1 /* 2 * raid5.c : Multiple Devices driver for Linux 3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman 4 * Copyright (C) 1999, 2000 Ingo Molnar 5 * Copyright (C) 2002, 2003 H. Peter Anvin 6 * 7 * RAID-4/5/6 management functions. 8 * Thanks to Penguin Computing for making the RAID-6 development possible 9 * by donating a test server! 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 /* 22 * BITMAP UNPLUGGING: 23 * 24 * The sequencing for updating the bitmap reliably is a little 25 * subtle (and I got it wrong the first time) so it deserves some 26 * explanation. 27 * 28 * We group bitmap updates into batches. Each batch has a number. 29 * We may write out several batches at once, but that isn't very important. 30 * conf->seq_write is the number of the last batch successfully written. 31 * conf->seq_flush is the number of the last batch that was closed to 32 * new additions. 33 * When we discover that we will need to write to any block in a stripe 34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq 35 * the number of the batch it will be in. This is seq_flush+1. 36 * When we are ready to do a write, if that batch hasn't been written yet, 37 * we plug the array and queue the stripe for later. 38 * When an unplug happens, we increment bm_flush, thus closing the current 39 * batch. 40 * When we notice that bm_flush > bm_write, we write out all pending updates 41 * to the bitmap, and advance bm_write to where bm_flush was. 42 * This may occasionally write a bit out twice, but is sure never to 43 * miss any bits. 44 */ 45 46 #include <linux/blkdev.h> 47 #include <linux/kthread.h> 48 #include <linux/raid/pq.h> 49 #include <linux/async_tx.h> 50 #include <linux/module.h> 51 #include <linux/async.h> 52 #include <linux/seq_file.h> 53 #include <linux/cpu.h> 54 #include <linux/slab.h> 55 #include <linux/ratelimit.h> 56 #include <linux/nodemask.h> 57 #include <linux/flex_array.h> 58 59 #include <trace/events/block.h> 60 #include <linux/list_sort.h> 61 62 #include "md.h" 63 #include "raid5.h" 64 #include "raid0.h" 65 #include "md-bitmap.h" 66 #include "raid5-log.h" 67 68 #define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED) 69 70 #define cpu_to_group(cpu) cpu_to_node(cpu) 71 #define ANY_GROUP NUMA_NO_NODE 72 73 static bool devices_handle_discard_safely = false; 74 module_param(devices_handle_discard_safely, bool, 0644); 75 MODULE_PARM_DESC(devices_handle_discard_safely, 76 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions"); 77 static struct workqueue_struct *raid5_wq; 78 79 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect) 80 { 81 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK; 82 return &conf->stripe_hashtbl[hash]; 83 } 84 85 static inline int stripe_hash_locks_hash(sector_t sect) 86 { 87 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK; 88 } 89 90 static inline void lock_device_hash_lock(struct r5conf *conf, int hash) 91 { 92 spin_lock_irq(conf->hash_locks + hash); 93 spin_lock(&conf->device_lock); 94 } 95 96 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash) 97 { 98 spin_unlock(&conf->device_lock); 99 spin_unlock_irq(conf->hash_locks + hash); 100 } 101 102 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf) 103 { 104 int i; 105 spin_lock_irq(conf->hash_locks); 106 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 107 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks); 108 spin_lock(&conf->device_lock); 109 } 110 111 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf) 112 { 113 int i; 114 spin_unlock(&conf->device_lock); 115 for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--) 116 spin_unlock(conf->hash_locks + i); 117 spin_unlock_irq(conf->hash_locks); 118 } 119 120 /* Find first data disk in a raid6 stripe */ 121 static inline int raid6_d0(struct stripe_head *sh) 122 { 123 if (sh->ddf_layout) 124 /* ddf always start from first device */ 125 return 0; 126 /* md starts just after Q block */ 127 if (sh->qd_idx == sh->disks - 1) 128 return 0; 129 else 130 return sh->qd_idx + 1; 131 } 132 static inline int raid6_next_disk(int disk, int raid_disks) 133 { 134 disk++; 135 return (disk < raid_disks) ? disk : 0; 136 } 137 138 /* When walking through the disks in a raid5, starting at raid6_d0, 139 * We need to map each disk to a 'slot', where the data disks are slot 140 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk 141 * is raid_disks-1. This help does that mapping. 142 */ 143 static int raid6_idx_to_slot(int idx, struct stripe_head *sh, 144 int *count, int syndrome_disks) 145 { 146 int slot = *count; 147 148 if (sh->ddf_layout) 149 (*count)++; 150 if (idx == sh->pd_idx) 151 return syndrome_disks; 152 if (idx == sh->qd_idx) 153 return syndrome_disks + 1; 154 if (!sh->ddf_layout) 155 (*count)++; 156 return slot; 157 } 158 159 static void print_raid5_conf (struct r5conf *conf); 160 161 static int stripe_operations_active(struct stripe_head *sh) 162 { 163 return sh->check_state || sh->reconstruct_state || 164 test_bit(STRIPE_BIOFILL_RUN, &sh->state) || 165 test_bit(STRIPE_COMPUTE_RUN, &sh->state); 166 } 167 168 static bool stripe_is_lowprio(struct stripe_head *sh) 169 { 170 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) || 171 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) && 172 !test_bit(STRIPE_R5C_CACHING, &sh->state); 173 } 174 175 static void raid5_wakeup_stripe_thread(struct stripe_head *sh) 176 { 177 struct r5conf *conf = sh->raid_conf; 178 struct r5worker_group *group; 179 int thread_cnt; 180 int i, cpu = sh->cpu; 181 182 if (!cpu_online(cpu)) { 183 cpu = cpumask_any(cpu_online_mask); 184 sh->cpu = cpu; 185 } 186 187 if (list_empty(&sh->lru)) { 188 struct r5worker_group *group; 189 group = conf->worker_groups + cpu_to_group(cpu); 190 if (stripe_is_lowprio(sh)) 191 list_add_tail(&sh->lru, &group->loprio_list); 192 else 193 list_add_tail(&sh->lru, &group->handle_list); 194 group->stripes_cnt++; 195 sh->group = group; 196 } 197 198 if (conf->worker_cnt_per_group == 0) { 199 md_wakeup_thread(conf->mddev->thread); 200 return; 201 } 202 203 group = conf->worker_groups + cpu_to_group(sh->cpu); 204 205 group->workers[0].working = true; 206 /* at least one worker should run to avoid race */ 207 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work); 208 209 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1; 210 /* wakeup more workers */ 211 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) { 212 if (group->workers[i].working == false) { 213 group->workers[i].working = true; 214 queue_work_on(sh->cpu, raid5_wq, 215 &group->workers[i].work); 216 thread_cnt--; 217 } 218 } 219 } 220 221 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh, 222 struct list_head *temp_inactive_list) 223 { 224 int i; 225 int injournal = 0; /* number of date pages with R5_InJournal */ 226 227 BUG_ON(!list_empty(&sh->lru)); 228 BUG_ON(atomic_read(&conf->active_stripes)==0); 229 230 if (r5c_is_writeback(conf->log)) 231 for (i = sh->disks; i--; ) 232 if (test_bit(R5_InJournal, &sh->dev[i].flags)) 233 injournal++; 234 /* 235 * In the following cases, the stripe cannot be released to cached 236 * lists. Therefore, we make the stripe write out and set 237 * STRIPE_HANDLE: 238 * 1. when quiesce in r5c write back; 239 * 2. when resync is requested fot the stripe. 240 */ 241 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) || 242 (conf->quiesce && r5c_is_writeback(conf->log) && 243 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) { 244 if (test_bit(STRIPE_R5C_CACHING, &sh->state)) 245 r5c_make_stripe_write_out(sh); 246 set_bit(STRIPE_HANDLE, &sh->state); 247 } 248 249 if (test_bit(STRIPE_HANDLE, &sh->state)) { 250 if (test_bit(STRIPE_DELAYED, &sh->state) && 251 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 252 list_add_tail(&sh->lru, &conf->delayed_list); 253 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) && 254 sh->bm_seq - conf->seq_write > 0) 255 list_add_tail(&sh->lru, &conf->bitmap_list); 256 else { 257 clear_bit(STRIPE_DELAYED, &sh->state); 258 clear_bit(STRIPE_BIT_DELAY, &sh->state); 259 if (conf->worker_cnt_per_group == 0) { 260 if (stripe_is_lowprio(sh)) 261 list_add_tail(&sh->lru, 262 &conf->loprio_list); 263 else 264 list_add_tail(&sh->lru, 265 &conf->handle_list); 266 } else { 267 raid5_wakeup_stripe_thread(sh); 268 return; 269 } 270 } 271 md_wakeup_thread(conf->mddev->thread); 272 } else { 273 BUG_ON(stripe_operations_active(sh)); 274 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 275 if (atomic_dec_return(&conf->preread_active_stripes) 276 < IO_THRESHOLD) 277 md_wakeup_thread(conf->mddev->thread); 278 atomic_dec(&conf->active_stripes); 279 if (!test_bit(STRIPE_EXPANDING, &sh->state)) { 280 if (!r5c_is_writeback(conf->log)) 281 list_add_tail(&sh->lru, temp_inactive_list); 282 else { 283 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags)); 284 if (injournal == 0) 285 list_add_tail(&sh->lru, temp_inactive_list); 286 else if (injournal == conf->raid_disks - conf->max_degraded) { 287 /* full stripe */ 288 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) 289 atomic_inc(&conf->r5c_cached_full_stripes); 290 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) 291 atomic_dec(&conf->r5c_cached_partial_stripes); 292 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list); 293 r5c_check_cached_full_stripe(conf); 294 } else 295 /* 296 * STRIPE_R5C_PARTIAL_STRIPE is set in 297 * r5c_try_caching_write(). No need to 298 * set it again. 299 */ 300 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list); 301 } 302 } 303 } 304 } 305 306 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh, 307 struct list_head *temp_inactive_list) 308 { 309 if (atomic_dec_and_test(&sh->count)) 310 do_release_stripe(conf, sh, temp_inactive_list); 311 } 312 313 /* 314 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list 315 * 316 * Be careful: Only one task can add/delete stripes from temp_inactive_list at 317 * given time. Adding stripes only takes device lock, while deleting stripes 318 * only takes hash lock. 319 */ 320 static void release_inactive_stripe_list(struct r5conf *conf, 321 struct list_head *temp_inactive_list, 322 int hash) 323 { 324 int size; 325 bool do_wakeup = false; 326 unsigned long flags; 327 328 if (hash == NR_STRIPE_HASH_LOCKS) { 329 size = NR_STRIPE_HASH_LOCKS; 330 hash = NR_STRIPE_HASH_LOCKS - 1; 331 } else 332 size = 1; 333 while (size) { 334 struct list_head *list = &temp_inactive_list[size - 1]; 335 336 /* 337 * We don't hold any lock here yet, raid5_get_active_stripe() might 338 * remove stripes from the list 339 */ 340 if (!list_empty_careful(list)) { 341 spin_lock_irqsave(conf->hash_locks + hash, flags); 342 if (list_empty(conf->inactive_list + hash) && 343 !list_empty(list)) 344 atomic_dec(&conf->empty_inactive_list_nr); 345 list_splice_tail_init(list, conf->inactive_list + hash); 346 do_wakeup = true; 347 spin_unlock_irqrestore(conf->hash_locks + hash, flags); 348 } 349 size--; 350 hash--; 351 } 352 353 if (do_wakeup) { 354 wake_up(&conf->wait_for_stripe); 355 if (atomic_read(&conf->active_stripes) == 0) 356 wake_up(&conf->wait_for_quiescent); 357 if (conf->retry_read_aligned) 358 md_wakeup_thread(conf->mddev->thread); 359 } 360 } 361 362 /* should hold conf->device_lock already */ 363 static int release_stripe_list(struct r5conf *conf, 364 struct list_head *temp_inactive_list) 365 { 366 struct stripe_head *sh, *t; 367 int count = 0; 368 struct llist_node *head; 369 370 head = llist_del_all(&conf->released_stripes); 371 head = llist_reverse_order(head); 372 llist_for_each_entry_safe(sh, t, head, release_list) { 373 int hash; 374 375 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */ 376 smp_mb(); 377 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state); 378 /* 379 * Don't worry the bit is set here, because if the bit is set 380 * again, the count is always > 1. This is true for 381 * STRIPE_ON_UNPLUG_LIST bit too. 382 */ 383 hash = sh->hash_lock_index; 384 __release_stripe(conf, sh, &temp_inactive_list[hash]); 385 count++; 386 } 387 388 return count; 389 } 390 391 void raid5_release_stripe(struct stripe_head *sh) 392 { 393 struct r5conf *conf = sh->raid_conf; 394 unsigned long flags; 395 struct list_head list; 396 int hash; 397 bool wakeup; 398 399 /* Avoid release_list until the last reference. 400 */ 401 if (atomic_add_unless(&sh->count, -1, 1)) 402 return; 403 404 if (unlikely(!conf->mddev->thread) || 405 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state)) 406 goto slow_path; 407 wakeup = llist_add(&sh->release_list, &conf->released_stripes); 408 if (wakeup) 409 md_wakeup_thread(conf->mddev->thread); 410 return; 411 slow_path: 412 local_irq_save(flags); 413 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */ 414 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) { 415 INIT_LIST_HEAD(&list); 416 hash = sh->hash_lock_index; 417 do_release_stripe(conf, sh, &list); 418 spin_unlock(&conf->device_lock); 419 release_inactive_stripe_list(conf, &list, hash); 420 } 421 local_irq_restore(flags); 422 } 423 424 static inline void remove_hash(struct stripe_head *sh) 425 { 426 pr_debug("remove_hash(), stripe %llu\n", 427 (unsigned long long)sh->sector); 428 429 hlist_del_init(&sh->hash); 430 } 431 432 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh) 433 { 434 struct hlist_head *hp = stripe_hash(conf, sh->sector); 435 436 pr_debug("insert_hash(), stripe %llu\n", 437 (unsigned long long)sh->sector); 438 439 hlist_add_head(&sh->hash, hp); 440 } 441 442 /* find an idle stripe, make sure it is unhashed, and return it. */ 443 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash) 444 { 445 struct stripe_head *sh = NULL; 446 struct list_head *first; 447 448 if (list_empty(conf->inactive_list + hash)) 449 goto out; 450 first = (conf->inactive_list + hash)->next; 451 sh = list_entry(first, struct stripe_head, lru); 452 list_del_init(first); 453 remove_hash(sh); 454 atomic_inc(&conf->active_stripes); 455 BUG_ON(hash != sh->hash_lock_index); 456 if (list_empty(conf->inactive_list + hash)) 457 atomic_inc(&conf->empty_inactive_list_nr); 458 out: 459 return sh; 460 } 461 462 static void shrink_buffers(struct stripe_head *sh) 463 { 464 struct page *p; 465 int i; 466 int num = sh->raid_conf->pool_size; 467 468 for (i = 0; i < num ; i++) { 469 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page); 470 p = sh->dev[i].page; 471 if (!p) 472 continue; 473 sh->dev[i].page = NULL; 474 put_page(p); 475 } 476 } 477 478 static int grow_buffers(struct stripe_head *sh, gfp_t gfp) 479 { 480 int i; 481 int num = sh->raid_conf->pool_size; 482 483 for (i = 0; i < num; i++) { 484 struct page *page; 485 486 if (!(page = alloc_page(gfp))) { 487 return 1; 488 } 489 sh->dev[i].page = page; 490 sh->dev[i].orig_page = page; 491 } 492 493 return 0; 494 } 495 496 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 497 struct stripe_head *sh); 498 499 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous) 500 { 501 struct r5conf *conf = sh->raid_conf; 502 int i, seq; 503 504 BUG_ON(atomic_read(&sh->count) != 0); 505 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); 506 BUG_ON(stripe_operations_active(sh)); 507 BUG_ON(sh->batch_head); 508 509 pr_debug("init_stripe called, stripe %llu\n", 510 (unsigned long long)sector); 511 retry: 512 seq = read_seqcount_begin(&conf->gen_lock); 513 sh->generation = conf->generation - previous; 514 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks; 515 sh->sector = sector; 516 stripe_set_idx(sector, conf, previous, sh); 517 sh->state = 0; 518 519 for (i = sh->disks; i--; ) { 520 struct r5dev *dev = &sh->dev[i]; 521 522 if (dev->toread || dev->read || dev->towrite || dev->written || 523 test_bit(R5_LOCKED, &dev->flags)) { 524 pr_err("sector=%llx i=%d %p %p %p %p %d\n", 525 (unsigned long long)sh->sector, i, dev->toread, 526 dev->read, dev->towrite, dev->written, 527 test_bit(R5_LOCKED, &dev->flags)); 528 WARN_ON(1); 529 } 530 dev->flags = 0; 531 dev->sector = raid5_compute_blocknr(sh, i, previous); 532 } 533 if (read_seqcount_retry(&conf->gen_lock, seq)) 534 goto retry; 535 sh->overwrite_disks = 0; 536 insert_hash(conf, sh); 537 sh->cpu = smp_processor_id(); 538 set_bit(STRIPE_BATCH_READY, &sh->state); 539 } 540 541 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector, 542 short generation) 543 { 544 struct stripe_head *sh; 545 546 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector); 547 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash) 548 if (sh->sector == sector && sh->generation == generation) 549 return sh; 550 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector); 551 return NULL; 552 } 553 554 /* 555 * Need to check if array has failed when deciding whether to: 556 * - start an array 557 * - remove non-faulty devices 558 * - add a spare 559 * - allow a reshape 560 * This determination is simple when no reshape is happening. 561 * However if there is a reshape, we need to carefully check 562 * both the before and after sections. 563 * This is because some failed devices may only affect one 564 * of the two sections, and some non-in_sync devices may 565 * be insync in the section most affected by failed devices. 566 */ 567 int raid5_calc_degraded(struct r5conf *conf) 568 { 569 int degraded, degraded2; 570 int i; 571 572 rcu_read_lock(); 573 degraded = 0; 574 for (i = 0; i < conf->previous_raid_disks; i++) { 575 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 576 if (rdev && test_bit(Faulty, &rdev->flags)) 577 rdev = rcu_dereference(conf->disks[i].replacement); 578 if (!rdev || test_bit(Faulty, &rdev->flags)) 579 degraded++; 580 else if (test_bit(In_sync, &rdev->flags)) 581 ; 582 else 583 /* not in-sync or faulty. 584 * If the reshape increases the number of devices, 585 * this is being recovered by the reshape, so 586 * this 'previous' section is not in_sync. 587 * If the number of devices is being reduced however, 588 * the device can only be part of the array if 589 * we are reverting a reshape, so this section will 590 * be in-sync. 591 */ 592 if (conf->raid_disks >= conf->previous_raid_disks) 593 degraded++; 594 } 595 rcu_read_unlock(); 596 if (conf->raid_disks == conf->previous_raid_disks) 597 return degraded; 598 rcu_read_lock(); 599 degraded2 = 0; 600 for (i = 0; i < conf->raid_disks; i++) { 601 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 602 if (rdev && test_bit(Faulty, &rdev->flags)) 603 rdev = rcu_dereference(conf->disks[i].replacement); 604 if (!rdev || test_bit(Faulty, &rdev->flags)) 605 degraded2++; 606 else if (test_bit(In_sync, &rdev->flags)) 607 ; 608 else 609 /* not in-sync or faulty. 610 * If reshape increases the number of devices, this 611 * section has already been recovered, else it 612 * almost certainly hasn't. 613 */ 614 if (conf->raid_disks <= conf->previous_raid_disks) 615 degraded2++; 616 } 617 rcu_read_unlock(); 618 if (degraded2 > degraded) 619 return degraded2; 620 return degraded; 621 } 622 623 static int has_failed(struct r5conf *conf) 624 { 625 int degraded; 626 627 if (conf->mddev->reshape_position == MaxSector) 628 return conf->mddev->degraded > conf->max_degraded; 629 630 degraded = raid5_calc_degraded(conf); 631 if (degraded > conf->max_degraded) 632 return 1; 633 return 0; 634 } 635 636 struct stripe_head * 637 raid5_get_active_stripe(struct r5conf *conf, sector_t sector, 638 int previous, int noblock, int noquiesce) 639 { 640 struct stripe_head *sh; 641 int hash = stripe_hash_locks_hash(sector); 642 int inc_empty_inactive_list_flag; 643 644 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector); 645 646 spin_lock_irq(conf->hash_locks + hash); 647 648 do { 649 wait_event_lock_irq(conf->wait_for_quiescent, 650 conf->quiesce == 0 || noquiesce, 651 *(conf->hash_locks + hash)); 652 sh = __find_stripe(conf, sector, conf->generation - previous); 653 if (!sh) { 654 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) { 655 sh = get_free_stripe(conf, hash); 656 if (!sh && !test_bit(R5_DID_ALLOC, 657 &conf->cache_state)) 658 set_bit(R5_ALLOC_MORE, 659 &conf->cache_state); 660 } 661 if (noblock && sh == NULL) 662 break; 663 664 r5c_check_stripe_cache_usage(conf); 665 if (!sh) { 666 set_bit(R5_INACTIVE_BLOCKED, 667 &conf->cache_state); 668 r5l_wake_reclaim(conf->log, 0); 669 wait_event_lock_irq( 670 conf->wait_for_stripe, 671 !list_empty(conf->inactive_list + hash) && 672 (atomic_read(&conf->active_stripes) 673 < (conf->max_nr_stripes * 3 / 4) 674 || !test_bit(R5_INACTIVE_BLOCKED, 675 &conf->cache_state)), 676 *(conf->hash_locks + hash)); 677 clear_bit(R5_INACTIVE_BLOCKED, 678 &conf->cache_state); 679 } else { 680 init_stripe(sh, sector, previous); 681 atomic_inc(&sh->count); 682 } 683 } else if (!atomic_inc_not_zero(&sh->count)) { 684 spin_lock(&conf->device_lock); 685 if (!atomic_read(&sh->count)) { 686 if (!test_bit(STRIPE_HANDLE, &sh->state)) 687 atomic_inc(&conf->active_stripes); 688 BUG_ON(list_empty(&sh->lru) && 689 !test_bit(STRIPE_EXPANDING, &sh->state)); 690 inc_empty_inactive_list_flag = 0; 691 if (!list_empty(conf->inactive_list + hash)) 692 inc_empty_inactive_list_flag = 1; 693 list_del_init(&sh->lru); 694 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag) 695 atomic_inc(&conf->empty_inactive_list_nr); 696 if (sh->group) { 697 sh->group->stripes_cnt--; 698 sh->group = NULL; 699 } 700 } 701 atomic_inc(&sh->count); 702 spin_unlock(&conf->device_lock); 703 } 704 } while (sh == NULL); 705 706 spin_unlock_irq(conf->hash_locks + hash); 707 return sh; 708 } 709 710 static bool is_full_stripe_write(struct stripe_head *sh) 711 { 712 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded)); 713 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded); 714 } 715 716 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) 717 { 718 if (sh1 > sh2) { 719 spin_lock_irq(&sh2->stripe_lock); 720 spin_lock_nested(&sh1->stripe_lock, 1); 721 } else { 722 spin_lock_irq(&sh1->stripe_lock); 723 spin_lock_nested(&sh2->stripe_lock, 1); 724 } 725 } 726 727 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) 728 { 729 spin_unlock(&sh1->stripe_lock); 730 spin_unlock_irq(&sh2->stripe_lock); 731 } 732 733 /* Only freshly new full stripe normal write stripe can be added to a batch list */ 734 static bool stripe_can_batch(struct stripe_head *sh) 735 { 736 struct r5conf *conf = sh->raid_conf; 737 738 if (conf->log || raid5_has_ppl(conf)) 739 return false; 740 return test_bit(STRIPE_BATCH_READY, &sh->state) && 741 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) && 742 is_full_stripe_write(sh); 743 } 744 745 /* we only do back search */ 746 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh) 747 { 748 struct stripe_head *head; 749 sector_t head_sector, tmp_sec; 750 int hash; 751 int dd_idx; 752 int inc_empty_inactive_list_flag; 753 754 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */ 755 tmp_sec = sh->sector; 756 if (!sector_div(tmp_sec, conf->chunk_sectors)) 757 return; 758 head_sector = sh->sector - STRIPE_SECTORS; 759 760 hash = stripe_hash_locks_hash(head_sector); 761 spin_lock_irq(conf->hash_locks + hash); 762 head = __find_stripe(conf, head_sector, conf->generation); 763 if (head && !atomic_inc_not_zero(&head->count)) { 764 spin_lock(&conf->device_lock); 765 if (!atomic_read(&head->count)) { 766 if (!test_bit(STRIPE_HANDLE, &head->state)) 767 atomic_inc(&conf->active_stripes); 768 BUG_ON(list_empty(&head->lru) && 769 !test_bit(STRIPE_EXPANDING, &head->state)); 770 inc_empty_inactive_list_flag = 0; 771 if (!list_empty(conf->inactive_list + hash)) 772 inc_empty_inactive_list_flag = 1; 773 list_del_init(&head->lru); 774 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag) 775 atomic_inc(&conf->empty_inactive_list_nr); 776 if (head->group) { 777 head->group->stripes_cnt--; 778 head->group = NULL; 779 } 780 } 781 atomic_inc(&head->count); 782 spin_unlock(&conf->device_lock); 783 } 784 spin_unlock_irq(conf->hash_locks + hash); 785 786 if (!head) 787 return; 788 if (!stripe_can_batch(head)) 789 goto out; 790 791 lock_two_stripes(head, sh); 792 /* clear_batch_ready clear the flag */ 793 if (!stripe_can_batch(head) || !stripe_can_batch(sh)) 794 goto unlock_out; 795 796 if (sh->batch_head) 797 goto unlock_out; 798 799 dd_idx = 0; 800 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx) 801 dd_idx++; 802 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf || 803 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite)) 804 goto unlock_out; 805 806 if (head->batch_head) { 807 spin_lock(&head->batch_head->batch_lock); 808 /* This batch list is already running */ 809 if (!stripe_can_batch(head)) { 810 spin_unlock(&head->batch_head->batch_lock); 811 goto unlock_out; 812 } 813 /* 814 * We must assign batch_head of this stripe within the 815 * batch_lock, otherwise clear_batch_ready of batch head 816 * stripe could clear BATCH_READY bit of this stripe and 817 * this stripe->batch_head doesn't get assigned, which 818 * could confuse clear_batch_ready for this stripe 819 */ 820 sh->batch_head = head->batch_head; 821 822 /* 823 * at this point, head's BATCH_READY could be cleared, but we 824 * can still add the stripe to batch list 825 */ 826 list_add(&sh->batch_list, &head->batch_list); 827 spin_unlock(&head->batch_head->batch_lock); 828 } else { 829 head->batch_head = head; 830 sh->batch_head = head->batch_head; 831 spin_lock(&head->batch_lock); 832 list_add_tail(&sh->batch_list, &head->batch_list); 833 spin_unlock(&head->batch_lock); 834 } 835 836 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 837 if (atomic_dec_return(&conf->preread_active_stripes) 838 < IO_THRESHOLD) 839 md_wakeup_thread(conf->mddev->thread); 840 841 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) { 842 int seq = sh->bm_seq; 843 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) && 844 sh->batch_head->bm_seq > seq) 845 seq = sh->batch_head->bm_seq; 846 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state); 847 sh->batch_head->bm_seq = seq; 848 } 849 850 atomic_inc(&sh->count); 851 unlock_out: 852 unlock_two_stripes(head, sh); 853 out: 854 raid5_release_stripe(head); 855 } 856 857 /* Determine if 'data_offset' or 'new_data_offset' should be used 858 * in this stripe_head. 859 */ 860 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh) 861 { 862 sector_t progress = conf->reshape_progress; 863 /* Need a memory barrier to make sure we see the value 864 * of conf->generation, or ->data_offset that was set before 865 * reshape_progress was updated. 866 */ 867 smp_rmb(); 868 if (progress == MaxSector) 869 return 0; 870 if (sh->generation == conf->generation - 1) 871 return 0; 872 /* We are in a reshape, and this is a new-generation stripe, 873 * so use new_data_offset. 874 */ 875 return 1; 876 } 877 878 static void dispatch_bio_list(struct bio_list *tmp) 879 { 880 struct bio *bio; 881 882 while ((bio = bio_list_pop(tmp))) 883 generic_make_request(bio); 884 } 885 886 static int cmp_stripe(void *priv, struct list_head *a, struct list_head *b) 887 { 888 const struct r5pending_data *da = list_entry(a, 889 struct r5pending_data, sibling); 890 const struct r5pending_data *db = list_entry(b, 891 struct r5pending_data, sibling); 892 if (da->sector > db->sector) 893 return 1; 894 if (da->sector < db->sector) 895 return -1; 896 return 0; 897 } 898 899 static void dispatch_defer_bios(struct r5conf *conf, int target, 900 struct bio_list *list) 901 { 902 struct r5pending_data *data; 903 struct list_head *first, *next = NULL; 904 int cnt = 0; 905 906 if (conf->pending_data_cnt == 0) 907 return; 908 909 list_sort(NULL, &conf->pending_list, cmp_stripe); 910 911 first = conf->pending_list.next; 912 913 /* temporarily move the head */ 914 if (conf->next_pending_data) 915 list_move_tail(&conf->pending_list, 916 &conf->next_pending_data->sibling); 917 918 while (!list_empty(&conf->pending_list)) { 919 data = list_first_entry(&conf->pending_list, 920 struct r5pending_data, sibling); 921 if (&data->sibling == first) 922 first = data->sibling.next; 923 next = data->sibling.next; 924 925 bio_list_merge(list, &data->bios); 926 list_move(&data->sibling, &conf->free_list); 927 cnt++; 928 if (cnt >= target) 929 break; 930 } 931 conf->pending_data_cnt -= cnt; 932 BUG_ON(conf->pending_data_cnt < 0 || cnt < target); 933 934 if (next != &conf->pending_list) 935 conf->next_pending_data = list_entry(next, 936 struct r5pending_data, sibling); 937 else 938 conf->next_pending_data = NULL; 939 /* list isn't empty */ 940 if (first != &conf->pending_list) 941 list_move_tail(&conf->pending_list, first); 942 } 943 944 static void flush_deferred_bios(struct r5conf *conf) 945 { 946 struct bio_list tmp = BIO_EMPTY_LIST; 947 948 if (conf->pending_data_cnt == 0) 949 return; 950 951 spin_lock(&conf->pending_bios_lock); 952 dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp); 953 BUG_ON(conf->pending_data_cnt != 0); 954 spin_unlock(&conf->pending_bios_lock); 955 956 dispatch_bio_list(&tmp); 957 } 958 959 static void defer_issue_bios(struct r5conf *conf, sector_t sector, 960 struct bio_list *bios) 961 { 962 struct bio_list tmp = BIO_EMPTY_LIST; 963 struct r5pending_data *ent; 964 965 spin_lock(&conf->pending_bios_lock); 966 ent = list_first_entry(&conf->free_list, struct r5pending_data, 967 sibling); 968 list_move_tail(&ent->sibling, &conf->pending_list); 969 ent->sector = sector; 970 bio_list_init(&ent->bios); 971 bio_list_merge(&ent->bios, bios); 972 conf->pending_data_cnt++; 973 if (conf->pending_data_cnt >= PENDING_IO_MAX) 974 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp); 975 976 spin_unlock(&conf->pending_bios_lock); 977 978 dispatch_bio_list(&tmp); 979 } 980 981 static void 982 raid5_end_read_request(struct bio *bi); 983 static void 984 raid5_end_write_request(struct bio *bi); 985 986 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s) 987 { 988 struct r5conf *conf = sh->raid_conf; 989 int i, disks = sh->disks; 990 struct stripe_head *head_sh = sh; 991 struct bio_list pending_bios = BIO_EMPTY_LIST; 992 bool should_defer; 993 994 might_sleep(); 995 996 if (log_stripe(sh, s) == 0) 997 return; 998 999 should_defer = conf->batch_bio_dispatch && conf->group_cnt; 1000 1001 for (i = disks; i--; ) { 1002 int op, op_flags = 0; 1003 int replace_only = 0; 1004 struct bio *bi, *rbi; 1005 struct md_rdev *rdev, *rrdev = NULL; 1006 1007 sh = head_sh; 1008 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) { 1009 op = REQ_OP_WRITE; 1010 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags)) 1011 op_flags = REQ_FUA; 1012 if (test_bit(R5_Discard, &sh->dev[i].flags)) 1013 op = REQ_OP_DISCARD; 1014 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags)) 1015 op = REQ_OP_READ; 1016 else if (test_and_clear_bit(R5_WantReplace, 1017 &sh->dev[i].flags)) { 1018 op = REQ_OP_WRITE; 1019 replace_only = 1; 1020 } else 1021 continue; 1022 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags)) 1023 op_flags |= REQ_SYNC; 1024 1025 again: 1026 bi = &sh->dev[i].req; 1027 rbi = &sh->dev[i].rreq; /* For writing to replacement */ 1028 1029 rcu_read_lock(); 1030 rrdev = rcu_dereference(conf->disks[i].replacement); 1031 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */ 1032 rdev = rcu_dereference(conf->disks[i].rdev); 1033 if (!rdev) { 1034 rdev = rrdev; 1035 rrdev = NULL; 1036 } 1037 if (op_is_write(op)) { 1038 if (replace_only) 1039 rdev = NULL; 1040 if (rdev == rrdev) 1041 /* We raced and saw duplicates */ 1042 rrdev = NULL; 1043 } else { 1044 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev) 1045 rdev = rrdev; 1046 rrdev = NULL; 1047 } 1048 1049 if (rdev && test_bit(Faulty, &rdev->flags)) 1050 rdev = NULL; 1051 if (rdev) 1052 atomic_inc(&rdev->nr_pending); 1053 if (rrdev && test_bit(Faulty, &rrdev->flags)) 1054 rrdev = NULL; 1055 if (rrdev) 1056 atomic_inc(&rrdev->nr_pending); 1057 rcu_read_unlock(); 1058 1059 /* We have already checked bad blocks for reads. Now 1060 * need to check for writes. We never accept write errors 1061 * on the replacement, so we don't to check rrdev. 1062 */ 1063 while (op_is_write(op) && rdev && 1064 test_bit(WriteErrorSeen, &rdev->flags)) { 1065 sector_t first_bad; 1066 int bad_sectors; 1067 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS, 1068 &first_bad, &bad_sectors); 1069 if (!bad) 1070 break; 1071 1072 if (bad < 0) { 1073 set_bit(BlockedBadBlocks, &rdev->flags); 1074 if (!conf->mddev->external && 1075 conf->mddev->sb_flags) { 1076 /* It is very unlikely, but we might 1077 * still need to write out the 1078 * bad block log - better give it 1079 * a chance*/ 1080 md_check_recovery(conf->mddev); 1081 } 1082 /* 1083 * Because md_wait_for_blocked_rdev 1084 * will dec nr_pending, we must 1085 * increment it first. 1086 */ 1087 atomic_inc(&rdev->nr_pending); 1088 md_wait_for_blocked_rdev(rdev, conf->mddev); 1089 } else { 1090 /* Acknowledged bad block - skip the write */ 1091 rdev_dec_pending(rdev, conf->mddev); 1092 rdev = NULL; 1093 } 1094 } 1095 1096 if (rdev) { 1097 if (s->syncing || s->expanding || s->expanded 1098 || s->replacing) 1099 md_sync_acct(rdev->bdev, STRIPE_SECTORS); 1100 1101 set_bit(STRIPE_IO_STARTED, &sh->state); 1102 1103 bio_set_dev(bi, rdev->bdev); 1104 bio_set_op_attrs(bi, op, op_flags); 1105 bi->bi_end_io = op_is_write(op) 1106 ? raid5_end_write_request 1107 : raid5_end_read_request; 1108 bi->bi_private = sh; 1109 1110 pr_debug("%s: for %llu schedule op %d on disc %d\n", 1111 __func__, (unsigned long long)sh->sector, 1112 bi->bi_opf, i); 1113 atomic_inc(&sh->count); 1114 if (sh != head_sh) 1115 atomic_inc(&head_sh->count); 1116 if (use_new_offset(conf, sh)) 1117 bi->bi_iter.bi_sector = (sh->sector 1118 + rdev->new_data_offset); 1119 else 1120 bi->bi_iter.bi_sector = (sh->sector 1121 + rdev->data_offset); 1122 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags)) 1123 bi->bi_opf |= REQ_NOMERGE; 1124 1125 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 1126 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 1127 1128 if (!op_is_write(op) && 1129 test_bit(R5_InJournal, &sh->dev[i].flags)) 1130 /* 1131 * issuing read for a page in journal, this 1132 * must be preparing for prexor in rmw; read 1133 * the data into orig_page 1134 */ 1135 sh->dev[i].vec.bv_page = sh->dev[i].orig_page; 1136 else 1137 sh->dev[i].vec.bv_page = sh->dev[i].page; 1138 bi->bi_vcnt = 1; 1139 bi->bi_io_vec[0].bv_len = STRIPE_SIZE; 1140 bi->bi_io_vec[0].bv_offset = 0; 1141 bi->bi_iter.bi_size = STRIPE_SIZE; 1142 bi->bi_write_hint = sh->dev[i].write_hint; 1143 if (!rrdev) 1144 sh->dev[i].write_hint = RWF_WRITE_LIFE_NOT_SET; 1145 /* 1146 * If this is discard request, set bi_vcnt 0. We don't 1147 * want to confuse SCSI because SCSI will replace payload 1148 */ 1149 if (op == REQ_OP_DISCARD) 1150 bi->bi_vcnt = 0; 1151 if (rrdev) 1152 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags); 1153 1154 if (conf->mddev->gendisk) 1155 trace_block_bio_remap(bi->bi_disk->queue, 1156 bi, disk_devt(conf->mddev->gendisk), 1157 sh->dev[i].sector); 1158 if (should_defer && op_is_write(op)) 1159 bio_list_add(&pending_bios, bi); 1160 else 1161 generic_make_request(bi); 1162 } 1163 if (rrdev) { 1164 if (s->syncing || s->expanding || s->expanded 1165 || s->replacing) 1166 md_sync_acct(rrdev->bdev, STRIPE_SECTORS); 1167 1168 set_bit(STRIPE_IO_STARTED, &sh->state); 1169 1170 bio_set_dev(rbi, rrdev->bdev); 1171 bio_set_op_attrs(rbi, op, op_flags); 1172 BUG_ON(!op_is_write(op)); 1173 rbi->bi_end_io = raid5_end_write_request; 1174 rbi->bi_private = sh; 1175 1176 pr_debug("%s: for %llu schedule op %d on " 1177 "replacement disc %d\n", 1178 __func__, (unsigned long long)sh->sector, 1179 rbi->bi_opf, i); 1180 atomic_inc(&sh->count); 1181 if (sh != head_sh) 1182 atomic_inc(&head_sh->count); 1183 if (use_new_offset(conf, sh)) 1184 rbi->bi_iter.bi_sector = (sh->sector 1185 + rrdev->new_data_offset); 1186 else 1187 rbi->bi_iter.bi_sector = (sh->sector 1188 + rrdev->data_offset); 1189 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 1190 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 1191 sh->dev[i].rvec.bv_page = sh->dev[i].page; 1192 rbi->bi_vcnt = 1; 1193 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE; 1194 rbi->bi_io_vec[0].bv_offset = 0; 1195 rbi->bi_iter.bi_size = STRIPE_SIZE; 1196 rbi->bi_write_hint = sh->dev[i].write_hint; 1197 sh->dev[i].write_hint = RWF_WRITE_LIFE_NOT_SET; 1198 /* 1199 * If this is discard request, set bi_vcnt 0. We don't 1200 * want to confuse SCSI because SCSI will replace payload 1201 */ 1202 if (op == REQ_OP_DISCARD) 1203 rbi->bi_vcnt = 0; 1204 if (conf->mddev->gendisk) 1205 trace_block_bio_remap(rbi->bi_disk->queue, 1206 rbi, disk_devt(conf->mddev->gendisk), 1207 sh->dev[i].sector); 1208 if (should_defer && op_is_write(op)) 1209 bio_list_add(&pending_bios, rbi); 1210 else 1211 generic_make_request(rbi); 1212 } 1213 if (!rdev && !rrdev) { 1214 if (op_is_write(op)) 1215 set_bit(STRIPE_DEGRADED, &sh->state); 1216 pr_debug("skip op %d on disc %d for sector %llu\n", 1217 bi->bi_opf, i, (unsigned long long)sh->sector); 1218 clear_bit(R5_LOCKED, &sh->dev[i].flags); 1219 set_bit(STRIPE_HANDLE, &sh->state); 1220 } 1221 1222 if (!head_sh->batch_head) 1223 continue; 1224 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1225 batch_list); 1226 if (sh != head_sh) 1227 goto again; 1228 } 1229 1230 if (should_defer && !bio_list_empty(&pending_bios)) 1231 defer_issue_bios(conf, head_sh->sector, &pending_bios); 1232 } 1233 1234 static struct dma_async_tx_descriptor * 1235 async_copy_data(int frombio, struct bio *bio, struct page **page, 1236 sector_t sector, struct dma_async_tx_descriptor *tx, 1237 struct stripe_head *sh, int no_skipcopy) 1238 { 1239 struct bio_vec bvl; 1240 struct bvec_iter iter; 1241 struct page *bio_page; 1242 int page_offset; 1243 struct async_submit_ctl submit; 1244 enum async_tx_flags flags = 0; 1245 1246 if (bio->bi_iter.bi_sector >= sector) 1247 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512; 1248 else 1249 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512; 1250 1251 if (frombio) 1252 flags |= ASYNC_TX_FENCE; 1253 init_async_submit(&submit, flags, tx, NULL, NULL, NULL); 1254 1255 bio_for_each_segment(bvl, bio, iter) { 1256 int len = bvl.bv_len; 1257 int clen; 1258 int b_offset = 0; 1259 1260 if (page_offset < 0) { 1261 b_offset = -page_offset; 1262 page_offset += b_offset; 1263 len -= b_offset; 1264 } 1265 1266 if (len > 0 && page_offset + len > STRIPE_SIZE) 1267 clen = STRIPE_SIZE - page_offset; 1268 else 1269 clen = len; 1270 1271 if (clen > 0) { 1272 b_offset += bvl.bv_offset; 1273 bio_page = bvl.bv_page; 1274 if (frombio) { 1275 if (sh->raid_conf->skip_copy && 1276 b_offset == 0 && page_offset == 0 && 1277 clen == STRIPE_SIZE && 1278 !no_skipcopy) 1279 *page = bio_page; 1280 else 1281 tx = async_memcpy(*page, bio_page, page_offset, 1282 b_offset, clen, &submit); 1283 } else 1284 tx = async_memcpy(bio_page, *page, b_offset, 1285 page_offset, clen, &submit); 1286 } 1287 /* chain the operations */ 1288 submit.depend_tx = tx; 1289 1290 if (clen < len) /* hit end of page */ 1291 break; 1292 page_offset += len; 1293 } 1294 1295 return tx; 1296 } 1297 1298 static void ops_complete_biofill(void *stripe_head_ref) 1299 { 1300 struct stripe_head *sh = stripe_head_ref; 1301 int i; 1302 1303 pr_debug("%s: stripe %llu\n", __func__, 1304 (unsigned long long)sh->sector); 1305 1306 /* clear completed biofills */ 1307 for (i = sh->disks; i--; ) { 1308 struct r5dev *dev = &sh->dev[i]; 1309 1310 /* acknowledge completion of a biofill operation */ 1311 /* and check if we need to reply to a read request, 1312 * new R5_Wantfill requests are held off until 1313 * !STRIPE_BIOFILL_RUN 1314 */ 1315 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) { 1316 struct bio *rbi, *rbi2; 1317 1318 BUG_ON(!dev->read); 1319 rbi = dev->read; 1320 dev->read = NULL; 1321 while (rbi && rbi->bi_iter.bi_sector < 1322 dev->sector + STRIPE_SECTORS) { 1323 rbi2 = r5_next_bio(rbi, dev->sector); 1324 bio_endio(rbi); 1325 rbi = rbi2; 1326 } 1327 } 1328 } 1329 clear_bit(STRIPE_BIOFILL_RUN, &sh->state); 1330 1331 set_bit(STRIPE_HANDLE, &sh->state); 1332 raid5_release_stripe(sh); 1333 } 1334 1335 static void ops_run_biofill(struct stripe_head *sh) 1336 { 1337 struct dma_async_tx_descriptor *tx = NULL; 1338 struct async_submit_ctl submit; 1339 int i; 1340 1341 BUG_ON(sh->batch_head); 1342 pr_debug("%s: stripe %llu\n", __func__, 1343 (unsigned long long)sh->sector); 1344 1345 for (i = sh->disks; i--; ) { 1346 struct r5dev *dev = &sh->dev[i]; 1347 if (test_bit(R5_Wantfill, &dev->flags)) { 1348 struct bio *rbi; 1349 spin_lock_irq(&sh->stripe_lock); 1350 dev->read = rbi = dev->toread; 1351 dev->toread = NULL; 1352 spin_unlock_irq(&sh->stripe_lock); 1353 while (rbi && rbi->bi_iter.bi_sector < 1354 dev->sector + STRIPE_SECTORS) { 1355 tx = async_copy_data(0, rbi, &dev->page, 1356 dev->sector, tx, sh, 0); 1357 rbi = r5_next_bio(rbi, dev->sector); 1358 } 1359 } 1360 } 1361 1362 atomic_inc(&sh->count); 1363 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL); 1364 async_trigger_callback(&submit); 1365 } 1366 1367 static void mark_target_uptodate(struct stripe_head *sh, int target) 1368 { 1369 struct r5dev *tgt; 1370 1371 if (target < 0) 1372 return; 1373 1374 tgt = &sh->dev[target]; 1375 set_bit(R5_UPTODATE, &tgt->flags); 1376 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1377 clear_bit(R5_Wantcompute, &tgt->flags); 1378 } 1379 1380 static void ops_complete_compute(void *stripe_head_ref) 1381 { 1382 struct stripe_head *sh = stripe_head_ref; 1383 1384 pr_debug("%s: stripe %llu\n", __func__, 1385 (unsigned long long)sh->sector); 1386 1387 /* mark the computed target(s) as uptodate */ 1388 mark_target_uptodate(sh, sh->ops.target); 1389 mark_target_uptodate(sh, sh->ops.target2); 1390 1391 clear_bit(STRIPE_COMPUTE_RUN, &sh->state); 1392 if (sh->check_state == check_state_compute_run) 1393 sh->check_state = check_state_compute_result; 1394 set_bit(STRIPE_HANDLE, &sh->state); 1395 raid5_release_stripe(sh); 1396 } 1397 1398 /* return a pointer to the address conversion region of the scribble buffer */ 1399 static addr_conv_t *to_addr_conv(struct stripe_head *sh, 1400 struct raid5_percpu *percpu, int i) 1401 { 1402 void *addr; 1403 1404 addr = flex_array_get(percpu->scribble, i); 1405 return addr + sizeof(struct page *) * (sh->disks + 2); 1406 } 1407 1408 /* return a pointer to the address conversion region of the scribble buffer */ 1409 static struct page **to_addr_page(struct raid5_percpu *percpu, int i) 1410 { 1411 void *addr; 1412 1413 addr = flex_array_get(percpu->scribble, i); 1414 return addr; 1415 } 1416 1417 static struct dma_async_tx_descriptor * 1418 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu) 1419 { 1420 int disks = sh->disks; 1421 struct page **xor_srcs = to_addr_page(percpu, 0); 1422 int target = sh->ops.target; 1423 struct r5dev *tgt = &sh->dev[target]; 1424 struct page *xor_dest = tgt->page; 1425 int count = 0; 1426 struct dma_async_tx_descriptor *tx; 1427 struct async_submit_ctl submit; 1428 int i; 1429 1430 BUG_ON(sh->batch_head); 1431 1432 pr_debug("%s: stripe %llu block: %d\n", 1433 __func__, (unsigned long long)sh->sector, target); 1434 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1435 1436 for (i = disks; i--; ) 1437 if (i != target) 1438 xor_srcs[count++] = sh->dev[i].page; 1439 1440 atomic_inc(&sh->count); 1441 1442 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL, 1443 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0)); 1444 if (unlikely(count == 1)) 1445 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); 1446 else 1447 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1448 1449 return tx; 1450 } 1451 1452 /* set_syndrome_sources - populate source buffers for gen_syndrome 1453 * @srcs - (struct page *) array of size sh->disks 1454 * @sh - stripe_head to parse 1455 * 1456 * Populates srcs in proper layout order for the stripe and returns the 1457 * 'count' of sources to be used in a call to async_gen_syndrome. The P 1458 * destination buffer is recorded in srcs[count] and the Q destination 1459 * is recorded in srcs[count+1]]. 1460 */ 1461 static int set_syndrome_sources(struct page **srcs, 1462 struct stripe_head *sh, 1463 int srctype) 1464 { 1465 int disks = sh->disks; 1466 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2); 1467 int d0_idx = raid6_d0(sh); 1468 int count; 1469 int i; 1470 1471 for (i = 0; i < disks; i++) 1472 srcs[i] = NULL; 1473 1474 count = 0; 1475 i = d0_idx; 1476 do { 1477 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1478 struct r5dev *dev = &sh->dev[i]; 1479 1480 if (i == sh->qd_idx || i == sh->pd_idx || 1481 (srctype == SYNDROME_SRC_ALL) || 1482 (srctype == SYNDROME_SRC_WANT_DRAIN && 1483 (test_bit(R5_Wantdrain, &dev->flags) || 1484 test_bit(R5_InJournal, &dev->flags))) || 1485 (srctype == SYNDROME_SRC_WRITTEN && 1486 (dev->written || 1487 test_bit(R5_InJournal, &dev->flags)))) { 1488 if (test_bit(R5_InJournal, &dev->flags)) 1489 srcs[slot] = sh->dev[i].orig_page; 1490 else 1491 srcs[slot] = sh->dev[i].page; 1492 } 1493 i = raid6_next_disk(i, disks); 1494 } while (i != d0_idx); 1495 1496 return syndrome_disks; 1497 } 1498 1499 static struct dma_async_tx_descriptor * 1500 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu) 1501 { 1502 int disks = sh->disks; 1503 struct page **blocks = to_addr_page(percpu, 0); 1504 int target; 1505 int qd_idx = sh->qd_idx; 1506 struct dma_async_tx_descriptor *tx; 1507 struct async_submit_ctl submit; 1508 struct r5dev *tgt; 1509 struct page *dest; 1510 int i; 1511 int count; 1512 1513 BUG_ON(sh->batch_head); 1514 if (sh->ops.target < 0) 1515 target = sh->ops.target2; 1516 else if (sh->ops.target2 < 0) 1517 target = sh->ops.target; 1518 else 1519 /* we should only have one valid target */ 1520 BUG(); 1521 BUG_ON(target < 0); 1522 pr_debug("%s: stripe %llu block: %d\n", 1523 __func__, (unsigned long long)sh->sector, target); 1524 1525 tgt = &sh->dev[target]; 1526 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1527 dest = tgt->page; 1528 1529 atomic_inc(&sh->count); 1530 1531 if (target == qd_idx) { 1532 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL); 1533 blocks[count] = NULL; /* regenerating p is not necessary */ 1534 BUG_ON(blocks[count+1] != dest); /* q should already be set */ 1535 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1536 ops_complete_compute, sh, 1537 to_addr_conv(sh, percpu, 0)); 1538 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1539 } else { 1540 /* Compute any data- or p-drive using XOR */ 1541 count = 0; 1542 for (i = disks; i-- ; ) { 1543 if (i == target || i == qd_idx) 1544 continue; 1545 blocks[count++] = sh->dev[i].page; 1546 } 1547 1548 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1549 NULL, ops_complete_compute, sh, 1550 to_addr_conv(sh, percpu, 0)); 1551 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit); 1552 } 1553 1554 return tx; 1555 } 1556 1557 static struct dma_async_tx_descriptor * 1558 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu) 1559 { 1560 int i, count, disks = sh->disks; 1561 int syndrome_disks = sh->ddf_layout ? disks : disks-2; 1562 int d0_idx = raid6_d0(sh); 1563 int faila = -1, failb = -1; 1564 int target = sh->ops.target; 1565 int target2 = sh->ops.target2; 1566 struct r5dev *tgt = &sh->dev[target]; 1567 struct r5dev *tgt2 = &sh->dev[target2]; 1568 struct dma_async_tx_descriptor *tx; 1569 struct page **blocks = to_addr_page(percpu, 0); 1570 struct async_submit_ctl submit; 1571 1572 BUG_ON(sh->batch_head); 1573 pr_debug("%s: stripe %llu block1: %d block2: %d\n", 1574 __func__, (unsigned long long)sh->sector, target, target2); 1575 BUG_ON(target < 0 || target2 < 0); 1576 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1577 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags)); 1578 1579 /* we need to open-code set_syndrome_sources to handle the 1580 * slot number conversion for 'faila' and 'failb' 1581 */ 1582 for (i = 0; i < disks ; i++) 1583 blocks[i] = NULL; 1584 count = 0; 1585 i = d0_idx; 1586 do { 1587 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1588 1589 blocks[slot] = sh->dev[i].page; 1590 1591 if (i == target) 1592 faila = slot; 1593 if (i == target2) 1594 failb = slot; 1595 i = raid6_next_disk(i, disks); 1596 } while (i != d0_idx); 1597 1598 BUG_ON(faila == failb); 1599 if (failb < faila) 1600 swap(faila, failb); 1601 pr_debug("%s: stripe: %llu faila: %d failb: %d\n", 1602 __func__, (unsigned long long)sh->sector, faila, failb); 1603 1604 atomic_inc(&sh->count); 1605 1606 if (failb == syndrome_disks+1) { 1607 /* Q disk is one of the missing disks */ 1608 if (faila == syndrome_disks) { 1609 /* Missing P+Q, just recompute */ 1610 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1611 ops_complete_compute, sh, 1612 to_addr_conv(sh, percpu, 0)); 1613 return async_gen_syndrome(blocks, 0, syndrome_disks+2, 1614 STRIPE_SIZE, &submit); 1615 } else { 1616 struct page *dest; 1617 int data_target; 1618 int qd_idx = sh->qd_idx; 1619 1620 /* Missing D+Q: recompute D from P, then recompute Q */ 1621 if (target == qd_idx) 1622 data_target = target2; 1623 else 1624 data_target = target; 1625 1626 count = 0; 1627 for (i = disks; i-- ; ) { 1628 if (i == data_target || i == qd_idx) 1629 continue; 1630 blocks[count++] = sh->dev[i].page; 1631 } 1632 dest = sh->dev[data_target].page; 1633 init_async_submit(&submit, 1634 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1635 NULL, NULL, NULL, 1636 to_addr_conv(sh, percpu, 0)); 1637 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, 1638 &submit); 1639 1640 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL); 1641 init_async_submit(&submit, ASYNC_TX_FENCE, tx, 1642 ops_complete_compute, sh, 1643 to_addr_conv(sh, percpu, 0)); 1644 return async_gen_syndrome(blocks, 0, count+2, 1645 STRIPE_SIZE, &submit); 1646 } 1647 } else { 1648 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1649 ops_complete_compute, sh, 1650 to_addr_conv(sh, percpu, 0)); 1651 if (failb == syndrome_disks) { 1652 /* We're missing D+P. */ 1653 return async_raid6_datap_recov(syndrome_disks+2, 1654 STRIPE_SIZE, faila, 1655 blocks, &submit); 1656 } else { 1657 /* We're missing D+D. */ 1658 return async_raid6_2data_recov(syndrome_disks+2, 1659 STRIPE_SIZE, faila, failb, 1660 blocks, &submit); 1661 } 1662 } 1663 } 1664 1665 static void ops_complete_prexor(void *stripe_head_ref) 1666 { 1667 struct stripe_head *sh = stripe_head_ref; 1668 1669 pr_debug("%s: stripe %llu\n", __func__, 1670 (unsigned long long)sh->sector); 1671 1672 if (r5c_is_writeback(sh->raid_conf->log)) 1673 /* 1674 * raid5-cache write back uses orig_page during prexor. 1675 * After prexor, it is time to free orig_page 1676 */ 1677 r5c_release_extra_page(sh); 1678 } 1679 1680 static struct dma_async_tx_descriptor * 1681 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu, 1682 struct dma_async_tx_descriptor *tx) 1683 { 1684 int disks = sh->disks; 1685 struct page **xor_srcs = to_addr_page(percpu, 0); 1686 int count = 0, pd_idx = sh->pd_idx, i; 1687 struct async_submit_ctl submit; 1688 1689 /* existing parity data subtracted */ 1690 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1691 1692 BUG_ON(sh->batch_head); 1693 pr_debug("%s: stripe %llu\n", __func__, 1694 (unsigned long long)sh->sector); 1695 1696 for (i = disks; i--; ) { 1697 struct r5dev *dev = &sh->dev[i]; 1698 /* Only process blocks that are known to be uptodate */ 1699 if (test_bit(R5_InJournal, &dev->flags)) 1700 xor_srcs[count++] = dev->orig_page; 1701 else if (test_bit(R5_Wantdrain, &dev->flags)) 1702 xor_srcs[count++] = dev->page; 1703 } 1704 1705 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx, 1706 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); 1707 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1708 1709 return tx; 1710 } 1711 1712 static struct dma_async_tx_descriptor * 1713 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu, 1714 struct dma_async_tx_descriptor *tx) 1715 { 1716 struct page **blocks = to_addr_page(percpu, 0); 1717 int count; 1718 struct async_submit_ctl submit; 1719 1720 pr_debug("%s: stripe %llu\n", __func__, 1721 (unsigned long long)sh->sector); 1722 1723 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN); 1724 1725 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx, 1726 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); 1727 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1728 1729 return tx; 1730 } 1731 1732 static struct dma_async_tx_descriptor * 1733 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) 1734 { 1735 struct r5conf *conf = sh->raid_conf; 1736 int disks = sh->disks; 1737 int i; 1738 struct stripe_head *head_sh = sh; 1739 1740 pr_debug("%s: stripe %llu\n", __func__, 1741 (unsigned long long)sh->sector); 1742 1743 for (i = disks; i--; ) { 1744 struct r5dev *dev; 1745 struct bio *chosen; 1746 1747 sh = head_sh; 1748 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) { 1749 struct bio *wbi; 1750 1751 again: 1752 dev = &sh->dev[i]; 1753 /* 1754 * clear R5_InJournal, so when rewriting a page in 1755 * journal, it is not skipped by r5l_log_stripe() 1756 */ 1757 clear_bit(R5_InJournal, &dev->flags); 1758 spin_lock_irq(&sh->stripe_lock); 1759 chosen = dev->towrite; 1760 dev->towrite = NULL; 1761 sh->overwrite_disks = 0; 1762 BUG_ON(dev->written); 1763 wbi = dev->written = chosen; 1764 spin_unlock_irq(&sh->stripe_lock); 1765 WARN_ON(dev->page != dev->orig_page); 1766 1767 while (wbi && wbi->bi_iter.bi_sector < 1768 dev->sector + STRIPE_SECTORS) { 1769 if (wbi->bi_opf & REQ_FUA) 1770 set_bit(R5_WantFUA, &dev->flags); 1771 if (wbi->bi_opf & REQ_SYNC) 1772 set_bit(R5_SyncIO, &dev->flags); 1773 if (bio_op(wbi) == REQ_OP_DISCARD) 1774 set_bit(R5_Discard, &dev->flags); 1775 else { 1776 tx = async_copy_data(1, wbi, &dev->page, 1777 dev->sector, tx, sh, 1778 r5c_is_writeback(conf->log)); 1779 if (dev->page != dev->orig_page && 1780 !r5c_is_writeback(conf->log)) { 1781 set_bit(R5_SkipCopy, &dev->flags); 1782 clear_bit(R5_UPTODATE, &dev->flags); 1783 clear_bit(R5_OVERWRITE, &dev->flags); 1784 } 1785 } 1786 wbi = r5_next_bio(wbi, dev->sector); 1787 } 1788 1789 if (head_sh->batch_head) { 1790 sh = list_first_entry(&sh->batch_list, 1791 struct stripe_head, 1792 batch_list); 1793 if (sh == head_sh) 1794 continue; 1795 goto again; 1796 } 1797 } 1798 } 1799 1800 return tx; 1801 } 1802 1803 static void ops_complete_reconstruct(void *stripe_head_ref) 1804 { 1805 struct stripe_head *sh = stripe_head_ref; 1806 int disks = sh->disks; 1807 int pd_idx = sh->pd_idx; 1808 int qd_idx = sh->qd_idx; 1809 int i; 1810 bool fua = false, sync = false, discard = false; 1811 1812 pr_debug("%s: stripe %llu\n", __func__, 1813 (unsigned long long)sh->sector); 1814 1815 for (i = disks; i--; ) { 1816 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags); 1817 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags); 1818 discard |= test_bit(R5_Discard, &sh->dev[i].flags); 1819 } 1820 1821 for (i = disks; i--; ) { 1822 struct r5dev *dev = &sh->dev[i]; 1823 1824 if (dev->written || i == pd_idx || i == qd_idx) { 1825 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) { 1826 set_bit(R5_UPTODATE, &dev->flags); 1827 if (test_bit(STRIPE_EXPAND_READY, &sh->state)) 1828 set_bit(R5_Expanded, &dev->flags); 1829 } 1830 if (fua) 1831 set_bit(R5_WantFUA, &dev->flags); 1832 if (sync) 1833 set_bit(R5_SyncIO, &dev->flags); 1834 } 1835 } 1836 1837 if (sh->reconstruct_state == reconstruct_state_drain_run) 1838 sh->reconstruct_state = reconstruct_state_drain_result; 1839 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) 1840 sh->reconstruct_state = reconstruct_state_prexor_drain_result; 1841 else { 1842 BUG_ON(sh->reconstruct_state != reconstruct_state_run); 1843 sh->reconstruct_state = reconstruct_state_result; 1844 } 1845 1846 set_bit(STRIPE_HANDLE, &sh->state); 1847 raid5_release_stripe(sh); 1848 } 1849 1850 static void 1851 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu, 1852 struct dma_async_tx_descriptor *tx) 1853 { 1854 int disks = sh->disks; 1855 struct page **xor_srcs; 1856 struct async_submit_ctl submit; 1857 int count, pd_idx = sh->pd_idx, i; 1858 struct page *xor_dest; 1859 int prexor = 0; 1860 unsigned long flags; 1861 int j = 0; 1862 struct stripe_head *head_sh = sh; 1863 int last_stripe; 1864 1865 pr_debug("%s: stripe %llu\n", __func__, 1866 (unsigned long long)sh->sector); 1867 1868 for (i = 0; i < sh->disks; i++) { 1869 if (pd_idx == i) 1870 continue; 1871 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 1872 break; 1873 } 1874 if (i >= sh->disks) { 1875 atomic_inc(&sh->count); 1876 set_bit(R5_Discard, &sh->dev[pd_idx].flags); 1877 ops_complete_reconstruct(sh); 1878 return; 1879 } 1880 again: 1881 count = 0; 1882 xor_srcs = to_addr_page(percpu, j); 1883 /* check if prexor is active which means only process blocks 1884 * that are part of a read-modify-write (written) 1885 */ 1886 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 1887 prexor = 1; 1888 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1889 for (i = disks; i--; ) { 1890 struct r5dev *dev = &sh->dev[i]; 1891 if (head_sh->dev[i].written || 1892 test_bit(R5_InJournal, &head_sh->dev[i].flags)) 1893 xor_srcs[count++] = dev->page; 1894 } 1895 } else { 1896 xor_dest = sh->dev[pd_idx].page; 1897 for (i = disks; i--; ) { 1898 struct r5dev *dev = &sh->dev[i]; 1899 if (i != pd_idx) 1900 xor_srcs[count++] = dev->page; 1901 } 1902 } 1903 1904 /* 1/ if we prexor'd then the dest is reused as a source 1905 * 2/ if we did not prexor then we are redoing the parity 1906 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST 1907 * for the synchronous xor case 1908 */ 1909 last_stripe = !head_sh->batch_head || 1910 list_first_entry(&sh->batch_list, 1911 struct stripe_head, batch_list) == head_sh; 1912 if (last_stripe) { 1913 flags = ASYNC_TX_ACK | 1914 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST); 1915 1916 atomic_inc(&head_sh->count); 1917 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh, 1918 to_addr_conv(sh, percpu, j)); 1919 } else { 1920 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST; 1921 init_async_submit(&submit, flags, tx, NULL, NULL, 1922 to_addr_conv(sh, percpu, j)); 1923 } 1924 1925 if (unlikely(count == 1)) 1926 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); 1927 else 1928 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1929 if (!last_stripe) { 1930 j++; 1931 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1932 batch_list); 1933 goto again; 1934 } 1935 } 1936 1937 static void 1938 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu, 1939 struct dma_async_tx_descriptor *tx) 1940 { 1941 struct async_submit_ctl submit; 1942 struct page **blocks; 1943 int count, i, j = 0; 1944 struct stripe_head *head_sh = sh; 1945 int last_stripe; 1946 int synflags; 1947 unsigned long txflags; 1948 1949 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); 1950 1951 for (i = 0; i < sh->disks; i++) { 1952 if (sh->pd_idx == i || sh->qd_idx == i) 1953 continue; 1954 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 1955 break; 1956 } 1957 if (i >= sh->disks) { 1958 atomic_inc(&sh->count); 1959 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 1960 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 1961 ops_complete_reconstruct(sh); 1962 return; 1963 } 1964 1965 again: 1966 blocks = to_addr_page(percpu, j); 1967 1968 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 1969 synflags = SYNDROME_SRC_WRITTEN; 1970 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST; 1971 } else { 1972 synflags = SYNDROME_SRC_ALL; 1973 txflags = ASYNC_TX_ACK; 1974 } 1975 1976 count = set_syndrome_sources(blocks, sh, synflags); 1977 last_stripe = !head_sh->batch_head || 1978 list_first_entry(&sh->batch_list, 1979 struct stripe_head, batch_list) == head_sh; 1980 1981 if (last_stripe) { 1982 atomic_inc(&head_sh->count); 1983 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct, 1984 head_sh, to_addr_conv(sh, percpu, j)); 1985 } else 1986 init_async_submit(&submit, 0, tx, NULL, NULL, 1987 to_addr_conv(sh, percpu, j)); 1988 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1989 if (!last_stripe) { 1990 j++; 1991 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1992 batch_list); 1993 goto again; 1994 } 1995 } 1996 1997 static void ops_complete_check(void *stripe_head_ref) 1998 { 1999 struct stripe_head *sh = stripe_head_ref; 2000 2001 pr_debug("%s: stripe %llu\n", __func__, 2002 (unsigned long long)sh->sector); 2003 2004 sh->check_state = check_state_check_result; 2005 set_bit(STRIPE_HANDLE, &sh->state); 2006 raid5_release_stripe(sh); 2007 } 2008 2009 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu) 2010 { 2011 int disks = sh->disks; 2012 int pd_idx = sh->pd_idx; 2013 int qd_idx = sh->qd_idx; 2014 struct page *xor_dest; 2015 struct page **xor_srcs = to_addr_page(percpu, 0); 2016 struct dma_async_tx_descriptor *tx; 2017 struct async_submit_ctl submit; 2018 int count; 2019 int i; 2020 2021 pr_debug("%s: stripe %llu\n", __func__, 2022 (unsigned long long)sh->sector); 2023 2024 BUG_ON(sh->batch_head); 2025 count = 0; 2026 xor_dest = sh->dev[pd_idx].page; 2027 xor_srcs[count++] = xor_dest; 2028 for (i = disks; i--; ) { 2029 if (i == pd_idx || i == qd_idx) 2030 continue; 2031 xor_srcs[count++] = sh->dev[i].page; 2032 } 2033 2034 init_async_submit(&submit, 0, NULL, NULL, NULL, 2035 to_addr_conv(sh, percpu, 0)); 2036 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, 2037 &sh->ops.zero_sum_result, &submit); 2038 2039 atomic_inc(&sh->count); 2040 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL); 2041 tx = async_trigger_callback(&submit); 2042 } 2043 2044 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp) 2045 { 2046 struct page **srcs = to_addr_page(percpu, 0); 2047 struct async_submit_ctl submit; 2048 int count; 2049 2050 pr_debug("%s: stripe %llu checkp: %d\n", __func__, 2051 (unsigned long long)sh->sector, checkp); 2052 2053 BUG_ON(sh->batch_head); 2054 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL); 2055 if (!checkp) 2056 srcs[count] = NULL; 2057 2058 atomic_inc(&sh->count); 2059 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check, 2060 sh, to_addr_conv(sh, percpu, 0)); 2061 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE, 2062 &sh->ops.zero_sum_result, percpu->spare_page, &submit); 2063 } 2064 2065 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request) 2066 { 2067 int overlap_clear = 0, i, disks = sh->disks; 2068 struct dma_async_tx_descriptor *tx = NULL; 2069 struct r5conf *conf = sh->raid_conf; 2070 int level = conf->level; 2071 struct raid5_percpu *percpu; 2072 unsigned long cpu; 2073 2074 cpu = get_cpu(); 2075 percpu = per_cpu_ptr(conf->percpu, cpu); 2076 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) { 2077 ops_run_biofill(sh); 2078 overlap_clear++; 2079 } 2080 2081 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) { 2082 if (level < 6) 2083 tx = ops_run_compute5(sh, percpu); 2084 else { 2085 if (sh->ops.target2 < 0 || sh->ops.target < 0) 2086 tx = ops_run_compute6_1(sh, percpu); 2087 else 2088 tx = ops_run_compute6_2(sh, percpu); 2089 } 2090 /* terminate the chain if reconstruct is not set to be run */ 2091 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) 2092 async_tx_ack(tx); 2093 } 2094 2095 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) { 2096 if (level < 6) 2097 tx = ops_run_prexor5(sh, percpu, tx); 2098 else 2099 tx = ops_run_prexor6(sh, percpu, tx); 2100 } 2101 2102 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request)) 2103 tx = ops_run_partial_parity(sh, percpu, tx); 2104 2105 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) { 2106 tx = ops_run_biodrain(sh, tx); 2107 overlap_clear++; 2108 } 2109 2110 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) { 2111 if (level < 6) 2112 ops_run_reconstruct5(sh, percpu, tx); 2113 else 2114 ops_run_reconstruct6(sh, percpu, tx); 2115 } 2116 2117 if (test_bit(STRIPE_OP_CHECK, &ops_request)) { 2118 if (sh->check_state == check_state_run) 2119 ops_run_check_p(sh, percpu); 2120 else if (sh->check_state == check_state_run_q) 2121 ops_run_check_pq(sh, percpu, 0); 2122 else if (sh->check_state == check_state_run_pq) 2123 ops_run_check_pq(sh, percpu, 1); 2124 else 2125 BUG(); 2126 } 2127 2128 if (overlap_clear && !sh->batch_head) 2129 for (i = disks; i--; ) { 2130 struct r5dev *dev = &sh->dev[i]; 2131 if (test_and_clear_bit(R5_Overlap, &dev->flags)) 2132 wake_up(&sh->raid_conf->wait_for_overlap); 2133 } 2134 put_cpu(); 2135 } 2136 2137 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh) 2138 { 2139 if (sh->ppl_page) 2140 __free_page(sh->ppl_page); 2141 kmem_cache_free(sc, sh); 2142 } 2143 2144 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp, 2145 int disks, struct r5conf *conf) 2146 { 2147 struct stripe_head *sh; 2148 int i; 2149 2150 sh = kmem_cache_zalloc(sc, gfp); 2151 if (sh) { 2152 spin_lock_init(&sh->stripe_lock); 2153 spin_lock_init(&sh->batch_lock); 2154 INIT_LIST_HEAD(&sh->batch_list); 2155 INIT_LIST_HEAD(&sh->lru); 2156 INIT_LIST_HEAD(&sh->r5c); 2157 INIT_LIST_HEAD(&sh->log_list); 2158 atomic_set(&sh->count, 1); 2159 sh->raid_conf = conf; 2160 sh->log_start = MaxSector; 2161 for (i = 0; i < disks; i++) { 2162 struct r5dev *dev = &sh->dev[i]; 2163 2164 bio_init(&dev->req, &dev->vec, 1); 2165 bio_init(&dev->rreq, &dev->rvec, 1); 2166 } 2167 2168 if (raid5_has_ppl(conf)) { 2169 sh->ppl_page = alloc_page(gfp); 2170 if (!sh->ppl_page) { 2171 free_stripe(sc, sh); 2172 sh = NULL; 2173 } 2174 } 2175 } 2176 return sh; 2177 } 2178 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp) 2179 { 2180 struct stripe_head *sh; 2181 2182 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf); 2183 if (!sh) 2184 return 0; 2185 2186 if (grow_buffers(sh, gfp)) { 2187 shrink_buffers(sh); 2188 free_stripe(conf->slab_cache, sh); 2189 return 0; 2190 } 2191 sh->hash_lock_index = 2192 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS; 2193 /* we just created an active stripe so... */ 2194 atomic_inc(&conf->active_stripes); 2195 2196 raid5_release_stripe(sh); 2197 conf->max_nr_stripes++; 2198 return 1; 2199 } 2200 2201 static int grow_stripes(struct r5conf *conf, int num) 2202 { 2203 struct kmem_cache *sc; 2204 size_t namelen = sizeof(conf->cache_name[0]); 2205 int devs = max(conf->raid_disks, conf->previous_raid_disks); 2206 2207 if (conf->mddev->gendisk) 2208 snprintf(conf->cache_name[0], namelen, 2209 "raid%d-%s", conf->level, mdname(conf->mddev)); 2210 else 2211 snprintf(conf->cache_name[0], namelen, 2212 "raid%d-%p", conf->level, conf->mddev); 2213 snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]); 2214 2215 conf->active_name = 0; 2216 sc = kmem_cache_create(conf->cache_name[conf->active_name], 2217 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev), 2218 0, 0, NULL); 2219 if (!sc) 2220 return 1; 2221 conf->slab_cache = sc; 2222 conf->pool_size = devs; 2223 while (num--) 2224 if (!grow_one_stripe(conf, GFP_KERNEL)) 2225 return 1; 2226 2227 return 0; 2228 } 2229 2230 /** 2231 * scribble_len - return the required size of the scribble region 2232 * @num - total number of disks in the array 2233 * 2234 * The size must be enough to contain: 2235 * 1/ a struct page pointer for each device in the array +2 2236 * 2/ room to convert each entry in (1) to its corresponding dma 2237 * (dma_map_page()) or page (page_address()) address. 2238 * 2239 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we 2240 * calculate over all devices (not just the data blocks), using zeros in place 2241 * of the P and Q blocks. 2242 */ 2243 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags) 2244 { 2245 struct flex_array *ret; 2246 size_t len; 2247 2248 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2); 2249 ret = flex_array_alloc(len, cnt, flags); 2250 if (!ret) 2251 return NULL; 2252 /* always prealloc all elements, so no locking is required */ 2253 if (flex_array_prealloc(ret, 0, cnt, flags)) { 2254 flex_array_free(ret); 2255 return NULL; 2256 } 2257 return ret; 2258 } 2259 2260 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors) 2261 { 2262 unsigned long cpu; 2263 int err = 0; 2264 2265 /* 2266 * Never shrink. And mddev_suspend() could deadlock if this is called 2267 * from raid5d. In that case, scribble_disks and scribble_sectors 2268 * should equal to new_disks and new_sectors 2269 */ 2270 if (conf->scribble_disks >= new_disks && 2271 conf->scribble_sectors >= new_sectors) 2272 return 0; 2273 mddev_suspend(conf->mddev); 2274 get_online_cpus(); 2275 for_each_present_cpu(cpu) { 2276 struct raid5_percpu *percpu; 2277 struct flex_array *scribble; 2278 2279 percpu = per_cpu_ptr(conf->percpu, cpu); 2280 scribble = scribble_alloc(new_disks, 2281 new_sectors / STRIPE_SECTORS, 2282 GFP_NOIO); 2283 2284 if (scribble) { 2285 flex_array_free(percpu->scribble); 2286 percpu->scribble = scribble; 2287 } else { 2288 err = -ENOMEM; 2289 break; 2290 } 2291 } 2292 put_online_cpus(); 2293 mddev_resume(conf->mddev); 2294 if (!err) { 2295 conf->scribble_disks = new_disks; 2296 conf->scribble_sectors = new_sectors; 2297 } 2298 return err; 2299 } 2300 2301 static int resize_stripes(struct r5conf *conf, int newsize) 2302 { 2303 /* Make all the stripes able to hold 'newsize' devices. 2304 * New slots in each stripe get 'page' set to a new page. 2305 * 2306 * This happens in stages: 2307 * 1/ create a new kmem_cache and allocate the required number of 2308 * stripe_heads. 2309 * 2/ gather all the old stripe_heads and transfer the pages across 2310 * to the new stripe_heads. This will have the side effect of 2311 * freezing the array as once all stripe_heads have been collected, 2312 * no IO will be possible. Old stripe heads are freed once their 2313 * pages have been transferred over, and the old kmem_cache is 2314 * freed when all stripes are done. 2315 * 3/ reallocate conf->disks to be suitable bigger. If this fails, 2316 * we simple return a failure status - no need to clean anything up. 2317 * 4/ allocate new pages for the new slots in the new stripe_heads. 2318 * If this fails, we don't bother trying the shrink the 2319 * stripe_heads down again, we just leave them as they are. 2320 * As each stripe_head is processed the new one is released into 2321 * active service. 2322 * 2323 * Once step2 is started, we cannot afford to wait for a write, 2324 * so we use GFP_NOIO allocations. 2325 */ 2326 struct stripe_head *osh, *nsh; 2327 LIST_HEAD(newstripes); 2328 struct disk_info *ndisks; 2329 int err = 0; 2330 struct kmem_cache *sc; 2331 int i; 2332 int hash, cnt; 2333 2334 md_allow_write(conf->mddev); 2335 2336 /* Step 1 */ 2337 sc = kmem_cache_create(conf->cache_name[1-conf->active_name], 2338 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev), 2339 0, 0, NULL); 2340 if (!sc) 2341 return -ENOMEM; 2342 2343 /* Need to ensure auto-resizing doesn't interfere */ 2344 mutex_lock(&conf->cache_size_mutex); 2345 2346 for (i = conf->max_nr_stripes; i; i--) { 2347 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf); 2348 if (!nsh) 2349 break; 2350 2351 list_add(&nsh->lru, &newstripes); 2352 } 2353 if (i) { 2354 /* didn't get enough, give up */ 2355 while (!list_empty(&newstripes)) { 2356 nsh = list_entry(newstripes.next, struct stripe_head, lru); 2357 list_del(&nsh->lru); 2358 free_stripe(sc, nsh); 2359 } 2360 kmem_cache_destroy(sc); 2361 mutex_unlock(&conf->cache_size_mutex); 2362 return -ENOMEM; 2363 } 2364 /* Step 2 - Must use GFP_NOIO now. 2365 * OK, we have enough stripes, start collecting inactive 2366 * stripes and copying them over 2367 */ 2368 hash = 0; 2369 cnt = 0; 2370 list_for_each_entry(nsh, &newstripes, lru) { 2371 lock_device_hash_lock(conf, hash); 2372 wait_event_cmd(conf->wait_for_stripe, 2373 !list_empty(conf->inactive_list + hash), 2374 unlock_device_hash_lock(conf, hash), 2375 lock_device_hash_lock(conf, hash)); 2376 osh = get_free_stripe(conf, hash); 2377 unlock_device_hash_lock(conf, hash); 2378 2379 for(i=0; i<conf->pool_size; i++) { 2380 nsh->dev[i].page = osh->dev[i].page; 2381 nsh->dev[i].orig_page = osh->dev[i].page; 2382 } 2383 nsh->hash_lock_index = hash; 2384 free_stripe(conf->slab_cache, osh); 2385 cnt++; 2386 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS + 2387 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) { 2388 hash++; 2389 cnt = 0; 2390 } 2391 } 2392 kmem_cache_destroy(conf->slab_cache); 2393 2394 /* Step 3. 2395 * At this point, we are holding all the stripes so the array 2396 * is completely stalled, so now is a good time to resize 2397 * conf->disks and the scribble region 2398 */ 2399 ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO); 2400 if (ndisks) { 2401 for (i = 0; i < conf->pool_size; i++) 2402 ndisks[i] = conf->disks[i]; 2403 2404 for (i = conf->pool_size; i < newsize; i++) { 2405 ndisks[i].extra_page = alloc_page(GFP_NOIO); 2406 if (!ndisks[i].extra_page) 2407 err = -ENOMEM; 2408 } 2409 2410 if (err) { 2411 for (i = conf->pool_size; i < newsize; i++) 2412 if (ndisks[i].extra_page) 2413 put_page(ndisks[i].extra_page); 2414 kfree(ndisks); 2415 } else { 2416 kfree(conf->disks); 2417 conf->disks = ndisks; 2418 } 2419 } else 2420 err = -ENOMEM; 2421 2422 mutex_unlock(&conf->cache_size_mutex); 2423 2424 conf->slab_cache = sc; 2425 conf->active_name = 1-conf->active_name; 2426 2427 /* Step 4, return new stripes to service */ 2428 while(!list_empty(&newstripes)) { 2429 nsh = list_entry(newstripes.next, struct stripe_head, lru); 2430 list_del_init(&nsh->lru); 2431 2432 for (i=conf->raid_disks; i < newsize; i++) 2433 if (nsh->dev[i].page == NULL) { 2434 struct page *p = alloc_page(GFP_NOIO); 2435 nsh->dev[i].page = p; 2436 nsh->dev[i].orig_page = p; 2437 if (!p) 2438 err = -ENOMEM; 2439 } 2440 raid5_release_stripe(nsh); 2441 } 2442 /* critical section pass, GFP_NOIO no longer needed */ 2443 2444 if (!err) 2445 conf->pool_size = newsize; 2446 return err; 2447 } 2448 2449 static int drop_one_stripe(struct r5conf *conf) 2450 { 2451 struct stripe_head *sh; 2452 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK; 2453 2454 spin_lock_irq(conf->hash_locks + hash); 2455 sh = get_free_stripe(conf, hash); 2456 spin_unlock_irq(conf->hash_locks + hash); 2457 if (!sh) 2458 return 0; 2459 BUG_ON(atomic_read(&sh->count)); 2460 shrink_buffers(sh); 2461 free_stripe(conf->slab_cache, sh); 2462 atomic_dec(&conf->active_stripes); 2463 conf->max_nr_stripes--; 2464 return 1; 2465 } 2466 2467 static void shrink_stripes(struct r5conf *conf) 2468 { 2469 while (conf->max_nr_stripes && 2470 drop_one_stripe(conf)) 2471 ; 2472 2473 kmem_cache_destroy(conf->slab_cache); 2474 conf->slab_cache = NULL; 2475 } 2476 2477 static void raid5_end_read_request(struct bio * bi) 2478 { 2479 struct stripe_head *sh = bi->bi_private; 2480 struct r5conf *conf = sh->raid_conf; 2481 int disks = sh->disks, i; 2482 char b[BDEVNAME_SIZE]; 2483 struct md_rdev *rdev = NULL; 2484 sector_t s; 2485 2486 for (i=0 ; i<disks; i++) 2487 if (bi == &sh->dev[i].req) 2488 break; 2489 2490 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n", 2491 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2492 bi->bi_status); 2493 if (i == disks) { 2494 bio_reset(bi); 2495 BUG(); 2496 return; 2497 } 2498 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2499 /* If replacement finished while this request was outstanding, 2500 * 'replacement' might be NULL already. 2501 * In that case it moved down to 'rdev'. 2502 * rdev is not removed until all requests are finished. 2503 */ 2504 rdev = conf->disks[i].replacement; 2505 if (!rdev) 2506 rdev = conf->disks[i].rdev; 2507 2508 if (use_new_offset(conf, sh)) 2509 s = sh->sector + rdev->new_data_offset; 2510 else 2511 s = sh->sector + rdev->data_offset; 2512 if (!bi->bi_status) { 2513 set_bit(R5_UPTODATE, &sh->dev[i].flags); 2514 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 2515 /* Note that this cannot happen on a 2516 * replacement device. We just fail those on 2517 * any error 2518 */ 2519 pr_info_ratelimited( 2520 "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n", 2521 mdname(conf->mddev), STRIPE_SECTORS, 2522 (unsigned long long)s, 2523 bdevname(rdev->bdev, b)); 2524 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors); 2525 clear_bit(R5_ReadError, &sh->dev[i].flags); 2526 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2527 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2528 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2529 2530 if (test_bit(R5_InJournal, &sh->dev[i].flags)) 2531 /* 2532 * end read for a page in journal, this 2533 * must be preparing for prexor in rmw 2534 */ 2535 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags); 2536 2537 if (atomic_read(&rdev->read_errors)) 2538 atomic_set(&rdev->read_errors, 0); 2539 } else { 2540 const char *bdn = bdevname(rdev->bdev, b); 2541 int retry = 0; 2542 int set_bad = 0; 2543 2544 clear_bit(R5_UPTODATE, &sh->dev[i].flags); 2545 atomic_inc(&rdev->read_errors); 2546 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2547 pr_warn_ratelimited( 2548 "md/raid:%s: read error on replacement device (sector %llu on %s).\n", 2549 mdname(conf->mddev), 2550 (unsigned long long)s, 2551 bdn); 2552 else if (conf->mddev->degraded >= conf->max_degraded) { 2553 set_bad = 1; 2554 pr_warn_ratelimited( 2555 "md/raid:%s: read error not correctable (sector %llu on %s).\n", 2556 mdname(conf->mddev), 2557 (unsigned long long)s, 2558 bdn); 2559 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) { 2560 /* Oh, no!!! */ 2561 set_bad = 1; 2562 pr_warn_ratelimited( 2563 "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n", 2564 mdname(conf->mddev), 2565 (unsigned long long)s, 2566 bdn); 2567 } else if (atomic_read(&rdev->read_errors) 2568 > conf->max_nr_stripes) 2569 pr_warn("md/raid:%s: Too many read errors, failing device %s.\n", 2570 mdname(conf->mddev), bdn); 2571 else 2572 retry = 1; 2573 if (set_bad && test_bit(In_sync, &rdev->flags) 2574 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2575 retry = 1; 2576 if (retry) 2577 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) { 2578 set_bit(R5_ReadError, &sh->dev[i].flags); 2579 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2580 } else 2581 set_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2582 else { 2583 clear_bit(R5_ReadError, &sh->dev[i].flags); 2584 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2585 if (!(set_bad 2586 && test_bit(In_sync, &rdev->flags) 2587 && rdev_set_badblocks( 2588 rdev, sh->sector, STRIPE_SECTORS, 0))) 2589 md_error(conf->mddev, rdev); 2590 } 2591 } 2592 rdev_dec_pending(rdev, conf->mddev); 2593 bio_reset(bi); 2594 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2595 set_bit(STRIPE_HANDLE, &sh->state); 2596 raid5_release_stripe(sh); 2597 } 2598 2599 static void raid5_end_write_request(struct bio *bi) 2600 { 2601 struct stripe_head *sh = bi->bi_private; 2602 struct r5conf *conf = sh->raid_conf; 2603 int disks = sh->disks, i; 2604 struct md_rdev *uninitialized_var(rdev); 2605 sector_t first_bad; 2606 int bad_sectors; 2607 int replacement = 0; 2608 2609 for (i = 0 ; i < disks; i++) { 2610 if (bi == &sh->dev[i].req) { 2611 rdev = conf->disks[i].rdev; 2612 break; 2613 } 2614 if (bi == &sh->dev[i].rreq) { 2615 rdev = conf->disks[i].replacement; 2616 if (rdev) 2617 replacement = 1; 2618 else 2619 /* rdev was removed and 'replacement' 2620 * replaced it. rdev is not removed 2621 * until all requests are finished. 2622 */ 2623 rdev = conf->disks[i].rdev; 2624 break; 2625 } 2626 } 2627 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n", 2628 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2629 bi->bi_status); 2630 if (i == disks) { 2631 bio_reset(bi); 2632 BUG(); 2633 return; 2634 } 2635 2636 if (replacement) { 2637 if (bi->bi_status) 2638 md_error(conf->mddev, rdev); 2639 else if (is_badblock(rdev, sh->sector, 2640 STRIPE_SECTORS, 2641 &first_bad, &bad_sectors)) 2642 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags); 2643 } else { 2644 if (bi->bi_status) { 2645 set_bit(STRIPE_DEGRADED, &sh->state); 2646 set_bit(WriteErrorSeen, &rdev->flags); 2647 set_bit(R5_WriteError, &sh->dev[i].flags); 2648 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2649 set_bit(MD_RECOVERY_NEEDED, 2650 &rdev->mddev->recovery); 2651 } else if (is_badblock(rdev, sh->sector, 2652 STRIPE_SECTORS, 2653 &first_bad, &bad_sectors)) { 2654 set_bit(R5_MadeGood, &sh->dev[i].flags); 2655 if (test_bit(R5_ReadError, &sh->dev[i].flags)) 2656 /* That was a successful write so make 2657 * sure it looks like we already did 2658 * a re-write. 2659 */ 2660 set_bit(R5_ReWrite, &sh->dev[i].flags); 2661 } 2662 } 2663 rdev_dec_pending(rdev, conf->mddev); 2664 2665 if (sh->batch_head && bi->bi_status && !replacement) 2666 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state); 2667 2668 bio_reset(bi); 2669 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags)) 2670 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2671 set_bit(STRIPE_HANDLE, &sh->state); 2672 raid5_release_stripe(sh); 2673 2674 if (sh->batch_head && sh != sh->batch_head) 2675 raid5_release_stripe(sh->batch_head); 2676 } 2677 2678 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev) 2679 { 2680 char b[BDEVNAME_SIZE]; 2681 struct r5conf *conf = mddev->private; 2682 unsigned long flags; 2683 pr_debug("raid456: error called\n"); 2684 2685 spin_lock_irqsave(&conf->device_lock, flags); 2686 set_bit(Faulty, &rdev->flags); 2687 clear_bit(In_sync, &rdev->flags); 2688 mddev->degraded = raid5_calc_degraded(conf); 2689 spin_unlock_irqrestore(&conf->device_lock, flags); 2690 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2691 2692 set_bit(Blocked, &rdev->flags); 2693 set_mask_bits(&mddev->sb_flags, 0, 2694 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 2695 pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n" 2696 "md/raid:%s: Operation continuing on %d devices.\n", 2697 mdname(mddev), 2698 bdevname(rdev->bdev, b), 2699 mdname(mddev), 2700 conf->raid_disks - mddev->degraded); 2701 r5c_update_on_rdev_error(mddev, rdev); 2702 } 2703 2704 /* 2705 * Input: a 'big' sector number, 2706 * Output: index of the data and parity disk, and the sector # in them. 2707 */ 2708 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector, 2709 int previous, int *dd_idx, 2710 struct stripe_head *sh) 2711 { 2712 sector_t stripe, stripe2; 2713 sector_t chunk_number; 2714 unsigned int chunk_offset; 2715 int pd_idx, qd_idx; 2716 int ddf_layout = 0; 2717 sector_t new_sector; 2718 int algorithm = previous ? conf->prev_algo 2719 : conf->algorithm; 2720 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 2721 : conf->chunk_sectors; 2722 int raid_disks = previous ? conf->previous_raid_disks 2723 : conf->raid_disks; 2724 int data_disks = raid_disks - conf->max_degraded; 2725 2726 /* First compute the information on this sector */ 2727 2728 /* 2729 * Compute the chunk number and the sector offset inside the chunk 2730 */ 2731 chunk_offset = sector_div(r_sector, sectors_per_chunk); 2732 chunk_number = r_sector; 2733 2734 /* 2735 * Compute the stripe number 2736 */ 2737 stripe = chunk_number; 2738 *dd_idx = sector_div(stripe, data_disks); 2739 stripe2 = stripe; 2740 /* 2741 * Select the parity disk based on the user selected algorithm. 2742 */ 2743 pd_idx = qd_idx = -1; 2744 switch(conf->level) { 2745 case 4: 2746 pd_idx = data_disks; 2747 break; 2748 case 5: 2749 switch (algorithm) { 2750 case ALGORITHM_LEFT_ASYMMETRIC: 2751 pd_idx = data_disks - sector_div(stripe2, raid_disks); 2752 if (*dd_idx >= pd_idx) 2753 (*dd_idx)++; 2754 break; 2755 case ALGORITHM_RIGHT_ASYMMETRIC: 2756 pd_idx = sector_div(stripe2, raid_disks); 2757 if (*dd_idx >= pd_idx) 2758 (*dd_idx)++; 2759 break; 2760 case ALGORITHM_LEFT_SYMMETRIC: 2761 pd_idx = data_disks - sector_div(stripe2, raid_disks); 2762 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2763 break; 2764 case ALGORITHM_RIGHT_SYMMETRIC: 2765 pd_idx = sector_div(stripe2, raid_disks); 2766 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2767 break; 2768 case ALGORITHM_PARITY_0: 2769 pd_idx = 0; 2770 (*dd_idx)++; 2771 break; 2772 case ALGORITHM_PARITY_N: 2773 pd_idx = data_disks; 2774 break; 2775 default: 2776 BUG(); 2777 } 2778 break; 2779 case 6: 2780 2781 switch (algorithm) { 2782 case ALGORITHM_LEFT_ASYMMETRIC: 2783 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2784 qd_idx = pd_idx + 1; 2785 if (pd_idx == raid_disks-1) { 2786 (*dd_idx)++; /* Q D D D P */ 2787 qd_idx = 0; 2788 } else if (*dd_idx >= pd_idx) 2789 (*dd_idx) += 2; /* D D P Q D */ 2790 break; 2791 case ALGORITHM_RIGHT_ASYMMETRIC: 2792 pd_idx = sector_div(stripe2, raid_disks); 2793 qd_idx = pd_idx + 1; 2794 if (pd_idx == raid_disks-1) { 2795 (*dd_idx)++; /* Q D D D P */ 2796 qd_idx = 0; 2797 } else if (*dd_idx >= pd_idx) 2798 (*dd_idx) += 2; /* D D P Q D */ 2799 break; 2800 case ALGORITHM_LEFT_SYMMETRIC: 2801 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2802 qd_idx = (pd_idx + 1) % raid_disks; 2803 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 2804 break; 2805 case ALGORITHM_RIGHT_SYMMETRIC: 2806 pd_idx = sector_div(stripe2, raid_disks); 2807 qd_idx = (pd_idx + 1) % raid_disks; 2808 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 2809 break; 2810 2811 case ALGORITHM_PARITY_0: 2812 pd_idx = 0; 2813 qd_idx = 1; 2814 (*dd_idx) += 2; 2815 break; 2816 case ALGORITHM_PARITY_N: 2817 pd_idx = data_disks; 2818 qd_idx = data_disks + 1; 2819 break; 2820 2821 case ALGORITHM_ROTATING_ZERO_RESTART: 2822 /* Exactly the same as RIGHT_ASYMMETRIC, but or 2823 * of blocks for computing Q is different. 2824 */ 2825 pd_idx = sector_div(stripe2, raid_disks); 2826 qd_idx = pd_idx + 1; 2827 if (pd_idx == raid_disks-1) { 2828 (*dd_idx)++; /* Q D D D P */ 2829 qd_idx = 0; 2830 } else if (*dd_idx >= pd_idx) 2831 (*dd_idx) += 2; /* D D P Q D */ 2832 ddf_layout = 1; 2833 break; 2834 2835 case ALGORITHM_ROTATING_N_RESTART: 2836 /* Same a left_asymmetric, by first stripe is 2837 * D D D P Q rather than 2838 * Q D D D P 2839 */ 2840 stripe2 += 1; 2841 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2842 qd_idx = pd_idx + 1; 2843 if (pd_idx == raid_disks-1) { 2844 (*dd_idx)++; /* Q D D D P */ 2845 qd_idx = 0; 2846 } else if (*dd_idx >= pd_idx) 2847 (*dd_idx) += 2; /* D D P Q D */ 2848 ddf_layout = 1; 2849 break; 2850 2851 case ALGORITHM_ROTATING_N_CONTINUE: 2852 /* Same as left_symmetric but Q is before P */ 2853 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2854 qd_idx = (pd_idx + raid_disks - 1) % raid_disks; 2855 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2856 ddf_layout = 1; 2857 break; 2858 2859 case ALGORITHM_LEFT_ASYMMETRIC_6: 2860 /* RAID5 left_asymmetric, with Q on last device */ 2861 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 2862 if (*dd_idx >= pd_idx) 2863 (*dd_idx)++; 2864 qd_idx = raid_disks - 1; 2865 break; 2866 2867 case ALGORITHM_RIGHT_ASYMMETRIC_6: 2868 pd_idx = sector_div(stripe2, raid_disks-1); 2869 if (*dd_idx >= pd_idx) 2870 (*dd_idx)++; 2871 qd_idx = raid_disks - 1; 2872 break; 2873 2874 case ALGORITHM_LEFT_SYMMETRIC_6: 2875 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 2876 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 2877 qd_idx = raid_disks - 1; 2878 break; 2879 2880 case ALGORITHM_RIGHT_SYMMETRIC_6: 2881 pd_idx = sector_div(stripe2, raid_disks-1); 2882 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 2883 qd_idx = raid_disks - 1; 2884 break; 2885 2886 case ALGORITHM_PARITY_0_6: 2887 pd_idx = 0; 2888 (*dd_idx)++; 2889 qd_idx = raid_disks - 1; 2890 break; 2891 2892 default: 2893 BUG(); 2894 } 2895 break; 2896 } 2897 2898 if (sh) { 2899 sh->pd_idx = pd_idx; 2900 sh->qd_idx = qd_idx; 2901 sh->ddf_layout = ddf_layout; 2902 } 2903 /* 2904 * Finally, compute the new sector number 2905 */ 2906 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset; 2907 return new_sector; 2908 } 2909 2910 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous) 2911 { 2912 struct r5conf *conf = sh->raid_conf; 2913 int raid_disks = sh->disks; 2914 int data_disks = raid_disks - conf->max_degraded; 2915 sector_t new_sector = sh->sector, check; 2916 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 2917 : conf->chunk_sectors; 2918 int algorithm = previous ? conf->prev_algo 2919 : conf->algorithm; 2920 sector_t stripe; 2921 int chunk_offset; 2922 sector_t chunk_number; 2923 int dummy1, dd_idx = i; 2924 sector_t r_sector; 2925 struct stripe_head sh2; 2926 2927 chunk_offset = sector_div(new_sector, sectors_per_chunk); 2928 stripe = new_sector; 2929 2930 if (i == sh->pd_idx) 2931 return 0; 2932 switch(conf->level) { 2933 case 4: break; 2934 case 5: 2935 switch (algorithm) { 2936 case ALGORITHM_LEFT_ASYMMETRIC: 2937 case ALGORITHM_RIGHT_ASYMMETRIC: 2938 if (i > sh->pd_idx) 2939 i--; 2940 break; 2941 case ALGORITHM_LEFT_SYMMETRIC: 2942 case ALGORITHM_RIGHT_SYMMETRIC: 2943 if (i < sh->pd_idx) 2944 i += raid_disks; 2945 i -= (sh->pd_idx + 1); 2946 break; 2947 case ALGORITHM_PARITY_0: 2948 i -= 1; 2949 break; 2950 case ALGORITHM_PARITY_N: 2951 break; 2952 default: 2953 BUG(); 2954 } 2955 break; 2956 case 6: 2957 if (i == sh->qd_idx) 2958 return 0; /* It is the Q disk */ 2959 switch (algorithm) { 2960 case ALGORITHM_LEFT_ASYMMETRIC: 2961 case ALGORITHM_RIGHT_ASYMMETRIC: 2962 case ALGORITHM_ROTATING_ZERO_RESTART: 2963 case ALGORITHM_ROTATING_N_RESTART: 2964 if (sh->pd_idx == raid_disks-1) 2965 i--; /* Q D D D P */ 2966 else if (i > sh->pd_idx) 2967 i -= 2; /* D D P Q D */ 2968 break; 2969 case ALGORITHM_LEFT_SYMMETRIC: 2970 case ALGORITHM_RIGHT_SYMMETRIC: 2971 if (sh->pd_idx == raid_disks-1) 2972 i--; /* Q D D D P */ 2973 else { 2974 /* D D P Q D */ 2975 if (i < sh->pd_idx) 2976 i += raid_disks; 2977 i -= (sh->pd_idx + 2); 2978 } 2979 break; 2980 case ALGORITHM_PARITY_0: 2981 i -= 2; 2982 break; 2983 case ALGORITHM_PARITY_N: 2984 break; 2985 case ALGORITHM_ROTATING_N_CONTINUE: 2986 /* Like left_symmetric, but P is before Q */ 2987 if (sh->pd_idx == 0) 2988 i--; /* P D D D Q */ 2989 else { 2990 /* D D Q P D */ 2991 if (i < sh->pd_idx) 2992 i += raid_disks; 2993 i -= (sh->pd_idx + 1); 2994 } 2995 break; 2996 case ALGORITHM_LEFT_ASYMMETRIC_6: 2997 case ALGORITHM_RIGHT_ASYMMETRIC_6: 2998 if (i > sh->pd_idx) 2999 i--; 3000 break; 3001 case ALGORITHM_LEFT_SYMMETRIC_6: 3002 case ALGORITHM_RIGHT_SYMMETRIC_6: 3003 if (i < sh->pd_idx) 3004 i += data_disks + 1; 3005 i -= (sh->pd_idx + 1); 3006 break; 3007 case ALGORITHM_PARITY_0_6: 3008 i -= 1; 3009 break; 3010 default: 3011 BUG(); 3012 } 3013 break; 3014 } 3015 3016 chunk_number = stripe * data_disks + i; 3017 r_sector = chunk_number * sectors_per_chunk + chunk_offset; 3018 3019 check = raid5_compute_sector(conf, r_sector, 3020 previous, &dummy1, &sh2); 3021 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx 3022 || sh2.qd_idx != sh->qd_idx) { 3023 pr_warn("md/raid:%s: compute_blocknr: map not correct\n", 3024 mdname(conf->mddev)); 3025 return 0; 3026 } 3027 return r_sector; 3028 } 3029 3030 /* 3031 * There are cases where we want handle_stripe_dirtying() and 3032 * schedule_reconstruction() to delay towrite to some dev of a stripe. 3033 * 3034 * This function checks whether we want to delay the towrite. Specifically, 3035 * we delay the towrite when: 3036 * 3037 * 1. degraded stripe has a non-overwrite to the missing dev, AND this 3038 * stripe has data in journal (for other devices). 3039 * 3040 * In this case, when reading data for the non-overwrite dev, it is 3041 * necessary to handle complex rmw of write back cache (prexor with 3042 * orig_page, and xor with page). To keep read path simple, we would 3043 * like to flush data in journal to RAID disks first, so complex rmw 3044 * is handled in the write patch (handle_stripe_dirtying). 3045 * 3046 * 2. when journal space is critical (R5C_LOG_CRITICAL=1) 3047 * 3048 * It is important to be able to flush all stripes in raid5-cache. 3049 * Therefore, we need reserve some space on the journal device for 3050 * these flushes. If flush operation includes pending writes to the 3051 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe 3052 * for the flush out. If we exclude these pending writes from flush 3053 * operation, we only need (conf->max_degraded + 1) pages per stripe. 3054 * Therefore, excluding pending writes in these cases enables more 3055 * efficient use of the journal device. 3056 * 3057 * Note: To make sure the stripe makes progress, we only delay 3058 * towrite for stripes with data already in journal (injournal > 0). 3059 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to 3060 * no_space_stripes list. 3061 * 3062 * 3. during journal failure 3063 * In journal failure, we try to flush all cached data to raid disks 3064 * based on data in stripe cache. The array is read-only to upper 3065 * layers, so we would skip all pending writes. 3066 * 3067 */ 3068 static inline bool delay_towrite(struct r5conf *conf, 3069 struct r5dev *dev, 3070 struct stripe_head_state *s) 3071 { 3072 /* case 1 above */ 3073 if (!test_bit(R5_OVERWRITE, &dev->flags) && 3074 !test_bit(R5_Insync, &dev->flags) && s->injournal) 3075 return true; 3076 /* case 2 above */ 3077 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) && 3078 s->injournal > 0) 3079 return true; 3080 /* case 3 above */ 3081 if (s->log_failed && s->injournal) 3082 return true; 3083 return false; 3084 } 3085 3086 static void 3087 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s, 3088 int rcw, int expand) 3089 { 3090 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks; 3091 struct r5conf *conf = sh->raid_conf; 3092 int level = conf->level; 3093 3094 if (rcw) { 3095 /* 3096 * In some cases, handle_stripe_dirtying initially decided to 3097 * run rmw and allocates extra page for prexor. However, rcw is 3098 * cheaper later on. We need to free the extra page now, 3099 * because we won't be able to do that in ops_complete_prexor(). 3100 */ 3101 r5c_release_extra_page(sh); 3102 3103 for (i = disks; i--; ) { 3104 struct r5dev *dev = &sh->dev[i]; 3105 3106 if (dev->towrite && !delay_towrite(conf, dev, s)) { 3107 set_bit(R5_LOCKED, &dev->flags); 3108 set_bit(R5_Wantdrain, &dev->flags); 3109 if (!expand) 3110 clear_bit(R5_UPTODATE, &dev->flags); 3111 s->locked++; 3112 } else if (test_bit(R5_InJournal, &dev->flags)) { 3113 set_bit(R5_LOCKED, &dev->flags); 3114 s->locked++; 3115 } 3116 } 3117 /* if we are not expanding this is a proper write request, and 3118 * there will be bios with new data to be drained into the 3119 * stripe cache 3120 */ 3121 if (!expand) { 3122 if (!s->locked) 3123 /* False alarm, nothing to do */ 3124 return; 3125 sh->reconstruct_state = reconstruct_state_drain_run; 3126 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 3127 } else 3128 sh->reconstruct_state = reconstruct_state_run; 3129 3130 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 3131 3132 if (s->locked + conf->max_degraded == disks) 3133 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state)) 3134 atomic_inc(&conf->pending_full_writes); 3135 } else { 3136 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) || 3137 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags))); 3138 BUG_ON(level == 6 && 3139 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) || 3140 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags)))); 3141 3142 for (i = disks; i--; ) { 3143 struct r5dev *dev = &sh->dev[i]; 3144 if (i == pd_idx || i == qd_idx) 3145 continue; 3146 3147 if (dev->towrite && 3148 (test_bit(R5_UPTODATE, &dev->flags) || 3149 test_bit(R5_Wantcompute, &dev->flags))) { 3150 set_bit(R5_Wantdrain, &dev->flags); 3151 set_bit(R5_LOCKED, &dev->flags); 3152 clear_bit(R5_UPTODATE, &dev->flags); 3153 s->locked++; 3154 } else if (test_bit(R5_InJournal, &dev->flags)) { 3155 set_bit(R5_LOCKED, &dev->flags); 3156 s->locked++; 3157 } 3158 } 3159 if (!s->locked) 3160 /* False alarm - nothing to do */ 3161 return; 3162 sh->reconstruct_state = reconstruct_state_prexor_drain_run; 3163 set_bit(STRIPE_OP_PREXOR, &s->ops_request); 3164 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 3165 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 3166 } 3167 3168 /* keep the parity disk(s) locked while asynchronous operations 3169 * are in flight 3170 */ 3171 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); 3172 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 3173 s->locked++; 3174 3175 if (level == 6) { 3176 int qd_idx = sh->qd_idx; 3177 struct r5dev *dev = &sh->dev[qd_idx]; 3178 3179 set_bit(R5_LOCKED, &dev->flags); 3180 clear_bit(R5_UPTODATE, &dev->flags); 3181 s->locked++; 3182 } 3183 3184 if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page && 3185 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) && 3186 !test_bit(STRIPE_FULL_WRITE, &sh->state) && 3187 test_bit(R5_Insync, &sh->dev[pd_idx].flags)) 3188 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request); 3189 3190 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n", 3191 __func__, (unsigned long long)sh->sector, 3192 s->locked, s->ops_request); 3193 } 3194 3195 /* 3196 * Each stripe/dev can have one or more bion attached. 3197 * toread/towrite point to the first in a chain. 3198 * The bi_next chain must be in order. 3199 */ 3200 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, 3201 int forwrite, int previous) 3202 { 3203 struct bio **bip; 3204 struct r5conf *conf = sh->raid_conf; 3205 int firstwrite=0; 3206 3207 pr_debug("adding bi b#%llu to stripe s#%llu\n", 3208 (unsigned long long)bi->bi_iter.bi_sector, 3209 (unsigned long long)sh->sector); 3210 3211 spin_lock_irq(&sh->stripe_lock); 3212 sh->dev[dd_idx].write_hint = bi->bi_write_hint; 3213 /* Don't allow new IO added to stripes in batch list */ 3214 if (sh->batch_head) 3215 goto overlap; 3216 if (forwrite) { 3217 bip = &sh->dev[dd_idx].towrite; 3218 if (*bip == NULL) 3219 firstwrite = 1; 3220 } else 3221 bip = &sh->dev[dd_idx].toread; 3222 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) { 3223 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector) 3224 goto overlap; 3225 bip = & (*bip)->bi_next; 3226 } 3227 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi)) 3228 goto overlap; 3229 3230 if (forwrite && raid5_has_ppl(conf)) { 3231 /* 3232 * With PPL only writes to consecutive data chunks within a 3233 * stripe are allowed because for a single stripe_head we can 3234 * only have one PPL entry at a time, which describes one data 3235 * range. Not really an overlap, but wait_for_overlap can be 3236 * used to handle this. 3237 */ 3238 sector_t sector; 3239 sector_t first = 0; 3240 sector_t last = 0; 3241 int count = 0; 3242 int i; 3243 3244 for (i = 0; i < sh->disks; i++) { 3245 if (i != sh->pd_idx && 3246 (i == dd_idx || sh->dev[i].towrite)) { 3247 sector = sh->dev[i].sector; 3248 if (count == 0 || sector < first) 3249 first = sector; 3250 if (sector > last) 3251 last = sector; 3252 count++; 3253 } 3254 } 3255 3256 if (first + conf->chunk_sectors * (count - 1) != last) 3257 goto overlap; 3258 } 3259 3260 if (!forwrite || previous) 3261 clear_bit(STRIPE_BATCH_READY, &sh->state); 3262 3263 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next); 3264 if (*bip) 3265 bi->bi_next = *bip; 3266 *bip = bi; 3267 bio_inc_remaining(bi); 3268 md_write_inc(conf->mddev, bi); 3269 3270 if (forwrite) { 3271 /* check if page is covered */ 3272 sector_t sector = sh->dev[dd_idx].sector; 3273 for (bi=sh->dev[dd_idx].towrite; 3274 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS && 3275 bi && bi->bi_iter.bi_sector <= sector; 3276 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) { 3277 if (bio_end_sector(bi) >= sector) 3278 sector = bio_end_sector(bi); 3279 } 3280 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS) 3281 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags)) 3282 sh->overwrite_disks++; 3283 } 3284 3285 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n", 3286 (unsigned long long)(*bip)->bi_iter.bi_sector, 3287 (unsigned long long)sh->sector, dd_idx); 3288 3289 if (conf->mddev->bitmap && firstwrite) { 3290 /* Cannot hold spinlock over bitmap_startwrite, 3291 * but must ensure this isn't added to a batch until 3292 * we have added to the bitmap and set bm_seq. 3293 * So set STRIPE_BITMAP_PENDING to prevent 3294 * batching. 3295 * If multiple add_stripe_bio() calls race here they 3296 * much all set STRIPE_BITMAP_PENDING. So only the first one 3297 * to complete "bitmap_startwrite" gets to set 3298 * STRIPE_BIT_DELAY. This is important as once a stripe 3299 * is added to a batch, STRIPE_BIT_DELAY cannot be changed 3300 * any more. 3301 */ 3302 set_bit(STRIPE_BITMAP_PENDING, &sh->state); 3303 spin_unlock_irq(&sh->stripe_lock); 3304 bitmap_startwrite(conf->mddev->bitmap, sh->sector, 3305 STRIPE_SECTORS, 0); 3306 spin_lock_irq(&sh->stripe_lock); 3307 clear_bit(STRIPE_BITMAP_PENDING, &sh->state); 3308 if (!sh->batch_head) { 3309 sh->bm_seq = conf->seq_flush+1; 3310 set_bit(STRIPE_BIT_DELAY, &sh->state); 3311 } 3312 } 3313 spin_unlock_irq(&sh->stripe_lock); 3314 3315 if (stripe_can_batch(sh)) 3316 stripe_add_to_batch_list(conf, sh); 3317 return 1; 3318 3319 overlap: 3320 set_bit(R5_Overlap, &sh->dev[dd_idx].flags); 3321 spin_unlock_irq(&sh->stripe_lock); 3322 return 0; 3323 } 3324 3325 static void end_reshape(struct r5conf *conf); 3326 3327 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 3328 struct stripe_head *sh) 3329 { 3330 int sectors_per_chunk = 3331 previous ? conf->prev_chunk_sectors : conf->chunk_sectors; 3332 int dd_idx; 3333 int chunk_offset = sector_div(stripe, sectors_per_chunk); 3334 int disks = previous ? conf->previous_raid_disks : conf->raid_disks; 3335 3336 raid5_compute_sector(conf, 3337 stripe * (disks - conf->max_degraded) 3338 *sectors_per_chunk + chunk_offset, 3339 previous, 3340 &dd_idx, sh); 3341 } 3342 3343 static void 3344 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh, 3345 struct stripe_head_state *s, int disks) 3346 { 3347 int i; 3348 BUG_ON(sh->batch_head); 3349 for (i = disks; i--; ) { 3350 struct bio *bi; 3351 int bitmap_end = 0; 3352 3353 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 3354 struct md_rdev *rdev; 3355 rcu_read_lock(); 3356 rdev = rcu_dereference(conf->disks[i].rdev); 3357 if (rdev && test_bit(In_sync, &rdev->flags) && 3358 !test_bit(Faulty, &rdev->flags)) 3359 atomic_inc(&rdev->nr_pending); 3360 else 3361 rdev = NULL; 3362 rcu_read_unlock(); 3363 if (rdev) { 3364 if (!rdev_set_badblocks( 3365 rdev, 3366 sh->sector, 3367 STRIPE_SECTORS, 0)) 3368 md_error(conf->mddev, rdev); 3369 rdev_dec_pending(rdev, conf->mddev); 3370 } 3371 } 3372 spin_lock_irq(&sh->stripe_lock); 3373 /* fail all writes first */ 3374 bi = sh->dev[i].towrite; 3375 sh->dev[i].towrite = NULL; 3376 sh->overwrite_disks = 0; 3377 spin_unlock_irq(&sh->stripe_lock); 3378 if (bi) 3379 bitmap_end = 1; 3380 3381 log_stripe_write_finished(sh); 3382 3383 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 3384 wake_up(&conf->wait_for_overlap); 3385 3386 while (bi && bi->bi_iter.bi_sector < 3387 sh->dev[i].sector + STRIPE_SECTORS) { 3388 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector); 3389 3390 md_write_end(conf->mddev); 3391 bio_io_error(bi); 3392 bi = nextbi; 3393 } 3394 if (bitmap_end) 3395 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3396 STRIPE_SECTORS, 0, 0); 3397 bitmap_end = 0; 3398 /* and fail all 'written' */ 3399 bi = sh->dev[i].written; 3400 sh->dev[i].written = NULL; 3401 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) { 3402 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 3403 sh->dev[i].page = sh->dev[i].orig_page; 3404 } 3405 3406 if (bi) bitmap_end = 1; 3407 while (bi && bi->bi_iter.bi_sector < 3408 sh->dev[i].sector + STRIPE_SECTORS) { 3409 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector); 3410 3411 md_write_end(conf->mddev); 3412 bio_io_error(bi); 3413 bi = bi2; 3414 } 3415 3416 /* fail any reads if this device is non-operational and 3417 * the data has not reached the cache yet. 3418 */ 3419 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) && 3420 s->failed > conf->max_degraded && 3421 (!test_bit(R5_Insync, &sh->dev[i].flags) || 3422 test_bit(R5_ReadError, &sh->dev[i].flags))) { 3423 spin_lock_irq(&sh->stripe_lock); 3424 bi = sh->dev[i].toread; 3425 sh->dev[i].toread = NULL; 3426 spin_unlock_irq(&sh->stripe_lock); 3427 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 3428 wake_up(&conf->wait_for_overlap); 3429 if (bi) 3430 s->to_read--; 3431 while (bi && bi->bi_iter.bi_sector < 3432 sh->dev[i].sector + STRIPE_SECTORS) { 3433 struct bio *nextbi = 3434 r5_next_bio(bi, sh->dev[i].sector); 3435 3436 bio_io_error(bi); 3437 bi = nextbi; 3438 } 3439 } 3440 if (bitmap_end) 3441 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3442 STRIPE_SECTORS, 0, 0); 3443 /* If we were in the middle of a write the parity block might 3444 * still be locked - so just clear all R5_LOCKED flags 3445 */ 3446 clear_bit(R5_LOCKED, &sh->dev[i].flags); 3447 } 3448 s->to_write = 0; 3449 s->written = 0; 3450 3451 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 3452 if (atomic_dec_and_test(&conf->pending_full_writes)) 3453 md_wakeup_thread(conf->mddev->thread); 3454 } 3455 3456 static void 3457 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh, 3458 struct stripe_head_state *s) 3459 { 3460 int abort = 0; 3461 int i; 3462 3463 BUG_ON(sh->batch_head); 3464 clear_bit(STRIPE_SYNCING, &sh->state); 3465 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 3466 wake_up(&conf->wait_for_overlap); 3467 s->syncing = 0; 3468 s->replacing = 0; 3469 /* There is nothing more to do for sync/check/repair. 3470 * Don't even need to abort as that is handled elsewhere 3471 * if needed, and not always wanted e.g. if there is a known 3472 * bad block here. 3473 * For recover/replace we need to record a bad block on all 3474 * non-sync devices, or abort the recovery 3475 */ 3476 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) { 3477 /* During recovery devices cannot be removed, so 3478 * locking and refcounting of rdevs is not needed 3479 */ 3480 rcu_read_lock(); 3481 for (i = 0; i < conf->raid_disks; i++) { 3482 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 3483 if (rdev 3484 && !test_bit(Faulty, &rdev->flags) 3485 && !test_bit(In_sync, &rdev->flags) 3486 && !rdev_set_badblocks(rdev, sh->sector, 3487 STRIPE_SECTORS, 0)) 3488 abort = 1; 3489 rdev = rcu_dereference(conf->disks[i].replacement); 3490 if (rdev 3491 && !test_bit(Faulty, &rdev->flags) 3492 && !test_bit(In_sync, &rdev->flags) 3493 && !rdev_set_badblocks(rdev, sh->sector, 3494 STRIPE_SECTORS, 0)) 3495 abort = 1; 3496 } 3497 rcu_read_unlock(); 3498 if (abort) 3499 conf->recovery_disabled = 3500 conf->mddev->recovery_disabled; 3501 } 3502 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort); 3503 } 3504 3505 static int want_replace(struct stripe_head *sh, int disk_idx) 3506 { 3507 struct md_rdev *rdev; 3508 int rv = 0; 3509 3510 rcu_read_lock(); 3511 rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement); 3512 if (rdev 3513 && !test_bit(Faulty, &rdev->flags) 3514 && !test_bit(In_sync, &rdev->flags) 3515 && (rdev->recovery_offset <= sh->sector 3516 || rdev->mddev->recovery_cp <= sh->sector)) 3517 rv = 1; 3518 rcu_read_unlock(); 3519 return rv; 3520 } 3521 3522 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s, 3523 int disk_idx, int disks) 3524 { 3525 struct r5dev *dev = &sh->dev[disk_idx]; 3526 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]], 3527 &sh->dev[s->failed_num[1]] }; 3528 int i; 3529 3530 3531 if (test_bit(R5_LOCKED, &dev->flags) || 3532 test_bit(R5_UPTODATE, &dev->flags)) 3533 /* No point reading this as we already have it or have 3534 * decided to get it. 3535 */ 3536 return 0; 3537 3538 if (dev->toread || 3539 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags))) 3540 /* We need this block to directly satisfy a request */ 3541 return 1; 3542 3543 if (s->syncing || s->expanding || 3544 (s->replacing && want_replace(sh, disk_idx))) 3545 /* When syncing, or expanding we read everything. 3546 * When replacing, we need the replaced block. 3547 */ 3548 return 1; 3549 3550 if ((s->failed >= 1 && fdev[0]->toread) || 3551 (s->failed >= 2 && fdev[1]->toread)) 3552 /* If we want to read from a failed device, then 3553 * we need to actually read every other device. 3554 */ 3555 return 1; 3556 3557 /* Sometimes neither read-modify-write nor reconstruct-write 3558 * cycles can work. In those cases we read every block we 3559 * can. Then the parity-update is certain to have enough to 3560 * work with. 3561 * This can only be a problem when we need to write something, 3562 * and some device has failed. If either of those tests 3563 * fail we need look no further. 3564 */ 3565 if (!s->failed || !s->to_write) 3566 return 0; 3567 3568 if (test_bit(R5_Insync, &dev->flags) && 3569 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3570 /* Pre-reads at not permitted until after short delay 3571 * to gather multiple requests. However if this 3572 * device is no Insync, the block could only be computed 3573 * and there is no need to delay that. 3574 */ 3575 return 0; 3576 3577 for (i = 0; i < s->failed && i < 2; i++) { 3578 if (fdev[i]->towrite && 3579 !test_bit(R5_UPTODATE, &fdev[i]->flags) && 3580 !test_bit(R5_OVERWRITE, &fdev[i]->flags)) 3581 /* If we have a partial write to a failed 3582 * device, then we will need to reconstruct 3583 * the content of that device, so all other 3584 * devices must be read. 3585 */ 3586 return 1; 3587 } 3588 3589 /* If we are forced to do a reconstruct-write, either because 3590 * the current RAID6 implementation only supports that, or 3591 * because parity cannot be trusted and we are currently 3592 * recovering it, there is extra need to be careful. 3593 * If one of the devices that we would need to read, because 3594 * it is not being overwritten (and maybe not written at all) 3595 * is missing/faulty, then we need to read everything we can. 3596 */ 3597 if (sh->raid_conf->level != 6 && 3598 sh->sector < sh->raid_conf->mddev->recovery_cp) 3599 /* reconstruct-write isn't being forced */ 3600 return 0; 3601 for (i = 0; i < s->failed && i < 2; i++) { 3602 if (s->failed_num[i] != sh->pd_idx && 3603 s->failed_num[i] != sh->qd_idx && 3604 !test_bit(R5_UPTODATE, &fdev[i]->flags) && 3605 !test_bit(R5_OVERWRITE, &fdev[i]->flags)) 3606 return 1; 3607 } 3608 3609 return 0; 3610 } 3611 3612 /* fetch_block - checks the given member device to see if its data needs 3613 * to be read or computed to satisfy a request. 3614 * 3615 * Returns 1 when no more member devices need to be checked, otherwise returns 3616 * 0 to tell the loop in handle_stripe_fill to continue 3617 */ 3618 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s, 3619 int disk_idx, int disks) 3620 { 3621 struct r5dev *dev = &sh->dev[disk_idx]; 3622 3623 /* is the data in this block needed, and can we get it? */ 3624 if (need_this_block(sh, s, disk_idx, disks)) { 3625 /* we would like to get this block, possibly by computing it, 3626 * otherwise read it if the backing disk is insync 3627 */ 3628 BUG_ON(test_bit(R5_Wantcompute, &dev->flags)); 3629 BUG_ON(test_bit(R5_Wantread, &dev->flags)); 3630 BUG_ON(sh->batch_head); 3631 3632 /* 3633 * In the raid6 case if the only non-uptodate disk is P 3634 * then we already trusted P to compute the other failed 3635 * drives. It is safe to compute rather than re-read P. 3636 * In other cases we only compute blocks from failed 3637 * devices, otherwise check/repair might fail to detect 3638 * a real inconsistency. 3639 */ 3640 3641 if ((s->uptodate == disks - 1) && 3642 ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) || 3643 (s->failed && (disk_idx == s->failed_num[0] || 3644 disk_idx == s->failed_num[1])))) { 3645 /* have disk failed, and we're requested to fetch it; 3646 * do compute it 3647 */ 3648 pr_debug("Computing stripe %llu block %d\n", 3649 (unsigned long long)sh->sector, disk_idx); 3650 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3651 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3652 set_bit(R5_Wantcompute, &dev->flags); 3653 sh->ops.target = disk_idx; 3654 sh->ops.target2 = -1; /* no 2nd target */ 3655 s->req_compute = 1; 3656 /* Careful: from this point on 'uptodate' is in the eye 3657 * of raid_run_ops which services 'compute' operations 3658 * before writes. R5_Wantcompute flags a block that will 3659 * be R5_UPTODATE by the time it is needed for a 3660 * subsequent operation. 3661 */ 3662 s->uptodate++; 3663 return 1; 3664 } else if (s->uptodate == disks-2 && s->failed >= 2) { 3665 /* Computing 2-failure is *very* expensive; only 3666 * do it if failed >= 2 3667 */ 3668 int other; 3669 for (other = disks; other--; ) { 3670 if (other == disk_idx) 3671 continue; 3672 if (!test_bit(R5_UPTODATE, 3673 &sh->dev[other].flags)) 3674 break; 3675 } 3676 BUG_ON(other < 0); 3677 pr_debug("Computing stripe %llu blocks %d,%d\n", 3678 (unsigned long long)sh->sector, 3679 disk_idx, other); 3680 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3681 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3682 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags); 3683 set_bit(R5_Wantcompute, &sh->dev[other].flags); 3684 sh->ops.target = disk_idx; 3685 sh->ops.target2 = other; 3686 s->uptodate += 2; 3687 s->req_compute = 1; 3688 return 1; 3689 } else if (test_bit(R5_Insync, &dev->flags)) { 3690 set_bit(R5_LOCKED, &dev->flags); 3691 set_bit(R5_Wantread, &dev->flags); 3692 s->locked++; 3693 pr_debug("Reading block %d (sync=%d)\n", 3694 disk_idx, s->syncing); 3695 } 3696 } 3697 3698 return 0; 3699 } 3700 3701 /** 3702 * handle_stripe_fill - read or compute data to satisfy pending requests. 3703 */ 3704 static void handle_stripe_fill(struct stripe_head *sh, 3705 struct stripe_head_state *s, 3706 int disks) 3707 { 3708 int i; 3709 3710 /* look for blocks to read/compute, skip this if a compute 3711 * is already in flight, or if the stripe contents are in the 3712 * midst of changing due to a write 3713 */ 3714 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state && 3715 !sh->reconstruct_state) { 3716 3717 /* 3718 * For degraded stripe with data in journal, do not handle 3719 * read requests yet, instead, flush the stripe to raid 3720 * disks first, this avoids handling complex rmw of write 3721 * back cache (prexor with orig_page, and then xor with 3722 * page) in the read path 3723 */ 3724 if (s->injournal && s->failed) { 3725 if (test_bit(STRIPE_R5C_CACHING, &sh->state)) 3726 r5c_make_stripe_write_out(sh); 3727 goto out; 3728 } 3729 3730 for (i = disks; i--; ) 3731 if (fetch_block(sh, s, i, disks)) 3732 break; 3733 } 3734 out: 3735 set_bit(STRIPE_HANDLE, &sh->state); 3736 } 3737 3738 static void break_stripe_batch_list(struct stripe_head *head_sh, 3739 unsigned long handle_flags); 3740 /* handle_stripe_clean_event 3741 * any written block on an uptodate or failed drive can be returned. 3742 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but 3743 * never LOCKED, so we don't need to test 'failed' directly. 3744 */ 3745 static void handle_stripe_clean_event(struct r5conf *conf, 3746 struct stripe_head *sh, int disks) 3747 { 3748 int i; 3749 struct r5dev *dev; 3750 int discard_pending = 0; 3751 struct stripe_head *head_sh = sh; 3752 bool do_endio = false; 3753 3754 for (i = disks; i--; ) 3755 if (sh->dev[i].written) { 3756 dev = &sh->dev[i]; 3757 if (!test_bit(R5_LOCKED, &dev->flags) && 3758 (test_bit(R5_UPTODATE, &dev->flags) || 3759 test_bit(R5_Discard, &dev->flags) || 3760 test_bit(R5_SkipCopy, &dev->flags))) { 3761 /* We can return any write requests */ 3762 struct bio *wbi, *wbi2; 3763 pr_debug("Return write for disc %d\n", i); 3764 if (test_and_clear_bit(R5_Discard, &dev->flags)) 3765 clear_bit(R5_UPTODATE, &dev->flags); 3766 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) { 3767 WARN_ON(test_bit(R5_UPTODATE, &dev->flags)); 3768 } 3769 do_endio = true; 3770 3771 returnbi: 3772 dev->page = dev->orig_page; 3773 wbi = dev->written; 3774 dev->written = NULL; 3775 while (wbi && wbi->bi_iter.bi_sector < 3776 dev->sector + STRIPE_SECTORS) { 3777 wbi2 = r5_next_bio(wbi, dev->sector); 3778 md_write_end(conf->mddev); 3779 bio_endio(wbi); 3780 wbi = wbi2; 3781 } 3782 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3783 STRIPE_SECTORS, 3784 !test_bit(STRIPE_DEGRADED, &sh->state), 3785 0); 3786 if (head_sh->batch_head) { 3787 sh = list_first_entry(&sh->batch_list, 3788 struct stripe_head, 3789 batch_list); 3790 if (sh != head_sh) { 3791 dev = &sh->dev[i]; 3792 goto returnbi; 3793 } 3794 } 3795 sh = head_sh; 3796 dev = &sh->dev[i]; 3797 } else if (test_bit(R5_Discard, &dev->flags)) 3798 discard_pending = 1; 3799 } 3800 3801 log_stripe_write_finished(sh); 3802 3803 if (!discard_pending && 3804 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) { 3805 int hash; 3806 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 3807 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 3808 if (sh->qd_idx >= 0) { 3809 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 3810 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags); 3811 } 3812 /* now that discard is done we can proceed with any sync */ 3813 clear_bit(STRIPE_DISCARD, &sh->state); 3814 /* 3815 * SCSI discard will change some bio fields and the stripe has 3816 * no updated data, so remove it from hash list and the stripe 3817 * will be reinitialized 3818 */ 3819 unhash: 3820 hash = sh->hash_lock_index; 3821 spin_lock_irq(conf->hash_locks + hash); 3822 remove_hash(sh); 3823 spin_unlock_irq(conf->hash_locks + hash); 3824 if (head_sh->batch_head) { 3825 sh = list_first_entry(&sh->batch_list, 3826 struct stripe_head, batch_list); 3827 if (sh != head_sh) 3828 goto unhash; 3829 } 3830 sh = head_sh; 3831 3832 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) 3833 set_bit(STRIPE_HANDLE, &sh->state); 3834 3835 } 3836 3837 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 3838 if (atomic_dec_and_test(&conf->pending_full_writes)) 3839 md_wakeup_thread(conf->mddev->thread); 3840 3841 if (head_sh->batch_head && do_endio) 3842 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS); 3843 } 3844 3845 /* 3846 * For RMW in write back cache, we need extra page in prexor to store the 3847 * old data. This page is stored in dev->orig_page. 3848 * 3849 * This function checks whether we have data for prexor. The exact logic 3850 * is: 3851 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE) 3852 */ 3853 static inline bool uptodate_for_rmw(struct r5dev *dev) 3854 { 3855 return (test_bit(R5_UPTODATE, &dev->flags)) && 3856 (!test_bit(R5_InJournal, &dev->flags) || 3857 test_bit(R5_OrigPageUPTDODATE, &dev->flags)); 3858 } 3859 3860 static int handle_stripe_dirtying(struct r5conf *conf, 3861 struct stripe_head *sh, 3862 struct stripe_head_state *s, 3863 int disks) 3864 { 3865 int rmw = 0, rcw = 0, i; 3866 sector_t recovery_cp = conf->mddev->recovery_cp; 3867 3868 /* Check whether resync is now happening or should start. 3869 * If yes, then the array is dirty (after unclean shutdown or 3870 * initial creation), so parity in some stripes might be inconsistent. 3871 * In this case, we need to always do reconstruct-write, to ensure 3872 * that in case of drive failure or read-error correction, we 3873 * generate correct data from the parity. 3874 */ 3875 if (conf->rmw_level == PARITY_DISABLE_RMW || 3876 (recovery_cp < MaxSector && sh->sector >= recovery_cp && 3877 s->failed == 0)) { 3878 /* Calculate the real rcw later - for now make it 3879 * look like rcw is cheaper 3880 */ 3881 rcw = 1; rmw = 2; 3882 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n", 3883 conf->rmw_level, (unsigned long long)recovery_cp, 3884 (unsigned long long)sh->sector); 3885 } else for (i = disks; i--; ) { 3886 /* would I have to read this buffer for read_modify_write */ 3887 struct r5dev *dev = &sh->dev[i]; 3888 if (((dev->towrite && !delay_towrite(conf, dev, s)) || 3889 i == sh->pd_idx || i == sh->qd_idx || 3890 test_bit(R5_InJournal, &dev->flags)) && 3891 !test_bit(R5_LOCKED, &dev->flags) && 3892 !(uptodate_for_rmw(dev) || 3893 test_bit(R5_Wantcompute, &dev->flags))) { 3894 if (test_bit(R5_Insync, &dev->flags)) 3895 rmw++; 3896 else 3897 rmw += 2*disks; /* cannot read it */ 3898 } 3899 /* Would I have to read this buffer for reconstruct_write */ 3900 if (!test_bit(R5_OVERWRITE, &dev->flags) && 3901 i != sh->pd_idx && i != sh->qd_idx && 3902 !test_bit(R5_LOCKED, &dev->flags) && 3903 !(test_bit(R5_UPTODATE, &dev->flags) || 3904 test_bit(R5_Wantcompute, &dev->flags))) { 3905 if (test_bit(R5_Insync, &dev->flags)) 3906 rcw++; 3907 else 3908 rcw += 2*disks; 3909 } 3910 } 3911 3912 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n", 3913 (unsigned long long)sh->sector, sh->state, rmw, rcw); 3914 set_bit(STRIPE_HANDLE, &sh->state); 3915 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) { 3916 /* prefer read-modify-write, but need to get some data */ 3917 if (conf->mddev->queue) 3918 blk_add_trace_msg(conf->mddev->queue, 3919 "raid5 rmw %llu %d", 3920 (unsigned long long)sh->sector, rmw); 3921 for (i = disks; i--; ) { 3922 struct r5dev *dev = &sh->dev[i]; 3923 if (test_bit(R5_InJournal, &dev->flags) && 3924 dev->page == dev->orig_page && 3925 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) { 3926 /* alloc page for prexor */ 3927 struct page *p = alloc_page(GFP_NOIO); 3928 3929 if (p) { 3930 dev->orig_page = p; 3931 continue; 3932 } 3933 3934 /* 3935 * alloc_page() failed, try use 3936 * disk_info->extra_page 3937 */ 3938 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE, 3939 &conf->cache_state)) { 3940 r5c_use_extra_page(sh); 3941 break; 3942 } 3943 3944 /* extra_page in use, add to delayed_list */ 3945 set_bit(STRIPE_DELAYED, &sh->state); 3946 s->waiting_extra_page = 1; 3947 return -EAGAIN; 3948 } 3949 } 3950 3951 for (i = disks; i--; ) { 3952 struct r5dev *dev = &sh->dev[i]; 3953 if (((dev->towrite && !delay_towrite(conf, dev, s)) || 3954 i == sh->pd_idx || i == sh->qd_idx || 3955 test_bit(R5_InJournal, &dev->flags)) && 3956 !test_bit(R5_LOCKED, &dev->flags) && 3957 !(uptodate_for_rmw(dev) || 3958 test_bit(R5_Wantcompute, &dev->flags)) && 3959 test_bit(R5_Insync, &dev->flags)) { 3960 if (test_bit(STRIPE_PREREAD_ACTIVE, 3961 &sh->state)) { 3962 pr_debug("Read_old block %d for r-m-w\n", 3963 i); 3964 set_bit(R5_LOCKED, &dev->flags); 3965 set_bit(R5_Wantread, &dev->flags); 3966 s->locked++; 3967 } else { 3968 set_bit(STRIPE_DELAYED, &sh->state); 3969 set_bit(STRIPE_HANDLE, &sh->state); 3970 } 3971 } 3972 } 3973 } 3974 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) { 3975 /* want reconstruct write, but need to get some data */ 3976 int qread =0; 3977 rcw = 0; 3978 for (i = disks; i--; ) { 3979 struct r5dev *dev = &sh->dev[i]; 3980 if (!test_bit(R5_OVERWRITE, &dev->flags) && 3981 i != sh->pd_idx && i != sh->qd_idx && 3982 !test_bit(R5_LOCKED, &dev->flags) && 3983 !(test_bit(R5_UPTODATE, &dev->flags) || 3984 test_bit(R5_Wantcompute, &dev->flags))) { 3985 rcw++; 3986 if (test_bit(R5_Insync, &dev->flags) && 3987 test_bit(STRIPE_PREREAD_ACTIVE, 3988 &sh->state)) { 3989 pr_debug("Read_old block " 3990 "%d for Reconstruct\n", i); 3991 set_bit(R5_LOCKED, &dev->flags); 3992 set_bit(R5_Wantread, &dev->flags); 3993 s->locked++; 3994 qread++; 3995 } else { 3996 set_bit(STRIPE_DELAYED, &sh->state); 3997 set_bit(STRIPE_HANDLE, &sh->state); 3998 } 3999 } 4000 } 4001 if (rcw && conf->mddev->queue) 4002 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d", 4003 (unsigned long long)sh->sector, 4004 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state)); 4005 } 4006 4007 if (rcw > disks && rmw > disks && 4008 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4009 set_bit(STRIPE_DELAYED, &sh->state); 4010 4011 /* now if nothing is locked, and if we have enough data, 4012 * we can start a write request 4013 */ 4014 /* since handle_stripe can be called at any time we need to handle the 4015 * case where a compute block operation has been submitted and then a 4016 * subsequent call wants to start a write request. raid_run_ops only 4017 * handles the case where compute block and reconstruct are requested 4018 * simultaneously. If this is not the case then new writes need to be 4019 * held off until the compute completes. 4020 */ 4021 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) && 4022 (s->locked == 0 && (rcw == 0 || rmw == 0) && 4023 !test_bit(STRIPE_BIT_DELAY, &sh->state))) 4024 schedule_reconstruction(sh, s, rcw == 0, 0); 4025 return 0; 4026 } 4027 4028 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh, 4029 struct stripe_head_state *s, int disks) 4030 { 4031 struct r5dev *dev = NULL; 4032 4033 BUG_ON(sh->batch_head); 4034 set_bit(STRIPE_HANDLE, &sh->state); 4035 4036 switch (sh->check_state) { 4037 case check_state_idle: 4038 /* start a new check operation if there are no failures */ 4039 if (s->failed == 0) { 4040 BUG_ON(s->uptodate != disks); 4041 sh->check_state = check_state_run; 4042 set_bit(STRIPE_OP_CHECK, &s->ops_request); 4043 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 4044 s->uptodate--; 4045 break; 4046 } 4047 dev = &sh->dev[s->failed_num[0]]; 4048 /* fall through */ 4049 case check_state_compute_result: 4050 sh->check_state = check_state_idle; 4051 if (!dev) 4052 dev = &sh->dev[sh->pd_idx]; 4053 4054 /* check that a write has not made the stripe insync */ 4055 if (test_bit(STRIPE_INSYNC, &sh->state)) 4056 break; 4057 4058 /* either failed parity check, or recovery is happening */ 4059 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags)); 4060 BUG_ON(s->uptodate != disks); 4061 4062 set_bit(R5_LOCKED, &dev->flags); 4063 s->locked++; 4064 set_bit(R5_Wantwrite, &dev->flags); 4065 4066 clear_bit(STRIPE_DEGRADED, &sh->state); 4067 set_bit(STRIPE_INSYNC, &sh->state); 4068 break; 4069 case check_state_run: 4070 break; /* we will be called again upon completion */ 4071 case check_state_check_result: 4072 sh->check_state = check_state_idle; 4073 4074 /* if a failure occurred during the check operation, leave 4075 * STRIPE_INSYNC not set and let the stripe be handled again 4076 */ 4077 if (s->failed) 4078 break; 4079 4080 /* handle a successful check operation, if parity is correct 4081 * we are done. Otherwise update the mismatch count and repair 4082 * parity if !MD_RECOVERY_CHECK 4083 */ 4084 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0) 4085 /* parity is correct (on disc, 4086 * not in buffer any more) 4087 */ 4088 set_bit(STRIPE_INSYNC, &sh->state); 4089 else { 4090 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches); 4091 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) { 4092 /* don't try to repair!! */ 4093 set_bit(STRIPE_INSYNC, &sh->state); 4094 pr_warn_ratelimited("%s: mismatch sector in range " 4095 "%llu-%llu\n", mdname(conf->mddev), 4096 (unsigned long long) sh->sector, 4097 (unsigned long long) sh->sector + 4098 STRIPE_SECTORS); 4099 } else { 4100 sh->check_state = check_state_compute_run; 4101 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 4102 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 4103 set_bit(R5_Wantcompute, 4104 &sh->dev[sh->pd_idx].flags); 4105 sh->ops.target = sh->pd_idx; 4106 sh->ops.target2 = -1; 4107 s->uptodate++; 4108 } 4109 } 4110 break; 4111 case check_state_compute_run: 4112 break; 4113 default: 4114 pr_err("%s: unknown check_state: %d sector: %llu\n", 4115 __func__, sh->check_state, 4116 (unsigned long long) sh->sector); 4117 BUG(); 4118 } 4119 } 4120 4121 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh, 4122 struct stripe_head_state *s, 4123 int disks) 4124 { 4125 int pd_idx = sh->pd_idx; 4126 int qd_idx = sh->qd_idx; 4127 struct r5dev *dev; 4128 4129 BUG_ON(sh->batch_head); 4130 set_bit(STRIPE_HANDLE, &sh->state); 4131 4132 BUG_ON(s->failed > 2); 4133 4134 /* Want to check and possibly repair P and Q. 4135 * However there could be one 'failed' device, in which 4136 * case we can only check one of them, possibly using the 4137 * other to generate missing data 4138 */ 4139 4140 switch (sh->check_state) { 4141 case check_state_idle: 4142 /* start a new check operation if there are < 2 failures */ 4143 if (s->failed == s->q_failed) { 4144 /* The only possible failed device holds Q, so it 4145 * makes sense to check P (If anything else were failed, 4146 * we would have used P to recreate it). 4147 */ 4148 sh->check_state = check_state_run; 4149 } 4150 if (!s->q_failed && s->failed < 2) { 4151 /* Q is not failed, and we didn't use it to generate 4152 * anything, so it makes sense to check it 4153 */ 4154 if (sh->check_state == check_state_run) 4155 sh->check_state = check_state_run_pq; 4156 else 4157 sh->check_state = check_state_run_q; 4158 } 4159 4160 /* discard potentially stale zero_sum_result */ 4161 sh->ops.zero_sum_result = 0; 4162 4163 if (sh->check_state == check_state_run) { 4164 /* async_xor_zero_sum destroys the contents of P */ 4165 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 4166 s->uptodate--; 4167 } 4168 if (sh->check_state >= check_state_run && 4169 sh->check_state <= check_state_run_pq) { 4170 /* async_syndrome_zero_sum preserves P and Q, so 4171 * no need to mark them !uptodate here 4172 */ 4173 set_bit(STRIPE_OP_CHECK, &s->ops_request); 4174 break; 4175 } 4176 4177 /* we have 2-disk failure */ 4178 BUG_ON(s->failed != 2); 4179 /* fall through */ 4180 case check_state_compute_result: 4181 sh->check_state = check_state_idle; 4182 4183 /* check that a write has not made the stripe insync */ 4184 if (test_bit(STRIPE_INSYNC, &sh->state)) 4185 break; 4186 4187 /* now write out any block on a failed drive, 4188 * or P or Q if they were recomputed 4189 */ 4190 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */ 4191 if (s->failed == 2) { 4192 dev = &sh->dev[s->failed_num[1]]; 4193 s->locked++; 4194 set_bit(R5_LOCKED, &dev->flags); 4195 set_bit(R5_Wantwrite, &dev->flags); 4196 } 4197 if (s->failed >= 1) { 4198 dev = &sh->dev[s->failed_num[0]]; 4199 s->locked++; 4200 set_bit(R5_LOCKED, &dev->flags); 4201 set_bit(R5_Wantwrite, &dev->flags); 4202 } 4203 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 4204 dev = &sh->dev[pd_idx]; 4205 s->locked++; 4206 set_bit(R5_LOCKED, &dev->flags); 4207 set_bit(R5_Wantwrite, &dev->flags); 4208 } 4209 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 4210 dev = &sh->dev[qd_idx]; 4211 s->locked++; 4212 set_bit(R5_LOCKED, &dev->flags); 4213 set_bit(R5_Wantwrite, &dev->flags); 4214 } 4215 clear_bit(STRIPE_DEGRADED, &sh->state); 4216 4217 set_bit(STRIPE_INSYNC, &sh->state); 4218 break; 4219 case check_state_run: 4220 case check_state_run_q: 4221 case check_state_run_pq: 4222 break; /* we will be called again upon completion */ 4223 case check_state_check_result: 4224 sh->check_state = check_state_idle; 4225 4226 /* handle a successful check operation, if parity is correct 4227 * we are done. Otherwise update the mismatch count and repair 4228 * parity if !MD_RECOVERY_CHECK 4229 */ 4230 if (sh->ops.zero_sum_result == 0) { 4231 /* both parities are correct */ 4232 if (!s->failed) 4233 set_bit(STRIPE_INSYNC, &sh->state); 4234 else { 4235 /* in contrast to the raid5 case we can validate 4236 * parity, but still have a failure to write 4237 * back 4238 */ 4239 sh->check_state = check_state_compute_result; 4240 /* Returning at this point means that we may go 4241 * off and bring p and/or q uptodate again so 4242 * we make sure to check zero_sum_result again 4243 * to verify if p or q need writeback 4244 */ 4245 } 4246 } else { 4247 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches); 4248 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) { 4249 /* don't try to repair!! */ 4250 set_bit(STRIPE_INSYNC, &sh->state); 4251 pr_warn_ratelimited("%s: mismatch sector in range " 4252 "%llu-%llu\n", mdname(conf->mddev), 4253 (unsigned long long) sh->sector, 4254 (unsigned long long) sh->sector + 4255 STRIPE_SECTORS); 4256 } else { 4257 int *target = &sh->ops.target; 4258 4259 sh->ops.target = -1; 4260 sh->ops.target2 = -1; 4261 sh->check_state = check_state_compute_run; 4262 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 4263 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 4264 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 4265 set_bit(R5_Wantcompute, 4266 &sh->dev[pd_idx].flags); 4267 *target = pd_idx; 4268 target = &sh->ops.target2; 4269 s->uptodate++; 4270 } 4271 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 4272 set_bit(R5_Wantcompute, 4273 &sh->dev[qd_idx].flags); 4274 *target = qd_idx; 4275 s->uptodate++; 4276 } 4277 } 4278 } 4279 break; 4280 case check_state_compute_run: 4281 break; 4282 default: 4283 pr_warn("%s: unknown check_state: %d sector: %llu\n", 4284 __func__, sh->check_state, 4285 (unsigned long long) sh->sector); 4286 BUG(); 4287 } 4288 } 4289 4290 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh) 4291 { 4292 int i; 4293 4294 /* We have read all the blocks in this stripe and now we need to 4295 * copy some of them into a target stripe for expand. 4296 */ 4297 struct dma_async_tx_descriptor *tx = NULL; 4298 BUG_ON(sh->batch_head); 4299 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state); 4300 for (i = 0; i < sh->disks; i++) 4301 if (i != sh->pd_idx && i != sh->qd_idx) { 4302 int dd_idx, j; 4303 struct stripe_head *sh2; 4304 struct async_submit_ctl submit; 4305 4306 sector_t bn = raid5_compute_blocknr(sh, i, 1); 4307 sector_t s = raid5_compute_sector(conf, bn, 0, 4308 &dd_idx, NULL); 4309 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1); 4310 if (sh2 == NULL) 4311 /* so far only the early blocks of this stripe 4312 * have been requested. When later blocks 4313 * get requested, we will try again 4314 */ 4315 continue; 4316 if (!test_bit(STRIPE_EXPANDING, &sh2->state) || 4317 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) { 4318 /* must have already done this block */ 4319 raid5_release_stripe(sh2); 4320 continue; 4321 } 4322 4323 /* place all the copies on one channel */ 4324 init_async_submit(&submit, 0, tx, NULL, NULL, NULL); 4325 tx = async_memcpy(sh2->dev[dd_idx].page, 4326 sh->dev[i].page, 0, 0, STRIPE_SIZE, 4327 &submit); 4328 4329 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags); 4330 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags); 4331 for (j = 0; j < conf->raid_disks; j++) 4332 if (j != sh2->pd_idx && 4333 j != sh2->qd_idx && 4334 !test_bit(R5_Expanded, &sh2->dev[j].flags)) 4335 break; 4336 if (j == conf->raid_disks) { 4337 set_bit(STRIPE_EXPAND_READY, &sh2->state); 4338 set_bit(STRIPE_HANDLE, &sh2->state); 4339 } 4340 raid5_release_stripe(sh2); 4341 4342 } 4343 /* done submitting copies, wait for them to complete */ 4344 async_tx_quiesce(&tx); 4345 } 4346 4347 /* 4348 * handle_stripe - do things to a stripe. 4349 * 4350 * We lock the stripe by setting STRIPE_ACTIVE and then examine the 4351 * state of various bits to see what needs to be done. 4352 * Possible results: 4353 * return some read requests which now have data 4354 * return some write requests which are safely on storage 4355 * schedule a read on some buffers 4356 * schedule a write of some buffers 4357 * return confirmation of parity correctness 4358 * 4359 */ 4360 4361 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s) 4362 { 4363 struct r5conf *conf = sh->raid_conf; 4364 int disks = sh->disks; 4365 struct r5dev *dev; 4366 int i; 4367 int do_recovery = 0; 4368 4369 memset(s, 0, sizeof(*s)); 4370 4371 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head; 4372 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head; 4373 s->failed_num[0] = -1; 4374 s->failed_num[1] = -1; 4375 s->log_failed = r5l_log_disk_error(conf); 4376 4377 /* Now to look around and see what can be done */ 4378 rcu_read_lock(); 4379 for (i=disks; i--; ) { 4380 struct md_rdev *rdev; 4381 sector_t first_bad; 4382 int bad_sectors; 4383 int is_bad = 0; 4384 4385 dev = &sh->dev[i]; 4386 4387 pr_debug("check %d: state 0x%lx read %p write %p written %p\n", 4388 i, dev->flags, 4389 dev->toread, dev->towrite, dev->written); 4390 /* maybe we can reply to a read 4391 * 4392 * new wantfill requests are only permitted while 4393 * ops_complete_biofill is guaranteed to be inactive 4394 */ 4395 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread && 4396 !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) 4397 set_bit(R5_Wantfill, &dev->flags); 4398 4399 /* now count some things */ 4400 if (test_bit(R5_LOCKED, &dev->flags)) 4401 s->locked++; 4402 if (test_bit(R5_UPTODATE, &dev->flags)) 4403 s->uptodate++; 4404 if (test_bit(R5_Wantcompute, &dev->flags)) { 4405 s->compute++; 4406 BUG_ON(s->compute > 2); 4407 } 4408 4409 if (test_bit(R5_Wantfill, &dev->flags)) 4410 s->to_fill++; 4411 else if (dev->toread) 4412 s->to_read++; 4413 if (dev->towrite) { 4414 s->to_write++; 4415 if (!test_bit(R5_OVERWRITE, &dev->flags)) 4416 s->non_overwrite++; 4417 } 4418 if (dev->written) 4419 s->written++; 4420 /* Prefer to use the replacement for reads, but only 4421 * if it is recovered enough and has no bad blocks. 4422 */ 4423 rdev = rcu_dereference(conf->disks[i].replacement); 4424 if (rdev && !test_bit(Faulty, &rdev->flags) && 4425 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS && 4426 !is_badblock(rdev, sh->sector, STRIPE_SECTORS, 4427 &first_bad, &bad_sectors)) 4428 set_bit(R5_ReadRepl, &dev->flags); 4429 else { 4430 if (rdev && !test_bit(Faulty, &rdev->flags)) 4431 set_bit(R5_NeedReplace, &dev->flags); 4432 else 4433 clear_bit(R5_NeedReplace, &dev->flags); 4434 rdev = rcu_dereference(conf->disks[i].rdev); 4435 clear_bit(R5_ReadRepl, &dev->flags); 4436 } 4437 if (rdev && test_bit(Faulty, &rdev->flags)) 4438 rdev = NULL; 4439 if (rdev) { 4440 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS, 4441 &first_bad, &bad_sectors); 4442 if (s->blocked_rdev == NULL 4443 && (test_bit(Blocked, &rdev->flags) 4444 || is_bad < 0)) { 4445 if (is_bad < 0) 4446 set_bit(BlockedBadBlocks, 4447 &rdev->flags); 4448 s->blocked_rdev = rdev; 4449 atomic_inc(&rdev->nr_pending); 4450 } 4451 } 4452 clear_bit(R5_Insync, &dev->flags); 4453 if (!rdev) 4454 /* Not in-sync */; 4455 else if (is_bad) { 4456 /* also not in-sync */ 4457 if (!test_bit(WriteErrorSeen, &rdev->flags) && 4458 test_bit(R5_UPTODATE, &dev->flags)) { 4459 /* treat as in-sync, but with a read error 4460 * which we can now try to correct 4461 */ 4462 set_bit(R5_Insync, &dev->flags); 4463 set_bit(R5_ReadError, &dev->flags); 4464 } 4465 } else if (test_bit(In_sync, &rdev->flags)) 4466 set_bit(R5_Insync, &dev->flags); 4467 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset) 4468 /* in sync if before recovery_offset */ 4469 set_bit(R5_Insync, &dev->flags); 4470 else if (test_bit(R5_UPTODATE, &dev->flags) && 4471 test_bit(R5_Expanded, &dev->flags)) 4472 /* If we've reshaped into here, we assume it is Insync. 4473 * We will shortly update recovery_offset to make 4474 * it official. 4475 */ 4476 set_bit(R5_Insync, &dev->flags); 4477 4478 if (test_bit(R5_WriteError, &dev->flags)) { 4479 /* This flag does not apply to '.replacement' 4480 * only to .rdev, so make sure to check that*/ 4481 struct md_rdev *rdev2 = rcu_dereference( 4482 conf->disks[i].rdev); 4483 if (rdev2 == rdev) 4484 clear_bit(R5_Insync, &dev->flags); 4485 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4486 s->handle_bad_blocks = 1; 4487 atomic_inc(&rdev2->nr_pending); 4488 } else 4489 clear_bit(R5_WriteError, &dev->flags); 4490 } 4491 if (test_bit(R5_MadeGood, &dev->flags)) { 4492 /* This flag does not apply to '.replacement' 4493 * only to .rdev, so make sure to check that*/ 4494 struct md_rdev *rdev2 = rcu_dereference( 4495 conf->disks[i].rdev); 4496 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4497 s->handle_bad_blocks = 1; 4498 atomic_inc(&rdev2->nr_pending); 4499 } else 4500 clear_bit(R5_MadeGood, &dev->flags); 4501 } 4502 if (test_bit(R5_MadeGoodRepl, &dev->flags)) { 4503 struct md_rdev *rdev2 = rcu_dereference( 4504 conf->disks[i].replacement); 4505 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4506 s->handle_bad_blocks = 1; 4507 atomic_inc(&rdev2->nr_pending); 4508 } else 4509 clear_bit(R5_MadeGoodRepl, &dev->flags); 4510 } 4511 if (!test_bit(R5_Insync, &dev->flags)) { 4512 /* The ReadError flag will just be confusing now */ 4513 clear_bit(R5_ReadError, &dev->flags); 4514 clear_bit(R5_ReWrite, &dev->flags); 4515 } 4516 if (test_bit(R5_ReadError, &dev->flags)) 4517 clear_bit(R5_Insync, &dev->flags); 4518 if (!test_bit(R5_Insync, &dev->flags)) { 4519 if (s->failed < 2) 4520 s->failed_num[s->failed] = i; 4521 s->failed++; 4522 if (rdev && !test_bit(Faulty, &rdev->flags)) 4523 do_recovery = 1; 4524 } 4525 4526 if (test_bit(R5_InJournal, &dev->flags)) 4527 s->injournal++; 4528 if (test_bit(R5_InJournal, &dev->flags) && dev->written) 4529 s->just_cached++; 4530 } 4531 if (test_bit(STRIPE_SYNCING, &sh->state)) { 4532 /* If there is a failed device being replaced, 4533 * we must be recovering. 4534 * else if we are after recovery_cp, we must be syncing 4535 * else if MD_RECOVERY_REQUESTED is set, we also are syncing. 4536 * else we can only be replacing 4537 * sync and recovery both need to read all devices, and so 4538 * use the same flag. 4539 */ 4540 if (do_recovery || 4541 sh->sector >= conf->mddev->recovery_cp || 4542 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery))) 4543 s->syncing = 1; 4544 else 4545 s->replacing = 1; 4546 } 4547 rcu_read_unlock(); 4548 } 4549 4550 static int clear_batch_ready(struct stripe_head *sh) 4551 { 4552 /* Return '1' if this is a member of batch, or 4553 * '0' if it is a lone stripe or a head which can now be 4554 * handled. 4555 */ 4556 struct stripe_head *tmp; 4557 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state)) 4558 return (sh->batch_head && sh->batch_head != sh); 4559 spin_lock(&sh->stripe_lock); 4560 if (!sh->batch_head) { 4561 spin_unlock(&sh->stripe_lock); 4562 return 0; 4563 } 4564 4565 /* 4566 * this stripe could be added to a batch list before we check 4567 * BATCH_READY, skips it 4568 */ 4569 if (sh->batch_head != sh) { 4570 spin_unlock(&sh->stripe_lock); 4571 return 1; 4572 } 4573 spin_lock(&sh->batch_lock); 4574 list_for_each_entry(tmp, &sh->batch_list, batch_list) 4575 clear_bit(STRIPE_BATCH_READY, &tmp->state); 4576 spin_unlock(&sh->batch_lock); 4577 spin_unlock(&sh->stripe_lock); 4578 4579 /* 4580 * BATCH_READY is cleared, no new stripes can be added. 4581 * batch_list can be accessed without lock 4582 */ 4583 return 0; 4584 } 4585 4586 static void break_stripe_batch_list(struct stripe_head *head_sh, 4587 unsigned long handle_flags) 4588 { 4589 struct stripe_head *sh, *next; 4590 int i; 4591 int do_wakeup = 0; 4592 4593 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) { 4594 4595 list_del_init(&sh->batch_list); 4596 4597 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) | 4598 (1 << STRIPE_SYNCING) | 4599 (1 << STRIPE_REPLACED) | 4600 (1 << STRIPE_DELAYED) | 4601 (1 << STRIPE_BIT_DELAY) | 4602 (1 << STRIPE_FULL_WRITE) | 4603 (1 << STRIPE_BIOFILL_RUN) | 4604 (1 << STRIPE_COMPUTE_RUN) | 4605 (1 << STRIPE_OPS_REQ_PENDING) | 4606 (1 << STRIPE_DISCARD) | 4607 (1 << STRIPE_BATCH_READY) | 4608 (1 << STRIPE_BATCH_ERR) | 4609 (1 << STRIPE_BITMAP_PENDING)), 4610 "stripe state: %lx\n", sh->state); 4611 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) | 4612 (1 << STRIPE_REPLACED)), 4613 "head stripe state: %lx\n", head_sh->state); 4614 4615 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS | 4616 (1 << STRIPE_PREREAD_ACTIVE) | 4617 (1 << STRIPE_DEGRADED) | 4618 (1 << STRIPE_ON_UNPLUG_LIST)), 4619 head_sh->state & (1 << STRIPE_INSYNC)); 4620 4621 sh->check_state = head_sh->check_state; 4622 sh->reconstruct_state = head_sh->reconstruct_state; 4623 spin_lock_irq(&sh->stripe_lock); 4624 sh->batch_head = NULL; 4625 spin_unlock_irq(&sh->stripe_lock); 4626 for (i = 0; i < sh->disks; i++) { 4627 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 4628 do_wakeup = 1; 4629 sh->dev[i].flags = head_sh->dev[i].flags & 4630 (~((1 << R5_WriteError) | (1 << R5_Overlap))); 4631 } 4632 if (handle_flags == 0 || 4633 sh->state & handle_flags) 4634 set_bit(STRIPE_HANDLE, &sh->state); 4635 raid5_release_stripe(sh); 4636 } 4637 spin_lock_irq(&head_sh->stripe_lock); 4638 head_sh->batch_head = NULL; 4639 spin_unlock_irq(&head_sh->stripe_lock); 4640 for (i = 0; i < head_sh->disks; i++) 4641 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags)) 4642 do_wakeup = 1; 4643 if (head_sh->state & handle_flags) 4644 set_bit(STRIPE_HANDLE, &head_sh->state); 4645 4646 if (do_wakeup) 4647 wake_up(&head_sh->raid_conf->wait_for_overlap); 4648 } 4649 4650 static void handle_stripe(struct stripe_head *sh) 4651 { 4652 struct stripe_head_state s; 4653 struct r5conf *conf = sh->raid_conf; 4654 int i; 4655 int prexor; 4656 int disks = sh->disks; 4657 struct r5dev *pdev, *qdev; 4658 4659 clear_bit(STRIPE_HANDLE, &sh->state); 4660 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) { 4661 /* already being handled, ensure it gets handled 4662 * again when current action finishes */ 4663 set_bit(STRIPE_HANDLE, &sh->state); 4664 return; 4665 } 4666 4667 if (clear_batch_ready(sh) ) { 4668 clear_bit_unlock(STRIPE_ACTIVE, &sh->state); 4669 return; 4670 } 4671 4672 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state)) 4673 break_stripe_batch_list(sh, 0); 4674 4675 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) { 4676 spin_lock(&sh->stripe_lock); 4677 /* 4678 * Cannot process 'sync' concurrently with 'discard'. 4679 * Flush data in r5cache before 'sync'. 4680 */ 4681 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) && 4682 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) && 4683 !test_bit(STRIPE_DISCARD, &sh->state) && 4684 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) { 4685 set_bit(STRIPE_SYNCING, &sh->state); 4686 clear_bit(STRIPE_INSYNC, &sh->state); 4687 clear_bit(STRIPE_REPLACED, &sh->state); 4688 } 4689 spin_unlock(&sh->stripe_lock); 4690 } 4691 clear_bit(STRIPE_DELAYED, &sh->state); 4692 4693 pr_debug("handling stripe %llu, state=%#lx cnt=%d, " 4694 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n", 4695 (unsigned long long)sh->sector, sh->state, 4696 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx, 4697 sh->check_state, sh->reconstruct_state); 4698 4699 analyse_stripe(sh, &s); 4700 4701 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state)) 4702 goto finish; 4703 4704 if (s.handle_bad_blocks || 4705 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) { 4706 set_bit(STRIPE_HANDLE, &sh->state); 4707 goto finish; 4708 } 4709 4710 if (unlikely(s.blocked_rdev)) { 4711 if (s.syncing || s.expanding || s.expanded || 4712 s.replacing || s.to_write || s.written) { 4713 set_bit(STRIPE_HANDLE, &sh->state); 4714 goto finish; 4715 } 4716 /* There is nothing for the blocked_rdev to block */ 4717 rdev_dec_pending(s.blocked_rdev, conf->mddev); 4718 s.blocked_rdev = NULL; 4719 } 4720 4721 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) { 4722 set_bit(STRIPE_OP_BIOFILL, &s.ops_request); 4723 set_bit(STRIPE_BIOFILL_RUN, &sh->state); 4724 } 4725 4726 pr_debug("locked=%d uptodate=%d to_read=%d" 4727 " to_write=%d failed=%d failed_num=%d,%d\n", 4728 s.locked, s.uptodate, s.to_read, s.to_write, s.failed, 4729 s.failed_num[0], s.failed_num[1]); 4730 /* 4731 * check if the array has lost more than max_degraded devices and, 4732 * if so, some requests might need to be failed. 4733 * 4734 * When journal device failed (log_failed), we will only process 4735 * the stripe if there is data need write to raid disks 4736 */ 4737 if (s.failed > conf->max_degraded || 4738 (s.log_failed && s.injournal == 0)) { 4739 sh->check_state = 0; 4740 sh->reconstruct_state = 0; 4741 break_stripe_batch_list(sh, 0); 4742 if (s.to_read+s.to_write+s.written) 4743 handle_failed_stripe(conf, sh, &s, disks); 4744 if (s.syncing + s.replacing) 4745 handle_failed_sync(conf, sh, &s); 4746 } 4747 4748 /* Now we check to see if any write operations have recently 4749 * completed 4750 */ 4751 prexor = 0; 4752 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result) 4753 prexor = 1; 4754 if (sh->reconstruct_state == reconstruct_state_drain_result || 4755 sh->reconstruct_state == reconstruct_state_prexor_drain_result) { 4756 sh->reconstruct_state = reconstruct_state_idle; 4757 4758 /* All the 'written' buffers and the parity block are ready to 4759 * be written back to disk 4760 */ 4761 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) && 4762 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)); 4763 BUG_ON(sh->qd_idx >= 0 && 4764 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) && 4765 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags)); 4766 for (i = disks; i--; ) { 4767 struct r5dev *dev = &sh->dev[i]; 4768 if (test_bit(R5_LOCKED, &dev->flags) && 4769 (i == sh->pd_idx || i == sh->qd_idx || 4770 dev->written || test_bit(R5_InJournal, 4771 &dev->flags))) { 4772 pr_debug("Writing block %d\n", i); 4773 set_bit(R5_Wantwrite, &dev->flags); 4774 if (prexor) 4775 continue; 4776 if (s.failed > 1) 4777 continue; 4778 if (!test_bit(R5_Insync, &dev->flags) || 4779 ((i == sh->pd_idx || i == sh->qd_idx) && 4780 s.failed == 0)) 4781 set_bit(STRIPE_INSYNC, &sh->state); 4782 } 4783 } 4784 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4785 s.dec_preread_active = 1; 4786 } 4787 4788 /* 4789 * might be able to return some write requests if the parity blocks 4790 * are safe, or on a failed drive 4791 */ 4792 pdev = &sh->dev[sh->pd_idx]; 4793 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx) 4794 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx); 4795 qdev = &sh->dev[sh->qd_idx]; 4796 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx) 4797 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx) 4798 || conf->level < 6; 4799 4800 if (s.written && 4801 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags) 4802 && !test_bit(R5_LOCKED, &pdev->flags) 4803 && (test_bit(R5_UPTODATE, &pdev->flags) || 4804 test_bit(R5_Discard, &pdev->flags))))) && 4805 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags) 4806 && !test_bit(R5_LOCKED, &qdev->flags) 4807 && (test_bit(R5_UPTODATE, &qdev->flags) || 4808 test_bit(R5_Discard, &qdev->flags)))))) 4809 handle_stripe_clean_event(conf, sh, disks); 4810 4811 if (s.just_cached) 4812 r5c_handle_cached_data_endio(conf, sh, disks); 4813 log_stripe_write_finished(sh); 4814 4815 /* Now we might consider reading some blocks, either to check/generate 4816 * parity, or to satisfy requests 4817 * or to load a block that is being partially written. 4818 */ 4819 if (s.to_read || s.non_overwrite 4820 || (conf->level == 6 && s.to_write && s.failed) 4821 || (s.syncing && (s.uptodate + s.compute < disks)) 4822 || s.replacing 4823 || s.expanding) 4824 handle_stripe_fill(sh, &s, disks); 4825 4826 /* 4827 * When the stripe finishes full journal write cycle (write to journal 4828 * and raid disk), this is the clean up procedure so it is ready for 4829 * next operation. 4830 */ 4831 r5c_finish_stripe_write_out(conf, sh, &s); 4832 4833 /* 4834 * Now to consider new write requests, cache write back and what else, 4835 * if anything should be read. We do not handle new writes when: 4836 * 1/ A 'write' operation (copy+xor) is already in flight. 4837 * 2/ A 'check' operation is in flight, as it may clobber the parity 4838 * block. 4839 * 3/ A r5c cache log write is in flight. 4840 */ 4841 4842 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) { 4843 if (!r5c_is_writeback(conf->log)) { 4844 if (s.to_write) 4845 handle_stripe_dirtying(conf, sh, &s, disks); 4846 } else { /* write back cache */ 4847 int ret = 0; 4848 4849 /* First, try handle writes in caching phase */ 4850 if (s.to_write) 4851 ret = r5c_try_caching_write(conf, sh, &s, 4852 disks); 4853 /* 4854 * If caching phase failed: ret == -EAGAIN 4855 * OR 4856 * stripe under reclaim: !caching && injournal 4857 * 4858 * fall back to handle_stripe_dirtying() 4859 */ 4860 if (ret == -EAGAIN || 4861 /* stripe under reclaim: !caching && injournal */ 4862 (!test_bit(STRIPE_R5C_CACHING, &sh->state) && 4863 s.injournal > 0)) { 4864 ret = handle_stripe_dirtying(conf, sh, &s, 4865 disks); 4866 if (ret == -EAGAIN) 4867 goto finish; 4868 } 4869 } 4870 } 4871 4872 /* maybe we need to check and possibly fix the parity for this stripe 4873 * Any reads will already have been scheduled, so we just see if enough 4874 * data is available. The parity check is held off while parity 4875 * dependent operations are in flight. 4876 */ 4877 if (sh->check_state || 4878 (s.syncing && s.locked == 0 && 4879 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 4880 !test_bit(STRIPE_INSYNC, &sh->state))) { 4881 if (conf->level == 6) 4882 handle_parity_checks6(conf, sh, &s, disks); 4883 else 4884 handle_parity_checks5(conf, sh, &s, disks); 4885 } 4886 4887 if ((s.replacing || s.syncing) && s.locked == 0 4888 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state) 4889 && !test_bit(STRIPE_REPLACED, &sh->state)) { 4890 /* Write out to replacement devices where possible */ 4891 for (i = 0; i < conf->raid_disks; i++) 4892 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) { 4893 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags)); 4894 set_bit(R5_WantReplace, &sh->dev[i].flags); 4895 set_bit(R5_LOCKED, &sh->dev[i].flags); 4896 s.locked++; 4897 } 4898 if (s.replacing) 4899 set_bit(STRIPE_INSYNC, &sh->state); 4900 set_bit(STRIPE_REPLACED, &sh->state); 4901 } 4902 if ((s.syncing || s.replacing) && s.locked == 0 && 4903 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 4904 test_bit(STRIPE_INSYNC, &sh->state)) { 4905 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 4906 clear_bit(STRIPE_SYNCING, &sh->state); 4907 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 4908 wake_up(&conf->wait_for_overlap); 4909 } 4910 4911 /* If the failed drives are just a ReadError, then we might need 4912 * to progress the repair/check process 4913 */ 4914 if (s.failed <= conf->max_degraded && !conf->mddev->ro) 4915 for (i = 0; i < s.failed; i++) { 4916 struct r5dev *dev = &sh->dev[s.failed_num[i]]; 4917 if (test_bit(R5_ReadError, &dev->flags) 4918 && !test_bit(R5_LOCKED, &dev->flags) 4919 && test_bit(R5_UPTODATE, &dev->flags) 4920 ) { 4921 if (!test_bit(R5_ReWrite, &dev->flags)) { 4922 set_bit(R5_Wantwrite, &dev->flags); 4923 set_bit(R5_ReWrite, &dev->flags); 4924 set_bit(R5_LOCKED, &dev->flags); 4925 s.locked++; 4926 } else { 4927 /* let's read it back */ 4928 set_bit(R5_Wantread, &dev->flags); 4929 set_bit(R5_LOCKED, &dev->flags); 4930 s.locked++; 4931 } 4932 } 4933 } 4934 4935 /* Finish reconstruct operations initiated by the expansion process */ 4936 if (sh->reconstruct_state == reconstruct_state_result) { 4937 struct stripe_head *sh_src 4938 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1); 4939 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) { 4940 /* sh cannot be written until sh_src has been read. 4941 * so arrange for sh to be delayed a little 4942 */ 4943 set_bit(STRIPE_DELAYED, &sh->state); 4944 set_bit(STRIPE_HANDLE, &sh->state); 4945 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, 4946 &sh_src->state)) 4947 atomic_inc(&conf->preread_active_stripes); 4948 raid5_release_stripe(sh_src); 4949 goto finish; 4950 } 4951 if (sh_src) 4952 raid5_release_stripe(sh_src); 4953 4954 sh->reconstruct_state = reconstruct_state_idle; 4955 clear_bit(STRIPE_EXPANDING, &sh->state); 4956 for (i = conf->raid_disks; i--; ) { 4957 set_bit(R5_Wantwrite, &sh->dev[i].flags); 4958 set_bit(R5_LOCKED, &sh->dev[i].flags); 4959 s.locked++; 4960 } 4961 } 4962 4963 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) && 4964 !sh->reconstruct_state) { 4965 /* Need to write out all blocks after computing parity */ 4966 sh->disks = conf->raid_disks; 4967 stripe_set_idx(sh->sector, conf, 0, sh); 4968 schedule_reconstruction(sh, &s, 1, 1); 4969 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) { 4970 clear_bit(STRIPE_EXPAND_READY, &sh->state); 4971 atomic_dec(&conf->reshape_stripes); 4972 wake_up(&conf->wait_for_overlap); 4973 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 4974 } 4975 4976 if (s.expanding && s.locked == 0 && 4977 !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) 4978 handle_stripe_expansion(conf, sh); 4979 4980 finish: 4981 /* wait for this device to become unblocked */ 4982 if (unlikely(s.blocked_rdev)) { 4983 if (conf->mddev->external) 4984 md_wait_for_blocked_rdev(s.blocked_rdev, 4985 conf->mddev); 4986 else 4987 /* Internal metadata will immediately 4988 * be written by raid5d, so we don't 4989 * need to wait here. 4990 */ 4991 rdev_dec_pending(s.blocked_rdev, 4992 conf->mddev); 4993 } 4994 4995 if (s.handle_bad_blocks) 4996 for (i = disks; i--; ) { 4997 struct md_rdev *rdev; 4998 struct r5dev *dev = &sh->dev[i]; 4999 if (test_and_clear_bit(R5_WriteError, &dev->flags)) { 5000 /* We own a safe reference to the rdev */ 5001 rdev = conf->disks[i].rdev; 5002 if (!rdev_set_badblocks(rdev, sh->sector, 5003 STRIPE_SECTORS, 0)) 5004 md_error(conf->mddev, rdev); 5005 rdev_dec_pending(rdev, conf->mddev); 5006 } 5007 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) { 5008 rdev = conf->disks[i].rdev; 5009 rdev_clear_badblocks(rdev, sh->sector, 5010 STRIPE_SECTORS, 0); 5011 rdev_dec_pending(rdev, conf->mddev); 5012 } 5013 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) { 5014 rdev = conf->disks[i].replacement; 5015 if (!rdev) 5016 /* rdev have been moved down */ 5017 rdev = conf->disks[i].rdev; 5018 rdev_clear_badblocks(rdev, sh->sector, 5019 STRIPE_SECTORS, 0); 5020 rdev_dec_pending(rdev, conf->mddev); 5021 } 5022 } 5023 5024 if (s.ops_request) 5025 raid_run_ops(sh, s.ops_request); 5026 5027 ops_run_io(sh, &s); 5028 5029 if (s.dec_preread_active) { 5030 /* We delay this until after ops_run_io so that if make_request 5031 * is waiting on a flush, it won't continue until the writes 5032 * have actually been submitted. 5033 */ 5034 atomic_dec(&conf->preread_active_stripes); 5035 if (atomic_read(&conf->preread_active_stripes) < 5036 IO_THRESHOLD) 5037 md_wakeup_thread(conf->mddev->thread); 5038 } 5039 5040 clear_bit_unlock(STRIPE_ACTIVE, &sh->state); 5041 } 5042 5043 static void raid5_activate_delayed(struct r5conf *conf) 5044 { 5045 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) { 5046 while (!list_empty(&conf->delayed_list)) { 5047 struct list_head *l = conf->delayed_list.next; 5048 struct stripe_head *sh; 5049 sh = list_entry(l, struct stripe_head, lru); 5050 list_del_init(l); 5051 clear_bit(STRIPE_DELAYED, &sh->state); 5052 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5053 atomic_inc(&conf->preread_active_stripes); 5054 list_add_tail(&sh->lru, &conf->hold_list); 5055 raid5_wakeup_stripe_thread(sh); 5056 } 5057 } 5058 } 5059 5060 static void activate_bit_delay(struct r5conf *conf, 5061 struct list_head *temp_inactive_list) 5062 { 5063 /* device_lock is held */ 5064 struct list_head head; 5065 list_add(&head, &conf->bitmap_list); 5066 list_del_init(&conf->bitmap_list); 5067 while (!list_empty(&head)) { 5068 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru); 5069 int hash; 5070 list_del_init(&sh->lru); 5071 atomic_inc(&sh->count); 5072 hash = sh->hash_lock_index; 5073 __release_stripe(conf, sh, &temp_inactive_list[hash]); 5074 } 5075 } 5076 5077 static int raid5_congested(struct mddev *mddev, int bits) 5078 { 5079 struct r5conf *conf = mddev->private; 5080 5081 /* No difference between reads and writes. Just check 5082 * how busy the stripe_cache is 5083 */ 5084 5085 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) 5086 return 1; 5087 5088 /* Also checks whether there is pressure on r5cache log space */ 5089 if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) 5090 return 1; 5091 if (conf->quiesce) 5092 return 1; 5093 if (atomic_read(&conf->empty_inactive_list_nr)) 5094 return 1; 5095 5096 return 0; 5097 } 5098 5099 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio) 5100 { 5101 struct r5conf *conf = mddev->private; 5102 sector_t sector = bio->bi_iter.bi_sector; 5103 unsigned int chunk_sectors; 5104 unsigned int bio_sectors = bio_sectors(bio); 5105 5106 WARN_ON_ONCE(bio->bi_partno); 5107 5108 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors); 5109 return chunk_sectors >= 5110 ((sector & (chunk_sectors - 1)) + bio_sectors); 5111 } 5112 5113 /* 5114 * add bio to the retry LIFO ( in O(1) ... we are in interrupt ) 5115 * later sampled by raid5d. 5116 */ 5117 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf) 5118 { 5119 unsigned long flags; 5120 5121 spin_lock_irqsave(&conf->device_lock, flags); 5122 5123 bi->bi_next = conf->retry_read_aligned_list; 5124 conf->retry_read_aligned_list = bi; 5125 5126 spin_unlock_irqrestore(&conf->device_lock, flags); 5127 md_wakeup_thread(conf->mddev->thread); 5128 } 5129 5130 static struct bio *remove_bio_from_retry(struct r5conf *conf, 5131 unsigned int *offset) 5132 { 5133 struct bio *bi; 5134 5135 bi = conf->retry_read_aligned; 5136 if (bi) { 5137 *offset = conf->retry_read_offset; 5138 conf->retry_read_aligned = NULL; 5139 return bi; 5140 } 5141 bi = conf->retry_read_aligned_list; 5142 if(bi) { 5143 conf->retry_read_aligned_list = bi->bi_next; 5144 bi->bi_next = NULL; 5145 *offset = 0; 5146 } 5147 5148 return bi; 5149 } 5150 5151 /* 5152 * The "raid5_align_endio" should check if the read succeeded and if it 5153 * did, call bio_endio on the original bio (having bio_put the new bio 5154 * first). 5155 * If the read failed.. 5156 */ 5157 static void raid5_align_endio(struct bio *bi) 5158 { 5159 struct bio* raid_bi = bi->bi_private; 5160 struct mddev *mddev; 5161 struct r5conf *conf; 5162 struct md_rdev *rdev; 5163 blk_status_t error = bi->bi_status; 5164 5165 bio_put(bi); 5166 5167 rdev = (void*)raid_bi->bi_next; 5168 raid_bi->bi_next = NULL; 5169 mddev = rdev->mddev; 5170 conf = mddev->private; 5171 5172 rdev_dec_pending(rdev, conf->mddev); 5173 5174 if (!error) { 5175 bio_endio(raid_bi); 5176 if (atomic_dec_and_test(&conf->active_aligned_reads)) 5177 wake_up(&conf->wait_for_quiescent); 5178 return; 5179 } 5180 5181 pr_debug("raid5_align_endio : io error...handing IO for a retry\n"); 5182 5183 add_bio_to_retry(raid_bi, conf); 5184 } 5185 5186 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio) 5187 { 5188 struct r5conf *conf = mddev->private; 5189 int dd_idx; 5190 struct bio* align_bi; 5191 struct md_rdev *rdev; 5192 sector_t end_sector; 5193 5194 if (!in_chunk_boundary(mddev, raid_bio)) { 5195 pr_debug("%s: non aligned\n", __func__); 5196 return 0; 5197 } 5198 /* 5199 * use bio_clone_fast to make a copy of the bio 5200 */ 5201 align_bi = bio_clone_fast(raid_bio, GFP_NOIO, &mddev->bio_set); 5202 if (!align_bi) 5203 return 0; 5204 /* 5205 * set bi_end_io to a new function, and set bi_private to the 5206 * original bio. 5207 */ 5208 align_bi->bi_end_io = raid5_align_endio; 5209 align_bi->bi_private = raid_bio; 5210 /* 5211 * compute position 5212 */ 5213 align_bi->bi_iter.bi_sector = 5214 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 5215 0, &dd_idx, NULL); 5216 5217 end_sector = bio_end_sector(align_bi); 5218 rcu_read_lock(); 5219 rdev = rcu_dereference(conf->disks[dd_idx].replacement); 5220 if (!rdev || test_bit(Faulty, &rdev->flags) || 5221 rdev->recovery_offset < end_sector) { 5222 rdev = rcu_dereference(conf->disks[dd_idx].rdev); 5223 if (rdev && 5224 (test_bit(Faulty, &rdev->flags) || 5225 !(test_bit(In_sync, &rdev->flags) || 5226 rdev->recovery_offset >= end_sector))) 5227 rdev = NULL; 5228 } 5229 5230 if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) { 5231 rcu_read_unlock(); 5232 bio_put(align_bi); 5233 return 0; 5234 } 5235 5236 if (rdev) { 5237 sector_t first_bad; 5238 int bad_sectors; 5239 5240 atomic_inc(&rdev->nr_pending); 5241 rcu_read_unlock(); 5242 raid_bio->bi_next = (void*)rdev; 5243 bio_set_dev(align_bi, rdev->bdev); 5244 bio_clear_flag(align_bi, BIO_SEG_VALID); 5245 5246 if (is_badblock(rdev, align_bi->bi_iter.bi_sector, 5247 bio_sectors(align_bi), 5248 &first_bad, &bad_sectors)) { 5249 bio_put(align_bi); 5250 rdev_dec_pending(rdev, mddev); 5251 return 0; 5252 } 5253 5254 /* No reshape active, so we can trust rdev->data_offset */ 5255 align_bi->bi_iter.bi_sector += rdev->data_offset; 5256 5257 spin_lock_irq(&conf->device_lock); 5258 wait_event_lock_irq(conf->wait_for_quiescent, 5259 conf->quiesce == 0, 5260 conf->device_lock); 5261 atomic_inc(&conf->active_aligned_reads); 5262 spin_unlock_irq(&conf->device_lock); 5263 5264 if (mddev->gendisk) 5265 trace_block_bio_remap(align_bi->bi_disk->queue, 5266 align_bi, disk_devt(mddev->gendisk), 5267 raid_bio->bi_iter.bi_sector); 5268 generic_make_request(align_bi); 5269 return 1; 5270 } else { 5271 rcu_read_unlock(); 5272 bio_put(align_bi); 5273 return 0; 5274 } 5275 } 5276 5277 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio) 5278 { 5279 struct bio *split; 5280 sector_t sector = raid_bio->bi_iter.bi_sector; 5281 unsigned chunk_sects = mddev->chunk_sectors; 5282 unsigned sectors = chunk_sects - (sector & (chunk_sects-1)); 5283 5284 if (sectors < bio_sectors(raid_bio)) { 5285 struct r5conf *conf = mddev->private; 5286 split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split); 5287 bio_chain(split, raid_bio); 5288 generic_make_request(raid_bio); 5289 raid_bio = split; 5290 } 5291 5292 if (!raid5_read_one_chunk(mddev, raid_bio)) 5293 return raid_bio; 5294 5295 return NULL; 5296 } 5297 5298 /* __get_priority_stripe - get the next stripe to process 5299 * 5300 * Full stripe writes are allowed to pass preread active stripes up until 5301 * the bypass_threshold is exceeded. In general the bypass_count 5302 * increments when the handle_list is handled before the hold_list; however, it 5303 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a 5304 * stripe with in flight i/o. The bypass_count will be reset when the 5305 * head of the hold_list has changed, i.e. the head was promoted to the 5306 * handle_list. 5307 */ 5308 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group) 5309 { 5310 struct stripe_head *sh, *tmp; 5311 struct list_head *handle_list = NULL; 5312 struct r5worker_group *wg; 5313 bool second_try = !r5c_is_writeback(conf->log) && 5314 !r5l_log_disk_error(conf); 5315 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) || 5316 r5l_log_disk_error(conf); 5317 5318 again: 5319 wg = NULL; 5320 sh = NULL; 5321 if (conf->worker_cnt_per_group == 0) { 5322 handle_list = try_loprio ? &conf->loprio_list : 5323 &conf->handle_list; 5324 } else if (group != ANY_GROUP) { 5325 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list : 5326 &conf->worker_groups[group].handle_list; 5327 wg = &conf->worker_groups[group]; 5328 } else { 5329 int i; 5330 for (i = 0; i < conf->group_cnt; i++) { 5331 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list : 5332 &conf->worker_groups[i].handle_list; 5333 wg = &conf->worker_groups[i]; 5334 if (!list_empty(handle_list)) 5335 break; 5336 } 5337 } 5338 5339 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n", 5340 __func__, 5341 list_empty(handle_list) ? "empty" : "busy", 5342 list_empty(&conf->hold_list) ? "empty" : "busy", 5343 atomic_read(&conf->pending_full_writes), conf->bypass_count); 5344 5345 if (!list_empty(handle_list)) { 5346 sh = list_entry(handle_list->next, typeof(*sh), lru); 5347 5348 if (list_empty(&conf->hold_list)) 5349 conf->bypass_count = 0; 5350 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) { 5351 if (conf->hold_list.next == conf->last_hold) 5352 conf->bypass_count++; 5353 else { 5354 conf->last_hold = conf->hold_list.next; 5355 conf->bypass_count -= conf->bypass_threshold; 5356 if (conf->bypass_count < 0) 5357 conf->bypass_count = 0; 5358 } 5359 } 5360 } else if (!list_empty(&conf->hold_list) && 5361 ((conf->bypass_threshold && 5362 conf->bypass_count > conf->bypass_threshold) || 5363 atomic_read(&conf->pending_full_writes) == 0)) { 5364 5365 list_for_each_entry(tmp, &conf->hold_list, lru) { 5366 if (conf->worker_cnt_per_group == 0 || 5367 group == ANY_GROUP || 5368 !cpu_online(tmp->cpu) || 5369 cpu_to_group(tmp->cpu) == group) { 5370 sh = tmp; 5371 break; 5372 } 5373 } 5374 5375 if (sh) { 5376 conf->bypass_count -= conf->bypass_threshold; 5377 if (conf->bypass_count < 0) 5378 conf->bypass_count = 0; 5379 } 5380 wg = NULL; 5381 } 5382 5383 if (!sh) { 5384 if (second_try) 5385 return NULL; 5386 second_try = true; 5387 try_loprio = !try_loprio; 5388 goto again; 5389 } 5390 5391 if (wg) { 5392 wg->stripes_cnt--; 5393 sh->group = NULL; 5394 } 5395 list_del_init(&sh->lru); 5396 BUG_ON(atomic_inc_return(&sh->count) != 1); 5397 return sh; 5398 } 5399 5400 struct raid5_plug_cb { 5401 struct blk_plug_cb cb; 5402 struct list_head list; 5403 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS]; 5404 }; 5405 5406 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule) 5407 { 5408 struct raid5_plug_cb *cb = container_of( 5409 blk_cb, struct raid5_plug_cb, cb); 5410 struct stripe_head *sh; 5411 struct mddev *mddev = cb->cb.data; 5412 struct r5conf *conf = mddev->private; 5413 int cnt = 0; 5414 int hash; 5415 5416 if (cb->list.next && !list_empty(&cb->list)) { 5417 spin_lock_irq(&conf->device_lock); 5418 while (!list_empty(&cb->list)) { 5419 sh = list_first_entry(&cb->list, struct stripe_head, lru); 5420 list_del_init(&sh->lru); 5421 /* 5422 * avoid race release_stripe_plug() sees 5423 * STRIPE_ON_UNPLUG_LIST clear but the stripe 5424 * is still in our list 5425 */ 5426 smp_mb__before_atomic(); 5427 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state); 5428 /* 5429 * STRIPE_ON_RELEASE_LIST could be set here. In that 5430 * case, the count is always > 1 here 5431 */ 5432 hash = sh->hash_lock_index; 5433 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]); 5434 cnt++; 5435 } 5436 spin_unlock_irq(&conf->device_lock); 5437 } 5438 release_inactive_stripe_list(conf, cb->temp_inactive_list, 5439 NR_STRIPE_HASH_LOCKS); 5440 if (mddev->queue) 5441 trace_block_unplug(mddev->queue, cnt, !from_schedule); 5442 kfree(cb); 5443 } 5444 5445 static void release_stripe_plug(struct mddev *mddev, 5446 struct stripe_head *sh) 5447 { 5448 struct blk_plug_cb *blk_cb = blk_check_plugged( 5449 raid5_unplug, mddev, 5450 sizeof(struct raid5_plug_cb)); 5451 struct raid5_plug_cb *cb; 5452 5453 if (!blk_cb) { 5454 raid5_release_stripe(sh); 5455 return; 5456 } 5457 5458 cb = container_of(blk_cb, struct raid5_plug_cb, cb); 5459 5460 if (cb->list.next == NULL) { 5461 int i; 5462 INIT_LIST_HEAD(&cb->list); 5463 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 5464 INIT_LIST_HEAD(cb->temp_inactive_list + i); 5465 } 5466 5467 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)) 5468 list_add_tail(&sh->lru, &cb->list); 5469 else 5470 raid5_release_stripe(sh); 5471 } 5472 5473 static void make_discard_request(struct mddev *mddev, struct bio *bi) 5474 { 5475 struct r5conf *conf = mddev->private; 5476 sector_t logical_sector, last_sector; 5477 struct stripe_head *sh; 5478 int stripe_sectors; 5479 5480 if (mddev->reshape_position != MaxSector) 5481 /* Skip discard while reshape is happening */ 5482 return; 5483 5484 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1); 5485 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9); 5486 5487 bi->bi_next = NULL; 5488 5489 stripe_sectors = conf->chunk_sectors * 5490 (conf->raid_disks - conf->max_degraded); 5491 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector, 5492 stripe_sectors); 5493 sector_div(last_sector, stripe_sectors); 5494 5495 logical_sector *= conf->chunk_sectors; 5496 last_sector *= conf->chunk_sectors; 5497 5498 for (; logical_sector < last_sector; 5499 logical_sector += STRIPE_SECTORS) { 5500 DEFINE_WAIT(w); 5501 int d; 5502 again: 5503 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0); 5504 prepare_to_wait(&conf->wait_for_overlap, &w, 5505 TASK_UNINTERRUPTIBLE); 5506 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 5507 if (test_bit(STRIPE_SYNCING, &sh->state)) { 5508 raid5_release_stripe(sh); 5509 schedule(); 5510 goto again; 5511 } 5512 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 5513 spin_lock_irq(&sh->stripe_lock); 5514 for (d = 0; d < conf->raid_disks; d++) { 5515 if (d == sh->pd_idx || d == sh->qd_idx) 5516 continue; 5517 if (sh->dev[d].towrite || sh->dev[d].toread) { 5518 set_bit(R5_Overlap, &sh->dev[d].flags); 5519 spin_unlock_irq(&sh->stripe_lock); 5520 raid5_release_stripe(sh); 5521 schedule(); 5522 goto again; 5523 } 5524 } 5525 set_bit(STRIPE_DISCARD, &sh->state); 5526 finish_wait(&conf->wait_for_overlap, &w); 5527 sh->overwrite_disks = 0; 5528 for (d = 0; d < conf->raid_disks; d++) { 5529 if (d == sh->pd_idx || d == sh->qd_idx) 5530 continue; 5531 sh->dev[d].towrite = bi; 5532 set_bit(R5_OVERWRITE, &sh->dev[d].flags); 5533 bio_inc_remaining(bi); 5534 md_write_inc(mddev, bi); 5535 sh->overwrite_disks++; 5536 } 5537 spin_unlock_irq(&sh->stripe_lock); 5538 if (conf->mddev->bitmap) { 5539 for (d = 0; 5540 d < conf->raid_disks - conf->max_degraded; 5541 d++) 5542 bitmap_startwrite(mddev->bitmap, 5543 sh->sector, 5544 STRIPE_SECTORS, 5545 0); 5546 sh->bm_seq = conf->seq_flush + 1; 5547 set_bit(STRIPE_BIT_DELAY, &sh->state); 5548 } 5549 5550 set_bit(STRIPE_HANDLE, &sh->state); 5551 clear_bit(STRIPE_DELAYED, &sh->state); 5552 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5553 atomic_inc(&conf->preread_active_stripes); 5554 release_stripe_plug(mddev, sh); 5555 } 5556 5557 bio_endio(bi); 5558 } 5559 5560 static bool raid5_make_request(struct mddev *mddev, struct bio * bi) 5561 { 5562 struct r5conf *conf = mddev->private; 5563 int dd_idx; 5564 sector_t new_sector; 5565 sector_t logical_sector, last_sector; 5566 struct stripe_head *sh; 5567 const int rw = bio_data_dir(bi); 5568 DEFINE_WAIT(w); 5569 bool do_prepare; 5570 bool do_flush = false; 5571 5572 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) { 5573 int ret = log_handle_flush_request(conf, bi); 5574 5575 if (ret == 0) 5576 return true; 5577 if (ret == -ENODEV) { 5578 md_flush_request(mddev, bi); 5579 return true; 5580 } 5581 /* ret == -EAGAIN, fallback */ 5582 /* 5583 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH, 5584 * we need to flush journal device 5585 */ 5586 do_flush = bi->bi_opf & REQ_PREFLUSH; 5587 } 5588 5589 if (!md_write_start(mddev, bi)) 5590 return false; 5591 /* 5592 * If array is degraded, better not do chunk aligned read because 5593 * later we might have to read it again in order to reconstruct 5594 * data on failed drives. 5595 */ 5596 if (rw == READ && mddev->degraded == 0 && 5597 mddev->reshape_position == MaxSector) { 5598 bi = chunk_aligned_read(mddev, bi); 5599 if (!bi) 5600 return true; 5601 } 5602 5603 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) { 5604 make_discard_request(mddev, bi); 5605 md_write_end(mddev); 5606 return true; 5607 } 5608 5609 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1); 5610 last_sector = bio_end_sector(bi); 5611 bi->bi_next = NULL; 5612 5613 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE); 5614 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) { 5615 int previous; 5616 int seq; 5617 5618 do_prepare = false; 5619 retry: 5620 seq = read_seqcount_begin(&conf->gen_lock); 5621 previous = 0; 5622 if (do_prepare) 5623 prepare_to_wait(&conf->wait_for_overlap, &w, 5624 TASK_UNINTERRUPTIBLE); 5625 if (unlikely(conf->reshape_progress != MaxSector)) { 5626 /* spinlock is needed as reshape_progress may be 5627 * 64bit on a 32bit platform, and so it might be 5628 * possible to see a half-updated value 5629 * Of course reshape_progress could change after 5630 * the lock is dropped, so once we get a reference 5631 * to the stripe that we think it is, we will have 5632 * to check again. 5633 */ 5634 spin_lock_irq(&conf->device_lock); 5635 if (mddev->reshape_backwards 5636 ? logical_sector < conf->reshape_progress 5637 : logical_sector >= conf->reshape_progress) { 5638 previous = 1; 5639 } else { 5640 if (mddev->reshape_backwards 5641 ? logical_sector < conf->reshape_safe 5642 : logical_sector >= conf->reshape_safe) { 5643 spin_unlock_irq(&conf->device_lock); 5644 schedule(); 5645 do_prepare = true; 5646 goto retry; 5647 } 5648 } 5649 spin_unlock_irq(&conf->device_lock); 5650 } 5651 5652 new_sector = raid5_compute_sector(conf, logical_sector, 5653 previous, 5654 &dd_idx, NULL); 5655 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n", 5656 (unsigned long long)new_sector, 5657 (unsigned long long)logical_sector); 5658 5659 sh = raid5_get_active_stripe(conf, new_sector, previous, 5660 (bi->bi_opf & REQ_RAHEAD), 0); 5661 if (sh) { 5662 if (unlikely(previous)) { 5663 /* expansion might have moved on while waiting for a 5664 * stripe, so we must do the range check again. 5665 * Expansion could still move past after this 5666 * test, but as we are holding a reference to 5667 * 'sh', we know that if that happens, 5668 * STRIPE_EXPANDING will get set and the expansion 5669 * won't proceed until we finish with the stripe. 5670 */ 5671 int must_retry = 0; 5672 spin_lock_irq(&conf->device_lock); 5673 if (mddev->reshape_backwards 5674 ? logical_sector >= conf->reshape_progress 5675 : logical_sector < conf->reshape_progress) 5676 /* mismatch, need to try again */ 5677 must_retry = 1; 5678 spin_unlock_irq(&conf->device_lock); 5679 if (must_retry) { 5680 raid5_release_stripe(sh); 5681 schedule(); 5682 do_prepare = true; 5683 goto retry; 5684 } 5685 } 5686 if (read_seqcount_retry(&conf->gen_lock, seq)) { 5687 /* Might have got the wrong stripe_head 5688 * by accident 5689 */ 5690 raid5_release_stripe(sh); 5691 goto retry; 5692 } 5693 5694 if (test_bit(STRIPE_EXPANDING, &sh->state) || 5695 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) { 5696 /* Stripe is busy expanding or 5697 * add failed due to overlap. Flush everything 5698 * and wait a while 5699 */ 5700 md_wakeup_thread(mddev->thread); 5701 raid5_release_stripe(sh); 5702 schedule(); 5703 do_prepare = true; 5704 goto retry; 5705 } 5706 if (do_flush) { 5707 set_bit(STRIPE_R5C_PREFLUSH, &sh->state); 5708 /* we only need flush for one stripe */ 5709 do_flush = false; 5710 } 5711 5712 set_bit(STRIPE_HANDLE, &sh->state); 5713 clear_bit(STRIPE_DELAYED, &sh->state); 5714 if ((!sh->batch_head || sh == sh->batch_head) && 5715 (bi->bi_opf & REQ_SYNC) && 5716 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5717 atomic_inc(&conf->preread_active_stripes); 5718 release_stripe_plug(mddev, sh); 5719 } else { 5720 /* cannot get stripe for read-ahead, just give-up */ 5721 bi->bi_status = BLK_STS_IOERR; 5722 break; 5723 } 5724 } 5725 finish_wait(&conf->wait_for_overlap, &w); 5726 5727 if (rw == WRITE) 5728 md_write_end(mddev); 5729 bio_endio(bi); 5730 return true; 5731 } 5732 5733 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks); 5734 5735 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped) 5736 { 5737 /* reshaping is quite different to recovery/resync so it is 5738 * handled quite separately ... here. 5739 * 5740 * On each call to sync_request, we gather one chunk worth of 5741 * destination stripes and flag them as expanding. 5742 * Then we find all the source stripes and request reads. 5743 * As the reads complete, handle_stripe will copy the data 5744 * into the destination stripe and release that stripe. 5745 */ 5746 struct r5conf *conf = mddev->private; 5747 struct stripe_head *sh; 5748 struct md_rdev *rdev; 5749 sector_t first_sector, last_sector; 5750 int raid_disks = conf->previous_raid_disks; 5751 int data_disks = raid_disks - conf->max_degraded; 5752 int new_data_disks = conf->raid_disks - conf->max_degraded; 5753 int i; 5754 int dd_idx; 5755 sector_t writepos, readpos, safepos; 5756 sector_t stripe_addr; 5757 int reshape_sectors; 5758 struct list_head stripes; 5759 sector_t retn; 5760 5761 if (sector_nr == 0) { 5762 /* If restarting in the middle, skip the initial sectors */ 5763 if (mddev->reshape_backwards && 5764 conf->reshape_progress < raid5_size(mddev, 0, 0)) { 5765 sector_nr = raid5_size(mddev, 0, 0) 5766 - conf->reshape_progress; 5767 } else if (mddev->reshape_backwards && 5768 conf->reshape_progress == MaxSector) { 5769 /* shouldn't happen, but just in case, finish up.*/ 5770 sector_nr = MaxSector; 5771 } else if (!mddev->reshape_backwards && 5772 conf->reshape_progress > 0) 5773 sector_nr = conf->reshape_progress; 5774 sector_div(sector_nr, new_data_disks); 5775 if (sector_nr) { 5776 mddev->curr_resync_completed = sector_nr; 5777 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 5778 *skipped = 1; 5779 retn = sector_nr; 5780 goto finish; 5781 } 5782 } 5783 5784 /* We need to process a full chunk at a time. 5785 * If old and new chunk sizes differ, we need to process the 5786 * largest of these 5787 */ 5788 5789 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors); 5790 5791 /* We update the metadata at least every 10 seconds, or when 5792 * the data about to be copied would over-write the source of 5793 * the data at the front of the range. i.e. one new_stripe 5794 * along from reshape_progress new_maps to after where 5795 * reshape_safe old_maps to 5796 */ 5797 writepos = conf->reshape_progress; 5798 sector_div(writepos, new_data_disks); 5799 readpos = conf->reshape_progress; 5800 sector_div(readpos, data_disks); 5801 safepos = conf->reshape_safe; 5802 sector_div(safepos, data_disks); 5803 if (mddev->reshape_backwards) { 5804 BUG_ON(writepos < reshape_sectors); 5805 writepos -= reshape_sectors; 5806 readpos += reshape_sectors; 5807 safepos += reshape_sectors; 5808 } else { 5809 writepos += reshape_sectors; 5810 /* readpos and safepos are worst-case calculations. 5811 * A negative number is overly pessimistic, and causes 5812 * obvious problems for unsigned storage. So clip to 0. 5813 */ 5814 readpos -= min_t(sector_t, reshape_sectors, readpos); 5815 safepos -= min_t(sector_t, reshape_sectors, safepos); 5816 } 5817 5818 /* Having calculated the 'writepos' possibly use it 5819 * to set 'stripe_addr' which is where we will write to. 5820 */ 5821 if (mddev->reshape_backwards) { 5822 BUG_ON(conf->reshape_progress == 0); 5823 stripe_addr = writepos; 5824 BUG_ON((mddev->dev_sectors & 5825 ~((sector_t)reshape_sectors - 1)) 5826 - reshape_sectors - stripe_addr 5827 != sector_nr); 5828 } else { 5829 BUG_ON(writepos != sector_nr + reshape_sectors); 5830 stripe_addr = sector_nr; 5831 } 5832 5833 /* 'writepos' is the most advanced device address we might write. 5834 * 'readpos' is the least advanced device address we might read. 5835 * 'safepos' is the least address recorded in the metadata as having 5836 * been reshaped. 5837 * If there is a min_offset_diff, these are adjusted either by 5838 * increasing the safepos/readpos if diff is negative, or 5839 * increasing writepos if diff is positive. 5840 * If 'readpos' is then behind 'writepos', there is no way that we can 5841 * ensure safety in the face of a crash - that must be done by userspace 5842 * making a backup of the data. So in that case there is no particular 5843 * rush to update metadata. 5844 * Otherwise if 'safepos' is behind 'writepos', then we really need to 5845 * update the metadata to advance 'safepos' to match 'readpos' so that 5846 * we can be safe in the event of a crash. 5847 * So we insist on updating metadata if safepos is behind writepos and 5848 * readpos is beyond writepos. 5849 * In any case, update the metadata every 10 seconds. 5850 * Maybe that number should be configurable, but I'm not sure it is 5851 * worth it.... maybe it could be a multiple of safemode_delay??? 5852 */ 5853 if (conf->min_offset_diff < 0) { 5854 safepos += -conf->min_offset_diff; 5855 readpos += -conf->min_offset_diff; 5856 } else 5857 writepos += conf->min_offset_diff; 5858 5859 if ((mddev->reshape_backwards 5860 ? (safepos > writepos && readpos < writepos) 5861 : (safepos < writepos && readpos > writepos)) || 5862 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 5863 /* Cannot proceed until we've updated the superblock... */ 5864 wait_event(conf->wait_for_overlap, 5865 atomic_read(&conf->reshape_stripes)==0 5866 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5867 if (atomic_read(&conf->reshape_stripes) != 0) 5868 return 0; 5869 mddev->reshape_position = conf->reshape_progress; 5870 mddev->curr_resync_completed = sector_nr; 5871 if (!mddev->reshape_backwards) 5872 /* Can update recovery_offset */ 5873 rdev_for_each(rdev, mddev) 5874 if (rdev->raid_disk >= 0 && 5875 !test_bit(Journal, &rdev->flags) && 5876 !test_bit(In_sync, &rdev->flags) && 5877 rdev->recovery_offset < sector_nr) 5878 rdev->recovery_offset = sector_nr; 5879 5880 conf->reshape_checkpoint = jiffies; 5881 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 5882 md_wakeup_thread(mddev->thread); 5883 wait_event(mddev->sb_wait, mddev->sb_flags == 0 || 5884 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5885 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 5886 return 0; 5887 spin_lock_irq(&conf->device_lock); 5888 conf->reshape_safe = mddev->reshape_position; 5889 spin_unlock_irq(&conf->device_lock); 5890 wake_up(&conf->wait_for_overlap); 5891 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 5892 } 5893 5894 INIT_LIST_HEAD(&stripes); 5895 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) { 5896 int j; 5897 int skipped_disk = 0; 5898 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1); 5899 set_bit(STRIPE_EXPANDING, &sh->state); 5900 atomic_inc(&conf->reshape_stripes); 5901 /* If any of this stripe is beyond the end of the old 5902 * array, then we need to zero those blocks 5903 */ 5904 for (j=sh->disks; j--;) { 5905 sector_t s; 5906 if (j == sh->pd_idx) 5907 continue; 5908 if (conf->level == 6 && 5909 j == sh->qd_idx) 5910 continue; 5911 s = raid5_compute_blocknr(sh, j, 0); 5912 if (s < raid5_size(mddev, 0, 0)) { 5913 skipped_disk = 1; 5914 continue; 5915 } 5916 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE); 5917 set_bit(R5_Expanded, &sh->dev[j].flags); 5918 set_bit(R5_UPTODATE, &sh->dev[j].flags); 5919 } 5920 if (!skipped_disk) { 5921 set_bit(STRIPE_EXPAND_READY, &sh->state); 5922 set_bit(STRIPE_HANDLE, &sh->state); 5923 } 5924 list_add(&sh->lru, &stripes); 5925 } 5926 spin_lock_irq(&conf->device_lock); 5927 if (mddev->reshape_backwards) 5928 conf->reshape_progress -= reshape_sectors * new_data_disks; 5929 else 5930 conf->reshape_progress += reshape_sectors * new_data_disks; 5931 spin_unlock_irq(&conf->device_lock); 5932 /* Ok, those stripe are ready. We can start scheduling 5933 * reads on the source stripes. 5934 * The source stripes are determined by mapping the first and last 5935 * block on the destination stripes. 5936 */ 5937 first_sector = 5938 raid5_compute_sector(conf, stripe_addr*(new_data_disks), 5939 1, &dd_idx, NULL); 5940 last_sector = 5941 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors) 5942 * new_data_disks - 1), 5943 1, &dd_idx, NULL); 5944 if (last_sector >= mddev->dev_sectors) 5945 last_sector = mddev->dev_sectors - 1; 5946 while (first_sector <= last_sector) { 5947 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1); 5948 set_bit(STRIPE_EXPAND_SOURCE, &sh->state); 5949 set_bit(STRIPE_HANDLE, &sh->state); 5950 raid5_release_stripe(sh); 5951 first_sector += STRIPE_SECTORS; 5952 } 5953 /* Now that the sources are clearly marked, we can release 5954 * the destination stripes 5955 */ 5956 while (!list_empty(&stripes)) { 5957 sh = list_entry(stripes.next, struct stripe_head, lru); 5958 list_del_init(&sh->lru); 5959 raid5_release_stripe(sh); 5960 } 5961 /* If this takes us to the resync_max point where we have to pause, 5962 * then we need to write out the superblock. 5963 */ 5964 sector_nr += reshape_sectors; 5965 retn = reshape_sectors; 5966 finish: 5967 if (mddev->curr_resync_completed > mddev->resync_max || 5968 (sector_nr - mddev->curr_resync_completed) * 2 5969 >= mddev->resync_max - mddev->curr_resync_completed) { 5970 /* Cannot proceed until we've updated the superblock... */ 5971 wait_event(conf->wait_for_overlap, 5972 atomic_read(&conf->reshape_stripes) == 0 5973 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5974 if (atomic_read(&conf->reshape_stripes) != 0) 5975 goto ret; 5976 mddev->reshape_position = conf->reshape_progress; 5977 mddev->curr_resync_completed = sector_nr; 5978 if (!mddev->reshape_backwards) 5979 /* Can update recovery_offset */ 5980 rdev_for_each(rdev, mddev) 5981 if (rdev->raid_disk >= 0 && 5982 !test_bit(Journal, &rdev->flags) && 5983 !test_bit(In_sync, &rdev->flags) && 5984 rdev->recovery_offset < sector_nr) 5985 rdev->recovery_offset = sector_nr; 5986 conf->reshape_checkpoint = jiffies; 5987 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 5988 md_wakeup_thread(mddev->thread); 5989 wait_event(mddev->sb_wait, 5990 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) 5991 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5992 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 5993 goto ret; 5994 spin_lock_irq(&conf->device_lock); 5995 conf->reshape_safe = mddev->reshape_position; 5996 spin_unlock_irq(&conf->device_lock); 5997 wake_up(&conf->wait_for_overlap); 5998 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 5999 } 6000 ret: 6001 return retn; 6002 } 6003 6004 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr, 6005 int *skipped) 6006 { 6007 struct r5conf *conf = mddev->private; 6008 struct stripe_head *sh; 6009 sector_t max_sector = mddev->dev_sectors; 6010 sector_t sync_blocks; 6011 int still_degraded = 0; 6012 int i; 6013 6014 if (sector_nr >= max_sector) { 6015 /* just being told to finish up .. nothing much to do */ 6016 6017 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 6018 end_reshape(conf); 6019 return 0; 6020 } 6021 6022 if (mddev->curr_resync < max_sector) /* aborted */ 6023 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 6024 &sync_blocks, 1); 6025 else /* completed sync */ 6026 conf->fullsync = 0; 6027 bitmap_close_sync(mddev->bitmap); 6028 6029 return 0; 6030 } 6031 6032 /* Allow raid5_quiesce to complete */ 6033 wait_event(conf->wait_for_overlap, conf->quiesce != 2); 6034 6035 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 6036 return reshape_request(mddev, sector_nr, skipped); 6037 6038 /* No need to check resync_max as we never do more than one 6039 * stripe, and as resync_max will always be on a chunk boundary, 6040 * if the check in md_do_sync didn't fire, there is no chance 6041 * of overstepping resync_max here 6042 */ 6043 6044 /* if there is too many failed drives and we are trying 6045 * to resync, then assert that we are finished, because there is 6046 * nothing we can do. 6047 */ 6048 if (mddev->degraded >= conf->max_degraded && 6049 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 6050 sector_t rv = mddev->dev_sectors - sector_nr; 6051 *skipped = 1; 6052 return rv; 6053 } 6054 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 6055 !conf->fullsync && 6056 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 6057 sync_blocks >= STRIPE_SECTORS) { 6058 /* we can skip this block, and probably more */ 6059 sync_blocks /= STRIPE_SECTORS; 6060 *skipped = 1; 6061 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */ 6062 } 6063 6064 bitmap_cond_end_sync(mddev->bitmap, sector_nr, false); 6065 6066 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0); 6067 if (sh == NULL) { 6068 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0); 6069 /* make sure we don't swamp the stripe cache if someone else 6070 * is trying to get access 6071 */ 6072 schedule_timeout_uninterruptible(1); 6073 } 6074 /* Need to check if array will still be degraded after recovery/resync 6075 * Note in case of > 1 drive failures it's possible we're rebuilding 6076 * one drive while leaving another faulty drive in array. 6077 */ 6078 rcu_read_lock(); 6079 for (i = 0; i < conf->raid_disks; i++) { 6080 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev); 6081 6082 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) 6083 still_degraded = 1; 6084 } 6085 rcu_read_unlock(); 6086 6087 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded); 6088 6089 set_bit(STRIPE_SYNC_REQUESTED, &sh->state); 6090 set_bit(STRIPE_HANDLE, &sh->state); 6091 6092 raid5_release_stripe(sh); 6093 6094 return STRIPE_SECTORS; 6095 } 6096 6097 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio, 6098 unsigned int offset) 6099 { 6100 /* We may not be able to submit a whole bio at once as there 6101 * may not be enough stripe_heads available. 6102 * We cannot pre-allocate enough stripe_heads as we may need 6103 * more than exist in the cache (if we allow ever large chunks). 6104 * So we do one stripe head at a time and record in 6105 * ->bi_hw_segments how many have been done. 6106 * 6107 * We *know* that this entire raid_bio is in one chunk, so 6108 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector. 6109 */ 6110 struct stripe_head *sh; 6111 int dd_idx; 6112 sector_t sector, logical_sector, last_sector; 6113 int scnt = 0; 6114 int handled = 0; 6115 6116 logical_sector = raid_bio->bi_iter.bi_sector & 6117 ~((sector_t)STRIPE_SECTORS-1); 6118 sector = raid5_compute_sector(conf, logical_sector, 6119 0, &dd_idx, NULL); 6120 last_sector = bio_end_sector(raid_bio); 6121 6122 for (; logical_sector < last_sector; 6123 logical_sector += STRIPE_SECTORS, 6124 sector += STRIPE_SECTORS, 6125 scnt++) { 6126 6127 if (scnt < offset) 6128 /* already done this stripe */ 6129 continue; 6130 6131 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1); 6132 6133 if (!sh) { 6134 /* failed to get a stripe - must wait */ 6135 conf->retry_read_aligned = raid_bio; 6136 conf->retry_read_offset = scnt; 6137 return handled; 6138 } 6139 6140 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) { 6141 raid5_release_stripe(sh); 6142 conf->retry_read_aligned = raid_bio; 6143 conf->retry_read_offset = scnt; 6144 return handled; 6145 } 6146 6147 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags); 6148 handle_stripe(sh); 6149 raid5_release_stripe(sh); 6150 handled++; 6151 } 6152 6153 bio_endio(raid_bio); 6154 6155 if (atomic_dec_and_test(&conf->active_aligned_reads)) 6156 wake_up(&conf->wait_for_quiescent); 6157 return handled; 6158 } 6159 6160 static int handle_active_stripes(struct r5conf *conf, int group, 6161 struct r5worker *worker, 6162 struct list_head *temp_inactive_list) 6163 { 6164 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh; 6165 int i, batch_size = 0, hash; 6166 bool release_inactive = false; 6167 6168 while (batch_size < MAX_STRIPE_BATCH && 6169 (sh = __get_priority_stripe(conf, group)) != NULL) 6170 batch[batch_size++] = sh; 6171 6172 if (batch_size == 0) { 6173 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 6174 if (!list_empty(temp_inactive_list + i)) 6175 break; 6176 if (i == NR_STRIPE_HASH_LOCKS) { 6177 spin_unlock_irq(&conf->device_lock); 6178 log_flush_stripe_to_raid(conf); 6179 spin_lock_irq(&conf->device_lock); 6180 return batch_size; 6181 } 6182 release_inactive = true; 6183 } 6184 spin_unlock_irq(&conf->device_lock); 6185 6186 release_inactive_stripe_list(conf, temp_inactive_list, 6187 NR_STRIPE_HASH_LOCKS); 6188 6189 r5l_flush_stripe_to_raid(conf->log); 6190 if (release_inactive) { 6191 spin_lock_irq(&conf->device_lock); 6192 return 0; 6193 } 6194 6195 for (i = 0; i < batch_size; i++) 6196 handle_stripe(batch[i]); 6197 log_write_stripe_run(conf); 6198 6199 cond_resched(); 6200 6201 spin_lock_irq(&conf->device_lock); 6202 for (i = 0; i < batch_size; i++) { 6203 hash = batch[i]->hash_lock_index; 6204 __release_stripe(conf, batch[i], &temp_inactive_list[hash]); 6205 } 6206 return batch_size; 6207 } 6208 6209 static void raid5_do_work(struct work_struct *work) 6210 { 6211 struct r5worker *worker = container_of(work, struct r5worker, work); 6212 struct r5worker_group *group = worker->group; 6213 struct r5conf *conf = group->conf; 6214 struct mddev *mddev = conf->mddev; 6215 int group_id = group - conf->worker_groups; 6216 int handled; 6217 struct blk_plug plug; 6218 6219 pr_debug("+++ raid5worker active\n"); 6220 6221 blk_start_plug(&plug); 6222 handled = 0; 6223 spin_lock_irq(&conf->device_lock); 6224 while (1) { 6225 int batch_size, released; 6226 6227 released = release_stripe_list(conf, worker->temp_inactive_list); 6228 6229 batch_size = handle_active_stripes(conf, group_id, worker, 6230 worker->temp_inactive_list); 6231 worker->working = false; 6232 if (!batch_size && !released) 6233 break; 6234 handled += batch_size; 6235 wait_event_lock_irq(mddev->sb_wait, 6236 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags), 6237 conf->device_lock); 6238 } 6239 pr_debug("%d stripes handled\n", handled); 6240 6241 spin_unlock_irq(&conf->device_lock); 6242 6243 flush_deferred_bios(conf); 6244 6245 r5l_flush_stripe_to_raid(conf->log); 6246 6247 async_tx_issue_pending_all(); 6248 blk_finish_plug(&plug); 6249 6250 pr_debug("--- raid5worker inactive\n"); 6251 } 6252 6253 /* 6254 * This is our raid5 kernel thread. 6255 * 6256 * We scan the hash table for stripes which can be handled now. 6257 * During the scan, completed stripes are saved for us by the interrupt 6258 * handler, so that they will not have to wait for our next wakeup. 6259 */ 6260 static void raid5d(struct md_thread *thread) 6261 { 6262 struct mddev *mddev = thread->mddev; 6263 struct r5conf *conf = mddev->private; 6264 int handled; 6265 struct blk_plug plug; 6266 6267 pr_debug("+++ raid5d active\n"); 6268 6269 md_check_recovery(mddev); 6270 6271 blk_start_plug(&plug); 6272 handled = 0; 6273 spin_lock_irq(&conf->device_lock); 6274 while (1) { 6275 struct bio *bio; 6276 int batch_size, released; 6277 unsigned int offset; 6278 6279 released = release_stripe_list(conf, conf->temp_inactive_list); 6280 if (released) 6281 clear_bit(R5_DID_ALLOC, &conf->cache_state); 6282 6283 if ( 6284 !list_empty(&conf->bitmap_list)) { 6285 /* Now is a good time to flush some bitmap updates */ 6286 conf->seq_flush++; 6287 spin_unlock_irq(&conf->device_lock); 6288 bitmap_unplug(mddev->bitmap); 6289 spin_lock_irq(&conf->device_lock); 6290 conf->seq_write = conf->seq_flush; 6291 activate_bit_delay(conf, conf->temp_inactive_list); 6292 } 6293 raid5_activate_delayed(conf); 6294 6295 while ((bio = remove_bio_from_retry(conf, &offset))) { 6296 int ok; 6297 spin_unlock_irq(&conf->device_lock); 6298 ok = retry_aligned_read(conf, bio, offset); 6299 spin_lock_irq(&conf->device_lock); 6300 if (!ok) 6301 break; 6302 handled++; 6303 } 6304 6305 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL, 6306 conf->temp_inactive_list); 6307 if (!batch_size && !released) 6308 break; 6309 handled += batch_size; 6310 6311 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) { 6312 spin_unlock_irq(&conf->device_lock); 6313 md_check_recovery(mddev); 6314 spin_lock_irq(&conf->device_lock); 6315 } 6316 } 6317 pr_debug("%d stripes handled\n", handled); 6318 6319 spin_unlock_irq(&conf->device_lock); 6320 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) && 6321 mutex_trylock(&conf->cache_size_mutex)) { 6322 grow_one_stripe(conf, __GFP_NOWARN); 6323 /* Set flag even if allocation failed. This helps 6324 * slow down allocation requests when mem is short 6325 */ 6326 set_bit(R5_DID_ALLOC, &conf->cache_state); 6327 mutex_unlock(&conf->cache_size_mutex); 6328 } 6329 6330 flush_deferred_bios(conf); 6331 6332 r5l_flush_stripe_to_raid(conf->log); 6333 6334 async_tx_issue_pending_all(); 6335 blk_finish_plug(&plug); 6336 6337 pr_debug("--- raid5d inactive\n"); 6338 } 6339 6340 static ssize_t 6341 raid5_show_stripe_cache_size(struct mddev *mddev, char *page) 6342 { 6343 struct r5conf *conf; 6344 int ret = 0; 6345 spin_lock(&mddev->lock); 6346 conf = mddev->private; 6347 if (conf) 6348 ret = sprintf(page, "%d\n", conf->min_nr_stripes); 6349 spin_unlock(&mddev->lock); 6350 return ret; 6351 } 6352 6353 int 6354 raid5_set_cache_size(struct mddev *mddev, int size) 6355 { 6356 struct r5conf *conf = mddev->private; 6357 6358 if (size <= 16 || size > 32768) 6359 return -EINVAL; 6360 6361 conf->min_nr_stripes = size; 6362 mutex_lock(&conf->cache_size_mutex); 6363 while (size < conf->max_nr_stripes && 6364 drop_one_stripe(conf)) 6365 ; 6366 mutex_unlock(&conf->cache_size_mutex); 6367 6368 md_allow_write(mddev); 6369 6370 mutex_lock(&conf->cache_size_mutex); 6371 while (size > conf->max_nr_stripes) 6372 if (!grow_one_stripe(conf, GFP_KERNEL)) 6373 break; 6374 mutex_unlock(&conf->cache_size_mutex); 6375 6376 return 0; 6377 } 6378 EXPORT_SYMBOL(raid5_set_cache_size); 6379 6380 static ssize_t 6381 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len) 6382 { 6383 struct r5conf *conf; 6384 unsigned long new; 6385 int err; 6386 6387 if (len >= PAGE_SIZE) 6388 return -EINVAL; 6389 if (kstrtoul(page, 10, &new)) 6390 return -EINVAL; 6391 err = mddev_lock(mddev); 6392 if (err) 6393 return err; 6394 conf = mddev->private; 6395 if (!conf) 6396 err = -ENODEV; 6397 else 6398 err = raid5_set_cache_size(mddev, new); 6399 mddev_unlock(mddev); 6400 6401 return err ?: len; 6402 } 6403 6404 static struct md_sysfs_entry 6405 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR, 6406 raid5_show_stripe_cache_size, 6407 raid5_store_stripe_cache_size); 6408 6409 static ssize_t 6410 raid5_show_rmw_level(struct mddev *mddev, char *page) 6411 { 6412 struct r5conf *conf = mddev->private; 6413 if (conf) 6414 return sprintf(page, "%d\n", conf->rmw_level); 6415 else 6416 return 0; 6417 } 6418 6419 static ssize_t 6420 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len) 6421 { 6422 struct r5conf *conf = mddev->private; 6423 unsigned long new; 6424 6425 if (!conf) 6426 return -ENODEV; 6427 6428 if (len >= PAGE_SIZE) 6429 return -EINVAL; 6430 6431 if (kstrtoul(page, 10, &new)) 6432 return -EINVAL; 6433 6434 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome) 6435 return -EINVAL; 6436 6437 if (new != PARITY_DISABLE_RMW && 6438 new != PARITY_ENABLE_RMW && 6439 new != PARITY_PREFER_RMW) 6440 return -EINVAL; 6441 6442 conf->rmw_level = new; 6443 return len; 6444 } 6445 6446 static struct md_sysfs_entry 6447 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR, 6448 raid5_show_rmw_level, 6449 raid5_store_rmw_level); 6450 6451 6452 static ssize_t 6453 raid5_show_preread_threshold(struct mddev *mddev, char *page) 6454 { 6455 struct r5conf *conf; 6456 int ret = 0; 6457 spin_lock(&mddev->lock); 6458 conf = mddev->private; 6459 if (conf) 6460 ret = sprintf(page, "%d\n", conf->bypass_threshold); 6461 spin_unlock(&mddev->lock); 6462 return ret; 6463 } 6464 6465 static ssize_t 6466 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len) 6467 { 6468 struct r5conf *conf; 6469 unsigned long new; 6470 int err; 6471 6472 if (len >= PAGE_SIZE) 6473 return -EINVAL; 6474 if (kstrtoul(page, 10, &new)) 6475 return -EINVAL; 6476 6477 err = mddev_lock(mddev); 6478 if (err) 6479 return err; 6480 conf = mddev->private; 6481 if (!conf) 6482 err = -ENODEV; 6483 else if (new > conf->min_nr_stripes) 6484 err = -EINVAL; 6485 else 6486 conf->bypass_threshold = new; 6487 mddev_unlock(mddev); 6488 return err ?: len; 6489 } 6490 6491 static struct md_sysfs_entry 6492 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold, 6493 S_IRUGO | S_IWUSR, 6494 raid5_show_preread_threshold, 6495 raid5_store_preread_threshold); 6496 6497 static ssize_t 6498 raid5_show_skip_copy(struct mddev *mddev, char *page) 6499 { 6500 struct r5conf *conf; 6501 int ret = 0; 6502 spin_lock(&mddev->lock); 6503 conf = mddev->private; 6504 if (conf) 6505 ret = sprintf(page, "%d\n", conf->skip_copy); 6506 spin_unlock(&mddev->lock); 6507 return ret; 6508 } 6509 6510 static ssize_t 6511 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len) 6512 { 6513 struct r5conf *conf; 6514 unsigned long new; 6515 int err; 6516 6517 if (len >= PAGE_SIZE) 6518 return -EINVAL; 6519 if (kstrtoul(page, 10, &new)) 6520 return -EINVAL; 6521 new = !!new; 6522 6523 err = mddev_lock(mddev); 6524 if (err) 6525 return err; 6526 conf = mddev->private; 6527 if (!conf) 6528 err = -ENODEV; 6529 else if (new != conf->skip_copy) { 6530 mddev_suspend(mddev); 6531 conf->skip_copy = new; 6532 if (new) 6533 mddev->queue->backing_dev_info->capabilities |= 6534 BDI_CAP_STABLE_WRITES; 6535 else 6536 mddev->queue->backing_dev_info->capabilities &= 6537 ~BDI_CAP_STABLE_WRITES; 6538 mddev_resume(mddev); 6539 } 6540 mddev_unlock(mddev); 6541 return err ?: len; 6542 } 6543 6544 static struct md_sysfs_entry 6545 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR, 6546 raid5_show_skip_copy, 6547 raid5_store_skip_copy); 6548 6549 static ssize_t 6550 stripe_cache_active_show(struct mddev *mddev, char *page) 6551 { 6552 struct r5conf *conf = mddev->private; 6553 if (conf) 6554 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes)); 6555 else 6556 return 0; 6557 } 6558 6559 static struct md_sysfs_entry 6560 raid5_stripecache_active = __ATTR_RO(stripe_cache_active); 6561 6562 static ssize_t 6563 raid5_show_group_thread_cnt(struct mddev *mddev, char *page) 6564 { 6565 struct r5conf *conf; 6566 int ret = 0; 6567 spin_lock(&mddev->lock); 6568 conf = mddev->private; 6569 if (conf) 6570 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group); 6571 spin_unlock(&mddev->lock); 6572 return ret; 6573 } 6574 6575 static int alloc_thread_groups(struct r5conf *conf, int cnt, 6576 int *group_cnt, 6577 int *worker_cnt_per_group, 6578 struct r5worker_group **worker_groups); 6579 static ssize_t 6580 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len) 6581 { 6582 struct r5conf *conf; 6583 unsigned int new; 6584 int err; 6585 struct r5worker_group *new_groups, *old_groups; 6586 int group_cnt, worker_cnt_per_group; 6587 6588 if (len >= PAGE_SIZE) 6589 return -EINVAL; 6590 if (kstrtouint(page, 10, &new)) 6591 return -EINVAL; 6592 /* 8192 should be big enough */ 6593 if (new > 8192) 6594 return -EINVAL; 6595 6596 err = mddev_lock(mddev); 6597 if (err) 6598 return err; 6599 conf = mddev->private; 6600 if (!conf) 6601 err = -ENODEV; 6602 else if (new != conf->worker_cnt_per_group) { 6603 mddev_suspend(mddev); 6604 6605 old_groups = conf->worker_groups; 6606 if (old_groups) 6607 flush_workqueue(raid5_wq); 6608 6609 err = alloc_thread_groups(conf, new, 6610 &group_cnt, &worker_cnt_per_group, 6611 &new_groups); 6612 if (!err) { 6613 spin_lock_irq(&conf->device_lock); 6614 conf->group_cnt = group_cnt; 6615 conf->worker_cnt_per_group = worker_cnt_per_group; 6616 conf->worker_groups = new_groups; 6617 spin_unlock_irq(&conf->device_lock); 6618 6619 if (old_groups) 6620 kfree(old_groups[0].workers); 6621 kfree(old_groups); 6622 } 6623 mddev_resume(mddev); 6624 } 6625 mddev_unlock(mddev); 6626 6627 return err ?: len; 6628 } 6629 6630 static struct md_sysfs_entry 6631 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR, 6632 raid5_show_group_thread_cnt, 6633 raid5_store_group_thread_cnt); 6634 6635 static struct attribute *raid5_attrs[] = { 6636 &raid5_stripecache_size.attr, 6637 &raid5_stripecache_active.attr, 6638 &raid5_preread_bypass_threshold.attr, 6639 &raid5_group_thread_cnt.attr, 6640 &raid5_skip_copy.attr, 6641 &raid5_rmw_level.attr, 6642 &r5c_journal_mode.attr, 6643 NULL, 6644 }; 6645 static struct attribute_group raid5_attrs_group = { 6646 .name = NULL, 6647 .attrs = raid5_attrs, 6648 }; 6649 6650 static int alloc_thread_groups(struct r5conf *conf, int cnt, 6651 int *group_cnt, 6652 int *worker_cnt_per_group, 6653 struct r5worker_group **worker_groups) 6654 { 6655 int i, j, k; 6656 ssize_t size; 6657 struct r5worker *workers; 6658 6659 *worker_cnt_per_group = cnt; 6660 if (cnt == 0) { 6661 *group_cnt = 0; 6662 *worker_groups = NULL; 6663 return 0; 6664 } 6665 *group_cnt = num_possible_nodes(); 6666 size = sizeof(struct r5worker) * cnt; 6667 workers = kcalloc(size, *group_cnt, GFP_NOIO); 6668 *worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group), 6669 GFP_NOIO); 6670 if (!*worker_groups || !workers) { 6671 kfree(workers); 6672 kfree(*worker_groups); 6673 return -ENOMEM; 6674 } 6675 6676 for (i = 0; i < *group_cnt; i++) { 6677 struct r5worker_group *group; 6678 6679 group = &(*worker_groups)[i]; 6680 INIT_LIST_HEAD(&group->handle_list); 6681 INIT_LIST_HEAD(&group->loprio_list); 6682 group->conf = conf; 6683 group->workers = workers + i * cnt; 6684 6685 for (j = 0; j < cnt; j++) { 6686 struct r5worker *worker = group->workers + j; 6687 worker->group = group; 6688 INIT_WORK(&worker->work, raid5_do_work); 6689 6690 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++) 6691 INIT_LIST_HEAD(worker->temp_inactive_list + k); 6692 } 6693 } 6694 6695 return 0; 6696 } 6697 6698 static void free_thread_groups(struct r5conf *conf) 6699 { 6700 if (conf->worker_groups) 6701 kfree(conf->worker_groups[0].workers); 6702 kfree(conf->worker_groups); 6703 conf->worker_groups = NULL; 6704 } 6705 6706 static sector_t 6707 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks) 6708 { 6709 struct r5conf *conf = mddev->private; 6710 6711 if (!sectors) 6712 sectors = mddev->dev_sectors; 6713 if (!raid_disks) 6714 /* size is defined by the smallest of previous and new size */ 6715 raid_disks = min(conf->raid_disks, conf->previous_raid_disks); 6716 6717 sectors &= ~((sector_t)conf->chunk_sectors - 1); 6718 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1); 6719 return sectors * (raid_disks - conf->max_degraded); 6720 } 6721 6722 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 6723 { 6724 safe_put_page(percpu->spare_page); 6725 if (percpu->scribble) 6726 flex_array_free(percpu->scribble); 6727 percpu->spare_page = NULL; 6728 percpu->scribble = NULL; 6729 } 6730 6731 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 6732 { 6733 if (conf->level == 6 && !percpu->spare_page) 6734 percpu->spare_page = alloc_page(GFP_KERNEL); 6735 if (!percpu->scribble) 6736 percpu->scribble = scribble_alloc(max(conf->raid_disks, 6737 conf->previous_raid_disks), 6738 max(conf->chunk_sectors, 6739 conf->prev_chunk_sectors) 6740 / STRIPE_SECTORS, 6741 GFP_KERNEL); 6742 6743 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) { 6744 free_scratch_buffer(conf, percpu); 6745 return -ENOMEM; 6746 } 6747 6748 return 0; 6749 } 6750 6751 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node) 6752 { 6753 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node); 6754 6755 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu)); 6756 return 0; 6757 } 6758 6759 static void raid5_free_percpu(struct r5conf *conf) 6760 { 6761 if (!conf->percpu) 6762 return; 6763 6764 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node); 6765 free_percpu(conf->percpu); 6766 } 6767 6768 static void free_conf(struct r5conf *conf) 6769 { 6770 int i; 6771 6772 log_exit(conf); 6773 6774 unregister_shrinker(&conf->shrinker); 6775 free_thread_groups(conf); 6776 shrink_stripes(conf); 6777 raid5_free_percpu(conf); 6778 for (i = 0; i < conf->pool_size; i++) 6779 if (conf->disks[i].extra_page) 6780 put_page(conf->disks[i].extra_page); 6781 kfree(conf->disks); 6782 bioset_exit(&conf->bio_split); 6783 kfree(conf->stripe_hashtbl); 6784 kfree(conf->pending_data); 6785 kfree(conf); 6786 } 6787 6788 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node) 6789 { 6790 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node); 6791 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu); 6792 6793 if (alloc_scratch_buffer(conf, percpu)) { 6794 pr_warn("%s: failed memory allocation for cpu%u\n", 6795 __func__, cpu); 6796 return -ENOMEM; 6797 } 6798 return 0; 6799 } 6800 6801 static int raid5_alloc_percpu(struct r5conf *conf) 6802 { 6803 int err = 0; 6804 6805 conf->percpu = alloc_percpu(struct raid5_percpu); 6806 if (!conf->percpu) 6807 return -ENOMEM; 6808 6809 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node); 6810 if (!err) { 6811 conf->scribble_disks = max(conf->raid_disks, 6812 conf->previous_raid_disks); 6813 conf->scribble_sectors = max(conf->chunk_sectors, 6814 conf->prev_chunk_sectors); 6815 } 6816 return err; 6817 } 6818 6819 static unsigned long raid5_cache_scan(struct shrinker *shrink, 6820 struct shrink_control *sc) 6821 { 6822 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker); 6823 unsigned long ret = SHRINK_STOP; 6824 6825 if (mutex_trylock(&conf->cache_size_mutex)) { 6826 ret= 0; 6827 while (ret < sc->nr_to_scan && 6828 conf->max_nr_stripes > conf->min_nr_stripes) { 6829 if (drop_one_stripe(conf) == 0) { 6830 ret = SHRINK_STOP; 6831 break; 6832 } 6833 ret++; 6834 } 6835 mutex_unlock(&conf->cache_size_mutex); 6836 } 6837 return ret; 6838 } 6839 6840 static unsigned long raid5_cache_count(struct shrinker *shrink, 6841 struct shrink_control *sc) 6842 { 6843 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker); 6844 6845 if (conf->max_nr_stripes < conf->min_nr_stripes) 6846 /* unlikely, but not impossible */ 6847 return 0; 6848 return conf->max_nr_stripes - conf->min_nr_stripes; 6849 } 6850 6851 static struct r5conf *setup_conf(struct mddev *mddev) 6852 { 6853 struct r5conf *conf; 6854 int raid_disk, memory, max_disks; 6855 struct md_rdev *rdev; 6856 struct disk_info *disk; 6857 char pers_name[6]; 6858 int i; 6859 int group_cnt, worker_cnt_per_group; 6860 struct r5worker_group *new_group; 6861 int ret; 6862 6863 if (mddev->new_level != 5 6864 && mddev->new_level != 4 6865 && mddev->new_level != 6) { 6866 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n", 6867 mdname(mddev), mddev->new_level); 6868 return ERR_PTR(-EIO); 6869 } 6870 if ((mddev->new_level == 5 6871 && !algorithm_valid_raid5(mddev->new_layout)) || 6872 (mddev->new_level == 6 6873 && !algorithm_valid_raid6(mddev->new_layout))) { 6874 pr_warn("md/raid:%s: layout %d not supported\n", 6875 mdname(mddev), mddev->new_layout); 6876 return ERR_PTR(-EIO); 6877 } 6878 if (mddev->new_level == 6 && mddev->raid_disks < 4) { 6879 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n", 6880 mdname(mddev), mddev->raid_disks); 6881 return ERR_PTR(-EINVAL); 6882 } 6883 6884 if (!mddev->new_chunk_sectors || 6885 (mddev->new_chunk_sectors << 9) % PAGE_SIZE || 6886 !is_power_of_2(mddev->new_chunk_sectors)) { 6887 pr_warn("md/raid:%s: invalid chunk size %d\n", 6888 mdname(mddev), mddev->new_chunk_sectors << 9); 6889 return ERR_PTR(-EINVAL); 6890 } 6891 6892 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL); 6893 if (conf == NULL) 6894 goto abort; 6895 INIT_LIST_HEAD(&conf->free_list); 6896 INIT_LIST_HEAD(&conf->pending_list); 6897 conf->pending_data = kcalloc(PENDING_IO_MAX, 6898 sizeof(struct r5pending_data), 6899 GFP_KERNEL); 6900 if (!conf->pending_data) 6901 goto abort; 6902 for (i = 0; i < PENDING_IO_MAX; i++) 6903 list_add(&conf->pending_data[i].sibling, &conf->free_list); 6904 /* Don't enable multi-threading by default*/ 6905 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group, 6906 &new_group)) { 6907 conf->group_cnt = group_cnt; 6908 conf->worker_cnt_per_group = worker_cnt_per_group; 6909 conf->worker_groups = new_group; 6910 } else 6911 goto abort; 6912 spin_lock_init(&conf->device_lock); 6913 seqcount_init(&conf->gen_lock); 6914 mutex_init(&conf->cache_size_mutex); 6915 init_waitqueue_head(&conf->wait_for_quiescent); 6916 init_waitqueue_head(&conf->wait_for_stripe); 6917 init_waitqueue_head(&conf->wait_for_overlap); 6918 INIT_LIST_HEAD(&conf->handle_list); 6919 INIT_LIST_HEAD(&conf->loprio_list); 6920 INIT_LIST_HEAD(&conf->hold_list); 6921 INIT_LIST_HEAD(&conf->delayed_list); 6922 INIT_LIST_HEAD(&conf->bitmap_list); 6923 init_llist_head(&conf->released_stripes); 6924 atomic_set(&conf->active_stripes, 0); 6925 atomic_set(&conf->preread_active_stripes, 0); 6926 atomic_set(&conf->active_aligned_reads, 0); 6927 spin_lock_init(&conf->pending_bios_lock); 6928 conf->batch_bio_dispatch = true; 6929 rdev_for_each(rdev, mddev) { 6930 if (test_bit(Journal, &rdev->flags)) 6931 continue; 6932 if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) { 6933 conf->batch_bio_dispatch = false; 6934 break; 6935 } 6936 } 6937 6938 conf->bypass_threshold = BYPASS_THRESHOLD; 6939 conf->recovery_disabled = mddev->recovery_disabled - 1; 6940 6941 conf->raid_disks = mddev->raid_disks; 6942 if (mddev->reshape_position == MaxSector) 6943 conf->previous_raid_disks = mddev->raid_disks; 6944 else 6945 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks; 6946 max_disks = max(conf->raid_disks, conf->previous_raid_disks); 6947 6948 conf->disks = kcalloc(max_disks, sizeof(struct disk_info), 6949 GFP_KERNEL); 6950 6951 if (!conf->disks) 6952 goto abort; 6953 6954 for (i = 0; i < max_disks; i++) { 6955 conf->disks[i].extra_page = alloc_page(GFP_KERNEL); 6956 if (!conf->disks[i].extra_page) 6957 goto abort; 6958 } 6959 6960 ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 6961 if (ret) 6962 goto abort; 6963 conf->mddev = mddev; 6964 6965 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL) 6966 goto abort; 6967 6968 /* We init hash_locks[0] separately to that it can be used 6969 * as the reference lock in the spin_lock_nest_lock() call 6970 * in lock_all_device_hash_locks_irq in order to convince 6971 * lockdep that we know what we are doing. 6972 */ 6973 spin_lock_init(conf->hash_locks); 6974 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 6975 spin_lock_init(conf->hash_locks + i); 6976 6977 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 6978 INIT_LIST_HEAD(conf->inactive_list + i); 6979 6980 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 6981 INIT_LIST_HEAD(conf->temp_inactive_list + i); 6982 6983 atomic_set(&conf->r5c_cached_full_stripes, 0); 6984 INIT_LIST_HEAD(&conf->r5c_full_stripe_list); 6985 atomic_set(&conf->r5c_cached_partial_stripes, 0); 6986 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list); 6987 atomic_set(&conf->r5c_flushing_full_stripes, 0); 6988 atomic_set(&conf->r5c_flushing_partial_stripes, 0); 6989 6990 conf->level = mddev->new_level; 6991 conf->chunk_sectors = mddev->new_chunk_sectors; 6992 if (raid5_alloc_percpu(conf) != 0) 6993 goto abort; 6994 6995 pr_debug("raid456: run(%s) called.\n", mdname(mddev)); 6996 6997 rdev_for_each(rdev, mddev) { 6998 raid_disk = rdev->raid_disk; 6999 if (raid_disk >= max_disks 7000 || raid_disk < 0 || test_bit(Journal, &rdev->flags)) 7001 continue; 7002 disk = conf->disks + raid_disk; 7003 7004 if (test_bit(Replacement, &rdev->flags)) { 7005 if (disk->replacement) 7006 goto abort; 7007 disk->replacement = rdev; 7008 } else { 7009 if (disk->rdev) 7010 goto abort; 7011 disk->rdev = rdev; 7012 } 7013 7014 if (test_bit(In_sync, &rdev->flags)) { 7015 char b[BDEVNAME_SIZE]; 7016 pr_info("md/raid:%s: device %s operational as raid disk %d\n", 7017 mdname(mddev), bdevname(rdev->bdev, b), raid_disk); 7018 } else if (rdev->saved_raid_disk != raid_disk) 7019 /* Cannot rely on bitmap to complete recovery */ 7020 conf->fullsync = 1; 7021 } 7022 7023 conf->level = mddev->new_level; 7024 if (conf->level == 6) { 7025 conf->max_degraded = 2; 7026 if (raid6_call.xor_syndrome) 7027 conf->rmw_level = PARITY_ENABLE_RMW; 7028 else 7029 conf->rmw_level = PARITY_DISABLE_RMW; 7030 } else { 7031 conf->max_degraded = 1; 7032 conf->rmw_level = PARITY_ENABLE_RMW; 7033 } 7034 conf->algorithm = mddev->new_layout; 7035 conf->reshape_progress = mddev->reshape_position; 7036 if (conf->reshape_progress != MaxSector) { 7037 conf->prev_chunk_sectors = mddev->chunk_sectors; 7038 conf->prev_algo = mddev->layout; 7039 } else { 7040 conf->prev_chunk_sectors = conf->chunk_sectors; 7041 conf->prev_algo = conf->algorithm; 7042 } 7043 7044 conf->min_nr_stripes = NR_STRIPES; 7045 if (mddev->reshape_position != MaxSector) { 7046 int stripes = max_t(int, 7047 ((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4, 7048 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4); 7049 conf->min_nr_stripes = max(NR_STRIPES, stripes); 7050 if (conf->min_nr_stripes != NR_STRIPES) 7051 pr_info("md/raid:%s: force stripe size %d for reshape\n", 7052 mdname(mddev), conf->min_nr_stripes); 7053 } 7054 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) + 7055 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024; 7056 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS); 7057 if (grow_stripes(conf, conf->min_nr_stripes)) { 7058 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n", 7059 mdname(mddev), memory); 7060 goto abort; 7061 } else 7062 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory); 7063 /* 7064 * Losing a stripe head costs more than the time to refill it, 7065 * it reduces the queue depth and so can hurt throughput. 7066 * So set it rather large, scaled by number of devices. 7067 */ 7068 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4; 7069 conf->shrinker.scan_objects = raid5_cache_scan; 7070 conf->shrinker.count_objects = raid5_cache_count; 7071 conf->shrinker.batch = 128; 7072 conf->shrinker.flags = 0; 7073 if (register_shrinker(&conf->shrinker)) { 7074 pr_warn("md/raid:%s: couldn't register shrinker.\n", 7075 mdname(mddev)); 7076 goto abort; 7077 } 7078 7079 sprintf(pers_name, "raid%d", mddev->new_level); 7080 conf->thread = md_register_thread(raid5d, mddev, pers_name); 7081 if (!conf->thread) { 7082 pr_warn("md/raid:%s: couldn't allocate thread.\n", 7083 mdname(mddev)); 7084 goto abort; 7085 } 7086 7087 return conf; 7088 7089 abort: 7090 if (conf) { 7091 free_conf(conf); 7092 return ERR_PTR(-EIO); 7093 } else 7094 return ERR_PTR(-ENOMEM); 7095 } 7096 7097 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded) 7098 { 7099 switch (algo) { 7100 case ALGORITHM_PARITY_0: 7101 if (raid_disk < max_degraded) 7102 return 1; 7103 break; 7104 case ALGORITHM_PARITY_N: 7105 if (raid_disk >= raid_disks - max_degraded) 7106 return 1; 7107 break; 7108 case ALGORITHM_PARITY_0_6: 7109 if (raid_disk == 0 || 7110 raid_disk == raid_disks - 1) 7111 return 1; 7112 break; 7113 case ALGORITHM_LEFT_ASYMMETRIC_6: 7114 case ALGORITHM_RIGHT_ASYMMETRIC_6: 7115 case ALGORITHM_LEFT_SYMMETRIC_6: 7116 case ALGORITHM_RIGHT_SYMMETRIC_6: 7117 if (raid_disk == raid_disks - 1) 7118 return 1; 7119 } 7120 return 0; 7121 } 7122 7123 static int raid5_run(struct mddev *mddev) 7124 { 7125 struct r5conf *conf; 7126 int working_disks = 0; 7127 int dirty_parity_disks = 0; 7128 struct md_rdev *rdev; 7129 struct md_rdev *journal_dev = NULL; 7130 sector_t reshape_offset = 0; 7131 int i; 7132 long long min_offset_diff = 0; 7133 int first = 1; 7134 7135 if (mddev_init_writes_pending(mddev) < 0) 7136 return -ENOMEM; 7137 7138 if (mddev->recovery_cp != MaxSector) 7139 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n", 7140 mdname(mddev)); 7141 7142 rdev_for_each(rdev, mddev) { 7143 long long diff; 7144 7145 if (test_bit(Journal, &rdev->flags)) { 7146 journal_dev = rdev; 7147 continue; 7148 } 7149 if (rdev->raid_disk < 0) 7150 continue; 7151 diff = (rdev->new_data_offset - rdev->data_offset); 7152 if (first) { 7153 min_offset_diff = diff; 7154 first = 0; 7155 } else if (mddev->reshape_backwards && 7156 diff < min_offset_diff) 7157 min_offset_diff = diff; 7158 else if (!mddev->reshape_backwards && 7159 diff > min_offset_diff) 7160 min_offset_diff = diff; 7161 } 7162 7163 if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) && 7164 (mddev->bitmap_info.offset || mddev->bitmap_info.file)) { 7165 pr_notice("md/raid:%s: array cannot have both journal and bitmap\n", 7166 mdname(mddev)); 7167 return -EINVAL; 7168 } 7169 7170 if (mddev->reshape_position != MaxSector) { 7171 /* Check that we can continue the reshape. 7172 * Difficulties arise if the stripe we would write to 7173 * next is at or after the stripe we would read from next. 7174 * For a reshape that changes the number of devices, this 7175 * is only possible for a very short time, and mdadm makes 7176 * sure that time appears to have past before assembling 7177 * the array. So we fail if that time hasn't passed. 7178 * For a reshape that keeps the number of devices the same 7179 * mdadm must be monitoring the reshape can keeping the 7180 * critical areas read-only and backed up. It will start 7181 * the array in read-only mode, so we check for that. 7182 */ 7183 sector_t here_new, here_old; 7184 int old_disks; 7185 int max_degraded = (mddev->level == 6 ? 2 : 1); 7186 int chunk_sectors; 7187 int new_data_disks; 7188 7189 if (journal_dev) { 7190 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n", 7191 mdname(mddev)); 7192 return -EINVAL; 7193 } 7194 7195 if (mddev->new_level != mddev->level) { 7196 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n", 7197 mdname(mddev)); 7198 return -EINVAL; 7199 } 7200 old_disks = mddev->raid_disks - mddev->delta_disks; 7201 /* reshape_position must be on a new-stripe boundary, and one 7202 * further up in new geometry must map after here in old 7203 * geometry. 7204 * If the chunk sizes are different, then as we perform reshape 7205 * in units of the largest of the two, reshape_position needs 7206 * be a multiple of the largest chunk size times new data disks. 7207 */ 7208 here_new = mddev->reshape_position; 7209 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors); 7210 new_data_disks = mddev->raid_disks - max_degraded; 7211 if (sector_div(here_new, chunk_sectors * new_data_disks)) { 7212 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n", 7213 mdname(mddev)); 7214 return -EINVAL; 7215 } 7216 reshape_offset = here_new * chunk_sectors; 7217 /* here_new is the stripe we will write to */ 7218 here_old = mddev->reshape_position; 7219 sector_div(here_old, chunk_sectors * (old_disks-max_degraded)); 7220 /* here_old is the first stripe that we might need to read 7221 * from */ 7222 if (mddev->delta_disks == 0) { 7223 /* We cannot be sure it is safe to start an in-place 7224 * reshape. It is only safe if user-space is monitoring 7225 * and taking constant backups. 7226 * mdadm always starts a situation like this in 7227 * readonly mode so it can take control before 7228 * allowing any writes. So just check for that. 7229 */ 7230 if (abs(min_offset_diff) >= mddev->chunk_sectors && 7231 abs(min_offset_diff) >= mddev->new_chunk_sectors) 7232 /* not really in-place - so OK */; 7233 else if (mddev->ro == 0) { 7234 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n", 7235 mdname(mddev)); 7236 return -EINVAL; 7237 } 7238 } else if (mddev->reshape_backwards 7239 ? (here_new * chunk_sectors + min_offset_diff <= 7240 here_old * chunk_sectors) 7241 : (here_new * chunk_sectors >= 7242 here_old * chunk_sectors + (-min_offset_diff))) { 7243 /* Reading from the same stripe as writing to - bad */ 7244 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n", 7245 mdname(mddev)); 7246 return -EINVAL; 7247 } 7248 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev)); 7249 /* OK, we should be able to continue; */ 7250 } else { 7251 BUG_ON(mddev->level != mddev->new_level); 7252 BUG_ON(mddev->layout != mddev->new_layout); 7253 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors); 7254 BUG_ON(mddev->delta_disks != 0); 7255 } 7256 7257 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && 7258 test_bit(MD_HAS_PPL, &mddev->flags)) { 7259 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n", 7260 mdname(mddev)); 7261 clear_bit(MD_HAS_PPL, &mddev->flags); 7262 clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags); 7263 } 7264 7265 if (mddev->private == NULL) 7266 conf = setup_conf(mddev); 7267 else 7268 conf = mddev->private; 7269 7270 if (IS_ERR(conf)) 7271 return PTR_ERR(conf); 7272 7273 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 7274 if (!journal_dev) { 7275 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n", 7276 mdname(mddev)); 7277 mddev->ro = 1; 7278 set_disk_ro(mddev->gendisk, 1); 7279 } else if (mddev->recovery_cp == MaxSector) 7280 set_bit(MD_JOURNAL_CLEAN, &mddev->flags); 7281 } 7282 7283 conf->min_offset_diff = min_offset_diff; 7284 mddev->thread = conf->thread; 7285 conf->thread = NULL; 7286 mddev->private = conf; 7287 7288 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks; 7289 i++) { 7290 rdev = conf->disks[i].rdev; 7291 if (!rdev && conf->disks[i].replacement) { 7292 /* The replacement is all we have yet */ 7293 rdev = conf->disks[i].replacement; 7294 conf->disks[i].replacement = NULL; 7295 clear_bit(Replacement, &rdev->flags); 7296 conf->disks[i].rdev = rdev; 7297 } 7298 if (!rdev) 7299 continue; 7300 if (conf->disks[i].replacement && 7301 conf->reshape_progress != MaxSector) { 7302 /* replacements and reshape simply do not mix. */ 7303 pr_warn("md: cannot handle concurrent replacement and reshape.\n"); 7304 goto abort; 7305 } 7306 if (test_bit(In_sync, &rdev->flags)) { 7307 working_disks++; 7308 continue; 7309 } 7310 /* This disc is not fully in-sync. However if it 7311 * just stored parity (beyond the recovery_offset), 7312 * when we don't need to be concerned about the 7313 * array being dirty. 7314 * When reshape goes 'backwards', we never have 7315 * partially completed devices, so we only need 7316 * to worry about reshape going forwards. 7317 */ 7318 /* Hack because v0.91 doesn't store recovery_offset properly. */ 7319 if (mddev->major_version == 0 && 7320 mddev->minor_version > 90) 7321 rdev->recovery_offset = reshape_offset; 7322 7323 if (rdev->recovery_offset < reshape_offset) { 7324 /* We need to check old and new layout */ 7325 if (!only_parity(rdev->raid_disk, 7326 conf->algorithm, 7327 conf->raid_disks, 7328 conf->max_degraded)) 7329 continue; 7330 } 7331 if (!only_parity(rdev->raid_disk, 7332 conf->prev_algo, 7333 conf->previous_raid_disks, 7334 conf->max_degraded)) 7335 continue; 7336 dirty_parity_disks++; 7337 } 7338 7339 /* 7340 * 0 for a fully functional array, 1 or 2 for a degraded array. 7341 */ 7342 mddev->degraded = raid5_calc_degraded(conf); 7343 7344 if (has_failed(conf)) { 7345 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n", 7346 mdname(mddev), mddev->degraded, conf->raid_disks); 7347 goto abort; 7348 } 7349 7350 /* device size must be a multiple of chunk size */ 7351 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1); 7352 mddev->resync_max_sectors = mddev->dev_sectors; 7353 7354 if (mddev->degraded > dirty_parity_disks && 7355 mddev->recovery_cp != MaxSector) { 7356 if (test_bit(MD_HAS_PPL, &mddev->flags)) 7357 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n", 7358 mdname(mddev)); 7359 else if (mddev->ok_start_degraded) 7360 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n", 7361 mdname(mddev)); 7362 else { 7363 pr_crit("md/raid:%s: cannot start dirty degraded array.\n", 7364 mdname(mddev)); 7365 goto abort; 7366 } 7367 } 7368 7369 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n", 7370 mdname(mddev), conf->level, 7371 mddev->raid_disks-mddev->degraded, mddev->raid_disks, 7372 mddev->new_layout); 7373 7374 print_raid5_conf(conf); 7375 7376 if (conf->reshape_progress != MaxSector) { 7377 conf->reshape_safe = conf->reshape_progress; 7378 atomic_set(&conf->reshape_stripes, 0); 7379 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7380 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7381 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7382 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7383 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 7384 "reshape"); 7385 } 7386 7387 /* Ok, everything is just fine now */ 7388 if (mddev->to_remove == &raid5_attrs_group) 7389 mddev->to_remove = NULL; 7390 else if (mddev->kobj.sd && 7391 sysfs_create_group(&mddev->kobj, &raid5_attrs_group)) 7392 pr_warn("raid5: failed to create sysfs attributes for %s\n", 7393 mdname(mddev)); 7394 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 7395 7396 if (mddev->queue) { 7397 int chunk_size; 7398 /* read-ahead size must cover two whole stripes, which 7399 * is 2 * (datadisks) * chunksize where 'n' is the 7400 * number of raid devices 7401 */ 7402 int data_disks = conf->previous_raid_disks - conf->max_degraded; 7403 int stripe = data_disks * 7404 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 7405 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe) 7406 mddev->queue->backing_dev_info->ra_pages = 2 * stripe; 7407 7408 chunk_size = mddev->chunk_sectors << 9; 7409 blk_queue_io_min(mddev->queue, chunk_size); 7410 blk_queue_io_opt(mddev->queue, chunk_size * 7411 (conf->raid_disks - conf->max_degraded)); 7412 mddev->queue->limits.raid_partial_stripes_expensive = 1; 7413 /* 7414 * We can only discard a whole stripe. It doesn't make sense to 7415 * discard data disk but write parity disk 7416 */ 7417 stripe = stripe * PAGE_SIZE; 7418 /* Round up to power of 2, as discard handling 7419 * currently assumes that */ 7420 while ((stripe-1) & stripe) 7421 stripe = (stripe | (stripe-1)) + 1; 7422 mddev->queue->limits.discard_alignment = stripe; 7423 mddev->queue->limits.discard_granularity = stripe; 7424 7425 blk_queue_max_write_same_sectors(mddev->queue, 0); 7426 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 7427 7428 rdev_for_each(rdev, mddev) { 7429 disk_stack_limits(mddev->gendisk, rdev->bdev, 7430 rdev->data_offset << 9); 7431 disk_stack_limits(mddev->gendisk, rdev->bdev, 7432 rdev->new_data_offset << 9); 7433 } 7434 7435 /* 7436 * zeroing is required, otherwise data 7437 * could be lost. Consider a scenario: discard a stripe 7438 * (the stripe could be inconsistent if 7439 * discard_zeroes_data is 0); write one disk of the 7440 * stripe (the stripe could be inconsistent again 7441 * depending on which disks are used to calculate 7442 * parity); the disk is broken; The stripe data of this 7443 * disk is lost. 7444 * 7445 * We only allow DISCARD if the sysadmin has confirmed that 7446 * only safe devices are in use by setting a module parameter. 7447 * A better idea might be to turn DISCARD into WRITE_ZEROES 7448 * requests, as that is required to be safe. 7449 */ 7450 if (devices_handle_discard_safely && 7451 mddev->queue->limits.max_discard_sectors >= (stripe >> 9) && 7452 mddev->queue->limits.discard_granularity >= stripe) 7453 blk_queue_flag_set(QUEUE_FLAG_DISCARD, 7454 mddev->queue); 7455 else 7456 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, 7457 mddev->queue); 7458 7459 blk_queue_max_hw_sectors(mddev->queue, UINT_MAX); 7460 } 7461 7462 if (log_init(conf, journal_dev, raid5_has_ppl(conf))) 7463 goto abort; 7464 7465 return 0; 7466 abort: 7467 md_unregister_thread(&mddev->thread); 7468 print_raid5_conf(conf); 7469 free_conf(conf); 7470 mddev->private = NULL; 7471 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev)); 7472 return -EIO; 7473 } 7474 7475 static void raid5_free(struct mddev *mddev, void *priv) 7476 { 7477 struct r5conf *conf = priv; 7478 7479 free_conf(conf); 7480 mddev->to_remove = &raid5_attrs_group; 7481 } 7482 7483 static void raid5_status(struct seq_file *seq, struct mddev *mddev) 7484 { 7485 struct r5conf *conf = mddev->private; 7486 int i; 7487 7488 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level, 7489 conf->chunk_sectors / 2, mddev->layout); 7490 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded); 7491 rcu_read_lock(); 7492 for (i = 0; i < conf->raid_disks; i++) { 7493 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 7494 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 7495 } 7496 rcu_read_unlock(); 7497 seq_printf (seq, "]"); 7498 } 7499 7500 static void print_raid5_conf (struct r5conf *conf) 7501 { 7502 int i; 7503 struct disk_info *tmp; 7504 7505 pr_debug("RAID conf printout:\n"); 7506 if (!conf) { 7507 pr_debug("(conf==NULL)\n"); 7508 return; 7509 } 7510 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level, 7511 conf->raid_disks, 7512 conf->raid_disks - conf->mddev->degraded); 7513 7514 for (i = 0; i < conf->raid_disks; i++) { 7515 char b[BDEVNAME_SIZE]; 7516 tmp = conf->disks + i; 7517 if (tmp->rdev) 7518 pr_debug(" disk %d, o:%d, dev:%s\n", 7519 i, !test_bit(Faulty, &tmp->rdev->flags), 7520 bdevname(tmp->rdev->bdev, b)); 7521 } 7522 } 7523 7524 static int raid5_spare_active(struct mddev *mddev) 7525 { 7526 int i; 7527 struct r5conf *conf = mddev->private; 7528 struct disk_info *tmp; 7529 int count = 0; 7530 unsigned long flags; 7531 7532 for (i = 0; i < conf->raid_disks; i++) { 7533 tmp = conf->disks + i; 7534 if (tmp->replacement 7535 && tmp->replacement->recovery_offset == MaxSector 7536 && !test_bit(Faulty, &tmp->replacement->flags) 7537 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 7538 /* Replacement has just become active. */ 7539 if (!tmp->rdev 7540 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 7541 count++; 7542 if (tmp->rdev) { 7543 /* Replaced device not technically faulty, 7544 * but we need to be sure it gets removed 7545 * and never re-added. 7546 */ 7547 set_bit(Faulty, &tmp->rdev->flags); 7548 sysfs_notify_dirent_safe( 7549 tmp->rdev->sysfs_state); 7550 } 7551 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 7552 } else if (tmp->rdev 7553 && tmp->rdev->recovery_offset == MaxSector 7554 && !test_bit(Faulty, &tmp->rdev->flags) 7555 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 7556 count++; 7557 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 7558 } 7559 } 7560 spin_lock_irqsave(&conf->device_lock, flags); 7561 mddev->degraded = raid5_calc_degraded(conf); 7562 spin_unlock_irqrestore(&conf->device_lock, flags); 7563 print_raid5_conf(conf); 7564 return count; 7565 } 7566 7567 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 7568 { 7569 struct r5conf *conf = mddev->private; 7570 int err = 0; 7571 int number = rdev->raid_disk; 7572 struct md_rdev **rdevp; 7573 struct disk_info *p = conf->disks + number; 7574 7575 print_raid5_conf(conf); 7576 if (test_bit(Journal, &rdev->flags) && conf->log) { 7577 /* 7578 * we can't wait pending write here, as this is called in 7579 * raid5d, wait will deadlock. 7580 * neilb: there is no locking about new writes here, 7581 * so this cannot be safe. 7582 */ 7583 if (atomic_read(&conf->active_stripes) || 7584 atomic_read(&conf->r5c_cached_full_stripes) || 7585 atomic_read(&conf->r5c_cached_partial_stripes)) { 7586 return -EBUSY; 7587 } 7588 log_exit(conf); 7589 return 0; 7590 } 7591 if (rdev == p->rdev) 7592 rdevp = &p->rdev; 7593 else if (rdev == p->replacement) 7594 rdevp = &p->replacement; 7595 else 7596 return 0; 7597 7598 if (number >= conf->raid_disks && 7599 conf->reshape_progress == MaxSector) 7600 clear_bit(In_sync, &rdev->flags); 7601 7602 if (test_bit(In_sync, &rdev->flags) || 7603 atomic_read(&rdev->nr_pending)) { 7604 err = -EBUSY; 7605 goto abort; 7606 } 7607 /* Only remove non-faulty devices if recovery 7608 * isn't possible. 7609 */ 7610 if (!test_bit(Faulty, &rdev->flags) && 7611 mddev->recovery_disabled != conf->recovery_disabled && 7612 !has_failed(conf) && 7613 (!p->replacement || p->replacement == rdev) && 7614 number < conf->raid_disks) { 7615 err = -EBUSY; 7616 goto abort; 7617 } 7618 *rdevp = NULL; 7619 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 7620 synchronize_rcu(); 7621 if (atomic_read(&rdev->nr_pending)) { 7622 /* lost the race, try later */ 7623 err = -EBUSY; 7624 *rdevp = rdev; 7625 } 7626 } 7627 if (!err) { 7628 err = log_modify(conf, rdev, false); 7629 if (err) 7630 goto abort; 7631 } 7632 if (p->replacement) { 7633 /* We must have just cleared 'rdev' */ 7634 p->rdev = p->replacement; 7635 clear_bit(Replacement, &p->replacement->flags); 7636 smp_mb(); /* Make sure other CPUs may see both as identical 7637 * but will never see neither - if they are careful 7638 */ 7639 p->replacement = NULL; 7640 7641 if (!err) 7642 err = log_modify(conf, p->rdev, true); 7643 } 7644 7645 clear_bit(WantReplacement, &rdev->flags); 7646 abort: 7647 7648 print_raid5_conf(conf); 7649 return err; 7650 } 7651 7652 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev) 7653 { 7654 struct r5conf *conf = mddev->private; 7655 int err = -EEXIST; 7656 int disk; 7657 struct disk_info *p; 7658 int first = 0; 7659 int last = conf->raid_disks - 1; 7660 7661 if (test_bit(Journal, &rdev->flags)) { 7662 if (conf->log) 7663 return -EBUSY; 7664 7665 rdev->raid_disk = 0; 7666 /* 7667 * The array is in readonly mode if journal is missing, so no 7668 * write requests running. We should be safe 7669 */ 7670 log_init(conf, rdev, false); 7671 return 0; 7672 } 7673 if (mddev->recovery_disabled == conf->recovery_disabled) 7674 return -EBUSY; 7675 7676 if (rdev->saved_raid_disk < 0 && has_failed(conf)) 7677 /* no point adding a device */ 7678 return -EINVAL; 7679 7680 if (rdev->raid_disk >= 0) 7681 first = last = rdev->raid_disk; 7682 7683 /* 7684 * find the disk ... but prefer rdev->saved_raid_disk 7685 * if possible. 7686 */ 7687 if (rdev->saved_raid_disk >= 0 && 7688 rdev->saved_raid_disk >= first && 7689 conf->disks[rdev->saved_raid_disk].rdev == NULL) 7690 first = rdev->saved_raid_disk; 7691 7692 for (disk = first; disk <= last; disk++) { 7693 p = conf->disks + disk; 7694 if (p->rdev == NULL) { 7695 clear_bit(In_sync, &rdev->flags); 7696 rdev->raid_disk = disk; 7697 if (rdev->saved_raid_disk != disk) 7698 conf->fullsync = 1; 7699 rcu_assign_pointer(p->rdev, rdev); 7700 7701 err = log_modify(conf, rdev, true); 7702 7703 goto out; 7704 } 7705 } 7706 for (disk = first; disk <= last; disk++) { 7707 p = conf->disks + disk; 7708 if (test_bit(WantReplacement, &p->rdev->flags) && 7709 p->replacement == NULL) { 7710 clear_bit(In_sync, &rdev->flags); 7711 set_bit(Replacement, &rdev->flags); 7712 rdev->raid_disk = disk; 7713 err = 0; 7714 conf->fullsync = 1; 7715 rcu_assign_pointer(p->replacement, rdev); 7716 break; 7717 } 7718 } 7719 out: 7720 print_raid5_conf(conf); 7721 return err; 7722 } 7723 7724 static int raid5_resize(struct mddev *mddev, sector_t sectors) 7725 { 7726 /* no resync is happening, and there is enough space 7727 * on all devices, so we can resize. 7728 * We need to make sure resync covers any new space. 7729 * If the array is shrinking we should possibly wait until 7730 * any io in the removed space completes, but it hardly seems 7731 * worth it. 7732 */ 7733 sector_t newsize; 7734 struct r5conf *conf = mddev->private; 7735 7736 if (conf->log || raid5_has_ppl(conf)) 7737 return -EINVAL; 7738 sectors &= ~((sector_t)conf->chunk_sectors - 1); 7739 newsize = raid5_size(mddev, sectors, mddev->raid_disks); 7740 if (mddev->external_size && 7741 mddev->array_sectors > newsize) 7742 return -EINVAL; 7743 if (mddev->bitmap) { 7744 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0); 7745 if (ret) 7746 return ret; 7747 } 7748 md_set_array_sectors(mddev, newsize); 7749 if (sectors > mddev->dev_sectors && 7750 mddev->recovery_cp > mddev->dev_sectors) { 7751 mddev->recovery_cp = mddev->dev_sectors; 7752 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7753 } 7754 mddev->dev_sectors = sectors; 7755 mddev->resync_max_sectors = sectors; 7756 return 0; 7757 } 7758 7759 static int check_stripe_cache(struct mddev *mddev) 7760 { 7761 /* Can only proceed if there are plenty of stripe_heads. 7762 * We need a minimum of one full stripe,, and for sensible progress 7763 * it is best to have about 4 times that. 7764 * If we require 4 times, then the default 256 4K stripe_heads will 7765 * allow for chunk sizes up to 256K, which is probably OK. 7766 * If the chunk size is greater, user-space should request more 7767 * stripe_heads first. 7768 */ 7769 struct r5conf *conf = mddev->private; 7770 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4 7771 > conf->min_nr_stripes || 7772 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4 7773 > conf->min_nr_stripes) { 7774 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n", 7775 mdname(mddev), 7776 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9) 7777 / STRIPE_SIZE)*4); 7778 return 0; 7779 } 7780 return 1; 7781 } 7782 7783 static int check_reshape(struct mddev *mddev) 7784 { 7785 struct r5conf *conf = mddev->private; 7786 7787 if (conf->log || raid5_has_ppl(conf)) 7788 return -EINVAL; 7789 if (mddev->delta_disks == 0 && 7790 mddev->new_layout == mddev->layout && 7791 mddev->new_chunk_sectors == mddev->chunk_sectors) 7792 return 0; /* nothing to do */ 7793 if (has_failed(conf)) 7794 return -EINVAL; 7795 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) { 7796 /* We might be able to shrink, but the devices must 7797 * be made bigger first. 7798 * For raid6, 4 is the minimum size. 7799 * Otherwise 2 is the minimum 7800 */ 7801 int min = 2; 7802 if (mddev->level == 6) 7803 min = 4; 7804 if (mddev->raid_disks + mddev->delta_disks < min) 7805 return -EINVAL; 7806 } 7807 7808 if (!check_stripe_cache(mddev)) 7809 return -ENOSPC; 7810 7811 if (mddev->new_chunk_sectors > mddev->chunk_sectors || 7812 mddev->delta_disks > 0) 7813 if (resize_chunks(conf, 7814 conf->previous_raid_disks 7815 + max(0, mddev->delta_disks), 7816 max(mddev->new_chunk_sectors, 7817 mddev->chunk_sectors) 7818 ) < 0) 7819 return -ENOMEM; 7820 7821 if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size) 7822 return 0; /* never bother to shrink */ 7823 return resize_stripes(conf, (conf->previous_raid_disks 7824 + mddev->delta_disks)); 7825 } 7826 7827 static int raid5_start_reshape(struct mddev *mddev) 7828 { 7829 struct r5conf *conf = mddev->private; 7830 struct md_rdev *rdev; 7831 int spares = 0; 7832 unsigned long flags; 7833 7834 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 7835 return -EBUSY; 7836 7837 if (!check_stripe_cache(mddev)) 7838 return -ENOSPC; 7839 7840 if (has_failed(conf)) 7841 return -EINVAL; 7842 7843 rdev_for_each(rdev, mddev) { 7844 if (!test_bit(In_sync, &rdev->flags) 7845 && !test_bit(Faulty, &rdev->flags)) 7846 spares++; 7847 } 7848 7849 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded) 7850 /* Not enough devices even to make a degraded array 7851 * of that size 7852 */ 7853 return -EINVAL; 7854 7855 /* Refuse to reduce size of the array. Any reductions in 7856 * array size must be through explicit setting of array_size 7857 * attribute. 7858 */ 7859 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks) 7860 < mddev->array_sectors) { 7861 pr_warn("md/raid:%s: array size must be reduced before number of disks\n", 7862 mdname(mddev)); 7863 return -EINVAL; 7864 } 7865 7866 atomic_set(&conf->reshape_stripes, 0); 7867 spin_lock_irq(&conf->device_lock); 7868 write_seqcount_begin(&conf->gen_lock); 7869 conf->previous_raid_disks = conf->raid_disks; 7870 conf->raid_disks += mddev->delta_disks; 7871 conf->prev_chunk_sectors = conf->chunk_sectors; 7872 conf->chunk_sectors = mddev->new_chunk_sectors; 7873 conf->prev_algo = conf->algorithm; 7874 conf->algorithm = mddev->new_layout; 7875 conf->generation++; 7876 /* Code that selects data_offset needs to see the generation update 7877 * if reshape_progress has been set - so a memory barrier needed. 7878 */ 7879 smp_mb(); 7880 if (mddev->reshape_backwards) 7881 conf->reshape_progress = raid5_size(mddev, 0, 0); 7882 else 7883 conf->reshape_progress = 0; 7884 conf->reshape_safe = conf->reshape_progress; 7885 write_seqcount_end(&conf->gen_lock); 7886 spin_unlock_irq(&conf->device_lock); 7887 7888 /* Now make sure any requests that proceeded on the assumption 7889 * the reshape wasn't running - like Discard or Read - have 7890 * completed. 7891 */ 7892 mddev_suspend(mddev); 7893 mddev_resume(mddev); 7894 7895 /* Add some new drives, as many as will fit. 7896 * We know there are enough to make the newly sized array work. 7897 * Don't add devices if we are reducing the number of 7898 * devices in the array. This is because it is not possible 7899 * to correctly record the "partially reconstructed" state of 7900 * such devices during the reshape and confusion could result. 7901 */ 7902 if (mddev->delta_disks >= 0) { 7903 rdev_for_each(rdev, mddev) 7904 if (rdev->raid_disk < 0 && 7905 !test_bit(Faulty, &rdev->flags)) { 7906 if (raid5_add_disk(mddev, rdev) == 0) { 7907 if (rdev->raid_disk 7908 >= conf->previous_raid_disks) 7909 set_bit(In_sync, &rdev->flags); 7910 else 7911 rdev->recovery_offset = 0; 7912 7913 if (sysfs_link_rdev(mddev, rdev)) 7914 /* Failure here is OK */; 7915 } 7916 } else if (rdev->raid_disk >= conf->previous_raid_disks 7917 && !test_bit(Faulty, &rdev->flags)) { 7918 /* This is a spare that was manually added */ 7919 set_bit(In_sync, &rdev->flags); 7920 } 7921 7922 /* When a reshape changes the number of devices, 7923 * ->degraded is measured against the larger of the 7924 * pre and post number of devices. 7925 */ 7926 spin_lock_irqsave(&conf->device_lock, flags); 7927 mddev->degraded = raid5_calc_degraded(conf); 7928 spin_unlock_irqrestore(&conf->device_lock, flags); 7929 } 7930 mddev->raid_disks = conf->raid_disks; 7931 mddev->reshape_position = conf->reshape_progress; 7932 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 7933 7934 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7935 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7936 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 7937 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7938 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7939 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 7940 "reshape"); 7941 if (!mddev->sync_thread) { 7942 mddev->recovery = 0; 7943 spin_lock_irq(&conf->device_lock); 7944 write_seqcount_begin(&conf->gen_lock); 7945 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks; 7946 mddev->new_chunk_sectors = 7947 conf->chunk_sectors = conf->prev_chunk_sectors; 7948 mddev->new_layout = conf->algorithm = conf->prev_algo; 7949 rdev_for_each(rdev, mddev) 7950 rdev->new_data_offset = rdev->data_offset; 7951 smp_wmb(); 7952 conf->generation --; 7953 conf->reshape_progress = MaxSector; 7954 mddev->reshape_position = MaxSector; 7955 write_seqcount_end(&conf->gen_lock); 7956 spin_unlock_irq(&conf->device_lock); 7957 return -EAGAIN; 7958 } 7959 conf->reshape_checkpoint = jiffies; 7960 md_wakeup_thread(mddev->sync_thread); 7961 md_new_event(mddev); 7962 return 0; 7963 } 7964 7965 /* This is called from the reshape thread and should make any 7966 * changes needed in 'conf' 7967 */ 7968 static void end_reshape(struct r5conf *conf) 7969 { 7970 7971 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 7972 struct md_rdev *rdev; 7973 7974 spin_lock_irq(&conf->device_lock); 7975 conf->previous_raid_disks = conf->raid_disks; 7976 md_finish_reshape(conf->mddev); 7977 smp_wmb(); 7978 conf->reshape_progress = MaxSector; 7979 conf->mddev->reshape_position = MaxSector; 7980 rdev_for_each(rdev, conf->mddev) 7981 if (rdev->raid_disk >= 0 && 7982 !test_bit(Journal, &rdev->flags) && 7983 !test_bit(In_sync, &rdev->flags)) 7984 rdev->recovery_offset = MaxSector; 7985 spin_unlock_irq(&conf->device_lock); 7986 wake_up(&conf->wait_for_overlap); 7987 7988 /* read-ahead size must cover two whole stripes, which is 7989 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 7990 */ 7991 if (conf->mddev->queue) { 7992 int data_disks = conf->raid_disks - conf->max_degraded; 7993 int stripe = data_disks * ((conf->chunk_sectors << 9) 7994 / PAGE_SIZE); 7995 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe) 7996 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe; 7997 } 7998 } 7999 } 8000 8001 /* This is called from the raid5d thread with mddev_lock held. 8002 * It makes config changes to the device. 8003 */ 8004 static void raid5_finish_reshape(struct mddev *mddev) 8005 { 8006 struct r5conf *conf = mddev->private; 8007 8008 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8009 8010 if (mddev->delta_disks <= 0) { 8011 int d; 8012 spin_lock_irq(&conf->device_lock); 8013 mddev->degraded = raid5_calc_degraded(conf); 8014 spin_unlock_irq(&conf->device_lock); 8015 for (d = conf->raid_disks ; 8016 d < conf->raid_disks - mddev->delta_disks; 8017 d++) { 8018 struct md_rdev *rdev = conf->disks[d].rdev; 8019 if (rdev) 8020 clear_bit(In_sync, &rdev->flags); 8021 rdev = conf->disks[d].replacement; 8022 if (rdev) 8023 clear_bit(In_sync, &rdev->flags); 8024 } 8025 } 8026 mddev->layout = conf->algorithm; 8027 mddev->chunk_sectors = conf->chunk_sectors; 8028 mddev->reshape_position = MaxSector; 8029 mddev->delta_disks = 0; 8030 mddev->reshape_backwards = 0; 8031 } 8032 } 8033 8034 static void raid5_quiesce(struct mddev *mddev, int quiesce) 8035 { 8036 struct r5conf *conf = mddev->private; 8037 8038 if (quiesce) { 8039 /* stop all writes */ 8040 lock_all_device_hash_locks_irq(conf); 8041 /* '2' tells resync/reshape to pause so that all 8042 * active stripes can drain 8043 */ 8044 r5c_flush_cache(conf, INT_MAX); 8045 conf->quiesce = 2; 8046 wait_event_cmd(conf->wait_for_quiescent, 8047 atomic_read(&conf->active_stripes) == 0 && 8048 atomic_read(&conf->active_aligned_reads) == 0, 8049 unlock_all_device_hash_locks_irq(conf), 8050 lock_all_device_hash_locks_irq(conf)); 8051 conf->quiesce = 1; 8052 unlock_all_device_hash_locks_irq(conf); 8053 /* allow reshape to continue */ 8054 wake_up(&conf->wait_for_overlap); 8055 } else { 8056 /* re-enable writes */ 8057 lock_all_device_hash_locks_irq(conf); 8058 conf->quiesce = 0; 8059 wake_up(&conf->wait_for_quiescent); 8060 wake_up(&conf->wait_for_overlap); 8061 unlock_all_device_hash_locks_irq(conf); 8062 } 8063 log_quiesce(conf, quiesce); 8064 } 8065 8066 static void *raid45_takeover_raid0(struct mddev *mddev, int level) 8067 { 8068 struct r0conf *raid0_conf = mddev->private; 8069 sector_t sectors; 8070 8071 /* for raid0 takeover only one zone is supported */ 8072 if (raid0_conf->nr_strip_zones > 1) { 8073 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n", 8074 mdname(mddev)); 8075 return ERR_PTR(-EINVAL); 8076 } 8077 8078 sectors = raid0_conf->strip_zone[0].zone_end; 8079 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev); 8080 mddev->dev_sectors = sectors; 8081 mddev->new_level = level; 8082 mddev->new_layout = ALGORITHM_PARITY_N; 8083 mddev->new_chunk_sectors = mddev->chunk_sectors; 8084 mddev->raid_disks += 1; 8085 mddev->delta_disks = 1; 8086 /* make sure it will be not marked as dirty */ 8087 mddev->recovery_cp = MaxSector; 8088 8089 return setup_conf(mddev); 8090 } 8091 8092 static void *raid5_takeover_raid1(struct mddev *mddev) 8093 { 8094 int chunksect; 8095 void *ret; 8096 8097 if (mddev->raid_disks != 2 || 8098 mddev->degraded > 1) 8099 return ERR_PTR(-EINVAL); 8100 8101 /* Should check if there are write-behind devices? */ 8102 8103 chunksect = 64*2; /* 64K by default */ 8104 8105 /* The array must be an exact multiple of chunksize */ 8106 while (chunksect && (mddev->array_sectors & (chunksect-1))) 8107 chunksect >>= 1; 8108 8109 if ((chunksect<<9) < STRIPE_SIZE) 8110 /* array size does not allow a suitable chunk size */ 8111 return ERR_PTR(-EINVAL); 8112 8113 mddev->new_level = 5; 8114 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC; 8115 mddev->new_chunk_sectors = chunksect; 8116 8117 ret = setup_conf(mddev); 8118 if (!IS_ERR(ret)) 8119 mddev_clear_unsupported_flags(mddev, 8120 UNSUPPORTED_MDDEV_FLAGS); 8121 return ret; 8122 } 8123 8124 static void *raid5_takeover_raid6(struct mddev *mddev) 8125 { 8126 int new_layout; 8127 8128 switch (mddev->layout) { 8129 case ALGORITHM_LEFT_ASYMMETRIC_6: 8130 new_layout = ALGORITHM_LEFT_ASYMMETRIC; 8131 break; 8132 case ALGORITHM_RIGHT_ASYMMETRIC_6: 8133 new_layout = ALGORITHM_RIGHT_ASYMMETRIC; 8134 break; 8135 case ALGORITHM_LEFT_SYMMETRIC_6: 8136 new_layout = ALGORITHM_LEFT_SYMMETRIC; 8137 break; 8138 case ALGORITHM_RIGHT_SYMMETRIC_6: 8139 new_layout = ALGORITHM_RIGHT_SYMMETRIC; 8140 break; 8141 case ALGORITHM_PARITY_0_6: 8142 new_layout = ALGORITHM_PARITY_0; 8143 break; 8144 case ALGORITHM_PARITY_N: 8145 new_layout = ALGORITHM_PARITY_N; 8146 break; 8147 default: 8148 return ERR_PTR(-EINVAL); 8149 } 8150 mddev->new_level = 5; 8151 mddev->new_layout = new_layout; 8152 mddev->delta_disks = -1; 8153 mddev->raid_disks -= 1; 8154 return setup_conf(mddev); 8155 } 8156 8157 static int raid5_check_reshape(struct mddev *mddev) 8158 { 8159 /* For a 2-drive array, the layout and chunk size can be changed 8160 * immediately as not restriping is needed. 8161 * For larger arrays we record the new value - after validation 8162 * to be used by a reshape pass. 8163 */ 8164 struct r5conf *conf = mddev->private; 8165 int new_chunk = mddev->new_chunk_sectors; 8166 8167 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout)) 8168 return -EINVAL; 8169 if (new_chunk > 0) { 8170 if (!is_power_of_2(new_chunk)) 8171 return -EINVAL; 8172 if (new_chunk < (PAGE_SIZE>>9)) 8173 return -EINVAL; 8174 if (mddev->array_sectors & (new_chunk-1)) 8175 /* not factor of array size */ 8176 return -EINVAL; 8177 } 8178 8179 /* They look valid */ 8180 8181 if (mddev->raid_disks == 2) { 8182 /* can make the change immediately */ 8183 if (mddev->new_layout >= 0) { 8184 conf->algorithm = mddev->new_layout; 8185 mddev->layout = mddev->new_layout; 8186 } 8187 if (new_chunk > 0) { 8188 conf->chunk_sectors = new_chunk ; 8189 mddev->chunk_sectors = new_chunk; 8190 } 8191 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8192 md_wakeup_thread(mddev->thread); 8193 } 8194 return check_reshape(mddev); 8195 } 8196 8197 static int raid6_check_reshape(struct mddev *mddev) 8198 { 8199 int new_chunk = mddev->new_chunk_sectors; 8200 8201 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout)) 8202 return -EINVAL; 8203 if (new_chunk > 0) { 8204 if (!is_power_of_2(new_chunk)) 8205 return -EINVAL; 8206 if (new_chunk < (PAGE_SIZE >> 9)) 8207 return -EINVAL; 8208 if (mddev->array_sectors & (new_chunk-1)) 8209 /* not factor of array size */ 8210 return -EINVAL; 8211 } 8212 8213 /* They look valid */ 8214 return check_reshape(mddev); 8215 } 8216 8217 static void *raid5_takeover(struct mddev *mddev) 8218 { 8219 /* raid5 can take over: 8220 * raid0 - if there is only one strip zone - make it a raid4 layout 8221 * raid1 - if there are two drives. We need to know the chunk size 8222 * raid4 - trivial - just use a raid4 layout. 8223 * raid6 - Providing it is a *_6 layout 8224 */ 8225 if (mddev->level == 0) 8226 return raid45_takeover_raid0(mddev, 5); 8227 if (mddev->level == 1) 8228 return raid5_takeover_raid1(mddev); 8229 if (mddev->level == 4) { 8230 mddev->new_layout = ALGORITHM_PARITY_N; 8231 mddev->new_level = 5; 8232 return setup_conf(mddev); 8233 } 8234 if (mddev->level == 6) 8235 return raid5_takeover_raid6(mddev); 8236 8237 return ERR_PTR(-EINVAL); 8238 } 8239 8240 static void *raid4_takeover(struct mddev *mddev) 8241 { 8242 /* raid4 can take over: 8243 * raid0 - if there is only one strip zone 8244 * raid5 - if layout is right 8245 */ 8246 if (mddev->level == 0) 8247 return raid45_takeover_raid0(mddev, 4); 8248 if (mddev->level == 5 && 8249 mddev->layout == ALGORITHM_PARITY_N) { 8250 mddev->new_layout = 0; 8251 mddev->new_level = 4; 8252 return setup_conf(mddev); 8253 } 8254 return ERR_PTR(-EINVAL); 8255 } 8256 8257 static struct md_personality raid5_personality; 8258 8259 static void *raid6_takeover(struct mddev *mddev) 8260 { 8261 /* Currently can only take over a raid5. We map the 8262 * personality to an equivalent raid6 personality 8263 * with the Q block at the end. 8264 */ 8265 int new_layout; 8266 8267 if (mddev->pers != &raid5_personality) 8268 return ERR_PTR(-EINVAL); 8269 if (mddev->degraded > 1) 8270 return ERR_PTR(-EINVAL); 8271 if (mddev->raid_disks > 253) 8272 return ERR_PTR(-EINVAL); 8273 if (mddev->raid_disks < 3) 8274 return ERR_PTR(-EINVAL); 8275 8276 switch (mddev->layout) { 8277 case ALGORITHM_LEFT_ASYMMETRIC: 8278 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6; 8279 break; 8280 case ALGORITHM_RIGHT_ASYMMETRIC: 8281 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6; 8282 break; 8283 case ALGORITHM_LEFT_SYMMETRIC: 8284 new_layout = ALGORITHM_LEFT_SYMMETRIC_6; 8285 break; 8286 case ALGORITHM_RIGHT_SYMMETRIC: 8287 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6; 8288 break; 8289 case ALGORITHM_PARITY_0: 8290 new_layout = ALGORITHM_PARITY_0_6; 8291 break; 8292 case ALGORITHM_PARITY_N: 8293 new_layout = ALGORITHM_PARITY_N; 8294 break; 8295 default: 8296 return ERR_PTR(-EINVAL); 8297 } 8298 mddev->new_level = 6; 8299 mddev->new_layout = new_layout; 8300 mddev->delta_disks = 1; 8301 mddev->raid_disks += 1; 8302 return setup_conf(mddev); 8303 } 8304 8305 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf) 8306 { 8307 struct r5conf *conf; 8308 int err; 8309 8310 err = mddev_lock(mddev); 8311 if (err) 8312 return err; 8313 conf = mddev->private; 8314 if (!conf) { 8315 mddev_unlock(mddev); 8316 return -ENODEV; 8317 } 8318 8319 if (strncmp(buf, "ppl", 3) == 0) { 8320 /* ppl only works with RAID 5 */ 8321 if (!raid5_has_ppl(conf) && conf->level == 5) { 8322 err = log_init(conf, NULL, true); 8323 if (!err) { 8324 err = resize_stripes(conf, conf->pool_size); 8325 if (err) 8326 log_exit(conf); 8327 } 8328 } else 8329 err = -EINVAL; 8330 } else if (strncmp(buf, "resync", 6) == 0) { 8331 if (raid5_has_ppl(conf)) { 8332 mddev_suspend(mddev); 8333 log_exit(conf); 8334 mddev_resume(mddev); 8335 err = resize_stripes(conf, conf->pool_size); 8336 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) && 8337 r5l_log_disk_error(conf)) { 8338 bool journal_dev_exists = false; 8339 struct md_rdev *rdev; 8340 8341 rdev_for_each(rdev, mddev) 8342 if (test_bit(Journal, &rdev->flags)) { 8343 journal_dev_exists = true; 8344 break; 8345 } 8346 8347 if (!journal_dev_exists) { 8348 mddev_suspend(mddev); 8349 clear_bit(MD_HAS_JOURNAL, &mddev->flags); 8350 mddev_resume(mddev); 8351 } else /* need remove journal device first */ 8352 err = -EBUSY; 8353 } else 8354 err = -EINVAL; 8355 } else { 8356 err = -EINVAL; 8357 } 8358 8359 if (!err) 8360 md_update_sb(mddev, 1); 8361 8362 mddev_unlock(mddev); 8363 8364 return err; 8365 } 8366 8367 static int raid5_start(struct mddev *mddev) 8368 { 8369 struct r5conf *conf = mddev->private; 8370 8371 return r5l_start(conf->log); 8372 } 8373 8374 static struct md_personality raid6_personality = 8375 { 8376 .name = "raid6", 8377 .level = 6, 8378 .owner = THIS_MODULE, 8379 .make_request = raid5_make_request, 8380 .run = raid5_run, 8381 .start = raid5_start, 8382 .free = raid5_free, 8383 .status = raid5_status, 8384 .error_handler = raid5_error, 8385 .hot_add_disk = raid5_add_disk, 8386 .hot_remove_disk= raid5_remove_disk, 8387 .spare_active = raid5_spare_active, 8388 .sync_request = raid5_sync_request, 8389 .resize = raid5_resize, 8390 .size = raid5_size, 8391 .check_reshape = raid6_check_reshape, 8392 .start_reshape = raid5_start_reshape, 8393 .finish_reshape = raid5_finish_reshape, 8394 .quiesce = raid5_quiesce, 8395 .takeover = raid6_takeover, 8396 .congested = raid5_congested, 8397 .change_consistency_policy = raid5_change_consistency_policy, 8398 }; 8399 static struct md_personality raid5_personality = 8400 { 8401 .name = "raid5", 8402 .level = 5, 8403 .owner = THIS_MODULE, 8404 .make_request = raid5_make_request, 8405 .run = raid5_run, 8406 .start = raid5_start, 8407 .free = raid5_free, 8408 .status = raid5_status, 8409 .error_handler = raid5_error, 8410 .hot_add_disk = raid5_add_disk, 8411 .hot_remove_disk= raid5_remove_disk, 8412 .spare_active = raid5_spare_active, 8413 .sync_request = raid5_sync_request, 8414 .resize = raid5_resize, 8415 .size = raid5_size, 8416 .check_reshape = raid5_check_reshape, 8417 .start_reshape = raid5_start_reshape, 8418 .finish_reshape = raid5_finish_reshape, 8419 .quiesce = raid5_quiesce, 8420 .takeover = raid5_takeover, 8421 .congested = raid5_congested, 8422 .change_consistency_policy = raid5_change_consistency_policy, 8423 }; 8424 8425 static struct md_personality raid4_personality = 8426 { 8427 .name = "raid4", 8428 .level = 4, 8429 .owner = THIS_MODULE, 8430 .make_request = raid5_make_request, 8431 .run = raid5_run, 8432 .start = raid5_start, 8433 .free = raid5_free, 8434 .status = raid5_status, 8435 .error_handler = raid5_error, 8436 .hot_add_disk = raid5_add_disk, 8437 .hot_remove_disk= raid5_remove_disk, 8438 .spare_active = raid5_spare_active, 8439 .sync_request = raid5_sync_request, 8440 .resize = raid5_resize, 8441 .size = raid5_size, 8442 .check_reshape = raid5_check_reshape, 8443 .start_reshape = raid5_start_reshape, 8444 .finish_reshape = raid5_finish_reshape, 8445 .quiesce = raid5_quiesce, 8446 .takeover = raid4_takeover, 8447 .congested = raid5_congested, 8448 .change_consistency_policy = raid5_change_consistency_policy, 8449 }; 8450 8451 static int __init raid5_init(void) 8452 { 8453 int ret; 8454 8455 raid5_wq = alloc_workqueue("raid5wq", 8456 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0); 8457 if (!raid5_wq) 8458 return -ENOMEM; 8459 8460 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE, 8461 "md/raid5:prepare", 8462 raid456_cpu_up_prepare, 8463 raid456_cpu_dead); 8464 if (ret) { 8465 destroy_workqueue(raid5_wq); 8466 return ret; 8467 } 8468 register_md_personality(&raid6_personality); 8469 register_md_personality(&raid5_personality); 8470 register_md_personality(&raid4_personality); 8471 return 0; 8472 } 8473 8474 static void raid5_exit(void) 8475 { 8476 unregister_md_personality(&raid6_personality); 8477 unregister_md_personality(&raid5_personality); 8478 unregister_md_personality(&raid4_personality); 8479 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE); 8480 destroy_workqueue(raid5_wq); 8481 } 8482 8483 module_init(raid5_init); 8484 module_exit(raid5_exit); 8485 MODULE_LICENSE("GPL"); 8486 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD"); 8487 MODULE_ALIAS("md-personality-4"); /* RAID5 */ 8488 MODULE_ALIAS("md-raid5"); 8489 MODULE_ALIAS("md-raid4"); 8490 MODULE_ALIAS("md-level-5"); 8491 MODULE_ALIAS("md-level-4"); 8492 MODULE_ALIAS("md-personality-8"); /* RAID6 */ 8493 MODULE_ALIAS("md-raid6"); 8494 MODULE_ALIAS("md-level-6"); 8495 8496 /* This used to be two separate modules, they were: */ 8497 MODULE_ALIAS("raid5"); 8498 MODULE_ALIAS("raid6"); 8499