xref: /linux/drivers/md/raid5.c (revision 508ecc78b6c983a7921bee2f4bd22682f9f0396e)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid5.c : Multiple Devices driver for Linux
4  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
5  *	   Copyright (C) 1999, 2000 Ingo Molnar
6  *	   Copyright (C) 2002, 2003 H. Peter Anvin
7  *
8  * RAID-4/5/6 management functions.
9  * Thanks to Penguin Computing for making the RAID-6 development possible
10  * by donating a test server!
11  */
12 
13 /*
14  * BITMAP UNPLUGGING:
15  *
16  * The sequencing for updating the bitmap reliably is a little
17  * subtle (and I got it wrong the first time) so it deserves some
18  * explanation.
19  *
20  * We group bitmap updates into batches.  Each batch has a number.
21  * We may write out several batches at once, but that isn't very important.
22  * conf->seq_write is the number of the last batch successfully written.
23  * conf->seq_flush is the number of the last batch that was closed to
24  *    new additions.
25  * When we discover that we will need to write to any block in a stripe
26  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
27  * the number of the batch it will be in. This is seq_flush+1.
28  * When we are ready to do a write, if that batch hasn't been written yet,
29  *   we plug the array and queue the stripe for later.
30  * When an unplug happens, we increment bm_flush, thus closing the current
31  *   batch.
32  * When we notice that bm_flush > bm_write, we write out all pending updates
33  * to the bitmap, and advance bm_write to where bm_flush was.
34  * This may occasionally write a bit out twice, but is sure never to
35  * miss any bits.
36  */
37 
38 #include <linux/blkdev.h>
39 #include <linux/kthread.h>
40 #include <linux/raid/pq.h>
41 #include <linux/async_tx.h>
42 #include <linux/module.h>
43 #include <linux/async.h>
44 #include <linux/seq_file.h>
45 #include <linux/cpu.h>
46 #include <linux/slab.h>
47 #include <linux/ratelimit.h>
48 #include <linux/nodemask.h>
49 
50 #include <trace/events/block.h>
51 #include <linux/list_sort.h>
52 
53 #include "md.h"
54 #include "raid5.h"
55 #include "raid0.h"
56 #include "md-bitmap.h"
57 #include "raid5-log.h"
58 
59 #define UNSUPPORTED_MDDEV_FLAGS	(1L << MD_FAILFAST_SUPPORTED)
60 
61 #define cpu_to_group(cpu) cpu_to_node(cpu)
62 #define ANY_GROUP NUMA_NO_NODE
63 
64 #define RAID5_MAX_REQ_STRIPES 256
65 
66 static bool devices_handle_discard_safely = false;
67 module_param(devices_handle_discard_safely, bool, 0644);
68 MODULE_PARM_DESC(devices_handle_discard_safely,
69 		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
70 static struct workqueue_struct *raid5_wq;
71 
72 static void raid5_quiesce(struct mddev *mddev, int quiesce);
73 
74 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
75 {
76 	int hash = (sect >> RAID5_STRIPE_SHIFT(conf)) & HASH_MASK;
77 	return &conf->stripe_hashtbl[hash];
78 }
79 
80 static inline int stripe_hash_locks_hash(struct r5conf *conf, sector_t sect)
81 {
82 	return (sect >> RAID5_STRIPE_SHIFT(conf)) & STRIPE_HASH_LOCKS_MASK;
83 }
84 
85 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
86 	__acquires(&conf->device_lock)
87 {
88 	spin_lock_irq(conf->hash_locks + hash);
89 	spin_lock(&conf->device_lock);
90 }
91 
92 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
93 	__releases(&conf->device_lock)
94 {
95 	spin_unlock(&conf->device_lock);
96 	spin_unlock_irq(conf->hash_locks + hash);
97 }
98 
99 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
100 	__acquires(&conf->device_lock)
101 {
102 	int i;
103 	spin_lock_irq(conf->hash_locks);
104 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
105 		spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
106 	spin_lock(&conf->device_lock);
107 }
108 
109 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
110 	__releases(&conf->device_lock)
111 {
112 	int i;
113 	spin_unlock(&conf->device_lock);
114 	for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
115 		spin_unlock(conf->hash_locks + i);
116 	spin_unlock_irq(conf->hash_locks);
117 }
118 
119 /* Find first data disk in a raid6 stripe */
120 static inline int raid6_d0(struct stripe_head *sh)
121 {
122 	if (sh->ddf_layout)
123 		/* ddf always start from first device */
124 		return 0;
125 	/* md starts just after Q block */
126 	if (sh->qd_idx == sh->disks - 1)
127 		return 0;
128 	else
129 		return sh->qd_idx + 1;
130 }
131 static inline int raid6_next_disk(int disk, int raid_disks)
132 {
133 	disk++;
134 	return (disk < raid_disks) ? disk : 0;
135 }
136 
137 /* When walking through the disks in a raid5, starting at raid6_d0,
138  * We need to map each disk to a 'slot', where the data disks are slot
139  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
140  * is raid_disks-1.  This help does that mapping.
141  */
142 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
143 			     int *count, int syndrome_disks)
144 {
145 	int slot = *count;
146 
147 	if (sh->ddf_layout)
148 		(*count)++;
149 	if (idx == sh->pd_idx)
150 		return syndrome_disks;
151 	if (idx == sh->qd_idx)
152 		return syndrome_disks + 1;
153 	if (!sh->ddf_layout)
154 		(*count)++;
155 	return slot;
156 }
157 
158 static void print_raid5_conf (struct r5conf *conf);
159 
160 static int stripe_operations_active(struct stripe_head *sh)
161 {
162 	return sh->check_state || sh->reconstruct_state ||
163 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
164 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
165 }
166 
167 static bool stripe_is_lowprio(struct stripe_head *sh)
168 {
169 	return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
170 		test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
171 	       !test_bit(STRIPE_R5C_CACHING, &sh->state);
172 }
173 
174 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
175 	__must_hold(&sh->raid_conf->device_lock)
176 {
177 	struct r5conf *conf = sh->raid_conf;
178 	struct r5worker_group *group;
179 	int thread_cnt;
180 	int i, cpu = sh->cpu;
181 
182 	if (!cpu_online(cpu)) {
183 		cpu = cpumask_any(cpu_online_mask);
184 		sh->cpu = cpu;
185 	}
186 
187 	if (list_empty(&sh->lru)) {
188 		struct r5worker_group *group;
189 		group = conf->worker_groups + cpu_to_group(cpu);
190 		if (stripe_is_lowprio(sh))
191 			list_add_tail(&sh->lru, &group->loprio_list);
192 		else
193 			list_add_tail(&sh->lru, &group->handle_list);
194 		group->stripes_cnt++;
195 		sh->group = group;
196 	}
197 
198 	if (conf->worker_cnt_per_group == 0) {
199 		md_wakeup_thread(conf->mddev->thread);
200 		return;
201 	}
202 
203 	group = conf->worker_groups + cpu_to_group(sh->cpu);
204 
205 	group->workers[0].working = true;
206 	/* at least one worker should run to avoid race */
207 	queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
208 
209 	thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
210 	/* wakeup more workers */
211 	for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
212 		if (group->workers[i].working == false) {
213 			group->workers[i].working = true;
214 			queue_work_on(sh->cpu, raid5_wq,
215 				      &group->workers[i].work);
216 			thread_cnt--;
217 		}
218 	}
219 }
220 
221 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
222 			      struct list_head *temp_inactive_list)
223 	__must_hold(&conf->device_lock)
224 {
225 	int i;
226 	int injournal = 0;	/* number of date pages with R5_InJournal */
227 
228 	BUG_ON(!list_empty(&sh->lru));
229 	BUG_ON(atomic_read(&conf->active_stripes)==0);
230 
231 	if (r5c_is_writeback(conf->log))
232 		for (i = sh->disks; i--; )
233 			if (test_bit(R5_InJournal, &sh->dev[i].flags))
234 				injournal++;
235 	/*
236 	 * In the following cases, the stripe cannot be released to cached
237 	 * lists. Therefore, we make the stripe write out and set
238 	 * STRIPE_HANDLE:
239 	 *   1. when quiesce in r5c write back;
240 	 *   2. when resync is requested fot the stripe.
241 	 */
242 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
243 	    (conf->quiesce && r5c_is_writeback(conf->log) &&
244 	     !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
245 		if (test_bit(STRIPE_R5C_CACHING, &sh->state))
246 			r5c_make_stripe_write_out(sh);
247 		set_bit(STRIPE_HANDLE, &sh->state);
248 	}
249 
250 	if (test_bit(STRIPE_HANDLE, &sh->state)) {
251 		if (test_bit(STRIPE_DELAYED, &sh->state) &&
252 		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
253 			list_add_tail(&sh->lru, &conf->delayed_list);
254 		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
255 			   sh->bm_seq - conf->seq_write > 0)
256 			list_add_tail(&sh->lru, &conf->bitmap_list);
257 		else {
258 			clear_bit(STRIPE_DELAYED, &sh->state);
259 			clear_bit(STRIPE_BIT_DELAY, &sh->state);
260 			if (conf->worker_cnt_per_group == 0) {
261 				if (stripe_is_lowprio(sh))
262 					list_add_tail(&sh->lru,
263 							&conf->loprio_list);
264 				else
265 					list_add_tail(&sh->lru,
266 							&conf->handle_list);
267 			} else {
268 				raid5_wakeup_stripe_thread(sh);
269 				return;
270 			}
271 		}
272 		md_wakeup_thread(conf->mddev->thread);
273 	} else {
274 		BUG_ON(stripe_operations_active(sh));
275 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
276 			if (atomic_dec_return(&conf->preread_active_stripes)
277 			    < IO_THRESHOLD)
278 				md_wakeup_thread(conf->mddev->thread);
279 		atomic_dec(&conf->active_stripes);
280 		if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
281 			if (!r5c_is_writeback(conf->log))
282 				list_add_tail(&sh->lru, temp_inactive_list);
283 			else {
284 				WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
285 				if (injournal == 0)
286 					list_add_tail(&sh->lru, temp_inactive_list);
287 				else if (injournal == conf->raid_disks - conf->max_degraded) {
288 					/* full stripe */
289 					if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
290 						atomic_inc(&conf->r5c_cached_full_stripes);
291 					if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
292 						atomic_dec(&conf->r5c_cached_partial_stripes);
293 					list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
294 					r5c_check_cached_full_stripe(conf);
295 				} else
296 					/*
297 					 * STRIPE_R5C_PARTIAL_STRIPE is set in
298 					 * r5c_try_caching_write(). No need to
299 					 * set it again.
300 					 */
301 					list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
302 			}
303 		}
304 	}
305 }
306 
307 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
308 			     struct list_head *temp_inactive_list)
309 	__must_hold(&conf->device_lock)
310 {
311 	if (atomic_dec_and_test(&sh->count))
312 		do_release_stripe(conf, sh, temp_inactive_list);
313 }
314 
315 /*
316  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
317  *
318  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
319  * given time. Adding stripes only takes device lock, while deleting stripes
320  * only takes hash lock.
321  */
322 static void release_inactive_stripe_list(struct r5conf *conf,
323 					 struct list_head *temp_inactive_list,
324 					 int hash)
325 {
326 	int size;
327 	bool do_wakeup = false;
328 	unsigned long flags;
329 
330 	if (hash == NR_STRIPE_HASH_LOCKS) {
331 		size = NR_STRIPE_HASH_LOCKS;
332 		hash = NR_STRIPE_HASH_LOCKS - 1;
333 	} else
334 		size = 1;
335 	while (size) {
336 		struct list_head *list = &temp_inactive_list[size - 1];
337 
338 		/*
339 		 * We don't hold any lock here yet, raid5_get_active_stripe() might
340 		 * remove stripes from the list
341 		 */
342 		if (!list_empty_careful(list)) {
343 			spin_lock_irqsave(conf->hash_locks + hash, flags);
344 			if (list_empty(conf->inactive_list + hash) &&
345 			    !list_empty(list))
346 				atomic_dec(&conf->empty_inactive_list_nr);
347 			list_splice_tail_init(list, conf->inactive_list + hash);
348 			do_wakeup = true;
349 			spin_unlock_irqrestore(conf->hash_locks + hash, flags);
350 		}
351 		size--;
352 		hash--;
353 	}
354 
355 	if (do_wakeup) {
356 		wake_up(&conf->wait_for_stripe);
357 		if (atomic_read(&conf->active_stripes) == 0)
358 			wake_up(&conf->wait_for_quiescent);
359 		if (conf->retry_read_aligned)
360 			md_wakeup_thread(conf->mddev->thread);
361 	}
362 }
363 
364 static int release_stripe_list(struct r5conf *conf,
365 			       struct list_head *temp_inactive_list)
366 	__must_hold(&conf->device_lock)
367 {
368 	struct stripe_head *sh, *t;
369 	int count = 0;
370 	struct llist_node *head;
371 
372 	head = llist_del_all(&conf->released_stripes);
373 	head = llist_reverse_order(head);
374 	llist_for_each_entry_safe(sh, t, head, release_list) {
375 		int hash;
376 
377 		/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
378 		smp_mb();
379 		clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
380 		/*
381 		 * Don't worry the bit is set here, because if the bit is set
382 		 * again, the count is always > 1. This is true for
383 		 * STRIPE_ON_UNPLUG_LIST bit too.
384 		 */
385 		hash = sh->hash_lock_index;
386 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
387 		count++;
388 	}
389 
390 	return count;
391 }
392 
393 void raid5_release_stripe(struct stripe_head *sh)
394 {
395 	struct r5conf *conf = sh->raid_conf;
396 	unsigned long flags;
397 	struct list_head list;
398 	int hash;
399 	bool wakeup;
400 
401 	/* Avoid release_list until the last reference.
402 	 */
403 	if (atomic_add_unless(&sh->count, -1, 1))
404 		return;
405 
406 	if (unlikely(!conf->mddev->thread) ||
407 		test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
408 		goto slow_path;
409 	wakeup = llist_add(&sh->release_list, &conf->released_stripes);
410 	if (wakeup)
411 		md_wakeup_thread(conf->mddev->thread);
412 	return;
413 slow_path:
414 	/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
415 	if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) {
416 		INIT_LIST_HEAD(&list);
417 		hash = sh->hash_lock_index;
418 		do_release_stripe(conf, sh, &list);
419 		spin_unlock_irqrestore(&conf->device_lock, flags);
420 		release_inactive_stripe_list(conf, &list, hash);
421 	}
422 }
423 
424 static inline void remove_hash(struct stripe_head *sh)
425 {
426 	pr_debug("remove_hash(), stripe %llu\n",
427 		(unsigned long long)sh->sector);
428 
429 	hlist_del_init(&sh->hash);
430 }
431 
432 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
433 {
434 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
435 
436 	pr_debug("insert_hash(), stripe %llu\n",
437 		(unsigned long long)sh->sector);
438 
439 	hlist_add_head(&sh->hash, hp);
440 }
441 
442 /* find an idle stripe, make sure it is unhashed, and return it. */
443 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
444 {
445 	struct stripe_head *sh = NULL;
446 	struct list_head *first;
447 
448 	if (list_empty(conf->inactive_list + hash))
449 		goto out;
450 	first = (conf->inactive_list + hash)->next;
451 	sh = list_entry(first, struct stripe_head, lru);
452 	list_del_init(first);
453 	remove_hash(sh);
454 	atomic_inc(&conf->active_stripes);
455 	BUG_ON(hash != sh->hash_lock_index);
456 	if (list_empty(conf->inactive_list + hash))
457 		atomic_inc(&conf->empty_inactive_list_nr);
458 out:
459 	return sh;
460 }
461 
462 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
463 static void free_stripe_pages(struct stripe_head *sh)
464 {
465 	int i;
466 	struct page *p;
467 
468 	/* Have not allocate page pool */
469 	if (!sh->pages)
470 		return;
471 
472 	for (i = 0; i < sh->nr_pages; i++) {
473 		p = sh->pages[i];
474 		if (p)
475 			put_page(p);
476 		sh->pages[i] = NULL;
477 	}
478 }
479 
480 static int alloc_stripe_pages(struct stripe_head *sh, gfp_t gfp)
481 {
482 	int i;
483 	struct page *p;
484 
485 	for (i = 0; i < sh->nr_pages; i++) {
486 		/* The page have allocated. */
487 		if (sh->pages[i])
488 			continue;
489 
490 		p = alloc_page(gfp);
491 		if (!p) {
492 			free_stripe_pages(sh);
493 			return -ENOMEM;
494 		}
495 		sh->pages[i] = p;
496 	}
497 	return 0;
498 }
499 
500 static int
501 init_stripe_shared_pages(struct stripe_head *sh, struct r5conf *conf, int disks)
502 {
503 	int nr_pages, cnt;
504 
505 	if (sh->pages)
506 		return 0;
507 
508 	/* Each of the sh->dev[i] need one conf->stripe_size */
509 	cnt = PAGE_SIZE / conf->stripe_size;
510 	nr_pages = (disks + cnt - 1) / cnt;
511 
512 	sh->pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
513 	if (!sh->pages)
514 		return -ENOMEM;
515 	sh->nr_pages = nr_pages;
516 	sh->stripes_per_page = cnt;
517 	return 0;
518 }
519 #endif
520 
521 static void shrink_buffers(struct stripe_head *sh)
522 {
523 	int i;
524 	int num = sh->raid_conf->pool_size;
525 
526 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE
527 	for (i = 0; i < num ; i++) {
528 		struct page *p;
529 
530 		WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
531 		p = sh->dev[i].page;
532 		if (!p)
533 			continue;
534 		sh->dev[i].page = NULL;
535 		put_page(p);
536 	}
537 #else
538 	for (i = 0; i < num; i++)
539 		sh->dev[i].page = NULL;
540 	free_stripe_pages(sh); /* Free pages */
541 #endif
542 }
543 
544 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
545 {
546 	int i;
547 	int num = sh->raid_conf->pool_size;
548 
549 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE
550 	for (i = 0; i < num; i++) {
551 		struct page *page;
552 
553 		if (!(page = alloc_page(gfp))) {
554 			return 1;
555 		}
556 		sh->dev[i].page = page;
557 		sh->dev[i].orig_page = page;
558 		sh->dev[i].offset = 0;
559 	}
560 #else
561 	if (alloc_stripe_pages(sh, gfp))
562 		return -ENOMEM;
563 
564 	for (i = 0; i < num; i++) {
565 		sh->dev[i].page = raid5_get_dev_page(sh, i);
566 		sh->dev[i].orig_page = sh->dev[i].page;
567 		sh->dev[i].offset = raid5_get_page_offset(sh, i);
568 	}
569 #endif
570 	return 0;
571 }
572 
573 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
574 			    struct stripe_head *sh);
575 
576 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
577 {
578 	struct r5conf *conf = sh->raid_conf;
579 	int i, seq;
580 
581 	BUG_ON(atomic_read(&sh->count) != 0);
582 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
583 	BUG_ON(stripe_operations_active(sh));
584 	BUG_ON(sh->batch_head);
585 
586 	pr_debug("init_stripe called, stripe %llu\n",
587 		(unsigned long long)sector);
588 retry:
589 	seq = read_seqcount_begin(&conf->gen_lock);
590 	sh->generation = conf->generation - previous;
591 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
592 	sh->sector = sector;
593 	stripe_set_idx(sector, conf, previous, sh);
594 	sh->state = 0;
595 
596 	for (i = sh->disks; i--; ) {
597 		struct r5dev *dev = &sh->dev[i];
598 
599 		if (dev->toread || dev->read || dev->towrite || dev->written ||
600 		    test_bit(R5_LOCKED, &dev->flags)) {
601 			pr_err("sector=%llx i=%d %p %p %p %p %d\n",
602 			       (unsigned long long)sh->sector, i, dev->toread,
603 			       dev->read, dev->towrite, dev->written,
604 			       test_bit(R5_LOCKED, &dev->flags));
605 			WARN_ON(1);
606 		}
607 		dev->flags = 0;
608 		dev->sector = raid5_compute_blocknr(sh, i, previous);
609 	}
610 	if (read_seqcount_retry(&conf->gen_lock, seq))
611 		goto retry;
612 	sh->overwrite_disks = 0;
613 	insert_hash(conf, sh);
614 	sh->cpu = smp_processor_id();
615 	set_bit(STRIPE_BATCH_READY, &sh->state);
616 }
617 
618 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
619 					 short generation)
620 {
621 	struct stripe_head *sh;
622 
623 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
624 	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
625 		if (sh->sector == sector && sh->generation == generation)
626 			return sh;
627 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
628 	return NULL;
629 }
630 
631 static struct stripe_head *find_get_stripe(struct r5conf *conf,
632 		sector_t sector, short generation, int hash)
633 {
634 	int inc_empty_inactive_list_flag;
635 	struct stripe_head *sh;
636 
637 	sh = __find_stripe(conf, sector, generation);
638 	if (!sh)
639 		return NULL;
640 
641 	if (atomic_inc_not_zero(&sh->count))
642 		return sh;
643 
644 	/*
645 	 * Slow path. The reference count is zero which means the stripe must
646 	 * be on a list (sh->lru). Must remove the stripe from the list that
647 	 * references it with the device_lock held.
648 	 */
649 
650 	spin_lock(&conf->device_lock);
651 	if (!atomic_read(&sh->count)) {
652 		if (!test_bit(STRIPE_HANDLE, &sh->state))
653 			atomic_inc(&conf->active_stripes);
654 		BUG_ON(list_empty(&sh->lru) &&
655 		       !test_bit(STRIPE_EXPANDING, &sh->state));
656 		inc_empty_inactive_list_flag = 0;
657 		if (!list_empty(conf->inactive_list + hash))
658 			inc_empty_inactive_list_flag = 1;
659 		list_del_init(&sh->lru);
660 		if (list_empty(conf->inactive_list + hash) &&
661 		    inc_empty_inactive_list_flag)
662 			atomic_inc(&conf->empty_inactive_list_nr);
663 		if (sh->group) {
664 			sh->group->stripes_cnt--;
665 			sh->group = NULL;
666 		}
667 	}
668 	atomic_inc(&sh->count);
669 	spin_unlock(&conf->device_lock);
670 
671 	return sh;
672 }
673 
674 /*
675  * Need to check if array has failed when deciding whether to:
676  *  - start an array
677  *  - remove non-faulty devices
678  *  - add a spare
679  *  - allow a reshape
680  * This determination is simple when no reshape is happening.
681  * However if there is a reshape, we need to carefully check
682  * both the before and after sections.
683  * This is because some failed devices may only affect one
684  * of the two sections, and some non-in_sync devices may
685  * be insync in the section most affected by failed devices.
686  *
687  * Most calls to this function hold &conf->device_lock. Calls
688  * in raid5_run() do not require the lock as no other threads
689  * have been started yet.
690  */
691 int raid5_calc_degraded(struct r5conf *conf)
692 {
693 	int degraded, degraded2;
694 	int i;
695 
696 	degraded = 0;
697 	for (i = 0; i < conf->previous_raid_disks; i++) {
698 		struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
699 
700 		if (rdev && test_bit(Faulty, &rdev->flags))
701 			rdev = READ_ONCE(conf->disks[i].replacement);
702 		if (!rdev || test_bit(Faulty, &rdev->flags))
703 			degraded++;
704 		else if (test_bit(In_sync, &rdev->flags))
705 			;
706 		else
707 			/* not in-sync or faulty.
708 			 * If the reshape increases the number of devices,
709 			 * this is being recovered by the reshape, so
710 			 * this 'previous' section is not in_sync.
711 			 * If the number of devices is being reduced however,
712 			 * the device can only be part of the array if
713 			 * we are reverting a reshape, so this section will
714 			 * be in-sync.
715 			 */
716 			if (conf->raid_disks >= conf->previous_raid_disks)
717 				degraded++;
718 	}
719 	if (conf->raid_disks == conf->previous_raid_disks)
720 		return degraded;
721 	degraded2 = 0;
722 	for (i = 0; i < conf->raid_disks; i++) {
723 		struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
724 
725 		if (rdev && test_bit(Faulty, &rdev->flags))
726 			rdev = READ_ONCE(conf->disks[i].replacement);
727 		if (!rdev || test_bit(Faulty, &rdev->flags))
728 			degraded2++;
729 		else if (test_bit(In_sync, &rdev->flags))
730 			;
731 		else
732 			/* not in-sync or faulty.
733 			 * If reshape increases the number of devices, this
734 			 * section has already been recovered, else it
735 			 * almost certainly hasn't.
736 			 */
737 			if (conf->raid_disks <= conf->previous_raid_disks)
738 				degraded2++;
739 	}
740 	if (degraded2 > degraded)
741 		return degraded2;
742 	return degraded;
743 }
744 
745 static bool has_failed(struct r5conf *conf)
746 {
747 	int degraded = conf->mddev->degraded;
748 
749 	if (test_bit(MD_BROKEN, &conf->mddev->flags))
750 		return true;
751 
752 	if (conf->mddev->reshape_position != MaxSector)
753 		degraded = raid5_calc_degraded(conf);
754 
755 	return degraded > conf->max_degraded;
756 }
757 
758 enum stripe_result {
759 	STRIPE_SUCCESS = 0,
760 	STRIPE_RETRY,
761 	STRIPE_SCHEDULE_AND_RETRY,
762 	STRIPE_FAIL,
763 };
764 
765 struct stripe_request_ctx {
766 	/* a reference to the last stripe_head for batching */
767 	struct stripe_head *batch_last;
768 
769 	/* first sector in the request */
770 	sector_t first_sector;
771 
772 	/* last sector in the request */
773 	sector_t last_sector;
774 
775 	/*
776 	 * bitmap to track stripe sectors that have been added to stripes
777 	 * add one to account for unaligned requests
778 	 */
779 	DECLARE_BITMAP(sectors_to_do, RAID5_MAX_REQ_STRIPES + 1);
780 
781 	/* the request had REQ_PREFLUSH, cleared after the first stripe_head */
782 	bool do_flush;
783 };
784 
785 /*
786  * Block until another thread clears R5_INACTIVE_BLOCKED or
787  * there are fewer than 3/4 the maximum number of active stripes
788  * and there is an inactive stripe available.
789  */
790 static bool is_inactive_blocked(struct r5conf *conf, int hash)
791 {
792 	if (list_empty(conf->inactive_list + hash))
793 		return false;
794 
795 	if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
796 		return true;
797 
798 	return (atomic_read(&conf->active_stripes) <
799 		(conf->max_nr_stripes * 3 / 4));
800 }
801 
802 struct stripe_head *raid5_get_active_stripe(struct r5conf *conf,
803 		struct stripe_request_ctx *ctx, sector_t sector,
804 		unsigned int flags)
805 {
806 	struct stripe_head *sh;
807 	int hash = stripe_hash_locks_hash(conf, sector);
808 	int previous = !!(flags & R5_GAS_PREVIOUS);
809 
810 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
811 
812 	spin_lock_irq(conf->hash_locks + hash);
813 
814 	for (;;) {
815 		if (!(flags & R5_GAS_NOQUIESCE) && conf->quiesce) {
816 			/*
817 			 * Must release the reference to batch_last before
818 			 * waiting, on quiesce, otherwise the batch_last will
819 			 * hold a reference to a stripe and raid5_quiesce()
820 			 * will deadlock waiting for active_stripes to go to
821 			 * zero.
822 			 */
823 			if (ctx && ctx->batch_last) {
824 				raid5_release_stripe(ctx->batch_last);
825 				ctx->batch_last = NULL;
826 			}
827 
828 			wait_event_lock_irq(conf->wait_for_quiescent,
829 					    !conf->quiesce,
830 					    *(conf->hash_locks + hash));
831 		}
832 
833 		sh = find_get_stripe(conf, sector, conf->generation - previous,
834 				     hash);
835 		if (sh)
836 			break;
837 
838 		if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
839 			sh = get_free_stripe(conf, hash);
840 			if (sh) {
841 				r5c_check_stripe_cache_usage(conf);
842 				init_stripe(sh, sector, previous);
843 				atomic_inc(&sh->count);
844 				break;
845 			}
846 
847 			if (!test_bit(R5_DID_ALLOC, &conf->cache_state))
848 				set_bit(R5_ALLOC_MORE, &conf->cache_state);
849 		}
850 
851 		if (flags & R5_GAS_NOBLOCK)
852 			break;
853 
854 		set_bit(R5_INACTIVE_BLOCKED, &conf->cache_state);
855 		r5l_wake_reclaim(conf->log, 0);
856 
857 		/* release batch_last before wait to avoid risk of deadlock */
858 		if (ctx && ctx->batch_last) {
859 			raid5_release_stripe(ctx->batch_last);
860 			ctx->batch_last = NULL;
861 		}
862 
863 		wait_event_lock_irq(conf->wait_for_stripe,
864 				    is_inactive_blocked(conf, hash),
865 				    *(conf->hash_locks + hash));
866 		clear_bit(R5_INACTIVE_BLOCKED, &conf->cache_state);
867 	}
868 
869 	spin_unlock_irq(conf->hash_locks + hash);
870 	return sh;
871 }
872 
873 static bool is_full_stripe_write(struct stripe_head *sh)
874 {
875 	BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
876 	return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
877 }
878 
879 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
880 		__acquires(&sh1->stripe_lock)
881 		__acquires(&sh2->stripe_lock)
882 {
883 	if (sh1 > sh2) {
884 		spin_lock_irq(&sh2->stripe_lock);
885 		spin_lock_nested(&sh1->stripe_lock, 1);
886 	} else {
887 		spin_lock_irq(&sh1->stripe_lock);
888 		spin_lock_nested(&sh2->stripe_lock, 1);
889 	}
890 }
891 
892 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
893 		__releases(&sh1->stripe_lock)
894 		__releases(&sh2->stripe_lock)
895 {
896 	spin_unlock(&sh1->stripe_lock);
897 	spin_unlock_irq(&sh2->stripe_lock);
898 }
899 
900 /* Only freshly new full stripe normal write stripe can be added to a batch list */
901 static bool stripe_can_batch(struct stripe_head *sh)
902 {
903 	struct r5conf *conf = sh->raid_conf;
904 
905 	if (raid5_has_log(conf) || raid5_has_ppl(conf))
906 		return false;
907 	return test_bit(STRIPE_BATCH_READY, &sh->state) &&
908 		!test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
909 		is_full_stripe_write(sh);
910 }
911 
912 /* we only do back search */
913 static void stripe_add_to_batch_list(struct r5conf *conf,
914 		struct stripe_head *sh, struct stripe_head *last_sh)
915 {
916 	struct stripe_head *head;
917 	sector_t head_sector, tmp_sec;
918 	int hash;
919 	int dd_idx;
920 
921 	/* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
922 	tmp_sec = sh->sector;
923 	if (!sector_div(tmp_sec, conf->chunk_sectors))
924 		return;
925 	head_sector = sh->sector - RAID5_STRIPE_SECTORS(conf);
926 
927 	if (last_sh && head_sector == last_sh->sector) {
928 		head = last_sh;
929 		atomic_inc(&head->count);
930 	} else {
931 		hash = stripe_hash_locks_hash(conf, head_sector);
932 		spin_lock_irq(conf->hash_locks + hash);
933 		head = find_get_stripe(conf, head_sector, conf->generation,
934 				       hash);
935 		spin_unlock_irq(conf->hash_locks + hash);
936 		if (!head)
937 			return;
938 		if (!stripe_can_batch(head))
939 			goto out;
940 	}
941 
942 	lock_two_stripes(head, sh);
943 	/* clear_batch_ready clear the flag */
944 	if (!stripe_can_batch(head) || !stripe_can_batch(sh))
945 		goto unlock_out;
946 
947 	if (sh->batch_head)
948 		goto unlock_out;
949 
950 	dd_idx = 0;
951 	while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
952 		dd_idx++;
953 	if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
954 	    bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
955 		goto unlock_out;
956 
957 	if (head->batch_head) {
958 		spin_lock(&head->batch_head->batch_lock);
959 		/* This batch list is already running */
960 		if (!stripe_can_batch(head)) {
961 			spin_unlock(&head->batch_head->batch_lock);
962 			goto unlock_out;
963 		}
964 		/*
965 		 * We must assign batch_head of this stripe within the
966 		 * batch_lock, otherwise clear_batch_ready of batch head
967 		 * stripe could clear BATCH_READY bit of this stripe and
968 		 * this stripe->batch_head doesn't get assigned, which
969 		 * could confuse clear_batch_ready for this stripe
970 		 */
971 		sh->batch_head = head->batch_head;
972 
973 		/*
974 		 * at this point, head's BATCH_READY could be cleared, but we
975 		 * can still add the stripe to batch list
976 		 */
977 		list_add(&sh->batch_list, &head->batch_list);
978 		spin_unlock(&head->batch_head->batch_lock);
979 	} else {
980 		head->batch_head = head;
981 		sh->batch_head = head->batch_head;
982 		spin_lock(&head->batch_lock);
983 		list_add_tail(&sh->batch_list, &head->batch_list);
984 		spin_unlock(&head->batch_lock);
985 	}
986 
987 	if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
988 		if (atomic_dec_return(&conf->preread_active_stripes)
989 		    < IO_THRESHOLD)
990 			md_wakeup_thread(conf->mddev->thread);
991 
992 	if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
993 		int seq = sh->bm_seq;
994 		if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
995 		    sh->batch_head->bm_seq > seq)
996 			seq = sh->batch_head->bm_seq;
997 		set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
998 		sh->batch_head->bm_seq = seq;
999 	}
1000 
1001 	atomic_inc(&sh->count);
1002 unlock_out:
1003 	unlock_two_stripes(head, sh);
1004 out:
1005 	raid5_release_stripe(head);
1006 }
1007 
1008 /* Determine if 'data_offset' or 'new_data_offset' should be used
1009  * in this stripe_head.
1010  */
1011 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
1012 {
1013 	sector_t progress = conf->reshape_progress;
1014 	/* Need a memory barrier to make sure we see the value
1015 	 * of conf->generation, or ->data_offset that was set before
1016 	 * reshape_progress was updated.
1017 	 */
1018 	smp_rmb();
1019 	if (progress == MaxSector)
1020 		return 0;
1021 	if (sh->generation == conf->generation - 1)
1022 		return 0;
1023 	/* We are in a reshape, and this is a new-generation stripe,
1024 	 * so use new_data_offset.
1025 	 */
1026 	return 1;
1027 }
1028 
1029 static void dispatch_bio_list(struct bio_list *tmp)
1030 {
1031 	struct bio *bio;
1032 
1033 	while ((bio = bio_list_pop(tmp)))
1034 		submit_bio_noacct(bio);
1035 }
1036 
1037 static int cmp_stripe(void *priv, const struct list_head *a,
1038 		      const struct list_head *b)
1039 {
1040 	const struct r5pending_data *da = list_entry(a,
1041 				struct r5pending_data, sibling);
1042 	const struct r5pending_data *db = list_entry(b,
1043 				struct r5pending_data, sibling);
1044 	if (da->sector > db->sector)
1045 		return 1;
1046 	if (da->sector < db->sector)
1047 		return -1;
1048 	return 0;
1049 }
1050 
1051 static void dispatch_defer_bios(struct r5conf *conf, int target,
1052 				struct bio_list *list)
1053 {
1054 	struct r5pending_data *data;
1055 	struct list_head *first, *next = NULL;
1056 	int cnt = 0;
1057 
1058 	if (conf->pending_data_cnt == 0)
1059 		return;
1060 
1061 	list_sort(NULL, &conf->pending_list, cmp_stripe);
1062 
1063 	first = conf->pending_list.next;
1064 
1065 	/* temporarily move the head */
1066 	if (conf->next_pending_data)
1067 		list_move_tail(&conf->pending_list,
1068 				&conf->next_pending_data->sibling);
1069 
1070 	while (!list_empty(&conf->pending_list)) {
1071 		data = list_first_entry(&conf->pending_list,
1072 			struct r5pending_data, sibling);
1073 		if (&data->sibling == first)
1074 			first = data->sibling.next;
1075 		next = data->sibling.next;
1076 
1077 		bio_list_merge(list, &data->bios);
1078 		list_move(&data->sibling, &conf->free_list);
1079 		cnt++;
1080 		if (cnt >= target)
1081 			break;
1082 	}
1083 	conf->pending_data_cnt -= cnt;
1084 	BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
1085 
1086 	if (next != &conf->pending_list)
1087 		conf->next_pending_data = list_entry(next,
1088 				struct r5pending_data, sibling);
1089 	else
1090 		conf->next_pending_data = NULL;
1091 	/* list isn't empty */
1092 	if (first != &conf->pending_list)
1093 		list_move_tail(&conf->pending_list, first);
1094 }
1095 
1096 static void flush_deferred_bios(struct r5conf *conf)
1097 {
1098 	struct bio_list tmp = BIO_EMPTY_LIST;
1099 
1100 	if (conf->pending_data_cnt == 0)
1101 		return;
1102 
1103 	spin_lock(&conf->pending_bios_lock);
1104 	dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
1105 	BUG_ON(conf->pending_data_cnt != 0);
1106 	spin_unlock(&conf->pending_bios_lock);
1107 
1108 	dispatch_bio_list(&tmp);
1109 }
1110 
1111 static void defer_issue_bios(struct r5conf *conf, sector_t sector,
1112 				struct bio_list *bios)
1113 {
1114 	struct bio_list tmp = BIO_EMPTY_LIST;
1115 	struct r5pending_data *ent;
1116 
1117 	spin_lock(&conf->pending_bios_lock);
1118 	ent = list_first_entry(&conf->free_list, struct r5pending_data,
1119 							sibling);
1120 	list_move_tail(&ent->sibling, &conf->pending_list);
1121 	ent->sector = sector;
1122 	bio_list_init(&ent->bios);
1123 	bio_list_merge(&ent->bios, bios);
1124 	conf->pending_data_cnt++;
1125 	if (conf->pending_data_cnt >= PENDING_IO_MAX)
1126 		dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
1127 
1128 	spin_unlock(&conf->pending_bios_lock);
1129 
1130 	dispatch_bio_list(&tmp);
1131 }
1132 
1133 static void
1134 raid5_end_read_request(struct bio *bi);
1135 static void
1136 raid5_end_write_request(struct bio *bi);
1137 
1138 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
1139 {
1140 	struct r5conf *conf = sh->raid_conf;
1141 	int i, disks = sh->disks;
1142 	struct stripe_head *head_sh = sh;
1143 	struct bio_list pending_bios = BIO_EMPTY_LIST;
1144 	struct r5dev *dev;
1145 	bool should_defer;
1146 
1147 	might_sleep();
1148 
1149 	if (log_stripe(sh, s) == 0)
1150 		return;
1151 
1152 	should_defer = conf->batch_bio_dispatch && conf->group_cnt;
1153 
1154 	for (i = disks; i--; ) {
1155 		enum req_op op;
1156 		blk_opf_t op_flags = 0;
1157 		int replace_only = 0;
1158 		struct bio *bi, *rbi;
1159 		struct md_rdev *rdev, *rrdev = NULL;
1160 
1161 		sh = head_sh;
1162 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1163 			op = REQ_OP_WRITE;
1164 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1165 				op_flags = REQ_FUA;
1166 			if (test_bit(R5_Discard, &sh->dev[i].flags))
1167 				op = REQ_OP_DISCARD;
1168 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1169 			op = REQ_OP_READ;
1170 		else if (test_and_clear_bit(R5_WantReplace,
1171 					    &sh->dev[i].flags)) {
1172 			op = REQ_OP_WRITE;
1173 			replace_only = 1;
1174 		} else
1175 			continue;
1176 		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1177 			op_flags |= REQ_SYNC;
1178 
1179 again:
1180 		dev = &sh->dev[i];
1181 		bi = &dev->req;
1182 		rbi = &dev->rreq; /* For writing to replacement */
1183 
1184 		rdev = conf->disks[i].rdev;
1185 		rrdev = conf->disks[i].replacement;
1186 		if (op_is_write(op)) {
1187 			if (replace_only)
1188 				rdev = NULL;
1189 			if (rdev == rrdev)
1190 				/* We raced and saw duplicates */
1191 				rrdev = NULL;
1192 		} else {
1193 			if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1194 				rdev = rrdev;
1195 			rrdev = NULL;
1196 		}
1197 
1198 		if (rdev && test_bit(Faulty, &rdev->flags))
1199 			rdev = NULL;
1200 		if (rdev)
1201 			atomic_inc(&rdev->nr_pending);
1202 		if (rrdev && test_bit(Faulty, &rrdev->flags))
1203 			rrdev = NULL;
1204 		if (rrdev)
1205 			atomic_inc(&rrdev->nr_pending);
1206 
1207 		/* We have already checked bad blocks for reads.  Now
1208 		 * need to check for writes.  We never accept write errors
1209 		 * on the replacement, so we don't to check rrdev.
1210 		 */
1211 		while (op_is_write(op) && rdev &&
1212 		       test_bit(WriteErrorSeen, &rdev->flags)) {
1213 			sector_t first_bad;
1214 			int bad_sectors;
1215 			int bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
1216 					      &first_bad, &bad_sectors);
1217 			if (!bad)
1218 				break;
1219 
1220 			if (bad < 0) {
1221 				set_bit(BlockedBadBlocks, &rdev->flags);
1222 				if (!conf->mddev->external &&
1223 				    conf->mddev->sb_flags) {
1224 					/* It is very unlikely, but we might
1225 					 * still need to write out the
1226 					 * bad block log - better give it
1227 					 * a chance*/
1228 					md_check_recovery(conf->mddev);
1229 				}
1230 				/*
1231 				 * Because md_wait_for_blocked_rdev
1232 				 * will dec nr_pending, we must
1233 				 * increment it first.
1234 				 */
1235 				atomic_inc(&rdev->nr_pending);
1236 				md_wait_for_blocked_rdev(rdev, conf->mddev);
1237 			} else {
1238 				/* Acknowledged bad block - skip the write */
1239 				rdev_dec_pending(rdev, conf->mddev);
1240 				rdev = NULL;
1241 			}
1242 		}
1243 
1244 		if (rdev) {
1245 			if (s->syncing || s->expanding || s->expanded
1246 			    || s->replacing)
1247 				md_sync_acct(rdev->bdev, RAID5_STRIPE_SECTORS(conf));
1248 
1249 			set_bit(STRIPE_IO_STARTED, &sh->state);
1250 
1251 			bio_init(bi, rdev->bdev, &dev->vec, 1, op | op_flags);
1252 			bi->bi_end_io = op_is_write(op)
1253 				? raid5_end_write_request
1254 				: raid5_end_read_request;
1255 			bi->bi_private = sh;
1256 
1257 			pr_debug("%s: for %llu schedule op %d on disc %d\n",
1258 				__func__, (unsigned long long)sh->sector,
1259 				bi->bi_opf, i);
1260 			atomic_inc(&sh->count);
1261 			if (sh != head_sh)
1262 				atomic_inc(&head_sh->count);
1263 			if (use_new_offset(conf, sh))
1264 				bi->bi_iter.bi_sector = (sh->sector
1265 						 + rdev->new_data_offset);
1266 			else
1267 				bi->bi_iter.bi_sector = (sh->sector
1268 						 + rdev->data_offset);
1269 			if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1270 				bi->bi_opf |= REQ_NOMERGE;
1271 
1272 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1273 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1274 
1275 			if (!op_is_write(op) &&
1276 			    test_bit(R5_InJournal, &sh->dev[i].flags))
1277 				/*
1278 				 * issuing read for a page in journal, this
1279 				 * must be preparing for prexor in rmw; read
1280 				 * the data into orig_page
1281 				 */
1282 				sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1283 			else
1284 				sh->dev[i].vec.bv_page = sh->dev[i].page;
1285 			bi->bi_vcnt = 1;
1286 			bi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1287 			bi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
1288 			bi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1289 			/*
1290 			 * If this is discard request, set bi_vcnt 0. We don't
1291 			 * want to confuse SCSI because SCSI will replace payload
1292 			 */
1293 			if (op == REQ_OP_DISCARD)
1294 				bi->bi_vcnt = 0;
1295 			if (rrdev)
1296 				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1297 
1298 			if (conf->mddev->gendisk)
1299 				trace_block_bio_remap(bi,
1300 						disk_devt(conf->mddev->gendisk),
1301 						sh->dev[i].sector);
1302 			if (should_defer && op_is_write(op))
1303 				bio_list_add(&pending_bios, bi);
1304 			else
1305 				submit_bio_noacct(bi);
1306 		}
1307 		if (rrdev) {
1308 			if (s->syncing || s->expanding || s->expanded
1309 			    || s->replacing)
1310 				md_sync_acct(rrdev->bdev, RAID5_STRIPE_SECTORS(conf));
1311 
1312 			set_bit(STRIPE_IO_STARTED, &sh->state);
1313 
1314 			bio_init(rbi, rrdev->bdev, &dev->rvec, 1, op | op_flags);
1315 			BUG_ON(!op_is_write(op));
1316 			rbi->bi_end_io = raid5_end_write_request;
1317 			rbi->bi_private = sh;
1318 
1319 			pr_debug("%s: for %llu schedule op %d on "
1320 				 "replacement disc %d\n",
1321 				__func__, (unsigned long long)sh->sector,
1322 				rbi->bi_opf, i);
1323 			atomic_inc(&sh->count);
1324 			if (sh != head_sh)
1325 				atomic_inc(&head_sh->count);
1326 			if (use_new_offset(conf, sh))
1327 				rbi->bi_iter.bi_sector = (sh->sector
1328 						  + rrdev->new_data_offset);
1329 			else
1330 				rbi->bi_iter.bi_sector = (sh->sector
1331 						  + rrdev->data_offset);
1332 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1333 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1334 			sh->dev[i].rvec.bv_page = sh->dev[i].page;
1335 			rbi->bi_vcnt = 1;
1336 			rbi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1337 			rbi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
1338 			rbi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1339 			/*
1340 			 * If this is discard request, set bi_vcnt 0. We don't
1341 			 * want to confuse SCSI because SCSI will replace payload
1342 			 */
1343 			if (op == REQ_OP_DISCARD)
1344 				rbi->bi_vcnt = 0;
1345 			if (conf->mddev->gendisk)
1346 				trace_block_bio_remap(rbi,
1347 						disk_devt(conf->mddev->gendisk),
1348 						sh->dev[i].sector);
1349 			if (should_defer && op_is_write(op))
1350 				bio_list_add(&pending_bios, rbi);
1351 			else
1352 				submit_bio_noacct(rbi);
1353 		}
1354 		if (!rdev && !rrdev) {
1355 			if (op_is_write(op))
1356 				set_bit(STRIPE_DEGRADED, &sh->state);
1357 			pr_debug("skip op %d on disc %d for sector %llu\n",
1358 				bi->bi_opf, i, (unsigned long long)sh->sector);
1359 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
1360 			set_bit(STRIPE_HANDLE, &sh->state);
1361 		}
1362 
1363 		if (!head_sh->batch_head)
1364 			continue;
1365 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1366 				      batch_list);
1367 		if (sh != head_sh)
1368 			goto again;
1369 	}
1370 
1371 	if (should_defer && !bio_list_empty(&pending_bios))
1372 		defer_issue_bios(conf, head_sh->sector, &pending_bios);
1373 }
1374 
1375 static struct dma_async_tx_descriptor *
1376 async_copy_data(int frombio, struct bio *bio, struct page **page,
1377 	unsigned int poff, sector_t sector, struct dma_async_tx_descriptor *tx,
1378 	struct stripe_head *sh, int no_skipcopy)
1379 {
1380 	struct bio_vec bvl;
1381 	struct bvec_iter iter;
1382 	struct page *bio_page;
1383 	int page_offset;
1384 	struct async_submit_ctl submit;
1385 	enum async_tx_flags flags = 0;
1386 	struct r5conf *conf = sh->raid_conf;
1387 
1388 	if (bio->bi_iter.bi_sector >= sector)
1389 		page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1390 	else
1391 		page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1392 
1393 	if (frombio)
1394 		flags |= ASYNC_TX_FENCE;
1395 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1396 
1397 	bio_for_each_segment(bvl, bio, iter) {
1398 		int len = bvl.bv_len;
1399 		int clen;
1400 		int b_offset = 0;
1401 
1402 		if (page_offset < 0) {
1403 			b_offset = -page_offset;
1404 			page_offset += b_offset;
1405 			len -= b_offset;
1406 		}
1407 
1408 		if (len > 0 && page_offset + len > RAID5_STRIPE_SIZE(conf))
1409 			clen = RAID5_STRIPE_SIZE(conf) - page_offset;
1410 		else
1411 			clen = len;
1412 
1413 		if (clen > 0) {
1414 			b_offset += bvl.bv_offset;
1415 			bio_page = bvl.bv_page;
1416 			if (frombio) {
1417 				if (conf->skip_copy &&
1418 				    b_offset == 0 && page_offset == 0 &&
1419 				    clen == RAID5_STRIPE_SIZE(conf) &&
1420 				    !no_skipcopy)
1421 					*page = bio_page;
1422 				else
1423 					tx = async_memcpy(*page, bio_page, page_offset + poff,
1424 						  b_offset, clen, &submit);
1425 			} else
1426 				tx = async_memcpy(bio_page, *page, b_offset,
1427 						  page_offset + poff, clen, &submit);
1428 		}
1429 		/* chain the operations */
1430 		submit.depend_tx = tx;
1431 
1432 		if (clen < len) /* hit end of page */
1433 			break;
1434 		page_offset +=  len;
1435 	}
1436 
1437 	return tx;
1438 }
1439 
1440 static void ops_complete_biofill(void *stripe_head_ref)
1441 {
1442 	struct stripe_head *sh = stripe_head_ref;
1443 	int i;
1444 	struct r5conf *conf = sh->raid_conf;
1445 
1446 	pr_debug("%s: stripe %llu\n", __func__,
1447 		(unsigned long long)sh->sector);
1448 
1449 	/* clear completed biofills */
1450 	for (i = sh->disks; i--; ) {
1451 		struct r5dev *dev = &sh->dev[i];
1452 
1453 		/* acknowledge completion of a biofill operation */
1454 		/* and check if we need to reply to a read request,
1455 		 * new R5_Wantfill requests are held off until
1456 		 * !STRIPE_BIOFILL_RUN
1457 		 */
1458 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1459 			struct bio *rbi, *rbi2;
1460 
1461 			BUG_ON(!dev->read);
1462 			rbi = dev->read;
1463 			dev->read = NULL;
1464 			while (rbi && rbi->bi_iter.bi_sector <
1465 				dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1466 				rbi2 = r5_next_bio(conf, rbi, dev->sector);
1467 				bio_endio(rbi);
1468 				rbi = rbi2;
1469 			}
1470 		}
1471 	}
1472 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1473 
1474 	set_bit(STRIPE_HANDLE, &sh->state);
1475 	raid5_release_stripe(sh);
1476 }
1477 
1478 static void ops_run_biofill(struct stripe_head *sh)
1479 {
1480 	struct dma_async_tx_descriptor *tx = NULL;
1481 	struct async_submit_ctl submit;
1482 	int i;
1483 	struct r5conf *conf = sh->raid_conf;
1484 
1485 	BUG_ON(sh->batch_head);
1486 	pr_debug("%s: stripe %llu\n", __func__,
1487 		(unsigned long long)sh->sector);
1488 
1489 	for (i = sh->disks; i--; ) {
1490 		struct r5dev *dev = &sh->dev[i];
1491 		if (test_bit(R5_Wantfill, &dev->flags)) {
1492 			struct bio *rbi;
1493 			spin_lock_irq(&sh->stripe_lock);
1494 			dev->read = rbi = dev->toread;
1495 			dev->toread = NULL;
1496 			spin_unlock_irq(&sh->stripe_lock);
1497 			while (rbi && rbi->bi_iter.bi_sector <
1498 				dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1499 				tx = async_copy_data(0, rbi, &dev->page,
1500 						     dev->offset,
1501 						     dev->sector, tx, sh, 0);
1502 				rbi = r5_next_bio(conf, rbi, dev->sector);
1503 			}
1504 		}
1505 	}
1506 
1507 	atomic_inc(&sh->count);
1508 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1509 	async_trigger_callback(&submit);
1510 }
1511 
1512 static void mark_target_uptodate(struct stripe_head *sh, int target)
1513 {
1514 	struct r5dev *tgt;
1515 
1516 	if (target < 0)
1517 		return;
1518 
1519 	tgt = &sh->dev[target];
1520 	set_bit(R5_UPTODATE, &tgt->flags);
1521 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1522 	clear_bit(R5_Wantcompute, &tgt->flags);
1523 }
1524 
1525 static void ops_complete_compute(void *stripe_head_ref)
1526 {
1527 	struct stripe_head *sh = stripe_head_ref;
1528 
1529 	pr_debug("%s: stripe %llu\n", __func__,
1530 		(unsigned long long)sh->sector);
1531 
1532 	/* mark the computed target(s) as uptodate */
1533 	mark_target_uptodate(sh, sh->ops.target);
1534 	mark_target_uptodate(sh, sh->ops.target2);
1535 
1536 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1537 	if (sh->check_state == check_state_compute_run)
1538 		sh->check_state = check_state_compute_result;
1539 	set_bit(STRIPE_HANDLE, &sh->state);
1540 	raid5_release_stripe(sh);
1541 }
1542 
1543 /* return a pointer to the address conversion region of the scribble buffer */
1544 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1545 {
1546 	return percpu->scribble + i * percpu->scribble_obj_size;
1547 }
1548 
1549 /* return a pointer to the address conversion region of the scribble buffer */
1550 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1551 				 struct raid5_percpu *percpu, int i)
1552 {
1553 	return (void *) (to_addr_page(percpu, i) + sh->disks + 2);
1554 }
1555 
1556 /*
1557  * Return a pointer to record offset address.
1558  */
1559 static unsigned int *
1560 to_addr_offs(struct stripe_head *sh, struct raid5_percpu *percpu)
1561 {
1562 	return (unsigned int *) (to_addr_conv(sh, percpu, 0) + sh->disks + 2);
1563 }
1564 
1565 static struct dma_async_tx_descriptor *
1566 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1567 {
1568 	int disks = sh->disks;
1569 	struct page **xor_srcs = to_addr_page(percpu, 0);
1570 	unsigned int *off_srcs = to_addr_offs(sh, percpu);
1571 	int target = sh->ops.target;
1572 	struct r5dev *tgt = &sh->dev[target];
1573 	struct page *xor_dest = tgt->page;
1574 	unsigned int off_dest = tgt->offset;
1575 	int count = 0;
1576 	struct dma_async_tx_descriptor *tx;
1577 	struct async_submit_ctl submit;
1578 	int i;
1579 
1580 	BUG_ON(sh->batch_head);
1581 
1582 	pr_debug("%s: stripe %llu block: %d\n",
1583 		__func__, (unsigned long long)sh->sector, target);
1584 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1585 
1586 	for (i = disks; i--; ) {
1587 		if (i != target) {
1588 			off_srcs[count] = sh->dev[i].offset;
1589 			xor_srcs[count++] = sh->dev[i].page;
1590 		}
1591 	}
1592 
1593 	atomic_inc(&sh->count);
1594 
1595 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1596 			  ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1597 	if (unlikely(count == 1))
1598 		tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
1599 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1600 	else
1601 		tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
1602 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1603 
1604 	return tx;
1605 }
1606 
1607 /* set_syndrome_sources - populate source buffers for gen_syndrome
1608  * @srcs - (struct page *) array of size sh->disks
1609  * @offs - (unsigned int) array of offset for each page
1610  * @sh - stripe_head to parse
1611  *
1612  * Populates srcs in proper layout order for the stripe and returns the
1613  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1614  * destination buffer is recorded in srcs[count] and the Q destination
1615  * is recorded in srcs[count+1]].
1616  */
1617 static int set_syndrome_sources(struct page **srcs,
1618 				unsigned int *offs,
1619 				struct stripe_head *sh,
1620 				int srctype)
1621 {
1622 	int disks = sh->disks;
1623 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1624 	int d0_idx = raid6_d0(sh);
1625 	int count;
1626 	int i;
1627 
1628 	for (i = 0; i < disks; i++)
1629 		srcs[i] = NULL;
1630 
1631 	count = 0;
1632 	i = d0_idx;
1633 	do {
1634 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1635 		struct r5dev *dev = &sh->dev[i];
1636 
1637 		if (i == sh->qd_idx || i == sh->pd_idx ||
1638 		    (srctype == SYNDROME_SRC_ALL) ||
1639 		    (srctype == SYNDROME_SRC_WANT_DRAIN &&
1640 		     (test_bit(R5_Wantdrain, &dev->flags) ||
1641 		      test_bit(R5_InJournal, &dev->flags))) ||
1642 		    (srctype == SYNDROME_SRC_WRITTEN &&
1643 		     (dev->written ||
1644 		      test_bit(R5_InJournal, &dev->flags)))) {
1645 			if (test_bit(R5_InJournal, &dev->flags))
1646 				srcs[slot] = sh->dev[i].orig_page;
1647 			else
1648 				srcs[slot] = sh->dev[i].page;
1649 			/*
1650 			 * For R5_InJournal, PAGE_SIZE must be 4KB and will
1651 			 * not shared page. In that case, dev[i].offset
1652 			 * is 0.
1653 			 */
1654 			offs[slot] = sh->dev[i].offset;
1655 		}
1656 		i = raid6_next_disk(i, disks);
1657 	} while (i != d0_idx);
1658 
1659 	return syndrome_disks;
1660 }
1661 
1662 static struct dma_async_tx_descriptor *
1663 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1664 {
1665 	int disks = sh->disks;
1666 	struct page **blocks = to_addr_page(percpu, 0);
1667 	unsigned int *offs = to_addr_offs(sh, percpu);
1668 	int target;
1669 	int qd_idx = sh->qd_idx;
1670 	struct dma_async_tx_descriptor *tx;
1671 	struct async_submit_ctl submit;
1672 	struct r5dev *tgt;
1673 	struct page *dest;
1674 	unsigned int dest_off;
1675 	int i;
1676 	int count;
1677 
1678 	BUG_ON(sh->batch_head);
1679 	if (sh->ops.target < 0)
1680 		target = sh->ops.target2;
1681 	else if (sh->ops.target2 < 0)
1682 		target = sh->ops.target;
1683 	else
1684 		/* we should only have one valid target */
1685 		BUG();
1686 	BUG_ON(target < 0);
1687 	pr_debug("%s: stripe %llu block: %d\n",
1688 		__func__, (unsigned long long)sh->sector, target);
1689 
1690 	tgt = &sh->dev[target];
1691 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1692 	dest = tgt->page;
1693 	dest_off = tgt->offset;
1694 
1695 	atomic_inc(&sh->count);
1696 
1697 	if (target == qd_idx) {
1698 		count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
1699 		blocks[count] = NULL; /* regenerating p is not necessary */
1700 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
1701 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1702 				  ops_complete_compute, sh,
1703 				  to_addr_conv(sh, percpu, 0));
1704 		tx = async_gen_syndrome(blocks, offs, count+2,
1705 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1706 	} else {
1707 		/* Compute any data- or p-drive using XOR */
1708 		count = 0;
1709 		for (i = disks; i-- ; ) {
1710 			if (i == target || i == qd_idx)
1711 				continue;
1712 			offs[count] = sh->dev[i].offset;
1713 			blocks[count++] = sh->dev[i].page;
1714 		}
1715 
1716 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1717 				  NULL, ops_complete_compute, sh,
1718 				  to_addr_conv(sh, percpu, 0));
1719 		tx = async_xor_offs(dest, dest_off, blocks, offs, count,
1720 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1721 	}
1722 
1723 	return tx;
1724 }
1725 
1726 static struct dma_async_tx_descriptor *
1727 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1728 {
1729 	int i, count, disks = sh->disks;
1730 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1731 	int d0_idx = raid6_d0(sh);
1732 	int faila = -1, failb = -1;
1733 	int target = sh->ops.target;
1734 	int target2 = sh->ops.target2;
1735 	struct r5dev *tgt = &sh->dev[target];
1736 	struct r5dev *tgt2 = &sh->dev[target2];
1737 	struct dma_async_tx_descriptor *tx;
1738 	struct page **blocks = to_addr_page(percpu, 0);
1739 	unsigned int *offs = to_addr_offs(sh, percpu);
1740 	struct async_submit_ctl submit;
1741 
1742 	BUG_ON(sh->batch_head);
1743 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1744 		 __func__, (unsigned long long)sh->sector, target, target2);
1745 	BUG_ON(target < 0 || target2 < 0);
1746 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1747 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1748 
1749 	/* we need to open-code set_syndrome_sources to handle the
1750 	 * slot number conversion for 'faila' and 'failb'
1751 	 */
1752 	for (i = 0; i < disks ; i++) {
1753 		offs[i] = 0;
1754 		blocks[i] = NULL;
1755 	}
1756 	count = 0;
1757 	i = d0_idx;
1758 	do {
1759 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1760 
1761 		offs[slot] = sh->dev[i].offset;
1762 		blocks[slot] = sh->dev[i].page;
1763 
1764 		if (i == target)
1765 			faila = slot;
1766 		if (i == target2)
1767 			failb = slot;
1768 		i = raid6_next_disk(i, disks);
1769 	} while (i != d0_idx);
1770 
1771 	BUG_ON(faila == failb);
1772 	if (failb < faila)
1773 		swap(faila, failb);
1774 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1775 		 __func__, (unsigned long long)sh->sector, faila, failb);
1776 
1777 	atomic_inc(&sh->count);
1778 
1779 	if (failb == syndrome_disks+1) {
1780 		/* Q disk is one of the missing disks */
1781 		if (faila == syndrome_disks) {
1782 			/* Missing P+Q, just recompute */
1783 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1784 					  ops_complete_compute, sh,
1785 					  to_addr_conv(sh, percpu, 0));
1786 			return async_gen_syndrome(blocks, offs, syndrome_disks+2,
1787 						  RAID5_STRIPE_SIZE(sh->raid_conf),
1788 						  &submit);
1789 		} else {
1790 			struct page *dest;
1791 			unsigned int dest_off;
1792 			int data_target;
1793 			int qd_idx = sh->qd_idx;
1794 
1795 			/* Missing D+Q: recompute D from P, then recompute Q */
1796 			if (target == qd_idx)
1797 				data_target = target2;
1798 			else
1799 				data_target = target;
1800 
1801 			count = 0;
1802 			for (i = disks; i-- ; ) {
1803 				if (i == data_target || i == qd_idx)
1804 					continue;
1805 				offs[count] = sh->dev[i].offset;
1806 				blocks[count++] = sh->dev[i].page;
1807 			}
1808 			dest = sh->dev[data_target].page;
1809 			dest_off = sh->dev[data_target].offset;
1810 			init_async_submit(&submit,
1811 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1812 					  NULL, NULL, NULL,
1813 					  to_addr_conv(sh, percpu, 0));
1814 			tx = async_xor_offs(dest, dest_off, blocks, offs, count,
1815 				       RAID5_STRIPE_SIZE(sh->raid_conf),
1816 				       &submit);
1817 
1818 			count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
1819 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1820 					  ops_complete_compute, sh,
1821 					  to_addr_conv(sh, percpu, 0));
1822 			return async_gen_syndrome(blocks, offs, count+2,
1823 						  RAID5_STRIPE_SIZE(sh->raid_conf),
1824 						  &submit);
1825 		}
1826 	} else {
1827 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1828 				  ops_complete_compute, sh,
1829 				  to_addr_conv(sh, percpu, 0));
1830 		if (failb == syndrome_disks) {
1831 			/* We're missing D+P. */
1832 			return async_raid6_datap_recov(syndrome_disks+2,
1833 						RAID5_STRIPE_SIZE(sh->raid_conf),
1834 						faila,
1835 						blocks, offs, &submit);
1836 		} else {
1837 			/* We're missing D+D. */
1838 			return async_raid6_2data_recov(syndrome_disks+2,
1839 						RAID5_STRIPE_SIZE(sh->raid_conf),
1840 						faila, failb,
1841 						blocks, offs, &submit);
1842 		}
1843 	}
1844 }
1845 
1846 static void ops_complete_prexor(void *stripe_head_ref)
1847 {
1848 	struct stripe_head *sh = stripe_head_ref;
1849 
1850 	pr_debug("%s: stripe %llu\n", __func__,
1851 		(unsigned long long)sh->sector);
1852 
1853 	if (r5c_is_writeback(sh->raid_conf->log))
1854 		/*
1855 		 * raid5-cache write back uses orig_page during prexor.
1856 		 * After prexor, it is time to free orig_page
1857 		 */
1858 		r5c_release_extra_page(sh);
1859 }
1860 
1861 static struct dma_async_tx_descriptor *
1862 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1863 		struct dma_async_tx_descriptor *tx)
1864 {
1865 	int disks = sh->disks;
1866 	struct page **xor_srcs = to_addr_page(percpu, 0);
1867 	unsigned int *off_srcs = to_addr_offs(sh, percpu);
1868 	int count = 0, pd_idx = sh->pd_idx, i;
1869 	struct async_submit_ctl submit;
1870 
1871 	/* existing parity data subtracted */
1872 	unsigned int off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
1873 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1874 
1875 	BUG_ON(sh->batch_head);
1876 	pr_debug("%s: stripe %llu\n", __func__,
1877 		(unsigned long long)sh->sector);
1878 
1879 	for (i = disks; i--; ) {
1880 		struct r5dev *dev = &sh->dev[i];
1881 		/* Only process blocks that are known to be uptodate */
1882 		if (test_bit(R5_InJournal, &dev->flags)) {
1883 			/*
1884 			 * For this case, PAGE_SIZE must be equal to 4KB and
1885 			 * page offset is zero.
1886 			 */
1887 			off_srcs[count] = dev->offset;
1888 			xor_srcs[count++] = dev->orig_page;
1889 		} else if (test_bit(R5_Wantdrain, &dev->flags)) {
1890 			off_srcs[count] = dev->offset;
1891 			xor_srcs[count++] = dev->page;
1892 		}
1893 	}
1894 
1895 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1896 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1897 	tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
1898 			RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1899 
1900 	return tx;
1901 }
1902 
1903 static struct dma_async_tx_descriptor *
1904 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1905 		struct dma_async_tx_descriptor *tx)
1906 {
1907 	struct page **blocks = to_addr_page(percpu, 0);
1908 	unsigned int *offs = to_addr_offs(sh, percpu);
1909 	int count;
1910 	struct async_submit_ctl submit;
1911 
1912 	pr_debug("%s: stripe %llu\n", __func__,
1913 		(unsigned long long)sh->sector);
1914 
1915 	count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_WANT_DRAIN);
1916 
1917 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1918 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1919 	tx = async_gen_syndrome(blocks, offs, count+2,
1920 			RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1921 
1922 	return tx;
1923 }
1924 
1925 static struct dma_async_tx_descriptor *
1926 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1927 {
1928 	struct r5conf *conf = sh->raid_conf;
1929 	int disks = sh->disks;
1930 	int i;
1931 	struct stripe_head *head_sh = sh;
1932 
1933 	pr_debug("%s: stripe %llu\n", __func__,
1934 		(unsigned long long)sh->sector);
1935 
1936 	for (i = disks; i--; ) {
1937 		struct r5dev *dev;
1938 		struct bio *chosen;
1939 
1940 		sh = head_sh;
1941 		if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1942 			struct bio *wbi;
1943 
1944 again:
1945 			dev = &sh->dev[i];
1946 			/*
1947 			 * clear R5_InJournal, so when rewriting a page in
1948 			 * journal, it is not skipped by r5l_log_stripe()
1949 			 */
1950 			clear_bit(R5_InJournal, &dev->flags);
1951 			spin_lock_irq(&sh->stripe_lock);
1952 			chosen = dev->towrite;
1953 			dev->towrite = NULL;
1954 			sh->overwrite_disks = 0;
1955 			BUG_ON(dev->written);
1956 			wbi = dev->written = chosen;
1957 			spin_unlock_irq(&sh->stripe_lock);
1958 			WARN_ON(dev->page != dev->orig_page);
1959 
1960 			while (wbi && wbi->bi_iter.bi_sector <
1961 				dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1962 				if (wbi->bi_opf & REQ_FUA)
1963 					set_bit(R5_WantFUA, &dev->flags);
1964 				if (wbi->bi_opf & REQ_SYNC)
1965 					set_bit(R5_SyncIO, &dev->flags);
1966 				if (bio_op(wbi) == REQ_OP_DISCARD)
1967 					set_bit(R5_Discard, &dev->flags);
1968 				else {
1969 					tx = async_copy_data(1, wbi, &dev->page,
1970 							     dev->offset,
1971 							     dev->sector, tx, sh,
1972 							     r5c_is_writeback(conf->log));
1973 					if (dev->page != dev->orig_page &&
1974 					    !r5c_is_writeback(conf->log)) {
1975 						set_bit(R5_SkipCopy, &dev->flags);
1976 						clear_bit(R5_UPTODATE, &dev->flags);
1977 						clear_bit(R5_OVERWRITE, &dev->flags);
1978 					}
1979 				}
1980 				wbi = r5_next_bio(conf, wbi, dev->sector);
1981 			}
1982 
1983 			if (head_sh->batch_head) {
1984 				sh = list_first_entry(&sh->batch_list,
1985 						      struct stripe_head,
1986 						      batch_list);
1987 				if (sh == head_sh)
1988 					continue;
1989 				goto again;
1990 			}
1991 		}
1992 	}
1993 
1994 	return tx;
1995 }
1996 
1997 static void ops_complete_reconstruct(void *stripe_head_ref)
1998 {
1999 	struct stripe_head *sh = stripe_head_ref;
2000 	int disks = sh->disks;
2001 	int pd_idx = sh->pd_idx;
2002 	int qd_idx = sh->qd_idx;
2003 	int i;
2004 	bool fua = false, sync = false, discard = false;
2005 
2006 	pr_debug("%s: stripe %llu\n", __func__,
2007 		(unsigned long long)sh->sector);
2008 
2009 	for (i = disks; i--; ) {
2010 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
2011 		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
2012 		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
2013 	}
2014 
2015 	for (i = disks; i--; ) {
2016 		struct r5dev *dev = &sh->dev[i];
2017 
2018 		if (dev->written || i == pd_idx || i == qd_idx) {
2019 			if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
2020 				set_bit(R5_UPTODATE, &dev->flags);
2021 				if (test_bit(STRIPE_EXPAND_READY, &sh->state))
2022 					set_bit(R5_Expanded, &dev->flags);
2023 			}
2024 			if (fua)
2025 				set_bit(R5_WantFUA, &dev->flags);
2026 			if (sync)
2027 				set_bit(R5_SyncIO, &dev->flags);
2028 		}
2029 	}
2030 
2031 	if (sh->reconstruct_state == reconstruct_state_drain_run)
2032 		sh->reconstruct_state = reconstruct_state_drain_result;
2033 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
2034 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
2035 	else {
2036 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
2037 		sh->reconstruct_state = reconstruct_state_result;
2038 	}
2039 
2040 	set_bit(STRIPE_HANDLE, &sh->state);
2041 	raid5_release_stripe(sh);
2042 }
2043 
2044 static void
2045 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
2046 		     struct dma_async_tx_descriptor *tx)
2047 {
2048 	int disks = sh->disks;
2049 	struct page **xor_srcs;
2050 	unsigned int *off_srcs;
2051 	struct async_submit_ctl submit;
2052 	int count, pd_idx = sh->pd_idx, i;
2053 	struct page *xor_dest;
2054 	unsigned int off_dest;
2055 	int prexor = 0;
2056 	unsigned long flags;
2057 	int j = 0;
2058 	struct stripe_head *head_sh = sh;
2059 	int last_stripe;
2060 
2061 	pr_debug("%s: stripe %llu\n", __func__,
2062 		(unsigned long long)sh->sector);
2063 
2064 	for (i = 0; i < sh->disks; i++) {
2065 		if (pd_idx == i)
2066 			continue;
2067 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
2068 			break;
2069 	}
2070 	if (i >= sh->disks) {
2071 		atomic_inc(&sh->count);
2072 		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
2073 		ops_complete_reconstruct(sh);
2074 		return;
2075 	}
2076 again:
2077 	count = 0;
2078 	xor_srcs = to_addr_page(percpu, j);
2079 	off_srcs = to_addr_offs(sh, percpu);
2080 	/* check if prexor is active which means only process blocks
2081 	 * that are part of a read-modify-write (written)
2082 	 */
2083 	if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2084 		prexor = 1;
2085 		off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
2086 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
2087 		for (i = disks; i--; ) {
2088 			struct r5dev *dev = &sh->dev[i];
2089 			if (head_sh->dev[i].written ||
2090 			    test_bit(R5_InJournal, &head_sh->dev[i].flags)) {
2091 				off_srcs[count] = dev->offset;
2092 				xor_srcs[count++] = dev->page;
2093 			}
2094 		}
2095 	} else {
2096 		xor_dest = sh->dev[pd_idx].page;
2097 		off_dest = sh->dev[pd_idx].offset;
2098 		for (i = disks; i--; ) {
2099 			struct r5dev *dev = &sh->dev[i];
2100 			if (i != pd_idx) {
2101 				off_srcs[count] = dev->offset;
2102 				xor_srcs[count++] = dev->page;
2103 			}
2104 		}
2105 	}
2106 
2107 	/* 1/ if we prexor'd then the dest is reused as a source
2108 	 * 2/ if we did not prexor then we are redoing the parity
2109 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
2110 	 * for the synchronous xor case
2111 	 */
2112 	last_stripe = !head_sh->batch_head ||
2113 		list_first_entry(&sh->batch_list,
2114 				 struct stripe_head, batch_list) == head_sh;
2115 	if (last_stripe) {
2116 		flags = ASYNC_TX_ACK |
2117 			(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
2118 
2119 		atomic_inc(&head_sh->count);
2120 		init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
2121 				  to_addr_conv(sh, percpu, j));
2122 	} else {
2123 		flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
2124 		init_async_submit(&submit, flags, tx, NULL, NULL,
2125 				  to_addr_conv(sh, percpu, j));
2126 	}
2127 
2128 	if (unlikely(count == 1))
2129 		tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
2130 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2131 	else
2132 		tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
2133 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2134 	if (!last_stripe) {
2135 		j++;
2136 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
2137 				      batch_list);
2138 		goto again;
2139 	}
2140 }
2141 
2142 static void
2143 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
2144 		     struct dma_async_tx_descriptor *tx)
2145 {
2146 	struct async_submit_ctl submit;
2147 	struct page **blocks;
2148 	unsigned int *offs;
2149 	int count, i, j = 0;
2150 	struct stripe_head *head_sh = sh;
2151 	int last_stripe;
2152 	int synflags;
2153 	unsigned long txflags;
2154 
2155 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
2156 
2157 	for (i = 0; i < sh->disks; i++) {
2158 		if (sh->pd_idx == i || sh->qd_idx == i)
2159 			continue;
2160 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
2161 			break;
2162 	}
2163 	if (i >= sh->disks) {
2164 		atomic_inc(&sh->count);
2165 		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
2166 		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
2167 		ops_complete_reconstruct(sh);
2168 		return;
2169 	}
2170 
2171 again:
2172 	blocks = to_addr_page(percpu, j);
2173 	offs = to_addr_offs(sh, percpu);
2174 
2175 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2176 		synflags = SYNDROME_SRC_WRITTEN;
2177 		txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
2178 	} else {
2179 		synflags = SYNDROME_SRC_ALL;
2180 		txflags = ASYNC_TX_ACK;
2181 	}
2182 
2183 	count = set_syndrome_sources(blocks, offs, sh, synflags);
2184 	last_stripe = !head_sh->batch_head ||
2185 		list_first_entry(&sh->batch_list,
2186 				 struct stripe_head, batch_list) == head_sh;
2187 
2188 	if (last_stripe) {
2189 		atomic_inc(&head_sh->count);
2190 		init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
2191 				  head_sh, to_addr_conv(sh, percpu, j));
2192 	} else
2193 		init_async_submit(&submit, 0, tx, NULL, NULL,
2194 				  to_addr_conv(sh, percpu, j));
2195 	tx = async_gen_syndrome(blocks, offs, count+2,
2196 			RAID5_STRIPE_SIZE(sh->raid_conf),  &submit);
2197 	if (!last_stripe) {
2198 		j++;
2199 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
2200 				      batch_list);
2201 		goto again;
2202 	}
2203 }
2204 
2205 static void ops_complete_check(void *stripe_head_ref)
2206 {
2207 	struct stripe_head *sh = stripe_head_ref;
2208 
2209 	pr_debug("%s: stripe %llu\n", __func__,
2210 		(unsigned long long)sh->sector);
2211 
2212 	sh->check_state = check_state_check_result;
2213 	set_bit(STRIPE_HANDLE, &sh->state);
2214 	raid5_release_stripe(sh);
2215 }
2216 
2217 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
2218 {
2219 	int disks = sh->disks;
2220 	int pd_idx = sh->pd_idx;
2221 	int qd_idx = sh->qd_idx;
2222 	struct page *xor_dest;
2223 	unsigned int off_dest;
2224 	struct page **xor_srcs = to_addr_page(percpu, 0);
2225 	unsigned int *off_srcs = to_addr_offs(sh, percpu);
2226 	struct dma_async_tx_descriptor *tx;
2227 	struct async_submit_ctl submit;
2228 	int count;
2229 	int i;
2230 
2231 	pr_debug("%s: stripe %llu\n", __func__,
2232 		(unsigned long long)sh->sector);
2233 
2234 	BUG_ON(sh->batch_head);
2235 	count = 0;
2236 	xor_dest = sh->dev[pd_idx].page;
2237 	off_dest = sh->dev[pd_idx].offset;
2238 	off_srcs[count] = off_dest;
2239 	xor_srcs[count++] = xor_dest;
2240 	for (i = disks; i--; ) {
2241 		if (i == pd_idx || i == qd_idx)
2242 			continue;
2243 		off_srcs[count] = sh->dev[i].offset;
2244 		xor_srcs[count++] = sh->dev[i].page;
2245 	}
2246 
2247 	init_async_submit(&submit, 0, NULL, NULL, NULL,
2248 			  to_addr_conv(sh, percpu, 0));
2249 	tx = async_xor_val_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
2250 			   RAID5_STRIPE_SIZE(sh->raid_conf),
2251 			   &sh->ops.zero_sum_result, &submit);
2252 
2253 	atomic_inc(&sh->count);
2254 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2255 	tx = async_trigger_callback(&submit);
2256 }
2257 
2258 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2259 {
2260 	struct page **srcs = to_addr_page(percpu, 0);
2261 	unsigned int *offs = to_addr_offs(sh, percpu);
2262 	struct async_submit_ctl submit;
2263 	int count;
2264 
2265 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2266 		(unsigned long long)sh->sector, checkp);
2267 
2268 	BUG_ON(sh->batch_head);
2269 	count = set_syndrome_sources(srcs, offs, sh, SYNDROME_SRC_ALL);
2270 	if (!checkp)
2271 		srcs[count] = NULL;
2272 
2273 	atomic_inc(&sh->count);
2274 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2275 			  sh, to_addr_conv(sh, percpu, 0));
2276 	async_syndrome_val(srcs, offs, count+2,
2277 			   RAID5_STRIPE_SIZE(sh->raid_conf),
2278 			   &sh->ops.zero_sum_result, percpu->spare_page, 0, &submit);
2279 }
2280 
2281 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2282 {
2283 	int overlap_clear = 0, i, disks = sh->disks;
2284 	struct dma_async_tx_descriptor *tx = NULL;
2285 	struct r5conf *conf = sh->raid_conf;
2286 	int level = conf->level;
2287 	struct raid5_percpu *percpu;
2288 
2289 	local_lock(&conf->percpu->lock);
2290 	percpu = this_cpu_ptr(conf->percpu);
2291 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2292 		ops_run_biofill(sh);
2293 		overlap_clear++;
2294 	}
2295 
2296 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2297 		if (level < 6)
2298 			tx = ops_run_compute5(sh, percpu);
2299 		else {
2300 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
2301 				tx = ops_run_compute6_1(sh, percpu);
2302 			else
2303 				tx = ops_run_compute6_2(sh, percpu);
2304 		}
2305 		/* terminate the chain if reconstruct is not set to be run */
2306 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2307 			async_tx_ack(tx);
2308 	}
2309 
2310 	if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2311 		if (level < 6)
2312 			tx = ops_run_prexor5(sh, percpu, tx);
2313 		else
2314 			tx = ops_run_prexor6(sh, percpu, tx);
2315 	}
2316 
2317 	if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2318 		tx = ops_run_partial_parity(sh, percpu, tx);
2319 
2320 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2321 		tx = ops_run_biodrain(sh, tx);
2322 		overlap_clear++;
2323 	}
2324 
2325 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2326 		if (level < 6)
2327 			ops_run_reconstruct5(sh, percpu, tx);
2328 		else
2329 			ops_run_reconstruct6(sh, percpu, tx);
2330 	}
2331 
2332 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2333 		if (sh->check_state == check_state_run)
2334 			ops_run_check_p(sh, percpu);
2335 		else if (sh->check_state == check_state_run_q)
2336 			ops_run_check_pq(sh, percpu, 0);
2337 		else if (sh->check_state == check_state_run_pq)
2338 			ops_run_check_pq(sh, percpu, 1);
2339 		else
2340 			BUG();
2341 	}
2342 
2343 	if (overlap_clear && !sh->batch_head) {
2344 		for (i = disks; i--; ) {
2345 			struct r5dev *dev = &sh->dev[i];
2346 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
2347 				wake_up(&sh->raid_conf->wait_for_overlap);
2348 		}
2349 	}
2350 	local_unlock(&conf->percpu->lock);
2351 }
2352 
2353 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2354 {
2355 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2356 	kfree(sh->pages);
2357 #endif
2358 	if (sh->ppl_page)
2359 		__free_page(sh->ppl_page);
2360 	kmem_cache_free(sc, sh);
2361 }
2362 
2363 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2364 	int disks, struct r5conf *conf)
2365 {
2366 	struct stripe_head *sh;
2367 
2368 	sh = kmem_cache_zalloc(sc, gfp);
2369 	if (sh) {
2370 		spin_lock_init(&sh->stripe_lock);
2371 		spin_lock_init(&sh->batch_lock);
2372 		INIT_LIST_HEAD(&sh->batch_list);
2373 		INIT_LIST_HEAD(&sh->lru);
2374 		INIT_LIST_HEAD(&sh->r5c);
2375 		INIT_LIST_HEAD(&sh->log_list);
2376 		atomic_set(&sh->count, 1);
2377 		sh->raid_conf = conf;
2378 		sh->log_start = MaxSector;
2379 
2380 		if (raid5_has_ppl(conf)) {
2381 			sh->ppl_page = alloc_page(gfp);
2382 			if (!sh->ppl_page) {
2383 				free_stripe(sc, sh);
2384 				return NULL;
2385 			}
2386 		}
2387 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2388 		if (init_stripe_shared_pages(sh, conf, disks)) {
2389 			free_stripe(sc, sh);
2390 			return NULL;
2391 		}
2392 #endif
2393 	}
2394 	return sh;
2395 }
2396 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2397 {
2398 	struct stripe_head *sh;
2399 
2400 	sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2401 	if (!sh)
2402 		return 0;
2403 
2404 	if (grow_buffers(sh, gfp)) {
2405 		shrink_buffers(sh);
2406 		free_stripe(conf->slab_cache, sh);
2407 		return 0;
2408 	}
2409 	sh->hash_lock_index =
2410 		conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2411 	/* we just created an active stripe so... */
2412 	atomic_inc(&conf->active_stripes);
2413 
2414 	raid5_release_stripe(sh);
2415 	conf->max_nr_stripes++;
2416 	return 1;
2417 }
2418 
2419 static int grow_stripes(struct r5conf *conf, int num)
2420 {
2421 	struct kmem_cache *sc;
2422 	size_t namelen = sizeof(conf->cache_name[0]);
2423 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
2424 
2425 	if (conf->mddev->gendisk)
2426 		snprintf(conf->cache_name[0], namelen,
2427 			"raid%d-%s", conf->level, mdname(conf->mddev));
2428 	else
2429 		snprintf(conf->cache_name[0], namelen,
2430 			"raid%d-%p", conf->level, conf->mddev);
2431 	snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
2432 
2433 	conf->active_name = 0;
2434 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
2435 			       struct_size_t(struct stripe_head, dev, devs),
2436 			       0, 0, NULL);
2437 	if (!sc)
2438 		return 1;
2439 	conf->slab_cache = sc;
2440 	conf->pool_size = devs;
2441 	while (num--)
2442 		if (!grow_one_stripe(conf, GFP_KERNEL))
2443 			return 1;
2444 
2445 	return 0;
2446 }
2447 
2448 /**
2449  * scribble_alloc - allocate percpu scribble buffer for required size
2450  *		    of the scribble region
2451  * @percpu: from for_each_present_cpu() of the caller
2452  * @num: total number of disks in the array
2453  * @cnt: scribble objs count for required size of the scribble region
2454  *
2455  * The scribble buffer size must be enough to contain:
2456  * 1/ a struct page pointer for each device in the array +2
2457  * 2/ room to convert each entry in (1) to its corresponding dma
2458  *    (dma_map_page()) or page (page_address()) address.
2459  *
2460  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2461  * calculate over all devices (not just the data blocks), using zeros in place
2462  * of the P and Q blocks.
2463  */
2464 static int scribble_alloc(struct raid5_percpu *percpu,
2465 			  int num, int cnt)
2466 {
2467 	size_t obj_size =
2468 		sizeof(struct page *) * (num + 2) +
2469 		sizeof(addr_conv_t) * (num + 2) +
2470 		sizeof(unsigned int) * (num + 2);
2471 	void *scribble;
2472 
2473 	/*
2474 	 * If here is in raid array suspend context, it is in memalloc noio
2475 	 * context as well, there is no potential recursive memory reclaim
2476 	 * I/Os with the GFP_KERNEL flag.
2477 	 */
2478 	scribble = kvmalloc_array(cnt, obj_size, GFP_KERNEL);
2479 	if (!scribble)
2480 		return -ENOMEM;
2481 
2482 	kvfree(percpu->scribble);
2483 
2484 	percpu->scribble = scribble;
2485 	percpu->scribble_obj_size = obj_size;
2486 	return 0;
2487 }
2488 
2489 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2490 {
2491 	unsigned long cpu;
2492 	int err = 0;
2493 
2494 	/* Never shrink. */
2495 	if (conf->scribble_disks >= new_disks &&
2496 	    conf->scribble_sectors >= new_sectors)
2497 		return 0;
2498 
2499 	raid5_quiesce(conf->mddev, true);
2500 	cpus_read_lock();
2501 
2502 	for_each_present_cpu(cpu) {
2503 		struct raid5_percpu *percpu;
2504 
2505 		percpu = per_cpu_ptr(conf->percpu, cpu);
2506 		err = scribble_alloc(percpu, new_disks,
2507 				     new_sectors / RAID5_STRIPE_SECTORS(conf));
2508 		if (err)
2509 			break;
2510 	}
2511 
2512 	cpus_read_unlock();
2513 	raid5_quiesce(conf->mddev, false);
2514 
2515 	if (!err) {
2516 		conf->scribble_disks = new_disks;
2517 		conf->scribble_sectors = new_sectors;
2518 	}
2519 	return err;
2520 }
2521 
2522 static int resize_stripes(struct r5conf *conf, int newsize)
2523 {
2524 	/* Make all the stripes able to hold 'newsize' devices.
2525 	 * New slots in each stripe get 'page' set to a new page.
2526 	 *
2527 	 * This happens in stages:
2528 	 * 1/ create a new kmem_cache and allocate the required number of
2529 	 *    stripe_heads.
2530 	 * 2/ gather all the old stripe_heads and transfer the pages across
2531 	 *    to the new stripe_heads.  This will have the side effect of
2532 	 *    freezing the array as once all stripe_heads have been collected,
2533 	 *    no IO will be possible.  Old stripe heads are freed once their
2534 	 *    pages have been transferred over, and the old kmem_cache is
2535 	 *    freed when all stripes are done.
2536 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2537 	 *    we simple return a failure status - no need to clean anything up.
2538 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
2539 	 *    If this fails, we don't bother trying the shrink the
2540 	 *    stripe_heads down again, we just leave them as they are.
2541 	 *    As each stripe_head is processed the new one is released into
2542 	 *    active service.
2543 	 *
2544 	 * Once step2 is started, we cannot afford to wait for a write,
2545 	 * so we use GFP_NOIO allocations.
2546 	 */
2547 	struct stripe_head *osh, *nsh;
2548 	LIST_HEAD(newstripes);
2549 	struct disk_info *ndisks;
2550 	int err = 0;
2551 	struct kmem_cache *sc;
2552 	int i;
2553 	int hash, cnt;
2554 
2555 	md_allow_write(conf->mddev);
2556 
2557 	/* Step 1 */
2558 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2559 			       struct_size_t(struct stripe_head, dev, newsize),
2560 			       0, 0, NULL);
2561 	if (!sc)
2562 		return -ENOMEM;
2563 
2564 	/* Need to ensure auto-resizing doesn't interfere */
2565 	mutex_lock(&conf->cache_size_mutex);
2566 
2567 	for (i = conf->max_nr_stripes; i; i--) {
2568 		nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2569 		if (!nsh)
2570 			break;
2571 
2572 		list_add(&nsh->lru, &newstripes);
2573 	}
2574 	if (i) {
2575 		/* didn't get enough, give up */
2576 		while (!list_empty(&newstripes)) {
2577 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
2578 			list_del(&nsh->lru);
2579 			free_stripe(sc, nsh);
2580 		}
2581 		kmem_cache_destroy(sc);
2582 		mutex_unlock(&conf->cache_size_mutex);
2583 		return -ENOMEM;
2584 	}
2585 	/* Step 2 - Must use GFP_NOIO now.
2586 	 * OK, we have enough stripes, start collecting inactive
2587 	 * stripes and copying them over
2588 	 */
2589 	hash = 0;
2590 	cnt = 0;
2591 	list_for_each_entry(nsh, &newstripes, lru) {
2592 		lock_device_hash_lock(conf, hash);
2593 		wait_event_cmd(conf->wait_for_stripe,
2594 				    !list_empty(conf->inactive_list + hash),
2595 				    unlock_device_hash_lock(conf, hash),
2596 				    lock_device_hash_lock(conf, hash));
2597 		osh = get_free_stripe(conf, hash);
2598 		unlock_device_hash_lock(conf, hash);
2599 
2600 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2601 	for (i = 0; i < osh->nr_pages; i++) {
2602 		nsh->pages[i] = osh->pages[i];
2603 		osh->pages[i] = NULL;
2604 	}
2605 #endif
2606 		for(i=0; i<conf->pool_size; i++) {
2607 			nsh->dev[i].page = osh->dev[i].page;
2608 			nsh->dev[i].orig_page = osh->dev[i].page;
2609 			nsh->dev[i].offset = osh->dev[i].offset;
2610 		}
2611 		nsh->hash_lock_index = hash;
2612 		free_stripe(conf->slab_cache, osh);
2613 		cnt++;
2614 		if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2615 		    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2616 			hash++;
2617 			cnt = 0;
2618 		}
2619 	}
2620 	kmem_cache_destroy(conf->slab_cache);
2621 
2622 	/* Step 3.
2623 	 * At this point, we are holding all the stripes so the array
2624 	 * is completely stalled, so now is a good time to resize
2625 	 * conf->disks and the scribble region
2626 	 */
2627 	ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO);
2628 	if (ndisks) {
2629 		for (i = 0; i < conf->pool_size; i++)
2630 			ndisks[i] = conf->disks[i];
2631 
2632 		for (i = conf->pool_size; i < newsize; i++) {
2633 			ndisks[i].extra_page = alloc_page(GFP_NOIO);
2634 			if (!ndisks[i].extra_page)
2635 				err = -ENOMEM;
2636 		}
2637 
2638 		if (err) {
2639 			for (i = conf->pool_size; i < newsize; i++)
2640 				if (ndisks[i].extra_page)
2641 					put_page(ndisks[i].extra_page);
2642 			kfree(ndisks);
2643 		} else {
2644 			kfree(conf->disks);
2645 			conf->disks = ndisks;
2646 		}
2647 	} else
2648 		err = -ENOMEM;
2649 
2650 	conf->slab_cache = sc;
2651 	conf->active_name = 1-conf->active_name;
2652 
2653 	/* Step 4, return new stripes to service */
2654 	while(!list_empty(&newstripes)) {
2655 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
2656 		list_del_init(&nsh->lru);
2657 
2658 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2659 		for (i = 0; i < nsh->nr_pages; i++) {
2660 			if (nsh->pages[i])
2661 				continue;
2662 			nsh->pages[i] = alloc_page(GFP_NOIO);
2663 			if (!nsh->pages[i])
2664 				err = -ENOMEM;
2665 		}
2666 
2667 		for (i = conf->raid_disks; i < newsize; i++) {
2668 			if (nsh->dev[i].page)
2669 				continue;
2670 			nsh->dev[i].page = raid5_get_dev_page(nsh, i);
2671 			nsh->dev[i].orig_page = nsh->dev[i].page;
2672 			nsh->dev[i].offset = raid5_get_page_offset(nsh, i);
2673 		}
2674 #else
2675 		for (i=conf->raid_disks; i < newsize; i++)
2676 			if (nsh->dev[i].page == NULL) {
2677 				struct page *p = alloc_page(GFP_NOIO);
2678 				nsh->dev[i].page = p;
2679 				nsh->dev[i].orig_page = p;
2680 				nsh->dev[i].offset = 0;
2681 				if (!p)
2682 					err = -ENOMEM;
2683 			}
2684 #endif
2685 		raid5_release_stripe(nsh);
2686 	}
2687 	/* critical section pass, GFP_NOIO no longer needed */
2688 
2689 	if (!err)
2690 		conf->pool_size = newsize;
2691 	mutex_unlock(&conf->cache_size_mutex);
2692 
2693 	return err;
2694 }
2695 
2696 static int drop_one_stripe(struct r5conf *conf)
2697 {
2698 	struct stripe_head *sh;
2699 	int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2700 
2701 	spin_lock_irq(conf->hash_locks + hash);
2702 	sh = get_free_stripe(conf, hash);
2703 	spin_unlock_irq(conf->hash_locks + hash);
2704 	if (!sh)
2705 		return 0;
2706 	BUG_ON(atomic_read(&sh->count));
2707 	shrink_buffers(sh);
2708 	free_stripe(conf->slab_cache, sh);
2709 	atomic_dec(&conf->active_stripes);
2710 	conf->max_nr_stripes--;
2711 	return 1;
2712 }
2713 
2714 static void shrink_stripes(struct r5conf *conf)
2715 {
2716 	while (conf->max_nr_stripes &&
2717 	       drop_one_stripe(conf))
2718 		;
2719 
2720 	kmem_cache_destroy(conf->slab_cache);
2721 	conf->slab_cache = NULL;
2722 }
2723 
2724 static void raid5_end_read_request(struct bio * bi)
2725 {
2726 	struct stripe_head *sh = bi->bi_private;
2727 	struct r5conf *conf = sh->raid_conf;
2728 	int disks = sh->disks, i;
2729 	struct md_rdev *rdev = NULL;
2730 	sector_t s;
2731 
2732 	for (i=0 ; i<disks; i++)
2733 		if (bi == &sh->dev[i].req)
2734 			break;
2735 
2736 	pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2737 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2738 		bi->bi_status);
2739 	if (i == disks) {
2740 		BUG();
2741 		return;
2742 	}
2743 	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2744 		/* If replacement finished while this request was outstanding,
2745 		 * 'replacement' might be NULL already.
2746 		 * In that case it moved down to 'rdev'.
2747 		 * rdev is not removed until all requests are finished.
2748 		 */
2749 		rdev = conf->disks[i].replacement;
2750 	if (!rdev)
2751 		rdev = conf->disks[i].rdev;
2752 
2753 	if (use_new_offset(conf, sh))
2754 		s = sh->sector + rdev->new_data_offset;
2755 	else
2756 		s = sh->sector + rdev->data_offset;
2757 	if (!bi->bi_status) {
2758 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
2759 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2760 			/* Note that this cannot happen on a
2761 			 * replacement device.  We just fail those on
2762 			 * any error
2763 			 */
2764 			pr_info_ratelimited(
2765 				"md/raid:%s: read error corrected (%lu sectors at %llu on %pg)\n",
2766 				mdname(conf->mddev), RAID5_STRIPE_SECTORS(conf),
2767 				(unsigned long long)s,
2768 				rdev->bdev);
2769 			atomic_add(RAID5_STRIPE_SECTORS(conf), &rdev->corrected_errors);
2770 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2771 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2772 		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2773 			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2774 
2775 		if (test_bit(R5_InJournal, &sh->dev[i].flags))
2776 			/*
2777 			 * end read for a page in journal, this
2778 			 * must be preparing for prexor in rmw
2779 			 */
2780 			set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2781 
2782 		if (atomic_read(&rdev->read_errors))
2783 			atomic_set(&rdev->read_errors, 0);
2784 	} else {
2785 		int retry = 0;
2786 		int set_bad = 0;
2787 
2788 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2789 		if (!(bi->bi_status == BLK_STS_PROTECTION))
2790 			atomic_inc(&rdev->read_errors);
2791 		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2792 			pr_warn_ratelimited(
2793 				"md/raid:%s: read error on replacement device (sector %llu on %pg).\n",
2794 				mdname(conf->mddev),
2795 				(unsigned long long)s,
2796 				rdev->bdev);
2797 		else if (conf->mddev->degraded >= conf->max_degraded) {
2798 			set_bad = 1;
2799 			pr_warn_ratelimited(
2800 				"md/raid:%s: read error not correctable (sector %llu on %pg).\n",
2801 				mdname(conf->mddev),
2802 				(unsigned long long)s,
2803 				rdev->bdev);
2804 		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2805 			/* Oh, no!!! */
2806 			set_bad = 1;
2807 			pr_warn_ratelimited(
2808 				"md/raid:%s: read error NOT corrected!! (sector %llu on %pg).\n",
2809 				mdname(conf->mddev),
2810 				(unsigned long long)s,
2811 				rdev->bdev);
2812 		} else if (atomic_read(&rdev->read_errors)
2813 			 > conf->max_nr_stripes) {
2814 			if (!test_bit(Faulty, &rdev->flags)) {
2815 				pr_warn("md/raid:%s: %d read_errors > %d stripes\n",
2816 				    mdname(conf->mddev),
2817 				    atomic_read(&rdev->read_errors),
2818 				    conf->max_nr_stripes);
2819 				pr_warn("md/raid:%s: Too many read errors, failing device %pg.\n",
2820 				    mdname(conf->mddev), rdev->bdev);
2821 			}
2822 		} else
2823 			retry = 1;
2824 		if (set_bad && test_bit(In_sync, &rdev->flags)
2825 		    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2826 			retry = 1;
2827 		if (retry)
2828 			if (sh->qd_idx >= 0 && sh->pd_idx == i)
2829 				set_bit(R5_ReadError, &sh->dev[i].flags);
2830 			else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2831 				set_bit(R5_ReadError, &sh->dev[i].flags);
2832 				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2833 			} else
2834 				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2835 		else {
2836 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2837 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2838 			if (!(set_bad
2839 			      && test_bit(In_sync, &rdev->flags)
2840 			      && rdev_set_badblocks(
2841 				      rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 0)))
2842 				md_error(conf->mddev, rdev);
2843 		}
2844 	}
2845 	rdev_dec_pending(rdev, conf->mddev);
2846 	bio_uninit(bi);
2847 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
2848 	set_bit(STRIPE_HANDLE, &sh->state);
2849 	raid5_release_stripe(sh);
2850 }
2851 
2852 static void raid5_end_write_request(struct bio *bi)
2853 {
2854 	struct stripe_head *sh = bi->bi_private;
2855 	struct r5conf *conf = sh->raid_conf;
2856 	int disks = sh->disks, i;
2857 	struct md_rdev *rdev;
2858 	sector_t first_bad;
2859 	int bad_sectors;
2860 	int replacement = 0;
2861 
2862 	for (i = 0 ; i < disks; i++) {
2863 		if (bi == &sh->dev[i].req) {
2864 			rdev = conf->disks[i].rdev;
2865 			break;
2866 		}
2867 		if (bi == &sh->dev[i].rreq) {
2868 			rdev = conf->disks[i].replacement;
2869 			if (rdev)
2870 				replacement = 1;
2871 			else
2872 				/* rdev was removed and 'replacement'
2873 				 * replaced it.  rdev is not removed
2874 				 * until all requests are finished.
2875 				 */
2876 				rdev = conf->disks[i].rdev;
2877 			break;
2878 		}
2879 	}
2880 	pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2881 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2882 		bi->bi_status);
2883 	if (i == disks) {
2884 		BUG();
2885 		return;
2886 	}
2887 
2888 	if (replacement) {
2889 		if (bi->bi_status)
2890 			md_error(conf->mddev, rdev);
2891 		else if (is_badblock(rdev, sh->sector,
2892 				     RAID5_STRIPE_SECTORS(conf),
2893 				     &first_bad, &bad_sectors))
2894 			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2895 	} else {
2896 		if (bi->bi_status) {
2897 			set_bit(STRIPE_DEGRADED, &sh->state);
2898 			set_bit(WriteErrorSeen, &rdev->flags);
2899 			set_bit(R5_WriteError, &sh->dev[i].flags);
2900 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2901 				set_bit(MD_RECOVERY_NEEDED,
2902 					&rdev->mddev->recovery);
2903 		} else if (is_badblock(rdev, sh->sector,
2904 				       RAID5_STRIPE_SECTORS(conf),
2905 				       &first_bad, &bad_sectors)) {
2906 			set_bit(R5_MadeGood, &sh->dev[i].flags);
2907 			if (test_bit(R5_ReadError, &sh->dev[i].flags))
2908 				/* That was a successful write so make
2909 				 * sure it looks like we already did
2910 				 * a re-write.
2911 				 */
2912 				set_bit(R5_ReWrite, &sh->dev[i].flags);
2913 		}
2914 	}
2915 	rdev_dec_pending(rdev, conf->mddev);
2916 
2917 	if (sh->batch_head && bi->bi_status && !replacement)
2918 		set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2919 
2920 	bio_uninit(bi);
2921 	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2922 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2923 	set_bit(STRIPE_HANDLE, &sh->state);
2924 
2925 	if (sh->batch_head && sh != sh->batch_head)
2926 		raid5_release_stripe(sh->batch_head);
2927 	raid5_release_stripe(sh);
2928 }
2929 
2930 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2931 {
2932 	struct r5conf *conf = mddev->private;
2933 	unsigned long flags;
2934 	pr_debug("raid456: error called\n");
2935 
2936 	pr_crit("md/raid:%s: Disk failure on %pg, disabling device.\n",
2937 		mdname(mddev), rdev->bdev);
2938 
2939 	spin_lock_irqsave(&conf->device_lock, flags);
2940 	set_bit(Faulty, &rdev->flags);
2941 	clear_bit(In_sync, &rdev->flags);
2942 	mddev->degraded = raid5_calc_degraded(conf);
2943 
2944 	if (has_failed(conf)) {
2945 		set_bit(MD_BROKEN, &conf->mddev->flags);
2946 		conf->recovery_disabled = mddev->recovery_disabled;
2947 
2948 		pr_crit("md/raid:%s: Cannot continue operation (%d/%d failed).\n",
2949 			mdname(mddev), mddev->degraded, conf->raid_disks);
2950 	} else {
2951 		pr_crit("md/raid:%s: Operation continuing on %d devices.\n",
2952 			mdname(mddev), conf->raid_disks - mddev->degraded);
2953 	}
2954 
2955 	spin_unlock_irqrestore(&conf->device_lock, flags);
2956 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2957 
2958 	set_bit(Blocked, &rdev->flags);
2959 	set_mask_bits(&mddev->sb_flags, 0,
2960 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2961 	r5c_update_on_rdev_error(mddev, rdev);
2962 }
2963 
2964 /*
2965  * Input: a 'big' sector number,
2966  * Output: index of the data and parity disk, and the sector # in them.
2967  */
2968 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2969 			      int previous, int *dd_idx,
2970 			      struct stripe_head *sh)
2971 {
2972 	sector_t stripe, stripe2;
2973 	sector_t chunk_number;
2974 	unsigned int chunk_offset;
2975 	int pd_idx, qd_idx;
2976 	int ddf_layout = 0;
2977 	sector_t new_sector;
2978 	int algorithm = previous ? conf->prev_algo
2979 				 : conf->algorithm;
2980 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2981 					 : conf->chunk_sectors;
2982 	int raid_disks = previous ? conf->previous_raid_disks
2983 				  : conf->raid_disks;
2984 	int data_disks = raid_disks - conf->max_degraded;
2985 
2986 	/* First compute the information on this sector */
2987 
2988 	/*
2989 	 * Compute the chunk number and the sector offset inside the chunk
2990 	 */
2991 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
2992 	chunk_number = r_sector;
2993 
2994 	/*
2995 	 * Compute the stripe number
2996 	 */
2997 	stripe = chunk_number;
2998 	*dd_idx = sector_div(stripe, data_disks);
2999 	stripe2 = stripe;
3000 	/*
3001 	 * Select the parity disk based on the user selected algorithm.
3002 	 */
3003 	pd_idx = qd_idx = -1;
3004 	switch(conf->level) {
3005 	case 4:
3006 		pd_idx = data_disks;
3007 		break;
3008 	case 5:
3009 		switch (algorithm) {
3010 		case ALGORITHM_LEFT_ASYMMETRIC:
3011 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
3012 			if (*dd_idx >= pd_idx)
3013 				(*dd_idx)++;
3014 			break;
3015 		case ALGORITHM_RIGHT_ASYMMETRIC:
3016 			pd_idx = sector_div(stripe2, raid_disks);
3017 			if (*dd_idx >= pd_idx)
3018 				(*dd_idx)++;
3019 			break;
3020 		case ALGORITHM_LEFT_SYMMETRIC:
3021 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
3022 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3023 			break;
3024 		case ALGORITHM_RIGHT_SYMMETRIC:
3025 			pd_idx = sector_div(stripe2, raid_disks);
3026 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3027 			break;
3028 		case ALGORITHM_PARITY_0:
3029 			pd_idx = 0;
3030 			(*dd_idx)++;
3031 			break;
3032 		case ALGORITHM_PARITY_N:
3033 			pd_idx = data_disks;
3034 			break;
3035 		default:
3036 			BUG();
3037 		}
3038 		break;
3039 	case 6:
3040 
3041 		switch (algorithm) {
3042 		case ALGORITHM_LEFT_ASYMMETRIC:
3043 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3044 			qd_idx = pd_idx + 1;
3045 			if (pd_idx == raid_disks-1) {
3046 				(*dd_idx)++;	/* Q D D D P */
3047 				qd_idx = 0;
3048 			} else if (*dd_idx >= pd_idx)
3049 				(*dd_idx) += 2; /* D D P Q D */
3050 			break;
3051 		case ALGORITHM_RIGHT_ASYMMETRIC:
3052 			pd_idx = sector_div(stripe2, raid_disks);
3053 			qd_idx = pd_idx + 1;
3054 			if (pd_idx == raid_disks-1) {
3055 				(*dd_idx)++;	/* Q D D D P */
3056 				qd_idx = 0;
3057 			} else if (*dd_idx >= pd_idx)
3058 				(*dd_idx) += 2; /* D D P Q D */
3059 			break;
3060 		case ALGORITHM_LEFT_SYMMETRIC:
3061 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3062 			qd_idx = (pd_idx + 1) % raid_disks;
3063 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
3064 			break;
3065 		case ALGORITHM_RIGHT_SYMMETRIC:
3066 			pd_idx = sector_div(stripe2, raid_disks);
3067 			qd_idx = (pd_idx + 1) % raid_disks;
3068 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
3069 			break;
3070 
3071 		case ALGORITHM_PARITY_0:
3072 			pd_idx = 0;
3073 			qd_idx = 1;
3074 			(*dd_idx) += 2;
3075 			break;
3076 		case ALGORITHM_PARITY_N:
3077 			pd_idx = data_disks;
3078 			qd_idx = data_disks + 1;
3079 			break;
3080 
3081 		case ALGORITHM_ROTATING_ZERO_RESTART:
3082 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
3083 			 * of blocks for computing Q is different.
3084 			 */
3085 			pd_idx = sector_div(stripe2, raid_disks);
3086 			qd_idx = pd_idx + 1;
3087 			if (pd_idx == raid_disks-1) {
3088 				(*dd_idx)++;	/* Q D D D P */
3089 				qd_idx = 0;
3090 			} else if (*dd_idx >= pd_idx)
3091 				(*dd_idx) += 2; /* D D P Q D */
3092 			ddf_layout = 1;
3093 			break;
3094 
3095 		case ALGORITHM_ROTATING_N_RESTART:
3096 			/* Same a left_asymmetric, by first stripe is
3097 			 * D D D P Q  rather than
3098 			 * Q D D D P
3099 			 */
3100 			stripe2 += 1;
3101 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3102 			qd_idx = pd_idx + 1;
3103 			if (pd_idx == raid_disks-1) {
3104 				(*dd_idx)++;	/* Q D D D P */
3105 				qd_idx = 0;
3106 			} else if (*dd_idx >= pd_idx)
3107 				(*dd_idx) += 2; /* D D P Q D */
3108 			ddf_layout = 1;
3109 			break;
3110 
3111 		case ALGORITHM_ROTATING_N_CONTINUE:
3112 			/* Same as left_symmetric but Q is before P */
3113 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3114 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
3115 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3116 			ddf_layout = 1;
3117 			break;
3118 
3119 		case ALGORITHM_LEFT_ASYMMETRIC_6:
3120 			/* RAID5 left_asymmetric, with Q on last device */
3121 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
3122 			if (*dd_idx >= pd_idx)
3123 				(*dd_idx)++;
3124 			qd_idx = raid_disks - 1;
3125 			break;
3126 
3127 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
3128 			pd_idx = sector_div(stripe2, raid_disks-1);
3129 			if (*dd_idx >= pd_idx)
3130 				(*dd_idx)++;
3131 			qd_idx = raid_disks - 1;
3132 			break;
3133 
3134 		case ALGORITHM_LEFT_SYMMETRIC_6:
3135 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
3136 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3137 			qd_idx = raid_disks - 1;
3138 			break;
3139 
3140 		case ALGORITHM_RIGHT_SYMMETRIC_6:
3141 			pd_idx = sector_div(stripe2, raid_disks-1);
3142 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3143 			qd_idx = raid_disks - 1;
3144 			break;
3145 
3146 		case ALGORITHM_PARITY_0_6:
3147 			pd_idx = 0;
3148 			(*dd_idx)++;
3149 			qd_idx = raid_disks - 1;
3150 			break;
3151 
3152 		default:
3153 			BUG();
3154 		}
3155 		break;
3156 	}
3157 
3158 	if (sh) {
3159 		sh->pd_idx = pd_idx;
3160 		sh->qd_idx = qd_idx;
3161 		sh->ddf_layout = ddf_layout;
3162 	}
3163 	/*
3164 	 * Finally, compute the new sector number
3165 	 */
3166 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
3167 	return new_sector;
3168 }
3169 
3170 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
3171 {
3172 	struct r5conf *conf = sh->raid_conf;
3173 	int raid_disks = sh->disks;
3174 	int data_disks = raid_disks - conf->max_degraded;
3175 	sector_t new_sector = sh->sector, check;
3176 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
3177 					 : conf->chunk_sectors;
3178 	int algorithm = previous ? conf->prev_algo
3179 				 : conf->algorithm;
3180 	sector_t stripe;
3181 	int chunk_offset;
3182 	sector_t chunk_number;
3183 	int dummy1, dd_idx = i;
3184 	sector_t r_sector;
3185 	struct stripe_head sh2;
3186 
3187 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
3188 	stripe = new_sector;
3189 
3190 	if (i == sh->pd_idx)
3191 		return 0;
3192 	switch(conf->level) {
3193 	case 4: break;
3194 	case 5:
3195 		switch (algorithm) {
3196 		case ALGORITHM_LEFT_ASYMMETRIC:
3197 		case ALGORITHM_RIGHT_ASYMMETRIC:
3198 			if (i > sh->pd_idx)
3199 				i--;
3200 			break;
3201 		case ALGORITHM_LEFT_SYMMETRIC:
3202 		case ALGORITHM_RIGHT_SYMMETRIC:
3203 			if (i < sh->pd_idx)
3204 				i += raid_disks;
3205 			i -= (sh->pd_idx + 1);
3206 			break;
3207 		case ALGORITHM_PARITY_0:
3208 			i -= 1;
3209 			break;
3210 		case ALGORITHM_PARITY_N:
3211 			break;
3212 		default:
3213 			BUG();
3214 		}
3215 		break;
3216 	case 6:
3217 		if (i == sh->qd_idx)
3218 			return 0; /* It is the Q disk */
3219 		switch (algorithm) {
3220 		case ALGORITHM_LEFT_ASYMMETRIC:
3221 		case ALGORITHM_RIGHT_ASYMMETRIC:
3222 		case ALGORITHM_ROTATING_ZERO_RESTART:
3223 		case ALGORITHM_ROTATING_N_RESTART:
3224 			if (sh->pd_idx == raid_disks-1)
3225 				i--;	/* Q D D D P */
3226 			else if (i > sh->pd_idx)
3227 				i -= 2; /* D D P Q D */
3228 			break;
3229 		case ALGORITHM_LEFT_SYMMETRIC:
3230 		case ALGORITHM_RIGHT_SYMMETRIC:
3231 			if (sh->pd_idx == raid_disks-1)
3232 				i--; /* Q D D D P */
3233 			else {
3234 				/* D D P Q D */
3235 				if (i < sh->pd_idx)
3236 					i += raid_disks;
3237 				i -= (sh->pd_idx + 2);
3238 			}
3239 			break;
3240 		case ALGORITHM_PARITY_0:
3241 			i -= 2;
3242 			break;
3243 		case ALGORITHM_PARITY_N:
3244 			break;
3245 		case ALGORITHM_ROTATING_N_CONTINUE:
3246 			/* Like left_symmetric, but P is before Q */
3247 			if (sh->pd_idx == 0)
3248 				i--;	/* P D D D Q */
3249 			else {
3250 				/* D D Q P D */
3251 				if (i < sh->pd_idx)
3252 					i += raid_disks;
3253 				i -= (sh->pd_idx + 1);
3254 			}
3255 			break;
3256 		case ALGORITHM_LEFT_ASYMMETRIC_6:
3257 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
3258 			if (i > sh->pd_idx)
3259 				i--;
3260 			break;
3261 		case ALGORITHM_LEFT_SYMMETRIC_6:
3262 		case ALGORITHM_RIGHT_SYMMETRIC_6:
3263 			if (i < sh->pd_idx)
3264 				i += data_disks + 1;
3265 			i -= (sh->pd_idx + 1);
3266 			break;
3267 		case ALGORITHM_PARITY_0_6:
3268 			i -= 1;
3269 			break;
3270 		default:
3271 			BUG();
3272 		}
3273 		break;
3274 	}
3275 
3276 	chunk_number = stripe * data_disks + i;
3277 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3278 
3279 	check = raid5_compute_sector(conf, r_sector,
3280 				     previous, &dummy1, &sh2);
3281 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3282 		|| sh2.qd_idx != sh->qd_idx) {
3283 		pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3284 			mdname(conf->mddev));
3285 		return 0;
3286 	}
3287 	return r_sector;
3288 }
3289 
3290 /*
3291  * There are cases where we want handle_stripe_dirtying() and
3292  * schedule_reconstruction() to delay towrite to some dev of a stripe.
3293  *
3294  * This function checks whether we want to delay the towrite. Specifically,
3295  * we delay the towrite when:
3296  *
3297  *   1. degraded stripe has a non-overwrite to the missing dev, AND this
3298  *      stripe has data in journal (for other devices).
3299  *
3300  *      In this case, when reading data for the non-overwrite dev, it is
3301  *      necessary to handle complex rmw of write back cache (prexor with
3302  *      orig_page, and xor with page). To keep read path simple, we would
3303  *      like to flush data in journal to RAID disks first, so complex rmw
3304  *      is handled in the write patch (handle_stripe_dirtying).
3305  *
3306  *   2. when journal space is critical (R5C_LOG_CRITICAL=1)
3307  *
3308  *      It is important to be able to flush all stripes in raid5-cache.
3309  *      Therefore, we need reserve some space on the journal device for
3310  *      these flushes. If flush operation includes pending writes to the
3311  *      stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3312  *      for the flush out. If we exclude these pending writes from flush
3313  *      operation, we only need (conf->max_degraded + 1) pages per stripe.
3314  *      Therefore, excluding pending writes in these cases enables more
3315  *      efficient use of the journal device.
3316  *
3317  *      Note: To make sure the stripe makes progress, we only delay
3318  *      towrite for stripes with data already in journal (injournal > 0).
3319  *      When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3320  *      no_space_stripes list.
3321  *
3322  *   3. during journal failure
3323  *      In journal failure, we try to flush all cached data to raid disks
3324  *      based on data in stripe cache. The array is read-only to upper
3325  *      layers, so we would skip all pending writes.
3326  *
3327  */
3328 static inline bool delay_towrite(struct r5conf *conf,
3329 				 struct r5dev *dev,
3330 				 struct stripe_head_state *s)
3331 {
3332 	/* case 1 above */
3333 	if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3334 	    !test_bit(R5_Insync, &dev->flags) && s->injournal)
3335 		return true;
3336 	/* case 2 above */
3337 	if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3338 	    s->injournal > 0)
3339 		return true;
3340 	/* case 3 above */
3341 	if (s->log_failed && s->injournal)
3342 		return true;
3343 	return false;
3344 }
3345 
3346 static void
3347 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3348 			 int rcw, int expand)
3349 {
3350 	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3351 	struct r5conf *conf = sh->raid_conf;
3352 	int level = conf->level;
3353 
3354 	if (rcw) {
3355 		/*
3356 		 * In some cases, handle_stripe_dirtying initially decided to
3357 		 * run rmw and allocates extra page for prexor. However, rcw is
3358 		 * cheaper later on. We need to free the extra page now,
3359 		 * because we won't be able to do that in ops_complete_prexor().
3360 		 */
3361 		r5c_release_extra_page(sh);
3362 
3363 		for (i = disks; i--; ) {
3364 			struct r5dev *dev = &sh->dev[i];
3365 
3366 			if (dev->towrite && !delay_towrite(conf, dev, s)) {
3367 				set_bit(R5_LOCKED, &dev->flags);
3368 				set_bit(R5_Wantdrain, &dev->flags);
3369 				if (!expand)
3370 					clear_bit(R5_UPTODATE, &dev->flags);
3371 				s->locked++;
3372 			} else if (test_bit(R5_InJournal, &dev->flags)) {
3373 				set_bit(R5_LOCKED, &dev->flags);
3374 				s->locked++;
3375 			}
3376 		}
3377 		/* if we are not expanding this is a proper write request, and
3378 		 * there will be bios with new data to be drained into the
3379 		 * stripe cache
3380 		 */
3381 		if (!expand) {
3382 			if (!s->locked)
3383 				/* False alarm, nothing to do */
3384 				return;
3385 			sh->reconstruct_state = reconstruct_state_drain_run;
3386 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3387 		} else
3388 			sh->reconstruct_state = reconstruct_state_run;
3389 
3390 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3391 
3392 		if (s->locked + conf->max_degraded == disks)
3393 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3394 				atomic_inc(&conf->pending_full_writes);
3395 	} else {
3396 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3397 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3398 		BUG_ON(level == 6 &&
3399 			(!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3400 			   test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3401 
3402 		for (i = disks; i--; ) {
3403 			struct r5dev *dev = &sh->dev[i];
3404 			if (i == pd_idx || i == qd_idx)
3405 				continue;
3406 
3407 			if (dev->towrite &&
3408 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3409 			     test_bit(R5_Wantcompute, &dev->flags))) {
3410 				set_bit(R5_Wantdrain, &dev->flags);
3411 				set_bit(R5_LOCKED, &dev->flags);
3412 				clear_bit(R5_UPTODATE, &dev->flags);
3413 				s->locked++;
3414 			} else if (test_bit(R5_InJournal, &dev->flags)) {
3415 				set_bit(R5_LOCKED, &dev->flags);
3416 				s->locked++;
3417 			}
3418 		}
3419 		if (!s->locked)
3420 			/* False alarm - nothing to do */
3421 			return;
3422 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3423 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3424 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3425 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3426 	}
3427 
3428 	/* keep the parity disk(s) locked while asynchronous operations
3429 	 * are in flight
3430 	 */
3431 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3432 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3433 	s->locked++;
3434 
3435 	if (level == 6) {
3436 		int qd_idx = sh->qd_idx;
3437 		struct r5dev *dev = &sh->dev[qd_idx];
3438 
3439 		set_bit(R5_LOCKED, &dev->flags);
3440 		clear_bit(R5_UPTODATE, &dev->flags);
3441 		s->locked++;
3442 	}
3443 
3444 	if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3445 	    test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3446 	    !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3447 	    test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3448 		set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3449 
3450 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3451 		__func__, (unsigned long long)sh->sector,
3452 		s->locked, s->ops_request);
3453 }
3454 
3455 static bool stripe_bio_overlaps(struct stripe_head *sh, struct bio *bi,
3456 				int dd_idx, int forwrite)
3457 {
3458 	struct r5conf *conf = sh->raid_conf;
3459 	struct bio **bip;
3460 
3461 	pr_debug("checking bi b#%llu to stripe s#%llu\n",
3462 		 bi->bi_iter.bi_sector, sh->sector);
3463 
3464 	/* Don't allow new IO added to stripes in batch list */
3465 	if (sh->batch_head)
3466 		return true;
3467 
3468 	if (forwrite)
3469 		bip = &sh->dev[dd_idx].towrite;
3470 	else
3471 		bip = &sh->dev[dd_idx].toread;
3472 
3473 	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3474 		if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3475 			return true;
3476 		bip = &(*bip)->bi_next;
3477 	}
3478 
3479 	if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3480 		return true;
3481 
3482 	if (forwrite && raid5_has_ppl(conf)) {
3483 		/*
3484 		 * With PPL only writes to consecutive data chunks within a
3485 		 * stripe are allowed because for a single stripe_head we can
3486 		 * only have one PPL entry at a time, which describes one data
3487 		 * range. Not really an overlap, but wait_for_overlap can be
3488 		 * used to handle this.
3489 		 */
3490 		sector_t sector;
3491 		sector_t first = 0;
3492 		sector_t last = 0;
3493 		int count = 0;
3494 		int i;
3495 
3496 		for (i = 0; i < sh->disks; i++) {
3497 			if (i != sh->pd_idx &&
3498 			    (i == dd_idx || sh->dev[i].towrite)) {
3499 				sector = sh->dev[i].sector;
3500 				if (count == 0 || sector < first)
3501 					first = sector;
3502 				if (sector > last)
3503 					last = sector;
3504 				count++;
3505 			}
3506 		}
3507 
3508 		if (first + conf->chunk_sectors * (count - 1) != last)
3509 			return true;
3510 	}
3511 
3512 	return false;
3513 }
3514 
3515 static void __add_stripe_bio(struct stripe_head *sh, struct bio *bi,
3516 			     int dd_idx, int forwrite, int previous)
3517 {
3518 	struct r5conf *conf = sh->raid_conf;
3519 	struct bio **bip;
3520 	int firstwrite = 0;
3521 
3522 	if (forwrite) {
3523 		bip = &sh->dev[dd_idx].towrite;
3524 		if (!*bip)
3525 			firstwrite = 1;
3526 	} else {
3527 		bip = &sh->dev[dd_idx].toread;
3528 	}
3529 
3530 	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector)
3531 		bip = &(*bip)->bi_next;
3532 
3533 	if (!forwrite || previous)
3534 		clear_bit(STRIPE_BATCH_READY, &sh->state);
3535 
3536 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3537 	if (*bip)
3538 		bi->bi_next = *bip;
3539 	*bip = bi;
3540 	bio_inc_remaining(bi);
3541 	md_write_inc(conf->mddev, bi);
3542 
3543 	if (forwrite) {
3544 		/* check if page is covered */
3545 		sector_t sector = sh->dev[dd_idx].sector;
3546 		for (bi=sh->dev[dd_idx].towrite;
3547 		     sector < sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf) &&
3548 			     bi && bi->bi_iter.bi_sector <= sector;
3549 		     bi = r5_next_bio(conf, bi, sh->dev[dd_idx].sector)) {
3550 			if (bio_end_sector(bi) >= sector)
3551 				sector = bio_end_sector(bi);
3552 		}
3553 		if (sector >= sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf))
3554 			if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3555 				sh->overwrite_disks++;
3556 	}
3557 
3558 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d, logical %llu\n",
3559 		 (*bip)->bi_iter.bi_sector, sh->sector, dd_idx,
3560 		 sh->dev[dd_idx].sector);
3561 
3562 	if (conf->mddev->bitmap && firstwrite) {
3563 		/* Cannot hold spinlock over bitmap_startwrite,
3564 		 * but must ensure this isn't added to a batch until
3565 		 * we have added to the bitmap and set bm_seq.
3566 		 * So set STRIPE_BITMAP_PENDING to prevent
3567 		 * batching.
3568 		 * If multiple __add_stripe_bio() calls race here they
3569 		 * much all set STRIPE_BITMAP_PENDING.  So only the first one
3570 		 * to complete "bitmap_startwrite" gets to set
3571 		 * STRIPE_BIT_DELAY.  This is important as once a stripe
3572 		 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3573 		 * any more.
3574 		 */
3575 		set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3576 		spin_unlock_irq(&sh->stripe_lock);
3577 		md_bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3578 				     RAID5_STRIPE_SECTORS(conf), 0);
3579 		spin_lock_irq(&sh->stripe_lock);
3580 		clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3581 		if (!sh->batch_head) {
3582 			sh->bm_seq = conf->seq_flush+1;
3583 			set_bit(STRIPE_BIT_DELAY, &sh->state);
3584 		}
3585 	}
3586 }
3587 
3588 /*
3589  * Each stripe/dev can have one or more bios attached.
3590  * toread/towrite point to the first in a chain.
3591  * The bi_next chain must be in order.
3592  */
3593 static bool add_stripe_bio(struct stripe_head *sh, struct bio *bi,
3594 			   int dd_idx, int forwrite, int previous)
3595 {
3596 	spin_lock_irq(&sh->stripe_lock);
3597 
3598 	if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) {
3599 		set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3600 		spin_unlock_irq(&sh->stripe_lock);
3601 		return false;
3602 	}
3603 
3604 	__add_stripe_bio(sh, bi, dd_idx, forwrite, previous);
3605 	spin_unlock_irq(&sh->stripe_lock);
3606 	return true;
3607 }
3608 
3609 static void end_reshape(struct r5conf *conf);
3610 
3611 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3612 			    struct stripe_head *sh)
3613 {
3614 	int sectors_per_chunk =
3615 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3616 	int dd_idx;
3617 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
3618 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3619 
3620 	raid5_compute_sector(conf,
3621 			     stripe * (disks - conf->max_degraded)
3622 			     *sectors_per_chunk + chunk_offset,
3623 			     previous,
3624 			     &dd_idx, sh);
3625 }
3626 
3627 static void
3628 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3629 		     struct stripe_head_state *s, int disks)
3630 {
3631 	int i;
3632 	BUG_ON(sh->batch_head);
3633 	for (i = disks; i--; ) {
3634 		struct bio *bi;
3635 		int bitmap_end = 0;
3636 
3637 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3638 			struct md_rdev *rdev = conf->disks[i].rdev;
3639 
3640 			if (rdev && test_bit(In_sync, &rdev->flags) &&
3641 			    !test_bit(Faulty, &rdev->flags))
3642 				atomic_inc(&rdev->nr_pending);
3643 			else
3644 				rdev = NULL;
3645 			if (rdev) {
3646 				if (!rdev_set_badblocks(
3647 					    rdev,
3648 					    sh->sector,
3649 					    RAID5_STRIPE_SECTORS(conf), 0))
3650 					md_error(conf->mddev, rdev);
3651 				rdev_dec_pending(rdev, conf->mddev);
3652 			}
3653 		}
3654 		spin_lock_irq(&sh->stripe_lock);
3655 		/* fail all writes first */
3656 		bi = sh->dev[i].towrite;
3657 		sh->dev[i].towrite = NULL;
3658 		sh->overwrite_disks = 0;
3659 		spin_unlock_irq(&sh->stripe_lock);
3660 		if (bi)
3661 			bitmap_end = 1;
3662 
3663 		log_stripe_write_finished(sh);
3664 
3665 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3666 			wake_up(&conf->wait_for_overlap);
3667 
3668 		while (bi && bi->bi_iter.bi_sector <
3669 			sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3670 			struct bio *nextbi = r5_next_bio(conf, bi, sh->dev[i].sector);
3671 
3672 			md_write_end(conf->mddev);
3673 			bio_io_error(bi);
3674 			bi = nextbi;
3675 		}
3676 		if (bitmap_end)
3677 			md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3678 					   RAID5_STRIPE_SECTORS(conf), 0, 0);
3679 		bitmap_end = 0;
3680 		/* and fail all 'written' */
3681 		bi = sh->dev[i].written;
3682 		sh->dev[i].written = NULL;
3683 		if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3684 			WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3685 			sh->dev[i].page = sh->dev[i].orig_page;
3686 		}
3687 
3688 		if (bi) bitmap_end = 1;
3689 		while (bi && bi->bi_iter.bi_sector <
3690 		       sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3691 			struct bio *bi2 = r5_next_bio(conf, bi, sh->dev[i].sector);
3692 
3693 			md_write_end(conf->mddev);
3694 			bio_io_error(bi);
3695 			bi = bi2;
3696 		}
3697 
3698 		/* fail any reads if this device is non-operational and
3699 		 * the data has not reached the cache yet.
3700 		 */
3701 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3702 		    s->failed > conf->max_degraded &&
3703 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3704 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
3705 			spin_lock_irq(&sh->stripe_lock);
3706 			bi = sh->dev[i].toread;
3707 			sh->dev[i].toread = NULL;
3708 			spin_unlock_irq(&sh->stripe_lock);
3709 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3710 				wake_up(&conf->wait_for_overlap);
3711 			if (bi)
3712 				s->to_read--;
3713 			while (bi && bi->bi_iter.bi_sector <
3714 			       sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3715 				struct bio *nextbi =
3716 					r5_next_bio(conf, bi, sh->dev[i].sector);
3717 
3718 				bio_io_error(bi);
3719 				bi = nextbi;
3720 			}
3721 		}
3722 		if (bitmap_end)
3723 			md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3724 					   RAID5_STRIPE_SECTORS(conf), 0, 0);
3725 		/* If we were in the middle of a write the parity block might
3726 		 * still be locked - so just clear all R5_LOCKED flags
3727 		 */
3728 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
3729 	}
3730 	s->to_write = 0;
3731 	s->written = 0;
3732 
3733 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3734 		if (atomic_dec_and_test(&conf->pending_full_writes))
3735 			md_wakeup_thread(conf->mddev->thread);
3736 }
3737 
3738 static void
3739 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3740 		   struct stripe_head_state *s)
3741 {
3742 	int abort = 0;
3743 	int i;
3744 
3745 	BUG_ON(sh->batch_head);
3746 	clear_bit(STRIPE_SYNCING, &sh->state);
3747 	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3748 		wake_up(&conf->wait_for_overlap);
3749 	s->syncing = 0;
3750 	s->replacing = 0;
3751 	/* There is nothing more to do for sync/check/repair.
3752 	 * Don't even need to abort as that is handled elsewhere
3753 	 * if needed, and not always wanted e.g. if there is a known
3754 	 * bad block here.
3755 	 * For recover/replace we need to record a bad block on all
3756 	 * non-sync devices, or abort the recovery
3757 	 */
3758 	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3759 		/* During recovery devices cannot be removed, so
3760 		 * locking and refcounting of rdevs is not needed
3761 		 */
3762 		for (i = 0; i < conf->raid_disks; i++) {
3763 			struct md_rdev *rdev = conf->disks[i].rdev;
3764 
3765 			if (rdev
3766 			    && !test_bit(Faulty, &rdev->flags)
3767 			    && !test_bit(In_sync, &rdev->flags)
3768 			    && !rdev_set_badblocks(rdev, sh->sector,
3769 						   RAID5_STRIPE_SECTORS(conf), 0))
3770 				abort = 1;
3771 			rdev = conf->disks[i].replacement;
3772 
3773 			if (rdev
3774 			    && !test_bit(Faulty, &rdev->flags)
3775 			    && !test_bit(In_sync, &rdev->flags)
3776 			    && !rdev_set_badblocks(rdev, sh->sector,
3777 						   RAID5_STRIPE_SECTORS(conf), 0))
3778 				abort = 1;
3779 		}
3780 		if (abort)
3781 			conf->recovery_disabled =
3782 				conf->mddev->recovery_disabled;
3783 	}
3784 	md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), !abort);
3785 }
3786 
3787 static int want_replace(struct stripe_head *sh, int disk_idx)
3788 {
3789 	struct md_rdev *rdev;
3790 	int rv = 0;
3791 
3792 	rdev = sh->raid_conf->disks[disk_idx].replacement;
3793 	if (rdev
3794 	    && !test_bit(Faulty, &rdev->flags)
3795 	    && !test_bit(In_sync, &rdev->flags)
3796 	    && (rdev->recovery_offset <= sh->sector
3797 		|| rdev->mddev->recovery_cp <= sh->sector))
3798 		rv = 1;
3799 	return rv;
3800 }
3801 
3802 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3803 			   int disk_idx, int disks)
3804 {
3805 	struct r5dev *dev = &sh->dev[disk_idx];
3806 	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3807 				  &sh->dev[s->failed_num[1]] };
3808 	int i;
3809 	bool force_rcw = (sh->raid_conf->rmw_level == PARITY_DISABLE_RMW);
3810 
3811 
3812 	if (test_bit(R5_LOCKED, &dev->flags) ||
3813 	    test_bit(R5_UPTODATE, &dev->flags))
3814 		/* No point reading this as we already have it or have
3815 		 * decided to get it.
3816 		 */
3817 		return 0;
3818 
3819 	if (dev->toread ||
3820 	    (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3821 		/* We need this block to directly satisfy a request */
3822 		return 1;
3823 
3824 	if (s->syncing || s->expanding ||
3825 	    (s->replacing && want_replace(sh, disk_idx)))
3826 		/* When syncing, or expanding we read everything.
3827 		 * When replacing, we need the replaced block.
3828 		 */
3829 		return 1;
3830 
3831 	if ((s->failed >= 1 && fdev[0]->toread) ||
3832 	    (s->failed >= 2 && fdev[1]->toread))
3833 		/* If we want to read from a failed device, then
3834 		 * we need to actually read every other device.
3835 		 */
3836 		return 1;
3837 
3838 	/* Sometimes neither read-modify-write nor reconstruct-write
3839 	 * cycles can work.  In those cases we read every block we
3840 	 * can.  Then the parity-update is certain to have enough to
3841 	 * work with.
3842 	 * This can only be a problem when we need to write something,
3843 	 * and some device has failed.  If either of those tests
3844 	 * fail we need look no further.
3845 	 */
3846 	if (!s->failed || !s->to_write)
3847 		return 0;
3848 
3849 	if (test_bit(R5_Insync, &dev->flags) &&
3850 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3851 		/* Pre-reads at not permitted until after short delay
3852 		 * to gather multiple requests.  However if this
3853 		 * device is no Insync, the block could only be computed
3854 		 * and there is no need to delay that.
3855 		 */
3856 		return 0;
3857 
3858 	for (i = 0; i < s->failed && i < 2; i++) {
3859 		if (fdev[i]->towrite &&
3860 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3861 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3862 			/* If we have a partial write to a failed
3863 			 * device, then we will need to reconstruct
3864 			 * the content of that device, so all other
3865 			 * devices must be read.
3866 			 */
3867 			return 1;
3868 
3869 		if (s->failed >= 2 &&
3870 		    (fdev[i]->towrite ||
3871 		     s->failed_num[i] == sh->pd_idx ||
3872 		     s->failed_num[i] == sh->qd_idx) &&
3873 		    !test_bit(R5_UPTODATE, &fdev[i]->flags))
3874 			/* In max degraded raid6, If the failed disk is P, Q,
3875 			 * or we want to read the failed disk, we need to do
3876 			 * reconstruct-write.
3877 			 */
3878 			force_rcw = true;
3879 	}
3880 
3881 	/* If we are forced to do a reconstruct-write, because parity
3882 	 * cannot be trusted and we are currently recovering it, there
3883 	 * is extra need to be careful.
3884 	 * If one of the devices that we would need to read, because
3885 	 * it is not being overwritten (and maybe not written at all)
3886 	 * is missing/faulty, then we need to read everything we can.
3887 	 */
3888 	if (!force_rcw &&
3889 	    sh->sector < sh->raid_conf->mddev->recovery_cp)
3890 		/* reconstruct-write isn't being forced */
3891 		return 0;
3892 	for (i = 0; i < s->failed && i < 2; i++) {
3893 		if (s->failed_num[i] != sh->pd_idx &&
3894 		    s->failed_num[i] != sh->qd_idx &&
3895 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3896 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3897 			return 1;
3898 	}
3899 
3900 	return 0;
3901 }
3902 
3903 /* fetch_block - checks the given member device to see if its data needs
3904  * to be read or computed to satisfy a request.
3905  *
3906  * Returns 1 when no more member devices need to be checked, otherwise returns
3907  * 0 to tell the loop in handle_stripe_fill to continue
3908  */
3909 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3910 		       int disk_idx, int disks)
3911 {
3912 	struct r5dev *dev = &sh->dev[disk_idx];
3913 
3914 	/* is the data in this block needed, and can we get it? */
3915 	if (need_this_block(sh, s, disk_idx, disks)) {
3916 		/* we would like to get this block, possibly by computing it,
3917 		 * otherwise read it if the backing disk is insync
3918 		 */
3919 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3920 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
3921 		BUG_ON(sh->batch_head);
3922 
3923 		/*
3924 		 * In the raid6 case if the only non-uptodate disk is P
3925 		 * then we already trusted P to compute the other failed
3926 		 * drives. It is safe to compute rather than re-read P.
3927 		 * In other cases we only compute blocks from failed
3928 		 * devices, otherwise check/repair might fail to detect
3929 		 * a real inconsistency.
3930 		 */
3931 
3932 		if ((s->uptodate == disks - 1) &&
3933 		    ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3934 		    (s->failed && (disk_idx == s->failed_num[0] ||
3935 				   disk_idx == s->failed_num[1])))) {
3936 			/* have disk failed, and we're requested to fetch it;
3937 			 * do compute it
3938 			 */
3939 			pr_debug("Computing stripe %llu block %d\n",
3940 			       (unsigned long long)sh->sector, disk_idx);
3941 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3942 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3943 			set_bit(R5_Wantcompute, &dev->flags);
3944 			sh->ops.target = disk_idx;
3945 			sh->ops.target2 = -1; /* no 2nd target */
3946 			s->req_compute = 1;
3947 			/* Careful: from this point on 'uptodate' is in the eye
3948 			 * of raid_run_ops which services 'compute' operations
3949 			 * before writes. R5_Wantcompute flags a block that will
3950 			 * be R5_UPTODATE by the time it is needed for a
3951 			 * subsequent operation.
3952 			 */
3953 			s->uptodate++;
3954 			return 1;
3955 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
3956 			/* Computing 2-failure is *very* expensive; only
3957 			 * do it if failed >= 2
3958 			 */
3959 			int other;
3960 			for (other = disks; other--; ) {
3961 				if (other == disk_idx)
3962 					continue;
3963 				if (!test_bit(R5_UPTODATE,
3964 				      &sh->dev[other].flags))
3965 					break;
3966 			}
3967 			BUG_ON(other < 0);
3968 			pr_debug("Computing stripe %llu blocks %d,%d\n",
3969 			       (unsigned long long)sh->sector,
3970 			       disk_idx, other);
3971 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3972 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3973 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3974 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
3975 			sh->ops.target = disk_idx;
3976 			sh->ops.target2 = other;
3977 			s->uptodate += 2;
3978 			s->req_compute = 1;
3979 			return 1;
3980 		} else if (test_bit(R5_Insync, &dev->flags)) {
3981 			set_bit(R5_LOCKED, &dev->flags);
3982 			set_bit(R5_Wantread, &dev->flags);
3983 			s->locked++;
3984 			pr_debug("Reading block %d (sync=%d)\n",
3985 				disk_idx, s->syncing);
3986 		}
3987 	}
3988 
3989 	return 0;
3990 }
3991 
3992 /*
3993  * handle_stripe_fill - read or compute data to satisfy pending requests.
3994  */
3995 static void handle_stripe_fill(struct stripe_head *sh,
3996 			       struct stripe_head_state *s,
3997 			       int disks)
3998 {
3999 	int i;
4000 
4001 	/* look for blocks to read/compute, skip this if a compute
4002 	 * is already in flight, or if the stripe contents are in the
4003 	 * midst of changing due to a write
4004 	 */
4005 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
4006 	    !sh->reconstruct_state) {
4007 
4008 		/*
4009 		 * For degraded stripe with data in journal, do not handle
4010 		 * read requests yet, instead, flush the stripe to raid
4011 		 * disks first, this avoids handling complex rmw of write
4012 		 * back cache (prexor with orig_page, and then xor with
4013 		 * page) in the read path
4014 		 */
4015 		if (s->to_read && s->injournal && s->failed) {
4016 			if (test_bit(STRIPE_R5C_CACHING, &sh->state))
4017 				r5c_make_stripe_write_out(sh);
4018 			goto out;
4019 		}
4020 
4021 		for (i = disks; i--; )
4022 			if (fetch_block(sh, s, i, disks))
4023 				break;
4024 	}
4025 out:
4026 	set_bit(STRIPE_HANDLE, &sh->state);
4027 }
4028 
4029 static void break_stripe_batch_list(struct stripe_head *head_sh,
4030 				    unsigned long handle_flags);
4031 /* handle_stripe_clean_event
4032  * any written block on an uptodate or failed drive can be returned.
4033  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
4034  * never LOCKED, so we don't need to test 'failed' directly.
4035  */
4036 static void handle_stripe_clean_event(struct r5conf *conf,
4037 	struct stripe_head *sh, int disks)
4038 {
4039 	int i;
4040 	struct r5dev *dev;
4041 	int discard_pending = 0;
4042 	struct stripe_head *head_sh = sh;
4043 	bool do_endio = false;
4044 
4045 	for (i = disks; i--; )
4046 		if (sh->dev[i].written) {
4047 			dev = &sh->dev[i];
4048 			if (!test_bit(R5_LOCKED, &dev->flags) &&
4049 			    (test_bit(R5_UPTODATE, &dev->flags) ||
4050 			     test_bit(R5_Discard, &dev->flags) ||
4051 			     test_bit(R5_SkipCopy, &dev->flags))) {
4052 				/* We can return any write requests */
4053 				struct bio *wbi, *wbi2;
4054 				pr_debug("Return write for disc %d\n", i);
4055 				if (test_and_clear_bit(R5_Discard, &dev->flags))
4056 					clear_bit(R5_UPTODATE, &dev->flags);
4057 				if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
4058 					WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
4059 				}
4060 				do_endio = true;
4061 
4062 returnbi:
4063 				dev->page = dev->orig_page;
4064 				wbi = dev->written;
4065 				dev->written = NULL;
4066 				while (wbi && wbi->bi_iter.bi_sector <
4067 					dev->sector + RAID5_STRIPE_SECTORS(conf)) {
4068 					wbi2 = r5_next_bio(conf, wbi, dev->sector);
4069 					md_write_end(conf->mddev);
4070 					bio_endio(wbi);
4071 					wbi = wbi2;
4072 				}
4073 				md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
4074 						   RAID5_STRIPE_SECTORS(conf),
4075 						   !test_bit(STRIPE_DEGRADED, &sh->state),
4076 						   0);
4077 				if (head_sh->batch_head) {
4078 					sh = list_first_entry(&sh->batch_list,
4079 							      struct stripe_head,
4080 							      batch_list);
4081 					if (sh != head_sh) {
4082 						dev = &sh->dev[i];
4083 						goto returnbi;
4084 					}
4085 				}
4086 				sh = head_sh;
4087 				dev = &sh->dev[i];
4088 			} else if (test_bit(R5_Discard, &dev->flags))
4089 				discard_pending = 1;
4090 		}
4091 
4092 	log_stripe_write_finished(sh);
4093 
4094 	if (!discard_pending &&
4095 	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
4096 		int hash;
4097 		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
4098 		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4099 		if (sh->qd_idx >= 0) {
4100 			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
4101 			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
4102 		}
4103 		/* now that discard is done we can proceed with any sync */
4104 		clear_bit(STRIPE_DISCARD, &sh->state);
4105 		/*
4106 		 * SCSI discard will change some bio fields and the stripe has
4107 		 * no updated data, so remove it from hash list and the stripe
4108 		 * will be reinitialized
4109 		 */
4110 unhash:
4111 		hash = sh->hash_lock_index;
4112 		spin_lock_irq(conf->hash_locks + hash);
4113 		remove_hash(sh);
4114 		spin_unlock_irq(conf->hash_locks + hash);
4115 		if (head_sh->batch_head) {
4116 			sh = list_first_entry(&sh->batch_list,
4117 					      struct stripe_head, batch_list);
4118 			if (sh != head_sh)
4119 					goto unhash;
4120 		}
4121 		sh = head_sh;
4122 
4123 		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
4124 			set_bit(STRIPE_HANDLE, &sh->state);
4125 
4126 	}
4127 
4128 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
4129 		if (atomic_dec_and_test(&conf->pending_full_writes))
4130 			md_wakeup_thread(conf->mddev->thread);
4131 
4132 	if (head_sh->batch_head && do_endio)
4133 		break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
4134 }
4135 
4136 /*
4137  * For RMW in write back cache, we need extra page in prexor to store the
4138  * old data. This page is stored in dev->orig_page.
4139  *
4140  * This function checks whether we have data for prexor. The exact logic
4141  * is:
4142  *       R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
4143  */
4144 static inline bool uptodate_for_rmw(struct r5dev *dev)
4145 {
4146 	return (test_bit(R5_UPTODATE, &dev->flags)) &&
4147 		(!test_bit(R5_InJournal, &dev->flags) ||
4148 		 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
4149 }
4150 
4151 static int handle_stripe_dirtying(struct r5conf *conf,
4152 				  struct stripe_head *sh,
4153 				  struct stripe_head_state *s,
4154 				  int disks)
4155 {
4156 	int rmw = 0, rcw = 0, i;
4157 	sector_t recovery_cp = conf->mddev->recovery_cp;
4158 
4159 	/* Check whether resync is now happening or should start.
4160 	 * If yes, then the array is dirty (after unclean shutdown or
4161 	 * initial creation), so parity in some stripes might be inconsistent.
4162 	 * In this case, we need to always do reconstruct-write, to ensure
4163 	 * that in case of drive failure or read-error correction, we
4164 	 * generate correct data from the parity.
4165 	 */
4166 	if (conf->rmw_level == PARITY_DISABLE_RMW ||
4167 	    (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
4168 	     s->failed == 0)) {
4169 		/* Calculate the real rcw later - for now make it
4170 		 * look like rcw is cheaper
4171 		 */
4172 		rcw = 1; rmw = 2;
4173 		pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
4174 			 conf->rmw_level, (unsigned long long)recovery_cp,
4175 			 (unsigned long long)sh->sector);
4176 	} else for (i = disks; i--; ) {
4177 		/* would I have to read this buffer for read_modify_write */
4178 		struct r5dev *dev = &sh->dev[i];
4179 		if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
4180 		     i == sh->pd_idx || i == sh->qd_idx ||
4181 		     test_bit(R5_InJournal, &dev->flags)) &&
4182 		    !test_bit(R5_LOCKED, &dev->flags) &&
4183 		    !(uptodate_for_rmw(dev) ||
4184 		      test_bit(R5_Wantcompute, &dev->flags))) {
4185 			if (test_bit(R5_Insync, &dev->flags))
4186 				rmw++;
4187 			else
4188 				rmw += 2*disks;  /* cannot read it */
4189 		}
4190 		/* Would I have to read this buffer for reconstruct_write */
4191 		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4192 		    i != sh->pd_idx && i != sh->qd_idx &&
4193 		    !test_bit(R5_LOCKED, &dev->flags) &&
4194 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
4195 		      test_bit(R5_Wantcompute, &dev->flags))) {
4196 			if (test_bit(R5_Insync, &dev->flags))
4197 				rcw++;
4198 			else
4199 				rcw += 2*disks;
4200 		}
4201 	}
4202 
4203 	pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
4204 		 (unsigned long long)sh->sector, sh->state, rmw, rcw);
4205 	set_bit(STRIPE_HANDLE, &sh->state);
4206 	if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
4207 		/* prefer read-modify-write, but need to get some data */
4208 		if (conf->mddev->queue)
4209 			blk_add_trace_msg(conf->mddev->queue,
4210 					  "raid5 rmw %llu %d",
4211 					  (unsigned long long)sh->sector, rmw);
4212 		for (i = disks; i--; ) {
4213 			struct r5dev *dev = &sh->dev[i];
4214 			if (test_bit(R5_InJournal, &dev->flags) &&
4215 			    dev->page == dev->orig_page &&
4216 			    !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
4217 				/* alloc page for prexor */
4218 				struct page *p = alloc_page(GFP_NOIO);
4219 
4220 				if (p) {
4221 					dev->orig_page = p;
4222 					continue;
4223 				}
4224 
4225 				/*
4226 				 * alloc_page() failed, try use
4227 				 * disk_info->extra_page
4228 				 */
4229 				if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
4230 						      &conf->cache_state)) {
4231 					r5c_use_extra_page(sh);
4232 					break;
4233 				}
4234 
4235 				/* extra_page in use, add to delayed_list */
4236 				set_bit(STRIPE_DELAYED, &sh->state);
4237 				s->waiting_extra_page = 1;
4238 				return -EAGAIN;
4239 			}
4240 		}
4241 
4242 		for (i = disks; i--; ) {
4243 			struct r5dev *dev = &sh->dev[i];
4244 			if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
4245 			     i == sh->pd_idx || i == sh->qd_idx ||
4246 			     test_bit(R5_InJournal, &dev->flags)) &&
4247 			    !test_bit(R5_LOCKED, &dev->flags) &&
4248 			    !(uptodate_for_rmw(dev) ||
4249 			      test_bit(R5_Wantcompute, &dev->flags)) &&
4250 			    test_bit(R5_Insync, &dev->flags)) {
4251 				if (test_bit(STRIPE_PREREAD_ACTIVE,
4252 					     &sh->state)) {
4253 					pr_debug("Read_old block %d for r-m-w\n",
4254 						 i);
4255 					set_bit(R5_LOCKED, &dev->flags);
4256 					set_bit(R5_Wantread, &dev->flags);
4257 					s->locked++;
4258 				} else
4259 					set_bit(STRIPE_DELAYED, &sh->state);
4260 			}
4261 		}
4262 	}
4263 	if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
4264 		/* want reconstruct write, but need to get some data */
4265 		int qread =0;
4266 		rcw = 0;
4267 		for (i = disks; i--; ) {
4268 			struct r5dev *dev = &sh->dev[i];
4269 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4270 			    i != sh->pd_idx && i != sh->qd_idx &&
4271 			    !test_bit(R5_LOCKED, &dev->flags) &&
4272 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
4273 			      test_bit(R5_Wantcompute, &dev->flags))) {
4274 				rcw++;
4275 				if (test_bit(R5_Insync, &dev->flags) &&
4276 				    test_bit(STRIPE_PREREAD_ACTIVE,
4277 					     &sh->state)) {
4278 					pr_debug("Read_old block "
4279 						"%d for Reconstruct\n", i);
4280 					set_bit(R5_LOCKED, &dev->flags);
4281 					set_bit(R5_Wantread, &dev->flags);
4282 					s->locked++;
4283 					qread++;
4284 				} else
4285 					set_bit(STRIPE_DELAYED, &sh->state);
4286 			}
4287 		}
4288 		if (rcw && conf->mddev->queue)
4289 			blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
4290 					  (unsigned long long)sh->sector,
4291 					  rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
4292 	}
4293 
4294 	if (rcw > disks && rmw > disks &&
4295 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4296 		set_bit(STRIPE_DELAYED, &sh->state);
4297 
4298 	/* now if nothing is locked, and if we have enough data,
4299 	 * we can start a write request
4300 	 */
4301 	/* since handle_stripe can be called at any time we need to handle the
4302 	 * case where a compute block operation has been submitted and then a
4303 	 * subsequent call wants to start a write request.  raid_run_ops only
4304 	 * handles the case where compute block and reconstruct are requested
4305 	 * simultaneously.  If this is not the case then new writes need to be
4306 	 * held off until the compute completes.
4307 	 */
4308 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4309 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4310 	     !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4311 		schedule_reconstruction(sh, s, rcw == 0, 0);
4312 	return 0;
4313 }
4314 
4315 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4316 				struct stripe_head_state *s, int disks)
4317 {
4318 	struct r5dev *dev = NULL;
4319 
4320 	BUG_ON(sh->batch_head);
4321 	set_bit(STRIPE_HANDLE, &sh->state);
4322 
4323 	switch (sh->check_state) {
4324 	case check_state_idle:
4325 		/* start a new check operation if there are no failures */
4326 		if (s->failed == 0) {
4327 			BUG_ON(s->uptodate != disks);
4328 			sh->check_state = check_state_run;
4329 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
4330 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4331 			s->uptodate--;
4332 			break;
4333 		}
4334 		dev = &sh->dev[s->failed_num[0]];
4335 		fallthrough;
4336 	case check_state_compute_result:
4337 		sh->check_state = check_state_idle;
4338 		if (!dev)
4339 			dev = &sh->dev[sh->pd_idx];
4340 
4341 		/* check that a write has not made the stripe insync */
4342 		if (test_bit(STRIPE_INSYNC, &sh->state))
4343 			break;
4344 
4345 		/* either failed parity check, or recovery is happening */
4346 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4347 		BUG_ON(s->uptodate != disks);
4348 
4349 		set_bit(R5_LOCKED, &dev->flags);
4350 		s->locked++;
4351 		set_bit(R5_Wantwrite, &dev->flags);
4352 
4353 		clear_bit(STRIPE_DEGRADED, &sh->state);
4354 		set_bit(STRIPE_INSYNC, &sh->state);
4355 		break;
4356 	case check_state_run:
4357 		break; /* we will be called again upon completion */
4358 	case check_state_check_result:
4359 		sh->check_state = check_state_idle;
4360 
4361 		/* if a failure occurred during the check operation, leave
4362 		 * STRIPE_INSYNC not set and let the stripe be handled again
4363 		 */
4364 		if (s->failed)
4365 			break;
4366 
4367 		/* handle a successful check operation, if parity is correct
4368 		 * we are done.  Otherwise update the mismatch count and repair
4369 		 * parity if !MD_RECOVERY_CHECK
4370 		 */
4371 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4372 			/* parity is correct (on disc,
4373 			 * not in buffer any more)
4374 			 */
4375 			set_bit(STRIPE_INSYNC, &sh->state);
4376 		else {
4377 			atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4378 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4379 				/* don't try to repair!! */
4380 				set_bit(STRIPE_INSYNC, &sh->state);
4381 				pr_warn_ratelimited("%s: mismatch sector in range "
4382 						    "%llu-%llu\n", mdname(conf->mddev),
4383 						    (unsigned long long) sh->sector,
4384 						    (unsigned long long) sh->sector +
4385 						    RAID5_STRIPE_SECTORS(conf));
4386 			} else {
4387 				sh->check_state = check_state_compute_run;
4388 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4389 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4390 				set_bit(R5_Wantcompute,
4391 					&sh->dev[sh->pd_idx].flags);
4392 				sh->ops.target = sh->pd_idx;
4393 				sh->ops.target2 = -1;
4394 				s->uptodate++;
4395 			}
4396 		}
4397 		break;
4398 	case check_state_compute_run:
4399 		break;
4400 	default:
4401 		pr_err("%s: unknown check_state: %d sector: %llu\n",
4402 		       __func__, sh->check_state,
4403 		       (unsigned long long) sh->sector);
4404 		BUG();
4405 	}
4406 }
4407 
4408 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4409 				  struct stripe_head_state *s,
4410 				  int disks)
4411 {
4412 	int pd_idx = sh->pd_idx;
4413 	int qd_idx = sh->qd_idx;
4414 	struct r5dev *dev;
4415 
4416 	BUG_ON(sh->batch_head);
4417 	set_bit(STRIPE_HANDLE, &sh->state);
4418 
4419 	BUG_ON(s->failed > 2);
4420 
4421 	/* Want to check and possibly repair P and Q.
4422 	 * However there could be one 'failed' device, in which
4423 	 * case we can only check one of them, possibly using the
4424 	 * other to generate missing data
4425 	 */
4426 
4427 	switch (sh->check_state) {
4428 	case check_state_idle:
4429 		/* start a new check operation if there are < 2 failures */
4430 		if (s->failed == s->q_failed) {
4431 			/* The only possible failed device holds Q, so it
4432 			 * makes sense to check P (If anything else were failed,
4433 			 * we would have used P to recreate it).
4434 			 */
4435 			sh->check_state = check_state_run;
4436 		}
4437 		if (!s->q_failed && s->failed < 2) {
4438 			/* Q is not failed, and we didn't use it to generate
4439 			 * anything, so it makes sense to check it
4440 			 */
4441 			if (sh->check_state == check_state_run)
4442 				sh->check_state = check_state_run_pq;
4443 			else
4444 				sh->check_state = check_state_run_q;
4445 		}
4446 
4447 		/* discard potentially stale zero_sum_result */
4448 		sh->ops.zero_sum_result = 0;
4449 
4450 		if (sh->check_state == check_state_run) {
4451 			/* async_xor_zero_sum destroys the contents of P */
4452 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4453 			s->uptodate--;
4454 		}
4455 		if (sh->check_state >= check_state_run &&
4456 		    sh->check_state <= check_state_run_pq) {
4457 			/* async_syndrome_zero_sum preserves P and Q, so
4458 			 * no need to mark them !uptodate here
4459 			 */
4460 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
4461 			break;
4462 		}
4463 
4464 		/* we have 2-disk failure */
4465 		BUG_ON(s->failed != 2);
4466 		fallthrough;
4467 	case check_state_compute_result:
4468 		sh->check_state = check_state_idle;
4469 
4470 		/* check that a write has not made the stripe insync */
4471 		if (test_bit(STRIPE_INSYNC, &sh->state))
4472 			break;
4473 
4474 		/* now write out any block on a failed drive,
4475 		 * or P or Q if they were recomputed
4476 		 */
4477 		dev = NULL;
4478 		if (s->failed == 2) {
4479 			dev = &sh->dev[s->failed_num[1]];
4480 			s->locked++;
4481 			set_bit(R5_LOCKED, &dev->flags);
4482 			set_bit(R5_Wantwrite, &dev->flags);
4483 		}
4484 		if (s->failed >= 1) {
4485 			dev = &sh->dev[s->failed_num[0]];
4486 			s->locked++;
4487 			set_bit(R5_LOCKED, &dev->flags);
4488 			set_bit(R5_Wantwrite, &dev->flags);
4489 		}
4490 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4491 			dev = &sh->dev[pd_idx];
4492 			s->locked++;
4493 			set_bit(R5_LOCKED, &dev->flags);
4494 			set_bit(R5_Wantwrite, &dev->flags);
4495 		}
4496 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4497 			dev = &sh->dev[qd_idx];
4498 			s->locked++;
4499 			set_bit(R5_LOCKED, &dev->flags);
4500 			set_bit(R5_Wantwrite, &dev->flags);
4501 		}
4502 		if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags),
4503 			      "%s: disk%td not up to date\n",
4504 			      mdname(conf->mddev),
4505 			      dev - (struct r5dev *) &sh->dev)) {
4506 			clear_bit(R5_LOCKED, &dev->flags);
4507 			clear_bit(R5_Wantwrite, &dev->flags);
4508 			s->locked--;
4509 		}
4510 		clear_bit(STRIPE_DEGRADED, &sh->state);
4511 
4512 		set_bit(STRIPE_INSYNC, &sh->state);
4513 		break;
4514 	case check_state_run:
4515 	case check_state_run_q:
4516 	case check_state_run_pq:
4517 		break; /* we will be called again upon completion */
4518 	case check_state_check_result:
4519 		sh->check_state = check_state_idle;
4520 
4521 		/* handle a successful check operation, if parity is correct
4522 		 * we are done.  Otherwise update the mismatch count and repair
4523 		 * parity if !MD_RECOVERY_CHECK
4524 		 */
4525 		if (sh->ops.zero_sum_result == 0) {
4526 			/* both parities are correct */
4527 			if (!s->failed)
4528 				set_bit(STRIPE_INSYNC, &sh->state);
4529 			else {
4530 				/* in contrast to the raid5 case we can validate
4531 				 * parity, but still have a failure to write
4532 				 * back
4533 				 */
4534 				sh->check_state = check_state_compute_result;
4535 				/* Returning at this point means that we may go
4536 				 * off and bring p and/or q uptodate again so
4537 				 * we make sure to check zero_sum_result again
4538 				 * to verify if p or q need writeback
4539 				 */
4540 			}
4541 		} else {
4542 			atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4543 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4544 				/* don't try to repair!! */
4545 				set_bit(STRIPE_INSYNC, &sh->state);
4546 				pr_warn_ratelimited("%s: mismatch sector in range "
4547 						    "%llu-%llu\n", mdname(conf->mddev),
4548 						    (unsigned long long) sh->sector,
4549 						    (unsigned long long) sh->sector +
4550 						    RAID5_STRIPE_SECTORS(conf));
4551 			} else {
4552 				int *target = &sh->ops.target;
4553 
4554 				sh->ops.target = -1;
4555 				sh->ops.target2 = -1;
4556 				sh->check_state = check_state_compute_run;
4557 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4558 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4559 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4560 					set_bit(R5_Wantcompute,
4561 						&sh->dev[pd_idx].flags);
4562 					*target = pd_idx;
4563 					target = &sh->ops.target2;
4564 					s->uptodate++;
4565 				}
4566 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4567 					set_bit(R5_Wantcompute,
4568 						&sh->dev[qd_idx].flags);
4569 					*target = qd_idx;
4570 					s->uptodate++;
4571 				}
4572 			}
4573 		}
4574 		break;
4575 	case check_state_compute_run:
4576 		break;
4577 	default:
4578 		pr_warn("%s: unknown check_state: %d sector: %llu\n",
4579 			__func__, sh->check_state,
4580 			(unsigned long long) sh->sector);
4581 		BUG();
4582 	}
4583 }
4584 
4585 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4586 {
4587 	int i;
4588 
4589 	/* We have read all the blocks in this stripe and now we need to
4590 	 * copy some of them into a target stripe for expand.
4591 	 */
4592 	struct dma_async_tx_descriptor *tx = NULL;
4593 	BUG_ON(sh->batch_head);
4594 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4595 	for (i = 0; i < sh->disks; i++)
4596 		if (i != sh->pd_idx && i != sh->qd_idx) {
4597 			int dd_idx, j;
4598 			struct stripe_head *sh2;
4599 			struct async_submit_ctl submit;
4600 
4601 			sector_t bn = raid5_compute_blocknr(sh, i, 1);
4602 			sector_t s = raid5_compute_sector(conf, bn, 0,
4603 							  &dd_idx, NULL);
4604 			sh2 = raid5_get_active_stripe(conf, NULL, s,
4605 				R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE);
4606 			if (sh2 == NULL)
4607 				/* so far only the early blocks of this stripe
4608 				 * have been requested.  When later blocks
4609 				 * get requested, we will try again
4610 				 */
4611 				continue;
4612 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4613 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4614 				/* must have already done this block */
4615 				raid5_release_stripe(sh2);
4616 				continue;
4617 			}
4618 
4619 			/* place all the copies on one channel */
4620 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4621 			tx = async_memcpy(sh2->dev[dd_idx].page,
4622 					  sh->dev[i].page, sh2->dev[dd_idx].offset,
4623 					  sh->dev[i].offset, RAID5_STRIPE_SIZE(conf),
4624 					  &submit);
4625 
4626 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4627 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4628 			for (j = 0; j < conf->raid_disks; j++)
4629 				if (j != sh2->pd_idx &&
4630 				    j != sh2->qd_idx &&
4631 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
4632 					break;
4633 			if (j == conf->raid_disks) {
4634 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
4635 				set_bit(STRIPE_HANDLE, &sh2->state);
4636 			}
4637 			raid5_release_stripe(sh2);
4638 
4639 		}
4640 	/* done submitting copies, wait for them to complete */
4641 	async_tx_quiesce(&tx);
4642 }
4643 
4644 /*
4645  * handle_stripe - do things to a stripe.
4646  *
4647  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4648  * state of various bits to see what needs to be done.
4649  * Possible results:
4650  *    return some read requests which now have data
4651  *    return some write requests which are safely on storage
4652  *    schedule a read on some buffers
4653  *    schedule a write of some buffers
4654  *    return confirmation of parity correctness
4655  *
4656  */
4657 
4658 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4659 {
4660 	struct r5conf *conf = sh->raid_conf;
4661 	int disks = sh->disks;
4662 	struct r5dev *dev;
4663 	int i;
4664 	int do_recovery = 0;
4665 
4666 	memset(s, 0, sizeof(*s));
4667 
4668 	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4669 	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4670 	s->failed_num[0] = -1;
4671 	s->failed_num[1] = -1;
4672 	s->log_failed = r5l_log_disk_error(conf);
4673 
4674 	/* Now to look around and see what can be done */
4675 	for (i=disks; i--; ) {
4676 		struct md_rdev *rdev;
4677 		sector_t first_bad;
4678 		int bad_sectors;
4679 		int is_bad = 0;
4680 
4681 		dev = &sh->dev[i];
4682 
4683 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4684 			 i, dev->flags,
4685 			 dev->toread, dev->towrite, dev->written);
4686 		/* maybe we can reply to a read
4687 		 *
4688 		 * new wantfill requests are only permitted while
4689 		 * ops_complete_biofill is guaranteed to be inactive
4690 		 */
4691 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4692 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4693 			set_bit(R5_Wantfill, &dev->flags);
4694 
4695 		/* now count some things */
4696 		if (test_bit(R5_LOCKED, &dev->flags))
4697 			s->locked++;
4698 		if (test_bit(R5_UPTODATE, &dev->flags))
4699 			s->uptodate++;
4700 		if (test_bit(R5_Wantcompute, &dev->flags)) {
4701 			s->compute++;
4702 			BUG_ON(s->compute > 2);
4703 		}
4704 
4705 		if (test_bit(R5_Wantfill, &dev->flags))
4706 			s->to_fill++;
4707 		else if (dev->toread)
4708 			s->to_read++;
4709 		if (dev->towrite) {
4710 			s->to_write++;
4711 			if (!test_bit(R5_OVERWRITE, &dev->flags))
4712 				s->non_overwrite++;
4713 		}
4714 		if (dev->written)
4715 			s->written++;
4716 		/* Prefer to use the replacement for reads, but only
4717 		 * if it is recovered enough and has no bad blocks.
4718 		 */
4719 		rdev = conf->disks[i].replacement;
4720 		if (rdev && !test_bit(Faulty, &rdev->flags) &&
4721 		    rdev->recovery_offset >= sh->sector + RAID5_STRIPE_SECTORS(conf) &&
4722 		    !is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
4723 				 &first_bad, &bad_sectors))
4724 			set_bit(R5_ReadRepl, &dev->flags);
4725 		else {
4726 			if (rdev && !test_bit(Faulty, &rdev->flags))
4727 				set_bit(R5_NeedReplace, &dev->flags);
4728 			else
4729 				clear_bit(R5_NeedReplace, &dev->flags);
4730 			rdev = conf->disks[i].rdev;
4731 			clear_bit(R5_ReadRepl, &dev->flags);
4732 		}
4733 		if (rdev && test_bit(Faulty, &rdev->flags))
4734 			rdev = NULL;
4735 		if (rdev) {
4736 			is_bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
4737 					     &first_bad, &bad_sectors);
4738 			if (s->blocked_rdev == NULL
4739 			    && (test_bit(Blocked, &rdev->flags)
4740 				|| is_bad < 0)) {
4741 				if (is_bad < 0)
4742 					set_bit(BlockedBadBlocks,
4743 						&rdev->flags);
4744 				s->blocked_rdev = rdev;
4745 				atomic_inc(&rdev->nr_pending);
4746 			}
4747 		}
4748 		clear_bit(R5_Insync, &dev->flags);
4749 		if (!rdev)
4750 			/* Not in-sync */;
4751 		else if (is_bad) {
4752 			/* also not in-sync */
4753 			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4754 			    test_bit(R5_UPTODATE, &dev->flags)) {
4755 				/* treat as in-sync, but with a read error
4756 				 * which we can now try to correct
4757 				 */
4758 				set_bit(R5_Insync, &dev->flags);
4759 				set_bit(R5_ReadError, &dev->flags);
4760 			}
4761 		} else if (test_bit(In_sync, &rdev->flags))
4762 			set_bit(R5_Insync, &dev->flags);
4763 		else if (sh->sector + RAID5_STRIPE_SECTORS(conf) <= rdev->recovery_offset)
4764 			/* in sync if before recovery_offset */
4765 			set_bit(R5_Insync, &dev->flags);
4766 		else if (test_bit(R5_UPTODATE, &dev->flags) &&
4767 			 test_bit(R5_Expanded, &dev->flags))
4768 			/* If we've reshaped into here, we assume it is Insync.
4769 			 * We will shortly update recovery_offset to make
4770 			 * it official.
4771 			 */
4772 			set_bit(R5_Insync, &dev->flags);
4773 
4774 		if (test_bit(R5_WriteError, &dev->flags)) {
4775 			/* This flag does not apply to '.replacement'
4776 			 * only to .rdev, so make sure to check that*/
4777 			struct md_rdev *rdev2 = conf->disks[i].rdev;
4778 
4779 			if (rdev2 == rdev)
4780 				clear_bit(R5_Insync, &dev->flags);
4781 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4782 				s->handle_bad_blocks = 1;
4783 				atomic_inc(&rdev2->nr_pending);
4784 			} else
4785 				clear_bit(R5_WriteError, &dev->flags);
4786 		}
4787 		if (test_bit(R5_MadeGood, &dev->flags)) {
4788 			/* This flag does not apply to '.replacement'
4789 			 * only to .rdev, so make sure to check that*/
4790 			struct md_rdev *rdev2 = conf->disks[i].rdev;
4791 
4792 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4793 				s->handle_bad_blocks = 1;
4794 				atomic_inc(&rdev2->nr_pending);
4795 			} else
4796 				clear_bit(R5_MadeGood, &dev->flags);
4797 		}
4798 		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4799 			struct md_rdev *rdev2 = conf->disks[i].replacement;
4800 
4801 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4802 				s->handle_bad_blocks = 1;
4803 				atomic_inc(&rdev2->nr_pending);
4804 			} else
4805 				clear_bit(R5_MadeGoodRepl, &dev->flags);
4806 		}
4807 		if (!test_bit(R5_Insync, &dev->flags)) {
4808 			/* The ReadError flag will just be confusing now */
4809 			clear_bit(R5_ReadError, &dev->flags);
4810 			clear_bit(R5_ReWrite, &dev->flags);
4811 		}
4812 		if (test_bit(R5_ReadError, &dev->flags))
4813 			clear_bit(R5_Insync, &dev->flags);
4814 		if (!test_bit(R5_Insync, &dev->flags)) {
4815 			if (s->failed < 2)
4816 				s->failed_num[s->failed] = i;
4817 			s->failed++;
4818 			if (rdev && !test_bit(Faulty, &rdev->flags))
4819 				do_recovery = 1;
4820 			else if (!rdev) {
4821 				rdev = conf->disks[i].replacement;
4822 				if (rdev && !test_bit(Faulty, &rdev->flags))
4823 					do_recovery = 1;
4824 			}
4825 		}
4826 
4827 		if (test_bit(R5_InJournal, &dev->flags))
4828 			s->injournal++;
4829 		if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4830 			s->just_cached++;
4831 	}
4832 	if (test_bit(STRIPE_SYNCING, &sh->state)) {
4833 		/* If there is a failed device being replaced,
4834 		 *     we must be recovering.
4835 		 * else if we are after recovery_cp, we must be syncing
4836 		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4837 		 * else we can only be replacing
4838 		 * sync and recovery both need to read all devices, and so
4839 		 * use the same flag.
4840 		 */
4841 		if (do_recovery ||
4842 		    sh->sector >= conf->mddev->recovery_cp ||
4843 		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4844 			s->syncing = 1;
4845 		else
4846 			s->replacing = 1;
4847 	}
4848 }
4849 
4850 /*
4851  * Return '1' if this is a member of batch, or '0' if it is a lone stripe or
4852  * a head which can now be handled.
4853  */
4854 static int clear_batch_ready(struct stripe_head *sh)
4855 {
4856 	struct stripe_head *tmp;
4857 	if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4858 		return (sh->batch_head && sh->batch_head != sh);
4859 	spin_lock(&sh->stripe_lock);
4860 	if (!sh->batch_head) {
4861 		spin_unlock(&sh->stripe_lock);
4862 		return 0;
4863 	}
4864 
4865 	/*
4866 	 * this stripe could be added to a batch list before we check
4867 	 * BATCH_READY, skips it
4868 	 */
4869 	if (sh->batch_head != sh) {
4870 		spin_unlock(&sh->stripe_lock);
4871 		return 1;
4872 	}
4873 	spin_lock(&sh->batch_lock);
4874 	list_for_each_entry(tmp, &sh->batch_list, batch_list)
4875 		clear_bit(STRIPE_BATCH_READY, &tmp->state);
4876 	spin_unlock(&sh->batch_lock);
4877 	spin_unlock(&sh->stripe_lock);
4878 
4879 	/*
4880 	 * BATCH_READY is cleared, no new stripes can be added.
4881 	 * batch_list can be accessed without lock
4882 	 */
4883 	return 0;
4884 }
4885 
4886 static void break_stripe_batch_list(struct stripe_head *head_sh,
4887 				    unsigned long handle_flags)
4888 {
4889 	struct stripe_head *sh, *next;
4890 	int i;
4891 	int do_wakeup = 0;
4892 
4893 	list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4894 
4895 		list_del_init(&sh->batch_list);
4896 
4897 		WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4898 					  (1 << STRIPE_SYNCING) |
4899 					  (1 << STRIPE_REPLACED) |
4900 					  (1 << STRIPE_DELAYED) |
4901 					  (1 << STRIPE_BIT_DELAY) |
4902 					  (1 << STRIPE_FULL_WRITE) |
4903 					  (1 << STRIPE_BIOFILL_RUN) |
4904 					  (1 << STRIPE_COMPUTE_RUN)  |
4905 					  (1 << STRIPE_DISCARD) |
4906 					  (1 << STRIPE_BATCH_READY) |
4907 					  (1 << STRIPE_BATCH_ERR) |
4908 					  (1 << STRIPE_BITMAP_PENDING)),
4909 			"stripe state: %lx\n", sh->state);
4910 		WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4911 					      (1 << STRIPE_REPLACED)),
4912 			"head stripe state: %lx\n", head_sh->state);
4913 
4914 		set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4915 					    (1 << STRIPE_PREREAD_ACTIVE) |
4916 					    (1 << STRIPE_DEGRADED) |
4917 					    (1 << STRIPE_ON_UNPLUG_LIST)),
4918 			      head_sh->state & (1 << STRIPE_INSYNC));
4919 
4920 		sh->check_state = head_sh->check_state;
4921 		sh->reconstruct_state = head_sh->reconstruct_state;
4922 		spin_lock_irq(&sh->stripe_lock);
4923 		sh->batch_head = NULL;
4924 		spin_unlock_irq(&sh->stripe_lock);
4925 		for (i = 0; i < sh->disks; i++) {
4926 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4927 				do_wakeup = 1;
4928 			sh->dev[i].flags = head_sh->dev[i].flags &
4929 				(~((1 << R5_WriteError) | (1 << R5_Overlap)));
4930 		}
4931 		if (handle_flags == 0 ||
4932 		    sh->state & handle_flags)
4933 			set_bit(STRIPE_HANDLE, &sh->state);
4934 		raid5_release_stripe(sh);
4935 	}
4936 	spin_lock_irq(&head_sh->stripe_lock);
4937 	head_sh->batch_head = NULL;
4938 	spin_unlock_irq(&head_sh->stripe_lock);
4939 	for (i = 0; i < head_sh->disks; i++)
4940 		if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4941 			do_wakeup = 1;
4942 	if (head_sh->state & handle_flags)
4943 		set_bit(STRIPE_HANDLE, &head_sh->state);
4944 
4945 	if (do_wakeup)
4946 		wake_up(&head_sh->raid_conf->wait_for_overlap);
4947 }
4948 
4949 static void handle_stripe(struct stripe_head *sh)
4950 {
4951 	struct stripe_head_state s;
4952 	struct r5conf *conf = sh->raid_conf;
4953 	int i;
4954 	int prexor;
4955 	int disks = sh->disks;
4956 	struct r5dev *pdev, *qdev;
4957 
4958 	clear_bit(STRIPE_HANDLE, &sh->state);
4959 
4960 	/*
4961 	 * handle_stripe should not continue handle the batched stripe, only
4962 	 * the head of batch list or lone stripe can continue. Otherwise we
4963 	 * could see break_stripe_batch_list warns about the STRIPE_ACTIVE
4964 	 * is set for the batched stripe.
4965 	 */
4966 	if (clear_batch_ready(sh))
4967 		return;
4968 
4969 	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4970 		/* already being handled, ensure it gets handled
4971 		 * again when current action finishes */
4972 		set_bit(STRIPE_HANDLE, &sh->state);
4973 		return;
4974 	}
4975 
4976 	if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4977 		break_stripe_batch_list(sh, 0);
4978 
4979 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4980 		spin_lock(&sh->stripe_lock);
4981 		/*
4982 		 * Cannot process 'sync' concurrently with 'discard'.
4983 		 * Flush data in r5cache before 'sync'.
4984 		 */
4985 		if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4986 		    !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4987 		    !test_bit(STRIPE_DISCARD, &sh->state) &&
4988 		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4989 			set_bit(STRIPE_SYNCING, &sh->state);
4990 			clear_bit(STRIPE_INSYNC, &sh->state);
4991 			clear_bit(STRIPE_REPLACED, &sh->state);
4992 		}
4993 		spin_unlock(&sh->stripe_lock);
4994 	}
4995 	clear_bit(STRIPE_DELAYED, &sh->state);
4996 
4997 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4998 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4999 	       (unsigned long long)sh->sector, sh->state,
5000 	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
5001 	       sh->check_state, sh->reconstruct_state);
5002 
5003 	analyse_stripe(sh, &s);
5004 
5005 	if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
5006 		goto finish;
5007 
5008 	if (s.handle_bad_blocks ||
5009 	    test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
5010 		set_bit(STRIPE_HANDLE, &sh->state);
5011 		goto finish;
5012 	}
5013 
5014 	if (unlikely(s.blocked_rdev)) {
5015 		if (s.syncing || s.expanding || s.expanded ||
5016 		    s.replacing || s.to_write || s.written) {
5017 			set_bit(STRIPE_HANDLE, &sh->state);
5018 			goto finish;
5019 		}
5020 		/* There is nothing for the blocked_rdev to block */
5021 		rdev_dec_pending(s.blocked_rdev, conf->mddev);
5022 		s.blocked_rdev = NULL;
5023 	}
5024 
5025 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
5026 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
5027 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
5028 	}
5029 
5030 	pr_debug("locked=%d uptodate=%d to_read=%d"
5031 	       " to_write=%d failed=%d failed_num=%d,%d\n",
5032 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
5033 	       s.failed_num[0], s.failed_num[1]);
5034 	/*
5035 	 * check if the array has lost more than max_degraded devices and,
5036 	 * if so, some requests might need to be failed.
5037 	 *
5038 	 * When journal device failed (log_failed), we will only process
5039 	 * the stripe if there is data need write to raid disks
5040 	 */
5041 	if (s.failed > conf->max_degraded ||
5042 	    (s.log_failed && s.injournal == 0)) {
5043 		sh->check_state = 0;
5044 		sh->reconstruct_state = 0;
5045 		break_stripe_batch_list(sh, 0);
5046 		if (s.to_read+s.to_write+s.written)
5047 			handle_failed_stripe(conf, sh, &s, disks);
5048 		if (s.syncing + s.replacing)
5049 			handle_failed_sync(conf, sh, &s);
5050 	}
5051 
5052 	/* Now we check to see if any write operations have recently
5053 	 * completed
5054 	 */
5055 	prexor = 0;
5056 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
5057 		prexor = 1;
5058 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
5059 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
5060 		sh->reconstruct_state = reconstruct_state_idle;
5061 
5062 		/* All the 'written' buffers and the parity block are ready to
5063 		 * be written back to disk
5064 		 */
5065 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
5066 		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
5067 		BUG_ON(sh->qd_idx >= 0 &&
5068 		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
5069 		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
5070 		for (i = disks; i--; ) {
5071 			struct r5dev *dev = &sh->dev[i];
5072 			if (test_bit(R5_LOCKED, &dev->flags) &&
5073 				(i == sh->pd_idx || i == sh->qd_idx ||
5074 				 dev->written || test_bit(R5_InJournal,
5075 							  &dev->flags))) {
5076 				pr_debug("Writing block %d\n", i);
5077 				set_bit(R5_Wantwrite, &dev->flags);
5078 				if (prexor)
5079 					continue;
5080 				if (s.failed > 1)
5081 					continue;
5082 				if (!test_bit(R5_Insync, &dev->flags) ||
5083 				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
5084 				     s.failed == 0))
5085 					set_bit(STRIPE_INSYNC, &sh->state);
5086 			}
5087 		}
5088 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5089 			s.dec_preread_active = 1;
5090 	}
5091 
5092 	/*
5093 	 * might be able to return some write requests if the parity blocks
5094 	 * are safe, or on a failed drive
5095 	 */
5096 	pdev = &sh->dev[sh->pd_idx];
5097 	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
5098 		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
5099 	qdev = &sh->dev[sh->qd_idx];
5100 	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
5101 		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
5102 		|| conf->level < 6;
5103 
5104 	if (s.written &&
5105 	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
5106 			     && !test_bit(R5_LOCKED, &pdev->flags)
5107 			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
5108 				 test_bit(R5_Discard, &pdev->flags))))) &&
5109 	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
5110 			     && !test_bit(R5_LOCKED, &qdev->flags)
5111 			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
5112 				 test_bit(R5_Discard, &qdev->flags))))))
5113 		handle_stripe_clean_event(conf, sh, disks);
5114 
5115 	if (s.just_cached)
5116 		r5c_handle_cached_data_endio(conf, sh, disks);
5117 	log_stripe_write_finished(sh);
5118 
5119 	/* Now we might consider reading some blocks, either to check/generate
5120 	 * parity, or to satisfy requests
5121 	 * or to load a block that is being partially written.
5122 	 */
5123 	if (s.to_read || s.non_overwrite
5124 	    || (s.to_write && s.failed)
5125 	    || (s.syncing && (s.uptodate + s.compute < disks))
5126 	    || s.replacing
5127 	    || s.expanding)
5128 		handle_stripe_fill(sh, &s, disks);
5129 
5130 	/*
5131 	 * When the stripe finishes full journal write cycle (write to journal
5132 	 * and raid disk), this is the clean up procedure so it is ready for
5133 	 * next operation.
5134 	 */
5135 	r5c_finish_stripe_write_out(conf, sh, &s);
5136 
5137 	/*
5138 	 * Now to consider new write requests, cache write back and what else,
5139 	 * if anything should be read.  We do not handle new writes when:
5140 	 * 1/ A 'write' operation (copy+xor) is already in flight.
5141 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
5142 	 *    block.
5143 	 * 3/ A r5c cache log write is in flight.
5144 	 */
5145 
5146 	if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
5147 		if (!r5c_is_writeback(conf->log)) {
5148 			if (s.to_write)
5149 				handle_stripe_dirtying(conf, sh, &s, disks);
5150 		} else { /* write back cache */
5151 			int ret = 0;
5152 
5153 			/* First, try handle writes in caching phase */
5154 			if (s.to_write)
5155 				ret = r5c_try_caching_write(conf, sh, &s,
5156 							    disks);
5157 			/*
5158 			 * If caching phase failed: ret == -EAGAIN
5159 			 *    OR
5160 			 * stripe under reclaim: !caching && injournal
5161 			 *
5162 			 * fall back to handle_stripe_dirtying()
5163 			 */
5164 			if (ret == -EAGAIN ||
5165 			    /* stripe under reclaim: !caching && injournal */
5166 			    (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
5167 			     s.injournal > 0)) {
5168 				ret = handle_stripe_dirtying(conf, sh, &s,
5169 							     disks);
5170 				if (ret == -EAGAIN)
5171 					goto finish;
5172 			}
5173 		}
5174 	}
5175 
5176 	/* maybe we need to check and possibly fix the parity for this stripe
5177 	 * Any reads will already have been scheduled, so we just see if enough
5178 	 * data is available.  The parity check is held off while parity
5179 	 * dependent operations are in flight.
5180 	 */
5181 	if (sh->check_state ||
5182 	    (s.syncing && s.locked == 0 &&
5183 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5184 	     !test_bit(STRIPE_INSYNC, &sh->state))) {
5185 		if (conf->level == 6)
5186 			handle_parity_checks6(conf, sh, &s, disks);
5187 		else
5188 			handle_parity_checks5(conf, sh, &s, disks);
5189 	}
5190 
5191 	if ((s.replacing || s.syncing) && s.locked == 0
5192 	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
5193 	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
5194 		/* Write out to replacement devices where possible */
5195 		for (i = 0; i < conf->raid_disks; i++)
5196 			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
5197 				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
5198 				set_bit(R5_WantReplace, &sh->dev[i].flags);
5199 				set_bit(R5_LOCKED, &sh->dev[i].flags);
5200 				s.locked++;
5201 			}
5202 		if (s.replacing)
5203 			set_bit(STRIPE_INSYNC, &sh->state);
5204 		set_bit(STRIPE_REPLACED, &sh->state);
5205 	}
5206 	if ((s.syncing || s.replacing) && s.locked == 0 &&
5207 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5208 	    test_bit(STRIPE_INSYNC, &sh->state)) {
5209 		md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
5210 		clear_bit(STRIPE_SYNCING, &sh->state);
5211 		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
5212 			wake_up(&conf->wait_for_overlap);
5213 	}
5214 
5215 	/* If the failed drives are just a ReadError, then we might need
5216 	 * to progress the repair/check process
5217 	 */
5218 	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
5219 		for (i = 0; i < s.failed; i++) {
5220 			struct r5dev *dev = &sh->dev[s.failed_num[i]];
5221 			if (test_bit(R5_ReadError, &dev->flags)
5222 			    && !test_bit(R5_LOCKED, &dev->flags)
5223 			    && test_bit(R5_UPTODATE, &dev->flags)
5224 				) {
5225 				if (!test_bit(R5_ReWrite, &dev->flags)) {
5226 					set_bit(R5_Wantwrite, &dev->flags);
5227 					set_bit(R5_ReWrite, &dev->flags);
5228 				} else
5229 					/* let's read it back */
5230 					set_bit(R5_Wantread, &dev->flags);
5231 				set_bit(R5_LOCKED, &dev->flags);
5232 				s.locked++;
5233 			}
5234 		}
5235 
5236 	/* Finish reconstruct operations initiated by the expansion process */
5237 	if (sh->reconstruct_state == reconstruct_state_result) {
5238 		struct stripe_head *sh_src
5239 			= raid5_get_active_stripe(conf, NULL, sh->sector,
5240 					R5_GAS_PREVIOUS | R5_GAS_NOBLOCK |
5241 					R5_GAS_NOQUIESCE);
5242 		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
5243 			/* sh cannot be written until sh_src has been read.
5244 			 * so arrange for sh to be delayed a little
5245 			 */
5246 			set_bit(STRIPE_DELAYED, &sh->state);
5247 			set_bit(STRIPE_HANDLE, &sh->state);
5248 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
5249 					      &sh_src->state))
5250 				atomic_inc(&conf->preread_active_stripes);
5251 			raid5_release_stripe(sh_src);
5252 			goto finish;
5253 		}
5254 		if (sh_src)
5255 			raid5_release_stripe(sh_src);
5256 
5257 		sh->reconstruct_state = reconstruct_state_idle;
5258 		clear_bit(STRIPE_EXPANDING, &sh->state);
5259 		for (i = conf->raid_disks; i--; ) {
5260 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
5261 			set_bit(R5_LOCKED, &sh->dev[i].flags);
5262 			s.locked++;
5263 		}
5264 	}
5265 
5266 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
5267 	    !sh->reconstruct_state) {
5268 		/* Need to write out all blocks after computing parity */
5269 		sh->disks = conf->raid_disks;
5270 		stripe_set_idx(sh->sector, conf, 0, sh);
5271 		schedule_reconstruction(sh, &s, 1, 1);
5272 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
5273 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
5274 		atomic_dec(&conf->reshape_stripes);
5275 		wake_up(&conf->wait_for_overlap);
5276 		md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
5277 	}
5278 
5279 	if (s.expanding && s.locked == 0 &&
5280 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
5281 		handle_stripe_expansion(conf, sh);
5282 
5283 finish:
5284 	/* wait for this device to become unblocked */
5285 	if (unlikely(s.blocked_rdev)) {
5286 		if (conf->mddev->external)
5287 			md_wait_for_blocked_rdev(s.blocked_rdev,
5288 						 conf->mddev);
5289 		else
5290 			/* Internal metadata will immediately
5291 			 * be written by raid5d, so we don't
5292 			 * need to wait here.
5293 			 */
5294 			rdev_dec_pending(s.blocked_rdev,
5295 					 conf->mddev);
5296 	}
5297 
5298 	if (s.handle_bad_blocks)
5299 		for (i = disks; i--; ) {
5300 			struct md_rdev *rdev;
5301 			struct r5dev *dev = &sh->dev[i];
5302 			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
5303 				/* We own a safe reference to the rdev */
5304 				rdev = conf->disks[i].rdev;
5305 				if (!rdev_set_badblocks(rdev, sh->sector,
5306 							RAID5_STRIPE_SECTORS(conf), 0))
5307 					md_error(conf->mddev, rdev);
5308 				rdev_dec_pending(rdev, conf->mddev);
5309 			}
5310 			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5311 				rdev = conf->disks[i].rdev;
5312 				rdev_clear_badblocks(rdev, sh->sector,
5313 						     RAID5_STRIPE_SECTORS(conf), 0);
5314 				rdev_dec_pending(rdev, conf->mddev);
5315 			}
5316 			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5317 				rdev = conf->disks[i].replacement;
5318 				if (!rdev)
5319 					/* rdev have been moved down */
5320 					rdev = conf->disks[i].rdev;
5321 				rdev_clear_badblocks(rdev, sh->sector,
5322 						     RAID5_STRIPE_SECTORS(conf), 0);
5323 				rdev_dec_pending(rdev, conf->mddev);
5324 			}
5325 		}
5326 
5327 	if (s.ops_request)
5328 		raid_run_ops(sh, s.ops_request);
5329 
5330 	ops_run_io(sh, &s);
5331 
5332 	if (s.dec_preread_active) {
5333 		/* We delay this until after ops_run_io so that if make_request
5334 		 * is waiting on a flush, it won't continue until the writes
5335 		 * have actually been submitted.
5336 		 */
5337 		atomic_dec(&conf->preread_active_stripes);
5338 		if (atomic_read(&conf->preread_active_stripes) <
5339 		    IO_THRESHOLD)
5340 			md_wakeup_thread(conf->mddev->thread);
5341 	}
5342 
5343 	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5344 }
5345 
5346 static void raid5_activate_delayed(struct r5conf *conf)
5347 	__must_hold(&conf->device_lock)
5348 {
5349 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5350 		while (!list_empty(&conf->delayed_list)) {
5351 			struct list_head *l = conf->delayed_list.next;
5352 			struct stripe_head *sh;
5353 			sh = list_entry(l, struct stripe_head, lru);
5354 			list_del_init(l);
5355 			clear_bit(STRIPE_DELAYED, &sh->state);
5356 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5357 				atomic_inc(&conf->preread_active_stripes);
5358 			list_add_tail(&sh->lru, &conf->hold_list);
5359 			raid5_wakeup_stripe_thread(sh);
5360 		}
5361 	}
5362 }
5363 
5364 static void activate_bit_delay(struct r5conf *conf,
5365 		struct list_head *temp_inactive_list)
5366 	__must_hold(&conf->device_lock)
5367 {
5368 	struct list_head head;
5369 	list_add(&head, &conf->bitmap_list);
5370 	list_del_init(&conf->bitmap_list);
5371 	while (!list_empty(&head)) {
5372 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5373 		int hash;
5374 		list_del_init(&sh->lru);
5375 		atomic_inc(&sh->count);
5376 		hash = sh->hash_lock_index;
5377 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
5378 	}
5379 }
5380 
5381 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5382 {
5383 	struct r5conf *conf = mddev->private;
5384 	sector_t sector = bio->bi_iter.bi_sector;
5385 	unsigned int chunk_sectors;
5386 	unsigned int bio_sectors = bio_sectors(bio);
5387 
5388 	chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5389 	return  chunk_sectors >=
5390 		((sector & (chunk_sectors - 1)) + bio_sectors);
5391 }
5392 
5393 /*
5394  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
5395  *  later sampled by raid5d.
5396  */
5397 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5398 {
5399 	unsigned long flags;
5400 
5401 	spin_lock_irqsave(&conf->device_lock, flags);
5402 
5403 	bi->bi_next = conf->retry_read_aligned_list;
5404 	conf->retry_read_aligned_list = bi;
5405 
5406 	spin_unlock_irqrestore(&conf->device_lock, flags);
5407 	md_wakeup_thread(conf->mddev->thread);
5408 }
5409 
5410 static struct bio *remove_bio_from_retry(struct r5conf *conf,
5411 					 unsigned int *offset)
5412 {
5413 	struct bio *bi;
5414 
5415 	bi = conf->retry_read_aligned;
5416 	if (bi) {
5417 		*offset = conf->retry_read_offset;
5418 		conf->retry_read_aligned = NULL;
5419 		return bi;
5420 	}
5421 	bi = conf->retry_read_aligned_list;
5422 	if(bi) {
5423 		conf->retry_read_aligned_list = bi->bi_next;
5424 		bi->bi_next = NULL;
5425 		*offset = 0;
5426 	}
5427 
5428 	return bi;
5429 }
5430 
5431 /*
5432  *  The "raid5_align_endio" should check if the read succeeded and if it
5433  *  did, call bio_endio on the original bio (having bio_put the new bio
5434  *  first).
5435  *  If the read failed..
5436  */
5437 static void raid5_align_endio(struct bio *bi)
5438 {
5439 	struct bio *raid_bi = bi->bi_private;
5440 	struct md_rdev *rdev = (void *)raid_bi->bi_next;
5441 	struct mddev *mddev = rdev->mddev;
5442 	struct r5conf *conf = mddev->private;
5443 	blk_status_t error = bi->bi_status;
5444 
5445 	bio_put(bi);
5446 	raid_bi->bi_next = NULL;
5447 	rdev_dec_pending(rdev, conf->mddev);
5448 
5449 	if (!error) {
5450 		bio_endio(raid_bi);
5451 		if (atomic_dec_and_test(&conf->active_aligned_reads))
5452 			wake_up(&conf->wait_for_quiescent);
5453 		return;
5454 	}
5455 
5456 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5457 
5458 	add_bio_to_retry(raid_bi, conf);
5459 }
5460 
5461 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5462 {
5463 	struct r5conf *conf = mddev->private;
5464 	struct bio *align_bio;
5465 	struct md_rdev *rdev;
5466 	sector_t sector, end_sector, first_bad;
5467 	int bad_sectors, dd_idx;
5468 	bool did_inc;
5469 
5470 	if (!in_chunk_boundary(mddev, raid_bio)) {
5471 		pr_debug("%s: non aligned\n", __func__);
5472 		return 0;
5473 	}
5474 
5475 	sector = raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 0,
5476 				      &dd_idx, NULL);
5477 	end_sector = sector + bio_sectors(raid_bio);
5478 
5479 	if (r5c_big_stripe_cached(conf, sector))
5480 		return 0;
5481 
5482 	rdev = conf->disks[dd_idx].replacement;
5483 	if (!rdev || test_bit(Faulty, &rdev->flags) ||
5484 	    rdev->recovery_offset < end_sector) {
5485 		rdev = conf->disks[dd_idx].rdev;
5486 		if (!rdev)
5487 			return 0;
5488 		if (test_bit(Faulty, &rdev->flags) ||
5489 		    !(test_bit(In_sync, &rdev->flags) ||
5490 		      rdev->recovery_offset >= end_sector))
5491 			return 0;
5492 	}
5493 
5494 	atomic_inc(&rdev->nr_pending);
5495 
5496 	if (is_badblock(rdev, sector, bio_sectors(raid_bio), &first_bad,
5497 			&bad_sectors)) {
5498 		rdev_dec_pending(rdev, mddev);
5499 		return 0;
5500 	}
5501 
5502 	md_account_bio(mddev, &raid_bio);
5503 	raid_bio->bi_next = (void *)rdev;
5504 
5505 	align_bio = bio_alloc_clone(rdev->bdev, raid_bio, GFP_NOIO,
5506 				    &mddev->bio_set);
5507 	align_bio->bi_end_io = raid5_align_endio;
5508 	align_bio->bi_private = raid_bio;
5509 	align_bio->bi_iter.bi_sector = sector;
5510 
5511 	/* No reshape active, so we can trust rdev->data_offset */
5512 	align_bio->bi_iter.bi_sector += rdev->data_offset;
5513 
5514 	did_inc = false;
5515 	if (conf->quiesce == 0) {
5516 		atomic_inc(&conf->active_aligned_reads);
5517 		did_inc = true;
5518 	}
5519 	/* need a memory barrier to detect the race with raid5_quiesce() */
5520 	if (!did_inc || smp_load_acquire(&conf->quiesce) != 0) {
5521 		/* quiesce is in progress, so we need to undo io activation and wait
5522 		 * for it to finish
5523 		 */
5524 		if (did_inc && atomic_dec_and_test(&conf->active_aligned_reads))
5525 			wake_up(&conf->wait_for_quiescent);
5526 		spin_lock_irq(&conf->device_lock);
5527 		wait_event_lock_irq(conf->wait_for_quiescent, conf->quiesce == 0,
5528 				    conf->device_lock);
5529 		atomic_inc(&conf->active_aligned_reads);
5530 		spin_unlock_irq(&conf->device_lock);
5531 	}
5532 
5533 	if (mddev->gendisk)
5534 		trace_block_bio_remap(align_bio, disk_devt(mddev->gendisk),
5535 				      raid_bio->bi_iter.bi_sector);
5536 	submit_bio_noacct(align_bio);
5537 	return 1;
5538 }
5539 
5540 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5541 {
5542 	struct bio *split;
5543 	sector_t sector = raid_bio->bi_iter.bi_sector;
5544 	unsigned chunk_sects = mddev->chunk_sectors;
5545 	unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5546 
5547 	if (sectors < bio_sectors(raid_bio)) {
5548 		struct r5conf *conf = mddev->private;
5549 		split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split);
5550 		bio_chain(split, raid_bio);
5551 		submit_bio_noacct(raid_bio);
5552 		raid_bio = split;
5553 	}
5554 
5555 	if (!raid5_read_one_chunk(mddev, raid_bio))
5556 		return raid_bio;
5557 
5558 	return NULL;
5559 }
5560 
5561 /* __get_priority_stripe - get the next stripe to process
5562  *
5563  * Full stripe writes are allowed to pass preread active stripes up until
5564  * the bypass_threshold is exceeded.  In general the bypass_count
5565  * increments when the handle_list is handled before the hold_list; however, it
5566  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5567  * stripe with in flight i/o.  The bypass_count will be reset when the
5568  * head of the hold_list has changed, i.e. the head was promoted to the
5569  * handle_list.
5570  */
5571 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5572 	__must_hold(&conf->device_lock)
5573 {
5574 	struct stripe_head *sh, *tmp;
5575 	struct list_head *handle_list = NULL;
5576 	struct r5worker_group *wg;
5577 	bool second_try = !r5c_is_writeback(conf->log) &&
5578 		!r5l_log_disk_error(conf);
5579 	bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5580 		r5l_log_disk_error(conf);
5581 
5582 again:
5583 	wg = NULL;
5584 	sh = NULL;
5585 	if (conf->worker_cnt_per_group == 0) {
5586 		handle_list = try_loprio ? &conf->loprio_list :
5587 					&conf->handle_list;
5588 	} else if (group != ANY_GROUP) {
5589 		handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5590 				&conf->worker_groups[group].handle_list;
5591 		wg = &conf->worker_groups[group];
5592 	} else {
5593 		int i;
5594 		for (i = 0; i < conf->group_cnt; i++) {
5595 			handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5596 				&conf->worker_groups[i].handle_list;
5597 			wg = &conf->worker_groups[i];
5598 			if (!list_empty(handle_list))
5599 				break;
5600 		}
5601 	}
5602 
5603 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5604 		  __func__,
5605 		  list_empty(handle_list) ? "empty" : "busy",
5606 		  list_empty(&conf->hold_list) ? "empty" : "busy",
5607 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
5608 
5609 	if (!list_empty(handle_list)) {
5610 		sh = list_entry(handle_list->next, typeof(*sh), lru);
5611 
5612 		if (list_empty(&conf->hold_list))
5613 			conf->bypass_count = 0;
5614 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5615 			if (conf->hold_list.next == conf->last_hold)
5616 				conf->bypass_count++;
5617 			else {
5618 				conf->last_hold = conf->hold_list.next;
5619 				conf->bypass_count -= conf->bypass_threshold;
5620 				if (conf->bypass_count < 0)
5621 					conf->bypass_count = 0;
5622 			}
5623 		}
5624 	} else if (!list_empty(&conf->hold_list) &&
5625 		   ((conf->bypass_threshold &&
5626 		     conf->bypass_count > conf->bypass_threshold) ||
5627 		    atomic_read(&conf->pending_full_writes) == 0)) {
5628 
5629 		list_for_each_entry(tmp, &conf->hold_list,  lru) {
5630 			if (conf->worker_cnt_per_group == 0 ||
5631 			    group == ANY_GROUP ||
5632 			    !cpu_online(tmp->cpu) ||
5633 			    cpu_to_group(tmp->cpu) == group) {
5634 				sh = tmp;
5635 				break;
5636 			}
5637 		}
5638 
5639 		if (sh) {
5640 			conf->bypass_count -= conf->bypass_threshold;
5641 			if (conf->bypass_count < 0)
5642 				conf->bypass_count = 0;
5643 		}
5644 		wg = NULL;
5645 	}
5646 
5647 	if (!sh) {
5648 		if (second_try)
5649 			return NULL;
5650 		second_try = true;
5651 		try_loprio = !try_loprio;
5652 		goto again;
5653 	}
5654 
5655 	if (wg) {
5656 		wg->stripes_cnt--;
5657 		sh->group = NULL;
5658 	}
5659 	list_del_init(&sh->lru);
5660 	BUG_ON(atomic_inc_return(&sh->count) != 1);
5661 	return sh;
5662 }
5663 
5664 struct raid5_plug_cb {
5665 	struct blk_plug_cb	cb;
5666 	struct list_head	list;
5667 	struct list_head	temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5668 };
5669 
5670 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5671 {
5672 	struct raid5_plug_cb *cb = container_of(
5673 		blk_cb, struct raid5_plug_cb, cb);
5674 	struct stripe_head *sh;
5675 	struct mddev *mddev = cb->cb.data;
5676 	struct r5conf *conf = mddev->private;
5677 	int cnt = 0;
5678 	int hash;
5679 
5680 	if (cb->list.next && !list_empty(&cb->list)) {
5681 		spin_lock_irq(&conf->device_lock);
5682 		while (!list_empty(&cb->list)) {
5683 			sh = list_first_entry(&cb->list, struct stripe_head, lru);
5684 			list_del_init(&sh->lru);
5685 			/*
5686 			 * avoid race release_stripe_plug() sees
5687 			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5688 			 * is still in our list
5689 			 */
5690 			smp_mb__before_atomic();
5691 			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5692 			/*
5693 			 * STRIPE_ON_RELEASE_LIST could be set here. In that
5694 			 * case, the count is always > 1 here
5695 			 */
5696 			hash = sh->hash_lock_index;
5697 			__release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5698 			cnt++;
5699 		}
5700 		spin_unlock_irq(&conf->device_lock);
5701 	}
5702 	release_inactive_stripe_list(conf, cb->temp_inactive_list,
5703 				     NR_STRIPE_HASH_LOCKS);
5704 	if (mddev->queue)
5705 		trace_block_unplug(mddev->queue, cnt, !from_schedule);
5706 	kfree(cb);
5707 }
5708 
5709 static void release_stripe_plug(struct mddev *mddev,
5710 				struct stripe_head *sh)
5711 {
5712 	struct blk_plug_cb *blk_cb = blk_check_plugged(
5713 		raid5_unplug, mddev,
5714 		sizeof(struct raid5_plug_cb));
5715 	struct raid5_plug_cb *cb;
5716 
5717 	if (!blk_cb) {
5718 		raid5_release_stripe(sh);
5719 		return;
5720 	}
5721 
5722 	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5723 
5724 	if (cb->list.next == NULL) {
5725 		int i;
5726 		INIT_LIST_HEAD(&cb->list);
5727 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5728 			INIT_LIST_HEAD(cb->temp_inactive_list + i);
5729 	}
5730 
5731 	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5732 		list_add_tail(&sh->lru, &cb->list);
5733 	else
5734 		raid5_release_stripe(sh);
5735 }
5736 
5737 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5738 {
5739 	struct r5conf *conf = mddev->private;
5740 	sector_t logical_sector, last_sector;
5741 	struct stripe_head *sh;
5742 	int stripe_sectors;
5743 
5744 	/* We need to handle this when io_uring supports discard/trim */
5745 	if (WARN_ON_ONCE(bi->bi_opf & REQ_NOWAIT))
5746 		return;
5747 
5748 	if (mddev->reshape_position != MaxSector)
5749 		/* Skip discard while reshape is happening */
5750 		return;
5751 
5752 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
5753 	last_sector = bio_end_sector(bi);
5754 
5755 	bi->bi_next = NULL;
5756 
5757 	stripe_sectors = conf->chunk_sectors *
5758 		(conf->raid_disks - conf->max_degraded);
5759 	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5760 					       stripe_sectors);
5761 	sector_div(last_sector, stripe_sectors);
5762 
5763 	logical_sector *= conf->chunk_sectors;
5764 	last_sector *= conf->chunk_sectors;
5765 
5766 	for (; logical_sector < last_sector;
5767 	     logical_sector += RAID5_STRIPE_SECTORS(conf)) {
5768 		DEFINE_WAIT(w);
5769 		int d;
5770 	again:
5771 		sh = raid5_get_active_stripe(conf, NULL, logical_sector, 0);
5772 		prepare_to_wait(&conf->wait_for_overlap, &w,
5773 				TASK_UNINTERRUPTIBLE);
5774 		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5775 		if (test_bit(STRIPE_SYNCING, &sh->state)) {
5776 			raid5_release_stripe(sh);
5777 			schedule();
5778 			goto again;
5779 		}
5780 		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5781 		spin_lock_irq(&sh->stripe_lock);
5782 		for (d = 0; d < conf->raid_disks; d++) {
5783 			if (d == sh->pd_idx || d == sh->qd_idx)
5784 				continue;
5785 			if (sh->dev[d].towrite || sh->dev[d].toread) {
5786 				set_bit(R5_Overlap, &sh->dev[d].flags);
5787 				spin_unlock_irq(&sh->stripe_lock);
5788 				raid5_release_stripe(sh);
5789 				schedule();
5790 				goto again;
5791 			}
5792 		}
5793 		set_bit(STRIPE_DISCARD, &sh->state);
5794 		finish_wait(&conf->wait_for_overlap, &w);
5795 		sh->overwrite_disks = 0;
5796 		for (d = 0; d < conf->raid_disks; d++) {
5797 			if (d == sh->pd_idx || d == sh->qd_idx)
5798 				continue;
5799 			sh->dev[d].towrite = bi;
5800 			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5801 			bio_inc_remaining(bi);
5802 			md_write_inc(mddev, bi);
5803 			sh->overwrite_disks++;
5804 		}
5805 		spin_unlock_irq(&sh->stripe_lock);
5806 		if (conf->mddev->bitmap) {
5807 			for (d = 0;
5808 			     d < conf->raid_disks - conf->max_degraded;
5809 			     d++)
5810 				md_bitmap_startwrite(mddev->bitmap,
5811 						     sh->sector,
5812 						     RAID5_STRIPE_SECTORS(conf),
5813 						     0);
5814 			sh->bm_seq = conf->seq_flush + 1;
5815 			set_bit(STRIPE_BIT_DELAY, &sh->state);
5816 		}
5817 
5818 		set_bit(STRIPE_HANDLE, &sh->state);
5819 		clear_bit(STRIPE_DELAYED, &sh->state);
5820 		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5821 			atomic_inc(&conf->preread_active_stripes);
5822 		release_stripe_plug(mddev, sh);
5823 	}
5824 
5825 	bio_endio(bi);
5826 }
5827 
5828 static bool ahead_of_reshape(struct mddev *mddev, sector_t sector,
5829 			     sector_t reshape_sector)
5830 {
5831 	return mddev->reshape_backwards ? sector < reshape_sector :
5832 					  sector >= reshape_sector;
5833 }
5834 
5835 static bool range_ahead_of_reshape(struct mddev *mddev, sector_t min,
5836 				   sector_t max, sector_t reshape_sector)
5837 {
5838 	return mddev->reshape_backwards ? max < reshape_sector :
5839 					  min >= reshape_sector;
5840 }
5841 
5842 static bool stripe_ahead_of_reshape(struct mddev *mddev, struct r5conf *conf,
5843 				    struct stripe_head *sh)
5844 {
5845 	sector_t max_sector = 0, min_sector = MaxSector;
5846 	bool ret = false;
5847 	int dd_idx;
5848 
5849 	for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5850 		if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
5851 			continue;
5852 
5853 		min_sector = min(min_sector, sh->dev[dd_idx].sector);
5854 		max_sector = max(max_sector, sh->dev[dd_idx].sector);
5855 	}
5856 
5857 	spin_lock_irq(&conf->device_lock);
5858 
5859 	if (!range_ahead_of_reshape(mddev, min_sector, max_sector,
5860 				     conf->reshape_progress))
5861 		/* mismatch, need to try again */
5862 		ret = true;
5863 
5864 	spin_unlock_irq(&conf->device_lock);
5865 
5866 	return ret;
5867 }
5868 
5869 static int add_all_stripe_bios(struct r5conf *conf,
5870 		struct stripe_request_ctx *ctx, struct stripe_head *sh,
5871 		struct bio *bi, int forwrite, int previous)
5872 {
5873 	int dd_idx;
5874 	int ret = 1;
5875 
5876 	spin_lock_irq(&sh->stripe_lock);
5877 
5878 	for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5879 		struct r5dev *dev = &sh->dev[dd_idx];
5880 
5881 		if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
5882 			continue;
5883 
5884 		if (dev->sector < ctx->first_sector ||
5885 		    dev->sector >= ctx->last_sector)
5886 			continue;
5887 
5888 		if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) {
5889 			set_bit(R5_Overlap, &dev->flags);
5890 			ret = 0;
5891 			continue;
5892 		}
5893 	}
5894 
5895 	if (!ret)
5896 		goto out;
5897 
5898 	for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5899 		struct r5dev *dev = &sh->dev[dd_idx];
5900 
5901 		if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
5902 			continue;
5903 
5904 		if (dev->sector < ctx->first_sector ||
5905 		    dev->sector >= ctx->last_sector)
5906 			continue;
5907 
5908 		__add_stripe_bio(sh, bi, dd_idx, forwrite, previous);
5909 		clear_bit((dev->sector - ctx->first_sector) >>
5910 			  RAID5_STRIPE_SHIFT(conf), ctx->sectors_to_do);
5911 	}
5912 
5913 out:
5914 	spin_unlock_irq(&sh->stripe_lock);
5915 	return ret;
5916 }
5917 
5918 static enum stripe_result make_stripe_request(struct mddev *mddev,
5919 		struct r5conf *conf, struct stripe_request_ctx *ctx,
5920 		sector_t logical_sector, struct bio *bi)
5921 {
5922 	const int rw = bio_data_dir(bi);
5923 	enum stripe_result ret;
5924 	struct stripe_head *sh;
5925 	sector_t new_sector;
5926 	int previous = 0, flags = 0;
5927 	int seq, dd_idx;
5928 
5929 	seq = read_seqcount_begin(&conf->gen_lock);
5930 
5931 	if (unlikely(conf->reshape_progress != MaxSector)) {
5932 		/*
5933 		 * Spinlock is needed as reshape_progress may be
5934 		 * 64bit on a 32bit platform, and so it might be
5935 		 * possible to see a half-updated value
5936 		 * Of course reshape_progress could change after
5937 		 * the lock is dropped, so once we get a reference
5938 		 * to the stripe that we think it is, we will have
5939 		 * to check again.
5940 		 */
5941 		spin_lock_irq(&conf->device_lock);
5942 		if (ahead_of_reshape(mddev, logical_sector,
5943 				     conf->reshape_progress)) {
5944 			previous = 1;
5945 		} else {
5946 			if (ahead_of_reshape(mddev, logical_sector,
5947 					     conf->reshape_safe)) {
5948 				spin_unlock_irq(&conf->device_lock);
5949 				return STRIPE_SCHEDULE_AND_RETRY;
5950 			}
5951 		}
5952 		spin_unlock_irq(&conf->device_lock);
5953 	}
5954 
5955 	new_sector = raid5_compute_sector(conf, logical_sector, previous,
5956 					  &dd_idx, NULL);
5957 	pr_debug("raid456: %s, sector %llu logical %llu\n", __func__,
5958 		 new_sector, logical_sector);
5959 
5960 	if (previous)
5961 		flags |= R5_GAS_PREVIOUS;
5962 	if (bi->bi_opf & REQ_RAHEAD)
5963 		flags |= R5_GAS_NOBLOCK;
5964 	sh = raid5_get_active_stripe(conf, ctx, new_sector, flags);
5965 	if (unlikely(!sh)) {
5966 		/* cannot get stripe, just give-up */
5967 		bi->bi_status = BLK_STS_IOERR;
5968 		return STRIPE_FAIL;
5969 	}
5970 
5971 	if (unlikely(previous) &&
5972 	    stripe_ahead_of_reshape(mddev, conf, sh)) {
5973 		/*
5974 		 * Expansion moved on while waiting for a stripe.
5975 		 * Expansion could still move past after this
5976 		 * test, but as we are holding a reference to
5977 		 * 'sh', we know that if that happens,
5978 		 *  STRIPE_EXPANDING will get set and the expansion
5979 		 * won't proceed until we finish with the stripe.
5980 		 */
5981 		ret = STRIPE_SCHEDULE_AND_RETRY;
5982 		goto out_release;
5983 	}
5984 
5985 	if (read_seqcount_retry(&conf->gen_lock, seq)) {
5986 		/* Might have got the wrong stripe_head by accident */
5987 		ret = STRIPE_RETRY;
5988 		goto out_release;
5989 	}
5990 
5991 	if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5992 	    !add_all_stripe_bios(conf, ctx, sh, bi, rw, previous)) {
5993 		/*
5994 		 * Stripe is busy expanding or add failed due to
5995 		 * overlap. Flush everything and wait a while.
5996 		 */
5997 		md_wakeup_thread(mddev->thread);
5998 		ret = STRIPE_SCHEDULE_AND_RETRY;
5999 		goto out_release;
6000 	}
6001 
6002 	if (stripe_can_batch(sh)) {
6003 		stripe_add_to_batch_list(conf, sh, ctx->batch_last);
6004 		if (ctx->batch_last)
6005 			raid5_release_stripe(ctx->batch_last);
6006 		atomic_inc(&sh->count);
6007 		ctx->batch_last = sh;
6008 	}
6009 
6010 	if (ctx->do_flush) {
6011 		set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
6012 		/* we only need flush for one stripe */
6013 		ctx->do_flush = false;
6014 	}
6015 
6016 	set_bit(STRIPE_HANDLE, &sh->state);
6017 	clear_bit(STRIPE_DELAYED, &sh->state);
6018 	if ((!sh->batch_head || sh == sh->batch_head) &&
6019 	    (bi->bi_opf & REQ_SYNC) &&
6020 	    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
6021 		atomic_inc(&conf->preread_active_stripes);
6022 
6023 	release_stripe_plug(mddev, sh);
6024 	return STRIPE_SUCCESS;
6025 
6026 out_release:
6027 	raid5_release_stripe(sh);
6028 	return ret;
6029 }
6030 
6031 /*
6032  * If the bio covers multiple data disks, find sector within the bio that has
6033  * the lowest chunk offset in the first chunk.
6034  */
6035 static sector_t raid5_bio_lowest_chunk_sector(struct r5conf *conf,
6036 					      struct bio *bi)
6037 {
6038 	int sectors_per_chunk = conf->chunk_sectors;
6039 	int raid_disks = conf->raid_disks;
6040 	int dd_idx;
6041 	struct stripe_head sh;
6042 	unsigned int chunk_offset;
6043 	sector_t r_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6044 	sector_t sector;
6045 
6046 	/* We pass in fake stripe_head to get back parity disk numbers */
6047 	sector = raid5_compute_sector(conf, r_sector, 0, &dd_idx, &sh);
6048 	chunk_offset = sector_div(sector, sectors_per_chunk);
6049 	if (sectors_per_chunk - chunk_offset >= bio_sectors(bi))
6050 		return r_sector;
6051 	/*
6052 	 * Bio crosses to the next data disk. Check whether it's in the same
6053 	 * chunk.
6054 	 */
6055 	dd_idx++;
6056 	while (dd_idx == sh.pd_idx || dd_idx == sh.qd_idx)
6057 		dd_idx++;
6058 	if (dd_idx >= raid_disks)
6059 		return r_sector;
6060 	return r_sector + sectors_per_chunk - chunk_offset;
6061 }
6062 
6063 static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
6064 {
6065 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
6066 	struct r5conf *conf = mddev->private;
6067 	sector_t logical_sector;
6068 	struct stripe_request_ctx ctx = {};
6069 	const int rw = bio_data_dir(bi);
6070 	enum stripe_result res;
6071 	int s, stripe_cnt;
6072 
6073 	if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
6074 		int ret = log_handle_flush_request(conf, bi);
6075 
6076 		if (ret == 0)
6077 			return true;
6078 		if (ret == -ENODEV) {
6079 			if (md_flush_request(mddev, bi))
6080 				return true;
6081 		}
6082 		/* ret == -EAGAIN, fallback */
6083 		/*
6084 		 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
6085 		 * we need to flush journal device
6086 		 */
6087 		ctx.do_flush = bi->bi_opf & REQ_PREFLUSH;
6088 	}
6089 
6090 	if (!md_write_start(mddev, bi))
6091 		return false;
6092 	/*
6093 	 * If array is degraded, better not do chunk aligned read because
6094 	 * later we might have to read it again in order to reconstruct
6095 	 * data on failed drives.
6096 	 */
6097 	if (rw == READ && mddev->degraded == 0 &&
6098 	    mddev->reshape_position == MaxSector) {
6099 		bi = chunk_aligned_read(mddev, bi);
6100 		if (!bi)
6101 			return true;
6102 	}
6103 
6104 	if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
6105 		make_discard_request(mddev, bi);
6106 		md_write_end(mddev);
6107 		return true;
6108 	}
6109 
6110 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6111 	ctx.first_sector = logical_sector;
6112 	ctx.last_sector = bio_end_sector(bi);
6113 	bi->bi_next = NULL;
6114 
6115 	stripe_cnt = DIV_ROUND_UP_SECTOR_T(ctx.last_sector - logical_sector,
6116 					   RAID5_STRIPE_SECTORS(conf));
6117 	bitmap_set(ctx.sectors_to_do, 0, stripe_cnt);
6118 
6119 	pr_debug("raid456: %s, logical %llu to %llu\n", __func__,
6120 		 bi->bi_iter.bi_sector, ctx.last_sector);
6121 
6122 	/* Bail out if conflicts with reshape and REQ_NOWAIT is set */
6123 	if ((bi->bi_opf & REQ_NOWAIT) &&
6124 	    (conf->reshape_progress != MaxSector) &&
6125 	    !ahead_of_reshape(mddev, logical_sector, conf->reshape_progress) &&
6126 	    ahead_of_reshape(mddev, logical_sector, conf->reshape_safe)) {
6127 		bio_wouldblock_error(bi);
6128 		if (rw == WRITE)
6129 			md_write_end(mddev);
6130 		return true;
6131 	}
6132 	md_account_bio(mddev, &bi);
6133 
6134 	/*
6135 	 * Lets start with the stripe with the lowest chunk offset in the first
6136 	 * chunk. That has the best chances of creating IOs adjacent to
6137 	 * previous IOs in case of sequential IO and thus creates the most
6138 	 * sequential IO pattern. We don't bother with the optimization when
6139 	 * reshaping as the performance benefit is not worth the complexity.
6140 	 */
6141 	if (likely(conf->reshape_progress == MaxSector))
6142 		logical_sector = raid5_bio_lowest_chunk_sector(conf, bi);
6143 	s = (logical_sector - ctx.first_sector) >> RAID5_STRIPE_SHIFT(conf);
6144 
6145 	add_wait_queue(&conf->wait_for_overlap, &wait);
6146 	while (1) {
6147 		res = make_stripe_request(mddev, conf, &ctx, logical_sector,
6148 					  bi);
6149 		if (res == STRIPE_FAIL)
6150 			break;
6151 
6152 		if (res == STRIPE_RETRY)
6153 			continue;
6154 
6155 		if (res == STRIPE_SCHEDULE_AND_RETRY) {
6156 			/*
6157 			 * Must release the reference to batch_last before
6158 			 * scheduling and waiting for work to be done,
6159 			 * otherwise the batch_last stripe head could prevent
6160 			 * raid5_activate_delayed() from making progress
6161 			 * and thus deadlocking.
6162 			 */
6163 			if (ctx.batch_last) {
6164 				raid5_release_stripe(ctx.batch_last);
6165 				ctx.batch_last = NULL;
6166 			}
6167 
6168 			wait_woken(&wait, TASK_UNINTERRUPTIBLE,
6169 				   MAX_SCHEDULE_TIMEOUT);
6170 			continue;
6171 		}
6172 
6173 		s = find_next_bit_wrap(ctx.sectors_to_do, stripe_cnt, s);
6174 		if (s == stripe_cnt)
6175 			break;
6176 
6177 		logical_sector = ctx.first_sector +
6178 			(s << RAID5_STRIPE_SHIFT(conf));
6179 	}
6180 	remove_wait_queue(&conf->wait_for_overlap, &wait);
6181 
6182 	if (ctx.batch_last)
6183 		raid5_release_stripe(ctx.batch_last);
6184 
6185 	if (rw == WRITE)
6186 		md_write_end(mddev);
6187 	bio_endio(bi);
6188 	return true;
6189 }
6190 
6191 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
6192 
6193 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
6194 {
6195 	/* reshaping is quite different to recovery/resync so it is
6196 	 * handled quite separately ... here.
6197 	 *
6198 	 * On each call to sync_request, we gather one chunk worth of
6199 	 * destination stripes and flag them as expanding.
6200 	 * Then we find all the source stripes and request reads.
6201 	 * As the reads complete, handle_stripe will copy the data
6202 	 * into the destination stripe and release that stripe.
6203 	 */
6204 	struct r5conf *conf = mddev->private;
6205 	struct stripe_head *sh;
6206 	struct md_rdev *rdev;
6207 	sector_t first_sector, last_sector;
6208 	int raid_disks = conf->previous_raid_disks;
6209 	int data_disks = raid_disks - conf->max_degraded;
6210 	int new_data_disks = conf->raid_disks - conf->max_degraded;
6211 	int i;
6212 	int dd_idx;
6213 	sector_t writepos, readpos, safepos;
6214 	sector_t stripe_addr;
6215 	int reshape_sectors;
6216 	struct list_head stripes;
6217 	sector_t retn;
6218 
6219 	if (sector_nr == 0) {
6220 		/* If restarting in the middle, skip the initial sectors */
6221 		if (mddev->reshape_backwards &&
6222 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
6223 			sector_nr = raid5_size(mddev, 0, 0)
6224 				- conf->reshape_progress;
6225 		} else if (mddev->reshape_backwards &&
6226 			   conf->reshape_progress == MaxSector) {
6227 			/* shouldn't happen, but just in case, finish up.*/
6228 			sector_nr = MaxSector;
6229 		} else if (!mddev->reshape_backwards &&
6230 			   conf->reshape_progress > 0)
6231 			sector_nr = conf->reshape_progress;
6232 		sector_div(sector_nr, new_data_disks);
6233 		if (sector_nr) {
6234 			mddev->curr_resync_completed = sector_nr;
6235 			sysfs_notify_dirent_safe(mddev->sysfs_completed);
6236 			*skipped = 1;
6237 			retn = sector_nr;
6238 			goto finish;
6239 		}
6240 	}
6241 
6242 	/* We need to process a full chunk at a time.
6243 	 * If old and new chunk sizes differ, we need to process the
6244 	 * largest of these
6245 	 */
6246 
6247 	reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
6248 
6249 	/* We update the metadata at least every 10 seconds, or when
6250 	 * the data about to be copied would over-write the source of
6251 	 * the data at the front of the range.  i.e. one new_stripe
6252 	 * along from reshape_progress new_maps to after where
6253 	 * reshape_safe old_maps to
6254 	 */
6255 	writepos = conf->reshape_progress;
6256 	sector_div(writepos, new_data_disks);
6257 	readpos = conf->reshape_progress;
6258 	sector_div(readpos, data_disks);
6259 	safepos = conf->reshape_safe;
6260 	sector_div(safepos, data_disks);
6261 	if (mddev->reshape_backwards) {
6262 		BUG_ON(writepos < reshape_sectors);
6263 		writepos -= reshape_sectors;
6264 		readpos += reshape_sectors;
6265 		safepos += reshape_sectors;
6266 	} else {
6267 		writepos += reshape_sectors;
6268 		/* readpos and safepos are worst-case calculations.
6269 		 * A negative number is overly pessimistic, and causes
6270 		 * obvious problems for unsigned storage.  So clip to 0.
6271 		 */
6272 		readpos -= min_t(sector_t, reshape_sectors, readpos);
6273 		safepos -= min_t(sector_t, reshape_sectors, safepos);
6274 	}
6275 
6276 	/* Having calculated the 'writepos' possibly use it
6277 	 * to set 'stripe_addr' which is where we will write to.
6278 	 */
6279 	if (mddev->reshape_backwards) {
6280 		BUG_ON(conf->reshape_progress == 0);
6281 		stripe_addr = writepos;
6282 		BUG_ON((mddev->dev_sectors &
6283 			~((sector_t)reshape_sectors - 1))
6284 		       - reshape_sectors - stripe_addr
6285 		       != sector_nr);
6286 	} else {
6287 		BUG_ON(writepos != sector_nr + reshape_sectors);
6288 		stripe_addr = sector_nr;
6289 	}
6290 
6291 	/* 'writepos' is the most advanced device address we might write.
6292 	 * 'readpos' is the least advanced device address we might read.
6293 	 * 'safepos' is the least address recorded in the metadata as having
6294 	 *     been reshaped.
6295 	 * If there is a min_offset_diff, these are adjusted either by
6296 	 * increasing the safepos/readpos if diff is negative, or
6297 	 * increasing writepos if diff is positive.
6298 	 * If 'readpos' is then behind 'writepos', there is no way that we can
6299 	 * ensure safety in the face of a crash - that must be done by userspace
6300 	 * making a backup of the data.  So in that case there is no particular
6301 	 * rush to update metadata.
6302 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
6303 	 * update the metadata to advance 'safepos' to match 'readpos' so that
6304 	 * we can be safe in the event of a crash.
6305 	 * So we insist on updating metadata if safepos is behind writepos and
6306 	 * readpos is beyond writepos.
6307 	 * In any case, update the metadata every 10 seconds.
6308 	 * Maybe that number should be configurable, but I'm not sure it is
6309 	 * worth it.... maybe it could be a multiple of safemode_delay???
6310 	 */
6311 	if (conf->min_offset_diff < 0) {
6312 		safepos += -conf->min_offset_diff;
6313 		readpos += -conf->min_offset_diff;
6314 	} else
6315 		writepos += conf->min_offset_diff;
6316 
6317 	if ((mddev->reshape_backwards
6318 	     ? (safepos > writepos && readpos < writepos)
6319 	     : (safepos < writepos && readpos > writepos)) ||
6320 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
6321 		/* Cannot proceed until we've updated the superblock... */
6322 		wait_event(conf->wait_for_overlap,
6323 			   atomic_read(&conf->reshape_stripes)==0
6324 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6325 		if (atomic_read(&conf->reshape_stripes) != 0)
6326 			return 0;
6327 		mddev->reshape_position = conf->reshape_progress;
6328 		mddev->curr_resync_completed = sector_nr;
6329 		if (!mddev->reshape_backwards)
6330 			/* Can update recovery_offset */
6331 			rdev_for_each(rdev, mddev)
6332 				if (rdev->raid_disk >= 0 &&
6333 				    !test_bit(Journal, &rdev->flags) &&
6334 				    !test_bit(In_sync, &rdev->flags) &&
6335 				    rdev->recovery_offset < sector_nr)
6336 					rdev->recovery_offset = sector_nr;
6337 
6338 		conf->reshape_checkpoint = jiffies;
6339 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6340 		md_wakeup_thread(mddev->thread);
6341 		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
6342 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6343 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6344 			return 0;
6345 		spin_lock_irq(&conf->device_lock);
6346 		conf->reshape_safe = mddev->reshape_position;
6347 		spin_unlock_irq(&conf->device_lock);
6348 		wake_up(&conf->wait_for_overlap);
6349 		sysfs_notify_dirent_safe(mddev->sysfs_completed);
6350 	}
6351 
6352 	INIT_LIST_HEAD(&stripes);
6353 	for (i = 0; i < reshape_sectors; i += RAID5_STRIPE_SECTORS(conf)) {
6354 		int j;
6355 		int skipped_disk = 0;
6356 		sh = raid5_get_active_stripe(conf, NULL, stripe_addr+i,
6357 					     R5_GAS_NOQUIESCE);
6358 		set_bit(STRIPE_EXPANDING, &sh->state);
6359 		atomic_inc(&conf->reshape_stripes);
6360 		/* If any of this stripe is beyond the end of the old
6361 		 * array, then we need to zero those blocks
6362 		 */
6363 		for (j=sh->disks; j--;) {
6364 			sector_t s;
6365 			if (j == sh->pd_idx)
6366 				continue;
6367 			if (conf->level == 6 &&
6368 			    j == sh->qd_idx)
6369 				continue;
6370 			s = raid5_compute_blocknr(sh, j, 0);
6371 			if (s < raid5_size(mddev, 0, 0)) {
6372 				skipped_disk = 1;
6373 				continue;
6374 			}
6375 			memset(page_address(sh->dev[j].page), 0, RAID5_STRIPE_SIZE(conf));
6376 			set_bit(R5_Expanded, &sh->dev[j].flags);
6377 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
6378 		}
6379 		if (!skipped_disk) {
6380 			set_bit(STRIPE_EXPAND_READY, &sh->state);
6381 			set_bit(STRIPE_HANDLE, &sh->state);
6382 		}
6383 		list_add(&sh->lru, &stripes);
6384 	}
6385 	spin_lock_irq(&conf->device_lock);
6386 	if (mddev->reshape_backwards)
6387 		conf->reshape_progress -= reshape_sectors * new_data_disks;
6388 	else
6389 		conf->reshape_progress += reshape_sectors * new_data_disks;
6390 	spin_unlock_irq(&conf->device_lock);
6391 	/* Ok, those stripe are ready. We can start scheduling
6392 	 * reads on the source stripes.
6393 	 * The source stripes are determined by mapping the first and last
6394 	 * block on the destination stripes.
6395 	 */
6396 	first_sector =
6397 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
6398 				     1, &dd_idx, NULL);
6399 	last_sector =
6400 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
6401 					    * new_data_disks - 1),
6402 				     1, &dd_idx, NULL);
6403 	if (last_sector >= mddev->dev_sectors)
6404 		last_sector = mddev->dev_sectors - 1;
6405 	while (first_sector <= last_sector) {
6406 		sh = raid5_get_active_stripe(conf, NULL, first_sector,
6407 				R5_GAS_PREVIOUS | R5_GAS_NOQUIESCE);
6408 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
6409 		set_bit(STRIPE_HANDLE, &sh->state);
6410 		raid5_release_stripe(sh);
6411 		first_sector += RAID5_STRIPE_SECTORS(conf);
6412 	}
6413 	/* Now that the sources are clearly marked, we can release
6414 	 * the destination stripes
6415 	 */
6416 	while (!list_empty(&stripes)) {
6417 		sh = list_entry(stripes.next, struct stripe_head, lru);
6418 		list_del_init(&sh->lru);
6419 		raid5_release_stripe(sh);
6420 	}
6421 	/* If this takes us to the resync_max point where we have to pause,
6422 	 * then we need to write out the superblock.
6423 	 */
6424 	sector_nr += reshape_sectors;
6425 	retn = reshape_sectors;
6426 finish:
6427 	if (mddev->curr_resync_completed > mddev->resync_max ||
6428 	    (sector_nr - mddev->curr_resync_completed) * 2
6429 	    >= mddev->resync_max - mddev->curr_resync_completed) {
6430 		/* Cannot proceed until we've updated the superblock... */
6431 		wait_event(conf->wait_for_overlap,
6432 			   atomic_read(&conf->reshape_stripes) == 0
6433 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6434 		if (atomic_read(&conf->reshape_stripes) != 0)
6435 			goto ret;
6436 		mddev->reshape_position = conf->reshape_progress;
6437 		mddev->curr_resync_completed = sector_nr;
6438 		if (!mddev->reshape_backwards)
6439 			/* Can update recovery_offset */
6440 			rdev_for_each(rdev, mddev)
6441 				if (rdev->raid_disk >= 0 &&
6442 				    !test_bit(Journal, &rdev->flags) &&
6443 				    !test_bit(In_sync, &rdev->flags) &&
6444 				    rdev->recovery_offset < sector_nr)
6445 					rdev->recovery_offset = sector_nr;
6446 		conf->reshape_checkpoint = jiffies;
6447 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6448 		md_wakeup_thread(mddev->thread);
6449 		wait_event(mddev->sb_wait,
6450 			   !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
6451 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6452 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6453 			goto ret;
6454 		spin_lock_irq(&conf->device_lock);
6455 		conf->reshape_safe = mddev->reshape_position;
6456 		spin_unlock_irq(&conf->device_lock);
6457 		wake_up(&conf->wait_for_overlap);
6458 		sysfs_notify_dirent_safe(mddev->sysfs_completed);
6459 	}
6460 ret:
6461 	return retn;
6462 }
6463 
6464 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6465 					  int *skipped)
6466 {
6467 	struct r5conf *conf = mddev->private;
6468 	struct stripe_head *sh;
6469 	sector_t max_sector = mddev->dev_sectors;
6470 	sector_t sync_blocks;
6471 	int still_degraded = 0;
6472 	int i;
6473 
6474 	if (sector_nr >= max_sector) {
6475 		/* just being told to finish up .. nothing much to do */
6476 
6477 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6478 			end_reshape(conf);
6479 			return 0;
6480 		}
6481 
6482 		if (mddev->curr_resync < max_sector) /* aborted */
6483 			md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6484 					   &sync_blocks, 1);
6485 		else /* completed sync */
6486 			conf->fullsync = 0;
6487 		md_bitmap_close_sync(mddev->bitmap);
6488 
6489 		return 0;
6490 	}
6491 
6492 	/* Allow raid5_quiesce to complete */
6493 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6494 
6495 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6496 		return reshape_request(mddev, sector_nr, skipped);
6497 
6498 	/* No need to check resync_max as we never do more than one
6499 	 * stripe, and as resync_max will always be on a chunk boundary,
6500 	 * if the check in md_do_sync didn't fire, there is no chance
6501 	 * of overstepping resync_max here
6502 	 */
6503 
6504 	/* if there is too many failed drives and we are trying
6505 	 * to resync, then assert that we are finished, because there is
6506 	 * nothing we can do.
6507 	 */
6508 	if (mddev->degraded >= conf->max_degraded &&
6509 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6510 		sector_t rv = mddev->dev_sectors - sector_nr;
6511 		*skipped = 1;
6512 		return rv;
6513 	}
6514 	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6515 	    !conf->fullsync &&
6516 	    !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6517 	    sync_blocks >= RAID5_STRIPE_SECTORS(conf)) {
6518 		/* we can skip this block, and probably more */
6519 		do_div(sync_blocks, RAID5_STRIPE_SECTORS(conf));
6520 		*skipped = 1;
6521 		/* keep things rounded to whole stripes */
6522 		return sync_blocks * RAID5_STRIPE_SECTORS(conf);
6523 	}
6524 
6525 	md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
6526 
6527 	sh = raid5_get_active_stripe(conf, NULL, sector_nr,
6528 				     R5_GAS_NOBLOCK);
6529 	if (sh == NULL) {
6530 		sh = raid5_get_active_stripe(conf, NULL, sector_nr, 0);
6531 		/* make sure we don't swamp the stripe cache if someone else
6532 		 * is trying to get access
6533 		 */
6534 		schedule_timeout_uninterruptible(1);
6535 	}
6536 	/* Need to check if array will still be degraded after recovery/resync
6537 	 * Note in case of > 1 drive failures it's possible we're rebuilding
6538 	 * one drive while leaving another faulty drive in array.
6539 	 */
6540 	for (i = 0; i < conf->raid_disks; i++) {
6541 		struct md_rdev *rdev = conf->disks[i].rdev;
6542 
6543 		if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6544 			still_degraded = 1;
6545 	}
6546 
6547 	md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6548 
6549 	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6550 	set_bit(STRIPE_HANDLE, &sh->state);
6551 
6552 	raid5_release_stripe(sh);
6553 
6554 	return RAID5_STRIPE_SECTORS(conf);
6555 }
6556 
6557 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6558 			       unsigned int offset)
6559 {
6560 	/* We may not be able to submit a whole bio at once as there
6561 	 * may not be enough stripe_heads available.
6562 	 * We cannot pre-allocate enough stripe_heads as we may need
6563 	 * more than exist in the cache (if we allow ever large chunks).
6564 	 * So we do one stripe head at a time and record in
6565 	 * ->bi_hw_segments how many have been done.
6566 	 *
6567 	 * We *know* that this entire raid_bio is in one chunk, so
6568 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6569 	 */
6570 	struct stripe_head *sh;
6571 	int dd_idx;
6572 	sector_t sector, logical_sector, last_sector;
6573 	int scnt = 0;
6574 	int handled = 0;
6575 
6576 	logical_sector = raid_bio->bi_iter.bi_sector &
6577 		~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6578 	sector = raid5_compute_sector(conf, logical_sector,
6579 				      0, &dd_idx, NULL);
6580 	last_sector = bio_end_sector(raid_bio);
6581 
6582 	for (; logical_sector < last_sector;
6583 	     logical_sector += RAID5_STRIPE_SECTORS(conf),
6584 		     sector += RAID5_STRIPE_SECTORS(conf),
6585 		     scnt++) {
6586 
6587 		if (scnt < offset)
6588 			/* already done this stripe */
6589 			continue;
6590 
6591 		sh = raid5_get_active_stripe(conf, NULL, sector,
6592 				R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE);
6593 		if (!sh) {
6594 			/* failed to get a stripe - must wait */
6595 			conf->retry_read_aligned = raid_bio;
6596 			conf->retry_read_offset = scnt;
6597 			return handled;
6598 		}
6599 
6600 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6601 			raid5_release_stripe(sh);
6602 			conf->retry_read_aligned = raid_bio;
6603 			conf->retry_read_offset = scnt;
6604 			return handled;
6605 		}
6606 
6607 		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6608 		handle_stripe(sh);
6609 		raid5_release_stripe(sh);
6610 		handled++;
6611 	}
6612 
6613 	bio_endio(raid_bio);
6614 
6615 	if (atomic_dec_and_test(&conf->active_aligned_reads))
6616 		wake_up(&conf->wait_for_quiescent);
6617 	return handled;
6618 }
6619 
6620 static int handle_active_stripes(struct r5conf *conf, int group,
6621 				 struct r5worker *worker,
6622 				 struct list_head *temp_inactive_list)
6623 		__must_hold(&conf->device_lock)
6624 {
6625 	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6626 	int i, batch_size = 0, hash;
6627 	bool release_inactive = false;
6628 
6629 	while (batch_size < MAX_STRIPE_BATCH &&
6630 			(sh = __get_priority_stripe(conf, group)) != NULL)
6631 		batch[batch_size++] = sh;
6632 
6633 	if (batch_size == 0) {
6634 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6635 			if (!list_empty(temp_inactive_list + i))
6636 				break;
6637 		if (i == NR_STRIPE_HASH_LOCKS) {
6638 			spin_unlock_irq(&conf->device_lock);
6639 			log_flush_stripe_to_raid(conf);
6640 			spin_lock_irq(&conf->device_lock);
6641 			return batch_size;
6642 		}
6643 		release_inactive = true;
6644 	}
6645 	spin_unlock_irq(&conf->device_lock);
6646 
6647 	release_inactive_stripe_list(conf, temp_inactive_list,
6648 				     NR_STRIPE_HASH_LOCKS);
6649 
6650 	r5l_flush_stripe_to_raid(conf->log);
6651 	if (release_inactive) {
6652 		spin_lock_irq(&conf->device_lock);
6653 		return 0;
6654 	}
6655 
6656 	for (i = 0; i < batch_size; i++)
6657 		handle_stripe(batch[i]);
6658 	log_write_stripe_run(conf);
6659 
6660 	cond_resched();
6661 
6662 	spin_lock_irq(&conf->device_lock);
6663 	for (i = 0; i < batch_size; i++) {
6664 		hash = batch[i]->hash_lock_index;
6665 		__release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6666 	}
6667 	return batch_size;
6668 }
6669 
6670 static void raid5_do_work(struct work_struct *work)
6671 {
6672 	struct r5worker *worker = container_of(work, struct r5worker, work);
6673 	struct r5worker_group *group = worker->group;
6674 	struct r5conf *conf = group->conf;
6675 	struct mddev *mddev = conf->mddev;
6676 	int group_id = group - conf->worker_groups;
6677 	int handled;
6678 	struct blk_plug plug;
6679 
6680 	pr_debug("+++ raid5worker active\n");
6681 
6682 	blk_start_plug(&plug);
6683 	handled = 0;
6684 	spin_lock_irq(&conf->device_lock);
6685 	while (1) {
6686 		int batch_size, released;
6687 
6688 		released = release_stripe_list(conf, worker->temp_inactive_list);
6689 
6690 		batch_size = handle_active_stripes(conf, group_id, worker,
6691 						   worker->temp_inactive_list);
6692 		worker->working = false;
6693 		if (!batch_size && !released)
6694 			break;
6695 		handled += batch_size;
6696 		wait_event_lock_irq(mddev->sb_wait,
6697 			!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6698 			conf->device_lock);
6699 	}
6700 	pr_debug("%d stripes handled\n", handled);
6701 
6702 	spin_unlock_irq(&conf->device_lock);
6703 
6704 	flush_deferred_bios(conf);
6705 
6706 	r5l_flush_stripe_to_raid(conf->log);
6707 
6708 	async_tx_issue_pending_all();
6709 	blk_finish_plug(&plug);
6710 
6711 	pr_debug("--- raid5worker inactive\n");
6712 }
6713 
6714 /*
6715  * This is our raid5 kernel thread.
6716  *
6717  * We scan the hash table for stripes which can be handled now.
6718  * During the scan, completed stripes are saved for us by the interrupt
6719  * handler, so that they will not have to wait for our next wakeup.
6720  */
6721 static void raid5d(struct md_thread *thread)
6722 {
6723 	struct mddev *mddev = thread->mddev;
6724 	struct r5conf *conf = mddev->private;
6725 	int handled;
6726 	struct blk_plug plug;
6727 
6728 	pr_debug("+++ raid5d active\n");
6729 
6730 	md_check_recovery(mddev);
6731 
6732 	blk_start_plug(&plug);
6733 	handled = 0;
6734 	spin_lock_irq(&conf->device_lock);
6735 	while (1) {
6736 		struct bio *bio;
6737 		int batch_size, released;
6738 		unsigned int offset;
6739 
6740 		released = release_stripe_list(conf, conf->temp_inactive_list);
6741 		if (released)
6742 			clear_bit(R5_DID_ALLOC, &conf->cache_state);
6743 
6744 		if (
6745 		    !list_empty(&conf->bitmap_list)) {
6746 			/* Now is a good time to flush some bitmap updates */
6747 			conf->seq_flush++;
6748 			spin_unlock_irq(&conf->device_lock);
6749 			md_bitmap_unplug(mddev->bitmap);
6750 			spin_lock_irq(&conf->device_lock);
6751 			conf->seq_write = conf->seq_flush;
6752 			activate_bit_delay(conf, conf->temp_inactive_list);
6753 		}
6754 		raid5_activate_delayed(conf);
6755 
6756 		while ((bio = remove_bio_from_retry(conf, &offset))) {
6757 			int ok;
6758 			spin_unlock_irq(&conf->device_lock);
6759 			ok = retry_aligned_read(conf, bio, offset);
6760 			spin_lock_irq(&conf->device_lock);
6761 			if (!ok)
6762 				break;
6763 			handled++;
6764 		}
6765 
6766 		batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6767 						   conf->temp_inactive_list);
6768 		if (!batch_size && !released)
6769 			break;
6770 		handled += batch_size;
6771 
6772 		if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6773 			spin_unlock_irq(&conf->device_lock);
6774 			md_check_recovery(mddev);
6775 			spin_lock_irq(&conf->device_lock);
6776 		}
6777 	}
6778 	pr_debug("%d stripes handled\n", handled);
6779 
6780 	spin_unlock_irq(&conf->device_lock);
6781 	if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6782 	    mutex_trylock(&conf->cache_size_mutex)) {
6783 		grow_one_stripe(conf, __GFP_NOWARN);
6784 		/* Set flag even if allocation failed.  This helps
6785 		 * slow down allocation requests when mem is short
6786 		 */
6787 		set_bit(R5_DID_ALLOC, &conf->cache_state);
6788 		mutex_unlock(&conf->cache_size_mutex);
6789 	}
6790 
6791 	flush_deferred_bios(conf);
6792 
6793 	r5l_flush_stripe_to_raid(conf->log);
6794 
6795 	async_tx_issue_pending_all();
6796 	blk_finish_plug(&plug);
6797 
6798 	pr_debug("--- raid5d inactive\n");
6799 }
6800 
6801 static ssize_t
6802 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6803 {
6804 	struct r5conf *conf;
6805 	int ret = 0;
6806 	spin_lock(&mddev->lock);
6807 	conf = mddev->private;
6808 	if (conf)
6809 		ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6810 	spin_unlock(&mddev->lock);
6811 	return ret;
6812 }
6813 
6814 int
6815 raid5_set_cache_size(struct mddev *mddev, int size)
6816 {
6817 	int result = 0;
6818 	struct r5conf *conf = mddev->private;
6819 
6820 	if (size <= 16 || size > 32768)
6821 		return -EINVAL;
6822 
6823 	conf->min_nr_stripes = size;
6824 	mutex_lock(&conf->cache_size_mutex);
6825 	while (size < conf->max_nr_stripes &&
6826 	       drop_one_stripe(conf))
6827 		;
6828 	mutex_unlock(&conf->cache_size_mutex);
6829 
6830 	md_allow_write(mddev);
6831 
6832 	mutex_lock(&conf->cache_size_mutex);
6833 	while (size > conf->max_nr_stripes)
6834 		if (!grow_one_stripe(conf, GFP_KERNEL)) {
6835 			conf->min_nr_stripes = conf->max_nr_stripes;
6836 			result = -ENOMEM;
6837 			break;
6838 		}
6839 	mutex_unlock(&conf->cache_size_mutex);
6840 
6841 	return result;
6842 }
6843 EXPORT_SYMBOL(raid5_set_cache_size);
6844 
6845 static ssize_t
6846 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6847 {
6848 	struct r5conf *conf;
6849 	unsigned long new;
6850 	int err;
6851 
6852 	if (len >= PAGE_SIZE)
6853 		return -EINVAL;
6854 	if (kstrtoul(page, 10, &new))
6855 		return -EINVAL;
6856 	err = mddev_lock(mddev);
6857 	if (err)
6858 		return err;
6859 	conf = mddev->private;
6860 	if (!conf)
6861 		err = -ENODEV;
6862 	else
6863 		err = raid5_set_cache_size(mddev, new);
6864 	mddev_unlock(mddev);
6865 
6866 	return err ?: len;
6867 }
6868 
6869 static struct md_sysfs_entry
6870 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6871 				raid5_show_stripe_cache_size,
6872 				raid5_store_stripe_cache_size);
6873 
6874 static ssize_t
6875 raid5_show_rmw_level(struct mddev  *mddev, char *page)
6876 {
6877 	struct r5conf *conf = mddev->private;
6878 	if (conf)
6879 		return sprintf(page, "%d\n", conf->rmw_level);
6880 	else
6881 		return 0;
6882 }
6883 
6884 static ssize_t
6885 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
6886 {
6887 	struct r5conf *conf = mddev->private;
6888 	unsigned long new;
6889 
6890 	if (!conf)
6891 		return -ENODEV;
6892 
6893 	if (len >= PAGE_SIZE)
6894 		return -EINVAL;
6895 
6896 	if (kstrtoul(page, 10, &new))
6897 		return -EINVAL;
6898 
6899 	if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6900 		return -EINVAL;
6901 
6902 	if (new != PARITY_DISABLE_RMW &&
6903 	    new != PARITY_ENABLE_RMW &&
6904 	    new != PARITY_PREFER_RMW)
6905 		return -EINVAL;
6906 
6907 	conf->rmw_level = new;
6908 	return len;
6909 }
6910 
6911 static struct md_sysfs_entry
6912 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6913 			 raid5_show_rmw_level,
6914 			 raid5_store_rmw_level);
6915 
6916 static ssize_t
6917 raid5_show_stripe_size(struct mddev  *mddev, char *page)
6918 {
6919 	struct r5conf *conf;
6920 	int ret = 0;
6921 
6922 	spin_lock(&mddev->lock);
6923 	conf = mddev->private;
6924 	if (conf)
6925 		ret = sprintf(page, "%lu\n", RAID5_STRIPE_SIZE(conf));
6926 	spin_unlock(&mddev->lock);
6927 	return ret;
6928 }
6929 
6930 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
6931 static ssize_t
6932 raid5_store_stripe_size(struct mddev  *mddev, const char *page, size_t len)
6933 {
6934 	struct r5conf *conf;
6935 	unsigned long new;
6936 	int err;
6937 	int size;
6938 
6939 	if (len >= PAGE_SIZE)
6940 		return -EINVAL;
6941 	if (kstrtoul(page, 10, &new))
6942 		return -EINVAL;
6943 
6944 	/*
6945 	 * The value should not be bigger than PAGE_SIZE. It requires to
6946 	 * be multiple of DEFAULT_STRIPE_SIZE and the value should be power
6947 	 * of two.
6948 	 */
6949 	if (new % DEFAULT_STRIPE_SIZE != 0 ||
6950 			new > PAGE_SIZE || new == 0 ||
6951 			new != roundup_pow_of_two(new))
6952 		return -EINVAL;
6953 
6954 	err = mddev_suspend_and_lock(mddev);
6955 	if (err)
6956 		return err;
6957 
6958 	conf = mddev->private;
6959 	if (!conf) {
6960 		err = -ENODEV;
6961 		goto out_unlock;
6962 	}
6963 
6964 	if (new == conf->stripe_size)
6965 		goto out_unlock;
6966 
6967 	pr_debug("md/raid: change stripe_size from %lu to %lu\n",
6968 			conf->stripe_size, new);
6969 
6970 	if (mddev->sync_thread ||
6971 		test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6972 		mddev->reshape_position != MaxSector ||
6973 		mddev->sysfs_active) {
6974 		err = -EBUSY;
6975 		goto out_unlock;
6976 	}
6977 
6978 	mutex_lock(&conf->cache_size_mutex);
6979 	size = conf->max_nr_stripes;
6980 
6981 	shrink_stripes(conf);
6982 
6983 	conf->stripe_size = new;
6984 	conf->stripe_shift = ilog2(new) - 9;
6985 	conf->stripe_sectors = new >> 9;
6986 	if (grow_stripes(conf, size)) {
6987 		pr_warn("md/raid:%s: couldn't allocate buffers\n",
6988 				mdname(mddev));
6989 		err = -ENOMEM;
6990 	}
6991 	mutex_unlock(&conf->cache_size_mutex);
6992 
6993 out_unlock:
6994 	mddev_unlock_and_resume(mddev);
6995 	return err ?: len;
6996 }
6997 
6998 static struct md_sysfs_entry
6999 raid5_stripe_size = __ATTR(stripe_size, 0644,
7000 			 raid5_show_stripe_size,
7001 			 raid5_store_stripe_size);
7002 #else
7003 static struct md_sysfs_entry
7004 raid5_stripe_size = __ATTR(stripe_size, 0444,
7005 			 raid5_show_stripe_size,
7006 			 NULL);
7007 #endif
7008 
7009 static ssize_t
7010 raid5_show_preread_threshold(struct mddev *mddev, char *page)
7011 {
7012 	struct r5conf *conf;
7013 	int ret = 0;
7014 	spin_lock(&mddev->lock);
7015 	conf = mddev->private;
7016 	if (conf)
7017 		ret = sprintf(page, "%d\n", conf->bypass_threshold);
7018 	spin_unlock(&mddev->lock);
7019 	return ret;
7020 }
7021 
7022 static ssize_t
7023 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
7024 {
7025 	struct r5conf *conf;
7026 	unsigned long new;
7027 	int err;
7028 
7029 	if (len >= PAGE_SIZE)
7030 		return -EINVAL;
7031 	if (kstrtoul(page, 10, &new))
7032 		return -EINVAL;
7033 
7034 	err = mddev_lock(mddev);
7035 	if (err)
7036 		return err;
7037 	conf = mddev->private;
7038 	if (!conf)
7039 		err = -ENODEV;
7040 	else if (new > conf->min_nr_stripes)
7041 		err = -EINVAL;
7042 	else
7043 		conf->bypass_threshold = new;
7044 	mddev_unlock(mddev);
7045 	return err ?: len;
7046 }
7047 
7048 static struct md_sysfs_entry
7049 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
7050 					S_IRUGO | S_IWUSR,
7051 					raid5_show_preread_threshold,
7052 					raid5_store_preread_threshold);
7053 
7054 static ssize_t
7055 raid5_show_skip_copy(struct mddev *mddev, char *page)
7056 {
7057 	struct r5conf *conf;
7058 	int ret = 0;
7059 	spin_lock(&mddev->lock);
7060 	conf = mddev->private;
7061 	if (conf)
7062 		ret = sprintf(page, "%d\n", conf->skip_copy);
7063 	spin_unlock(&mddev->lock);
7064 	return ret;
7065 }
7066 
7067 static ssize_t
7068 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
7069 {
7070 	struct r5conf *conf;
7071 	unsigned long new;
7072 	int err;
7073 
7074 	if (len >= PAGE_SIZE)
7075 		return -EINVAL;
7076 	if (kstrtoul(page, 10, &new))
7077 		return -EINVAL;
7078 	new = !!new;
7079 
7080 	err = mddev_suspend_and_lock(mddev);
7081 	if (err)
7082 		return err;
7083 	conf = mddev->private;
7084 	if (!conf)
7085 		err = -ENODEV;
7086 	else if (new != conf->skip_copy) {
7087 		struct request_queue *q = mddev->queue;
7088 
7089 		conf->skip_copy = new;
7090 		if (new)
7091 			blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
7092 		else
7093 			blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
7094 	}
7095 	mddev_unlock_and_resume(mddev);
7096 	return err ?: len;
7097 }
7098 
7099 static struct md_sysfs_entry
7100 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
7101 					raid5_show_skip_copy,
7102 					raid5_store_skip_copy);
7103 
7104 static ssize_t
7105 stripe_cache_active_show(struct mddev *mddev, char *page)
7106 {
7107 	struct r5conf *conf = mddev->private;
7108 	if (conf)
7109 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
7110 	else
7111 		return 0;
7112 }
7113 
7114 static struct md_sysfs_entry
7115 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
7116 
7117 static ssize_t
7118 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
7119 {
7120 	struct r5conf *conf;
7121 	int ret = 0;
7122 	spin_lock(&mddev->lock);
7123 	conf = mddev->private;
7124 	if (conf)
7125 		ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
7126 	spin_unlock(&mddev->lock);
7127 	return ret;
7128 }
7129 
7130 static int alloc_thread_groups(struct r5conf *conf, int cnt,
7131 			       int *group_cnt,
7132 			       struct r5worker_group **worker_groups);
7133 static ssize_t
7134 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
7135 {
7136 	struct r5conf *conf;
7137 	unsigned int new;
7138 	int err;
7139 	struct r5worker_group *new_groups, *old_groups;
7140 	int group_cnt;
7141 
7142 	if (len >= PAGE_SIZE)
7143 		return -EINVAL;
7144 	if (kstrtouint(page, 10, &new))
7145 		return -EINVAL;
7146 	/* 8192 should be big enough */
7147 	if (new > 8192)
7148 		return -EINVAL;
7149 
7150 	err = mddev_suspend_and_lock(mddev);
7151 	if (err)
7152 		return err;
7153 	conf = mddev->private;
7154 	if (!conf)
7155 		err = -ENODEV;
7156 	else if (new != conf->worker_cnt_per_group) {
7157 		old_groups = conf->worker_groups;
7158 		if (old_groups)
7159 			flush_workqueue(raid5_wq);
7160 
7161 		err = alloc_thread_groups(conf, new, &group_cnt, &new_groups);
7162 		if (!err) {
7163 			spin_lock_irq(&conf->device_lock);
7164 			conf->group_cnt = group_cnt;
7165 			conf->worker_cnt_per_group = new;
7166 			conf->worker_groups = new_groups;
7167 			spin_unlock_irq(&conf->device_lock);
7168 
7169 			if (old_groups)
7170 				kfree(old_groups[0].workers);
7171 			kfree(old_groups);
7172 		}
7173 	}
7174 	mddev_unlock_and_resume(mddev);
7175 
7176 	return err ?: len;
7177 }
7178 
7179 static struct md_sysfs_entry
7180 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
7181 				raid5_show_group_thread_cnt,
7182 				raid5_store_group_thread_cnt);
7183 
7184 static struct attribute *raid5_attrs[] =  {
7185 	&raid5_stripecache_size.attr,
7186 	&raid5_stripecache_active.attr,
7187 	&raid5_preread_bypass_threshold.attr,
7188 	&raid5_group_thread_cnt.attr,
7189 	&raid5_skip_copy.attr,
7190 	&raid5_rmw_level.attr,
7191 	&raid5_stripe_size.attr,
7192 	&r5c_journal_mode.attr,
7193 	&ppl_write_hint.attr,
7194 	NULL,
7195 };
7196 static const struct attribute_group raid5_attrs_group = {
7197 	.name = NULL,
7198 	.attrs = raid5_attrs,
7199 };
7200 
7201 static int alloc_thread_groups(struct r5conf *conf, int cnt, int *group_cnt,
7202 			       struct r5worker_group **worker_groups)
7203 {
7204 	int i, j, k;
7205 	ssize_t size;
7206 	struct r5worker *workers;
7207 
7208 	if (cnt == 0) {
7209 		*group_cnt = 0;
7210 		*worker_groups = NULL;
7211 		return 0;
7212 	}
7213 	*group_cnt = num_possible_nodes();
7214 	size = sizeof(struct r5worker) * cnt;
7215 	workers = kcalloc(size, *group_cnt, GFP_NOIO);
7216 	*worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group),
7217 				 GFP_NOIO);
7218 	if (!*worker_groups || !workers) {
7219 		kfree(workers);
7220 		kfree(*worker_groups);
7221 		return -ENOMEM;
7222 	}
7223 
7224 	for (i = 0; i < *group_cnt; i++) {
7225 		struct r5worker_group *group;
7226 
7227 		group = &(*worker_groups)[i];
7228 		INIT_LIST_HEAD(&group->handle_list);
7229 		INIT_LIST_HEAD(&group->loprio_list);
7230 		group->conf = conf;
7231 		group->workers = workers + i * cnt;
7232 
7233 		for (j = 0; j < cnt; j++) {
7234 			struct r5worker *worker = group->workers + j;
7235 			worker->group = group;
7236 			INIT_WORK(&worker->work, raid5_do_work);
7237 
7238 			for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
7239 				INIT_LIST_HEAD(worker->temp_inactive_list + k);
7240 		}
7241 	}
7242 
7243 	return 0;
7244 }
7245 
7246 static void free_thread_groups(struct r5conf *conf)
7247 {
7248 	if (conf->worker_groups)
7249 		kfree(conf->worker_groups[0].workers);
7250 	kfree(conf->worker_groups);
7251 	conf->worker_groups = NULL;
7252 }
7253 
7254 static sector_t
7255 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
7256 {
7257 	struct r5conf *conf = mddev->private;
7258 
7259 	if (!sectors)
7260 		sectors = mddev->dev_sectors;
7261 	if (!raid_disks)
7262 		/* size is defined by the smallest of previous and new size */
7263 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
7264 
7265 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
7266 	sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
7267 	return sectors * (raid_disks - conf->max_degraded);
7268 }
7269 
7270 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7271 {
7272 	safe_put_page(percpu->spare_page);
7273 	percpu->spare_page = NULL;
7274 	kvfree(percpu->scribble);
7275 	percpu->scribble = NULL;
7276 }
7277 
7278 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7279 {
7280 	if (conf->level == 6 && !percpu->spare_page) {
7281 		percpu->spare_page = alloc_page(GFP_KERNEL);
7282 		if (!percpu->spare_page)
7283 			return -ENOMEM;
7284 	}
7285 
7286 	if (scribble_alloc(percpu,
7287 			   max(conf->raid_disks,
7288 			       conf->previous_raid_disks),
7289 			   max(conf->chunk_sectors,
7290 			       conf->prev_chunk_sectors)
7291 			   / RAID5_STRIPE_SECTORS(conf))) {
7292 		free_scratch_buffer(conf, percpu);
7293 		return -ENOMEM;
7294 	}
7295 
7296 	local_lock_init(&percpu->lock);
7297 	return 0;
7298 }
7299 
7300 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
7301 {
7302 	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7303 
7304 	free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
7305 	return 0;
7306 }
7307 
7308 static void raid5_free_percpu(struct r5conf *conf)
7309 {
7310 	if (!conf->percpu)
7311 		return;
7312 
7313 	cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
7314 	free_percpu(conf->percpu);
7315 }
7316 
7317 static void free_conf(struct r5conf *conf)
7318 {
7319 	int i;
7320 
7321 	log_exit(conf);
7322 
7323 	shrinker_free(conf->shrinker);
7324 	free_thread_groups(conf);
7325 	shrink_stripes(conf);
7326 	raid5_free_percpu(conf);
7327 	for (i = 0; i < conf->pool_size; i++)
7328 		if (conf->disks[i].extra_page)
7329 			put_page(conf->disks[i].extra_page);
7330 	kfree(conf->disks);
7331 	bioset_exit(&conf->bio_split);
7332 	kfree(conf->stripe_hashtbl);
7333 	kfree(conf->pending_data);
7334 	kfree(conf);
7335 }
7336 
7337 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
7338 {
7339 	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7340 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
7341 
7342 	if (alloc_scratch_buffer(conf, percpu)) {
7343 		pr_warn("%s: failed memory allocation for cpu%u\n",
7344 			__func__, cpu);
7345 		return -ENOMEM;
7346 	}
7347 	return 0;
7348 }
7349 
7350 static int raid5_alloc_percpu(struct r5conf *conf)
7351 {
7352 	int err = 0;
7353 
7354 	conf->percpu = alloc_percpu(struct raid5_percpu);
7355 	if (!conf->percpu)
7356 		return -ENOMEM;
7357 
7358 	err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
7359 	if (!err) {
7360 		conf->scribble_disks = max(conf->raid_disks,
7361 			conf->previous_raid_disks);
7362 		conf->scribble_sectors = max(conf->chunk_sectors,
7363 			conf->prev_chunk_sectors);
7364 	}
7365 	return err;
7366 }
7367 
7368 static unsigned long raid5_cache_scan(struct shrinker *shrink,
7369 				      struct shrink_control *sc)
7370 {
7371 	struct r5conf *conf = shrink->private_data;
7372 	unsigned long ret = SHRINK_STOP;
7373 
7374 	if (mutex_trylock(&conf->cache_size_mutex)) {
7375 		ret= 0;
7376 		while (ret < sc->nr_to_scan &&
7377 		       conf->max_nr_stripes > conf->min_nr_stripes) {
7378 			if (drop_one_stripe(conf) == 0) {
7379 				ret = SHRINK_STOP;
7380 				break;
7381 			}
7382 			ret++;
7383 		}
7384 		mutex_unlock(&conf->cache_size_mutex);
7385 	}
7386 	return ret;
7387 }
7388 
7389 static unsigned long raid5_cache_count(struct shrinker *shrink,
7390 				       struct shrink_control *sc)
7391 {
7392 	struct r5conf *conf = shrink->private_data;
7393 
7394 	if (conf->max_nr_stripes < conf->min_nr_stripes)
7395 		/* unlikely, but not impossible */
7396 		return 0;
7397 	return conf->max_nr_stripes - conf->min_nr_stripes;
7398 }
7399 
7400 static struct r5conf *setup_conf(struct mddev *mddev)
7401 {
7402 	struct r5conf *conf;
7403 	int raid_disk, memory, max_disks;
7404 	struct md_rdev *rdev;
7405 	struct disk_info *disk;
7406 	char pers_name[6];
7407 	int i;
7408 	int group_cnt;
7409 	struct r5worker_group *new_group;
7410 	int ret = -ENOMEM;
7411 
7412 	if (mddev->new_level != 5
7413 	    && mddev->new_level != 4
7414 	    && mddev->new_level != 6) {
7415 		pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
7416 			mdname(mddev), mddev->new_level);
7417 		return ERR_PTR(-EIO);
7418 	}
7419 	if ((mddev->new_level == 5
7420 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
7421 	    (mddev->new_level == 6
7422 	     && !algorithm_valid_raid6(mddev->new_layout))) {
7423 		pr_warn("md/raid:%s: layout %d not supported\n",
7424 			mdname(mddev), mddev->new_layout);
7425 		return ERR_PTR(-EIO);
7426 	}
7427 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
7428 		pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
7429 			mdname(mddev), mddev->raid_disks);
7430 		return ERR_PTR(-EINVAL);
7431 	}
7432 
7433 	if (!mddev->new_chunk_sectors ||
7434 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
7435 	    !is_power_of_2(mddev->new_chunk_sectors)) {
7436 		pr_warn("md/raid:%s: invalid chunk size %d\n",
7437 			mdname(mddev), mddev->new_chunk_sectors << 9);
7438 		return ERR_PTR(-EINVAL);
7439 	}
7440 
7441 	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
7442 	if (conf == NULL)
7443 		goto abort;
7444 
7445 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
7446 	conf->stripe_size = DEFAULT_STRIPE_SIZE;
7447 	conf->stripe_shift = ilog2(DEFAULT_STRIPE_SIZE) - 9;
7448 	conf->stripe_sectors = DEFAULT_STRIPE_SIZE >> 9;
7449 #endif
7450 	INIT_LIST_HEAD(&conf->free_list);
7451 	INIT_LIST_HEAD(&conf->pending_list);
7452 	conf->pending_data = kcalloc(PENDING_IO_MAX,
7453 				     sizeof(struct r5pending_data),
7454 				     GFP_KERNEL);
7455 	if (!conf->pending_data)
7456 		goto abort;
7457 	for (i = 0; i < PENDING_IO_MAX; i++)
7458 		list_add(&conf->pending_data[i].sibling, &conf->free_list);
7459 	/* Don't enable multi-threading by default*/
7460 	if (!alloc_thread_groups(conf, 0, &group_cnt, &new_group)) {
7461 		conf->group_cnt = group_cnt;
7462 		conf->worker_cnt_per_group = 0;
7463 		conf->worker_groups = new_group;
7464 	} else
7465 		goto abort;
7466 	spin_lock_init(&conf->device_lock);
7467 	seqcount_spinlock_init(&conf->gen_lock, &conf->device_lock);
7468 	mutex_init(&conf->cache_size_mutex);
7469 
7470 	init_waitqueue_head(&conf->wait_for_quiescent);
7471 	init_waitqueue_head(&conf->wait_for_stripe);
7472 	init_waitqueue_head(&conf->wait_for_overlap);
7473 	INIT_LIST_HEAD(&conf->handle_list);
7474 	INIT_LIST_HEAD(&conf->loprio_list);
7475 	INIT_LIST_HEAD(&conf->hold_list);
7476 	INIT_LIST_HEAD(&conf->delayed_list);
7477 	INIT_LIST_HEAD(&conf->bitmap_list);
7478 	init_llist_head(&conf->released_stripes);
7479 	atomic_set(&conf->active_stripes, 0);
7480 	atomic_set(&conf->preread_active_stripes, 0);
7481 	atomic_set(&conf->active_aligned_reads, 0);
7482 	spin_lock_init(&conf->pending_bios_lock);
7483 	conf->batch_bio_dispatch = true;
7484 	rdev_for_each(rdev, mddev) {
7485 		if (test_bit(Journal, &rdev->flags))
7486 			continue;
7487 		if (bdev_nonrot(rdev->bdev)) {
7488 			conf->batch_bio_dispatch = false;
7489 			break;
7490 		}
7491 	}
7492 
7493 	conf->bypass_threshold = BYPASS_THRESHOLD;
7494 	conf->recovery_disabled = mddev->recovery_disabled - 1;
7495 
7496 	conf->raid_disks = mddev->raid_disks;
7497 	if (mddev->reshape_position == MaxSector)
7498 		conf->previous_raid_disks = mddev->raid_disks;
7499 	else
7500 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
7501 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
7502 
7503 	conf->disks = kcalloc(max_disks, sizeof(struct disk_info),
7504 			      GFP_KERNEL);
7505 
7506 	if (!conf->disks)
7507 		goto abort;
7508 
7509 	for (i = 0; i < max_disks; i++) {
7510 		conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
7511 		if (!conf->disks[i].extra_page)
7512 			goto abort;
7513 	}
7514 
7515 	ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
7516 	if (ret)
7517 		goto abort;
7518 	conf->mddev = mddev;
7519 
7520 	ret = -ENOMEM;
7521 	conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL);
7522 	if (!conf->stripe_hashtbl)
7523 		goto abort;
7524 
7525 	/* We init hash_locks[0] separately to that it can be used
7526 	 * as the reference lock in the spin_lock_nest_lock() call
7527 	 * in lock_all_device_hash_locks_irq in order to convince
7528 	 * lockdep that we know what we are doing.
7529 	 */
7530 	spin_lock_init(conf->hash_locks);
7531 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
7532 		spin_lock_init(conf->hash_locks + i);
7533 
7534 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7535 		INIT_LIST_HEAD(conf->inactive_list + i);
7536 
7537 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7538 		INIT_LIST_HEAD(conf->temp_inactive_list + i);
7539 
7540 	atomic_set(&conf->r5c_cached_full_stripes, 0);
7541 	INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
7542 	atomic_set(&conf->r5c_cached_partial_stripes, 0);
7543 	INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
7544 	atomic_set(&conf->r5c_flushing_full_stripes, 0);
7545 	atomic_set(&conf->r5c_flushing_partial_stripes, 0);
7546 
7547 	conf->level = mddev->new_level;
7548 	conf->chunk_sectors = mddev->new_chunk_sectors;
7549 	ret = raid5_alloc_percpu(conf);
7550 	if (ret)
7551 		goto abort;
7552 
7553 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
7554 
7555 	ret = -EIO;
7556 	rdev_for_each(rdev, mddev) {
7557 		raid_disk = rdev->raid_disk;
7558 		if (raid_disk >= max_disks
7559 		    || raid_disk < 0 || test_bit(Journal, &rdev->flags))
7560 			continue;
7561 		disk = conf->disks + raid_disk;
7562 
7563 		if (test_bit(Replacement, &rdev->flags)) {
7564 			if (disk->replacement)
7565 				goto abort;
7566 			RCU_INIT_POINTER(disk->replacement, rdev);
7567 		} else {
7568 			if (disk->rdev)
7569 				goto abort;
7570 			RCU_INIT_POINTER(disk->rdev, rdev);
7571 		}
7572 
7573 		if (test_bit(In_sync, &rdev->flags)) {
7574 			pr_info("md/raid:%s: device %pg operational as raid disk %d\n",
7575 				mdname(mddev), rdev->bdev, raid_disk);
7576 		} else if (rdev->saved_raid_disk != raid_disk)
7577 			/* Cannot rely on bitmap to complete recovery */
7578 			conf->fullsync = 1;
7579 	}
7580 
7581 	conf->level = mddev->new_level;
7582 	if (conf->level == 6) {
7583 		conf->max_degraded = 2;
7584 		if (raid6_call.xor_syndrome)
7585 			conf->rmw_level = PARITY_ENABLE_RMW;
7586 		else
7587 			conf->rmw_level = PARITY_DISABLE_RMW;
7588 	} else {
7589 		conf->max_degraded = 1;
7590 		conf->rmw_level = PARITY_ENABLE_RMW;
7591 	}
7592 	conf->algorithm = mddev->new_layout;
7593 	conf->reshape_progress = mddev->reshape_position;
7594 	if (conf->reshape_progress != MaxSector) {
7595 		conf->prev_chunk_sectors = mddev->chunk_sectors;
7596 		conf->prev_algo = mddev->layout;
7597 	} else {
7598 		conf->prev_chunk_sectors = conf->chunk_sectors;
7599 		conf->prev_algo = conf->algorithm;
7600 	}
7601 
7602 	conf->min_nr_stripes = NR_STRIPES;
7603 	if (mddev->reshape_position != MaxSector) {
7604 		int stripes = max_t(int,
7605 			((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4,
7606 			((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4);
7607 		conf->min_nr_stripes = max(NR_STRIPES, stripes);
7608 		if (conf->min_nr_stripes != NR_STRIPES)
7609 			pr_info("md/raid:%s: force stripe size %d for reshape\n",
7610 				mdname(mddev), conf->min_nr_stripes);
7611 	}
7612 	memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7613 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7614 	atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7615 	if (grow_stripes(conf, conf->min_nr_stripes)) {
7616 		pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7617 			mdname(mddev), memory);
7618 		ret = -ENOMEM;
7619 		goto abort;
7620 	} else
7621 		pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7622 	/*
7623 	 * Losing a stripe head costs more than the time to refill it,
7624 	 * it reduces the queue depth and so can hurt throughput.
7625 	 * So set it rather large, scaled by number of devices.
7626 	 */
7627 	conf->shrinker = shrinker_alloc(0, "md-raid5:%s", mdname(mddev));
7628 	if (!conf->shrinker) {
7629 		ret = -ENOMEM;
7630 		pr_warn("md/raid:%s: couldn't allocate shrinker.\n",
7631 			mdname(mddev));
7632 		goto abort;
7633 	}
7634 
7635 	conf->shrinker->seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7636 	conf->shrinker->scan_objects = raid5_cache_scan;
7637 	conf->shrinker->count_objects = raid5_cache_count;
7638 	conf->shrinker->batch = 128;
7639 	conf->shrinker->private_data = conf;
7640 
7641 	shrinker_register(conf->shrinker);
7642 
7643 	sprintf(pers_name, "raid%d", mddev->new_level);
7644 	rcu_assign_pointer(conf->thread,
7645 			   md_register_thread(raid5d, mddev, pers_name));
7646 	if (!conf->thread) {
7647 		pr_warn("md/raid:%s: couldn't allocate thread.\n",
7648 			mdname(mddev));
7649 		ret = -ENOMEM;
7650 		goto abort;
7651 	}
7652 
7653 	return conf;
7654 
7655  abort:
7656 	if (conf)
7657 		free_conf(conf);
7658 	return ERR_PTR(ret);
7659 }
7660 
7661 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7662 {
7663 	switch (algo) {
7664 	case ALGORITHM_PARITY_0:
7665 		if (raid_disk < max_degraded)
7666 			return 1;
7667 		break;
7668 	case ALGORITHM_PARITY_N:
7669 		if (raid_disk >= raid_disks - max_degraded)
7670 			return 1;
7671 		break;
7672 	case ALGORITHM_PARITY_0_6:
7673 		if (raid_disk == 0 ||
7674 		    raid_disk == raid_disks - 1)
7675 			return 1;
7676 		break;
7677 	case ALGORITHM_LEFT_ASYMMETRIC_6:
7678 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
7679 	case ALGORITHM_LEFT_SYMMETRIC_6:
7680 	case ALGORITHM_RIGHT_SYMMETRIC_6:
7681 		if (raid_disk == raid_disks - 1)
7682 			return 1;
7683 	}
7684 	return 0;
7685 }
7686 
7687 static void raid5_set_io_opt(struct r5conf *conf)
7688 {
7689 	blk_queue_io_opt(conf->mddev->queue, (conf->chunk_sectors << 9) *
7690 			 (conf->raid_disks - conf->max_degraded));
7691 }
7692 
7693 static int raid5_run(struct mddev *mddev)
7694 {
7695 	struct r5conf *conf;
7696 	int dirty_parity_disks = 0;
7697 	struct md_rdev *rdev;
7698 	struct md_rdev *journal_dev = NULL;
7699 	sector_t reshape_offset = 0;
7700 	int i;
7701 	long long min_offset_diff = 0;
7702 	int first = 1;
7703 
7704 	if (mddev->recovery_cp != MaxSector)
7705 		pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7706 			  mdname(mddev));
7707 
7708 	rdev_for_each(rdev, mddev) {
7709 		long long diff;
7710 
7711 		if (test_bit(Journal, &rdev->flags)) {
7712 			journal_dev = rdev;
7713 			continue;
7714 		}
7715 		if (rdev->raid_disk < 0)
7716 			continue;
7717 		diff = (rdev->new_data_offset - rdev->data_offset);
7718 		if (first) {
7719 			min_offset_diff = diff;
7720 			first = 0;
7721 		} else if (mddev->reshape_backwards &&
7722 			 diff < min_offset_diff)
7723 			min_offset_diff = diff;
7724 		else if (!mddev->reshape_backwards &&
7725 			 diff > min_offset_diff)
7726 			min_offset_diff = diff;
7727 	}
7728 
7729 	if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7730 	    (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7731 		pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7732 			  mdname(mddev));
7733 		return -EINVAL;
7734 	}
7735 
7736 	if (mddev->reshape_position != MaxSector) {
7737 		/* Check that we can continue the reshape.
7738 		 * Difficulties arise if the stripe we would write to
7739 		 * next is at or after the stripe we would read from next.
7740 		 * For a reshape that changes the number of devices, this
7741 		 * is only possible for a very short time, and mdadm makes
7742 		 * sure that time appears to have past before assembling
7743 		 * the array.  So we fail if that time hasn't passed.
7744 		 * For a reshape that keeps the number of devices the same
7745 		 * mdadm must be monitoring the reshape can keeping the
7746 		 * critical areas read-only and backed up.  It will start
7747 		 * the array in read-only mode, so we check for that.
7748 		 */
7749 		sector_t here_new, here_old;
7750 		int old_disks;
7751 		int max_degraded = (mddev->level == 6 ? 2 : 1);
7752 		int chunk_sectors;
7753 		int new_data_disks;
7754 
7755 		if (journal_dev) {
7756 			pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7757 				mdname(mddev));
7758 			return -EINVAL;
7759 		}
7760 
7761 		if (mddev->new_level != mddev->level) {
7762 			pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7763 				mdname(mddev));
7764 			return -EINVAL;
7765 		}
7766 		old_disks = mddev->raid_disks - mddev->delta_disks;
7767 		/* reshape_position must be on a new-stripe boundary, and one
7768 		 * further up in new geometry must map after here in old
7769 		 * geometry.
7770 		 * If the chunk sizes are different, then as we perform reshape
7771 		 * in units of the largest of the two, reshape_position needs
7772 		 * be a multiple of the largest chunk size times new data disks.
7773 		 */
7774 		here_new = mddev->reshape_position;
7775 		chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7776 		new_data_disks = mddev->raid_disks - max_degraded;
7777 		if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7778 			pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7779 				mdname(mddev));
7780 			return -EINVAL;
7781 		}
7782 		reshape_offset = here_new * chunk_sectors;
7783 		/* here_new is the stripe we will write to */
7784 		here_old = mddev->reshape_position;
7785 		sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7786 		/* here_old is the first stripe that we might need to read
7787 		 * from */
7788 		if (mddev->delta_disks == 0) {
7789 			/* We cannot be sure it is safe to start an in-place
7790 			 * reshape.  It is only safe if user-space is monitoring
7791 			 * and taking constant backups.
7792 			 * mdadm always starts a situation like this in
7793 			 * readonly mode so it can take control before
7794 			 * allowing any writes.  So just check for that.
7795 			 */
7796 			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7797 			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
7798 				/* not really in-place - so OK */;
7799 			else if (mddev->ro == 0) {
7800 				pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7801 					mdname(mddev));
7802 				return -EINVAL;
7803 			}
7804 		} else if (mddev->reshape_backwards
7805 		    ? (here_new * chunk_sectors + min_offset_diff <=
7806 		       here_old * chunk_sectors)
7807 		    : (here_new * chunk_sectors >=
7808 		       here_old * chunk_sectors + (-min_offset_diff))) {
7809 			/* Reading from the same stripe as writing to - bad */
7810 			pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7811 				mdname(mddev));
7812 			return -EINVAL;
7813 		}
7814 		pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7815 		/* OK, we should be able to continue; */
7816 	} else {
7817 		BUG_ON(mddev->level != mddev->new_level);
7818 		BUG_ON(mddev->layout != mddev->new_layout);
7819 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7820 		BUG_ON(mddev->delta_disks != 0);
7821 	}
7822 
7823 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7824 	    test_bit(MD_HAS_PPL, &mddev->flags)) {
7825 		pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7826 			mdname(mddev));
7827 		clear_bit(MD_HAS_PPL, &mddev->flags);
7828 		clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
7829 	}
7830 
7831 	if (mddev->private == NULL)
7832 		conf = setup_conf(mddev);
7833 	else
7834 		conf = mddev->private;
7835 
7836 	if (IS_ERR(conf))
7837 		return PTR_ERR(conf);
7838 
7839 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7840 		if (!journal_dev) {
7841 			pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7842 				mdname(mddev));
7843 			mddev->ro = 1;
7844 			set_disk_ro(mddev->gendisk, 1);
7845 		} else if (mddev->recovery_cp == MaxSector)
7846 			set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7847 	}
7848 
7849 	conf->min_offset_diff = min_offset_diff;
7850 	rcu_assign_pointer(mddev->thread, conf->thread);
7851 	rcu_assign_pointer(conf->thread, NULL);
7852 	mddev->private = conf;
7853 
7854 	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7855 	     i++) {
7856 		rdev = conf->disks[i].rdev;
7857 		if (!rdev)
7858 			continue;
7859 		if (conf->disks[i].replacement &&
7860 		    conf->reshape_progress != MaxSector) {
7861 			/* replacements and reshape simply do not mix. */
7862 			pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7863 			goto abort;
7864 		}
7865 		if (test_bit(In_sync, &rdev->flags))
7866 			continue;
7867 		/* This disc is not fully in-sync.  However if it
7868 		 * just stored parity (beyond the recovery_offset),
7869 		 * when we don't need to be concerned about the
7870 		 * array being dirty.
7871 		 * When reshape goes 'backwards', we never have
7872 		 * partially completed devices, so we only need
7873 		 * to worry about reshape going forwards.
7874 		 */
7875 		/* Hack because v0.91 doesn't store recovery_offset properly. */
7876 		if (mddev->major_version == 0 &&
7877 		    mddev->minor_version > 90)
7878 			rdev->recovery_offset = reshape_offset;
7879 
7880 		if (rdev->recovery_offset < reshape_offset) {
7881 			/* We need to check old and new layout */
7882 			if (!only_parity(rdev->raid_disk,
7883 					 conf->algorithm,
7884 					 conf->raid_disks,
7885 					 conf->max_degraded))
7886 				continue;
7887 		}
7888 		if (!only_parity(rdev->raid_disk,
7889 				 conf->prev_algo,
7890 				 conf->previous_raid_disks,
7891 				 conf->max_degraded))
7892 			continue;
7893 		dirty_parity_disks++;
7894 	}
7895 
7896 	/*
7897 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
7898 	 */
7899 	mddev->degraded = raid5_calc_degraded(conf);
7900 
7901 	if (has_failed(conf)) {
7902 		pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7903 			mdname(mddev), mddev->degraded, conf->raid_disks);
7904 		goto abort;
7905 	}
7906 
7907 	/* device size must be a multiple of chunk size */
7908 	mddev->dev_sectors &= ~((sector_t)mddev->chunk_sectors - 1);
7909 	mddev->resync_max_sectors = mddev->dev_sectors;
7910 
7911 	if (mddev->degraded > dirty_parity_disks &&
7912 	    mddev->recovery_cp != MaxSector) {
7913 		if (test_bit(MD_HAS_PPL, &mddev->flags))
7914 			pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7915 				mdname(mddev));
7916 		else if (mddev->ok_start_degraded)
7917 			pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7918 				mdname(mddev));
7919 		else {
7920 			pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7921 				mdname(mddev));
7922 			goto abort;
7923 		}
7924 	}
7925 
7926 	pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7927 		mdname(mddev), conf->level,
7928 		mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7929 		mddev->new_layout);
7930 
7931 	print_raid5_conf(conf);
7932 
7933 	if (conf->reshape_progress != MaxSector) {
7934 		conf->reshape_safe = conf->reshape_progress;
7935 		atomic_set(&conf->reshape_stripes, 0);
7936 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7937 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7938 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7939 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7940 		rcu_assign_pointer(mddev->sync_thread,
7941 			md_register_thread(md_do_sync, mddev, "reshape"));
7942 		if (!mddev->sync_thread)
7943 			goto abort;
7944 	}
7945 
7946 	/* Ok, everything is just fine now */
7947 	if (mddev->to_remove == &raid5_attrs_group)
7948 		mddev->to_remove = NULL;
7949 	else if (mddev->kobj.sd &&
7950 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
7951 		pr_warn("raid5: failed to create sysfs attributes for %s\n",
7952 			mdname(mddev));
7953 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7954 
7955 	if (mddev->queue) {
7956 		int chunk_size;
7957 		/* read-ahead size must cover two whole stripes, which
7958 		 * is 2 * (datadisks) * chunksize where 'n' is the
7959 		 * number of raid devices
7960 		 */
7961 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
7962 		int stripe = data_disks *
7963 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
7964 
7965 		chunk_size = mddev->chunk_sectors << 9;
7966 		blk_queue_io_min(mddev->queue, chunk_size);
7967 		raid5_set_io_opt(conf);
7968 		mddev->queue->limits.raid_partial_stripes_expensive = 1;
7969 		/*
7970 		 * We can only discard a whole stripe. It doesn't make sense to
7971 		 * discard data disk but write parity disk
7972 		 */
7973 		stripe = stripe * PAGE_SIZE;
7974 		stripe = roundup_pow_of_two(stripe);
7975 		mddev->queue->limits.discard_granularity = stripe;
7976 
7977 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
7978 
7979 		rdev_for_each(rdev, mddev) {
7980 			disk_stack_limits(mddev->gendisk, rdev->bdev,
7981 					  rdev->data_offset << 9);
7982 			disk_stack_limits(mddev->gendisk, rdev->bdev,
7983 					  rdev->new_data_offset << 9);
7984 		}
7985 
7986 		/*
7987 		 * zeroing is required, otherwise data
7988 		 * could be lost. Consider a scenario: discard a stripe
7989 		 * (the stripe could be inconsistent if
7990 		 * discard_zeroes_data is 0); write one disk of the
7991 		 * stripe (the stripe could be inconsistent again
7992 		 * depending on which disks are used to calculate
7993 		 * parity); the disk is broken; The stripe data of this
7994 		 * disk is lost.
7995 		 *
7996 		 * We only allow DISCARD if the sysadmin has confirmed that
7997 		 * only safe devices are in use by setting a module parameter.
7998 		 * A better idea might be to turn DISCARD into WRITE_ZEROES
7999 		 * requests, as that is required to be safe.
8000 		 */
8001 		if (!devices_handle_discard_safely ||
8002 		    mddev->queue->limits.max_discard_sectors < (stripe >> 9) ||
8003 		    mddev->queue->limits.discard_granularity < stripe)
8004 			blk_queue_max_discard_sectors(mddev->queue, 0);
8005 
8006 		/*
8007 		 * Requests require having a bitmap for each stripe.
8008 		 * Limit the max sectors based on this.
8009 		 */
8010 		blk_queue_max_hw_sectors(mddev->queue,
8011 			RAID5_MAX_REQ_STRIPES << RAID5_STRIPE_SHIFT(conf));
8012 
8013 		/* No restrictions on the number of segments in the request */
8014 		blk_queue_max_segments(mddev->queue, USHRT_MAX);
8015 	}
8016 
8017 	if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
8018 		goto abort;
8019 
8020 	return 0;
8021 abort:
8022 	md_unregister_thread(mddev, &mddev->thread);
8023 	print_raid5_conf(conf);
8024 	free_conf(conf);
8025 	mddev->private = NULL;
8026 	pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
8027 	return -EIO;
8028 }
8029 
8030 static void raid5_free(struct mddev *mddev, void *priv)
8031 {
8032 	struct r5conf *conf = priv;
8033 
8034 	free_conf(conf);
8035 	mddev->to_remove = &raid5_attrs_group;
8036 }
8037 
8038 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
8039 {
8040 	struct r5conf *conf = mddev->private;
8041 	int i;
8042 
8043 	lockdep_assert_held(&mddev->lock);
8044 
8045 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
8046 		conf->chunk_sectors / 2, mddev->layout);
8047 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
8048 	for (i = 0; i < conf->raid_disks; i++) {
8049 		struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
8050 
8051 		seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
8052 	}
8053 	seq_printf (seq, "]");
8054 }
8055 
8056 static void print_raid5_conf (struct r5conf *conf)
8057 {
8058 	struct md_rdev *rdev;
8059 	int i;
8060 
8061 	pr_debug("RAID conf printout:\n");
8062 	if (!conf) {
8063 		pr_debug("(conf==NULL)\n");
8064 		return;
8065 	}
8066 	pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
8067 	       conf->raid_disks,
8068 	       conf->raid_disks - conf->mddev->degraded);
8069 
8070 	rcu_read_lock();
8071 	for (i = 0; i < conf->raid_disks; i++) {
8072 		rdev = rcu_dereference(conf->disks[i].rdev);
8073 		if (rdev)
8074 			pr_debug(" disk %d, o:%d, dev:%pg\n",
8075 			       i, !test_bit(Faulty, &rdev->flags),
8076 			       rdev->bdev);
8077 	}
8078 	rcu_read_unlock();
8079 }
8080 
8081 static int raid5_spare_active(struct mddev *mddev)
8082 {
8083 	int i;
8084 	struct r5conf *conf = mddev->private;
8085 	struct md_rdev *rdev, *replacement;
8086 	int count = 0;
8087 	unsigned long flags;
8088 
8089 	for (i = 0; i < conf->raid_disks; i++) {
8090 		rdev = conf->disks[i].rdev;
8091 		replacement = conf->disks[i].replacement;
8092 		if (replacement
8093 		    && replacement->recovery_offset == MaxSector
8094 		    && !test_bit(Faulty, &replacement->flags)
8095 		    && !test_and_set_bit(In_sync, &replacement->flags)) {
8096 			/* Replacement has just become active. */
8097 			if (!rdev
8098 			    || !test_and_clear_bit(In_sync, &rdev->flags))
8099 				count++;
8100 			if (rdev) {
8101 				/* Replaced device not technically faulty,
8102 				 * but we need to be sure it gets removed
8103 				 * and never re-added.
8104 				 */
8105 				set_bit(Faulty, &rdev->flags);
8106 				sysfs_notify_dirent_safe(
8107 					rdev->sysfs_state);
8108 			}
8109 			sysfs_notify_dirent_safe(replacement->sysfs_state);
8110 		} else if (rdev
8111 		    && rdev->recovery_offset == MaxSector
8112 		    && !test_bit(Faulty, &rdev->flags)
8113 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
8114 			count++;
8115 			sysfs_notify_dirent_safe(rdev->sysfs_state);
8116 		}
8117 	}
8118 	spin_lock_irqsave(&conf->device_lock, flags);
8119 	mddev->degraded = raid5_calc_degraded(conf);
8120 	spin_unlock_irqrestore(&conf->device_lock, flags);
8121 	print_raid5_conf(conf);
8122 	return count;
8123 }
8124 
8125 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
8126 {
8127 	struct r5conf *conf = mddev->private;
8128 	int err = 0;
8129 	int number = rdev->raid_disk;
8130 	struct md_rdev **rdevp;
8131 	struct disk_info *p;
8132 	struct md_rdev *tmp;
8133 
8134 	print_raid5_conf(conf);
8135 	if (test_bit(Journal, &rdev->flags) && conf->log) {
8136 		/*
8137 		 * we can't wait pending write here, as this is called in
8138 		 * raid5d, wait will deadlock.
8139 		 * neilb: there is no locking about new writes here,
8140 		 * so this cannot be safe.
8141 		 */
8142 		if (atomic_read(&conf->active_stripes) ||
8143 		    atomic_read(&conf->r5c_cached_full_stripes) ||
8144 		    atomic_read(&conf->r5c_cached_partial_stripes)) {
8145 			return -EBUSY;
8146 		}
8147 		log_exit(conf);
8148 		return 0;
8149 	}
8150 	if (unlikely(number >= conf->pool_size))
8151 		return 0;
8152 	p = conf->disks + number;
8153 	if (rdev == p->rdev)
8154 		rdevp = &p->rdev;
8155 	else if (rdev == p->replacement)
8156 		rdevp = &p->replacement;
8157 	else
8158 		return 0;
8159 
8160 	if (number >= conf->raid_disks &&
8161 	    conf->reshape_progress == MaxSector)
8162 		clear_bit(In_sync, &rdev->flags);
8163 
8164 	if (test_bit(In_sync, &rdev->flags) ||
8165 	    atomic_read(&rdev->nr_pending)) {
8166 		err = -EBUSY;
8167 		goto abort;
8168 	}
8169 	/* Only remove non-faulty devices if recovery
8170 	 * isn't possible.
8171 	 */
8172 	if (!test_bit(Faulty, &rdev->flags) &&
8173 	    mddev->recovery_disabled != conf->recovery_disabled &&
8174 	    !has_failed(conf) &&
8175 	    (!p->replacement || p->replacement == rdev) &&
8176 	    number < conf->raid_disks) {
8177 		err = -EBUSY;
8178 		goto abort;
8179 	}
8180 	WRITE_ONCE(*rdevp, NULL);
8181 	if (!err) {
8182 		err = log_modify(conf, rdev, false);
8183 		if (err)
8184 			goto abort;
8185 	}
8186 
8187 	tmp = p->replacement;
8188 	if (tmp) {
8189 		/* We must have just cleared 'rdev' */
8190 		WRITE_ONCE(p->rdev, tmp);
8191 		clear_bit(Replacement, &tmp->flags);
8192 		WRITE_ONCE(p->replacement, NULL);
8193 
8194 		if (!err)
8195 			err = log_modify(conf, tmp, true);
8196 	}
8197 
8198 	clear_bit(WantReplacement, &rdev->flags);
8199 abort:
8200 
8201 	print_raid5_conf(conf);
8202 	return err;
8203 }
8204 
8205 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
8206 {
8207 	struct r5conf *conf = mddev->private;
8208 	int ret, err = -EEXIST;
8209 	int disk;
8210 	struct disk_info *p;
8211 	struct md_rdev *tmp;
8212 	int first = 0;
8213 	int last = conf->raid_disks - 1;
8214 
8215 	if (test_bit(Journal, &rdev->flags)) {
8216 		if (conf->log)
8217 			return -EBUSY;
8218 
8219 		rdev->raid_disk = 0;
8220 		/*
8221 		 * The array is in readonly mode if journal is missing, so no
8222 		 * write requests running. We should be safe
8223 		 */
8224 		ret = log_init(conf, rdev, false);
8225 		if (ret)
8226 			return ret;
8227 
8228 		ret = r5l_start(conf->log);
8229 		if (ret)
8230 			return ret;
8231 
8232 		return 0;
8233 	}
8234 	if (mddev->recovery_disabled == conf->recovery_disabled)
8235 		return -EBUSY;
8236 
8237 	if (rdev->saved_raid_disk < 0 && has_failed(conf))
8238 		/* no point adding a device */
8239 		return -EINVAL;
8240 
8241 	if (rdev->raid_disk >= 0)
8242 		first = last = rdev->raid_disk;
8243 
8244 	/*
8245 	 * find the disk ... but prefer rdev->saved_raid_disk
8246 	 * if possible.
8247 	 */
8248 	if (rdev->saved_raid_disk >= first &&
8249 	    rdev->saved_raid_disk <= last &&
8250 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
8251 		first = rdev->saved_raid_disk;
8252 
8253 	for (disk = first; disk <= last; disk++) {
8254 		p = conf->disks + disk;
8255 		if (p->rdev == NULL) {
8256 			clear_bit(In_sync, &rdev->flags);
8257 			rdev->raid_disk = disk;
8258 			if (rdev->saved_raid_disk != disk)
8259 				conf->fullsync = 1;
8260 			WRITE_ONCE(p->rdev, rdev);
8261 
8262 			err = log_modify(conf, rdev, true);
8263 
8264 			goto out;
8265 		}
8266 	}
8267 	for (disk = first; disk <= last; disk++) {
8268 		p = conf->disks + disk;
8269 		tmp = p->rdev;
8270 		if (test_bit(WantReplacement, &tmp->flags) &&
8271 		    mddev->reshape_position == MaxSector &&
8272 		    p->replacement == NULL) {
8273 			clear_bit(In_sync, &rdev->flags);
8274 			set_bit(Replacement, &rdev->flags);
8275 			rdev->raid_disk = disk;
8276 			err = 0;
8277 			conf->fullsync = 1;
8278 			WRITE_ONCE(p->replacement, rdev);
8279 			break;
8280 		}
8281 	}
8282 out:
8283 	print_raid5_conf(conf);
8284 	return err;
8285 }
8286 
8287 static int raid5_resize(struct mddev *mddev, sector_t sectors)
8288 {
8289 	/* no resync is happening, and there is enough space
8290 	 * on all devices, so we can resize.
8291 	 * We need to make sure resync covers any new space.
8292 	 * If the array is shrinking we should possibly wait until
8293 	 * any io in the removed space completes, but it hardly seems
8294 	 * worth it.
8295 	 */
8296 	sector_t newsize;
8297 	struct r5conf *conf = mddev->private;
8298 
8299 	if (raid5_has_log(conf) || raid5_has_ppl(conf))
8300 		return -EINVAL;
8301 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
8302 	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
8303 	if (mddev->external_size &&
8304 	    mddev->array_sectors > newsize)
8305 		return -EINVAL;
8306 	if (mddev->bitmap) {
8307 		int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0);
8308 		if (ret)
8309 			return ret;
8310 	}
8311 	md_set_array_sectors(mddev, newsize);
8312 	if (sectors > mddev->dev_sectors &&
8313 	    mddev->recovery_cp > mddev->dev_sectors) {
8314 		mddev->recovery_cp = mddev->dev_sectors;
8315 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8316 	}
8317 	mddev->dev_sectors = sectors;
8318 	mddev->resync_max_sectors = sectors;
8319 	return 0;
8320 }
8321 
8322 static int check_stripe_cache(struct mddev *mddev)
8323 {
8324 	/* Can only proceed if there are plenty of stripe_heads.
8325 	 * We need a minimum of one full stripe,, and for sensible progress
8326 	 * it is best to have about 4 times that.
8327 	 * If we require 4 times, then the default 256 4K stripe_heads will
8328 	 * allow for chunk sizes up to 256K, which is probably OK.
8329 	 * If the chunk size is greater, user-space should request more
8330 	 * stripe_heads first.
8331 	 */
8332 	struct r5conf *conf = mddev->private;
8333 	if (((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
8334 	    > conf->min_nr_stripes ||
8335 	    ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
8336 	    > conf->min_nr_stripes) {
8337 		pr_warn("md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
8338 			mdname(mddev),
8339 			((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
8340 			 / RAID5_STRIPE_SIZE(conf))*4);
8341 		return 0;
8342 	}
8343 	return 1;
8344 }
8345 
8346 static int check_reshape(struct mddev *mddev)
8347 {
8348 	struct r5conf *conf = mddev->private;
8349 
8350 	if (raid5_has_log(conf) || raid5_has_ppl(conf))
8351 		return -EINVAL;
8352 	if (mddev->delta_disks == 0 &&
8353 	    mddev->new_layout == mddev->layout &&
8354 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
8355 		return 0; /* nothing to do */
8356 	if (has_failed(conf))
8357 		return -EINVAL;
8358 	if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
8359 		/* We might be able to shrink, but the devices must
8360 		 * be made bigger first.
8361 		 * For raid6, 4 is the minimum size.
8362 		 * Otherwise 2 is the minimum
8363 		 */
8364 		int min = 2;
8365 		if (mddev->level == 6)
8366 			min = 4;
8367 		if (mddev->raid_disks + mddev->delta_disks < min)
8368 			return -EINVAL;
8369 	}
8370 
8371 	if (!check_stripe_cache(mddev))
8372 		return -ENOSPC;
8373 
8374 	if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
8375 	    mddev->delta_disks > 0)
8376 		if (resize_chunks(conf,
8377 				  conf->previous_raid_disks
8378 				  + max(0, mddev->delta_disks),
8379 				  max(mddev->new_chunk_sectors,
8380 				      mddev->chunk_sectors)
8381 			    ) < 0)
8382 			return -ENOMEM;
8383 
8384 	if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
8385 		return 0; /* never bother to shrink */
8386 	return resize_stripes(conf, (conf->previous_raid_disks
8387 				     + mddev->delta_disks));
8388 }
8389 
8390 static int raid5_start_reshape(struct mddev *mddev)
8391 {
8392 	struct r5conf *conf = mddev->private;
8393 	struct md_rdev *rdev;
8394 	int spares = 0;
8395 	int i;
8396 	unsigned long flags;
8397 
8398 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
8399 		return -EBUSY;
8400 
8401 	if (!check_stripe_cache(mddev))
8402 		return -ENOSPC;
8403 
8404 	if (has_failed(conf))
8405 		return -EINVAL;
8406 
8407 	/* raid5 can't handle concurrent reshape and recovery */
8408 	if (mddev->recovery_cp < MaxSector)
8409 		return -EBUSY;
8410 	for (i = 0; i < conf->raid_disks; i++)
8411 		if (conf->disks[i].replacement)
8412 			return -EBUSY;
8413 
8414 	rdev_for_each(rdev, mddev) {
8415 		if (!test_bit(In_sync, &rdev->flags)
8416 		    && !test_bit(Faulty, &rdev->flags))
8417 			spares++;
8418 	}
8419 
8420 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
8421 		/* Not enough devices even to make a degraded array
8422 		 * of that size
8423 		 */
8424 		return -EINVAL;
8425 
8426 	/* Refuse to reduce size of the array.  Any reductions in
8427 	 * array size must be through explicit setting of array_size
8428 	 * attribute.
8429 	 */
8430 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
8431 	    < mddev->array_sectors) {
8432 		pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
8433 			mdname(mddev));
8434 		return -EINVAL;
8435 	}
8436 
8437 	atomic_set(&conf->reshape_stripes, 0);
8438 	spin_lock_irq(&conf->device_lock);
8439 	write_seqcount_begin(&conf->gen_lock);
8440 	conf->previous_raid_disks = conf->raid_disks;
8441 	conf->raid_disks += mddev->delta_disks;
8442 	conf->prev_chunk_sectors = conf->chunk_sectors;
8443 	conf->chunk_sectors = mddev->new_chunk_sectors;
8444 	conf->prev_algo = conf->algorithm;
8445 	conf->algorithm = mddev->new_layout;
8446 	conf->generation++;
8447 	/* Code that selects data_offset needs to see the generation update
8448 	 * if reshape_progress has been set - so a memory barrier needed.
8449 	 */
8450 	smp_mb();
8451 	if (mddev->reshape_backwards)
8452 		conf->reshape_progress = raid5_size(mddev, 0, 0);
8453 	else
8454 		conf->reshape_progress = 0;
8455 	conf->reshape_safe = conf->reshape_progress;
8456 	write_seqcount_end(&conf->gen_lock);
8457 	spin_unlock_irq(&conf->device_lock);
8458 
8459 	/* Now make sure any requests that proceeded on the assumption
8460 	 * the reshape wasn't running - like Discard or Read - have
8461 	 * completed.
8462 	 */
8463 	raid5_quiesce(mddev, true);
8464 	raid5_quiesce(mddev, false);
8465 
8466 	/* Add some new drives, as many as will fit.
8467 	 * We know there are enough to make the newly sized array work.
8468 	 * Don't add devices if we are reducing the number of
8469 	 * devices in the array.  This is because it is not possible
8470 	 * to correctly record the "partially reconstructed" state of
8471 	 * such devices during the reshape and confusion could result.
8472 	 */
8473 	if (mddev->delta_disks >= 0) {
8474 		rdev_for_each(rdev, mddev)
8475 			if (rdev->raid_disk < 0 &&
8476 			    !test_bit(Faulty, &rdev->flags)) {
8477 				if (raid5_add_disk(mddev, rdev) == 0) {
8478 					if (rdev->raid_disk
8479 					    >= conf->previous_raid_disks)
8480 						set_bit(In_sync, &rdev->flags);
8481 					else
8482 						rdev->recovery_offset = 0;
8483 
8484 					/* Failure here is OK */
8485 					sysfs_link_rdev(mddev, rdev);
8486 				}
8487 			} else if (rdev->raid_disk >= conf->previous_raid_disks
8488 				   && !test_bit(Faulty, &rdev->flags)) {
8489 				/* This is a spare that was manually added */
8490 				set_bit(In_sync, &rdev->flags);
8491 			}
8492 
8493 		/* When a reshape changes the number of devices,
8494 		 * ->degraded is measured against the larger of the
8495 		 * pre and post number of devices.
8496 		 */
8497 		spin_lock_irqsave(&conf->device_lock, flags);
8498 		mddev->degraded = raid5_calc_degraded(conf);
8499 		spin_unlock_irqrestore(&conf->device_lock, flags);
8500 	}
8501 	mddev->raid_disks = conf->raid_disks;
8502 	mddev->reshape_position = conf->reshape_progress;
8503 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8504 
8505 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8506 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8507 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8508 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8509 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8510 	rcu_assign_pointer(mddev->sync_thread,
8511 			   md_register_thread(md_do_sync, mddev, "reshape"));
8512 	if (!mddev->sync_thread) {
8513 		mddev->recovery = 0;
8514 		spin_lock_irq(&conf->device_lock);
8515 		write_seqcount_begin(&conf->gen_lock);
8516 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
8517 		mddev->new_chunk_sectors =
8518 			conf->chunk_sectors = conf->prev_chunk_sectors;
8519 		mddev->new_layout = conf->algorithm = conf->prev_algo;
8520 		rdev_for_each(rdev, mddev)
8521 			rdev->new_data_offset = rdev->data_offset;
8522 		smp_wmb();
8523 		conf->generation --;
8524 		conf->reshape_progress = MaxSector;
8525 		mddev->reshape_position = MaxSector;
8526 		write_seqcount_end(&conf->gen_lock);
8527 		spin_unlock_irq(&conf->device_lock);
8528 		return -EAGAIN;
8529 	}
8530 	conf->reshape_checkpoint = jiffies;
8531 	md_wakeup_thread(mddev->sync_thread);
8532 	md_new_event();
8533 	return 0;
8534 }
8535 
8536 /* This is called from the reshape thread and should make any
8537  * changes needed in 'conf'
8538  */
8539 static void end_reshape(struct r5conf *conf)
8540 {
8541 
8542 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
8543 		struct md_rdev *rdev;
8544 
8545 		spin_lock_irq(&conf->device_lock);
8546 		conf->previous_raid_disks = conf->raid_disks;
8547 		md_finish_reshape(conf->mddev);
8548 		smp_wmb();
8549 		conf->reshape_progress = MaxSector;
8550 		conf->mddev->reshape_position = MaxSector;
8551 		rdev_for_each(rdev, conf->mddev)
8552 			if (rdev->raid_disk >= 0 &&
8553 			    !test_bit(Journal, &rdev->flags) &&
8554 			    !test_bit(In_sync, &rdev->flags))
8555 				rdev->recovery_offset = MaxSector;
8556 		spin_unlock_irq(&conf->device_lock);
8557 		wake_up(&conf->wait_for_overlap);
8558 
8559 		if (conf->mddev->queue)
8560 			raid5_set_io_opt(conf);
8561 	}
8562 }
8563 
8564 /* This is called from the raid5d thread with mddev_lock held.
8565  * It makes config changes to the device.
8566  */
8567 static void raid5_finish_reshape(struct mddev *mddev)
8568 {
8569 	struct r5conf *conf = mddev->private;
8570 	struct md_rdev *rdev;
8571 
8572 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8573 
8574 		if (mddev->delta_disks <= 0) {
8575 			int d;
8576 			spin_lock_irq(&conf->device_lock);
8577 			mddev->degraded = raid5_calc_degraded(conf);
8578 			spin_unlock_irq(&conf->device_lock);
8579 			for (d = conf->raid_disks ;
8580 			     d < conf->raid_disks - mddev->delta_disks;
8581 			     d++) {
8582 				rdev = conf->disks[d].rdev;
8583 				if (rdev)
8584 					clear_bit(In_sync, &rdev->flags);
8585 				rdev = conf->disks[d].replacement;
8586 				if (rdev)
8587 					clear_bit(In_sync, &rdev->flags);
8588 			}
8589 		}
8590 		mddev->layout = conf->algorithm;
8591 		mddev->chunk_sectors = conf->chunk_sectors;
8592 		mddev->reshape_position = MaxSector;
8593 		mddev->delta_disks = 0;
8594 		mddev->reshape_backwards = 0;
8595 	}
8596 }
8597 
8598 static void raid5_quiesce(struct mddev *mddev, int quiesce)
8599 {
8600 	struct r5conf *conf = mddev->private;
8601 
8602 	if (quiesce) {
8603 		/* stop all writes */
8604 		lock_all_device_hash_locks_irq(conf);
8605 		/* '2' tells resync/reshape to pause so that all
8606 		 * active stripes can drain
8607 		 */
8608 		r5c_flush_cache(conf, INT_MAX);
8609 		/* need a memory barrier to make sure read_one_chunk() sees
8610 		 * quiesce started and reverts to slow (locked) path.
8611 		 */
8612 		smp_store_release(&conf->quiesce, 2);
8613 		wait_event_cmd(conf->wait_for_quiescent,
8614 				    atomic_read(&conf->active_stripes) == 0 &&
8615 				    atomic_read(&conf->active_aligned_reads) == 0,
8616 				    unlock_all_device_hash_locks_irq(conf),
8617 				    lock_all_device_hash_locks_irq(conf));
8618 		conf->quiesce = 1;
8619 		unlock_all_device_hash_locks_irq(conf);
8620 		/* allow reshape to continue */
8621 		wake_up(&conf->wait_for_overlap);
8622 	} else {
8623 		/* re-enable writes */
8624 		lock_all_device_hash_locks_irq(conf);
8625 		conf->quiesce = 0;
8626 		wake_up(&conf->wait_for_quiescent);
8627 		wake_up(&conf->wait_for_overlap);
8628 		unlock_all_device_hash_locks_irq(conf);
8629 	}
8630 	log_quiesce(conf, quiesce);
8631 }
8632 
8633 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8634 {
8635 	struct r0conf *raid0_conf = mddev->private;
8636 	sector_t sectors;
8637 
8638 	/* for raid0 takeover only one zone is supported */
8639 	if (raid0_conf->nr_strip_zones > 1) {
8640 		pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8641 			mdname(mddev));
8642 		return ERR_PTR(-EINVAL);
8643 	}
8644 
8645 	sectors = raid0_conf->strip_zone[0].zone_end;
8646 	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8647 	mddev->dev_sectors = sectors;
8648 	mddev->new_level = level;
8649 	mddev->new_layout = ALGORITHM_PARITY_N;
8650 	mddev->new_chunk_sectors = mddev->chunk_sectors;
8651 	mddev->raid_disks += 1;
8652 	mddev->delta_disks = 1;
8653 	/* make sure it will be not marked as dirty */
8654 	mddev->recovery_cp = MaxSector;
8655 
8656 	return setup_conf(mddev);
8657 }
8658 
8659 static void *raid5_takeover_raid1(struct mddev *mddev)
8660 {
8661 	int chunksect;
8662 	void *ret;
8663 
8664 	if (mddev->raid_disks != 2 ||
8665 	    mddev->degraded > 1)
8666 		return ERR_PTR(-EINVAL);
8667 
8668 	/* Should check if there are write-behind devices? */
8669 
8670 	chunksect = 64*2; /* 64K by default */
8671 
8672 	/* The array must be an exact multiple of chunksize */
8673 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
8674 		chunksect >>= 1;
8675 
8676 	if ((chunksect<<9) < RAID5_STRIPE_SIZE((struct r5conf *)mddev->private))
8677 		/* array size does not allow a suitable chunk size */
8678 		return ERR_PTR(-EINVAL);
8679 
8680 	mddev->new_level = 5;
8681 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8682 	mddev->new_chunk_sectors = chunksect;
8683 
8684 	ret = setup_conf(mddev);
8685 	if (!IS_ERR(ret))
8686 		mddev_clear_unsupported_flags(mddev,
8687 			UNSUPPORTED_MDDEV_FLAGS);
8688 	return ret;
8689 }
8690 
8691 static void *raid5_takeover_raid6(struct mddev *mddev)
8692 {
8693 	int new_layout;
8694 
8695 	switch (mddev->layout) {
8696 	case ALGORITHM_LEFT_ASYMMETRIC_6:
8697 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8698 		break;
8699 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
8700 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8701 		break;
8702 	case ALGORITHM_LEFT_SYMMETRIC_6:
8703 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
8704 		break;
8705 	case ALGORITHM_RIGHT_SYMMETRIC_6:
8706 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8707 		break;
8708 	case ALGORITHM_PARITY_0_6:
8709 		new_layout = ALGORITHM_PARITY_0;
8710 		break;
8711 	case ALGORITHM_PARITY_N:
8712 		new_layout = ALGORITHM_PARITY_N;
8713 		break;
8714 	default:
8715 		return ERR_PTR(-EINVAL);
8716 	}
8717 	mddev->new_level = 5;
8718 	mddev->new_layout = new_layout;
8719 	mddev->delta_disks = -1;
8720 	mddev->raid_disks -= 1;
8721 	return setup_conf(mddev);
8722 }
8723 
8724 static int raid5_check_reshape(struct mddev *mddev)
8725 {
8726 	/* For a 2-drive array, the layout and chunk size can be changed
8727 	 * immediately as not restriping is needed.
8728 	 * For larger arrays we record the new value - after validation
8729 	 * to be used by a reshape pass.
8730 	 */
8731 	struct r5conf *conf = mddev->private;
8732 	int new_chunk = mddev->new_chunk_sectors;
8733 
8734 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8735 		return -EINVAL;
8736 	if (new_chunk > 0) {
8737 		if (!is_power_of_2(new_chunk))
8738 			return -EINVAL;
8739 		if (new_chunk < (PAGE_SIZE>>9))
8740 			return -EINVAL;
8741 		if (mddev->array_sectors & (new_chunk-1))
8742 			/* not factor of array size */
8743 			return -EINVAL;
8744 	}
8745 
8746 	/* They look valid */
8747 
8748 	if (mddev->raid_disks == 2) {
8749 		/* can make the change immediately */
8750 		if (mddev->new_layout >= 0) {
8751 			conf->algorithm = mddev->new_layout;
8752 			mddev->layout = mddev->new_layout;
8753 		}
8754 		if (new_chunk > 0) {
8755 			conf->chunk_sectors = new_chunk ;
8756 			mddev->chunk_sectors = new_chunk;
8757 		}
8758 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8759 		md_wakeup_thread(mddev->thread);
8760 	}
8761 	return check_reshape(mddev);
8762 }
8763 
8764 static int raid6_check_reshape(struct mddev *mddev)
8765 {
8766 	int new_chunk = mddev->new_chunk_sectors;
8767 
8768 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8769 		return -EINVAL;
8770 	if (new_chunk > 0) {
8771 		if (!is_power_of_2(new_chunk))
8772 			return -EINVAL;
8773 		if (new_chunk < (PAGE_SIZE >> 9))
8774 			return -EINVAL;
8775 		if (mddev->array_sectors & (new_chunk-1))
8776 			/* not factor of array size */
8777 			return -EINVAL;
8778 	}
8779 
8780 	/* They look valid */
8781 	return check_reshape(mddev);
8782 }
8783 
8784 static void *raid5_takeover(struct mddev *mddev)
8785 {
8786 	/* raid5 can take over:
8787 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
8788 	 *  raid1 - if there are two drives.  We need to know the chunk size
8789 	 *  raid4 - trivial - just use a raid4 layout.
8790 	 *  raid6 - Providing it is a *_6 layout
8791 	 */
8792 	if (mddev->level == 0)
8793 		return raid45_takeover_raid0(mddev, 5);
8794 	if (mddev->level == 1)
8795 		return raid5_takeover_raid1(mddev);
8796 	if (mddev->level == 4) {
8797 		mddev->new_layout = ALGORITHM_PARITY_N;
8798 		mddev->new_level = 5;
8799 		return setup_conf(mddev);
8800 	}
8801 	if (mddev->level == 6)
8802 		return raid5_takeover_raid6(mddev);
8803 
8804 	return ERR_PTR(-EINVAL);
8805 }
8806 
8807 static void *raid4_takeover(struct mddev *mddev)
8808 {
8809 	/* raid4 can take over:
8810 	 *  raid0 - if there is only one strip zone
8811 	 *  raid5 - if layout is right
8812 	 */
8813 	if (mddev->level == 0)
8814 		return raid45_takeover_raid0(mddev, 4);
8815 	if (mddev->level == 5 &&
8816 	    mddev->layout == ALGORITHM_PARITY_N) {
8817 		mddev->new_layout = 0;
8818 		mddev->new_level = 4;
8819 		return setup_conf(mddev);
8820 	}
8821 	return ERR_PTR(-EINVAL);
8822 }
8823 
8824 static struct md_personality raid5_personality;
8825 
8826 static void *raid6_takeover(struct mddev *mddev)
8827 {
8828 	/* Currently can only take over a raid5.  We map the
8829 	 * personality to an equivalent raid6 personality
8830 	 * with the Q block at the end.
8831 	 */
8832 	int new_layout;
8833 
8834 	if (mddev->pers != &raid5_personality)
8835 		return ERR_PTR(-EINVAL);
8836 	if (mddev->degraded > 1)
8837 		return ERR_PTR(-EINVAL);
8838 	if (mddev->raid_disks > 253)
8839 		return ERR_PTR(-EINVAL);
8840 	if (mddev->raid_disks < 3)
8841 		return ERR_PTR(-EINVAL);
8842 
8843 	switch (mddev->layout) {
8844 	case ALGORITHM_LEFT_ASYMMETRIC:
8845 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8846 		break;
8847 	case ALGORITHM_RIGHT_ASYMMETRIC:
8848 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8849 		break;
8850 	case ALGORITHM_LEFT_SYMMETRIC:
8851 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8852 		break;
8853 	case ALGORITHM_RIGHT_SYMMETRIC:
8854 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8855 		break;
8856 	case ALGORITHM_PARITY_0:
8857 		new_layout = ALGORITHM_PARITY_0_6;
8858 		break;
8859 	case ALGORITHM_PARITY_N:
8860 		new_layout = ALGORITHM_PARITY_N;
8861 		break;
8862 	default:
8863 		return ERR_PTR(-EINVAL);
8864 	}
8865 	mddev->new_level = 6;
8866 	mddev->new_layout = new_layout;
8867 	mddev->delta_disks = 1;
8868 	mddev->raid_disks += 1;
8869 	return setup_conf(mddev);
8870 }
8871 
8872 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8873 {
8874 	struct r5conf *conf;
8875 	int err;
8876 
8877 	err = mddev_suspend_and_lock(mddev);
8878 	if (err)
8879 		return err;
8880 	conf = mddev->private;
8881 	if (!conf) {
8882 		mddev_unlock_and_resume(mddev);
8883 		return -ENODEV;
8884 	}
8885 
8886 	if (strncmp(buf, "ppl", 3) == 0) {
8887 		/* ppl only works with RAID 5 */
8888 		if (!raid5_has_ppl(conf) && conf->level == 5) {
8889 			err = log_init(conf, NULL, true);
8890 			if (!err) {
8891 				err = resize_stripes(conf, conf->pool_size);
8892 				if (err)
8893 					log_exit(conf);
8894 			}
8895 		} else
8896 			err = -EINVAL;
8897 	} else if (strncmp(buf, "resync", 6) == 0) {
8898 		if (raid5_has_ppl(conf)) {
8899 			log_exit(conf);
8900 			err = resize_stripes(conf, conf->pool_size);
8901 		} else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8902 			   r5l_log_disk_error(conf)) {
8903 			bool journal_dev_exists = false;
8904 			struct md_rdev *rdev;
8905 
8906 			rdev_for_each(rdev, mddev)
8907 				if (test_bit(Journal, &rdev->flags)) {
8908 					journal_dev_exists = true;
8909 					break;
8910 				}
8911 
8912 			if (!journal_dev_exists)
8913 				clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8914 			else  /* need remove journal device first */
8915 				err = -EBUSY;
8916 		} else
8917 			err = -EINVAL;
8918 	} else {
8919 		err = -EINVAL;
8920 	}
8921 
8922 	if (!err)
8923 		md_update_sb(mddev, 1);
8924 
8925 	mddev_unlock_and_resume(mddev);
8926 
8927 	return err;
8928 }
8929 
8930 static int raid5_start(struct mddev *mddev)
8931 {
8932 	struct r5conf *conf = mddev->private;
8933 
8934 	return r5l_start(conf->log);
8935 }
8936 
8937 static struct md_personality raid6_personality =
8938 {
8939 	.name		= "raid6",
8940 	.level		= 6,
8941 	.owner		= THIS_MODULE,
8942 	.make_request	= raid5_make_request,
8943 	.run		= raid5_run,
8944 	.start		= raid5_start,
8945 	.free		= raid5_free,
8946 	.status		= raid5_status,
8947 	.error_handler	= raid5_error,
8948 	.hot_add_disk	= raid5_add_disk,
8949 	.hot_remove_disk= raid5_remove_disk,
8950 	.spare_active	= raid5_spare_active,
8951 	.sync_request	= raid5_sync_request,
8952 	.resize		= raid5_resize,
8953 	.size		= raid5_size,
8954 	.check_reshape	= raid6_check_reshape,
8955 	.start_reshape  = raid5_start_reshape,
8956 	.finish_reshape = raid5_finish_reshape,
8957 	.quiesce	= raid5_quiesce,
8958 	.takeover	= raid6_takeover,
8959 	.change_consistency_policy = raid5_change_consistency_policy,
8960 };
8961 static struct md_personality raid5_personality =
8962 {
8963 	.name		= "raid5",
8964 	.level		= 5,
8965 	.owner		= THIS_MODULE,
8966 	.make_request	= raid5_make_request,
8967 	.run		= raid5_run,
8968 	.start		= raid5_start,
8969 	.free		= raid5_free,
8970 	.status		= raid5_status,
8971 	.error_handler	= raid5_error,
8972 	.hot_add_disk	= raid5_add_disk,
8973 	.hot_remove_disk= raid5_remove_disk,
8974 	.spare_active	= raid5_spare_active,
8975 	.sync_request	= raid5_sync_request,
8976 	.resize		= raid5_resize,
8977 	.size		= raid5_size,
8978 	.check_reshape	= raid5_check_reshape,
8979 	.start_reshape  = raid5_start_reshape,
8980 	.finish_reshape = raid5_finish_reshape,
8981 	.quiesce	= raid5_quiesce,
8982 	.takeover	= raid5_takeover,
8983 	.change_consistency_policy = raid5_change_consistency_policy,
8984 };
8985 
8986 static struct md_personality raid4_personality =
8987 {
8988 	.name		= "raid4",
8989 	.level		= 4,
8990 	.owner		= THIS_MODULE,
8991 	.make_request	= raid5_make_request,
8992 	.run		= raid5_run,
8993 	.start		= raid5_start,
8994 	.free		= raid5_free,
8995 	.status		= raid5_status,
8996 	.error_handler	= raid5_error,
8997 	.hot_add_disk	= raid5_add_disk,
8998 	.hot_remove_disk= raid5_remove_disk,
8999 	.spare_active	= raid5_spare_active,
9000 	.sync_request	= raid5_sync_request,
9001 	.resize		= raid5_resize,
9002 	.size		= raid5_size,
9003 	.check_reshape	= raid5_check_reshape,
9004 	.start_reshape  = raid5_start_reshape,
9005 	.finish_reshape = raid5_finish_reshape,
9006 	.quiesce	= raid5_quiesce,
9007 	.takeover	= raid4_takeover,
9008 	.change_consistency_policy = raid5_change_consistency_policy,
9009 };
9010 
9011 static int __init raid5_init(void)
9012 {
9013 	int ret;
9014 
9015 	raid5_wq = alloc_workqueue("raid5wq",
9016 		WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
9017 	if (!raid5_wq)
9018 		return -ENOMEM;
9019 
9020 	ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
9021 				      "md/raid5:prepare",
9022 				      raid456_cpu_up_prepare,
9023 				      raid456_cpu_dead);
9024 	if (ret) {
9025 		destroy_workqueue(raid5_wq);
9026 		return ret;
9027 	}
9028 	register_md_personality(&raid6_personality);
9029 	register_md_personality(&raid5_personality);
9030 	register_md_personality(&raid4_personality);
9031 	return 0;
9032 }
9033 
9034 static void raid5_exit(void)
9035 {
9036 	unregister_md_personality(&raid6_personality);
9037 	unregister_md_personality(&raid5_personality);
9038 	unregister_md_personality(&raid4_personality);
9039 	cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
9040 	destroy_workqueue(raid5_wq);
9041 }
9042 
9043 module_init(raid5_init);
9044 module_exit(raid5_exit);
9045 MODULE_LICENSE("GPL");
9046 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
9047 MODULE_ALIAS("md-personality-4"); /* RAID5 */
9048 MODULE_ALIAS("md-raid5");
9049 MODULE_ALIAS("md-raid4");
9050 MODULE_ALIAS("md-level-5");
9051 MODULE_ALIAS("md-level-4");
9052 MODULE_ALIAS("md-personality-8"); /* RAID6 */
9053 MODULE_ALIAS("md-raid6");
9054 MODULE_ALIAS("md-level-6");
9055 
9056 /* This used to be two separate modules, they were: */
9057 MODULE_ALIAS("raid5");
9058 MODULE_ALIAS("raid6");
9059