xref: /linux/drivers/md/raid5.c (revision 64f0962c33d52524deb32d7c34ab8b2c271ee1a3)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <trace/events/block.h>
57 
58 #include "md.h"
59 #include "raid5.h"
60 #include "raid0.h"
61 #include "bitmap.h"
62 
63 /*
64  * Stripe cache
65  */
66 
67 #define NR_STRIPES		256
68 #define STRIPE_SIZE		PAGE_SIZE
69 #define STRIPE_SHIFT		(PAGE_SHIFT - 9)
70 #define STRIPE_SECTORS		(STRIPE_SIZE>>9)
71 #define	IO_THRESHOLD		1
72 #define BYPASS_THRESHOLD	1
73 #define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
74 #define HASH_MASK		(NR_HASH - 1)
75 
76 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
77 {
78 	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
79 	return &conf->stripe_hashtbl[hash];
80 }
81 
82 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
83  * order without overlap.  There may be several bio's per stripe+device, and
84  * a bio could span several devices.
85  * When walking this list for a particular stripe+device, we must never proceed
86  * beyond a bio that extends past this device, as the next bio might no longer
87  * be valid.
88  * This function is used to determine the 'next' bio in the list, given the sector
89  * of the current stripe+device
90  */
91 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
92 {
93 	int sectors = bio->bi_size >> 9;
94 	if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
95 		return bio->bi_next;
96 	else
97 		return NULL;
98 }
99 
100 /*
101  * We maintain a biased count of active stripes in the bottom 16 bits of
102  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
103  */
104 static inline int raid5_bi_processed_stripes(struct bio *bio)
105 {
106 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
107 	return (atomic_read(segments) >> 16) & 0xffff;
108 }
109 
110 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
111 {
112 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
113 	return atomic_sub_return(1, segments) & 0xffff;
114 }
115 
116 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
117 {
118 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
119 	atomic_inc(segments);
120 }
121 
122 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
123 	unsigned int cnt)
124 {
125 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
126 	int old, new;
127 
128 	do {
129 		old = atomic_read(segments);
130 		new = (old & 0xffff) | (cnt << 16);
131 	} while (atomic_cmpxchg(segments, old, new) != old);
132 }
133 
134 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
135 {
136 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
137 	atomic_set(segments, cnt);
138 }
139 
140 /* Find first data disk in a raid6 stripe */
141 static inline int raid6_d0(struct stripe_head *sh)
142 {
143 	if (sh->ddf_layout)
144 		/* ddf always start from first device */
145 		return 0;
146 	/* md starts just after Q block */
147 	if (sh->qd_idx == sh->disks - 1)
148 		return 0;
149 	else
150 		return sh->qd_idx + 1;
151 }
152 static inline int raid6_next_disk(int disk, int raid_disks)
153 {
154 	disk++;
155 	return (disk < raid_disks) ? disk : 0;
156 }
157 
158 /* When walking through the disks in a raid5, starting at raid6_d0,
159  * We need to map each disk to a 'slot', where the data disks are slot
160  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
161  * is raid_disks-1.  This help does that mapping.
162  */
163 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
164 			     int *count, int syndrome_disks)
165 {
166 	int slot = *count;
167 
168 	if (sh->ddf_layout)
169 		(*count)++;
170 	if (idx == sh->pd_idx)
171 		return syndrome_disks;
172 	if (idx == sh->qd_idx)
173 		return syndrome_disks + 1;
174 	if (!sh->ddf_layout)
175 		(*count)++;
176 	return slot;
177 }
178 
179 static void return_io(struct bio *return_bi)
180 {
181 	struct bio *bi = return_bi;
182 	while (bi) {
183 
184 		return_bi = bi->bi_next;
185 		bi->bi_next = NULL;
186 		bi->bi_size = 0;
187 		bio_endio(bi, 0);
188 		bi = return_bi;
189 	}
190 }
191 
192 static void print_raid5_conf (struct r5conf *conf);
193 
194 static int stripe_operations_active(struct stripe_head *sh)
195 {
196 	return sh->check_state || sh->reconstruct_state ||
197 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
198 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
199 }
200 
201 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh)
202 {
203 	BUG_ON(!list_empty(&sh->lru));
204 	BUG_ON(atomic_read(&conf->active_stripes)==0);
205 	if (test_bit(STRIPE_HANDLE, &sh->state)) {
206 		if (test_bit(STRIPE_DELAYED, &sh->state) &&
207 		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
208 			list_add_tail(&sh->lru, &conf->delayed_list);
209 		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
210 			   sh->bm_seq - conf->seq_write > 0)
211 			list_add_tail(&sh->lru, &conf->bitmap_list);
212 		else {
213 			clear_bit(STRIPE_DELAYED, &sh->state);
214 			clear_bit(STRIPE_BIT_DELAY, &sh->state);
215 			list_add_tail(&sh->lru, &conf->handle_list);
216 		}
217 		md_wakeup_thread(conf->mddev->thread);
218 	} else {
219 		BUG_ON(stripe_operations_active(sh));
220 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
221 			if (atomic_dec_return(&conf->preread_active_stripes)
222 			    < IO_THRESHOLD)
223 				md_wakeup_thread(conf->mddev->thread);
224 		atomic_dec(&conf->active_stripes);
225 		if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
226 			list_add_tail(&sh->lru, &conf->inactive_list);
227 			wake_up(&conf->wait_for_stripe);
228 			if (conf->retry_read_aligned)
229 				md_wakeup_thread(conf->mddev->thread);
230 		}
231 	}
232 }
233 
234 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
235 {
236 	if (atomic_dec_and_test(&sh->count))
237 		do_release_stripe(conf, sh);
238 }
239 
240 static void release_stripe(struct stripe_head *sh)
241 {
242 	struct r5conf *conf = sh->raid_conf;
243 	unsigned long flags;
244 
245 	local_irq_save(flags);
246 	if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
247 		do_release_stripe(conf, sh);
248 		spin_unlock(&conf->device_lock);
249 	}
250 	local_irq_restore(flags);
251 }
252 
253 static inline void remove_hash(struct stripe_head *sh)
254 {
255 	pr_debug("remove_hash(), stripe %llu\n",
256 		(unsigned long long)sh->sector);
257 
258 	hlist_del_init(&sh->hash);
259 }
260 
261 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
262 {
263 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
264 
265 	pr_debug("insert_hash(), stripe %llu\n",
266 		(unsigned long long)sh->sector);
267 
268 	hlist_add_head(&sh->hash, hp);
269 }
270 
271 
272 /* find an idle stripe, make sure it is unhashed, and return it. */
273 static struct stripe_head *get_free_stripe(struct r5conf *conf)
274 {
275 	struct stripe_head *sh = NULL;
276 	struct list_head *first;
277 
278 	if (list_empty(&conf->inactive_list))
279 		goto out;
280 	first = conf->inactive_list.next;
281 	sh = list_entry(first, struct stripe_head, lru);
282 	list_del_init(first);
283 	remove_hash(sh);
284 	atomic_inc(&conf->active_stripes);
285 out:
286 	return sh;
287 }
288 
289 static void shrink_buffers(struct stripe_head *sh)
290 {
291 	struct page *p;
292 	int i;
293 	int num = sh->raid_conf->pool_size;
294 
295 	for (i = 0; i < num ; i++) {
296 		p = sh->dev[i].page;
297 		if (!p)
298 			continue;
299 		sh->dev[i].page = NULL;
300 		put_page(p);
301 	}
302 }
303 
304 static int grow_buffers(struct stripe_head *sh)
305 {
306 	int i;
307 	int num = sh->raid_conf->pool_size;
308 
309 	for (i = 0; i < num; i++) {
310 		struct page *page;
311 
312 		if (!(page = alloc_page(GFP_KERNEL))) {
313 			return 1;
314 		}
315 		sh->dev[i].page = page;
316 	}
317 	return 0;
318 }
319 
320 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
321 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
322 			    struct stripe_head *sh);
323 
324 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
325 {
326 	struct r5conf *conf = sh->raid_conf;
327 	int i;
328 
329 	BUG_ON(atomic_read(&sh->count) != 0);
330 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
331 	BUG_ON(stripe_operations_active(sh));
332 
333 	pr_debug("init_stripe called, stripe %llu\n",
334 		(unsigned long long)sh->sector);
335 
336 	remove_hash(sh);
337 
338 	sh->generation = conf->generation - previous;
339 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
340 	sh->sector = sector;
341 	stripe_set_idx(sector, conf, previous, sh);
342 	sh->state = 0;
343 
344 
345 	for (i = sh->disks; i--; ) {
346 		struct r5dev *dev = &sh->dev[i];
347 
348 		if (dev->toread || dev->read || dev->towrite || dev->written ||
349 		    test_bit(R5_LOCKED, &dev->flags)) {
350 			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
351 			       (unsigned long long)sh->sector, i, dev->toread,
352 			       dev->read, dev->towrite, dev->written,
353 			       test_bit(R5_LOCKED, &dev->flags));
354 			WARN_ON(1);
355 		}
356 		dev->flags = 0;
357 		raid5_build_block(sh, i, previous);
358 	}
359 	insert_hash(conf, sh);
360 }
361 
362 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
363 					 short generation)
364 {
365 	struct stripe_head *sh;
366 
367 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
368 	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
369 		if (sh->sector == sector && sh->generation == generation)
370 			return sh;
371 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
372 	return NULL;
373 }
374 
375 /*
376  * Need to check if array has failed when deciding whether to:
377  *  - start an array
378  *  - remove non-faulty devices
379  *  - add a spare
380  *  - allow a reshape
381  * This determination is simple when no reshape is happening.
382  * However if there is a reshape, we need to carefully check
383  * both the before and after sections.
384  * This is because some failed devices may only affect one
385  * of the two sections, and some non-in_sync devices may
386  * be insync in the section most affected by failed devices.
387  */
388 static int calc_degraded(struct r5conf *conf)
389 {
390 	int degraded, degraded2;
391 	int i;
392 
393 	rcu_read_lock();
394 	degraded = 0;
395 	for (i = 0; i < conf->previous_raid_disks; i++) {
396 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
397 		if (rdev && test_bit(Faulty, &rdev->flags))
398 			rdev = rcu_dereference(conf->disks[i].replacement);
399 		if (!rdev || test_bit(Faulty, &rdev->flags))
400 			degraded++;
401 		else if (test_bit(In_sync, &rdev->flags))
402 			;
403 		else
404 			/* not in-sync or faulty.
405 			 * If the reshape increases the number of devices,
406 			 * this is being recovered by the reshape, so
407 			 * this 'previous' section is not in_sync.
408 			 * If the number of devices is being reduced however,
409 			 * the device can only be part of the array if
410 			 * we are reverting a reshape, so this section will
411 			 * be in-sync.
412 			 */
413 			if (conf->raid_disks >= conf->previous_raid_disks)
414 				degraded++;
415 	}
416 	rcu_read_unlock();
417 	if (conf->raid_disks == conf->previous_raid_disks)
418 		return degraded;
419 	rcu_read_lock();
420 	degraded2 = 0;
421 	for (i = 0; i < conf->raid_disks; i++) {
422 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
423 		if (rdev && test_bit(Faulty, &rdev->flags))
424 			rdev = rcu_dereference(conf->disks[i].replacement);
425 		if (!rdev || test_bit(Faulty, &rdev->flags))
426 			degraded2++;
427 		else if (test_bit(In_sync, &rdev->flags))
428 			;
429 		else
430 			/* not in-sync or faulty.
431 			 * If reshape increases the number of devices, this
432 			 * section has already been recovered, else it
433 			 * almost certainly hasn't.
434 			 */
435 			if (conf->raid_disks <= conf->previous_raid_disks)
436 				degraded2++;
437 	}
438 	rcu_read_unlock();
439 	if (degraded2 > degraded)
440 		return degraded2;
441 	return degraded;
442 }
443 
444 static int has_failed(struct r5conf *conf)
445 {
446 	int degraded;
447 
448 	if (conf->mddev->reshape_position == MaxSector)
449 		return conf->mddev->degraded > conf->max_degraded;
450 
451 	degraded = calc_degraded(conf);
452 	if (degraded > conf->max_degraded)
453 		return 1;
454 	return 0;
455 }
456 
457 static struct stripe_head *
458 get_active_stripe(struct r5conf *conf, sector_t sector,
459 		  int previous, int noblock, int noquiesce)
460 {
461 	struct stripe_head *sh;
462 
463 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
464 
465 	spin_lock_irq(&conf->device_lock);
466 
467 	do {
468 		wait_event_lock_irq(conf->wait_for_stripe,
469 				    conf->quiesce == 0 || noquiesce,
470 				    conf->device_lock);
471 		sh = __find_stripe(conf, sector, conf->generation - previous);
472 		if (!sh) {
473 			if (!conf->inactive_blocked)
474 				sh = get_free_stripe(conf);
475 			if (noblock && sh == NULL)
476 				break;
477 			if (!sh) {
478 				conf->inactive_blocked = 1;
479 				wait_event_lock_irq(conf->wait_for_stripe,
480 						    !list_empty(&conf->inactive_list) &&
481 						    (atomic_read(&conf->active_stripes)
482 						     < (conf->max_nr_stripes *3/4)
483 						     || !conf->inactive_blocked),
484 						    conf->device_lock);
485 				conf->inactive_blocked = 0;
486 			} else
487 				init_stripe(sh, sector, previous);
488 		} else {
489 			if (atomic_read(&sh->count)) {
490 				BUG_ON(!list_empty(&sh->lru)
491 				    && !test_bit(STRIPE_EXPANDING, &sh->state)
492 				    && !test_bit(STRIPE_ON_UNPLUG_LIST, &sh->state));
493 			} else {
494 				if (!test_bit(STRIPE_HANDLE, &sh->state))
495 					atomic_inc(&conf->active_stripes);
496 				if (list_empty(&sh->lru) &&
497 				    !test_bit(STRIPE_EXPANDING, &sh->state))
498 					BUG();
499 				list_del_init(&sh->lru);
500 			}
501 		}
502 	} while (sh == NULL);
503 
504 	if (sh)
505 		atomic_inc(&sh->count);
506 
507 	spin_unlock_irq(&conf->device_lock);
508 	return sh;
509 }
510 
511 /* Determine if 'data_offset' or 'new_data_offset' should be used
512  * in this stripe_head.
513  */
514 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
515 {
516 	sector_t progress = conf->reshape_progress;
517 	/* Need a memory barrier to make sure we see the value
518 	 * of conf->generation, or ->data_offset that was set before
519 	 * reshape_progress was updated.
520 	 */
521 	smp_rmb();
522 	if (progress == MaxSector)
523 		return 0;
524 	if (sh->generation == conf->generation - 1)
525 		return 0;
526 	/* We are in a reshape, and this is a new-generation stripe,
527 	 * so use new_data_offset.
528 	 */
529 	return 1;
530 }
531 
532 static void
533 raid5_end_read_request(struct bio *bi, int error);
534 static void
535 raid5_end_write_request(struct bio *bi, int error);
536 
537 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
538 {
539 	struct r5conf *conf = sh->raid_conf;
540 	int i, disks = sh->disks;
541 
542 	might_sleep();
543 
544 	for (i = disks; i--; ) {
545 		int rw;
546 		int replace_only = 0;
547 		struct bio *bi, *rbi;
548 		struct md_rdev *rdev, *rrdev = NULL;
549 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
550 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
551 				rw = WRITE_FUA;
552 			else
553 				rw = WRITE;
554 			if (test_bit(R5_Discard, &sh->dev[i].flags))
555 				rw |= REQ_DISCARD;
556 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
557 			rw = READ;
558 		else if (test_and_clear_bit(R5_WantReplace,
559 					    &sh->dev[i].flags)) {
560 			rw = WRITE;
561 			replace_only = 1;
562 		} else
563 			continue;
564 		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
565 			rw |= REQ_SYNC;
566 
567 		bi = &sh->dev[i].req;
568 		rbi = &sh->dev[i].rreq; /* For writing to replacement */
569 
570 		bi->bi_rw = rw;
571 		rbi->bi_rw = rw;
572 		if (rw & WRITE) {
573 			bi->bi_end_io = raid5_end_write_request;
574 			rbi->bi_end_io = raid5_end_write_request;
575 		} else
576 			bi->bi_end_io = raid5_end_read_request;
577 
578 		rcu_read_lock();
579 		rrdev = rcu_dereference(conf->disks[i].replacement);
580 		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
581 		rdev = rcu_dereference(conf->disks[i].rdev);
582 		if (!rdev) {
583 			rdev = rrdev;
584 			rrdev = NULL;
585 		}
586 		if (rw & WRITE) {
587 			if (replace_only)
588 				rdev = NULL;
589 			if (rdev == rrdev)
590 				/* We raced and saw duplicates */
591 				rrdev = NULL;
592 		} else {
593 			if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
594 				rdev = rrdev;
595 			rrdev = NULL;
596 		}
597 
598 		if (rdev && test_bit(Faulty, &rdev->flags))
599 			rdev = NULL;
600 		if (rdev)
601 			atomic_inc(&rdev->nr_pending);
602 		if (rrdev && test_bit(Faulty, &rrdev->flags))
603 			rrdev = NULL;
604 		if (rrdev)
605 			atomic_inc(&rrdev->nr_pending);
606 		rcu_read_unlock();
607 
608 		/* We have already checked bad blocks for reads.  Now
609 		 * need to check for writes.  We never accept write errors
610 		 * on the replacement, so we don't to check rrdev.
611 		 */
612 		while ((rw & WRITE) && rdev &&
613 		       test_bit(WriteErrorSeen, &rdev->flags)) {
614 			sector_t first_bad;
615 			int bad_sectors;
616 			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
617 					      &first_bad, &bad_sectors);
618 			if (!bad)
619 				break;
620 
621 			if (bad < 0) {
622 				set_bit(BlockedBadBlocks, &rdev->flags);
623 				if (!conf->mddev->external &&
624 				    conf->mddev->flags) {
625 					/* It is very unlikely, but we might
626 					 * still need to write out the
627 					 * bad block log - better give it
628 					 * a chance*/
629 					md_check_recovery(conf->mddev);
630 				}
631 				/*
632 				 * Because md_wait_for_blocked_rdev
633 				 * will dec nr_pending, we must
634 				 * increment it first.
635 				 */
636 				atomic_inc(&rdev->nr_pending);
637 				md_wait_for_blocked_rdev(rdev, conf->mddev);
638 			} else {
639 				/* Acknowledged bad block - skip the write */
640 				rdev_dec_pending(rdev, conf->mddev);
641 				rdev = NULL;
642 			}
643 		}
644 
645 		if (rdev) {
646 			if (s->syncing || s->expanding || s->expanded
647 			    || s->replacing)
648 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
649 
650 			set_bit(STRIPE_IO_STARTED, &sh->state);
651 
652 			bi->bi_bdev = rdev->bdev;
653 			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
654 				__func__, (unsigned long long)sh->sector,
655 				bi->bi_rw, i);
656 			atomic_inc(&sh->count);
657 			if (use_new_offset(conf, sh))
658 				bi->bi_sector = (sh->sector
659 						 + rdev->new_data_offset);
660 			else
661 				bi->bi_sector = (sh->sector
662 						 + rdev->data_offset);
663 			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
664 				bi->bi_rw |= REQ_FLUSH;
665 
666 			bi->bi_flags = 1 << BIO_UPTODATE;
667 			bi->bi_idx = 0;
668 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
669 			bi->bi_io_vec[0].bv_offset = 0;
670 			bi->bi_size = STRIPE_SIZE;
671 			bi->bi_next = NULL;
672 			if (rrdev)
673 				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
674 
675 			if (conf->mddev->gendisk)
676 				trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
677 						      bi, disk_devt(conf->mddev->gendisk),
678 						      sh->dev[i].sector);
679 			generic_make_request(bi);
680 		}
681 		if (rrdev) {
682 			if (s->syncing || s->expanding || s->expanded
683 			    || s->replacing)
684 				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
685 
686 			set_bit(STRIPE_IO_STARTED, &sh->state);
687 
688 			rbi->bi_bdev = rrdev->bdev;
689 			pr_debug("%s: for %llu schedule op %ld on "
690 				 "replacement disc %d\n",
691 				__func__, (unsigned long long)sh->sector,
692 				rbi->bi_rw, i);
693 			atomic_inc(&sh->count);
694 			if (use_new_offset(conf, sh))
695 				rbi->bi_sector = (sh->sector
696 						  + rrdev->new_data_offset);
697 			else
698 				rbi->bi_sector = (sh->sector
699 						  + rrdev->data_offset);
700 			rbi->bi_flags = 1 << BIO_UPTODATE;
701 			rbi->bi_idx = 0;
702 			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
703 			rbi->bi_io_vec[0].bv_offset = 0;
704 			rbi->bi_size = STRIPE_SIZE;
705 			rbi->bi_next = NULL;
706 			if (conf->mddev->gendisk)
707 				trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
708 						      rbi, disk_devt(conf->mddev->gendisk),
709 						      sh->dev[i].sector);
710 			generic_make_request(rbi);
711 		}
712 		if (!rdev && !rrdev) {
713 			if (rw & WRITE)
714 				set_bit(STRIPE_DEGRADED, &sh->state);
715 			pr_debug("skip op %ld on disc %d for sector %llu\n",
716 				bi->bi_rw, i, (unsigned long long)sh->sector);
717 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
718 			set_bit(STRIPE_HANDLE, &sh->state);
719 		}
720 	}
721 }
722 
723 static struct dma_async_tx_descriptor *
724 async_copy_data(int frombio, struct bio *bio, struct page *page,
725 	sector_t sector, struct dma_async_tx_descriptor *tx)
726 {
727 	struct bio_vec *bvl;
728 	struct page *bio_page;
729 	int i;
730 	int page_offset;
731 	struct async_submit_ctl submit;
732 	enum async_tx_flags flags = 0;
733 
734 	if (bio->bi_sector >= sector)
735 		page_offset = (signed)(bio->bi_sector - sector) * 512;
736 	else
737 		page_offset = (signed)(sector - bio->bi_sector) * -512;
738 
739 	if (frombio)
740 		flags |= ASYNC_TX_FENCE;
741 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
742 
743 	bio_for_each_segment(bvl, bio, i) {
744 		int len = bvl->bv_len;
745 		int clen;
746 		int b_offset = 0;
747 
748 		if (page_offset < 0) {
749 			b_offset = -page_offset;
750 			page_offset += b_offset;
751 			len -= b_offset;
752 		}
753 
754 		if (len > 0 && page_offset + len > STRIPE_SIZE)
755 			clen = STRIPE_SIZE - page_offset;
756 		else
757 			clen = len;
758 
759 		if (clen > 0) {
760 			b_offset += bvl->bv_offset;
761 			bio_page = bvl->bv_page;
762 			if (frombio)
763 				tx = async_memcpy(page, bio_page, page_offset,
764 						  b_offset, clen, &submit);
765 			else
766 				tx = async_memcpy(bio_page, page, b_offset,
767 						  page_offset, clen, &submit);
768 		}
769 		/* chain the operations */
770 		submit.depend_tx = tx;
771 
772 		if (clen < len) /* hit end of page */
773 			break;
774 		page_offset +=  len;
775 	}
776 
777 	return tx;
778 }
779 
780 static void ops_complete_biofill(void *stripe_head_ref)
781 {
782 	struct stripe_head *sh = stripe_head_ref;
783 	struct bio *return_bi = NULL;
784 	int i;
785 
786 	pr_debug("%s: stripe %llu\n", __func__,
787 		(unsigned long long)sh->sector);
788 
789 	/* clear completed biofills */
790 	for (i = sh->disks; i--; ) {
791 		struct r5dev *dev = &sh->dev[i];
792 
793 		/* acknowledge completion of a biofill operation */
794 		/* and check if we need to reply to a read request,
795 		 * new R5_Wantfill requests are held off until
796 		 * !STRIPE_BIOFILL_RUN
797 		 */
798 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
799 			struct bio *rbi, *rbi2;
800 
801 			BUG_ON(!dev->read);
802 			rbi = dev->read;
803 			dev->read = NULL;
804 			while (rbi && rbi->bi_sector <
805 				dev->sector + STRIPE_SECTORS) {
806 				rbi2 = r5_next_bio(rbi, dev->sector);
807 				if (!raid5_dec_bi_active_stripes(rbi)) {
808 					rbi->bi_next = return_bi;
809 					return_bi = rbi;
810 				}
811 				rbi = rbi2;
812 			}
813 		}
814 	}
815 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
816 
817 	return_io(return_bi);
818 
819 	set_bit(STRIPE_HANDLE, &sh->state);
820 	release_stripe(sh);
821 }
822 
823 static void ops_run_biofill(struct stripe_head *sh)
824 {
825 	struct dma_async_tx_descriptor *tx = NULL;
826 	struct async_submit_ctl submit;
827 	int i;
828 
829 	pr_debug("%s: stripe %llu\n", __func__,
830 		(unsigned long long)sh->sector);
831 
832 	for (i = sh->disks; i--; ) {
833 		struct r5dev *dev = &sh->dev[i];
834 		if (test_bit(R5_Wantfill, &dev->flags)) {
835 			struct bio *rbi;
836 			spin_lock_irq(&sh->stripe_lock);
837 			dev->read = rbi = dev->toread;
838 			dev->toread = NULL;
839 			spin_unlock_irq(&sh->stripe_lock);
840 			while (rbi && rbi->bi_sector <
841 				dev->sector + STRIPE_SECTORS) {
842 				tx = async_copy_data(0, rbi, dev->page,
843 					dev->sector, tx);
844 				rbi = r5_next_bio(rbi, dev->sector);
845 			}
846 		}
847 	}
848 
849 	atomic_inc(&sh->count);
850 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
851 	async_trigger_callback(&submit);
852 }
853 
854 static void mark_target_uptodate(struct stripe_head *sh, int target)
855 {
856 	struct r5dev *tgt;
857 
858 	if (target < 0)
859 		return;
860 
861 	tgt = &sh->dev[target];
862 	set_bit(R5_UPTODATE, &tgt->flags);
863 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
864 	clear_bit(R5_Wantcompute, &tgt->flags);
865 }
866 
867 static void ops_complete_compute(void *stripe_head_ref)
868 {
869 	struct stripe_head *sh = stripe_head_ref;
870 
871 	pr_debug("%s: stripe %llu\n", __func__,
872 		(unsigned long long)sh->sector);
873 
874 	/* mark the computed target(s) as uptodate */
875 	mark_target_uptodate(sh, sh->ops.target);
876 	mark_target_uptodate(sh, sh->ops.target2);
877 
878 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
879 	if (sh->check_state == check_state_compute_run)
880 		sh->check_state = check_state_compute_result;
881 	set_bit(STRIPE_HANDLE, &sh->state);
882 	release_stripe(sh);
883 }
884 
885 /* return a pointer to the address conversion region of the scribble buffer */
886 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
887 				 struct raid5_percpu *percpu)
888 {
889 	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
890 }
891 
892 static struct dma_async_tx_descriptor *
893 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
894 {
895 	int disks = sh->disks;
896 	struct page **xor_srcs = percpu->scribble;
897 	int target = sh->ops.target;
898 	struct r5dev *tgt = &sh->dev[target];
899 	struct page *xor_dest = tgt->page;
900 	int count = 0;
901 	struct dma_async_tx_descriptor *tx;
902 	struct async_submit_ctl submit;
903 	int i;
904 
905 	pr_debug("%s: stripe %llu block: %d\n",
906 		__func__, (unsigned long long)sh->sector, target);
907 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
908 
909 	for (i = disks; i--; )
910 		if (i != target)
911 			xor_srcs[count++] = sh->dev[i].page;
912 
913 	atomic_inc(&sh->count);
914 
915 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
916 			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
917 	if (unlikely(count == 1))
918 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
919 	else
920 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
921 
922 	return tx;
923 }
924 
925 /* set_syndrome_sources - populate source buffers for gen_syndrome
926  * @srcs - (struct page *) array of size sh->disks
927  * @sh - stripe_head to parse
928  *
929  * Populates srcs in proper layout order for the stripe and returns the
930  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
931  * destination buffer is recorded in srcs[count] and the Q destination
932  * is recorded in srcs[count+1]].
933  */
934 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
935 {
936 	int disks = sh->disks;
937 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
938 	int d0_idx = raid6_d0(sh);
939 	int count;
940 	int i;
941 
942 	for (i = 0; i < disks; i++)
943 		srcs[i] = NULL;
944 
945 	count = 0;
946 	i = d0_idx;
947 	do {
948 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
949 
950 		srcs[slot] = sh->dev[i].page;
951 		i = raid6_next_disk(i, disks);
952 	} while (i != d0_idx);
953 
954 	return syndrome_disks;
955 }
956 
957 static struct dma_async_tx_descriptor *
958 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
959 {
960 	int disks = sh->disks;
961 	struct page **blocks = percpu->scribble;
962 	int target;
963 	int qd_idx = sh->qd_idx;
964 	struct dma_async_tx_descriptor *tx;
965 	struct async_submit_ctl submit;
966 	struct r5dev *tgt;
967 	struct page *dest;
968 	int i;
969 	int count;
970 
971 	if (sh->ops.target < 0)
972 		target = sh->ops.target2;
973 	else if (sh->ops.target2 < 0)
974 		target = sh->ops.target;
975 	else
976 		/* we should only have one valid target */
977 		BUG();
978 	BUG_ON(target < 0);
979 	pr_debug("%s: stripe %llu block: %d\n",
980 		__func__, (unsigned long long)sh->sector, target);
981 
982 	tgt = &sh->dev[target];
983 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
984 	dest = tgt->page;
985 
986 	atomic_inc(&sh->count);
987 
988 	if (target == qd_idx) {
989 		count = set_syndrome_sources(blocks, sh);
990 		blocks[count] = NULL; /* regenerating p is not necessary */
991 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
992 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
993 				  ops_complete_compute, sh,
994 				  to_addr_conv(sh, percpu));
995 		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
996 	} else {
997 		/* Compute any data- or p-drive using XOR */
998 		count = 0;
999 		for (i = disks; i-- ; ) {
1000 			if (i == target || i == qd_idx)
1001 				continue;
1002 			blocks[count++] = sh->dev[i].page;
1003 		}
1004 
1005 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1006 				  NULL, ops_complete_compute, sh,
1007 				  to_addr_conv(sh, percpu));
1008 		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1009 	}
1010 
1011 	return tx;
1012 }
1013 
1014 static struct dma_async_tx_descriptor *
1015 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1016 {
1017 	int i, count, disks = sh->disks;
1018 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1019 	int d0_idx = raid6_d0(sh);
1020 	int faila = -1, failb = -1;
1021 	int target = sh->ops.target;
1022 	int target2 = sh->ops.target2;
1023 	struct r5dev *tgt = &sh->dev[target];
1024 	struct r5dev *tgt2 = &sh->dev[target2];
1025 	struct dma_async_tx_descriptor *tx;
1026 	struct page **blocks = percpu->scribble;
1027 	struct async_submit_ctl submit;
1028 
1029 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1030 		 __func__, (unsigned long long)sh->sector, target, target2);
1031 	BUG_ON(target < 0 || target2 < 0);
1032 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1033 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1034 
1035 	/* we need to open-code set_syndrome_sources to handle the
1036 	 * slot number conversion for 'faila' and 'failb'
1037 	 */
1038 	for (i = 0; i < disks ; i++)
1039 		blocks[i] = NULL;
1040 	count = 0;
1041 	i = d0_idx;
1042 	do {
1043 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1044 
1045 		blocks[slot] = sh->dev[i].page;
1046 
1047 		if (i == target)
1048 			faila = slot;
1049 		if (i == target2)
1050 			failb = slot;
1051 		i = raid6_next_disk(i, disks);
1052 	} while (i != d0_idx);
1053 
1054 	BUG_ON(faila == failb);
1055 	if (failb < faila)
1056 		swap(faila, failb);
1057 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1058 		 __func__, (unsigned long long)sh->sector, faila, failb);
1059 
1060 	atomic_inc(&sh->count);
1061 
1062 	if (failb == syndrome_disks+1) {
1063 		/* Q disk is one of the missing disks */
1064 		if (faila == syndrome_disks) {
1065 			/* Missing P+Q, just recompute */
1066 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1067 					  ops_complete_compute, sh,
1068 					  to_addr_conv(sh, percpu));
1069 			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1070 						  STRIPE_SIZE, &submit);
1071 		} else {
1072 			struct page *dest;
1073 			int data_target;
1074 			int qd_idx = sh->qd_idx;
1075 
1076 			/* Missing D+Q: recompute D from P, then recompute Q */
1077 			if (target == qd_idx)
1078 				data_target = target2;
1079 			else
1080 				data_target = target;
1081 
1082 			count = 0;
1083 			for (i = disks; i-- ; ) {
1084 				if (i == data_target || i == qd_idx)
1085 					continue;
1086 				blocks[count++] = sh->dev[i].page;
1087 			}
1088 			dest = sh->dev[data_target].page;
1089 			init_async_submit(&submit,
1090 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1091 					  NULL, NULL, NULL,
1092 					  to_addr_conv(sh, percpu));
1093 			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1094 				       &submit);
1095 
1096 			count = set_syndrome_sources(blocks, sh);
1097 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1098 					  ops_complete_compute, sh,
1099 					  to_addr_conv(sh, percpu));
1100 			return async_gen_syndrome(blocks, 0, count+2,
1101 						  STRIPE_SIZE, &submit);
1102 		}
1103 	} else {
1104 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1105 				  ops_complete_compute, sh,
1106 				  to_addr_conv(sh, percpu));
1107 		if (failb == syndrome_disks) {
1108 			/* We're missing D+P. */
1109 			return async_raid6_datap_recov(syndrome_disks+2,
1110 						       STRIPE_SIZE, faila,
1111 						       blocks, &submit);
1112 		} else {
1113 			/* We're missing D+D. */
1114 			return async_raid6_2data_recov(syndrome_disks+2,
1115 						       STRIPE_SIZE, faila, failb,
1116 						       blocks, &submit);
1117 		}
1118 	}
1119 }
1120 
1121 
1122 static void ops_complete_prexor(void *stripe_head_ref)
1123 {
1124 	struct stripe_head *sh = stripe_head_ref;
1125 
1126 	pr_debug("%s: stripe %llu\n", __func__,
1127 		(unsigned long long)sh->sector);
1128 }
1129 
1130 static struct dma_async_tx_descriptor *
1131 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1132 	       struct dma_async_tx_descriptor *tx)
1133 {
1134 	int disks = sh->disks;
1135 	struct page **xor_srcs = percpu->scribble;
1136 	int count = 0, pd_idx = sh->pd_idx, i;
1137 	struct async_submit_ctl submit;
1138 
1139 	/* existing parity data subtracted */
1140 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1141 
1142 	pr_debug("%s: stripe %llu\n", __func__,
1143 		(unsigned long long)sh->sector);
1144 
1145 	for (i = disks; i--; ) {
1146 		struct r5dev *dev = &sh->dev[i];
1147 		/* Only process blocks that are known to be uptodate */
1148 		if (test_bit(R5_Wantdrain, &dev->flags))
1149 			xor_srcs[count++] = dev->page;
1150 	}
1151 
1152 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1153 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1154 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1155 
1156 	return tx;
1157 }
1158 
1159 static struct dma_async_tx_descriptor *
1160 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1161 {
1162 	int disks = sh->disks;
1163 	int i;
1164 
1165 	pr_debug("%s: stripe %llu\n", __func__,
1166 		(unsigned long long)sh->sector);
1167 
1168 	for (i = disks; i--; ) {
1169 		struct r5dev *dev = &sh->dev[i];
1170 		struct bio *chosen;
1171 
1172 		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1173 			struct bio *wbi;
1174 
1175 			spin_lock_irq(&sh->stripe_lock);
1176 			chosen = dev->towrite;
1177 			dev->towrite = NULL;
1178 			BUG_ON(dev->written);
1179 			wbi = dev->written = chosen;
1180 			spin_unlock_irq(&sh->stripe_lock);
1181 
1182 			while (wbi && wbi->bi_sector <
1183 				dev->sector + STRIPE_SECTORS) {
1184 				if (wbi->bi_rw & REQ_FUA)
1185 					set_bit(R5_WantFUA, &dev->flags);
1186 				if (wbi->bi_rw & REQ_SYNC)
1187 					set_bit(R5_SyncIO, &dev->flags);
1188 				if (wbi->bi_rw & REQ_DISCARD)
1189 					set_bit(R5_Discard, &dev->flags);
1190 				else
1191 					tx = async_copy_data(1, wbi, dev->page,
1192 						dev->sector, tx);
1193 				wbi = r5_next_bio(wbi, dev->sector);
1194 			}
1195 		}
1196 	}
1197 
1198 	return tx;
1199 }
1200 
1201 static void ops_complete_reconstruct(void *stripe_head_ref)
1202 {
1203 	struct stripe_head *sh = stripe_head_ref;
1204 	int disks = sh->disks;
1205 	int pd_idx = sh->pd_idx;
1206 	int qd_idx = sh->qd_idx;
1207 	int i;
1208 	bool fua = false, sync = false, discard = false;
1209 
1210 	pr_debug("%s: stripe %llu\n", __func__,
1211 		(unsigned long long)sh->sector);
1212 
1213 	for (i = disks; i--; ) {
1214 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1215 		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1216 		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1217 	}
1218 
1219 	for (i = disks; i--; ) {
1220 		struct r5dev *dev = &sh->dev[i];
1221 
1222 		if (dev->written || i == pd_idx || i == qd_idx) {
1223 			if (!discard)
1224 				set_bit(R5_UPTODATE, &dev->flags);
1225 			if (fua)
1226 				set_bit(R5_WantFUA, &dev->flags);
1227 			if (sync)
1228 				set_bit(R5_SyncIO, &dev->flags);
1229 		}
1230 	}
1231 
1232 	if (sh->reconstruct_state == reconstruct_state_drain_run)
1233 		sh->reconstruct_state = reconstruct_state_drain_result;
1234 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1235 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1236 	else {
1237 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1238 		sh->reconstruct_state = reconstruct_state_result;
1239 	}
1240 
1241 	set_bit(STRIPE_HANDLE, &sh->state);
1242 	release_stripe(sh);
1243 }
1244 
1245 static void
1246 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1247 		     struct dma_async_tx_descriptor *tx)
1248 {
1249 	int disks = sh->disks;
1250 	struct page **xor_srcs = percpu->scribble;
1251 	struct async_submit_ctl submit;
1252 	int count = 0, pd_idx = sh->pd_idx, i;
1253 	struct page *xor_dest;
1254 	int prexor = 0;
1255 	unsigned long flags;
1256 
1257 	pr_debug("%s: stripe %llu\n", __func__,
1258 		(unsigned long long)sh->sector);
1259 
1260 	for (i = 0; i < sh->disks; i++) {
1261 		if (pd_idx == i)
1262 			continue;
1263 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1264 			break;
1265 	}
1266 	if (i >= sh->disks) {
1267 		atomic_inc(&sh->count);
1268 		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1269 		ops_complete_reconstruct(sh);
1270 		return;
1271 	}
1272 	/* check if prexor is active which means only process blocks
1273 	 * that are part of a read-modify-write (written)
1274 	 */
1275 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1276 		prexor = 1;
1277 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1278 		for (i = disks; i--; ) {
1279 			struct r5dev *dev = &sh->dev[i];
1280 			if (dev->written)
1281 				xor_srcs[count++] = dev->page;
1282 		}
1283 	} else {
1284 		xor_dest = sh->dev[pd_idx].page;
1285 		for (i = disks; i--; ) {
1286 			struct r5dev *dev = &sh->dev[i];
1287 			if (i != pd_idx)
1288 				xor_srcs[count++] = dev->page;
1289 		}
1290 	}
1291 
1292 	/* 1/ if we prexor'd then the dest is reused as a source
1293 	 * 2/ if we did not prexor then we are redoing the parity
1294 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1295 	 * for the synchronous xor case
1296 	 */
1297 	flags = ASYNC_TX_ACK |
1298 		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1299 
1300 	atomic_inc(&sh->count);
1301 
1302 	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1303 			  to_addr_conv(sh, percpu));
1304 	if (unlikely(count == 1))
1305 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1306 	else
1307 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1308 }
1309 
1310 static void
1311 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1312 		     struct dma_async_tx_descriptor *tx)
1313 {
1314 	struct async_submit_ctl submit;
1315 	struct page **blocks = percpu->scribble;
1316 	int count, i;
1317 
1318 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1319 
1320 	for (i = 0; i < sh->disks; i++) {
1321 		if (sh->pd_idx == i || sh->qd_idx == i)
1322 			continue;
1323 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1324 			break;
1325 	}
1326 	if (i >= sh->disks) {
1327 		atomic_inc(&sh->count);
1328 		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1329 		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1330 		ops_complete_reconstruct(sh);
1331 		return;
1332 	}
1333 
1334 	count = set_syndrome_sources(blocks, sh);
1335 
1336 	atomic_inc(&sh->count);
1337 
1338 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1339 			  sh, to_addr_conv(sh, percpu));
1340 	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1341 }
1342 
1343 static void ops_complete_check(void *stripe_head_ref)
1344 {
1345 	struct stripe_head *sh = stripe_head_ref;
1346 
1347 	pr_debug("%s: stripe %llu\n", __func__,
1348 		(unsigned long long)sh->sector);
1349 
1350 	sh->check_state = check_state_check_result;
1351 	set_bit(STRIPE_HANDLE, &sh->state);
1352 	release_stripe(sh);
1353 }
1354 
1355 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1356 {
1357 	int disks = sh->disks;
1358 	int pd_idx = sh->pd_idx;
1359 	int qd_idx = sh->qd_idx;
1360 	struct page *xor_dest;
1361 	struct page **xor_srcs = percpu->scribble;
1362 	struct dma_async_tx_descriptor *tx;
1363 	struct async_submit_ctl submit;
1364 	int count;
1365 	int i;
1366 
1367 	pr_debug("%s: stripe %llu\n", __func__,
1368 		(unsigned long long)sh->sector);
1369 
1370 	count = 0;
1371 	xor_dest = sh->dev[pd_idx].page;
1372 	xor_srcs[count++] = xor_dest;
1373 	for (i = disks; i--; ) {
1374 		if (i == pd_idx || i == qd_idx)
1375 			continue;
1376 		xor_srcs[count++] = sh->dev[i].page;
1377 	}
1378 
1379 	init_async_submit(&submit, 0, NULL, NULL, NULL,
1380 			  to_addr_conv(sh, percpu));
1381 	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1382 			   &sh->ops.zero_sum_result, &submit);
1383 
1384 	atomic_inc(&sh->count);
1385 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1386 	tx = async_trigger_callback(&submit);
1387 }
1388 
1389 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1390 {
1391 	struct page **srcs = percpu->scribble;
1392 	struct async_submit_ctl submit;
1393 	int count;
1394 
1395 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1396 		(unsigned long long)sh->sector, checkp);
1397 
1398 	count = set_syndrome_sources(srcs, sh);
1399 	if (!checkp)
1400 		srcs[count] = NULL;
1401 
1402 	atomic_inc(&sh->count);
1403 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1404 			  sh, to_addr_conv(sh, percpu));
1405 	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1406 			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1407 }
1408 
1409 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1410 {
1411 	int overlap_clear = 0, i, disks = sh->disks;
1412 	struct dma_async_tx_descriptor *tx = NULL;
1413 	struct r5conf *conf = sh->raid_conf;
1414 	int level = conf->level;
1415 	struct raid5_percpu *percpu;
1416 	unsigned long cpu;
1417 
1418 	cpu = get_cpu();
1419 	percpu = per_cpu_ptr(conf->percpu, cpu);
1420 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1421 		ops_run_biofill(sh);
1422 		overlap_clear++;
1423 	}
1424 
1425 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1426 		if (level < 6)
1427 			tx = ops_run_compute5(sh, percpu);
1428 		else {
1429 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
1430 				tx = ops_run_compute6_1(sh, percpu);
1431 			else
1432 				tx = ops_run_compute6_2(sh, percpu);
1433 		}
1434 		/* terminate the chain if reconstruct is not set to be run */
1435 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1436 			async_tx_ack(tx);
1437 	}
1438 
1439 	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1440 		tx = ops_run_prexor(sh, percpu, tx);
1441 
1442 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1443 		tx = ops_run_biodrain(sh, tx);
1444 		overlap_clear++;
1445 	}
1446 
1447 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1448 		if (level < 6)
1449 			ops_run_reconstruct5(sh, percpu, tx);
1450 		else
1451 			ops_run_reconstruct6(sh, percpu, tx);
1452 	}
1453 
1454 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1455 		if (sh->check_state == check_state_run)
1456 			ops_run_check_p(sh, percpu);
1457 		else if (sh->check_state == check_state_run_q)
1458 			ops_run_check_pq(sh, percpu, 0);
1459 		else if (sh->check_state == check_state_run_pq)
1460 			ops_run_check_pq(sh, percpu, 1);
1461 		else
1462 			BUG();
1463 	}
1464 
1465 	if (overlap_clear)
1466 		for (i = disks; i--; ) {
1467 			struct r5dev *dev = &sh->dev[i];
1468 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
1469 				wake_up(&sh->raid_conf->wait_for_overlap);
1470 		}
1471 	put_cpu();
1472 }
1473 
1474 static int grow_one_stripe(struct r5conf *conf)
1475 {
1476 	struct stripe_head *sh;
1477 	sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1478 	if (!sh)
1479 		return 0;
1480 
1481 	sh->raid_conf = conf;
1482 
1483 	spin_lock_init(&sh->stripe_lock);
1484 
1485 	if (grow_buffers(sh)) {
1486 		shrink_buffers(sh);
1487 		kmem_cache_free(conf->slab_cache, sh);
1488 		return 0;
1489 	}
1490 	/* we just created an active stripe so... */
1491 	atomic_set(&sh->count, 1);
1492 	atomic_inc(&conf->active_stripes);
1493 	INIT_LIST_HEAD(&sh->lru);
1494 	release_stripe(sh);
1495 	return 1;
1496 }
1497 
1498 static int grow_stripes(struct r5conf *conf, int num)
1499 {
1500 	struct kmem_cache *sc;
1501 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
1502 
1503 	if (conf->mddev->gendisk)
1504 		sprintf(conf->cache_name[0],
1505 			"raid%d-%s", conf->level, mdname(conf->mddev));
1506 	else
1507 		sprintf(conf->cache_name[0],
1508 			"raid%d-%p", conf->level, conf->mddev);
1509 	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1510 
1511 	conf->active_name = 0;
1512 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
1513 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1514 			       0, 0, NULL);
1515 	if (!sc)
1516 		return 1;
1517 	conf->slab_cache = sc;
1518 	conf->pool_size = devs;
1519 	while (num--)
1520 		if (!grow_one_stripe(conf))
1521 			return 1;
1522 	return 0;
1523 }
1524 
1525 /**
1526  * scribble_len - return the required size of the scribble region
1527  * @num - total number of disks in the array
1528  *
1529  * The size must be enough to contain:
1530  * 1/ a struct page pointer for each device in the array +2
1531  * 2/ room to convert each entry in (1) to its corresponding dma
1532  *    (dma_map_page()) or page (page_address()) address.
1533  *
1534  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1535  * calculate over all devices (not just the data blocks), using zeros in place
1536  * of the P and Q blocks.
1537  */
1538 static size_t scribble_len(int num)
1539 {
1540 	size_t len;
1541 
1542 	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1543 
1544 	return len;
1545 }
1546 
1547 static int resize_stripes(struct r5conf *conf, int newsize)
1548 {
1549 	/* Make all the stripes able to hold 'newsize' devices.
1550 	 * New slots in each stripe get 'page' set to a new page.
1551 	 *
1552 	 * This happens in stages:
1553 	 * 1/ create a new kmem_cache and allocate the required number of
1554 	 *    stripe_heads.
1555 	 * 2/ gather all the old stripe_heads and transfer the pages across
1556 	 *    to the new stripe_heads.  This will have the side effect of
1557 	 *    freezing the array as once all stripe_heads have been collected,
1558 	 *    no IO will be possible.  Old stripe heads are freed once their
1559 	 *    pages have been transferred over, and the old kmem_cache is
1560 	 *    freed when all stripes are done.
1561 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1562 	 *    we simple return a failre status - no need to clean anything up.
1563 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
1564 	 *    If this fails, we don't bother trying the shrink the
1565 	 *    stripe_heads down again, we just leave them as they are.
1566 	 *    As each stripe_head is processed the new one is released into
1567 	 *    active service.
1568 	 *
1569 	 * Once step2 is started, we cannot afford to wait for a write,
1570 	 * so we use GFP_NOIO allocations.
1571 	 */
1572 	struct stripe_head *osh, *nsh;
1573 	LIST_HEAD(newstripes);
1574 	struct disk_info *ndisks;
1575 	unsigned long cpu;
1576 	int err;
1577 	struct kmem_cache *sc;
1578 	int i;
1579 
1580 	if (newsize <= conf->pool_size)
1581 		return 0; /* never bother to shrink */
1582 
1583 	err = md_allow_write(conf->mddev);
1584 	if (err)
1585 		return err;
1586 
1587 	/* Step 1 */
1588 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1589 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1590 			       0, 0, NULL);
1591 	if (!sc)
1592 		return -ENOMEM;
1593 
1594 	for (i = conf->max_nr_stripes; i; i--) {
1595 		nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1596 		if (!nsh)
1597 			break;
1598 
1599 		nsh->raid_conf = conf;
1600 		spin_lock_init(&nsh->stripe_lock);
1601 
1602 		list_add(&nsh->lru, &newstripes);
1603 	}
1604 	if (i) {
1605 		/* didn't get enough, give up */
1606 		while (!list_empty(&newstripes)) {
1607 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
1608 			list_del(&nsh->lru);
1609 			kmem_cache_free(sc, nsh);
1610 		}
1611 		kmem_cache_destroy(sc);
1612 		return -ENOMEM;
1613 	}
1614 	/* Step 2 - Must use GFP_NOIO now.
1615 	 * OK, we have enough stripes, start collecting inactive
1616 	 * stripes and copying them over
1617 	 */
1618 	list_for_each_entry(nsh, &newstripes, lru) {
1619 		spin_lock_irq(&conf->device_lock);
1620 		wait_event_lock_irq(conf->wait_for_stripe,
1621 				    !list_empty(&conf->inactive_list),
1622 				    conf->device_lock);
1623 		osh = get_free_stripe(conf);
1624 		spin_unlock_irq(&conf->device_lock);
1625 		atomic_set(&nsh->count, 1);
1626 		for(i=0; i<conf->pool_size; i++)
1627 			nsh->dev[i].page = osh->dev[i].page;
1628 		for( ; i<newsize; i++)
1629 			nsh->dev[i].page = NULL;
1630 		kmem_cache_free(conf->slab_cache, osh);
1631 	}
1632 	kmem_cache_destroy(conf->slab_cache);
1633 
1634 	/* Step 3.
1635 	 * At this point, we are holding all the stripes so the array
1636 	 * is completely stalled, so now is a good time to resize
1637 	 * conf->disks and the scribble region
1638 	 */
1639 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1640 	if (ndisks) {
1641 		for (i=0; i<conf->raid_disks; i++)
1642 			ndisks[i] = conf->disks[i];
1643 		kfree(conf->disks);
1644 		conf->disks = ndisks;
1645 	} else
1646 		err = -ENOMEM;
1647 
1648 	get_online_cpus();
1649 	conf->scribble_len = scribble_len(newsize);
1650 	for_each_present_cpu(cpu) {
1651 		struct raid5_percpu *percpu;
1652 		void *scribble;
1653 
1654 		percpu = per_cpu_ptr(conf->percpu, cpu);
1655 		scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1656 
1657 		if (scribble) {
1658 			kfree(percpu->scribble);
1659 			percpu->scribble = scribble;
1660 		} else {
1661 			err = -ENOMEM;
1662 			break;
1663 		}
1664 	}
1665 	put_online_cpus();
1666 
1667 	/* Step 4, return new stripes to service */
1668 	while(!list_empty(&newstripes)) {
1669 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
1670 		list_del_init(&nsh->lru);
1671 
1672 		for (i=conf->raid_disks; i < newsize; i++)
1673 			if (nsh->dev[i].page == NULL) {
1674 				struct page *p = alloc_page(GFP_NOIO);
1675 				nsh->dev[i].page = p;
1676 				if (!p)
1677 					err = -ENOMEM;
1678 			}
1679 		release_stripe(nsh);
1680 	}
1681 	/* critical section pass, GFP_NOIO no longer needed */
1682 
1683 	conf->slab_cache = sc;
1684 	conf->active_name = 1-conf->active_name;
1685 	conf->pool_size = newsize;
1686 	return err;
1687 }
1688 
1689 static int drop_one_stripe(struct r5conf *conf)
1690 {
1691 	struct stripe_head *sh;
1692 
1693 	spin_lock_irq(&conf->device_lock);
1694 	sh = get_free_stripe(conf);
1695 	spin_unlock_irq(&conf->device_lock);
1696 	if (!sh)
1697 		return 0;
1698 	BUG_ON(atomic_read(&sh->count));
1699 	shrink_buffers(sh);
1700 	kmem_cache_free(conf->slab_cache, sh);
1701 	atomic_dec(&conf->active_stripes);
1702 	return 1;
1703 }
1704 
1705 static void shrink_stripes(struct r5conf *conf)
1706 {
1707 	while (drop_one_stripe(conf))
1708 		;
1709 
1710 	if (conf->slab_cache)
1711 		kmem_cache_destroy(conf->slab_cache);
1712 	conf->slab_cache = NULL;
1713 }
1714 
1715 static void raid5_end_read_request(struct bio * bi, int error)
1716 {
1717 	struct stripe_head *sh = bi->bi_private;
1718 	struct r5conf *conf = sh->raid_conf;
1719 	int disks = sh->disks, i;
1720 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1721 	char b[BDEVNAME_SIZE];
1722 	struct md_rdev *rdev = NULL;
1723 	sector_t s;
1724 
1725 	for (i=0 ; i<disks; i++)
1726 		if (bi == &sh->dev[i].req)
1727 			break;
1728 
1729 	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1730 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1731 		uptodate);
1732 	if (i == disks) {
1733 		BUG();
1734 		return;
1735 	}
1736 	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1737 		/* If replacement finished while this request was outstanding,
1738 		 * 'replacement' might be NULL already.
1739 		 * In that case it moved down to 'rdev'.
1740 		 * rdev is not removed until all requests are finished.
1741 		 */
1742 		rdev = conf->disks[i].replacement;
1743 	if (!rdev)
1744 		rdev = conf->disks[i].rdev;
1745 
1746 	if (use_new_offset(conf, sh))
1747 		s = sh->sector + rdev->new_data_offset;
1748 	else
1749 		s = sh->sector + rdev->data_offset;
1750 	if (uptodate) {
1751 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1752 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1753 			/* Note that this cannot happen on a
1754 			 * replacement device.  We just fail those on
1755 			 * any error
1756 			 */
1757 			printk_ratelimited(
1758 				KERN_INFO
1759 				"md/raid:%s: read error corrected"
1760 				" (%lu sectors at %llu on %s)\n",
1761 				mdname(conf->mddev), STRIPE_SECTORS,
1762 				(unsigned long long)s,
1763 				bdevname(rdev->bdev, b));
1764 			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1765 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1766 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1767 		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
1768 			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1769 
1770 		if (atomic_read(&rdev->read_errors))
1771 			atomic_set(&rdev->read_errors, 0);
1772 	} else {
1773 		const char *bdn = bdevname(rdev->bdev, b);
1774 		int retry = 0;
1775 		int set_bad = 0;
1776 
1777 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1778 		atomic_inc(&rdev->read_errors);
1779 		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1780 			printk_ratelimited(
1781 				KERN_WARNING
1782 				"md/raid:%s: read error on replacement device "
1783 				"(sector %llu on %s).\n",
1784 				mdname(conf->mddev),
1785 				(unsigned long long)s,
1786 				bdn);
1787 		else if (conf->mddev->degraded >= conf->max_degraded) {
1788 			set_bad = 1;
1789 			printk_ratelimited(
1790 				KERN_WARNING
1791 				"md/raid:%s: read error not correctable "
1792 				"(sector %llu on %s).\n",
1793 				mdname(conf->mddev),
1794 				(unsigned long long)s,
1795 				bdn);
1796 		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
1797 			/* Oh, no!!! */
1798 			set_bad = 1;
1799 			printk_ratelimited(
1800 				KERN_WARNING
1801 				"md/raid:%s: read error NOT corrected!! "
1802 				"(sector %llu on %s).\n",
1803 				mdname(conf->mddev),
1804 				(unsigned long long)s,
1805 				bdn);
1806 		} else if (atomic_read(&rdev->read_errors)
1807 			 > conf->max_nr_stripes)
1808 			printk(KERN_WARNING
1809 			       "md/raid:%s: Too many read errors, failing device %s.\n",
1810 			       mdname(conf->mddev), bdn);
1811 		else
1812 			retry = 1;
1813 		if (retry)
1814 			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
1815 				set_bit(R5_ReadError, &sh->dev[i].flags);
1816 				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1817 			} else
1818 				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1819 		else {
1820 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1821 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1822 			if (!(set_bad
1823 			      && test_bit(In_sync, &rdev->flags)
1824 			      && rdev_set_badblocks(
1825 				      rdev, sh->sector, STRIPE_SECTORS, 0)))
1826 				md_error(conf->mddev, rdev);
1827 		}
1828 	}
1829 	rdev_dec_pending(rdev, conf->mddev);
1830 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1831 	set_bit(STRIPE_HANDLE, &sh->state);
1832 	release_stripe(sh);
1833 }
1834 
1835 static void raid5_end_write_request(struct bio *bi, int error)
1836 {
1837 	struct stripe_head *sh = bi->bi_private;
1838 	struct r5conf *conf = sh->raid_conf;
1839 	int disks = sh->disks, i;
1840 	struct md_rdev *uninitialized_var(rdev);
1841 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1842 	sector_t first_bad;
1843 	int bad_sectors;
1844 	int replacement = 0;
1845 
1846 	for (i = 0 ; i < disks; i++) {
1847 		if (bi == &sh->dev[i].req) {
1848 			rdev = conf->disks[i].rdev;
1849 			break;
1850 		}
1851 		if (bi == &sh->dev[i].rreq) {
1852 			rdev = conf->disks[i].replacement;
1853 			if (rdev)
1854 				replacement = 1;
1855 			else
1856 				/* rdev was removed and 'replacement'
1857 				 * replaced it.  rdev is not removed
1858 				 * until all requests are finished.
1859 				 */
1860 				rdev = conf->disks[i].rdev;
1861 			break;
1862 		}
1863 	}
1864 	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1865 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1866 		uptodate);
1867 	if (i == disks) {
1868 		BUG();
1869 		return;
1870 	}
1871 
1872 	if (replacement) {
1873 		if (!uptodate)
1874 			md_error(conf->mddev, rdev);
1875 		else if (is_badblock(rdev, sh->sector,
1876 				     STRIPE_SECTORS,
1877 				     &first_bad, &bad_sectors))
1878 			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
1879 	} else {
1880 		if (!uptodate) {
1881 			set_bit(WriteErrorSeen, &rdev->flags);
1882 			set_bit(R5_WriteError, &sh->dev[i].flags);
1883 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
1884 				set_bit(MD_RECOVERY_NEEDED,
1885 					&rdev->mddev->recovery);
1886 		} else if (is_badblock(rdev, sh->sector,
1887 				       STRIPE_SECTORS,
1888 				       &first_bad, &bad_sectors))
1889 			set_bit(R5_MadeGood, &sh->dev[i].flags);
1890 	}
1891 	rdev_dec_pending(rdev, conf->mddev);
1892 
1893 	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
1894 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
1895 	set_bit(STRIPE_HANDLE, &sh->state);
1896 	release_stripe(sh);
1897 }
1898 
1899 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1900 
1901 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1902 {
1903 	struct r5dev *dev = &sh->dev[i];
1904 
1905 	bio_init(&dev->req);
1906 	dev->req.bi_io_vec = &dev->vec;
1907 	dev->req.bi_vcnt++;
1908 	dev->req.bi_max_vecs++;
1909 	dev->req.bi_private = sh;
1910 	dev->vec.bv_page = dev->page;
1911 
1912 	bio_init(&dev->rreq);
1913 	dev->rreq.bi_io_vec = &dev->rvec;
1914 	dev->rreq.bi_vcnt++;
1915 	dev->rreq.bi_max_vecs++;
1916 	dev->rreq.bi_private = sh;
1917 	dev->rvec.bv_page = dev->page;
1918 
1919 	dev->flags = 0;
1920 	dev->sector = compute_blocknr(sh, i, previous);
1921 }
1922 
1923 static void error(struct mddev *mddev, struct md_rdev *rdev)
1924 {
1925 	char b[BDEVNAME_SIZE];
1926 	struct r5conf *conf = mddev->private;
1927 	unsigned long flags;
1928 	pr_debug("raid456: error called\n");
1929 
1930 	spin_lock_irqsave(&conf->device_lock, flags);
1931 	clear_bit(In_sync, &rdev->flags);
1932 	mddev->degraded = calc_degraded(conf);
1933 	spin_unlock_irqrestore(&conf->device_lock, flags);
1934 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1935 
1936 	set_bit(Blocked, &rdev->flags);
1937 	set_bit(Faulty, &rdev->flags);
1938 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1939 	printk(KERN_ALERT
1940 	       "md/raid:%s: Disk failure on %s, disabling device.\n"
1941 	       "md/raid:%s: Operation continuing on %d devices.\n",
1942 	       mdname(mddev),
1943 	       bdevname(rdev->bdev, b),
1944 	       mdname(mddev),
1945 	       conf->raid_disks - mddev->degraded);
1946 }
1947 
1948 /*
1949  * Input: a 'big' sector number,
1950  * Output: index of the data and parity disk, and the sector # in them.
1951  */
1952 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
1953 				     int previous, int *dd_idx,
1954 				     struct stripe_head *sh)
1955 {
1956 	sector_t stripe, stripe2;
1957 	sector_t chunk_number;
1958 	unsigned int chunk_offset;
1959 	int pd_idx, qd_idx;
1960 	int ddf_layout = 0;
1961 	sector_t new_sector;
1962 	int algorithm = previous ? conf->prev_algo
1963 				 : conf->algorithm;
1964 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1965 					 : conf->chunk_sectors;
1966 	int raid_disks = previous ? conf->previous_raid_disks
1967 				  : conf->raid_disks;
1968 	int data_disks = raid_disks - conf->max_degraded;
1969 
1970 	/* First compute the information on this sector */
1971 
1972 	/*
1973 	 * Compute the chunk number and the sector offset inside the chunk
1974 	 */
1975 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
1976 	chunk_number = r_sector;
1977 
1978 	/*
1979 	 * Compute the stripe number
1980 	 */
1981 	stripe = chunk_number;
1982 	*dd_idx = sector_div(stripe, data_disks);
1983 	stripe2 = stripe;
1984 	/*
1985 	 * Select the parity disk based on the user selected algorithm.
1986 	 */
1987 	pd_idx = qd_idx = -1;
1988 	switch(conf->level) {
1989 	case 4:
1990 		pd_idx = data_disks;
1991 		break;
1992 	case 5:
1993 		switch (algorithm) {
1994 		case ALGORITHM_LEFT_ASYMMETRIC:
1995 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1996 			if (*dd_idx >= pd_idx)
1997 				(*dd_idx)++;
1998 			break;
1999 		case ALGORITHM_RIGHT_ASYMMETRIC:
2000 			pd_idx = sector_div(stripe2, raid_disks);
2001 			if (*dd_idx >= pd_idx)
2002 				(*dd_idx)++;
2003 			break;
2004 		case ALGORITHM_LEFT_SYMMETRIC:
2005 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2006 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2007 			break;
2008 		case ALGORITHM_RIGHT_SYMMETRIC:
2009 			pd_idx = sector_div(stripe2, raid_disks);
2010 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2011 			break;
2012 		case ALGORITHM_PARITY_0:
2013 			pd_idx = 0;
2014 			(*dd_idx)++;
2015 			break;
2016 		case ALGORITHM_PARITY_N:
2017 			pd_idx = data_disks;
2018 			break;
2019 		default:
2020 			BUG();
2021 		}
2022 		break;
2023 	case 6:
2024 
2025 		switch (algorithm) {
2026 		case ALGORITHM_LEFT_ASYMMETRIC:
2027 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2028 			qd_idx = pd_idx + 1;
2029 			if (pd_idx == raid_disks-1) {
2030 				(*dd_idx)++;	/* Q D D D P */
2031 				qd_idx = 0;
2032 			} else if (*dd_idx >= pd_idx)
2033 				(*dd_idx) += 2; /* D D P Q D */
2034 			break;
2035 		case ALGORITHM_RIGHT_ASYMMETRIC:
2036 			pd_idx = sector_div(stripe2, raid_disks);
2037 			qd_idx = pd_idx + 1;
2038 			if (pd_idx == raid_disks-1) {
2039 				(*dd_idx)++;	/* Q D D D P */
2040 				qd_idx = 0;
2041 			} else if (*dd_idx >= pd_idx)
2042 				(*dd_idx) += 2; /* D D P Q D */
2043 			break;
2044 		case ALGORITHM_LEFT_SYMMETRIC:
2045 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2046 			qd_idx = (pd_idx + 1) % raid_disks;
2047 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2048 			break;
2049 		case ALGORITHM_RIGHT_SYMMETRIC:
2050 			pd_idx = sector_div(stripe2, raid_disks);
2051 			qd_idx = (pd_idx + 1) % raid_disks;
2052 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2053 			break;
2054 
2055 		case ALGORITHM_PARITY_0:
2056 			pd_idx = 0;
2057 			qd_idx = 1;
2058 			(*dd_idx) += 2;
2059 			break;
2060 		case ALGORITHM_PARITY_N:
2061 			pd_idx = data_disks;
2062 			qd_idx = data_disks + 1;
2063 			break;
2064 
2065 		case ALGORITHM_ROTATING_ZERO_RESTART:
2066 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
2067 			 * of blocks for computing Q is different.
2068 			 */
2069 			pd_idx = sector_div(stripe2, raid_disks);
2070 			qd_idx = pd_idx + 1;
2071 			if (pd_idx == raid_disks-1) {
2072 				(*dd_idx)++;	/* Q D D D P */
2073 				qd_idx = 0;
2074 			} else if (*dd_idx >= pd_idx)
2075 				(*dd_idx) += 2; /* D D P Q D */
2076 			ddf_layout = 1;
2077 			break;
2078 
2079 		case ALGORITHM_ROTATING_N_RESTART:
2080 			/* Same a left_asymmetric, by first stripe is
2081 			 * D D D P Q  rather than
2082 			 * Q D D D P
2083 			 */
2084 			stripe2 += 1;
2085 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2086 			qd_idx = pd_idx + 1;
2087 			if (pd_idx == raid_disks-1) {
2088 				(*dd_idx)++;	/* Q D D D P */
2089 				qd_idx = 0;
2090 			} else if (*dd_idx >= pd_idx)
2091 				(*dd_idx) += 2; /* D D P Q D */
2092 			ddf_layout = 1;
2093 			break;
2094 
2095 		case ALGORITHM_ROTATING_N_CONTINUE:
2096 			/* Same as left_symmetric but Q is before P */
2097 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2098 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2099 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2100 			ddf_layout = 1;
2101 			break;
2102 
2103 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2104 			/* RAID5 left_asymmetric, with Q on last device */
2105 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2106 			if (*dd_idx >= pd_idx)
2107 				(*dd_idx)++;
2108 			qd_idx = raid_disks - 1;
2109 			break;
2110 
2111 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2112 			pd_idx = sector_div(stripe2, raid_disks-1);
2113 			if (*dd_idx >= pd_idx)
2114 				(*dd_idx)++;
2115 			qd_idx = raid_disks - 1;
2116 			break;
2117 
2118 		case ALGORITHM_LEFT_SYMMETRIC_6:
2119 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2120 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2121 			qd_idx = raid_disks - 1;
2122 			break;
2123 
2124 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2125 			pd_idx = sector_div(stripe2, raid_disks-1);
2126 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2127 			qd_idx = raid_disks - 1;
2128 			break;
2129 
2130 		case ALGORITHM_PARITY_0_6:
2131 			pd_idx = 0;
2132 			(*dd_idx)++;
2133 			qd_idx = raid_disks - 1;
2134 			break;
2135 
2136 		default:
2137 			BUG();
2138 		}
2139 		break;
2140 	}
2141 
2142 	if (sh) {
2143 		sh->pd_idx = pd_idx;
2144 		sh->qd_idx = qd_idx;
2145 		sh->ddf_layout = ddf_layout;
2146 	}
2147 	/*
2148 	 * Finally, compute the new sector number
2149 	 */
2150 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2151 	return new_sector;
2152 }
2153 
2154 
2155 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2156 {
2157 	struct r5conf *conf = sh->raid_conf;
2158 	int raid_disks = sh->disks;
2159 	int data_disks = raid_disks - conf->max_degraded;
2160 	sector_t new_sector = sh->sector, check;
2161 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2162 					 : conf->chunk_sectors;
2163 	int algorithm = previous ? conf->prev_algo
2164 				 : conf->algorithm;
2165 	sector_t stripe;
2166 	int chunk_offset;
2167 	sector_t chunk_number;
2168 	int dummy1, dd_idx = i;
2169 	sector_t r_sector;
2170 	struct stripe_head sh2;
2171 
2172 
2173 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
2174 	stripe = new_sector;
2175 
2176 	if (i == sh->pd_idx)
2177 		return 0;
2178 	switch(conf->level) {
2179 	case 4: break;
2180 	case 5:
2181 		switch (algorithm) {
2182 		case ALGORITHM_LEFT_ASYMMETRIC:
2183 		case ALGORITHM_RIGHT_ASYMMETRIC:
2184 			if (i > sh->pd_idx)
2185 				i--;
2186 			break;
2187 		case ALGORITHM_LEFT_SYMMETRIC:
2188 		case ALGORITHM_RIGHT_SYMMETRIC:
2189 			if (i < sh->pd_idx)
2190 				i += raid_disks;
2191 			i -= (sh->pd_idx + 1);
2192 			break;
2193 		case ALGORITHM_PARITY_0:
2194 			i -= 1;
2195 			break;
2196 		case ALGORITHM_PARITY_N:
2197 			break;
2198 		default:
2199 			BUG();
2200 		}
2201 		break;
2202 	case 6:
2203 		if (i == sh->qd_idx)
2204 			return 0; /* It is the Q disk */
2205 		switch (algorithm) {
2206 		case ALGORITHM_LEFT_ASYMMETRIC:
2207 		case ALGORITHM_RIGHT_ASYMMETRIC:
2208 		case ALGORITHM_ROTATING_ZERO_RESTART:
2209 		case ALGORITHM_ROTATING_N_RESTART:
2210 			if (sh->pd_idx == raid_disks-1)
2211 				i--;	/* Q D D D P */
2212 			else if (i > sh->pd_idx)
2213 				i -= 2; /* D D P Q D */
2214 			break;
2215 		case ALGORITHM_LEFT_SYMMETRIC:
2216 		case ALGORITHM_RIGHT_SYMMETRIC:
2217 			if (sh->pd_idx == raid_disks-1)
2218 				i--; /* Q D D D P */
2219 			else {
2220 				/* D D P Q D */
2221 				if (i < sh->pd_idx)
2222 					i += raid_disks;
2223 				i -= (sh->pd_idx + 2);
2224 			}
2225 			break;
2226 		case ALGORITHM_PARITY_0:
2227 			i -= 2;
2228 			break;
2229 		case ALGORITHM_PARITY_N:
2230 			break;
2231 		case ALGORITHM_ROTATING_N_CONTINUE:
2232 			/* Like left_symmetric, but P is before Q */
2233 			if (sh->pd_idx == 0)
2234 				i--;	/* P D D D Q */
2235 			else {
2236 				/* D D Q P D */
2237 				if (i < sh->pd_idx)
2238 					i += raid_disks;
2239 				i -= (sh->pd_idx + 1);
2240 			}
2241 			break;
2242 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2243 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2244 			if (i > sh->pd_idx)
2245 				i--;
2246 			break;
2247 		case ALGORITHM_LEFT_SYMMETRIC_6:
2248 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2249 			if (i < sh->pd_idx)
2250 				i += data_disks + 1;
2251 			i -= (sh->pd_idx + 1);
2252 			break;
2253 		case ALGORITHM_PARITY_0_6:
2254 			i -= 1;
2255 			break;
2256 		default:
2257 			BUG();
2258 		}
2259 		break;
2260 	}
2261 
2262 	chunk_number = stripe * data_disks + i;
2263 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2264 
2265 	check = raid5_compute_sector(conf, r_sector,
2266 				     previous, &dummy1, &sh2);
2267 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2268 		|| sh2.qd_idx != sh->qd_idx) {
2269 		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2270 		       mdname(conf->mddev));
2271 		return 0;
2272 	}
2273 	return r_sector;
2274 }
2275 
2276 
2277 static void
2278 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2279 			 int rcw, int expand)
2280 {
2281 	int i, pd_idx = sh->pd_idx, disks = sh->disks;
2282 	struct r5conf *conf = sh->raid_conf;
2283 	int level = conf->level;
2284 
2285 	if (rcw) {
2286 
2287 		for (i = disks; i--; ) {
2288 			struct r5dev *dev = &sh->dev[i];
2289 
2290 			if (dev->towrite) {
2291 				set_bit(R5_LOCKED, &dev->flags);
2292 				set_bit(R5_Wantdrain, &dev->flags);
2293 				if (!expand)
2294 					clear_bit(R5_UPTODATE, &dev->flags);
2295 				s->locked++;
2296 			}
2297 		}
2298 		/* if we are not expanding this is a proper write request, and
2299 		 * there will be bios with new data to be drained into the
2300 		 * stripe cache
2301 		 */
2302 		if (!expand) {
2303 			if (!s->locked)
2304 				/* False alarm, nothing to do */
2305 				return;
2306 			sh->reconstruct_state = reconstruct_state_drain_run;
2307 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2308 		} else
2309 			sh->reconstruct_state = reconstruct_state_run;
2310 
2311 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2312 
2313 		if (s->locked + conf->max_degraded == disks)
2314 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2315 				atomic_inc(&conf->pending_full_writes);
2316 	} else {
2317 		BUG_ON(level == 6);
2318 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2319 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2320 
2321 		for (i = disks; i--; ) {
2322 			struct r5dev *dev = &sh->dev[i];
2323 			if (i == pd_idx)
2324 				continue;
2325 
2326 			if (dev->towrite &&
2327 			    (test_bit(R5_UPTODATE, &dev->flags) ||
2328 			     test_bit(R5_Wantcompute, &dev->flags))) {
2329 				set_bit(R5_Wantdrain, &dev->flags);
2330 				set_bit(R5_LOCKED, &dev->flags);
2331 				clear_bit(R5_UPTODATE, &dev->flags);
2332 				s->locked++;
2333 			}
2334 		}
2335 		if (!s->locked)
2336 			/* False alarm - nothing to do */
2337 			return;
2338 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2339 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2340 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2341 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2342 	}
2343 
2344 	/* keep the parity disk(s) locked while asynchronous operations
2345 	 * are in flight
2346 	 */
2347 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2348 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2349 	s->locked++;
2350 
2351 	if (level == 6) {
2352 		int qd_idx = sh->qd_idx;
2353 		struct r5dev *dev = &sh->dev[qd_idx];
2354 
2355 		set_bit(R5_LOCKED, &dev->flags);
2356 		clear_bit(R5_UPTODATE, &dev->flags);
2357 		s->locked++;
2358 	}
2359 
2360 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2361 		__func__, (unsigned long long)sh->sector,
2362 		s->locked, s->ops_request);
2363 }
2364 
2365 /*
2366  * Each stripe/dev can have one or more bion attached.
2367  * toread/towrite point to the first in a chain.
2368  * The bi_next chain must be in order.
2369  */
2370 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2371 {
2372 	struct bio **bip;
2373 	struct r5conf *conf = sh->raid_conf;
2374 	int firstwrite=0;
2375 
2376 	pr_debug("adding bi b#%llu to stripe s#%llu\n",
2377 		(unsigned long long)bi->bi_sector,
2378 		(unsigned long long)sh->sector);
2379 
2380 	/*
2381 	 * If several bio share a stripe. The bio bi_phys_segments acts as a
2382 	 * reference count to avoid race. The reference count should already be
2383 	 * increased before this function is called (for example, in
2384 	 * make_request()), so other bio sharing this stripe will not free the
2385 	 * stripe. If a stripe is owned by one stripe, the stripe lock will
2386 	 * protect it.
2387 	 */
2388 	spin_lock_irq(&sh->stripe_lock);
2389 	if (forwrite) {
2390 		bip = &sh->dev[dd_idx].towrite;
2391 		if (*bip == NULL)
2392 			firstwrite = 1;
2393 	} else
2394 		bip = &sh->dev[dd_idx].toread;
2395 	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2396 		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2397 			goto overlap;
2398 		bip = & (*bip)->bi_next;
2399 	}
2400 	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2401 		goto overlap;
2402 
2403 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2404 	if (*bip)
2405 		bi->bi_next = *bip;
2406 	*bip = bi;
2407 	raid5_inc_bi_active_stripes(bi);
2408 
2409 	if (forwrite) {
2410 		/* check if page is covered */
2411 		sector_t sector = sh->dev[dd_idx].sector;
2412 		for (bi=sh->dev[dd_idx].towrite;
2413 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2414 			     bi && bi->bi_sector <= sector;
2415 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2416 			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2417 				sector = bi->bi_sector + (bi->bi_size>>9);
2418 		}
2419 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2420 			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2421 	}
2422 
2423 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2424 		(unsigned long long)(*bip)->bi_sector,
2425 		(unsigned long long)sh->sector, dd_idx);
2426 	spin_unlock_irq(&sh->stripe_lock);
2427 
2428 	if (conf->mddev->bitmap && firstwrite) {
2429 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2430 				  STRIPE_SECTORS, 0);
2431 		sh->bm_seq = conf->seq_flush+1;
2432 		set_bit(STRIPE_BIT_DELAY, &sh->state);
2433 	}
2434 	return 1;
2435 
2436  overlap:
2437 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2438 	spin_unlock_irq(&sh->stripe_lock);
2439 	return 0;
2440 }
2441 
2442 static void end_reshape(struct r5conf *conf);
2443 
2444 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2445 			    struct stripe_head *sh)
2446 {
2447 	int sectors_per_chunk =
2448 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2449 	int dd_idx;
2450 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2451 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2452 
2453 	raid5_compute_sector(conf,
2454 			     stripe * (disks - conf->max_degraded)
2455 			     *sectors_per_chunk + chunk_offset,
2456 			     previous,
2457 			     &dd_idx, sh);
2458 }
2459 
2460 static void
2461 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2462 				struct stripe_head_state *s, int disks,
2463 				struct bio **return_bi)
2464 {
2465 	int i;
2466 	for (i = disks; i--; ) {
2467 		struct bio *bi;
2468 		int bitmap_end = 0;
2469 
2470 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2471 			struct md_rdev *rdev;
2472 			rcu_read_lock();
2473 			rdev = rcu_dereference(conf->disks[i].rdev);
2474 			if (rdev && test_bit(In_sync, &rdev->flags))
2475 				atomic_inc(&rdev->nr_pending);
2476 			else
2477 				rdev = NULL;
2478 			rcu_read_unlock();
2479 			if (rdev) {
2480 				if (!rdev_set_badblocks(
2481 					    rdev,
2482 					    sh->sector,
2483 					    STRIPE_SECTORS, 0))
2484 					md_error(conf->mddev, rdev);
2485 				rdev_dec_pending(rdev, conf->mddev);
2486 			}
2487 		}
2488 		spin_lock_irq(&sh->stripe_lock);
2489 		/* fail all writes first */
2490 		bi = sh->dev[i].towrite;
2491 		sh->dev[i].towrite = NULL;
2492 		spin_unlock_irq(&sh->stripe_lock);
2493 		if (bi)
2494 			bitmap_end = 1;
2495 
2496 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2497 			wake_up(&conf->wait_for_overlap);
2498 
2499 		while (bi && bi->bi_sector <
2500 			sh->dev[i].sector + STRIPE_SECTORS) {
2501 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2502 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2503 			if (!raid5_dec_bi_active_stripes(bi)) {
2504 				md_write_end(conf->mddev);
2505 				bi->bi_next = *return_bi;
2506 				*return_bi = bi;
2507 			}
2508 			bi = nextbi;
2509 		}
2510 		if (bitmap_end)
2511 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2512 				STRIPE_SECTORS, 0, 0);
2513 		bitmap_end = 0;
2514 		/* and fail all 'written' */
2515 		bi = sh->dev[i].written;
2516 		sh->dev[i].written = NULL;
2517 		if (bi) bitmap_end = 1;
2518 		while (bi && bi->bi_sector <
2519 		       sh->dev[i].sector + STRIPE_SECTORS) {
2520 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2521 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2522 			if (!raid5_dec_bi_active_stripes(bi)) {
2523 				md_write_end(conf->mddev);
2524 				bi->bi_next = *return_bi;
2525 				*return_bi = bi;
2526 			}
2527 			bi = bi2;
2528 		}
2529 
2530 		/* fail any reads if this device is non-operational and
2531 		 * the data has not reached the cache yet.
2532 		 */
2533 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2534 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2535 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2536 			spin_lock_irq(&sh->stripe_lock);
2537 			bi = sh->dev[i].toread;
2538 			sh->dev[i].toread = NULL;
2539 			spin_unlock_irq(&sh->stripe_lock);
2540 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2541 				wake_up(&conf->wait_for_overlap);
2542 			while (bi && bi->bi_sector <
2543 			       sh->dev[i].sector + STRIPE_SECTORS) {
2544 				struct bio *nextbi =
2545 					r5_next_bio(bi, sh->dev[i].sector);
2546 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2547 				if (!raid5_dec_bi_active_stripes(bi)) {
2548 					bi->bi_next = *return_bi;
2549 					*return_bi = bi;
2550 				}
2551 				bi = nextbi;
2552 			}
2553 		}
2554 		if (bitmap_end)
2555 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2556 					STRIPE_SECTORS, 0, 0);
2557 		/* If we were in the middle of a write the parity block might
2558 		 * still be locked - so just clear all R5_LOCKED flags
2559 		 */
2560 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2561 	}
2562 
2563 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2564 		if (atomic_dec_and_test(&conf->pending_full_writes))
2565 			md_wakeup_thread(conf->mddev->thread);
2566 }
2567 
2568 static void
2569 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2570 		   struct stripe_head_state *s)
2571 {
2572 	int abort = 0;
2573 	int i;
2574 
2575 	clear_bit(STRIPE_SYNCING, &sh->state);
2576 	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
2577 		wake_up(&conf->wait_for_overlap);
2578 	s->syncing = 0;
2579 	s->replacing = 0;
2580 	/* There is nothing more to do for sync/check/repair.
2581 	 * Don't even need to abort as that is handled elsewhere
2582 	 * if needed, and not always wanted e.g. if there is a known
2583 	 * bad block here.
2584 	 * For recover/replace we need to record a bad block on all
2585 	 * non-sync devices, or abort the recovery
2586 	 */
2587 	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2588 		/* During recovery devices cannot be removed, so
2589 		 * locking and refcounting of rdevs is not needed
2590 		 */
2591 		for (i = 0; i < conf->raid_disks; i++) {
2592 			struct md_rdev *rdev = conf->disks[i].rdev;
2593 			if (rdev
2594 			    && !test_bit(Faulty, &rdev->flags)
2595 			    && !test_bit(In_sync, &rdev->flags)
2596 			    && !rdev_set_badblocks(rdev, sh->sector,
2597 						   STRIPE_SECTORS, 0))
2598 				abort = 1;
2599 			rdev = conf->disks[i].replacement;
2600 			if (rdev
2601 			    && !test_bit(Faulty, &rdev->flags)
2602 			    && !test_bit(In_sync, &rdev->flags)
2603 			    && !rdev_set_badblocks(rdev, sh->sector,
2604 						   STRIPE_SECTORS, 0))
2605 				abort = 1;
2606 		}
2607 		if (abort)
2608 			conf->recovery_disabled =
2609 				conf->mddev->recovery_disabled;
2610 	}
2611 	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2612 }
2613 
2614 static int want_replace(struct stripe_head *sh, int disk_idx)
2615 {
2616 	struct md_rdev *rdev;
2617 	int rv = 0;
2618 	/* Doing recovery so rcu locking not required */
2619 	rdev = sh->raid_conf->disks[disk_idx].replacement;
2620 	if (rdev
2621 	    && !test_bit(Faulty, &rdev->flags)
2622 	    && !test_bit(In_sync, &rdev->flags)
2623 	    && (rdev->recovery_offset <= sh->sector
2624 		|| rdev->mddev->recovery_cp <= sh->sector))
2625 		rv = 1;
2626 
2627 	return rv;
2628 }
2629 
2630 /* fetch_block - checks the given member device to see if its data needs
2631  * to be read or computed to satisfy a request.
2632  *
2633  * Returns 1 when no more member devices need to be checked, otherwise returns
2634  * 0 to tell the loop in handle_stripe_fill to continue
2635  */
2636 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2637 		       int disk_idx, int disks)
2638 {
2639 	struct r5dev *dev = &sh->dev[disk_idx];
2640 	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2641 				  &sh->dev[s->failed_num[1]] };
2642 
2643 	/* is the data in this block needed, and can we get it? */
2644 	if (!test_bit(R5_LOCKED, &dev->flags) &&
2645 	    !test_bit(R5_UPTODATE, &dev->flags) &&
2646 	    (dev->toread ||
2647 	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2648 	     s->syncing || s->expanding ||
2649 	     (s->replacing && want_replace(sh, disk_idx)) ||
2650 	     (s->failed >= 1 && fdev[0]->toread) ||
2651 	     (s->failed >= 2 && fdev[1]->toread) ||
2652 	     (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2653 	      !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2654 	     (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2655 		/* we would like to get this block, possibly by computing it,
2656 		 * otherwise read it if the backing disk is insync
2657 		 */
2658 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2659 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
2660 		if ((s->uptodate == disks - 1) &&
2661 		    (s->failed && (disk_idx == s->failed_num[0] ||
2662 				   disk_idx == s->failed_num[1]))) {
2663 			/* have disk failed, and we're requested to fetch it;
2664 			 * do compute it
2665 			 */
2666 			pr_debug("Computing stripe %llu block %d\n",
2667 			       (unsigned long long)sh->sector, disk_idx);
2668 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2669 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2670 			set_bit(R5_Wantcompute, &dev->flags);
2671 			sh->ops.target = disk_idx;
2672 			sh->ops.target2 = -1; /* no 2nd target */
2673 			s->req_compute = 1;
2674 			/* Careful: from this point on 'uptodate' is in the eye
2675 			 * of raid_run_ops which services 'compute' operations
2676 			 * before writes. R5_Wantcompute flags a block that will
2677 			 * be R5_UPTODATE by the time it is needed for a
2678 			 * subsequent operation.
2679 			 */
2680 			s->uptodate++;
2681 			return 1;
2682 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
2683 			/* Computing 2-failure is *very* expensive; only
2684 			 * do it if failed >= 2
2685 			 */
2686 			int other;
2687 			for (other = disks; other--; ) {
2688 				if (other == disk_idx)
2689 					continue;
2690 				if (!test_bit(R5_UPTODATE,
2691 				      &sh->dev[other].flags))
2692 					break;
2693 			}
2694 			BUG_ON(other < 0);
2695 			pr_debug("Computing stripe %llu blocks %d,%d\n",
2696 			       (unsigned long long)sh->sector,
2697 			       disk_idx, other);
2698 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2699 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2700 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2701 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
2702 			sh->ops.target = disk_idx;
2703 			sh->ops.target2 = other;
2704 			s->uptodate += 2;
2705 			s->req_compute = 1;
2706 			return 1;
2707 		} else if (test_bit(R5_Insync, &dev->flags)) {
2708 			set_bit(R5_LOCKED, &dev->flags);
2709 			set_bit(R5_Wantread, &dev->flags);
2710 			s->locked++;
2711 			pr_debug("Reading block %d (sync=%d)\n",
2712 				disk_idx, s->syncing);
2713 		}
2714 	}
2715 
2716 	return 0;
2717 }
2718 
2719 /**
2720  * handle_stripe_fill - read or compute data to satisfy pending requests.
2721  */
2722 static void handle_stripe_fill(struct stripe_head *sh,
2723 			       struct stripe_head_state *s,
2724 			       int disks)
2725 {
2726 	int i;
2727 
2728 	/* look for blocks to read/compute, skip this if a compute
2729 	 * is already in flight, or if the stripe contents are in the
2730 	 * midst of changing due to a write
2731 	 */
2732 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2733 	    !sh->reconstruct_state)
2734 		for (i = disks; i--; )
2735 			if (fetch_block(sh, s, i, disks))
2736 				break;
2737 	set_bit(STRIPE_HANDLE, &sh->state);
2738 }
2739 
2740 
2741 /* handle_stripe_clean_event
2742  * any written block on an uptodate or failed drive can be returned.
2743  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2744  * never LOCKED, so we don't need to test 'failed' directly.
2745  */
2746 static void handle_stripe_clean_event(struct r5conf *conf,
2747 	struct stripe_head *sh, int disks, struct bio **return_bi)
2748 {
2749 	int i;
2750 	struct r5dev *dev;
2751 	int discard_pending = 0;
2752 
2753 	for (i = disks; i--; )
2754 		if (sh->dev[i].written) {
2755 			dev = &sh->dev[i];
2756 			if (!test_bit(R5_LOCKED, &dev->flags) &&
2757 			    (test_bit(R5_UPTODATE, &dev->flags) ||
2758 			     test_bit(R5_Discard, &dev->flags))) {
2759 				/* We can return any write requests */
2760 				struct bio *wbi, *wbi2;
2761 				pr_debug("Return write for disc %d\n", i);
2762 				if (test_and_clear_bit(R5_Discard, &dev->flags))
2763 					clear_bit(R5_UPTODATE, &dev->flags);
2764 				wbi = dev->written;
2765 				dev->written = NULL;
2766 				while (wbi && wbi->bi_sector <
2767 					dev->sector + STRIPE_SECTORS) {
2768 					wbi2 = r5_next_bio(wbi, dev->sector);
2769 					if (!raid5_dec_bi_active_stripes(wbi)) {
2770 						md_write_end(conf->mddev);
2771 						wbi->bi_next = *return_bi;
2772 						*return_bi = wbi;
2773 					}
2774 					wbi = wbi2;
2775 				}
2776 				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2777 						STRIPE_SECTORS,
2778 					 !test_bit(STRIPE_DEGRADED, &sh->state),
2779 						0);
2780 			} else if (test_bit(R5_Discard, &dev->flags))
2781 				discard_pending = 1;
2782 		}
2783 	if (!discard_pending &&
2784 	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
2785 		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
2786 		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2787 		if (sh->qd_idx >= 0) {
2788 			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
2789 			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
2790 		}
2791 		/* now that discard is done we can proceed with any sync */
2792 		clear_bit(STRIPE_DISCARD, &sh->state);
2793 		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
2794 			set_bit(STRIPE_HANDLE, &sh->state);
2795 
2796 	}
2797 
2798 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2799 		if (atomic_dec_and_test(&conf->pending_full_writes))
2800 			md_wakeup_thread(conf->mddev->thread);
2801 }
2802 
2803 static void handle_stripe_dirtying(struct r5conf *conf,
2804 				   struct stripe_head *sh,
2805 				   struct stripe_head_state *s,
2806 				   int disks)
2807 {
2808 	int rmw = 0, rcw = 0, i;
2809 	sector_t recovery_cp = conf->mddev->recovery_cp;
2810 
2811 	/* RAID6 requires 'rcw' in current implementation.
2812 	 * Otherwise, check whether resync is now happening or should start.
2813 	 * If yes, then the array is dirty (after unclean shutdown or
2814 	 * initial creation), so parity in some stripes might be inconsistent.
2815 	 * In this case, we need to always do reconstruct-write, to ensure
2816 	 * that in case of drive failure or read-error correction, we
2817 	 * generate correct data from the parity.
2818 	 */
2819 	if (conf->max_degraded == 2 ||
2820 	    (recovery_cp < MaxSector && sh->sector >= recovery_cp)) {
2821 		/* Calculate the real rcw later - for now make it
2822 		 * look like rcw is cheaper
2823 		 */
2824 		rcw = 1; rmw = 2;
2825 		pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
2826 			 conf->max_degraded, (unsigned long long)recovery_cp,
2827 			 (unsigned long long)sh->sector);
2828 	} else for (i = disks; i--; ) {
2829 		/* would I have to read this buffer for read_modify_write */
2830 		struct r5dev *dev = &sh->dev[i];
2831 		if ((dev->towrite || i == sh->pd_idx) &&
2832 		    !test_bit(R5_LOCKED, &dev->flags) &&
2833 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2834 		      test_bit(R5_Wantcompute, &dev->flags))) {
2835 			if (test_bit(R5_Insync, &dev->flags))
2836 				rmw++;
2837 			else
2838 				rmw += 2*disks;  /* cannot read it */
2839 		}
2840 		/* Would I have to read this buffer for reconstruct_write */
2841 		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2842 		    !test_bit(R5_LOCKED, &dev->flags) &&
2843 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2844 		    test_bit(R5_Wantcompute, &dev->flags))) {
2845 			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2846 			else
2847 				rcw += 2*disks;
2848 		}
2849 	}
2850 	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2851 		(unsigned long long)sh->sector, rmw, rcw);
2852 	set_bit(STRIPE_HANDLE, &sh->state);
2853 	if (rmw < rcw && rmw > 0) {
2854 		/* prefer read-modify-write, but need to get some data */
2855 		if (conf->mddev->queue)
2856 			blk_add_trace_msg(conf->mddev->queue,
2857 					  "raid5 rmw %llu %d",
2858 					  (unsigned long long)sh->sector, rmw);
2859 		for (i = disks; i--; ) {
2860 			struct r5dev *dev = &sh->dev[i];
2861 			if ((dev->towrite || i == sh->pd_idx) &&
2862 			    !test_bit(R5_LOCKED, &dev->flags) &&
2863 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2864 			    test_bit(R5_Wantcompute, &dev->flags)) &&
2865 			    test_bit(R5_Insync, &dev->flags)) {
2866 				if (
2867 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2868 					pr_debug("Read_old block "
2869 						 "%d for r-m-w\n", i);
2870 					set_bit(R5_LOCKED, &dev->flags);
2871 					set_bit(R5_Wantread, &dev->flags);
2872 					s->locked++;
2873 				} else {
2874 					set_bit(STRIPE_DELAYED, &sh->state);
2875 					set_bit(STRIPE_HANDLE, &sh->state);
2876 				}
2877 			}
2878 		}
2879 	}
2880 	if (rcw <= rmw && rcw > 0) {
2881 		/* want reconstruct write, but need to get some data */
2882 		int qread =0;
2883 		rcw = 0;
2884 		for (i = disks; i--; ) {
2885 			struct r5dev *dev = &sh->dev[i];
2886 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2887 			    i != sh->pd_idx && i != sh->qd_idx &&
2888 			    !test_bit(R5_LOCKED, &dev->flags) &&
2889 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2890 			      test_bit(R5_Wantcompute, &dev->flags))) {
2891 				rcw++;
2892 				if (!test_bit(R5_Insync, &dev->flags))
2893 					continue; /* it's a failed drive */
2894 				if (
2895 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2896 					pr_debug("Read_old block "
2897 						"%d for Reconstruct\n", i);
2898 					set_bit(R5_LOCKED, &dev->flags);
2899 					set_bit(R5_Wantread, &dev->flags);
2900 					s->locked++;
2901 					qread++;
2902 				} else {
2903 					set_bit(STRIPE_DELAYED, &sh->state);
2904 					set_bit(STRIPE_HANDLE, &sh->state);
2905 				}
2906 			}
2907 		}
2908 		if (rcw && conf->mddev->queue)
2909 			blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
2910 					  (unsigned long long)sh->sector,
2911 					  rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
2912 	}
2913 	/* now if nothing is locked, and if we have enough data,
2914 	 * we can start a write request
2915 	 */
2916 	/* since handle_stripe can be called at any time we need to handle the
2917 	 * case where a compute block operation has been submitted and then a
2918 	 * subsequent call wants to start a write request.  raid_run_ops only
2919 	 * handles the case where compute block and reconstruct are requested
2920 	 * simultaneously.  If this is not the case then new writes need to be
2921 	 * held off until the compute completes.
2922 	 */
2923 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2924 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2925 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2926 		schedule_reconstruction(sh, s, rcw == 0, 0);
2927 }
2928 
2929 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
2930 				struct stripe_head_state *s, int disks)
2931 {
2932 	struct r5dev *dev = NULL;
2933 
2934 	set_bit(STRIPE_HANDLE, &sh->state);
2935 
2936 	switch (sh->check_state) {
2937 	case check_state_idle:
2938 		/* start a new check operation if there are no failures */
2939 		if (s->failed == 0) {
2940 			BUG_ON(s->uptodate != disks);
2941 			sh->check_state = check_state_run;
2942 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2943 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2944 			s->uptodate--;
2945 			break;
2946 		}
2947 		dev = &sh->dev[s->failed_num[0]];
2948 		/* fall through */
2949 	case check_state_compute_result:
2950 		sh->check_state = check_state_idle;
2951 		if (!dev)
2952 			dev = &sh->dev[sh->pd_idx];
2953 
2954 		/* check that a write has not made the stripe insync */
2955 		if (test_bit(STRIPE_INSYNC, &sh->state))
2956 			break;
2957 
2958 		/* either failed parity check, or recovery is happening */
2959 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2960 		BUG_ON(s->uptodate != disks);
2961 
2962 		set_bit(R5_LOCKED, &dev->flags);
2963 		s->locked++;
2964 		set_bit(R5_Wantwrite, &dev->flags);
2965 
2966 		clear_bit(STRIPE_DEGRADED, &sh->state);
2967 		set_bit(STRIPE_INSYNC, &sh->state);
2968 		break;
2969 	case check_state_run:
2970 		break; /* we will be called again upon completion */
2971 	case check_state_check_result:
2972 		sh->check_state = check_state_idle;
2973 
2974 		/* if a failure occurred during the check operation, leave
2975 		 * STRIPE_INSYNC not set and let the stripe be handled again
2976 		 */
2977 		if (s->failed)
2978 			break;
2979 
2980 		/* handle a successful check operation, if parity is correct
2981 		 * we are done.  Otherwise update the mismatch count and repair
2982 		 * parity if !MD_RECOVERY_CHECK
2983 		 */
2984 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2985 			/* parity is correct (on disc,
2986 			 * not in buffer any more)
2987 			 */
2988 			set_bit(STRIPE_INSYNC, &sh->state);
2989 		else {
2990 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
2991 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2992 				/* don't try to repair!! */
2993 				set_bit(STRIPE_INSYNC, &sh->state);
2994 			else {
2995 				sh->check_state = check_state_compute_run;
2996 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2997 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2998 				set_bit(R5_Wantcompute,
2999 					&sh->dev[sh->pd_idx].flags);
3000 				sh->ops.target = sh->pd_idx;
3001 				sh->ops.target2 = -1;
3002 				s->uptodate++;
3003 			}
3004 		}
3005 		break;
3006 	case check_state_compute_run:
3007 		break;
3008 	default:
3009 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3010 		       __func__, sh->check_state,
3011 		       (unsigned long long) sh->sector);
3012 		BUG();
3013 	}
3014 }
3015 
3016 
3017 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3018 				  struct stripe_head_state *s,
3019 				  int disks)
3020 {
3021 	int pd_idx = sh->pd_idx;
3022 	int qd_idx = sh->qd_idx;
3023 	struct r5dev *dev;
3024 
3025 	set_bit(STRIPE_HANDLE, &sh->state);
3026 
3027 	BUG_ON(s->failed > 2);
3028 
3029 	/* Want to check and possibly repair P and Q.
3030 	 * However there could be one 'failed' device, in which
3031 	 * case we can only check one of them, possibly using the
3032 	 * other to generate missing data
3033 	 */
3034 
3035 	switch (sh->check_state) {
3036 	case check_state_idle:
3037 		/* start a new check operation if there are < 2 failures */
3038 		if (s->failed == s->q_failed) {
3039 			/* The only possible failed device holds Q, so it
3040 			 * makes sense to check P (If anything else were failed,
3041 			 * we would have used P to recreate it).
3042 			 */
3043 			sh->check_state = check_state_run;
3044 		}
3045 		if (!s->q_failed && s->failed < 2) {
3046 			/* Q is not failed, and we didn't use it to generate
3047 			 * anything, so it makes sense to check it
3048 			 */
3049 			if (sh->check_state == check_state_run)
3050 				sh->check_state = check_state_run_pq;
3051 			else
3052 				sh->check_state = check_state_run_q;
3053 		}
3054 
3055 		/* discard potentially stale zero_sum_result */
3056 		sh->ops.zero_sum_result = 0;
3057 
3058 		if (sh->check_state == check_state_run) {
3059 			/* async_xor_zero_sum destroys the contents of P */
3060 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3061 			s->uptodate--;
3062 		}
3063 		if (sh->check_state >= check_state_run &&
3064 		    sh->check_state <= check_state_run_pq) {
3065 			/* async_syndrome_zero_sum preserves P and Q, so
3066 			 * no need to mark them !uptodate here
3067 			 */
3068 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3069 			break;
3070 		}
3071 
3072 		/* we have 2-disk failure */
3073 		BUG_ON(s->failed != 2);
3074 		/* fall through */
3075 	case check_state_compute_result:
3076 		sh->check_state = check_state_idle;
3077 
3078 		/* check that a write has not made the stripe insync */
3079 		if (test_bit(STRIPE_INSYNC, &sh->state))
3080 			break;
3081 
3082 		/* now write out any block on a failed drive,
3083 		 * or P or Q if they were recomputed
3084 		 */
3085 		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3086 		if (s->failed == 2) {
3087 			dev = &sh->dev[s->failed_num[1]];
3088 			s->locked++;
3089 			set_bit(R5_LOCKED, &dev->flags);
3090 			set_bit(R5_Wantwrite, &dev->flags);
3091 		}
3092 		if (s->failed >= 1) {
3093 			dev = &sh->dev[s->failed_num[0]];
3094 			s->locked++;
3095 			set_bit(R5_LOCKED, &dev->flags);
3096 			set_bit(R5_Wantwrite, &dev->flags);
3097 		}
3098 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3099 			dev = &sh->dev[pd_idx];
3100 			s->locked++;
3101 			set_bit(R5_LOCKED, &dev->flags);
3102 			set_bit(R5_Wantwrite, &dev->flags);
3103 		}
3104 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3105 			dev = &sh->dev[qd_idx];
3106 			s->locked++;
3107 			set_bit(R5_LOCKED, &dev->flags);
3108 			set_bit(R5_Wantwrite, &dev->flags);
3109 		}
3110 		clear_bit(STRIPE_DEGRADED, &sh->state);
3111 
3112 		set_bit(STRIPE_INSYNC, &sh->state);
3113 		break;
3114 	case check_state_run:
3115 	case check_state_run_q:
3116 	case check_state_run_pq:
3117 		break; /* we will be called again upon completion */
3118 	case check_state_check_result:
3119 		sh->check_state = check_state_idle;
3120 
3121 		/* handle a successful check operation, if parity is correct
3122 		 * we are done.  Otherwise update the mismatch count and repair
3123 		 * parity if !MD_RECOVERY_CHECK
3124 		 */
3125 		if (sh->ops.zero_sum_result == 0) {
3126 			/* both parities are correct */
3127 			if (!s->failed)
3128 				set_bit(STRIPE_INSYNC, &sh->state);
3129 			else {
3130 				/* in contrast to the raid5 case we can validate
3131 				 * parity, but still have a failure to write
3132 				 * back
3133 				 */
3134 				sh->check_state = check_state_compute_result;
3135 				/* Returning at this point means that we may go
3136 				 * off and bring p and/or q uptodate again so
3137 				 * we make sure to check zero_sum_result again
3138 				 * to verify if p or q need writeback
3139 				 */
3140 			}
3141 		} else {
3142 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3143 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3144 				/* don't try to repair!! */
3145 				set_bit(STRIPE_INSYNC, &sh->state);
3146 			else {
3147 				int *target = &sh->ops.target;
3148 
3149 				sh->ops.target = -1;
3150 				sh->ops.target2 = -1;
3151 				sh->check_state = check_state_compute_run;
3152 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3153 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3154 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3155 					set_bit(R5_Wantcompute,
3156 						&sh->dev[pd_idx].flags);
3157 					*target = pd_idx;
3158 					target = &sh->ops.target2;
3159 					s->uptodate++;
3160 				}
3161 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3162 					set_bit(R5_Wantcompute,
3163 						&sh->dev[qd_idx].flags);
3164 					*target = qd_idx;
3165 					s->uptodate++;
3166 				}
3167 			}
3168 		}
3169 		break;
3170 	case check_state_compute_run:
3171 		break;
3172 	default:
3173 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3174 		       __func__, sh->check_state,
3175 		       (unsigned long long) sh->sector);
3176 		BUG();
3177 	}
3178 }
3179 
3180 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3181 {
3182 	int i;
3183 
3184 	/* We have read all the blocks in this stripe and now we need to
3185 	 * copy some of them into a target stripe for expand.
3186 	 */
3187 	struct dma_async_tx_descriptor *tx = NULL;
3188 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3189 	for (i = 0; i < sh->disks; i++)
3190 		if (i != sh->pd_idx && i != sh->qd_idx) {
3191 			int dd_idx, j;
3192 			struct stripe_head *sh2;
3193 			struct async_submit_ctl submit;
3194 
3195 			sector_t bn = compute_blocknr(sh, i, 1);
3196 			sector_t s = raid5_compute_sector(conf, bn, 0,
3197 							  &dd_idx, NULL);
3198 			sh2 = get_active_stripe(conf, s, 0, 1, 1);
3199 			if (sh2 == NULL)
3200 				/* so far only the early blocks of this stripe
3201 				 * have been requested.  When later blocks
3202 				 * get requested, we will try again
3203 				 */
3204 				continue;
3205 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3206 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3207 				/* must have already done this block */
3208 				release_stripe(sh2);
3209 				continue;
3210 			}
3211 
3212 			/* place all the copies on one channel */
3213 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3214 			tx = async_memcpy(sh2->dev[dd_idx].page,
3215 					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
3216 					  &submit);
3217 
3218 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3219 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3220 			for (j = 0; j < conf->raid_disks; j++)
3221 				if (j != sh2->pd_idx &&
3222 				    j != sh2->qd_idx &&
3223 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
3224 					break;
3225 			if (j == conf->raid_disks) {
3226 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
3227 				set_bit(STRIPE_HANDLE, &sh2->state);
3228 			}
3229 			release_stripe(sh2);
3230 
3231 		}
3232 	/* done submitting copies, wait for them to complete */
3233 	async_tx_quiesce(&tx);
3234 }
3235 
3236 /*
3237  * handle_stripe - do things to a stripe.
3238  *
3239  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3240  * state of various bits to see what needs to be done.
3241  * Possible results:
3242  *    return some read requests which now have data
3243  *    return some write requests which are safely on storage
3244  *    schedule a read on some buffers
3245  *    schedule a write of some buffers
3246  *    return confirmation of parity correctness
3247  *
3248  */
3249 
3250 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3251 {
3252 	struct r5conf *conf = sh->raid_conf;
3253 	int disks = sh->disks;
3254 	struct r5dev *dev;
3255 	int i;
3256 	int do_recovery = 0;
3257 
3258 	memset(s, 0, sizeof(*s));
3259 
3260 	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3261 	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3262 	s->failed_num[0] = -1;
3263 	s->failed_num[1] = -1;
3264 
3265 	/* Now to look around and see what can be done */
3266 	rcu_read_lock();
3267 	for (i=disks; i--; ) {
3268 		struct md_rdev *rdev;
3269 		sector_t first_bad;
3270 		int bad_sectors;
3271 		int is_bad = 0;
3272 
3273 		dev = &sh->dev[i];
3274 
3275 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3276 			 i, dev->flags,
3277 			 dev->toread, dev->towrite, dev->written);
3278 		/* maybe we can reply to a read
3279 		 *
3280 		 * new wantfill requests are only permitted while
3281 		 * ops_complete_biofill is guaranteed to be inactive
3282 		 */
3283 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3284 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3285 			set_bit(R5_Wantfill, &dev->flags);
3286 
3287 		/* now count some things */
3288 		if (test_bit(R5_LOCKED, &dev->flags))
3289 			s->locked++;
3290 		if (test_bit(R5_UPTODATE, &dev->flags))
3291 			s->uptodate++;
3292 		if (test_bit(R5_Wantcompute, &dev->flags)) {
3293 			s->compute++;
3294 			BUG_ON(s->compute > 2);
3295 		}
3296 
3297 		if (test_bit(R5_Wantfill, &dev->flags))
3298 			s->to_fill++;
3299 		else if (dev->toread)
3300 			s->to_read++;
3301 		if (dev->towrite) {
3302 			s->to_write++;
3303 			if (!test_bit(R5_OVERWRITE, &dev->flags))
3304 				s->non_overwrite++;
3305 		}
3306 		if (dev->written)
3307 			s->written++;
3308 		/* Prefer to use the replacement for reads, but only
3309 		 * if it is recovered enough and has no bad blocks.
3310 		 */
3311 		rdev = rcu_dereference(conf->disks[i].replacement);
3312 		if (rdev && !test_bit(Faulty, &rdev->flags) &&
3313 		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3314 		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3315 				 &first_bad, &bad_sectors))
3316 			set_bit(R5_ReadRepl, &dev->flags);
3317 		else {
3318 			if (rdev)
3319 				set_bit(R5_NeedReplace, &dev->flags);
3320 			rdev = rcu_dereference(conf->disks[i].rdev);
3321 			clear_bit(R5_ReadRepl, &dev->flags);
3322 		}
3323 		if (rdev && test_bit(Faulty, &rdev->flags))
3324 			rdev = NULL;
3325 		if (rdev) {
3326 			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3327 					     &first_bad, &bad_sectors);
3328 			if (s->blocked_rdev == NULL
3329 			    && (test_bit(Blocked, &rdev->flags)
3330 				|| is_bad < 0)) {
3331 				if (is_bad < 0)
3332 					set_bit(BlockedBadBlocks,
3333 						&rdev->flags);
3334 				s->blocked_rdev = rdev;
3335 				atomic_inc(&rdev->nr_pending);
3336 			}
3337 		}
3338 		clear_bit(R5_Insync, &dev->flags);
3339 		if (!rdev)
3340 			/* Not in-sync */;
3341 		else if (is_bad) {
3342 			/* also not in-sync */
3343 			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3344 			    test_bit(R5_UPTODATE, &dev->flags)) {
3345 				/* treat as in-sync, but with a read error
3346 				 * which we can now try to correct
3347 				 */
3348 				set_bit(R5_Insync, &dev->flags);
3349 				set_bit(R5_ReadError, &dev->flags);
3350 			}
3351 		} else if (test_bit(In_sync, &rdev->flags))
3352 			set_bit(R5_Insync, &dev->flags);
3353 		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3354 			/* in sync if before recovery_offset */
3355 			set_bit(R5_Insync, &dev->flags);
3356 		else if (test_bit(R5_UPTODATE, &dev->flags) &&
3357 			 test_bit(R5_Expanded, &dev->flags))
3358 			/* If we've reshaped into here, we assume it is Insync.
3359 			 * We will shortly update recovery_offset to make
3360 			 * it official.
3361 			 */
3362 			set_bit(R5_Insync, &dev->flags);
3363 
3364 		if (rdev && test_bit(R5_WriteError, &dev->flags)) {
3365 			/* This flag does not apply to '.replacement'
3366 			 * only to .rdev, so make sure to check that*/
3367 			struct md_rdev *rdev2 = rcu_dereference(
3368 				conf->disks[i].rdev);
3369 			if (rdev2 == rdev)
3370 				clear_bit(R5_Insync, &dev->flags);
3371 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3372 				s->handle_bad_blocks = 1;
3373 				atomic_inc(&rdev2->nr_pending);
3374 			} else
3375 				clear_bit(R5_WriteError, &dev->flags);
3376 		}
3377 		if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
3378 			/* This flag does not apply to '.replacement'
3379 			 * only to .rdev, so make sure to check that*/
3380 			struct md_rdev *rdev2 = rcu_dereference(
3381 				conf->disks[i].rdev);
3382 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3383 				s->handle_bad_blocks = 1;
3384 				atomic_inc(&rdev2->nr_pending);
3385 			} else
3386 				clear_bit(R5_MadeGood, &dev->flags);
3387 		}
3388 		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3389 			struct md_rdev *rdev2 = rcu_dereference(
3390 				conf->disks[i].replacement);
3391 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3392 				s->handle_bad_blocks = 1;
3393 				atomic_inc(&rdev2->nr_pending);
3394 			} else
3395 				clear_bit(R5_MadeGoodRepl, &dev->flags);
3396 		}
3397 		if (!test_bit(R5_Insync, &dev->flags)) {
3398 			/* The ReadError flag will just be confusing now */
3399 			clear_bit(R5_ReadError, &dev->flags);
3400 			clear_bit(R5_ReWrite, &dev->flags);
3401 		}
3402 		if (test_bit(R5_ReadError, &dev->flags))
3403 			clear_bit(R5_Insync, &dev->flags);
3404 		if (!test_bit(R5_Insync, &dev->flags)) {
3405 			if (s->failed < 2)
3406 				s->failed_num[s->failed] = i;
3407 			s->failed++;
3408 			if (rdev && !test_bit(Faulty, &rdev->flags))
3409 				do_recovery = 1;
3410 		}
3411 	}
3412 	if (test_bit(STRIPE_SYNCING, &sh->state)) {
3413 		/* If there is a failed device being replaced,
3414 		 *     we must be recovering.
3415 		 * else if we are after recovery_cp, we must be syncing
3416 		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3417 		 * else we can only be replacing
3418 		 * sync and recovery both need to read all devices, and so
3419 		 * use the same flag.
3420 		 */
3421 		if (do_recovery ||
3422 		    sh->sector >= conf->mddev->recovery_cp ||
3423 		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3424 			s->syncing = 1;
3425 		else
3426 			s->replacing = 1;
3427 	}
3428 	rcu_read_unlock();
3429 }
3430 
3431 static void handle_stripe(struct stripe_head *sh)
3432 {
3433 	struct stripe_head_state s;
3434 	struct r5conf *conf = sh->raid_conf;
3435 	int i;
3436 	int prexor;
3437 	int disks = sh->disks;
3438 	struct r5dev *pdev, *qdev;
3439 
3440 	clear_bit(STRIPE_HANDLE, &sh->state);
3441 	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3442 		/* already being handled, ensure it gets handled
3443 		 * again when current action finishes */
3444 		set_bit(STRIPE_HANDLE, &sh->state);
3445 		return;
3446 	}
3447 
3448 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3449 		spin_lock(&sh->stripe_lock);
3450 		/* Cannot process 'sync' concurrently with 'discard' */
3451 		if (!test_bit(STRIPE_DISCARD, &sh->state) &&
3452 		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3453 			set_bit(STRIPE_SYNCING, &sh->state);
3454 			clear_bit(STRIPE_INSYNC, &sh->state);
3455 		}
3456 		spin_unlock(&sh->stripe_lock);
3457 	}
3458 	clear_bit(STRIPE_DELAYED, &sh->state);
3459 
3460 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3461 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3462 	       (unsigned long long)sh->sector, sh->state,
3463 	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3464 	       sh->check_state, sh->reconstruct_state);
3465 
3466 	analyse_stripe(sh, &s);
3467 
3468 	if (s.handle_bad_blocks) {
3469 		set_bit(STRIPE_HANDLE, &sh->state);
3470 		goto finish;
3471 	}
3472 
3473 	if (unlikely(s.blocked_rdev)) {
3474 		if (s.syncing || s.expanding || s.expanded ||
3475 		    s.replacing || s.to_write || s.written) {
3476 			set_bit(STRIPE_HANDLE, &sh->state);
3477 			goto finish;
3478 		}
3479 		/* There is nothing for the blocked_rdev to block */
3480 		rdev_dec_pending(s.blocked_rdev, conf->mddev);
3481 		s.blocked_rdev = NULL;
3482 	}
3483 
3484 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3485 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3486 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3487 	}
3488 
3489 	pr_debug("locked=%d uptodate=%d to_read=%d"
3490 	       " to_write=%d failed=%d failed_num=%d,%d\n",
3491 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3492 	       s.failed_num[0], s.failed_num[1]);
3493 	/* check if the array has lost more than max_degraded devices and,
3494 	 * if so, some requests might need to be failed.
3495 	 */
3496 	if (s.failed > conf->max_degraded) {
3497 		sh->check_state = 0;
3498 		sh->reconstruct_state = 0;
3499 		if (s.to_read+s.to_write+s.written)
3500 			handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3501 		if (s.syncing + s.replacing)
3502 			handle_failed_sync(conf, sh, &s);
3503 	}
3504 
3505 	/* Now we check to see if any write operations have recently
3506 	 * completed
3507 	 */
3508 	prexor = 0;
3509 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3510 		prexor = 1;
3511 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
3512 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3513 		sh->reconstruct_state = reconstruct_state_idle;
3514 
3515 		/* All the 'written' buffers and the parity block are ready to
3516 		 * be written back to disk
3517 		 */
3518 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
3519 		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
3520 		BUG_ON(sh->qd_idx >= 0 &&
3521 		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
3522 		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
3523 		for (i = disks; i--; ) {
3524 			struct r5dev *dev = &sh->dev[i];
3525 			if (test_bit(R5_LOCKED, &dev->flags) &&
3526 				(i == sh->pd_idx || i == sh->qd_idx ||
3527 				 dev->written)) {
3528 				pr_debug("Writing block %d\n", i);
3529 				set_bit(R5_Wantwrite, &dev->flags);
3530 				if (prexor)
3531 					continue;
3532 				if (!test_bit(R5_Insync, &dev->flags) ||
3533 				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
3534 				     s.failed == 0))
3535 					set_bit(STRIPE_INSYNC, &sh->state);
3536 			}
3537 		}
3538 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3539 			s.dec_preread_active = 1;
3540 	}
3541 
3542 	/*
3543 	 * might be able to return some write requests if the parity blocks
3544 	 * are safe, or on a failed drive
3545 	 */
3546 	pdev = &sh->dev[sh->pd_idx];
3547 	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3548 		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3549 	qdev = &sh->dev[sh->qd_idx];
3550 	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3551 		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3552 		|| conf->level < 6;
3553 
3554 	if (s.written &&
3555 	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3556 			     && !test_bit(R5_LOCKED, &pdev->flags)
3557 			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
3558 				 test_bit(R5_Discard, &pdev->flags))))) &&
3559 	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3560 			     && !test_bit(R5_LOCKED, &qdev->flags)
3561 			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
3562 				 test_bit(R5_Discard, &qdev->flags))))))
3563 		handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3564 
3565 	/* Now we might consider reading some blocks, either to check/generate
3566 	 * parity, or to satisfy requests
3567 	 * or to load a block that is being partially written.
3568 	 */
3569 	if (s.to_read || s.non_overwrite
3570 	    || (conf->level == 6 && s.to_write && s.failed)
3571 	    || (s.syncing && (s.uptodate + s.compute < disks))
3572 	    || s.replacing
3573 	    || s.expanding)
3574 		handle_stripe_fill(sh, &s, disks);
3575 
3576 	/* Now to consider new write requests and what else, if anything
3577 	 * should be read.  We do not handle new writes when:
3578 	 * 1/ A 'write' operation (copy+xor) is already in flight.
3579 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
3580 	 *    block.
3581 	 */
3582 	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3583 		handle_stripe_dirtying(conf, sh, &s, disks);
3584 
3585 	/* maybe we need to check and possibly fix the parity for this stripe
3586 	 * Any reads will already have been scheduled, so we just see if enough
3587 	 * data is available.  The parity check is held off while parity
3588 	 * dependent operations are in flight.
3589 	 */
3590 	if (sh->check_state ||
3591 	    (s.syncing && s.locked == 0 &&
3592 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3593 	     !test_bit(STRIPE_INSYNC, &sh->state))) {
3594 		if (conf->level == 6)
3595 			handle_parity_checks6(conf, sh, &s, disks);
3596 		else
3597 			handle_parity_checks5(conf, sh, &s, disks);
3598 	}
3599 
3600 	if (s.replacing && s.locked == 0
3601 	    && !test_bit(STRIPE_INSYNC, &sh->state)) {
3602 		/* Write out to replacement devices where possible */
3603 		for (i = 0; i < conf->raid_disks; i++)
3604 			if (test_bit(R5_UPTODATE, &sh->dev[i].flags) &&
3605 			    test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3606 				set_bit(R5_WantReplace, &sh->dev[i].flags);
3607 				set_bit(R5_LOCKED, &sh->dev[i].flags);
3608 				s.locked++;
3609 			}
3610 		set_bit(STRIPE_INSYNC, &sh->state);
3611 	}
3612 	if ((s.syncing || s.replacing) && s.locked == 0 &&
3613 	    test_bit(STRIPE_INSYNC, &sh->state)) {
3614 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3615 		clear_bit(STRIPE_SYNCING, &sh->state);
3616 		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3617 			wake_up(&conf->wait_for_overlap);
3618 	}
3619 
3620 	/* If the failed drives are just a ReadError, then we might need
3621 	 * to progress the repair/check process
3622 	 */
3623 	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3624 		for (i = 0; i < s.failed; i++) {
3625 			struct r5dev *dev = &sh->dev[s.failed_num[i]];
3626 			if (test_bit(R5_ReadError, &dev->flags)
3627 			    && !test_bit(R5_LOCKED, &dev->flags)
3628 			    && test_bit(R5_UPTODATE, &dev->flags)
3629 				) {
3630 				if (!test_bit(R5_ReWrite, &dev->flags)) {
3631 					set_bit(R5_Wantwrite, &dev->flags);
3632 					set_bit(R5_ReWrite, &dev->flags);
3633 					set_bit(R5_LOCKED, &dev->flags);
3634 					s.locked++;
3635 				} else {
3636 					/* let's read it back */
3637 					set_bit(R5_Wantread, &dev->flags);
3638 					set_bit(R5_LOCKED, &dev->flags);
3639 					s.locked++;
3640 				}
3641 			}
3642 		}
3643 
3644 
3645 	/* Finish reconstruct operations initiated by the expansion process */
3646 	if (sh->reconstruct_state == reconstruct_state_result) {
3647 		struct stripe_head *sh_src
3648 			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3649 		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3650 			/* sh cannot be written until sh_src has been read.
3651 			 * so arrange for sh to be delayed a little
3652 			 */
3653 			set_bit(STRIPE_DELAYED, &sh->state);
3654 			set_bit(STRIPE_HANDLE, &sh->state);
3655 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3656 					      &sh_src->state))
3657 				atomic_inc(&conf->preread_active_stripes);
3658 			release_stripe(sh_src);
3659 			goto finish;
3660 		}
3661 		if (sh_src)
3662 			release_stripe(sh_src);
3663 
3664 		sh->reconstruct_state = reconstruct_state_idle;
3665 		clear_bit(STRIPE_EXPANDING, &sh->state);
3666 		for (i = conf->raid_disks; i--; ) {
3667 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
3668 			set_bit(R5_LOCKED, &sh->dev[i].flags);
3669 			s.locked++;
3670 		}
3671 	}
3672 
3673 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3674 	    !sh->reconstruct_state) {
3675 		/* Need to write out all blocks after computing parity */
3676 		sh->disks = conf->raid_disks;
3677 		stripe_set_idx(sh->sector, conf, 0, sh);
3678 		schedule_reconstruction(sh, &s, 1, 1);
3679 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3680 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3681 		atomic_dec(&conf->reshape_stripes);
3682 		wake_up(&conf->wait_for_overlap);
3683 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3684 	}
3685 
3686 	if (s.expanding && s.locked == 0 &&
3687 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3688 		handle_stripe_expansion(conf, sh);
3689 
3690 finish:
3691 	/* wait for this device to become unblocked */
3692 	if (unlikely(s.blocked_rdev)) {
3693 		if (conf->mddev->external)
3694 			md_wait_for_blocked_rdev(s.blocked_rdev,
3695 						 conf->mddev);
3696 		else
3697 			/* Internal metadata will immediately
3698 			 * be written by raid5d, so we don't
3699 			 * need to wait here.
3700 			 */
3701 			rdev_dec_pending(s.blocked_rdev,
3702 					 conf->mddev);
3703 	}
3704 
3705 	if (s.handle_bad_blocks)
3706 		for (i = disks; i--; ) {
3707 			struct md_rdev *rdev;
3708 			struct r5dev *dev = &sh->dev[i];
3709 			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3710 				/* We own a safe reference to the rdev */
3711 				rdev = conf->disks[i].rdev;
3712 				if (!rdev_set_badblocks(rdev, sh->sector,
3713 							STRIPE_SECTORS, 0))
3714 					md_error(conf->mddev, rdev);
3715 				rdev_dec_pending(rdev, conf->mddev);
3716 			}
3717 			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3718 				rdev = conf->disks[i].rdev;
3719 				rdev_clear_badblocks(rdev, sh->sector,
3720 						     STRIPE_SECTORS, 0);
3721 				rdev_dec_pending(rdev, conf->mddev);
3722 			}
3723 			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3724 				rdev = conf->disks[i].replacement;
3725 				if (!rdev)
3726 					/* rdev have been moved down */
3727 					rdev = conf->disks[i].rdev;
3728 				rdev_clear_badblocks(rdev, sh->sector,
3729 						     STRIPE_SECTORS, 0);
3730 				rdev_dec_pending(rdev, conf->mddev);
3731 			}
3732 		}
3733 
3734 	if (s.ops_request)
3735 		raid_run_ops(sh, s.ops_request);
3736 
3737 	ops_run_io(sh, &s);
3738 
3739 	if (s.dec_preread_active) {
3740 		/* We delay this until after ops_run_io so that if make_request
3741 		 * is waiting on a flush, it won't continue until the writes
3742 		 * have actually been submitted.
3743 		 */
3744 		atomic_dec(&conf->preread_active_stripes);
3745 		if (atomic_read(&conf->preread_active_stripes) <
3746 		    IO_THRESHOLD)
3747 			md_wakeup_thread(conf->mddev->thread);
3748 	}
3749 
3750 	return_io(s.return_bi);
3751 
3752 	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
3753 }
3754 
3755 static void raid5_activate_delayed(struct r5conf *conf)
3756 {
3757 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3758 		while (!list_empty(&conf->delayed_list)) {
3759 			struct list_head *l = conf->delayed_list.next;
3760 			struct stripe_head *sh;
3761 			sh = list_entry(l, struct stripe_head, lru);
3762 			list_del_init(l);
3763 			clear_bit(STRIPE_DELAYED, &sh->state);
3764 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3765 				atomic_inc(&conf->preread_active_stripes);
3766 			list_add_tail(&sh->lru, &conf->hold_list);
3767 		}
3768 	}
3769 }
3770 
3771 static void activate_bit_delay(struct r5conf *conf)
3772 {
3773 	/* device_lock is held */
3774 	struct list_head head;
3775 	list_add(&head, &conf->bitmap_list);
3776 	list_del_init(&conf->bitmap_list);
3777 	while (!list_empty(&head)) {
3778 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3779 		list_del_init(&sh->lru);
3780 		atomic_inc(&sh->count);
3781 		__release_stripe(conf, sh);
3782 	}
3783 }
3784 
3785 int md_raid5_congested(struct mddev *mddev, int bits)
3786 {
3787 	struct r5conf *conf = mddev->private;
3788 
3789 	/* No difference between reads and writes.  Just check
3790 	 * how busy the stripe_cache is
3791 	 */
3792 
3793 	if (conf->inactive_blocked)
3794 		return 1;
3795 	if (conf->quiesce)
3796 		return 1;
3797 	if (list_empty_careful(&conf->inactive_list))
3798 		return 1;
3799 
3800 	return 0;
3801 }
3802 EXPORT_SYMBOL_GPL(md_raid5_congested);
3803 
3804 static int raid5_congested(void *data, int bits)
3805 {
3806 	struct mddev *mddev = data;
3807 
3808 	return mddev_congested(mddev, bits) ||
3809 		md_raid5_congested(mddev, bits);
3810 }
3811 
3812 /* We want read requests to align with chunks where possible,
3813  * but write requests don't need to.
3814  */
3815 static int raid5_mergeable_bvec(struct request_queue *q,
3816 				struct bvec_merge_data *bvm,
3817 				struct bio_vec *biovec)
3818 {
3819 	struct mddev *mddev = q->queuedata;
3820 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3821 	int max;
3822 	unsigned int chunk_sectors = mddev->chunk_sectors;
3823 	unsigned int bio_sectors = bvm->bi_size >> 9;
3824 
3825 	if ((bvm->bi_rw & 1) == WRITE)
3826 		return biovec->bv_len; /* always allow writes to be mergeable */
3827 
3828 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3829 		chunk_sectors = mddev->new_chunk_sectors;
3830 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3831 	if (max < 0) max = 0;
3832 	if (max <= biovec->bv_len && bio_sectors == 0)
3833 		return biovec->bv_len;
3834 	else
3835 		return max;
3836 }
3837 
3838 
3839 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
3840 {
3841 	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3842 	unsigned int chunk_sectors = mddev->chunk_sectors;
3843 	unsigned int bio_sectors = bio->bi_size >> 9;
3844 
3845 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3846 		chunk_sectors = mddev->new_chunk_sectors;
3847 	return  chunk_sectors >=
3848 		((sector & (chunk_sectors - 1)) + bio_sectors);
3849 }
3850 
3851 /*
3852  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3853  *  later sampled by raid5d.
3854  */
3855 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
3856 {
3857 	unsigned long flags;
3858 
3859 	spin_lock_irqsave(&conf->device_lock, flags);
3860 
3861 	bi->bi_next = conf->retry_read_aligned_list;
3862 	conf->retry_read_aligned_list = bi;
3863 
3864 	spin_unlock_irqrestore(&conf->device_lock, flags);
3865 	md_wakeup_thread(conf->mddev->thread);
3866 }
3867 
3868 
3869 static struct bio *remove_bio_from_retry(struct r5conf *conf)
3870 {
3871 	struct bio *bi;
3872 
3873 	bi = conf->retry_read_aligned;
3874 	if (bi) {
3875 		conf->retry_read_aligned = NULL;
3876 		return bi;
3877 	}
3878 	bi = conf->retry_read_aligned_list;
3879 	if(bi) {
3880 		conf->retry_read_aligned_list = bi->bi_next;
3881 		bi->bi_next = NULL;
3882 		/*
3883 		 * this sets the active strip count to 1 and the processed
3884 		 * strip count to zero (upper 8 bits)
3885 		 */
3886 		raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
3887 	}
3888 
3889 	return bi;
3890 }
3891 
3892 
3893 /*
3894  *  The "raid5_align_endio" should check if the read succeeded and if it
3895  *  did, call bio_endio on the original bio (having bio_put the new bio
3896  *  first).
3897  *  If the read failed..
3898  */
3899 static void raid5_align_endio(struct bio *bi, int error)
3900 {
3901 	struct bio* raid_bi  = bi->bi_private;
3902 	struct mddev *mddev;
3903 	struct r5conf *conf;
3904 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3905 	struct md_rdev *rdev;
3906 
3907 	bio_put(bi);
3908 
3909 	rdev = (void*)raid_bi->bi_next;
3910 	raid_bi->bi_next = NULL;
3911 	mddev = rdev->mddev;
3912 	conf = mddev->private;
3913 
3914 	rdev_dec_pending(rdev, conf->mddev);
3915 
3916 	if (!error && uptodate) {
3917 		bio_endio(raid_bi, 0);
3918 		if (atomic_dec_and_test(&conf->active_aligned_reads))
3919 			wake_up(&conf->wait_for_stripe);
3920 		return;
3921 	}
3922 
3923 
3924 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3925 
3926 	add_bio_to_retry(raid_bi, conf);
3927 }
3928 
3929 static int bio_fits_rdev(struct bio *bi)
3930 {
3931 	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3932 
3933 	if ((bi->bi_size>>9) > queue_max_sectors(q))
3934 		return 0;
3935 	blk_recount_segments(q, bi);
3936 	if (bi->bi_phys_segments > queue_max_segments(q))
3937 		return 0;
3938 
3939 	if (q->merge_bvec_fn)
3940 		/* it's too hard to apply the merge_bvec_fn at this stage,
3941 		 * just just give up
3942 		 */
3943 		return 0;
3944 
3945 	return 1;
3946 }
3947 
3948 
3949 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
3950 {
3951 	struct r5conf *conf = mddev->private;
3952 	int dd_idx;
3953 	struct bio* align_bi;
3954 	struct md_rdev *rdev;
3955 	sector_t end_sector;
3956 
3957 	if (!in_chunk_boundary(mddev, raid_bio)) {
3958 		pr_debug("chunk_aligned_read : non aligned\n");
3959 		return 0;
3960 	}
3961 	/*
3962 	 * use bio_clone_mddev to make a copy of the bio
3963 	 */
3964 	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3965 	if (!align_bi)
3966 		return 0;
3967 	/*
3968 	 *   set bi_end_io to a new function, and set bi_private to the
3969 	 *     original bio.
3970 	 */
3971 	align_bi->bi_end_io  = raid5_align_endio;
3972 	align_bi->bi_private = raid_bio;
3973 	/*
3974 	 *	compute position
3975 	 */
3976 	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3977 						    0,
3978 						    &dd_idx, NULL);
3979 
3980 	end_sector = align_bi->bi_sector + (align_bi->bi_size >> 9);
3981 	rcu_read_lock();
3982 	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
3983 	if (!rdev || test_bit(Faulty, &rdev->flags) ||
3984 	    rdev->recovery_offset < end_sector) {
3985 		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3986 		if (rdev &&
3987 		    (test_bit(Faulty, &rdev->flags) ||
3988 		    !(test_bit(In_sync, &rdev->flags) ||
3989 		      rdev->recovery_offset >= end_sector)))
3990 			rdev = NULL;
3991 	}
3992 	if (rdev) {
3993 		sector_t first_bad;
3994 		int bad_sectors;
3995 
3996 		atomic_inc(&rdev->nr_pending);
3997 		rcu_read_unlock();
3998 		raid_bio->bi_next = (void*)rdev;
3999 		align_bi->bi_bdev =  rdev->bdev;
4000 		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
4001 
4002 		if (!bio_fits_rdev(align_bi) ||
4003 		    is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
4004 				&first_bad, &bad_sectors)) {
4005 			/* too big in some way, or has a known bad block */
4006 			bio_put(align_bi);
4007 			rdev_dec_pending(rdev, mddev);
4008 			return 0;
4009 		}
4010 
4011 		/* No reshape active, so we can trust rdev->data_offset */
4012 		align_bi->bi_sector += rdev->data_offset;
4013 
4014 		spin_lock_irq(&conf->device_lock);
4015 		wait_event_lock_irq(conf->wait_for_stripe,
4016 				    conf->quiesce == 0,
4017 				    conf->device_lock);
4018 		atomic_inc(&conf->active_aligned_reads);
4019 		spin_unlock_irq(&conf->device_lock);
4020 
4021 		if (mddev->gendisk)
4022 			trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4023 					      align_bi, disk_devt(mddev->gendisk),
4024 					      raid_bio->bi_sector);
4025 		generic_make_request(align_bi);
4026 		return 1;
4027 	} else {
4028 		rcu_read_unlock();
4029 		bio_put(align_bi);
4030 		return 0;
4031 	}
4032 }
4033 
4034 /* __get_priority_stripe - get the next stripe to process
4035  *
4036  * Full stripe writes are allowed to pass preread active stripes up until
4037  * the bypass_threshold is exceeded.  In general the bypass_count
4038  * increments when the handle_list is handled before the hold_list; however, it
4039  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4040  * stripe with in flight i/o.  The bypass_count will be reset when the
4041  * head of the hold_list has changed, i.e. the head was promoted to the
4042  * handle_list.
4043  */
4044 static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
4045 {
4046 	struct stripe_head *sh;
4047 
4048 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4049 		  __func__,
4050 		  list_empty(&conf->handle_list) ? "empty" : "busy",
4051 		  list_empty(&conf->hold_list) ? "empty" : "busy",
4052 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
4053 
4054 	if (!list_empty(&conf->handle_list)) {
4055 		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
4056 
4057 		if (list_empty(&conf->hold_list))
4058 			conf->bypass_count = 0;
4059 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4060 			if (conf->hold_list.next == conf->last_hold)
4061 				conf->bypass_count++;
4062 			else {
4063 				conf->last_hold = conf->hold_list.next;
4064 				conf->bypass_count -= conf->bypass_threshold;
4065 				if (conf->bypass_count < 0)
4066 					conf->bypass_count = 0;
4067 			}
4068 		}
4069 	} else if (!list_empty(&conf->hold_list) &&
4070 		   ((conf->bypass_threshold &&
4071 		     conf->bypass_count > conf->bypass_threshold) ||
4072 		    atomic_read(&conf->pending_full_writes) == 0)) {
4073 		sh = list_entry(conf->hold_list.next,
4074 				typeof(*sh), lru);
4075 		conf->bypass_count -= conf->bypass_threshold;
4076 		if (conf->bypass_count < 0)
4077 			conf->bypass_count = 0;
4078 	} else
4079 		return NULL;
4080 
4081 	list_del_init(&sh->lru);
4082 	atomic_inc(&sh->count);
4083 	BUG_ON(atomic_read(&sh->count) != 1);
4084 	return sh;
4085 }
4086 
4087 struct raid5_plug_cb {
4088 	struct blk_plug_cb	cb;
4089 	struct list_head	list;
4090 };
4091 
4092 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4093 {
4094 	struct raid5_plug_cb *cb = container_of(
4095 		blk_cb, struct raid5_plug_cb, cb);
4096 	struct stripe_head *sh;
4097 	struct mddev *mddev = cb->cb.data;
4098 	struct r5conf *conf = mddev->private;
4099 	int cnt = 0;
4100 
4101 	if (cb->list.next && !list_empty(&cb->list)) {
4102 		spin_lock_irq(&conf->device_lock);
4103 		while (!list_empty(&cb->list)) {
4104 			sh = list_first_entry(&cb->list, struct stripe_head, lru);
4105 			list_del_init(&sh->lru);
4106 			/*
4107 			 * avoid race release_stripe_plug() sees
4108 			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
4109 			 * is still in our list
4110 			 */
4111 			smp_mb__before_clear_bit();
4112 			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4113 			__release_stripe(conf, sh);
4114 			cnt++;
4115 		}
4116 		spin_unlock_irq(&conf->device_lock);
4117 	}
4118 	if (mddev->queue)
4119 		trace_block_unplug(mddev->queue, cnt, !from_schedule);
4120 	kfree(cb);
4121 }
4122 
4123 static void release_stripe_plug(struct mddev *mddev,
4124 				struct stripe_head *sh)
4125 {
4126 	struct blk_plug_cb *blk_cb = blk_check_plugged(
4127 		raid5_unplug, mddev,
4128 		sizeof(struct raid5_plug_cb));
4129 	struct raid5_plug_cb *cb;
4130 
4131 	if (!blk_cb) {
4132 		release_stripe(sh);
4133 		return;
4134 	}
4135 
4136 	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4137 
4138 	if (cb->list.next == NULL)
4139 		INIT_LIST_HEAD(&cb->list);
4140 
4141 	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4142 		list_add_tail(&sh->lru, &cb->list);
4143 	else
4144 		release_stripe(sh);
4145 }
4146 
4147 static void make_discard_request(struct mddev *mddev, struct bio *bi)
4148 {
4149 	struct r5conf *conf = mddev->private;
4150 	sector_t logical_sector, last_sector;
4151 	struct stripe_head *sh;
4152 	int remaining;
4153 	int stripe_sectors;
4154 
4155 	if (mddev->reshape_position != MaxSector)
4156 		/* Skip discard while reshape is happening */
4157 		return;
4158 
4159 	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4160 	last_sector = bi->bi_sector + (bi->bi_size>>9);
4161 
4162 	bi->bi_next = NULL;
4163 	bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4164 
4165 	stripe_sectors = conf->chunk_sectors *
4166 		(conf->raid_disks - conf->max_degraded);
4167 	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4168 					       stripe_sectors);
4169 	sector_div(last_sector, stripe_sectors);
4170 
4171 	logical_sector *= conf->chunk_sectors;
4172 	last_sector *= conf->chunk_sectors;
4173 
4174 	for (; logical_sector < last_sector;
4175 	     logical_sector += STRIPE_SECTORS) {
4176 		DEFINE_WAIT(w);
4177 		int d;
4178 	again:
4179 		sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4180 		prepare_to_wait(&conf->wait_for_overlap, &w,
4181 				TASK_UNINTERRUPTIBLE);
4182 		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4183 		if (test_bit(STRIPE_SYNCING, &sh->state)) {
4184 			release_stripe(sh);
4185 			schedule();
4186 			goto again;
4187 		}
4188 		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4189 		spin_lock_irq(&sh->stripe_lock);
4190 		for (d = 0; d < conf->raid_disks; d++) {
4191 			if (d == sh->pd_idx || d == sh->qd_idx)
4192 				continue;
4193 			if (sh->dev[d].towrite || sh->dev[d].toread) {
4194 				set_bit(R5_Overlap, &sh->dev[d].flags);
4195 				spin_unlock_irq(&sh->stripe_lock);
4196 				release_stripe(sh);
4197 				schedule();
4198 				goto again;
4199 			}
4200 		}
4201 		set_bit(STRIPE_DISCARD, &sh->state);
4202 		finish_wait(&conf->wait_for_overlap, &w);
4203 		for (d = 0; d < conf->raid_disks; d++) {
4204 			if (d == sh->pd_idx || d == sh->qd_idx)
4205 				continue;
4206 			sh->dev[d].towrite = bi;
4207 			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
4208 			raid5_inc_bi_active_stripes(bi);
4209 		}
4210 		spin_unlock_irq(&sh->stripe_lock);
4211 		if (conf->mddev->bitmap) {
4212 			for (d = 0;
4213 			     d < conf->raid_disks - conf->max_degraded;
4214 			     d++)
4215 				bitmap_startwrite(mddev->bitmap,
4216 						  sh->sector,
4217 						  STRIPE_SECTORS,
4218 						  0);
4219 			sh->bm_seq = conf->seq_flush + 1;
4220 			set_bit(STRIPE_BIT_DELAY, &sh->state);
4221 		}
4222 
4223 		set_bit(STRIPE_HANDLE, &sh->state);
4224 		clear_bit(STRIPE_DELAYED, &sh->state);
4225 		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4226 			atomic_inc(&conf->preread_active_stripes);
4227 		release_stripe_plug(mddev, sh);
4228 	}
4229 
4230 	remaining = raid5_dec_bi_active_stripes(bi);
4231 	if (remaining == 0) {
4232 		md_write_end(mddev);
4233 		bio_endio(bi, 0);
4234 	}
4235 }
4236 
4237 static void make_request(struct mddev *mddev, struct bio * bi)
4238 {
4239 	struct r5conf *conf = mddev->private;
4240 	int dd_idx;
4241 	sector_t new_sector;
4242 	sector_t logical_sector, last_sector;
4243 	struct stripe_head *sh;
4244 	const int rw = bio_data_dir(bi);
4245 	int remaining;
4246 
4247 	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4248 		md_flush_request(mddev, bi);
4249 		return;
4250 	}
4251 
4252 	md_write_start(mddev, bi);
4253 
4254 	if (rw == READ &&
4255 	     mddev->reshape_position == MaxSector &&
4256 	     chunk_aligned_read(mddev,bi))
4257 		return;
4258 
4259 	if (unlikely(bi->bi_rw & REQ_DISCARD)) {
4260 		make_discard_request(mddev, bi);
4261 		return;
4262 	}
4263 
4264 	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4265 	last_sector = bi->bi_sector + (bi->bi_size>>9);
4266 	bi->bi_next = NULL;
4267 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
4268 
4269 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4270 		DEFINE_WAIT(w);
4271 		int previous;
4272 
4273 	retry:
4274 		previous = 0;
4275 		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4276 		if (unlikely(conf->reshape_progress != MaxSector)) {
4277 			/* spinlock is needed as reshape_progress may be
4278 			 * 64bit on a 32bit platform, and so it might be
4279 			 * possible to see a half-updated value
4280 			 * Of course reshape_progress could change after
4281 			 * the lock is dropped, so once we get a reference
4282 			 * to the stripe that we think it is, we will have
4283 			 * to check again.
4284 			 */
4285 			spin_lock_irq(&conf->device_lock);
4286 			if (mddev->reshape_backwards
4287 			    ? logical_sector < conf->reshape_progress
4288 			    : logical_sector >= conf->reshape_progress) {
4289 				previous = 1;
4290 			} else {
4291 				if (mddev->reshape_backwards
4292 				    ? logical_sector < conf->reshape_safe
4293 				    : logical_sector >= conf->reshape_safe) {
4294 					spin_unlock_irq(&conf->device_lock);
4295 					schedule();
4296 					goto retry;
4297 				}
4298 			}
4299 			spin_unlock_irq(&conf->device_lock);
4300 		}
4301 
4302 		new_sector = raid5_compute_sector(conf, logical_sector,
4303 						  previous,
4304 						  &dd_idx, NULL);
4305 		pr_debug("raid456: make_request, sector %llu logical %llu\n",
4306 			(unsigned long long)new_sector,
4307 			(unsigned long long)logical_sector);
4308 
4309 		sh = get_active_stripe(conf, new_sector, previous,
4310 				       (bi->bi_rw&RWA_MASK), 0);
4311 		if (sh) {
4312 			if (unlikely(previous)) {
4313 				/* expansion might have moved on while waiting for a
4314 				 * stripe, so we must do the range check again.
4315 				 * Expansion could still move past after this
4316 				 * test, but as we are holding a reference to
4317 				 * 'sh', we know that if that happens,
4318 				 *  STRIPE_EXPANDING will get set and the expansion
4319 				 * won't proceed until we finish with the stripe.
4320 				 */
4321 				int must_retry = 0;
4322 				spin_lock_irq(&conf->device_lock);
4323 				if (mddev->reshape_backwards
4324 				    ? logical_sector >= conf->reshape_progress
4325 				    : logical_sector < conf->reshape_progress)
4326 					/* mismatch, need to try again */
4327 					must_retry = 1;
4328 				spin_unlock_irq(&conf->device_lock);
4329 				if (must_retry) {
4330 					release_stripe(sh);
4331 					schedule();
4332 					goto retry;
4333 				}
4334 			}
4335 
4336 			if (rw == WRITE &&
4337 			    logical_sector >= mddev->suspend_lo &&
4338 			    logical_sector < mddev->suspend_hi) {
4339 				release_stripe(sh);
4340 				/* As the suspend_* range is controlled by
4341 				 * userspace, we want an interruptible
4342 				 * wait.
4343 				 */
4344 				flush_signals(current);
4345 				prepare_to_wait(&conf->wait_for_overlap,
4346 						&w, TASK_INTERRUPTIBLE);
4347 				if (logical_sector >= mddev->suspend_lo &&
4348 				    logical_sector < mddev->suspend_hi)
4349 					schedule();
4350 				goto retry;
4351 			}
4352 
4353 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4354 			    !add_stripe_bio(sh, bi, dd_idx, rw)) {
4355 				/* Stripe is busy expanding or
4356 				 * add failed due to overlap.  Flush everything
4357 				 * and wait a while
4358 				 */
4359 				md_wakeup_thread(mddev->thread);
4360 				release_stripe(sh);
4361 				schedule();
4362 				goto retry;
4363 			}
4364 			finish_wait(&conf->wait_for_overlap, &w);
4365 			set_bit(STRIPE_HANDLE, &sh->state);
4366 			clear_bit(STRIPE_DELAYED, &sh->state);
4367 			if ((bi->bi_rw & REQ_SYNC) &&
4368 			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4369 				atomic_inc(&conf->preread_active_stripes);
4370 			release_stripe_plug(mddev, sh);
4371 		} else {
4372 			/* cannot get stripe for read-ahead, just give-up */
4373 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
4374 			finish_wait(&conf->wait_for_overlap, &w);
4375 			break;
4376 		}
4377 	}
4378 
4379 	remaining = raid5_dec_bi_active_stripes(bi);
4380 	if (remaining == 0) {
4381 
4382 		if ( rw == WRITE )
4383 			md_write_end(mddev);
4384 
4385 		bio_endio(bi, 0);
4386 	}
4387 }
4388 
4389 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4390 
4391 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4392 {
4393 	/* reshaping is quite different to recovery/resync so it is
4394 	 * handled quite separately ... here.
4395 	 *
4396 	 * On each call to sync_request, we gather one chunk worth of
4397 	 * destination stripes and flag them as expanding.
4398 	 * Then we find all the source stripes and request reads.
4399 	 * As the reads complete, handle_stripe will copy the data
4400 	 * into the destination stripe and release that stripe.
4401 	 */
4402 	struct r5conf *conf = mddev->private;
4403 	struct stripe_head *sh;
4404 	sector_t first_sector, last_sector;
4405 	int raid_disks = conf->previous_raid_disks;
4406 	int data_disks = raid_disks - conf->max_degraded;
4407 	int new_data_disks = conf->raid_disks - conf->max_degraded;
4408 	int i;
4409 	int dd_idx;
4410 	sector_t writepos, readpos, safepos;
4411 	sector_t stripe_addr;
4412 	int reshape_sectors;
4413 	struct list_head stripes;
4414 
4415 	if (sector_nr == 0) {
4416 		/* If restarting in the middle, skip the initial sectors */
4417 		if (mddev->reshape_backwards &&
4418 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4419 			sector_nr = raid5_size(mddev, 0, 0)
4420 				- conf->reshape_progress;
4421 		} else if (!mddev->reshape_backwards &&
4422 			   conf->reshape_progress > 0)
4423 			sector_nr = conf->reshape_progress;
4424 		sector_div(sector_nr, new_data_disks);
4425 		if (sector_nr) {
4426 			mddev->curr_resync_completed = sector_nr;
4427 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4428 			*skipped = 1;
4429 			return sector_nr;
4430 		}
4431 	}
4432 
4433 	/* We need to process a full chunk at a time.
4434 	 * If old and new chunk sizes differ, we need to process the
4435 	 * largest of these
4436 	 */
4437 	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4438 		reshape_sectors = mddev->new_chunk_sectors;
4439 	else
4440 		reshape_sectors = mddev->chunk_sectors;
4441 
4442 	/* We update the metadata at least every 10 seconds, or when
4443 	 * the data about to be copied would over-write the source of
4444 	 * the data at the front of the range.  i.e. one new_stripe
4445 	 * along from reshape_progress new_maps to after where
4446 	 * reshape_safe old_maps to
4447 	 */
4448 	writepos = conf->reshape_progress;
4449 	sector_div(writepos, new_data_disks);
4450 	readpos = conf->reshape_progress;
4451 	sector_div(readpos, data_disks);
4452 	safepos = conf->reshape_safe;
4453 	sector_div(safepos, data_disks);
4454 	if (mddev->reshape_backwards) {
4455 		writepos -= min_t(sector_t, reshape_sectors, writepos);
4456 		readpos += reshape_sectors;
4457 		safepos += reshape_sectors;
4458 	} else {
4459 		writepos += reshape_sectors;
4460 		readpos -= min_t(sector_t, reshape_sectors, readpos);
4461 		safepos -= min_t(sector_t, reshape_sectors, safepos);
4462 	}
4463 
4464 	/* Having calculated the 'writepos' possibly use it
4465 	 * to set 'stripe_addr' which is where we will write to.
4466 	 */
4467 	if (mddev->reshape_backwards) {
4468 		BUG_ON(conf->reshape_progress == 0);
4469 		stripe_addr = writepos;
4470 		BUG_ON((mddev->dev_sectors &
4471 			~((sector_t)reshape_sectors - 1))
4472 		       - reshape_sectors - stripe_addr
4473 		       != sector_nr);
4474 	} else {
4475 		BUG_ON(writepos != sector_nr + reshape_sectors);
4476 		stripe_addr = sector_nr;
4477 	}
4478 
4479 	/* 'writepos' is the most advanced device address we might write.
4480 	 * 'readpos' is the least advanced device address we might read.
4481 	 * 'safepos' is the least address recorded in the metadata as having
4482 	 *     been reshaped.
4483 	 * If there is a min_offset_diff, these are adjusted either by
4484 	 * increasing the safepos/readpos if diff is negative, or
4485 	 * increasing writepos if diff is positive.
4486 	 * If 'readpos' is then behind 'writepos', there is no way that we can
4487 	 * ensure safety in the face of a crash - that must be done by userspace
4488 	 * making a backup of the data.  So in that case there is no particular
4489 	 * rush to update metadata.
4490 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4491 	 * update the metadata to advance 'safepos' to match 'readpos' so that
4492 	 * we can be safe in the event of a crash.
4493 	 * So we insist on updating metadata if safepos is behind writepos and
4494 	 * readpos is beyond writepos.
4495 	 * In any case, update the metadata every 10 seconds.
4496 	 * Maybe that number should be configurable, but I'm not sure it is
4497 	 * worth it.... maybe it could be a multiple of safemode_delay???
4498 	 */
4499 	if (conf->min_offset_diff < 0) {
4500 		safepos += -conf->min_offset_diff;
4501 		readpos += -conf->min_offset_diff;
4502 	} else
4503 		writepos += conf->min_offset_diff;
4504 
4505 	if ((mddev->reshape_backwards
4506 	     ? (safepos > writepos && readpos < writepos)
4507 	     : (safepos < writepos && readpos > writepos)) ||
4508 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4509 		/* Cannot proceed until we've updated the superblock... */
4510 		wait_event(conf->wait_for_overlap,
4511 			   atomic_read(&conf->reshape_stripes)==0);
4512 		mddev->reshape_position = conf->reshape_progress;
4513 		mddev->curr_resync_completed = sector_nr;
4514 		conf->reshape_checkpoint = jiffies;
4515 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4516 		md_wakeup_thread(mddev->thread);
4517 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4518 			   kthread_should_stop());
4519 		spin_lock_irq(&conf->device_lock);
4520 		conf->reshape_safe = mddev->reshape_position;
4521 		spin_unlock_irq(&conf->device_lock);
4522 		wake_up(&conf->wait_for_overlap);
4523 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4524 	}
4525 
4526 	INIT_LIST_HEAD(&stripes);
4527 	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4528 		int j;
4529 		int skipped_disk = 0;
4530 		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4531 		set_bit(STRIPE_EXPANDING, &sh->state);
4532 		atomic_inc(&conf->reshape_stripes);
4533 		/* If any of this stripe is beyond the end of the old
4534 		 * array, then we need to zero those blocks
4535 		 */
4536 		for (j=sh->disks; j--;) {
4537 			sector_t s;
4538 			if (j == sh->pd_idx)
4539 				continue;
4540 			if (conf->level == 6 &&
4541 			    j == sh->qd_idx)
4542 				continue;
4543 			s = compute_blocknr(sh, j, 0);
4544 			if (s < raid5_size(mddev, 0, 0)) {
4545 				skipped_disk = 1;
4546 				continue;
4547 			}
4548 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4549 			set_bit(R5_Expanded, &sh->dev[j].flags);
4550 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
4551 		}
4552 		if (!skipped_disk) {
4553 			set_bit(STRIPE_EXPAND_READY, &sh->state);
4554 			set_bit(STRIPE_HANDLE, &sh->state);
4555 		}
4556 		list_add(&sh->lru, &stripes);
4557 	}
4558 	spin_lock_irq(&conf->device_lock);
4559 	if (mddev->reshape_backwards)
4560 		conf->reshape_progress -= reshape_sectors * new_data_disks;
4561 	else
4562 		conf->reshape_progress += reshape_sectors * new_data_disks;
4563 	spin_unlock_irq(&conf->device_lock);
4564 	/* Ok, those stripe are ready. We can start scheduling
4565 	 * reads on the source stripes.
4566 	 * The source stripes are determined by mapping the first and last
4567 	 * block on the destination stripes.
4568 	 */
4569 	first_sector =
4570 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4571 				     1, &dd_idx, NULL);
4572 	last_sector =
4573 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4574 					    * new_data_disks - 1),
4575 				     1, &dd_idx, NULL);
4576 	if (last_sector >= mddev->dev_sectors)
4577 		last_sector = mddev->dev_sectors - 1;
4578 	while (first_sector <= last_sector) {
4579 		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4580 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4581 		set_bit(STRIPE_HANDLE, &sh->state);
4582 		release_stripe(sh);
4583 		first_sector += STRIPE_SECTORS;
4584 	}
4585 	/* Now that the sources are clearly marked, we can release
4586 	 * the destination stripes
4587 	 */
4588 	while (!list_empty(&stripes)) {
4589 		sh = list_entry(stripes.next, struct stripe_head, lru);
4590 		list_del_init(&sh->lru);
4591 		release_stripe(sh);
4592 	}
4593 	/* If this takes us to the resync_max point where we have to pause,
4594 	 * then we need to write out the superblock.
4595 	 */
4596 	sector_nr += reshape_sectors;
4597 	if ((sector_nr - mddev->curr_resync_completed) * 2
4598 	    >= mddev->resync_max - mddev->curr_resync_completed) {
4599 		/* Cannot proceed until we've updated the superblock... */
4600 		wait_event(conf->wait_for_overlap,
4601 			   atomic_read(&conf->reshape_stripes) == 0);
4602 		mddev->reshape_position = conf->reshape_progress;
4603 		mddev->curr_resync_completed = sector_nr;
4604 		conf->reshape_checkpoint = jiffies;
4605 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4606 		md_wakeup_thread(mddev->thread);
4607 		wait_event(mddev->sb_wait,
4608 			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4609 			   || kthread_should_stop());
4610 		spin_lock_irq(&conf->device_lock);
4611 		conf->reshape_safe = mddev->reshape_position;
4612 		spin_unlock_irq(&conf->device_lock);
4613 		wake_up(&conf->wait_for_overlap);
4614 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4615 	}
4616 	return reshape_sectors;
4617 }
4618 
4619 /* FIXME go_faster isn't used */
4620 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4621 {
4622 	struct r5conf *conf = mddev->private;
4623 	struct stripe_head *sh;
4624 	sector_t max_sector = mddev->dev_sectors;
4625 	sector_t sync_blocks;
4626 	int still_degraded = 0;
4627 	int i;
4628 
4629 	if (sector_nr >= max_sector) {
4630 		/* just being told to finish up .. nothing much to do */
4631 
4632 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4633 			end_reshape(conf);
4634 			return 0;
4635 		}
4636 
4637 		if (mddev->curr_resync < max_sector) /* aborted */
4638 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4639 					&sync_blocks, 1);
4640 		else /* completed sync */
4641 			conf->fullsync = 0;
4642 		bitmap_close_sync(mddev->bitmap);
4643 
4644 		return 0;
4645 	}
4646 
4647 	/* Allow raid5_quiesce to complete */
4648 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4649 
4650 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4651 		return reshape_request(mddev, sector_nr, skipped);
4652 
4653 	/* No need to check resync_max as we never do more than one
4654 	 * stripe, and as resync_max will always be on a chunk boundary,
4655 	 * if the check in md_do_sync didn't fire, there is no chance
4656 	 * of overstepping resync_max here
4657 	 */
4658 
4659 	/* if there is too many failed drives and we are trying
4660 	 * to resync, then assert that we are finished, because there is
4661 	 * nothing we can do.
4662 	 */
4663 	if (mddev->degraded >= conf->max_degraded &&
4664 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4665 		sector_t rv = mddev->dev_sectors - sector_nr;
4666 		*skipped = 1;
4667 		return rv;
4668 	}
4669 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4670 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4671 	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4672 		/* we can skip this block, and probably more */
4673 		sync_blocks /= STRIPE_SECTORS;
4674 		*skipped = 1;
4675 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4676 	}
4677 
4678 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4679 
4680 	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4681 	if (sh == NULL) {
4682 		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4683 		/* make sure we don't swamp the stripe cache if someone else
4684 		 * is trying to get access
4685 		 */
4686 		schedule_timeout_uninterruptible(1);
4687 	}
4688 	/* Need to check if array will still be degraded after recovery/resync
4689 	 * We don't need to check the 'failed' flag as when that gets set,
4690 	 * recovery aborts.
4691 	 */
4692 	for (i = 0; i < conf->raid_disks; i++)
4693 		if (conf->disks[i].rdev == NULL)
4694 			still_degraded = 1;
4695 
4696 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4697 
4698 	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4699 
4700 	handle_stripe(sh);
4701 	release_stripe(sh);
4702 
4703 	return STRIPE_SECTORS;
4704 }
4705 
4706 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
4707 {
4708 	/* We may not be able to submit a whole bio at once as there
4709 	 * may not be enough stripe_heads available.
4710 	 * We cannot pre-allocate enough stripe_heads as we may need
4711 	 * more than exist in the cache (if we allow ever large chunks).
4712 	 * So we do one stripe head at a time and record in
4713 	 * ->bi_hw_segments how many have been done.
4714 	 *
4715 	 * We *know* that this entire raid_bio is in one chunk, so
4716 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4717 	 */
4718 	struct stripe_head *sh;
4719 	int dd_idx;
4720 	sector_t sector, logical_sector, last_sector;
4721 	int scnt = 0;
4722 	int remaining;
4723 	int handled = 0;
4724 
4725 	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4726 	sector = raid5_compute_sector(conf, logical_sector,
4727 				      0, &dd_idx, NULL);
4728 	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4729 
4730 	for (; logical_sector < last_sector;
4731 	     logical_sector += STRIPE_SECTORS,
4732 		     sector += STRIPE_SECTORS,
4733 		     scnt++) {
4734 
4735 		if (scnt < raid5_bi_processed_stripes(raid_bio))
4736 			/* already done this stripe */
4737 			continue;
4738 
4739 		sh = get_active_stripe(conf, sector, 0, 1, 0);
4740 
4741 		if (!sh) {
4742 			/* failed to get a stripe - must wait */
4743 			raid5_set_bi_processed_stripes(raid_bio, scnt);
4744 			conf->retry_read_aligned = raid_bio;
4745 			return handled;
4746 		}
4747 
4748 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4749 			release_stripe(sh);
4750 			raid5_set_bi_processed_stripes(raid_bio, scnt);
4751 			conf->retry_read_aligned = raid_bio;
4752 			return handled;
4753 		}
4754 
4755 		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
4756 		handle_stripe(sh);
4757 		release_stripe(sh);
4758 		handled++;
4759 	}
4760 	remaining = raid5_dec_bi_active_stripes(raid_bio);
4761 	if (remaining == 0)
4762 		bio_endio(raid_bio, 0);
4763 	if (atomic_dec_and_test(&conf->active_aligned_reads))
4764 		wake_up(&conf->wait_for_stripe);
4765 	return handled;
4766 }
4767 
4768 #define MAX_STRIPE_BATCH 8
4769 static int handle_active_stripes(struct r5conf *conf)
4770 {
4771 	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
4772 	int i, batch_size = 0;
4773 
4774 	while (batch_size < MAX_STRIPE_BATCH &&
4775 			(sh = __get_priority_stripe(conf)) != NULL)
4776 		batch[batch_size++] = sh;
4777 
4778 	if (batch_size == 0)
4779 		return batch_size;
4780 	spin_unlock_irq(&conf->device_lock);
4781 
4782 	for (i = 0; i < batch_size; i++)
4783 		handle_stripe(batch[i]);
4784 
4785 	cond_resched();
4786 
4787 	spin_lock_irq(&conf->device_lock);
4788 	for (i = 0; i < batch_size; i++)
4789 		__release_stripe(conf, batch[i]);
4790 	return batch_size;
4791 }
4792 
4793 /*
4794  * This is our raid5 kernel thread.
4795  *
4796  * We scan the hash table for stripes which can be handled now.
4797  * During the scan, completed stripes are saved for us by the interrupt
4798  * handler, so that they will not have to wait for our next wakeup.
4799  */
4800 static void raid5d(struct md_thread *thread)
4801 {
4802 	struct mddev *mddev = thread->mddev;
4803 	struct r5conf *conf = mddev->private;
4804 	int handled;
4805 	struct blk_plug plug;
4806 
4807 	pr_debug("+++ raid5d active\n");
4808 
4809 	md_check_recovery(mddev);
4810 
4811 	blk_start_plug(&plug);
4812 	handled = 0;
4813 	spin_lock_irq(&conf->device_lock);
4814 	while (1) {
4815 		struct bio *bio;
4816 		int batch_size;
4817 
4818 		if (
4819 		    !list_empty(&conf->bitmap_list)) {
4820 			/* Now is a good time to flush some bitmap updates */
4821 			conf->seq_flush++;
4822 			spin_unlock_irq(&conf->device_lock);
4823 			bitmap_unplug(mddev->bitmap);
4824 			spin_lock_irq(&conf->device_lock);
4825 			conf->seq_write = conf->seq_flush;
4826 			activate_bit_delay(conf);
4827 		}
4828 		raid5_activate_delayed(conf);
4829 
4830 		while ((bio = remove_bio_from_retry(conf))) {
4831 			int ok;
4832 			spin_unlock_irq(&conf->device_lock);
4833 			ok = retry_aligned_read(conf, bio);
4834 			spin_lock_irq(&conf->device_lock);
4835 			if (!ok)
4836 				break;
4837 			handled++;
4838 		}
4839 
4840 		batch_size = handle_active_stripes(conf);
4841 		if (!batch_size)
4842 			break;
4843 		handled += batch_size;
4844 
4845 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
4846 			spin_unlock_irq(&conf->device_lock);
4847 			md_check_recovery(mddev);
4848 			spin_lock_irq(&conf->device_lock);
4849 		}
4850 	}
4851 	pr_debug("%d stripes handled\n", handled);
4852 
4853 	spin_unlock_irq(&conf->device_lock);
4854 
4855 	async_tx_issue_pending_all();
4856 	blk_finish_plug(&plug);
4857 
4858 	pr_debug("--- raid5d inactive\n");
4859 }
4860 
4861 static ssize_t
4862 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
4863 {
4864 	struct r5conf *conf = mddev->private;
4865 	if (conf)
4866 		return sprintf(page, "%d\n", conf->max_nr_stripes);
4867 	else
4868 		return 0;
4869 }
4870 
4871 int
4872 raid5_set_cache_size(struct mddev *mddev, int size)
4873 {
4874 	struct r5conf *conf = mddev->private;
4875 	int err;
4876 
4877 	if (size <= 16 || size > 32768)
4878 		return -EINVAL;
4879 	while (size < conf->max_nr_stripes) {
4880 		if (drop_one_stripe(conf))
4881 			conf->max_nr_stripes--;
4882 		else
4883 			break;
4884 	}
4885 	err = md_allow_write(mddev);
4886 	if (err)
4887 		return err;
4888 	while (size > conf->max_nr_stripes) {
4889 		if (grow_one_stripe(conf))
4890 			conf->max_nr_stripes++;
4891 		else break;
4892 	}
4893 	return 0;
4894 }
4895 EXPORT_SYMBOL(raid5_set_cache_size);
4896 
4897 static ssize_t
4898 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
4899 {
4900 	struct r5conf *conf = mddev->private;
4901 	unsigned long new;
4902 	int err;
4903 
4904 	if (len >= PAGE_SIZE)
4905 		return -EINVAL;
4906 	if (!conf)
4907 		return -ENODEV;
4908 
4909 	if (strict_strtoul(page, 10, &new))
4910 		return -EINVAL;
4911 	err = raid5_set_cache_size(mddev, new);
4912 	if (err)
4913 		return err;
4914 	return len;
4915 }
4916 
4917 static struct md_sysfs_entry
4918 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4919 				raid5_show_stripe_cache_size,
4920 				raid5_store_stripe_cache_size);
4921 
4922 static ssize_t
4923 raid5_show_preread_threshold(struct mddev *mddev, char *page)
4924 {
4925 	struct r5conf *conf = mddev->private;
4926 	if (conf)
4927 		return sprintf(page, "%d\n", conf->bypass_threshold);
4928 	else
4929 		return 0;
4930 }
4931 
4932 static ssize_t
4933 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
4934 {
4935 	struct r5conf *conf = mddev->private;
4936 	unsigned long new;
4937 	if (len >= PAGE_SIZE)
4938 		return -EINVAL;
4939 	if (!conf)
4940 		return -ENODEV;
4941 
4942 	if (strict_strtoul(page, 10, &new))
4943 		return -EINVAL;
4944 	if (new > conf->max_nr_stripes)
4945 		return -EINVAL;
4946 	conf->bypass_threshold = new;
4947 	return len;
4948 }
4949 
4950 static struct md_sysfs_entry
4951 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4952 					S_IRUGO | S_IWUSR,
4953 					raid5_show_preread_threshold,
4954 					raid5_store_preread_threshold);
4955 
4956 static ssize_t
4957 stripe_cache_active_show(struct mddev *mddev, char *page)
4958 {
4959 	struct r5conf *conf = mddev->private;
4960 	if (conf)
4961 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4962 	else
4963 		return 0;
4964 }
4965 
4966 static struct md_sysfs_entry
4967 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4968 
4969 static struct attribute *raid5_attrs[] =  {
4970 	&raid5_stripecache_size.attr,
4971 	&raid5_stripecache_active.attr,
4972 	&raid5_preread_bypass_threshold.attr,
4973 	NULL,
4974 };
4975 static struct attribute_group raid5_attrs_group = {
4976 	.name = NULL,
4977 	.attrs = raid5_attrs,
4978 };
4979 
4980 static sector_t
4981 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
4982 {
4983 	struct r5conf *conf = mddev->private;
4984 
4985 	if (!sectors)
4986 		sectors = mddev->dev_sectors;
4987 	if (!raid_disks)
4988 		/* size is defined by the smallest of previous and new size */
4989 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4990 
4991 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4992 	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4993 	return sectors * (raid_disks - conf->max_degraded);
4994 }
4995 
4996 static void raid5_free_percpu(struct r5conf *conf)
4997 {
4998 	struct raid5_percpu *percpu;
4999 	unsigned long cpu;
5000 
5001 	if (!conf->percpu)
5002 		return;
5003 
5004 	get_online_cpus();
5005 	for_each_possible_cpu(cpu) {
5006 		percpu = per_cpu_ptr(conf->percpu, cpu);
5007 		safe_put_page(percpu->spare_page);
5008 		kfree(percpu->scribble);
5009 	}
5010 #ifdef CONFIG_HOTPLUG_CPU
5011 	unregister_cpu_notifier(&conf->cpu_notify);
5012 #endif
5013 	put_online_cpus();
5014 
5015 	free_percpu(conf->percpu);
5016 }
5017 
5018 static void free_conf(struct r5conf *conf)
5019 {
5020 	shrink_stripes(conf);
5021 	raid5_free_percpu(conf);
5022 	kfree(conf->disks);
5023 	kfree(conf->stripe_hashtbl);
5024 	kfree(conf);
5025 }
5026 
5027 #ifdef CONFIG_HOTPLUG_CPU
5028 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
5029 			      void *hcpu)
5030 {
5031 	struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
5032 	long cpu = (long)hcpu;
5033 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
5034 
5035 	switch (action) {
5036 	case CPU_UP_PREPARE:
5037 	case CPU_UP_PREPARE_FROZEN:
5038 		if (conf->level == 6 && !percpu->spare_page)
5039 			percpu->spare_page = alloc_page(GFP_KERNEL);
5040 		if (!percpu->scribble)
5041 			percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5042 
5043 		if (!percpu->scribble ||
5044 		    (conf->level == 6 && !percpu->spare_page)) {
5045 			safe_put_page(percpu->spare_page);
5046 			kfree(percpu->scribble);
5047 			pr_err("%s: failed memory allocation for cpu%ld\n",
5048 			       __func__, cpu);
5049 			return notifier_from_errno(-ENOMEM);
5050 		}
5051 		break;
5052 	case CPU_DEAD:
5053 	case CPU_DEAD_FROZEN:
5054 		safe_put_page(percpu->spare_page);
5055 		kfree(percpu->scribble);
5056 		percpu->spare_page = NULL;
5057 		percpu->scribble = NULL;
5058 		break;
5059 	default:
5060 		break;
5061 	}
5062 	return NOTIFY_OK;
5063 }
5064 #endif
5065 
5066 static int raid5_alloc_percpu(struct r5conf *conf)
5067 {
5068 	unsigned long cpu;
5069 	struct page *spare_page;
5070 	struct raid5_percpu __percpu *allcpus;
5071 	void *scribble;
5072 	int err;
5073 
5074 	allcpus = alloc_percpu(struct raid5_percpu);
5075 	if (!allcpus)
5076 		return -ENOMEM;
5077 	conf->percpu = allcpus;
5078 
5079 	get_online_cpus();
5080 	err = 0;
5081 	for_each_present_cpu(cpu) {
5082 		if (conf->level == 6) {
5083 			spare_page = alloc_page(GFP_KERNEL);
5084 			if (!spare_page) {
5085 				err = -ENOMEM;
5086 				break;
5087 			}
5088 			per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
5089 		}
5090 		scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5091 		if (!scribble) {
5092 			err = -ENOMEM;
5093 			break;
5094 		}
5095 		per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
5096 	}
5097 #ifdef CONFIG_HOTPLUG_CPU
5098 	conf->cpu_notify.notifier_call = raid456_cpu_notify;
5099 	conf->cpu_notify.priority = 0;
5100 	if (err == 0)
5101 		err = register_cpu_notifier(&conf->cpu_notify);
5102 #endif
5103 	put_online_cpus();
5104 
5105 	return err;
5106 }
5107 
5108 static struct r5conf *setup_conf(struct mddev *mddev)
5109 {
5110 	struct r5conf *conf;
5111 	int raid_disk, memory, max_disks;
5112 	struct md_rdev *rdev;
5113 	struct disk_info *disk;
5114 	char pers_name[6];
5115 
5116 	if (mddev->new_level != 5
5117 	    && mddev->new_level != 4
5118 	    && mddev->new_level != 6) {
5119 		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
5120 		       mdname(mddev), mddev->new_level);
5121 		return ERR_PTR(-EIO);
5122 	}
5123 	if ((mddev->new_level == 5
5124 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
5125 	    (mddev->new_level == 6
5126 	     && !algorithm_valid_raid6(mddev->new_layout))) {
5127 		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
5128 		       mdname(mddev), mddev->new_layout);
5129 		return ERR_PTR(-EIO);
5130 	}
5131 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
5132 		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
5133 		       mdname(mddev), mddev->raid_disks);
5134 		return ERR_PTR(-EINVAL);
5135 	}
5136 
5137 	if (!mddev->new_chunk_sectors ||
5138 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
5139 	    !is_power_of_2(mddev->new_chunk_sectors)) {
5140 		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
5141 		       mdname(mddev), mddev->new_chunk_sectors << 9);
5142 		return ERR_PTR(-EINVAL);
5143 	}
5144 
5145 	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
5146 	if (conf == NULL)
5147 		goto abort;
5148 	spin_lock_init(&conf->device_lock);
5149 	init_waitqueue_head(&conf->wait_for_stripe);
5150 	init_waitqueue_head(&conf->wait_for_overlap);
5151 	INIT_LIST_HEAD(&conf->handle_list);
5152 	INIT_LIST_HEAD(&conf->hold_list);
5153 	INIT_LIST_HEAD(&conf->delayed_list);
5154 	INIT_LIST_HEAD(&conf->bitmap_list);
5155 	INIT_LIST_HEAD(&conf->inactive_list);
5156 	atomic_set(&conf->active_stripes, 0);
5157 	atomic_set(&conf->preread_active_stripes, 0);
5158 	atomic_set(&conf->active_aligned_reads, 0);
5159 	conf->bypass_threshold = BYPASS_THRESHOLD;
5160 	conf->recovery_disabled = mddev->recovery_disabled - 1;
5161 
5162 	conf->raid_disks = mddev->raid_disks;
5163 	if (mddev->reshape_position == MaxSector)
5164 		conf->previous_raid_disks = mddev->raid_disks;
5165 	else
5166 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5167 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
5168 	conf->scribble_len = scribble_len(max_disks);
5169 
5170 	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
5171 			      GFP_KERNEL);
5172 	if (!conf->disks)
5173 		goto abort;
5174 
5175 	conf->mddev = mddev;
5176 
5177 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
5178 		goto abort;
5179 
5180 	conf->level = mddev->new_level;
5181 	if (raid5_alloc_percpu(conf) != 0)
5182 		goto abort;
5183 
5184 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
5185 
5186 	rdev_for_each(rdev, mddev) {
5187 		raid_disk = rdev->raid_disk;
5188 		if (raid_disk >= max_disks
5189 		    || raid_disk < 0)
5190 			continue;
5191 		disk = conf->disks + raid_disk;
5192 
5193 		if (test_bit(Replacement, &rdev->flags)) {
5194 			if (disk->replacement)
5195 				goto abort;
5196 			disk->replacement = rdev;
5197 		} else {
5198 			if (disk->rdev)
5199 				goto abort;
5200 			disk->rdev = rdev;
5201 		}
5202 
5203 		if (test_bit(In_sync, &rdev->flags)) {
5204 			char b[BDEVNAME_SIZE];
5205 			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5206 			       " disk %d\n",
5207 			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
5208 		} else if (rdev->saved_raid_disk != raid_disk)
5209 			/* Cannot rely on bitmap to complete recovery */
5210 			conf->fullsync = 1;
5211 	}
5212 
5213 	conf->chunk_sectors = mddev->new_chunk_sectors;
5214 	conf->level = mddev->new_level;
5215 	if (conf->level == 6)
5216 		conf->max_degraded = 2;
5217 	else
5218 		conf->max_degraded = 1;
5219 	conf->algorithm = mddev->new_layout;
5220 	conf->max_nr_stripes = NR_STRIPES;
5221 	conf->reshape_progress = mddev->reshape_position;
5222 	if (conf->reshape_progress != MaxSector) {
5223 		conf->prev_chunk_sectors = mddev->chunk_sectors;
5224 		conf->prev_algo = mddev->layout;
5225 	}
5226 
5227 	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5228 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
5229 	if (grow_stripes(conf, conf->max_nr_stripes)) {
5230 		printk(KERN_ERR
5231 		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
5232 		       mdname(mddev), memory);
5233 		goto abort;
5234 	} else
5235 		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5236 		       mdname(mddev), memory);
5237 
5238 	sprintf(pers_name, "raid%d", mddev->new_level);
5239 	conf->thread = md_register_thread(raid5d, mddev, pers_name);
5240 	if (!conf->thread) {
5241 		printk(KERN_ERR
5242 		       "md/raid:%s: couldn't allocate thread.\n",
5243 		       mdname(mddev));
5244 		goto abort;
5245 	}
5246 
5247 	return conf;
5248 
5249  abort:
5250 	if (conf) {
5251 		free_conf(conf);
5252 		return ERR_PTR(-EIO);
5253 	} else
5254 		return ERR_PTR(-ENOMEM);
5255 }
5256 
5257 
5258 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5259 {
5260 	switch (algo) {
5261 	case ALGORITHM_PARITY_0:
5262 		if (raid_disk < max_degraded)
5263 			return 1;
5264 		break;
5265 	case ALGORITHM_PARITY_N:
5266 		if (raid_disk >= raid_disks - max_degraded)
5267 			return 1;
5268 		break;
5269 	case ALGORITHM_PARITY_0_6:
5270 		if (raid_disk == 0 ||
5271 		    raid_disk == raid_disks - 1)
5272 			return 1;
5273 		break;
5274 	case ALGORITHM_LEFT_ASYMMETRIC_6:
5275 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
5276 	case ALGORITHM_LEFT_SYMMETRIC_6:
5277 	case ALGORITHM_RIGHT_SYMMETRIC_6:
5278 		if (raid_disk == raid_disks - 1)
5279 			return 1;
5280 	}
5281 	return 0;
5282 }
5283 
5284 static int run(struct mddev *mddev)
5285 {
5286 	struct r5conf *conf;
5287 	int working_disks = 0;
5288 	int dirty_parity_disks = 0;
5289 	struct md_rdev *rdev;
5290 	sector_t reshape_offset = 0;
5291 	int i;
5292 	long long min_offset_diff = 0;
5293 	int first = 1;
5294 
5295 	if (mddev->recovery_cp != MaxSector)
5296 		printk(KERN_NOTICE "md/raid:%s: not clean"
5297 		       " -- starting background reconstruction\n",
5298 		       mdname(mddev));
5299 
5300 	rdev_for_each(rdev, mddev) {
5301 		long long diff;
5302 		if (rdev->raid_disk < 0)
5303 			continue;
5304 		diff = (rdev->new_data_offset - rdev->data_offset);
5305 		if (first) {
5306 			min_offset_diff = diff;
5307 			first = 0;
5308 		} else if (mddev->reshape_backwards &&
5309 			 diff < min_offset_diff)
5310 			min_offset_diff = diff;
5311 		else if (!mddev->reshape_backwards &&
5312 			 diff > min_offset_diff)
5313 			min_offset_diff = diff;
5314 	}
5315 
5316 	if (mddev->reshape_position != MaxSector) {
5317 		/* Check that we can continue the reshape.
5318 		 * Difficulties arise if the stripe we would write to
5319 		 * next is at or after the stripe we would read from next.
5320 		 * For a reshape that changes the number of devices, this
5321 		 * is only possible for a very short time, and mdadm makes
5322 		 * sure that time appears to have past before assembling
5323 		 * the array.  So we fail if that time hasn't passed.
5324 		 * For a reshape that keeps the number of devices the same
5325 		 * mdadm must be monitoring the reshape can keeping the
5326 		 * critical areas read-only and backed up.  It will start
5327 		 * the array in read-only mode, so we check for that.
5328 		 */
5329 		sector_t here_new, here_old;
5330 		int old_disks;
5331 		int max_degraded = (mddev->level == 6 ? 2 : 1);
5332 
5333 		if (mddev->new_level != mddev->level) {
5334 			printk(KERN_ERR "md/raid:%s: unsupported reshape "
5335 			       "required - aborting.\n",
5336 			       mdname(mddev));
5337 			return -EINVAL;
5338 		}
5339 		old_disks = mddev->raid_disks - mddev->delta_disks;
5340 		/* reshape_position must be on a new-stripe boundary, and one
5341 		 * further up in new geometry must map after here in old
5342 		 * geometry.
5343 		 */
5344 		here_new = mddev->reshape_position;
5345 		if (sector_div(here_new, mddev->new_chunk_sectors *
5346 			       (mddev->raid_disks - max_degraded))) {
5347 			printk(KERN_ERR "md/raid:%s: reshape_position not "
5348 			       "on a stripe boundary\n", mdname(mddev));
5349 			return -EINVAL;
5350 		}
5351 		reshape_offset = here_new * mddev->new_chunk_sectors;
5352 		/* here_new is the stripe we will write to */
5353 		here_old = mddev->reshape_position;
5354 		sector_div(here_old, mddev->chunk_sectors *
5355 			   (old_disks-max_degraded));
5356 		/* here_old is the first stripe that we might need to read
5357 		 * from */
5358 		if (mddev->delta_disks == 0) {
5359 			if ((here_new * mddev->new_chunk_sectors !=
5360 			     here_old * mddev->chunk_sectors)) {
5361 				printk(KERN_ERR "md/raid:%s: reshape position is"
5362 				       " confused - aborting\n", mdname(mddev));
5363 				return -EINVAL;
5364 			}
5365 			/* We cannot be sure it is safe to start an in-place
5366 			 * reshape.  It is only safe if user-space is monitoring
5367 			 * and taking constant backups.
5368 			 * mdadm always starts a situation like this in
5369 			 * readonly mode so it can take control before
5370 			 * allowing any writes.  So just check for that.
5371 			 */
5372 			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
5373 			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
5374 				/* not really in-place - so OK */;
5375 			else if (mddev->ro == 0) {
5376 				printk(KERN_ERR "md/raid:%s: in-place reshape "
5377 				       "must be started in read-only mode "
5378 				       "- aborting\n",
5379 				       mdname(mddev));
5380 				return -EINVAL;
5381 			}
5382 		} else if (mddev->reshape_backwards
5383 		    ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
5384 		       here_old * mddev->chunk_sectors)
5385 		    : (here_new * mddev->new_chunk_sectors >=
5386 		       here_old * mddev->chunk_sectors + (-min_offset_diff))) {
5387 			/* Reading from the same stripe as writing to - bad */
5388 			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5389 			       "auto-recovery - aborting.\n",
5390 			       mdname(mddev));
5391 			return -EINVAL;
5392 		}
5393 		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5394 		       mdname(mddev));
5395 		/* OK, we should be able to continue; */
5396 	} else {
5397 		BUG_ON(mddev->level != mddev->new_level);
5398 		BUG_ON(mddev->layout != mddev->new_layout);
5399 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5400 		BUG_ON(mddev->delta_disks != 0);
5401 	}
5402 
5403 	if (mddev->private == NULL)
5404 		conf = setup_conf(mddev);
5405 	else
5406 		conf = mddev->private;
5407 
5408 	if (IS_ERR(conf))
5409 		return PTR_ERR(conf);
5410 
5411 	conf->min_offset_diff = min_offset_diff;
5412 	mddev->thread = conf->thread;
5413 	conf->thread = NULL;
5414 	mddev->private = conf;
5415 
5416 	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5417 	     i++) {
5418 		rdev = conf->disks[i].rdev;
5419 		if (!rdev && conf->disks[i].replacement) {
5420 			/* The replacement is all we have yet */
5421 			rdev = conf->disks[i].replacement;
5422 			conf->disks[i].replacement = NULL;
5423 			clear_bit(Replacement, &rdev->flags);
5424 			conf->disks[i].rdev = rdev;
5425 		}
5426 		if (!rdev)
5427 			continue;
5428 		if (conf->disks[i].replacement &&
5429 		    conf->reshape_progress != MaxSector) {
5430 			/* replacements and reshape simply do not mix. */
5431 			printk(KERN_ERR "md: cannot handle concurrent "
5432 			       "replacement and reshape.\n");
5433 			goto abort;
5434 		}
5435 		if (test_bit(In_sync, &rdev->flags)) {
5436 			working_disks++;
5437 			continue;
5438 		}
5439 		/* This disc is not fully in-sync.  However if it
5440 		 * just stored parity (beyond the recovery_offset),
5441 		 * when we don't need to be concerned about the
5442 		 * array being dirty.
5443 		 * When reshape goes 'backwards', we never have
5444 		 * partially completed devices, so we only need
5445 		 * to worry about reshape going forwards.
5446 		 */
5447 		/* Hack because v0.91 doesn't store recovery_offset properly. */
5448 		if (mddev->major_version == 0 &&
5449 		    mddev->minor_version > 90)
5450 			rdev->recovery_offset = reshape_offset;
5451 
5452 		if (rdev->recovery_offset < reshape_offset) {
5453 			/* We need to check old and new layout */
5454 			if (!only_parity(rdev->raid_disk,
5455 					 conf->algorithm,
5456 					 conf->raid_disks,
5457 					 conf->max_degraded))
5458 				continue;
5459 		}
5460 		if (!only_parity(rdev->raid_disk,
5461 				 conf->prev_algo,
5462 				 conf->previous_raid_disks,
5463 				 conf->max_degraded))
5464 			continue;
5465 		dirty_parity_disks++;
5466 	}
5467 
5468 	/*
5469 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
5470 	 */
5471 	mddev->degraded = calc_degraded(conf);
5472 
5473 	if (has_failed(conf)) {
5474 		printk(KERN_ERR "md/raid:%s: not enough operational devices"
5475 			" (%d/%d failed)\n",
5476 			mdname(mddev), mddev->degraded, conf->raid_disks);
5477 		goto abort;
5478 	}
5479 
5480 	/* device size must be a multiple of chunk size */
5481 	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5482 	mddev->resync_max_sectors = mddev->dev_sectors;
5483 
5484 	if (mddev->degraded > dirty_parity_disks &&
5485 	    mddev->recovery_cp != MaxSector) {
5486 		if (mddev->ok_start_degraded)
5487 			printk(KERN_WARNING
5488 			       "md/raid:%s: starting dirty degraded array"
5489 			       " - data corruption possible.\n",
5490 			       mdname(mddev));
5491 		else {
5492 			printk(KERN_ERR
5493 			       "md/raid:%s: cannot start dirty degraded array.\n",
5494 			       mdname(mddev));
5495 			goto abort;
5496 		}
5497 	}
5498 
5499 	if (mddev->degraded == 0)
5500 		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5501 		       " devices, algorithm %d\n", mdname(mddev), conf->level,
5502 		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5503 		       mddev->new_layout);
5504 	else
5505 		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5506 		       " out of %d devices, algorithm %d\n",
5507 		       mdname(mddev), conf->level,
5508 		       mddev->raid_disks - mddev->degraded,
5509 		       mddev->raid_disks, mddev->new_layout);
5510 
5511 	print_raid5_conf(conf);
5512 
5513 	if (conf->reshape_progress != MaxSector) {
5514 		conf->reshape_safe = conf->reshape_progress;
5515 		atomic_set(&conf->reshape_stripes, 0);
5516 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5517 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5518 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5519 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5520 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5521 							"reshape");
5522 	}
5523 
5524 
5525 	/* Ok, everything is just fine now */
5526 	if (mddev->to_remove == &raid5_attrs_group)
5527 		mddev->to_remove = NULL;
5528 	else if (mddev->kobj.sd &&
5529 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5530 		printk(KERN_WARNING
5531 		       "raid5: failed to create sysfs attributes for %s\n",
5532 		       mdname(mddev));
5533 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5534 
5535 	if (mddev->queue) {
5536 		int chunk_size;
5537 		bool discard_supported = true;
5538 		/* read-ahead size must cover two whole stripes, which
5539 		 * is 2 * (datadisks) * chunksize where 'n' is the
5540 		 * number of raid devices
5541 		 */
5542 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
5543 		int stripe = data_disks *
5544 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
5545 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5546 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5547 
5548 		blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5549 
5550 		mddev->queue->backing_dev_info.congested_data = mddev;
5551 		mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5552 
5553 		chunk_size = mddev->chunk_sectors << 9;
5554 		blk_queue_io_min(mddev->queue, chunk_size);
5555 		blk_queue_io_opt(mddev->queue, chunk_size *
5556 				 (conf->raid_disks - conf->max_degraded));
5557 		/*
5558 		 * We can only discard a whole stripe. It doesn't make sense to
5559 		 * discard data disk but write parity disk
5560 		 */
5561 		stripe = stripe * PAGE_SIZE;
5562 		/* Round up to power of 2, as discard handling
5563 		 * currently assumes that */
5564 		while ((stripe-1) & stripe)
5565 			stripe = (stripe | (stripe-1)) + 1;
5566 		mddev->queue->limits.discard_alignment = stripe;
5567 		mddev->queue->limits.discard_granularity = stripe;
5568 		/*
5569 		 * unaligned part of discard request will be ignored, so can't
5570 		 * guarantee discard_zerors_data
5571 		 */
5572 		mddev->queue->limits.discard_zeroes_data = 0;
5573 
5574 		rdev_for_each(rdev, mddev) {
5575 			disk_stack_limits(mddev->gendisk, rdev->bdev,
5576 					  rdev->data_offset << 9);
5577 			disk_stack_limits(mddev->gendisk, rdev->bdev,
5578 					  rdev->new_data_offset << 9);
5579 			/*
5580 			 * discard_zeroes_data is required, otherwise data
5581 			 * could be lost. Consider a scenario: discard a stripe
5582 			 * (the stripe could be inconsistent if
5583 			 * discard_zeroes_data is 0); write one disk of the
5584 			 * stripe (the stripe could be inconsistent again
5585 			 * depending on which disks are used to calculate
5586 			 * parity); the disk is broken; The stripe data of this
5587 			 * disk is lost.
5588 			 */
5589 			if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
5590 			    !bdev_get_queue(rdev->bdev)->
5591 						limits.discard_zeroes_data)
5592 				discard_supported = false;
5593 		}
5594 
5595 		if (discard_supported &&
5596 		   mddev->queue->limits.max_discard_sectors >= stripe &&
5597 		   mddev->queue->limits.discard_granularity >= stripe)
5598 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
5599 						mddev->queue);
5600 		else
5601 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
5602 						mddev->queue);
5603 	}
5604 
5605 	return 0;
5606 abort:
5607 	md_unregister_thread(&mddev->thread);
5608 	print_raid5_conf(conf);
5609 	free_conf(conf);
5610 	mddev->private = NULL;
5611 	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5612 	return -EIO;
5613 }
5614 
5615 static int stop(struct mddev *mddev)
5616 {
5617 	struct r5conf *conf = mddev->private;
5618 
5619 	md_unregister_thread(&mddev->thread);
5620 	if (mddev->queue)
5621 		mddev->queue->backing_dev_info.congested_fn = NULL;
5622 	free_conf(conf);
5623 	mddev->private = NULL;
5624 	mddev->to_remove = &raid5_attrs_group;
5625 	return 0;
5626 }
5627 
5628 static void status(struct seq_file *seq, struct mddev *mddev)
5629 {
5630 	struct r5conf *conf = mddev->private;
5631 	int i;
5632 
5633 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5634 		mddev->chunk_sectors / 2, mddev->layout);
5635 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5636 	for (i = 0; i < conf->raid_disks; i++)
5637 		seq_printf (seq, "%s",
5638 			       conf->disks[i].rdev &&
5639 			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5640 	seq_printf (seq, "]");
5641 }
5642 
5643 static void print_raid5_conf (struct r5conf *conf)
5644 {
5645 	int i;
5646 	struct disk_info *tmp;
5647 
5648 	printk(KERN_DEBUG "RAID conf printout:\n");
5649 	if (!conf) {
5650 		printk("(conf==NULL)\n");
5651 		return;
5652 	}
5653 	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5654 	       conf->raid_disks,
5655 	       conf->raid_disks - conf->mddev->degraded);
5656 
5657 	for (i = 0; i < conf->raid_disks; i++) {
5658 		char b[BDEVNAME_SIZE];
5659 		tmp = conf->disks + i;
5660 		if (tmp->rdev)
5661 			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5662 			       i, !test_bit(Faulty, &tmp->rdev->flags),
5663 			       bdevname(tmp->rdev->bdev, b));
5664 	}
5665 }
5666 
5667 static int raid5_spare_active(struct mddev *mddev)
5668 {
5669 	int i;
5670 	struct r5conf *conf = mddev->private;
5671 	struct disk_info *tmp;
5672 	int count = 0;
5673 	unsigned long flags;
5674 
5675 	for (i = 0; i < conf->raid_disks; i++) {
5676 		tmp = conf->disks + i;
5677 		if (tmp->replacement
5678 		    && tmp->replacement->recovery_offset == MaxSector
5679 		    && !test_bit(Faulty, &tmp->replacement->flags)
5680 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
5681 			/* Replacement has just become active. */
5682 			if (!tmp->rdev
5683 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
5684 				count++;
5685 			if (tmp->rdev) {
5686 				/* Replaced device not technically faulty,
5687 				 * but we need to be sure it gets removed
5688 				 * and never re-added.
5689 				 */
5690 				set_bit(Faulty, &tmp->rdev->flags);
5691 				sysfs_notify_dirent_safe(
5692 					tmp->rdev->sysfs_state);
5693 			}
5694 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
5695 		} else if (tmp->rdev
5696 		    && tmp->rdev->recovery_offset == MaxSector
5697 		    && !test_bit(Faulty, &tmp->rdev->flags)
5698 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5699 			count++;
5700 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5701 		}
5702 	}
5703 	spin_lock_irqsave(&conf->device_lock, flags);
5704 	mddev->degraded = calc_degraded(conf);
5705 	spin_unlock_irqrestore(&conf->device_lock, flags);
5706 	print_raid5_conf(conf);
5707 	return count;
5708 }
5709 
5710 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
5711 {
5712 	struct r5conf *conf = mddev->private;
5713 	int err = 0;
5714 	int number = rdev->raid_disk;
5715 	struct md_rdev **rdevp;
5716 	struct disk_info *p = conf->disks + number;
5717 
5718 	print_raid5_conf(conf);
5719 	if (rdev == p->rdev)
5720 		rdevp = &p->rdev;
5721 	else if (rdev == p->replacement)
5722 		rdevp = &p->replacement;
5723 	else
5724 		return 0;
5725 
5726 	if (number >= conf->raid_disks &&
5727 	    conf->reshape_progress == MaxSector)
5728 		clear_bit(In_sync, &rdev->flags);
5729 
5730 	if (test_bit(In_sync, &rdev->flags) ||
5731 	    atomic_read(&rdev->nr_pending)) {
5732 		err = -EBUSY;
5733 		goto abort;
5734 	}
5735 	/* Only remove non-faulty devices if recovery
5736 	 * isn't possible.
5737 	 */
5738 	if (!test_bit(Faulty, &rdev->flags) &&
5739 	    mddev->recovery_disabled != conf->recovery_disabled &&
5740 	    !has_failed(conf) &&
5741 	    (!p->replacement || p->replacement == rdev) &&
5742 	    number < conf->raid_disks) {
5743 		err = -EBUSY;
5744 		goto abort;
5745 	}
5746 	*rdevp = NULL;
5747 	synchronize_rcu();
5748 	if (atomic_read(&rdev->nr_pending)) {
5749 		/* lost the race, try later */
5750 		err = -EBUSY;
5751 		*rdevp = rdev;
5752 	} else if (p->replacement) {
5753 		/* We must have just cleared 'rdev' */
5754 		p->rdev = p->replacement;
5755 		clear_bit(Replacement, &p->replacement->flags);
5756 		smp_mb(); /* Make sure other CPUs may see both as identical
5757 			   * but will never see neither - if they are careful
5758 			   */
5759 		p->replacement = NULL;
5760 		clear_bit(WantReplacement, &rdev->flags);
5761 	} else
5762 		/* We might have just removed the Replacement as faulty-
5763 		 * clear the bit just in case
5764 		 */
5765 		clear_bit(WantReplacement, &rdev->flags);
5766 abort:
5767 
5768 	print_raid5_conf(conf);
5769 	return err;
5770 }
5771 
5772 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
5773 {
5774 	struct r5conf *conf = mddev->private;
5775 	int err = -EEXIST;
5776 	int disk;
5777 	struct disk_info *p;
5778 	int first = 0;
5779 	int last = conf->raid_disks - 1;
5780 
5781 	if (mddev->recovery_disabled == conf->recovery_disabled)
5782 		return -EBUSY;
5783 
5784 	if (rdev->saved_raid_disk < 0 && has_failed(conf))
5785 		/* no point adding a device */
5786 		return -EINVAL;
5787 
5788 	if (rdev->raid_disk >= 0)
5789 		first = last = rdev->raid_disk;
5790 
5791 	/*
5792 	 * find the disk ... but prefer rdev->saved_raid_disk
5793 	 * if possible.
5794 	 */
5795 	if (rdev->saved_raid_disk >= 0 &&
5796 	    rdev->saved_raid_disk >= first &&
5797 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
5798 		first = rdev->saved_raid_disk;
5799 
5800 	for (disk = first; disk <= last; disk++) {
5801 		p = conf->disks + disk;
5802 		if (p->rdev == NULL) {
5803 			clear_bit(In_sync, &rdev->flags);
5804 			rdev->raid_disk = disk;
5805 			err = 0;
5806 			if (rdev->saved_raid_disk != disk)
5807 				conf->fullsync = 1;
5808 			rcu_assign_pointer(p->rdev, rdev);
5809 			goto out;
5810 		}
5811 	}
5812 	for (disk = first; disk <= last; disk++) {
5813 		p = conf->disks + disk;
5814 		if (test_bit(WantReplacement, &p->rdev->flags) &&
5815 		    p->replacement == NULL) {
5816 			clear_bit(In_sync, &rdev->flags);
5817 			set_bit(Replacement, &rdev->flags);
5818 			rdev->raid_disk = disk;
5819 			err = 0;
5820 			conf->fullsync = 1;
5821 			rcu_assign_pointer(p->replacement, rdev);
5822 			break;
5823 		}
5824 	}
5825 out:
5826 	print_raid5_conf(conf);
5827 	return err;
5828 }
5829 
5830 static int raid5_resize(struct mddev *mddev, sector_t sectors)
5831 {
5832 	/* no resync is happening, and there is enough space
5833 	 * on all devices, so we can resize.
5834 	 * We need to make sure resync covers any new space.
5835 	 * If the array is shrinking we should possibly wait until
5836 	 * any io in the removed space completes, but it hardly seems
5837 	 * worth it.
5838 	 */
5839 	sector_t newsize;
5840 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5841 	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
5842 	if (mddev->external_size &&
5843 	    mddev->array_sectors > newsize)
5844 		return -EINVAL;
5845 	if (mddev->bitmap) {
5846 		int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
5847 		if (ret)
5848 			return ret;
5849 	}
5850 	md_set_array_sectors(mddev, newsize);
5851 	set_capacity(mddev->gendisk, mddev->array_sectors);
5852 	revalidate_disk(mddev->gendisk);
5853 	if (sectors > mddev->dev_sectors &&
5854 	    mddev->recovery_cp > mddev->dev_sectors) {
5855 		mddev->recovery_cp = mddev->dev_sectors;
5856 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5857 	}
5858 	mddev->dev_sectors = sectors;
5859 	mddev->resync_max_sectors = sectors;
5860 	return 0;
5861 }
5862 
5863 static int check_stripe_cache(struct mddev *mddev)
5864 {
5865 	/* Can only proceed if there are plenty of stripe_heads.
5866 	 * We need a minimum of one full stripe,, and for sensible progress
5867 	 * it is best to have about 4 times that.
5868 	 * If we require 4 times, then the default 256 4K stripe_heads will
5869 	 * allow for chunk sizes up to 256K, which is probably OK.
5870 	 * If the chunk size is greater, user-space should request more
5871 	 * stripe_heads first.
5872 	 */
5873 	struct r5conf *conf = mddev->private;
5874 	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5875 	    > conf->max_nr_stripes ||
5876 	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5877 	    > conf->max_nr_stripes) {
5878 		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
5879 		       mdname(mddev),
5880 		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5881 			/ STRIPE_SIZE)*4);
5882 		return 0;
5883 	}
5884 	return 1;
5885 }
5886 
5887 static int check_reshape(struct mddev *mddev)
5888 {
5889 	struct r5conf *conf = mddev->private;
5890 
5891 	if (mddev->delta_disks == 0 &&
5892 	    mddev->new_layout == mddev->layout &&
5893 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
5894 		return 0; /* nothing to do */
5895 	if (has_failed(conf))
5896 		return -EINVAL;
5897 	if (mddev->delta_disks < 0) {
5898 		/* We might be able to shrink, but the devices must
5899 		 * be made bigger first.
5900 		 * For raid6, 4 is the minimum size.
5901 		 * Otherwise 2 is the minimum
5902 		 */
5903 		int min = 2;
5904 		if (mddev->level == 6)
5905 			min = 4;
5906 		if (mddev->raid_disks + mddev->delta_disks < min)
5907 			return -EINVAL;
5908 	}
5909 
5910 	if (!check_stripe_cache(mddev))
5911 		return -ENOSPC;
5912 
5913 	return resize_stripes(conf, (conf->previous_raid_disks
5914 				     + mddev->delta_disks));
5915 }
5916 
5917 static int raid5_start_reshape(struct mddev *mddev)
5918 {
5919 	struct r5conf *conf = mddev->private;
5920 	struct md_rdev *rdev;
5921 	int spares = 0;
5922 	unsigned long flags;
5923 
5924 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5925 		return -EBUSY;
5926 
5927 	if (!check_stripe_cache(mddev))
5928 		return -ENOSPC;
5929 
5930 	if (has_failed(conf))
5931 		return -EINVAL;
5932 
5933 	rdev_for_each(rdev, mddev) {
5934 		if (!test_bit(In_sync, &rdev->flags)
5935 		    && !test_bit(Faulty, &rdev->flags))
5936 			spares++;
5937 	}
5938 
5939 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5940 		/* Not enough devices even to make a degraded array
5941 		 * of that size
5942 		 */
5943 		return -EINVAL;
5944 
5945 	/* Refuse to reduce size of the array.  Any reductions in
5946 	 * array size must be through explicit setting of array_size
5947 	 * attribute.
5948 	 */
5949 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5950 	    < mddev->array_sectors) {
5951 		printk(KERN_ERR "md/raid:%s: array size must be reduced "
5952 		       "before number of disks\n", mdname(mddev));
5953 		return -EINVAL;
5954 	}
5955 
5956 	atomic_set(&conf->reshape_stripes, 0);
5957 	spin_lock_irq(&conf->device_lock);
5958 	conf->previous_raid_disks = conf->raid_disks;
5959 	conf->raid_disks += mddev->delta_disks;
5960 	conf->prev_chunk_sectors = conf->chunk_sectors;
5961 	conf->chunk_sectors = mddev->new_chunk_sectors;
5962 	conf->prev_algo = conf->algorithm;
5963 	conf->algorithm = mddev->new_layout;
5964 	conf->generation++;
5965 	/* Code that selects data_offset needs to see the generation update
5966 	 * if reshape_progress has been set - so a memory barrier needed.
5967 	 */
5968 	smp_mb();
5969 	if (mddev->reshape_backwards)
5970 		conf->reshape_progress = raid5_size(mddev, 0, 0);
5971 	else
5972 		conf->reshape_progress = 0;
5973 	conf->reshape_safe = conf->reshape_progress;
5974 	spin_unlock_irq(&conf->device_lock);
5975 
5976 	/* Add some new drives, as many as will fit.
5977 	 * We know there are enough to make the newly sized array work.
5978 	 * Don't add devices if we are reducing the number of
5979 	 * devices in the array.  This is because it is not possible
5980 	 * to correctly record the "partially reconstructed" state of
5981 	 * such devices during the reshape and confusion could result.
5982 	 */
5983 	if (mddev->delta_disks >= 0) {
5984 		rdev_for_each(rdev, mddev)
5985 			if (rdev->raid_disk < 0 &&
5986 			    !test_bit(Faulty, &rdev->flags)) {
5987 				if (raid5_add_disk(mddev, rdev) == 0) {
5988 					if (rdev->raid_disk
5989 					    >= conf->previous_raid_disks)
5990 						set_bit(In_sync, &rdev->flags);
5991 					else
5992 						rdev->recovery_offset = 0;
5993 
5994 					if (sysfs_link_rdev(mddev, rdev))
5995 						/* Failure here is OK */;
5996 				}
5997 			} else if (rdev->raid_disk >= conf->previous_raid_disks
5998 				   && !test_bit(Faulty, &rdev->flags)) {
5999 				/* This is a spare that was manually added */
6000 				set_bit(In_sync, &rdev->flags);
6001 			}
6002 
6003 		/* When a reshape changes the number of devices,
6004 		 * ->degraded is measured against the larger of the
6005 		 * pre and post number of devices.
6006 		 */
6007 		spin_lock_irqsave(&conf->device_lock, flags);
6008 		mddev->degraded = calc_degraded(conf);
6009 		spin_unlock_irqrestore(&conf->device_lock, flags);
6010 	}
6011 	mddev->raid_disks = conf->raid_disks;
6012 	mddev->reshape_position = conf->reshape_progress;
6013 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
6014 
6015 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6016 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6017 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6018 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6019 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6020 						"reshape");
6021 	if (!mddev->sync_thread) {
6022 		mddev->recovery = 0;
6023 		spin_lock_irq(&conf->device_lock);
6024 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
6025 		rdev_for_each(rdev, mddev)
6026 			rdev->new_data_offset = rdev->data_offset;
6027 		smp_wmb();
6028 		conf->reshape_progress = MaxSector;
6029 		mddev->reshape_position = MaxSector;
6030 		spin_unlock_irq(&conf->device_lock);
6031 		return -EAGAIN;
6032 	}
6033 	conf->reshape_checkpoint = jiffies;
6034 	md_wakeup_thread(mddev->sync_thread);
6035 	md_new_event(mddev);
6036 	return 0;
6037 }
6038 
6039 /* This is called from the reshape thread and should make any
6040  * changes needed in 'conf'
6041  */
6042 static void end_reshape(struct r5conf *conf)
6043 {
6044 
6045 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
6046 		struct md_rdev *rdev;
6047 
6048 		spin_lock_irq(&conf->device_lock);
6049 		conf->previous_raid_disks = conf->raid_disks;
6050 		rdev_for_each(rdev, conf->mddev)
6051 			rdev->data_offset = rdev->new_data_offset;
6052 		smp_wmb();
6053 		conf->reshape_progress = MaxSector;
6054 		spin_unlock_irq(&conf->device_lock);
6055 		wake_up(&conf->wait_for_overlap);
6056 
6057 		/* read-ahead size must cover two whole stripes, which is
6058 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6059 		 */
6060 		if (conf->mddev->queue) {
6061 			int data_disks = conf->raid_disks - conf->max_degraded;
6062 			int stripe = data_disks * ((conf->chunk_sectors << 9)
6063 						   / PAGE_SIZE);
6064 			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6065 				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6066 		}
6067 	}
6068 }
6069 
6070 /* This is called from the raid5d thread with mddev_lock held.
6071  * It makes config changes to the device.
6072  */
6073 static void raid5_finish_reshape(struct mddev *mddev)
6074 {
6075 	struct r5conf *conf = mddev->private;
6076 
6077 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6078 
6079 		if (mddev->delta_disks > 0) {
6080 			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6081 			set_capacity(mddev->gendisk, mddev->array_sectors);
6082 			revalidate_disk(mddev->gendisk);
6083 		} else {
6084 			int d;
6085 			spin_lock_irq(&conf->device_lock);
6086 			mddev->degraded = calc_degraded(conf);
6087 			spin_unlock_irq(&conf->device_lock);
6088 			for (d = conf->raid_disks ;
6089 			     d < conf->raid_disks - mddev->delta_disks;
6090 			     d++) {
6091 				struct md_rdev *rdev = conf->disks[d].rdev;
6092 				if (rdev)
6093 					clear_bit(In_sync, &rdev->flags);
6094 				rdev = conf->disks[d].replacement;
6095 				if (rdev)
6096 					clear_bit(In_sync, &rdev->flags);
6097 			}
6098 		}
6099 		mddev->layout = conf->algorithm;
6100 		mddev->chunk_sectors = conf->chunk_sectors;
6101 		mddev->reshape_position = MaxSector;
6102 		mddev->delta_disks = 0;
6103 		mddev->reshape_backwards = 0;
6104 	}
6105 }
6106 
6107 static void raid5_quiesce(struct mddev *mddev, int state)
6108 {
6109 	struct r5conf *conf = mddev->private;
6110 
6111 	switch(state) {
6112 	case 2: /* resume for a suspend */
6113 		wake_up(&conf->wait_for_overlap);
6114 		break;
6115 
6116 	case 1: /* stop all writes */
6117 		spin_lock_irq(&conf->device_lock);
6118 		/* '2' tells resync/reshape to pause so that all
6119 		 * active stripes can drain
6120 		 */
6121 		conf->quiesce = 2;
6122 		wait_event_lock_irq(conf->wait_for_stripe,
6123 				    atomic_read(&conf->active_stripes) == 0 &&
6124 				    atomic_read(&conf->active_aligned_reads) == 0,
6125 				    conf->device_lock);
6126 		conf->quiesce = 1;
6127 		spin_unlock_irq(&conf->device_lock);
6128 		/* allow reshape to continue */
6129 		wake_up(&conf->wait_for_overlap);
6130 		break;
6131 
6132 	case 0: /* re-enable writes */
6133 		spin_lock_irq(&conf->device_lock);
6134 		conf->quiesce = 0;
6135 		wake_up(&conf->wait_for_stripe);
6136 		wake_up(&conf->wait_for_overlap);
6137 		spin_unlock_irq(&conf->device_lock);
6138 		break;
6139 	}
6140 }
6141 
6142 
6143 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
6144 {
6145 	struct r0conf *raid0_conf = mddev->private;
6146 	sector_t sectors;
6147 
6148 	/* for raid0 takeover only one zone is supported */
6149 	if (raid0_conf->nr_strip_zones > 1) {
6150 		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6151 		       mdname(mddev));
6152 		return ERR_PTR(-EINVAL);
6153 	}
6154 
6155 	sectors = raid0_conf->strip_zone[0].zone_end;
6156 	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
6157 	mddev->dev_sectors = sectors;
6158 	mddev->new_level = level;
6159 	mddev->new_layout = ALGORITHM_PARITY_N;
6160 	mddev->new_chunk_sectors = mddev->chunk_sectors;
6161 	mddev->raid_disks += 1;
6162 	mddev->delta_disks = 1;
6163 	/* make sure it will be not marked as dirty */
6164 	mddev->recovery_cp = MaxSector;
6165 
6166 	return setup_conf(mddev);
6167 }
6168 
6169 
6170 static void *raid5_takeover_raid1(struct mddev *mddev)
6171 {
6172 	int chunksect;
6173 
6174 	if (mddev->raid_disks != 2 ||
6175 	    mddev->degraded > 1)
6176 		return ERR_PTR(-EINVAL);
6177 
6178 	/* Should check if there are write-behind devices? */
6179 
6180 	chunksect = 64*2; /* 64K by default */
6181 
6182 	/* The array must be an exact multiple of chunksize */
6183 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
6184 		chunksect >>= 1;
6185 
6186 	if ((chunksect<<9) < STRIPE_SIZE)
6187 		/* array size does not allow a suitable chunk size */
6188 		return ERR_PTR(-EINVAL);
6189 
6190 	mddev->new_level = 5;
6191 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
6192 	mddev->new_chunk_sectors = chunksect;
6193 
6194 	return setup_conf(mddev);
6195 }
6196 
6197 static void *raid5_takeover_raid6(struct mddev *mddev)
6198 {
6199 	int new_layout;
6200 
6201 	switch (mddev->layout) {
6202 	case ALGORITHM_LEFT_ASYMMETRIC_6:
6203 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
6204 		break;
6205 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
6206 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
6207 		break;
6208 	case ALGORITHM_LEFT_SYMMETRIC_6:
6209 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
6210 		break;
6211 	case ALGORITHM_RIGHT_SYMMETRIC_6:
6212 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
6213 		break;
6214 	case ALGORITHM_PARITY_0_6:
6215 		new_layout = ALGORITHM_PARITY_0;
6216 		break;
6217 	case ALGORITHM_PARITY_N:
6218 		new_layout = ALGORITHM_PARITY_N;
6219 		break;
6220 	default:
6221 		return ERR_PTR(-EINVAL);
6222 	}
6223 	mddev->new_level = 5;
6224 	mddev->new_layout = new_layout;
6225 	mddev->delta_disks = -1;
6226 	mddev->raid_disks -= 1;
6227 	return setup_conf(mddev);
6228 }
6229 
6230 
6231 static int raid5_check_reshape(struct mddev *mddev)
6232 {
6233 	/* For a 2-drive array, the layout and chunk size can be changed
6234 	 * immediately as not restriping is needed.
6235 	 * For larger arrays we record the new value - after validation
6236 	 * to be used by a reshape pass.
6237 	 */
6238 	struct r5conf *conf = mddev->private;
6239 	int new_chunk = mddev->new_chunk_sectors;
6240 
6241 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
6242 		return -EINVAL;
6243 	if (new_chunk > 0) {
6244 		if (!is_power_of_2(new_chunk))
6245 			return -EINVAL;
6246 		if (new_chunk < (PAGE_SIZE>>9))
6247 			return -EINVAL;
6248 		if (mddev->array_sectors & (new_chunk-1))
6249 			/* not factor of array size */
6250 			return -EINVAL;
6251 	}
6252 
6253 	/* They look valid */
6254 
6255 	if (mddev->raid_disks == 2) {
6256 		/* can make the change immediately */
6257 		if (mddev->new_layout >= 0) {
6258 			conf->algorithm = mddev->new_layout;
6259 			mddev->layout = mddev->new_layout;
6260 		}
6261 		if (new_chunk > 0) {
6262 			conf->chunk_sectors = new_chunk ;
6263 			mddev->chunk_sectors = new_chunk;
6264 		}
6265 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
6266 		md_wakeup_thread(mddev->thread);
6267 	}
6268 	return check_reshape(mddev);
6269 }
6270 
6271 static int raid6_check_reshape(struct mddev *mddev)
6272 {
6273 	int new_chunk = mddev->new_chunk_sectors;
6274 
6275 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
6276 		return -EINVAL;
6277 	if (new_chunk > 0) {
6278 		if (!is_power_of_2(new_chunk))
6279 			return -EINVAL;
6280 		if (new_chunk < (PAGE_SIZE >> 9))
6281 			return -EINVAL;
6282 		if (mddev->array_sectors & (new_chunk-1))
6283 			/* not factor of array size */
6284 			return -EINVAL;
6285 	}
6286 
6287 	/* They look valid */
6288 	return check_reshape(mddev);
6289 }
6290 
6291 static void *raid5_takeover(struct mddev *mddev)
6292 {
6293 	/* raid5 can take over:
6294 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
6295 	 *  raid1 - if there are two drives.  We need to know the chunk size
6296 	 *  raid4 - trivial - just use a raid4 layout.
6297 	 *  raid6 - Providing it is a *_6 layout
6298 	 */
6299 	if (mddev->level == 0)
6300 		return raid45_takeover_raid0(mddev, 5);
6301 	if (mddev->level == 1)
6302 		return raid5_takeover_raid1(mddev);
6303 	if (mddev->level == 4) {
6304 		mddev->new_layout = ALGORITHM_PARITY_N;
6305 		mddev->new_level = 5;
6306 		return setup_conf(mddev);
6307 	}
6308 	if (mddev->level == 6)
6309 		return raid5_takeover_raid6(mddev);
6310 
6311 	return ERR_PTR(-EINVAL);
6312 }
6313 
6314 static void *raid4_takeover(struct mddev *mddev)
6315 {
6316 	/* raid4 can take over:
6317 	 *  raid0 - if there is only one strip zone
6318 	 *  raid5 - if layout is right
6319 	 */
6320 	if (mddev->level == 0)
6321 		return raid45_takeover_raid0(mddev, 4);
6322 	if (mddev->level == 5 &&
6323 	    mddev->layout == ALGORITHM_PARITY_N) {
6324 		mddev->new_layout = 0;
6325 		mddev->new_level = 4;
6326 		return setup_conf(mddev);
6327 	}
6328 	return ERR_PTR(-EINVAL);
6329 }
6330 
6331 static struct md_personality raid5_personality;
6332 
6333 static void *raid6_takeover(struct mddev *mddev)
6334 {
6335 	/* Currently can only take over a raid5.  We map the
6336 	 * personality to an equivalent raid6 personality
6337 	 * with the Q block at the end.
6338 	 */
6339 	int new_layout;
6340 
6341 	if (mddev->pers != &raid5_personality)
6342 		return ERR_PTR(-EINVAL);
6343 	if (mddev->degraded > 1)
6344 		return ERR_PTR(-EINVAL);
6345 	if (mddev->raid_disks > 253)
6346 		return ERR_PTR(-EINVAL);
6347 	if (mddev->raid_disks < 3)
6348 		return ERR_PTR(-EINVAL);
6349 
6350 	switch (mddev->layout) {
6351 	case ALGORITHM_LEFT_ASYMMETRIC:
6352 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
6353 		break;
6354 	case ALGORITHM_RIGHT_ASYMMETRIC:
6355 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
6356 		break;
6357 	case ALGORITHM_LEFT_SYMMETRIC:
6358 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
6359 		break;
6360 	case ALGORITHM_RIGHT_SYMMETRIC:
6361 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
6362 		break;
6363 	case ALGORITHM_PARITY_0:
6364 		new_layout = ALGORITHM_PARITY_0_6;
6365 		break;
6366 	case ALGORITHM_PARITY_N:
6367 		new_layout = ALGORITHM_PARITY_N;
6368 		break;
6369 	default:
6370 		return ERR_PTR(-EINVAL);
6371 	}
6372 	mddev->new_level = 6;
6373 	mddev->new_layout = new_layout;
6374 	mddev->delta_disks = 1;
6375 	mddev->raid_disks += 1;
6376 	return setup_conf(mddev);
6377 }
6378 
6379 
6380 static struct md_personality raid6_personality =
6381 {
6382 	.name		= "raid6",
6383 	.level		= 6,
6384 	.owner		= THIS_MODULE,
6385 	.make_request	= make_request,
6386 	.run		= run,
6387 	.stop		= stop,
6388 	.status		= status,
6389 	.error_handler	= error,
6390 	.hot_add_disk	= raid5_add_disk,
6391 	.hot_remove_disk= raid5_remove_disk,
6392 	.spare_active	= raid5_spare_active,
6393 	.sync_request	= sync_request,
6394 	.resize		= raid5_resize,
6395 	.size		= raid5_size,
6396 	.check_reshape	= raid6_check_reshape,
6397 	.start_reshape  = raid5_start_reshape,
6398 	.finish_reshape = raid5_finish_reshape,
6399 	.quiesce	= raid5_quiesce,
6400 	.takeover	= raid6_takeover,
6401 };
6402 static struct md_personality raid5_personality =
6403 {
6404 	.name		= "raid5",
6405 	.level		= 5,
6406 	.owner		= THIS_MODULE,
6407 	.make_request	= make_request,
6408 	.run		= run,
6409 	.stop		= stop,
6410 	.status		= status,
6411 	.error_handler	= error,
6412 	.hot_add_disk	= raid5_add_disk,
6413 	.hot_remove_disk= raid5_remove_disk,
6414 	.spare_active	= raid5_spare_active,
6415 	.sync_request	= sync_request,
6416 	.resize		= raid5_resize,
6417 	.size		= raid5_size,
6418 	.check_reshape	= raid5_check_reshape,
6419 	.start_reshape  = raid5_start_reshape,
6420 	.finish_reshape = raid5_finish_reshape,
6421 	.quiesce	= raid5_quiesce,
6422 	.takeover	= raid5_takeover,
6423 };
6424 
6425 static struct md_personality raid4_personality =
6426 {
6427 	.name		= "raid4",
6428 	.level		= 4,
6429 	.owner		= THIS_MODULE,
6430 	.make_request	= make_request,
6431 	.run		= run,
6432 	.stop		= stop,
6433 	.status		= status,
6434 	.error_handler	= error,
6435 	.hot_add_disk	= raid5_add_disk,
6436 	.hot_remove_disk= raid5_remove_disk,
6437 	.spare_active	= raid5_spare_active,
6438 	.sync_request	= sync_request,
6439 	.resize		= raid5_resize,
6440 	.size		= raid5_size,
6441 	.check_reshape	= raid5_check_reshape,
6442 	.start_reshape  = raid5_start_reshape,
6443 	.finish_reshape = raid5_finish_reshape,
6444 	.quiesce	= raid5_quiesce,
6445 	.takeover	= raid4_takeover,
6446 };
6447 
6448 static int __init raid5_init(void)
6449 {
6450 	register_md_personality(&raid6_personality);
6451 	register_md_personality(&raid5_personality);
6452 	register_md_personality(&raid4_personality);
6453 	return 0;
6454 }
6455 
6456 static void raid5_exit(void)
6457 {
6458 	unregister_md_personality(&raid6_personality);
6459 	unregister_md_personality(&raid5_personality);
6460 	unregister_md_personality(&raid4_personality);
6461 }
6462 
6463 module_init(raid5_init);
6464 module_exit(raid5_exit);
6465 MODULE_LICENSE("GPL");
6466 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6467 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6468 MODULE_ALIAS("md-raid5");
6469 MODULE_ALIAS("md-raid4");
6470 MODULE_ALIAS("md-level-5");
6471 MODULE_ALIAS("md-level-4");
6472 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6473 MODULE_ALIAS("md-raid6");
6474 MODULE_ALIAS("md-level-6");
6475 
6476 /* This used to be two separate modules, they were: */
6477 MODULE_ALIAS("raid5");
6478 MODULE_ALIAS("raid6");
6479