lock_irqsave(&conf->device_lock, flags); 7875 mddev->degraded = raid5_calc_degraded(conf); 7876 spin_unlock_irqrestore(&conf->device_lock, flags); 7877 print_raid5_conf(conf); 7878 return count; 7879 } 7880 7881 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 7882 { 7883 struct r5conf *conf = mddev->private; 7884 int err = 0; 7885 int number = rdev->raid_disk; 7886 struct md_rdev **rdevp; 7887 struct disk_info *p = conf->disks + number; 7888 7889 print_raid5_conf(conf); 7890 if (test_bit(Journal, &rdev->flags) && conf->log) { 7891 /* 7892 * we can't wait pending write here, as this is called in 7893 * raid5d, wait will deadlock. 7894 * neilb: there is no locking about new writes here, 7895 * so this cannot be safe. 7896 */ 7897 if (atomic_read(&conf->active_stripes) || 7898 atomic_read(&conf->r5c_cached_full_stripes) || 7899 atomic_read(&conf->r5c_cached_partial_stripes)) { 7900 return -EBUSY; 7901 } 7902 log_exit(conf); 7903 return 0; 7904 } 7905 if (rdev == p->rdev) 7906 rdevp = &p->rdev; 7907 else if (rdev == p->replacement) 7908 rdevp = &p->replacement; 7909 else 7910 return 0; 7911 7912 if (number >= conf->raid_disks && 7913 conf->reshape_progress == MaxSector) 7914 clear_bit(In_sync, &rdev->flags); 7915 7916 if (test_bit(In_sync, &rdev->flags) || 7917 atomic_read(&rdev->nr_pending)) { 7918 err = -EBUSY; 7919 goto abort; 7920 } 7921 /* Only remove non-faulty devices if recovery 7922 * isn't possible. 7923 */ 7924 if (!test_bit(Faulty, &rdev->flags) && 7925 mddev->recovery_disabled != conf->recovery_disabled && 7926 !has_failed(conf) && 7927 (!p->replacement || p->replacement == rdev) && 7928 number < conf->raid_disks) { 7929 err = -EBUSY; 7930 goto abort; 7931 } 7932 *rdevp = NULL; 7933 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 7934 synchronize_rcu(); 7935 if (atomic_read(&rdev->nr_pending)) { 7936 /* lost the race, try later */ 7937 err = -EBUSY; 7938 *rdevp = rdev; 7939 } 7940 } 7941 if (!err) { 7942 err = log_modify(conf, rdev, false); 7943 if (err) 7944 goto abort; 7945 } 7946 if (p->replacement) { 7947 /* We must have just cleared 'rdev' */ 7948 p->rdev = p->replacement; 7949 clear_bit(Replacement, &p->replacement->flags); 7950 smp_mb(); /* Make sure other CPUs may see both as identical 7951 * but will never see neither - if they are careful 7952 */ 7953 p->replacement = NULL; 7954 7955 if (!err) 7956 err = log_modify(conf, p->rdev, true); 7957 } 7958 7959 clear_bit(WantReplacement, &rdev->flags); 7960 abort: 7961 7962 print_raid5_conf(conf); 7963 return err; 7964 } 7965 7966 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev) 7967 { 7968 struct r5conf *conf = mddev->private; 7969 int ret, err = -EEXIST; 7970 int disk; 7971 struct disk_info *p; 7972 int first = 0; 7973 int last = conf->raid_disks - 1; 7974 7975 if (test_bit(Journal, &rdev->flags)) { 7976 if (conf->log) 7977 return -EBUSY; 7978 7979 rdev->raid_disk = 0; 7980 /* 7981 * The array is in readonly mode if journal is missing, so no 7982 * write requests running. We should be safe 7983 */ 7984 ret = log_init(conf, rdev, false); 7985 if (ret) 7986 return ret; 7987 7988 ret = r5l_start(conf->log); 7989 if (ret) 7990 return ret; 7991 7992 return 0; 7993 } 7994 if (mddev->recovery_disabled == conf->recovery_disabled) 7995 return -EBUSY; 7996 7997 if (rdev->saved_raid_disk < 0 && has_failed(conf)) 7998 /* no point adding a device */ 7999 return -EINVAL; 8000 8001 if (rdev->raid_disk >= 0) 8002 first = last = rdev->raid_disk; 8003 8004 /* 8005 * find the disk ... but prefer rdev->saved_raid_disk 8006 * if possible. 8007 */ 8008 if (rdev->saved_raid_disk >= 0 && 8009 rdev->saved_raid_disk >= first && 8010 conf->disks[rdev->saved_raid_disk].rdev == NULL) 8011 first = rdev->saved_raid_disk; 8012 8013 for (disk = first; disk <= last; disk++) { 8014 p = conf->disks + disk; 8015 if (p->rdev == NULL) { 8016 clear_bit(In_sync, &rdev->flags); 8017 rdev->raid_disk = disk; 8018 if (rdev->saved_raid_disk != disk) 8019 conf->fullsync = 1; 8020 rcu_assign_pointer(p->rdev, rdev); 8021 8022 err = log_modify(conf, rdev, true); 8023 8024 goto out; 8025 } 8026 } 8027 for (disk = first; disk <= last; disk++) { 8028 p = conf->disks + disk; 8029 if (test_bit(WantReplacement, &p->rdev->flags) && 8030 p->replacement == NULL) { 8031 clear_bit(In_sync, &rdev->flags); 8032 set_bit(Replacement, &rdev->flags); 8033 rdev->raid_disk = disk; 8034 err = 0; 8035 conf->fullsync = 1; 8036 rcu_assign_pointer(p->replacement, rdev); 8037 break; 8038 } 8039 } 8040 out: 8041 print_raid5_conf(conf); 8042 return err; 8043 } 8044 8045 static int raid5_resize(struct mddev *mddev, sector_t sectors) 8046 { 8047 /* no resync is happening, and there is enough space 8048 * on all devices, so we can resize. 8049 * We need to make sure resync covers any new space. 8050 * If the array is shrinking we should possibly wait until 8051 * any io in the removed space completes, but it hardly seems 8052 * worth it. 8053 */ 8054 sector_t newsize; 8055 struct r5conf *conf = mddev->private; 8056 8057 if (raid5_has_log(conf) || raid5_has_ppl(conf)) 8058 return -EINVAL; 8059 sectors &= ~((sector_t)conf->chunk_sectors - 1); 8060 newsize = raid5_size(mddev, sectors, mddev->raid_disks); 8061 if (mddev->external_size && 8062 mddev->array_sectors > newsize) 8063 return -EINVAL; 8064 if (mddev->bitmap) { 8065 int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0); 8066 if (ret) 8067 return ret; 8068 } 8069 md_set_array_sectors(mddev, newsize); 8070 if (sectors > mddev->dev_sectors && 8071 mddev->recovery_cp > mddev->dev_sectors) { 8072 mddev->recovery_cp = mddev->dev_sectors; 8073 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8074 } 8075 mddev->dev_sectors = sectors; 8076 mddev->resync_max_sectors = sectors; 8077 return 0; 8078 } 8079 8080 static int check_stripe_cache(struct mddev *mddev) 8081 { 8082 /* Can only proceed if there are plenty of stripe_heads. 8083 * We need a minimum of one full stripe,, and for sensible progress 8084 * it is best to have about 4 times that. 8085 * If we require 4 times, then the default 256 4K stripe_heads will 8086 * allow for chunk sizes up to 256K, which is probably OK. 8087 * If the chunk size is greater, user-space should request more 8088 * stripe_heads first. 8089 */ 8090 struct r5conf *conf = mddev->private; 8091 if (((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4 8092 > conf->min_nr_stripes || 8093 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4 8094 > conf->min_nr_stripes) { 8095 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n", 8096 mdname(mddev), 8097 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9) 8098 / RAID5_STRIPE_SIZE(conf))*4); 8099 return 0; 8100 } 8101 return 1; 8102 } 8103 8104 static int check_reshape(struct mddev *mddev) 8105 { 8106 struct r5conf *conf = mddev->private; 8107 8108 if (raid5_has_log(conf) || raid5_has_ppl(conf)) 8109 return -EINVAL; 8110 if (mddev->delta_disks == 0 && 8111 mddev->new_layout == mddev->layout && 8112 mddev->new_chunk_sectors == mddev->chunk_sectors) 8113 return 0; /* nothing to do */ 8114 if (has_failed(conf)) 8115 return -EINVAL; 8116 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) { 8117 /* We might be able to shrink, but the devices must 8118 * be made bigger first. 8119 * For raid6, 4 is the minimum size. 8120 * Otherwise 2 is the minimum 8121 */ 8122 int min = 2; 8123 if (mddev->level == 6) 8124 min = 4; 8125 if (mddev->raid_disks + mddev->delta_disks < min) 8126 return -EINVAL; 8127 } 8128 8129 if (!check_stripe_cache(mddev)) 8130 return -ENOSPC; 8131 8132 if (mddev->new_chunk_sectors > mddev->chunk_sectors || 8133 mddev->delta_disks > 0) 8134 if (resize_chunks(conf, 8135 conf->previous_raid_disks 8136 + max(0, mddev->delta_disks), 8137 max(mddev->new_chunk_sectors, 8138 mddev->chunk_sectors) 8139 ) < 0) 8140 return -ENOMEM; 8141 8142 if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size) 8143 return 0; /* never bother to shrink */ 8144 return resize_stripes(conf, (conf->previous_raid_disks 8145 + mddev->delta_disks)); 8146 } 8147 8148 static int raid5_start_reshape(struct mddev *mddev) 8149 { 8150 struct r5conf *conf = mddev->private; 8151 struct md_rdev *rdev; 8152 int spares = 0; 8153 unsigned long flags; 8154 8155 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 8156 return -EBUSY; 8157 8158 if (!check_stripe_cache(mddev)) 8159 return -ENOSPC; 8160 8161 if (has_failed(conf)) 8162 return -EINVAL; 8163 8164 rdev_for_each(rdev, mddev) { 8165 if (!test_bit(In_sync, &rdev->flags) 8166 && !test_bit(Faulty, &rdev->flags)) 8167 spares++; 8168 } 8169 8170 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded) 8171 /* Not enough devices even to make a degraded array 8172 * of that size 8173 */ 8174 return -EINVAL; 8175 8176 /* Refuse to reduce size of the array. Any reductions in 8177 * array size must be through explicit setting of array_size 8178 * attribute. 8179 */ 8180 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks) 8181 < mddev->array_sectors) { 8182 pr_warn("md/raid:%s: array size must be reduced before number of disks\n", 8183 mdname(mddev)); 8184 return -EINVAL; 8185 } 8186 8187 atomic_set(&conf->reshape_stripes, 0); 8188 spin_lock_irq(&conf->device_lock); 8189 write_seqcount_begin(&conf->gen_lock); 8190 conf->previous_raid_disks = conf->raid_disks; 8191 conf->raid_disks += mddev->delta_disks; 8192 conf->prev_chunk_sectors = conf->chunk_sectors; 8193 conf->chunk_sectors = mddev->new_chunk_sectors; 8194 conf->prev_algo = conf->algorithm; 8195 conf->algorithm = mddev->new_layout; 8196 conf->generation++; 8197 /* Code that selects data_offset needs to see the generation update 8198 * if reshape_progress has been set - so a memory barrier needed. 8199 */ 8200 smp_mb(); 8201 if (mddev->reshape_backwards) 8202 conf->reshape_progress = raid5_size(mddev, 0, 0); 8203 else 8204 conf->reshape_progress = 0; 8205 conf->reshape_safe = conf->reshape_progress; 8206 write_seqcount_end(&conf->gen_lock); 8207 spin_unlock_irq(&conf->device_lock); 8208 8209 /* Now make sure any requests that proceeded on the assumption 8210 * the reshape wasn't running - like Discard or Read - have 8211 * completed. 8212 */ 8213 mddev_suspend(mddev); 8214 mddev_resume(mddev); 8215 8216 /* Add some new drives, as many as will fit. 8217 * We know there are enough to make the newly sized array work. 8218 * Don't add devices if we are reducing the number of 8219 * devices in the array. This is because it is not possible 8220 * to correctly record the "partially reconstructed" state of 8221 * such devices during the reshape and confusion could result. 8222 */ 8223 if (mddev->delta_disks >= 0) { 8224 rdev_for_each(rdev, mddev) 8225 if (rdev->raid_disk < 0 && 8226 !test_bit(Faulty, &rdev->flags)) { 8227 if (raid5_add_disk(mddev, rdev) == 0) { 8228 if (rdev->raid_disk 8229 >= conf->previous_raid_disks) 8230 set_bit(In_sync, &rdev->flags); 8231 else 8232 rdev->recovery_offset = 0; 8233 8234 /* Failure here is OK */ 8235 sysfs_link_rdev(mddev, rdev); 8236 } 8237 } else if (rdev->raid_disk >= conf->previous_raid_disks 8238 && !test_bit(Faulty, &rdev->flags)) { 8239 /* This is a spare that was manually added */ 8240 set_bit(In_sync, &rdev->flags); 8241 } 8242 8243 /* When a reshape changes the number of devices, 8244 * ->degraded is measured against the larger of the 8245 * pre and post number of devices. 8246 */ 8247 spin_lock_irqsave(&conf->device_lock, flags); 8248 mddev->degraded = raid5_calc_degraded(conf); 8249 spin_unlock_irqrestore(&conf->device_lock, flags); 8250 } 8251 mddev->raid_disks = conf->raid_disks; 8252 mddev->reshape_position = conf->reshape_progress; 8253 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8254 8255 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8256 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8257 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 8258 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8259 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8260 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 8261 "reshape"); 8262 if (!mddev->sync_thread) { 8263 mddev->recovery = 0; 8264 spin_lock_irq(&conf->device_lock); 8265 write_seqcount_begin(&conf->gen_lock); 8266 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks; 8267 mddev->new_chunk_sectors = 8268 conf->chunk_sectors = conf->prev_chunk_sectors; 8269 mddev->new_layout = conf->algorithm = conf->prev_algo; 8270 rdev_for_each(rdev, mddev) 8271 rdev->new_data_offset = rdev->data_offset; 8272 smp_wmb(); 8273 conf->generation --; 8274 conf->reshape_progress = MaxSector; 8275 mddev->reshape_position = MaxSector; 8276 write_seqcount_end(&conf->gen_lock); 8277 spin_unlock_irq(&conf->device_lock); 8278 return -EAGAIN; 8279 } 8280 conf->reshape_checkpoint = jiffies; 8281 md_wakeup_thread(mddev->sync_thread); 8282 md_new_event(); 8283 return 0; 8284 } 8285 8286 /* This is called from the reshape thread and should make any 8287 * changes needed in 'conf' 8288 */ 8289 static void end_reshape(struct r5conf *conf) 8290 { 8291 8292 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 8293 struct md_rdev *rdev; 8294 8295 spin_lock_irq(&conf->device_lock); 8296 conf->previous_raid_disks = conf->raid_disks; 8297 md_finish_reshape(conf->mddev); 8298 smp_wmb(); 8299 conf->reshape_progress = MaxSector; 8300 conf->mddev->reshape_position = MaxSector; 8301 rdev_for_each(rdev, conf->mddev) 8302 if (rdev->raid_disk >= 0 && 8303 !test_bit(Journal, &rdev->flags) && 8304 !test_bit(In_sync, &rdev->flags)) 8305 rdev->recovery_offset = MaxSector; 8306 spin_unlock_irq(&conf->device_lock); 8307 wake_up(&conf->wait_for_overlap); 8308 8309 if (conf->mddev->queue) 8310 raid5_set_io_opt(conf); 8311 } 8312 } 8313 8314 /* This is called from the raid5d thread with mddev_lock held. 8315 * It makes config changes to the device. 8316 */ 8317 static void raid5_finish_reshape(struct mddev *mddev) 8318 { 8319 struct r5conf *conf = mddev->private; 8320 8321 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8322 8323 if (mddev->delta_disks <= 0) { 8324 int d; 8325 spin_lock_irq(&conf->device_lock); 8326 mddev->degraded = raid5_calc_degraded(conf); 8327 spin_unlock_irq(&conf->device_lock); 8328 for (d = conf->raid_disks ; 8329 d < conf->raid_disks - mddev->delta_disks; 8330 d++) { 8331 struct md_rdev *rdev = conf->disks[d].rdev; 8332 if (rdev) 8333 clear_bit(In_sync, &rdev->flags); 8334 rdev = conf->disks[d].replacement; 8335 if (rdev) 8336 clear_bit(In_sync, &rdev->flags); 8337 } 8338 } 8339 mddev->layout = conf->algorithm; 8340 mddev->chunk_sectors = conf->chunk_sectors; 8341 mddev->reshape_position = MaxSector; 8342 mddev->delta_disks = 0; 8343 mddev->reshape_backwards = 0; 8344 } 8345 } 8346 8347 static void raid5_quiesce(struct mddev *mddev, int quiesce) 8348 { 8349 struct r5conf *conf = mddev->private; 8350 8351 if (quiesce) { 8352 /* stop all writes */ 8353 lock_all_device_hash_locks_irq(conf); 8354 /* '2' tells resync/reshape to pause so that all 8355 * active stripes can drain 8356 */ 8357 r5c_flush_cache(conf, INT_MAX); 8358 /* need a memory barrier to make sure read_one_chunk() sees 8359 * quiesce started and reverts to slow (locked) path. 8360 */ 8361 smp_store_release(&conf->quiesce, 2); 8362 wait_event_cmd(conf->wait_for_quiescent, 8363 atomic_read(&conf->active_stripes) == 0 && 8364 atomic_read(&conf->active_aligned_reads) == 0, 8365 unlock_all_device_hash_locks_irq(conf), 8366 lock_all_device_hash_locks_irq(conf)); 8367 conf->quiesce = 1; 8368 unlock_all_device_hash_locks_irq(conf); 8369 /* allow reshape to continue */ 8370 wake_up(&conf->wait_for_overlap); 8371 } else { 8372 /* re-enable writes */ 8373 lock_all_device_hash_locks_irq(conf); 8374 conf->quiesce = 0; 8375 wake_up(&conf->wait_for_quiescent); 8376 wake_up(&conf->wait_for_overlap); 8377 unlock_all_device_hash_locks_irq(conf); 8378 } 8379 log_quiesce(conf, quiesce); 8380 } 8381 8382 static void *raid45_takeover_raid0(struct mddev *mddev, int level) 8383 { 8384 struct r0conf *raid0_conf = mddev->private; 8385 sector_t sectors; 8386 8387 /* for raid0 takeover only one zone is supported */ 8388 if (raid0_conf->nr_strip_zones > 1) { 8389 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n", 8390 mdname(mddev)); 8391 return ERR_PTR(-EINVAL); 8392 } 8393 8394 sectors = raid0_conf->strip_zone[0].zone_end; 8395 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev); 8396 mddev->dev_sectors = sectors; 8397 mddev->new_level = level; 8398 mddev->new_layout = ALGORITHM_PARITY_N; 8399 mddev->new_chunk_sectors = mddev->chunk_sectors; 8400 mddev->raid_disks += 1; 8401 mddev->delta_disks = 1; 8402 /* make sure it will be not marked as dirty */ 8403 mddev->recovery_cp = MaxSector; 8404 8405 return setup_conf(mddev); 8406 } 8407 8408 static void *raid5_takeover_raid1(struct mddev *mddev) 8409 { 8410 int chunksect; 8411 void *ret; 8412 8413 if (mddev->raid_disks != 2 || 8414 mddev->degraded > 1) 8415 return ERR_PTR(-EINVAL); 8416 8417 /* Should check if there are write-behind devices? */ 8418 8419 chunksect = 64*2; /* 64K by default */ 8420 8421 /* The array must be an exact multiple of chunksize */ 8422 while (chunksect && (mddev->array_sectors & (chunksect-1))) 8423 chunksect >>= 1; 8424 8425 if ((chunksect<<9) < RAID5_STRIPE_SIZE((struct r5conf *)mddev->private)) 8426 /* array size does not allow a suitable chunk size */ 8427 return ERR_PTR(-EINVAL); 8428 8429 mddev->new_level = 5; 8430 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC; 8431 mddev->new_chunk_sectors = chunksect; 8432 8433 ret = setup_conf(mddev); 8434 if (!IS_ERR(ret)) 8435 mddev_clear_unsupported_flags(mddev, 8436 UNSUPPORTED_MDDEV_FLAGS); 8437 return ret; 8438 } 8439 8440 static void *raid5_takeover_raid6(struct mddev *mddev) 8441 { 8442 int new_layout; 8443 8444 switch (mddev->layout) { 8445 case ALGORITHM_LEFT_ASYMMETRIC_6: 8446 new_layout = ALGORITHM_LEFT_ASYMMETRIC; 8447 break; 8448 case ALGORITHM_RIGHT_ASYMMETRIC_6: 8449 new_layout = ALGORITHM_RIGHT_ASYMMETRIC; 8450 break; 8451 case ALGORITHM_LEFT_SYMMETRIC_6: 8452 new_layout = ALGORITHM_LEFT_SYMMETRIC; 8453 break; 8454 case ALGORITHM_RIGHT_SYMMETRIC_6: 8455 new_layout = ALGORITHM_RIGHT_SYMMETRIC; 8456 break; 8457 case ALGORITHM_PARITY_0_6: 8458 new_layout = ALGORITHM_PARITY_0; 8459 break; 8460 case ALGORITHM_PARITY_N: 8461 new_layout = ALGORITHM_PARITY_N; 8462 break; 8463 default: 8464 return ERR_PTR(-EINVAL); 8465 } 8466 mddev->new_level = 5; 8467 mddev->new_layout = new_layout; 8468 mddev->delta_disks = -1; 8469 mddev->raid_disks -= 1; 8470 return setup_conf(mddev); 8471 } 8472 8473 static int raid5_check_reshape(struct mddev *mddev) 8474 { 8475 /* For a 2-drive array, the layout and chunk size can be changed 8476 * immediately as not restriping is needed. 8477 * For larger arrays we record the new value - after validation 8478 * to be used by a reshape pass. 8479 */ 8480 struct r5conf *conf = mddev->private; 8481 int new_chunk = mddev->new_chunk_sectors; 8482 8483 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout)) 8484 return -EINVAL; 8485 if (new_chunk > 0) { 8486 if (!is_power_of_2(new_chunk)) 8487 return -EINVAL; 8488 if (new_chunk < (PAGE_SIZE>>9)) 8489 return -EINVAL; 8490 if (mddev->array_sectors & (new_chunk-1)) 8491 /* not factor of array size */ 8492 return -EINVAL; 8493 } 8494 8495 /* They look valid */ 8496 8497 if (mddev->raid_disks == 2) { 8498 /* can make the change immediately */ 8499 if (mddev->new_layout >= 0) { 8500 conf->algorithm = mddev->new_layout; 8501 mddev->layout = mddev->new_layout; 8502 } 8503 if (new_chunk > 0) { 8504 conf->chunk_sectors = new_chunk ; 8505 mddev->chunk_sectors = new_chunk; 8506 } 8507 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8508 md_wakeup_thread(mddev->thread); 8509 } 8510 return check_reshape(mddev); 8511 } 8512 8513 static int raid6_check_reshape(struct mddev *mddev) 8514 { 8515 int new_chunk = mddev->new_chunk_sectors; 8516 8517 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout)) 8518 return -EINVAL; 8519 if (new_chunk > 0) { 8520 if (!is_power_of_2(new_chunk)) 8521 return -EINVAL; 8522 if (new_chunk < (PAGE_SIZE >> 9)) 8523 return -EINVAL; 8524 if (mddev->array_sectors & (new_chunk-1)) 8525 /* not factor of array size */ 8526 return -EINVAL; 8527 } 8528 8529 /* They look valid */ 8530 return check_reshape(mddev); 8531 } 8532 8533 static void *raid5_takeover(struct mddev *mddev) 8534 { 8535 /* raid5 can take over: 8536 * raid0 - if there is only one strip zone - make it a raid4 layout 8537 * raid1 - if there are two drives. We need to know the chunk size 8538 * raid4 - trivial - just use a raid4 layout. 8539 * raid6 - Providing it is a *_6 layout 8540 */ 8541 if (mddev->level == 0) 8542 return raid45_takeover_raid0(mddev, 5); 8543 if (mddev->level == 1) 8544 return raid5_takeover_raid1(mddev); 8545 if (mddev->level == 4) { 8546 mddev->new_layout = ALGORITHM_PARITY_N; 8547 mddev->new_level = 5; 8548 return setup_conf(mddev); 8549 } 8550 if (mddev->level == 6) 8551 return raid5_takeover_raid6(mddev); 8552 8553 return ERR_PTR(-EINVAL); 8554 } 8555 8556 static void *raid4_takeover(struct mddev *mddev) 8557 { 8558 /* raid4 can take over: 8559 * raid0 - if there is only one strip zone 8560 * raid5 - if layout is right 8561 */ 8562 if (mddev->level == 0) 8563 return raid45_takeover_raid0(mddev, 4); 8564 if (mddev->level == 5 && 8565 mddev->layout == ALGORITHM_PARITY_N) { 8566 mddev->new_layout = 0; 8567 mddev->new_level = 4; 8568 return setup_conf(mddev); 8569 } 8570 return ERR_PTR(-EINVAL); 8571 } 8572 8573 static struct md_personality raid5_personality; 8574 8575 static void *raid6_takeover(struct mddev *mddev) 8576 { 8577 /* Currently can only take over a raid5. We map the 8578 * personality to an equivalent raid6 personality 8579 * with the Q block at the end. 8580 */ 8581 int new_layout; 8582 8583 if (mddev->pers != &raid5_personality) 8584 return ERR_PTR(-EINVAL); 8585 if (mddev->degraded > 1) 8586 return ERR_PTR(-EINVAL); 8587 if (mddev->raid_disks > 253) 8588 return ERR_PTR(-EINVAL); 8589 if (mddev->raid_disks < 3) 8590 return ERR_PTR(-EINVAL); 8591 8592 switch (mddev->layout) { 8593 case ALGORITHM_LEFT_ASYMMETRIC: 8594 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6; 8595 break; 8596 case ALGORITHM_RIGHT_ASYMMETRIC: 8597 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6; 8598 break; 8599 case ALGORITHM_LEFT_SYMMETRIC: 8600 new_layout = ALGORITHM_LEFT_SYMMETRIC_6; 8601 break; 8602 case ALGORITHM_RIGHT_SYMMETRIC: 8603 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6; 8604 break; 8605 case ALGORITHM_PARITY_0: 8606 new_layout = ALGORITHM_PARITY_0_6; 8607 break; 8608 case ALGORITHM_PARITY_N: 8609 new_layout = ALGORITHM_PARITY_N; 8610 break; 8611 default: 8612 return ERR_PTR(-EINVAL); 8613 } 8614 mddev->new_level = 6; 8615 mddev->new_layout = new_layout; 8616 mddev->delta_disks = 1; 8617 mddev->raid_disks += 1; 8618 return setup_conf(mddev); 8619 } 8620 8621 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf) 8622 { 8623 struct r5conf *conf; 8624 int err; 8625 8626 err = mddev_lock(mddev); 8627 if (err) 8628 return err; 8629 conf = mddev->private; 8630 if (!conf) { 8631 mddev_unlock(mddev); 8632 return -ENODEV; 8633 } 8634 8635 if (strncmp(buf, "ppl", 3) == 0) { 8636 /* ppl only works with RAID 5 */ 8637 if (!raid5_has_ppl(conf) && conf->level == 5) { 8638 err = log_init(conf, NULL, true); 8639 if (!err) { 8640 err = resize_stripes(conf, conf->pool_size); 8641 if (err) 8642 log_exit(conf); 8643 } 8644 } else 8645 err = -EINVAL; 8646 } else if (strncmp(buf, "resync", 6) == 0) { 8647 if (raid5_has_ppl(conf)) { 8648 mddev_suspend(mddev); 8649 log_exit(conf); 8650 mddev_resume(mddev); 8651 err = resize_stripes(conf, conf->pool_size); 8652 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) && 8653 r5l_log_disk_error(conf)) { 8654 bool journal_dev_exists = false; 8655 struct md_rdev *rdev; 8656 8657 rdev_for_each(rdev, mddev) 8658 if (test_bit(Journal, &rdev->flags)) { 8659 journal_dev_exists = true; 8660 break; 8661 } 8662 8663 if (!journal_dev_exists) { 8664 mddev_suspend(mddev); 8665 clear_bit(MD_HAS_JOURNAL, &mddev->flags); 8666 mddev_resume(mddev); 8667 } else /* need remove journal device first */ 8668 err = -EBUSY; 8669 } else 8670 err = -EINVAL; 8671 } else { 8672 err = -EINVAL; 8673 } 8674 8675 if (!err) 8676 md_update_sb(mddev, 1); 8677 8678 mddev_unlock(mddev); 8679 8680 return err; 8681 } 8682 8683 static int raid5_start(struct mddev *mddev) 8684 { 8685 struct r5conf *conf = mddev->private; 8686 8687 return r5l_start(conf->log); 8688 } 8689 8690 static struct md_personality raid6_personality = 8691 { 8692 .name = "raid6", 8693 .level = 6, 8694 .owner = THIS_MODULE, 8695 .make_request = raid5_make_request, 8696 .run = raid5_run, 8697 .start = raid5_start, 8698 .free = raid5_free, 8699 .status = raid5_status, 8700 .error_handler = raid5_error, 8701 .hot_add_disk = raid5_add_disk, 8702 .hot_remove_disk= raid5_remove_disk, 8703 .spare_active = raid5_spare_active, 8704 .sync_request = raid5_sync_request, 8705 .resize = raid5_resize, 8706 .size = raid5_size, 8707 .check_reshape = raid6_check_reshape, 8708 .start_reshape = raid5_start_reshape, 8709 .finish_reshape = raid5_finish_reshape, 8710 .quiesce = raid5_quiesce, 8711 .takeover = raid6_takeover, 8712 .change_consistency_policy = raid5_change_consistency_policy, 8713 }; 8714 static struct md_personality raid5_personality = 8715 { 8716 .name = "raid5", 8717 .level = 5, 8718 .owner = THIS_MODULE, 8719 .make_request = raid5_make_request, 8720 .run = raid5_run, 8721 .start = raid5_start, 8722 .free = raid5_free, 8723 .status = raid5_status, 8724 .error_handler = raid5_error, 8725 .hot_add_disk = raid5_add_disk, 8726 .hot_remove_disk= raid5_remove_disk, 8727 .spare_active = raid5_spare_active, 8728 .sync_request = raid5_sync_request, 8729 .resize = raid5_resize, 8730 .size = raid5_size, 8731 .check_reshape = raid5_check_reshape, 8732 .start_reshape = raid5_start_reshape, 8733 .finish_reshape = raid5_finish_reshape, 8734 .quiesce = raid5_quiesce, 8735 .takeover = raid5_takeover, 8736 .change_consistency_policy = raid5_change_consistency_policy, 8737 }; 8738 8739 static struct md_personality raid4_personality = 8740 { 8741 .name = "raid4", 8742 .level = 4, 8743 .owner = THIS_MODULE, 8744 .make_request = raid5_make_request, 8745 .run = raid5_run, 8746 .start = raid5_start, 8747 .free = raid5_free, 8748 .status = raid5_status, 8749 .error_handler = raid5_error, 8750 .hot_add_disk = raid5_add_disk, 8751 .hot_remove_disk= raid5_remove_disk, 8752 .spare_active = raid5_spare_active, 8753 .sync_request = raid5_sync_request, 8754 .resize = raid5_resize, 8755 .size = raid5_size, 8756 .check_reshape = raid5_check_reshape, 8757 .start_reshape = raid5_start_reshape, 8758 .finish_reshape = raid5_finish_reshape, 8759 .quiesce = raid5_quiesce, 8760 .takeover = raid4_takeover, 8761 .change_consistency_policy = raid5_change_consistency_policy, 8762 }; 8763 8764 static int __init raid5_init(void) 8765 { 8766 int ret; 8767 8768 raid5_wq = alloc_workqueue("raid5wq", 8769 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0); 8770 if (!raid5_wq) 8771 return -ENOMEM; 8772 8773 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE, 8774 "md/raid5:prepare", 8775 raid456_cpu_up_prepare, 8776 raid456_cpu_dead); 8777 if (ret) { 8778 destroy_workqueue(raid5_wq); 8779 return ret; 8780 } 8781 register_md_personality(&raid6_personality); 8782 register_md_personality(&raid5_personality); 8783 register_md_personality(&raid4_personality); 8784 return 0; 8785 } 8786 8787 static void raid5_exit(void) 8788 { 8789 unregister_md_personality(&raid6_personality); 8790 unregister_md_personality(&raid5_personality); 8791 unregister_md_personality(&raid4_personality); 8792 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE); 8793 destroy_workqueue(raid5_wq); 8794 } 8795 8796 module_init(raid5_init); 8797 module_exit(raid5_exit); 8798 MODULE_LICENSE("GPL"); 8799 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD"); 8800 MODULE_ALIAS("md-personality-4"); /* RAID5 */ 8801 MODULE_ALIAS("md-raid5"); 8802 MODULE_ALIAS("md-raid4"); 8803 MODULE_ALIAS("md-level-5"); 8804 MODULE_ALIAS("md-level-4"); 8805 MODULE_ALIAS("md-personality-8"); /* RAID6 */ 8806 MODULE_ALIAS("md-raid6"); 8807 MODULE_ALIAS("md-level-6"); 8808 8809 /* This used to be two separate modules, they were: */ 8810 MODULE_ALIAS("raid5"); 8811 MODULE_ALIAS("raid6"); 8812