xref: /linux/drivers/md/raid5.c (revision 3f0a50f345f78183f6e9b39c2f45ca5dcaa511ca)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid5.c : Multiple Devices driver for Linux
4  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
5  *	   Copyright (C) 1999, 2000 Ingo Molnar
6  *	   Copyright (C) 2002, 2003 H. Peter Anvin
7  *
8  * RAID-4/5/6 management functions.
9  * Thanks to Penguin Computing for making the RAID-6 development possible
10  * by donating a test server!
11  */
12 
13 /*
14  * BITMAP UNPLUGGING:
15  *
16  * The sequencing for updating the bitmap reliably is a little
17  * subtle (and I got it wrong the first time) so it deserves some
18  * explanation.
19  *
20  * We group bitmap updates into batches.  Each batch has a number.
21  * We may write out several batches at once, but that isn't very important.
22  * conf->seq_write is the number of the last batch successfully written.
23  * conf->seq_flush is the number of the last batch that was closed to
24  *    new additions.
25  * When we discover that we will need to write to any block in a stripe
26  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
27  * the number of the batch it will be in. This is seq_flush+1.
28  * When we are ready to do a write, if that batch hasn't been written yet,
29  *   we plug the array and queue the stripe for later.
30  * When an unplug happens, we increment bm_flush, thus closing the current
31  *   batch.
32  * When we notice that bm_flush > bm_write, we write out all pending updates
33  * to the bitmap, and advance bm_write to where bm_flush was.
34  * This may occasionally write a bit out twice, but is sure never to
35  * miss any bits.
36  */
37 
38 #include <linux/blkdev.h>
39 #include <linux/kthread.h>
40 #include <linux/raid/pq.h>
41 #include <linux/async_tx.h>
42 #include <linux/module.h>
43 #include <linux/async.h>
44 #include <linux/seq_file.h>
45 #include <linux/cpu.h>
46 #include <linux/slab.h>
47 #include <linux/ratelimit.h>
48 #include <linux/nodemask.h>
49 
50 #include <trace/events/block.h>
51 #include <linux/list_sort.h>
52 
53 #include "md.h"
54 #include "raid5.h"
55 #include "raid0.h"
56 #include "md-bitmap.h"
57 #include "raid5-log.h"
58 
59 #define UNSUPPORTED_MDDEV_FLAGS	(1L << MD_FAILFAST_SUPPORTED)
60 
61 #define cpu_to_group(cpu) cpu_to_node(cpu)
62 #define ANY_GROUP NUMA_NO_NODE
63 
64 static bool devices_handle_discard_safely = false;
65 module_param(devices_handle_discard_safely, bool, 0644);
66 MODULE_PARM_DESC(devices_handle_discard_safely,
67 		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
68 static struct workqueue_struct *raid5_wq;
69 
70 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
71 {
72 	int hash = (sect >> RAID5_STRIPE_SHIFT(conf)) & HASH_MASK;
73 	return &conf->stripe_hashtbl[hash];
74 }
75 
76 static inline int stripe_hash_locks_hash(struct r5conf *conf, sector_t sect)
77 {
78 	return (sect >> RAID5_STRIPE_SHIFT(conf)) & STRIPE_HASH_LOCKS_MASK;
79 }
80 
81 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
82 {
83 	spin_lock_irq(conf->hash_locks + hash);
84 	spin_lock(&conf->device_lock);
85 }
86 
87 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
88 {
89 	spin_unlock(&conf->device_lock);
90 	spin_unlock_irq(conf->hash_locks + hash);
91 }
92 
93 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
94 {
95 	int i;
96 	spin_lock_irq(conf->hash_locks);
97 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
98 		spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
99 	spin_lock(&conf->device_lock);
100 }
101 
102 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
103 {
104 	int i;
105 	spin_unlock(&conf->device_lock);
106 	for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
107 		spin_unlock(conf->hash_locks + i);
108 	spin_unlock_irq(conf->hash_locks);
109 }
110 
111 /* Find first data disk in a raid6 stripe */
112 static inline int raid6_d0(struct stripe_head *sh)
113 {
114 	if (sh->ddf_layout)
115 		/* ddf always start from first device */
116 		return 0;
117 	/* md starts just after Q block */
118 	if (sh->qd_idx == sh->disks - 1)
119 		return 0;
120 	else
121 		return sh->qd_idx + 1;
122 }
123 static inline int raid6_next_disk(int disk, int raid_disks)
124 {
125 	disk++;
126 	return (disk < raid_disks) ? disk : 0;
127 }
128 
129 /* When walking through the disks in a raid5, starting at raid6_d0,
130  * We need to map each disk to a 'slot', where the data disks are slot
131  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
132  * is raid_disks-1.  This help does that mapping.
133  */
134 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
135 			     int *count, int syndrome_disks)
136 {
137 	int slot = *count;
138 
139 	if (sh->ddf_layout)
140 		(*count)++;
141 	if (idx == sh->pd_idx)
142 		return syndrome_disks;
143 	if (idx == sh->qd_idx)
144 		return syndrome_disks + 1;
145 	if (!sh->ddf_layout)
146 		(*count)++;
147 	return slot;
148 }
149 
150 static void print_raid5_conf (struct r5conf *conf);
151 
152 static int stripe_operations_active(struct stripe_head *sh)
153 {
154 	return sh->check_state || sh->reconstruct_state ||
155 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
156 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
157 }
158 
159 static bool stripe_is_lowprio(struct stripe_head *sh)
160 {
161 	return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
162 		test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
163 	       !test_bit(STRIPE_R5C_CACHING, &sh->state);
164 }
165 
166 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
167 {
168 	struct r5conf *conf = sh->raid_conf;
169 	struct r5worker_group *group;
170 	int thread_cnt;
171 	int i, cpu = sh->cpu;
172 
173 	if (!cpu_online(cpu)) {
174 		cpu = cpumask_any(cpu_online_mask);
175 		sh->cpu = cpu;
176 	}
177 
178 	if (list_empty(&sh->lru)) {
179 		struct r5worker_group *group;
180 		group = conf->worker_groups + cpu_to_group(cpu);
181 		if (stripe_is_lowprio(sh))
182 			list_add_tail(&sh->lru, &group->loprio_list);
183 		else
184 			list_add_tail(&sh->lru, &group->handle_list);
185 		group->stripes_cnt++;
186 		sh->group = group;
187 	}
188 
189 	if (conf->worker_cnt_per_group == 0) {
190 		md_wakeup_thread(conf->mddev->thread);
191 		return;
192 	}
193 
194 	group = conf->worker_groups + cpu_to_group(sh->cpu);
195 
196 	group->workers[0].working = true;
197 	/* at least one worker should run to avoid race */
198 	queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
199 
200 	thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
201 	/* wakeup more workers */
202 	for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
203 		if (group->workers[i].working == false) {
204 			group->workers[i].working = true;
205 			queue_work_on(sh->cpu, raid5_wq,
206 				      &group->workers[i].work);
207 			thread_cnt--;
208 		}
209 	}
210 }
211 
212 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
213 			      struct list_head *temp_inactive_list)
214 {
215 	int i;
216 	int injournal = 0;	/* number of date pages with R5_InJournal */
217 
218 	BUG_ON(!list_empty(&sh->lru));
219 	BUG_ON(atomic_read(&conf->active_stripes)==0);
220 
221 	if (r5c_is_writeback(conf->log))
222 		for (i = sh->disks; i--; )
223 			if (test_bit(R5_InJournal, &sh->dev[i].flags))
224 				injournal++;
225 	/*
226 	 * In the following cases, the stripe cannot be released to cached
227 	 * lists. Therefore, we make the stripe write out and set
228 	 * STRIPE_HANDLE:
229 	 *   1. when quiesce in r5c write back;
230 	 *   2. when resync is requested fot the stripe.
231 	 */
232 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
233 	    (conf->quiesce && r5c_is_writeback(conf->log) &&
234 	     !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
235 		if (test_bit(STRIPE_R5C_CACHING, &sh->state))
236 			r5c_make_stripe_write_out(sh);
237 		set_bit(STRIPE_HANDLE, &sh->state);
238 	}
239 
240 	if (test_bit(STRIPE_HANDLE, &sh->state)) {
241 		if (test_bit(STRIPE_DELAYED, &sh->state) &&
242 		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
243 			list_add_tail(&sh->lru, &conf->delayed_list);
244 		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
245 			   sh->bm_seq - conf->seq_write > 0)
246 			list_add_tail(&sh->lru, &conf->bitmap_list);
247 		else {
248 			clear_bit(STRIPE_DELAYED, &sh->state);
249 			clear_bit(STRIPE_BIT_DELAY, &sh->state);
250 			if (conf->worker_cnt_per_group == 0) {
251 				if (stripe_is_lowprio(sh))
252 					list_add_tail(&sh->lru,
253 							&conf->loprio_list);
254 				else
255 					list_add_tail(&sh->lru,
256 							&conf->handle_list);
257 			} else {
258 				raid5_wakeup_stripe_thread(sh);
259 				return;
260 			}
261 		}
262 		md_wakeup_thread(conf->mddev->thread);
263 	} else {
264 		BUG_ON(stripe_operations_active(sh));
265 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
266 			if (atomic_dec_return(&conf->preread_active_stripes)
267 			    < IO_THRESHOLD)
268 				md_wakeup_thread(conf->mddev->thread);
269 		atomic_dec(&conf->active_stripes);
270 		if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
271 			if (!r5c_is_writeback(conf->log))
272 				list_add_tail(&sh->lru, temp_inactive_list);
273 			else {
274 				WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
275 				if (injournal == 0)
276 					list_add_tail(&sh->lru, temp_inactive_list);
277 				else if (injournal == conf->raid_disks - conf->max_degraded) {
278 					/* full stripe */
279 					if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
280 						atomic_inc(&conf->r5c_cached_full_stripes);
281 					if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
282 						atomic_dec(&conf->r5c_cached_partial_stripes);
283 					list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
284 					r5c_check_cached_full_stripe(conf);
285 				} else
286 					/*
287 					 * STRIPE_R5C_PARTIAL_STRIPE is set in
288 					 * r5c_try_caching_write(). No need to
289 					 * set it again.
290 					 */
291 					list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
292 			}
293 		}
294 	}
295 }
296 
297 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
298 			     struct list_head *temp_inactive_list)
299 {
300 	if (atomic_dec_and_test(&sh->count))
301 		do_release_stripe(conf, sh, temp_inactive_list);
302 }
303 
304 /*
305  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
306  *
307  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
308  * given time. Adding stripes only takes device lock, while deleting stripes
309  * only takes hash lock.
310  */
311 static void release_inactive_stripe_list(struct r5conf *conf,
312 					 struct list_head *temp_inactive_list,
313 					 int hash)
314 {
315 	int size;
316 	bool do_wakeup = false;
317 	unsigned long flags;
318 
319 	if (hash == NR_STRIPE_HASH_LOCKS) {
320 		size = NR_STRIPE_HASH_LOCKS;
321 		hash = NR_STRIPE_HASH_LOCKS - 1;
322 	} else
323 		size = 1;
324 	while (size) {
325 		struct list_head *list = &temp_inactive_list[size - 1];
326 
327 		/*
328 		 * We don't hold any lock here yet, raid5_get_active_stripe() might
329 		 * remove stripes from the list
330 		 */
331 		if (!list_empty_careful(list)) {
332 			spin_lock_irqsave(conf->hash_locks + hash, flags);
333 			if (list_empty(conf->inactive_list + hash) &&
334 			    !list_empty(list))
335 				atomic_dec(&conf->empty_inactive_list_nr);
336 			list_splice_tail_init(list, conf->inactive_list + hash);
337 			do_wakeup = true;
338 			spin_unlock_irqrestore(conf->hash_locks + hash, flags);
339 		}
340 		size--;
341 		hash--;
342 	}
343 
344 	if (do_wakeup) {
345 		wake_up(&conf->wait_for_stripe);
346 		if (atomic_read(&conf->active_stripes) == 0)
347 			wake_up(&conf->wait_for_quiescent);
348 		if (conf->retry_read_aligned)
349 			md_wakeup_thread(conf->mddev->thread);
350 	}
351 }
352 
353 /* should hold conf->device_lock already */
354 static int release_stripe_list(struct r5conf *conf,
355 			       struct list_head *temp_inactive_list)
356 {
357 	struct stripe_head *sh, *t;
358 	int count = 0;
359 	struct llist_node *head;
360 
361 	head = llist_del_all(&conf->released_stripes);
362 	head = llist_reverse_order(head);
363 	llist_for_each_entry_safe(sh, t, head, release_list) {
364 		int hash;
365 
366 		/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
367 		smp_mb();
368 		clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
369 		/*
370 		 * Don't worry the bit is set here, because if the bit is set
371 		 * again, the count is always > 1. This is true for
372 		 * STRIPE_ON_UNPLUG_LIST bit too.
373 		 */
374 		hash = sh->hash_lock_index;
375 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
376 		count++;
377 	}
378 
379 	return count;
380 }
381 
382 void raid5_release_stripe(struct stripe_head *sh)
383 {
384 	struct r5conf *conf = sh->raid_conf;
385 	unsigned long flags;
386 	struct list_head list;
387 	int hash;
388 	bool wakeup;
389 
390 	/* Avoid release_list until the last reference.
391 	 */
392 	if (atomic_add_unless(&sh->count, -1, 1))
393 		return;
394 
395 	if (unlikely(!conf->mddev->thread) ||
396 		test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
397 		goto slow_path;
398 	wakeup = llist_add(&sh->release_list, &conf->released_stripes);
399 	if (wakeup)
400 		md_wakeup_thread(conf->mddev->thread);
401 	return;
402 slow_path:
403 	/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
404 	if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) {
405 		INIT_LIST_HEAD(&list);
406 		hash = sh->hash_lock_index;
407 		do_release_stripe(conf, sh, &list);
408 		spin_unlock_irqrestore(&conf->device_lock, flags);
409 		release_inactive_stripe_list(conf, &list, hash);
410 	}
411 }
412 
413 static inline void remove_hash(struct stripe_head *sh)
414 {
415 	pr_debug("remove_hash(), stripe %llu\n",
416 		(unsigned long long)sh->sector);
417 
418 	hlist_del_init(&sh->hash);
419 }
420 
421 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
422 {
423 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
424 
425 	pr_debug("insert_hash(), stripe %llu\n",
426 		(unsigned long long)sh->sector);
427 
428 	hlist_add_head(&sh->hash, hp);
429 }
430 
431 /* find an idle stripe, make sure it is unhashed, and return it. */
432 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
433 {
434 	struct stripe_head *sh = NULL;
435 	struct list_head *first;
436 
437 	if (list_empty(conf->inactive_list + hash))
438 		goto out;
439 	first = (conf->inactive_list + hash)->next;
440 	sh = list_entry(first, struct stripe_head, lru);
441 	list_del_init(first);
442 	remove_hash(sh);
443 	atomic_inc(&conf->active_stripes);
444 	BUG_ON(hash != sh->hash_lock_index);
445 	if (list_empty(conf->inactive_list + hash))
446 		atomic_inc(&conf->empty_inactive_list_nr);
447 out:
448 	return sh;
449 }
450 
451 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
452 static void free_stripe_pages(struct stripe_head *sh)
453 {
454 	int i;
455 	struct page *p;
456 
457 	/* Have not allocate page pool */
458 	if (!sh->pages)
459 		return;
460 
461 	for (i = 0; i < sh->nr_pages; i++) {
462 		p = sh->pages[i];
463 		if (p)
464 			put_page(p);
465 		sh->pages[i] = NULL;
466 	}
467 }
468 
469 static int alloc_stripe_pages(struct stripe_head *sh, gfp_t gfp)
470 {
471 	int i;
472 	struct page *p;
473 
474 	for (i = 0; i < sh->nr_pages; i++) {
475 		/* The page have allocated. */
476 		if (sh->pages[i])
477 			continue;
478 
479 		p = alloc_page(gfp);
480 		if (!p) {
481 			free_stripe_pages(sh);
482 			return -ENOMEM;
483 		}
484 		sh->pages[i] = p;
485 	}
486 	return 0;
487 }
488 
489 static int
490 init_stripe_shared_pages(struct stripe_head *sh, struct r5conf *conf, int disks)
491 {
492 	int nr_pages, cnt;
493 
494 	if (sh->pages)
495 		return 0;
496 
497 	/* Each of the sh->dev[i] need one conf->stripe_size */
498 	cnt = PAGE_SIZE / conf->stripe_size;
499 	nr_pages = (disks + cnt - 1) / cnt;
500 
501 	sh->pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
502 	if (!sh->pages)
503 		return -ENOMEM;
504 	sh->nr_pages = nr_pages;
505 	sh->stripes_per_page = cnt;
506 	return 0;
507 }
508 #endif
509 
510 static void shrink_buffers(struct stripe_head *sh)
511 {
512 	int i;
513 	int num = sh->raid_conf->pool_size;
514 
515 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE
516 	for (i = 0; i < num ; i++) {
517 		struct page *p;
518 
519 		WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
520 		p = sh->dev[i].page;
521 		if (!p)
522 			continue;
523 		sh->dev[i].page = NULL;
524 		put_page(p);
525 	}
526 #else
527 	for (i = 0; i < num; i++)
528 		sh->dev[i].page = NULL;
529 	free_stripe_pages(sh); /* Free pages */
530 #endif
531 }
532 
533 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
534 {
535 	int i;
536 	int num = sh->raid_conf->pool_size;
537 
538 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE
539 	for (i = 0; i < num; i++) {
540 		struct page *page;
541 
542 		if (!(page = alloc_page(gfp))) {
543 			return 1;
544 		}
545 		sh->dev[i].page = page;
546 		sh->dev[i].orig_page = page;
547 		sh->dev[i].offset = 0;
548 	}
549 #else
550 	if (alloc_stripe_pages(sh, gfp))
551 		return -ENOMEM;
552 
553 	for (i = 0; i < num; i++) {
554 		sh->dev[i].page = raid5_get_dev_page(sh, i);
555 		sh->dev[i].orig_page = sh->dev[i].page;
556 		sh->dev[i].offset = raid5_get_page_offset(sh, i);
557 	}
558 #endif
559 	return 0;
560 }
561 
562 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
563 			    struct stripe_head *sh);
564 
565 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
566 {
567 	struct r5conf *conf = sh->raid_conf;
568 	int i, seq;
569 
570 	BUG_ON(atomic_read(&sh->count) != 0);
571 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
572 	BUG_ON(stripe_operations_active(sh));
573 	BUG_ON(sh->batch_head);
574 
575 	pr_debug("init_stripe called, stripe %llu\n",
576 		(unsigned long long)sector);
577 retry:
578 	seq = read_seqcount_begin(&conf->gen_lock);
579 	sh->generation = conf->generation - previous;
580 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
581 	sh->sector = sector;
582 	stripe_set_idx(sector, conf, previous, sh);
583 	sh->state = 0;
584 
585 	for (i = sh->disks; i--; ) {
586 		struct r5dev *dev = &sh->dev[i];
587 
588 		if (dev->toread || dev->read || dev->towrite || dev->written ||
589 		    test_bit(R5_LOCKED, &dev->flags)) {
590 			pr_err("sector=%llx i=%d %p %p %p %p %d\n",
591 			       (unsigned long long)sh->sector, i, dev->toread,
592 			       dev->read, dev->towrite, dev->written,
593 			       test_bit(R5_LOCKED, &dev->flags));
594 			WARN_ON(1);
595 		}
596 		dev->flags = 0;
597 		dev->sector = raid5_compute_blocknr(sh, i, previous);
598 	}
599 	if (read_seqcount_retry(&conf->gen_lock, seq))
600 		goto retry;
601 	sh->overwrite_disks = 0;
602 	insert_hash(conf, sh);
603 	sh->cpu = smp_processor_id();
604 	set_bit(STRIPE_BATCH_READY, &sh->state);
605 }
606 
607 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
608 					 short generation)
609 {
610 	struct stripe_head *sh;
611 
612 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
613 	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
614 		if (sh->sector == sector && sh->generation == generation)
615 			return sh;
616 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
617 	return NULL;
618 }
619 
620 /*
621  * Need to check if array has failed when deciding whether to:
622  *  - start an array
623  *  - remove non-faulty devices
624  *  - add a spare
625  *  - allow a reshape
626  * This determination is simple when no reshape is happening.
627  * However if there is a reshape, we need to carefully check
628  * both the before and after sections.
629  * This is because some failed devices may only affect one
630  * of the two sections, and some non-in_sync devices may
631  * be insync in the section most affected by failed devices.
632  */
633 int raid5_calc_degraded(struct r5conf *conf)
634 {
635 	int degraded, degraded2;
636 	int i;
637 
638 	rcu_read_lock();
639 	degraded = 0;
640 	for (i = 0; i < conf->previous_raid_disks; i++) {
641 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
642 		if (rdev && test_bit(Faulty, &rdev->flags))
643 			rdev = rcu_dereference(conf->disks[i].replacement);
644 		if (!rdev || test_bit(Faulty, &rdev->flags))
645 			degraded++;
646 		else if (test_bit(In_sync, &rdev->flags))
647 			;
648 		else
649 			/* not in-sync or faulty.
650 			 * If the reshape increases the number of devices,
651 			 * this is being recovered by the reshape, so
652 			 * this 'previous' section is not in_sync.
653 			 * If the number of devices is being reduced however,
654 			 * the device can only be part of the array if
655 			 * we are reverting a reshape, so this section will
656 			 * be in-sync.
657 			 */
658 			if (conf->raid_disks >= conf->previous_raid_disks)
659 				degraded++;
660 	}
661 	rcu_read_unlock();
662 	if (conf->raid_disks == conf->previous_raid_disks)
663 		return degraded;
664 	rcu_read_lock();
665 	degraded2 = 0;
666 	for (i = 0; i < conf->raid_disks; i++) {
667 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
668 		if (rdev && test_bit(Faulty, &rdev->flags))
669 			rdev = rcu_dereference(conf->disks[i].replacement);
670 		if (!rdev || test_bit(Faulty, &rdev->flags))
671 			degraded2++;
672 		else if (test_bit(In_sync, &rdev->flags))
673 			;
674 		else
675 			/* not in-sync or faulty.
676 			 * If reshape increases the number of devices, this
677 			 * section has already been recovered, else it
678 			 * almost certainly hasn't.
679 			 */
680 			if (conf->raid_disks <= conf->previous_raid_disks)
681 				degraded2++;
682 	}
683 	rcu_read_unlock();
684 	if (degraded2 > degraded)
685 		return degraded2;
686 	return degraded;
687 }
688 
689 static int has_failed(struct r5conf *conf)
690 {
691 	int degraded;
692 
693 	if (conf->mddev->reshape_position == MaxSector)
694 		return conf->mddev->degraded > conf->max_degraded;
695 
696 	degraded = raid5_calc_degraded(conf);
697 	if (degraded > conf->max_degraded)
698 		return 1;
699 	return 0;
700 }
701 
702 struct stripe_head *
703 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
704 			int previous, int noblock, int noquiesce)
705 {
706 	struct stripe_head *sh;
707 	int hash = stripe_hash_locks_hash(conf, sector);
708 	int inc_empty_inactive_list_flag;
709 
710 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
711 
712 	spin_lock_irq(conf->hash_locks + hash);
713 
714 	do {
715 		wait_event_lock_irq(conf->wait_for_quiescent,
716 				    conf->quiesce == 0 || noquiesce,
717 				    *(conf->hash_locks + hash));
718 		sh = __find_stripe(conf, sector, conf->generation - previous);
719 		if (!sh) {
720 			if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
721 				sh = get_free_stripe(conf, hash);
722 				if (!sh && !test_bit(R5_DID_ALLOC,
723 						     &conf->cache_state))
724 					set_bit(R5_ALLOC_MORE,
725 						&conf->cache_state);
726 			}
727 			if (noblock && sh == NULL)
728 				break;
729 
730 			r5c_check_stripe_cache_usage(conf);
731 			if (!sh) {
732 				set_bit(R5_INACTIVE_BLOCKED,
733 					&conf->cache_state);
734 				r5l_wake_reclaim(conf->log, 0);
735 				wait_event_lock_irq(
736 					conf->wait_for_stripe,
737 					!list_empty(conf->inactive_list + hash) &&
738 					(atomic_read(&conf->active_stripes)
739 					 < (conf->max_nr_stripes * 3 / 4)
740 					 || !test_bit(R5_INACTIVE_BLOCKED,
741 						      &conf->cache_state)),
742 					*(conf->hash_locks + hash));
743 				clear_bit(R5_INACTIVE_BLOCKED,
744 					  &conf->cache_state);
745 			} else {
746 				init_stripe(sh, sector, previous);
747 				atomic_inc(&sh->count);
748 			}
749 		} else if (!atomic_inc_not_zero(&sh->count)) {
750 			spin_lock(&conf->device_lock);
751 			if (!atomic_read(&sh->count)) {
752 				if (!test_bit(STRIPE_HANDLE, &sh->state))
753 					atomic_inc(&conf->active_stripes);
754 				BUG_ON(list_empty(&sh->lru) &&
755 				       !test_bit(STRIPE_EXPANDING, &sh->state));
756 				inc_empty_inactive_list_flag = 0;
757 				if (!list_empty(conf->inactive_list + hash))
758 					inc_empty_inactive_list_flag = 1;
759 				list_del_init(&sh->lru);
760 				if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
761 					atomic_inc(&conf->empty_inactive_list_nr);
762 				if (sh->group) {
763 					sh->group->stripes_cnt--;
764 					sh->group = NULL;
765 				}
766 			}
767 			atomic_inc(&sh->count);
768 			spin_unlock(&conf->device_lock);
769 		}
770 	} while (sh == NULL);
771 
772 	spin_unlock_irq(conf->hash_locks + hash);
773 	return sh;
774 }
775 
776 static bool is_full_stripe_write(struct stripe_head *sh)
777 {
778 	BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
779 	return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
780 }
781 
782 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
783 		__acquires(&sh1->stripe_lock)
784 		__acquires(&sh2->stripe_lock)
785 {
786 	if (sh1 > sh2) {
787 		spin_lock_irq(&sh2->stripe_lock);
788 		spin_lock_nested(&sh1->stripe_lock, 1);
789 	} else {
790 		spin_lock_irq(&sh1->stripe_lock);
791 		spin_lock_nested(&sh2->stripe_lock, 1);
792 	}
793 }
794 
795 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
796 		__releases(&sh1->stripe_lock)
797 		__releases(&sh2->stripe_lock)
798 {
799 	spin_unlock(&sh1->stripe_lock);
800 	spin_unlock_irq(&sh2->stripe_lock);
801 }
802 
803 /* Only freshly new full stripe normal write stripe can be added to a batch list */
804 static bool stripe_can_batch(struct stripe_head *sh)
805 {
806 	struct r5conf *conf = sh->raid_conf;
807 
808 	if (raid5_has_log(conf) || raid5_has_ppl(conf))
809 		return false;
810 	return test_bit(STRIPE_BATCH_READY, &sh->state) &&
811 		!test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
812 		is_full_stripe_write(sh);
813 }
814 
815 /* we only do back search */
816 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
817 {
818 	struct stripe_head *head;
819 	sector_t head_sector, tmp_sec;
820 	int hash;
821 	int dd_idx;
822 	int inc_empty_inactive_list_flag;
823 
824 	/* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
825 	tmp_sec = sh->sector;
826 	if (!sector_div(tmp_sec, conf->chunk_sectors))
827 		return;
828 	head_sector = sh->sector - RAID5_STRIPE_SECTORS(conf);
829 
830 	hash = stripe_hash_locks_hash(conf, head_sector);
831 	spin_lock_irq(conf->hash_locks + hash);
832 	head = __find_stripe(conf, head_sector, conf->generation);
833 	if (head && !atomic_inc_not_zero(&head->count)) {
834 		spin_lock(&conf->device_lock);
835 		if (!atomic_read(&head->count)) {
836 			if (!test_bit(STRIPE_HANDLE, &head->state))
837 				atomic_inc(&conf->active_stripes);
838 			BUG_ON(list_empty(&head->lru) &&
839 			       !test_bit(STRIPE_EXPANDING, &head->state));
840 			inc_empty_inactive_list_flag = 0;
841 			if (!list_empty(conf->inactive_list + hash))
842 				inc_empty_inactive_list_flag = 1;
843 			list_del_init(&head->lru);
844 			if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
845 				atomic_inc(&conf->empty_inactive_list_nr);
846 			if (head->group) {
847 				head->group->stripes_cnt--;
848 				head->group = NULL;
849 			}
850 		}
851 		atomic_inc(&head->count);
852 		spin_unlock(&conf->device_lock);
853 	}
854 	spin_unlock_irq(conf->hash_locks + hash);
855 
856 	if (!head)
857 		return;
858 	if (!stripe_can_batch(head))
859 		goto out;
860 
861 	lock_two_stripes(head, sh);
862 	/* clear_batch_ready clear the flag */
863 	if (!stripe_can_batch(head) || !stripe_can_batch(sh))
864 		goto unlock_out;
865 
866 	if (sh->batch_head)
867 		goto unlock_out;
868 
869 	dd_idx = 0;
870 	while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
871 		dd_idx++;
872 	if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
873 	    bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
874 		goto unlock_out;
875 
876 	if (head->batch_head) {
877 		spin_lock(&head->batch_head->batch_lock);
878 		/* This batch list is already running */
879 		if (!stripe_can_batch(head)) {
880 			spin_unlock(&head->batch_head->batch_lock);
881 			goto unlock_out;
882 		}
883 		/*
884 		 * We must assign batch_head of this stripe within the
885 		 * batch_lock, otherwise clear_batch_ready of batch head
886 		 * stripe could clear BATCH_READY bit of this stripe and
887 		 * this stripe->batch_head doesn't get assigned, which
888 		 * could confuse clear_batch_ready for this stripe
889 		 */
890 		sh->batch_head = head->batch_head;
891 
892 		/*
893 		 * at this point, head's BATCH_READY could be cleared, but we
894 		 * can still add the stripe to batch list
895 		 */
896 		list_add(&sh->batch_list, &head->batch_list);
897 		spin_unlock(&head->batch_head->batch_lock);
898 	} else {
899 		head->batch_head = head;
900 		sh->batch_head = head->batch_head;
901 		spin_lock(&head->batch_lock);
902 		list_add_tail(&sh->batch_list, &head->batch_list);
903 		spin_unlock(&head->batch_lock);
904 	}
905 
906 	if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
907 		if (atomic_dec_return(&conf->preread_active_stripes)
908 		    < IO_THRESHOLD)
909 			md_wakeup_thread(conf->mddev->thread);
910 
911 	if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
912 		int seq = sh->bm_seq;
913 		if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
914 		    sh->batch_head->bm_seq > seq)
915 			seq = sh->batch_head->bm_seq;
916 		set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
917 		sh->batch_head->bm_seq = seq;
918 	}
919 
920 	atomic_inc(&sh->count);
921 unlock_out:
922 	unlock_two_stripes(head, sh);
923 out:
924 	raid5_release_stripe(head);
925 }
926 
927 /* Determine if 'data_offset' or 'new_data_offset' should be used
928  * in this stripe_head.
929  */
930 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
931 {
932 	sector_t progress = conf->reshape_progress;
933 	/* Need a memory barrier to make sure we see the value
934 	 * of conf->generation, or ->data_offset that was set before
935 	 * reshape_progress was updated.
936 	 */
937 	smp_rmb();
938 	if (progress == MaxSector)
939 		return 0;
940 	if (sh->generation == conf->generation - 1)
941 		return 0;
942 	/* We are in a reshape, and this is a new-generation stripe,
943 	 * so use new_data_offset.
944 	 */
945 	return 1;
946 }
947 
948 static void dispatch_bio_list(struct bio_list *tmp)
949 {
950 	struct bio *bio;
951 
952 	while ((bio = bio_list_pop(tmp)))
953 		submit_bio_noacct(bio);
954 }
955 
956 static int cmp_stripe(void *priv, const struct list_head *a,
957 		      const struct list_head *b)
958 {
959 	const struct r5pending_data *da = list_entry(a,
960 				struct r5pending_data, sibling);
961 	const struct r5pending_data *db = list_entry(b,
962 				struct r5pending_data, sibling);
963 	if (da->sector > db->sector)
964 		return 1;
965 	if (da->sector < db->sector)
966 		return -1;
967 	return 0;
968 }
969 
970 static void dispatch_defer_bios(struct r5conf *conf, int target,
971 				struct bio_list *list)
972 {
973 	struct r5pending_data *data;
974 	struct list_head *first, *next = NULL;
975 	int cnt = 0;
976 
977 	if (conf->pending_data_cnt == 0)
978 		return;
979 
980 	list_sort(NULL, &conf->pending_list, cmp_stripe);
981 
982 	first = conf->pending_list.next;
983 
984 	/* temporarily move the head */
985 	if (conf->next_pending_data)
986 		list_move_tail(&conf->pending_list,
987 				&conf->next_pending_data->sibling);
988 
989 	while (!list_empty(&conf->pending_list)) {
990 		data = list_first_entry(&conf->pending_list,
991 			struct r5pending_data, sibling);
992 		if (&data->sibling == first)
993 			first = data->sibling.next;
994 		next = data->sibling.next;
995 
996 		bio_list_merge(list, &data->bios);
997 		list_move(&data->sibling, &conf->free_list);
998 		cnt++;
999 		if (cnt >= target)
1000 			break;
1001 	}
1002 	conf->pending_data_cnt -= cnt;
1003 	BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
1004 
1005 	if (next != &conf->pending_list)
1006 		conf->next_pending_data = list_entry(next,
1007 				struct r5pending_data, sibling);
1008 	else
1009 		conf->next_pending_data = NULL;
1010 	/* list isn't empty */
1011 	if (first != &conf->pending_list)
1012 		list_move_tail(&conf->pending_list, first);
1013 }
1014 
1015 static void flush_deferred_bios(struct r5conf *conf)
1016 {
1017 	struct bio_list tmp = BIO_EMPTY_LIST;
1018 
1019 	if (conf->pending_data_cnt == 0)
1020 		return;
1021 
1022 	spin_lock(&conf->pending_bios_lock);
1023 	dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
1024 	BUG_ON(conf->pending_data_cnt != 0);
1025 	spin_unlock(&conf->pending_bios_lock);
1026 
1027 	dispatch_bio_list(&tmp);
1028 }
1029 
1030 static void defer_issue_bios(struct r5conf *conf, sector_t sector,
1031 				struct bio_list *bios)
1032 {
1033 	struct bio_list tmp = BIO_EMPTY_LIST;
1034 	struct r5pending_data *ent;
1035 
1036 	spin_lock(&conf->pending_bios_lock);
1037 	ent = list_first_entry(&conf->free_list, struct r5pending_data,
1038 							sibling);
1039 	list_move_tail(&ent->sibling, &conf->pending_list);
1040 	ent->sector = sector;
1041 	bio_list_init(&ent->bios);
1042 	bio_list_merge(&ent->bios, bios);
1043 	conf->pending_data_cnt++;
1044 	if (conf->pending_data_cnt >= PENDING_IO_MAX)
1045 		dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
1046 
1047 	spin_unlock(&conf->pending_bios_lock);
1048 
1049 	dispatch_bio_list(&tmp);
1050 }
1051 
1052 static void
1053 raid5_end_read_request(struct bio *bi);
1054 static void
1055 raid5_end_write_request(struct bio *bi);
1056 
1057 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
1058 {
1059 	struct r5conf *conf = sh->raid_conf;
1060 	int i, disks = sh->disks;
1061 	struct stripe_head *head_sh = sh;
1062 	struct bio_list pending_bios = BIO_EMPTY_LIST;
1063 	struct r5dev *dev;
1064 	bool should_defer;
1065 
1066 	might_sleep();
1067 
1068 	if (log_stripe(sh, s) == 0)
1069 		return;
1070 
1071 	should_defer = conf->batch_bio_dispatch && conf->group_cnt;
1072 
1073 	for (i = disks; i--; ) {
1074 		int op, op_flags = 0;
1075 		int replace_only = 0;
1076 		struct bio *bi, *rbi;
1077 		struct md_rdev *rdev, *rrdev = NULL;
1078 
1079 		sh = head_sh;
1080 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1081 			op = REQ_OP_WRITE;
1082 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1083 				op_flags = REQ_FUA;
1084 			if (test_bit(R5_Discard, &sh->dev[i].flags))
1085 				op = REQ_OP_DISCARD;
1086 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1087 			op = REQ_OP_READ;
1088 		else if (test_and_clear_bit(R5_WantReplace,
1089 					    &sh->dev[i].flags)) {
1090 			op = REQ_OP_WRITE;
1091 			replace_only = 1;
1092 		} else
1093 			continue;
1094 		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1095 			op_flags |= REQ_SYNC;
1096 
1097 again:
1098 		dev = &sh->dev[i];
1099 		bi = &dev->req;
1100 		rbi = &dev->rreq; /* For writing to replacement */
1101 
1102 		rcu_read_lock();
1103 		rrdev = rcu_dereference(conf->disks[i].replacement);
1104 		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1105 		rdev = rcu_dereference(conf->disks[i].rdev);
1106 		if (!rdev) {
1107 			rdev = rrdev;
1108 			rrdev = NULL;
1109 		}
1110 		if (op_is_write(op)) {
1111 			if (replace_only)
1112 				rdev = NULL;
1113 			if (rdev == rrdev)
1114 				/* We raced and saw duplicates */
1115 				rrdev = NULL;
1116 		} else {
1117 			if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1118 				rdev = rrdev;
1119 			rrdev = NULL;
1120 		}
1121 
1122 		if (rdev && test_bit(Faulty, &rdev->flags))
1123 			rdev = NULL;
1124 		if (rdev)
1125 			atomic_inc(&rdev->nr_pending);
1126 		if (rrdev && test_bit(Faulty, &rrdev->flags))
1127 			rrdev = NULL;
1128 		if (rrdev)
1129 			atomic_inc(&rrdev->nr_pending);
1130 		rcu_read_unlock();
1131 
1132 		/* We have already checked bad blocks for reads.  Now
1133 		 * need to check for writes.  We never accept write errors
1134 		 * on the replacement, so we don't to check rrdev.
1135 		 */
1136 		while (op_is_write(op) && rdev &&
1137 		       test_bit(WriteErrorSeen, &rdev->flags)) {
1138 			sector_t first_bad;
1139 			int bad_sectors;
1140 			int bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
1141 					      &first_bad, &bad_sectors);
1142 			if (!bad)
1143 				break;
1144 
1145 			if (bad < 0) {
1146 				set_bit(BlockedBadBlocks, &rdev->flags);
1147 				if (!conf->mddev->external &&
1148 				    conf->mddev->sb_flags) {
1149 					/* It is very unlikely, but we might
1150 					 * still need to write out the
1151 					 * bad block log - better give it
1152 					 * a chance*/
1153 					md_check_recovery(conf->mddev);
1154 				}
1155 				/*
1156 				 * Because md_wait_for_blocked_rdev
1157 				 * will dec nr_pending, we must
1158 				 * increment it first.
1159 				 */
1160 				atomic_inc(&rdev->nr_pending);
1161 				md_wait_for_blocked_rdev(rdev, conf->mddev);
1162 			} else {
1163 				/* Acknowledged bad block - skip the write */
1164 				rdev_dec_pending(rdev, conf->mddev);
1165 				rdev = NULL;
1166 			}
1167 		}
1168 
1169 		if (rdev) {
1170 			if (s->syncing || s->expanding || s->expanded
1171 			    || s->replacing)
1172 				md_sync_acct(rdev->bdev, RAID5_STRIPE_SECTORS(conf));
1173 
1174 			set_bit(STRIPE_IO_STARTED, &sh->state);
1175 
1176 			bio_init(bi, rdev->bdev, &dev->vec, 1, op | op_flags);
1177 			bi->bi_end_io = op_is_write(op)
1178 				? raid5_end_write_request
1179 				: raid5_end_read_request;
1180 			bi->bi_private = sh;
1181 
1182 			pr_debug("%s: for %llu schedule op %d on disc %d\n",
1183 				__func__, (unsigned long long)sh->sector,
1184 				bi->bi_opf, i);
1185 			atomic_inc(&sh->count);
1186 			if (sh != head_sh)
1187 				atomic_inc(&head_sh->count);
1188 			if (use_new_offset(conf, sh))
1189 				bi->bi_iter.bi_sector = (sh->sector
1190 						 + rdev->new_data_offset);
1191 			else
1192 				bi->bi_iter.bi_sector = (sh->sector
1193 						 + rdev->data_offset);
1194 			if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1195 				bi->bi_opf |= REQ_NOMERGE;
1196 
1197 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1198 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1199 
1200 			if (!op_is_write(op) &&
1201 			    test_bit(R5_InJournal, &sh->dev[i].flags))
1202 				/*
1203 				 * issuing read for a page in journal, this
1204 				 * must be preparing for prexor in rmw; read
1205 				 * the data into orig_page
1206 				 */
1207 				sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1208 			else
1209 				sh->dev[i].vec.bv_page = sh->dev[i].page;
1210 			bi->bi_vcnt = 1;
1211 			bi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1212 			bi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
1213 			bi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1214 			/*
1215 			 * If this is discard request, set bi_vcnt 0. We don't
1216 			 * want to confuse SCSI because SCSI will replace payload
1217 			 */
1218 			if (op == REQ_OP_DISCARD)
1219 				bi->bi_vcnt = 0;
1220 			if (rrdev)
1221 				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1222 
1223 			if (conf->mddev->gendisk)
1224 				trace_block_bio_remap(bi,
1225 						disk_devt(conf->mddev->gendisk),
1226 						sh->dev[i].sector);
1227 			if (should_defer && op_is_write(op))
1228 				bio_list_add(&pending_bios, bi);
1229 			else
1230 				submit_bio_noacct(bi);
1231 		}
1232 		if (rrdev) {
1233 			if (s->syncing || s->expanding || s->expanded
1234 			    || s->replacing)
1235 				md_sync_acct(rrdev->bdev, RAID5_STRIPE_SECTORS(conf));
1236 
1237 			set_bit(STRIPE_IO_STARTED, &sh->state);
1238 
1239 			bio_init(rbi, rrdev->bdev, &dev->rvec, 1, op | op_flags);
1240 			BUG_ON(!op_is_write(op));
1241 			rbi->bi_end_io = raid5_end_write_request;
1242 			rbi->bi_private = sh;
1243 
1244 			pr_debug("%s: for %llu schedule op %d on "
1245 				 "replacement disc %d\n",
1246 				__func__, (unsigned long long)sh->sector,
1247 				rbi->bi_opf, i);
1248 			atomic_inc(&sh->count);
1249 			if (sh != head_sh)
1250 				atomic_inc(&head_sh->count);
1251 			if (use_new_offset(conf, sh))
1252 				rbi->bi_iter.bi_sector = (sh->sector
1253 						  + rrdev->new_data_offset);
1254 			else
1255 				rbi->bi_iter.bi_sector = (sh->sector
1256 						  + rrdev->data_offset);
1257 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1258 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1259 			sh->dev[i].rvec.bv_page = sh->dev[i].page;
1260 			rbi->bi_vcnt = 1;
1261 			rbi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1262 			rbi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
1263 			rbi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1264 			/*
1265 			 * If this is discard request, set bi_vcnt 0. We don't
1266 			 * want to confuse SCSI because SCSI will replace payload
1267 			 */
1268 			if (op == REQ_OP_DISCARD)
1269 				rbi->bi_vcnt = 0;
1270 			if (conf->mddev->gendisk)
1271 				trace_block_bio_remap(rbi,
1272 						disk_devt(conf->mddev->gendisk),
1273 						sh->dev[i].sector);
1274 			if (should_defer && op_is_write(op))
1275 				bio_list_add(&pending_bios, rbi);
1276 			else
1277 				submit_bio_noacct(rbi);
1278 		}
1279 		if (!rdev && !rrdev) {
1280 			if (op_is_write(op))
1281 				set_bit(STRIPE_DEGRADED, &sh->state);
1282 			pr_debug("skip op %d on disc %d for sector %llu\n",
1283 				bi->bi_opf, i, (unsigned long long)sh->sector);
1284 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
1285 			set_bit(STRIPE_HANDLE, &sh->state);
1286 		}
1287 
1288 		if (!head_sh->batch_head)
1289 			continue;
1290 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1291 				      batch_list);
1292 		if (sh != head_sh)
1293 			goto again;
1294 	}
1295 
1296 	if (should_defer && !bio_list_empty(&pending_bios))
1297 		defer_issue_bios(conf, head_sh->sector, &pending_bios);
1298 }
1299 
1300 static struct dma_async_tx_descriptor *
1301 async_copy_data(int frombio, struct bio *bio, struct page **page,
1302 	unsigned int poff, sector_t sector, struct dma_async_tx_descriptor *tx,
1303 	struct stripe_head *sh, int no_skipcopy)
1304 {
1305 	struct bio_vec bvl;
1306 	struct bvec_iter iter;
1307 	struct page *bio_page;
1308 	int page_offset;
1309 	struct async_submit_ctl submit;
1310 	enum async_tx_flags flags = 0;
1311 	struct r5conf *conf = sh->raid_conf;
1312 
1313 	if (bio->bi_iter.bi_sector >= sector)
1314 		page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1315 	else
1316 		page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1317 
1318 	if (frombio)
1319 		flags |= ASYNC_TX_FENCE;
1320 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1321 
1322 	bio_for_each_segment(bvl, bio, iter) {
1323 		int len = bvl.bv_len;
1324 		int clen;
1325 		int b_offset = 0;
1326 
1327 		if (page_offset < 0) {
1328 			b_offset = -page_offset;
1329 			page_offset += b_offset;
1330 			len -= b_offset;
1331 		}
1332 
1333 		if (len > 0 && page_offset + len > RAID5_STRIPE_SIZE(conf))
1334 			clen = RAID5_STRIPE_SIZE(conf) - page_offset;
1335 		else
1336 			clen = len;
1337 
1338 		if (clen > 0) {
1339 			b_offset += bvl.bv_offset;
1340 			bio_page = bvl.bv_page;
1341 			if (frombio) {
1342 				if (conf->skip_copy &&
1343 				    b_offset == 0 && page_offset == 0 &&
1344 				    clen == RAID5_STRIPE_SIZE(conf) &&
1345 				    !no_skipcopy)
1346 					*page = bio_page;
1347 				else
1348 					tx = async_memcpy(*page, bio_page, page_offset + poff,
1349 						  b_offset, clen, &submit);
1350 			} else
1351 				tx = async_memcpy(bio_page, *page, b_offset,
1352 						  page_offset + poff, clen, &submit);
1353 		}
1354 		/* chain the operations */
1355 		submit.depend_tx = tx;
1356 
1357 		if (clen < len) /* hit end of page */
1358 			break;
1359 		page_offset +=  len;
1360 	}
1361 
1362 	return tx;
1363 }
1364 
1365 static void ops_complete_biofill(void *stripe_head_ref)
1366 {
1367 	struct stripe_head *sh = stripe_head_ref;
1368 	int i;
1369 	struct r5conf *conf = sh->raid_conf;
1370 
1371 	pr_debug("%s: stripe %llu\n", __func__,
1372 		(unsigned long long)sh->sector);
1373 
1374 	/* clear completed biofills */
1375 	for (i = sh->disks; i--; ) {
1376 		struct r5dev *dev = &sh->dev[i];
1377 
1378 		/* acknowledge completion of a biofill operation */
1379 		/* and check if we need to reply to a read request,
1380 		 * new R5_Wantfill requests are held off until
1381 		 * !STRIPE_BIOFILL_RUN
1382 		 */
1383 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1384 			struct bio *rbi, *rbi2;
1385 
1386 			BUG_ON(!dev->read);
1387 			rbi = dev->read;
1388 			dev->read = NULL;
1389 			while (rbi && rbi->bi_iter.bi_sector <
1390 				dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1391 				rbi2 = r5_next_bio(conf, rbi, dev->sector);
1392 				bio_endio(rbi);
1393 				rbi = rbi2;
1394 			}
1395 		}
1396 	}
1397 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1398 
1399 	set_bit(STRIPE_HANDLE, &sh->state);
1400 	raid5_release_stripe(sh);
1401 }
1402 
1403 static void ops_run_biofill(struct stripe_head *sh)
1404 {
1405 	struct dma_async_tx_descriptor *tx = NULL;
1406 	struct async_submit_ctl submit;
1407 	int i;
1408 	struct r5conf *conf = sh->raid_conf;
1409 
1410 	BUG_ON(sh->batch_head);
1411 	pr_debug("%s: stripe %llu\n", __func__,
1412 		(unsigned long long)sh->sector);
1413 
1414 	for (i = sh->disks; i--; ) {
1415 		struct r5dev *dev = &sh->dev[i];
1416 		if (test_bit(R5_Wantfill, &dev->flags)) {
1417 			struct bio *rbi;
1418 			spin_lock_irq(&sh->stripe_lock);
1419 			dev->read = rbi = dev->toread;
1420 			dev->toread = NULL;
1421 			spin_unlock_irq(&sh->stripe_lock);
1422 			while (rbi && rbi->bi_iter.bi_sector <
1423 				dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1424 				tx = async_copy_data(0, rbi, &dev->page,
1425 						     dev->offset,
1426 						     dev->sector, tx, sh, 0);
1427 				rbi = r5_next_bio(conf, rbi, dev->sector);
1428 			}
1429 		}
1430 	}
1431 
1432 	atomic_inc(&sh->count);
1433 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1434 	async_trigger_callback(&submit);
1435 }
1436 
1437 static void mark_target_uptodate(struct stripe_head *sh, int target)
1438 {
1439 	struct r5dev *tgt;
1440 
1441 	if (target < 0)
1442 		return;
1443 
1444 	tgt = &sh->dev[target];
1445 	set_bit(R5_UPTODATE, &tgt->flags);
1446 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1447 	clear_bit(R5_Wantcompute, &tgt->flags);
1448 }
1449 
1450 static void ops_complete_compute(void *stripe_head_ref)
1451 {
1452 	struct stripe_head *sh = stripe_head_ref;
1453 
1454 	pr_debug("%s: stripe %llu\n", __func__,
1455 		(unsigned long long)sh->sector);
1456 
1457 	/* mark the computed target(s) as uptodate */
1458 	mark_target_uptodate(sh, sh->ops.target);
1459 	mark_target_uptodate(sh, sh->ops.target2);
1460 
1461 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1462 	if (sh->check_state == check_state_compute_run)
1463 		sh->check_state = check_state_compute_result;
1464 	set_bit(STRIPE_HANDLE, &sh->state);
1465 	raid5_release_stripe(sh);
1466 }
1467 
1468 /* return a pointer to the address conversion region of the scribble buffer */
1469 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1470 {
1471 	return percpu->scribble + i * percpu->scribble_obj_size;
1472 }
1473 
1474 /* return a pointer to the address conversion region of the scribble buffer */
1475 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1476 				 struct raid5_percpu *percpu, int i)
1477 {
1478 	return (void *) (to_addr_page(percpu, i) + sh->disks + 2);
1479 }
1480 
1481 /*
1482  * Return a pointer to record offset address.
1483  */
1484 static unsigned int *
1485 to_addr_offs(struct stripe_head *sh, struct raid5_percpu *percpu)
1486 {
1487 	return (unsigned int *) (to_addr_conv(sh, percpu, 0) + sh->disks + 2);
1488 }
1489 
1490 static struct dma_async_tx_descriptor *
1491 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1492 {
1493 	int disks = sh->disks;
1494 	struct page **xor_srcs = to_addr_page(percpu, 0);
1495 	unsigned int *off_srcs = to_addr_offs(sh, percpu);
1496 	int target = sh->ops.target;
1497 	struct r5dev *tgt = &sh->dev[target];
1498 	struct page *xor_dest = tgt->page;
1499 	unsigned int off_dest = tgt->offset;
1500 	int count = 0;
1501 	struct dma_async_tx_descriptor *tx;
1502 	struct async_submit_ctl submit;
1503 	int i;
1504 
1505 	BUG_ON(sh->batch_head);
1506 
1507 	pr_debug("%s: stripe %llu block: %d\n",
1508 		__func__, (unsigned long long)sh->sector, target);
1509 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1510 
1511 	for (i = disks; i--; ) {
1512 		if (i != target) {
1513 			off_srcs[count] = sh->dev[i].offset;
1514 			xor_srcs[count++] = sh->dev[i].page;
1515 		}
1516 	}
1517 
1518 	atomic_inc(&sh->count);
1519 
1520 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1521 			  ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1522 	if (unlikely(count == 1))
1523 		tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
1524 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1525 	else
1526 		tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
1527 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1528 
1529 	return tx;
1530 }
1531 
1532 /* set_syndrome_sources - populate source buffers for gen_syndrome
1533  * @srcs - (struct page *) array of size sh->disks
1534  * @offs - (unsigned int) array of offset for each page
1535  * @sh - stripe_head to parse
1536  *
1537  * Populates srcs in proper layout order for the stripe and returns the
1538  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1539  * destination buffer is recorded in srcs[count] and the Q destination
1540  * is recorded in srcs[count+1]].
1541  */
1542 static int set_syndrome_sources(struct page **srcs,
1543 				unsigned int *offs,
1544 				struct stripe_head *sh,
1545 				int srctype)
1546 {
1547 	int disks = sh->disks;
1548 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1549 	int d0_idx = raid6_d0(sh);
1550 	int count;
1551 	int i;
1552 
1553 	for (i = 0; i < disks; i++)
1554 		srcs[i] = NULL;
1555 
1556 	count = 0;
1557 	i = d0_idx;
1558 	do {
1559 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1560 		struct r5dev *dev = &sh->dev[i];
1561 
1562 		if (i == sh->qd_idx || i == sh->pd_idx ||
1563 		    (srctype == SYNDROME_SRC_ALL) ||
1564 		    (srctype == SYNDROME_SRC_WANT_DRAIN &&
1565 		     (test_bit(R5_Wantdrain, &dev->flags) ||
1566 		      test_bit(R5_InJournal, &dev->flags))) ||
1567 		    (srctype == SYNDROME_SRC_WRITTEN &&
1568 		     (dev->written ||
1569 		      test_bit(R5_InJournal, &dev->flags)))) {
1570 			if (test_bit(R5_InJournal, &dev->flags))
1571 				srcs[slot] = sh->dev[i].orig_page;
1572 			else
1573 				srcs[slot] = sh->dev[i].page;
1574 			/*
1575 			 * For R5_InJournal, PAGE_SIZE must be 4KB and will
1576 			 * not shared page. In that case, dev[i].offset
1577 			 * is 0.
1578 			 */
1579 			offs[slot] = sh->dev[i].offset;
1580 		}
1581 		i = raid6_next_disk(i, disks);
1582 	} while (i != d0_idx);
1583 
1584 	return syndrome_disks;
1585 }
1586 
1587 static struct dma_async_tx_descriptor *
1588 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1589 {
1590 	int disks = sh->disks;
1591 	struct page **blocks = to_addr_page(percpu, 0);
1592 	unsigned int *offs = to_addr_offs(sh, percpu);
1593 	int target;
1594 	int qd_idx = sh->qd_idx;
1595 	struct dma_async_tx_descriptor *tx;
1596 	struct async_submit_ctl submit;
1597 	struct r5dev *tgt;
1598 	struct page *dest;
1599 	unsigned int dest_off;
1600 	int i;
1601 	int count;
1602 
1603 	BUG_ON(sh->batch_head);
1604 	if (sh->ops.target < 0)
1605 		target = sh->ops.target2;
1606 	else if (sh->ops.target2 < 0)
1607 		target = sh->ops.target;
1608 	else
1609 		/* we should only have one valid target */
1610 		BUG();
1611 	BUG_ON(target < 0);
1612 	pr_debug("%s: stripe %llu block: %d\n",
1613 		__func__, (unsigned long long)sh->sector, target);
1614 
1615 	tgt = &sh->dev[target];
1616 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1617 	dest = tgt->page;
1618 	dest_off = tgt->offset;
1619 
1620 	atomic_inc(&sh->count);
1621 
1622 	if (target == qd_idx) {
1623 		count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
1624 		blocks[count] = NULL; /* regenerating p is not necessary */
1625 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
1626 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1627 				  ops_complete_compute, sh,
1628 				  to_addr_conv(sh, percpu, 0));
1629 		tx = async_gen_syndrome(blocks, offs, count+2,
1630 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1631 	} else {
1632 		/* Compute any data- or p-drive using XOR */
1633 		count = 0;
1634 		for (i = disks; i-- ; ) {
1635 			if (i == target || i == qd_idx)
1636 				continue;
1637 			offs[count] = sh->dev[i].offset;
1638 			blocks[count++] = sh->dev[i].page;
1639 		}
1640 
1641 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1642 				  NULL, ops_complete_compute, sh,
1643 				  to_addr_conv(sh, percpu, 0));
1644 		tx = async_xor_offs(dest, dest_off, blocks, offs, count,
1645 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1646 	}
1647 
1648 	return tx;
1649 }
1650 
1651 static struct dma_async_tx_descriptor *
1652 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1653 {
1654 	int i, count, disks = sh->disks;
1655 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1656 	int d0_idx = raid6_d0(sh);
1657 	int faila = -1, failb = -1;
1658 	int target = sh->ops.target;
1659 	int target2 = sh->ops.target2;
1660 	struct r5dev *tgt = &sh->dev[target];
1661 	struct r5dev *tgt2 = &sh->dev[target2];
1662 	struct dma_async_tx_descriptor *tx;
1663 	struct page **blocks = to_addr_page(percpu, 0);
1664 	unsigned int *offs = to_addr_offs(sh, percpu);
1665 	struct async_submit_ctl submit;
1666 
1667 	BUG_ON(sh->batch_head);
1668 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1669 		 __func__, (unsigned long long)sh->sector, target, target2);
1670 	BUG_ON(target < 0 || target2 < 0);
1671 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1672 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1673 
1674 	/* we need to open-code set_syndrome_sources to handle the
1675 	 * slot number conversion for 'faila' and 'failb'
1676 	 */
1677 	for (i = 0; i < disks ; i++) {
1678 		offs[i] = 0;
1679 		blocks[i] = NULL;
1680 	}
1681 	count = 0;
1682 	i = d0_idx;
1683 	do {
1684 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1685 
1686 		offs[slot] = sh->dev[i].offset;
1687 		blocks[slot] = sh->dev[i].page;
1688 
1689 		if (i == target)
1690 			faila = slot;
1691 		if (i == target2)
1692 			failb = slot;
1693 		i = raid6_next_disk(i, disks);
1694 	} while (i != d0_idx);
1695 
1696 	BUG_ON(faila == failb);
1697 	if (failb < faila)
1698 		swap(faila, failb);
1699 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1700 		 __func__, (unsigned long long)sh->sector, faila, failb);
1701 
1702 	atomic_inc(&sh->count);
1703 
1704 	if (failb == syndrome_disks+1) {
1705 		/* Q disk is one of the missing disks */
1706 		if (faila == syndrome_disks) {
1707 			/* Missing P+Q, just recompute */
1708 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1709 					  ops_complete_compute, sh,
1710 					  to_addr_conv(sh, percpu, 0));
1711 			return async_gen_syndrome(blocks, offs, syndrome_disks+2,
1712 						  RAID5_STRIPE_SIZE(sh->raid_conf),
1713 						  &submit);
1714 		} else {
1715 			struct page *dest;
1716 			unsigned int dest_off;
1717 			int data_target;
1718 			int qd_idx = sh->qd_idx;
1719 
1720 			/* Missing D+Q: recompute D from P, then recompute Q */
1721 			if (target == qd_idx)
1722 				data_target = target2;
1723 			else
1724 				data_target = target;
1725 
1726 			count = 0;
1727 			for (i = disks; i-- ; ) {
1728 				if (i == data_target || i == qd_idx)
1729 					continue;
1730 				offs[count] = sh->dev[i].offset;
1731 				blocks[count++] = sh->dev[i].page;
1732 			}
1733 			dest = sh->dev[data_target].page;
1734 			dest_off = sh->dev[data_target].offset;
1735 			init_async_submit(&submit,
1736 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1737 					  NULL, NULL, NULL,
1738 					  to_addr_conv(sh, percpu, 0));
1739 			tx = async_xor_offs(dest, dest_off, blocks, offs, count,
1740 				       RAID5_STRIPE_SIZE(sh->raid_conf),
1741 				       &submit);
1742 
1743 			count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
1744 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1745 					  ops_complete_compute, sh,
1746 					  to_addr_conv(sh, percpu, 0));
1747 			return async_gen_syndrome(blocks, offs, count+2,
1748 						  RAID5_STRIPE_SIZE(sh->raid_conf),
1749 						  &submit);
1750 		}
1751 	} else {
1752 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1753 				  ops_complete_compute, sh,
1754 				  to_addr_conv(sh, percpu, 0));
1755 		if (failb == syndrome_disks) {
1756 			/* We're missing D+P. */
1757 			return async_raid6_datap_recov(syndrome_disks+2,
1758 						RAID5_STRIPE_SIZE(sh->raid_conf),
1759 						faila,
1760 						blocks, offs, &submit);
1761 		} else {
1762 			/* We're missing D+D. */
1763 			return async_raid6_2data_recov(syndrome_disks+2,
1764 						RAID5_STRIPE_SIZE(sh->raid_conf),
1765 						faila, failb,
1766 						blocks, offs, &submit);
1767 		}
1768 	}
1769 }
1770 
1771 static void ops_complete_prexor(void *stripe_head_ref)
1772 {
1773 	struct stripe_head *sh = stripe_head_ref;
1774 
1775 	pr_debug("%s: stripe %llu\n", __func__,
1776 		(unsigned long long)sh->sector);
1777 
1778 	if (r5c_is_writeback(sh->raid_conf->log))
1779 		/*
1780 		 * raid5-cache write back uses orig_page during prexor.
1781 		 * After prexor, it is time to free orig_page
1782 		 */
1783 		r5c_release_extra_page(sh);
1784 }
1785 
1786 static struct dma_async_tx_descriptor *
1787 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1788 		struct dma_async_tx_descriptor *tx)
1789 {
1790 	int disks = sh->disks;
1791 	struct page **xor_srcs = to_addr_page(percpu, 0);
1792 	unsigned int *off_srcs = to_addr_offs(sh, percpu);
1793 	int count = 0, pd_idx = sh->pd_idx, i;
1794 	struct async_submit_ctl submit;
1795 
1796 	/* existing parity data subtracted */
1797 	unsigned int off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
1798 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1799 
1800 	BUG_ON(sh->batch_head);
1801 	pr_debug("%s: stripe %llu\n", __func__,
1802 		(unsigned long long)sh->sector);
1803 
1804 	for (i = disks; i--; ) {
1805 		struct r5dev *dev = &sh->dev[i];
1806 		/* Only process blocks that are known to be uptodate */
1807 		if (test_bit(R5_InJournal, &dev->flags)) {
1808 			/*
1809 			 * For this case, PAGE_SIZE must be equal to 4KB and
1810 			 * page offset is zero.
1811 			 */
1812 			off_srcs[count] = dev->offset;
1813 			xor_srcs[count++] = dev->orig_page;
1814 		} else if (test_bit(R5_Wantdrain, &dev->flags)) {
1815 			off_srcs[count] = dev->offset;
1816 			xor_srcs[count++] = dev->page;
1817 		}
1818 	}
1819 
1820 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1821 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1822 	tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
1823 			RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1824 
1825 	return tx;
1826 }
1827 
1828 static struct dma_async_tx_descriptor *
1829 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1830 		struct dma_async_tx_descriptor *tx)
1831 {
1832 	struct page **blocks = to_addr_page(percpu, 0);
1833 	unsigned int *offs = to_addr_offs(sh, percpu);
1834 	int count;
1835 	struct async_submit_ctl submit;
1836 
1837 	pr_debug("%s: stripe %llu\n", __func__,
1838 		(unsigned long long)sh->sector);
1839 
1840 	count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_WANT_DRAIN);
1841 
1842 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1843 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1844 	tx = async_gen_syndrome(blocks, offs, count+2,
1845 			RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1846 
1847 	return tx;
1848 }
1849 
1850 static struct dma_async_tx_descriptor *
1851 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1852 {
1853 	struct r5conf *conf = sh->raid_conf;
1854 	int disks = sh->disks;
1855 	int i;
1856 	struct stripe_head *head_sh = sh;
1857 
1858 	pr_debug("%s: stripe %llu\n", __func__,
1859 		(unsigned long long)sh->sector);
1860 
1861 	for (i = disks; i--; ) {
1862 		struct r5dev *dev;
1863 		struct bio *chosen;
1864 
1865 		sh = head_sh;
1866 		if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1867 			struct bio *wbi;
1868 
1869 again:
1870 			dev = &sh->dev[i];
1871 			/*
1872 			 * clear R5_InJournal, so when rewriting a page in
1873 			 * journal, it is not skipped by r5l_log_stripe()
1874 			 */
1875 			clear_bit(R5_InJournal, &dev->flags);
1876 			spin_lock_irq(&sh->stripe_lock);
1877 			chosen = dev->towrite;
1878 			dev->towrite = NULL;
1879 			sh->overwrite_disks = 0;
1880 			BUG_ON(dev->written);
1881 			wbi = dev->written = chosen;
1882 			spin_unlock_irq(&sh->stripe_lock);
1883 			WARN_ON(dev->page != dev->orig_page);
1884 
1885 			while (wbi && wbi->bi_iter.bi_sector <
1886 				dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1887 				if (wbi->bi_opf & REQ_FUA)
1888 					set_bit(R5_WantFUA, &dev->flags);
1889 				if (wbi->bi_opf & REQ_SYNC)
1890 					set_bit(R5_SyncIO, &dev->flags);
1891 				if (bio_op(wbi) == REQ_OP_DISCARD)
1892 					set_bit(R5_Discard, &dev->flags);
1893 				else {
1894 					tx = async_copy_data(1, wbi, &dev->page,
1895 							     dev->offset,
1896 							     dev->sector, tx, sh,
1897 							     r5c_is_writeback(conf->log));
1898 					if (dev->page != dev->orig_page &&
1899 					    !r5c_is_writeback(conf->log)) {
1900 						set_bit(R5_SkipCopy, &dev->flags);
1901 						clear_bit(R5_UPTODATE, &dev->flags);
1902 						clear_bit(R5_OVERWRITE, &dev->flags);
1903 					}
1904 				}
1905 				wbi = r5_next_bio(conf, wbi, dev->sector);
1906 			}
1907 
1908 			if (head_sh->batch_head) {
1909 				sh = list_first_entry(&sh->batch_list,
1910 						      struct stripe_head,
1911 						      batch_list);
1912 				if (sh == head_sh)
1913 					continue;
1914 				goto again;
1915 			}
1916 		}
1917 	}
1918 
1919 	return tx;
1920 }
1921 
1922 static void ops_complete_reconstruct(void *stripe_head_ref)
1923 {
1924 	struct stripe_head *sh = stripe_head_ref;
1925 	int disks = sh->disks;
1926 	int pd_idx = sh->pd_idx;
1927 	int qd_idx = sh->qd_idx;
1928 	int i;
1929 	bool fua = false, sync = false, discard = false;
1930 
1931 	pr_debug("%s: stripe %llu\n", __func__,
1932 		(unsigned long long)sh->sector);
1933 
1934 	for (i = disks; i--; ) {
1935 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1936 		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1937 		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1938 	}
1939 
1940 	for (i = disks; i--; ) {
1941 		struct r5dev *dev = &sh->dev[i];
1942 
1943 		if (dev->written || i == pd_idx || i == qd_idx) {
1944 			if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
1945 				set_bit(R5_UPTODATE, &dev->flags);
1946 				if (test_bit(STRIPE_EXPAND_READY, &sh->state))
1947 					set_bit(R5_Expanded, &dev->flags);
1948 			}
1949 			if (fua)
1950 				set_bit(R5_WantFUA, &dev->flags);
1951 			if (sync)
1952 				set_bit(R5_SyncIO, &dev->flags);
1953 		}
1954 	}
1955 
1956 	if (sh->reconstruct_state == reconstruct_state_drain_run)
1957 		sh->reconstruct_state = reconstruct_state_drain_result;
1958 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1959 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1960 	else {
1961 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1962 		sh->reconstruct_state = reconstruct_state_result;
1963 	}
1964 
1965 	set_bit(STRIPE_HANDLE, &sh->state);
1966 	raid5_release_stripe(sh);
1967 }
1968 
1969 static void
1970 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1971 		     struct dma_async_tx_descriptor *tx)
1972 {
1973 	int disks = sh->disks;
1974 	struct page **xor_srcs;
1975 	unsigned int *off_srcs;
1976 	struct async_submit_ctl submit;
1977 	int count, pd_idx = sh->pd_idx, i;
1978 	struct page *xor_dest;
1979 	unsigned int off_dest;
1980 	int prexor = 0;
1981 	unsigned long flags;
1982 	int j = 0;
1983 	struct stripe_head *head_sh = sh;
1984 	int last_stripe;
1985 
1986 	pr_debug("%s: stripe %llu\n", __func__,
1987 		(unsigned long long)sh->sector);
1988 
1989 	for (i = 0; i < sh->disks; i++) {
1990 		if (pd_idx == i)
1991 			continue;
1992 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1993 			break;
1994 	}
1995 	if (i >= sh->disks) {
1996 		atomic_inc(&sh->count);
1997 		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1998 		ops_complete_reconstruct(sh);
1999 		return;
2000 	}
2001 again:
2002 	count = 0;
2003 	xor_srcs = to_addr_page(percpu, j);
2004 	off_srcs = to_addr_offs(sh, percpu);
2005 	/* check if prexor is active which means only process blocks
2006 	 * that are part of a read-modify-write (written)
2007 	 */
2008 	if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2009 		prexor = 1;
2010 		off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
2011 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
2012 		for (i = disks; i--; ) {
2013 			struct r5dev *dev = &sh->dev[i];
2014 			if (head_sh->dev[i].written ||
2015 			    test_bit(R5_InJournal, &head_sh->dev[i].flags)) {
2016 				off_srcs[count] = dev->offset;
2017 				xor_srcs[count++] = dev->page;
2018 			}
2019 		}
2020 	} else {
2021 		xor_dest = sh->dev[pd_idx].page;
2022 		off_dest = sh->dev[pd_idx].offset;
2023 		for (i = disks; i--; ) {
2024 			struct r5dev *dev = &sh->dev[i];
2025 			if (i != pd_idx) {
2026 				off_srcs[count] = dev->offset;
2027 				xor_srcs[count++] = dev->page;
2028 			}
2029 		}
2030 	}
2031 
2032 	/* 1/ if we prexor'd then the dest is reused as a source
2033 	 * 2/ if we did not prexor then we are redoing the parity
2034 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
2035 	 * for the synchronous xor case
2036 	 */
2037 	last_stripe = !head_sh->batch_head ||
2038 		list_first_entry(&sh->batch_list,
2039 				 struct stripe_head, batch_list) == head_sh;
2040 	if (last_stripe) {
2041 		flags = ASYNC_TX_ACK |
2042 			(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
2043 
2044 		atomic_inc(&head_sh->count);
2045 		init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
2046 				  to_addr_conv(sh, percpu, j));
2047 	} else {
2048 		flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
2049 		init_async_submit(&submit, flags, tx, NULL, NULL,
2050 				  to_addr_conv(sh, percpu, j));
2051 	}
2052 
2053 	if (unlikely(count == 1))
2054 		tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
2055 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2056 	else
2057 		tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
2058 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2059 	if (!last_stripe) {
2060 		j++;
2061 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
2062 				      batch_list);
2063 		goto again;
2064 	}
2065 }
2066 
2067 static void
2068 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
2069 		     struct dma_async_tx_descriptor *tx)
2070 {
2071 	struct async_submit_ctl submit;
2072 	struct page **blocks;
2073 	unsigned int *offs;
2074 	int count, i, j = 0;
2075 	struct stripe_head *head_sh = sh;
2076 	int last_stripe;
2077 	int synflags;
2078 	unsigned long txflags;
2079 
2080 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
2081 
2082 	for (i = 0; i < sh->disks; i++) {
2083 		if (sh->pd_idx == i || sh->qd_idx == i)
2084 			continue;
2085 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
2086 			break;
2087 	}
2088 	if (i >= sh->disks) {
2089 		atomic_inc(&sh->count);
2090 		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
2091 		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
2092 		ops_complete_reconstruct(sh);
2093 		return;
2094 	}
2095 
2096 again:
2097 	blocks = to_addr_page(percpu, j);
2098 	offs = to_addr_offs(sh, percpu);
2099 
2100 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2101 		synflags = SYNDROME_SRC_WRITTEN;
2102 		txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
2103 	} else {
2104 		synflags = SYNDROME_SRC_ALL;
2105 		txflags = ASYNC_TX_ACK;
2106 	}
2107 
2108 	count = set_syndrome_sources(blocks, offs, sh, synflags);
2109 	last_stripe = !head_sh->batch_head ||
2110 		list_first_entry(&sh->batch_list,
2111 				 struct stripe_head, batch_list) == head_sh;
2112 
2113 	if (last_stripe) {
2114 		atomic_inc(&head_sh->count);
2115 		init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
2116 				  head_sh, to_addr_conv(sh, percpu, j));
2117 	} else
2118 		init_async_submit(&submit, 0, tx, NULL, NULL,
2119 				  to_addr_conv(sh, percpu, j));
2120 	tx = async_gen_syndrome(blocks, offs, count+2,
2121 			RAID5_STRIPE_SIZE(sh->raid_conf),  &submit);
2122 	if (!last_stripe) {
2123 		j++;
2124 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
2125 				      batch_list);
2126 		goto again;
2127 	}
2128 }
2129 
2130 static void ops_complete_check(void *stripe_head_ref)
2131 {
2132 	struct stripe_head *sh = stripe_head_ref;
2133 
2134 	pr_debug("%s: stripe %llu\n", __func__,
2135 		(unsigned long long)sh->sector);
2136 
2137 	sh->check_state = check_state_check_result;
2138 	set_bit(STRIPE_HANDLE, &sh->state);
2139 	raid5_release_stripe(sh);
2140 }
2141 
2142 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
2143 {
2144 	int disks = sh->disks;
2145 	int pd_idx = sh->pd_idx;
2146 	int qd_idx = sh->qd_idx;
2147 	struct page *xor_dest;
2148 	unsigned int off_dest;
2149 	struct page **xor_srcs = to_addr_page(percpu, 0);
2150 	unsigned int *off_srcs = to_addr_offs(sh, percpu);
2151 	struct dma_async_tx_descriptor *tx;
2152 	struct async_submit_ctl submit;
2153 	int count;
2154 	int i;
2155 
2156 	pr_debug("%s: stripe %llu\n", __func__,
2157 		(unsigned long long)sh->sector);
2158 
2159 	BUG_ON(sh->batch_head);
2160 	count = 0;
2161 	xor_dest = sh->dev[pd_idx].page;
2162 	off_dest = sh->dev[pd_idx].offset;
2163 	off_srcs[count] = off_dest;
2164 	xor_srcs[count++] = xor_dest;
2165 	for (i = disks; i--; ) {
2166 		if (i == pd_idx || i == qd_idx)
2167 			continue;
2168 		off_srcs[count] = sh->dev[i].offset;
2169 		xor_srcs[count++] = sh->dev[i].page;
2170 	}
2171 
2172 	init_async_submit(&submit, 0, NULL, NULL, NULL,
2173 			  to_addr_conv(sh, percpu, 0));
2174 	tx = async_xor_val_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
2175 			   RAID5_STRIPE_SIZE(sh->raid_conf),
2176 			   &sh->ops.zero_sum_result, &submit);
2177 
2178 	atomic_inc(&sh->count);
2179 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2180 	tx = async_trigger_callback(&submit);
2181 }
2182 
2183 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2184 {
2185 	struct page **srcs = to_addr_page(percpu, 0);
2186 	unsigned int *offs = to_addr_offs(sh, percpu);
2187 	struct async_submit_ctl submit;
2188 	int count;
2189 
2190 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2191 		(unsigned long long)sh->sector, checkp);
2192 
2193 	BUG_ON(sh->batch_head);
2194 	count = set_syndrome_sources(srcs, offs, sh, SYNDROME_SRC_ALL);
2195 	if (!checkp)
2196 		srcs[count] = NULL;
2197 
2198 	atomic_inc(&sh->count);
2199 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2200 			  sh, to_addr_conv(sh, percpu, 0));
2201 	async_syndrome_val(srcs, offs, count+2,
2202 			   RAID5_STRIPE_SIZE(sh->raid_conf),
2203 			   &sh->ops.zero_sum_result, percpu->spare_page, 0, &submit);
2204 }
2205 
2206 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2207 {
2208 	int overlap_clear = 0, i, disks = sh->disks;
2209 	struct dma_async_tx_descriptor *tx = NULL;
2210 	struct r5conf *conf = sh->raid_conf;
2211 	int level = conf->level;
2212 	struct raid5_percpu *percpu;
2213 
2214 	local_lock(&conf->percpu->lock);
2215 	percpu = this_cpu_ptr(conf->percpu);
2216 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2217 		ops_run_biofill(sh);
2218 		overlap_clear++;
2219 	}
2220 
2221 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2222 		if (level < 6)
2223 			tx = ops_run_compute5(sh, percpu);
2224 		else {
2225 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
2226 				tx = ops_run_compute6_1(sh, percpu);
2227 			else
2228 				tx = ops_run_compute6_2(sh, percpu);
2229 		}
2230 		/* terminate the chain if reconstruct is not set to be run */
2231 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2232 			async_tx_ack(tx);
2233 	}
2234 
2235 	if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2236 		if (level < 6)
2237 			tx = ops_run_prexor5(sh, percpu, tx);
2238 		else
2239 			tx = ops_run_prexor6(sh, percpu, tx);
2240 	}
2241 
2242 	if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2243 		tx = ops_run_partial_parity(sh, percpu, tx);
2244 
2245 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2246 		tx = ops_run_biodrain(sh, tx);
2247 		overlap_clear++;
2248 	}
2249 
2250 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2251 		if (level < 6)
2252 			ops_run_reconstruct5(sh, percpu, tx);
2253 		else
2254 			ops_run_reconstruct6(sh, percpu, tx);
2255 	}
2256 
2257 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2258 		if (sh->check_state == check_state_run)
2259 			ops_run_check_p(sh, percpu);
2260 		else if (sh->check_state == check_state_run_q)
2261 			ops_run_check_pq(sh, percpu, 0);
2262 		else if (sh->check_state == check_state_run_pq)
2263 			ops_run_check_pq(sh, percpu, 1);
2264 		else
2265 			BUG();
2266 	}
2267 
2268 	if (overlap_clear && !sh->batch_head) {
2269 		for (i = disks; i--; ) {
2270 			struct r5dev *dev = &sh->dev[i];
2271 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
2272 				wake_up(&sh->raid_conf->wait_for_overlap);
2273 		}
2274 	}
2275 	local_unlock(&conf->percpu->lock);
2276 }
2277 
2278 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2279 {
2280 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2281 	kfree(sh->pages);
2282 #endif
2283 	if (sh->ppl_page)
2284 		__free_page(sh->ppl_page);
2285 	kmem_cache_free(sc, sh);
2286 }
2287 
2288 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2289 	int disks, struct r5conf *conf)
2290 {
2291 	struct stripe_head *sh;
2292 
2293 	sh = kmem_cache_zalloc(sc, gfp);
2294 	if (sh) {
2295 		spin_lock_init(&sh->stripe_lock);
2296 		spin_lock_init(&sh->batch_lock);
2297 		INIT_LIST_HEAD(&sh->batch_list);
2298 		INIT_LIST_HEAD(&sh->lru);
2299 		INIT_LIST_HEAD(&sh->r5c);
2300 		INIT_LIST_HEAD(&sh->log_list);
2301 		atomic_set(&sh->count, 1);
2302 		sh->raid_conf = conf;
2303 		sh->log_start = MaxSector;
2304 
2305 		if (raid5_has_ppl(conf)) {
2306 			sh->ppl_page = alloc_page(gfp);
2307 			if (!sh->ppl_page) {
2308 				free_stripe(sc, sh);
2309 				return NULL;
2310 			}
2311 		}
2312 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2313 		if (init_stripe_shared_pages(sh, conf, disks)) {
2314 			free_stripe(sc, sh);
2315 			return NULL;
2316 		}
2317 #endif
2318 	}
2319 	return sh;
2320 }
2321 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2322 {
2323 	struct stripe_head *sh;
2324 
2325 	sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2326 	if (!sh)
2327 		return 0;
2328 
2329 	if (grow_buffers(sh, gfp)) {
2330 		shrink_buffers(sh);
2331 		free_stripe(conf->slab_cache, sh);
2332 		return 0;
2333 	}
2334 	sh->hash_lock_index =
2335 		conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2336 	/* we just created an active stripe so... */
2337 	atomic_inc(&conf->active_stripes);
2338 
2339 	raid5_release_stripe(sh);
2340 	conf->max_nr_stripes++;
2341 	return 1;
2342 }
2343 
2344 static int grow_stripes(struct r5conf *conf, int num)
2345 {
2346 	struct kmem_cache *sc;
2347 	size_t namelen = sizeof(conf->cache_name[0]);
2348 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
2349 
2350 	if (conf->mddev->gendisk)
2351 		snprintf(conf->cache_name[0], namelen,
2352 			"raid%d-%s", conf->level, mdname(conf->mddev));
2353 	else
2354 		snprintf(conf->cache_name[0], namelen,
2355 			"raid%d-%p", conf->level, conf->mddev);
2356 	snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
2357 
2358 	conf->active_name = 0;
2359 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
2360 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2361 			       0, 0, NULL);
2362 	if (!sc)
2363 		return 1;
2364 	conf->slab_cache = sc;
2365 	conf->pool_size = devs;
2366 	while (num--)
2367 		if (!grow_one_stripe(conf, GFP_KERNEL))
2368 			return 1;
2369 
2370 	return 0;
2371 }
2372 
2373 /**
2374  * scribble_alloc - allocate percpu scribble buffer for required size
2375  *		    of the scribble region
2376  * @percpu: from for_each_present_cpu() of the caller
2377  * @num: total number of disks in the array
2378  * @cnt: scribble objs count for required size of the scribble region
2379  *
2380  * The scribble buffer size must be enough to contain:
2381  * 1/ a struct page pointer for each device in the array +2
2382  * 2/ room to convert each entry in (1) to its corresponding dma
2383  *    (dma_map_page()) or page (page_address()) address.
2384  *
2385  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2386  * calculate over all devices (not just the data blocks), using zeros in place
2387  * of the P and Q blocks.
2388  */
2389 static int scribble_alloc(struct raid5_percpu *percpu,
2390 			  int num, int cnt)
2391 {
2392 	size_t obj_size =
2393 		sizeof(struct page *) * (num + 2) +
2394 		sizeof(addr_conv_t) * (num + 2) +
2395 		sizeof(unsigned int) * (num + 2);
2396 	void *scribble;
2397 
2398 	/*
2399 	 * If here is in raid array suspend context, it is in memalloc noio
2400 	 * context as well, there is no potential recursive memory reclaim
2401 	 * I/Os with the GFP_KERNEL flag.
2402 	 */
2403 	scribble = kvmalloc_array(cnt, obj_size, GFP_KERNEL);
2404 	if (!scribble)
2405 		return -ENOMEM;
2406 
2407 	kvfree(percpu->scribble);
2408 
2409 	percpu->scribble = scribble;
2410 	percpu->scribble_obj_size = obj_size;
2411 	return 0;
2412 }
2413 
2414 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2415 {
2416 	unsigned long cpu;
2417 	int err = 0;
2418 
2419 	/*
2420 	 * Never shrink. And mddev_suspend() could deadlock if this is called
2421 	 * from raid5d. In that case, scribble_disks and scribble_sectors
2422 	 * should equal to new_disks and new_sectors
2423 	 */
2424 	if (conf->scribble_disks >= new_disks &&
2425 	    conf->scribble_sectors >= new_sectors)
2426 		return 0;
2427 	mddev_suspend(conf->mddev);
2428 	cpus_read_lock();
2429 
2430 	for_each_present_cpu(cpu) {
2431 		struct raid5_percpu *percpu;
2432 
2433 		percpu = per_cpu_ptr(conf->percpu, cpu);
2434 		err = scribble_alloc(percpu, new_disks,
2435 				     new_sectors / RAID5_STRIPE_SECTORS(conf));
2436 		if (err)
2437 			break;
2438 	}
2439 
2440 	cpus_read_unlock();
2441 	mddev_resume(conf->mddev);
2442 	if (!err) {
2443 		conf->scribble_disks = new_disks;
2444 		conf->scribble_sectors = new_sectors;
2445 	}
2446 	return err;
2447 }
2448 
2449 static int resize_stripes(struct r5conf *conf, int newsize)
2450 {
2451 	/* Make all the stripes able to hold 'newsize' devices.
2452 	 * New slots in each stripe get 'page' set to a new page.
2453 	 *
2454 	 * This happens in stages:
2455 	 * 1/ create a new kmem_cache and allocate the required number of
2456 	 *    stripe_heads.
2457 	 * 2/ gather all the old stripe_heads and transfer the pages across
2458 	 *    to the new stripe_heads.  This will have the side effect of
2459 	 *    freezing the array as once all stripe_heads have been collected,
2460 	 *    no IO will be possible.  Old stripe heads are freed once their
2461 	 *    pages have been transferred over, and the old kmem_cache is
2462 	 *    freed when all stripes are done.
2463 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2464 	 *    we simple return a failure status - no need to clean anything up.
2465 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
2466 	 *    If this fails, we don't bother trying the shrink the
2467 	 *    stripe_heads down again, we just leave them as they are.
2468 	 *    As each stripe_head is processed the new one is released into
2469 	 *    active service.
2470 	 *
2471 	 * Once step2 is started, we cannot afford to wait for a write,
2472 	 * so we use GFP_NOIO allocations.
2473 	 */
2474 	struct stripe_head *osh, *nsh;
2475 	LIST_HEAD(newstripes);
2476 	struct disk_info *ndisks;
2477 	int err = 0;
2478 	struct kmem_cache *sc;
2479 	int i;
2480 	int hash, cnt;
2481 
2482 	md_allow_write(conf->mddev);
2483 
2484 	/* Step 1 */
2485 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2486 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2487 			       0, 0, NULL);
2488 	if (!sc)
2489 		return -ENOMEM;
2490 
2491 	/* Need to ensure auto-resizing doesn't interfere */
2492 	mutex_lock(&conf->cache_size_mutex);
2493 
2494 	for (i = conf->max_nr_stripes; i; i--) {
2495 		nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2496 		if (!nsh)
2497 			break;
2498 
2499 		list_add(&nsh->lru, &newstripes);
2500 	}
2501 	if (i) {
2502 		/* didn't get enough, give up */
2503 		while (!list_empty(&newstripes)) {
2504 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
2505 			list_del(&nsh->lru);
2506 			free_stripe(sc, nsh);
2507 		}
2508 		kmem_cache_destroy(sc);
2509 		mutex_unlock(&conf->cache_size_mutex);
2510 		return -ENOMEM;
2511 	}
2512 	/* Step 2 - Must use GFP_NOIO now.
2513 	 * OK, we have enough stripes, start collecting inactive
2514 	 * stripes and copying them over
2515 	 */
2516 	hash = 0;
2517 	cnt = 0;
2518 	list_for_each_entry(nsh, &newstripes, lru) {
2519 		lock_device_hash_lock(conf, hash);
2520 		wait_event_cmd(conf->wait_for_stripe,
2521 				    !list_empty(conf->inactive_list + hash),
2522 				    unlock_device_hash_lock(conf, hash),
2523 				    lock_device_hash_lock(conf, hash));
2524 		osh = get_free_stripe(conf, hash);
2525 		unlock_device_hash_lock(conf, hash);
2526 
2527 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2528 	for (i = 0; i < osh->nr_pages; i++) {
2529 		nsh->pages[i] = osh->pages[i];
2530 		osh->pages[i] = NULL;
2531 	}
2532 #endif
2533 		for(i=0; i<conf->pool_size; i++) {
2534 			nsh->dev[i].page = osh->dev[i].page;
2535 			nsh->dev[i].orig_page = osh->dev[i].page;
2536 			nsh->dev[i].offset = osh->dev[i].offset;
2537 		}
2538 		nsh->hash_lock_index = hash;
2539 		free_stripe(conf->slab_cache, osh);
2540 		cnt++;
2541 		if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2542 		    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2543 			hash++;
2544 			cnt = 0;
2545 		}
2546 	}
2547 	kmem_cache_destroy(conf->slab_cache);
2548 
2549 	/* Step 3.
2550 	 * At this point, we are holding all the stripes so the array
2551 	 * is completely stalled, so now is a good time to resize
2552 	 * conf->disks and the scribble region
2553 	 */
2554 	ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO);
2555 	if (ndisks) {
2556 		for (i = 0; i < conf->pool_size; i++)
2557 			ndisks[i] = conf->disks[i];
2558 
2559 		for (i = conf->pool_size; i < newsize; i++) {
2560 			ndisks[i].extra_page = alloc_page(GFP_NOIO);
2561 			if (!ndisks[i].extra_page)
2562 				err = -ENOMEM;
2563 		}
2564 
2565 		if (err) {
2566 			for (i = conf->pool_size; i < newsize; i++)
2567 				if (ndisks[i].extra_page)
2568 					put_page(ndisks[i].extra_page);
2569 			kfree(ndisks);
2570 		} else {
2571 			kfree(conf->disks);
2572 			conf->disks = ndisks;
2573 		}
2574 	} else
2575 		err = -ENOMEM;
2576 
2577 	conf->slab_cache = sc;
2578 	conf->active_name = 1-conf->active_name;
2579 
2580 	/* Step 4, return new stripes to service */
2581 	while(!list_empty(&newstripes)) {
2582 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
2583 		list_del_init(&nsh->lru);
2584 
2585 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2586 		for (i = 0; i < nsh->nr_pages; i++) {
2587 			if (nsh->pages[i])
2588 				continue;
2589 			nsh->pages[i] = alloc_page(GFP_NOIO);
2590 			if (!nsh->pages[i])
2591 				err = -ENOMEM;
2592 		}
2593 
2594 		for (i = conf->raid_disks; i < newsize; i++) {
2595 			if (nsh->dev[i].page)
2596 				continue;
2597 			nsh->dev[i].page = raid5_get_dev_page(nsh, i);
2598 			nsh->dev[i].orig_page = nsh->dev[i].page;
2599 			nsh->dev[i].offset = raid5_get_page_offset(nsh, i);
2600 		}
2601 #else
2602 		for (i=conf->raid_disks; i < newsize; i++)
2603 			if (nsh->dev[i].page == NULL) {
2604 				struct page *p = alloc_page(GFP_NOIO);
2605 				nsh->dev[i].page = p;
2606 				nsh->dev[i].orig_page = p;
2607 				nsh->dev[i].offset = 0;
2608 				if (!p)
2609 					err = -ENOMEM;
2610 			}
2611 #endif
2612 		raid5_release_stripe(nsh);
2613 	}
2614 	/* critical section pass, GFP_NOIO no longer needed */
2615 
2616 	if (!err)
2617 		conf->pool_size = newsize;
2618 	mutex_unlock(&conf->cache_size_mutex);
2619 
2620 	return err;
2621 }
2622 
2623 static int drop_one_stripe(struct r5conf *conf)
2624 {
2625 	struct stripe_head *sh;
2626 	int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2627 
2628 	spin_lock_irq(conf->hash_locks + hash);
2629 	sh = get_free_stripe(conf, hash);
2630 	spin_unlock_irq(conf->hash_locks + hash);
2631 	if (!sh)
2632 		return 0;
2633 	BUG_ON(atomic_read(&sh->count));
2634 	shrink_buffers(sh);
2635 	free_stripe(conf->slab_cache, sh);
2636 	atomic_dec(&conf->active_stripes);
2637 	conf->max_nr_stripes--;
2638 	return 1;
2639 }
2640 
2641 static void shrink_stripes(struct r5conf *conf)
2642 {
2643 	while (conf->max_nr_stripes &&
2644 	       drop_one_stripe(conf))
2645 		;
2646 
2647 	kmem_cache_destroy(conf->slab_cache);
2648 	conf->slab_cache = NULL;
2649 }
2650 
2651 static void raid5_end_read_request(struct bio * bi)
2652 {
2653 	struct stripe_head *sh = bi->bi_private;
2654 	struct r5conf *conf = sh->raid_conf;
2655 	int disks = sh->disks, i;
2656 	char b[BDEVNAME_SIZE];
2657 	struct md_rdev *rdev = NULL;
2658 	sector_t s;
2659 
2660 	for (i=0 ; i<disks; i++)
2661 		if (bi == &sh->dev[i].req)
2662 			break;
2663 
2664 	pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2665 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2666 		bi->bi_status);
2667 	if (i == disks) {
2668 		BUG();
2669 		return;
2670 	}
2671 	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2672 		/* If replacement finished while this request was outstanding,
2673 		 * 'replacement' might be NULL already.
2674 		 * In that case it moved down to 'rdev'.
2675 		 * rdev is not removed until all requests are finished.
2676 		 */
2677 		rdev = conf->disks[i].replacement;
2678 	if (!rdev)
2679 		rdev = conf->disks[i].rdev;
2680 
2681 	if (use_new_offset(conf, sh))
2682 		s = sh->sector + rdev->new_data_offset;
2683 	else
2684 		s = sh->sector + rdev->data_offset;
2685 	if (!bi->bi_status) {
2686 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
2687 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2688 			/* Note that this cannot happen on a
2689 			 * replacement device.  We just fail those on
2690 			 * any error
2691 			 */
2692 			pr_info_ratelimited(
2693 				"md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
2694 				mdname(conf->mddev), RAID5_STRIPE_SECTORS(conf),
2695 				(unsigned long long)s,
2696 				bdevname(rdev->bdev, b));
2697 			atomic_add(RAID5_STRIPE_SECTORS(conf), &rdev->corrected_errors);
2698 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2699 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2700 		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2701 			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2702 
2703 		if (test_bit(R5_InJournal, &sh->dev[i].flags))
2704 			/*
2705 			 * end read for a page in journal, this
2706 			 * must be preparing for prexor in rmw
2707 			 */
2708 			set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2709 
2710 		if (atomic_read(&rdev->read_errors))
2711 			atomic_set(&rdev->read_errors, 0);
2712 	} else {
2713 		const char *bdn = bdevname(rdev->bdev, b);
2714 		int retry = 0;
2715 		int set_bad = 0;
2716 
2717 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2718 		if (!(bi->bi_status == BLK_STS_PROTECTION))
2719 			atomic_inc(&rdev->read_errors);
2720 		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2721 			pr_warn_ratelimited(
2722 				"md/raid:%s: read error on replacement device (sector %llu on %s).\n",
2723 				mdname(conf->mddev),
2724 				(unsigned long long)s,
2725 				bdn);
2726 		else if (conf->mddev->degraded >= conf->max_degraded) {
2727 			set_bad = 1;
2728 			pr_warn_ratelimited(
2729 				"md/raid:%s: read error not correctable (sector %llu on %s).\n",
2730 				mdname(conf->mddev),
2731 				(unsigned long long)s,
2732 				bdn);
2733 		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2734 			/* Oh, no!!! */
2735 			set_bad = 1;
2736 			pr_warn_ratelimited(
2737 				"md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
2738 				mdname(conf->mddev),
2739 				(unsigned long long)s,
2740 				bdn);
2741 		} else if (atomic_read(&rdev->read_errors)
2742 			 > conf->max_nr_stripes) {
2743 			if (!test_bit(Faulty, &rdev->flags)) {
2744 				pr_warn("md/raid:%s: %d read_errors > %d stripes\n",
2745 				    mdname(conf->mddev),
2746 				    atomic_read(&rdev->read_errors),
2747 				    conf->max_nr_stripes);
2748 				pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2749 				    mdname(conf->mddev), bdn);
2750 			}
2751 		} else
2752 			retry = 1;
2753 		if (set_bad && test_bit(In_sync, &rdev->flags)
2754 		    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2755 			retry = 1;
2756 		if (retry)
2757 			if (sh->qd_idx >= 0 && sh->pd_idx == i)
2758 				set_bit(R5_ReadError, &sh->dev[i].flags);
2759 			else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2760 				set_bit(R5_ReadError, &sh->dev[i].flags);
2761 				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2762 			} else
2763 				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2764 		else {
2765 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2766 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2767 			if (!(set_bad
2768 			      && test_bit(In_sync, &rdev->flags)
2769 			      && rdev_set_badblocks(
2770 				      rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 0)))
2771 				md_error(conf->mddev, rdev);
2772 		}
2773 	}
2774 	rdev_dec_pending(rdev, conf->mddev);
2775 	bio_uninit(bi);
2776 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
2777 	set_bit(STRIPE_HANDLE, &sh->state);
2778 	raid5_release_stripe(sh);
2779 }
2780 
2781 static void raid5_end_write_request(struct bio *bi)
2782 {
2783 	struct stripe_head *sh = bi->bi_private;
2784 	struct r5conf *conf = sh->raid_conf;
2785 	int disks = sh->disks, i;
2786 	struct md_rdev *rdev;
2787 	sector_t first_bad;
2788 	int bad_sectors;
2789 	int replacement = 0;
2790 
2791 	for (i = 0 ; i < disks; i++) {
2792 		if (bi == &sh->dev[i].req) {
2793 			rdev = conf->disks[i].rdev;
2794 			break;
2795 		}
2796 		if (bi == &sh->dev[i].rreq) {
2797 			rdev = conf->disks[i].replacement;
2798 			if (rdev)
2799 				replacement = 1;
2800 			else
2801 				/* rdev was removed and 'replacement'
2802 				 * replaced it.  rdev is not removed
2803 				 * until all requests are finished.
2804 				 */
2805 				rdev = conf->disks[i].rdev;
2806 			break;
2807 		}
2808 	}
2809 	pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2810 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2811 		bi->bi_status);
2812 	if (i == disks) {
2813 		BUG();
2814 		return;
2815 	}
2816 
2817 	if (replacement) {
2818 		if (bi->bi_status)
2819 			md_error(conf->mddev, rdev);
2820 		else if (is_badblock(rdev, sh->sector,
2821 				     RAID5_STRIPE_SECTORS(conf),
2822 				     &first_bad, &bad_sectors))
2823 			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2824 	} else {
2825 		if (bi->bi_status) {
2826 			set_bit(STRIPE_DEGRADED, &sh->state);
2827 			set_bit(WriteErrorSeen, &rdev->flags);
2828 			set_bit(R5_WriteError, &sh->dev[i].flags);
2829 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2830 				set_bit(MD_RECOVERY_NEEDED,
2831 					&rdev->mddev->recovery);
2832 		} else if (is_badblock(rdev, sh->sector,
2833 				       RAID5_STRIPE_SECTORS(conf),
2834 				       &first_bad, &bad_sectors)) {
2835 			set_bit(R5_MadeGood, &sh->dev[i].flags);
2836 			if (test_bit(R5_ReadError, &sh->dev[i].flags))
2837 				/* That was a successful write so make
2838 				 * sure it looks like we already did
2839 				 * a re-write.
2840 				 */
2841 				set_bit(R5_ReWrite, &sh->dev[i].flags);
2842 		}
2843 	}
2844 	rdev_dec_pending(rdev, conf->mddev);
2845 
2846 	if (sh->batch_head && bi->bi_status && !replacement)
2847 		set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2848 
2849 	bio_uninit(bi);
2850 	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2851 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2852 	set_bit(STRIPE_HANDLE, &sh->state);
2853 	raid5_release_stripe(sh);
2854 
2855 	if (sh->batch_head && sh != sh->batch_head)
2856 		raid5_release_stripe(sh->batch_head);
2857 }
2858 
2859 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2860 {
2861 	char b[BDEVNAME_SIZE];
2862 	struct r5conf *conf = mddev->private;
2863 	unsigned long flags;
2864 	pr_debug("raid456: error called\n");
2865 
2866 	spin_lock_irqsave(&conf->device_lock, flags);
2867 
2868 	if (test_bit(In_sync, &rdev->flags) &&
2869 	    mddev->degraded == conf->max_degraded) {
2870 		/*
2871 		 * Don't allow to achieve failed state
2872 		 * Don't try to recover this device
2873 		 */
2874 		conf->recovery_disabled = mddev->recovery_disabled;
2875 		spin_unlock_irqrestore(&conf->device_lock, flags);
2876 		return;
2877 	}
2878 
2879 	set_bit(Faulty, &rdev->flags);
2880 	clear_bit(In_sync, &rdev->flags);
2881 	mddev->degraded = raid5_calc_degraded(conf);
2882 	spin_unlock_irqrestore(&conf->device_lock, flags);
2883 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2884 
2885 	set_bit(Blocked, &rdev->flags);
2886 	set_mask_bits(&mddev->sb_flags, 0,
2887 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2888 	pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2889 		"md/raid:%s: Operation continuing on %d devices.\n",
2890 		mdname(mddev),
2891 		bdevname(rdev->bdev, b),
2892 		mdname(mddev),
2893 		conf->raid_disks - mddev->degraded);
2894 	r5c_update_on_rdev_error(mddev, rdev);
2895 }
2896 
2897 /*
2898  * Input: a 'big' sector number,
2899  * Output: index of the data and parity disk, and the sector # in them.
2900  */
2901 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2902 			      int previous, int *dd_idx,
2903 			      struct stripe_head *sh)
2904 {
2905 	sector_t stripe, stripe2;
2906 	sector_t chunk_number;
2907 	unsigned int chunk_offset;
2908 	int pd_idx, qd_idx;
2909 	int ddf_layout = 0;
2910 	sector_t new_sector;
2911 	int algorithm = previous ? conf->prev_algo
2912 				 : conf->algorithm;
2913 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2914 					 : conf->chunk_sectors;
2915 	int raid_disks = previous ? conf->previous_raid_disks
2916 				  : conf->raid_disks;
2917 	int data_disks = raid_disks - conf->max_degraded;
2918 
2919 	/* First compute the information on this sector */
2920 
2921 	/*
2922 	 * Compute the chunk number and the sector offset inside the chunk
2923 	 */
2924 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
2925 	chunk_number = r_sector;
2926 
2927 	/*
2928 	 * Compute the stripe number
2929 	 */
2930 	stripe = chunk_number;
2931 	*dd_idx = sector_div(stripe, data_disks);
2932 	stripe2 = stripe;
2933 	/*
2934 	 * Select the parity disk based on the user selected algorithm.
2935 	 */
2936 	pd_idx = qd_idx = -1;
2937 	switch(conf->level) {
2938 	case 4:
2939 		pd_idx = data_disks;
2940 		break;
2941 	case 5:
2942 		switch (algorithm) {
2943 		case ALGORITHM_LEFT_ASYMMETRIC:
2944 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2945 			if (*dd_idx >= pd_idx)
2946 				(*dd_idx)++;
2947 			break;
2948 		case ALGORITHM_RIGHT_ASYMMETRIC:
2949 			pd_idx = sector_div(stripe2, raid_disks);
2950 			if (*dd_idx >= pd_idx)
2951 				(*dd_idx)++;
2952 			break;
2953 		case ALGORITHM_LEFT_SYMMETRIC:
2954 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2955 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2956 			break;
2957 		case ALGORITHM_RIGHT_SYMMETRIC:
2958 			pd_idx = sector_div(stripe2, raid_disks);
2959 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2960 			break;
2961 		case ALGORITHM_PARITY_0:
2962 			pd_idx = 0;
2963 			(*dd_idx)++;
2964 			break;
2965 		case ALGORITHM_PARITY_N:
2966 			pd_idx = data_disks;
2967 			break;
2968 		default:
2969 			BUG();
2970 		}
2971 		break;
2972 	case 6:
2973 
2974 		switch (algorithm) {
2975 		case ALGORITHM_LEFT_ASYMMETRIC:
2976 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2977 			qd_idx = pd_idx + 1;
2978 			if (pd_idx == raid_disks-1) {
2979 				(*dd_idx)++;	/* Q D D D P */
2980 				qd_idx = 0;
2981 			} else if (*dd_idx >= pd_idx)
2982 				(*dd_idx) += 2; /* D D P Q D */
2983 			break;
2984 		case ALGORITHM_RIGHT_ASYMMETRIC:
2985 			pd_idx = sector_div(stripe2, raid_disks);
2986 			qd_idx = pd_idx + 1;
2987 			if (pd_idx == raid_disks-1) {
2988 				(*dd_idx)++;	/* Q D D D P */
2989 				qd_idx = 0;
2990 			} else if (*dd_idx >= pd_idx)
2991 				(*dd_idx) += 2; /* D D P Q D */
2992 			break;
2993 		case ALGORITHM_LEFT_SYMMETRIC:
2994 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2995 			qd_idx = (pd_idx + 1) % raid_disks;
2996 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2997 			break;
2998 		case ALGORITHM_RIGHT_SYMMETRIC:
2999 			pd_idx = sector_div(stripe2, raid_disks);
3000 			qd_idx = (pd_idx + 1) % raid_disks;
3001 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
3002 			break;
3003 
3004 		case ALGORITHM_PARITY_0:
3005 			pd_idx = 0;
3006 			qd_idx = 1;
3007 			(*dd_idx) += 2;
3008 			break;
3009 		case ALGORITHM_PARITY_N:
3010 			pd_idx = data_disks;
3011 			qd_idx = data_disks + 1;
3012 			break;
3013 
3014 		case ALGORITHM_ROTATING_ZERO_RESTART:
3015 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
3016 			 * of blocks for computing Q is different.
3017 			 */
3018 			pd_idx = sector_div(stripe2, raid_disks);
3019 			qd_idx = pd_idx + 1;
3020 			if (pd_idx == raid_disks-1) {
3021 				(*dd_idx)++;	/* Q D D D P */
3022 				qd_idx = 0;
3023 			} else if (*dd_idx >= pd_idx)
3024 				(*dd_idx) += 2; /* D D P Q D */
3025 			ddf_layout = 1;
3026 			break;
3027 
3028 		case ALGORITHM_ROTATING_N_RESTART:
3029 			/* Same a left_asymmetric, by first stripe is
3030 			 * D D D P Q  rather than
3031 			 * Q D D D P
3032 			 */
3033 			stripe2 += 1;
3034 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3035 			qd_idx = pd_idx + 1;
3036 			if (pd_idx == raid_disks-1) {
3037 				(*dd_idx)++;	/* Q D D D P */
3038 				qd_idx = 0;
3039 			} else if (*dd_idx >= pd_idx)
3040 				(*dd_idx) += 2; /* D D P Q D */
3041 			ddf_layout = 1;
3042 			break;
3043 
3044 		case ALGORITHM_ROTATING_N_CONTINUE:
3045 			/* Same as left_symmetric but Q is before P */
3046 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3047 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
3048 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3049 			ddf_layout = 1;
3050 			break;
3051 
3052 		case ALGORITHM_LEFT_ASYMMETRIC_6:
3053 			/* RAID5 left_asymmetric, with Q on last device */
3054 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
3055 			if (*dd_idx >= pd_idx)
3056 				(*dd_idx)++;
3057 			qd_idx = raid_disks - 1;
3058 			break;
3059 
3060 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
3061 			pd_idx = sector_div(stripe2, raid_disks-1);
3062 			if (*dd_idx >= pd_idx)
3063 				(*dd_idx)++;
3064 			qd_idx = raid_disks - 1;
3065 			break;
3066 
3067 		case ALGORITHM_LEFT_SYMMETRIC_6:
3068 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
3069 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3070 			qd_idx = raid_disks - 1;
3071 			break;
3072 
3073 		case ALGORITHM_RIGHT_SYMMETRIC_6:
3074 			pd_idx = sector_div(stripe2, raid_disks-1);
3075 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3076 			qd_idx = raid_disks - 1;
3077 			break;
3078 
3079 		case ALGORITHM_PARITY_0_6:
3080 			pd_idx = 0;
3081 			(*dd_idx)++;
3082 			qd_idx = raid_disks - 1;
3083 			break;
3084 
3085 		default:
3086 			BUG();
3087 		}
3088 		break;
3089 	}
3090 
3091 	if (sh) {
3092 		sh->pd_idx = pd_idx;
3093 		sh->qd_idx = qd_idx;
3094 		sh->ddf_layout = ddf_layout;
3095 	}
3096 	/*
3097 	 * Finally, compute the new sector number
3098 	 */
3099 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
3100 	return new_sector;
3101 }
3102 
3103 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
3104 {
3105 	struct r5conf *conf = sh->raid_conf;
3106 	int raid_disks = sh->disks;
3107 	int data_disks = raid_disks - conf->max_degraded;
3108 	sector_t new_sector = sh->sector, check;
3109 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
3110 					 : conf->chunk_sectors;
3111 	int algorithm = previous ? conf->prev_algo
3112 				 : conf->algorithm;
3113 	sector_t stripe;
3114 	int chunk_offset;
3115 	sector_t chunk_number;
3116 	int dummy1, dd_idx = i;
3117 	sector_t r_sector;
3118 	struct stripe_head sh2;
3119 
3120 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
3121 	stripe = new_sector;
3122 
3123 	if (i == sh->pd_idx)
3124 		return 0;
3125 	switch(conf->level) {
3126 	case 4: break;
3127 	case 5:
3128 		switch (algorithm) {
3129 		case ALGORITHM_LEFT_ASYMMETRIC:
3130 		case ALGORITHM_RIGHT_ASYMMETRIC:
3131 			if (i > sh->pd_idx)
3132 				i--;
3133 			break;
3134 		case ALGORITHM_LEFT_SYMMETRIC:
3135 		case ALGORITHM_RIGHT_SYMMETRIC:
3136 			if (i < sh->pd_idx)
3137 				i += raid_disks;
3138 			i -= (sh->pd_idx + 1);
3139 			break;
3140 		case ALGORITHM_PARITY_0:
3141 			i -= 1;
3142 			break;
3143 		case ALGORITHM_PARITY_N:
3144 			break;
3145 		default:
3146 			BUG();
3147 		}
3148 		break;
3149 	case 6:
3150 		if (i == sh->qd_idx)
3151 			return 0; /* It is the Q disk */
3152 		switch (algorithm) {
3153 		case ALGORITHM_LEFT_ASYMMETRIC:
3154 		case ALGORITHM_RIGHT_ASYMMETRIC:
3155 		case ALGORITHM_ROTATING_ZERO_RESTART:
3156 		case ALGORITHM_ROTATING_N_RESTART:
3157 			if (sh->pd_idx == raid_disks-1)
3158 				i--;	/* Q D D D P */
3159 			else if (i > sh->pd_idx)
3160 				i -= 2; /* D D P Q D */
3161 			break;
3162 		case ALGORITHM_LEFT_SYMMETRIC:
3163 		case ALGORITHM_RIGHT_SYMMETRIC:
3164 			if (sh->pd_idx == raid_disks-1)
3165 				i--; /* Q D D D P */
3166 			else {
3167 				/* D D P Q D */
3168 				if (i < sh->pd_idx)
3169 					i += raid_disks;
3170 				i -= (sh->pd_idx + 2);
3171 			}
3172 			break;
3173 		case ALGORITHM_PARITY_0:
3174 			i -= 2;
3175 			break;
3176 		case ALGORITHM_PARITY_N:
3177 			break;
3178 		case ALGORITHM_ROTATING_N_CONTINUE:
3179 			/* Like left_symmetric, but P is before Q */
3180 			if (sh->pd_idx == 0)
3181 				i--;	/* P D D D Q */
3182 			else {
3183 				/* D D Q P D */
3184 				if (i < sh->pd_idx)
3185 					i += raid_disks;
3186 				i -= (sh->pd_idx + 1);
3187 			}
3188 			break;
3189 		case ALGORITHM_LEFT_ASYMMETRIC_6:
3190 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
3191 			if (i > sh->pd_idx)
3192 				i--;
3193 			break;
3194 		case ALGORITHM_LEFT_SYMMETRIC_6:
3195 		case ALGORITHM_RIGHT_SYMMETRIC_6:
3196 			if (i < sh->pd_idx)
3197 				i += data_disks + 1;
3198 			i -= (sh->pd_idx + 1);
3199 			break;
3200 		case ALGORITHM_PARITY_0_6:
3201 			i -= 1;
3202 			break;
3203 		default:
3204 			BUG();
3205 		}
3206 		break;
3207 	}
3208 
3209 	chunk_number = stripe * data_disks + i;
3210 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3211 
3212 	check = raid5_compute_sector(conf, r_sector,
3213 				     previous, &dummy1, &sh2);
3214 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3215 		|| sh2.qd_idx != sh->qd_idx) {
3216 		pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3217 			mdname(conf->mddev));
3218 		return 0;
3219 	}
3220 	return r_sector;
3221 }
3222 
3223 /*
3224  * There are cases where we want handle_stripe_dirtying() and
3225  * schedule_reconstruction() to delay towrite to some dev of a stripe.
3226  *
3227  * This function checks whether we want to delay the towrite. Specifically,
3228  * we delay the towrite when:
3229  *
3230  *   1. degraded stripe has a non-overwrite to the missing dev, AND this
3231  *      stripe has data in journal (for other devices).
3232  *
3233  *      In this case, when reading data for the non-overwrite dev, it is
3234  *      necessary to handle complex rmw of write back cache (prexor with
3235  *      orig_page, and xor with page). To keep read path simple, we would
3236  *      like to flush data in journal to RAID disks first, so complex rmw
3237  *      is handled in the write patch (handle_stripe_dirtying).
3238  *
3239  *   2. when journal space is critical (R5C_LOG_CRITICAL=1)
3240  *
3241  *      It is important to be able to flush all stripes in raid5-cache.
3242  *      Therefore, we need reserve some space on the journal device for
3243  *      these flushes. If flush operation includes pending writes to the
3244  *      stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3245  *      for the flush out. If we exclude these pending writes from flush
3246  *      operation, we only need (conf->max_degraded + 1) pages per stripe.
3247  *      Therefore, excluding pending writes in these cases enables more
3248  *      efficient use of the journal device.
3249  *
3250  *      Note: To make sure the stripe makes progress, we only delay
3251  *      towrite for stripes with data already in journal (injournal > 0).
3252  *      When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3253  *      no_space_stripes list.
3254  *
3255  *   3. during journal failure
3256  *      In journal failure, we try to flush all cached data to raid disks
3257  *      based on data in stripe cache. The array is read-only to upper
3258  *      layers, so we would skip all pending writes.
3259  *
3260  */
3261 static inline bool delay_towrite(struct r5conf *conf,
3262 				 struct r5dev *dev,
3263 				 struct stripe_head_state *s)
3264 {
3265 	/* case 1 above */
3266 	if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3267 	    !test_bit(R5_Insync, &dev->flags) && s->injournal)
3268 		return true;
3269 	/* case 2 above */
3270 	if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3271 	    s->injournal > 0)
3272 		return true;
3273 	/* case 3 above */
3274 	if (s->log_failed && s->injournal)
3275 		return true;
3276 	return false;
3277 }
3278 
3279 static void
3280 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3281 			 int rcw, int expand)
3282 {
3283 	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3284 	struct r5conf *conf = sh->raid_conf;
3285 	int level = conf->level;
3286 
3287 	if (rcw) {
3288 		/*
3289 		 * In some cases, handle_stripe_dirtying initially decided to
3290 		 * run rmw and allocates extra page for prexor. However, rcw is
3291 		 * cheaper later on. We need to free the extra page now,
3292 		 * because we won't be able to do that in ops_complete_prexor().
3293 		 */
3294 		r5c_release_extra_page(sh);
3295 
3296 		for (i = disks; i--; ) {
3297 			struct r5dev *dev = &sh->dev[i];
3298 
3299 			if (dev->towrite && !delay_towrite(conf, dev, s)) {
3300 				set_bit(R5_LOCKED, &dev->flags);
3301 				set_bit(R5_Wantdrain, &dev->flags);
3302 				if (!expand)
3303 					clear_bit(R5_UPTODATE, &dev->flags);
3304 				s->locked++;
3305 			} else if (test_bit(R5_InJournal, &dev->flags)) {
3306 				set_bit(R5_LOCKED, &dev->flags);
3307 				s->locked++;
3308 			}
3309 		}
3310 		/* if we are not expanding this is a proper write request, and
3311 		 * there will be bios with new data to be drained into the
3312 		 * stripe cache
3313 		 */
3314 		if (!expand) {
3315 			if (!s->locked)
3316 				/* False alarm, nothing to do */
3317 				return;
3318 			sh->reconstruct_state = reconstruct_state_drain_run;
3319 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3320 		} else
3321 			sh->reconstruct_state = reconstruct_state_run;
3322 
3323 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3324 
3325 		if (s->locked + conf->max_degraded == disks)
3326 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3327 				atomic_inc(&conf->pending_full_writes);
3328 	} else {
3329 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3330 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3331 		BUG_ON(level == 6 &&
3332 			(!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3333 			   test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3334 
3335 		for (i = disks; i--; ) {
3336 			struct r5dev *dev = &sh->dev[i];
3337 			if (i == pd_idx || i == qd_idx)
3338 				continue;
3339 
3340 			if (dev->towrite &&
3341 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3342 			     test_bit(R5_Wantcompute, &dev->flags))) {
3343 				set_bit(R5_Wantdrain, &dev->flags);
3344 				set_bit(R5_LOCKED, &dev->flags);
3345 				clear_bit(R5_UPTODATE, &dev->flags);
3346 				s->locked++;
3347 			} else if (test_bit(R5_InJournal, &dev->flags)) {
3348 				set_bit(R5_LOCKED, &dev->flags);
3349 				s->locked++;
3350 			}
3351 		}
3352 		if (!s->locked)
3353 			/* False alarm - nothing to do */
3354 			return;
3355 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3356 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3357 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3358 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3359 	}
3360 
3361 	/* keep the parity disk(s) locked while asynchronous operations
3362 	 * are in flight
3363 	 */
3364 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3365 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3366 	s->locked++;
3367 
3368 	if (level == 6) {
3369 		int qd_idx = sh->qd_idx;
3370 		struct r5dev *dev = &sh->dev[qd_idx];
3371 
3372 		set_bit(R5_LOCKED, &dev->flags);
3373 		clear_bit(R5_UPTODATE, &dev->flags);
3374 		s->locked++;
3375 	}
3376 
3377 	if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3378 	    test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3379 	    !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3380 	    test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3381 		set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3382 
3383 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3384 		__func__, (unsigned long long)sh->sector,
3385 		s->locked, s->ops_request);
3386 }
3387 
3388 /*
3389  * Each stripe/dev can have one or more bion attached.
3390  * toread/towrite point to the first in a chain.
3391  * The bi_next chain must be in order.
3392  */
3393 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3394 			  int forwrite, int previous)
3395 {
3396 	struct bio **bip;
3397 	struct r5conf *conf = sh->raid_conf;
3398 	int firstwrite=0;
3399 
3400 	pr_debug("adding bi b#%llu to stripe s#%llu\n",
3401 		(unsigned long long)bi->bi_iter.bi_sector,
3402 		(unsigned long long)sh->sector);
3403 
3404 	spin_lock_irq(&sh->stripe_lock);
3405 	/* Don't allow new IO added to stripes in batch list */
3406 	if (sh->batch_head)
3407 		goto overlap;
3408 	if (forwrite) {
3409 		bip = &sh->dev[dd_idx].towrite;
3410 		if (*bip == NULL)
3411 			firstwrite = 1;
3412 	} else
3413 		bip = &sh->dev[dd_idx].toread;
3414 	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3415 		if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3416 			goto overlap;
3417 		bip = & (*bip)->bi_next;
3418 	}
3419 	if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3420 		goto overlap;
3421 
3422 	if (forwrite && raid5_has_ppl(conf)) {
3423 		/*
3424 		 * With PPL only writes to consecutive data chunks within a
3425 		 * stripe are allowed because for a single stripe_head we can
3426 		 * only have one PPL entry at a time, which describes one data
3427 		 * range. Not really an overlap, but wait_for_overlap can be
3428 		 * used to handle this.
3429 		 */
3430 		sector_t sector;
3431 		sector_t first = 0;
3432 		sector_t last = 0;
3433 		int count = 0;
3434 		int i;
3435 
3436 		for (i = 0; i < sh->disks; i++) {
3437 			if (i != sh->pd_idx &&
3438 			    (i == dd_idx || sh->dev[i].towrite)) {
3439 				sector = sh->dev[i].sector;
3440 				if (count == 0 || sector < first)
3441 					first = sector;
3442 				if (sector > last)
3443 					last = sector;
3444 				count++;
3445 			}
3446 		}
3447 
3448 		if (first + conf->chunk_sectors * (count - 1) != last)
3449 			goto overlap;
3450 	}
3451 
3452 	if (!forwrite || previous)
3453 		clear_bit(STRIPE_BATCH_READY, &sh->state);
3454 
3455 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3456 	if (*bip)
3457 		bi->bi_next = *bip;
3458 	*bip = bi;
3459 	bio_inc_remaining(bi);
3460 	md_write_inc(conf->mddev, bi);
3461 
3462 	if (forwrite) {
3463 		/* check if page is covered */
3464 		sector_t sector = sh->dev[dd_idx].sector;
3465 		for (bi=sh->dev[dd_idx].towrite;
3466 		     sector < sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf) &&
3467 			     bi && bi->bi_iter.bi_sector <= sector;
3468 		     bi = r5_next_bio(conf, bi, sh->dev[dd_idx].sector)) {
3469 			if (bio_end_sector(bi) >= sector)
3470 				sector = bio_end_sector(bi);
3471 		}
3472 		if (sector >= sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf))
3473 			if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3474 				sh->overwrite_disks++;
3475 	}
3476 
3477 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3478 		(unsigned long long)(*bip)->bi_iter.bi_sector,
3479 		(unsigned long long)sh->sector, dd_idx);
3480 
3481 	if (conf->mddev->bitmap && firstwrite) {
3482 		/* Cannot hold spinlock over bitmap_startwrite,
3483 		 * but must ensure this isn't added to a batch until
3484 		 * we have added to the bitmap and set bm_seq.
3485 		 * So set STRIPE_BITMAP_PENDING to prevent
3486 		 * batching.
3487 		 * If multiple add_stripe_bio() calls race here they
3488 		 * much all set STRIPE_BITMAP_PENDING.  So only the first one
3489 		 * to complete "bitmap_startwrite" gets to set
3490 		 * STRIPE_BIT_DELAY.  This is important as once a stripe
3491 		 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3492 		 * any more.
3493 		 */
3494 		set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3495 		spin_unlock_irq(&sh->stripe_lock);
3496 		md_bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3497 				     RAID5_STRIPE_SECTORS(conf), 0);
3498 		spin_lock_irq(&sh->stripe_lock);
3499 		clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3500 		if (!sh->batch_head) {
3501 			sh->bm_seq = conf->seq_flush+1;
3502 			set_bit(STRIPE_BIT_DELAY, &sh->state);
3503 		}
3504 	}
3505 	spin_unlock_irq(&sh->stripe_lock);
3506 
3507 	if (stripe_can_batch(sh))
3508 		stripe_add_to_batch_list(conf, sh);
3509 	return 1;
3510 
3511  overlap:
3512 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3513 	spin_unlock_irq(&sh->stripe_lock);
3514 	return 0;
3515 }
3516 
3517 static void end_reshape(struct r5conf *conf);
3518 
3519 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3520 			    struct stripe_head *sh)
3521 {
3522 	int sectors_per_chunk =
3523 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3524 	int dd_idx;
3525 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
3526 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3527 
3528 	raid5_compute_sector(conf,
3529 			     stripe * (disks - conf->max_degraded)
3530 			     *sectors_per_chunk + chunk_offset,
3531 			     previous,
3532 			     &dd_idx, sh);
3533 }
3534 
3535 static void
3536 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3537 		     struct stripe_head_state *s, int disks)
3538 {
3539 	int i;
3540 	BUG_ON(sh->batch_head);
3541 	for (i = disks; i--; ) {
3542 		struct bio *bi;
3543 		int bitmap_end = 0;
3544 
3545 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3546 			struct md_rdev *rdev;
3547 			rcu_read_lock();
3548 			rdev = rcu_dereference(conf->disks[i].rdev);
3549 			if (rdev && test_bit(In_sync, &rdev->flags) &&
3550 			    !test_bit(Faulty, &rdev->flags))
3551 				atomic_inc(&rdev->nr_pending);
3552 			else
3553 				rdev = NULL;
3554 			rcu_read_unlock();
3555 			if (rdev) {
3556 				if (!rdev_set_badblocks(
3557 					    rdev,
3558 					    sh->sector,
3559 					    RAID5_STRIPE_SECTORS(conf), 0))
3560 					md_error(conf->mddev, rdev);
3561 				rdev_dec_pending(rdev, conf->mddev);
3562 			}
3563 		}
3564 		spin_lock_irq(&sh->stripe_lock);
3565 		/* fail all writes first */
3566 		bi = sh->dev[i].towrite;
3567 		sh->dev[i].towrite = NULL;
3568 		sh->overwrite_disks = 0;
3569 		spin_unlock_irq(&sh->stripe_lock);
3570 		if (bi)
3571 			bitmap_end = 1;
3572 
3573 		log_stripe_write_finished(sh);
3574 
3575 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3576 			wake_up(&conf->wait_for_overlap);
3577 
3578 		while (bi && bi->bi_iter.bi_sector <
3579 			sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3580 			struct bio *nextbi = r5_next_bio(conf, bi, sh->dev[i].sector);
3581 
3582 			md_write_end(conf->mddev);
3583 			bio_io_error(bi);
3584 			bi = nextbi;
3585 		}
3586 		if (bitmap_end)
3587 			md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3588 					   RAID5_STRIPE_SECTORS(conf), 0, 0);
3589 		bitmap_end = 0;
3590 		/* and fail all 'written' */
3591 		bi = sh->dev[i].written;
3592 		sh->dev[i].written = NULL;
3593 		if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3594 			WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3595 			sh->dev[i].page = sh->dev[i].orig_page;
3596 		}
3597 
3598 		if (bi) bitmap_end = 1;
3599 		while (bi && bi->bi_iter.bi_sector <
3600 		       sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3601 			struct bio *bi2 = r5_next_bio(conf, bi, sh->dev[i].sector);
3602 
3603 			md_write_end(conf->mddev);
3604 			bio_io_error(bi);
3605 			bi = bi2;
3606 		}
3607 
3608 		/* fail any reads if this device is non-operational and
3609 		 * the data has not reached the cache yet.
3610 		 */
3611 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3612 		    s->failed > conf->max_degraded &&
3613 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3614 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
3615 			spin_lock_irq(&sh->stripe_lock);
3616 			bi = sh->dev[i].toread;
3617 			sh->dev[i].toread = NULL;
3618 			spin_unlock_irq(&sh->stripe_lock);
3619 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3620 				wake_up(&conf->wait_for_overlap);
3621 			if (bi)
3622 				s->to_read--;
3623 			while (bi && bi->bi_iter.bi_sector <
3624 			       sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3625 				struct bio *nextbi =
3626 					r5_next_bio(conf, bi, sh->dev[i].sector);
3627 
3628 				bio_io_error(bi);
3629 				bi = nextbi;
3630 			}
3631 		}
3632 		if (bitmap_end)
3633 			md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3634 					   RAID5_STRIPE_SECTORS(conf), 0, 0);
3635 		/* If we were in the middle of a write the parity block might
3636 		 * still be locked - so just clear all R5_LOCKED flags
3637 		 */
3638 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
3639 	}
3640 	s->to_write = 0;
3641 	s->written = 0;
3642 
3643 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3644 		if (atomic_dec_and_test(&conf->pending_full_writes))
3645 			md_wakeup_thread(conf->mddev->thread);
3646 }
3647 
3648 static void
3649 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3650 		   struct stripe_head_state *s)
3651 {
3652 	int abort = 0;
3653 	int i;
3654 
3655 	BUG_ON(sh->batch_head);
3656 	clear_bit(STRIPE_SYNCING, &sh->state);
3657 	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3658 		wake_up(&conf->wait_for_overlap);
3659 	s->syncing = 0;
3660 	s->replacing = 0;
3661 	/* There is nothing more to do for sync/check/repair.
3662 	 * Don't even need to abort as that is handled elsewhere
3663 	 * if needed, and not always wanted e.g. if there is a known
3664 	 * bad block here.
3665 	 * For recover/replace we need to record a bad block on all
3666 	 * non-sync devices, or abort the recovery
3667 	 */
3668 	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3669 		/* During recovery devices cannot be removed, so
3670 		 * locking and refcounting of rdevs is not needed
3671 		 */
3672 		rcu_read_lock();
3673 		for (i = 0; i < conf->raid_disks; i++) {
3674 			struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3675 			if (rdev
3676 			    && !test_bit(Faulty, &rdev->flags)
3677 			    && !test_bit(In_sync, &rdev->flags)
3678 			    && !rdev_set_badblocks(rdev, sh->sector,
3679 						   RAID5_STRIPE_SECTORS(conf), 0))
3680 				abort = 1;
3681 			rdev = rcu_dereference(conf->disks[i].replacement);
3682 			if (rdev
3683 			    && !test_bit(Faulty, &rdev->flags)
3684 			    && !test_bit(In_sync, &rdev->flags)
3685 			    && !rdev_set_badblocks(rdev, sh->sector,
3686 						   RAID5_STRIPE_SECTORS(conf), 0))
3687 				abort = 1;
3688 		}
3689 		rcu_read_unlock();
3690 		if (abort)
3691 			conf->recovery_disabled =
3692 				conf->mddev->recovery_disabled;
3693 	}
3694 	md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), !abort);
3695 }
3696 
3697 static int want_replace(struct stripe_head *sh, int disk_idx)
3698 {
3699 	struct md_rdev *rdev;
3700 	int rv = 0;
3701 
3702 	rcu_read_lock();
3703 	rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3704 	if (rdev
3705 	    && !test_bit(Faulty, &rdev->flags)
3706 	    && !test_bit(In_sync, &rdev->flags)
3707 	    && (rdev->recovery_offset <= sh->sector
3708 		|| rdev->mddev->recovery_cp <= sh->sector))
3709 		rv = 1;
3710 	rcu_read_unlock();
3711 	return rv;
3712 }
3713 
3714 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3715 			   int disk_idx, int disks)
3716 {
3717 	struct r5dev *dev = &sh->dev[disk_idx];
3718 	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3719 				  &sh->dev[s->failed_num[1]] };
3720 	int i;
3721 	bool force_rcw = (sh->raid_conf->rmw_level == PARITY_DISABLE_RMW);
3722 
3723 
3724 	if (test_bit(R5_LOCKED, &dev->flags) ||
3725 	    test_bit(R5_UPTODATE, &dev->flags))
3726 		/* No point reading this as we already have it or have
3727 		 * decided to get it.
3728 		 */
3729 		return 0;
3730 
3731 	if (dev->toread ||
3732 	    (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3733 		/* We need this block to directly satisfy a request */
3734 		return 1;
3735 
3736 	if (s->syncing || s->expanding ||
3737 	    (s->replacing && want_replace(sh, disk_idx)))
3738 		/* When syncing, or expanding we read everything.
3739 		 * When replacing, we need the replaced block.
3740 		 */
3741 		return 1;
3742 
3743 	if ((s->failed >= 1 && fdev[0]->toread) ||
3744 	    (s->failed >= 2 && fdev[1]->toread))
3745 		/* If we want to read from a failed device, then
3746 		 * we need to actually read every other device.
3747 		 */
3748 		return 1;
3749 
3750 	/* Sometimes neither read-modify-write nor reconstruct-write
3751 	 * cycles can work.  In those cases we read every block we
3752 	 * can.  Then the parity-update is certain to have enough to
3753 	 * work with.
3754 	 * This can only be a problem when we need to write something,
3755 	 * and some device has failed.  If either of those tests
3756 	 * fail we need look no further.
3757 	 */
3758 	if (!s->failed || !s->to_write)
3759 		return 0;
3760 
3761 	if (test_bit(R5_Insync, &dev->flags) &&
3762 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3763 		/* Pre-reads at not permitted until after short delay
3764 		 * to gather multiple requests.  However if this
3765 		 * device is no Insync, the block could only be computed
3766 		 * and there is no need to delay that.
3767 		 */
3768 		return 0;
3769 
3770 	for (i = 0; i < s->failed && i < 2; i++) {
3771 		if (fdev[i]->towrite &&
3772 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3773 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3774 			/* If we have a partial write to a failed
3775 			 * device, then we will need to reconstruct
3776 			 * the content of that device, so all other
3777 			 * devices must be read.
3778 			 */
3779 			return 1;
3780 
3781 		if (s->failed >= 2 &&
3782 		    (fdev[i]->towrite ||
3783 		     s->failed_num[i] == sh->pd_idx ||
3784 		     s->failed_num[i] == sh->qd_idx) &&
3785 		    !test_bit(R5_UPTODATE, &fdev[i]->flags))
3786 			/* In max degraded raid6, If the failed disk is P, Q,
3787 			 * or we want to read the failed disk, we need to do
3788 			 * reconstruct-write.
3789 			 */
3790 			force_rcw = true;
3791 	}
3792 
3793 	/* If we are forced to do a reconstruct-write, because parity
3794 	 * cannot be trusted and we are currently recovering it, there
3795 	 * is extra need to be careful.
3796 	 * If one of the devices that we would need to read, because
3797 	 * it is not being overwritten (and maybe not written at all)
3798 	 * is missing/faulty, then we need to read everything we can.
3799 	 */
3800 	if (!force_rcw &&
3801 	    sh->sector < sh->raid_conf->mddev->recovery_cp)
3802 		/* reconstruct-write isn't being forced */
3803 		return 0;
3804 	for (i = 0; i < s->failed && i < 2; i++) {
3805 		if (s->failed_num[i] != sh->pd_idx &&
3806 		    s->failed_num[i] != sh->qd_idx &&
3807 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3808 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3809 			return 1;
3810 	}
3811 
3812 	return 0;
3813 }
3814 
3815 /* fetch_block - checks the given member device to see if its data needs
3816  * to be read or computed to satisfy a request.
3817  *
3818  * Returns 1 when no more member devices need to be checked, otherwise returns
3819  * 0 to tell the loop in handle_stripe_fill to continue
3820  */
3821 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3822 		       int disk_idx, int disks)
3823 {
3824 	struct r5dev *dev = &sh->dev[disk_idx];
3825 
3826 	/* is the data in this block needed, and can we get it? */
3827 	if (need_this_block(sh, s, disk_idx, disks)) {
3828 		/* we would like to get this block, possibly by computing it,
3829 		 * otherwise read it if the backing disk is insync
3830 		 */
3831 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3832 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
3833 		BUG_ON(sh->batch_head);
3834 
3835 		/*
3836 		 * In the raid6 case if the only non-uptodate disk is P
3837 		 * then we already trusted P to compute the other failed
3838 		 * drives. It is safe to compute rather than re-read P.
3839 		 * In other cases we only compute blocks from failed
3840 		 * devices, otherwise check/repair might fail to detect
3841 		 * a real inconsistency.
3842 		 */
3843 
3844 		if ((s->uptodate == disks - 1) &&
3845 		    ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3846 		    (s->failed && (disk_idx == s->failed_num[0] ||
3847 				   disk_idx == s->failed_num[1])))) {
3848 			/* have disk failed, and we're requested to fetch it;
3849 			 * do compute it
3850 			 */
3851 			pr_debug("Computing stripe %llu block %d\n",
3852 			       (unsigned long long)sh->sector, disk_idx);
3853 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3854 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3855 			set_bit(R5_Wantcompute, &dev->flags);
3856 			sh->ops.target = disk_idx;
3857 			sh->ops.target2 = -1; /* no 2nd target */
3858 			s->req_compute = 1;
3859 			/* Careful: from this point on 'uptodate' is in the eye
3860 			 * of raid_run_ops which services 'compute' operations
3861 			 * before writes. R5_Wantcompute flags a block that will
3862 			 * be R5_UPTODATE by the time it is needed for a
3863 			 * subsequent operation.
3864 			 */
3865 			s->uptodate++;
3866 			return 1;
3867 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
3868 			/* Computing 2-failure is *very* expensive; only
3869 			 * do it if failed >= 2
3870 			 */
3871 			int other;
3872 			for (other = disks; other--; ) {
3873 				if (other == disk_idx)
3874 					continue;
3875 				if (!test_bit(R5_UPTODATE,
3876 				      &sh->dev[other].flags))
3877 					break;
3878 			}
3879 			BUG_ON(other < 0);
3880 			pr_debug("Computing stripe %llu blocks %d,%d\n",
3881 			       (unsigned long long)sh->sector,
3882 			       disk_idx, other);
3883 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3884 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3885 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3886 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
3887 			sh->ops.target = disk_idx;
3888 			sh->ops.target2 = other;
3889 			s->uptodate += 2;
3890 			s->req_compute = 1;
3891 			return 1;
3892 		} else if (test_bit(R5_Insync, &dev->flags)) {
3893 			set_bit(R5_LOCKED, &dev->flags);
3894 			set_bit(R5_Wantread, &dev->flags);
3895 			s->locked++;
3896 			pr_debug("Reading block %d (sync=%d)\n",
3897 				disk_idx, s->syncing);
3898 		}
3899 	}
3900 
3901 	return 0;
3902 }
3903 
3904 /*
3905  * handle_stripe_fill - read or compute data to satisfy pending requests.
3906  */
3907 static void handle_stripe_fill(struct stripe_head *sh,
3908 			       struct stripe_head_state *s,
3909 			       int disks)
3910 {
3911 	int i;
3912 
3913 	/* look for blocks to read/compute, skip this if a compute
3914 	 * is already in flight, or if the stripe contents are in the
3915 	 * midst of changing due to a write
3916 	 */
3917 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3918 	    !sh->reconstruct_state) {
3919 
3920 		/*
3921 		 * For degraded stripe with data in journal, do not handle
3922 		 * read requests yet, instead, flush the stripe to raid
3923 		 * disks first, this avoids handling complex rmw of write
3924 		 * back cache (prexor with orig_page, and then xor with
3925 		 * page) in the read path
3926 		 */
3927 		if (s->injournal && s->failed) {
3928 			if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3929 				r5c_make_stripe_write_out(sh);
3930 			goto out;
3931 		}
3932 
3933 		for (i = disks; i--; )
3934 			if (fetch_block(sh, s, i, disks))
3935 				break;
3936 	}
3937 out:
3938 	set_bit(STRIPE_HANDLE, &sh->state);
3939 }
3940 
3941 static void break_stripe_batch_list(struct stripe_head *head_sh,
3942 				    unsigned long handle_flags);
3943 /* handle_stripe_clean_event
3944  * any written block on an uptodate or failed drive can be returned.
3945  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3946  * never LOCKED, so we don't need to test 'failed' directly.
3947  */
3948 static void handle_stripe_clean_event(struct r5conf *conf,
3949 	struct stripe_head *sh, int disks)
3950 {
3951 	int i;
3952 	struct r5dev *dev;
3953 	int discard_pending = 0;
3954 	struct stripe_head *head_sh = sh;
3955 	bool do_endio = false;
3956 
3957 	for (i = disks; i--; )
3958 		if (sh->dev[i].written) {
3959 			dev = &sh->dev[i];
3960 			if (!test_bit(R5_LOCKED, &dev->flags) &&
3961 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3962 			     test_bit(R5_Discard, &dev->flags) ||
3963 			     test_bit(R5_SkipCopy, &dev->flags))) {
3964 				/* We can return any write requests */
3965 				struct bio *wbi, *wbi2;
3966 				pr_debug("Return write for disc %d\n", i);
3967 				if (test_and_clear_bit(R5_Discard, &dev->flags))
3968 					clear_bit(R5_UPTODATE, &dev->flags);
3969 				if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3970 					WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3971 				}
3972 				do_endio = true;
3973 
3974 returnbi:
3975 				dev->page = dev->orig_page;
3976 				wbi = dev->written;
3977 				dev->written = NULL;
3978 				while (wbi && wbi->bi_iter.bi_sector <
3979 					dev->sector + RAID5_STRIPE_SECTORS(conf)) {
3980 					wbi2 = r5_next_bio(conf, wbi, dev->sector);
3981 					md_write_end(conf->mddev);
3982 					bio_endio(wbi);
3983 					wbi = wbi2;
3984 				}
3985 				md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3986 						   RAID5_STRIPE_SECTORS(conf),
3987 						   !test_bit(STRIPE_DEGRADED, &sh->state),
3988 						   0);
3989 				if (head_sh->batch_head) {
3990 					sh = list_first_entry(&sh->batch_list,
3991 							      struct stripe_head,
3992 							      batch_list);
3993 					if (sh != head_sh) {
3994 						dev = &sh->dev[i];
3995 						goto returnbi;
3996 					}
3997 				}
3998 				sh = head_sh;
3999 				dev = &sh->dev[i];
4000 			} else if (test_bit(R5_Discard, &dev->flags))
4001 				discard_pending = 1;
4002 		}
4003 
4004 	log_stripe_write_finished(sh);
4005 
4006 	if (!discard_pending &&
4007 	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
4008 		int hash;
4009 		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
4010 		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4011 		if (sh->qd_idx >= 0) {
4012 			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
4013 			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
4014 		}
4015 		/* now that discard is done we can proceed with any sync */
4016 		clear_bit(STRIPE_DISCARD, &sh->state);
4017 		/*
4018 		 * SCSI discard will change some bio fields and the stripe has
4019 		 * no updated data, so remove it from hash list and the stripe
4020 		 * will be reinitialized
4021 		 */
4022 unhash:
4023 		hash = sh->hash_lock_index;
4024 		spin_lock_irq(conf->hash_locks + hash);
4025 		remove_hash(sh);
4026 		spin_unlock_irq(conf->hash_locks + hash);
4027 		if (head_sh->batch_head) {
4028 			sh = list_first_entry(&sh->batch_list,
4029 					      struct stripe_head, batch_list);
4030 			if (sh != head_sh)
4031 					goto unhash;
4032 		}
4033 		sh = head_sh;
4034 
4035 		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
4036 			set_bit(STRIPE_HANDLE, &sh->state);
4037 
4038 	}
4039 
4040 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
4041 		if (atomic_dec_and_test(&conf->pending_full_writes))
4042 			md_wakeup_thread(conf->mddev->thread);
4043 
4044 	if (head_sh->batch_head && do_endio)
4045 		break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
4046 }
4047 
4048 /*
4049  * For RMW in write back cache, we need extra page in prexor to store the
4050  * old data. This page is stored in dev->orig_page.
4051  *
4052  * This function checks whether we have data for prexor. The exact logic
4053  * is:
4054  *       R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
4055  */
4056 static inline bool uptodate_for_rmw(struct r5dev *dev)
4057 {
4058 	return (test_bit(R5_UPTODATE, &dev->flags)) &&
4059 		(!test_bit(R5_InJournal, &dev->flags) ||
4060 		 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
4061 }
4062 
4063 static int handle_stripe_dirtying(struct r5conf *conf,
4064 				  struct stripe_head *sh,
4065 				  struct stripe_head_state *s,
4066 				  int disks)
4067 {
4068 	int rmw = 0, rcw = 0, i;
4069 	sector_t recovery_cp = conf->mddev->recovery_cp;
4070 
4071 	/* Check whether resync is now happening or should start.
4072 	 * If yes, then the array is dirty (after unclean shutdown or
4073 	 * initial creation), so parity in some stripes might be inconsistent.
4074 	 * In this case, we need to always do reconstruct-write, to ensure
4075 	 * that in case of drive failure or read-error correction, we
4076 	 * generate correct data from the parity.
4077 	 */
4078 	if (conf->rmw_level == PARITY_DISABLE_RMW ||
4079 	    (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
4080 	     s->failed == 0)) {
4081 		/* Calculate the real rcw later - for now make it
4082 		 * look like rcw is cheaper
4083 		 */
4084 		rcw = 1; rmw = 2;
4085 		pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
4086 			 conf->rmw_level, (unsigned long long)recovery_cp,
4087 			 (unsigned long long)sh->sector);
4088 	} else for (i = disks; i--; ) {
4089 		/* would I have to read this buffer for read_modify_write */
4090 		struct r5dev *dev = &sh->dev[i];
4091 		if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
4092 		     i == sh->pd_idx || i == sh->qd_idx ||
4093 		     test_bit(R5_InJournal, &dev->flags)) &&
4094 		    !test_bit(R5_LOCKED, &dev->flags) &&
4095 		    !(uptodate_for_rmw(dev) ||
4096 		      test_bit(R5_Wantcompute, &dev->flags))) {
4097 			if (test_bit(R5_Insync, &dev->flags))
4098 				rmw++;
4099 			else
4100 				rmw += 2*disks;  /* cannot read it */
4101 		}
4102 		/* Would I have to read this buffer for reconstruct_write */
4103 		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4104 		    i != sh->pd_idx && i != sh->qd_idx &&
4105 		    !test_bit(R5_LOCKED, &dev->flags) &&
4106 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
4107 		      test_bit(R5_Wantcompute, &dev->flags))) {
4108 			if (test_bit(R5_Insync, &dev->flags))
4109 				rcw++;
4110 			else
4111 				rcw += 2*disks;
4112 		}
4113 	}
4114 
4115 	pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
4116 		 (unsigned long long)sh->sector, sh->state, rmw, rcw);
4117 	set_bit(STRIPE_HANDLE, &sh->state);
4118 	if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
4119 		/* prefer read-modify-write, but need to get some data */
4120 		if (conf->mddev->queue)
4121 			blk_add_trace_msg(conf->mddev->queue,
4122 					  "raid5 rmw %llu %d",
4123 					  (unsigned long long)sh->sector, rmw);
4124 		for (i = disks; i--; ) {
4125 			struct r5dev *dev = &sh->dev[i];
4126 			if (test_bit(R5_InJournal, &dev->flags) &&
4127 			    dev->page == dev->orig_page &&
4128 			    !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
4129 				/* alloc page for prexor */
4130 				struct page *p = alloc_page(GFP_NOIO);
4131 
4132 				if (p) {
4133 					dev->orig_page = p;
4134 					continue;
4135 				}
4136 
4137 				/*
4138 				 * alloc_page() failed, try use
4139 				 * disk_info->extra_page
4140 				 */
4141 				if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
4142 						      &conf->cache_state)) {
4143 					r5c_use_extra_page(sh);
4144 					break;
4145 				}
4146 
4147 				/* extra_page in use, add to delayed_list */
4148 				set_bit(STRIPE_DELAYED, &sh->state);
4149 				s->waiting_extra_page = 1;
4150 				return -EAGAIN;
4151 			}
4152 		}
4153 
4154 		for (i = disks; i--; ) {
4155 			struct r5dev *dev = &sh->dev[i];
4156 			if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
4157 			     i == sh->pd_idx || i == sh->qd_idx ||
4158 			     test_bit(R5_InJournal, &dev->flags)) &&
4159 			    !test_bit(R5_LOCKED, &dev->flags) &&
4160 			    !(uptodate_for_rmw(dev) ||
4161 			      test_bit(R5_Wantcompute, &dev->flags)) &&
4162 			    test_bit(R5_Insync, &dev->flags)) {
4163 				if (test_bit(STRIPE_PREREAD_ACTIVE,
4164 					     &sh->state)) {
4165 					pr_debug("Read_old block %d for r-m-w\n",
4166 						 i);
4167 					set_bit(R5_LOCKED, &dev->flags);
4168 					set_bit(R5_Wantread, &dev->flags);
4169 					s->locked++;
4170 				} else
4171 					set_bit(STRIPE_DELAYED, &sh->state);
4172 			}
4173 		}
4174 	}
4175 	if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
4176 		/* want reconstruct write, but need to get some data */
4177 		int qread =0;
4178 		rcw = 0;
4179 		for (i = disks; i--; ) {
4180 			struct r5dev *dev = &sh->dev[i];
4181 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4182 			    i != sh->pd_idx && i != sh->qd_idx &&
4183 			    !test_bit(R5_LOCKED, &dev->flags) &&
4184 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
4185 			      test_bit(R5_Wantcompute, &dev->flags))) {
4186 				rcw++;
4187 				if (test_bit(R5_Insync, &dev->flags) &&
4188 				    test_bit(STRIPE_PREREAD_ACTIVE,
4189 					     &sh->state)) {
4190 					pr_debug("Read_old block "
4191 						"%d for Reconstruct\n", i);
4192 					set_bit(R5_LOCKED, &dev->flags);
4193 					set_bit(R5_Wantread, &dev->flags);
4194 					s->locked++;
4195 					qread++;
4196 				} else
4197 					set_bit(STRIPE_DELAYED, &sh->state);
4198 			}
4199 		}
4200 		if (rcw && conf->mddev->queue)
4201 			blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
4202 					  (unsigned long long)sh->sector,
4203 					  rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
4204 	}
4205 
4206 	if (rcw > disks && rmw > disks &&
4207 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4208 		set_bit(STRIPE_DELAYED, &sh->state);
4209 
4210 	/* now if nothing is locked, and if we have enough data,
4211 	 * we can start a write request
4212 	 */
4213 	/* since handle_stripe can be called at any time we need to handle the
4214 	 * case where a compute block operation has been submitted and then a
4215 	 * subsequent call wants to start a write request.  raid_run_ops only
4216 	 * handles the case where compute block and reconstruct are requested
4217 	 * simultaneously.  If this is not the case then new writes need to be
4218 	 * held off until the compute completes.
4219 	 */
4220 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4221 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4222 	     !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4223 		schedule_reconstruction(sh, s, rcw == 0, 0);
4224 	return 0;
4225 }
4226 
4227 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4228 				struct stripe_head_state *s, int disks)
4229 {
4230 	struct r5dev *dev = NULL;
4231 
4232 	BUG_ON(sh->batch_head);
4233 	set_bit(STRIPE_HANDLE, &sh->state);
4234 
4235 	switch (sh->check_state) {
4236 	case check_state_idle:
4237 		/* start a new check operation if there are no failures */
4238 		if (s->failed == 0) {
4239 			BUG_ON(s->uptodate != disks);
4240 			sh->check_state = check_state_run;
4241 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
4242 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4243 			s->uptodate--;
4244 			break;
4245 		}
4246 		dev = &sh->dev[s->failed_num[0]];
4247 		fallthrough;
4248 	case check_state_compute_result:
4249 		sh->check_state = check_state_idle;
4250 		if (!dev)
4251 			dev = &sh->dev[sh->pd_idx];
4252 
4253 		/* check that a write has not made the stripe insync */
4254 		if (test_bit(STRIPE_INSYNC, &sh->state))
4255 			break;
4256 
4257 		/* either failed parity check, or recovery is happening */
4258 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4259 		BUG_ON(s->uptodate != disks);
4260 
4261 		set_bit(R5_LOCKED, &dev->flags);
4262 		s->locked++;
4263 		set_bit(R5_Wantwrite, &dev->flags);
4264 
4265 		clear_bit(STRIPE_DEGRADED, &sh->state);
4266 		set_bit(STRIPE_INSYNC, &sh->state);
4267 		break;
4268 	case check_state_run:
4269 		break; /* we will be called again upon completion */
4270 	case check_state_check_result:
4271 		sh->check_state = check_state_idle;
4272 
4273 		/* if a failure occurred during the check operation, leave
4274 		 * STRIPE_INSYNC not set and let the stripe be handled again
4275 		 */
4276 		if (s->failed)
4277 			break;
4278 
4279 		/* handle a successful check operation, if parity is correct
4280 		 * we are done.  Otherwise update the mismatch count and repair
4281 		 * parity if !MD_RECOVERY_CHECK
4282 		 */
4283 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4284 			/* parity is correct (on disc,
4285 			 * not in buffer any more)
4286 			 */
4287 			set_bit(STRIPE_INSYNC, &sh->state);
4288 		else {
4289 			atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4290 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4291 				/* don't try to repair!! */
4292 				set_bit(STRIPE_INSYNC, &sh->state);
4293 				pr_warn_ratelimited("%s: mismatch sector in range "
4294 						    "%llu-%llu\n", mdname(conf->mddev),
4295 						    (unsigned long long) sh->sector,
4296 						    (unsigned long long) sh->sector +
4297 						    RAID5_STRIPE_SECTORS(conf));
4298 			} else {
4299 				sh->check_state = check_state_compute_run;
4300 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4301 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4302 				set_bit(R5_Wantcompute,
4303 					&sh->dev[sh->pd_idx].flags);
4304 				sh->ops.target = sh->pd_idx;
4305 				sh->ops.target2 = -1;
4306 				s->uptodate++;
4307 			}
4308 		}
4309 		break;
4310 	case check_state_compute_run:
4311 		break;
4312 	default:
4313 		pr_err("%s: unknown check_state: %d sector: %llu\n",
4314 		       __func__, sh->check_state,
4315 		       (unsigned long long) sh->sector);
4316 		BUG();
4317 	}
4318 }
4319 
4320 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4321 				  struct stripe_head_state *s,
4322 				  int disks)
4323 {
4324 	int pd_idx = sh->pd_idx;
4325 	int qd_idx = sh->qd_idx;
4326 	struct r5dev *dev;
4327 
4328 	BUG_ON(sh->batch_head);
4329 	set_bit(STRIPE_HANDLE, &sh->state);
4330 
4331 	BUG_ON(s->failed > 2);
4332 
4333 	/* Want to check and possibly repair P and Q.
4334 	 * However there could be one 'failed' device, in which
4335 	 * case we can only check one of them, possibly using the
4336 	 * other to generate missing data
4337 	 */
4338 
4339 	switch (sh->check_state) {
4340 	case check_state_idle:
4341 		/* start a new check operation if there are < 2 failures */
4342 		if (s->failed == s->q_failed) {
4343 			/* The only possible failed device holds Q, so it
4344 			 * makes sense to check P (If anything else were failed,
4345 			 * we would have used P to recreate it).
4346 			 */
4347 			sh->check_state = check_state_run;
4348 		}
4349 		if (!s->q_failed && s->failed < 2) {
4350 			/* Q is not failed, and we didn't use it to generate
4351 			 * anything, so it makes sense to check it
4352 			 */
4353 			if (sh->check_state == check_state_run)
4354 				sh->check_state = check_state_run_pq;
4355 			else
4356 				sh->check_state = check_state_run_q;
4357 		}
4358 
4359 		/* discard potentially stale zero_sum_result */
4360 		sh->ops.zero_sum_result = 0;
4361 
4362 		if (sh->check_state == check_state_run) {
4363 			/* async_xor_zero_sum destroys the contents of P */
4364 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4365 			s->uptodate--;
4366 		}
4367 		if (sh->check_state >= check_state_run &&
4368 		    sh->check_state <= check_state_run_pq) {
4369 			/* async_syndrome_zero_sum preserves P and Q, so
4370 			 * no need to mark them !uptodate here
4371 			 */
4372 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
4373 			break;
4374 		}
4375 
4376 		/* we have 2-disk failure */
4377 		BUG_ON(s->failed != 2);
4378 		fallthrough;
4379 	case check_state_compute_result:
4380 		sh->check_state = check_state_idle;
4381 
4382 		/* check that a write has not made the stripe insync */
4383 		if (test_bit(STRIPE_INSYNC, &sh->state))
4384 			break;
4385 
4386 		/* now write out any block on a failed drive,
4387 		 * or P or Q if they were recomputed
4388 		 */
4389 		dev = NULL;
4390 		if (s->failed == 2) {
4391 			dev = &sh->dev[s->failed_num[1]];
4392 			s->locked++;
4393 			set_bit(R5_LOCKED, &dev->flags);
4394 			set_bit(R5_Wantwrite, &dev->flags);
4395 		}
4396 		if (s->failed >= 1) {
4397 			dev = &sh->dev[s->failed_num[0]];
4398 			s->locked++;
4399 			set_bit(R5_LOCKED, &dev->flags);
4400 			set_bit(R5_Wantwrite, &dev->flags);
4401 		}
4402 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4403 			dev = &sh->dev[pd_idx];
4404 			s->locked++;
4405 			set_bit(R5_LOCKED, &dev->flags);
4406 			set_bit(R5_Wantwrite, &dev->flags);
4407 		}
4408 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4409 			dev = &sh->dev[qd_idx];
4410 			s->locked++;
4411 			set_bit(R5_LOCKED, &dev->flags);
4412 			set_bit(R5_Wantwrite, &dev->flags);
4413 		}
4414 		if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags),
4415 			      "%s: disk%td not up to date\n",
4416 			      mdname(conf->mddev),
4417 			      dev - (struct r5dev *) &sh->dev)) {
4418 			clear_bit(R5_LOCKED, &dev->flags);
4419 			clear_bit(R5_Wantwrite, &dev->flags);
4420 			s->locked--;
4421 		}
4422 		clear_bit(STRIPE_DEGRADED, &sh->state);
4423 
4424 		set_bit(STRIPE_INSYNC, &sh->state);
4425 		break;
4426 	case check_state_run:
4427 	case check_state_run_q:
4428 	case check_state_run_pq:
4429 		break; /* we will be called again upon completion */
4430 	case check_state_check_result:
4431 		sh->check_state = check_state_idle;
4432 
4433 		/* handle a successful check operation, if parity is correct
4434 		 * we are done.  Otherwise update the mismatch count and repair
4435 		 * parity if !MD_RECOVERY_CHECK
4436 		 */
4437 		if (sh->ops.zero_sum_result == 0) {
4438 			/* both parities are correct */
4439 			if (!s->failed)
4440 				set_bit(STRIPE_INSYNC, &sh->state);
4441 			else {
4442 				/* in contrast to the raid5 case we can validate
4443 				 * parity, but still have a failure to write
4444 				 * back
4445 				 */
4446 				sh->check_state = check_state_compute_result;
4447 				/* Returning at this point means that we may go
4448 				 * off and bring p and/or q uptodate again so
4449 				 * we make sure to check zero_sum_result again
4450 				 * to verify if p or q need writeback
4451 				 */
4452 			}
4453 		} else {
4454 			atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4455 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4456 				/* don't try to repair!! */
4457 				set_bit(STRIPE_INSYNC, &sh->state);
4458 				pr_warn_ratelimited("%s: mismatch sector in range "
4459 						    "%llu-%llu\n", mdname(conf->mddev),
4460 						    (unsigned long long) sh->sector,
4461 						    (unsigned long long) sh->sector +
4462 						    RAID5_STRIPE_SECTORS(conf));
4463 			} else {
4464 				int *target = &sh->ops.target;
4465 
4466 				sh->ops.target = -1;
4467 				sh->ops.target2 = -1;
4468 				sh->check_state = check_state_compute_run;
4469 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4470 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4471 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4472 					set_bit(R5_Wantcompute,
4473 						&sh->dev[pd_idx].flags);
4474 					*target = pd_idx;
4475 					target = &sh->ops.target2;
4476 					s->uptodate++;
4477 				}
4478 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4479 					set_bit(R5_Wantcompute,
4480 						&sh->dev[qd_idx].flags);
4481 					*target = qd_idx;
4482 					s->uptodate++;
4483 				}
4484 			}
4485 		}
4486 		break;
4487 	case check_state_compute_run:
4488 		break;
4489 	default:
4490 		pr_warn("%s: unknown check_state: %d sector: %llu\n",
4491 			__func__, sh->check_state,
4492 			(unsigned long long) sh->sector);
4493 		BUG();
4494 	}
4495 }
4496 
4497 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4498 {
4499 	int i;
4500 
4501 	/* We have read all the blocks in this stripe and now we need to
4502 	 * copy some of them into a target stripe for expand.
4503 	 */
4504 	struct dma_async_tx_descriptor *tx = NULL;
4505 	BUG_ON(sh->batch_head);
4506 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4507 	for (i = 0; i < sh->disks; i++)
4508 		if (i != sh->pd_idx && i != sh->qd_idx) {
4509 			int dd_idx, j;
4510 			struct stripe_head *sh2;
4511 			struct async_submit_ctl submit;
4512 
4513 			sector_t bn = raid5_compute_blocknr(sh, i, 1);
4514 			sector_t s = raid5_compute_sector(conf, bn, 0,
4515 							  &dd_idx, NULL);
4516 			sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
4517 			if (sh2 == NULL)
4518 				/* so far only the early blocks of this stripe
4519 				 * have been requested.  When later blocks
4520 				 * get requested, we will try again
4521 				 */
4522 				continue;
4523 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4524 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4525 				/* must have already done this block */
4526 				raid5_release_stripe(sh2);
4527 				continue;
4528 			}
4529 
4530 			/* place all the copies on one channel */
4531 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4532 			tx = async_memcpy(sh2->dev[dd_idx].page,
4533 					  sh->dev[i].page, sh2->dev[dd_idx].offset,
4534 					  sh->dev[i].offset, RAID5_STRIPE_SIZE(conf),
4535 					  &submit);
4536 
4537 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4538 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4539 			for (j = 0; j < conf->raid_disks; j++)
4540 				if (j != sh2->pd_idx &&
4541 				    j != sh2->qd_idx &&
4542 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
4543 					break;
4544 			if (j == conf->raid_disks) {
4545 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
4546 				set_bit(STRIPE_HANDLE, &sh2->state);
4547 			}
4548 			raid5_release_stripe(sh2);
4549 
4550 		}
4551 	/* done submitting copies, wait for them to complete */
4552 	async_tx_quiesce(&tx);
4553 }
4554 
4555 /*
4556  * handle_stripe - do things to a stripe.
4557  *
4558  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4559  * state of various bits to see what needs to be done.
4560  * Possible results:
4561  *    return some read requests which now have data
4562  *    return some write requests which are safely on storage
4563  *    schedule a read on some buffers
4564  *    schedule a write of some buffers
4565  *    return confirmation of parity correctness
4566  *
4567  */
4568 
4569 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4570 {
4571 	struct r5conf *conf = sh->raid_conf;
4572 	int disks = sh->disks;
4573 	struct r5dev *dev;
4574 	int i;
4575 	int do_recovery = 0;
4576 
4577 	memset(s, 0, sizeof(*s));
4578 
4579 	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4580 	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4581 	s->failed_num[0] = -1;
4582 	s->failed_num[1] = -1;
4583 	s->log_failed = r5l_log_disk_error(conf);
4584 
4585 	/* Now to look around and see what can be done */
4586 	rcu_read_lock();
4587 	for (i=disks; i--; ) {
4588 		struct md_rdev *rdev;
4589 		sector_t first_bad;
4590 		int bad_sectors;
4591 		int is_bad = 0;
4592 
4593 		dev = &sh->dev[i];
4594 
4595 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4596 			 i, dev->flags,
4597 			 dev->toread, dev->towrite, dev->written);
4598 		/* maybe we can reply to a read
4599 		 *
4600 		 * new wantfill requests are only permitted while
4601 		 * ops_complete_biofill is guaranteed to be inactive
4602 		 */
4603 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4604 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4605 			set_bit(R5_Wantfill, &dev->flags);
4606 
4607 		/* now count some things */
4608 		if (test_bit(R5_LOCKED, &dev->flags))
4609 			s->locked++;
4610 		if (test_bit(R5_UPTODATE, &dev->flags))
4611 			s->uptodate++;
4612 		if (test_bit(R5_Wantcompute, &dev->flags)) {
4613 			s->compute++;
4614 			BUG_ON(s->compute > 2);
4615 		}
4616 
4617 		if (test_bit(R5_Wantfill, &dev->flags))
4618 			s->to_fill++;
4619 		else if (dev->toread)
4620 			s->to_read++;
4621 		if (dev->towrite) {
4622 			s->to_write++;
4623 			if (!test_bit(R5_OVERWRITE, &dev->flags))
4624 				s->non_overwrite++;
4625 		}
4626 		if (dev->written)
4627 			s->written++;
4628 		/* Prefer to use the replacement for reads, but only
4629 		 * if it is recovered enough and has no bad blocks.
4630 		 */
4631 		rdev = rcu_dereference(conf->disks[i].replacement);
4632 		if (rdev && !test_bit(Faulty, &rdev->flags) &&
4633 		    rdev->recovery_offset >= sh->sector + RAID5_STRIPE_SECTORS(conf) &&
4634 		    !is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
4635 				 &first_bad, &bad_sectors))
4636 			set_bit(R5_ReadRepl, &dev->flags);
4637 		else {
4638 			if (rdev && !test_bit(Faulty, &rdev->flags))
4639 				set_bit(R5_NeedReplace, &dev->flags);
4640 			else
4641 				clear_bit(R5_NeedReplace, &dev->flags);
4642 			rdev = rcu_dereference(conf->disks[i].rdev);
4643 			clear_bit(R5_ReadRepl, &dev->flags);
4644 		}
4645 		if (rdev && test_bit(Faulty, &rdev->flags))
4646 			rdev = NULL;
4647 		if (rdev) {
4648 			is_bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
4649 					     &first_bad, &bad_sectors);
4650 			if (s->blocked_rdev == NULL
4651 			    && (test_bit(Blocked, &rdev->flags)
4652 				|| is_bad < 0)) {
4653 				if (is_bad < 0)
4654 					set_bit(BlockedBadBlocks,
4655 						&rdev->flags);
4656 				s->blocked_rdev = rdev;
4657 				atomic_inc(&rdev->nr_pending);
4658 			}
4659 		}
4660 		clear_bit(R5_Insync, &dev->flags);
4661 		if (!rdev)
4662 			/* Not in-sync */;
4663 		else if (is_bad) {
4664 			/* also not in-sync */
4665 			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4666 			    test_bit(R5_UPTODATE, &dev->flags)) {
4667 				/* treat as in-sync, but with a read error
4668 				 * which we can now try to correct
4669 				 */
4670 				set_bit(R5_Insync, &dev->flags);
4671 				set_bit(R5_ReadError, &dev->flags);
4672 			}
4673 		} else if (test_bit(In_sync, &rdev->flags))
4674 			set_bit(R5_Insync, &dev->flags);
4675 		else if (sh->sector + RAID5_STRIPE_SECTORS(conf) <= rdev->recovery_offset)
4676 			/* in sync if before recovery_offset */
4677 			set_bit(R5_Insync, &dev->flags);
4678 		else if (test_bit(R5_UPTODATE, &dev->flags) &&
4679 			 test_bit(R5_Expanded, &dev->flags))
4680 			/* If we've reshaped into here, we assume it is Insync.
4681 			 * We will shortly update recovery_offset to make
4682 			 * it official.
4683 			 */
4684 			set_bit(R5_Insync, &dev->flags);
4685 
4686 		if (test_bit(R5_WriteError, &dev->flags)) {
4687 			/* This flag does not apply to '.replacement'
4688 			 * only to .rdev, so make sure to check that*/
4689 			struct md_rdev *rdev2 = rcu_dereference(
4690 				conf->disks[i].rdev);
4691 			if (rdev2 == rdev)
4692 				clear_bit(R5_Insync, &dev->flags);
4693 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4694 				s->handle_bad_blocks = 1;
4695 				atomic_inc(&rdev2->nr_pending);
4696 			} else
4697 				clear_bit(R5_WriteError, &dev->flags);
4698 		}
4699 		if (test_bit(R5_MadeGood, &dev->flags)) {
4700 			/* This flag does not apply to '.replacement'
4701 			 * only to .rdev, so make sure to check that*/
4702 			struct md_rdev *rdev2 = rcu_dereference(
4703 				conf->disks[i].rdev);
4704 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4705 				s->handle_bad_blocks = 1;
4706 				atomic_inc(&rdev2->nr_pending);
4707 			} else
4708 				clear_bit(R5_MadeGood, &dev->flags);
4709 		}
4710 		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4711 			struct md_rdev *rdev2 = rcu_dereference(
4712 				conf->disks[i].replacement);
4713 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4714 				s->handle_bad_blocks = 1;
4715 				atomic_inc(&rdev2->nr_pending);
4716 			} else
4717 				clear_bit(R5_MadeGoodRepl, &dev->flags);
4718 		}
4719 		if (!test_bit(R5_Insync, &dev->flags)) {
4720 			/* The ReadError flag will just be confusing now */
4721 			clear_bit(R5_ReadError, &dev->flags);
4722 			clear_bit(R5_ReWrite, &dev->flags);
4723 		}
4724 		if (test_bit(R5_ReadError, &dev->flags))
4725 			clear_bit(R5_Insync, &dev->flags);
4726 		if (!test_bit(R5_Insync, &dev->flags)) {
4727 			if (s->failed < 2)
4728 				s->failed_num[s->failed] = i;
4729 			s->failed++;
4730 			if (rdev && !test_bit(Faulty, &rdev->flags))
4731 				do_recovery = 1;
4732 			else if (!rdev) {
4733 				rdev = rcu_dereference(
4734 				    conf->disks[i].replacement);
4735 				if (rdev && !test_bit(Faulty, &rdev->flags))
4736 					do_recovery = 1;
4737 			}
4738 		}
4739 
4740 		if (test_bit(R5_InJournal, &dev->flags))
4741 			s->injournal++;
4742 		if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4743 			s->just_cached++;
4744 	}
4745 	if (test_bit(STRIPE_SYNCING, &sh->state)) {
4746 		/* If there is a failed device being replaced,
4747 		 *     we must be recovering.
4748 		 * else if we are after recovery_cp, we must be syncing
4749 		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4750 		 * else we can only be replacing
4751 		 * sync and recovery both need to read all devices, and so
4752 		 * use the same flag.
4753 		 */
4754 		if (do_recovery ||
4755 		    sh->sector >= conf->mddev->recovery_cp ||
4756 		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4757 			s->syncing = 1;
4758 		else
4759 			s->replacing = 1;
4760 	}
4761 	rcu_read_unlock();
4762 }
4763 
4764 /*
4765  * Return '1' if this is a member of batch, or '0' if it is a lone stripe or
4766  * a head which can now be handled.
4767  */
4768 static int clear_batch_ready(struct stripe_head *sh)
4769 {
4770 	struct stripe_head *tmp;
4771 	if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4772 		return (sh->batch_head && sh->batch_head != sh);
4773 	spin_lock(&sh->stripe_lock);
4774 	if (!sh->batch_head) {
4775 		spin_unlock(&sh->stripe_lock);
4776 		return 0;
4777 	}
4778 
4779 	/*
4780 	 * this stripe could be added to a batch list before we check
4781 	 * BATCH_READY, skips it
4782 	 */
4783 	if (sh->batch_head != sh) {
4784 		spin_unlock(&sh->stripe_lock);
4785 		return 1;
4786 	}
4787 	spin_lock(&sh->batch_lock);
4788 	list_for_each_entry(tmp, &sh->batch_list, batch_list)
4789 		clear_bit(STRIPE_BATCH_READY, &tmp->state);
4790 	spin_unlock(&sh->batch_lock);
4791 	spin_unlock(&sh->stripe_lock);
4792 
4793 	/*
4794 	 * BATCH_READY is cleared, no new stripes can be added.
4795 	 * batch_list can be accessed without lock
4796 	 */
4797 	return 0;
4798 }
4799 
4800 static void break_stripe_batch_list(struct stripe_head *head_sh,
4801 				    unsigned long handle_flags)
4802 {
4803 	struct stripe_head *sh, *next;
4804 	int i;
4805 	int do_wakeup = 0;
4806 
4807 	list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4808 
4809 		list_del_init(&sh->batch_list);
4810 
4811 		WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4812 					  (1 << STRIPE_SYNCING) |
4813 					  (1 << STRIPE_REPLACED) |
4814 					  (1 << STRIPE_DELAYED) |
4815 					  (1 << STRIPE_BIT_DELAY) |
4816 					  (1 << STRIPE_FULL_WRITE) |
4817 					  (1 << STRIPE_BIOFILL_RUN) |
4818 					  (1 << STRIPE_COMPUTE_RUN)  |
4819 					  (1 << STRIPE_DISCARD) |
4820 					  (1 << STRIPE_BATCH_READY) |
4821 					  (1 << STRIPE_BATCH_ERR) |
4822 					  (1 << STRIPE_BITMAP_PENDING)),
4823 			"stripe state: %lx\n", sh->state);
4824 		WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4825 					      (1 << STRIPE_REPLACED)),
4826 			"head stripe state: %lx\n", head_sh->state);
4827 
4828 		set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4829 					    (1 << STRIPE_PREREAD_ACTIVE) |
4830 					    (1 << STRIPE_DEGRADED) |
4831 					    (1 << STRIPE_ON_UNPLUG_LIST)),
4832 			      head_sh->state & (1 << STRIPE_INSYNC));
4833 
4834 		sh->check_state = head_sh->check_state;
4835 		sh->reconstruct_state = head_sh->reconstruct_state;
4836 		spin_lock_irq(&sh->stripe_lock);
4837 		sh->batch_head = NULL;
4838 		spin_unlock_irq(&sh->stripe_lock);
4839 		for (i = 0; i < sh->disks; i++) {
4840 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4841 				do_wakeup = 1;
4842 			sh->dev[i].flags = head_sh->dev[i].flags &
4843 				(~((1 << R5_WriteError) | (1 << R5_Overlap)));
4844 		}
4845 		if (handle_flags == 0 ||
4846 		    sh->state & handle_flags)
4847 			set_bit(STRIPE_HANDLE, &sh->state);
4848 		raid5_release_stripe(sh);
4849 	}
4850 	spin_lock_irq(&head_sh->stripe_lock);
4851 	head_sh->batch_head = NULL;
4852 	spin_unlock_irq(&head_sh->stripe_lock);
4853 	for (i = 0; i < head_sh->disks; i++)
4854 		if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4855 			do_wakeup = 1;
4856 	if (head_sh->state & handle_flags)
4857 		set_bit(STRIPE_HANDLE, &head_sh->state);
4858 
4859 	if (do_wakeup)
4860 		wake_up(&head_sh->raid_conf->wait_for_overlap);
4861 }
4862 
4863 static void handle_stripe(struct stripe_head *sh)
4864 {
4865 	struct stripe_head_state s;
4866 	struct r5conf *conf = sh->raid_conf;
4867 	int i;
4868 	int prexor;
4869 	int disks = sh->disks;
4870 	struct r5dev *pdev, *qdev;
4871 
4872 	clear_bit(STRIPE_HANDLE, &sh->state);
4873 
4874 	/*
4875 	 * handle_stripe should not continue handle the batched stripe, only
4876 	 * the head of batch list or lone stripe can continue. Otherwise we
4877 	 * could see break_stripe_batch_list warns about the STRIPE_ACTIVE
4878 	 * is set for the batched stripe.
4879 	 */
4880 	if (clear_batch_ready(sh))
4881 		return;
4882 
4883 	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4884 		/* already being handled, ensure it gets handled
4885 		 * again when current action finishes */
4886 		set_bit(STRIPE_HANDLE, &sh->state);
4887 		return;
4888 	}
4889 
4890 	if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4891 		break_stripe_batch_list(sh, 0);
4892 
4893 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4894 		spin_lock(&sh->stripe_lock);
4895 		/*
4896 		 * Cannot process 'sync' concurrently with 'discard'.
4897 		 * Flush data in r5cache before 'sync'.
4898 		 */
4899 		if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4900 		    !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4901 		    !test_bit(STRIPE_DISCARD, &sh->state) &&
4902 		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4903 			set_bit(STRIPE_SYNCING, &sh->state);
4904 			clear_bit(STRIPE_INSYNC, &sh->state);
4905 			clear_bit(STRIPE_REPLACED, &sh->state);
4906 		}
4907 		spin_unlock(&sh->stripe_lock);
4908 	}
4909 	clear_bit(STRIPE_DELAYED, &sh->state);
4910 
4911 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4912 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4913 	       (unsigned long long)sh->sector, sh->state,
4914 	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4915 	       sh->check_state, sh->reconstruct_state);
4916 
4917 	analyse_stripe(sh, &s);
4918 
4919 	if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4920 		goto finish;
4921 
4922 	if (s.handle_bad_blocks ||
4923 	    test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4924 		set_bit(STRIPE_HANDLE, &sh->state);
4925 		goto finish;
4926 	}
4927 
4928 	if (unlikely(s.blocked_rdev)) {
4929 		if (s.syncing || s.expanding || s.expanded ||
4930 		    s.replacing || s.to_write || s.written) {
4931 			set_bit(STRIPE_HANDLE, &sh->state);
4932 			goto finish;
4933 		}
4934 		/* There is nothing for the blocked_rdev to block */
4935 		rdev_dec_pending(s.blocked_rdev, conf->mddev);
4936 		s.blocked_rdev = NULL;
4937 	}
4938 
4939 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4940 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4941 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4942 	}
4943 
4944 	pr_debug("locked=%d uptodate=%d to_read=%d"
4945 	       " to_write=%d failed=%d failed_num=%d,%d\n",
4946 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4947 	       s.failed_num[0], s.failed_num[1]);
4948 	/*
4949 	 * check if the array has lost more than max_degraded devices and,
4950 	 * if so, some requests might need to be failed.
4951 	 *
4952 	 * When journal device failed (log_failed), we will only process
4953 	 * the stripe if there is data need write to raid disks
4954 	 */
4955 	if (s.failed > conf->max_degraded ||
4956 	    (s.log_failed && s.injournal == 0)) {
4957 		sh->check_state = 0;
4958 		sh->reconstruct_state = 0;
4959 		break_stripe_batch_list(sh, 0);
4960 		if (s.to_read+s.to_write+s.written)
4961 			handle_failed_stripe(conf, sh, &s, disks);
4962 		if (s.syncing + s.replacing)
4963 			handle_failed_sync(conf, sh, &s);
4964 	}
4965 
4966 	/* Now we check to see if any write operations have recently
4967 	 * completed
4968 	 */
4969 	prexor = 0;
4970 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4971 		prexor = 1;
4972 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
4973 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4974 		sh->reconstruct_state = reconstruct_state_idle;
4975 
4976 		/* All the 'written' buffers and the parity block are ready to
4977 		 * be written back to disk
4978 		 */
4979 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4980 		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4981 		BUG_ON(sh->qd_idx >= 0 &&
4982 		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4983 		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4984 		for (i = disks; i--; ) {
4985 			struct r5dev *dev = &sh->dev[i];
4986 			if (test_bit(R5_LOCKED, &dev->flags) &&
4987 				(i == sh->pd_idx || i == sh->qd_idx ||
4988 				 dev->written || test_bit(R5_InJournal,
4989 							  &dev->flags))) {
4990 				pr_debug("Writing block %d\n", i);
4991 				set_bit(R5_Wantwrite, &dev->flags);
4992 				if (prexor)
4993 					continue;
4994 				if (s.failed > 1)
4995 					continue;
4996 				if (!test_bit(R5_Insync, &dev->flags) ||
4997 				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
4998 				     s.failed == 0))
4999 					set_bit(STRIPE_INSYNC, &sh->state);
5000 			}
5001 		}
5002 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5003 			s.dec_preread_active = 1;
5004 	}
5005 
5006 	/*
5007 	 * might be able to return some write requests if the parity blocks
5008 	 * are safe, or on a failed drive
5009 	 */
5010 	pdev = &sh->dev[sh->pd_idx];
5011 	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
5012 		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
5013 	qdev = &sh->dev[sh->qd_idx];
5014 	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
5015 		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
5016 		|| conf->level < 6;
5017 
5018 	if (s.written &&
5019 	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
5020 			     && !test_bit(R5_LOCKED, &pdev->flags)
5021 			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
5022 				 test_bit(R5_Discard, &pdev->flags))))) &&
5023 	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
5024 			     && !test_bit(R5_LOCKED, &qdev->flags)
5025 			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
5026 				 test_bit(R5_Discard, &qdev->flags))))))
5027 		handle_stripe_clean_event(conf, sh, disks);
5028 
5029 	if (s.just_cached)
5030 		r5c_handle_cached_data_endio(conf, sh, disks);
5031 	log_stripe_write_finished(sh);
5032 
5033 	/* Now we might consider reading some blocks, either to check/generate
5034 	 * parity, or to satisfy requests
5035 	 * or to load a block that is being partially written.
5036 	 */
5037 	if (s.to_read || s.non_overwrite
5038 	    || (s.to_write && s.failed)
5039 	    || (s.syncing && (s.uptodate + s.compute < disks))
5040 	    || s.replacing
5041 	    || s.expanding)
5042 		handle_stripe_fill(sh, &s, disks);
5043 
5044 	/*
5045 	 * When the stripe finishes full journal write cycle (write to journal
5046 	 * and raid disk), this is the clean up procedure so it is ready for
5047 	 * next operation.
5048 	 */
5049 	r5c_finish_stripe_write_out(conf, sh, &s);
5050 
5051 	/*
5052 	 * Now to consider new write requests, cache write back and what else,
5053 	 * if anything should be read.  We do not handle new writes when:
5054 	 * 1/ A 'write' operation (copy+xor) is already in flight.
5055 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
5056 	 *    block.
5057 	 * 3/ A r5c cache log write is in flight.
5058 	 */
5059 
5060 	if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
5061 		if (!r5c_is_writeback(conf->log)) {
5062 			if (s.to_write)
5063 				handle_stripe_dirtying(conf, sh, &s, disks);
5064 		} else { /* write back cache */
5065 			int ret = 0;
5066 
5067 			/* First, try handle writes in caching phase */
5068 			if (s.to_write)
5069 				ret = r5c_try_caching_write(conf, sh, &s,
5070 							    disks);
5071 			/*
5072 			 * If caching phase failed: ret == -EAGAIN
5073 			 *    OR
5074 			 * stripe under reclaim: !caching && injournal
5075 			 *
5076 			 * fall back to handle_stripe_dirtying()
5077 			 */
5078 			if (ret == -EAGAIN ||
5079 			    /* stripe under reclaim: !caching && injournal */
5080 			    (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
5081 			     s.injournal > 0)) {
5082 				ret = handle_stripe_dirtying(conf, sh, &s,
5083 							     disks);
5084 				if (ret == -EAGAIN)
5085 					goto finish;
5086 			}
5087 		}
5088 	}
5089 
5090 	/* maybe we need to check and possibly fix the parity for this stripe
5091 	 * Any reads will already have been scheduled, so we just see if enough
5092 	 * data is available.  The parity check is held off while parity
5093 	 * dependent operations are in flight.
5094 	 */
5095 	if (sh->check_state ||
5096 	    (s.syncing && s.locked == 0 &&
5097 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5098 	     !test_bit(STRIPE_INSYNC, &sh->state))) {
5099 		if (conf->level == 6)
5100 			handle_parity_checks6(conf, sh, &s, disks);
5101 		else
5102 			handle_parity_checks5(conf, sh, &s, disks);
5103 	}
5104 
5105 	if ((s.replacing || s.syncing) && s.locked == 0
5106 	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
5107 	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
5108 		/* Write out to replacement devices where possible */
5109 		for (i = 0; i < conf->raid_disks; i++)
5110 			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
5111 				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
5112 				set_bit(R5_WantReplace, &sh->dev[i].flags);
5113 				set_bit(R5_LOCKED, &sh->dev[i].flags);
5114 				s.locked++;
5115 			}
5116 		if (s.replacing)
5117 			set_bit(STRIPE_INSYNC, &sh->state);
5118 		set_bit(STRIPE_REPLACED, &sh->state);
5119 	}
5120 	if ((s.syncing || s.replacing) && s.locked == 0 &&
5121 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5122 	    test_bit(STRIPE_INSYNC, &sh->state)) {
5123 		md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
5124 		clear_bit(STRIPE_SYNCING, &sh->state);
5125 		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
5126 			wake_up(&conf->wait_for_overlap);
5127 	}
5128 
5129 	/* If the failed drives are just a ReadError, then we might need
5130 	 * to progress the repair/check process
5131 	 */
5132 	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
5133 		for (i = 0; i < s.failed; i++) {
5134 			struct r5dev *dev = &sh->dev[s.failed_num[i]];
5135 			if (test_bit(R5_ReadError, &dev->flags)
5136 			    && !test_bit(R5_LOCKED, &dev->flags)
5137 			    && test_bit(R5_UPTODATE, &dev->flags)
5138 				) {
5139 				if (!test_bit(R5_ReWrite, &dev->flags)) {
5140 					set_bit(R5_Wantwrite, &dev->flags);
5141 					set_bit(R5_ReWrite, &dev->flags);
5142 				} else
5143 					/* let's read it back */
5144 					set_bit(R5_Wantread, &dev->flags);
5145 				set_bit(R5_LOCKED, &dev->flags);
5146 				s.locked++;
5147 			}
5148 		}
5149 
5150 	/* Finish reconstruct operations initiated by the expansion process */
5151 	if (sh->reconstruct_state == reconstruct_state_result) {
5152 		struct stripe_head *sh_src
5153 			= raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
5154 		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
5155 			/* sh cannot be written until sh_src has been read.
5156 			 * so arrange for sh to be delayed a little
5157 			 */
5158 			set_bit(STRIPE_DELAYED, &sh->state);
5159 			set_bit(STRIPE_HANDLE, &sh->state);
5160 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
5161 					      &sh_src->state))
5162 				atomic_inc(&conf->preread_active_stripes);
5163 			raid5_release_stripe(sh_src);
5164 			goto finish;
5165 		}
5166 		if (sh_src)
5167 			raid5_release_stripe(sh_src);
5168 
5169 		sh->reconstruct_state = reconstruct_state_idle;
5170 		clear_bit(STRIPE_EXPANDING, &sh->state);
5171 		for (i = conf->raid_disks; i--; ) {
5172 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
5173 			set_bit(R5_LOCKED, &sh->dev[i].flags);
5174 			s.locked++;
5175 		}
5176 	}
5177 
5178 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
5179 	    !sh->reconstruct_state) {
5180 		/* Need to write out all blocks after computing parity */
5181 		sh->disks = conf->raid_disks;
5182 		stripe_set_idx(sh->sector, conf, 0, sh);
5183 		schedule_reconstruction(sh, &s, 1, 1);
5184 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
5185 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
5186 		atomic_dec(&conf->reshape_stripes);
5187 		wake_up(&conf->wait_for_overlap);
5188 		md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
5189 	}
5190 
5191 	if (s.expanding && s.locked == 0 &&
5192 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
5193 		handle_stripe_expansion(conf, sh);
5194 
5195 finish:
5196 	/* wait for this device to become unblocked */
5197 	if (unlikely(s.blocked_rdev)) {
5198 		if (conf->mddev->external)
5199 			md_wait_for_blocked_rdev(s.blocked_rdev,
5200 						 conf->mddev);
5201 		else
5202 			/* Internal metadata will immediately
5203 			 * be written by raid5d, so we don't
5204 			 * need to wait here.
5205 			 */
5206 			rdev_dec_pending(s.blocked_rdev,
5207 					 conf->mddev);
5208 	}
5209 
5210 	if (s.handle_bad_blocks)
5211 		for (i = disks; i--; ) {
5212 			struct md_rdev *rdev;
5213 			struct r5dev *dev = &sh->dev[i];
5214 			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
5215 				/* We own a safe reference to the rdev */
5216 				rdev = conf->disks[i].rdev;
5217 				if (!rdev_set_badblocks(rdev, sh->sector,
5218 							RAID5_STRIPE_SECTORS(conf), 0))
5219 					md_error(conf->mddev, rdev);
5220 				rdev_dec_pending(rdev, conf->mddev);
5221 			}
5222 			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5223 				rdev = conf->disks[i].rdev;
5224 				rdev_clear_badblocks(rdev, sh->sector,
5225 						     RAID5_STRIPE_SECTORS(conf), 0);
5226 				rdev_dec_pending(rdev, conf->mddev);
5227 			}
5228 			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5229 				rdev = conf->disks[i].replacement;
5230 				if (!rdev)
5231 					/* rdev have been moved down */
5232 					rdev = conf->disks[i].rdev;
5233 				rdev_clear_badblocks(rdev, sh->sector,
5234 						     RAID5_STRIPE_SECTORS(conf), 0);
5235 				rdev_dec_pending(rdev, conf->mddev);
5236 			}
5237 		}
5238 
5239 	if (s.ops_request)
5240 		raid_run_ops(sh, s.ops_request);
5241 
5242 	ops_run_io(sh, &s);
5243 
5244 	if (s.dec_preread_active) {
5245 		/* We delay this until after ops_run_io so that if make_request
5246 		 * is waiting on a flush, it won't continue until the writes
5247 		 * have actually been submitted.
5248 		 */
5249 		atomic_dec(&conf->preread_active_stripes);
5250 		if (atomic_read(&conf->preread_active_stripes) <
5251 		    IO_THRESHOLD)
5252 			md_wakeup_thread(conf->mddev->thread);
5253 	}
5254 
5255 	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5256 }
5257 
5258 static void raid5_activate_delayed(struct r5conf *conf)
5259 {
5260 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5261 		while (!list_empty(&conf->delayed_list)) {
5262 			struct list_head *l = conf->delayed_list.next;
5263 			struct stripe_head *sh;
5264 			sh = list_entry(l, struct stripe_head, lru);
5265 			list_del_init(l);
5266 			clear_bit(STRIPE_DELAYED, &sh->state);
5267 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5268 				atomic_inc(&conf->preread_active_stripes);
5269 			list_add_tail(&sh->lru, &conf->hold_list);
5270 			raid5_wakeup_stripe_thread(sh);
5271 		}
5272 	}
5273 }
5274 
5275 static void activate_bit_delay(struct r5conf *conf,
5276 	struct list_head *temp_inactive_list)
5277 {
5278 	/* device_lock is held */
5279 	struct list_head head;
5280 	list_add(&head, &conf->bitmap_list);
5281 	list_del_init(&conf->bitmap_list);
5282 	while (!list_empty(&head)) {
5283 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5284 		int hash;
5285 		list_del_init(&sh->lru);
5286 		atomic_inc(&sh->count);
5287 		hash = sh->hash_lock_index;
5288 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
5289 	}
5290 }
5291 
5292 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5293 {
5294 	struct r5conf *conf = mddev->private;
5295 	sector_t sector = bio->bi_iter.bi_sector;
5296 	unsigned int chunk_sectors;
5297 	unsigned int bio_sectors = bio_sectors(bio);
5298 
5299 	chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5300 	return  chunk_sectors >=
5301 		((sector & (chunk_sectors - 1)) + bio_sectors);
5302 }
5303 
5304 /*
5305  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
5306  *  later sampled by raid5d.
5307  */
5308 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5309 {
5310 	unsigned long flags;
5311 
5312 	spin_lock_irqsave(&conf->device_lock, flags);
5313 
5314 	bi->bi_next = conf->retry_read_aligned_list;
5315 	conf->retry_read_aligned_list = bi;
5316 
5317 	spin_unlock_irqrestore(&conf->device_lock, flags);
5318 	md_wakeup_thread(conf->mddev->thread);
5319 }
5320 
5321 static struct bio *remove_bio_from_retry(struct r5conf *conf,
5322 					 unsigned int *offset)
5323 {
5324 	struct bio *bi;
5325 
5326 	bi = conf->retry_read_aligned;
5327 	if (bi) {
5328 		*offset = conf->retry_read_offset;
5329 		conf->retry_read_aligned = NULL;
5330 		return bi;
5331 	}
5332 	bi = conf->retry_read_aligned_list;
5333 	if(bi) {
5334 		conf->retry_read_aligned_list = bi->bi_next;
5335 		bi->bi_next = NULL;
5336 		*offset = 0;
5337 	}
5338 
5339 	return bi;
5340 }
5341 
5342 /*
5343  *  The "raid5_align_endio" should check if the read succeeded and if it
5344  *  did, call bio_endio on the original bio (having bio_put the new bio
5345  *  first).
5346  *  If the read failed..
5347  */
5348 static void raid5_align_endio(struct bio *bi)
5349 {
5350 	struct md_io_acct *md_io_acct = bi->bi_private;
5351 	struct bio *raid_bi = md_io_acct->orig_bio;
5352 	struct mddev *mddev;
5353 	struct r5conf *conf;
5354 	struct md_rdev *rdev;
5355 	blk_status_t error = bi->bi_status;
5356 	unsigned long start_time = md_io_acct->start_time;
5357 
5358 	bio_put(bi);
5359 
5360 	rdev = (void*)raid_bi->bi_next;
5361 	raid_bi->bi_next = NULL;
5362 	mddev = rdev->mddev;
5363 	conf = mddev->private;
5364 
5365 	rdev_dec_pending(rdev, conf->mddev);
5366 
5367 	if (!error) {
5368 		if (blk_queue_io_stat(raid_bi->bi_bdev->bd_disk->queue))
5369 			bio_end_io_acct(raid_bi, start_time);
5370 		bio_endio(raid_bi);
5371 		if (atomic_dec_and_test(&conf->active_aligned_reads))
5372 			wake_up(&conf->wait_for_quiescent);
5373 		return;
5374 	}
5375 
5376 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5377 
5378 	add_bio_to_retry(raid_bi, conf);
5379 }
5380 
5381 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5382 {
5383 	struct r5conf *conf = mddev->private;
5384 	struct bio *align_bio;
5385 	struct md_rdev *rdev;
5386 	sector_t sector, end_sector, first_bad;
5387 	int bad_sectors, dd_idx;
5388 	struct md_io_acct *md_io_acct;
5389 	bool did_inc;
5390 
5391 	if (!in_chunk_boundary(mddev, raid_bio)) {
5392 		pr_debug("%s: non aligned\n", __func__);
5393 		return 0;
5394 	}
5395 
5396 	sector = raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 0,
5397 				      &dd_idx, NULL);
5398 	end_sector = bio_end_sector(raid_bio);
5399 
5400 	rcu_read_lock();
5401 	if (r5c_big_stripe_cached(conf, sector))
5402 		goto out_rcu_unlock;
5403 
5404 	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5405 	if (!rdev || test_bit(Faulty, &rdev->flags) ||
5406 	    rdev->recovery_offset < end_sector) {
5407 		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5408 		if (!rdev)
5409 			goto out_rcu_unlock;
5410 		if (test_bit(Faulty, &rdev->flags) ||
5411 		    !(test_bit(In_sync, &rdev->flags) ||
5412 		      rdev->recovery_offset >= end_sector))
5413 			goto out_rcu_unlock;
5414 	}
5415 
5416 	atomic_inc(&rdev->nr_pending);
5417 	rcu_read_unlock();
5418 
5419 	if (is_badblock(rdev, sector, bio_sectors(raid_bio), &first_bad,
5420 			&bad_sectors)) {
5421 		bio_put(raid_bio);
5422 		rdev_dec_pending(rdev, mddev);
5423 		return 0;
5424 	}
5425 
5426 	align_bio = bio_alloc_clone(rdev->bdev, raid_bio, GFP_NOIO,
5427 				    &mddev->io_acct_set);
5428 	md_io_acct = container_of(align_bio, struct md_io_acct, bio_clone);
5429 	raid_bio->bi_next = (void *)rdev;
5430 	if (blk_queue_io_stat(raid_bio->bi_bdev->bd_disk->queue))
5431 		md_io_acct->start_time = bio_start_io_acct(raid_bio);
5432 	md_io_acct->orig_bio = raid_bio;
5433 
5434 	align_bio->bi_end_io = raid5_align_endio;
5435 	align_bio->bi_private = md_io_acct;
5436 	align_bio->bi_iter.bi_sector = sector;
5437 
5438 	/* No reshape active, so we can trust rdev->data_offset */
5439 	align_bio->bi_iter.bi_sector += rdev->data_offset;
5440 
5441 	did_inc = false;
5442 	if (conf->quiesce == 0) {
5443 		atomic_inc(&conf->active_aligned_reads);
5444 		did_inc = true;
5445 	}
5446 	/* need a memory barrier to detect the race with raid5_quiesce() */
5447 	if (!did_inc || smp_load_acquire(&conf->quiesce) != 0) {
5448 		/* quiesce is in progress, so we need to undo io activation and wait
5449 		 * for it to finish
5450 		 */
5451 		if (did_inc && atomic_dec_and_test(&conf->active_aligned_reads))
5452 			wake_up(&conf->wait_for_quiescent);
5453 		spin_lock_irq(&conf->device_lock);
5454 		wait_event_lock_irq(conf->wait_for_quiescent, conf->quiesce == 0,
5455 				    conf->device_lock);
5456 		atomic_inc(&conf->active_aligned_reads);
5457 		spin_unlock_irq(&conf->device_lock);
5458 	}
5459 
5460 	if (mddev->gendisk)
5461 		trace_block_bio_remap(align_bio, disk_devt(mddev->gendisk),
5462 				      raid_bio->bi_iter.bi_sector);
5463 	submit_bio_noacct(align_bio);
5464 	return 1;
5465 
5466 out_rcu_unlock:
5467 	rcu_read_unlock();
5468 	return 0;
5469 }
5470 
5471 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5472 {
5473 	struct bio *split;
5474 	sector_t sector = raid_bio->bi_iter.bi_sector;
5475 	unsigned chunk_sects = mddev->chunk_sectors;
5476 	unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5477 
5478 	if (sectors < bio_sectors(raid_bio)) {
5479 		struct r5conf *conf = mddev->private;
5480 		split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split);
5481 		bio_chain(split, raid_bio);
5482 		submit_bio_noacct(raid_bio);
5483 		raid_bio = split;
5484 	}
5485 
5486 	if (!raid5_read_one_chunk(mddev, raid_bio))
5487 		return raid_bio;
5488 
5489 	return NULL;
5490 }
5491 
5492 /* __get_priority_stripe - get the next stripe to process
5493  *
5494  * Full stripe writes are allowed to pass preread active stripes up until
5495  * the bypass_threshold is exceeded.  In general the bypass_count
5496  * increments when the handle_list is handled before the hold_list; however, it
5497  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5498  * stripe with in flight i/o.  The bypass_count will be reset when the
5499  * head of the hold_list has changed, i.e. the head was promoted to the
5500  * handle_list.
5501  */
5502 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5503 {
5504 	struct stripe_head *sh, *tmp;
5505 	struct list_head *handle_list = NULL;
5506 	struct r5worker_group *wg;
5507 	bool second_try = !r5c_is_writeback(conf->log) &&
5508 		!r5l_log_disk_error(conf);
5509 	bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5510 		r5l_log_disk_error(conf);
5511 
5512 again:
5513 	wg = NULL;
5514 	sh = NULL;
5515 	if (conf->worker_cnt_per_group == 0) {
5516 		handle_list = try_loprio ? &conf->loprio_list :
5517 					&conf->handle_list;
5518 	} else if (group != ANY_GROUP) {
5519 		handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5520 				&conf->worker_groups[group].handle_list;
5521 		wg = &conf->worker_groups[group];
5522 	} else {
5523 		int i;
5524 		for (i = 0; i < conf->group_cnt; i++) {
5525 			handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5526 				&conf->worker_groups[i].handle_list;
5527 			wg = &conf->worker_groups[i];
5528 			if (!list_empty(handle_list))
5529 				break;
5530 		}
5531 	}
5532 
5533 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5534 		  __func__,
5535 		  list_empty(handle_list) ? "empty" : "busy",
5536 		  list_empty(&conf->hold_list) ? "empty" : "busy",
5537 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
5538 
5539 	if (!list_empty(handle_list)) {
5540 		sh = list_entry(handle_list->next, typeof(*sh), lru);
5541 
5542 		if (list_empty(&conf->hold_list))
5543 			conf->bypass_count = 0;
5544 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5545 			if (conf->hold_list.next == conf->last_hold)
5546 				conf->bypass_count++;
5547 			else {
5548 				conf->last_hold = conf->hold_list.next;
5549 				conf->bypass_count -= conf->bypass_threshold;
5550 				if (conf->bypass_count < 0)
5551 					conf->bypass_count = 0;
5552 			}
5553 		}
5554 	} else if (!list_empty(&conf->hold_list) &&
5555 		   ((conf->bypass_threshold &&
5556 		     conf->bypass_count > conf->bypass_threshold) ||
5557 		    atomic_read(&conf->pending_full_writes) == 0)) {
5558 
5559 		list_for_each_entry(tmp, &conf->hold_list,  lru) {
5560 			if (conf->worker_cnt_per_group == 0 ||
5561 			    group == ANY_GROUP ||
5562 			    !cpu_online(tmp->cpu) ||
5563 			    cpu_to_group(tmp->cpu) == group) {
5564 				sh = tmp;
5565 				break;
5566 			}
5567 		}
5568 
5569 		if (sh) {
5570 			conf->bypass_count -= conf->bypass_threshold;
5571 			if (conf->bypass_count < 0)
5572 				conf->bypass_count = 0;
5573 		}
5574 		wg = NULL;
5575 	}
5576 
5577 	if (!sh) {
5578 		if (second_try)
5579 			return NULL;
5580 		second_try = true;
5581 		try_loprio = !try_loprio;
5582 		goto again;
5583 	}
5584 
5585 	if (wg) {
5586 		wg->stripes_cnt--;
5587 		sh->group = NULL;
5588 	}
5589 	list_del_init(&sh->lru);
5590 	BUG_ON(atomic_inc_return(&sh->count) != 1);
5591 	return sh;
5592 }
5593 
5594 struct raid5_plug_cb {
5595 	struct blk_plug_cb	cb;
5596 	struct list_head	list;
5597 	struct list_head	temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5598 };
5599 
5600 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5601 {
5602 	struct raid5_plug_cb *cb = container_of(
5603 		blk_cb, struct raid5_plug_cb, cb);
5604 	struct stripe_head *sh;
5605 	struct mddev *mddev = cb->cb.data;
5606 	struct r5conf *conf = mddev->private;
5607 	int cnt = 0;
5608 	int hash;
5609 
5610 	if (cb->list.next && !list_empty(&cb->list)) {
5611 		spin_lock_irq(&conf->device_lock);
5612 		while (!list_empty(&cb->list)) {
5613 			sh = list_first_entry(&cb->list, struct stripe_head, lru);
5614 			list_del_init(&sh->lru);
5615 			/*
5616 			 * avoid race release_stripe_plug() sees
5617 			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5618 			 * is still in our list
5619 			 */
5620 			smp_mb__before_atomic();
5621 			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5622 			/*
5623 			 * STRIPE_ON_RELEASE_LIST could be set here. In that
5624 			 * case, the count is always > 1 here
5625 			 */
5626 			hash = sh->hash_lock_index;
5627 			__release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5628 			cnt++;
5629 		}
5630 		spin_unlock_irq(&conf->device_lock);
5631 	}
5632 	release_inactive_stripe_list(conf, cb->temp_inactive_list,
5633 				     NR_STRIPE_HASH_LOCKS);
5634 	if (mddev->queue)
5635 		trace_block_unplug(mddev->queue, cnt, !from_schedule);
5636 	kfree(cb);
5637 }
5638 
5639 static void release_stripe_plug(struct mddev *mddev,
5640 				struct stripe_head *sh)
5641 {
5642 	struct blk_plug_cb *blk_cb = blk_check_plugged(
5643 		raid5_unplug, mddev,
5644 		sizeof(struct raid5_plug_cb));
5645 	struct raid5_plug_cb *cb;
5646 
5647 	if (!blk_cb) {
5648 		raid5_release_stripe(sh);
5649 		return;
5650 	}
5651 
5652 	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5653 
5654 	if (cb->list.next == NULL) {
5655 		int i;
5656 		INIT_LIST_HEAD(&cb->list);
5657 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5658 			INIT_LIST_HEAD(cb->temp_inactive_list + i);
5659 	}
5660 
5661 	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5662 		list_add_tail(&sh->lru, &cb->list);
5663 	else
5664 		raid5_release_stripe(sh);
5665 }
5666 
5667 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5668 {
5669 	struct r5conf *conf = mddev->private;
5670 	sector_t logical_sector, last_sector;
5671 	struct stripe_head *sh;
5672 	int stripe_sectors;
5673 
5674 	/* We need to handle this when io_uring supports discard/trim */
5675 	if (WARN_ON_ONCE(bi->bi_opf & REQ_NOWAIT))
5676 		return;
5677 
5678 	if (mddev->reshape_position != MaxSector)
5679 		/* Skip discard while reshape is happening */
5680 		return;
5681 
5682 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
5683 	last_sector = bio_end_sector(bi);
5684 
5685 	bi->bi_next = NULL;
5686 
5687 	stripe_sectors = conf->chunk_sectors *
5688 		(conf->raid_disks - conf->max_degraded);
5689 	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5690 					       stripe_sectors);
5691 	sector_div(last_sector, stripe_sectors);
5692 
5693 	logical_sector *= conf->chunk_sectors;
5694 	last_sector *= conf->chunk_sectors;
5695 
5696 	for (; logical_sector < last_sector;
5697 	     logical_sector += RAID5_STRIPE_SECTORS(conf)) {
5698 		DEFINE_WAIT(w);
5699 		int d;
5700 	again:
5701 		sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5702 		prepare_to_wait(&conf->wait_for_overlap, &w,
5703 				TASK_UNINTERRUPTIBLE);
5704 		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5705 		if (test_bit(STRIPE_SYNCING, &sh->state)) {
5706 			raid5_release_stripe(sh);
5707 			schedule();
5708 			goto again;
5709 		}
5710 		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5711 		spin_lock_irq(&sh->stripe_lock);
5712 		for (d = 0; d < conf->raid_disks; d++) {
5713 			if (d == sh->pd_idx || d == sh->qd_idx)
5714 				continue;
5715 			if (sh->dev[d].towrite || sh->dev[d].toread) {
5716 				set_bit(R5_Overlap, &sh->dev[d].flags);
5717 				spin_unlock_irq(&sh->stripe_lock);
5718 				raid5_release_stripe(sh);
5719 				schedule();
5720 				goto again;
5721 			}
5722 		}
5723 		set_bit(STRIPE_DISCARD, &sh->state);
5724 		finish_wait(&conf->wait_for_overlap, &w);
5725 		sh->overwrite_disks = 0;
5726 		for (d = 0; d < conf->raid_disks; d++) {
5727 			if (d == sh->pd_idx || d == sh->qd_idx)
5728 				continue;
5729 			sh->dev[d].towrite = bi;
5730 			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5731 			bio_inc_remaining(bi);
5732 			md_write_inc(mddev, bi);
5733 			sh->overwrite_disks++;
5734 		}
5735 		spin_unlock_irq(&sh->stripe_lock);
5736 		if (conf->mddev->bitmap) {
5737 			for (d = 0;
5738 			     d < conf->raid_disks - conf->max_degraded;
5739 			     d++)
5740 				md_bitmap_startwrite(mddev->bitmap,
5741 						     sh->sector,
5742 						     RAID5_STRIPE_SECTORS(conf),
5743 						     0);
5744 			sh->bm_seq = conf->seq_flush + 1;
5745 			set_bit(STRIPE_BIT_DELAY, &sh->state);
5746 		}
5747 
5748 		set_bit(STRIPE_HANDLE, &sh->state);
5749 		clear_bit(STRIPE_DELAYED, &sh->state);
5750 		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5751 			atomic_inc(&conf->preread_active_stripes);
5752 		release_stripe_plug(mddev, sh);
5753 	}
5754 
5755 	bio_endio(bi);
5756 }
5757 
5758 static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
5759 {
5760 	struct r5conf *conf = mddev->private;
5761 	int dd_idx;
5762 	sector_t new_sector;
5763 	sector_t logical_sector, last_sector;
5764 	struct stripe_head *sh;
5765 	const int rw = bio_data_dir(bi);
5766 	DEFINE_WAIT(w);
5767 	bool do_prepare;
5768 	bool do_flush = false;
5769 
5770 	if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5771 		int ret = log_handle_flush_request(conf, bi);
5772 
5773 		if (ret == 0)
5774 			return true;
5775 		if (ret == -ENODEV) {
5776 			if (md_flush_request(mddev, bi))
5777 				return true;
5778 		}
5779 		/* ret == -EAGAIN, fallback */
5780 		/*
5781 		 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5782 		 * we need to flush journal device
5783 		 */
5784 		do_flush = bi->bi_opf & REQ_PREFLUSH;
5785 	}
5786 
5787 	if (!md_write_start(mddev, bi))
5788 		return false;
5789 	/*
5790 	 * If array is degraded, better not do chunk aligned read because
5791 	 * later we might have to read it again in order to reconstruct
5792 	 * data on failed drives.
5793 	 */
5794 	if (rw == READ && mddev->degraded == 0 &&
5795 	    mddev->reshape_position == MaxSector) {
5796 		bi = chunk_aligned_read(mddev, bi);
5797 		if (!bi)
5798 			return true;
5799 	}
5800 
5801 	if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5802 		make_discard_request(mddev, bi);
5803 		md_write_end(mddev);
5804 		return true;
5805 	}
5806 
5807 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
5808 	last_sector = bio_end_sector(bi);
5809 	bi->bi_next = NULL;
5810 
5811 	/* Bail out if conflicts with reshape and REQ_NOWAIT is set */
5812 	if ((bi->bi_opf & REQ_NOWAIT) &&
5813 	    (conf->reshape_progress != MaxSector) &&
5814 	    (mddev->reshape_backwards
5815 	    ? (logical_sector > conf->reshape_progress && logical_sector <= conf->reshape_safe)
5816 	    : (logical_sector >= conf->reshape_safe && logical_sector < conf->reshape_progress))) {
5817 		bio_wouldblock_error(bi);
5818 		if (rw == WRITE)
5819 			md_write_end(mddev);
5820 		return true;
5821 	}
5822 	md_account_bio(mddev, &bi);
5823 	prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5824 	for (; logical_sector < last_sector; logical_sector += RAID5_STRIPE_SECTORS(conf)) {
5825 		int previous;
5826 		int seq;
5827 
5828 		do_prepare = false;
5829 	retry:
5830 		seq = read_seqcount_begin(&conf->gen_lock);
5831 		previous = 0;
5832 		if (do_prepare)
5833 			prepare_to_wait(&conf->wait_for_overlap, &w,
5834 				TASK_UNINTERRUPTIBLE);
5835 		if (unlikely(conf->reshape_progress != MaxSector)) {
5836 			/* spinlock is needed as reshape_progress may be
5837 			 * 64bit on a 32bit platform, and so it might be
5838 			 * possible to see a half-updated value
5839 			 * Of course reshape_progress could change after
5840 			 * the lock is dropped, so once we get a reference
5841 			 * to the stripe that we think it is, we will have
5842 			 * to check again.
5843 			 */
5844 			spin_lock_irq(&conf->device_lock);
5845 			if (mddev->reshape_backwards
5846 			    ? logical_sector < conf->reshape_progress
5847 			    : logical_sector >= conf->reshape_progress) {
5848 				previous = 1;
5849 			} else {
5850 				if (mddev->reshape_backwards
5851 				    ? logical_sector < conf->reshape_safe
5852 				    : logical_sector >= conf->reshape_safe) {
5853 					spin_unlock_irq(&conf->device_lock);
5854 					schedule();
5855 					do_prepare = true;
5856 					goto retry;
5857 				}
5858 			}
5859 			spin_unlock_irq(&conf->device_lock);
5860 		}
5861 
5862 		new_sector = raid5_compute_sector(conf, logical_sector,
5863 						  previous,
5864 						  &dd_idx, NULL);
5865 		pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5866 			(unsigned long long)new_sector,
5867 			(unsigned long long)logical_sector);
5868 
5869 		sh = raid5_get_active_stripe(conf, new_sector, previous,
5870 				       (bi->bi_opf & REQ_RAHEAD), 0);
5871 		if (sh) {
5872 			if (unlikely(previous)) {
5873 				/* expansion might have moved on while waiting for a
5874 				 * stripe, so we must do the range check again.
5875 				 * Expansion could still move past after this
5876 				 * test, but as we are holding a reference to
5877 				 * 'sh', we know that if that happens,
5878 				 *  STRIPE_EXPANDING will get set and the expansion
5879 				 * won't proceed until we finish with the stripe.
5880 				 */
5881 				int must_retry = 0;
5882 				spin_lock_irq(&conf->device_lock);
5883 				if (mddev->reshape_backwards
5884 				    ? logical_sector >= conf->reshape_progress
5885 				    : logical_sector < conf->reshape_progress)
5886 					/* mismatch, need to try again */
5887 					must_retry = 1;
5888 				spin_unlock_irq(&conf->device_lock);
5889 				if (must_retry) {
5890 					raid5_release_stripe(sh);
5891 					schedule();
5892 					do_prepare = true;
5893 					goto retry;
5894 				}
5895 			}
5896 			if (read_seqcount_retry(&conf->gen_lock, seq)) {
5897 				/* Might have got the wrong stripe_head
5898 				 * by accident
5899 				 */
5900 				raid5_release_stripe(sh);
5901 				goto retry;
5902 			}
5903 
5904 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5905 			    !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5906 				/* Stripe is busy expanding or
5907 				 * add failed due to overlap.  Flush everything
5908 				 * and wait a while
5909 				 */
5910 				md_wakeup_thread(mddev->thread);
5911 				raid5_release_stripe(sh);
5912 				schedule();
5913 				do_prepare = true;
5914 				goto retry;
5915 			}
5916 			if (do_flush) {
5917 				set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5918 				/* we only need flush for one stripe */
5919 				do_flush = false;
5920 			}
5921 
5922 			set_bit(STRIPE_HANDLE, &sh->state);
5923 			clear_bit(STRIPE_DELAYED, &sh->state);
5924 			if ((!sh->batch_head || sh == sh->batch_head) &&
5925 			    (bi->bi_opf & REQ_SYNC) &&
5926 			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5927 				atomic_inc(&conf->preread_active_stripes);
5928 			release_stripe_plug(mddev, sh);
5929 		} else {
5930 			/* cannot get stripe for read-ahead, just give-up */
5931 			bi->bi_status = BLK_STS_IOERR;
5932 			break;
5933 		}
5934 	}
5935 	finish_wait(&conf->wait_for_overlap, &w);
5936 
5937 	if (rw == WRITE)
5938 		md_write_end(mddev);
5939 	bio_endio(bi);
5940 	return true;
5941 }
5942 
5943 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5944 
5945 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5946 {
5947 	/* reshaping is quite different to recovery/resync so it is
5948 	 * handled quite separately ... here.
5949 	 *
5950 	 * On each call to sync_request, we gather one chunk worth of
5951 	 * destination stripes and flag them as expanding.
5952 	 * Then we find all the source stripes and request reads.
5953 	 * As the reads complete, handle_stripe will copy the data
5954 	 * into the destination stripe and release that stripe.
5955 	 */
5956 	struct r5conf *conf = mddev->private;
5957 	struct stripe_head *sh;
5958 	struct md_rdev *rdev;
5959 	sector_t first_sector, last_sector;
5960 	int raid_disks = conf->previous_raid_disks;
5961 	int data_disks = raid_disks - conf->max_degraded;
5962 	int new_data_disks = conf->raid_disks - conf->max_degraded;
5963 	int i;
5964 	int dd_idx;
5965 	sector_t writepos, readpos, safepos;
5966 	sector_t stripe_addr;
5967 	int reshape_sectors;
5968 	struct list_head stripes;
5969 	sector_t retn;
5970 
5971 	if (sector_nr == 0) {
5972 		/* If restarting in the middle, skip the initial sectors */
5973 		if (mddev->reshape_backwards &&
5974 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5975 			sector_nr = raid5_size(mddev, 0, 0)
5976 				- conf->reshape_progress;
5977 		} else if (mddev->reshape_backwards &&
5978 			   conf->reshape_progress == MaxSector) {
5979 			/* shouldn't happen, but just in case, finish up.*/
5980 			sector_nr = MaxSector;
5981 		} else if (!mddev->reshape_backwards &&
5982 			   conf->reshape_progress > 0)
5983 			sector_nr = conf->reshape_progress;
5984 		sector_div(sector_nr, new_data_disks);
5985 		if (sector_nr) {
5986 			mddev->curr_resync_completed = sector_nr;
5987 			sysfs_notify_dirent_safe(mddev->sysfs_completed);
5988 			*skipped = 1;
5989 			retn = sector_nr;
5990 			goto finish;
5991 		}
5992 	}
5993 
5994 	/* We need to process a full chunk at a time.
5995 	 * If old and new chunk sizes differ, we need to process the
5996 	 * largest of these
5997 	 */
5998 
5999 	reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
6000 
6001 	/* We update the metadata at least every 10 seconds, or when
6002 	 * the data about to be copied would over-write the source of
6003 	 * the data at the front of the range.  i.e. one new_stripe
6004 	 * along from reshape_progress new_maps to after where
6005 	 * reshape_safe old_maps to
6006 	 */
6007 	writepos = conf->reshape_progress;
6008 	sector_div(writepos, new_data_disks);
6009 	readpos = conf->reshape_progress;
6010 	sector_div(readpos, data_disks);
6011 	safepos = conf->reshape_safe;
6012 	sector_div(safepos, data_disks);
6013 	if (mddev->reshape_backwards) {
6014 		BUG_ON(writepos < reshape_sectors);
6015 		writepos -= reshape_sectors;
6016 		readpos += reshape_sectors;
6017 		safepos += reshape_sectors;
6018 	} else {
6019 		writepos += reshape_sectors;
6020 		/* readpos and safepos are worst-case calculations.
6021 		 * A negative number is overly pessimistic, and causes
6022 		 * obvious problems for unsigned storage.  So clip to 0.
6023 		 */
6024 		readpos -= min_t(sector_t, reshape_sectors, readpos);
6025 		safepos -= min_t(sector_t, reshape_sectors, safepos);
6026 	}
6027 
6028 	/* Having calculated the 'writepos' possibly use it
6029 	 * to set 'stripe_addr' which is where we will write to.
6030 	 */
6031 	if (mddev->reshape_backwards) {
6032 		BUG_ON(conf->reshape_progress == 0);
6033 		stripe_addr = writepos;
6034 		BUG_ON((mddev->dev_sectors &
6035 			~((sector_t)reshape_sectors - 1))
6036 		       - reshape_sectors - stripe_addr
6037 		       != sector_nr);
6038 	} else {
6039 		BUG_ON(writepos != sector_nr + reshape_sectors);
6040 		stripe_addr = sector_nr;
6041 	}
6042 
6043 	/* 'writepos' is the most advanced device address we might write.
6044 	 * 'readpos' is the least advanced device address we might read.
6045 	 * 'safepos' is the least address recorded in the metadata as having
6046 	 *     been reshaped.
6047 	 * If there is a min_offset_diff, these are adjusted either by
6048 	 * increasing the safepos/readpos if diff is negative, or
6049 	 * increasing writepos if diff is positive.
6050 	 * If 'readpos' is then behind 'writepos', there is no way that we can
6051 	 * ensure safety in the face of a crash - that must be done by userspace
6052 	 * making a backup of the data.  So in that case there is no particular
6053 	 * rush to update metadata.
6054 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
6055 	 * update the metadata to advance 'safepos' to match 'readpos' so that
6056 	 * we can be safe in the event of a crash.
6057 	 * So we insist on updating metadata if safepos is behind writepos and
6058 	 * readpos is beyond writepos.
6059 	 * In any case, update the metadata every 10 seconds.
6060 	 * Maybe that number should be configurable, but I'm not sure it is
6061 	 * worth it.... maybe it could be a multiple of safemode_delay???
6062 	 */
6063 	if (conf->min_offset_diff < 0) {
6064 		safepos += -conf->min_offset_diff;
6065 		readpos += -conf->min_offset_diff;
6066 	} else
6067 		writepos += conf->min_offset_diff;
6068 
6069 	if ((mddev->reshape_backwards
6070 	     ? (safepos > writepos && readpos < writepos)
6071 	     : (safepos < writepos && readpos > writepos)) ||
6072 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
6073 		/* Cannot proceed until we've updated the superblock... */
6074 		wait_event(conf->wait_for_overlap,
6075 			   atomic_read(&conf->reshape_stripes)==0
6076 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6077 		if (atomic_read(&conf->reshape_stripes) != 0)
6078 			return 0;
6079 		mddev->reshape_position = conf->reshape_progress;
6080 		mddev->curr_resync_completed = sector_nr;
6081 		if (!mddev->reshape_backwards)
6082 			/* Can update recovery_offset */
6083 			rdev_for_each(rdev, mddev)
6084 				if (rdev->raid_disk >= 0 &&
6085 				    !test_bit(Journal, &rdev->flags) &&
6086 				    !test_bit(In_sync, &rdev->flags) &&
6087 				    rdev->recovery_offset < sector_nr)
6088 					rdev->recovery_offset = sector_nr;
6089 
6090 		conf->reshape_checkpoint = jiffies;
6091 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6092 		md_wakeup_thread(mddev->thread);
6093 		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
6094 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6095 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6096 			return 0;
6097 		spin_lock_irq(&conf->device_lock);
6098 		conf->reshape_safe = mddev->reshape_position;
6099 		spin_unlock_irq(&conf->device_lock);
6100 		wake_up(&conf->wait_for_overlap);
6101 		sysfs_notify_dirent_safe(mddev->sysfs_completed);
6102 	}
6103 
6104 	INIT_LIST_HEAD(&stripes);
6105 	for (i = 0; i < reshape_sectors; i += RAID5_STRIPE_SECTORS(conf)) {
6106 		int j;
6107 		int skipped_disk = 0;
6108 		sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
6109 		set_bit(STRIPE_EXPANDING, &sh->state);
6110 		atomic_inc(&conf->reshape_stripes);
6111 		/* If any of this stripe is beyond the end of the old
6112 		 * array, then we need to zero those blocks
6113 		 */
6114 		for (j=sh->disks; j--;) {
6115 			sector_t s;
6116 			if (j == sh->pd_idx)
6117 				continue;
6118 			if (conf->level == 6 &&
6119 			    j == sh->qd_idx)
6120 				continue;
6121 			s = raid5_compute_blocknr(sh, j, 0);
6122 			if (s < raid5_size(mddev, 0, 0)) {
6123 				skipped_disk = 1;
6124 				continue;
6125 			}
6126 			memset(page_address(sh->dev[j].page), 0, RAID5_STRIPE_SIZE(conf));
6127 			set_bit(R5_Expanded, &sh->dev[j].flags);
6128 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
6129 		}
6130 		if (!skipped_disk) {
6131 			set_bit(STRIPE_EXPAND_READY, &sh->state);
6132 			set_bit(STRIPE_HANDLE, &sh->state);
6133 		}
6134 		list_add(&sh->lru, &stripes);
6135 	}
6136 	spin_lock_irq(&conf->device_lock);
6137 	if (mddev->reshape_backwards)
6138 		conf->reshape_progress -= reshape_sectors * new_data_disks;
6139 	else
6140 		conf->reshape_progress += reshape_sectors * new_data_disks;
6141 	spin_unlock_irq(&conf->device_lock);
6142 	/* Ok, those stripe are ready. We can start scheduling
6143 	 * reads on the source stripes.
6144 	 * The source stripes are determined by mapping the first and last
6145 	 * block on the destination stripes.
6146 	 */
6147 	first_sector =
6148 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
6149 				     1, &dd_idx, NULL);
6150 	last_sector =
6151 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
6152 					    * new_data_disks - 1),
6153 				     1, &dd_idx, NULL);
6154 	if (last_sector >= mddev->dev_sectors)
6155 		last_sector = mddev->dev_sectors - 1;
6156 	while (first_sector <= last_sector) {
6157 		sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
6158 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
6159 		set_bit(STRIPE_HANDLE, &sh->state);
6160 		raid5_release_stripe(sh);
6161 		first_sector += RAID5_STRIPE_SECTORS(conf);
6162 	}
6163 	/* Now that the sources are clearly marked, we can release
6164 	 * the destination stripes
6165 	 */
6166 	while (!list_empty(&stripes)) {
6167 		sh = list_entry(stripes.next, struct stripe_head, lru);
6168 		list_del_init(&sh->lru);
6169 		raid5_release_stripe(sh);
6170 	}
6171 	/* If this takes us to the resync_max point where we have to pause,
6172 	 * then we need to write out the superblock.
6173 	 */
6174 	sector_nr += reshape_sectors;
6175 	retn = reshape_sectors;
6176 finish:
6177 	if (mddev->curr_resync_completed > mddev->resync_max ||
6178 	    (sector_nr - mddev->curr_resync_completed) * 2
6179 	    >= mddev->resync_max - mddev->curr_resync_completed) {
6180 		/* Cannot proceed until we've updated the superblock... */
6181 		wait_event(conf->wait_for_overlap,
6182 			   atomic_read(&conf->reshape_stripes) == 0
6183 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6184 		if (atomic_read(&conf->reshape_stripes) != 0)
6185 			goto ret;
6186 		mddev->reshape_position = conf->reshape_progress;
6187 		mddev->curr_resync_completed = sector_nr;
6188 		if (!mddev->reshape_backwards)
6189 			/* Can update recovery_offset */
6190 			rdev_for_each(rdev, mddev)
6191 				if (rdev->raid_disk >= 0 &&
6192 				    !test_bit(Journal, &rdev->flags) &&
6193 				    !test_bit(In_sync, &rdev->flags) &&
6194 				    rdev->recovery_offset < sector_nr)
6195 					rdev->recovery_offset = sector_nr;
6196 		conf->reshape_checkpoint = jiffies;
6197 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6198 		md_wakeup_thread(mddev->thread);
6199 		wait_event(mddev->sb_wait,
6200 			   !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
6201 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6202 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6203 			goto ret;
6204 		spin_lock_irq(&conf->device_lock);
6205 		conf->reshape_safe = mddev->reshape_position;
6206 		spin_unlock_irq(&conf->device_lock);
6207 		wake_up(&conf->wait_for_overlap);
6208 		sysfs_notify_dirent_safe(mddev->sysfs_completed);
6209 	}
6210 ret:
6211 	return retn;
6212 }
6213 
6214 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6215 					  int *skipped)
6216 {
6217 	struct r5conf *conf = mddev->private;
6218 	struct stripe_head *sh;
6219 	sector_t max_sector = mddev->dev_sectors;
6220 	sector_t sync_blocks;
6221 	int still_degraded = 0;
6222 	int i;
6223 
6224 	if (sector_nr >= max_sector) {
6225 		/* just being told to finish up .. nothing much to do */
6226 
6227 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6228 			end_reshape(conf);
6229 			return 0;
6230 		}
6231 
6232 		if (mddev->curr_resync < max_sector) /* aborted */
6233 			md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6234 					   &sync_blocks, 1);
6235 		else /* completed sync */
6236 			conf->fullsync = 0;
6237 		md_bitmap_close_sync(mddev->bitmap);
6238 
6239 		return 0;
6240 	}
6241 
6242 	/* Allow raid5_quiesce to complete */
6243 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6244 
6245 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6246 		return reshape_request(mddev, sector_nr, skipped);
6247 
6248 	/* No need to check resync_max as we never do more than one
6249 	 * stripe, and as resync_max will always be on a chunk boundary,
6250 	 * if the check in md_do_sync didn't fire, there is no chance
6251 	 * of overstepping resync_max here
6252 	 */
6253 
6254 	/* if there is too many failed drives and we are trying
6255 	 * to resync, then assert that we are finished, because there is
6256 	 * nothing we can do.
6257 	 */
6258 	if (mddev->degraded >= conf->max_degraded &&
6259 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6260 		sector_t rv = mddev->dev_sectors - sector_nr;
6261 		*skipped = 1;
6262 		return rv;
6263 	}
6264 	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6265 	    !conf->fullsync &&
6266 	    !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6267 	    sync_blocks >= RAID5_STRIPE_SECTORS(conf)) {
6268 		/* we can skip this block, and probably more */
6269 		do_div(sync_blocks, RAID5_STRIPE_SECTORS(conf));
6270 		*skipped = 1;
6271 		/* keep things rounded to whole stripes */
6272 		return sync_blocks * RAID5_STRIPE_SECTORS(conf);
6273 	}
6274 
6275 	md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
6276 
6277 	sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
6278 	if (sh == NULL) {
6279 		sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
6280 		/* make sure we don't swamp the stripe cache if someone else
6281 		 * is trying to get access
6282 		 */
6283 		schedule_timeout_uninterruptible(1);
6284 	}
6285 	/* Need to check if array will still be degraded after recovery/resync
6286 	 * Note in case of > 1 drive failures it's possible we're rebuilding
6287 	 * one drive while leaving another faulty drive in array.
6288 	 */
6289 	rcu_read_lock();
6290 	for (i = 0; i < conf->raid_disks; i++) {
6291 		struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
6292 
6293 		if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6294 			still_degraded = 1;
6295 	}
6296 	rcu_read_unlock();
6297 
6298 	md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6299 
6300 	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6301 	set_bit(STRIPE_HANDLE, &sh->state);
6302 
6303 	raid5_release_stripe(sh);
6304 
6305 	return RAID5_STRIPE_SECTORS(conf);
6306 }
6307 
6308 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6309 			       unsigned int offset)
6310 {
6311 	/* We may not be able to submit a whole bio at once as there
6312 	 * may not be enough stripe_heads available.
6313 	 * We cannot pre-allocate enough stripe_heads as we may need
6314 	 * more than exist in the cache (if we allow ever large chunks).
6315 	 * So we do one stripe head at a time and record in
6316 	 * ->bi_hw_segments how many have been done.
6317 	 *
6318 	 * We *know* that this entire raid_bio is in one chunk, so
6319 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6320 	 */
6321 	struct stripe_head *sh;
6322 	int dd_idx;
6323 	sector_t sector, logical_sector, last_sector;
6324 	int scnt = 0;
6325 	int handled = 0;
6326 
6327 	logical_sector = raid_bio->bi_iter.bi_sector &
6328 		~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6329 	sector = raid5_compute_sector(conf, logical_sector,
6330 				      0, &dd_idx, NULL);
6331 	last_sector = bio_end_sector(raid_bio);
6332 
6333 	for (; logical_sector < last_sector;
6334 	     logical_sector += RAID5_STRIPE_SECTORS(conf),
6335 		     sector += RAID5_STRIPE_SECTORS(conf),
6336 		     scnt++) {
6337 
6338 		if (scnt < offset)
6339 			/* already done this stripe */
6340 			continue;
6341 
6342 		sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
6343 
6344 		if (!sh) {
6345 			/* failed to get a stripe - must wait */
6346 			conf->retry_read_aligned = raid_bio;
6347 			conf->retry_read_offset = scnt;
6348 			return handled;
6349 		}
6350 
6351 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6352 			raid5_release_stripe(sh);
6353 			conf->retry_read_aligned = raid_bio;
6354 			conf->retry_read_offset = scnt;
6355 			return handled;
6356 		}
6357 
6358 		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6359 		handle_stripe(sh);
6360 		raid5_release_stripe(sh);
6361 		handled++;
6362 	}
6363 
6364 	bio_endio(raid_bio);
6365 
6366 	if (atomic_dec_and_test(&conf->active_aligned_reads))
6367 		wake_up(&conf->wait_for_quiescent);
6368 	return handled;
6369 }
6370 
6371 static int handle_active_stripes(struct r5conf *conf, int group,
6372 				 struct r5worker *worker,
6373 				 struct list_head *temp_inactive_list)
6374 		__releases(&conf->device_lock)
6375 		__acquires(&conf->device_lock)
6376 {
6377 	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6378 	int i, batch_size = 0, hash;
6379 	bool release_inactive = false;
6380 
6381 	while (batch_size < MAX_STRIPE_BATCH &&
6382 			(sh = __get_priority_stripe(conf, group)) != NULL)
6383 		batch[batch_size++] = sh;
6384 
6385 	if (batch_size == 0) {
6386 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6387 			if (!list_empty(temp_inactive_list + i))
6388 				break;
6389 		if (i == NR_STRIPE_HASH_LOCKS) {
6390 			spin_unlock_irq(&conf->device_lock);
6391 			log_flush_stripe_to_raid(conf);
6392 			spin_lock_irq(&conf->device_lock);
6393 			return batch_size;
6394 		}
6395 		release_inactive = true;
6396 	}
6397 	spin_unlock_irq(&conf->device_lock);
6398 
6399 	release_inactive_stripe_list(conf, temp_inactive_list,
6400 				     NR_STRIPE_HASH_LOCKS);
6401 
6402 	r5l_flush_stripe_to_raid(conf->log);
6403 	if (release_inactive) {
6404 		spin_lock_irq(&conf->device_lock);
6405 		return 0;
6406 	}
6407 
6408 	for (i = 0; i < batch_size; i++)
6409 		handle_stripe(batch[i]);
6410 	log_write_stripe_run(conf);
6411 
6412 	cond_resched();
6413 
6414 	spin_lock_irq(&conf->device_lock);
6415 	for (i = 0; i < batch_size; i++) {
6416 		hash = batch[i]->hash_lock_index;
6417 		__release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6418 	}
6419 	return batch_size;
6420 }
6421 
6422 static void raid5_do_work(struct work_struct *work)
6423 {
6424 	struct r5worker *worker = container_of(work, struct r5worker, work);
6425 	struct r5worker_group *group = worker->group;
6426 	struct r5conf *conf = group->conf;
6427 	struct mddev *mddev = conf->mddev;
6428 	int group_id = group - conf->worker_groups;
6429 	int handled;
6430 	struct blk_plug plug;
6431 
6432 	pr_debug("+++ raid5worker active\n");
6433 
6434 	blk_start_plug(&plug);
6435 	handled = 0;
6436 	spin_lock_irq(&conf->device_lock);
6437 	while (1) {
6438 		int batch_size, released;
6439 
6440 		released = release_stripe_list(conf, worker->temp_inactive_list);
6441 
6442 		batch_size = handle_active_stripes(conf, group_id, worker,
6443 						   worker->temp_inactive_list);
6444 		worker->working = false;
6445 		if (!batch_size && !released)
6446 			break;
6447 		handled += batch_size;
6448 		wait_event_lock_irq(mddev->sb_wait,
6449 			!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6450 			conf->device_lock);
6451 	}
6452 	pr_debug("%d stripes handled\n", handled);
6453 
6454 	spin_unlock_irq(&conf->device_lock);
6455 
6456 	flush_deferred_bios(conf);
6457 
6458 	r5l_flush_stripe_to_raid(conf->log);
6459 
6460 	async_tx_issue_pending_all();
6461 	blk_finish_plug(&plug);
6462 
6463 	pr_debug("--- raid5worker inactive\n");
6464 }
6465 
6466 /*
6467  * This is our raid5 kernel thread.
6468  *
6469  * We scan the hash table for stripes which can be handled now.
6470  * During the scan, completed stripes are saved for us by the interrupt
6471  * handler, so that they will not have to wait for our next wakeup.
6472  */
6473 static void raid5d(struct md_thread *thread)
6474 {
6475 	struct mddev *mddev = thread->mddev;
6476 	struct r5conf *conf = mddev->private;
6477 	int handled;
6478 	struct blk_plug plug;
6479 
6480 	pr_debug("+++ raid5d active\n");
6481 
6482 	md_check_recovery(mddev);
6483 
6484 	blk_start_plug(&plug);
6485 	handled = 0;
6486 	spin_lock_irq(&conf->device_lock);
6487 	while (1) {
6488 		struct bio *bio;
6489 		int batch_size, released;
6490 		unsigned int offset;
6491 
6492 		released = release_stripe_list(conf, conf->temp_inactive_list);
6493 		if (released)
6494 			clear_bit(R5_DID_ALLOC, &conf->cache_state);
6495 
6496 		if (
6497 		    !list_empty(&conf->bitmap_list)) {
6498 			/* Now is a good time to flush some bitmap updates */
6499 			conf->seq_flush++;
6500 			spin_unlock_irq(&conf->device_lock);
6501 			md_bitmap_unplug(mddev->bitmap);
6502 			spin_lock_irq(&conf->device_lock);
6503 			conf->seq_write = conf->seq_flush;
6504 			activate_bit_delay(conf, conf->temp_inactive_list);
6505 		}
6506 		raid5_activate_delayed(conf);
6507 
6508 		while ((bio = remove_bio_from_retry(conf, &offset))) {
6509 			int ok;
6510 			spin_unlock_irq(&conf->device_lock);
6511 			ok = retry_aligned_read(conf, bio, offset);
6512 			spin_lock_irq(&conf->device_lock);
6513 			if (!ok)
6514 				break;
6515 			handled++;
6516 		}
6517 
6518 		batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6519 						   conf->temp_inactive_list);
6520 		if (!batch_size && !released)
6521 			break;
6522 		handled += batch_size;
6523 
6524 		if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6525 			spin_unlock_irq(&conf->device_lock);
6526 			md_check_recovery(mddev);
6527 			spin_lock_irq(&conf->device_lock);
6528 		}
6529 	}
6530 	pr_debug("%d stripes handled\n", handled);
6531 
6532 	spin_unlock_irq(&conf->device_lock);
6533 	if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6534 	    mutex_trylock(&conf->cache_size_mutex)) {
6535 		grow_one_stripe(conf, __GFP_NOWARN);
6536 		/* Set flag even if allocation failed.  This helps
6537 		 * slow down allocation requests when mem is short
6538 		 */
6539 		set_bit(R5_DID_ALLOC, &conf->cache_state);
6540 		mutex_unlock(&conf->cache_size_mutex);
6541 	}
6542 
6543 	flush_deferred_bios(conf);
6544 
6545 	r5l_flush_stripe_to_raid(conf->log);
6546 
6547 	async_tx_issue_pending_all();
6548 	blk_finish_plug(&plug);
6549 
6550 	pr_debug("--- raid5d inactive\n");
6551 }
6552 
6553 static ssize_t
6554 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6555 {
6556 	struct r5conf *conf;
6557 	int ret = 0;
6558 	spin_lock(&mddev->lock);
6559 	conf = mddev->private;
6560 	if (conf)
6561 		ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6562 	spin_unlock(&mddev->lock);
6563 	return ret;
6564 }
6565 
6566 int
6567 raid5_set_cache_size(struct mddev *mddev, int size)
6568 {
6569 	int result = 0;
6570 	struct r5conf *conf = mddev->private;
6571 
6572 	if (size <= 16 || size > 32768)
6573 		return -EINVAL;
6574 
6575 	conf->min_nr_stripes = size;
6576 	mutex_lock(&conf->cache_size_mutex);
6577 	while (size < conf->max_nr_stripes &&
6578 	       drop_one_stripe(conf))
6579 		;
6580 	mutex_unlock(&conf->cache_size_mutex);
6581 
6582 	md_allow_write(mddev);
6583 
6584 	mutex_lock(&conf->cache_size_mutex);
6585 	while (size > conf->max_nr_stripes)
6586 		if (!grow_one_stripe(conf, GFP_KERNEL)) {
6587 			conf->min_nr_stripes = conf->max_nr_stripes;
6588 			result = -ENOMEM;
6589 			break;
6590 		}
6591 	mutex_unlock(&conf->cache_size_mutex);
6592 
6593 	return result;
6594 }
6595 EXPORT_SYMBOL(raid5_set_cache_size);
6596 
6597 static ssize_t
6598 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6599 {
6600 	struct r5conf *conf;
6601 	unsigned long new;
6602 	int err;
6603 
6604 	if (len >= PAGE_SIZE)
6605 		return -EINVAL;
6606 	if (kstrtoul(page, 10, &new))
6607 		return -EINVAL;
6608 	err = mddev_lock(mddev);
6609 	if (err)
6610 		return err;
6611 	conf = mddev->private;
6612 	if (!conf)
6613 		err = -ENODEV;
6614 	else
6615 		err = raid5_set_cache_size(mddev, new);
6616 	mddev_unlock(mddev);
6617 
6618 	return err ?: len;
6619 }
6620 
6621 static struct md_sysfs_entry
6622 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6623 				raid5_show_stripe_cache_size,
6624 				raid5_store_stripe_cache_size);
6625 
6626 static ssize_t
6627 raid5_show_rmw_level(struct mddev  *mddev, char *page)
6628 {
6629 	struct r5conf *conf = mddev->private;
6630 	if (conf)
6631 		return sprintf(page, "%d\n", conf->rmw_level);
6632 	else
6633 		return 0;
6634 }
6635 
6636 static ssize_t
6637 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
6638 {
6639 	struct r5conf *conf = mddev->private;
6640 	unsigned long new;
6641 
6642 	if (!conf)
6643 		return -ENODEV;
6644 
6645 	if (len >= PAGE_SIZE)
6646 		return -EINVAL;
6647 
6648 	if (kstrtoul(page, 10, &new))
6649 		return -EINVAL;
6650 
6651 	if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6652 		return -EINVAL;
6653 
6654 	if (new != PARITY_DISABLE_RMW &&
6655 	    new != PARITY_ENABLE_RMW &&
6656 	    new != PARITY_PREFER_RMW)
6657 		return -EINVAL;
6658 
6659 	conf->rmw_level = new;
6660 	return len;
6661 }
6662 
6663 static struct md_sysfs_entry
6664 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6665 			 raid5_show_rmw_level,
6666 			 raid5_store_rmw_level);
6667 
6668 static ssize_t
6669 raid5_show_stripe_size(struct mddev  *mddev, char *page)
6670 {
6671 	struct r5conf *conf;
6672 	int ret = 0;
6673 
6674 	spin_lock(&mddev->lock);
6675 	conf = mddev->private;
6676 	if (conf)
6677 		ret = sprintf(page, "%lu\n", RAID5_STRIPE_SIZE(conf));
6678 	spin_unlock(&mddev->lock);
6679 	return ret;
6680 }
6681 
6682 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
6683 static ssize_t
6684 raid5_store_stripe_size(struct mddev  *mddev, const char *page, size_t len)
6685 {
6686 	struct r5conf *conf;
6687 	unsigned long new;
6688 	int err;
6689 	int size;
6690 
6691 	if (len >= PAGE_SIZE)
6692 		return -EINVAL;
6693 	if (kstrtoul(page, 10, &new))
6694 		return -EINVAL;
6695 
6696 	/*
6697 	 * The value should not be bigger than PAGE_SIZE. It requires to
6698 	 * be multiple of DEFAULT_STRIPE_SIZE and the value should be power
6699 	 * of two.
6700 	 */
6701 	if (new % DEFAULT_STRIPE_SIZE != 0 ||
6702 			new > PAGE_SIZE || new == 0 ||
6703 			new != roundup_pow_of_two(new))
6704 		return -EINVAL;
6705 
6706 	err = mddev_lock(mddev);
6707 	if (err)
6708 		return err;
6709 
6710 	conf = mddev->private;
6711 	if (!conf) {
6712 		err = -ENODEV;
6713 		goto out_unlock;
6714 	}
6715 
6716 	if (new == conf->stripe_size)
6717 		goto out_unlock;
6718 
6719 	pr_debug("md/raid: change stripe_size from %lu to %lu\n",
6720 			conf->stripe_size, new);
6721 
6722 	if (mddev->sync_thread ||
6723 		test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6724 		mddev->reshape_position != MaxSector ||
6725 		mddev->sysfs_active) {
6726 		err = -EBUSY;
6727 		goto out_unlock;
6728 	}
6729 
6730 	mddev_suspend(mddev);
6731 	mutex_lock(&conf->cache_size_mutex);
6732 	size = conf->max_nr_stripes;
6733 
6734 	shrink_stripes(conf);
6735 
6736 	conf->stripe_size = new;
6737 	conf->stripe_shift = ilog2(new) - 9;
6738 	conf->stripe_sectors = new >> 9;
6739 	if (grow_stripes(conf, size)) {
6740 		pr_warn("md/raid:%s: couldn't allocate buffers\n",
6741 				mdname(mddev));
6742 		err = -ENOMEM;
6743 	}
6744 	mutex_unlock(&conf->cache_size_mutex);
6745 	mddev_resume(mddev);
6746 
6747 out_unlock:
6748 	mddev_unlock(mddev);
6749 	return err ?: len;
6750 }
6751 
6752 static struct md_sysfs_entry
6753 raid5_stripe_size = __ATTR(stripe_size, 0644,
6754 			 raid5_show_stripe_size,
6755 			 raid5_store_stripe_size);
6756 #else
6757 static struct md_sysfs_entry
6758 raid5_stripe_size = __ATTR(stripe_size, 0444,
6759 			 raid5_show_stripe_size,
6760 			 NULL);
6761 #endif
6762 
6763 static ssize_t
6764 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6765 {
6766 	struct r5conf *conf;
6767 	int ret = 0;
6768 	spin_lock(&mddev->lock);
6769 	conf = mddev->private;
6770 	if (conf)
6771 		ret = sprintf(page, "%d\n", conf->bypass_threshold);
6772 	spin_unlock(&mddev->lock);
6773 	return ret;
6774 }
6775 
6776 static ssize_t
6777 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6778 {
6779 	struct r5conf *conf;
6780 	unsigned long new;
6781 	int err;
6782 
6783 	if (len >= PAGE_SIZE)
6784 		return -EINVAL;
6785 	if (kstrtoul(page, 10, &new))
6786 		return -EINVAL;
6787 
6788 	err = mddev_lock(mddev);
6789 	if (err)
6790 		return err;
6791 	conf = mddev->private;
6792 	if (!conf)
6793 		err = -ENODEV;
6794 	else if (new > conf->min_nr_stripes)
6795 		err = -EINVAL;
6796 	else
6797 		conf->bypass_threshold = new;
6798 	mddev_unlock(mddev);
6799 	return err ?: len;
6800 }
6801 
6802 static struct md_sysfs_entry
6803 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6804 					S_IRUGO | S_IWUSR,
6805 					raid5_show_preread_threshold,
6806 					raid5_store_preread_threshold);
6807 
6808 static ssize_t
6809 raid5_show_skip_copy(struct mddev *mddev, char *page)
6810 {
6811 	struct r5conf *conf;
6812 	int ret = 0;
6813 	spin_lock(&mddev->lock);
6814 	conf = mddev->private;
6815 	if (conf)
6816 		ret = sprintf(page, "%d\n", conf->skip_copy);
6817 	spin_unlock(&mddev->lock);
6818 	return ret;
6819 }
6820 
6821 static ssize_t
6822 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6823 {
6824 	struct r5conf *conf;
6825 	unsigned long new;
6826 	int err;
6827 
6828 	if (len >= PAGE_SIZE)
6829 		return -EINVAL;
6830 	if (kstrtoul(page, 10, &new))
6831 		return -EINVAL;
6832 	new = !!new;
6833 
6834 	err = mddev_lock(mddev);
6835 	if (err)
6836 		return err;
6837 	conf = mddev->private;
6838 	if (!conf)
6839 		err = -ENODEV;
6840 	else if (new != conf->skip_copy) {
6841 		struct request_queue *q = mddev->queue;
6842 
6843 		mddev_suspend(mddev);
6844 		conf->skip_copy = new;
6845 		if (new)
6846 			blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
6847 		else
6848 			blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
6849 		mddev_resume(mddev);
6850 	}
6851 	mddev_unlock(mddev);
6852 	return err ?: len;
6853 }
6854 
6855 static struct md_sysfs_entry
6856 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6857 					raid5_show_skip_copy,
6858 					raid5_store_skip_copy);
6859 
6860 static ssize_t
6861 stripe_cache_active_show(struct mddev *mddev, char *page)
6862 {
6863 	struct r5conf *conf = mddev->private;
6864 	if (conf)
6865 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6866 	else
6867 		return 0;
6868 }
6869 
6870 static struct md_sysfs_entry
6871 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6872 
6873 static ssize_t
6874 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6875 {
6876 	struct r5conf *conf;
6877 	int ret = 0;
6878 	spin_lock(&mddev->lock);
6879 	conf = mddev->private;
6880 	if (conf)
6881 		ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6882 	spin_unlock(&mddev->lock);
6883 	return ret;
6884 }
6885 
6886 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6887 			       int *group_cnt,
6888 			       struct r5worker_group **worker_groups);
6889 static ssize_t
6890 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6891 {
6892 	struct r5conf *conf;
6893 	unsigned int new;
6894 	int err;
6895 	struct r5worker_group *new_groups, *old_groups;
6896 	int group_cnt;
6897 
6898 	if (len >= PAGE_SIZE)
6899 		return -EINVAL;
6900 	if (kstrtouint(page, 10, &new))
6901 		return -EINVAL;
6902 	/* 8192 should be big enough */
6903 	if (new > 8192)
6904 		return -EINVAL;
6905 
6906 	err = mddev_lock(mddev);
6907 	if (err)
6908 		return err;
6909 	conf = mddev->private;
6910 	if (!conf)
6911 		err = -ENODEV;
6912 	else if (new != conf->worker_cnt_per_group) {
6913 		mddev_suspend(mddev);
6914 
6915 		old_groups = conf->worker_groups;
6916 		if (old_groups)
6917 			flush_workqueue(raid5_wq);
6918 
6919 		err = alloc_thread_groups(conf, new, &group_cnt, &new_groups);
6920 		if (!err) {
6921 			spin_lock_irq(&conf->device_lock);
6922 			conf->group_cnt = group_cnt;
6923 			conf->worker_cnt_per_group = new;
6924 			conf->worker_groups = new_groups;
6925 			spin_unlock_irq(&conf->device_lock);
6926 
6927 			if (old_groups)
6928 				kfree(old_groups[0].workers);
6929 			kfree(old_groups);
6930 		}
6931 		mddev_resume(mddev);
6932 	}
6933 	mddev_unlock(mddev);
6934 
6935 	return err ?: len;
6936 }
6937 
6938 static struct md_sysfs_entry
6939 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6940 				raid5_show_group_thread_cnt,
6941 				raid5_store_group_thread_cnt);
6942 
6943 static struct attribute *raid5_attrs[] =  {
6944 	&raid5_stripecache_size.attr,
6945 	&raid5_stripecache_active.attr,
6946 	&raid5_preread_bypass_threshold.attr,
6947 	&raid5_group_thread_cnt.attr,
6948 	&raid5_skip_copy.attr,
6949 	&raid5_rmw_level.attr,
6950 	&raid5_stripe_size.attr,
6951 	&r5c_journal_mode.attr,
6952 	&ppl_write_hint.attr,
6953 	NULL,
6954 };
6955 static const struct attribute_group raid5_attrs_group = {
6956 	.name = NULL,
6957 	.attrs = raid5_attrs,
6958 };
6959 
6960 static int alloc_thread_groups(struct r5conf *conf, int cnt, int *group_cnt,
6961 			       struct r5worker_group **worker_groups)
6962 {
6963 	int i, j, k;
6964 	ssize_t size;
6965 	struct r5worker *workers;
6966 
6967 	if (cnt == 0) {
6968 		*group_cnt = 0;
6969 		*worker_groups = NULL;
6970 		return 0;
6971 	}
6972 	*group_cnt = num_possible_nodes();
6973 	size = sizeof(struct r5worker) * cnt;
6974 	workers = kcalloc(size, *group_cnt, GFP_NOIO);
6975 	*worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group),
6976 				 GFP_NOIO);
6977 	if (!*worker_groups || !workers) {
6978 		kfree(workers);
6979 		kfree(*worker_groups);
6980 		return -ENOMEM;
6981 	}
6982 
6983 	for (i = 0; i < *group_cnt; i++) {
6984 		struct r5worker_group *group;
6985 
6986 		group = &(*worker_groups)[i];
6987 		INIT_LIST_HEAD(&group->handle_list);
6988 		INIT_LIST_HEAD(&group->loprio_list);
6989 		group->conf = conf;
6990 		group->workers = workers + i * cnt;
6991 
6992 		for (j = 0; j < cnt; j++) {
6993 			struct r5worker *worker = group->workers + j;
6994 			worker->group = group;
6995 			INIT_WORK(&worker->work, raid5_do_work);
6996 
6997 			for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6998 				INIT_LIST_HEAD(worker->temp_inactive_list + k);
6999 		}
7000 	}
7001 
7002 	return 0;
7003 }
7004 
7005 static void free_thread_groups(struct r5conf *conf)
7006 {
7007 	if (conf->worker_groups)
7008 		kfree(conf->worker_groups[0].workers);
7009 	kfree(conf->worker_groups);
7010 	conf->worker_groups = NULL;
7011 }
7012 
7013 static sector_t
7014 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
7015 {
7016 	struct r5conf *conf = mddev->private;
7017 
7018 	if (!sectors)
7019 		sectors = mddev->dev_sectors;
7020 	if (!raid_disks)
7021 		/* size is defined by the smallest of previous and new size */
7022 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
7023 
7024 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
7025 	sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
7026 	return sectors * (raid_disks - conf->max_degraded);
7027 }
7028 
7029 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7030 {
7031 	safe_put_page(percpu->spare_page);
7032 	percpu->spare_page = NULL;
7033 	kvfree(percpu->scribble);
7034 	percpu->scribble = NULL;
7035 }
7036 
7037 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7038 {
7039 	if (conf->level == 6 && !percpu->spare_page) {
7040 		percpu->spare_page = alloc_page(GFP_KERNEL);
7041 		if (!percpu->spare_page)
7042 			return -ENOMEM;
7043 	}
7044 
7045 	if (scribble_alloc(percpu,
7046 			   max(conf->raid_disks,
7047 			       conf->previous_raid_disks),
7048 			   max(conf->chunk_sectors,
7049 			       conf->prev_chunk_sectors)
7050 			   / RAID5_STRIPE_SECTORS(conf))) {
7051 		free_scratch_buffer(conf, percpu);
7052 		return -ENOMEM;
7053 	}
7054 
7055 	local_lock_init(&percpu->lock);
7056 	return 0;
7057 }
7058 
7059 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
7060 {
7061 	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7062 
7063 	free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
7064 	return 0;
7065 }
7066 
7067 static void raid5_free_percpu(struct r5conf *conf)
7068 {
7069 	if (!conf->percpu)
7070 		return;
7071 
7072 	cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
7073 	free_percpu(conf->percpu);
7074 }
7075 
7076 static void free_conf(struct r5conf *conf)
7077 {
7078 	int i;
7079 
7080 	log_exit(conf);
7081 
7082 	unregister_shrinker(&conf->shrinker);
7083 	free_thread_groups(conf);
7084 	shrink_stripes(conf);
7085 	raid5_free_percpu(conf);
7086 	for (i = 0; i < conf->pool_size; i++)
7087 		if (conf->disks[i].extra_page)
7088 			put_page(conf->disks[i].extra_page);
7089 	kfree(conf->disks);
7090 	bioset_exit(&conf->bio_split);
7091 	kfree(conf->stripe_hashtbl);
7092 	kfree(conf->pending_data);
7093 	kfree(conf);
7094 }
7095 
7096 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
7097 {
7098 	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7099 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
7100 
7101 	if (alloc_scratch_buffer(conf, percpu)) {
7102 		pr_warn("%s: failed memory allocation for cpu%u\n",
7103 			__func__, cpu);
7104 		return -ENOMEM;
7105 	}
7106 	return 0;
7107 }
7108 
7109 static int raid5_alloc_percpu(struct r5conf *conf)
7110 {
7111 	int err = 0;
7112 
7113 	conf->percpu = alloc_percpu(struct raid5_percpu);
7114 	if (!conf->percpu)
7115 		return -ENOMEM;
7116 
7117 	err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
7118 	if (!err) {
7119 		conf->scribble_disks = max(conf->raid_disks,
7120 			conf->previous_raid_disks);
7121 		conf->scribble_sectors = max(conf->chunk_sectors,
7122 			conf->prev_chunk_sectors);
7123 	}
7124 	return err;
7125 }
7126 
7127 static unsigned long raid5_cache_scan(struct shrinker *shrink,
7128 				      struct shrink_control *sc)
7129 {
7130 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
7131 	unsigned long ret = SHRINK_STOP;
7132 
7133 	if (mutex_trylock(&conf->cache_size_mutex)) {
7134 		ret= 0;
7135 		while (ret < sc->nr_to_scan &&
7136 		       conf->max_nr_stripes > conf->min_nr_stripes) {
7137 			if (drop_one_stripe(conf) == 0) {
7138 				ret = SHRINK_STOP;
7139 				break;
7140 			}
7141 			ret++;
7142 		}
7143 		mutex_unlock(&conf->cache_size_mutex);
7144 	}
7145 	return ret;
7146 }
7147 
7148 static unsigned long raid5_cache_count(struct shrinker *shrink,
7149 				       struct shrink_control *sc)
7150 {
7151 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
7152 
7153 	if (conf->max_nr_stripes < conf->min_nr_stripes)
7154 		/* unlikely, but not impossible */
7155 		return 0;
7156 	return conf->max_nr_stripes - conf->min_nr_stripes;
7157 }
7158 
7159 static struct r5conf *setup_conf(struct mddev *mddev)
7160 {
7161 	struct r5conf *conf;
7162 	int raid_disk, memory, max_disks;
7163 	struct md_rdev *rdev;
7164 	struct disk_info *disk;
7165 	char pers_name[6];
7166 	int i;
7167 	int group_cnt;
7168 	struct r5worker_group *new_group;
7169 	int ret;
7170 
7171 	if (mddev->new_level != 5
7172 	    && mddev->new_level != 4
7173 	    && mddev->new_level != 6) {
7174 		pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
7175 			mdname(mddev), mddev->new_level);
7176 		return ERR_PTR(-EIO);
7177 	}
7178 	if ((mddev->new_level == 5
7179 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
7180 	    (mddev->new_level == 6
7181 	     && !algorithm_valid_raid6(mddev->new_layout))) {
7182 		pr_warn("md/raid:%s: layout %d not supported\n",
7183 			mdname(mddev), mddev->new_layout);
7184 		return ERR_PTR(-EIO);
7185 	}
7186 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
7187 		pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
7188 			mdname(mddev), mddev->raid_disks);
7189 		return ERR_PTR(-EINVAL);
7190 	}
7191 
7192 	if (!mddev->new_chunk_sectors ||
7193 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
7194 	    !is_power_of_2(mddev->new_chunk_sectors)) {
7195 		pr_warn("md/raid:%s: invalid chunk size %d\n",
7196 			mdname(mddev), mddev->new_chunk_sectors << 9);
7197 		return ERR_PTR(-EINVAL);
7198 	}
7199 
7200 	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
7201 	if (conf == NULL)
7202 		goto abort;
7203 
7204 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
7205 	conf->stripe_size = DEFAULT_STRIPE_SIZE;
7206 	conf->stripe_shift = ilog2(DEFAULT_STRIPE_SIZE) - 9;
7207 	conf->stripe_sectors = DEFAULT_STRIPE_SIZE >> 9;
7208 #endif
7209 	INIT_LIST_HEAD(&conf->free_list);
7210 	INIT_LIST_HEAD(&conf->pending_list);
7211 	conf->pending_data = kcalloc(PENDING_IO_MAX,
7212 				     sizeof(struct r5pending_data),
7213 				     GFP_KERNEL);
7214 	if (!conf->pending_data)
7215 		goto abort;
7216 	for (i = 0; i < PENDING_IO_MAX; i++)
7217 		list_add(&conf->pending_data[i].sibling, &conf->free_list);
7218 	/* Don't enable multi-threading by default*/
7219 	if (!alloc_thread_groups(conf, 0, &group_cnt, &new_group)) {
7220 		conf->group_cnt = group_cnt;
7221 		conf->worker_cnt_per_group = 0;
7222 		conf->worker_groups = new_group;
7223 	} else
7224 		goto abort;
7225 	spin_lock_init(&conf->device_lock);
7226 	seqcount_spinlock_init(&conf->gen_lock, &conf->device_lock);
7227 	mutex_init(&conf->cache_size_mutex);
7228 	init_waitqueue_head(&conf->wait_for_quiescent);
7229 	init_waitqueue_head(&conf->wait_for_stripe);
7230 	init_waitqueue_head(&conf->wait_for_overlap);
7231 	INIT_LIST_HEAD(&conf->handle_list);
7232 	INIT_LIST_HEAD(&conf->loprio_list);
7233 	INIT_LIST_HEAD(&conf->hold_list);
7234 	INIT_LIST_HEAD(&conf->delayed_list);
7235 	INIT_LIST_HEAD(&conf->bitmap_list);
7236 	init_llist_head(&conf->released_stripes);
7237 	atomic_set(&conf->active_stripes, 0);
7238 	atomic_set(&conf->preread_active_stripes, 0);
7239 	atomic_set(&conf->active_aligned_reads, 0);
7240 	spin_lock_init(&conf->pending_bios_lock);
7241 	conf->batch_bio_dispatch = true;
7242 	rdev_for_each(rdev, mddev) {
7243 		if (test_bit(Journal, &rdev->flags))
7244 			continue;
7245 		if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
7246 			conf->batch_bio_dispatch = false;
7247 			break;
7248 		}
7249 	}
7250 
7251 	conf->bypass_threshold = BYPASS_THRESHOLD;
7252 	conf->recovery_disabled = mddev->recovery_disabled - 1;
7253 
7254 	conf->raid_disks = mddev->raid_disks;
7255 	if (mddev->reshape_position == MaxSector)
7256 		conf->previous_raid_disks = mddev->raid_disks;
7257 	else
7258 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
7259 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
7260 
7261 	conf->disks = kcalloc(max_disks, sizeof(struct disk_info),
7262 			      GFP_KERNEL);
7263 
7264 	if (!conf->disks)
7265 		goto abort;
7266 
7267 	for (i = 0; i < max_disks; i++) {
7268 		conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
7269 		if (!conf->disks[i].extra_page)
7270 			goto abort;
7271 	}
7272 
7273 	ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
7274 	if (ret)
7275 		goto abort;
7276 	conf->mddev = mddev;
7277 
7278 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
7279 		goto abort;
7280 
7281 	/* We init hash_locks[0] separately to that it can be used
7282 	 * as the reference lock in the spin_lock_nest_lock() call
7283 	 * in lock_all_device_hash_locks_irq in order to convince
7284 	 * lockdep that we know what we are doing.
7285 	 */
7286 	spin_lock_init(conf->hash_locks);
7287 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
7288 		spin_lock_init(conf->hash_locks + i);
7289 
7290 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7291 		INIT_LIST_HEAD(conf->inactive_list + i);
7292 
7293 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7294 		INIT_LIST_HEAD(conf->temp_inactive_list + i);
7295 
7296 	atomic_set(&conf->r5c_cached_full_stripes, 0);
7297 	INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
7298 	atomic_set(&conf->r5c_cached_partial_stripes, 0);
7299 	INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
7300 	atomic_set(&conf->r5c_flushing_full_stripes, 0);
7301 	atomic_set(&conf->r5c_flushing_partial_stripes, 0);
7302 
7303 	conf->level = mddev->new_level;
7304 	conf->chunk_sectors = mddev->new_chunk_sectors;
7305 	if (raid5_alloc_percpu(conf) != 0)
7306 		goto abort;
7307 
7308 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
7309 
7310 	rdev_for_each(rdev, mddev) {
7311 		raid_disk = rdev->raid_disk;
7312 		if (raid_disk >= max_disks
7313 		    || raid_disk < 0 || test_bit(Journal, &rdev->flags))
7314 			continue;
7315 		disk = conf->disks + raid_disk;
7316 
7317 		if (test_bit(Replacement, &rdev->flags)) {
7318 			if (disk->replacement)
7319 				goto abort;
7320 			disk->replacement = rdev;
7321 		} else {
7322 			if (disk->rdev)
7323 				goto abort;
7324 			disk->rdev = rdev;
7325 		}
7326 
7327 		if (test_bit(In_sync, &rdev->flags)) {
7328 			char b[BDEVNAME_SIZE];
7329 			pr_info("md/raid:%s: device %s operational as raid disk %d\n",
7330 				mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
7331 		} else if (rdev->saved_raid_disk != raid_disk)
7332 			/* Cannot rely on bitmap to complete recovery */
7333 			conf->fullsync = 1;
7334 	}
7335 
7336 	conf->level = mddev->new_level;
7337 	if (conf->level == 6) {
7338 		conf->max_degraded = 2;
7339 		if (raid6_call.xor_syndrome)
7340 			conf->rmw_level = PARITY_ENABLE_RMW;
7341 		else
7342 			conf->rmw_level = PARITY_DISABLE_RMW;
7343 	} else {
7344 		conf->max_degraded = 1;
7345 		conf->rmw_level = PARITY_ENABLE_RMW;
7346 	}
7347 	conf->algorithm = mddev->new_layout;
7348 	conf->reshape_progress = mddev->reshape_position;
7349 	if (conf->reshape_progress != MaxSector) {
7350 		conf->prev_chunk_sectors = mddev->chunk_sectors;
7351 		conf->prev_algo = mddev->layout;
7352 	} else {
7353 		conf->prev_chunk_sectors = conf->chunk_sectors;
7354 		conf->prev_algo = conf->algorithm;
7355 	}
7356 
7357 	conf->min_nr_stripes = NR_STRIPES;
7358 	if (mddev->reshape_position != MaxSector) {
7359 		int stripes = max_t(int,
7360 			((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4,
7361 			((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4);
7362 		conf->min_nr_stripes = max(NR_STRIPES, stripes);
7363 		if (conf->min_nr_stripes != NR_STRIPES)
7364 			pr_info("md/raid:%s: force stripe size %d for reshape\n",
7365 				mdname(mddev), conf->min_nr_stripes);
7366 	}
7367 	memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7368 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7369 	atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7370 	if (grow_stripes(conf, conf->min_nr_stripes)) {
7371 		pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7372 			mdname(mddev), memory);
7373 		goto abort;
7374 	} else
7375 		pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7376 	/*
7377 	 * Losing a stripe head costs more than the time to refill it,
7378 	 * it reduces the queue depth and so can hurt throughput.
7379 	 * So set it rather large, scaled by number of devices.
7380 	 */
7381 	conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7382 	conf->shrinker.scan_objects = raid5_cache_scan;
7383 	conf->shrinker.count_objects = raid5_cache_count;
7384 	conf->shrinker.batch = 128;
7385 	conf->shrinker.flags = 0;
7386 	if (register_shrinker(&conf->shrinker)) {
7387 		pr_warn("md/raid:%s: couldn't register shrinker.\n",
7388 			mdname(mddev));
7389 		goto abort;
7390 	}
7391 
7392 	sprintf(pers_name, "raid%d", mddev->new_level);
7393 	conf->thread = md_register_thread(raid5d, mddev, pers_name);
7394 	if (!conf->thread) {
7395 		pr_warn("md/raid:%s: couldn't allocate thread.\n",
7396 			mdname(mddev));
7397 		goto abort;
7398 	}
7399 
7400 	return conf;
7401 
7402  abort:
7403 	if (conf) {
7404 		free_conf(conf);
7405 		return ERR_PTR(-EIO);
7406 	} else
7407 		return ERR_PTR(-ENOMEM);
7408 }
7409 
7410 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7411 {
7412 	switch (algo) {
7413 	case ALGORITHM_PARITY_0:
7414 		if (raid_disk < max_degraded)
7415 			return 1;
7416 		break;
7417 	case ALGORITHM_PARITY_N:
7418 		if (raid_disk >= raid_disks - max_degraded)
7419 			return 1;
7420 		break;
7421 	case ALGORITHM_PARITY_0_6:
7422 		if (raid_disk == 0 ||
7423 		    raid_disk == raid_disks - 1)
7424 			return 1;
7425 		break;
7426 	case ALGORITHM_LEFT_ASYMMETRIC_6:
7427 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
7428 	case ALGORITHM_LEFT_SYMMETRIC_6:
7429 	case ALGORITHM_RIGHT_SYMMETRIC_6:
7430 		if (raid_disk == raid_disks - 1)
7431 			return 1;
7432 	}
7433 	return 0;
7434 }
7435 
7436 static void raid5_set_io_opt(struct r5conf *conf)
7437 {
7438 	blk_queue_io_opt(conf->mddev->queue, (conf->chunk_sectors << 9) *
7439 			 (conf->raid_disks - conf->max_degraded));
7440 }
7441 
7442 static int raid5_run(struct mddev *mddev)
7443 {
7444 	struct r5conf *conf;
7445 	int working_disks = 0;
7446 	int dirty_parity_disks = 0;
7447 	struct md_rdev *rdev;
7448 	struct md_rdev *journal_dev = NULL;
7449 	sector_t reshape_offset = 0;
7450 	int i, ret = 0;
7451 	long long min_offset_diff = 0;
7452 	int first = 1;
7453 
7454 	if (acct_bioset_init(mddev)) {
7455 		pr_err("md/raid456:%s: alloc acct bioset failed.\n", mdname(mddev));
7456 		return -ENOMEM;
7457 	}
7458 
7459 	if (mddev_init_writes_pending(mddev) < 0) {
7460 		ret = -ENOMEM;
7461 		goto exit_acct_set;
7462 	}
7463 
7464 	if (mddev->recovery_cp != MaxSector)
7465 		pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7466 			  mdname(mddev));
7467 
7468 	rdev_for_each(rdev, mddev) {
7469 		long long diff;
7470 
7471 		if (test_bit(Journal, &rdev->flags)) {
7472 			journal_dev = rdev;
7473 			continue;
7474 		}
7475 		if (rdev->raid_disk < 0)
7476 			continue;
7477 		diff = (rdev->new_data_offset - rdev->data_offset);
7478 		if (first) {
7479 			min_offset_diff = diff;
7480 			first = 0;
7481 		} else if (mddev->reshape_backwards &&
7482 			 diff < min_offset_diff)
7483 			min_offset_diff = diff;
7484 		else if (!mddev->reshape_backwards &&
7485 			 diff > min_offset_diff)
7486 			min_offset_diff = diff;
7487 	}
7488 
7489 	if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7490 	    (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7491 		pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7492 			  mdname(mddev));
7493 		ret = -EINVAL;
7494 		goto exit_acct_set;
7495 	}
7496 
7497 	if (mddev->reshape_position != MaxSector) {
7498 		/* Check that we can continue the reshape.
7499 		 * Difficulties arise if the stripe we would write to
7500 		 * next is at or after the stripe we would read from next.
7501 		 * For a reshape that changes the number of devices, this
7502 		 * is only possible for a very short time, and mdadm makes
7503 		 * sure that time appears to have past before assembling
7504 		 * the array.  So we fail if that time hasn't passed.
7505 		 * For a reshape that keeps the number of devices the same
7506 		 * mdadm must be monitoring the reshape can keeping the
7507 		 * critical areas read-only and backed up.  It will start
7508 		 * the array in read-only mode, so we check for that.
7509 		 */
7510 		sector_t here_new, here_old;
7511 		int old_disks;
7512 		int max_degraded = (mddev->level == 6 ? 2 : 1);
7513 		int chunk_sectors;
7514 		int new_data_disks;
7515 
7516 		if (journal_dev) {
7517 			pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7518 				mdname(mddev));
7519 			ret = -EINVAL;
7520 			goto exit_acct_set;
7521 		}
7522 
7523 		if (mddev->new_level != mddev->level) {
7524 			pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7525 				mdname(mddev));
7526 			ret = -EINVAL;
7527 			goto exit_acct_set;
7528 		}
7529 		old_disks = mddev->raid_disks - mddev->delta_disks;
7530 		/* reshape_position must be on a new-stripe boundary, and one
7531 		 * further up in new geometry must map after here in old
7532 		 * geometry.
7533 		 * If the chunk sizes are different, then as we perform reshape
7534 		 * in units of the largest of the two, reshape_position needs
7535 		 * be a multiple of the largest chunk size times new data disks.
7536 		 */
7537 		here_new = mddev->reshape_position;
7538 		chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7539 		new_data_disks = mddev->raid_disks - max_degraded;
7540 		if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7541 			pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7542 				mdname(mddev));
7543 			ret = -EINVAL;
7544 			goto exit_acct_set;
7545 		}
7546 		reshape_offset = here_new * chunk_sectors;
7547 		/* here_new is the stripe we will write to */
7548 		here_old = mddev->reshape_position;
7549 		sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7550 		/* here_old is the first stripe that we might need to read
7551 		 * from */
7552 		if (mddev->delta_disks == 0) {
7553 			/* We cannot be sure it is safe to start an in-place
7554 			 * reshape.  It is only safe if user-space is monitoring
7555 			 * and taking constant backups.
7556 			 * mdadm always starts a situation like this in
7557 			 * readonly mode so it can take control before
7558 			 * allowing any writes.  So just check for that.
7559 			 */
7560 			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7561 			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
7562 				/* not really in-place - so OK */;
7563 			else if (mddev->ro == 0) {
7564 				pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7565 					mdname(mddev));
7566 				ret = -EINVAL;
7567 				goto exit_acct_set;
7568 			}
7569 		} else if (mddev->reshape_backwards
7570 		    ? (here_new * chunk_sectors + min_offset_diff <=
7571 		       here_old * chunk_sectors)
7572 		    : (here_new * chunk_sectors >=
7573 		       here_old * chunk_sectors + (-min_offset_diff))) {
7574 			/* Reading from the same stripe as writing to - bad */
7575 			pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7576 				mdname(mddev));
7577 			ret = -EINVAL;
7578 			goto exit_acct_set;
7579 		}
7580 		pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7581 		/* OK, we should be able to continue; */
7582 	} else {
7583 		BUG_ON(mddev->level != mddev->new_level);
7584 		BUG_ON(mddev->layout != mddev->new_layout);
7585 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7586 		BUG_ON(mddev->delta_disks != 0);
7587 	}
7588 
7589 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7590 	    test_bit(MD_HAS_PPL, &mddev->flags)) {
7591 		pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7592 			mdname(mddev));
7593 		clear_bit(MD_HAS_PPL, &mddev->flags);
7594 		clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
7595 	}
7596 
7597 	if (mddev->private == NULL)
7598 		conf = setup_conf(mddev);
7599 	else
7600 		conf = mddev->private;
7601 
7602 	if (IS_ERR(conf)) {
7603 		ret = PTR_ERR(conf);
7604 		goto exit_acct_set;
7605 	}
7606 
7607 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7608 		if (!journal_dev) {
7609 			pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7610 				mdname(mddev));
7611 			mddev->ro = 1;
7612 			set_disk_ro(mddev->gendisk, 1);
7613 		} else if (mddev->recovery_cp == MaxSector)
7614 			set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7615 	}
7616 
7617 	conf->min_offset_diff = min_offset_diff;
7618 	mddev->thread = conf->thread;
7619 	conf->thread = NULL;
7620 	mddev->private = conf;
7621 
7622 	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7623 	     i++) {
7624 		rdev = conf->disks[i].rdev;
7625 		if (!rdev && conf->disks[i].replacement) {
7626 			/* The replacement is all we have yet */
7627 			rdev = conf->disks[i].replacement;
7628 			conf->disks[i].replacement = NULL;
7629 			clear_bit(Replacement, &rdev->flags);
7630 			conf->disks[i].rdev = rdev;
7631 		}
7632 		if (!rdev)
7633 			continue;
7634 		if (conf->disks[i].replacement &&
7635 		    conf->reshape_progress != MaxSector) {
7636 			/* replacements and reshape simply do not mix. */
7637 			pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7638 			goto abort;
7639 		}
7640 		if (test_bit(In_sync, &rdev->flags)) {
7641 			working_disks++;
7642 			continue;
7643 		}
7644 		/* This disc is not fully in-sync.  However if it
7645 		 * just stored parity (beyond the recovery_offset),
7646 		 * when we don't need to be concerned about the
7647 		 * array being dirty.
7648 		 * When reshape goes 'backwards', we never have
7649 		 * partially completed devices, so we only need
7650 		 * to worry about reshape going forwards.
7651 		 */
7652 		/* Hack because v0.91 doesn't store recovery_offset properly. */
7653 		if (mddev->major_version == 0 &&
7654 		    mddev->minor_version > 90)
7655 			rdev->recovery_offset = reshape_offset;
7656 
7657 		if (rdev->recovery_offset < reshape_offset) {
7658 			/* We need to check old and new layout */
7659 			if (!only_parity(rdev->raid_disk,
7660 					 conf->algorithm,
7661 					 conf->raid_disks,
7662 					 conf->max_degraded))
7663 				continue;
7664 		}
7665 		if (!only_parity(rdev->raid_disk,
7666 				 conf->prev_algo,
7667 				 conf->previous_raid_disks,
7668 				 conf->max_degraded))
7669 			continue;
7670 		dirty_parity_disks++;
7671 	}
7672 
7673 	/*
7674 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
7675 	 */
7676 	mddev->degraded = raid5_calc_degraded(conf);
7677 
7678 	if (has_failed(conf)) {
7679 		pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7680 			mdname(mddev), mddev->degraded, conf->raid_disks);
7681 		goto abort;
7682 	}
7683 
7684 	/* device size must be a multiple of chunk size */
7685 	mddev->dev_sectors &= ~((sector_t)mddev->chunk_sectors - 1);
7686 	mddev->resync_max_sectors = mddev->dev_sectors;
7687 
7688 	if (mddev->degraded > dirty_parity_disks &&
7689 	    mddev->recovery_cp != MaxSector) {
7690 		if (test_bit(MD_HAS_PPL, &mddev->flags))
7691 			pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7692 				mdname(mddev));
7693 		else if (mddev->ok_start_degraded)
7694 			pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7695 				mdname(mddev));
7696 		else {
7697 			pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7698 				mdname(mddev));
7699 			goto abort;
7700 		}
7701 	}
7702 
7703 	pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7704 		mdname(mddev), conf->level,
7705 		mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7706 		mddev->new_layout);
7707 
7708 	print_raid5_conf(conf);
7709 
7710 	if (conf->reshape_progress != MaxSector) {
7711 		conf->reshape_safe = conf->reshape_progress;
7712 		atomic_set(&conf->reshape_stripes, 0);
7713 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7714 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7715 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7716 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7717 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7718 							"reshape");
7719 		if (!mddev->sync_thread)
7720 			goto abort;
7721 	}
7722 
7723 	/* Ok, everything is just fine now */
7724 	if (mddev->to_remove == &raid5_attrs_group)
7725 		mddev->to_remove = NULL;
7726 	else if (mddev->kobj.sd &&
7727 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
7728 		pr_warn("raid5: failed to create sysfs attributes for %s\n",
7729 			mdname(mddev));
7730 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7731 
7732 	if (mddev->queue) {
7733 		int chunk_size;
7734 		/* read-ahead size must cover two whole stripes, which
7735 		 * is 2 * (datadisks) * chunksize where 'n' is the
7736 		 * number of raid devices
7737 		 */
7738 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
7739 		int stripe = data_disks *
7740 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
7741 
7742 		chunk_size = mddev->chunk_sectors << 9;
7743 		blk_queue_io_min(mddev->queue, chunk_size);
7744 		raid5_set_io_opt(conf);
7745 		mddev->queue->limits.raid_partial_stripes_expensive = 1;
7746 		/*
7747 		 * We can only discard a whole stripe. It doesn't make sense to
7748 		 * discard data disk but write parity disk
7749 		 */
7750 		stripe = stripe * PAGE_SIZE;
7751 		stripe = roundup_pow_of_two(stripe);
7752 		mddev->queue->limits.discard_alignment = stripe;
7753 		mddev->queue->limits.discard_granularity = stripe;
7754 
7755 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
7756 
7757 		rdev_for_each(rdev, mddev) {
7758 			disk_stack_limits(mddev->gendisk, rdev->bdev,
7759 					  rdev->data_offset << 9);
7760 			disk_stack_limits(mddev->gendisk, rdev->bdev,
7761 					  rdev->new_data_offset << 9);
7762 		}
7763 
7764 		/*
7765 		 * zeroing is required, otherwise data
7766 		 * could be lost. Consider a scenario: discard a stripe
7767 		 * (the stripe could be inconsistent if
7768 		 * discard_zeroes_data is 0); write one disk of the
7769 		 * stripe (the stripe could be inconsistent again
7770 		 * depending on which disks are used to calculate
7771 		 * parity); the disk is broken; The stripe data of this
7772 		 * disk is lost.
7773 		 *
7774 		 * We only allow DISCARD if the sysadmin has confirmed that
7775 		 * only safe devices are in use by setting a module parameter.
7776 		 * A better idea might be to turn DISCARD into WRITE_ZEROES
7777 		 * requests, as that is required to be safe.
7778 		 */
7779 		if (devices_handle_discard_safely &&
7780 		    mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7781 		    mddev->queue->limits.discard_granularity >= stripe)
7782 			blk_queue_flag_set(QUEUE_FLAG_DISCARD,
7783 						mddev->queue);
7784 		else
7785 			blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
7786 						mddev->queue);
7787 
7788 		blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
7789 	}
7790 
7791 	if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
7792 		goto abort;
7793 
7794 	return 0;
7795 abort:
7796 	md_unregister_thread(&mddev->thread);
7797 	print_raid5_conf(conf);
7798 	free_conf(conf);
7799 	mddev->private = NULL;
7800 	pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
7801 	ret = -EIO;
7802 exit_acct_set:
7803 	acct_bioset_exit(mddev);
7804 	return ret;
7805 }
7806 
7807 static void raid5_free(struct mddev *mddev, void *priv)
7808 {
7809 	struct r5conf *conf = priv;
7810 
7811 	free_conf(conf);
7812 	acct_bioset_exit(mddev);
7813 	mddev->to_remove = &raid5_attrs_group;
7814 }
7815 
7816 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7817 {
7818 	struct r5conf *conf = mddev->private;
7819 	int i;
7820 
7821 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7822 		conf->chunk_sectors / 2, mddev->layout);
7823 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7824 	rcu_read_lock();
7825 	for (i = 0; i < conf->raid_disks; i++) {
7826 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7827 		seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7828 	}
7829 	rcu_read_unlock();
7830 	seq_printf (seq, "]");
7831 }
7832 
7833 static void print_raid5_conf (struct r5conf *conf)
7834 {
7835 	int i;
7836 	struct disk_info *tmp;
7837 
7838 	pr_debug("RAID conf printout:\n");
7839 	if (!conf) {
7840 		pr_debug("(conf==NULL)\n");
7841 		return;
7842 	}
7843 	pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
7844 	       conf->raid_disks,
7845 	       conf->raid_disks - conf->mddev->degraded);
7846 
7847 	for (i = 0; i < conf->raid_disks; i++) {
7848 		char b[BDEVNAME_SIZE];
7849 		tmp = conf->disks + i;
7850 		if (tmp->rdev)
7851 			pr_debug(" disk %d, o:%d, dev:%s\n",
7852 			       i, !test_bit(Faulty, &tmp->rdev->flags),
7853 			       bdevname(tmp->rdev->bdev, b));
7854 	}
7855 }
7856 
7857 static int raid5_spare_active(struct mddev *mddev)
7858 {
7859 	int i;
7860 	struct r5conf *conf = mddev->private;
7861 	struct disk_info *tmp;
7862 	int count = 0;
7863 	unsigned long flags;
7864 
7865 	for (i = 0; i < conf->raid_disks; i++) {
7866 		tmp = conf->disks + i;
7867 		if (tmp->replacement
7868 		    && tmp->replacement->recovery_offset == MaxSector
7869 		    && !test_bit(Faulty, &tmp->replacement->flags)
7870 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7871 			/* Replacement has just become active. */
7872 			if (!tmp->rdev
7873 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7874 				count++;
7875 			if (tmp->rdev) {
7876 				/* Replaced device not technically faulty,
7877 				 * but we need to be sure it gets removed
7878 				 * and never re-added.
7879 				 */
7880 				set_bit(Faulty, &tmp->rdev->flags);
7881 				sysfs_notify_dirent_safe(
7882 					tmp->rdev->sysfs_state);
7883 			}
7884 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7885 		} else if (tmp->rdev
7886 		    && tmp->rdev->recovery_offset == MaxSector
7887 		    && !test_bit(Faulty, &tmp->rdev->flags)
7888 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7889 			count++;
7890 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7891 		}
7892 	}
7893 	spin_lock_irqsave(&conf->device_lock, flags);
7894 	mddev->degraded = raid5_calc_degraded(conf);
7895 	spin_unlock_irqrestore(&conf->device_lock, flags);
7896 	print_raid5_conf(conf);
7897 	return count;
7898 }
7899 
7900 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7901 {
7902 	struct r5conf *conf = mddev->private;
7903 	int err = 0;
7904 	int number = rdev->raid_disk;
7905 	struct md_rdev **rdevp;
7906 	struct disk_info *p = conf->disks + number;
7907 
7908 	print_raid5_conf(conf);
7909 	if (test_bit(Journal, &rdev->flags) && conf->log) {
7910 		/*
7911 		 * we can't wait pending write here, as this is called in
7912 		 * raid5d, wait will deadlock.
7913 		 * neilb: there is no locking about new writes here,
7914 		 * so this cannot be safe.
7915 		 */
7916 		if (atomic_read(&conf->active_stripes) ||
7917 		    atomic_read(&conf->r5c_cached_full_stripes) ||
7918 		    atomic_read(&conf->r5c_cached_partial_stripes)) {
7919 			return -EBUSY;
7920 		}
7921 		log_exit(conf);
7922 		return 0;
7923 	}
7924 	if (rdev == p->rdev)
7925 		rdevp = &p->rdev;
7926 	else if (rdev == p->replacement)
7927 		rdevp = &p->replacement;
7928 	else
7929 		return 0;
7930 
7931 	if (number >= conf->raid_disks &&
7932 	    conf->reshape_progress == MaxSector)
7933 		clear_bit(In_sync, &rdev->flags);
7934 
7935 	if (test_bit(In_sync, &rdev->flags) ||
7936 	    atomic_read(&rdev->nr_pending)) {
7937 		err = -EBUSY;
7938 		goto abort;
7939 	}
7940 	/* Only remove non-faulty devices if recovery
7941 	 * isn't possible.
7942 	 */
7943 	if (!test_bit(Faulty, &rdev->flags) &&
7944 	    mddev->recovery_disabled != conf->recovery_disabled &&
7945 	    !has_failed(conf) &&
7946 	    (!p->replacement || p->replacement == rdev) &&
7947 	    number < conf->raid_disks) {
7948 		err = -EBUSY;
7949 		goto abort;
7950 	}
7951 	*rdevp = NULL;
7952 	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7953 		synchronize_rcu();
7954 		if (atomic_read(&rdev->nr_pending)) {
7955 			/* lost the race, try later */
7956 			err = -EBUSY;
7957 			*rdevp = rdev;
7958 		}
7959 	}
7960 	if (!err) {
7961 		err = log_modify(conf, rdev, false);
7962 		if (err)
7963 			goto abort;
7964 	}
7965 	if (p->replacement) {
7966 		/* We must have just cleared 'rdev' */
7967 		p->rdev = p->replacement;
7968 		clear_bit(Replacement, &p->replacement->flags);
7969 		smp_mb(); /* Make sure other CPUs may see both as identical
7970 			   * but will never see neither - if they are careful
7971 			   */
7972 		p->replacement = NULL;
7973 
7974 		if (!err)
7975 			err = log_modify(conf, p->rdev, true);
7976 	}
7977 
7978 	clear_bit(WantReplacement, &rdev->flags);
7979 abort:
7980 
7981 	print_raid5_conf(conf);
7982 	return err;
7983 }
7984 
7985 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7986 {
7987 	struct r5conf *conf = mddev->private;
7988 	int ret, err = -EEXIST;
7989 	int disk;
7990 	struct disk_info *p;
7991 	int first = 0;
7992 	int last = conf->raid_disks - 1;
7993 
7994 	if (test_bit(Journal, &rdev->flags)) {
7995 		if (conf->log)
7996 			return -EBUSY;
7997 
7998 		rdev->raid_disk = 0;
7999 		/*
8000 		 * The array is in readonly mode if journal is missing, so no
8001 		 * write requests running. We should be safe
8002 		 */
8003 		ret = log_init(conf, rdev, false);
8004 		if (ret)
8005 			return ret;
8006 
8007 		ret = r5l_start(conf->log);
8008 		if (ret)
8009 			return ret;
8010 
8011 		return 0;
8012 	}
8013 	if (mddev->recovery_disabled == conf->recovery_disabled)
8014 		return -EBUSY;
8015 
8016 	if (rdev->saved_raid_disk < 0 && has_failed(conf))
8017 		/* no point adding a device */
8018 		return -EINVAL;
8019 
8020 	if (rdev->raid_disk >= 0)
8021 		first = last = rdev->raid_disk;
8022 
8023 	/*
8024 	 * find the disk ... but prefer rdev->saved_raid_disk
8025 	 * if possible.
8026 	 */
8027 	if (rdev->saved_raid_disk >= 0 &&
8028 	    rdev->saved_raid_disk >= first &&
8029 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
8030 		first = rdev->saved_raid_disk;
8031 
8032 	for (disk = first; disk <= last; disk++) {
8033 		p = conf->disks + disk;
8034 		if (p->rdev == NULL) {
8035 			clear_bit(In_sync, &rdev->flags);
8036 			rdev->raid_disk = disk;
8037 			if (rdev->saved_raid_disk != disk)
8038 				conf->fullsync = 1;
8039 			rcu_assign_pointer(p->rdev, rdev);
8040 
8041 			err = log_modify(conf, rdev, true);
8042 
8043 			goto out;
8044 		}
8045 	}
8046 	for (disk = first; disk <= last; disk++) {
8047 		p = conf->disks + disk;
8048 		if (test_bit(WantReplacement, &p->rdev->flags) &&
8049 		    p->replacement == NULL) {
8050 			clear_bit(In_sync, &rdev->flags);
8051 			set_bit(Replacement, &rdev->flags);
8052 			rdev->raid_disk = disk;
8053 			err = 0;
8054 			conf->fullsync = 1;
8055 			rcu_assign_pointer(p->replacement, rdev);
8056 			break;
8057 		}
8058 	}
8059 out:
8060 	print_raid5_conf(conf);
8061 	return err;
8062 }
8063 
8064 static int raid5_resize(struct mddev *mddev, sector_t sectors)
8065 {
8066 	/* no resync is happening, and there is enough space
8067 	 * on all devices, so we can resize.
8068 	 * We need to make sure resync covers any new space.
8069 	 * If the array is shrinking we should possibly wait until
8070 	 * any io in the removed space completes, but it hardly seems
8071 	 * worth it.
8072 	 */
8073 	sector_t newsize;
8074 	struct r5conf *conf = mddev->private;
8075 
8076 	if (raid5_has_log(conf) || raid5_has_ppl(conf))
8077 		return -EINVAL;
8078 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
8079 	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
8080 	if (mddev->external_size &&
8081 	    mddev->array_sectors > newsize)
8082 		return -EINVAL;
8083 	if (mddev->bitmap) {
8084 		int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0);
8085 		if (ret)
8086 			return ret;
8087 	}
8088 	md_set_array_sectors(mddev, newsize);
8089 	if (sectors > mddev->dev_sectors &&
8090 	    mddev->recovery_cp > mddev->dev_sectors) {
8091 		mddev->recovery_cp = mddev->dev_sectors;
8092 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8093 	}
8094 	mddev->dev_sectors = sectors;
8095 	mddev->resync_max_sectors = sectors;
8096 	return 0;
8097 }
8098 
8099 static int check_stripe_cache(struct mddev *mddev)
8100 {
8101 	/* Can only proceed if there are plenty of stripe_heads.
8102 	 * We need a minimum of one full stripe,, and for sensible progress
8103 	 * it is best to have about 4 times that.
8104 	 * If we require 4 times, then the default 256 4K stripe_heads will
8105 	 * allow for chunk sizes up to 256K, which is probably OK.
8106 	 * If the chunk size is greater, user-space should request more
8107 	 * stripe_heads first.
8108 	 */
8109 	struct r5conf *conf = mddev->private;
8110 	if (((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
8111 	    > conf->min_nr_stripes ||
8112 	    ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
8113 	    > conf->min_nr_stripes) {
8114 		pr_warn("md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
8115 			mdname(mddev),
8116 			((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
8117 			 / RAID5_STRIPE_SIZE(conf))*4);
8118 		return 0;
8119 	}
8120 	return 1;
8121 }
8122 
8123 static int check_reshape(struct mddev *mddev)
8124 {
8125 	struct r5conf *conf = mddev->private;
8126 
8127 	if (raid5_has_log(conf) || raid5_has_ppl(conf))
8128 		return -EINVAL;
8129 	if (mddev->delta_disks == 0 &&
8130 	    mddev->new_layout == mddev->layout &&
8131 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
8132 		return 0; /* nothing to do */
8133 	if (has_failed(conf))
8134 		return -EINVAL;
8135 	if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
8136 		/* We might be able to shrink, but the devices must
8137 		 * be made bigger first.
8138 		 * For raid6, 4 is the minimum size.
8139 		 * Otherwise 2 is the minimum
8140 		 */
8141 		int min = 2;
8142 		if (mddev->level == 6)
8143 			min = 4;
8144 		if (mddev->raid_disks + mddev->delta_disks < min)
8145 			return -EINVAL;
8146 	}
8147 
8148 	if (!check_stripe_cache(mddev))
8149 		return -ENOSPC;
8150 
8151 	if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
8152 	    mddev->delta_disks > 0)
8153 		if (resize_chunks(conf,
8154 				  conf->previous_raid_disks
8155 				  + max(0, mddev->delta_disks),
8156 				  max(mddev->new_chunk_sectors,
8157 				      mddev->chunk_sectors)
8158 			    ) < 0)
8159 			return -ENOMEM;
8160 
8161 	if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
8162 		return 0; /* never bother to shrink */
8163 	return resize_stripes(conf, (conf->previous_raid_disks
8164 				     + mddev->delta_disks));
8165 }
8166 
8167 static int raid5_start_reshape(struct mddev *mddev)
8168 {
8169 	struct r5conf *conf = mddev->private;
8170 	struct md_rdev *rdev;
8171 	int spares = 0;
8172 	unsigned long flags;
8173 
8174 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
8175 		return -EBUSY;
8176 
8177 	if (!check_stripe_cache(mddev))
8178 		return -ENOSPC;
8179 
8180 	if (has_failed(conf))
8181 		return -EINVAL;
8182 
8183 	rdev_for_each(rdev, mddev) {
8184 		if (!test_bit(In_sync, &rdev->flags)
8185 		    && !test_bit(Faulty, &rdev->flags))
8186 			spares++;
8187 	}
8188 
8189 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
8190 		/* Not enough devices even to make a degraded array
8191 		 * of that size
8192 		 */
8193 		return -EINVAL;
8194 
8195 	/* Refuse to reduce size of the array.  Any reductions in
8196 	 * array size must be through explicit setting of array_size
8197 	 * attribute.
8198 	 */
8199 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
8200 	    < mddev->array_sectors) {
8201 		pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
8202 			mdname(mddev));
8203 		return -EINVAL;
8204 	}
8205 
8206 	atomic_set(&conf->reshape_stripes, 0);
8207 	spin_lock_irq(&conf->device_lock);
8208 	write_seqcount_begin(&conf->gen_lock);
8209 	conf->previous_raid_disks = conf->raid_disks;
8210 	conf->raid_disks += mddev->delta_disks;
8211 	conf->prev_chunk_sectors = conf->chunk_sectors;
8212 	conf->chunk_sectors = mddev->new_chunk_sectors;
8213 	conf->prev_algo = conf->algorithm;
8214 	conf->algorithm = mddev->new_layout;
8215 	conf->generation++;
8216 	/* Code that selects data_offset needs to see the generation update
8217 	 * if reshape_progress has been set - so a memory barrier needed.
8218 	 */
8219 	smp_mb();
8220 	if (mddev->reshape_backwards)
8221 		conf->reshape_progress = raid5_size(mddev, 0, 0);
8222 	else
8223 		conf->reshape_progress = 0;
8224 	conf->reshape_safe = conf->reshape_progress;
8225 	write_seqcount_end(&conf->gen_lock);
8226 	spin_unlock_irq(&conf->device_lock);
8227 
8228 	/* Now make sure any requests that proceeded on the assumption
8229 	 * the reshape wasn't running - like Discard or Read - have
8230 	 * completed.
8231 	 */
8232 	mddev_suspend(mddev);
8233 	mddev_resume(mddev);
8234 
8235 	/* Add some new drives, as many as will fit.
8236 	 * We know there are enough to make the newly sized array work.
8237 	 * Don't add devices if we are reducing the number of
8238 	 * devices in the array.  This is because it is not possible
8239 	 * to correctly record the "partially reconstructed" state of
8240 	 * such devices during the reshape and confusion could result.
8241 	 */
8242 	if (mddev->delta_disks >= 0) {
8243 		rdev_for_each(rdev, mddev)
8244 			if (rdev->raid_disk < 0 &&
8245 			    !test_bit(Faulty, &rdev->flags)) {
8246 				if (raid5_add_disk(mddev, rdev) == 0) {
8247 					if (rdev->raid_disk
8248 					    >= conf->previous_raid_disks)
8249 						set_bit(In_sync, &rdev->flags);
8250 					else
8251 						rdev->recovery_offset = 0;
8252 
8253 					/* Failure here is OK */
8254 					sysfs_link_rdev(mddev, rdev);
8255 				}
8256 			} else if (rdev->raid_disk >= conf->previous_raid_disks
8257 				   && !test_bit(Faulty, &rdev->flags)) {
8258 				/* This is a spare that was manually added */
8259 				set_bit(In_sync, &rdev->flags);
8260 			}
8261 
8262 		/* When a reshape changes the number of devices,
8263 		 * ->degraded is measured against the larger of the
8264 		 * pre and post number of devices.
8265 		 */
8266 		spin_lock_irqsave(&conf->device_lock, flags);
8267 		mddev->degraded = raid5_calc_degraded(conf);
8268 		spin_unlock_irqrestore(&conf->device_lock, flags);
8269 	}
8270 	mddev->raid_disks = conf->raid_disks;
8271 	mddev->reshape_position = conf->reshape_progress;
8272 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8273 
8274 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8275 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8276 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8277 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8278 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8279 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
8280 						"reshape");
8281 	if (!mddev->sync_thread) {
8282 		mddev->recovery = 0;
8283 		spin_lock_irq(&conf->device_lock);
8284 		write_seqcount_begin(&conf->gen_lock);
8285 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
8286 		mddev->new_chunk_sectors =
8287 			conf->chunk_sectors = conf->prev_chunk_sectors;
8288 		mddev->new_layout = conf->algorithm = conf->prev_algo;
8289 		rdev_for_each(rdev, mddev)
8290 			rdev->new_data_offset = rdev->data_offset;
8291 		smp_wmb();
8292 		conf->generation --;
8293 		conf->reshape_progress = MaxSector;
8294 		mddev->reshape_position = MaxSector;
8295 		write_seqcount_end(&conf->gen_lock);
8296 		spin_unlock_irq(&conf->device_lock);
8297 		return -EAGAIN;
8298 	}
8299 	conf->reshape_checkpoint = jiffies;
8300 	md_wakeup_thread(mddev->sync_thread);
8301 	md_new_event();
8302 	return 0;
8303 }
8304 
8305 /* This is called from the reshape thread and should make any
8306  * changes needed in 'conf'
8307  */
8308 static void end_reshape(struct r5conf *conf)
8309 {
8310 
8311 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
8312 		struct md_rdev *rdev;
8313 
8314 		spin_lock_irq(&conf->device_lock);
8315 		conf->previous_raid_disks = conf->raid_disks;
8316 		md_finish_reshape(conf->mddev);
8317 		smp_wmb();
8318 		conf->reshape_progress = MaxSector;
8319 		conf->mddev->reshape_position = MaxSector;
8320 		rdev_for_each(rdev, conf->mddev)
8321 			if (rdev->raid_disk >= 0 &&
8322 			    !test_bit(Journal, &rdev->flags) &&
8323 			    !test_bit(In_sync, &rdev->flags))
8324 				rdev->recovery_offset = MaxSector;
8325 		spin_unlock_irq(&conf->device_lock);
8326 		wake_up(&conf->wait_for_overlap);
8327 
8328 		if (conf->mddev->queue)
8329 			raid5_set_io_opt(conf);
8330 	}
8331 }
8332 
8333 /* This is called from the raid5d thread with mddev_lock held.
8334  * It makes config changes to the device.
8335  */
8336 static void raid5_finish_reshape(struct mddev *mddev)
8337 {
8338 	struct r5conf *conf = mddev->private;
8339 
8340 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8341 
8342 		if (mddev->delta_disks <= 0) {
8343 			int d;
8344 			spin_lock_irq(&conf->device_lock);
8345 			mddev->degraded = raid5_calc_degraded(conf);
8346 			spin_unlock_irq(&conf->device_lock);
8347 			for (d = conf->raid_disks ;
8348 			     d < conf->raid_disks - mddev->delta_disks;
8349 			     d++) {
8350 				struct md_rdev *rdev = conf->disks[d].rdev;
8351 				if (rdev)
8352 					clear_bit(In_sync, &rdev->flags);
8353 				rdev = conf->disks[d].replacement;
8354 				if (rdev)
8355 					clear_bit(In_sync, &rdev->flags);
8356 			}
8357 		}
8358 		mddev->layout = conf->algorithm;
8359 		mddev->chunk_sectors = conf->chunk_sectors;
8360 		mddev->reshape_position = MaxSector;
8361 		mddev->delta_disks = 0;
8362 		mddev->reshape_backwards = 0;
8363 	}
8364 }
8365 
8366 static void raid5_quiesce(struct mddev *mddev, int quiesce)
8367 {
8368 	struct r5conf *conf = mddev->private;
8369 
8370 	if (quiesce) {
8371 		/* stop all writes */
8372 		lock_all_device_hash_locks_irq(conf);
8373 		/* '2' tells resync/reshape to pause so that all
8374 		 * active stripes can drain
8375 		 */
8376 		r5c_flush_cache(conf, INT_MAX);
8377 		/* need a memory barrier to make sure read_one_chunk() sees
8378 		 * quiesce started and reverts to slow (locked) path.
8379 		 */
8380 		smp_store_release(&conf->quiesce, 2);
8381 		wait_event_cmd(conf->wait_for_quiescent,
8382 				    atomic_read(&conf->active_stripes) == 0 &&
8383 				    atomic_read(&conf->active_aligned_reads) == 0,
8384 				    unlock_all_device_hash_locks_irq(conf),
8385 				    lock_all_device_hash_locks_irq(conf));
8386 		conf->quiesce = 1;
8387 		unlock_all_device_hash_locks_irq(conf);
8388 		/* allow reshape to continue */
8389 		wake_up(&conf->wait_for_overlap);
8390 	} else {
8391 		/* re-enable writes */
8392 		lock_all_device_hash_locks_irq(conf);
8393 		conf->quiesce = 0;
8394 		wake_up(&conf->wait_for_quiescent);
8395 		wake_up(&conf->wait_for_overlap);
8396 		unlock_all_device_hash_locks_irq(conf);
8397 	}
8398 	log_quiesce(conf, quiesce);
8399 }
8400 
8401 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8402 {
8403 	struct r0conf *raid0_conf = mddev->private;
8404 	sector_t sectors;
8405 
8406 	/* for raid0 takeover only one zone is supported */
8407 	if (raid0_conf->nr_strip_zones > 1) {
8408 		pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8409 			mdname(mddev));
8410 		return ERR_PTR(-EINVAL);
8411 	}
8412 
8413 	sectors = raid0_conf->strip_zone[0].zone_end;
8414 	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8415 	mddev->dev_sectors = sectors;
8416 	mddev->new_level = level;
8417 	mddev->new_layout = ALGORITHM_PARITY_N;
8418 	mddev->new_chunk_sectors = mddev->chunk_sectors;
8419 	mddev->raid_disks += 1;
8420 	mddev->delta_disks = 1;
8421 	/* make sure it will be not marked as dirty */
8422 	mddev->recovery_cp = MaxSector;
8423 
8424 	return setup_conf(mddev);
8425 }
8426 
8427 static void *raid5_takeover_raid1(struct mddev *mddev)
8428 {
8429 	int chunksect;
8430 	void *ret;
8431 
8432 	if (mddev->raid_disks != 2 ||
8433 	    mddev->degraded > 1)
8434 		return ERR_PTR(-EINVAL);
8435 
8436 	/* Should check if there are write-behind devices? */
8437 
8438 	chunksect = 64*2; /* 64K by default */
8439 
8440 	/* The array must be an exact multiple of chunksize */
8441 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
8442 		chunksect >>= 1;
8443 
8444 	if ((chunksect<<9) < RAID5_STRIPE_SIZE((struct r5conf *)mddev->private))
8445 		/* array size does not allow a suitable chunk size */
8446 		return ERR_PTR(-EINVAL);
8447 
8448 	mddev->new_level = 5;
8449 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8450 	mddev->new_chunk_sectors = chunksect;
8451 
8452 	ret = setup_conf(mddev);
8453 	if (!IS_ERR(ret))
8454 		mddev_clear_unsupported_flags(mddev,
8455 			UNSUPPORTED_MDDEV_FLAGS);
8456 	return ret;
8457 }
8458 
8459 static void *raid5_takeover_raid6(struct mddev *mddev)
8460 {
8461 	int new_layout;
8462 
8463 	switch (mddev->layout) {
8464 	case ALGORITHM_LEFT_ASYMMETRIC_6:
8465 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8466 		break;
8467 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
8468 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8469 		break;
8470 	case ALGORITHM_LEFT_SYMMETRIC_6:
8471 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
8472 		break;
8473 	case ALGORITHM_RIGHT_SYMMETRIC_6:
8474 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8475 		break;
8476 	case ALGORITHM_PARITY_0_6:
8477 		new_layout = ALGORITHM_PARITY_0;
8478 		break;
8479 	case ALGORITHM_PARITY_N:
8480 		new_layout = ALGORITHM_PARITY_N;
8481 		break;
8482 	default:
8483 		return ERR_PTR(-EINVAL);
8484 	}
8485 	mddev->new_level = 5;
8486 	mddev->new_layout = new_layout;
8487 	mddev->delta_disks = -1;
8488 	mddev->raid_disks -= 1;
8489 	return setup_conf(mddev);
8490 }
8491 
8492 static int raid5_check_reshape(struct mddev *mddev)
8493 {
8494 	/* For a 2-drive array, the layout and chunk size can be changed
8495 	 * immediately as not restriping is needed.
8496 	 * For larger arrays we record the new value - after validation
8497 	 * to be used by a reshape pass.
8498 	 */
8499 	struct r5conf *conf = mddev->private;
8500 	int new_chunk = mddev->new_chunk_sectors;
8501 
8502 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8503 		return -EINVAL;
8504 	if (new_chunk > 0) {
8505 		if (!is_power_of_2(new_chunk))
8506 			return -EINVAL;
8507 		if (new_chunk < (PAGE_SIZE>>9))
8508 			return -EINVAL;
8509 		if (mddev->array_sectors & (new_chunk-1))
8510 			/* not factor of array size */
8511 			return -EINVAL;
8512 	}
8513 
8514 	/* They look valid */
8515 
8516 	if (mddev->raid_disks == 2) {
8517 		/* can make the change immediately */
8518 		if (mddev->new_layout >= 0) {
8519 			conf->algorithm = mddev->new_layout;
8520 			mddev->layout = mddev->new_layout;
8521 		}
8522 		if (new_chunk > 0) {
8523 			conf->chunk_sectors = new_chunk ;
8524 			mddev->chunk_sectors = new_chunk;
8525 		}
8526 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8527 		md_wakeup_thread(mddev->thread);
8528 	}
8529 	return check_reshape(mddev);
8530 }
8531 
8532 static int raid6_check_reshape(struct mddev *mddev)
8533 {
8534 	int new_chunk = mddev->new_chunk_sectors;
8535 
8536 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8537 		return -EINVAL;
8538 	if (new_chunk > 0) {
8539 		if (!is_power_of_2(new_chunk))
8540 			return -EINVAL;
8541 		if (new_chunk < (PAGE_SIZE >> 9))
8542 			return -EINVAL;
8543 		if (mddev->array_sectors & (new_chunk-1))
8544 			/* not factor of array size */
8545 			return -EINVAL;
8546 	}
8547 
8548 	/* They look valid */
8549 	return check_reshape(mddev);
8550 }
8551 
8552 static void *raid5_takeover(struct mddev *mddev)
8553 {
8554 	/* raid5 can take over:
8555 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
8556 	 *  raid1 - if there are two drives.  We need to know the chunk size
8557 	 *  raid4 - trivial - just use a raid4 layout.
8558 	 *  raid6 - Providing it is a *_6 layout
8559 	 */
8560 	if (mddev->level == 0)
8561 		return raid45_takeover_raid0(mddev, 5);
8562 	if (mddev->level == 1)
8563 		return raid5_takeover_raid1(mddev);
8564 	if (mddev->level == 4) {
8565 		mddev->new_layout = ALGORITHM_PARITY_N;
8566 		mddev->new_level = 5;
8567 		return setup_conf(mddev);
8568 	}
8569 	if (mddev->level == 6)
8570 		return raid5_takeover_raid6(mddev);
8571 
8572 	return ERR_PTR(-EINVAL);
8573 }
8574 
8575 static void *raid4_takeover(struct mddev *mddev)
8576 {
8577 	/* raid4 can take over:
8578 	 *  raid0 - if there is only one strip zone
8579 	 *  raid5 - if layout is right
8580 	 */
8581 	if (mddev->level == 0)
8582 		return raid45_takeover_raid0(mddev, 4);
8583 	if (mddev->level == 5 &&
8584 	    mddev->layout == ALGORITHM_PARITY_N) {
8585 		mddev->new_layout = 0;
8586 		mddev->new_level = 4;
8587 		return setup_conf(mddev);
8588 	}
8589 	return ERR_PTR(-EINVAL);
8590 }
8591 
8592 static struct md_personality raid5_personality;
8593 
8594 static void *raid6_takeover(struct mddev *mddev)
8595 {
8596 	/* Currently can only take over a raid5.  We map the
8597 	 * personality to an equivalent raid6 personality
8598 	 * with the Q block at the end.
8599 	 */
8600 	int new_layout;
8601 
8602 	if (mddev->pers != &raid5_personality)
8603 		return ERR_PTR(-EINVAL);
8604 	if (mddev->degraded > 1)
8605 		return ERR_PTR(-EINVAL);
8606 	if (mddev->raid_disks > 253)
8607 		return ERR_PTR(-EINVAL);
8608 	if (mddev->raid_disks < 3)
8609 		return ERR_PTR(-EINVAL);
8610 
8611 	switch (mddev->layout) {
8612 	case ALGORITHM_LEFT_ASYMMETRIC:
8613 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8614 		break;
8615 	case ALGORITHM_RIGHT_ASYMMETRIC:
8616 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8617 		break;
8618 	case ALGORITHM_LEFT_SYMMETRIC:
8619 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8620 		break;
8621 	case ALGORITHM_RIGHT_SYMMETRIC:
8622 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8623 		break;
8624 	case ALGORITHM_PARITY_0:
8625 		new_layout = ALGORITHM_PARITY_0_6;
8626 		break;
8627 	case ALGORITHM_PARITY_N:
8628 		new_layout = ALGORITHM_PARITY_N;
8629 		break;
8630 	default:
8631 		return ERR_PTR(-EINVAL);
8632 	}
8633 	mddev->new_level = 6;
8634 	mddev->new_layout = new_layout;
8635 	mddev->delta_disks = 1;
8636 	mddev->raid_disks += 1;
8637 	return setup_conf(mddev);
8638 }
8639 
8640 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8641 {
8642 	struct r5conf *conf;
8643 	int err;
8644 
8645 	err = mddev_lock(mddev);
8646 	if (err)
8647 		return err;
8648 	conf = mddev->private;
8649 	if (!conf) {
8650 		mddev_unlock(mddev);
8651 		return -ENODEV;
8652 	}
8653 
8654 	if (strncmp(buf, "ppl", 3) == 0) {
8655 		/* ppl only works with RAID 5 */
8656 		if (!raid5_has_ppl(conf) && conf->level == 5) {
8657 			err = log_init(conf, NULL, true);
8658 			if (!err) {
8659 				err = resize_stripes(conf, conf->pool_size);
8660 				if (err)
8661 					log_exit(conf);
8662 			}
8663 		} else
8664 			err = -EINVAL;
8665 	} else if (strncmp(buf, "resync", 6) == 0) {
8666 		if (raid5_has_ppl(conf)) {
8667 			mddev_suspend(mddev);
8668 			log_exit(conf);
8669 			mddev_resume(mddev);
8670 			err = resize_stripes(conf, conf->pool_size);
8671 		} else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8672 			   r5l_log_disk_error(conf)) {
8673 			bool journal_dev_exists = false;
8674 			struct md_rdev *rdev;
8675 
8676 			rdev_for_each(rdev, mddev)
8677 				if (test_bit(Journal, &rdev->flags)) {
8678 					journal_dev_exists = true;
8679 					break;
8680 				}
8681 
8682 			if (!journal_dev_exists) {
8683 				mddev_suspend(mddev);
8684 				clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8685 				mddev_resume(mddev);
8686 			} else  /* need remove journal device first */
8687 				err = -EBUSY;
8688 		} else
8689 			err = -EINVAL;
8690 	} else {
8691 		err = -EINVAL;
8692 	}
8693 
8694 	if (!err)
8695 		md_update_sb(mddev, 1);
8696 
8697 	mddev_unlock(mddev);
8698 
8699 	return err;
8700 }
8701 
8702 static int raid5_start(struct mddev *mddev)
8703 {
8704 	struct r5conf *conf = mddev->private;
8705 
8706 	return r5l_start(conf->log);
8707 }
8708 
8709 static struct md_personality raid6_personality =
8710 {
8711 	.name		= "raid6",
8712 	.level		= 6,
8713 	.owner		= THIS_MODULE,
8714 	.make_request	= raid5_make_request,
8715 	.run		= raid5_run,
8716 	.start		= raid5_start,
8717 	.free		= raid5_free,
8718 	.status		= raid5_status,
8719 	.error_handler	= raid5_error,
8720 	.hot_add_disk	= raid5_add_disk,
8721 	.hot_remove_disk= raid5_remove_disk,
8722 	.spare_active	= raid5_spare_active,
8723 	.sync_request	= raid5_sync_request,
8724 	.resize		= raid5_resize,
8725 	.size		= raid5_size,
8726 	.check_reshape	= raid6_check_reshape,
8727 	.start_reshape  = raid5_start_reshape,
8728 	.finish_reshape = raid5_finish_reshape,
8729 	.quiesce	= raid5_quiesce,
8730 	.takeover	= raid6_takeover,
8731 	.change_consistency_policy = raid5_change_consistency_policy,
8732 };
8733 static struct md_personality raid5_personality =
8734 {
8735 	.name		= "raid5",
8736 	.level		= 5,
8737 	.owner		= THIS_MODULE,
8738 	.make_request	= raid5_make_request,
8739 	.run		= raid5_run,
8740 	.start		= raid5_start,
8741 	.free		= raid5_free,
8742 	.status		= raid5_status,
8743 	.error_handler	= raid5_error,
8744 	.hot_add_disk	= raid5_add_disk,
8745 	.hot_remove_disk= raid5_remove_disk,
8746 	.spare_active	= raid5_spare_active,
8747 	.sync_request	= raid5_sync_request,
8748 	.resize		= raid5_resize,
8749 	.size		= raid5_size,
8750 	.check_reshape	= raid5_check_reshape,
8751 	.start_reshape  = raid5_start_reshape,
8752 	.finish_reshape = raid5_finish_reshape,
8753 	.quiesce	= raid5_quiesce,
8754 	.takeover	= raid5_takeover,
8755 	.change_consistency_policy = raid5_change_consistency_policy,
8756 };
8757 
8758 static struct md_personality raid4_personality =
8759 {
8760 	.name		= "raid4",
8761 	.level		= 4,
8762 	.owner		= THIS_MODULE,
8763 	.make_request	= raid5_make_request,
8764 	.run		= raid5_run,
8765 	.start		= raid5_start,
8766 	.free		= raid5_free,
8767 	.status		= raid5_status,
8768 	.error_handler	= raid5_error,
8769 	.hot_add_disk	= raid5_add_disk,
8770 	.hot_remove_disk= raid5_remove_disk,
8771 	.spare_active	= raid5_spare_active,
8772 	.sync_request	= raid5_sync_request,
8773 	.resize		= raid5_resize,
8774 	.size		= raid5_size,
8775 	.check_reshape	= raid5_check_reshape,
8776 	.start_reshape  = raid5_start_reshape,
8777 	.finish_reshape = raid5_finish_reshape,
8778 	.quiesce	= raid5_quiesce,
8779 	.takeover	= raid4_takeover,
8780 	.change_consistency_policy = raid5_change_consistency_policy,
8781 };
8782 
8783 static int __init raid5_init(void)
8784 {
8785 	int ret;
8786 
8787 	raid5_wq = alloc_workqueue("raid5wq",
8788 		WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8789 	if (!raid5_wq)
8790 		return -ENOMEM;
8791 
8792 	ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8793 				      "md/raid5:prepare",
8794 				      raid456_cpu_up_prepare,
8795 				      raid456_cpu_dead);
8796 	if (ret) {
8797 		destroy_workqueue(raid5_wq);
8798 		return ret;
8799 	}
8800 	register_md_personality(&raid6_personality);
8801 	register_md_personality(&raid5_personality);
8802 	register_md_personality(&raid4_personality);
8803 	return 0;
8804 }
8805 
8806 static void raid5_exit(void)
8807 {
8808 	unregister_md_personality(&raid6_personality);
8809 	unregister_md_personality(&raid5_personality);
8810 	unregister_md_personality(&raid4_personality);
8811 	cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
8812 	destroy_workqueue(raid5_wq);
8813 }
8814 
8815 module_init(raid5_init);
8816 module_exit(raid5_exit);
8817 MODULE_LICENSE("GPL");
8818 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8819 MODULE_ALIAS("md-personality-4"); /* RAID5 */
8820 MODULE_ALIAS("md-raid5");
8821 MODULE_ALIAS("md-raid4");
8822 MODULE_ALIAS("md-level-5");
8823 MODULE_ALIAS("md-level-4");
8824 MODULE_ALIAS("md-personality-8"); /* RAID6 */
8825 MODULE_ALIAS("md-raid6");
8826 MODULE_ALIAS("md-level-6");
8827 
8828 /* This used to be two separate modules, they were: */
8829 MODULE_ALIAS("raid5");
8830 MODULE_ALIAS("raid6");
8831