1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid5.c : Multiple Devices driver for Linux 4 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman 5 * Copyright (C) 1999, 2000 Ingo Molnar 6 * Copyright (C) 2002, 2003 H. Peter Anvin 7 * 8 * RAID-4/5/6 management functions. 9 * Thanks to Penguin Computing for making the RAID-6 development possible 10 * by donating a test server! 11 */ 12 13 /* 14 * BITMAP UNPLUGGING: 15 * 16 * The sequencing for updating the bitmap reliably is a little 17 * subtle (and I got it wrong the first time) so it deserves some 18 * explanation. 19 * 20 * We group bitmap updates into batches. Each batch has a number. 21 * We may write out several batches at once, but that isn't very important. 22 * conf->seq_write is the number of the last batch successfully written. 23 * conf->seq_flush is the number of the last batch that was closed to 24 * new additions. 25 * When we discover that we will need to write to any block in a stripe 26 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq 27 * the number of the batch it will be in. This is seq_flush+1. 28 * When we are ready to do a write, if that batch hasn't been written yet, 29 * we plug the array and queue the stripe for later. 30 * When an unplug happens, we increment bm_flush, thus closing the current 31 * batch. 32 * When we notice that bm_flush > bm_write, we write out all pending updates 33 * to the bitmap, and advance bm_write to where bm_flush was. 34 * This may occasionally write a bit out twice, but is sure never to 35 * miss any bits. 36 */ 37 38 #include <linux/blkdev.h> 39 #include <linux/delay.h> 40 #include <linux/kthread.h> 41 #include <linux/raid/pq.h> 42 #include <linux/async_tx.h> 43 #include <linux/module.h> 44 #include <linux/async.h> 45 #include <linux/seq_file.h> 46 #include <linux/cpu.h> 47 #include <linux/slab.h> 48 #include <linux/ratelimit.h> 49 #include <linux/nodemask.h> 50 51 #include <trace/events/block.h> 52 #include <linux/list_sort.h> 53 54 #include "md.h" 55 #include "raid5.h" 56 #include "raid0.h" 57 #include "md-bitmap.h" 58 #include "raid5-log.h" 59 60 #define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED) 61 62 #define cpu_to_group(cpu) cpu_to_node(cpu) 63 #define ANY_GROUP NUMA_NO_NODE 64 65 #define RAID5_MAX_REQ_STRIPES 256 66 67 static bool devices_handle_discard_safely = false; 68 module_param(devices_handle_discard_safely, bool, 0644); 69 MODULE_PARM_DESC(devices_handle_discard_safely, 70 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions"); 71 static struct workqueue_struct *raid5_wq; 72 73 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect) 74 { 75 int hash = (sect >> RAID5_STRIPE_SHIFT(conf)) & HASH_MASK; 76 return &conf->stripe_hashtbl[hash]; 77 } 78 79 static inline int stripe_hash_locks_hash(struct r5conf *conf, sector_t sect) 80 { 81 return (sect >> RAID5_STRIPE_SHIFT(conf)) & STRIPE_HASH_LOCKS_MASK; 82 } 83 84 static inline void lock_device_hash_lock(struct r5conf *conf, int hash) 85 __acquires(&conf->device_lock) 86 { 87 spin_lock_irq(conf->hash_locks + hash); 88 spin_lock(&conf->device_lock); 89 } 90 91 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash) 92 __releases(&conf->device_lock) 93 { 94 spin_unlock(&conf->device_lock); 95 spin_unlock_irq(conf->hash_locks + hash); 96 } 97 98 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf) 99 __acquires(&conf->device_lock) 100 { 101 int i; 102 spin_lock_irq(conf->hash_locks); 103 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 104 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks); 105 spin_lock(&conf->device_lock); 106 } 107 108 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf) 109 __releases(&conf->device_lock) 110 { 111 int i; 112 spin_unlock(&conf->device_lock); 113 for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--) 114 spin_unlock(conf->hash_locks + i); 115 spin_unlock_irq(conf->hash_locks); 116 } 117 118 /* Find first data disk in a raid6 stripe */ 119 static inline int raid6_d0(struct stripe_head *sh) 120 { 121 if (sh->ddf_layout) 122 /* ddf always start from first device */ 123 return 0; 124 /* md starts just after Q block */ 125 if (sh->qd_idx == sh->disks - 1) 126 return 0; 127 else 128 return sh->qd_idx + 1; 129 } 130 static inline int raid6_next_disk(int disk, int raid_disks) 131 { 132 disk++; 133 return (disk < raid_disks) ? disk : 0; 134 } 135 136 /* When walking through the disks in a raid5, starting at raid6_d0, 137 * We need to map each disk to a 'slot', where the data disks are slot 138 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk 139 * is raid_disks-1. This help does that mapping. 140 */ 141 static int raid6_idx_to_slot(int idx, struct stripe_head *sh, 142 int *count, int syndrome_disks) 143 { 144 int slot = *count; 145 146 if (sh->ddf_layout) 147 (*count)++; 148 if (idx == sh->pd_idx) 149 return syndrome_disks; 150 if (idx == sh->qd_idx) 151 return syndrome_disks + 1; 152 if (!sh->ddf_layout) 153 (*count)++; 154 return slot; 155 } 156 157 static void print_raid5_conf (struct r5conf *conf); 158 159 static int stripe_operations_active(struct stripe_head *sh) 160 { 161 return sh->check_state || sh->reconstruct_state || 162 test_bit(STRIPE_BIOFILL_RUN, &sh->state) || 163 test_bit(STRIPE_COMPUTE_RUN, &sh->state); 164 } 165 166 static bool stripe_is_lowprio(struct stripe_head *sh) 167 { 168 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) || 169 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) && 170 !test_bit(STRIPE_R5C_CACHING, &sh->state); 171 } 172 173 static void raid5_wakeup_stripe_thread(struct stripe_head *sh) 174 __must_hold(&sh->raid_conf->device_lock) 175 { 176 struct r5conf *conf = sh->raid_conf; 177 struct r5worker_group *group; 178 int thread_cnt; 179 int i, cpu = sh->cpu; 180 181 if (!cpu_online(cpu)) { 182 cpu = cpumask_any(cpu_online_mask); 183 sh->cpu = cpu; 184 } 185 186 if (list_empty(&sh->lru)) { 187 struct r5worker_group *group; 188 group = conf->worker_groups + cpu_to_group(cpu); 189 if (stripe_is_lowprio(sh)) 190 list_add_tail(&sh->lru, &group->loprio_list); 191 else 192 list_add_tail(&sh->lru, &group->handle_list); 193 group->stripes_cnt++; 194 sh->group = group; 195 } 196 197 if (conf->worker_cnt_per_group == 0) { 198 md_wakeup_thread(conf->mddev->thread); 199 return; 200 } 201 202 group = conf->worker_groups + cpu_to_group(sh->cpu); 203 204 group->workers[0].working = true; 205 /* at least one worker should run to avoid race */ 206 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work); 207 208 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1; 209 /* wakeup more workers */ 210 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) { 211 if (group->workers[i].working == false) { 212 group->workers[i].working = true; 213 queue_work_on(sh->cpu, raid5_wq, 214 &group->workers[i].work); 215 thread_cnt--; 216 } 217 } 218 } 219 220 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh, 221 struct list_head *temp_inactive_list) 222 __must_hold(&conf->device_lock) 223 { 224 int i; 225 int injournal = 0; /* number of date pages with R5_InJournal */ 226 227 BUG_ON(!list_empty(&sh->lru)); 228 BUG_ON(atomic_read(&conf->active_stripes)==0); 229 230 if (r5c_is_writeback(conf->log)) 231 for (i = sh->disks; i--; ) 232 if (test_bit(R5_InJournal, &sh->dev[i].flags)) 233 injournal++; 234 /* 235 * In the following cases, the stripe cannot be released to cached 236 * lists. Therefore, we make the stripe write out and set 237 * STRIPE_HANDLE: 238 * 1. when quiesce in r5c write back; 239 * 2. when resync is requested fot the stripe. 240 */ 241 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) || 242 (conf->quiesce && r5c_is_writeback(conf->log) && 243 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) { 244 if (test_bit(STRIPE_R5C_CACHING, &sh->state)) 245 r5c_make_stripe_write_out(sh); 246 set_bit(STRIPE_HANDLE, &sh->state); 247 } 248 249 if (test_bit(STRIPE_HANDLE, &sh->state)) { 250 if (test_bit(STRIPE_DELAYED, &sh->state) && 251 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 252 list_add_tail(&sh->lru, &conf->delayed_list); 253 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) && 254 sh->bm_seq - conf->seq_write > 0) 255 list_add_tail(&sh->lru, &conf->bitmap_list); 256 else { 257 clear_bit(STRIPE_DELAYED, &sh->state); 258 clear_bit(STRIPE_BIT_DELAY, &sh->state); 259 if (conf->worker_cnt_per_group == 0) { 260 if (stripe_is_lowprio(sh)) 261 list_add_tail(&sh->lru, 262 &conf->loprio_list); 263 else 264 list_add_tail(&sh->lru, 265 &conf->handle_list); 266 } else { 267 raid5_wakeup_stripe_thread(sh); 268 return; 269 } 270 } 271 md_wakeup_thread(conf->mddev->thread); 272 } else { 273 BUG_ON(stripe_operations_active(sh)); 274 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 275 if (atomic_dec_return(&conf->preread_active_stripes) 276 < IO_THRESHOLD) 277 md_wakeup_thread(conf->mddev->thread); 278 atomic_dec(&conf->active_stripes); 279 if (!test_bit(STRIPE_EXPANDING, &sh->state)) { 280 if (!r5c_is_writeback(conf->log)) 281 list_add_tail(&sh->lru, temp_inactive_list); 282 else { 283 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags)); 284 if (injournal == 0) 285 list_add_tail(&sh->lru, temp_inactive_list); 286 else if (injournal == conf->raid_disks - conf->max_degraded) { 287 /* full stripe */ 288 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) 289 atomic_inc(&conf->r5c_cached_full_stripes); 290 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) 291 atomic_dec(&conf->r5c_cached_partial_stripes); 292 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list); 293 r5c_check_cached_full_stripe(conf); 294 } else 295 /* 296 * STRIPE_R5C_PARTIAL_STRIPE is set in 297 * r5c_try_caching_write(). No need to 298 * set it again. 299 */ 300 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list); 301 } 302 } 303 } 304 } 305 306 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh, 307 struct list_head *temp_inactive_list) 308 __must_hold(&conf->device_lock) 309 { 310 if (atomic_dec_and_test(&sh->count)) 311 do_release_stripe(conf, sh, temp_inactive_list); 312 } 313 314 /* 315 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list 316 * 317 * Be careful: Only one task can add/delete stripes from temp_inactive_list at 318 * given time. Adding stripes only takes device lock, while deleting stripes 319 * only takes hash lock. 320 */ 321 static void release_inactive_stripe_list(struct r5conf *conf, 322 struct list_head *temp_inactive_list, 323 int hash) 324 { 325 int size; 326 bool do_wakeup = false; 327 unsigned long flags; 328 329 if (hash == NR_STRIPE_HASH_LOCKS) { 330 size = NR_STRIPE_HASH_LOCKS; 331 hash = NR_STRIPE_HASH_LOCKS - 1; 332 } else 333 size = 1; 334 while (size) { 335 struct list_head *list = &temp_inactive_list[size - 1]; 336 337 /* 338 * We don't hold any lock here yet, raid5_get_active_stripe() might 339 * remove stripes from the list 340 */ 341 if (!list_empty_careful(list)) { 342 spin_lock_irqsave(conf->hash_locks + hash, flags); 343 if (list_empty(conf->inactive_list + hash) && 344 !list_empty(list)) 345 atomic_dec(&conf->empty_inactive_list_nr); 346 list_splice_tail_init(list, conf->inactive_list + hash); 347 do_wakeup = true; 348 spin_unlock_irqrestore(conf->hash_locks + hash, flags); 349 } 350 size--; 351 hash--; 352 } 353 354 if (do_wakeup) { 355 wake_up(&conf->wait_for_stripe); 356 if (atomic_read(&conf->active_stripes) == 0) 357 wake_up(&conf->wait_for_quiescent); 358 if (conf->retry_read_aligned) 359 md_wakeup_thread(conf->mddev->thread); 360 } 361 } 362 363 static int release_stripe_list(struct r5conf *conf, 364 struct list_head *temp_inactive_list) 365 __must_hold(&conf->device_lock) 366 { 367 struct stripe_head *sh, *t; 368 int count = 0; 369 struct llist_node *head; 370 371 head = llist_del_all(&conf->released_stripes); 372 head = llist_reverse_order(head); 373 llist_for_each_entry_safe(sh, t, head, release_list) { 374 int hash; 375 376 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */ 377 smp_mb(); 378 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state); 379 /* 380 * Don't worry the bit is set here, because if the bit is set 381 * again, the count is always > 1. This is true for 382 * STRIPE_ON_UNPLUG_LIST bit too. 383 */ 384 hash = sh->hash_lock_index; 385 __release_stripe(conf, sh, &temp_inactive_list[hash]); 386 count++; 387 } 388 389 return count; 390 } 391 392 void raid5_release_stripe(struct stripe_head *sh) 393 { 394 struct r5conf *conf = sh->raid_conf; 395 unsigned long flags; 396 struct list_head list; 397 int hash; 398 bool wakeup; 399 400 /* Avoid release_list until the last reference. 401 */ 402 if (atomic_add_unless(&sh->count, -1, 1)) 403 return; 404 405 if (unlikely(!conf->mddev->thread) || 406 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state)) 407 goto slow_path; 408 wakeup = llist_add(&sh->release_list, &conf->released_stripes); 409 if (wakeup) 410 md_wakeup_thread(conf->mddev->thread); 411 return; 412 slow_path: 413 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */ 414 if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) { 415 INIT_LIST_HEAD(&list); 416 hash = sh->hash_lock_index; 417 do_release_stripe(conf, sh, &list); 418 spin_unlock_irqrestore(&conf->device_lock, flags); 419 release_inactive_stripe_list(conf, &list, hash); 420 } 421 } 422 423 static inline void remove_hash(struct stripe_head *sh) 424 { 425 pr_debug("remove_hash(), stripe %llu\n", 426 (unsigned long long)sh->sector); 427 428 hlist_del_init(&sh->hash); 429 } 430 431 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh) 432 { 433 struct hlist_head *hp = stripe_hash(conf, sh->sector); 434 435 pr_debug("insert_hash(), stripe %llu\n", 436 (unsigned long long)sh->sector); 437 438 hlist_add_head(&sh->hash, hp); 439 } 440 441 /* find an idle stripe, make sure it is unhashed, and return it. */ 442 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash) 443 { 444 struct stripe_head *sh = NULL; 445 struct list_head *first; 446 447 if (list_empty(conf->inactive_list + hash)) 448 goto out; 449 first = (conf->inactive_list + hash)->next; 450 sh = list_entry(first, struct stripe_head, lru); 451 list_del_init(first); 452 remove_hash(sh); 453 atomic_inc(&conf->active_stripes); 454 BUG_ON(hash != sh->hash_lock_index); 455 if (list_empty(conf->inactive_list + hash)) 456 atomic_inc(&conf->empty_inactive_list_nr); 457 out: 458 return sh; 459 } 460 461 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 462 static void free_stripe_pages(struct stripe_head *sh) 463 { 464 int i; 465 struct page *p; 466 467 /* Have not allocate page pool */ 468 if (!sh->pages) 469 return; 470 471 for (i = 0; i < sh->nr_pages; i++) { 472 p = sh->pages[i]; 473 if (p) 474 put_page(p); 475 sh->pages[i] = NULL; 476 } 477 } 478 479 static int alloc_stripe_pages(struct stripe_head *sh, gfp_t gfp) 480 { 481 int i; 482 struct page *p; 483 484 for (i = 0; i < sh->nr_pages; i++) { 485 /* The page have allocated. */ 486 if (sh->pages[i]) 487 continue; 488 489 p = alloc_page(gfp); 490 if (!p) { 491 free_stripe_pages(sh); 492 return -ENOMEM; 493 } 494 sh->pages[i] = p; 495 } 496 return 0; 497 } 498 499 static int 500 init_stripe_shared_pages(struct stripe_head *sh, struct r5conf *conf, int disks) 501 { 502 int nr_pages, cnt; 503 504 if (sh->pages) 505 return 0; 506 507 /* Each of the sh->dev[i] need one conf->stripe_size */ 508 cnt = PAGE_SIZE / conf->stripe_size; 509 nr_pages = (disks + cnt - 1) / cnt; 510 511 sh->pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL); 512 if (!sh->pages) 513 return -ENOMEM; 514 sh->nr_pages = nr_pages; 515 sh->stripes_per_page = cnt; 516 return 0; 517 } 518 #endif 519 520 static void shrink_buffers(struct stripe_head *sh) 521 { 522 int i; 523 int num = sh->raid_conf->pool_size; 524 525 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE 526 for (i = 0; i < num ; i++) { 527 struct page *p; 528 529 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page); 530 p = sh->dev[i].page; 531 if (!p) 532 continue; 533 sh->dev[i].page = NULL; 534 put_page(p); 535 } 536 #else 537 for (i = 0; i < num; i++) 538 sh->dev[i].page = NULL; 539 free_stripe_pages(sh); /* Free pages */ 540 #endif 541 } 542 543 static int grow_buffers(struct stripe_head *sh, gfp_t gfp) 544 { 545 int i; 546 int num = sh->raid_conf->pool_size; 547 548 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE 549 for (i = 0; i < num; i++) { 550 struct page *page; 551 552 if (!(page = alloc_page(gfp))) { 553 return 1; 554 } 555 sh->dev[i].page = page; 556 sh->dev[i].orig_page = page; 557 sh->dev[i].offset = 0; 558 } 559 #else 560 if (alloc_stripe_pages(sh, gfp)) 561 return -ENOMEM; 562 563 for (i = 0; i < num; i++) { 564 sh->dev[i].page = raid5_get_dev_page(sh, i); 565 sh->dev[i].orig_page = sh->dev[i].page; 566 sh->dev[i].offset = raid5_get_page_offset(sh, i); 567 } 568 #endif 569 return 0; 570 } 571 572 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 573 struct stripe_head *sh); 574 575 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous) 576 { 577 struct r5conf *conf = sh->raid_conf; 578 int i, seq; 579 580 BUG_ON(atomic_read(&sh->count) != 0); 581 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); 582 BUG_ON(stripe_operations_active(sh)); 583 BUG_ON(sh->batch_head); 584 585 pr_debug("init_stripe called, stripe %llu\n", 586 (unsigned long long)sector); 587 retry: 588 seq = read_seqcount_begin(&conf->gen_lock); 589 sh->generation = conf->generation - previous; 590 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks; 591 sh->sector = sector; 592 stripe_set_idx(sector, conf, previous, sh); 593 sh->state = 0; 594 595 for (i = sh->disks; i--; ) { 596 struct r5dev *dev = &sh->dev[i]; 597 598 if (dev->toread || dev->read || dev->towrite || dev->written || 599 test_bit(R5_LOCKED, &dev->flags)) { 600 pr_err("sector=%llx i=%d %p %p %p %p %d\n", 601 (unsigned long long)sh->sector, i, dev->toread, 602 dev->read, dev->towrite, dev->written, 603 test_bit(R5_LOCKED, &dev->flags)); 604 WARN_ON(1); 605 } 606 dev->flags = 0; 607 dev->sector = raid5_compute_blocknr(sh, i, previous); 608 } 609 if (read_seqcount_retry(&conf->gen_lock, seq)) 610 goto retry; 611 sh->overwrite_disks = 0; 612 insert_hash(conf, sh); 613 sh->cpu = smp_processor_id(); 614 set_bit(STRIPE_BATCH_READY, &sh->state); 615 } 616 617 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector, 618 short generation) 619 { 620 struct stripe_head *sh; 621 622 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector); 623 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash) 624 if (sh->sector == sector && sh->generation == generation) 625 return sh; 626 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector); 627 return NULL; 628 } 629 630 static struct stripe_head *find_get_stripe(struct r5conf *conf, 631 sector_t sector, short generation, int hash) 632 { 633 int inc_empty_inactive_list_flag; 634 struct stripe_head *sh; 635 636 sh = __find_stripe(conf, sector, generation); 637 if (!sh) 638 return NULL; 639 640 if (atomic_inc_not_zero(&sh->count)) 641 return sh; 642 643 /* 644 * Slow path. The reference count is zero which means the stripe must 645 * be on a list (sh->lru). Must remove the stripe from the list that 646 * references it with the device_lock held. 647 */ 648 649 spin_lock(&conf->device_lock); 650 if (!atomic_read(&sh->count)) { 651 if (!test_bit(STRIPE_HANDLE, &sh->state)) 652 atomic_inc(&conf->active_stripes); 653 BUG_ON(list_empty(&sh->lru) && 654 !test_bit(STRIPE_EXPANDING, &sh->state)); 655 inc_empty_inactive_list_flag = 0; 656 if (!list_empty(conf->inactive_list + hash)) 657 inc_empty_inactive_list_flag = 1; 658 list_del_init(&sh->lru); 659 if (list_empty(conf->inactive_list + hash) && 660 inc_empty_inactive_list_flag) 661 atomic_inc(&conf->empty_inactive_list_nr); 662 if (sh->group) { 663 sh->group->stripes_cnt--; 664 sh->group = NULL; 665 } 666 } 667 atomic_inc(&sh->count); 668 spin_unlock(&conf->device_lock); 669 670 return sh; 671 } 672 673 /* 674 * Need to check if array has failed when deciding whether to: 675 * - start an array 676 * - remove non-faulty devices 677 * - add a spare 678 * - allow a reshape 679 * This determination is simple when no reshape is happening. 680 * However if there is a reshape, we need to carefully check 681 * both the before and after sections. 682 * This is because some failed devices may only affect one 683 * of the two sections, and some non-in_sync devices may 684 * be insync in the section most affected by failed devices. 685 * 686 * Most calls to this function hold &conf->device_lock. Calls 687 * in raid5_run() do not require the lock as no other threads 688 * have been started yet. 689 */ 690 int raid5_calc_degraded(struct r5conf *conf) 691 { 692 int degraded, degraded2; 693 int i; 694 695 rcu_read_lock(); 696 degraded = 0; 697 for (i = 0; i < conf->previous_raid_disks; i++) { 698 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 699 if (rdev && test_bit(Faulty, &rdev->flags)) 700 rdev = rcu_dereference(conf->disks[i].replacement); 701 if (!rdev || test_bit(Faulty, &rdev->flags)) 702 degraded++; 703 else if (test_bit(In_sync, &rdev->flags)) 704 ; 705 else 706 /* not in-sync or faulty. 707 * If the reshape increases the number of devices, 708 * this is being recovered by the reshape, so 709 * this 'previous' section is not in_sync. 710 * If the number of devices is being reduced however, 711 * the device can only be part of the array if 712 * we are reverting a reshape, so this section will 713 * be in-sync. 714 */ 715 if (conf->raid_disks >= conf->previous_raid_disks) 716 degraded++; 717 } 718 rcu_read_unlock(); 719 if (conf->raid_disks == conf->previous_raid_disks) 720 return degraded; 721 rcu_read_lock(); 722 degraded2 = 0; 723 for (i = 0; i < conf->raid_disks; i++) { 724 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 725 if (rdev && test_bit(Faulty, &rdev->flags)) 726 rdev = rcu_dereference(conf->disks[i].replacement); 727 if (!rdev || test_bit(Faulty, &rdev->flags)) 728 degraded2++; 729 else if (test_bit(In_sync, &rdev->flags)) 730 ; 731 else 732 /* not in-sync or faulty. 733 * If reshape increases the number of devices, this 734 * section has already been recovered, else it 735 * almost certainly hasn't. 736 */ 737 if (conf->raid_disks <= conf->previous_raid_disks) 738 degraded2++; 739 } 740 rcu_read_unlock(); 741 if (degraded2 > degraded) 742 return degraded2; 743 return degraded; 744 } 745 746 static bool has_failed(struct r5conf *conf) 747 { 748 int degraded = conf->mddev->degraded; 749 750 if (test_bit(MD_BROKEN, &conf->mddev->flags)) 751 return true; 752 753 if (conf->mddev->reshape_position != MaxSector) 754 degraded = raid5_calc_degraded(conf); 755 756 return degraded > conf->max_degraded; 757 } 758 759 enum stripe_result { 760 STRIPE_SUCCESS = 0, 761 STRIPE_RETRY, 762 STRIPE_SCHEDULE_AND_RETRY, 763 STRIPE_FAIL, 764 }; 765 766 struct stripe_request_ctx { 767 /* a reference to the last stripe_head for batching */ 768 struct stripe_head *batch_last; 769 770 /* first sector in the request */ 771 sector_t first_sector; 772 773 /* last sector in the request */ 774 sector_t last_sector; 775 776 /* 777 * bitmap to track stripe sectors that have been added to stripes 778 * add one to account for unaligned requests 779 */ 780 DECLARE_BITMAP(sectors_to_do, RAID5_MAX_REQ_STRIPES + 1); 781 782 /* the request had REQ_PREFLUSH, cleared after the first stripe_head */ 783 bool do_flush; 784 }; 785 786 /* 787 * Block until another thread clears R5_INACTIVE_BLOCKED or 788 * there are fewer than 3/4 the maximum number of active stripes 789 * and there is an inactive stripe available. 790 */ 791 static bool is_inactive_blocked(struct r5conf *conf, int hash) 792 { 793 if (list_empty(conf->inactive_list + hash)) 794 return false; 795 796 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) 797 return true; 798 799 return (atomic_read(&conf->active_stripes) < 800 (conf->max_nr_stripes * 3 / 4)); 801 } 802 803 struct stripe_head *raid5_get_active_stripe(struct r5conf *conf, 804 struct stripe_request_ctx *ctx, sector_t sector, 805 unsigned int flags) 806 { 807 struct stripe_head *sh; 808 int hash = stripe_hash_locks_hash(conf, sector); 809 int previous = !!(flags & R5_GAS_PREVIOUS); 810 811 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector); 812 813 spin_lock_irq(conf->hash_locks + hash); 814 815 for (;;) { 816 if (!(flags & R5_GAS_NOQUIESCE) && conf->quiesce) { 817 /* 818 * Must release the reference to batch_last before 819 * waiting, on quiesce, otherwise the batch_last will 820 * hold a reference to a stripe and raid5_quiesce() 821 * will deadlock waiting for active_stripes to go to 822 * zero. 823 */ 824 if (ctx && ctx->batch_last) { 825 raid5_release_stripe(ctx->batch_last); 826 ctx->batch_last = NULL; 827 } 828 829 wait_event_lock_irq(conf->wait_for_quiescent, 830 !conf->quiesce, 831 *(conf->hash_locks + hash)); 832 } 833 834 sh = find_get_stripe(conf, sector, conf->generation - previous, 835 hash); 836 if (sh) 837 break; 838 839 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) { 840 sh = get_free_stripe(conf, hash); 841 if (sh) { 842 r5c_check_stripe_cache_usage(conf); 843 init_stripe(sh, sector, previous); 844 atomic_inc(&sh->count); 845 break; 846 } 847 848 if (!test_bit(R5_DID_ALLOC, &conf->cache_state)) 849 set_bit(R5_ALLOC_MORE, &conf->cache_state); 850 } 851 852 if (flags & R5_GAS_NOBLOCK) 853 break; 854 855 set_bit(R5_INACTIVE_BLOCKED, &conf->cache_state); 856 r5l_wake_reclaim(conf->log, 0); 857 wait_event_lock_irq(conf->wait_for_stripe, 858 is_inactive_blocked(conf, hash), 859 *(conf->hash_locks + hash)); 860 clear_bit(R5_INACTIVE_BLOCKED, &conf->cache_state); 861 } 862 863 spin_unlock_irq(conf->hash_locks + hash); 864 return sh; 865 } 866 867 static bool is_full_stripe_write(struct stripe_head *sh) 868 { 869 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded)); 870 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded); 871 } 872 873 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) 874 __acquires(&sh1->stripe_lock) 875 __acquires(&sh2->stripe_lock) 876 { 877 if (sh1 > sh2) { 878 spin_lock_irq(&sh2->stripe_lock); 879 spin_lock_nested(&sh1->stripe_lock, 1); 880 } else { 881 spin_lock_irq(&sh1->stripe_lock); 882 spin_lock_nested(&sh2->stripe_lock, 1); 883 } 884 } 885 886 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) 887 __releases(&sh1->stripe_lock) 888 __releases(&sh2->stripe_lock) 889 { 890 spin_unlock(&sh1->stripe_lock); 891 spin_unlock_irq(&sh2->stripe_lock); 892 } 893 894 /* Only freshly new full stripe normal write stripe can be added to a batch list */ 895 static bool stripe_can_batch(struct stripe_head *sh) 896 { 897 struct r5conf *conf = sh->raid_conf; 898 899 if (raid5_has_log(conf) || raid5_has_ppl(conf)) 900 return false; 901 return test_bit(STRIPE_BATCH_READY, &sh->state) && 902 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) && 903 is_full_stripe_write(sh); 904 } 905 906 /* we only do back search */ 907 static void stripe_add_to_batch_list(struct r5conf *conf, 908 struct stripe_head *sh, struct stripe_head *last_sh) 909 { 910 struct stripe_head *head; 911 sector_t head_sector, tmp_sec; 912 int hash; 913 int dd_idx; 914 915 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */ 916 tmp_sec = sh->sector; 917 if (!sector_div(tmp_sec, conf->chunk_sectors)) 918 return; 919 head_sector = sh->sector - RAID5_STRIPE_SECTORS(conf); 920 921 if (last_sh && head_sector == last_sh->sector) { 922 head = last_sh; 923 atomic_inc(&head->count); 924 } else { 925 hash = stripe_hash_locks_hash(conf, head_sector); 926 spin_lock_irq(conf->hash_locks + hash); 927 head = find_get_stripe(conf, head_sector, conf->generation, 928 hash); 929 spin_unlock_irq(conf->hash_locks + hash); 930 if (!head) 931 return; 932 if (!stripe_can_batch(head)) 933 goto out; 934 } 935 936 lock_two_stripes(head, sh); 937 /* clear_batch_ready clear the flag */ 938 if (!stripe_can_batch(head) || !stripe_can_batch(sh)) 939 goto unlock_out; 940 941 if (sh->batch_head) 942 goto unlock_out; 943 944 dd_idx = 0; 945 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx) 946 dd_idx++; 947 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf || 948 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite)) 949 goto unlock_out; 950 951 if (head->batch_head) { 952 spin_lock(&head->batch_head->batch_lock); 953 /* This batch list is already running */ 954 if (!stripe_can_batch(head)) { 955 spin_unlock(&head->batch_head->batch_lock); 956 goto unlock_out; 957 } 958 /* 959 * We must assign batch_head of this stripe within the 960 * batch_lock, otherwise clear_batch_ready of batch head 961 * stripe could clear BATCH_READY bit of this stripe and 962 * this stripe->batch_head doesn't get assigned, which 963 * could confuse clear_batch_ready for this stripe 964 */ 965 sh->batch_head = head->batch_head; 966 967 /* 968 * at this point, head's BATCH_READY could be cleared, but we 969 * can still add the stripe to batch list 970 */ 971 list_add(&sh->batch_list, &head->batch_list); 972 spin_unlock(&head->batch_head->batch_lock); 973 } else { 974 head->batch_head = head; 975 sh->batch_head = head->batch_head; 976 spin_lock(&head->batch_lock); 977 list_add_tail(&sh->batch_list, &head->batch_list); 978 spin_unlock(&head->batch_lock); 979 } 980 981 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 982 if (atomic_dec_return(&conf->preread_active_stripes) 983 < IO_THRESHOLD) 984 md_wakeup_thread(conf->mddev->thread); 985 986 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) { 987 int seq = sh->bm_seq; 988 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) && 989 sh->batch_head->bm_seq > seq) 990 seq = sh->batch_head->bm_seq; 991 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state); 992 sh->batch_head->bm_seq = seq; 993 } 994 995 atomic_inc(&sh->count); 996 unlock_out: 997 unlock_two_stripes(head, sh); 998 out: 999 raid5_release_stripe(head); 1000 } 1001 1002 /* Determine if 'data_offset' or 'new_data_offset' should be used 1003 * in this stripe_head. 1004 */ 1005 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh) 1006 { 1007 sector_t progress = conf->reshape_progress; 1008 /* Need a memory barrier to make sure we see the value 1009 * of conf->generation, or ->data_offset that was set before 1010 * reshape_progress was updated. 1011 */ 1012 smp_rmb(); 1013 if (progress == MaxSector) 1014 return 0; 1015 if (sh->generation == conf->generation - 1) 1016 return 0; 1017 /* We are in a reshape, and this is a new-generation stripe, 1018 * so use new_data_offset. 1019 */ 1020 return 1; 1021 } 1022 1023 static void dispatch_bio_list(struct bio_list *tmp) 1024 { 1025 struct bio *bio; 1026 1027 while ((bio = bio_list_pop(tmp))) 1028 submit_bio_noacct(bio); 1029 } 1030 1031 static int cmp_stripe(void *priv, const struct list_head *a, 1032 const struct list_head *b) 1033 { 1034 const struct r5pending_data *da = list_entry(a, 1035 struct r5pending_data, sibling); 1036 const struct r5pending_data *db = list_entry(b, 1037 struct r5pending_data, sibling); 1038 if (da->sector > db->sector) 1039 return 1; 1040 if (da->sector < db->sector) 1041 return -1; 1042 return 0; 1043 } 1044 1045 static void dispatch_defer_bios(struct r5conf *conf, int target, 1046 struct bio_list *list) 1047 { 1048 struct r5pending_data *data; 1049 struct list_head *first, *next = NULL; 1050 int cnt = 0; 1051 1052 if (conf->pending_data_cnt == 0) 1053 return; 1054 1055 list_sort(NULL, &conf->pending_list, cmp_stripe); 1056 1057 first = conf->pending_list.next; 1058 1059 /* temporarily move the head */ 1060 if (conf->next_pending_data) 1061 list_move_tail(&conf->pending_list, 1062 &conf->next_pending_data->sibling); 1063 1064 while (!list_empty(&conf->pending_list)) { 1065 data = list_first_entry(&conf->pending_list, 1066 struct r5pending_data, sibling); 1067 if (&data->sibling == first) 1068 first = data->sibling.next; 1069 next = data->sibling.next; 1070 1071 bio_list_merge(list, &data->bios); 1072 list_move(&data->sibling, &conf->free_list); 1073 cnt++; 1074 if (cnt >= target) 1075 break; 1076 } 1077 conf->pending_data_cnt -= cnt; 1078 BUG_ON(conf->pending_data_cnt < 0 || cnt < target); 1079 1080 if (next != &conf->pending_list) 1081 conf->next_pending_data = list_entry(next, 1082 struct r5pending_data, sibling); 1083 else 1084 conf->next_pending_data = NULL; 1085 /* list isn't empty */ 1086 if (first != &conf->pending_list) 1087 list_move_tail(&conf->pending_list, first); 1088 } 1089 1090 static void flush_deferred_bios(struct r5conf *conf) 1091 { 1092 struct bio_list tmp = BIO_EMPTY_LIST; 1093 1094 if (conf->pending_data_cnt == 0) 1095 return; 1096 1097 spin_lock(&conf->pending_bios_lock); 1098 dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp); 1099 BUG_ON(conf->pending_data_cnt != 0); 1100 spin_unlock(&conf->pending_bios_lock); 1101 1102 dispatch_bio_list(&tmp); 1103 } 1104 1105 static void defer_issue_bios(struct r5conf *conf, sector_t sector, 1106 struct bio_list *bios) 1107 { 1108 struct bio_list tmp = BIO_EMPTY_LIST; 1109 struct r5pending_data *ent; 1110 1111 spin_lock(&conf->pending_bios_lock); 1112 ent = list_first_entry(&conf->free_list, struct r5pending_data, 1113 sibling); 1114 list_move_tail(&ent->sibling, &conf->pending_list); 1115 ent->sector = sector; 1116 bio_list_init(&ent->bios); 1117 bio_list_merge(&ent->bios, bios); 1118 conf->pending_data_cnt++; 1119 if (conf->pending_data_cnt >= PENDING_IO_MAX) 1120 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp); 1121 1122 spin_unlock(&conf->pending_bios_lock); 1123 1124 dispatch_bio_list(&tmp); 1125 } 1126 1127 static void 1128 raid5_end_read_request(struct bio *bi); 1129 static void 1130 raid5_end_write_request(struct bio *bi); 1131 1132 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s) 1133 { 1134 struct r5conf *conf = sh->raid_conf; 1135 int i, disks = sh->disks; 1136 struct stripe_head *head_sh = sh; 1137 struct bio_list pending_bios = BIO_EMPTY_LIST; 1138 struct r5dev *dev; 1139 bool should_defer; 1140 1141 might_sleep(); 1142 1143 if (log_stripe(sh, s) == 0) 1144 return; 1145 1146 should_defer = conf->batch_bio_dispatch && conf->group_cnt; 1147 1148 for (i = disks; i--; ) { 1149 enum req_op op; 1150 blk_opf_t op_flags = 0; 1151 int replace_only = 0; 1152 struct bio *bi, *rbi; 1153 struct md_rdev *rdev, *rrdev = NULL; 1154 1155 sh = head_sh; 1156 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) { 1157 op = REQ_OP_WRITE; 1158 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags)) 1159 op_flags = REQ_FUA; 1160 if (test_bit(R5_Discard, &sh->dev[i].flags)) 1161 op = REQ_OP_DISCARD; 1162 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags)) 1163 op = REQ_OP_READ; 1164 else if (test_and_clear_bit(R5_WantReplace, 1165 &sh->dev[i].flags)) { 1166 op = REQ_OP_WRITE; 1167 replace_only = 1; 1168 } else 1169 continue; 1170 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags)) 1171 op_flags |= REQ_SYNC; 1172 1173 again: 1174 dev = &sh->dev[i]; 1175 bi = &dev->req; 1176 rbi = &dev->rreq; /* For writing to replacement */ 1177 1178 rcu_read_lock(); 1179 rrdev = rcu_dereference(conf->disks[i].replacement); 1180 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */ 1181 rdev = rcu_dereference(conf->disks[i].rdev); 1182 if (!rdev) { 1183 rdev = rrdev; 1184 rrdev = NULL; 1185 } 1186 if (op_is_write(op)) { 1187 if (replace_only) 1188 rdev = NULL; 1189 if (rdev == rrdev) 1190 /* We raced and saw duplicates */ 1191 rrdev = NULL; 1192 } else { 1193 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev) 1194 rdev = rrdev; 1195 rrdev = NULL; 1196 } 1197 1198 if (rdev && test_bit(Faulty, &rdev->flags)) 1199 rdev = NULL; 1200 if (rdev) 1201 atomic_inc(&rdev->nr_pending); 1202 if (rrdev && test_bit(Faulty, &rrdev->flags)) 1203 rrdev = NULL; 1204 if (rrdev) 1205 atomic_inc(&rrdev->nr_pending); 1206 rcu_read_unlock(); 1207 1208 /* We have already checked bad blocks for reads. Now 1209 * need to check for writes. We never accept write errors 1210 * on the replacement, so we don't to check rrdev. 1211 */ 1212 while (op_is_write(op) && rdev && 1213 test_bit(WriteErrorSeen, &rdev->flags)) { 1214 sector_t first_bad; 1215 int bad_sectors; 1216 int bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 1217 &first_bad, &bad_sectors); 1218 if (!bad) 1219 break; 1220 1221 if (bad < 0) { 1222 set_bit(BlockedBadBlocks, &rdev->flags); 1223 if (!conf->mddev->external && 1224 conf->mddev->sb_flags) { 1225 /* It is very unlikely, but we might 1226 * still need to write out the 1227 * bad block log - better give it 1228 * a chance*/ 1229 md_check_recovery(conf->mddev); 1230 } 1231 /* 1232 * Because md_wait_for_blocked_rdev 1233 * will dec nr_pending, we must 1234 * increment it first. 1235 */ 1236 atomic_inc(&rdev->nr_pending); 1237 md_wait_for_blocked_rdev(rdev, conf->mddev); 1238 } else { 1239 /* Acknowledged bad block - skip the write */ 1240 rdev_dec_pending(rdev, conf->mddev); 1241 rdev = NULL; 1242 } 1243 } 1244 1245 if (rdev) { 1246 if (s->syncing || s->expanding || s->expanded 1247 || s->replacing) 1248 md_sync_acct(rdev->bdev, RAID5_STRIPE_SECTORS(conf)); 1249 1250 set_bit(STRIPE_IO_STARTED, &sh->state); 1251 1252 bio_init(bi, rdev->bdev, &dev->vec, 1, op | op_flags); 1253 bi->bi_end_io = op_is_write(op) 1254 ? raid5_end_write_request 1255 : raid5_end_read_request; 1256 bi->bi_private = sh; 1257 1258 pr_debug("%s: for %llu schedule op %d on disc %d\n", 1259 __func__, (unsigned long long)sh->sector, 1260 bi->bi_opf, i); 1261 atomic_inc(&sh->count); 1262 if (sh != head_sh) 1263 atomic_inc(&head_sh->count); 1264 if (use_new_offset(conf, sh)) 1265 bi->bi_iter.bi_sector = (sh->sector 1266 + rdev->new_data_offset); 1267 else 1268 bi->bi_iter.bi_sector = (sh->sector 1269 + rdev->data_offset); 1270 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags)) 1271 bi->bi_opf |= REQ_NOMERGE; 1272 1273 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 1274 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 1275 1276 if (!op_is_write(op) && 1277 test_bit(R5_InJournal, &sh->dev[i].flags)) 1278 /* 1279 * issuing read for a page in journal, this 1280 * must be preparing for prexor in rmw; read 1281 * the data into orig_page 1282 */ 1283 sh->dev[i].vec.bv_page = sh->dev[i].orig_page; 1284 else 1285 sh->dev[i].vec.bv_page = sh->dev[i].page; 1286 bi->bi_vcnt = 1; 1287 bi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf); 1288 bi->bi_io_vec[0].bv_offset = sh->dev[i].offset; 1289 bi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf); 1290 /* 1291 * If this is discard request, set bi_vcnt 0. We don't 1292 * want to confuse SCSI because SCSI will replace payload 1293 */ 1294 if (op == REQ_OP_DISCARD) 1295 bi->bi_vcnt = 0; 1296 if (rrdev) 1297 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags); 1298 1299 if (conf->mddev->gendisk) 1300 trace_block_bio_remap(bi, 1301 disk_devt(conf->mddev->gendisk), 1302 sh->dev[i].sector); 1303 if (should_defer && op_is_write(op)) 1304 bio_list_add(&pending_bios, bi); 1305 else 1306 submit_bio_noacct(bi); 1307 } 1308 if (rrdev) { 1309 if (s->syncing || s->expanding || s->expanded 1310 || s->replacing) 1311 md_sync_acct(rrdev->bdev, RAID5_STRIPE_SECTORS(conf)); 1312 1313 set_bit(STRIPE_IO_STARTED, &sh->state); 1314 1315 bio_init(rbi, rrdev->bdev, &dev->rvec, 1, op | op_flags); 1316 BUG_ON(!op_is_write(op)); 1317 rbi->bi_end_io = raid5_end_write_request; 1318 rbi->bi_private = sh; 1319 1320 pr_debug("%s: for %llu schedule op %d on " 1321 "replacement disc %d\n", 1322 __func__, (unsigned long long)sh->sector, 1323 rbi->bi_opf, i); 1324 atomic_inc(&sh->count); 1325 if (sh != head_sh) 1326 atomic_inc(&head_sh->count); 1327 if (use_new_offset(conf, sh)) 1328 rbi->bi_iter.bi_sector = (sh->sector 1329 + rrdev->new_data_offset); 1330 else 1331 rbi->bi_iter.bi_sector = (sh->sector 1332 + rrdev->data_offset); 1333 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 1334 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 1335 sh->dev[i].rvec.bv_page = sh->dev[i].page; 1336 rbi->bi_vcnt = 1; 1337 rbi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf); 1338 rbi->bi_io_vec[0].bv_offset = sh->dev[i].offset; 1339 rbi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf); 1340 /* 1341 * If this is discard request, set bi_vcnt 0. We don't 1342 * want to confuse SCSI because SCSI will replace payload 1343 */ 1344 if (op == REQ_OP_DISCARD) 1345 rbi->bi_vcnt = 0; 1346 if (conf->mddev->gendisk) 1347 trace_block_bio_remap(rbi, 1348 disk_devt(conf->mddev->gendisk), 1349 sh->dev[i].sector); 1350 if (should_defer && op_is_write(op)) 1351 bio_list_add(&pending_bios, rbi); 1352 else 1353 submit_bio_noacct(rbi); 1354 } 1355 if (!rdev && !rrdev) { 1356 if (op_is_write(op)) 1357 set_bit(STRIPE_DEGRADED, &sh->state); 1358 pr_debug("skip op %d on disc %d for sector %llu\n", 1359 bi->bi_opf, i, (unsigned long long)sh->sector); 1360 clear_bit(R5_LOCKED, &sh->dev[i].flags); 1361 set_bit(STRIPE_HANDLE, &sh->state); 1362 } 1363 1364 if (!head_sh->batch_head) 1365 continue; 1366 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1367 batch_list); 1368 if (sh != head_sh) 1369 goto again; 1370 } 1371 1372 if (should_defer && !bio_list_empty(&pending_bios)) 1373 defer_issue_bios(conf, head_sh->sector, &pending_bios); 1374 } 1375 1376 static struct dma_async_tx_descriptor * 1377 async_copy_data(int frombio, struct bio *bio, struct page **page, 1378 unsigned int poff, sector_t sector, struct dma_async_tx_descriptor *tx, 1379 struct stripe_head *sh, int no_skipcopy) 1380 { 1381 struct bio_vec bvl; 1382 struct bvec_iter iter; 1383 struct page *bio_page; 1384 int page_offset; 1385 struct async_submit_ctl submit; 1386 enum async_tx_flags flags = 0; 1387 struct r5conf *conf = sh->raid_conf; 1388 1389 if (bio->bi_iter.bi_sector >= sector) 1390 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512; 1391 else 1392 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512; 1393 1394 if (frombio) 1395 flags |= ASYNC_TX_FENCE; 1396 init_async_submit(&submit, flags, tx, NULL, NULL, NULL); 1397 1398 bio_for_each_segment(bvl, bio, iter) { 1399 int len = bvl.bv_len; 1400 int clen; 1401 int b_offset = 0; 1402 1403 if (page_offset < 0) { 1404 b_offset = -page_offset; 1405 page_offset += b_offset; 1406 len -= b_offset; 1407 } 1408 1409 if (len > 0 && page_offset + len > RAID5_STRIPE_SIZE(conf)) 1410 clen = RAID5_STRIPE_SIZE(conf) - page_offset; 1411 else 1412 clen = len; 1413 1414 if (clen > 0) { 1415 b_offset += bvl.bv_offset; 1416 bio_page = bvl.bv_page; 1417 if (frombio) { 1418 if (conf->skip_copy && 1419 b_offset == 0 && page_offset == 0 && 1420 clen == RAID5_STRIPE_SIZE(conf) && 1421 !no_skipcopy) 1422 *page = bio_page; 1423 else 1424 tx = async_memcpy(*page, bio_page, page_offset + poff, 1425 b_offset, clen, &submit); 1426 } else 1427 tx = async_memcpy(bio_page, *page, b_offset, 1428 page_offset + poff, clen, &submit); 1429 } 1430 /* chain the operations */ 1431 submit.depend_tx = tx; 1432 1433 if (clen < len) /* hit end of page */ 1434 break; 1435 page_offset += len; 1436 } 1437 1438 return tx; 1439 } 1440 1441 static void ops_complete_biofill(void *stripe_head_ref) 1442 { 1443 struct stripe_head *sh = stripe_head_ref; 1444 int i; 1445 struct r5conf *conf = sh->raid_conf; 1446 1447 pr_debug("%s: stripe %llu\n", __func__, 1448 (unsigned long long)sh->sector); 1449 1450 /* clear completed biofills */ 1451 for (i = sh->disks; i--; ) { 1452 struct r5dev *dev = &sh->dev[i]; 1453 1454 /* acknowledge completion of a biofill operation */ 1455 /* and check if we need to reply to a read request, 1456 * new R5_Wantfill requests are held off until 1457 * !STRIPE_BIOFILL_RUN 1458 */ 1459 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) { 1460 struct bio *rbi, *rbi2; 1461 1462 BUG_ON(!dev->read); 1463 rbi = dev->read; 1464 dev->read = NULL; 1465 while (rbi && rbi->bi_iter.bi_sector < 1466 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 1467 rbi2 = r5_next_bio(conf, rbi, dev->sector); 1468 bio_endio(rbi); 1469 rbi = rbi2; 1470 } 1471 } 1472 } 1473 clear_bit(STRIPE_BIOFILL_RUN, &sh->state); 1474 1475 set_bit(STRIPE_HANDLE, &sh->state); 1476 raid5_release_stripe(sh); 1477 } 1478 1479 static void ops_run_biofill(struct stripe_head *sh) 1480 { 1481 struct dma_async_tx_descriptor *tx = NULL; 1482 struct async_submit_ctl submit; 1483 int i; 1484 struct r5conf *conf = sh->raid_conf; 1485 1486 BUG_ON(sh->batch_head); 1487 pr_debug("%s: stripe %llu\n", __func__, 1488 (unsigned long long)sh->sector); 1489 1490 for (i = sh->disks; i--; ) { 1491 struct r5dev *dev = &sh->dev[i]; 1492 if (test_bit(R5_Wantfill, &dev->flags)) { 1493 struct bio *rbi; 1494 spin_lock_irq(&sh->stripe_lock); 1495 dev->read = rbi = dev->toread; 1496 dev->toread = NULL; 1497 spin_unlock_irq(&sh->stripe_lock); 1498 while (rbi && rbi->bi_iter.bi_sector < 1499 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 1500 tx = async_copy_data(0, rbi, &dev->page, 1501 dev->offset, 1502 dev->sector, tx, sh, 0); 1503 rbi = r5_next_bio(conf, rbi, dev->sector); 1504 } 1505 } 1506 } 1507 1508 atomic_inc(&sh->count); 1509 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL); 1510 async_trigger_callback(&submit); 1511 } 1512 1513 static void mark_target_uptodate(struct stripe_head *sh, int target) 1514 { 1515 struct r5dev *tgt; 1516 1517 if (target < 0) 1518 return; 1519 1520 tgt = &sh->dev[target]; 1521 set_bit(R5_UPTODATE, &tgt->flags); 1522 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1523 clear_bit(R5_Wantcompute, &tgt->flags); 1524 } 1525 1526 static void ops_complete_compute(void *stripe_head_ref) 1527 { 1528 struct stripe_head *sh = stripe_head_ref; 1529 1530 pr_debug("%s: stripe %llu\n", __func__, 1531 (unsigned long long)sh->sector); 1532 1533 /* mark the computed target(s) as uptodate */ 1534 mark_target_uptodate(sh, sh->ops.target); 1535 mark_target_uptodate(sh, sh->ops.target2); 1536 1537 clear_bit(STRIPE_COMPUTE_RUN, &sh->state); 1538 if (sh->check_state == check_state_compute_run) 1539 sh->check_state = check_state_compute_result; 1540 set_bit(STRIPE_HANDLE, &sh->state); 1541 raid5_release_stripe(sh); 1542 } 1543 1544 /* return a pointer to the address conversion region of the scribble buffer */ 1545 static struct page **to_addr_page(struct raid5_percpu *percpu, int i) 1546 { 1547 return percpu->scribble + i * percpu->scribble_obj_size; 1548 } 1549 1550 /* return a pointer to the address conversion region of the scribble buffer */ 1551 static addr_conv_t *to_addr_conv(struct stripe_head *sh, 1552 struct raid5_percpu *percpu, int i) 1553 { 1554 return (void *) (to_addr_page(percpu, i) + sh->disks + 2); 1555 } 1556 1557 /* 1558 * Return a pointer to record offset address. 1559 */ 1560 static unsigned int * 1561 to_addr_offs(struct stripe_head *sh, struct raid5_percpu *percpu) 1562 { 1563 return (unsigned int *) (to_addr_conv(sh, percpu, 0) + sh->disks + 2); 1564 } 1565 1566 static struct dma_async_tx_descriptor * 1567 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu) 1568 { 1569 int disks = sh->disks; 1570 struct page **xor_srcs = to_addr_page(percpu, 0); 1571 unsigned int *off_srcs = to_addr_offs(sh, percpu); 1572 int target = sh->ops.target; 1573 struct r5dev *tgt = &sh->dev[target]; 1574 struct page *xor_dest = tgt->page; 1575 unsigned int off_dest = tgt->offset; 1576 int count = 0; 1577 struct dma_async_tx_descriptor *tx; 1578 struct async_submit_ctl submit; 1579 int i; 1580 1581 BUG_ON(sh->batch_head); 1582 1583 pr_debug("%s: stripe %llu block: %d\n", 1584 __func__, (unsigned long long)sh->sector, target); 1585 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1586 1587 for (i = disks; i--; ) { 1588 if (i != target) { 1589 off_srcs[count] = sh->dev[i].offset; 1590 xor_srcs[count++] = sh->dev[i].page; 1591 } 1592 } 1593 1594 atomic_inc(&sh->count); 1595 1596 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL, 1597 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0)); 1598 if (unlikely(count == 1)) 1599 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0], 1600 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1601 else 1602 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count, 1603 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1604 1605 return tx; 1606 } 1607 1608 /* set_syndrome_sources - populate source buffers for gen_syndrome 1609 * @srcs - (struct page *) array of size sh->disks 1610 * @offs - (unsigned int) array of offset for each page 1611 * @sh - stripe_head to parse 1612 * 1613 * Populates srcs in proper layout order for the stripe and returns the 1614 * 'count' of sources to be used in a call to async_gen_syndrome. The P 1615 * destination buffer is recorded in srcs[count] and the Q destination 1616 * is recorded in srcs[count+1]]. 1617 */ 1618 static int set_syndrome_sources(struct page **srcs, 1619 unsigned int *offs, 1620 struct stripe_head *sh, 1621 int srctype) 1622 { 1623 int disks = sh->disks; 1624 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2); 1625 int d0_idx = raid6_d0(sh); 1626 int count; 1627 int i; 1628 1629 for (i = 0; i < disks; i++) 1630 srcs[i] = NULL; 1631 1632 count = 0; 1633 i = d0_idx; 1634 do { 1635 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1636 struct r5dev *dev = &sh->dev[i]; 1637 1638 if (i == sh->qd_idx || i == sh->pd_idx || 1639 (srctype == SYNDROME_SRC_ALL) || 1640 (srctype == SYNDROME_SRC_WANT_DRAIN && 1641 (test_bit(R5_Wantdrain, &dev->flags) || 1642 test_bit(R5_InJournal, &dev->flags))) || 1643 (srctype == SYNDROME_SRC_WRITTEN && 1644 (dev->written || 1645 test_bit(R5_InJournal, &dev->flags)))) { 1646 if (test_bit(R5_InJournal, &dev->flags)) 1647 srcs[slot] = sh->dev[i].orig_page; 1648 else 1649 srcs[slot] = sh->dev[i].page; 1650 /* 1651 * For R5_InJournal, PAGE_SIZE must be 4KB and will 1652 * not shared page. In that case, dev[i].offset 1653 * is 0. 1654 */ 1655 offs[slot] = sh->dev[i].offset; 1656 } 1657 i = raid6_next_disk(i, disks); 1658 } while (i != d0_idx); 1659 1660 return syndrome_disks; 1661 } 1662 1663 static struct dma_async_tx_descriptor * 1664 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu) 1665 { 1666 int disks = sh->disks; 1667 struct page **blocks = to_addr_page(percpu, 0); 1668 unsigned int *offs = to_addr_offs(sh, percpu); 1669 int target; 1670 int qd_idx = sh->qd_idx; 1671 struct dma_async_tx_descriptor *tx; 1672 struct async_submit_ctl submit; 1673 struct r5dev *tgt; 1674 struct page *dest; 1675 unsigned int dest_off; 1676 int i; 1677 int count; 1678 1679 BUG_ON(sh->batch_head); 1680 if (sh->ops.target < 0) 1681 target = sh->ops.target2; 1682 else if (sh->ops.target2 < 0) 1683 target = sh->ops.target; 1684 else 1685 /* we should only have one valid target */ 1686 BUG(); 1687 BUG_ON(target < 0); 1688 pr_debug("%s: stripe %llu block: %d\n", 1689 __func__, (unsigned long long)sh->sector, target); 1690 1691 tgt = &sh->dev[target]; 1692 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1693 dest = tgt->page; 1694 dest_off = tgt->offset; 1695 1696 atomic_inc(&sh->count); 1697 1698 if (target == qd_idx) { 1699 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL); 1700 blocks[count] = NULL; /* regenerating p is not necessary */ 1701 BUG_ON(blocks[count+1] != dest); /* q should already be set */ 1702 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1703 ops_complete_compute, sh, 1704 to_addr_conv(sh, percpu, 0)); 1705 tx = async_gen_syndrome(blocks, offs, count+2, 1706 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1707 } else { 1708 /* Compute any data- or p-drive using XOR */ 1709 count = 0; 1710 for (i = disks; i-- ; ) { 1711 if (i == target || i == qd_idx) 1712 continue; 1713 offs[count] = sh->dev[i].offset; 1714 blocks[count++] = sh->dev[i].page; 1715 } 1716 1717 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1718 NULL, ops_complete_compute, sh, 1719 to_addr_conv(sh, percpu, 0)); 1720 tx = async_xor_offs(dest, dest_off, blocks, offs, count, 1721 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1722 } 1723 1724 return tx; 1725 } 1726 1727 static struct dma_async_tx_descriptor * 1728 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu) 1729 { 1730 int i, count, disks = sh->disks; 1731 int syndrome_disks = sh->ddf_layout ? disks : disks-2; 1732 int d0_idx = raid6_d0(sh); 1733 int faila = -1, failb = -1; 1734 int target = sh->ops.target; 1735 int target2 = sh->ops.target2; 1736 struct r5dev *tgt = &sh->dev[target]; 1737 struct r5dev *tgt2 = &sh->dev[target2]; 1738 struct dma_async_tx_descriptor *tx; 1739 struct page **blocks = to_addr_page(percpu, 0); 1740 unsigned int *offs = to_addr_offs(sh, percpu); 1741 struct async_submit_ctl submit; 1742 1743 BUG_ON(sh->batch_head); 1744 pr_debug("%s: stripe %llu block1: %d block2: %d\n", 1745 __func__, (unsigned long long)sh->sector, target, target2); 1746 BUG_ON(target < 0 || target2 < 0); 1747 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1748 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags)); 1749 1750 /* we need to open-code set_syndrome_sources to handle the 1751 * slot number conversion for 'faila' and 'failb' 1752 */ 1753 for (i = 0; i < disks ; i++) { 1754 offs[i] = 0; 1755 blocks[i] = NULL; 1756 } 1757 count = 0; 1758 i = d0_idx; 1759 do { 1760 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1761 1762 offs[slot] = sh->dev[i].offset; 1763 blocks[slot] = sh->dev[i].page; 1764 1765 if (i == target) 1766 faila = slot; 1767 if (i == target2) 1768 failb = slot; 1769 i = raid6_next_disk(i, disks); 1770 } while (i != d0_idx); 1771 1772 BUG_ON(faila == failb); 1773 if (failb < faila) 1774 swap(faila, failb); 1775 pr_debug("%s: stripe: %llu faila: %d failb: %d\n", 1776 __func__, (unsigned long long)sh->sector, faila, failb); 1777 1778 atomic_inc(&sh->count); 1779 1780 if (failb == syndrome_disks+1) { 1781 /* Q disk is one of the missing disks */ 1782 if (faila == syndrome_disks) { 1783 /* Missing P+Q, just recompute */ 1784 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1785 ops_complete_compute, sh, 1786 to_addr_conv(sh, percpu, 0)); 1787 return async_gen_syndrome(blocks, offs, syndrome_disks+2, 1788 RAID5_STRIPE_SIZE(sh->raid_conf), 1789 &submit); 1790 } else { 1791 struct page *dest; 1792 unsigned int dest_off; 1793 int data_target; 1794 int qd_idx = sh->qd_idx; 1795 1796 /* Missing D+Q: recompute D from P, then recompute Q */ 1797 if (target == qd_idx) 1798 data_target = target2; 1799 else 1800 data_target = target; 1801 1802 count = 0; 1803 for (i = disks; i-- ; ) { 1804 if (i == data_target || i == qd_idx) 1805 continue; 1806 offs[count] = sh->dev[i].offset; 1807 blocks[count++] = sh->dev[i].page; 1808 } 1809 dest = sh->dev[data_target].page; 1810 dest_off = sh->dev[data_target].offset; 1811 init_async_submit(&submit, 1812 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1813 NULL, NULL, NULL, 1814 to_addr_conv(sh, percpu, 0)); 1815 tx = async_xor_offs(dest, dest_off, blocks, offs, count, 1816 RAID5_STRIPE_SIZE(sh->raid_conf), 1817 &submit); 1818 1819 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL); 1820 init_async_submit(&submit, ASYNC_TX_FENCE, tx, 1821 ops_complete_compute, sh, 1822 to_addr_conv(sh, percpu, 0)); 1823 return async_gen_syndrome(blocks, offs, count+2, 1824 RAID5_STRIPE_SIZE(sh->raid_conf), 1825 &submit); 1826 } 1827 } else { 1828 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1829 ops_complete_compute, sh, 1830 to_addr_conv(sh, percpu, 0)); 1831 if (failb == syndrome_disks) { 1832 /* We're missing D+P. */ 1833 return async_raid6_datap_recov(syndrome_disks+2, 1834 RAID5_STRIPE_SIZE(sh->raid_conf), 1835 faila, 1836 blocks, offs, &submit); 1837 } else { 1838 /* We're missing D+D. */ 1839 return async_raid6_2data_recov(syndrome_disks+2, 1840 RAID5_STRIPE_SIZE(sh->raid_conf), 1841 faila, failb, 1842 blocks, offs, &submit); 1843 } 1844 } 1845 } 1846 1847 static void ops_complete_prexor(void *stripe_head_ref) 1848 { 1849 struct stripe_head *sh = stripe_head_ref; 1850 1851 pr_debug("%s: stripe %llu\n", __func__, 1852 (unsigned long long)sh->sector); 1853 1854 if (r5c_is_writeback(sh->raid_conf->log)) 1855 /* 1856 * raid5-cache write back uses orig_page during prexor. 1857 * After prexor, it is time to free orig_page 1858 */ 1859 r5c_release_extra_page(sh); 1860 } 1861 1862 static struct dma_async_tx_descriptor * 1863 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu, 1864 struct dma_async_tx_descriptor *tx) 1865 { 1866 int disks = sh->disks; 1867 struct page **xor_srcs = to_addr_page(percpu, 0); 1868 unsigned int *off_srcs = to_addr_offs(sh, percpu); 1869 int count = 0, pd_idx = sh->pd_idx, i; 1870 struct async_submit_ctl submit; 1871 1872 /* existing parity data subtracted */ 1873 unsigned int off_dest = off_srcs[count] = sh->dev[pd_idx].offset; 1874 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1875 1876 BUG_ON(sh->batch_head); 1877 pr_debug("%s: stripe %llu\n", __func__, 1878 (unsigned long long)sh->sector); 1879 1880 for (i = disks; i--; ) { 1881 struct r5dev *dev = &sh->dev[i]; 1882 /* Only process blocks that are known to be uptodate */ 1883 if (test_bit(R5_InJournal, &dev->flags)) { 1884 /* 1885 * For this case, PAGE_SIZE must be equal to 4KB and 1886 * page offset is zero. 1887 */ 1888 off_srcs[count] = dev->offset; 1889 xor_srcs[count++] = dev->orig_page; 1890 } else if (test_bit(R5_Wantdrain, &dev->flags)) { 1891 off_srcs[count] = dev->offset; 1892 xor_srcs[count++] = dev->page; 1893 } 1894 } 1895 1896 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx, 1897 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); 1898 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count, 1899 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1900 1901 return tx; 1902 } 1903 1904 static struct dma_async_tx_descriptor * 1905 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu, 1906 struct dma_async_tx_descriptor *tx) 1907 { 1908 struct page **blocks = to_addr_page(percpu, 0); 1909 unsigned int *offs = to_addr_offs(sh, percpu); 1910 int count; 1911 struct async_submit_ctl submit; 1912 1913 pr_debug("%s: stripe %llu\n", __func__, 1914 (unsigned long long)sh->sector); 1915 1916 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_WANT_DRAIN); 1917 1918 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx, 1919 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); 1920 tx = async_gen_syndrome(blocks, offs, count+2, 1921 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1922 1923 return tx; 1924 } 1925 1926 static struct dma_async_tx_descriptor * 1927 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) 1928 { 1929 struct r5conf *conf = sh->raid_conf; 1930 int disks = sh->disks; 1931 int i; 1932 struct stripe_head *head_sh = sh; 1933 1934 pr_debug("%s: stripe %llu\n", __func__, 1935 (unsigned long long)sh->sector); 1936 1937 for (i = disks; i--; ) { 1938 struct r5dev *dev; 1939 struct bio *chosen; 1940 1941 sh = head_sh; 1942 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) { 1943 struct bio *wbi; 1944 1945 again: 1946 dev = &sh->dev[i]; 1947 /* 1948 * clear R5_InJournal, so when rewriting a page in 1949 * journal, it is not skipped by r5l_log_stripe() 1950 */ 1951 clear_bit(R5_InJournal, &dev->flags); 1952 spin_lock_irq(&sh->stripe_lock); 1953 chosen = dev->towrite; 1954 dev->towrite = NULL; 1955 sh->overwrite_disks = 0; 1956 BUG_ON(dev->written); 1957 wbi = dev->written = chosen; 1958 spin_unlock_irq(&sh->stripe_lock); 1959 WARN_ON(dev->page != dev->orig_page); 1960 1961 while (wbi && wbi->bi_iter.bi_sector < 1962 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 1963 if (wbi->bi_opf & REQ_FUA) 1964 set_bit(R5_WantFUA, &dev->flags); 1965 if (wbi->bi_opf & REQ_SYNC) 1966 set_bit(R5_SyncIO, &dev->flags); 1967 if (bio_op(wbi) == REQ_OP_DISCARD) 1968 set_bit(R5_Discard, &dev->flags); 1969 else { 1970 tx = async_copy_data(1, wbi, &dev->page, 1971 dev->offset, 1972 dev->sector, tx, sh, 1973 r5c_is_writeback(conf->log)); 1974 if (dev->page != dev->orig_page && 1975 !r5c_is_writeback(conf->log)) { 1976 set_bit(R5_SkipCopy, &dev->flags); 1977 clear_bit(R5_UPTODATE, &dev->flags); 1978 clear_bit(R5_OVERWRITE, &dev->flags); 1979 } 1980 } 1981 wbi = r5_next_bio(conf, wbi, dev->sector); 1982 } 1983 1984 if (head_sh->batch_head) { 1985 sh = list_first_entry(&sh->batch_list, 1986 struct stripe_head, 1987 batch_list); 1988 if (sh == head_sh) 1989 continue; 1990 goto again; 1991 } 1992 } 1993 } 1994 1995 return tx; 1996 } 1997 1998 static void ops_complete_reconstruct(void *stripe_head_ref) 1999 { 2000 struct stripe_head *sh = stripe_head_ref; 2001 int disks = sh->disks; 2002 int pd_idx = sh->pd_idx; 2003 int qd_idx = sh->qd_idx; 2004 int i; 2005 bool fua = false, sync = false, discard = false; 2006 2007 pr_debug("%s: stripe %llu\n", __func__, 2008 (unsigned long long)sh->sector); 2009 2010 for (i = disks; i--; ) { 2011 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags); 2012 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags); 2013 discard |= test_bit(R5_Discard, &sh->dev[i].flags); 2014 } 2015 2016 for (i = disks; i--; ) { 2017 struct r5dev *dev = &sh->dev[i]; 2018 2019 if (dev->written || i == pd_idx || i == qd_idx) { 2020 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) { 2021 set_bit(R5_UPTODATE, &dev->flags); 2022 if (test_bit(STRIPE_EXPAND_READY, &sh->state)) 2023 set_bit(R5_Expanded, &dev->flags); 2024 } 2025 if (fua) 2026 set_bit(R5_WantFUA, &dev->flags); 2027 if (sync) 2028 set_bit(R5_SyncIO, &dev->flags); 2029 } 2030 } 2031 2032 if (sh->reconstruct_state == reconstruct_state_drain_run) 2033 sh->reconstruct_state = reconstruct_state_drain_result; 2034 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) 2035 sh->reconstruct_state = reconstruct_state_prexor_drain_result; 2036 else { 2037 BUG_ON(sh->reconstruct_state != reconstruct_state_run); 2038 sh->reconstruct_state = reconstruct_state_result; 2039 } 2040 2041 set_bit(STRIPE_HANDLE, &sh->state); 2042 raid5_release_stripe(sh); 2043 } 2044 2045 static void 2046 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu, 2047 struct dma_async_tx_descriptor *tx) 2048 { 2049 int disks = sh->disks; 2050 struct page **xor_srcs; 2051 unsigned int *off_srcs; 2052 struct async_submit_ctl submit; 2053 int count, pd_idx = sh->pd_idx, i; 2054 struct page *xor_dest; 2055 unsigned int off_dest; 2056 int prexor = 0; 2057 unsigned long flags; 2058 int j = 0; 2059 struct stripe_head *head_sh = sh; 2060 int last_stripe; 2061 2062 pr_debug("%s: stripe %llu\n", __func__, 2063 (unsigned long long)sh->sector); 2064 2065 for (i = 0; i < sh->disks; i++) { 2066 if (pd_idx == i) 2067 continue; 2068 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 2069 break; 2070 } 2071 if (i >= sh->disks) { 2072 atomic_inc(&sh->count); 2073 set_bit(R5_Discard, &sh->dev[pd_idx].flags); 2074 ops_complete_reconstruct(sh); 2075 return; 2076 } 2077 again: 2078 count = 0; 2079 xor_srcs = to_addr_page(percpu, j); 2080 off_srcs = to_addr_offs(sh, percpu); 2081 /* check if prexor is active which means only process blocks 2082 * that are part of a read-modify-write (written) 2083 */ 2084 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 2085 prexor = 1; 2086 off_dest = off_srcs[count] = sh->dev[pd_idx].offset; 2087 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 2088 for (i = disks; i--; ) { 2089 struct r5dev *dev = &sh->dev[i]; 2090 if (head_sh->dev[i].written || 2091 test_bit(R5_InJournal, &head_sh->dev[i].flags)) { 2092 off_srcs[count] = dev->offset; 2093 xor_srcs[count++] = dev->page; 2094 } 2095 } 2096 } else { 2097 xor_dest = sh->dev[pd_idx].page; 2098 off_dest = sh->dev[pd_idx].offset; 2099 for (i = disks; i--; ) { 2100 struct r5dev *dev = &sh->dev[i]; 2101 if (i != pd_idx) { 2102 off_srcs[count] = dev->offset; 2103 xor_srcs[count++] = dev->page; 2104 } 2105 } 2106 } 2107 2108 /* 1/ if we prexor'd then the dest is reused as a source 2109 * 2/ if we did not prexor then we are redoing the parity 2110 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST 2111 * for the synchronous xor case 2112 */ 2113 last_stripe = !head_sh->batch_head || 2114 list_first_entry(&sh->batch_list, 2115 struct stripe_head, batch_list) == head_sh; 2116 if (last_stripe) { 2117 flags = ASYNC_TX_ACK | 2118 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST); 2119 2120 atomic_inc(&head_sh->count); 2121 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh, 2122 to_addr_conv(sh, percpu, j)); 2123 } else { 2124 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST; 2125 init_async_submit(&submit, flags, tx, NULL, NULL, 2126 to_addr_conv(sh, percpu, j)); 2127 } 2128 2129 if (unlikely(count == 1)) 2130 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0], 2131 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 2132 else 2133 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count, 2134 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 2135 if (!last_stripe) { 2136 j++; 2137 sh = list_first_entry(&sh->batch_list, struct stripe_head, 2138 batch_list); 2139 goto again; 2140 } 2141 } 2142 2143 static void 2144 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu, 2145 struct dma_async_tx_descriptor *tx) 2146 { 2147 struct async_submit_ctl submit; 2148 struct page **blocks; 2149 unsigned int *offs; 2150 int count, i, j = 0; 2151 struct stripe_head *head_sh = sh; 2152 int last_stripe; 2153 int synflags; 2154 unsigned long txflags; 2155 2156 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); 2157 2158 for (i = 0; i < sh->disks; i++) { 2159 if (sh->pd_idx == i || sh->qd_idx == i) 2160 continue; 2161 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 2162 break; 2163 } 2164 if (i >= sh->disks) { 2165 atomic_inc(&sh->count); 2166 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 2167 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 2168 ops_complete_reconstruct(sh); 2169 return; 2170 } 2171 2172 again: 2173 blocks = to_addr_page(percpu, j); 2174 offs = to_addr_offs(sh, percpu); 2175 2176 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 2177 synflags = SYNDROME_SRC_WRITTEN; 2178 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST; 2179 } else { 2180 synflags = SYNDROME_SRC_ALL; 2181 txflags = ASYNC_TX_ACK; 2182 } 2183 2184 count = set_syndrome_sources(blocks, offs, sh, synflags); 2185 last_stripe = !head_sh->batch_head || 2186 list_first_entry(&sh->batch_list, 2187 struct stripe_head, batch_list) == head_sh; 2188 2189 if (last_stripe) { 2190 atomic_inc(&head_sh->count); 2191 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct, 2192 head_sh, to_addr_conv(sh, percpu, j)); 2193 } else 2194 init_async_submit(&submit, 0, tx, NULL, NULL, 2195 to_addr_conv(sh, percpu, j)); 2196 tx = async_gen_syndrome(blocks, offs, count+2, 2197 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 2198 if (!last_stripe) { 2199 j++; 2200 sh = list_first_entry(&sh->batch_list, struct stripe_head, 2201 batch_list); 2202 goto again; 2203 } 2204 } 2205 2206 static void ops_complete_check(void *stripe_head_ref) 2207 { 2208 struct stripe_head *sh = stripe_head_ref; 2209 2210 pr_debug("%s: stripe %llu\n", __func__, 2211 (unsigned long long)sh->sector); 2212 2213 sh->check_state = check_state_check_result; 2214 set_bit(STRIPE_HANDLE, &sh->state); 2215 raid5_release_stripe(sh); 2216 } 2217 2218 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu) 2219 { 2220 int disks = sh->disks; 2221 int pd_idx = sh->pd_idx; 2222 int qd_idx = sh->qd_idx; 2223 struct page *xor_dest; 2224 unsigned int off_dest; 2225 struct page **xor_srcs = to_addr_page(percpu, 0); 2226 unsigned int *off_srcs = to_addr_offs(sh, percpu); 2227 struct dma_async_tx_descriptor *tx; 2228 struct async_submit_ctl submit; 2229 int count; 2230 int i; 2231 2232 pr_debug("%s: stripe %llu\n", __func__, 2233 (unsigned long long)sh->sector); 2234 2235 BUG_ON(sh->batch_head); 2236 count = 0; 2237 xor_dest = sh->dev[pd_idx].page; 2238 off_dest = sh->dev[pd_idx].offset; 2239 off_srcs[count] = off_dest; 2240 xor_srcs[count++] = xor_dest; 2241 for (i = disks; i--; ) { 2242 if (i == pd_idx || i == qd_idx) 2243 continue; 2244 off_srcs[count] = sh->dev[i].offset; 2245 xor_srcs[count++] = sh->dev[i].page; 2246 } 2247 2248 init_async_submit(&submit, 0, NULL, NULL, NULL, 2249 to_addr_conv(sh, percpu, 0)); 2250 tx = async_xor_val_offs(xor_dest, off_dest, xor_srcs, off_srcs, count, 2251 RAID5_STRIPE_SIZE(sh->raid_conf), 2252 &sh->ops.zero_sum_result, &submit); 2253 2254 atomic_inc(&sh->count); 2255 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL); 2256 tx = async_trigger_callback(&submit); 2257 } 2258 2259 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp) 2260 { 2261 struct page **srcs = to_addr_page(percpu, 0); 2262 unsigned int *offs = to_addr_offs(sh, percpu); 2263 struct async_submit_ctl submit; 2264 int count; 2265 2266 pr_debug("%s: stripe %llu checkp: %d\n", __func__, 2267 (unsigned long long)sh->sector, checkp); 2268 2269 BUG_ON(sh->batch_head); 2270 count = set_syndrome_sources(srcs, offs, sh, SYNDROME_SRC_ALL); 2271 if (!checkp) 2272 srcs[count] = NULL; 2273 2274 atomic_inc(&sh->count); 2275 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check, 2276 sh, to_addr_conv(sh, percpu, 0)); 2277 async_syndrome_val(srcs, offs, count+2, 2278 RAID5_STRIPE_SIZE(sh->raid_conf), 2279 &sh->ops.zero_sum_result, percpu->spare_page, 0, &submit); 2280 } 2281 2282 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request) 2283 { 2284 int overlap_clear = 0, i, disks = sh->disks; 2285 struct dma_async_tx_descriptor *tx = NULL; 2286 struct r5conf *conf = sh->raid_conf; 2287 int level = conf->level; 2288 struct raid5_percpu *percpu; 2289 2290 local_lock(&conf->percpu->lock); 2291 percpu = this_cpu_ptr(conf->percpu); 2292 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) { 2293 ops_run_biofill(sh); 2294 overlap_clear++; 2295 } 2296 2297 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) { 2298 if (level < 6) 2299 tx = ops_run_compute5(sh, percpu); 2300 else { 2301 if (sh->ops.target2 < 0 || sh->ops.target < 0) 2302 tx = ops_run_compute6_1(sh, percpu); 2303 else 2304 tx = ops_run_compute6_2(sh, percpu); 2305 } 2306 /* terminate the chain if reconstruct is not set to be run */ 2307 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) 2308 async_tx_ack(tx); 2309 } 2310 2311 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) { 2312 if (level < 6) 2313 tx = ops_run_prexor5(sh, percpu, tx); 2314 else 2315 tx = ops_run_prexor6(sh, percpu, tx); 2316 } 2317 2318 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request)) 2319 tx = ops_run_partial_parity(sh, percpu, tx); 2320 2321 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) { 2322 tx = ops_run_biodrain(sh, tx); 2323 overlap_clear++; 2324 } 2325 2326 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) { 2327 if (level < 6) 2328 ops_run_reconstruct5(sh, percpu, tx); 2329 else 2330 ops_run_reconstruct6(sh, percpu, tx); 2331 } 2332 2333 if (test_bit(STRIPE_OP_CHECK, &ops_request)) { 2334 if (sh->check_state == check_state_run) 2335 ops_run_check_p(sh, percpu); 2336 else if (sh->check_state == check_state_run_q) 2337 ops_run_check_pq(sh, percpu, 0); 2338 else if (sh->check_state == check_state_run_pq) 2339 ops_run_check_pq(sh, percpu, 1); 2340 else 2341 BUG(); 2342 } 2343 2344 if (overlap_clear && !sh->batch_head) { 2345 for (i = disks; i--; ) { 2346 struct r5dev *dev = &sh->dev[i]; 2347 if (test_and_clear_bit(R5_Overlap, &dev->flags)) 2348 wake_up(&sh->raid_conf->wait_for_overlap); 2349 } 2350 } 2351 local_unlock(&conf->percpu->lock); 2352 } 2353 2354 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh) 2355 { 2356 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 2357 kfree(sh->pages); 2358 #endif 2359 if (sh->ppl_page) 2360 __free_page(sh->ppl_page); 2361 kmem_cache_free(sc, sh); 2362 } 2363 2364 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp, 2365 int disks, struct r5conf *conf) 2366 { 2367 struct stripe_head *sh; 2368 2369 sh = kmem_cache_zalloc(sc, gfp); 2370 if (sh) { 2371 spin_lock_init(&sh->stripe_lock); 2372 spin_lock_init(&sh->batch_lock); 2373 INIT_LIST_HEAD(&sh->batch_list); 2374 INIT_LIST_HEAD(&sh->lru); 2375 INIT_LIST_HEAD(&sh->r5c); 2376 INIT_LIST_HEAD(&sh->log_list); 2377 atomic_set(&sh->count, 1); 2378 sh->raid_conf = conf; 2379 sh->log_start = MaxSector; 2380 2381 if (raid5_has_ppl(conf)) { 2382 sh->ppl_page = alloc_page(gfp); 2383 if (!sh->ppl_page) { 2384 free_stripe(sc, sh); 2385 return NULL; 2386 } 2387 } 2388 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 2389 if (init_stripe_shared_pages(sh, conf, disks)) { 2390 free_stripe(sc, sh); 2391 return NULL; 2392 } 2393 #endif 2394 } 2395 return sh; 2396 } 2397 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp) 2398 { 2399 struct stripe_head *sh; 2400 2401 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf); 2402 if (!sh) 2403 return 0; 2404 2405 if (grow_buffers(sh, gfp)) { 2406 shrink_buffers(sh); 2407 free_stripe(conf->slab_cache, sh); 2408 return 0; 2409 } 2410 sh->hash_lock_index = 2411 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS; 2412 /* we just created an active stripe so... */ 2413 atomic_inc(&conf->active_stripes); 2414 2415 raid5_release_stripe(sh); 2416 conf->max_nr_stripes++; 2417 return 1; 2418 } 2419 2420 static int grow_stripes(struct r5conf *conf, int num) 2421 { 2422 struct kmem_cache *sc; 2423 size_t namelen = sizeof(conf->cache_name[0]); 2424 int devs = max(conf->raid_disks, conf->previous_raid_disks); 2425 2426 if (conf->mddev->gendisk) 2427 snprintf(conf->cache_name[0], namelen, 2428 "raid%d-%s", conf->level, mdname(conf->mddev)); 2429 else 2430 snprintf(conf->cache_name[0], namelen, 2431 "raid%d-%p", conf->level, conf->mddev); 2432 snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]); 2433 2434 conf->active_name = 0; 2435 sc = kmem_cache_create(conf->cache_name[conf->active_name], 2436 struct_size_t(struct stripe_head, dev, devs), 2437 0, 0, NULL); 2438 if (!sc) 2439 return 1; 2440 conf->slab_cache = sc; 2441 conf->pool_size = devs; 2442 while (num--) 2443 if (!grow_one_stripe(conf, GFP_KERNEL)) 2444 return 1; 2445 2446 return 0; 2447 } 2448 2449 /** 2450 * scribble_alloc - allocate percpu scribble buffer for required size 2451 * of the scribble region 2452 * @percpu: from for_each_present_cpu() of the caller 2453 * @num: total number of disks in the array 2454 * @cnt: scribble objs count for required size of the scribble region 2455 * 2456 * The scribble buffer size must be enough to contain: 2457 * 1/ a struct page pointer for each device in the array +2 2458 * 2/ room to convert each entry in (1) to its corresponding dma 2459 * (dma_map_page()) or page (page_address()) address. 2460 * 2461 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we 2462 * calculate over all devices (not just the data blocks), using zeros in place 2463 * of the P and Q blocks. 2464 */ 2465 static int scribble_alloc(struct raid5_percpu *percpu, 2466 int num, int cnt) 2467 { 2468 size_t obj_size = 2469 sizeof(struct page *) * (num + 2) + 2470 sizeof(addr_conv_t) * (num + 2) + 2471 sizeof(unsigned int) * (num + 2); 2472 void *scribble; 2473 2474 /* 2475 * If here is in raid array suspend context, it is in memalloc noio 2476 * context as well, there is no potential recursive memory reclaim 2477 * I/Os with the GFP_KERNEL flag. 2478 */ 2479 scribble = kvmalloc_array(cnt, obj_size, GFP_KERNEL); 2480 if (!scribble) 2481 return -ENOMEM; 2482 2483 kvfree(percpu->scribble); 2484 2485 percpu->scribble = scribble; 2486 percpu->scribble_obj_size = obj_size; 2487 return 0; 2488 } 2489 2490 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors) 2491 { 2492 unsigned long cpu; 2493 int err = 0; 2494 2495 /* 2496 * Never shrink. And mddev_suspend() could deadlock if this is called 2497 * from raid5d. In that case, scribble_disks and scribble_sectors 2498 * should equal to new_disks and new_sectors 2499 */ 2500 if (conf->scribble_disks >= new_disks && 2501 conf->scribble_sectors >= new_sectors) 2502 return 0; 2503 mddev_suspend(conf->mddev); 2504 cpus_read_lock(); 2505 2506 for_each_present_cpu(cpu) { 2507 struct raid5_percpu *percpu; 2508 2509 percpu = per_cpu_ptr(conf->percpu, cpu); 2510 err = scribble_alloc(percpu, new_disks, 2511 new_sectors / RAID5_STRIPE_SECTORS(conf)); 2512 if (err) 2513 break; 2514 } 2515 2516 cpus_read_unlock(); 2517 mddev_resume(conf->mddev); 2518 if (!err) { 2519 conf->scribble_disks = new_disks; 2520 conf->scribble_sectors = new_sectors; 2521 } 2522 return err; 2523 } 2524 2525 static int resize_stripes(struct r5conf *conf, int newsize) 2526 { 2527 /* Make all the stripes able to hold 'newsize' devices. 2528 * New slots in each stripe get 'page' set to a new page. 2529 * 2530 * This happens in stages: 2531 * 1/ create a new kmem_cache and allocate the required number of 2532 * stripe_heads. 2533 * 2/ gather all the old stripe_heads and transfer the pages across 2534 * to the new stripe_heads. This will have the side effect of 2535 * freezing the array as once all stripe_heads have been collected, 2536 * no IO will be possible. Old stripe heads are freed once their 2537 * pages have been transferred over, and the old kmem_cache is 2538 * freed when all stripes are done. 2539 * 3/ reallocate conf->disks to be suitable bigger. If this fails, 2540 * we simple return a failure status - no need to clean anything up. 2541 * 4/ allocate new pages for the new slots in the new stripe_heads. 2542 * If this fails, we don't bother trying the shrink the 2543 * stripe_heads down again, we just leave them as they are. 2544 * As each stripe_head is processed the new one is released into 2545 * active service. 2546 * 2547 * Once step2 is started, we cannot afford to wait for a write, 2548 * so we use GFP_NOIO allocations. 2549 */ 2550 struct stripe_head *osh, *nsh; 2551 LIST_HEAD(newstripes); 2552 struct disk_info *ndisks; 2553 int err = 0; 2554 struct kmem_cache *sc; 2555 int i; 2556 int hash, cnt; 2557 2558 md_allow_write(conf->mddev); 2559 2560 /* Step 1 */ 2561 sc = kmem_cache_create(conf->cache_name[1-conf->active_name], 2562 struct_size_t(struct stripe_head, dev, newsize), 2563 0, 0, NULL); 2564 if (!sc) 2565 return -ENOMEM; 2566 2567 /* Need to ensure auto-resizing doesn't interfere */ 2568 mutex_lock(&conf->cache_size_mutex); 2569 2570 for (i = conf->max_nr_stripes; i; i--) { 2571 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf); 2572 if (!nsh) 2573 break; 2574 2575 list_add(&nsh->lru, &newstripes); 2576 } 2577 if (i) { 2578 /* didn't get enough, give up */ 2579 while (!list_empty(&newstripes)) { 2580 nsh = list_entry(newstripes.next, struct stripe_head, lru); 2581 list_del(&nsh->lru); 2582 free_stripe(sc, nsh); 2583 } 2584 kmem_cache_destroy(sc); 2585 mutex_unlock(&conf->cache_size_mutex); 2586 return -ENOMEM; 2587 } 2588 /* Step 2 - Must use GFP_NOIO now. 2589 * OK, we have enough stripes, start collecting inactive 2590 * stripes and copying them over 2591 */ 2592 hash = 0; 2593 cnt = 0; 2594 list_for_each_entry(nsh, &newstripes, lru) { 2595 lock_device_hash_lock(conf, hash); 2596 wait_event_cmd(conf->wait_for_stripe, 2597 !list_empty(conf->inactive_list + hash), 2598 unlock_device_hash_lock(conf, hash), 2599 lock_device_hash_lock(conf, hash)); 2600 osh = get_free_stripe(conf, hash); 2601 unlock_device_hash_lock(conf, hash); 2602 2603 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 2604 for (i = 0; i < osh->nr_pages; i++) { 2605 nsh->pages[i] = osh->pages[i]; 2606 osh->pages[i] = NULL; 2607 } 2608 #endif 2609 for(i=0; i<conf->pool_size; i++) { 2610 nsh->dev[i].page = osh->dev[i].page; 2611 nsh->dev[i].orig_page = osh->dev[i].page; 2612 nsh->dev[i].offset = osh->dev[i].offset; 2613 } 2614 nsh->hash_lock_index = hash; 2615 free_stripe(conf->slab_cache, osh); 2616 cnt++; 2617 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS + 2618 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) { 2619 hash++; 2620 cnt = 0; 2621 } 2622 } 2623 kmem_cache_destroy(conf->slab_cache); 2624 2625 /* Step 3. 2626 * At this point, we are holding all the stripes so the array 2627 * is completely stalled, so now is a good time to resize 2628 * conf->disks and the scribble region 2629 */ 2630 ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO); 2631 if (ndisks) { 2632 for (i = 0; i < conf->pool_size; i++) 2633 ndisks[i] = conf->disks[i]; 2634 2635 for (i = conf->pool_size; i < newsize; i++) { 2636 ndisks[i].extra_page = alloc_page(GFP_NOIO); 2637 if (!ndisks[i].extra_page) 2638 err = -ENOMEM; 2639 } 2640 2641 if (err) { 2642 for (i = conf->pool_size; i < newsize; i++) 2643 if (ndisks[i].extra_page) 2644 put_page(ndisks[i].extra_page); 2645 kfree(ndisks); 2646 } else { 2647 kfree(conf->disks); 2648 conf->disks = ndisks; 2649 } 2650 } else 2651 err = -ENOMEM; 2652 2653 conf->slab_cache = sc; 2654 conf->active_name = 1-conf->active_name; 2655 2656 /* Step 4, return new stripes to service */ 2657 while(!list_empty(&newstripes)) { 2658 nsh = list_entry(newstripes.next, struct stripe_head, lru); 2659 list_del_init(&nsh->lru); 2660 2661 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 2662 for (i = 0; i < nsh->nr_pages; i++) { 2663 if (nsh->pages[i]) 2664 continue; 2665 nsh->pages[i] = alloc_page(GFP_NOIO); 2666 if (!nsh->pages[i]) 2667 err = -ENOMEM; 2668 } 2669 2670 for (i = conf->raid_disks; i < newsize; i++) { 2671 if (nsh->dev[i].page) 2672 continue; 2673 nsh->dev[i].page = raid5_get_dev_page(nsh, i); 2674 nsh->dev[i].orig_page = nsh->dev[i].page; 2675 nsh->dev[i].offset = raid5_get_page_offset(nsh, i); 2676 } 2677 #else 2678 for (i=conf->raid_disks; i < newsize; i++) 2679 if (nsh->dev[i].page == NULL) { 2680 struct page *p = alloc_page(GFP_NOIO); 2681 nsh->dev[i].page = p; 2682 nsh->dev[i].orig_page = p; 2683 nsh->dev[i].offset = 0; 2684 if (!p) 2685 err = -ENOMEM; 2686 } 2687 #endif 2688 raid5_release_stripe(nsh); 2689 } 2690 /* critical section pass, GFP_NOIO no longer needed */ 2691 2692 if (!err) 2693 conf->pool_size = newsize; 2694 mutex_unlock(&conf->cache_size_mutex); 2695 2696 return err; 2697 } 2698 2699 static int drop_one_stripe(struct r5conf *conf) 2700 { 2701 struct stripe_head *sh; 2702 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK; 2703 2704 spin_lock_irq(conf->hash_locks + hash); 2705 sh = get_free_stripe(conf, hash); 2706 spin_unlock_irq(conf->hash_locks + hash); 2707 if (!sh) 2708 return 0; 2709 BUG_ON(atomic_read(&sh->count)); 2710 shrink_buffers(sh); 2711 free_stripe(conf->slab_cache, sh); 2712 atomic_dec(&conf->active_stripes); 2713 conf->max_nr_stripes--; 2714 return 1; 2715 } 2716 2717 static void shrink_stripes(struct r5conf *conf) 2718 { 2719 while (conf->max_nr_stripes && 2720 drop_one_stripe(conf)) 2721 ; 2722 2723 kmem_cache_destroy(conf->slab_cache); 2724 conf->slab_cache = NULL; 2725 } 2726 2727 /* 2728 * This helper wraps rcu_dereference_protected() and can be used when 2729 * it is known that the nr_pending of the rdev is elevated. 2730 */ 2731 static struct md_rdev *rdev_pend_deref(struct md_rdev __rcu *rdev) 2732 { 2733 return rcu_dereference_protected(rdev, 2734 atomic_read(&rcu_access_pointer(rdev)->nr_pending)); 2735 } 2736 2737 /* 2738 * This helper wraps rcu_dereference_protected() and should be used 2739 * when it is known that the mddev_lock() is held. This is safe 2740 * seeing raid5_remove_disk() has the same lock held. 2741 */ 2742 static struct md_rdev *rdev_mdlock_deref(struct mddev *mddev, 2743 struct md_rdev __rcu *rdev) 2744 { 2745 return rcu_dereference_protected(rdev, 2746 lockdep_is_held(&mddev->reconfig_mutex)); 2747 } 2748 2749 static void raid5_end_read_request(struct bio * bi) 2750 { 2751 struct stripe_head *sh = bi->bi_private; 2752 struct r5conf *conf = sh->raid_conf; 2753 int disks = sh->disks, i; 2754 struct md_rdev *rdev = NULL; 2755 sector_t s; 2756 2757 for (i=0 ; i<disks; i++) 2758 if (bi == &sh->dev[i].req) 2759 break; 2760 2761 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n", 2762 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2763 bi->bi_status); 2764 if (i == disks) { 2765 BUG(); 2766 return; 2767 } 2768 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2769 /* If replacement finished while this request was outstanding, 2770 * 'replacement' might be NULL already. 2771 * In that case it moved down to 'rdev'. 2772 * rdev is not removed until all requests are finished. 2773 */ 2774 rdev = rdev_pend_deref(conf->disks[i].replacement); 2775 if (!rdev) 2776 rdev = rdev_pend_deref(conf->disks[i].rdev); 2777 2778 if (use_new_offset(conf, sh)) 2779 s = sh->sector + rdev->new_data_offset; 2780 else 2781 s = sh->sector + rdev->data_offset; 2782 if (!bi->bi_status) { 2783 set_bit(R5_UPTODATE, &sh->dev[i].flags); 2784 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 2785 /* Note that this cannot happen on a 2786 * replacement device. We just fail those on 2787 * any error 2788 */ 2789 pr_info_ratelimited( 2790 "md/raid:%s: read error corrected (%lu sectors at %llu on %pg)\n", 2791 mdname(conf->mddev), RAID5_STRIPE_SECTORS(conf), 2792 (unsigned long long)s, 2793 rdev->bdev); 2794 atomic_add(RAID5_STRIPE_SECTORS(conf), &rdev->corrected_errors); 2795 clear_bit(R5_ReadError, &sh->dev[i].flags); 2796 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2797 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2798 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2799 2800 if (test_bit(R5_InJournal, &sh->dev[i].flags)) 2801 /* 2802 * end read for a page in journal, this 2803 * must be preparing for prexor in rmw 2804 */ 2805 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags); 2806 2807 if (atomic_read(&rdev->read_errors)) 2808 atomic_set(&rdev->read_errors, 0); 2809 } else { 2810 int retry = 0; 2811 int set_bad = 0; 2812 2813 clear_bit(R5_UPTODATE, &sh->dev[i].flags); 2814 if (!(bi->bi_status == BLK_STS_PROTECTION)) 2815 atomic_inc(&rdev->read_errors); 2816 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2817 pr_warn_ratelimited( 2818 "md/raid:%s: read error on replacement device (sector %llu on %pg).\n", 2819 mdname(conf->mddev), 2820 (unsigned long long)s, 2821 rdev->bdev); 2822 else if (conf->mddev->degraded >= conf->max_degraded) { 2823 set_bad = 1; 2824 pr_warn_ratelimited( 2825 "md/raid:%s: read error not correctable (sector %llu on %pg).\n", 2826 mdname(conf->mddev), 2827 (unsigned long long)s, 2828 rdev->bdev); 2829 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) { 2830 /* Oh, no!!! */ 2831 set_bad = 1; 2832 pr_warn_ratelimited( 2833 "md/raid:%s: read error NOT corrected!! (sector %llu on %pg).\n", 2834 mdname(conf->mddev), 2835 (unsigned long long)s, 2836 rdev->bdev); 2837 } else if (atomic_read(&rdev->read_errors) 2838 > conf->max_nr_stripes) { 2839 if (!test_bit(Faulty, &rdev->flags)) { 2840 pr_warn("md/raid:%s: %d read_errors > %d stripes\n", 2841 mdname(conf->mddev), 2842 atomic_read(&rdev->read_errors), 2843 conf->max_nr_stripes); 2844 pr_warn("md/raid:%s: Too many read errors, failing device %pg.\n", 2845 mdname(conf->mddev), rdev->bdev); 2846 } 2847 } else 2848 retry = 1; 2849 if (set_bad && test_bit(In_sync, &rdev->flags) 2850 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2851 retry = 1; 2852 if (retry) 2853 if (sh->qd_idx >= 0 && sh->pd_idx == i) 2854 set_bit(R5_ReadError, &sh->dev[i].flags); 2855 else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) { 2856 set_bit(R5_ReadError, &sh->dev[i].flags); 2857 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2858 } else 2859 set_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2860 else { 2861 clear_bit(R5_ReadError, &sh->dev[i].flags); 2862 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2863 if (!(set_bad 2864 && test_bit(In_sync, &rdev->flags) 2865 && rdev_set_badblocks( 2866 rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 0))) 2867 md_error(conf->mddev, rdev); 2868 } 2869 } 2870 rdev_dec_pending(rdev, conf->mddev); 2871 bio_uninit(bi); 2872 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2873 set_bit(STRIPE_HANDLE, &sh->state); 2874 raid5_release_stripe(sh); 2875 } 2876 2877 static void raid5_end_write_request(struct bio *bi) 2878 { 2879 struct stripe_head *sh = bi->bi_private; 2880 struct r5conf *conf = sh->raid_conf; 2881 int disks = sh->disks, i; 2882 struct md_rdev *rdev; 2883 sector_t first_bad; 2884 int bad_sectors; 2885 int replacement = 0; 2886 2887 for (i = 0 ; i < disks; i++) { 2888 if (bi == &sh->dev[i].req) { 2889 rdev = rdev_pend_deref(conf->disks[i].rdev); 2890 break; 2891 } 2892 if (bi == &sh->dev[i].rreq) { 2893 rdev = rdev_pend_deref(conf->disks[i].replacement); 2894 if (rdev) 2895 replacement = 1; 2896 else 2897 /* rdev was removed and 'replacement' 2898 * replaced it. rdev is not removed 2899 * until all requests are finished. 2900 */ 2901 rdev = rdev_pend_deref(conf->disks[i].rdev); 2902 break; 2903 } 2904 } 2905 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n", 2906 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2907 bi->bi_status); 2908 if (i == disks) { 2909 BUG(); 2910 return; 2911 } 2912 2913 if (replacement) { 2914 if (bi->bi_status) 2915 md_error(conf->mddev, rdev); 2916 else if (is_badblock(rdev, sh->sector, 2917 RAID5_STRIPE_SECTORS(conf), 2918 &first_bad, &bad_sectors)) 2919 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags); 2920 } else { 2921 if (bi->bi_status) { 2922 set_bit(STRIPE_DEGRADED, &sh->state); 2923 set_bit(WriteErrorSeen, &rdev->flags); 2924 set_bit(R5_WriteError, &sh->dev[i].flags); 2925 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2926 set_bit(MD_RECOVERY_NEEDED, 2927 &rdev->mddev->recovery); 2928 } else if (is_badblock(rdev, sh->sector, 2929 RAID5_STRIPE_SECTORS(conf), 2930 &first_bad, &bad_sectors)) { 2931 set_bit(R5_MadeGood, &sh->dev[i].flags); 2932 if (test_bit(R5_ReadError, &sh->dev[i].flags)) 2933 /* That was a successful write so make 2934 * sure it looks like we already did 2935 * a re-write. 2936 */ 2937 set_bit(R5_ReWrite, &sh->dev[i].flags); 2938 } 2939 } 2940 rdev_dec_pending(rdev, conf->mddev); 2941 2942 if (sh->batch_head && bi->bi_status && !replacement) 2943 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state); 2944 2945 bio_uninit(bi); 2946 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags)) 2947 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2948 set_bit(STRIPE_HANDLE, &sh->state); 2949 2950 if (sh->batch_head && sh != sh->batch_head) 2951 raid5_release_stripe(sh->batch_head); 2952 raid5_release_stripe(sh); 2953 } 2954 2955 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev) 2956 { 2957 struct r5conf *conf = mddev->private; 2958 unsigned long flags; 2959 pr_debug("raid456: error called\n"); 2960 2961 pr_crit("md/raid:%s: Disk failure on %pg, disabling device.\n", 2962 mdname(mddev), rdev->bdev); 2963 2964 spin_lock_irqsave(&conf->device_lock, flags); 2965 set_bit(Faulty, &rdev->flags); 2966 clear_bit(In_sync, &rdev->flags); 2967 mddev->degraded = raid5_calc_degraded(conf); 2968 2969 if (has_failed(conf)) { 2970 set_bit(MD_BROKEN, &conf->mddev->flags); 2971 conf->recovery_disabled = mddev->recovery_disabled; 2972 2973 pr_crit("md/raid:%s: Cannot continue operation (%d/%d failed).\n", 2974 mdname(mddev), mddev->degraded, conf->raid_disks); 2975 } else { 2976 pr_crit("md/raid:%s: Operation continuing on %d devices.\n", 2977 mdname(mddev), conf->raid_disks - mddev->degraded); 2978 } 2979 2980 spin_unlock_irqrestore(&conf->device_lock, flags); 2981 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2982 2983 set_bit(Blocked, &rdev->flags); 2984 set_mask_bits(&mddev->sb_flags, 0, 2985 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 2986 r5c_update_on_rdev_error(mddev, rdev); 2987 } 2988 2989 /* 2990 * Input: a 'big' sector number, 2991 * Output: index of the data and parity disk, and the sector # in them. 2992 */ 2993 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector, 2994 int previous, int *dd_idx, 2995 struct stripe_head *sh) 2996 { 2997 sector_t stripe, stripe2; 2998 sector_t chunk_number; 2999 unsigned int chunk_offset; 3000 int pd_idx, qd_idx; 3001 int ddf_layout = 0; 3002 sector_t new_sector; 3003 int algorithm = previous ? conf->prev_algo 3004 : conf->algorithm; 3005 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 3006 : conf->chunk_sectors; 3007 int raid_disks = previous ? conf->previous_raid_disks 3008 : conf->raid_disks; 3009 int data_disks = raid_disks - conf->max_degraded; 3010 3011 /* First compute the information on this sector */ 3012 3013 /* 3014 * Compute the chunk number and the sector offset inside the chunk 3015 */ 3016 chunk_offset = sector_div(r_sector, sectors_per_chunk); 3017 chunk_number = r_sector; 3018 3019 /* 3020 * Compute the stripe number 3021 */ 3022 stripe = chunk_number; 3023 *dd_idx = sector_div(stripe, data_disks); 3024 stripe2 = stripe; 3025 /* 3026 * Select the parity disk based on the user selected algorithm. 3027 */ 3028 pd_idx = qd_idx = -1; 3029 switch(conf->level) { 3030 case 4: 3031 pd_idx = data_disks; 3032 break; 3033 case 5: 3034 switch (algorithm) { 3035 case ALGORITHM_LEFT_ASYMMETRIC: 3036 pd_idx = data_disks - sector_div(stripe2, raid_disks); 3037 if (*dd_idx >= pd_idx) 3038 (*dd_idx)++; 3039 break; 3040 case ALGORITHM_RIGHT_ASYMMETRIC: 3041 pd_idx = sector_div(stripe2, raid_disks); 3042 if (*dd_idx >= pd_idx) 3043 (*dd_idx)++; 3044 break; 3045 case ALGORITHM_LEFT_SYMMETRIC: 3046 pd_idx = data_disks - sector_div(stripe2, raid_disks); 3047 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 3048 break; 3049 case ALGORITHM_RIGHT_SYMMETRIC: 3050 pd_idx = sector_div(stripe2, raid_disks); 3051 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 3052 break; 3053 case ALGORITHM_PARITY_0: 3054 pd_idx = 0; 3055 (*dd_idx)++; 3056 break; 3057 case ALGORITHM_PARITY_N: 3058 pd_idx = data_disks; 3059 break; 3060 default: 3061 BUG(); 3062 } 3063 break; 3064 case 6: 3065 3066 switch (algorithm) { 3067 case ALGORITHM_LEFT_ASYMMETRIC: 3068 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 3069 qd_idx = pd_idx + 1; 3070 if (pd_idx == raid_disks-1) { 3071 (*dd_idx)++; /* Q D D D P */ 3072 qd_idx = 0; 3073 } else if (*dd_idx >= pd_idx) 3074 (*dd_idx) += 2; /* D D P Q D */ 3075 break; 3076 case ALGORITHM_RIGHT_ASYMMETRIC: 3077 pd_idx = sector_div(stripe2, raid_disks); 3078 qd_idx = pd_idx + 1; 3079 if (pd_idx == raid_disks-1) { 3080 (*dd_idx)++; /* Q D D D P */ 3081 qd_idx = 0; 3082 } else if (*dd_idx >= pd_idx) 3083 (*dd_idx) += 2; /* D D P Q D */ 3084 break; 3085 case ALGORITHM_LEFT_SYMMETRIC: 3086 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 3087 qd_idx = (pd_idx + 1) % raid_disks; 3088 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 3089 break; 3090 case ALGORITHM_RIGHT_SYMMETRIC: 3091 pd_idx = sector_div(stripe2, raid_disks); 3092 qd_idx = (pd_idx + 1) % raid_disks; 3093 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 3094 break; 3095 3096 case ALGORITHM_PARITY_0: 3097 pd_idx = 0; 3098 qd_idx = 1; 3099 (*dd_idx) += 2; 3100 break; 3101 case ALGORITHM_PARITY_N: 3102 pd_idx = data_disks; 3103 qd_idx = data_disks + 1; 3104 break; 3105 3106 case ALGORITHM_ROTATING_ZERO_RESTART: 3107 /* Exactly the same as RIGHT_ASYMMETRIC, but or 3108 * of blocks for computing Q is different. 3109 */ 3110 pd_idx = sector_div(stripe2, raid_disks); 3111 qd_idx = pd_idx + 1; 3112 if (pd_idx == raid_disks-1) { 3113 (*dd_idx)++; /* Q D D D P */ 3114 qd_idx = 0; 3115 } else if (*dd_idx >= pd_idx) 3116 (*dd_idx) += 2; /* D D P Q D */ 3117 ddf_layout = 1; 3118 break; 3119 3120 case ALGORITHM_ROTATING_N_RESTART: 3121 /* Same a left_asymmetric, by first stripe is 3122 * D D D P Q rather than 3123 * Q D D D P 3124 */ 3125 stripe2 += 1; 3126 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 3127 qd_idx = pd_idx + 1; 3128 if (pd_idx == raid_disks-1) { 3129 (*dd_idx)++; /* Q D D D P */ 3130 qd_idx = 0; 3131 } else if (*dd_idx >= pd_idx) 3132 (*dd_idx) += 2; /* D D P Q D */ 3133 ddf_layout = 1; 3134 break; 3135 3136 case ALGORITHM_ROTATING_N_CONTINUE: 3137 /* Same as left_symmetric but Q is before P */ 3138 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 3139 qd_idx = (pd_idx + raid_disks - 1) % raid_disks; 3140 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 3141 ddf_layout = 1; 3142 break; 3143 3144 case ALGORITHM_LEFT_ASYMMETRIC_6: 3145 /* RAID5 left_asymmetric, with Q on last device */ 3146 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 3147 if (*dd_idx >= pd_idx) 3148 (*dd_idx)++; 3149 qd_idx = raid_disks - 1; 3150 break; 3151 3152 case ALGORITHM_RIGHT_ASYMMETRIC_6: 3153 pd_idx = sector_div(stripe2, raid_disks-1); 3154 if (*dd_idx >= pd_idx) 3155 (*dd_idx)++; 3156 qd_idx = raid_disks - 1; 3157 break; 3158 3159 case ALGORITHM_LEFT_SYMMETRIC_6: 3160 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 3161 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 3162 qd_idx = raid_disks - 1; 3163 break; 3164 3165 case ALGORITHM_RIGHT_SYMMETRIC_6: 3166 pd_idx = sector_div(stripe2, raid_disks-1); 3167 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 3168 qd_idx = raid_disks - 1; 3169 break; 3170 3171 case ALGORITHM_PARITY_0_6: 3172 pd_idx = 0; 3173 (*dd_idx)++; 3174 qd_idx = raid_disks - 1; 3175 break; 3176 3177 default: 3178 BUG(); 3179 } 3180 break; 3181 } 3182 3183 if (sh) { 3184 sh->pd_idx = pd_idx; 3185 sh->qd_idx = qd_idx; 3186 sh->ddf_layout = ddf_layout; 3187 } 3188 /* 3189 * Finally, compute the new sector number 3190 */ 3191 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset; 3192 return new_sector; 3193 } 3194 3195 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous) 3196 { 3197 struct r5conf *conf = sh->raid_conf; 3198 int raid_disks = sh->disks; 3199 int data_disks = raid_disks - conf->max_degraded; 3200 sector_t new_sector = sh->sector, check; 3201 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 3202 : conf->chunk_sectors; 3203 int algorithm = previous ? conf->prev_algo 3204 : conf->algorithm; 3205 sector_t stripe; 3206 int chunk_offset; 3207 sector_t chunk_number; 3208 int dummy1, dd_idx = i; 3209 sector_t r_sector; 3210 struct stripe_head sh2; 3211 3212 chunk_offset = sector_div(new_sector, sectors_per_chunk); 3213 stripe = new_sector; 3214 3215 if (i == sh->pd_idx) 3216 return 0; 3217 switch(conf->level) { 3218 case 4: break; 3219 case 5: 3220 switch (algorithm) { 3221 case ALGORITHM_LEFT_ASYMMETRIC: 3222 case ALGORITHM_RIGHT_ASYMMETRIC: 3223 if (i > sh->pd_idx) 3224 i--; 3225 break; 3226 case ALGORITHM_LEFT_SYMMETRIC: 3227 case ALGORITHM_RIGHT_SYMMETRIC: 3228 if (i < sh->pd_idx) 3229 i += raid_disks; 3230 i -= (sh->pd_idx + 1); 3231 break; 3232 case ALGORITHM_PARITY_0: 3233 i -= 1; 3234 break; 3235 case ALGORITHM_PARITY_N: 3236 break; 3237 default: 3238 BUG(); 3239 } 3240 break; 3241 case 6: 3242 if (i == sh->qd_idx) 3243 return 0; /* It is the Q disk */ 3244 switch (algorithm) { 3245 case ALGORITHM_LEFT_ASYMMETRIC: 3246 case ALGORITHM_RIGHT_ASYMMETRIC: 3247 case ALGORITHM_ROTATING_ZERO_RESTART: 3248 case ALGORITHM_ROTATING_N_RESTART: 3249 if (sh->pd_idx == raid_disks-1) 3250 i--; /* Q D D D P */ 3251 else if (i > sh->pd_idx) 3252 i -= 2; /* D D P Q D */ 3253 break; 3254 case ALGORITHM_LEFT_SYMMETRIC: 3255 case ALGORITHM_RIGHT_SYMMETRIC: 3256 if (sh->pd_idx == raid_disks-1) 3257 i--; /* Q D D D P */ 3258 else { 3259 /* D D P Q D */ 3260 if (i < sh->pd_idx) 3261 i += raid_disks; 3262 i -= (sh->pd_idx + 2); 3263 } 3264 break; 3265 case ALGORITHM_PARITY_0: 3266 i -= 2; 3267 break; 3268 case ALGORITHM_PARITY_N: 3269 break; 3270 case ALGORITHM_ROTATING_N_CONTINUE: 3271 /* Like left_symmetric, but P is before Q */ 3272 if (sh->pd_idx == 0) 3273 i--; /* P D D D Q */ 3274 else { 3275 /* D D Q P D */ 3276 if (i < sh->pd_idx) 3277 i += raid_disks; 3278 i -= (sh->pd_idx + 1); 3279 } 3280 break; 3281 case ALGORITHM_LEFT_ASYMMETRIC_6: 3282 case ALGORITHM_RIGHT_ASYMMETRIC_6: 3283 if (i > sh->pd_idx) 3284 i--; 3285 break; 3286 case ALGORITHM_LEFT_SYMMETRIC_6: 3287 case ALGORITHM_RIGHT_SYMMETRIC_6: 3288 if (i < sh->pd_idx) 3289 i += data_disks + 1; 3290 i -= (sh->pd_idx + 1); 3291 break; 3292 case ALGORITHM_PARITY_0_6: 3293 i -= 1; 3294 break; 3295 default: 3296 BUG(); 3297 } 3298 break; 3299 } 3300 3301 chunk_number = stripe * data_disks + i; 3302 r_sector = chunk_number * sectors_per_chunk + chunk_offset; 3303 3304 check = raid5_compute_sector(conf, r_sector, 3305 previous, &dummy1, &sh2); 3306 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx 3307 || sh2.qd_idx != sh->qd_idx) { 3308 pr_warn("md/raid:%s: compute_blocknr: map not correct\n", 3309 mdname(conf->mddev)); 3310 return 0; 3311 } 3312 return r_sector; 3313 } 3314 3315 /* 3316 * There are cases where we want handle_stripe_dirtying() and 3317 * schedule_reconstruction() to delay towrite to some dev of a stripe. 3318 * 3319 * This function checks whether we want to delay the towrite. Specifically, 3320 * we delay the towrite when: 3321 * 3322 * 1. degraded stripe has a non-overwrite to the missing dev, AND this 3323 * stripe has data in journal (for other devices). 3324 * 3325 * In this case, when reading data for the non-overwrite dev, it is 3326 * necessary to handle complex rmw of write back cache (prexor with 3327 * orig_page, and xor with page). To keep read path simple, we would 3328 * like to flush data in journal to RAID disks first, so complex rmw 3329 * is handled in the write patch (handle_stripe_dirtying). 3330 * 3331 * 2. when journal space is critical (R5C_LOG_CRITICAL=1) 3332 * 3333 * It is important to be able to flush all stripes in raid5-cache. 3334 * Therefore, we need reserve some space on the journal device for 3335 * these flushes. If flush operation includes pending writes to the 3336 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe 3337 * for the flush out. If we exclude these pending writes from flush 3338 * operation, we only need (conf->max_degraded + 1) pages per stripe. 3339 * Therefore, excluding pending writes in these cases enables more 3340 * efficient use of the journal device. 3341 * 3342 * Note: To make sure the stripe makes progress, we only delay 3343 * towrite for stripes with data already in journal (injournal > 0). 3344 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to 3345 * no_space_stripes list. 3346 * 3347 * 3. during journal failure 3348 * In journal failure, we try to flush all cached data to raid disks 3349 * based on data in stripe cache. The array is read-only to upper 3350 * layers, so we would skip all pending writes. 3351 * 3352 */ 3353 static inline bool delay_towrite(struct r5conf *conf, 3354 struct r5dev *dev, 3355 struct stripe_head_state *s) 3356 { 3357 /* case 1 above */ 3358 if (!test_bit(R5_OVERWRITE, &dev->flags) && 3359 !test_bit(R5_Insync, &dev->flags) && s->injournal) 3360 return true; 3361 /* case 2 above */ 3362 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) && 3363 s->injournal > 0) 3364 return true; 3365 /* case 3 above */ 3366 if (s->log_failed && s->injournal) 3367 return true; 3368 return false; 3369 } 3370 3371 static void 3372 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s, 3373 int rcw, int expand) 3374 { 3375 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks; 3376 struct r5conf *conf = sh->raid_conf; 3377 int level = conf->level; 3378 3379 if (rcw) { 3380 /* 3381 * In some cases, handle_stripe_dirtying initially decided to 3382 * run rmw and allocates extra page for prexor. However, rcw is 3383 * cheaper later on. We need to free the extra page now, 3384 * because we won't be able to do that in ops_complete_prexor(). 3385 */ 3386 r5c_release_extra_page(sh); 3387 3388 for (i = disks; i--; ) { 3389 struct r5dev *dev = &sh->dev[i]; 3390 3391 if (dev->towrite && !delay_towrite(conf, dev, s)) { 3392 set_bit(R5_LOCKED, &dev->flags); 3393 set_bit(R5_Wantdrain, &dev->flags); 3394 if (!expand) 3395 clear_bit(R5_UPTODATE, &dev->flags); 3396 s->locked++; 3397 } else if (test_bit(R5_InJournal, &dev->flags)) { 3398 set_bit(R5_LOCKED, &dev->flags); 3399 s->locked++; 3400 } 3401 } 3402 /* if we are not expanding this is a proper write request, and 3403 * there will be bios with new data to be drained into the 3404 * stripe cache 3405 */ 3406 if (!expand) { 3407 if (!s->locked) 3408 /* False alarm, nothing to do */ 3409 return; 3410 sh->reconstruct_state = reconstruct_state_drain_run; 3411 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 3412 } else 3413 sh->reconstruct_state = reconstruct_state_run; 3414 3415 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 3416 3417 if (s->locked + conf->max_degraded == disks) 3418 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state)) 3419 atomic_inc(&conf->pending_full_writes); 3420 } else { 3421 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) || 3422 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags))); 3423 BUG_ON(level == 6 && 3424 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) || 3425 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags)))); 3426 3427 for (i = disks; i--; ) { 3428 struct r5dev *dev = &sh->dev[i]; 3429 if (i == pd_idx || i == qd_idx) 3430 continue; 3431 3432 if (dev->towrite && 3433 (test_bit(R5_UPTODATE, &dev->flags) || 3434 test_bit(R5_Wantcompute, &dev->flags))) { 3435 set_bit(R5_Wantdrain, &dev->flags); 3436 set_bit(R5_LOCKED, &dev->flags); 3437 clear_bit(R5_UPTODATE, &dev->flags); 3438 s->locked++; 3439 } else if (test_bit(R5_InJournal, &dev->flags)) { 3440 set_bit(R5_LOCKED, &dev->flags); 3441 s->locked++; 3442 } 3443 } 3444 if (!s->locked) 3445 /* False alarm - nothing to do */ 3446 return; 3447 sh->reconstruct_state = reconstruct_state_prexor_drain_run; 3448 set_bit(STRIPE_OP_PREXOR, &s->ops_request); 3449 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 3450 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 3451 } 3452 3453 /* keep the parity disk(s) locked while asynchronous operations 3454 * are in flight 3455 */ 3456 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); 3457 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 3458 s->locked++; 3459 3460 if (level == 6) { 3461 int qd_idx = sh->qd_idx; 3462 struct r5dev *dev = &sh->dev[qd_idx]; 3463 3464 set_bit(R5_LOCKED, &dev->flags); 3465 clear_bit(R5_UPTODATE, &dev->flags); 3466 s->locked++; 3467 } 3468 3469 if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page && 3470 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) && 3471 !test_bit(STRIPE_FULL_WRITE, &sh->state) && 3472 test_bit(R5_Insync, &sh->dev[pd_idx].flags)) 3473 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request); 3474 3475 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n", 3476 __func__, (unsigned long long)sh->sector, 3477 s->locked, s->ops_request); 3478 } 3479 3480 static bool stripe_bio_overlaps(struct stripe_head *sh, struct bio *bi, 3481 int dd_idx, int forwrite) 3482 { 3483 struct r5conf *conf = sh->raid_conf; 3484 struct bio **bip; 3485 3486 pr_debug("checking bi b#%llu to stripe s#%llu\n", 3487 bi->bi_iter.bi_sector, sh->sector); 3488 3489 /* Don't allow new IO added to stripes in batch list */ 3490 if (sh->batch_head) 3491 return true; 3492 3493 if (forwrite) 3494 bip = &sh->dev[dd_idx].towrite; 3495 else 3496 bip = &sh->dev[dd_idx].toread; 3497 3498 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) { 3499 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector) 3500 return true; 3501 bip = &(*bip)->bi_next; 3502 } 3503 3504 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi)) 3505 return true; 3506 3507 if (forwrite && raid5_has_ppl(conf)) { 3508 /* 3509 * With PPL only writes to consecutive data chunks within a 3510 * stripe are allowed because for a single stripe_head we can 3511 * only have one PPL entry at a time, which describes one data 3512 * range. Not really an overlap, but wait_for_overlap can be 3513 * used to handle this. 3514 */ 3515 sector_t sector; 3516 sector_t first = 0; 3517 sector_t last = 0; 3518 int count = 0; 3519 int i; 3520 3521 for (i = 0; i < sh->disks; i++) { 3522 if (i != sh->pd_idx && 3523 (i == dd_idx || sh->dev[i].towrite)) { 3524 sector = sh->dev[i].sector; 3525 if (count == 0 || sector < first) 3526 first = sector; 3527 if (sector > last) 3528 last = sector; 3529 count++; 3530 } 3531 } 3532 3533 if (first + conf->chunk_sectors * (count - 1) != last) 3534 return true; 3535 } 3536 3537 return false; 3538 } 3539 3540 static void __add_stripe_bio(struct stripe_head *sh, struct bio *bi, 3541 int dd_idx, int forwrite, int previous) 3542 { 3543 struct r5conf *conf = sh->raid_conf; 3544 struct bio **bip; 3545 int firstwrite = 0; 3546 3547 if (forwrite) { 3548 bip = &sh->dev[dd_idx].towrite; 3549 if (!*bip) 3550 firstwrite = 1; 3551 } else { 3552 bip = &sh->dev[dd_idx].toread; 3553 } 3554 3555 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) 3556 bip = &(*bip)->bi_next; 3557 3558 if (!forwrite || previous) 3559 clear_bit(STRIPE_BATCH_READY, &sh->state); 3560 3561 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next); 3562 if (*bip) 3563 bi->bi_next = *bip; 3564 *bip = bi; 3565 bio_inc_remaining(bi); 3566 md_write_inc(conf->mddev, bi); 3567 3568 if (forwrite) { 3569 /* check if page is covered */ 3570 sector_t sector = sh->dev[dd_idx].sector; 3571 for (bi=sh->dev[dd_idx].towrite; 3572 sector < sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf) && 3573 bi && bi->bi_iter.bi_sector <= sector; 3574 bi = r5_next_bio(conf, bi, sh->dev[dd_idx].sector)) { 3575 if (bio_end_sector(bi) >= sector) 3576 sector = bio_end_sector(bi); 3577 } 3578 if (sector >= sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf)) 3579 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags)) 3580 sh->overwrite_disks++; 3581 } 3582 3583 pr_debug("added bi b#%llu to stripe s#%llu, disk %d, logical %llu\n", 3584 (*bip)->bi_iter.bi_sector, sh->sector, dd_idx, 3585 sh->dev[dd_idx].sector); 3586 3587 if (conf->mddev->bitmap && firstwrite) { 3588 /* Cannot hold spinlock over bitmap_startwrite, 3589 * but must ensure this isn't added to a batch until 3590 * we have added to the bitmap and set bm_seq. 3591 * So set STRIPE_BITMAP_PENDING to prevent 3592 * batching. 3593 * If multiple __add_stripe_bio() calls race here they 3594 * much all set STRIPE_BITMAP_PENDING. So only the first one 3595 * to complete "bitmap_startwrite" gets to set 3596 * STRIPE_BIT_DELAY. This is important as once a stripe 3597 * is added to a batch, STRIPE_BIT_DELAY cannot be changed 3598 * any more. 3599 */ 3600 set_bit(STRIPE_BITMAP_PENDING, &sh->state); 3601 spin_unlock_irq(&sh->stripe_lock); 3602 md_bitmap_startwrite(conf->mddev->bitmap, sh->sector, 3603 RAID5_STRIPE_SECTORS(conf), 0); 3604 spin_lock_irq(&sh->stripe_lock); 3605 clear_bit(STRIPE_BITMAP_PENDING, &sh->state); 3606 if (!sh->batch_head) { 3607 sh->bm_seq = conf->seq_flush+1; 3608 set_bit(STRIPE_BIT_DELAY, &sh->state); 3609 } 3610 } 3611 } 3612 3613 /* 3614 * Each stripe/dev can have one or more bios attached. 3615 * toread/towrite point to the first in a chain. 3616 * The bi_next chain must be in order. 3617 */ 3618 static bool add_stripe_bio(struct stripe_head *sh, struct bio *bi, 3619 int dd_idx, int forwrite, int previous) 3620 { 3621 spin_lock_irq(&sh->stripe_lock); 3622 3623 if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) { 3624 set_bit(R5_Overlap, &sh->dev[dd_idx].flags); 3625 spin_unlock_irq(&sh->stripe_lock); 3626 return false; 3627 } 3628 3629 __add_stripe_bio(sh, bi, dd_idx, forwrite, previous); 3630 spin_unlock_irq(&sh->stripe_lock); 3631 return true; 3632 } 3633 3634 static void end_reshape(struct r5conf *conf); 3635 3636 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 3637 struct stripe_head *sh) 3638 { 3639 int sectors_per_chunk = 3640 previous ? conf->prev_chunk_sectors : conf->chunk_sectors; 3641 int dd_idx; 3642 int chunk_offset = sector_div(stripe, sectors_per_chunk); 3643 int disks = previous ? conf->previous_raid_disks : conf->raid_disks; 3644 3645 raid5_compute_sector(conf, 3646 stripe * (disks - conf->max_degraded) 3647 *sectors_per_chunk + chunk_offset, 3648 previous, 3649 &dd_idx, sh); 3650 } 3651 3652 static void 3653 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh, 3654 struct stripe_head_state *s, int disks) 3655 { 3656 int i; 3657 BUG_ON(sh->batch_head); 3658 for (i = disks; i--; ) { 3659 struct bio *bi; 3660 int bitmap_end = 0; 3661 3662 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 3663 struct md_rdev *rdev; 3664 rcu_read_lock(); 3665 rdev = rcu_dereference(conf->disks[i].rdev); 3666 if (rdev && test_bit(In_sync, &rdev->flags) && 3667 !test_bit(Faulty, &rdev->flags)) 3668 atomic_inc(&rdev->nr_pending); 3669 else 3670 rdev = NULL; 3671 rcu_read_unlock(); 3672 if (rdev) { 3673 if (!rdev_set_badblocks( 3674 rdev, 3675 sh->sector, 3676 RAID5_STRIPE_SECTORS(conf), 0)) 3677 md_error(conf->mddev, rdev); 3678 rdev_dec_pending(rdev, conf->mddev); 3679 } 3680 } 3681 spin_lock_irq(&sh->stripe_lock); 3682 /* fail all writes first */ 3683 bi = sh->dev[i].towrite; 3684 sh->dev[i].towrite = NULL; 3685 sh->overwrite_disks = 0; 3686 spin_unlock_irq(&sh->stripe_lock); 3687 if (bi) 3688 bitmap_end = 1; 3689 3690 log_stripe_write_finished(sh); 3691 3692 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 3693 wake_up(&conf->wait_for_overlap); 3694 3695 while (bi && bi->bi_iter.bi_sector < 3696 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) { 3697 struct bio *nextbi = r5_next_bio(conf, bi, sh->dev[i].sector); 3698 3699 md_write_end(conf->mddev); 3700 bio_io_error(bi); 3701 bi = nextbi; 3702 } 3703 if (bitmap_end) 3704 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3705 RAID5_STRIPE_SECTORS(conf), 0, 0); 3706 bitmap_end = 0; 3707 /* and fail all 'written' */ 3708 bi = sh->dev[i].written; 3709 sh->dev[i].written = NULL; 3710 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) { 3711 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 3712 sh->dev[i].page = sh->dev[i].orig_page; 3713 } 3714 3715 if (bi) bitmap_end = 1; 3716 while (bi && bi->bi_iter.bi_sector < 3717 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) { 3718 struct bio *bi2 = r5_next_bio(conf, bi, sh->dev[i].sector); 3719 3720 md_write_end(conf->mddev); 3721 bio_io_error(bi); 3722 bi = bi2; 3723 } 3724 3725 /* fail any reads if this device is non-operational and 3726 * the data has not reached the cache yet. 3727 */ 3728 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) && 3729 s->failed > conf->max_degraded && 3730 (!test_bit(R5_Insync, &sh->dev[i].flags) || 3731 test_bit(R5_ReadError, &sh->dev[i].flags))) { 3732 spin_lock_irq(&sh->stripe_lock); 3733 bi = sh->dev[i].toread; 3734 sh->dev[i].toread = NULL; 3735 spin_unlock_irq(&sh->stripe_lock); 3736 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 3737 wake_up(&conf->wait_for_overlap); 3738 if (bi) 3739 s->to_read--; 3740 while (bi && bi->bi_iter.bi_sector < 3741 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) { 3742 struct bio *nextbi = 3743 r5_next_bio(conf, bi, sh->dev[i].sector); 3744 3745 bio_io_error(bi); 3746 bi = nextbi; 3747 } 3748 } 3749 if (bitmap_end) 3750 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3751 RAID5_STRIPE_SECTORS(conf), 0, 0); 3752 /* If we were in the middle of a write the parity block might 3753 * still be locked - so just clear all R5_LOCKED flags 3754 */ 3755 clear_bit(R5_LOCKED, &sh->dev[i].flags); 3756 } 3757 s->to_write = 0; 3758 s->written = 0; 3759 3760 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 3761 if (atomic_dec_and_test(&conf->pending_full_writes)) 3762 md_wakeup_thread(conf->mddev->thread); 3763 } 3764 3765 static void 3766 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh, 3767 struct stripe_head_state *s) 3768 { 3769 int abort = 0; 3770 int i; 3771 3772 BUG_ON(sh->batch_head); 3773 clear_bit(STRIPE_SYNCING, &sh->state); 3774 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 3775 wake_up(&conf->wait_for_overlap); 3776 s->syncing = 0; 3777 s->replacing = 0; 3778 /* There is nothing more to do for sync/check/repair. 3779 * Don't even need to abort as that is handled elsewhere 3780 * if needed, and not always wanted e.g. if there is a known 3781 * bad block here. 3782 * For recover/replace we need to record a bad block on all 3783 * non-sync devices, or abort the recovery 3784 */ 3785 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) { 3786 /* During recovery devices cannot be removed, so 3787 * locking and refcounting of rdevs is not needed 3788 */ 3789 rcu_read_lock(); 3790 for (i = 0; i < conf->raid_disks; i++) { 3791 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 3792 if (rdev 3793 && !test_bit(Faulty, &rdev->flags) 3794 && !test_bit(In_sync, &rdev->flags) 3795 && !rdev_set_badblocks(rdev, sh->sector, 3796 RAID5_STRIPE_SECTORS(conf), 0)) 3797 abort = 1; 3798 rdev = rcu_dereference(conf->disks[i].replacement); 3799 if (rdev 3800 && !test_bit(Faulty, &rdev->flags) 3801 && !test_bit(In_sync, &rdev->flags) 3802 && !rdev_set_badblocks(rdev, sh->sector, 3803 RAID5_STRIPE_SECTORS(conf), 0)) 3804 abort = 1; 3805 } 3806 rcu_read_unlock(); 3807 if (abort) 3808 conf->recovery_disabled = 3809 conf->mddev->recovery_disabled; 3810 } 3811 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), !abort); 3812 } 3813 3814 static int want_replace(struct stripe_head *sh, int disk_idx) 3815 { 3816 struct md_rdev *rdev; 3817 int rv = 0; 3818 3819 rcu_read_lock(); 3820 rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement); 3821 if (rdev 3822 && !test_bit(Faulty, &rdev->flags) 3823 && !test_bit(In_sync, &rdev->flags) 3824 && (rdev->recovery_offset <= sh->sector 3825 || rdev->mddev->recovery_cp <= sh->sector)) 3826 rv = 1; 3827 rcu_read_unlock(); 3828 return rv; 3829 } 3830 3831 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s, 3832 int disk_idx, int disks) 3833 { 3834 struct r5dev *dev = &sh->dev[disk_idx]; 3835 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]], 3836 &sh->dev[s->failed_num[1]] }; 3837 int i; 3838 bool force_rcw = (sh->raid_conf->rmw_level == PARITY_DISABLE_RMW); 3839 3840 3841 if (test_bit(R5_LOCKED, &dev->flags) || 3842 test_bit(R5_UPTODATE, &dev->flags)) 3843 /* No point reading this as we already have it or have 3844 * decided to get it. 3845 */ 3846 return 0; 3847 3848 if (dev->toread || 3849 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags))) 3850 /* We need this block to directly satisfy a request */ 3851 return 1; 3852 3853 if (s->syncing || s->expanding || 3854 (s->replacing && want_replace(sh, disk_idx))) 3855 /* When syncing, or expanding we read everything. 3856 * When replacing, we need the replaced block. 3857 */ 3858 return 1; 3859 3860 if ((s->failed >= 1 && fdev[0]->toread) || 3861 (s->failed >= 2 && fdev[1]->toread)) 3862 /* If we want to read from a failed device, then 3863 * we need to actually read every other device. 3864 */ 3865 return 1; 3866 3867 /* Sometimes neither read-modify-write nor reconstruct-write 3868 * cycles can work. In those cases we read every block we 3869 * can. Then the parity-update is certain to have enough to 3870 * work with. 3871 * This can only be a problem when we need to write something, 3872 * and some device has failed. If either of those tests 3873 * fail we need look no further. 3874 */ 3875 if (!s->failed || !s->to_write) 3876 return 0; 3877 3878 if (test_bit(R5_Insync, &dev->flags) && 3879 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3880 /* Pre-reads at not permitted until after short delay 3881 * to gather multiple requests. However if this 3882 * device is no Insync, the block could only be computed 3883 * and there is no need to delay that. 3884 */ 3885 return 0; 3886 3887 for (i = 0; i < s->failed && i < 2; i++) { 3888 if (fdev[i]->towrite && 3889 !test_bit(R5_UPTODATE, &fdev[i]->flags) && 3890 !test_bit(R5_OVERWRITE, &fdev[i]->flags)) 3891 /* If we have a partial write to a failed 3892 * device, then we will need to reconstruct 3893 * the content of that device, so all other 3894 * devices must be read. 3895 */ 3896 return 1; 3897 3898 if (s->failed >= 2 && 3899 (fdev[i]->towrite || 3900 s->failed_num[i] == sh->pd_idx || 3901 s->failed_num[i] == sh->qd_idx) && 3902 !test_bit(R5_UPTODATE, &fdev[i]->flags)) 3903 /* In max degraded raid6, If the failed disk is P, Q, 3904 * or we want to read the failed disk, we need to do 3905 * reconstruct-write. 3906 */ 3907 force_rcw = true; 3908 } 3909 3910 /* If we are forced to do a reconstruct-write, because parity 3911 * cannot be trusted and we are currently recovering it, there 3912 * is extra need to be careful. 3913 * If one of the devices that we would need to read, because 3914 * it is not being overwritten (and maybe not written at all) 3915 * is missing/faulty, then we need to read everything we can. 3916 */ 3917 if (!force_rcw && 3918 sh->sector < sh->raid_conf->mddev->recovery_cp) 3919 /* reconstruct-write isn't being forced */ 3920 return 0; 3921 for (i = 0; i < s->failed && i < 2; i++) { 3922 if (s->failed_num[i] != sh->pd_idx && 3923 s->failed_num[i] != sh->qd_idx && 3924 !test_bit(R5_UPTODATE, &fdev[i]->flags) && 3925 !test_bit(R5_OVERWRITE, &fdev[i]->flags)) 3926 return 1; 3927 } 3928 3929 return 0; 3930 } 3931 3932 /* fetch_block - checks the given member device to see if its data needs 3933 * to be read or computed to satisfy a request. 3934 * 3935 * Returns 1 when no more member devices need to be checked, otherwise returns 3936 * 0 to tell the loop in handle_stripe_fill to continue 3937 */ 3938 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s, 3939 int disk_idx, int disks) 3940 { 3941 struct r5dev *dev = &sh->dev[disk_idx]; 3942 3943 /* is the data in this block needed, and can we get it? */ 3944 if (need_this_block(sh, s, disk_idx, disks)) { 3945 /* we would like to get this block, possibly by computing it, 3946 * otherwise read it if the backing disk is insync 3947 */ 3948 BUG_ON(test_bit(R5_Wantcompute, &dev->flags)); 3949 BUG_ON(test_bit(R5_Wantread, &dev->flags)); 3950 BUG_ON(sh->batch_head); 3951 3952 /* 3953 * In the raid6 case if the only non-uptodate disk is P 3954 * then we already trusted P to compute the other failed 3955 * drives. It is safe to compute rather than re-read P. 3956 * In other cases we only compute blocks from failed 3957 * devices, otherwise check/repair might fail to detect 3958 * a real inconsistency. 3959 */ 3960 3961 if ((s->uptodate == disks - 1) && 3962 ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) || 3963 (s->failed && (disk_idx == s->failed_num[0] || 3964 disk_idx == s->failed_num[1])))) { 3965 /* have disk failed, and we're requested to fetch it; 3966 * do compute it 3967 */ 3968 pr_debug("Computing stripe %llu block %d\n", 3969 (unsigned long long)sh->sector, disk_idx); 3970 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3971 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3972 set_bit(R5_Wantcompute, &dev->flags); 3973 sh->ops.target = disk_idx; 3974 sh->ops.target2 = -1; /* no 2nd target */ 3975 s->req_compute = 1; 3976 /* Careful: from this point on 'uptodate' is in the eye 3977 * of raid_run_ops which services 'compute' operations 3978 * before writes. R5_Wantcompute flags a block that will 3979 * be R5_UPTODATE by the time it is needed for a 3980 * subsequent operation. 3981 */ 3982 s->uptodate++; 3983 return 1; 3984 } else if (s->uptodate == disks-2 && s->failed >= 2) { 3985 /* Computing 2-failure is *very* expensive; only 3986 * do it if failed >= 2 3987 */ 3988 int other; 3989 for (other = disks; other--; ) { 3990 if (other == disk_idx) 3991 continue; 3992 if (!test_bit(R5_UPTODATE, 3993 &sh->dev[other].flags)) 3994 break; 3995 } 3996 BUG_ON(other < 0); 3997 pr_debug("Computing stripe %llu blocks %d,%d\n", 3998 (unsigned long long)sh->sector, 3999 disk_idx, other); 4000 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 4001 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 4002 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags); 4003 set_bit(R5_Wantcompute, &sh->dev[other].flags); 4004 sh->ops.target = disk_idx; 4005 sh->ops.target2 = other; 4006 s->uptodate += 2; 4007 s->req_compute = 1; 4008 return 1; 4009 } else if (test_bit(R5_Insync, &dev->flags)) { 4010 set_bit(R5_LOCKED, &dev->flags); 4011 set_bit(R5_Wantread, &dev->flags); 4012 s->locked++; 4013 pr_debug("Reading block %d (sync=%d)\n", 4014 disk_idx, s->syncing); 4015 } 4016 } 4017 4018 return 0; 4019 } 4020 4021 /* 4022 * handle_stripe_fill - read or compute data to satisfy pending requests. 4023 */ 4024 static void handle_stripe_fill(struct stripe_head *sh, 4025 struct stripe_head_state *s, 4026 int disks) 4027 { 4028 int i; 4029 4030 /* look for blocks to read/compute, skip this if a compute 4031 * is already in flight, or if the stripe contents are in the 4032 * midst of changing due to a write 4033 */ 4034 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state && 4035 !sh->reconstruct_state) { 4036 4037 /* 4038 * For degraded stripe with data in journal, do not handle 4039 * read requests yet, instead, flush the stripe to raid 4040 * disks first, this avoids handling complex rmw of write 4041 * back cache (prexor with orig_page, and then xor with 4042 * page) in the read path 4043 */ 4044 if (s->to_read && s->injournal && s->failed) { 4045 if (test_bit(STRIPE_R5C_CACHING, &sh->state)) 4046 r5c_make_stripe_write_out(sh); 4047 goto out; 4048 } 4049 4050 for (i = disks; i--; ) 4051 if (fetch_block(sh, s, i, disks)) 4052 break; 4053 } 4054 out: 4055 set_bit(STRIPE_HANDLE, &sh->state); 4056 } 4057 4058 static void break_stripe_batch_list(struct stripe_head *head_sh, 4059 unsigned long handle_flags); 4060 /* handle_stripe_clean_event 4061 * any written block on an uptodate or failed drive can be returned. 4062 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but 4063 * never LOCKED, so we don't need to test 'failed' directly. 4064 */ 4065 static void handle_stripe_clean_event(struct r5conf *conf, 4066 struct stripe_head *sh, int disks) 4067 { 4068 int i; 4069 struct r5dev *dev; 4070 int discard_pending = 0; 4071 struct stripe_head *head_sh = sh; 4072 bool do_endio = false; 4073 4074 for (i = disks; i--; ) 4075 if (sh->dev[i].written) { 4076 dev = &sh->dev[i]; 4077 if (!test_bit(R5_LOCKED, &dev->flags) && 4078 (test_bit(R5_UPTODATE, &dev->flags) || 4079 test_bit(R5_Discard, &dev->flags) || 4080 test_bit(R5_SkipCopy, &dev->flags))) { 4081 /* We can return any write requests */ 4082 struct bio *wbi, *wbi2; 4083 pr_debug("Return write for disc %d\n", i); 4084 if (test_and_clear_bit(R5_Discard, &dev->flags)) 4085 clear_bit(R5_UPTODATE, &dev->flags); 4086 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) { 4087 WARN_ON(test_bit(R5_UPTODATE, &dev->flags)); 4088 } 4089 do_endio = true; 4090 4091 returnbi: 4092 dev->page = dev->orig_page; 4093 wbi = dev->written; 4094 dev->written = NULL; 4095 while (wbi && wbi->bi_iter.bi_sector < 4096 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 4097 wbi2 = r5_next_bio(conf, wbi, dev->sector); 4098 md_write_end(conf->mddev); 4099 bio_endio(wbi); 4100 wbi = wbi2; 4101 } 4102 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector, 4103 RAID5_STRIPE_SECTORS(conf), 4104 !test_bit(STRIPE_DEGRADED, &sh->state), 4105 0); 4106 if (head_sh->batch_head) { 4107 sh = list_first_entry(&sh->batch_list, 4108 struct stripe_head, 4109 batch_list); 4110 if (sh != head_sh) { 4111 dev = &sh->dev[i]; 4112 goto returnbi; 4113 } 4114 } 4115 sh = head_sh; 4116 dev = &sh->dev[i]; 4117 } else if (test_bit(R5_Discard, &dev->flags)) 4118 discard_pending = 1; 4119 } 4120 4121 log_stripe_write_finished(sh); 4122 4123 if (!discard_pending && 4124 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) { 4125 int hash; 4126 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 4127 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 4128 if (sh->qd_idx >= 0) { 4129 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 4130 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags); 4131 } 4132 /* now that discard is done we can proceed with any sync */ 4133 clear_bit(STRIPE_DISCARD, &sh->state); 4134 /* 4135 * SCSI discard will change some bio fields and the stripe has 4136 * no updated data, so remove it from hash list and the stripe 4137 * will be reinitialized 4138 */ 4139 unhash: 4140 hash = sh->hash_lock_index; 4141 spin_lock_irq(conf->hash_locks + hash); 4142 remove_hash(sh); 4143 spin_unlock_irq(conf->hash_locks + hash); 4144 if (head_sh->batch_head) { 4145 sh = list_first_entry(&sh->batch_list, 4146 struct stripe_head, batch_list); 4147 if (sh != head_sh) 4148 goto unhash; 4149 } 4150 sh = head_sh; 4151 4152 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) 4153 set_bit(STRIPE_HANDLE, &sh->state); 4154 4155 } 4156 4157 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 4158 if (atomic_dec_and_test(&conf->pending_full_writes)) 4159 md_wakeup_thread(conf->mddev->thread); 4160 4161 if (head_sh->batch_head && do_endio) 4162 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS); 4163 } 4164 4165 /* 4166 * For RMW in write back cache, we need extra page in prexor to store the 4167 * old data. This page is stored in dev->orig_page. 4168 * 4169 * This function checks whether we have data for prexor. The exact logic 4170 * is: 4171 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE) 4172 */ 4173 static inline bool uptodate_for_rmw(struct r5dev *dev) 4174 { 4175 return (test_bit(R5_UPTODATE, &dev->flags)) && 4176 (!test_bit(R5_InJournal, &dev->flags) || 4177 test_bit(R5_OrigPageUPTDODATE, &dev->flags)); 4178 } 4179 4180 static int handle_stripe_dirtying(struct r5conf *conf, 4181 struct stripe_head *sh, 4182 struct stripe_head_state *s, 4183 int disks) 4184 { 4185 int rmw = 0, rcw = 0, i; 4186 sector_t recovery_cp = conf->mddev->recovery_cp; 4187 4188 /* Check whether resync is now happening or should start. 4189 * If yes, then the array is dirty (after unclean shutdown or 4190 * initial creation), so parity in some stripes might be inconsistent. 4191 * In this case, we need to always do reconstruct-write, to ensure 4192 * that in case of drive failure or read-error correction, we 4193 * generate correct data from the parity. 4194 */ 4195 if (conf->rmw_level == PARITY_DISABLE_RMW || 4196 (recovery_cp < MaxSector && sh->sector >= recovery_cp && 4197 s->failed == 0)) { 4198 /* Calculate the real rcw later - for now make it 4199 * look like rcw is cheaper 4200 */ 4201 rcw = 1; rmw = 2; 4202 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n", 4203 conf->rmw_level, (unsigned long long)recovery_cp, 4204 (unsigned long long)sh->sector); 4205 } else for (i = disks; i--; ) { 4206 /* would I have to read this buffer for read_modify_write */ 4207 struct r5dev *dev = &sh->dev[i]; 4208 if (((dev->towrite && !delay_towrite(conf, dev, s)) || 4209 i == sh->pd_idx || i == sh->qd_idx || 4210 test_bit(R5_InJournal, &dev->flags)) && 4211 !test_bit(R5_LOCKED, &dev->flags) && 4212 !(uptodate_for_rmw(dev) || 4213 test_bit(R5_Wantcompute, &dev->flags))) { 4214 if (test_bit(R5_Insync, &dev->flags)) 4215 rmw++; 4216 else 4217 rmw += 2*disks; /* cannot read it */ 4218 } 4219 /* Would I have to read this buffer for reconstruct_write */ 4220 if (!test_bit(R5_OVERWRITE, &dev->flags) && 4221 i != sh->pd_idx && i != sh->qd_idx && 4222 !test_bit(R5_LOCKED, &dev->flags) && 4223 !(test_bit(R5_UPTODATE, &dev->flags) || 4224 test_bit(R5_Wantcompute, &dev->flags))) { 4225 if (test_bit(R5_Insync, &dev->flags)) 4226 rcw++; 4227 else 4228 rcw += 2*disks; 4229 } 4230 } 4231 4232 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n", 4233 (unsigned long long)sh->sector, sh->state, rmw, rcw); 4234 set_bit(STRIPE_HANDLE, &sh->state); 4235 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) { 4236 /* prefer read-modify-write, but need to get some data */ 4237 if (conf->mddev->queue) 4238 blk_add_trace_msg(conf->mddev->queue, 4239 "raid5 rmw %llu %d", 4240 (unsigned long long)sh->sector, rmw); 4241 for (i = disks; i--; ) { 4242 struct r5dev *dev = &sh->dev[i]; 4243 if (test_bit(R5_InJournal, &dev->flags) && 4244 dev->page == dev->orig_page && 4245 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) { 4246 /* alloc page for prexor */ 4247 struct page *p = alloc_page(GFP_NOIO); 4248 4249 if (p) { 4250 dev->orig_page = p; 4251 continue; 4252 } 4253 4254 /* 4255 * alloc_page() failed, try use 4256 * disk_info->extra_page 4257 */ 4258 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE, 4259 &conf->cache_state)) { 4260 r5c_use_extra_page(sh); 4261 break; 4262 } 4263 4264 /* extra_page in use, add to delayed_list */ 4265 set_bit(STRIPE_DELAYED, &sh->state); 4266 s->waiting_extra_page = 1; 4267 return -EAGAIN; 4268 } 4269 } 4270 4271 for (i = disks; i--; ) { 4272 struct r5dev *dev = &sh->dev[i]; 4273 if (((dev->towrite && !delay_towrite(conf, dev, s)) || 4274 i == sh->pd_idx || i == sh->qd_idx || 4275 test_bit(R5_InJournal, &dev->flags)) && 4276 !test_bit(R5_LOCKED, &dev->flags) && 4277 !(uptodate_for_rmw(dev) || 4278 test_bit(R5_Wantcompute, &dev->flags)) && 4279 test_bit(R5_Insync, &dev->flags)) { 4280 if (test_bit(STRIPE_PREREAD_ACTIVE, 4281 &sh->state)) { 4282 pr_debug("Read_old block %d for r-m-w\n", 4283 i); 4284 set_bit(R5_LOCKED, &dev->flags); 4285 set_bit(R5_Wantread, &dev->flags); 4286 s->locked++; 4287 } else 4288 set_bit(STRIPE_DELAYED, &sh->state); 4289 } 4290 } 4291 } 4292 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) { 4293 /* want reconstruct write, but need to get some data */ 4294 int qread =0; 4295 rcw = 0; 4296 for (i = disks; i--; ) { 4297 struct r5dev *dev = &sh->dev[i]; 4298 if (!test_bit(R5_OVERWRITE, &dev->flags) && 4299 i != sh->pd_idx && i != sh->qd_idx && 4300 !test_bit(R5_LOCKED, &dev->flags) && 4301 !(test_bit(R5_UPTODATE, &dev->flags) || 4302 test_bit(R5_Wantcompute, &dev->flags))) { 4303 rcw++; 4304 if (test_bit(R5_Insync, &dev->flags) && 4305 test_bit(STRIPE_PREREAD_ACTIVE, 4306 &sh->state)) { 4307 pr_debug("Read_old block " 4308 "%d for Reconstruct\n", i); 4309 set_bit(R5_LOCKED, &dev->flags); 4310 set_bit(R5_Wantread, &dev->flags); 4311 s->locked++; 4312 qread++; 4313 } else 4314 set_bit(STRIPE_DELAYED, &sh->state); 4315 } 4316 } 4317 if (rcw && conf->mddev->queue) 4318 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d", 4319 (unsigned long long)sh->sector, 4320 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state)); 4321 } 4322 4323 if (rcw > disks && rmw > disks && 4324 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4325 set_bit(STRIPE_DELAYED, &sh->state); 4326 4327 /* now if nothing is locked, and if we have enough data, 4328 * we can start a write request 4329 */ 4330 /* since handle_stripe can be called at any time we need to handle the 4331 * case where a compute block operation has been submitted and then a 4332 * subsequent call wants to start a write request. raid_run_ops only 4333 * handles the case where compute block and reconstruct are requested 4334 * simultaneously. If this is not the case then new writes need to be 4335 * held off until the compute completes. 4336 */ 4337 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) && 4338 (s->locked == 0 && (rcw == 0 || rmw == 0) && 4339 !test_bit(STRIPE_BIT_DELAY, &sh->state))) 4340 schedule_reconstruction(sh, s, rcw == 0, 0); 4341 return 0; 4342 } 4343 4344 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh, 4345 struct stripe_head_state *s, int disks) 4346 { 4347 struct r5dev *dev = NULL; 4348 4349 BUG_ON(sh->batch_head); 4350 set_bit(STRIPE_HANDLE, &sh->state); 4351 4352 switch (sh->check_state) { 4353 case check_state_idle: 4354 /* start a new check operation if there are no failures */ 4355 if (s->failed == 0) { 4356 BUG_ON(s->uptodate != disks); 4357 sh->check_state = check_state_run; 4358 set_bit(STRIPE_OP_CHECK, &s->ops_request); 4359 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 4360 s->uptodate--; 4361 break; 4362 } 4363 dev = &sh->dev[s->failed_num[0]]; 4364 fallthrough; 4365 case check_state_compute_result: 4366 sh->check_state = check_state_idle; 4367 if (!dev) 4368 dev = &sh->dev[sh->pd_idx]; 4369 4370 /* check that a write has not made the stripe insync */ 4371 if (test_bit(STRIPE_INSYNC, &sh->state)) 4372 break; 4373 4374 /* either failed parity check, or recovery is happening */ 4375 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags)); 4376 BUG_ON(s->uptodate != disks); 4377 4378 set_bit(R5_LOCKED, &dev->flags); 4379 s->locked++; 4380 set_bit(R5_Wantwrite, &dev->flags); 4381 4382 clear_bit(STRIPE_DEGRADED, &sh->state); 4383 set_bit(STRIPE_INSYNC, &sh->state); 4384 break; 4385 case check_state_run: 4386 break; /* we will be called again upon completion */ 4387 case check_state_check_result: 4388 sh->check_state = check_state_idle; 4389 4390 /* if a failure occurred during the check operation, leave 4391 * STRIPE_INSYNC not set and let the stripe be handled again 4392 */ 4393 if (s->failed) 4394 break; 4395 4396 /* handle a successful check operation, if parity is correct 4397 * we are done. Otherwise update the mismatch count and repair 4398 * parity if !MD_RECOVERY_CHECK 4399 */ 4400 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0) 4401 /* parity is correct (on disc, 4402 * not in buffer any more) 4403 */ 4404 set_bit(STRIPE_INSYNC, &sh->state); 4405 else { 4406 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches); 4407 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) { 4408 /* don't try to repair!! */ 4409 set_bit(STRIPE_INSYNC, &sh->state); 4410 pr_warn_ratelimited("%s: mismatch sector in range " 4411 "%llu-%llu\n", mdname(conf->mddev), 4412 (unsigned long long) sh->sector, 4413 (unsigned long long) sh->sector + 4414 RAID5_STRIPE_SECTORS(conf)); 4415 } else { 4416 sh->check_state = check_state_compute_run; 4417 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 4418 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 4419 set_bit(R5_Wantcompute, 4420 &sh->dev[sh->pd_idx].flags); 4421 sh->ops.target = sh->pd_idx; 4422 sh->ops.target2 = -1; 4423 s->uptodate++; 4424 } 4425 } 4426 break; 4427 case check_state_compute_run: 4428 break; 4429 default: 4430 pr_err("%s: unknown check_state: %d sector: %llu\n", 4431 __func__, sh->check_state, 4432 (unsigned long long) sh->sector); 4433 BUG(); 4434 } 4435 } 4436 4437 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh, 4438 struct stripe_head_state *s, 4439 int disks) 4440 { 4441 int pd_idx = sh->pd_idx; 4442 int qd_idx = sh->qd_idx; 4443 struct r5dev *dev; 4444 4445 BUG_ON(sh->batch_head); 4446 set_bit(STRIPE_HANDLE, &sh->state); 4447 4448 BUG_ON(s->failed > 2); 4449 4450 /* Want to check and possibly repair P and Q. 4451 * However there could be one 'failed' device, in which 4452 * case we can only check one of them, possibly using the 4453 * other to generate missing data 4454 */ 4455 4456 switch (sh->check_state) { 4457 case check_state_idle: 4458 /* start a new check operation if there are < 2 failures */ 4459 if (s->failed == s->q_failed) { 4460 /* The only possible failed device holds Q, so it 4461 * makes sense to check P (If anything else were failed, 4462 * we would have used P to recreate it). 4463 */ 4464 sh->check_state = check_state_run; 4465 } 4466 if (!s->q_failed && s->failed < 2) { 4467 /* Q is not failed, and we didn't use it to generate 4468 * anything, so it makes sense to check it 4469 */ 4470 if (sh->check_state == check_state_run) 4471 sh->check_state = check_state_run_pq; 4472 else 4473 sh->check_state = check_state_run_q; 4474 } 4475 4476 /* discard potentially stale zero_sum_result */ 4477 sh->ops.zero_sum_result = 0; 4478 4479 if (sh->check_state == check_state_run) { 4480 /* async_xor_zero_sum destroys the contents of P */ 4481 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 4482 s->uptodate--; 4483 } 4484 if (sh->check_state >= check_state_run && 4485 sh->check_state <= check_state_run_pq) { 4486 /* async_syndrome_zero_sum preserves P and Q, so 4487 * no need to mark them !uptodate here 4488 */ 4489 set_bit(STRIPE_OP_CHECK, &s->ops_request); 4490 break; 4491 } 4492 4493 /* we have 2-disk failure */ 4494 BUG_ON(s->failed != 2); 4495 fallthrough; 4496 case check_state_compute_result: 4497 sh->check_state = check_state_idle; 4498 4499 /* check that a write has not made the stripe insync */ 4500 if (test_bit(STRIPE_INSYNC, &sh->state)) 4501 break; 4502 4503 /* now write out any block on a failed drive, 4504 * or P or Q if they were recomputed 4505 */ 4506 dev = NULL; 4507 if (s->failed == 2) { 4508 dev = &sh->dev[s->failed_num[1]]; 4509 s->locked++; 4510 set_bit(R5_LOCKED, &dev->flags); 4511 set_bit(R5_Wantwrite, &dev->flags); 4512 } 4513 if (s->failed >= 1) { 4514 dev = &sh->dev[s->failed_num[0]]; 4515 s->locked++; 4516 set_bit(R5_LOCKED, &dev->flags); 4517 set_bit(R5_Wantwrite, &dev->flags); 4518 } 4519 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 4520 dev = &sh->dev[pd_idx]; 4521 s->locked++; 4522 set_bit(R5_LOCKED, &dev->flags); 4523 set_bit(R5_Wantwrite, &dev->flags); 4524 } 4525 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 4526 dev = &sh->dev[qd_idx]; 4527 s->locked++; 4528 set_bit(R5_LOCKED, &dev->flags); 4529 set_bit(R5_Wantwrite, &dev->flags); 4530 } 4531 if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags), 4532 "%s: disk%td not up to date\n", 4533 mdname(conf->mddev), 4534 dev - (struct r5dev *) &sh->dev)) { 4535 clear_bit(R5_LOCKED, &dev->flags); 4536 clear_bit(R5_Wantwrite, &dev->flags); 4537 s->locked--; 4538 } 4539 clear_bit(STRIPE_DEGRADED, &sh->state); 4540 4541 set_bit(STRIPE_INSYNC, &sh->state); 4542 break; 4543 case check_state_run: 4544 case check_state_run_q: 4545 case check_state_run_pq: 4546 break; /* we will be called again upon completion */ 4547 case check_state_check_result: 4548 sh->check_state = check_state_idle; 4549 4550 /* handle a successful check operation, if parity is correct 4551 * we are done. Otherwise update the mismatch count and repair 4552 * parity if !MD_RECOVERY_CHECK 4553 */ 4554 if (sh->ops.zero_sum_result == 0) { 4555 /* both parities are correct */ 4556 if (!s->failed) 4557 set_bit(STRIPE_INSYNC, &sh->state); 4558 else { 4559 /* in contrast to the raid5 case we can validate 4560 * parity, but still have a failure to write 4561 * back 4562 */ 4563 sh->check_state = check_state_compute_result; 4564 /* Returning at this point means that we may go 4565 * off and bring p and/or q uptodate again so 4566 * we make sure to check zero_sum_result again 4567 * to verify if p or q need writeback 4568 */ 4569 } 4570 } else { 4571 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches); 4572 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) { 4573 /* don't try to repair!! */ 4574 set_bit(STRIPE_INSYNC, &sh->state); 4575 pr_warn_ratelimited("%s: mismatch sector in range " 4576 "%llu-%llu\n", mdname(conf->mddev), 4577 (unsigned long long) sh->sector, 4578 (unsigned long long) sh->sector + 4579 RAID5_STRIPE_SECTORS(conf)); 4580 } else { 4581 int *target = &sh->ops.target; 4582 4583 sh->ops.target = -1; 4584 sh->ops.target2 = -1; 4585 sh->check_state = check_state_compute_run; 4586 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 4587 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 4588 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 4589 set_bit(R5_Wantcompute, 4590 &sh->dev[pd_idx].flags); 4591 *target = pd_idx; 4592 target = &sh->ops.target2; 4593 s->uptodate++; 4594 } 4595 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 4596 set_bit(R5_Wantcompute, 4597 &sh->dev[qd_idx].flags); 4598 *target = qd_idx; 4599 s->uptodate++; 4600 } 4601 } 4602 } 4603 break; 4604 case check_state_compute_run: 4605 break; 4606 default: 4607 pr_warn("%s: unknown check_state: %d sector: %llu\n", 4608 __func__, sh->check_state, 4609 (unsigned long long) sh->sector); 4610 BUG(); 4611 } 4612 } 4613 4614 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh) 4615 { 4616 int i; 4617 4618 /* We have read all the blocks in this stripe and now we need to 4619 * copy some of them into a target stripe for expand. 4620 */ 4621 struct dma_async_tx_descriptor *tx = NULL; 4622 BUG_ON(sh->batch_head); 4623 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state); 4624 for (i = 0; i < sh->disks; i++) 4625 if (i != sh->pd_idx && i != sh->qd_idx) { 4626 int dd_idx, j; 4627 struct stripe_head *sh2; 4628 struct async_submit_ctl submit; 4629 4630 sector_t bn = raid5_compute_blocknr(sh, i, 1); 4631 sector_t s = raid5_compute_sector(conf, bn, 0, 4632 &dd_idx, NULL); 4633 sh2 = raid5_get_active_stripe(conf, NULL, s, 4634 R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE); 4635 if (sh2 == NULL) 4636 /* so far only the early blocks of this stripe 4637 * have been requested. When later blocks 4638 * get requested, we will try again 4639 */ 4640 continue; 4641 if (!test_bit(STRIPE_EXPANDING, &sh2->state) || 4642 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) { 4643 /* must have already done this block */ 4644 raid5_release_stripe(sh2); 4645 continue; 4646 } 4647 4648 /* place all the copies on one channel */ 4649 init_async_submit(&submit, 0, tx, NULL, NULL, NULL); 4650 tx = async_memcpy(sh2->dev[dd_idx].page, 4651 sh->dev[i].page, sh2->dev[dd_idx].offset, 4652 sh->dev[i].offset, RAID5_STRIPE_SIZE(conf), 4653 &submit); 4654 4655 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags); 4656 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags); 4657 for (j = 0; j < conf->raid_disks; j++) 4658 if (j != sh2->pd_idx && 4659 j != sh2->qd_idx && 4660 !test_bit(R5_Expanded, &sh2->dev[j].flags)) 4661 break; 4662 if (j == conf->raid_disks) { 4663 set_bit(STRIPE_EXPAND_READY, &sh2->state); 4664 set_bit(STRIPE_HANDLE, &sh2->state); 4665 } 4666 raid5_release_stripe(sh2); 4667 4668 } 4669 /* done submitting copies, wait for them to complete */ 4670 async_tx_quiesce(&tx); 4671 } 4672 4673 /* 4674 * handle_stripe - do things to a stripe. 4675 * 4676 * We lock the stripe by setting STRIPE_ACTIVE and then examine the 4677 * state of various bits to see what needs to be done. 4678 * Possible results: 4679 * return some read requests which now have data 4680 * return some write requests which are safely on storage 4681 * schedule a read on some buffers 4682 * schedule a write of some buffers 4683 * return confirmation of parity correctness 4684 * 4685 */ 4686 4687 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s) 4688 { 4689 struct r5conf *conf = sh->raid_conf; 4690 int disks = sh->disks; 4691 struct r5dev *dev; 4692 int i; 4693 int do_recovery = 0; 4694 4695 memset(s, 0, sizeof(*s)); 4696 4697 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head; 4698 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head; 4699 s->failed_num[0] = -1; 4700 s->failed_num[1] = -1; 4701 s->log_failed = r5l_log_disk_error(conf); 4702 4703 /* Now to look around and see what can be done */ 4704 rcu_read_lock(); 4705 for (i=disks; i--; ) { 4706 struct md_rdev *rdev; 4707 sector_t first_bad; 4708 int bad_sectors; 4709 int is_bad = 0; 4710 4711 dev = &sh->dev[i]; 4712 4713 pr_debug("check %d: state 0x%lx read %p write %p written %p\n", 4714 i, dev->flags, 4715 dev->toread, dev->towrite, dev->written); 4716 /* maybe we can reply to a read 4717 * 4718 * new wantfill requests are only permitted while 4719 * ops_complete_biofill is guaranteed to be inactive 4720 */ 4721 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread && 4722 !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) 4723 set_bit(R5_Wantfill, &dev->flags); 4724 4725 /* now count some things */ 4726 if (test_bit(R5_LOCKED, &dev->flags)) 4727 s->locked++; 4728 if (test_bit(R5_UPTODATE, &dev->flags)) 4729 s->uptodate++; 4730 if (test_bit(R5_Wantcompute, &dev->flags)) { 4731 s->compute++; 4732 BUG_ON(s->compute > 2); 4733 } 4734 4735 if (test_bit(R5_Wantfill, &dev->flags)) 4736 s->to_fill++; 4737 else if (dev->toread) 4738 s->to_read++; 4739 if (dev->towrite) { 4740 s->to_write++; 4741 if (!test_bit(R5_OVERWRITE, &dev->flags)) 4742 s->non_overwrite++; 4743 } 4744 if (dev->written) 4745 s->written++; 4746 /* Prefer to use the replacement for reads, but only 4747 * if it is recovered enough and has no bad blocks. 4748 */ 4749 rdev = rcu_dereference(conf->disks[i].replacement); 4750 if (rdev && !test_bit(Faulty, &rdev->flags) && 4751 rdev->recovery_offset >= sh->sector + RAID5_STRIPE_SECTORS(conf) && 4752 !is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 4753 &first_bad, &bad_sectors)) 4754 set_bit(R5_ReadRepl, &dev->flags); 4755 else { 4756 if (rdev && !test_bit(Faulty, &rdev->flags)) 4757 set_bit(R5_NeedReplace, &dev->flags); 4758 else 4759 clear_bit(R5_NeedReplace, &dev->flags); 4760 rdev = rcu_dereference(conf->disks[i].rdev); 4761 clear_bit(R5_ReadRepl, &dev->flags); 4762 } 4763 if (rdev && test_bit(Faulty, &rdev->flags)) 4764 rdev = NULL; 4765 if (rdev) { 4766 is_bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 4767 &first_bad, &bad_sectors); 4768 if (s->blocked_rdev == NULL 4769 && (test_bit(Blocked, &rdev->flags) 4770 || is_bad < 0)) { 4771 if (is_bad < 0) 4772 set_bit(BlockedBadBlocks, 4773 &rdev->flags); 4774 s->blocked_rdev = rdev; 4775 atomic_inc(&rdev->nr_pending); 4776 } 4777 } 4778 clear_bit(R5_Insync, &dev->flags); 4779 if (!rdev) 4780 /* Not in-sync */; 4781 else if (is_bad) { 4782 /* also not in-sync */ 4783 if (!test_bit(WriteErrorSeen, &rdev->flags) && 4784 test_bit(R5_UPTODATE, &dev->flags)) { 4785 /* treat as in-sync, but with a read error 4786 * which we can now try to correct 4787 */ 4788 set_bit(R5_Insync, &dev->flags); 4789 set_bit(R5_ReadError, &dev->flags); 4790 } 4791 } else if (test_bit(In_sync, &rdev->flags)) 4792 set_bit(R5_Insync, &dev->flags); 4793 else if (sh->sector + RAID5_STRIPE_SECTORS(conf) <= rdev->recovery_offset) 4794 /* in sync if before recovery_offset */ 4795 set_bit(R5_Insync, &dev->flags); 4796 else if (test_bit(R5_UPTODATE, &dev->flags) && 4797 test_bit(R5_Expanded, &dev->flags)) 4798 /* If we've reshaped into here, we assume it is Insync. 4799 * We will shortly update recovery_offset to make 4800 * it official. 4801 */ 4802 set_bit(R5_Insync, &dev->flags); 4803 4804 if (test_bit(R5_WriteError, &dev->flags)) { 4805 /* This flag does not apply to '.replacement' 4806 * only to .rdev, so make sure to check that*/ 4807 struct md_rdev *rdev2 = rcu_dereference( 4808 conf->disks[i].rdev); 4809 if (rdev2 == rdev) 4810 clear_bit(R5_Insync, &dev->flags); 4811 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4812 s->handle_bad_blocks = 1; 4813 atomic_inc(&rdev2->nr_pending); 4814 } else 4815 clear_bit(R5_WriteError, &dev->flags); 4816 } 4817 if (test_bit(R5_MadeGood, &dev->flags)) { 4818 /* This flag does not apply to '.replacement' 4819 * only to .rdev, so make sure to check that*/ 4820 struct md_rdev *rdev2 = rcu_dereference( 4821 conf->disks[i].rdev); 4822 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4823 s->handle_bad_blocks = 1; 4824 atomic_inc(&rdev2->nr_pending); 4825 } else 4826 clear_bit(R5_MadeGood, &dev->flags); 4827 } 4828 if (test_bit(R5_MadeGoodRepl, &dev->flags)) { 4829 struct md_rdev *rdev2 = rcu_dereference( 4830 conf->disks[i].replacement); 4831 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4832 s->handle_bad_blocks = 1; 4833 atomic_inc(&rdev2->nr_pending); 4834 } else 4835 clear_bit(R5_MadeGoodRepl, &dev->flags); 4836 } 4837 if (!test_bit(R5_Insync, &dev->flags)) { 4838 /* The ReadError flag will just be confusing now */ 4839 clear_bit(R5_ReadError, &dev->flags); 4840 clear_bit(R5_ReWrite, &dev->flags); 4841 } 4842 if (test_bit(R5_ReadError, &dev->flags)) 4843 clear_bit(R5_Insync, &dev->flags); 4844 if (!test_bit(R5_Insync, &dev->flags)) { 4845 if (s->failed < 2) 4846 s->failed_num[s->failed] = i; 4847 s->failed++; 4848 if (rdev && !test_bit(Faulty, &rdev->flags)) 4849 do_recovery = 1; 4850 else if (!rdev) { 4851 rdev = rcu_dereference( 4852 conf->disks[i].replacement); 4853 if (rdev && !test_bit(Faulty, &rdev->flags)) 4854 do_recovery = 1; 4855 } 4856 } 4857 4858 if (test_bit(R5_InJournal, &dev->flags)) 4859 s->injournal++; 4860 if (test_bit(R5_InJournal, &dev->flags) && dev->written) 4861 s->just_cached++; 4862 } 4863 if (test_bit(STRIPE_SYNCING, &sh->state)) { 4864 /* If there is a failed device being replaced, 4865 * we must be recovering. 4866 * else if we are after recovery_cp, we must be syncing 4867 * else if MD_RECOVERY_REQUESTED is set, we also are syncing. 4868 * else we can only be replacing 4869 * sync and recovery both need to read all devices, and so 4870 * use the same flag. 4871 */ 4872 if (do_recovery || 4873 sh->sector >= conf->mddev->recovery_cp || 4874 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery))) 4875 s->syncing = 1; 4876 else 4877 s->replacing = 1; 4878 } 4879 rcu_read_unlock(); 4880 } 4881 4882 /* 4883 * Return '1' if this is a member of batch, or '0' if it is a lone stripe or 4884 * a head which can now be handled. 4885 */ 4886 static int clear_batch_ready(struct stripe_head *sh) 4887 { 4888 struct stripe_head *tmp; 4889 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state)) 4890 return (sh->batch_head && sh->batch_head != sh); 4891 spin_lock(&sh->stripe_lock); 4892 if (!sh->batch_head) { 4893 spin_unlock(&sh->stripe_lock); 4894 return 0; 4895 } 4896 4897 /* 4898 * this stripe could be added to a batch list before we check 4899 * BATCH_READY, skips it 4900 */ 4901 if (sh->batch_head != sh) { 4902 spin_unlock(&sh->stripe_lock); 4903 return 1; 4904 } 4905 spin_lock(&sh->batch_lock); 4906 list_for_each_entry(tmp, &sh->batch_list, batch_list) 4907 clear_bit(STRIPE_BATCH_READY, &tmp->state); 4908 spin_unlock(&sh->batch_lock); 4909 spin_unlock(&sh->stripe_lock); 4910 4911 /* 4912 * BATCH_READY is cleared, no new stripes can be added. 4913 * batch_list can be accessed without lock 4914 */ 4915 return 0; 4916 } 4917 4918 static void break_stripe_batch_list(struct stripe_head *head_sh, 4919 unsigned long handle_flags) 4920 { 4921 struct stripe_head *sh, *next; 4922 int i; 4923 int do_wakeup = 0; 4924 4925 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) { 4926 4927 list_del_init(&sh->batch_list); 4928 4929 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) | 4930 (1 << STRIPE_SYNCING) | 4931 (1 << STRIPE_REPLACED) | 4932 (1 << STRIPE_DELAYED) | 4933 (1 << STRIPE_BIT_DELAY) | 4934 (1 << STRIPE_FULL_WRITE) | 4935 (1 << STRIPE_BIOFILL_RUN) | 4936 (1 << STRIPE_COMPUTE_RUN) | 4937 (1 << STRIPE_DISCARD) | 4938 (1 << STRIPE_BATCH_READY) | 4939 (1 << STRIPE_BATCH_ERR) | 4940 (1 << STRIPE_BITMAP_PENDING)), 4941 "stripe state: %lx\n", sh->state); 4942 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) | 4943 (1 << STRIPE_REPLACED)), 4944 "head stripe state: %lx\n", head_sh->state); 4945 4946 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS | 4947 (1 << STRIPE_PREREAD_ACTIVE) | 4948 (1 << STRIPE_DEGRADED) | 4949 (1 << STRIPE_ON_UNPLUG_LIST)), 4950 head_sh->state & (1 << STRIPE_INSYNC)); 4951 4952 sh->check_state = head_sh->check_state; 4953 sh->reconstruct_state = head_sh->reconstruct_state; 4954 spin_lock_irq(&sh->stripe_lock); 4955 sh->batch_head = NULL; 4956 spin_unlock_irq(&sh->stripe_lock); 4957 for (i = 0; i < sh->disks; i++) { 4958 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 4959 do_wakeup = 1; 4960 sh->dev[i].flags = head_sh->dev[i].flags & 4961 (~((1 << R5_WriteError) | (1 << R5_Overlap))); 4962 } 4963 if (handle_flags == 0 || 4964 sh->state & handle_flags) 4965 set_bit(STRIPE_HANDLE, &sh->state); 4966 raid5_release_stripe(sh); 4967 } 4968 spin_lock_irq(&head_sh->stripe_lock); 4969 head_sh->batch_head = NULL; 4970 spin_unlock_irq(&head_sh->stripe_lock); 4971 for (i = 0; i < head_sh->disks; i++) 4972 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags)) 4973 do_wakeup = 1; 4974 if (head_sh->state & handle_flags) 4975 set_bit(STRIPE_HANDLE, &head_sh->state); 4976 4977 if (do_wakeup) 4978 wake_up(&head_sh->raid_conf->wait_for_overlap); 4979 } 4980 4981 static void handle_stripe(struct stripe_head *sh) 4982 { 4983 struct stripe_head_state s; 4984 struct r5conf *conf = sh->raid_conf; 4985 int i; 4986 int prexor; 4987 int disks = sh->disks; 4988 struct r5dev *pdev, *qdev; 4989 4990 clear_bit(STRIPE_HANDLE, &sh->state); 4991 4992 /* 4993 * handle_stripe should not continue handle the batched stripe, only 4994 * the head of batch list or lone stripe can continue. Otherwise we 4995 * could see break_stripe_batch_list warns about the STRIPE_ACTIVE 4996 * is set for the batched stripe. 4997 */ 4998 if (clear_batch_ready(sh)) 4999 return; 5000 5001 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) { 5002 /* already being handled, ensure it gets handled 5003 * again when current action finishes */ 5004 set_bit(STRIPE_HANDLE, &sh->state); 5005 return; 5006 } 5007 5008 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state)) 5009 break_stripe_batch_list(sh, 0); 5010 5011 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) { 5012 spin_lock(&sh->stripe_lock); 5013 /* 5014 * Cannot process 'sync' concurrently with 'discard'. 5015 * Flush data in r5cache before 'sync'. 5016 */ 5017 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) && 5018 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) && 5019 !test_bit(STRIPE_DISCARD, &sh->state) && 5020 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) { 5021 set_bit(STRIPE_SYNCING, &sh->state); 5022 clear_bit(STRIPE_INSYNC, &sh->state); 5023 clear_bit(STRIPE_REPLACED, &sh->state); 5024 } 5025 spin_unlock(&sh->stripe_lock); 5026 } 5027 clear_bit(STRIPE_DELAYED, &sh->state); 5028 5029 pr_debug("handling stripe %llu, state=%#lx cnt=%d, " 5030 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n", 5031 (unsigned long long)sh->sector, sh->state, 5032 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx, 5033 sh->check_state, sh->reconstruct_state); 5034 5035 analyse_stripe(sh, &s); 5036 5037 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state)) 5038 goto finish; 5039 5040 if (s.handle_bad_blocks || 5041 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) { 5042 set_bit(STRIPE_HANDLE, &sh->state); 5043 goto finish; 5044 } 5045 5046 if (unlikely(s.blocked_rdev)) { 5047 if (s.syncing || s.expanding || s.expanded || 5048 s.replacing || s.to_write || s.written) { 5049 set_bit(STRIPE_HANDLE, &sh->state); 5050 goto finish; 5051 } 5052 /* There is nothing for the blocked_rdev to block */ 5053 rdev_dec_pending(s.blocked_rdev, conf->mddev); 5054 s.blocked_rdev = NULL; 5055 } 5056 5057 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) { 5058 set_bit(STRIPE_OP_BIOFILL, &s.ops_request); 5059 set_bit(STRIPE_BIOFILL_RUN, &sh->state); 5060 } 5061 5062 pr_debug("locked=%d uptodate=%d to_read=%d" 5063 " to_write=%d failed=%d failed_num=%d,%d\n", 5064 s.locked, s.uptodate, s.to_read, s.to_write, s.failed, 5065 s.failed_num[0], s.failed_num[1]); 5066 /* 5067 * check if the array has lost more than max_degraded devices and, 5068 * if so, some requests might need to be failed. 5069 * 5070 * When journal device failed (log_failed), we will only process 5071 * the stripe if there is data need write to raid disks 5072 */ 5073 if (s.failed > conf->max_degraded || 5074 (s.log_failed && s.injournal == 0)) { 5075 sh->check_state = 0; 5076 sh->reconstruct_state = 0; 5077 break_stripe_batch_list(sh, 0); 5078 if (s.to_read+s.to_write+s.written) 5079 handle_failed_stripe(conf, sh, &s, disks); 5080 if (s.syncing + s.replacing) 5081 handle_failed_sync(conf, sh, &s); 5082 } 5083 5084 /* Now we check to see if any write operations have recently 5085 * completed 5086 */ 5087 prexor = 0; 5088 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result) 5089 prexor = 1; 5090 if (sh->reconstruct_state == reconstruct_state_drain_result || 5091 sh->reconstruct_state == reconstruct_state_prexor_drain_result) { 5092 sh->reconstruct_state = reconstruct_state_idle; 5093 5094 /* All the 'written' buffers and the parity block are ready to 5095 * be written back to disk 5096 */ 5097 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) && 5098 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)); 5099 BUG_ON(sh->qd_idx >= 0 && 5100 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) && 5101 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags)); 5102 for (i = disks; i--; ) { 5103 struct r5dev *dev = &sh->dev[i]; 5104 if (test_bit(R5_LOCKED, &dev->flags) && 5105 (i == sh->pd_idx || i == sh->qd_idx || 5106 dev->written || test_bit(R5_InJournal, 5107 &dev->flags))) { 5108 pr_debug("Writing block %d\n", i); 5109 set_bit(R5_Wantwrite, &dev->flags); 5110 if (prexor) 5111 continue; 5112 if (s.failed > 1) 5113 continue; 5114 if (!test_bit(R5_Insync, &dev->flags) || 5115 ((i == sh->pd_idx || i == sh->qd_idx) && 5116 s.failed == 0)) 5117 set_bit(STRIPE_INSYNC, &sh->state); 5118 } 5119 } 5120 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5121 s.dec_preread_active = 1; 5122 } 5123 5124 /* 5125 * might be able to return some write requests if the parity blocks 5126 * are safe, or on a failed drive 5127 */ 5128 pdev = &sh->dev[sh->pd_idx]; 5129 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx) 5130 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx); 5131 qdev = &sh->dev[sh->qd_idx]; 5132 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx) 5133 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx) 5134 || conf->level < 6; 5135 5136 if (s.written && 5137 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags) 5138 && !test_bit(R5_LOCKED, &pdev->flags) 5139 && (test_bit(R5_UPTODATE, &pdev->flags) || 5140 test_bit(R5_Discard, &pdev->flags))))) && 5141 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags) 5142 && !test_bit(R5_LOCKED, &qdev->flags) 5143 && (test_bit(R5_UPTODATE, &qdev->flags) || 5144 test_bit(R5_Discard, &qdev->flags)))))) 5145 handle_stripe_clean_event(conf, sh, disks); 5146 5147 if (s.just_cached) 5148 r5c_handle_cached_data_endio(conf, sh, disks); 5149 log_stripe_write_finished(sh); 5150 5151 /* Now we might consider reading some blocks, either to check/generate 5152 * parity, or to satisfy requests 5153 * or to load a block that is being partially written. 5154 */ 5155 if (s.to_read || s.non_overwrite 5156 || (s.to_write && s.failed) 5157 || (s.syncing && (s.uptodate + s.compute < disks)) 5158 || s.replacing 5159 || s.expanding) 5160 handle_stripe_fill(sh, &s, disks); 5161 5162 /* 5163 * When the stripe finishes full journal write cycle (write to journal 5164 * and raid disk), this is the clean up procedure so it is ready for 5165 * next operation. 5166 */ 5167 r5c_finish_stripe_write_out(conf, sh, &s); 5168 5169 /* 5170 * Now to consider new write requests, cache write back and what else, 5171 * if anything should be read. We do not handle new writes when: 5172 * 1/ A 'write' operation (copy+xor) is already in flight. 5173 * 2/ A 'check' operation is in flight, as it may clobber the parity 5174 * block. 5175 * 3/ A r5c cache log write is in flight. 5176 */ 5177 5178 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) { 5179 if (!r5c_is_writeback(conf->log)) { 5180 if (s.to_write) 5181 handle_stripe_dirtying(conf, sh, &s, disks); 5182 } else { /* write back cache */ 5183 int ret = 0; 5184 5185 /* First, try handle writes in caching phase */ 5186 if (s.to_write) 5187 ret = r5c_try_caching_write(conf, sh, &s, 5188 disks); 5189 /* 5190 * If caching phase failed: ret == -EAGAIN 5191 * OR 5192 * stripe under reclaim: !caching && injournal 5193 * 5194 * fall back to handle_stripe_dirtying() 5195 */ 5196 if (ret == -EAGAIN || 5197 /* stripe under reclaim: !caching && injournal */ 5198 (!test_bit(STRIPE_R5C_CACHING, &sh->state) && 5199 s.injournal > 0)) { 5200 ret = handle_stripe_dirtying(conf, sh, &s, 5201 disks); 5202 if (ret == -EAGAIN) 5203 goto finish; 5204 } 5205 } 5206 } 5207 5208 /* maybe we need to check and possibly fix the parity for this stripe 5209 * Any reads will already have been scheduled, so we just see if enough 5210 * data is available. The parity check is held off while parity 5211 * dependent operations are in flight. 5212 */ 5213 if (sh->check_state || 5214 (s.syncing && s.locked == 0 && 5215 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 5216 !test_bit(STRIPE_INSYNC, &sh->state))) { 5217 if (conf->level == 6) 5218 handle_parity_checks6(conf, sh, &s, disks); 5219 else 5220 handle_parity_checks5(conf, sh, &s, disks); 5221 } 5222 5223 if ((s.replacing || s.syncing) && s.locked == 0 5224 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state) 5225 && !test_bit(STRIPE_REPLACED, &sh->state)) { 5226 /* Write out to replacement devices where possible */ 5227 for (i = 0; i < conf->raid_disks; i++) 5228 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) { 5229 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags)); 5230 set_bit(R5_WantReplace, &sh->dev[i].flags); 5231 set_bit(R5_LOCKED, &sh->dev[i].flags); 5232 s.locked++; 5233 } 5234 if (s.replacing) 5235 set_bit(STRIPE_INSYNC, &sh->state); 5236 set_bit(STRIPE_REPLACED, &sh->state); 5237 } 5238 if ((s.syncing || s.replacing) && s.locked == 0 && 5239 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 5240 test_bit(STRIPE_INSYNC, &sh->state)) { 5241 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1); 5242 clear_bit(STRIPE_SYNCING, &sh->state); 5243 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 5244 wake_up(&conf->wait_for_overlap); 5245 } 5246 5247 /* If the failed drives are just a ReadError, then we might need 5248 * to progress the repair/check process 5249 */ 5250 if (s.failed <= conf->max_degraded && !conf->mddev->ro) 5251 for (i = 0; i < s.failed; i++) { 5252 struct r5dev *dev = &sh->dev[s.failed_num[i]]; 5253 if (test_bit(R5_ReadError, &dev->flags) 5254 && !test_bit(R5_LOCKED, &dev->flags) 5255 && test_bit(R5_UPTODATE, &dev->flags) 5256 ) { 5257 if (!test_bit(R5_ReWrite, &dev->flags)) { 5258 set_bit(R5_Wantwrite, &dev->flags); 5259 set_bit(R5_ReWrite, &dev->flags); 5260 } else 5261 /* let's read it back */ 5262 set_bit(R5_Wantread, &dev->flags); 5263 set_bit(R5_LOCKED, &dev->flags); 5264 s.locked++; 5265 } 5266 } 5267 5268 /* Finish reconstruct operations initiated by the expansion process */ 5269 if (sh->reconstruct_state == reconstruct_state_result) { 5270 struct stripe_head *sh_src 5271 = raid5_get_active_stripe(conf, NULL, sh->sector, 5272 R5_GAS_PREVIOUS | R5_GAS_NOBLOCK | 5273 R5_GAS_NOQUIESCE); 5274 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) { 5275 /* sh cannot be written until sh_src has been read. 5276 * so arrange for sh to be delayed a little 5277 */ 5278 set_bit(STRIPE_DELAYED, &sh->state); 5279 set_bit(STRIPE_HANDLE, &sh->state); 5280 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, 5281 &sh_src->state)) 5282 atomic_inc(&conf->preread_active_stripes); 5283 raid5_release_stripe(sh_src); 5284 goto finish; 5285 } 5286 if (sh_src) 5287 raid5_release_stripe(sh_src); 5288 5289 sh->reconstruct_state = reconstruct_state_idle; 5290 clear_bit(STRIPE_EXPANDING, &sh->state); 5291 for (i = conf->raid_disks; i--; ) { 5292 set_bit(R5_Wantwrite, &sh->dev[i].flags); 5293 set_bit(R5_LOCKED, &sh->dev[i].flags); 5294 s.locked++; 5295 } 5296 } 5297 5298 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) && 5299 !sh->reconstruct_state) { 5300 /* Need to write out all blocks after computing parity */ 5301 sh->disks = conf->raid_disks; 5302 stripe_set_idx(sh->sector, conf, 0, sh); 5303 schedule_reconstruction(sh, &s, 1, 1); 5304 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) { 5305 clear_bit(STRIPE_EXPAND_READY, &sh->state); 5306 atomic_dec(&conf->reshape_stripes); 5307 wake_up(&conf->wait_for_overlap); 5308 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1); 5309 } 5310 5311 if (s.expanding && s.locked == 0 && 5312 !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) 5313 handle_stripe_expansion(conf, sh); 5314 5315 finish: 5316 /* wait for this device to become unblocked */ 5317 if (unlikely(s.blocked_rdev)) { 5318 if (conf->mddev->external) 5319 md_wait_for_blocked_rdev(s.blocked_rdev, 5320 conf->mddev); 5321 else 5322 /* Internal metadata will immediately 5323 * be written by raid5d, so we don't 5324 * need to wait here. 5325 */ 5326 rdev_dec_pending(s.blocked_rdev, 5327 conf->mddev); 5328 } 5329 5330 if (s.handle_bad_blocks) 5331 for (i = disks; i--; ) { 5332 struct md_rdev *rdev; 5333 struct r5dev *dev = &sh->dev[i]; 5334 if (test_and_clear_bit(R5_WriteError, &dev->flags)) { 5335 /* We own a safe reference to the rdev */ 5336 rdev = rdev_pend_deref(conf->disks[i].rdev); 5337 if (!rdev_set_badblocks(rdev, sh->sector, 5338 RAID5_STRIPE_SECTORS(conf), 0)) 5339 md_error(conf->mddev, rdev); 5340 rdev_dec_pending(rdev, conf->mddev); 5341 } 5342 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) { 5343 rdev = rdev_pend_deref(conf->disks[i].rdev); 5344 rdev_clear_badblocks(rdev, sh->sector, 5345 RAID5_STRIPE_SECTORS(conf), 0); 5346 rdev_dec_pending(rdev, conf->mddev); 5347 } 5348 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) { 5349 rdev = rdev_pend_deref(conf->disks[i].replacement); 5350 if (!rdev) 5351 /* rdev have been moved down */ 5352 rdev = rdev_pend_deref(conf->disks[i].rdev); 5353 rdev_clear_badblocks(rdev, sh->sector, 5354 RAID5_STRIPE_SECTORS(conf), 0); 5355 rdev_dec_pending(rdev, conf->mddev); 5356 } 5357 } 5358 5359 if (s.ops_request) 5360 raid_run_ops(sh, s.ops_request); 5361 5362 ops_run_io(sh, &s); 5363 5364 if (s.dec_preread_active) { 5365 /* We delay this until after ops_run_io so that if make_request 5366 * is waiting on a flush, it won't continue until the writes 5367 * have actually been submitted. 5368 */ 5369 atomic_dec(&conf->preread_active_stripes); 5370 if (atomic_read(&conf->preread_active_stripes) < 5371 IO_THRESHOLD) 5372 md_wakeup_thread(conf->mddev->thread); 5373 } 5374 5375 clear_bit_unlock(STRIPE_ACTIVE, &sh->state); 5376 } 5377 5378 static void raid5_activate_delayed(struct r5conf *conf) 5379 __must_hold(&conf->device_lock) 5380 { 5381 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) { 5382 while (!list_empty(&conf->delayed_list)) { 5383 struct list_head *l = conf->delayed_list.next; 5384 struct stripe_head *sh; 5385 sh = list_entry(l, struct stripe_head, lru); 5386 list_del_init(l); 5387 clear_bit(STRIPE_DELAYED, &sh->state); 5388 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5389 atomic_inc(&conf->preread_active_stripes); 5390 list_add_tail(&sh->lru, &conf->hold_list); 5391 raid5_wakeup_stripe_thread(sh); 5392 } 5393 } 5394 } 5395 5396 static void activate_bit_delay(struct r5conf *conf, 5397 struct list_head *temp_inactive_list) 5398 __must_hold(&conf->device_lock) 5399 { 5400 struct list_head head; 5401 list_add(&head, &conf->bitmap_list); 5402 list_del_init(&conf->bitmap_list); 5403 while (!list_empty(&head)) { 5404 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru); 5405 int hash; 5406 list_del_init(&sh->lru); 5407 atomic_inc(&sh->count); 5408 hash = sh->hash_lock_index; 5409 __release_stripe(conf, sh, &temp_inactive_list[hash]); 5410 } 5411 } 5412 5413 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio) 5414 { 5415 struct r5conf *conf = mddev->private; 5416 sector_t sector = bio->bi_iter.bi_sector; 5417 unsigned int chunk_sectors; 5418 unsigned int bio_sectors = bio_sectors(bio); 5419 5420 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors); 5421 return chunk_sectors >= 5422 ((sector & (chunk_sectors - 1)) + bio_sectors); 5423 } 5424 5425 /* 5426 * add bio to the retry LIFO ( in O(1) ... we are in interrupt ) 5427 * later sampled by raid5d. 5428 */ 5429 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf) 5430 { 5431 unsigned long flags; 5432 5433 spin_lock_irqsave(&conf->device_lock, flags); 5434 5435 bi->bi_next = conf->retry_read_aligned_list; 5436 conf->retry_read_aligned_list = bi; 5437 5438 spin_unlock_irqrestore(&conf->device_lock, flags); 5439 md_wakeup_thread(conf->mddev->thread); 5440 } 5441 5442 static struct bio *remove_bio_from_retry(struct r5conf *conf, 5443 unsigned int *offset) 5444 { 5445 struct bio *bi; 5446 5447 bi = conf->retry_read_aligned; 5448 if (bi) { 5449 *offset = conf->retry_read_offset; 5450 conf->retry_read_aligned = NULL; 5451 return bi; 5452 } 5453 bi = conf->retry_read_aligned_list; 5454 if(bi) { 5455 conf->retry_read_aligned_list = bi->bi_next; 5456 bi->bi_next = NULL; 5457 *offset = 0; 5458 } 5459 5460 return bi; 5461 } 5462 5463 /* 5464 * The "raid5_align_endio" should check if the read succeeded and if it 5465 * did, call bio_endio on the original bio (having bio_put the new bio 5466 * first). 5467 * If the read failed.. 5468 */ 5469 static void raid5_align_endio(struct bio *bi) 5470 { 5471 struct bio *raid_bi = bi->bi_private; 5472 struct md_rdev *rdev = (void *)raid_bi->bi_next; 5473 struct mddev *mddev = rdev->mddev; 5474 struct r5conf *conf = mddev->private; 5475 blk_status_t error = bi->bi_status; 5476 5477 bio_put(bi); 5478 raid_bi->bi_next = NULL; 5479 rdev_dec_pending(rdev, conf->mddev); 5480 5481 if (!error) { 5482 bio_endio(raid_bi); 5483 if (atomic_dec_and_test(&conf->active_aligned_reads)) 5484 wake_up(&conf->wait_for_quiescent); 5485 return; 5486 } 5487 5488 pr_debug("raid5_align_endio : io error...handing IO for a retry\n"); 5489 5490 add_bio_to_retry(raid_bi, conf); 5491 } 5492 5493 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio) 5494 { 5495 struct r5conf *conf = mddev->private; 5496 struct bio *align_bio; 5497 struct md_rdev *rdev; 5498 sector_t sector, end_sector, first_bad; 5499 int bad_sectors, dd_idx; 5500 bool did_inc; 5501 5502 if (!in_chunk_boundary(mddev, raid_bio)) { 5503 pr_debug("%s: non aligned\n", __func__); 5504 return 0; 5505 } 5506 5507 sector = raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 0, 5508 &dd_idx, NULL); 5509 end_sector = sector + bio_sectors(raid_bio); 5510 5511 rcu_read_lock(); 5512 if (r5c_big_stripe_cached(conf, sector)) 5513 goto out_rcu_unlock; 5514 5515 rdev = rcu_dereference(conf->disks[dd_idx].replacement); 5516 if (!rdev || test_bit(Faulty, &rdev->flags) || 5517 rdev->recovery_offset < end_sector) { 5518 rdev = rcu_dereference(conf->disks[dd_idx].rdev); 5519 if (!rdev) 5520 goto out_rcu_unlock; 5521 if (test_bit(Faulty, &rdev->flags) || 5522 !(test_bit(In_sync, &rdev->flags) || 5523 rdev->recovery_offset >= end_sector)) 5524 goto out_rcu_unlock; 5525 } 5526 5527 atomic_inc(&rdev->nr_pending); 5528 rcu_read_unlock(); 5529 5530 if (is_badblock(rdev, sector, bio_sectors(raid_bio), &first_bad, 5531 &bad_sectors)) { 5532 rdev_dec_pending(rdev, mddev); 5533 return 0; 5534 } 5535 5536 md_account_bio(mddev, &raid_bio); 5537 raid_bio->bi_next = (void *)rdev; 5538 5539 align_bio = bio_alloc_clone(rdev->bdev, raid_bio, GFP_NOIO, 5540 &mddev->bio_set); 5541 align_bio->bi_end_io = raid5_align_endio; 5542 align_bio->bi_private = raid_bio; 5543 align_bio->bi_iter.bi_sector = sector; 5544 5545 /* No reshape active, so we can trust rdev->data_offset */ 5546 align_bio->bi_iter.bi_sector += rdev->data_offset; 5547 5548 did_inc = false; 5549 if (conf->quiesce == 0) { 5550 atomic_inc(&conf->active_aligned_reads); 5551 did_inc = true; 5552 } 5553 /* need a memory barrier to detect the race with raid5_quiesce() */ 5554 if (!did_inc || smp_load_acquire(&conf->quiesce) != 0) { 5555 /* quiesce is in progress, so we need to undo io activation and wait 5556 * for it to finish 5557 */ 5558 if (did_inc && atomic_dec_and_test(&conf->active_aligned_reads)) 5559 wake_up(&conf->wait_for_quiescent); 5560 spin_lock_irq(&conf->device_lock); 5561 wait_event_lock_irq(conf->wait_for_quiescent, conf->quiesce == 0, 5562 conf->device_lock); 5563 atomic_inc(&conf->active_aligned_reads); 5564 spin_unlock_irq(&conf->device_lock); 5565 } 5566 5567 if (mddev->gendisk) 5568 trace_block_bio_remap(align_bio, disk_devt(mddev->gendisk), 5569 raid_bio->bi_iter.bi_sector); 5570 submit_bio_noacct(align_bio); 5571 return 1; 5572 5573 out_rcu_unlock: 5574 rcu_read_unlock(); 5575 return 0; 5576 } 5577 5578 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio) 5579 { 5580 struct bio *split; 5581 sector_t sector = raid_bio->bi_iter.bi_sector; 5582 unsigned chunk_sects = mddev->chunk_sectors; 5583 unsigned sectors = chunk_sects - (sector & (chunk_sects-1)); 5584 5585 if (sectors < bio_sectors(raid_bio)) { 5586 struct r5conf *conf = mddev->private; 5587 split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split); 5588 bio_chain(split, raid_bio); 5589 submit_bio_noacct(raid_bio); 5590 raid_bio = split; 5591 } 5592 5593 if (!raid5_read_one_chunk(mddev, raid_bio)) 5594 return raid_bio; 5595 5596 return NULL; 5597 } 5598 5599 /* __get_priority_stripe - get the next stripe to process 5600 * 5601 * Full stripe writes are allowed to pass preread active stripes up until 5602 * the bypass_threshold is exceeded. In general the bypass_count 5603 * increments when the handle_list is handled before the hold_list; however, it 5604 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a 5605 * stripe with in flight i/o. The bypass_count will be reset when the 5606 * head of the hold_list has changed, i.e. the head was promoted to the 5607 * handle_list. 5608 */ 5609 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group) 5610 __must_hold(&conf->device_lock) 5611 { 5612 struct stripe_head *sh, *tmp; 5613 struct list_head *handle_list = NULL; 5614 struct r5worker_group *wg; 5615 bool second_try = !r5c_is_writeback(conf->log) && 5616 !r5l_log_disk_error(conf); 5617 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) || 5618 r5l_log_disk_error(conf); 5619 5620 again: 5621 wg = NULL; 5622 sh = NULL; 5623 if (conf->worker_cnt_per_group == 0) { 5624 handle_list = try_loprio ? &conf->loprio_list : 5625 &conf->handle_list; 5626 } else if (group != ANY_GROUP) { 5627 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list : 5628 &conf->worker_groups[group].handle_list; 5629 wg = &conf->worker_groups[group]; 5630 } else { 5631 int i; 5632 for (i = 0; i < conf->group_cnt; i++) { 5633 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list : 5634 &conf->worker_groups[i].handle_list; 5635 wg = &conf->worker_groups[i]; 5636 if (!list_empty(handle_list)) 5637 break; 5638 } 5639 } 5640 5641 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n", 5642 __func__, 5643 list_empty(handle_list) ? "empty" : "busy", 5644 list_empty(&conf->hold_list) ? "empty" : "busy", 5645 atomic_read(&conf->pending_full_writes), conf->bypass_count); 5646 5647 if (!list_empty(handle_list)) { 5648 sh = list_entry(handle_list->next, typeof(*sh), lru); 5649 5650 if (list_empty(&conf->hold_list)) 5651 conf->bypass_count = 0; 5652 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) { 5653 if (conf->hold_list.next == conf->last_hold) 5654 conf->bypass_count++; 5655 else { 5656 conf->last_hold = conf->hold_list.next; 5657 conf->bypass_count -= conf->bypass_threshold; 5658 if (conf->bypass_count < 0) 5659 conf->bypass_count = 0; 5660 } 5661 } 5662 } else if (!list_empty(&conf->hold_list) && 5663 ((conf->bypass_threshold && 5664 conf->bypass_count > conf->bypass_threshold) || 5665 atomic_read(&conf->pending_full_writes) == 0)) { 5666 5667 list_for_each_entry(tmp, &conf->hold_list, lru) { 5668 if (conf->worker_cnt_per_group == 0 || 5669 group == ANY_GROUP || 5670 !cpu_online(tmp->cpu) || 5671 cpu_to_group(tmp->cpu) == group) { 5672 sh = tmp; 5673 break; 5674 } 5675 } 5676 5677 if (sh) { 5678 conf->bypass_count -= conf->bypass_threshold; 5679 if (conf->bypass_count < 0) 5680 conf->bypass_count = 0; 5681 } 5682 wg = NULL; 5683 } 5684 5685 if (!sh) { 5686 if (second_try) 5687 return NULL; 5688 second_try = true; 5689 try_loprio = !try_loprio; 5690 goto again; 5691 } 5692 5693 if (wg) { 5694 wg->stripes_cnt--; 5695 sh->group = NULL; 5696 } 5697 list_del_init(&sh->lru); 5698 BUG_ON(atomic_inc_return(&sh->count) != 1); 5699 return sh; 5700 } 5701 5702 struct raid5_plug_cb { 5703 struct blk_plug_cb cb; 5704 struct list_head list; 5705 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS]; 5706 }; 5707 5708 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule) 5709 { 5710 struct raid5_plug_cb *cb = container_of( 5711 blk_cb, struct raid5_plug_cb, cb); 5712 struct stripe_head *sh; 5713 struct mddev *mddev = cb->cb.data; 5714 struct r5conf *conf = mddev->private; 5715 int cnt = 0; 5716 int hash; 5717 5718 if (cb->list.next && !list_empty(&cb->list)) { 5719 spin_lock_irq(&conf->device_lock); 5720 while (!list_empty(&cb->list)) { 5721 sh = list_first_entry(&cb->list, struct stripe_head, lru); 5722 list_del_init(&sh->lru); 5723 /* 5724 * avoid race release_stripe_plug() sees 5725 * STRIPE_ON_UNPLUG_LIST clear but the stripe 5726 * is still in our list 5727 */ 5728 smp_mb__before_atomic(); 5729 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state); 5730 /* 5731 * STRIPE_ON_RELEASE_LIST could be set here. In that 5732 * case, the count is always > 1 here 5733 */ 5734 hash = sh->hash_lock_index; 5735 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]); 5736 cnt++; 5737 } 5738 spin_unlock_irq(&conf->device_lock); 5739 } 5740 release_inactive_stripe_list(conf, cb->temp_inactive_list, 5741 NR_STRIPE_HASH_LOCKS); 5742 if (mddev->queue) 5743 trace_block_unplug(mddev->queue, cnt, !from_schedule); 5744 kfree(cb); 5745 } 5746 5747 static void release_stripe_plug(struct mddev *mddev, 5748 struct stripe_head *sh) 5749 { 5750 struct blk_plug_cb *blk_cb = blk_check_plugged( 5751 raid5_unplug, mddev, 5752 sizeof(struct raid5_plug_cb)); 5753 struct raid5_plug_cb *cb; 5754 5755 if (!blk_cb) { 5756 raid5_release_stripe(sh); 5757 return; 5758 } 5759 5760 cb = container_of(blk_cb, struct raid5_plug_cb, cb); 5761 5762 if (cb->list.next == NULL) { 5763 int i; 5764 INIT_LIST_HEAD(&cb->list); 5765 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 5766 INIT_LIST_HEAD(cb->temp_inactive_list + i); 5767 } 5768 5769 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)) 5770 list_add_tail(&sh->lru, &cb->list); 5771 else 5772 raid5_release_stripe(sh); 5773 } 5774 5775 static void make_discard_request(struct mddev *mddev, struct bio *bi) 5776 { 5777 struct r5conf *conf = mddev->private; 5778 sector_t logical_sector, last_sector; 5779 struct stripe_head *sh; 5780 int stripe_sectors; 5781 5782 /* We need to handle this when io_uring supports discard/trim */ 5783 if (WARN_ON_ONCE(bi->bi_opf & REQ_NOWAIT)) 5784 return; 5785 5786 if (mddev->reshape_position != MaxSector) 5787 /* Skip discard while reshape is happening */ 5788 return; 5789 5790 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1); 5791 last_sector = bio_end_sector(bi); 5792 5793 bi->bi_next = NULL; 5794 5795 stripe_sectors = conf->chunk_sectors * 5796 (conf->raid_disks - conf->max_degraded); 5797 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector, 5798 stripe_sectors); 5799 sector_div(last_sector, stripe_sectors); 5800 5801 logical_sector *= conf->chunk_sectors; 5802 last_sector *= conf->chunk_sectors; 5803 5804 for (; logical_sector < last_sector; 5805 logical_sector += RAID5_STRIPE_SECTORS(conf)) { 5806 DEFINE_WAIT(w); 5807 int d; 5808 again: 5809 sh = raid5_get_active_stripe(conf, NULL, logical_sector, 0); 5810 prepare_to_wait(&conf->wait_for_overlap, &w, 5811 TASK_UNINTERRUPTIBLE); 5812 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 5813 if (test_bit(STRIPE_SYNCING, &sh->state)) { 5814 raid5_release_stripe(sh); 5815 schedule(); 5816 goto again; 5817 } 5818 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 5819 spin_lock_irq(&sh->stripe_lock); 5820 for (d = 0; d < conf->raid_disks; d++) { 5821 if (d == sh->pd_idx || d == sh->qd_idx) 5822 continue; 5823 if (sh->dev[d].towrite || sh->dev[d].toread) { 5824 set_bit(R5_Overlap, &sh->dev[d].flags); 5825 spin_unlock_irq(&sh->stripe_lock); 5826 raid5_release_stripe(sh); 5827 schedule(); 5828 goto again; 5829 } 5830 } 5831 set_bit(STRIPE_DISCARD, &sh->state); 5832 finish_wait(&conf->wait_for_overlap, &w); 5833 sh->overwrite_disks = 0; 5834 for (d = 0; d < conf->raid_disks; d++) { 5835 if (d == sh->pd_idx || d == sh->qd_idx) 5836 continue; 5837 sh->dev[d].towrite = bi; 5838 set_bit(R5_OVERWRITE, &sh->dev[d].flags); 5839 bio_inc_remaining(bi); 5840 md_write_inc(mddev, bi); 5841 sh->overwrite_disks++; 5842 } 5843 spin_unlock_irq(&sh->stripe_lock); 5844 if (conf->mddev->bitmap) { 5845 for (d = 0; 5846 d < conf->raid_disks - conf->max_degraded; 5847 d++) 5848 md_bitmap_startwrite(mddev->bitmap, 5849 sh->sector, 5850 RAID5_STRIPE_SECTORS(conf), 5851 0); 5852 sh->bm_seq = conf->seq_flush + 1; 5853 set_bit(STRIPE_BIT_DELAY, &sh->state); 5854 } 5855 5856 set_bit(STRIPE_HANDLE, &sh->state); 5857 clear_bit(STRIPE_DELAYED, &sh->state); 5858 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5859 atomic_inc(&conf->preread_active_stripes); 5860 release_stripe_plug(mddev, sh); 5861 } 5862 5863 bio_endio(bi); 5864 } 5865 5866 static bool ahead_of_reshape(struct mddev *mddev, sector_t sector, 5867 sector_t reshape_sector) 5868 { 5869 return mddev->reshape_backwards ? sector < reshape_sector : 5870 sector >= reshape_sector; 5871 } 5872 5873 static bool range_ahead_of_reshape(struct mddev *mddev, sector_t min, 5874 sector_t max, sector_t reshape_sector) 5875 { 5876 return mddev->reshape_backwards ? max < reshape_sector : 5877 min >= reshape_sector; 5878 } 5879 5880 static bool stripe_ahead_of_reshape(struct mddev *mddev, struct r5conf *conf, 5881 struct stripe_head *sh) 5882 { 5883 sector_t max_sector = 0, min_sector = MaxSector; 5884 bool ret = false; 5885 int dd_idx; 5886 5887 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) { 5888 if (dd_idx == sh->pd_idx) 5889 continue; 5890 5891 min_sector = min(min_sector, sh->dev[dd_idx].sector); 5892 max_sector = min(max_sector, sh->dev[dd_idx].sector); 5893 } 5894 5895 spin_lock_irq(&conf->device_lock); 5896 5897 if (!range_ahead_of_reshape(mddev, min_sector, max_sector, 5898 conf->reshape_progress)) 5899 /* mismatch, need to try again */ 5900 ret = true; 5901 5902 spin_unlock_irq(&conf->device_lock); 5903 5904 return ret; 5905 } 5906 5907 static int add_all_stripe_bios(struct r5conf *conf, 5908 struct stripe_request_ctx *ctx, struct stripe_head *sh, 5909 struct bio *bi, int forwrite, int previous) 5910 { 5911 int dd_idx; 5912 int ret = 1; 5913 5914 spin_lock_irq(&sh->stripe_lock); 5915 5916 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) { 5917 struct r5dev *dev = &sh->dev[dd_idx]; 5918 5919 if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx) 5920 continue; 5921 5922 if (dev->sector < ctx->first_sector || 5923 dev->sector >= ctx->last_sector) 5924 continue; 5925 5926 if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) { 5927 set_bit(R5_Overlap, &dev->flags); 5928 ret = 0; 5929 continue; 5930 } 5931 } 5932 5933 if (!ret) 5934 goto out; 5935 5936 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) { 5937 struct r5dev *dev = &sh->dev[dd_idx]; 5938 5939 if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx) 5940 continue; 5941 5942 if (dev->sector < ctx->first_sector || 5943 dev->sector >= ctx->last_sector) 5944 continue; 5945 5946 __add_stripe_bio(sh, bi, dd_idx, forwrite, previous); 5947 clear_bit((dev->sector - ctx->first_sector) >> 5948 RAID5_STRIPE_SHIFT(conf), ctx->sectors_to_do); 5949 } 5950 5951 out: 5952 spin_unlock_irq(&sh->stripe_lock); 5953 return ret; 5954 } 5955 5956 static bool reshape_inprogress(struct mddev *mddev) 5957 { 5958 return test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 5959 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 5960 !test_bit(MD_RECOVERY_DONE, &mddev->recovery) && 5961 !test_bit(MD_RECOVERY_INTR, &mddev->recovery); 5962 } 5963 5964 static bool reshape_disabled(struct mddev *mddev) 5965 { 5966 return is_md_suspended(mddev) || !md_is_rdwr(mddev); 5967 } 5968 5969 static enum stripe_result make_stripe_request(struct mddev *mddev, 5970 struct r5conf *conf, struct stripe_request_ctx *ctx, 5971 sector_t logical_sector, struct bio *bi) 5972 { 5973 const int rw = bio_data_dir(bi); 5974 enum stripe_result ret; 5975 struct stripe_head *sh; 5976 sector_t new_sector; 5977 int previous = 0, flags = 0; 5978 int seq, dd_idx; 5979 5980 seq = read_seqcount_begin(&conf->gen_lock); 5981 5982 if (unlikely(conf->reshape_progress != MaxSector)) { 5983 /* 5984 * Spinlock is needed as reshape_progress may be 5985 * 64bit on a 32bit platform, and so it might be 5986 * possible to see a half-updated value 5987 * Of course reshape_progress could change after 5988 * the lock is dropped, so once we get a reference 5989 * to the stripe that we think it is, we will have 5990 * to check again. 5991 */ 5992 spin_lock_irq(&conf->device_lock); 5993 if (ahead_of_reshape(mddev, logical_sector, 5994 conf->reshape_progress)) { 5995 previous = 1; 5996 } else { 5997 if (ahead_of_reshape(mddev, logical_sector, 5998 conf->reshape_safe)) { 5999 spin_unlock_irq(&conf->device_lock); 6000 ret = STRIPE_SCHEDULE_AND_RETRY; 6001 goto out; 6002 } 6003 } 6004 spin_unlock_irq(&conf->device_lock); 6005 } 6006 6007 new_sector = raid5_compute_sector(conf, logical_sector, previous, 6008 &dd_idx, NULL); 6009 pr_debug("raid456: %s, sector %llu logical %llu\n", __func__, 6010 new_sector, logical_sector); 6011 6012 if (previous) 6013 flags |= R5_GAS_PREVIOUS; 6014 if (bi->bi_opf & REQ_RAHEAD) 6015 flags |= R5_GAS_NOBLOCK; 6016 sh = raid5_get_active_stripe(conf, ctx, new_sector, flags); 6017 if (unlikely(!sh)) { 6018 /* cannot get stripe, just give-up */ 6019 bi->bi_status = BLK_STS_IOERR; 6020 return STRIPE_FAIL; 6021 } 6022 6023 if (unlikely(previous) && 6024 stripe_ahead_of_reshape(mddev, conf, sh)) { 6025 /* 6026 * Expansion moved on while waiting for a stripe. 6027 * Expansion could still move past after this 6028 * test, but as we are holding a reference to 6029 * 'sh', we know that if that happens, 6030 * STRIPE_EXPANDING will get set and the expansion 6031 * won't proceed until we finish with the stripe. 6032 */ 6033 ret = STRIPE_SCHEDULE_AND_RETRY; 6034 goto out_release; 6035 } 6036 6037 if (read_seqcount_retry(&conf->gen_lock, seq)) { 6038 /* Might have got the wrong stripe_head by accident */ 6039 ret = STRIPE_RETRY; 6040 goto out_release; 6041 } 6042 6043 if (test_bit(STRIPE_EXPANDING, &sh->state) || 6044 !add_all_stripe_bios(conf, ctx, sh, bi, rw, previous)) { 6045 /* 6046 * Stripe is busy expanding or add failed due to 6047 * overlap. Flush everything and wait a while. 6048 */ 6049 md_wakeup_thread(mddev->thread); 6050 ret = STRIPE_SCHEDULE_AND_RETRY; 6051 goto out_release; 6052 } 6053 6054 if (stripe_can_batch(sh)) { 6055 stripe_add_to_batch_list(conf, sh, ctx->batch_last); 6056 if (ctx->batch_last) 6057 raid5_release_stripe(ctx->batch_last); 6058 atomic_inc(&sh->count); 6059 ctx->batch_last = sh; 6060 } 6061 6062 if (ctx->do_flush) { 6063 set_bit(STRIPE_R5C_PREFLUSH, &sh->state); 6064 /* we only need flush for one stripe */ 6065 ctx->do_flush = false; 6066 } 6067 6068 set_bit(STRIPE_HANDLE, &sh->state); 6069 clear_bit(STRIPE_DELAYED, &sh->state); 6070 if ((!sh->batch_head || sh == sh->batch_head) && 6071 (bi->bi_opf & REQ_SYNC) && 6072 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 6073 atomic_inc(&conf->preread_active_stripes); 6074 6075 release_stripe_plug(mddev, sh); 6076 return STRIPE_SUCCESS; 6077 6078 out_release: 6079 raid5_release_stripe(sh); 6080 out: 6081 if (ret == STRIPE_SCHEDULE_AND_RETRY && !reshape_inprogress(mddev) && 6082 reshape_disabled(mddev)) { 6083 bi->bi_status = BLK_STS_IOERR; 6084 ret = STRIPE_FAIL; 6085 pr_err("md/raid456:%s: io failed across reshape position while reshape can't make progress.\n", 6086 mdname(mddev)); 6087 } 6088 6089 return ret; 6090 } 6091 6092 /* 6093 * If the bio covers multiple data disks, find sector within the bio that has 6094 * the lowest chunk offset in the first chunk. 6095 */ 6096 static sector_t raid5_bio_lowest_chunk_sector(struct r5conf *conf, 6097 struct bio *bi) 6098 { 6099 int sectors_per_chunk = conf->chunk_sectors; 6100 int raid_disks = conf->raid_disks; 6101 int dd_idx; 6102 struct stripe_head sh; 6103 unsigned int chunk_offset; 6104 sector_t r_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1); 6105 sector_t sector; 6106 6107 /* We pass in fake stripe_head to get back parity disk numbers */ 6108 sector = raid5_compute_sector(conf, r_sector, 0, &dd_idx, &sh); 6109 chunk_offset = sector_div(sector, sectors_per_chunk); 6110 if (sectors_per_chunk - chunk_offset >= bio_sectors(bi)) 6111 return r_sector; 6112 /* 6113 * Bio crosses to the next data disk. Check whether it's in the same 6114 * chunk. 6115 */ 6116 dd_idx++; 6117 while (dd_idx == sh.pd_idx || dd_idx == sh.qd_idx) 6118 dd_idx++; 6119 if (dd_idx >= raid_disks) 6120 return r_sector; 6121 return r_sector + sectors_per_chunk - chunk_offset; 6122 } 6123 6124 static bool raid5_make_request(struct mddev *mddev, struct bio * bi) 6125 { 6126 DEFINE_WAIT_FUNC(wait, woken_wake_function); 6127 struct r5conf *conf = mddev->private; 6128 sector_t logical_sector; 6129 struct stripe_request_ctx ctx = {}; 6130 const int rw = bio_data_dir(bi); 6131 enum stripe_result res; 6132 int s, stripe_cnt; 6133 6134 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) { 6135 int ret = log_handle_flush_request(conf, bi); 6136 6137 if (ret == 0) 6138 return true; 6139 if (ret == -ENODEV) { 6140 if (md_flush_request(mddev, bi)) 6141 return true; 6142 } 6143 /* ret == -EAGAIN, fallback */ 6144 /* 6145 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH, 6146 * we need to flush journal device 6147 */ 6148 ctx.do_flush = bi->bi_opf & REQ_PREFLUSH; 6149 } 6150 6151 if (!md_write_start(mddev, bi)) 6152 return false; 6153 /* 6154 * If array is degraded, better not do chunk aligned read because 6155 * later we might have to read it again in order to reconstruct 6156 * data on failed drives. 6157 */ 6158 if (rw == READ && mddev->degraded == 0 && 6159 mddev->reshape_position == MaxSector) { 6160 bi = chunk_aligned_read(mddev, bi); 6161 if (!bi) 6162 return true; 6163 } 6164 6165 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) { 6166 make_discard_request(mddev, bi); 6167 md_write_end(mddev); 6168 return true; 6169 } 6170 6171 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1); 6172 ctx.first_sector = logical_sector; 6173 ctx.last_sector = bio_end_sector(bi); 6174 bi->bi_next = NULL; 6175 6176 stripe_cnt = DIV_ROUND_UP_SECTOR_T(ctx.last_sector - logical_sector, 6177 RAID5_STRIPE_SECTORS(conf)); 6178 bitmap_set(ctx.sectors_to_do, 0, stripe_cnt); 6179 6180 pr_debug("raid456: %s, logical %llu to %llu\n", __func__, 6181 bi->bi_iter.bi_sector, ctx.last_sector); 6182 6183 /* Bail out if conflicts with reshape and REQ_NOWAIT is set */ 6184 if ((bi->bi_opf & REQ_NOWAIT) && 6185 (conf->reshape_progress != MaxSector) && 6186 !ahead_of_reshape(mddev, logical_sector, conf->reshape_progress) && 6187 ahead_of_reshape(mddev, logical_sector, conf->reshape_safe)) { 6188 bio_wouldblock_error(bi); 6189 if (rw == WRITE) 6190 md_write_end(mddev); 6191 return true; 6192 } 6193 md_account_bio(mddev, &bi); 6194 6195 /* 6196 * Lets start with the stripe with the lowest chunk offset in the first 6197 * chunk. That has the best chances of creating IOs adjacent to 6198 * previous IOs in case of sequential IO and thus creates the most 6199 * sequential IO pattern. We don't bother with the optimization when 6200 * reshaping as the performance benefit is not worth the complexity. 6201 */ 6202 if (likely(conf->reshape_progress == MaxSector)) 6203 logical_sector = raid5_bio_lowest_chunk_sector(conf, bi); 6204 s = (logical_sector - ctx.first_sector) >> RAID5_STRIPE_SHIFT(conf); 6205 6206 add_wait_queue(&conf->wait_for_overlap, &wait); 6207 while (1) { 6208 res = make_stripe_request(mddev, conf, &ctx, logical_sector, 6209 bi); 6210 if (res == STRIPE_FAIL) 6211 break; 6212 6213 if (res == STRIPE_RETRY) 6214 continue; 6215 6216 if (res == STRIPE_SCHEDULE_AND_RETRY) { 6217 /* 6218 * Must release the reference to batch_last before 6219 * scheduling and waiting for work to be done, 6220 * otherwise the batch_last stripe head could prevent 6221 * raid5_activate_delayed() from making progress 6222 * and thus deadlocking. 6223 */ 6224 if (ctx.batch_last) { 6225 raid5_release_stripe(ctx.batch_last); 6226 ctx.batch_last = NULL; 6227 } 6228 6229 wait_woken(&wait, TASK_UNINTERRUPTIBLE, 6230 MAX_SCHEDULE_TIMEOUT); 6231 continue; 6232 } 6233 6234 s = find_next_bit_wrap(ctx.sectors_to_do, stripe_cnt, s); 6235 if (s == stripe_cnt) 6236 break; 6237 6238 logical_sector = ctx.first_sector + 6239 (s << RAID5_STRIPE_SHIFT(conf)); 6240 } 6241 remove_wait_queue(&conf->wait_for_overlap, &wait); 6242 6243 if (ctx.batch_last) 6244 raid5_release_stripe(ctx.batch_last); 6245 6246 if (rw == WRITE) 6247 md_write_end(mddev); 6248 bio_endio(bi); 6249 return true; 6250 } 6251 6252 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks); 6253 6254 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped) 6255 { 6256 /* reshaping is quite different to recovery/resync so it is 6257 * handled quite separately ... here. 6258 * 6259 * On each call to sync_request, we gather one chunk worth of 6260 * destination stripes and flag them as expanding. 6261 * Then we find all the source stripes and request reads. 6262 * As the reads complete, handle_stripe will copy the data 6263 * into the destination stripe and release that stripe. 6264 */ 6265 struct r5conf *conf = mddev->private; 6266 struct stripe_head *sh; 6267 struct md_rdev *rdev; 6268 sector_t first_sector, last_sector; 6269 int raid_disks = conf->previous_raid_disks; 6270 int data_disks = raid_disks - conf->max_degraded; 6271 int new_data_disks = conf->raid_disks - conf->max_degraded; 6272 int i; 6273 int dd_idx; 6274 sector_t writepos, readpos, safepos; 6275 sector_t stripe_addr; 6276 int reshape_sectors; 6277 struct list_head stripes; 6278 sector_t retn; 6279 6280 if (sector_nr == 0) { 6281 /* If restarting in the middle, skip the initial sectors */ 6282 if (mddev->reshape_backwards && 6283 conf->reshape_progress < raid5_size(mddev, 0, 0)) { 6284 sector_nr = raid5_size(mddev, 0, 0) 6285 - conf->reshape_progress; 6286 } else if (mddev->reshape_backwards && 6287 conf->reshape_progress == MaxSector) { 6288 /* shouldn't happen, but just in case, finish up.*/ 6289 sector_nr = MaxSector; 6290 } else if (!mddev->reshape_backwards && 6291 conf->reshape_progress > 0) 6292 sector_nr = conf->reshape_progress; 6293 sector_div(sector_nr, new_data_disks); 6294 if (sector_nr) { 6295 mddev->curr_resync_completed = sector_nr; 6296 sysfs_notify_dirent_safe(mddev->sysfs_completed); 6297 *skipped = 1; 6298 retn = sector_nr; 6299 goto finish; 6300 } 6301 } 6302 6303 /* We need to process a full chunk at a time. 6304 * If old and new chunk sizes differ, we need to process the 6305 * largest of these 6306 */ 6307 6308 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors); 6309 6310 /* We update the metadata at least every 10 seconds, or when 6311 * the data about to be copied would over-write the source of 6312 * the data at the front of the range. i.e. one new_stripe 6313 * along from reshape_progress new_maps to after where 6314 * reshape_safe old_maps to 6315 */ 6316 writepos = conf->reshape_progress; 6317 sector_div(writepos, new_data_disks); 6318 readpos = conf->reshape_progress; 6319 sector_div(readpos, data_disks); 6320 safepos = conf->reshape_safe; 6321 sector_div(safepos, data_disks); 6322 if (mddev->reshape_backwards) { 6323 BUG_ON(writepos < reshape_sectors); 6324 writepos -= reshape_sectors; 6325 readpos += reshape_sectors; 6326 safepos += reshape_sectors; 6327 } else { 6328 writepos += reshape_sectors; 6329 /* readpos and safepos are worst-case calculations. 6330 * A negative number is overly pessimistic, and causes 6331 * obvious problems for unsigned storage. So clip to 0. 6332 */ 6333 readpos -= min_t(sector_t, reshape_sectors, readpos); 6334 safepos -= min_t(sector_t, reshape_sectors, safepos); 6335 } 6336 6337 /* Having calculated the 'writepos' possibly use it 6338 * to set 'stripe_addr' which is where we will write to. 6339 */ 6340 if (mddev->reshape_backwards) { 6341 BUG_ON(conf->reshape_progress == 0); 6342 stripe_addr = writepos; 6343 BUG_ON((mddev->dev_sectors & 6344 ~((sector_t)reshape_sectors - 1)) 6345 - reshape_sectors - stripe_addr 6346 != sector_nr); 6347 } else { 6348 BUG_ON(writepos != sector_nr + reshape_sectors); 6349 stripe_addr = sector_nr; 6350 } 6351 6352 /* 'writepos' is the most advanced device address we might write. 6353 * 'readpos' is the least advanced device address we might read. 6354 * 'safepos' is the least address recorded in the metadata as having 6355 * been reshaped. 6356 * If there is a min_offset_diff, these are adjusted either by 6357 * increasing the safepos/readpos if diff is negative, or 6358 * increasing writepos if diff is positive. 6359 * If 'readpos' is then behind 'writepos', there is no way that we can 6360 * ensure safety in the face of a crash - that must be done by userspace 6361 * making a backup of the data. So in that case there is no particular 6362 * rush to update metadata. 6363 * Otherwise if 'safepos' is behind 'writepos', then we really need to 6364 * update the metadata to advance 'safepos' to match 'readpos' so that 6365 * we can be safe in the event of a crash. 6366 * So we insist on updating metadata if safepos is behind writepos and 6367 * readpos is beyond writepos. 6368 * In any case, update the metadata every 10 seconds. 6369 * Maybe that number should be configurable, but I'm not sure it is 6370 * worth it.... maybe it could be a multiple of safemode_delay??? 6371 */ 6372 if (conf->min_offset_diff < 0) { 6373 safepos += -conf->min_offset_diff; 6374 readpos += -conf->min_offset_diff; 6375 } else 6376 writepos += conf->min_offset_diff; 6377 6378 if ((mddev->reshape_backwards 6379 ? (safepos > writepos && readpos < writepos) 6380 : (safepos < writepos && readpos > writepos)) || 6381 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 6382 /* Cannot proceed until we've updated the superblock... */ 6383 wait_event(conf->wait_for_overlap, 6384 atomic_read(&conf->reshape_stripes)==0 6385 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 6386 if (atomic_read(&conf->reshape_stripes) != 0) 6387 return 0; 6388 mddev->reshape_position = conf->reshape_progress; 6389 mddev->curr_resync_completed = sector_nr; 6390 if (!mddev->reshape_backwards) 6391 /* Can update recovery_offset */ 6392 rdev_for_each(rdev, mddev) 6393 if (rdev->raid_disk >= 0 && 6394 !test_bit(Journal, &rdev->flags) && 6395 !test_bit(In_sync, &rdev->flags) && 6396 rdev->recovery_offset < sector_nr) 6397 rdev->recovery_offset = sector_nr; 6398 6399 conf->reshape_checkpoint = jiffies; 6400 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6401 md_wakeup_thread(mddev->thread); 6402 wait_event(mddev->sb_wait, mddev->sb_flags == 0 || 6403 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 6404 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6405 return 0; 6406 spin_lock_irq(&conf->device_lock); 6407 conf->reshape_safe = mddev->reshape_position; 6408 spin_unlock_irq(&conf->device_lock); 6409 wake_up(&conf->wait_for_overlap); 6410 sysfs_notify_dirent_safe(mddev->sysfs_completed); 6411 } 6412 6413 INIT_LIST_HEAD(&stripes); 6414 for (i = 0; i < reshape_sectors; i += RAID5_STRIPE_SECTORS(conf)) { 6415 int j; 6416 int skipped_disk = 0; 6417 sh = raid5_get_active_stripe(conf, NULL, stripe_addr+i, 6418 R5_GAS_NOQUIESCE); 6419 set_bit(STRIPE_EXPANDING, &sh->state); 6420 atomic_inc(&conf->reshape_stripes); 6421 /* If any of this stripe is beyond the end of the old 6422 * array, then we need to zero those blocks 6423 */ 6424 for (j=sh->disks; j--;) { 6425 sector_t s; 6426 if (j == sh->pd_idx) 6427 continue; 6428 if (conf->level == 6 && 6429 j == sh->qd_idx) 6430 continue; 6431 s = raid5_compute_blocknr(sh, j, 0); 6432 if (s < raid5_size(mddev, 0, 0)) { 6433 skipped_disk = 1; 6434 continue; 6435 } 6436 memset(page_address(sh->dev[j].page), 0, RAID5_STRIPE_SIZE(conf)); 6437 set_bit(R5_Expanded, &sh->dev[j].flags); 6438 set_bit(R5_UPTODATE, &sh->dev[j].flags); 6439 } 6440 if (!skipped_disk) { 6441 set_bit(STRIPE_EXPAND_READY, &sh->state); 6442 set_bit(STRIPE_HANDLE, &sh->state); 6443 } 6444 list_add(&sh->lru, &stripes); 6445 } 6446 spin_lock_irq(&conf->device_lock); 6447 if (mddev->reshape_backwards) 6448 conf->reshape_progress -= reshape_sectors * new_data_disks; 6449 else 6450 conf->reshape_progress += reshape_sectors * new_data_disks; 6451 spin_unlock_irq(&conf->device_lock); 6452 /* Ok, those stripe are ready. We can start scheduling 6453 * reads on the source stripes. 6454 * The source stripes are determined by mapping the first and last 6455 * block on the destination stripes. 6456 */ 6457 first_sector = 6458 raid5_compute_sector(conf, stripe_addr*(new_data_disks), 6459 1, &dd_idx, NULL); 6460 last_sector = 6461 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors) 6462 * new_data_disks - 1), 6463 1, &dd_idx, NULL); 6464 if (last_sector >= mddev->dev_sectors) 6465 last_sector = mddev->dev_sectors - 1; 6466 while (first_sector <= last_sector) { 6467 sh = raid5_get_active_stripe(conf, NULL, first_sector, 6468 R5_GAS_PREVIOUS | R5_GAS_NOQUIESCE); 6469 set_bit(STRIPE_EXPAND_SOURCE, &sh->state); 6470 set_bit(STRIPE_HANDLE, &sh->state); 6471 raid5_release_stripe(sh); 6472 first_sector += RAID5_STRIPE_SECTORS(conf); 6473 } 6474 /* Now that the sources are clearly marked, we can release 6475 * the destination stripes 6476 */ 6477 while (!list_empty(&stripes)) { 6478 sh = list_entry(stripes.next, struct stripe_head, lru); 6479 list_del_init(&sh->lru); 6480 raid5_release_stripe(sh); 6481 } 6482 /* If this takes us to the resync_max point where we have to pause, 6483 * then we need to write out the superblock. 6484 */ 6485 sector_nr += reshape_sectors; 6486 retn = reshape_sectors; 6487 finish: 6488 if (mddev->curr_resync_completed > mddev->resync_max || 6489 (sector_nr - mddev->curr_resync_completed) * 2 6490 >= mddev->resync_max - mddev->curr_resync_completed) { 6491 /* Cannot proceed until we've updated the superblock... */ 6492 wait_event(conf->wait_for_overlap, 6493 atomic_read(&conf->reshape_stripes) == 0 6494 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 6495 if (atomic_read(&conf->reshape_stripes) != 0) 6496 goto ret; 6497 mddev->reshape_position = conf->reshape_progress; 6498 mddev->curr_resync_completed = sector_nr; 6499 if (!mddev->reshape_backwards) 6500 /* Can update recovery_offset */ 6501 rdev_for_each(rdev, mddev) 6502 if (rdev->raid_disk >= 0 && 6503 !test_bit(Journal, &rdev->flags) && 6504 !test_bit(In_sync, &rdev->flags) && 6505 rdev->recovery_offset < sector_nr) 6506 rdev->recovery_offset = sector_nr; 6507 conf->reshape_checkpoint = jiffies; 6508 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6509 md_wakeup_thread(mddev->thread); 6510 wait_event(mddev->sb_wait, 6511 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) 6512 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 6513 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6514 goto ret; 6515 spin_lock_irq(&conf->device_lock); 6516 conf->reshape_safe = mddev->reshape_position; 6517 spin_unlock_irq(&conf->device_lock); 6518 wake_up(&conf->wait_for_overlap); 6519 sysfs_notify_dirent_safe(mddev->sysfs_completed); 6520 } 6521 ret: 6522 return retn; 6523 } 6524 6525 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr, 6526 int *skipped) 6527 { 6528 struct r5conf *conf = mddev->private; 6529 struct stripe_head *sh; 6530 sector_t max_sector = mddev->dev_sectors; 6531 sector_t sync_blocks; 6532 int still_degraded = 0; 6533 int i; 6534 6535 if (sector_nr >= max_sector) { 6536 /* just being told to finish up .. nothing much to do */ 6537 6538 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 6539 end_reshape(conf); 6540 return 0; 6541 } 6542 6543 if (mddev->curr_resync < max_sector) /* aborted */ 6544 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 6545 &sync_blocks, 1); 6546 else /* completed sync */ 6547 conf->fullsync = 0; 6548 md_bitmap_close_sync(mddev->bitmap); 6549 6550 return 0; 6551 } 6552 6553 /* Allow raid5_quiesce to complete */ 6554 wait_event(conf->wait_for_overlap, conf->quiesce != 2); 6555 6556 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 6557 return reshape_request(mddev, sector_nr, skipped); 6558 6559 /* No need to check resync_max as we never do more than one 6560 * stripe, and as resync_max will always be on a chunk boundary, 6561 * if the check in md_do_sync didn't fire, there is no chance 6562 * of overstepping resync_max here 6563 */ 6564 6565 /* if there is too many failed drives and we are trying 6566 * to resync, then assert that we are finished, because there is 6567 * nothing we can do. 6568 */ 6569 if (mddev->degraded >= conf->max_degraded && 6570 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 6571 sector_t rv = mddev->dev_sectors - sector_nr; 6572 *skipped = 1; 6573 return rv; 6574 } 6575 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 6576 !conf->fullsync && 6577 !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 6578 sync_blocks >= RAID5_STRIPE_SECTORS(conf)) { 6579 /* we can skip this block, and probably more */ 6580 do_div(sync_blocks, RAID5_STRIPE_SECTORS(conf)); 6581 *skipped = 1; 6582 /* keep things rounded to whole stripes */ 6583 return sync_blocks * RAID5_STRIPE_SECTORS(conf); 6584 } 6585 6586 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false); 6587 6588 sh = raid5_get_active_stripe(conf, NULL, sector_nr, 6589 R5_GAS_NOBLOCK); 6590 if (sh == NULL) { 6591 sh = raid5_get_active_stripe(conf, NULL, sector_nr, 0); 6592 /* make sure we don't swamp the stripe cache if someone else 6593 * is trying to get access 6594 */ 6595 schedule_timeout_uninterruptible(1); 6596 } 6597 /* Need to check if array will still be degraded after recovery/resync 6598 * Note in case of > 1 drive failures it's possible we're rebuilding 6599 * one drive while leaving another faulty drive in array. 6600 */ 6601 rcu_read_lock(); 6602 for (i = 0; i < conf->raid_disks; i++) { 6603 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 6604 6605 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) 6606 still_degraded = 1; 6607 } 6608 rcu_read_unlock(); 6609 6610 md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded); 6611 6612 set_bit(STRIPE_SYNC_REQUESTED, &sh->state); 6613 set_bit(STRIPE_HANDLE, &sh->state); 6614 6615 raid5_release_stripe(sh); 6616 6617 return RAID5_STRIPE_SECTORS(conf); 6618 } 6619 6620 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio, 6621 unsigned int offset) 6622 { 6623 /* We may not be able to submit a whole bio at once as there 6624 * may not be enough stripe_heads available. 6625 * We cannot pre-allocate enough stripe_heads as we may need 6626 * more than exist in the cache (if we allow ever large chunks). 6627 * So we do one stripe head at a time and record in 6628 * ->bi_hw_segments how many have been done. 6629 * 6630 * We *know* that this entire raid_bio is in one chunk, so 6631 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector. 6632 */ 6633 struct stripe_head *sh; 6634 int dd_idx; 6635 sector_t sector, logical_sector, last_sector; 6636 int scnt = 0; 6637 int handled = 0; 6638 6639 logical_sector = raid_bio->bi_iter.bi_sector & 6640 ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1); 6641 sector = raid5_compute_sector(conf, logical_sector, 6642 0, &dd_idx, NULL); 6643 last_sector = bio_end_sector(raid_bio); 6644 6645 for (; logical_sector < last_sector; 6646 logical_sector += RAID5_STRIPE_SECTORS(conf), 6647 sector += RAID5_STRIPE_SECTORS(conf), 6648 scnt++) { 6649 6650 if (scnt < offset) 6651 /* already done this stripe */ 6652 continue; 6653 6654 sh = raid5_get_active_stripe(conf, NULL, sector, 6655 R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE); 6656 if (!sh) { 6657 /* failed to get a stripe - must wait */ 6658 conf->retry_read_aligned = raid_bio; 6659 conf->retry_read_offset = scnt; 6660 return handled; 6661 } 6662 6663 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) { 6664 raid5_release_stripe(sh); 6665 conf->retry_read_aligned = raid_bio; 6666 conf->retry_read_offset = scnt; 6667 return handled; 6668 } 6669 6670 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags); 6671 handle_stripe(sh); 6672 raid5_release_stripe(sh); 6673 handled++; 6674 } 6675 6676 bio_endio(raid_bio); 6677 6678 if (atomic_dec_and_test(&conf->active_aligned_reads)) 6679 wake_up(&conf->wait_for_quiescent); 6680 return handled; 6681 } 6682 6683 static int handle_active_stripes(struct r5conf *conf, int group, 6684 struct r5worker *worker, 6685 struct list_head *temp_inactive_list) 6686 __must_hold(&conf->device_lock) 6687 { 6688 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh; 6689 int i, batch_size = 0, hash; 6690 bool release_inactive = false; 6691 6692 while (batch_size < MAX_STRIPE_BATCH && 6693 (sh = __get_priority_stripe(conf, group)) != NULL) 6694 batch[batch_size++] = sh; 6695 6696 if (batch_size == 0) { 6697 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 6698 if (!list_empty(temp_inactive_list + i)) 6699 break; 6700 if (i == NR_STRIPE_HASH_LOCKS) { 6701 spin_unlock_irq(&conf->device_lock); 6702 log_flush_stripe_to_raid(conf); 6703 spin_lock_irq(&conf->device_lock); 6704 return batch_size; 6705 } 6706 release_inactive = true; 6707 } 6708 spin_unlock_irq(&conf->device_lock); 6709 6710 release_inactive_stripe_list(conf, temp_inactive_list, 6711 NR_STRIPE_HASH_LOCKS); 6712 6713 r5l_flush_stripe_to_raid(conf->log); 6714 if (release_inactive) { 6715 spin_lock_irq(&conf->device_lock); 6716 return 0; 6717 } 6718 6719 for (i = 0; i < batch_size; i++) 6720 handle_stripe(batch[i]); 6721 log_write_stripe_run(conf); 6722 6723 cond_resched(); 6724 6725 spin_lock_irq(&conf->device_lock); 6726 for (i = 0; i < batch_size; i++) { 6727 hash = batch[i]->hash_lock_index; 6728 __release_stripe(conf, batch[i], &temp_inactive_list[hash]); 6729 } 6730 return batch_size; 6731 } 6732 6733 static void raid5_do_work(struct work_struct *work) 6734 { 6735 struct r5worker *worker = container_of(work, struct r5worker, work); 6736 struct r5worker_group *group = worker->group; 6737 struct r5conf *conf = group->conf; 6738 struct mddev *mddev = conf->mddev; 6739 int group_id = group - conf->worker_groups; 6740 int handled; 6741 struct blk_plug plug; 6742 6743 pr_debug("+++ raid5worker active\n"); 6744 6745 blk_start_plug(&plug); 6746 handled = 0; 6747 spin_lock_irq(&conf->device_lock); 6748 while (1) { 6749 int batch_size, released; 6750 6751 released = release_stripe_list(conf, worker->temp_inactive_list); 6752 6753 batch_size = handle_active_stripes(conf, group_id, worker, 6754 worker->temp_inactive_list); 6755 worker->working = false; 6756 if (!batch_size && !released) 6757 break; 6758 handled += batch_size; 6759 wait_event_lock_irq(mddev->sb_wait, 6760 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags), 6761 conf->device_lock); 6762 } 6763 pr_debug("%d stripes handled\n", handled); 6764 6765 spin_unlock_irq(&conf->device_lock); 6766 6767 flush_deferred_bios(conf); 6768 6769 r5l_flush_stripe_to_raid(conf->log); 6770 6771 async_tx_issue_pending_all(); 6772 blk_finish_plug(&plug); 6773 6774 pr_debug("--- raid5worker inactive\n"); 6775 } 6776 6777 /* 6778 * This is our raid5 kernel thread. 6779 * 6780 * We scan the hash table for stripes which can be handled now. 6781 * During the scan, completed stripes are saved for us by the interrupt 6782 * handler, so that they will not have to wait for our next wakeup. 6783 */ 6784 static void raid5d(struct md_thread *thread) 6785 { 6786 struct mddev *mddev = thread->mddev; 6787 struct r5conf *conf = mddev->private; 6788 int handled; 6789 struct blk_plug plug; 6790 6791 pr_debug("+++ raid5d active\n"); 6792 6793 md_check_recovery(mddev); 6794 6795 blk_start_plug(&plug); 6796 handled = 0; 6797 spin_lock_irq(&conf->device_lock); 6798 while (1) { 6799 struct bio *bio; 6800 int batch_size, released; 6801 unsigned int offset; 6802 6803 released = release_stripe_list(conf, conf->temp_inactive_list); 6804 if (released) 6805 clear_bit(R5_DID_ALLOC, &conf->cache_state); 6806 6807 if ( 6808 !list_empty(&conf->bitmap_list)) { 6809 /* Now is a good time to flush some bitmap updates */ 6810 conf->seq_flush++; 6811 spin_unlock_irq(&conf->device_lock); 6812 md_bitmap_unplug(mddev->bitmap); 6813 spin_lock_irq(&conf->device_lock); 6814 conf->seq_write = conf->seq_flush; 6815 activate_bit_delay(conf, conf->temp_inactive_list); 6816 } 6817 raid5_activate_delayed(conf); 6818 6819 while ((bio = remove_bio_from_retry(conf, &offset))) { 6820 int ok; 6821 spin_unlock_irq(&conf->device_lock); 6822 ok = retry_aligned_read(conf, bio, offset); 6823 spin_lock_irq(&conf->device_lock); 6824 if (!ok) 6825 break; 6826 handled++; 6827 } 6828 6829 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL, 6830 conf->temp_inactive_list); 6831 if (!batch_size && !released) 6832 break; 6833 handled += batch_size; 6834 6835 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) { 6836 spin_unlock_irq(&conf->device_lock); 6837 md_check_recovery(mddev); 6838 spin_lock_irq(&conf->device_lock); 6839 6840 /* 6841 * Waiting on MD_SB_CHANGE_PENDING below may deadlock 6842 * seeing md_check_recovery() is needed to clear 6843 * the flag when using mdmon. 6844 */ 6845 continue; 6846 } 6847 6848 wait_event_lock_irq(mddev->sb_wait, 6849 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags), 6850 conf->device_lock); 6851 } 6852 pr_debug("%d stripes handled\n", handled); 6853 6854 spin_unlock_irq(&conf->device_lock); 6855 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) && 6856 mutex_trylock(&conf->cache_size_mutex)) { 6857 grow_one_stripe(conf, __GFP_NOWARN); 6858 /* Set flag even if allocation failed. This helps 6859 * slow down allocation requests when mem is short 6860 */ 6861 set_bit(R5_DID_ALLOC, &conf->cache_state); 6862 mutex_unlock(&conf->cache_size_mutex); 6863 } 6864 6865 flush_deferred_bios(conf); 6866 6867 r5l_flush_stripe_to_raid(conf->log); 6868 6869 async_tx_issue_pending_all(); 6870 blk_finish_plug(&plug); 6871 6872 pr_debug("--- raid5d inactive\n"); 6873 } 6874 6875 static ssize_t 6876 raid5_show_stripe_cache_size(struct mddev *mddev, char *page) 6877 { 6878 struct r5conf *conf; 6879 int ret = 0; 6880 spin_lock(&mddev->lock); 6881 conf = mddev->private; 6882 if (conf) 6883 ret = sprintf(page, "%d\n", conf->min_nr_stripes); 6884 spin_unlock(&mddev->lock); 6885 return ret; 6886 } 6887 6888 int 6889 raid5_set_cache_size(struct mddev *mddev, int size) 6890 { 6891 int result = 0; 6892 struct r5conf *conf = mddev->private; 6893 6894 if (size <= 16 || size > 32768) 6895 return -EINVAL; 6896 6897 conf->min_nr_stripes = size; 6898 mutex_lock(&conf->cache_size_mutex); 6899 while (size < conf->max_nr_stripes && 6900 drop_one_stripe(conf)) 6901 ; 6902 mutex_unlock(&conf->cache_size_mutex); 6903 6904 md_allow_write(mddev); 6905 6906 mutex_lock(&conf->cache_size_mutex); 6907 while (size > conf->max_nr_stripes) 6908 if (!grow_one_stripe(conf, GFP_KERNEL)) { 6909 conf->min_nr_stripes = conf->max_nr_stripes; 6910 result = -ENOMEM; 6911 break; 6912 } 6913 mutex_unlock(&conf->cache_size_mutex); 6914 6915 return result; 6916 } 6917 EXPORT_SYMBOL(raid5_set_cache_size); 6918 6919 static ssize_t 6920 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len) 6921 { 6922 struct r5conf *conf; 6923 unsigned long new; 6924 int err; 6925 6926 if (len >= PAGE_SIZE) 6927 return -EINVAL; 6928 if (kstrtoul(page, 10, &new)) 6929 return -EINVAL; 6930 err = mddev_lock(mddev); 6931 if (err) 6932 return err; 6933 conf = mddev->private; 6934 if (!conf) 6935 err = -ENODEV; 6936 else 6937 err = raid5_set_cache_size(mddev, new); 6938 mddev_unlock(mddev); 6939 6940 return err ?: len; 6941 } 6942 6943 static struct md_sysfs_entry 6944 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR, 6945 raid5_show_stripe_cache_size, 6946 raid5_store_stripe_cache_size); 6947 6948 static ssize_t 6949 raid5_show_rmw_level(struct mddev *mddev, char *page) 6950 { 6951 struct r5conf *conf = mddev->private; 6952 if (conf) 6953 return sprintf(page, "%d\n", conf->rmw_level); 6954 else 6955 return 0; 6956 } 6957 6958 static ssize_t 6959 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len) 6960 { 6961 struct r5conf *conf = mddev->private; 6962 unsigned long new; 6963 6964 if (!conf) 6965 return -ENODEV; 6966 6967 if (len >= PAGE_SIZE) 6968 return -EINVAL; 6969 6970 if (kstrtoul(page, 10, &new)) 6971 return -EINVAL; 6972 6973 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome) 6974 return -EINVAL; 6975 6976 if (new != PARITY_DISABLE_RMW && 6977 new != PARITY_ENABLE_RMW && 6978 new != PARITY_PREFER_RMW) 6979 return -EINVAL; 6980 6981 conf->rmw_level = new; 6982 return len; 6983 } 6984 6985 static struct md_sysfs_entry 6986 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR, 6987 raid5_show_rmw_level, 6988 raid5_store_rmw_level); 6989 6990 static ssize_t 6991 raid5_show_stripe_size(struct mddev *mddev, char *page) 6992 { 6993 struct r5conf *conf; 6994 int ret = 0; 6995 6996 spin_lock(&mddev->lock); 6997 conf = mddev->private; 6998 if (conf) 6999 ret = sprintf(page, "%lu\n", RAID5_STRIPE_SIZE(conf)); 7000 spin_unlock(&mddev->lock); 7001 return ret; 7002 } 7003 7004 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 7005 static ssize_t 7006 raid5_store_stripe_size(struct mddev *mddev, const char *page, size_t len) 7007 { 7008 struct r5conf *conf; 7009 unsigned long new; 7010 int err; 7011 int size; 7012 7013 if (len >= PAGE_SIZE) 7014 return -EINVAL; 7015 if (kstrtoul(page, 10, &new)) 7016 return -EINVAL; 7017 7018 /* 7019 * The value should not be bigger than PAGE_SIZE. It requires to 7020 * be multiple of DEFAULT_STRIPE_SIZE and the value should be power 7021 * of two. 7022 */ 7023 if (new % DEFAULT_STRIPE_SIZE != 0 || 7024 new > PAGE_SIZE || new == 0 || 7025 new != roundup_pow_of_two(new)) 7026 return -EINVAL; 7027 7028 err = mddev_lock(mddev); 7029 if (err) 7030 return err; 7031 7032 conf = mddev->private; 7033 if (!conf) { 7034 err = -ENODEV; 7035 goto out_unlock; 7036 } 7037 7038 if (new == conf->stripe_size) 7039 goto out_unlock; 7040 7041 pr_debug("md/raid: change stripe_size from %lu to %lu\n", 7042 conf->stripe_size, new); 7043 7044 if (mddev->sync_thread || 7045 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7046 mddev->reshape_position != MaxSector || 7047 mddev->sysfs_active) { 7048 err = -EBUSY; 7049 goto out_unlock; 7050 } 7051 7052 mddev_suspend(mddev); 7053 mutex_lock(&conf->cache_size_mutex); 7054 size = conf->max_nr_stripes; 7055 7056 shrink_stripes(conf); 7057 7058 conf->stripe_size = new; 7059 conf->stripe_shift = ilog2(new) - 9; 7060 conf->stripe_sectors = new >> 9; 7061 if (grow_stripes(conf, size)) { 7062 pr_warn("md/raid:%s: couldn't allocate buffers\n", 7063 mdname(mddev)); 7064 err = -ENOMEM; 7065 } 7066 mutex_unlock(&conf->cache_size_mutex); 7067 mddev_resume(mddev); 7068 7069 out_unlock: 7070 mddev_unlock(mddev); 7071 return err ?: len; 7072 } 7073 7074 static struct md_sysfs_entry 7075 raid5_stripe_size = __ATTR(stripe_size, 0644, 7076 raid5_show_stripe_size, 7077 raid5_store_stripe_size); 7078 #else 7079 static struct md_sysfs_entry 7080 raid5_stripe_size = __ATTR(stripe_size, 0444, 7081 raid5_show_stripe_size, 7082 NULL); 7083 #endif 7084 7085 static ssize_t 7086 raid5_show_preread_threshold(struct mddev *mddev, char *page) 7087 { 7088 struct r5conf *conf; 7089 int ret = 0; 7090 spin_lock(&mddev->lock); 7091 conf = mddev->private; 7092 if (conf) 7093 ret = sprintf(page, "%d\n", conf->bypass_threshold); 7094 spin_unlock(&mddev->lock); 7095 return ret; 7096 } 7097 7098 static ssize_t 7099 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len) 7100 { 7101 struct r5conf *conf; 7102 unsigned long new; 7103 int err; 7104 7105 if (len >= PAGE_SIZE) 7106 return -EINVAL; 7107 if (kstrtoul(page, 10, &new)) 7108 return -EINVAL; 7109 7110 err = mddev_lock(mddev); 7111 if (err) 7112 return err; 7113 conf = mddev->private; 7114 if (!conf) 7115 err = -ENODEV; 7116 else if (new > conf->min_nr_stripes) 7117 err = -EINVAL; 7118 else 7119 conf->bypass_threshold = new; 7120 mddev_unlock(mddev); 7121 return err ?: len; 7122 } 7123 7124 static struct md_sysfs_entry 7125 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold, 7126 S_IRUGO | S_IWUSR, 7127 raid5_show_preread_threshold, 7128 raid5_store_preread_threshold); 7129 7130 static ssize_t 7131 raid5_show_skip_copy(struct mddev *mddev, char *page) 7132 { 7133 struct r5conf *conf; 7134 int ret = 0; 7135 spin_lock(&mddev->lock); 7136 conf = mddev->private; 7137 if (conf) 7138 ret = sprintf(page, "%d\n", conf->skip_copy); 7139 spin_unlock(&mddev->lock); 7140 return ret; 7141 } 7142 7143 static ssize_t 7144 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len) 7145 { 7146 struct r5conf *conf; 7147 unsigned long new; 7148 int err; 7149 7150 if (len >= PAGE_SIZE) 7151 return -EINVAL; 7152 if (kstrtoul(page, 10, &new)) 7153 return -EINVAL; 7154 new = !!new; 7155 7156 err = mddev_lock(mddev); 7157 if (err) 7158 return err; 7159 conf = mddev->private; 7160 if (!conf) 7161 err = -ENODEV; 7162 else if (new != conf->skip_copy) { 7163 struct request_queue *q = mddev->queue; 7164 7165 mddev_suspend(mddev); 7166 conf->skip_copy = new; 7167 if (new) 7168 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q); 7169 else 7170 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q); 7171 mddev_resume(mddev); 7172 } 7173 mddev_unlock(mddev); 7174 return err ?: len; 7175 } 7176 7177 static struct md_sysfs_entry 7178 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR, 7179 raid5_show_skip_copy, 7180 raid5_store_skip_copy); 7181 7182 static ssize_t 7183 stripe_cache_active_show(struct mddev *mddev, char *page) 7184 { 7185 struct r5conf *conf = mddev->private; 7186 if (conf) 7187 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes)); 7188 else 7189 return 0; 7190 } 7191 7192 static struct md_sysfs_entry 7193 raid5_stripecache_active = __ATTR_RO(stripe_cache_active); 7194 7195 static ssize_t 7196 raid5_show_group_thread_cnt(struct mddev *mddev, char *page) 7197 { 7198 struct r5conf *conf; 7199 int ret = 0; 7200 spin_lock(&mddev->lock); 7201 conf = mddev->private; 7202 if (conf) 7203 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group); 7204 spin_unlock(&mddev->lock); 7205 return ret; 7206 } 7207 7208 static int alloc_thread_groups(struct r5conf *conf, int cnt, 7209 int *group_cnt, 7210 struct r5worker_group **worker_groups); 7211 static ssize_t 7212 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len) 7213 { 7214 struct r5conf *conf; 7215 unsigned int new; 7216 int err; 7217 struct r5worker_group *new_groups, *old_groups; 7218 int group_cnt; 7219 7220 if (len >= PAGE_SIZE) 7221 return -EINVAL; 7222 if (kstrtouint(page, 10, &new)) 7223 return -EINVAL; 7224 /* 8192 should be big enough */ 7225 if (new > 8192) 7226 return -EINVAL; 7227 7228 err = mddev_lock(mddev); 7229 if (err) 7230 return err; 7231 conf = mddev->private; 7232 if (!conf) 7233 err = -ENODEV; 7234 else if (new != conf->worker_cnt_per_group) { 7235 mddev_suspend(mddev); 7236 7237 old_groups = conf->worker_groups; 7238 if (old_groups) 7239 flush_workqueue(raid5_wq); 7240 7241 err = alloc_thread_groups(conf, new, &group_cnt, &new_groups); 7242 if (!err) { 7243 spin_lock_irq(&conf->device_lock); 7244 conf->group_cnt = group_cnt; 7245 conf->worker_cnt_per_group = new; 7246 conf->worker_groups = new_groups; 7247 spin_unlock_irq(&conf->device_lock); 7248 7249 if (old_groups) 7250 kfree(old_groups[0].workers); 7251 kfree(old_groups); 7252 } 7253 mddev_resume(mddev); 7254 } 7255 mddev_unlock(mddev); 7256 7257 return err ?: len; 7258 } 7259 7260 static struct md_sysfs_entry 7261 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR, 7262 raid5_show_group_thread_cnt, 7263 raid5_store_group_thread_cnt); 7264 7265 static struct attribute *raid5_attrs[] = { 7266 &raid5_stripecache_size.attr, 7267 &raid5_stripecache_active.attr, 7268 &raid5_preread_bypass_threshold.attr, 7269 &raid5_group_thread_cnt.attr, 7270 &raid5_skip_copy.attr, 7271 &raid5_rmw_level.attr, 7272 &raid5_stripe_size.attr, 7273 &r5c_journal_mode.attr, 7274 &ppl_write_hint.attr, 7275 NULL, 7276 }; 7277 static const struct attribute_group raid5_attrs_group = { 7278 .name = NULL, 7279 .attrs = raid5_attrs, 7280 }; 7281 7282 static int alloc_thread_groups(struct r5conf *conf, int cnt, int *group_cnt, 7283 struct r5worker_group **worker_groups) 7284 { 7285 int i, j, k; 7286 ssize_t size; 7287 struct r5worker *workers; 7288 7289 if (cnt == 0) { 7290 *group_cnt = 0; 7291 *worker_groups = NULL; 7292 return 0; 7293 } 7294 *group_cnt = num_possible_nodes(); 7295 size = sizeof(struct r5worker) * cnt; 7296 workers = kcalloc(size, *group_cnt, GFP_NOIO); 7297 *worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group), 7298 GFP_NOIO); 7299 if (!*worker_groups || !workers) { 7300 kfree(workers); 7301 kfree(*worker_groups); 7302 return -ENOMEM; 7303 } 7304 7305 for (i = 0; i < *group_cnt; i++) { 7306 struct r5worker_group *group; 7307 7308 group = &(*worker_groups)[i]; 7309 INIT_LIST_HEAD(&group->handle_list); 7310 INIT_LIST_HEAD(&group->loprio_list); 7311 group->conf = conf; 7312 group->workers = workers + i * cnt; 7313 7314 for (j = 0; j < cnt; j++) { 7315 struct r5worker *worker = group->workers + j; 7316 worker->group = group; 7317 INIT_WORK(&worker->work, raid5_do_work); 7318 7319 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++) 7320 INIT_LIST_HEAD(worker->temp_inactive_list + k); 7321 } 7322 } 7323 7324 return 0; 7325 } 7326 7327 static void free_thread_groups(struct r5conf *conf) 7328 { 7329 if (conf->worker_groups) 7330 kfree(conf->worker_groups[0].workers); 7331 kfree(conf->worker_groups); 7332 conf->worker_groups = NULL; 7333 } 7334 7335 static sector_t 7336 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks) 7337 { 7338 struct r5conf *conf = mddev->private; 7339 7340 if (!sectors) 7341 sectors = mddev->dev_sectors; 7342 if (!raid_disks) 7343 /* size is defined by the smallest of previous and new size */ 7344 raid_disks = min(conf->raid_disks, conf->previous_raid_disks); 7345 7346 sectors &= ~((sector_t)conf->chunk_sectors - 1); 7347 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1); 7348 return sectors * (raid_disks - conf->max_degraded); 7349 } 7350 7351 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 7352 { 7353 safe_put_page(percpu->spare_page); 7354 percpu->spare_page = NULL; 7355 kvfree(percpu->scribble); 7356 percpu->scribble = NULL; 7357 } 7358 7359 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 7360 { 7361 if (conf->level == 6 && !percpu->spare_page) { 7362 percpu->spare_page = alloc_page(GFP_KERNEL); 7363 if (!percpu->spare_page) 7364 return -ENOMEM; 7365 } 7366 7367 if (scribble_alloc(percpu, 7368 max(conf->raid_disks, 7369 conf->previous_raid_disks), 7370 max(conf->chunk_sectors, 7371 conf->prev_chunk_sectors) 7372 / RAID5_STRIPE_SECTORS(conf))) { 7373 free_scratch_buffer(conf, percpu); 7374 return -ENOMEM; 7375 } 7376 7377 local_lock_init(&percpu->lock); 7378 return 0; 7379 } 7380 7381 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node) 7382 { 7383 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node); 7384 7385 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu)); 7386 return 0; 7387 } 7388 7389 static void raid5_free_percpu(struct r5conf *conf) 7390 { 7391 if (!conf->percpu) 7392 return; 7393 7394 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node); 7395 free_percpu(conf->percpu); 7396 } 7397 7398 static void free_conf(struct r5conf *conf) 7399 { 7400 int i; 7401 7402 log_exit(conf); 7403 7404 unregister_shrinker(&conf->shrinker); 7405 free_thread_groups(conf); 7406 shrink_stripes(conf); 7407 raid5_free_percpu(conf); 7408 for (i = 0; i < conf->pool_size; i++) 7409 if (conf->disks[i].extra_page) 7410 put_page(conf->disks[i].extra_page); 7411 kfree(conf->disks); 7412 bioset_exit(&conf->bio_split); 7413 kfree(conf->stripe_hashtbl); 7414 kfree(conf->pending_data); 7415 kfree(conf); 7416 } 7417 7418 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node) 7419 { 7420 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node); 7421 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu); 7422 7423 if (alloc_scratch_buffer(conf, percpu)) { 7424 pr_warn("%s: failed memory allocation for cpu%u\n", 7425 __func__, cpu); 7426 return -ENOMEM; 7427 } 7428 return 0; 7429 } 7430 7431 static int raid5_alloc_percpu(struct r5conf *conf) 7432 { 7433 int err = 0; 7434 7435 conf->percpu = alloc_percpu(struct raid5_percpu); 7436 if (!conf->percpu) 7437 return -ENOMEM; 7438 7439 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node); 7440 if (!err) { 7441 conf->scribble_disks = max(conf->raid_disks, 7442 conf->previous_raid_disks); 7443 conf->scribble_sectors = max(conf->chunk_sectors, 7444 conf->prev_chunk_sectors); 7445 } 7446 return err; 7447 } 7448 7449 static unsigned long raid5_cache_scan(struct shrinker *shrink, 7450 struct shrink_control *sc) 7451 { 7452 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker); 7453 unsigned long ret = SHRINK_STOP; 7454 7455 if (mutex_trylock(&conf->cache_size_mutex)) { 7456 ret= 0; 7457 while (ret < sc->nr_to_scan && 7458 conf->max_nr_stripes > conf->min_nr_stripes) { 7459 if (drop_one_stripe(conf) == 0) { 7460 ret = SHRINK_STOP; 7461 break; 7462 } 7463 ret++; 7464 } 7465 mutex_unlock(&conf->cache_size_mutex); 7466 } 7467 return ret; 7468 } 7469 7470 static unsigned long raid5_cache_count(struct shrinker *shrink, 7471 struct shrink_control *sc) 7472 { 7473 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker); 7474 7475 if (conf->max_nr_stripes < conf->min_nr_stripes) 7476 /* unlikely, but not impossible */ 7477 return 0; 7478 return conf->max_nr_stripes - conf->min_nr_stripes; 7479 } 7480 7481 static struct r5conf *setup_conf(struct mddev *mddev) 7482 { 7483 struct r5conf *conf; 7484 int raid_disk, memory, max_disks; 7485 struct md_rdev *rdev; 7486 struct disk_info *disk; 7487 char pers_name[6]; 7488 int i; 7489 int group_cnt; 7490 struct r5worker_group *new_group; 7491 int ret = -ENOMEM; 7492 7493 if (mddev->new_level != 5 7494 && mddev->new_level != 4 7495 && mddev->new_level != 6) { 7496 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n", 7497 mdname(mddev), mddev->new_level); 7498 return ERR_PTR(-EIO); 7499 } 7500 if ((mddev->new_level == 5 7501 && !algorithm_valid_raid5(mddev->new_layout)) || 7502 (mddev->new_level == 6 7503 && !algorithm_valid_raid6(mddev->new_layout))) { 7504 pr_warn("md/raid:%s: layout %d not supported\n", 7505 mdname(mddev), mddev->new_layout); 7506 return ERR_PTR(-EIO); 7507 } 7508 if (mddev->new_level == 6 && mddev->raid_disks < 4) { 7509 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n", 7510 mdname(mddev), mddev->raid_disks); 7511 return ERR_PTR(-EINVAL); 7512 } 7513 7514 if (!mddev->new_chunk_sectors || 7515 (mddev->new_chunk_sectors << 9) % PAGE_SIZE || 7516 !is_power_of_2(mddev->new_chunk_sectors)) { 7517 pr_warn("md/raid:%s: invalid chunk size %d\n", 7518 mdname(mddev), mddev->new_chunk_sectors << 9); 7519 return ERR_PTR(-EINVAL); 7520 } 7521 7522 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL); 7523 if (conf == NULL) 7524 goto abort; 7525 7526 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 7527 conf->stripe_size = DEFAULT_STRIPE_SIZE; 7528 conf->stripe_shift = ilog2(DEFAULT_STRIPE_SIZE) - 9; 7529 conf->stripe_sectors = DEFAULT_STRIPE_SIZE >> 9; 7530 #endif 7531 INIT_LIST_HEAD(&conf->free_list); 7532 INIT_LIST_HEAD(&conf->pending_list); 7533 conf->pending_data = kcalloc(PENDING_IO_MAX, 7534 sizeof(struct r5pending_data), 7535 GFP_KERNEL); 7536 if (!conf->pending_data) 7537 goto abort; 7538 for (i = 0; i < PENDING_IO_MAX; i++) 7539 list_add(&conf->pending_data[i].sibling, &conf->free_list); 7540 /* Don't enable multi-threading by default*/ 7541 if (!alloc_thread_groups(conf, 0, &group_cnt, &new_group)) { 7542 conf->group_cnt = group_cnt; 7543 conf->worker_cnt_per_group = 0; 7544 conf->worker_groups = new_group; 7545 } else 7546 goto abort; 7547 spin_lock_init(&conf->device_lock); 7548 seqcount_spinlock_init(&conf->gen_lock, &conf->device_lock); 7549 mutex_init(&conf->cache_size_mutex); 7550 7551 init_waitqueue_head(&conf->wait_for_quiescent); 7552 init_waitqueue_head(&conf->wait_for_stripe); 7553 init_waitqueue_head(&conf->wait_for_overlap); 7554 INIT_LIST_HEAD(&conf->handle_list); 7555 INIT_LIST_HEAD(&conf->loprio_list); 7556 INIT_LIST_HEAD(&conf->hold_list); 7557 INIT_LIST_HEAD(&conf->delayed_list); 7558 INIT_LIST_HEAD(&conf->bitmap_list); 7559 init_llist_head(&conf->released_stripes); 7560 atomic_set(&conf->active_stripes, 0); 7561 atomic_set(&conf->preread_active_stripes, 0); 7562 atomic_set(&conf->active_aligned_reads, 0); 7563 spin_lock_init(&conf->pending_bios_lock); 7564 conf->batch_bio_dispatch = true; 7565 rdev_for_each(rdev, mddev) { 7566 if (test_bit(Journal, &rdev->flags)) 7567 continue; 7568 if (bdev_nonrot(rdev->bdev)) { 7569 conf->batch_bio_dispatch = false; 7570 break; 7571 } 7572 } 7573 7574 conf->bypass_threshold = BYPASS_THRESHOLD; 7575 conf->recovery_disabled = mddev->recovery_disabled - 1; 7576 7577 conf->raid_disks = mddev->raid_disks; 7578 if (mddev->reshape_position == MaxSector) 7579 conf->previous_raid_disks = mddev->raid_disks; 7580 else 7581 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks; 7582 max_disks = max(conf->raid_disks, conf->previous_raid_disks); 7583 7584 conf->disks = kcalloc(max_disks, sizeof(struct disk_info), 7585 GFP_KERNEL); 7586 7587 if (!conf->disks) 7588 goto abort; 7589 7590 for (i = 0; i < max_disks; i++) { 7591 conf->disks[i].extra_page = alloc_page(GFP_KERNEL); 7592 if (!conf->disks[i].extra_page) 7593 goto abort; 7594 } 7595 7596 ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 7597 if (ret) 7598 goto abort; 7599 conf->mddev = mddev; 7600 7601 ret = -ENOMEM; 7602 conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL); 7603 if (!conf->stripe_hashtbl) 7604 goto abort; 7605 7606 /* We init hash_locks[0] separately to that it can be used 7607 * as the reference lock in the spin_lock_nest_lock() call 7608 * in lock_all_device_hash_locks_irq in order to convince 7609 * lockdep that we know what we are doing. 7610 */ 7611 spin_lock_init(conf->hash_locks); 7612 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 7613 spin_lock_init(conf->hash_locks + i); 7614 7615 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 7616 INIT_LIST_HEAD(conf->inactive_list + i); 7617 7618 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 7619 INIT_LIST_HEAD(conf->temp_inactive_list + i); 7620 7621 atomic_set(&conf->r5c_cached_full_stripes, 0); 7622 INIT_LIST_HEAD(&conf->r5c_full_stripe_list); 7623 atomic_set(&conf->r5c_cached_partial_stripes, 0); 7624 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list); 7625 atomic_set(&conf->r5c_flushing_full_stripes, 0); 7626 atomic_set(&conf->r5c_flushing_partial_stripes, 0); 7627 7628 conf->level = mddev->new_level; 7629 conf->chunk_sectors = mddev->new_chunk_sectors; 7630 ret = raid5_alloc_percpu(conf); 7631 if (ret) 7632 goto abort; 7633 7634 pr_debug("raid456: run(%s) called.\n", mdname(mddev)); 7635 7636 ret = -EIO; 7637 rdev_for_each(rdev, mddev) { 7638 raid_disk = rdev->raid_disk; 7639 if (raid_disk >= max_disks 7640 || raid_disk < 0 || test_bit(Journal, &rdev->flags)) 7641 continue; 7642 disk = conf->disks + raid_disk; 7643 7644 if (test_bit(Replacement, &rdev->flags)) { 7645 if (disk->replacement) 7646 goto abort; 7647 RCU_INIT_POINTER(disk->replacement, rdev); 7648 } else { 7649 if (disk->rdev) 7650 goto abort; 7651 RCU_INIT_POINTER(disk->rdev, rdev); 7652 } 7653 7654 if (test_bit(In_sync, &rdev->flags)) { 7655 pr_info("md/raid:%s: device %pg operational as raid disk %d\n", 7656 mdname(mddev), rdev->bdev, raid_disk); 7657 } else if (rdev->saved_raid_disk != raid_disk) 7658 /* Cannot rely on bitmap to complete recovery */ 7659 conf->fullsync = 1; 7660 } 7661 7662 conf->level = mddev->new_level; 7663 if (conf->level == 6) { 7664 conf->max_degraded = 2; 7665 if (raid6_call.xor_syndrome) 7666 conf->rmw_level = PARITY_ENABLE_RMW; 7667 else 7668 conf->rmw_level = PARITY_DISABLE_RMW; 7669 } else { 7670 conf->max_degraded = 1; 7671 conf->rmw_level = PARITY_ENABLE_RMW; 7672 } 7673 conf->algorithm = mddev->new_layout; 7674 conf->reshape_progress = mddev->reshape_position; 7675 if (conf->reshape_progress != MaxSector) { 7676 conf->prev_chunk_sectors = mddev->chunk_sectors; 7677 conf->prev_algo = mddev->layout; 7678 } else { 7679 conf->prev_chunk_sectors = conf->chunk_sectors; 7680 conf->prev_algo = conf->algorithm; 7681 } 7682 7683 conf->min_nr_stripes = NR_STRIPES; 7684 if (mddev->reshape_position != MaxSector) { 7685 int stripes = max_t(int, 7686 ((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4, 7687 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4); 7688 conf->min_nr_stripes = max(NR_STRIPES, stripes); 7689 if (conf->min_nr_stripes != NR_STRIPES) 7690 pr_info("md/raid:%s: force stripe size %d for reshape\n", 7691 mdname(mddev), conf->min_nr_stripes); 7692 } 7693 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) + 7694 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024; 7695 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS); 7696 if (grow_stripes(conf, conf->min_nr_stripes)) { 7697 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n", 7698 mdname(mddev), memory); 7699 ret = -ENOMEM; 7700 goto abort; 7701 } else 7702 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory); 7703 /* 7704 * Losing a stripe head costs more than the time to refill it, 7705 * it reduces the queue depth and so can hurt throughput. 7706 * So set it rather large, scaled by number of devices. 7707 */ 7708 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4; 7709 conf->shrinker.scan_objects = raid5_cache_scan; 7710 conf->shrinker.count_objects = raid5_cache_count; 7711 conf->shrinker.batch = 128; 7712 conf->shrinker.flags = 0; 7713 ret = register_shrinker(&conf->shrinker, "md-raid5:%s", mdname(mddev)); 7714 if (ret) { 7715 pr_warn("md/raid:%s: couldn't register shrinker.\n", 7716 mdname(mddev)); 7717 goto abort; 7718 } 7719 7720 sprintf(pers_name, "raid%d", mddev->new_level); 7721 rcu_assign_pointer(conf->thread, 7722 md_register_thread(raid5d, mddev, pers_name)); 7723 if (!conf->thread) { 7724 pr_warn("md/raid:%s: couldn't allocate thread.\n", 7725 mdname(mddev)); 7726 ret = -ENOMEM; 7727 goto abort; 7728 } 7729 7730 return conf; 7731 7732 abort: 7733 if (conf) 7734 free_conf(conf); 7735 return ERR_PTR(ret); 7736 } 7737 7738 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded) 7739 { 7740 switch (algo) { 7741 case ALGORITHM_PARITY_0: 7742 if (raid_disk < max_degraded) 7743 return 1; 7744 break; 7745 case ALGORITHM_PARITY_N: 7746 if (raid_disk >= raid_disks - max_degraded) 7747 return 1; 7748 break; 7749 case ALGORITHM_PARITY_0_6: 7750 if (raid_disk == 0 || 7751 raid_disk == raid_disks - 1) 7752 return 1; 7753 break; 7754 case ALGORITHM_LEFT_ASYMMETRIC_6: 7755 case ALGORITHM_RIGHT_ASYMMETRIC_6: 7756 case ALGORITHM_LEFT_SYMMETRIC_6: 7757 case ALGORITHM_RIGHT_SYMMETRIC_6: 7758 if (raid_disk == raid_disks - 1) 7759 return 1; 7760 } 7761 return 0; 7762 } 7763 7764 static void raid5_set_io_opt(struct r5conf *conf) 7765 { 7766 blk_queue_io_opt(conf->mddev->queue, (conf->chunk_sectors << 9) * 7767 (conf->raid_disks - conf->max_degraded)); 7768 } 7769 7770 static int raid5_run(struct mddev *mddev) 7771 { 7772 struct r5conf *conf; 7773 int dirty_parity_disks = 0; 7774 struct md_rdev *rdev; 7775 struct md_rdev *journal_dev = NULL; 7776 sector_t reshape_offset = 0; 7777 int i; 7778 long long min_offset_diff = 0; 7779 int first = 1; 7780 7781 if (mddev_init_writes_pending(mddev) < 0) 7782 return -ENOMEM; 7783 7784 if (mddev->recovery_cp != MaxSector) 7785 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n", 7786 mdname(mddev)); 7787 7788 rdev_for_each(rdev, mddev) { 7789 long long diff; 7790 7791 if (test_bit(Journal, &rdev->flags)) { 7792 journal_dev = rdev; 7793 continue; 7794 } 7795 if (rdev->raid_disk < 0) 7796 continue; 7797 diff = (rdev->new_data_offset - rdev->data_offset); 7798 if (first) { 7799 min_offset_diff = diff; 7800 first = 0; 7801 } else if (mddev->reshape_backwards && 7802 diff < min_offset_diff) 7803 min_offset_diff = diff; 7804 else if (!mddev->reshape_backwards && 7805 diff > min_offset_diff) 7806 min_offset_diff = diff; 7807 } 7808 7809 if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) && 7810 (mddev->bitmap_info.offset || mddev->bitmap_info.file)) { 7811 pr_notice("md/raid:%s: array cannot have both journal and bitmap\n", 7812 mdname(mddev)); 7813 return -EINVAL; 7814 } 7815 7816 if (mddev->reshape_position != MaxSector) { 7817 /* Check that we can continue the reshape. 7818 * Difficulties arise if the stripe we would write to 7819 * next is at or after the stripe we would read from next. 7820 * For a reshape that changes the number of devices, this 7821 * is only possible for a very short time, and mdadm makes 7822 * sure that time appears to have past before assembling 7823 * the array. So we fail if that time hasn't passed. 7824 * For a reshape that keeps the number of devices the same 7825 * mdadm must be monitoring the reshape can keeping the 7826 * critical areas read-only and backed up. It will start 7827 * the array in read-only mode, so we check for that. 7828 */ 7829 sector_t here_new, here_old; 7830 int old_disks; 7831 int max_degraded = (mddev->level == 6 ? 2 : 1); 7832 int chunk_sectors; 7833 int new_data_disks; 7834 7835 if (journal_dev) { 7836 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n", 7837 mdname(mddev)); 7838 return -EINVAL; 7839 } 7840 7841 if (mddev->new_level != mddev->level) { 7842 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n", 7843 mdname(mddev)); 7844 return -EINVAL; 7845 } 7846 old_disks = mddev->raid_disks - mddev->delta_disks; 7847 /* reshape_position must be on a new-stripe boundary, and one 7848 * further up in new geometry must map after here in old 7849 * geometry. 7850 * If the chunk sizes are different, then as we perform reshape 7851 * in units of the largest of the two, reshape_position needs 7852 * be a multiple of the largest chunk size times new data disks. 7853 */ 7854 here_new = mddev->reshape_position; 7855 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors); 7856 new_data_disks = mddev->raid_disks - max_degraded; 7857 if (sector_div(here_new, chunk_sectors * new_data_disks)) { 7858 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n", 7859 mdname(mddev)); 7860 return -EINVAL; 7861 } 7862 reshape_offset = here_new * chunk_sectors; 7863 /* here_new is the stripe we will write to */ 7864 here_old = mddev->reshape_position; 7865 sector_div(here_old, chunk_sectors * (old_disks-max_degraded)); 7866 /* here_old is the first stripe that we might need to read 7867 * from */ 7868 if (mddev->delta_disks == 0) { 7869 /* We cannot be sure it is safe to start an in-place 7870 * reshape. It is only safe if user-space is monitoring 7871 * and taking constant backups. 7872 * mdadm always starts a situation like this in 7873 * readonly mode so it can take control before 7874 * allowing any writes. So just check for that. 7875 */ 7876 if (abs(min_offset_diff) >= mddev->chunk_sectors && 7877 abs(min_offset_diff) >= mddev->new_chunk_sectors) 7878 /* not really in-place - so OK */; 7879 else if (mddev->ro == 0) { 7880 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n", 7881 mdname(mddev)); 7882 return -EINVAL; 7883 } 7884 } else if (mddev->reshape_backwards 7885 ? (here_new * chunk_sectors + min_offset_diff <= 7886 here_old * chunk_sectors) 7887 : (here_new * chunk_sectors >= 7888 here_old * chunk_sectors + (-min_offset_diff))) { 7889 /* Reading from the same stripe as writing to - bad */ 7890 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n", 7891 mdname(mddev)); 7892 return -EINVAL; 7893 } 7894 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev)); 7895 /* OK, we should be able to continue; */ 7896 } else { 7897 BUG_ON(mddev->level != mddev->new_level); 7898 BUG_ON(mddev->layout != mddev->new_layout); 7899 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors); 7900 BUG_ON(mddev->delta_disks != 0); 7901 } 7902 7903 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && 7904 test_bit(MD_HAS_PPL, &mddev->flags)) { 7905 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n", 7906 mdname(mddev)); 7907 clear_bit(MD_HAS_PPL, &mddev->flags); 7908 clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags); 7909 } 7910 7911 if (mddev->private == NULL) 7912 conf = setup_conf(mddev); 7913 else 7914 conf = mddev->private; 7915 7916 if (IS_ERR(conf)) 7917 return PTR_ERR(conf); 7918 7919 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 7920 if (!journal_dev) { 7921 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n", 7922 mdname(mddev)); 7923 mddev->ro = 1; 7924 set_disk_ro(mddev->gendisk, 1); 7925 } else if (mddev->recovery_cp == MaxSector) 7926 set_bit(MD_JOURNAL_CLEAN, &mddev->flags); 7927 } 7928 7929 conf->min_offset_diff = min_offset_diff; 7930 rcu_assign_pointer(mddev->thread, conf->thread); 7931 rcu_assign_pointer(conf->thread, NULL); 7932 mddev->private = conf; 7933 7934 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks; 7935 i++) { 7936 rdev = rdev_mdlock_deref(mddev, conf->disks[i].rdev); 7937 if (!rdev && conf->disks[i].replacement) { 7938 /* The replacement is all we have yet */ 7939 rdev = rdev_mdlock_deref(mddev, 7940 conf->disks[i].replacement); 7941 conf->disks[i].replacement = NULL; 7942 clear_bit(Replacement, &rdev->flags); 7943 rcu_assign_pointer(conf->disks[i].rdev, rdev); 7944 } 7945 if (!rdev) 7946 continue; 7947 if (rcu_access_pointer(conf->disks[i].replacement) && 7948 conf->reshape_progress != MaxSector) { 7949 /* replacements and reshape simply do not mix. */ 7950 pr_warn("md: cannot handle concurrent replacement and reshape.\n"); 7951 goto abort; 7952 } 7953 if (test_bit(In_sync, &rdev->flags)) 7954 continue; 7955 /* This disc is not fully in-sync. However if it 7956 * just stored parity (beyond the recovery_offset), 7957 * when we don't need to be concerned about the 7958 * array being dirty. 7959 * When reshape goes 'backwards', we never have 7960 * partially completed devices, so we only need 7961 * to worry about reshape going forwards. 7962 */ 7963 /* Hack because v0.91 doesn't store recovery_offset properly. */ 7964 if (mddev->major_version == 0 && 7965 mddev->minor_version > 90) 7966 rdev->recovery_offset = reshape_offset; 7967 7968 if (rdev->recovery_offset < reshape_offset) { 7969 /* We need to check old and new layout */ 7970 if (!only_parity(rdev->raid_disk, 7971 conf->algorithm, 7972 conf->raid_disks, 7973 conf->max_degraded)) 7974 continue; 7975 } 7976 if (!only_parity(rdev->raid_disk, 7977 conf->prev_algo, 7978 conf->previous_raid_disks, 7979 conf->max_degraded)) 7980 continue; 7981 dirty_parity_disks++; 7982 } 7983 7984 /* 7985 * 0 for a fully functional array, 1 or 2 for a degraded array. 7986 */ 7987 mddev->degraded = raid5_calc_degraded(conf); 7988 7989 if (has_failed(conf)) { 7990 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n", 7991 mdname(mddev), mddev->degraded, conf->raid_disks); 7992 goto abort; 7993 } 7994 7995 /* device size must be a multiple of chunk size */ 7996 mddev->dev_sectors &= ~((sector_t)mddev->chunk_sectors - 1); 7997 mddev->resync_max_sectors = mddev->dev_sectors; 7998 7999 if (mddev->degraded > dirty_parity_disks && 8000 mddev->recovery_cp != MaxSector) { 8001 if (test_bit(MD_HAS_PPL, &mddev->flags)) 8002 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n", 8003 mdname(mddev)); 8004 else if (mddev->ok_start_degraded) 8005 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n", 8006 mdname(mddev)); 8007 else { 8008 pr_crit("md/raid:%s: cannot start dirty degraded array.\n", 8009 mdname(mddev)); 8010 goto abort; 8011 } 8012 } 8013 8014 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n", 8015 mdname(mddev), conf->level, 8016 mddev->raid_disks-mddev->degraded, mddev->raid_disks, 8017 mddev->new_layout); 8018 8019 print_raid5_conf(conf); 8020 8021 if (conf->reshape_progress != MaxSector) { 8022 conf->reshape_safe = conf->reshape_progress; 8023 atomic_set(&conf->reshape_stripes, 0); 8024 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8025 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8026 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8027 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8028 rcu_assign_pointer(mddev->sync_thread, 8029 md_register_thread(md_do_sync, mddev, "reshape")); 8030 if (!mddev->sync_thread) 8031 goto abort; 8032 } 8033 8034 /* Ok, everything is just fine now */ 8035 if (mddev->to_remove == &raid5_attrs_group) 8036 mddev->to_remove = NULL; 8037 else if (mddev->kobj.sd && 8038 sysfs_create_group(&mddev->kobj, &raid5_attrs_group)) 8039 pr_warn("raid5: failed to create sysfs attributes for %s\n", 8040 mdname(mddev)); 8041 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 8042 8043 if (mddev->queue) { 8044 int chunk_size; 8045 /* read-ahead size must cover two whole stripes, which 8046 * is 2 * (datadisks) * chunksize where 'n' is the 8047 * number of raid devices 8048 */ 8049 int data_disks = conf->previous_raid_disks - conf->max_degraded; 8050 int stripe = data_disks * 8051 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 8052 8053 chunk_size = mddev->chunk_sectors << 9; 8054 blk_queue_io_min(mddev->queue, chunk_size); 8055 raid5_set_io_opt(conf); 8056 mddev->queue->limits.raid_partial_stripes_expensive = 1; 8057 /* 8058 * We can only discard a whole stripe. It doesn't make sense to 8059 * discard data disk but write parity disk 8060 */ 8061 stripe = stripe * PAGE_SIZE; 8062 stripe = roundup_pow_of_two(stripe); 8063 mddev->queue->limits.discard_granularity = stripe; 8064 8065 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 8066 8067 rdev_for_each(rdev, mddev) { 8068 disk_stack_limits(mddev->gendisk, rdev->bdev, 8069 rdev->data_offset << 9); 8070 disk_stack_limits(mddev->gendisk, rdev->bdev, 8071 rdev->new_data_offset << 9); 8072 } 8073 8074 /* 8075 * zeroing is required, otherwise data 8076 * could be lost. Consider a scenario: discard a stripe 8077 * (the stripe could be inconsistent if 8078 * discard_zeroes_data is 0); write one disk of the 8079 * stripe (the stripe could be inconsistent again 8080 * depending on which disks are used to calculate 8081 * parity); the disk is broken; The stripe data of this 8082 * disk is lost. 8083 * 8084 * We only allow DISCARD if the sysadmin has confirmed that 8085 * only safe devices are in use by setting a module parameter. 8086 * A better idea might be to turn DISCARD into WRITE_ZEROES 8087 * requests, as that is required to be safe. 8088 */ 8089 if (!devices_handle_discard_safely || 8090 mddev->queue->limits.max_discard_sectors < (stripe >> 9) || 8091 mddev->queue->limits.discard_granularity < stripe) 8092 blk_queue_max_discard_sectors(mddev->queue, 0); 8093 8094 /* 8095 * Requests require having a bitmap for each stripe. 8096 * Limit the max sectors based on this. 8097 */ 8098 blk_queue_max_hw_sectors(mddev->queue, 8099 RAID5_MAX_REQ_STRIPES << RAID5_STRIPE_SHIFT(conf)); 8100 8101 /* No restrictions on the number of segments in the request */ 8102 blk_queue_max_segments(mddev->queue, USHRT_MAX); 8103 } 8104 8105 if (log_init(conf, journal_dev, raid5_has_ppl(conf))) 8106 goto abort; 8107 8108 return 0; 8109 abort: 8110 md_unregister_thread(mddev, &mddev->thread); 8111 print_raid5_conf(conf); 8112 free_conf(conf); 8113 mddev->private = NULL; 8114 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev)); 8115 return -EIO; 8116 } 8117 8118 static void raid5_free(struct mddev *mddev, void *priv) 8119 { 8120 struct r5conf *conf = priv; 8121 8122 free_conf(conf); 8123 mddev->to_remove = &raid5_attrs_group; 8124 } 8125 8126 static void raid5_status(struct seq_file *seq, struct mddev *mddev) 8127 { 8128 struct r5conf *conf = mddev->private; 8129 int i; 8130 8131 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level, 8132 conf->chunk_sectors / 2, mddev->layout); 8133 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded); 8134 rcu_read_lock(); 8135 for (i = 0; i < conf->raid_disks; i++) { 8136 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 8137 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 8138 } 8139 rcu_read_unlock(); 8140 seq_printf (seq, "]"); 8141 } 8142 8143 static void print_raid5_conf (struct r5conf *conf) 8144 { 8145 struct md_rdev *rdev; 8146 int i; 8147 8148 pr_debug("RAID conf printout:\n"); 8149 if (!conf) { 8150 pr_debug("(conf==NULL)\n"); 8151 return; 8152 } 8153 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level, 8154 conf->raid_disks, 8155 conf->raid_disks - conf->mddev->degraded); 8156 8157 rcu_read_lock(); 8158 for (i = 0; i < conf->raid_disks; i++) { 8159 rdev = rcu_dereference(conf->disks[i].rdev); 8160 if (rdev) 8161 pr_debug(" disk %d, o:%d, dev:%pg\n", 8162 i, !test_bit(Faulty, &rdev->flags), 8163 rdev->bdev); 8164 } 8165 rcu_read_unlock(); 8166 } 8167 8168 static int raid5_spare_active(struct mddev *mddev) 8169 { 8170 int i; 8171 struct r5conf *conf = mddev->private; 8172 struct md_rdev *rdev, *replacement; 8173 int count = 0; 8174 unsigned long flags; 8175 8176 for (i = 0; i < conf->raid_disks; i++) { 8177 rdev = rdev_mdlock_deref(mddev, conf->disks[i].rdev); 8178 replacement = rdev_mdlock_deref(mddev, 8179 conf->disks[i].replacement); 8180 if (replacement 8181 && replacement->recovery_offset == MaxSector 8182 && !test_bit(Faulty, &replacement->flags) 8183 && !test_and_set_bit(In_sync, &replacement->flags)) { 8184 /* Replacement has just become active. */ 8185 if (!rdev 8186 || !test_and_clear_bit(In_sync, &rdev->flags)) 8187 count++; 8188 if (rdev) { 8189 /* Replaced device not technically faulty, 8190 * but we need to be sure it gets removed 8191 * and never re-added. 8192 */ 8193 set_bit(Faulty, &rdev->flags); 8194 sysfs_notify_dirent_safe( 8195 rdev->sysfs_state); 8196 } 8197 sysfs_notify_dirent_safe(replacement->sysfs_state); 8198 } else if (rdev 8199 && rdev->recovery_offset == MaxSector 8200 && !test_bit(Faulty, &rdev->flags) 8201 && !test_and_set_bit(In_sync, &rdev->flags)) { 8202 count++; 8203 sysfs_notify_dirent_safe(rdev->sysfs_state); 8204 } 8205 } 8206 spin_lock_irqsave(&conf->device_lock, flags); 8207 mddev->degraded = raid5_calc_degraded(conf); 8208 spin_unlock_irqrestore(&conf->device_lock, flags); 8209 print_raid5_conf(conf); 8210 return count; 8211 } 8212 8213 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 8214 { 8215 struct r5conf *conf = mddev->private; 8216 int err = 0; 8217 int number = rdev->raid_disk; 8218 struct md_rdev __rcu **rdevp; 8219 struct disk_info *p; 8220 struct md_rdev *tmp; 8221 8222 print_raid5_conf(conf); 8223 if (test_bit(Journal, &rdev->flags) && conf->log) { 8224 /* 8225 * we can't wait pending write here, as this is called in 8226 * raid5d, wait will deadlock. 8227 * neilb: there is no locking about new writes here, 8228 * so this cannot be safe. 8229 */ 8230 if (atomic_read(&conf->active_stripes) || 8231 atomic_read(&conf->r5c_cached_full_stripes) || 8232 atomic_read(&conf->r5c_cached_partial_stripes)) { 8233 return -EBUSY; 8234 } 8235 log_exit(conf); 8236 return 0; 8237 } 8238 if (unlikely(number >= conf->pool_size)) 8239 return 0; 8240 p = conf->disks + number; 8241 if (rdev == rcu_access_pointer(p->rdev)) 8242 rdevp = &p->rdev; 8243 else if (rdev == rcu_access_pointer(p->replacement)) 8244 rdevp = &p->replacement; 8245 else 8246 return 0; 8247 8248 if (number >= conf->raid_disks && 8249 conf->reshape_progress == MaxSector) 8250 clear_bit(In_sync, &rdev->flags); 8251 8252 if (test_bit(In_sync, &rdev->flags) || 8253 atomic_read(&rdev->nr_pending)) { 8254 err = -EBUSY; 8255 goto abort; 8256 } 8257 /* Only remove non-faulty devices if recovery 8258 * isn't possible. 8259 */ 8260 if (!test_bit(Faulty, &rdev->flags) && 8261 mddev->recovery_disabled != conf->recovery_disabled && 8262 !has_failed(conf) && 8263 (!rcu_access_pointer(p->replacement) || 8264 rcu_access_pointer(p->replacement) == rdev) && 8265 number < conf->raid_disks) { 8266 err = -EBUSY; 8267 goto abort; 8268 } 8269 *rdevp = NULL; 8270 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 8271 lockdep_assert_held(&mddev->reconfig_mutex); 8272 synchronize_rcu(); 8273 if (atomic_read(&rdev->nr_pending)) { 8274 /* lost the race, try later */ 8275 err = -EBUSY; 8276 rcu_assign_pointer(*rdevp, rdev); 8277 } 8278 } 8279 if (!err) { 8280 err = log_modify(conf, rdev, false); 8281 if (err) 8282 goto abort; 8283 } 8284 8285 tmp = rcu_access_pointer(p->replacement); 8286 if (tmp) { 8287 /* We must have just cleared 'rdev' */ 8288 rcu_assign_pointer(p->rdev, tmp); 8289 clear_bit(Replacement, &tmp->flags); 8290 smp_mb(); /* Make sure other CPUs may see both as identical 8291 * but will never see neither - if they are careful 8292 */ 8293 rcu_assign_pointer(p->replacement, NULL); 8294 8295 if (!err) 8296 err = log_modify(conf, tmp, true); 8297 } 8298 8299 clear_bit(WantReplacement, &rdev->flags); 8300 abort: 8301 8302 print_raid5_conf(conf); 8303 return err; 8304 } 8305 8306 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev) 8307 { 8308 struct r5conf *conf = mddev->private; 8309 int ret, err = -EEXIST; 8310 int disk; 8311 struct disk_info *p; 8312 struct md_rdev *tmp; 8313 int first = 0; 8314 int last = conf->raid_disks - 1; 8315 8316 if (test_bit(Journal, &rdev->flags)) { 8317 if (conf->log) 8318 return -EBUSY; 8319 8320 rdev->raid_disk = 0; 8321 /* 8322 * The array is in readonly mode if journal is missing, so no 8323 * write requests running. We should be safe 8324 */ 8325 ret = log_init(conf, rdev, false); 8326 if (ret) 8327 return ret; 8328 8329 ret = r5l_start(conf->log); 8330 if (ret) 8331 return ret; 8332 8333 return 0; 8334 } 8335 if (mddev->recovery_disabled == conf->recovery_disabled) 8336 return -EBUSY; 8337 8338 if (rdev->saved_raid_disk < 0 && has_failed(conf)) 8339 /* no point adding a device */ 8340 return -EINVAL; 8341 8342 if (rdev->raid_disk >= 0) 8343 first = last = rdev->raid_disk; 8344 8345 /* 8346 * find the disk ... but prefer rdev->saved_raid_disk 8347 * if possible. 8348 */ 8349 if (rdev->saved_raid_disk >= first && 8350 rdev->saved_raid_disk <= last && 8351 conf->disks[rdev->saved_raid_disk].rdev == NULL) 8352 first = rdev->saved_raid_disk; 8353 8354 for (disk = first; disk <= last; disk++) { 8355 p = conf->disks + disk; 8356 if (p->rdev == NULL) { 8357 clear_bit(In_sync, &rdev->flags); 8358 rdev->raid_disk = disk; 8359 if (rdev->saved_raid_disk != disk) 8360 conf->fullsync = 1; 8361 rcu_assign_pointer(p->rdev, rdev); 8362 8363 err = log_modify(conf, rdev, true); 8364 8365 goto out; 8366 } 8367 } 8368 for (disk = first; disk <= last; disk++) { 8369 p = conf->disks + disk; 8370 tmp = rdev_mdlock_deref(mddev, p->rdev); 8371 if (test_bit(WantReplacement, &tmp->flags) && 8372 mddev->reshape_position == MaxSector && 8373 p->replacement == NULL) { 8374 clear_bit(In_sync, &rdev->flags); 8375 set_bit(Replacement, &rdev->flags); 8376 rdev->raid_disk = disk; 8377 err = 0; 8378 conf->fullsync = 1; 8379 rcu_assign_pointer(p->replacement, rdev); 8380 break; 8381 } 8382 } 8383 out: 8384 print_raid5_conf(conf); 8385 return err; 8386 } 8387 8388 static int raid5_resize(struct mddev *mddev, sector_t sectors) 8389 { 8390 /* no resync is happening, and there is enough space 8391 * on all devices, so we can resize. 8392 * We need to make sure resync covers any new space. 8393 * If the array is shrinking we should possibly wait until 8394 * any io in the removed space completes, but it hardly seems 8395 * worth it. 8396 */ 8397 sector_t newsize; 8398 struct r5conf *conf = mddev->private; 8399 8400 if (raid5_has_log(conf) || raid5_has_ppl(conf)) 8401 return -EINVAL; 8402 sectors &= ~((sector_t)conf->chunk_sectors - 1); 8403 newsize = raid5_size(mddev, sectors, mddev->raid_disks); 8404 if (mddev->external_size && 8405 mddev->array_sectors > newsize) 8406 return -EINVAL; 8407 if (mddev->bitmap) { 8408 int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0); 8409 if (ret) 8410 return ret; 8411 } 8412 md_set_array_sectors(mddev, newsize); 8413 if (sectors > mddev->dev_sectors && 8414 mddev->recovery_cp > mddev->dev_sectors) { 8415 mddev->recovery_cp = mddev->dev_sectors; 8416 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8417 } 8418 mddev->dev_sectors = sectors; 8419 mddev->resync_max_sectors = sectors; 8420 return 0; 8421 } 8422 8423 static int check_stripe_cache(struct mddev *mddev) 8424 { 8425 /* Can only proceed if there are plenty of stripe_heads. 8426 * We need a minimum of one full stripe,, and for sensible progress 8427 * it is best to have about 4 times that. 8428 * If we require 4 times, then the default 256 4K stripe_heads will 8429 * allow for chunk sizes up to 256K, which is probably OK. 8430 * If the chunk size is greater, user-space should request more 8431 * stripe_heads first. 8432 */ 8433 struct r5conf *conf = mddev->private; 8434 if (((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4 8435 > conf->min_nr_stripes || 8436 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4 8437 > conf->min_nr_stripes) { 8438 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n", 8439 mdname(mddev), 8440 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9) 8441 / RAID5_STRIPE_SIZE(conf))*4); 8442 return 0; 8443 } 8444 return 1; 8445 } 8446 8447 static int check_reshape(struct mddev *mddev) 8448 { 8449 struct r5conf *conf = mddev->private; 8450 8451 if (raid5_has_log(conf) || raid5_has_ppl(conf)) 8452 return -EINVAL; 8453 if (mddev->delta_disks == 0 && 8454 mddev->new_layout == mddev->layout && 8455 mddev->new_chunk_sectors == mddev->chunk_sectors) 8456 return 0; /* nothing to do */ 8457 if (has_failed(conf)) 8458 return -EINVAL; 8459 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) { 8460 /* We might be able to shrink, but the devices must 8461 * be made bigger first. 8462 * For raid6, 4 is the minimum size. 8463 * Otherwise 2 is the minimum 8464 */ 8465 int min = 2; 8466 if (mddev->level == 6) 8467 min = 4; 8468 if (mddev->raid_disks + mddev->delta_disks < min) 8469 return -EINVAL; 8470 } 8471 8472 if (!check_stripe_cache(mddev)) 8473 return -ENOSPC; 8474 8475 if (mddev->new_chunk_sectors > mddev->chunk_sectors || 8476 mddev->delta_disks > 0) 8477 if (resize_chunks(conf, 8478 conf->previous_raid_disks 8479 + max(0, mddev->delta_disks), 8480 max(mddev->new_chunk_sectors, 8481 mddev->chunk_sectors) 8482 ) < 0) 8483 return -ENOMEM; 8484 8485 if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size) 8486 return 0; /* never bother to shrink */ 8487 return resize_stripes(conf, (conf->previous_raid_disks 8488 + mddev->delta_disks)); 8489 } 8490 8491 static int raid5_start_reshape(struct mddev *mddev) 8492 { 8493 struct r5conf *conf = mddev->private; 8494 struct md_rdev *rdev; 8495 int spares = 0; 8496 int i; 8497 unsigned long flags; 8498 8499 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 8500 return -EBUSY; 8501 8502 if (!check_stripe_cache(mddev)) 8503 return -ENOSPC; 8504 8505 if (has_failed(conf)) 8506 return -EINVAL; 8507 8508 /* raid5 can't handle concurrent reshape and recovery */ 8509 if (mddev->recovery_cp < MaxSector) 8510 return -EBUSY; 8511 for (i = 0; i < conf->raid_disks; i++) 8512 if (rdev_mdlock_deref(mddev, conf->disks[i].replacement)) 8513 return -EBUSY; 8514 8515 rdev_for_each(rdev, mddev) { 8516 if (!test_bit(In_sync, &rdev->flags) 8517 && !test_bit(Faulty, &rdev->flags)) 8518 spares++; 8519 } 8520 8521 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded) 8522 /* Not enough devices even to make a degraded array 8523 * of that size 8524 */ 8525 return -EINVAL; 8526 8527 /* Refuse to reduce size of the array. Any reductions in 8528 * array size must be through explicit setting of array_size 8529 * attribute. 8530 */ 8531 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks) 8532 < mddev->array_sectors) { 8533 pr_warn("md/raid:%s: array size must be reduced before number of disks\n", 8534 mdname(mddev)); 8535 return -EINVAL; 8536 } 8537 8538 atomic_set(&conf->reshape_stripes, 0); 8539 spin_lock_irq(&conf->device_lock); 8540 write_seqcount_begin(&conf->gen_lock); 8541 conf->previous_raid_disks = conf->raid_disks; 8542 conf->raid_disks += mddev->delta_disks; 8543 conf->prev_chunk_sectors = conf->chunk_sectors; 8544 conf->chunk_sectors = mddev->new_chunk_sectors; 8545 conf->prev_algo = conf->algorithm; 8546 conf->algorithm = mddev->new_layout; 8547 conf->generation++; 8548 /* Code that selects data_offset needs to see the generation update 8549 * if reshape_progress has been set - so a memory barrier needed. 8550 */ 8551 smp_mb(); 8552 if (mddev->reshape_backwards) 8553 conf->reshape_progress = raid5_size(mddev, 0, 0); 8554 else 8555 conf->reshape_progress = 0; 8556 conf->reshape_safe = conf->reshape_progress; 8557 write_seqcount_end(&conf->gen_lock); 8558 spin_unlock_irq(&conf->device_lock); 8559 8560 /* Now make sure any requests that proceeded on the assumption 8561 * the reshape wasn't running - like Discard or Read - have 8562 * completed. 8563 */ 8564 mddev_suspend(mddev); 8565 mddev_resume(mddev); 8566 8567 /* Add some new drives, as many as will fit. 8568 * We know there are enough to make the newly sized array work. 8569 * Don't add devices if we are reducing the number of 8570 * devices in the array. This is because it is not possible 8571 * to correctly record the "partially reconstructed" state of 8572 * such devices during the reshape and confusion could result. 8573 */ 8574 if (mddev->delta_disks >= 0) { 8575 rdev_for_each(rdev, mddev) 8576 if (rdev->raid_disk < 0 && 8577 !test_bit(Faulty, &rdev->flags)) { 8578 if (raid5_add_disk(mddev, rdev) == 0) { 8579 if (rdev->raid_disk 8580 >= conf->previous_raid_disks) 8581 set_bit(In_sync, &rdev->flags); 8582 else 8583 rdev->recovery_offset = 0; 8584 8585 /* Failure here is OK */ 8586 sysfs_link_rdev(mddev, rdev); 8587 } 8588 } else if (rdev->raid_disk >= conf->previous_raid_disks 8589 && !test_bit(Faulty, &rdev->flags)) { 8590 /* This is a spare that was manually added */ 8591 set_bit(In_sync, &rdev->flags); 8592 } 8593 8594 /* When a reshape changes the number of devices, 8595 * ->degraded is measured against the larger of the 8596 * pre and post number of devices. 8597 */ 8598 spin_lock_irqsave(&conf->device_lock, flags); 8599 mddev->degraded = raid5_calc_degraded(conf); 8600 spin_unlock_irqrestore(&conf->device_lock, flags); 8601 } 8602 mddev->raid_disks = conf->raid_disks; 8603 mddev->reshape_position = conf->reshape_progress; 8604 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8605 8606 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8607 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8608 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 8609 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8610 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8611 rcu_assign_pointer(mddev->sync_thread, 8612 md_register_thread(md_do_sync, mddev, "reshape")); 8613 if (!mddev->sync_thread) { 8614 mddev->recovery = 0; 8615 spin_lock_irq(&conf->device_lock); 8616 write_seqcount_begin(&conf->gen_lock); 8617 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks; 8618 mddev->new_chunk_sectors = 8619 conf->chunk_sectors = conf->prev_chunk_sectors; 8620 mddev->new_layout = conf->algorithm = conf->prev_algo; 8621 rdev_for_each(rdev, mddev) 8622 rdev->new_data_offset = rdev->data_offset; 8623 smp_wmb(); 8624 conf->generation --; 8625 conf->reshape_progress = MaxSector; 8626 mddev->reshape_position = MaxSector; 8627 write_seqcount_end(&conf->gen_lock); 8628 spin_unlock_irq(&conf->device_lock); 8629 return -EAGAIN; 8630 } 8631 conf->reshape_checkpoint = jiffies; 8632 md_wakeup_thread(mddev->sync_thread); 8633 md_new_event(); 8634 return 0; 8635 } 8636 8637 /* This is called from the reshape thread and should make any 8638 * changes needed in 'conf' 8639 */ 8640 static void end_reshape(struct r5conf *conf) 8641 { 8642 8643 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 8644 struct md_rdev *rdev; 8645 8646 spin_lock_irq(&conf->device_lock); 8647 conf->previous_raid_disks = conf->raid_disks; 8648 md_finish_reshape(conf->mddev); 8649 smp_wmb(); 8650 conf->reshape_progress = MaxSector; 8651 conf->mddev->reshape_position = MaxSector; 8652 rdev_for_each(rdev, conf->mddev) 8653 if (rdev->raid_disk >= 0 && 8654 !test_bit(Journal, &rdev->flags) && 8655 !test_bit(In_sync, &rdev->flags)) 8656 rdev->recovery_offset = MaxSector; 8657 spin_unlock_irq(&conf->device_lock); 8658 wake_up(&conf->wait_for_overlap); 8659 8660 if (conf->mddev->queue) 8661 raid5_set_io_opt(conf); 8662 } 8663 } 8664 8665 /* This is called from the raid5d thread with mddev_lock held. 8666 * It makes config changes to the device. 8667 */ 8668 static void raid5_finish_reshape(struct mddev *mddev) 8669 { 8670 struct r5conf *conf = mddev->private; 8671 struct md_rdev *rdev; 8672 8673 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8674 8675 if (mddev->delta_disks <= 0) { 8676 int d; 8677 spin_lock_irq(&conf->device_lock); 8678 mddev->degraded = raid5_calc_degraded(conf); 8679 spin_unlock_irq(&conf->device_lock); 8680 for (d = conf->raid_disks ; 8681 d < conf->raid_disks - mddev->delta_disks; 8682 d++) { 8683 rdev = rdev_mdlock_deref(mddev, 8684 conf->disks[d].rdev); 8685 if (rdev) 8686 clear_bit(In_sync, &rdev->flags); 8687 rdev = rdev_mdlock_deref(mddev, 8688 conf->disks[d].replacement); 8689 if (rdev) 8690 clear_bit(In_sync, &rdev->flags); 8691 } 8692 } 8693 mddev->layout = conf->algorithm; 8694 mddev->chunk_sectors = conf->chunk_sectors; 8695 mddev->reshape_position = MaxSector; 8696 mddev->delta_disks = 0; 8697 mddev->reshape_backwards = 0; 8698 } 8699 } 8700 8701 static void raid5_quiesce(struct mddev *mddev, int quiesce) 8702 { 8703 struct r5conf *conf = mddev->private; 8704 8705 if (quiesce) { 8706 /* stop all writes */ 8707 lock_all_device_hash_locks_irq(conf); 8708 /* '2' tells resync/reshape to pause so that all 8709 * active stripes can drain 8710 */ 8711 r5c_flush_cache(conf, INT_MAX); 8712 /* need a memory barrier to make sure read_one_chunk() sees 8713 * quiesce started and reverts to slow (locked) path. 8714 */ 8715 smp_store_release(&conf->quiesce, 2); 8716 wait_event_cmd(conf->wait_for_quiescent, 8717 atomic_read(&conf->active_stripes) == 0 && 8718 atomic_read(&conf->active_aligned_reads) == 0, 8719 unlock_all_device_hash_locks_irq(conf), 8720 lock_all_device_hash_locks_irq(conf)); 8721 conf->quiesce = 1; 8722 unlock_all_device_hash_locks_irq(conf); 8723 /* allow reshape to continue */ 8724 wake_up(&conf->wait_for_overlap); 8725 } else { 8726 /* re-enable writes */ 8727 lock_all_device_hash_locks_irq(conf); 8728 conf->quiesce = 0; 8729 wake_up(&conf->wait_for_quiescent); 8730 wake_up(&conf->wait_for_overlap); 8731 unlock_all_device_hash_locks_irq(conf); 8732 } 8733 log_quiesce(conf, quiesce); 8734 } 8735 8736 static void *raid45_takeover_raid0(struct mddev *mddev, int level) 8737 { 8738 struct r0conf *raid0_conf = mddev->private; 8739 sector_t sectors; 8740 8741 /* for raid0 takeover only one zone is supported */ 8742 if (raid0_conf->nr_strip_zones > 1) { 8743 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n", 8744 mdname(mddev)); 8745 return ERR_PTR(-EINVAL); 8746 } 8747 8748 sectors = raid0_conf->strip_zone[0].zone_end; 8749 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev); 8750 mddev->dev_sectors = sectors; 8751 mddev->new_level = level; 8752 mddev->new_layout = ALGORITHM_PARITY_N; 8753 mddev->new_chunk_sectors = mddev->chunk_sectors; 8754 mddev->raid_disks += 1; 8755 mddev->delta_disks = 1; 8756 /* make sure it will be not marked as dirty */ 8757 mddev->recovery_cp = MaxSector; 8758 8759 return setup_conf(mddev); 8760 } 8761 8762 static void *raid5_takeover_raid1(struct mddev *mddev) 8763 { 8764 int chunksect; 8765 void *ret; 8766 8767 if (mddev->raid_disks != 2 || 8768 mddev->degraded > 1) 8769 return ERR_PTR(-EINVAL); 8770 8771 /* Should check if there are write-behind devices? */ 8772 8773 chunksect = 64*2; /* 64K by default */ 8774 8775 /* The array must be an exact multiple of chunksize */ 8776 while (chunksect && (mddev->array_sectors & (chunksect-1))) 8777 chunksect >>= 1; 8778 8779 if ((chunksect<<9) < RAID5_STRIPE_SIZE((struct r5conf *)mddev->private)) 8780 /* array size does not allow a suitable chunk size */ 8781 return ERR_PTR(-EINVAL); 8782 8783 mddev->new_level = 5; 8784 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC; 8785 mddev->new_chunk_sectors = chunksect; 8786 8787 ret = setup_conf(mddev); 8788 if (!IS_ERR(ret)) 8789 mddev_clear_unsupported_flags(mddev, 8790 UNSUPPORTED_MDDEV_FLAGS); 8791 return ret; 8792 } 8793 8794 static void *raid5_takeover_raid6(struct mddev *mddev) 8795 { 8796 int new_layout; 8797 8798 switch (mddev->layout) { 8799 case ALGORITHM_LEFT_ASYMMETRIC_6: 8800 new_layout = ALGORITHM_LEFT_ASYMMETRIC; 8801 break; 8802 case ALGORITHM_RIGHT_ASYMMETRIC_6: 8803 new_layout = ALGORITHM_RIGHT_ASYMMETRIC; 8804 break; 8805 case ALGORITHM_LEFT_SYMMETRIC_6: 8806 new_layout = ALGORITHM_LEFT_SYMMETRIC; 8807 break; 8808 case ALGORITHM_RIGHT_SYMMETRIC_6: 8809 new_layout = ALGORITHM_RIGHT_SYMMETRIC; 8810 break; 8811 case ALGORITHM_PARITY_0_6: 8812 new_layout = ALGORITHM_PARITY_0; 8813 break; 8814 case ALGORITHM_PARITY_N: 8815 new_layout = ALGORITHM_PARITY_N; 8816 break; 8817 default: 8818 return ERR_PTR(-EINVAL); 8819 } 8820 mddev->new_level = 5; 8821 mddev->new_layout = new_layout; 8822 mddev->delta_disks = -1; 8823 mddev->raid_disks -= 1; 8824 return setup_conf(mddev); 8825 } 8826 8827 static int raid5_check_reshape(struct mddev *mddev) 8828 { 8829 /* For a 2-drive array, the layout and chunk size can be changed 8830 * immediately as not restriping is needed. 8831 * For larger arrays we record the new value - after validation 8832 * to be used by a reshape pass. 8833 */ 8834 struct r5conf *conf = mddev->private; 8835 int new_chunk = mddev->new_chunk_sectors; 8836 8837 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout)) 8838 return -EINVAL; 8839 if (new_chunk > 0) { 8840 if (!is_power_of_2(new_chunk)) 8841 return -EINVAL; 8842 if (new_chunk < (PAGE_SIZE>>9)) 8843 return -EINVAL; 8844 if (mddev->array_sectors & (new_chunk-1)) 8845 /* not factor of array size */ 8846 return -EINVAL; 8847 } 8848 8849 /* They look valid */ 8850 8851 if (mddev->raid_disks == 2) { 8852 /* can make the change immediately */ 8853 if (mddev->new_layout >= 0) { 8854 conf->algorithm = mddev->new_layout; 8855 mddev->layout = mddev->new_layout; 8856 } 8857 if (new_chunk > 0) { 8858 conf->chunk_sectors = new_chunk ; 8859 mddev->chunk_sectors = new_chunk; 8860 } 8861 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8862 md_wakeup_thread(mddev->thread); 8863 } 8864 return check_reshape(mddev); 8865 } 8866 8867 static int raid6_check_reshape(struct mddev *mddev) 8868 { 8869 int new_chunk = mddev->new_chunk_sectors; 8870 8871 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout)) 8872 return -EINVAL; 8873 if (new_chunk > 0) { 8874 if (!is_power_of_2(new_chunk)) 8875 return -EINVAL; 8876 if (new_chunk < (PAGE_SIZE >> 9)) 8877 return -EINVAL; 8878 if (mddev->array_sectors & (new_chunk-1)) 8879 /* not factor of array size */ 8880 return -EINVAL; 8881 } 8882 8883 /* They look valid */ 8884 return check_reshape(mddev); 8885 } 8886 8887 static void *raid5_takeover(struct mddev *mddev) 8888 { 8889 /* raid5 can take over: 8890 * raid0 - if there is only one strip zone - make it a raid4 layout 8891 * raid1 - if there are two drives. We need to know the chunk size 8892 * raid4 - trivial - just use a raid4 layout. 8893 * raid6 - Providing it is a *_6 layout 8894 */ 8895 if (mddev->level == 0) 8896 return raid45_takeover_raid0(mddev, 5); 8897 if (mddev->level == 1) 8898 return raid5_takeover_raid1(mddev); 8899 if (mddev->level == 4) { 8900 mddev->new_layout = ALGORITHM_PARITY_N; 8901 mddev->new_level = 5; 8902 return setup_conf(mddev); 8903 } 8904 if (mddev->level == 6) 8905 return raid5_takeover_raid6(mddev); 8906 8907 return ERR_PTR(-EINVAL); 8908 } 8909 8910 static void *raid4_takeover(struct mddev *mddev) 8911 { 8912 /* raid4 can take over: 8913 * raid0 - if there is only one strip zone 8914 * raid5 - if layout is right 8915 */ 8916 if (mddev->level == 0) 8917 return raid45_takeover_raid0(mddev, 4); 8918 if (mddev->level == 5 && 8919 mddev->layout == ALGORITHM_PARITY_N) { 8920 mddev->new_layout = 0; 8921 mddev->new_level = 4; 8922 return setup_conf(mddev); 8923 } 8924 return ERR_PTR(-EINVAL); 8925 } 8926 8927 static struct md_personality raid5_personality; 8928 8929 static void *raid6_takeover(struct mddev *mddev) 8930 { 8931 /* Currently can only take over a raid5. We map the 8932 * personality to an equivalent raid6 personality 8933 * with the Q block at the end. 8934 */ 8935 int new_layout; 8936 8937 if (mddev->pers != &raid5_personality) 8938 return ERR_PTR(-EINVAL); 8939 if (mddev->degraded > 1) 8940 return ERR_PTR(-EINVAL); 8941 if (mddev->raid_disks > 253) 8942 return ERR_PTR(-EINVAL); 8943 if (mddev->raid_disks < 3) 8944 return ERR_PTR(-EINVAL); 8945 8946 switch (mddev->layout) { 8947 case ALGORITHM_LEFT_ASYMMETRIC: 8948 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6; 8949 break; 8950 case ALGORITHM_RIGHT_ASYMMETRIC: 8951 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6; 8952 break; 8953 case ALGORITHM_LEFT_SYMMETRIC: 8954 new_layout = ALGORITHM_LEFT_SYMMETRIC_6; 8955 break; 8956 case ALGORITHM_RIGHT_SYMMETRIC: 8957 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6; 8958 break; 8959 case ALGORITHM_PARITY_0: 8960 new_layout = ALGORITHM_PARITY_0_6; 8961 break; 8962 case ALGORITHM_PARITY_N: 8963 new_layout = ALGORITHM_PARITY_N; 8964 break; 8965 default: 8966 return ERR_PTR(-EINVAL); 8967 } 8968 mddev->new_level = 6; 8969 mddev->new_layout = new_layout; 8970 mddev->delta_disks = 1; 8971 mddev->raid_disks += 1; 8972 return setup_conf(mddev); 8973 } 8974 8975 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf) 8976 { 8977 struct r5conf *conf; 8978 int err; 8979 8980 err = mddev_lock(mddev); 8981 if (err) 8982 return err; 8983 conf = mddev->private; 8984 if (!conf) { 8985 mddev_unlock(mddev); 8986 return -ENODEV; 8987 } 8988 8989 if (strncmp(buf, "ppl", 3) == 0) { 8990 /* ppl only works with RAID 5 */ 8991 if (!raid5_has_ppl(conf) && conf->level == 5) { 8992 err = log_init(conf, NULL, true); 8993 if (!err) { 8994 err = resize_stripes(conf, conf->pool_size); 8995 if (err) { 8996 mddev_suspend(mddev); 8997 log_exit(conf); 8998 mddev_resume(mddev); 8999 } 9000 } 9001 } else 9002 err = -EINVAL; 9003 } else if (strncmp(buf, "resync", 6) == 0) { 9004 if (raid5_has_ppl(conf)) { 9005 mddev_suspend(mddev); 9006 log_exit(conf); 9007 mddev_resume(mddev); 9008 err = resize_stripes(conf, conf->pool_size); 9009 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) && 9010 r5l_log_disk_error(conf)) { 9011 bool journal_dev_exists = false; 9012 struct md_rdev *rdev; 9013 9014 rdev_for_each(rdev, mddev) 9015 if (test_bit(Journal, &rdev->flags)) { 9016 journal_dev_exists = true; 9017 break; 9018 } 9019 9020 if (!journal_dev_exists) { 9021 mddev_suspend(mddev); 9022 clear_bit(MD_HAS_JOURNAL, &mddev->flags); 9023 mddev_resume(mddev); 9024 } else /* need remove journal device first */ 9025 err = -EBUSY; 9026 } else 9027 err = -EINVAL; 9028 } else { 9029 err = -EINVAL; 9030 } 9031 9032 if (!err) 9033 md_update_sb(mddev, 1); 9034 9035 mddev_unlock(mddev); 9036 9037 return err; 9038 } 9039 9040 static int raid5_start(struct mddev *mddev) 9041 { 9042 struct r5conf *conf = mddev->private; 9043 9044 return r5l_start(conf->log); 9045 } 9046 9047 static void raid5_prepare_suspend(struct mddev *mddev) 9048 { 9049 struct r5conf *conf = mddev->private; 9050 9051 wait_event(mddev->sb_wait, !reshape_inprogress(mddev) || 9052 percpu_ref_is_zero(&mddev->active_io)); 9053 if (percpu_ref_is_zero(&mddev->active_io)) 9054 return; 9055 9056 /* 9057 * Reshape is not in progress, and array is suspended, io that is 9058 * waiting for reshpape can never be done. 9059 */ 9060 wake_up(&conf->wait_for_overlap); 9061 } 9062 9063 static struct md_personality raid6_personality = 9064 { 9065 .name = "raid6", 9066 .level = 6, 9067 .owner = THIS_MODULE, 9068 .make_request = raid5_make_request, 9069 .run = raid5_run, 9070 .start = raid5_start, 9071 .free = raid5_free, 9072 .status = raid5_status, 9073 .error_handler = raid5_error, 9074 .hot_add_disk = raid5_add_disk, 9075 .hot_remove_disk= raid5_remove_disk, 9076 .spare_active = raid5_spare_active, 9077 .sync_request = raid5_sync_request, 9078 .resize = raid5_resize, 9079 .size = raid5_size, 9080 .check_reshape = raid6_check_reshape, 9081 .start_reshape = raid5_start_reshape, 9082 .finish_reshape = raid5_finish_reshape, 9083 .prepare_suspend = raid5_prepare_suspend, 9084 .quiesce = raid5_quiesce, 9085 .takeover = raid6_takeover, 9086 .change_consistency_policy = raid5_change_consistency_policy, 9087 }; 9088 static struct md_personality raid5_personality = 9089 { 9090 .name = "raid5", 9091 .level = 5, 9092 .owner = THIS_MODULE, 9093 .make_request = raid5_make_request, 9094 .run = raid5_run, 9095 .start = raid5_start, 9096 .free = raid5_free, 9097 .status = raid5_status, 9098 .error_handler = raid5_error, 9099 .hot_add_disk = raid5_add_disk, 9100 .hot_remove_disk= raid5_remove_disk, 9101 .spare_active = raid5_spare_active, 9102 .sync_request = raid5_sync_request, 9103 .resize = raid5_resize, 9104 .size = raid5_size, 9105 .check_reshape = raid5_check_reshape, 9106 .start_reshape = raid5_start_reshape, 9107 .finish_reshape = raid5_finish_reshape, 9108 .prepare_suspend = raid5_prepare_suspend, 9109 .quiesce = raid5_quiesce, 9110 .takeover = raid5_takeover, 9111 .change_consistency_policy = raid5_change_consistency_policy, 9112 }; 9113 9114 static struct md_personality raid4_personality = 9115 { 9116 .name = "raid4", 9117 .level = 4, 9118 .owner = THIS_MODULE, 9119 .make_request = raid5_make_request, 9120 .run = raid5_run, 9121 .start = raid5_start, 9122 .free = raid5_free, 9123 .status = raid5_status, 9124 .error_handler = raid5_error, 9125 .hot_add_disk = raid5_add_disk, 9126 .hot_remove_disk= raid5_remove_disk, 9127 .spare_active = raid5_spare_active, 9128 .sync_request = raid5_sync_request, 9129 .resize = raid5_resize, 9130 .size = raid5_size, 9131 .check_reshape = raid5_check_reshape, 9132 .start_reshape = raid5_start_reshape, 9133 .finish_reshape = raid5_finish_reshape, 9134 .prepare_suspend = raid5_prepare_suspend, 9135 .quiesce = raid5_quiesce, 9136 .takeover = raid4_takeover, 9137 .change_consistency_policy = raid5_change_consistency_policy, 9138 }; 9139 9140 static int __init raid5_init(void) 9141 { 9142 int ret; 9143 9144 raid5_wq = alloc_workqueue("raid5wq", 9145 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0); 9146 if (!raid5_wq) 9147 return -ENOMEM; 9148 9149 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE, 9150 "md/raid5:prepare", 9151 raid456_cpu_up_prepare, 9152 raid456_cpu_dead); 9153 if (ret) { 9154 destroy_workqueue(raid5_wq); 9155 return ret; 9156 } 9157 register_md_personality(&raid6_personality); 9158 register_md_personality(&raid5_personality); 9159 register_md_personality(&raid4_personality); 9160 return 0; 9161 } 9162 9163 static void raid5_exit(void) 9164 { 9165 unregister_md_personality(&raid6_personality); 9166 unregister_md_personality(&raid5_personality); 9167 unregister_md_personality(&raid4_personality); 9168 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE); 9169 destroy_workqueue(raid5_wq); 9170 } 9171 9172 module_init(raid5_init); 9173 module_exit(raid5_exit); 9174 MODULE_LICENSE("GPL"); 9175 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD"); 9176 MODULE_ALIAS("md-personality-4"); /* RAID5 */ 9177 MODULE_ALIAS("md-raid5"); 9178 MODULE_ALIAS("md-raid4"); 9179 MODULE_ALIAS("md-level-5"); 9180 MODULE_ALIAS("md-level-4"); 9181 MODULE_ALIAS("md-personality-8"); /* RAID6 */ 9182 MODULE_ALIAS("md-raid6"); 9183 MODULE_ALIAS("md-level-6"); 9184 9185 /* This used to be two separate modules, they were: */ 9186 MODULE_ALIAS("raid5"); 9187 MODULE_ALIAS("raid6"); 9188