1 /* 2 * raid5.c : Multiple Devices driver for Linux 3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman 4 * Copyright (C) 1999, 2000 Ingo Molnar 5 * Copyright (C) 2002, 2003 H. Peter Anvin 6 * 7 * RAID-4/5/6 management functions. 8 * Thanks to Penguin Computing for making the RAID-6 development possible 9 * by donating a test server! 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 /* 22 * BITMAP UNPLUGGING: 23 * 24 * The sequencing for updating the bitmap reliably is a little 25 * subtle (and I got it wrong the first time) so it deserves some 26 * explanation. 27 * 28 * We group bitmap updates into batches. Each batch has a number. 29 * We may write out several batches at once, but that isn't very important. 30 * conf->seq_write is the number of the last batch successfully written. 31 * conf->seq_flush is the number of the last batch that was closed to 32 * new additions. 33 * When we discover that we will need to write to any block in a stripe 34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq 35 * the number of the batch it will be in. This is seq_flush+1. 36 * When we are ready to do a write, if that batch hasn't been written yet, 37 * we plug the array and queue the stripe for later. 38 * When an unplug happens, we increment bm_flush, thus closing the current 39 * batch. 40 * When we notice that bm_flush > bm_write, we write out all pending updates 41 * to the bitmap, and advance bm_write to where bm_flush was. 42 * This may occasionally write a bit out twice, but is sure never to 43 * miss any bits. 44 */ 45 46 #include <linux/blkdev.h> 47 #include <linux/kthread.h> 48 #include <linux/raid/pq.h> 49 #include <linux/async_tx.h> 50 #include <linux/module.h> 51 #include <linux/async.h> 52 #include <linux/seq_file.h> 53 #include <linux/cpu.h> 54 #include <linux/slab.h> 55 #include <linux/ratelimit.h> 56 #include <linux/nodemask.h> 57 #include <trace/events/block.h> 58 59 #include "md.h" 60 #include "raid5.h" 61 #include "raid0.h" 62 #include "bitmap.h" 63 64 #define cpu_to_group(cpu) cpu_to_node(cpu) 65 #define ANY_GROUP NUMA_NO_NODE 66 67 static bool devices_handle_discard_safely = false; 68 module_param(devices_handle_discard_safely, bool, 0644); 69 MODULE_PARM_DESC(devices_handle_discard_safely, 70 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions"); 71 static struct workqueue_struct *raid5_wq; 72 /* 73 * Stripe cache 74 */ 75 76 #define NR_STRIPES 256 77 #define STRIPE_SIZE PAGE_SIZE 78 #define STRIPE_SHIFT (PAGE_SHIFT - 9) 79 #define STRIPE_SECTORS (STRIPE_SIZE>>9) 80 #define IO_THRESHOLD 1 81 #define BYPASS_THRESHOLD 1 82 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head)) 83 #define HASH_MASK (NR_HASH - 1) 84 #define MAX_STRIPE_BATCH 8 85 86 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect) 87 { 88 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK; 89 return &conf->stripe_hashtbl[hash]; 90 } 91 92 static inline int stripe_hash_locks_hash(sector_t sect) 93 { 94 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK; 95 } 96 97 static inline void lock_device_hash_lock(struct r5conf *conf, int hash) 98 { 99 spin_lock_irq(conf->hash_locks + hash); 100 spin_lock(&conf->device_lock); 101 } 102 103 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash) 104 { 105 spin_unlock(&conf->device_lock); 106 spin_unlock_irq(conf->hash_locks + hash); 107 } 108 109 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf) 110 { 111 int i; 112 local_irq_disable(); 113 spin_lock(conf->hash_locks); 114 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 115 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks); 116 spin_lock(&conf->device_lock); 117 } 118 119 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf) 120 { 121 int i; 122 spin_unlock(&conf->device_lock); 123 for (i = NR_STRIPE_HASH_LOCKS; i; i--) 124 spin_unlock(conf->hash_locks + i - 1); 125 local_irq_enable(); 126 } 127 128 /* bio's attached to a stripe+device for I/O are linked together in bi_sector 129 * order without overlap. There may be several bio's per stripe+device, and 130 * a bio could span several devices. 131 * When walking this list for a particular stripe+device, we must never proceed 132 * beyond a bio that extends past this device, as the next bio might no longer 133 * be valid. 134 * This function is used to determine the 'next' bio in the list, given the sector 135 * of the current stripe+device 136 */ 137 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector) 138 { 139 int sectors = bio_sectors(bio); 140 if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS) 141 return bio->bi_next; 142 else 143 return NULL; 144 } 145 146 /* 147 * We maintain a biased count of active stripes in the bottom 16 bits of 148 * bi_phys_segments, and a count of processed stripes in the upper 16 bits 149 */ 150 static inline int raid5_bi_processed_stripes(struct bio *bio) 151 { 152 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 153 return (atomic_read(segments) >> 16) & 0xffff; 154 } 155 156 static inline int raid5_dec_bi_active_stripes(struct bio *bio) 157 { 158 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 159 return atomic_sub_return(1, segments) & 0xffff; 160 } 161 162 static inline void raid5_inc_bi_active_stripes(struct bio *bio) 163 { 164 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 165 atomic_inc(segments); 166 } 167 168 static inline void raid5_set_bi_processed_stripes(struct bio *bio, 169 unsigned int cnt) 170 { 171 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 172 int old, new; 173 174 do { 175 old = atomic_read(segments); 176 new = (old & 0xffff) | (cnt << 16); 177 } while (atomic_cmpxchg(segments, old, new) != old); 178 } 179 180 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt) 181 { 182 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 183 atomic_set(segments, cnt); 184 } 185 186 /* Find first data disk in a raid6 stripe */ 187 static inline int raid6_d0(struct stripe_head *sh) 188 { 189 if (sh->ddf_layout) 190 /* ddf always start from first device */ 191 return 0; 192 /* md starts just after Q block */ 193 if (sh->qd_idx == sh->disks - 1) 194 return 0; 195 else 196 return sh->qd_idx + 1; 197 } 198 static inline int raid6_next_disk(int disk, int raid_disks) 199 { 200 disk++; 201 return (disk < raid_disks) ? disk : 0; 202 } 203 204 /* When walking through the disks in a raid5, starting at raid6_d0, 205 * We need to map each disk to a 'slot', where the data disks are slot 206 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk 207 * is raid_disks-1. This help does that mapping. 208 */ 209 static int raid6_idx_to_slot(int idx, struct stripe_head *sh, 210 int *count, int syndrome_disks) 211 { 212 int slot = *count; 213 214 if (sh->ddf_layout) 215 (*count)++; 216 if (idx == sh->pd_idx) 217 return syndrome_disks; 218 if (idx == sh->qd_idx) 219 return syndrome_disks + 1; 220 if (!sh->ddf_layout) 221 (*count)++; 222 return slot; 223 } 224 225 static void return_io(struct bio *return_bi) 226 { 227 struct bio *bi = return_bi; 228 while (bi) { 229 230 return_bi = bi->bi_next; 231 bi->bi_next = NULL; 232 bi->bi_iter.bi_size = 0; 233 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev), 234 bi, 0); 235 bio_endio(bi, 0); 236 bi = return_bi; 237 } 238 } 239 240 static void print_raid5_conf (struct r5conf *conf); 241 242 static int stripe_operations_active(struct stripe_head *sh) 243 { 244 return sh->check_state || sh->reconstruct_state || 245 test_bit(STRIPE_BIOFILL_RUN, &sh->state) || 246 test_bit(STRIPE_COMPUTE_RUN, &sh->state); 247 } 248 249 static void raid5_wakeup_stripe_thread(struct stripe_head *sh) 250 { 251 struct r5conf *conf = sh->raid_conf; 252 struct r5worker_group *group; 253 int thread_cnt; 254 int i, cpu = sh->cpu; 255 256 if (!cpu_online(cpu)) { 257 cpu = cpumask_any(cpu_online_mask); 258 sh->cpu = cpu; 259 } 260 261 if (list_empty(&sh->lru)) { 262 struct r5worker_group *group; 263 group = conf->worker_groups + cpu_to_group(cpu); 264 list_add_tail(&sh->lru, &group->handle_list); 265 group->stripes_cnt++; 266 sh->group = group; 267 } 268 269 if (conf->worker_cnt_per_group == 0) { 270 md_wakeup_thread(conf->mddev->thread); 271 return; 272 } 273 274 group = conf->worker_groups + cpu_to_group(sh->cpu); 275 276 group->workers[0].working = true; 277 /* at least one worker should run to avoid race */ 278 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work); 279 280 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1; 281 /* wakeup more workers */ 282 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) { 283 if (group->workers[i].working == false) { 284 group->workers[i].working = true; 285 queue_work_on(sh->cpu, raid5_wq, 286 &group->workers[i].work); 287 thread_cnt--; 288 } 289 } 290 } 291 292 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh, 293 struct list_head *temp_inactive_list) 294 { 295 BUG_ON(!list_empty(&sh->lru)); 296 BUG_ON(atomic_read(&conf->active_stripes)==0); 297 if (test_bit(STRIPE_HANDLE, &sh->state)) { 298 if (test_bit(STRIPE_DELAYED, &sh->state) && 299 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { 300 list_add_tail(&sh->lru, &conf->delayed_list); 301 if (atomic_read(&conf->preread_active_stripes) 302 < IO_THRESHOLD) 303 md_wakeup_thread(conf->mddev->thread); 304 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) && 305 sh->bm_seq - conf->seq_write > 0) 306 list_add_tail(&sh->lru, &conf->bitmap_list); 307 else { 308 clear_bit(STRIPE_DELAYED, &sh->state); 309 clear_bit(STRIPE_BIT_DELAY, &sh->state); 310 if (conf->worker_cnt_per_group == 0) { 311 list_add_tail(&sh->lru, &conf->handle_list); 312 } else { 313 raid5_wakeup_stripe_thread(sh); 314 return; 315 } 316 } 317 md_wakeup_thread(conf->mddev->thread); 318 } else { 319 BUG_ON(stripe_operations_active(sh)); 320 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 321 if (atomic_dec_return(&conf->preread_active_stripes) 322 < IO_THRESHOLD) 323 md_wakeup_thread(conf->mddev->thread); 324 atomic_dec(&conf->active_stripes); 325 if (!test_bit(STRIPE_EXPANDING, &sh->state)) 326 list_add_tail(&sh->lru, temp_inactive_list); 327 } 328 } 329 330 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh, 331 struct list_head *temp_inactive_list) 332 { 333 if (atomic_dec_and_test(&sh->count)) 334 do_release_stripe(conf, sh, temp_inactive_list); 335 } 336 337 /* 338 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list 339 * 340 * Be careful: Only one task can add/delete stripes from temp_inactive_list at 341 * given time. Adding stripes only takes device lock, while deleting stripes 342 * only takes hash lock. 343 */ 344 static void release_inactive_stripe_list(struct r5conf *conf, 345 struct list_head *temp_inactive_list, 346 int hash) 347 { 348 int size; 349 bool do_wakeup = false; 350 unsigned long flags; 351 352 if (hash == NR_STRIPE_HASH_LOCKS) { 353 size = NR_STRIPE_HASH_LOCKS; 354 hash = NR_STRIPE_HASH_LOCKS - 1; 355 } else 356 size = 1; 357 while (size) { 358 struct list_head *list = &temp_inactive_list[size - 1]; 359 360 /* 361 * We don't hold any lock here yet, get_active_stripe() might 362 * remove stripes from the list 363 */ 364 if (!list_empty_careful(list)) { 365 spin_lock_irqsave(conf->hash_locks + hash, flags); 366 if (list_empty(conf->inactive_list + hash) && 367 !list_empty(list)) 368 atomic_dec(&conf->empty_inactive_list_nr); 369 list_splice_tail_init(list, conf->inactive_list + hash); 370 do_wakeup = true; 371 spin_unlock_irqrestore(conf->hash_locks + hash, flags); 372 } 373 size--; 374 hash--; 375 } 376 377 if (do_wakeup) { 378 wake_up(&conf->wait_for_stripe); 379 if (conf->retry_read_aligned) 380 md_wakeup_thread(conf->mddev->thread); 381 } 382 } 383 384 /* should hold conf->device_lock already */ 385 static int release_stripe_list(struct r5conf *conf, 386 struct list_head *temp_inactive_list) 387 { 388 struct stripe_head *sh; 389 int count = 0; 390 struct llist_node *head; 391 392 head = llist_del_all(&conf->released_stripes); 393 head = llist_reverse_order(head); 394 while (head) { 395 int hash; 396 397 sh = llist_entry(head, struct stripe_head, release_list); 398 head = llist_next(head); 399 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */ 400 smp_mb(); 401 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state); 402 /* 403 * Don't worry the bit is set here, because if the bit is set 404 * again, the count is always > 1. This is true for 405 * STRIPE_ON_UNPLUG_LIST bit too. 406 */ 407 hash = sh->hash_lock_index; 408 __release_stripe(conf, sh, &temp_inactive_list[hash]); 409 count++; 410 } 411 412 return count; 413 } 414 415 static void release_stripe(struct stripe_head *sh) 416 { 417 struct r5conf *conf = sh->raid_conf; 418 unsigned long flags; 419 struct list_head list; 420 int hash; 421 bool wakeup; 422 423 /* Avoid release_list until the last reference. 424 */ 425 if (atomic_add_unless(&sh->count, -1, 1)) 426 return; 427 428 if (unlikely(!conf->mddev->thread) || 429 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state)) 430 goto slow_path; 431 wakeup = llist_add(&sh->release_list, &conf->released_stripes); 432 if (wakeup) 433 md_wakeup_thread(conf->mddev->thread); 434 return; 435 slow_path: 436 local_irq_save(flags); 437 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */ 438 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) { 439 INIT_LIST_HEAD(&list); 440 hash = sh->hash_lock_index; 441 do_release_stripe(conf, sh, &list); 442 spin_unlock(&conf->device_lock); 443 release_inactive_stripe_list(conf, &list, hash); 444 } 445 local_irq_restore(flags); 446 } 447 448 static inline void remove_hash(struct stripe_head *sh) 449 { 450 pr_debug("remove_hash(), stripe %llu\n", 451 (unsigned long long)sh->sector); 452 453 hlist_del_init(&sh->hash); 454 } 455 456 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh) 457 { 458 struct hlist_head *hp = stripe_hash(conf, sh->sector); 459 460 pr_debug("insert_hash(), stripe %llu\n", 461 (unsigned long long)sh->sector); 462 463 hlist_add_head(&sh->hash, hp); 464 } 465 466 /* find an idle stripe, make sure it is unhashed, and return it. */ 467 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash) 468 { 469 struct stripe_head *sh = NULL; 470 struct list_head *first; 471 472 if (list_empty(conf->inactive_list + hash)) 473 goto out; 474 first = (conf->inactive_list + hash)->next; 475 sh = list_entry(first, struct stripe_head, lru); 476 list_del_init(first); 477 remove_hash(sh); 478 atomic_inc(&conf->active_stripes); 479 BUG_ON(hash != sh->hash_lock_index); 480 if (list_empty(conf->inactive_list + hash)) 481 atomic_inc(&conf->empty_inactive_list_nr); 482 out: 483 return sh; 484 } 485 486 static void shrink_buffers(struct stripe_head *sh) 487 { 488 struct page *p; 489 int i; 490 int num = sh->raid_conf->pool_size; 491 492 for (i = 0; i < num ; i++) { 493 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page); 494 p = sh->dev[i].page; 495 if (!p) 496 continue; 497 sh->dev[i].page = NULL; 498 put_page(p); 499 } 500 } 501 502 static int grow_buffers(struct stripe_head *sh) 503 { 504 int i; 505 int num = sh->raid_conf->pool_size; 506 507 for (i = 0; i < num; i++) { 508 struct page *page; 509 510 if (!(page = alloc_page(GFP_KERNEL))) { 511 return 1; 512 } 513 sh->dev[i].page = page; 514 sh->dev[i].orig_page = page; 515 } 516 return 0; 517 } 518 519 static void raid5_build_block(struct stripe_head *sh, int i, int previous); 520 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 521 struct stripe_head *sh); 522 523 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous) 524 { 525 struct r5conf *conf = sh->raid_conf; 526 int i, seq; 527 528 BUG_ON(atomic_read(&sh->count) != 0); 529 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); 530 BUG_ON(stripe_operations_active(sh)); 531 532 pr_debug("init_stripe called, stripe %llu\n", 533 (unsigned long long)sector); 534 retry: 535 seq = read_seqcount_begin(&conf->gen_lock); 536 sh->generation = conf->generation - previous; 537 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks; 538 sh->sector = sector; 539 stripe_set_idx(sector, conf, previous, sh); 540 sh->state = 0; 541 542 for (i = sh->disks; i--; ) { 543 struct r5dev *dev = &sh->dev[i]; 544 545 if (dev->toread || dev->read || dev->towrite || dev->written || 546 test_bit(R5_LOCKED, &dev->flags)) { 547 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n", 548 (unsigned long long)sh->sector, i, dev->toread, 549 dev->read, dev->towrite, dev->written, 550 test_bit(R5_LOCKED, &dev->flags)); 551 WARN_ON(1); 552 } 553 dev->flags = 0; 554 raid5_build_block(sh, i, previous); 555 } 556 if (read_seqcount_retry(&conf->gen_lock, seq)) 557 goto retry; 558 insert_hash(conf, sh); 559 sh->cpu = smp_processor_id(); 560 } 561 562 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector, 563 short generation) 564 { 565 struct stripe_head *sh; 566 567 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector); 568 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash) 569 if (sh->sector == sector && sh->generation == generation) 570 return sh; 571 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector); 572 return NULL; 573 } 574 575 /* 576 * Need to check if array has failed when deciding whether to: 577 * - start an array 578 * - remove non-faulty devices 579 * - add a spare 580 * - allow a reshape 581 * This determination is simple when no reshape is happening. 582 * However if there is a reshape, we need to carefully check 583 * both the before and after sections. 584 * This is because some failed devices may only affect one 585 * of the two sections, and some non-in_sync devices may 586 * be insync in the section most affected by failed devices. 587 */ 588 static int calc_degraded(struct r5conf *conf) 589 { 590 int degraded, degraded2; 591 int i; 592 593 rcu_read_lock(); 594 degraded = 0; 595 for (i = 0; i < conf->previous_raid_disks; i++) { 596 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 597 if (rdev && test_bit(Faulty, &rdev->flags)) 598 rdev = rcu_dereference(conf->disks[i].replacement); 599 if (!rdev || test_bit(Faulty, &rdev->flags)) 600 degraded++; 601 else if (test_bit(In_sync, &rdev->flags)) 602 ; 603 else 604 /* not in-sync or faulty. 605 * If the reshape increases the number of devices, 606 * this is being recovered by the reshape, so 607 * this 'previous' section is not in_sync. 608 * If the number of devices is being reduced however, 609 * the device can only be part of the array if 610 * we are reverting a reshape, so this section will 611 * be in-sync. 612 */ 613 if (conf->raid_disks >= conf->previous_raid_disks) 614 degraded++; 615 } 616 rcu_read_unlock(); 617 if (conf->raid_disks == conf->previous_raid_disks) 618 return degraded; 619 rcu_read_lock(); 620 degraded2 = 0; 621 for (i = 0; i < conf->raid_disks; i++) { 622 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 623 if (rdev && test_bit(Faulty, &rdev->flags)) 624 rdev = rcu_dereference(conf->disks[i].replacement); 625 if (!rdev || test_bit(Faulty, &rdev->flags)) 626 degraded2++; 627 else if (test_bit(In_sync, &rdev->flags)) 628 ; 629 else 630 /* not in-sync or faulty. 631 * If reshape increases the number of devices, this 632 * section has already been recovered, else it 633 * almost certainly hasn't. 634 */ 635 if (conf->raid_disks <= conf->previous_raid_disks) 636 degraded2++; 637 } 638 rcu_read_unlock(); 639 if (degraded2 > degraded) 640 return degraded2; 641 return degraded; 642 } 643 644 static int has_failed(struct r5conf *conf) 645 { 646 int degraded; 647 648 if (conf->mddev->reshape_position == MaxSector) 649 return conf->mddev->degraded > conf->max_degraded; 650 651 degraded = calc_degraded(conf); 652 if (degraded > conf->max_degraded) 653 return 1; 654 return 0; 655 } 656 657 static struct stripe_head * 658 get_active_stripe(struct r5conf *conf, sector_t sector, 659 int previous, int noblock, int noquiesce) 660 { 661 struct stripe_head *sh; 662 int hash = stripe_hash_locks_hash(sector); 663 664 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector); 665 666 spin_lock_irq(conf->hash_locks + hash); 667 668 do { 669 wait_event_lock_irq(conf->wait_for_stripe, 670 conf->quiesce == 0 || noquiesce, 671 *(conf->hash_locks + hash)); 672 sh = __find_stripe(conf, sector, conf->generation - previous); 673 if (!sh) { 674 if (!conf->inactive_blocked) 675 sh = get_free_stripe(conf, hash); 676 if (noblock && sh == NULL) 677 break; 678 if (!sh) { 679 conf->inactive_blocked = 1; 680 wait_event_lock_irq( 681 conf->wait_for_stripe, 682 !list_empty(conf->inactive_list + hash) && 683 (atomic_read(&conf->active_stripes) 684 < (conf->max_nr_stripes * 3 / 4) 685 || !conf->inactive_blocked), 686 *(conf->hash_locks + hash)); 687 conf->inactive_blocked = 0; 688 } else { 689 init_stripe(sh, sector, previous); 690 atomic_inc(&sh->count); 691 } 692 } else if (!atomic_inc_not_zero(&sh->count)) { 693 spin_lock(&conf->device_lock); 694 if (!atomic_read(&sh->count)) { 695 if (!test_bit(STRIPE_HANDLE, &sh->state)) 696 atomic_inc(&conf->active_stripes); 697 BUG_ON(list_empty(&sh->lru) && 698 !test_bit(STRIPE_EXPANDING, &sh->state)); 699 list_del_init(&sh->lru); 700 if (sh->group) { 701 sh->group->stripes_cnt--; 702 sh->group = NULL; 703 } 704 } 705 atomic_inc(&sh->count); 706 spin_unlock(&conf->device_lock); 707 } 708 } while (sh == NULL); 709 710 spin_unlock_irq(conf->hash_locks + hash); 711 return sh; 712 } 713 714 /* Determine if 'data_offset' or 'new_data_offset' should be used 715 * in this stripe_head. 716 */ 717 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh) 718 { 719 sector_t progress = conf->reshape_progress; 720 /* Need a memory barrier to make sure we see the value 721 * of conf->generation, or ->data_offset that was set before 722 * reshape_progress was updated. 723 */ 724 smp_rmb(); 725 if (progress == MaxSector) 726 return 0; 727 if (sh->generation == conf->generation - 1) 728 return 0; 729 /* We are in a reshape, and this is a new-generation stripe, 730 * so use new_data_offset. 731 */ 732 return 1; 733 } 734 735 static void 736 raid5_end_read_request(struct bio *bi, int error); 737 static void 738 raid5_end_write_request(struct bio *bi, int error); 739 740 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s) 741 { 742 struct r5conf *conf = sh->raid_conf; 743 int i, disks = sh->disks; 744 745 might_sleep(); 746 747 for (i = disks; i--; ) { 748 int rw; 749 int replace_only = 0; 750 struct bio *bi, *rbi; 751 struct md_rdev *rdev, *rrdev = NULL; 752 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) { 753 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags)) 754 rw = WRITE_FUA; 755 else 756 rw = WRITE; 757 if (test_bit(R5_Discard, &sh->dev[i].flags)) 758 rw |= REQ_DISCARD; 759 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags)) 760 rw = READ; 761 else if (test_and_clear_bit(R5_WantReplace, 762 &sh->dev[i].flags)) { 763 rw = WRITE; 764 replace_only = 1; 765 } else 766 continue; 767 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags)) 768 rw |= REQ_SYNC; 769 770 bi = &sh->dev[i].req; 771 rbi = &sh->dev[i].rreq; /* For writing to replacement */ 772 773 rcu_read_lock(); 774 rrdev = rcu_dereference(conf->disks[i].replacement); 775 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */ 776 rdev = rcu_dereference(conf->disks[i].rdev); 777 if (!rdev) { 778 rdev = rrdev; 779 rrdev = NULL; 780 } 781 if (rw & WRITE) { 782 if (replace_only) 783 rdev = NULL; 784 if (rdev == rrdev) 785 /* We raced and saw duplicates */ 786 rrdev = NULL; 787 } else { 788 if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev) 789 rdev = rrdev; 790 rrdev = NULL; 791 } 792 793 if (rdev && test_bit(Faulty, &rdev->flags)) 794 rdev = NULL; 795 if (rdev) 796 atomic_inc(&rdev->nr_pending); 797 if (rrdev && test_bit(Faulty, &rrdev->flags)) 798 rrdev = NULL; 799 if (rrdev) 800 atomic_inc(&rrdev->nr_pending); 801 rcu_read_unlock(); 802 803 /* We have already checked bad blocks for reads. Now 804 * need to check for writes. We never accept write errors 805 * on the replacement, so we don't to check rrdev. 806 */ 807 while ((rw & WRITE) && rdev && 808 test_bit(WriteErrorSeen, &rdev->flags)) { 809 sector_t first_bad; 810 int bad_sectors; 811 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS, 812 &first_bad, &bad_sectors); 813 if (!bad) 814 break; 815 816 if (bad < 0) { 817 set_bit(BlockedBadBlocks, &rdev->flags); 818 if (!conf->mddev->external && 819 conf->mddev->flags) { 820 /* It is very unlikely, but we might 821 * still need to write out the 822 * bad block log - better give it 823 * a chance*/ 824 md_check_recovery(conf->mddev); 825 } 826 /* 827 * Because md_wait_for_blocked_rdev 828 * will dec nr_pending, we must 829 * increment it first. 830 */ 831 atomic_inc(&rdev->nr_pending); 832 md_wait_for_blocked_rdev(rdev, conf->mddev); 833 } else { 834 /* Acknowledged bad block - skip the write */ 835 rdev_dec_pending(rdev, conf->mddev); 836 rdev = NULL; 837 } 838 } 839 840 if (rdev) { 841 if (s->syncing || s->expanding || s->expanded 842 || s->replacing) 843 md_sync_acct(rdev->bdev, STRIPE_SECTORS); 844 845 set_bit(STRIPE_IO_STARTED, &sh->state); 846 847 bio_reset(bi); 848 bi->bi_bdev = rdev->bdev; 849 bi->bi_rw = rw; 850 bi->bi_end_io = (rw & WRITE) 851 ? raid5_end_write_request 852 : raid5_end_read_request; 853 bi->bi_private = sh; 854 855 pr_debug("%s: for %llu schedule op %ld on disc %d\n", 856 __func__, (unsigned long long)sh->sector, 857 bi->bi_rw, i); 858 atomic_inc(&sh->count); 859 if (use_new_offset(conf, sh)) 860 bi->bi_iter.bi_sector = (sh->sector 861 + rdev->new_data_offset); 862 else 863 bi->bi_iter.bi_sector = (sh->sector 864 + rdev->data_offset); 865 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 866 bi->bi_rw |= REQ_NOMERGE; 867 868 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 869 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 870 sh->dev[i].vec.bv_page = sh->dev[i].page; 871 bi->bi_vcnt = 1; 872 bi->bi_io_vec[0].bv_len = STRIPE_SIZE; 873 bi->bi_io_vec[0].bv_offset = 0; 874 bi->bi_iter.bi_size = STRIPE_SIZE; 875 /* 876 * If this is discard request, set bi_vcnt 0. We don't 877 * want to confuse SCSI because SCSI will replace payload 878 */ 879 if (rw & REQ_DISCARD) 880 bi->bi_vcnt = 0; 881 if (rrdev) 882 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags); 883 884 if (conf->mddev->gendisk) 885 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev), 886 bi, disk_devt(conf->mddev->gendisk), 887 sh->dev[i].sector); 888 generic_make_request(bi); 889 } 890 if (rrdev) { 891 if (s->syncing || s->expanding || s->expanded 892 || s->replacing) 893 md_sync_acct(rrdev->bdev, STRIPE_SECTORS); 894 895 set_bit(STRIPE_IO_STARTED, &sh->state); 896 897 bio_reset(rbi); 898 rbi->bi_bdev = rrdev->bdev; 899 rbi->bi_rw = rw; 900 BUG_ON(!(rw & WRITE)); 901 rbi->bi_end_io = raid5_end_write_request; 902 rbi->bi_private = sh; 903 904 pr_debug("%s: for %llu schedule op %ld on " 905 "replacement disc %d\n", 906 __func__, (unsigned long long)sh->sector, 907 rbi->bi_rw, i); 908 atomic_inc(&sh->count); 909 if (use_new_offset(conf, sh)) 910 rbi->bi_iter.bi_sector = (sh->sector 911 + rrdev->new_data_offset); 912 else 913 rbi->bi_iter.bi_sector = (sh->sector 914 + rrdev->data_offset); 915 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 916 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 917 sh->dev[i].rvec.bv_page = sh->dev[i].page; 918 rbi->bi_vcnt = 1; 919 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE; 920 rbi->bi_io_vec[0].bv_offset = 0; 921 rbi->bi_iter.bi_size = STRIPE_SIZE; 922 /* 923 * If this is discard request, set bi_vcnt 0. We don't 924 * want to confuse SCSI because SCSI will replace payload 925 */ 926 if (rw & REQ_DISCARD) 927 rbi->bi_vcnt = 0; 928 if (conf->mddev->gendisk) 929 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev), 930 rbi, disk_devt(conf->mddev->gendisk), 931 sh->dev[i].sector); 932 generic_make_request(rbi); 933 } 934 if (!rdev && !rrdev) { 935 if (rw & WRITE) 936 set_bit(STRIPE_DEGRADED, &sh->state); 937 pr_debug("skip op %ld on disc %d for sector %llu\n", 938 bi->bi_rw, i, (unsigned long long)sh->sector); 939 clear_bit(R5_LOCKED, &sh->dev[i].flags); 940 set_bit(STRIPE_HANDLE, &sh->state); 941 } 942 } 943 } 944 945 static struct dma_async_tx_descriptor * 946 async_copy_data(int frombio, struct bio *bio, struct page **page, 947 sector_t sector, struct dma_async_tx_descriptor *tx, 948 struct stripe_head *sh) 949 { 950 struct bio_vec bvl; 951 struct bvec_iter iter; 952 struct page *bio_page; 953 int page_offset; 954 struct async_submit_ctl submit; 955 enum async_tx_flags flags = 0; 956 957 if (bio->bi_iter.bi_sector >= sector) 958 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512; 959 else 960 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512; 961 962 if (frombio) 963 flags |= ASYNC_TX_FENCE; 964 init_async_submit(&submit, flags, tx, NULL, NULL, NULL); 965 966 bio_for_each_segment(bvl, bio, iter) { 967 int len = bvl.bv_len; 968 int clen; 969 int b_offset = 0; 970 971 if (page_offset < 0) { 972 b_offset = -page_offset; 973 page_offset += b_offset; 974 len -= b_offset; 975 } 976 977 if (len > 0 && page_offset + len > STRIPE_SIZE) 978 clen = STRIPE_SIZE - page_offset; 979 else 980 clen = len; 981 982 if (clen > 0) { 983 b_offset += bvl.bv_offset; 984 bio_page = bvl.bv_page; 985 if (frombio) { 986 if (sh->raid_conf->skip_copy && 987 b_offset == 0 && page_offset == 0 && 988 clen == STRIPE_SIZE) 989 *page = bio_page; 990 else 991 tx = async_memcpy(*page, bio_page, page_offset, 992 b_offset, clen, &submit); 993 } else 994 tx = async_memcpy(bio_page, *page, b_offset, 995 page_offset, clen, &submit); 996 } 997 /* chain the operations */ 998 submit.depend_tx = tx; 999 1000 if (clen < len) /* hit end of page */ 1001 break; 1002 page_offset += len; 1003 } 1004 1005 return tx; 1006 } 1007 1008 static void ops_complete_biofill(void *stripe_head_ref) 1009 { 1010 struct stripe_head *sh = stripe_head_ref; 1011 struct bio *return_bi = NULL; 1012 int i; 1013 1014 pr_debug("%s: stripe %llu\n", __func__, 1015 (unsigned long long)sh->sector); 1016 1017 /* clear completed biofills */ 1018 for (i = sh->disks; i--; ) { 1019 struct r5dev *dev = &sh->dev[i]; 1020 1021 /* acknowledge completion of a biofill operation */ 1022 /* and check if we need to reply to a read request, 1023 * new R5_Wantfill requests are held off until 1024 * !STRIPE_BIOFILL_RUN 1025 */ 1026 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) { 1027 struct bio *rbi, *rbi2; 1028 1029 BUG_ON(!dev->read); 1030 rbi = dev->read; 1031 dev->read = NULL; 1032 while (rbi && rbi->bi_iter.bi_sector < 1033 dev->sector + STRIPE_SECTORS) { 1034 rbi2 = r5_next_bio(rbi, dev->sector); 1035 if (!raid5_dec_bi_active_stripes(rbi)) { 1036 rbi->bi_next = return_bi; 1037 return_bi = rbi; 1038 } 1039 rbi = rbi2; 1040 } 1041 } 1042 } 1043 clear_bit(STRIPE_BIOFILL_RUN, &sh->state); 1044 1045 return_io(return_bi); 1046 1047 set_bit(STRIPE_HANDLE, &sh->state); 1048 release_stripe(sh); 1049 } 1050 1051 static void ops_run_biofill(struct stripe_head *sh) 1052 { 1053 struct dma_async_tx_descriptor *tx = NULL; 1054 struct async_submit_ctl submit; 1055 int i; 1056 1057 pr_debug("%s: stripe %llu\n", __func__, 1058 (unsigned long long)sh->sector); 1059 1060 for (i = sh->disks; i--; ) { 1061 struct r5dev *dev = &sh->dev[i]; 1062 if (test_bit(R5_Wantfill, &dev->flags)) { 1063 struct bio *rbi; 1064 spin_lock_irq(&sh->stripe_lock); 1065 dev->read = rbi = dev->toread; 1066 dev->toread = NULL; 1067 spin_unlock_irq(&sh->stripe_lock); 1068 while (rbi && rbi->bi_iter.bi_sector < 1069 dev->sector + STRIPE_SECTORS) { 1070 tx = async_copy_data(0, rbi, &dev->page, 1071 dev->sector, tx, sh); 1072 rbi = r5_next_bio(rbi, dev->sector); 1073 } 1074 } 1075 } 1076 1077 atomic_inc(&sh->count); 1078 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL); 1079 async_trigger_callback(&submit); 1080 } 1081 1082 static void mark_target_uptodate(struct stripe_head *sh, int target) 1083 { 1084 struct r5dev *tgt; 1085 1086 if (target < 0) 1087 return; 1088 1089 tgt = &sh->dev[target]; 1090 set_bit(R5_UPTODATE, &tgt->flags); 1091 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1092 clear_bit(R5_Wantcompute, &tgt->flags); 1093 } 1094 1095 static void ops_complete_compute(void *stripe_head_ref) 1096 { 1097 struct stripe_head *sh = stripe_head_ref; 1098 1099 pr_debug("%s: stripe %llu\n", __func__, 1100 (unsigned long long)sh->sector); 1101 1102 /* mark the computed target(s) as uptodate */ 1103 mark_target_uptodate(sh, sh->ops.target); 1104 mark_target_uptodate(sh, sh->ops.target2); 1105 1106 clear_bit(STRIPE_COMPUTE_RUN, &sh->state); 1107 if (sh->check_state == check_state_compute_run) 1108 sh->check_state = check_state_compute_result; 1109 set_bit(STRIPE_HANDLE, &sh->state); 1110 release_stripe(sh); 1111 } 1112 1113 /* return a pointer to the address conversion region of the scribble buffer */ 1114 static addr_conv_t *to_addr_conv(struct stripe_head *sh, 1115 struct raid5_percpu *percpu) 1116 { 1117 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2); 1118 } 1119 1120 static struct dma_async_tx_descriptor * 1121 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu) 1122 { 1123 int disks = sh->disks; 1124 struct page **xor_srcs = percpu->scribble; 1125 int target = sh->ops.target; 1126 struct r5dev *tgt = &sh->dev[target]; 1127 struct page *xor_dest = tgt->page; 1128 int count = 0; 1129 struct dma_async_tx_descriptor *tx; 1130 struct async_submit_ctl submit; 1131 int i; 1132 1133 pr_debug("%s: stripe %llu block: %d\n", 1134 __func__, (unsigned long long)sh->sector, target); 1135 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1136 1137 for (i = disks; i--; ) 1138 if (i != target) 1139 xor_srcs[count++] = sh->dev[i].page; 1140 1141 atomic_inc(&sh->count); 1142 1143 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL, 1144 ops_complete_compute, sh, to_addr_conv(sh, percpu)); 1145 if (unlikely(count == 1)) 1146 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); 1147 else 1148 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1149 1150 return tx; 1151 } 1152 1153 /* set_syndrome_sources - populate source buffers for gen_syndrome 1154 * @srcs - (struct page *) array of size sh->disks 1155 * @sh - stripe_head to parse 1156 * 1157 * Populates srcs in proper layout order for the stripe and returns the 1158 * 'count' of sources to be used in a call to async_gen_syndrome. The P 1159 * destination buffer is recorded in srcs[count] and the Q destination 1160 * is recorded in srcs[count+1]]. 1161 */ 1162 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh) 1163 { 1164 int disks = sh->disks; 1165 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2); 1166 int d0_idx = raid6_d0(sh); 1167 int count; 1168 int i; 1169 1170 for (i = 0; i < disks; i++) 1171 srcs[i] = NULL; 1172 1173 count = 0; 1174 i = d0_idx; 1175 do { 1176 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1177 1178 srcs[slot] = sh->dev[i].page; 1179 i = raid6_next_disk(i, disks); 1180 } while (i != d0_idx); 1181 1182 return syndrome_disks; 1183 } 1184 1185 static struct dma_async_tx_descriptor * 1186 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu) 1187 { 1188 int disks = sh->disks; 1189 struct page **blocks = percpu->scribble; 1190 int target; 1191 int qd_idx = sh->qd_idx; 1192 struct dma_async_tx_descriptor *tx; 1193 struct async_submit_ctl submit; 1194 struct r5dev *tgt; 1195 struct page *dest; 1196 int i; 1197 int count; 1198 1199 if (sh->ops.target < 0) 1200 target = sh->ops.target2; 1201 else if (sh->ops.target2 < 0) 1202 target = sh->ops.target; 1203 else 1204 /* we should only have one valid target */ 1205 BUG(); 1206 BUG_ON(target < 0); 1207 pr_debug("%s: stripe %llu block: %d\n", 1208 __func__, (unsigned long long)sh->sector, target); 1209 1210 tgt = &sh->dev[target]; 1211 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1212 dest = tgt->page; 1213 1214 atomic_inc(&sh->count); 1215 1216 if (target == qd_idx) { 1217 count = set_syndrome_sources(blocks, sh); 1218 blocks[count] = NULL; /* regenerating p is not necessary */ 1219 BUG_ON(blocks[count+1] != dest); /* q should already be set */ 1220 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1221 ops_complete_compute, sh, 1222 to_addr_conv(sh, percpu)); 1223 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1224 } else { 1225 /* Compute any data- or p-drive using XOR */ 1226 count = 0; 1227 for (i = disks; i-- ; ) { 1228 if (i == target || i == qd_idx) 1229 continue; 1230 blocks[count++] = sh->dev[i].page; 1231 } 1232 1233 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1234 NULL, ops_complete_compute, sh, 1235 to_addr_conv(sh, percpu)); 1236 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit); 1237 } 1238 1239 return tx; 1240 } 1241 1242 static struct dma_async_tx_descriptor * 1243 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu) 1244 { 1245 int i, count, disks = sh->disks; 1246 int syndrome_disks = sh->ddf_layout ? disks : disks-2; 1247 int d0_idx = raid6_d0(sh); 1248 int faila = -1, failb = -1; 1249 int target = sh->ops.target; 1250 int target2 = sh->ops.target2; 1251 struct r5dev *tgt = &sh->dev[target]; 1252 struct r5dev *tgt2 = &sh->dev[target2]; 1253 struct dma_async_tx_descriptor *tx; 1254 struct page **blocks = percpu->scribble; 1255 struct async_submit_ctl submit; 1256 1257 pr_debug("%s: stripe %llu block1: %d block2: %d\n", 1258 __func__, (unsigned long long)sh->sector, target, target2); 1259 BUG_ON(target < 0 || target2 < 0); 1260 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1261 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags)); 1262 1263 /* we need to open-code set_syndrome_sources to handle the 1264 * slot number conversion for 'faila' and 'failb' 1265 */ 1266 for (i = 0; i < disks ; i++) 1267 blocks[i] = NULL; 1268 count = 0; 1269 i = d0_idx; 1270 do { 1271 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1272 1273 blocks[slot] = sh->dev[i].page; 1274 1275 if (i == target) 1276 faila = slot; 1277 if (i == target2) 1278 failb = slot; 1279 i = raid6_next_disk(i, disks); 1280 } while (i != d0_idx); 1281 1282 BUG_ON(faila == failb); 1283 if (failb < faila) 1284 swap(faila, failb); 1285 pr_debug("%s: stripe: %llu faila: %d failb: %d\n", 1286 __func__, (unsigned long long)sh->sector, faila, failb); 1287 1288 atomic_inc(&sh->count); 1289 1290 if (failb == syndrome_disks+1) { 1291 /* Q disk is one of the missing disks */ 1292 if (faila == syndrome_disks) { 1293 /* Missing P+Q, just recompute */ 1294 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1295 ops_complete_compute, sh, 1296 to_addr_conv(sh, percpu)); 1297 return async_gen_syndrome(blocks, 0, syndrome_disks+2, 1298 STRIPE_SIZE, &submit); 1299 } else { 1300 struct page *dest; 1301 int data_target; 1302 int qd_idx = sh->qd_idx; 1303 1304 /* Missing D+Q: recompute D from P, then recompute Q */ 1305 if (target == qd_idx) 1306 data_target = target2; 1307 else 1308 data_target = target; 1309 1310 count = 0; 1311 for (i = disks; i-- ; ) { 1312 if (i == data_target || i == qd_idx) 1313 continue; 1314 blocks[count++] = sh->dev[i].page; 1315 } 1316 dest = sh->dev[data_target].page; 1317 init_async_submit(&submit, 1318 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1319 NULL, NULL, NULL, 1320 to_addr_conv(sh, percpu)); 1321 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, 1322 &submit); 1323 1324 count = set_syndrome_sources(blocks, sh); 1325 init_async_submit(&submit, ASYNC_TX_FENCE, tx, 1326 ops_complete_compute, sh, 1327 to_addr_conv(sh, percpu)); 1328 return async_gen_syndrome(blocks, 0, count+2, 1329 STRIPE_SIZE, &submit); 1330 } 1331 } else { 1332 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1333 ops_complete_compute, sh, 1334 to_addr_conv(sh, percpu)); 1335 if (failb == syndrome_disks) { 1336 /* We're missing D+P. */ 1337 return async_raid6_datap_recov(syndrome_disks+2, 1338 STRIPE_SIZE, faila, 1339 blocks, &submit); 1340 } else { 1341 /* We're missing D+D. */ 1342 return async_raid6_2data_recov(syndrome_disks+2, 1343 STRIPE_SIZE, faila, failb, 1344 blocks, &submit); 1345 } 1346 } 1347 } 1348 1349 static void ops_complete_prexor(void *stripe_head_ref) 1350 { 1351 struct stripe_head *sh = stripe_head_ref; 1352 1353 pr_debug("%s: stripe %llu\n", __func__, 1354 (unsigned long long)sh->sector); 1355 } 1356 1357 static struct dma_async_tx_descriptor * 1358 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu, 1359 struct dma_async_tx_descriptor *tx) 1360 { 1361 int disks = sh->disks; 1362 struct page **xor_srcs = percpu->scribble; 1363 int count = 0, pd_idx = sh->pd_idx, i; 1364 struct async_submit_ctl submit; 1365 1366 /* existing parity data subtracted */ 1367 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1368 1369 pr_debug("%s: stripe %llu\n", __func__, 1370 (unsigned long long)sh->sector); 1371 1372 for (i = disks; i--; ) { 1373 struct r5dev *dev = &sh->dev[i]; 1374 /* Only process blocks that are known to be uptodate */ 1375 if (test_bit(R5_Wantdrain, &dev->flags)) 1376 xor_srcs[count++] = dev->page; 1377 } 1378 1379 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx, 1380 ops_complete_prexor, sh, to_addr_conv(sh, percpu)); 1381 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1382 1383 return tx; 1384 } 1385 1386 static struct dma_async_tx_descriptor * 1387 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) 1388 { 1389 int disks = sh->disks; 1390 int i; 1391 1392 pr_debug("%s: stripe %llu\n", __func__, 1393 (unsigned long long)sh->sector); 1394 1395 for (i = disks; i--; ) { 1396 struct r5dev *dev = &sh->dev[i]; 1397 struct bio *chosen; 1398 1399 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) { 1400 struct bio *wbi; 1401 1402 spin_lock_irq(&sh->stripe_lock); 1403 chosen = dev->towrite; 1404 dev->towrite = NULL; 1405 BUG_ON(dev->written); 1406 wbi = dev->written = chosen; 1407 spin_unlock_irq(&sh->stripe_lock); 1408 WARN_ON(dev->page != dev->orig_page); 1409 1410 while (wbi && wbi->bi_iter.bi_sector < 1411 dev->sector + STRIPE_SECTORS) { 1412 if (wbi->bi_rw & REQ_FUA) 1413 set_bit(R5_WantFUA, &dev->flags); 1414 if (wbi->bi_rw & REQ_SYNC) 1415 set_bit(R5_SyncIO, &dev->flags); 1416 if (wbi->bi_rw & REQ_DISCARD) 1417 set_bit(R5_Discard, &dev->flags); 1418 else { 1419 tx = async_copy_data(1, wbi, &dev->page, 1420 dev->sector, tx, sh); 1421 if (dev->page != dev->orig_page) { 1422 set_bit(R5_SkipCopy, &dev->flags); 1423 clear_bit(R5_UPTODATE, &dev->flags); 1424 clear_bit(R5_OVERWRITE, &dev->flags); 1425 } 1426 } 1427 wbi = r5_next_bio(wbi, dev->sector); 1428 } 1429 } 1430 } 1431 1432 return tx; 1433 } 1434 1435 static void ops_complete_reconstruct(void *stripe_head_ref) 1436 { 1437 struct stripe_head *sh = stripe_head_ref; 1438 int disks = sh->disks; 1439 int pd_idx = sh->pd_idx; 1440 int qd_idx = sh->qd_idx; 1441 int i; 1442 bool fua = false, sync = false, discard = false; 1443 1444 pr_debug("%s: stripe %llu\n", __func__, 1445 (unsigned long long)sh->sector); 1446 1447 for (i = disks; i--; ) { 1448 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags); 1449 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags); 1450 discard |= test_bit(R5_Discard, &sh->dev[i].flags); 1451 } 1452 1453 for (i = disks; i--; ) { 1454 struct r5dev *dev = &sh->dev[i]; 1455 1456 if (dev->written || i == pd_idx || i == qd_idx) { 1457 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) 1458 set_bit(R5_UPTODATE, &dev->flags); 1459 if (fua) 1460 set_bit(R5_WantFUA, &dev->flags); 1461 if (sync) 1462 set_bit(R5_SyncIO, &dev->flags); 1463 } 1464 } 1465 1466 if (sh->reconstruct_state == reconstruct_state_drain_run) 1467 sh->reconstruct_state = reconstruct_state_drain_result; 1468 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) 1469 sh->reconstruct_state = reconstruct_state_prexor_drain_result; 1470 else { 1471 BUG_ON(sh->reconstruct_state != reconstruct_state_run); 1472 sh->reconstruct_state = reconstruct_state_result; 1473 } 1474 1475 set_bit(STRIPE_HANDLE, &sh->state); 1476 release_stripe(sh); 1477 } 1478 1479 static void 1480 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu, 1481 struct dma_async_tx_descriptor *tx) 1482 { 1483 int disks = sh->disks; 1484 struct page **xor_srcs = percpu->scribble; 1485 struct async_submit_ctl submit; 1486 int count = 0, pd_idx = sh->pd_idx, i; 1487 struct page *xor_dest; 1488 int prexor = 0; 1489 unsigned long flags; 1490 1491 pr_debug("%s: stripe %llu\n", __func__, 1492 (unsigned long long)sh->sector); 1493 1494 for (i = 0; i < sh->disks; i++) { 1495 if (pd_idx == i) 1496 continue; 1497 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 1498 break; 1499 } 1500 if (i >= sh->disks) { 1501 atomic_inc(&sh->count); 1502 set_bit(R5_Discard, &sh->dev[pd_idx].flags); 1503 ops_complete_reconstruct(sh); 1504 return; 1505 } 1506 /* check if prexor is active which means only process blocks 1507 * that are part of a read-modify-write (written) 1508 */ 1509 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 1510 prexor = 1; 1511 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1512 for (i = disks; i--; ) { 1513 struct r5dev *dev = &sh->dev[i]; 1514 if (dev->written) 1515 xor_srcs[count++] = dev->page; 1516 } 1517 } else { 1518 xor_dest = sh->dev[pd_idx].page; 1519 for (i = disks; i--; ) { 1520 struct r5dev *dev = &sh->dev[i]; 1521 if (i != pd_idx) 1522 xor_srcs[count++] = dev->page; 1523 } 1524 } 1525 1526 /* 1/ if we prexor'd then the dest is reused as a source 1527 * 2/ if we did not prexor then we are redoing the parity 1528 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST 1529 * for the synchronous xor case 1530 */ 1531 flags = ASYNC_TX_ACK | 1532 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST); 1533 1534 atomic_inc(&sh->count); 1535 1536 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh, 1537 to_addr_conv(sh, percpu)); 1538 if (unlikely(count == 1)) 1539 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); 1540 else 1541 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1542 } 1543 1544 static void 1545 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu, 1546 struct dma_async_tx_descriptor *tx) 1547 { 1548 struct async_submit_ctl submit; 1549 struct page **blocks = percpu->scribble; 1550 int count, i; 1551 1552 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); 1553 1554 for (i = 0; i < sh->disks; i++) { 1555 if (sh->pd_idx == i || sh->qd_idx == i) 1556 continue; 1557 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 1558 break; 1559 } 1560 if (i >= sh->disks) { 1561 atomic_inc(&sh->count); 1562 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 1563 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 1564 ops_complete_reconstruct(sh); 1565 return; 1566 } 1567 1568 count = set_syndrome_sources(blocks, sh); 1569 1570 atomic_inc(&sh->count); 1571 1572 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct, 1573 sh, to_addr_conv(sh, percpu)); 1574 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1575 } 1576 1577 static void ops_complete_check(void *stripe_head_ref) 1578 { 1579 struct stripe_head *sh = stripe_head_ref; 1580 1581 pr_debug("%s: stripe %llu\n", __func__, 1582 (unsigned long long)sh->sector); 1583 1584 sh->check_state = check_state_check_result; 1585 set_bit(STRIPE_HANDLE, &sh->state); 1586 release_stripe(sh); 1587 } 1588 1589 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu) 1590 { 1591 int disks = sh->disks; 1592 int pd_idx = sh->pd_idx; 1593 int qd_idx = sh->qd_idx; 1594 struct page *xor_dest; 1595 struct page **xor_srcs = percpu->scribble; 1596 struct dma_async_tx_descriptor *tx; 1597 struct async_submit_ctl submit; 1598 int count; 1599 int i; 1600 1601 pr_debug("%s: stripe %llu\n", __func__, 1602 (unsigned long long)sh->sector); 1603 1604 count = 0; 1605 xor_dest = sh->dev[pd_idx].page; 1606 xor_srcs[count++] = xor_dest; 1607 for (i = disks; i--; ) { 1608 if (i == pd_idx || i == qd_idx) 1609 continue; 1610 xor_srcs[count++] = sh->dev[i].page; 1611 } 1612 1613 init_async_submit(&submit, 0, NULL, NULL, NULL, 1614 to_addr_conv(sh, percpu)); 1615 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, 1616 &sh->ops.zero_sum_result, &submit); 1617 1618 atomic_inc(&sh->count); 1619 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL); 1620 tx = async_trigger_callback(&submit); 1621 } 1622 1623 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp) 1624 { 1625 struct page **srcs = percpu->scribble; 1626 struct async_submit_ctl submit; 1627 int count; 1628 1629 pr_debug("%s: stripe %llu checkp: %d\n", __func__, 1630 (unsigned long long)sh->sector, checkp); 1631 1632 count = set_syndrome_sources(srcs, sh); 1633 if (!checkp) 1634 srcs[count] = NULL; 1635 1636 atomic_inc(&sh->count); 1637 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check, 1638 sh, to_addr_conv(sh, percpu)); 1639 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE, 1640 &sh->ops.zero_sum_result, percpu->spare_page, &submit); 1641 } 1642 1643 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request) 1644 { 1645 int overlap_clear = 0, i, disks = sh->disks; 1646 struct dma_async_tx_descriptor *tx = NULL; 1647 struct r5conf *conf = sh->raid_conf; 1648 int level = conf->level; 1649 struct raid5_percpu *percpu; 1650 unsigned long cpu; 1651 1652 cpu = get_cpu(); 1653 percpu = per_cpu_ptr(conf->percpu, cpu); 1654 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) { 1655 ops_run_biofill(sh); 1656 overlap_clear++; 1657 } 1658 1659 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) { 1660 if (level < 6) 1661 tx = ops_run_compute5(sh, percpu); 1662 else { 1663 if (sh->ops.target2 < 0 || sh->ops.target < 0) 1664 tx = ops_run_compute6_1(sh, percpu); 1665 else 1666 tx = ops_run_compute6_2(sh, percpu); 1667 } 1668 /* terminate the chain if reconstruct is not set to be run */ 1669 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) 1670 async_tx_ack(tx); 1671 } 1672 1673 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) 1674 tx = ops_run_prexor(sh, percpu, tx); 1675 1676 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) { 1677 tx = ops_run_biodrain(sh, tx); 1678 overlap_clear++; 1679 } 1680 1681 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) { 1682 if (level < 6) 1683 ops_run_reconstruct5(sh, percpu, tx); 1684 else 1685 ops_run_reconstruct6(sh, percpu, tx); 1686 } 1687 1688 if (test_bit(STRIPE_OP_CHECK, &ops_request)) { 1689 if (sh->check_state == check_state_run) 1690 ops_run_check_p(sh, percpu); 1691 else if (sh->check_state == check_state_run_q) 1692 ops_run_check_pq(sh, percpu, 0); 1693 else if (sh->check_state == check_state_run_pq) 1694 ops_run_check_pq(sh, percpu, 1); 1695 else 1696 BUG(); 1697 } 1698 1699 if (overlap_clear) 1700 for (i = disks; i--; ) { 1701 struct r5dev *dev = &sh->dev[i]; 1702 if (test_and_clear_bit(R5_Overlap, &dev->flags)) 1703 wake_up(&sh->raid_conf->wait_for_overlap); 1704 } 1705 put_cpu(); 1706 } 1707 1708 static int grow_one_stripe(struct r5conf *conf, int hash) 1709 { 1710 struct stripe_head *sh; 1711 sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL); 1712 if (!sh) 1713 return 0; 1714 1715 sh->raid_conf = conf; 1716 1717 spin_lock_init(&sh->stripe_lock); 1718 1719 if (grow_buffers(sh)) { 1720 shrink_buffers(sh); 1721 kmem_cache_free(conf->slab_cache, sh); 1722 return 0; 1723 } 1724 sh->hash_lock_index = hash; 1725 /* we just created an active stripe so... */ 1726 atomic_set(&sh->count, 1); 1727 atomic_inc(&conf->active_stripes); 1728 INIT_LIST_HEAD(&sh->lru); 1729 release_stripe(sh); 1730 return 1; 1731 } 1732 1733 static int grow_stripes(struct r5conf *conf, int num) 1734 { 1735 struct kmem_cache *sc; 1736 int devs = max(conf->raid_disks, conf->previous_raid_disks); 1737 int hash; 1738 1739 if (conf->mddev->gendisk) 1740 sprintf(conf->cache_name[0], 1741 "raid%d-%s", conf->level, mdname(conf->mddev)); 1742 else 1743 sprintf(conf->cache_name[0], 1744 "raid%d-%p", conf->level, conf->mddev); 1745 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]); 1746 1747 conf->active_name = 0; 1748 sc = kmem_cache_create(conf->cache_name[conf->active_name], 1749 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev), 1750 0, 0, NULL); 1751 if (!sc) 1752 return 1; 1753 conf->slab_cache = sc; 1754 conf->pool_size = devs; 1755 hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS; 1756 while (num--) { 1757 if (!grow_one_stripe(conf, hash)) 1758 return 1; 1759 conf->max_nr_stripes++; 1760 hash = (hash + 1) % NR_STRIPE_HASH_LOCKS; 1761 } 1762 return 0; 1763 } 1764 1765 /** 1766 * scribble_len - return the required size of the scribble region 1767 * @num - total number of disks in the array 1768 * 1769 * The size must be enough to contain: 1770 * 1/ a struct page pointer for each device in the array +2 1771 * 2/ room to convert each entry in (1) to its corresponding dma 1772 * (dma_map_page()) or page (page_address()) address. 1773 * 1774 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we 1775 * calculate over all devices (not just the data blocks), using zeros in place 1776 * of the P and Q blocks. 1777 */ 1778 static size_t scribble_len(int num) 1779 { 1780 size_t len; 1781 1782 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2); 1783 1784 return len; 1785 } 1786 1787 static int resize_stripes(struct r5conf *conf, int newsize) 1788 { 1789 /* Make all the stripes able to hold 'newsize' devices. 1790 * New slots in each stripe get 'page' set to a new page. 1791 * 1792 * This happens in stages: 1793 * 1/ create a new kmem_cache and allocate the required number of 1794 * stripe_heads. 1795 * 2/ gather all the old stripe_heads and transfer the pages across 1796 * to the new stripe_heads. This will have the side effect of 1797 * freezing the array as once all stripe_heads have been collected, 1798 * no IO will be possible. Old stripe heads are freed once their 1799 * pages have been transferred over, and the old kmem_cache is 1800 * freed when all stripes are done. 1801 * 3/ reallocate conf->disks to be suitable bigger. If this fails, 1802 * we simple return a failre status - no need to clean anything up. 1803 * 4/ allocate new pages for the new slots in the new stripe_heads. 1804 * If this fails, we don't bother trying the shrink the 1805 * stripe_heads down again, we just leave them as they are. 1806 * As each stripe_head is processed the new one is released into 1807 * active service. 1808 * 1809 * Once step2 is started, we cannot afford to wait for a write, 1810 * so we use GFP_NOIO allocations. 1811 */ 1812 struct stripe_head *osh, *nsh; 1813 LIST_HEAD(newstripes); 1814 struct disk_info *ndisks; 1815 unsigned long cpu; 1816 int err; 1817 struct kmem_cache *sc; 1818 int i; 1819 int hash, cnt; 1820 1821 if (newsize <= conf->pool_size) 1822 return 0; /* never bother to shrink */ 1823 1824 err = md_allow_write(conf->mddev); 1825 if (err) 1826 return err; 1827 1828 /* Step 1 */ 1829 sc = kmem_cache_create(conf->cache_name[1-conf->active_name], 1830 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev), 1831 0, 0, NULL); 1832 if (!sc) 1833 return -ENOMEM; 1834 1835 for (i = conf->max_nr_stripes; i; i--) { 1836 nsh = kmem_cache_zalloc(sc, GFP_KERNEL); 1837 if (!nsh) 1838 break; 1839 1840 nsh->raid_conf = conf; 1841 spin_lock_init(&nsh->stripe_lock); 1842 1843 list_add(&nsh->lru, &newstripes); 1844 } 1845 if (i) { 1846 /* didn't get enough, give up */ 1847 while (!list_empty(&newstripes)) { 1848 nsh = list_entry(newstripes.next, struct stripe_head, lru); 1849 list_del(&nsh->lru); 1850 kmem_cache_free(sc, nsh); 1851 } 1852 kmem_cache_destroy(sc); 1853 return -ENOMEM; 1854 } 1855 /* Step 2 - Must use GFP_NOIO now. 1856 * OK, we have enough stripes, start collecting inactive 1857 * stripes and copying them over 1858 */ 1859 hash = 0; 1860 cnt = 0; 1861 list_for_each_entry(nsh, &newstripes, lru) { 1862 lock_device_hash_lock(conf, hash); 1863 wait_event_cmd(conf->wait_for_stripe, 1864 !list_empty(conf->inactive_list + hash), 1865 unlock_device_hash_lock(conf, hash), 1866 lock_device_hash_lock(conf, hash)); 1867 osh = get_free_stripe(conf, hash); 1868 unlock_device_hash_lock(conf, hash); 1869 atomic_set(&nsh->count, 1); 1870 for(i=0; i<conf->pool_size; i++) { 1871 nsh->dev[i].page = osh->dev[i].page; 1872 nsh->dev[i].orig_page = osh->dev[i].page; 1873 } 1874 for( ; i<newsize; i++) 1875 nsh->dev[i].page = NULL; 1876 nsh->hash_lock_index = hash; 1877 kmem_cache_free(conf->slab_cache, osh); 1878 cnt++; 1879 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS + 1880 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) { 1881 hash++; 1882 cnt = 0; 1883 } 1884 } 1885 kmem_cache_destroy(conf->slab_cache); 1886 1887 /* Step 3. 1888 * At this point, we are holding all the stripes so the array 1889 * is completely stalled, so now is a good time to resize 1890 * conf->disks and the scribble region 1891 */ 1892 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO); 1893 if (ndisks) { 1894 for (i=0; i<conf->raid_disks; i++) 1895 ndisks[i] = conf->disks[i]; 1896 kfree(conf->disks); 1897 conf->disks = ndisks; 1898 } else 1899 err = -ENOMEM; 1900 1901 get_online_cpus(); 1902 conf->scribble_len = scribble_len(newsize); 1903 for_each_present_cpu(cpu) { 1904 struct raid5_percpu *percpu; 1905 void *scribble; 1906 1907 percpu = per_cpu_ptr(conf->percpu, cpu); 1908 scribble = kmalloc(conf->scribble_len, GFP_NOIO); 1909 1910 if (scribble) { 1911 kfree(percpu->scribble); 1912 percpu->scribble = scribble; 1913 } else { 1914 err = -ENOMEM; 1915 break; 1916 } 1917 } 1918 put_online_cpus(); 1919 1920 /* Step 4, return new stripes to service */ 1921 while(!list_empty(&newstripes)) { 1922 nsh = list_entry(newstripes.next, struct stripe_head, lru); 1923 list_del_init(&nsh->lru); 1924 1925 for (i=conf->raid_disks; i < newsize; i++) 1926 if (nsh->dev[i].page == NULL) { 1927 struct page *p = alloc_page(GFP_NOIO); 1928 nsh->dev[i].page = p; 1929 nsh->dev[i].orig_page = p; 1930 if (!p) 1931 err = -ENOMEM; 1932 } 1933 release_stripe(nsh); 1934 } 1935 /* critical section pass, GFP_NOIO no longer needed */ 1936 1937 conf->slab_cache = sc; 1938 conf->active_name = 1-conf->active_name; 1939 conf->pool_size = newsize; 1940 return err; 1941 } 1942 1943 static int drop_one_stripe(struct r5conf *conf, int hash) 1944 { 1945 struct stripe_head *sh; 1946 1947 spin_lock_irq(conf->hash_locks + hash); 1948 sh = get_free_stripe(conf, hash); 1949 spin_unlock_irq(conf->hash_locks + hash); 1950 if (!sh) 1951 return 0; 1952 BUG_ON(atomic_read(&sh->count)); 1953 shrink_buffers(sh); 1954 kmem_cache_free(conf->slab_cache, sh); 1955 atomic_dec(&conf->active_stripes); 1956 return 1; 1957 } 1958 1959 static void shrink_stripes(struct r5conf *conf) 1960 { 1961 int hash; 1962 for (hash = 0; hash < NR_STRIPE_HASH_LOCKS; hash++) 1963 while (drop_one_stripe(conf, hash)) 1964 ; 1965 1966 if (conf->slab_cache) 1967 kmem_cache_destroy(conf->slab_cache); 1968 conf->slab_cache = NULL; 1969 } 1970 1971 static void raid5_end_read_request(struct bio * bi, int error) 1972 { 1973 struct stripe_head *sh = bi->bi_private; 1974 struct r5conf *conf = sh->raid_conf; 1975 int disks = sh->disks, i; 1976 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); 1977 char b[BDEVNAME_SIZE]; 1978 struct md_rdev *rdev = NULL; 1979 sector_t s; 1980 1981 for (i=0 ; i<disks; i++) 1982 if (bi == &sh->dev[i].req) 1983 break; 1984 1985 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n", 1986 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 1987 uptodate); 1988 if (i == disks) { 1989 BUG(); 1990 return; 1991 } 1992 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 1993 /* If replacement finished while this request was outstanding, 1994 * 'replacement' might be NULL already. 1995 * In that case it moved down to 'rdev'. 1996 * rdev is not removed until all requests are finished. 1997 */ 1998 rdev = conf->disks[i].replacement; 1999 if (!rdev) 2000 rdev = conf->disks[i].rdev; 2001 2002 if (use_new_offset(conf, sh)) 2003 s = sh->sector + rdev->new_data_offset; 2004 else 2005 s = sh->sector + rdev->data_offset; 2006 if (uptodate) { 2007 set_bit(R5_UPTODATE, &sh->dev[i].flags); 2008 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 2009 /* Note that this cannot happen on a 2010 * replacement device. We just fail those on 2011 * any error 2012 */ 2013 printk_ratelimited( 2014 KERN_INFO 2015 "md/raid:%s: read error corrected" 2016 " (%lu sectors at %llu on %s)\n", 2017 mdname(conf->mddev), STRIPE_SECTORS, 2018 (unsigned long long)s, 2019 bdevname(rdev->bdev, b)); 2020 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors); 2021 clear_bit(R5_ReadError, &sh->dev[i].flags); 2022 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2023 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2024 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2025 2026 if (atomic_read(&rdev->read_errors)) 2027 atomic_set(&rdev->read_errors, 0); 2028 } else { 2029 const char *bdn = bdevname(rdev->bdev, b); 2030 int retry = 0; 2031 int set_bad = 0; 2032 2033 clear_bit(R5_UPTODATE, &sh->dev[i].flags); 2034 atomic_inc(&rdev->read_errors); 2035 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2036 printk_ratelimited( 2037 KERN_WARNING 2038 "md/raid:%s: read error on replacement device " 2039 "(sector %llu on %s).\n", 2040 mdname(conf->mddev), 2041 (unsigned long long)s, 2042 bdn); 2043 else if (conf->mddev->degraded >= conf->max_degraded) { 2044 set_bad = 1; 2045 printk_ratelimited( 2046 KERN_WARNING 2047 "md/raid:%s: read error not correctable " 2048 "(sector %llu on %s).\n", 2049 mdname(conf->mddev), 2050 (unsigned long long)s, 2051 bdn); 2052 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) { 2053 /* Oh, no!!! */ 2054 set_bad = 1; 2055 printk_ratelimited( 2056 KERN_WARNING 2057 "md/raid:%s: read error NOT corrected!! " 2058 "(sector %llu on %s).\n", 2059 mdname(conf->mddev), 2060 (unsigned long long)s, 2061 bdn); 2062 } else if (atomic_read(&rdev->read_errors) 2063 > conf->max_nr_stripes) 2064 printk(KERN_WARNING 2065 "md/raid:%s: Too many read errors, failing device %s.\n", 2066 mdname(conf->mddev), bdn); 2067 else 2068 retry = 1; 2069 if (set_bad && test_bit(In_sync, &rdev->flags) 2070 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2071 retry = 1; 2072 if (retry) 2073 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) { 2074 set_bit(R5_ReadError, &sh->dev[i].flags); 2075 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2076 } else 2077 set_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2078 else { 2079 clear_bit(R5_ReadError, &sh->dev[i].flags); 2080 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2081 if (!(set_bad 2082 && test_bit(In_sync, &rdev->flags) 2083 && rdev_set_badblocks( 2084 rdev, sh->sector, STRIPE_SECTORS, 0))) 2085 md_error(conf->mddev, rdev); 2086 } 2087 } 2088 rdev_dec_pending(rdev, conf->mddev); 2089 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2090 set_bit(STRIPE_HANDLE, &sh->state); 2091 release_stripe(sh); 2092 } 2093 2094 static void raid5_end_write_request(struct bio *bi, int error) 2095 { 2096 struct stripe_head *sh = bi->bi_private; 2097 struct r5conf *conf = sh->raid_conf; 2098 int disks = sh->disks, i; 2099 struct md_rdev *uninitialized_var(rdev); 2100 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); 2101 sector_t first_bad; 2102 int bad_sectors; 2103 int replacement = 0; 2104 2105 for (i = 0 ; i < disks; i++) { 2106 if (bi == &sh->dev[i].req) { 2107 rdev = conf->disks[i].rdev; 2108 break; 2109 } 2110 if (bi == &sh->dev[i].rreq) { 2111 rdev = conf->disks[i].replacement; 2112 if (rdev) 2113 replacement = 1; 2114 else 2115 /* rdev was removed and 'replacement' 2116 * replaced it. rdev is not removed 2117 * until all requests are finished. 2118 */ 2119 rdev = conf->disks[i].rdev; 2120 break; 2121 } 2122 } 2123 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n", 2124 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2125 uptodate); 2126 if (i == disks) { 2127 BUG(); 2128 return; 2129 } 2130 2131 if (replacement) { 2132 if (!uptodate) 2133 md_error(conf->mddev, rdev); 2134 else if (is_badblock(rdev, sh->sector, 2135 STRIPE_SECTORS, 2136 &first_bad, &bad_sectors)) 2137 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags); 2138 } else { 2139 if (!uptodate) { 2140 set_bit(STRIPE_DEGRADED, &sh->state); 2141 set_bit(WriteErrorSeen, &rdev->flags); 2142 set_bit(R5_WriteError, &sh->dev[i].flags); 2143 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2144 set_bit(MD_RECOVERY_NEEDED, 2145 &rdev->mddev->recovery); 2146 } else if (is_badblock(rdev, sh->sector, 2147 STRIPE_SECTORS, 2148 &first_bad, &bad_sectors)) { 2149 set_bit(R5_MadeGood, &sh->dev[i].flags); 2150 if (test_bit(R5_ReadError, &sh->dev[i].flags)) 2151 /* That was a successful write so make 2152 * sure it looks like we already did 2153 * a re-write. 2154 */ 2155 set_bit(R5_ReWrite, &sh->dev[i].flags); 2156 } 2157 } 2158 rdev_dec_pending(rdev, conf->mddev); 2159 2160 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags)) 2161 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2162 set_bit(STRIPE_HANDLE, &sh->state); 2163 release_stripe(sh); 2164 } 2165 2166 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous); 2167 2168 static void raid5_build_block(struct stripe_head *sh, int i, int previous) 2169 { 2170 struct r5dev *dev = &sh->dev[i]; 2171 2172 bio_init(&dev->req); 2173 dev->req.bi_io_vec = &dev->vec; 2174 dev->req.bi_max_vecs = 1; 2175 dev->req.bi_private = sh; 2176 2177 bio_init(&dev->rreq); 2178 dev->rreq.bi_io_vec = &dev->rvec; 2179 dev->rreq.bi_max_vecs = 1; 2180 dev->rreq.bi_private = sh; 2181 2182 dev->flags = 0; 2183 dev->sector = compute_blocknr(sh, i, previous); 2184 } 2185 2186 static void error(struct mddev *mddev, struct md_rdev *rdev) 2187 { 2188 char b[BDEVNAME_SIZE]; 2189 struct r5conf *conf = mddev->private; 2190 unsigned long flags; 2191 pr_debug("raid456: error called\n"); 2192 2193 spin_lock_irqsave(&conf->device_lock, flags); 2194 clear_bit(In_sync, &rdev->flags); 2195 mddev->degraded = calc_degraded(conf); 2196 spin_unlock_irqrestore(&conf->device_lock, flags); 2197 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2198 2199 set_bit(Blocked, &rdev->flags); 2200 set_bit(Faulty, &rdev->flags); 2201 set_bit(MD_CHANGE_DEVS, &mddev->flags); 2202 printk(KERN_ALERT 2203 "md/raid:%s: Disk failure on %s, disabling device.\n" 2204 "md/raid:%s: Operation continuing on %d devices.\n", 2205 mdname(mddev), 2206 bdevname(rdev->bdev, b), 2207 mdname(mddev), 2208 conf->raid_disks - mddev->degraded); 2209 } 2210 2211 /* 2212 * Input: a 'big' sector number, 2213 * Output: index of the data and parity disk, and the sector # in them. 2214 */ 2215 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector, 2216 int previous, int *dd_idx, 2217 struct stripe_head *sh) 2218 { 2219 sector_t stripe, stripe2; 2220 sector_t chunk_number; 2221 unsigned int chunk_offset; 2222 int pd_idx, qd_idx; 2223 int ddf_layout = 0; 2224 sector_t new_sector; 2225 int algorithm = previous ? conf->prev_algo 2226 : conf->algorithm; 2227 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 2228 : conf->chunk_sectors; 2229 int raid_disks = previous ? conf->previous_raid_disks 2230 : conf->raid_disks; 2231 int data_disks = raid_disks - conf->max_degraded; 2232 2233 /* First compute the information on this sector */ 2234 2235 /* 2236 * Compute the chunk number and the sector offset inside the chunk 2237 */ 2238 chunk_offset = sector_div(r_sector, sectors_per_chunk); 2239 chunk_number = r_sector; 2240 2241 /* 2242 * Compute the stripe number 2243 */ 2244 stripe = chunk_number; 2245 *dd_idx = sector_div(stripe, data_disks); 2246 stripe2 = stripe; 2247 /* 2248 * Select the parity disk based on the user selected algorithm. 2249 */ 2250 pd_idx = qd_idx = -1; 2251 switch(conf->level) { 2252 case 4: 2253 pd_idx = data_disks; 2254 break; 2255 case 5: 2256 switch (algorithm) { 2257 case ALGORITHM_LEFT_ASYMMETRIC: 2258 pd_idx = data_disks - sector_div(stripe2, raid_disks); 2259 if (*dd_idx >= pd_idx) 2260 (*dd_idx)++; 2261 break; 2262 case ALGORITHM_RIGHT_ASYMMETRIC: 2263 pd_idx = sector_div(stripe2, raid_disks); 2264 if (*dd_idx >= pd_idx) 2265 (*dd_idx)++; 2266 break; 2267 case ALGORITHM_LEFT_SYMMETRIC: 2268 pd_idx = data_disks - sector_div(stripe2, raid_disks); 2269 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2270 break; 2271 case ALGORITHM_RIGHT_SYMMETRIC: 2272 pd_idx = sector_div(stripe2, raid_disks); 2273 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2274 break; 2275 case ALGORITHM_PARITY_0: 2276 pd_idx = 0; 2277 (*dd_idx)++; 2278 break; 2279 case ALGORITHM_PARITY_N: 2280 pd_idx = data_disks; 2281 break; 2282 default: 2283 BUG(); 2284 } 2285 break; 2286 case 6: 2287 2288 switch (algorithm) { 2289 case ALGORITHM_LEFT_ASYMMETRIC: 2290 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2291 qd_idx = pd_idx + 1; 2292 if (pd_idx == raid_disks-1) { 2293 (*dd_idx)++; /* Q D D D P */ 2294 qd_idx = 0; 2295 } else if (*dd_idx >= pd_idx) 2296 (*dd_idx) += 2; /* D D P Q D */ 2297 break; 2298 case ALGORITHM_RIGHT_ASYMMETRIC: 2299 pd_idx = sector_div(stripe2, raid_disks); 2300 qd_idx = pd_idx + 1; 2301 if (pd_idx == raid_disks-1) { 2302 (*dd_idx)++; /* Q D D D P */ 2303 qd_idx = 0; 2304 } else if (*dd_idx >= pd_idx) 2305 (*dd_idx) += 2; /* D D P Q D */ 2306 break; 2307 case ALGORITHM_LEFT_SYMMETRIC: 2308 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2309 qd_idx = (pd_idx + 1) % raid_disks; 2310 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 2311 break; 2312 case ALGORITHM_RIGHT_SYMMETRIC: 2313 pd_idx = sector_div(stripe2, raid_disks); 2314 qd_idx = (pd_idx + 1) % raid_disks; 2315 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 2316 break; 2317 2318 case ALGORITHM_PARITY_0: 2319 pd_idx = 0; 2320 qd_idx = 1; 2321 (*dd_idx) += 2; 2322 break; 2323 case ALGORITHM_PARITY_N: 2324 pd_idx = data_disks; 2325 qd_idx = data_disks + 1; 2326 break; 2327 2328 case ALGORITHM_ROTATING_ZERO_RESTART: 2329 /* Exactly the same as RIGHT_ASYMMETRIC, but or 2330 * of blocks for computing Q is different. 2331 */ 2332 pd_idx = sector_div(stripe2, raid_disks); 2333 qd_idx = pd_idx + 1; 2334 if (pd_idx == raid_disks-1) { 2335 (*dd_idx)++; /* Q D D D P */ 2336 qd_idx = 0; 2337 } else if (*dd_idx >= pd_idx) 2338 (*dd_idx) += 2; /* D D P Q D */ 2339 ddf_layout = 1; 2340 break; 2341 2342 case ALGORITHM_ROTATING_N_RESTART: 2343 /* Same a left_asymmetric, by first stripe is 2344 * D D D P Q rather than 2345 * Q D D D P 2346 */ 2347 stripe2 += 1; 2348 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2349 qd_idx = pd_idx + 1; 2350 if (pd_idx == raid_disks-1) { 2351 (*dd_idx)++; /* Q D D D P */ 2352 qd_idx = 0; 2353 } else if (*dd_idx >= pd_idx) 2354 (*dd_idx) += 2; /* D D P Q D */ 2355 ddf_layout = 1; 2356 break; 2357 2358 case ALGORITHM_ROTATING_N_CONTINUE: 2359 /* Same as left_symmetric but Q is before P */ 2360 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2361 qd_idx = (pd_idx + raid_disks - 1) % raid_disks; 2362 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2363 ddf_layout = 1; 2364 break; 2365 2366 case ALGORITHM_LEFT_ASYMMETRIC_6: 2367 /* RAID5 left_asymmetric, with Q on last device */ 2368 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 2369 if (*dd_idx >= pd_idx) 2370 (*dd_idx)++; 2371 qd_idx = raid_disks - 1; 2372 break; 2373 2374 case ALGORITHM_RIGHT_ASYMMETRIC_6: 2375 pd_idx = sector_div(stripe2, raid_disks-1); 2376 if (*dd_idx >= pd_idx) 2377 (*dd_idx)++; 2378 qd_idx = raid_disks - 1; 2379 break; 2380 2381 case ALGORITHM_LEFT_SYMMETRIC_6: 2382 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 2383 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 2384 qd_idx = raid_disks - 1; 2385 break; 2386 2387 case ALGORITHM_RIGHT_SYMMETRIC_6: 2388 pd_idx = sector_div(stripe2, raid_disks-1); 2389 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 2390 qd_idx = raid_disks - 1; 2391 break; 2392 2393 case ALGORITHM_PARITY_0_6: 2394 pd_idx = 0; 2395 (*dd_idx)++; 2396 qd_idx = raid_disks - 1; 2397 break; 2398 2399 default: 2400 BUG(); 2401 } 2402 break; 2403 } 2404 2405 if (sh) { 2406 sh->pd_idx = pd_idx; 2407 sh->qd_idx = qd_idx; 2408 sh->ddf_layout = ddf_layout; 2409 } 2410 /* 2411 * Finally, compute the new sector number 2412 */ 2413 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset; 2414 return new_sector; 2415 } 2416 2417 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous) 2418 { 2419 struct r5conf *conf = sh->raid_conf; 2420 int raid_disks = sh->disks; 2421 int data_disks = raid_disks - conf->max_degraded; 2422 sector_t new_sector = sh->sector, check; 2423 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 2424 : conf->chunk_sectors; 2425 int algorithm = previous ? conf->prev_algo 2426 : conf->algorithm; 2427 sector_t stripe; 2428 int chunk_offset; 2429 sector_t chunk_number; 2430 int dummy1, dd_idx = i; 2431 sector_t r_sector; 2432 struct stripe_head sh2; 2433 2434 chunk_offset = sector_div(new_sector, sectors_per_chunk); 2435 stripe = new_sector; 2436 2437 if (i == sh->pd_idx) 2438 return 0; 2439 switch(conf->level) { 2440 case 4: break; 2441 case 5: 2442 switch (algorithm) { 2443 case ALGORITHM_LEFT_ASYMMETRIC: 2444 case ALGORITHM_RIGHT_ASYMMETRIC: 2445 if (i > sh->pd_idx) 2446 i--; 2447 break; 2448 case ALGORITHM_LEFT_SYMMETRIC: 2449 case ALGORITHM_RIGHT_SYMMETRIC: 2450 if (i < sh->pd_idx) 2451 i += raid_disks; 2452 i -= (sh->pd_idx + 1); 2453 break; 2454 case ALGORITHM_PARITY_0: 2455 i -= 1; 2456 break; 2457 case ALGORITHM_PARITY_N: 2458 break; 2459 default: 2460 BUG(); 2461 } 2462 break; 2463 case 6: 2464 if (i == sh->qd_idx) 2465 return 0; /* It is the Q disk */ 2466 switch (algorithm) { 2467 case ALGORITHM_LEFT_ASYMMETRIC: 2468 case ALGORITHM_RIGHT_ASYMMETRIC: 2469 case ALGORITHM_ROTATING_ZERO_RESTART: 2470 case ALGORITHM_ROTATING_N_RESTART: 2471 if (sh->pd_idx == raid_disks-1) 2472 i--; /* Q D D D P */ 2473 else if (i > sh->pd_idx) 2474 i -= 2; /* D D P Q D */ 2475 break; 2476 case ALGORITHM_LEFT_SYMMETRIC: 2477 case ALGORITHM_RIGHT_SYMMETRIC: 2478 if (sh->pd_idx == raid_disks-1) 2479 i--; /* Q D D D P */ 2480 else { 2481 /* D D P Q D */ 2482 if (i < sh->pd_idx) 2483 i += raid_disks; 2484 i -= (sh->pd_idx + 2); 2485 } 2486 break; 2487 case ALGORITHM_PARITY_0: 2488 i -= 2; 2489 break; 2490 case ALGORITHM_PARITY_N: 2491 break; 2492 case ALGORITHM_ROTATING_N_CONTINUE: 2493 /* Like left_symmetric, but P is before Q */ 2494 if (sh->pd_idx == 0) 2495 i--; /* P D D D Q */ 2496 else { 2497 /* D D Q P D */ 2498 if (i < sh->pd_idx) 2499 i += raid_disks; 2500 i -= (sh->pd_idx + 1); 2501 } 2502 break; 2503 case ALGORITHM_LEFT_ASYMMETRIC_6: 2504 case ALGORITHM_RIGHT_ASYMMETRIC_6: 2505 if (i > sh->pd_idx) 2506 i--; 2507 break; 2508 case ALGORITHM_LEFT_SYMMETRIC_6: 2509 case ALGORITHM_RIGHT_SYMMETRIC_6: 2510 if (i < sh->pd_idx) 2511 i += data_disks + 1; 2512 i -= (sh->pd_idx + 1); 2513 break; 2514 case ALGORITHM_PARITY_0_6: 2515 i -= 1; 2516 break; 2517 default: 2518 BUG(); 2519 } 2520 break; 2521 } 2522 2523 chunk_number = stripe * data_disks + i; 2524 r_sector = chunk_number * sectors_per_chunk + chunk_offset; 2525 2526 check = raid5_compute_sector(conf, r_sector, 2527 previous, &dummy1, &sh2); 2528 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx 2529 || sh2.qd_idx != sh->qd_idx) { 2530 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n", 2531 mdname(conf->mddev)); 2532 return 0; 2533 } 2534 return r_sector; 2535 } 2536 2537 static void 2538 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s, 2539 int rcw, int expand) 2540 { 2541 int i, pd_idx = sh->pd_idx, disks = sh->disks; 2542 struct r5conf *conf = sh->raid_conf; 2543 int level = conf->level; 2544 2545 if (rcw) { 2546 2547 for (i = disks; i--; ) { 2548 struct r5dev *dev = &sh->dev[i]; 2549 2550 if (dev->towrite) { 2551 set_bit(R5_LOCKED, &dev->flags); 2552 set_bit(R5_Wantdrain, &dev->flags); 2553 if (!expand) 2554 clear_bit(R5_UPTODATE, &dev->flags); 2555 s->locked++; 2556 } 2557 } 2558 /* if we are not expanding this is a proper write request, and 2559 * there will be bios with new data to be drained into the 2560 * stripe cache 2561 */ 2562 if (!expand) { 2563 if (!s->locked) 2564 /* False alarm, nothing to do */ 2565 return; 2566 sh->reconstruct_state = reconstruct_state_drain_run; 2567 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 2568 } else 2569 sh->reconstruct_state = reconstruct_state_run; 2570 2571 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 2572 2573 if (s->locked + conf->max_degraded == disks) 2574 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state)) 2575 atomic_inc(&conf->pending_full_writes); 2576 } else { 2577 BUG_ON(level == 6); 2578 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) || 2579 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags))); 2580 2581 for (i = disks; i--; ) { 2582 struct r5dev *dev = &sh->dev[i]; 2583 if (i == pd_idx) 2584 continue; 2585 2586 if (dev->towrite && 2587 (test_bit(R5_UPTODATE, &dev->flags) || 2588 test_bit(R5_Wantcompute, &dev->flags))) { 2589 set_bit(R5_Wantdrain, &dev->flags); 2590 set_bit(R5_LOCKED, &dev->flags); 2591 clear_bit(R5_UPTODATE, &dev->flags); 2592 s->locked++; 2593 } 2594 } 2595 if (!s->locked) 2596 /* False alarm - nothing to do */ 2597 return; 2598 sh->reconstruct_state = reconstruct_state_prexor_drain_run; 2599 set_bit(STRIPE_OP_PREXOR, &s->ops_request); 2600 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 2601 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 2602 } 2603 2604 /* keep the parity disk(s) locked while asynchronous operations 2605 * are in flight 2606 */ 2607 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); 2608 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 2609 s->locked++; 2610 2611 if (level == 6) { 2612 int qd_idx = sh->qd_idx; 2613 struct r5dev *dev = &sh->dev[qd_idx]; 2614 2615 set_bit(R5_LOCKED, &dev->flags); 2616 clear_bit(R5_UPTODATE, &dev->flags); 2617 s->locked++; 2618 } 2619 2620 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n", 2621 __func__, (unsigned long long)sh->sector, 2622 s->locked, s->ops_request); 2623 } 2624 2625 /* 2626 * Each stripe/dev can have one or more bion attached. 2627 * toread/towrite point to the first in a chain. 2628 * The bi_next chain must be in order. 2629 */ 2630 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite) 2631 { 2632 struct bio **bip; 2633 struct r5conf *conf = sh->raid_conf; 2634 int firstwrite=0; 2635 2636 pr_debug("adding bi b#%llu to stripe s#%llu\n", 2637 (unsigned long long)bi->bi_iter.bi_sector, 2638 (unsigned long long)sh->sector); 2639 2640 /* 2641 * If several bio share a stripe. The bio bi_phys_segments acts as a 2642 * reference count to avoid race. The reference count should already be 2643 * increased before this function is called (for example, in 2644 * make_request()), so other bio sharing this stripe will not free the 2645 * stripe. If a stripe is owned by one stripe, the stripe lock will 2646 * protect it. 2647 */ 2648 spin_lock_irq(&sh->stripe_lock); 2649 if (forwrite) { 2650 bip = &sh->dev[dd_idx].towrite; 2651 if (*bip == NULL) 2652 firstwrite = 1; 2653 } else 2654 bip = &sh->dev[dd_idx].toread; 2655 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) { 2656 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector) 2657 goto overlap; 2658 bip = & (*bip)->bi_next; 2659 } 2660 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi)) 2661 goto overlap; 2662 2663 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next); 2664 if (*bip) 2665 bi->bi_next = *bip; 2666 *bip = bi; 2667 raid5_inc_bi_active_stripes(bi); 2668 2669 if (forwrite) { 2670 /* check if page is covered */ 2671 sector_t sector = sh->dev[dd_idx].sector; 2672 for (bi=sh->dev[dd_idx].towrite; 2673 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS && 2674 bi && bi->bi_iter.bi_sector <= sector; 2675 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) { 2676 if (bio_end_sector(bi) >= sector) 2677 sector = bio_end_sector(bi); 2678 } 2679 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS) 2680 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags); 2681 } 2682 2683 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n", 2684 (unsigned long long)(*bip)->bi_iter.bi_sector, 2685 (unsigned long long)sh->sector, dd_idx); 2686 spin_unlock_irq(&sh->stripe_lock); 2687 2688 if (conf->mddev->bitmap && firstwrite) { 2689 bitmap_startwrite(conf->mddev->bitmap, sh->sector, 2690 STRIPE_SECTORS, 0); 2691 sh->bm_seq = conf->seq_flush+1; 2692 set_bit(STRIPE_BIT_DELAY, &sh->state); 2693 } 2694 return 1; 2695 2696 overlap: 2697 set_bit(R5_Overlap, &sh->dev[dd_idx].flags); 2698 spin_unlock_irq(&sh->stripe_lock); 2699 return 0; 2700 } 2701 2702 static void end_reshape(struct r5conf *conf); 2703 2704 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 2705 struct stripe_head *sh) 2706 { 2707 int sectors_per_chunk = 2708 previous ? conf->prev_chunk_sectors : conf->chunk_sectors; 2709 int dd_idx; 2710 int chunk_offset = sector_div(stripe, sectors_per_chunk); 2711 int disks = previous ? conf->previous_raid_disks : conf->raid_disks; 2712 2713 raid5_compute_sector(conf, 2714 stripe * (disks - conf->max_degraded) 2715 *sectors_per_chunk + chunk_offset, 2716 previous, 2717 &dd_idx, sh); 2718 } 2719 2720 static void 2721 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh, 2722 struct stripe_head_state *s, int disks, 2723 struct bio **return_bi) 2724 { 2725 int i; 2726 for (i = disks; i--; ) { 2727 struct bio *bi; 2728 int bitmap_end = 0; 2729 2730 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 2731 struct md_rdev *rdev; 2732 rcu_read_lock(); 2733 rdev = rcu_dereference(conf->disks[i].rdev); 2734 if (rdev && test_bit(In_sync, &rdev->flags)) 2735 atomic_inc(&rdev->nr_pending); 2736 else 2737 rdev = NULL; 2738 rcu_read_unlock(); 2739 if (rdev) { 2740 if (!rdev_set_badblocks( 2741 rdev, 2742 sh->sector, 2743 STRIPE_SECTORS, 0)) 2744 md_error(conf->mddev, rdev); 2745 rdev_dec_pending(rdev, conf->mddev); 2746 } 2747 } 2748 spin_lock_irq(&sh->stripe_lock); 2749 /* fail all writes first */ 2750 bi = sh->dev[i].towrite; 2751 sh->dev[i].towrite = NULL; 2752 spin_unlock_irq(&sh->stripe_lock); 2753 if (bi) 2754 bitmap_end = 1; 2755 2756 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 2757 wake_up(&conf->wait_for_overlap); 2758 2759 while (bi && bi->bi_iter.bi_sector < 2760 sh->dev[i].sector + STRIPE_SECTORS) { 2761 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector); 2762 clear_bit(BIO_UPTODATE, &bi->bi_flags); 2763 if (!raid5_dec_bi_active_stripes(bi)) { 2764 md_write_end(conf->mddev); 2765 bi->bi_next = *return_bi; 2766 *return_bi = bi; 2767 } 2768 bi = nextbi; 2769 } 2770 if (bitmap_end) 2771 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 2772 STRIPE_SECTORS, 0, 0); 2773 bitmap_end = 0; 2774 /* and fail all 'written' */ 2775 bi = sh->dev[i].written; 2776 sh->dev[i].written = NULL; 2777 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) { 2778 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 2779 sh->dev[i].page = sh->dev[i].orig_page; 2780 } 2781 2782 if (bi) bitmap_end = 1; 2783 while (bi && bi->bi_iter.bi_sector < 2784 sh->dev[i].sector + STRIPE_SECTORS) { 2785 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector); 2786 clear_bit(BIO_UPTODATE, &bi->bi_flags); 2787 if (!raid5_dec_bi_active_stripes(bi)) { 2788 md_write_end(conf->mddev); 2789 bi->bi_next = *return_bi; 2790 *return_bi = bi; 2791 } 2792 bi = bi2; 2793 } 2794 2795 /* fail any reads if this device is non-operational and 2796 * the data has not reached the cache yet. 2797 */ 2798 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) && 2799 (!test_bit(R5_Insync, &sh->dev[i].flags) || 2800 test_bit(R5_ReadError, &sh->dev[i].flags))) { 2801 spin_lock_irq(&sh->stripe_lock); 2802 bi = sh->dev[i].toread; 2803 sh->dev[i].toread = NULL; 2804 spin_unlock_irq(&sh->stripe_lock); 2805 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 2806 wake_up(&conf->wait_for_overlap); 2807 while (bi && bi->bi_iter.bi_sector < 2808 sh->dev[i].sector + STRIPE_SECTORS) { 2809 struct bio *nextbi = 2810 r5_next_bio(bi, sh->dev[i].sector); 2811 clear_bit(BIO_UPTODATE, &bi->bi_flags); 2812 if (!raid5_dec_bi_active_stripes(bi)) { 2813 bi->bi_next = *return_bi; 2814 *return_bi = bi; 2815 } 2816 bi = nextbi; 2817 } 2818 } 2819 if (bitmap_end) 2820 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 2821 STRIPE_SECTORS, 0, 0); 2822 /* If we were in the middle of a write the parity block might 2823 * still be locked - so just clear all R5_LOCKED flags 2824 */ 2825 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2826 } 2827 2828 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 2829 if (atomic_dec_and_test(&conf->pending_full_writes)) 2830 md_wakeup_thread(conf->mddev->thread); 2831 } 2832 2833 static void 2834 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh, 2835 struct stripe_head_state *s) 2836 { 2837 int abort = 0; 2838 int i; 2839 2840 clear_bit(STRIPE_SYNCING, &sh->state); 2841 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 2842 wake_up(&conf->wait_for_overlap); 2843 s->syncing = 0; 2844 s->replacing = 0; 2845 /* There is nothing more to do for sync/check/repair. 2846 * Don't even need to abort as that is handled elsewhere 2847 * if needed, and not always wanted e.g. if there is a known 2848 * bad block here. 2849 * For recover/replace we need to record a bad block on all 2850 * non-sync devices, or abort the recovery 2851 */ 2852 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) { 2853 /* During recovery devices cannot be removed, so 2854 * locking and refcounting of rdevs is not needed 2855 */ 2856 for (i = 0; i < conf->raid_disks; i++) { 2857 struct md_rdev *rdev = conf->disks[i].rdev; 2858 if (rdev 2859 && !test_bit(Faulty, &rdev->flags) 2860 && !test_bit(In_sync, &rdev->flags) 2861 && !rdev_set_badblocks(rdev, sh->sector, 2862 STRIPE_SECTORS, 0)) 2863 abort = 1; 2864 rdev = conf->disks[i].replacement; 2865 if (rdev 2866 && !test_bit(Faulty, &rdev->flags) 2867 && !test_bit(In_sync, &rdev->flags) 2868 && !rdev_set_badblocks(rdev, sh->sector, 2869 STRIPE_SECTORS, 0)) 2870 abort = 1; 2871 } 2872 if (abort) 2873 conf->recovery_disabled = 2874 conf->mddev->recovery_disabled; 2875 } 2876 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort); 2877 } 2878 2879 static int want_replace(struct stripe_head *sh, int disk_idx) 2880 { 2881 struct md_rdev *rdev; 2882 int rv = 0; 2883 /* Doing recovery so rcu locking not required */ 2884 rdev = sh->raid_conf->disks[disk_idx].replacement; 2885 if (rdev 2886 && !test_bit(Faulty, &rdev->flags) 2887 && !test_bit(In_sync, &rdev->flags) 2888 && (rdev->recovery_offset <= sh->sector 2889 || rdev->mddev->recovery_cp <= sh->sector)) 2890 rv = 1; 2891 2892 return rv; 2893 } 2894 2895 /* fetch_block - checks the given member device to see if its data needs 2896 * to be read or computed to satisfy a request. 2897 * 2898 * Returns 1 when no more member devices need to be checked, otherwise returns 2899 * 0 to tell the loop in handle_stripe_fill to continue 2900 */ 2901 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s, 2902 int disk_idx, int disks) 2903 { 2904 struct r5dev *dev = &sh->dev[disk_idx]; 2905 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]], 2906 &sh->dev[s->failed_num[1]] }; 2907 2908 /* is the data in this block needed, and can we get it? */ 2909 if (!test_bit(R5_LOCKED, &dev->flags) && 2910 !test_bit(R5_UPTODATE, &dev->flags) && 2911 (dev->toread || 2912 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) || 2913 s->syncing || s->expanding || 2914 (s->replacing && want_replace(sh, disk_idx)) || 2915 (s->failed >= 1 && fdev[0]->toread) || 2916 (s->failed >= 2 && fdev[1]->toread) || 2917 (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite && 2918 (!test_bit(R5_Insync, &dev->flags) || test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) && 2919 !test_bit(R5_OVERWRITE, &fdev[0]->flags)) || 2920 ((sh->raid_conf->level == 6 || 2921 sh->sector >= sh->raid_conf->mddev->recovery_cp) 2922 && s->failed && s->to_write && 2923 (s->to_write - s->non_overwrite < 2924 sh->raid_conf->raid_disks - sh->raid_conf->max_degraded) && 2925 (!test_bit(R5_Insync, &dev->flags) || test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))))) { 2926 /* we would like to get this block, possibly by computing it, 2927 * otherwise read it if the backing disk is insync 2928 */ 2929 BUG_ON(test_bit(R5_Wantcompute, &dev->flags)); 2930 BUG_ON(test_bit(R5_Wantread, &dev->flags)); 2931 if ((s->uptodate == disks - 1) && 2932 (s->failed && (disk_idx == s->failed_num[0] || 2933 disk_idx == s->failed_num[1]))) { 2934 /* have disk failed, and we're requested to fetch it; 2935 * do compute it 2936 */ 2937 pr_debug("Computing stripe %llu block %d\n", 2938 (unsigned long long)sh->sector, disk_idx); 2939 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 2940 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 2941 set_bit(R5_Wantcompute, &dev->flags); 2942 sh->ops.target = disk_idx; 2943 sh->ops.target2 = -1; /* no 2nd target */ 2944 s->req_compute = 1; 2945 /* Careful: from this point on 'uptodate' is in the eye 2946 * of raid_run_ops which services 'compute' operations 2947 * before writes. R5_Wantcompute flags a block that will 2948 * be R5_UPTODATE by the time it is needed for a 2949 * subsequent operation. 2950 */ 2951 s->uptodate++; 2952 return 1; 2953 } else if (s->uptodate == disks-2 && s->failed >= 2) { 2954 /* Computing 2-failure is *very* expensive; only 2955 * do it if failed >= 2 2956 */ 2957 int other; 2958 for (other = disks; other--; ) { 2959 if (other == disk_idx) 2960 continue; 2961 if (!test_bit(R5_UPTODATE, 2962 &sh->dev[other].flags)) 2963 break; 2964 } 2965 BUG_ON(other < 0); 2966 pr_debug("Computing stripe %llu blocks %d,%d\n", 2967 (unsigned long long)sh->sector, 2968 disk_idx, other); 2969 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 2970 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 2971 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags); 2972 set_bit(R5_Wantcompute, &sh->dev[other].flags); 2973 sh->ops.target = disk_idx; 2974 sh->ops.target2 = other; 2975 s->uptodate += 2; 2976 s->req_compute = 1; 2977 return 1; 2978 } else if (test_bit(R5_Insync, &dev->flags)) { 2979 set_bit(R5_LOCKED, &dev->flags); 2980 set_bit(R5_Wantread, &dev->flags); 2981 s->locked++; 2982 pr_debug("Reading block %d (sync=%d)\n", 2983 disk_idx, s->syncing); 2984 } 2985 } 2986 2987 return 0; 2988 } 2989 2990 /** 2991 * handle_stripe_fill - read or compute data to satisfy pending requests. 2992 */ 2993 static void handle_stripe_fill(struct stripe_head *sh, 2994 struct stripe_head_state *s, 2995 int disks) 2996 { 2997 int i; 2998 2999 /* look for blocks to read/compute, skip this if a compute 3000 * is already in flight, or if the stripe contents are in the 3001 * midst of changing due to a write 3002 */ 3003 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state && 3004 !sh->reconstruct_state) 3005 for (i = disks; i--; ) 3006 if (fetch_block(sh, s, i, disks)) 3007 break; 3008 set_bit(STRIPE_HANDLE, &sh->state); 3009 } 3010 3011 /* handle_stripe_clean_event 3012 * any written block on an uptodate or failed drive can be returned. 3013 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but 3014 * never LOCKED, so we don't need to test 'failed' directly. 3015 */ 3016 static void handle_stripe_clean_event(struct r5conf *conf, 3017 struct stripe_head *sh, int disks, struct bio **return_bi) 3018 { 3019 int i; 3020 struct r5dev *dev; 3021 int discard_pending = 0; 3022 3023 for (i = disks; i--; ) 3024 if (sh->dev[i].written) { 3025 dev = &sh->dev[i]; 3026 if (!test_bit(R5_LOCKED, &dev->flags) && 3027 (test_bit(R5_UPTODATE, &dev->flags) || 3028 test_bit(R5_Discard, &dev->flags) || 3029 test_bit(R5_SkipCopy, &dev->flags))) { 3030 /* We can return any write requests */ 3031 struct bio *wbi, *wbi2; 3032 pr_debug("Return write for disc %d\n", i); 3033 if (test_and_clear_bit(R5_Discard, &dev->flags)) 3034 clear_bit(R5_UPTODATE, &dev->flags); 3035 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) { 3036 WARN_ON(test_bit(R5_UPTODATE, &dev->flags)); 3037 dev->page = dev->orig_page; 3038 } 3039 wbi = dev->written; 3040 dev->written = NULL; 3041 while (wbi && wbi->bi_iter.bi_sector < 3042 dev->sector + STRIPE_SECTORS) { 3043 wbi2 = r5_next_bio(wbi, dev->sector); 3044 if (!raid5_dec_bi_active_stripes(wbi)) { 3045 md_write_end(conf->mddev); 3046 wbi->bi_next = *return_bi; 3047 *return_bi = wbi; 3048 } 3049 wbi = wbi2; 3050 } 3051 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3052 STRIPE_SECTORS, 3053 !test_bit(STRIPE_DEGRADED, &sh->state), 3054 0); 3055 } else if (test_bit(R5_Discard, &dev->flags)) 3056 discard_pending = 1; 3057 WARN_ON(test_bit(R5_SkipCopy, &dev->flags)); 3058 WARN_ON(dev->page != dev->orig_page); 3059 } 3060 if (!discard_pending && 3061 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) { 3062 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 3063 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 3064 if (sh->qd_idx >= 0) { 3065 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 3066 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags); 3067 } 3068 /* now that discard is done we can proceed with any sync */ 3069 clear_bit(STRIPE_DISCARD, &sh->state); 3070 /* 3071 * SCSI discard will change some bio fields and the stripe has 3072 * no updated data, so remove it from hash list and the stripe 3073 * will be reinitialized 3074 */ 3075 spin_lock_irq(&conf->device_lock); 3076 remove_hash(sh); 3077 spin_unlock_irq(&conf->device_lock); 3078 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) 3079 set_bit(STRIPE_HANDLE, &sh->state); 3080 3081 } 3082 3083 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 3084 if (atomic_dec_and_test(&conf->pending_full_writes)) 3085 md_wakeup_thread(conf->mddev->thread); 3086 } 3087 3088 static void handle_stripe_dirtying(struct r5conf *conf, 3089 struct stripe_head *sh, 3090 struct stripe_head_state *s, 3091 int disks) 3092 { 3093 int rmw = 0, rcw = 0, i; 3094 sector_t recovery_cp = conf->mddev->recovery_cp; 3095 3096 /* RAID6 requires 'rcw' in current implementation. 3097 * Otherwise, check whether resync is now happening or should start. 3098 * If yes, then the array is dirty (after unclean shutdown or 3099 * initial creation), so parity in some stripes might be inconsistent. 3100 * In this case, we need to always do reconstruct-write, to ensure 3101 * that in case of drive failure or read-error correction, we 3102 * generate correct data from the parity. 3103 */ 3104 if (conf->max_degraded == 2 || 3105 (recovery_cp < MaxSector && sh->sector >= recovery_cp)) { 3106 /* Calculate the real rcw later - for now make it 3107 * look like rcw is cheaper 3108 */ 3109 rcw = 1; rmw = 2; 3110 pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n", 3111 conf->max_degraded, (unsigned long long)recovery_cp, 3112 (unsigned long long)sh->sector); 3113 } else for (i = disks; i--; ) { 3114 /* would I have to read this buffer for read_modify_write */ 3115 struct r5dev *dev = &sh->dev[i]; 3116 if ((dev->towrite || i == sh->pd_idx) && 3117 !test_bit(R5_LOCKED, &dev->flags) && 3118 !(test_bit(R5_UPTODATE, &dev->flags) || 3119 test_bit(R5_Wantcompute, &dev->flags))) { 3120 if (test_bit(R5_Insync, &dev->flags)) 3121 rmw++; 3122 else 3123 rmw += 2*disks; /* cannot read it */ 3124 } 3125 /* Would I have to read this buffer for reconstruct_write */ 3126 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx && 3127 !test_bit(R5_LOCKED, &dev->flags) && 3128 !(test_bit(R5_UPTODATE, &dev->flags) || 3129 test_bit(R5_Wantcompute, &dev->flags))) { 3130 if (test_bit(R5_Insync, &dev->flags)) 3131 rcw++; 3132 else 3133 rcw += 2*disks; 3134 } 3135 } 3136 pr_debug("for sector %llu, rmw=%d rcw=%d\n", 3137 (unsigned long long)sh->sector, rmw, rcw); 3138 set_bit(STRIPE_HANDLE, &sh->state); 3139 if (rmw < rcw && rmw > 0) { 3140 /* prefer read-modify-write, but need to get some data */ 3141 if (conf->mddev->queue) 3142 blk_add_trace_msg(conf->mddev->queue, 3143 "raid5 rmw %llu %d", 3144 (unsigned long long)sh->sector, rmw); 3145 for (i = disks; i--; ) { 3146 struct r5dev *dev = &sh->dev[i]; 3147 if ((dev->towrite || i == sh->pd_idx) && 3148 !test_bit(R5_LOCKED, &dev->flags) && 3149 !(test_bit(R5_UPTODATE, &dev->flags) || 3150 test_bit(R5_Wantcompute, &dev->flags)) && 3151 test_bit(R5_Insync, &dev->flags)) { 3152 if (test_bit(STRIPE_PREREAD_ACTIVE, 3153 &sh->state)) { 3154 pr_debug("Read_old block %d for r-m-w\n", 3155 i); 3156 set_bit(R5_LOCKED, &dev->flags); 3157 set_bit(R5_Wantread, &dev->flags); 3158 s->locked++; 3159 } else { 3160 set_bit(STRIPE_DELAYED, &sh->state); 3161 set_bit(STRIPE_HANDLE, &sh->state); 3162 } 3163 } 3164 } 3165 } 3166 if (rcw <= rmw && rcw > 0) { 3167 /* want reconstruct write, but need to get some data */ 3168 int qread =0; 3169 rcw = 0; 3170 for (i = disks; i--; ) { 3171 struct r5dev *dev = &sh->dev[i]; 3172 if (!test_bit(R5_OVERWRITE, &dev->flags) && 3173 i != sh->pd_idx && i != sh->qd_idx && 3174 !test_bit(R5_LOCKED, &dev->flags) && 3175 !(test_bit(R5_UPTODATE, &dev->flags) || 3176 test_bit(R5_Wantcompute, &dev->flags))) { 3177 rcw++; 3178 if (test_bit(R5_Insync, &dev->flags) && 3179 test_bit(STRIPE_PREREAD_ACTIVE, 3180 &sh->state)) { 3181 pr_debug("Read_old block " 3182 "%d for Reconstruct\n", i); 3183 set_bit(R5_LOCKED, &dev->flags); 3184 set_bit(R5_Wantread, &dev->flags); 3185 s->locked++; 3186 qread++; 3187 } else { 3188 set_bit(STRIPE_DELAYED, &sh->state); 3189 set_bit(STRIPE_HANDLE, &sh->state); 3190 } 3191 } 3192 } 3193 if (rcw && conf->mddev->queue) 3194 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d", 3195 (unsigned long long)sh->sector, 3196 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state)); 3197 } 3198 3199 if (rcw > disks && rmw > disks && 3200 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3201 set_bit(STRIPE_DELAYED, &sh->state); 3202 3203 /* now if nothing is locked, and if we have enough data, 3204 * we can start a write request 3205 */ 3206 /* since handle_stripe can be called at any time we need to handle the 3207 * case where a compute block operation has been submitted and then a 3208 * subsequent call wants to start a write request. raid_run_ops only 3209 * handles the case where compute block and reconstruct are requested 3210 * simultaneously. If this is not the case then new writes need to be 3211 * held off until the compute completes. 3212 */ 3213 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) && 3214 (s->locked == 0 && (rcw == 0 || rmw == 0) && 3215 !test_bit(STRIPE_BIT_DELAY, &sh->state))) 3216 schedule_reconstruction(sh, s, rcw == 0, 0); 3217 } 3218 3219 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh, 3220 struct stripe_head_state *s, int disks) 3221 { 3222 struct r5dev *dev = NULL; 3223 3224 set_bit(STRIPE_HANDLE, &sh->state); 3225 3226 switch (sh->check_state) { 3227 case check_state_idle: 3228 /* start a new check operation if there are no failures */ 3229 if (s->failed == 0) { 3230 BUG_ON(s->uptodate != disks); 3231 sh->check_state = check_state_run; 3232 set_bit(STRIPE_OP_CHECK, &s->ops_request); 3233 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 3234 s->uptodate--; 3235 break; 3236 } 3237 dev = &sh->dev[s->failed_num[0]]; 3238 /* fall through */ 3239 case check_state_compute_result: 3240 sh->check_state = check_state_idle; 3241 if (!dev) 3242 dev = &sh->dev[sh->pd_idx]; 3243 3244 /* check that a write has not made the stripe insync */ 3245 if (test_bit(STRIPE_INSYNC, &sh->state)) 3246 break; 3247 3248 /* either failed parity check, or recovery is happening */ 3249 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags)); 3250 BUG_ON(s->uptodate != disks); 3251 3252 set_bit(R5_LOCKED, &dev->flags); 3253 s->locked++; 3254 set_bit(R5_Wantwrite, &dev->flags); 3255 3256 clear_bit(STRIPE_DEGRADED, &sh->state); 3257 set_bit(STRIPE_INSYNC, &sh->state); 3258 break; 3259 case check_state_run: 3260 break; /* we will be called again upon completion */ 3261 case check_state_check_result: 3262 sh->check_state = check_state_idle; 3263 3264 /* if a failure occurred during the check operation, leave 3265 * STRIPE_INSYNC not set and let the stripe be handled again 3266 */ 3267 if (s->failed) 3268 break; 3269 3270 /* handle a successful check operation, if parity is correct 3271 * we are done. Otherwise update the mismatch count and repair 3272 * parity if !MD_RECOVERY_CHECK 3273 */ 3274 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0) 3275 /* parity is correct (on disc, 3276 * not in buffer any more) 3277 */ 3278 set_bit(STRIPE_INSYNC, &sh->state); 3279 else { 3280 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches); 3281 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) 3282 /* don't try to repair!! */ 3283 set_bit(STRIPE_INSYNC, &sh->state); 3284 else { 3285 sh->check_state = check_state_compute_run; 3286 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3287 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3288 set_bit(R5_Wantcompute, 3289 &sh->dev[sh->pd_idx].flags); 3290 sh->ops.target = sh->pd_idx; 3291 sh->ops.target2 = -1; 3292 s->uptodate++; 3293 } 3294 } 3295 break; 3296 case check_state_compute_run: 3297 break; 3298 default: 3299 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n", 3300 __func__, sh->check_state, 3301 (unsigned long long) sh->sector); 3302 BUG(); 3303 } 3304 } 3305 3306 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh, 3307 struct stripe_head_state *s, 3308 int disks) 3309 { 3310 int pd_idx = sh->pd_idx; 3311 int qd_idx = sh->qd_idx; 3312 struct r5dev *dev; 3313 3314 set_bit(STRIPE_HANDLE, &sh->state); 3315 3316 BUG_ON(s->failed > 2); 3317 3318 /* Want to check and possibly repair P and Q. 3319 * However there could be one 'failed' device, in which 3320 * case we can only check one of them, possibly using the 3321 * other to generate missing data 3322 */ 3323 3324 switch (sh->check_state) { 3325 case check_state_idle: 3326 /* start a new check operation if there are < 2 failures */ 3327 if (s->failed == s->q_failed) { 3328 /* The only possible failed device holds Q, so it 3329 * makes sense to check P (If anything else were failed, 3330 * we would have used P to recreate it). 3331 */ 3332 sh->check_state = check_state_run; 3333 } 3334 if (!s->q_failed && s->failed < 2) { 3335 /* Q is not failed, and we didn't use it to generate 3336 * anything, so it makes sense to check it 3337 */ 3338 if (sh->check_state == check_state_run) 3339 sh->check_state = check_state_run_pq; 3340 else 3341 sh->check_state = check_state_run_q; 3342 } 3343 3344 /* discard potentially stale zero_sum_result */ 3345 sh->ops.zero_sum_result = 0; 3346 3347 if (sh->check_state == check_state_run) { 3348 /* async_xor_zero_sum destroys the contents of P */ 3349 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 3350 s->uptodate--; 3351 } 3352 if (sh->check_state >= check_state_run && 3353 sh->check_state <= check_state_run_pq) { 3354 /* async_syndrome_zero_sum preserves P and Q, so 3355 * no need to mark them !uptodate here 3356 */ 3357 set_bit(STRIPE_OP_CHECK, &s->ops_request); 3358 break; 3359 } 3360 3361 /* we have 2-disk failure */ 3362 BUG_ON(s->failed != 2); 3363 /* fall through */ 3364 case check_state_compute_result: 3365 sh->check_state = check_state_idle; 3366 3367 /* check that a write has not made the stripe insync */ 3368 if (test_bit(STRIPE_INSYNC, &sh->state)) 3369 break; 3370 3371 /* now write out any block on a failed drive, 3372 * or P or Q if they were recomputed 3373 */ 3374 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */ 3375 if (s->failed == 2) { 3376 dev = &sh->dev[s->failed_num[1]]; 3377 s->locked++; 3378 set_bit(R5_LOCKED, &dev->flags); 3379 set_bit(R5_Wantwrite, &dev->flags); 3380 } 3381 if (s->failed >= 1) { 3382 dev = &sh->dev[s->failed_num[0]]; 3383 s->locked++; 3384 set_bit(R5_LOCKED, &dev->flags); 3385 set_bit(R5_Wantwrite, &dev->flags); 3386 } 3387 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 3388 dev = &sh->dev[pd_idx]; 3389 s->locked++; 3390 set_bit(R5_LOCKED, &dev->flags); 3391 set_bit(R5_Wantwrite, &dev->flags); 3392 } 3393 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 3394 dev = &sh->dev[qd_idx]; 3395 s->locked++; 3396 set_bit(R5_LOCKED, &dev->flags); 3397 set_bit(R5_Wantwrite, &dev->flags); 3398 } 3399 clear_bit(STRIPE_DEGRADED, &sh->state); 3400 3401 set_bit(STRIPE_INSYNC, &sh->state); 3402 break; 3403 case check_state_run: 3404 case check_state_run_q: 3405 case check_state_run_pq: 3406 break; /* we will be called again upon completion */ 3407 case check_state_check_result: 3408 sh->check_state = check_state_idle; 3409 3410 /* handle a successful check operation, if parity is correct 3411 * we are done. Otherwise update the mismatch count and repair 3412 * parity if !MD_RECOVERY_CHECK 3413 */ 3414 if (sh->ops.zero_sum_result == 0) { 3415 /* both parities are correct */ 3416 if (!s->failed) 3417 set_bit(STRIPE_INSYNC, &sh->state); 3418 else { 3419 /* in contrast to the raid5 case we can validate 3420 * parity, but still have a failure to write 3421 * back 3422 */ 3423 sh->check_state = check_state_compute_result; 3424 /* Returning at this point means that we may go 3425 * off and bring p and/or q uptodate again so 3426 * we make sure to check zero_sum_result again 3427 * to verify if p or q need writeback 3428 */ 3429 } 3430 } else { 3431 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches); 3432 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) 3433 /* don't try to repair!! */ 3434 set_bit(STRIPE_INSYNC, &sh->state); 3435 else { 3436 int *target = &sh->ops.target; 3437 3438 sh->ops.target = -1; 3439 sh->ops.target2 = -1; 3440 sh->check_state = check_state_compute_run; 3441 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3442 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3443 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 3444 set_bit(R5_Wantcompute, 3445 &sh->dev[pd_idx].flags); 3446 *target = pd_idx; 3447 target = &sh->ops.target2; 3448 s->uptodate++; 3449 } 3450 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 3451 set_bit(R5_Wantcompute, 3452 &sh->dev[qd_idx].flags); 3453 *target = qd_idx; 3454 s->uptodate++; 3455 } 3456 } 3457 } 3458 break; 3459 case check_state_compute_run: 3460 break; 3461 default: 3462 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n", 3463 __func__, sh->check_state, 3464 (unsigned long long) sh->sector); 3465 BUG(); 3466 } 3467 } 3468 3469 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh) 3470 { 3471 int i; 3472 3473 /* We have read all the blocks in this stripe and now we need to 3474 * copy some of them into a target stripe for expand. 3475 */ 3476 struct dma_async_tx_descriptor *tx = NULL; 3477 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state); 3478 for (i = 0; i < sh->disks; i++) 3479 if (i != sh->pd_idx && i != sh->qd_idx) { 3480 int dd_idx, j; 3481 struct stripe_head *sh2; 3482 struct async_submit_ctl submit; 3483 3484 sector_t bn = compute_blocknr(sh, i, 1); 3485 sector_t s = raid5_compute_sector(conf, bn, 0, 3486 &dd_idx, NULL); 3487 sh2 = get_active_stripe(conf, s, 0, 1, 1); 3488 if (sh2 == NULL) 3489 /* so far only the early blocks of this stripe 3490 * have been requested. When later blocks 3491 * get requested, we will try again 3492 */ 3493 continue; 3494 if (!test_bit(STRIPE_EXPANDING, &sh2->state) || 3495 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) { 3496 /* must have already done this block */ 3497 release_stripe(sh2); 3498 continue; 3499 } 3500 3501 /* place all the copies on one channel */ 3502 init_async_submit(&submit, 0, tx, NULL, NULL, NULL); 3503 tx = async_memcpy(sh2->dev[dd_idx].page, 3504 sh->dev[i].page, 0, 0, STRIPE_SIZE, 3505 &submit); 3506 3507 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags); 3508 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags); 3509 for (j = 0; j < conf->raid_disks; j++) 3510 if (j != sh2->pd_idx && 3511 j != sh2->qd_idx && 3512 !test_bit(R5_Expanded, &sh2->dev[j].flags)) 3513 break; 3514 if (j == conf->raid_disks) { 3515 set_bit(STRIPE_EXPAND_READY, &sh2->state); 3516 set_bit(STRIPE_HANDLE, &sh2->state); 3517 } 3518 release_stripe(sh2); 3519 3520 } 3521 /* done submitting copies, wait for them to complete */ 3522 async_tx_quiesce(&tx); 3523 } 3524 3525 /* 3526 * handle_stripe - do things to a stripe. 3527 * 3528 * We lock the stripe by setting STRIPE_ACTIVE and then examine the 3529 * state of various bits to see what needs to be done. 3530 * Possible results: 3531 * return some read requests which now have data 3532 * return some write requests which are safely on storage 3533 * schedule a read on some buffers 3534 * schedule a write of some buffers 3535 * return confirmation of parity correctness 3536 * 3537 */ 3538 3539 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s) 3540 { 3541 struct r5conf *conf = sh->raid_conf; 3542 int disks = sh->disks; 3543 struct r5dev *dev; 3544 int i; 3545 int do_recovery = 0; 3546 3547 memset(s, 0, sizeof(*s)); 3548 3549 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state); 3550 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state); 3551 s->failed_num[0] = -1; 3552 s->failed_num[1] = -1; 3553 3554 /* Now to look around and see what can be done */ 3555 rcu_read_lock(); 3556 for (i=disks; i--; ) { 3557 struct md_rdev *rdev; 3558 sector_t first_bad; 3559 int bad_sectors; 3560 int is_bad = 0; 3561 3562 dev = &sh->dev[i]; 3563 3564 pr_debug("check %d: state 0x%lx read %p write %p written %p\n", 3565 i, dev->flags, 3566 dev->toread, dev->towrite, dev->written); 3567 /* maybe we can reply to a read 3568 * 3569 * new wantfill requests are only permitted while 3570 * ops_complete_biofill is guaranteed to be inactive 3571 */ 3572 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread && 3573 !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) 3574 set_bit(R5_Wantfill, &dev->flags); 3575 3576 /* now count some things */ 3577 if (test_bit(R5_LOCKED, &dev->flags)) 3578 s->locked++; 3579 if (test_bit(R5_UPTODATE, &dev->flags)) 3580 s->uptodate++; 3581 if (test_bit(R5_Wantcompute, &dev->flags)) { 3582 s->compute++; 3583 BUG_ON(s->compute > 2); 3584 } 3585 3586 if (test_bit(R5_Wantfill, &dev->flags)) 3587 s->to_fill++; 3588 else if (dev->toread) 3589 s->to_read++; 3590 if (dev->towrite) { 3591 s->to_write++; 3592 if (!test_bit(R5_OVERWRITE, &dev->flags)) 3593 s->non_overwrite++; 3594 } 3595 if (dev->written) 3596 s->written++; 3597 /* Prefer to use the replacement for reads, but only 3598 * if it is recovered enough and has no bad blocks. 3599 */ 3600 rdev = rcu_dereference(conf->disks[i].replacement); 3601 if (rdev && !test_bit(Faulty, &rdev->flags) && 3602 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS && 3603 !is_badblock(rdev, sh->sector, STRIPE_SECTORS, 3604 &first_bad, &bad_sectors)) 3605 set_bit(R5_ReadRepl, &dev->flags); 3606 else { 3607 if (rdev) 3608 set_bit(R5_NeedReplace, &dev->flags); 3609 rdev = rcu_dereference(conf->disks[i].rdev); 3610 clear_bit(R5_ReadRepl, &dev->flags); 3611 } 3612 if (rdev && test_bit(Faulty, &rdev->flags)) 3613 rdev = NULL; 3614 if (rdev) { 3615 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS, 3616 &first_bad, &bad_sectors); 3617 if (s->blocked_rdev == NULL 3618 && (test_bit(Blocked, &rdev->flags) 3619 || is_bad < 0)) { 3620 if (is_bad < 0) 3621 set_bit(BlockedBadBlocks, 3622 &rdev->flags); 3623 s->blocked_rdev = rdev; 3624 atomic_inc(&rdev->nr_pending); 3625 } 3626 } 3627 clear_bit(R5_Insync, &dev->flags); 3628 if (!rdev) 3629 /* Not in-sync */; 3630 else if (is_bad) { 3631 /* also not in-sync */ 3632 if (!test_bit(WriteErrorSeen, &rdev->flags) && 3633 test_bit(R5_UPTODATE, &dev->flags)) { 3634 /* treat as in-sync, but with a read error 3635 * which we can now try to correct 3636 */ 3637 set_bit(R5_Insync, &dev->flags); 3638 set_bit(R5_ReadError, &dev->flags); 3639 } 3640 } else if (test_bit(In_sync, &rdev->flags)) 3641 set_bit(R5_Insync, &dev->flags); 3642 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset) 3643 /* in sync if before recovery_offset */ 3644 set_bit(R5_Insync, &dev->flags); 3645 else if (test_bit(R5_UPTODATE, &dev->flags) && 3646 test_bit(R5_Expanded, &dev->flags)) 3647 /* If we've reshaped into here, we assume it is Insync. 3648 * We will shortly update recovery_offset to make 3649 * it official. 3650 */ 3651 set_bit(R5_Insync, &dev->flags); 3652 3653 if (test_bit(R5_WriteError, &dev->flags)) { 3654 /* This flag does not apply to '.replacement' 3655 * only to .rdev, so make sure to check that*/ 3656 struct md_rdev *rdev2 = rcu_dereference( 3657 conf->disks[i].rdev); 3658 if (rdev2 == rdev) 3659 clear_bit(R5_Insync, &dev->flags); 3660 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 3661 s->handle_bad_blocks = 1; 3662 atomic_inc(&rdev2->nr_pending); 3663 } else 3664 clear_bit(R5_WriteError, &dev->flags); 3665 } 3666 if (test_bit(R5_MadeGood, &dev->flags)) { 3667 /* This flag does not apply to '.replacement' 3668 * only to .rdev, so make sure to check that*/ 3669 struct md_rdev *rdev2 = rcu_dereference( 3670 conf->disks[i].rdev); 3671 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 3672 s->handle_bad_blocks = 1; 3673 atomic_inc(&rdev2->nr_pending); 3674 } else 3675 clear_bit(R5_MadeGood, &dev->flags); 3676 } 3677 if (test_bit(R5_MadeGoodRepl, &dev->flags)) { 3678 struct md_rdev *rdev2 = rcu_dereference( 3679 conf->disks[i].replacement); 3680 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 3681 s->handle_bad_blocks = 1; 3682 atomic_inc(&rdev2->nr_pending); 3683 } else 3684 clear_bit(R5_MadeGoodRepl, &dev->flags); 3685 } 3686 if (!test_bit(R5_Insync, &dev->flags)) { 3687 /* The ReadError flag will just be confusing now */ 3688 clear_bit(R5_ReadError, &dev->flags); 3689 clear_bit(R5_ReWrite, &dev->flags); 3690 } 3691 if (test_bit(R5_ReadError, &dev->flags)) 3692 clear_bit(R5_Insync, &dev->flags); 3693 if (!test_bit(R5_Insync, &dev->flags)) { 3694 if (s->failed < 2) 3695 s->failed_num[s->failed] = i; 3696 s->failed++; 3697 if (rdev && !test_bit(Faulty, &rdev->flags)) 3698 do_recovery = 1; 3699 } 3700 } 3701 if (test_bit(STRIPE_SYNCING, &sh->state)) { 3702 /* If there is a failed device being replaced, 3703 * we must be recovering. 3704 * else if we are after recovery_cp, we must be syncing 3705 * else if MD_RECOVERY_REQUESTED is set, we also are syncing. 3706 * else we can only be replacing 3707 * sync and recovery both need to read all devices, and so 3708 * use the same flag. 3709 */ 3710 if (do_recovery || 3711 sh->sector >= conf->mddev->recovery_cp || 3712 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery))) 3713 s->syncing = 1; 3714 else 3715 s->replacing = 1; 3716 } 3717 rcu_read_unlock(); 3718 } 3719 3720 static void handle_stripe(struct stripe_head *sh) 3721 { 3722 struct stripe_head_state s; 3723 struct r5conf *conf = sh->raid_conf; 3724 int i; 3725 int prexor; 3726 int disks = sh->disks; 3727 struct r5dev *pdev, *qdev; 3728 3729 clear_bit(STRIPE_HANDLE, &sh->state); 3730 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) { 3731 /* already being handled, ensure it gets handled 3732 * again when current action finishes */ 3733 set_bit(STRIPE_HANDLE, &sh->state); 3734 return; 3735 } 3736 3737 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) { 3738 spin_lock(&sh->stripe_lock); 3739 /* Cannot process 'sync' concurrently with 'discard' */ 3740 if (!test_bit(STRIPE_DISCARD, &sh->state) && 3741 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) { 3742 set_bit(STRIPE_SYNCING, &sh->state); 3743 clear_bit(STRIPE_INSYNC, &sh->state); 3744 clear_bit(STRIPE_REPLACED, &sh->state); 3745 } 3746 spin_unlock(&sh->stripe_lock); 3747 } 3748 clear_bit(STRIPE_DELAYED, &sh->state); 3749 3750 pr_debug("handling stripe %llu, state=%#lx cnt=%d, " 3751 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n", 3752 (unsigned long long)sh->sector, sh->state, 3753 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx, 3754 sh->check_state, sh->reconstruct_state); 3755 3756 analyse_stripe(sh, &s); 3757 3758 if (s.handle_bad_blocks) { 3759 set_bit(STRIPE_HANDLE, &sh->state); 3760 goto finish; 3761 } 3762 3763 if (unlikely(s.blocked_rdev)) { 3764 if (s.syncing || s.expanding || s.expanded || 3765 s.replacing || s.to_write || s.written) { 3766 set_bit(STRIPE_HANDLE, &sh->state); 3767 goto finish; 3768 } 3769 /* There is nothing for the blocked_rdev to block */ 3770 rdev_dec_pending(s.blocked_rdev, conf->mddev); 3771 s.blocked_rdev = NULL; 3772 } 3773 3774 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) { 3775 set_bit(STRIPE_OP_BIOFILL, &s.ops_request); 3776 set_bit(STRIPE_BIOFILL_RUN, &sh->state); 3777 } 3778 3779 pr_debug("locked=%d uptodate=%d to_read=%d" 3780 " to_write=%d failed=%d failed_num=%d,%d\n", 3781 s.locked, s.uptodate, s.to_read, s.to_write, s.failed, 3782 s.failed_num[0], s.failed_num[1]); 3783 /* check if the array has lost more than max_degraded devices and, 3784 * if so, some requests might need to be failed. 3785 */ 3786 if (s.failed > conf->max_degraded) { 3787 sh->check_state = 0; 3788 sh->reconstruct_state = 0; 3789 if (s.to_read+s.to_write+s.written) 3790 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi); 3791 if (s.syncing + s.replacing) 3792 handle_failed_sync(conf, sh, &s); 3793 } 3794 3795 /* Now we check to see if any write operations have recently 3796 * completed 3797 */ 3798 prexor = 0; 3799 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result) 3800 prexor = 1; 3801 if (sh->reconstruct_state == reconstruct_state_drain_result || 3802 sh->reconstruct_state == reconstruct_state_prexor_drain_result) { 3803 sh->reconstruct_state = reconstruct_state_idle; 3804 3805 /* All the 'written' buffers and the parity block are ready to 3806 * be written back to disk 3807 */ 3808 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) && 3809 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)); 3810 BUG_ON(sh->qd_idx >= 0 && 3811 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) && 3812 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags)); 3813 for (i = disks; i--; ) { 3814 struct r5dev *dev = &sh->dev[i]; 3815 if (test_bit(R5_LOCKED, &dev->flags) && 3816 (i == sh->pd_idx || i == sh->qd_idx || 3817 dev->written)) { 3818 pr_debug("Writing block %d\n", i); 3819 set_bit(R5_Wantwrite, &dev->flags); 3820 if (prexor) 3821 continue; 3822 if (s.failed > 1) 3823 continue; 3824 if (!test_bit(R5_Insync, &dev->flags) || 3825 ((i == sh->pd_idx || i == sh->qd_idx) && 3826 s.failed == 0)) 3827 set_bit(STRIPE_INSYNC, &sh->state); 3828 } 3829 } 3830 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3831 s.dec_preread_active = 1; 3832 } 3833 3834 /* 3835 * might be able to return some write requests if the parity blocks 3836 * are safe, or on a failed drive 3837 */ 3838 pdev = &sh->dev[sh->pd_idx]; 3839 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx) 3840 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx); 3841 qdev = &sh->dev[sh->qd_idx]; 3842 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx) 3843 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx) 3844 || conf->level < 6; 3845 3846 if (s.written && 3847 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags) 3848 && !test_bit(R5_LOCKED, &pdev->flags) 3849 && (test_bit(R5_UPTODATE, &pdev->flags) || 3850 test_bit(R5_Discard, &pdev->flags))))) && 3851 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags) 3852 && !test_bit(R5_LOCKED, &qdev->flags) 3853 && (test_bit(R5_UPTODATE, &qdev->flags) || 3854 test_bit(R5_Discard, &qdev->flags)))))) 3855 handle_stripe_clean_event(conf, sh, disks, &s.return_bi); 3856 3857 /* Now we might consider reading some blocks, either to check/generate 3858 * parity, or to satisfy requests 3859 * or to load a block that is being partially written. 3860 */ 3861 if (s.to_read || s.non_overwrite 3862 || (conf->level == 6 && s.to_write && s.failed) 3863 || (s.syncing && (s.uptodate + s.compute < disks)) 3864 || s.replacing 3865 || s.expanding) 3866 handle_stripe_fill(sh, &s, disks); 3867 3868 /* Now to consider new write requests and what else, if anything 3869 * should be read. We do not handle new writes when: 3870 * 1/ A 'write' operation (copy+xor) is already in flight. 3871 * 2/ A 'check' operation is in flight, as it may clobber the parity 3872 * block. 3873 */ 3874 if (s.to_write && !sh->reconstruct_state && !sh->check_state) 3875 handle_stripe_dirtying(conf, sh, &s, disks); 3876 3877 /* maybe we need to check and possibly fix the parity for this stripe 3878 * Any reads will already have been scheduled, so we just see if enough 3879 * data is available. The parity check is held off while parity 3880 * dependent operations are in flight. 3881 */ 3882 if (sh->check_state || 3883 (s.syncing && s.locked == 0 && 3884 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 3885 !test_bit(STRIPE_INSYNC, &sh->state))) { 3886 if (conf->level == 6) 3887 handle_parity_checks6(conf, sh, &s, disks); 3888 else 3889 handle_parity_checks5(conf, sh, &s, disks); 3890 } 3891 3892 if ((s.replacing || s.syncing) && s.locked == 0 3893 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state) 3894 && !test_bit(STRIPE_REPLACED, &sh->state)) { 3895 /* Write out to replacement devices where possible */ 3896 for (i = 0; i < conf->raid_disks; i++) 3897 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) { 3898 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags)); 3899 set_bit(R5_WantReplace, &sh->dev[i].flags); 3900 set_bit(R5_LOCKED, &sh->dev[i].flags); 3901 s.locked++; 3902 } 3903 if (s.replacing) 3904 set_bit(STRIPE_INSYNC, &sh->state); 3905 set_bit(STRIPE_REPLACED, &sh->state); 3906 } 3907 if ((s.syncing || s.replacing) && s.locked == 0 && 3908 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 3909 test_bit(STRIPE_INSYNC, &sh->state)) { 3910 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 3911 clear_bit(STRIPE_SYNCING, &sh->state); 3912 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 3913 wake_up(&conf->wait_for_overlap); 3914 } 3915 3916 /* If the failed drives are just a ReadError, then we might need 3917 * to progress the repair/check process 3918 */ 3919 if (s.failed <= conf->max_degraded && !conf->mddev->ro) 3920 for (i = 0; i < s.failed; i++) { 3921 struct r5dev *dev = &sh->dev[s.failed_num[i]]; 3922 if (test_bit(R5_ReadError, &dev->flags) 3923 && !test_bit(R5_LOCKED, &dev->flags) 3924 && test_bit(R5_UPTODATE, &dev->flags) 3925 ) { 3926 if (!test_bit(R5_ReWrite, &dev->flags)) { 3927 set_bit(R5_Wantwrite, &dev->flags); 3928 set_bit(R5_ReWrite, &dev->flags); 3929 set_bit(R5_LOCKED, &dev->flags); 3930 s.locked++; 3931 } else { 3932 /* let's read it back */ 3933 set_bit(R5_Wantread, &dev->flags); 3934 set_bit(R5_LOCKED, &dev->flags); 3935 s.locked++; 3936 } 3937 } 3938 } 3939 3940 /* Finish reconstruct operations initiated by the expansion process */ 3941 if (sh->reconstruct_state == reconstruct_state_result) { 3942 struct stripe_head *sh_src 3943 = get_active_stripe(conf, sh->sector, 1, 1, 1); 3944 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) { 3945 /* sh cannot be written until sh_src has been read. 3946 * so arrange for sh to be delayed a little 3947 */ 3948 set_bit(STRIPE_DELAYED, &sh->state); 3949 set_bit(STRIPE_HANDLE, &sh->state); 3950 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, 3951 &sh_src->state)) 3952 atomic_inc(&conf->preread_active_stripes); 3953 release_stripe(sh_src); 3954 goto finish; 3955 } 3956 if (sh_src) 3957 release_stripe(sh_src); 3958 3959 sh->reconstruct_state = reconstruct_state_idle; 3960 clear_bit(STRIPE_EXPANDING, &sh->state); 3961 for (i = conf->raid_disks; i--; ) { 3962 set_bit(R5_Wantwrite, &sh->dev[i].flags); 3963 set_bit(R5_LOCKED, &sh->dev[i].flags); 3964 s.locked++; 3965 } 3966 } 3967 3968 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) && 3969 !sh->reconstruct_state) { 3970 /* Need to write out all blocks after computing parity */ 3971 sh->disks = conf->raid_disks; 3972 stripe_set_idx(sh->sector, conf, 0, sh); 3973 schedule_reconstruction(sh, &s, 1, 1); 3974 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) { 3975 clear_bit(STRIPE_EXPAND_READY, &sh->state); 3976 atomic_dec(&conf->reshape_stripes); 3977 wake_up(&conf->wait_for_overlap); 3978 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 3979 } 3980 3981 if (s.expanding && s.locked == 0 && 3982 !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) 3983 handle_stripe_expansion(conf, sh); 3984 3985 finish: 3986 /* wait for this device to become unblocked */ 3987 if (unlikely(s.blocked_rdev)) { 3988 if (conf->mddev->external) 3989 md_wait_for_blocked_rdev(s.blocked_rdev, 3990 conf->mddev); 3991 else 3992 /* Internal metadata will immediately 3993 * be written by raid5d, so we don't 3994 * need to wait here. 3995 */ 3996 rdev_dec_pending(s.blocked_rdev, 3997 conf->mddev); 3998 } 3999 4000 if (s.handle_bad_blocks) 4001 for (i = disks; i--; ) { 4002 struct md_rdev *rdev; 4003 struct r5dev *dev = &sh->dev[i]; 4004 if (test_and_clear_bit(R5_WriteError, &dev->flags)) { 4005 /* We own a safe reference to the rdev */ 4006 rdev = conf->disks[i].rdev; 4007 if (!rdev_set_badblocks(rdev, sh->sector, 4008 STRIPE_SECTORS, 0)) 4009 md_error(conf->mddev, rdev); 4010 rdev_dec_pending(rdev, conf->mddev); 4011 } 4012 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) { 4013 rdev = conf->disks[i].rdev; 4014 rdev_clear_badblocks(rdev, sh->sector, 4015 STRIPE_SECTORS, 0); 4016 rdev_dec_pending(rdev, conf->mddev); 4017 } 4018 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) { 4019 rdev = conf->disks[i].replacement; 4020 if (!rdev) 4021 /* rdev have been moved down */ 4022 rdev = conf->disks[i].rdev; 4023 rdev_clear_badblocks(rdev, sh->sector, 4024 STRIPE_SECTORS, 0); 4025 rdev_dec_pending(rdev, conf->mddev); 4026 } 4027 } 4028 4029 if (s.ops_request) 4030 raid_run_ops(sh, s.ops_request); 4031 4032 ops_run_io(sh, &s); 4033 4034 if (s.dec_preread_active) { 4035 /* We delay this until after ops_run_io so that if make_request 4036 * is waiting on a flush, it won't continue until the writes 4037 * have actually been submitted. 4038 */ 4039 atomic_dec(&conf->preread_active_stripes); 4040 if (atomic_read(&conf->preread_active_stripes) < 4041 IO_THRESHOLD) 4042 md_wakeup_thread(conf->mddev->thread); 4043 } 4044 4045 return_io(s.return_bi); 4046 4047 clear_bit_unlock(STRIPE_ACTIVE, &sh->state); 4048 } 4049 4050 static void raid5_activate_delayed(struct r5conf *conf) 4051 { 4052 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) { 4053 while (!list_empty(&conf->delayed_list)) { 4054 struct list_head *l = conf->delayed_list.next; 4055 struct stripe_head *sh; 4056 sh = list_entry(l, struct stripe_head, lru); 4057 list_del_init(l); 4058 clear_bit(STRIPE_DELAYED, &sh->state); 4059 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4060 atomic_inc(&conf->preread_active_stripes); 4061 list_add_tail(&sh->lru, &conf->hold_list); 4062 raid5_wakeup_stripe_thread(sh); 4063 } 4064 } 4065 } 4066 4067 static void activate_bit_delay(struct r5conf *conf, 4068 struct list_head *temp_inactive_list) 4069 { 4070 /* device_lock is held */ 4071 struct list_head head; 4072 list_add(&head, &conf->bitmap_list); 4073 list_del_init(&conf->bitmap_list); 4074 while (!list_empty(&head)) { 4075 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru); 4076 int hash; 4077 list_del_init(&sh->lru); 4078 atomic_inc(&sh->count); 4079 hash = sh->hash_lock_index; 4080 __release_stripe(conf, sh, &temp_inactive_list[hash]); 4081 } 4082 } 4083 4084 int md_raid5_congested(struct mddev *mddev, int bits) 4085 { 4086 struct r5conf *conf = mddev->private; 4087 4088 /* No difference between reads and writes. Just check 4089 * how busy the stripe_cache is 4090 */ 4091 4092 if (conf->inactive_blocked) 4093 return 1; 4094 if (conf->quiesce) 4095 return 1; 4096 if (atomic_read(&conf->empty_inactive_list_nr)) 4097 return 1; 4098 4099 return 0; 4100 } 4101 EXPORT_SYMBOL_GPL(md_raid5_congested); 4102 4103 static int raid5_congested(void *data, int bits) 4104 { 4105 struct mddev *mddev = data; 4106 4107 return mddev_congested(mddev, bits) || 4108 md_raid5_congested(mddev, bits); 4109 } 4110 4111 /* We want read requests to align with chunks where possible, 4112 * but write requests don't need to. 4113 */ 4114 static int raid5_mergeable_bvec(struct request_queue *q, 4115 struct bvec_merge_data *bvm, 4116 struct bio_vec *biovec) 4117 { 4118 struct mddev *mddev = q->queuedata; 4119 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); 4120 int max; 4121 unsigned int chunk_sectors = mddev->chunk_sectors; 4122 unsigned int bio_sectors = bvm->bi_size >> 9; 4123 4124 if ((bvm->bi_rw & 1) == WRITE) 4125 return biovec->bv_len; /* always allow writes to be mergeable */ 4126 4127 if (mddev->new_chunk_sectors < mddev->chunk_sectors) 4128 chunk_sectors = mddev->new_chunk_sectors; 4129 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9; 4130 if (max < 0) max = 0; 4131 if (max <= biovec->bv_len && bio_sectors == 0) 4132 return biovec->bv_len; 4133 else 4134 return max; 4135 } 4136 4137 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio) 4138 { 4139 sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev); 4140 unsigned int chunk_sectors = mddev->chunk_sectors; 4141 unsigned int bio_sectors = bio_sectors(bio); 4142 4143 if (mddev->new_chunk_sectors < mddev->chunk_sectors) 4144 chunk_sectors = mddev->new_chunk_sectors; 4145 return chunk_sectors >= 4146 ((sector & (chunk_sectors - 1)) + bio_sectors); 4147 } 4148 4149 /* 4150 * add bio to the retry LIFO ( in O(1) ... we are in interrupt ) 4151 * later sampled by raid5d. 4152 */ 4153 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf) 4154 { 4155 unsigned long flags; 4156 4157 spin_lock_irqsave(&conf->device_lock, flags); 4158 4159 bi->bi_next = conf->retry_read_aligned_list; 4160 conf->retry_read_aligned_list = bi; 4161 4162 spin_unlock_irqrestore(&conf->device_lock, flags); 4163 md_wakeup_thread(conf->mddev->thread); 4164 } 4165 4166 static struct bio *remove_bio_from_retry(struct r5conf *conf) 4167 { 4168 struct bio *bi; 4169 4170 bi = conf->retry_read_aligned; 4171 if (bi) { 4172 conf->retry_read_aligned = NULL; 4173 return bi; 4174 } 4175 bi = conf->retry_read_aligned_list; 4176 if(bi) { 4177 conf->retry_read_aligned_list = bi->bi_next; 4178 bi->bi_next = NULL; 4179 /* 4180 * this sets the active strip count to 1 and the processed 4181 * strip count to zero (upper 8 bits) 4182 */ 4183 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */ 4184 } 4185 4186 return bi; 4187 } 4188 4189 /* 4190 * The "raid5_align_endio" should check if the read succeeded and if it 4191 * did, call bio_endio on the original bio (having bio_put the new bio 4192 * first). 4193 * If the read failed.. 4194 */ 4195 static void raid5_align_endio(struct bio *bi, int error) 4196 { 4197 struct bio* raid_bi = bi->bi_private; 4198 struct mddev *mddev; 4199 struct r5conf *conf; 4200 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); 4201 struct md_rdev *rdev; 4202 4203 bio_put(bi); 4204 4205 rdev = (void*)raid_bi->bi_next; 4206 raid_bi->bi_next = NULL; 4207 mddev = rdev->mddev; 4208 conf = mddev->private; 4209 4210 rdev_dec_pending(rdev, conf->mddev); 4211 4212 if (!error && uptodate) { 4213 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev), 4214 raid_bi, 0); 4215 bio_endio(raid_bi, 0); 4216 if (atomic_dec_and_test(&conf->active_aligned_reads)) 4217 wake_up(&conf->wait_for_stripe); 4218 return; 4219 } 4220 4221 pr_debug("raid5_align_endio : io error...handing IO for a retry\n"); 4222 4223 add_bio_to_retry(raid_bi, conf); 4224 } 4225 4226 static int bio_fits_rdev(struct bio *bi) 4227 { 4228 struct request_queue *q = bdev_get_queue(bi->bi_bdev); 4229 4230 if (bio_sectors(bi) > queue_max_sectors(q)) 4231 return 0; 4232 blk_recount_segments(q, bi); 4233 if (bi->bi_phys_segments > queue_max_segments(q)) 4234 return 0; 4235 4236 if (q->merge_bvec_fn) 4237 /* it's too hard to apply the merge_bvec_fn at this stage, 4238 * just just give up 4239 */ 4240 return 0; 4241 4242 return 1; 4243 } 4244 4245 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio) 4246 { 4247 struct r5conf *conf = mddev->private; 4248 int dd_idx; 4249 struct bio* align_bi; 4250 struct md_rdev *rdev; 4251 sector_t end_sector; 4252 4253 if (!in_chunk_boundary(mddev, raid_bio)) { 4254 pr_debug("chunk_aligned_read : non aligned\n"); 4255 return 0; 4256 } 4257 /* 4258 * use bio_clone_mddev to make a copy of the bio 4259 */ 4260 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev); 4261 if (!align_bi) 4262 return 0; 4263 /* 4264 * set bi_end_io to a new function, and set bi_private to the 4265 * original bio. 4266 */ 4267 align_bi->bi_end_io = raid5_align_endio; 4268 align_bi->bi_private = raid_bio; 4269 /* 4270 * compute position 4271 */ 4272 align_bi->bi_iter.bi_sector = 4273 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 4274 0, &dd_idx, NULL); 4275 4276 end_sector = bio_end_sector(align_bi); 4277 rcu_read_lock(); 4278 rdev = rcu_dereference(conf->disks[dd_idx].replacement); 4279 if (!rdev || test_bit(Faulty, &rdev->flags) || 4280 rdev->recovery_offset < end_sector) { 4281 rdev = rcu_dereference(conf->disks[dd_idx].rdev); 4282 if (rdev && 4283 (test_bit(Faulty, &rdev->flags) || 4284 !(test_bit(In_sync, &rdev->flags) || 4285 rdev->recovery_offset >= end_sector))) 4286 rdev = NULL; 4287 } 4288 if (rdev) { 4289 sector_t first_bad; 4290 int bad_sectors; 4291 4292 atomic_inc(&rdev->nr_pending); 4293 rcu_read_unlock(); 4294 raid_bio->bi_next = (void*)rdev; 4295 align_bi->bi_bdev = rdev->bdev; 4296 __clear_bit(BIO_SEG_VALID, &align_bi->bi_flags); 4297 4298 if (!bio_fits_rdev(align_bi) || 4299 is_badblock(rdev, align_bi->bi_iter.bi_sector, 4300 bio_sectors(align_bi), 4301 &first_bad, &bad_sectors)) { 4302 /* too big in some way, or has a known bad block */ 4303 bio_put(align_bi); 4304 rdev_dec_pending(rdev, mddev); 4305 return 0; 4306 } 4307 4308 /* No reshape active, so we can trust rdev->data_offset */ 4309 align_bi->bi_iter.bi_sector += rdev->data_offset; 4310 4311 spin_lock_irq(&conf->device_lock); 4312 wait_event_lock_irq(conf->wait_for_stripe, 4313 conf->quiesce == 0, 4314 conf->device_lock); 4315 atomic_inc(&conf->active_aligned_reads); 4316 spin_unlock_irq(&conf->device_lock); 4317 4318 if (mddev->gendisk) 4319 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev), 4320 align_bi, disk_devt(mddev->gendisk), 4321 raid_bio->bi_iter.bi_sector); 4322 generic_make_request(align_bi); 4323 return 1; 4324 } else { 4325 rcu_read_unlock(); 4326 bio_put(align_bi); 4327 return 0; 4328 } 4329 } 4330 4331 /* __get_priority_stripe - get the next stripe to process 4332 * 4333 * Full stripe writes are allowed to pass preread active stripes up until 4334 * the bypass_threshold is exceeded. In general the bypass_count 4335 * increments when the handle_list is handled before the hold_list; however, it 4336 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a 4337 * stripe with in flight i/o. The bypass_count will be reset when the 4338 * head of the hold_list has changed, i.e. the head was promoted to the 4339 * handle_list. 4340 */ 4341 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group) 4342 { 4343 struct stripe_head *sh = NULL, *tmp; 4344 struct list_head *handle_list = NULL; 4345 struct r5worker_group *wg = NULL; 4346 4347 if (conf->worker_cnt_per_group == 0) { 4348 handle_list = &conf->handle_list; 4349 } else if (group != ANY_GROUP) { 4350 handle_list = &conf->worker_groups[group].handle_list; 4351 wg = &conf->worker_groups[group]; 4352 } else { 4353 int i; 4354 for (i = 0; i < conf->group_cnt; i++) { 4355 handle_list = &conf->worker_groups[i].handle_list; 4356 wg = &conf->worker_groups[i]; 4357 if (!list_empty(handle_list)) 4358 break; 4359 } 4360 } 4361 4362 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n", 4363 __func__, 4364 list_empty(handle_list) ? "empty" : "busy", 4365 list_empty(&conf->hold_list) ? "empty" : "busy", 4366 atomic_read(&conf->pending_full_writes), conf->bypass_count); 4367 4368 if (!list_empty(handle_list)) { 4369 sh = list_entry(handle_list->next, typeof(*sh), lru); 4370 4371 if (list_empty(&conf->hold_list)) 4372 conf->bypass_count = 0; 4373 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) { 4374 if (conf->hold_list.next == conf->last_hold) 4375 conf->bypass_count++; 4376 else { 4377 conf->last_hold = conf->hold_list.next; 4378 conf->bypass_count -= conf->bypass_threshold; 4379 if (conf->bypass_count < 0) 4380 conf->bypass_count = 0; 4381 } 4382 } 4383 } else if (!list_empty(&conf->hold_list) && 4384 ((conf->bypass_threshold && 4385 conf->bypass_count > conf->bypass_threshold) || 4386 atomic_read(&conf->pending_full_writes) == 0)) { 4387 4388 list_for_each_entry(tmp, &conf->hold_list, lru) { 4389 if (conf->worker_cnt_per_group == 0 || 4390 group == ANY_GROUP || 4391 !cpu_online(tmp->cpu) || 4392 cpu_to_group(tmp->cpu) == group) { 4393 sh = tmp; 4394 break; 4395 } 4396 } 4397 4398 if (sh) { 4399 conf->bypass_count -= conf->bypass_threshold; 4400 if (conf->bypass_count < 0) 4401 conf->bypass_count = 0; 4402 } 4403 wg = NULL; 4404 } 4405 4406 if (!sh) 4407 return NULL; 4408 4409 if (wg) { 4410 wg->stripes_cnt--; 4411 sh->group = NULL; 4412 } 4413 list_del_init(&sh->lru); 4414 BUG_ON(atomic_inc_return(&sh->count) != 1); 4415 return sh; 4416 } 4417 4418 struct raid5_plug_cb { 4419 struct blk_plug_cb cb; 4420 struct list_head list; 4421 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS]; 4422 }; 4423 4424 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule) 4425 { 4426 struct raid5_plug_cb *cb = container_of( 4427 blk_cb, struct raid5_plug_cb, cb); 4428 struct stripe_head *sh; 4429 struct mddev *mddev = cb->cb.data; 4430 struct r5conf *conf = mddev->private; 4431 int cnt = 0; 4432 int hash; 4433 4434 if (cb->list.next && !list_empty(&cb->list)) { 4435 spin_lock_irq(&conf->device_lock); 4436 while (!list_empty(&cb->list)) { 4437 sh = list_first_entry(&cb->list, struct stripe_head, lru); 4438 list_del_init(&sh->lru); 4439 /* 4440 * avoid race release_stripe_plug() sees 4441 * STRIPE_ON_UNPLUG_LIST clear but the stripe 4442 * is still in our list 4443 */ 4444 smp_mb__before_atomic(); 4445 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state); 4446 /* 4447 * STRIPE_ON_RELEASE_LIST could be set here. In that 4448 * case, the count is always > 1 here 4449 */ 4450 hash = sh->hash_lock_index; 4451 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]); 4452 cnt++; 4453 } 4454 spin_unlock_irq(&conf->device_lock); 4455 } 4456 release_inactive_stripe_list(conf, cb->temp_inactive_list, 4457 NR_STRIPE_HASH_LOCKS); 4458 if (mddev->queue) 4459 trace_block_unplug(mddev->queue, cnt, !from_schedule); 4460 kfree(cb); 4461 } 4462 4463 static void release_stripe_plug(struct mddev *mddev, 4464 struct stripe_head *sh) 4465 { 4466 struct blk_plug_cb *blk_cb = blk_check_plugged( 4467 raid5_unplug, mddev, 4468 sizeof(struct raid5_plug_cb)); 4469 struct raid5_plug_cb *cb; 4470 4471 if (!blk_cb) { 4472 release_stripe(sh); 4473 return; 4474 } 4475 4476 cb = container_of(blk_cb, struct raid5_plug_cb, cb); 4477 4478 if (cb->list.next == NULL) { 4479 int i; 4480 INIT_LIST_HEAD(&cb->list); 4481 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 4482 INIT_LIST_HEAD(cb->temp_inactive_list + i); 4483 } 4484 4485 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)) 4486 list_add_tail(&sh->lru, &cb->list); 4487 else 4488 release_stripe(sh); 4489 } 4490 4491 static void make_discard_request(struct mddev *mddev, struct bio *bi) 4492 { 4493 struct r5conf *conf = mddev->private; 4494 sector_t logical_sector, last_sector; 4495 struct stripe_head *sh; 4496 int remaining; 4497 int stripe_sectors; 4498 4499 if (mddev->reshape_position != MaxSector) 4500 /* Skip discard while reshape is happening */ 4501 return; 4502 4503 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1); 4504 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9); 4505 4506 bi->bi_next = NULL; 4507 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */ 4508 4509 stripe_sectors = conf->chunk_sectors * 4510 (conf->raid_disks - conf->max_degraded); 4511 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector, 4512 stripe_sectors); 4513 sector_div(last_sector, stripe_sectors); 4514 4515 logical_sector *= conf->chunk_sectors; 4516 last_sector *= conf->chunk_sectors; 4517 4518 for (; logical_sector < last_sector; 4519 logical_sector += STRIPE_SECTORS) { 4520 DEFINE_WAIT(w); 4521 int d; 4522 again: 4523 sh = get_active_stripe(conf, logical_sector, 0, 0, 0); 4524 prepare_to_wait(&conf->wait_for_overlap, &w, 4525 TASK_UNINTERRUPTIBLE); 4526 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 4527 if (test_bit(STRIPE_SYNCING, &sh->state)) { 4528 release_stripe(sh); 4529 schedule(); 4530 goto again; 4531 } 4532 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 4533 spin_lock_irq(&sh->stripe_lock); 4534 for (d = 0; d < conf->raid_disks; d++) { 4535 if (d == sh->pd_idx || d == sh->qd_idx) 4536 continue; 4537 if (sh->dev[d].towrite || sh->dev[d].toread) { 4538 set_bit(R5_Overlap, &sh->dev[d].flags); 4539 spin_unlock_irq(&sh->stripe_lock); 4540 release_stripe(sh); 4541 schedule(); 4542 goto again; 4543 } 4544 } 4545 set_bit(STRIPE_DISCARD, &sh->state); 4546 finish_wait(&conf->wait_for_overlap, &w); 4547 for (d = 0; d < conf->raid_disks; d++) { 4548 if (d == sh->pd_idx || d == sh->qd_idx) 4549 continue; 4550 sh->dev[d].towrite = bi; 4551 set_bit(R5_OVERWRITE, &sh->dev[d].flags); 4552 raid5_inc_bi_active_stripes(bi); 4553 } 4554 spin_unlock_irq(&sh->stripe_lock); 4555 if (conf->mddev->bitmap) { 4556 for (d = 0; 4557 d < conf->raid_disks - conf->max_degraded; 4558 d++) 4559 bitmap_startwrite(mddev->bitmap, 4560 sh->sector, 4561 STRIPE_SECTORS, 4562 0); 4563 sh->bm_seq = conf->seq_flush + 1; 4564 set_bit(STRIPE_BIT_DELAY, &sh->state); 4565 } 4566 4567 set_bit(STRIPE_HANDLE, &sh->state); 4568 clear_bit(STRIPE_DELAYED, &sh->state); 4569 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4570 atomic_inc(&conf->preread_active_stripes); 4571 release_stripe_plug(mddev, sh); 4572 } 4573 4574 remaining = raid5_dec_bi_active_stripes(bi); 4575 if (remaining == 0) { 4576 md_write_end(mddev); 4577 bio_endio(bi, 0); 4578 } 4579 } 4580 4581 static void make_request(struct mddev *mddev, struct bio * bi) 4582 { 4583 struct r5conf *conf = mddev->private; 4584 int dd_idx; 4585 sector_t new_sector; 4586 sector_t logical_sector, last_sector; 4587 struct stripe_head *sh; 4588 const int rw = bio_data_dir(bi); 4589 int remaining; 4590 DEFINE_WAIT(w); 4591 bool do_prepare; 4592 4593 if (unlikely(bi->bi_rw & REQ_FLUSH)) { 4594 md_flush_request(mddev, bi); 4595 return; 4596 } 4597 4598 md_write_start(mddev, bi); 4599 4600 if (rw == READ && 4601 mddev->reshape_position == MaxSector && 4602 chunk_aligned_read(mddev,bi)) 4603 return; 4604 4605 if (unlikely(bi->bi_rw & REQ_DISCARD)) { 4606 make_discard_request(mddev, bi); 4607 return; 4608 } 4609 4610 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1); 4611 last_sector = bio_end_sector(bi); 4612 bi->bi_next = NULL; 4613 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */ 4614 4615 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE); 4616 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) { 4617 int previous; 4618 int seq; 4619 4620 do_prepare = false; 4621 retry: 4622 seq = read_seqcount_begin(&conf->gen_lock); 4623 previous = 0; 4624 if (do_prepare) 4625 prepare_to_wait(&conf->wait_for_overlap, &w, 4626 TASK_UNINTERRUPTIBLE); 4627 if (unlikely(conf->reshape_progress != MaxSector)) { 4628 /* spinlock is needed as reshape_progress may be 4629 * 64bit on a 32bit platform, and so it might be 4630 * possible to see a half-updated value 4631 * Of course reshape_progress could change after 4632 * the lock is dropped, so once we get a reference 4633 * to the stripe that we think it is, we will have 4634 * to check again. 4635 */ 4636 spin_lock_irq(&conf->device_lock); 4637 if (mddev->reshape_backwards 4638 ? logical_sector < conf->reshape_progress 4639 : logical_sector >= conf->reshape_progress) { 4640 previous = 1; 4641 } else { 4642 if (mddev->reshape_backwards 4643 ? logical_sector < conf->reshape_safe 4644 : logical_sector >= conf->reshape_safe) { 4645 spin_unlock_irq(&conf->device_lock); 4646 schedule(); 4647 do_prepare = true; 4648 goto retry; 4649 } 4650 } 4651 spin_unlock_irq(&conf->device_lock); 4652 } 4653 4654 new_sector = raid5_compute_sector(conf, logical_sector, 4655 previous, 4656 &dd_idx, NULL); 4657 pr_debug("raid456: make_request, sector %llu logical %llu\n", 4658 (unsigned long long)new_sector, 4659 (unsigned long long)logical_sector); 4660 4661 sh = get_active_stripe(conf, new_sector, previous, 4662 (bi->bi_rw&RWA_MASK), 0); 4663 if (sh) { 4664 if (unlikely(previous)) { 4665 /* expansion might have moved on while waiting for a 4666 * stripe, so we must do the range check again. 4667 * Expansion could still move past after this 4668 * test, but as we are holding a reference to 4669 * 'sh', we know that if that happens, 4670 * STRIPE_EXPANDING will get set and the expansion 4671 * won't proceed until we finish with the stripe. 4672 */ 4673 int must_retry = 0; 4674 spin_lock_irq(&conf->device_lock); 4675 if (mddev->reshape_backwards 4676 ? logical_sector >= conf->reshape_progress 4677 : logical_sector < conf->reshape_progress) 4678 /* mismatch, need to try again */ 4679 must_retry = 1; 4680 spin_unlock_irq(&conf->device_lock); 4681 if (must_retry) { 4682 release_stripe(sh); 4683 schedule(); 4684 do_prepare = true; 4685 goto retry; 4686 } 4687 } 4688 if (read_seqcount_retry(&conf->gen_lock, seq)) { 4689 /* Might have got the wrong stripe_head 4690 * by accident 4691 */ 4692 release_stripe(sh); 4693 goto retry; 4694 } 4695 4696 if (rw == WRITE && 4697 logical_sector >= mddev->suspend_lo && 4698 logical_sector < mddev->suspend_hi) { 4699 release_stripe(sh); 4700 /* As the suspend_* range is controlled by 4701 * userspace, we want an interruptible 4702 * wait. 4703 */ 4704 flush_signals(current); 4705 prepare_to_wait(&conf->wait_for_overlap, 4706 &w, TASK_INTERRUPTIBLE); 4707 if (logical_sector >= mddev->suspend_lo && 4708 logical_sector < mddev->suspend_hi) { 4709 schedule(); 4710 do_prepare = true; 4711 } 4712 goto retry; 4713 } 4714 4715 if (test_bit(STRIPE_EXPANDING, &sh->state) || 4716 !add_stripe_bio(sh, bi, dd_idx, rw)) { 4717 /* Stripe is busy expanding or 4718 * add failed due to overlap. Flush everything 4719 * and wait a while 4720 */ 4721 md_wakeup_thread(mddev->thread); 4722 release_stripe(sh); 4723 schedule(); 4724 do_prepare = true; 4725 goto retry; 4726 } 4727 set_bit(STRIPE_HANDLE, &sh->state); 4728 clear_bit(STRIPE_DELAYED, &sh->state); 4729 if ((bi->bi_rw & REQ_SYNC) && 4730 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4731 atomic_inc(&conf->preread_active_stripes); 4732 release_stripe_plug(mddev, sh); 4733 } else { 4734 /* cannot get stripe for read-ahead, just give-up */ 4735 clear_bit(BIO_UPTODATE, &bi->bi_flags); 4736 break; 4737 } 4738 } 4739 finish_wait(&conf->wait_for_overlap, &w); 4740 4741 remaining = raid5_dec_bi_active_stripes(bi); 4742 if (remaining == 0) { 4743 4744 if ( rw == WRITE ) 4745 md_write_end(mddev); 4746 4747 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev), 4748 bi, 0); 4749 bio_endio(bi, 0); 4750 } 4751 } 4752 4753 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks); 4754 4755 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped) 4756 { 4757 /* reshaping is quite different to recovery/resync so it is 4758 * handled quite separately ... here. 4759 * 4760 * On each call to sync_request, we gather one chunk worth of 4761 * destination stripes and flag them as expanding. 4762 * Then we find all the source stripes and request reads. 4763 * As the reads complete, handle_stripe will copy the data 4764 * into the destination stripe and release that stripe. 4765 */ 4766 struct r5conf *conf = mddev->private; 4767 struct stripe_head *sh; 4768 sector_t first_sector, last_sector; 4769 int raid_disks = conf->previous_raid_disks; 4770 int data_disks = raid_disks - conf->max_degraded; 4771 int new_data_disks = conf->raid_disks - conf->max_degraded; 4772 int i; 4773 int dd_idx; 4774 sector_t writepos, readpos, safepos; 4775 sector_t stripe_addr; 4776 int reshape_sectors; 4777 struct list_head stripes; 4778 4779 if (sector_nr == 0) { 4780 /* If restarting in the middle, skip the initial sectors */ 4781 if (mddev->reshape_backwards && 4782 conf->reshape_progress < raid5_size(mddev, 0, 0)) { 4783 sector_nr = raid5_size(mddev, 0, 0) 4784 - conf->reshape_progress; 4785 } else if (!mddev->reshape_backwards && 4786 conf->reshape_progress > 0) 4787 sector_nr = conf->reshape_progress; 4788 sector_div(sector_nr, new_data_disks); 4789 if (sector_nr) { 4790 mddev->curr_resync_completed = sector_nr; 4791 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4792 *skipped = 1; 4793 return sector_nr; 4794 } 4795 } 4796 4797 /* We need to process a full chunk at a time. 4798 * If old and new chunk sizes differ, we need to process the 4799 * largest of these 4800 */ 4801 if (mddev->new_chunk_sectors > mddev->chunk_sectors) 4802 reshape_sectors = mddev->new_chunk_sectors; 4803 else 4804 reshape_sectors = mddev->chunk_sectors; 4805 4806 /* We update the metadata at least every 10 seconds, or when 4807 * the data about to be copied would over-write the source of 4808 * the data at the front of the range. i.e. one new_stripe 4809 * along from reshape_progress new_maps to after where 4810 * reshape_safe old_maps to 4811 */ 4812 writepos = conf->reshape_progress; 4813 sector_div(writepos, new_data_disks); 4814 readpos = conf->reshape_progress; 4815 sector_div(readpos, data_disks); 4816 safepos = conf->reshape_safe; 4817 sector_div(safepos, data_disks); 4818 if (mddev->reshape_backwards) { 4819 writepos -= min_t(sector_t, reshape_sectors, writepos); 4820 readpos += reshape_sectors; 4821 safepos += reshape_sectors; 4822 } else { 4823 writepos += reshape_sectors; 4824 readpos -= min_t(sector_t, reshape_sectors, readpos); 4825 safepos -= min_t(sector_t, reshape_sectors, safepos); 4826 } 4827 4828 /* Having calculated the 'writepos' possibly use it 4829 * to set 'stripe_addr' which is where we will write to. 4830 */ 4831 if (mddev->reshape_backwards) { 4832 BUG_ON(conf->reshape_progress == 0); 4833 stripe_addr = writepos; 4834 BUG_ON((mddev->dev_sectors & 4835 ~((sector_t)reshape_sectors - 1)) 4836 - reshape_sectors - stripe_addr 4837 != sector_nr); 4838 } else { 4839 BUG_ON(writepos != sector_nr + reshape_sectors); 4840 stripe_addr = sector_nr; 4841 } 4842 4843 /* 'writepos' is the most advanced device address we might write. 4844 * 'readpos' is the least advanced device address we might read. 4845 * 'safepos' is the least address recorded in the metadata as having 4846 * been reshaped. 4847 * If there is a min_offset_diff, these are adjusted either by 4848 * increasing the safepos/readpos if diff is negative, or 4849 * increasing writepos if diff is positive. 4850 * If 'readpos' is then behind 'writepos', there is no way that we can 4851 * ensure safety in the face of a crash - that must be done by userspace 4852 * making a backup of the data. So in that case there is no particular 4853 * rush to update metadata. 4854 * Otherwise if 'safepos' is behind 'writepos', then we really need to 4855 * update the metadata to advance 'safepos' to match 'readpos' so that 4856 * we can be safe in the event of a crash. 4857 * So we insist on updating metadata if safepos is behind writepos and 4858 * readpos is beyond writepos. 4859 * In any case, update the metadata every 10 seconds. 4860 * Maybe that number should be configurable, but I'm not sure it is 4861 * worth it.... maybe it could be a multiple of safemode_delay??? 4862 */ 4863 if (conf->min_offset_diff < 0) { 4864 safepos += -conf->min_offset_diff; 4865 readpos += -conf->min_offset_diff; 4866 } else 4867 writepos += conf->min_offset_diff; 4868 4869 if ((mddev->reshape_backwards 4870 ? (safepos > writepos && readpos < writepos) 4871 : (safepos < writepos && readpos > writepos)) || 4872 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 4873 /* Cannot proceed until we've updated the superblock... */ 4874 wait_event(conf->wait_for_overlap, 4875 atomic_read(&conf->reshape_stripes)==0 4876 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 4877 if (atomic_read(&conf->reshape_stripes) != 0) 4878 return 0; 4879 mddev->reshape_position = conf->reshape_progress; 4880 mddev->curr_resync_completed = sector_nr; 4881 conf->reshape_checkpoint = jiffies; 4882 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4883 md_wakeup_thread(mddev->thread); 4884 wait_event(mddev->sb_wait, mddev->flags == 0 || 4885 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 4886 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 4887 return 0; 4888 spin_lock_irq(&conf->device_lock); 4889 conf->reshape_safe = mddev->reshape_position; 4890 spin_unlock_irq(&conf->device_lock); 4891 wake_up(&conf->wait_for_overlap); 4892 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4893 } 4894 4895 INIT_LIST_HEAD(&stripes); 4896 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) { 4897 int j; 4898 int skipped_disk = 0; 4899 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1); 4900 set_bit(STRIPE_EXPANDING, &sh->state); 4901 atomic_inc(&conf->reshape_stripes); 4902 /* If any of this stripe is beyond the end of the old 4903 * array, then we need to zero those blocks 4904 */ 4905 for (j=sh->disks; j--;) { 4906 sector_t s; 4907 if (j == sh->pd_idx) 4908 continue; 4909 if (conf->level == 6 && 4910 j == sh->qd_idx) 4911 continue; 4912 s = compute_blocknr(sh, j, 0); 4913 if (s < raid5_size(mddev, 0, 0)) { 4914 skipped_disk = 1; 4915 continue; 4916 } 4917 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE); 4918 set_bit(R5_Expanded, &sh->dev[j].flags); 4919 set_bit(R5_UPTODATE, &sh->dev[j].flags); 4920 } 4921 if (!skipped_disk) { 4922 set_bit(STRIPE_EXPAND_READY, &sh->state); 4923 set_bit(STRIPE_HANDLE, &sh->state); 4924 } 4925 list_add(&sh->lru, &stripes); 4926 } 4927 spin_lock_irq(&conf->device_lock); 4928 if (mddev->reshape_backwards) 4929 conf->reshape_progress -= reshape_sectors * new_data_disks; 4930 else 4931 conf->reshape_progress += reshape_sectors * new_data_disks; 4932 spin_unlock_irq(&conf->device_lock); 4933 /* Ok, those stripe are ready. We can start scheduling 4934 * reads on the source stripes. 4935 * The source stripes are determined by mapping the first and last 4936 * block on the destination stripes. 4937 */ 4938 first_sector = 4939 raid5_compute_sector(conf, stripe_addr*(new_data_disks), 4940 1, &dd_idx, NULL); 4941 last_sector = 4942 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors) 4943 * new_data_disks - 1), 4944 1, &dd_idx, NULL); 4945 if (last_sector >= mddev->dev_sectors) 4946 last_sector = mddev->dev_sectors - 1; 4947 while (first_sector <= last_sector) { 4948 sh = get_active_stripe(conf, first_sector, 1, 0, 1); 4949 set_bit(STRIPE_EXPAND_SOURCE, &sh->state); 4950 set_bit(STRIPE_HANDLE, &sh->state); 4951 release_stripe(sh); 4952 first_sector += STRIPE_SECTORS; 4953 } 4954 /* Now that the sources are clearly marked, we can release 4955 * the destination stripes 4956 */ 4957 while (!list_empty(&stripes)) { 4958 sh = list_entry(stripes.next, struct stripe_head, lru); 4959 list_del_init(&sh->lru); 4960 release_stripe(sh); 4961 } 4962 /* If this takes us to the resync_max point where we have to pause, 4963 * then we need to write out the superblock. 4964 */ 4965 sector_nr += reshape_sectors; 4966 if ((sector_nr - mddev->curr_resync_completed) * 2 4967 >= mddev->resync_max - mddev->curr_resync_completed) { 4968 /* Cannot proceed until we've updated the superblock... */ 4969 wait_event(conf->wait_for_overlap, 4970 atomic_read(&conf->reshape_stripes) == 0 4971 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 4972 if (atomic_read(&conf->reshape_stripes) != 0) 4973 goto ret; 4974 mddev->reshape_position = conf->reshape_progress; 4975 mddev->curr_resync_completed = sector_nr; 4976 conf->reshape_checkpoint = jiffies; 4977 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4978 md_wakeup_thread(mddev->thread); 4979 wait_event(mddev->sb_wait, 4980 !test_bit(MD_CHANGE_DEVS, &mddev->flags) 4981 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 4982 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 4983 goto ret; 4984 spin_lock_irq(&conf->device_lock); 4985 conf->reshape_safe = mddev->reshape_position; 4986 spin_unlock_irq(&conf->device_lock); 4987 wake_up(&conf->wait_for_overlap); 4988 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4989 } 4990 ret: 4991 return reshape_sectors; 4992 } 4993 4994 /* FIXME go_faster isn't used */ 4995 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster) 4996 { 4997 struct r5conf *conf = mddev->private; 4998 struct stripe_head *sh; 4999 sector_t max_sector = mddev->dev_sectors; 5000 sector_t sync_blocks; 5001 int still_degraded = 0; 5002 int i; 5003 5004 if (sector_nr >= max_sector) { 5005 /* just being told to finish up .. nothing much to do */ 5006 5007 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 5008 end_reshape(conf); 5009 return 0; 5010 } 5011 5012 if (mddev->curr_resync < max_sector) /* aborted */ 5013 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 5014 &sync_blocks, 1); 5015 else /* completed sync */ 5016 conf->fullsync = 0; 5017 bitmap_close_sync(mddev->bitmap); 5018 5019 return 0; 5020 } 5021 5022 /* Allow raid5_quiesce to complete */ 5023 wait_event(conf->wait_for_overlap, conf->quiesce != 2); 5024 5025 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 5026 return reshape_request(mddev, sector_nr, skipped); 5027 5028 /* No need to check resync_max as we never do more than one 5029 * stripe, and as resync_max will always be on a chunk boundary, 5030 * if the check in md_do_sync didn't fire, there is no chance 5031 * of overstepping resync_max here 5032 */ 5033 5034 /* if there is too many failed drives and we are trying 5035 * to resync, then assert that we are finished, because there is 5036 * nothing we can do. 5037 */ 5038 if (mddev->degraded >= conf->max_degraded && 5039 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 5040 sector_t rv = mddev->dev_sectors - sector_nr; 5041 *skipped = 1; 5042 return rv; 5043 } 5044 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 5045 !conf->fullsync && 5046 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 5047 sync_blocks >= STRIPE_SECTORS) { 5048 /* we can skip this block, and probably more */ 5049 sync_blocks /= STRIPE_SECTORS; 5050 *skipped = 1; 5051 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */ 5052 } 5053 5054 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 5055 5056 sh = get_active_stripe(conf, sector_nr, 0, 1, 0); 5057 if (sh == NULL) { 5058 sh = get_active_stripe(conf, sector_nr, 0, 0, 0); 5059 /* make sure we don't swamp the stripe cache if someone else 5060 * is trying to get access 5061 */ 5062 schedule_timeout_uninterruptible(1); 5063 } 5064 /* Need to check if array will still be degraded after recovery/resync 5065 * We don't need to check the 'failed' flag as when that gets set, 5066 * recovery aborts. 5067 */ 5068 for (i = 0; i < conf->raid_disks; i++) 5069 if (conf->disks[i].rdev == NULL) 5070 still_degraded = 1; 5071 5072 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded); 5073 5074 set_bit(STRIPE_SYNC_REQUESTED, &sh->state); 5075 set_bit(STRIPE_HANDLE, &sh->state); 5076 5077 release_stripe(sh); 5078 5079 return STRIPE_SECTORS; 5080 } 5081 5082 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio) 5083 { 5084 /* We may not be able to submit a whole bio at once as there 5085 * may not be enough stripe_heads available. 5086 * We cannot pre-allocate enough stripe_heads as we may need 5087 * more than exist in the cache (if we allow ever large chunks). 5088 * So we do one stripe head at a time and record in 5089 * ->bi_hw_segments how many have been done. 5090 * 5091 * We *know* that this entire raid_bio is in one chunk, so 5092 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector. 5093 */ 5094 struct stripe_head *sh; 5095 int dd_idx; 5096 sector_t sector, logical_sector, last_sector; 5097 int scnt = 0; 5098 int remaining; 5099 int handled = 0; 5100 5101 logical_sector = raid_bio->bi_iter.bi_sector & 5102 ~((sector_t)STRIPE_SECTORS-1); 5103 sector = raid5_compute_sector(conf, logical_sector, 5104 0, &dd_idx, NULL); 5105 last_sector = bio_end_sector(raid_bio); 5106 5107 for (; logical_sector < last_sector; 5108 logical_sector += STRIPE_SECTORS, 5109 sector += STRIPE_SECTORS, 5110 scnt++) { 5111 5112 if (scnt < raid5_bi_processed_stripes(raid_bio)) 5113 /* already done this stripe */ 5114 continue; 5115 5116 sh = get_active_stripe(conf, sector, 0, 1, 1); 5117 5118 if (!sh) { 5119 /* failed to get a stripe - must wait */ 5120 raid5_set_bi_processed_stripes(raid_bio, scnt); 5121 conf->retry_read_aligned = raid_bio; 5122 return handled; 5123 } 5124 5125 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) { 5126 release_stripe(sh); 5127 raid5_set_bi_processed_stripes(raid_bio, scnt); 5128 conf->retry_read_aligned = raid_bio; 5129 return handled; 5130 } 5131 5132 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags); 5133 handle_stripe(sh); 5134 release_stripe(sh); 5135 handled++; 5136 } 5137 remaining = raid5_dec_bi_active_stripes(raid_bio); 5138 if (remaining == 0) { 5139 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev), 5140 raid_bio, 0); 5141 bio_endio(raid_bio, 0); 5142 } 5143 if (atomic_dec_and_test(&conf->active_aligned_reads)) 5144 wake_up(&conf->wait_for_stripe); 5145 return handled; 5146 } 5147 5148 static int handle_active_stripes(struct r5conf *conf, int group, 5149 struct r5worker *worker, 5150 struct list_head *temp_inactive_list) 5151 { 5152 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh; 5153 int i, batch_size = 0, hash; 5154 bool release_inactive = false; 5155 5156 while (batch_size < MAX_STRIPE_BATCH && 5157 (sh = __get_priority_stripe(conf, group)) != NULL) 5158 batch[batch_size++] = sh; 5159 5160 if (batch_size == 0) { 5161 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 5162 if (!list_empty(temp_inactive_list + i)) 5163 break; 5164 if (i == NR_STRIPE_HASH_LOCKS) 5165 return batch_size; 5166 release_inactive = true; 5167 } 5168 spin_unlock_irq(&conf->device_lock); 5169 5170 release_inactive_stripe_list(conf, temp_inactive_list, 5171 NR_STRIPE_HASH_LOCKS); 5172 5173 if (release_inactive) { 5174 spin_lock_irq(&conf->device_lock); 5175 return 0; 5176 } 5177 5178 for (i = 0; i < batch_size; i++) 5179 handle_stripe(batch[i]); 5180 5181 cond_resched(); 5182 5183 spin_lock_irq(&conf->device_lock); 5184 for (i = 0; i < batch_size; i++) { 5185 hash = batch[i]->hash_lock_index; 5186 __release_stripe(conf, batch[i], &temp_inactive_list[hash]); 5187 } 5188 return batch_size; 5189 } 5190 5191 static void raid5_do_work(struct work_struct *work) 5192 { 5193 struct r5worker *worker = container_of(work, struct r5worker, work); 5194 struct r5worker_group *group = worker->group; 5195 struct r5conf *conf = group->conf; 5196 int group_id = group - conf->worker_groups; 5197 int handled; 5198 struct blk_plug plug; 5199 5200 pr_debug("+++ raid5worker active\n"); 5201 5202 blk_start_plug(&plug); 5203 handled = 0; 5204 spin_lock_irq(&conf->device_lock); 5205 while (1) { 5206 int batch_size, released; 5207 5208 released = release_stripe_list(conf, worker->temp_inactive_list); 5209 5210 batch_size = handle_active_stripes(conf, group_id, worker, 5211 worker->temp_inactive_list); 5212 worker->working = false; 5213 if (!batch_size && !released) 5214 break; 5215 handled += batch_size; 5216 } 5217 pr_debug("%d stripes handled\n", handled); 5218 5219 spin_unlock_irq(&conf->device_lock); 5220 blk_finish_plug(&plug); 5221 5222 pr_debug("--- raid5worker inactive\n"); 5223 } 5224 5225 /* 5226 * This is our raid5 kernel thread. 5227 * 5228 * We scan the hash table for stripes which can be handled now. 5229 * During the scan, completed stripes are saved for us by the interrupt 5230 * handler, so that they will not have to wait for our next wakeup. 5231 */ 5232 static void raid5d(struct md_thread *thread) 5233 { 5234 struct mddev *mddev = thread->mddev; 5235 struct r5conf *conf = mddev->private; 5236 int handled; 5237 struct blk_plug plug; 5238 5239 pr_debug("+++ raid5d active\n"); 5240 5241 md_check_recovery(mddev); 5242 5243 blk_start_plug(&plug); 5244 handled = 0; 5245 spin_lock_irq(&conf->device_lock); 5246 while (1) { 5247 struct bio *bio; 5248 int batch_size, released; 5249 5250 released = release_stripe_list(conf, conf->temp_inactive_list); 5251 5252 if ( 5253 !list_empty(&conf->bitmap_list)) { 5254 /* Now is a good time to flush some bitmap updates */ 5255 conf->seq_flush++; 5256 spin_unlock_irq(&conf->device_lock); 5257 bitmap_unplug(mddev->bitmap); 5258 spin_lock_irq(&conf->device_lock); 5259 conf->seq_write = conf->seq_flush; 5260 activate_bit_delay(conf, conf->temp_inactive_list); 5261 } 5262 raid5_activate_delayed(conf); 5263 5264 while ((bio = remove_bio_from_retry(conf))) { 5265 int ok; 5266 spin_unlock_irq(&conf->device_lock); 5267 ok = retry_aligned_read(conf, bio); 5268 spin_lock_irq(&conf->device_lock); 5269 if (!ok) 5270 break; 5271 handled++; 5272 } 5273 5274 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL, 5275 conf->temp_inactive_list); 5276 if (!batch_size && !released) 5277 break; 5278 handled += batch_size; 5279 5280 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) { 5281 spin_unlock_irq(&conf->device_lock); 5282 md_check_recovery(mddev); 5283 spin_lock_irq(&conf->device_lock); 5284 } 5285 } 5286 pr_debug("%d stripes handled\n", handled); 5287 5288 spin_unlock_irq(&conf->device_lock); 5289 5290 async_tx_issue_pending_all(); 5291 blk_finish_plug(&plug); 5292 5293 pr_debug("--- raid5d inactive\n"); 5294 } 5295 5296 static ssize_t 5297 raid5_show_stripe_cache_size(struct mddev *mddev, char *page) 5298 { 5299 struct r5conf *conf = mddev->private; 5300 if (conf) 5301 return sprintf(page, "%d\n", conf->max_nr_stripes); 5302 else 5303 return 0; 5304 } 5305 5306 int 5307 raid5_set_cache_size(struct mddev *mddev, int size) 5308 { 5309 struct r5conf *conf = mddev->private; 5310 int err; 5311 int hash; 5312 5313 if (size <= 16 || size > 32768) 5314 return -EINVAL; 5315 hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS; 5316 while (size < conf->max_nr_stripes) { 5317 if (drop_one_stripe(conf, hash)) 5318 conf->max_nr_stripes--; 5319 else 5320 break; 5321 hash--; 5322 if (hash < 0) 5323 hash = NR_STRIPE_HASH_LOCKS - 1; 5324 } 5325 err = md_allow_write(mddev); 5326 if (err) 5327 return err; 5328 hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS; 5329 while (size > conf->max_nr_stripes) { 5330 if (grow_one_stripe(conf, hash)) 5331 conf->max_nr_stripes++; 5332 else break; 5333 hash = (hash + 1) % NR_STRIPE_HASH_LOCKS; 5334 } 5335 return 0; 5336 } 5337 EXPORT_SYMBOL(raid5_set_cache_size); 5338 5339 static ssize_t 5340 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len) 5341 { 5342 struct r5conf *conf = mddev->private; 5343 unsigned long new; 5344 int err; 5345 5346 if (len >= PAGE_SIZE) 5347 return -EINVAL; 5348 if (!conf) 5349 return -ENODEV; 5350 5351 if (kstrtoul(page, 10, &new)) 5352 return -EINVAL; 5353 err = raid5_set_cache_size(mddev, new); 5354 if (err) 5355 return err; 5356 return len; 5357 } 5358 5359 static struct md_sysfs_entry 5360 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR, 5361 raid5_show_stripe_cache_size, 5362 raid5_store_stripe_cache_size); 5363 5364 static ssize_t 5365 raid5_show_preread_threshold(struct mddev *mddev, char *page) 5366 { 5367 struct r5conf *conf = mddev->private; 5368 if (conf) 5369 return sprintf(page, "%d\n", conf->bypass_threshold); 5370 else 5371 return 0; 5372 } 5373 5374 static ssize_t 5375 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len) 5376 { 5377 struct r5conf *conf = mddev->private; 5378 unsigned long new; 5379 if (len >= PAGE_SIZE) 5380 return -EINVAL; 5381 if (!conf) 5382 return -ENODEV; 5383 5384 if (kstrtoul(page, 10, &new)) 5385 return -EINVAL; 5386 if (new > conf->max_nr_stripes) 5387 return -EINVAL; 5388 conf->bypass_threshold = new; 5389 return len; 5390 } 5391 5392 static struct md_sysfs_entry 5393 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold, 5394 S_IRUGO | S_IWUSR, 5395 raid5_show_preread_threshold, 5396 raid5_store_preread_threshold); 5397 5398 static ssize_t 5399 raid5_show_skip_copy(struct mddev *mddev, char *page) 5400 { 5401 struct r5conf *conf = mddev->private; 5402 if (conf) 5403 return sprintf(page, "%d\n", conf->skip_copy); 5404 else 5405 return 0; 5406 } 5407 5408 static ssize_t 5409 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len) 5410 { 5411 struct r5conf *conf = mddev->private; 5412 unsigned long new; 5413 if (len >= PAGE_SIZE) 5414 return -EINVAL; 5415 if (!conf) 5416 return -ENODEV; 5417 5418 if (kstrtoul(page, 10, &new)) 5419 return -EINVAL; 5420 new = !!new; 5421 if (new == conf->skip_copy) 5422 return len; 5423 5424 mddev_suspend(mddev); 5425 conf->skip_copy = new; 5426 if (new) 5427 mddev->queue->backing_dev_info.capabilities |= 5428 BDI_CAP_STABLE_WRITES; 5429 else 5430 mddev->queue->backing_dev_info.capabilities &= 5431 ~BDI_CAP_STABLE_WRITES; 5432 mddev_resume(mddev); 5433 return len; 5434 } 5435 5436 static struct md_sysfs_entry 5437 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR, 5438 raid5_show_skip_copy, 5439 raid5_store_skip_copy); 5440 5441 static ssize_t 5442 stripe_cache_active_show(struct mddev *mddev, char *page) 5443 { 5444 struct r5conf *conf = mddev->private; 5445 if (conf) 5446 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes)); 5447 else 5448 return 0; 5449 } 5450 5451 static struct md_sysfs_entry 5452 raid5_stripecache_active = __ATTR_RO(stripe_cache_active); 5453 5454 static ssize_t 5455 raid5_show_group_thread_cnt(struct mddev *mddev, char *page) 5456 { 5457 struct r5conf *conf = mddev->private; 5458 if (conf) 5459 return sprintf(page, "%d\n", conf->worker_cnt_per_group); 5460 else 5461 return 0; 5462 } 5463 5464 static int alloc_thread_groups(struct r5conf *conf, int cnt, 5465 int *group_cnt, 5466 int *worker_cnt_per_group, 5467 struct r5worker_group **worker_groups); 5468 static ssize_t 5469 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len) 5470 { 5471 struct r5conf *conf = mddev->private; 5472 unsigned long new; 5473 int err; 5474 struct r5worker_group *new_groups, *old_groups; 5475 int group_cnt, worker_cnt_per_group; 5476 5477 if (len >= PAGE_SIZE) 5478 return -EINVAL; 5479 if (!conf) 5480 return -ENODEV; 5481 5482 if (kstrtoul(page, 10, &new)) 5483 return -EINVAL; 5484 5485 if (new == conf->worker_cnt_per_group) 5486 return len; 5487 5488 mddev_suspend(mddev); 5489 5490 old_groups = conf->worker_groups; 5491 if (old_groups) 5492 flush_workqueue(raid5_wq); 5493 5494 err = alloc_thread_groups(conf, new, 5495 &group_cnt, &worker_cnt_per_group, 5496 &new_groups); 5497 if (!err) { 5498 spin_lock_irq(&conf->device_lock); 5499 conf->group_cnt = group_cnt; 5500 conf->worker_cnt_per_group = worker_cnt_per_group; 5501 conf->worker_groups = new_groups; 5502 spin_unlock_irq(&conf->device_lock); 5503 5504 if (old_groups) 5505 kfree(old_groups[0].workers); 5506 kfree(old_groups); 5507 } 5508 5509 mddev_resume(mddev); 5510 5511 if (err) 5512 return err; 5513 return len; 5514 } 5515 5516 static struct md_sysfs_entry 5517 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR, 5518 raid5_show_group_thread_cnt, 5519 raid5_store_group_thread_cnt); 5520 5521 static struct attribute *raid5_attrs[] = { 5522 &raid5_stripecache_size.attr, 5523 &raid5_stripecache_active.attr, 5524 &raid5_preread_bypass_threshold.attr, 5525 &raid5_group_thread_cnt.attr, 5526 &raid5_skip_copy.attr, 5527 NULL, 5528 }; 5529 static struct attribute_group raid5_attrs_group = { 5530 .name = NULL, 5531 .attrs = raid5_attrs, 5532 }; 5533 5534 static int alloc_thread_groups(struct r5conf *conf, int cnt, 5535 int *group_cnt, 5536 int *worker_cnt_per_group, 5537 struct r5worker_group **worker_groups) 5538 { 5539 int i, j, k; 5540 ssize_t size; 5541 struct r5worker *workers; 5542 5543 *worker_cnt_per_group = cnt; 5544 if (cnt == 0) { 5545 *group_cnt = 0; 5546 *worker_groups = NULL; 5547 return 0; 5548 } 5549 *group_cnt = num_possible_nodes(); 5550 size = sizeof(struct r5worker) * cnt; 5551 workers = kzalloc(size * *group_cnt, GFP_NOIO); 5552 *worker_groups = kzalloc(sizeof(struct r5worker_group) * 5553 *group_cnt, GFP_NOIO); 5554 if (!*worker_groups || !workers) { 5555 kfree(workers); 5556 kfree(*worker_groups); 5557 return -ENOMEM; 5558 } 5559 5560 for (i = 0; i < *group_cnt; i++) { 5561 struct r5worker_group *group; 5562 5563 group = &(*worker_groups)[i]; 5564 INIT_LIST_HEAD(&group->handle_list); 5565 group->conf = conf; 5566 group->workers = workers + i * cnt; 5567 5568 for (j = 0; j < cnt; j++) { 5569 struct r5worker *worker = group->workers + j; 5570 worker->group = group; 5571 INIT_WORK(&worker->work, raid5_do_work); 5572 5573 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++) 5574 INIT_LIST_HEAD(worker->temp_inactive_list + k); 5575 } 5576 } 5577 5578 return 0; 5579 } 5580 5581 static void free_thread_groups(struct r5conf *conf) 5582 { 5583 if (conf->worker_groups) 5584 kfree(conf->worker_groups[0].workers); 5585 kfree(conf->worker_groups); 5586 conf->worker_groups = NULL; 5587 } 5588 5589 static sector_t 5590 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks) 5591 { 5592 struct r5conf *conf = mddev->private; 5593 5594 if (!sectors) 5595 sectors = mddev->dev_sectors; 5596 if (!raid_disks) 5597 /* size is defined by the smallest of previous and new size */ 5598 raid_disks = min(conf->raid_disks, conf->previous_raid_disks); 5599 5600 sectors &= ~((sector_t)mddev->chunk_sectors - 1); 5601 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1); 5602 return sectors * (raid_disks - conf->max_degraded); 5603 } 5604 5605 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 5606 { 5607 safe_put_page(percpu->spare_page); 5608 kfree(percpu->scribble); 5609 percpu->spare_page = NULL; 5610 percpu->scribble = NULL; 5611 } 5612 5613 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 5614 { 5615 if (conf->level == 6 && !percpu->spare_page) 5616 percpu->spare_page = alloc_page(GFP_KERNEL); 5617 if (!percpu->scribble) 5618 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL); 5619 5620 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) { 5621 free_scratch_buffer(conf, percpu); 5622 return -ENOMEM; 5623 } 5624 5625 return 0; 5626 } 5627 5628 static void raid5_free_percpu(struct r5conf *conf) 5629 { 5630 unsigned long cpu; 5631 5632 if (!conf->percpu) 5633 return; 5634 5635 #ifdef CONFIG_HOTPLUG_CPU 5636 unregister_cpu_notifier(&conf->cpu_notify); 5637 #endif 5638 5639 get_online_cpus(); 5640 for_each_possible_cpu(cpu) 5641 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu)); 5642 put_online_cpus(); 5643 5644 free_percpu(conf->percpu); 5645 } 5646 5647 static void free_conf(struct r5conf *conf) 5648 { 5649 free_thread_groups(conf); 5650 shrink_stripes(conf); 5651 raid5_free_percpu(conf); 5652 kfree(conf->disks); 5653 kfree(conf->stripe_hashtbl); 5654 kfree(conf); 5655 } 5656 5657 #ifdef CONFIG_HOTPLUG_CPU 5658 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action, 5659 void *hcpu) 5660 { 5661 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify); 5662 long cpu = (long)hcpu; 5663 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu); 5664 5665 switch (action) { 5666 case CPU_UP_PREPARE: 5667 case CPU_UP_PREPARE_FROZEN: 5668 if (alloc_scratch_buffer(conf, percpu)) { 5669 pr_err("%s: failed memory allocation for cpu%ld\n", 5670 __func__, cpu); 5671 return notifier_from_errno(-ENOMEM); 5672 } 5673 break; 5674 case CPU_DEAD: 5675 case CPU_DEAD_FROZEN: 5676 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu)); 5677 break; 5678 default: 5679 break; 5680 } 5681 return NOTIFY_OK; 5682 } 5683 #endif 5684 5685 static int raid5_alloc_percpu(struct r5conf *conf) 5686 { 5687 unsigned long cpu; 5688 int err = 0; 5689 5690 conf->percpu = alloc_percpu(struct raid5_percpu); 5691 if (!conf->percpu) 5692 return -ENOMEM; 5693 5694 #ifdef CONFIG_HOTPLUG_CPU 5695 conf->cpu_notify.notifier_call = raid456_cpu_notify; 5696 conf->cpu_notify.priority = 0; 5697 err = register_cpu_notifier(&conf->cpu_notify); 5698 if (err) 5699 return err; 5700 #endif 5701 5702 get_online_cpus(); 5703 for_each_present_cpu(cpu) { 5704 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu)); 5705 if (err) { 5706 pr_err("%s: failed memory allocation for cpu%ld\n", 5707 __func__, cpu); 5708 break; 5709 } 5710 } 5711 put_online_cpus(); 5712 5713 return err; 5714 } 5715 5716 static struct r5conf *setup_conf(struct mddev *mddev) 5717 { 5718 struct r5conf *conf; 5719 int raid_disk, memory, max_disks; 5720 struct md_rdev *rdev; 5721 struct disk_info *disk; 5722 char pers_name[6]; 5723 int i; 5724 int group_cnt, worker_cnt_per_group; 5725 struct r5worker_group *new_group; 5726 5727 if (mddev->new_level != 5 5728 && mddev->new_level != 4 5729 && mddev->new_level != 6) { 5730 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n", 5731 mdname(mddev), mddev->new_level); 5732 return ERR_PTR(-EIO); 5733 } 5734 if ((mddev->new_level == 5 5735 && !algorithm_valid_raid5(mddev->new_layout)) || 5736 (mddev->new_level == 6 5737 && !algorithm_valid_raid6(mddev->new_layout))) { 5738 printk(KERN_ERR "md/raid:%s: layout %d not supported\n", 5739 mdname(mddev), mddev->new_layout); 5740 return ERR_PTR(-EIO); 5741 } 5742 if (mddev->new_level == 6 && mddev->raid_disks < 4) { 5743 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n", 5744 mdname(mddev), mddev->raid_disks); 5745 return ERR_PTR(-EINVAL); 5746 } 5747 5748 if (!mddev->new_chunk_sectors || 5749 (mddev->new_chunk_sectors << 9) % PAGE_SIZE || 5750 !is_power_of_2(mddev->new_chunk_sectors)) { 5751 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n", 5752 mdname(mddev), mddev->new_chunk_sectors << 9); 5753 return ERR_PTR(-EINVAL); 5754 } 5755 5756 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL); 5757 if (conf == NULL) 5758 goto abort; 5759 /* Don't enable multi-threading by default*/ 5760 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group, 5761 &new_group)) { 5762 conf->group_cnt = group_cnt; 5763 conf->worker_cnt_per_group = worker_cnt_per_group; 5764 conf->worker_groups = new_group; 5765 } else 5766 goto abort; 5767 spin_lock_init(&conf->device_lock); 5768 seqcount_init(&conf->gen_lock); 5769 init_waitqueue_head(&conf->wait_for_stripe); 5770 init_waitqueue_head(&conf->wait_for_overlap); 5771 INIT_LIST_HEAD(&conf->handle_list); 5772 INIT_LIST_HEAD(&conf->hold_list); 5773 INIT_LIST_HEAD(&conf->delayed_list); 5774 INIT_LIST_HEAD(&conf->bitmap_list); 5775 init_llist_head(&conf->released_stripes); 5776 atomic_set(&conf->active_stripes, 0); 5777 atomic_set(&conf->preread_active_stripes, 0); 5778 atomic_set(&conf->active_aligned_reads, 0); 5779 conf->bypass_threshold = BYPASS_THRESHOLD; 5780 conf->recovery_disabled = mddev->recovery_disabled - 1; 5781 5782 conf->raid_disks = mddev->raid_disks; 5783 if (mddev->reshape_position == MaxSector) 5784 conf->previous_raid_disks = mddev->raid_disks; 5785 else 5786 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks; 5787 max_disks = max(conf->raid_disks, conf->previous_raid_disks); 5788 conf->scribble_len = scribble_len(max_disks); 5789 5790 conf->disks = kzalloc(max_disks * sizeof(struct disk_info), 5791 GFP_KERNEL); 5792 if (!conf->disks) 5793 goto abort; 5794 5795 conf->mddev = mddev; 5796 5797 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL) 5798 goto abort; 5799 5800 /* We init hash_locks[0] separately to that it can be used 5801 * as the reference lock in the spin_lock_nest_lock() call 5802 * in lock_all_device_hash_locks_irq in order to convince 5803 * lockdep that we know what we are doing. 5804 */ 5805 spin_lock_init(conf->hash_locks); 5806 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 5807 spin_lock_init(conf->hash_locks + i); 5808 5809 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 5810 INIT_LIST_HEAD(conf->inactive_list + i); 5811 5812 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 5813 INIT_LIST_HEAD(conf->temp_inactive_list + i); 5814 5815 conf->level = mddev->new_level; 5816 if (raid5_alloc_percpu(conf) != 0) 5817 goto abort; 5818 5819 pr_debug("raid456: run(%s) called.\n", mdname(mddev)); 5820 5821 rdev_for_each(rdev, mddev) { 5822 raid_disk = rdev->raid_disk; 5823 if (raid_disk >= max_disks 5824 || raid_disk < 0) 5825 continue; 5826 disk = conf->disks + raid_disk; 5827 5828 if (test_bit(Replacement, &rdev->flags)) { 5829 if (disk->replacement) 5830 goto abort; 5831 disk->replacement = rdev; 5832 } else { 5833 if (disk->rdev) 5834 goto abort; 5835 disk->rdev = rdev; 5836 } 5837 5838 if (test_bit(In_sync, &rdev->flags)) { 5839 char b[BDEVNAME_SIZE]; 5840 printk(KERN_INFO "md/raid:%s: device %s operational as raid" 5841 " disk %d\n", 5842 mdname(mddev), bdevname(rdev->bdev, b), raid_disk); 5843 } else if (rdev->saved_raid_disk != raid_disk) 5844 /* Cannot rely on bitmap to complete recovery */ 5845 conf->fullsync = 1; 5846 } 5847 5848 conf->chunk_sectors = mddev->new_chunk_sectors; 5849 conf->level = mddev->new_level; 5850 if (conf->level == 6) 5851 conf->max_degraded = 2; 5852 else 5853 conf->max_degraded = 1; 5854 conf->algorithm = mddev->new_layout; 5855 conf->reshape_progress = mddev->reshape_position; 5856 if (conf->reshape_progress != MaxSector) { 5857 conf->prev_chunk_sectors = mddev->chunk_sectors; 5858 conf->prev_algo = mddev->layout; 5859 } 5860 5861 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) + 5862 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024; 5863 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS); 5864 if (grow_stripes(conf, NR_STRIPES)) { 5865 printk(KERN_ERR 5866 "md/raid:%s: couldn't allocate %dkB for buffers\n", 5867 mdname(mddev), memory); 5868 goto abort; 5869 } else 5870 printk(KERN_INFO "md/raid:%s: allocated %dkB\n", 5871 mdname(mddev), memory); 5872 5873 sprintf(pers_name, "raid%d", mddev->new_level); 5874 conf->thread = md_register_thread(raid5d, mddev, pers_name); 5875 if (!conf->thread) { 5876 printk(KERN_ERR 5877 "md/raid:%s: couldn't allocate thread.\n", 5878 mdname(mddev)); 5879 goto abort; 5880 } 5881 5882 return conf; 5883 5884 abort: 5885 if (conf) { 5886 free_conf(conf); 5887 return ERR_PTR(-EIO); 5888 } else 5889 return ERR_PTR(-ENOMEM); 5890 } 5891 5892 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded) 5893 { 5894 switch (algo) { 5895 case ALGORITHM_PARITY_0: 5896 if (raid_disk < max_degraded) 5897 return 1; 5898 break; 5899 case ALGORITHM_PARITY_N: 5900 if (raid_disk >= raid_disks - max_degraded) 5901 return 1; 5902 break; 5903 case ALGORITHM_PARITY_0_6: 5904 if (raid_disk == 0 || 5905 raid_disk == raid_disks - 1) 5906 return 1; 5907 break; 5908 case ALGORITHM_LEFT_ASYMMETRIC_6: 5909 case ALGORITHM_RIGHT_ASYMMETRIC_6: 5910 case ALGORITHM_LEFT_SYMMETRIC_6: 5911 case ALGORITHM_RIGHT_SYMMETRIC_6: 5912 if (raid_disk == raid_disks - 1) 5913 return 1; 5914 } 5915 return 0; 5916 } 5917 5918 static int run(struct mddev *mddev) 5919 { 5920 struct r5conf *conf; 5921 int working_disks = 0; 5922 int dirty_parity_disks = 0; 5923 struct md_rdev *rdev; 5924 sector_t reshape_offset = 0; 5925 int i; 5926 long long min_offset_diff = 0; 5927 int first = 1; 5928 5929 if (mddev->recovery_cp != MaxSector) 5930 printk(KERN_NOTICE "md/raid:%s: not clean" 5931 " -- starting background reconstruction\n", 5932 mdname(mddev)); 5933 5934 rdev_for_each(rdev, mddev) { 5935 long long diff; 5936 if (rdev->raid_disk < 0) 5937 continue; 5938 diff = (rdev->new_data_offset - rdev->data_offset); 5939 if (first) { 5940 min_offset_diff = diff; 5941 first = 0; 5942 } else if (mddev->reshape_backwards && 5943 diff < min_offset_diff) 5944 min_offset_diff = diff; 5945 else if (!mddev->reshape_backwards && 5946 diff > min_offset_diff) 5947 min_offset_diff = diff; 5948 } 5949 5950 if (mddev->reshape_position != MaxSector) { 5951 /* Check that we can continue the reshape. 5952 * Difficulties arise if the stripe we would write to 5953 * next is at or after the stripe we would read from next. 5954 * For a reshape that changes the number of devices, this 5955 * is only possible for a very short time, and mdadm makes 5956 * sure that time appears to have past before assembling 5957 * the array. So we fail if that time hasn't passed. 5958 * For a reshape that keeps the number of devices the same 5959 * mdadm must be monitoring the reshape can keeping the 5960 * critical areas read-only and backed up. It will start 5961 * the array in read-only mode, so we check for that. 5962 */ 5963 sector_t here_new, here_old; 5964 int old_disks; 5965 int max_degraded = (mddev->level == 6 ? 2 : 1); 5966 5967 if (mddev->new_level != mddev->level) { 5968 printk(KERN_ERR "md/raid:%s: unsupported reshape " 5969 "required - aborting.\n", 5970 mdname(mddev)); 5971 return -EINVAL; 5972 } 5973 old_disks = mddev->raid_disks - mddev->delta_disks; 5974 /* reshape_position must be on a new-stripe boundary, and one 5975 * further up in new geometry must map after here in old 5976 * geometry. 5977 */ 5978 here_new = mddev->reshape_position; 5979 if (sector_div(here_new, mddev->new_chunk_sectors * 5980 (mddev->raid_disks - max_degraded))) { 5981 printk(KERN_ERR "md/raid:%s: reshape_position not " 5982 "on a stripe boundary\n", mdname(mddev)); 5983 return -EINVAL; 5984 } 5985 reshape_offset = here_new * mddev->new_chunk_sectors; 5986 /* here_new is the stripe we will write to */ 5987 here_old = mddev->reshape_position; 5988 sector_div(here_old, mddev->chunk_sectors * 5989 (old_disks-max_degraded)); 5990 /* here_old is the first stripe that we might need to read 5991 * from */ 5992 if (mddev->delta_disks == 0) { 5993 if ((here_new * mddev->new_chunk_sectors != 5994 here_old * mddev->chunk_sectors)) { 5995 printk(KERN_ERR "md/raid:%s: reshape position is" 5996 " confused - aborting\n", mdname(mddev)); 5997 return -EINVAL; 5998 } 5999 /* We cannot be sure it is safe to start an in-place 6000 * reshape. It is only safe if user-space is monitoring 6001 * and taking constant backups. 6002 * mdadm always starts a situation like this in 6003 * readonly mode so it can take control before 6004 * allowing any writes. So just check for that. 6005 */ 6006 if (abs(min_offset_diff) >= mddev->chunk_sectors && 6007 abs(min_offset_diff) >= mddev->new_chunk_sectors) 6008 /* not really in-place - so OK */; 6009 else if (mddev->ro == 0) { 6010 printk(KERN_ERR "md/raid:%s: in-place reshape " 6011 "must be started in read-only mode " 6012 "- aborting\n", 6013 mdname(mddev)); 6014 return -EINVAL; 6015 } 6016 } else if (mddev->reshape_backwards 6017 ? (here_new * mddev->new_chunk_sectors + min_offset_diff <= 6018 here_old * mddev->chunk_sectors) 6019 : (here_new * mddev->new_chunk_sectors >= 6020 here_old * mddev->chunk_sectors + (-min_offset_diff))) { 6021 /* Reading from the same stripe as writing to - bad */ 6022 printk(KERN_ERR "md/raid:%s: reshape_position too early for " 6023 "auto-recovery - aborting.\n", 6024 mdname(mddev)); 6025 return -EINVAL; 6026 } 6027 printk(KERN_INFO "md/raid:%s: reshape will continue\n", 6028 mdname(mddev)); 6029 /* OK, we should be able to continue; */ 6030 } else { 6031 BUG_ON(mddev->level != mddev->new_level); 6032 BUG_ON(mddev->layout != mddev->new_layout); 6033 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors); 6034 BUG_ON(mddev->delta_disks != 0); 6035 } 6036 6037 if (mddev->private == NULL) 6038 conf = setup_conf(mddev); 6039 else 6040 conf = mddev->private; 6041 6042 if (IS_ERR(conf)) 6043 return PTR_ERR(conf); 6044 6045 conf->min_offset_diff = min_offset_diff; 6046 mddev->thread = conf->thread; 6047 conf->thread = NULL; 6048 mddev->private = conf; 6049 6050 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks; 6051 i++) { 6052 rdev = conf->disks[i].rdev; 6053 if (!rdev && conf->disks[i].replacement) { 6054 /* The replacement is all we have yet */ 6055 rdev = conf->disks[i].replacement; 6056 conf->disks[i].replacement = NULL; 6057 clear_bit(Replacement, &rdev->flags); 6058 conf->disks[i].rdev = rdev; 6059 } 6060 if (!rdev) 6061 continue; 6062 if (conf->disks[i].replacement && 6063 conf->reshape_progress != MaxSector) { 6064 /* replacements and reshape simply do not mix. */ 6065 printk(KERN_ERR "md: cannot handle concurrent " 6066 "replacement and reshape.\n"); 6067 goto abort; 6068 } 6069 if (test_bit(In_sync, &rdev->flags)) { 6070 working_disks++; 6071 continue; 6072 } 6073 /* This disc is not fully in-sync. However if it 6074 * just stored parity (beyond the recovery_offset), 6075 * when we don't need to be concerned about the 6076 * array being dirty. 6077 * When reshape goes 'backwards', we never have 6078 * partially completed devices, so we only need 6079 * to worry about reshape going forwards. 6080 */ 6081 /* Hack because v0.91 doesn't store recovery_offset properly. */ 6082 if (mddev->major_version == 0 && 6083 mddev->minor_version > 90) 6084 rdev->recovery_offset = reshape_offset; 6085 6086 if (rdev->recovery_offset < reshape_offset) { 6087 /* We need to check old and new layout */ 6088 if (!only_parity(rdev->raid_disk, 6089 conf->algorithm, 6090 conf->raid_disks, 6091 conf->max_degraded)) 6092 continue; 6093 } 6094 if (!only_parity(rdev->raid_disk, 6095 conf->prev_algo, 6096 conf->previous_raid_disks, 6097 conf->max_degraded)) 6098 continue; 6099 dirty_parity_disks++; 6100 } 6101 6102 /* 6103 * 0 for a fully functional array, 1 or 2 for a degraded array. 6104 */ 6105 mddev->degraded = calc_degraded(conf); 6106 6107 if (has_failed(conf)) { 6108 printk(KERN_ERR "md/raid:%s: not enough operational devices" 6109 " (%d/%d failed)\n", 6110 mdname(mddev), mddev->degraded, conf->raid_disks); 6111 goto abort; 6112 } 6113 6114 /* device size must be a multiple of chunk size */ 6115 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1); 6116 mddev->resync_max_sectors = mddev->dev_sectors; 6117 6118 if (mddev->degraded > dirty_parity_disks && 6119 mddev->recovery_cp != MaxSector) { 6120 if (mddev->ok_start_degraded) 6121 printk(KERN_WARNING 6122 "md/raid:%s: starting dirty degraded array" 6123 " - data corruption possible.\n", 6124 mdname(mddev)); 6125 else { 6126 printk(KERN_ERR 6127 "md/raid:%s: cannot start dirty degraded array.\n", 6128 mdname(mddev)); 6129 goto abort; 6130 } 6131 } 6132 6133 if (mddev->degraded == 0) 6134 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d" 6135 " devices, algorithm %d\n", mdname(mddev), conf->level, 6136 mddev->raid_disks-mddev->degraded, mddev->raid_disks, 6137 mddev->new_layout); 6138 else 6139 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d" 6140 " out of %d devices, algorithm %d\n", 6141 mdname(mddev), conf->level, 6142 mddev->raid_disks - mddev->degraded, 6143 mddev->raid_disks, mddev->new_layout); 6144 6145 print_raid5_conf(conf); 6146 6147 if (conf->reshape_progress != MaxSector) { 6148 conf->reshape_safe = conf->reshape_progress; 6149 atomic_set(&conf->reshape_stripes, 0); 6150 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 6151 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 6152 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 6153 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 6154 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 6155 "reshape"); 6156 } 6157 6158 /* Ok, everything is just fine now */ 6159 if (mddev->to_remove == &raid5_attrs_group) 6160 mddev->to_remove = NULL; 6161 else if (mddev->kobj.sd && 6162 sysfs_create_group(&mddev->kobj, &raid5_attrs_group)) 6163 printk(KERN_WARNING 6164 "raid5: failed to create sysfs attributes for %s\n", 6165 mdname(mddev)); 6166 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 6167 6168 if (mddev->queue) { 6169 int chunk_size; 6170 bool discard_supported = true; 6171 /* read-ahead size must cover two whole stripes, which 6172 * is 2 * (datadisks) * chunksize where 'n' is the 6173 * number of raid devices 6174 */ 6175 int data_disks = conf->previous_raid_disks - conf->max_degraded; 6176 int stripe = data_disks * 6177 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 6178 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 6179 mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 6180 6181 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec); 6182 6183 mddev->queue->backing_dev_info.congested_data = mddev; 6184 mddev->queue->backing_dev_info.congested_fn = raid5_congested; 6185 6186 chunk_size = mddev->chunk_sectors << 9; 6187 blk_queue_io_min(mddev->queue, chunk_size); 6188 blk_queue_io_opt(mddev->queue, chunk_size * 6189 (conf->raid_disks - conf->max_degraded)); 6190 mddev->queue->limits.raid_partial_stripes_expensive = 1; 6191 /* 6192 * We can only discard a whole stripe. It doesn't make sense to 6193 * discard data disk but write parity disk 6194 */ 6195 stripe = stripe * PAGE_SIZE; 6196 /* Round up to power of 2, as discard handling 6197 * currently assumes that */ 6198 while ((stripe-1) & stripe) 6199 stripe = (stripe | (stripe-1)) + 1; 6200 mddev->queue->limits.discard_alignment = stripe; 6201 mddev->queue->limits.discard_granularity = stripe; 6202 /* 6203 * unaligned part of discard request will be ignored, so can't 6204 * guarantee discard_zeroes_data 6205 */ 6206 mddev->queue->limits.discard_zeroes_data = 0; 6207 6208 blk_queue_max_write_same_sectors(mddev->queue, 0); 6209 6210 rdev_for_each(rdev, mddev) { 6211 disk_stack_limits(mddev->gendisk, rdev->bdev, 6212 rdev->data_offset << 9); 6213 disk_stack_limits(mddev->gendisk, rdev->bdev, 6214 rdev->new_data_offset << 9); 6215 /* 6216 * discard_zeroes_data is required, otherwise data 6217 * could be lost. Consider a scenario: discard a stripe 6218 * (the stripe could be inconsistent if 6219 * discard_zeroes_data is 0); write one disk of the 6220 * stripe (the stripe could be inconsistent again 6221 * depending on which disks are used to calculate 6222 * parity); the disk is broken; The stripe data of this 6223 * disk is lost. 6224 */ 6225 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) || 6226 !bdev_get_queue(rdev->bdev)-> 6227 limits.discard_zeroes_data) 6228 discard_supported = false; 6229 /* Unfortunately, discard_zeroes_data is not currently 6230 * a guarantee - just a hint. So we only allow DISCARD 6231 * if the sysadmin has confirmed that only safe devices 6232 * are in use by setting a module parameter. 6233 */ 6234 if (!devices_handle_discard_safely) { 6235 if (discard_supported) { 6236 pr_info("md/raid456: discard support disabled due to uncertainty.\n"); 6237 pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n"); 6238 } 6239 discard_supported = false; 6240 } 6241 } 6242 6243 if (discard_supported && 6244 mddev->queue->limits.max_discard_sectors >= stripe && 6245 mddev->queue->limits.discard_granularity >= stripe) 6246 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 6247 mddev->queue); 6248 else 6249 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 6250 mddev->queue); 6251 } 6252 6253 return 0; 6254 abort: 6255 md_unregister_thread(&mddev->thread); 6256 print_raid5_conf(conf); 6257 free_conf(conf); 6258 mddev->private = NULL; 6259 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev)); 6260 return -EIO; 6261 } 6262 6263 static int stop(struct mddev *mddev) 6264 { 6265 struct r5conf *conf = mddev->private; 6266 6267 md_unregister_thread(&mddev->thread); 6268 if (mddev->queue) 6269 mddev->queue->backing_dev_info.congested_fn = NULL; 6270 free_conf(conf); 6271 mddev->private = NULL; 6272 mddev->to_remove = &raid5_attrs_group; 6273 return 0; 6274 } 6275 6276 static void status(struct seq_file *seq, struct mddev *mddev) 6277 { 6278 struct r5conf *conf = mddev->private; 6279 int i; 6280 6281 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level, 6282 mddev->chunk_sectors / 2, mddev->layout); 6283 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded); 6284 for (i = 0; i < conf->raid_disks; i++) 6285 seq_printf (seq, "%s", 6286 conf->disks[i].rdev && 6287 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_"); 6288 seq_printf (seq, "]"); 6289 } 6290 6291 static void print_raid5_conf (struct r5conf *conf) 6292 { 6293 int i; 6294 struct disk_info *tmp; 6295 6296 printk(KERN_DEBUG "RAID conf printout:\n"); 6297 if (!conf) { 6298 printk("(conf==NULL)\n"); 6299 return; 6300 } 6301 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level, 6302 conf->raid_disks, 6303 conf->raid_disks - conf->mddev->degraded); 6304 6305 for (i = 0; i < conf->raid_disks; i++) { 6306 char b[BDEVNAME_SIZE]; 6307 tmp = conf->disks + i; 6308 if (tmp->rdev) 6309 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n", 6310 i, !test_bit(Faulty, &tmp->rdev->flags), 6311 bdevname(tmp->rdev->bdev, b)); 6312 } 6313 } 6314 6315 static int raid5_spare_active(struct mddev *mddev) 6316 { 6317 int i; 6318 struct r5conf *conf = mddev->private; 6319 struct disk_info *tmp; 6320 int count = 0; 6321 unsigned long flags; 6322 6323 for (i = 0; i < conf->raid_disks; i++) { 6324 tmp = conf->disks + i; 6325 if (tmp->replacement 6326 && tmp->replacement->recovery_offset == MaxSector 6327 && !test_bit(Faulty, &tmp->replacement->flags) 6328 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 6329 /* Replacement has just become active. */ 6330 if (!tmp->rdev 6331 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 6332 count++; 6333 if (tmp->rdev) { 6334 /* Replaced device not technically faulty, 6335 * but we need to be sure it gets removed 6336 * and never re-added. 6337 */ 6338 set_bit(Faulty, &tmp->rdev->flags); 6339 sysfs_notify_dirent_safe( 6340 tmp->rdev->sysfs_state); 6341 } 6342 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 6343 } else if (tmp->rdev 6344 && tmp->rdev->recovery_offset == MaxSector 6345 && !test_bit(Faulty, &tmp->rdev->flags) 6346 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 6347 count++; 6348 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 6349 } 6350 } 6351 spin_lock_irqsave(&conf->device_lock, flags); 6352 mddev->degraded = calc_degraded(conf); 6353 spin_unlock_irqrestore(&conf->device_lock, flags); 6354 print_raid5_conf(conf); 6355 return count; 6356 } 6357 6358 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 6359 { 6360 struct r5conf *conf = mddev->private; 6361 int err = 0; 6362 int number = rdev->raid_disk; 6363 struct md_rdev **rdevp; 6364 struct disk_info *p = conf->disks + number; 6365 6366 print_raid5_conf(conf); 6367 if (rdev == p->rdev) 6368 rdevp = &p->rdev; 6369 else if (rdev == p->replacement) 6370 rdevp = &p->replacement; 6371 else 6372 return 0; 6373 6374 if (number >= conf->raid_disks && 6375 conf->reshape_progress == MaxSector) 6376 clear_bit(In_sync, &rdev->flags); 6377 6378 if (test_bit(In_sync, &rdev->flags) || 6379 atomic_read(&rdev->nr_pending)) { 6380 err = -EBUSY; 6381 goto abort; 6382 } 6383 /* Only remove non-faulty devices if recovery 6384 * isn't possible. 6385 */ 6386 if (!test_bit(Faulty, &rdev->flags) && 6387 mddev->recovery_disabled != conf->recovery_disabled && 6388 !has_failed(conf) && 6389 (!p->replacement || p->replacement == rdev) && 6390 number < conf->raid_disks) { 6391 err = -EBUSY; 6392 goto abort; 6393 } 6394 *rdevp = NULL; 6395 synchronize_rcu(); 6396 if (atomic_read(&rdev->nr_pending)) { 6397 /* lost the race, try later */ 6398 err = -EBUSY; 6399 *rdevp = rdev; 6400 } else if (p->replacement) { 6401 /* We must have just cleared 'rdev' */ 6402 p->rdev = p->replacement; 6403 clear_bit(Replacement, &p->replacement->flags); 6404 smp_mb(); /* Make sure other CPUs may see both as identical 6405 * but will never see neither - if they are careful 6406 */ 6407 p->replacement = NULL; 6408 clear_bit(WantReplacement, &rdev->flags); 6409 } else 6410 /* We might have just removed the Replacement as faulty- 6411 * clear the bit just in case 6412 */ 6413 clear_bit(WantReplacement, &rdev->flags); 6414 abort: 6415 6416 print_raid5_conf(conf); 6417 return err; 6418 } 6419 6420 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev) 6421 { 6422 struct r5conf *conf = mddev->private; 6423 int err = -EEXIST; 6424 int disk; 6425 struct disk_info *p; 6426 int first = 0; 6427 int last = conf->raid_disks - 1; 6428 6429 if (mddev->recovery_disabled == conf->recovery_disabled) 6430 return -EBUSY; 6431 6432 if (rdev->saved_raid_disk < 0 && has_failed(conf)) 6433 /* no point adding a device */ 6434 return -EINVAL; 6435 6436 if (rdev->raid_disk >= 0) 6437 first = last = rdev->raid_disk; 6438 6439 /* 6440 * find the disk ... but prefer rdev->saved_raid_disk 6441 * if possible. 6442 */ 6443 if (rdev->saved_raid_disk >= 0 && 6444 rdev->saved_raid_disk >= first && 6445 conf->disks[rdev->saved_raid_disk].rdev == NULL) 6446 first = rdev->saved_raid_disk; 6447 6448 for (disk = first; disk <= last; disk++) { 6449 p = conf->disks + disk; 6450 if (p->rdev == NULL) { 6451 clear_bit(In_sync, &rdev->flags); 6452 rdev->raid_disk = disk; 6453 err = 0; 6454 if (rdev->saved_raid_disk != disk) 6455 conf->fullsync = 1; 6456 rcu_assign_pointer(p->rdev, rdev); 6457 goto out; 6458 } 6459 } 6460 for (disk = first; disk <= last; disk++) { 6461 p = conf->disks + disk; 6462 if (test_bit(WantReplacement, &p->rdev->flags) && 6463 p->replacement == NULL) { 6464 clear_bit(In_sync, &rdev->flags); 6465 set_bit(Replacement, &rdev->flags); 6466 rdev->raid_disk = disk; 6467 err = 0; 6468 conf->fullsync = 1; 6469 rcu_assign_pointer(p->replacement, rdev); 6470 break; 6471 } 6472 } 6473 out: 6474 print_raid5_conf(conf); 6475 return err; 6476 } 6477 6478 static int raid5_resize(struct mddev *mddev, sector_t sectors) 6479 { 6480 /* no resync is happening, and there is enough space 6481 * on all devices, so we can resize. 6482 * We need to make sure resync covers any new space. 6483 * If the array is shrinking we should possibly wait until 6484 * any io in the removed space completes, but it hardly seems 6485 * worth it. 6486 */ 6487 sector_t newsize; 6488 sectors &= ~((sector_t)mddev->chunk_sectors - 1); 6489 newsize = raid5_size(mddev, sectors, mddev->raid_disks); 6490 if (mddev->external_size && 6491 mddev->array_sectors > newsize) 6492 return -EINVAL; 6493 if (mddev->bitmap) { 6494 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0); 6495 if (ret) 6496 return ret; 6497 } 6498 md_set_array_sectors(mddev, newsize); 6499 set_capacity(mddev->gendisk, mddev->array_sectors); 6500 revalidate_disk(mddev->gendisk); 6501 if (sectors > mddev->dev_sectors && 6502 mddev->recovery_cp > mddev->dev_sectors) { 6503 mddev->recovery_cp = mddev->dev_sectors; 6504 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6505 } 6506 mddev->dev_sectors = sectors; 6507 mddev->resync_max_sectors = sectors; 6508 return 0; 6509 } 6510 6511 static int check_stripe_cache(struct mddev *mddev) 6512 { 6513 /* Can only proceed if there are plenty of stripe_heads. 6514 * We need a minimum of one full stripe,, and for sensible progress 6515 * it is best to have about 4 times that. 6516 * If we require 4 times, then the default 256 4K stripe_heads will 6517 * allow for chunk sizes up to 256K, which is probably OK. 6518 * If the chunk size is greater, user-space should request more 6519 * stripe_heads first. 6520 */ 6521 struct r5conf *conf = mddev->private; 6522 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4 6523 > conf->max_nr_stripes || 6524 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4 6525 > conf->max_nr_stripes) { 6526 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n", 6527 mdname(mddev), 6528 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9) 6529 / STRIPE_SIZE)*4); 6530 return 0; 6531 } 6532 return 1; 6533 } 6534 6535 static int check_reshape(struct mddev *mddev) 6536 { 6537 struct r5conf *conf = mddev->private; 6538 6539 if (mddev->delta_disks == 0 && 6540 mddev->new_layout == mddev->layout && 6541 mddev->new_chunk_sectors == mddev->chunk_sectors) 6542 return 0; /* nothing to do */ 6543 if (has_failed(conf)) 6544 return -EINVAL; 6545 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) { 6546 /* We might be able to shrink, but the devices must 6547 * be made bigger first. 6548 * For raid6, 4 is the minimum size. 6549 * Otherwise 2 is the minimum 6550 */ 6551 int min = 2; 6552 if (mddev->level == 6) 6553 min = 4; 6554 if (mddev->raid_disks + mddev->delta_disks < min) 6555 return -EINVAL; 6556 } 6557 6558 if (!check_stripe_cache(mddev)) 6559 return -ENOSPC; 6560 6561 return resize_stripes(conf, (conf->previous_raid_disks 6562 + mddev->delta_disks)); 6563 } 6564 6565 static int raid5_start_reshape(struct mddev *mddev) 6566 { 6567 struct r5conf *conf = mddev->private; 6568 struct md_rdev *rdev; 6569 int spares = 0; 6570 unsigned long flags; 6571 6572 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6573 return -EBUSY; 6574 6575 if (!check_stripe_cache(mddev)) 6576 return -ENOSPC; 6577 6578 if (has_failed(conf)) 6579 return -EINVAL; 6580 6581 rdev_for_each(rdev, mddev) { 6582 if (!test_bit(In_sync, &rdev->flags) 6583 && !test_bit(Faulty, &rdev->flags)) 6584 spares++; 6585 } 6586 6587 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded) 6588 /* Not enough devices even to make a degraded array 6589 * of that size 6590 */ 6591 return -EINVAL; 6592 6593 /* Refuse to reduce size of the array. Any reductions in 6594 * array size must be through explicit setting of array_size 6595 * attribute. 6596 */ 6597 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks) 6598 < mddev->array_sectors) { 6599 printk(KERN_ERR "md/raid:%s: array size must be reduced " 6600 "before number of disks\n", mdname(mddev)); 6601 return -EINVAL; 6602 } 6603 6604 atomic_set(&conf->reshape_stripes, 0); 6605 spin_lock_irq(&conf->device_lock); 6606 write_seqcount_begin(&conf->gen_lock); 6607 conf->previous_raid_disks = conf->raid_disks; 6608 conf->raid_disks += mddev->delta_disks; 6609 conf->prev_chunk_sectors = conf->chunk_sectors; 6610 conf->chunk_sectors = mddev->new_chunk_sectors; 6611 conf->prev_algo = conf->algorithm; 6612 conf->algorithm = mddev->new_layout; 6613 conf->generation++; 6614 /* Code that selects data_offset needs to see the generation update 6615 * if reshape_progress has been set - so a memory barrier needed. 6616 */ 6617 smp_mb(); 6618 if (mddev->reshape_backwards) 6619 conf->reshape_progress = raid5_size(mddev, 0, 0); 6620 else 6621 conf->reshape_progress = 0; 6622 conf->reshape_safe = conf->reshape_progress; 6623 write_seqcount_end(&conf->gen_lock); 6624 spin_unlock_irq(&conf->device_lock); 6625 6626 /* Now make sure any requests that proceeded on the assumption 6627 * the reshape wasn't running - like Discard or Read - have 6628 * completed. 6629 */ 6630 mddev_suspend(mddev); 6631 mddev_resume(mddev); 6632 6633 /* Add some new drives, as many as will fit. 6634 * We know there are enough to make the newly sized array work. 6635 * Don't add devices if we are reducing the number of 6636 * devices in the array. This is because it is not possible 6637 * to correctly record the "partially reconstructed" state of 6638 * such devices during the reshape and confusion could result. 6639 */ 6640 if (mddev->delta_disks >= 0) { 6641 rdev_for_each(rdev, mddev) 6642 if (rdev->raid_disk < 0 && 6643 !test_bit(Faulty, &rdev->flags)) { 6644 if (raid5_add_disk(mddev, rdev) == 0) { 6645 if (rdev->raid_disk 6646 >= conf->previous_raid_disks) 6647 set_bit(In_sync, &rdev->flags); 6648 else 6649 rdev->recovery_offset = 0; 6650 6651 if (sysfs_link_rdev(mddev, rdev)) 6652 /* Failure here is OK */; 6653 } 6654 } else if (rdev->raid_disk >= conf->previous_raid_disks 6655 && !test_bit(Faulty, &rdev->flags)) { 6656 /* This is a spare that was manually added */ 6657 set_bit(In_sync, &rdev->flags); 6658 } 6659 6660 /* When a reshape changes the number of devices, 6661 * ->degraded is measured against the larger of the 6662 * pre and post number of devices. 6663 */ 6664 spin_lock_irqsave(&conf->device_lock, flags); 6665 mddev->degraded = calc_degraded(conf); 6666 spin_unlock_irqrestore(&conf->device_lock, flags); 6667 } 6668 mddev->raid_disks = conf->raid_disks; 6669 mddev->reshape_position = conf->reshape_progress; 6670 set_bit(MD_CHANGE_DEVS, &mddev->flags); 6671 6672 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 6673 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 6674 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 6675 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 6676 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 6677 "reshape"); 6678 if (!mddev->sync_thread) { 6679 mddev->recovery = 0; 6680 spin_lock_irq(&conf->device_lock); 6681 write_seqcount_begin(&conf->gen_lock); 6682 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks; 6683 mddev->new_chunk_sectors = 6684 conf->chunk_sectors = conf->prev_chunk_sectors; 6685 mddev->new_layout = conf->algorithm = conf->prev_algo; 6686 rdev_for_each(rdev, mddev) 6687 rdev->new_data_offset = rdev->data_offset; 6688 smp_wmb(); 6689 conf->generation --; 6690 conf->reshape_progress = MaxSector; 6691 mddev->reshape_position = MaxSector; 6692 write_seqcount_end(&conf->gen_lock); 6693 spin_unlock_irq(&conf->device_lock); 6694 return -EAGAIN; 6695 } 6696 conf->reshape_checkpoint = jiffies; 6697 md_wakeup_thread(mddev->sync_thread); 6698 md_new_event(mddev); 6699 return 0; 6700 } 6701 6702 /* This is called from the reshape thread and should make any 6703 * changes needed in 'conf' 6704 */ 6705 static void end_reshape(struct r5conf *conf) 6706 { 6707 6708 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 6709 struct md_rdev *rdev; 6710 6711 spin_lock_irq(&conf->device_lock); 6712 conf->previous_raid_disks = conf->raid_disks; 6713 rdev_for_each(rdev, conf->mddev) 6714 rdev->data_offset = rdev->new_data_offset; 6715 smp_wmb(); 6716 conf->reshape_progress = MaxSector; 6717 spin_unlock_irq(&conf->device_lock); 6718 wake_up(&conf->wait_for_overlap); 6719 6720 /* read-ahead size must cover two whole stripes, which is 6721 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 6722 */ 6723 if (conf->mddev->queue) { 6724 int data_disks = conf->raid_disks - conf->max_degraded; 6725 int stripe = data_disks * ((conf->chunk_sectors << 9) 6726 / PAGE_SIZE); 6727 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 6728 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 6729 } 6730 } 6731 } 6732 6733 /* This is called from the raid5d thread with mddev_lock held. 6734 * It makes config changes to the device. 6735 */ 6736 static void raid5_finish_reshape(struct mddev *mddev) 6737 { 6738 struct r5conf *conf = mddev->private; 6739 6740 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 6741 6742 if (mddev->delta_disks > 0) { 6743 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 6744 set_capacity(mddev->gendisk, mddev->array_sectors); 6745 revalidate_disk(mddev->gendisk); 6746 } else { 6747 int d; 6748 spin_lock_irq(&conf->device_lock); 6749 mddev->degraded = calc_degraded(conf); 6750 spin_unlock_irq(&conf->device_lock); 6751 for (d = conf->raid_disks ; 6752 d < conf->raid_disks - mddev->delta_disks; 6753 d++) { 6754 struct md_rdev *rdev = conf->disks[d].rdev; 6755 if (rdev) 6756 clear_bit(In_sync, &rdev->flags); 6757 rdev = conf->disks[d].replacement; 6758 if (rdev) 6759 clear_bit(In_sync, &rdev->flags); 6760 } 6761 } 6762 mddev->layout = conf->algorithm; 6763 mddev->chunk_sectors = conf->chunk_sectors; 6764 mddev->reshape_position = MaxSector; 6765 mddev->delta_disks = 0; 6766 mddev->reshape_backwards = 0; 6767 } 6768 } 6769 6770 static void raid5_quiesce(struct mddev *mddev, int state) 6771 { 6772 struct r5conf *conf = mddev->private; 6773 6774 switch(state) { 6775 case 2: /* resume for a suspend */ 6776 wake_up(&conf->wait_for_overlap); 6777 break; 6778 6779 case 1: /* stop all writes */ 6780 lock_all_device_hash_locks_irq(conf); 6781 /* '2' tells resync/reshape to pause so that all 6782 * active stripes can drain 6783 */ 6784 conf->quiesce = 2; 6785 wait_event_cmd(conf->wait_for_stripe, 6786 atomic_read(&conf->active_stripes) == 0 && 6787 atomic_read(&conf->active_aligned_reads) == 0, 6788 unlock_all_device_hash_locks_irq(conf), 6789 lock_all_device_hash_locks_irq(conf)); 6790 conf->quiesce = 1; 6791 unlock_all_device_hash_locks_irq(conf); 6792 /* allow reshape to continue */ 6793 wake_up(&conf->wait_for_overlap); 6794 break; 6795 6796 case 0: /* re-enable writes */ 6797 lock_all_device_hash_locks_irq(conf); 6798 conf->quiesce = 0; 6799 wake_up(&conf->wait_for_stripe); 6800 wake_up(&conf->wait_for_overlap); 6801 unlock_all_device_hash_locks_irq(conf); 6802 break; 6803 } 6804 } 6805 6806 static void *raid45_takeover_raid0(struct mddev *mddev, int level) 6807 { 6808 struct r0conf *raid0_conf = mddev->private; 6809 sector_t sectors; 6810 6811 /* for raid0 takeover only one zone is supported */ 6812 if (raid0_conf->nr_strip_zones > 1) { 6813 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n", 6814 mdname(mddev)); 6815 return ERR_PTR(-EINVAL); 6816 } 6817 6818 sectors = raid0_conf->strip_zone[0].zone_end; 6819 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev); 6820 mddev->dev_sectors = sectors; 6821 mddev->new_level = level; 6822 mddev->new_layout = ALGORITHM_PARITY_N; 6823 mddev->new_chunk_sectors = mddev->chunk_sectors; 6824 mddev->raid_disks += 1; 6825 mddev->delta_disks = 1; 6826 /* make sure it will be not marked as dirty */ 6827 mddev->recovery_cp = MaxSector; 6828 6829 return setup_conf(mddev); 6830 } 6831 6832 static void *raid5_takeover_raid1(struct mddev *mddev) 6833 { 6834 int chunksect; 6835 6836 if (mddev->raid_disks != 2 || 6837 mddev->degraded > 1) 6838 return ERR_PTR(-EINVAL); 6839 6840 /* Should check if there are write-behind devices? */ 6841 6842 chunksect = 64*2; /* 64K by default */ 6843 6844 /* The array must be an exact multiple of chunksize */ 6845 while (chunksect && (mddev->array_sectors & (chunksect-1))) 6846 chunksect >>= 1; 6847 6848 if ((chunksect<<9) < STRIPE_SIZE) 6849 /* array size does not allow a suitable chunk size */ 6850 return ERR_PTR(-EINVAL); 6851 6852 mddev->new_level = 5; 6853 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC; 6854 mddev->new_chunk_sectors = chunksect; 6855 6856 return setup_conf(mddev); 6857 } 6858 6859 static void *raid5_takeover_raid6(struct mddev *mddev) 6860 { 6861 int new_layout; 6862 6863 switch (mddev->layout) { 6864 case ALGORITHM_LEFT_ASYMMETRIC_6: 6865 new_layout = ALGORITHM_LEFT_ASYMMETRIC; 6866 break; 6867 case ALGORITHM_RIGHT_ASYMMETRIC_6: 6868 new_layout = ALGORITHM_RIGHT_ASYMMETRIC; 6869 break; 6870 case ALGORITHM_LEFT_SYMMETRIC_6: 6871 new_layout = ALGORITHM_LEFT_SYMMETRIC; 6872 break; 6873 case ALGORITHM_RIGHT_SYMMETRIC_6: 6874 new_layout = ALGORITHM_RIGHT_SYMMETRIC; 6875 break; 6876 case ALGORITHM_PARITY_0_6: 6877 new_layout = ALGORITHM_PARITY_0; 6878 break; 6879 case ALGORITHM_PARITY_N: 6880 new_layout = ALGORITHM_PARITY_N; 6881 break; 6882 default: 6883 return ERR_PTR(-EINVAL); 6884 } 6885 mddev->new_level = 5; 6886 mddev->new_layout = new_layout; 6887 mddev->delta_disks = -1; 6888 mddev->raid_disks -= 1; 6889 return setup_conf(mddev); 6890 } 6891 6892 static int raid5_check_reshape(struct mddev *mddev) 6893 { 6894 /* For a 2-drive array, the layout and chunk size can be changed 6895 * immediately as not restriping is needed. 6896 * For larger arrays we record the new value - after validation 6897 * to be used by a reshape pass. 6898 */ 6899 struct r5conf *conf = mddev->private; 6900 int new_chunk = mddev->new_chunk_sectors; 6901 6902 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout)) 6903 return -EINVAL; 6904 if (new_chunk > 0) { 6905 if (!is_power_of_2(new_chunk)) 6906 return -EINVAL; 6907 if (new_chunk < (PAGE_SIZE>>9)) 6908 return -EINVAL; 6909 if (mddev->array_sectors & (new_chunk-1)) 6910 /* not factor of array size */ 6911 return -EINVAL; 6912 } 6913 6914 /* They look valid */ 6915 6916 if (mddev->raid_disks == 2) { 6917 /* can make the change immediately */ 6918 if (mddev->new_layout >= 0) { 6919 conf->algorithm = mddev->new_layout; 6920 mddev->layout = mddev->new_layout; 6921 } 6922 if (new_chunk > 0) { 6923 conf->chunk_sectors = new_chunk ; 6924 mddev->chunk_sectors = new_chunk; 6925 } 6926 set_bit(MD_CHANGE_DEVS, &mddev->flags); 6927 md_wakeup_thread(mddev->thread); 6928 } 6929 return check_reshape(mddev); 6930 } 6931 6932 static int raid6_check_reshape(struct mddev *mddev) 6933 { 6934 int new_chunk = mddev->new_chunk_sectors; 6935 6936 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout)) 6937 return -EINVAL; 6938 if (new_chunk > 0) { 6939 if (!is_power_of_2(new_chunk)) 6940 return -EINVAL; 6941 if (new_chunk < (PAGE_SIZE >> 9)) 6942 return -EINVAL; 6943 if (mddev->array_sectors & (new_chunk-1)) 6944 /* not factor of array size */ 6945 return -EINVAL; 6946 } 6947 6948 /* They look valid */ 6949 return check_reshape(mddev); 6950 } 6951 6952 static void *raid5_takeover(struct mddev *mddev) 6953 { 6954 /* raid5 can take over: 6955 * raid0 - if there is only one strip zone - make it a raid4 layout 6956 * raid1 - if there are two drives. We need to know the chunk size 6957 * raid4 - trivial - just use a raid4 layout. 6958 * raid6 - Providing it is a *_6 layout 6959 */ 6960 if (mddev->level == 0) 6961 return raid45_takeover_raid0(mddev, 5); 6962 if (mddev->level == 1) 6963 return raid5_takeover_raid1(mddev); 6964 if (mddev->level == 4) { 6965 mddev->new_layout = ALGORITHM_PARITY_N; 6966 mddev->new_level = 5; 6967 return setup_conf(mddev); 6968 } 6969 if (mddev->level == 6) 6970 return raid5_takeover_raid6(mddev); 6971 6972 return ERR_PTR(-EINVAL); 6973 } 6974 6975 static void *raid4_takeover(struct mddev *mddev) 6976 { 6977 /* raid4 can take over: 6978 * raid0 - if there is only one strip zone 6979 * raid5 - if layout is right 6980 */ 6981 if (mddev->level == 0) 6982 return raid45_takeover_raid0(mddev, 4); 6983 if (mddev->level == 5 && 6984 mddev->layout == ALGORITHM_PARITY_N) { 6985 mddev->new_layout = 0; 6986 mddev->new_level = 4; 6987 return setup_conf(mddev); 6988 } 6989 return ERR_PTR(-EINVAL); 6990 } 6991 6992 static struct md_personality raid5_personality; 6993 6994 static void *raid6_takeover(struct mddev *mddev) 6995 { 6996 /* Currently can only take over a raid5. We map the 6997 * personality to an equivalent raid6 personality 6998 * with the Q block at the end. 6999 */ 7000 int new_layout; 7001 7002 if (mddev->pers != &raid5_personality) 7003 return ERR_PTR(-EINVAL); 7004 if (mddev->degraded > 1) 7005 return ERR_PTR(-EINVAL); 7006 if (mddev->raid_disks > 253) 7007 return ERR_PTR(-EINVAL); 7008 if (mddev->raid_disks < 3) 7009 return ERR_PTR(-EINVAL); 7010 7011 switch (mddev->layout) { 7012 case ALGORITHM_LEFT_ASYMMETRIC: 7013 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6; 7014 break; 7015 case ALGORITHM_RIGHT_ASYMMETRIC: 7016 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6; 7017 break; 7018 case ALGORITHM_LEFT_SYMMETRIC: 7019 new_layout = ALGORITHM_LEFT_SYMMETRIC_6; 7020 break; 7021 case ALGORITHM_RIGHT_SYMMETRIC: 7022 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6; 7023 break; 7024 case ALGORITHM_PARITY_0: 7025 new_layout = ALGORITHM_PARITY_0_6; 7026 break; 7027 case ALGORITHM_PARITY_N: 7028 new_layout = ALGORITHM_PARITY_N; 7029 break; 7030 default: 7031 return ERR_PTR(-EINVAL); 7032 } 7033 mddev->new_level = 6; 7034 mddev->new_layout = new_layout; 7035 mddev->delta_disks = 1; 7036 mddev->raid_disks += 1; 7037 return setup_conf(mddev); 7038 } 7039 7040 static struct md_personality raid6_personality = 7041 { 7042 .name = "raid6", 7043 .level = 6, 7044 .owner = THIS_MODULE, 7045 .make_request = make_request, 7046 .run = run, 7047 .stop = stop, 7048 .status = status, 7049 .error_handler = error, 7050 .hot_add_disk = raid5_add_disk, 7051 .hot_remove_disk= raid5_remove_disk, 7052 .spare_active = raid5_spare_active, 7053 .sync_request = sync_request, 7054 .resize = raid5_resize, 7055 .size = raid5_size, 7056 .check_reshape = raid6_check_reshape, 7057 .start_reshape = raid5_start_reshape, 7058 .finish_reshape = raid5_finish_reshape, 7059 .quiesce = raid5_quiesce, 7060 .takeover = raid6_takeover, 7061 }; 7062 static struct md_personality raid5_personality = 7063 { 7064 .name = "raid5", 7065 .level = 5, 7066 .owner = THIS_MODULE, 7067 .make_request = make_request, 7068 .run = run, 7069 .stop = stop, 7070 .status = status, 7071 .error_handler = error, 7072 .hot_add_disk = raid5_add_disk, 7073 .hot_remove_disk= raid5_remove_disk, 7074 .spare_active = raid5_spare_active, 7075 .sync_request = sync_request, 7076 .resize = raid5_resize, 7077 .size = raid5_size, 7078 .check_reshape = raid5_check_reshape, 7079 .start_reshape = raid5_start_reshape, 7080 .finish_reshape = raid5_finish_reshape, 7081 .quiesce = raid5_quiesce, 7082 .takeover = raid5_takeover, 7083 }; 7084 7085 static struct md_personality raid4_personality = 7086 { 7087 .name = "raid4", 7088 .level = 4, 7089 .owner = THIS_MODULE, 7090 .make_request = make_request, 7091 .run = run, 7092 .stop = stop, 7093 .status = status, 7094 .error_handler = error, 7095 .hot_add_disk = raid5_add_disk, 7096 .hot_remove_disk= raid5_remove_disk, 7097 .spare_active = raid5_spare_active, 7098 .sync_request = sync_request, 7099 .resize = raid5_resize, 7100 .size = raid5_size, 7101 .check_reshape = raid5_check_reshape, 7102 .start_reshape = raid5_start_reshape, 7103 .finish_reshape = raid5_finish_reshape, 7104 .quiesce = raid5_quiesce, 7105 .takeover = raid4_takeover, 7106 }; 7107 7108 static int __init raid5_init(void) 7109 { 7110 raid5_wq = alloc_workqueue("raid5wq", 7111 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0); 7112 if (!raid5_wq) 7113 return -ENOMEM; 7114 register_md_personality(&raid6_personality); 7115 register_md_personality(&raid5_personality); 7116 register_md_personality(&raid4_personality); 7117 return 0; 7118 } 7119 7120 static void raid5_exit(void) 7121 { 7122 unregister_md_personality(&raid6_personality); 7123 unregister_md_personality(&raid5_personality); 7124 unregister_md_personality(&raid4_personality); 7125 destroy_workqueue(raid5_wq); 7126 } 7127 7128 module_init(raid5_init); 7129 module_exit(raid5_exit); 7130 MODULE_LICENSE("GPL"); 7131 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD"); 7132 MODULE_ALIAS("md-personality-4"); /* RAID5 */ 7133 MODULE_ALIAS("md-raid5"); 7134 MODULE_ALIAS("md-raid4"); 7135 MODULE_ALIAS("md-level-5"); 7136 MODULE_ALIAS("md-level-4"); 7137 MODULE_ALIAS("md-personality-8"); /* RAID6 */ 7138 MODULE_ALIAS("md-raid6"); 7139 MODULE_ALIAS("md-level-6"); 7140 7141 /* This used to be two separate modules, they were: */ 7142 MODULE_ALIAS("raid5"); 7143 MODULE_ALIAS("raid6"); 7144