1 /* 2 * raid5.c : Multiple Devices driver for Linux 3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman 4 * Copyright (C) 1999, 2000 Ingo Molnar 5 * Copyright (C) 2002, 2003 H. Peter Anvin 6 * 7 * RAID-4/5/6 management functions. 8 * Thanks to Penguin Computing for making the RAID-6 development possible 9 * by donating a test server! 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 /* 22 * BITMAP UNPLUGGING: 23 * 24 * The sequencing for updating the bitmap reliably is a little 25 * subtle (and I got it wrong the first time) so it deserves some 26 * explanation. 27 * 28 * We group bitmap updates into batches. Each batch has a number. 29 * We may write out several batches at once, but that isn't very important. 30 * conf->seq_write is the number of the last batch successfully written. 31 * conf->seq_flush is the number of the last batch that was closed to 32 * new additions. 33 * When we discover that we will need to write to any block in a stripe 34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq 35 * the number of the batch it will be in. This is seq_flush+1. 36 * When we are ready to do a write, if that batch hasn't been written yet, 37 * we plug the array and queue the stripe for later. 38 * When an unplug happens, we increment bm_flush, thus closing the current 39 * batch. 40 * When we notice that bm_flush > bm_write, we write out all pending updates 41 * to the bitmap, and advance bm_write to where bm_flush was. 42 * This may occasionally write a bit out twice, but is sure never to 43 * miss any bits. 44 */ 45 46 #include <linux/blkdev.h> 47 #include <linux/kthread.h> 48 #include <linux/raid/pq.h> 49 #include <linux/async_tx.h> 50 #include <linux/module.h> 51 #include <linux/async.h> 52 #include <linux/seq_file.h> 53 #include <linux/cpu.h> 54 #include <linux/slab.h> 55 #include <linux/ratelimit.h> 56 #include <trace/events/block.h> 57 58 #include "md.h" 59 #include "raid5.h" 60 #include "raid0.h" 61 #include "bitmap.h" 62 63 /* 64 * Stripe cache 65 */ 66 67 #define NR_STRIPES 256 68 #define STRIPE_SIZE PAGE_SIZE 69 #define STRIPE_SHIFT (PAGE_SHIFT - 9) 70 #define STRIPE_SECTORS (STRIPE_SIZE>>9) 71 #define IO_THRESHOLD 1 72 #define BYPASS_THRESHOLD 1 73 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head)) 74 #define HASH_MASK (NR_HASH - 1) 75 76 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect) 77 { 78 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK; 79 return &conf->stripe_hashtbl[hash]; 80 } 81 82 /* bio's attached to a stripe+device for I/O are linked together in bi_sector 83 * order without overlap. There may be several bio's per stripe+device, and 84 * a bio could span several devices. 85 * When walking this list for a particular stripe+device, we must never proceed 86 * beyond a bio that extends past this device, as the next bio might no longer 87 * be valid. 88 * This function is used to determine the 'next' bio in the list, given the sector 89 * of the current stripe+device 90 */ 91 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector) 92 { 93 int sectors = bio->bi_size >> 9; 94 if (bio->bi_sector + sectors < sector + STRIPE_SECTORS) 95 return bio->bi_next; 96 else 97 return NULL; 98 } 99 100 /* 101 * We maintain a biased count of active stripes in the bottom 16 bits of 102 * bi_phys_segments, and a count of processed stripes in the upper 16 bits 103 */ 104 static inline int raid5_bi_processed_stripes(struct bio *bio) 105 { 106 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 107 return (atomic_read(segments) >> 16) & 0xffff; 108 } 109 110 static inline int raid5_dec_bi_active_stripes(struct bio *bio) 111 { 112 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 113 return atomic_sub_return(1, segments) & 0xffff; 114 } 115 116 static inline void raid5_inc_bi_active_stripes(struct bio *bio) 117 { 118 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 119 atomic_inc(segments); 120 } 121 122 static inline void raid5_set_bi_processed_stripes(struct bio *bio, 123 unsigned int cnt) 124 { 125 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 126 int old, new; 127 128 do { 129 old = atomic_read(segments); 130 new = (old & 0xffff) | (cnt << 16); 131 } while (atomic_cmpxchg(segments, old, new) != old); 132 } 133 134 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt) 135 { 136 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 137 atomic_set(segments, cnt); 138 } 139 140 /* Find first data disk in a raid6 stripe */ 141 static inline int raid6_d0(struct stripe_head *sh) 142 { 143 if (sh->ddf_layout) 144 /* ddf always start from first device */ 145 return 0; 146 /* md starts just after Q block */ 147 if (sh->qd_idx == sh->disks - 1) 148 return 0; 149 else 150 return sh->qd_idx + 1; 151 } 152 static inline int raid6_next_disk(int disk, int raid_disks) 153 { 154 disk++; 155 return (disk < raid_disks) ? disk : 0; 156 } 157 158 /* When walking through the disks in a raid5, starting at raid6_d0, 159 * We need to map each disk to a 'slot', where the data disks are slot 160 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk 161 * is raid_disks-1. This help does that mapping. 162 */ 163 static int raid6_idx_to_slot(int idx, struct stripe_head *sh, 164 int *count, int syndrome_disks) 165 { 166 int slot = *count; 167 168 if (sh->ddf_layout) 169 (*count)++; 170 if (idx == sh->pd_idx) 171 return syndrome_disks; 172 if (idx == sh->qd_idx) 173 return syndrome_disks + 1; 174 if (!sh->ddf_layout) 175 (*count)++; 176 return slot; 177 } 178 179 static void return_io(struct bio *return_bi) 180 { 181 struct bio *bi = return_bi; 182 while (bi) { 183 184 return_bi = bi->bi_next; 185 bi->bi_next = NULL; 186 bi->bi_size = 0; 187 bio_endio(bi, 0); 188 bi = return_bi; 189 } 190 } 191 192 static void print_raid5_conf (struct r5conf *conf); 193 194 static int stripe_operations_active(struct stripe_head *sh) 195 { 196 return sh->check_state || sh->reconstruct_state || 197 test_bit(STRIPE_BIOFILL_RUN, &sh->state) || 198 test_bit(STRIPE_COMPUTE_RUN, &sh->state); 199 } 200 201 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh) 202 { 203 BUG_ON(!list_empty(&sh->lru)); 204 BUG_ON(atomic_read(&conf->active_stripes)==0); 205 if (test_bit(STRIPE_HANDLE, &sh->state)) { 206 if (test_bit(STRIPE_DELAYED, &sh->state) && 207 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 208 list_add_tail(&sh->lru, &conf->delayed_list); 209 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) && 210 sh->bm_seq - conf->seq_write > 0) 211 list_add_tail(&sh->lru, &conf->bitmap_list); 212 else { 213 clear_bit(STRIPE_DELAYED, &sh->state); 214 clear_bit(STRIPE_BIT_DELAY, &sh->state); 215 list_add_tail(&sh->lru, &conf->handle_list); 216 } 217 md_wakeup_thread(conf->mddev->thread); 218 } else { 219 BUG_ON(stripe_operations_active(sh)); 220 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 221 if (atomic_dec_return(&conf->preread_active_stripes) 222 < IO_THRESHOLD) 223 md_wakeup_thread(conf->mddev->thread); 224 atomic_dec(&conf->active_stripes); 225 if (!test_bit(STRIPE_EXPANDING, &sh->state)) { 226 list_add_tail(&sh->lru, &conf->inactive_list); 227 wake_up(&conf->wait_for_stripe); 228 if (conf->retry_read_aligned) 229 md_wakeup_thread(conf->mddev->thread); 230 } 231 } 232 } 233 234 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh) 235 { 236 if (atomic_dec_and_test(&sh->count)) 237 do_release_stripe(conf, sh); 238 } 239 240 static void release_stripe(struct stripe_head *sh) 241 { 242 struct r5conf *conf = sh->raid_conf; 243 unsigned long flags; 244 245 local_irq_save(flags); 246 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) { 247 do_release_stripe(conf, sh); 248 spin_unlock(&conf->device_lock); 249 } 250 local_irq_restore(flags); 251 } 252 253 static inline void remove_hash(struct stripe_head *sh) 254 { 255 pr_debug("remove_hash(), stripe %llu\n", 256 (unsigned long long)sh->sector); 257 258 hlist_del_init(&sh->hash); 259 } 260 261 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh) 262 { 263 struct hlist_head *hp = stripe_hash(conf, sh->sector); 264 265 pr_debug("insert_hash(), stripe %llu\n", 266 (unsigned long long)sh->sector); 267 268 hlist_add_head(&sh->hash, hp); 269 } 270 271 272 /* find an idle stripe, make sure it is unhashed, and return it. */ 273 static struct stripe_head *get_free_stripe(struct r5conf *conf) 274 { 275 struct stripe_head *sh = NULL; 276 struct list_head *first; 277 278 if (list_empty(&conf->inactive_list)) 279 goto out; 280 first = conf->inactive_list.next; 281 sh = list_entry(first, struct stripe_head, lru); 282 list_del_init(first); 283 remove_hash(sh); 284 atomic_inc(&conf->active_stripes); 285 out: 286 return sh; 287 } 288 289 static void shrink_buffers(struct stripe_head *sh) 290 { 291 struct page *p; 292 int i; 293 int num = sh->raid_conf->pool_size; 294 295 for (i = 0; i < num ; i++) { 296 p = sh->dev[i].page; 297 if (!p) 298 continue; 299 sh->dev[i].page = NULL; 300 put_page(p); 301 } 302 } 303 304 static int grow_buffers(struct stripe_head *sh) 305 { 306 int i; 307 int num = sh->raid_conf->pool_size; 308 309 for (i = 0; i < num; i++) { 310 struct page *page; 311 312 if (!(page = alloc_page(GFP_KERNEL))) { 313 return 1; 314 } 315 sh->dev[i].page = page; 316 } 317 return 0; 318 } 319 320 static void raid5_build_block(struct stripe_head *sh, int i, int previous); 321 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 322 struct stripe_head *sh); 323 324 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous) 325 { 326 struct r5conf *conf = sh->raid_conf; 327 int i; 328 329 BUG_ON(atomic_read(&sh->count) != 0); 330 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); 331 BUG_ON(stripe_operations_active(sh)); 332 333 pr_debug("init_stripe called, stripe %llu\n", 334 (unsigned long long)sh->sector); 335 336 remove_hash(sh); 337 338 sh->generation = conf->generation - previous; 339 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks; 340 sh->sector = sector; 341 stripe_set_idx(sector, conf, previous, sh); 342 sh->state = 0; 343 344 345 for (i = sh->disks; i--; ) { 346 struct r5dev *dev = &sh->dev[i]; 347 348 if (dev->toread || dev->read || dev->towrite || dev->written || 349 test_bit(R5_LOCKED, &dev->flags)) { 350 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n", 351 (unsigned long long)sh->sector, i, dev->toread, 352 dev->read, dev->towrite, dev->written, 353 test_bit(R5_LOCKED, &dev->flags)); 354 WARN_ON(1); 355 } 356 dev->flags = 0; 357 raid5_build_block(sh, i, previous); 358 } 359 insert_hash(conf, sh); 360 } 361 362 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector, 363 short generation) 364 { 365 struct stripe_head *sh; 366 367 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector); 368 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash) 369 if (sh->sector == sector && sh->generation == generation) 370 return sh; 371 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector); 372 return NULL; 373 } 374 375 /* 376 * Need to check if array has failed when deciding whether to: 377 * - start an array 378 * - remove non-faulty devices 379 * - add a spare 380 * - allow a reshape 381 * This determination is simple when no reshape is happening. 382 * However if there is a reshape, we need to carefully check 383 * both the before and after sections. 384 * This is because some failed devices may only affect one 385 * of the two sections, and some non-in_sync devices may 386 * be insync in the section most affected by failed devices. 387 */ 388 static int calc_degraded(struct r5conf *conf) 389 { 390 int degraded, degraded2; 391 int i; 392 393 rcu_read_lock(); 394 degraded = 0; 395 for (i = 0; i < conf->previous_raid_disks; i++) { 396 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 397 if (rdev && test_bit(Faulty, &rdev->flags)) 398 rdev = rcu_dereference(conf->disks[i].replacement); 399 if (!rdev || test_bit(Faulty, &rdev->flags)) 400 degraded++; 401 else if (test_bit(In_sync, &rdev->flags)) 402 ; 403 else 404 /* not in-sync or faulty. 405 * If the reshape increases the number of devices, 406 * this is being recovered by the reshape, so 407 * this 'previous' section is not in_sync. 408 * If the number of devices is being reduced however, 409 * the device can only be part of the array if 410 * we are reverting a reshape, so this section will 411 * be in-sync. 412 */ 413 if (conf->raid_disks >= conf->previous_raid_disks) 414 degraded++; 415 } 416 rcu_read_unlock(); 417 if (conf->raid_disks == conf->previous_raid_disks) 418 return degraded; 419 rcu_read_lock(); 420 degraded2 = 0; 421 for (i = 0; i < conf->raid_disks; i++) { 422 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 423 if (rdev && test_bit(Faulty, &rdev->flags)) 424 rdev = rcu_dereference(conf->disks[i].replacement); 425 if (!rdev || test_bit(Faulty, &rdev->flags)) 426 degraded2++; 427 else if (test_bit(In_sync, &rdev->flags)) 428 ; 429 else 430 /* not in-sync or faulty. 431 * If reshape increases the number of devices, this 432 * section has already been recovered, else it 433 * almost certainly hasn't. 434 */ 435 if (conf->raid_disks <= conf->previous_raid_disks) 436 degraded2++; 437 } 438 rcu_read_unlock(); 439 if (degraded2 > degraded) 440 return degraded2; 441 return degraded; 442 } 443 444 static int has_failed(struct r5conf *conf) 445 { 446 int degraded; 447 448 if (conf->mddev->reshape_position == MaxSector) 449 return conf->mddev->degraded > conf->max_degraded; 450 451 degraded = calc_degraded(conf); 452 if (degraded > conf->max_degraded) 453 return 1; 454 return 0; 455 } 456 457 static struct stripe_head * 458 get_active_stripe(struct r5conf *conf, sector_t sector, 459 int previous, int noblock, int noquiesce) 460 { 461 struct stripe_head *sh; 462 463 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector); 464 465 spin_lock_irq(&conf->device_lock); 466 467 do { 468 wait_event_lock_irq(conf->wait_for_stripe, 469 conf->quiesce == 0 || noquiesce, 470 conf->device_lock); 471 sh = __find_stripe(conf, sector, conf->generation - previous); 472 if (!sh) { 473 if (!conf->inactive_blocked) 474 sh = get_free_stripe(conf); 475 if (noblock && sh == NULL) 476 break; 477 if (!sh) { 478 conf->inactive_blocked = 1; 479 wait_event_lock_irq(conf->wait_for_stripe, 480 !list_empty(&conf->inactive_list) && 481 (atomic_read(&conf->active_stripes) 482 < (conf->max_nr_stripes *3/4) 483 || !conf->inactive_blocked), 484 conf->device_lock); 485 conf->inactive_blocked = 0; 486 } else 487 init_stripe(sh, sector, previous); 488 } else { 489 if (atomic_read(&sh->count)) { 490 BUG_ON(!list_empty(&sh->lru) 491 && !test_bit(STRIPE_EXPANDING, &sh->state) 492 && !test_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)); 493 } else { 494 if (!test_bit(STRIPE_HANDLE, &sh->state)) 495 atomic_inc(&conf->active_stripes); 496 if (list_empty(&sh->lru) && 497 !test_bit(STRIPE_EXPANDING, &sh->state)) 498 BUG(); 499 list_del_init(&sh->lru); 500 } 501 } 502 } while (sh == NULL); 503 504 if (sh) 505 atomic_inc(&sh->count); 506 507 spin_unlock_irq(&conf->device_lock); 508 return sh; 509 } 510 511 /* Determine if 'data_offset' or 'new_data_offset' should be used 512 * in this stripe_head. 513 */ 514 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh) 515 { 516 sector_t progress = conf->reshape_progress; 517 /* Need a memory barrier to make sure we see the value 518 * of conf->generation, or ->data_offset that was set before 519 * reshape_progress was updated. 520 */ 521 smp_rmb(); 522 if (progress == MaxSector) 523 return 0; 524 if (sh->generation == conf->generation - 1) 525 return 0; 526 /* We are in a reshape, and this is a new-generation stripe, 527 * so use new_data_offset. 528 */ 529 return 1; 530 } 531 532 static void 533 raid5_end_read_request(struct bio *bi, int error); 534 static void 535 raid5_end_write_request(struct bio *bi, int error); 536 537 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s) 538 { 539 struct r5conf *conf = sh->raid_conf; 540 int i, disks = sh->disks; 541 542 might_sleep(); 543 544 for (i = disks; i--; ) { 545 int rw; 546 int replace_only = 0; 547 struct bio *bi, *rbi; 548 struct md_rdev *rdev, *rrdev = NULL; 549 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) { 550 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags)) 551 rw = WRITE_FUA; 552 else 553 rw = WRITE; 554 if (test_bit(R5_Discard, &sh->dev[i].flags)) 555 rw |= REQ_DISCARD; 556 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags)) 557 rw = READ; 558 else if (test_and_clear_bit(R5_WantReplace, 559 &sh->dev[i].flags)) { 560 rw = WRITE; 561 replace_only = 1; 562 } else 563 continue; 564 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags)) 565 rw |= REQ_SYNC; 566 567 bi = &sh->dev[i].req; 568 rbi = &sh->dev[i].rreq; /* For writing to replacement */ 569 570 bi->bi_rw = rw; 571 rbi->bi_rw = rw; 572 if (rw & WRITE) { 573 bi->bi_end_io = raid5_end_write_request; 574 rbi->bi_end_io = raid5_end_write_request; 575 } else 576 bi->bi_end_io = raid5_end_read_request; 577 578 rcu_read_lock(); 579 rrdev = rcu_dereference(conf->disks[i].replacement); 580 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */ 581 rdev = rcu_dereference(conf->disks[i].rdev); 582 if (!rdev) { 583 rdev = rrdev; 584 rrdev = NULL; 585 } 586 if (rw & WRITE) { 587 if (replace_only) 588 rdev = NULL; 589 if (rdev == rrdev) 590 /* We raced and saw duplicates */ 591 rrdev = NULL; 592 } else { 593 if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev) 594 rdev = rrdev; 595 rrdev = NULL; 596 } 597 598 if (rdev && test_bit(Faulty, &rdev->flags)) 599 rdev = NULL; 600 if (rdev) 601 atomic_inc(&rdev->nr_pending); 602 if (rrdev && test_bit(Faulty, &rrdev->flags)) 603 rrdev = NULL; 604 if (rrdev) 605 atomic_inc(&rrdev->nr_pending); 606 rcu_read_unlock(); 607 608 /* We have already checked bad blocks for reads. Now 609 * need to check for writes. We never accept write errors 610 * on the replacement, so we don't to check rrdev. 611 */ 612 while ((rw & WRITE) && rdev && 613 test_bit(WriteErrorSeen, &rdev->flags)) { 614 sector_t first_bad; 615 int bad_sectors; 616 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS, 617 &first_bad, &bad_sectors); 618 if (!bad) 619 break; 620 621 if (bad < 0) { 622 set_bit(BlockedBadBlocks, &rdev->flags); 623 if (!conf->mddev->external && 624 conf->mddev->flags) { 625 /* It is very unlikely, but we might 626 * still need to write out the 627 * bad block log - better give it 628 * a chance*/ 629 md_check_recovery(conf->mddev); 630 } 631 /* 632 * Because md_wait_for_blocked_rdev 633 * will dec nr_pending, we must 634 * increment it first. 635 */ 636 atomic_inc(&rdev->nr_pending); 637 md_wait_for_blocked_rdev(rdev, conf->mddev); 638 } else { 639 /* Acknowledged bad block - skip the write */ 640 rdev_dec_pending(rdev, conf->mddev); 641 rdev = NULL; 642 } 643 } 644 645 if (rdev) { 646 if (s->syncing || s->expanding || s->expanded 647 || s->replacing) 648 md_sync_acct(rdev->bdev, STRIPE_SECTORS); 649 650 set_bit(STRIPE_IO_STARTED, &sh->state); 651 652 bi->bi_bdev = rdev->bdev; 653 pr_debug("%s: for %llu schedule op %ld on disc %d\n", 654 __func__, (unsigned long long)sh->sector, 655 bi->bi_rw, i); 656 atomic_inc(&sh->count); 657 if (use_new_offset(conf, sh)) 658 bi->bi_sector = (sh->sector 659 + rdev->new_data_offset); 660 else 661 bi->bi_sector = (sh->sector 662 + rdev->data_offset); 663 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 664 bi->bi_rw |= REQ_FLUSH; 665 666 bi->bi_flags = 1 << BIO_UPTODATE; 667 bi->bi_idx = 0; 668 bi->bi_io_vec[0].bv_len = STRIPE_SIZE; 669 bi->bi_io_vec[0].bv_offset = 0; 670 bi->bi_size = STRIPE_SIZE; 671 bi->bi_next = NULL; 672 if (rrdev) 673 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags); 674 675 if (conf->mddev->gendisk) 676 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev), 677 bi, disk_devt(conf->mddev->gendisk), 678 sh->dev[i].sector); 679 generic_make_request(bi); 680 } 681 if (rrdev) { 682 if (s->syncing || s->expanding || s->expanded 683 || s->replacing) 684 md_sync_acct(rrdev->bdev, STRIPE_SECTORS); 685 686 set_bit(STRIPE_IO_STARTED, &sh->state); 687 688 rbi->bi_bdev = rrdev->bdev; 689 pr_debug("%s: for %llu schedule op %ld on " 690 "replacement disc %d\n", 691 __func__, (unsigned long long)sh->sector, 692 rbi->bi_rw, i); 693 atomic_inc(&sh->count); 694 if (use_new_offset(conf, sh)) 695 rbi->bi_sector = (sh->sector 696 + rrdev->new_data_offset); 697 else 698 rbi->bi_sector = (sh->sector 699 + rrdev->data_offset); 700 rbi->bi_flags = 1 << BIO_UPTODATE; 701 rbi->bi_idx = 0; 702 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE; 703 rbi->bi_io_vec[0].bv_offset = 0; 704 rbi->bi_size = STRIPE_SIZE; 705 rbi->bi_next = NULL; 706 if (conf->mddev->gendisk) 707 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev), 708 rbi, disk_devt(conf->mddev->gendisk), 709 sh->dev[i].sector); 710 generic_make_request(rbi); 711 } 712 if (!rdev && !rrdev) { 713 if (rw & WRITE) 714 set_bit(STRIPE_DEGRADED, &sh->state); 715 pr_debug("skip op %ld on disc %d for sector %llu\n", 716 bi->bi_rw, i, (unsigned long long)sh->sector); 717 clear_bit(R5_LOCKED, &sh->dev[i].flags); 718 set_bit(STRIPE_HANDLE, &sh->state); 719 } 720 } 721 } 722 723 static struct dma_async_tx_descriptor * 724 async_copy_data(int frombio, struct bio *bio, struct page *page, 725 sector_t sector, struct dma_async_tx_descriptor *tx) 726 { 727 struct bio_vec *bvl; 728 struct page *bio_page; 729 int i; 730 int page_offset; 731 struct async_submit_ctl submit; 732 enum async_tx_flags flags = 0; 733 734 if (bio->bi_sector >= sector) 735 page_offset = (signed)(bio->bi_sector - sector) * 512; 736 else 737 page_offset = (signed)(sector - bio->bi_sector) * -512; 738 739 if (frombio) 740 flags |= ASYNC_TX_FENCE; 741 init_async_submit(&submit, flags, tx, NULL, NULL, NULL); 742 743 bio_for_each_segment(bvl, bio, i) { 744 int len = bvl->bv_len; 745 int clen; 746 int b_offset = 0; 747 748 if (page_offset < 0) { 749 b_offset = -page_offset; 750 page_offset += b_offset; 751 len -= b_offset; 752 } 753 754 if (len > 0 && page_offset + len > STRIPE_SIZE) 755 clen = STRIPE_SIZE - page_offset; 756 else 757 clen = len; 758 759 if (clen > 0) { 760 b_offset += bvl->bv_offset; 761 bio_page = bvl->bv_page; 762 if (frombio) 763 tx = async_memcpy(page, bio_page, page_offset, 764 b_offset, clen, &submit); 765 else 766 tx = async_memcpy(bio_page, page, b_offset, 767 page_offset, clen, &submit); 768 } 769 /* chain the operations */ 770 submit.depend_tx = tx; 771 772 if (clen < len) /* hit end of page */ 773 break; 774 page_offset += len; 775 } 776 777 return tx; 778 } 779 780 static void ops_complete_biofill(void *stripe_head_ref) 781 { 782 struct stripe_head *sh = stripe_head_ref; 783 struct bio *return_bi = NULL; 784 int i; 785 786 pr_debug("%s: stripe %llu\n", __func__, 787 (unsigned long long)sh->sector); 788 789 /* clear completed biofills */ 790 for (i = sh->disks; i--; ) { 791 struct r5dev *dev = &sh->dev[i]; 792 793 /* acknowledge completion of a biofill operation */ 794 /* and check if we need to reply to a read request, 795 * new R5_Wantfill requests are held off until 796 * !STRIPE_BIOFILL_RUN 797 */ 798 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) { 799 struct bio *rbi, *rbi2; 800 801 BUG_ON(!dev->read); 802 rbi = dev->read; 803 dev->read = NULL; 804 while (rbi && rbi->bi_sector < 805 dev->sector + STRIPE_SECTORS) { 806 rbi2 = r5_next_bio(rbi, dev->sector); 807 if (!raid5_dec_bi_active_stripes(rbi)) { 808 rbi->bi_next = return_bi; 809 return_bi = rbi; 810 } 811 rbi = rbi2; 812 } 813 } 814 } 815 clear_bit(STRIPE_BIOFILL_RUN, &sh->state); 816 817 return_io(return_bi); 818 819 set_bit(STRIPE_HANDLE, &sh->state); 820 release_stripe(sh); 821 } 822 823 static void ops_run_biofill(struct stripe_head *sh) 824 { 825 struct dma_async_tx_descriptor *tx = NULL; 826 struct async_submit_ctl submit; 827 int i; 828 829 pr_debug("%s: stripe %llu\n", __func__, 830 (unsigned long long)sh->sector); 831 832 for (i = sh->disks; i--; ) { 833 struct r5dev *dev = &sh->dev[i]; 834 if (test_bit(R5_Wantfill, &dev->flags)) { 835 struct bio *rbi; 836 spin_lock_irq(&sh->stripe_lock); 837 dev->read = rbi = dev->toread; 838 dev->toread = NULL; 839 spin_unlock_irq(&sh->stripe_lock); 840 while (rbi && rbi->bi_sector < 841 dev->sector + STRIPE_SECTORS) { 842 tx = async_copy_data(0, rbi, dev->page, 843 dev->sector, tx); 844 rbi = r5_next_bio(rbi, dev->sector); 845 } 846 } 847 } 848 849 atomic_inc(&sh->count); 850 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL); 851 async_trigger_callback(&submit); 852 } 853 854 static void mark_target_uptodate(struct stripe_head *sh, int target) 855 { 856 struct r5dev *tgt; 857 858 if (target < 0) 859 return; 860 861 tgt = &sh->dev[target]; 862 set_bit(R5_UPTODATE, &tgt->flags); 863 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 864 clear_bit(R5_Wantcompute, &tgt->flags); 865 } 866 867 static void ops_complete_compute(void *stripe_head_ref) 868 { 869 struct stripe_head *sh = stripe_head_ref; 870 871 pr_debug("%s: stripe %llu\n", __func__, 872 (unsigned long long)sh->sector); 873 874 /* mark the computed target(s) as uptodate */ 875 mark_target_uptodate(sh, sh->ops.target); 876 mark_target_uptodate(sh, sh->ops.target2); 877 878 clear_bit(STRIPE_COMPUTE_RUN, &sh->state); 879 if (sh->check_state == check_state_compute_run) 880 sh->check_state = check_state_compute_result; 881 set_bit(STRIPE_HANDLE, &sh->state); 882 release_stripe(sh); 883 } 884 885 /* return a pointer to the address conversion region of the scribble buffer */ 886 static addr_conv_t *to_addr_conv(struct stripe_head *sh, 887 struct raid5_percpu *percpu) 888 { 889 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2); 890 } 891 892 static struct dma_async_tx_descriptor * 893 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu) 894 { 895 int disks = sh->disks; 896 struct page **xor_srcs = percpu->scribble; 897 int target = sh->ops.target; 898 struct r5dev *tgt = &sh->dev[target]; 899 struct page *xor_dest = tgt->page; 900 int count = 0; 901 struct dma_async_tx_descriptor *tx; 902 struct async_submit_ctl submit; 903 int i; 904 905 pr_debug("%s: stripe %llu block: %d\n", 906 __func__, (unsigned long long)sh->sector, target); 907 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 908 909 for (i = disks; i--; ) 910 if (i != target) 911 xor_srcs[count++] = sh->dev[i].page; 912 913 atomic_inc(&sh->count); 914 915 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL, 916 ops_complete_compute, sh, to_addr_conv(sh, percpu)); 917 if (unlikely(count == 1)) 918 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); 919 else 920 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 921 922 return tx; 923 } 924 925 /* set_syndrome_sources - populate source buffers for gen_syndrome 926 * @srcs - (struct page *) array of size sh->disks 927 * @sh - stripe_head to parse 928 * 929 * Populates srcs in proper layout order for the stripe and returns the 930 * 'count' of sources to be used in a call to async_gen_syndrome. The P 931 * destination buffer is recorded in srcs[count] and the Q destination 932 * is recorded in srcs[count+1]]. 933 */ 934 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh) 935 { 936 int disks = sh->disks; 937 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2); 938 int d0_idx = raid6_d0(sh); 939 int count; 940 int i; 941 942 for (i = 0; i < disks; i++) 943 srcs[i] = NULL; 944 945 count = 0; 946 i = d0_idx; 947 do { 948 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 949 950 srcs[slot] = sh->dev[i].page; 951 i = raid6_next_disk(i, disks); 952 } while (i != d0_idx); 953 954 return syndrome_disks; 955 } 956 957 static struct dma_async_tx_descriptor * 958 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu) 959 { 960 int disks = sh->disks; 961 struct page **blocks = percpu->scribble; 962 int target; 963 int qd_idx = sh->qd_idx; 964 struct dma_async_tx_descriptor *tx; 965 struct async_submit_ctl submit; 966 struct r5dev *tgt; 967 struct page *dest; 968 int i; 969 int count; 970 971 if (sh->ops.target < 0) 972 target = sh->ops.target2; 973 else if (sh->ops.target2 < 0) 974 target = sh->ops.target; 975 else 976 /* we should only have one valid target */ 977 BUG(); 978 BUG_ON(target < 0); 979 pr_debug("%s: stripe %llu block: %d\n", 980 __func__, (unsigned long long)sh->sector, target); 981 982 tgt = &sh->dev[target]; 983 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 984 dest = tgt->page; 985 986 atomic_inc(&sh->count); 987 988 if (target == qd_idx) { 989 count = set_syndrome_sources(blocks, sh); 990 blocks[count] = NULL; /* regenerating p is not necessary */ 991 BUG_ON(blocks[count+1] != dest); /* q should already be set */ 992 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 993 ops_complete_compute, sh, 994 to_addr_conv(sh, percpu)); 995 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 996 } else { 997 /* Compute any data- or p-drive using XOR */ 998 count = 0; 999 for (i = disks; i-- ; ) { 1000 if (i == target || i == qd_idx) 1001 continue; 1002 blocks[count++] = sh->dev[i].page; 1003 } 1004 1005 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1006 NULL, ops_complete_compute, sh, 1007 to_addr_conv(sh, percpu)); 1008 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit); 1009 } 1010 1011 return tx; 1012 } 1013 1014 static struct dma_async_tx_descriptor * 1015 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu) 1016 { 1017 int i, count, disks = sh->disks; 1018 int syndrome_disks = sh->ddf_layout ? disks : disks-2; 1019 int d0_idx = raid6_d0(sh); 1020 int faila = -1, failb = -1; 1021 int target = sh->ops.target; 1022 int target2 = sh->ops.target2; 1023 struct r5dev *tgt = &sh->dev[target]; 1024 struct r5dev *tgt2 = &sh->dev[target2]; 1025 struct dma_async_tx_descriptor *tx; 1026 struct page **blocks = percpu->scribble; 1027 struct async_submit_ctl submit; 1028 1029 pr_debug("%s: stripe %llu block1: %d block2: %d\n", 1030 __func__, (unsigned long long)sh->sector, target, target2); 1031 BUG_ON(target < 0 || target2 < 0); 1032 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1033 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags)); 1034 1035 /* we need to open-code set_syndrome_sources to handle the 1036 * slot number conversion for 'faila' and 'failb' 1037 */ 1038 for (i = 0; i < disks ; i++) 1039 blocks[i] = NULL; 1040 count = 0; 1041 i = d0_idx; 1042 do { 1043 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1044 1045 blocks[slot] = sh->dev[i].page; 1046 1047 if (i == target) 1048 faila = slot; 1049 if (i == target2) 1050 failb = slot; 1051 i = raid6_next_disk(i, disks); 1052 } while (i != d0_idx); 1053 1054 BUG_ON(faila == failb); 1055 if (failb < faila) 1056 swap(faila, failb); 1057 pr_debug("%s: stripe: %llu faila: %d failb: %d\n", 1058 __func__, (unsigned long long)sh->sector, faila, failb); 1059 1060 atomic_inc(&sh->count); 1061 1062 if (failb == syndrome_disks+1) { 1063 /* Q disk is one of the missing disks */ 1064 if (faila == syndrome_disks) { 1065 /* Missing P+Q, just recompute */ 1066 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1067 ops_complete_compute, sh, 1068 to_addr_conv(sh, percpu)); 1069 return async_gen_syndrome(blocks, 0, syndrome_disks+2, 1070 STRIPE_SIZE, &submit); 1071 } else { 1072 struct page *dest; 1073 int data_target; 1074 int qd_idx = sh->qd_idx; 1075 1076 /* Missing D+Q: recompute D from P, then recompute Q */ 1077 if (target == qd_idx) 1078 data_target = target2; 1079 else 1080 data_target = target; 1081 1082 count = 0; 1083 for (i = disks; i-- ; ) { 1084 if (i == data_target || i == qd_idx) 1085 continue; 1086 blocks[count++] = sh->dev[i].page; 1087 } 1088 dest = sh->dev[data_target].page; 1089 init_async_submit(&submit, 1090 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1091 NULL, NULL, NULL, 1092 to_addr_conv(sh, percpu)); 1093 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, 1094 &submit); 1095 1096 count = set_syndrome_sources(blocks, sh); 1097 init_async_submit(&submit, ASYNC_TX_FENCE, tx, 1098 ops_complete_compute, sh, 1099 to_addr_conv(sh, percpu)); 1100 return async_gen_syndrome(blocks, 0, count+2, 1101 STRIPE_SIZE, &submit); 1102 } 1103 } else { 1104 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1105 ops_complete_compute, sh, 1106 to_addr_conv(sh, percpu)); 1107 if (failb == syndrome_disks) { 1108 /* We're missing D+P. */ 1109 return async_raid6_datap_recov(syndrome_disks+2, 1110 STRIPE_SIZE, faila, 1111 blocks, &submit); 1112 } else { 1113 /* We're missing D+D. */ 1114 return async_raid6_2data_recov(syndrome_disks+2, 1115 STRIPE_SIZE, faila, failb, 1116 blocks, &submit); 1117 } 1118 } 1119 } 1120 1121 1122 static void ops_complete_prexor(void *stripe_head_ref) 1123 { 1124 struct stripe_head *sh = stripe_head_ref; 1125 1126 pr_debug("%s: stripe %llu\n", __func__, 1127 (unsigned long long)sh->sector); 1128 } 1129 1130 static struct dma_async_tx_descriptor * 1131 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu, 1132 struct dma_async_tx_descriptor *tx) 1133 { 1134 int disks = sh->disks; 1135 struct page **xor_srcs = percpu->scribble; 1136 int count = 0, pd_idx = sh->pd_idx, i; 1137 struct async_submit_ctl submit; 1138 1139 /* existing parity data subtracted */ 1140 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1141 1142 pr_debug("%s: stripe %llu\n", __func__, 1143 (unsigned long long)sh->sector); 1144 1145 for (i = disks; i--; ) { 1146 struct r5dev *dev = &sh->dev[i]; 1147 /* Only process blocks that are known to be uptodate */ 1148 if (test_bit(R5_Wantdrain, &dev->flags)) 1149 xor_srcs[count++] = dev->page; 1150 } 1151 1152 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx, 1153 ops_complete_prexor, sh, to_addr_conv(sh, percpu)); 1154 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1155 1156 return tx; 1157 } 1158 1159 static struct dma_async_tx_descriptor * 1160 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) 1161 { 1162 int disks = sh->disks; 1163 int i; 1164 1165 pr_debug("%s: stripe %llu\n", __func__, 1166 (unsigned long long)sh->sector); 1167 1168 for (i = disks; i--; ) { 1169 struct r5dev *dev = &sh->dev[i]; 1170 struct bio *chosen; 1171 1172 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) { 1173 struct bio *wbi; 1174 1175 spin_lock_irq(&sh->stripe_lock); 1176 chosen = dev->towrite; 1177 dev->towrite = NULL; 1178 BUG_ON(dev->written); 1179 wbi = dev->written = chosen; 1180 spin_unlock_irq(&sh->stripe_lock); 1181 1182 while (wbi && wbi->bi_sector < 1183 dev->sector + STRIPE_SECTORS) { 1184 if (wbi->bi_rw & REQ_FUA) 1185 set_bit(R5_WantFUA, &dev->flags); 1186 if (wbi->bi_rw & REQ_SYNC) 1187 set_bit(R5_SyncIO, &dev->flags); 1188 if (wbi->bi_rw & REQ_DISCARD) 1189 set_bit(R5_Discard, &dev->flags); 1190 else 1191 tx = async_copy_data(1, wbi, dev->page, 1192 dev->sector, tx); 1193 wbi = r5_next_bio(wbi, dev->sector); 1194 } 1195 } 1196 } 1197 1198 return tx; 1199 } 1200 1201 static void ops_complete_reconstruct(void *stripe_head_ref) 1202 { 1203 struct stripe_head *sh = stripe_head_ref; 1204 int disks = sh->disks; 1205 int pd_idx = sh->pd_idx; 1206 int qd_idx = sh->qd_idx; 1207 int i; 1208 bool fua = false, sync = false, discard = false; 1209 1210 pr_debug("%s: stripe %llu\n", __func__, 1211 (unsigned long long)sh->sector); 1212 1213 for (i = disks; i--; ) { 1214 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags); 1215 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags); 1216 discard |= test_bit(R5_Discard, &sh->dev[i].flags); 1217 } 1218 1219 for (i = disks; i--; ) { 1220 struct r5dev *dev = &sh->dev[i]; 1221 1222 if (dev->written || i == pd_idx || i == qd_idx) { 1223 if (!discard) 1224 set_bit(R5_UPTODATE, &dev->flags); 1225 if (fua) 1226 set_bit(R5_WantFUA, &dev->flags); 1227 if (sync) 1228 set_bit(R5_SyncIO, &dev->flags); 1229 } 1230 } 1231 1232 if (sh->reconstruct_state == reconstruct_state_drain_run) 1233 sh->reconstruct_state = reconstruct_state_drain_result; 1234 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) 1235 sh->reconstruct_state = reconstruct_state_prexor_drain_result; 1236 else { 1237 BUG_ON(sh->reconstruct_state != reconstruct_state_run); 1238 sh->reconstruct_state = reconstruct_state_result; 1239 } 1240 1241 set_bit(STRIPE_HANDLE, &sh->state); 1242 release_stripe(sh); 1243 } 1244 1245 static void 1246 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu, 1247 struct dma_async_tx_descriptor *tx) 1248 { 1249 int disks = sh->disks; 1250 struct page **xor_srcs = percpu->scribble; 1251 struct async_submit_ctl submit; 1252 int count = 0, pd_idx = sh->pd_idx, i; 1253 struct page *xor_dest; 1254 int prexor = 0; 1255 unsigned long flags; 1256 1257 pr_debug("%s: stripe %llu\n", __func__, 1258 (unsigned long long)sh->sector); 1259 1260 for (i = 0; i < sh->disks; i++) { 1261 if (pd_idx == i) 1262 continue; 1263 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 1264 break; 1265 } 1266 if (i >= sh->disks) { 1267 atomic_inc(&sh->count); 1268 set_bit(R5_Discard, &sh->dev[pd_idx].flags); 1269 ops_complete_reconstruct(sh); 1270 return; 1271 } 1272 /* check if prexor is active which means only process blocks 1273 * that are part of a read-modify-write (written) 1274 */ 1275 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 1276 prexor = 1; 1277 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1278 for (i = disks; i--; ) { 1279 struct r5dev *dev = &sh->dev[i]; 1280 if (dev->written) 1281 xor_srcs[count++] = dev->page; 1282 } 1283 } else { 1284 xor_dest = sh->dev[pd_idx].page; 1285 for (i = disks; i--; ) { 1286 struct r5dev *dev = &sh->dev[i]; 1287 if (i != pd_idx) 1288 xor_srcs[count++] = dev->page; 1289 } 1290 } 1291 1292 /* 1/ if we prexor'd then the dest is reused as a source 1293 * 2/ if we did not prexor then we are redoing the parity 1294 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST 1295 * for the synchronous xor case 1296 */ 1297 flags = ASYNC_TX_ACK | 1298 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST); 1299 1300 atomic_inc(&sh->count); 1301 1302 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh, 1303 to_addr_conv(sh, percpu)); 1304 if (unlikely(count == 1)) 1305 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); 1306 else 1307 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1308 } 1309 1310 static void 1311 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu, 1312 struct dma_async_tx_descriptor *tx) 1313 { 1314 struct async_submit_ctl submit; 1315 struct page **blocks = percpu->scribble; 1316 int count, i; 1317 1318 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); 1319 1320 for (i = 0; i < sh->disks; i++) { 1321 if (sh->pd_idx == i || sh->qd_idx == i) 1322 continue; 1323 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 1324 break; 1325 } 1326 if (i >= sh->disks) { 1327 atomic_inc(&sh->count); 1328 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 1329 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 1330 ops_complete_reconstruct(sh); 1331 return; 1332 } 1333 1334 count = set_syndrome_sources(blocks, sh); 1335 1336 atomic_inc(&sh->count); 1337 1338 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct, 1339 sh, to_addr_conv(sh, percpu)); 1340 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1341 } 1342 1343 static void ops_complete_check(void *stripe_head_ref) 1344 { 1345 struct stripe_head *sh = stripe_head_ref; 1346 1347 pr_debug("%s: stripe %llu\n", __func__, 1348 (unsigned long long)sh->sector); 1349 1350 sh->check_state = check_state_check_result; 1351 set_bit(STRIPE_HANDLE, &sh->state); 1352 release_stripe(sh); 1353 } 1354 1355 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu) 1356 { 1357 int disks = sh->disks; 1358 int pd_idx = sh->pd_idx; 1359 int qd_idx = sh->qd_idx; 1360 struct page *xor_dest; 1361 struct page **xor_srcs = percpu->scribble; 1362 struct dma_async_tx_descriptor *tx; 1363 struct async_submit_ctl submit; 1364 int count; 1365 int i; 1366 1367 pr_debug("%s: stripe %llu\n", __func__, 1368 (unsigned long long)sh->sector); 1369 1370 count = 0; 1371 xor_dest = sh->dev[pd_idx].page; 1372 xor_srcs[count++] = xor_dest; 1373 for (i = disks; i--; ) { 1374 if (i == pd_idx || i == qd_idx) 1375 continue; 1376 xor_srcs[count++] = sh->dev[i].page; 1377 } 1378 1379 init_async_submit(&submit, 0, NULL, NULL, NULL, 1380 to_addr_conv(sh, percpu)); 1381 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, 1382 &sh->ops.zero_sum_result, &submit); 1383 1384 atomic_inc(&sh->count); 1385 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL); 1386 tx = async_trigger_callback(&submit); 1387 } 1388 1389 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp) 1390 { 1391 struct page **srcs = percpu->scribble; 1392 struct async_submit_ctl submit; 1393 int count; 1394 1395 pr_debug("%s: stripe %llu checkp: %d\n", __func__, 1396 (unsigned long long)sh->sector, checkp); 1397 1398 count = set_syndrome_sources(srcs, sh); 1399 if (!checkp) 1400 srcs[count] = NULL; 1401 1402 atomic_inc(&sh->count); 1403 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check, 1404 sh, to_addr_conv(sh, percpu)); 1405 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE, 1406 &sh->ops.zero_sum_result, percpu->spare_page, &submit); 1407 } 1408 1409 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request) 1410 { 1411 int overlap_clear = 0, i, disks = sh->disks; 1412 struct dma_async_tx_descriptor *tx = NULL; 1413 struct r5conf *conf = sh->raid_conf; 1414 int level = conf->level; 1415 struct raid5_percpu *percpu; 1416 unsigned long cpu; 1417 1418 cpu = get_cpu(); 1419 percpu = per_cpu_ptr(conf->percpu, cpu); 1420 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) { 1421 ops_run_biofill(sh); 1422 overlap_clear++; 1423 } 1424 1425 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) { 1426 if (level < 6) 1427 tx = ops_run_compute5(sh, percpu); 1428 else { 1429 if (sh->ops.target2 < 0 || sh->ops.target < 0) 1430 tx = ops_run_compute6_1(sh, percpu); 1431 else 1432 tx = ops_run_compute6_2(sh, percpu); 1433 } 1434 /* terminate the chain if reconstruct is not set to be run */ 1435 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) 1436 async_tx_ack(tx); 1437 } 1438 1439 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) 1440 tx = ops_run_prexor(sh, percpu, tx); 1441 1442 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) { 1443 tx = ops_run_biodrain(sh, tx); 1444 overlap_clear++; 1445 } 1446 1447 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) { 1448 if (level < 6) 1449 ops_run_reconstruct5(sh, percpu, tx); 1450 else 1451 ops_run_reconstruct6(sh, percpu, tx); 1452 } 1453 1454 if (test_bit(STRIPE_OP_CHECK, &ops_request)) { 1455 if (sh->check_state == check_state_run) 1456 ops_run_check_p(sh, percpu); 1457 else if (sh->check_state == check_state_run_q) 1458 ops_run_check_pq(sh, percpu, 0); 1459 else if (sh->check_state == check_state_run_pq) 1460 ops_run_check_pq(sh, percpu, 1); 1461 else 1462 BUG(); 1463 } 1464 1465 if (overlap_clear) 1466 for (i = disks; i--; ) { 1467 struct r5dev *dev = &sh->dev[i]; 1468 if (test_and_clear_bit(R5_Overlap, &dev->flags)) 1469 wake_up(&sh->raid_conf->wait_for_overlap); 1470 } 1471 put_cpu(); 1472 } 1473 1474 static int grow_one_stripe(struct r5conf *conf) 1475 { 1476 struct stripe_head *sh; 1477 sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL); 1478 if (!sh) 1479 return 0; 1480 1481 sh->raid_conf = conf; 1482 1483 spin_lock_init(&sh->stripe_lock); 1484 1485 if (grow_buffers(sh)) { 1486 shrink_buffers(sh); 1487 kmem_cache_free(conf->slab_cache, sh); 1488 return 0; 1489 } 1490 /* we just created an active stripe so... */ 1491 atomic_set(&sh->count, 1); 1492 atomic_inc(&conf->active_stripes); 1493 INIT_LIST_HEAD(&sh->lru); 1494 release_stripe(sh); 1495 return 1; 1496 } 1497 1498 static int grow_stripes(struct r5conf *conf, int num) 1499 { 1500 struct kmem_cache *sc; 1501 int devs = max(conf->raid_disks, conf->previous_raid_disks); 1502 1503 if (conf->mddev->gendisk) 1504 sprintf(conf->cache_name[0], 1505 "raid%d-%s", conf->level, mdname(conf->mddev)); 1506 else 1507 sprintf(conf->cache_name[0], 1508 "raid%d-%p", conf->level, conf->mddev); 1509 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]); 1510 1511 conf->active_name = 0; 1512 sc = kmem_cache_create(conf->cache_name[conf->active_name], 1513 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev), 1514 0, 0, NULL); 1515 if (!sc) 1516 return 1; 1517 conf->slab_cache = sc; 1518 conf->pool_size = devs; 1519 while (num--) 1520 if (!grow_one_stripe(conf)) 1521 return 1; 1522 return 0; 1523 } 1524 1525 /** 1526 * scribble_len - return the required size of the scribble region 1527 * @num - total number of disks in the array 1528 * 1529 * The size must be enough to contain: 1530 * 1/ a struct page pointer for each device in the array +2 1531 * 2/ room to convert each entry in (1) to its corresponding dma 1532 * (dma_map_page()) or page (page_address()) address. 1533 * 1534 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we 1535 * calculate over all devices (not just the data blocks), using zeros in place 1536 * of the P and Q blocks. 1537 */ 1538 static size_t scribble_len(int num) 1539 { 1540 size_t len; 1541 1542 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2); 1543 1544 return len; 1545 } 1546 1547 static int resize_stripes(struct r5conf *conf, int newsize) 1548 { 1549 /* Make all the stripes able to hold 'newsize' devices. 1550 * New slots in each stripe get 'page' set to a new page. 1551 * 1552 * This happens in stages: 1553 * 1/ create a new kmem_cache and allocate the required number of 1554 * stripe_heads. 1555 * 2/ gather all the old stripe_heads and transfer the pages across 1556 * to the new stripe_heads. This will have the side effect of 1557 * freezing the array as once all stripe_heads have been collected, 1558 * no IO will be possible. Old stripe heads are freed once their 1559 * pages have been transferred over, and the old kmem_cache is 1560 * freed when all stripes are done. 1561 * 3/ reallocate conf->disks to be suitable bigger. If this fails, 1562 * we simple return a failre status - no need to clean anything up. 1563 * 4/ allocate new pages for the new slots in the new stripe_heads. 1564 * If this fails, we don't bother trying the shrink the 1565 * stripe_heads down again, we just leave them as they are. 1566 * As each stripe_head is processed the new one is released into 1567 * active service. 1568 * 1569 * Once step2 is started, we cannot afford to wait for a write, 1570 * so we use GFP_NOIO allocations. 1571 */ 1572 struct stripe_head *osh, *nsh; 1573 LIST_HEAD(newstripes); 1574 struct disk_info *ndisks; 1575 unsigned long cpu; 1576 int err; 1577 struct kmem_cache *sc; 1578 int i; 1579 1580 if (newsize <= conf->pool_size) 1581 return 0; /* never bother to shrink */ 1582 1583 err = md_allow_write(conf->mddev); 1584 if (err) 1585 return err; 1586 1587 /* Step 1 */ 1588 sc = kmem_cache_create(conf->cache_name[1-conf->active_name], 1589 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev), 1590 0, 0, NULL); 1591 if (!sc) 1592 return -ENOMEM; 1593 1594 for (i = conf->max_nr_stripes; i; i--) { 1595 nsh = kmem_cache_zalloc(sc, GFP_KERNEL); 1596 if (!nsh) 1597 break; 1598 1599 nsh->raid_conf = conf; 1600 spin_lock_init(&nsh->stripe_lock); 1601 1602 list_add(&nsh->lru, &newstripes); 1603 } 1604 if (i) { 1605 /* didn't get enough, give up */ 1606 while (!list_empty(&newstripes)) { 1607 nsh = list_entry(newstripes.next, struct stripe_head, lru); 1608 list_del(&nsh->lru); 1609 kmem_cache_free(sc, nsh); 1610 } 1611 kmem_cache_destroy(sc); 1612 return -ENOMEM; 1613 } 1614 /* Step 2 - Must use GFP_NOIO now. 1615 * OK, we have enough stripes, start collecting inactive 1616 * stripes and copying them over 1617 */ 1618 list_for_each_entry(nsh, &newstripes, lru) { 1619 spin_lock_irq(&conf->device_lock); 1620 wait_event_lock_irq(conf->wait_for_stripe, 1621 !list_empty(&conf->inactive_list), 1622 conf->device_lock); 1623 osh = get_free_stripe(conf); 1624 spin_unlock_irq(&conf->device_lock); 1625 atomic_set(&nsh->count, 1); 1626 for(i=0; i<conf->pool_size; i++) 1627 nsh->dev[i].page = osh->dev[i].page; 1628 for( ; i<newsize; i++) 1629 nsh->dev[i].page = NULL; 1630 kmem_cache_free(conf->slab_cache, osh); 1631 } 1632 kmem_cache_destroy(conf->slab_cache); 1633 1634 /* Step 3. 1635 * At this point, we are holding all the stripes so the array 1636 * is completely stalled, so now is a good time to resize 1637 * conf->disks and the scribble region 1638 */ 1639 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO); 1640 if (ndisks) { 1641 for (i=0; i<conf->raid_disks; i++) 1642 ndisks[i] = conf->disks[i]; 1643 kfree(conf->disks); 1644 conf->disks = ndisks; 1645 } else 1646 err = -ENOMEM; 1647 1648 get_online_cpus(); 1649 conf->scribble_len = scribble_len(newsize); 1650 for_each_present_cpu(cpu) { 1651 struct raid5_percpu *percpu; 1652 void *scribble; 1653 1654 percpu = per_cpu_ptr(conf->percpu, cpu); 1655 scribble = kmalloc(conf->scribble_len, GFP_NOIO); 1656 1657 if (scribble) { 1658 kfree(percpu->scribble); 1659 percpu->scribble = scribble; 1660 } else { 1661 err = -ENOMEM; 1662 break; 1663 } 1664 } 1665 put_online_cpus(); 1666 1667 /* Step 4, return new stripes to service */ 1668 while(!list_empty(&newstripes)) { 1669 nsh = list_entry(newstripes.next, struct stripe_head, lru); 1670 list_del_init(&nsh->lru); 1671 1672 for (i=conf->raid_disks; i < newsize; i++) 1673 if (nsh->dev[i].page == NULL) { 1674 struct page *p = alloc_page(GFP_NOIO); 1675 nsh->dev[i].page = p; 1676 if (!p) 1677 err = -ENOMEM; 1678 } 1679 release_stripe(nsh); 1680 } 1681 /* critical section pass, GFP_NOIO no longer needed */ 1682 1683 conf->slab_cache = sc; 1684 conf->active_name = 1-conf->active_name; 1685 conf->pool_size = newsize; 1686 return err; 1687 } 1688 1689 static int drop_one_stripe(struct r5conf *conf) 1690 { 1691 struct stripe_head *sh; 1692 1693 spin_lock_irq(&conf->device_lock); 1694 sh = get_free_stripe(conf); 1695 spin_unlock_irq(&conf->device_lock); 1696 if (!sh) 1697 return 0; 1698 BUG_ON(atomic_read(&sh->count)); 1699 shrink_buffers(sh); 1700 kmem_cache_free(conf->slab_cache, sh); 1701 atomic_dec(&conf->active_stripes); 1702 return 1; 1703 } 1704 1705 static void shrink_stripes(struct r5conf *conf) 1706 { 1707 while (drop_one_stripe(conf)) 1708 ; 1709 1710 if (conf->slab_cache) 1711 kmem_cache_destroy(conf->slab_cache); 1712 conf->slab_cache = NULL; 1713 } 1714 1715 static void raid5_end_read_request(struct bio * bi, int error) 1716 { 1717 struct stripe_head *sh = bi->bi_private; 1718 struct r5conf *conf = sh->raid_conf; 1719 int disks = sh->disks, i; 1720 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); 1721 char b[BDEVNAME_SIZE]; 1722 struct md_rdev *rdev = NULL; 1723 sector_t s; 1724 1725 for (i=0 ; i<disks; i++) 1726 if (bi == &sh->dev[i].req) 1727 break; 1728 1729 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n", 1730 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 1731 uptodate); 1732 if (i == disks) { 1733 BUG(); 1734 return; 1735 } 1736 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 1737 /* If replacement finished while this request was outstanding, 1738 * 'replacement' might be NULL already. 1739 * In that case it moved down to 'rdev'. 1740 * rdev is not removed until all requests are finished. 1741 */ 1742 rdev = conf->disks[i].replacement; 1743 if (!rdev) 1744 rdev = conf->disks[i].rdev; 1745 1746 if (use_new_offset(conf, sh)) 1747 s = sh->sector + rdev->new_data_offset; 1748 else 1749 s = sh->sector + rdev->data_offset; 1750 if (uptodate) { 1751 set_bit(R5_UPTODATE, &sh->dev[i].flags); 1752 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 1753 /* Note that this cannot happen on a 1754 * replacement device. We just fail those on 1755 * any error 1756 */ 1757 printk_ratelimited( 1758 KERN_INFO 1759 "md/raid:%s: read error corrected" 1760 " (%lu sectors at %llu on %s)\n", 1761 mdname(conf->mddev), STRIPE_SECTORS, 1762 (unsigned long long)s, 1763 bdevname(rdev->bdev, b)); 1764 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors); 1765 clear_bit(R5_ReadError, &sh->dev[i].flags); 1766 clear_bit(R5_ReWrite, &sh->dev[i].flags); 1767 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 1768 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 1769 1770 if (atomic_read(&rdev->read_errors)) 1771 atomic_set(&rdev->read_errors, 0); 1772 } else { 1773 const char *bdn = bdevname(rdev->bdev, b); 1774 int retry = 0; 1775 int set_bad = 0; 1776 1777 clear_bit(R5_UPTODATE, &sh->dev[i].flags); 1778 atomic_inc(&rdev->read_errors); 1779 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 1780 printk_ratelimited( 1781 KERN_WARNING 1782 "md/raid:%s: read error on replacement device " 1783 "(sector %llu on %s).\n", 1784 mdname(conf->mddev), 1785 (unsigned long long)s, 1786 bdn); 1787 else if (conf->mddev->degraded >= conf->max_degraded) { 1788 set_bad = 1; 1789 printk_ratelimited( 1790 KERN_WARNING 1791 "md/raid:%s: read error not correctable " 1792 "(sector %llu on %s).\n", 1793 mdname(conf->mddev), 1794 (unsigned long long)s, 1795 bdn); 1796 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) { 1797 /* Oh, no!!! */ 1798 set_bad = 1; 1799 printk_ratelimited( 1800 KERN_WARNING 1801 "md/raid:%s: read error NOT corrected!! " 1802 "(sector %llu on %s).\n", 1803 mdname(conf->mddev), 1804 (unsigned long long)s, 1805 bdn); 1806 } else if (atomic_read(&rdev->read_errors) 1807 > conf->max_nr_stripes) 1808 printk(KERN_WARNING 1809 "md/raid:%s: Too many read errors, failing device %s.\n", 1810 mdname(conf->mddev), bdn); 1811 else 1812 retry = 1; 1813 if (retry) 1814 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) { 1815 set_bit(R5_ReadError, &sh->dev[i].flags); 1816 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 1817 } else 1818 set_bit(R5_ReadNoMerge, &sh->dev[i].flags); 1819 else { 1820 clear_bit(R5_ReadError, &sh->dev[i].flags); 1821 clear_bit(R5_ReWrite, &sh->dev[i].flags); 1822 if (!(set_bad 1823 && test_bit(In_sync, &rdev->flags) 1824 && rdev_set_badblocks( 1825 rdev, sh->sector, STRIPE_SECTORS, 0))) 1826 md_error(conf->mddev, rdev); 1827 } 1828 } 1829 rdev_dec_pending(rdev, conf->mddev); 1830 clear_bit(R5_LOCKED, &sh->dev[i].flags); 1831 set_bit(STRIPE_HANDLE, &sh->state); 1832 release_stripe(sh); 1833 } 1834 1835 static void raid5_end_write_request(struct bio *bi, int error) 1836 { 1837 struct stripe_head *sh = bi->bi_private; 1838 struct r5conf *conf = sh->raid_conf; 1839 int disks = sh->disks, i; 1840 struct md_rdev *uninitialized_var(rdev); 1841 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); 1842 sector_t first_bad; 1843 int bad_sectors; 1844 int replacement = 0; 1845 1846 for (i = 0 ; i < disks; i++) { 1847 if (bi == &sh->dev[i].req) { 1848 rdev = conf->disks[i].rdev; 1849 break; 1850 } 1851 if (bi == &sh->dev[i].rreq) { 1852 rdev = conf->disks[i].replacement; 1853 if (rdev) 1854 replacement = 1; 1855 else 1856 /* rdev was removed and 'replacement' 1857 * replaced it. rdev is not removed 1858 * until all requests are finished. 1859 */ 1860 rdev = conf->disks[i].rdev; 1861 break; 1862 } 1863 } 1864 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n", 1865 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 1866 uptodate); 1867 if (i == disks) { 1868 BUG(); 1869 return; 1870 } 1871 1872 if (replacement) { 1873 if (!uptodate) 1874 md_error(conf->mddev, rdev); 1875 else if (is_badblock(rdev, sh->sector, 1876 STRIPE_SECTORS, 1877 &first_bad, &bad_sectors)) 1878 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags); 1879 } else { 1880 if (!uptodate) { 1881 set_bit(WriteErrorSeen, &rdev->flags); 1882 set_bit(R5_WriteError, &sh->dev[i].flags); 1883 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 1884 set_bit(MD_RECOVERY_NEEDED, 1885 &rdev->mddev->recovery); 1886 } else if (is_badblock(rdev, sh->sector, 1887 STRIPE_SECTORS, 1888 &first_bad, &bad_sectors)) 1889 set_bit(R5_MadeGood, &sh->dev[i].flags); 1890 } 1891 rdev_dec_pending(rdev, conf->mddev); 1892 1893 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags)) 1894 clear_bit(R5_LOCKED, &sh->dev[i].flags); 1895 set_bit(STRIPE_HANDLE, &sh->state); 1896 release_stripe(sh); 1897 } 1898 1899 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous); 1900 1901 static void raid5_build_block(struct stripe_head *sh, int i, int previous) 1902 { 1903 struct r5dev *dev = &sh->dev[i]; 1904 1905 bio_init(&dev->req); 1906 dev->req.bi_io_vec = &dev->vec; 1907 dev->req.bi_vcnt++; 1908 dev->req.bi_max_vecs++; 1909 dev->req.bi_private = sh; 1910 dev->vec.bv_page = dev->page; 1911 1912 bio_init(&dev->rreq); 1913 dev->rreq.bi_io_vec = &dev->rvec; 1914 dev->rreq.bi_vcnt++; 1915 dev->rreq.bi_max_vecs++; 1916 dev->rreq.bi_private = sh; 1917 dev->rvec.bv_page = dev->page; 1918 1919 dev->flags = 0; 1920 dev->sector = compute_blocknr(sh, i, previous); 1921 } 1922 1923 static void error(struct mddev *mddev, struct md_rdev *rdev) 1924 { 1925 char b[BDEVNAME_SIZE]; 1926 struct r5conf *conf = mddev->private; 1927 unsigned long flags; 1928 pr_debug("raid456: error called\n"); 1929 1930 spin_lock_irqsave(&conf->device_lock, flags); 1931 clear_bit(In_sync, &rdev->flags); 1932 mddev->degraded = calc_degraded(conf); 1933 spin_unlock_irqrestore(&conf->device_lock, flags); 1934 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1935 1936 set_bit(Blocked, &rdev->flags); 1937 set_bit(Faulty, &rdev->flags); 1938 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1939 printk(KERN_ALERT 1940 "md/raid:%s: Disk failure on %s, disabling device.\n" 1941 "md/raid:%s: Operation continuing on %d devices.\n", 1942 mdname(mddev), 1943 bdevname(rdev->bdev, b), 1944 mdname(mddev), 1945 conf->raid_disks - mddev->degraded); 1946 } 1947 1948 /* 1949 * Input: a 'big' sector number, 1950 * Output: index of the data and parity disk, and the sector # in them. 1951 */ 1952 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector, 1953 int previous, int *dd_idx, 1954 struct stripe_head *sh) 1955 { 1956 sector_t stripe, stripe2; 1957 sector_t chunk_number; 1958 unsigned int chunk_offset; 1959 int pd_idx, qd_idx; 1960 int ddf_layout = 0; 1961 sector_t new_sector; 1962 int algorithm = previous ? conf->prev_algo 1963 : conf->algorithm; 1964 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 1965 : conf->chunk_sectors; 1966 int raid_disks = previous ? conf->previous_raid_disks 1967 : conf->raid_disks; 1968 int data_disks = raid_disks - conf->max_degraded; 1969 1970 /* First compute the information on this sector */ 1971 1972 /* 1973 * Compute the chunk number and the sector offset inside the chunk 1974 */ 1975 chunk_offset = sector_div(r_sector, sectors_per_chunk); 1976 chunk_number = r_sector; 1977 1978 /* 1979 * Compute the stripe number 1980 */ 1981 stripe = chunk_number; 1982 *dd_idx = sector_div(stripe, data_disks); 1983 stripe2 = stripe; 1984 /* 1985 * Select the parity disk based on the user selected algorithm. 1986 */ 1987 pd_idx = qd_idx = -1; 1988 switch(conf->level) { 1989 case 4: 1990 pd_idx = data_disks; 1991 break; 1992 case 5: 1993 switch (algorithm) { 1994 case ALGORITHM_LEFT_ASYMMETRIC: 1995 pd_idx = data_disks - sector_div(stripe2, raid_disks); 1996 if (*dd_idx >= pd_idx) 1997 (*dd_idx)++; 1998 break; 1999 case ALGORITHM_RIGHT_ASYMMETRIC: 2000 pd_idx = sector_div(stripe2, raid_disks); 2001 if (*dd_idx >= pd_idx) 2002 (*dd_idx)++; 2003 break; 2004 case ALGORITHM_LEFT_SYMMETRIC: 2005 pd_idx = data_disks - sector_div(stripe2, raid_disks); 2006 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2007 break; 2008 case ALGORITHM_RIGHT_SYMMETRIC: 2009 pd_idx = sector_div(stripe2, raid_disks); 2010 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2011 break; 2012 case ALGORITHM_PARITY_0: 2013 pd_idx = 0; 2014 (*dd_idx)++; 2015 break; 2016 case ALGORITHM_PARITY_N: 2017 pd_idx = data_disks; 2018 break; 2019 default: 2020 BUG(); 2021 } 2022 break; 2023 case 6: 2024 2025 switch (algorithm) { 2026 case ALGORITHM_LEFT_ASYMMETRIC: 2027 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2028 qd_idx = pd_idx + 1; 2029 if (pd_idx == raid_disks-1) { 2030 (*dd_idx)++; /* Q D D D P */ 2031 qd_idx = 0; 2032 } else if (*dd_idx >= pd_idx) 2033 (*dd_idx) += 2; /* D D P Q D */ 2034 break; 2035 case ALGORITHM_RIGHT_ASYMMETRIC: 2036 pd_idx = sector_div(stripe2, raid_disks); 2037 qd_idx = pd_idx + 1; 2038 if (pd_idx == raid_disks-1) { 2039 (*dd_idx)++; /* Q D D D P */ 2040 qd_idx = 0; 2041 } else if (*dd_idx >= pd_idx) 2042 (*dd_idx) += 2; /* D D P Q D */ 2043 break; 2044 case ALGORITHM_LEFT_SYMMETRIC: 2045 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2046 qd_idx = (pd_idx + 1) % raid_disks; 2047 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 2048 break; 2049 case ALGORITHM_RIGHT_SYMMETRIC: 2050 pd_idx = sector_div(stripe2, raid_disks); 2051 qd_idx = (pd_idx + 1) % raid_disks; 2052 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 2053 break; 2054 2055 case ALGORITHM_PARITY_0: 2056 pd_idx = 0; 2057 qd_idx = 1; 2058 (*dd_idx) += 2; 2059 break; 2060 case ALGORITHM_PARITY_N: 2061 pd_idx = data_disks; 2062 qd_idx = data_disks + 1; 2063 break; 2064 2065 case ALGORITHM_ROTATING_ZERO_RESTART: 2066 /* Exactly the same as RIGHT_ASYMMETRIC, but or 2067 * of blocks for computing Q is different. 2068 */ 2069 pd_idx = sector_div(stripe2, raid_disks); 2070 qd_idx = pd_idx + 1; 2071 if (pd_idx == raid_disks-1) { 2072 (*dd_idx)++; /* Q D D D P */ 2073 qd_idx = 0; 2074 } else if (*dd_idx >= pd_idx) 2075 (*dd_idx) += 2; /* D D P Q D */ 2076 ddf_layout = 1; 2077 break; 2078 2079 case ALGORITHM_ROTATING_N_RESTART: 2080 /* Same a left_asymmetric, by first stripe is 2081 * D D D P Q rather than 2082 * Q D D D P 2083 */ 2084 stripe2 += 1; 2085 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2086 qd_idx = pd_idx + 1; 2087 if (pd_idx == raid_disks-1) { 2088 (*dd_idx)++; /* Q D D D P */ 2089 qd_idx = 0; 2090 } else if (*dd_idx >= pd_idx) 2091 (*dd_idx) += 2; /* D D P Q D */ 2092 ddf_layout = 1; 2093 break; 2094 2095 case ALGORITHM_ROTATING_N_CONTINUE: 2096 /* Same as left_symmetric but Q is before P */ 2097 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2098 qd_idx = (pd_idx + raid_disks - 1) % raid_disks; 2099 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2100 ddf_layout = 1; 2101 break; 2102 2103 case ALGORITHM_LEFT_ASYMMETRIC_6: 2104 /* RAID5 left_asymmetric, with Q on last device */ 2105 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 2106 if (*dd_idx >= pd_idx) 2107 (*dd_idx)++; 2108 qd_idx = raid_disks - 1; 2109 break; 2110 2111 case ALGORITHM_RIGHT_ASYMMETRIC_6: 2112 pd_idx = sector_div(stripe2, raid_disks-1); 2113 if (*dd_idx >= pd_idx) 2114 (*dd_idx)++; 2115 qd_idx = raid_disks - 1; 2116 break; 2117 2118 case ALGORITHM_LEFT_SYMMETRIC_6: 2119 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 2120 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 2121 qd_idx = raid_disks - 1; 2122 break; 2123 2124 case ALGORITHM_RIGHT_SYMMETRIC_6: 2125 pd_idx = sector_div(stripe2, raid_disks-1); 2126 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 2127 qd_idx = raid_disks - 1; 2128 break; 2129 2130 case ALGORITHM_PARITY_0_6: 2131 pd_idx = 0; 2132 (*dd_idx)++; 2133 qd_idx = raid_disks - 1; 2134 break; 2135 2136 default: 2137 BUG(); 2138 } 2139 break; 2140 } 2141 2142 if (sh) { 2143 sh->pd_idx = pd_idx; 2144 sh->qd_idx = qd_idx; 2145 sh->ddf_layout = ddf_layout; 2146 } 2147 /* 2148 * Finally, compute the new sector number 2149 */ 2150 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset; 2151 return new_sector; 2152 } 2153 2154 2155 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous) 2156 { 2157 struct r5conf *conf = sh->raid_conf; 2158 int raid_disks = sh->disks; 2159 int data_disks = raid_disks - conf->max_degraded; 2160 sector_t new_sector = sh->sector, check; 2161 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 2162 : conf->chunk_sectors; 2163 int algorithm = previous ? conf->prev_algo 2164 : conf->algorithm; 2165 sector_t stripe; 2166 int chunk_offset; 2167 sector_t chunk_number; 2168 int dummy1, dd_idx = i; 2169 sector_t r_sector; 2170 struct stripe_head sh2; 2171 2172 2173 chunk_offset = sector_div(new_sector, sectors_per_chunk); 2174 stripe = new_sector; 2175 2176 if (i == sh->pd_idx) 2177 return 0; 2178 switch(conf->level) { 2179 case 4: break; 2180 case 5: 2181 switch (algorithm) { 2182 case ALGORITHM_LEFT_ASYMMETRIC: 2183 case ALGORITHM_RIGHT_ASYMMETRIC: 2184 if (i > sh->pd_idx) 2185 i--; 2186 break; 2187 case ALGORITHM_LEFT_SYMMETRIC: 2188 case ALGORITHM_RIGHT_SYMMETRIC: 2189 if (i < sh->pd_idx) 2190 i += raid_disks; 2191 i -= (sh->pd_idx + 1); 2192 break; 2193 case ALGORITHM_PARITY_0: 2194 i -= 1; 2195 break; 2196 case ALGORITHM_PARITY_N: 2197 break; 2198 default: 2199 BUG(); 2200 } 2201 break; 2202 case 6: 2203 if (i == sh->qd_idx) 2204 return 0; /* It is the Q disk */ 2205 switch (algorithm) { 2206 case ALGORITHM_LEFT_ASYMMETRIC: 2207 case ALGORITHM_RIGHT_ASYMMETRIC: 2208 case ALGORITHM_ROTATING_ZERO_RESTART: 2209 case ALGORITHM_ROTATING_N_RESTART: 2210 if (sh->pd_idx == raid_disks-1) 2211 i--; /* Q D D D P */ 2212 else if (i > sh->pd_idx) 2213 i -= 2; /* D D P Q D */ 2214 break; 2215 case ALGORITHM_LEFT_SYMMETRIC: 2216 case ALGORITHM_RIGHT_SYMMETRIC: 2217 if (sh->pd_idx == raid_disks-1) 2218 i--; /* Q D D D P */ 2219 else { 2220 /* D D P Q D */ 2221 if (i < sh->pd_idx) 2222 i += raid_disks; 2223 i -= (sh->pd_idx + 2); 2224 } 2225 break; 2226 case ALGORITHM_PARITY_0: 2227 i -= 2; 2228 break; 2229 case ALGORITHM_PARITY_N: 2230 break; 2231 case ALGORITHM_ROTATING_N_CONTINUE: 2232 /* Like left_symmetric, but P is before Q */ 2233 if (sh->pd_idx == 0) 2234 i--; /* P D D D Q */ 2235 else { 2236 /* D D Q P D */ 2237 if (i < sh->pd_idx) 2238 i += raid_disks; 2239 i -= (sh->pd_idx + 1); 2240 } 2241 break; 2242 case ALGORITHM_LEFT_ASYMMETRIC_6: 2243 case ALGORITHM_RIGHT_ASYMMETRIC_6: 2244 if (i > sh->pd_idx) 2245 i--; 2246 break; 2247 case ALGORITHM_LEFT_SYMMETRIC_6: 2248 case ALGORITHM_RIGHT_SYMMETRIC_6: 2249 if (i < sh->pd_idx) 2250 i += data_disks + 1; 2251 i -= (sh->pd_idx + 1); 2252 break; 2253 case ALGORITHM_PARITY_0_6: 2254 i -= 1; 2255 break; 2256 default: 2257 BUG(); 2258 } 2259 break; 2260 } 2261 2262 chunk_number = stripe * data_disks + i; 2263 r_sector = chunk_number * sectors_per_chunk + chunk_offset; 2264 2265 check = raid5_compute_sector(conf, r_sector, 2266 previous, &dummy1, &sh2); 2267 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx 2268 || sh2.qd_idx != sh->qd_idx) { 2269 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n", 2270 mdname(conf->mddev)); 2271 return 0; 2272 } 2273 return r_sector; 2274 } 2275 2276 2277 static void 2278 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s, 2279 int rcw, int expand) 2280 { 2281 int i, pd_idx = sh->pd_idx, disks = sh->disks; 2282 struct r5conf *conf = sh->raid_conf; 2283 int level = conf->level; 2284 2285 if (rcw) { 2286 2287 for (i = disks; i--; ) { 2288 struct r5dev *dev = &sh->dev[i]; 2289 2290 if (dev->towrite) { 2291 set_bit(R5_LOCKED, &dev->flags); 2292 set_bit(R5_Wantdrain, &dev->flags); 2293 if (!expand) 2294 clear_bit(R5_UPTODATE, &dev->flags); 2295 s->locked++; 2296 } 2297 } 2298 /* if we are not expanding this is a proper write request, and 2299 * there will be bios with new data to be drained into the 2300 * stripe cache 2301 */ 2302 if (!expand) { 2303 if (!s->locked) 2304 /* False alarm, nothing to do */ 2305 return; 2306 sh->reconstruct_state = reconstruct_state_drain_run; 2307 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 2308 } else 2309 sh->reconstruct_state = reconstruct_state_run; 2310 2311 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 2312 2313 if (s->locked + conf->max_degraded == disks) 2314 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state)) 2315 atomic_inc(&conf->pending_full_writes); 2316 } else { 2317 BUG_ON(level == 6); 2318 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) || 2319 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags))); 2320 2321 for (i = disks; i--; ) { 2322 struct r5dev *dev = &sh->dev[i]; 2323 if (i == pd_idx) 2324 continue; 2325 2326 if (dev->towrite && 2327 (test_bit(R5_UPTODATE, &dev->flags) || 2328 test_bit(R5_Wantcompute, &dev->flags))) { 2329 set_bit(R5_Wantdrain, &dev->flags); 2330 set_bit(R5_LOCKED, &dev->flags); 2331 clear_bit(R5_UPTODATE, &dev->flags); 2332 s->locked++; 2333 } 2334 } 2335 if (!s->locked) 2336 /* False alarm - nothing to do */ 2337 return; 2338 sh->reconstruct_state = reconstruct_state_prexor_drain_run; 2339 set_bit(STRIPE_OP_PREXOR, &s->ops_request); 2340 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 2341 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 2342 } 2343 2344 /* keep the parity disk(s) locked while asynchronous operations 2345 * are in flight 2346 */ 2347 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); 2348 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 2349 s->locked++; 2350 2351 if (level == 6) { 2352 int qd_idx = sh->qd_idx; 2353 struct r5dev *dev = &sh->dev[qd_idx]; 2354 2355 set_bit(R5_LOCKED, &dev->flags); 2356 clear_bit(R5_UPTODATE, &dev->flags); 2357 s->locked++; 2358 } 2359 2360 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n", 2361 __func__, (unsigned long long)sh->sector, 2362 s->locked, s->ops_request); 2363 } 2364 2365 /* 2366 * Each stripe/dev can have one or more bion attached. 2367 * toread/towrite point to the first in a chain. 2368 * The bi_next chain must be in order. 2369 */ 2370 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite) 2371 { 2372 struct bio **bip; 2373 struct r5conf *conf = sh->raid_conf; 2374 int firstwrite=0; 2375 2376 pr_debug("adding bi b#%llu to stripe s#%llu\n", 2377 (unsigned long long)bi->bi_sector, 2378 (unsigned long long)sh->sector); 2379 2380 /* 2381 * If several bio share a stripe. The bio bi_phys_segments acts as a 2382 * reference count to avoid race. The reference count should already be 2383 * increased before this function is called (for example, in 2384 * make_request()), so other bio sharing this stripe will not free the 2385 * stripe. If a stripe is owned by one stripe, the stripe lock will 2386 * protect it. 2387 */ 2388 spin_lock_irq(&sh->stripe_lock); 2389 if (forwrite) { 2390 bip = &sh->dev[dd_idx].towrite; 2391 if (*bip == NULL) 2392 firstwrite = 1; 2393 } else 2394 bip = &sh->dev[dd_idx].toread; 2395 while (*bip && (*bip)->bi_sector < bi->bi_sector) { 2396 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector) 2397 goto overlap; 2398 bip = & (*bip)->bi_next; 2399 } 2400 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9)) 2401 goto overlap; 2402 2403 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next); 2404 if (*bip) 2405 bi->bi_next = *bip; 2406 *bip = bi; 2407 raid5_inc_bi_active_stripes(bi); 2408 2409 if (forwrite) { 2410 /* check if page is covered */ 2411 sector_t sector = sh->dev[dd_idx].sector; 2412 for (bi=sh->dev[dd_idx].towrite; 2413 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS && 2414 bi && bi->bi_sector <= sector; 2415 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) { 2416 if (bi->bi_sector + (bi->bi_size>>9) >= sector) 2417 sector = bi->bi_sector + (bi->bi_size>>9); 2418 } 2419 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS) 2420 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags); 2421 } 2422 2423 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n", 2424 (unsigned long long)(*bip)->bi_sector, 2425 (unsigned long long)sh->sector, dd_idx); 2426 spin_unlock_irq(&sh->stripe_lock); 2427 2428 if (conf->mddev->bitmap && firstwrite) { 2429 bitmap_startwrite(conf->mddev->bitmap, sh->sector, 2430 STRIPE_SECTORS, 0); 2431 sh->bm_seq = conf->seq_flush+1; 2432 set_bit(STRIPE_BIT_DELAY, &sh->state); 2433 } 2434 return 1; 2435 2436 overlap: 2437 set_bit(R5_Overlap, &sh->dev[dd_idx].flags); 2438 spin_unlock_irq(&sh->stripe_lock); 2439 return 0; 2440 } 2441 2442 static void end_reshape(struct r5conf *conf); 2443 2444 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 2445 struct stripe_head *sh) 2446 { 2447 int sectors_per_chunk = 2448 previous ? conf->prev_chunk_sectors : conf->chunk_sectors; 2449 int dd_idx; 2450 int chunk_offset = sector_div(stripe, sectors_per_chunk); 2451 int disks = previous ? conf->previous_raid_disks : conf->raid_disks; 2452 2453 raid5_compute_sector(conf, 2454 stripe * (disks - conf->max_degraded) 2455 *sectors_per_chunk + chunk_offset, 2456 previous, 2457 &dd_idx, sh); 2458 } 2459 2460 static void 2461 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh, 2462 struct stripe_head_state *s, int disks, 2463 struct bio **return_bi) 2464 { 2465 int i; 2466 for (i = disks; i--; ) { 2467 struct bio *bi; 2468 int bitmap_end = 0; 2469 2470 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 2471 struct md_rdev *rdev; 2472 rcu_read_lock(); 2473 rdev = rcu_dereference(conf->disks[i].rdev); 2474 if (rdev && test_bit(In_sync, &rdev->flags)) 2475 atomic_inc(&rdev->nr_pending); 2476 else 2477 rdev = NULL; 2478 rcu_read_unlock(); 2479 if (rdev) { 2480 if (!rdev_set_badblocks( 2481 rdev, 2482 sh->sector, 2483 STRIPE_SECTORS, 0)) 2484 md_error(conf->mddev, rdev); 2485 rdev_dec_pending(rdev, conf->mddev); 2486 } 2487 } 2488 spin_lock_irq(&sh->stripe_lock); 2489 /* fail all writes first */ 2490 bi = sh->dev[i].towrite; 2491 sh->dev[i].towrite = NULL; 2492 spin_unlock_irq(&sh->stripe_lock); 2493 if (bi) 2494 bitmap_end = 1; 2495 2496 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 2497 wake_up(&conf->wait_for_overlap); 2498 2499 while (bi && bi->bi_sector < 2500 sh->dev[i].sector + STRIPE_SECTORS) { 2501 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector); 2502 clear_bit(BIO_UPTODATE, &bi->bi_flags); 2503 if (!raid5_dec_bi_active_stripes(bi)) { 2504 md_write_end(conf->mddev); 2505 bi->bi_next = *return_bi; 2506 *return_bi = bi; 2507 } 2508 bi = nextbi; 2509 } 2510 if (bitmap_end) 2511 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 2512 STRIPE_SECTORS, 0, 0); 2513 bitmap_end = 0; 2514 /* and fail all 'written' */ 2515 bi = sh->dev[i].written; 2516 sh->dev[i].written = NULL; 2517 if (bi) bitmap_end = 1; 2518 while (bi && bi->bi_sector < 2519 sh->dev[i].sector + STRIPE_SECTORS) { 2520 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector); 2521 clear_bit(BIO_UPTODATE, &bi->bi_flags); 2522 if (!raid5_dec_bi_active_stripes(bi)) { 2523 md_write_end(conf->mddev); 2524 bi->bi_next = *return_bi; 2525 *return_bi = bi; 2526 } 2527 bi = bi2; 2528 } 2529 2530 /* fail any reads if this device is non-operational and 2531 * the data has not reached the cache yet. 2532 */ 2533 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) && 2534 (!test_bit(R5_Insync, &sh->dev[i].flags) || 2535 test_bit(R5_ReadError, &sh->dev[i].flags))) { 2536 spin_lock_irq(&sh->stripe_lock); 2537 bi = sh->dev[i].toread; 2538 sh->dev[i].toread = NULL; 2539 spin_unlock_irq(&sh->stripe_lock); 2540 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 2541 wake_up(&conf->wait_for_overlap); 2542 while (bi && bi->bi_sector < 2543 sh->dev[i].sector + STRIPE_SECTORS) { 2544 struct bio *nextbi = 2545 r5_next_bio(bi, sh->dev[i].sector); 2546 clear_bit(BIO_UPTODATE, &bi->bi_flags); 2547 if (!raid5_dec_bi_active_stripes(bi)) { 2548 bi->bi_next = *return_bi; 2549 *return_bi = bi; 2550 } 2551 bi = nextbi; 2552 } 2553 } 2554 if (bitmap_end) 2555 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 2556 STRIPE_SECTORS, 0, 0); 2557 /* If we were in the middle of a write the parity block might 2558 * still be locked - so just clear all R5_LOCKED flags 2559 */ 2560 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2561 } 2562 2563 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 2564 if (atomic_dec_and_test(&conf->pending_full_writes)) 2565 md_wakeup_thread(conf->mddev->thread); 2566 } 2567 2568 static void 2569 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh, 2570 struct stripe_head_state *s) 2571 { 2572 int abort = 0; 2573 int i; 2574 2575 clear_bit(STRIPE_SYNCING, &sh->state); 2576 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 2577 wake_up(&conf->wait_for_overlap); 2578 s->syncing = 0; 2579 s->replacing = 0; 2580 /* There is nothing more to do for sync/check/repair. 2581 * Don't even need to abort as that is handled elsewhere 2582 * if needed, and not always wanted e.g. if there is a known 2583 * bad block here. 2584 * For recover/replace we need to record a bad block on all 2585 * non-sync devices, or abort the recovery 2586 */ 2587 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) { 2588 /* During recovery devices cannot be removed, so 2589 * locking and refcounting of rdevs is not needed 2590 */ 2591 for (i = 0; i < conf->raid_disks; i++) { 2592 struct md_rdev *rdev = conf->disks[i].rdev; 2593 if (rdev 2594 && !test_bit(Faulty, &rdev->flags) 2595 && !test_bit(In_sync, &rdev->flags) 2596 && !rdev_set_badblocks(rdev, sh->sector, 2597 STRIPE_SECTORS, 0)) 2598 abort = 1; 2599 rdev = conf->disks[i].replacement; 2600 if (rdev 2601 && !test_bit(Faulty, &rdev->flags) 2602 && !test_bit(In_sync, &rdev->flags) 2603 && !rdev_set_badblocks(rdev, sh->sector, 2604 STRIPE_SECTORS, 0)) 2605 abort = 1; 2606 } 2607 if (abort) 2608 conf->recovery_disabled = 2609 conf->mddev->recovery_disabled; 2610 } 2611 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort); 2612 } 2613 2614 static int want_replace(struct stripe_head *sh, int disk_idx) 2615 { 2616 struct md_rdev *rdev; 2617 int rv = 0; 2618 /* Doing recovery so rcu locking not required */ 2619 rdev = sh->raid_conf->disks[disk_idx].replacement; 2620 if (rdev 2621 && !test_bit(Faulty, &rdev->flags) 2622 && !test_bit(In_sync, &rdev->flags) 2623 && (rdev->recovery_offset <= sh->sector 2624 || rdev->mddev->recovery_cp <= sh->sector)) 2625 rv = 1; 2626 2627 return rv; 2628 } 2629 2630 /* fetch_block - checks the given member device to see if its data needs 2631 * to be read or computed to satisfy a request. 2632 * 2633 * Returns 1 when no more member devices need to be checked, otherwise returns 2634 * 0 to tell the loop in handle_stripe_fill to continue 2635 */ 2636 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s, 2637 int disk_idx, int disks) 2638 { 2639 struct r5dev *dev = &sh->dev[disk_idx]; 2640 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]], 2641 &sh->dev[s->failed_num[1]] }; 2642 2643 /* is the data in this block needed, and can we get it? */ 2644 if (!test_bit(R5_LOCKED, &dev->flags) && 2645 !test_bit(R5_UPTODATE, &dev->flags) && 2646 (dev->toread || 2647 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) || 2648 s->syncing || s->expanding || 2649 (s->replacing && want_replace(sh, disk_idx)) || 2650 (s->failed >= 1 && fdev[0]->toread) || 2651 (s->failed >= 2 && fdev[1]->toread) || 2652 (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite && 2653 !test_bit(R5_OVERWRITE, &fdev[0]->flags)) || 2654 (sh->raid_conf->level == 6 && s->failed && s->to_write))) { 2655 /* we would like to get this block, possibly by computing it, 2656 * otherwise read it if the backing disk is insync 2657 */ 2658 BUG_ON(test_bit(R5_Wantcompute, &dev->flags)); 2659 BUG_ON(test_bit(R5_Wantread, &dev->flags)); 2660 if ((s->uptodate == disks - 1) && 2661 (s->failed && (disk_idx == s->failed_num[0] || 2662 disk_idx == s->failed_num[1]))) { 2663 /* have disk failed, and we're requested to fetch it; 2664 * do compute it 2665 */ 2666 pr_debug("Computing stripe %llu block %d\n", 2667 (unsigned long long)sh->sector, disk_idx); 2668 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 2669 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 2670 set_bit(R5_Wantcompute, &dev->flags); 2671 sh->ops.target = disk_idx; 2672 sh->ops.target2 = -1; /* no 2nd target */ 2673 s->req_compute = 1; 2674 /* Careful: from this point on 'uptodate' is in the eye 2675 * of raid_run_ops which services 'compute' operations 2676 * before writes. R5_Wantcompute flags a block that will 2677 * be R5_UPTODATE by the time it is needed for a 2678 * subsequent operation. 2679 */ 2680 s->uptodate++; 2681 return 1; 2682 } else if (s->uptodate == disks-2 && s->failed >= 2) { 2683 /* Computing 2-failure is *very* expensive; only 2684 * do it if failed >= 2 2685 */ 2686 int other; 2687 for (other = disks; other--; ) { 2688 if (other == disk_idx) 2689 continue; 2690 if (!test_bit(R5_UPTODATE, 2691 &sh->dev[other].flags)) 2692 break; 2693 } 2694 BUG_ON(other < 0); 2695 pr_debug("Computing stripe %llu blocks %d,%d\n", 2696 (unsigned long long)sh->sector, 2697 disk_idx, other); 2698 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 2699 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 2700 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags); 2701 set_bit(R5_Wantcompute, &sh->dev[other].flags); 2702 sh->ops.target = disk_idx; 2703 sh->ops.target2 = other; 2704 s->uptodate += 2; 2705 s->req_compute = 1; 2706 return 1; 2707 } else if (test_bit(R5_Insync, &dev->flags)) { 2708 set_bit(R5_LOCKED, &dev->flags); 2709 set_bit(R5_Wantread, &dev->flags); 2710 s->locked++; 2711 pr_debug("Reading block %d (sync=%d)\n", 2712 disk_idx, s->syncing); 2713 } 2714 } 2715 2716 return 0; 2717 } 2718 2719 /** 2720 * handle_stripe_fill - read or compute data to satisfy pending requests. 2721 */ 2722 static void handle_stripe_fill(struct stripe_head *sh, 2723 struct stripe_head_state *s, 2724 int disks) 2725 { 2726 int i; 2727 2728 /* look for blocks to read/compute, skip this if a compute 2729 * is already in flight, or if the stripe contents are in the 2730 * midst of changing due to a write 2731 */ 2732 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state && 2733 !sh->reconstruct_state) 2734 for (i = disks; i--; ) 2735 if (fetch_block(sh, s, i, disks)) 2736 break; 2737 set_bit(STRIPE_HANDLE, &sh->state); 2738 } 2739 2740 2741 /* handle_stripe_clean_event 2742 * any written block on an uptodate or failed drive can be returned. 2743 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but 2744 * never LOCKED, so we don't need to test 'failed' directly. 2745 */ 2746 static void handle_stripe_clean_event(struct r5conf *conf, 2747 struct stripe_head *sh, int disks, struct bio **return_bi) 2748 { 2749 int i; 2750 struct r5dev *dev; 2751 int discard_pending = 0; 2752 2753 for (i = disks; i--; ) 2754 if (sh->dev[i].written) { 2755 dev = &sh->dev[i]; 2756 if (!test_bit(R5_LOCKED, &dev->flags) && 2757 (test_bit(R5_UPTODATE, &dev->flags) || 2758 test_bit(R5_Discard, &dev->flags))) { 2759 /* We can return any write requests */ 2760 struct bio *wbi, *wbi2; 2761 pr_debug("Return write for disc %d\n", i); 2762 if (test_and_clear_bit(R5_Discard, &dev->flags)) 2763 clear_bit(R5_UPTODATE, &dev->flags); 2764 wbi = dev->written; 2765 dev->written = NULL; 2766 while (wbi && wbi->bi_sector < 2767 dev->sector + STRIPE_SECTORS) { 2768 wbi2 = r5_next_bio(wbi, dev->sector); 2769 if (!raid5_dec_bi_active_stripes(wbi)) { 2770 md_write_end(conf->mddev); 2771 wbi->bi_next = *return_bi; 2772 *return_bi = wbi; 2773 } 2774 wbi = wbi2; 2775 } 2776 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 2777 STRIPE_SECTORS, 2778 !test_bit(STRIPE_DEGRADED, &sh->state), 2779 0); 2780 } else if (test_bit(R5_Discard, &dev->flags)) 2781 discard_pending = 1; 2782 } 2783 if (!discard_pending && 2784 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) { 2785 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 2786 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 2787 if (sh->qd_idx >= 0) { 2788 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 2789 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags); 2790 } 2791 /* now that discard is done we can proceed with any sync */ 2792 clear_bit(STRIPE_DISCARD, &sh->state); 2793 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) 2794 set_bit(STRIPE_HANDLE, &sh->state); 2795 2796 } 2797 2798 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 2799 if (atomic_dec_and_test(&conf->pending_full_writes)) 2800 md_wakeup_thread(conf->mddev->thread); 2801 } 2802 2803 static void handle_stripe_dirtying(struct r5conf *conf, 2804 struct stripe_head *sh, 2805 struct stripe_head_state *s, 2806 int disks) 2807 { 2808 int rmw = 0, rcw = 0, i; 2809 sector_t recovery_cp = conf->mddev->recovery_cp; 2810 2811 /* RAID6 requires 'rcw' in current implementation. 2812 * Otherwise, check whether resync is now happening or should start. 2813 * If yes, then the array is dirty (after unclean shutdown or 2814 * initial creation), so parity in some stripes might be inconsistent. 2815 * In this case, we need to always do reconstruct-write, to ensure 2816 * that in case of drive failure or read-error correction, we 2817 * generate correct data from the parity. 2818 */ 2819 if (conf->max_degraded == 2 || 2820 (recovery_cp < MaxSector && sh->sector >= recovery_cp)) { 2821 /* Calculate the real rcw later - for now make it 2822 * look like rcw is cheaper 2823 */ 2824 rcw = 1; rmw = 2; 2825 pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n", 2826 conf->max_degraded, (unsigned long long)recovery_cp, 2827 (unsigned long long)sh->sector); 2828 } else for (i = disks; i--; ) { 2829 /* would I have to read this buffer for read_modify_write */ 2830 struct r5dev *dev = &sh->dev[i]; 2831 if ((dev->towrite || i == sh->pd_idx) && 2832 !test_bit(R5_LOCKED, &dev->flags) && 2833 !(test_bit(R5_UPTODATE, &dev->flags) || 2834 test_bit(R5_Wantcompute, &dev->flags))) { 2835 if (test_bit(R5_Insync, &dev->flags)) 2836 rmw++; 2837 else 2838 rmw += 2*disks; /* cannot read it */ 2839 } 2840 /* Would I have to read this buffer for reconstruct_write */ 2841 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx && 2842 !test_bit(R5_LOCKED, &dev->flags) && 2843 !(test_bit(R5_UPTODATE, &dev->flags) || 2844 test_bit(R5_Wantcompute, &dev->flags))) { 2845 if (test_bit(R5_Insync, &dev->flags)) rcw++; 2846 else 2847 rcw += 2*disks; 2848 } 2849 } 2850 pr_debug("for sector %llu, rmw=%d rcw=%d\n", 2851 (unsigned long long)sh->sector, rmw, rcw); 2852 set_bit(STRIPE_HANDLE, &sh->state); 2853 if (rmw < rcw && rmw > 0) { 2854 /* prefer read-modify-write, but need to get some data */ 2855 if (conf->mddev->queue) 2856 blk_add_trace_msg(conf->mddev->queue, 2857 "raid5 rmw %llu %d", 2858 (unsigned long long)sh->sector, rmw); 2859 for (i = disks; i--; ) { 2860 struct r5dev *dev = &sh->dev[i]; 2861 if ((dev->towrite || i == sh->pd_idx) && 2862 !test_bit(R5_LOCKED, &dev->flags) && 2863 !(test_bit(R5_UPTODATE, &dev->flags) || 2864 test_bit(R5_Wantcompute, &dev->flags)) && 2865 test_bit(R5_Insync, &dev->flags)) { 2866 if ( 2867 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { 2868 pr_debug("Read_old block " 2869 "%d for r-m-w\n", i); 2870 set_bit(R5_LOCKED, &dev->flags); 2871 set_bit(R5_Wantread, &dev->flags); 2872 s->locked++; 2873 } else { 2874 set_bit(STRIPE_DELAYED, &sh->state); 2875 set_bit(STRIPE_HANDLE, &sh->state); 2876 } 2877 } 2878 } 2879 } 2880 if (rcw <= rmw && rcw > 0) { 2881 /* want reconstruct write, but need to get some data */ 2882 int qread =0; 2883 rcw = 0; 2884 for (i = disks; i--; ) { 2885 struct r5dev *dev = &sh->dev[i]; 2886 if (!test_bit(R5_OVERWRITE, &dev->flags) && 2887 i != sh->pd_idx && i != sh->qd_idx && 2888 !test_bit(R5_LOCKED, &dev->flags) && 2889 !(test_bit(R5_UPTODATE, &dev->flags) || 2890 test_bit(R5_Wantcompute, &dev->flags))) { 2891 rcw++; 2892 if (!test_bit(R5_Insync, &dev->flags)) 2893 continue; /* it's a failed drive */ 2894 if ( 2895 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { 2896 pr_debug("Read_old block " 2897 "%d for Reconstruct\n", i); 2898 set_bit(R5_LOCKED, &dev->flags); 2899 set_bit(R5_Wantread, &dev->flags); 2900 s->locked++; 2901 qread++; 2902 } else { 2903 set_bit(STRIPE_DELAYED, &sh->state); 2904 set_bit(STRIPE_HANDLE, &sh->state); 2905 } 2906 } 2907 } 2908 if (rcw && conf->mddev->queue) 2909 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d", 2910 (unsigned long long)sh->sector, 2911 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state)); 2912 } 2913 /* now if nothing is locked, and if we have enough data, 2914 * we can start a write request 2915 */ 2916 /* since handle_stripe can be called at any time we need to handle the 2917 * case where a compute block operation has been submitted and then a 2918 * subsequent call wants to start a write request. raid_run_ops only 2919 * handles the case where compute block and reconstruct are requested 2920 * simultaneously. If this is not the case then new writes need to be 2921 * held off until the compute completes. 2922 */ 2923 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) && 2924 (s->locked == 0 && (rcw == 0 || rmw == 0) && 2925 !test_bit(STRIPE_BIT_DELAY, &sh->state))) 2926 schedule_reconstruction(sh, s, rcw == 0, 0); 2927 } 2928 2929 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh, 2930 struct stripe_head_state *s, int disks) 2931 { 2932 struct r5dev *dev = NULL; 2933 2934 set_bit(STRIPE_HANDLE, &sh->state); 2935 2936 switch (sh->check_state) { 2937 case check_state_idle: 2938 /* start a new check operation if there are no failures */ 2939 if (s->failed == 0) { 2940 BUG_ON(s->uptodate != disks); 2941 sh->check_state = check_state_run; 2942 set_bit(STRIPE_OP_CHECK, &s->ops_request); 2943 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 2944 s->uptodate--; 2945 break; 2946 } 2947 dev = &sh->dev[s->failed_num[0]]; 2948 /* fall through */ 2949 case check_state_compute_result: 2950 sh->check_state = check_state_idle; 2951 if (!dev) 2952 dev = &sh->dev[sh->pd_idx]; 2953 2954 /* check that a write has not made the stripe insync */ 2955 if (test_bit(STRIPE_INSYNC, &sh->state)) 2956 break; 2957 2958 /* either failed parity check, or recovery is happening */ 2959 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags)); 2960 BUG_ON(s->uptodate != disks); 2961 2962 set_bit(R5_LOCKED, &dev->flags); 2963 s->locked++; 2964 set_bit(R5_Wantwrite, &dev->flags); 2965 2966 clear_bit(STRIPE_DEGRADED, &sh->state); 2967 set_bit(STRIPE_INSYNC, &sh->state); 2968 break; 2969 case check_state_run: 2970 break; /* we will be called again upon completion */ 2971 case check_state_check_result: 2972 sh->check_state = check_state_idle; 2973 2974 /* if a failure occurred during the check operation, leave 2975 * STRIPE_INSYNC not set and let the stripe be handled again 2976 */ 2977 if (s->failed) 2978 break; 2979 2980 /* handle a successful check operation, if parity is correct 2981 * we are done. Otherwise update the mismatch count and repair 2982 * parity if !MD_RECOVERY_CHECK 2983 */ 2984 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0) 2985 /* parity is correct (on disc, 2986 * not in buffer any more) 2987 */ 2988 set_bit(STRIPE_INSYNC, &sh->state); 2989 else { 2990 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches); 2991 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) 2992 /* don't try to repair!! */ 2993 set_bit(STRIPE_INSYNC, &sh->state); 2994 else { 2995 sh->check_state = check_state_compute_run; 2996 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 2997 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 2998 set_bit(R5_Wantcompute, 2999 &sh->dev[sh->pd_idx].flags); 3000 sh->ops.target = sh->pd_idx; 3001 sh->ops.target2 = -1; 3002 s->uptodate++; 3003 } 3004 } 3005 break; 3006 case check_state_compute_run: 3007 break; 3008 default: 3009 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n", 3010 __func__, sh->check_state, 3011 (unsigned long long) sh->sector); 3012 BUG(); 3013 } 3014 } 3015 3016 3017 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh, 3018 struct stripe_head_state *s, 3019 int disks) 3020 { 3021 int pd_idx = sh->pd_idx; 3022 int qd_idx = sh->qd_idx; 3023 struct r5dev *dev; 3024 3025 set_bit(STRIPE_HANDLE, &sh->state); 3026 3027 BUG_ON(s->failed > 2); 3028 3029 /* Want to check and possibly repair P and Q. 3030 * However there could be one 'failed' device, in which 3031 * case we can only check one of them, possibly using the 3032 * other to generate missing data 3033 */ 3034 3035 switch (sh->check_state) { 3036 case check_state_idle: 3037 /* start a new check operation if there are < 2 failures */ 3038 if (s->failed == s->q_failed) { 3039 /* The only possible failed device holds Q, so it 3040 * makes sense to check P (If anything else were failed, 3041 * we would have used P to recreate it). 3042 */ 3043 sh->check_state = check_state_run; 3044 } 3045 if (!s->q_failed && s->failed < 2) { 3046 /* Q is not failed, and we didn't use it to generate 3047 * anything, so it makes sense to check it 3048 */ 3049 if (sh->check_state == check_state_run) 3050 sh->check_state = check_state_run_pq; 3051 else 3052 sh->check_state = check_state_run_q; 3053 } 3054 3055 /* discard potentially stale zero_sum_result */ 3056 sh->ops.zero_sum_result = 0; 3057 3058 if (sh->check_state == check_state_run) { 3059 /* async_xor_zero_sum destroys the contents of P */ 3060 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 3061 s->uptodate--; 3062 } 3063 if (sh->check_state >= check_state_run && 3064 sh->check_state <= check_state_run_pq) { 3065 /* async_syndrome_zero_sum preserves P and Q, so 3066 * no need to mark them !uptodate here 3067 */ 3068 set_bit(STRIPE_OP_CHECK, &s->ops_request); 3069 break; 3070 } 3071 3072 /* we have 2-disk failure */ 3073 BUG_ON(s->failed != 2); 3074 /* fall through */ 3075 case check_state_compute_result: 3076 sh->check_state = check_state_idle; 3077 3078 /* check that a write has not made the stripe insync */ 3079 if (test_bit(STRIPE_INSYNC, &sh->state)) 3080 break; 3081 3082 /* now write out any block on a failed drive, 3083 * or P or Q if they were recomputed 3084 */ 3085 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */ 3086 if (s->failed == 2) { 3087 dev = &sh->dev[s->failed_num[1]]; 3088 s->locked++; 3089 set_bit(R5_LOCKED, &dev->flags); 3090 set_bit(R5_Wantwrite, &dev->flags); 3091 } 3092 if (s->failed >= 1) { 3093 dev = &sh->dev[s->failed_num[0]]; 3094 s->locked++; 3095 set_bit(R5_LOCKED, &dev->flags); 3096 set_bit(R5_Wantwrite, &dev->flags); 3097 } 3098 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 3099 dev = &sh->dev[pd_idx]; 3100 s->locked++; 3101 set_bit(R5_LOCKED, &dev->flags); 3102 set_bit(R5_Wantwrite, &dev->flags); 3103 } 3104 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 3105 dev = &sh->dev[qd_idx]; 3106 s->locked++; 3107 set_bit(R5_LOCKED, &dev->flags); 3108 set_bit(R5_Wantwrite, &dev->flags); 3109 } 3110 clear_bit(STRIPE_DEGRADED, &sh->state); 3111 3112 set_bit(STRIPE_INSYNC, &sh->state); 3113 break; 3114 case check_state_run: 3115 case check_state_run_q: 3116 case check_state_run_pq: 3117 break; /* we will be called again upon completion */ 3118 case check_state_check_result: 3119 sh->check_state = check_state_idle; 3120 3121 /* handle a successful check operation, if parity is correct 3122 * we are done. Otherwise update the mismatch count and repair 3123 * parity if !MD_RECOVERY_CHECK 3124 */ 3125 if (sh->ops.zero_sum_result == 0) { 3126 /* both parities are correct */ 3127 if (!s->failed) 3128 set_bit(STRIPE_INSYNC, &sh->state); 3129 else { 3130 /* in contrast to the raid5 case we can validate 3131 * parity, but still have a failure to write 3132 * back 3133 */ 3134 sh->check_state = check_state_compute_result; 3135 /* Returning at this point means that we may go 3136 * off and bring p and/or q uptodate again so 3137 * we make sure to check zero_sum_result again 3138 * to verify if p or q need writeback 3139 */ 3140 } 3141 } else { 3142 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches); 3143 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) 3144 /* don't try to repair!! */ 3145 set_bit(STRIPE_INSYNC, &sh->state); 3146 else { 3147 int *target = &sh->ops.target; 3148 3149 sh->ops.target = -1; 3150 sh->ops.target2 = -1; 3151 sh->check_state = check_state_compute_run; 3152 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3153 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3154 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 3155 set_bit(R5_Wantcompute, 3156 &sh->dev[pd_idx].flags); 3157 *target = pd_idx; 3158 target = &sh->ops.target2; 3159 s->uptodate++; 3160 } 3161 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 3162 set_bit(R5_Wantcompute, 3163 &sh->dev[qd_idx].flags); 3164 *target = qd_idx; 3165 s->uptodate++; 3166 } 3167 } 3168 } 3169 break; 3170 case check_state_compute_run: 3171 break; 3172 default: 3173 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n", 3174 __func__, sh->check_state, 3175 (unsigned long long) sh->sector); 3176 BUG(); 3177 } 3178 } 3179 3180 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh) 3181 { 3182 int i; 3183 3184 /* We have read all the blocks in this stripe and now we need to 3185 * copy some of them into a target stripe for expand. 3186 */ 3187 struct dma_async_tx_descriptor *tx = NULL; 3188 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state); 3189 for (i = 0; i < sh->disks; i++) 3190 if (i != sh->pd_idx && i != sh->qd_idx) { 3191 int dd_idx, j; 3192 struct stripe_head *sh2; 3193 struct async_submit_ctl submit; 3194 3195 sector_t bn = compute_blocknr(sh, i, 1); 3196 sector_t s = raid5_compute_sector(conf, bn, 0, 3197 &dd_idx, NULL); 3198 sh2 = get_active_stripe(conf, s, 0, 1, 1); 3199 if (sh2 == NULL) 3200 /* so far only the early blocks of this stripe 3201 * have been requested. When later blocks 3202 * get requested, we will try again 3203 */ 3204 continue; 3205 if (!test_bit(STRIPE_EXPANDING, &sh2->state) || 3206 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) { 3207 /* must have already done this block */ 3208 release_stripe(sh2); 3209 continue; 3210 } 3211 3212 /* place all the copies on one channel */ 3213 init_async_submit(&submit, 0, tx, NULL, NULL, NULL); 3214 tx = async_memcpy(sh2->dev[dd_idx].page, 3215 sh->dev[i].page, 0, 0, STRIPE_SIZE, 3216 &submit); 3217 3218 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags); 3219 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags); 3220 for (j = 0; j < conf->raid_disks; j++) 3221 if (j != sh2->pd_idx && 3222 j != sh2->qd_idx && 3223 !test_bit(R5_Expanded, &sh2->dev[j].flags)) 3224 break; 3225 if (j == conf->raid_disks) { 3226 set_bit(STRIPE_EXPAND_READY, &sh2->state); 3227 set_bit(STRIPE_HANDLE, &sh2->state); 3228 } 3229 release_stripe(sh2); 3230 3231 } 3232 /* done submitting copies, wait for them to complete */ 3233 async_tx_quiesce(&tx); 3234 } 3235 3236 /* 3237 * handle_stripe - do things to a stripe. 3238 * 3239 * We lock the stripe by setting STRIPE_ACTIVE and then examine the 3240 * state of various bits to see what needs to be done. 3241 * Possible results: 3242 * return some read requests which now have data 3243 * return some write requests which are safely on storage 3244 * schedule a read on some buffers 3245 * schedule a write of some buffers 3246 * return confirmation of parity correctness 3247 * 3248 */ 3249 3250 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s) 3251 { 3252 struct r5conf *conf = sh->raid_conf; 3253 int disks = sh->disks; 3254 struct r5dev *dev; 3255 int i; 3256 int do_recovery = 0; 3257 3258 memset(s, 0, sizeof(*s)); 3259 3260 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state); 3261 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state); 3262 s->failed_num[0] = -1; 3263 s->failed_num[1] = -1; 3264 3265 /* Now to look around and see what can be done */ 3266 rcu_read_lock(); 3267 for (i=disks; i--; ) { 3268 struct md_rdev *rdev; 3269 sector_t first_bad; 3270 int bad_sectors; 3271 int is_bad = 0; 3272 3273 dev = &sh->dev[i]; 3274 3275 pr_debug("check %d: state 0x%lx read %p write %p written %p\n", 3276 i, dev->flags, 3277 dev->toread, dev->towrite, dev->written); 3278 /* maybe we can reply to a read 3279 * 3280 * new wantfill requests are only permitted while 3281 * ops_complete_biofill is guaranteed to be inactive 3282 */ 3283 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread && 3284 !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) 3285 set_bit(R5_Wantfill, &dev->flags); 3286 3287 /* now count some things */ 3288 if (test_bit(R5_LOCKED, &dev->flags)) 3289 s->locked++; 3290 if (test_bit(R5_UPTODATE, &dev->flags)) 3291 s->uptodate++; 3292 if (test_bit(R5_Wantcompute, &dev->flags)) { 3293 s->compute++; 3294 BUG_ON(s->compute > 2); 3295 } 3296 3297 if (test_bit(R5_Wantfill, &dev->flags)) 3298 s->to_fill++; 3299 else if (dev->toread) 3300 s->to_read++; 3301 if (dev->towrite) { 3302 s->to_write++; 3303 if (!test_bit(R5_OVERWRITE, &dev->flags)) 3304 s->non_overwrite++; 3305 } 3306 if (dev->written) 3307 s->written++; 3308 /* Prefer to use the replacement for reads, but only 3309 * if it is recovered enough and has no bad blocks. 3310 */ 3311 rdev = rcu_dereference(conf->disks[i].replacement); 3312 if (rdev && !test_bit(Faulty, &rdev->flags) && 3313 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS && 3314 !is_badblock(rdev, sh->sector, STRIPE_SECTORS, 3315 &first_bad, &bad_sectors)) 3316 set_bit(R5_ReadRepl, &dev->flags); 3317 else { 3318 if (rdev) 3319 set_bit(R5_NeedReplace, &dev->flags); 3320 rdev = rcu_dereference(conf->disks[i].rdev); 3321 clear_bit(R5_ReadRepl, &dev->flags); 3322 } 3323 if (rdev && test_bit(Faulty, &rdev->flags)) 3324 rdev = NULL; 3325 if (rdev) { 3326 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS, 3327 &first_bad, &bad_sectors); 3328 if (s->blocked_rdev == NULL 3329 && (test_bit(Blocked, &rdev->flags) 3330 || is_bad < 0)) { 3331 if (is_bad < 0) 3332 set_bit(BlockedBadBlocks, 3333 &rdev->flags); 3334 s->blocked_rdev = rdev; 3335 atomic_inc(&rdev->nr_pending); 3336 } 3337 } 3338 clear_bit(R5_Insync, &dev->flags); 3339 if (!rdev) 3340 /* Not in-sync */; 3341 else if (is_bad) { 3342 /* also not in-sync */ 3343 if (!test_bit(WriteErrorSeen, &rdev->flags) && 3344 test_bit(R5_UPTODATE, &dev->flags)) { 3345 /* treat as in-sync, but with a read error 3346 * which we can now try to correct 3347 */ 3348 set_bit(R5_Insync, &dev->flags); 3349 set_bit(R5_ReadError, &dev->flags); 3350 } 3351 } else if (test_bit(In_sync, &rdev->flags)) 3352 set_bit(R5_Insync, &dev->flags); 3353 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset) 3354 /* in sync if before recovery_offset */ 3355 set_bit(R5_Insync, &dev->flags); 3356 else if (test_bit(R5_UPTODATE, &dev->flags) && 3357 test_bit(R5_Expanded, &dev->flags)) 3358 /* If we've reshaped into here, we assume it is Insync. 3359 * We will shortly update recovery_offset to make 3360 * it official. 3361 */ 3362 set_bit(R5_Insync, &dev->flags); 3363 3364 if (rdev && test_bit(R5_WriteError, &dev->flags)) { 3365 /* This flag does not apply to '.replacement' 3366 * only to .rdev, so make sure to check that*/ 3367 struct md_rdev *rdev2 = rcu_dereference( 3368 conf->disks[i].rdev); 3369 if (rdev2 == rdev) 3370 clear_bit(R5_Insync, &dev->flags); 3371 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 3372 s->handle_bad_blocks = 1; 3373 atomic_inc(&rdev2->nr_pending); 3374 } else 3375 clear_bit(R5_WriteError, &dev->flags); 3376 } 3377 if (rdev && test_bit(R5_MadeGood, &dev->flags)) { 3378 /* This flag does not apply to '.replacement' 3379 * only to .rdev, so make sure to check that*/ 3380 struct md_rdev *rdev2 = rcu_dereference( 3381 conf->disks[i].rdev); 3382 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 3383 s->handle_bad_blocks = 1; 3384 atomic_inc(&rdev2->nr_pending); 3385 } else 3386 clear_bit(R5_MadeGood, &dev->flags); 3387 } 3388 if (test_bit(R5_MadeGoodRepl, &dev->flags)) { 3389 struct md_rdev *rdev2 = rcu_dereference( 3390 conf->disks[i].replacement); 3391 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 3392 s->handle_bad_blocks = 1; 3393 atomic_inc(&rdev2->nr_pending); 3394 } else 3395 clear_bit(R5_MadeGoodRepl, &dev->flags); 3396 } 3397 if (!test_bit(R5_Insync, &dev->flags)) { 3398 /* The ReadError flag will just be confusing now */ 3399 clear_bit(R5_ReadError, &dev->flags); 3400 clear_bit(R5_ReWrite, &dev->flags); 3401 } 3402 if (test_bit(R5_ReadError, &dev->flags)) 3403 clear_bit(R5_Insync, &dev->flags); 3404 if (!test_bit(R5_Insync, &dev->flags)) { 3405 if (s->failed < 2) 3406 s->failed_num[s->failed] = i; 3407 s->failed++; 3408 if (rdev && !test_bit(Faulty, &rdev->flags)) 3409 do_recovery = 1; 3410 } 3411 } 3412 if (test_bit(STRIPE_SYNCING, &sh->state)) { 3413 /* If there is a failed device being replaced, 3414 * we must be recovering. 3415 * else if we are after recovery_cp, we must be syncing 3416 * else if MD_RECOVERY_REQUESTED is set, we also are syncing. 3417 * else we can only be replacing 3418 * sync and recovery both need to read all devices, and so 3419 * use the same flag. 3420 */ 3421 if (do_recovery || 3422 sh->sector >= conf->mddev->recovery_cp || 3423 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery))) 3424 s->syncing = 1; 3425 else 3426 s->replacing = 1; 3427 } 3428 rcu_read_unlock(); 3429 } 3430 3431 static void handle_stripe(struct stripe_head *sh) 3432 { 3433 struct stripe_head_state s; 3434 struct r5conf *conf = sh->raid_conf; 3435 int i; 3436 int prexor; 3437 int disks = sh->disks; 3438 struct r5dev *pdev, *qdev; 3439 3440 clear_bit(STRIPE_HANDLE, &sh->state); 3441 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) { 3442 /* already being handled, ensure it gets handled 3443 * again when current action finishes */ 3444 set_bit(STRIPE_HANDLE, &sh->state); 3445 return; 3446 } 3447 3448 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) { 3449 spin_lock(&sh->stripe_lock); 3450 /* Cannot process 'sync' concurrently with 'discard' */ 3451 if (!test_bit(STRIPE_DISCARD, &sh->state) && 3452 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) { 3453 set_bit(STRIPE_SYNCING, &sh->state); 3454 clear_bit(STRIPE_INSYNC, &sh->state); 3455 } 3456 spin_unlock(&sh->stripe_lock); 3457 } 3458 clear_bit(STRIPE_DELAYED, &sh->state); 3459 3460 pr_debug("handling stripe %llu, state=%#lx cnt=%d, " 3461 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n", 3462 (unsigned long long)sh->sector, sh->state, 3463 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx, 3464 sh->check_state, sh->reconstruct_state); 3465 3466 analyse_stripe(sh, &s); 3467 3468 if (s.handle_bad_blocks) { 3469 set_bit(STRIPE_HANDLE, &sh->state); 3470 goto finish; 3471 } 3472 3473 if (unlikely(s.blocked_rdev)) { 3474 if (s.syncing || s.expanding || s.expanded || 3475 s.replacing || s.to_write || s.written) { 3476 set_bit(STRIPE_HANDLE, &sh->state); 3477 goto finish; 3478 } 3479 /* There is nothing for the blocked_rdev to block */ 3480 rdev_dec_pending(s.blocked_rdev, conf->mddev); 3481 s.blocked_rdev = NULL; 3482 } 3483 3484 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) { 3485 set_bit(STRIPE_OP_BIOFILL, &s.ops_request); 3486 set_bit(STRIPE_BIOFILL_RUN, &sh->state); 3487 } 3488 3489 pr_debug("locked=%d uptodate=%d to_read=%d" 3490 " to_write=%d failed=%d failed_num=%d,%d\n", 3491 s.locked, s.uptodate, s.to_read, s.to_write, s.failed, 3492 s.failed_num[0], s.failed_num[1]); 3493 /* check if the array has lost more than max_degraded devices and, 3494 * if so, some requests might need to be failed. 3495 */ 3496 if (s.failed > conf->max_degraded) { 3497 sh->check_state = 0; 3498 sh->reconstruct_state = 0; 3499 if (s.to_read+s.to_write+s.written) 3500 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi); 3501 if (s.syncing + s.replacing) 3502 handle_failed_sync(conf, sh, &s); 3503 } 3504 3505 /* Now we check to see if any write operations have recently 3506 * completed 3507 */ 3508 prexor = 0; 3509 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result) 3510 prexor = 1; 3511 if (sh->reconstruct_state == reconstruct_state_drain_result || 3512 sh->reconstruct_state == reconstruct_state_prexor_drain_result) { 3513 sh->reconstruct_state = reconstruct_state_idle; 3514 3515 /* All the 'written' buffers and the parity block are ready to 3516 * be written back to disk 3517 */ 3518 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) && 3519 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)); 3520 BUG_ON(sh->qd_idx >= 0 && 3521 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) && 3522 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags)); 3523 for (i = disks; i--; ) { 3524 struct r5dev *dev = &sh->dev[i]; 3525 if (test_bit(R5_LOCKED, &dev->flags) && 3526 (i == sh->pd_idx || i == sh->qd_idx || 3527 dev->written)) { 3528 pr_debug("Writing block %d\n", i); 3529 set_bit(R5_Wantwrite, &dev->flags); 3530 if (prexor) 3531 continue; 3532 if (!test_bit(R5_Insync, &dev->flags) || 3533 ((i == sh->pd_idx || i == sh->qd_idx) && 3534 s.failed == 0)) 3535 set_bit(STRIPE_INSYNC, &sh->state); 3536 } 3537 } 3538 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3539 s.dec_preread_active = 1; 3540 } 3541 3542 /* 3543 * might be able to return some write requests if the parity blocks 3544 * are safe, or on a failed drive 3545 */ 3546 pdev = &sh->dev[sh->pd_idx]; 3547 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx) 3548 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx); 3549 qdev = &sh->dev[sh->qd_idx]; 3550 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx) 3551 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx) 3552 || conf->level < 6; 3553 3554 if (s.written && 3555 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags) 3556 && !test_bit(R5_LOCKED, &pdev->flags) 3557 && (test_bit(R5_UPTODATE, &pdev->flags) || 3558 test_bit(R5_Discard, &pdev->flags))))) && 3559 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags) 3560 && !test_bit(R5_LOCKED, &qdev->flags) 3561 && (test_bit(R5_UPTODATE, &qdev->flags) || 3562 test_bit(R5_Discard, &qdev->flags)))))) 3563 handle_stripe_clean_event(conf, sh, disks, &s.return_bi); 3564 3565 /* Now we might consider reading some blocks, either to check/generate 3566 * parity, or to satisfy requests 3567 * or to load a block that is being partially written. 3568 */ 3569 if (s.to_read || s.non_overwrite 3570 || (conf->level == 6 && s.to_write && s.failed) 3571 || (s.syncing && (s.uptodate + s.compute < disks)) 3572 || s.replacing 3573 || s.expanding) 3574 handle_stripe_fill(sh, &s, disks); 3575 3576 /* Now to consider new write requests and what else, if anything 3577 * should be read. We do not handle new writes when: 3578 * 1/ A 'write' operation (copy+xor) is already in flight. 3579 * 2/ A 'check' operation is in flight, as it may clobber the parity 3580 * block. 3581 */ 3582 if (s.to_write && !sh->reconstruct_state && !sh->check_state) 3583 handle_stripe_dirtying(conf, sh, &s, disks); 3584 3585 /* maybe we need to check and possibly fix the parity for this stripe 3586 * Any reads will already have been scheduled, so we just see if enough 3587 * data is available. The parity check is held off while parity 3588 * dependent operations are in flight. 3589 */ 3590 if (sh->check_state || 3591 (s.syncing && s.locked == 0 && 3592 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 3593 !test_bit(STRIPE_INSYNC, &sh->state))) { 3594 if (conf->level == 6) 3595 handle_parity_checks6(conf, sh, &s, disks); 3596 else 3597 handle_parity_checks5(conf, sh, &s, disks); 3598 } 3599 3600 if (s.replacing && s.locked == 0 3601 && !test_bit(STRIPE_INSYNC, &sh->state)) { 3602 /* Write out to replacement devices where possible */ 3603 for (i = 0; i < conf->raid_disks; i++) 3604 if (test_bit(R5_UPTODATE, &sh->dev[i].flags) && 3605 test_bit(R5_NeedReplace, &sh->dev[i].flags)) { 3606 set_bit(R5_WantReplace, &sh->dev[i].flags); 3607 set_bit(R5_LOCKED, &sh->dev[i].flags); 3608 s.locked++; 3609 } 3610 set_bit(STRIPE_INSYNC, &sh->state); 3611 } 3612 if ((s.syncing || s.replacing) && s.locked == 0 && 3613 test_bit(STRIPE_INSYNC, &sh->state)) { 3614 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 3615 clear_bit(STRIPE_SYNCING, &sh->state); 3616 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 3617 wake_up(&conf->wait_for_overlap); 3618 } 3619 3620 /* If the failed drives are just a ReadError, then we might need 3621 * to progress the repair/check process 3622 */ 3623 if (s.failed <= conf->max_degraded && !conf->mddev->ro) 3624 for (i = 0; i < s.failed; i++) { 3625 struct r5dev *dev = &sh->dev[s.failed_num[i]]; 3626 if (test_bit(R5_ReadError, &dev->flags) 3627 && !test_bit(R5_LOCKED, &dev->flags) 3628 && test_bit(R5_UPTODATE, &dev->flags) 3629 ) { 3630 if (!test_bit(R5_ReWrite, &dev->flags)) { 3631 set_bit(R5_Wantwrite, &dev->flags); 3632 set_bit(R5_ReWrite, &dev->flags); 3633 set_bit(R5_LOCKED, &dev->flags); 3634 s.locked++; 3635 } else { 3636 /* let's read it back */ 3637 set_bit(R5_Wantread, &dev->flags); 3638 set_bit(R5_LOCKED, &dev->flags); 3639 s.locked++; 3640 } 3641 } 3642 } 3643 3644 3645 /* Finish reconstruct operations initiated by the expansion process */ 3646 if (sh->reconstruct_state == reconstruct_state_result) { 3647 struct stripe_head *sh_src 3648 = get_active_stripe(conf, sh->sector, 1, 1, 1); 3649 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) { 3650 /* sh cannot be written until sh_src has been read. 3651 * so arrange for sh to be delayed a little 3652 */ 3653 set_bit(STRIPE_DELAYED, &sh->state); 3654 set_bit(STRIPE_HANDLE, &sh->state); 3655 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, 3656 &sh_src->state)) 3657 atomic_inc(&conf->preread_active_stripes); 3658 release_stripe(sh_src); 3659 goto finish; 3660 } 3661 if (sh_src) 3662 release_stripe(sh_src); 3663 3664 sh->reconstruct_state = reconstruct_state_idle; 3665 clear_bit(STRIPE_EXPANDING, &sh->state); 3666 for (i = conf->raid_disks; i--; ) { 3667 set_bit(R5_Wantwrite, &sh->dev[i].flags); 3668 set_bit(R5_LOCKED, &sh->dev[i].flags); 3669 s.locked++; 3670 } 3671 } 3672 3673 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) && 3674 !sh->reconstruct_state) { 3675 /* Need to write out all blocks after computing parity */ 3676 sh->disks = conf->raid_disks; 3677 stripe_set_idx(sh->sector, conf, 0, sh); 3678 schedule_reconstruction(sh, &s, 1, 1); 3679 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) { 3680 clear_bit(STRIPE_EXPAND_READY, &sh->state); 3681 atomic_dec(&conf->reshape_stripes); 3682 wake_up(&conf->wait_for_overlap); 3683 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 3684 } 3685 3686 if (s.expanding && s.locked == 0 && 3687 !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) 3688 handle_stripe_expansion(conf, sh); 3689 3690 finish: 3691 /* wait for this device to become unblocked */ 3692 if (unlikely(s.blocked_rdev)) { 3693 if (conf->mddev->external) 3694 md_wait_for_blocked_rdev(s.blocked_rdev, 3695 conf->mddev); 3696 else 3697 /* Internal metadata will immediately 3698 * be written by raid5d, so we don't 3699 * need to wait here. 3700 */ 3701 rdev_dec_pending(s.blocked_rdev, 3702 conf->mddev); 3703 } 3704 3705 if (s.handle_bad_blocks) 3706 for (i = disks; i--; ) { 3707 struct md_rdev *rdev; 3708 struct r5dev *dev = &sh->dev[i]; 3709 if (test_and_clear_bit(R5_WriteError, &dev->flags)) { 3710 /* We own a safe reference to the rdev */ 3711 rdev = conf->disks[i].rdev; 3712 if (!rdev_set_badblocks(rdev, sh->sector, 3713 STRIPE_SECTORS, 0)) 3714 md_error(conf->mddev, rdev); 3715 rdev_dec_pending(rdev, conf->mddev); 3716 } 3717 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) { 3718 rdev = conf->disks[i].rdev; 3719 rdev_clear_badblocks(rdev, sh->sector, 3720 STRIPE_SECTORS, 0); 3721 rdev_dec_pending(rdev, conf->mddev); 3722 } 3723 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) { 3724 rdev = conf->disks[i].replacement; 3725 if (!rdev) 3726 /* rdev have been moved down */ 3727 rdev = conf->disks[i].rdev; 3728 rdev_clear_badblocks(rdev, sh->sector, 3729 STRIPE_SECTORS, 0); 3730 rdev_dec_pending(rdev, conf->mddev); 3731 } 3732 } 3733 3734 if (s.ops_request) 3735 raid_run_ops(sh, s.ops_request); 3736 3737 ops_run_io(sh, &s); 3738 3739 if (s.dec_preread_active) { 3740 /* We delay this until after ops_run_io so that if make_request 3741 * is waiting on a flush, it won't continue until the writes 3742 * have actually been submitted. 3743 */ 3744 atomic_dec(&conf->preread_active_stripes); 3745 if (atomic_read(&conf->preread_active_stripes) < 3746 IO_THRESHOLD) 3747 md_wakeup_thread(conf->mddev->thread); 3748 } 3749 3750 return_io(s.return_bi); 3751 3752 clear_bit_unlock(STRIPE_ACTIVE, &sh->state); 3753 } 3754 3755 static void raid5_activate_delayed(struct r5conf *conf) 3756 { 3757 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) { 3758 while (!list_empty(&conf->delayed_list)) { 3759 struct list_head *l = conf->delayed_list.next; 3760 struct stripe_head *sh; 3761 sh = list_entry(l, struct stripe_head, lru); 3762 list_del_init(l); 3763 clear_bit(STRIPE_DELAYED, &sh->state); 3764 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3765 atomic_inc(&conf->preread_active_stripes); 3766 list_add_tail(&sh->lru, &conf->hold_list); 3767 } 3768 } 3769 } 3770 3771 static void activate_bit_delay(struct r5conf *conf) 3772 { 3773 /* device_lock is held */ 3774 struct list_head head; 3775 list_add(&head, &conf->bitmap_list); 3776 list_del_init(&conf->bitmap_list); 3777 while (!list_empty(&head)) { 3778 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru); 3779 list_del_init(&sh->lru); 3780 atomic_inc(&sh->count); 3781 __release_stripe(conf, sh); 3782 } 3783 } 3784 3785 int md_raid5_congested(struct mddev *mddev, int bits) 3786 { 3787 struct r5conf *conf = mddev->private; 3788 3789 /* No difference between reads and writes. Just check 3790 * how busy the stripe_cache is 3791 */ 3792 3793 if (conf->inactive_blocked) 3794 return 1; 3795 if (conf->quiesce) 3796 return 1; 3797 if (list_empty_careful(&conf->inactive_list)) 3798 return 1; 3799 3800 return 0; 3801 } 3802 EXPORT_SYMBOL_GPL(md_raid5_congested); 3803 3804 static int raid5_congested(void *data, int bits) 3805 { 3806 struct mddev *mddev = data; 3807 3808 return mddev_congested(mddev, bits) || 3809 md_raid5_congested(mddev, bits); 3810 } 3811 3812 /* We want read requests to align with chunks where possible, 3813 * but write requests don't need to. 3814 */ 3815 static int raid5_mergeable_bvec(struct request_queue *q, 3816 struct bvec_merge_data *bvm, 3817 struct bio_vec *biovec) 3818 { 3819 struct mddev *mddev = q->queuedata; 3820 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); 3821 int max; 3822 unsigned int chunk_sectors = mddev->chunk_sectors; 3823 unsigned int bio_sectors = bvm->bi_size >> 9; 3824 3825 if ((bvm->bi_rw & 1) == WRITE) 3826 return biovec->bv_len; /* always allow writes to be mergeable */ 3827 3828 if (mddev->new_chunk_sectors < mddev->chunk_sectors) 3829 chunk_sectors = mddev->new_chunk_sectors; 3830 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9; 3831 if (max < 0) max = 0; 3832 if (max <= biovec->bv_len && bio_sectors == 0) 3833 return biovec->bv_len; 3834 else 3835 return max; 3836 } 3837 3838 3839 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio) 3840 { 3841 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev); 3842 unsigned int chunk_sectors = mddev->chunk_sectors; 3843 unsigned int bio_sectors = bio->bi_size >> 9; 3844 3845 if (mddev->new_chunk_sectors < mddev->chunk_sectors) 3846 chunk_sectors = mddev->new_chunk_sectors; 3847 return chunk_sectors >= 3848 ((sector & (chunk_sectors - 1)) + bio_sectors); 3849 } 3850 3851 /* 3852 * add bio to the retry LIFO ( in O(1) ... we are in interrupt ) 3853 * later sampled by raid5d. 3854 */ 3855 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf) 3856 { 3857 unsigned long flags; 3858 3859 spin_lock_irqsave(&conf->device_lock, flags); 3860 3861 bi->bi_next = conf->retry_read_aligned_list; 3862 conf->retry_read_aligned_list = bi; 3863 3864 spin_unlock_irqrestore(&conf->device_lock, flags); 3865 md_wakeup_thread(conf->mddev->thread); 3866 } 3867 3868 3869 static struct bio *remove_bio_from_retry(struct r5conf *conf) 3870 { 3871 struct bio *bi; 3872 3873 bi = conf->retry_read_aligned; 3874 if (bi) { 3875 conf->retry_read_aligned = NULL; 3876 return bi; 3877 } 3878 bi = conf->retry_read_aligned_list; 3879 if(bi) { 3880 conf->retry_read_aligned_list = bi->bi_next; 3881 bi->bi_next = NULL; 3882 /* 3883 * this sets the active strip count to 1 and the processed 3884 * strip count to zero (upper 8 bits) 3885 */ 3886 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */ 3887 } 3888 3889 return bi; 3890 } 3891 3892 3893 /* 3894 * The "raid5_align_endio" should check if the read succeeded and if it 3895 * did, call bio_endio on the original bio (having bio_put the new bio 3896 * first). 3897 * If the read failed.. 3898 */ 3899 static void raid5_align_endio(struct bio *bi, int error) 3900 { 3901 struct bio* raid_bi = bi->bi_private; 3902 struct mddev *mddev; 3903 struct r5conf *conf; 3904 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); 3905 struct md_rdev *rdev; 3906 3907 bio_put(bi); 3908 3909 rdev = (void*)raid_bi->bi_next; 3910 raid_bi->bi_next = NULL; 3911 mddev = rdev->mddev; 3912 conf = mddev->private; 3913 3914 rdev_dec_pending(rdev, conf->mddev); 3915 3916 if (!error && uptodate) { 3917 bio_endio(raid_bi, 0); 3918 if (atomic_dec_and_test(&conf->active_aligned_reads)) 3919 wake_up(&conf->wait_for_stripe); 3920 return; 3921 } 3922 3923 3924 pr_debug("raid5_align_endio : io error...handing IO for a retry\n"); 3925 3926 add_bio_to_retry(raid_bi, conf); 3927 } 3928 3929 static int bio_fits_rdev(struct bio *bi) 3930 { 3931 struct request_queue *q = bdev_get_queue(bi->bi_bdev); 3932 3933 if ((bi->bi_size>>9) > queue_max_sectors(q)) 3934 return 0; 3935 blk_recount_segments(q, bi); 3936 if (bi->bi_phys_segments > queue_max_segments(q)) 3937 return 0; 3938 3939 if (q->merge_bvec_fn) 3940 /* it's too hard to apply the merge_bvec_fn at this stage, 3941 * just just give up 3942 */ 3943 return 0; 3944 3945 return 1; 3946 } 3947 3948 3949 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio) 3950 { 3951 struct r5conf *conf = mddev->private; 3952 int dd_idx; 3953 struct bio* align_bi; 3954 struct md_rdev *rdev; 3955 sector_t end_sector; 3956 3957 if (!in_chunk_boundary(mddev, raid_bio)) { 3958 pr_debug("chunk_aligned_read : non aligned\n"); 3959 return 0; 3960 } 3961 /* 3962 * use bio_clone_mddev to make a copy of the bio 3963 */ 3964 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev); 3965 if (!align_bi) 3966 return 0; 3967 /* 3968 * set bi_end_io to a new function, and set bi_private to the 3969 * original bio. 3970 */ 3971 align_bi->bi_end_io = raid5_align_endio; 3972 align_bi->bi_private = raid_bio; 3973 /* 3974 * compute position 3975 */ 3976 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector, 3977 0, 3978 &dd_idx, NULL); 3979 3980 end_sector = align_bi->bi_sector + (align_bi->bi_size >> 9); 3981 rcu_read_lock(); 3982 rdev = rcu_dereference(conf->disks[dd_idx].replacement); 3983 if (!rdev || test_bit(Faulty, &rdev->flags) || 3984 rdev->recovery_offset < end_sector) { 3985 rdev = rcu_dereference(conf->disks[dd_idx].rdev); 3986 if (rdev && 3987 (test_bit(Faulty, &rdev->flags) || 3988 !(test_bit(In_sync, &rdev->flags) || 3989 rdev->recovery_offset >= end_sector))) 3990 rdev = NULL; 3991 } 3992 if (rdev) { 3993 sector_t first_bad; 3994 int bad_sectors; 3995 3996 atomic_inc(&rdev->nr_pending); 3997 rcu_read_unlock(); 3998 raid_bio->bi_next = (void*)rdev; 3999 align_bi->bi_bdev = rdev->bdev; 4000 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID); 4001 4002 if (!bio_fits_rdev(align_bi) || 4003 is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9, 4004 &first_bad, &bad_sectors)) { 4005 /* too big in some way, or has a known bad block */ 4006 bio_put(align_bi); 4007 rdev_dec_pending(rdev, mddev); 4008 return 0; 4009 } 4010 4011 /* No reshape active, so we can trust rdev->data_offset */ 4012 align_bi->bi_sector += rdev->data_offset; 4013 4014 spin_lock_irq(&conf->device_lock); 4015 wait_event_lock_irq(conf->wait_for_stripe, 4016 conf->quiesce == 0, 4017 conf->device_lock); 4018 atomic_inc(&conf->active_aligned_reads); 4019 spin_unlock_irq(&conf->device_lock); 4020 4021 if (mddev->gendisk) 4022 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev), 4023 align_bi, disk_devt(mddev->gendisk), 4024 raid_bio->bi_sector); 4025 generic_make_request(align_bi); 4026 return 1; 4027 } else { 4028 rcu_read_unlock(); 4029 bio_put(align_bi); 4030 return 0; 4031 } 4032 } 4033 4034 /* __get_priority_stripe - get the next stripe to process 4035 * 4036 * Full stripe writes are allowed to pass preread active stripes up until 4037 * the bypass_threshold is exceeded. In general the bypass_count 4038 * increments when the handle_list is handled before the hold_list; however, it 4039 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a 4040 * stripe with in flight i/o. The bypass_count will be reset when the 4041 * head of the hold_list has changed, i.e. the head was promoted to the 4042 * handle_list. 4043 */ 4044 static struct stripe_head *__get_priority_stripe(struct r5conf *conf) 4045 { 4046 struct stripe_head *sh; 4047 4048 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n", 4049 __func__, 4050 list_empty(&conf->handle_list) ? "empty" : "busy", 4051 list_empty(&conf->hold_list) ? "empty" : "busy", 4052 atomic_read(&conf->pending_full_writes), conf->bypass_count); 4053 4054 if (!list_empty(&conf->handle_list)) { 4055 sh = list_entry(conf->handle_list.next, typeof(*sh), lru); 4056 4057 if (list_empty(&conf->hold_list)) 4058 conf->bypass_count = 0; 4059 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) { 4060 if (conf->hold_list.next == conf->last_hold) 4061 conf->bypass_count++; 4062 else { 4063 conf->last_hold = conf->hold_list.next; 4064 conf->bypass_count -= conf->bypass_threshold; 4065 if (conf->bypass_count < 0) 4066 conf->bypass_count = 0; 4067 } 4068 } 4069 } else if (!list_empty(&conf->hold_list) && 4070 ((conf->bypass_threshold && 4071 conf->bypass_count > conf->bypass_threshold) || 4072 atomic_read(&conf->pending_full_writes) == 0)) { 4073 sh = list_entry(conf->hold_list.next, 4074 typeof(*sh), lru); 4075 conf->bypass_count -= conf->bypass_threshold; 4076 if (conf->bypass_count < 0) 4077 conf->bypass_count = 0; 4078 } else 4079 return NULL; 4080 4081 list_del_init(&sh->lru); 4082 atomic_inc(&sh->count); 4083 BUG_ON(atomic_read(&sh->count) != 1); 4084 return sh; 4085 } 4086 4087 struct raid5_plug_cb { 4088 struct blk_plug_cb cb; 4089 struct list_head list; 4090 }; 4091 4092 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule) 4093 { 4094 struct raid5_plug_cb *cb = container_of( 4095 blk_cb, struct raid5_plug_cb, cb); 4096 struct stripe_head *sh; 4097 struct mddev *mddev = cb->cb.data; 4098 struct r5conf *conf = mddev->private; 4099 int cnt = 0; 4100 4101 if (cb->list.next && !list_empty(&cb->list)) { 4102 spin_lock_irq(&conf->device_lock); 4103 while (!list_empty(&cb->list)) { 4104 sh = list_first_entry(&cb->list, struct stripe_head, lru); 4105 list_del_init(&sh->lru); 4106 /* 4107 * avoid race release_stripe_plug() sees 4108 * STRIPE_ON_UNPLUG_LIST clear but the stripe 4109 * is still in our list 4110 */ 4111 smp_mb__before_clear_bit(); 4112 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state); 4113 __release_stripe(conf, sh); 4114 cnt++; 4115 } 4116 spin_unlock_irq(&conf->device_lock); 4117 } 4118 if (mddev->queue) 4119 trace_block_unplug(mddev->queue, cnt, !from_schedule); 4120 kfree(cb); 4121 } 4122 4123 static void release_stripe_plug(struct mddev *mddev, 4124 struct stripe_head *sh) 4125 { 4126 struct blk_plug_cb *blk_cb = blk_check_plugged( 4127 raid5_unplug, mddev, 4128 sizeof(struct raid5_plug_cb)); 4129 struct raid5_plug_cb *cb; 4130 4131 if (!blk_cb) { 4132 release_stripe(sh); 4133 return; 4134 } 4135 4136 cb = container_of(blk_cb, struct raid5_plug_cb, cb); 4137 4138 if (cb->list.next == NULL) 4139 INIT_LIST_HEAD(&cb->list); 4140 4141 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)) 4142 list_add_tail(&sh->lru, &cb->list); 4143 else 4144 release_stripe(sh); 4145 } 4146 4147 static void make_discard_request(struct mddev *mddev, struct bio *bi) 4148 { 4149 struct r5conf *conf = mddev->private; 4150 sector_t logical_sector, last_sector; 4151 struct stripe_head *sh; 4152 int remaining; 4153 int stripe_sectors; 4154 4155 if (mddev->reshape_position != MaxSector) 4156 /* Skip discard while reshape is happening */ 4157 return; 4158 4159 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1); 4160 last_sector = bi->bi_sector + (bi->bi_size>>9); 4161 4162 bi->bi_next = NULL; 4163 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */ 4164 4165 stripe_sectors = conf->chunk_sectors * 4166 (conf->raid_disks - conf->max_degraded); 4167 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector, 4168 stripe_sectors); 4169 sector_div(last_sector, stripe_sectors); 4170 4171 logical_sector *= conf->chunk_sectors; 4172 last_sector *= conf->chunk_sectors; 4173 4174 for (; logical_sector < last_sector; 4175 logical_sector += STRIPE_SECTORS) { 4176 DEFINE_WAIT(w); 4177 int d; 4178 again: 4179 sh = get_active_stripe(conf, logical_sector, 0, 0, 0); 4180 prepare_to_wait(&conf->wait_for_overlap, &w, 4181 TASK_UNINTERRUPTIBLE); 4182 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 4183 if (test_bit(STRIPE_SYNCING, &sh->state)) { 4184 release_stripe(sh); 4185 schedule(); 4186 goto again; 4187 } 4188 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 4189 spin_lock_irq(&sh->stripe_lock); 4190 for (d = 0; d < conf->raid_disks; d++) { 4191 if (d == sh->pd_idx || d == sh->qd_idx) 4192 continue; 4193 if (sh->dev[d].towrite || sh->dev[d].toread) { 4194 set_bit(R5_Overlap, &sh->dev[d].flags); 4195 spin_unlock_irq(&sh->stripe_lock); 4196 release_stripe(sh); 4197 schedule(); 4198 goto again; 4199 } 4200 } 4201 set_bit(STRIPE_DISCARD, &sh->state); 4202 finish_wait(&conf->wait_for_overlap, &w); 4203 for (d = 0; d < conf->raid_disks; d++) { 4204 if (d == sh->pd_idx || d == sh->qd_idx) 4205 continue; 4206 sh->dev[d].towrite = bi; 4207 set_bit(R5_OVERWRITE, &sh->dev[d].flags); 4208 raid5_inc_bi_active_stripes(bi); 4209 } 4210 spin_unlock_irq(&sh->stripe_lock); 4211 if (conf->mddev->bitmap) { 4212 for (d = 0; 4213 d < conf->raid_disks - conf->max_degraded; 4214 d++) 4215 bitmap_startwrite(mddev->bitmap, 4216 sh->sector, 4217 STRIPE_SECTORS, 4218 0); 4219 sh->bm_seq = conf->seq_flush + 1; 4220 set_bit(STRIPE_BIT_DELAY, &sh->state); 4221 } 4222 4223 set_bit(STRIPE_HANDLE, &sh->state); 4224 clear_bit(STRIPE_DELAYED, &sh->state); 4225 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4226 atomic_inc(&conf->preread_active_stripes); 4227 release_stripe_plug(mddev, sh); 4228 } 4229 4230 remaining = raid5_dec_bi_active_stripes(bi); 4231 if (remaining == 0) { 4232 md_write_end(mddev); 4233 bio_endio(bi, 0); 4234 } 4235 } 4236 4237 static void make_request(struct mddev *mddev, struct bio * bi) 4238 { 4239 struct r5conf *conf = mddev->private; 4240 int dd_idx; 4241 sector_t new_sector; 4242 sector_t logical_sector, last_sector; 4243 struct stripe_head *sh; 4244 const int rw = bio_data_dir(bi); 4245 int remaining; 4246 4247 if (unlikely(bi->bi_rw & REQ_FLUSH)) { 4248 md_flush_request(mddev, bi); 4249 return; 4250 } 4251 4252 md_write_start(mddev, bi); 4253 4254 if (rw == READ && 4255 mddev->reshape_position == MaxSector && 4256 chunk_aligned_read(mddev,bi)) 4257 return; 4258 4259 if (unlikely(bi->bi_rw & REQ_DISCARD)) { 4260 make_discard_request(mddev, bi); 4261 return; 4262 } 4263 4264 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1); 4265 last_sector = bi->bi_sector + (bi->bi_size>>9); 4266 bi->bi_next = NULL; 4267 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */ 4268 4269 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) { 4270 DEFINE_WAIT(w); 4271 int previous; 4272 4273 retry: 4274 previous = 0; 4275 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE); 4276 if (unlikely(conf->reshape_progress != MaxSector)) { 4277 /* spinlock is needed as reshape_progress may be 4278 * 64bit on a 32bit platform, and so it might be 4279 * possible to see a half-updated value 4280 * Of course reshape_progress could change after 4281 * the lock is dropped, so once we get a reference 4282 * to the stripe that we think it is, we will have 4283 * to check again. 4284 */ 4285 spin_lock_irq(&conf->device_lock); 4286 if (mddev->reshape_backwards 4287 ? logical_sector < conf->reshape_progress 4288 : logical_sector >= conf->reshape_progress) { 4289 previous = 1; 4290 } else { 4291 if (mddev->reshape_backwards 4292 ? logical_sector < conf->reshape_safe 4293 : logical_sector >= conf->reshape_safe) { 4294 spin_unlock_irq(&conf->device_lock); 4295 schedule(); 4296 goto retry; 4297 } 4298 } 4299 spin_unlock_irq(&conf->device_lock); 4300 } 4301 4302 new_sector = raid5_compute_sector(conf, logical_sector, 4303 previous, 4304 &dd_idx, NULL); 4305 pr_debug("raid456: make_request, sector %llu logical %llu\n", 4306 (unsigned long long)new_sector, 4307 (unsigned long long)logical_sector); 4308 4309 sh = get_active_stripe(conf, new_sector, previous, 4310 (bi->bi_rw&RWA_MASK), 0); 4311 if (sh) { 4312 if (unlikely(previous)) { 4313 /* expansion might have moved on while waiting for a 4314 * stripe, so we must do the range check again. 4315 * Expansion could still move past after this 4316 * test, but as we are holding a reference to 4317 * 'sh', we know that if that happens, 4318 * STRIPE_EXPANDING will get set and the expansion 4319 * won't proceed until we finish with the stripe. 4320 */ 4321 int must_retry = 0; 4322 spin_lock_irq(&conf->device_lock); 4323 if (mddev->reshape_backwards 4324 ? logical_sector >= conf->reshape_progress 4325 : logical_sector < conf->reshape_progress) 4326 /* mismatch, need to try again */ 4327 must_retry = 1; 4328 spin_unlock_irq(&conf->device_lock); 4329 if (must_retry) { 4330 release_stripe(sh); 4331 schedule(); 4332 goto retry; 4333 } 4334 } 4335 4336 if (rw == WRITE && 4337 logical_sector >= mddev->suspend_lo && 4338 logical_sector < mddev->suspend_hi) { 4339 release_stripe(sh); 4340 /* As the suspend_* range is controlled by 4341 * userspace, we want an interruptible 4342 * wait. 4343 */ 4344 flush_signals(current); 4345 prepare_to_wait(&conf->wait_for_overlap, 4346 &w, TASK_INTERRUPTIBLE); 4347 if (logical_sector >= mddev->suspend_lo && 4348 logical_sector < mddev->suspend_hi) 4349 schedule(); 4350 goto retry; 4351 } 4352 4353 if (test_bit(STRIPE_EXPANDING, &sh->state) || 4354 !add_stripe_bio(sh, bi, dd_idx, rw)) { 4355 /* Stripe is busy expanding or 4356 * add failed due to overlap. Flush everything 4357 * and wait a while 4358 */ 4359 md_wakeup_thread(mddev->thread); 4360 release_stripe(sh); 4361 schedule(); 4362 goto retry; 4363 } 4364 finish_wait(&conf->wait_for_overlap, &w); 4365 set_bit(STRIPE_HANDLE, &sh->state); 4366 clear_bit(STRIPE_DELAYED, &sh->state); 4367 if ((bi->bi_rw & REQ_SYNC) && 4368 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4369 atomic_inc(&conf->preread_active_stripes); 4370 release_stripe_plug(mddev, sh); 4371 } else { 4372 /* cannot get stripe for read-ahead, just give-up */ 4373 clear_bit(BIO_UPTODATE, &bi->bi_flags); 4374 finish_wait(&conf->wait_for_overlap, &w); 4375 break; 4376 } 4377 } 4378 4379 remaining = raid5_dec_bi_active_stripes(bi); 4380 if (remaining == 0) { 4381 4382 if ( rw == WRITE ) 4383 md_write_end(mddev); 4384 4385 bio_endio(bi, 0); 4386 } 4387 } 4388 4389 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks); 4390 4391 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped) 4392 { 4393 /* reshaping is quite different to recovery/resync so it is 4394 * handled quite separately ... here. 4395 * 4396 * On each call to sync_request, we gather one chunk worth of 4397 * destination stripes and flag them as expanding. 4398 * Then we find all the source stripes and request reads. 4399 * As the reads complete, handle_stripe will copy the data 4400 * into the destination stripe and release that stripe. 4401 */ 4402 struct r5conf *conf = mddev->private; 4403 struct stripe_head *sh; 4404 sector_t first_sector, last_sector; 4405 int raid_disks = conf->previous_raid_disks; 4406 int data_disks = raid_disks - conf->max_degraded; 4407 int new_data_disks = conf->raid_disks - conf->max_degraded; 4408 int i; 4409 int dd_idx; 4410 sector_t writepos, readpos, safepos; 4411 sector_t stripe_addr; 4412 int reshape_sectors; 4413 struct list_head stripes; 4414 4415 if (sector_nr == 0) { 4416 /* If restarting in the middle, skip the initial sectors */ 4417 if (mddev->reshape_backwards && 4418 conf->reshape_progress < raid5_size(mddev, 0, 0)) { 4419 sector_nr = raid5_size(mddev, 0, 0) 4420 - conf->reshape_progress; 4421 } else if (!mddev->reshape_backwards && 4422 conf->reshape_progress > 0) 4423 sector_nr = conf->reshape_progress; 4424 sector_div(sector_nr, new_data_disks); 4425 if (sector_nr) { 4426 mddev->curr_resync_completed = sector_nr; 4427 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4428 *skipped = 1; 4429 return sector_nr; 4430 } 4431 } 4432 4433 /* We need to process a full chunk at a time. 4434 * If old and new chunk sizes differ, we need to process the 4435 * largest of these 4436 */ 4437 if (mddev->new_chunk_sectors > mddev->chunk_sectors) 4438 reshape_sectors = mddev->new_chunk_sectors; 4439 else 4440 reshape_sectors = mddev->chunk_sectors; 4441 4442 /* We update the metadata at least every 10 seconds, or when 4443 * the data about to be copied would over-write the source of 4444 * the data at the front of the range. i.e. one new_stripe 4445 * along from reshape_progress new_maps to after where 4446 * reshape_safe old_maps to 4447 */ 4448 writepos = conf->reshape_progress; 4449 sector_div(writepos, new_data_disks); 4450 readpos = conf->reshape_progress; 4451 sector_div(readpos, data_disks); 4452 safepos = conf->reshape_safe; 4453 sector_div(safepos, data_disks); 4454 if (mddev->reshape_backwards) { 4455 writepos -= min_t(sector_t, reshape_sectors, writepos); 4456 readpos += reshape_sectors; 4457 safepos += reshape_sectors; 4458 } else { 4459 writepos += reshape_sectors; 4460 readpos -= min_t(sector_t, reshape_sectors, readpos); 4461 safepos -= min_t(sector_t, reshape_sectors, safepos); 4462 } 4463 4464 /* Having calculated the 'writepos' possibly use it 4465 * to set 'stripe_addr' which is where we will write to. 4466 */ 4467 if (mddev->reshape_backwards) { 4468 BUG_ON(conf->reshape_progress == 0); 4469 stripe_addr = writepos; 4470 BUG_ON((mddev->dev_sectors & 4471 ~((sector_t)reshape_sectors - 1)) 4472 - reshape_sectors - stripe_addr 4473 != sector_nr); 4474 } else { 4475 BUG_ON(writepos != sector_nr + reshape_sectors); 4476 stripe_addr = sector_nr; 4477 } 4478 4479 /* 'writepos' is the most advanced device address we might write. 4480 * 'readpos' is the least advanced device address we might read. 4481 * 'safepos' is the least address recorded in the metadata as having 4482 * been reshaped. 4483 * If there is a min_offset_diff, these are adjusted either by 4484 * increasing the safepos/readpos if diff is negative, or 4485 * increasing writepos if diff is positive. 4486 * If 'readpos' is then behind 'writepos', there is no way that we can 4487 * ensure safety in the face of a crash - that must be done by userspace 4488 * making a backup of the data. So in that case there is no particular 4489 * rush to update metadata. 4490 * Otherwise if 'safepos' is behind 'writepos', then we really need to 4491 * update the metadata to advance 'safepos' to match 'readpos' so that 4492 * we can be safe in the event of a crash. 4493 * So we insist on updating metadata if safepos is behind writepos and 4494 * readpos is beyond writepos. 4495 * In any case, update the metadata every 10 seconds. 4496 * Maybe that number should be configurable, but I'm not sure it is 4497 * worth it.... maybe it could be a multiple of safemode_delay??? 4498 */ 4499 if (conf->min_offset_diff < 0) { 4500 safepos += -conf->min_offset_diff; 4501 readpos += -conf->min_offset_diff; 4502 } else 4503 writepos += conf->min_offset_diff; 4504 4505 if ((mddev->reshape_backwards 4506 ? (safepos > writepos && readpos < writepos) 4507 : (safepos < writepos && readpos > writepos)) || 4508 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 4509 /* Cannot proceed until we've updated the superblock... */ 4510 wait_event(conf->wait_for_overlap, 4511 atomic_read(&conf->reshape_stripes)==0); 4512 mddev->reshape_position = conf->reshape_progress; 4513 mddev->curr_resync_completed = sector_nr; 4514 conf->reshape_checkpoint = jiffies; 4515 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4516 md_wakeup_thread(mddev->thread); 4517 wait_event(mddev->sb_wait, mddev->flags == 0 || 4518 kthread_should_stop()); 4519 spin_lock_irq(&conf->device_lock); 4520 conf->reshape_safe = mddev->reshape_position; 4521 spin_unlock_irq(&conf->device_lock); 4522 wake_up(&conf->wait_for_overlap); 4523 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4524 } 4525 4526 INIT_LIST_HEAD(&stripes); 4527 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) { 4528 int j; 4529 int skipped_disk = 0; 4530 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1); 4531 set_bit(STRIPE_EXPANDING, &sh->state); 4532 atomic_inc(&conf->reshape_stripes); 4533 /* If any of this stripe is beyond the end of the old 4534 * array, then we need to zero those blocks 4535 */ 4536 for (j=sh->disks; j--;) { 4537 sector_t s; 4538 if (j == sh->pd_idx) 4539 continue; 4540 if (conf->level == 6 && 4541 j == sh->qd_idx) 4542 continue; 4543 s = compute_blocknr(sh, j, 0); 4544 if (s < raid5_size(mddev, 0, 0)) { 4545 skipped_disk = 1; 4546 continue; 4547 } 4548 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE); 4549 set_bit(R5_Expanded, &sh->dev[j].flags); 4550 set_bit(R5_UPTODATE, &sh->dev[j].flags); 4551 } 4552 if (!skipped_disk) { 4553 set_bit(STRIPE_EXPAND_READY, &sh->state); 4554 set_bit(STRIPE_HANDLE, &sh->state); 4555 } 4556 list_add(&sh->lru, &stripes); 4557 } 4558 spin_lock_irq(&conf->device_lock); 4559 if (mddev->reshape_backwards) 4560 conf->reshape_progress -= reshape_sectors * new_data_disks; 4561 else 4562 conf->reshape_progress += reshape_sectors * new_data_disks; 4563 spin_unlock_irq(&conf->device_lock); 4564 /* Ok, those stripe are ready. We can start scheduling 4565 * reads on the source stripes. 4566 * The source stripes are determined by mapping the first and last 4567 * block on the destination stripes. 4568 */ 4569 first_sector = 4570 raid5_compute_sector(conf, stripe_addr*(new_data_disks), 4571 1, &dd_idx, NULL); 4572 last_sector = 4573 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors) 4574 * new_data_disks - 1), 4575 1, &dd_idx, NULL); 4576 if (last_sector >= mddev->dev_sectors) 4577 last_sector = mddev->dev_sectors - 1; 4578 while (first_sector <= last_sector) { 4579 sh = get_active_stripe(conf, first_sector, 1, 0, 1); 4580 set_bit(STRIPE_EXPAND_SOURCE, &sh->state); 4581 set_bit(STRIPE_HANDLE, &sh->state); 4582 release_stripe(sh); 4583 first_sector += STRIPE_SECTORS; 4584 } 4585 /* Now that the sources are clearly marked, we can release 4586 * the destination stripes 4587 */ 4588 while (!list_empty(&stripes)) { 4589 sh = list_entry(stripes.next, struct stripe_head, lru); 4590 list_del_init(&sh->lru); 4591 release_stripe(sh); 4592 } 4593 /* If this takes us to the resync_max point where we have to pause, 4594 * then we need to write out the superblock. 4595 */ 4596 sector_nr += reshape_sectors; 4597 if ((sector_nr - mddev->curr_resync_completed) * 2 4598 >= mddev->resync_max - mddev->curr_resync_completed) { 4599 /* Cannot proceed until we've updated the superblock... */ 4600 wait_event(conf->wait_for_overlap, 4601 atomic_read(&conf->reshape_stripes) == 0); 4602 mddev->reshape_position = conf->reshape_progress; 4603 mddev->curr_resync_completed = sector_nr; 4604 conf->reshape_checkpoint = jiffies; 4605 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4606 md_wakeup_thread(mddev->thread); 4607 wait_event(mddev->sb_wait, 4608 !test_bit(MD_CHANGE_DEVS, &mddev->flags) 4609 || kthread_should_stop()); 4610 spin_lock_irq(&conf->device_lock); 4611 conf->reshape_safe = mddev->reshape_position; 4612 spin_unlock_irq(&conf->device_lock); 4613 wake_up(&conf->wait_for_overlap); 4614 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4615 } 4616 return reshape_sectors; 4617 } 4618 4619 /* FIXME go_faster isn't used */ 4620 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster) 4621 { 4622 struct r5conf *conf = mddev->private; 4623 struct stripe_head *sh; 4624 sector_t max_sector = mddev->dev_sectors; 4625 sector_t sync_blocks; 4626 int still_degraded = 0; 4627 int i; 4628 4629 if (sector_nr >= max_sector) { 4630 /* just being told to finish up .. nothing much to do */ 4631 4632 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 4633 end_reshape(conf); 4634 return 0; 4635 } 4636 4637 if (mddev->curr_resync < max_sector) /* aborted */ 4638 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 4639 &sync_blocks, 1); 4640 else /* completed sync */ 4641 conf->fullsync = 0; 4642 bitmap_close_sync(mddev->bitmap); 4643 4644 return 0; 4645 } 4646 4647 /* Allow raid5_quiesce to complete */ 4648 wait_event(conf->wait_for_overlap, conf->quiesce != 2); 4649 4650 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 4651 return reshape_request(mddev, sector_nr, skipped); 4652 4653 /* No need to check resync_max as we never do more than one 4654 * stripe, and as resync_max will always be on a chunk boundary, 4655 * if the check in md_do_sync didn't fire, there is no chance 4656 * of overstepping resync_max here 4657 */ 4658 4659 /* if there is too many failed drives and we are trying 4660 * to resync, then assert that we are finished, because there is 4661 * nothing we can do. 4662 */ 4663 if (mddev->degraded >= conf->max_degraded && 4664 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 4665 sector_t rv = mddev->dev_sectors - sector_nr; 4666 *skipped = 1; 4667 return rv; 4668 } 4669 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 4670 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 4671 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) { 4672 /* we can skip this block, and probably more */ 4673 sync_blocks /= STRIPE_SECTORS; 4674 *skipped = 1; 4675 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */ 4676 } 4677 4678 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 4679 4680 sh = get_active_stripe(conf, sector_nr, 0, 1, 0); 4681 if (sh == NULL) { 4682 sh = get_active_stripe(conf, sector_nr, 0, 0, 0); 4683 /* make sure we don't swamp the stripe cache if someone else 4684 * is trying to get access 4685 */ 4686 schedule_timeout_uninterruptible(1); 4687 } 4688 /* Need to check if array will still be degraded after recovery/resync 4689 * We don't need to check the 'failed' flag as when that gets set, 4690 * recovery aborts. 4691 */ 4692 for (i = 0; i < conf->raid_disks; i++) 4693 if (conf->disks[i].rdev == NULL) 4694 still_degraded = 1; 4695 4696 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded); 4697 4698 set_bit(STRIPE_SYNC_REQUESTED, &sh->state); 4699 4700 handle_stripe(sh); 4701 release_stripe(sh); 4702 4703 return STRIPE_SECTORS; 4704 } 4705 4706 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio) 4707 { 4708 /* We may not be able to submit a whole bio at once as there 4709 * may not be enough stripe_heads available. 4710 * We cannot pre-allocate enough stripe_heads as we may need 4711 * more than exist in the cache (if we allow ever large chunks). 4712 * So we do one stripe head at a time and record in 4713 * ->bi_hw_segments how many have been done. 4714 * 4715 * We *know* that this entire raid_bio is in one chunk, so 4716 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector. 4717 */ 4718 struct stripe_head *sh; 4719 int dd_idx; 4720 sector_t sector, logical_sector, last_sector; 4721 int scnt = 0; 4722 int remaining; 4723 int handled = 0; 4724 4725 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1); 4726 sector = raid5_compute_sector(conf, logical_sector, 4727 0, &dd_idx, NULL); 4728 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9); 4729 4730 for (; logical_sector < last_sector; 4731 logical_sector += STRIPE_SECTORS, 4732 sector += STRIPE_SECTORS, 4733 scnt++) { 4734 4735 if (scnt < raid5_bi_processed_stripes(raid_bio)) 4736 /* already done this stripe */ 4737 continue; 4738 4739 sh = get_active_stripe(conf, sector, 0, 1, 0); 4740 4741 if (!sh) { 4742 /* failed to get a stripe - must wait */ 4743 raid5_set_bi_processed_stripes(raid_bio, scnt); 4744 conf->retry_read_aligned = raid_bio; 4745 return handled; 4746 } 4747 4748 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) { 4749 release_stripe(sh); 4750 raid5_set_bi_processed_stripes(raid_bio, scnt); 4751 conf->retry_read_aligned = raid_bio; 4752 return handled; 4753 } 4754 4755 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags); 4756 handle_stripe(sh); 4757 release_stripe(sh); 4758 handled++; 4759 } 4760 remaining = raid5_dec_bi_active_stripes(raid_bio); 4761 if (remaining == 0) 4762 bio_endio(raid_bio, 0); 4763 if (atomic_dec_and_test(&conf->active_aligned_reads)) 4764 wake_up(&conf->wait_for_stripe); 4765 return handled; 4766 } 4767 4768 #define MAX_STRIPE_BATCH 8 4769 static int handle_active_stripes(struct r5conf *conf) 4770 { 4771 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh; 4772 int i, batch_size = 0; 4773 4774 while (batch_size < MAX_STRIPE_BATCH && 4775 (sh = __get_priority_stripe(conf)) != NULL) 4776 batch[batch_size++] = sh; 4777 4778 if (batch_size == 0) 4779 return batch_size; 4780 spin_unlock_irq(&conf->device_lock); 4781 4782 for (i = 0; i < batch_size; i++) 4783 handle_stripe(batch[i]); 4784 4785 cond_resched(); 4786 4787 spin_lock_irq(&conf->device_lock); 4788 for (i = 0; i < batch_size; i++) 4789 __release_stripe(conf, batch[i]); 4790 return batch_size; 4791 } 4792 4793 /* 4794 * This is our raid5 kernel thread. 4795 * 4796 * We scan the hash table for stripes which can be handled now. 4797 * During the scan, completed stripes are saved for us by the interrupt 4798 * handler, so that they will not have to wait for our next wakeup. 4799 */ 4800 static void raid5d(struct md_thread *thread) 4801 { 4802 struct mddev *mddev = thread->mddev; 4803 struct r5conf *conf = mddev->private; 4804 int handled; 4805 struct blk_plug plug; 4806 4807 pr_debug("+++ raid5d active\n"); 4808 4809 md_check_recovery(mddev); 4810 4811 blk_start_plug(&plug); 4812 handled = 0; 4813 spin_lock_irq(&conf->device_lock); 4814 while (1) { 4815 struct bio *bio; 4816 int batch_size; 4817 4818 if ( 4819 !list_empty(&conf->bitmap_list)) { 4820 /* Now is a good time to flush some bitmap updates */ 4821 conf->seq_flush++; 4822 spin_unlock_irq(&conf->device_lock); 4823 bitmap_unplug(mddev->bitmap); 4824 spin_lock_irq(&conf->device_lock); 4825 conf->seq_write = conf->seq_flush; 4826 activate_bit_delay(conf); 4827 } 4828 raid5_activate_delayed(conf); 4829 4830 while ((bio = remove_bio_from_retry(conf))) { 4831 int ok; 4832 spin_unlock_irq(&conf->device_lock); 4833 ok = retry_aligned_read(conf, bio); 4834 spin_lock_irq(&conf->device_lock); 4835 if (!ok) 4836 break; 4837 handled++; 4838 } 4839 4840 batch_size = handle_active_stripes(conf); 4841 if (!batch_size) 4842 break; 4843 handled += batch_size; 4844 4845 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) { 4846 spin_unlock_irq(&conf->device_lock); 4847 md_check_recovery(mddev); 4848 spin_lock_irq(&conf->device_lock); 4849 } 4850 } 4851 pr_debug("%d stripes handled\n", handled); 4852 4853 spin_unlock_irq(&conf->device_lock); 4854 4855 async_tx_issue_pending_all(); 4856 blk_finish_plug(&plug); 4857 4858 pr_debug("--- raid5d inactive\n"); 4859 } 4860 4861 static ssize_t 4862 raid5_show_stripe_cache_size(struct mddev *mddev, char *page) 4863 { 4864 struct r5conf *conf = mddev->private; 4865 if (conf) 4866 return sprintf(page, "%d\n", conf->max_nr_stripes); 4867 else 4868 return 0; 4869 } 4870 4871 int 4872 raid5_set_cache_size(struct mddev *mddev, int size) 4873 { 4874 struct r5conf *conf = mddev->private; 4875 int err; 4876 4877 if (size <= 16 || size > 32768) 4878 return -EINVAL; 4879 while (size < conf->max_nr_stripes) { 4880 if (drop_one_stripe(conf)) 4881 conf->max_nr_stripes--; 4882 else 4883 break; 4884 } 4885 err = md_allow_write(mddev); 4886 if (err) 4887 return err; 4888 while (size > conf->max_nr_stripes) { 4889 if (grow_one_stripe(conf)) 4890 conf->max_nr_stripes++; 4891 else break; 4892 } 4893 return 0; 4894 } 4895 EXPORT_SYMBOL(raid5_set_cache_size); 4896 4897 static ssize_t 4898 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len) 4899 { 4900 struct r5conf *conf = mddev->private; 4901 unsigned long new; 4902 int err; 4903 4904 if (len >= PAGE_SIZE) 4905 return -EINVAL; 4906 if (!conf) 4907 return -ENODEV; 4908 4909 if (strict_strtoul(page, 10, &new)) 4910 return -EINVAL; 4911 err = raid5_set_cache_size(mddev, new); 4912 if (err) 4913 return err; 4914 return len; 4915 } 4916 4917 static struct md_sysfs_entry 4918 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR, 4919 raid5_show_stripe_cache_size, 4920 raid5_store_stripe_cache_size); 4921 4922 static ssize_t 4923 raid5_show_preread_threshold(struct mddev *mddev, char *page) 4924 { 4925 struct r5conf *conf = mddev->private; 4926 if (conf) 4927 return sprintf(page, "%d\n", conf->bypass_threshold); 4928 else 4929 return 0; 4930 } 4931 4932 static ssize_t 4933 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len) 4934 { 4935 struct r5conf *conf = mddev->private; 4936 unsigned long new; 4937 if (len >= PAGE_SIZE) 4938 return -EINVAL; 4939 if (!conf) 4940 return -ENODEV; 4941 4942 if (strict_strtoul(page, 10, &new)) 4943 return -EINVAL; 4944 if (new > conf->max_nr_stripes) 4945 return -EINVAL; 4946 conf->bypass_threshold = new; 4947 return len; 4948 } 4949 4950 static struct md_sysfs_entry 4951 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold, 4952 S_IRUGO | S_IWUSR, 4953 raid5_show_preread_threshold, 4954 raid5_store_preread_threshold); 4955 4956 static ssize_t 4957 stripe_cache_active_show(struct mddev *mddev, char *page) 4958 { 4959 struct r5conf *conf = mddev->private; 4960 if (conf) 4961 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes)); 4962 else 4963 return 0; 4964 } 4965 4966 static struct md_sysfs_entry 4967 raid5_stripecache_active = __ATTR_RO(stripe_cache_active); 4968 4969 static struct attribute *raid5_attrs[] = { 4970 &raid5_stripecache_size.attr, 4971 &raid5_stripecache_active.attr, 4972 &raid5_preread_bypass_threshold.attr, 4973 NULL, 4974 }; 4975 static struct attribute_group raid5_attrs_group = { 4976 .name = NULL, 4977 .attrs = raid5_attrs, 4978 }; 4979 4980 static sector_t 4981 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks) 4982 { 4983 struct r5conf *conf = mddev->private; 4984 4985 if (!sectors) 4986 sectors = mddev->dev_sectors; 4987 if (!raid_disks) 4988 /* size is defined by the smallest of previous and new size */ 4989 raid_disks = min(conf->raid_disks, conf->previous_raid_disks); 4990 4991 sectors &= ~((sector_t)mddev->chunk_sectors - 1); 4992 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1); 4993 return sectors * (raid_disks - conf->max_degraded); 4994 } 4995 4996 static void raid5_free_percpu(struct r5conf *conf) 4997 { 4998 struct raid5_percpu *percpu; 4999 unsigned long cpu; 5000 5001 if (!conf->percpu) 5002 return; 5003 5004 get_online_cpus(); 5005 for_each_possible_cpu(cpu) { 5006 percpu = per_cpu_ptr(conf->percpu, cpu); 5007 safe_put_page(percpu->spare_page); 5008 kfree(percpu->scribble); 5009 } 5010 #ifdef CONFIG_HOTPLUG_CPU 5011 unregister_cpu_notifier(&conf->cpu_notify); 5012 #endif 5013 put_online_cpus(); 5014 5015 free_percpu(conf->percpu); 5016 } 5017 5018 static void free_conf(struct r5conf *conf) 5019 { 5020 shrink_stripes(conf); 5021 raid5_free_percpu(conf); 5022 kfree(conf->disks); 5023 kfree(conf->stripe_hashtbl); 5024 kfree(conf); 5025 } 5026 5027 #ifdef CONFIG_HOTPLUG_CPU 5028 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action, 5029 void *hcpu) 5030 { 5031 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify); 5032 long cpu = (long)hcpu; 5033 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu); 5034 5035 switch (action) { 5036 case CPU_UP_PREPARE: 5037 case CPU_UP_PREPARE_FROZEN: 5038 if (conf->level == 6 && !percpu->spare_page) 5039 percpu->spare_page = alloc_page(GFP_KERNEL); 5040 if (!percpu->scribble) 5041 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL); 5042 5043 if (!percpu->scribble || 5044 (conf->level == 6 && !percpu->spare_page)) { 5045 safe_put_page(percpu->spare_page); 5046 kfree(percpu->scribble); 5047 pr_err("%s: failed memory allocation for cpu%ld\n", 5048 __func__, cpu); 5049 return notifier_from_errno(-ENOMEM); 5050 } 5051 break; 5052 case CPU_DEAD: 5053 case CPU_DEAD_FROZEN: 5054 safe_put_page(percpu->spare_page); 5055 kfree(percpu->scribble); 5056 percpu->spare_page = NULL; 5057 percpu->scribble = NULL; 5058 break; 5059 default: 5060 break; 5061 } 5062 return NOTIFY_OK; 5063 } 5064 #endif 5065 5066 static int raid5_alloc_percpu(struct r5conf *conf) 5067 { 5068 unsigned long cpu; 5069 struct page *spare_page; 5070 struct raid5_percpu __percpu *allcpus; 5071 void *scribble; 5072 int err; 5073 5074 allcpus = alloc_percpu(struct raid5_percpu); 5075 if (!allcpus) 5076 return -ENOMEM; 5077 conf->percpu = allcpus; 5078 5079 get_online_cpus(); 5080 err = 0; 5081 for_each_present_cpu(cpu) { 5082 if (conf->level == 6) { 5083 spare_page = alloc_page(GFP_KERNEL); 5084 if (!spare_page) { 5085 err = -ENOMEM; 5086 break; 5087 } 5088 per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page; 5089 } 5090 scribble = kmalloc(conf->scribble_len, GFP_KERNEL); 5091 if (!scribble) { 5092 err = -ENOMEM; 5093 break; 5094 } 5095 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble; 5096 } 5097 #ifdef CONFIG_HOTPLUG_CPU 5098 conf->cpu_notify.notifier_call = raid456_cpu_notify; 5099 conf->cpu_notify.priority = 0; 5100 if (err == 0) 5101 err = register_cpu_notifier(&conf->cpu_notify); 5102 #endif 5103 put_online_cpus(); 5104 5105 return err; 5106 } 5107 5108 static struct r5conf *setup_conf(struct mddev *mddev) 5109 { 5110 struct r5conf *conf; 5111 int raid_disk, memory, max_disks; 5112 struct md_rdev *rdev; 5113 struct disk_info *disk; 5114 char pers_name[6]; 5115 5116 if (mddev->new_level != 5 5117 && mddev->new_level != 4 5118 && mddev->new_level != 6) { 5119 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n", 5120 mdname(mddev), mddev->new_level); 5121 return ERR_PTR(-EIO); 5122 } 5123 if ((mddev->new_level == 5 5124 && !algorithm_valid_raid5(mddev->new_layout)) || 5125 (mddev->new_level == 6 5126 && !algorithm_valid_raid6(mddev->new_layout))) { 5127 printk(KERN_ERR "md/raid:%s: layout %d not supported\n", 5128 mdname(mddev), mddev->new_layout); 5129 return ERR_PTR(-EIO); 5130 } 5131 if (mddev->new_level == 6 && mddev->raid_disks < 4) { 5132 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n", 5133 mdname(mddev), mddev->raid_disks); 5134 return ERR_PTR(-EINVAL); 5135 } 5136 5137 if (!mddev->new_chunk_sectors || 5138 (mddev->new_chunk_sectors << 9) % PAGE_SIZE || 5139 !is_power_of_2(mddev->new_chunk_sectors)) { 5140 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n", 5141 mdname(mddev), mddev->new_chunk_sectors << 9); 5142 return ERR_PTR(-EINVAL); 5143 } 5144 5145 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL); 5146 if (conf == NULL) 5147 goto abort; 5148 spin_lock_init(&conf->device_lock); 5149 init_waitqueue_head(&conf->wait_for_stripe); 5150 init_waitqueue_head(&conf->wait_for_overlap); 5151 INIT_LIST_HEAD(&conf->handle_list); 5152 INIT_LIST_HEAD(&conf->hold_list); 5153 INIT_LIST_HEAD(&conf->delayed_list); 5154 INIT_LIST_HEAD(&conf->bitmap_list); 5155 INIT_LIST_HEAD(&conf->inactive_list); 5156 atomic_set(&conf->active_stripes, 0); 5157 atomic_set(&conf->preread_active_stripes, 0); 5158 atomic_set(&conf->active_aligned_reads, 0); 5159 conf->bypass_threshold = BYPASS_THRESHOLD; 5160 conf->recovery_disabled = mddev->recovery_disabled - 1; 5161 5162 conf->raid_disks = mddev->raid_disks; 5163 if (mddev->reshape_position == MaxSector) 5164 conf->previous_raid_disks = mddev->raid_disks; 5165 else 5166 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks; 5167 max_disks = max(conf->raid_disks, conf->previous_raid_disks); 5168 conf->scribble_len = scribble_len(max_disks); 5169 5170 conf->disks = kzalloc(max_disks * sizeof(struct disk_info), 5171 GFP_KERNEL); 5172 if (!conf->disks) 5173 goto abort; 5174 5175 conf->mddev = mddev; 5176 5177 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL) 5178 goto abort; 5179 5180 conf->level = mddev->new_level; 5181 if (raid5_alloc_percpu(conf) != 0) 5182 goto abort; 5183 5184 pr_debug("raid456: run(%s) called.\n", mdname(mddev)); 5185 5186 rdev_for_each(rdev, mddev) { 5187 raid_disk = rdev->raid_disk; 5188 if (raid_disk >= max_disks 5189 || raid_disk < 0) 5190 continue; 5191 disk = conf->disks + raid_disk; 5192 5193 if (test_bit(Replacement, &rdev->flags)) { 5194 if (disk->replacement) 5195 goto abort; 5196 disk->replacement = rdev; 5197 } else { 5198 if (disk->rdev) 5199 goto abort; 5200 disk->rdev = rdev; 5201 } 5202 5203 if (test_bit(In_sync, &rdev->flags)) { 5204 char b[BDEVNAME_SIZE]; 5205 printk(KERN_INFO "md/raid:%s: device %s operational as raid" 5206 " disk %d\n", 5207 mdname(mddev), bdevname(rdev->bdev, b), raid_disk); 5208 } else if (rdev->saved_raid_disk != raid_disk) 5209 /* Cannot rely on bitmap to complete recovery */ 5210 conf->fullsync = 1; 5211 } 5212 5213 conf->chunk_sectors = mddev->new_chunk_sectors; 5214 conf->level = mddev->new_level; 5215 if (conf->level == 6) 5216 conf->max_degraded = 2; 5217 else 5218 conf->max_degraded = 1; 5219 conf->algorithm = mddev->new_layout; 5220 conf->max_nr_stripes = NR_STRIPES; 5221 conf->reshape_progress = mddev->reshape_position; 5222 if (conf->reshape_progress != MaxSector) { 5223 conf->prev_chunk_sectors = mddev->chunk_sectors; 5224 conf->prev_algo = mddev->layout; 5225 } 5226 5227 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) + 5228 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024; 5229 if (grow_stripes(conf, conf->max_nr_stripes)) { 5230 printk(KERN_ERR 5231 "md/raid:%s: couldn't allocate %dkB for buffers\n", 5232 mdname(mddev), memory); 5233 goto abort; 5234 } else 5235 printk(KERN_INFO "md/raid:%s: allocated %dkB\n", 5236 mdname(mddev), memory); 5237 5238 sprintf(pers_name, "raid%d", mddev->new_level); 5239 conf->thread = md_register_thread(raid5d, mddev, pers_name); 5240 if (!conf->thread) { 5241 printk(KERN_ERR 5242 "md/raid:%s: couldn't allocate thread.\n", 5243 mdname(mddev)); 5244 goto abort; 5245 } 5246 5247 return conf; 5248 5249 abort: 5250 if (conf) { 5251 free_conf(conf); 5252 return ERR_PTR(-EIO); 5253 } else 5254 return ERR_PTR(-ENOMEM); 5255 } 5256 5257 5258 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded) 5259 { 5260 switch (algo) { 5261 case ALGORITHM_PARITY_0: 5262 if (raid_disk < max_degraded) 5263 return 1; 5264 break; 5265 case ALGORITHM_PARITY_N: 5266 if (raid_disk >= raid_disks - max_degraded) 5267 return 1; 5268 break; 5269 case ALGORITHM_PARITY_0_6: 5270 if (raid_disk == 0 || 5271 raid_disk == raid_disks - 1) 5272 return 1; 5273 break; 5274 case ALGORITHM_LEFT_ASYMMETRIC_6: 5275 case ALGORITHM_RIGHT_ASYMMETRIC_6: 5276 case ALGORITHM_LEFT_SYMMETRIC_6: 5277 case ALGORITHM_RIGHT_SYMMETRIC_6: 5278 if (raid_disk == raid_disks - 1) 5279 return 1; 5280 } 5281 return 0; 5282 } 5283 5284 static int run(struct mddev *mddev) 5285 { 5286 struct r5conf *conf; 5287 int working_disks = 0; 5288 int dirty_parity_disks = 0; 5289 struct md_rdev *rdev; 5290 sector_t reshape_offset = 0; 5291 int i; 5292 long long min_offset_diff = 0; 5293 int first = 1; 5294 5295 if (mddev->recovery_cp != MaxSector) 5296 printk(KERN_NOTICE "md/raid:%s: not clean" 5297 " -- starting background reconstruction\n", 5298 mdname(mddev)); 5299 5300 rdev_for_each(rdev, mddev) { 5301 long long diff; 5302 if (rdev->raid_disk < 0) 5303 continue; 5304 diff = (rdev->new_data_offset - rdev->data_offset); 5305 if (first) { 5306 min_offset_diff = diff; 5307 first = 0; 5308 } else if (mddev->reshape_backwards && 5309 diff < min_offset_diff) 5310 min_offset_diff = diff; 5311 else if (!mddev->reshape_backwards && 5312 diff > min_offset_diff) 5313 min_offset_diff = diff; 5314 } 5315 5316 if (mddev->reshape_position != MaxSector) { 5317 /* Check that we can continue the reshape. 5318 * Difficulties arise if the stripe we would write to 5319 * next is at or after the stripe we would read from next. 5320 * For a reshape that changes the number of devices, this 5321 * is only possible for a very short time, and mdadm makes 5322 * sure that time appears to have past before assembling 5323 * the array. So we fail if that time hasn't passed. 5324 * For a reshape that keeps the number of devices the same 5325 * mdadm must be monitoring the reshape can keeping the 5326 * critical areas read-only and backed up. It will start 5327 * the array in read-only mode, so we check for that. 5328 */ 5329 sector_t here_new, here_old; 5330 int old_disks; 5331 int max_degraded = (mddev->level == 6 ? 2 : 1); 5332 5333 if (mddev->new_level != mddev->level) { 5334 printk(KERN_ERR "md/raid:%s: unsupported reshape " 5335 "required - aborting.\n", 5336 mdname(mddev)); 5337 return -EINVAL; 5338 } 5339 old_disks = mddev->raid_disks - mddev->delta_disks; 5340 /* reshape_position must be on a new-stripe boundary, and one 5341 * further up in new geometry must map after here in old 5342 * geometry. 5343 */ 5344 here_new = mddev->reshape_position; 5345 if (sector_div(here_new, mddev->new_chunk_sectors * 5346 (mddev->raid_disks - max_degraded))) { 5347 printk(KERN_ERR "md/raid:%s: reshape_position not " 5348 "on a stripe boundary\n", mdname(mddev)); 5349 return -EINVAL; 5350 } 5351 reshape_offset = here_new * mddev->new_chunk_sectors; 5352 /* here_new is the stripe we will write to */ 5353 here_old = mddev->reshape_position; 5354 sector_div(here_old, mddev->chunk_sectors * 5355 (old_disks-max_degraded)); 5356 /* here_old is the first stripe that we might need to read 5357 * from */ 5358 if (mddev->delta_disks == 0) { 5359 if ((here_new * mddev->new_chunk_sectors != 5360 here_old * mddev->chunk_sectors)) { 5361 printk(KERN_ERR "md/raid:%s: reshape position is" 5362 " confused - aborting\n", mdname(mddev)); 5363 return -EINVAL; 5364 } 5365 /* We cannot be sure it is safe to start an in-place 5366 * reshape. It is only safe if user-space is monitoring 5367 * and taking constant backups. 5368 * mdadm always starts a situation like this in 5369 * readonly mode so it can take control before 5370 * allowing any writes. So just check for that. 5371 */ 5372 if (abs(min_offset_diff) >= mddev->chunk_sectors && 5373 abs(min_offset_diff) >= mddev->new_chunk_sectors) 5374 /* not really in-place - so OK */; 5375 else if (mddev->ro == 0) { 5376 printk(KERN_ERR "md/raid:%s: in-place reshape " 5377 "must be started in read-only mode " 5378 "- aborting\n", 5379 mdname(mddev)); 5380 return -EINVAL; 5381 } 5382 } else if (mddev->reshape_backwards 5383 ? (here_new * mddev->new_chunk_sectors + min_offset_diff <= 5384 here_old * mddev->chunk_sectors) 5385 : (here_new * mddev->new_chunk_sectors >= 5386 here_old * mddev->chunk_sectors + (-min_offset_diff))) { 5387 /* Reading from the same stripe as writing to - bad */ 5388 printk(KERN_ERR "md/raid:%s: reshape_position too early for " 5389 "auto-recovery - aborting.\n", 5390 mdname(mddev)); 5391 return -EINVAL; 5392 } 5393 printk(KERN_INFO "md/raid:%s: reshape will continue\n", 5394 mdname(mddev)); 5395 /* OK, we should be able to continue; */ 5396 } else { 5397 BUG_ON(mddev->level != mddev->new_level); 5398 BUG_ON(mddev->layout != mddev->new_layout); 5399 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors); 5400 BUG_ON(mddev->delta_disks != 0); 5401 } 5402 5403 if (mddev->private == NULL) 5404 conf = setup_conf(mddev); 5405 else 5406 conf = mddev->private; 5407 5408 if (IS_ERR(conf)) 5409 return PTR_ERR(conf); 5410 5411 conf->min_offset_diff = min_offset_diff; 5412 mddev->thread = conf->thread; 5413 conf->thread = NULL; 5414 mddev->private = conf; 5415 5416 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks; 5417 i++) { 5418 rdev = conf->disks[i].rdev; 5419 if (!rdev && conf->disks[i].replacement) { 5420 /* The replacement is all we have yet */ 5421 rdev = conf->disks[i].replacement; 5422 conf->disks[i].replacement = NULL; 5423 clear_bit(Replacement, &rdev->flags); 5424 conf->disks[i].rdev = rdev; 5425 } 5426 if (!rdev) 5427 continue; 5428 if (conf->disks[i].replacement && 5429 conf->reshape_progress != MaxSector) { 5430 /* replacements and reshape simply do not mix. */ 5431 printk(KERN_ERR "md: cannot handle concurrent " 5432 "replacement and reshape.\n"); 5433 goto abort; 5434 } 5435 if (test_bit(In_sync, &rdev->flags)) { 5436 working_disks++; 5437 continue; 5438 } 5439 /* This disc is not fully in-sync. However if it 5440 * just stored parity (beyond the recovery_offset), 5441 * when we don't need to be concerned about the 5442 * array being dirty. 5443 * When reshape goes 'backwards', we never have 5444 * partially completed devices, so we only need 5445 * to worry about reshape going forwards. 5446 */ 5447 /* Hack because v0.91 doesn't store recovery_offset properly. */ 5448 if (mddev->major_version == 0 && 5449 mddev->minor_version > 90) 5450 rdev->recovery_offset = reshape_offset; 5451 5452 if (rdev->recovery_offset < reshape_offset) { 5453 /* We need to check old and new layout */ 5454 if (!only_parity(rdev->raid_disk, 5455 conf->algorithm, 5456 conf->raid_disks, 5457 conf->max_degraded)) 5458 continue; 5459 } 5460 if (!only_parity(rdev->raid_disk, 5461 conf->prev_algo, 5462 conf->previous_raid_disks, 5463 conf->max_degraded)) 5464 continue; 5465 dirty_parity_disks++; 5466 } 5467 5468 /* 5469 * 0 for a fully functional array, 1 or 2 for a degraded array. 5470 */ 5471 mddev->degraded = calc_degraded(conf); 5472 5473 if (has_failed(conf)) { 5474 printk(KERN_ERR "md/raid:%s: not enough operational devices" 5475 " (%d/%d failed)\n", 5476 mdname(mddev), mddev->degraded, conf->raid_disks); 5477 goto abort; 5478 } 5479 5480 /* device size must be a multiple of chunk size */ 5481 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1); 5482 mddev->resync_max_sectors = mddev->dev_sectors; 5483 5484 if (mddev->degraded > dirty_parity_disks && 5485 mddev->recovery_cp != MaxSector) { 5486 if (mddev->ok_start_degraded) 5487 printk(KERN_WARNING 5488 "md/raid:%s: starting dirty degraded array" 5489 " - data corruption possible.\n", 5490 mdname(mddev)); 5491 else { 5492 printk(KERN_ERR 5493 "md/raid:%s: cannot start dirty degraded array.\n", 5494 mdname(mddev)); 5495 goto abort; 5496 } 5497 } 5498 5499 if (mddev->degraded == 0) 5500 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d" 5501 " devices, algorithm %d\n", mdname(mddev), conf->level, 5502 mddev->raid_disks-mddev->degraded, mddev->raid_disks, 5503 mddev->new_layout); 5504 else 5505 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d" 5506 " out of %d devices, algorithm %d\n", 5507 mdname(mddev), conf->level, 5508 mddev->raid_disks - mddev->degraded, 5509 mddev->raid_disks, mddev->new_layout); 5510 5511 print_raid5_conf(conf); 5512 5513 if (conf->reshape_progress != MaxSector) { 5514 conf->reshape_safe = conf->reshape_progress; 5515 atomic_set(&conf->reshape_stripes, 0); 5516 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 5517 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 5518 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 5519 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 5520 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 5521 "reshape"); 5522 } 5523 5524 5525 /* Ok, everything is just fine now */ 5526 if (mddev->to_remove == &raid5_attrs_group) 5527 mddev->to_remove = NULL; 5528 else if (mddev->kobj.sd && 5529 sysfs_create_group(&mddev->kobj, &raid5_attrs_group)) 5530 printk(KERN_WARNING 5531 "raid5: failed to create sysfs attributes for %s\n", 5532 mdname(mddev)); 5533 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 5534 5535 if (mddev->queue) { 5536 int chunk_size; 5537 bool discard_supported = true; 5538 /* read-ahead size must cover two whole stripes, which 5539 * is 2 * (datadisks) * chunksize where 'n' is the 5540 * number of raid devices 5541 */ 5542 int data_disks = conf->previous_raid_disks - conf->max_degraded; 5543 int stripe = data_disks * 5544 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 5545 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 5546 mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 5547 5548 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec); 5549 5550 mddev->queue->backing_dev_info.congested_data = mddev; 5551 mddev->queue->backing_dev_info.congested_fn = raid5_congested; 5552 5553 chunk_size = mddev->chunk_sectors << 9; 5554 blk_queue_io_min(mddev->queue, chunk_size); 5555 blk_queue_io_opt(mddev->queue, chunk_size * 5556 (conf->raid_disks - conf->max_degraded)); 5557 /* 5558 * We can only discard a whole stripe. It doesn't make sense to 5559 * discard data disk but write parity disk 5560 */ 5561 stripe = stripe * PAGE_SIZE; 5562 /* Round up to power of 2, as discard handling 5563 * currently assumes that */ 5564 while ((stripe-1) & stripe) 5565 stripe = (stripe | (stripe-1)) + 1; 5566 mddev->queue->limits.discard_alignment = stripe; 5567 mddev->queue->limits.discard_granularity = stripe; 5568 /* 5569 * unaligned part of discard request will be ignored, so can't 5570 * guarantee discard_zerors_data 5571 */ 5572 mddev->queue->limits.discard_zeroes_data = 0; 5573 5574 rdev_for_each(rdev, mddev) { 5575 disk_stack_limits(mddev->gendisk, rdev->bdev, 5576 rdev->data_offset << 9); 5577 disk_stack_limits(mddev->gendisk, rdev->bdev, 5578 rdev->new_data_offset << 9); 5579 /* 5580 * discard_zeroes_data is required, otherwise data 5581 * could be lost. Consider a scenario: discard a stripe 5582 * (the stripe could be inconsistent if 5583 * discard_zeroes_data is 0); write one disk of the 5584 * stripe (the stripe could be inconsistent again 5585 * depending on which disks are used to calculate 5586 * parity); the disk is broken; The stripe data of this 5587 * disk is lost. 5588 */ 5589 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) || 5590 !bdev_get_queue(rdev->bdev)-> 5591 limits.discard_zeroes_data) 5592 discard_supported = false; 5593 } 5594 5595 if (discard_supported && 5596 mddev->queue->limits.max_discard_sectors >= stripe && 5597 mddev->queue->limits.discard_granularity >= stripe) 5598 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 5599 mddev->queue); 5600 else 5601 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 5602 mddev->queue); 5603 } 5604 5605 return 0; 5606 abort: 5607 md_unregister_thread(&mddev->thread); 5608 print_raid5_conf(conf); 5609 free_conf(conf); 5610 mddev->private = NULL; 5611 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev)); 5612 return -EIO; 5613 } 5614 5615 static int stop(struct mddev *mddev) 5616 { 5617 struct r5conf *conf = mddev->private; 5618 5619 md_unregister_thread(&mddev->thread); 5620 if (mddev->queue) 5621 mddev->queue->backing_dev_info.congested_fn = NULL; 5622 free_conf(conf); 5623 mddev->private = NULL; 5624 mddev->to_remove = &raid5_attrs_group; 5625 return 0; 5626 } 5627 5628 static void status(struct seq_file *seq, struct mddev *mddev) 5629 { 5630 struct r5conf *conf = mddev->private; 5631 int i; 5632 5633 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level, 5634 mddev->chunk_sectors / 2, mddev->layout); 5635 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded); 5636 for (i = 0; i < conf->raid_disks; i++) 5637 seq_printf (seq, "%s", 5638 conf->disks[i].rdev && 5639 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_"); 5640 seq_printf (seq, "]"); 5641 } 5642 5643 static void print_raid5_conf (struct r5conf *conf) 5644 { 5645 int i; 5646 struct disk_info *tmp; 5647 5648 printk(KERN_DEBUG "RAID conf printout:\n"); 5649 if (!conf) { 5650 printk("(conf==NULL)\n"); 5651 return; 5652 } 5653 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level, 5654 conf->raid_disks, 5655 conf->raid_disks - conf->mddev->degraded); 5656 5657 for (i = 0; i < conf->raid_disks; i++) { 5658 char b[BDEVNAME_SIZE]; 5659 tmp = conf->disks + i; 5660 if (tmp->rdev) 5661 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n", 5662 i, !test_bit(Faulty, &tmp->rdev->flags), 5663 bdevname(tmp->rdev->bdev, b)); 5664 } 5665 } 5666 5667 static int raid5_spare_active(struct mddev *mddev) 5668 { 5669 int i; 5670 struct r5conf *conf = mddev->private; 5671 struct disk_info *tmp; 5672 int count = 0; 5673 unsigned long flags; 5674 5675 for (i = 0; i < conf->raid_disks; i++) { 5676 tmp = conf->disks + i; 5677 if (tmp->replacement 5678 && tmp->replacement->recovery_offset == MaxSector 5679 && !test_bit(Faulty, &tmp->replacement->flags) 5680 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 5681 /* Replacement has just become active. */ 5682 if (!tmp->rdev 5683 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 5684 count++; 5685 if (tmp->rdev) { 5686 /* Replaced device not technically faulty, 5687 * but we need to be sure it gets removed 5688 * and never re-added. 5689 */ 5690 set_bit(Faulty, &tmp->rdev->flags); 5691 sysfs_notify_dirent_safe( 5692 tmp->rdev->sysfs_state); 5693 } 5694 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 5695 } else if (tmp->rdev 5696 && tmp->rdev->recovery_offset == MaxSector 5697 && !test_bit(Faulty, &tmp->rdev->flags) 5698 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 5699 count++; 5700 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 5701 } 5702 } 5703 spin_lock_irqsave(&conf->device_lock, flags); 5704 mddev->degraded = calc_degraded(conf); 5705 spin_unlock_irqrestore(&conf->device_lock, flags); 5706 print_raid5_conf(conf); 5707 return count; 5708 } 5709 5710 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 5711 { 5712 struct r5conf *conf = mddev->private; 5713 int err = 0; 5714 int number = rdev->raid_disk; 5715 struct md_rdev **rdevp; 5716 struct disk_info *p = conf->disks + number; 5717 5718 print_raid5_conf(conf); 5719 if (rdev == p->rdev) 5720 rdevp = &p->rdev; 5721 else if (rdev == p->replacement) 5722 rdevp = &p->replacement; 5723 else 5724 return 0; 5725 5726 if (number >= conf->raid_disks && 5727 conf->reshape_progress == MaxSector) 5728 clear_bit(In_sync, &rdev->flags); 5729 5730 if (test_bit(In_sync, &rdev->flags) || 5731 atomic_read(&rdev->nr_pending)) { 5732 err = -EBUSY; 5733 goto abort; 5734 } 5735 /* Only remove non-faulty devices if recovery 5736 * isn't possible. 5737 */ 5738 if (!test_bit(Faulty, &rdev->flags) && 5739 mddev->recovery_disabled != conf->recovery_disabled && 5740 !has_failed(conf) && 5741 (!p->replacement || p->replacement == rdev) && 5742 number < conf->raid_disks) { 5743 err = -EBUSY; 5744 goto abort; 5745 } 5746 *rdevp = NULL; 5747 synchronize_rcu(); 5748 if (atomic_read(&rdev->nr_pending)) { 5749 /* lost the race, try later */ 5750 err = -EBUSY; 5751 *rdevp = rdev; 5752 } else if (p->replacement) { 5753 /* We must have just cleared 'rdev' */ 5754 p->rdev = p->replacement; 5755 clear_bit(Replacement, &p->replacement->flags); 5756 smp_mb(); /* Make sure other CPUs may see both as identical 5757 * but will never see neither - if they are careful 5758 */ 5759 p->replacement = NULL; 5760 clear_bit(WantReplacement, &rdev->flags); 5761 } else 5762 /* We might have just removed the Replacement as faulty- 5763 * clear the bit just in case 5764 */ 5765 clear_bit(WantReplacement, &rdev->flags); 5766 abort: 5767 5768 print_raid5_conf(conf); 5769 return err; 5770 } 5771 5772 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev) 5773 { 5774 struct r5conf *conf = mddev->private; 5775 int err = -EEXIST; 5776 int disk; 5777 struct disk_info *p; 5778 int first = 0; 5779 int last = conf->raid_disks - 1; 5780 5781 if (mddev->recovery_disabled == conf->recovery_disabled) 5782 return -EBUSY; 5783 5784 if (rdev->saved_raid_disk < 0 && has_failed(conf)) 5785 /* no point adding a device */ 5786 return -EINVAL; 5787 5788 if (rdev->raid_disk >= 0) 5789 first = last = rdev->raid_disk; 5790 5791 /* 5792 * find the disk ... but prefer rdev->saved_raid_disk 5793 * if possible. 5794 */ 5795 if (rdev->saved_raid_disk >= 0 && 5796 rdev->saved_raid_disk >= first && 5797 conf->disks[rdev->saved_raid_disk].rdev == NULL) 5798 first = rdev->saved_raid_disk; 5799 5800 for (disk = first; disk <= last; disk++) { 5801 p = conf->disks + disk; 5802 if (p->rdev == NULL) { 5803 clear_bit(In_sync, &rdev->flags); 5804 rdev->raid_disk = disk; 5805 err = 0; 5806 if (rdev->saved_raid_disk != disk) 5807 conf->fullsync = 1; 5808 rcu_assign_pointer(p->rdev, rdev); 5809 goto out; 5810 } 5811 } 5812 for (disk = first; disk <= last; disk++) { 5813 p = conf->disks + disk; 5814 if (test_bit(WantReplacement, &p->rdev->flags) && 5815 p->replacement == NULL) { 5816 clear_bit(In_sync, &rdev->flags); 5817 set_bit(Replacement, &rdev->flags); 5818 rdev->raid_disk = disk; 5819 err = 0; 5820 conf->fullsync = 1; 5821 rcu_assign_pointer(p->replacement, rdev); 5822 break; 5823 } 5824 } 5825 out: 5826 print_raid5_conf(conf); 5827 return err; 5828 } 5829 5830 static int raid5_resize(struct mddev *mddev, sector_t sectors) 5831 { 5832 /* no resync is happening, and there is enough space 5833 * on all devices, so we can resize. 5834 * We need to make sure resync covers any new space. 5835 * If the array is shrinking we should possibly wait until 5836 * any io in the removed space completes, but it hardly seems 5837 * worth it. 5838 */ 5839 sector_t newsize; 5840 sectors &= ~((sector_t)mddev->chunk_sectors - 1); 5841 newsize = raid5_size(mddev, sectors, mddev->raid_disks); 5842 if (mddev->external_size && 5843 mddev->array_sectors > newsize) 5844 return -EINVAL; 5845 if (mddev->bitmap) { 5846 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0); 5847 if (ret) 5848 return ret; 5849 } 5850 md_set_array_sectors(mddev, newsize); 5851 set_capacity(mddev->gendisk, mddev->array_sectors); 5852 revalidate_disk(mddev->gendisk); 5853 if (sectors > mddev->dev_sectors && 5854 mddev->recovery_cp > mddev->dev_sectors) { 5855 mddev->recovery_cp = mddev->dev_sectors; 5856 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5857 } 5858 mddev->dev_sectors = sectors; 5859 mddev->resync_max_sectors = sectors; 5860 return 0; 5861 } 5862 5863 static int check_stripe_cache(struct mddev *mddev) 5864 { 5865 /* Can only proceed if there are plenty of stripe_heads. 5866 * We need a minimum of one full stripe,, and for sensible progress 5867 * it is best to have about 4 times that. 5868 * If we require 4 times, then the default 256 4K stripe_heads will 5869 * allow for chunk sizes up to 256K, which is probably OK. 5870 * If the chunk size is greater, user-space should request more 5871 * stripe_heads first. 5872 */ 5873 struct r5conf *conf = mddev->private; 5874 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4 5875 > conf->max_nr_stripes || 5876 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4 5877 > conf->max_nr_stripes) { 5878 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n", 5879 mdname(mddev), 5880 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9) 5881 / STRIPE_SIZE)*4); 5882 return 0; 5883 } 5884 return 1; 5885 } 5886 5887 static int check_reshape(struct mddev *mddev) 5888 { 5889 struct r5conf *conf = mddev->private; 5890 5891 if (mddev->delta_disks == 0 && 5892 mddev->new_layout == mddev->layout && 5893 mddev->new_chunk_sectors == mddev->chunk_sectors) 5894 return 0; /* nothing to do */ 5895 if (has_failed(conf)) 5896 return -EINVAL; 5897 if (mddev->delta_disks < 0) { 5898 /* We might be able to shrink, but the devices must 5899 * be made bigger first. 5900 * For raid6, 4 is the minimum size. 5901 * Otherwise 2 is the minimum 5902 */ 5903 int min = 2; 5904 if (mddev->level == 6) 5905 min = 4; 5906 if (mddev->raid_disks + mddev->delta_disks < min) 5907 return -EINVAL; 5908 } 5909 5910 if (!check_stripe_cache(mddev)) 5911 return -ENOSPC; 5912 5913 return resize_stripes(conf, (conf->previous_raid_disks 5914 + mddev->delta_disks)); 5915 } 5916 5917 static int raid5_start_reshape(struct mddev *mddev) 5918 { 5919 struct r5conf *conf = mddev->private; 5920 struct md_rdev *rdev; 5921 int spares = 0; 5922 unsigned long flags; 5923 5924 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5925 return -EBUSY; 5926 5927 if (!check_stripe_cache(mddev)) 5928 return -ENOSPC; 5929 5930 if (has_failed(conf)) 5931 return -EINVAL; 5932 5933 rdev_for_each(rdev, mddev) { 5934 if (!test_bit(In_sync, &rdev->flags) 5935 && !test_bit(Faulty, &rdev->flags)) 5936 spares++; 5937 } 5938 5939 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded) 5940 /* Not enough devices even to make a degraded array 5941 * of that size 5942 */ 5943 return -EINVAL; 5944 5945 /* Refuse to reduce size of the array. Any reductions in 5946 * array size must be through explicit setting of array_size 5947 * attribute. 5948 */ 5949 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks) 5950 < mddev->array_sectors) { 5951 printk(KERN_ERR "md/raid:%s: array size must be reduced " 5952 "before number of disks\n", mdname(mddev)); 5953 return -EINVAL; 5954 } 5955 5956 atomic_set(&conf->reshape_stripes, 0); 5957 spin_lock_irq(&conf->device_lock); 5958 conf->previous_raid_disks = conf->raid_disks; 5959 conf->raid_disks += mddev->delta_disks; 5960 conf->prev_chunk_sectors = conf->chunk_sectors; 5961 conf->chunk_sectors = mddev->new_chunk_sectors; 5962 conf->prev_algo = conf->algorithm; 5963 conf->algorithm = mddev->new_layout; 5964 conf->generation++; 5965 /* Code that selects data_offset needs to see the generation update 5966 * if reshape_progress has been set - so a memory barrier needed. 5967 */ 5968 smp_mb(); 5969 if (mddev->reshape_backwards) 5970 conf->reshape_progress = raid5_size(mddev, 0, 0); 5971 else 5972 conf->reshape_progress = 0; 5973 conf->reshape_safe = conf->reshape_progress; 5974 spin_unlock_irq(&conf->device_lock); 5975 5976 /* Add some new drives, as many as will fit. 5977 * We know there are enough to make the newly sized array work. 5978 * Don't add devices if we are reducing the number of 5979 * devices in the array. This is because it is not possible 5980 * to correctly record the "partially reconstructed" state of 5981 * such devices during the reshape and confusion could result. 5982 */ 5983 if (mddev->delta_disks >= 0) { 5984 rdev_for_each(rdev, mddev) 5985 if (rdev->raid_disk < 0 && 5986 !test_bit(Faulty, &rdev->flags)) { 5987 if (raid5_add_disk(mddev, rdev) == 0) { 5988 if (rdev->raid_disk 5989 >= conf->previous_raid_disks) 5990 set_bit(In_sync, &rdev->flags); 5991 else 5992 rdev->recovery_offset = 0; 5993 5994 if (sysfs_link_rdev(mddev, rdev)) 5995 /* Failure here is OK */; 5996 } 5997 } else if (rdev->raid_disk >= conf->previous_raid_disks 5998 && !test_bit(Faulty, &rdev->flags)) { 5999 /* This is a spare that was manually added */ 6000 set_bit(In_sync, &rdev->flags); 6001 } 6002 6003 /* When a reshape changes the number of devices, 6004 * ->degraded is measured against the larger of the 6005 * pre and post number of devices. 6006 */ 6007 spin_lock_irqsave(&conf->device_lock, flags); 6008 mddev->degraded = calc_degraded(conf); 6009 spin_unlock_irqrestore(&conf->device_lock, flags); 6010 } 6011 mddev->raid_disks = conf->raid_disks; 6012 mddev->reshape_position = conf->reshape_progress; 6013 set_bit(MD_CHANGE_DEVS, &mddev->flags); 6014 6015 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 6016 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 6017 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 6018 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 6019 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 6020 "reshape"); 6021 if (!mddev->sync_thread) { 6022 mddev->recovery = 0; 6023 spin_lock_irq(&conf->device_lock); 6024 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks; 6025 rdev_for_each(rdev, mddev) 6026 rdev->new_data_offset = rdev->data_offset; 6027 smp_wmb(); 6028 conf->reshape_progress = MaxSector; 6029 mddev->reshape_position = MaxSector; 6030 spin_unlock_irq(&conf->device_lock); 6031 return -EAGAIN; 6032 } 6033 conf->reshape_checkpoint = jiffies; 6034 md_wakeup_thread(mddev->sync_thread); 6035 md_new_event(mddev); 6036 return 0; 6037 } 6038 6039 /* This is called from the reshape thread and should make any 6040 * changes needed in 'conf' 6041 */ 6042 static void end_reshape(struct r5conf *conf) 6043 { 6044 6045 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 6046 struct md_rdev *rdev; 6047 6048 spin_lock_irq(&conf->device_lock); 6049 conf->previous_raid_disks = conf->raid_disks; 6050 rdev_for_each(rdev, conf->mddev) 6051 rdev->data_offset = rdev->new_data_offset; 6052 smp_wmb(); 6053 conf->reshape_progress = MaxSector; 6054 spin_unlock_irq(&conf->device_lock); 6055 wake_up(&conf->wait_for_overlap); 6056 6057 /* read-ahead size must cover two whole stripes, which is 6058 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 6059 */ 6060 if (conf->mddev->queue) { 6061 int data_disks = conf->raid_disks - conf->max_degraded; 6062 int stripe = data_disks * ((conf->chunk_sectors << 9) 6063 / PAGE_SIZE); 6064 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 6065 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 6066 } 6067 } 6068 } 6069 6070 /* This is called from the raid5d thread with mddev_lock held. 6071 * It makes config changes to the device. 6072 */ 6073 static void raid5_finish_reshape(struct mddev *mddev) 6074 { 6075 struct r5conf *conf = mddev->private; 6076 6077 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 6078 6079 if (mddev->delta_disks > 0) { 6080 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 6081 set_capacity(mddev->gendisk, mddev->array_sectors); 6082 revalidate_disk(mddev->gendisk); 6083 } else { 6084 int d; 6085 spin_lock_irq(&conf->device_lock); 6086 mddev->degraded = calc_degraded(conf); 6087 spin_unlock_irq(&conf->device_lock); 6088 for (d = conf->raid_disks ; 6089 d < conf->raid_disks - mddev->delta_disks; 6090 d++) { 6091 struct md_rdev *rdev = conf->disks[d].rdev; 6092 if (rdev) 6093 clear_bit(In_sync, &rdev->flags); 6094 rdev = conf->disks[d].replacement; 6095 if (rdev) 6096 clear_bit(In_sync, &rdev->flags); 6097 } 6098 } 6099 mddev->layout = conf->algorithm; 6100 mddev->chunk_sectors = conf->chunk_sectors; 6101 mddev->reshape_position = MaxSector; 6102 mddev->delta_disks = 0; 6103 mddev->reshape_backwards = 0; 6104 } 6105 } 6106 6107 static void raid5_quiesce(struct mddev *mddev, int state) 6108 { 6109 struct r5conf *conf = mddev->private; 6110 6111 switch(state) { 6112 case 2: /* resume for a suspend */ 6113 wake_up(&conf->wait_for_overlap); 6114 break; 6115 6116 case 1: /* stop all writes */ 6117 spin_lock_irq(&conf->device_lock); 6118 /* '2' tells resync/reshape to pause so that all 6119 * active stripes can drain 6120 */ 6121 conf->quiesce = 2; 6122 wait_event_lock_irq(conf->wait_for_stripe, 6123 atomic_read(&conf->active_stripes) == 0 && 6124 atomic_read(&conf->active_aligned_reads) == 0, 6125 conf->device_lock); 6126 conf->quiesce = 1; 6127 spin_unlock_irq(&conf->device_lock); 6128 /* allow reshape to continue */ 6129 wake_up(&conf->wait_for_overlap); 6130 break; 6131 6132 case 0: /* re-enable writes */ 6133 spin_lock_irq(&conf->device_lock); 6134 conf->quiesce = 0; 6135 wake_up(&conf->wait_for_stripe); 6136 wake_up(&conf->wait_for_overlap); 6137 spin_unlock_irq(&conf->device_lock); 6138 break; 6139 } 6140 } 6141 6142 6143 static void *raid45_takeover_raid0(struct mddev *mddev, int level) 6144 { 6145 struct r0conf *raid0_conf = mddev->private; 6146 sector_t sectors; 6147 6148 /* for raid0 takeover only one zone is supported */ 6149 if (raid0_conf->nr_strip_zones > 1) { 6150 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n", 6151 mdname(mddev)); 6152 return ERR_PTR(-EINVAL); 6153 } 6154 6155 sectors = raid0_conf->strip_zone[0].zone_end; 6156 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev); 6157 mddev->dev_sectors = sectors; 6158 mddev->new_level = level; 6159 mddev->new_layout = ALGORITHM_PARITY_N; 6160 mddev->new_chunk_sectors = mddev->chunk_sectors; 6161 mddev->raid_disks += 1; 6162 mddev->delta_disks = 1; 6163 /* make sure it will be not marked as dirty */ 6164 mddev->recovery_cp = MaxSector; 6165 6166 return setup_conf(mddev); 6167 } 6168 6169 6170 static void *raid5_takeover_raid1(struct mddev *mddev) 6171 { 6172 int chunksect; 6173 6174 if (mddev->raid_disks != 2 || 6175 mddev->degraded > 1) 6176 return ERR_PTR(-EINVAL); 6177 6178 /* Should check if there are write-behind devices? */ 6179 6180 chunksect = 64*2; /* 64K by default */ 6181 6182 /* The array must be an exact multiple of chunksize */ 6183 while (chunksect && (mddev->array_sectors & (chunksect-1))) 6184 chunksect >>= 1; 6185 6186 if ((chunksect<<9) < STRIPE_SIZE) 6187 /* array size does not allow a suitable chunk size */ 6188 return ERR_PTR(-EINVAL); 6189 6190 mddev->new_level = 5; 6191 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC; 6192 mddev->new_chunk_sectors = chunksect; 6193 6194 return setup_conf(mddev); 6195 } 6196 6197 static void *raid5_takeover_raid6(struct mddev *mddev) 6198 { 6199 int new_layout; 6200 6201 switch (mddev->layout) { 6202 case ALGORITHM_LEFT_ASYMMETRIC_6: 6203 new_layout = ALGORITHM_LEFT_ASYMMETRIC; 6204 break; 6205 case ALGORITHM_RIGHT_ASYMMETRIC_6: 6206 new_layout = ALGORITHM_RIGHT_ASYMMETRIC; 6207 break; 6208 case ALGORITHM_LEFT_SYMMETRIC_6: 6209 new_layout = ALGORITHM_LEFT_SYMMETRIC; 6210 break; 6211 case ALGORITHM_RIGHT_SYMMETRIC_6: 6212 new_layout = ALGORITHM_RIGHT_SYMMETRIC; 6213 break; 6214 case ALGORITHM_PARITY_0_6: 6215 new_layout = ALGORITHM_PARITY_0; 6216 break; 6217 case ALGORITHM_PARITY_N: 6218 new_layout = ALGORITHM_PARITY_N; 6219 break; 6220 default: 6221 return ERR_PTR(-EINVAL); 6222 } 6223 mddev->new_level = 5; 6224 mddev->new_layout = new_layout; 6225 mddev->delta_disks = -1; 6226 mddev->raid_disks -= 1; 6227 return setup_conf(mddev); 6228 } 6229 6230 6231 static int raid5_check_reshape(struct mddev *mddev) 6232 { 6233 /* For a 2-drive array, the layout and chunk size can be changed 6234 * immediately as not restriping is needed. 6235 * For larger arrays we record the new value - after validation 6236 * to be used by a reshape pass. 6237 */ 6238 struct r5conf *conf = mddev->private; 6239 int new_chunk = mddev->new_chunk_sectors; 6240 6241 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout)) 6242 return -EINVAL; 6243 if (new_chunk > 0) { 6244 if (!is_power_of_2(new_chunk)) 6245 return -EINVAL; 6246 if (new_chunk < (PAGE_SIZE>>9)) 6247 return -EINVAL; 6248 if (mddev->array_sectors & (new_chunk-1)) 6249 /* not factor of array size */ 6250 return -EINVAL; 6251 } 6252 6253 /* They look valid */ 6254 6255 if (mddev->raid_disks == 2) { 6256 /* can make the change immediately */ 6257 if (mddev->new_layout >= 0) { 6258 conf->algorithm = mddev->new_layout; 6259 mddev->layout = mddev->new_layout; 6260 } 6261 if (new_chunk > 0) { 6262 conf->chunk_sectors = new_chunk ; 6263 mddev->chunk_sectors = new_chunk; 6264 } 6265 set_bit(MD_CHANGE_DEVS, &mddev->flags); 6266 md_wakeup_thread(mddev->thread); 6267 } 6268 return check_reshape(mddev); 6269 } 6270 6271 static int raid6_check_reshape(struct mddev *mddev) 6272 { 6273 int new_chunk = mddev->new_chunk_sectors; 6274 6275 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout)) 6276 return -EINVAL; 6277 if (new_chunk > 0) { 6278 if (!is_power_of_2(new_chunk)) 6279 return -EINVAL; 6280 if (new_chunk < (PAGE_SIZE >> 9)) 6281 return -EINVAL; 6282 if (mddev->array_sectors & (new_chunk-1)) 6283 /* not factor of array size */ 6284 return -EINVAL; 6285 } 6286 6287 /* They look valid */ 6288 return check_reshape(mddev); 6289 } 6290 6291 static void *raid5_takeover(struct mddev *mddev) 6292 { 6293 /* raid5 can take over: 6294 * raid0 - if there is only one strip zone - make it a raid4 layout 6295 * raid1 - if there are two drives. We need to know the chunk size 6296 * raid4 - trivial - just use a raid4 layout. 6297 * raid6 - Providing it is a *_6 layout 6298 */ 6299 if (mddev->level == 0) 6300 return raid45_takeover_raid0(mddev, 5); 6301 if (mddev->level == 1) 6302 return raid5_takeover_raid1(mddev); 6303 if (mddev->level == 4) { 6304 mddev->new_layout = ALGORITHM_PARITY_N; 6305 mddev->new_level = 5; 6306 return setup_conf(mddev); 6307 } 6308 if (mddev->level == 6) 6309 return raid5_takeover_raid6(mddev); 6310 6311 return ERR_PTR(-EINVAL); 6312 } 6313 6314 static void *raid4_takeover(struct mddev *mddev) 6315 { 6316 /* raid4 can take over: 6317 * raid0 - if there is only one strip zone 6318 * raid5 - if layout is right 6319 */ 6320 if (mddev->level == 0) 6321 return raid45_takeover_raid0(mddev, 4); 6322 if (mddev->level == 5 && 6323 mddev->layout == ALGORITHM_PARITY_N) { 6324 mddev->new_layout = 0; 6325 mddev->new_level = 4; 6326 return setup_conf(mddev); 6327 } 6328 return ERR_PTR(-EINVAL); 6329 } 6330 6331 static struct md_personality raid5_personality; 6332 6333 static void *raid6_takeover(struct mddev *mddev) 6334 { 6335 /* Currently can only take over a raid5. We map the 6336 * personality to an equivalent raid6 personality 6337 * with the Q block at the end. 6338 */ 6339 int new_layout; 6340 6341 if (mddev->pers != &raid5_personality) 6342 return ERR_PTR(-EINVAL); 6343 if (mddev->degraded > 1) 6344 return ERR_PTR(-EINVAL); 6345 if (mddev->raid_disks > 253) 6346 return ERR_PTR(-EINVAL); 6347 if (mddev->raid_disks < 3) 6348 return ERR_PTR(-EINVAL); 6349 6350 switch (mddev->layout) { 6351 case ALGORITHM_LEFT_ASYMMETRIC: 6352 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6; 6353 break; 6354 case ALGORITHM_RIGHT_ASYMMETRIC: 6355 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6; 6356 break; 6357 case ALGORITHM_LEFT_SYMMETRIC: 6358 new_layout = ALGORITHM_LEFT_SYMMETRIC_6; 6359 break; 6360 case ALGORITHM_RIGHT_SYMMETRIC: 6361 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6; 6362 break; 6363 case ALGORITHM_PARITY_0: 6364 new_layout = ALGORITHM_PARITY_0_6; 6365 break; 6366 case ALGORITHM_PARITY_N: 6367 new_layout = ALGORITHM_PARITY_N; 6368 break; 6369 default: 6370 return ERR_PTR(-EINVAL); 6371 } 6372 mddev->new_level = 6; 6373 mddev->new_layout = new_layout; 6374 mddev->delta_disks = 1; 6375 mddev->raid_disks += 1; 6376 return setup_conf(mddev); 6377 } 6378 6379 6380 static struct md_personality raid6_personality = 6381 { 6382 .name = "raid6", 6383 .level = 6, 6384 .owner = THIS_MODULE, 6385 .make_request = make_request, 6386 .run = run, 6387 .stop = stop, 6388 .status = status, 6389 .error_handler = error, 6390 .hot_add_disk = raid5_add_disk, 6391 .hot_remove_disk= raid5_remove_disk, 6392 .spare_active = raid5_spare_active, 6393 .sync_request = sync_request, 6394 .resize = raid5_resize, 6395 .size = raid5_size, 6396 .check_reshape = raid6_check_reshape, 6397 .start_reshape = raid5_start_reshape, 6398 .finish_reshape = raid5_finish_reshape, 6399 .quiesce = raid5_quiesce, 6400 .takeover = raid6_takeover, 6401 }; 6402 static struct md_personality raid5_personality = 6403 { 6404 .name = "raid5", 6405 .level = 5, 6406 .owner = THIS_MODULE, 6407 .make_request = make_request, 6408 .run = run, 6409 .stop = stop, 6410 .status = status, 6411 .error_handler = error, 6412 .hot_add_disk = raid5_add_disk, 6413 .hot_remove_disk= raid5_remove_disk, 6414 .spare_active = raid5_spare_active, 6415 .sync_request = sync_request, 6416 .resize = raid5_resize, 6417 .size = raid5_size, 6418 .check_reshape = raid5_check_reshape, 6419 .start_reshape = raid5_start_reshape, 6420 .finish_reshape = raid5_finish_reshape, 6421 .quiesce = raid5_quiesce, 6422 .takeover = raid5_takeover, 6423 }; 6424 6425 static struct md_personality raid4_personality = 6426 { 6427 .name = "raid4", 6428 .level = 4, 6429 .owner = THIS_MODULE, 6430 .make_request = make_request, 6431 .run = run, 6432 .stop = stop, 6433 .status = status, 6434 .error_handler = error, 6435 .hot_add_disk = raid5_add_disk, 6436 .hot_remove_disk= raid5_remove_disk, 6437 .spare_active = raid5_spare_active, 6438 .sync_request = sync_request, 6439 .resize = raid5_resize, 6440 .size = raid5_size, 6441 .check_reshape = raid5_check_reshape, 6442 .start_reshape = raid5_start_reshape, 6443 .finish_reshape = raid5_finish_reshape, 6444 .quiesce = raid5_quiesce, 6445 .takeover = raid4_takeover, 6446 }; 6447 6448 static int __init raid5_init(void) 6449 { 6450 register_md_personality(&raid6_personality); 6451 register_md_personality(&raid5_personality); 6452 register_md_personality(&raid4_personality); 6453 return 0; 6454 } 6455 6456 static void raid5_exit(void) 6457 { 6458 unregister_md_personality(&raid6_personality); 6459 unregister_md_personality(&raid5_personality); 6460 unregister_md_personality(&raid4_personality); 6461 } 6462 6463 module_init(raid5_init); 6464 module_exit(raid5_exit); 6465 MODULE_LICENSE("GPL"); 6466 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD"); 6467 MODULE_ALIAS("md-personality-4"); /* RAID5 */ 6468 MODULE_ALIAS("md-raid5"); 6469 MODULE_ALIAS("md-raid4"); 6470 MODULE_ALIAS("md-level-5"); 6471 MODULE_ALIAS("md-level-4"); 6472 MODULE_ALIAS("md-personality-8"); /* RAID6 */ 6473 MODULE_ALIAS("md-raid6"); 6474 MODULE_ALIAS("md-level-6"); 6475 6476 /* This used to be two separate modules, they were: */ 6477 MODULE_ALIAS("raid5"); 6478 MODULE_ALIAS("raid6"); 6479