xref: /linux/drivers/md/raid5.c (revision 54a8a2220c936a47840c9a3d74910c5a56fae2ed)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *
6  * RAID-5 management functions.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2, or (at your option)
11  * any later version.
12  *
13  * You should have received a copy of the GNU General Public License
14  * (for example /usr/src/linux/COPYING); if not, write to the Free
15  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
16  */
17 
18 
19 #include <linux/config.h>
20 #include <linux/module.h>
21 #include <linux/slab.h>
22 #include <linux/raid/raid5.h>
23 #include <linux/highmem.h>
24 #include <linux/bitops.h>
25 #include <asm/atomic.h>
26 
27 #include <linux/raid/bitmap.h>
28 
29 /*
30  * Stripe cache
31  */
32 
33 #define NR_STRIPES		256
34 #define STRIPE_SIZE		PAGE_SIZE
35 #define STRIPE_SHIFT		(PAGE_SHIFT - 9)
36 #define STRIPE_SECTORS		(STRIPE_SIZE>>9)
37 #define	IO_THRESHOLD		1
38 #define HASH_PAGES		1
39 #define HASH_PAGES_ORDER	0
40 #define NR_HASH			(HASH_PAGES * PAGE_SIZE / sizeof(struct stripe_head *))
41 #define HASH_MASK		(NR_HASH - 1)
42 
43 #define stripe_hash(conf, sect)	((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK])
44 
45 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
46  * order without overlap.  There may be several bio's per stripe+device, and
47  * a bio could span several devices.
48  * When walking this list for a particular stripe+device, we must never proceed
49  * beyond a bio that extends past this device, as the next bio might no longer
50  * be valid.
51  * This macro is used to determine the 'next' bio in the list, given the sector
52  * of the current stripe+device
53  */
54 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
55 /*
56  * The following can be used to debug the driver
57  */
58 #define RAID5_DEBUG	0
59 #define RAID5_PARANOIA	1
60 #if RAID5_PARANOIA && defined(CONFIG_SMP)
61 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
62 #else
63 # define CHECK_DEVLOCK()
64 #endif
65 
66 #define PRINTK(x...) ((void)(RAID5_DEBUG && printk(x)))
67 #if RAID5_DEBUG
68 #define inline
69 #define __inline__
70 #endif
71 
72 static void print_raid5_conf (raid5_conf_t *conf);
73 
74 static inline void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
75 {
76 	if (atomic_dec_and_test(&sh->count)) {
77 		if (!list_empty(&sh->lru))
78 			BUG();
79 		if (atomic_read(&conf->active_stripes)==0)
80 			BUG();
81 		if (test_bit(STRIPE_HANDLE, &sh->state)) {
82 			if (test_bit(STRIPE_DELAYED, &sh->state))
83 				list_add_tail(&sh->lru, &conf->delayed_list);
84 			else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
85 				 conf->seq_write == sh->bm_seq)
86 				list_add_tail(&sh->lru, &conf->bitmap_list);
87 			else {
88 				clear_bit(STRIPE_BIT_DELAY, &sh->state);
89 				list_add_tail(&sh->lru, &conf->handle_list);
90 			}
91 			md_wakeup_thread(conf->mddev->thread);
92 		} else {
93 			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
94 				atomic_dec(&conf->preread_active_stripes);
95 				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
96 					md_wakeup_thread(conf->mddev->thread);
97 			}
98 			list_add_tail(&sh->lru, &conf->inactive_list);
99 			atomic_dec(&conf->active_stripes);
100 			if (!conf->inactive_blocked ||
101 			    atomic_read(&conf->active_stripes) < (NR_STRIPES*3/4))
102 				wake_up(&conf->wait_for_stripe);
103 		}
104 	}
105 }
106 static void release_stripe(struct stripe_head *sh)
107 {
108 	raid5_conf_t *conf = sh->raid_conf;
109 	unsigned long flags;
110 
111 	spin_lock_irqsave(&conf->device_lock, flags);
112 	__release_stripe(conf, sh);
113 	spin_unlock_irqrestore(&conf->device_lock, flags);
114 }
115 
116 static void remove_hash(struct stripe_head *sh)
117 {
118 	PRINTK("remove_hash(), stripe %llu\n", (unsigned long long)sh->sector);
119 
120 	if (sh->hash_pprev) {
121 		if (sh->hash_next)
122 			sh->hash_next->hash_pprev = sh->hash_pprev;
123 		*sh->hash_pprev = sh->hash_next;
124 		sh->hash_pprev = NULL;
125 	}
126 }
127 
128 static __inline__ void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
129 {
130 	struct stripe_head **shp = &stripe_hash(conf, sh->sector);
131 
132 	PRINTK("insert_hash(), stripe %llu\n", (unsigned long long)sh->sector);
133 
134 	CHECK_DEVLOCK();
135 	if ((sh->hash_next = *shp) != NULL)
136 		(*shp)->hash_pprev = &sh->hash_next;
137 	*shp = sh;
138 	sh->hash_pprev = shp;
139 }
140 
141 
142 /* find an idle stripe, make sure it is unhashed, and return it. */
143 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
144 {
145 	struct stripe_head *sh = NULL;
146 	struct list_head *first;
147 
148 	CHECK_DEVLOCK();
149 	if (list_empty(&conf->inactive_list))
150 		goto out;
151 	first = conf->inactive_list.next;
152 	sh = list_entry(first, struct stripe_head, lru);
153 	list_del_init(first);
154 	remove_hash(sh);
155 	atomic_inc(&conf->active_stripes);
156 out:
157 	return sh;
158 }
159 
160 static void shrink_buffers(struct stripe_head *sh, int num)
161 {
162 	struct page *p;
163 	int i;
164 
165 	for (i=0; i<num ; i++) {
166 		p = sh->dev[i].page;
167 		if (!p)
168 			continue;
169 		sh->dev[i].page = NULL;
170 		page_cache_release(p);
171 	}
172 }
173 
174 static int grow_buffers(struct stripe_head *sh, int num)
175 {
176 	int i;
177 
178 	for (i=0; i<num; i++) {
179 		struct page *page;
180 
181 		if (!(page = alloc_page(GFP_KERNEL))) {
182 			return 1;
183 		}
184 		sh->dev[i].page = page;
185 	}
186 	return 0;
187 }
188 
189 static void raid5_build_block (struct stripe_head *sh, int i);
190 
191 static inline void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx)
192 {
193 	raid5_conf_t *conf = sh->raid_conf;
194 	int disks = conf->raid_disks, i;
195 
196 	if (atomic_read(&sh->count) != 0)
197 		BUG();
198 	if (test_bit(STRIPE_HANDLE, &sh->state))
199 		BUG();
200 
201 	CHECK_DEVLOCK();
202 	PRINTK("init_stripe called, stripe %llu\n",
203 		(unsigned long long)sh->sector);
204 
205 	remove_hash(sh);
206 
207 	sh->sector = sector;
208 	sh->pd_idx = pd_idx;
209 	sh->state = 0;
210 
211 	for (i=disks; i--; ) {
212 		struct r5dev *dev = &sh->dev[i];
213 
214 		if (dev->toread || dev->towrite || dev->written ||
215 		    test_bit(R5_LOCKED, &dev->flags)) {
216 			printk("sector=%llx i=%d %p %p %p %d\n",
217 			       (unsigned long long)sh->sector, i, dev->toread,
218 			       dev->towrite, dev->written,
219 			       test_bit(R5_LOCKED, &dev->flags));
220 			BUG();
221 		}
222 		dev->flags = 0;
223 		raid5_build_block(sh, i);
224 	}
225 	insert_hash(conf, sh);
226 }
227 
228 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector)
229 {
230 	struct stripe_head *sh;
231 
232 	CHECK_DEVLOCK();
233 	PRINTK("__find_stripe, sector %llu\n", (unsigned long long)sector);
234 	for (sh = stripe_hash(conf, sector); sh; sh = sh->hash_next)
235 		if (sh->sector == sector)
236 			return sh;
237 	PRINTK("__stripe %llu not in cache\n", (unsigned long long)sector);
238 	return NULL;
239 }
240 
241 static void unplug_slaves(mddev_t *mddev);
242 static void raid5_unplug_device(request_queue_t *q);
243 
244 static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector,
245 					     int pd_idx, int noblock)
246 {
247 	struct stripe_head *sh;
248 
249 	PRINTK("get_stripe, sector %llu\n", (unsigned long long)sector);
250 
251 	spin_lock_irq(&conf->device_lock);
252 
253 	do {
254 		wait_event_lock_irq(conf->wait_for_stripe,
255 				    conf->quiesce == 0,
256 				    conf->device_lock, /* nothing */);
257 		sh = __find_stripe(conf, sector);
258 		if (!sh) {
259 			if (!conf->inactive_blocked)
260 				sh = get_free_stripe(conf);
261 			if (noblock && sh == NULL)
262 				break;
263 			if (!sh) {
264 				conf->inactive_blocked = 1;
265 				wait_event_lock_irq(conf->wait_for_stripe,
266 						    !list_empty(&conf->inactive_list) &&
267 						    (atomic_read(&conf->active_stripes) < (NR_STRIPES *3/4)
268 						     || !conf->inactive_blocked),
269 						    conf->device_lock,
270 						    unplug_slaves(conf->mddev);
271 					);
272 				conf->inactive_blocked = 0;
273 			} else
274 				init_stripe(sh, sector, pd_idx);
275 		} else {
276 			if (atomic_read(&sh->count)) {
277 				if (!list_empty(&sh->lru))
278 					BUG();
279 			} else {
280 				if (!test_bit(STRIPE_HANDLE, &sh->state))
281 					atomic_inc(&conf->active_stripes);
282 				if (list_empty(&sh->lru))
283 					BUG();
284 				list_del_init(&sh->lru);
285 			}
286 		}
287 	} while (sh == NULL);
288 
289 	if (sh)
290 		atomic_inc(&sh->count);
291 
292 	spin_unlock_irq(&conf->device_lock);
293 	return sh;
294 }
295 
296 static int grow_stripes(raid5_conf_t *conf, int num)
297 {
298 	struct stripe_head *sh;
299 	kmem_cache_t *sc;
300 	int devs = conf->raid_disks;
301 
302 	sprintf(conf->cache_name, "raid5/%s", mdname(conf->mddev));
303 
304 	sc = kmem_cache_create(conf->cache_name,
305 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
306 			       0, 0, NULL, NULL);
307 	if (!sc)
308 		return 1;
309 	conf->slab_cache = sc;
310 	while (num--) {
311 		sh = kmem_cache_alloc(sc, GFP_KERNEL);
312 		if (!sh)
313 			return 1;
314 		memset(sh, 0, sizeof(*sh) + (devs-1)*sizeof(struct r5dev));
315 		sh->raid_conf = conf;
316 		spin_lock_init(&sh->lock);
317 
318 		if (grow_buffers(sh, conf->raid_disks)) {
319 			shrink_buffers(sh, conf->raid_disks);
320 			kmem_cache_free(sc, sh);
321 			return 1;
322 		}
323 		/* we just created an active stripe so... */
324 		atomic_set(&sh->count, 1);
325 		atomic_inc(&conf->active_stripes);
326 		INIT_LIST_HEAD(&sh->lru);
327 		release_stripe(sh);
328 	}
329 	return 0;
330 }
331 
332 static void shrink_stripes(raid5_conf_t *conf)
333 {
334 	struct stripe_head *sh;
335 
336 	while (1) {
337 		spin_lock_irq(&conf->device_lock);
338 		sh = get_free_stripe(conf);
339 		spin_unlock_irq(&conf->device_lock);
340 		if (!sh)
341 			break;
342 		if (atomic_read(&sh->count))
343 			BUG();
344 		shrink_buffers(sh, conf->raid_disks);
345 		kmem_cache_free(conf->slab_cache, sh);
346 		atomic_dec(&conf->active_stripes);
347 	}
348 	kmem_cache_destroy(conf->slab_cache);
349 	conf->slab_cache = NULL;
350 }
351 
352 static int raid5_end_read_request (struct bio * bi, unsigned int bytes_done,
353 				   int error)
354 {
355  	struct stripe_head *sh = bi->bi_private;
356 	raid5_conf_t *conf = sh->raid_conf;
357 	int disks = conf->raid_disks, i;
358 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
359 
360 	if (bi->bi_size)
361 		return 1;
362 
363 	for (i=0 ; i<disks; i++)
364 		if (bi == &sh->dev[i].req)
365 			break;
366 
367 	PRINTK("end_read_request %llu/%d, count: %d, uptodate %d.\n",
368 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
369 		uptodate);
370 	if (i == disks) {
371 		BUG();
372 		return 0;
373 	}
374 
375 	if (uptodate) {
376 #if 0
377 		struct bio *bio;
378 		unsigned long flags;
379 		spin_lock_irqsave(&conf->device_lock, flags);
380 		/* we can return a buffer if we bypassed the cache or
381 		 * if the top buffer is not in highmem.  If there are
382 		 * multiple buffers, leave the extra work to
383 		 * handle_stripe
384 		 */
385 		buffer = sh->bh_read[i];
386 		if (buffer &&
387 		    (!PageHighMem(buffer->b_page)
388 		     || buffer->b_page == bh->b_page )
389 			) {
390 			sh->bh_read[i] = buffer->b_reqnext;
391 			buffer->b_reqnext = NULL;
392 		} else
393 			buffer = NULL;
394 		spin_unlock_irqrestore(&conf->device_lock, flags);
395 		if (sh->bh_page[i]==bh->b_page)
396 			set_buffer_uptodate(bh);
397 		if (buffer) {
398 			if (buffer->b_page != bh->b_page)
399 				memcpy(buffer->b_data, bh->b_data, bh->b_size);
400 			buffer->b_end_io(buffer, 1);
401 		}
402 #else
403 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
404 #endif
405 	} else {
406 		md_error(conf->mddev, conf->disks[i].rdev);
407 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
408 	}
409 	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
410 #if 0
411 	/* must restore b_page before unlocking buffer... */
412 	if (sh->bh_page[i] != bh->b_page) {
413 		bh->b_page = sh->bh_page[i];
414 		bh->b_data = page_address(bh->b_page);
415 		clear_buffer_uptodate(bh);
416 	}
417 #endif
418 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
419 	set_bit(STRIPE_HANDLE, &sh->state);
420 	release_stripe(sh);
421 	return 0;
422 }
423 
424 static int raid5_end_write_request (struct bio *bi, unsigned int bytes_done,
425 				    int error)
426 {
427  	struct stripe_head *sh = bi->bi_private;
428 	raid5_conf_t *conf = sh->raid_conf;
429 	int disks = conf->raid_disks, i;
430 	unsigned long flags;
431 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
432 
433 	if (bi->bi_size)
434 		return 1;
435 
436 	for (i=0 ; i<disks; i++)
437 		if (bi == &sh->dev[i].req)
438 			break;
439 
440 	PRINTK("end_write_request %llu/%d, count %d, uptodate: %d.\n",
441 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
442 		uptodate);
443 	if (i == disks) {
444 		BUG();
445 		return 0;
446 	}
447 
448 	spin_lock_irqsave(&conf->device_lock, flags);
449 	if (!uptodate)
450 		md_error(conf->mddev, conf->disks[i].rdev);
451 
452 	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
453 
454 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
455 	set_bit(STRIPE_HANDLE, &sh->state);
456 	__release_stripe(conf, sh);
457 	spin_unlock_irqrestore(&conf->device_lock, flags);
458 	return 0;
459 }
460 
461 
462 static sector_t compute_blocknr(struct stripe_head *sh, int i);
463 
464 static void raid5_build_block (struct stripe_head *sh, int i)
465 {
466 	struct r5dev *dev = &sh->dev[i];
467 
468 	bio_init(&dev->req);
469 	dev->req.bi_io_vec = &dev->vec;
470 	dev->req.bi_vcnt++;
471 	dev->req.bi_max_vecs++;
472 	dev->vec.bv_page = dev->page;
473 	dev->vec.bv_len = STRIPE_SIZE;
474 	dev->vec.bv_offset = 0;
475 
476 	dev->req.bi_sector = sh->sector;
477 	dev->req.bi_private = sh;
478 
479 	dev->flags = 0;
480 	if (i != sh->pd_idx)
481 		dev->sector = compute_blocknr(sh, i);
482 }
483 
484 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
485 {
486 	char b[BDEVNAME_SIZE];
487 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
488 	PRINTK("raid5: error called\n");
489 
490 	if (!rdev->faulty) {
491 		mddev->sb_dirty = 1;
492 		if (rdev->in_sync) {
493 			conf->working_disks--;
494 			mddev->degraded++;
495 			conf->failed_disks++;
496 			rdev->in_sync = 0;
497 			/*
498 			 * if recovery was running, make sure it aborts.
499 			 */
500 			set_bit(MD_RECOVERY_ERR, &mddev->recovery);
501 		}
502 		rdev->faulty = 1;
503 		printk (KERN_ALERT
504 			"raid5: Disk failure on %s, disabling device."
505 			" Operation continuing on %d devices\n",
506 			bdevname(rdev->bdev,b), conf->working_disks);
507 	}
508 }
509 
510 /*
511  * Input: a 'big' sector number,
512  * Output: index of the data and parity disk, and the sector # in them.
513  */
514 static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
515 			unsigned int data_disks, unsigned int * dd_idx,
516 			unsigned int * pd_idx, raid5_conf_t *conf)
517 {
518 	long stripe;
519 	unsigned long chunk_number;
520 	unsigned int chunk_offset;
521 	sector_t new_sector;
522 	int sectors_per_chunk = conf->chunk_size >> 9;
523 
524 	/* First compute the information on this sector */
525 
526 	/*
527 	 * Compute the chunk number and the sector offset inside the chunk
528 	 */
529 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
530 	chunk_number = r_sector;
531 	BUG_ON(r_sector != chunk_number);
532 
533 	/*
534 	 * Compute the stripe number
535 	 */
536 	stripe = chunk_number / data_disks;
537 
538 	/*
539 	 * Compute the data disk and parity disk indexes inside the stripe
540 	 */
541 	*dd_idx = chunk_number % data_disks;
542 
543 	/*
544 	 * Select the parity disk based on the user selected algorithm.
545 	 */
546 	if (conf->level == 4)
547 		*pd_idx = data_disks;
548 	else switch (conf->algorithm) {
549 		case ALGORITHM_LEFT_ASYMMETRIC:
550 			*pd_idx = data_disks - stripe % raid_disks;
551 			if (*dd_idx >= *pd_idx)
552 				(*dd_idx)++;
553 			break;
554 		case ALGORITHM_RIGHT_ASYMMETRIC:
555 			*pd_idx = stripe % raid_disks;
556 			if (*dd_idx >= *pd_idx)
557 				(*dd_idx)++;
558 			break;
559 		case ALGORITHM_LEFT_SYMMETRIC:
560 			*pd_idx = data_disks - stripe % raid_disks;
561 			*dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
562 			break;
563 		case ALGORITHM_RIGHT_SYMMETRIC:
564 			*pd_idx = stripe % raid_disks;
565 			*dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
566 			break;
567 		default:
568 			printk("raid5: unsupported algorithm %d\n",
569 				conf->algorithm);
570 	}
571 
572 	/*
573 	 * Finally, compute the new sector number
574 	 */
575 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
576 	return new_sector;
577 }
578 
579 
580 static sector_t compute_blocknr(struct stripe_head *sh, int i)
581 {
582 	raid5_conf_t *conf = sh->raid_conf;
583 	int raid_disks = conf->raid_disks, data_disks = raid_disks - 1;
584 	sector_t new_sector = sh->sector, check;
585 	int sectors_per_chunk = conf->chunk_size >> 9;
586 	sector_t stripe;
587 	int chunk_offset;
588 	int chunk_number, dummy1, dummy2, dd_idx = i;
589 	sector_t r_sector;
590 
591 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
592 	stripe = new_sector;
593 	BUG_ON(new_sector != stripe);
594 
595 
596 	switch (conf->algorithm) {
597 		case ALGORITHM_LEFT_ASYMMETRIC:
598 		case ALGORITHM_RIGHT_ASYMMETRIC:
599 			if (i > sh->pd_idx)
600 				i--;
601 			break;
602 		case ALGORITHM_LEFT_SYMMETRIC:
603 		case ALGORITHM_RIGHT_SYMMETRIC:
604 			if (i < sh->pd_idx)
605 				i += raid_disks;
606 			i -= (sh->pd_idx + 1);
607 			break;
608 		default:
609 			printk("raid5: unsupported algorithm %d\n",
610 				conf->algorithm);
611 	}
612 
613 	chunk_number = stripe * data_disks + i;
614 	r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
615 
616 	check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
617 	if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
618 		printk("compute_blocknr: map not correct\n");
619 		return 0;
620 	}
621 	return r_sector;
622 }
623 
624 
625 
626 /*
627  * Copy data between a page in the stripe cache, and a bio.
628  * There are no alignment or size guarantees between the page or the
629  * bio except that there is some overlap.
630  * All iovecs in the bio must be considered.
631  */
632 static void copy_data(int frombio, struct bio *bio,
633 		     struct page *page,
634 		     sector_t sector)
635 {
636 	char *pa = page_address(page);
637 	struct bio_vec *bvl;
638 	int i;
639 	int page_offset;
640 
641 	if (bio->bi_sector >= sector)
642 		page_offset = (signed)(bio->bi_sector - sector) * 512;
643 	else
644 		page_offset = (signed)(sector - bio->bi_sector) * -512;
645 	bio_for_each_segment(bvl, bio, i) {
646 		int len = bio_iovec_idx(bio,i)->bv_len;
647 		int clen;
648 		int b_offset = 0;
649 
650 		if (page_offset < 0) {
651 			b_offset = -page_offset;
652 			page_offset += b_offset;
653 			len -= b_offset;
654 		}
655 
656 		if (len > 0 && page_offset + len > STRIPE_SIZE)
657 			clen = STRIPE_SIZE - page_offset;
658 		else clen = len;
659 
660 		if (clen > 0) {
661 			char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
662 			if (frombio)
663 				memcpy(pa+page_offset, ba+b_offset, clen);
664 			else
665 				memcpy(ba+b_offset, pa+page_offset, clen);
666 			__bio_kunmap_atomic(ba, KM_USER0);
667 		}
668 		if (clen < len) /* hit end of page */
669 			break;
670 		page_offset +=  len;
671 	}
672 }
673 
674 #define check_xor() 	do { 						\
675 			   if (count == MAX_XOR_BLOCKS) {		\
676 				xor_block(count, STRIPE_SIZE, ptr);	\
677 				count = 1;				\
678 			   }						\
679 			} while(0)
680 
681 
682 static void compute_block(struct stripe_head *sh, int dd_idx)
683 {
684 	raid5_conf_t *conf = sh->raid_conf;
685 	int i, count, disks = conf->raid_disks;
686 	void *ptr[MAX_XOR_BLOCKS], *p;
687 
688 	PRINTK("compute_block, stripe %llu, idx %d\n",
689 		(unsigned long long)sh->sector, dd_idx);
690 
691 	ptr[0] = page_address(sh->dev[dd_idx].page);
692 	memset(ptr[0], 0, STRIPE_SIZE);
693 	count = 1;
694 	for (i = disks ; i--; ) {
695 		if (i == dd_idx)
696 			continue;
697 		p = page_address(sh->dev[i].page);
698 		if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
699 			ptr[count++] = p;
700 		else
701 			printk("compute_block() %d, stripe %llu, %d"
702 				" not present\n", dd_idx,
703 				(unsigned long long)sh->sector, i);
704 
705 		check_xor();
706 	}
707 	if (count != 1)
708 		xor_block(count, STRIPE_SIZE, ptr);
709 	set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
710 }
711 
712 static void compute_parity(struct stripe_head *sh, int method)
713 {
714 	raid5_conf_t *conf = sh->raid_conf;
715 	int i, pd_idx = sh->pd_idx, disks = conf->raid_disks, count;
716 	void *ptr[MAX_XOR_BLOCKS];
717 	struct bio *chosen;
718 
719 	PRINTK("compute_parity, stripe %llu, method %d\n",
720 		(unsigned long long)sh->sector, method);
721 
722 	count = 1;
723 	ptr[0] = page_address(sh->dev[pd_idx].page);
724 	switch(method) {
725 	case READ_MODIFY_WRITE:
726 		if (!test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags))
727 			BUG();
728 		for (i=disks ; i-- ;) {
729 			if (i==pd_idx)
730 				continue;
731 			if (sh->dev[i].towrite &&
732 			    test_bit(R5_UPTODATE, &sh->dev[i].flags)) {
733 				ptr[count++] = page_address(sh->dev[i].page);
734 				chosen = sh->dev[i].towrite;
735 				sh->dev[i].towrite = NULL;
736 
737 				if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
738 					wake_up(&conf->wait_for_overlap);
739 
740 				if (sh->dev[i].written) BUG();
741 				sh->dev[i].written = chosen;
742 				check_xor();
743 			}
744 		}
745 		break;
746 	case RECONSTRUCT_WRITE:
747 		memset(ptr[0], 0, STRIPE_SIZE);
748 		for (i= disks; i-- ;)
749 			if (i!=pd_idx && sh->dev[i].towrite) {
750 				chosen = sh->dev[i].towrite;
751 				sh->dev[i].towrite = NULL;
752 
753 				if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
754 					wake_up(&conf->wait_for_overlap);
755 
756 				if (sh->dev[i].written) BUG();
757 				sh->dev[i].written = chosen;
758 			}
759 		break;
760 	case CHECK_PARITY:
761 		break;
762 	}
763 	if (count>1) {
764 		xor_block(count, STRIPE_SIZE, ptr);
765 		count = 1;
766 	}
767 
768 	for (i = disks; i--;)
769 		if (sh->dev[i].written) {
770 			sector_t sector = sh->dev[i].sector;
771 			struct bio *wbi = sh->dev[i].written;
772 			while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
773 				copy_data(1, wbi, sh->dev[i].page, sector);
774 				wbi = r5_next_bio(wbi, sector);
775 			}
776 
777 			set_bit(R5_LOCKED, &sh->dev[i].flags);
778 			set_bit(R5_UPTODATE, &sh->dev[i].flags);
779 		}
780 
781 	switch(method) {
782 	case RECONSTRUCT_WRITE:
783 	case CHECK_PARITY:
784 		for (i=disks; i--;)
785 			if (i != pd_idx) {
786 				ptr[count++] = page_address(sh->dev[i].page);
787 				check_xor();
788 			}
789 		break;
790 	case READ_MODIFY_WRITE:
791 		for (i = disks; i--;)
792 			if (sh->dev[i].written) {
793 				ptr[count++] = page_address(sh->dev[i].page);
794 				check_xor();
795 			}
796 	}
797 	if (count != 1)
798 		xor_block(count, STRIPE_SIZE, ptr);
799 
800 	if (method != CHECK_PARITY) {
801 		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
802 		set_bit(R5_LOCKED,   &sh->dev[pd_idx].flags);
803 	} else
804 		clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
805 }
806 
807 /*
808  * Each stripe/dev can have one or more bion attached.
809  * toread/towrite point to the first in a chain.
810  * The bi_next chain must be in order.
811  */
812 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
813 {
814 	struct bio **bip;
815 	raid5_conf_t *conf = sh->raid_conf;
816 	int firstwrite=0;
817 
818 	PRINTK("adding bh b#%llu to stripe s#%llu\n",
819 		(unsigned long long)bi->bi_sector,
820 		(unsigned long long)sh->sector);
821 
822 
823 	spin_lock(&sh->lock);
824 	spin_lock_irq(&conf->device_lock);
825 	if (forwrite) {
826 		bip = &sh->dev[dd_idx].towrite;
827 		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
828 			firstwrite = 1;
829 	} else
830 		bip = &sh->dev[dd_idx].toread;
831 	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
832 		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
833 			goto overlap;
834 		bip = & (*bip)->bi_next;
835 	}
836 	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
837 		goto overlap;
838 
839 	if (*bip && bi->bi_next && (*bip) != bi->bi_next)
840 		BUG();
841 	if (*bip)
842 		bi->bi_next = *bip;
843 	*bip = bi;
844 	bi->bi_phys_segments ++;
845 	spin_unlock_irq(&conf->device_lock);
846 	spin_unlock(&sh->lock);
847 
848 	PRINTK("added bi b#%llu to stripe s#%llu, disk %d.\n",
849 		(unsigned long long)bi->bi_sector,
850 		(unsigned long long)sh->sector, dd_idx);
851 
852 	if (conf->mddev->bitmap && firstwrite) {
853 		sh->bm_seq = conf->seq_write;
854 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
855 				  STRIPE_SECTORS, 0);
856 		set_bit(STRIPE_BIT_DELAY, &sh->state);
857 	}
858 
859 	if (forwrite) {
860 		/* check if page is covered */
861 		sector_t sector = sh->dev[dd_idx].sector;
862 		for (bi=sh->dev[dd_idx].towrite;
863 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
864 			     bi && bi->bi_sector <= sector;
865 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
866 			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
867 				sector = bi->bi_sector + (bi->bi_size>>9);
868 		}
869 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
870 			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
871 	}
872 	return 1;
873 
874  overlap:
875 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
876 	spin_unlock_irq(&conf->device_lock);
877 	spin_unlock(&sh->lock);
878 	return 0;
879 }
880 
881 
882 /*
883  * handle_stripe - do things to a stripe.
884  *
885  * We lock the stripe and then examine the state of various bits
886  * to see what needs to be done.
887  * Possible results:
888  *    return some read request which now have data
889  *    return some write requests which are safely on disc
890  *    schedule a read on some buffers
891  *    schedule a write of some buffers
892  *    return confirmation of parity correctness
893  *
894  * Parity calculations are done inside the stripe lock
895  * buffers are taken off read_list or write_list, and bh_cache buffers
896  * get BH_Lock set before the stripe lock is released.
897  *
898  */
899 
900 static void handle_stripe(struct stripe_head *sh)
901 {
902 	raid5_conf_t *conf = sh->raid_conf;
903 	int disks = conf->raid_disks;
904 	struct bio *return_bi= NULL;
905 	struct bio *bi;
906 	int i;
907 	int syncing;
908 	int locked=0, uptodate=0, to_read=0, to_write=0, failed=0, written=0;
909 	int non_overwrite = 0;
910 	int failed_num=0;
911 	struct r5dev *dev;
912 
913 	PRINTK("handling stripe %llu, cnt=%d, pd_idx=%d\n",
914 		(unsigned long long)sh->sector, atomic_read(&sh->count),
915 		sh->pd_idx);
916 
917 	spin_lock(&sh->lock);
918 	clear_bit(STRIPE_HANDLE, &sh->state);
919 	clear_bit(STRIPE_DELAYED, &sh->state);
920 
921 	syncing = test_bit(STRIPE_SYNCING, &sh->state);
922 	/* Now to look around and see what can be done */
923 
924 	for (i=disks; i--; ) {
925 		mdk_rdev_t *rdev;
926 		dev = &sh->dev[i];
927 		clear_bit(R5_Insync, &dev->flags);
928 		clear_bit(R5_Syncio, &dev->flags);
929 
930 		PRINTK("check %d: state 0x%lx read %p write %p written %p\n",
931 			i, dev->flags, dev->toread, dev->towrite, dev->written);
932 		/* maybe we can reply to a read */
933 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
934 			struct bio *rbi, *rbi2;
935 			PRINTK("Return read for disc %d\n", i);
936 			spin_lock_irq(&conf->device_lock);
937 			rbi = dev->toread;
938 			dev->toread = NULL;
939 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
940 				wake_up(&conf->wait_for_overlap);
941 			spin_unlock_irq(&conf->device_lock);
942 			while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
943 				copy_data(0, rbi, dev->page, dev->sector);
944 				rbi2 = r5_next_bio(rbi, dev->sector);
945 				spin_lock_irq(&conf->device_lock);
946 				if (--rbi->bi_phys_segments == 0) {
947 					rbi->bi_next = return_bi;
948 					return_bi = rbi;
949 				}
950 				spin_unlock_irq(&conf->device_lock);
951 				rbi = rbi2;
952 			}
953 		}
954 
955 		/* now count some things */
956 		if (test_bit(R5_LOCKED, &dev->flags)) locked++;
957 		if (test_bit(R5_UPTODATE, &dev->flags)) uptodate++;
958 
959 
960 		if (dev->toread) to_read++;
961 		if (dev->towrite) {
962 			to_write++;
963 			if (!test_bit(R5_OVERWRITE, &dev->flags))
964 				non_overwrite++;
965 		}
966 		if (dev->written) written++;
967 		rdev = conf->disks[i].rdev; /* FIXME, should I be looking rdev */
968 		if (!rdev || !rdev->in_sync) {
969 			failed++;
970 			failed_num = i;
971 		} else
972 			set_bit(R5_Insync, &dev->flags);
973 	}
974 	PRINTK("locked=%d uptodate=%d to_read=%d"
975 		" to_write=%d failed=%d failed_num=%d\n",
976 		locked, uptodate, to_read, to_write, failed, failed_num);
977 	/* check if the array has lost two devices and, if so, some requests might
978 	 * need to be failed
979 	 */
980 	if (failed > 1 && to_read+to_write+written) {
981 		for (i=disks; i--; ) {
982 			int bitmap_end = 0;
983 			spin_lock_irq(&conf->device_lock);
984 			/* fail all writes first */
985 			bi = sh->dev[i].towrite;
986 			sh->dev[i].towrite = NULL;
987 			if (bi) { to_write--; bitmap_end = 1; }
988 
989 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
990 				wake_up(&conf->wait_for_overlap);
991 
992 			while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
993 				struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
994 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
995 				if (--bi->bi_phys_segments == 0) {
996 					md_write_end(conf->mddev);
997 					bi->bi_next = return_bi;
998 					return_bi = bi;
999 				}
1000 				bi = nextbi;
1001 			}
1002 			/* and fail all 'written' */
1003 			bi = sh->dev[i].written;
1004 			sh->dev[i].written = NULL;
1005 			if (bi) bitmap_end = 1;
1006 			while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS) {
1007 				struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
1008 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
1009 				if (--bi->bi_phys_segments == 0) {
1010 					md_write_end(conf->mddev);
1011 					bi->bi_next = return_bi;
1012 					return_bi = bi;
1013 				}
1014 				bi = bi2;
1015 			}
1016 
1017 			/* fail any reads if this device is non-operational */
1018 			if (!test_bit(R5_Insync, &sh->dev[i].flags)) {
1019 				bi = sh->dev[i].toread;
1020 				sh->dev[i].toread = NULL;
1021 				if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1022 					wake_up(&conf->wait_for_overlap);
1023 				if (bi) to_read--;
1024 				while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
1025 					struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1026 					clear_bit(BIO_UPTODATE, &bi->bi_flags);
1027 					if (--bi->bi_phys_segments == 0) {
1028 						bi->bi_next = return_bi;
1029 						return_bi = bi;
1030 					}
1031 					bi = nextbi;
1032 				}
1033 			}
1034 			spin_unlock_irq(&conf->device_lock);
1035 			if (bitmap_end)
1036 				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1037 						STRIPE_SECTORS, 0, 0);
1038 		}
1039 	}
1040 	if (failed > 1 && syncing) {
1041 		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
1042 		clear_bit(STRIPE_SYNCING, &sh->state);
1043 		syncing = 0;
1044 	}
1045 
1046 	/* might be able to return some write requests if the parity block
1047 	 * is safe, or on a failed drive
1048 	 */
1049 	dev = &sh->dev[sh->pd_idx];
1050 	if ( written &&
1051 	     ( (test_bit(R5_Insync, &dev->flags) && !test_bit(R5_LOCKED, &dev->flags) &&
1052 		test_bit(R5_UPTODATE, &dev->flags))
1053 	       || (failed == 1 && failed_num == sh->pd_idx))
1054 	    ) {
1055 	    /* any written block on an uptodate or failed drive can be returned.
1056 	     * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
1057 	     * never LOCKED, so we don't need to test 'failed' directly.
1058 	     */
1059 	    for (i=disks; i--; )
1060 		if (sh->dev[i].written) {
1061 		    dev = &sh->dev[i];
1062 		    if (!test_bit(R5_LOCKED, &dev->flags) &&
1063 			 test_bit(R5_UPTODATE, &dev->flags) ) {
1064 			/* We can return any write requests */
1065 			    struct bio *wbi, *wbi2;
1066 			    int bitmap_end = 0;
1067 			    PRINTK("Return write for disc %d\n", i);
1068 			    spin_lock_irq(&conf->device_lock);
1069 			    wbi = dev->written;
1070 			    dev->written = NULL;
1071 			    while (wbi && wbi->bi_sector < dev->sector + STRIPE_SECTORS) {
1072 				    wbi2 = r5_next_bio(wbi, dev->sector);
1073 				    if (--wbi->bi_phys_segments == 0) {
1074 					    md_write_end(conf->mddev);
1075 					    wbi->bi_next = return_bi;
1076 					    return_bi = wbi;
1077 				    }
1078 				    wbi = wbi2;
1079 			    }
1080 			    if (dev->towrite == NULL)
1081 				    bitmap_end = 1;
1082 			    spin_unlock_irq(&conf->device_lock);
1083 			    if (bitmap_end)
1084 				    bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1085 						    STRIPE_SECTORS,
1086 						    !test_bit(STRIPE_DEGRADED, &sh->state), 0);
1087 		    }
1088 		}
1089 	}
1090 
1091 	/* Now we might consider reading some blocks, either to check/generate
1092 	 * parity, or to satisfy requests
1093 	 * or to load a block that is being partially written.
1094 	 */
1095 	if (to_read || non_overwrite || (syncing && (uptodate < disks))) {
1096 		for (i=disks; i--;) {
1097 			dev = &sh->dev[i];
1098 			if (!test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
1099 			    (dev->toread ||
1100 			     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
1101 			     syncing ||
1102 			     (failed && (sh->dev[failed_num].toread ||
1103 					 (sh->dev[failed_num].towrite && !test_bit(R5_OVERWRITE, &sh->dev[failed_num].flags))))
1104 				    )
1105 				) {
1106 				/* we would like to get this block, possibly
1107 				 * by computing it, but we might not be able to
1108 				 */
1109 				if (uptodate == disks-1) {
1110 					PRINTK("Computing block %d\n", i);
1111 					compute_block(sh, i);
1112 					uptodate++;
1113 				} else if (test_bit(R5_Insync, &dev->flags)) {
1114 					set_bit(R5_LOCKED, &dev->flags);
1115 					set_bit(R5_Wantread, &dev->flags);
1116 #if 0
1117 					/* if I am just reading this block and we don't have
1118 					   a failed drive, or any pending writes then sidestep the cache */
1119 					if (sh->bh_read[i] && !sh->bh_read[i]->b_reqnext &&
1120 					    ! syncing && !failed && !to_write) {
1121 						sh->bh_cache[i]->b_page =  sh->bh_read[i]->b_page;
1122 						sh->bh_cache[i]->b_data =  sh->bh_read[i]->b_data;
1123 					}
1124 #endif
1125 					locked++;
1126 					PRINTK("Reading block %d (sync=%d)\n",
1127 						i, syncing);
1128 					if (syncing)
1129 						md_sync_acct(conf->disks[i].rdev->bdev,
1130 							     STRIPE_SECTORS);
1131 				}
1132 			}
1133 		}
1134 		set_bit(STRIPE_HANDLE, &sh->state);
1135 	}
1136 
1137 	/* now to consider writing and what else, if anything should be read */
1138 	if (to_write) {
1139 		int rmw=0, rcw=0;
1140 		for (i=disks ; i--;) {
1141 			/* would I have to read this buffer for read_modify_write */
1142 			dev = &sh->dev[i];
1143 			if ((dev->towrite || i == sh->pd_idx) &&
1144 			    (!test_bit(R5_LOCKED, &dev->flags)
1145 #if 0
1146 || sh->bh_page[i]!=bh->b_page
1147 #endif
1148 				    ) &&
1149 			    !test_bit(R5_UPTODATE, &dev->flags)) {
1150 				if (test_bit(R5_Insync, &dev->flags)
1151 /*				    && !(!mddev->insync && i == sh->pd_idx) */
1152 					)
1153 					rmw++;
1154 				else rmw += 2*disks;  /* cannot read it */
1155 			}
1156 			/* Would I have to read this buffer for reconstruct_write */
1157 			if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
1158 			    (!test_bit(R5_LOCKED, &dev->flags)
1159 #if 0
1160 || sh->bh_page[i] != bh->b_page
1161 #endif
1162 				    ) &&
1163 			    !test_bit(R5_UPTODATE, &dev->flags)) {
1164 				if (test_bit(R5_Insync, &dev->flags)) rcw++;
1165 				else rcw += 2*disks;
1166 			}
1167 		}
1168 		PRINTK("for sector %llu, rmw=%d rcw=%d\n",
1169 			(unsigned long long)sh->sector, rmw, rcw);
1170 		set_bit(STRIPE_HANDLE, &sh->state);
1171 		if (rmw < rcw && rmw > 0)
1172 			/* prefer read-modify-write, but need to get some data */
1173 			for (i=disks; i--;) {
1174 				dev = &sh->dev[i];
1175 				if ((dev->towrite || i == sh->pd_idx) &&
1176 				    !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
1177 				    test_bit(R5_Insync, &dev->flags)) {
1178 					if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
1179 					{
1180 						PRINTK("Read_old block %d for r-m-w\n", i);
1181 						set_bit(R5_LOCKED, &dev->flags);
1182 						set_bit(R5_Wantread, &dev->flags);
1183 						locked++;
1184 					} else {
1185 						set_bit(STRIPE_DELAYED, &sh->state);
1186 						set_bit(STRIPE_HANDLE, &sh->state);
1187 					}
1188 				}
1189 			}
1190 		if (rcw <= rmw && rcw > 0)
1191 			/* want reconstruct write, but need to get some data */
1192 			for (i=disks; i--;) {
1193 				dev = &sh->dev[i];
1194 				if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
1195 				    !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
1196 				    test_bit(R5_Insync, &dev->flags)) {
1197 					if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
1198 					{
1199 						PRINTK("Read_old block %d for Reconstruct\n", i);
1200 						set_bit(R5_LOCKED, &dev->flags);
1201 						set_bit(R5_Wantread, &dev->flags);
1202 						locked++;
1203 					} else {
1204 						set_bit(STRIPE_DELAYED, &sh->state);
1205 						set_bit(STRIPE_HANDLE, &sh->state);
1206 					}
1207 				}
1208 			}
1209 		/* now if nothing is locked, and if we have enough data, we can start a write request */
1210 		if (locked == 0 && (rcw == 0 ||rmw == 0) &&
1211 		    !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
1212 			PRINTK("Computing parity...\n");
1213 			compute_parity(sh, rcw==0 ? RECONSTRUCT_WRITE : READ_MODIFY_WRITE);
1214 			/* now every locked buffer is ready to be written */
1215 			for (i=disks; i--;)
1216 				if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
1217 					PRINTK("Writing block %d\n", i);
1218 					locked++;
1219 					set_bit(R5_Wantwrite, &sh->dev[i].flags);
1220 					if (!test_bit(R5_Insync, &sh->dev[i].flags)
1221 					    || (i==sh->pd_idx && failed == 0))
1222 						set_bit(STRIPE_INSYNC, &sh->state);
1223 				}
1224 			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
1225 				atomic_dec(&conf->preread_active_stripes);
1226 				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
1227 					md_wakeup_thread(conf->mddev->thread);
1228 			}
1229 		}
1230 	}
1231 
1232 	/* maybe we need to check and possibly fix the parity for this stripe
1233 	 * Any reads will already have been scheduled, so we just see if enough data
1234 	 * is available
1235 	 */
1236 	if (syncing && locked == 0 &&
1237 	    !test_bit(STRIPE_INSYNC, &sh->state) && failed <= 1) {
1238 		set_bit(STRIPE_HANDLE, &sh->state);
1239 		if (failed == 0) {
1240 			char *pagea;
1241 			if (uptodate != disks)
1242 				BUG();
1243 			compute_parity(sh, CHECK_PARITY);
1244 			uptodate--;
1245 			pagea = page_address(sh->dev[sh->pd_idx].page);
1246 			if ((*(u32*)pagea) == 0 &&
1247 			    !memcmp(pagea, pagea+4, STRIPE_SIZE-4)) {
1248 				/* parity is correct (on disc, not in buffer any more) */
1249 				set_bit(STRIPE_INSYNC, &sh->state);
1250 			}
1251 		}
1252 		if (!test_bit(STRIPE_INSYNC, &sh->state)) {
1253 			if (failed==0)
1254 				failed_num = sh->pd_idx;
1255 			/* should be able to compute the missing block and write it to spare */
1256 			if (!test_bit(R5_UPTODATE, &sh->dev[failed_num].flags)) {
1257 				if (uptodate+1 != disks)
1258 					BUG();
1259 				compute_block(sh, failed_num);
1260 				uptodate++;
1261 			}
1262 			if (uptodate != disks)
1263 				BUG();
1264 			dev = &sh->dev[failed_num];
1265 			set_bit(R5_LOCKED, &dev->flags);
1266 			set_bit(R5_Wantwrite, &dev->flags);
1267 			clear_bit(STRIPE_DEGRADED, &sh->state);
1268 			locked++;
1269 			set_bit(STRIPE_INSYNC, &sh->state);
1270 			set_bit(R5_Syncio, &dev->flags);
1271 		}
1272 	}
1273 	if (syncing && locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
1274 		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
1275 		clear_bit(STRIPE_SYNCING, &sh->state);
1276 	}
1277 
1278 	spin_unlock(&sh->lock);
1279 
1280 	while ((bi=return_bi)) {
1281 		int bytes = bi->bi_size;
1282 
1283 		return_bi = bi->bi_next;
1284 		bi->bi_next = NULL;
1285 		bi->bi_size = 0;
1286 		bi->bi_end_io(bi, bytes, 0);
1287 	}
1288 	for (i=disks; i-- ;) {
1289 		int rw;
1290 		struct bio *bi;
1291 		mdk_rdev_t *rdev;
1292 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
1293 			rw = 1;
1294 		else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1295 			rw = 0;
1296 		else
1297 			continue;
1298 
1299 		bi = &sh->dev[i].req;
1300 
1301 		bi->bi_rw = rw;
1302 		if (rw)
1303 			bi->bi_end_io = raid5_end_write_request;
1304 		else
1305 			bi->bi_end_io = raid5_end_read_request;
1306 
1307 		rcu_read_lock();
1308 		rdev = conf->disks[i].rdev;
1309 		if (rdev && rdev->faulty)
1310 			rdev = NULL;
1311 		if (rdev)
1312 			atomic_inc(&rdev->nr_pending);
1313 		rcu_read_unlock();
1314 
1315 		if (rdev) {
1316 			if (test_bit(R5_Syncio, &sh->dev[i].flags))
1317 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1318 
1319 			bi->bi_bdev = rdev->bdev;
1320 			PRINTK("for %llu schedule op %ld on disc %d\n",
1321 				(unsigned long long)sh->sector, bi->bi_rw, i);
1322 			atomic_inc(&sh->count);
1323 			bi->bi_sector = sh->sector + rdev->data_offset;
1324 			bi->bi_flags = 1 << BIO_UPTODATE;
1325 			bi->bi_vcnt = 1;
1326 			bi->bi_max_vecs = 1;
1327 			bi->bi_idx = 0;
1328 			bi->bi_io_vec = &sh->dev[i].vec;
1329 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1330 			bi->bi_io_vec[0].bv_offset = 0;
1331 			bi->bi_size = STRIPE_SIZE;
1332 			bi->bi_next = NULL;
1333 			generic_make_request(bi);
1334 		} else {
1335 			if (rw == 1)
1336 				set_bit(STRIPE_DEGRADED, &sh->state);
1337 			PRINTK("skip op %ld on disc %d for sector %llu\n",
1338 				bi->bi_rw, i, (unsigned long long)sh->sector);
1339 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
1340 			set_bit(STRIPE_HANDLE, &sh->state);
1341 		}
1342 	}
1343 }
1344 
1345 static inline void raid5_activate_delayed(raid5_conf_t *conf)
1346 {
1347 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
1348 		while (!list_empty(&conf->delayed_list)) {
1349 			struct list_head *l = conf->delayed_list.next;
1350 			struct stripe_head *sh;
1351 			sh = list_entry(l, struct stripe_head, lru);
1352 			list_del_init(l);
1353 			clear_bit(STRIPE_DELAYED, &sh->state);
1354 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
1355 				atomic_inc(&conf->preread_active_stripes);
1356 			list_add_tail(&sh->lru, &conf->handle_list);
1357 		}
1358 	}
1359 }
1360 
1361 static inline void activate_bit_delay(raid5_conf_t *conf)
1362 {
1363 	/* device_lock is held */
1364 	struct list_head head;
1365 	list_add(&head, &conf->bitmap_list);
1366 	list_del_init(&conf->bitmap_list);
1367 	while (!list_empty(&head)) {
1368 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
1369 		list_del_init(&sh->lru);
1370 		atomic_inc(&sh->count);
1371 		__release_stripe(conf, sh);
1372 	}
1373 }
1374 
1375 static void unplug_slaves(mddev_t *mddev)
1376 {
1377 	raid5_conf_t *conf = mddev_to_conf(mddev);
1378 	int i;
1379 
1380 	rcu_read_lock();
1381 	for (i=0; i<mddev->raid_disks; i++) {
1382 		mdk_rdev_t *rdev = conf->disks[i].rdev;
1383 		if (rdev && !rdev->faulty && atomic_read(&rdev->nr_pending)) {
1384 			request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
1385 
1386 			atomic_inc(&rdev->nr_pending);
1387 			rcu_read_unlock();
1388 
1389 			if (r_queue->unplug_fn)
1390 				r_queue->unplug_fn(r_queue);
1391 
1392 			rdev_dec_pending(rdev, mddev);
1393 			rcu_read_lock();
1394 		}
1395 	}
1396 	rcu_read_unlock();
1397 }
1398 
1399 static void raid5_unplug_device(request_queue_t *q)
1400 {
1401 	mddev_t *mddev = q->queuedata;
1402 	raid5_conf_t *conf = mddev_to_conf(mddev);
1403 	unsigned long flags;
1404 
1405 	spin_lock_irqsave(&conf->device_lock, flags);
1406 
1407 	if (blk_remove_plug(q)) {
1408 		conf->seq_flush++;
1409 		raid5_activate_delayed(conf);
1410 	}
1411 	md_wakeup_thread(mddev->thread);
1412 
1413 	spin_unlock_irqrestore(&conf->device_lock, flags);
1414 
1415 	unplug_slaves(mddev);
1416 }
1417 
1418 static int raid5_issue_flush(request_queue_t *q, struct gendisk *disk,
1419 			     sector_t *error_sector)
1420 {
1421 	mddev_t *mddev = q->queuedata;
1422 	raid5_conf_t *conf = mddev_to_conf(mddev);
1423 	int i, ret = 0;
1424 
1425 	rcu_read_lock();
1426 	for (i=0; i<mddev->raid_disks && ret == 0; i++) {
1427 		mdk_rdev_t *rdev = conf->disks[i].rdev;
1428 		if (rdev && !rdev->faulty) {
1429 			struct block_device *bdev = rdev->bdev;
1430 			request_queue_t *r_queue = bdev_get_queue(bdev);
1431 
1432 			if (!r_queue->issue_flush_fn)
1433 				ret = -EOPNOTSUPP;
1434 			else {
1435 				atomic_inc(&rdev->nr_pending);
1436 				rcu_read_unlock();
1437 				ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
1438 							      error_sector);
1439 				rdev_dec_pending(rdev, mddev);
1440 				rcu_read_lock();
1441 			}
1442 		}
1443 	}
1444 	rcu_read_unlock();
1445 	return ret;
1446 }
1447 
1448 static inline void raid5_plug_device(raid5_conf_t *conf)
1449 {
1450 	spin_lock_irq(&conf->device_lock);
1451 	blk_plug_device(conf->mddev->queue);
1452 	spin_unlock_irq(&conf->device_lock);
1453 }
1454 
1455 static int make_request (request_queue_t *q, struct bio * bi)
1456 {
1457 	mddev_t *mddev = q->queuedata;
1458 	raid5_conf_t *conf = mddev_to_conf(mddev);
1459 	const unsigned int raid_disks = conf->raid_disks;
1460 	const unsigned int data_disks = raid_disks - 1;
1461 	unsigned int dd_idx, pd_idx;
1462 	sector_t new_sector;
1463 	sector_t logical_sector, last_sector;
1464 	struct stripe_head *sh;
1465 
1466 	if (unlikely(bio_barrier(bi))) {
1467 		bio_endio(bi, bi->bi_size, -EOPNOTSUPP);
1468 		return 0;
1469 	}
1470 
1471 	md_write_start(mddev, bi);
1472 
1473 	if (bio_data_dir(bi)==WRITE) {
1474 		disk_stat_inc(mddev->gendisk, writes);
1475 		disk_stat_add(mddev->gendisk, write_sectors, bio_sectors(bi));
1476 	} else {
1477 		disk_stat_inc(mddev->gendisk, reads);
1478 		disk_stat_add(mddev->gendisk, read_sectors, bio_sectors(bi));
1479 	}
1480 
1481 	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
1482 	last_sector = bi->bi_sector + (bi->bi_size>>9);
1483 	bi->bi_next = NULL;
1484 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
1485 
1486 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
1487 		DEFINE_WAIT(w);
1488 
1489 		new_sector = raid5_compute_sector(logical_sector,
1490 						  raid_disks, data_disks, &dd_idx, &pd_idx, conf);
1491 
1492 		PRINTK("raid5: make_request, sector %llu logical %llu\n",
1493 			(unsigned long long)new_sector,
1494 			(unsigned long long)logical_sector);
1495 
1496 	retry:
1497 		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
1498 		sh = get_active_stripe(conf, new_sector, pd_idx, (bi->bi_rw&RWA_MASK));
1499 		if (sh) {
1500 			if (!add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
1501 				/* Add failed due to overlap.  Flush everything
1502 				 * and wait a while
1503 				 */
1504 				raid5_unplug_device(mddev->queue);
1505 				release_stripe(sh);
1506 				schedule();
1507 				goto retry;
1508 			}
1509 			finish_wait(&conf->wait_for_overlap, &w);
1510 			raid5_plug_device(conf);
1511 			handle_stripe(sh);
1512 			release_stripe(sh);
1513 
1514 		} else {
1515 			/* cannot get stripe for read-ahead, just give-up */
1516 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
1517 			finish_wait(&conf->wait_for_overlap, &w);
1518 			break;
1519 		}
1520 
1521 	}
1522 	spin_lock_irq(&conf->device_lock);
1523 	if (--bi->bi_phys_segments == 0) {
1524 		int bytes = bi->bi_size;
1525 
1526 		if ( bio_data_dir(bi) == WRITE )
1527 			md_write_end(mddev);
1528 		bi->bi_size = 0;
1529 		bi->bi_end_io(bi, bytes, 0);
1530 	}
1531 	spin_unlock_irq(&conf->device_lock);
1532 	return 0;
1533 }
1534 
1535 /* FIXME go_faster isn't used */
1536 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1537 {
1538 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1539 	struct stripe_head *sh;
1540 	int sectors_per_chunk = conf->chunk_size >> 9;
1541 	sector_t x;
1542 	unsigned long stripe;
1543 	int chunk_offset;
1544 	int dd_idx, pd_idx;
1545 	sector_t first_sector;
1546 	int raid_disks = conf->raid_disks;
1547 	int data_disks = raid_disks-1;
1548 	sector_t max_sector = mddev->size << 1;
1549 	int sync_blocks;
1550 
1551 	if (sector_nr >= max_sector) {
1552 		/* just being told to finish up .. nothing much to do */
1553 		unplug_slaves(mddev);
1554 
1555 		if (mddev->curr_resync < max_sector) /* aborted */
1556 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1557 					&sync_blocks, 1);
1558 		else /* compelted sync */
1559 			conf->fullsync = 0;
1560 		bitmap_close_sync(mddev->bitmap);
1561 
1562 		return 0;
1563 	}
1564 	/* if there is 1 or more failed drives and we are trying
1565 	 * to resync, then assert that we are finished, because there is
1566 	 * nothing we can do.
1567 	 */
1568 	if (mddev->degraded >= 1 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1569 		sector_t rv = (mddev->size << 1) - sector_nr;
1570 		*skipped = 1;
1571 		return rv;
1572 	}
1573 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
1574 	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
1575 		/* we can skip this block, and probably more */
1576 		sync_blocks /= STRIPE_SECTORS;
1577 		*skipped = 1;
1578 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
1579 	}
1580 
1581 	x = sector_nr;
1582 	chunk_offset = sector_div(x, sectors_per_chunk);
1583 	stripe = x;
1584 	BUG_ON(x != stripe);
1585 
1586 	first_sector = raid5_compute_sector((sector_t)stripe*data_disks*sectors_per_chunk
1587 		+ chunk_offset, raid_disks, data_disks, &dd_idx, &pd_idx, conf);
1588 	sh = get_active_stripe(conf, sector_nr, pd_idx, 1);
1589 	if (sh == NULL) {
1590 		sh = get_active_stripe(conf, sector_nr, pd_idx, 0);
1591 		/* make sure we don't swamp the stripe cache if someone else
1592 		 * is trying to get access
1593 		 */
1594 		set_current_state(TASK_UNINTERRUPTIBLE);
1595 		schedule_timeout(1);
1596 	}
1597 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 0);
1598 	spin_lock(&sh->lock);
1599 	set_bit(STRIPE_SYNCING, &sh->state);
1600 	clear_bit(STRIPE_INSYNC, &sh->state);
1601 	spin_unlock(&sh->lock);
1602 
1603 	handle_stripe(sh);
1604 	release_stripe(sh);
1605 
1606 	return STRIPE_SECTORS;
1607 }
1608 
1609 /*
1610  * This is our raid5 kernel thread.
1611  *
1612  * We scan the hash table for stripes which can be handled now.
1613  * During the scan, completed stripes are saved for us by the interrupt
1614  * handler, so that they will not have to wait for our next wakeup.
1615  */
1616 static void raid5d (mddev_t *mddev)
1617 {
1618 	struct stripe_head *sh;
1619 	raid5_conf_t *conf = mddev_to_conf(mddev);
1620 	int handled;
1621 
1622 	PRINTK("+++ raid5d active\n");
1623 
1624 	md_check_recovery(mddev);
1625 
1626 	handled = 0;
1627 	spin_lock_irq(&conf->device_lock);
1628 	while (1) {
1629 		struct list_head *first;
1630 
1631 		if (conf->seq_flush - conf->seq_write > 0) {
1632 			int seq = conf->seq_flush;
1633 			bitmap_unplug(mddev->bitmap);
1634 			conf->seq_write = seq;
1635 			activate_bit_delay(conf);
1636 		}
1637 
1638 		if (list_empty(&conf->handle_list) &&
1639 		    atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD &&
1640 		    !blk_queue_plugged(mddev->queue) &&
1641 		    !list_empty(&conf->delayed_list))
1642 			raid5_activate_delayed(conf);
1643 
1644 		if (list_empty(&conf->handle_list))
1645 			break;
1646 
1647 		first = conf->handle_list.next;
1648 		sh = list_entry(first, struct stripe_head, lru);
1649 
1650 		list_del_init(first);
1651 		atomic_inc(&sh->count);
1652 		if (atomic_read(&sh->count)!= 1)
1653 			BUG();
1654 		spin_unlock_irq(&conf->device_lock);
1655 
1656 		handled++;
1657 		handle_stripe(sh);
1658 		release_stripe(sh);
1659 
1660 		spin_lock_irq(&conf->device_lock);
1661 	}
1662 	PRINTK("%d stripes handled\n", handled);
1663 
1664 	spin_unlock_irq(&conf->device_lock);
1665 
1666 	unplug_slaves(mddev);
1667 
1668 	PRINTK("--- raid5d inactive\n");
1669 }
1670 
1671 static int run(mddev_t *mddev)
1672 {
1673 	raid5_conf_t *conf;
1674 	int raid_disk, memory;
1675 	mdk_rdev_t *rdev;
1676 	struct disk_info *disk;
1677 	struct list_head *tmp;
1678 
1679 	if (mddev->level != 5 && mddev->level != 4) {
1680 		printk("raid5: %s: raid level not set to 4/5 (%d)\n", mdname(mddev), mddev->level);
1681 		return -EIO;
1682 	}
1683 
1684 	mddev->private = kmalloc (sizeof (raid5_conf_t)
1685 				  + mddev->raid_disks * sizeof(struct disk_info),
1686 				  GFP_KERNEL);
1687 	if ((conf = mddev->private) == NULL)
1688 		goto abort;
1689 	memset (conf, 0, sizeof (*conf) + mddev->raid_disks * sizeof(struct disk_info) );
1690 	conf->mddev = mddev;
1691 
1692 	if ((conf->stripe_hashtbl = (struct stripe_head **) __get_free_pages(GFP_ATOMIC, HASH_PAGES_ORDER)) == NULL)
1693 		goto abort;
1694 	memset(conf->stripe_hashtbl, 0, HASH_PAGES * PAGE_SIZE);
1695 
1696 	spin_lock_init(&conf->device_lock);
1697 	init_waitqueue_head(&conf->wait_for_stripe);
1698 	init_waitqueue_head(&conf->wait_for_overlap);
1699 	INIT_LIST_HEAD(&conf->handle_list);
1700 	INIT_LIST_HEAD(&conf->delayed_list);
1701 	INIT_LIST_HEAD(&conf->bitmap_list);
1702 	INIT_LIST_HEAD(&conf->inactive_list);
1703 	atomic_set(&conf->active_stripes, 0);
1704 	atomic_set(&conf->preread_active_stripes, 0);
1705 
1706 	PRINTK("raid5: run(%s) called.\n", mdname(mddev));
1707 
1708 	ITERATE_RDEV(mddev,rdev,tmp) {
1709 		raid_disk = rdev->raid_disk;
1710 		if (raid_disk >= mddev->raid_disks
1711 		    || raid_disk < 0)
1712 			continue;
1713 		disk = conf->disks + raid_disk;
1714 
1715 		disk->rdev = rdev;
1716 
1717 		if (rdev->in_sync) {
1718 			char b[BDEVNAME_SIZE];
1719 			printk(KERN_INFO "raid5: device %s operational as raid"
1720 				" disk %d\n", bdevname(rdev->bdev,b),
1721 				raid_disk);
1722 			conf->working_disks++;
1723 		}
1724 	}
1725 
1726 	conf->raid_disks = mddev->raid_disks;
1727 	/*
1728 	 * 0 for a fully functional array, 1 for a degraded array.
1729 	 */
1730 	mddev->degraded = conf->failed_disks = conf->raid_disks - conf->working_disks;
1731 	conf->mddev = mddev;
1732 	conf->chunk_size = mddev->chunk_size;
1733 	conf->level = mddev->level;
1734 	conf->algorithm = mddev->layout;
1735 	conf->max_nr_stripes = NR_STRIPES;
1736 
1737 	/* device size must be a multiple of chunk size */
1738 	mddev->size &= ~(mddev->chunk_size/1024 -1);
1739 	mddev->resync_max_sectors = mddev->size << 1;
1740 
1741 	if (!conf->chunk_size || conf->chunk_size % 4) {
1742 		printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
1743 			conf->chunk_size, mdname(mddev));
1744 		goto abort;
1745 	}
1746 	if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
1747 		printk(KERN_ERR
1748 			"raid5: unsupported parity algorithm %d for %s\n",
1749 			conf->algorithm, mdname(mddev));
1750 		goto abort;
1751 	}
1752 	if (mddev->degraded > 1) {
1753 		printk(KERN_ERR "raid5: not enough operational devices for %s"
1754 			" (%d/%d failed)\n",
1755 			mdname(mddev), conf->failed_disks, conf->raid_disks);
1756 		goto abort;
1757 	}
1758 
1759 	if (mddev->degraded == 1 &&
1760 	    mddev->recovery_cp != MaxSector) {
1761 		printk(KERN_ERR
1762 			"raid5: cannot start dirty degraded array for %s\n",
1763 			mdname(mddev));
1764 		goto abort;
1765 	}
1766 
1767 	{
1768 		mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
1769 		if (!mddev->thread) {
1770 			printk(KERN_ERR
1771 				"raid5: couldn't allocate thread for %s\n",
1772 				mdname(mddev));
1773 			goto abort;
1774 		}
1775 	}
1776 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
1777 		 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
1778 	if (grow_stripes(conf, conf->max_nr_stripes)) {
1779 		printk(KERN_ERR
1780 			"raid5: couldn't allocate %dkB for buffers\n", memory);
1781 		shrink_stripes(conf);
1782 		md_unregister_thread(mddev->thread);
1783 		goto abort;
1784 	} else
1785 		printk(KERN_INFO "raid5: allocated %dkB for %s\n",
1786 			memory, mdname(mddev));
1787 
1788 	if (mddev->degraded == 0)
1789 		printk("raid5: raid level %d set %s active with %d out of %d"
1790 			" devices, algorithm %d\n", conf->level, mdname(mddev),
1791 			mddev->raid_disks-mddev->degraded, mddev->raid_disks,
1792 			conf->algorithm);
1793 	else
1794 		printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
1795 			" out of %d devices, algorithm %d\n", conf->level,
1796 			mdname(mddev), mddev->raid_disks - mddev->degraded,
1797 			mddev->raid_disks, conf->algorithm);
1798 
1799 	print_raid5_conf(conf);
1800 
1801 	/* read-ahead size must cover two whole stripes, which is
1802 	 * 2 * (n-1) * chunksize where 'n' is the number of raid devices
1803 	 */
1804 	{
1805 		int stripe = (mddev->raid_disks-1) * mddev->chunk_size
1806 			/ PAGE_CACHE_SIZE;
1807 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
1808 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
1809 	}
1810 
1811 	/* Ok, everything is just fine now */
1812 
1813 	if (mddev->bitmap)
1814 		mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ;
1815 
1816 	mddev->queue->unplug_fn = raid5_unplug_device;
1817 	mddev->queue->issue_flush_fn = raid5_issue_flush;
1818 
1819 	mddev->array_size =  mddev->size * (mddev->raid_disks - 1);
1820 	return 0;
1821 abort:
1822 	if (conf) {
1823 		print_raid5_conf(conf);
1824 		if (conf->stripe_hashtbl)
1825 			free_pages((unsigned long) conf->stripe_hashtbl,
1826 							HASH_PAGES_ORDER);
1827 		kfree(conf);
1828 	}
1829 	mddev->private = NULL;
1830 	printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
1831 	return -EIO;
1832 }
1833 
1834 
1835 
1836 static int stop (mddev_t *mddev)
1837 {
1838 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1839 
1840 	md_unregister_thread(mddev->thread);
1841 	mddev->thread = NULL;
1842 	shrink_stripes(conf);
1843 	free_pages((unsigned long) conf->stripe_hashtbl, HASH_PAGES_ORDER);
1844 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
1845 	kfree(conf);
1846 	mddev->private = NULL;
1847 	return 0;
1848 }
1849 
1850 #if RAID5_DEBUG
1851 static void print_sh (struct stripe_head *sh)
1852 {
1853 	int i;
1854 
1855 	printk("sh %llu, pd_idx %d, state %ld.\n",
1856 		(unsigned long long)sh->sector, sh->pd_idx, sh->state);
1857 	printk("sh %llu,  count %d.\n",
1858 		(unsigned long long)sh->sector, atomic_read(&sh->count));
1859 	printk("sh %llu, ", (unsigned long long)sh->sector);
1860 	for (i = 0; i < sh->raid_conf->raid_disks; i++) {
1861 		printk("(cache%d: %p %ld) ",
1862 			i, sh->dev[i].page, sh->dev[i].flags);
1863 	}
1864 	printk("\n");
1865 }
1866 
1867 static void printall (raid5_conf_t *conf)
1868 {
1869 	struct stripe_head *sh;
1870 	int i;
1871 
1872 	spin_lock_irq(&conf->device_lock);
1873 	for (i = 0; i < NR_HASH; i++) {
1874 		sh = conf->stripe_hashtbl[i];
1875 		for (; sh; sh = sh->hash_next) {
1876 			if (sh->raid_conf != conf)
1877 				continue;
1878 			print_sh(sh);
1879 		}
1880 	}
1881 	spin_unlock_irq(&conf->device_lock);
1882 }
1883 #endif
1884 
1885 static void status (struct seq_file *seq, mddev_t *mddev)
1886 {
1887 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1888 	int i;
1889 
1890 	seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
1891 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->working_disks);
1892 	for (i = 0; i < conf->raid_disks; i++)
1893 		seq_printf (seq, "%s",
1894 			       conf->disks[i].rdev &&
1895 			       conf->disks[i].rdev->in_sync ? "U" : "_");
1896 	seq_printf (seq, "]");
1897 #if RAID5_DEBUG
1898 #define D(x) \
1899 	seq_printf (seq, "<"#x":%d>", atomic_read(&conf->x))
1900 	printall(conf);
1901 #endif
1902 }
1903 
1904 static void print_raid5_conf (raid5_conf_t *conf)
1905 {
1906 	int i;
1907 	struct disk_info *tmp;
1908 
1909 	printk("RAID5 conf printout:\n");
1910 	if (!conf) {
1911 		printk("(conf==NULL)\n");
1912 		return;
1913 	}
1914 	printk(" --- rd:%d wd:%d fd:%d\n", conf->raid_disks,
1915 		 conf->working_disks, conf->failed_disks);
1916 
1917 	for (i = 0; i < conf->raid_disks; i++) {
1918 		char b[BDEVNAME_SIZE];
1919 		tmp = conf->disks + i;
1920 		if (tmp->rdev)
1921 		printk(" disk %d, o:%d, dev:%s\n",
1922 			i, !tmp->rdev->faulty,
1923 			bdevname(tmp->rdev->bdev,b));
1924 	}
1925 }
1926 
1927 static int raid5_spare_active(mddev_t *mddev)
1928 {
1929 	int i;
1930 	raid5_conf_t *conf = mddev->private;
1931 	struct disk_info *tmp;
1932 
1933 	for (i = 0; i < conf->raid_disks; i++) {
1934 		tmp = conf->disks + i;
1935 		if (tmp->rdev
1936 		    && !tmp->rdev->faulty
1937 		    && !tmp->rdev->in_sync) {
1938 			mddev->degraded--;
1939 			conf->failed_disks--;
1940 			conf->working_disks++;
1941 			tmp->rdev->in_sync = 1;
1942 		}
1943 	}
1944 	print_raid5_conf(conf);
1945 	return 0;
1946 }
1947 
1948 static int raid5_remove_disk(mddev_t *mddev, int number)
1949 {
1950 	raid5_conf_t *conf = mddev->private;
1951 	int err = 0;
1952 	mdk_rdev_t *rdev;
1953 	struct disk_info *p = conf->disks + number;
1954 
1955 	print_raid5_conf(conf);
1956 	rdev = p->rdev;
1957 	if (rdev) {
1958 		if (rdev->in_sync ||
1959 		    atomic_read(&rdev->nr_pending)) {
1960 			err = -EBUSY;
1961 			goto abort;
1962 		}
1963 		p->rdev = NULL;
1964 		synchronize_rcu();
1965 		if (atomic_read(&rdev->nr_pending)) {
1966 			/* lost the race, try later */
1967 			err = -EBUSY;
1968 			p->rdev = rdev;
1969 		}
1970 	}
1971 abort:
1972 
1973 	print_raid5_conf(conf);
1974 	return err;
1975 }
1976 
1977 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1978 {
1979 	raid5_conf_t *conf = mddev->private;
1980 	int found = 0;
1981 	int disk;
1982 	struct disk_info *p;
1983 
1984 	if (mddev->degraded > 1)
1985 		/* no point adding a device */
1986 		return 0;
1987 
1988 	/*
1989 	 * find the disk ...
1990 	 */
1991 	for (disk=0; disk < mddev->raid_disks; disk++)
1992 		if ((p=conf->disks + disk)->rdev == NULL) {
1993 			rdev->in_sync = 0;
1994 			rdev->raid_disk = disk;
1995 			found = 1;
1996 			if (rdev->saved_raid_disk != disk)
1997 				conf->fullsync = 1;
1998 			p->rdev = rdev;
1999 			break;
2000 		}
2001 	print_raid5_conf(conf);
2002 	return found;
2003 }
2004 
2005 static int raid5_resize(mddev_t *mddev, sector_t sectors)
2006 {
2007 	/* no resync is happening, and there is enough space
2008 	 * on all devices, so we can resize.
2009 	 * We need to make sure resync covers any new space.
2010 	 * If the array is shrinking we should possibly wait until
2011 	 * any io in the removed space completes, but it hardly seems
2012 	 * worth it.
2013 	 */
2014 	sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
2015 	mddev->array_size = (sectors * (mddev->raid_disks-1))>>1;
2016 	set_capacity(mddev->gendisk, mddev->array_size << 1);
2017 	mddev->changed = 1;
2018 	if (sectors/2  > mddev->size && mddev->recovery_cp == MaxSector) {
2019 		mddev->recovery_cp = mddev->size << 1;
2020 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2021 	}
2022 	mddev->size = sectors /2;
2023 	mddev->resync_max_sectors = sectors;
2024 	return 0;
2025 }
2026 
2027 static void raid5_quiesce(mddev_t *mddev, int state)
2028 {
2029 	raid5_conf_t *conf = mddev_to_conf(mddev);
2030 
2031 	switch(state) {
2032 	case 1: /* stop all writes */
2033 		spin_lock_irq(&conf->device_lock);
2034 		conf->quiesce = 1;
2035 		wait_event_lock_irq(conf->wait_for_stripe,
2036 				    atomic_read(&conf->active_stripes) == 0,
2037 				    conf->device_lock, /* nothing */);
2038 		spin_unlock_irq(&conf->device_lock);
2039 		break;
2040 
2041 	case 0: /* re-enable writes */
2042 		spin_lock_irq(&conf->device_lock);
2043 		conf->quiesce = 0;
2044 		wake_up(&conf->wait_for_stripe);
2045 		spin_unlock_irq(&conf->device_lock);
2046 		break;
2047 	}
2048 	if (mddev->thread) {
2049 		if (mddev->bitmap)
2050 			mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ;
2051 		else
2052 			mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT;
2053 		md_wakeup_thread(mddev->thread);
2054 	}
2055 }
2056 static mdk_personality_t raid5_personality=
2057 {
2058 	.name		= "raid5",
2059 	.owner		= THIS_MODULE,
2060 	.make_request	= make_request,
2061 	.run		= run,
2062 	.stop		= stop,
2063 	.status		= status,
2064 	.error_handler	= error,
2065 	.hot_add_disk	= raid5_add_disk,
2066 	.hot_remove_disk= raid5_remove_disk,
2067 	.spare_active	= raid5_spare_active,
2068 	.sync_request	= sync_request,
2069 	.resize		= raid5_resize,
2070 	.quiesce	= raid5_quiesce,
2071 };
2072 
2073 static int __init raid5_init (void)
2074 {
2075 	return register_md_personality (RAID5, &raid5_personality);
2076 }
2077 
2078 static void raid5_exit (void)
2079 {
2080 	unregister_md_personality (RAID5);
2081 }
2082 
2083 module_init(raid5_init);
2084 module_exit(raid5_exit);
2085 MODULE_LICENSE("GPL");
2086 MODULE_ALIAS("md-personality-4"); /* RAID5 */
2087