1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid5.c : Multiple Devices driver for Linux 4 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman 5 * Copyright (C) 1999, 2000 Ingo Molnar 6 * Copyright (C) 2002, 2003 H. Peter Anvin 7 * 8 * RAID-4/5/6 management functions. 9 * Thanks to Penguin Computing for making the RAID-6 development possible 10 * by donating a test server! 11 */ 12 13 /* 14 * BITMAP UNPLUGGING: 15 * 16 * The sequencing for updating the bitmap reliably is a little 17 * subtle (and I got it wrong the first time) so it deserves some 18 * explanation. 19 * 20 * We group bitmap updates into batches. Each batch has a number. 21 * We may write out several batches at once, but that isn't very important. 22 * conf->seq_write is the number of the last batch successfully written. 23 * conf->seq_flush is the number of the last batch that was closed to 24 * new additions. 25 * When we discover that we will need to write to any block in a stripe 26 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq 27 * the number of the batch it will be in. This is seq_flush+1. 28 * When we are ready to do a write, if that batch hasn't been written yet, 29 * we plug the array and queue the stripe for later. 30 * When an unplug happens, we increment bm_flush, thus closing the current 31 * batch. 32 * When we notice that bm_flush > bm_write, we write out all pending updates 33 * to the bitmap, and advance bm_write to where bm_flush was. 34 * This may occasionally write a bit out twice, but is sure never to 35 * miss any bits. 36 */ 37 38 #include <linux/blkdev.h> 39 #include <linux/kthread.h> 40 #include <linux/raid/pq.h> 41 #include <linux/async_tx.h> 42 #include <linux/module.h> 43 #include <linux/async.h> 44 #include <linux/seq_file.h> 45 #include <linux/cpu.h> 46 #include <linux/slab.h> 47 #include <linux/ratelimit.h> 48 #include <linux/nodemask.h> 49 50 #include <trace/events/block.h> 51 #include <linux/list_sort.h> 52 53 #include "md.h" 54 #include "raid5.h" 55 #include "raid0.h" 56 #include "md-bitmap.h" 57 #include "raid5-log.h" 58 59 #define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED) 60 61 #define cpu_to_group(cpu) cpu_to_node(cpu) 62 #define ANY_GROUP NUMA_NO_NODE 63 64 #define RAID5_MAX_REQ_STRIPES 256 65 66 static bool devices_handle_discard_safely = false; 67 module_param(devices_handle_discard_safely, bool, 0644); 68 MODULE_PARM_DESC(devices_handle_discard_safely, 69 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions"); 70 static struct workqueue_struct *raid5_wq; 71 72 static void raid5_quiesce(struct mddev *mddev, int quiesce); 73 74 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect) 75 { 76 int hash = (sect >> RAID5_STRIPE_SHIFT(conf)) & HASH_MASK; 77 return &conf->stripe_hashtbl[hash]; 78 } 79 80 static inline int stripe_hash_locks_hash(struct r5conf *conf, sector_t sect) 81 { 82 return (sect >> RAID5_STRIPE_SHIFT(conf)) & STRIPE_HASH_LOCKS_MASK; 83 } 84 85 static inline void lock_device_hash_lock(struct r5conf *conf, int hash) 86 __acquires(&conf->device_lock) 87 { 88 spin_lock_irq(conf->hash_locks + hash); 89 spin_lock(&conf->device_lock); 90 } 91 92 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash) 93 __releases(&conf->device_lock) 94 { 95 spin_unlock(&conf->device_lock); 96 spin_unlock_irq(conf->hash_locks + hash); 97 } 98 99 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf) 100 __acquires(&conf->device_lock) 101 { 102 int i; 103 spin_lock_irq(conf->hash_locks); 104 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 105 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks); 106 spin_lock(&conf->device_lock); 107 } 108 109 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf) 110 __releases(&conf->device_lock) 111 { 112 int i; 113 spin_unlock(&conf->device_lock); 114 for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--) 115 spin_unlock(conf->hash_locks + i); 116 spin_unlock_irq(conf->hash_locks); 117 } 118 119 /* Find first data disk in a raid6 stripe */ 120 static inline int raid6_d0(struct stripe_head *sh) 121 { 122 if (sh->ddf_layout) 123 /* ddf always start from first device */ 124 return 0; 125 /* md starts just after Q block */ 126 if (sh->qd_idx == sh->disks - 1) 127 return 0; 128 else 129 return sh->qd_idx + 1; 130 } 131 static inline int raid6_next_disk(int disk, int raid_disks) 132 { 133 disk++; 134 return (disk < raid_disks) ? disk : 0; 135 } 136 137 /* When walking through the disks in a raid5, starting at raid6_d0, 138 * We need to map each disk to a 'slot', where the data disks are slot 139 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk 140 * is raid_disks-1. This help does that mapping. 141 */ 142 static int raid6_idx_to_slot(int idx, struct stripe_head *sh, 143 int *count, int syndrome_disks) 144 { 145 int slot = *count; 146 147 if (sh->ddf_layout) 148 (*count)++; 149 if (idx == sh->pd_idx) 150 return syndrome_disks; 151 if (idx == sh->qd_idx) 152 return syndrome_disks + 1; 153 if (!sh->ddf_layout) 154 (*count)++; 155 return slot; 156 } 157 158 static void print_raid5_conf(struct r5conf *conf); 159 160 static int stripe_operations_active(struct stripe_head *sh) 161 { 162 return sh->check_state || sh->reconstruct_state || 163 test_bit(STRIPE_BIOFILL_RUN, &sh->state) || 164 test_bit(STRIPE_COMPUTE_RUN, &sh->state); 165 } 166 167 static bool stripe_is_lowprio(struct stripe_head *sh) 168 { 169 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) || 170 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) && 171 !test_bit(STRIPE_R5C_CACHING, &sh->state); 172 } 173 174 static void raid5_wakeup_stripe_thread(struct stripe_head *sh) 175 __must_hold(&sh->raid_conf->device_lock) 176 { 177 struct r5conf *conf = sh->raid_conf; 178 struct r5worker_group *group; 179 int thread_cnt; 180 int i, cpu = sh->cpu; 181 182 if (!cpu_online(cpu)) { 183 cpu = cpumask_any(cpu_online_mask); 184 sh->cpu = cpu; 185 } 186 187 if (list_empty(&sh->lru)) { 188 struct r5worker_group *group; 189 group = conf->worker_groups + cpu_to_group(cpu); 190 if (stripe_is_lowprio(sh)) 191 list_add_tail(&sh->lru, &group->loprio_list); 192 else 193 list_add_tail(&sh->lru, &group->handle_list); 194 group->stripes_cnt++; 195 sh->group = group; 196 } 197 198 if (conf->worker_cnt_per_group == 0) { 199 md_wakeup_thread(conf->mddev->thread); 200 return; 201 } 202 203 group = conf->worker_groups + cpu_to_group(sh->cpu); 204 205 group->workers[0].working = true; 206 /* at least one worker should run to avoid race */ 207 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work); 208 209 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1; 210 /* wakeup more workers */ 211 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) { 212 if (group->workers[i].working == false) { 213 group->workers[i].working = true; 214 queue_work_on(sh->cpu, raid5_wq, 215 &group->workers[i].work); 216 thread_cnt--; 217 } 218 } 219 } 220 221 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh, 222 struct list_head *temp_inactive_list) 223 __must_hold(&conf->device_lock) 224 { 225 int i; 226 int injournal = 0; /* number of date pages with R5_InJournal */ 227 228 BUG_ON(!list_empty(&sh->lru)); 229 BUG_ON(atomic_read(&conf->active_stripes)==0); 230 231 if (r5c_is_writeback(conf->log)) 232 for (i = sh->disks; i--; ) 233 if (test_bit(R5_InJournal, &sh->dev[i].flags)) 234 injournal++; 235 /* 236 * In the following cases, the stripe cannot be released to cached 237 * lists. Therefore, we make the stripe write out and set 238 * STRIPE_HANDLE: 239 * 1. when quiesce in r5c write back; 240 * 2. when resync is requested fot the stripe. 241 */ 242 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) || 243 (conf->quiesce && r5c_is_writeback(conf->log) && 244 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) { 245 if (test_bit(STRIPE_R5C_CACHING, &sh->state)) 246 r5c_make_stripe_write_out(sh); 247 set_bit(STRIPE_HANDLE, &sh->state); 248 } 249 250 if (test_bit(STRIPE_HANDLE, &sh->state)) { 251 if (test_bit(STRIPE_DELAYED, &sh->state) && 252 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 253 list_add_tail(&sh->lru, &conf->delayed_list); 254 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) && 255 sh->bm_seq - conf->seq_write > 0) 256 list_add_tail(&sh->lru, &conf->bitmap_list); 257 else { 258 clear_bit(STRIPE_DELAYED, &sh->state); 259 clear_bit(STRIPE_BIT_DELAY, &sh->state); 260 if (conf->worker_cnt_per_group == 0) { 261 if (stripe_is_lowprio(sh)) 262 list_add_tail(&sh->lru, 263 &conf->loprio_list); 264 else 265 list_add_tail(&sh->lru, 266 &conf->handle_list); 267 } else { 268 raid5_wakeup_stripe_thread(sh); 269 return; 270 } 271 } 272 md_wakeup_thread(conf->mddev->thread); 273 } else { 274 BUG_ON(stripe_operations_active(sh)); 275 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 276 if (atomic_dec_return(&conf->preread_active_stripes) 277 < IO_THRESHOLD) 278 md_wakeup_thread(conf->mddev->thread); 279 atomic_dec(&conf->active_stripes); 280 if (!test_bit(STRIPE_EXPANDING, &sh->state)) { 281 if (!r5c_is_writeback(conf->log)) 282 list_add_tail(&sh->lru, temp_inactive_list); 283 else { 284 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags)); 285 if (injournal == 0) 286 list_add_tail(&sh->lru, temp_inactive_list); 287 else if (injournal == conf->raid_disks - conf->max_degraded) { 288 /* full stripe */ 289 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) 290 atomic_inc(&conf->r5c_cached_full_stripes); 291 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) 292 atomic_dec(&conf->r5c_cached_partial_stripes); 293 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list); 294 r5c_check_cached_full_stripe(conf); 295 } else 296 /* 297 * STRIPE_R5C_PARTIAL_STRIPE is set in 298 * r5c_try_caching_write(). No need to 299 * set it again. 300 */ 301 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list); 302 } 303 } 304 } 305 } 306 307 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh, 308 struct list_head *temp_inactive_list) 309 __must_hold(&conf->device_lock) 310 { 311 if (atomic_dec_and_test(&sh->count)) 312 do_release_stripe(conf, sh, temp_inactive_list); 313 } 314 315 /* 316 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list 317 * 318 * Be careful: Only one task can add/delete stripes from temp_inactive_list at 319 * given time. Adding stripes only takes device lock, while deleting stripes 320 * only takes hash lock. 321 */ 322 static void release_inactive_stripe_list(struct r5conf *conf, 323 struct list_head *temp_inactive_list, 324 int hash) 325 { 326 int size; 327 bool do_wakeup = false; 328 unsigned long flags; 329 330 if (hash == NR_STRIPE_HASH_LOCKS) { 331 size = NR_STRIPE_HASH_LOCKS; 332 hash = NR_STRIPE_HASH_LOCKS - 1; 333 } else 334 size = 1; 335 while (size) { 336 struct list_head *list = &temp_inactive_list[size - 1]; 337 338 /* 339 * We don't hold any lock here yet, raid5_get_active_stripe() might 340 * remove stripes from the list 341 */ 342 if (!list_empty_careful(list)) { 343 spin_lock_irqsave(conf->hash_locks + hash, flags); 344 if (list_empty(conf->inactive_list + hash) && 345 !list_empty(list)) 346 atomic_dec(&conf->empty_inactive_list_nr); 347 list_splice_tail_init(list, conf->inactive_list + hash); 348 do_wakeup = true; 349 spin_unlock_irqrestore(conf->hash_locks + hash, flags); 350 } 351 size--; 352 hash--; 353 } 354 355 if (do_wakeup) { 356 wake_up(&conf->wait_for_stripe); 357 if (atomic_read(&conf->active_stripes) == 0) 358 wake_up(&conf->wait_for_quiescent); 359 if (conf->retry_read_aligned) 360 md_wakeup_thread(conf->mddev->thread); 361 } 362 } 363 364 static int release_stripe_list(struct r5conf *conf, 365 struct list_head *temp_inactive_list) 366 __must_hold(&conf->device_lock) 367 { 368 struct stripe_head *sh, *t; 369 int count = 0; 370 struct llist_node *head; 371 372 head = llist_del_all(&conf->released_stripes); 373 head = llist_reverse_order(head); 374 llist_for_each_entry_safe(sh, t, head, release_list) { 375 int hash; 376 377 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */ 378 smp_mb(); 379 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state); 380 /* 381 * Don't worry the bit is set here, because if the bit is set 382 * again, the count is always > 1. This is true for 383 * STRIPE_ON_UNPLUG_LIST bit too. 384 */ 385 hash = sh->hash_lock_index; 386 __release_stripe(conf, sh, &temp_inactive_list[hash]); 387 count++; 388 } 389 390 return count; 391 } 392 393 void raid5_release_stripe(struct stripe_head *sh) 394 { 395 struct r5conf *conf = sh->raid_conf; 396 unsigned long flags; 397 struct list_head list; 398 int hash; 399 bool wakeup; 400 401 /* Avoid release_list until the last reference. 402 */ 403 if (atomic_add_unless(&sh->count, -1, 1)) 404 return; 405 406 if (unlikely(!conf->mddev->thread) || 407 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state)) 408 goto slow_path; 409 wakeup = llist_add(&sh->release_list, &conf->released_stripes); 410 if (wakeup) 411 md_wakeup_thread(conf->mddev->thread); 412 return; 413 slow_path: 414 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */ 415 if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) { 416 INIT_LIST_HEAD(&list); 417 hash = sh->hash_lock_index; 418 do_release_stripe(conf, sh, &list); 419 spin_unlock_irqrestore(&conf->device_lock, flags); 420 release_inactive_stripe_list(conf, &list, hash); 421 } 422 } 423 424 static inline void remove_hash(struct stripe_head *sh) 425 { 426 pr_debug("remove_hash(), stripe %llu\n", 427 (unsigned long long)sh->sector); 428 429 hlist_del_init(&sh->hash); 430 } 431 432 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh) 433 { 434 struct hlist_head *hp = stripe_hash(conf, sh->sector); 435 436 pr_debug("insert_hash(), stripe %llu\n", 437 (unsigned long long)sh->sector); 438 439 hlist_add_head(&sh->hash, hp); 440 } 441 442 /* find an idle stripe, make sure it is unhashed, and return it. */ 443 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash) 444 { 445 struct stripe_head *sh = NULL; 446 struct list_head *first; 447 448 if (list_empty(conf->inactive_list + hash)) 449 goto out; 450 first = (conf->inactive_list + hash)->next; 451 sh = list_entry(first, struct stripe_head, lru); 452 list_del_init(first); 453 remove_hash(sh); 454 atomic_inc(&conf->active_stripes); 455 BUG_ON(hash != sh->hash_lock_index); 456 if (list_empty(conf->inactive_list + hash)) 457 atomic_inc(&conf->empty_inactive_list_nr); 458 out: 459 return sh; 460 } 461 462 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 463 static void free_stripe_pages(struct stripe_head *sh) 464 { 465 int i; 466 struct page *p; 467 468 /* Have not allocate page pool */ 469 if (!sh->pages) 470 return; 471 472 for (i = 0; i < sh->nr_pages; i++) { 473 p = sh->pages[i]; 474 if (p) 475 put_page(p); 476 sh->pages[i] = NULL; 477 } 478 } 479 480 static int alloc_stripe_pages(struct stripe_head *sh, gfp_t gfp) 481 { 482 int i; 483 struct page *p; 484 485 for (i = 0; i < sh->nr_pages; i++) { 486 /* The page have allocated. */ 487 if (sh->pages[i]) 488 continue; 489 490 p = alloc_page(gfp); 491 if (!p) { 492 free_stripe_pages(sh); 493 return -ENOMEM; 494 } 495 sh->pages[i] = p; 496 } 497 return 0; 498 } 499 500 static int 501 init_stripe_shared_pages(struct stripe_head *sh, struct r5conf *conf, int disks) 502 { 503 int nr_pages, cnt; 504 505 if (sh->pages) 506 return 0; 507 508 /* Each of the sh->dev[i] need one conf->stripe_size */ 509 cnt = PAGE_SIZE / conf->stripe_size; 510 nr_pages = (disks + cnt - 1) / cnt; 511 512 sh->pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL); 513 if (!sh->pages) 514 return -ENOMEM; 515 sh->nr_pages = nr_pages; 516 sh->stripes_per_page = cnt; 517 return 0; 518 } 519 #endif 520 521 static void shrink_buffers(struct stripe_head *sh) 522 { 523 int i; 524 int num = sh->raid_conf->pool_size; 525 526 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE 527 for (i = 0; i < num ; i++) { 528 struct page *p; 529 530 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page); 531 p = sh->dev[i].page; 532 if (!p) 533 continue; 534 sh->dev[i].page = NULL; 535 put_page(p); 536 } 537 #else 538 for (i = 0; i < num; i++) 539 sh->dev[i].page = NULL; 540 free_stripe_pages(sh); /* Free pages */ 541 #endif 542 } 543 544 static int grow_buffers(struct stripe_head *sh, gfp_t gfp) 545 { 546 int i; 547 int num = sh->raid_conf->pool_size; 548 549 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE 550 for (i = 0; i < num; i++) { 551 struct page *page; 552 553 if (!(page = alloc_page(gfp))) { 554 return 1; 555 } 556 sh->dev[i].page = page; 557 sh->dev[i].orig_page = page; 558 sh->dev[i].offset = 0; 559 } 560 #else 561 if (alloc_stripe_pages(sh, gfp)) 562 return -ENOMEM; 563 564 for (i = 0; i < num; i++) { 565 sh->dev[i].page = raid5_get_dev_page(sh, i); 566 sh->dev[i].orig_page = sh->dev[i].page; 567 sh->dev[i].offset = raid5_get_page_offset(sh, i); 568 } 569 #endif 570 return 0; 571 } 572 573 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 574 struct stripe_head *sh); 575 576 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous) 577 { 578 struct r5conf *conf = sh->raid_conf; 579 int i, seq; 580 581 BUG_ON(atomic_read(&sh->count) != 0); 582 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); 583 BUG_ON(stripe_operations_active(sh)); 584 BUG_ON(sh->batch_head); 585 586 pr_debug("init_stripe called, stripe %llu\n", 587 (unsigned long long)sector); 588 retry: 589 seq = read_seqcount_begin(&conf->gen_lock); 590 sh->generation = conf->generation - previous; 591 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks; 592 sh->sector = sector; 593 stripe_set_idx(sector, conf, previous, sh); 594 sh->state = 0; 595 596 for (i = sh->disks; i--; ) { 597 struct r5dev *dev = &sh->dev[i]; 598 599 if (dev->toread || dev->read || dev->towrite || dev->written || 600 test_bit(R5_LOCKED, &dev->flags)) { 601 pr_err("sector=%llx i=%d %p %p %p %p %d\n", 602 (unsigned long long)sh->sector, i, dev->toread, 603 dev->read, dev->towrite, dev->written, 604 test_bit(R5_LOCKED, &dev->flags)); 605 WARN_ON(1); 606 } 607 dev->flags = 0; 608 dev->sector = raid5_compute_blocknr(sh, i, previous); 609 } 610 if (read_seqcount_retry(&conf->gen_lock, seq)) 611 goto retry; 612 sh->overwrite_disks = 0; 613 insert_hash(conf, sh); 614 sh->cpu = smp_processor_id(); 615 set_bit(STRIPE_BATCH_READY, &sh->state); 616 } 617 618 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector, 619 short generation) 620 { 621 struct stripe_head *sh; 622 623 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector); 624 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash) 625 if (sh->sector == sector && sh->generation == generation) 626 return sh; 627 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector); 628 return NULL; 629 } 630 631 static struct stripe_head *find_get_stripe(struct r5conf *conf, 632 sector_t sector, short generation, int hash) 633 { 634 int inc_empty_inactive_list_flag; 635 struct stripe_head *sh; 636 637 sh = __find_stripe(conf, sector, generation); 638 if (!sh) 639 return NULL; 640 641 if (atomic_inc_not_zero(&sh->count)) 642 return sh; 643 644 /* 645 * Slow path. The reference count is zero which means the stripe must 646 * be on a list (sh->lru). Must remove the stripe from the list that 647 * references it with the device_lock held. 648 */ 649 650 spin_lock(&conf->device_lock); 651 if (!atomic_read(&sh->count)) { 652 if (!test_bit(STRIPE_HANDLE, &sh->state)) 653 atomic_inc(&conf->active_stripes); 654 BUG_ON(list_empty(&sh->lru) && 655 !test_bit(STRIPE_EXPANDING, &sh->state)); 656 inc_empty_inactive_list_flag = 0; 657 if (!list_empty(conf->inactive_list + hash)) 658 inc_empty_inactive_list_flag = 1; 659 list_del_init(&sh->lru); 660 if (list_empty(conf->inactive_list + hash) && 661 inc_empty_inactive_list_flag) 662 atomic_inc(&conf->empty_inactive_list_nr); 663 if (sh->group) { 664 sh->group->stripes_cnt--; 665 sh->group = NULL; 666 } 667 } 668 atomic_inc(&sh->count); 669 spin_unlock(&conf->device_lock); 670 671 return sh; 672 } 673 674 /* 675 * Need to check if array has failed when deciding whether to: 676 * - start an array 677 * - remove non-faulty devices 678 * - add a spare 679 * - allow a reshape 680 * This determination is simple when no reshape is happening. 681 * However if there is a reshape, we need to carefully check 682 * both the before and after sections. 683 * This is because some failed devices may only affect one 684 * of the two sections, and some non-in_sync devices may 685 * be insync in the section most affected by failed devices. 686 * 687 * Most calls to this function hold &conf->device_lock. Calls 688 * in raid5_run() do not require the lock as no other threads 689 * have been started yet. 690 */ 691 int raid5_calc_degraded(struct r5conf *conf) 692 { 693 int degraded, degraded2; 694 int i; 695 696 degraded = 0; 697 for (i = 0; i < conf->previous_raid_disks; i++) { 698 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev); 699 700 if (rdev && test_bit(Faulty, &rdev->flags)) 701 rdev = READ_ONCE(conf->disks[i].replacement); 702 if (!rdev || test_bit(Faulty, &rdev->flags)) 703 degraded++; 704 else if (test_bit(In_sync, &rdev->flags)) 705 ; 706 else 707 /* not in-sync or faulty. 708 * If the reshape increases the number of devices, 709 * this is being recovered by the reshape, so 710 * this 'previous' section is not in_sync. 711 * If the number of devices is being reduced however, 712 * the device can only be part of the array if 713 * we are reverting a reshape, so this section will 714 * be in-sync. 715 */ 716 if (conf->raid_disks >= conf->previous_raid_disks) 717 degraded++; 718 } 719 if (conf->raid_disks == conf->previous_raid_disks) 720 return degraded; 721 degraded2 = 0; 722 for (i = 0; i < conf->raid_disks; i++) { 723 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev); 724 725 if (rdev && test_bit(Faulty, &rdev->flags)) 726 rdev = READ_ONCE(conf->disks[i].replacement); 727 if (!rdev || test_bit(Faulty, &rdev->flags)) 728 degraded2++; 729 else if (test_bit(In_sync, &rdev->flags)) 730 ; 731 else 732 /* not in-sync or faulty. 733 * If reshape increases the number of devices, this 734 * section has already been recovered, else it 735 * almost certainly hasn't. 736 */ 737 if (conf->raid_disks <= conf->previous_raid_disks) 738 degraded2++; 739 } 740 if (degraded2 > degraded) 741 return degraded2; 742 return degraded; 743 } 744 745 static bool has_failed(struct r5conf *conf) 746 { 747 int degraded = conf->mddev->degraded; 748 749 if (test_bit(MD_BROKEN, &conf->mddev->flags)) 750 return true; 751 752 if (conf->mddev->reshape_position != MaxSector) 753 degraded = raid5_calc_degraded(conf); 754 755 return degraded > conf->max_degraded; 756 } 757 758 enum stripe_result { 759 STRIPE_SUCCESS = 0, 760 STRIPE_RETRY, 761 STRIPE_SCHEDULE_AND_RETRY, 762 STRIPE_FAIL, 763 STRIPE_WAIT_RESHAPE, 764 }; 765 766 struct stripe_request_ctx { 767 /* a reference to the last stripe_head for batching */ 768 struct stripe_head *batch_last; 769 770 /* first sector in the request */ 771 sector_t first_sector; 772 773 /* last sector in the request */ 774 sector_t last_sector; 775 776 /* 777 * bitmap to track stripe sectors that have been added to stripes 778 * add one to account for unaligned requests 779 */ 780 DECLARE_BITMAP(sectors_to_do, RAID5_MAX_REQ_STRIPES + 1); 781 782 /* the request had REQ_PREFLUSH, cleared after the first stripe_head */ 783 bool do_flush; 784 }; 785 786 /* 787 * Block until another thread clears R5_INACTIVE_BLOCKED or 788 * there are fewer than 3/4 the maximum number of active stripes 789 * and there is an inactive stripe available. 790 */ 791 static bool is_inactive_blocked(struct r5conf *conf, int hash) 792 { 793 if (list_empty(conf->inactive_list + hash)) 794 return false; 795 796 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) 797 return true; 798 799 return (atomic_read(&conf->active_stripes) < 800 (conf->max_nr_stripes * 3 / 4)); 801 } 802 803 struct stripe_head *raid5_get_active_stripe(struct r5conf *conf, 804 struct stripe_request_ctx *ctx, sector_t sector, 805 unsigned int flags) 806 { 807 struct stripe_head *sh; 808 int hash = stripe_hash_locks_hash(conf, sector); 809 int previous = !!(flags & R5_GAS_PREVIOUS); 810 811 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector); 812 813 spin_lock_irq(conf->hash_locks + hash); 814 815 for (;;) { 816 if (!(flags & R5_GAS_NOQUIESCE) && conf->quiesce) { 817 /* 818 * Must release the reference to batch_last before 819 * waiting, on quiesce, otherwise the batch_last will 820 * hold a reference to a stripe and raid5_quiesce() 821 * will deadlock waiting for active_stripes to go to 822 * zero. 823 */ 824 if (ctx && ctx->batch_last) { 825 raid5_release_stripe(ctx->batch_last); 826 ctx->batch_last = NULL; 827 } 828 829 wait_event_lock_irq(conf->wait_for_quiescent, 830 !conf->quiesce, 831 *(conf->hash_locks + hash)); 832 } 833 834 sh = find_get_stripe(conf, sector, conf->generation - previous, 835 hash); 836 if (sh) 837 break; 838 839 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) { 840 sh = get_free_stripe(conf, hash); 841 if (sh) { 842 r5c_check_stripe_cache_usage(conf); 843 init_stripe(sh, sector, previous); 844 atomic_inc(&sh->count); 845 break; 846 } 847 848 if (!test_bit(R5_DID_ALLOC, &conf->cache_state)) 849 set_bit(R5_ALLOC_MORE, &conf->cache_state); 850 } 851 852 if (flags & R5_GAS_NOBLOCK) 853 break; 854 855 set_bit(R5_INACTIVE_BLOCKED, &conf->cache_state); 856 r5l_wake_reclaim(conf->log, 0); 857 858 /* release batch_last before wait to avoid risk of deadlock */ 859 if (ctx && ctx->batch_last) { 860 raid5_release_stripe(ctx->batch_last); 861 ctx->batch_last = NULL; 862 } 863 864 wait_event_lock_irq(conf->wait_for_stripe, 865 is_inactive_blocked(conf, hash), 866 *(conf->hash_locks + hash)); 867 clear_bit(R5_INACTIVE_BLOCKED, &conf->cache_state); 868 } 869 870 spin_unlock_irq(conf->hash_locks + hash); 871 return sh; 872 } 873 874 static bool is_full_stripe_write(struct stripe_head *sh) 875 { 876 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded)); 877 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded); 878 } 879 880 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) 881 __acquires(&sh1->stripe_lock) 882 __acquires(&sh2->stripe_lock) 883 { 884 if (sh1 > sh2) { 885 spin_lock_irq(&sh2->stripe_lock); 886 spin_lock_nested(&sh1->stripe_lock, 1); 887 } else { 888 spin_lock_irq(&sh1->stripe_lock); 889 spin_lock_nested(&sh2->stripe_lock, 1); 890 } 891 } 892 893 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) 894 __releases(&sh1->stripe_lock) 895 __releases(&sh2->stripe_lock) 896 { 897 spin_unlock(&sh1->stripe_lock); 898 spin_unlock_irq(&sh2->stripe_lock); 899 } 900 901 /* Only freshly new full stripe normal write stripe can be added to a batch list */ 902 static bool stripe_can_batch(struct stripe_head *sh) 903 { 904 struct r5conf *conf = sh->raid_conf; 905 906 if (raid5_has_log(conf) || raid5_has_ppl(conf)) 907 return false; 908 return test_bit(STRIPE_BATCH_READY, &sh->state) && 909 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) && 910 is_full_stripe_write(sh); 911 } 912 913 /* we only do back search */ 914 static void stripe_add_to_batch_list(struct r5conf *conf, 915 struct stripe_head *sh, struct stripe_head *last_sh) 916 { 917 struct stripe_head *head; 918 sector_t head_sector, tmp_sec; 919 int hash; 920 int dd_idx; 921 922 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */ 923 tmp_sec = sh->sector; 924 if (!sector_div(tmp_sec, conf->chunk_sectors)) 925 return; 926 head_sector = sh->sector - RAID5_STRIPE_SECTORS(conf); 927 928 if (last_sh && head_sector == last_sh->sector) { 929 head = last_sh; 930 atomic_inc(&head->count); 931 } else { 932 hash = stripe_hash_locks_hash(conf, head_sector); 933 spin_lock_irq(conf->hash_locks + hash); 934 head = find_get_stripe(conf, head_sector, conf->generation, 935 hash); 936 spin_unlock_irq(conf->hash_locks + hash); 937 if (!head) 938 return; 939 if (!stripe_can_batch(head)) 940 goto out; 941 } 942 943 lock_two_stripes(head, sh); 944 /* clear_batch_ready clear the flag */ 945 if (!stripe_can_batch(head) || !stripe_can_batch(sh)) 946 goto unlock_out; 947 948 if (sh->batch_head) 949 goto unlock_out; 950 951 dd_idx = 0; 952 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx) 953 dd_idx++; 954 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf || 955 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite)) 956 goto unlock_out; 957 958 if (head->batch_head) { 959 spin_lock(&head->batch_head->batch_lock); 960 /* This batch list is already running */ 961 if (!stripe_can_batch(head)) { 962 spin_unlock(&head->batch_head->batch_lock); 963 goto unlock_out; 964 } 965 /* 966 * We must assign batch_head of this stripe within the 967 * batch_lock, otherwise clear_batch_ready of batch head 968 * stripe could clear BATCH_READY bit of this stripe and 969 * this stripe->batch_head doesn't get assigned, which 970 * could confuse clear_batch_ready for this stripe 971 */ 972 sh->batch_head = head->batch_head; 973 974 /* 975 * at this point, head's BATCH_READY could be cleared, but we 976 * can still add the stripe to batch list 977 */ 978 list_add(&sh->batch_list, &head->batch_list); 979 spin_unlock(&head->batch_head->batch_lock); 980 } else { 981 head->batch_head = head; 982 sh->batch_head = head->batch_head; 983 spin_lock(&head->batch_lock); 984 list_add_tail(&sh->batch_list, &head->batch_list); 985 spin_unlock(&head->batch_lock); 986 } 987 988 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 989 if (atomic_dec_return(&conf->preread_active_stripes) 990 < IO_THRESHOLD) 991 md_wakeup_thread(conf->mddev->thread); 992 993 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) { 994 int seq = sh->bm_seq; 995 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) && 996 sh->batch_head->bm_seq > seq) 997 seq = sh->batch_head->bm_seq; 998 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state); 999 sh->batch_head->bm_seq = seq; 1000 } 1001 1002 atomic_inc(&sh->count); 1003 unlock_out: 1004 unlock_two_stripes(head, sh); 1005 out: 1006 raid5_release_stripe(head); 1007 } 1008 1009 /* Determine if 'data_offset' or 'new_data_offset' should be used 1010 * in this stripe_head. 1011 */ 1012 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh) 1013 { 1014 sector_t progress = conf->reshape_progress; 1015 /* Need a memory barrier to make sure we see the value 1016 * of conf->generation, or ->data_offset that was set before 1017 * reshape_progress was updated. 1018 */ 1019 smp_rmb(); 1020 if (progress == MaxSector) 1021 return 0; 1022 if (sh->generation == conf->generation - 1) 1023 return 0; 1024 /* We are in a reshape, and this is a new-generation stripe, 1025 * so use new_data_offset. 1026 */ 1027 return 1; 1028 } 1029 1030 static void dispatch_bio_list(struct bio_list *tmp) 1031 { 1032 struct bio *bio; 1033 1034 while ((bio = bio_list_pop(tmp))) 1035 submit_bio_noacct(bio); 1036 } 1037 1038 static int cmp_stripe(void *priv, const struct list_head *a, 1039 const struct list_head *b) 1040 { 1041 const struct r5pending_data *da = list_entry(a, 1042 struct r5pending_data, sibling); 1043 const struct r5pending_data *db = list_entry(b, 1044 struct r5pending_data, sibling); 1045 if (da->sector > db->sector) 1046 return 1; 1047 if (da->sector < db->sector) 1048 return -1; 1049 return 0; 1050 } 1051 1052 static void dispatch_defer_bios(struct r5conf *conf, int target, 1053 struct bio_list *list) 1054 { 1055 struct r5pending_data *data; 1056 struct list_head *first, *next = NULL; 1057 int cnt = 0; 1058 1059 if (conf->pending_data_cnt == 0) 1060 return; 1061 1062 list_sort(NULL, &conf->pending_list, cmp_stripe); 1063 1064 first = conf->pending_list.next; 1065 1066 /* temporarily move the head */ 1067 if (conf->next_pending_data) 1068 list_move_tail(&conf->pending_list, 1069 &conf->next_pending_data->sibling); 1070 1071 while (!list_empty(&conf->pending_list)) { 1072 data = list_first_entry(&conf->pending_list, 1073 struct r5pending_data, sibling); 1074 if (&data->sibling == first) 1075 first = data->sibling.next; 1076 next = data->sibling.next; 1077 1078 bio_list_merge(list, &data->bios); 1079 list_move(&data->sibling, &conf->free_list); 1080 cnt++; 1081 if (cnt >= target) 1082 break; 1083 } 1084 conf->pending_data_cnt -= cnt; 1085 BUG_ON(conf->pending_data_cnt < 0 || cnt < target); 1086 1087 if (next != &conf->pending_list) 1088 conf->next_pending_data = list_entry(next, 1089 struct r5pending_data, sibling); 1090 else 1091 conf->next_pending_data = NULL; 1092 /* list isn't empty */ 1093 if (first != &conf->pending_list) 1094 list_move_tail(&conf->pending_list, first); 1095 } 1096 1097 static void flush_deferred_bios(struct r5conf *conf) 1098 { 1099 struct bio_list tmp = BIO_EMPTY_LIST; 1100 1101 if (conf->pending_data_cnt == 0) 1102 return; 1103 1104 spin_lock(&conf->pending_bios_lock); 1105 dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp); 1106 BUG_ON(conf->pending_data_cnt != 0); 1107 spin_unlock(&conf->pending_bios_lock); 1108 1109 dispatch_bio_list(&tmp); 1110 } 1111 1112 static void defer_issue_bios(struct r5conf *conf, sector_t sector, 1113 struct bio_list *bios) 1114 { 1115 struct bio_list tmp = BIO_EMPTY_LIST; 1116 struct r5pending_data *ent; 1117 1118 spin_lock(&conf->pending_bios_lock); 1119 ent = list_first_entry(&conf->free_list, struct r5pending_data, 1120 sibling); 1121 list_move_tail(&ent->sibling, &conf->pending_list); 1122 ent->sector = sector; 1123 bio_list_init(&ent->bios); 1124 bio_list_merge(&ent->bios, bios); 1125 conf->pending_data_cnt++; 1126 if (conf->pending_data_cnt >= PENDING_IO_MAX) 1127 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp); 1128 1129 spin_unlock(&conf->pending_bios_lock); 1130 1131 dispatch_bio_list(&tmp); 1132 } 1133 1134 static void 1135 raid5_end_read_request(struct bio *bi); 1136 static void 1137 raid5_end_write_request(struct bio *bi); 1138 1139 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s) 1140 { 1141 struct r5conf *conf = sh->raid_conf; 1142 int i, disks = sh->disks; 1143 struct stripe_head *head_sh = sh; 1144 struct bio_list pending_bios = BIO_EMPTY_LIST; 1145 struct r5dev *dev; 1146 bool should_defer; 1147 1148 might_sleep(); 1149 1150 if (log_stripe(sh, s) == 0) 1151 return; 1152 1153 should_defer = conf->batch_bio_dispatch && conf->group_cnt; 1154 1155 for (i = disks; i--; ) { 1156 enum req_op op; 1157 blk_opf_t op_flags = 0; 1158 int replace_only = 0; 1159 struct bio *bi, *rbi; 1160 struct md_rdev *rdev, *rrdev = NULL; 1161 1162 sh = head_sh; 1163 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) { 1164 op = REQ_OP_WRITE; 1165 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags)) 1166 op_flags = REQ_FUA; 1167 if (test_bit(R5_Discard, &sh->dev[i].flags)) 1168 op = REQ_OP_DISCARD; 1169 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags)) 1170 op = REQ_OP_READ; 1171 else if (test_and_clear_bit(R5_WantReplace, 1172 &sh->dev[i].flags)) { 1173 op = REQ_OP_WRITE; 1174 replace_only = 1; 1175 } else 1176 continue; 1177 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags)) 1178 op_flags |= REQ_SYNC; 1179 1180 again: 1181 dev = &sh->dev[i]; 1182 bi = &dev->req; 1183 rbi = &dev->rreq; /* For writing to replacement */ 1184 1185 rdev = conf->disks[i].rdev; 1186 rrdev = conf->disks[i].replacement; 1187 if (op_is_write(op)) { 1188 if (replace_only) 1189 rdev = NULL; 1190 if (rdev == rrdev) 1191 /* We raced and saw duplicates */ 1192 rrdev = NULL; 1193 } else { 1194 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev) 1195 rdev = rrdev; 1196 rrdev = NULL; 1197 } 1198 1199 if (rdev && test_bit(Faulty, &rdev->flags)) 1200 rdev = NULL; 1201 if (rdev) 1202 atomic_inc(&rdev->nr_pending); 1203 if (rrdev && test_bit(Faulty, &rrdev->flags)) 1204 rrdev = NULL; 1205 if (rrdev) 1206 atomic_inc(&rrdev->nr_pending); 1207 1208 /* We have already checked bad blocks for reads. Now 1209 * need to check for writes. We never accept write errors 1210 * on the replacement, so we don't to check rrdev. 1211 */ 1212 while (op_is_write(op) && rdev && 1213 test_bit(WriteErrorSeen, &rdev->flags)) { 1214 int bad = rdev_has_badblock(rdev, sh->sector, 1215 RAID5_STRIPE_SECTORS(conf)); 1216 if (!bad) 1217 break; 1218 1219 if (bad < 0) { 1220 set_bit(BlockedBadBlocks, &rdev->flags); 1221 if (!conf->mddev->external && 1222 conf->mddev->sb_flags) { 1223 /* It is very unlikely, but we might 1224 * still need to write out the 1225 * bad block log - better give it 1226 * a chance*/ 1227 md_check_recovery(conf->mddev); 1228 } 1229 /* 1230 * Because md_wait_for_blocked_rdev 1231 * will dec nr_pending, we must 1232 * increment it first. 1233 */ 1234 atomic_inc(&rdev->nr_pending); 1235 md_wait_for_blocked_rdev(rdev, conf->mddev); 1236 } else { 1237 /* Acknowledged bad block - skip the write */ 1238 rdev_dec_pending(rdev, conf->mddev); 1239 rdev = NULL; 1240 } 1241 } 1242 1243 if (rdev) { 1244 if (s->syncing || s->expanding || s->expanded 1245 || s->replacing) 1246 md_sync_acct(rdev->bdev, RAID5_STRIPE_SECTORS(conf)); 1247 1248 set_bit(STRIPE_IO_STARTED, &sh->state); 1249 1250 bio_init(bi, rdev->bdev, &dev->vec, 1, op | op_flags); 1251 bi->bi_end_io = op_is_write(op) 1252 ? raid5_end_write_request 1253 : raid5_end_read_request; 1254 bi->bi_private = sh; 1255 1256 pr_debug("%s: for %llu schedule op %d on disc %d\n", 1257 __func__, (unsigned long long)sh->sector, 1258 bi->bi_opf, i); 1259 atomic_inc(&sh->count); 1260 if (sh != head_sh) 1261 atomic_inc(&head_sh->count); 1262 if (use_new_offset(conf, sh)) 1263 bi->bi_iter.bi_sector = (sh->sector 1264 + rdev->new_data_offset); 1265 else 1266 bi->bi_iter.bi_sector = (sh->sector 1267 + rdev->data_offset); 1268 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags)) 1269 bi->bi_opf |= REQ_NOMERGE; 1270 1271 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 1272 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 1273 1274 if (!op_is_write(op) && 1275 test_bit(R5_InJournal, &sh->dev[i].flags)) 1276 /* 1277 * issuing read for a page in journal, this 1278 * must be preparing for prexor in rmw; read 1279 * the data into orig_page 1280 */ 1281 sh->dev[i].vec.bv_page = sh->dev[i].orig_page; 1282 else 1283 sh->dev[i].vec.bv_page = sh->dev[i].page; 1284 bi->bi_vcnt = 1; 1285 bi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf); 1286 bi->bi_io_vec[0].bv_offset = sh->dev[i].offset; 1287 bi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf); 1288 /* 1289 * If this is discard request, set bi_vcnt 0. We don't 1290 * want to confuse SCSI because SCSI will replace payload 1291 */ 1292 if (op == REQ_OP_DISCARD) 1293 bi->bi_vcnt = 0; 1294 if (rrdev) 1295 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags); 1296 1297 mddev_trace_remap(conf->mddev, bi, sh->dev[i].sector); 1298 if (should_defer && op_is_write(op)) 1299 bio_list_add(&pending_bios, bi); 1300 else 1301 submit_bio_noacct(bi); 1302 } 1303 if (rrdev) { 1304 if (s->syncing || s->expanding || s->expanded 1305 || s->replacing) 1306 md_sync_acct(rrdev->bdev, RAID5_STRIPE_SECTORS(conf)); 1307 1308 set_bit(STRIPE_IO_STARTED, &sh->state); 1309 1310 bio_init(rbi, rrdev->bdev, &dev->rvec, 1, op | op_flags); 1311 BUG_ON(!op_is_write(op)); 1312 rbi->bi_end_io = raid5_end_write_request; 1313 rbi->bi_private = sh; 1314 1315 pr_debug("%s: for %llu schedule op %d on " 1316 "replacement disc %d\n", 1317 __func__, (unsigned long long)sh->sector, 1318 rbi->bi_opf, i); 1319 atomic_inc(&sh->count); 1320 if (sh != head_sh) 1321 atomic_inc(&head_sh->count); 1322 if (use_new_offset(conf, sh)) 1323 rbi->bi_iter.bi_sector = (sh->sector 1324 + rrdev->new_data_offset); 1325 else 1326 rbi->bi_iter.bi_sector = (sh->sector 1327 + rrdev->data_offset); 1328 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 1329 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 1330 sh->dev[i].rvec.bv_page = sh->dev[i].page; 1331 rbi->bi_vcnt = 1; 1332 rbi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf); 1333 rbi->bi_io_vec[0].bv_offset = sh->dev[i].offset; 1334 rbi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf); 1335 /* 1336 * If this is discard request, set bi_vcnt 0. We don't 1337 * want to confuse SCSI because SCSI will replace payload 1338 */ 1339 if (op == REQ_OP_DISCARD) 1340 rbi->bi_vcnt = 0; 1341 mddev_trace_remap(conf->mddev, rbi, sh->dev[i].sector); 1342 if (should_defer && op_is_write(op)) 1343 bio_list_add(&pending_bios, rbi); 1344 else 1345 submit_bio_noacct(rbi); 1346 } 1347 if (!rdev && !rrdev) { 1348 if (op_is_write(op)) 1349 set_bit(STRIPE_DEGRADED, &sh->state); 1350 pr_debug("skip op %d on disc %d for sector %llu\n", 1351 bi->bi_opf, i, (unsigned long long)sh->sector); 1352 clear_bit(R5_LOCKED, &sh->dev[i].flags); 1353 set_bit(STRIPE_HANDLE, &sh->state); 1354 } 1355 1356 if (!head_sh->batch_head) 1357 continue; 1358 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1359 batch_list); 1360 if (sh != head_sh) 1361 goto again; 1362 } 1363 1364 if (should_defer && !bio_list_empty(&pending_bios)) 1365 defer_issue_bios(conf, head_sh->sector, &pending_bios); 1366 } 1367 1368 static struct dma_async_tx_descriptor * 1369 async_copy_data(int frombio, struct bio *bio, struct page **page, 1370 unsigned int poff, sector_t sector, struct dma_async_tx_descriptor *tx, 1371 struct stripe_head *sh, int no_skipcopy) 1372 { 1373 struct bio_vec bvl; 1374 struct bvec_iter iter; 1375 struct page *bio_page; 1376 int page_offset; 1377 struct async_submit_ctl submit; 1378 enum async_tx_flags flags = 0; 1379 struct r5conf *conf = sh->raid_conf; 1380 1381 if (bio->bi_iter.bi_sector >= sector) 1382 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512; 1383 else 1384 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512; 1385 1386 if (frombio) 1387 flags |= ASYNC_TX_FENCE; 1388 init_async_submit(&submit, flags, tx, NULL, NULL, NULL); 1389 1390 bio_for_each_segment(bvl, bio, iter) { 1391 int len = bvl.bv_len; 1392 int clen; 1393 int b_offset = 0; 1394 1395 if (page_offset < 0) { 1396 b_offset = -page_offset; 1397 page_offset += b_offset; 1398 len -= b_offset; 1399 } 1400 1401 if (len > 0 && page_offset + len > RAID5_STRIPE_SIZE(conf)) 1402 clen = RAID5_STRIPE_SIZE(conf) - page_offset; 1403 else 1404 clen = len; 1405 1406 if (clen > 0) { 1407 b_offset += bvl.bv_offset; 1408 bio_page = bvl.bv_page; 1409 if (frombio) { 1410 if (conf->skip_copy && 1411 b_offset == 0 && page_offset == 0 && 1412 clen == RAID5_STRIPE_SIZE(conf) && 1413 !no_skipcopy) 1414 *page = bio_page; 1415 else 1416 tx = async_memcpy(*page, bio_page, page_offset + poff, 1417 b_offset, clen, &submit); 1418 } else 1419 tx = async_memcpy(bio_page, *page, b_offset, 1420 page_offset + poff, clen, &submit); 1421 } 1422 /* chain the operations */ 1423 submit.depend_tx = tx; 1424 1425 if (clen < len) /* hit end of page */ 1426 break; 1427 page_offset += len; 1428 } 1429 1430 return tx; 1431 } 1432 1433 static void ops_complete_biofill(void *stripe_head_ref) 1434 { 1435 struct stripe_head *sh = stripe_head_ref; 1436 int i; 1437 struct r5conf *conf = sh->raid_conf; 1438 1439 pr_debug("%s: stripe %llu\n", __func__, 1440 (unsigned long long)sh->sector); 1441 1442 /* clear completed biofills */ 1443 for (i = sh->disks; i--; ) { 1444 struct r5dev *dev = &sh->dev[i]; 1445 1446 /* acknowledge completion of a biofill operation */ 1447 /* and check if we need to reply to a read request, 1448 * new R5_Wantfill requests are held off until 1449 * !STRIPE_BIOFILL_RUN 1450 */ 1451 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) { 1452 struct bio *rbi, *rbi2; 1453 1454 BUG_ON(!dev->read); 1455 rbi = dev->read; 1456 dev->read = NULL; 1457 while (rbi && rbi->bi_iter.bi_sector < 1458 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 1459 rbi2 = r5_next_bio(conf, rbi, dev->sector); 1460 bio_endio(rbi); 1461 rbi = rbi2; 1462 } 1463 } 1464 } 1465 clear_bit(STRIPE_BIOFILL_RUN, &sh->state); 1466 1467 set_bit(STRIPE_HANDLE, &sh->state); 1468 raid5_release_stripe(sh); 1469 } 1470 1471 static void ops_run_biofill(struct stripe_head *sh) 1472 { 1473 struct dma_async_tx_descriptor *tx = NULL; 1474 struct async_submit_ctl submit; 1475 int i; 1476 struct r5conf *conf = sh->raid_conf; 1477 1478 BUG_ON(sh->batch_head); 1479 pr_debug("%s: stripe %llu\n", __func__, 1480 (unsigned long long)sh->sector); 1481 1482 for (i = sh->disks; i--; ) { 1483 struct r5dev *dev = &sh->dev[i]; 1484 if (test_bit(R5_Wantfill, &dev->flags)) { 1485 struct bio *rbi; 1486 spin_lock_irq(&sh->stripe_lock); 1487 dev->read = rbi = dev->toread; 1488 dev->toread = NULL; 1489 spin_unlock_irq(&sh->stripe_lock); 1490 while (rbi && rbi->bi_iter.bi_sector < 1491 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 1492 tx = async_copy_data(0, rbi, &dev->page, 1493 dev->offset, 1494 dev->sector, tx, sh, 0); 1495 rbi = r5_next_bio(conf, rbi, dev->sector); 1496 } 1497 } 1498 } 1499 1500 atomic_inc(&sh->count); 1501 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL); 1502 async_trigger_callback(&submit); 1503 } 1504 1505 static void mark_target_uptodate(struct stripe_head *sh, int target) 1506 { 1507 struct r5dev *tgt; 1508 1509 if (target < 0) 1510 return; 1511 1512 tgt = &sh->dev[target]; 1513 set_bit(R5_UPTODATE, &tgt->flags); 1514 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1515 clear_bit(R5_Wantcompute, &tgt->flags); 1516 } 1517 1518 static void ops_complete_compute(void *stripe_head_ref) 1519 { 1520 struct stripe_head *sh = stripe_head_ref; 1521 1522 pr_debug("%s: stripe %llu\n", __func__, 1523 (unsigned long long)sh->sector); 1524 1525 /* mark the computed target(s) as uptodate */ 1526 mark_target_uptodate(sh, sh->ops.target); 1527 mark_target_uptodate(sh, sh->ops.target2); 1528 1529 clear_bit(STRIPE_COMPUTE_RUN, &sh->state); 1530 if (sh->check_state == check_state_compute_run) 1531 sh->check_state = check_state_compute_result; 1532 set_bit(STRIPE_HANDLE, &sh->state); 1533 raid5_release_stripe(sh); 1534 } 1535 1536 /* return a pointer to the address conversion region of the scribble buffer */ 1537 static struct page **to_addr_page(struct raid5_percpu *percpu, int i) 1538 { 1539 return percpu->scribble + i * percpu->scribble_obj_size; 1540 } 1541 1542 /* return a pointer to the address conversion region of the scribble buffer */ 1543 static addr_conv_t *to_addr_conv(struct stripe_head *sh, 1544 struct raid5_percpu *percpu, int i) 1545 { 1546 return (void *) (to_addr_page(percpu, i) + sh->disks + 2); 1547 } 1548 1549 /* 1550 * Return a pointer to record offset address. 1551 */ 1552 static unsigned int * 1553 to_addr_offs(struct stripe_head *sh, struct raid5_percpu *percpu) 1554 { 1555 return (unsigned int *) (to_addr_conv(sh, percpu, 0) + sh->disks + 2); 1556 } 1557 1558 static struct dma_async_tx_descriptor * 1559 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu) 1560 { 1561 int disks = sh->disks; 1562 struct page **xor_srcs = to_addr_page(percpu, 0); 1563 unsigned int *off_srcs = to_addr_offs(sh, percpu); 1564 int target = sh->ops.target; 1565 struct r5dev *tgt = &sh->dev[target]; 1566 struct page *xor_dest = tgt->page; 1567 unsigned int off_dest = tgt->offset; 1568 int count = 0; 1569 struct dma_async_tx_descriptor *tx; 1570 struct async_submit_ctl submit; 1571 int i; 1572 1573 BUG_ON(sh->batch_head); 1574 1575 pr_debug("%s: stripe %llu block: %d\n", 1576 __func__, (unsigned long long)sh->sector, target); 1577 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1578 1579 for (i = disks; i--; ) { 1580 if (i != target) { 1581 off_srcs[count] = sh->dev[i].offset; 1582 xor_srcs[count++] = sh->dev[i].page; 1583 } 1584 } 1585 1586 atomic_inc(&sh->count); 1587 1588 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL, 1589 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0)); 1590 if (unlikely(count == 1)) 1591 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0], 1592 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1593 else 1594 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count, 1595 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1596 1597 return tx; 1598 } 1599 1600 /* set_syndrome_sources - populate source buffers for gen_syndrome 1601 * @srcs - (struct page *) array of size sh->disks 1602 * @offs - (unsigned int) array of offset for each page 1603 * @sh - stripe_head to parse 1604 * 1605 * Populates srcs in proper layout order for the stripe and returns the 1606 * 'count' of sources to be used in a call to async_gen_syndrome. The P 1607 * destination buffer is recorded in srcs[count] and the Q destination 1608 * is recorded in srcs[count+1]]. 1609 */ 1610 static int set_syndrome_sources(struct page **srcs, 1611 unsigned int *offs, 1612 struct stripe_head *sh, 1613 int srctype) 1614 { 1615 int disks = sh->disks; 1616 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2); 1617 int d0_idx = raid6_d0(sh); 1618 int count; 1619 int i; 1620 1621 for (i = 0; i < disks; i++) 1622 srcs[i] = NULL; 1623 1624 count = 0; 1625 i = d0_idx; 1626 do { 1627 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1628 struct r5dev *dev = &sh->dev[i]; 1629 1630 if (i == sh->qd_idx || i == sh->pd_idx || 1631 (srctype == SYNDROME_SRC_ALL) || 1632 (srctype == SYNDROME_SRC_WANT_DRAIN && 1633 (test_bit(R5_Wantdrain, &dev->flags) || 1634 test_bit(R5_InJournal, &dev->flags))) || 1635 (srctype == SYNDROME_SRC_WRITTEN && 1636 (dev->written || 1637 test_bit(R5_InJournal, &dev->flags)))) { 1638 if (test_bit(R5_InJournal, &dev->flags)) 1639 srcs[slot] = sh->dev[i].orig_page; 1640 else 1641 srcs[slot] = sh->dev[i].page; 1642 /* 1643 * For R5_InJournal, PAGE_SIZE must be 4KB and will 1644 * not shared page. In that case, dev[i].offset 1645 * is 0. 1646 */ 1647 offs[slot] = sh->dev[i].offset; 1648 } 1649 i = raid6_next_disk(i, disks); 1650 } while (i != d0_idx); 1651 1652 return syndrome_disks; 1653 } 1654 1655 static struct dma_async_tx_descriptor * 1656 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu) 1657 { 1658 int disks = sh->disks; 1659 struct page **blocks = to_addr_page(percpu, 0); 1660 unsigned int *offs = to_addr_offs(sh, percpu); 1661 int target; 1662 int qd_idx = sh->qd_idx; 1663 struct dma_async_tx_descriptor *tx; 1664 struct async_submit_ctl submit; 1665 struct r5dev *tgt; 1666 struct page *dest; 1667 unsigned int dest_off; 1668 int i; 1669 int count; 1670 1671 BUG_ON(sh->batch_head); 1672 if (sh->ops.target < 0) 1673 target = sh->ops.target2; 1674 else if (sh->ops.target2 < 0) 1675 target = sh->ops.target; 1676 else 1677 /* we should only have one valid target */ 1678 BUG(); 1679 BUG_ON(target < 0); 1680 pr_debug("%s: stripe %llu block: %d\n", 1681 __func__, (unsigned long long)sh->sector, target); 1682 1683 tgt = &sh->dev[target]; 1684 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1685 dest = tgt->page; 1686 dest_off = tgt->offset; 1687 1688 atomic_inc(&sh->count); 1689 1690 if (target == qd_idx) { 1691 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL); 1692 blocks[count] = NULL; /* regenerating p is not necessary */ 1693 BUG_ON(blocks[count+1] != dest); /* q should already be set */ 1694 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1695 ops_complete_compute, sh, 1696 to_addr_conv(sh, percpu, 0)); 1697 tx = async_gen_syndrome(blocks, offs, count+2, 1698 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1699 } else { 1700 /* Compute any data- or p-drive using XOR */ 1701 count = 0; 1702 for (i = disks; i-- ; ) { 1703 if (i == target || i == qd_idx) 1704 continue; 1705 offs[count] = sh->dev[i].offset; 1706 blocks[count++] = sh->dev[i].page; 1707 } 1708 1709 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1710 NULL, ops_complete_compute, sh, 1711 to_addr_conv(sh, percpu, 0)); 1712 tx = async_xor_offs(dest, dest_off, blocks, offs, count, 1713 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1714 } 1715 1716 return tx; 1717 } 1718 1719 static struct dma_async_tx_descriptor * 1720 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu) 1721 { 1722 int i, count, disks = sh->disks; 1723 int syndrome_disks = sh->ddf_layout ? disks : disks-2; 1724 int d0_idx = raid6_d0(sh); 1725 int faila = -1, failb = -1; 1726 int target = sh->ops.target; 1727 int target2 = sh->ops.target2; 1728 struct r5dev *tgt = &sh->dev[target]; 1729 struct r5dev *tgt2 = &sh->dev[target2]; 1730 struct dma_async_tx_descriptor *tx; 1731 struct page **blocks = to_addr_page(percpu, 0); 1732 unsigned int *offs = to_addr_offs(sh, percpu); 1733 struct async_submit_ctl submit; 1734 1735 BUG_ON(sh->batch_head); 1736 pr_debug("%s: stripe %llu block1: %d block2: %d\n", 1737 __func__, (unsigned long long)sh->sector, target, target2); 1738 BUG_ON(target < 0 || target2 < 0); 1739 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1740 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags)); 1741 1742 /* we need to open-code set_syndrome_sources to handle the 1743 * slot number conversion for 'faila' and 'failb' 1744 */ 1745 for (i = 0; i < disks ; i++) { 1746 offs[i] = 0; 1747 blocks[i] = NULL; 1748 } 1749 count = 0; 1750 i = d0_idx; 1751 do { 1752 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1753 1754 offs[slot] = sh->dev[i].offset; 1755 blocks[slot] = sh->dev[i].page; 1756 1757 if (i == target) 1758 faila = slot; 1759 if (i == target2) 1760 failb = slot; 1761 i = raid6_next_disk(i, disks); 1762 } while (i != d0_idx); 1763 1764 BUG_ON(faila == failb); 1765 if (failb < faila) 1766 swap(faila, failb); 1767 pr_debug("%s: stripe: %llu faila: %d failb: %d\n", 1768 __func__, (unsigned long long)sh->sector, faila, failb); 1769 1770 atomic_inc(&sh->count); 1771 1772 if (failb == syndrome_disks+1) { 1773 /* Q disk is one of the missing disks */ 1774 if (faila == syndrome_disks) { 1775 /* Missing P+Q, just recompute */ 1776 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1777 ops_complete_compute, sh, 1778 to_addr_conv(sh, percpu, 0)); 1779 return async_gen_syndrome(blocks, offs, syndrome_disks+2, 1780 RAID5_STRIPE_SIZE(sh->raid_conf), 1781 &submit); 1782 } else { 1783 struct page *dest; 1784 unsigned int dest_off; 1785 int data_target; 1786 int qd_idx = sh->qd_idx; 1787 1788 /* Missing D+Q: recompute D from P, then recompute Q */ 1789 if (target == qd_idx) 1790 data_target = target2; 1791 else 1792 data_target = target; 1793 1794 count = 0; 1795 for (i = disks; i-- ; ) { 1796 if (i == data_target || i == qd_idx) 1797 continue; 1798 offs[count] = sh->dev[i].offset; 1799 blocks[count++] = sh->dev[i].page; 1800 } 1801 dest = sh->dev[data_target].page; 1802 dest_off = sh->dev[data_target].offset; 1803 init_async_submit(&submit, 1804 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1805 NULL, NULL, NULL, 1806 to_addr_conv(sh, percpu, 0)); 1807 tx = async_xor_offs(dest, dest_off, blocks, offs, count, 1808 RAID5_STRIPE_SIZE(sh->raid_conf), 1809 &submit); 1810 1811 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL); 1812 init_async_submit(&submit, ASYNC_TX_FENCE, tx, 1813 ops_complete_compute, sh, 1814 to_addr_conv(sh, percpu, 0)); 1815 return async_gen_syndrome(blocks, offs, count+2, 1816 RAID5_STRIPE_SIZE(sh->raid_conf), 1817 &submit); 1818 } 1819 } else { 1820 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1821 ops_complete_compute, sh, 1822 to_addr_conv(sh, percpu, 0)); 1823 if (failb == syndrome_disks) { 1824 /* We're missing D+P. */ 1825 return async_raid6_datap_recov(syndrome_disks+2, 1826 RAID5_STRIPE_SIZE(sh->raid_conf), 1827 faila, 1828 blocks, offs, &submit); 1829 } else { 1830 /* We're missing D+D. */ 1831 return async_raid6_2data_recov(syndrome_disks+2, 1832 RAID5_STRIPE_SIZE(sh->raid_conf), 1833 faila, failb, 1834 blocks, offs, &submit); 1835 } 1836 } 1837 } 1838 1839 static void ops_complete_prexor(void *stripe_head_ref) 1840 { 1841 struct stripe_head *sh = stripe_head_ref; 1842 1843 pr_debug("%s: stripe %llu\n", __func__, 1844 (unsigned long long)sh->sector); 1845 1846 if (r5c_is_writeback(sh->raid_conf->log)) 1847 /* 1848 * raid5-cache write back uses orig_page during prexor. 1849 * After prexor, it is time to free orig_page 1850 */ 1851 r5c_release_extra_page(sh); 1852 } 1853 1854 static struct dma_async_tx_descriptor * 1855 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu, 1856 struct dma_async_tx_descriptor *tx) 1857 { 1858 int disks = sh->disks; 1859 struct page **xor_srcs = to_addr_page(percpu, 0); 1860 unsigned int *off_srcs = to_addr_offs(sh, percpu); 1861 int count = 0, pd_idx = sh->pd_idx, i; 1862 struct async_submit_ctl submit; 1863 1864 /* existing parity data subtracted */ 1865 unsigned int off_dest = off_srcs[count] = sh->dev[pd_idx].offset; 1866 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1867 1868 BUG_ON(sh->batch_head); 1869 pr_debug("%s: stripe %llu\n", __func__, 1870 (unsigned long long)sh->sector); 1871 1872 for (i = disks; i--; ) { 1873 struct r5dev *dev = &sh->dev[i]; 1874 /* Only process blocks that are known to be uptodate */ 1875 if (test_bit(R5_InJournal, &dev->flags)) { 1876 /* 1877 * For this case, PAGE_SIZE must be equal to 4KB and 1878 * page offset is zero. 1879 */ 1880 off_srcs[count] = dev->offset; 1881 xor_srcs[count++] = dev->orig_page; 1882 } else if (test_bit(R5_Wantdrain, &dev->flags)) { 1883 off_srcs[count] = dev->offset; 1884 xor_srcs[count++] = dev->page; 1885 } 1886 } 1887 1888 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx, 1889 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); 1890 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count, 1891 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1892 1893 return tx; 1894 } 1895 1896 static struct dma_async_tx_descriptor * 1897 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu, 1898 struct dma_async_tx_descriptor *tx) 1899 { 1900 struct page **blocks = to_addr_page(percpu, 0); 1901 unsigned int *offs = to_addr_offs(sh, percpu); 1902 int count; 1903 struct async_submit_ctl submit; 1904 1905 pr_debug("%s: stripe %llu\n", __func__, 1906 (unsigned long long)sh->sector); 1907 1908 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_WANT_DRAIN); 1909 1910 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx, 1911 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); 1912 tx = async_gen_syndrome(blocks, offs, count+2, 1913 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1914 1915 return tx; 1916 } 1917 1918 static struct dma_async_tx_descriptor * 1919 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) 1920 { 1921 struct r5conf *conf = sh->raid_conf; 1922 int disks = sh->disks; 1923 int i; 1924 struct stripe_head *head_sh = sh; 1925 1926 pr_debug("%s: stripe %llu\n", __func__, 1927 (unsigned long long)sh->sector); 1928 1929 for (i = disks; i--; ) { 1930 struct r5dev *dev; 1931 struct bio *chosen; 1932 1933 sh = head_sh; 1934 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) { 1935 struct bio *wbi; 1936 1937 again: 1938 dev = &sh->dev[i]; 1939 /* 1940 * clear R5_InJournal, so when rewriting a page in 1941 * journal, it is not skipped by r5l_log_stripe() 1942 */ 1943 clear_bit(R5_InJournal, &dev->flags); 1944 spin_lock_irq(&sh->stripe_lock); 1945 chosen = dev->towrite; 1946 dev->towrite = NULL; 1947 sh->overwrite_disks = 0; 1948 BUG_ON(dev->written); 1949 wbi = dev->written = chosen; 1950 spin_unlock_irq(&sh->stripe_lock); 1951 WARN_ON(dev->page != dev->orig_page); 1952 1953 while (wbi && wbi->bi_iter.bi_sector < 1954 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 1955 if (wbi->bi_opf & REQ_FUA) 1956 set_bit(R5_WantFUA, &dev->flags); 1957 if (wbi->bi_opf & REQ_SYNC) 1958 set_bit(R5_SyncIO, &dev->flags); 1959 if (bio_op(wbi) == REQ_OP_DISCARD) 1960 set_bit(R5_Discard, &dev->flags); 1961 else { 1962 tx = async_copy_data(1, wbi, &dev->page, 1963 dev->offset, 1964 dev->sector, tx, sh, 1965 r5c_is_writeback(conf->log)); 1966 if (dev->page != dev->orig_page && 1967 !r5c_is_writeback(conf->log)) { 1968 set_bit(R5_SkipCopy, &dev->flags); 1969 clear_bit(R5_UPTODATE, &dev->flags); 1970 clear_bit(R5_OVERWRITE, &dev->flags); 1971 } 1972 } 1973 wbi = r5_next_bio(conf, wbi, dev->sector); 1974 } 1975 1976 if (head_sh->batch_head) { 1977 sh = list_first_entry(&sh->batch_list, 1978 struct stripe_head, 1979 batch_list); 1980 if (sh == head_sh) 1981 continue; 1982 goto again; 1983 } 1984 } 1985 } 1986 1987 return tx; 1988 } 1989 1990 static void ops_complete_reconstruct(void *stripe_head_ref) 1991 { 1992 struct stripe_head *sh = stripe_head_ref; 1993 int disks = sh->disks; 1994 int pd_idx = sh->pd_idx; 1995 int qd_idx = sh->qd_idx; 1996 int i; 1997 bool fua = false, sync = false, discard = false; 1998 1999 pr_debug("%s: stripe %llu\n", __func__, 2000 (unsigned long long)sh->sector); 2001 2002 for (i = disks; i--; ) { 2003 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags); 2004 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags); 2005 discard |= test_bit(R5_Discard, &sh->dev[i].flags); 2006 } 2007 2008 for (i = disks; i--; ) { 2009 struct r5dev *dev = &sh->dev[i]; 2010 2011 if (dev->written || i == pd_idx || i == qd_idx) { 2012 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) { 2013 set_bit(R5_UPTODATE, &dev->flags); 2014 if (test_bit(STRIPE_EXPAND_READY, &sh->state)) 2015 set_bit(R5_Expanded, &dev->flags); 2016 } 2017 if (fua) 2018 set_bit(R5_WantFUA, &dev->flags); 2019 if (sync) 2020 set_bit(R5_SyncIO, &dev->flags); 2021 } 2022 } 2023 2024 if (sh->reconstruct_state == reconstruct_state_drain_run) 2025 sh->reconstruct_state = reconstruct_state_drain_result; 2026 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) 2027 sh->reconstruct_state = reconstruct_state_prexor_drain_result; 2028 else { 2029 BUG_ON(sh->reconstruct_state != reconstruct_state_run); 2030 sh->reconstruct_state = reconstruct_state_result; 2031 } 2032 2033 set_bit(STRIPE_HANDLE, &sh->state); 2034 raid5_release_stripe(sh); 2035 } 2036 2037 static void 2038 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu, 2039 struct dma_async_tx_descriptor *tx) 2040 { 2041 int disks = sh->disks; 2042 struct page **xor_srcs; 2043 unsigned int *off_srcs; 2044 struct async_submit_ctl submit; 2045 int count, pd_idx = sh->pd_idx, i; 2046 struct page *xor_dest; 2047 unsigned int off_dest; 2048 int prexor = 0; 2049 unsigned long flags; 2050 int j = 0; 2051 struct stripe_head *head_sh = sh; 2052 int last_stripe; 2053 2054 pr_debug("%s: stripe %llu\n", __func__, 2055 (unsigned long long)sh->sector); 2056 2057 for (i = 0; i < sh->disks; i++) { 2058 if (pd_idx == i) 2059 continue; 2060 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 2061 break; 2062 } 2063 if (i >= sh->disks) { 2064 atomic_inc(&sh->count); 2065 set_bit(R5_Discard, &sh->dev[pd_idx].flags); 2066 ops_complete_reconstruct(sh); 2067 return; 2068 } 2069 again: 2070 count = 0; 2071 xor_srcs = to_addr_page(percpu, j); 2072 off_srcs = to_addr_offs(sh, percpu); 2073 /* check if prexor is active which means only process blocks 2074 * that are part of a read-modify-write (written) 2075 */ 2076 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 2077 prexor = 1; 2078 off_dest = off_srcs[count] = sh->dev[pd_idx].offset; 2079 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 2080 for (i = disks; i--; ) { 2081 struct r5dev *dev = &sh->dev[i]; 2082 if (head_sh->dev[i].written || 2083 test_bit(R5_InJournal, &head_sh->dev[i].flags)) { 2084 off_srcs[count] = dev->offset; 2085 xor_srcs[count++] = dev->page; 2086 } 2087 } 2088 } else { 2089 xor_dest = sh->dev[pd_idx].page; 2090 off_dest = sh->dev[pd_idx].offset; 2091 for (i = disks; i--; ) { 2092 struct r5dev *dev = &sh->dev[i]; 2093 if (i != pd_idx) { 2094 off_srcs[count] = dev->offset; 2095 xor_srcs[count++] = dev->page; 2096 } 2097 } 2098 } 2099 2100 /* 1/ if we prexor'd then the dest is reused as a source 2101 * 2/ if we did not prexor then we are redoing the parity 2102 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST 2103 * for the synchronous xor case 2104 */ 2105 last_stripe = !head_sh->batch_head || 2106 list_first_entry(&sh->batch_list, 2107 struct stripe_head, batch_list) == head_sh; 2108 if (last_stripe) { 2109 flags = ASYNC_TX_ACK | 2110 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST); 2111 2112 atomic_inc(&head_sh->count); 2113 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh, 2114 to_addr_conv(sh, percpu, j)); 2115 } else { 2116 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST; 2117 init_async_submit(&submit, flags, tx, NULL, NULL, 2118 to_addr_conv(sh, percpu, j)); 2119 } 2120 2121 if (unlikely(count == 1)) 2122 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0], 2123 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 2124 else 2125 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count, 2126 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 2127 if (!last_stripe) { 2128 j++; 2129 sh = list_first_entry(&sh->batch_list, struct stripe_head, 2130 batch_list); 2131 goto again; 2132 } 2133 } 2134 2135 static void 2136 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu, 2137 struct dma_async_tx_descriptor *tx) 2138 { 2139 struct async_submit_ctl submit; 2140 struct page **blocks; 2141 unsigned int *offs; 2142 int count, i, j = 0; 2143 struct stripe_head *head_sh = sh; 2144 int last_stripe; 2145 int synflags; 2146 unsigned long txflags; 2147 2148 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); 2149 2150 for (i = 0; i < sh->disks; i++) { 2151 if (sh->pd_idx == i || sh->qd_idx == i) 2152 continue; 2153 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 2154 break; 2155 } 2156 if (i >= sh->disks) { 2157 atomic_inc(&sh->count); 2158 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 2159 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 2160 ops_complete_reconstruct(sh); 2161 return; 2162 } 2163 2164 again: 2165 blocks = to_addr_page(percpu, j); 2166 offs = to_addr_offs(sh, percpu); 2167 2168 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 2169 synflags = SYNDROME_SRC_WRITTEN; 2170 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST; 2171 } else { 2172 synflags = SYNDROME_SRC_ALL; 2173 txflags = ASYNC_TX_ACK; 2174 } 2175 2176 count = set_syndrome_sources(blocks, offs, sh, synflags); 2177 last_stripe = !head_sh->batch_head || 2178 list_first_entry(&sh->batch_list, 2179 struct stripe_head, batch_list) == head_sh; 2180 2181 if (last_stripe) { 2182 atomic_inc(&head_sh->count); 2183 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct, 2184 head_sh, to_addr_conv(sh, percpu, j)); 2185 } else 2186 init_async_submit(&submit, 0, tx, NULL, NULL, 2187 to_addr_conv(sh, percpu, j)); 2188 tx = async_gen_syndrome(blocks, offs, count+2, 2189 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 2190 if (!last_stripe) { 2191 j++; 2192 sh = list_first_entry(&sh->batch_list, struct stripe_head, 2193 batch_list); 2194 goto again; 2195 } 2196 } 2197 2198 static void ops_complete_check(void *stripe_head_ref) 2199 { 2200 struct stripe_head *sh = stripe_head_ref; 2201 2202 pr_debug("%s: stripe %llu\n", __func__, 2203 (unsigned long long)sh->sector); 2204 2205 sh->check_state = check_state_check_result; 2206 set_bit(STRIPE_HANDLE, &sh->state); 2207 raid5_release_stripe(sh); 2208 } 2209 2210 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu) 2211 { 2212 int disks = sh->disks; 2213 int pd_idx = sh->pd_idx; 2214 int qd_idx = sh->qd_idx; 2215 struct page *xor_dest; 2216 unsigned int off_dest; 2217 struct page **xor_srcs = to_addr_page(percpu, 0); 2218 unsigned int *off_srcs = to_addr_offs(sh, percpu); 2219 struct dma_async_tx_descriptor *tx; 2220 struct async_submit_ctl submit; 2221 int count; 2222 int i; 2223 2224 pr_debug("%s: stripe %llu\n", __func__, 2225 (unsigned long long)sh->sector); 2226 2227 BUG_ON(sh->batch_head); 2228 count = 0; 2229 xor_dest = sh->dev[pd_idx].page; 2230 off_dest = sh->dev[pd_idx].offset; 2231 off_srcs[count] = off_dest; 2232 xor_srcs[count++] = xor_dest; 2233 for (i = disks; i--; ) { 2234 if (i == pd_idx || i == qd_idx) 2235 continue; 2236 off_srcs[count] = sh->dev[i].offset; 2237 xor_srcs[count++] = sh->dev[i].page; 2238 } 2239 2240 init_async_submit(&submit, 0, NULL, NULL, NULL, 2241 to_addr_conv(sh, percpu, 0)); 2242 tx = async_xor_val_offs(xor_dest, off_dest, xor_srcs, off_srcs, count, 2243 RAID5_STRIPE_SIZE(sh->raid_conf), 2244 &sh->ops.zero_sum_result, &submit); 2245 2246 atomic_inc(&sh->count); 2247 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL); 2248 tx = async_trigger_callback(&submit); 2249 } 2250 2251 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp) 2252 { 2253 struct page **srcs = to_addr_page(percpu, 0); 2254 unsigned int *offs = to_addr_offs(sh, percpu); 2255 struct async_submit_ctl submit; 2256 int count; 2257 2258 pr_debug("%s: stripe %llu checkp: %d\n", __func__, 2259 (unsigned long long)sh->sector, checkp); 2260 2261 BUG_ON(sh->batch_head); 2262 count = set_syndrome_sources(srcs, offs, sh, SYNDROME_SRC_ALL); 2263 if (!checkp) 2264 srcs[count] = NULL; 2265 2266 atomic_inc(&sh->count); 2267 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check, 2268 sh, to_addr_conv(sh, percpu, 0)); 2269 async_syndrome_val(srcs, offs, count+2, 2270 RAID5_STRIPE_SIZE(sh->raid_conf), 2271 &sh->ops.zero_sum_result, percpu->spare_page, 0, &submit); 2272 } 2273 2274 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request) 2275 { 2276 int overlap_clear = 0, i, disks = sh->disks; 2277 struct dma_async_tx_descriptor *tx = NULL; 2278 struct r5conf *conf = sh->raid_conf; 2279 int level = conf->level; 2280 struct raid5_percpu *percpu; 2281 2282 local_lock(&conf->percpu->lock); 2283 percpu = this_cpu_ptr(conf->percpu); 2284 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) { 2285 ops_run_biofill(sh); 2286 overlap_clear++; 2287 } 2288 2289 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) { 2290 if (level < 6) 2291 tx = ops_run_compute5(sh, percpu); 2292 else { 2293 if (sh->ops.target2 < 0 || sh->ops.target < 0) 2294 tx = ops_run_compute6_1(sh, percpu); 2295 else 2296 tx = ops_run_compute6_2(sh, percpu); 2297 } 2298 /* terminate the chain if reconstruct is not set to be run */ 2299 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) 2300 async_tx_ack(tx); 2301 } 2302 2303 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) { 2304 if (level < 6) 2305 tx = ops_run_prexor5(sh, percpu, tx); 2306 else 2307 tx = ops_run_prexor6(sh, percpu, tx); 2308 } 2309 2310 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request)) 2311 tx = ops_run_partial_parity(sh, percpu, tx); 2312 2313 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) { 2314 tx = ops_run_biodrain(sh, tx); 2315 overlap_clear++; 2316 } 2317 2318 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) { 2319 if (level < 6) 2320 ops_run_reconstruct5(sh, percpu, tx); 2321 else 2322 ops_run_reconstruct6(sh, percpu, tx); 2323 } 2324 2325 if (test_bit(STRIPE_OP_CHECK, &ops_request)) { 2326 if (sh->check_state == check_state_run) 2327 ops_run_check_p(sh, percpu); 2328 else if (sh->check_state == check_state_run_q) 2329 ops_run_check_pq(sh, percpu, 0); 2330 else if (sh->check_state == check_state_run_pq) 2331 ops_run_check_pq(sh, percpu, 1); 2332 else 2333 BUG(); 2334 } 2335 2336 if (overlap_clear && !sh->batch_head) { 2337 for (i = disks; i--; ) { 2338 struct r5dev *dev = &sh->dev[i]; 2339 if (test_and_clear_bit(R5_Overlap, &dev->flags)) 2340 wake_up_bit(&dev->flags, R5_Overlap); 2341 } 2342 } 2343 local_unlock(&conf->percpu->lock); 2344 } 2345 2346 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh) 2347 { 2348 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 2349 kfree(sh->pages); 2350 #endif 2351 if (sh->ppl_page) 2352 __free_page(sh->ppl_page); 2353 kmem_cache_free(sc, sh); 2354 } 2355 2356 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp, 2357 int disks, struct r5conf *conf) 2358 { 2359 struct stripe_head *sh; 2360 2361 sh = kmem_cache_zalloc(sc, gfp); 2362 if (sh) { 2363 spin_lock_init(&sh->stripe_lock); 2364 spin_lock_init(&sh->batch_lock); 2365 INIT_LIST_HEAD(&sh->batch_list); 2366 INIT_LIST_HEAD(&sh->lru); 2367 INIT_LIST_HEAD(&sh->r5c); 2368 INIT_LIST_HEAD(&sh->log_list); 2369 atomic_set(&sh->count, 1); 2370 sh->raid_conf = conf; 2371 sh->log_start = MaxSector; 2372 2373 if (raid5_has_ppl(conf)) { 2374 sh->ppl_page = alloc_page(gfp); 2375 if (!sh->ppl_page) { 2376 free_stripe(sc, sh); 2377 return NULL; 2378 } 2379 } 2380 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 2381 if (init_stripe_shared_pages(sh, conf, disks)) { 2382 free_stripe(sc, sh); 2383 return NULL; 2384 } 2385 #endif 2386 } 2387 return sh; 2388 } 2389 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp) 2390 { 2391 struct stripe_head *sh; 2392 2393 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf); 2394 if (!sh) 2395 return 0; 2396 2397 if (grow_buffers(sh, gfp)) { 2398 shrink_buffers(sh); 2399 free_stripe(conf->slab_cache, sh); 2400 return 0; 2401 } 2402 sh->hash_lock_index = 2403 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS; 2404 /* we just created an active stripe so... */ 2405 atomic_inc(&conf->active_stripes); 2406 2407 raid5_release_stripe(sh); 2408 WRITE_ONCE(conf->max_nr_stripes, conf->max_nr_stripes + 1); 2409 return 1; 2410 } 2411 2412 static int grow_stripes(struct r5conf *conf, int num) 2413 { 2414 struct kmem_cache *sc; 2415 size_t namelen = sizeof(conf->cache_name[0]); 2416 int devs = max(conf->raid_disks, conf->previous_raid_disks); 2417 2418 if (mddev_is_dm(conf->mddev)) 2419 snprintf(conf->cache_name[0], namelen, 2420 "raid%d-%p", conf->level, conf->mddev); 2421 else 2422 snprintf(conf->cache_name[0], namelen, 2423 "raid%d-%s", conf->level, mdname(conf->mddev)); 2424 snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]); 2425 2426 conf->active_name = 0; 2427 sc = kmem_cache_create(conf->cache_name[conf->active_name], 2428 struct_size_t(struct stripe_head, dev, devs), 2429 0, 0, NULL); 2430 if (!sc) 2431 return 1; 2432 conf->slab_cache = sc; 2433 conf->pool_size = devs; 2434 while (num--) 2435 if (!grow_one_stripe(conf, GFP_KERNEL)) 2436 return 1; 2437 2438 return 0; 2439 } 2440 2441 /** 2442 * scribble_alloc - allocate percpu scribble buffer for required size 2443 * of the scribble region 2444 * @percpu: from for_each_present_cpu() of the caller 2445 * @num: total number of disks in the array 2446 * @cnt: scribble objs count for required size of the scribble region 2447 * 2448 * The scribble buffer size must be enough to contain: 2449 * 1/ a struct page pointer for each device in the array +2 2450 * 2/ room to convert each entry in (1) to its corresponding dma 2451 * (dma_map_page()) or page (page_address()) address. 2452 * 2453 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we 2454 * calculate over all devices (not just the data blocks), using zeros in place 2455 * of the P and Q blocks. 2456 */ 2457 static int scribble_alloc(struct raid5_percpu *percpu, 2458 int num, int cnt) 2459 { 2460 size_t obj_size = 2461 sizeof(struct page *) * (num + 2) + 2462 sizeof(addr_conv_t) * (num + 2) + 2463 sizeof(unsigned int) * (num + 2); 2464 void *scribble; 2465 2466 /* 2467 * If here is in raid array suspend context, it is in memalloc noio 2468 * context as well, there is no potential recursive memory reclaim 2469 * I/Os with the GFP_KERNEL flag. 2470 */ 2471 scribble = kvmalloc_array(cnt, obj_size, GFP_KERNEL); 2472 if (!scribble) 2473 return -ENOMEM; 2474 2475 kvfree(percpu->scribble); 2476 2477 percpu->scribble = scribble; 2478 percpu->scribble_obj_size = obj_size; 2479 return 0; 2480 } 2481 2482 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors) 2483 { 2484 unsigned long cpu; 2485 int err = 0; 2486 2487 /* Never shrink. */ 2488 if (conf->scribble_disks >= new_disks && 2489 conf->scribble_sectors >= new_sectors) 2490 return 0; 2491 2492 raid5_quiesce(conf->mddev, true); 2493 cpus_read_lock(); 2494 2495 for_each_present_cpu(cpu) { 2496 struct raid5_percpu *percpu; 2497 2498 percpu = per_cpu_ptr(conf->percpu, cpu); 2499 err = scribble_alloc(percpu, new_disks, 2500 new_sectors / RAID5_STRIPE_SECTORS(conf)); 2501 if (err) 2502 break; 2503 } 2504 2505 cpus_read_unlock(); 2506 raid5_quiesce(conf->mddev, false); 2507 2508 if (!err) { 2509 conf->scribble_disks = new_disks; 2510 conf->scribble_sectors = new_sectors; 2511 } 2512 return err; 2513 } 2514 2515 static int resize_stripes(struct r5conf *conf, int newsize) 2516 { 2517 /* Make all the stripes able to hold 'newsize' devices. 2518 * New slots in each stripe get 'page' set to a new page. 2519 * 2520 * This happens in stages: 2521 * 1/ create a new kmem_cache and allocate the required number of 2522 * stripe_heads. 2523 * 2/ gather all the old stripe_heads and transfer the pages across 2524 * to the new stripe_heads. This will have the side effect of 2525 * freezing the array as once all stripe_heads have been collected, 2526 * no IO will be possible. Old stripe heads are freed once their 2527 * pages have been transferred over, and the old kmem_cache is 2528 * freed when all stripes are done. 2529 * 3/ reallocate conf->disks to be suitable bigger. If this fails, 2530 * we simple return a failure status - no need to clean anything up. 2531 * 4/ allocate new pages for the new slots in the new stripe_heads. 2532 * If this fails, we don't bother trying the shrink the 2533 * stripe_heads down again, we just leave them as they are. 2534 * As each stripe_head is processed the new one is released into 2535 * active service. 2536 * 2537 * Once step2 is started, we cannot afford to wait for a write, 2538 * so we use GFP_NOIO allocations. 2539 */ 2540 struct stripe_head *osh, *nsh; 2541 LIST_HEAD(newstripes); 2542 struct disk_info *ndisks; 2543 int err = 0; 2544 struct kmem_cache *sc; 2545 int i; 2546 int hash, cnt; 2547 2548 md_allow_write(conf->mddev); 2549 2550 /* Step 1 */ 2551 sc = kmem_cache_create(conf->cache_name[1-conf->active_name], 2552 struct_size_t(struct stripe_head, dev, newsize), 2553 0, 0, NULL); 2554 if (!sc) 2555 return -ENOMEM; 2556 2557 /* Need to ensure auto-resizing doesn't interfere */ 2558 mutex_lock(&conf->cache_size_mutex); 2559 2560 for (i = conf->max_nr_stripes; i; i--) { 2561 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf); 2562 if (!nsh) 2563 break; 2564 2565 list_add(&nsh->lru, &newstripes); 2566 } 2567 if (i) { 2568 /* didn't get enough, give up */ 2569 while (!list_empty(&newstripes)) { 2570 nsh = list_entry(newstripes.next, struct stripe_head, lru); 2571 list_del(&nsh->lru); 2572 free_stripe(sc, nsh); 2573 } 2574 kmem_cache_destroy(sc); 2575 mutex_unlock(&conf->cache_size_mutex); 2576 return -ENOMEM; 2577 } 2578 /* Step 2 - Must use GFP_NOIO now. 2579 * OK, we have enough stripes, start collecting inactive 2580 * stripes and copying them over 2581 */ 2582 hash = 0; 2583 cnt = 0; 2584 list_for_each_entry(nsh, &newstripes, lru) { 2585 lock_device_hash_lock(conf, hash); 2586 wait_event_cmd(conf->wait_for_stripe, 2587 !list_empty(conf->inactive_list + hash), 2588 unlock_device_hash_lock(conf, hash), 2589 lock_device_hash_lock(conf, hash)); 2590 osh = get_free_stripe(conf, hash); 2591 unlock_device_hash_lock(conf, hash); 2592 2593 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 2594 for (i = 0; i < osh->nr_pages; i++) { 2595 nsh->pages[i] = osh->pages[i]; 2596 osh->pages[i] = NULL; 2597 } 2598 #endif 2599 for(i=0; i<conf->pool_size; i++) { 2600 nsh->dev[i].page = osh->dev[i].page; 2601 nsh->dev[i].orig_page = osh->dev[i].page; 2602 nsh->dev[i].offset = osh->dev[i].offset; 2603 } 2604 nsh->hash_lock_index = hash; 2605 free_stripe(conf->slab_cache, osh); 2606 cnt++; 2607 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS + 2608 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) { 2609 hash++; 2610 cnt = 0; 2611 } 2612 } 2613 kmem_cache_destroy(conf->slab_cache); 2614 2615 /* Step 3. 2616 * At this point, we are holding all the stripes so the array 2617 * is completely stalled, so now is a good time to resize 2618 * conf->disks and the scribble region 2619 */ 2620 ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO); 2621 if (ndisks) { 2622 for (i = 0; i < conf->pool_size; i++) 2623 ndisks[i] = conf->disks[i]; 2624 2625 for (i = conf->pool_size; i < newsize; i++) { 2626 ndisks[i].extra_page = alloc_page(GFP_NOIO); 2627 if (!ndisks[i].extra_page) 2628 err = -ENOMEM; 2629 } 2630 2631 if (err) { 2632 for (i = conf->pool_size; i < newsize; i++) 2633 if (ndisks[i].extra_page) 2634 put_page(ndisks[i].extra_page); 2635 kfree(ndisks); 2636 } else { 2637 kfree(conf->disks); 2638 conf->disks = ndisks; 2639 } 2640 } else 2641 err = -ENOMEM; 2642 2643 conf->slab_cache = sc; 2644 conf->active_name = 1-conf->active_name; 2645 2646 /* Step 4, return new stripes to service */ 2647 while(!list_empty(&newstripes)) { 2648 nsh = list_entry(newstripes.next, struct stripe_head, lru); 2649 list_del_init(&nsh->lru); 2650 2651 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 2652 for (i = 0; i < nsh->nr_pages; i++) { 2653 if (nsh->pages[i]) 2654 continue; 2655 nsh->pages[i] = alloc_page(GFP_NOIO); 2656 if (!nsh->pages[i]) 2657 err = -ENOMEM; 2658 } 2659 2660 for (i = conf->raid_disks; i < newsize; i++) { 2661 if (nsh->dev[i].page) 2662 continue; 2663 nsh->dev[i].page = raid5_get_dev_page(nsh, i); 2664 nsh->dev[i].orig_page = nsh->dev[i].page; 2665 nsh->dev[i].offset = raid5_get_page_offset(nsh, i); 2666 } 2667 #else 2668 for (i=conf->raid_disks; i < newsize; i++) 2669 if (nsh->dev[i].page == NULL) { 2670 struct page *p = alloc_page(GFP_NOIO); 2671 nsh->dev[i].page = p; 2672 nsh->dev[i].orig_page = p; 2673 nsh->dev[i].offset = 0; 2674 if (!p) 2675 err = -ENOMEM; 2676 } 2677 #endif 2678 raid5_release_stripe(nsh); 2679 } 2680 /* critical section pass, GFP_NOIO no longer needed */ 2681 2682 if (!err) 2683 conf->pool_size = newsize; 2684 mutex_unlock(&conf->cache_size_mutex); 2685 2686 return err; 2687 } 2688 2689 static int drop_one_stripe(struct r5conf *conf) 2690 { 2691 struct stripe_head *sh; 2692 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK; 2693 2694 spin_lock_irq(conf->hash_locks + hash); 2695 sh = get_free_stripe(conf, hash); 2696 spin_unlock_irq(conf->hash_locks + hash); 2697 if (!sh) 2698 return 0; 2699 BUG_ON(atomic_read(&sh->count)); 2700 shrink_buffers(sh); 2701 free_stripe(conf->slab_cache, sh); 2702 atomic_dec(&conf->active_stripes); 2703 WRITE_ONCE(conf->max_nr_stripes, conf->max_nr_stripes - 1); 2704 return 1; 2705 } 2706 2707 static void shrink_stripes(struct r5conf *conf) 2708 { 2709 while (conf->max_nr_stripes && 2710 drop_one_stripe(conf)) 2711 ; 2712 2713 kmem_cache_destroy(conf->slab_cache); 2714 conf->slab_cache = NULL; 2715 } 2716 2717 static void raid5_end_read_request(struct bio * bi) 2718 { 2719 struct stripe_head *sh = bi->bi_private; 2720 struct r5conf *conf = sh->raid_conf; 2721 int disks = sh->disks, i; 2722 struct md_rdev *rdev = NULL; 2723 sector_t s; 2724 2725 for (i=0 ; i<disks; i++) 2726 if (bi == &sh->dev[i].req) 2727 break; 2728 2729 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n", 2730 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2731 bi->bi_status); 2732 if (i == disks) { 2733 BUG(); 2734 return; 2735 } 2736 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2737 /* If replacement finished while this request was outstanding, 2738 * 'replacement' might be NULL already. 2739 * In that case it moved down to 'rdev'. 2740 * rdev is not removed until all requests are finished. 2741 */ 2742 rdev = conf->disks[i].replacement; 2743 if (!rdev) 2744 rdev = conf->disks[i].rdev; 2745 2746 if (use_new_offset(conf, sh)) 2747 s = sh->sector + rdev->new_data_offset; 2748 else 2749 s = sh->sector + rdev->data_offset; 2750 if (!bi->bi_status) { 2751 set_bit(R5_UPTODATE, &sh->dev[i].flags); 2752 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 2753 /* Note that this cannot happen on a 2754 * replacement device. We just fail those on 2755 * any error 2756 */ 2757 pr_info_ratelimited( 2758 "md/raid:%s: read error corrected (%lu sectors at %llu on %pg)\n", 2759 mdname(conf->mddev), RAID5_STRIPE_SECTORS(conf), 2760 (unsigned long long)s, 2761 rdev->bdev); 2762 atomic_add(RAID5_STRIPE_SECTORS(conf), &rdev->corrected_errors); 2763 clear_bit(R5_ReadError, &sh->dev[i].flags); 2764 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2765 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2766 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2767 2768 if (test_bit(R5_InJournal, &sh->dev[i].flags)) 2769 /* 2770 * end read for a page in journal, this 2771 * must be preparing for prexor in rmw 2772 */ 2773 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags); 2774 2775 if (atomic_read(&rdev->read_errors)) 2776 atomic_set(&rdev->read_errors, 0); 2777 } else { 2778 int retry = 0; 2779 int set_bad = 0; 2780 2781 clear_bit(R5_UPTODATE, &sh->dev[i].flags); 2782 if (!(bi->bi_status == BLK_STS_PROTECTION)) 2783 atomic_inc(&rdev->read_errors); 2784 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2785 pr_warn_ratelimited( 2786 "md/raid:%s: read error on replacement device (sector %llu on %pg).\n", 2787 mdname(conf->mddev), 2788 (unsigned long long)s, 2789 rdev->bdev); 2790 else if (conf->mddev->degraded >= conf->max_degraded) { 2791 set_bad = 1; 2792 pr_warn_ratelimited( 2793 "md/raid:%s: read error not correctable (sector %llu on %pg).\n", 2794 mdname(conf->mddev), 2795 (unsigned long long)s, 2796 rdev->bdev); 2797 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) { 2798 /* Oh, no!!! */ 2799 set_bad = 1; 2800 pr_warn_ratelimited( 2801 "md/raid:%s: read error NOT corrected!! (sector %llu on %pg).\n", 2802 mdname(conf->mddev), 2803 (unsigned long long)s, 2804 rdev->bdev); 2805 } else if (atomic_read(&rdev->read_errors) 2806 > conf->max_nr_stripes) { 2807 if (!test_bit(Faulty, &rdev->flags)) { 2808 pr_warn("md/raid:%s: %d read_errors > %d stripes\n", 2809 mdname(conf->mddev), 2810 atomic_read(&rdev->read_errors), 2811 conf->max_nr_stripes); 2812 pr_warn("md/raid:%s: Too many read errors, failing device %pg.\n", 2813 mdname(conf->mddev), rdev->bdev); 2814 } 2815 } else 2816 retry = 1; 2817 if (set_bad && test_bit(In_sync, &rdev->flags) 2818 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2819 retry = 1; 2820 if (retry) 2821 if (sh->qd_idx >= 0 && sh->pd_idx == i) 2822 set_bit(R5_ReadError, &sh->dev[i].flags); 2823 else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) { 2824 set_bit(R5_ReadError, &sh->dev[i].flags); 2825 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2826 } else 2827 set_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2828 else { 2829 clear_bit(R5_ReadError, &sh->dev[i].flags); 2830 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2831 if (!(set_bad 2832 && test_bit(In_sync, &rdev->flags) 2833 && rdev_set_badblocks( 2834 rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 0))) 2835 md_error(conf->mddev, rdev); 2836 } 2837 } 2838 rdev_dec_pending(rdev, conf->mddev); 2839 bio_uninit(bi); 2840 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2841 set_bit(STRIPE_HANDLE, &sh->state); 2842 raid5_release_stripe(sh); 2843 } 2844 2845 static void raid5_end_write_request(struct bio *bi) 2846 { 2847 struct stripe_head *sh = bi->bi_private; 2848 struct r5conf *conf = sh->raid_conf; 2849 int disks = sh->disks, i; 2850 struct md_rdev *rdev; 2851 int replacement = 0; 2852 2853 for (i = 0 ; i < disks; i++) { 2854 if (bi == &sh->dev[i].req) { 2855 rdev = conf->disks[i].rdev; 2856 break; 2857 } 2858 if (bi == &sh->dev[i].rreq) { 2859 rdev = conf->disks[i].replacement; 2860 if (rdev) 2861 replacement = 1; 2862 else 2863 /* rdev was removed and 'replacement' 2864 * replaced it. rdev is not removed 2865 * until all requests are finished. 2866 */ 2867 rdev = conf->disks[i].rdev; 2868 break; 2869 } 2870 } 2871 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n", 2872 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2873 bi->bi_status); 2874 if (i == disks) { 2875 BUG(); 2876 return; 2877 } 2878 2879 if (replacement) { 2880 if (bi->bi_status) 2881 md_error(conf->mddev, rdev); 2882 else if (rdev_has_badblock(rdev, sh->sector, 2883 RAID5_STRIPE_SECTORS(conf))) 2884 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags); 2885 } else { 2886 if (bi->bi_status) { 2887 set_bit(STRIPE_DEGRADED, &sh->state); 2888 set_bit(WriteErrorSeen, &rdev->flags); 2889 set_bit(R5_WriteError, &sh->dev[i].flags); 2890 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2891 set_bit(MD_RECOVERY_NEEDED, 2892 &rdev->mddev->recovery); 2893 } else if (rdev_has_badblock(rdev, sh->sector, 2894 RAID5_STRIPE_SECTORS(conf))) { 2895 set_bit(R5_MadeGood, &sh->dev[i].flags); 2896 if (test_bit(R5_ReadError, &sh->dev[i].flags)) 2897 /* That was a successful write so make 2898 * sure it looks like we already did 2899 * a re-write. 2900 */ 2901 set_bit(R5_ReWrite, &sh->dev[i].flags); 2902 } 2903 } 2904 rdev_dec_pending(rdev, conf->mddev); 2905 2906 if (sh->batch_head && bi->bi_status && !replacement) 2907 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state); 2908 2909 bio_uninit(bi); 2910 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags)) 2911 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2912 set_bit(STRIPE_HANDLE, &sh->state); 2913 2914 if (sh->batch_head && sh != sh->batch_head) 2915 raid5_release_stripe(sh->batch_head); 2916 raid5_release_stripe(sh); 2917 } 2918 2919 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev) 2920 { 2921 struct r5conf *conf = mddev->private; 2922 unsigned long flags; 2923 pr_debug("raid456: error called\n"); 2924 2925 pr_crit("md/raid:%s: Disk failure on %pg, disabling device.\n", 2926 mdname(mddev), rdev->bdev); 2927 2928 spin_lock_irqsave(&conf->device_lock, flags); 2929 set_bit(Faulty, &rdev->flags); 2930 clear_bit(In_sync, &rdev->flags); 2931 mddev->degraded = raid5_calc_degraded(conf); 2932 2933 if (has_failed(conf)) { 2934 set_bit(MD_BROKEN, &conf->mddev->flags); 2935 conf->recovery_disabled = mddev->recovery_disabled; 2936 2937 pr_crit("md/raid:%s: Cannot continue operation (%d/%d failed).\n", 2938 mdname(mddev), mddev->degraded, conf->raid_disks); 2939 } else { 2940 pr_crit("md/raid:%s: Operation continuing on %d devices.\n", 2941 mdname(mddev), conf->raid_disks - mddev->degraded); 2942 } 2943 2944 spin_unlock_irqrestore(&conf->device_lock, flags); 2945 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2946 2947 set_bit(Blocked, &rdev->flags); 2948 set_mask_bits(&mddev->sb_flags, 0, 2949 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 2950 r5c_update_on_rdev_error(mddev, rdev); 2951 } 2952 2953 /* 2954 * Input: a 'big' sector number, 2955 * Output: index of the data and parity disk, and the sector # in them. 2956 */ 2957 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector, 2958 int previous, int *dd_idx, 2959 struct stripe_head *sh) 2960 { 2961 sector_t stripe, stripe2; 2962 sector_t chunk_number; 2963 unsigned int chunk_offset; 2964 int pd_idx, qd_idx; 2965 int ddf_layout = 0; 2966 sector_t new_sector; 2967 int algorithm = previous ? conf->prev_algo 2968 : conf->algorithm; 2969 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 2970 : conf->chunk_sectors; 2971 int raid_disks = previous ? conf->previous_raid_disks 2972 : conf->raid_disks; 2973 int data_disks = raid_disks - conf->max_degraded; 2974 2975 /* First compute the information on this sector */ 2976 2977 /* 2978 * Compute the chunk number and the sector offset inside the chunk 2979 */ 2980 chunk_offset = sector_div(r_sector, sectors_per_chunk); 2981 chunk_number = r_sector; 2982 2983 /* 2984 * Compute the stripe number 2985 */ 2986 stripe = chunk_number; 2987 *dd_idx = sector_div(stripe, data_disks); 2988 stripe2 = stripe; 2989 /* 2990 * Select the parity disk based on the user selected algorithm. 2991 */ 2992 pd_idx = qd_idx = -1; 2993 switch(conf->level) { 2994 case 4: 2995 pd_idx = data_disks; 2996 break; 2997 case 5: 2998 switch (algorithm) { 2999 case ALGORITHM_LEFT_ASYMMETRIC: 3000 pd_idx = data_disks - sector_div(stripe2, raid_disks); 3001 if (*dd_idx >= pd_idx) 3002 (*dd_idx)++; 3003 break; 3004 case ALGORITHM_RIGHT_ASYMMETRIC: 3005 pd_idx = sector_div(stripe2, raid_disks); 3006 if (*dd_idx >= pd_idx) 3007 (*dd_idx)++; 3008 break; 3009 case ALGORITHM_LEFT_SYMMETRIC: 3010 pd_idx = data_disks - sector_div(stripe2, raid_disks); 3011 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 3012 break; 3013 case ALGORITHM_RIGHT_SYMMETRIC: 3014 pd_idx = sector_div(stripe2, raid_disks); 3015 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 3016 break; 3017 case ALGORITHM_PARITY_0: 3018 pd_idx = 0; 3019 (*dd_idx)++; 3020 break; 3021 case ALGORITHM_PARITY_N: 3022 pd_idx = data_disks; 3023 break; 3024 default: 3025 BUG(); 3026 } 3027 break; 3028 case 6: 3029 3030 switch (algorithm) { 3031 case ALGORITHM_LEFT_ASYMMETRIC: 3032 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 3033 qd_idx = pd_idx + 1; 3034 if (pd_idx == raid_disks-1) { 3035 (*dd_idx)++; /* Q D D D P */ 3036 qd_idx = 0; 3037 } else if (*dd_idx >= pd_idx) 3038 (*dd_idx) += 2; /* D D P Q D */ 3039 break; 3040 case ALGORITHM_RIGHT_ASYMMETRIC: 3041 pd_idx = sector_div(stripe2, raid_disks); 3042 qd_idx = pd_idx + 1; 3043 if (pd_idx == raid_disks-1) { 3044 (*dd_idx)++; /* Q D D D P */ 3045 qd_idx = 0; 3046 } else if (*dd_idx >= pd_idx) 3047 (*dd_idx) += 2; /* D D P Q D */ 3048 break; 3049 case ALGORITHM_LEFT_SYMMETRIC: 3050 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 3051 qd_idx = (pd_idx + 1) % raid_disks; 3052 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 3053 break; 3054 case ALGORITHM_RIGHT_SYMMETRIC: 3055 pd_idx = sector_div(stripe2, raid_disks); 3056 qd_idx = (pd_idx + 1) % raid_disks; 3057 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 3058 break; 3059 3060 case ALGORITHM_PARITY_0: 3061 pd_idx = 0; 3062 qd_idx = 1; 3063 (*dd_idx) += 2; 3064 break; 3065 case ALGORITHM_PARITY_N: 3066 pd_idx = data_disks; 3067 qd_idx = data_disks + 1; 3068 break; 3069 3070 case ALGORITHM_ROTATING_ZERO_RESTART: 3071 /* Exactly the same as RIGHT_ASYMMETRIC, but or 3072 * of blocks for computing Q is different. 3073 */ 3074 pd_idx = sector_div(stripe2, raid_disks); 3075 qd_idx = pd_idx + 1; 3076 if (pd_idx == raid_disks-1) { 3077 (*dd_idx)++; /* Q D D D P */ 3078 qd_idx = 0; 3079 } else if (*dd_idx >= pd_idx) 3080 (*dd_idx) += 2; /* D D P Q D */ 3081 ddf_layout = 1; 3082 break; 3083 3084 case ALGORITHM_ROTATING_N_RESTART: 3085 /* Same a left_asymmetric, by first stripe is 3086 * D D D P Q rather than 3087 * Q D D D P 3088 */ 3089 stripe2 += 1; 3090 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 3091 qd_idx = pd_idx + 1; 3092 if (pd_idx == raid_disks-1) { 3093 (*dd_idx)++; /* Q D D D P */ 3094 qd_idx = 0; 3095 } else if (*dd_idx >= pd_idx) 3096 (*dd_idx) += 2; /* D D P Q D */ 3097 ddf_layout = 1; 3098 break; 3099 3100 case ALGORITHM_ROTATING_N_CONTINUE: 3101 /* Same as left_symmetric but Q is before P */ 3102 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 3103 qd_idx = (pd_idx + raid_disks - 1) % raid_disks; 3104 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 3105 ddf_layout = 1; 3106 break; 3107 3108 case ALGORITHM_LEFT_ASYMMETRIC_6: 3109 /* RAID5 left_asymmetric, with Q on last device */ 3110 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 3111 if (*dd_idx >= pd_idx) 3112 (*dd_idx)++; 3113 qd_idx = raid_disks - 1; 3114 break; 3115 3116 case ALGORITHM_RIGHT_ASYMMETRIC_6: 3117 pd_idx = sector_div(stripe2, raid_disks-1); 3118 if (*dd_idx >= pd_idx) 3119 (*dd_idx)++; 3120 qd_idx = raid_disks - 1; 3121 break; 3122 3123 case ALGORITHM_LEFT_SYMMETRIC_6: 3124 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 3125 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 3126 qd_idx = raid_disks - 1; 3127 break; 3128 3129 case ALGORITHM_RIGHT_SYMMETRIC_6: 3130 pd_idx = sector_div(stripe2, raid_disks-1); 3131 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 3132 qd_idx = raid_disks - 1; 3133 break; 3134 3135 case ALGORITHM_PARITY_0_6: 3136 pd_idx = 0; 3137 (*dd_idx)++; 3138 qd_idx = raid_disks - 1; 3139 break; 3140 3141 default: 3142 BUG(); 3143 } 3144 break; 3145 } 3146 3147 if (sh) { 3148 sh->pd_idx = pd_idx; 3149 sh->qd_idx = qd_idx; 3150 sh->ddf_layout = ddf_layout; 3151 } 3152 /* 3153 * Finally, compute the new sector number 3154 */ 3155 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset; 3156 return new_sector; 3157 } 3158 3159 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous) 3160 { 3161 struct r5conf *conf = sh->raid_conf; 3162 int raid_disks = sh->disks; 3163 int data_disks = raid_disks - conf->max_degraded; 3164 sector_t new_sector = sh->sector, check; 3165 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 3166 : conf->chunk_sectors; 3167 int algorithm = previous ? conf->prev_algo 3168 : conf->algorithm; 3169 sector_t stripe; 3170 int chunk_offset; 3171 sector_t chunk_number; 3172 int dummy1, dd_idx = i; 3173 sector_t r_sector; 3174 struct stripe_head sh2; 3175 3176 chunk_offset = sector_div(new_sector, sectors_per_chunk); 3177 stripe = new_sector; 3178 3179 if (i == sh->pd_idx) 3180 return 0; 3181 switch(conf->level) { 3182 case 4: break; 3183 case 5: 3184 switch (algorithm) { 3185 case ALGORITHM_LEFT_ASYMMETRIC: 3186 case ALGORITHM_RIGHT_ASYMMETRIC: 3187 if (i > sh->pd_idx) 3188 i--; 3189 break; 3190 case ALGORITHM_LEFT_SYMMETRIC: 3191 case ALGORITHM_RIGHT_SYMMETRIC: 3192 if (i < sh->pd_idx) 3193 i += raid_disks; 3194 i -= (sh->pd_idx + 1); 3195 break; 3196 case ALGORITHM_PARITY_0: 3197 i -= 1; 3198 break; 3199 case ALGORITHM_PARITY_N: 3200 break; 3201 default: 3202 BUG(); 3203 } 3204 break; 3205 case 6: 3206 if (i == sh->qd_idx) 3207 return 0; /* It is the Q disk */ 3208 switch (algorithm) { 3209 case ALGORITHM_LEFT_ASYMMETRIC: 3210 case ALGORITHM_RIGHT_ASYMMETRIC: 3211 case ALGORITHM_ROTATING_ZERO_RESTART: 3212 case ALGORITHM_ROTATING_N_RESTART: 3213 if (sh->pd_idx == raid_disks-1) 3214 i--; /* Q D D D P */ 3215 else if (i > sh->pd_idx) 3216 i -= 2; /* D D P Q D */ 3217 break; 3218 case ALGORITHM_LEFT_SYMMETRIC: 3219 case ALGORITHM_RIGHT_SYMMETRIC: 3220 if (sh->pd_idx == raid_disks-1) 3221 i--; /* Q D D D P */ 3222 else { 3223 /* D D P Q D */ 3224 if (i < sh->pd_idx) 3225 i += raid_disks; 3226 i -= (sh->pd_idx + 2); 3227 } 3228 break; 3229 case ALGORITHM_PARITY_0: 3230 i -= 2; 3231 break; 3232 case ALGORITHM_PARITY_N: 3233 break; 3234 case ALGORITHM_ROTATING_N_CONTINUE: 3235 /* Like left_symmetric, but P is before Q */ 3236 if (sh->pd_idx == 0) 3237 i--; /* P D D D Q */ 3238 else { 3239 /* D D Q P D */ 3240 if (i < sh->pd_idx) 3241 i += raid_disks; 3242 i -= (sh->pd_idx + 1); 3243 } 3244 break; 3245 case ALGORITHM_LEFT_ASYMMETRIC_6: 3246 case ALGORITHM_RIGHT_ASYMMETRIC_6: 3247 if (i > sh->pd_idx) 3248 i--; 3249 break; 3250 case ALGORITHM_LEFT_SYMMETRIC_6: 3251 case ALGORITHM_RIGHT_SYMMETRIC_6: 3252 if (i < sh->pd_idx) 3253 i += data_disks + 1; 3254 i -= (sh->pd_idx + 1); 3255 break; 3256 case ALGORITHM_PARITY_0_6: 3257 i -= 1; 3258 break; 3259 default: 3260 BUG(); 3261 } 3262 break; 3263 } 3264 3265 chunk_number = stripe * data_disks + i; 3266 r_sector = chunk_number * sectors_per_chunk + chunk_offset; 3267 3268 check = raid5_compute_sector(conf, r_sector, 3269 previous, &dummy1, &sh2); 3270 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx 3271 || sh2.qd_idx != sh->qd_idx) { 3272 pr_warn("md/raid:%s: compute_blocknr: map not correct\n", 3273 mdname(conf->mddev)); 3274 return 0; 3275 } 3276 return r_sector; 3277 } 3278 3279 /* 3280 * There are cases where we want handle_stripe_dirtying() and 3281 * schedule_reconstruction() to delay towrite to some dev of a stripe. 3282 * 3283 * This function checks whether we want to delay the towrite. Specifically, 3284 * we delay the towrite when: 3285 * 3286 * 1. degraded stripe has a non-overwrite to the missing dev, AND this 3287 * stripe has data in journal (for other devices). 3288 * 3289 * In this case, when reading data for the non-overwrite dev, it is 3290 * necessary to handle complex rmw of write back cache (prexor with 3291 * orig_page, and xor with page). To keep read path simple, we would 3292 * like to flush data in journal to RAID disks first, so complex rmw 3293 * is handled in the write patch (handle_stripe_dirtying). 3294 * 3295 * 2. when journal space is critical (R5C_LOG_CRITICAL=1) 3296 * 3297 * It is important to be able to flush all stripes in raid5-cache. 3298 * Therefore, we need reserve some space on the journal device for 3299 * these flushes. If flush operation includes pending writes to the 3300 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe 3301 * for the flush out. If we exclude these pending writes from flush 3302 * operation, we only need (conf->max_degraded + 1) pages per stripe. 3303 * Therefore, excluding pending writes in these cases enables more 3304 * efficient use of the journal device. 3305 * 3306 * Note: To make sure the stripe makes progress, we only delay 3307 * towrite for stripes with data already in journal (injournal > 0). 3308 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to 3309 * no_space_stripes list. 3310 * 3311 * 3. during journal failure 3312 * In journal failure, we try to flush all cached data to raid disks 3313 * based on data in stripe cache. The array is read-only to upper 3314 * layers, so we would skip all pending writes. 3315 * 3316 */ 3317 static inline bool delay_towrite(struct r5conf *conf, 3318 struct r5dev *dev, 3319 struct stripe_head_state *s) 3320 { 3321 /* case 1 above */ 3322 if (!test_bit(R5_OVERWRITE, &dev->flags) && 3323 !test_bit(R5_Insync, &dev->flags) && s->injournal) 3324 return true; 3325 /* case 2 above */ 3326 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) && 3327 s->injournal > 0) 3328 return true; 3329 /* case 3 above */ 3330 if (s->log_failed && s->injournal) 3331 return true; 3332 return false; 3333 } 3334 3335 static void 3336 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s, 3337 int rcw, int expand) 3338 { 3339 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks; 3340 struct r5conf *conf = sh->raid_conf; 3341 int level = conf->level; 3342 3343 if (rcw) { 3344 /* 3345 * In some cases, handle_stripe_dirtying initially decided to 3346 * run rmw and allocates extra page for prexor. However, rcw is 3347 * cheaper later on. We need to free the extra page now, 3348 * because we won't be able to do that in ops_complete_prexor(). 3349 */ 3350 r5c_release_extra_page(sh); 3351 3352 for (i = disks; i--; ) { 3353 struct r5dev *dev = &sh->dev[i]; 3354 3355 if (dev->towrite && !delay_towrite(conf, dev, s)) { 3356 set_bit(R5_LOCKED, &dev->flags); 3357 set_bit(R5_Wantdrain, &dev->flags); 3358 if (!expand) 3359 clear_bit(R5_UPTODATE, &dev->flags); 3360 s->locked++; 3361 } else if (test_bit(R5_InJournal, &dev->flags)) { 3362 set_bit(R5_LOCKED, &dev->flags); 3363 s->locked++; 3364 } 3365 } 3366 /* if we are not expanding this is a proper write request, and 3367 * there will be bios with new data to be drained into the 3368 * stripe cache 3369 */ 3370 if (!expand) { 3371 if (!s->locked) 3372 /* False alarm, nothing to do */ 3373 return; 3374 sh->reconstruct_state = reconstruct_state_drain_run; 3375 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 3376 } else 3377 sh->reconstruct_state = reconstruct_state_run; 3378 3379 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 3380 3381 if (s->locked + conf->max_degraded == disks) 3382 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state)) 3383 atomic_inc(&conf->pending_full_writes); 3384 } else { 3385 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) || 3386 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags))); 3387 BUG_ON(level == 6 && 3388 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) || 3389 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags)))); 3390 3391 for (i = disks; i--; ) { 3392 struct r5dev *dev = &sh->dev[i]; 3393 if (i == pd_idx || i == qd_idx) 3394 continue; 3395 3396 if (dev->towrite && 3397 (test_bit(R5_UPTODATE, &dev->flags) || 3398 test_bit(R5_Wantcompute, &dev->flags))) { 3399 set_bit(R5_Wantdrain, &dev->flags); 3400 set_bit(R5_LOCKED, &dev->flags); 3401 clear_bit(R5_UPTODATE, &dev->flags); 3402 s->locked++; 3403 } else if (test_bit(R5_InJournal, &dev->flags)) { 3404 set_bit(R5_LOCKED, &dev->flags); 3405 s->locked++; 3406 } 3407 } 3408 if (!s->locked) 3409 /* False alarm - nothing to do */ 3410 return; 3411 sh->reconstruct_state = reconstruct_state_prexor_drain_run; 3412 set_bit(STRIPE_OP_PREXOR, &s->ops_request); 3413 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 3414 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 3415 } 3416 3417 /* keep the parity disk(s) locked while asynchronous operations 3418 * are in flight 3419 */ 3420 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); 3421 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 3422 s->locked++; 3423 3424 if (level == 6) { 3425 int qd_idx = sh->qd_idx; 3426 struct r5dev *dev = &sh->dev[qd_idx]; 3427 3428 set_bit(R5_LOCKED, &dev->flags); 3429 clear_bit(R5_UPTODATE, &dev->flags); 3430 s->locked++; 3431 } 3432 3433 if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page && 3434 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) && 3435 !test_bit(STRIPE_FULL_WRITE, &sh->state) && 3436 test_bit(R5_Insync, &sh->dev[pd_idx].flags)) 3437 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request); 3438 3439 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n", 3440 __func__, (unsigned long long)sh->sector, 3441 s->locked, s->ops_request); 3442 } 3443 3444 static bool stripe_bio_overlaps(struct stripe_head *sh, struct bio *bi, 3445 int dd_idx, int forwrite) 3446 { 3447 struct r5conf *conf = sh->raid_conf; 3448 struct bio **bip; 3449 3450 pr_debug("checking bi b#%llu to stripe s#%llu\n", 3451 bi->bi_iter.bi_sector, sh->sector); 3452 3453 /* Don't allow new IO added to stripes in batch list */ 3454 if (sh->batch_head) 3455 return true; 3456 3457 if (forwrite) 3458 bip = &sh->dev[dd_idx].towrite; 3459 else 3460 bip = &sh->dev[dd_idx].toread; 3461 3462 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) { 3463 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector) 3464 return true; 3465 bip = &(*bip)->bi_next; 3466 } 3467 3468 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi)) 3469 return true; 3470 3471 if (forwrite && raid5_has_ppl(conf)) { 3472 /* 3473 * With PPL only writes to consecutive data chunks within a 3474 * stripe are allowed because for a single stripe_head we can 3475 * only have one PPL entry at a time, which describes one data 3476 * range. Not really an overlap, but R5_Overlap can be 3477 * used to handle this. 3478 */ 3479 sector_t sector; 3480 sector_t first = 0; 3481 sector_t last = 0; 3482 int count = 0; 3483 int i; 3484 3485 for (i = 0; i < sh->disks; i++) { 3486 if (i != sh->pd_idx && 3487 (i == dd_idx || sh->dev[i].towrite)) { 3488 sector = sh->dev[i].sector; 3489 if (count == 0 || sector < first) 3490 first = sector; 3491 if (sector > last) 3492 last = sector; 3493 count++; 3494 } 3495 } 3496 3497 if (first + conf->chunk_sectors * (count - 1) != last) 3498 return true; 3499 } 3500 3501 return false; 3502 } 3503 3504 static void __add_stripe_bio(struct stripe_head *sh, struct bio *bi, 3505 int dd_idx, int forwrite, int previous) 3506 { 3507 struct r5conf *conf = sh->raid_conf; 3508 struct bio **bip; 3509 int firstwrite = 0; 3510 3511 if (forwrite) { 3512 bip = &sh->dev[dd_idx].towrite; 3513 if (!*bip) 3514 firstwrite = 1; 3515 } else { 3516 bip = &sh->dev[dd_idx].toread; 3517 } 3518 3519 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) 3520 bip = &(*bip)->bi_next; 3521 3522 if (!forwrite || previous) 3523 clear_bit(STRIPE_BATCH_READY, &sh->state); 3524 3525 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next); 3526 if (*bip) 3527 bi->bi_next = *bip; 3528 *bip = bi; 3529 bio_inc_remaining(bi); 3530 md_write_inc(conf->mddev, bi); 3531 3532 if (forwrite) { 3533 /* check if page is covered */ 3534 sector_t sector = sh->dev[dd_idx].sector; 3535 for (bi=sh->dev[dd_idx].towrite; 3536 sector < sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf) && 3537 bi && bi->bi_iter.bi_sector <= sector; 3538 bi = r5_next_bio(conf, bi, sh->dev[dd_idx].sector)) { 3539 if (bio_end_sector(bi) >= sector) 3540 sector = bio_end_sector(bi); 3541 } 3542 if (sector >= sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf)) 3543 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags)) 3544 sh->overwrite_disks++; 3545 } 3546 3547 pr_debug("added bi b#%llu to stripe s#%llu, disk %d, logical %llu\n", 3548 (*bip)->bi_iter.bi_sector, sh->sector, dd_idx, 3549 sh->dev[dd_idx].sector); 3550 3551 if (conf->mddev->bitmap && firstwrite) { 3552 /* Cannot hold spinlock over bitmap_startwrite, 3553 * but must ensure this isn't added to a batch until 3554 * we have added to the bitmap and set bm_seq. 3555 * So set STRIPE_BITMAP_PENDING to prevent 3556 * batching. 3557 * If multiple __add_stripe_bio() calls race here they 3558 * much all set STRIPE_BITMAP_PENDING. So only the first one 3559 * to complete "bitmap_startwrite" gets to set 3560 * STRIPE_BIT_DELAY. This is important as once a stripe 3561 * is added to a batch, STRIPE_BIT_DELAY cannot be changed 3562 * any more. 3563 */ 3564 set_bit(STRIPE_BITMAP_PENDING, &sh->state); 3565 spin_unlock_irq(&sh->stripe_lock); 3566 conf->mddev->bitmap_ops->startwrite(conf->mddev, sh->sector, 3567 RAID5_STRIPE_SECTORS(conf), false); 3568 spin_lock_irq(&sh->stripe_lock); 3569 clear_bit(STRIPE_BITMAP_PENDING, &sh->state); 3570 if (!sh->batch_head) { 3571 sh->bm_seq = conf->seq_flush+1; 3572 set_bit(STRIPE_BIT_DELAY, &sh->state); 3573 } 3574 } 3575 } 3576 3577 /* 3578 * Each stripe/dev can have one or more bios attached. 3579 * toread/towrite point to the first in a chain. 3580 * The bi_next chain must be in order. 3581 */ 3582 static bool add_stripe_bio(struct stripe_head *sh, struct bio *bi, 3583 int dd_idx, int forwrite, int previous) 3584 { 3585 spin_lock_irq(&sh->stripe_lock); 3586 3587 if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) { 3588 set_bit(R5_Overlap, &sh->dev[dd_idx].flags); 3589 spin_unlock_irq(&sh->stripe_lock); 3590 return false; 3591 } 3592 3593 __add_stripe_bio(sh, bi, dd_idx, forwrite, previous); 3594 spin_unlock_irq(&sh->stripe_lock); 3595 return true; 3596 } 3597 3598 static void end_reshape(struct r5conf *conf); 3599 3600 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 3601 struct stripe_head *sh) 3602 { 3603 int sectors_per_chunk = 3604 previous ? conf->prev_chunk_sectors : conf->chunk_sectors; 3605 int dd_idx; 3606 int chunk_offset = sector_div(stripe, sectors_per_chunk); 3607 int disks = previous ? conf->previous_raid_disks : conf->raid_disks; 3608 3609 raid5_compute_sector(conf, 3610 stripe * (disks - conf->max_degraded) 3611 *sectors_per_chunk + chunk_offset, 3612 previous, 3613 &dd_idx, sh); 3614 } 3615 3616 static void 3617 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh, 3618 struct stripe_head_state *s, int disks) 3619 { 3620 int i; 3621 BUG_ON(sh->batch_head); 3622 for (i = disks; i--; ) { 3623 struct bio *bi; 3624 int bitmap_end = 0; 3625 3626 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 3627 struct md_rdev *rdev = conf->disks[i].rdev; 3628 3629 if (rdev && test_bit(In_sync, &rdev->flags) && 3630 !test_bit(Faulty, &rdev->flags)) 3631 atomic_inc(&rdev->nr_pending); 3632 else 3633 rdev = NULL; 3634 if (rdev) { 3635 if (!rdev_set_badblocks( 3636 rdev, 3637 sh->sector, 3638 RAID5_STRIPE_SECTORS(conf), 0)) 3639 md_error(conf->mddev, rdev); 3640 rdev_dec_pending(rdev, conf->mddev); 3641 } 3642 } 3643 spin_lock_irq(&sh->stripe_lock); 3644 /* fail all writes first */ 3645 bi = sh->dev[i].towrite; 3646 sh->dev[i].towrite = NULL; 3647 sh->overwrite_disks = 0; 3648 spin_unlock_irq(&sh->stripe_lock); 3649 if (bi) 3650 bitmap_end = 1; 3651 3652 log_stripe_write_finished(sh); 3653 3654 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 3655 wake_up_bit(&sh->dev[i].flags, R5_Overlap); 3656 3657 while (bi && bi->bi_iter.bi_sector < 3658 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) { 3659 struct bio *nextbi = r5_next_bio(conf, bi, sh->dev[i].sector); 3660 3661 md_write_end(conf->mddev); 3662 bio_io_error(bi); 3663 bi = nextbi; 3664 } 3665 if (bitmap_end) 3666 conf->mddev->bitmap_ops->endwrite(conf->mddev, 3667 sh->sector, RAID5_STRIPE_SECTORS(conf), 3668 false, false); 3669 bitmap_end = 0; 3670 /* and fail all 'written' */ 3671 bi = sh->dev[i].written; 3672 sh->dev[i].written = NULL; 3673 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) { 3674 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 3675 sh->dev[i].page = sh->dev[i].orig_page; 3676 } 3677 3678 if (bi) bitmap_end = 1; 3679 while (bi && bi->bi_iter.bi_sector < 3680 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) { 3681 struct bio *bi2 = r5_next_bio(conf, bi, sh->dev[i].sector); 3682 3683 md_write_end(conf->mddev); 3684 bio_io_error(bi); 3685 bi = bi2; 3686 } 3687 3688 /* fail any reads if this device is non-operational and 3689 * the data has not reached the cache yet. 3690 */ 3691 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) && 3692 s->failed > conf->max_degraded && 3693 (!test_bit(R5_Insync, &sh->dev[i].flags) || 3694 test_bit(R5_ReadError, &sh->dev[i].flags))) { 3695 spin_lock_irq(&sh->stripe_lock); 3696 bi = sh->dev[i].toread; 3697 sh->dev[i].toread = NULL; 3698 spin_unlock_irq(&sh->stripe_lock); 3699 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 3700 wake_up_bit(&sh->dev[i].flags, R5_Overlap); 3701 if (bi) 3702 s->to_read--; 3703 while (bi && bi->bi_iter.bi_sector < 3704 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) { 3705 struct bio *nextbi = 3706 r5_next_bio(conf, bi, sh->dev[i].sector); 3707 3708 bio_io_error(bi); 3709 bi = nextbi; 3710 } 3711 } 3712 if (bitmap_end) 3713 conf->mddev->bitmap_ops->endwrite(conf->mddev, 3714 sh->sector, RAID5_STRIPE_SECTORS(conf), 3715 false, false); 3716 /* If we were in the middle of a write the parity block might 3717 * still be locked - so just clear all R5_LOCKED flags 3718 */ 3719 clear_bit(R5_LOCKED, &sh->dev[i].flags); 3720 } 3721 s->to_write = 0; 3722 s->written = 0; 3723 3724 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 3725 if (atomic_dec_and_test(&conf->pending_full_writes)) 3726 md_wakeup_thread(conf->mddev->thread); 3727 } 3728 3729 static void 3730 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh, 3731 struct stripe_head_state *s) 3732 { 3733 int abort = 0; 3734 int i; 3735 3736 BUG_ON(sh->batch_head); 3737 clear_bit(STRIPE_SYNCING, &sh->state); 3738 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 3739 wake_up_bit(&sh->dev[sh->pd_idx].flags, R5_Overlap); 3740 s->syncing = 0; 3741 s->replacing = 0; 3742 /* There is nothing more to do for sync/check/repair. 3743 * Don't even need to abort as that is handled elsewhere 3744 * if needed, and not always wanted e.g. if there is a known 3745 * bad block here. 3746 * For recover/replace we need to record a bad block on all 3747 * non-sync devices, or abort the recovery 3748 */ 3749 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) { 3750 /* During recovery devices cannot be removed, so 3751 * locking and refcounting of rdevs is not needed 3752 */ 3753 for (i = 0; i < conf->raid_disks; i++) { 3754 struct md_rdev *rdev = conf->disks[i].rdev; 3755 3756 if (rdev 3757 && !test_bit(Faulty, &rdev->flags) 3758 && !test_bit(In_sync, &rdev->flags) 3759 && !rdev_set_badblocks(rdev, sh->sector, 3760 RAID5_STRIPE_SECTORS(conf), 0)) 3761 abort = 1; 3762 rdev = conf->disks[i].replacement; 3763 3764 if (rdev 3765 && !test_bit(Faulty, &rdev->flags) 3766 && !test_bit(In_sync, &rdev->flags) 3767 && !rdev_set_badblocks(rdev, sh->sector, 3768 RAID5_STRIPE_SECTORS(conf), 0)) 3769 abort = 1; 3770 } 3771 if (abort) 3772 conf->recovery_disabled = 3773 conf->mddev->recovery_disabled; 3774 } 3775 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), !abort); 3776 } 3777 3778 static int want_replace(struct stripe_head *sh, int disk_idx) 3779 { 3780 struct md_rdev *rdev; 3781 int rv = 0; 3782 3783 rdev = sh->raid_conf->disks[disk_idx].replacement; 3784 if (rdev 3785 && !test_bit(Faulty, &rdev->flags) 3786 && !test_bit(In_sync, &rdev->flags) 3787 && (rdev->recovery_offset <= sh->sector 3788 || rdev->mddev->recovery_cp <= sh->sector)) 3789 rv = 1; 3790 return rv; 3791 } 3792 3793 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s, 3794 int disk_idx, int disks) 3795 { 3796 struct r5dev *dev = &sh->dev[disk_idx]; 3797 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]], 3798 &sh->dev[s->failed_num[1]] }; 3799 int i; 3800 bool force_rcw = (sh->raid_conf->rmw_level == PARITY_DISABLE_RMW); 3801 3802 3803 if (test_bit(R5_LOCKED, &dev->flags) || 3804 test_bit(R5_UPTODATE, &dev->flags)) 3805 /* No point reading this as we already have it or have 3806 * decided to get it. 3807 */ 3808 return 0; 3809 3810 if (dev->toread || 3811 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags))) 3812 /* We need this block to directly satisfy a request */ 3813 return 1; 3814 3815 if (s->syncing || s->expanding || 3816 (s->replacing && want_replace(sh, disk_idx))) 3817 /* When syncing, or expanding we read everything. 3818 * When replacing, we need the replaced block. 3819 */ 3820 return 1; 3821 3822 if ((s->failed >= 1 && fdev[0]->toread) || 3823 (s->failed >= 2 && fdev[1]->toread)) 3824 /* If we want to read from a failed device, then 3825 * we need to actually read every other device. 3826 */ 3827 return 1; 3828 3829 /* Sometimes neither read-modify-write nor reconstruct-write 3830 * cycles can work. In those cases we read every block we 3831 * can. Then the parity-update is certain to have enough to 3832 * work with. 3833 * This can only be a problem when we need to write something, 3834 * and some device has failed. If either of those tests 3835 * fail we need look no further. 3836 */ 3837 if (!s->failed || !s->to_write) 3838 return 0; 3839 3840 if (test_bit(R5_Insync, &dev->flags) && 3841 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3842 /* Pre-reads at not permitted until after short delay 3843 * to gather multiple requests. However if this 3844 * device is no Insync, the block could only be computed 3845 * and there is no need to delay that. 3846 */ 3847 return 0; 3848 3849 for (i = 0; i < s->failed && i < 2; i++) { 3850 if (fdev[i]->towrite && 3851 !test_bit(R5_UPTODATE, &fdev[i]->flags) && 3852 !test_bit(R5_OVERWRITE, &fdev[i]->flags)) 3853 /* If we have a partial write to a failed 3854 * device, then we will need to reconstruct 3855 * the content of that device, so all other 3856 * devices must be read. 3857 */ 3858 return 1; 3859 3860 if (s->failed >= 2 && 3861 (fdev[i]->towrite || 3862 s->failed_num[i] == sh->pd_idx || 3863 s->failed_num[i] == sh->qd_idx) && 3864 !test_bit(R5_UPTODATE, &fdev[i]->flags)) 3865 /* In max degraded raid6, If the failed disk is P, Q, 3866 * or we want to read the failed disk, we need to do 3867 * reconstruct-write. 3868 */ 3869 force_rcw = true; 3870 } 3871 3872 /* If we are forced to do a reconstruct-write, because parity 3873 * cannot be trusted and we are currently recovering it, there 3874 * is extra need to be careful. 3875 * If one of the devices that we would need to read, because 3876 * it is not being overwritten (and maybe not written at all) 3877 * is missing/faulty, then we need to read everything we can. 3878 */ 3879 if (!force_rcw && 3880 sh->sector < sh->raid_conf->mddev->recovery_cp) 3881 /* reconstruct-write isn't being forced */ 3882 return 0; 3883 for (i = 0; i < s->failed && i < 2; i++) { 3884 if (s->failed_num[i] != sh->pd_idx && 3885 s->failed_num[i] != sh->qd_idx && 3886 !test_bit(R5_UPTODATE, &fdev[i]->flags) && 3887 !test_bit(R5_OVERWRITE, &fdev[i]->flags)) 3888 return 1; 3889 } 3890 3891 return 0; 3892 } 3893 3894 /* fetch_block - checks the given member device to see if its data needs 3895 * to be read or computed to satisfy a request. 3896 * 3897 * Returns 1 when no more member devices need to be checked, otherwise returns 3898 * 0 to tell the loop in handle_stripe_fill to continue 3899 */ 3900 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s, 3901 int disk_idx, int disks) 3902 { 3903 struct r5dev *dev = &sh->dev[disk_idx]; 3904 3905 /* is the data in this block needed, and can we get it? */ 3906 if (need_this_block(sh, s, disk_idx, disks)) { 3907 /* we would like to get this block, possibly by computing it, 3908 * otherwise read it if the backing disk is insync 3909 */ 3910 BUG_ON(test_bit(R5_Wantcompute, &dev->flags)); 3911 BUG_ON(test_bit(R5_Wantread, &dev->flags)); 3912 BUG_ON(sh->batch_head); 3913 3914 /* 3915 * In the raid6 case if the only non-uptodate disk is P 3916 * then we already trusted P to compute the other failed 3917 * drives. It is safe to compute rather than re-read P. 3918 * In other cases we only compute blocks from failed 3919 * devices, otherwise check/repair might fail to detect 3920 * a real inconsistency. 3921 */ 3922 3923 if ((s->uptodate == disks - 1) && 3924 ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) || 3925 (s->failed && (disk_idx == s->failed_num[0] || 3926 disk_idx == s->failed_num[1])))) { 3927 /* have disk failed, and we're requested to fetch it; 3928 * do compute it 3929 */ 3930 pr_debug("Computing stripe %llu block %d\n", 3931 (unsigned long long)sh->sector, disk_idx); 3932 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3933 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3934 set_bit(R5_Wantcompute, &dev->flags); 3935 sh->ops.target = disk_idx; 3936 sh->ops.target2 = -1; /* no 2nd target */ 3937 s->req_compute = 1; 3938 /* Careful: from this point on 'uptodate' is in the eye 3939 * of raid_run_ops which services 'compute' operations 3940 * before writes. R5_Wantcompute flags a block that will 3941 * be R5_UPTODATE by the time it is needed for a 3942 * subsequent operation. 3943 */ 3944 s->uptodate++; 3945 return 1; 3946 } else if (s->uptodate == disks-2 && s->failed >= 2) { 3947 /* Computing 2-failure is *very* expensive; only 3948 * do it if failed >= 2 3949 */ 3950 int other; 3951 for (other = disks; other--; ) { 3952 if (other == disk_idx) 3953 continue; 3954 if (!test_bit(R5_UPTODATE, 3955 &sh->dev[other].flags)) 3956 break; 3957 } 3958 BUG_ON(other < 0); 3959 pr_debug("Computing stripe %llu blocks %d,%d\n", 3960 (unsigned long long)sh->sector, 3961 disk_idx, other); 3962 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3963 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3964 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags); 3965 set_bit(R5_Wantcompute, &sh->dev[other].flags); 3966 sh->ops.target = disk_idx; 3967 sh->ops.target2 = other; 3968 s->uptodate += 2; 3969 s->req_compute = 1; 3970 return 1; 3971 } else if (test_bit(R5_Insync, &dev->flags)) { 3972 set_bit(R5_LOCKED, &dev->flags); 3973 set_bit(R5_Wantread, &dev->flags); 3974 s->locked++; 3975 pr_debug("Reading block %d (sync=%d)\n", 3976 disk_idx, s->syncing); 3977 } 3978 } 3979 3980 return 0; 3981 } 3982 3983 /* 3984 * handle_stripe_fill - read or compute data to satisfy pending requests. 3985 */ 3986 static void handle_stripe_fill(struct stripe_head *sh, 3987 struct stripe_head_state *s, 3988 int disks) 3989 { 3990 int i; 3991 3992 /* look for blocks to read/compute, skip this if a compute 3993 * is already in flight, or if the stripe contents are in the 3994 * midst of changing due to a write 3995 */ 3996 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state && 3997 !sh->reconstruct_state) { 3998 3999 /* 4000 * For degraded stripe with data in journal, do not handle 4001 * read requests yet, instead, flush the stripe to raid 4002 * disks first, this avoids handling complex rmw of write 4003 * back cache (prexor with orig_page, and then xor with 4004 * page) in the read path 4005 */ 4006 if (s->to_read && s->injournal && s->failed) { 4007 if (test_bit(STRIPE_R5C_CACHING, &sh->state)) 4008 r5c_make_stripe_write_out(sh); 4009 goto out; 4010 } 4011 4012 for (i = disks; i--; ) 4013 if (fetch_block(sh, s, i, disks)) 4014 break; 4015 } 4016 out: 4017 set_bit(STRIPE_HANDLE, &sh->state); 4018 } 4019 4020 static void break_stripe_batch_list(struct stripe_head *head_sh, 4021 unsigned long handle_flags); 4022 /* handle_stripe_clean_event 4023 * any written block on an uptodate or failed drive can be returned. 4024 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but 4025 * never LOCKED, so we don't need to test 'failed' directly. 4026 */ 4027 static void handle_stripe_clean_event(struct r5conf *conf, 4028 struct stripe_head *sh, int disks) 4029 { 4030 int i; 4031 struct r5dev *dev; 4032 int discard_pending = 0; 4033 struct stripe_head *head_sh = sh; 4034 bool do_endio = false; 4035 4036 for (i = disks; i--; ) 4037 if (sh->dev[i].written) { 4038 dev = &sh->dev[i]; 4039 if (!test_bit(R5_LOCKED, &dev->flags) && 4040 (test_bit(R5_UPTODATE, &dev->flags) || 4041 test_bit(R5_Discard, &dev->flags) || 4042 test_bit(R5_SkipCopy, &dev->flags))) { 4043 /* We can return any write requests */ 4044 struct bio *wbi, *wbi2; 4045 pr_debug("Return write for disc %d\n", i); 4046 if (test_and_clear_bit(R5_Discard, &dev->flags)) 4047 clear_bit(R5_UPTODATE, &dev->flags); 4048 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) { 4049 WARN_ON(test_bit(R5_UPTODATE, &dev->flags)); 4050 } 4051 do_endio = true; 4052 4053 returnbi: 4054 dev->page = dev->orig_page; 4055 wbi = dev->written; 4056 dev->written = NULL; 4057 while (wbi && wbi->bi_iter.bi_sector < 4058 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 4059 wbi2 = r5_next_bio(conf, wbi, dev->sector); 4060 md_write_end(conf->mddev); 4061 bio_endio(wbi); 4062 wbi = wbi2; 4063 } 4064 conf->mddev->bitmap_ops->endwrite(conf->mddev, 4065 sh->sector, RAID5_STRIPE_SECTORS(conf), 4066 !test_bit(STRIPE_DEGRADED, &sh->state), 4067 false); 4068 if (head_sh->batch_head) { 4069 sh = list_first_entry(&sh->batch_list, 4070 struct stripe_head, 4071 batch_list); 4072 if (sh != head_sh) { 4073 dev = &sh->dev[i]; 4074 goto returnbi; 4075 } 4076 } 4077 sh = head_sh; 4078 dev = &sh->dev[i]; 4079 } else if (test_bit(R5_Discard, &dev->flags)) 4080 discard_pending = 1; 4081 } 4082 4083 log_stripe_write_finished(sh); 4084 4085 if (!discard_pending && 4086 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) { 4087 int hash; 4088 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 4089 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 4090 if (sh->qd_idx >= 0) { 4091 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 4092 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags); 4093 } 4094 /* now that discard is done we can proceed with any sync */ 4095 clear_bit(STRIPE_DISCARD, &sh->state); 4096 /* 4097 * SCSI discard will change some bio fields and the stripe has 4098 * no updated data, so remove it from hash list and the stripe 4099 * will be reinitialized 4100 */ 4101 unhash: 4102 hash = sh->hash_lock_index; 4103 spin_lock_irq(conf->hash_locks + hash); 4104 remove_hash(sh); 4105 spin_unlock_irq(conf->hash_locks + hash); 4106 if (head_sh->batch_head) { 4107 sh = list_first_entry(&sh->batch_list, 4108 struct stripe_head, batch_list); 4109 if (sh != head_sh) 4110 goto unhash; 4111 } 4112 sh = head_sh; 4113 4114 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) 4115 set_bit(STRIPE_HANDLE, &sh->state); 4116 4117 } 4118 4119 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 4120 if (atomic_dec_and_test(&conf->pending_full_writes)) 4121 md_wakeup_thread(conf->mddev->thread); 4122 4123 if (head_sh->batch_head && do_endio) 4124 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS); 4125 } 4126 4127 /* 4128 * For RMW in write back cache, we need extra page in prexor to store the 4129 * old data. This page is stored in dev->orig_page. 4130 * 4131 * This function checks whether we have data for prexor. The exact logic 4132 * is: 4133 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE) 4134 */ 4135 static inline bool uptodate_for_rmw(struct r5dev *dev) 4136 { 4137 return (test_bit(R5_UPTODATE, &dev->flags)) && 4138 (!test_bit(R5_InJournal, &dev->flags) || 4139 test_bit(R5_OrigPageUPTDODATE, &dev->flags)); 4140 } 4141 4142 static int handle_stripe_dirtying(struct r5conf *conf, 4143 struct stripe_head *sh, 4144 struct stripe_head_state *s, 4145 int disks) 4146 { 4147 int rmw = 0, rcw = 0, i; 4148 sector_t recovery_cp = conf->mddev->recovery_cp; 4149 4150 /* Check whether resync is now happening or should start. 4151 * If yes, then the array is dirty (after unclean shutdown or 4152 * initial creation), so parity in some stripes might be inconsistent. 4153 * In this case, we need to always do reconstruct-write, to ensure 4154 * that in case of drive failure or read-error correction, we 4155 * generate correct data from the parity. 4156 */ 4157 if (conf->rmw_level == PARITY_DISABLE_RMW || 4158 (recovery_cp < MaxSector && sh->sector >= recovery_cp && 4159 s->failed == 0)) { 4160 /* Calculate the real rcw later - for now make it 4161 * look like rcw is cheaper 4162 */ 4163 rcw = 1; rmw = 2; 4164 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n", 4165 conf->rmw_level, (unsigned long long)recovery_cp, 4166 (unsigned long long)sh->sector); 4167 } else for (i = disks; i--; ) { 4168 /* would I have to read this buffer for read_modify_write */ 4169 struct r5dev *dev = &sh->dev[i]; 4170 if (((dev->towrite && !delay_towrite(conf, dev, s)) || 4171 i == sh->pd_idx || i == sh->qd_idx || 4172 test_bit(R5_InJournal, &dev->flags)) && 4173 !test_bit(R5_LOCKED, &dev->flags) && 4174 !(uptodate_for_rmw(dev) || 4175 test_bit(R5_Wantcompute, &dev->flags))) { 4176 if (test_bit(R5_Insync, &dev->flags)) 4177 rmw++; 4178 else 4179 rmw += 2*disks; /* cannot read it */ 4180 } 4181 /* Would I have to read this buffer for reconstruct_write */ 4182 if (!test_bit(R5_OVERWRITE, &dev->flags) && 4183 i != sh->pd_idx && i != sh->qd_idx && 4184 !test_bit(R5_LOCKED, &dev->flags) && 4185 !(test_bit(R5_UPTODATE, &dev->flags) || 4186 test_bit(R5_Wantcompute, &dev->flags))) { 4187 if (test_bit(R5_Insync, &dev->flags)) 4188 rcw++; 4189 else 4190 rcw += 2*disks; 4191 } 4192 } 4193 4194 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n", 4195 (unsigned long long)sh->sector, sh->state, rmw, rcw); 4196 set_bit(STRIPE_HANDLE, &sh->state); 4197 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) { 4198 /* prefer read-modify-write, but need to get some data */ 4199 mddev_add_trace_msg(conf->mddev, "raid5 rmw %llu %d", 4200 sh->sector, rmw); 4201 4202 for (i = disks; i--; ) { 4203 struct r5dev *dev = &sh->dev[i]; 4204 if (test_bit(R5_InJournal, &dev->flags) && 4205 dev->page == dev->orig_page && 4206 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) { 4207 /* alloc page for prexor */ 4208 struct page *p = alloc_page(GFP_NOIO); 4209 4210 if (p) { 4211 dev->orig_page = p; 4212 continue; 4213 } 4214 4215 /* 4216 * alloc_page() failed, try use 4217 * disk_info->extra_page 4218 */ 4219 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE, 4220 &conf->cache_state)) { 4221 r5c_use_extra_page(sh); 4222 break; 4223 } 4224 4225 /* extra_page in use, add to delayed_list */ 4226 set_bit(STRIPE_DELAYED, &sh->state); 4227 s->waiting_extra_page = 1; 4228 return -EAGAIN; 4229 } 4230 } 4231 4232 for (i = disks; i--; ) { 4233 struct r5dev *dev = &sh->dev[i]; 4234 if (((dev->towrite && !delay_towrite(conf, dev, s)) || 4235 i == sh->pd_idx || i == sh->qd_idx || 4236 test_bit(R5_InJournal, &dev->flags)) && 4237 !test_bit(R5_LOCKED, &dev->flags) && 4238 !(uptodate_for_rmw(dev) || 4239 test_bit(R5_Wantcompute, &dev->flags)) && 4240 test_bit(R5_Insync, &dev->flags)) { 4241 if (test_bit(STRIPE_PREREAD_ACTIVE, 4242 &sh->state)) { 4243 pr_debug("Read_old block %d for r-m-w\n", 4244 i); 4245 set_bit(R5_LOCKED, &dev->flags); 4246 set_bit(R5_Wantread, &dev->flags); 4247 s->locked++; 4248 } else 4249 set_bit(STRIPE_DELAYED, &sh->state); 4250 } 4251 } 4252 } 4253 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) { 4254 /* want reconstruct write, but need to get some data */ 4255 int qread =0; 4256 rcw = 0; 4257 for (i = disks; i--; ) { 4258 struct r5dev *dev = &sh->dev[i]; 4259 if (!test_bit(R5_OVERWRITE, &dev->flags) && 4260 i != sh->pd_idx && i != sh->qd_idx && 4261 !test_bit(R5_LOCKED, &dev->flags) && 4262 !(test_bit(R5_UPTODATE, &dev->flags) || 4263 test_bit(R5_Wantcompute, &dev->flags))) { 4264 rcw++; 4265 if (test_bit(R5_Insync, &dev->flags) && 4266 test_bit(STRIPE_PREREAD_ACTIVE, 4267 &sh->state)) { 4268 pr_debug("Read_old block " 4269 "%d for Reconstruct\n", i); 4270 set_bit(R5_LOCKED, &dev->flags); 4271 set_bit(R5_Wantread, &dev->flags); 4272 s->locked++; 4273 qread++; 4274 } else 4275 set_bit(STRIPE_DELAYED, &sh->state); 4276 } 4277 } 4278 if (rcw && !mddev_is_dm(conf->mddev)) 4279 blk_add_trace_msg(conf->mddev->gendisk->queue, 4280 "raid5 rcw %llu %d %d %d", 4281 (unsigned long long)sh->sector, rcw, qread, 4282 test_bit(STRIPE_DELAYED, &sh->state)); 4283 } 4284 4285 if (rcw > disks && rmw > disks && 4286 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4287 set_bit(STRIPE_DELAYED, &sh->state); 4288 4289 /* now if nothing is locked, and if we have enough data, 4290 * we can start a write request 4291 */ 4292 /* since handle_stripe can be called at any time we need to handle the 4293 * case where a compute block operation has been submitted and then a 4294 * subsequent call wants to start a write request. raid_run_ops only 4295 * handles the case where compute block and reconstruct are requested 4296 * simultaneously. If this is not the case then new writes need to be 4297 * held off until the compute completes. 4298 */ 4299 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) && 4300 (s->locked == 0 && (rcw == 0 || rmw == 0) && 4301 !test_bit(STRIPE_BIT_DELAY, &sh->state))) 4302 schedule_reconstruction(sh, s, rcw == 0, 0); 4303 return 0; 4304 } 4305 4306 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh, 4307 struct stripe_head_state *s, int disks) 4308 { 4309 struct r5dev *dev = NULL; 4310 4311 BUG_ON(sh->batch_head); 4312 set_bit(STRIPE_HANDLE, &sh->state); 4313 4314 switch (sh->check_state) { 4315 case check_state_idle: 4316 /* start a new check operation if there are no failures */ 4317 if (s->failed == 0) { 4318 BUG_ON(s->uptodate != disks); 4319 sh->check_state = check_state_run; 4320 set_bit(STRIPE_OP_CHECK, &s->ops_request); 4321 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 4322 s->uptodate--; 4323 break; 4324 } 4325 dev = &sh->dev[s->failed_num[0]]; 4326 fallthrough; 4327 case check_state_compute_result: 4328 sh->check_state = check_state_idle; 4329 if (!dev) 4330 dev = &sh->dev[sh->pd_idx]; 4331 4332 /* check that a write has not made the stripe insync */ 4333 if (test_bit(STRIPE_INSYNC, &sh->state)) 4334 break; 4335 4336 /* either failed parity check, or recovery is happening */ 4337 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags)); 4338 BUG_ON(s->uptodate != disks); 4339 4340 set_bit(R5_LOCKED, &dev->flags); 4341 s->locked++; 4342 set_bit(R5_Wantwrite, &dev->flags); 4343 4344 clear_bit(STRIPE_DEGRADED, &sh->state); 4345 set_bit(STRIPE_INSYNC, &sh->state); 4346 break; 4347 case check_state_run: 4348 break; /* we will be called again upon completion */ 4349 case check_state_check_result: 4350 sh->check_state = check_state_idle; 4351 4352 /* if a failure occurred during the check operation, leave 4353 * STRIPE_INSYNC not set and let the stripe be handled again 4354 */ 4355 if (s->failed) 4356 break; 4357 4358 /* handle a successful check operation, if parity is correct 4359 * we are done. Otherwise update the mismatch count and repair 4360 * parity if !MD_RECOVERY_CHECK 4361 */ 4362 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0) 4363 /* parity is correct (on disc, 4364 * not in buffer any more) 4365 */ 4366 set_bit(STRIPE_INSYNC, &sh->state); 4367 else { 4368 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches); 4369 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) { 4370 /* don't try to repair!! */ 4371 set_bit(STRIPE_INSYNC, &sh->state); 4372 pr_warn_ratelimited("%s: mismatch sector in range " 4373 "%llu-%llu\n", mdname(conf->mddev), 4374 (unsigned long long) sh->sector, 4375 (unsigned long long) sh->sector + 4376 RAID5_STRIPE_SECTORS(conf)); 4377 } else { 4378 sh->check_state = check_state_compute_run; 4379 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 4380 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 4381 set_bit(R5_Wantcompute, 4382 &sh->dev[sh->pd_idx].flags); 4383 sh->ops.target = sh->pd_idx; 4384 sh->ops.target2 = -1; 4385 s->uptodate++; 4386 } 4387 } 4388 break; 4389 case check_state_compute_run: 4390 break; 4391 default: 4392 pr_err("%s: unknown check_state: %d sector: %llu\n", 4393 __func__, sh->check_state, 4394 (unsigned long long) sh->sector); 4395 BUG(); 4396 } 4397 } 4398 4399 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh, 4400 struct stripe_head_state *s, 4401 int disks) 4402 { 4403 int pd_idx = sh->pd_idx; 4404 int qd_idx = sh->qd_idx; 4405 struct r5dev *dev; 4406 4407 BUG_ON(sh->batch_head); 4408 set_bit(STRIPE_HANDLE, &sh->state); 4409 4410 BUG_ON(s->failed > 2); 4411 4412 /* Want to check and possibly repair P and Q. 4413 * However there could be one 'failed' device, in which 4414 * case we can only check one of them, possibly using the 4415 * other to generate missing data 4416 */ 4417 4418 switch (sh->check_state) { 4419 case check_state_idle: 4420 /* start a new check operation if there are < 2 failures */ 4421 if (s->failed == s->q_failed) { 4422 /* The only possible failed device holds Q, so it 4423 * makes sense to check P (If anything else were failed, 4424 * we would have used P to recreate it). 4425 */ 4426 sh->check_state = check_state_run; 4427 } 4428 if (!s->q_failed && s->failed < 2) { 4429 /* Q is not failed, and we didn't use it to generate 4430 * anything, so it makes sense to check it 4431 */ 4432 if (sh->check_state == check_state_run) 4433 sh->check_state = check_state_run_pq; 4434 else 4435 sh->check_state = check_state_run_q; 4436 } 4437 4438 /* discard potentially stale zero_sum_result */ 4439 sh->ops.zero_sum_result = 0; 4440 4441 if (sh->check_state == check_state_run) { 4442 /* async_xor_zero_sum destroys the contents of P */ 4443 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 4444 s->uptodate--; 4445 } 4446 if (sh->check_state >= check_state_run && 4447 sh->check_state <= check_state_run_pq) { 4448 /* async_syndrome_zero_sum preserves P and Q, so 4449 * no need to mark them !uptodate here 4450 */ 4451 set_bit(STRIPE_OP_CHECK, &s->ops_request); 4452 break; 4453 } 4454 4455 /* we have 2-disk failure */ 4456 BUG_ON(s->failed != 2); 4457 fallthrough; 4458 case check_state_compute_result: 4459 sh->check_state = check_state_idle; 4460 4461 /* check that a write has not made the stripe insync */ 4462 if (test_bit(STRIPE_INSYNC, &sh->state)) 4463 break; 4464 4465 /* now write out any block on a failed drive, 4466 * or P or Q if they were recomputed 4467 */ 4468 dev = NULL; 4469 if (s->failed == 2) { 4470 dev = &sh->dev[s->failed_num[1]]; 4471 s->locked++; 4472 set_bit(R5_LOCKED, &dev->flags); 4473 set_bit(R5_Wantwrite, &dev->flags); 4474 } 4475 if (s->failed >= 1) { 4476 dev = &sh->dev[s->failed_num[0]]; 4477 s->locked++; 4478 set_bit(R5_LOCKED, &dev->flags); 4479 set_bit(R5_Wantwrite, &dev->flags); 4480 } 4481 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 4482 dev = &sh->dev[pd_idx]; 4483 s->locked++; 4484 set_bit(R5_LOCKED, &dev->flags); 4485 set_bit(R5_Wantwrite, &dev->flags); 4486 } 4487 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 4488 dev = &sh->dev[qd_idx]; 4489 s->locked++; 4490 set_bit(R5_LOCKED, &dev->flags); 4491 set_bit(R5_Wantwrite, &dev->flags); 4492 } 4493 if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags), 4494 "%s: disk%td not up to date\n", 4495 mdname(conf->mddev), 4496 dev - (struct r5dev *) &sh->dev)) { 4497 clear_bit(R5_LOCKED, &dev->flags); 4498 clear_bit(R5_Wantwrite, &dev->flags); 4499 s->locked--; 4500 } 4501 clear_bit(STRIPE_DEGRADED, &sh->state); 4502 4503 set_bit(STRIPE_INSYNC, &sh->state); 4504 break; 4505 case check_state_run: 4506 case check_state_run_q: 4507 case check_state_run_pq: 4508 break; /* we will be called again upon completion */ 4509 case check_state_check_result: 4510 sh->check_state = check_state_idle; 4511 4512 /* handle a successful check operation, if parity is correct 4513 * we are done. Otherwise update the mismatch count and repair 4514 * parity if !MD_RECOVERY_CHECK 4515 */ 4516 if (sh->ops.zero_sum_result == 0) { 4517 /* both parities are correct */ 4518 if (!s->failed) 4519 set_bit(STRIPE_INSYNC, &sh->state); 4520 else { 4521 /* in contrast to the raid5 case we can validate 4522 * parity, but still have a failure to write 4523 * back 4524 */ 4525 sh->check_state = check_state_compute_result; 4526 /* Returning at this point means that we may go 4527 * off and bring p and/or q uptodate again so 4528 * we make sure to check zero_sum_result again 4529 * to verify if p or q need writeback 4530 */ 4531 } 4532 } else { 4533 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches); 4534 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) { 4535 /* don't try to repair!! */ 4536 set_bit(STRIPE_INSYNC, &sh->state); 4537 pr_warn_ratelimited("%s: mismatch sector in range " 4538 "%llu-%llu\n", mdname(conf->mddev), 4539 (unsigned long long) sh->sector, 4540 (unsigned long long) sh->sector + 4541 RAID5_STRIPE_SECTORS(conf)); 4542 } else { 4543 int *target = &sh->ops.target; 4544 4545 sh->ops.target = -1; 4546 sh->ops.target2 = -1; 4547 sh->check_state = check_state_compute_run; 4548 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 4549 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 4550 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 4551 set_bit(R5_Wantcompute, 4552 &sh->dev[pd_idx].flags); 4553 *target = pd_idx; 4554 target = &sh->ops.target2; 4555 s->uptodate++; 4556 } 4557 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 4558 set_bit(R5_Wantcompute, 4559 &sh->dev[qd_idx].flags); 4560 *target = qd_idx; 4561 s->uptodate++; 4562 } 4563 } 4564 } 4565 break; 4566 case check_state_compute_run: 4567 break; 4568 default: 4569 pr_warn("%s: unknown check_state: %d sector: %llu\n", 4570 __func__, sh->check_state, 4571 (unsigned long long) sh->sector); 4572 BUG(); 4573 } 4574 } 4575 4576 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh) 4577 { 4578 int i; 4579 4580 /* We have read all the blocks in this stripe and now we need to 4581 * copy some of them into a target stripe for expand. 4582 */ 4583 struct dma_async_tx_descriptor *tx = NULL; 4584 BUG_ON(sh->batch_head); 4585 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state); 4586 for (i = 0; i < sh->disks; i++) 4587 if (i != sh->pd_idx && i != sh->qd_idx) { 4588 int dd_idx, j; 4589 struct stripe_head *sh2; 4590 struct async_submit_ctl submit; 4591 4592 sector_t bn = raid5_compute_blocknr(sh, i, 1); 4593 sector_t s = raid5_compute_sector(conf, bn, 0, 4594 &dd_idx, NULL); 4595 sh2 = raid5_get_active_stripe(conf, NULL, s, 4596 R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE); 4597 if (sh2 == NULL) 4598 /* so far only the early blocks of this stripe 4599 * have been requested. When later blocks 4600 * get requested, we will try again 4601 */ 4602 continue; 4603 if (!test_bit(STRIPE_EXPANDING, &sh2->state) || 4604 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) { 4605 /* must have already done this block */ 4606 raid5_release_stripe(sh2); 4607 continue; 4608 } 4609 4610 /* place all the copies on one channel */ 4611 init_async_submit(&submit, 0, tx, NULL, NULL, NULL); 4612 tx = async_memcpy(sh2->dev[dd_idx].page, 4613 sh->dev[i].page, sh2->dev[dd_idx].offset, 4614 sh->dev[i].offset, RAID5_STRIPE_SIZE(conf), 4615 &submit); 4616 4617 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags); 4618 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags); 4619 for (j = 0; j < conf->raid_disks; j++) 4620 if (j != sh2->pd_idx && 4621 j != sh2->qd_idx && 4622 !test_bit(R5_Expanded, &sh2->dev[j].flags)) 4623 break; 4624 if (j == conf->raid_disks) { 4625 set_bit(STRIPE_EXPAND_READY, &sh2->state); 4626 set_bit(STRIPE_HANDLE, &sh2->state); 4627 } 4628 raid5_release_stripe(sh2); 4629 4630 } 4631 /* done submitting copies, wait for them to complete */ 4632 async_tx_quiesce(&tx); 4633 } 4634 4635 /* 4636 * handle_stripe - do things to a stripe. 4637 * 4638 * We lock the stripe by setting STRIPE_ACTIVE and then examine the 4639 * state of various bits to see what needs to be done. 4640 * Possible results: 4641 * return some read requests which now have data 4642 * return some write requests which are safely on storage 4643 * schedule a read on some buffers 4644 * schedule a write of some buffers 4645 * return confirmation of parity correctness 4646 * 4647 */ 4648 4649 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s) 4650 { 4651 struct r5conf *conf = sh->raid_conf; 4652 int disks = sh->disks; 4653 struct r5dev *dev; 4654 int i; 4655 int do_recovery = 0; 4656 4657 memset(s, 0, sizeof(*s)); 4658 4659 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head; 4660 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head; 4661 s->failed_num[0] = -1; 4662 s->failed_num[1] = -1; 4663 s->log_failed = r5l_log_disk_error(conf); 4664 4665 /* Now to look around and see what can be done */ 4666 for (i=disks; i--; ) { 4667 struct md_rdev *rdev; 4668 int is_bad = 0; 4669 4670 dev = &sh->dev[i]; 4671 4672 pr_debug("check %d: state 0x%lx read %p write %p written %p\n", 4673 i, dev->flags, 4674 dev->toread, dev->towrite, dev->written); 4675 /* maybe we can reply to a read 4676 * 4677 * new wantfill requests are only permitted while 4678 * ops_complete_biofill is guaranteed to be inactive 4679 */ 4680 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread && 4681 !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) 4682 set_bit(R5_Wantfill, &dev->flags); 4683 4684 /* now count some things */ 4685 if (test_bit(R5_LOCKED, &dev->flags)) 4686 s->locked++; 4687 if (test_bit(R5_UPTODATE, &dev->flags)) 4688 s->uptodate++; 4689 if (test_bit(R5_Wantcompute, &dev->flags)) { 4690 s->compute++; 4691 BUG_ON(s->compute > 2); 4692 } 4693 4694 if (test_bit(R5_Wantfill, &dev->flags)) 4695 s->to_fill++; 4696 else if (dev->toread) 4697 s->to_read++; 4698 if (dev->towrite) { 4699 s->to_write++; 4700 if (!test_bit(R5_OVERWRITE, &dev->flags)) 4701 s->non_overwrite++; 4702 } 4703 if (dev->written) 4704 s->written++; 4705 /* Prefer to use the replacement for reads, but only 4706 * if it is recovered enough and has no bad blocks. 4707 */ 4708 rdev = conf->disks[i].replacement; 4709 if (rdev && !test_bit(Faulty, &rdev->flags) && 4710 rdev->recovery_offset >= sh->sector + RAID5_STRIPE_SECTORS(conf) && 4711 !rdev_has_badblock(rdev, sh->sector, 4712 RAID5_STRIPE_SECTORS(conf))) 4713 set_bit(R5_ReadRepl, &dev->flags); 4714 else { 4715 if (rdev && !test_bit(Faulty, &rdev->flags)) 4716 set_bit(R5_NeedReplace, &dev->flags); 4717 else 4718 clear_bit(R5_NeedReplace, &dev->flags); 4719 rdev = conf->disks[i].rdev; 4720 clear_bit(R5_ReadRepl, &dev->flags); 4721 } 4722 if (rdev && test_bit(Faulty, &rdev->flags)) 4723 rdev = NULL; 4724 if (rdev) { 4725 is_bad = rdev_has_badblock(rdev, sh->sector, 4726 RAID5_STRIPE_SECTORS(conf)); 4727 if (s->blocked_rdev == NULL 4728 && (test_bit(Blocked, &rdev->flags) 4729 || is_bad < 0)) { 4730 if (is_bad < 0) 4731 set_bit(BlockedBadBlocks, 4732 &rdev->flags); 4733 s->blocked_rdev = rdev; 4734 atomic_inc(&rdev->nr_pending); 4735 } 4736 } 4737 clear_bit(R5_Insync, &dev->flags); 4738 if (!rdev) 4739 /* Not in-sync */; 4740 else if (is_bad) { 4741 /* also not in-sync */ 4742 if (!test_bit(WriteErrorSeen, &rdev->flags) && 4743 test_bit(R5_UPTODATE, &dev->flags)) { 4744 /* treat as in-sync, but with a read error 4745 * which we can now try to correct 4746 */ 4747 set_bit(R5_Insync, &dev->flags); 4748 set_bit(R5_ReadError, &dev->flags); 4749 } 4750 } else if (test_bit(In_sync, &rdev->flags)) 4751 set_bit(R5_Insync, &dev->flags); 4752 else if (sh->sector + RAID5_STRIPE_SECTORS(conf) <= rdev->recovery_offset) 4753 /* in sync if before recovery_offset */ 4754 set_bit(R5_Insync, &dev->flags); 4755 else if (test_bit(R5_UPTODATE, &dev->flags) && 4756 test_bit(R5_Expanded, &dev->flags)) 4757 /* If we've reshaped into here, we assume it is Insync. 4758 * We will shortly update recovery_offset to make 4759 * it official. 4760 */ 4761 set_bit(R5_Insync, &dev->flags); 4762 4763 if (test_bit(R5_WriteError, &dev->flags)) { 4764 /* This flag does not apply to '.replacement' 4765 * only to .rdev, so make sure to check that*/ 4766 struct md_rdev *rdev2 = conf->disks[i].rdev; 4767 4768 if (rdev2 == rdev) 4769 clear_bit(R5_Insync, &dev->flags); 4770 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4771 s->handle_bad_blocks = 1; 4772 atomic_inc(&rdev2->nr_pending); 4773 } else 4774 clear_bit(R5_WriteError, &dev->flags); 4775 } 4776 if (test_bit(R5_MadeGood, &dev->flags)) { 4777 /* This flag does not apply to '.replacement' 4778 * only to .rdev, so make sure to check that*/ 4779 struct md_rdev *rdev2 = conf->disks[i].rdev; 4780 4781 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4782 s->handle_bad_blocks = 1; 4783 atomic_inc(&rdev2->nr_pending); 4784 } else 4785 clear_bit(R5_MadeGood, &dev->flags); 4786 } 4787 if (test_bit(R5_MadeGoodRepl, &dev->flags)) { 4788 struct md_rdev *rdev2 = conf->disks[i].replacement; 4789 4790 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4791 s->handle_bad_blocks = 1; 4792 atomic_inc(&rdev2->nr_pending); 4793 } else 4794 clear_bit(R5_MadeGoodRepl, &dev->flags); 4795 } 4796 if (!test_bit(R5_Insync, &dev->flags)) { 4797 /* The ReadError flag will just be confusing now */ 4798 clear_bit(R5_ReadError, &dev->flags); 4799 clear_bit(R5_ReWrite, &dev->flags); 4800 } 4801 if (test_bit(R5_ReadError, &dev->flags)) 4802 clear_bit(R5_Insync, &dev->flags); 4803 if (!test_bit(R5_Insync, &dev->flags)) { 4804 if (s->failed < 2) 4805 s->failed_num[s->failed] = i; 4806 s->failed++; 4807 if (rdev && !test_bit(Faulty, &rdev->flags)) 4808 do_recovery = 1; 4809 else if (!rdev) { 4810 rdev = conf->disks[i].replacement; 4811 if (rdev && !test_bit(Faulty, &rdev->flags)) 4812 do_recovery = 1; 4813 } 4814 } 4815 4816 if (test_bit(R5_InJournal, &dev->flags)) 4817 s->injournal++; 4818 if (test_bit(R5_InJournal, &dev->flags) && dev->written) 4819 s->just_cached++; 4820 } 4821 if (test_bit(STRIPE_SYNCING, &sh->state)) { 4822 /* If there is a failed device being replaced, 4823 * we must be recovering. 4824 * else if we are after recovery_cp, we must be syncing 4825 * else if MD_RECOVERY_REQUESTED is set, we also are syncing. 4826 * else we can only be replacing 4827 * sync and recovery both need to read all devices, and so 4828 * use the same flag. 4829 */ 4830 if (do_recovery || 4831 sh->sector >= conf->mddev->recovery_cp || 4832 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery))) 4833 s->syncing = 1; 4834 else 4835 s->replacing = 1; 4836 } 4837 } 4838 4839 /* 4840 * Return '1' if this is a member of batch, or '0' if it is a lone stripe or 4841 * a head which can now be handled. 4842 */ 4843 static int clear_batch_ready(struct stripe_head *sh) 4844 { 4845 struct stripe_head *tmp; 4846 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state)) 4847 return (sh->batch_head && sh->batch_head != sh); 4848 spin_lock(&sh->stripe_lock); 4849 if (!sh->batch_head) { 4850 spin_unlock(&sh->stripe_lock); 4851 return 0; 4852 } 4853 4854 /* 4855 * this stripe could be added to a batch list before we check 4856 * BATCH_READY, skips it 4857 */ 4858 if (sh->batch_head != sh) { 4859 spin_unlock(&sh->stripe_lock); 4860 return 1; 4861 } 4862 spin_lock(&sh->batch_lock); 4863 list_for_each_entry(tmp, &sh->batch_list, batch_list) 4864 clear_bit(STRIPE_BATCH_READY, &tmp->state); 4865 spin_unlock(&sh->batch_lock); 4866 spin_unlock(&sh->stripe_lock); 4867 4868 /* 4869 * BATCH_READY is cleared, no new stripes can be added. 4870 * batch_list can be accessed without lock 4871 */ 4872 return 0; 4873 } 4874 4875 static void break_stripe_batch_list(struct stripe_head *head_sh, 4876 unsigned long handle_flags) 4877 { 4878 struct stripe_head *sh, *next; 4879 int i; 4880 4881 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) { 4882 4883 list_del_init(&sh->batch_list); 4884 4885 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) | 4886 (1 << STRIPE_SYNCING) | 4887 (1 << STRIPE_REPLACED) | 4888 (1 << STRIPE_DELAYED) | 4889 (1 << STRIPE_BIT_DELAY) | 4890 (1 << STRIPE_FULL_WRITE) | 4891 (1 << STRIPE_BIOFILL_RUN) | 4892 (1 << STRIPE_COMPUTE_RUN) | 4893 (1 << STRIPE_DISCARD) | 4894 (1 << STRIPE_BATCH_READY) | 4895 (1 << STRIPE_BATCH_ERR) | 4896 (1 << STRIPE_BITMAP_PENDING)), 4897 "stripe state: %lx\n", sh->state); 4898 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) | 4899 (1 << STRIPE_REPLACED)), 4900 "head stripe state: %lx\n", head_sh->state); 4901 4902 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS | 4903 (1 << STRIPE_PREREAD_ACTIVE) | 4904 (1 << STRIPE_DEGRADED) | 4905 (1 << STRIPE_ON_UNPLUG_LIST)), 4906 head_sh->state & (1 << STRIPE_INSYNC)); 4907 4908 sh->check_state = head_sh->check_state; 4909 sh->reconstruct_state = head_sh->reconstruct_state; 4910 spin_lock_irq(&sh->stripe_lock); 4911 sh->batch_head = NULL; 4912 spin_unlock_irq(&sh->stripe_lock); 4913 for (i = 0; i < sh->disks; i++) { 4914 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 4915 wake_up_bit(&sh->dev[i].flags, R5_Overlap); 4916 sh->dev[i].flags = head_sh->dev[i].flags & 4917 (~((1 << R5_WriteError) | (1 << R5_Overlap))); 4918 } 4919 if (handle_flags == 0 || 4920 sh->state & handle_flags) 4921 set_bit(STRIPE_HANDLE, &sh->state); 4922 raid5_release_stripe(sh); 4923 } 4924 spin_lock_irq(&head_sh->stripe_lock); 4925 head_sh->batch_head = NULL; 4926 spin_unlock_irq(&head_sh->stripe_lock); 4927 for (i = 0; i < head_sh->disks; i++) 4928 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags)) 4929 wake_up_bit(&head_sh->dev[i].flags, R5_Overlap); 4930 if (head_sh->state & handle_flags) 4931 set_bit(STRIPE_HANDLE, &head_sh->state); 4932 } 4933 4934 static void handle_stripe(struct stripe_head *sh) 4935 { 4936 struct stripe_head_state s; 4937 struct r5conf *conf = sh->raid_conf; 4938 int i; 4939 int prexor; 4940 int disks = sh->disks; 4941 struct r5dev *pdev, *qdev; 4942 4943 clear_bit(STRIPE_HANDLE, &sh->state); 4944 4945 /* 4946 * handle_stripe should not continue handle the batched stripe, only 4947 * the head of batch list or lone stripe can continue. Otherwise we 4948 * could see break_stripe_batch_list warns about the STRIPE_ACTIVE 4949 * is set for the batched stripe. 4950 */ 4951 if (clear_batch_ready(sh)) 4952 return; 4953 4954 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) { 4955 /* already being handled, ensure it gets handled 4956 * again when current action finishes */ 4957 set_bit(STRIPE_HANDLE, &sh->state); 4958 return; 4959 } 4960 4961 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state)) 4962 break_stripe_batch_list(sh, 0); 4963 4964 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) { 4965 spin_lock(&sh->stripe_lock); 4966 /* 4967 * Cannot process 'sync' concurrently with 'discard'. 4968 * Flush data in r5cache before 'sync'. 4969 */ 4970 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) && 4971 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) && 4972 !test_bit(STRIPE_DISCARD, &sh->state) && 4973 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) { 4974 set_bit(STRIPE_SYNCING, &sh->state); 4975 clear_bit(STRIPE_INSYNC, &sh->state); 4976 clear_bit(STRIPE_REPLACED, &sh->state); 4977 } 4978 spin_unlock(&sh->stripe_lock); 4979 } 4980 clear_bit(STRIPE_DELAYED, &sh->state); 4981 4982 pr_debug("handling stripe %llu, state=%#lx cnt=%d, " 4983 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n", 4984 (unsigned long long)sh->sector, sh->state, 4985 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx, 4986 sh->check_state, sh->reconstruct_state); 4987 4988 analyse_stripe(sh, &s); 4989 4990 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state)) 4991 goto finish; 4992 4993 if (s.handle_bad_blocks || 4994 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) { 4995 set_bit(STRIPE_HANDLE, &sh->state); 4996 goto finish; 4997 } 4998 4999 if (unlikely(s.blocked_rdev)) { 5000 if (s.syncing || s.expanding || s.expanded || 5001 s.replacing || s.to_write || s.written) { 5002 set_bit(STRIPE_HANDLE, &sh->state); 5003 goto finish; 5004 } 5005 /* There is nothing for the blocked_rdev to block */ 5006 rdev_dec_pending(s.blocked_rdev, conf->mddev); 5007 s.blocked_rdev = NULL; 5008 } 5009 5010 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) { 5011 set_bit(STRIPE_OP_BIOFILL, &s.ops_request); 5012 set_bit(STRIPE_BIOFILL_RUN, &sh->state); 5013 } 5014 5015 pr_debug("locked=%d uptodate=%d to_read=%d" 5016 " to_write=%d failed=%d failed_num=%d,%d\n", 5017 s.locked, s.uptodate, s.to_read, s.to_write, s.failed, 5018 s.failed_num[0], s.failed_num[1]); 5019 /* 5020 * check if the array has lost more than max_degraded devices and, 5021 * if so, some requests might need to be failed. 5022 * 5023 * When journal device failed (log_failed), we will only process 5024 * the stripe if there is data need write to raid disks 5025 */ 5026 if (s.failed > conf->max_degraded || 5027 (s.log_failed && s.injournal == 0)) { 5028 sh->check_state = 0; 5029 sh->reconstruct_state = 0; 5030 break_stripe_batch_list(sh, 0); 5031 if (s.to_read+s.to_write+s.written) 5032 handle_failed_stripe(conf, sh, &s, disks); 5033 if (s.syncing + s.replacing) 5034 handle_failed_sync(conf, sh, &s); 5035 } 5036 5037 /* Now we check to see if any write operations have recently 5038 * completed 5039 */ 5040 prexor = 0; 5041 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result) 5042 prexor = 1; 5043 if (sh->reconstruct_state == reconstruct_state_drain_result || 5044 sh->reconstruct_state == reconstruct_state_prexor_drain_result) { 5045 sh->reconstruct_state = reconstruct_state_idle; 5046 5047 /* All the 'written' buffers and the parity block are ready to 5048 * be written back to disk 5049 */ 5050 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) && 5051 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)); 5052 BUG_ON(sh->qd_idx >= 0 && 5053 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) && 5054 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags)); 5055 for (i = disks; i--; ) { 5056 struct r5dev *dev = &sh->dev[i]; 5057 if (test_bit(R5_LOCKED, &dev->flags) && 5058 (i == sh->pd_idx || i == sh->qd_idx || 5059 dev->written || test_bit(R5_InJournal, 5060 &dev->flags))) { 5061 pr_debug("Writing block %d\n", i); 5062 set_bit(R5_Wantwrite, &dev->flags); 5063 if (prexor) 5064 continue; 5065 if (s.failed > 1) 5066 continue; 5067 if (!test_bit(R5_Insync, &dev->flags) || 5068 ((i == sh->pd_idx || i == sh->qd_idx) && 5069 s.failed == 0)) 5070 set_bit(STRIPE_INSYNC, &sh->state); 5071 } 5072 } 5073 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5074 s.dec_preread_active = 1; 5075 } 5076 5077 /* 5078 * might be able to return some write requests if the parity blocks 5079 * are safe, or on a failed drive 5080 */ 5081 pdev = &sh->dev[sh->pd_idx]; 5082 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx) 5083 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx); 5084 qdev = &sh->dev[sh->qd_idx]; 5085 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx) 5086 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx) 5087 || conf->level < 6; 5088 5089 if (s.written && 5090 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags) 5091 && !test_bit(R5_LOCKED, &pdev->flags) 5092 && (test_bit(R5_UPTODATE, &pdev->flags) || 5093 test_bit(R5_Discard, &pdev->flags))))) && 5094 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags) 5095 && !test_bit(R5_LOCKED, &qdev->flags) 5096 && (test_bit(R5_UPTODATE, &qdev->flags) || 5097 test_bit(R5_Discard, &qdev->flags)))))) 5098 handle_stripe_clean_event(conf, sh, disks); 5099 5100 if (s.just_cached) 5101 r5c_handle_cached_data_endio(conf, sh, disks); 5102 log_stripe_write_finished(sh); 5103 5104 /* Now we might consider reading some blocks, either to check/generate 5105 * parity, or to satisfy requests 5106 * or to load a block that is being partially written. 5107 */ 5108 if (s.to_read || s.non_overwrite 5109 || (s.to_write && s.failed) 5110 || (s.syncing && (s.uptodate + s.compute < disks)) 5111 || s.replacing 5112 || s.expanding) 5113 handle_stripe_fill(sh, &s, disks); 5114 5115 /* 5116 * When the stripe finishes full journal write cycle (write to journal 5117 * and raid disk), this is the clean up procedure so it is ready for 5118 * next operation. 5119 */ 5120 r5c_finish_stripe_write_out(conf, sh, &s); 5121 5122 /* 5123 * Now to consider new write requests, cache write back and what else, 5124 * if anything should be read. We do not handle new writes when: 5125 * 1/ A 'write' operation (copy+xor) is already in flight. 5126 * 2/ A 'check' operation is in flight, as it may clobber the parity 5127 * block. 5128 * 3/ A r5c cache log write is in flight. 5129 */ 5130 5131 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) { 5132 if (!r5c_is_writeback(conf->log)) { 5133 if (s.to_write) 5134 handle_stripe_dirtying(conf, sh, &s, disks); 5135 } else { /* write back cache */ 5136 int ret = 0; 5137 5138 /* First, try handle writes in caching phase */ 5139 if (s.to_write) 5140 ret = r5c_try_caching_write(conf, sh, &s, 5141 disks); 5142 /* 5143 * If caching phase failed: ret == -EAGAIN 5144 * OR 5145 * stripe under reclaim: !caching && injournal 5146 * 5147 * fall back to handle_stripe_dirtying() 5148 */ 5149 if (ret == -EAGAIN || 5150 /* stripe under reclaim: !caching && injournal */ 5151 (!test_bit(STRIPE_R5C_CACHING, &sh->state) && 5152 s.injournal > 0)) { 5153 ret = handle_stripe_dirtying(conf, sh, &s, 5154 disks); 5155 if (ret == -EAGAIN) 5156 goto finish; 5157 } 5158 } 5159 } 5160 5161 /* maybe we need to check and possibly fix the parity for this stripe 5162 * Any reads will already have been scheduled, so we just see if enough 5163 * data is available. The parity check is held off while parity 5164 * dependent operations are in flight. 5165 */ 5166 if (sh->check_state || 5167 (s.syncing && s.locked == 0 && 5168 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 5169 !test_bit(STRIPE_INSYNC, &sh->state))) { 5170 if (conf->level == 6) 5171 handle_parity_checks6(conf, sh, &s, disks); 5172 else 5173 handle_parity_checks5(conf, sh, &s, disks); 5174 } 5175 5176 if ((s.replacing || s.syncing) && s.locked == 0 5177 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state) 5178 && !test_bit(STRIPE_REPLACED, &sh->state)) { 5179 /* Write out to replacement devices where possible */ 5180 for (i = 0; i < conf->raid_disks; i++) 5181 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) { 5182 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags)); 5183 set_bit(R5_WantReplace, &sh->dev[i].flags); 5184 set_bit(R5_LOCKED, &sh->dev[i].flags); 5185 s.locked++; 5186 } 5187 if (s.replacing) 5188 set_bit(STRIPE_INSYNC, &sh->state); 5189 set_bit(STRIPE_REPLACED, &sh->state); 5190 } 5191 if ((s.syncing || s.replacing) && s.locked == 0 && 5192 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 5193 test_bit(STRIPE_INSYNC, &sh->state)) { 5194 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1); 5195 clear_bit(STRIPE_SYNCING, &sh->state); 5196 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 5197 wake_up_bit(&sh->dev[sh->pd_idx].flags, R5_Overlap); 5198 } 5199 5200 /* If the failed drives are just a ReadError, then we might need 5201 * to progress the repair/check process 5202 */ 5203 if (s.failed <= conf->max_degraded && !conf->mddev->ro) 5204 for (i = 0; i < s.failed; i++) { 5205 struct r5dev *dev = &sh->dev[s.failed_num[i]]; 5206 if (test_bit(R5_ReadError, &dev->flags) 5207 && !test_bit(R5_LOCKED, &dev->flags) 5208 && test_bit(R5_UPTODATE, &dev->flags) 5209 ) { 5210 if (!test_bit(R5_ReWrite, &dev->flags)) { 5211 set_bit(R5_Wantwrite, &dev->flags); 5212 set_bit(R5_ReWrite, &dev->flags); 5213 } else 5214 /* let's read it back */ 5215 set_bit(R5_Wantread, &dev->flags); 5216 set_bit(R5_LOCKED, &dev->flags); 5217 s.locked++; 5218 } 5219 } 5220 5221 /* Finish reconstruct operations initiated by the expansion process */ 5222 if (sh->reconstruct_state == reconstruct_state_result) { 5223 struct stripe_head *sh_src 5224 = raid5_get_active_stripe(conf, NULL, sh->sector, 5225 R5_GAS_PREVIOUS | R5_GAS_NOBLOCK | 5226 R5_GAS_NOQUIESCE); 5227 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) { 5228 /* sh cannot be written until sh_src has been read. 5229 * so arrange for sh to be delayed a little 5230 */ 5231 set_bit(STRIPE_DELAYED, &sh->state); 5232 set_bit(STRIPE_HANDLE, &sh->state); 5233 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, 5234 &sh_src->state)) 5235 atomic_inc(&conf->preread_active_stripes); 5236 raid5_release_stripe(sh_src); 5237 goto finish; 5238 } 5239 if (sh_src) 5240 raid5_release_stripe(sh_src); 5241 5242 sh->reconstruct_state = reconstruct_state_idle; 5243 clear_bit(STRIPE_EXPANDING, &sh->state); 5244 for (i = conf->raid_disks; i--; ) { 5245 set_bit(R5_Wantwrite, &sh->dev[i].flags); 5246 set_bit(R5_LOCKED, &sh->dev[i].flags); 5247 s.locked++; 5248 } 5249 } 5250 5251 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) && 5252 !sh->reconstruct_state) { 5253 /* Need to write out all blocks after computing parity */ 5254 sh->disks = conf->raid_disks; 5255 stripe_set_idx(sh->sector, conf, 0, sh); 5256 schedule_reconstruction(sh, &s, 1, 1); 5257 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) { 5258 clear_bit(STRIPE_EXPAND_READY, &sh->state); 5259 atomic_dec(&conf->reshape_stripes); 5260 wake_up(&conf->wait_for_reshape); 5261 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1); 5262 } 5263 5264 if (s.expanding && s.locked == 0 && 5265 !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) 5266 handle_stripe_expansion(conf, sh); 5267 5268 finish: 5269 /* wait for this device to become unblocked */ 5270 if (unlikely(s.blocked_rdev)) { 5271 if (conf->mddev->external) 5272 md_wait_for_blocked_rdev(s.blocked_rdev, 5273 conf->mddev); 5274 else 5275 /* Internal metadata will immediately 5276 * be written by raid5d, so we don't 5277 * need to wait here. 5278 */ 5279 rdev_dec_pending(s.blocked_rdev, 5280 conf->mddev); 5281 } 5282 5283 if (s.handle_bad_blocks) 5284 for (i = disks; i--; ) { 5285 struct md_rdev *rdev; 5286 struct r5dev *dev = &sh->dev[i]; 5287 if (test_and_clear_bit(R5_WriteError, &dev->flags)) { 5288 /* We own a safe reference to the rdev */ 5289 rdev = conf->disks[i].rdev; 5290 if (!rdev_set_badblocks(rdev, sh->sector, 5291 RAID5_STRIPE_SECTORS(conf), 0)) 5292 md_error(conf->mddev, rdev); 5293 rdev_dec_pending(rdev, conf->mddev); 5294 } 5295 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) { 5296 rdev = conf->disks[i].rdev; 5297 rdev_clear_badblocks(rdev, sh->sector, 5298 RAID5_STRIPE_SECTORS(conf), 0); 5299 rdev_dec_pending(rdev, conf->mddev); 5300 } 5301 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) { 5302 rdev = conf->disks[i].replacement; 5303 if (!rdev) 5304 /* rdev have been moved down */ 5305 rdev = conf->disks[i].rdev; 5306 rdev_clear_badblocks(rdev, sh->sector, 5307 RAID5_STRIPE_SECTORS(conf), 0); 5308 rdev_dec_pending(rdev, conf->mddev); 5309 } 5310 } 5311 5312 if (s.ops_request) 5313 raid_run_ops(sh, s.ops_request); 5314 5315 ops_run_io(sh, &s); 5316 5317 if (s.dec_preread_active) { 5318 /* We delay this until after ops_run_io so that if make_request 5319 * is waiting on a flush, it won't continue until the writes 5320 * have actually been submitted. 5321 */ 5322 atomic_dec(&conf->preread_active_stripes); 5323 if (atomic_read(&conf->preread_active_stripes) < 5324 IO_THRESHOLD) 5325 md_wakeup_thread(conf->mddev->thread); 5326 } 5327 5328 clear_bit_unlock(STRIPE_ACTIVE, &sh->state); 5329 } 5330 5331 static void raid5_activate_delayed(struct r5conf *conf) 5332 __must_hold(&conf->device_lock) 5333 { 5334 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) { 5335 while (!list_empty(&conf->delayed_list)) { 5336 struct list_head *l = conf->delayed_list.next; 5337 struct stripe_head *sh; 5338 sh = list_entry(l, struct stripe_head, lru); 5339 list_del_init(l); 5340 clear_bit(STRIPE_DELAYED, &sh->state); 5341 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5342 atomic_inc(&conf->preread_active_stripes); 5343 list_add_tail(&sh->lru, &conf->hold_list); 5344 raid5_wakeup_stripe_thread(sh); 5345 } 5346 } 5347 } 5348 5349 static void activate_bit_delay(struct r5conf *conf, 5350 struct list_head *temp_inactive_list) 5351 __must_hold(&conf->device_lock) 5352 { 5353 struct list_head head; 5354 list_add(&head, &conf->bitmap_list); 5355 list_del_init(&conf->bitmap_list); 5356 while (!list_empty(&head)) { 5357 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru); 5358 int hash; 5359 list_del_init(&sh->lru); 5360 atomic_inc(&sh->count); 5361 hash = sh->hash_lock_index; 5362 __release_stripe(conf, sh, &temp_inactive_list[hash]); 5363 } 5364 } 5365 5366 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio) 5367 { 5368 struct r5conf *conf = mddev->private; 5369 sector_t sector = bio->bi_iter.bi_sector; 5370 unsigned int chunk_sectors; 5371 unsigned int bio_sectors = bio_sectors(bio); 5372 5373 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors); 5374 return chunk_sectors >= 5375 ((sector & (chunk_sectors - 1)) + bio_sectors); 5376 } 5377 5378 /* 5379 * add bio to the retry LIFO ( in O(1) ... we are in interrupt ) 5380 * later sampled by raid5d. 5381 */ 5382 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf) 5383 { 5384 unsigned long flags; 5385 5386 spin_lock_irqsave(&conf->device_lock, flags); 5387 5388 bi->bi_next = conf->retry_read_aligned_list; 5389 conf->retry_read_aligned_list = bi; 5390 5391 spin_unlock_irqrestore(&conf->device_lock, flags); 5392 md_wakeup_thread(conf->mddev->thread); 5393 } 5394 5395 static struct bio *remove_bio_from_retry(struct r5conf *conf, 5396 unsigned int *offset) 5397 { 5398 struct bio *bi; 5399 5400 bi = conf->retry_read_aligned; 5401 if (bi) { 5402 *offset = conf->retry_read_offset; 5403 conf->retry_read_aligned = NULL; 5404 return bi; 5405 } 5406 bi = conf->retry_read_aligned_list; 5407 if(bi) { 5408 conf->retry_read_aligned_list = bi->bi_next; 5409 bi->bi_next = NULL; 5410 *offset = 0; 5411 } 5412 5413 return bi; 5414 } 5415 5416 /* 5417 * The "raid5_align_endio" should check if the read succeeded and if it 5418 * did, call bio_endio on the original bio (having bio_put the new bio 5419 * first). 5420 * If the read failed.. 5421 */ 5422 static void raid5_align_endio(struct bio *bi) 5423 { 5424 struct bio *raid_bi = bi->bi_private; 5425 struct md_rdev *rdev = (void *)raid_bi->bi_next; 5426 struct mddev *mddev = rdev->mddev; 5427 struct r5conf *conf = mddev->private; 5428 blk_status_t error = bi->bi_status; 5429 5430 bio_put(bi); 5431 raid_bi->bi_next = NULL; 5432 rdev_dec_pending(rdev, conf->mddev); 5433 5434 if (!error) { 5435 bio_endio(raid_bi); 5436 if (atomic_dec_and_test(&conf->active_aligned_reads)) 5437 wake_up(&conf->wait_for_quiescent); 5438 return; 5439 } 5440 5441 pr_debug("raid5_align_endio : io error...handing IO for a retry\n"); 5442 5443 add_bio_to_retry(raid_bi, conf); 5444 } 5445 5446 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio) 5447 { 5448 struct r5conf *conf = mddev->private; 5449 struct bio *align_bio; 5450 struct md_rdev *rdev; 5451 sector_t sector, end_sector; 5452 int dd_idx; 5453 bool did_inc; 5454 5455 if (!in_chunk_boundary(mddev, raid_bio)) { 5456 pr_debug("%s: non aligned\n", __func__); 5457 return 0; 5458 } 5459 5460 sector = raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 0, 5461 &dd_idx, NULL); 5462 end_sector = sector + bio_sectors(raid_bio); 5463 5464 if (r5c_big_stripe_cached(conf, sector)) 5465 return 0; 5466 5467 rdev = conf->disks[dd_idx].replacement; 5468 if (!rdev || test_bit(Faulty, &rdev->flags) || 5469 rdev->recovery_offset < end_sector) { 5470 rdev = conf->disks[dd_idx].rdev; 5471 if (!rdev) 5472 return 0; 5473 if (test_bit(Faulty, &rdev->flags) || 5474 !(test_bit(In_sync, &rdev->flags) || 5475 rdev->recovery_offset >= end_sector)) 5476 return 0; 5477 } 5478 5479 atomic_inc(&rdev->nr_pending); 5480 5481 if (rdev_has_badblock(rdev, sector, bio_sectors(raid_bio))) { 5482 rdev_dec_pending(rdev, mddev); 5483 return 0; 5484 } 5485 5486 md_account_bio(mddev, &raid_bio); 5487 raid_bio->bi_next = (void *)rdev; 5488 5489 align_bio = bio_alloc_clone(rdev->bdev, raid_bio, GFP_NOIO, 5490 &mddev->bio_set); 5491 align_bio->bi_end_io = raid5_align_endio; 5492 align_bio->bi_private = raid_bio; 5493 align_bio->bi_iter.bi_sector = sector; 5494 5495 /* No reshape active, so we can trust rdev->data_offset */ 5496 align_bio->bi_iter.bi_sector += rdev->data_offset; 5497 5498 did_inc = false; 5499 if (conf->quiesce == 0) { 5500 atomic_inc(&conf->active_aligned_reads); 5501 did_inc = true; 5502 } 5503 /* need a memory barrier to detect the race with raid5_quiesce() */ 5504 if (!did_inc || smp_load_acquire(&conf->quiesce) != 0) { 5505 /* quiesce is in progress, so we need to undo io activation and wait 5506 * for it to finish 5507 */ 5508 if (did_inc && atomic_dec_and_test(&conf->active_aligned_reads)) 5509 wake_up(&conf->wait_for_quiescent); 5510 spin_lock_irq(&conf->device_lock); 5511 wait_event_lock_irq(conf->wait_for_quiescent, conf->quiesce == 0, 5512 conf->device_lock); 5513 atomic_inc(&conf->active_aligned_reads); 5514 spin_unlock_irq(&conf->device_lock); 5515 } 5516 5517 mddev_trace_remap(mddev, align_bio, raid_bio->bi_iter.bi_sector); 5518 submit_bio_noacct(align_bio); 5519 return 1; 5520 } 5521 5522 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio) 5523 { 5524 struct bio *split; 5525 sector_t sector = raid_bio->bi_iter.bi_sector; 5526 unsigned chunk_sects = mddev->chunk_sectors; 5527 unsigned sectors = chunk_sects - (sector & (chunk_sects-1)); 5528 5529 if (sectors < bio_sectors(raid_bio)) { 5530 struct r5conf *conf = mddev->private; 5531 split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split); 5532 bio_chain(split, raid_bio); 5533 submit_bio_noacct(raid_bio); 5534 raid_bio = split; 5535 } 5536 5537 if (!raid5_read_one_chunk(mddev, raid_bio)) 5538 return raid_bio; 5539 5540 return NULL; 5541 } 5542 5543 /* __get_priority_stripe - get the next stripe to process 5544 * 5545 * Full stripe writes are allowed to pass preread active stripes up until 5546 * the bypass_threshold is exceeded. In general the bypass_count 5547 * increments when the handle_list is handled before the hold_list; however, it 5548 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a 5549 * stripe with in flight i/o. The bypass_count will be reset when the 5550 * head of the hold_list has changed, i.e. the head was promoted to the 5551 * handle_list. 5552 */ 5553 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group) 5554 __must_hold(&conf->device_lock) 5555 { 5556 struct stripe_head *sh, *tmp; 5557 struct list_head *handle_list = NULL; 5558 struct r5worker_group *wg; 5559 bool second_try = !r5c_is_writeback(conf->log) && 5560 !r5l_log_disk_error(conf); 5561 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) || 5562 r5l_log_disk_error(conf); 5563 5564 again: 5565 wg = NULL; 5566 sh = NULL; 5567 if (conf->worker_cnt_per_group == 0) { 5568 handle_list = try_loprio ? &conf->loprio_list : 5569 &conf->handle_list; 5570 } else if (group != ANY_GROUP) { 5571 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list : 5572 &conf->worker_groups[group].handle_list; 5573 wg = &conf->worker_groups[group]; 5574 } else { 5575 int i; 5576 for (i = 0; i < conf->group_cnt; i++) { 5577 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list : 5578 &conf->worker_groups[i].handle_list; 5579 wg = &conf->worker_groups[i]; 5580 if (!list_empty(handle_list)) 5581 break; 5582 } 5583 } 5584 5585 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n", 5586 __func__, 5587 list_empty(handle_list) ? "empty" : "busy", 5588 list_empty(&conf->hold_list) ? "empty" : "busy", 5589 atomic_read(&conf->pending_full_writes), conf->bypass_count); 5590 5591 if (!list_empty(handle_list)) { 5592 sh = list_entry(handle_list->next, typeof(*sh), lru); 5593 5594 if (list_empty(&conf->hold_list)) 5595 conf->bypass_count = 0; 5596 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) { 5597 if (conf->hold_list.next == conf->last_hold) 5598 conf->bypass_count++; 5599 else { 5600 conf->last_hold = conf->hold_list.next; 5601 conf->bypass_count -= conf->bypass_threshold; 5602 if (conf->bypass_count < 0) 5603 conf->bypass_count = 0; 5604 } 5605 } 5606 } else if (!list_empty(&conf->hold_list) && 5607 ((conf->bypass_threshold && 5608 conf->bypass_count > conf->bypass_threshold) || 5609 atomic_read(&conf->pending_full_writes) == 0)) { 5610 5611 list_for_each_entry(tmp, &conf->hold_list, lru) { 5612 if (conf->worker_cnt_per_group == 0 || 5613 group == ANY_GROUP || 5614 !cpu_online(tmp->cpu) || 5615 cpu_to_group(tmp->cpu) == group) { 5616 sh = tmp; 5617 break; 5618 } 5619 } 5620 5621 if (sh) { 5622 conf->bypass_count -= conf->bypass_threshold; 5623 if (conf->bypass_count < 0) 5624 conf->bypass_count = 0; 5625 } 5626 wg = NULL; 5627 } 5628 5629 if (!sh) { 5630 if (second_try) 5631 return NULL; 5632 second_try = true; 5633 try_loprio = !try_loprio; 5634 goto again; 5635 } 5636 5637 if (wg) { 5638 wg->stripes_cnt--; 5639 sh->group = NULL; 5640 } 5641 list_del_init(&sh->lru); 5642 BUG_ON(atomic_inc_return(&sh->count) != 1); 5643 return sh; 5644 } 5645 5646 struct raid5_plug_cb { 5647 struct blk_plug_cb cb; 5648 struct list_head list; 5649 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS]; 5650 }; 5651 5652 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule) 5653 { 5654 struct raid5_plug_cb *cb = container_of( 5655 blk_cb, struct raid5_plug_cb, cb); 5656 struct stripe_head *sh; 5657 struct mddev *mddev = cb->cb.data; 5658 struct r5conf *conf = mddev->private; 5659 int cnt = 0; 5660 int hash; 5661 5662 if (cb->list.next && !list_empty(&cb->list)) { 5663 spin_lock_irq(&conf->device_lock); 5664 while (!list_empty(&cb->list)) { 5665 sh = list_first_entry(&cb->list, struct stripe_head, lru); 5666 list_del_init(&sh->lru); 5667 /* 5668 * avoid race release_stripe_plug() sees 5669 * STRIPE_ON_UNPLUG_LIST clear but the stripe 5670 * is still in our list 5671 */ 5672 smp_mb__before_atomic(); 5673 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state); 5674 /* 5675 * STRIPE_ON_RELEASE_LIST could be set here. In that 5676 * case, the count is always > 1 here 5677 */ 5678 hash = sh->hash_lock_index; 5679 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]); 5680 cnt++; 5681 } 5682 spin_unlock_irq(&conf->device_lock); 5683 } 5684 release_inactive_stripe_list(conf, cb->temp_inactive_list, 5685 NR_STRIPE_HASH_LOCKS); 5686 if (!mddev_is_dm(mddev)) 5687 trace_block_unplug(mddev->gendisk->queue, cnt, !from_schedule); 5688 kfree(cb); 5689 } 5690 5691 static void release_stripe_plug(struct mddev *mddev, 5692 struct stripe_head *sh) 5693 { 5694 struct blk_plug_cb *blk_cb = blk_check_plugged( 5695 raid5_unplug, mddev, 5696 sizeof(struct raid5_plug_cb)); 5697 struct raid5_plug_cb *cb; 5698 5699 if (!blk_cb) { 5700 raid5_release_stripe(sh); 5701 return; 5702 } 5703 5704 cb = container_of(blk_cb, struct raid5_plug_cb, cb); 5705 5706 if (cb->list.next == NULL) { 5707 int i; 5708 INIT_LIST_HEAD(&cb->list); 5709 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 5710 INIT_LIST_HEAD(cb->temp_inactive_list + i); 5711 } 5712 5713 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)) 5714 list_add_tail(&sh->lru, &cb->list); 5715 else 5716 raid5_release_stripe(sh); 5717 } 5718 5719 static void make_discard_request(struct mddev *mddev, struct bio *bi) 5720 { 5721 struct r5conf *conf = mddev->private; 5722 sector_t logical_sector, last_sector; 5723 struct stripe_head *sh; 5724 int stripe_sectors; 5725 5726 /* We need to handle this when io_uring supports discard/trim */ 5727 if (WARN_ON_ONCE(bi->bi_opf & REQ_NOWAIT)) 5728 return; 5729 5730 if (mddev->reshape_position != MaxSector) 5731 /* Skip discard while reshape is happening */ 5732 return; 5733 5734 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1); 5735 last_sector = bio_end_sector(bi); 5736 5737 bi->bi_next = NULL; 5738 5739 stripe_sectors = conf->chunk_sectors * 5740 (conf->raid_disks - conf->max_degraded); 5741 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector, 5742 stripe_sectors); 5743 sector_div(last_sector, stripe_sectors); 5744 5745 logical_sector *= conf->chunk_sectors; 5746 last_sector *= conf->chunk_sectors; 5747 5748 for (; logical_sector < last_sector; 5749 logical_sector += RAID5_STRIPE_SECTORS(conf)) { 5750 DEFINE_WAIT(w); 5751 int d; 5752 again: 5753 sh = raid5_get_active_stripe(conf, NULL, logical_sector, 0); 5754 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 5755 if (test_bit(STRIPE_SYNCING, &sh->state)) { 5756 raid5_release_stripe(sh); 5757 wait_on_bit(&sh->dev[sh->pd_idx].flags, R5_Overlap, 5758 TASK_UNINTERRUPTIBLE); 5759 goto again; 5760 } 5761 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 5762 spin_lock_irq(&sh->stripe_lock); 5763 for (d = 0; d < conf->raid_disks; d++) { 5764 if (d == sh->pd_idx || d == sh->qd_idx) 5765 continue; 5766 if (sh->dev[d].towrite || sh->dev[d].toread) { 5767 set_bit(R5_Overlap, &sh->dev[d].flags); 5768 spin_unlock_irq(&sh->stripe_lock); 5769 raid5_release_stripe(sh); 5770 wait_on_bit(&sh->dev[d].flags, R5_Overlap, 5771 TASK_UNINTERRUPTIBLE); 5772 goto again; 5773 } 5774 } 5775 set_bit(STRIPE_DISCARD, &sh->state); 5776 sh->overwrite_disks = 0; 5777 for (d = 0; d < conf->raid_disks; d++) { 5778 if (d == sh->pd_idx || d == sh->qd_idx) 5779 continue; 5780 sh->dev[d].towrite = bi; 5781 set_bit(R5_OVERWRITE, &sh->dev[d].flags); 5782 bio_inc_remaining(bi); 5783 md_write_inc(mddev, bi); 5784 sh->overwrite_disks++; 5785 } 5786 spin_unlock_irq(&sh->stripe_lock); 5787 if (conf->mddev->bitmap) { 5788 for (d = 0; d < conf->raid_disks - conf->max_degraded; 5789 d++) 5790 mddev->bitmap_ops->startwrite(mddev, sh->sector, 5791 RAID5_STRIPE_SECTORS(conf), false); 5792 sh->bm_seq = conf->seq_flush + 1; 5793 set_bit(STRIPE_BIT_DELAY, &sh->state); 5794 } 5795 5796 set_bit(STRIPE_HANDLE, &sh->state); 5797 clear_bit(STRIPE_DELAYED, &sh->state); 5798 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5799 atomic_inc(&conf->preread_active_stripes); 5800 release_stripe_plug(mddev, sh); 5801 } 5802 5803 bio_endio(bi); 5804 } 5805 5806 static bool ahead_of_reshape(struct mddev *mddev, sector_t sector, 5807 sector_t reshape_sector) 5808 { 5809 return mddev->reshape_backwards ? sector < reshape_sector : 5810 sector >= reshape_sector; 5811 } 5812 5813 static bool range_ahead_of_reshape(struct mddev *mddev, sector_t min, 5814 sector_t max, sector_t reshape_sector) 5815 { 5816 return mddev->reshape_backwards ? max < reshape_sector : 5817 min >= reshape_sector; 5818 } 5819 5820 static bool stripe_ahead_of_reshape(struct mddev *mddev, struct r5conf *conf, 5821 struct stripe_head *sh) 5822 { 5823 sector_t max_sector = 0, min_sector = MaxSector; 5824 bool ret = false; 5825 int dd_idx; 5826 5827 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) { 5828 if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx) 5829 continue; 5830 5831 min_sector = min(min_sector, sh->dev[dd_idx].sector); 5832 max_sector = max(max_sector, sh->dev[dd_idx].sector); 5833 } 5834 5835 spin_lock_irq(&conf->device_lock); 5836 5837 if (!range_ahead_of_reshape(mddev, min_sector, max_sector, 5838 conf->reshape_progress)) 5839 /* mismatch, need to try again */ 5840 ret = true; 5841 5842 spin_unlock_irq(&conf->device_lock); 5843 5844 return ret; 5845 } 5846 5847 static int add_all_stripe_bios(struct r5conf *conf, 5848 struct stripe_request_ctx *ctx, struct stripe_head *sh, 5849 struct bio *bi, int forwrite, int previous) 5850 { 5851 int dd_idx; 5852 5853 spin_lock_irq(&sh->stripe_lock); 5854 5855 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) { 5856 struct r5dev *dev = &sh->dev[dd_idx]; 5857 5858 if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx) 5859 continue; 5860 5861 if (dev->sector < ctx->first_sector || 5862 dev->sector >= ctx->last_sector) 5863 continue; 5864 5865 if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) { 5866 set_bit(R5_Overlap, &dev->flags); 5867 spin_unlock_irq(&sh->stripe_lock); 5868 raid5_release_stripe(sh); 5869 /* release batch_last before wait to avoid risk of deadlock */ 5870 if (ctx->batch_last) { 5871 raid5_release_stripe(ctx->batch_last); 5872 ctx->batch_last = NULL; 5873 } 5874 md_wakeup_thread(conf->mddev->thread); 5875 wait_on_bit(&dev->flags, R5_Overlap, TASK_UNINTERRUPTIBLE); 5876 return 0; 5877 } 5878 } 5879 5880 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) { 5881 struct r5dev *dev = &sh->dev[dd_idx]; 5882 5883 if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx) 5884 continue; 5885 5886 if (dev->sector < ctx->first_sector || 5887 dev->sector >= ctx->last_sector) 5888 continue; 5889 5890 __add_stripe_bio(sh, bi, dd_idx, forwrite, previous); 5891 clear_bit((dev->sector - ctx->first_sector) >> 5892 RAID5_STRIPE_SHIFT(conf), ctx->sectors_to_do); 5893 } 5894 5895 spin_unlock_irq(&sh->stripe_lock); 5896 return 1; 5897 } 5898 5899 enum reshape_loc { 5900 LOC_NO_RESHAPE, 5901 LOC_AHEAD_OF_RESHAPE, 5902 LOC_INSIDE_RESHAPE, 5903 LOC_BEHIND_RESHAPE, 5904 }; 5905 5906 static enum reshape_loc get_reshape_loc(struct mddev *mddev, 5907 struct r5conf *conf, sector_t logical_sector) 5908 { 5909 sector_t reshape_progress, reshape_safe; 5910 /* 5911 * Spinlock is needed as reshape_progress may be 5912 * 64bit on a 32bit platform, and so it might be 5913 * possible to see a half-updated value 5914 * Of course reshape_progress could change after 5915 * the lock is dropped, so once we get a reference 5916 * to the stripe that we think it is, we will have 5917 * to check again. 5918 */ 5919 spin_lock_irq(&conf->device_lock); 5920 reshape_progress = conf->reshape_progress; 5921 reshape_safe = conf->reshape_safe; 5922 spin_unlock_irq(&conf->device_lock); 5923 if (reshape_progress == MaxSector) 5924 return LOC_NO_RESHAPE; 5925 if (ahead_of_reshape(mddev, logical_sector, reshape_progress)) 5926 return LOC_AHEAD_OF_RESHAPE; 5927 if (ahead_of_reshape(mddev, logical_sector, reshape_safe)) 5928 return LOC_INSIDE_RESHAPE; 5929 return LOC_BEHIND_RESHAPE; 5930 } 5931 5932 static enum stripe_result make_stripe_request(struct mddev *mddev, 5933 struct r5conf *conf, struct stripe_request_ctx *ctx, 5934 sector_t logical_sector, struct bio *bi) 5935 { 5936 const int rw = bio_data_dir(bi); 5937 enum stripe_result ret; 5938 struct stripe_head *sh; 5939 sector_t new_sector; 5940 int previous = 0, flags = 0; 5941 int seq, dd_idx; 5942 5943 seq = read_seqcount_begin(&conf->gen_lock); 5944 5945 if (unlikely(conf->reshape_progress != MaxSector)) { 5946 enum reshape_loc loc = get_reshape_loc(mddev, conf, 5947 logical_sector); 5948 if (loc == LOC_INSIDE_RESHAPE) { 5949 ret = STRIPE_SCHEDULE_AND_RETRY; 5950 goto out; 5951 } 5952 if (loc == LOC_AHEAD_OF_RESHAPE) 5953 previous = 1; 5954 } 5955 5956 new_sector = raid5_compute_sector(conf, logical_sector, previous, 5957 &dd_idx, NULL); 5958 pr_debug("raid456: %s, sector %llu logical %llu\n", __func__, 5959 new_sector, logical_sector); 5960 5961 if (previous) 5962 flags |= R5_GAS_PREVIOUS; 5963 if (bi->bi_opf & REQ_RAHEAD) 5964 flags |= R5_GAS_NOBLOCK; 5965 sh = raid5_get_active_stripe(conf, ctx, new_sector, flags); 5966 if (unlikely(!sh)) { 5967 /* cannot get stripe, just give-up */ 5968 bi->bi_status = BLK_STS_IOERR; 5969 return STRIPE_FAIL; 5970 } 5971 5972 if (unlikely(previous) && 5973 stripe_ahead_of_reshape(mddev, conf, sh)) { 5974 /* 5975 * Expansion moved on while waiting for a stripe. 5976 * Expansion could still move past after this 5977 * test, but as we are holding a reference to 5978 * 'sh', we know that if that happens, 5979 * STRIPE_EXPANDING will get set and the expansion 5980 * won't proceed until we finish with the stripe. 5981 */ 5982 ret = STRIPE_SCHEDULE_AND_RETRY; 5983 goto out_release; 5984 } 5985 5986 if (read_seqcount_retry(&conf->gen_lock, seq)) { 5987 /* Might have got the wrong stripe_head by accident */ 5988 ret = STRIPE_RETRY; 5989 goto out_release; 5990 } 5991 5992 if (test_bit(STRIPE_EXPANDING, &sh->state)) { 5993 md_wakeup_thread(mddev->thread); 5994 ret = STRIPE_SCHEDULE_AND_RETRY; 5995 goto out_release; 5996 } 5997 5998 if (!add_all_stripe_bios(conf, ctx, sh, bi, rw, previous)) { 5999 ret = STRIPE_RETRY; 6000 goto out; 6001 } 6002 6003 if (stripe_can_batch(sh)) { 6004 stripe_add_to_batch_list(conf, sh, ctx->batch_last); 6005 if (ctx->batch_last) 6006 raid5_release_stripe(ctx->batch_last); 6007 atomic_inc(&sh->count); 6008 ctx->batch_last = sh; 6009 } 6010 6011 if (ctx->do_flush) { 6012 set_bit(STRIPE_R5C_PREFLUSH, &sh->state); 6013 /* we only need flush for one stripe */ 6014 ctx->do_flush = false; 6015 } 6016 6017 set_bit(STRIPE_HANDLE, &sh->state); 6018 clear_bit(STRIPE_DELAYED, &sh->state); 6019 if ((!sh->batch_head || sh == sh->batch_head) && 6020 (bi->bi_opf & REQ_SYNC) && 6021 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 6022 atomic_inc(&conf->preread_active_stripes); 6023 6024 release_stripe_plug(mddev, sh); 6025 return STRIPE_SUCCESS; 6026 6027 out_release: 6028 raid5_release_stripe(sh); 6029 out: 6030 if (ret == STRIPE_SCHEDULE_AND_RETRY && reshape_interrupted(mddev)) { 6031 bi->bi_status = BLK_STS_RESOURCE; 6032 ret = STRIPE_WAIT_RESHAPE; 6033 pr_err_ratelimited("dm-raid456: io across reshape position while reshape can't make progress"); 6034 } 6035 return ret; 6036 } 6037 6038 /* 6039 * If the bio covers multiple data disks, find sector within the bio that has 6040 * the lowest chunk offset in the first chunk. 6041 */ 6042 static sector_t raid5_bio_lowest_chunk_sector(struct r5conf *conf, 6043 struct bio *bi) 6044 { 6045 int sectors_per_chunk = conf->chunk_sectors; 6046 int raid_disks = conf->raid_disks; 6047 int dd_idx; 6048 struct stripe_head sh; 6049 unsigned int chunk_offset; 6050 sector_t r_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1); 6051 sector_t sector; 6052 6053 /* We pass in fake stripe_head to get back parity disk numbers */ 6054 sector = raid5_compute_sector(conf, r_sector, 0, &dd_idx, &sh); 6055 chunk_offset = sector_div(sector, sectors_per_chunk); 6056 if (sectors_per_chunk - chunk_offset >= bio_sectors(bi)) 6057 return r_sector; 6058 /* 6059 * Bio crosses to the next data disk. Check whether it's in the same 6060 * chunk. 6061 */ 6062 dd_idx++; 6063 while (dd_idx == sh.pd_idx || dd_idx == sh.qd_idx) 6064 dd_idx++; 6065 if (dd_idx >= raid_disks) 6066 return r_sector; 6067 return r_sector + sectors_per_chunk - chunk_offset; 6068 } 6069 6070 static bool raid5_make_request(struct mddev *mddev, struct bio * bi) 6071 { 6072 DEFINE_WAIT_FUNC(wait, woken_wake_function); 6073 bool on_wq; 6074 struct r5conf *conf = mddev->private; 6075 sector_t logical_sector; 6076 struct stripe_request_ctx ctx = {}; 6077 const int rw = bio_data_dir(bi); 6078 enum stripe_result res; 6079 int s, stripe_cnt; 6080 6081 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) { 6082 int ret = log_handle_flush_request(conf, bi); 6083 6084 if (ret == 0) 6085 return true; 6086 if (ret == -ENODEV) { 6087 if (md_flush_request(mddev, bi)) 6088 return true; 6089 } 6090 /* ret == -EAGAIN, fallback */ 6091 /* 6092 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH, 6093 * we need to flush journal device 6094 */ 6095 ctx.do_flush = bi->bi_opf & REQ_PREFLUSH; 6096 } 6097 6098 md_write_start(mddev, bi); 6099 /* 6100 * If array is degraded, better not do chunk aligned read because 6101 * later we might have to read it again in order to reconstruct 6102 * data on failed drives. 6103 */ 6104 if (rw == READ && mddev->degraded == 0 && 6105 mddev->reshape_position == MaxSector) { 6106 bi = chunk_aligned_read(mddev, bi); 6107 if (!bi) 6108 return true; 6109 } 6110 6111 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) { 6112 make_discard_request(mddev, bi); 6113 md_write_end(mddev); 6114 return true; 6115 } 6116 6117 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1); 6118 ctx.first_sector = logical_sector; 6119 ctx.last_sector = bio_end_sector(bi); 6120 bi->bi_next = NULL; 6121 6122 stripe_cnt = DIV_ROUND_UP_SECTOR_T(ctx.last_sector - logical_sector, 6123 RAID5_STRIPE_SECTORS(conf)); 6124 bitmap_set(ctx.sectors_to_do, 0, stripe_cnt); 6125 6126 pr_debug("raid456: %s, logical %llu to %llu\n", __func__, 6127 bi->bi_iter.bi_sector, ctx.last_sector); 6128 6129 /* Bail out if conflicts with reshape and REQ_NOWAIT is set */ 6130 if ((bi->bi_opf & REQ_NOWAIT) && 6131 (conf->reshape_progress != MaxSector) && 6132 get_reshape_loc(mddev, conf, logical_sector) == LOC_INSIDE_RESHAPE) { 6133 bio_wouldblock_error(bi); 6134 if (rw == WRITE) 6135 md_write_end(mddev); 6136 return true; 6137 } 6138 md_account_bio(mddev, &bi); 6139 6140 /* 6141 * Lets start with the stripe with the lowest chunk offset in the first 6142 * chunk. That has the best chances of creating IOs adjacent to 6143 * previous IOs in case of sequential IO and thus creates the most 6144 * sequential IO pattern. We don't bother with the optimization when 6145 * reshaping as the performance benefit is not worth the complexity. 6146 */ 6147 if (likely(conf->reshape_progress == MaxSector)) { 6148 logical_sector = raid5_bio_lowest_chunk_sector(conf, bi); 6149 on_wq = false; 6150 } else { 6151 add_wait_queue(&conf->wait_for_reshape, &wait); 6152 on_wq = true; 6153 } 6154 s = (logical_sector - ctx.first_sector) >> RAID5_STRIPE_SHIFT(conf); 6155 6156 while (1) { 6157 res = make_stripe_request(mddev, conf, &ctx, logical_sector, 6158 bi); 6159 if (res == STRIPE_FAIL || res == STRIPE_WAIT_RESHAPE) 6160 break; 6161 6162 if (res == STRIPE_RETRY) 6163 continue; 6164 6165 if (res == STRIPE_SCHEDULE_AND_RETRY) { 6166 WARN_ON_ONCE(!on_wq); 6167 /* 6168 * Must release the reference to batch_last before 6169 * scheduling and waiting for work to be done, 6170 * otherwise the batch_last stripe head could prevent 6171 * raid5_activate_delayed() from making progress 6172 * and thus deadlocking. 6173 */ 6174 if (ctx.batch_last) { 6175 raid5_release_stripe(ctx.batch_last); 6176 ctx.batch_last = NULL; 6177 } 6178 6179 wait_woken(&wait, TASK_UNINTERRUPTIBLE, 6180 MAX_SCHEDULE_TIMEOUT); 6181 continue; 6182 } 6183 6184 s = find_next_bit_wrap(ctx.sectors_to_do, stripe_cnt, s); 6185 if (s == stripe_cnt) 6186 break; 6187 6188 logical_sector = ctx.first_sector + 6189 (s << RAID5_STRIPE_SHIFT(conf)); 6190 } 6191 if (unlikely(on_wq)) 6192 remove_wait_queue(&conf->wait_for_reshape, &wait); 6193 6194 if (ctx.batch_last) 6195 raid5_release_stripe(ctx.batch_last); 6196 6197 if (rw == WRITE) 6198 md_write_end(mddev); 6199 if (res == STRIPE_WAIT_RESHAPE) { 6200 md_free_cloned_bio(bi); 6201 return false; 6202 } 6203 6204 bio_endio(bi); 6205 return true; 6206 } 6207 6208 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks); 6209 6210 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped) 6211 { 6212 /* reshaping is quite different to recovery/resync so it is 6213 * handled quite separately ... here. 6214 * 6215 * On each call to sync_request, we gather one chunk worth of 6216 * destination stripes and flag them as expanding. 6217 * Then we find all the source stripes and request reads. 6218 * As the reads complete, handle_stripe will copy the data 6219 * into the destination stripe and release that stripe. 6220 */ 6221 struct r5conf *conf = mddev->private; 6222 struct stripe_head *sh; 6223 struct md_rdev *rdev; 6224 sector_t first_sector, last_sector; 6225 int raid_disks = conf->previous_raid_disks; 6226 int data_disks = raid_disks - conf->max_degraded; 6227 int new_data_disks = conf->raid_disks - conf->max_degraded; 6228 int i; 6229 int dd_idx; 6230 sector_t writepos, readpos, safepos; 6231 sector_t stripe_addr; 6232 int reshape_sectors; 6233 struct list_head stripes; 6234 sector_t retn; 6235 6236 if (sector_nr == 0) { 6237 /* If restarting in the middle, skip the initial sectors */ 6238 if (mddev->reshape_backwards && 6239 conf->reshape_progress < raid5_size(mddev, 0, 0)) { 6240 sector_nr = raid5_size(mddev, 0, 0) 6241 - conf->reshape_progress; 6242 } else if (mddev->reshape_backwards && 6243 conf->reshape_progress == MaxSector) { 6244 /* shouldn't happen, but just in case, finish up.*/ 6245 sector_nr = MaxSector; 6246 } else if (!mddev->reshape_backwards && 6247 conf->reshape_progress > 0) 6248 sector_nr = conf->reshape_progress; 6249 sector_div(sector_nr, new_data_disks); 6250 if (sector_nr) { 6251 mddev->curr_resync_completed = sector_nr; 6252 sysfs_notify_dirent_safe(mddev->sysfs_completed); 6253 *skipped = 1; 6254 retn = sector_nr; 6255 goto finish; 6256 } 6257 } 6258 6259 /* We need to process a full chunk at a time. 6260 * If old and new chunk sizes differ, we need to process the 6261 * largest of these 6262 */ 6263 6264 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors); 6265 6266 /* We update the metadata at least every 10 seconds, or when 6267 * the data about to be copied would over-write the source of 6268 * the data at the front of the range. i.e. one new_stripe 6269 * along from reshape_progress new_maps to after where 6270 * reshape_safe old_maps to 6271 */ 6272 writepos = conf->reshape_progress; 6273 sector_div(writepos, new_data_disks); 6274 readpos = conf->reshape_progress; 6275 sector_div(readpos, data_disks); 6276 safepos = conf->reshape_safe; 6277 sector_div(safepos, data_disks); 6278 if (mddev->reshape_backwards) { 6279 if (WARN_ON(writepos < reshape_sectors)) 6280 return MaxSector; 6281 6282 writepos -= reshape_sectors; 6283 readpos += reshape_sectors; 6284 safepos += reshape_sectors; 6285 } else { 6286 writepos += reshape_sectors; 6287 /* readpos and safepos are worst-case calculations. 6288 * A negative number is overly pessimistic, and causes 6289 * obvious problems for unsigned storage. So clip to 0. 6290 */ 6291 readpos -= min_t(sector_t, reshape_sectors, readpos); 6292 safepos -= min_t(sector_t, reshape_sectors, safepos); 6293 } 6294 6295 /* Having calculated the 'writepos' possibly use it 6296 * to set 'stripe_addr' which is where we will write to. 6297 */ 6298 if (mddev->reshape_backwards) { 6299 if (WARN_ON(conf->reshape_progress == 0)) 6300 return MaxSector; 6301 6302 stripe_addr = writepos; 6303 if (WARN_ON((mddev->dev_sectors & 6304 ~((sector_t)reshape_sectors - 1)) - 6305 reshape_sectors - stripe_addr != sector_nr)) 6306 return MaxSector; 6307 } else { 6308 if (WARN_ON(writepos != sector_nr + reshape_sectors)) 6309 return MaxSector; 6310 6311 stripe_addr = sector_nr; 6312 } 6313 6314 /* 'writepos' is the most advanced device address we might write. 6315 * 'readpos' is the least advanced device address we might read. 6316 * 'safepos' is the least address recorded in the metadata as having 6317 * been reshaped. 6318 * If there is a min_offset_diff, these are adjusted either by 6319 * increasing the safepos/readpos if diff is negative, or 6320 * increasing writepos if diff is positive. 6321 * If 'readpos' is then behind 'writepos', there is no way that we can 6322 * ensure safety in the face of a crash - that must be done by userspace 6323 * making a backup of the data. So in that case there is no particular 6324 * rush to update metadata. 6325 * Otherwise if 'safepos' is behind 'writepos', then we really need to 6326 * update the metadata to advance 'safepos' to match 'readpos' so that 6327 * we can be safe in the event of a crash. 6328 * So we insist on updating metadata if safepos is behind writepos and 6329 * readpos is beyond writepos. 6330 * In any case, update the metadata every 10 seconds. 6331 * Maybe that number should be configurable, but I'm not sure it is 6332 * worth it.... maybe it could be a multiple of safemode_delay??? 6333 */ 6334 if (conf->min_offset_diff < 0) { 6335 safepos += -conf->min_offset_diff; 6336 readpos += -conf->min_offset_diff; 6337 } else 6338 writepos += conf->min_offset_diff; 6339 6340 if ((mddev->reshape_backwards 6341 ? (safepos > writepos && readpos < writepos) 6342 : (safepos < writepos && readpos > writepos)) || 6343 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 6344 /* Cannot proceed until we've updated the superblock... */ 6345 wait_event(conf->wait_for_reshape, 6346 atomic_read(&conf->reshape_stripes)==0 6347 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 6348 if (atomic_read(&conf->reshape_stripes) != 0) 6349 return 0; 6350 mddev->reshape_position = conf->reshape_progress; 6351 mddev->curr_resync_completed = sector_nr; 6352 if (!mddev->reshape_backwards) 6353 /* Can update recovery_offset */ 6354 rdev_for_each(rdev, mddev) 6355 if (rdev->raid_disk >= 0 && 6356 !test_bit(Journal, &rdev->flags) && 6357 !test_bit(In_sync, &rdev->flags) && 6358 rdev->recovery_offset < sector_nr) 6359 rdev->recovery_offset = sector_nr; 6360 6361 conf->reshape_checkpoint = jiffies; 6362 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6363 md_wakeup_thread(mddev->thread); 6364 wait_event(mddev->sb_wait, mddev->sb_flags == 0 || 6365 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 6366 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6367 return 0; 6368 spin_lock_irq(&conf->device_lock); 6369 conf->reshape_safe = mddev->reshape_position; 6370 spin_unlock_irq(&conf->device_lock); 6371 wake_up(&conf->wait_for_reshape); 6372 sysfs_notify_dirent_safe(mddev->sysfs_completed); 6373 } 6374 6375 INIT_LIST_HEAD(&stripes); 6376 for (i = 0; i < reshape_sectors; i += RAID5_STRIPE_SECTORS(conf)) { 6377 int j; 6378 int skipped_disk = 0; 6379 sh = raid5_get_active_stripe(conf, NULL, stripe_addr+i, 6380 R5_GAS_NOQUIESCE); 6381 set_bit(STRIPE_EXPANDING, &sh->state); 6382 atomic_inc(&conf->reshape_stripes); 6383 /* If any of this stripe is beyond the end of the old 6384 * array, then we need to zero those blocks 6385 */ 6386 for (j=sh->disks; j--;) { 6387 sector_t s; 6388 if (j == sh->pd_idx) 6389 continue; 6390 if (conf->level == 6 && 6391 j == sh->qd_idx) 6392 continue; 6393 s = raid5_compute_blocknr(sh, j, 0); 6394 if (s < raid5_size(mddev, 0, 0)) { 6395 skipped_disk = 1; 6396 continue; 6397 } 6398 memset(page_address(sh->dev[j].page), 0, RAID5_STRIPE_SIZE(conf)); 6399 set_bit(R5_Expanded, &sh->dev[j].flags); 6400 set_bit(R5_UPTODATE, &sh->dev[j].flags); 6401 } 6402 if (!skipped_disk) { 6403 set_bit(STRIPE_EXPAND_READY, &sh->state); 6404 set_bit(STRIPE_HANDLE, &sh->state); 6405 } 6406 list_add(&sh->lru, &stripes); 6407 } 6408 spin_lock_irq(&conf->device_lock); 6409 if (mddev->reshape_backwards) 6410 conf->reshape_progress -= reshape_sectors * new_data_disks; 6411 else 6412 conf->reshape_progress += reshape_sectors * new_data_disks; 6413 spin_unlock_irq(&conf->device_lock); 6414 /* Ok, those stripe are ready. We can start scheduling 6415 * reads on the source stripes. 6416 * The source stripes are determined by mapping the first and last 6417 * block on the destination stripes. 6418 */ 6419 first_sector = 6420 raid5_compute_sector(conf, stripe_addr*(new_data_disks), 6421 1, &dd_idx, NULL); 6422 last_sector = 6423 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors) 6424 * new_data_disks - 1), 6425 1, &dd_idx, NULL); 6426 if (last_sector >= mddev->dev_sectors) 6427 last_sector = mddev->dev_sectors - 1; 6428 while (first_sector <= last_sector) { 6429 sh = raid5_get_active_stripe(conf, NULL, first_sector, 6430 R5_GAS_PREVIOUS | R5_GAS_NOQUIESCE); 6431 set_bit(STRIPE_EXPAND_SOURCE, &sh->state); 6432 set_bit(STRIPE_HANDLE, &sh->state); 6433 raid5_release_stripe(sh); 6434 first_sector += RAID5_STRIPE_SECTORS(conf); 6435 } 6436 /* Now that the sources are clearly marked, we can release 6437 * the destination stripes 6438 */ 6439 while (!list_empty(&stripes)) { 6440 sh = list_entry(stripes.next, struct stripe_head, lru); 6441 list_del_init(&sh->lru); 6442 raid5_release_stripe(sh); 6443 } 6444 /* If this takes us to the resync_max point where we have to pause, 6445 * then we need to write out the superblock. 6446 */ 6447 sector_nr += reshape_sectors; 6448 retn = reshape_sectors; 6449 finish: 6450 if (mddev->curr_resync_completed > mddev->resync_max || 6451 (sector_nr - mddev->curr_resync_completed) * 2 6452 >= mddev->resync_max - mddev->curr_resync_completed) { 6453 /* Cannot proceed until we've updated the superblock... */ 6454 wait_event(conf->wait_for_reshape, 6455 atomic_read(&conf->reshape_stripes) == 0 6456 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 6457 if (atomic_read(&conf->reshape_stripes) != 0) 6458 goto ret; 6459 mddev->reshape_position = conf->reshape_progress; 6460 mddev->curr_resync_completed = sector_nr; 6461 if (!mddev->reshape_backwards) 6462 /* Can update recovery_offset */ 6463 rdev_for_each(rdev, mddev) 6464 if (rdev->raid_disk >= 0 && 6465 !test_bit(Journal, &rdev->flags) && 6466 !test_bit(In_sync, &rdev->flags) && 6467 rdev->recovery_offset < sector_nr) 6468 rdev->recovery_offset = sector_nr; 6469 conf->reshape_checkpoint = jiffies; 6470 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6471 md_wakeup_thread(mddev->thread); 6472 wait_event(mddev->sb_wait, 6473 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) 6474 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 6475 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6476 goto ret; 6477 spin_lock_irq(&conf->device_lock); 6478 conf->reshape_safe = mddev->reshape_position; 6479 spin_unlock_irq(&conf->device_lock); 6480 wake_up(&conf->wait_for_reshape); 6481 sysfs_notify_dirent_safe(mddev->sysfs_completed); 6482 } 6483 ret: 6484 return retn; 6485 } 6486 6487 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr, 6488 sector_t max_sector, int *skipped) 6489 { 6490 struct r5conf *conf = mddev->private; 6491 struct stripe_head *sh; 6492 sector_t sync_blocks; 6493 bool still_degraded = false; 6494 int i; 6495 6496 if (sector_nr >= max_sector) { 6497 /* just being told to finish up .. nothing much to do */ 6498 6499 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 6500 end_reshape(conf); 6501 return 0; 6502 } 6503 6504 if (mddev->curr_resync < max_sector) /* aborted */ 6505 mddev->bitmap_ops->end_sync(mddev, mddev->curr_resync, 6506 &sync_blocks); 6507 else /* completed sync */ 6508 conf->fullsync = 0; 6509 mddev->bitmap_ops->close_sync(mddev); 6510 6511 return 0; 6512 } 6513 6514 /* Allow raid5_quiesce to complete */ 6515 wait_event(conf->wait_for_reshape, conf->quiesce != 2); 6516 6517 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 6518 return reshape_request(mddev, sector_nr, skipped); 6519 6520 /* No need to check resync_max as we never do more than one 6521 * stripe, and as resync_max will always be on a chunk boundary, 6522 * if the check in md_do_sync didn't fire, there is no chance 6523 * of overstepping resync_max here 6524 */ 6525 6526 /* if there is too many failed drives and we are trying 6527 * to resync, then assert that we are finished, because there is 6528 * nothing we can do. 6529 */ 6530 if (mddev->degraded >= conf->max_degraded && 6531 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 6532 sector_t rv = mddev->dev_sectors - sector_nr; 6533 *skipped = 1; 6534 return rv; 6535 } 6536 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 6537 !conf->fullsync && 6538 !mddev->bitmap_ops->start_sync(mddev, sector_nr, &sync_blocks, 6539 true) && 6540 sync_blocks >= RAID5_STRIPE_SECTORS(conf)) { 6541 /* we can skip this block, and probably more */ 6542 do_div(sync_blocks, RAID5_STRIPE_SECTORS(conf)); 6543 *skipped = 1; 6544 /* keep things rounded to whole stripes */ 6545 return sync_blocks * RAID5_STRIPE_SECTORS(conf); 6546 } 6547 6548 mddev->bitmap_ops->cond_end_sync(mddev, sector_nr, false); 6549 6550 sh = raid5_get_active_stripe(conf, NULL, sector_nr, 6551 R5_GAS_NOBLOCK); 6552 if (sh == NULL) { 6553 sh = raid5_get_active_stripe(conf, NULL, sector_nr, 0); 6554 /* make sure we don't swamp the stripe cache if someone else 6555 * is trying to get access 6556 */ 6557 schedule_timeout_uninterruptible(1); 6558 } 6559 /* Need to check if array will still be degraded after recovery/resync 6560 * Note in case of > 1 drive failures it's possible we're rebuilding 6561 * one drive while leaving another faulty drive in array. 6562 */ 6563 for (i = 0; i < conf->raid_disks; i++) { 6564 struct md_rdev *rdev = conf->disks[i].rdev; 6565 6566 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) 6567 still_degraded = true; 6568 } 6569 6570 mddev->bitmap_ops->start_sync(mddev, sector_nr, &sync_blocks, 6571 still_degraded); 6572 6573 set_bit(STRIPE_SYNC_REQUESTED, &sh->state); 6574 set_bit(STRIPE_HANDLE, &sh->state); 6575 6576 raid5_release_stripe(sh); 6577 6578 return RAID5_STRIPE_SECTORS(conf); 6579 } 6580 6581 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio, 6582 unsigned int offset) 6583 { 6584 /* We may not be able to submit a whole bio at once as there 6585 * may not be enough stripe_heads available. 6586 * We cannot pre-allocate enough stripe_heads as we may need 6587 * more than exist in the cache (if we allow ever large chunks). 6588 * So we do one stripe head at a time and record in 6589 * ->bi_hw_segments how many have been done. 6590 * 6591 * We *know* that this entire raid_bio is in one chunk, so 6592 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector. 6593 */ 6594 struct stripe_head *sh; 6595 int dd_idx; 6596 sector_t sector, logical_sector, last_sector; 6597 int scnt = 0; 6598 int handled = 0; 6599 6600 logical_sector = raid_bio->bi_iter.bi_sector & 6601 ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1); 6602 sector = raid5_compute_sector(conf, logical_sector, 6603 0, &dd_idx, NULL); 6604 last_sector = bio_end_sector(raid_bio); 6605 6606 for (; logical_sector < last_sector; 6607 logical_sector += RAID5_STRIPE_SECTORS(conf), 6608 sector += RAID5_STRIPE_SECTORS(conf), 6609 scnt++) { 6610 6611 if (scnt < offset) 6612 /* already done this stripe */ 6613 continue; 6614 6615 sh = raid5_get_active_stripe(conf, NULL, sector, 6616 R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE); 6617 if (!sh) { 6618 /* failed to get a stripe - must wait */ 6619 conf->retry_read_aligned = raid_bio; 6620 conf->retry_read_offset = scnt; 6621 return handled; 6622 } 6623 6624 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) { 6625 raid5_release_stripe(sh); 6626 conf->retry_read_aligned = raid_bio; 6627 conf->retry_read_offset = scnt; 6628 return handled; 6629 } 6630 6631 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags); 6632 handle_stripe(sh); 6633 raid5_release_stripe(sh); 6634 handled++; 6635 } 6636 6637 bio_endio(raid_bio); 6638 6639 if (atomic_dec_and_test(&conf->active_aligned_reads)) 6640 wake_up(&conf->wait_for_quiescent); 6641 return handled; 6642 } 6643 6644 static int handle_active_stripes(struct r5conf *conf, int group, 6645 struct r5worker *worker, 6646 struct list_head *temp_inactive_list) 6647 __must_hold(&conf->device_lock) 6648 { 6649 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh; 6650 int i, batch_size = 0, hash; 6651 bool release_inactive = false; 6652 6653 while (batch_size < MAX_STRIPE_BATCH && 6654 (sh = __get_priority_stripe(conf, group)) != NULL) 6655 batch[batch_size++] = sh; 6656 6657 if (batch_size == 0) { 6658 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 6659 if (!list_empty(temp_inactive_list + i)) 6660 break; 6661 if (i == NR_STRIPE_HASH_LOCKS) { 6662 spin_unlock_irq(&conf->device_lock); 6663 log_flush_stripe_to_raid(conf); 6664 spin_lock_irq(&conf->device_lock); 6665 return batch_size; 6666 } 6667 release_inactive = true; 6668 } 6669 spin_unlock_irq(&conf->device_lock); 6670 6671 release_inactive_stripe_list(conf, temp_inactive_list, 6672 NR_STRIPE_HASH_LOCKS); 6673 6674 r5l_flush_stripe_to_raid(conf->log); 6675 if (release_inactive) { 6676 spin_lock_irq(&conf->device_lock); 6677 return 0; 6678 } 6679 6680 for (i = 0; i < batch_size; i++) 6681 handle_stripe(batch[i]); 6682 log_write_stripe_run(conf); 6683 6684 cond_resched(); 6685 6686 spin_lock_irq(&conf->device_lock); 6687 for (i = 0; i < batch_size; i++) { 6688 hash = batch[i]->hash_lock_index; 6689 __release_stripe(conf, batch[i], &temp_inactive_list[hash]); 6690 } 6691 return batch_size; 6692 } 6693 6694 static void raid5_do_work(struct work_struct *work) 6695 { 6696 struct r5worker *worker = container_of(work, struct r5worker, work); 6697 struct r5worker_group *group = worker->group; 6698 struct r5conf *conf = group->conf; 6699 struct mddev *mddev = conf->mddev; 6700 int group_id = group - conf->worker_groups; 6701 int handled; 6702 struct blk_plug plug; 6703 6704 pr_debug("+++ raid5worker active\n"); 6705 6706 blk_start_plug(&plug); 6707 handled = 0; 6708 spin_lock_irq(&conf->device_lock); 6709 while (1) { 6710 int batch_size, released; 6711 6712 released = release_stripe_list(conf, worker->temp_inactive_list); 6713 6714 batch_size = handle_active_stripes(conf, group_id, worker, 6715 worker->temp_inactive_list); 6716 worker->working = false; 6717 if (!batch_size && !released) 6718 break; 6719 handled += batch_size; 6720 wait_event_lock_irq(mddev->sb_wait, 6721 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags), 6722 conf->device_lock); 6723 } 6724 pr_debug("%d stripes handled\n", handled); 6725 6726 spin_unlock_irq(&conf->device_lock); 6727 6728 flush_deferred_bios(conf); 6729 6730 r5l_flush_stripe_to_raid(conf->log); 6731 6732 async_tx_issue_pending_all(); 6733 blk_finish_plug(&plug); 6734 6735 pr_debug("--- raid5worker inactive\n"); 6736 } 6737 6738 /* 6739 * This is our raid5 kernel thread. 6740 * 6741 * We scan the hash table for stripes which can be handled now. 6742 * During the scan, completed stripes are saved for us by the interrupt 6743 * handler, so that they will not have to wait for our next wakeup. 6744 */ 6745 static void raid5d(struct md_thread *thread) 6746 { 6747 struct mddev *mddev = thread->mddev; 6748 struct r5conf *conf = mddev->private; 6749 int handled; 6750 struct blk_plug plug; 6751 6752 pr_debug("+++ raid5d active\n"); 6753 6754 md_check_recovery(mddev); 6755 6756 blk_start_plug(&plug); 6757 handled = 0; 6758 spin_lock_irq(&conf->device_lock); 6759 while (1) { 6760 struct bio *bio; 6761 int batch_size, released; 6762 unsigned int offset; 6763 6764 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 6765 break; 6766 6767 released = release_stripe_list(conf, conf->temp_inactive_list); 6768 if (released) 6769 clear_bit(R5_DID_ALLOC, &conf->cache_state); 6770 6771 if ( 6772 !list_empty(&conf->bitmap_list)) { 6773 /* Now is a good time to flush some bitmap updates */ 6774 conf->seq_flush++; 6775 spin_unlock_irq(&conf->device_lock); 6776 mddev->bitmap_ops->unplug(mddev, true); 6777 spin_lock_irq(&conf->device_lock); 6778 conf->seq_write = conf->seq_flush; 6779 activate_bit_delay(conf, conf->temp_inactive_list); 6780 } 6781 raid5_activate_delayed(conf); 6782 6783 while ((bio = remove_bio_from_retry(conf, &offset))) { 6784 int ok; 6785 spin_unlock_irq(&conf->device_lock); 6786 ok = retry_aligned_read(conf, bio, offset); 6787 spin_lock_irq(&conf->device_lock); 6788 if (!ok) 6789 break; 6790 handled++; 6791 } 6792 6793 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL, 6794 conf->temp_inactive_list); 6795 if (!batch_size && !released) 6796 break; 6797 handled += batch_size; 6798 6799 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) { 6800 spin_unlock_irq(&conf->device_lock); 6801 md_check_recovery(mddev); 6802 spin_lock_irq(&conf->device_lock); 6803 } 6804 } 6805 pr_debug("%d stripes handled\n", handled); 6806 6807 spin_unlock_irq(&conf->device_lock); 6808 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) && 6809 mutex_trylock(&conf->cache_size_mutex)) { 6810 grow_one_stripe(conf, __GFP_NOWARN); 6811 /* Set flag even if allocation failed. This helps 6812 * slow down allocation requests when mem is short 6813 */ 6814 set_bit(R5_DID_ALLOC, &conf->cache_state); 6815 mutex_unlock(&conf->cache_size_mutex); 6816 } 6817 6818 flush_deferred_bios(conf); 6819 6820 r5l_flush_stripe_to_raid(conf->log); 6821 6822 async_tx_issue_pending_all(); 6823 blk_finish_plug(&plug); 6824 6825 pr_debug("--- raid5d inactive\n"); 6826 } 6827 6828 static ssize_t 6829 raid5_show_stripe_cache_size(struct mddev *mddev, char *page) 6830 { 6831 struct r5conf *conf; 6832 int ret = 0; 6833 spin_lock(&mddev->lock); 6834 conf = mddev->private; 6835 if (conf) 6836 ret = sprintf(page, "%d\n", conf->min_nr_stripes); 6837 spin_unlock(&mddev->lock); 6838 return ret; 6839 } 6840 6841 int 6842 raid5_set_cache_size(struct mddev *mddev, int size) 6843 { 6844 int result = 0; 6845 struct r5conf *conf = mddev->private; 6846 6847 if (size <= 16 || size > 32768) 6848 return -EINVAL; 6849 6850 WRITE_ONCE(conf->min_nr_stripes, size); 6851 mutex_lock(&conf->cache_size_mutex); 6852 while (size < conf->max_nr_stripes && 6853 drop_one_stripe(conf)) 6854 ; 6855 mutex_unlock(&conf->cache_size_mutex); 6856 6857 md_allow_write(mddev); 6858 6859 mutex_lock(&conf->cache_size_mutex); 6860 while (size > conf->max_nr_stripes) 6861 if (!grow_one_stripe(conf, GFP_KERNEL)) { 6862 WRITE_ONCE(conf->min_nr_stripes, conf->max_nr_stripes); 6863 result = -ENOMEM; 6864 break; 6865 } 6866 mutex_unlock(&conf->cache_size_mutex); 6867 6868 return result; 6869 } 6870 EXPORT_SYMBOL(raid5_set_cache_size); 6871 6872 static ssize_t 6873 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len) 6874 { 6875 struct r5conf *conf; 6876 unsigned long new; 6877 int err; 6878 6879 if (len >= PAGE_SIZE) 6880 return -EINVAL; 6881 if (kstrtoul(page, 10, &new)) 6882 return -EINVAL; 6883 err = mddev_lock(mddev); 6884 if (err) 6885 return err; 6886 conf = mddev->private; 6887 if (!conf) 6888 err = -ENODEV; 6889 else 6890 err = raid5_set_cache_size(mddev, new); 6891 mddev_unlock(mddev); 6892 6893 return err ?: len; 6894 } 6895 6896 static struct md_sysfs_entry 6897 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR, 6898 raid5_show_stripe_cache_size, 6899 raid5_store_stripe_cache_size); 6900 6901 static ssize_t 6902 raid5_show_rmw_level(struct mddev *mddev, char *page) 6903 { 6904 struct r5conf *conf = mddev->private; 6905 if (conf) 6906 return sprintf(page, "%d\n", conf->rmw_level); 6907 else 6908 return 0; 6909 } 6910 6911 static ssize_t 6912 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len) 6913 { 6914 struct r5conf *conf = mddev->private; 6915 unsigned long new; 6916 6917 if (!conf) 6918 return -ENODEV; 6919 6920 if (len >= PAGE_SIZE) 6921 return -EINVAL; 6922 6923 if (kstrtoul(page, 10, &new)) 6924 return -EINVAL; 6925 6926 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome) 6927 return -EINVAL; 6928 6929 if (new != PARITY_DISABLE_RMW && 6930 new != PARITY_ENABLE_RMW && 6931 new != PARITY_PREFER_RMW) 6932 return -EINVAL; 6933 6934 conf->rmw_level = new; 6935 return len; 6936 } 6937 6938 static struct md_sysfs_entry 6939 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR, 6940 raid5_show_rmw_level, 6941 raid5_store_rmw_level); 6942 6943 static ssize_t 6944 raid5_show_stripe_size(struct mddev *mddev, char *page) 6945 { 6946 struct r5conf *conf; 6947 int ret = 0; 6948 6949 spin_lock(&mddev->lock); 6950 conf = mddev->private; 6951 if (conf) 6952 ret = sprintf(page, "%lu\n", RAID5_STRIPE_SIZE(conf)); 6953 spin_unlock(&mddev->lock); 6954 return ret; 6955 } 6956 6957 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 6958 static ssize_t 6959 raid5_store_stripe_size(struct mddev *mddev, const char *page, size_t len) 6960 { 6961 struct r5conf *conf; 6962 unsigned long new; 6963 int err; 6964 int size; 6965 6966 if (len >= PAGE_SIZE) 6967 return -EINVAL; 6968 if (kstrtoul(page, 10, &new)) 6969 return -EINVAL; 6970 6971 /* 6972 * The value should not be bigger than PAGE_SIZE. It requires to 6973 * be multiple of DEFAULT_STRIPE_SIZE and the value should be power 6974 * of two. 6975 */ 6976 if (new % DEFAULT_STRIPE_SIZE != 0 || 6977 new > PAGE_SIZE || new == 0 || 6978 new != roundup_pow_of_two(new)) 6979 return -EINVAL; 6980 6981 err = mddev_suspend_and_lock(mddev); 6982 if (err) 6983 return err; 6984 6985 conf = mddev->private; 6986 if (!conf) { 6987 err = -ENODEV; 6988 goto out_unlock; 6989 } 6990 6991 if (new == conf->stripe_size) 6992 goto out_unlock; 6993 6994 pr_debug("md/raid: change stripe_size from %lu to %lu\n", 6995 conf->stripe_size, new); 6996 6997 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 6998 mddev->reshape_position != MaxSector || mddev->sysfs_active) { 6999 err = -EBUSY; 7000 goto out_unlock; 7001 } 7002 7003 mutex_lock(&conf->cache_size_mutex); 7004 size = conf->max_nr_stripes; 7005 7006 shrink_stripes(conf); 7007 7008 conf->stripe_size = new; 7009 conf->stripe_shift = ilog2(new) - 9; 7010 conf->stripe_sectors = new >> 9; 7011 if (grow_stripes(conf, size)) { 7012 pr_warn("md/raid:%s: couldn't allocate buffers\n", 7013 mdname(mddev)); 7014 err = -ENOMEM; 7015 } 7016 mutex_unlock(&conf->cache_size_mutex); 7017 7018 out_unlock: 7019 mddev_unlock_and_resume(mddev); 7020 return err ?: len; 7021 } 7022 7023 static struct md_sysfs_entry 7024 raid5_stripe_size = __ATTR(stripe_size, 0644, 7025 raid5_show_stripe_size, 7026 raid5_store_stripe_size); 7027 #else 7028 static struct md_sysfs_entry 7029 raid5_stripe_size = __ATTR(stripe_size, 0444, 7030 raid5_show_stripe_size, 7031 NULL); 7032 #endif 7033 7034 static ssize_t 7035 raid5_show_preread_threshold(struct mddev *mddev, char *page) 7036 { 7037 struct r5conf *conf; 7038 int ret = 0; 7039 spin_lock(&mddev->lock); 7040 conf = mddev->private; 7041 if (conf) 7042 ret = sprintf(page, "%d\n", conf->bypass_threshold); 7043 spin_unlock(&mddev->lock); 7044 return ret; 7045 } 7046 7047 static ssize_t 7048 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len) 7049 { 7050 struct r5conf *conf; 7051 unsigned long new; 7052 int err; 7053 7054 if (len >= PAGE_SIZE) 7055 return -EINVAL; 7056 if (kstrtoul(page, 10, &new)) 7057 return -EINVAL; 7058 7059 err = mddev_lock(mddev); 7060 if (err) 7061 return err; 7062 conf = mddev->private; 7063 if (!conf) 7064 err = -ENODEV; 7065 else if (new > conf->min_nr_stripes) 7066 err = -EINVAL; 7067 else 7068 conf->bypass_threshold = new; 7069 mddev_unlock(mddev); 7070 return err ?: len; 7071 } 7072 7073 static struct md_sysfs_entry 7074 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold, 7075 S_IRUGO | S_IWUSR, 7076 raid5_show_preread_threshold, 7077 raid5_store_preread_threshold); 7078 7079 static ssize_t 7080 raid5_show_skip_copy(struct mddev *mddev, char *page) 7081 { 7082 struct r5conf *conf; 7083 int ret = 0; 7084 spin_lock(&mddev->lock); 7085 conf = mddev->private; 7086 if (conf) 7087 ret = sprintf(page, "%d\n", conf->skip_copy); 7088 spin_unlock(&mddev->lock); 7089 return ret; 7090 } 7091 7092 static ssize_t 7093 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len) 7094 { 7095 struct r5conf *conf; 7096 unsigned long new; 7097 int err; 7098 7099 if (len >= PAGE_SIZE) 7100 return -EINVAL; 7101 if (kstrtoul(page, 10, &new)) 7102 return -EINVAL; 7103 new = !!new; 7104 7105 err = mddev_suspend_and_lock(mddev); 7106 if (err) 7107 return err; 7108 conf = mddev->private; 7109 if (!conf) 7110 err = -ENODEV; 7111 else if (new != conf->skip_copy) { 7112 struct request_queue *q = mddev->gendisk->queue; 7113 struct queue_limits lim = queue_limits_start_update(q); 7114 7115 conf->skip_copy = new; 7116 if (new) 7117 lim.features |= BLK_FEAT_STABLE_WRITES; 7118 else 7119 lim.features &= ~BLK_FEAT_STABLE_WRITES; 7120 err = queue_limits_commit_update(q, &lim); 7121 } 7122 mddev_unlock_and_resume(mddev); 7123 return err ?: len; 7124 } 7125 7126 static struct md_sysfs_entry 7127 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR, 7128 raid5_show_skip_copy, 7129 raid5_store_skip_copy); 7130 7131 static ssize_t 7132 stripe_cache_active_show(struct mddev *mddev, char *page) 7133 { 7134 struct r5conf *conf = mddev->private; 7135 if (conf) 7136 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes)); 7137 else 7138 return 0; 7139 } 7140 7141 static struct md_sysfs_entry 7142 raid5_stripecache_active = __ATTR_RO(stripe_cache_active); 7143 7144 static ssize_t 7145 raid5_show_group_thread_cnt(struct mddev *mddev, char *page) 7146 { 7147 struct r5conf *conf; 7148 int ret = 0; 7149 spin_lock(&mddev->lock); 7150 conf = mddev->private; 7151 if (conf) 7152 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group); 7153 spin_unlock(&mddev->lock); 7154 return ret; 7155 } 7156 7157 static int alloc_thread_groups(struct r5conf *conf, int cnt, 7158 int *group_cnt, 7159 struct r5worker_group **worker_groups); 7160 static ssize_t 7161 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len) 7162 { 7163 struct r5conf *conf; 7164 unsigned int new; 7165 int err; 7166 struct r5worker_group *new_groups, *old_groups; 7167 int group_cnt; 7168 7169 if (len >= PAGE_SIZE) 7170 return -EINVAL; 7171 if (kstrtouint(page, 10, &new)) 7172 return -EINVAL; 7173 /* 8192 should be big enough */ 7174 if (new > 8192) 7175 return -EINVAL; 7176 7177 err = mddev_suspend_and_lock(mddev); 7178 if (err) 7179 return err; 7180 conf = mddev->private; 7181 if (!conf) 7182 err = -ENODEV; 7183 else if (new != conf->worker_cnt_per_group) { 7184 old_groups = conf->worker_groups; 7185 if (old_groups) 7186 flush_workqueue(raid5_wq); 7187 7188 err = alloc_thread_groups(conf, new, &group_cnt, &new_groups); 7189 if (!err) { 7190 spin_lock_irq(&conf->device_lock); 7191 conf->group_cnt = group_cnt; 7192 conf->worker_cnt_per_group = new; 7193 conf->worker_groups = new_groups; 7194 spin_unlock_irq(&conf->device_lock); 7195 7196 if (old_groups) 7197 kfree(old_groups[0].workers); 7198 kfree(old_groups); 7199 } 7200 } 7201 mddev_unlock_and_resume(mddev); 7202 7203 return err ?: len; 7204 } 7205 7206 static struct md_sysfs_entry 7207 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR, 7208 raid5_show_group_thread_cnt, 7209 raid5_store_group_thread_cnt); 7210 7211 static struct attribute *raid5_attrs[] = { 7212 &raid5_stripecache_size.attr, 7213 &raid5_stripecache_active.attr, 7214 &raid5_preread_bypass_threshold.attr, 7215 &raid5_group_thread_cnt.attr, 7216 &raid5_skip_copy.attr, 7217 &raid5_rmw_level.attr, 7218 &raid5_stripe_size.attr, 7219 &r5c_journal_mode.attr, 7220 &ppl_write_hint.attr, 7221 NULL, 7222 }; 7223 static const struct attribute_group raid5_attrs_group = { 7224 .name = NULL, 7225 .attrs = raid5_attrs, 7226 }; 7227 7228 static int alloc_thread_groups(struct r5conf *conf, int cnt, int *group_cnt, 7229 struct r5worker_group **worker_groups) 7230 { 7231 int i, j, k; 7232 ssize_t size; 7233 struct r5worker *workers; 7234 7235 if (cnt == 0) { 7236 *group_cnt = 0; 7237 *worker_groups = NULL; 7238 return 0; 7239 } 7240 *group_cnt = num_possible_nodes(); 7241 size = sizeof(struct r5worker) * cnt; 7242 workers = kcalloc(size, *group_cnt, GFP_NOIO); 7243 *worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group), 7244 GFP_NOIO); 7245 if (!*worker_groups || !workers) { 7246 kfree(workers); 7247 kfree(*worker_groups); 7248 return -ENOMEM; 7249 } 7250 7251 for (i = 0; i < *group_cnt; i++) { 7252 struct r5worker_group *group; 7253 7254 group = &(*worker_groups)[i]; 7255 INIT_LIST_HEAD(&group->handle_list); 7256 INIT_LIST_HEAD(&group->loprio_list); 7257 group->conf = conf; 7258 group->workers = workers + i * cnt; 7259 7260 for (j = 0; j < cnt; j++) { 7261 struct r5worker *worker = group->workers + j; 7262 worker->group = group; 7263 INIT_WORK(&worker->work, raid5_do_work); 7264 7265 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++) 7266 INIT_LIST_HEAD(worker->temp_inactive_list + k); 7267 } 7268 } 7269 7270 return 0; 7271 } 7272 7273 static void free_thread_groups(struct r5conf *conf) 7274 { 7275 if (conf->worker_groups) 7276 kfree(conf->worker_groups[0].workers); 7277 kfree(conf->worker_groups); 7278 conf->worker_groups = NULL; 7279 } 7280 7281 static sector_t 7282 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks) 7283 { 7284 struct r5conf *conf = mddev->private; 7285 7286 if (!sectors) 7287 sectors = mddev->dev_sectors; 7288 if (!raid_disks) 7289 /* size is defined by the smallest of previous and new size */ 7290 raid_disks = min(conf->raid_disks, conf->previous_raid_disks); 7291 7292 sectors &= ~((sector_t)conf->chunk_sectors - 1); 7293 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1); 7294 return sectors * (raid_disks - conf->max_degraded); 7295 } 7296 7297 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 7298 { 7299 safe_put_page(percpu->spare_page); 7300 percpu->spare_page = NULL; 7301 kvfree(percpu->scribble); 7302 percpu->scribble = NULL; 7303 } 7304 7305 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 7306 { 7307 if (conf->level == 6 && !percpu->spare_page) { 7308 percpu->spare_page = alloc_page(GFP_KERNEL); 7309 if (!percpu->spare_page) 7310 return -ENOMEM; 7311 } 7312 7313 if (scribble_alloc(percpu, 7314 max(conf->raid_disks, 7315 conf->previous_raid_disks), 7316 max(conf->chunk_sectors, 7317 conf->prev_chunk_sectors) 7318 / RAID5_STRIPE_SECTORS(conf))) { 7319 free_scratch_buffer(conf, percpu); 7320 return -ENOMEM; 7321 } 7322 7323 local_lock_init(&percpu->lock); 7324 return 0; 7325 } 7326 7327 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node) 7328 { 7329 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node); 7330 7331 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu)); 7332 return 0; 7333 } 7334 7335 static void raid5_free_percpu(struct r5conf *conf) 7336 { 7337 if (!conf->percpu) 7338 return; 7339 7340 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node); 7341 free_percpu(conf->percpu); 7342 } 7343 7344 static void free_conf(struct r5conf *conf) 7345 { 7346 int i; 7347 7348 log_exit(conf); 7349 7350 shrinker_free(conf->shrinker); 7351 free_thread_groups(conf); 7352 shrink_stripes(conf); 7353 raid5_free_percpu(conf); 7354 for (i = 0; i < conf->pool_size; i++) 7355 if (conf->disks[i].extra_page) 7356 put_page(conf->disks[i].extra_page); 7357 kfree(conf->disks); 7358 bioset_exit(&conf->bio_split); 7359 kfree(conf->stripe_hashtbl); 7360 kfree(conf->pending_data); 7361 kfree(conf); 7362 } 7363 7364 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node) 7365 { 7366 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node); 7367 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu); 7368 7369 if (alloc_scratch_buffer(conf, percpu)) { 7370 pr_warn("%s: failed memory allocation for cpu%u\n", 7371 __func__, cpu); 7372 return -ENOMEM; 7373 } 7374 return 0; 7375 } 7376 7377 static int raid5_alloc_percpu(struct r5conf *conf) 7378 { 7379 int err = 0; 7380 7381 conf->percpu = alloc_percpu(struct raid5_percpu); 7382 if (!conf->percpu) 7383 return -ENOMEM; 7384 7385 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node); 7386 if (!err) { 7387 conf->scribble_disks = max(conf->raid_disks, 7388 conf->previous_raid_disks); 7389 conf->scribble_sectors = max(conf->chunk_sectors, 7390 conf->prev_chunk_sectors); 7391 } 7392 return err; 7393 } 7394 7395 static unsigned long raid5_cache_scan(struct shrinker *shrink, 7396 struct shrink_control *sc) 7397 { 7398 struct r5conf *conf = shrink->private_data; 7399 unsigned long ret = SHRINK_STOP; 7400 7401 if (mutex_trylock(&conf->cache_size_mutex)) { 7402 ret= 0; 7403 while (ret < sc->nr_to_scan && 7404 conf->max_nr_stripes > conf->min_nr_stripes) { 7405 if (drop_one_stripe(conf) == 0) { 7406 ret = SHRINK_STOP; 7407 break; 7408 } 7409 ret++; 7410 } 7411 mutex_unlock(&conf->cache_size_mutex); 7412 } 7413 return ret; 7414 } 7415 7416 static unsigned long raid5_cache_count(struct shrinker *shrink, 7417 struct shrink_control *sc) 7418 { 7419 struct r5conf *conf = shrink->private_data; 7420 int max_stripes = READ_ONCE(conf->max_nr_stripes); 7421 int min_stripes = READ_ONCE(conf->min_nr_stripes); 7422 7423 if (max_stripes < min_stripes) 7424 /* unlikely, but not impossible */ 7425 return 0; 7426 return max_stripes - min_stripes; 7427 } 7428 7429 static struct r5conf *setup_conf(struct mddev *mddev) 7430 { 7431 struct r5conf *conf; 7432 int raid_disk, memory, max_disks; 7433 struct md_rdev *rdev; 7434 struct disk_info *disk; 7435 char pers_name[6]; 7436 int i; 7437 int group_cnt; 7438 struct r5worker_group *new_group; 7439 int ret = -ENOMEM; 7440 7441 if (mddev->new_level != 5 7442 && mddev->new_level != 4 7443 && mddev->new_level != 6) { 7444 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n", 7445 mdname(mddev), mddev->new_level); 7446 return ERR_PTR(-EIO); 7447 } 7448 if ((mddev->new_level == 5 7449 && !algorithm_valid_raid5(mddev->new_layout)) || 7450 (mddev->new_level == 6 7451 && !algorithm_valid_raid6(mddev->new_layout))) { 7452 pr_warn("md/raid:%s: layout %d not supported\n", 7453 mdname(mddev), mddev->new_layout); 7454 return ERR_PTR(-EIO); 7455 } 7456 if (mddev->new_level == 6 && mddev->raid_disks < 4) { 7457 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n", 7458 mdname(mddev), mddev->raid_disks); 7459 return ERR_PTR(-EINVAL); 7460 } 7461 7462 if (!mddev->new_chunk_sectors || 7463 (mddev->new_chunk_sectors << 9) % PAGE_SIZE || 7464 !is_power_of_2(mddev->new_chunk_sectors)) { 7465 pr_warn("md/raid:%s: invalid chunk size %d\n", 7466 mdname(mddev), mddev->new_chunk_sectors << 9); 7467 return ERR_PTR(-EINVAL); 7468 } 7469 7470 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL); 7471 if (conf == NULL) 7472 goto abort; 7473 7474 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 7475 conf->stripe_size = DEFAULT_STRIPE_SIZE; 7476 conf->stripe_shift = ilog2(DEFAULT_STRIPE_SIZE) - 9; 7477 conf->stripe_sectors = DEFAULT_STRIPE_SIZE >> 9; 7478 #endif 7479 INIT_LIST_HEAD(&conf->free_list); 7480 INIT_LIST_HEAD(&conf->pending_list); 7481 conf->pending_data = kcalloc(PENDING_IO_MAX, 7482 sizeof(struct r5pending_data), 7483 GFP_KERNEL); 7484 if (!conf->pending_data) 7485 goto abort; 7486 for (i = 0; i < PENDING_IO_MAX; i++) 7487 list_add(&conf->pending_data[i].sibling, &conf->free_list); 7488 /* Don't enable multi-threading by default*/ 7489 if (!alloc_thread_groups(conf, 0, &group_cnt, &new_group)) { 7490 conf->group_cnt = group_cnt; 7491 conf->worker_cnt_per_group = 0; 7492 conf->worker_groups = new_group; 7493 } else 7494 goto abort; 7495 spin_lock_init(&conf->device_lock); 7496 seqcount_spinlock_init(&conf->gen_lock, &conf->device_lock); 7497 mutex_init(&conf->cache_size_mutex); 7498 7499 init_waitqueue_head(&conf->wait_for_quiescent); 7500 init_waitqueue_head(&conf->wait_for_stripe); 7501 init_waitqueue_head(&conf->wait_for_reshape); 7502 INIT_LIST_HEAD(&conf->handle_list); 7503 INIT_LIST_HEAD(&conf->loprio_list); 7504 INIT_LIST_HEAD(&conf->hold_list); 7505 INIT_LIST_HEAD(&conf->delayed_list); 7506 INIT_LIST_HEAD(&conf->bitmap_list); 7507 init_llist_head(&conf->released_stripes); 7508 atomic_set(&conf->active_stripes, 0); 7509 atomic_set(&conf->preread_active_stripes, 0); 7510 atomic_set(&conf->active_aligned_reads, 0); 7511 spin_lock_init(&conf->pending_bios_lock); 7512 conf->batch_bio_dispatch = true; 7513 rdev_for_each(rdev, mddev) { 7514 if (test_bit(Journal, &rdev->flags)) 7515 continue; 7516 if (bdev_nonrot(rdev->bdev)) { 7517 conf->batch_bio_dispatch = false; 7518 break; 7519 } 7520 } 7521 7522 conf->bypass_threshold = BYPASS_THRESHOLD; 7523 conf->recovery_disabled = mddev->recovery_disabled - 1; 7524 7525 conf->raid_disks = mddev->raid_disks; 7526 if (mddev->reshape_position == MaxSector) 7527 conf->previous_raid_disks = mddev->raid_disks; 7528 else 7529 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks; 7530 max_disks = max(conf->raid_disks, conf->previous_raid_disks); 7531 7532 conf->disks = kcalloc(max_disks, sizeof(struct disk_info), 7533 GFP_KERNEL); 7534 7535 if (!conf->disks) 7536 goto abort; 7537 7538 for (i = 0; i < max_disks; i++) { 7539 conf->disks[i].extra_page = alloc_page(GFP_KERNEL); 7540 if (!conf->disks[i].extra_page) 7541 goto abort; 7542 } 7543 7544 ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 7545 if (ret) 7546 goto abort; 7547 conf->mddev = mddev; 7548 7549 ret = -ENOMEM; 7550 conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL); 7551 if (!conf->stripe_hashtbl) 7552 goto abort; 7553 7554 /* We init hash_locks[0] separately to that it can be used 7555 * as the reference lock in the spin_lock_nest_lock() call 7556 * in lock_all_device_hash_locks_irq in order to convince 7557 * lockdep that we know what we are doing. 7558 */ 7559 spin_lock_init(conf->hash_locks); 7560 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 7561 spin_lock_init(conf->hash_locks + i); 7562 7563 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 7564 INIT_LIST_HEAD(conf->inactive_list + i); 7565 7566 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 7567 INIT_LIST_HEAD(conf->temp_inactive_list + i); 7568 7569 atomic_set(&conf->r5c_cached_full_stripes, 0); 7570 INIT_LIST_HEAD(&conf->r5c_full_stripe_list); 7571 atomic_set(&conf->r5c_cached_partial_stripes, 0); 7572 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list); 7573 atomic_set(&conf->r5c_flushing_full_stripes, 0); 7574 atomic_set(&conf->r5c_flushing_partial_stripes, 0); 7575 7576 conf->level = mddev->new_level; 7577 conf->chunk_sectors = mddev->new_chunk_sectors; 7578 ret = raid5_alloc_percpu(conf); 7579 if (ret) 7580 goto abort; 7581 7582 pr_debug("raid456: run(%s) called.\n", mdname(mddev)); 7583 7584 ret = -EIO; 7585 rdev_for_each(rdev, mddev) { 7586 raid_disk = rdev->raid_disk; 7587 if (raid_disk >= max_disks 7588 || raid_disk < 0 || test_bit(Journal, &rdev->flags)) 7589 continue; 7590 disk = conf->disks + raid_disk; 7591 7592 if (test_bit(Replacement, &rdev->flags)) { 7593 if (disk->replacement) 7594 goto abort; 7595 disk->replacement = rdev; 7596 } else { 7597 if (disk->rdev) 7598 goto abort; 7599 disk->rdev = rdev; 7600 } 7601 7602 if (test_bit(In_sync, &rdev->flags)) { 7603 pr_info("md/raid:%s: device %pg operational as raid disk %d\n", 7604 mdname(mddev), rdev->bdev, raid_disk); 7605 } else if (rdev->saved_raid_disk != raid_disk) 7606 /* Cannot rely on bitmap to complete recovery */ 7607 conf->fullsync = 1; 7608 } 7609 7610 conf->level = mddev->new_level; 7611 if (conf->level == 6) { 7612 conf->max_degraded = 2; 7613 if (raid6_call.xor_syndrome) 7614 conf->rmw_level = PARITY_ENABLE_RMW; 7615 else 7616 conf->rmw_level = PARITY_DISABLE_RMW; 7617 } else { 7618 conf->max_degraded = 1; 7619 conf->rmw_level = PARITY_ENABLE_RMW; 7620 } 7621 conf->algorithm = mddev->new_layout; 7622 conf->reshape_progress = mddev->reshape_position; 7623 if (conf->reshape_progress != MaxSector) { 7624 conf->prev_chunk_sectors = mddev->chunk_sectors; 7625 conf->prev_algo = mddev->layout; 7626 } else { 7627 conf->prev_chunk_sectors = conf->chunk_sectors; 7628 conf->prev_algo = conf->algorithm; 7629 } 7630 7631 conf->min_nr_stripes = NR_STRIPES; 7632 if (mddev->reshape_position != MaxSector) { 7633 int stripes = max_t(int, 7634 ((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4, 7635 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4); 7636 conf->min_nr_stripes = max(NR_STRIPES, stripes); 7637 if (conf->min_nr_stripes != NR_STRIPES) 7638 pr_info("md/raid:%s: force stripe size %d for reshape\n", 7639 mdname(mddev), conf->min_nr_stripes); 7640 } 7641 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) + 7642 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024; 7643 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS); 7644 if (grow_stripes(conf, conf->min_nr_stripes)) { 7645 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n", 7646 mdname(mddev), memory); 7647 ret = -ENOMEM; 7648 goto abort; 7649 } else 7650 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory); 7651 /* 7652 * Losing a stripe head costs more than the time to refill it, 7653 * it reduces the queue depth and so can hurt throughput. 7654 * So set it rather large, scaled by number of devices. 7655 */ 7656 conf->shrinker = shrinker_alloc(0, "md-raid5:%s", mdname(mddev)); 7657 if (!conf->shrinker) { 7658 ret = -ENOMEM; 7659 pr_warn("md/raid:%s: couldn't allocate shrinker.\n", 7660 mdname(mddev)); 7661 goto abort; 7662 } 7663 7664 conf->shrinker->seeks = DEFAULT_SEEKS * conf->raid_disks * 4; 7665 conf->shrinker->scan_objects = raid5_cache_scan; 7666 conf->shrinker->count_objects = raid5_cache_count; 7667 conf->shrinker->batch = 128; 7668 conf->shrinker->private_data = conf; 7669 7670 shrinker_register(conf->shrinker); 7671 7672 sprintf(pers_name, "raid%d", mddev->new_level); 7673 rcu_assign_pointer(conf->thread, 7674 md_register_thread(raid5d, mddev, pers_name)); 7675 if (!conf->thread) { 7676 pr_warn("md/raid:%s: couldn't allocate thread.\n", 7677 mdname(mddev)); 7678 ret = -ENOMEM; 7679 goto abort; 7680 } 7681 7682 return conf; 7683 7684 abort: 7685 if (conf) 7686 free_conf(conf); 7687 return ERR_PTR(ret); 7688 } 7689 7690 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded) 7691 { 7692 switch (algo) { 7693 case ALGORITHM_PARITY_0: 7694 if (raid_disk < max_degraded) 7695 return 1; 7696 break; 7697 case ALGORITHM_PARITY_N: 7698 if (raid_disk >= raid_disks - max_degraded) 7699 return 1; 7700 break; 7701 case ALGORITHM_PARITY_0_6: 7702 if (raid_disk == 0 || 7703 raid_disk == raid_disks - 1) 7704 return 1; 7705 break; 7706 case ALGORITHM_LEFT_ASYMMETRIC_6: 7707 case ALGORITHM_RIGHT_ASYMMETRIC_6: 7708 case ALGORITHM_LEFT_SYMMETRIC_6: 7709 case ALGORITHM_RIGHT_SYMMETRIC_6: 7710 if (raid_disk == raid_disks - 1) 7711 return 1; 7712 } 7713 return 0; 7714 } 7715 7716 static int raid5_set_limits(struct mddev *mddev) 7717 { 7718 struct r5conf *conf = mddev->private; 7719 struct queue_limits lim; 7720 int data_disks, stripe; 7721 struct md_rdev *rdev; 7722 7723 /* 7724 * The read-ahead size must cover two whole stripes, which is 7725 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices. 7726 */ 7727 data_disks = conf->previous_raid_disks - conf->max_degraded; 7728 7729 /* 7730 * We can only discard a whole stripe. It doesn't make sense to 7731 * discard data disk but write parity disk 7732 */ 7733 stripe = roundup_pow_of_two(data_disks * (mddev->chunk_sectors << 9)); 7734 7735 md_init_stacking_limits(&lim); 7736 lim.io_min = mddev->chunk_sectors << 9; 7737 lim.io_opt = lim.io_min * (conf->raid_disks - conf->max_degraded); 7738 lim.features |= BLK_FEAT_RAID_PARTIAL_STRIPES_EXPENSIVE; 7739 lim.discard_granularity = stripe; 7740 lim.max_write_zeroes_sectors = 0; 7741 mddev_stack_rdev_limits(mddev, &lim, 0); 7742 rdev_for_each(rdev, mddev) 7743 queue_limits_stack_bdev(&lim, rdev->bdev, rdev->new_data_offset, 7744 mddev->gendisk->disk_name); 7745 7746 /* 7747 * Zeroing is required for discard, otherwise data could be lost. 7748 * 7749 * Consider a scenario: discard a stripe (the stripe could be 7750 * inconsistent if discard_zeroes_data is 0); write one disk of the 7751 * stripe (the stripe could be inconsistent again depending on which 7752 * disks are used to calculate parity); the disk is broken; The stripe 7753 * data of this disk is lost. 7754 * 7755 * We only allow DISCARD if the sysadmin has confirmed that only safe 7756 * devices are in use by setting a module parameter. A better idea 7757 * might be to turn DISCARD into WRITE_ZEROES requests, as that is 7758 * required to be safe. 7759 */ 7760 if (!devices_handle_discard_safely || 7761 lim.max_discard_sectors < (stripe >> 9) || 7762 lim.discard_granularity < stripe) 7763 lim.max_hw_discard_sectors = 0; 7764 7765 /* 7766 * Requests require having a bitmap for each stripe. 7767 * Limit the max sectors based on this. 7768 */ 7769 lim.max_hw_sectors = RAID5_MAX_REQ_STRIPES << RAID5_STRIPE_SHIFT(conf); 7770 7771 /* No restrictions on the number of segments in the request */ 7772 lim.max_segments = USHRT_MAX; 7773 7774 return queue_limits_set(mddev->gendisk->queue, &lim); 7775 } 7776 7777 static int raid5_run(struct mddev *mddev) 7778 { 7779 struct r5conf *conf; 7780 int dirty_parity_disks = 0; 7781 struct md_rdev *rdev; 7782 struct md_rdev *journal_dev = NULL; 7783 sector_t reshape_offset = 0; 7784 int i; 7785 long long min_offset_diff = 0; 7786 int first = 1; 7787 int ret = -EIO; 7788 7789 if (mddev->recovery_cp != MaxSector) 7790 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n", 7791 mdname(mddev)); 7792 7793 rdev_for_each(rdev, mddev) { 7794 long long diff; 7795 7796 if (test_bit(Journal, &rdev->flags)) { 7797 journal_dev = rdev; 7798 continue; 7799 } 7800 if (rdev->raid_disk < 0) 7801 continue; 7802 diff = (rdev->new_data_offset - rdev->data_offset); 7803 if (first) { 7804 min_offset_diff = diff; 7805 first = 0; 7806 } else if (mddev->reshape_backwards && 7807 diff < min_offset_diff) 7808 min_offset_diff = diff; 7809 else if (!mddev->reshape_backwards && 7810 diff > min_offset_diff) 7811 min_offset_diff = diff; 7812 } 7813 7814 if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) && 7815 (mddev->bitmap_info.offset || mddev->bitmap_info.file)) { 7816 pr_notice("md/raid:%s: array cannot have both journal and bitmap\n", 7817 mdname(mddev)); 7818 return -EINVAL; 7819 } 7820 7821 if (mddev->reshape_position != MaxSector) { 7822 /* Check that we can continue the reshape. 7823 * Difficulties arise if the stripe we would write to 7824 * next is at or after the stripe we would read from next. 7825 * For a reshape that changes the number of devices, this 7826 * is only possible for a very short time, and mdadm makes 7827 * sure that time appears to have past before assembling 7828 * the array. So we fail if that time hasn't passed. 7829 * For a reshape that keeps the number of devices the same 7830 * mdadm must be monitoring the reshape can keeping the 7831 * critical areas read-only and backed up. It will start 7832 * the array in read-only mode, so we check for that. 7833 */ 7834 sector_t here_new, here_old; 7835 int old_disks; 7836 int max_degraded = (mddev->level == 6 ? 2 : 1); 7837 int chunk_sectors; 7838 int new_data_disks; 7839 7840 if (journal_dev) { 7841 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n", 7842 mdname(mddev)); 7843 return -EINVAL; 7844 } 7845 7846 if (mddev->new_level != mddev->level) { 7847 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n", 7848 mdname(mddev)); 7849 return -EINVAL; 7850 } 7851 old_disks = mddev->raid_disks - mddev->delta_disks; 7852 /* reshape_position must be on a new-stripe boundary, and one 7853 * further up in new geometry must map after here in old 7854 * geometry. 7855 * If the chunk sizes are different, then as we perform reshape 7856 * in units of the largest of the two, reshape_position needs 7857 * be a multiple of the largest chunk size times new data disks. 7858 */ 7859 here_new = mddev->reshape_position; 7860 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors); 7861 new_data_disks = mddev->raid_disks - max_degraded; 7862 if (sector_div(here_new, chunk_sectors * new_data_disks)) { 7863 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n", 7864 mdname(mddev)); 7865 return -EINVAL; 7866 } 7867 reshape_offset = here_new * chunk_sectors; 7868 /* here_new is the stripe we will write to */ 7869 here_old = mddev->reshape_position; 7870 sector_div(here_old, chunk_sectors * (old_disks-max_degraded)); 7871 /* here_old is the first stripe that we might need to read 7872 * from */ 7873 if (mddev->delta_disks == 0) { 7874 /* We cannot be sure it is safe to start an in-place 7875 * reshape. It is only safe if user-space is monitoring 7876 * and taking constant backups. 7877 * mdadm always starts a situation like this in 7878 * readonly mode so it can take control before 7879 * allowing any writes. So just check for that. 7880 */ 7881 if (abs(min_offset_diff) >= mddev->chunk_sectors && 7882 abs(min_offset_diff) >= mddev->new_chunk_sectors) 7883 /* not really in-place - so OK */; 7884 else if (mddev->ro == 0) { 7885 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n", 7886 mdname(mddev)); 7887 return -EINVAL; 7888 } 7889 } else if (mddev->reshape_backwards 7890 ? (here_new * chunk_sectors + min_offset_diff <= 7891 here_old * chunk_sectors) 7892 : (here_new * chunk_sectors >= 7893 here_old * chunk_sectors + (-min_offset_diff))) { 7894 /* Reading from the same stripe as writing to - bad */ 7895 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n", 7896 mdname(mddev)); 7897 return -EINVAL; 7898 } 7899 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev)); 7900 /* OK, we should be able to continue; */ 7901 } else { 7902 BUG_ON(mddev->level != mddev->new_level); 7903 BUG_ON(mddev->layout != mddev->new_layout); 7904 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors); 7905 BUG_ON(mddev->delta_disks != 0); 7906 } 7907 7908 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && 7909 test_bit(MD_HAS_PPL, &mddev->flags)) { 7910 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n", 7911 mdname(mddev)); 7912 clear_bit(MD_HAS_PPL, &mddev->flags); 7913 clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags); 7914 } 7915 7916 if (mddev->private == NULL) 7917 conf = setup_conf(mddev); 7918 else 7919 conf = mddev->private; 7920 7921 if (IS_ERR(conf)) 7922 return PTR_ERR(conf); 7923 7924 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 7925 if (!journal_dev) { 7926 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n", 7927 mdname(mddev)); 7928 mddev->ro = 1; 7929 set_disk_ro(mddev->gendisk, 1); 7930 } else if (mddev->recovery_cp == MaxSector) 7931 set_bit(MD_JOURNAL_CLEAN, &mddev->flags); 7932 } 7933 7934 conf->min_offset_diff = min_offset_diff; 7935 rcu_assign_pointer(mddev->thread, conf->thread); 7936 rcu_assign_pointer(conf->thread, NULL); 7937 mddev->private = conf; 7938 7939 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks; 7940 i++) { 7941 rdev = conf->disks[i].rdev; 7942 if (!rdev) 7943 continue; 7944 if (conf->disks[i].replacement && 7945 conf->reshape_progress != MaxSector) { 7946 /* replacements and reshape simply do not mix. */ 7947 pr_warn("md: cannot handle concurrent replacement and reshape.\n"); 7948 goto abort; 7949 } 7950 if (test_bit(In_sync, &rdev->flags)) 7951 continue; 7952 /* This disc is not fully in-sync. However if it 7953 * just stored parity (beyond the recovery_offset), 7954 * when we don't need to be concerned about the 7955 * array being dirty. 7956 * When reshape goes 'backwards', we never have 7957 * partially completed devices, so we only need 7958 * to worry about reshape going forwards. 7959 */ 7960 /* Hack because v0.91 doesn't store recovery_offset properly. */ 7961 if (mddev->major_version == 0 && 7962 mddev->minor_version > 90) 7963 rdev->recovery_offset = reshape_offset; 7964 7965 if (rdev->recovery_offset < reshape_offset) { 7966 /* We need to check old and new layout */ 7967 if (!only_parity(rdev->raid_disk, 7968 conf->algorithm, 7969 conf->raid_disks, 7970 conf->max_degraded)) 7971 continue; 7972 } 7973 if (!only_parity(rdev->raid_disk, 7974 conf->prev_algo, 7975 conf->previous_raid_disks, 7976 conf->max_degraded)) 7977 continue; 7978 dirty_parity_disks++; 7979 } 7980 7981 /* 7982 * 0 for a fully functional array, 1 or 2 for a degraded array. 7983 */ 7984 mddev->degraded = raid5_calc_degraded(conf); 7985 7986 if (has_failed(conf)) { 7987 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n", 7988 mdname(mddev), mddev->degraded, conf->raid_disks); 7989 goto abort; 7990 } 7991 7992 /* device size must be a multiple of chunk size */ 7993 mddev->dev_sectors &= ~((sector_t)mddev->chunk_sectors - 1); 7994 mddev->resync_max_sectors = mddev->dev_sectors; 7995 7996 if (mddev->degraded > dirty_parity_disks && 7997 mddev->recovery_cp != MaxSector) { 7998 if (test_bit(MD_HAS_PPL, &mddev->flags)) 7999 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n", 8000 mdname(mddev)); 8001 else if (mddev->ok_start_degraded) 8002 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n", 8003 mdname(mddev)); 8004 else { 8005 pr_crit("md/raid:%s: cannot start dirty degraded array.\n", 8006 mdname(mddev)); 8007 goto abort; 8008 } 8009 } 8010 8011 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n", 8012 mdname(mddev), conf->level, 8013 mddev->raid_disks-mddev->degraded, mddev->raid_disks, 8014 mddev->new_layout); 8015 8016 print_raid5_conf(conf); 8017 8018 if (conf->reshape_progress != MaxSector) { 8019 conf->reshape_safe = conf->reshape_progress; 8020 atomic_set(&conf->reshape_stripes, 0); 8021 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8022 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8023 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8024 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8025 } 8026 8027 /* Ok, everything is just fine now */ 8028 if (mddev->to_remove == &raid5_attrs_group) 8029 mddev->to_remove = NULL; 8030 else if (mddev->kobj.sd && 8031 sysfs_create_group(&mddev->kobj, &raid5_attrs_group)) 8032 pr_warn("raid5: failed to create sysfs attributes for %s\n", 8033 mdname(mddev)); 8034 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 8035 8036 if (!mddev_is_dm(mddev)) { 8037 ret = raid5_set_limits(mddev); 8038 if (ret) 8039 goto abort; 8040 } 8041 8042 if (log_init(conf, journal_dev, raid5_has_ppl(conf))) 8043 goto abort; 8044 8045 return 0; 8046 abort: 8047 md_unregister_thread(mddev, &mddev->thread); 8048 print_raid5_conf(conf); 8049 free_conf(conf); 8050 mddev->private = NULL; 8051 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev)); 8052 return ret; 8053 } 8054 8055 static void raid5_free(struct mddev *mddev, void *priv) 8056 { 8057 struct r5conf *conf = priv; 8058 8059 free_conf(conf); 8060 mddev->to_remove = &raid5_attrs_group; 8061 } 8062 8063 static void raid5_status(struct seq_file *seq, struct mddev *mddev) 8064 { 8065 struct r5conf *conf = mddev->private; 8066 int i; 8067 8068 lockdep_assert_held(&mddev->lock); 8069 8070 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level, 8071 conf->chunk_sectors / 2, mddev->layout); 8072 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded); 8073 for (i = 0; i < conf->raid_disks; i++) { 8074 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev); 8075 8076 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 8077 } 8078 seq_printf (seq, "]"); 8079 } 8080 8081 static void print_raid5_conf(struct r5conf *conf) 8082 { 8083 struct md_rdev *rdev; 8084 int i; 8085 8086 pr_debug("RAID conf printout:\n"); 8087 if (!conf) { 8088 pr_debug("(conf==NULL)\n"); 8089 return; 8090 } 8091 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level, 8092 conf->raid_disks, 8093 conf->raid_disks - conf->mddev->degraded); 8094 8095 for (i = 0; i < conf->raid_disks; i++) { 8096 rdev = conf->disks[i].rdev; 8097 if (rdev) 8098 pr_debug(" disk %d, o:%d, dev:%pg\n", 8099 i, !test_bit(Faulty, &rdev->flags), 8100 rdev->bdev); 8101 } 8102 } 8103 8104 static int raid5_spare_active(struct mddev *mddev) 8105 { 8106 int i; 8107 struct r5conf *conf = mddev->private; 8108 struct md_rdev *rdev, *replacement; 8109 int count = 0; 8110 unsigned long flags; 8111 8112 for (i = 0; i < conf->raid_disks; i++) { 8113 rdev = conf->disks[i].rdev; 8114 replacement = conf->disks[i].replacement; 8115 if (replacement 8116 && replacement->recovery_offset == MaxSector 8117 && !test_bit(Faulty, &replacement->flags) 8118 && !test_and_set_bit(In_sync, &replacement->flags)) { 8119 /* Replacement has just become active. */ 8120 if (!rdev 8121 || !test_and_clear_bit(In_sync, &rdev->flags)) 8122 count++; 8123 if (rdev) { 8124 /* Replaced device not technically faulty, 8125 * but we need to be sure it gets removed 8126 * and never re-added. 8127 */ 8128 set_bit(Faulty, &rdev->flags); 8129 sysfs_notify_dirent_safe( 8130 rdev->sysfs_state); 8131 } 8132 sysfs_notify_dirent_safe(replacement->sysfs_state); 8133 } else if (rdev 8134 && rdev->recovery_offset == MaxSector 8135 && !test_bit(Faulty, &rdev->flags) 8136 && !test_and_set_bit(In_sync, &rdev->flags)) { 8137 count++; 8138 sysfs_notify_dirent_safe(rdev->sysfs_state); 8139 } 8140 } 8141 spin_lock_irqsave(&conf->device_lock, flags); 8142 mddev->degraded = raid5_calc_degraded(conf); 8143 spin_unlock_irqrestore(&conf->device_lock, flags); 8144 print_raid5_conf(conf); 8145 return count; 8146 } 8147 8148 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 8149 { 8150 struct r5conf *conf = mddev->private; 8151 int err = 0; 8152 int number = rdev->raid_disk; 8153 struct md_rdev **rdevp; 8154 struct disk_info *p; 8155 struct md_rdev *tmp; 8156 8157 print_raid5_conf(conf); 8158 if (test_bit(Journal, &rdev->flags) && conf->log) { 8159 /* 8160 * we can't wait pending write here, as this is called in 8161 * raid5d, wait will deadlock. 8162 * neilb: there is no locking about new writes here, 8163 * so this cannot be safe. 8164 */ 8165 if (atomic_read(&conf->active_stripes) || 8166 atomic_read(&conf->r5c_cached_full_stripes) || 8167 atomic_read(&conf->r5c_cached_partial_stripes)) { 8168 return -EBUSY; 8169 } 8170 log_exit(conf); 8171 return 0; 8172 } 8173 if (unlikely(number >= conf->pool_size)) 8174 return 0; 8175 p = conf->disks + number; 8176 if (rdev == p->rdev) 8177 rdevp = &p->rdev; 8178 else if (rdev == p->replacement) 8179 rdevp = &p->replacement; 8180 else 8181 return 0; 8182 8183 if (number >= conf->raid_disks && 8184 conf->reshape_progress == MaxSector) 8185 clear_bit(In_sync, &rdev->flags); 8186 8187 if (test_bit(In_sync, &rdev->flags) || 8188 atomic_read(&rdev->nr_pending)) { 8189 err = -EBUSY; 8190 goto abort; 8191 } 8192 /* Only remove non-faulty devices if recovery 8193 * isn't possible. 8194 */ 8195 if (!test_bit(Faulty, &rdev->flags) && 8196 mddev->recovery_disabled != conf->recovery_disabled && 8197 !has_failed(conf) && 8198 (!p->replacement || p->replacement == rdev) && 8199 number < conf->raid_disks) { 8200 err = -EBUSY; 8201 goto abort; 8202 } 8203 WRITE_ONCE(*rdevp, NULL); 8204 if (!err) { 8205 err = log_modify(conf, rdev, false); 8206 if (err) 8207 goto abort; 8208 } 8209 8210 tmp = p->replacement; 8211 if (tmp) { 8212 /* We must have just cleared 'rdev' */ 8213 WRITE_ONCE(p->rdev, tmp); 8214 clear_bit(Replacement, &tmp->flags); 8215 WRITE_ONCE(p->replacement, NULL); 8216 8217 if (!err) 8218 err = log_modify(conf, tmp, true); 8219 } 8220 8221 clear_bit(WantReplacement, &rdev->flags); 8222 abort: 8223 8224 print_raid5_conf(conf); 8225 return err; 8226 } 8227 8228 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev) 8229 { 8230 struct r5conf *conf = mddev->private; 8231 int ret, err = -EEXIST; 8232 int disk; 8233 struct disk_info *p; 8234 struct md_rdev *tmp; 8235 int first = 0; 8236 int last = conf->raid_disks - 1; 8237 8238 if (test_bit(Journal, &rdev->flags)) { 8239 if (conf->log) 8240 return -EBUSY; 8241 8242 rdev->raid_disk = 0; 8243 /* 8244 * The array is in readonly mode if journal is missing, so no 8245 * write requests running. We should be safe 8246 */ 8247 ret = log_init(conf, rdev, false); 8248 if (ret) 8249 return ret; 8250 8251 ret = r5l_start(conf->log); 8252 if (ret) 8253 return ret; 8254 8255 return 0; 8256 } 8257 if (mddev->recovery_disabled == conf->recovery_disabled) 8258 return -EBUSY; 8259 8260 if (rdev->saved_raid_disk < 0 && has_failed(conf)) 8261 /* no point adding a device */ 8262 return -EINVAL; 8263 8264 if (rdev->raid_disk >= 0) 8265 first = last = rdev->raid_disk; 8266 8267 /* 8268 * find the disk ... but prefer rdev->saved_raid_disk 8269 * if possible. 8270 */ 8271 if (rdev->saved_raid_disk >= first && 8272 rdev->saved_raid_disk <= last && 8273 conf->disks[rdev->saved_raid_disk].rdev == NULL) 8274 first = rdev->saved_raid_disk; 8275 8276 for (disk = first; disk <= last; disk++) { 8277 p = conf->disks + disk; 8278 if (p->rdev == NULL) { 8279 clear_bit(In_sync, &rdev->flags); 8280 rdev->raid_disk = disk; 8281 if (rdev->saved_raid_disk != disk) 8282 conf->fullsync = 1; 8283 WRITE_ONCE(p->rdev, rdev); 8284 8285 err = log_modify(conf, rdev, true); 8286 8287 goto out; 8288 } 8289 } 8290 for (disk = first; disk <= last; disk++) { 8291 p = conf->disks + disk; 8292 tmp = p->rdev; 8293 if (test_bit(WantReplacement, &tmp->flags) && 8294 mddev->reshape_position == MaxSector && 8295 p->replacement == NULL) { 8296 clear_bit(In_sync, &rdev->flags); 8297 set_bit(Replacement, &rdev->flags); 8298 rdev->raid_disk = disk; 8299 err = 0; 8300 conf->fullsync = 1; 8301 WRITE_ONCE(p->replacement, rdev); 8302 break; 8303 } 8304 } 8305 out: 8306 print_raid5_conf(conf); 8307 return err; 8308 } 8309 8310 static int raid5_resize(struct mddev *mddev, sector_t sectors) 8311 { 8312 /* no resync is happening, and there is enough space 8313 * on all devices, so we can resize. 8314 * We need to make sure resync covers any new space. 8315 * If the array is shrinking we should possibly wait until 8316 * any io in the removed space completes, but it hardly seems 8317 * worth it. 8318 */ 8319 sector_t newsize; 8320 struct r5conf *conf = mddev->private; 8321 int ret; 8322 8323 if (raid5_has_log(conf) || raid5_has_ppl(conf)) 8324 return -EINVAL; 8325 sectors &= ~((sector_t)conf->chunk_sectors - 1); 8326 newsize = raid5_size(mddev, sectors, mddev->raid_disks); 8327 if (mddev->external_size && 8328 mddev->array_sectors > newsize) 8329 return -EINVAL; 8330 8331 ret = mddev->bitmap_ops->resize(mddev, sectors, 0, false); 8332 if (ret) 8333 return ret; 8334 8335 md_set_array_sectors(mddev, newsize); 8336 if (sectors > mddev->dev_sectors && 8337 mddev->recovery_cp > mddev->dev_sectors) { 8338 mddev->recovery_cp = mddev->dev_sectors; 8339 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8340 } 8341 mddev->dev_sectors = sectors; 8342 mddev->resync_max_sectors = sectors; 8343 return 0; 8344 } 8345 8346 static int check_stripe_cache(struct mddev *mddev) 8347 { 8348 /* Can only proceed if there are plenty of stripe_heads. 8349 * We need a minimum of one full stripe,, and for sensible progress 8350 * it is best to have about 4 times that. 8351 * If we require 4 times, then the default 256 4K stripe_heads will 8352 * allow for chunk sizes up to 256K, which is probably OK. 8353 * If the chunk size is greater, user-space should request more 8354 * stripe_heads first. 8355 */ 8356 struct r5conf *conf = mddev->private; 8357 if (((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4 8358 > conf->min_nr_stripes || 8359 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4 8360 > conf->min_nr_stripes) { 8361 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n", 8362 mdname(mddev), 8363 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9) 8364 / RAID5_STRIPE_SIZE(conf))*4); 8365 return 0; 8366 } 8367 return 1; 8368 } 8369 8370 static int check_reshape(struct mddev *mddev) 8371 { 8372 struct r5conf *conf = mddev->private; 8373 8374 if (raid5_has_log(conf) || raid5_has_ppl(conf)) 8375 return -EINVAL; 8376 if (mddev->delta_disks == 0 && 8377 mddev->new_layout == mddev->layout && 8378 mddev->new_chunk_sectors == mddev->chunk_sectors) 8379 return 0; /* nothing to do */ 8380 if (has_failed(conf)) 8381 return -EINVAL; 8382 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) { 8383 /* We might be able to shrink, but the devices must 8384 * be made bigger first. 8385 * For raid6, 4 is the minimum size. 8386 * Otherwise 2 is the minimum 8387 */ 8388 int min = 2; 8389 if (mddev->level == 6) 8390 min = 4; 8391 if (mddev->raid_disks + mddev->delta_disks < min) 8392 return -EINVAL; 8393 } 8394 8395 if (!check_stripe_cache(mddev)) 8396 return -ENOSPC; 8397 8398 if (mddev->new_chunk_sectors > mddev->chunk_sectors || 8399 mddev->delta_disks > 0) 8400 if (resize_chunks(conf, 8401 conf->previous_raid_disks 8402 + max(0, mddev->delta_disks), 8403 max(mddev->new_chunk_sectors, 8404 mddev->chunk_sectors) 8405 ) < 0) 8406 return -ENOMEM; 8407 8408 if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size) 8409 return 0; /* never bother to shrink */ 8410 return resize_stripes(conf, (conf->previous_raid_disks 8411 + mddev->delta_disks)); 8412 } 8413 8414 static int raid5_start_reshape(struct mddev *mddev) 8415 { 8416 struct r5conf *conf = mddev->private; 8417 struct md_rdev *rdev; 8418 int spares = 0; 8419 int i; 8420 unsigned long flags; 8421 8422 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 8423 return -EBUSY; 8424 8425 if (!check_stripe_cache(mddev)) 8426 return -ENOSPC; 8427 8428 if (has_failed(conf)) 8429 return -EINVAL; 8430 8431 /* raid5 can't handle concurrent reshape and recovery */ 8432 if (mddev->recovery_cp < MaxSector) 8433 return -EBUSY; 8434 for (i = 0; i < conf->raid_disks; i++) 8435 if (conf->disks[i].replacement) 8436 return -EBUSY; 8437 8438 rdev_for_each(rdev, mddev) { 8439 if (!test_bit(In_sync, &rdev->flags) 8440 && !test_bit(Faulty, &rdev->flags)) 8441 spares++; 8442 } 8443 8444 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded) 8445 /* Not enough devices even to make a degraded array 8446 * of that size 8447 */ 8448 return -EINVAL; 8449 8450 /* Refuse to reduce size of the array. Any reductions in 8451 * array size must be through explicit setting of array_size 8452 * attribute. 8453 */ 8454 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks) 8455 < mddev->array_sectors) { 8456 pr_warn("md/raid:%s: array size must be reduced before number of disks\n", 8457 mdname(mddev)); 8458 return -EINVAL; 8459 } 8460 8461 atomic_set(&conf->reshape_stripes, 0); 8462 spin_lock_irq(&conf->device_lock); 8463 write_seqcount_begin(&conf->gen_lock); 8464 conf->previous_raid_disks = conf->raid_disks; 8465 conf->raid_disks += mddev->delta_disks; 8466 conf->prev_chunk_sectors = conf->chunk_sectors; 8467 conf->chunk_sectors = mddev->new_chunk_sectors; 8468 conf->prev_algo = conf->algorithm; 8469 conf->algorithm = mddev->new_layout; 8470 conf->generation++; 8471 /* Code that selects data_offset needs to see the generation update 8472 * if reshape_progress has been set - so a memory barrier needed. 8473 */ 8474 smp_mb(); 8475 if (mddev->reshape_backwards) 8476 conf->reshape_progress = raid5_size(mddev, 0, 0); 8477 else 8478 conf->reshape_progress = 0; 8479 conf->reshape_safe = conf->reshape_progress; 8480 write_seqcount_end(&conf->gen_lock); 8481 spin_unlock_irq(&conf->device_lock); 8482 8483 /* Now make sure any requests that proceeded on the assumption 8484 * the reshape wasn't running - like Discard or Read - have 8485 * completed. 8486 */ 8487 raid5_quiesce(mddev, true); 8488 raid5_quiesce(mddev, false); 8489 8490 /* Add some new drives, as many as will fit. 8491 * We know there are enough to make the newly sized array work. 8492 * Don't add devices if we are reducing the number of 8493 * devices in the array. This is because it is not possible 8494 * to correctly record the "partially reconstructed" state of 8495 * such devices during the reshape and confusion could result. 8496 */ 8497 if (mddev->delta_disks >= 0) { 8498 rdev_for_each(rdev, mddev) 8499 if (rdev->raid_disk < 0 && 8500 !test_bit(Faulty, &rdev->flags)) { 8501 if (raid5_add_disk(mddev, rdev) == 0) { 8502 if (rdev->raid_disk 8503 >= conf->previous_raid_disks) 8504 set_bit(In_sync, &rdev->flags); 8505 else 8506 rdev->recovery_offset = 0; 8507 8508 /* Failure here is OK */ 8509 sysfs_link_rdev(mddev, rdev); 8510 } 8511 } else if (rdev->raid_disk >= conf->previous_raid_disks 8512 && !test_bit(Faulty, &rdev->flags)) { 8513 /* This is a spare that was manually added */ 8514 set_bit(In_sync, &rdev->flags); 8515 } 8516 8517 /* When a reshape changes the number of devices, 8518 * ->degraded is measured against the larger of the 8519 * pre and post number of devices. 8520 */ 8521 spin_lock_irqsave(&conf->device_lock, flags); 8522 mddev->degraded = raid5_calc_degraded(conf); 8523 spin_unlock_irqrestore(&conf->device_lock, flags); 8524 } 8525 mddev->raid_disks = conf->raid_disks; 8526 mddev->reshape_position = conf->reshape_progress; 8527 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8528 8529 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8530 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8531 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 8532 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8533 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8534 conf->reshape_checkpoint = jiffies; 8535 md_new_event(); 8536 return 0; 8537 } 8538 8539 /* This is called from the reshape thread and should make any 8540 * changes needed in 'conf' 8541 */ 8542 static void end_reshape(struct r5conf *conf) 8543 { 8544 8545 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 8546 struct md_rdev *rdev; 8547 8548 spin_lock_irq(&conf->device_lock); 8549 conf->previous_raid_disks = conf->raid_disks; 8550 md_finish_reshape(conf->mddev); 8551 smp_wmb(); 8552 conf->reshape_progress = MaxSector; 8553 conf->mddev->reshape_position = MaxSector; 8554 rdev_for_each(rdev, conf->mddev) 8555 if (rdev->raid_disk >= 0 && 8556 !test_bit(Journal, &rdev->flags) && 8557 !test_bit(In_sync, &rdev->flags)) 8558 rdev->recovery_offset = MaxSector; 8559 spin_unlock_irq(&conf->device_lock); 8560 wake_up(&conf->wait_for_reshape); 8561 8562 mddev_update_io_opt(conf->mddev, 8563 conf->raid_disks - conf->max_degraded); 8564 } 8565 } 8566 8567 /* This is called from the raid5d thread with mddev_lock held. 8568 * It makes config changes to the device. 8569 */ 8570 static void raid5_finish_reshape(struct mddev *mddev) 8571 { 8572 struct r5conf *conf = mddev->private; 8573 struct md_rdev *rdev; 8574 8575 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8576 8577 if (mddev->delta_disks <= 0) { 8578 int d; 8579 spin_lock_irq(&conf->device_lock); 8580 mddev->degraded = raid5_calc_degraded(conf); 8581 spin_unlock_irq(&conf->device_lock); 8582 for (d = conf->raid_disks ; 8583 d < conf->raid_disks - mddev->delta_disks; 8584 d++) { 8585 rdev = conf->disks[d].rdev; 8586 if (rdev) 8587 clear_bit(In_sync, &rdev->flags); 8588 rdev = conf->disks[d].replacement; 8589 if (rdev) 8590 clear_bit(In_sync, &rdev->flags); 8591 } 8592 } 8593 mddev->layout = conf->algorithm; 8594 mddev->chunk_sectors = conf->chunk_sectors; 8595 mddev->reshape_position = MaxSector; 8596 mddev->delta_disks = 0; 8597 mddev->reshape_backwards = 0; 8598 } 8599 } 8600 8601 static void raid5_quiesce(struct mddev *mddev, int quiesce) 8602 { 8603 struct r5conf *conf = mddev->private; 8604 8605 if (quiesce) { 8606 /* stop all writes */ 8607 lock_all_device_hash_locks_irq(conf); 8608 /* '2' tells resync/reshape to pause so that all 8609 * active stripes can drain 8610 */ 8611 r5c_flush_cache(conf, INT_MAX); 8612 /* need a memory barrier to make sure read_one_chunk() sees 8613 * quiesce started and reverts to slow (locked) path. 8614 */ 8615 smp_store_release(&conf->quiesce, 2); 8616 wait_event_cmd(conf->wait_for_quiescent, 8617 atomic_read(&conf->active_stripes) == 0 && 8618 atomic_read(&conf->active_aligned_reads) == 0, 8619 unlock_all_device_hash_locks_irq(conf), 8620 lock_all_device_hash_locks_irq(conf)); 8621 conf->quiesce = 1; 8622 unlock_all_device_hash_locks_irq(conf); 8623 /* allow reshape to continue */ 8624 wake_up(&conf->wait_for_reshape); 8625 } else { 8626 /* re-enable writes */ 8627 lock_all_device_hash_locks_irq(conf); 8628 conf->quiesce = 0; 8629 wake_up(&conf->wait_for_quiescent); 8630 wake_up(&conf->wait_for_reshape); 8631 unlock_all_device_hash_locks_irq(conf); 8632 } 8633 log_quiesce(conf, quiesce); 8634 } 8635 8636 static void *raid45_takeover_raid0(struct mddev *mddev, int level) 8637 { 8638 struct r0conf *raid0_conf = mddev->private; 8639 sector_t sectors; 8640 8641 /* for raid0 takeover only one zone is supported */ 8642 if (raid0_conf->nr_strip_zones > 1) { 8643 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n", 8644 mdname(mddev)); 8645 return ERR_PTR(-EINVAL); 8646 } 8647 8648 sectors = raid0_conf->strip_zone[0].zone_end; 8649 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev); 8650 mddev->dev_sectors = sectors; 8651 mddev->new_level = level; 8652 mddev->new_layout = ALGORITHM_PARITY_N; 8653 mddev->new_chunk_sectors = mddev->chunk_sectors; 8654 mddev->raid_disks += 1; 8655 mddev->delta_disks = 1; 8656 /* make sure it will be not marked as dirty */ 8657 mddev->recovery_cp = MaxSector; 8658 8659 return setup_conf(mddev); 8660 } 8661 8662 static void *raid5_takeover_raid1(struct mddev *mddev) 8663 { 8664 int chunksect; 8665 void *ret; 8666 8667 if (mddev->raid_disks != 2 || 8668 mddev->degraded > 1) 8669 return ERR_PTR(-EINVAL); 8670 8671 /* Should check if there are write-behind devices? */ 8672 8673 chunksect = 64*2; /* 64K by default */ 8674 8675 /* The array must be an exact multiple of chunksize */ 8676 while (chunksect && (mddev->array_sectors & (chunksect-1))) 8677 chunksect >>= 1; 8678 8679 if ((chunksect<<9) < RAID5_STRIPE_SIZE((struct r5conf *)mddev->private)) 8680 /* array size does not allow a suitable chunk size */ 8681 return ERR_PTR(-EINVAL); 8682 8683 mddev->new_level = 5; 8684 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC; 8685 mddev->new_chunk_sectors = chunksect; 8686 8687 ret = setup_conf(mddev); 8688 if (!IS_ERR(ret)) 8689 mddev_clear_unsupported_flags(mddev, 8690 UNSUPPORTED_MDDEV_FLAGS); 8691 return ret; 8692 } 8693 8694 static void *raid5_takeover_raid6(struct mddev *mddev) 8695 { 8696 int new_layout; 8697 8698 switch (mddev->layout) { 8699 case ALGORITHM_LEFT_ASYMMETRIC_6: 8700 new_layout = ALGORITHM_LEFT_ASYMMETRIC; 8701 break; 8702 case ALGORITHM_RIGHT_ASYMMETRIC_6: 8703 new_layout = ALGORITHM_RIGHT_ASYMMETRIC; 8704 break; 8705 case ALGORITHM_LEFT_SYMMETRIC_6: 8706 new_layout = ALGORITHM_LEFT_SYMMETRIC; 8707 break; 8708 case ALGORITHM_RIGHT_SYMMETRIC_6: 8709 new_layout = ALGORITHM_RIGHT_SYMMETRIC; 8710 break; 8711 case ALGORITHM_PARITY_0_6: 8712 new_layout = ALGORITHM_PARITY_0; 8713 break; 8714 case ALGORITHM_PARITY_N: 8715 new_layout = ALGORITHM_PARITY_N; 8716 break; 8717 default: 8718 return ERR_PTR(-EINVAL); 8719 } 8720 mddev->new_level = 5; 8721 mddev->new_layout = new_layout; 8722 mddev->delta_disks = -1; 8723 mddev->raid_disks -= 1; 8724 return setup_conf(mddev); 8725 } 8726 8727 static int raid5_check_reshape(struct mddev *mddev) 8728 { 8729 /* For a 2-drive array, the layout and chunk size can be changed 8730 * immediately as not restriping is needed. 8731 * For larger arrays we record the new value - after validation 8732 * to be used by a reshape pass. 8733 */ 8734 struct r5conf *conf = mddev->private; 8735 int new_chunk = mddev->new_chunk_sectors; 8736 8737 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout)) 8738 return -EINVAL; 8739 if (new_chunk > 0) { 8740 if (!is_power_of_2(new_chunk)) 8741 return -EINVAL; 8742 if (new_chunk < (PAGE_SIZE>>9)) 8743 return -EINVAL; 8744 if (mddev->array_sectors & (new_chunk-1)) 8745 /* not factor of array size */ 8746 return -EINVAL; 8747 } 8748 8749 /* They look valid */ 8750 8751 if (mddev->raid_disks == 2) { 8752 /* can make the change immediately */ 8753 if (mddev->new_layout >= 0) { 8754 conf->algorithm = mddev->new_layout; 8755 mddev->layout = mddev->new_layout; 8756 } 8757 if (new_chunk > 0) { 8758 conf->chunk_sectors = new_chunk ; 8759 mddev->chunk_sectors = new_chunk; 8760 } 8761 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8762 md_wakeup_thread(mddev->thread); 8763 } 8764 return check_reshape(mddev); 8765 } 8766 8767 static int raid6_check_reshape(struct mddev *mddev) 8768 { 8769 int new_chunk = mddev->new_chunk_sectors; 8770 8771 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout)) 8772 return -EINVAL; 8773 if (new_chunk > 0) { 8774 if (!is_power_of_2(new_chunk)) 8775 return -EINVAL; 8776 if (new_chunk < (PAGE_SIZE >> 9)) 8777 return -EINVAL; 8778 if (mddev->array_sectors & (new_chunk-1)) 8779 /* not factor of array size */ 8780 return -EINVAL; 8781 } 8782 8783 /* They look valid */ 8784 return check_reshape(mddev); 8785 } 8786 8787 static void *raid5_takeover(struct mddev *mddev) 8788 { 8789 /* raid5 can take over: 8790 * raid0 - if there is only one strip zone - make it a raid4 layout 8791 * raid1 - if there are two drives. We need to know the chunk size 8792 * raid4 - trivial - just use a raid4 layout. 8793 * raid6 - Providing it is a *_6 layout 8794 */ 8795 if (mddev->level == 0) 8796 return raid45_takeover_raid0(mddev, 5); 8797 if (mddev->level == 1) 8798 return raid5_takeover_raid1(mddev); 8799 if (mddev->level == 4) { 8800 mddev->new_layout = ALGORITHM_PARITY_N; 8801 mddev->new_level = 5; 8802 return setup_conf(mddev); 8803 } 8804 if (mddev->level == 6) 8805 return raid5_takeover_raid6(mddev); 8806 8807 return ERR_PTR(-EINVAL); 8808 } 8809 8810 static void *raid4_takeover(struct mddev *mddev) 8811 { 8812 /* raid4 can take over: 8813 * raid0 - if there is only one strip zone 8814 * raid5 - if layout is right 8815 */ 8816 if (mddev->level == 0) 8817 return raid45_takeover_raid0(mddev, 4); 8818 if (mddev->level == 5 && 8819 mddev->layout == ALGORITHM_PARITY_N) { 8820 mddev->new_layout = 0; 8821 mddev->new_level = 4; 8822 return setup_conf(mddev); 8823 } 8824 return ERR_PTR(-EINVAL); 8825 } 8826 8827 static struct md_personality raid5_personality; 8828 8829 static void *raid6_takeover(struct mddev *mddev) 8830 { 8831 /* Currently can only take over a raid5. We map the 8832 * personality to an equivalent raid6 personality 8833 * with the Q block at the end. 8834 */ 8835 int new_layout; 8836 8837 if (mddev->pers != &raid5_personality) 8838 return ERR_PTR(-EINVAL); 8839 if (mddev->degraded > 1) 8840 return ERR_PTR(-EINVAL); 8841 if (mddev->raid_disks > 253) 8842 return ERR_PTR(-EINVAL); 8843 if (mddev->raid_disks < 3) 8844 return ERR_PTR(-EINVAL); 8845 8846 switch (mddev->layout) { 8847 case ALGORITHM_LEFT_ASYMMETRIC: 8848 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6; 8849 break; 8850 case ALGORITHM_RIGHT_ASYMMETRIC: 8851 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6; 8852 break; 8853 case ALGORITHM_LEFT_SYMMETRIC: 8854 new_layout = ALGORITHM_LEFT_SYMMETRIC_6; 8855 break; 8856 case ALGORITHM_RIGHT_SYMMETRIC: 8857 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6; 8858 break; 8859 case ALGORITHM_PARITY_0: 8860 new_layout = ALGORITHM_PARITY_0_6; 8861 break; 8862 case ALGORITHM_PARITY_N: 8863 new_layout = ALGORITHM_PARITY_N; 8864 break; 8865 default: 8866 return ERR_PTR(-EINVAL); 8867 } 8868 mddev->new_level = 6; 8869 mddev->new_layout = new_layout; 8870 mddev->delta_disks = 1; 8871 mddev->raid_disks += 1; 8872 return setup_conf(mddev); 8873 } 8874 8875 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf) 8876 { 8877 struct r5conf *conf; 8878 int err; 8879 8880 err = mddev_suspend_and_lock(mddev); 8881 if (err) 8882 return err; 8883 conf = mddev->private; 8884 if (!conf) { 8885 mddev_unlock_and_resume(mddev); 8886 return -ENODEV; 8887 } 8888 8889 if (strncmp(buf, "ppl", 3) == 0) { 8890 /* ppl only works with RAID 5 */ 8891 if (!raid5_has_ppl(conf) && conf->level == 5) { 8892 err = log_init(conf, NULL, true); 8893 if (!err) { 8894 err = resize_stripes(conf, conf->pool_size); 8895 if (err) 8896 log_exit(conf); 8897 } 8898 } else 8899 err = -EINVAL; 8900 } else if (strncmp(buf, "resync", 6) == 0) { 8901 if (raid5_has_ppl(conf)) { 8902 log_exit(conf); 8903 err = resize_stripes(conf, conf->pool_size); 8904 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) && 8905 r5l_log_disk_error(conf)) { 8906 bool journal_dev_exists = false; 8907 struct md_rdev *rdev; 8908 8909 rdev_for_each(rdev, mddev) 8910 if (test_bit(Journal, &rdev->flags)) { 8911 journal_dev_exists = true; 8912 break; 8913 } 8914 8915 if (!journal_dev_exists) 8916 clear_bit(MD_HAS_JOURNAL, &mddev->flags); 8917 else /* need remove journal device first */ 8918 err = -EBUSY; 8919 } else 8920 err = -EINVAL; 8921 } else { 8922 err = -EINVAL; 8923 } 8924 8925 if (!err) 8926 md_update_sb(mddev, 1); 8927 8928 mddev_unlock_and_resume(mddev); 8929 8930 return err; 8931 } 8932 8933 static int raid5_start(struct mddev *mddev) 8934 { 8935 struct r5conf *conf = mddev->private; 8936 8937 return r5l_start(conf->log); 8938 } 8939 8940 /* 8941 * This is only used for dm-raid456, caller already frozen sync_thread, hence 8942 * if rehsape is still in progress, io that is waiting for reshape can never be 8943 * done now, hence wake up and handle those IO. 8944 */ 8945 static void raid5_prepare_suspend(struct mddev *mddev) 8946 { 8947 struct r5conf *conf = mddev->private; 8948 8949 wake_up(&conf->wait_for_reshape); 8950 } 8951 8952 static struct md_personality raid6_personality = 8953 { 8954 .name = "raid6", 8955 .level = 6, 8956 .owner = THIS_MODULE, 8957 .make_request = raid5_make_request, 8958 .run = raid5_run, 8959 .start = raid5_start, 8960 .free = raid5_free, 8961 .status = raid5_status, 8962 .error_handler = raid5_error, 8963 .hot_add_disk = raid5_add_disk, 8964 .hot_remove_disk= raid5_remove_disk, 8965 .spare_active = raid5_spare_active, 8966 .sync_request = raid5_sync_request, 8967 .resize = raid5_resize, 8968 .size = raid5_size, 8969 .check_reshape = raid6_check_reshape, 8970 .start_reshape = raid5_start_reshape, 8971 .finish_reshape = raid5_finish_reshape, 8972 .quiesce = raid5_quiesce, 8973 .takeover = raid6_takeover, 8974 .change_consistency_policy = raid5_change_consistency_policy, 8975 .prepare_suspend = raid5_prepare_suspend, 8976 }; 8977 static struct md_personality raid5_personality = 8978 { 8979 .name = "raid5", 8980 .level = 5, 8981 .owner = THIS_MODULE, 8982 .make_request = raid5_make_request, 8983 .run = raid5_run, 8984 .start = raid5_start, 8985 .free = raid5_free, 8986 .status = raid5_status, 8987 .error_handler = raid5_error, 8988 .hot_add_disk = raid5_add_disk, 8989 .hot_remove_disk= raid5_remove_disk, 8990 .spare_active = raid5_spare_active, 8991 .sync_request = raid5_sync_request, 8992 .resize = raid5_resize, 8993 .size = raid5_size, 8994 .check_reshape = raid5_check_reshape, 8995 .start_reshape = raid5_start_reshape, 8996 .finish_reshape = raid5_finish_reshape, 8997 .quiesce = raid5_quiesce, 8998 .takeover = raid5_takeover, 8999 .change_consistency_policy = raid5_change_consistency_policy, 9000 .prepare_suspend = raid5_prepare_suspend, 9001 }; 9002 9003 static struct md_personality raid4_personality = 9004 { 9005 .name = "raid4", 9006 .level = 4, 9007 .owner = THIS_MODULE, 9008 .make_request = raid5_make_request, 9009 .run = raid5_run, 9010 .start = raid5_start, 9011 .free = raid5_free, 9012 .status = raid5_status, 9013 .error_handler = raid5_error, 9014 .hot_add_disk = raid5_add_disk, 9015 .hot_remove_disk= raid5_remove_disk, 9016 .spare_active = raid5_spare_active, 9017 .sync_request = raid5_sync_request, 9018 .resize = raid5_resize, 9019 .size = raid5_size, 9020 .check_reshape = raid5_check_reshape, 9021 .start_reshape = raid5_start_reshape, 9022 .finish_reshape = raid5_finish_reshape, 9023 .quiesce = raid5_quiesce, 9024 .takeover = raid4_takeover, 9025 .change_consistency_policy = raid5_change_consistency_policy, 9026 .prepare_suspend = raid5_prepare_suspend, 9027 }; 9028 9029 static int __init raid5_init(void) 9030 { 9031 int ret; 9032 9033 raid5_wq = alloc_workqueue("raid5wq", 9034 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0); 9035 if (!raid5_wq) 9036 return -ENOMEM; 9037 9038 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE, 9039 "md/raid5:prepare", 9040 raid456_cpu_up_prepare, 9041 raid456_cpu_dead); 9042 if (ret) { 9043 destroy_workqueue(raid5_wq); 9044 return ret; 9045 } 9046 register_md_personality(&raid6_personality); 9047 register_md_personality(&raid5_personality); 9048 register_md_personality(&raid4_personality); 9049 return 0; 9050 } 9051 9052 static void raid5_exit(void) 9053 { 9054 unregister_md_personality(&raid6_personality); 9055 unregister_md_personality(&raid5_personality); 9056 unregister_md_personality(&raid4_personality); 9057 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE); 9058 destroy_workqueue(raid5_wq); 9059 } 9060 9061 module_init(raid5_init); 9062 module_exit(raid5_exit); 9063 MODULE_LICENSE("GPL"); 9064 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD"); 9065 MODULE_ALIAS("md-personality-4"); /* RAID5 */ 9066 MODULE_ALIAS("md-raid5"); 9067 MODULE_ALIAS("md-raid4"); 9068 MODULE_ALIAS("md-level-5"); 9069 MODULE_ALIAS("md-level-4"); 9070 MODULE_ALIAS("md-personality-8"); /* RAID6 */ 9071 MODULE_ALIAS("md-raid6"); 9072 MODULE_ALIAS("md-level-6"); 9073 9074 /* This used to be two separate modules, they were: */ 9075 MODULE_ALIAS("raid5"); 9076 MODULE_ALIAS("raid6"); 9077