xref: /linux/drivers/md/raid5.c (revision 5e8d780d745c1619aba81fe7166c5a4b5cad2b84)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 
22 #include <linux/config.h>
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/highmem.h>
26 #include <linux/bitops.h>
27 #include <linux/kthread.h>
28 #include <asm/atomic.h>
29 #include "raid6.h"
30 
31 #include <linux/raid/bitmap.h>
32 
33 /*
34  * Stripe cache
35  */
36 
37 #define NR_STRIPES		256
38 #define STRIPE_SIZE		PAGE_SIZE
39 #define STRIPE_SHIFT		(PAGE_SHIFT - 9)
40 #define STRIPE_SECTORS		(STRIPE_SIZE>>9)
41 #define	IO_THRESHOLD		1
42 #define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
43 #define HASH_MASK		(NR_HASH - 1)
44 
45 #define stripe_hash(conf, sect)	(&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
46 
47 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
48  * order without overlap.  There may be several bio's per stripe+device, and
49  * a bio could span several devices.
50  * When walking this list for a particular stripe+device, we must never proceed
51  * beyond a bio that extends past this device, as the next bio might no longer
52  * be valid.
53  * This macro is used to determine the 'next' bio in the list, given the sector
54  * of the current stripe+device
55  */
56 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
57 /*
58  * The following can be used to debug the driver
59  */
60 #define RAID5_DEBUG	0
61 #define RAID5_PARANOIA	1
62 #if RAID5_PARANOIA && defined(CONFIG_SMP)
63 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
64 #else
65 # define CHECK_DEVLOCK()
66 #endif
67 
68 #define PRINTK(x...) ((void)(RAID5_DEBUG && printk(x)))
69 #if RAID5_DEBUG
70 #define inline
71 #define __inline__
72 #endif
73 
74 #if !RAID6_USE_EMPTY_ZERO_PAGE
75 /* In .bss so it's zeroed */
76 const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
77 #endif
78 
79 static inline int raid6_next_disk(int disk, int raid_disks)
80 {
81 	disk++;
82 	return (disk < raid_disks) ? disk : 0;
83 }
84 static void print_raid5_conf (raid5_conf_t *conf);
85 
86 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
87 {
88 	if (atomic_dec_and_test(&sh->count)) {
89 		BUG_ON(!list_empty(&sh->lru));
90 		BUG_ON(atomic_read(&conf->active_stripes)==0);
91 		if (test_bit(STRIPE_HANDLE, &sh->state)) {
92 			if (test_bit(STRIPE_DELAYED, &sh->state))
93 				list_add_tail(&sh->lru, &conf->delayed_list);
94 			else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
95 				 conf->seq_write == sh->bm_seq)
96 				list_add_tail(&sh->lru, &conf->bitmap_list);
97 			else {
98 				clear_bit(STRIPE_BIT_DELAY, &sh->state);
99 				list_add_tail(&sh->lru, &conf->handle_list);
100 			}
101 			md_wakeup_thread(conf->mddev->thread);
102 		} else {
103 			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
104 				atomic_dec(&conf->preread_active_stripes);
105 				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
106 					md_wakeup_thread(conf->mddev->thread);
107 			}
108 			atomic_dec(&conf->active_stripes);
109 			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
110 				list_add_tail(&sh->lru, &conf->inactive_list);
111 				wake_up(&conf->wait_for_stripe);
112 			}
113 		}
114 	}
115 }
116 static void release_stripe(struct stripe_head *sh)
117 {
118 	raid5_conf_t *conf = sh->raid_conf;
119 	unsigned long flags;
120 
121 	spin_lock_irqsave(&conf->device_lock, flags);
122 	__release_stripe(conf, sh);
123 	spin_unlock_irqrestore(&conf->device_lock, flags);
124 }
125 
126 static inline void remove_hash(struct stripe_head *sh)
127 {
128 	PRINTK("remove_hash(), stripe %llu\n", (unsigned long long)sh->sector);
129 
130 	hlist_del_init(&sh->hash);
131 }
132 
133 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
134 {
135 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
136 
137 	PRINTK("insert_hash(), stripe %llu\n", (unsigned long long)sh->sector);
138 
139 	CHECK_DEVLOCK();
140 	hlist_add_head(&sh->hash, hp);
141 }
142 
143 
144 /* find an idle stripe, make sure it is unhashed, and return it. */
145 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
146 {
147 	struct stripe_head *sh = NULL;
148 	struct list_head *first;
149 
150 	CHECK_DEVLOCK();
151 	if (list_empty(&conf->inactive_list))
152 		goto out;
153 	first = conf->inactive_list.next;
154 	sh = list_entry(first, struct stripe_head, lru);
155 	list_del_init(first);
156 	remove_hash(sh);
157 	atomic_inc(&conf->active_stripes);
158 out:
159 	return sh;
160 }
161 
162 static void shrink_buffers(struct stripe_head *sh, int num)
163 {
164 	struct page *p;
165 	int i;
166 
167 	for (i=0; i<num ; i++) {
168 		p = sh->dev[i].page;
169 		if (!p)
170 			continue;
171 		sh->dev[i].page = NULL;
172 		put_page(p);
173 	}
174 }
175 
176 static int grow_buffers(struct stripe_head *sh, int num)
177 {
178 	int i;
179 
180 	for (i=0; i<num; i++) {
181 		struct page *page;
182 
183 		if (!(page = alloc_page(GFP_KERNEL))) {
184 			return 1;
185 		}
186 		sh->dev[i].page = page;
187 	}
188 	return 0;
189 }
190 
191 static void raid5_build_block (struct stripe_head *sh, int i);
192 
193 static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks)
194 {
195 	raid5_conf_t *conf = sh->raid_conf;
196 	int i;
197 
198 	BUG_ON(atomic_read(&sh->count) != 0);
199 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
200 
201 	CHECK_DEVLOCK();
202 	PRINTK("init_stripe called, stripe %llu\n",
203 		(unsigned long long)sh->sector);
204 
205 	remove_hash(sh);
206 
207 	sh->sector = sector;
208 	sh->pd_idx = pd_idx;
209 	sh->state = 0;
210 
211 	sh->disks = disks;
212 
213 	for (i = sh->disks; i--; ) {
214 		struct r5dev *dev = &sh->dev[i];
215 
216 		if (dev->toread || dev->towrite || dev->written ||
217 		    test_bit(R5_LOCKED, &dev->flags)) {
218 			printk("sector=%llx i=%d %p %p %p %d\n",
219 			       (unsigned long long)sh->sector, i, dev->toread,
220 			       dev->towrite, dev->written,
221 			       test_bit(R5_LOCKED, &dev->flags));
222 			BUG();
223 		}
224 		dev->flags = 0;
225 		raid5_build_block(sh, i);
226 	}
227 	insert_hash(conf, sh);
228 }
229 
230 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
231 {
232 	struct stripe_head *sh;
233 	struct hlist_node *hn;
234 
235 	CHECK_DEVLOCK();
236 	PRINTK("__find_stripe, sector %llu\n", (unsigned long long)sector);
237 	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
238 		if (sh->sector == sector && sh->disks == disks)
239 			return sh;
240 	PRINTK("__stripe %llu not in cache\n", (unsigned long long)sector);
241 	return NULL;
242 }
243 
244 static void unplug_slaves(mddev_t *mddev);
245 static void raid5_unplug_device(request_queue_t *q);
246 
247 static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks,
248 					     int pd_idx, int noblock)
249 {
250 	struct stripe_head *sh;
251 
252 	PRINTK("get_stripe, sector %llu\n", (unsigned long long)sector);
253 
254 	spin_lock_irq(&conf->device_lock);
255 
256 	do {
257 		wait_event_lock_irq(conf->wait_for_stripe,
258 				    conf->quiesce == 0,
259 				    conf->device_lock, /* nothing */);
260 		sh = __find_stripe(conf, sector, disks);
261 		if (!sh) {
262 			if (!conf->inactive_blocked)
263 				sh = get_free_stripe(conf);
264 			if (noblock && sh == NULL)
265 				break;
266 			if (!sh) {
267 				conf->inactive_blocked = 1;
268 				wait_event_lock_irq(conf->wait_for_stripe,
269 						    !list_empty(&conf->inactive_list) &&
270 						    (atomic_read(&conf->active_stripes)
271 						     < (conf->max_nr_stripes *3/4)
272 						     || !conf->inactive_blocked),
273 						    conf->device_lock,
274 						    unplug_slaves(conf->mddev)
275 					);
276 				conf->inactive_blocked = 0;
277 			} else
278 				init_stripe(sh, sector, pd_idx, disks);
279 		} else {
280 			if (atomic_read(&sh->count)) {
281 			  BUG_ON(!list_empty(&sh->lru));
282 			} else {
283 				if (!test_bit(STRIPE_HANDLE, &sh->state))
284 					atomic_inc(&conf->active_stripes);
285 				if (list_empty(&sh->lru))
286 					BUG();
287 				list_del_init(&sh->lru);
288 			}
289 		}
290 	} while (sh == NULL);
291 
292 	if (sh)
293 		atomic_inc(&sh->count);
294 
295 	spin_unlock_irq(&conf->device_lock);
296 	return sh;
297 }
298 
299 static int grow_one_stripe(raid5_conf_t *conf)
300 {
301 	struct stripe_head *sh;
302 	sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
303 	if (!sh)
304 		return 0;
305 	memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
306 	sh->raid_conf = conf;
307 	spin_lock_init(&sh->lock);
308 
309 	if (grow_buffers(sh, conf->raid_disks)) {
310 		shrink_buffers(sh, conf->raid_disks);
311 		kmem_cache_free(conf->slab_cache, sh);
312 		return 0;
313 	}
314 	sh->disks = conf->raid_disks;
315 	/* we just created an active stripe so... */
316 	atomic_set(&sh->count, 1);
317 	atomic_inc(&conf->active_stripes);
318 	INIT_LIST_HEAD(&sh->lru);
319 	release_stripe(sh);
320 	return 1;
321 }
322 
323 static int grow_stripes(raid5_conf_t *conf, int num)
324 {
325 	kmem_cache_t *sc;
326 	int devs = conf->raid_disks;
327 
328 	sprintf(conf->cache_name[0], "raid5/%s", mdname(conf->mddev));
329 	sprintf(conf->cache_name[1], "raid5/%s-alt", mdname(conf->mddev));
330 	conf->active_name = 0;
331 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
332 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
333 			       0, 0, NULL, NULL);
334 	if (!sc)
335 		return 1;
336 	conf->slab_cache = sc;
337 	conf->pool_size = devs;
338 	while (num--)
339 		if (!grow_one_stripe(conf))
340 			return 1;
341 	return 0;
342 }
343 
344 #ifdef CONFIG_MD_RAID5_RESHAPE
345 static int resize_stripes(raid5_conf_t *conf, int newsize)
346 {
347 	/* Make all the stripes able to hold 'newsize' devices.
348 	 * New slots in each stripe get 'page' set to a new page.
349 	 *
350 	 * This happens in stages:
351 	 * 1/ create a new kmem_cache and allocate the required number of
352 	 *    stripe_heads.
353 	 * 2/ gather all the old stripe_heads and tranfer the pages across
354 	 *    to the new stripe_heads.  This will have the side effect of
355 	 *    freezing the array as once all stripe_heads have been collected,
356 	 *    no IO will be possible.  Old stripe heads are freed once their
357 	 *    pages have been transferred over, and the old kmem_cache is
358 	 *    freed when all stripes are done.
359 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
360 	 *    we simple return a failre status - no need to clean anything up.
361 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
362 	 *    If this fails, we don't bother trying the shrink the
363 	 *    stripe_heads down again, we just leave them as they are.
364 	 *    As each stripe_head is processed the new one is released into
365 	 *    active service.
366 	 *
367 	 * Once step2 is started, we cannot afford to wait for a write,
368 	 * so we use GFP_NOIO allocations.
369 	 */
370 	struct stripe_head *osh, *nsh;
371 	LIST_HEAD(newstripes);
372 	struct disk_info *ndisks;
373 	int err = 0;
374 	kmem_cache_t *sc;
375 	int i;
376 
377 	if (newsize <= conf->pool_size)
378 		return 0; /* never bother to shrink */
379 
380 	/* Step 1 */
381 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
382 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
383 			       0, 0, NULL, NULL);
384 	if (!sc)
385 		return -ENOMEM;
386 
387 	for (i = conf->max_nr_stripes; i; i--) {
388 		nsh = kmem_cache_alloc(sc, GFP_KERNEL);
389 		if (!nsh)
390 			break;
391 
392 		memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
393 
394 		nsh->raid_conf = conf;
395 		spin_lock_init(&nsh->lock);
396 
397 		list_add(&nsh->lru, &newstripes);
398 	}
399 	if (i) {
400 		/* didn't get enough, give up */
401 		while (!list_empty(&newstripes)) {
402 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
403 			list_del(&nsh->lru);
404 			kmem_cache_free(sc, nsh);
405 		}
406 		kmem_cache_destroy(sc);
407 		return -ENOMEM;
408 	}
409 	/* Step 2 - Must use GFP_NOIO now.
410 	 * OK, we have enough stripes, start collecting inactive
411 	 * stripes and copying them over
412 	 */
413 	list_for_each_entry(nsh, &newstripes, lru) {
414 		spin_lock_irq(&conf->device_lock);
415 		wait_event_lock_irq(conf->wait_for_stripe,
416 				    !list_empty(&conf->inactive_list),
417 				    conf->device_lock,
418 				    unplug_slaves(conf->mddev)
419 			);
420 		osh = get_free_stripe(conf);
421 		spin_unlock_irq(&conf->device_lock);
422 		atomic_set(&nsh->count, 1);
423 		for(i=0; i<conf->pool_size; i++)
424 			nsh->dev[i].page = osh->dev[i].page;
425 		for( ; i<newsize; i++)
426 			nsh->dev[i].page = NULL;
427 		kmem_cache_free(conf->slab_cache, osh);
428 	}
429 	kmem_cache_destroy(conf->slab_cache);
430 
431 	/* Step 3.
432 	 * At this point, we are holding all the stripes so the array
433 	 * is completely stalled, so now is a good time to resize
434 	 * conf->disks.
435 	 */
436 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
437 	if (ndisks) {
438 		for (i=0; i<conf->raid_disks; i++)
439 			ndisks[i] = conf->disks[i];
440 		kfree(conf->disks);
441 		conf->disks = ndisks;
442 	} else
443 		err = -ENOMEM;
444 
445 	/* Step 4, return new stripes to service */
446 	while(!list_empty(&newstripes)) {
447 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
448 		list_del_init(&nsh->lru);
449 		for (i=conf->raid_disks; i < newsize; i++)
450 			if (nsh->dev[i].page == NULL) {
451 				struct page *p = alloc_page(GFP_NOIO);
452 				nsh->dev[i].page = p;
453 				if (!p)
454 					err = -ENOMEM;
455 			}
456 		release_stripe(nsh);
457 	}
458 	/* critical section pass, GFP_NOIO no longer needed */
459 
460 	conf->slab_cache = sc;
461 	conf->active_name = 1-conf->active_name;
462 	conf->pool_size = newsize;
463 	return err;
464 }
465 #endif
466 
467 static int drop_one_stripe(raid5_conf_t *conf)
468 {
469 	struct stripe_head *sh;
470 
471 	spin_lock_irq(&conf->device_lock);
472 	sh = get_free_stripe(conf);
473 	spin_unlock_irq(&conf->device_lock);
474 	if (!sh)
475 		return 0;
476 	BUG_ON(atomic_read(&sh->count));
477 	shrink_buffers(sh, conf->pool_size);
478 	kmem_cache_free(conf->slab_cache, sh);
479 	atomic_dec(&conf->active_stripes);
480 	return 1;
481 }
482 
483 static void shrink_stripes(raid5_conf_t *conf)
484 {
485 	while (drop_one_stripe(conf))
486 		;
487 
488 	if (conf->slab_cache)
489 		kmem_cache_destroy(conf->slab_cache);
490 	conf->slab_cache = NULL;
491 }
492 
493 static int raid5_end_read_request(struct bio * bi, unsigned int bytes_done,
494 				   int error)
495 {
496  	struct stripe_head *sh = bi->bi_private;
497 	raid5_conf_t *conf = sh->raid_conf;
498 	int disks = sh->disks, i;
499 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
500 
501 	if (bi->bi_size)
502 		return 1;
503 
504 	for (i=0 ; i<disks; i++)
505 		if (bi == &sh->dev[i].req)
506 			break;
507 
508 	PRINTK("end_read_request %llu/%d, count: %d, uptodate %d.\n",
509 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
510 		uptodate);
511 	if (i == disks) {
512 		BUG();
513 		return 0;
514 	}
515 
516 	if (uptodate) {
517 #if 0
518 		struct bio *bio;
519 		unsigned long flags;
520 		spin_lock_irqsave(&conf->device_lock, flags);
521 		/* we can return a buffer if we bypassed the cache or
522 		 * if the top buffer is not in highmem.  If there are
523 		 * multiple buffers, leave the extra work to
524 		 * handle_stripe
525 		 */
526 		buffer = sh->bh_read[i];
527 		if (buffer &&
528 		    (!PageHighMem(buffer->b_page)
529 		     || buffer->b_page == bh->b_page )
530 			) {
531 			sh->bh_read[i] = buffer->b_reqnext;
532 			buffer->b_reqnext = NULL;
533 		} else
534 			buffer = NULL;
535 		spin_unlock_irqrestore(&conf->device_lock, flags);
536 		if (sh->bh_page[i]==bh->b_page)
537 			set_buffer_uptodate(bh);
538 		if (buffer) {
539 			if (buffer->b_page != bh->b_page)
540 				memcpy(buffer->b_data, bh->b_data, bh->b_size);
541 			buffer->b_end_io(buffer, 1);
542 		}
543 #else
544 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
545 #endif
546 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
547 			printk(KERN_INFO "raid5: read error corrected!!\n");
548 			clear_bit(R5_ReadError, &sh->dev[i].flags);
549 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
550 		}
551 		if (atomic_read(&conf->disks[i].rdev->read_errors))
552 			atomic_set(&conf->disks[i].rdev->read_errors, 0);
553 	} else {
554 		int retry = 0;
555 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
556 		atomic_inc(&conf->disks[i].rdev->read_errors);
557 		if (conf->mddev->degraded)
558 			printk(KERN_WARNING "raid5: read error not correctable.\n");
559 		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
560 			/* Oh, no!!! */
561 			printk(KERN_WARNING "raid5: read error NOT corrected!!\n");
562 		else if (atomic_read(&conf->disks[i].rdev->read_errors)
563 			 > conf->max_nr_stripes)
564 			printk(KERN_WARNING
565 			       "raid5: Too many read errors, failing device.\n");
566 		else
567 			retry = 1;
568 		if (retry)
569 			set_bit(R5_ReadError, &sh->dev[i].flags);
570 		else {
571 			clear_bit(R5_ReadError, &sh->dev[i].flags);
572 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
573 			md_error(conf->mddev, conf->disks[i].rdev);
574 		}
575 	}
576 	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
577 #if 0
578 	/* must restore b_page before unlocking buffer... */
579 	if (sh->bh_page[i] != bh->b_page) {
580 		bh->b_page = sh->bh_page[i];
581 		bh->b_data = page_address(bh->b_page);
582 		clear_buffer_uptodate(bh);
583 	}
584 #endif
585 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
586 	set_bit(STRIPE_HANDLE, &sh->state);
587 	release_stripe(sh);
588 	return 0;
589 }
590 
591 static int raid5_end_write_request (struct bio *bi, unsigned int bytes_done,
592 				    int error)
593 {
594  	struct stripe_head *sh = bi->bi_private;
595 	raid5_conf_t *conf = sh->raid_conf;
596 	int disks = sh->disks, i;
597 	unsigned long flags;
598 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
599 
600 	if (bi->bi_size)
601 		return 1;
602 
603 	for (i=0 ; i<disks; i++)
604 		if (bi == &sh->dev[i].req)
605 			break;
606 
607 	PRINTK("end_write_request %llu/%d, count %d, uptodate: %d.\n",
608 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
609 		uptodate);
610 	if (i == disks) {
611 		BUG();
612 		return 0;
613 	}
614 
615 	spin_lock_irqsave(&conf->device_lock, flags);
616 	if (!uptodate)
617 		md_error(conf->mddev, conf->disks[i].rdev);
618 
619 	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
620 
621 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
622 	set_bit(STRIPE_HANDLE, &sh->state);
623 	__release_stripe(conf, sh);
624 	spin_unlock_irqrestore(&conf->device_lock, flags);
625 	return 0;
626 }
627 
628 
629 static sector_t compute_blocknr(struct stripe_head *sh, int i);
630 
631 static void raid5_build_block (struct stripe_head *sh, int i)
632 {
633 	struct r5dev *dev = &sh->dev[i];
634 
635 	bio_init(&dev->req);
636 	dev->req.bi_io_vec = &dev->vec;
637 	dev->req.bi_vcnt++;
638 	dev->req.bi_max_vecs++;
639 	dev->vec.bv_page = dev->page;
640 	dev->vec.bv_len = STRIPE_SIZE;
641 	dev->vec.bv_offset = 0;
642 
643 	dev->req.bi_sector = sh->sector;
644 	dev->req.bi_private = sh;
645 
646 	dev->flags = 0;
647 	dev->sector = compute_blocknr(sh, i);
648 }
649 
650 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
651 {
652 	char b[BDEVNAME_SIZE];
653 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
654 	PRINTK("raid5: error called\n");
655 
656 	if (!test_bit(Faulty, &rdev->flags)) {
657 		mddev->sb_dirty = 1;
658 		if (test_bit(In_sync, &rdev->flags)) {
659 			conf->working_disks--;
660 			mddev->degraded++;
661 			conf->failed_disks++;
662 			clear_bit(In_sync, &rdev->flags);
663 			/*
664 			 * if recovery was running, make sure it aborts.
665 			 */
666 			set_bit(MD_RECOVERY_ERR, &mddev->recovery);
667 		}
668 		set_bit(Faulty, &rdev->flags);
669 		printk (KERN_ALERT
670 			"raid5: Disk failure on %s, disabling device."
671 			" Operation continuing on %d devices\n",
672 			bdevname(rdev->bdev,b), conf->working_disks);
673 	}
674 }
675 
676 /*
677  * Input: a 'big' sector number,
678  * Output: index of the data and parity disk, and the sector # in them.
679  */
680 static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
681 			unsigned int data_disks, unsigned int * dd_idx,
682 			unsigned int * pd_idx, raid5_conf_t *conf)
683 {
684 	long stripe;
685 	unsigned long chunk_number;
686 	unsigned int chunk_offset;
687 	sector_t new_sector;
688 	int sectors_per_chunk = conf->chunk_size >> 9;
689 
690 	/* First compute the information on this sector */
691 
692 	/*
693 	 * Compute the chunk number and the sector offset inside the chunk
694 	 */
695 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
696 	chunk_number = r_sector;
697 	BUG_ON(r_sector != chunk_number);
698 
699 	/*
700 	 * Compute the stripe number
701 	 */
702 	stripe = chunk_number / data_disks;
703 
704 	/*
705 	 * Compute the data disk and parity disk indexes inside the stripe
706 	 */
707 	*dd_idx = chunk_number % data_disks;
708 
709 	/*
710 	 * Select the parity disk based on the user selected algorithm.
711 	 */
712 	switch(conf->level) {
713 	case 4:
714 		*pd_idx = data_disks;
715 		break;
716 	case 5:
717 		switch (conf->algorithm) {
718 		case ALGORITHM_LEFT_ASYMMETRIC:
719 			*pd_idx = data_disks - stripe % raid_disks;
720 			if (*dd_idx >= *pd_idx)
721 				(*dd_idx)++;
722 			break;
723 		case ALGORITHM_RIGHT_ASYMMETRIC:
724 			*pd_idx = stripe % raid_disks;
725 			if (*dd_idx >= *pd_idx)
726 				(*dd_idx)++;
727 			break;
728 		case ALGORITHM_LEFT_SYMMETRIC:
729 			*pd_idx = data_disks - stripe % raid_disks;
730 			*dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
731 			break;
732 		case ALGORITHM_RIGHT_SYMMETRIC:
733 			*pd_idx = stripe % raid_disks;
734 			*dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
735 			break;
736 		default:
737 			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
738 				conf->algorithm);
739 		}
740 		break;
741 	case 6:
742 
743 		/**** FIX THIS ****/
744 		switch (conf->algorithm) {
745 		case ALGORITHM_LEFT_ASYMMETRIC:
746 			*pd_idx = raid_disks - 1 - (stripe % raid_disks);
747 			if (*pd_idx == raid_disks-1)
748 				(*dd_idx)++; 	/* Q D D D P */
749 			else if (*dd_idx >= *pd_idx)
750 				(*dd_idx) += 2; /* D D P Q D */
751 			break;
752 		case ALGORITHM_RIGHT_ASYMMETRIC:
753 			*pd_idx = stripe % raid_disks;
754 			if (*pd_idx == raid_disks-1)
755 				(*dd_idx)++; 	/* Q D D D P */
756 			else if (*dd_idx >= *pd_idx)
757 				(*dd_idx) += 2; /* D D P Q D */
758 			break;
759 		case ALGORITHM_LEFT_SYMMETRIC:
760 			*pd_idx = raid_disks - 1 - (stripe % raid_disks);
761 			*dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
762 			break;
763 		case ALGORITHM_RIGHT_SYMMETRIC:
764 			*pd_idx = stripe % raid_disks;
765 			*dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
766 			break;
767 		default:
768 			printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
769 				conf->algorithm);
770 		}
771 		break;
772 	}
773 
774 	/*
775 	 * Finally, compute the new sector number
776 	 */
777 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
778 	return new_sector;
779 }
780 
781 
782 static sector_t compute_blocknr(struct stripe_head *sh, int i)
783 {
784 	raid5_conf_t *conf = sh->raid_conf;
785 	int raid_disks = sh->disks, data_disks = raid_disks - 1;
786 	sector_t new_sector = sh->sector, check;
787 	int sectors_per_chunk = conf->chunk_size >> 9;
788 	sector_t stripe;
789 	int chunk_offset;
790 	int chunk_number, dummy1, dummy2, dd_idx = i;
791 	sector_t r_sector;
792 
793 
794 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
795 	stripe = new_sector;
796 	BUG_ON(new_sector != stripe);
797 
798 	if (i == sh->pd_idx)
799 		return 0;
800 	switch(conf->level) {
801 	case 4: break;
802 	case 5:
803 		switch (conf->algorithm) {
804 		case ALGORITHM_LEFT_ASYMMETRIC:
805 		case ALGORITHM_RIGHT_ASYMMETRIC:
806 			if (i > sh->pd_idx)
807 				i--;
808 			break;
809 		case ALGORITHM_LEFT_SYMMETRIC:
810 		case ALGORITHM_RIGHT_SYMMETRIC:
811 			if (i < sh->pd_idx)
812 				i += raid_disks;
813 			i -= (sh->pd_idx + 1);
814 			break;
815 		default:
816 			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
817 			       conf->algorithm);
818 		}
819 		break;
820 	case 6:
821 		data_disks = raid_disks - 2;
822 		if (i == raid6_next_disk(sh->pd_idx, raid_disks))
823 			return 0; /* It is the Q disk */
824 		switch (conf->algorithm) {
825 		case ALGORITHM_LEFT_ASYMMETRIC:
826 		case ALGORITHM_RIGHT_ASYMMETRIC:
827 		  	if (sh->pd_idx == raid_disks-1)
828 				i--; 	/* Q D D D P */
829 			else if (i > sh->pd_idx)
830 				i -= 2; /* D D P Q D */
831 			break;
832 		case ALGORITHM_LEFT_SYMMETRIC:
833 		case ALGORITHM_RIGHT_SYMMETRIC:
834 			if (sh->pd_idx == raid_disks-1)
835 				i--; /* Q D D D P */
836 			else {
837 				/* D D P Q D */
838 				if (i < sh->pd_idx)
839 					i += raid_disks;
840 				i -= (sh->pd_idx + 2);
841 			}
842 			break;
843 		default:
844 			printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
845 				conf->algorithm);
846 		}
847 		break;
848 	}
849 
850 	chunk_number = stripe * data_disks + i;
851 	r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
852 
853 	check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
854 	if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
855 		printk(KERN_ERR "compute_blocknr: map not correct\n");
856 		return 0;
857 	}
858 	return r_sector;
859 }
860 
861 
862 
863 /*
864  * Copy data between a page in the stripe cache, and one or more bion
865  * The page could align with the middle of the bio, or there could be
866  * several bion, each with several bio_vecs, which cover part of the page
867  * Multiple bion are linked together on bi_next.  There may be extras
868  * at the end of this list.  We ignore them.
869  */
870 static void copy_data(int frombio, struct bio *bio,
871 		     struct page *page,
872 		     sector_t sector)
873 {
874 	char *pa = page_address(page);
875 	struct bio_vec *bvl;
876 	int i;
877 	int page_offset;
878 
879 	if (bio->bi_sector >= sector)
880 		page_offset = (signed)(bio->bi_sector - sector) * 512;
881 	else
882 		page_offset = (signed)(sector - bio->bi_sector) * -512;
883 	bio_for_each_segment(bvl, bio, i) {
884 		int len = bio_iovec_idx(bio,i)->bv_len;
885 		int clen;
886 		int b_offset = 0;
887 
888 		if (page_offset < 0) {
889 			b_offset = -page_offset;
890 			page_offset += b_offset;
891 			len -= b_offset;
892 		}
893 
894 		if (len > 0 && page_offset + len > STRIPE_SIZE)
895 			clen = STRIPE_SIZE - page_offset;
896 		else clen = len;
897 
898 		if (clen > 0) {
899 			char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
900 			if (frombio)
901 				memcpy(pa+page_offset, ba+b_offset, clen);
902 			else
903 				memcpy(ba+b_offset, pa+page_offset, clen);
904 			__bio_kunmap_atomic(ba, KM_USER0);
905 		}
906 		if (clen < len) /* hit end of page */
907 			break;
908 		page_offset +=  len;
909 	}
910 }
911 
912 #define check_xor() 	do { 						\
913 			   if (count == MAX_XOR_BLOCKS) {		\
914 				xor_block(count, STRIPE_SIZE, ptr);	\
915 				count = 1;				\
916 			   }						\
917 			} while(0)
918 
919 
920 static void compute_block(struct stripe_head *sh, int dd_idx)
921 {
922 	int i, count, disks = sh->disks;
923 	void *ptr[MAX_XOR_BLOCKS], *p;
924 
925 	PRINTK("compute_block, stripe %llu, idx %d\n",
926 		(unsigned long long)sh->sector, dd_idx);
927 
928 	ptr[0] = page_address(sh->dev[dd_idx].page);
929 	memset(ptr[0], 0, STRIPE_SIZE);
930 	count = 1;
931 	for (i = disks ; i--; ) {
932 		if (i == dd_idx)
933 			continue;
934 		p = page_address(sh->dev[i].page);
935 		if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
936 			ptr[count++] = p;
937 		else
938 			printk(KERN_ERR "compute_block() %d, stripe %llu, %d"
939 				" not present\n", dd_idx,
940 				(unsigned long long)sh->sector, i);
941 
942 		check_xor();
943 	}
944 	if (count != 1)
945 		xor_block(count, STRIPE_SIZE, ptr);
946 	set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
947 }
948 
949 static void compute_parity5(struct stripe_head *sh, int method)
950 {
951 	raid5_conf_t *conf = sh->raid_conf;
952 	int i, pd_idx = sh->pd_idx, disks = sh->disks, count;
953 	void *ptr[MAX_XOR_BLOCKS];
954 	struct bio *chosen;
955 
956 	PRINTK("compute_parity5, stripe %llu, method %d\n",
957 		(unsigned long long)sh->sector, method);
958 
959 	count = 1;
960 	ptr[0] = page_address(sh->dev[pd_idx].page);
961 	switch(method) {
962 	case READ_MODIFY_WRITE:
963 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags));
964 		for (i=disks ; i-- ;) {
965 			if (i==pd_idx)
966 				continue;
967 			if (sh->dev[i].towrite &&
968 			    test_bit(R5_UPTODATE, &sh->dev[i].flags)) {
969 				ptr[count++] = page_address(sh->dev[i].page);
970 				chosen = sh->dev[i].towrite;
971 				sh->dev[i].towrite = NULL;
972 
973 				if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
974 					wake_up(&conf->wait_for_overlap);
975 
976 				BUG_ON(sh->dev[i].written);
977 				sh->dev[i].written = chosen;
978 				check_xor();
979 			}
980 		}
981 		break;
982 	case RECONSTRUCT_WRITE:
983 		memset(ptr[0], 0, STRIPE_SIZE);
984 		for (i= disks; i-- ;)
985 			if (i!=pd_idx && sh->dev[i].towrite) {
986 				chosen = sh->dev[i].towrite;
987 				sh->dev[i].towrite = NULL;
988 
989 				if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
990 					wake_up(&conf->wait_for_overlap);
991 
992 				BUG_ON(sh->dev[i].written);
993 				sh->dev[i].written = chosen;
994 			}
995 		break;
996 	case CHECK_PARITY:
997 		break;
998 	}
999 	if (count>1) {
1000 		xor_block(count, STRIPE_SIZE, ptr);
1001 		count = 1;
1002 	}
1003 
1004 	for (i = disks; i--;)
1005 		if (sh->dev[i].written) {
1006 			sector_t sector = sh->dev[i].sector;
1007 			struct bio *wbi = sh->dev[i].written;
1008 			while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1009 				copy_data(1, wbi, sh->dev[i].page, sector);
1010 				wbi = r5_next_bio(wbi, sector);
1011 			}
1012 
1013 			set_bit(R5_LOCKED, &sh->dev[i].flags);
1014 			set_bit(R5_UPTODATE, &sh->dev[i].flags);
1015 		}
1016 
1017 	switch(method) {
1018 	case RECONSTRUCT_WRITE:
1019 	case CHECK_PARITY:
1020 		for (i=disks; i--;)
1021 			if (i != pd_idx) {
1022 				ptr[count++] = page_address(sh->dev[i].page);
1023 				check_xor();
1024 			}
1025 		break;
1026 	case READ_MODIFY_WRITE:
1027 		for (i = disks; i--;)
1028 			if (sh->dev[i].written) {
1029 				ptr[count++] = page_address(sh->dev[i].page);
1030 				check_xor();
1031 			}
1032 	}
1033 	if (count != 1)
1034 		xor_block(count, STRIPE_SIZE, ptr);
1035 
1036 	if (method != CHECK_PARITY) {
1037 		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1038 		set_bit(R5_LOCKED,   &sh->dev[pd_idx].flags);
1039 	} else
1040 		clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1041 }
1042 
1043 static void compute_parity6(struct stripe_head *sh, int method)
1044 {
1045 	raid6_conf_t *conf = sh->raid_conf;
1046 	int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = conf->raid_disks, count;
1047 	struct bio *chosen;
1048 	/**** FIX THIS: This could be very bad if disks is close to 256 ****/
1049 	void *ptrs[disks];
1050 
1051 	qd_idx = raid6_next_disk(pd_idx, disks);
1052 	d0_idx = raid6_next_disk(qd_idx, disks);
1053 
1054 	PRINTK("compute_parity, stripe %llu, method %d\n",
1055 		(unsigned long long)sh->sector, method);
1056 
1057 	switch(method) {
1058 	case READ_MODIFY_WRITE:
1059 		BUG();		/* READ_MODIFY_WRITE N/A for RAID-6 */
1060 	case RECONSTRUCT_WRITE:
1061 		for (i= disks; i-- ;)
1062 			if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1063 				chosen = sh->dev[i].towrite;
1064 				sh->dev[i].towrite = NULL;
1065 
1066 				if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1067 					wake_up(&conf->wait_for_overlap);
1068 
1069 				if (sh->dev[i].written) BUG();
1070 				sh->dev[i].written = chosen;
1071 			}
1072 		break;
1073 	case CHECK_PARITY:
1074 		BUG();		/* Not implemented yet */
1075 	}
1076 
1077 	for (i = disks; i--;)
1078 		if (sh->dev[i].written) {
1079 			sector_t sector = sh->dev[i].sector;
1080 			struct bio *wbi = sh->dev[i].written;
1081 			while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1082 				copy_data(1, wbi, sh->dev[i].page, sector);
1083 				wbi = r5_next_bio(wbi, sector);
1084 			}
1085 
1086 			set_bit(R5_LOCKED, &sh->dev[i].flags);
1087 			set_bit(R5_UPTODATE, &sh->dev[i].flags);
1088 		}
1089 
1090 //	switch(method) {
1091 //	case RECONSTRUCT_WRITE:
1092 //	case CHECK_PARITY:
1093 //	case UPDATE_PARITY:
1094 		/* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1095 		/* FIX: Is this ordering of drives even remotely optimal? */
1096 		count = 0;
1097 		i = d0_idx;
1098 		do {
1099 			ptrs[count++] = page_address(sh->dev[i].page);
1100 			if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1101 				printk("block %d/%d not uptodate on parity calc\n", i,count);
1102 			i = raid6_next_disk(i, disks);
1103 		} while ( i != d0_idx );
1104 //		break;
1105 //	}
1106 
1107 	raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);
1108 
1109 	switch(method) {
1110 	case RECONSTRUCT_WRITE:
1111 		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1112 		set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1113 		set_bit(R5_LOCKED,   &sh->dev[pd_idx].flags);
1114 		set_bit(R5_LOCKED,   &sh->dev[qd_idx].flags);
1115 		break;
1116 	case UPDATE_PARITY:
1117 		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1118 		set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1119 		break;
1120 	}
1121 }
1122 
1123 
1124 /* Compute one missing block */
1125 static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1126 {
1127 	raid6_conf_t *conf = sh->raid_conf;
1128 	int i, count, disks = conf->raid_disks;
1129 	void *ptr[MAX_XOR_BLOCKS], *p;
1130 	int pd_idx = sh->pd_idx;
1131 	int qd_idx = raid6_next_disk(pd_idx, disks);
1132 
1133 	PRINTK("compute_block_1, stripe %llu, idx %d\n",
1134 		(unsigned long long)sh->sector, dd_idx);
1135 
1136 	if ( dd_idx == qd_idx ) {
1137 		/* We're actually computing the Q drive */
1138 		compute_parity6(sh, UPDATE_PARITY);
1139 	} else {
1140 		ptr[0] = page_address(sh->dev[dd_idx].page);
1141 		if (!nozero) memset(ptr[0], 0, STRIPE_SIZE);
1142 		count = 1;
1143 		for (i = disks ; i--; ) {
1144 			if (i == dd_idx || i == qd_idx)
1145 				continue;
1146 			p = page_address(sh->dev[i].page);
1147 			if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1148 				ptr[count++] = p;
1149 			else
1150 				printk("compute_block() %d, stripe %llu, %d"
1151 				       " not present\n", dd_idx,
1152 				       (unsigned long long)sh->sector, i);
1153 
1154 			check_xor();
1155 		}
1156 		if (count != 1)
1157 			xor_block(count, STRIPE_SIZE, ptr);
1158 		if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1159 		else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1160 	}
1161 }
1162 
1163 /* Compute two missing blocks */
1164 static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1165 {
1166 	raid6_conf_t *conf = sh->raid_conf;
1167 	int i, count, disks = conf->raid_disks;
1168 	int pd_idx = sh->pd_idx;
1169 	int qd_idx = raid6_next_disk(pd_idx, disks);
1170 	int d0_idx = raid6_next_disk(qd_idx, disks);
1171 	int faila, failb;
1172 
1173 	/* faila and failb are disk numbers relative to d0_idx */
1174 	/* pd_idx become disks-2 and qd_idx become disks-1 */
1175 	faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx;
1176 	failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx;
1177 
1178 	BUG_ON(faila == failb);
1179 	if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1180 
1181 	PRINTK("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1182 	       (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb);
1183 
1184 	if ( failb == disks-1 ) {
1185 		/* Q disk is one of the missing disks */
1186 		if ( faila == disks-2 ) {
1187 			/* Missing P+Q, just recompute */
1188 			compute_parity6(sh, UPDATE_PARITY);
1189 			return;
1190 		} else {
1191 			/* We're missing D+Q; recompute D from P */
1192 			compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0);
1193 			compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1194 			return;
1195 		}
1196 	}
1197 
1198 	/* We're missing D+P or D+D; build pointer table */
1199 	{
1200 		/**** FIX THIS: This could be very bad if disks is close to 256 ****/
1201 		void *ptrs[disks];
1202 
1203 		count = 0;
1204 		i = d0_idx;
1205 		do {
1206 			ptrs[count++] = page_address(sh->dev[i].page);
1207 			i = raid6_next_disk(i, disks);
1208 			if (i != dd_idx1 && i != dd_idx2 &&
1209 			    !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1210 				printk("compute_2 with missing block %d/%d\n", count, i);
1211 		} while ( i != d0_idx );
1212 
1213 		if ( failb == disks-2 ) {
1214 			/* We're missing D+P. */
1215 			raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
1216 		} else {
1217 			/* We're missing D+D. */
1218 			raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
1219 		}
1220 
1221 		/* Both the above update both missing blocks */
1222 		set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1223 		set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1224 	}
1225 }
1226 
1227 
1228 
1229 /*
1230  * Each stripe/dev can have one or more bion attached.
1231  * toread/towrite point to the first in a chain.
1232  * The bi_next chain must be in order.
1233  */
1234 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1235 {
1236 	struct bio **bip;
1237 	raid5_conf_t *conf = sh->raid_conf;
1238 	int firstwrite=0;
1239 
1240 	PRINTK("adding bh b#%llu to stripe s#%llu\n",
1241 		(unsigned long long)bi->bi_sector,
1242 		(unsigned long long)sh->sector);
1243 
1244 
1245 	spin_lock(&sh->lock);
1246 	spin_lock_irq(&conf->device_lock);
1247 	if (forwrite) {
1248 		bip = &sh->dev[dd_idx].towrite;
1249 		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1250 			firstwrite = 1;
1251 	} else
1252 		bip = &sh->dev[dd_idx].toread;
1253 	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1254 		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1255 			goto overlap;
1256 		bip = & (*bip)->bi_next;
1257 	}
1258 	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1259 		goto overlap;
1260 
1261 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1262 	if (*bip)
1263 		bi->bi_next = *bip;
1264 	*bip = bi;
1265 	bi->bi_phys_segments ++;
1266 	spin_unlock_irq(&conf->device_lock);
1267 	spin_unlock(&sh->lock);
1268 
1269 	PRINTK("added bi b#%llu to stripe s#%llu, disk %d.\n",
1270 		(unsigned long long)bi->bi_sector,
1271 		(unsigned long long)sh->sector, dd_idx);
1272 
1273 	if (conf->mddev->bitmap && firstwrite) {
1274 		sh->bm_seq = conf->seq_write;
1275 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1276 				  STRIPE_SECTORS, 0);
1277 		set_bit(STRIPE_BIT_DELAY, &sh->state);
1278 	}
1279 
1280 	if (forwrite) {
1281 		/* check if page is covered */
1282 		sector_t sector = sh->dev[dd_idx].sector;
1283 		for (bi=sh->dev[dd_idx].towrite;
1284 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1285 			     bi && bi->bi_sector <= sector;
1286 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1287 			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1288 				sector = bi->bi_sector + (bi->bi_size>>9);
1289 		}
1290 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1291 			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1292 	}
1293 	return 1;
1294 
1295  overlap:
1296 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1297 	spin_unlock_irq(&conf->device_lock);
1298 	spin_unlock(&sh->lock);
1299 	return 0;
1300 }
1301 
1302 static void end_reshape(raid5_conf_t *conf);
1303 
1304 static int page_is_zero(struct page *p)
1305 {
1306 	char *a = page_address(p);
1307 	return ((*(u32*)a) == 0 &&
1308 		memcmp(a, a+4, STRIPE_SIZE-4)==0);
1309 }
1310 
1311 static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks)
1312 {
1313 	int sectors_per_chunk = conf->chunk_size >> 9;
1314 	sector_t x = stripe;
1315 	int pd_idx, dd_idx;
1316 	int chunk_offset = sector_div(x, sectors_per_chunk);
1317 	stripe = x;
1318 	raid5_compute_sector(stripe*(disks-1)*sectors_per_chunk
1319 			     + chunk_offset, disks, disks-1, &dd_idx, &pd_idx, conf);
1320 	return pd_idx;
1321 }
1322 
1323 
1324 /*
1325  * handle_stripe - do things to a stripe.
1326  *
1327  * We lock the stripe and then examine the state of various bits
1328  * to see what needs to be done.
1329  * Possible results:
1330  *    return some read request which now have data
1331  *    return some write requests which are safely on disc
1332  *    schedule a read on some buffers
1333  *    schedule a write of some buffers
1334  *    return confirmation of parity correctness
1335  *
1336  * Parity calculations are done inside the stripe lock
1337  * buffers are taken off read_list or write_list, and bh_cache buffers
1338  * get BH_Lock set before the stripe lock is released.
1339  *
1340  */
1341 
1342 static void handle_stripe5(struct stripe_head *sh)
1343 {
1344 	raid5_conf_t *conf = sh->raid_conf;
1345 	int disks = sh->disks;
1346 	struct bio *return_bi= NULL;
1347 	struct bio *bi;
1348 	int i;
1349 	int syncing, expanding, expanded;
1350 	int locked=0, uptodate=0, to_read=0, to_write=0, failed=0, written=0;
1351 	int non_overwrite = 0;
1352 	int failed_num=0;
1353 	struct r5dev *dev;
1354 
1355 	PRINTK("handling stripe %llu, cnt=%d, pd_idx=%d\n",
1356 		(unsigned long long)sh->sector, atomic_read(&sh->count),
1357 		sh->pd_idx);
1358 
1359 	spin_lock(&sh->lock);
1360 	clear_bit(STRIPE_HANDLE, &sh->state);
1361 	clear_bit(STRIPE_DELAYED, &sh->state);
1362 
1363 	syncing = test_bit(STRIPE_SYNCING, &sh->state);
1364 	expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
1365 	expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
1366 	/* Now to look around and see what can be done */
1367 
1368 	rcu_read_lock();
1369 	for (i=disks; i--; ) {
1370 		mdk_rdev_t *rdev;
1371 		dev = &sh->dev[i];
1372 		clear_bit(R5_Insync, &dev->flags);
1373 
1374 		PRINTK("check %d: state 0x%lx read %p write %p written %p\n",
1375 			i, dev->flags, dev->toread, dev->towrite, dev->written);
1376 		/* maybe we can reply to a read */
1377 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
1378 			struct bio *rbi, *rbi2;
1379 			PRINTK("Return read for disc %d\n", i);
1380 			spin_lock_irq(&conf->device_lock);
1381 			rbi = dev->toread;
1382 			dev->toread = NULL;
1383 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
1384 				wake_up(&conf->wait_for_overlap);
1385 			spin_unlock_irq(&conf->device_lock);
1386 			while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
1387 				copy_data(0, rbi, dev->page, dev->sector);
1388 				rbi2 = r5_next_bio(rbi, dev->sector);
1389 				spin_lock_irq(&conf->device_lock);
1390 				if (--rbi->bi_phys_segments == 0) {
1391 					rbi->bi_next = return_bi;
1392 					return_bi = rbi;
1393 				}
1394 				spin_unlock_irq(&conf->device_lock);
1395 				rbi = rbi2;
1396 			}
1397 		}
1398 
1399 		/* now count some things */
1400 		if (test_bit(R5_LOCKED, &dev->flags)) locked++;
1401 		if (test_bit(R5_UPTODATE, &dev->flags)) uptodate++;
1402 
1403 
1404 		if (dev->toread) to_read++;
1405 		if (dev->towrite) {
1406 			to_write++;
1407 			if (!test_bit(R5_OVERWRITE, &dev->flags))
1408 				non_overwrite++;
1409 		}
1410 		if (dev->written) written++;
1411 		rdev = rcu_dereference(conf->disks[i].rdev);
1412 		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
1413 			/* The ReadError flag will just be confusing now */
1414 			clear_bit(R5_ReadError, &dev->flags);
1415 			clear_bit(R5_ReWrite, &dev->flags);
1416 		}
1417 		if (!rdev || !test_bit(In_sync, &rdev->flags)
1418 		    || test_bit(R5_ReadError, &dev->flags)) {
1419 			failed++;
1420 			failed_num = i;
1421 		} else
1422 			set_bit(R5_Insync, &dev->flags);
1423 	}
1424 	rcu_read_unlock();
1425 	PRINTK("locked=%d uptodate=%d to_read=%d"
1426 		" to_write=%d failed=%d failed_num=%d\n",
1427 		locked, uptodate, to_read, to_write, failed, failed_num);
1428 	/* check if the array has lost two devices and, if so, some requests might
1429 	 * need to be failed
1430 	 */
1431 	if (failed > 1 && to_read+to_write+written) {
1432 		for (i=disks; i--; ) {
1433 			int bitmap_end = 0;
1434 
1435 			if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1436 				mdk_rdev_t *rdev;
1437 				rcu_read_lock();
1438 				rdev = rcu_dereference(conf->disks[i].rdev);
1439 				if (rdev && test_bit(In_sync, &rdev->flags))
1440 					/* multiple read failures in one stripe */
1441 					md_error(conf->mddev, rdev);
1442 				rcu_read_unlock();
1443 			}
1444 
1445 			spin_lock_irq(&conf->device_lock);
1446 			/* fail all writes first */
1447 			bi = sh->dev[i].towrite;
1448 			sh->dev[i].towrite = NULL;
1449 			if (bi) { to_write--; bitmap_end = 1; }
1450 
1451 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1452 				wake_up(&conf->wait_for_overlap);
1453 
1454 			while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
1455 				struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1456 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
1457 				if (--bi->bi_phys_segments == 0) {
1458 					md_write_end(conf->mddev);
1459 					bi->bi_next = return_bi;
1460 					return_bi = bi;
1461 				}
1462 				bi = nextbi;
1463 			}
1464 			/* and fail all 'written' */
1465 			bi = sh->dev[i].written;
1466 			sh->dev[i].written = NULL;
1467 			if (bi) bitmap_end = 1;
1468 			while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS) {
1469 				struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
1470 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
1471 				if (--bi->bi_phys_segments == 0) {
1472 					md_write_end(conf->mddev);
1473 					bi->bi_next = return_bi;
1474 					return_bi = bi;
1475 				}
1476 				bi = bi2;
1477 			}
1478 
1479 			/* fail any reads if this device is non-operational */
1480 			if (!test_bit(R5_Insync, &sh->dev[i].flags) ||
1481 			    test_bit(R5_ReadError, &sh->dev[i].flags)) {
1482 				bi = sh->dev[i].toread;
1483 				sh->dev[i].toread = NULL;
1484 				if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1485 					wake_up(&conf->wait_for_overlap);
1486 				if (bi) to_read--;
1487 				while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
1488 					struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1489 					clear_bit(BIO_UPTODATE, &bi->bi_flags);
1490 					if (--bi->bi_phys_segments == 0) {
1491 						bi->bi_next = return_bi;
1492 						return_bi = bi;
1493 					}
1494 					bi = nextbi;
1495 				}
1496 			}
1497 			spin_unlock_irq(&conf->device_lock);
1498 			if (bitmap_end)
1499 				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1500 						STRIPE_SECTORS, 0, 0);
1501 		}
1502 	}
1503 	if (failed > 1 && syncing) {
1504 		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
1505 		clear_bit(STRIPE_SYNCING, &sh->state);
1506 		syncing = 0;
1507 	}
1508 
1509 	/* might be able to return some write requests if the parity block
1510 	 * is safe, or on a failed drive
1511 	 */
1512 	dev = &sh->dev[sh->pd_idx];
1513 	if ( written &&
1514 	     ( (test_bit(R5_Insync, &dev->flags) && !test_bit(R5_LOCKED, &dev->flags) &&
1515 		test_bit(R5_UPTODATE, &dev->flags))
1516 	       || (failed == 1 && failed_num == sh->pd_idx))
1517 	    ) {
1518 	    /* any written block on an uptodate or failed drive can be returned.
1519 	     * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
1520 	     * never LOCKED, so we don't need to test 'failed' directly.
1521 	     */
1522 	    for (i=disks; i--; )
1523 		if (sh->dev[i].written) {
1524 		    dev = &sh->dev[i];
1525 		    if (!test_bit(R5_LOCKED, &dev->flags) &&
1526 			 test_bit(R5_UPTODATE, &dev->flags) ) {
1527 			/* We can return any write requests */
1528 			    struct bio *wbi, *wbi2;
1529 			    int bitmap_end = 0;
1530 			    PRINTK("Return write for disc %d\n", i);
1531 			    spin_lock_irq(&conf->device_lock);
1532 			    wbi = dev->written;
1533 			    dev->written = NULL;
1534 			    while (wbi && wbi->bi_sector < dev->sector + STRIPE_SECTORS) {
1535 				    wbi2 = r5_next_bio(wbi, dev->sector);
1536 				    if (--wbi->bi_phys_segments == 0) {
1537 					    md_write_end(conf->mddev);
1538 					    wbi->bi_next = return_bi;
1539 					    return_bi = wbi;
1540 				    }
1541 				    wbi = wbi2;
1542 			    }
1543 			    if (dev->towrite == NULL)
1544 				    bitmap_end = 1;
1545 			    spin_unlock_irq(&conf->device_lock);
1546 			    if (bitmap_end)
1547 				    bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1548 						    STRIPE_SECTORS,
1549 						    !test_bit(STRIPE_DEGRADED, &sh->state), 0);
1550 		    }
1551 		}
1552 	}
1553 
1554 	/* Now we might consider reading some blocks, either to check/generate
1555 	 * parity, or to satisfy requests
1556 	 * or to load a block that is being partially written.
1557 	 */
1558 	if (to_read || non_overwrite || (syncing && (uptodate < disks)) || expanding) {
1559 		for (i=disks; i--;) {
1560 			dev = &sh->dev[i];
1561 			if (!test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
1562 			    (dev->toread ||
1563 			     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
1564 			     syncing ||
1565 			     expanding ||
1566 			     (failed && (sh->dev[failed_num].toread ||
1567 					 (sh->dev[failed_num].towrite && !test_bit(R5_OVERWRITE, &sh->dev[failed_num].flags))))
1568 				    )
1569 				) {
1570 				/* we would like to get this block, possibly
1571 				 * by computing it, but we might not be able to
1572 				 */
1573 				if (uptodate == disks-1) {
1574 					PRINTK("Computing block %d\n", i);
1575 					compute_block(sh, i);
1576 					uptodate++;
1577 				} else if (test_bit(R5_Insync, &dev->flags)) {
1578 					set_bit(R5_LOCKED, &dev->flags);
1579 					set_bit(R5_Wantread, &dev->flags);
1580 #if 0
1581 					/* if I am just reading this block and we don't have
1582 					   a failed drive, or any pending writes then sidestep the cache */
1583 					if (sh->bh_read[i] && !sh->bh_read[i]->b_reqnext &&
1584 					    ! syncing && !failed && !to_write) {
1585 						sh->bh_cache[i]->b_page =  sh->bh_read[i]->b_page;
1586 						sh->bh_cache[i]->b_data =  sh->bh_read[i]->b_data;
1587 					}
1588 #endif
1589 					locked++;
1590 					PRINTK("Reading block %d (sync=%d)\n",
1591 						i, syncing);
1592 				}
1593 			}
1594 		}
1595 		set_bit(STRIPE_HANDLE, &sh->state);
1596 	}
1597 
1598 	/* now to consider writing and what else, if anything should be read */
1599 	if (to_write) {
1600 		int rmw=0, rcw=0;
1601 		for (i=disks ; i--;) {
1602 			/* would I have to read this buffer for read_modify_write */
1603 			dev = &sh->dev[i];
1604 			if ((dev->towrite || i == sh->pd_idx) &&
1605 			    (!test_bit(R5_LOCKED, &dev->flags)
1606 #if 0
1607 || sh->bh_page[i]!=bh->b_page
1608 #endif
1609 				    ) &&
1610 			    !test_bit(R5_UPTODATE, &dev->flags)) {
1611 				if (test_bit(R5_Insync, &dev->flags)
1612 /*				    && !(!mddev->insync && i == sh->pd_idx) */
1613 					)
1614 					rmw++;
1615 				else rmw += 2*disks;  /* cannot read it */
1616 			}
1617 			/* Would I have to read this buffer for reconstruct_write */
1618 			if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
1619 			    (!test_bit(R5_LOCKED, &dev->flags)
1620 #if 0
1621 || sh->bh_page[i] != bh->b_page
1622 #endif
1623 				    ) &&
1624 			    !test_bit(R5_UPTODATE, &dev->flags)) {
1625 				if (test_bit(R5_Insync, &dev->flags)) rcw++;
1626 				else rcw += 2*disks;
1627 			}
1628 		}
1629 		PRINTK("for sector %llu, rmw=%d rcw=%d\n",
1630 			(unsigned long long)sh->sector, rmw, rcw);
1631 		set_bit(STRIPE_HANDLE, &sh->state);
1632 		if (rmw < rcw && rmw > 0)
1633 			/* prefer read-modify-write, but need to get some data */
1634 			for (i=disks; i--;) {
1635 				dev = &sh->dev[i];
1636 				if ((dev->towrite || i == sh->pd_idx) &&
1637 				    !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
1638 				    test_bit(R5_Insync, &dev->flags)) {
1639 					if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
1640 					{
1641 						PRINTK("Read_old block %d for r-m-w\n", i);
1642 						set_bit(R5_LOCKED, &dev->flags);
1643 						set_bit(R5_Wantread, &dev->flags);
1644 						locked++;
1645 					} else {
1646 						set_bit(STRIPE_DELAYED, &sh->state);
1647 						set_bit(STRIPE_HANDLE, &sh->state);
1648 					}
1649 				}
1650 			}
1651 		if (rcw <= rmw && rcw > 0)
1652 			/* want reconstruct write, but need to get some data */
1653 			for (i=disks; i--;) {
1654 				dev = &sh->dev[i];
1655 				if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
1656 				    !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
1657 				    test_bit(R5_Insync, &dev->flags)) {
1658 					if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
1659 					{
1660 						PRINTK("Read_old block %d for Reconstruct\n", i);
1661 						set_bit(R5_LOCKED, &dev->flags);
1662 						set_bit(R5_Wantread, &dev->flags);
1663 						locked++;
1664 					} else {
1665 						set_bit(STRIPE_DELAYED, &sh->state);
1666 						set_bit(STRIPE_HANDLE, &sh->state);
1667 					}
1668 				}
1669 			}
1670 		/* now if nothing is locked, and if we have enough data, we can start a write request */
1671 		if (locked == 0 && (rcw == 0 ||rmw == 0) &&
1672 		    !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
1673 			PRINTK("Computing parity...\n");
1674 			compute_parity5(sh, rcw==0 ? RECONSTRUCT_WRITE : READ_MODIFY_WRITE);
1675 			/* now every locked buffer is ready to be written */
1676 			for (i=disks; i--;)
1677 				if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
1678 					PRINTK("Writing block %d\n", i);
1679 					locked++;
1680 					set_bit(R5_Wantwrite, &sh->dev[i].flags);
1681 					if (!test_bit(R5_Insync, &sh->dev[i].flags)
1682 					    || (i==sh->pd_idx && failed == 0))
1683 						set_bit(STRIPE_INSYNC, &sh->state);
1684 				}
1685 			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
1686 				atomic_dec(&conf->preread_active_stripes);
1687 				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
1688 					md_wakeup_thread(conf->mddev->thread);
1689 			}
1690 		}
1691 	}
1692 
1693 	/* maybe we need to check and possibly fix the parity for this stripe
1694 	 * Any reads will already have been scheduled, so we just see if enough data
1695 	 * is available
1696 	 */
1697 	if (syncing && locked == 0 &&
1698 	    !test_bit(STRIPE_INSYNC, &sh->state)) {
1699 		set_bit(STRIPE_HANDLE, &sh->state);
1700 		if (failed == 0) {
1701 			BUG_ON(uptodate != disks);
1702 			compute_parity5(sh, CHECK_PARITY);
1703 			uptodate--;
1704 			if (page_is_zero(sh->dev[sh->pd_idx].page)) {
1705 				/* parity is correct (on disc, not in buffer any more) */
1706 				set_bit(STRIPE_INSYNC, &sh->state);
1707 			} else {
1708 				conf->mddev->resync_mismatches += STRIPE_SECTORS;
1709 				if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
1710 					/* don't try to repair!! */
1711 					set_bit(STRIPE_INSYNC, &sh->state);
1712 				else {
1713 					compute_block(sh, sh->pd_idx);
1714 					uptodate++;
1715 				}
1716 			}
1717 		}
1718 		if (!test_bit(STRIPE_INSYNC, &sh->state)) {
1719 			/* either failed parity check, or recovery is happening */
1720 			if (failed==0)
1721 				failed_num = sh->pd_idx;
1722 			dev = &sh->dev[failed_num];
1723 			BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
1724 			BUG_ON(uptodate != disks);
1725 
1726 			set_bit(R5_LOCKED, &dev->flags);
1727 			set_bit(R5_Wantwrite, &dev->flags);
1728 			clear_bit(STRIPE_DEGRADED, &sh->state);
1729 			locked++;
1730 			set_bit(STRIPE_INSYNC, &sh->state);
1731 		}
1732 	}
1733 	if (syncing && locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
1734 		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
1735 		clear_bit(STRIPE_SYNCING, &sh->state);
1736 	}
1737 
1738 	/* If the failed drive is just a ReadError, then we might need to progress
1739 	 * the repair/check process
1740 	 */
1741 	if (failed == 1 && ! conf->mddev->ro &&
1742 	    test_bit(R5_ReadError, &sh->dev[failed_num].flags)
1743 	    && !test_bit(R5_LOCKED, &sh->dev[failed_num].flags)
1744 	    && test_bit(R5_UPTODATE, &sh->dev[failed_num].flags)
1745 		) {
1746 		dev = &sh->dev[failed_num];
1747 		if (!test_bit(R5_ReWrite, &dev->flags)) {
1748 			set_bit(R5_Wantwrite, &dev->flags);
1749 			set_bit(R5_ReWrite, &dev->flags);
1750 			set_bit(R5_LOCKED, &dev->flags);
1751 			locked++;
1752 		} else {
1753 			/* let's read it back */
1754 			set_bit(R5_Wantread, &dev->flags);
1755 			set_bit(R5_LOCKED, &dev->flags);
1756 			locked++;
1757 		}
1758 	}
1759 
1760 	if (expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
1761 		/* Need to write out all blocks after computing parity */
1762 		sh->disks = conf->raid_disks;
1763 		sh->pd_idx = stripe_to_pdidx(sh->sector, conf, conf->raid_disks);
1764 		compute_parity5(sh, RECONSTRUCT_WRITE);
1765 		for (i= conf->raid_disks; i--;) {
1766 			set_bit(R5_LOCKED, &sh->dev[i].flags);
1767 			locked++;
1768 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
1769 		}
1770 		clear_bit(STRIPE_EXPANDING, &sh->state);
1771 	} else if (expanded) {
1772 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
1773 		atomic_dec(&conf->reshape_stripes);
1774 		wake_up(&conf->wait_for_overlap);
1775 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
1776 	}
1777 
1778 	if (expanding && locked == 0) {
1779 		/* We have read all the blocks in this stripe and now we need to
1780 		 * copy some of them into a target stripe for expand.
1781 		 */
1782 		clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
1783 		for (i=0; i< sh->disks; i++)
1784 			if (i != sh->pd_idx) {
1785 				int dd_idx, pd_idx, j;
1786 				struct stripe_head *sh2;
1787 
1788 				sector_t bn = compute_blocknr(sh, i);
1789 				sector_t s = raid5_compute_sector(bn, conf->raid_disks,
1790 								  conf->raid_disks-1,
1791 								  &dd_idx, &pd_idx, conf);
1792 				sh2 = get_active_stripe(conf, s, conf->raid_disks, pd_idx, 1);
1793 				if (sh2 == NULL)
1794 					/* so far only the early blocks of this stripe
1795 					 * have been requested.  When later blocks
1796 					 * get requested, we will try again
1797 					 */
1798 					continue;
1799 				if(!test_bit(STRIPE_EXPANDING, &sh2->state) ||
1800 				   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
1801 					/* must have already done this block */
1802 					release_stripe(sh2);
1803 					continue;
1804 				}
1805 				memcpy(page_address(sh2->dev[dd_idx].page),
1806 				       page_address(sh->dev[i].page),
1807 				       STRIPE_SIZE);
1808 				set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
1809 				set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
1810 				for (j=0; j<conf->raid_disks; j++)
1811 					if (j != sh2->pd_idx &&
1812 					    !test_bit(R5_Expanded, &sh2->dev[j].flags))
1813 						break;
1814 				if (j == conf->raid_disks) {
1815 					set_bit(STRIPE_EXPAND_READY, &sh2->state);
1816 					set_bit(STRIPE_HANDLE, &sh2->state);
1817 				}
1818 				release_stripe(sh2);
1819 			}
1820 	}
1821 
1822 	spin_unlock(&sh->lock);
1823 
1824 	while ((bi=return_bi)) {
1825 		int bytes = bi->bi_size;
1826 
1827 		return_bi = bi->bi_next;
1828 		bi->bi_next = NULL;
1829 		bi->bi_size = 0;
1830 		bi->bi_end_io(bi, bytes, 0);
1831 	}
1832 	for (i=disks; i-- ;) {
1833 		int rw;
1834 		struct bio *bi;
1835 		mdk_rdev_t *rdev;
1836 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
1837 			rw = 1;
1838 		else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1839 			rw = 0;
1840 		else
1841 			continue;
1842 
1843 		bi = &sh->dev[i].req;
1844 
1845 		bi->bi_rw = rw;
1846 		if (rw)
1847 			bi->bi_end_io = raid5_end_write_request;
1848 		else
1849 			bi->bi_end_io = raid5_end_read_request;
1850 
1851 		rcu_read_lock();
1852 		rdev = rcu_dereference(conf->disks[i].rdev);
1853 		if (rdev && test_bit(Faulty, &rdev->flags))
1854 			rdev = NULL;
1855 		if (rdev)
1856 			atomic_inc(&rdev->nr_pending);
1857 		rcu_read_unlock();
1858 
1859 		if (rdev) {
1860 			if (syncing || expanding || expanded)
1861 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1862 
1863 			bi->bi_bdev = rdev->bdev;
1864 			PRINTK("for %llu schedule op %ld on disc %d\n",
1865 				(unsigned long long)sh->sector, bi->bi_rw, i);
1866 			atomic_inc(&sh->count);
1867 			bi->bi_sector = sh->sector + rdev->data_offset;
1868 			bi->bi_flags = 1 << BIO_UPTODATE;
1869 			bi->bi_vcnt = 1;
1870 			bi->bi_max_vecs = 1;
1871 			bi->bi_idx = 0;
1872 			bi->bi_io_vec = &sh->dev[i].vec;
1873 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1874 			bi->bi_io_vec[0].bv_offset = 0;
1875 			bi->bi_size = STRIPE_SIZE;
1876 			bi->bi_next = NULL;
1877 			if (rw == WRITE &&
1878 			    test_bit(R5_ReWrite, &sh->dev[i].flags))
1879 				atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1880 			generic_make_request(bi);
1881 		} else {
1882 			if (rw == 1)
1883 				set_bit(STRIPE_DEGRADED, &sh->state);
1884 			PRINTK("skip op %ld on disc %d for sector %llu\n",
1885 				bi->bi_rw, i, (unsigned long long)sh->sector);
1886 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
1887 			set_bit(STRIPE_HANDLE, &sh->state);
1888 		}
1889 	}
1890 }
1891 
1892 static void handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
1893 {
1894 	raid6_conf_t *conf = sh->raid_conf;
1895 	int disks = conf->raid_disks;
1896 	struct bio *return_bi= NULL;
1897 	struct bio *bi;
1898 	int i;
1899 	int syncing;
1900 	int locked=0, uptodate=0, to_read=0, to_write=0, failed=0, written=0;
1901 	int non_overwrite = 0;
1902 	int failed_num[2] = {0, 0};
1903 	struct r5dev *dev, *pdev, *qdev;
1904 	int pd_idx = sh->pd_idx;
1905 	int qd_idx = raid6_next_disk(pd_idx, disks);
1906 	int p_failed, q_failed;
1907 
1908 	PRINTK("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d, qd_idx=%d\n",
1909 	       (unsigned long long)sh->sector, sh->state, atomic_read(&sh->count),
1910 	       pd_idx, qd_idx);
1911 
1912 	spin_lock(&sh->lock);
1913 	clear_bit(STRIPE_HANDLE, &sh->state);
1914 	clear_bit(STRIPE_DELAYED, &sh->state);
1915 
1916 	syncing = test_bit(STRIPE_SYNCING, &sh->state);
1917 	/* Now to look around and see what can be done */
1918 
1919 	rcu_read_lock();
1920 	for (i=disks; i--; ) {
1921 		mdk_rdev_t *rdev;
1922 		dev = &sh->dev[i];
1923 		clear_bit(R5_Insync, &dev->flags);
1924 
1925 		PRINTK("check %d: state 0x%lx read %p write %p written %p\n",
1926 			i, dev->flags, dev->toread, dev->towrite, dev->written);
1927 		/* maybe we can reply to a read */
1928 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
1929 			struct bio *rbi, *rbi2;
1930 			PRINTK("Return read for disc %d\n", i);
1931 			spin_lock_irq(&conf->device_lock);
1932 			rbi = dev->toread;
1933 			dev->toread = NULL;
1934 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
1935 				wake_up(&conf->wait_for_overlap);
1936 			spin_unlock_irq(&conf->device_lock);
1937 			while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
1938 				copy_data(0, rbi, dev->page, dev->sector);
1939 				rbi2 = r5_next_bio(rbi, dev->sector);
1940 				spin_lock_irq(&conf->device_lock);
1941 				if (--rbi->bi_phys_segments == 0) {
1942 					rbi->bi_next = return_bi;
1943 					return_bi = rbi;
1944 				}
1945 				spin_unlock_irq(&conf->device_lock);
1946 				rbi = rbi2;
1947 			}
1948 		}
1949 
1950 		/* now count some things */
1951 		if (test_bit(R5_LOCKED, &dev->flags)) locked++;
1952 		if (test_bit(R5_UPTODATE, &dev->flags)) uptodate++;
1953 
1954 
1955 		if (dev->toread) to_read++;
1956 		if (dev->towrite) {
1957 			to_write++;
1958 			if (!test_bit(R5_OVERWRITE, &dev->flags))
1959 				non_overwrite++;
1960 		}
1961 		if (dev->written) written++;
1962 		rdev = rcu_dereference(conf->disks[i].rdev);
1963 		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
1964 			/* The ReadError flag will just be confusing now */
1965 			clear_bit(R5_ReadError, &dev->flags);
1966 			clear_bit(R5_ReWrite, &dev->flags);
1967 		}
1968 		if (!rdev || !test_bit(In_sync, &rdev->flags)
1969 		    || test_bit(R5_ReadError, &dev->flags)) {
1970 			if ( failed < 2 )
1971 				failed_num[failed] = i;
1972 			failed++;
1973 		} else
1974 			set_bit(R5_Insync, &dev->flags);
1975 	}
1976 	rcu_read_unlock();
1977 	PRINTK("locked=%d uptodate=%d to_read=%d"
1978 	       " to_write=%d failed=%d failed_num=%d,%d\n",
1979 	       locked, uptodate, to_read, to_write, failed,
1980 	       failed_num[0], failed_num[1]);
1981 	/* check if the array has lost >2 devices and, if so, some requests might
1982 	 * need to be failed
1983 	 */
1984 	if (failed > 2 && to_read+to_write+written) {
1985 		for (i=disks; i--; ) {
1986 			int bitmap_end = 0;
1987 
1988 			if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1989 				mdk_rdev_t *rdev;
1990 				rcu_read_lock();
1991 				rdev = rcu_dereference(conf->disks[i].rdev);
1992 				if (rdev && test_bit(In_sync, &rdev->flags))
1993 					/* multiple read failures in one stripe */
1994 					md_error(conf->mddev, rdev);
1995 				rcu_read_unlock();
1996 			}
1997 
1998 			spin_lock_irq(&conf->device_lock);
1999 			/* fail all writes first */
2000 			bi = sh->dev[i].towrite;
2001 			sh->dev[i].towrite = NULL;
2002 			if (bi) { to_write--; bitmap_end = 1; }
2003 
2004 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2005 				wake_up(&conf->wait_for_overlap);
2006 
2007 			while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
2008 				struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2009 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2010 				if (--bi->bi_phys_segments == 0) {
2011 					md_write_end(conf->mddev);
2012 					bi->bi_next = return_bi;
2013 					return_bi = bi;
2014 				}
2015 				bi = nextbi;
2016 			}
2017 			/* and fail all 'written' */
2018 			bi = sh->dev[i].written;
2019 			sh->dev[i].written = NULL;
2020 			if (bi) bitmap_end = 1;
2021 			while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS) {
2022 				struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2023 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2024 				if (--bi->bi_phys_segments == 0) {
2025 					md_write_end(conf->mddev);
2026 					bi->bi_next = return_bi;
2027 					return_bi = bi;
2028 				}
2029 				bi = bi2;
2030 			}
2031 
2032 			/* fail any reads if this device is non-operational */
2033 			if (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2034 			    test_bit(R5_ReadError, &sh->dev[i].flags)) {
2035 				bi = sh->dev[i].toread;
2036 				sh->dev[i].toread = NULL;
2037 				if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2038 					wake_up(&conf->wait_for_overlap);
2039 				if (bi) to_read--;
2040 				while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
2041 					struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2042 					clear_bit(BIO_UPTODATE, &bi->bi_flags);
2043 					if (--bi->bi_phys_segments == 0) {
2044 						bi->bi_next = return_bi;
2045 						return_bi = bi;
2046 					}
2047 					bi = nextbi;
2048 				}
2049 			}
2050 			spin_unlock_irq(&conf->device_lock);
2051 			if (bitmap_end)
2052 				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2053 						STRIPE_SECTORS, 0, 0);
2054 		}
2055 	}
2056 	if (failed > 2 && syncing) {
2057 		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2058 		clear_bit(STRIPE_SYNCING, &sh->state);
2059 		syncing = 0;
2060 	}
2061 
2062 	/*
2063 	 * might be able to return some write requests if the parity blocks
2064 	 * are safe, or on a failed drive
2065 	 */
2066 	pdev = &sh->dev[pd_idx];
2067 	p_failed = (failed >= 1 && failed_num[0] == pd_idx)
2068 		|| (failed >= 2 && failed_num[1] == pd_idx);
2069 	qdev = &sh->dev[qd_idx];
2070 	q_failed = (failed >= 1 && failed_num[0] == qd_idx)
2071 		|| (failed >= 2 && failed_num[1] == qd_idx);
2072 
2073 	if ( written &&
2074 	     ( p_failed || ((test_bit(R5_Insync, &pdev->flags)
2075 			     && !test_bit(R5_LOCKED, &pdev->flags)
2076 			     && test_bit(R5_UPTODATE, &pdev->flags))) ) &&
2077 	     ( q_failed || ((test_bit(R5_Insync, &qdev->flags)
2078 			     && !test_bit(R5_LOCKED, &qdev->flags)
2079 			     && test_bit(R5_UPTODATE, &qdev->flags))) ) ) {
2080 		/* any written block on an uptodate or failed drive can be
2081 		 * returned.  Note that if we 'wrote' to a failed drive,
2082 		 * it will be UPTODATE, but never LOCKED, so we don't need
2083 		 * to test 'failed' directly.
2084 		 */
2085 		for (i=disks; i--; )
2086 			if (sh->dev[i].written) {
2087 				dev = &sh->dev[i];
2088 				if (!test_bit(R5_LOCKED, &dev->flags) &&
2089 				    test_bit(R5_UPTODATE, &dev->flags) ) {
2090 					/* We can return any write requests */
2091 					int bitmap_end = 0;
2092 					struct bio *wbi, *wbi2;
2093 					PRINTK("Return write for stripe %llu disc %d\n",
2094 					       (unsigned long long)sh->sector, i);
2095 					spin_lock_irq(&conf->device_lock);
2096 					wbi = dev->written;
2097 					dev->written = NULL;
2098 					while (wbi && wbi->bi_sector < dev->sector + STRIPE_SECTORS) {
2099 						wbi2 = r5_next_bio(wbi, dev->sector);
2100 						if (--wbi->bi_phys_segments == 0) {
2101 							md_write_end(conf->mddev);
2102 							wbi->bi_next = return_bi;
2103 							return_bi = wbi;
2104 						}
2105 						wbi = wbi2;
2106 					}
2107 					if (dev->towrite == NULL)
2108 						bitmap_end = 1;
2109 					spin_unlock_irq(&conf->device_lock);
2110 					if (bitmap_end)
2111 						bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2112 								STRIPE_SECTORS,
2113 								!test_bit(STRIPE_DEGRADED, &sh->state), 0);
2114 				}
2115 			}
2116 	}
2117 
2118 	/* Now we might consider reading some blocks, either to check/generate
2119 	 * parity, or to satisfy requests
2120 	 * or to load a block that is being partially written.
2121 	 */
2122 	if (to_read || non_overwrite || (to_write && failed) || (syncing && (uptodate < disks))) {
2123 		for (i=disks; i--;) {
2124 			dev = &sh->dev[i];
2125 			if (!test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
2126 			    (dev->toread ||
2127 			     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2128 			     syncing ||
2129 			     (failed >= 1 && (sh->dev[failed_num[0]].toread || to_write)) ||
2130 			     (failed >= 2 && (sh->dev[failed_num[1]].toread || to_write))
2131 				    )
2132 				) {
2133 				/* we would like to get this block, possibly
2134 				 * by computing it, but we might not be able to
2135 				 */
2136 				if (uptodate == disks-1) {
2137 					PRINTK("Computing stripe %llu block %d\n",
2138 					       (unsigned long long)sh->sector, i);
2139 					compute_block_1(sh, i, 0);
2140 					uptodate++;
2141 				} else if ( uptodate == disks-2 && failed >= 2 ) {
2142 					/* Computing 2-failure is *very* expensive; only do it if failed >= 2 */
2143 					int other;
2144 					for (other=disks; other--;) {
2145 						if ( other == i )
2146 							continue;
2147 						if ( !test_bit(R5_UPTODATE, &sh->dev[other].flags) )
2148 							break;
2149 					}
2150 					BUG_ON(other < 0);
2151 					PRINTK("Computing stripe %llu blocks %d,%d\n",
2152 					       (unsigned long long)sh->sector, i, other);
2153 					compute_block_2(sh, i, other);
2154 					uptodate += 2;
2155 				} else if (test_bit(R5_Insync, &dev->flags)) {
2156 					set_bit(R5_LOCKED, &dev->flags);
2157 					set_bit(R5_Wantread, &dev->flags);
2158 #if 0
2159 					/* if I am just reading this block and we don't have
2160 					   a failed drive, or any pending writes then sidestep the cache */
2161 					if (sh->bh_read[i] && !sh->bh_read[i]->b_reqnext &&
2162 					    ! syncing && !failed && !to_write) {
2163 						sh->bh_cache[i]->b_page =  sh->bh_read[i]->b_page;
2164 						sh->bh_cache[i]->b_data =  sh->bh_read[i]->b_data;
2165 					}
2166 #endif
2167 					locked++;
2168 					PRINTK("Reading block %d (sync=%d)\n",
2169 						i, syncing);
2170 				}
2171 			}
2172 		}
2173 		set_bit(STRIPE_HANDLE, &sh->state);
2174 	}
2175 
2176 	/* now to consider writing and what else, if anything should be read */
2177 	if (to_write) {
2178 		int rcw=0, must_compute=0;
2179 		for (i=disks ; i--;) {
2180 			dev = &sh->dev[i];
2181 			/* Would I have to read this buffer for reconstruct_write */
2182 			if (!test_bit(R5_OVERWRITE, &dev->flags)
2183 			    && i != pd_idx && i != qd_idx
2184 			    && (!test_bit(R5_LOCKED, &dev->flags)
2185 #if 0
2186 				|| sh->bh_page[i] != bh->b_page
2187 #endif
2188 				    ) &&
2189 			    !test_bit(R5_UPTODATE, &dev->flags)) {
2190 				if (test_bit(R5_Insync, &dev->flags)) rcw++;
2191 				else {
2192 					PRINTK("raid6: must_compute: disk %d flags=%#lx\n", i, dev->flags);
2193 					must_compute++;
2194 				}
2195 			}
2196 		}
2197 		PRINTK("for sector %llu, rcw=%d, must_compute=%d\n",
2198 		       (unsigned long long)sh->sector, rcw, must_compute);
2199 		set_bit(STRIPE_HANDLE, &sh->state);
2200 
2201 		if (rcw > 0)
2202 			/* want reconstruct write, but need to get some data */
2203 			for (i=disks; i--;) {
2204 				dev = &sh->dev[i];
2205 				if (!test_bit(R5_OVERWRITE, &dev->flags)
2206 				    && !(failed == 0 && (i == pd_idx || i == qd_idx))
2207 				    && !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
2208 				    test_bit(R5_Insync, &dev->flags)) {
2209 					if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
2210 					{
2211 						PRINTK("Read_old stripe %llu block %d for Reconstruct\n",
2212 						       (unsigned long long)sh->sector, i);
2213 						set_bit(R5_LOCKED, &dev->flags);
2214 						set_bit(R5_Wantread, &dev->flags);
2215 						locked++;
2216 					} else {
2217 						PRINTK("Request delayed stripe %llu block %d for Reconstruct\n",
2218 						       (unsigned long long)sh->sector, i);
2219 						set_bit(STRIPE_DELAYED, &sh->state);
2220 						set_bit(STRIPE_HANDLE, &sh->state);
2221 					}
2222 				}
2223 			}
2224 		/* now if nothing is locked, and if we have enough data, we can start a write request */
2225 		if (locked == 0 && rcw == 0 &&
2226 		    !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2227 			if ( must_compute > 0 ) {
2228 				/* We have failed blocks and need to compute them */
2229 				switch ( failed ) {
2230 				case 0:	BUG();
2231 				case 1: compute_block_1(sh, failed_num[0], 0); break;
2232 				case 2: compute_block_2(sh, failed_num[0], failed_num[1]); break;
2233 				default: BUG();	/* This request should have been failed? */
2234 				}
2235 			}
2236 
2237 			PRINTK("Computing parity for stripe %llu\n", (unsigned long long)sh->sector);
2238 			compute_parity6(sh, RECONSTRUCT_WRITE);
2239 			/* now every locked buffer is ready to be written */
2240 			for (i=disks; i--;)
2241 				if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2242 					PRINTK("Writing stripe %llu block %d\n",
2243 					       (unsigned long long)sh->sector, i);
2244 					locked++;
2245 					set_bit(R5_Wantwrite, &sh->dev[i].flags);
2246 				}
2247 			/* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2248 			set_bit(STRIPE_INSYNC, &sh->state);
2249 
2250 			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2251 				atomic_dec(&conf->preread_active_stripes);
2252 				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
2253 					md_wakeup_thread(conf->mddev->thread);
2254 			}
2255 		}
2256 	}
2257 
2258 	/* maybe we need to check and possibly fix the parity for this stripe
2259 	 * Any reads will already have been scheduled, so we just see if enough data
2260 	 * is available
2261 	 */
2262 	if (syncing && locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state)) {
2263 		int update_p = 0, update_q = 0;
2264 		struct r5dev *dev;
2265 
2266 		set_bit(STRIPE_HANDLE, &sh->state);
2267 
2268 		BUG_ON(failed>2);
2269 		BUG_ON(uptodate < disks);
2270 		/* Want to check and possibly repair P and Q.
2271 		 * However there could be one 'failed' device, in which
2272 		 * case we can only check one of them, possibly using the
2273 		 * other to generate missing data
2274 		 */
2275 
2276 		/* If !tmp_page, we cannot do the calculations,
2277 		 * but as we have set STRIPE_HANDLE, we will soon be called
2278 		 * by stripe_handle with a tmp_page - just wait until then.
2279 		 */
2280 		if (tmp_page) {
2281 			if (failed == q_failed) {
2282 				/* The only possible failed device holds 'Q', so it makes
2283 				 * sense to check P (If anything else were failed, we would
2284 				 * have used P to recreate it).
2285 				 */
2286 				compute_block_1(sh, pd_idx, 1);
2287 				if (!page_is_zero(sh->dev[pd_idx].page)) {
2288 					compute_block_1(sh,pd_idx,0);
2289 					update_p = 1;
2290 				}
2291 			}
2292 			if (!q_failed && failed < 2) {
2293 				/* q is not failed, and we didn't use it to generate
2294 				 * anything, so it makes sense to check it
2295 				 */
2296 				memcpy(page_address(tmp_page),
2297 				       page_address(sh->dev[qd_idx].page),
2298 				       STRIPE_SIZE);
2299 				compute_parity6(sh, UPDATE_PARITY);
2300 				if (memcmp(page_address(tmp_page),
2301 					   page_address(sh->dev[qd_idx].page),
2302 					   STRIPE_SIZE)!= 0) {
2303 					clear_bit(STRIPE_INSYNC, &sh->state);
2304 					update_q = 1;
2305 				}
2306 			}
2307 			if (update_p || update_q) {
2308 				conf->mddev->resync_mismatches += STRIPE_SECTORS;
2309 				if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2310 					/* don't try to repair!! */
2311 					update_p = update_q = 0;
2312 			}
2313 
2314 			/* now write out any block on a failed drive,
2315 			 * or P or Q if they need it
2316 			 */
2317 
2318 			if (failed == 2) {
2319 				dev = &sh->dev[failed_num[1]];
2320 				locked++;
2321 				set_bit(R5_LOCKED, &dev->flags);
2322 				set_bit(R5_Wantwrite, &dev->flags);
2323 			}
2324 			if (failed >= 1) {
2325 				dev = &sh->dev[failed_num[0]];
2326 				locked++;
2327 				set_bit(R5_LOCKED, &dev->flags);
2328 				set_bit(R5_Wantwrite, &dev->flags);
2329 			}
2330 
2331 			if (update_p) {
2332 				dev = &sh->dev[pd_idx];
2333 				locked ++;
2334 				set_bit(R5_LOCKED, &dev->flags);
2335 				set_bit(R5_Wantwrite, &dev->flags);
2336 			}
2337 			if (update_q) {
2338 				dev = &sh->dev[qd_idx];
2339 				locked++;
2340 				set_bit(R5_LOCKED, &dev->flags);
2341 				set_bit(R5_Wantwrite, &dev->flags);
2342 			}
2343 			clear_bit(STRIPE_DEGRADED, &sh->state);
2344 
2345 			set_bit(STRIPE_INSYNC, &sh->state);
2346 		}
2347 	}
2348 
2349 	if (syncing && locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2350 		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2351 		clear_bit(STRIPE_SYNCING, &sh->state);
2352 	}
2353 
2354 	/* If the failed drives are just a ReadError, then we might need
2355 	 * to progress the repair/check process
2356 	 */
2357 	if (failed <= 2 && ! conf->mddev->ro)
2358 		for (i=0; i<failed;i++) {
2359 			dev = &sh->dev[failed_num[i]];
2360 			if (test_bit(R5_ReadError, &dev->flags)
2361 			    && !test_bit(R5_LOCKED, &dev->flags)
2362 			    && test_bit(R5_UPTODATE, &dev->flags)
2363 				) {
2364 				if (!test_bit(R5_ReWrite, &dev->flags)) {
2365 					set_bit(R5_Wantwrite, &dev->flags);
2366 					set_bit(R5_ReWrite, &dev->flags);
2367 					set_bit(R5_LOCKED, &dev->flags);
2368 				} else {
2369 					/* let's read it back */
2370 					set_bit(R5_Wantread, &dev->flags);
2371 					set_bit(R5_LOCKED, &dev->flags);
2372 				}
2373 			}
2374 		}
2375 	spin_unlock(&sh->lock);
2376 
2377 	while ((bi=return_bi)) {
2378 		int bytes = bi->bi_size;
2379 
2380 		return_bi = bi->bi_next;
2381 		bi->bi_next = NULL;
2382 		bi->bi_size = 0;
2383 		bi->bi_end_io(bi, bytes, 0);
2384 	}
2385 	for (i=disks; i-- ;) {
2386 		int rw;
2387 		struct bio *bi;
2388 		mdk_rdev_t *rdev;
2389 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
2390 			rw = 1;
2391 		else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
2392 			rw = 0;
2393 		else
2394 			continue;
2395 
2396 		bi = &sh->dev[i].req;
2397 
2398 		bi->bi_rw = rw;
2399 		if (rw)
2400 			bi->bi_end_io = raid5_end_write_request;
2401 		else
2402 			bi->bi_end_io = raid5_end_read_request;
2403 
2404 		rcu_read_lock();
2405 		rdev = rcu_dereference(conf->disks[i].rdev);
2406 		if (rdev && test_bit(Faulty, &rdev->flags))
2407 			rdev = NULL;
2408 		if (rdev)
2409 			atomic_inc(&rdev->nr_pending);
2410 		rcu_read_unlock();
2411 
2412 		if (rdev) {
2413 			if (syncing)
2414 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
2415 
2416 			bi->bi_bdev = rdev->bdev;
2417 			PRINTK("for %llu schedule op %ld on disc %d\n",
2418 				(unsigned long long)sh->sector, bi->bi_rw, i);
2419 			atomic_inc(&sh->count);
2420 			bi->bi_sector = sh->sector + rdev->data_offset;
2421 			bi->bi_flags = 1 << BIO_UPTODATE;
2422 			bi->bi_vcnt = 1;
2423 			bi->bi_max_vecs = 1;
2424 			bi->bi_idx = 0;
2425 			bi->bi_io_vec = &sh->dev[i].vec;
2426 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
2427 			bi->bi_io_vec[0].bv_offset = 0;
2428 			bi->bi_size = STRIPE_SIZE;
2429 			bi->bi_next = NULL;
2430 			if (rw == WRITE &&
2431 			    test_bit(R5_ReWrite, &sh->dev[i].flags))
2432 				atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2433 			generic_make_request(bi);
2434 		} else {
2435 			if (rw == 1)
2436 				set_bit(STRIPE_DEGRADED, &sh->state);
2437 			PRINTK("skip op %ld on disc %d for sector %llu\n",
2438 				bi->bi_rw, i, (unsigned long long)sh->sector);
2439 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
2440 			set_bit(STRIPE_HANDLE, &sh->state);
2441 		}
2442 	}
2443 }
2444 
2445 static void handle_stripe(struct stripe_head *sh, struct page *tmp_page)
2446 {
2447 	if (sh->raid_conf->level == 6)
2448 		handle_stripe6(sh, tmp_page);
2449 	else
2450 		handle_stripe5(sh);
2451 }
2452 
2453 
2454 
2455 static void raid5_activate_delayed(raid5_conf_t *conf)
2456 {
2457 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
2458 		while (!list_empty(&conf->delayed_list)) {
2459 			struct list_head *l = conf->delayed_list.next;
2460 			struct stripe_head *sh;
2461 			sh = list_entry(l, struct stripe_head, lru);
2462 			list_del_init(l);
2463 			clear_bit(STRIPE_DELAYED, &sh->state);
2464 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
2465 				atomic_inc(&conf->preread_active_stripes);
2466 			list_add_tail(&sh->lru, &conf->handle_list);
2467 		}
2468 	}
2469 }
2470 
2471 static void activate_bit_delay(raid5_conf_t *conf)
2472 {
2473 	/* device_lock is held */
2474 	struct list_head head;
2475 	list_add(&head, &conf->bitmap_list);
2476 	list_del_init(&conf->bitmap_list);
2477 	while (!list_empty(&head)) {
2478 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
2479 		list_del_init(&sh->lru);
2480 		atomic_inc(&sh->count);
2481 		__release_stripe(conf, sh);
2482 	}
2483 }
2484 
2485 static void unplug_slaves(mddev_t *mddev)
2486 {
2487 	raid5_conf_t *conf = mddev_to_conf(mddev);
2488 	int i;
2489 
2490 	rcu_read_lock();
2491 	for (i=0; i<mddev->raid_disks; i++) {
2492 		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
2493 		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
2494 			request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
2495 
2496 			atomic_inc(&rdev->nr_pending);
2497 			rcu_read_unlock();
2498 
2499 			if (r_queue->unplug_fn)
2500 				r_queue->unplug_fn(r_queue);
2501 
2502 			rdev_dec_pending(rdev, mddev);
2503 			rcu_read_lock();
2504 		}
2505 	}
2506 	rcu_read_unlock();
2507 }
2508 
2509 static void raid5_unplug_device(request_queue_t *q)
2510 {
2511 	mddev_t *mddev = q->queuedata;
2512 	raid5_conf_t *conf = mddev_to_conf(mddev);
2513 	unsigned long flags;
2514 
2515 	spin_lock_irqsave(&conf->device_lock, flags);
2516 
2517 	if (blk_remove_plug(q)) {
2518 		conf->seq_flush++;
2519 		raid5_activate_delayed(conf);
2520 	}
2521 	md_wakeup_thread(mddev->thread);
2522 
2523 	spin_unlock_irqrestore(&conf->device_lock, flags);
2524 
2525 	unplug_slaves(mddev);
2526 }
2527 
2528 static int raid5_issue_flush(request_queue_t *q, struct gendisk *disk,
2529 			     sector_t *error_sector)
2530 {
2531 	mddev_t *mddev = q->queuedata;
2532 	raid5_conf_t *conf = mddev_to_conf(mddev);
2533 	int i, ret = 0;
2534 
2535 	rcu_read_lock();
2536 	for (i=0; i<mddev->raid_disks && ret == 0; i++) {
2537 		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
2538 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
2539 			struct block_device *bdev = rdev->bdev;
2540 			request_queue_t *r_queue = bdev_get_queue(bdev);
2541 
2542 			if (!r_queue->issue_flush_fn)
2543 				ret = -EOPNOTSUPP;
2544 			else {
2545 				atomic_inc(&rdev->nr_pending);
2546 				rcu_read_unlock();
2547 				ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
2548 							      error_sector);
2549 				rdev_dec_pending(rdev, mddev);
2550 				rcu_read_lock();
2551 			}
2552 		}
2553 	}
2554 	rcu_read_unlock();
2555 	return ret;
2556 }
2557 
2558 static inline void raid5_plug_device(raid5_conf_t *conf)
2559 {
2560 	spin_lock_irq(&conf->device_lock);
2561 	blk_plug_device(conf->mddev->queue);
2562 	spin_unlock_irq(&conf->device_lock);
2563 }
2564 
2565 static int make_request(request_queue_t *q, struct bio * bi)
2566 {
2567 	mddev_t *mddev = q->queuedata;
2568 	raid5_conf_t *conf = mddev_to_conf(mddev);
2569 	unsigned int dd_idx, pd_idx;
2570 	sector_t new_sector;
2571 	sector_t logical_sector, last_sector;
2572 	struct stripe_head *sh;
2573 	const int rw = bio_data_dir(bi);
2574 	int remaining;
2575 
2576 	if (unlikely(bio_barrier(bi))) {
2577 		bio_endio(bi, bi->bi_size, -EOPNOTSUPP);
2578 		return 0;
2579 	}
2580 
2581 	md_write_start(mddev, bi);
2582 
2583 	disk_stat_inc(mddev->gendisk, ios[rw]);
2584 	disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi));
2585 
2586 	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
2587 	last_sector = bi->bi_sector + (bi->bi_size>>9);
2588 	bi->bi_next = NULL;
2589 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
2590 
2591 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
2592 		DEFINE_WAIT(w);
2593 		int disks, data_disks;
2594 
2595 	retry:
2596 		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
2597 		if (likely(conf->expand_progress == MaxSector))
2598 			disks = conf->raid_disks;
2599 		else {
2600 			/* spinlock is needed as expand_progress may be
2601 			 * 64bit on a 32bit platform, and so it might be
2602 			 * possible to see a half-updated value
2603 			 * Ofcourse expand_progress could change after
2604 			 * the lock is dropped, so once we get a reference
2605 			 * to the stripe that we think it is, we will have
2606 			 * to check again.
2607 			 */
2608 			spin_lock_irq(&conf->device_lock);
2609 			disks = conf->raid_disks;
2610 			if (logical_sector >= conf->expand_progress)
2611 				disks = conf->previous_raid_disks;
2612 			else {
2613 				if (logical_sector >= conf->expand_lo) {
2614 					spin_unlock_irq(&conf->device_lock);
2615 					schedule();
2616 					goto retry;
2617 				}
2618 			}
2619 			spin_unlock_irq(&conf->device_lock);
2620 		}
2621 		data_disks = disks - conf->max_degraded;
2622 
2623  		new_sector = raid5_compute_sector(logical_sector, disks, data_disks,
2624 						  &dd_idx, &pd_idx, conf);
2625 		PRINTK("raid5: make_request, sector %llu logical %llu\n",
2626 			(unsigned long long)new_sector,
2627 			(unsigned long long)logical_sector);
2628 
2629 		sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK));
2630 		if (sh) {
2631 			if (unlikely(conf->expand_progress != MaxSector)) {
2632 				/* expansion might have moved on while waiting for a
2633 				 * stripe, so we must do the range check again.
2634 				 * Expansion could still move past after this
2635 				 * test, but as we are holding a reference to
2636 				 * 'sh', we know that if that happens,
2637 				 *  STRIPE_EXPANDING will get set and the expansion
2638 				 * won't proceed until we finish with the stripe.
2639 				 */
2640 				int must_retry = 0;
2641 				spin_lock_irq(&conf->device_lock);
2642 				if (logical_sector <  conf->expand_progress &&
2643 				    disks == conf->previous_raid_disks)
2644 					/* mismatch, need to try again */
2645 					must_retry = 1;
2646 				spin_unlock_irq(&conf->device_lock);
2647 				if (must_retry) {
2648 					release_stripe(sh);
2649 					goto retry;
2650 				}
2651 			}
2652 			/* FIXME what if we get a false positive because these
2653 			 * are being updated.
2654 			 */
2655 			if (logical_sector >= mddev->suspend_lo &&
2656 			    logical_sector < mddev->suspend_hi) {
2657 				release_stripe(sh);
2658 				schedule();
2659 				goto retry;
2660 			}
2661 
2662 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
2663 			    !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
2664 				/* Stripe is busy expanding or
2665 				 * add failed due to overlap.  Flush everything
2666 				 * and wait a while
2667 				 */
2668 				raid5_unplug_device(mddev->queue);
2669 				release_stripe(sh);
2670 				schedule();
2671 				goto retry;
2672 			}
2673 			finish_wait(&conf->wait_for_overlap, &w);
2674 			raid5_plug_device(conf);
2675 			handle_stripe(sh, NULL);
2676 			release_stripe(sh);
2677 		} else {
2678 			/* cannot get stripe for read-ahead, just give-up */
2679 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2680 			finish_wait(&conf->wait_for_overlap, &w);
2681 			break;
2682 		}
2683 
2684 	}
2685 	spin_lock_irq(&conf->device_lock);
2686 	remaining = --bi->bi_phys_segments;
2687 	spin_unlock_irq(&conf->device_lock);
2688 	if (remaining == 0) {
2689 		int bytes = bi->bi_size;
2690 
2691 		if ( rw == WRITE )
2692 			md_write_end(mddev);
2693 		bi->bi_size = 0;
2694 		bi->bi_end_io(bi, bytes, 0);
2695 	}
2696 	return 0;
2697 }
2698 
2699 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
2700 {
2701 	/* reshaping is quite different to recovery/resync so it is
2702 	 * handled quite separately ... here.
2703 	 *
2704 	 * On each call to sync_request, we gather one chunk worth of
2705 	 * destination stripes and flag them as expanding.
2706 	 * Then we find all the source stripes and request reads.
2707 	 * As the reads complete, handle_stripe will copy the data
2708 	 * into the destination stripe and release that stripe.
2709 	 */
2710 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
2711 	struct stripe_head *sh;
2712 	int pd_idx;
2713 	sector_t first_sector, last_sector;
2714 	int raid_disks;
2715 	int data_disks;
2716 	int i;
2717 	int dd_idx;
2718 	sector_t writepos, safepos, gap;
2719 
2720 	if (sector_nr == 0 &&
2721 	    conf->expand_progress != 0) {
2722 		/* restarting in the middle, skip the initial sectors */
2723 		sector_nr = conf->expand_progress;
2724 		sector_div(sector_nr, conf->raid_disks-1);
2725 		*skipped = 1;
2726 		return sector_nr;
2727 	}
2728 
2729 	/* we update the metadata when there is more than 3Meg
2730 	 * in the block range (that is rather arbitrary, should
2731 	 * probably be time based) or when the data about to be
2732 	 * copied would over-write the source of the data at
2733 	 * the front of the range.
2734 	 * i.e. one new_stripe forward from expand_progress new_maps
2735 	 * to after where expand_lo old_maps to
2736 	 */
2737 	writepos = conf->expand_progress +
2738 		conf->chunk_size/512*(conf->raid_disks-1);
2739 	sector_div(writepos, conf->raid_disks-1);
2740 	safepos = conf->expand_lo;
2741 	sector_div(safepos, conf->previous_raid_disks-1);
2742 	gap = conf->expand_progress - conf->expand_lo;
2743 
2744 	if (writepos >= safepos ||
2745 	    gap > (conf->raid_disks-1)*3000*2 /*3Meg*/) {
2746 		/* Cannot proceed until we've updated the superblock... */
2747 		wait_event(conf->wait_for_overlap,
2748 			   atomic_read(&conf->reshape_stripes)==0);
2749 		mddev->reshape_position = conf->expand_progress;
2750 		mddev->sb_dirty = 1;
2751 		md_wakeup_thread(mddev->thread);
2752 		wait_event(mddev->sb_wait, mddev->sb_dirty == 0 ||
2753 			   kthread_should_stop());
2754 		spin_lock_irq(&conf->device_lock);
2755 		conf->expand_lo = mddev->reshape_position;
2756 		spin_unlock_irq(&conf->device_lock);
2757 		wake_up(&conf->wait_for_overlap);
2758 	}
2759 
2760 	for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
2761 		int j;
2762 		int skipped = 0;
2763 		pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks);
2764 		sh = get_active_stripe(conf, sector_nr+i,
2765 				       conf->raid_disks, pd_idx, 0);
2766 		set_bit(STRIPE_EXPANDING, &sh->state);
2767 		atomic_inc(&conf->reshape_stripes);
2768 		/* If any of this stripe is beyond the end of the old
2769 		 * array, then we need to zero those blocks
2770 		 */
2771 		for (j=sh->disks; j--;) {
2772 			sector_t s;
2773 			if (j == sh->pd_idx)
2774 				continue;
2775 			s = compute_blocknr(sh, j);
2776 			if (s < (mddev->array_size<<1)) {
2777 				skipped = 1;
2778 				continue;
2779 			}
2780 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
2781 			set_bit(R5_Expanded, &sh->dev[j].flags);
2782 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
2783 		}
2784 		if (!skipped) {
2785 			set_bit(STRIPE_EXPAND_READY, &sh->state);
2786 			set_bit(STRIPE_HANDLE, &sh->state);
2787 		}
2788 		release_stripe(sh);
2789 	}
2790 	spin_lock_irq(&conf->device_lock);
2791 	conf->expand_progress = (sector_nr + i)*(conf->raid_disks-1);
2792 	spin_unlock_irq(&conf->device_lock);
2793 	/* Ok, those stripe are ready. We can start scheduling
2794 	 * reads on the source stripes.
2795 	 * The source stripes are determined by mapping the first and last
2796 	 * block on the destination stripes.
2797 	 */
2798 	raid_disks = conf->previous_raid_disks;
2799 	data_disks = raid_disks - 1;
2800 	first_sector =
2801 		raid5_compute_sector(sector_nr*(conf->raid_disks-1),
2802 				     raid_disks, data_disks,
2803 				     &dd_idx, &pd_idx, conf);
2804 	last_sector =
2805 		raid5_compute_sector((sector_nr+conf->chunk_size/512)
2806 				     *(conf->raid_disks-1) -1,
2807 				     raid_disks, data_disks,
2808 				     &dd_idx, &pd_idx, conf);
2809 	if (last_sector >= (mddev->size<<1))
2810 		last_sector = (mddev->size<<1)-1;
2811 	while (first_sector <= last_sector) {
2812 		pd_idx = stripe_to_pdidx(first_sector, conf, conf->previous_raid_disks);
2813 		sh = get_active_stripe(conf, first_sector,
2814 				       conf->previous_raid_disks, pd_idx, 0);
2815 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2816 		set_bit(STRIPE_HANDLE, &sh->state);
2817 		release_stripe(sh);
2818 		first_sector += STRIPE_SECTORS;
2819 	}
2820 	return conf->chunk_size>>9;
2821 }
2822 
2823 /* FIXME go_faster isn't used */
2824 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
2825 {
2826 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
2827 	struct stripe_head *sh;
2828 	int pd_idx;
2829 	int raid_disks = conf->raid_disks;
2830 	sector_t max_sector = mddev->size << 1;
2831 	int sync_blocks;
2832 	int still_degraded = 0;
2833 	int i;
2834 
2835 	if (sector_nr >= max_sector) {
2836 		/* just being told to finish up .. nothing much to do */
2837 		unplug_slaves(mddev);
2838 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2839 			end_reshape(conf);
2840 			return 0;
2841 		}
2842 
2843 		if (mddev->curr_resync < max_sector) /* aborted */
2844 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2845 					&sync_blocks, 1);
2846 		else /* completed sync */
2847 			conf->fullsync = 0;
2848 		bitmap_close_sync(mddev->bitmap);
2849 
2850 		return 0;
2851 	}
2852 
2853 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2854 		return reshape_request(mddev, sector_nr, skipped);
2855 
2856 	/* if there is too many failed drives and we are trying
2857 	 * to resync, then assert that we are finished, because there is
2858 	 * nothing we can do.
2859 	 */
2860 	if (mddev->degraded >= conf->max_degraded &&
2861 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2862 		sector_t rv = (mddev->size << 1) - sector_nr;
2863 		*skipped = 1;
2864 		return rv;
2865 	}
2866 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2867 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2868 	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
2869 		/* we can skip this block, and probably more */
2870 		sync_blocks /= STRIPE_SECTORS;
2871 		*skipped = 1;
2872 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
2873 	}
2874 
2875 	pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks);
2876 	sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1);
2877 	if (sh == NULL) {
2878 		sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0);
2879 		/* make sure we don't swamp the stripe cache if someone else
2880 		 * is trying to get access
2881 		 */
2882 		schedule_timeout_uninterruptible(1);
2883 	}
2884 	/* Need to check if array will still be degraded after recovery/resync
2885 	 * We don't need to check the 'failed' flag as when that gets set,
2886 	 * recovery aborts.
2887 	 */
2888 	for (i=0; i<mddev->raid_disks; i++)
2889 		if (conf->disks[i].rdev == NULL)
2890 			still_degraded = 1;
2891 
2892 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
2893 
2894 	spin_lock(&sh->lock);
2895 	set_bit(STRIPE_SYNCING, &sh->state);
2896 	clear_bit(STRIPE_INSYNC, &sh->state);
2897 	spin_unlock(&sh->lock);
2898 
2899 	handle_stripe(sh, NULL);
2900 	release_stripe(sh);
2901 
2902 	return STRIPE_SECTORS;
2903 }
2904 
2905 /*
2906  * This is our raid5 kernel thread.
2907  *
2908  * We scan the hash table for stripes which can be handled now.
2909  * During the scan, completed stripes are saved for us by the interrupt
2910  * handler, so that they will not have to wait for our next wakeup.
2911  */
2912 static void raid5d (mddev_t *mddev)
2913 {
2914 	struct stripe_head *sh;
2915 	raid5_conf_t *conf = mddev_to_conf(mddev);
2916 	int handled;
2917 
2918 	PRINTK("+++ raid5d active\n");
2919 
2920 	md_check_recovery(mddev);
2921 
2922 	handled = 0;
2923 	spin_lock_irq(&conf->device_lock);
2924 	while (1) {
2925 		struct list_head *first;
2926 
2927 		if (conf->seq_flush - conf->seq_write > 0) {
2928 			int seq = conf->seq_flush;
2929 			spin_unlock_irq(&conf->device_lock);
2930 			bitmap_unplug(mddev->bitmap);
2931 			spin_lock_irq(&conf->device_lock);
2932 			conf->seq_write = seq;
2933 			activate_bit_delay(conf);
2934 		}
2935 
2936 		if (list_empty(&conf->handle_list) &&
2937 		    atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD &&
2938 		    !blk_queue_plugged(mddev->queue) &&
2939 		    !list_empty(&conf->delayed_list))
2940 			raid5_activate_delayed(conf);
2941 
2942 		if (list_empty(&conf->handle_list))
2943 			break;
2944 
2945 		first = conf->handle_list.next;
2946 		sh = list_entry(first, struct stripe_head, lru);
2947 
2948 		list_del_init(first);
2949 		atomic_inc(&sh->count);
2950 		BUG_ON(atomic_read(&sh->count)!= 1);
2951 		spin_unlock_irq(&conf->device_lock);
2952 
2953 		handled++;
2954 		handle_stripe(sh, conf->spare_page);
2955 		release_stripe(sh);
2956 
2957 		spin_lock_irq(&conf->device_lock);
2958 	}
2959 	PRINTK("%d stripes handled\n", handled);
2960 
2961 	spin_unlock_irq(&conf->device_lock);
2962 
2963 	unplug_slaves(mddev);
2964 
2965 	PRINTK("--- raid5d inactive\n");
2966 }
2967 
2968 static ssize_t
2969 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
2970 {
2971 	raid5_conf_t *conf = mddev_to_conf(mddev);
2972 	if (conf)
2973 		return sprintf(page, "%d\n", conf->max_nr_stripes);
2974 	else
2975 		return 0;
2976 }
2977 
2978 static ssize_t
2979 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
2980 {
2981 	raid5_conf_t *conf = mddev_to_conf(mddev);
2982 	char *end;
2983 	int new;
2984 	if (len >= PAGE_SIZE)
2985 		return -EINVAL;
2986 	if (!conf)
2987 		return -ENODEV;
2988 
2989 	new = simple_strtoul(page, &end, 10);
2990 	if (!*page || (*end && *end != '\n') )
2991 		return -EINVAL;
2992 	if (new <= 16 || new > 32768)
2993 		return -EINVAL;
2994 	while (new < conf->max_nr_stripes) {
2995 		if (drop_one_stripe(conf))
2996 			conf->max_nr_stripes--;
2997 		else
2998 			break;
2999 	}
3000 	while (new > conf->max_nr_stripes) {
3001 		if (grow_one_stripe(conf))
3002 			conf->max_nr_stripes++;
3003 		else break;
3004 	}
3005 	return len;
3006 }
3007 
3008 static struct md_sysfs_entry
3009 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
3010 				raid5_show_stripe_cache_size,
3011 				raid5_store_stripe_cache_size);
3012 
3013 static ssize_t
3014 stripe_cache_active_show(mddev_t *mddev, char *page)
3015 {
3016 	raid5_conf_t *conf = mddev_to_conf(mddev);
3017 	if (conf)
3018 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
3019 	else
3020 		return 0;
3021 }
3022 
3023 static struct md_sysfs_entry
3024 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3025 
3026 static struct attribute *raid5_attrs[] =  {
3027 	&raid5_stripecache_size.attr,
3028 	&raid5_stripecache_active.attr,
3029 	NULL,
3030 };
3031 static struct attribute_group raid5_attrs_group = {
3032 	.name = NULL,
3033 	.attrs = raid5_attrs,
3034 };
3035 
3036 static int run(mddev_t *mddev)
3037 {
3038 	raid5_conf_t *conf;
3039 	int raid_disk, memory;
3040 	mdk_rdev_t *rdev;
3041 	struct disk_info *disk;
3042 	struct list_head *tmp;
3043 
3044 	if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) {
3045 		printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
3046 		       mdname(mddev), mddev->level);
3047 		return -EIO;
3048 	}
3049 
3050 	if (mddev->reshape_position != MaxSector) {
3051 		/* Check that we can continue the reshape.
3052 		 * Currently only disks can change, it must
3053 		 * increase, and we must be past the point where
3054 		 * a stripe over-writes itself
3055 		 */
3056 		sector_t here_new, here_old;
3057 		int old_disks;
3058 
3059 		if (mddev->new_level != mddev->level ||
3060 		    mddev->new_layout != mddev->layout ||
3061 		    mddev->new_chunk != mddev->chunk_size) {
3062 			printk(KERN_ERR "raid5: %s: unsupported reshape required - aborting.\n",
3063 			       mdname(mddev));
3064 			return -EINVAL;
3065 		}
3066 		if (mddev->delta_disks <= 0) {
3067 			printk(KERN_ERR "raid5: %s: unsupported reshape (reduce disks) required - aborting.\n",
3068 			       mdname(mddev));
3069 			return -EINVAL;
3070 		}
3071 		old_disks = mddev->raid_disks - mddev->delta_disks;
3072 		/* reshape_position must be on a new-stripe boundary, and one
3073 		 * further up in new geometry must map after here in old geometry.
3074 		 */
3075 		here_new = mddev->reshape_position;
3076 		if (sector_div(here_new, (mddev->chunk_size>>9)*(mddev->raid_disks-1))) {
3077 			printk(KERN_ERR "raid5: reshape_position not on a stripe boundary\n");
3078 			return -EINVAL;
3079 		}
3080 		/* here_new is the stripe we will write to */
3081 		here_old = mddev->reshape_position;
3082 		sector_div(here_old, (mddev->chunk_size>>9)*(old_disks-1));
3083 		/* here_old is the first stripe that we might need to read from */
3084 		if (here_new >= here_old) {
3085 			/* Reading from the same stripe as writing to - bad */
3086 			printk(KERN_ERR "raid5: reshape_position too early for auto-recovery - aborting.\n");
3087 			return -EINVAL;
3088 		}
3089 		printk(KERN_INFO "raid5: reshape will continue\n");
3090 		/* OK, we should be able to continue; */
3091 	}
3092 
3093 
3094 	mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
3095 	if ((conf = mddev->private) == NULL)
3096 		goto abort;
3097 	if (mddev->reshape_position == MaxSector) {
3098 		conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
3099 	} else {
3100 		conf->raid_disks = mddev->raid_disks;
3101 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
3102 	}
3103 
3104 	conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
3105 			      GFP_KERNEL);
3106 	if (!conf->disks)
3107 		goto abort;
3108 
3109 	conf->mddev = mddev;
3110 
3111 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
3112 		goto abort;
3113 
3114 	if (mddev->level == 6) {
3115 		conf->spare_page = alloc_page(GFP_KERNEL);
3116 		if (!conf->spare_page)
3117 			goto abort;
3118 	}
3119 	spin_lock_init(&conf->device_lock);
3120 	init_waitqueue_head(&conf->wait_for_stripe);
3121 	init_waitqueue_head(&conf->wait_for_overlap);
3122 	INIT_LIST_HEAD(&conf->handle_list);
3123 	INIT_LIST_HEAD(&conf->delayed_list);
3124 	INIT_LIST_HEAD(&conf->bitmap_list);
3125 	INIT_LIST_HEAD(&conf->inactive_list);
3126 	atomic_set(&conf->active_stripes, 0);
3127 	atomic_set(&conf->preread_active_stripes, 0);
3128 
3129 	PRINTK("raid5: run(%s) called.\n", mdname(mddev));
3130 
3131 	ITERATE_RDEV(mddev,rdev,tmp) {
3132 		raid_disk = rdev->raid_disk;
3133 		if (raid_disk >= conf->raid_disks
3134 		    || raid_disk < 0)
3135 			continue;
3136 		disk = conf->disks + raid_disk;
3137 
3138 		disk->rdev = rdev;
3139 
3140 		if (test_bit(In_sync, &rdev->flags)) {
3141 			char b[BDEVNAME_SIZE];
3142 			printk(KERN_INFO "raid5: device %s operational as raid"
3143 				" disk %d\n", bdevname(rdev->bdev,b),
3144 				raid_disk);
3145 			conf->working_disks++;
3146 		}
3147 	}
3148 
3149 	/*
3150 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
3151 	 */
3152 	mddev->degraded = conf->failed_disks = conf->raid_disks - conf->working_disks;
3153 	conf->mddev = mddev;
3154 	conf->chunk_size = mddev->chunk_size;
3155 	conf->level = mddev->level;
3156 	if (conf->level == 6)
3157 		conf->max_degraded = 2;
3158 	else
3159 		conf->max_degraded = 1;
3160 	conf->algorithm = mddev->layout;
3161 	conf->max_nr_stripes = NR_STRIPES;
3162 	conf->expand_progress = mddev->reshape_position;
3163 
3164 	/* device size must be a multiple of chunk size */
3165 	mddev->size &= ~(mddev->chunk_size/1024 -1);
3166 	mddev->resync_max_sectors = mddev->size << 1;
3167 
3168 	if (conf->level == 6 && conf->raid_disks < 4) {
3169 		printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
3170 		       mdname(mddev), conf->raid_disks);
3171 		goto abort;
3172 	}
3173 	if (!conf->chunk_size || conf->chunk_size % 4) {
3174 		printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
3175 			conf->chunk_size, mdname(mddev));
3176 		goto abort;
3177 	}
3178 	if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
3179 		printk(KERN_ERR
3180 			"raid5: unsupported parity algorithm %d for %s\n",
3181 			conf->algorithm, mdname(mddev));
3182 		goto abort;
3183 	}
3184 	if (mddev->degraded > conf->max_degraded) {
3185 		printk(KERN_ERR "raid5: not enough operational devices for %s"
3186 			" (%d/%d failed)\n",
3187 			mdname(mddev), conf->failed_disks, conf->raid_disks);
3188 		goto abort;
3189 	}
3190 
3191 	if (mddev->degraded > 0 &&
3192 	    mddev->recovery_cp != MaxSector) {
3193 		if (mddev->ok_start_degraded)
3194 			printk(KERN_WARNING
3195 			       "raid5: starting dirty degraded array: %s"
3196 			       "- data corruption possible.\n",
3197 			       mdname(mddev));
3198 		else {
3199 			printk(KERN_ERR
3200 			       "raid5: cannot start dirty degraded array for %s\n",
3201 			       mdname(mddev));
3202 			goto abort;
3203 		}
3204 	}
3205 
3206 	{
3207 		mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
3208 		if (!mddev->thread) {
3209 			printk(KERN_ERR
3210 				"raid5: couldn't allocate thread for %s\n",
3211 				mdname(mddev));
3212 			goto abort;
3213 		}
3214 	}
3215 	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
3216 		 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
3217 	if (grow_stripes(conf, conf->max_nr_stripes)) {
3218 		printk(KERN_ERR
3219 			"raid5: couldn't allocate %dkB for buffers\n", memory);
3220 		shrink_stripes(conf);
3221 		md_unregister_thread(mddev->thread);
3222 		goto abort;
3223 	} else
3224 		printk(KERN_INFO "raid5: allocated %dkB for %s\n",
3225 			memory, mdname(mddev));
3226 
3227 	if (mddev->degraded == 0)
3228 		printk("raid5: raid level %d set %s active with %d out of %d"
3229 			" devices, algorithm %d\n", conf->level, mdname(mddev),
3230 			mddev->raid_disks-mddev->degraded, mddev->raid_disks,
3231 			conf->algorithm);
3232 	else
3233 		printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
3234 			" out of %d devices, algorithm %d\n", conf->level,
3235 			mdname(mddev), mddev->raid_disks - mddev->degraded,
3236 			mddev->raid_disks, conf->algorithm);
3237 
3238 	print_raid5_conf(conf);
3239 
3240 	if (conf->expand_progress != MaxSector) {
3241 		printk("...ok start reshape thread\n");
3242 		conf->expand_lo = conf->expand_progress;
3243 		atomic_set(&conf->reshape_stripes, 0);
3244 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3245 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3246 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3247 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3248 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3249 							"%s_reshape");
3250 		/* FIXME if md_register_thread fails?? */
3251 		md_wakeup_thread(mddev->sync_thread);
3252 
3253 	}
3254 
3255 	/* read-ahead size must cover two whole stripes, which is
3256 	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
3257 	 */
3258 	{
3259 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
3260 		int stripe = data_disks *
3261 			(mddev->chunk_size / PAGE_SIZE);
3262 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3263 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3264 	}
3265 
3266 	/* Ok, everything is just fine now */
3267 	sysfs_create_group(&mddev->kobj, &raid5_attrs_group);
3268 
3269 	mddev->queue->unplug_fn = raid5_unplug_device;
3270 	mddev->queue->issue_flush_fn = raid5_issue_flush;
3271 	mddev->array_size =  mddev->size * (conf->previous_raid_disks -
3272 					    conf->max_degraded);
3273 
3274 	return 0;
3275 abort:
3276 	if (conf) {
3277 		print_raid5_conf(conf);
3278 		safe_put_page(conf->spare_page);
3279 		kfree(conf->disks);
3280 		kfree(conf->stripe_hashtbl);
3281 		kfree(conf);
3282 	}
3283 	mddev->private = NULL;
3284 	printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
3285 	return -EIO;
3286 }
3287 
3288 
3289 
3290 static int stop(mddev_t *mddev)
3291 {
3292 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3293 
3294 	md_unregister_thread(mddev->thread);
3295 	mddev->thread = NULL;
3296 	shrink_stripes(conf);
3297 	kfree(conf->stripe_hashtbl);
3298 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
3299 	sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
3300 	kfree(conf->disks);
3301 	kfree(conf);
3302 	mddev->private = NULL;
3303 	return 0;
3304 }
3305 
3306 #if RAID5_DEBUG
3307 static void print_sh (struct seq_file *seq, struct stripe_head *sh)
3308 {
3309 	int i;
3310 
3311 	seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
3312 		   (unsigned long long)sh->sector, sh->pd_idx, sh->state);
3313 	seq_printf(seq, "sh %llu,  count %d.\n",
3314 		   (unsigned long long)sh->sector, atomic_read(&sh->count));
3315 	seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
3316 	for (i = 0; i < sh->disks; i++) {
3317 		seq_printf(seq, "(cache%d: %p %ld) ",
3318 			   i, sh->dev[i].page, sh->dev[i].flags);
3319 	}
3320 	seq_printf(seq, "\n");
3321 }
3322 
3323 static void printall (struct seq_file *seq, raid5_conf_t *conf)
3324 {
3325 	struct stripe_head *sh;
3326 	struct hlist_node *hn;
3327 	int i;
3328 
3329 	spin_lock_irq(&conf->device_lock);
3330 	for (i = 0; i < NR_HASH; i++) {
3331 		hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
3332 			if (sh->raid_conf != conf)
3333 				continue;
3334 			print_sh(seq, sh);
3335 		}
3336 	}
3337 	spin_unlock_irq(&conf->device_lock);
3338 }
3339 #endif
3340 
3341 static void status (struct seq_file *seq, mddev_t *mddev)
3342 {
3343 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3344 	int i;
3345 
3346 	seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
3347 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->working_disks);
3348 	for (i = 0; i < conf->raid_disks; i++)
3349 		seq_printf (seq, "%s",
3350 			       conf->disks[i].rdev &&
3351 			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
3352 	seq_printf (seq, "]");
3353 #if RAID5_DEBUG
3354 	seq_printf (seq, "\n");
3355 	printall(seq, conf);
3356 #endif
3357 }
3358 
3359 static void print_raid5_conf (raid5_conf_t *conf)
3360 {
3361 	int i;
3362 	struct disk_info *tmp;
3363 
3364 	printk("RAID5 conf printout:\n");
3365 	if (!conf) {
3366 		printk("(conf==NULL)\n");
3367 		return;
3368 	}
3369 	printk(" --- rd:%d wd:%d fd:%d\n", conf->raid_disks,
3370 		 conf->working_disks, conf->failed_disks);
3371 
3372 	for (i = 0; i < conf->raid_disks; i++) {
3373 		char b[BDEVNAME_SIZE];
3374 		tmp = conf->disks + i;
3375 		if (tmp->rdev)
3376 		printk(" disk %d, o:%d, dev:%s\n",
3377 			i, !test_bit(Faulty, &tmp->rdev->flags),
3378 			bdevname(tmp->rdev->bdev,b));
3379 	}
3380 }
3381 
3382 static int raid5_spare_active(mddev_t *mddev)
3383 {
3384 	int i;
3385 	raid5_conf_t *conf = mddev->private;
3386 	struct disk_info *tmp;
3387 
3388 	for (i = 0; i < conf->raid_disks; i++) {
3389 		tmp = conf->disks + i;
3390 		if (tmp->rdev
3391 		    && !test_bit(Faulty, &tmp->rdev->flags)
3392 		    && !test_bit(In_sync, &tmp->rdev->flags)) {
3393 			mddev->degraded--;
3394 			conf->failed_disks--;
3395 			conf->working_disks++;
3396 			set_bit(In_sync, &tmp->rdev->flags);
3397 		}
3398 	}
3399 	print_raid5_conf(conf);
3400 	return 0;
3401 }
3402 
3403 static int raid5_remove_disk(mddev_t *mddev, int number)
3404 {
3405 	raid5_conf_t *conf = mddev->private;
3406 	int err = 0;
3407 	mdk_rdev_t *rdev;
3408 	struct disk_info *p = conf->disks + number;
3409 
3410 	print_raid5_conf(conf);
3411 	rdev = p->rdev;
3412 	if (rdev) {
3413 		if (test_bit(In_sync, &rdev->flags) ||
3414 		    atomic_read(&rdev->nr_pending)) {
3415 			err = -EBUSY;
3416 			goto abort;
3417 		}
3418 		p->rdev = NULL;
3419 		synchronize_rcu();
3420 		if (atomic_read(&rdev->nr_pending)) {
3421 			/* lost the race, try later */
3422 			err = -EBUSY;
3423 			p->rdev = rdev;
3424 		}
3425 	}
3426 abort:
3427 
3428 	print_raid5_conf(conf);
3429 	return err;
3430 }
3431 
3432 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
3433 {
3434 	raid5_conf_t *conf = mddev->private;
3435 	int found = 0;
3436 	int disk;
3437 	struct disk_info *p;
3438 
3439 	if (mddev->degraded > conf->max_degraded)
3440 		/* no point adding a device */
3441 		return 0;
3442 
3443 	/*
3444 	 * find the disk ... but prefer rdev->saved_raid_disk
3445 	 * if possible.
3446 	 */
3447 	if (rdev->saved_raid_disk >= 0 &&
3448 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
3449 		disk = rdev->saved_raid_disk;
3450 	else
3451 		disk = 0;
3452 	for ( ; disk < conf->raid_disks; disk++)
3453 		if ((p=conf->disks + disk)->rdev == NULL) {
3454 			clear_bit(In_sync, &rdev->flags);
3455 			rdev->raid_disk = disk;
3456 			found = 1;
3457 			if (rdev->saved_raid_disk != disk)
3458 				conf->fullsync = 1;
3459 			rcu_assign_pointer(p->rdev, rdev);
3460 			break;
3461 		}
3462 	print_raid5_conf(conf);
3463 	return found;
3464 }
3465 
3466 static int raid5_resize(mddev_t *mddev, sector_t sectors)
3467 {
3468 	/* no resync is happening, and there is enough space
3469 	 * on all devices, so we can resize.
3470 	 * We need to make sure resync covers any new space.
3471 	 * If the array is shrinking we should possibly wait until
3472 	 * any io in the removed space completes, but it hardly seems
3473 	 * worth it.
3474 	 */
3475 	raid5_conf_t *conf = mddev_to_conf(mddev);
3476 
3477 	sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
3478 	mddev->array_size = (sectors * (mddev->raid_disks-conf->max_degraded))>>1;
3479 	set_capacity(mddev->gendisk, mddev->array_size << 1);
3480 	mddev->changed = 1;
3481 	if (sectors/2  > mddev->size && mddev->recovery_cp == MaxSector) {
3482 		mddev->recovery_cp = mddev->size << 1;
3483 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3484 	}
3485 	mddev->size = sectors /2;
3486 	mddev->resync_max_sectors = sectors;
3487 	return 0;
3488 }
3489 
3490 #ifdef CONFIG_MD_RAID5_RESHAPE
3491 static int raid5_check_reshape(mddev_t *mddev)
3492 {
3493 	raid5_conf_t *conf = mddev_to_conf(mddev);
3494 	int err;
3495 
3496 	if (mddev->delta_disks < 0 ||
3497 	    mddev->new_level != mddev->level)
3498 		return -EINVAL; /* Cannot shrink array or change level yet */
3499 	if (mddev->delta_disks == 0)
3500 		return 0; /* nothing to do */
3501 
3502 	/* Can only proceed if there are plenty of stripe_heads.
3503 	 * We need a minimum of one full stripe,, and for sensible progress
3504 	 * it is best to have about 4 times that.
3505 	 * If we require 4 times, then the default 256 4K stripe_heads will
3506 	 * allow for chunk sizes up to 256K, which is probably OK.
3507 	 * If the chunk size is greater, user-space should request more
3508 	 * stripe_heads first.
3509 	 */
3510 	if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
3511 	    (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
3512 		printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n",
3513 		       (mddev->chunk_size / STRIPE_SIZE)*4);
3514 		return -ENOSPC;
3515 	}
3516 
3517 	err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
3518 	if (err)
3519 		return err;
3520 
3521 	/* looks like we might be able to manage this */
3522 	return 0;
3523 }
3524 
3525 static int raid5_start_reshape(mddev_t *mddev)
3526 {
3527 	raid5_conf_t *conf = mddev_to_conf(mddev);
3528 	mdk_rdev_t *rdev;
3529 	struct list_head *rtmp;
3530 	int spares = 0;
3531 	int added_devices = 0;
3532 
3533 	if (mddev->degraded ||
3534 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3535 		return -EBUSY;
3536 
3537 	ITERATE_RDEV(mddev, rdev, rtmp)
3538 		if (rdev->raid_disk < 0 &&
3539 		    !test_bit(Faulty, &rdev->flags))
3540 			spares++;
3541 
3542 	if (spares < mddev->delta_disks-1)
3543 		/* Not enough devices even to make a degraded array
3544 		 * of that size
3545 		 */
3546 		return -EINVAL;
3547 
3548 	atomic_set(&conf->reshape_stripes, 0);
3549 	spin_lock_irq(&conf->device_lock);
3550 	conf->previous_raid_disks = conf->raid_disks;
3551 	conf->raid_disks += mddev->delta_disks;
3552 	conf->expand_progress = 0;
3553 	conf->expand_lo = 0;
3554 	spin_unlock_irq(&conf->device_lock);
3555 
3556 	/* Add some new drives, as many as will fit.
3557 	 * We know there are enough to make the newly sized array work.
3558 	 */
3559 	ITERATE_RDEV(mddev, rdev, rtmp)
3560 		if (rdev->raid_disk < 0 &&
3561 		    !test_bit(Faulty, &rdev->flags)) {
3562 			if (raid5_add_disk(mddev, rdev)) {
3563 				char nm[20];
3564 				set_bit(In_sync, &rdev->flags);
3565 				conf->working_disks++;
3566 				added_devices++;
3567 				rdev->recovery_offset = 0;
3568 				sprintf(nm, "rd%d", rdev->raid_disk);
3569 				sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
3570 			} else
3571 				break;
3572 		}
3573 
3574 	mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
3575 	mddev->raid_disks = conf->raid_disks;
3576 	mddev->reshape_position = 0;
3577 	mddev->sb_dirty = 1;
3578 
3579 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3580 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3581 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3582 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3583 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3584 						"%s_reshape");
3585 	if (!mddev->sync_thread) {
3586 		mddev->recovery = 0;
3587 		spin_lock_irq(&conf->device_lock);
3588 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
3589 		conf->expand_progress = MaxSector;
3590 		spin_unlock_irq(&conf->device_lock);
3591 		return -EAGAIN;
3592 	}
3593 	md_wakeup_thread(mddev->sync_thread);
3594 	md_new_event(mddev);
3595 	return 0;
3596 }
3597 #endif
3598 
3599 static void end_reshape(raid5_conf_t *conf)
3600 {
3601 	struct block_device *bdev;
3602 
3603 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
3604 		conf->mddev->array_size = conf->mddev->size * (conf->raid_disks-1);
3605 		set_capacity(conf->mddev->gendisk, conf->mddev->array_size << 1);
3606 		conf->mddev->changed = 1;
3607 
3608 		bdev = bdget_disk(conf->mddev->gendisk, 0);
3609 		if (bdev) {
3610 			mutex_lock(&bdev->bd_inode->i_mutex);
3611 			i_size_write(bdev->bd_inode, conf->mddev->array_size << 10);
3612 			mutex_unlock(&bdev->bd_inode->i_mutex);
3613 			bdput(bdev);
3614 		}
3615 		spin_lock_irq(&conf->device_lock);
3616 		conf->expand_progress = MaxSector;
3617 		spin_unlock_irq(&conf->device_lock);
3618 		conf->mddev->reshape_position = MaxSector;
3619 
3620 		/* read-ahead size must cover two whole stripes, which is
3621 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
3622 		 */
3623 		{
3624 			int data_disks = conf->previous_raid_disks - conf->max_degraded;
3625 			int stripe = data_disks *
3626 				(conf->mddev->chunk_size / PAGE_SIZE);
3627 			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3628 				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3629 		}
3630 	}
3631 }
3632 
3633 static void raid5_quiesce(mddev_t *mddev, int state)
3634 {
3635 	raid5_conf_t *conf = mddev_to_conf(mddev);
3636 
3637 	switch(state) {
3638 	case 2: /* resume for a suspend */
3639 		wake_up(&conf->wait_for_overlap);
3640 		break;
3641 
3642 	case 1: /* stop all writes */
3643 		spin_lock_irq(&conf->device_lock);
3644 		conf->quiesce = 1;
3645 		wait_event_lock_irq(conf->wait_for_stripe,
3646 				    atomic_read(&conf->active_stripes) == 0,
3647 				    conf->device_lock, /* nothing */);
3648 		spin_unlock_irq(&conf->device_lock);
3649 		break;
3650 
3651 	case 0: /* re-enable writes */
3652 		spin_lock_irq(&conf->device_lock);
3653 		conf->quiesce = 0;
3654 		wake_up(&conf->wait_for_stripe);
3655 		wake_up(&conf->wait_for_overlap);
3656 		spin_unlock_irq(&conf->device_lock);
3657 		break;
3658 	}
3659 }
3660 
3661 static struct mdk_personality raid6_personality =
3662 {
3663 	.name		= "raid6",
3664 	.level		= 6,
3665 	.owner		= THIS_MODULE,
3666 	.make_request	= make_request,
3667 	.run		= run,
3668 	.stop		= stop,
3669 	.status		= status,
3670 	.error_handler	= error,
3671 	.hot_add_disk	= raid5_add_disk,
3672 	.hot_remove_disk= raid5_remove_disk,
3673 	.spare_active	= raid5_spare_active,
3674 	.sync_request	= sync_request,
3675 	.resize		= raid5_resize,
3676 	.quiesce	= raid5_quiesce,
3677 };
3678 static struct mdk_personality raid5_personality =
3679 {
3680 	.name		= "raid5",
3681 	.level		= 5,
3682 	.owner		= THIS_MODULE,
3683 	.make_request	= make_request,
3684 	.run		= run,
3685 	.stop		= stop,
3686 	.status		= status,
3687 	.error_handler	= error,
3688 	.hot_add_disk	= raid5_add_disk,
3689 	.hot_remove_disk= raid5_remove_disk,
3690 	.spare_active	= raid5_spare_active,
3691 	.sync_request	= sync_request,
3692 	.resize		= raid5_resize,
3693 #ifdef CONFIG_MD_RAID5_RESHAPE
3694 	.check_reshape	= raid5_check_reshape,
3695 	.start_reshape  = raid5_start_reshape,
3696 #endif
3697 	.quiesce	= raid5_quiesce,
3698 };
3699 
3700 static struct mdk_personality raid4_personality =
3701 {
3702 	.name		= "raid4",
3703 	.level		= 4,
3704 	.owner		= THIS_MODULE,
3705 	.make_request	= make_request,
3706 	.run		= run,
3707 	.stop		= stop,
3708 	.status		= status,
3709 	.error_handler	= error,
3710 	.hot_add_disk	= raid5_add_disk,
3711 	.hot_remove_disk= raid5_remove_disk,
3712 	.spare_active	= raid5_spare_active,
3713 	.sync_request	= sync_request,
3714 	.resize		= raid5_resize,
3715 	.quiesce	= raid5_quiesce,
3716 };
3717 
3718 static int __init raid5_init(void)
3719 {
3720 	int e;
3721 
3722 	e = raid6_select_algo();
3723 	if ( e )
3724 		return e;
3725 	register_md_personality(&raid6_personality);
3726 	register_md_personality(&raid5_personality);
3727 	register_md_personality(&raid4_personality);
3728 	return 0;
3729 }
3730 
3731 static void raid5_exit(void)
3732 {
3733 	unregister_md_personality(&raid6_personality);
3734 	unregister_md_personality(&raid5_personality);
3735 	unregister_md_personality(&raid4_personality);
3736 }
3737 
3738 module_init(raid5_init);
3739 module_exit(raid5_exit);
3740 MODULE_LICENSE("GPL");
3741 MODULE_ALIAS("md-personality-4"); /* RAID5 */
3742 MODULE_ALIAS("md-raid5");
3743 MODULE_ALIAS("md-raid4");
3744 MODULE_ALIAS("md-level-5");
3745 MODULE_ALIAS("md-level-4");
3746 MODULE_ALIAS("md-personality-8"); /* RAID6 */
3747 MODULE_ALIAS("md-raid6");
3748 MODULE_ALIAS("md-level-6");
3749 
3750 /* This used to be two separate modules, they were: */
3751 MODULE_ALIAS("raid5");
3752 MODULE_ALIAS("raid6");
3753