xref: /linux/drivers/md/raid5.c (revision 36239c6704b71da7fb8e2a9429e159a84d0c5a3e)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->bm_write is the number of the last batch successfully written.
31  * conf->bm_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is bm_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/async.h>
51 #include <linux/seq_file.h>
52 #include <linux/cpu.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "raid5.h"
56 #include "raid0.h"
57 #include "bitmap.h"
58 
59 /*
60  * Stripe cache
61  */
62 
63 #define NR_STRIPES		256
64 #define STRIPE_SIZE		PAGE_SIZE
65 #define STRIPE_SHIFT		(PAGE_SHIFT - 9)
66 #define STRIPE_SECTORS		(STRIPE_SIZE>>9)
67 #define	IO_THRESHOLD		1
68 #define BYPASS_THRESHOLD	1
69 #define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
70 #define HASH_MASK		(NR_HASH - 1)
71 
72 #define stripe_hash(conf, sect)	(&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
73 
74 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
75  * order without overlap.  There may be several bio's per stripe+device, and
76  * a bio could span several devices.
77  * When walking this list for a particular stripe+device, we must never proceed
78  * beyond a bio that extends past this device, as the next bio might no longer
79  * be valid.
80  * This macro is used to determine the 'next' bio in the list, given the sector
81  * of the current stripe+device
82  */
83 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
84 /*
85  * The following can be used to debug the driver
86  */
87 #define RAID5_PARANOIA	1
88 #if RAID5_PARANOIA && defined(CONFIG_SMP)
89 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
90 #else
91 # define CHECK_DEVLOCK()
92 #endif
93 
94 #ifdef DEBUG
95 #define inline
96 #define __inline__
97 #endif
98 
99 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
100 
101 /*
102  * We maintain a biased count of active stripes in the bottom 16 bits of
103  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
104  */
105 static inline int raid5_bi_phys_segments(struct bio *bio)
106 {
107 	return bio->bi_phys_segments & 0xffff;
108 }
109 
110 static inline int raid5_bi_hw_segments(struct bio *bio)
111 {
112 	return (bio->bi_phys_segments >> 16) & 0xffff;
113 }
114 
115 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
116 {
117 	--bio->bi_phys_segments;
118 	return raid5_bi_phys_segments(bio);
119 }
120 
121 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
122 {
123 	unsigned short val = raid5_bi_hw_segments(bio);
124 
125 	--val;
126 	bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
127 	return val;
128 }
129 
130 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
131 {
132 	bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
133 }
134 
135 /* Find first data disk in a raid6 stripe */
136 static inline int raid6_d0(struct stripe_head *sh)
137 {
138 	if (sh->ddf_layout)
139 		/* ddf always start from first device */
140 		return 0;
141 	/* md starts just after Q block */
142 	if (sh->qd_idx == sh->disks - 1)
143 		return 0;
144 	else
145 		return sh->qd_idx + 1;
146 }
147 static inline int raid6_next_disk(int disk, int raid_disks)
148 {
149 	disk++;
150 	return (disk < raid_disks) ? disk : 0;
151 }
152 
153 /* When walking through the disks in a raid5, starting at raid6_d0,
154  * We need to map each disk to a 'slot', where the data disks are slot
155  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
156  * is raid_disks-1.  This help does that mapping.
157  */
158 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
159 			     int *count, int syndrome_disks)
160 {
161 	int slot = *count;
162 
163 	if (sh->ddf_layout)
164 		(*count)++;
165 	if (idx == sh->pd_idx)
166 		return syndrome_disks;
167 	if (idx == sh->qd_idx)
168 		return syndrome_disks + 1;
169 	if (!sh->ddf_layout)
170 		(*count)++;
171 	return slot;
172 }
173 
174 static void return_io(struct bio *return_bi)
175 {
176 	struct bio *bi = return_bi;
177 	while (bi) {
178 
179 		return_bi = bi->bi_next;
180 		bi->bi_next = NULL;
181 		bi->bi_size = 0;
182 		bio_endio(bi, 0);
183 		bi = return_bi;
184 	}
185 }
186 
187 static void print_raid5_conf (raid5_conf_t *conf);
188 
189 static int stripe_operations_active(struct stripe_head *sh)
190 {
191 	return sh->check_state || sh->reconstruct_state ||
192 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
193 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
194 }
195 
196 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
197 {
198 	if (atomic_dec_and_test(&sh->count)) {
199 		BUG_ON(!list_empty(&sh->lru));
200 		BUG_ON(atomic_read(&conf->active_stripes)==0);
201 		if (test_bit(STRIPE_HANDLE, &sh->state)) {
202 			if (test_bit(STRIPE_DELAYED, &sh->state)) {
203 				list_add_tail(&sh->lru, &conf->delayed_list);
204 				blk_plug_device(conf->mddev->queue);
205 			} else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
206 				   sh->bm_seq - conf->seq_write > 0) {
207 				list_add_tail(&sh->lru, &conf->bitmap_list);
208 				blk_plug_device(conf->mddev->queue);
209 			} else {
210 				clear_bit(STRIPE_BIT_DELAY, &sh->state);
211 				list_add_tail(&sh->lru, &conf->handle_list);
212 			}
213 			md_wakeup_thread(conf->mddev->thread);
214 		} else {
215 			BUG_ON(stripe_operations_active(sh));
216 			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
217 				atomic_dec(&conf->preread_active_stripes);
218 				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
219 					md_wakeup_thread(conf->mddev->thread);
220 			}
221 			atomic_dec(&conf->active_stripes);
222 			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
223 				list_add_tail(&sh->lru, &conf->inactive_list);
224 				wake_up(&conf->wait_for_stripe);
225 				if (conf->retry_read_aligned)
226 					md_wakeup_thread(conf->mddev->thread);
227 			}
228 		}
229 	}
230 }
231 
232 static void release_stripe(struct stripe_head *sh)
233 {
234 	raid5_conf_t *conf = sh->raid_conf;
235 	unsigned long flags;
236 
237 	spin_lock_irqsave(&conf->device_lock, flags);
238 	__release_stripe(conf, sh);
239 	spin_unlock_irqrestore(&conf->device_lock, flags);
240 }
241 
242 static inline void remove_hash(struct stripe_head *sh)
243 {
244 	pr_debug("remove_hash(), stripe %llu\n",
245 		(unsigned long long)sh->sector);
246 
247 	hlist_del_init(&sh->hash);
248 }
249 
250 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
251 {
252 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
253 
254 	pr_debug("insert_hash(), stripe %llu\n",
255 		(unsigned long long)sh->sector);
256 
257 	CHECK_DEVLOCK();
258 	hlist_add_head(&sh->hash, hp);
259 }
260 
261 
262 /* find an idle stripe, make sure it is unhashed, and return it. */
263 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
264 {
265 	struct stripe_head *sh = NULL;
266 	struct list_head *first;
267 
268 	CHECK_DEVLOCK();
269 	if (list_empty(&conf->inactive_list))
270 		goto out;
271 	first = conf->inactive_list.next;
272 	sh = list_entry(first, struct stripe_head, lru);
273 	list_del_init(first);
274 	remove_hash(sh);
275 	atomic_inc(&conf->active_stripes);
276 out:
277 	return sh;
278 }
279 
280 static void shrink_buffers(struct stripe_head *sh)
281 {
282 	struct page *p;
283 	int i;
284 	int num = sh->raid_conf->pool_size;
285 
286 	for (i = 0; i < num ; i++) {
287 		p = sh->dev[i].page;
288 		if (!p)
289 			continue;
290 		sh->dev[i].page = NULL;
291 		put_page(p);
292 	}
293 }
294 
295 static int grow_buffers(struct stripe_head *sh)
296 {
297 	int i;
298 	int num = sh->raid_conf->pool_size;
299 
300 	for (i = 0; i < num; i++) {
301 		struct page *page;
302 
303 		if (!(page = alloc_page(GFP_KERNEL))) {
304 			return 1;
305 		}
306 		sh->dev[i].page = page;
307 	}
308 	return 0;
309 }
310 
311 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
312 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
313 			    struct stripe_head *sh);
314 
315 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
316 {
317 	raid5_conf_t *conf = sh->raid_conf;
318 	int i;
319 
320 	BUG_ON(atomic_read(&sh->count) != 0);
321 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
322 	BUG_ON(stripe_operations_active(sh));
323 
324 	CHECK_DEVLOCK();
325 	pr_debug("init_stripe called, stripe %llu\n",
326 		(unsigned long long)sh->sector);
327 
328 	remove_hash(sh);
329 
330 	sh->generation = conf->generation - previous;
331 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
332 	sh->sector = sector;
333 	stripe_set_idx(sector, conf, previous, sh);
334 	sh->state = 0;
335 
336 
337 	for (i = sh->disks; i--; ) {
338 		struct r5dev *dev = &sh->dev[i];
339 
340 		if (dev->toread || dev->read || dev->towrite || dev->written ||
341 		    test_bit(R5_LOCKED, &dev->flags)) {
342 			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
343 			       (unsigned long long)sh->sector, i, dev->toread,
344 			       dev->read, dev->towrite, dev->written,
345 			       test_bit(R5_LOCKED, &dev->flags));
346 			BUG();
347 		}
348 		dev->flags = 0;
349 		raid5_build_block(sh, i, previous);
350 	}
351 	insert_hash(conf, sh);
352 }
353 
354 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
355 					 short generation)
356 {
357 	struct stripe_head *sh;
358 	struct hlist_node *hn;
359 
360 	CHECK_DEVLOCK();
361 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
362 	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
363 		if (sh->sector == sector && sh->generation == generation)
364 			return sh;
365 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
366 	return NULL;
367 }
368 
369 /*
370  * Need to check if array has failed when deciding whether to:
371  *  - start an array
372  *  - remove non-faulty devices
373  *  - add a spare
374  *  - allow a reshape
375  * This determination is simple when no reshape is happening.
376  * However if there is a reshape, we need to carefully check
377  * both the before and after sections.
378  * This is because some failed devices may only affect one
379  * of the two sections, and some non-in_sync devices may
380  * be insync in the section most affected by failed devices.
381  */
382 static int has_failed(raid5_conf_t *conf)
383 {
384 	int degraded;
385 	int i;
386 	if (conf->mddev->reshape_position == MaxSector)
387 		return conf->mddev->degraded > conf->max_degraded;
388 
389 	rcu_read_lock();
390 	degraded = 0;
391 	for (i = 0; i < conf->previous_raid_disks; i++) {
392 		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
393 		if (!rdev || test_bit(Faulty, &rdev->flags))
394 			degraded++;
395 		else if (test_bit(In_sync, &rdev->flags))
396 			;
397 		else
398 			/* not in-sync or faulty.
399 			 * If the reshape increases the number of devices,
400 			 * this is being recovered by the reshape, so
401 			 * this 'previous' section is not in_sync.
402 			 * If the number of devices is being reduced however,
403 			 * the device can only be part of the array if
404 			 * we are reverting a reshape, so this section will
405 			 * be in-sync.
406 			 */
407 			if (conf->raid_disks >= conf->previous_raid_disks)
408 				degraded++;
409 	}
410 	rcu_read_unlock();
411 	if (degraded > conf->max_degraded)
412 		return 1;
413 	rcu_read_lock();
414 	degraded = 0;
415 	for (i = 0; i < conf->raid_disks; i++) {
416 		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
417 		if (!rdev || test_bit(Faulty, &rdev->flags))
418 			degraded++;
419 		else if (test_bit(In_sync, &rdev->flags))
420 			;
421 		else
422 			/* not in-sync or faulty.
423 			 * If reshape increases the number of devices, this
424 			 * section has already been recovered, else it
425 			 * almost certainly hasn't.
426 			 */
427 			if (conf->raid_disks <= conf->previous_raid_disks)
428 				degraded++;
429 	}
430 	rcu_read_unlock();
431 	if (degraded > conf->max_degraded)
432 		return 1;
433 	return 0;
434 }
435 
436 static void unplug_slaves(mddev_t *mddev);
437 static void raid5_unplug_device(struct request_queue *q);
438 
439 static struct stripe_head *
440 get_active_stripe(raid5_conf_t *conf, sector_t sector,
441 		  int previous, int noblock, int noquiesce)
442 {
443 	struct stripe_head *sh;
444 
445 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
446 
447 	spin_lock_irq(&conf->device_lock);
448 
449 	do {
450 		wait_event_lock_irq(conf->wait_for_stripe,
451 				    conf->quiesce == 0 || noquiesce,
452 				    conf->device_lock, /* nothing */);
453 		sh = __find_stripe(conf, sector, conf->generation - previous);
454 		if (!sh) {
455 			if (!conf->inactive_blocked)
456 				sh = get_free_stripe(conf);
457 			if (noblock && sh == NULL)
458 				break;
459 			if (!sh) {
460 				conf->inactive_blocked = 1;
461 				wait_event_lock_irq(conf->wait_for_stripe,
462 						    !list_empty(&conf->inactive_list) &&
463 						    (atomic_read(&conf->active_stripes)
464 						     < (conf->max_nr_stripes *3/4)
465 						     || !conf->inactive_blocked),
466 						    conf->device_lock,
467 						    raid5_unplug_device(conf->mddev->queue)
468 					);
469 				conf->inactive_blocked = 0;
470 			} else
471 				init_stripe(sh, sector, previous);
472 		} else {
473 			if (atomic_read(&sh->count)) {
474 				BUG_ON(!list_empty(&sh->lru)
475 				    && !test_bit(STRIPE_EXPANDING, &sh->state));
476 			} else {
477 				if (!test_bit(STRIPE_HANDLE, &sh->state))
478 					atomic_inc(&conf->active_stripes);
479 				if (list_empty(&sh->lru) &&
480 				    !test_bit(STRIPE_EXPANDING, &sh->state))
481 					BUG();
482 				list_del_init(&sh->lru);
483 			}
484 		}
485 	} while (sh == NULL);
486 
487 	if (sh)
488 		atomic_inc(&sh->count);
489 
490 	spin_unlock_irq(&conf->device_lock);
491 	return sh;
492 }
493 
494 static void
495 raid5_end_read_request(struct bio *bi, int error);
496 static void
497 raid5_end_write_request(struct bio *bi, int error);
498 
499 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
500 {
501 	raid5_conf_t *conf = sh->raid_conf;
502 	int i, disks = sh->disks;
503 
504 	might_sleep();
505 
506 	for (i = disks; i--; ) {
507 		int rw;
508 		struct bio *bi;
509 		mdk_rdev_t *rdev;
510 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
511 			rw = WRITE;
512 		else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
513 			rw = READ;
514 		else
515 			continue;
516 
517 		bi = &sh->dev[i].req;
518 
519 		bi->bi_rw = rw;
520 		if (rw == WRITE)
521 			bi->bi_end_io = raid5_end_write_request;
522 		else
523 			bi->bi_end_io = raid5_end_read_request;
524 
525 		rcu_read_lock();
526 		rdev = rcu_dereference(conf->disks[i].rdev);
527 		if (rdev && test_bit(Faulty, &rdev->flags))
528 			rdev = NULL;
529 		if (rdev)
530 			atomic_inc(&rdev->nr_pending);
531 		rcu_read_unlock();
532 
533 		if (rdev) {
534 			if (s->syncing || s->expanding || s->expanded)
535 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
536 
537 			set_bit(STRIPE_IO_STARTED, &sh->state);
538 
539 			bi->bi_bdev = rdev->bdev;
540 			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
541 				__func__, (unsigned long long)sh->sector,
542 				bi->bi_rw, i);
543 			atomic_inc(&sh->count);
544 			bi->bi_sector = sh->sector + rdev->data_offset;
545 			bi->bi_flags = 1 << BIO_UPTODATE;
546 			bi->bi_vcnt = 1;
547 			bi->bi_max_vecs = 1;
548 			bi->bi_idx = 0;
549 			bi->bi_io_vec = &sh->dev[i].vec;
550 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
551 			bi->bi_io_vec[0].bv_offset = 0;
552 			bi->bi_size = STRIPE_SIZE;
553 			bi->bi_next = NULL;
554 			if (rw == WRITE &&
555 			    test_bit(R5_ReWrite, &sh->dev[i].flags))
556 				atomic_add(STRIPE_SECTORS,
557 					&rdev->corrected_errors);
558 			generic_make_request(bi);
559 		} else {
560 			if (rw == WRITE)
561 				set_bit(STRIPE_DEGRADED, &sh->state);
562 			pr_debug("skip op %ld on disc %d for sector %llu\n",
563 				bi->bi_rw, i, (unsigned long long)sh->sector);
564 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
565 			set_bit(STRIPE_HANDLE, &sh->state);
566 		}
567 	}
568 }
569 
570 static struct dma_async_tx_descriptor *
571 async_copy_data(int frombio, struct bio *bio, struct page *page,
572 	sector_t sector, struct dma_async_tx_descriptor *tx)
573 {
574 	struct bio_vec *bvl;
575 	struct page *bio_page;
576 	int i;
577 	int page_offset;
578 	struct async_submit_ctl submit;
579 	enum async_tx_flags flags = 0;
580 
581 	if (bio->bi_sector >= sector)
582 		page_offset = (signed)(bio->bi_sector - sector) * 512;
583 	else
584 		page_offset = (signed)(sector - bio->bi_sector) * -512;
585 
586 	if (frombio)
587 		flags |= ASYNC_TX_FENCE;
588 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
589 
590 	bio_for_each_segment(bvl, bio, i) {
591 		int len = bio_iovec_idx(bio, i)->bv_len;
592 		int clen;
593 		int b_offset = 0;
594 
595 		if (page_offset < 0) {
596 			b_offset = -page_offset;
597 			page_offset += b_offset;
598 			len -= b_offset;
599 		}
600 
601 		if (len > 0 && page_offset + len > STRIPE_SIZE)
602 			clen = STRIPE_SIZE - page_offset;
603 		else
604 			clen = len;
605 
606 		if (clen > 0) {
607 			b_offset += bio_iovec_idx(bio, i)->bv_offset;
608 			bio_page = bio_iovec_idx(bio, i)->bv_page;
609 			if (frombio)
610 				tx = async_memcpy(page, bio_page, page_offset,
611 						  b_offset, clen, &submit);
612 			else
613 				tx = async_memcpy(bio_page, page, b_offset,
614 						  page_offset, clen, &submit);
615 		}
616 		/* chain the operations */
617 		submit.depend_tx = tx;
618 
619 		if (clen < len) /* hit end of page */
620 			break;
621 		page_offset +=  len;
622 	}
623 
624 	return tx;
625 }
626 
627 static void ops_complete_biofill(void *stripe_head_ref)
628 {
629 	struct stripe_head *sh = stripe_head_ref;
630 	struct bio *return_bi = NULL;
631 	raid5_conf_t *conf = sh->raid_conf;
632 	int i;
633 
634 	pr_debug("%s: stripe %llu\n", __func__,
635 		(unsigned long long)sh->sector);
636 
637 	/* clear completed biofills */
638 	spin_lock_irq(&conf->device_lock);
639 	for (i = sh->disks; i--; ) {
640 		struct r5dev *dev = &sh->dev[i];
641 
642 		/* acknowledge completion of a biofill operation */
643 		/* and check if we need to reply to a read request,
644 		 * new R5_Wantfill requests are held off until
645 		 * !STRIPE_BIOFILL_RUN
646 		 */
647 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
648 			struct bio *rbi, *rbi2;
649 
650 			BUG_ON(!dev->read);
651 			rbi = dev->read;
652 			dev->read = NULL;
653 			while (rbi && rbi->bi_sector <
654 				dev->sector + STRIPE_SECTORS) {
655 				rbi2 = r5_next_bio(rbi, dev->sector);
656 				if (!raid5_dec_bi_phys_segments(rbi)) {
657 					rbi->bi_next = return_bi;
658 					return_bi = rbi;
659 				}
660 				rbi = rbi2;
661 			}
662 		}
663 	}
664 	spin_unlock_irq(&conf->device_lock);
665 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
666 
667 	return_io(return_bi);
668 
669 	set_bit(STRIPE_HANDLE, &sh->state);
670 	release_stripe(sh);
671 }
672 
673 static void ops_run_biofill(struct stripe_head *sh)
674 {
675 	struct dma_async_tx_descriptor *tx = NULL;
676 	raid5_conf_t *conf = sh->raid_conf;
677 	struct async_submit_ctl submit;
678 	int i;
679 
680 	pr_debug("%s: stripe %llu\n", __func__,
681 		(unsigned long long)sh->sector);
682 
683 	for (i = sh->disks; i--; ) {
684 		struct r5dev *dev = &sh->dev[i];
685 		if (test_bit(R5_Wantfill, &dev->flags)) {
686 			struct bio *rbi;
687 			spin_lock_irq(&conf->device_lock);
688 			dev->read = rbi = dev->toread;
689 			dev->toread = NULL;
690 			spin_unlock_irq(&conf->device_lock);
691 			while (rbi && rbi->bi_sector <
692 				dev->sector + STRIPE_SECTORS) {
693 				tx = async_copy_data(0, rbi, dev->page,
694 					dev->sector, tx);
695 				rbi = r5_next_bio(rbi, dev->sector);
696 			}
697 		}
698 	}
699 
700 	atomic_inc(&sh->count);
701 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
702 	async_trigger_callback(&submit);
703 }
704 
705 static void mark_target_uptodate(struct stripe_head *sh, int target)
706 {
707 	struct r5dev *tgt;
708 
709 	if (target < 0)
710 		return;
711 
712 	tgt = &sh->dev[target];
713 	set_bit(R5_UPTODATE, &tgt->flags);
714 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
715 	clear_bit(R5_Wantcompute, &tgt->flags);
716 }
717 
718 static void ops_complete_compute(void *stripe_head_ref)
719 {
720 	struct stripe_head *sh = stripe_head_ref;
721 
722 	pr_debug("%s: stripe %llu\n", __func__,
723 		(unsigned long long)sh->sector);
724 
725 	/* mark the computed target(s) as uptodate */
726 	mark_target_uptodate(sh, sh->ops.target);
727 	mark_target_uptodate(sh, sh->ops.target2);
728 
729 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
730 	if (sh->check_state == check_state_compute_run)
731 		sh->check_state = check_state_compute_result;
732 	set_bit(STRIPE_HANDLE, &sh->state);
733 	release_stripe(sh);
734 }
735 
736 /* return a pointer to the address conversion region of the scribble buffer */
737 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
738 				 struct raid5_percpu *percpu)
739 {
740 	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
741 }
742 
743 static struct dma_async_tx_descriptor *
744 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
745 {
746 	int disks = sh->disks;
747 	struct page **xor_srcs = percpu->scribble;
748 	int target = sh->ops.target;
749 	struct r5dev *tgt = &sh->dev[target];
750 	struct page *xor_dest = tgt->page;
751 	int count = 0;
752 	struct dma_async_tx_descriptor *tx;
753 	struct async_submit_ctl submit;
754 	int i;
755 
756 	pr_debug("%s: stripe %llu block: %d\n",
757 		__func__, (unsigned long long)sh->sector, target);
758 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
759 
760 	for (i = disks; i--; )
761 		if (i != target)
762 			xor_srcs[count++] = sh->dev[i].page;
763 
764 	atomic_inc(&sh->count);
765 
766 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
767 			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
768 	if (unlikely(count == 1))
769 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
770 	else
771 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
772 
773 	return tx;
774 }
775 
776 /* set_syndrome_sources - populate source buffers for gen_syndrome
777  * @srcs - (struct page *) array of size sh->disks
778  * @sh - stripe_head to parse
779  *
780  * Populates srcs in proper layout order for the stripe and returns the
781  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
782  * destination buffer is recorded in srcs[count] and the Q destination
783  * is recorded in srcs[count+1]].
784  */
785 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
786 {
787 	int disks = sh->disks;
788 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
789 	int d0_idx = raid6_d0(sh);
790 	int count;
791 	int i;
792 
793 	for (i = 0; i < disks; i++)
794 		srcs[i] = NULL;
795 
796 	count = 0;
797 	i = d0_idx;
798 	do {
799 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
800 
801 		srcs[slot] = sh->dev[i].page;
802 		i = raid6_next_disk(i, disks);
803 	} while (i != d0_idx);
804 
805 	return syndrome_disks;
806 }
807 
808 static struct dma_async_tx_descriptor *
809 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
810 {
811 	int disks = sh->disks;
812 	struct page **blocks = percpu->scribble;
813 	int target;
814 	int qd_idx = sh->qd_idx;
815 	struct dma_async_tx_descriptor *tx;
816 	struct async_submit_ctl submit;
817 	struct r5dev *tgt;
818 	struct page *dest;
819 	int i;
820 	int count;
821 
822 	if (sh->ops.target < 0)
823 		target = sh->ops.target2;
824 	else if (sh->ops.target2 < 0)
825 		target = sh->ops.target;
826 	else
827 		/* we should only have one valid target */
828 		BUG();
829 	BUG_ON(target < 0);
830 	pr_debug("%s: stripe %llu block: %d\n",
831 		__func__, (unsigned long long)sh->sector, target);
832 
833 	tgt = &sh->dev[target];
834 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
835 	dest = tgt->page;
836 
837 	atomic_inc(&sh->count);
838 
839 	if (target == qd_idx) {
840 		count = set_syndrome_sources(blocks, sh);
841 		blocks[count] = NULL; /* regenerating p is not necessary */
842 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
843 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
844 				  ops_complete_compute, sh,
845 				  to_addr_conv(sh, percpu));
846 		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
847 	} else {
848 		/* Compute any data- or p-drive using XOR */
849 		count = 0;
850 		for (i = disks; i-- ; ) {
851 			if (i == target || i == qd_idx)
852 				continue;
853 			blocks[count++] = sh->dev[i].page;
854 		}
855 
856 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
857 				  NULL, ops_complete_compute, sh,
858 				  to_addr_conv(sh, percpu));
859 		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
860 	}
861 
862 	return tx;
863 }
864 
865 static struct dma_async_tx_descriptor *
866 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
867 {
868 	int i, count, disks = sh->disks;
869 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
870 	int d0_idx = raid6_d0(sh);
871 	int faila = -1, failb = -1;
872 	int target = sh->ops.target;
873 	int target2 = sh->ops.target2;
874 	struct r5dev *tgt = &sh->dev[target];
875 	struct r5dev *tgt2 = &sh->dev[target2];
876 	struct dma_async_tx_descriptor *tx;
877 	struct page **blocks = percpu->scribble;
878 	struct async_submit_ctl submit;
879 
880 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
881 		 __func__, (unsigned long long)sh->sector, target, target2);
882 	BUG_ON(target < 0 || target2 < 0);
883 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
884 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
885 
886 	/* we need to open-code set_syndrome_sources to handle the
887 	 * slot number conversion for 'faila' and 'failb'
888 	 */
889 	for (i = 0; i < disks ; i++)
890 		blocks[i] = NULL;
891 	count = 0;
892 	i = d0_idx;
893 	do {
894 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
895 
896 		blocks[slot] = sh->dev[i].page;
897 
898 		if (i == target)
899 			faila = slot;
900 		if (i == target2)
901 			failb = slot;
902 		i = raid6_next_disk(i, disks);
903 	} while (i != d0_idx);
904 
905 	BUG_ON(faila == failb);
906 	if (failb < faila)
907 		swap(faila, failb);
908 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
909 		 __func__, (unsigned long long)sh->sector, faila, failb);
910 
911 	atomic_inc(&sh->count);
912 
913 	if (failb == syndrome_disks+1) {
914 		/* Q disk is one of the missing disks */
915 		if (faila == syndrome_disks) {
916 			/* Missing P+Q, just recompute */
917 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
918 					  ops_complete_compute, sh,
919 					  to_addr_conv(sh, percpu));
920 			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
921 						  STRIPE_SIZE, &submit);
922 		} else {
923 			struct page *dest;
924 			int data_target;
925 			int qd_idx = sh->qd_idx;
926 
927 			/* Missing D+Q: recompute D from P, then recompute Q */
928 			if (target == qd_idx)
929 				data_target = target2;
930 			else
931 				data_target = target;
932 
933 			count = 0;
934 			for (i = disks; i-- ; ) {
935 				if (i == data_target || i == qd_idx)
936 					continue;
937 				blocks[count++] = sh->dev[i].page;
938 			}
939 			dest = sh->dev[data_target].page;
940 			init_async_submit(&submit,
941 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
942 					  NULL, NULL, NULL,
943 					  to_addr_conv(sh, percpu));
944 			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
945 				       &submit);
946 
947 			count = set_syndrome_sources(blocks, sh);
948 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
949 					  ops_complete_compute, sh,
950 					  to_addr_conv(sh, percpu));
951 			return async_gen_syndrome(blocks, 0, count+2,
952 						  STRIPE_SIZE, &submit);
953 		}
954 	} else {
955 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
956 				  ops_complete_compute, sh,
957 				  to_addr_conv(sh, percpu));
958 		if (failb == syndrome_disks) {
959 			/* We're missing D+P. */
960 			return async_raid6_datap_recov(syndrome_disks+2,
961 						       STRIPE_SIZE, faila,
962 						       blocks, &submit);
963 		} else {
964 			/* We're missing D+D. */
965 			return async_raid6_2data_recov(syndrome_disks+2,
966 						       STRIPE_SIZE, faila, failb,
967 						       blocks, &submit);
968 		}
969 	}
970 }
971 
972 
973 static void ops_complete_prexor(void *stripe_head_ref)
974 {
975 	struct stripe_head *sh = stripe_head_ref;
976 
977 	pr_debug("%s: stripe %llu\n", __func__,
978 		(unsigned long long)sh->sector);
979 }
980 
981 static struct dma_async_tx_descriptor *
982 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
983 	       struct dma_async_tx_descriptor *tx)
984 {
985 	int disks = sh->disks;
986 	struct page **xor_srcs = percpu->scribble;
987 	int count = 0, pd_idx = sh->pd_idx, i;
988 	struct async_submit_ctl submit;
989 
990 	/* existing parity data subtracted */
991 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
992 
993 	pr_debug("%s: stripe %llu\n", __func__,
994 		(unsigned long long)sh->sector);
995 
996 	for (i = disks; i--; ) {
997 		struct r5dev *dev = &sh->dev[i];
998 		/* Only process blocks that are known to be uptodate */
999 		if (test_bit(R5_Wantdrain, &dev->flags))
1000 			xor_srcs[count++] = dev->page;
1001 	}
1002 
1003 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1004 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1005 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1006 
1007 	return tx;
1008 }
1009 
1010 static struct dma_async_tx_descriptor *
1011 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1012 {
1013 	int disks = sh->disks;
1014 	int i;
1015 
1016 	pr_debug("%s: stripe %llu\n", __func__,
1017 		(unsigned long long)sh->sector);
1018 
1019 	for (i = disks; i--; ) {
1020 		struct r5dev *dev = &sh->dev[i];
1021 		struct bio *chosen;
1022 
1023 		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1024 			struct bio *wbi;
1025 
1026 			spin_lock(&sh->lock);
1027 			chosen = dev->towrite;
1028 			dev->towrite = NULL;
1029 			BUG_ON(dev->written);
1030 			wbi = dev->written = chosen;
1031 			spin_unlock(&sh->lock);
1032 
1033 			while (wbi && wbi->bi_sector <
1034 				dev->sector + STRIPE_SECTORS) {
1035 				tx = async_copy_data(1, wbi, dev->page,
1036 					dev->sector, tx);
1037 				wbi = r5_next_bio(wbi, dev->sector);
1038 			}
1039 		}
1040 	}
1041 
1042 	return tx;
1043 }
1044 
1045 static void ops_complete_reconstruct(void *stripe_head_ref)
1046 {
1047 	struct stripe_head *sh = stripe_head_ref;
1048 	int disks = sh->disks;
1049 	int pd_idx = sh->pd_idx;
1050 	int qd_idx = sh->qd_idx;
1051 	int i;
1052 
1053 	pr_debug("%s: stripe %llu\n", __func__,
1054 		(unsigned long long)sh->sector);
1055 
1056 	for (i = disks; i--; ) {
1057 		struct r5dev *dev = &sh->dev[i];
1058 
1059 		if (dev->written || i == pd_idx || i == qd_idx)
1060 			set_bit(R5_UPTODATE, &dev->flags);
1061 	}
1062 
1063 	if (sh->reconstruct_state == reconstruct_state_drain_run)
1064 		sh->reconstruct_state = reconstruct_state_drain_result;
1065 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1066 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1067 	else {
1068 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1069 		sh->reconstruct_state = reconstruct_state_result;
1070 	}
1071 
1072 	set_bit(STRIPE_HANDLE, &sh->state);
1073 	release_stripe(sh);
1074 }
1075 
1076 static void
1077 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1078 		     struct dma_async_tx_descriptor *tx)
1079 {
1080 	int disks = sh->disks;
1081 	struct page **xor_srcs = percpu->scribble;
1082 	struct async_submit_ctl submit;
1083 	int count = 0, pd_idx = sh->pd_idx, i;
1084 	struct page *xor_dest;
1085 	int prexor = 0;
1086 	unsigned long flags;
1087 
1088 	pr_debug("%s: stripe %llu\n", __func__,
1089 		(unsigned long long)sh->sector);
1090 
1091 	/* check if prexor is active which means only process blocks
1092 	 * that are part of a read-modify-write (written)
1093 	 */
1094 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1095 		prexor = 1;
1096 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1097 		for (i = disks; i--; ) {
1098 			struct r5dev *dev = &sh->dev[i];
1099 			if (dev->written)
1100 				xor_srcs[count++] = dev->page;
1101 		}
1102 	} else {
1103 		xor_dest = sh->dev[pd_idx].page;
1104 		for (i = disks; i--; ) {
1105 			struct r5dev *dev = &sh->dev[i];
1106 			if (i != pd_idx)
1107 				xor_srcs[count++] = dev->page;
1108 		}
1109 	}
1110 
1111 	/* 1/ if we prexor'd then the dest is reused as a source
1112 	 * 2/ if we did not prexor then we are redoing the parity
1113 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1114 	 * for the synchronous xor case
1115 	 */
1116 	flags = ASYNC_TX_ACK |
1117 		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1118 
1119 	atomic_inc(&sh->count);
1120 
1121 	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1122 			  to_addr_conv(sh, percpu));
1123 	if (unlikely(count == 1))
1124 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1125 	else
1126 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1127 }
1128 
1129 static void
1130 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1131 		     struct dma_async_tx_descriptor *tx)
1132 {
1133 	struct async_submit_ctl submit;
1134 	struct page **blocks = percpu->scribble;
1135 	int count;
1136 
1137 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1138 
1139 	count = set_syndrome_sources(blocks, sh);
1140 
1141 	atomic_inc(&sh->count);
1142 
1143 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1144 			  sh, to_addr_conv(sh, percpu));
1145 	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1146 }
1147 
1148 static void ops_complete_check(void *stripe_head_ref)
1149 {
1150 	struct stripe_head *sh = stripe_head_ref;
1151 
1152 	pr_debug("%s: stripe %llu\n", __func__,
1153 		(unsigned long long)sh->sector);
1154 
1155 	sh->check_state = check_state_check_result;
1156 	set_bit(STRIPE_HANDLE, &sh->state);
1157 	release_stripe(sh);
1158 }
1159 
1160 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1161 {
1162 	int disks = sh->disks;
1163 	int pd_idx = sh->pd_idx;
1164 	int qd_idx = sh->qd_idx;
1165 	struct page *xor_dest;
1166 	struct page **xor_srcs = percpu->scribble;
1167 	struct dma_async_tx_descriptor *tx;
1168 	struct async_submit_ctl submit;
1169 	int count;
1170 	int i;
1171 
1172 	pr_debug("%s: stripe %llu\n", __func__,
1173 		(unsigned long long)sh->sector);
1174 
1175 	count = 0;
1176 	xor_dest = sh->dev[pd_idx].page;
1177 	xor_srcs[count++] = xor_dest;
1178 	for (i = disks; i--; ) {
1179 		if (i == pd_idx || i == qd_idx)
1180 			continue;
1181 		xor_srcs[count++] = sh->dev[i].page;
1182 	}
1183 
1184 	init_async_submit(&submit, 0, NULL, NULL, NULL,
1185 			  to_addr_conv(sh, percpu));
1186 	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1187 			   &sh->ops.zero_sum_result, &submit);
1188 
1189 	atomic_inc(&sh->count);
1190 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1191 	tx = async_trigger_callback(&submit);
1192 }
1193 
1194 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1195 {
1196 	struct page **srcs = percpu->scribble;
1197 	struct async_submit_ctl submit;
1198 	int count;
1199 
1200 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1201 		(unsigned long long)sh->sector, checkp);
1202 
1203 	count = set_syndrome_sources(srcs, sh);
1204 	if (!checkp)
1205 		srcs[count] = NULL;
1206 
1207 	atomic_inc(&sh->count);
1208 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1209 			  sh, to_addr_conv(sh, percpu));
1210 	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1211 			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1212 }
1213 
1214 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1215 {
1216 	int overlap_clear = 0, i, disks = sh->disks;
1217 	struct dma_async_tx_descriptor *tx = NULL;
1218 	raid5_conf_t *conf = sh->raid_conf;
1219 	int level = conf->level;
1220 	struct raid5_percpu *percpu;
1221 	unsigned long cpu;
1222 
1223 	cpu = get_cpu();
1224 	percpu = per_cpu_ptr(conf->percpu, cpu);
1225 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1226 		ops_run_biofill(sh);
1227 		overlap_clear++;
1228 	}
1229 
1230 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1231 		if (level < 6)
1232 			tx = ops_run_compute5(sh, percpu);
1233 		else {
1234 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
1235 				tx = ops_run_compute6_1(sh, percpu);
1236 			else
1237 				tx = ops_run_compute6_2(sh, percpu);
1238 		}
1239 		/* terminate the chain if reconstruct is not set to be run */
1240 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1241 			async_tx_ack(tx);
1242 	}
1243 
1244 	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1245 		tx = ops_run_prexor(sh, percpu, tx);
1246 
1247 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1248 		tx = ops_run_biodrain(sh, tx);
1249 		overlap_clear++;
1250 	}
1251 
1252 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1253 		if (level < 6)
1254 			ops_run_reconstruct5(sh, percpu, tx);
1255 		else
1256 			ops_run_reconstruct6(sh, percpu, tx);
1257 	}
1258 
1259 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1260 		if (sh->check_state == check_state_run)
1261 			ops_run_check_p(sh, percpu);
1262 		else if (sh->check_state == check_state_run_q)
1263 			ops_run_check_pq(sh, percpu, 0);
1264 		else if (sh->check_state == check_state_run_pq)
1265 			ops_run_check_pq(sh, percpu, 1);
1266 		else
1267 			BUG();
1268 	}
1269 
1270 	if (overlap_clear)
1271 		for (i = disks; i--; ) {
1272 			struct r5dev *dev = &sh->dev[i];
1273 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
1274 				wake_up(&sh->raid_conf->wait_for_overlap);
1275 		}
1276 	put_cpu();
1277 }
1278 
1279 #ifdef CONFIG_MULTICORE_RAID456
1280 static void async_run_ops(void *param, async_cookie_t cookie)
1281 {
1282 	struct stripe_head *sh = param;
1283 	unsigned long ops_request = sh->ops.request;
1284 
1285 	clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1286 	wake_up(&sh->ops.wait_for_ops);
1287 
1288 	__raid_run_ops(sh, ops_request);
1289 	release_stripe(sh);
1290 }
1291 
1292 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1293 {
1294 	/* since handle_stripe can be called outside of raid5d context
1295 	 * we need to ensure sh->ops.request is de-staged before another
1296 	 * request arrives
1297 	 */
1298 	wait_event(sh->ops.wait_for_ops,
1299 		   !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1300 	sh->ops.request = ops_request;
1301 
1302 	atomic_inc(&sh->count);
1303 	async_schedule(async_run_ops, sh);
1304 }
1305 #else
1306 #define raid_run_ops __raid_run_ops
1307 #endif
1308 
1309 static int grow_one_stripe(raid5_conf_t *conf)
1310 {
1311 	struct stripe_head *sh;
1312 	sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
1313 	if (!sh)
1314 		return 0;
1315 	memset(sh, 0, sizeof(*sh) + (conf->pool_size-1)*sizeof(struct r5dev));
1316 	sh->raid_conf = conf;
1317 	spin_lock_init(&sh->lock);
1318 	#ifdef CONFIG_MULTICORE_RAID456
1319 	init_waitqueue_head(&sh->ops.wait_for_ops);
1320 	#endif
1321 
1322 	if (grow_buffers(sh)) {
1323 		shrink_buffers(sh);
1324 		kmem_cache_free(conf->slab_cache, sh);
1325 		return 0;
1326 	}
1327 	/* we just created an active stripe so... */
1328 	atomic_set(&sh->count, 1);
1329 	atomic_inc(&conf->active_stripes);
1330 	INIT_LIST_HEAD(&sh->lru);
1331 	release_stripe(sh);
1332 	return 1;
1333 }
1334 
1335 static int grow_stripes(raid5_conf_t *conf, int num)
1336 {
1337 	struct kmem_cache *sc;
1338 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
1339 
1340 	sprintf(conf->cache_name[0],
1341 		"raid%d-%s", conf->level, mdname(conf->mddev));
1342 	sprintf(conf->cache_name[1],
1343 		"raid%d-%s-alt", conf->level, mdname(conf->mddev));
1344 	conf->active_name = 0;
1345 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
1346 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1347 			       0, 0, NULL);
1348 	if (!sc)
1349 		return 1;
1350 	conf->slab_cache = sc;
1351 	conf->pool_size = devs;
1352 	while (num--)
1353 		if (!grow_one_stripe(conf))
1354 			return 1;
1355 	return 0;
1356 }
1357 
1358 /**
1359  * scribble_len - return the required size of the scribble region
1360  * @num - total number of disks in the array
1361  *
1362  * The size must be enough to contain:
1363  * 1/ a struct page pointer for each device in the array +2
1364  * 2/ room to convert each entry in (1) to its corresponding dma
1365  *    (dma_map_page()) or page (page_address()) address.
1366  *
1367  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1368  * calculate over all devices (not just the data blocks), using zeros in place
1369  * of the P and Q blocks.
1370  */
1371 static size_t scribble_len(int num)
1372 {
1373 	size_t len;
1374 
1375 	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1376 
1377 	return len;
1378 }
1379 
1380 static int resize_stripes(raid5_conf_t *conf, int newsize)
1381 {
1382 	/* Make all the stripes able to hold 'newsize' devices.
1383 	 * New slots in each stripe get 'page' set to a new page.
1384 	 *
1385 	 * This happens in stages:
1386 	 * 1/ create a new kmem_cache and allocate the required number of
1387 	 *    stripe_heads.
1388 	 * 2/ gather all the old stripe_heads and tranfer the pages across
1389 	 *    to the new stripe_heads.  This will have the side effect of
1390 	 *    freezing the array as once all stripe_heads have been collected,
1391 	 *    no IO will be possible.  Old stripe heads are freed once their
1392 	 *    pages have been transferred over, and the old kmem_cache is
1393 	 *    freed when all stripes are done.
1394 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1395 	 *    we simple return a failre status - no need to clean anything up.
1396 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
1397 	 *    If this fails, we don't bother trying the shrink the
1398 	 *    stripe_heads down again, we just leave them as they are.
1399 	 *    As each stripe_head is processed the new one is released into
1400 	 *    active service.
1401 	 *
1402 	 * Once step2 is started, we cannot afford to wait for a write,
1403 	 * so we use GFP_NOIO allocations.
1404 	 */
1405 	struct stripe_head *osh, *nsh;
1406 	LIST_HEAD(newstripes);
1407 	struct disk_info *ndisks;
1408 	unsigned long cpu;
1409 	int err;
1410 	struct kmem_cache *sc;
1411 	int i;
1412 
1413 	if (newsize <= conf->pool_size)
1414 		return 0; /* never bother to shrink */
1415 
1416 	err = md_allow_write(conf->mddev);
1417 	if (err)
1418 		return err;
1419 
1420 	/* Step 1 */
1421 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1422 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1423 			       0, 0, NULL);
1424 	if (!sc)
1425 		return -ENOMEM;
1426 
1427 	for (i = conf->max_nr_stripes; i; i--) {
1428 		nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1429 		if (!nsh)
1430 			break;
1431 
1432 		memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1433 
1434 		nsh->raid_conf = conf;
1435 		spin_lock_init(&nsh->lock);
1436 		#ifdef CONFIG_MULTICORE_RAID456
1437 		init_waitqueue_head(&nsh->ops.wait_for_ops);
1438 		#endif
1439 
1440 		list_add(&nsh->lru, &newstripes);
1441 	}
1442 	if (i) {
1443 		/* didn't get enough, give up */
1444 		while (!list_empty(&newstripes)) {
1445 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
1446 			list_del(&nsh->lru);
1447 			kmem_cache_free(sc, nsh);
1448 		}
1449 		kmem_cache_destroy(sc);
1450 		return -ENOMEM;
1451 	}
1452 	/* Step 2 - Must use GFP_NOIO now.
1453 	 * OK, we have enough stripes, start collecting inactive
1454 	 * stripes and copying them over
1455 	 */
1456 	list_for_each_entry(nsh, &newstripes, lru) {
1457 		spin_lock_irq(&conf->device_lock);
1458 		wait_event_lock_irq(conf->wait_for_stripe,
1459 				    !list_empty(&conf->inactive_list),
1460 				    conf->device_lock,
1461 				    unplug_slaves(conf->mddev)
1462 			);
1463 		osh = get_free_stripe(conf);
1464 		spin_unlock_irq(&conf->device_lock);
1465 		atomic_set(&nsh->count, 1);
1466 		for(i=0; i<conf->pool_size; i++)
1467 			nsh->dev[i].page = osh->dev[i].page;
1468 		for( ; i<newsize; i++)
1469 			nsh->dev[i].page = NULL;
1470 		kmem_cache_free(conf->slab_cache, osh);
1471 	}
1472 	kmem_cache_destroy(conf->slab_cache);
1473 
1474 	/* Step 3.
1475 	 * At this point, we are holding all the stripes so the array
1476 	 * is completely stalled, so now is a good time to resize
1477 	 * conf->disks and the scribble region
1478 	 */
1479 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1480 	if (ndisks) {
1481 		for (i=0; i<conf->raid_disks; i++)
1482 			ndisks[i] = conf->disks[i];
1483 		kfree(conf->disks);
1484 		conf->disks = ndisks;
1485 	} else
1486 		err = -ENOMEM;
1487 
1488 	get_online_cpus();
1489 	conf->scribble_len = scribble_len(newsize);
1490 	for_each_present_cpu(cpu) {
1491 		struct raid5_percpu *percpu;
1492 		void *scribble;
1493 
1494 		percpu = per_cpu_ptr(conf->percpu, cpu);
1495 		scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1496 
1497 		if (scribble) {
1498 			kfree(percpu->scribble);
1499 			percpu->scribble = scribble;
1500 		} else {
1501 			err = -ENOMEM;
1502 			break;
1503 		}
1504 	}
1505 	put_online_cpus();
1506 
1507 	/* Step 4, return new stripes to service */
1508 	while(!list_empty(&newstripes)) {
1509 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
1510 		list_del_init(&nsh->lru);
1511 
1512 		for (i=conf->raid_disks; i < newsize; i++)
1513 			if (nsh->dev[i].page == NULL) {
1514 				struct page *p = alloc_page(GFP_NOIO);
1515 				nsh->dev[i].page = p;
1516 				if (!p)
1517 					err = -ENOMEM;
1518 			}
1519 		release_stripe(nsh);
1520 	}
1521 	/* critical section pass, GFP_NOIO no longer needed */
1522 
1523 	conf->slab_cache = sc;
1524 	conf->active_name = 1-conf->active_name;
1525 	conf->pool_size = newsize;
1526 	return err;
1527 }
1528 
1529 static int drop_one_stripe(raid5_conf_t *conf)
1530 {
1531 	struct stripe_head *sh;
1532 
1533 	spin_lock_irq(&conf->device_lock);
1534 	sh = get_free_stripe(conf);
1535 	spin_unlock_irq(&conf->device_lock);
1536 	if (!sh)
1537 		return 0;
1538 	BUG_ON(atomic_read(&sh->count));
1539 	shrink_buffers(sh);
1540 	kmem_cache_free(conf->slab_cache, sh);
1541 	atomic_dec(&conf->active_stripes);
1542 	return 1;
1543 }
1544 
1545 static void shrink_stripes(raid5_conf_t *conf)
1546 {
1547 	while (drop_one_stripe(conf))
1548 		;
1549 
1550 	if (conf->slab_cache)
1551 		kmem_cache_destroy(conf->slab_cache);
1552 	conf->slab_cache = NULL;
1553 }
1554 
1555 static void raid5_end_read_request(struct bio * bi, int error)
1556 {
1557 	struct stripe_head *sh = bi->bi_private;
1558 	raid5_conf_t *conf = sh->raid_conf;
1559 	int disks = sh->disks, i;
1560 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1561 	char b[BDEVNAME_SIZE];
1562 	mdk_rdev_t *rdev;
1563 
1564 
1565 	for (i=0 ; i<disks; i++)
1566 		if (bi == &sh->dev[i].req)
1567 			break;
1568 
1569 	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1570 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1571 		uptodate);
1572 	if (i == disks) {
1573 		BUG();
1574 		return;
1575 	}
1576 
1577 	if (uptodate) {
1578 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1579 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1580 			rdev = conf->disks[i].rdev;
1581 			printk_rl(KERN_INFO "md/raid:%s: read error corrected"
1582 				  " (%lu sectors at %llu on %s)\n",
1583 				  mdname(conf->mddev), STRIPE_SECTORS,
1584 				  (unsigned long long)(sh->sector
1585 						       + rdev->data_offset),
1586 				  bdevname(rdev->bdev, b));
1587 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1588 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1589 		}
1590 		if (atomic_read(&conf->disks[i].rdev->read_errors))
1591 			atomic_set(&conf->disks[i].rdev->read_errors, 0);
1592 	} else {
1593 		const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1594 		int retry = 0;
1595 		rdev = conf->disks[i].rdev;
1596 
1597 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1598 		atomic_inc(&rdev->read_errors);
1599 		if (conf->mddev->degraded >= conf->max_degraded)
1600 			printk_rl(KERN_WARNING
1601 				  "md/raid:%s: read error not correctable "
1602 				  "(sector %llu on %s).\n",
1603 				  mdname(conf->mddev),
1604 				  (unsigned long long)(sh->sector
1605 						       + rdev->data_offset),
1606 				  bdn);
1607 		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1608 			/* Oh, no!!! */
1609 			printk_rl(KERN_WARNING
1610 				  "md/raid:%s: read error NOT corrected!! "
1611 				  "(sector %llu on %s).\n",
1612 				  mdname(conf->mddev),
1613 				  (unsigned long long)(sh->sector
1614 						       + rdev->data_offset),
1615 				  bdn);
1616 		else if (atomic_read(&rdev->read_errors)
1617 			 > conf->max_nr_stripes)
1618 			printk(KERN_WARNING
1619 			       "md/raid:%s: Too many read errors, failing device %s.\n",
1620 			       mdname(conf->mddev), bdn);
1621 		else
1622 			retry = 1;
1623 		if (retry)
1624 			set_bit(R5_ReadError, &sh->dev[i].flags);
1625 		else {
1626 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1627 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1628 			md_error(conf->mddev, rdev);
1629 		}
1630 	}
1631 	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1632 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1633 	set_bit(STRIPE_HANDLE, &sh->state);
1634 	release_stripe(sh);
1635 }
1636 
1637 static void raid5_end_write_request(struct bio *bi, int error)
1638 {
1639 	struct stripe_head *sh = bi->bi_private;
1640 	raid5_conf_t *conf = sh->raid_conf;
1641 	int disks = sh->disks, i;
1642 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1643 
1644 	for (i=0 ; i<disks; i++)
1645 		if (bi == &sh->dev[i].req)
1646 			break;
1647 
1648 	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1649 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1650 		uptodate);
1651 	if (i == disks) {
1652 		BUG();
1653 		return;
1654 	}
1655 
1656 	if (!uptodate)
1657 		md_error(conf->mddev, conf->disks[i].rdev);
1658 
1659 	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1660 
1661 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1662 	set_bit(STRIPE_HANDLE, &sh->state);
1663 	release_stripe(sh);
1664 }
1665 
1666 
1667 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1668 
1669 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1670 {
1671 	struct r5dev *dev = &sh->dev[i];
1672 
1673 	bio_init(&dev->req);
1674 	dev->req.bi_io_vec = &dev->vec;
1675 	dev->req.bi_vcnt++;
1676 	dev->req.bi_max_vecs++;
1677 	dev->vec.bv_page = dev->page;
1678 	dev->vec.bv_len = STRIPE_SIZE;
1679 	dev->vec.bv_offset = 0;
1680 
1681 	dev->req.bi_sector = sh->sector;
1682 	dev->req.bi_private = sh;
1683 
1684 	dev->flags = 0;
1685 	dev->sector = compute_blocknr(sh, i, previous);
1686 }
1687 
1688 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1689 {
1690 	char b[BDEVNAME_SIZE];
1691 	raid5_conf_t *conf = mddev->private;
1692 	pr_debug("raid456: error called\n");
1693 
1694 	if (!test_bit(Faulty, &rdev->flags)) {
1695 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1696 		if (test_and_clear_bit(In_sync, &rdev->flags)) {
1697 			unsigned long flags;
1698 			spin_lock_irqsave(&conf->device_lock, flags);
1699 			mddev->degraded++;
1700 			spin_unlock_irqrestore(&conf->device_lock, flags);
1701 			/*
1702 			 * if recovery was running, make sure it aborts.
1703 			 */
1704 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1705 		}
1706 		set_bit(Faulty, &rdev->flags);
1707 		printk(KERN_ALERT
1708 		       "md/raid:%s: Disk failure on %s, disabling device.\n"
1709 		       KERN_ALERT
1710 		       "md/raid:%s: Operation continuing on %d devices.\n",
1711 		       mdname(mddev),
1712 		       bdevname(rdev->bdev, b),
1713 		       mdname(mddev),
1714 		       conf->raid_disks - mddev->degraded);
1715 	}
1716 }
1717 
1718 /*
1719  * Input: a 'big' sector number,
1720  * Output: index of the data and parity disk, and the sector # in them.
1721  */
1722 static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1723 				     int previous, int *dd_idx,
1724 				     struct stripe_head *sh)
1725 {
1726 	sector_t stripe, stripe2;
1727 	sector_t chunk_number;
1728 	unsigned int chunk_offset;
1729 	int pd_idx, qd_idx;
1730 	int ddf_layout = 0;
1731 	sector_t new_sector;
1732 	int algorithm = previous ? conf->prev_algo
1733 				 : conf->algorithm;
1734 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1735 					 : conf->chunk_sectors;
1736 	int raid_disks = previous ? conf->previous_raid_disks
1737 				  : conf->raid_disks;
1738 	int data_disks = raid_disks - conf->max_degraded;
1739 
1740 	/* First compute the information on this sector */
1741 
1742 	/*
1743 	 * Compute the chunk number and the sector offset inside the chunk
1744 	 */
1745 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
1746 	chunk_number = r_sector;
1747 
1748 	/*
1749 	 * Compute the stripe number
1750 	 */
1751 	stripe = chunk_number;
1752 	*dd_idx = sector_div(stripe, data_disks);
1753 	stripe2 = stripe;
1754 	/*
1755 	 * Select the parity disk based on the user selected algorithm.
1756 	 */
1757 	pd_idx = qd_idx = ~0;
1758 	switch(conf->level) {
1759 	case 4:
1760 		pd_idx = data_disks;
1761 		break;
1762 	case 5:
1763 		switch (algorithm) {
1764 		case ALGORITHM_LEFT_ASYMMETRIC:
1765 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1766 			if (*dd_idx >= pd_idx)
1767 				(*dd_idx)++;
1768 			break;
1769 		case ALGORITHM_RIGHT_ASYMMETRIC:
1770 			pd_idx = sector_div(stripe2, raid_disks);
1771 			if (*dd_idx >= pd_idx)
1772 				(*dd_idx)++;
1773 			break;
1774 		case ALGORITHM_LEFT_SYMMETRIC:
1775 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1776 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1777 			break;
1778 		case ALGORITHM_RIGHT_SYMMETRIC:
1779 			pd_idx = sector_div(stripe2, raid_disks);
1780 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1781 			break;
1782 		case ALGORITHM_PARITY_0:
1783 			pd_idx = 0;
1784 			(*dd_idx)++;
1785 			break;
1786 		case ALGORITHM_PARITY_N:
1787 			pd_idx = data_disks;
1788 			break;
1789 		default:
1790 			BUG();
1791 		}
1792 		break;
1793 	case 6:
1794 
1795 		switch (algorithm) {
1796 		case ALGORITHM_LEFT_ASYMMETRIC:
1797 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1798 			qd_idx = pd_idx + 1;
1799 			if (pd_idx == raid_disks-1) {
1800 				(*dd_idx)++;	/* Q D D D P */
1801 				qd_idx = 0;
1802 			} else if (*dd_idx >= pd_idx)
1803 				(*dd_idx) += 2; /* D D P Q D */
1804 			break;
1805 		case ALGORITHM_RIGHT_ASYMMETRIC:
1806 			pd_idx = sector_div(stripe2, raid_disks);
1807 			qd_idx = pd_idx + 1;
1808 			if (pd_idx == raid_disks-1) {
1809 				(*dd_idx)++;	/* Q D D D P */
1810 				qd_idx = 0;
1811 			} else if (*dd_idx >= pd_idx)
1812 				(*dd_idx) += 2; /* D D P Q D */
1813 			break;
1814 		case ALGORITHM_LEFT_SYMMETRIC:
1815 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1816 			qd_idx = (pd_idx + 1) % raid_disks;
1817 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1818 			break;
1819 		case ALGORITHM_RIGHT_SYMMETRIC:
1820 			pd_idx = sector_div(stripe2, raid_disks);
1821 			qd_idx = (pd_idx + 1) % raid_disks;
1822 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1823 			break;
1824 
1825 		case ALGORITHM_PARITY_0:
1826 			pd_idx = 0;
1827 			qd_idx = 1;
1828 			(*dd_idx) += 2;
1829 			break;
1830 		case ALGORITHM_PARITY_N:
1831 			pd_idx = data_disks;
1832 			qd_idx = data_disks + 1;
1833 			break;
1834 
1835 		case ALGORITHM_ROTATING_ZERO_RESTART:
1836 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
1837 			 * of blocks for computing Q is different.
1838 			 */
1839 			pd_idx = sector_div(stripe2, raid_disks);
1840 			qd_idx = pd_idx + 1;
1841 			if (pd_idx == raid_disks-1) {
1842 				(*dd_idx)++;	/* Q D D D P */
1843 				qd_idx = 0;
1844 			} else if (*dd_idx >= pd_idx)
1845 				(*dd_idx) += 2; /* D D P Q D */
1846 			ddf_layout = 1;
1847 			break;
1848 
1849 		case ALGORITHM_ROTATING_N_RESTART:
1850 			/* Same a left_asymmetric, by first stripe is
1851 			 * D D D P Q  rather than
1852 			 * Q D D D P
1853 			 */
1854 			stripe2 += 1;
1855 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1856 			qd_idx = pd_idx + 1;
1857 			if (pd_idx == raid_disks-1) {
1858 				(*dd_idx)++;	/* Q D D D P */
1859 				qd_idx = 0;
1860 			} else if (*dd_idx >= pd_idx)
1861 				(*dd_idx) += 2; /* D D P Q D */
1862 			ddf_layout = 1;
1863 			break;
1864 
1865 		case ALGORITHM_ROTATING_N_CONTINUE:
1866 			/* Same as left_symmetric but Q is before P */
1867 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1868 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1869 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1870 			ddf_layout = 1;
1871 			break;
1872 
1873 		case ALGORITHM_LEFT_ASYMMETRIC_6:
1874 			/* RAID5 left_asymmetric, with Q on last device */
1875 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1876 			if (*dd_idx >= pd_idx)
1877 				(*dd_idx)++;
1878 			qd_idx = raid_disks - 1;
1879 			break;
1880 
1881 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
1882 			pd_idx = sector_div(stripe2, raid_disks-1);
1883 			if (*dd_idx >= pd_idx)
1884 				(*dd_idx)++;
1885 			qd_idx = raid_disks - 1;
1886 			break;
1887 
1888 		case ALGORITHM_LEFT_SYMMETRIC_6:
1889 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1890 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1891 			qd_idx = raid_disks - 1;
1892 			break;
1893 
1894 		case ALGORITHM_RIGHT_SYMMETRIC_6:
1895 			pd_idx = sector_div(stripe2, raid_disks-1);
1896 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1897 			qd_idx = raid_disks - 1;
1898 			break;
1899 
1900 		case ALGORITHM_PARITY_0_6:
1901 			pd_idx = 0;
1902 			(*dd_idx)++;
1903 			qd_idx = raid_disks - 1;
1904 			break;
1905 
1906 		default:
1907 			BUG();
1908 		}
1909 		break;
1910 	}
1911 
1912 	if (sh) {
1913 		sh->pd_idx = pd_idx;
1914 		sh->qd_idx = qd_idx;
1915 		sh->ddf_layout = ddf_layout;
1916 	}
1917 	/*
1918 	 * Finally, compute the new sector number
1919 	 */
1920 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1921 	return new_sector;
1922 }
1923 
1924 
1925 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1926 {
1927 	raid5_conf_t *conf = sh->raid_conf;
1928 	int raid_disks = sh->disks;
1929 	int data_disks = raid_disks - conf->max_degraded;
1930 	sector_t new_sector = sh->sector, check;
1931 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1932 					 : conf->chunk_sectors;
1933 	int algorithm = previous ? conf->prev_algo
1934 				 : conf->algorithm;
1935 	sector_t stripe;
1936 	int chunk_offset;
1937 	sector_t chunk_number;
1938 	int dummy1, dd_idx = i;
1939 	sector_t r_sector;
1940 	struct stripe_head sh2;
1941 
1942 
1943 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
1944 	stripe = new_sector;
1945 
1946 	if (i == sh->pd_idx)
1947 		return 0;
1948 	switch(conf->level) {
1949 	case 4: break;
1950 	case 5:
1951 		switch (algorithm) {
1952 		case ALGORITHM_LEFT_ASYMMETRIC:
1953 		case ALGORITHM_RIGHT_ASYMMETRIC:
1954 			if (i > sh->pd_idx)
1955 				i--;
1956 			break;
1957 		case ALGORITHM_LEFT_SYMMETRIC:
1958 		case ALGORITHM_RIGHT_SYMMETRIC:
1959 			if (i < sh->pd_idx)
1960 				i += raid_disks;
1961 			i -= (sh->pd_idx + 1);
1962 			break;
1963 		case ALGORITHM_PARITY_0:
1964 			i -= 1;
1965 			break;
1966 		case ALGORITHM_PARITY_N:
1967 			break;
1968 		default:
1969 			BUG();
1970 		}
1971 		break;
1972 	case 6:
1973 		if (i == sh->qd_idx)
1974 			return 0; /* It is the Q disk */
1975 		switch (algorithm) {
1976 		case ALGORITHM_LEFT_ASYMMETRIC:
1977 		case ALGORITHM_RIGHT_ASYMMETRIC:
1978 		case ALGORITHM_ROTATING_ZERO_RESTART:
1979 		case ALGORITHM_ROTATING_N_RESTART:
1980 			if (sh->pd_idx == raid_disks-1)
1981 				i--;	/* Q D D D P */
1982 			else if (i > sh->pd_idx)
1983 				i -= 2; /* D D P Q D */
1984 			break;
1985 		case ALGORITHM_LEFT_SYMMETRIC:
1986 		case ALGORITHM_RIGHT_SYMMETRIC:
1987 			if (sh->pd_idx == raid_disks-1)
1988 				i--; /* Q D D D P */
1989 			else {
1990 				/* D D P Q D */
1991 				if (i < sh->pd_idx)
1992 					i += raid_disks;
1993 				i -= (sh->pd_idx + 2);
1994 			}
1995 			break;
1996 		case ALGORITHM_PARITY_0:
1997 			i -= 2;
1998 			break;
1999 		case ALGORITHM_PARITY_N:
2000 			break;
2001 		case ALGORITHM_ROTATING_N_CONTINUE:
2002 			/* Like left_symmetric, but P is before Q */
2003 			if (sh->pd_idx == 0)
2004 				i--;	/* P D D D Q */
2005 			else {
2006 				/* D D Q P D */
2007 				if (i < sh->pd_idx)
2008 					i += raid_disks;
2009 				i -= (sh->pd_idx + 1);
2010 			}
2011 			break;
2012 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2013 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2014 			if (i > sh->pd_idx)
2015 				i--;
2016 			break;
2017 		case ALGORITHM_LEFT_SYMMETRIC_6:
2018 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2019 			if (i < sh->pd_idx)
2020 				i += data_disks + 1;
2021 			i -= (sh->pd_idx + 1);
2022 			break;
2023 		case ALGORITHM_PARITY_0_6:
2024 			i -= 1;
2025 			break;
2026 		default:
2027 			BUG();
2028 		}
2029 		break;
2030 	}
2031 
2032 	chunk_number = stripe * data_disks + i;
2033 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2034 
2035 	check = raid5_compute_sector(conf, r_sector,
2036 				     previous, &dummy1, &sh2);
2037 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2038 		|| sh2.qd_idx != sh->qd_idx) {
2039 		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2040 		       mdname(conf->mddev));
2041 		return 0;
2042 	}
2043 	return r_sector;
2044 }
2045 
2046 
2047 static void
2048 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2049 			 int rcw, int expand)
2050 {
2051 	int i, pd_idx = sh->pd_idx, disks = sh->disks;
2052 	raid5_conf_t *conf = sh->raid_conf;
2053 	int level = conf->level;
2054 
2055 	if (rcw) {
2056 		/* if we are not expanding this is a proper write request, and
2057 		 * there will be bios with new data to be drained into the
2058 		 * stripe cache
2059 		 */
2060 		if (!expand) {
2061 			sh->reconstruct_state = reconstruct_state_drain_run;
2062 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2063 		} else
2064 			sh->reconstruct_state = reconstruct_state_run;
2065 
2066 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2067 
2068 		for (i = disks; i--; ) {
2069 			struct r5dev *dev = &sh->dev[i];
2070 
2071 			if (dev->towrite) {
2072 				set_bit(R5_LOCKED, &dev->flags);
2073 				set_bit(R5_Wantdrain, &dev->flags);
2074 				if (!expand)
2075 					clear_bit(R5_UPTODATE, &dev->flags);
2076 				s->locked++;
2077 			}
2078 		}
2079 		if (s->locked + conf->max_degraded == disks)
2080 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2081 				atomic_inc(&conf->pending_full_writes);
2082 	} else {
2083 		BUG_ON(level == 6);
2084 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2085 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2086 
2087 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2088 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2089 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2090 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2091 
2092 		for (i = disks; i--; ) {
2093 			struct r5dev *dev = &sh->dev[i];
2094 			if (i == pd_idx)
2095 				continue;
2096 
2097 			if (dev->towrite &&
2098 			    (test_bit(R5_UPTODATE, &dev->flags) ||
2099 			     test_bit(R5_Wantcompute, &dev->flags))) {
2100 				set_bit(R5_Wantdrain, &dev->flags);
2101 				set_bit(R5_LOCKED, &dev->flags);
2102 				clear_bit(R5_UPTODATE, &dev->flags);
2103 				s->locked++;
2104 			}
2105 		}
2106 	}
2107 
2108 	/* keep the parity disk(s) locked while asynchronous operations
2109 	 * are in flight
2110 	 */
2111 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2112 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2113 	s->locked++;
2114 
2115 	if (level == 6) {
2116 		int qd_idx = sh->qd_idx;
2117 		struct r5dev *dev = &sh->dev[qd_idx];
2118 
2119 		set_bit(R5_LOCKED, &dev->flags);
2120 		clear_bit(R5_UPTODATE, &dev->flags);
2121 		s->locked++;
2122 	}
2123 
2124 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2125 		__func__, (unsigned long long)sh->sector,
2126 		s->locked, s->ops_request);
2127 }
2128 
2129 /*
2130  * Each stripe/dev can have one or more bion attached.
2131  * toread/towrite point to the first in a chain.
2132  * The bi_next chain must be in order.
2133  */
2134 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2135 {
2136 	struct bio **bip;
2137 	raid5_conf_t *conf = sh->raid_conf;
2138 	int firstwrite=0;
2139 
2140 	pr_debug("adding bh b#%llu to stripe s#%llu\n",
2141 		(unsigned long long)bi->bi_sector,
2142 		(unsigned long long)sh->sector);
2143 
2144 
2145 	spin_lock(&sh->lock);
2146 	spin_lock_irq(&conf->device_lock);
2147 	if (forwrite) {
2148 		bip = &sh->dev[dd_idx].towrite;
2149 		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2150 			firstwrite = 1;
2151 	} else
2152 		bip = &sh->dev[dd_idx].toread;
2153 	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2154 		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2155 			goto overlap;
2156 		bip = & (*bip)->bi_next;
2157 	}
2158 	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2159 		goto overlap;
2160 
2161 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2162 	if (*bip)
2163 		bi->bi_next = *bip;
2164 	*bip = bi;
2165 	bi->bi_phys_segments++;
2166 	spin_unlock_irq(&conf->device_lock);
2167 	spin_unlock(&sh->lock);
2168 
2169 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2170 		(unsigned long long)bi->bi_sector,
2171 		(unsigned long long)sh->sector, dd_idx);
2172 
2173 	if (conf->mddev->bitmap && firstwrite) {
2174 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2175 				  STRIPE_SECTORS, 0);
2176 		sh->bm_seq = conf->seq_flush+1;
2177 		set_bit(STRIPE_BIT_DELAY, &sh->state);
2178 	}
2179 
2180 	if (forwrite) {
2181 		/* check if page is covered */
2182 		sector_t sector = sh->dev[dd_idx].sector;
2183 		for (bi=sh->dev[dd_idx].towrite;
2184 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2185 			     bi && bi->bi_sector <= sector;
2186 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2187 			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2188 				sector = bi->bi_sector + (bi->bi_size>>9);
2189 		}
2190 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2191 			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2192 	}
2193 	return 1;
2194 
2195  overlap:
2196 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2197 	spin_unlock_irq(&conf->device_lock);
2198 	spin_unlock(&sh->lock);
2199 	return 0;
2200 }
2201 
2202 static void end_reshape(raid5_conf_t *conf);
2203 
2204 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2205 			    struct stripe_head *sh)
2206 {
2207 	int sectors_per_chunk =
2208 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2209 	int dd_idx;
2210 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2211 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2212 
2213 	raid5_compute_sector(conf,
2214 			     stripe * (disks - conf->max_degraded)
2215 			     *sectors_per_chunk + chunk_offset,
2216 			     previous,
2217 			     &dd_idx, sh);
2218 }
2219 
2220 static void
2221 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2222 				struct stripe_head_state *s, int disks,
2223 				struct bio **return_bi)
2224 {
2225 	int i;
2226 	for (i = disks; i--; ) {
2227 		struct bio *bi;
2228 		int bitmap_end = 0;
2229 
2230 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2231 			mdk_rdev_t *rdev;
2232 			rcu_read_lock();
2233 			rdev = rcu_dereference(conf->disks[i].rdev);
2234 			if (rdev && test_bit(In_sync, &rdev->flags))
2235 				/* multiple read failures in one stripe */
2236 				md_error(conf->mddev, rdev);
2237 			rcu_read_unlock();
2238 		}
2239 		spin_lock_irq(&conf->device_lock);
2240 		/* fail all writes first */
2241 		bi = sh->dev[i].towrite;
2242 		sh->dev[i].towrite = NULL;
2243 		if (bi) {
2244 			s->to_write--;
2245 			bitmap_end = 1;
2246 		}
2247 
2248 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2249 			wake_up(&conf->wait_for_overlap);
2250 
2251 		while (bi && bi->bi_sector <
2252 			sh->dev[i].sector + STRIPE_SECTORS) {
2253 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2254 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2255 			if (!raid5_dec_bi_phys_segments(bi)) {
2256 				md_write_end(conf->mddev);
2257 				bi->bi_next = *return_bi;
2258 				*return_bi = bi;
2259 			}
2260 			bi = nextbi;
2261 		}
2262 		/* and fail all 'written' */
2263 		bi = sh->dev[i].written;
2264 		sh->dev[i].written = NULL;
2265 		if (bi) bitmap_end = 1;
2266 		while (bi && bi->bi_sector <
2267 		       sh->dev[i].sector + STRIPE_SECTORS) {
2268 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2269 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2270 			if (!raid5_dec_bi_phys_segments(bi)) {
2271 				md_write_end(conf->mddev);
2272 				bi->bi_next = *return_bi;
2273 				*return_bi = bi;
2274 			}
2275 			bi = bi2;
2276 		}
2277 
2278 		/* fail any reads if this device is non-operational and
2279 		 * the data has not reached the cache yet.
2280 		 */
2281 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2282 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2283 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2284 			bi = sh->dev[i].toread;
2285 			sh->dev[i].toread = NULL;
2286 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2287 				wake_up(&conf->wait_for_overlap);
2288 			if (bi) s->to_read--;
2289 			while (bi && bi->bi_sector <
2290 			       sh->dev[i].sector + STRIPE_SECTORS) {
2291 				struct bio *nextbi =
2292 					r5_next_bio(bi, sh->dev[i].sector);
2293 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2294 				if (!raid5_dec_bi_phys_segments(bi)) {
2295 					bi->bi_next = *return_bi;
2296 					*return_bi = bi;
2297 				}
2298 				bi = nextbi;
2299 			}
2300 		}
2301 		spin_unlock_irq(&conf->device_lock);
2302 		if (bitmap_end)
2303 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2304 					STRIPE_SECTORS, 0, 0);
2305 	}
2306 
2307 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2308 		if (atomic_dec_and_test(&conf->pending_full_writes))
2309 			md_wakeup_thread(conf->mddev->thread);
2310 }
2311 
2312 /* fetch_block5 - checks the given member device to see if its data needs
2313  * to be read or computed to satisfy a request.
2314  *
2315  * Returns 1 when no more member devices need to be checked, otherwise returns
2316  * 0 to tell the loop in handle_stripe_fill5 to continue
2317  */
2318 static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2319 			int disk_idx, int disks)
2320 {
2321 	struct r5dev *dev = &sh->dev[disk_idx];
2322 	struct r5dev *failed_dev = &sh->dev[s->failed_num];
2323 
2324 	/* is the data in this block needed, and can we get it? */
2325 	if (!test_bit(R5_LOCKED, &dev->flags) &&
2326 	    !test_bit(R5_UPTODATE, &dev->flags) &&
2327 	    (dev->toread ||
2328 	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2329 	     s->syncing || s->expanding ||
2330 	     (s->failed &&
2331 	      (failed_dev->toread ||
2332 	       (failed_dev->towrite &&
2333 		!test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2334 		/* We would like to get this block, possibly by computing it,
2335 		 * otherwise read it if the backing disk is insync
2336 		 */
2337 		if ((s->uptodate == disks - 1) &&
2338 		    (s->failed && disk_idx == s->failed_num)) {
2339 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2340 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2341 			set_bit(R5_Wantcompute, &dev->flags);
2342 			sh->ops.target = disk_idx;
2343 			sh->ops.target2 = -1;
2344 			s->req_compute = 1;
2345 			/* Careful: from this point on 'uptodate' is in the eye
2346 			 * of raid_run_ops which services 'compute' operations
2347 			 * before writes. R5_Wantcompute flags a block that will
2348 			 * be R5_UPTODATE by the time it is needed for a
2349 			 * subsequent operation.
2350 			 */
2351 			s->uptodate++;
2352 			return 1; /* uptodate + compute == disks */
2353 		} else if (test_bit(R5_Insync, &dev->flags)) {
2354 			set_bit(R5_LOCKED, &dev->flags);
2355 			set_bit(R5_Wantread, &dev->flags);
2356 			s->locked++;
2357 			pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2358 				s->syncing);
2359 		}
2360 	}
2361 
2362 	return 0;
2363 }
2364 
2365 /**
2366  * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2367  */
2368 static void handle_stripe_fill5(struct stripe_head *sh,
2369 			struct stripe_head_state *s, int disks)
2370 {
2371 	int i;
2372 
2373 	/* look for blocks to read/compute, skip this if a compute
2374 	 * is already in flight, or if the stripe contents are in the
2375 	 * midst of changing due to a write
2376 	 */
2377 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2378 	    !sh->reconstruct_state)
2379 		for (i = disks; i--; )
2380 			if (fetch_block5(sh, s, i, disks))
2381 				break;
2382 	set_bit(STRIPE_HANDLE, &sh->state);
2383 }
2384 
2385 /* fetch_block6 - checks the given member device to see if its data needs
2386  * to be read or computed to satisfy a request.
2387  *
2388  * Returns 1 when no more member devices need to be checked, otherwise returns
2389  * 0 to tell the loop in handle_stripe_fill6 to continue
2390  */
2391 static int fetch_block6(struct stripe_head *sh, struct stripe_head_state *s,
2392 			 struct r6_state *r6s, int disk_idx, int disks)
2393 {
2394 	struct r5dev *dev = &sh->dev[disk_idx];
2395 	struct r5dev *fdev[2] = { &sh->dev[r6s->failed_num[0]],
2396 				  &sh->dev[r6s->failed_num[1]] };
2397 
2398 	if (!test_bit(R5_LOCKED, &dev->flags) &&
2399 	    !test_bit(R5_UPTODATE, &dev->flags) &&
2400 	    (dev->toread ||
2401 	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2402 	     s->syncing || s->expanding ||
2403 	     (s->failed >= 1 &&
2404 	      (fdev[0]->toread || s->to_write)) ||
2405 	     (s->failed >= 2 &&
2406 	      (fdev[1]->toread || s->to_write)))) {
2407 		/* we would like to get this block, possibly by computing it,
2408 		 * otherwise read it if the backing disk is insync
2409 		 */
2410 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2411 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
2412 		if ((s->uptodate == disks - 1) &&
2413 		    (s->failed && (disk_idx == r6s->failed_num[0] ||
2414 				   disk_idx == r6s->failed_num[1]))) {
2415 			/* have disk failed, and we're requested to fetch it;
2416 			 * do compute it
2417 			 */
2418 			pr_debug("Computing stripe %llu block %d\n",
2419 			       (unsigned long long)sh->sector, disk_idx);
2420 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2421 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2422 			set_bit(R5_Wantcompute, &dev->flags);
2423 			sh->ops.target = disk_idx;
2424 			sh->ops.target2 = -1; /* no 2nd target */
2425 			s->req_compute = 1;
2426 			s->uptodate++;
2427 			return 1;
2428 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
2429 			/* Computing 2-failure is *very* expensive; only
2430 			 * do it if failed >= 2
2431 			 */
2432 			int other;
2433 			for (other = disks; other--; ) {
2434 				if (other == disk_idx)
2435 					continue;
2436 				if (!test_bit(R5_UPTODATE,
2437 				      &sh->dev[other].flags))
2438 					break;
2439 			}
2440 			BUG_ON(other < 0);
2441 			pr_debug("Computing stripe %llu blocks %d,%d\n",
2442 			       (unsigned long long)sh->sector,
2443 			       disk_idx, other);
2444 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2445 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2446 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2447 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
2448 			sh->ops.target = disk_idx;
2449 			sh->ops.target2 = other;
2450 			s->uptodate += 2;
2451 			s->req_compute = 1;
2452 			return 1;
2453 		} else if (test_bit(R5_Insync, &dev->flags)) {
2454 			set_bit(R5_LOCKED, &dev->flags);
2455 			set_bit(R5_Wantread, &dev->flags);
2456 			s->locked++;
2457 			pr_debug("Reading block %d (sync=%d)\n",
2458 				disk_idx, s->syncing);
2459 		}
2460 	}
2461 
2462 	return 0;
2463 }
2464 
2465 /**
2466  * handle_stripe_fill6 - read or compute data to satisfy pending requests.
2467  */
2468 static void handle_stripe_fill6(struct stripe_head *sh,
2469 			struct stripe_head_state *s, struct r6_state *r6s,
2470 			int disks)
2471 {
2472 	int i;
2473 
2474 	/* look for blocks to read/compute, skip this if a compute
2475 	 * is already in flight, or if the stripe contents are in the
2476 	 * midst of changing due to a write
2477 	 */
2478 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2479 	    !sh->reconstruct_state)
2480 		for (i = disks; i--; )
2481 			if (fetch_block6(sh, s, r6s, i, disks))
2482 				break;
2483 	set_bit(STRIPE_HANDLE, &sh->state);
2484 }
2485 
2486 
2487 /* handle_stripe_clean_event
2488  * any written block on an uptodate or failed drive can be returned.
2489  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2490  * never LOCKED, so we don't need to test 'failed' directly.
2491  */
2492 static void handle_stripe_clean_event(raid5_conf_t *conf,
2493 	struct stripe_head *sh, int disks, struct bio **return_bi)
2494 {
2495 	int i;
2496 	struct r5dev *dev;
2497 
2498 	for (i = disks; i--; )
2499 		if (sh->dev[i].written) {
2500 			dev = &sh->dev[i];
2501 			if (!test_bit(R5_LOCKED, &dev->flags) &&
2502 				test_bit(R5_UPTODATE, &dev->flags)) {
2503 				/* We can return any write requests */
2504 				struct bio *wbi, *wbi2;
2505 				int bitmap_end = 0;
2506 				pr_debug("Return write for disc %d\n", i);
2507 				spin_lock_irq(&conf->device_lock);
2508 				wbi = dev->written;
2509 				dev->written = NULL;
2510 				while (wbi && wbi->bi_sector <
2511 					dev->sector + STRIPE_SECTORS) {
2512 					wbi2 = r5_next_bio(wbi, dev->sector);
2513 					if (!raid5_dec_bi_phys_segments(wbi)) {
2514 						md_write_end(conf->mddev);
2515 						wbi->bi_next = *return_bi;
2516 						*return_bi = wbi;
2517 					}
2518 					wbi = wbi2;
2519 				}
2520 				if (dev->towrite == NULL)
2521 					bitmap_end = 1;
2522 				spin_unlock_irq(&conf->device_lock);
2523 				if (bitmap_end)
2524 					bitmap_endwrite(conf->mddev->bitmap,
2525 							sh->sector,
2526 							STRIPE_SECTORS,
2527 					 !test_bit(STRIPE_DEGRADED, &sh->state),
2528 							0);
2529 			}
2530 		}
2531 
2532 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2533 		if (atomic_dec_and_test(&conf->pending_full_writes))
2534 			md_wakeup_thread(conf->mddev->thread);
2535 }
2536 
2537 static void handle_stripe_dirtying5(raid5_conf_t *conf,
2538 		struct stripe_head *sh,	struct stripe_head_state *s, int disks)
2539 {
2540 	int rmw = 0, rcw = 0, i;
2541 	for (i = disks; i--; ) {
2542 		/* would I have to read this buffer for read_modify_write */
2543 		struct r5dev *dev = &sh->dev[i];
2544 		if ((dev->towrite || i == sh->pd_idx) &&
2545 		    !test_bit(R5_LOCKED, &dev->flags) &&
2546 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2547 		      test_bit(R5_Wantcompute, &dev->flags))) {
2548 			if (test_bit(R5_Insync, &dev->flags))
2549 				rmw++;
2550 			else
2551 				rmw += 2*disks;  /* cannot read it */
2552 		}
2553 		/* Would I have to read this buffer for reconstruct_write */
2554 		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2555 		    !test_bit(R5_LOCKED, &dev->flags) &&
2556 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2557 		    test_bit(R5_Wantcompute, &dev->flags))) {
2558 			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2559 			else
2560 				rcw += 2*disks;
2561 		}
2562 	}
2563 	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2564 		(unsigned long long)sh->sector, rmw, rcw);
2565 	set_bit(STRIPE_HANDLE, &sh->state);
2566 	if (rmw < rcw && rmw > 0)
2567 		/* prefer read-modify-write, but need to get some data */
2568 		for (i = disks; i--; ) {
2569 			struct r5dev *dev = &sh->dev[i];
2570 			if ((dev->towrite || i == sh->pd_idx) &&
2571 			    !test_bit(R5_LOCKED, &dev->flags) &&
2572 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2573 			    test_bit(R5_Wantcompute, &dev->flags)) &&
2574 			    test_bit(R5_Insync, &dev->flags)) {
2575 				if (
2576 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2577 					pr_debug("Read_old block "
2578 						"%d for r-m-w\n", i);
2579 					set_bit(R5_LOCKED, &dev->flags);
2580 					set_bit(R5_Wantread, &dev->flags);
2581 					s->locked++;
2582 				} else {
2583 					set_bit(STRIPE_DELAYED, &sh->state);
2584 					set_bit(STRIPE_HANDLE, &sh->state);
2585 				}
2586 			}
2587 		}
2588 	if (rcw <= rmw && rcw > 0)
2589 		/* want reconstruct write, but need to get some data */
2590 		for (i = disks; i--; ) {
2591 			struct r5dev *dev = &sh->dev[i];
2592 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2593 			    i != sh->pd_idx &&
2594 			    !test_bit(R5_LOCKED, &dev->flags) &&
2595 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2596 			    test_bit(R5_Wantcompute, &dev->flags)) &&
2597 			    test_bit(R5_Insync, &dev->flags)) {
2598 				if (
2599 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2600 					pr_debug("Read_old block "
2601 						"%d for Reconstruct\n", i);
2602 					set_bit(R5_LOCKED, &dev->flags);
2603 					set_bit(R5_Wantread, &dev->flags);
2604 					s->locked++;
2605 				} else {
2606 					set_bit(STRIPE_DELAYED, &sh->state);
2607 					set_bit(STRIPE_HANDLE, &sh->state);
2608 				}
2609 			}
2610 		}
2611 	/* now if nothing is locked, and if we have enough data,
2612 	 * we can start a write request
2613 	 */
2614 	/* since handle_stripe can be called at any time we need to handle the
2615 	 * case where a compute block operation has been submitted and then a
2616 	 * subsequent call wants to start a write request.  raid_run_ops only
2617 	 * handles the case where compute block and reconstruct are requested
2618 	 * simultaneously.  If this is not the case then new writes need to be
2619 	 * held off until the compute completes.
2620 	 */
2621 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2622 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2623 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2624 		schedule_reconstruction(sh, s, rcw == 0, 0);
2625 }
2626 
2627 static void handle_stripe_dirtying6(raid5_conf_t *conf,
2628 		struct stripe_head *sh,	struct stripe_head_state *s,
2629 		struct r6_state *r6s, int disks)
2630 {
2631 	int rcw = 0, pd_idx = sh->pd_idx, i;
2632 	int qd_idx = sh->qd_idx;
2633 
2634 	set_bit(STRIPE_HANDLE, &sh->state);
2635 	for (i = disks; i--; ) {
2636 		struct r5dev *dev = &sh->dev[i];
2637 		/* check if we haven't enough data */
2638 		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2639 		    i != pd_idx && i != qd_idx &&
2640 		    !test_bit(R5_LOCKED, &dev->flags) &&
2641 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2642 		      test_bit(R5_Wantcompute, &dev->flags))) {
2643 			rcw++;
2644 			if (!test_bit(R5_Insync, &dev->flags))
2645 				continue; /* it's a failed drive */
2646 
2647 			if (
2648 			  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2649 				pr_debug("Read_old stripe %llu "
2650 					"block %d for Reconstruct\n",
2651 				     (unsigned long long)sh->sector, i);
2652 				set_bit(R5_LOCKED, &dev->flags);
2653 				set_bit(R5_Wantread, &dev->flags);
2654 				s->locked++;
2655 			} else {
2656 				pr_debug("Request delayed stripe %llu "
2657 					"block %d for Reconstruct\n",
2658 				     (unsigned long long)sh->sector, i);
2659 				set_bit(STRIPE_DELAYED, &sh->state);
2660 				set_bit(STRIPE_HANDLE, &sh->state);
2661 			}
2662 		}
2663 	}
2664 	/* now if nothing is locked, and if we have enough data, we can start a
2665 	 * write request
2666 	 */
2667 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2668 	    s->locked == 0 && rcw == 0 &&
2669 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2670 		schedule_reconstruction(sh, s, 1, 0);
2671 	}
2672 }
2673 
2674 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2675 				struct stripe_head_state *s, int disks)
2676 {
2677 	struct r5dev *dev = NULL;
2678 
2679 	set_bit(STRIPE_HANDLE, &sh->state);
2680 
2681 	switch (sh->check_state) {
2682 	case check_state_idle:
2683 		/* start a new check operation if there are no failures */
2684 		if (s->failed == 0) {
2685 			BUG_ON(s->uptodate != disks);
2686 			sh->check_state = check_state_run;
2687 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2688 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2689 			s->uptodate--;
2690 			break;
2691 		}
2692 		dev = &sh->dev[s->failed_num];
2693 		/* fall through */
2694 	case check_state_compute_result:
2695 		sh->check_state = check_state_idle;
2696 		if (!dev)
2697 			dev = &sh->dev[sh->pd_idx];
2698 
2699 		/* check that a write has not made the stripe insync */
2700 		if (test_bit(STRIPE_INSYNC, &sh->state))
2701 			break;
2702 
2703 		/* either failed parity check, or recovery is happening */
2704 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2705 		BUG_ON(s->uptodate != disks);
2706 
2707 		set_bit(R5_LOCKED, &dev->flags);
2708 		s->locked++;
2709 		set_bit(R5_Wantwrite, &dev->flags);
2710 
2711 		clear_bit(STRIPE_DEGRADED, &sh->state);
2712 		set_bit(STRIPE_INSYNC, &sh->state);
2713 		break;
2714 	case check_state_run:
2715 		break; /* we will be called again upon completion */
2716 	case check_state_check_result:
2717 		sh->check_state = check_state_idle;
2718 
2719 		/* if a failure occurred during the check operation, leave
2720 		 * STRIPE_INSYNC not set and let the stripe be handled again
2721 		 */
2722 		if (s->failed)
2723 			break;
2724 
2725 		/* handle a successful check operation, if parity is correct
2726 		 * we are done.  Otherwise update the mismatch count and repair
2727 		 * parity if !MD_RECOVERY_CHECK
2728 		 */
2729 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2730 			/* parity is correct (on disc,
2731 			 * not in buffer any more)
2732 			 */
2733 			set_bit(STRIPE_INSYNC, &sh->state);
2734 		else {
2735 			conf->mddev->resync_mismatches += STRIPE_SECTORS;
2736 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2737 				/* don't try to repair!! */
2738 				set_bit(STRIPE_INSYNC, &sh->state);
2739 			else {
2740 				sh->check_state = check_state_compute_run;
2741 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2742 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2743 				set_bit(R5_Wantcompute,
2744 					&sh->dev[sh->pd_idx].flags);
2745 				sh->ops.target = sh->pd_idx;
2746 				sh->ops.target2 = -1;
2747 				s->uptodate++;
2748 			}
2749 		}
2750 		break;
2751 	case check_state_compute_run:
2752 		break;
2753 	default:
2754 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2755 		       __func__, sh->check_state,
2756 		       (unsigned long long) sh->sector);
2757 		BUG();
2758 	}
2759 }
2760 
2761 
2762 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2763 				  struct stripe_head_state *s,
2764 				  struct r6_state *r6s, int disks)
2765 {
2766 	int pd_idx = sh->pd_idx;
2767 	int qd_idx = sh->qd_idx;
2768 	struct r5dev *dev;
2769 
2770 	set_bit(STRIPE_HANDLE, &sh->state);
2771 
2772 	BUG_ON(s->failed > 2);
2773 
2774 	/* Want to check and possibly repair P and Q.
2775 	 * However there could be one 'failed' device, in which
2776 	 * case we can only check one of them, possibly using the
2777 	 * other to generate missing data
2778 	 */
2779 
2780 	switch (sh->check_state) {
2781 	case check_state_idle:
2782 		/* start a new check operation if there are < 2 failures */
2783 		if (s->failed == r6s->q_failed) {
2784 			/* The only possible failed device holds Q, so it
2785 			 * makes sense to check P (If anything else were failed,
2786 			 * we would have used P to recreate it).
2787 			 */
2788 			sh->check_state = check_state_run;
2789 		}
2790 		if (!r6s->q_failed && s->failed < 2) {
2791 			/* Q is not failed, and we didn't use it to generate
2792 			 * anything, so it makes sense to check it
2793 			 */
2794 			if (sh->check_state == check_state_run)
2795 				sh->check_state = check_state_run_pq;
2796 			else
2797 				sh->check_state = check_state_run_q;
2798 		}
2799 
2800 		/* discard potentially stale zero_sum_result */
2801 		sh->ops.zero_sum_result = 0;
2802 
2803 		if (sh->check_state == check_state_run) {
2804 			/* async_xor_zero_sum destroys the contents of P */
2805 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2806 			s->uptodate--;
2807 		}
2808 		if (sh->check_state >= check_state_run &&
2809 		    sh->check_state <= check_state_run_pq) {
2810 			/* async_syndrome_zero_sum preserves P and Q, so
2811 			 * no need to mark them !uptodate here
2812 			 */
2813 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2814 			break;
2815 		}
2816 
2817 		/* we have 2-disk failure */
2818 		BUG_ON(s->failed != 2);
2819 		/* fall through */
2820 	case check_state_compute_result:
2821 		sh->check_state = check_state_idle;
2822 
2823 		/* check that a write has not made the stripe insync */
2824 		if (test_bit(STRIPE_INSYNC, &sh->state))
2825 			break;
2826 
2827 		/* now write out any block on a failed drive,
2828 		 * or P or Q if they were recomputed
2829 		 */
2830 		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2831 		if (s->failed == 2) {
2832 			dev = &sh->dev[r6s->failed_num[1]];
2833 			s->locked++;
2834 			set_bit(R5_LOCKED, &dev->flags);
2835 			set_bit(R5_Wantwrite, &dev->flags);
2836 		}
2837 		if (s->failed >= 1) {
2838 			dev = &sh->dev[r6s->failed_num[0]];
2839 			s->locked++;
2840 			set_bit(R5_LOCKED, &dev->flags);
2841 			set_bit(R5_Wantwrite, &dev->flags);
2842 		}
2843 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2844 			dev = &sh->dev[pd_idx];
2845 			s->locked++;
2846 			set_bit(R5_LOCKED, &dev->flags);
2847 			set_bit(R5_Wantwrite, &dev->flags);
2848 		}
2849 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2850 			dev = &sh->dev[qd_idx];
2851 			s->locked++;
2852 			set_bit(R5_LOCKED, &dev->flags);
2853 			set_bit(R5_Wantwrite, &dev->flags);
2854 		}
2855 		clear_bit(STRIPE_DEGRADED, &sh->state);
2856 
2857 		set_bit(STRIPE_INSYNC, &sh->state);
2858 		break;
2859 	case check_state_run:
2860 	case check_state_run_q:
2861 	case check_state_run_pq:
2862 		break; /* we will be called again upon completion */
2863 	case check_state_check_result:
2864 		sh->check_state = check_state_idle;
2865 
2866 		/* handle a successful check operation, if parity is correct
2867 		 * we are done.  Otherwise update the mismatch count and repair
2868 		 * parity if !MD_RECOVERY_CHECK
2869 		 */
2870 		if (sh->ops.zero_sum_result == 0) {
2871 			/* both parities are correct */
2872 			if (!s->failed)
2873 				set_bit(STRIPE_INSYNC, &sh->state);
2874 			else {
2875 				/* in contrast to the raid5 case we can validate
2876 				 * parity, but still have a failure to write
2877 				 * back
2878 				 */
2879 				sh->check_state = check_state_compute_result;
2880 				/* Returning at this point means that we may go
2881 				 * off and bring p and/or q uptodate again so
2882 				 * we make sure to check zero_sum_result again
2883 				 * to verify if p or q need writeback
2884 				 */
2885 			}
2886 		} else {
2887 			conf->mddev->resync_mismatches += STRIPE_SECTORS;
2888 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2889 				/* don't try to repair!! */
2890 				set_bit(STRIPE_INSYNC, &sh->state);
2891 			else {
2892 				int *target = &sh->ops.target;
2893 
2894 				sh->ops.target = -1;
2895 				sh->ops.target2 = -1;
2896 				sh->check_state = check_state_compute_run;
2897 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2898 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2899 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2900 					set_bit(R5_Wantcompute,
2901 						&sh->dev[pd_idx].flags);
2902 					*target = pd_idx;
2903 					target = &sh->ops.target2;
2904 					s->uptodate++;
2905 				}
2906 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2907 					set_bit(R5_Wantcompute,
2908 						&sh->dev[qd_idx].flags);
2909 					*target = qd_idx;
2910 					s->uptodate++;
2911 				}
2912 			}
2913 		}
2914 		break;
2915 	case check_state_compute_run:
2916 		break;
2917 	default:
2918 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2919 		       __func__, sh->check_state,
2920 		       (unsigned long long) sh->sector);
2921 		BUG();
2922 	}
2923 }
2924 
2925 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2926 				struct r6_state *r6s)
2927 {
2928 	int i;
2929 
2930 	/* We have read all the blocks in this stripe and now we need to
2931 	 * copy some of them into a target stripe for expand.
2932 	 */
2933 	struct dma_async_tx_descriptor *tx = NULL;
2934 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2935 	for (i = 0; i < sh->disks; i++)
2936 		if (i != sh->pd_idx && i != sh->qd_idx) {
2937 			int dd_idx, j;
2938 			struct stripe_head *sh2;
2939 			struct async_submit_ctl submit;
2940 
2941 			sector_t bn = compute_blocknr(sh, i, 1);
2942 			sector_t s = raid5_compute_sector(conf, bn, 0,
2943 							  &dd_idx, NULL);
2944 			sh2 = get_active_stripe(conf, s, 0, 1, 1);
2945 			if (sh2 == NULL)
2946 				/* so far only the early blocks of this stripe
2947 				 * have been requested.  When later blocks
2948 				 * get requested, we will try again
2949 				 */
2950 				continue;
2951 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2952 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2953 				/* must have already done this block */
2954 				release_stripe(sh2);
2955 				continue;
2956 			}
2957 
2958 			/* place all the copies on one channel */
2959 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2960 			tx = async_memcpy(sh2->dev[dd_idx].page,
2961 					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
2962 					  &submit);
2963 
2964 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2965 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2966 			for (j = 0; j < conf->raid_disks; j++)
2967 				if (j != sh2->pd_idx &&
2968 				    (!r6s || j != sh2->qd_idx) &&
2969 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
2970 					break;
2971 			if (j == conf->raid_disks) {
2972 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
2973 				set_bit(STRIPE_HANDLE, &sh2->state);
2974 			}
2975 			release_stripe(sh2);
2976 
2977 		}
2978 	/* done submitting copies, wait for them to complete */
2979 	if (tx) {
2980 		async_tx_ack(tx);
2981 		dma_wait_for_async_tx(tx);
2982 	}
2983 }
2984 
2985 
2986 /*
2987  * handle_stripe - do things to a stripe.
2988  *
2989  * We lock the stripe and then examine the state of various bits
2990  * to see what needs to be done.
2991  * Possible results:
2992  *    return some read request which now have data
2993  *    return some write requests which are safely on disc
2994  *    schedule a read on some buffers
2995  *    schedule a write of some buffers
2996  *    return confirmation of parity correctness
2997  *
2998  * buffers are taken off read_list or write_list, and bh_cache buffers
2999  * get BH_Lock set before the stripe lock is released.
3000  *
3001  */
3002 
3003 static void handle_stripe5(struct stripe_head *sh)
3004 {
3005 	raid5_conf_t *conf = sh->raid_conf;
3006 	int disks = sh->disks, i;
3007 	struct bio *return_bi = NULL;
3008 	struct stripe_head_state s;
3009 	struct r5dev *dev;
3010 	mdk_rdev_t *blocked_rdev = NULL;
3011 	int prexor;
3012 	int dec_preread_active = 0;
3013 
3014 	memset(&s, 0, sizeof(s));
3015 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
3016 		 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
3017 		 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
3018 		 sh->reconstruct_state);
3019 
3020 	spin_lock(&sh->lock);
3021 	clear_bit(STRIPE_HANDLE, &sh->state);
3022 	clear_bit(STRIPE_DELAYED, &sh->state);
3023 
3024 	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3025 	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3026 	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3027 
3028 	/* Now to look around and see what can be done */
3029 	rcu_read_lock();
3030 	for (i=disks; i--; ) {
3031 		mdk_rdev_t *rdev;
3032 
3033 		dev = &sh->dev[i];
3034 
3035 		pr_debug("check %d: state 0x%lx toread %p read %p write %p "
3036 			"written %p\n",	i, dev->flags, dev->toread, dev->read,
3037 			dev->towrite, dev->written);
3038 
3039 		/* maybe we can request a biofill operation
3040 		 *
3041 		 * new wantfill requests are only permitted while
3042 		 * ops_complete_biofill is guaranteed to be inactive
3043 		 */
3044 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3045 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3046 			set_bit(R5_Wantfill, &dev->flags);
3047 
3048 		/* now count some things */
3049 		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3050 		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3051 		if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
3052 
3053 		if (test_bit(R5_Wantfill, &dev->flags))
3054 			s.to_fill++;
3055 		else if (dev->toread)
3056 			s.to_read++;
3057 		if (dev->towrite) {
3058 			s.to_write++;
3059 			if (!test_bit(R5_OVERWRITE, &dev->flags))
3060 				s.non_overwrite++;
3061 		}
3062 		if (dev->written)
3063 			s.written++;
3064 		rdev = rcu_dereference(conf->disks[i].rdev);
3065 		if (blocked_rdev == NULL &&
3066 		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3067 			blocked_rdev = rdev;
3068 			atomic_inc(&rdev->nr_pending);
3069 		}
3070 		clear_bit(R5_Insync, &dev->flags);
3071 		if (!rdev)
3072 			/* Not in-sync */;
3073 		else if (test_bit(In_sync, &rdev->flags))
3074 			set_bit(R5_Insync, &dev->flags);
3075 		else {
3076 			/* could be in-sync depending on recovery/reshape status */
3077 			if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3078 				set_bit(R5_Insync, &dev->flags);
3079 		}
3080 		if (!test_bit(R5_Insync, &dev->flags)) {
3081 			/* The ReadError flag will just be confusing now */
3082 			clear_bit(R5_ReadError, &dev->flags);
3083 			clear_bit(R5_ReWrite, &dev->flags);
3084 		}
3085 		if (test_bit(R5_ReadError, &dev->flags))
3086 			clear_bit(R5_Insync, &dev->flags);
3087 		if (!test_bit(R5_Insync, &dev->flags)) {
3088 			s.failed++;
3089 			s.failed_num = i;
3090 		}
3091 	}
3092 	rcu_read_unlock();
3093 
3094 	if (unlikely(blocked_rdev)) {
3095 		if (s.syncing || s.expanding || s.expanded ||
3096 		    s.to_write || s.written) {
3097 			set_bit(STRIPE_HANDLE, &sh->state);
3098 			goto unlock;
3099 		}
3100 		/* There is nothing for the blocked_rdev to block */
3101 		rdev_dec_pending(blocked_rdev, conf->mddev);
3102 		blocked_rdev = NULL;
3103 	}
3104 
3105 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3106 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3107 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3108 	}
3109 
3110 	pr_debug("locked=%d uptodate=%d to_read=%d"
3111 		" to_write=%d failed=%d failed_num=%d\n",
3112 		s.locked, s.uptodate, s.to_read, s.to_write,
3113 		s.failed, s.failed_num);
3114 	/* check if the array has lost two devices and, if so, some requests might
3115 	 * need to be failed
3116 	 */
3117 	if (s.failed > 1 && s.to_read+s.to_write+s.written)
3118 		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3119 	if (s.failed > 1 && s.syncing) {
3120 		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3121 		clear_bit(STRIPE_SYNCING, &sh->state);
3122 		s.syncing = 0;
3123 	}
3124 
3125 	/* might be able to return some write requests if the parity block
3126 	 * is safe, or on a failed drive
3127 	 */
3128 	dev = &sh->dev[sh->pd_idx];
3129 	if ( s.written &&
3130 	     ((test_bit(R5_Insync, &dev->flags) &&
3131 	       !test_bit(R5_LOCKED, &dev->flags) &&
3132 	       test_bit(R5_UPTODATE, &dev->flags)) ||
3133 	       (s.failed == 1 && s.failed_num == sh->pd_idx)))
3134 		handle_stripe_clean_event(conf, sh, disks, &return_bi);
3135 
3136 	/* Now we might consider reading some blocks, either to check/generate
3137 	 * parity, or to satisfy requests
3138 	 * or to load a block that is being partially written.
3139 	 */
3140 	if (s.to_read || s.non_overwrite ||
3141 	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3142 		handle_stripe_fill5(sh, &s, disks);
3143 
3144 	/* Now we check to see if any write operations have recently
3145 	 * completed
3146 	 */
3147 	prexor = 0;
3148 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3149 		prexor = 1;
3150 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
3151 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3152 		sh->reconstruct_state = reconstruct_state_idle;
3153 
3154 		/* All the 'written' buffers and the parity block are ready to
3155 		 * be written back to disk
3156 		 */
3157 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3158 		for (i = disks; i--; ) {
3159 			dev = &sh->dev[i];
3160 			if (test_bit(R5_LOCKED, &dev->flags) &&
3161 				(i == sh->pd_idx || dev->written)) {
3162 				pr_debug("Writing block %d\n", i);
3163 				set_bit(R5_Wantwrite, &dev->flags);
3164 				if (prexor)
3165 					continue;
3166 				if (!test_bit(R5_Insync, &dev->flags) ||
3167 				    (i == sh->pd_idx && s.failed == 0))
3168 					set_bit(STRIPE_INSYNC, &sh->state);
3169 			}
3170 		}
3171 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3172 			dec_preread_active = 1;
3173 	}
3174 
3175 	/* Now to consider new write requests and what else, if anything
3176 	 * should be read.  We do not handle new writes when:
3177 	 * 1/ A 'write' operation (copy+xor) is already in flight.
3178 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
3179 	 *    block.
3180 	 */
3181 	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3182 		handle_stripe_dirtying5(conf, sh, &s, disks);
3183 
3184 	/* maybe we need to check and possibly fix the parity for this stripe
3185 	 * Any reads will already have been scheduled, so we just see if enough
3186 	 * data is available.  The parity check is held off while parity
3187 	 * dependent operations are in flight.
3188 	 */
3189 	if (sh->check_state ||
3190 	    (s.syncing && s.locked == 0 &&
3191 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3192 	     !test_bit(STRIPE_INSYNC, &sh->state)))
3193 		handle_parity_checks5(conf, sh, &s, disks);
3194 
3195 	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3196 		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3197 		clear_bit(STRIPE_SYNCING, &sh->state);
3198 	}
3199 
3200 	/* If the failed drive is just a ReadError, then we might need to progress
3201 	 * the repair/check process
3202 	 */
3203 	if (s.failed == 1 && !conf->mddev->ro &&
3204 	    test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
3205 	    && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
3206 	    && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
3207 		) {
3208 		dev = &sh->dev[s.failed_num];
3209 		if (!test_bit(R5_ReWrite, &dev->flags)) {
3210 			set_bit(R5_Wantwrite, &dev->flags);
3211 			set_bit(R5_ReWrite, &dev->flags);
3212 			set_bit(R5_LOCKED, &dev->flags);
3213 			s.locked++;
3214 		} else {
3215 			/* let's read it back */
3216 			set_bit(R5_Wantread, &dev->flags);
3217 			set_bit(R5_LOCKED, &dev->flags);
3218 			s.locked++;
3219 		}
3220 	}
3221 
3222 	/* Finish reconstruct operations initiated by the expansion process */
3223 	if (sh->reconstruct_state == reconstruct_state_result) {
3224 		struct stripe_head *sh2
3225 			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3226 		if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3227 			/* sh cannot be written until sh2 has been read.
3228 			 * so arrange for sh to be delayed a little
3229 			 */
3230 			set_bit(STRIPE_DELAYED, &sh->state);
3231 			set_bit(STRIPE_HANDLE, &sh->state);
3232 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3233 					      &sh2->state))
3234 				atomic_inc(&conf->preread_active_stripes);
3235 			release_stripe(sh2);
3236 			goto unlock;
3237 		}
3238 		if (sh2)
3239 			release_stripe(sh2);
3240 
3241 		sh->reconstruct_state = reconstruct_state_idle;
3242 		clear_bit(STRIPE_EXPANDING, &sh->state);
3243 		for (i = conf->raid_disks; i--; ) {
3244 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
3245 			set_bit(R5_LOCKED, &sh->dev[i].flags);
3246 			s.locked++;
3247 		}
3248 	}
3249 
3250 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3251 	    !sh->reconstruct_state) {
3252 		/* Need to write out all blocks after computing parity */
3253 		sh->disks = conf->raid_disks;
3254 		stripe_set_idx(sh->sector, conf, 0, sh);
3255 		schedule_reconstruction(sh, &s, 1, 1);
3256 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3257 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3258 		atomic_dec(&conf->reshape_stripes);
3259 		wake_up(&conf->wait_for_overlap);
3260 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3261 	}
3262 
3263 	if (s.expanding && s.locked == 0 &&
3264 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3265 		handle_stripe_expansion(conf, sh, NULL);
3266 
3267  unlock:
3268 	spin_unlock(&sh->lock);
3269 
3270 	/* wait for this device to become unblocked */
3271 	if (unlikely(blocked_rdev))
3272 		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3273 
3274 	if (s.ops_request)
3275 		raid_run_ops(sh, s.ops_request);
3276 
3277 	ops_run_io(sh, &s);
3278 
3279 	if (dec_preread_active) {
3280 		/* We delay this until after ops_run_io so that if make_request
3281 		 * is waiting on a barrier, it won't continue until the writes
3282 		 * have actually been submitted.
3283 		 */
3284 		atomic_dec(&conf->preread_active_stripes);
3285 		if (atomic_read(&conf->preread_active_stripes) <
3286 		    IO_THRESHOLD)
3287 			md_wakeup_thread(conf->mddev->thread);
3288 	}
3289 	return_io(return_bi);
3290 }
3291 
3292 static void handle_stripe6(struct stripe_head *sh)
3293 {
3294 	raid5_conf_t *conf = sh->raid_conf;
3295 	int disks = sh->disks;
3296 	struct bio *return_bi = NULL;
3297 	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3298 	struct stripe_head_state s;
3299 	struct r6_state r6s;
3300 	struct r5dev *dev, *pdev, *qdev;
3301 	mdk_rdev_t *blocked_rdev = NULL;
3302 	int dec_preread_active = 0;
3303 
3304 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3305 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3306 	       (unsigned long long)sh->sector, sh->state,
3307 	       atomic_read(&sh->count), pd_idx, qd_idx,
3308 	       sh->check_state, sh->reconstruct_state);
3309 	memset(&s, 0, sizeof(s));
3310 
3311 	spin_lock(&sh->lock);
3312 	clear_bit(STRIPE_HANDLE, &sh->state);
3313 	clear_bit(STRIPE_DELAYED, &sh->state);
3314 
3315 	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3316 	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3317 	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3318 	/* Now to look around and see what can be done */
3319 
3320 	rcu_read_lock();
3321 	for (i=disks; i--; ) {
3322 		mdk_rdev_t *rdev;
3323 		dev = &sh->dev[i];
3324 
3325 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3326 			i, dev->flags, dev->toread, dev->towrite, dev->written);
3327 		/* maybe we can reply to a read
3328 		 *
3329 		 * new wantfill requests are only permitted while
3330 		 * ops_complete_biofill is guaranteed to be inactive
3331 		 */
3332 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3333 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3334 			set_bit(R5_Wantfill, &dev->flags);
3335 
3336 		/* now count some things */
3337 		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3338 		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3339 		if (test_bit(R5_Wantcompute, &dev->flags)) {
3340 			s.compute++;
3341 			BUG_ON(s.compute > 2);
3342 		}
3343 
3344 		if (test_bit(R5_Wantfill, &dev->flags)) {
3345 			s.to_fill++;
3346 		} else if (dev->toread)
3347 			s.to_read++;
3348 		if (dev->towrite) {
3349 			s.to_write++;
3350 			if (!test_bit(R5_OVERWRITE, &dev->flags))
3351 				s.non_overwrite++;
3352 		}
3353 		if (dev->written)
3354 			s.written++;
3355 		rdev = rcu_dereference(conf->disks[i].rdev);
3356 		if (blocked_rdev == NULL &&
3357 		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3358 			blocked_rdev = rdev;
3359 			atomic_inc(&rdev->nr_pending);
3360 		}
3361 		clear_bit(R5_Insync, &dev->flags);
3362 		if (!rdev)
3363 			/* Not in-sync */;
3364 		else if (test_bit(In_sync, &rdev->flags))
3365 			set_bit(R5_Insync, &dev->flags);
3366 		else {
3367 			/* in sync if before recovery_offset */
3368 			if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3369 				set_bit(R5_Insync, &dev->flags);
3370 		}
3371 		if (!test_bit(R5_Insync, &dev->flags)) {
3372 			/* The ReadError flag will just be confusing now */
3373 			clear_bit(R5_ReadError, &dev->flags);
3374 			clear_bit(R5_ReWrite, &dev->flags);
3375 		}
3376 		if (test_bit(R5_ReadError, &dev->flags))
3377 			clear_bit(R5_Insync, &dev->flags);
3378 		if (!test_bit(R5_Insync, &dev->flags)) {
3379 			if (s.failed < 2)
3380 				r6s.failed_num[s.failed] = i;
3381 			s.failed++;
3382 		}
3383 	}
3384 	rcu_read_unlock();
3385 
3386 	if (unlikely(blocked_rdev)) {
3387 		if (s.syncing || s.expanding || s.expanded ||
3388 		    s.to_write || s.written) {
3389 			set_bit(STRIPE_HANDLE, &sh->state);
3390 			goto unlock;
3391 		}
3392 		/* There is nothing for the blocked_rdev to block */
3393 		rdev_dec_pending(blocked_rdev, conf->mddev);
3394 		blocked_rdev = NULL;
3395 	}
3396 
3397 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3398 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3399 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3400 	}
3401 
3402 	pr_debug("locked=%d uptodate=%d to_read=%d"
3403 	       " to_write=%d failed=%d failed_num=%d,%d\n",
3404 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3405 	       r6s.failed_num[0], r6s.failed_num[1]);
3406 	/* check if the array has lost >2 devices and, if so, some requests
3407 	 * might need to be failed
3408 	 */
3409 	if (s.failed > 2 && s.to_read+s.to_write+s.written)
3410 		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3411 	if (s.failed > 2 && s.syncing) {
3412 		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3413 		clear_bit(STRIPE_SYNCING, &sh->state);
3414 		s.syncing = 0;
3415 	}
3416 
3417 	/*
3418 	 * might be able to return some write requests if the parity blocks
3419 	 * are safe, or on a failed drive
3420 	 */
3421 	pdev = &sh->dev[pd_idx];
3422 	r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3423 		|| (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3424 	qdev = &sh->dev[qd_idx];
3425 	r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
3426 		|| (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3427 
3428 	if ( s.written &&
3429 	     ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3430 			     && !test_bit(R5_LOCKED, &pdev->flags)
3431 			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3432 	     ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3433 			     && !test_bit(R5_LOCKED, &qdev->flags)
3434 			     && test_bit(R5_UPTODATE, &qdev->flags)))))
3435 		handle_stripe_clean_event(conf, sh, disks, &return_bi);
3436 
3437 	/* Now we might consider reading some blocks, either to check/generate
3438 	 * parity, or to satisfy requests
3439 	 * or to load a block that is being partially written.
3440 	 */
3441 	if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3442 	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3443 		handle_stripe_fill6(sh, &s, &r6s, disks);
3444 
3445 	/* Now we check to see if any write operations have recently
3446 	 * completed
3447 	 */
3448 	if (sh->reconstruct_state == reconstruct_state_drain_result) {
3449 
3450 		sh->reconstruct_state = reconstruct_state_idle;
3451 		/* All the 'written' buffers and the parity blocks are ready to
3452 		 * be written back to disk
3453 		 */
3454 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3455 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags));
3456 		for (i = disks; i--; ) {
3457 			dev = &sh->dev[i];
3458 			if (test_bit(R5_LOCKED, &dev->flags) &&
3459 			    (i == sh->pd_idx || i == qd_idx ||
3460 			     dev->written)) {
3461 				pr_debug("Writing block %d\n", i);
3462 				BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3463 				set_bit(R5_Wantwrite, &dev->flags);
3464 				if (!test_bit(R5_Insync, &dev->flags) ||
3465 				    ((i == sh->pd_idx || i == qd_idx) &&
3466 				      s.failed == 0))
3467 					set_bit(STRIPE_INSYNC, &sh->state);
3468 			}
3469 		}
3470 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3471 			dec_preread_active = 1;
3472 	}
3473 
3474 	/* Now to consider new write requests and what else, if anything
3475 	 * should be read.  We do not handle new writes when:
3476 	 * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
3477 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
3478 	 *    block.
3479 	 */
3480 	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3481 		handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3482 
3483 	/* maybe we need to check and possibly fix the parity for this stripe
3484 	 * Any reads will already have been scheduled, so we just see if enough
3485 	 * data is available.  The parity check is held off while parity
3486 	 * dependent operations are in flight.
3487 	 */
3488 	if (sh->check_state ||
3489 	    (s.syncing && s.locked == 0 &&
3490 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3491 	     !test_bit(STRIPE_INSYNC, &sh->state)))
3492 		handle_parity_checks6(conf, sh, &s, &r6s, disks);
3493 
3494 	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3495 		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3496 		clear_bit(STRIPE_SYNCING, &sh->state);
3497 	}
3498 
3499 	/* If the failed drives are just a ReadError, then we might need
3500 	 * to progress the repair/check process
3501 	 */
3502 	if (s.failed <= 2 && !conf->mddev->ro)
3503 		for (i = 0; i < s.failed; i++) {
3504 			dev = &sh->dev[r6s.failed_num[i]];
3505 			if (test_bit(R5_ReadError, &dev->flags)
3506 			    && !test_bit(R5_LOCKED, &dev->flags)
3507 			    && test_bit(R5_UPTODATE, &dev->flags)
3508 				) {
3509 				if (!test_bit(R5_ReWrite, &dev->flags)) {
3510 					set_bit(R5_Wantwrite, &dev->flags);
3511 					set_bit(R5_ReWrite, &dev->flags);
3512 					set_bit(R5_LOCKED, &dev->flags);
3513 					s.locked++;
3514 				} else {
3515 					/* let's read it back */
3516 					set_bit(R5_Wantread, &dev->flags);
3517 					set_bit(R5_LOCKED, &dev->flags);
3518 					s.locked++;
3519 				}
3520 			}
3521 		}
3522 
3523 	/* Finish reconstruct operations initiated by the expansion process */
3524 	if (sh->reconstruct_state == reconstruct_state_result) {
3525 		sh->reconstruct_state = reconstruct_state_idle;
3526 		clear_bit(STRIPE_EXPANDING, &sh->state);
3527 		for (i = conf->raid_disks; i--; ) {
3528 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
3529 			set_bit(R5_LOCKED, &sh->dev[i].flags);
3530 			s.locked++;
3531 		}
3532 	}
3533 
3534 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3535 	    !sh->reconstruct_state) {
3536 		struct stripe_head *sh2
3537 			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3538 		if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3539 			/* sh cannot be written until sh2 has been read.
3540 			 * so arrange for sh to be delayed a little
3541 			 */
3542 			set_bit(STRIPE_DELAYED, &sh->state);
3543 			set_bit(STRIPE_HANDLE, &sh->state);
3544 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3545 					      &sh2->state))
3546 				atomic_inc(&conf->preread_active_stripes);
3547 			release_stripe(sh2);
3548 			goto unlock;
3549 		}
3550 		if (sh2)
3551 			release_stripe(sh2);
3552 
3553 		/* Need to write out all blocks after computing P&Q */
3554 		sh->disks = conf->raid_disks;
3555 		stripe_set_idx(sh->sector, conf, 0, sh);
3556 		schedule_reconstruction(sh, &s, 1, 1);
3557 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3558 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3559 		atomic_dec(&conf->reshape_stripes);
3560 		wake_up(&conf->wait_for_overlap);
3561 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3562 	}
3563 
3564 	if (s.expanding && s.locked == 0 &&
3565 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3566 		handle_stripe_expansion(conf, sh, &r6s);
3567 
3568  unlock:
3569 	spin_unlock(&sh->lock);
3570 
3571 	/* wait for this device to become unblocked */
3572 	if (unlikely(blocked_rdev))
3573 		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3574 
3575 	if (s.ops_request)
3576 		raid_run_ops(sh, s.ops_request);
3577 
3578 	ops_run_io(sh, &s);
3579 
3580 
3581 	if (dec_preread_active) {
3582 		/* We delay this until after ops_run_io so that if make_request
3583 		 * is waiting on a barrier, it won't continue until the writes
3584 		 * have actually been submitted.
3585 		 */
3586 		atomic_dec(&conf->preread_active_stripes);
3587 		if (atomic_read(&conf->preread_active_stripes) <
3588 		    IO_THRESHOLD)
3589 			md_wakeup_thread(conf->mddev->thread);
3590 	}
3591 
3592 	return_io(return_bi);
3593 }
3594 
3595 static void handle_stripe(struct stripe_head *sh)
3596 {
3597 	if (sh->raid_conf->level == 6)
3598 		handle_stripe6(sh);
3599 	else
3600 		handle_stripe5(sh);
3601 }
3602 
3603 static void raid5_activate_delayed(raid5_conf_t *conf)
3604 {
3605 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3606 		while (!list_empty(&conf->delayed_list)) {
3607 			struct list_head *l = conf->delayed_list.next;
3608 			struct stripe_head *sh;
3609 			sh = list_entry(l, struct stripe_head, lru);
3610 			list_del_init(l);
3611 			clear_bit(STRIPE_DELAYED, &sh->state);
3612 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3613 				atomic_inc(&conf->preread_active_stripes);
3614 			list_add_tail(&sh->lru, &conf->hold_list);
3615 		}
3616 	} else
3617 		blk_plug_device(conf->mddev->queue);
3618 }
3619 
3620 static void activate_bit_delay(raid5_conf_t *conf)
3621 {
3622 	/* device_lock is held */
3623 	struct list_head head;
3624 	list_add(&head, &conf->bitmap_list);
3625 	list_del_init(&conf->bitmap_list);
3626 	while (!list_empty(&head)) {
3627 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3628 		list_del_init(&sh->lru);
3629 		atomic_inc(&sh->count);
3630 		__release_stripe(conf, sh);
3631 	}
3632 }
3633 
3634 static void unplug_slaves(mddev_t *mddev)
3635 {
3636 	raid5_conf_t *conf = mddev->private;
3637 	int i;
3638 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
3639 
3640 	rcu_read_lock();
3641 	for (i = 0; i < devs; i++) {
3642 		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3643 		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3644 			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3645 
3646 			atomic_inc(&rdev->nr_pending);
3647 			rcu_read_unlock();
3648 
3649 			blk_unplug(r_queue);
3650 
3651 			rdev_dec_pending(rdev, mddev);
3652 			rcu_read_lock();
3653 		}
3654 	}
3655 	rcu_read_unlock();
3656 }
3657 
3658 static void raid5_unplug_device(struct request_queue *q)
3659 {
3660 	mddev_t *mddev = q->queuedata;
3661 	raid5_conf_t *conf = mddev->private;
3662 	unsigned long flags;
3663 
3664 	spin_lock_irqsave(&conf->device_lock, flags);
3665 
3666 	if (blk_remove_plug(q)) {
3667 		conf->seq_flush++;
3668 		raid5_activate_delayed(conf);
3669 	}
3670 	md_wakeup_thread(mddev->thread);
3671 
3672 	spin_unlock_irqrestore(&conf->device_lock, flags);
3673 
3674 	unplug_slaves(mddev);
3675 }
3676 
3677 static int raid5_congested(void *data, int bits)
3678 {
3679 	mddev_t *mddev = data;
3680 	raid5_conf_t *conf = mddev->private;
3681 
3682 	/* No difference between reads and writes.  Just check
3683 	 * how busy the stripe_cache is
3684 	 */
3685 
3686 	if (mddev_congested(mddev, bits))
3687 		return 1;
3688 	if (conf->inactive_blocked)
3689 		return 1;
3690 	if (conf->quiesce)
3691 		return 1;
3692 	if (list_empty_careful(&conf->inactive_list))
3693 		return 1;
3694 
3695 	return 0;
3696 }
3697 
3698 /* We want read requests to align with chunks where possible,
3699  * but write requests don't need to.
3700  */
3701 static int raid5_mergeable_bvec(struct request_queue *q,
3702 				struct bvec_merge_data *bvm,
3703 				struct bio_vec *biovec)
3704 {
3705 	mddev_t *mddev = q->queuedata;
3706 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3707 	int max;
3708 	unsigned int chunk_sectors = mddev->chunk_sectors;
3709 	unsigned int bio_sectors = bvm->bi_size >> 9;
3710 
3711 	if ((bvm->bi_rw & 1) == WRITE)
3712 		return biovec->bv_len; /* always allow writes to be mergeable */
3713 
3714 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3715 		chunk_sectors = mddev->new_chunk_sectors;
3716 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3717 	if (max < 0) max = 0;
3718 	if (max <= biovec->bv_len && bio_sectors == 0)
3719 		return biovec->bv_len;
3720 	else
3721 		return max;
3722 }
3723 
3724 
3725 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3726 {
3727 	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3728 	unsigned int chunk_sectors = mddev->chunk_sectors;
3729 	unsigned int bio_sectors = bio->bi_size >> 9;
3730 
3731 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3732 		chunk_sectors = mddev->new_chunk_sectors;
3733 	return  chunk_sectors >=
3734 		((sector & (chunk_sectors - 1)) + bio_sectors);
3735 }
3736 
3737 /*
3738  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3739  *  later sampled by raid5d.
3740  */
3741 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3742 {
3743 	unsigned long flags;
3744 
3745 	spin_lock_irqsave(&conf->device_lock, flags);
3746 
3747 	bi->bi_next = conf->retry_read_aligned_list;
3748 	conf->retry_read_aligned_list = bi;
3749 
3750 	spin_unlock_irqrestore(&conf->device_lock, flags);
3751 	md_wakeup_thread(conf->mddev->thread);
3752 }
3753 
3754 
3755 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3756 {
3757 	struct bio *bi;
3758 
3759 	bi = conf->retry_read_aligned;
3760 	if (bi) {
3761 		conf->retry_read_aligned = NULL;
3762 		return bi;
3763 	}
3764 	bi = conf->retry_read_aligned_list;
3765 	if(bi) {
3766 		conf->retry_read_aligned_list = bi->bi_next;
3767 		bi->bi_next = NULL;
3768 		/*
3769 		 * this sets the active strip count to 1 and the processed
3770 		 * strip count to zero (upper 8 bits)
3771 		 */
3772 		bi->bi_phys_segments = 1; /* biased count of active stripes */
3773 	}
3774 
3775 	return bi;
3776 }
3777 
3778 
3779 /*
3780  *  The "raid5_align_endio" should check if the read succeeded and if it
3781  *  did, call bio_endio on the original bio (having bio_put the new bio
3782  *  first).
3783  *  If the read failed..
3784  */
3785 static void raid5_align_endio(struct bio *bi, int error)
3786 {
3787 	struct bio* raid_bi  = bi->bi_private;
3788 	mddev_t *mddev;
3789 	raid5_conf_t *conf;
3790 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3791 	mdk_rdev_t *rdev;
3792 
3793 	bio_put(bi);
3794 
3795 	rdev = (void*)raid_bi->bi_next;
3796 	raid_bi->bi_next = NULL;
3797 	mddev = rdev->mddev;
3798 	conf = mddev->private;
3799 
3800 	rdev_dec_pending(rdev, conf->mddev);
3801 
3802 	if (!error && uptodate) {
3803 		bio_endio(raid_bi, 0);
3804 		if (atomic_dec_and_test(&conf->active_aligned_reads))
3805 			wake_up(&conf->wait_for_stripe);
3806 		return;
3807 	}
3808 
3809 
3810 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3811 
3812 	add_bio_to_retry(raid_bi, conf);
3813 }
3814 
3815 static int bio_fits_rdev(struct bio *bi)
3816 {
3817 	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3818 
3819 	if ((bi->bi_size>>9) > queue_max_sectors(q))
3820 		return 0;
3821 	blk_recount_segments(q, bi);
3822 	if (bi->bi_phys_segments > queue_max_segments(q))
3823 		return 0;
3824 
3825 	if (q->merge_bvec_fn)
3826 		/* it's too hard to apply the merge_bvec_fn at this stage,
3827 		 * just just give up
3828 		 */
3829 		return 0;
3830 
3831 	return 1;
3832 }
3833 
3834 
3835 static int chunk_aligned_read(mddev_t *mddev, struct bio * raid_bio)
3836 {
3837 	raid5_conf_t *conf = mddev->private;
3838 	int dd_idx;
3839 	struct bio* align_bi;
3840 	mdk_rdev_t *rdev;
3841 
3842 	if (!in_chunk_boundary(mddev, raid_bio)) {
3843 		pr_debug("chunk_aligned_read : non aligned\n");
3844 		return 0;
3845 	}
3846 	/*
3847 	 * use bio_clone to make a copy of the bio
3848 	 */
3849 	align_bi = bio_clone(raid_bio, GFP_NOIO);
3850 	if (!align_bi)
3851 		return 0;
3852 	/*
3853 	 *   set bi_end_io to a new function, and set bi_private to the
3854 	 *     original bio.
3855 	 */
3856 	align_bi->bi_end_io  = raid5_align_endio;
3857 	align_bi->bi_private = raid_bio;
3858 	/*
3859 	 *	compute position
3860 	 */
3861 	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3862 						    0,
3863 						    &dd_idx, NULL);
3864 
3865 	rcu_read_lock();
3866 	rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3867 	if (rdev && test_bit(In_sync, &rdev->flags)) {
3868 		atomic_inc(&rdev->nr_pending);
3869 		rcu_read_unlock();
3870 		raid_bio->bi_next = (void*)rdev;
3871 		align_bi->bi_bdev =  rdev->bdev;
3872 		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3873 		align_bi->bi_sector += rdev->data_offset;
3874 
3875 		if (!bio_fits_rdev(align_bi)) {
3876 			/* too big in some way */
3877 			bio_put(align_bi);
3878 			rdev_dec_pending(rdev, mddev);
3879 			return 0;
3880 		}
3881 
3882 		spin_lock_irq(&conf->device_lock);
3883 		wait_event_lock_irq(conf->wait_for_stripe,
3884 				    conf->quiesce == 0,
3885 				    conf->device_lock, /* nothing */);
3886 		atomic_inc(&conf->active_aligned_reads);
3887 		spin_unlock_irq(&conf->device_lock);
3888 
3889 		generic_make_request(align_bi);
3890 		return 1;
3891 	} else {
3892 		rcu_read_unlock();
3893 		bio_put(align_bi);
3894 		return 0;
3895 	}
3896 }
3897 
3898 /* __get_priority_stripe - get the next stripe to process
3899  *
3900  * Full stripe writes are allowed to pass preread active stripes up until
3901  * the bypass_threshold is exceeded.  In general the bypass_count
3902  * increments when the handle_list is handled before the hold_list; however, it
3903  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3904  * stripe with in flight i/o.  The bypass_count will be reset when the
3905  * head of the hold_list has changed, i.e. the head was promoted to the
3906  * handle_list.
3907  */
3908 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3909 {
3910 	struct stripe_head *sh;
3911 
3912 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3913 		  __func__,
3914 		  list_empty(&conf->handle_list) ? "empty" : "busy",
3915 		  list_empty(&conf->hold_list) ? "empty" : "busy",
3916 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
3917 
3918 	if (!list_empty(&conf->handle_list)) {
3919 		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3920 
3921 		if (list_empty(&conf->hold_list))
3922 			conf->bypass_count = 0;
3923 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3924 			if (conf->hold_list.next == conf->last_hold)
3925 				conf->bypass_count++;
3926 			else {
3927 				conf->last_hold = conf->hold_list.next;
3928 				conf->bypass_count -= conf->bypass_threshold;
3929 				if (conf->bypass_count < 0)
3930 					conf->bypass_count = 0;
3931 			}
3932 		}
3933 	} else if (!list_empty(&conf->hold_list) &&
3934 		   ((conf->bypass_threshold &&
3935 		     conf->bypass_count > conf->bypass_threshold) ||
3936 		    atomic_read(&conf->pending_full_writes) == 0)) {
3937 		sh = list_entry(conf->hold_list.next,
3938 				typeof(*sh), lru);
3939 		conf->bypass_count -= conf->bypass_threshold;
3940 		if (conf->bypass_count < 0)
3941 			conf->bypass_count = 0;
3942 	} else
3943 		return NULL;
3944 
3945 	list_del_init(&sh->lru);
3946 	atomic_inc(&sh->count);
3947 	BUG_ON(atomic_read(&sh->count) != 1);
3948 	return sh;
3949 }
3950 
3951 static int make_request(mddev_t *mddev, struct bio * bi)
3952 {
3953 	raid5_conf_t *conf = mddev->private;
3954 	int dd_idx;
3955 	sector_t new_sector;
3956 	sector_t logical_sector, last_sector;
3957 	struct stripe_head *sh;
3958 	const int rw = bio_data_dir(bi);
3959 	int remaining;
3960 
3961 	if (unlikely(bio_rw_flagged(bi, BIO_RW_BARRIER))) {
3962 		/* Drain all pending writes.  We only really need
3963 		 * to ensure they have been submitted, but this is
3964 		 * easier.
3965 		 */
3966 		mddev->pers->quiesce(mddev, 1);
3967 		mddev->pers->quiesce(mddev, 0);
3968 		md_barrier_request(mddev, bi);
3969 		return 0;
3970 	}
3971 
3972 	md_write_start(mddev, bi);
3973 
3974 	if (rw == READ &&
3975 	     mddev->reshape_position == MaxSector &&
3976 	     chunk_aligned_read(mddev,bi))
3977 		return 0;
3978 
3979 	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3980 	last_sector = bi->bi_sector + (bi->bi_size>>9);
3981 	bi->bi_next = NULL;
3982 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
3983 
3984 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3985 		DEFINE_WAIT(w);
3986 		int disks, data_disks;
3987 		int previous;
3988 
3989 	retry:
3990 		previous = 0;
3991 		disks = conf->raid_disks;
3992 		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3993 		if (unlikely(conf->reshape_progress != MaxSector)) {
3994 			/* spinlock is needed as reshape_progress may be
3995 			 * 64bit on a 32bit platform, and so it might be
3996 			 * possible to see a half-updated value
3997 			 * Ofcourse reshape_progress could change after
3998 			 * the lock is dropped, so once we get a reference
3999 			 * to the stripe that we think it is, we will have
4000 			 * to check again.
4001 			 */
4002 			spin_lock_irq(&conf->device_lock);
4003 			if (mddev->delta_disks < 0
4004 			    ? logical_sector < conf->reshape_progress
4005 			    : logical_sector >= conf->reshape_progress) {
4006 				disks = conf->previous_raid_disks;
4007 				previous = 1;
4008 			} else {
4009 				if (mddev->delta_disks < 0
4010 				    ? logical_sector < conf->reshape_safe
4011 				    : logical_sector >= conf->reshape_safe) {
4012 					spin_unlock_irq(&conf->device_lock);
4013 					schedule();
4014 					goto retry;
4015 				}
4016 			}
4017 			spin_unlock_irq(&conf->device_lock);
4018 		}
4019 		data_disks = disks - conf->max_degraded;
4020 
4021 		new_sector = raid5_compute_sector(conf, logical_sector,
4022 						  previous,
4023 						  &dd_idx, NULL);
4024 		pr_debug("raid456: make_request, sector %llu logical %llu\n",
4025 			(unsigned long long)new_sector,
4026 			(unsigned long long)logical_sector);
4027 
4028 		sh = get_active_stripe(conf, new_sector, previous,
4029 				       (bi->bi_rw&RWA_MASK), 0);
4030 		if (sh) {
4031 			if (unlikely(previous)) {
4032 				/* expansion might have moved on while waiting for a
4033 				 * stripe, so we must do the range check again.
4034 				 * Expansion could still move past after this
4035 				 * test, but as we are holding a reference to
4036 				 * 'sh', we know that if that happens,
4037 				 *  STRIPE_EXPANDING will get set and the expansion
4038 				 * won't proceed until we finish with the stripe.
4039 				 */
4040 				int must_retry = 0;
4041 				spin_lock_irq(&conf->device_lock);
4042 				if (mddev->delta_disks < 0
4043 				    ? logical_sector >= conf->reshape_progress
4044 				    : logical_sector < conf->reshape_progress)
4045 					/* mismatch, need to try again */
4046 					must_retry = 1;
4047 				spin_unlock_irq(&conf->device_lock);
4048 				if (must_retry) {
4049 					release_stripe(sh);
4050 					schedule();
4051 					goto retry;
4052 				}
4053 			}
4054 
4055 			if (bio_data_dir(bi) == WRITE &&
4056 			    logical_sector >= mddev->suspend_lo &&
4057 			    logical_sector < mddev->suspend_hi) {
4058 				release_stripe(sh);
4059 				/* As the suspend_* range is controlled by
4060 				 * userspace, we want an interruptible
4061 				 * wait.
4062 				 */
4063 				flush_signals(current);
4064 				prepare_to_wait(&conf->wait_for_overlap,
4065 						&w, TASK_INTERRUPTIBLE);
4066 				if (logical_sector >= mddev->suspend_lo &&
4067 				    logical_sector < mddev->suspend_hi)
4068 					schedule();
4069 				goto retry;
4070 			}
4071 
4072 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4073 			    !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
4074 				/* Stripe is busy expanding or
4075 				 * add failed due to overlap.  Flush everything
4076 				 * and wait a while
4077 				 */
4078 				raid5_unplug_device(mddev->queue);
4079 				release_stripe(sh);
4080 				schedule();
4081 				goto retry;
4082 			}
4083 			finish_wait(&conf->wait_for_overlap, &w);
4084 			set_bit(STRIPE_HANDLE, &sh->state);
4085 			clear_bit(STRIPE_DELAYED, &sh->state);
4086 			if (mddev->barrier &&
4087 			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4088 				atomic_inc(&conf->preread_active_stripes);
4089 			release_stripe(sh);
4090 		} else {
4091 			/* cannot get stripe for read-ahead, just give-up */
4092 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
4093 			finish_wait(&conf->wait_for_overlap, &w);
4094 			break;
4095 		}
4096 
4097 	}
4098 	spin_lock_irq(&conf->device_lock);
4099 	remaining = raid5_dec_bi_phys_segments(bi);
4100 	spin_unlock_irq(&conf->device_lock);
4101 	if (remaining == 0) {
4102 
4103 		if ( rw == WRITE )
4104 			md_write_end(mddev);
4105 
4106 		bio_endio(bi, 0);
4107 	}
4108 
4109 	if (mddev->barrier) {
4110 		/* We need to wait for the stripes to all be handled.
4111 		 * So: wait for preread_active_stripes to drop to 0.
4112 		 */
4113 		wait_event(mddev->thread->wqueue,
4114 			   atomic_read(&conf->preread_active_stripes) == 0);
4115 	}
4116 	return 0;
4117 }
4118 
4119 static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
4120 
4121 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
4122 {
4123 	/* reshaping is quite different to recovery/resync so it is
4124 	 * handled quite separately ... here.
4125 	 *
4126 	 * On each call to sync_request, we gather one chunk worth of
4127 	 * destination stripes and flag them as expanding.
4128 	 * Then we find all the source stripes and request reads.
4129 	 * As the reads complete, handle_stripe will copy the data
4130 	 * into the destination stripe and release that stripe.
4131 	 */
4132 	raid5_conf_t *conf = mddev->private;
4133 	struct stripe_head *sh;
4134 	sector_t first_sector, last_sector;
4135 	int raid_disks = conf->previous_raid_disks;
4136 	int data_disks = raid_disks - conf->max_degraded;
4137 	int new_data_disks = conf->raid_disks - conf->max_degraded;
4138 	int i;
4139 	int dd_idx;
4140 	sector_t writepos, readpos, safepos;
4141 	sector_t stripe_addr;
4142 	int reshape_sectors;
4143 	struct list_head stripes;
4144 
4145 	if (sector_nr == 0) {
4146 		/* If restarting in the middle, skip the initial sectors */
4147 		if (mddev->delta_disks < 0 &&
4148 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4149 			sector_nr = raid5_size(mddev, 0, 0)
4150 				- conf->reshape_progress;
4151 		} else if (mddev->delta_disks >= 0 &&
4152 			   conf->reshape_progress > 0)
4153 			sector_nr = conf->reshape_progress;
4154 		sector_div(sector_nr, new_data_disks);
4155 		if (sector_nr) {
4156 			mddev->curr_resync_completed = sector_nr;
4157 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4158 			*skipped = 1;
4159 			return sector_nr;
4160 		}
4161 	}
4162 
4163 	/* We need to process a full chunk at a time.
4164 	 * If old and new chunk sizes differ, we need to process the
4165 	 * largest of these
4166 	 */
4167 	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4168 		reshape_sectors = mddev->new_chunk_sectors;
4169 	else
4170 		reshape_sectors = mddev->chunk_sectors;
4171 
4172 	/* we update the metadata when there is more than 3Meg
4173 	 * in the block range (that is rather arbitrary, should
4174 	 * probably be time based) or when the data about to be
4175 	 * copied would over-write the source of the data at
4176 	 * the front of the range.
4177 	 * i.e. one new_stripe along from reshape_progress new_maps
4178 	 * to after where reshape_safe old_maps to
4179 	 */
4180 	writepos = conf->reshape_progress;
4181 	sector_div(writepos, new_data_disks);
4182 	readpos = conf->reshape_progress;
4183 	sector_div(readpos, data_disks);
4184 	safepos = conf->reshape_safe;
4185 	sector_div(safepos, data_disks);
4186 	if (mddev->delta_disks < 0) {
4187 		writepos -= min_t(sector_t, reshape_sectors, writepos);
4188 		readpos += reshape_sectors;
4189 		safepos += reshape_sectors;
4190 	} else {
4191 		writepos += reshape_sectors;
4192 		readpos -= min_t(sector_t, reshape_sectors, readpos);
4193 		safepos -= min_t(sector_t, reshape_sectors, safepos);
4194 	}
4195 
4196 	/* 'writepos' is the most advanced device address we might write.
4197 	 * 'readpos' is the least advanced device address we might read.
4198 	 * 'safepos' is the least address recorded in the metadata as having
4199 	 *     been reshaped.
4200 	 * If 'readpos' is behind 'writepos', then there is no way that we can
4201 	 * ensure safety in the face of a crash - that must be done by userspace
4202 	 * making a backup of the data.  So in that case there is no particular
4203 	 * rush to update metadata.
4204 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4205 	 * update the metadata to advance 'safepos' to match 'readpos' so that
4206 	 * we can be safe in the event of a crash.
4207 	 * So we insist on updating metadata if safepos is behind writepos and
4208 	 * readpos is beyond writepos.
4209 	 * In any case, update the metadata every 10 seconds.
4210 	 * Maybe that number should be configurable, but I'm not sure it is
4211 	 * worth it.... maybe it could be a multiple of safemode_delay???
4212 	 */
4213 	if ((mddev->delta_disks < 0
4214 	     ? (safepos > writepos && readpos < writepos)
4215 	     : (safepos < writepos && readpos > writepos)) ||
4216 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4217 		/* Cannot proceed until we've updated the superblock... */
4218 		wait_event(conf->wait_for_overlap,
4219 			   atomic_read(&conf->reshape_stripes)==0);
4220 		mddev->reshape_position = conf->reshape_progress;
4221 		mddev->curr_resync_completed = mddev->curr_resync;
4222 		conf->reshape_checkpoint = jiffies;
4223 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4224 		md_wakeup_thread(mddev->thread);
4225 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4226 			   kthread_should_stop());
4227 		spin_lock_irq(&conf->device_lock);
4228 		conf->reshape_safe = mddev->reshape_position;
4229 		spin_unlock_irq(&conf->device_lock);
4230 		wake_up(&conf->wait_for_overlap);
4231 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4232 	}
4233 
4234 	if (mddev->delta_disks < 0) {
4235 		BUG_ON(conf->reshape_progress == 0);
4236 		stripe_addr = writepos;
4237 		BUG_ON((mddev->dev_sectors &
4238 			~((sector_t)reshape_sectors - 1))
4239 		       - reshape_sectors - stripe_addr
4240 		       != sector_nr);
4241 	} else {
4242 		BUG_ON(writepos != sector_nr + reshape_sectors);
4243 		stripe_addr = sector_nr;
4244 	}
4245 	INIT_LIST_HEAD(&stripes);
4246 	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4247 		int j;
4248 		int skipped_disk = 0;
4249 		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4250 		set_bit(STRIPE_EXPANDING, &sh->state);
4251 		atomic_inc(&conf->reshape_stripes);
4252 		/* If any of this stripe is beyond the end of the old
4253 		 * array, then we need to zero those blocks
4254 		 */
4255 		for (j=sh->disks; j--;) {
4256 			sector_t s;
4257 			if (j == sh->pd_idx)
4258 				continue;
4259 			if (conf->level == 6 &&
4260 			    j == sh->qd_idx)
4261 				continue;
4262 			s = compute_blocknr(sh, j, 0);
4263 			if (s < raid5_size(mddev, 0, 0)) {
4264 				skipped_disk = 1;
4265 				continue;
4266 			}
4267 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4268 			set_bit(R5_Expanded, &sh->dev[j].flags);
4269 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
4270 		}
4271 		if (!skipped_disk) {
4272 			set_bit(STRIPE_EXPAND_READY, &sh->state);
4273 			set_bit(STRIPE_HANDLE, &sh->state);
4274 		}
4275 		list_add(&sh->lru, &stripes);
4276 	}
4277 	spin_lock_irq(&conf->device_lock);
4278 	if (mddev->delta_disks < 0)
4279 		conf->reshape_progress -= reshape_sectors * new_data_disks;
4280 	else
4281 		conf->reshape_progress += reshape_sectors * new_data_disks;
4282 	spin_unlock_irq(&conf->device_lock);
4283 	/* Ok, those stripe are ready. We can start scheduling
4284 	 * reads on the source stripes.
4285 	 * The source stripes are determined by mapping the first and last
4286 	 * block on the destination stripes.
4287 	 */
4288 	first_sector =
4289 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4290 				     1, &dd_idx, NULL);
4291 	last_sector =
4292 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4293 					    * new_data_disks - 1),
4294 				     1, &dd_idx, NULL);
4295 	if (last_sector >= mddev->dev_sectors)
4296 		last_sector = mddev->dev_sectors - 1;
4297 	while (first_sector <= last_sector) {
4298 		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4299 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4300 		set_bit(STRIPE_HANDLE, &sh->state);
4301 		release_stripe(sh);
4302 		first_sector += STRIPE_SECTORS;
4303 	}
4304 	/* Now that the sources are clearly marked, we can release
4305 	 * the destination stripes
4306 	 */
4307 	while (!list_empty(&stripes)) {
4308 		sh = list_entry(stripes.next, struct stripe_head, lru);
4309 		list_del_init(&sh->lru);
4310 		release_stripe(sh);
4311 	}
4312 	/* If this takes us to the resync_max point where we have to pause,
4313 	 * then we need to write out the superblock.
4314 	 */
4315 	sector_nr += reshape_sectors;
4316 	if ((sector_nr - mddev->curr_resync_completed) * 2
4317 	    >= mddev->resync_max - mddev->curr_resync_completed) {
4318 		/* Cannot proceed until we've updated the superblock... */
4319 		wait_event(conf->wait_for_overlap,
4320 			   atomic_read(&conf->reshape_stripes) == 0);
4321 		mddev->reshape_position = conf->reshape_progress;
4322 		mddev->curr_resync_completed = mddev->curr_resync + reshape_sectors;
4323 		conf->reshape_checkpoint = jiffies;
4324 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4325 		md_wakeup_thread(mddev->thread);
4326 		wait_event(mddev->sb_wait,
4327 			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4328 			   || kthread_should_stop());
4329 		spin_lock_irq(&conf->device_lock);
4330 		conf->reshape_safe = mddev->reshape_position;
4331 		spin_unlock_irq(&conf->device_lock);
4332 		wake_up(&conf->wait_for_overlap);
4333 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4334 	}
4335 	return reshape_sectors;
4336 }
4337 
4338 /* FIXME go_faster isn't used */
4339 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
4340 {
4341 	raid5_conf_t *conf = mddev->private;
4342 	struct stripe_head *sh;
4343 	sector_t max_sector = mddev->dev_sectors;
4344 	int sync_blocks;
4345 	int still_degraded = 0;
4346 	int i;
4347 
4348 	if (sector_nr >= max_sector) {
4349 		/* just being told to finish up .. nothing much to do */
4350 		unplug_slaves(mddev);
4351 
4352 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4353 			end_reshape(conf);
4354 			return 0;
4355 		}
4356 
4357 		if (mddev->curr_resync < max_sector) /* aborted */
4358 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4359 					&sync_blocks, 1);
4360 		else /* completed sync */
4361 			conf->fullsync = 0;
4362 		bitmap_close_sync(mddev->bitmap);
4363 
4364 		return 0;
4365 	}
4366 
4367 	/* Allow raid5_quiesce to complete */
4368 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4369 
4370 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4371 		return reshape_request(mddev, sector_nr, skipped);
4372 
4373 	/* No need to check resync_max as we never do more than one
4374 	 * stripe, and as resync_max will always be on a chunk boundary,
4375 	 * if the check in md_do_sync didn't fire, there is no chance
4376 	 * of overstepping resync_max here
4377 	 */
4378 
4379 	/* if there is too many failed drives and we are trying
4380 	 * to resync, then assert that we are finished, because there is
4381 	 * nothing we can do.
4382 	 */
4383 	if (mddev->degraded >= conf->max_degraded &&
4384 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4385 		sector_t rv = mddev->dev_sectors - sector_nr;
4386 		*skipped = 1;
4387 		return rv;
4388 	}
4389 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4390 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4391 	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4392 		/* we can skip this block, and probably more */
4393 		sync_blocks /= STRIPE_SECTORS;
4394 		*skipped = 1;
4395 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4396 	}
4397 
4398 
4399 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4400 
4401 	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4402 	if (sh == NULL) {
4403 		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4404 		/* make sure we don't swamp the stripe cache if someone else
4405 		 * is trying to get access
4406 		 */
4407 		schedule_timeout_uninterruptible(1);
4408 	}
4409 	/* Need to check if array will still be degraded after recovery/resync
4410 	 * We don't need to check the 'failed' flag as when that gets set,
4411 	 * recovery aborts.
4412 	 */
4413 	for (i = 0; i < conf->raid_disks; i++)
4414 		if (conf->disks[i].rdev == NULL)
4415 			still_degraded = 1;
4416 
4417 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4418 
4419 	spin_lock(&sh->lock);
4420 	set_bit(STRIPE_SYNCING, &sh->state);
4421 	clear_bit(STRIPE_INSYNC, &sh->state);
4422 	spin_unlock(&sh->lock);
4423 
4424 	handle_stripe(sh);
4425 	release_stripe(sh);
4426 
4427 	return STRIPE_SECTORS;
4428 }
4429 
4430 static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4431 {
4432 	/* We may not be able to submit a whole bio at once as there
4433 	 * may not be enough stripe_heads available.
4434 	 * We cannot pre-allocate enough stripe_heads as we may need
4435 	 * more than exist in the cache (if we allow ever large chunks).
4436 	 * So we do one stripe head at a time and record in
4437 	 * ->bi_hw_segments how many have been done.
4438 	 *
4439 	 * We *know* that this entire raid_bio is in one chunk, so
4440 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4441 	 */
4442 	struct stripe_head *sh;
4443 	int dd_idx;
4444 	sector_t sector, logical_sector, last_sector;
4445 	int scnt = 0;
4446 	int remaining;
4447 	int handled = 0;
4448 
4449 	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4450 	sector = raid5_compute_sector(conf, logical_sector,
4451 				      0, &dd_idx, NULL);
4452 	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4453 
4454 	for (; logical_sector < last_sector;
4455 	     logical_sector += STRIPE_SECTORS,
4456 		     sector += STRIPE_SECTORS,
4457 		     scnt++) {
4458 
4459 		if (scnt < raid5_bi_hw_segments(raid_bio))
4460 			/* already done this stripe */
4461 			continue;
4462 
4463 		sh = get_active_stripe(conf, sector, 0, 1, 0);
4464 
4465 		if (!sh) {
4466 			/* failed to get a stripe - must wait */
4467 			raid5_set_bi_hw_segments(raid_bio, scnt);
4468 			conf->retry_read_aligned = raid_bio;
4469 			return handled;
4470 		}
4471 
4472 		set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4473 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4474 			release_stripe(sh);
4475 			raid5_set_bi_hw_segments(raid_bio, scnt);
4476 			conf->retry_read_aligned = raid_bio;
4477 			return handled;
4478 		}
4479 
4480 		handle_stripe(sh);
4481 		release_stripe(sh);
4482 		handled++;
4483 	}
4484 	spin_lock_irq(&conf->device_lock);
4485 	remaining = raid5_dec_bi_phys_segments(raid_bio);
4486 	spin_unlock_irq(&conf->device_lock);
4487 	if (remaining == 0)
4488 		bio_endio(raid_bio, 0);
4489 	if (atomic_dec_and_test(&conf->active_aligned_reads))
4490 		wake_up(&conf->wait_for_stripe);
4491 	return handled;
4492 }
4493 
4494 
4495 /*
4496  * This is our raid5 kernel thread.
4497  *
4498  * We scan the hash table for stripes which can be handled now.
4499  * During the scan, completed stripes are saved for us by the interrupt
4500  * handler, so that they will not have to wait for our next wakeup.
4501  */
4502 static void raid5d(mddev_t *mddev)
4503 {
4504 	struct stripe_head *sh;
4505 	raid5_conf_t *conf = mddev->private;
4506 	int handled;
4507 
4508 	pr_debug("+++ raid5d active\n");
4509 
4510 	md_check_recovery(mddev);
4511 
4512 	handled = 0;
4513 	spin_lock_irq(&conf->device_lock);
4514 	while (1) {
4515 		struct bio *bio;
4516 
4517 		if (conf->seq_flush != conf->seq_write) {
4518 			int seq = conf->seq_flush;
4519 			spin_unlock_irq(&conf->device_lock);
4520 			bitmap_unplug(mddev->bitmap);
4521 			spin_lock_irq(&conf->device_lock);
4522 			conf->seq_write = seq;
4523 			activate_bit_delay(conf);
4524 		}
4525 
4526 		while ((bio = remove_bio_from_retry(conf))) {
4527 			int ok;
4528 			spin_unlock_irq(&conf->device_lock);
4529 			ok = retry_aligned_read(conf, bio);
4530 			spin_lock_irq(&conf->device_lock);
4531 			if (!ok)
4532 				break;
4533 			handled++;
4534 		}
4535 
4536 		sh = __get_priority_stripe(conf);
4537 
4538 		if (!sh)
4539 			break;
4540 		spin_unlock_irq(&conf->device_lock);
4541 
4542 		handled++;
4543 		handle_stripe(sh);
4544 		release_stripe(sh);
4545 		cond_resched();
4546 
4547 		spin_lock_irq(&conf->device_lock);
4548 	}
4549 	pr_debug("%d stripes handled\n", handled);
4550 
4551 	spin_unlock_irq(&conf->device_lock);
4552 
4553 	async_tx_issue_pending_all();
4554 	unplug_slaves(mddev);
4555 
4556 	pr_debug("--- raid5d inactive\n");
4557 }
4558 
4559 static ssize_t
4560 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4561 {
4562 	raid5_conf_t *conf = mddev->private;
4563 	if (conf)
4564 		return sprintf(page, "%d\n", conf->max_nr_stripes);
4565 	else
4566 		return 0;
4567 }
4568 
4569 static ssize_t
4570 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4571 {
4572 	raid5_conf_t *conf = mddev->private;
4573 	unsigned long new;
4574 	int err;
4575 
4576 	if (len >= PAGE_SIZE)
4577 		return -EINVAL;
4578 	if (!conf)
4579 		return -ENODEV;
4580 
4581 	if (strict_strtoul(page, 10, &new))
4582 		return -EINVAL;
4583 	if (new <= 16 || new > 32768)
4584 		return -EINVAL;
4585 	while (new < conf->max_nr_stripes) {
4586 		if (drop_one_stripe(conf))
4587 			conf->max_nr_stripes--;
4588 		else
4589 			break;
4590 	}
4591 	err = md_allow_write(mddev);
4592 	if (err)
4593 		return err;
4594 	while (new > conf->max_nr_stripes) {
4595 		if (grow_one_stripe(conf))
4596 			conf->max_nr_stripes++;
4597 		else break;
4598 	}
4599 	return len;
4600 }
4601 
4602 static struct md_sysfs_entry
4603 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4604 				raid5_show_stripe_cache_size,
4605 				raid5_store_stripe_cache_size);
4606 
4607 static ssize_t
4608 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4609 {
4610 	raid5_conf_t *conf = mddev->private;
4611 	if (conf)
4612 		return sprintf(page, "%d\n", conf->bypass_threshold);
4613 	else
4614 		return 0;
4615 }
4616 
4617 static ssize_t
4618 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4619 {
4620 	raid5_conf_t *conf = mddev->private;
4621 	unsigned long new;
4622 	if (len >= PAGE_SIZE)
4623 		return -EINVAL;
4624 	if (!conf)
4625 		return -ENODEV;
4626 
4627 	if (strict_strtoul(page, 10, &new))
4628 		return -EINVAL;
4629 	if (new > conf->max_nr_stripes)
4630 		return -EINVAL;
4631 	conf->bypass_threshold = new;
4632 	return len;
4633 }
4634 
4635 static struct md_sysfs_entry
4636 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4637 					S_IRUGO | S_IWUSR,
4638 					raid5_show_preread_threshold,
4639 					raid5_store_preread_threshold);
4640 
4641 static ssize_t
4642 stripe_cache_active_show(mddev_t *mddev, char *page)
4643 {
4644 	raid5_conf_t *conf = mddev->private;
4645 	if (conf)
4646 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4647 	else
4648 		return 0;
4649 }
4650 
4651 static struct md_sysfs_entry
4652 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4653 
4654 static struct attribute *raid5_attrs[] =  {
4655 	&raid5_stripecache_size.attr,
4656 	&raid5_stripecache_active.attr,
4657 	&raid5_preread_bypass_threshold.attr,
4658 	NULL,
4659 };
4660 static struct attribute_group raid5_attrs_group = {
4661 	.name = NULL,
4662 	.attrs = raid5_attrs,
4663 };
4664 
4665 static sector_t
4666 raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4667 {
4668 	raid5_conf_t *conf = mddev->private;
4669 
4670 	if (!sectors)
4671 		sectors = mddev->dev_sectors;
4672 	if (!raid_disks)
4673 		/* size is defined by the smallest of previous and new size */
4674 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4675 
4676 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4677 	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4678 	return sectors * (raid_disks - conf->max_degraded);
4679 }
4680 
4681 static void raid5_free_percpu(raid5_conf_t *conf)
4682 {
4683 	struct raid5_percpu *percpu;
4684 	unsigned long cpu;
4685 
4686 	if (!conf->percpu)
4687 		return;
4688 
4689 	get_online_cpus();
4690 	for_each_possible_cpu(cpu) {
4691 		percpu = per_cpu_ptr(conf->percpu, cpu);
4692 		safe_put_page(percpu->spare_page);
4693 		kfree(percpu->scribble);
4694 	}
4695 #ifdef CONFIG_HOTPLUG_CPU
4696 	unregister_cpu_notifier(&conf->cpu_notify);
4697 #endif
4698 	put_online_cpus();
4699 
4700 	free_percpu(conf->percpu);
4701 }
4702 
4703 static void free_conf(raid5_conf_t *conf)
4704 {
4705 	shrink_stripes(conf);
4706 	raid5_free_percpu(conf);
4707 	kfree(conf->disks);
4708 	kfree(conf->stripe_hashtbl);
4709 	kfree(conf);
4710 }
4711 
4712 #ifdef CONFIG_HOTPLUG_CPU
4713 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4714 			      void *hcpu)
4715 {
4716 	raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4717 	long cpu = (long)hcpu;
4718 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4719 
4720 	switch (action) {
4721 	case CPU_UP_PREPARE:
4722 	case CPU_UP_PREPARE_FROZEN:
4723 		if (conf->level == 6 && !percpu->spare_page)
4724 			percpu->spare_page = alloc_page(GFP_KERNEL);
4725 		if (!percpu->scribble)
4726 			percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4727 
4728 		if (!percpu->scribble ||
4729 		    (conf->level == 6 && !percpu->spare_page)) {
4730 			safe_put_page(percpu->spare_page);
4731 			kfree(percpu->scribble);
4732 			pr_err("%s: failed memory allocation for cpu%ld\n",
4733 			       __func__, cpu);
4734 			return notifier_from_errno(-ENOMEM);
4735 		}
4736 		break;
4737 	case CPU_DEAD:
4738 	case CPU_DEAD_FROZEN:
4739 		safe_put_page(percpu->spare_page);
4740 		kfree(percpu->scribble);
4741 		percpu->spare_page = NULL;
4742 		percpu->scribble = NULL;
4743 		break;
4744 	default:
4745 		break;
4746 	}
4747 	return NOTIFY_OK;
4748 }
4749 #endif
4750 
4751 static int raid5_alloc_percpu(raid5_conf_t *conf)
4752 {
4753 	unsigned long cpu;
4754 	struct page *spare_page;
4755 	struct raid5_percpu __percpu *allcpus;
4756 	void *scribble;
4757 	int err;
4758 
4759 	allcpus = alloc_percpu(struct raid5_percpu);
4760 	if (!allcpus)
4761 		return -ENOMEM;
4762 	conf->percpu = allcpus;
4763 
4764 	get_online_cpus();
4765 	err = 0;
4766 	for_each_present_cpu(cpu) {
4767 		if (conf->level == 6) {
4768 			spare_page = alloc_page(GFP_KERNEL);
4769 			if (!spare_page) {
4770 				err = -ENOMEM;
4771 				break;
4772 			}
4773 			per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4774 		}
4775 		scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4776 		if (!scribble) {
4777 			err = -ENOMEM;
4778 			break;
4779 		}
4780 		per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4781 	}
4782 #ifdef CONFIG_HOTPLUG_CPU
4783 	conf->cpu_notify.notifier_call = raid456_cpu_notify;
4784 	conf->cpu_notify.priority = 0;
4785 	if (err == 0)
4786 		err = register_cpu_notifier(&conf->cpu_notify);
4787 #endif
4788 	put_online_cpus();
4789 
4790 	return err;
4791 }
4792 
4793 static raid5_conf_t *setup_conf(mddev_t *mddev)
4794 {
4795 	raid5_conf_t *conf;
4796 	int raid_disk, memory, max_disks;
4797 	mdk_rdev_t *rdev;
4798 	struct disk_info *disk;
4799 
4800 	if (mddev->new_level != 5
4801 	    && mddev->new_level != 4
4802 	    && mddev->new_level != 6) {
4803 		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4804 		       mdname(mddev), mddev->new_level);
4805 		return ERR_PTR(-EIO);
4806 	}
4807 	if ((mddev->new_level == 5
4808 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
4809 	    (mddev->new_level == 6
4810 	     && !algorithm_valid_raid6(mddev->new_layout))) {
4811 		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4812 		       mdname(mddev), mddev->new_layout);
4813 		return ERR_PTR(-EIO);
4814 	}
4815 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4816 		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4817 		       mdname(mddev), mddev->raid_disks);
4818 		return ERR_PTR(-EINVAL);
4819 	}
4820 
4821 	if (!mddev->new_chunk_sectors ||
4822 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4823 	    !is_power_of_2(mddev->new_chunk_sectors)) {
4824 		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4825 		       mdname(mddev), mddev->new_chunk_sectors << 9);
4826 		return ERR_PTR(-EINVAL);
4827 	}
4828 
4829 	conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4830 	if (conf == NULL)
4831 		goto abort;
4832 	spin_lock_init(&conf->device_lock);
4833 	init_waitqueue_head(&conf->wait_for_stripe);
4834 	init_waitqueue_head(&conf->wait_for_overlap);
4835 	INIT_LIST_HEAD(&conf->handle_list);
4836 	INIT_LIST_HEAD(&conf->hold_list);
4837 	INIT_LIST_HEAD(&conf->delayed_list);
4838 	INIT_LIST_HEAD(&conf->bitmap_list);
4839 	INIT_LIST_HEAD(&conf->inactive_list);
4840 	atomic_set(&conf->active_stripes, 0);
4841 	atomic_set(&conf->preread_active_stripes, 0);
4842 	atomic_set(&conf->active_aligned_reads, 0);
4843 	conf->bypass_threshold = BYPASS_THRESHOLD;
4844 
4845 	conf->raid_disks = mddev->raid_disks;
4846 	if (mddev->reshape_position == MaxSector)
4847 		conf->previous_raid_disks = mddev->raid_disks;
4848 	else
4849 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4850 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4851 	conf->scribble_len = scribble_len(max_disks);
4852 
4853 	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4854 			      GFP_KERNEL);
4855 	if (!conf->disks)
4856 		goto abort;
4857 
4858 	conf->mddev = mddev;
4859 
4860 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4861 		goto abort;
4862 
4863 	conf->level = mddev->new_level;
4864 	if (raid5_alloc_percpu(conf) != 0)
4865 		goto abort;
4866 
4867 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
4868 
4869 	list_for_each_entry(rdev, &mddev->disks, same_set) {
4870 		raid_disk = rdev->raid_disk;
4871 		if (raid_disk >= max_disks
4872 		    || raid_disk < 0)
4873 			continue;
4874 		disk = conf->disks + raid_disk;
4875 
4876 		disk->rdev = rdev;
4877 
4878 		if (test_bit(In_sync, &rdev->flags)) {
4879 			char b[BDEVNAME_SIZE];
4880 			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4881 			       " disk %d\n",
4882 			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4883 		} else
4884 			/* Cannot rely on bitmap to complete recovery */
4885 			conf->fullsync = 1;
4886 	}
4887 
4888 	conf->chunk_sectors = mddev->new_chunk_sectors;
4889 	conf->level = mddev->new_level;
4890 	if (conf->level == 6)
4891 		conf->max_degraded = 2;
4892 	else
4893 		conf->max_degraded = 1;
4894 	conf->algorithm = mddev->new_layout;
4895 	conf->max_nr_stripes = NR_STRIPES;
4896 	conf->reshape_progress = mddev->reshape_position;
4897 	if (conf->reshape_progress != MaxSector) {
4898 		conf->prev_chunk_sectors = mddev->chunk_sectors;
4899 		conf->prev_algo = mddev->layout;
4900 	}
4901 
4902 	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4903 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4904 	if (grow_stripes(conf, conf->max_nr_stripes)) {
4905 		printk(KERN_ERR
4906 		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
4907 		       mdname(mddev), memory);
4908 		goto abort;
4909 	} else
4910 		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4911 		       mdname(mddev), memory);
4912 
4913 	conf->thread = md_register_thread(raid5d, mddev, NULL);
4914 	if (!conf->thread) {
4915 		printk(KERN_ERR
4916 		       "md/raid:%s: couldn't allocate thread.\n",
4917 		       mdname(mddev));
4918 		goto abort;
4919 	}
4920 
4921 	return conf;
4922 
4923  abort:
4924 	if (conf) {
4925 		free_conf(conf);
4926 		return ERR_PTR(-EIO);
4927 	} else
4928 		return ERR_PTR(-ENOMEM);
4929 }
4930 
4931 
4932 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4933 {
4934 	switch (algo) {
4935 	case ALGORITHM_PARITY_0:
4936 		if (raid_disk < max_degraded)
4937 			return 1;
4938 		break;
4939 	case ALGORITHM_PARITY_N:
4940 		if (raid_disk >= raid_disks - max_degraded)
4941 			return 1;
4942 		break;
4943 	case ALGORITHM_PARITY_0_6:
4944 		if (raid_disk == 0 ||
4945 		    raid_disk == raid_disks - 1)
4946 			return 1;
4947 		break;
4948 	case ALGORITHM_LEFT_ASYMMETRIC_6:
4949 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
4950 	case ALGORITHM_LEFT_SYMMETRIC_6:
4951 	case ALGORITHM_RIGHT_SYMMETRIC_6:
4952 		if (raid_disk == raid_disks - 1)
4953 			return 1;
4954 	}
4955 	return 0;
4956 }
4957 
4958 static int run(mddev_t *mddev)
4959 {
4960 	raid5_conf_t *conf;
4961 	int working_disks = 0, chunk_size;
4962 	int dirty_parity_disks = 0;
4963 	mdk_rdev_t *rdev;
4964 	sector_t reshape_offset = 0;
4965 
4966 	if (mddev->recovery_cp != MaxSector)
4967 		printk(KERN_NOTICE "md/raid:%s: not clean"
4968 		       " -- starting background reconstruction\n",
4969 		       mdname(mddev));
4970 	if (mddev->reshape_position != MaxSector) {
4971 		/* Check that we can continue the reshape.
4972 		 * Currently only disks can change, it must
4973 		 * increase, and we must be past the point where
4974 		 * a stripe over-writes itself
4975 		 */
4976 		sector_t here_new, here_old;
4977 		int old_disks;
4978 		int max_degraded = (mddev->level == 6 ? 2 : 1);
4979 
4980 		if (mddev->new_level != mddev->level) {
4981 			printk(KERN_ERR "md/raid:%s: unsupported reshape "
4982 			       "required - aborting.\n",
4983 			       mdname(mddev));
4984 			return -EINVAL;
4985 		}
4986 		old_disks = mddev->raid_disks - mddev->delta_disks;
4987 		/* reshape_position must be on a new-stripe boundary, and one
4988 		 * further up in new geometry must map after here in old
4989 		 * geometry.
4990 		 */
4991 		here_new = mddev->reshape_position;
4992 		if (sector_div(here_new, mddev->new_chunk_sectors *
4993 			       (mddev->raid_disks - max_degraded))) {
4994 			printk(KERN_ERR "md/raid:%s: reshape_position not "
4995 			       "on a stripe boundary\n", mdname(mddev));
4996 			return -EINVAL;
4997 		}
4998 		reshape_offset = here_new * mddev->new_chunk_sectors;
4999 		/* here_new is the stripe we will write to */
5000 		here_old = mddev->reshape_position;
5001 		sector_div(here_old, mddev->chunk_sectors *
5002 			   (old_disks-max_degraded));
5003 		/* here_old is the first stripe that we might need to read
5004 		 * from */
5005 		if (mddev->delta_disks == 0) {
5006 			/* We cannot be sure it is safe to start an in-place
5007 			 * reshape.  It is only safe if user-space if monitoring
5008 			 * and taking constant backups.
5009 			 * mdadm always starts a situation like this in
5010 			 * readonly mode so it can take control before
5011 			 * allowing any writes.  So just check for that.
5012 			 */
5013 			if ((here_new * mddev->new_chunk_sectors !=
5014 			     here_old * mddev->chunk_sectors) ||
5015 			    mddev->ro == 0) {
5016 				printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
5017 				       " in read-only mode - aborting\n",
5018 				       mdname(mddev));
5019 				return -EINVAL;
5020 			}
5021 		} else if (mddev->delta_disks < 0
5022 		    ? (here_new * mddev->new_chunk_sectors <=
5023 		       here_old * mddev->chunk_sectors)
5024 		    : (here_new * mddev->new_chunk_sectors >=
5025 		       here_old * mddev->chunk_sectors)) {
5026 			/* Reading from the same stripe as writing to - bad */
5027 			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5028 			       "auto-recovery - aborting.\n",
5029 			       mdname(mddev));
5030 			return -EINVAL;
5031 		}
5032 		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5033 		       mdname(mddev));
5034 		/* OK, we should be able to continue; */
5035 	} else {
5036 		BUG_ON(mddev->level != mddev->new_level);
5037 		BUG_ON(mddev->layout != mddev->new_layout);
5038 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5039 		BUG_ON(mddev->delta_disks != 0);
5040 	}
5041 
5042 	if (mddev->private == NULL)
5043 		conf = setup_conf(mddev);
5044 	else
5045 		conf = mddev->private;
5046 
5047 	if (IS_ERR(conf))
5048 		return PTR_ERR(conf);
5049 
5050 	mddev->thread = conf->thread;
5051 	conf->thread = NULL;
5052 	mddev->private = conf;
5053 
5054 	/*
5055 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
5056 	 */
5057 	list_for_each_entry(rdev, &mddev->disks, same_set) {
5058 		if (rdev->raid_disk < 0)
5059 			continue;
5060 		if (test_bit(In_sync, &rdev->flags)) {
5061 			working_disks++;
5062 			continue;
5063 		}
5064 		/* This disc is not fully in-sync.  However if it
5065 		 * just stored parity (beyond the recovery_offset),
5066 		 * when we don't need to be concerned about the
5067 		 * array being dirty.
5068 		 * When reshape goes 'backwards', we never have
5069 		 * partially completed devices, so we only need
5070 		 * to worry about reshape going forwards.
5071 		 */
5072 		/* Hack because v0.91 doesn't store recovery_offset properly. */
5073 		if (mddev->major_version == 0 &&
5074 		    mddev->minor_version > 90)
5075 			rdev->recovery_offset = reshape_offset;
5076 
5077 		if (rdev->recovery_offset < reshape_offset) {
5078 			/* We need to check old and new layout */
5079 			if (!only_parity(rdev->raid_disk,
5080 					 conf->algorithm,
5081 					 conf->raid_disks,
5082 					 conf->max_degraded))
5083 				continue;
5084 		}
5085 		if (!only_parity(rdev->raid_disk,
5086 				 conf->prev_algo,
5087 				 conf->previous_raid_disks,
5088 				 conf->max_degraded))
5089 			continue;
5090 		dirty_parity_disks++;
5091 	}
5092 
5093 	mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
5094 			   - working_disks);
5095 
5096 	if (has_failed(conf)) {
5097 		printk(KERN_ERR "md/raid:%s: not enough operational devices"
5098 			" (%d/%d failed)\n",
5099 			mdname(mddev), mddev->degraded, conf->raid_disks);
5100 		goto abort;
5101 	}
5102 
5103 	/* device size must be a multiple of chunk size */
5104 	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5105 	mddev->resync_max_sectors = mddev->dev_sectors;
5106 
5107 	if (mddev->degraded > dirty_parity_disks &&
5108 	    mddev->recovery_cp != MaxSector) {
5109 		if (mddev->ok_start_degraded)
5110 			printk(KERN_WARNING
5111 			       "md/raid:%s: starting dirty degraded array"
5112 			       " - data corruption possible.\n",
5113 			       mdname(mddev));
5114 		else {
5115 			printk(KERN_ERR
5116 			       "md/raid:%s: cannot start dirty degraded array.\n",
5117 			       mdname(mddev));
5118 			goto abort;
5119 		}
5120 	}
5121 
5122 	if (mddev->degraded == 0)
5123 		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5124 		       " devices, algorithm %d\n", mdname(mddev), conf->level,
5125 		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5126 		       mddev->new_layout);
5127 	else
5128 		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5129 		       " out of %d devices, algorithm %d\n",
5130 		       mdname(mddev), conf->level,
5131 		       mddev->raid_disks - mddev->degraded,
5132 		       mddev->raid_disks, mddev->new_layout);
5133 
5134 	print_raid5_conf(conf);
5135 
5136 	if (conf->reshape_progress != MaxSector) {
5137 		conf->reshape_safe = conf->reshape_progress;
5138 		atomic_set(&conf->reshape_stripes, 0);
5139 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5140 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5141 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5142 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5143 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5144 							"reshape");
5145 	}
5146 
5147 	/* read-ahead size must cover two whole stripes, which is
5148 	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5149 	 */
5150 	{
5151 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
5152 		int stripe = data_disks *
5153 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
5154 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5155 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5156 	}
5157 
5158 	/* Ok, everything is just fine now */
5159 	if (mddev->to_remove == &raid5_attrs_group)
5160 		mddev->to_remove = NULL;
5161 	else if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5162 		printk(KERN_WARNING
5163 		       "md/raid:%s: failed to create sysfs attributes.\n",
5164 		       mdname(mddev));
5165 
5166 	mddev->queue->queue_lock = &conf->device_lock;
5167 
5168 	mddev->queue->unplug_fn = raid5_unplug_device;
5169 	mddev->queue->backing_dev_info.congested_data = mddev;
5170 	mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5171 
5172 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5173 
5174 	blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5175 	chunk_size = mddev->chunk_sectors << 9;
5176 	blk_queue_io_min(mddev->queue, chunk_size);
5177 	blk_queue_io_opt(mddev->queue, chunk_size *
5178 			 (conf->raid_disks - conf->max_degraded));
5179 
5180 	list_for_each_entry(rdev, &mddev->disks, same_set)
5181 		disk_stack_limits(mddev->gendisk, rdev->bdev,
5182 				  rdev->data_offset << 9);
5183 
5184 	return 0;
5185 abort:
5186 	md_unregister_thread(mddev->thread);
5187 	mddev->thread = NULL;
5188 	if (conf) {
5189 		print_raid5_conf(conf);
5190 		free_conf(conf);
5191 	}
5192 	mddev->private = NULL;
5193 	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5194 	return -EIO;
5195 }
5196 
5197 static int stop(mddev_t *mddev)
5198 {
5199 	raid5_conf_t *conf = mddev->private;
5200 
5201 	md_unregister_thread(mddev->thread);
5202 	mddev->thread = NULL;
5203 	mddev->queue->backing_dev_info.congested_fn = NULL;
5204 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5205 	free_conf(conf);
5206 	mddev->private = NULL;
5207 	mddev->to_remove = &raid5_attrs_group;
5208 	return 0;
5209 }
5210 
5211 #ifdef DEBUG
5212 static void print_sh(struct seq_file *seq, struct stripe_head *sh)
5213 {
5214 	int i;
5215 
5216 	seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
5217 		   (unsigned long long)sh->sector, sh->pd_idx, sh->state);
5218 	seq_printf(seq, "sh %llu,  count %d.\n",
5219 		   (unsigned long long)sh->sector, atomic_read(&sh->count));
5220 	seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
5221 	for (i = 0; i < sh->disks; i++) {
5222 		seq_printf(seq, "(cache%d: %p %ld) ",
5223 			   i, sh->dev[i].page, sh->dev[i].flags);
5224 	}
5225 	seq_printf(seq, "\n");
5226 }
5227 
5228 static void printall(struct seq_file *seq, raid5_conf_t *conf)
5229 {
5230 	struct stripe_head *sh;
5231 	struct hlist_node *hn;
5232 	int i;
5233 
5234 	spin_lock_irq(&conf->device_lock);
5235 	for (i = 0; i < NR_HASH; i++) {
5236 		hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
5237 			if (sh->raid_conf != conf)
5238 				continue;
5239 			print_sh(seq, sh);
5240 		}
5241 	}
5242 	spin_unlock_irq(&conf->device_lock);
5243 }
5244 #endif
5245 
5246 static void status(struct seq_file *seq, mddev_t *mddev)
5247 {
5248 	raid5_conf_t *conf = mddev->private;
5249 	int i;
5250 
5251 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5252 		mddev->chunk_sectors / 2, mddev->layout);
5253 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5254 	for (i = 0; i < conf->raid_disks; i++)
5255 		seq_printf (seq, "%s",
5256 			       conf->disks[i].rdev &&
5257 			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5258 	seq_printf (seq, "]");
5259 #ifdef DEBUG
5260 	seq_printf (seq, "\n");
5261 	printall(seq, conf);
5262 #endif
5263 }
5264 
5265 static void print_raid5_conf (raid5_conf_t *conf)
5266 {
5267 	int i;
5268 	struct disk_info *tmp;
5269 
5270 	printk(KERN_DEBUG "RAID conf printout:\n");
5271 	if (!conf) {
5272 		printk("(conf==NULL)\n");
5273 		return;
5274 	}
5275 	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5276 	       conf->raid_disks,
5277 	       conf->raid_disks - conf->mddev->degraded);
5278 
5279 	for (i = 0; i < conf->raid_disks; i++) {
5280 		char b[BDEVNAME_SIZE];
5281 		tmp = conf->disks + i;
5282 		if (tmp->rdev)
5283 			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5284 			       i, !test_bit(Faulty, &tmp->rdev->flags),
5285 			       bdevname(tmp->rdev->bdev, b));
5286 	}
5287 }
5288 
5289 static int raid5_spare_active(mddev_t *mddev)
5290 {
5291 	int i;
5292 	raid5_conf_t *conf = mddev->private;
5293 	struct disk_info *tmp;
5294 
5295 	for (i = 0; i < conf->raid_disks; i++) {
5296 		tmp = conf->disks + i;
5297 		if (tmp->rdev
5298 		    && tmp->rdev->recovery_offset == MaxSector
5299 		    && !test_bit(Faulty, &tmp->rdev->flags)
5300 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5301 			unsigned long flags;
5302 			spin_lock_irqsave(&conf->device_lock, flags);
5303 			mddev->degraded--;
5304 			spin_unlock_irqrestore(&conf->device_lock, flags);
5305 		}
5306 	}
5307 	print_raid5_conf(conf);
5308 	return 0;
5309 }
5310 
5311 static int raid5_remove_disk(mddev_t *mddev, int number)
5312 {
5313 	raid5_conf_t *conf = mddev->private;
5314 	int err = 0;
5315 	mdk_rdev_t *rdev;
5316 	struct disk_info *p = conf->disks + number;
5317 
5318 	print_raid5_conf(conf);
5319 	rdev = p->rdev;
5320 	if (rdev) {
5321 		if (number >= conf->raid_disks &&
5322 		    conf->reshape_progress == MaxSector)
5323 			clear_bit(In_sync, &rdev->flags);
5324 
5325 		if (test_bit(In_sync, &rdev->flags) ||
5326 		    atomic_read(&rdev->nr_pending)) {
5327 			err = -EBUSY;
5328 			goto abort;
5329 		}
5330 		/* Only remove non-faulty devices if recovery
5331 		 * isn't possible.
5332 		 */
5333 		if (!test_bit(Faulty, &rdev->flags) &&
5334 		    !has_failed(conf) &&
5335 		    number < conf->raid_disks) {
5336 			err = -EBUSY;
5337 			goto abort;
5338 		}
5339 		p->rdev = NULL;
5340 		synchronize_rcu();
5341 		if (atomic_read(&rdev->nr_pending)) {
5342 			/* lost the race, try later */
5343 			err = -EBUSY;
5344 			p->rdev = rdev;
5345 		}
5346 	}
5347 abort:
5348 
5349 	print_raid5_conf(conf);
5350 	return err;
5351 }
5352 
5353 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
5354 {
5355 	raid5_conf_t *conf = mddev->private;
5356 	int err = -EEXIST;
5357 	int disk;
5358 	struct disk_info *p;
5359 	int first = 0;
5360 	int last = conf->raid_disks - 1;
5361 
5362 	if (has_failed(conf))
5363 		/* no point adding a device */
5364 		return -EINVAL;
5365 
5366 	if (rdev->raid_disk >= 0)
5367 		first = last = rdev->raid_disk;
5368 
5369 	/*
5370 	 * find the disk ... but prefer rdev->saved_raid_disk
5371 	 * if possible.
5372 	 */
5373 	if (rdev->saved_raid_disk >= 0 &&
5374 	    rdev->saved_raid_disk >= first &&
5375 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
5376 		disk = rdev->saved_raid_disk;
5377 	else
5378 		disk = first;
5379 	for ( ; disk <= last ; disk++)
5380 		if ((p=conf->disks + disk)->rdev == NULL) {
5381 			clear_bit(In_sync, &rdev->flags);
5382 			rdev->raid_disk = disk;
5383 			err = 0;
5384 			if (rdev->saved_raid_disk != disk)
5385 				conf->fullsync = 1;
5386 			rcu_assign_pointer(p->rdev, rdev);
5387 			break;
5388 		}
5389 	print_raid5_conf(conf);
5390 	return err;
5391 }
5392 
5393 static int raid5_resize(mddev_t *mddev, sector_t sectors)
5394 {
5395 	/* no resync is happening, and there is enough space
5396 	 * on all devices, so we can resize.
5397 	 * We need to make sure resync covers any new space.
5398 	 * If the array is shrinking we should possibly wait until
5399 	 * any io in the removed space completes, but it hardly seems
5400 	 * worth it.
5401 	 */
5402 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5403 	md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5404 					       mddev->raid_disks));
5405 	if (mddev->array_sectors >
5406 	    raid5_size(mddev, sectors, mddev->raid_disks))
5407 		return -EINVAL;
5408 	set_capacity(mddev->gendisk, mddev->array_sectors);
5409 	revalidate_disk(mddev->gendisk);
5410 	if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
5411 		mddev->recovery_cp = mddev->dev_sectors;
5412 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5413 	}
5414 	mddev->dev_sectors = sectors;
5415 	mddev->resync_max_sectors = sectors;
5416 	return 0;
5417 }
5418 
5419 static int check_stripe_cache(mddev_t *mddev)
5420 {
5421 	/* Can only proceed if there are plenty of stripe_heads.
5422 	 * We need a minimum of one full stripe,, and for sensible progress
5423 	 * it is best to have about 4 times that.
5424 	 * If we require 4 times, then the default 256 4K stripe_heads will
5425 	 * allow for chunk sizes up to 256K, which is probably OK.
5426 	 * If the chunk size is greater, user-space should request more
5427 	 * stripe_heads first.
5428 	 */
5429 	raid5_conf_t *conf = mddev->private;
5430 	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5431 	    > conf->max_nr_stripes ||
5432 	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5433 	    > conf->max_nr_stripes) {
5434 		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
5435 		       mdname(mddev),
5436 		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5437 			/ STRIPE_SIZE)*4);
5438 		return 0;
5439 	}
5440 	return 1;
5441 }
5442 
5443 static int check_reshape(mddev_t *mddev)
5444 {
5445 	raid5_conf_t *conf = mddev->private;
5446 
5447 	if (mddev->delta_disks == 0 &&
5448 	    mddev->new_layout == mddev->layout &&
5449 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
5450 		return 0; /* nothing to do */
5451 	if (mddev->bitmap)
5452 		/* Cannot grow a bitmap yet */
5453 		return -EBUSY;
5454 	if (has_failed(conf))
5455 		return -EINVAL;
5456 	if (mddev->delta_disks < 0) {
5457 		/* We might be able to shrink, but the devices must
5458 		 * be made bigger first.
5459 		 * For raid6, 4 is the minimum size.
5460 		 * Otherwise 2 is the minimum
5461 		 */
5462 		int min = 2;
5463 		if (mddev->level == 6)
5464 			min = 4;
5465 		if (mddev->raid_disks + mddev->delta_disks < min)
5466 			return -EINVAL;
5467 	}
5468 
5469 	if (!check_stripe_cache(mddev))
5470 		return -ENOSPC;
5471 
5472 	return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5473 }
5474 
5475 static int raid5_start_reshape(mddev_t *mddev)
5476 {
5477 	raid5_conf_t *conf = mddev->private;
5478 	mdk_rdev_t *rdev;
5479 	int spares = 0;
5480 	int added_devices = 0;
5481 	unsigned long flags;
5482 
5483 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5484 		return -EBUSY;
5485 
5486 	if (!check_stripe_cache(mddev))
5487 		return -ENOSPC;
5488 
5489 	list_for_each_entry(rdev, &mddev->disks, same_set)
5490 		if (rdev->raid_disk < 0 &&
5491 		    !test_bit(Faulty, &rdev->flags))
5492 			spares++;
5493 
5494 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5495 		/* Not enough devices even to make a degraded array
5496 		 * of that size
5497 		 */
5498 		return -EINVAL;
5499 
5500 	/* Refuse to reduce size of the array.  Any reductions in
5501 	 * array size must be through explicit setting of array_size
5502 	 * attribute.
5503 	 */
5504 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5505 	    < mddev->array_sectors) {
5506 		printk(KERN_ERR "md/raid:%s: array size must be reduced "
5507 		       "before number of disks\n", mdname(mddev));
5508 		return -EINVAL;
5509 	}
5510 
5511 	atomic_set(&conf->reshape_stripes, 0);
5512 	spin_lock_irq(&conf->device_lock);
5513 	conf->previous_raid_disks = conf->raid_disks;
5514 	conf->raid_disks += mddev->delta_disks;
5515 	conf->prev_chunk_sectors = conf->chunk_sectors;
5516 	conf->chunk_sectors = mddev->new_chunk_sectors;
5517 	conf->prev_algo = conf->algorithm;
5518 	conf->algorithm = mddev->new_layout;
5519 	if (mddev->delta_disks < 0)
5520 		conf->reshape_progress = raid5_size(mddev, 0, 0);
5521 	else
5522 		conf->reshape_progress = 0;
5523 	conf->reshape_safe = conf->reshape_progress;
5524 	conf->generation++;
5525 	spin_unlock_irq(&conf->device_lock);
5526 
5527 	/* Add some new drives, as many as will fit.
5528 	 * We know there are enough to make the newly sized array work.
5529 	 * Don't add devices if we are reducing the number of
5530 	 * devices in the array.  This is because it is not possible
5531 	 * to correctly record the "partially reconstructed" state of
5532 	 * such devices during the reshape and confusion could result.
5533 	 */
5534 	if (mddev->delta_disks >= 0)
5535 	    list_for_each_entry(rdev, &mddev->disks, same_set)
5536 		if (rdev->raid_disk < 0 &&
5537 		    !test_bit(Faulty, &rdev->flags)) {
5538 			if (raid5_add_disk(mddev, rdev) == 0) {
5539 				char nm[20];
5540 				if (rdev->raid_disk >= conf->previous_raid_disks) {
5541 					set_bit(In_sync, &rdev->flags);
5542 					added_devices++;
5543 				} else
5544 					rdev->recovery_offset = 0;
5545 				sprintf(nm, "rd%d", rdev->raid_disk);
5546 				if (sysfs_create_link(&mddev->kobj,
5547 						      &rdev->kobj, nm))
5548 					printk(KERN_WARNING
5549 					       "md/raid:%s: failed to create "
5550 					       " link %s\n",
5551 					       mdname(mddev), nm);
5552 			} else
5553 				break;
5554 		}
5555 
5556 	/* When a reshape changes the number of devices, ->degraded
5557 	 * is measured against the larger of the pre and post number of
5558 	 * devices.*/
5559 	if (mddev->delta_disks > 0) {
5560 		spin_lock_irqsave(&conf->device_lock, flags);
5561 		mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5562 			- added_devices;
5563 		spin_unlock_irqrestore(&conf->device_lock, flags);
5564 	}
5565 	mddev->raid_disks = conf->raid_disks;
5566 	mddev->reshape_position = conf->reshape_progress;
5567 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5568 
5569 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5570 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5571 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5572 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5573 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5574 						"reshape");
5575 	if (!mddev->sync_thread) {
5576 		mddev->recovery = 0;
5577 		spin_lock_irq(&conf->device_lock);
5578 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5579 		conf->reshape_progress = MaxSector;
5580 		spin_unlock_irq(&conf->device_lock);
5581 		return -EAGAIN;
5582 	}
5583 	conf->reshape_checkpoint = jiffies;
5584 	md_wakeup_thread(mddev->sync_thread);
5585 	md_new_event(mddev);
5586 	return 0;
5587 }
5588 
5589 /* This is called from the reshape thread and should make any
5590  * changes needed in 'conf'
5591  */
5592 static void end_reshape(raid5_conf_t *conf)
5593 {
5594 
5595 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5596 
5597 		spin_lock_irq(&conf->device_lock);
5598 		conf->previous_raid_disks = conf->raid_disks;
5599 		conf->reshape_progress = MaxSector;
5600 		spin_unlock_irq(&conf->device_lock);
5601 		wake_up(&conf->wait_for_overlap);
5602 
5603 		/* read-ahead size must cover two whole stripes, which is
5604 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5605 		 */
5606 		{
5607 			int data_disks = conf->raid_disks - conf->max_degraded;
5608 			int stripe = data_disks * ((conf->chunk_sectors << 9)
5609 						   / PAGE_SIZE);
5610 			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5611 				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5612 		}
5613 	}
5614 }
5615 
5616 /* This is called from the raid5d thread with mddev_lock held.
5617  * It makes config changes to the device.
5618  */
5619 static void raid5_finish_reshape(mddev_t *mddev)
5620 {
5621 	raid5_conf_t *conf = mddev->private;
5622 
5623 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5624 
5625 		if (mddev->delta_disks > 0) {
5626 			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5627 			set_capacity(mddev->gendisk, mddev->array_sectors);
5628 			revalidate_disk(mddev->gendisk);
5629 		} else {
5630 			int d;
5631 			mddev->degraded = conf->raid_disks;
5632 			for (d = 0; d < conf->raid_disks ; d++)
5633 				if (conf->disks[d].rdev &&
5634 				    test_bit(In_sync,
5635 					     &conf->disks[d].rdev->flags))
5636 					mddev->degraded--;
5637 			for (d = conf->raid_disks ;
5638 			     d < conf->raid_disks - mddev->delta_disks;
5639 			     d++) {
5640 				mdk_rdev_t *rdev = conf->disks[d].rdev;
5641 				if (rdev && raid5_remove_disk(mddev, d) == 0) {
5642 					char nm[20];
5643 					sprintf(nm, "rd%d", rdev->raid_disk);
5644 					sysfs_remove_link(&mddev->kobj, nm);
5645 					rdev->raid_disk = -1;
5646 				}
5647 			}
5648 		}
5649 		mddev->layout = conf->algorithm;
5650 		mddev->chunk_sectors = conf->chunk_sectors;
5651 		mddev->reshape_position = MaxSector;
5652 		mddev->delta_disks = 0;
5653 	}
5654 }
5655 
5656 static void raid5_quiesce(mddev_t *mddev, int state)
5657 {
5658 	raid5_conf_t *conf = mddev->private;
5659 
5660 	switch(state) {
5661 	case 2: /* resume for a suspend */
5662 		wake_up(&conf->wait_for_overlap);
5663 		break;
5664 
5665 	case 1: /* stop all writes */
5666 		spin_lock_irq(&conf->device_lock);
5667 		/* '2' tells resync/reshape to pause so that all
5668 		 * active stripes can drain
5669 		 */
5670 		conf->quiesce = 2;
5671 		wait_event_lock_irq(conf->wait_for_stripe,
5672 				    atomic_read(&conf->active_stripes) == 0 &&
5673 				    atomic_read(&conf->active_aligned_reads) == 0,
5674 				    conf->device_lock, /* nothing */);
5675 		conf->quiesce = 1;
5676 		spin_unlock_irq(&conf->device_lock);
5677 		/* allow reshape to continue */
5678 		wake_up(&conf->wait_for_overlap);
5679 		break;
5680 
5681 	case 0: /* re-enable writes */
5682 		spin_lock_irq(&conf->device_lock);
5683 		conf->quiesce = 0;
5684 		wake_up(&conf->wait_for_stripe);
5685 		wake_up(&conf->wait_for_overlap);
5686 		spin_unlock_irq(&conf->device_lock);
5687 		break;
5688 	}
5689 }
5690 
5691 
5692 static void *raid45_takeover_raid0(mddev_t *mddev, int level)
5693 {
5694 	struct raid0_private_data *raid0_priv = mddev->private;
5695 
5696 	/* for raid0 takeover only one zone is supported */
5697 	if (raid0_priv->nr_strip_zones > 1) {
5698 		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5699 		       mdname(mddev));
5700 		return ERR_PTR(-EINVAL);
5701 	}
5702 
5703 	mddev->new_level = level;
5704 	mddev->new_layout = ALGORITHM_PARITY_N;
5705 	mddev->new_chunk_sectors = mddev->chunk_sectors;
5706 	mddev->raid_disks += 1;
5707 	mddev->delta_disks = 1;
5708 	/* make sure it will be not marked as dirty */
5709 	mddev->recovery_cp = MaxSector;
5710 
5711 	return setup_conf(mddev);
5712 }
5713 
5714 
5715 static void *raid5_takeover_raid1(mddev_t *mddev)
5716 {
5717 	int chunksect;
5718 
5719 	if (mddev->raid_disks != 2 ||
5720 	    mddev->degraded > 1)
5721 		return ERR_PTR(-EINVAL);
5722 
5723 	/* Should check if there are write-behind devices? */
5724 
5725 	chunksect = 64*2; /* 64K by default */
5726 
5727 	/* The array must be an exact multiple of chunksize */
5728 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
5729 		chunksect >>= 1;
5730 
5731 	if ((chunksect<<9) < STRIPE_SIZE)
5732 		/* array size does not allow a suitable chunk size */
5733 		return ERR_PTR(-EINVAL);
5734 
5735 	mddev->new_level = 5;
5736 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5737 	mddev->new_chunk_sectors = chunksect;
5738 
5739 	return setup_conf(mddev);
5740 }
5741 
5742 static void *raid5_takeover_raid6(mddev_t *mddev)
5743 {
5744 	int new_layout;
5745 
5746 	switch (mddev->layout) {
5747 	case ALGORITHM_LEFT_ASYMMETRIC_6:
5748 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5749 		break;
5750 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
5751 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5752 		break;
5753 	case ALGORITHM_LEFT_SYMMETRIC_6:
5754 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
5755 		break;
5756 	case ALGORITHM_RIGHT_SYMMETRIC_6:
5757 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5758 		break;
5759 	case ALGORITHM_PARITY_0_6:
5760 		new_layout = ALGORITHM_PARITY_0;
5761 		break;
5762 	case ALGORITHM_PARITY_N:
5763 		new_layout = ALGORITHM_PARITY_N;
5764 		break;
5765 	default:
5766 		return ERR_PTR(-EINVAL);
5767 	}
5768 	mddev->new_level = 5;
5769 	mddev->new_layout = new_layout;
5770 	mddev->delta_disks = -1;
5771 	mddev->raid_disks -= 1;
5772 	return setup_conf(mddev);
5773 }
5774 
5775 
5776 static int raid5_check_reshape(mddev_t *mddev)
5777 {
5778 	/* For a 2-drive array, the layout and chunk size can be changed
5779 	 * immediately as not restriping is needed.
5780 	 * For larger arrays we record the new value - after validation
5781 	 * to be used by a reshape pass.
5782 	 */
5783 	raid5_conf_t *conf = mddev->private;
5784 	int new_chunk = mddev->new_chunk_sectors;
5785 
5786 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5787 		return -EINVAL;
5788 	if (new_chunk > 0) {
5789 		if (!is_power_of_2(new_chunk))
5790 			return -EINVAL;
5791 		if (new_chunk < (PAGE_SIZE>>9))
5792 			return -EINVAL;
5793 		if (mddev->array_sectors & (new_chunk-1))
5794 			/* not factor of array size */
5795 			return -EINVAL;
5796 	}
5797 
5798 	/* They look valid */
5799 
5800 	if (mddev->raid_disks == 2) {
5801 		/* can make the change immediately */
5802 		if (mddev->new_layout >= 0) {
5803 			conf->algorithm = mddev->new_layout;
5804 			mddev->layout = mddev->new_layout;
5805 		}
5806 		if (new_chunk > 0) {
5807 			conf->chunk_sectors = new_chunk ;
5808 			mddev->chunk_sectors = new_chunk;
5809 		}
5810 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
5811 		md_wakeup_thread(mddev->thread);
5812 	}
5813 	return check_reshape(mddev);
5814 }
5815 
5816 static int raid6_check_reshape(mddev_t *mddev)
5817 {
5818 	int new_chunk = mddev->new_chunk_sectors;
5819 
5820 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5821 		return -EINVAL;
5822 	if (new_chunk > 0) {
5823 		if (!is_power_of_2(new_chunk))
5824 			return -EINVAL;
5825 		if (new_chunk < (PAGE_SIZE >> 9))
5826 			return -EINVAL;
5827 		if (mddev->array_sectors & (new_chunk-1))
5828 			/* not factor of array size */
5829 			return -EINVAL;
5830 	}
5831 
5832 	/* They look valid */
5833 	return check_reshape(mddev);
5834 }
5835 
5836 static void *raid5_takeover(mddev_t *mddev)
5837 {
5838 	/* raid5 can take over:
5839 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
5840 	 *  raid1 - if there are two drives.  We need to know the chunk size
5841 	 *  raid4 - trivial - just use a raid4 layout.
5842 	 *  raid6 - Providing it is a *_6 layout
5843 	 */
5844 	if (mddev->level == 0)
5845 		return raid45_takeover_raid0(mddev, 5);
5846 	if (mddev->level == 1)
5847 		return raid5_takeover_raid1(mddev);
5848 	if (mddev->level == 4) {
5849 		mddev->new_layout = ALGORITHM_PARITY_N;
5850 		mddev->new_level = 5;
5851 		return setup_conf(mddev);
5852 	}
5853 	if (mddev->level == 6)
5854 		return raid5_takeover_raid6(mddev);
5855 
5856 	return ERR_PTR(-EINVAL);
5857 }
5858 
5859 static void *raid4_takeover(mddev_t *mddev)
5860 {
5861 	/* raid4 can take over:
5862 	 *  raid0 - if there is only one strip zone
5863 	 *  raid5 - if layout is right
5864 	 */
5865 	if (mddev->level == 0)
5866 		return raid45_takeover_raid0(mddev, 4);
5867 	if (mddev->level == 5 &&
5868 	    mddev->layout == ALGORITHM_PARITY_N) {
5869 		mddev->new_layout = 0;
5870 		mddev->new_level = 4;
5871 		return setup_conf(mddev);
5872 	}
5873 	return ERR_PTR(-EINVAL);
5874 }
5875 
5876 static struct mdk_personality raid5_personality;
5877 
5878 static void *raid6_takeover(mddev_t *mddev)
5879 {
5880 	/* Currently can only take over a raid5.  We map the
5881 	 * personality to an equivalent raid6 personality
5882 	 * with the Q block at the end.
5883 	 */
5884 	int new_layout;
5885 
5886 	if (mddev->pers != &raid5_personality)
5887 		return ERR_PTR(-EINVAL);
5888 	if (mddev->degraded > 1)
5889 		return ERR_PTR(-EINVAL);
5890 	if (mddev->raid_disks > 253)
5891 		return ERR_PTR(-EINVAL);
5892 	if (mddev->raid_disks < 3)
5893 		return ERR_PTR(-EINVAL);
5894 
5895 	switch (mddev->layout) {
5896 	case ALGORITHM_LEFT_ASYMMETRIC:
5897 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5898 		break;
5899 	case ALGORITHM_RIGHT_ASYMMETRIC:
5900 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5901 		break;
5902 	case ALGORITHM_LEFT_SYMMETRIC:
5903 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5904 		break;
5905 	case ALGORITHM_RIGHT_SYMMETRIC:
5906 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5907 		break;
5908 	case ALGORITHM_PARITY_0:
5909 		new_layout = ALGORITHM_PARITY_0_6;
5910 		break;
5911 	case ALGORITHM_PARITY_N:
5912 		new_layout = ALGORITHM_PARITY_N;
5913 		break;
5914 	default:
5915 		return ERR_PTR(-EINVAL);
5916 	}
5917 	mddev->new_level = 6;
5918 	mddev->new_layout = new_layout;
5919 	mddev->delta_disks = 1;
5920 	mddev->raid_disks += 1;
5921 	return setup_conf(mddev);
5922 }
5923 
5924 
5925 static struct mdk_personality raid6_personality =
5926 {
5927 	.name		= "raid6",
5928 	.level		= 6,
5929 	.owner		= THIS_MODULE,
5930 	.make_request	= make_request,
5931 	.run		= run,
5932 	.stop		= stop,
5933 	.status		= status,
5934 	.error_handler	= error,
5935 	.hot_add_disk	= raid5_add_disk,
5936 	.hot_remove_disk= raid5_remove_disk,
5937 	.spare_active	= raid5_spare_active,
5938 	.sync_request	= sync_request,
5939 	.resize		= raid5_resize,
5940 	.size		= raid5_size,
5941 	.check_reshape	= raid6_check_reshape,
5942 	.start_reshape  = raid5_start_reshape,
5943 	.finish_reshape = raid5_finish_reshape,
5944 	.quiesce	= raid5_quiesce,
5945 	.takeover	= raid6_takeover,
5946 };
5947 static struct mdk_personality raid5_personality =
5948 {
5949 	.name		= "raid5",
5950 	.level		= 5,
5951 	.owner		= THIS_MODULE,
5952 	.make_request	= make_request,
5953 	.run		= run,
5954 	.stop		= stop,
5955 	.status		= status,
5956 	.error_handler	= error,
5957 	.hot_add_disk	= raid5_add_disk,
5958 	.hot_remove_disk= raid5_remove_disk,
5959 	.spare_active	= raid5_spare_active,
5960 	.sync_request	= sync_request,
5961 	.resize		= raid5_resize,
5962 	.size		= raid5_size,
5963 	.check_reshape	= raid5_check_reshape,
5964 	.start_reshape  = raid5_start_reshape,
5965 	.finish_reshape = raid5_finish_reshape,
5966 	.quiesce	= raid5_quiesce,
5967 	.takeover	= raid5_takeover,
5968 };
5969 
5970 static struct mdk_personality raid4_personality =
5971 {
5972 	.name		= "raid4",
5973 	.level		= 4,
5974 	.owner		= THIS_MODULE,
5975 	.make_request	= make_request,
5976 	.run		= run,
5977 	.stop		= stop,
5978 	.status		= status,
5979 	.error_handler	= error,
5980 	.hot_add_disk	= raid5_add_disk,
5981 	.hot_remove_disk= raid5_remove_disk,
5982 	.spare_active	= raid5_spare_active,
5983 	.sync_request	= sync_request,
5984 	.resize		= raid5_resize,
5985 	.size		= raid5_size,
5986 	.check_reshape	= raid5_check_reshape,
5987 	.start_reshape  = raid5_start_reshape,
5988 	.finish_reshape = raid5_finish_reshape,
5989 	.quiesce	= raid5_quiesce,
5990 	.takeover	= raid4_takeover,
5991 };
5992 
5993 static int __init raid5_init(void)
5994 {
5995 	register_md_personality(&raid6_personality);
5996 	register_md_personality(&raid5_personality);
5997 	register_md_personality(&raid4_personality);
5998 	return 0;
5999 }
6000 
6001 static void raid5_exit(void)
6002 {
6003 	unregister_md_personality(&raid6_personality);
6004 	unregister_md_personality(&raid5_personality);
6005 	unregister_md_personality(&raid4_personality);
6006 }
6007 
6008 module_init(raid5_init);
6009 module_exit(raid5_exit);
6010 MODULE_LICENSE("GPL");
6011 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6012 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6013 MODULE_ALIAS("md-raid5");
6014 MODULE_ALIAS("md-raid4");
6015 MODULE_ALIAS("md-level-5");
6016 MODULE_ALIAS("md-level-4");
6017 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6018 MODULE_ALIAS("md-raid6");
6019 MODULE_ALIAS("md-level-6");
6020 
6021 /* This used to be two separate modules, they were: */
6022 MODULE_ALIAS("raid5");
6023 MODULE_ALIAS("raid6");
6024