xref: /linux/drivers/md/raid5.c (revision 30614cf34105c5b5b9a39c65a2ea32c58b03aa8e)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <trace/events/block.h>
58 
59 #include "md.h"
60 #include "raid5.h"
61 #include "raid0.h"
62 #include "bitmap.h"
63 
64 #define cpu_to_group(cpu) cpu_to_node(cpu)
65 #define ANY_GROUP NUMA_NO_NODE
66 
67 static bool devices_handle_discard_safely = false;
68 module_param(devices_handle_discard_safely, bool, 0644);
69 MODULE_PARM_DESC(devices_handle_discard_safely,
70 		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
71 static struct workqueue_struct *raid5_wq;
72 /*
73  * Stripe cache
74  */
75 
76 #define NR_STRIPES		256
77 #define STRIPE_SIZE		PAGE_SIZE
78 #define STRIPE_SHIFT		(PAGE_SHIFT - 9)
79 #define STRIPE_SECTORS		(STRIPE_SIZE>>9)
80 #define	IO_THRESHOLD		1
81 #define BYPASS_THRESHOLD	1
82 #define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
83 #define HASH_MASK		(NR_HASH - 1)
84 #define MAX_STRIPE_BATCH	8
85 
86 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
87 {
88 	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
89 	return &conf->stripe_hashtbl[hash];
90 }
91 
92 static inline int stripe_hash_locks_hash(sector_t sect)
93 {
94 	return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
95 }
96 
97 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
98 {
99 	spin_lock_irq(conf->hash_locks + hash);
100 	spin_lock(&conf->device_lock);
101 }
102 
103 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
104 {
105 	spin_unlock(&conf->device_lock);
106 	spin_unlock_irq(conf->hash_locks + hash);
107 }
108 
109 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
110 {
111 	int i;
112 	local_irq_disable();
113 	spin_lock(conf->hash_locks);
114 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
115 		spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
116 	spin_lock(&conf->device_lock);
117 }
118 
119 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
120 {
121 	int i;
122 	spin_unlock(&conf->device_lock);
123 	for (i = NR_STRIPE_HASH_LOCKS; i; i--)
124 		spin_unlock(conf->hash_locks + i - 1);
125 	local_irq_enable();
126 }
127 
128 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
129  * order without overlap.  There may be several bio's per stripe+device, and
130  * a bio could span several devices.
131  * When walking this list for a particular stripe+device, we must never proceed
132  * beyond a bio that extends past this device, as the next bio might no longer
133  * be valid.
134  * This function is used to determine the 'next' bio in the list, given the sector
135  * of the current stripe+device
136  */
137 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
138 {
139 	int sectors = bio_sectors(bio);
140 	if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
141 		return bio->bi_next;
142 	else
143 		return NULL;
144 }
145 
146 /*
147  * We maintain a biased count of active stripes in the bottom 16 bits of
148  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
149  */
150 static inline int raid5_bi_processed_stripes(struct bio *bio)
151 {
152 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
153 	return (atomic_read(segments) >> 16) & 0xffff;
154 }
155 
156 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
157 {
158 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
159 	return atomic_sub_return(1, segments) & 0xffff;
160 }
161 
162 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
163 {
164 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
165 	atomic_inc(segments);
166 }
167 
168 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
169 	unsigned int cnt)
170 {
171 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
172 	int old, new;
173 
174 	do {
175 		old = atomic_read(segments);
176 		new = (old & 0xffff) | (cnt << 16);
177 	} while (atomic_cmpxchg(segments, old, new) != old);
178 }
179 
180 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
181 {
182 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
183 	atomic_set(segments, cnt);
184 }
185 
186 /* Find first data disk in a raid6 stripe */
187 static inline int raid6_d0(struct stripe_head *sh)
188 {
189 	if (sh->ddf_layout)
190 		/* ddf always start from first device */
191 		return 0;
192 	/* md starts just after Q block */
193 	if (sh->qd_idx == sh->disks - 1)
194 		return 0;
195 	else
196 		return sh->qd_idx + 1;
197 }
198 static inline int raid6_next_disk(int disk, int raid_disks)
199 {
200 	disk++;
201 	return (disk < raid_disks) ? disk : 0;
202 }
203 
204 /* When walking through the disks in a raid5, starting at raid6_d0,
205  * We need to map each disk to a 'slot', where the data disks are slot
206  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
207  * is raid_disks-1.  This help does that mapping.
208  */
209 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
210 			     int *count, int syndrome_disks)
211 {
212 	int slot = *count;
213 
214 	if (sh->ddf_layout)
215 		(*count)++;
216 	if (idx == sh->pd_idx)
217 		return syndrome_disks;
218 	if (idx == sh->qd_idx)
219 		return syndrome_disks + 1;
220 	if (!sh->ddf_layout)
221 		(*count)++;
222 	return slot;
223 }
224 
225 static void return_io(struct bio *return_bi)
226 {
227 	struct bio *bi = return_bi;
228 	while (bi) {
229 
230 		return_bi = bi->bi_next;
231 		bi->bi_next = NULL;
232 		bi->bi_iter.bi_size = 0;
233 		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
234 					 bi, 0);
235 		bio_endio(bi, 0);
236 		bi = return_bi;
237 	}
238 }
239 
240 static void print_raid5_conf (struct r5conf *conf);
241 
242 static int stripe_operations_active(struct stripe_head *sh)
243 {
244 	return sh->check_state || sh->reconstruct_state ||
245 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
246 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
247 }
248 
249 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
250 {
251 	struct r5conf *conf = sh->raid_conf;
252 	struct r5worker_group *group;
253 	int thread_cnt;
254 	int i, cpu = sh->cpu;
255 
256 	if (!cpu_online(cpu)) {
257 		cpu = cpumask_any(cpu_online_mask);
258 		sh->cpu = cpu;
259 	}
260 
261 	if (list_empty(&sh->lru)) {
262 		struct r5worker_group *group;
263 		group = conf->worker_groups + cpu_to_group(cpu);
264 		list_add_tail(&sh->lru, &group->handle_list);
265 		group->stripes_cnt++;
266 		sh->group = group;
267 	}
268 
269 	if (conf->worker_cnt_per_group == 0) {
270 		md_wakeup_thread(conf->mddev->thread);
271 		return;
272 	}
273 
274 	group = conf->worker_groups + cpu_to_group(sh->cpu);
275 
276 	group->workers[0].working = true;
277 	/* at least one worker should run to avoid race */
278 	queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
279 
280 	thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
281 	/* wakeup more workers */
282 	for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
283 		if (group->workers[i].working == false) {
284 			group->workers[i].working = true;
285 			queue_work_on(sh->cpu, raid5_wq,
286 				      &group->workers[i].work);
287 			thread_cnt--;
288 		}
289 	}
290 }
291 
292 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
293 			      struct list_head *temp_inactive_list)
294 {
295 	BUG_ON(!list_empty(&sh->lru));
296 	BUG_ON(atomic_read(&conf->active_stripes)==0);
297 	if (test_bit(STRIPE_HANDLE, &sh->state)) {
298 		if (test_bit(STRIPE_DELAYED, &sh->state) &&
299 		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
300 			list_add_tail(&sh->lru, &conf->delayed_list);
301 			if (atomic_read(&conf->preread_active_stripes)
302 			    < IO_THRESHOLD)
303 				md_wakeup_thread(conf->mddev->thread);
304 		} else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
305 			   sh->bm_seq - conf->seq_write > 0)
306 			list_add_tail(&sh->lru, &conf->bitmap_list);
307 		else {
308 			clear_bit(STRIPE_DELAYED, &sh->state);
309 			clear_bit(STRIPE_BIT_DELAY, &sh->state);
310 			if (conf->worker_cnt_per_group == 0) {
311 				list_add_tail(&sh->lru, &conf->handle_list);
312 			} else {
313 				raid5_wakeup_stripe_thread(sh);
314 				return;
315 			}
316 		}
317 		md_wakeup_thread(conf->mddev->thread);
318 	} else {
319 		BUG_ON(stripe_operations_active(sh));
320 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
321 			if (atomic_dec_return(&conf->preread_active_stripes)
322 			    < IO_THRESHOLD)
323 				md_wakeup_thread(conf->mddev->thread);
324 		atomic_dec(&conf->active_stripes);
325 		if (!test_bit(STRIPE_EXPANDING, &sh->state))
326 			list_add_tail(&sh->lru, temp_inactive_list);
327 	}
328 }
329 
330 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
331 			     struct list_head *temp_inactive_list)
332 {
333 	if (atomic_dec_and_test(&sh->count))
334 		do_release_stripe(conf, sh, temp_inactive_list);
335 }
336 
337 /*
338  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
339  *
340  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
341  * given time. Adding stripes only takes device lock, while deleting stripes
342  * only takes hash lock.
343  */
344 static void release_inactive_stripe_list(struct r5conf *conf,
345 					 struct list_head *temp_inactive_list,
346 					 int hash)
347 {
348 	int size;
349 	bool do_wakeup = false;
350 	unsigned long flags;
351 
352 	if (hash == NR_STRIPE_HASH_LOCKS) {
353 		size = NR_STRIPE_HASH_LOCKS;
354 		hash = NR_STRIPE_HASH_LOCKS - 1;
355 	} else
356 		size = 1;
357 	while (size) {
358 		struct list_head *list = &temp_inactive_list[size - 1];
359 
360 		/*
361 		 * We don't hold any lock here yet, get_active_stripe() might
362 		 * remove stripes from the list
363 		 */
364 		if (!list_empty_careful(list)) {
365 			spin_lock_irqsave(conf->hash_locks + hash, flags);
366 			if (list_empty(conf->inactive_list + hash) &&
367 			    !list_empty(list))
368 				atomic_dec(&conf->empty_inactive_list_nr);
369 			list_splice_tail_init(list, conf->inactive_list + hash);
370 			do_wakeup = true;
371 			spin_unlock_irqrestore(conf->hash_locks + hash, flags);
372 		}
373 		size--;
374 		hash--;
375 	}
376 
377 	if (do_wakeup) {
378 		wake_up(&conf->wait_for_stripe);
379 		if (conf->retry_read_aligned)
380 			md_wakeup_thread(conf->mddev->thread);
381 	}
382 }
383 
384 /* should hold conf->device_lock already */
385 static int release_stripe_list(struct r5conf *conf,
386 			       struct list_head *temp_inactive_list)
387 {
388 	struct stripe_head *sh;
389 	int count = 0;
390 	struct llist_node *head;
391 
392 	head = llist_del_all(&conf->released_stripes);
393 	head = llist_reverse_order(head);
394 	while (head) {
395 		int hash;
396 
397 		sh = llist_entry(head, struct stripe_head, release_list);
398 		head = llist_next(head);
399 		/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
400 		smp_mb();
401 		clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
402 		/*
403 		 * Don't worry the bit is set here, because if the bit is set
404 		 * again, the count is always > 1. This is true for
405 		 * STRIPE_ON_UNPLUG_LIST bit too.
406 		 */
407 		hash = sh->hash_lock_index;
408 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
409 		count++;
410 	}
411 
412 	return count;
413 }
414 
415 static void release_stripe(struct stripe_head *sh)
416 {
417 	struct r5conf *conf = sh->raid_conf;
418 	unsigned long flags;
419 	struct list_head list;
420 	int hash;
421 	bool wakeup;
422 
423 	/* Avoid release_list until the last reference.
424 	 */
425 	if (atomic_add_unless(&sh->count, -1, 1))
426 		return;
427 
428 	if (unlikely(!conf->mddev->thread) ||
429 		test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
430 		goto slow_path;
431 	wakeup = llist_add(&sh->release_list, &conf->released_stripes);
432 	if (wakeup)
433 		md_wakeup_thread(conf->mddev->thread);
434 	return;
435 slow_path:
436 	local_irq_save(flags);
437 	/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
438 	if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
439 		INIT_LIST_HEAD(&list);
440 		hash = sh->hash_lock_index;
441 		do_release_stripe(conf, sh, &list);
442 		spin_unlock(&conf->device_lock);
443 		release_inactive_stripe_list(conf, &list, hash);
444 	}
445 	local_irq_restore(flags);
446 }
447 
448 static inline void remove_hash(struct stripe_head *sh)
449 {
450 	pr_debug("remove_hash(), stripe %llu\n",
451 		(unsigned long long)sh->sector);
452 
453 	hlist_del_init(&sh->hash);
454 }
455 
456 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
457 {
458 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
459 
460 	pr_debug("insert_hash(), stripe %llu\n",
461 		(unsigned long long)sh->sector);
462 
463 	hlist_add_head(&sh->hash, hp);
464 }
465 
466 
467 /* find an idle stripe, make sure it is unhashed, and return it. */
468 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
469 {
470 	struct stripe_head *sh = NULL;
471 	struct list_head *first;
472 
473 	if (list_empty(conf->inactive_list + hash))
474 		goto out;
475 	first = (conf->inactive_list + hash)->next;
476 	sh = list_entry(first, struct stripe_head, lru);
477 	list_del_init(first);
478 	remove_hash(sh);
479 	atomic_inc(&conf->active_stripes);
480 	BUG_ON(hash != sh->hash_lock_index);
481 	if (list_empty(conf->inactive_list + hash))
482 		atomic_inc(&conf->empty_inactive_list_nr);
483 out:
484 	return sh;
485 }
486 
487 static void shrink_buffers(struct stripe_head *sh)
488 {
489 	struct page *p;
490 	int i;
491 	int num = sh->raid_conf->pool_size;
492 
493 	for (i = 0; i < num ; i++) {
494 		WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
495 		p = sh->dev[i].page;
496 		if (!p)
497 			continue;
498 		sh->dev[i].page = NULL;
499 		put_page(p);
500 	}
501 }
502 
503 static int grow_buffers(struct stripe_head *sh)
504 {
505 	int i;
506 	int num = sh->raid_conf->pool_size;
507 
508 	for (i = 0; i < num; i++) {
509 		struct page *page;
510 
511 		if (!(page = alloc_page(GFP_KERNEL))) {
512 			return 1;
513 		}
514 		sh->dev[i].page = page;
515 		sh->dev[i].orig_page = page;
516 	}
517 	return 0;
518 }
519 
520 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
521 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
522 			    struct stripe_head *sh);
523 
524 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
525 {
526 	struct r5conf *conf = sh->raid_conf;
527 	int i, seq;
528 
529 	BUG_ON(atomic_read(&sh->count) != 0);
530 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
531 	BUG_ON(stripe_operations_active(sh));
532 
533 	pr_debug("init_stripe called, stripe %llu\n",
534 		(unsigned long long)sh->sector);
535 
536 	remove_hash(sh);
537 retry:
538 	seq = read_seqcount_begin(&conf->gen_lock);
539 	sh->generation = conf->generation - previous;
540 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
541 	sh->sector = sector;
542 	stripe_set_idx(sector, conf, previous, sh);
543 	sh->state = 0;
544 
545 
546 	for (i = sh->disks; i--; ) {
547 		struct r5dev *dev = &sh->dev[i];
548 
549 		if (dev->toread || dev->read || dev->towrite || dev->written ||
550 		    test_bit(R5_LOCKED, &dev->flags)) {
551 			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
552 			       (unsigned long long)sh->sector, i, dev->toread,
553 			       dev->read, dev->towrite, dev->written,
554 			       test_bit(R5_LOCKED, &dev->flags));
555 			WARN_ON(1);
556 		}
557 		dev->flags = 0;
558 		raid5_build_block(sh, i, previous);
559 	}
560 	if (read_seqcount_retry(&conf->gen_lock, seq))
561 		goto retry;
562 	insert_hash(conf, sh);
563 	sh->cpu = smp_processor_id();
564 }
565 
566 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
567 					 short generation)
568 {
569 	struct stripe_head *sh;
570 
571 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
572 	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
573 		if (sh->sector == sector && sh->generation == generation)
574 			return sh;
575 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
576 	return NULL;
577 }
578 
579 /*
580  * Need to check if array has failed when deciding whether to:
581  *  - start an array
582  *  - remove non-faulty devices
583  *  - add a spare
584  *  - allow a reshape
585  * This determination is simple when no reshape is happening.
586  * However if there is a reshape, we need to carefully check
587  * both the before and after sections.
588  * This is because some failed devices may only affect one
589  * of the two sections, and some non-in_sync devices may
590  * be insync in the section most affected by failed devices.
591  */
592 static int calc_degraded(struct r5conf *conf)
593 {
594 	int degraded, degraded2;
595 	int i;
596 
597 	rcu_read_lock();
598 	degraded = 0;
599 	for (i = 0; i < conf->previous_raid_disks; i++) {
600 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
601 		if (rdev && test_bit(Faulty, &rdev->flags))
602 			rdev = rcu_dereference(conf->disks[i].replacement);
603 		if (!rdev || test_bit(Faulty, &rdev->flags))
604 			degraded++;
605 		else if (test_bit(In_sync, &rdev->flags))
606 			;
607 		else
608 			/* not in-sync or faulty.
609 			 * If the reshape increases the number of devices,
610 			 * this is being recovered by the reshape, so
611 			 * this 'previous' section is not in_sync.
612 			 * If the number of devices is being reduced however,
613 			 * the device can only be part of the array if
614 			 * we are reverting a reshape, so this section will
615 			 * be in-sync.
616 			 */
617 			if (conf->raid_disks >= conf->previous_raid_disks)
618 				degraded++;
619 	}
620 	rcu_read_unlock();
621 	if (conf->raid_disks == conf->previous_raid_disks)
622 		return degraded;
623 	rcu_read_lock();
624 	degraded2 = 0;
625 	for (i = 0; i < conf->raid_disks; i++) {
626 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
627 		if (rdev && test_bit(Faulty, &rdev->flags))
628 			rdev = rcu_dereference(conf->disks[i].replacement);
629 		if (!rdev || test_bit(Faulty, &rdev->flags))
630 			degraded2++;
631 		else if (test_bit(In_sync, &rdev->flags))
632 			;
633 		else
634 			/* not in-sync or faulty.
635 			 * If reshape increases the number of devices, this
636 			 * section has already been recovered, else it
637 			 * almost certainly hasn't.
638 			 */
639 			if (conf->raid_disks <= conf->previous_raid_disks)
640 				degraded2++;
641 	}
642 	rcu_read_unlock();
643 	if (degraded2 > degraded)
644 		return degraded2;
645 	return degraded;
646 }
647 
648 static int has_failed(struct r5conf *conf)
649 {
650 	int degraded;
651 
652 	if (conf->mddev->reshape_position == MaxSector)
653 		return conf->mddev->degraded > conf->max_degraded;
654 
655 	degraded = calc_degraded(conf);
656 	if (degraded > conf->max_degraded)
657 		return 1;
658 	return 0;
659 }
660 
661 static struct stripe_head *
662 get_active_stripe(struct r5conf *conf, sector_t sector,
663 		  int previous, int noblock, int noquiesce)
664 {
665 	struct stripe_head *sh;
666 	int hash = stripe_hash_locks_hash(sector);
667 
668 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
669 
670 	spin_lock_irq(conf->hash_locks + hash);
671 
672 	do {
673 		wait_event_lock_irq(conf->wait_for_stripe,
674 				    conf->quiesce == 0 || noquiesce,
675 				    *(conf->hash_locks + hash));
676 		sh = __find_stripe(conf, sector, conf->generation - previous);
677 		if (!sh) {
678 			if (!conf->inactive_blocked)
679 				sh = get_free_stripe(conf, hash);
680 			if (noblock && sh == NULL)
681 				break;
682 			if (!sh) {
683 				conf->inactive_blocked = 1;
684 				wait_event_lock_irq(
685 					conf->wait_for_stripe,
686 					!list_empty(conf->inactive_list + hash) &&
687 					(atomic_read(&conf->active_stripes)
688 					 < (conf->max_nr_stripes * 3 / 4)
689 					 || !conf->inactive_blocked),
690 					*(conf->hash_locks + hash));
691 				conf->inactive_blocked = 0;
692 			} else {
693 				init_stripe(sh, sector, previous);
694 				atomic_inc(&sh->count);
695 			}
696 		} else if (!atomic_inc_not_zero(&sh->count)) {
697 			spin_lock(&conf->device_lock);
698 			if (!atomic_read(&sh->count)) {
699 				if (!test_bit(STRIPE_HANDLE, &sh->state))
700 					atomic_inc(&conf->active_stripes);
701 				BUG_ON(list_empty(&sh->lru) &&
702 				       !test_bit(STRIPE_EXPANDING, &sh->state));
703 				list_del_init(&sh->lru);
704 				if (sh->group) {
705 					sh->group->stripes_cnt--;
706 					sh->group = NULL;
707 				}
708 			}
709 			atomic_inc(&sh->count);
710 			spin_unlock(&conf->device_lock);
711 		}
712 	} while (sh == NULL);
713 
714 	spin_unlock_irq(conf->hash_locks + hash);
715 	return sh;
716 }
717 
718 /* Determine if 'data_offset' or 'new_data_offset' should be used
719  * in this stripe_head.
720  */
721 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
722 {
723 	sector_t progress = conf->reshape_progress;
724 	/* Need a memory barrier to make sure we see the value
725 	 * of conf->generation, or ->data_offset that was set before
726 	 * reshape_progress was updated.
727 	 */
728 	smp_rmb();
729 	if (progress == MaxSector)
730 		return 0;
731 	if (sh->generation == conf->generation - 1)
732 		return 0;
733 	/* We are in a reshape, and this is a new-generation stripe,
734 	 * so use new_data_offset.
735 	 */
736 	return 1;
737 }
738 
739 static void
740 raid5_end_read_request(struct bio *bi, int error);
741 static void
742 raid5_end_write_request(struct bio *bi, int error);
743 
744 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
745 {
746 	struct r5conf *conf = sh->raid_conf;
747 	int i, disks = sh->disks;
748 
749 	might_sleep();
750 
751 	for (i = disks; i--; ) {
752 		int rw;
753 		int replace_only = 0;
754 		struct bio *bi, *rbi;
755 		struct md_rdev *rdev, *rrdev = NULL;
756 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
757 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
758 				rw = WRITE_FUA;
759 			else
760 				rw = WRITE;
761 			if (test_bit(R5_Discard, &sh->dev[i].flags))
762 				rw |= REQ_DISCARD;
763 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
764 			rw = READ;
765 		else if (test_and_clear_bit(R5_WantReplace,
766 					    &sh->dev[i].flags)) {
767 			rw = WRITE;
768 			replace_only = 1;
769 		} else
770 			continue;
771 		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
772 			rw |= REQ_SYNC;
773 
774 		bi = &sh->dev[i].req;
775 		rbi = &sh->dev[i].rreq; /* For writing to replacement */
776 
777 		rcu_read_lock();
778 		rrdev = rcu_dereference(conf->disks[i].replacement);
779 		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
780 		rdev = rcu_dereference(conf->disks[i].rdev);
781 		if (!rdev) {
782 			rdev = rrdev;
783 			rrdev = NULL;
784 		}
785 		if (rw & WRITE) {
786 			if (replace_only)
787 				rdev = NULL;
788 			if (rdev == rrdev)
789 				/* We raced and saw duplicates */
790 				rrdev = NULL;
791 		} else {
792 			if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
793 				rdev = rrdev;
794 			rrdev = NULL;
795 		}
796 
797 		if (rdev && test_bit(Faulty, &rdev->flags))
798 			rdev = NULL;
799 		if (rdev)
800 			atomic_inc(&rdev->nr_pending);
801 		if (rrdev && test_bit(Faulty, &rrdev->flags))
802 			rrdev = NULL;
803 		if (rrdev)
804 			atomic_inc(&rrdev->nr_pending);
805 		rcu_read_unlock();
806 
807 		/* We have already checked bad blocks for reads.  Now
808 		 * need to check for writes.  We never accept write errors
809 		 * on the replacement, so we don't to check rrdev.
810 		 */
811 		while ((rw & WRITE) && rdev &&
812 		       test_bit(WriteErrorSeen, &rdev->flags)) {
813 			sector_t first_bad;
814 			int bad_sectors;
815 			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
816 					      &first_bad, &bad_sectors);
817 			if (!bad)
818 				break;
819 
820 			if (bad < 0) {
821 				set_bit(BlockedBadBlocks, &rdev->flags);
822 				if (!conf->mddev->external &&
823 				    conf->mddev->flags) {
824 					/* It is very unlikely, but we might
825 					 * still need to write out the
826 					 * bad block log - better give it
827 					 * a chance*/
828 					md_check_recovery(conf->mddev);
829 				}
830 				/*
831 				 * Because md_wait_for_blocked_rdev
832 				 * will dec nr_pending, we must
833 				 * increment it first.
834 				 */
835 				atomic_inc(&rdev->nr_pending);
836 				md_wait_for_blocked_rdev(rdev, conf->mddev);
837 			} else {
838 				/* Acknowledged bad block - skip the write */
839 				rdev_dec_pending(rdev, conf->mddev);
840 				rdev = NULL;
841 			}
842 		}
843 
844 		if (rdev) {
845 			if (s->syncing || s->expanding || s->expanded
846 			    || s->replacing)
847 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
848 
849 			set_bit(STRIPE_IO_STARTED, &sh->state);
850 
851 			bio_reset(bi);
852 			bi->bi_bdev = rdev->bdev;
853 			bi->bi_rw = rw;
854 			bi->bi_end_io = (rw & WRITE)
855 				? raid5_end_write_request
856 				: raid5_end_read_request;
857 			bi->bi_private = sh;
858 
859 			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
860 				__func__, (unsigned long long)sh->sector,
861 				bi->bi_rw, i);
862 			atomic_inc(&sh->count);
863 			if (use_new_offset(conf, sh))
864 				bi->bi_iter.bi_sector = (sh->sector
865 						 + rdev->new_data_offset);
866 			else
867 				bi->bi_iter.bi_sector = (sh->sector
868 						 + rdev->data_offset);
869 			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
870 				bi->bi_rw |= REQ_NOMERGE;
871 
872 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
873 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
874 			sh->dev[i].vec.bv_page = sh->dev[i].page;
875 			bi->bi_vcnt = 1;
876 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
877 			bi->bi_io_vec[0].bv_offset = 0;
878 			bi->bi_iter.bi_size = STRIPE_SIZE;
879 			/*
880 			 * If this is discard request, set bi_vcnt 0. We don't
881 			 * want to confuse SCSI because SCSI will replace payload
882 			 */
883 			if (rw & REQ_DISCARD)
884 				bi->bi_vcnt = 0;
885 			if (rrdev)
886 				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
887 
888 			if (conf->mddev->gendisk)
889 				trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
890 						      bi, disk_devt(conf->mddev->gendisk),
891 						      sh->dev[i].sector);
892 			generic_make_request(bi);
893 		}
894 		if (rrdev) {
895 			if (s->syncing || s->expanding || s->expanded
896 			    || s->replacing)
897 				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
898 
899 			set_bit(STRIPE_IO_STARTED, &sh->state);
900 
901 			bio_reset(rbi);
902 			rbi->bi_bdev = rrdev->bdev;
903 			rbi->bi_rw = rw;
904 			BUG_ON(!(rw & WRITE));
905 			rbi->bi_end_io = raid5_end_write_request;
906 			rbi->bi_private = sh;
907 
908 			pr_debug("%s: for %llu schedule op %ld on "
909 				 "replacement disc %d\n",
910 				__func__, (unsigned long long)sh->sector,
911 				rbi->bi_rw, i);
912 			atomic_inc(&sh->count);
913 			if (use_new_offset(conf, sh))
914 				rbi->bi_iter.bi_sector = (sh->sector
915 						  + rrdev->new_data_offset);
916 			else
917 				rbi->bi_iter.bi_sector = (sh->sector
918 						  + rrdev->data_offset);
919 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
920 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
921 			sh->dev[i].rvec.bv_page = sh->dev[i].page;
922 			rbi->bi_vcnt = 1;
923 			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
924 			rbi->bi_io_vec[0].bv_offset = 0;
925 			rbi->bi_iter.bi_size = STRIPE_SIZE;
926 			/*
927 			 * If this is discard request, set bi_vcnt 0. We don't
928 			 * want to confuse SCSI because SCSI will replace payload
929 			 */
930 			if (rw & REQ_DISCARD)
931 				rbi->bi_vcnt = 0;
932 			if (conf->mddev->gendisk)
933 				trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
934 						      rbi, disk_devt(conf->mddev->gendisk),
935 						      sh->dev[i].sector);
936 			generic_make_request(rbi);
937 		}
938 		if (!rdev && !rrdev) {
939 			if (rw & WRITE)
940 				set_bit(STRIPE_DEGRADED, &sh->state);
941 			pr_debug("skip op %ld on disc %d for sector %llu\n",
942 				bi->bi_rw, i, (unsigned long long)sh->sector);
943 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
944 			set_bit(STRIPE_HANDLE, &sh->state);
945 		}
946 	}
947 }
948 
949 static struct dma_async_tx_descriptor *
950 async_copy_data(int frombio, struct bio *bio, struct page **page,
951 	sector_t sector, struct dma_async_tx_descriptor *tx,
952 	struct stripe_head *sh)
953 {
954 	struct bio_vec bvl;
955 	struct bvec_iter iter;
956 	struct page *bio_page;
957 	int page_offset;
958 	struct async_submit_ctl submit;
959 	enum async_tx_flags flags = 0;
960 
961 	if (bio->bi_iter.bi_sector >= sector)
962 		page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
963 	else
964 		page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
965 
966 	if (frombio)
967 		flags |= ASYNC_TX_FENCE;
968 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
969 
970 	bio_for_each_segment(bvl, bio, iter) {
971 		int len = bvl.bv_len;
972 		int clen;
973 		int b_offset = 0;
974 
975 		if (page_offset < 0) {
976 			b_offset = -page_offset;
977 			page_offset += b_offset;
978 			len -= b_offset;
979 		}
980 
981 		if (len > 0 && page_offset + len > STRIPE_SIZE)
982 			clen = STRIPE_SIZE - page_offset;
983 		else
984 			clen = len;
985 
986 		if (clen > 0) {
987 			b_offset += bvl.bv_offset;
988 			bio_page = bvl.bv_page;
989 			if (frombio) {
990 				if (sh->raid_conf->skip_copy &&
991 				    b_offset == 0 && page_offset == 0 &&
992 				    clen == STRIPE_SIZE)
993 					*page = bio_page;
994 				else
995 					tx = async_memcpy(*page, bio_page, page_offset,
996 						  b_offset, clen, &submit);
997 			} else
998 				tx = async_memcpy(bio_page, *page, b_offset,
999 						  page_offset, clen, &submit);
1000 		}
1001 		/* chain the operations */
1002 		submit.depend_tx = tx;
1003 
1004 		if (clen < len) /* hit end of page */
1005 			break;
1006 		page_offset +=  len;
1007 	}
1008 
1009 	return tx;
1010 }
1011 
1012 static void ops_complete_biofill(void *stripe_head_ref)
1013 {
1014 	struct stripe_head *sh = stripe_head_ref;
1015 	struct bio *return_bi = NULL;
1016 	int i;
1017 
1018 	pr_debug("%s: stripe %llu\n", __func__,
1019 		(unsigned long long)sh->sector);
1020 
1021 	/* clear completed biofills */
1022 	for (i = sh->disks; i--; ) {
1023 		struct r5dev *dev = &sh->dev[i];
1024 
1025 		/* acknowledge completion of a biofill operation */
1026 		/* and check if we need to reply to a read request,
1027 		 * new R5_Wantfill requests are held off until
1028 		 * !STRIPE_BIOFILL_RUN
1029 		 */
1030 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1031 			struct bio *rbi, *rbi2;
1032 
1033 			BUG_ON(!dev->read);
1034 			rbi = dev->read;
1035 			dev->read = NULL;
1036 			while (rbi && rbi->bi_iter.bi_sector <
1037 				dev->sector + STRIPE_SECTORS) {
1038 				rbi2 = r5_next_bio(rbi, dev->sector);
1039 				if (!raid5_dec_bi_active_stripes(rbi)) {
1040 					rbi->bi_next = return_bi;
1041 					return_bi = rbi;
1042 				}
1043 				rbi = rbi2;
1044 			}
1045 		}
1046 	}
1047 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1048 
1049 	return_io(return_bi);
1050 
1051 	set_bit(STRIPE_HANDLE, &sh->state);
1052 	release_stripe(sh);
1053 }
1054 
1055 static void ops_run_biofill(struct stripe_head *sh)
1056 {
1057 	struct dma_async_tx_descriptor *tx = NULL;
1058 	struct async_submit_ctl submit;
1059 	int i;
1060 
1061 	pr_debug("%s: stripe %llu\n", __func__,
1062 		(unsigned long long)sh->sector);
1063 
1064 	for (i = sh->disks; i--; ) {
1065 		struct r5dev *dev = &sh->dev[i];
1066 		if (test_bit(R5_Wantfill, &dev->flags)) {
1067 			struct bio *rbi;
1068 			spin_lock_irq(&sh->stripe_lock);
1069 			dev->read = rbi = dev->toread;
1070 			dev->toread = NULL;
1071 			spin_unlock_irq(&sh->stripe_lock);
1072 			while (rbi && rbi->bi_iter.bi_sector <
1073 				dev->sector + STRIPE_SECTORS) {
1074 				tx = async_copy_data(0, rbi, &dev->page,
1075 					dev->sector, tx, sh);
1076 				rbi = r5_next_bio(rbi, dev->sector);
1077 			}
1078 		}
1079 	}
1080 
1081 	atomic_inc(&sh->count);
1082 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1083 	async_trigger_callback(&submit);
1084 }
1085 
1086 static void mark_target_uptodate(struct stripe_head *sh, int target)
1087 {
1088 	struct r5dev *tgt;
1089 
1090 	if (target < 0)
1091 		return;
1092 
1093 	tgt = &sh->dev[target];
1094 	set_bit(R5_UPTODATE, &tgt->flags);
1095 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1096 	clear_bit(R5_Wantcompute, &tgt->flags);
1097 }
1098 
1099 static void ops_complete_compute(void *stripe_head_ref)
1100 {
1101 	struct stripe_head *sh = stripe_head_ref;
1102 
1103 	pr_debug("%s: stripe %llu\n", __func__,
1104 		(unsigned long long)sh->sector);
1105 
1106 	/* mark the computed target(s) as uptodate */
1107 	mark_target_uptodate(sh, sh->ops.target);
1108 	mark_target_uptodate(sh, sh->ops.target2);
1109 
1110 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1111 	if (sh->check_state == check_state_compute_run)
1112 		sh->check_state = check_state_compute_result;
1113 	set_bit(STRIPE_HANDLE, &sh->state);
1114 	release_stripe(sh);
1115 }
1116 
1117 /* return a pointer to the address conversion region of the scribble buffer */
1118 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1119 				 struct raid5_percpu *percpu)
1120 {
1121 	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
1122 }
1123 
1124 static struct dma_async_tx_descriptor *
1125 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1126 {
1127 	int disks = sh->disks;
1128 	struct page **xor_srcs = percpu->scribble;
1129 	int target = sh->ops.target;
1130 	struct r5dev *tgt = &sh->dev[target];
1131 	struct page *xor_dest = tgt->page;
1132 	int count = 0;
1133 	struct dma_async_tx_descriptor *tx;
1134 	struct async_submit_ctl submit;
1135 	int i;
1136 
1137 	pr_debug("%s: stripe %llu block: %d\n",
1138 		__func__, (unsigned long long)sh->sector, target);
1139 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1140 
1141 	for (i = disks; i--; )
1142 		if (i != target)
1143 			xor_srcs[count++] = sh->dev[i].page;
1144 
1145 	atomic_inc(&sh->count);
1146 
1147 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1148 			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
1149 	if (unlikely(count == 1))
1150 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1151 	else
1152 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1153 
1154 	return tx;
1155 }
1156 
1157 /* set_syndrome_sources - populate source buffers for gen_syndrome
1158  * @srcs - (struct page *) array of size sh->disks
1159  * @sh - stripe_head to parse
1160  *
1161  * Populates srcs in proper layout order for the stripe and returns the
1162  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1163  * destination buffer is recorded in srcs[count] and the Q destination
1164  * is recorded in srcs[count+1]].
1165  */
1166 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
1167 {
1168 	int disks = sh->disks;
1169 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1170 	int d0_idx = raid6_d0(sh);
1171 	int count;
1172 	int i;
1173 
1174 	for (i = 0; i < disks; i++)
1175 		srcs[i] = NULL;
1176 
1177 	count = 0;
1178 	i = d0_idx;
1179 	do {
1180 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1181 
1182 		srcs[slot] = sh->dev[i].page;
1183 		i = raid6_next_disk(i, disks);
1184 	} while (i != d0_idx);
1185 
1186 	return syndrome_disks;
1187 }
1188 
1189 static struct dma_async_tx_descriptor *
1190 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1191 {
1192 	int disks = sh->disks;
1193 	struct page **blocks = percpu->scribble;
1194 	int target;
1195 	int qd_idx = sh->qd_idx;
1196 	struct dma_async_tx_descriptor *tx;
1197 	struct async_submit_ctl submit;
1198 	struct r5dev *tgt;
1199 	struct page *dest;
1200 	int i;
1201 	int count;
1202 
1203 	if (sh->ops.target < 0)
1204 		target = sh->ops.target2;
1205 	else if (sh->ops.target2 < 0)
1206 		target = sh->ops.target;
1207 	else
1208 		/* we should only have one valid target */
1209 		BUG();
1210 	BUG_ON(target < 0);
1211 	pr_debug("%s: stripe %llu block: %d\n",
1212 		__func__, (unsigned long long)sh->sector, target);
1213 
1214 	tgt = &sh->dev[target];
1215 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1216 	dest = tgt->page;
1217 
1218 	atomic_inc(&sh->count);
1219 
1220 	if (target == qd_idx) {
1221 		count = set_syndrome_sources(blocks, sh);
1222 		blocks[count] = NULL; /* regenerating p is not necessary */
1223 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
1224 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1225 				  ops_complete_compute, sh,
1226 				  to_addr_conv(sh, percpu));
1227 		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1228 	} else {
1229 		/* Compute any data- or p-drive using XOR */
1230 		count = 0;
1231 		for (i = disks; i-- ; ) {
1232 			if (i == target || i == qd_idx)
1233 				continue;
1234 			blocks[count++] = sh->dev[i].page;
1235 		}
1236 
1237 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1238 				  NULL, ops_complete_compute, sh,
1239 				  to_addr_conv(sh, percpu));
1240 		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1241 	}
1242 
1243 	return tx;
1244 }
1245 
1246 static struct dma_async_tx_descriptor *
1247 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1248 {
1249 	int i, count, disks = sh->disks;
1250 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1251 	int d0_idx = raid6_d0(sh);
1252 	int faila = -1, failb = -1;
1253 	int target = sh->ops.target;
1254 	int target2 = sh->ops.target2;
1255 	struct r5dev *tgt = &sh->dev[target];
1256 	struct r5dev *tgt2 = &sh->dev[target2];
1257 	struct dma_async_tx_descriptor *tx;
1258 	struct page **blocks = percpu->scribble;
1259 	struct async_submit_ctl submit;
1260 
1261 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1262 		 __func__, (unsigned long long)sh->sector, target, target2);
1263 	BUG_ON(target < 0 || target2 < 0);
1264 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1265 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1266 
1267 	/* we need to open-code set_syndrome_sources to handle the
1268 	 * slot number conversion for 'faila' and 'failb'
1269 	 */
1270 	for (i = 0; i < disks ; i++)
1271 		blocks[i] = NULL;
1272 	count = 0;
1273 	i = d0_idx;
1274 	do {
1275 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1276 
1277 		blocks[slot] = sh->dev[i].page;
1278 
1279 		if (i == target)
1280 			faila = slot;
1281 		if (i == target2)
1282 			failb = slot;
1283 		i = raid6_next_disk(i, disks);
1284 	} while (i != d0_idx);
1285 
1286 	BUG_ON(faila == failb);
1287 	if (failb < faila)
1288 		swap(faila, failb);
1289 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1290 		 __func__, (unsigned long long)sh->sector, faila, failb);
1291 
1292 	atomic_inc(&sh->count);
1293 
1294 	if (failb == syndrome_disks+1) {
1295 		/* Q disk is one of the missing disks */
1296 		if (faila == syndrome_disks) {
1297 			/* Missing P+Q, just recompute */
1298 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1299 					  ops_complete_compute, sh,
1300 					  to_addr_conv(sh, percpu));
1301 			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1302 						  STRIPE_SIZE, &submit);
1303 		} else {
1304 			struct page *dest;
1305 			int data_target;
1306 			int qd_idx = sh->qd_idx;
1307 
1308 			/* Missing D+Q: recompute D from P, then recompute Q */
1309 			if (target == qd_idx)
1310 				data_target = target2;
1311 			else
1312 				data_target = target;
1313 
1314 			count = 0;
1315 			for (i = disks; i-- ; ) {
1316 				if (i == data_target || i == qd_idx)
1317 					continue;
1318 				blocks[count++] = sh->dev[i].page;
1319 			}
1320 			dest = sh->dev[data_target].page;
1321 			init_async_submit(&submit,
1322 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1323 					  NULL, NULL, NULL,
1324 					  to_addr_conv(sh, percpu));
1325 			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1326 				       &submit);
1327 
1328 			count = set_syndrome_sources(blocks, sh);
1329 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1330 					  ops_complete_compute, sh,
1331 					  to_addr_conv(sh, percpu));
1332 			return async_gen_syndrome(blocks, 0, count+2,
1333 						  STRIPE_SIZE, &submit);
1334 		}
1335 	} else {
1336 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1337 				  ops_complete_compute, sh,
1338 				  to_addr_conv(sh, percpu));
1339 		if (failb == syndrome_disks) {
1340 			/* We're missing D+P. */
1341 			return async_raid6_datap_recov(syndrome_disks+2,
1342 						       STRIPE_SIZE, faila,
1343 						       blocks, &submit);
1344 		} else {
1345 			/* We're missing D+D. */
1346 			return async_raid6_2data_recov(syndrome_disks+2,
1347 						       STRIPE_SIZE, faila, failb,
1348 						       blocks, &submit);
1349 		}
1350 	}
1351 }
1352 
1353 
1354 static void ops_complete_prexor(void *stripe_head_ref)
1355 {
1356 	struct stripe_head *sh = stripe_head_ref;
1357 
1358 	pr_debug("%s: stripe %llu\n", __func__,
1359 		(unsigned long long)sh->sector);
1360 }
1361 
1362 static struct dma_async_tx_descriptor *
1363 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1364 	       struct dma_async_tx_descriptor *tx)
1365 {
1366 	int disks = sh->disks;
1367 	struct page **xor_srcs = percpu->scribble;
1368 	int count = 0, pd_idx = sh->pd_idx, i;
1369 	struct async_submit_ctl submit;
1370 
1371 	/* existing parity data subtracted */
1372 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1373 
1374 	pr_debug("%s: stripe %llu\n", __func__,
1375 		(unsigned long long)sh->sector);
1376 
1377 	for (i = disks; i--; ) {
1378 		struct r5dev *dev = &sh->dev[i];
1379 		/* Only process blocks that are known to be uptodate */
1380 		if (test_bit(R5_Wantdrain, &dev->flags))
1381 			xor_srcs[count++] = dev->page;
1382 	}
1383 
1384 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1385 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1386 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1387 
1388 	return tx;
1389 }
1390 
1391 static struct dma_async_tx_descriptor *
1392 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1393 {
1394 	int disks = sh->disks;
1395 	int i;
1396 
1397 	pr_debug("%s: stripe %llu\n", __func__,
1398 		(unsigned long long)sh->sector);
1399 
1400 	for (i = disks; i--; ) {
1401 		struct r5dev *dev = &sh->dev[i];
1402 		struct bio *chosen;
1403 
1404 		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1405 			struct bio *wbi;
1406 
1407 			spin_lock_irq(&sh->stripe_lock);
1408 			chosen = dev->towrite;
1409 			dev->towrite = NULL;
1410 			BUG_ON(dev->written);
1411 			wbi = dev->written = chosen;
1412 			spin_unlock_irq(&sh->stripe_lock);
1413 			WARN_ON(dev->page != dev->orig_page);
1414 
1415 			while (wbi && wbi->bi_iter.bi_sector <
1416 				dev->sector + STRIPE_SECTORS) {
1417 				if (wbi->bi_rw & REQ_FUA)
1418 					set_bit(R5_WantFUA, &dev->flags);
1419 				if (wbi->bi_rw & REQ_SYNC)
1420 					set_bit(R5_SyncIO, &dev->flags);
1421 				if (wbi->bi_rw & REQ_DISCARD)
1422 					set_bit(R5_Discard, &dev->flags);
1423 				else {
1424 					tx = async_copy_data(1, wbi, &dev->page,
1425 						dev->sector, tx, sh);
1426 					if (dev->page != dev->orig_page) {
1427 						set_bit(R5_SkipCopy, &dev->flags);
1428 						clear_bit(R5_UPTODATE, &dev->flags);
1429 						clear_bit(R5_OVERWRITE, &dev->flags);
1430 					}
1431 				}
1432 				wbi = r5_next_bio(wbi, dev->sector);
1433 			}
1434 		}
1435 	}
1436 
1437 	return tx;
1438 }
1439 
1440 static void ops_complete_reconstruct(void *stripe_head_ref)
1441 {
1442 	struct stripe_head *sh = stripe_head_ref;
1443 	int disks = sh->disks;
1444 	int pd_idx = sh->pd_idx;
1445 	int qd_idx = sh->qd_idx;
1446 	int i;
1447 	bool fua = false, sync = false, discard = false;
1448 
1449 	pr_debug("%s: stripe %llu\n", __func__,
1450 		(unsigned long long)sh->sector);
1451 
1452 	for (i = disks; i--; ) {
1453 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1454 		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1455 		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1456 	}
1457 
1458 	for (i = disks; i--; ) {
1459 		struct r5dev *dev = &sh->dev[i];
1460 
1461 		if (dev->written || i == pd_idx || i == qd_idx) {
1462 			if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1463 				set_bit(R5_UPTODATE, &dev->flags);
1464 			if (fua)
1465 				set_bit(R5_WantFUA, &dev->flags);
1466 			if (sync)
1467 				set_bit(R5_SyncIO, &dev->flags);
1468 		}
1469 	}
1470 
1471 	if (sh->reconstruct_state == reconstruct_state_drain_run)
1472 		sh->reconstruct_state = reconstruct_state_drain_result;
1473 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1474 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1475 	else {
1476 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1477 		sh->reconstruct_state = reconstruct_state_result;
1478 	}
1479 
1480 	set_bit(STRIPE_HANDLE, &sh->state);
1481 	release_stripe(sh);
1482 }
1483 
1484 static void
1485 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1486 		     struct dma_async_tx_descriptor *tx)
1487 {
1488 	int disks = sh->disks;
1489 	struct page **xor_srcs = percpu->scribble;
1490 	struct async_submit_ctl submit;
1491 	int count = 0, pd_idx = sh->pd_idx, i;
1492 	struct page *xor_dest;
1493 	int prexor = 0;
1494 	unsigned long flags;
1495 
1496 	pr_debug("%s: stripe %llu\n", __func__,
1497 		(unsigned long long)sh->sector);
1498 
1499 	for (i = 0; i < sh->disks; i++) {
1500 		if (pd_idx == i)
1501 			continue;
1502 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1503 			break;
1504 	}
1505 	if (i >= sh->disks) {
1506 		atomic_inc(&sh->count);
1507 		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1508 		ops_complete_reconstruct(sh);
1509 		return;
1510 	}
1511 	/* check if prexor is active which means only process blocks
1512 	 * that are part of a read-modify-write (written)
1513 	 */
1514 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1515 		prexor = 1;
1516 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1517 		for (i = disks; i--; ) {
1518 			struct r5dev *dev = &sh->dev[i];
1519 			if (dev->written)
1520 				xor_srcs[count++] = dev->page;
1521 		}
1522 	} else {
1523 		xor_dest = sh->dev[pd_idx].page;
1524 		for (i = disks; i--; ) {
1525 			struct r5dev *dev = &sh->dev[i];
1526 			if (i != pd_idx)
1527 				xor_srcs[count++] = dev->page;
1528 		}
1529 	}
1530 
1531 	/* 1/ if we prexor'd then the dest is reused as a source
1532 	 * 2/ if we did not prexor then we are redoing the parity
1533 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1534 	 * for the synchronous xor case
1535 	 */
1536 	flags = ASYNC_TX_ACK |
1537 		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1538 
1539 	atomic_inc(&sh->count);
1540 
1541 	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1542 			  to_addr_conv(sh, percpu));
1543 	if (unlikely(count == 1))
1544 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1545 	else
1546 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1547 }
1548 
1549 static void
1550 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1551 		     struct dma_async_tx_descriptor *tx)
1552 {
1553 	struct async_submit_ctl submit;
1554 	struct page **blocks = percpu->scribble;
1555 	int count, i;
1556 
1557 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1558 
1559 	for (i = 0; i < sh->disks; i++) {
1560 		if (sh->pd_idx == i || sh->qd_idx == i)
1561 			continue;
1562 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1563 			break;
1564 	}
1565 	if (i >= sh->disks) {
1566 		atomic_inc(&sh->count);
1567 		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1568 		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1569 		ops_complete_reconstruct(sh);
1570 		return;
1571 	}
1572 
1573 	count = set_syndrome_sources(blocks, sh);
1574 
1575 	atomic_inc(&sh->count);
1576 
1577 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1578 			  sh, to_addr_conv(sh, percpu));
1579 	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1580 }
1581 
1582 static void ops_complete_check(void *stripe_head_ref)
1583 {
1584 	struct stripe_head *sh = stripe_head_ref;
1585 
1586 	pr_debug("%s: stripe %llu\n", __func__,
1587 		(unsigned long long)sh->sector);
1588 
1589 	sh->check_state = check_state_check_result;
1590 	set_bit(STRIPE_HANDLE, &sh->state);
1591 	release_stripe(sh);
1592 }
1593 
1594 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1595 {
1596 	int disks = sh->disks;
1597 	int pd_idx = sh->pd_idx;
1598 	int qd_idx = sh->qd_idx;
1599 	struct page *xor_dest;
1600 	struct page **xor_srcs = percpu->scribble;
1601 	struct dma_async_tx_descriptor *tx;
1602 	struct async_submit_ctl submit;
1603 	int count;
1604 	int i;
1605 
1606 	pr_debug("%s: stripe %llu\n", __func__,
1607 		(unsigned long long)sh->sector);
1608 
1609 	count = 0;
1610 	xor_dest = sh->dev[pd_idx].page;
1611 	xor_srcs[count++] = xor_dest;
1612 	for (i = disks; i--; ) {
1613 		if (i == pd_idx || i == qd_idx)
1614 			continue;
1615 		xor_srcs[count++] = sh->dev[i].page;
1616 	}
1617 
1618 	init_async_submit(&submit, 0, NULL, NULL, NULL,
1619 			  to_addr_conv(sh, percpu));
1620 	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1621 			   &sh->ops.zero_sum_result, &submit);
1622 
1623 	atomic_inc(&sh->count);
1624 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1625 	tx = async_trigger_callback(&submit);
1626 }
1627 
1628 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1629 {
1630 	struct page **srcs = percpu->scribble;
1631 	struct async_submit_ctl submit;
1632 	int count;
1633 
1634 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1635 		(unsigned long long)sh->sector, checkp);
1636 
1637 	count = set_syndrome_sources(srcs, sh);
1638 	if (!checkp)
1639 		srcs[count] = NULL;
1640 
1641 	atomic_inc(&sh->count);
1642 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1643 			  sh, to_addr_conv(sh, percpu));
1644 	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1645 			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1646 }
1647 
1648 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1649 {
1650 	int overlap_clear = 0, i, disks = sh->disks;
1651 	struct dma_async_tx_descriptor *tx = NULL;
1652 	struct r5conf *conf = sh->raid_conf;
1653 	int level = conf->level;
1654 	struct raid5_percpu *percpu;
1655 	unsigned long cpu;
1656 
1657 	cpu = get_cpu();
1658 	percpu = per_cpu_ptr(conf->percpu, cpu);
1659 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1660 		ops_run_biofill(sh);
1661 		overlap_clear++;
1662 	}
1663 
1664 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1665 		if (level < 6)
1666 			tx = ops_run_compute5(sh, percpu);
1667 		else {
1668 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
1669 				tx = ops_run_compute6_1(sh, percpu);
1670 			else
1671 				tx = ops_run_compute6_2(sh, percpu);
1672 		}
1673 		/* terminate the chain if reconstruct is not set to be run */
1674 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1675 			async_tx_ack(tx);
1676 	}
1677 
1678 	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1679 		tx = ops_run_prexor(sh, percpu, tx);
1680 
1681 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1682 		tx = ops_run_biodrain(sh, tx);
1683 		overlap_clear++;
1684 	}
1685 
1686 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1687 		if (level < 6)
1688 			ops_run_reconstruct5(sh, percpu, tx);
1689 		else
1690 			ops_run_reconstruct6(sh, percpu, tx);
1691 	}
1692 
1693 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1694 		if (sh->check_state == check_state_run)
1695 			ops_run_check_p(sh, percpu);
1696 		else if (sh->check_state == check_state_run_q)
1697 			ops_run_check_pq(sh, percpu, 0);
1698 		else if (sh->check_state == check_state_run_pq)
1699 			ops_run_check_pq(sh, percpu, 1);
1700 		else
1701 			BUG();
1702 	}
1703 
1704 	if (overlap_clear)
1705 		for (i = disks; i--; ) {
1706 			struct r5dev *dev = &sh->dev[i];
1707 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
1708 				wake_up(&sh->raid_conf->wait_for_overlap);
1709 		}
1710 	put_cpu();
1711 }
1712 
1713 static int grow_one_stripe(struct r5conf *conf, int hash)
1714 {
1715 	struct stripe_head *sh;
1716 	sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1717 	if (!sh)
1718 		return 0;
1719 
1720 	sh->raid_conf = conf;
1721 
1722 	spin_lock_init(&sh->stripe_lock);
1723 
1724 	if (grow_buffers(sh)) {
1725 		shrink_buffers(sh);
1726 		kmem_cache_free(conf->slab_cache, sh);
1727 		return 0;
1728 	}
1729 	sh->hash_lock_index = hash;
1730 	/* we just created an active stripe so... */
1731 	atomic_set(&sh->count, 1);
1732 	atomic_inc(&conf->active_stripes);
1733 	INIT_LIST_HEAD(&sh->lru);
1734 	release_stripe(sh);
1735 	return 1;
1736 }
1737 
1738 static int grow_stripes(struct r5conf *conf, int num)
1739 {
1740 	struct kmem_cache *sc;
1741 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
1742 	int hash;
1743 
1744 	if (conf->mddev->gendisk)
1745 		sprintf(conf->cache_name[0],
1746 			"raid%d-%s", conf->level, mdname(conf->mddev));
1747 	else
1748 		sprintf(conf->cache_name[0],
1749 			"raid%d-%p", conf->level, conf->mddev);
1750 	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1751 
1752 	conf->active_name = 0;
1753 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
1754 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1755 			       0, 0, NULL);
1756 	if (!sc)
1757 		return 1;
1758 	conf->slab_cache = sc;
1759 	conf->pool_size = devs;
1760 	hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
1761 	while (num--) {
1762 		if (!grow_one_stripe(conf, hash))
1763 			return 1;
1764 		conf->max_nr_stripes++;
1765 		hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
1766 	}
1767 	return 0;
1768 }
1769 
1770 /**
1771  * scribble_len - return the required size of the scribble region
1772  * @num - total number of disks in the array
1773  *
1774  * The size must be enough to contain:
1775  * 1/ a struct page pointer for each device in the array +2
1776  * 2/ room to convert each entry in (1) to its corresponding dma
1777  *    (dma_map_page()) or page (page_address()) address.
1778  *
1779  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1780  * calculate over all devices (not just the data blocks), using zeros in place
1781  * of the P and Q blocks.
1782  */
1783 static size_t scribble_len(int num)
1784 {
1785 	size_t len;
1786 
1787 	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1788 
1789 	return len;
1790 }
1791 
1792 static int resize_stripes(struct r5conf *conf, int newsize)
1793 {
1794 	/* Make all the stripes able to hold 'newsize' devices.
1795 	 * New slots in each stripe get 'page' set to a new page.
1796 	 *
1797 	 * This happens in stages:
1798 	 * 1/ create a new kmem_cache and allocate the required number of
1799 	 *    stripe_heads.
1800 	 * 2/ gather all the old stripe_heads and transfer the pages across
1801 	 *    to the new stripe_heads.  This will have the side effect of
1802 	 *    freezing the array as once all stripe_heads have been collected,
1803 	 *    no IO will be possible.  Old stripe heads are freed once their
1804 	 *    pages have been transferred over, and the old kmem_cache is
1805 	 *    freed when all stripes are done.
1806 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1807 	 *    we simple return a failre status - no need to clean anything up.
1808 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
1809 	 *    If this fails, we don't bother trying the shrink the
1810 	 *    stripe_heads down again, we just leave them as they are.
1811 	 *    As each stripe_head is processed the new one is released into
1812 	 *    active service.
1813 	 *
1814 	 * Once step2 is started, we cannot afford to wait for a write,
1815 	 * so we use GFP_NOIO allocations.
1816 	 */
1817 	struct stripe_head *osh, *nsh;
1818 	LIST_HEAD(newstripes);
1819 	struct disk_info *ndisks;
1820 	unsigned long cpu;
1821 	int err;
1822 	struct kmem_cache *sc;
1823 	int i;
1824 	int hash, cnt;
1825 
1826 	if (newsize <= conf->pool_size)
1827 		return 0; /* never bother to shrink */
1828 
1829 	err = md_allow_write(conf->mddev);
1830 	if (err)
1831 		return err;
1832 
1833 	/* Step 1 */
1834 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1835 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1836 			       0, 0, NULL);
1837 	if (!sc)
1838 		return -ENOMEM;
1839 
1840 	for (i = conf->max_nr_stripes; i; i--) {
1841 		nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1842 		if (!nsh)
1843 			break;
1844 
1845 		nsh->raid_conf = conf;
1846 		spin_lock_init(&nsh->stripe_lock);
1847 
1848 		list_add(&nsh->lru, &newstripes);
1849 	}
1850 	if (i) {
1851 		/* didn't get enough, give up */
1852 		while (!list_empty(&newstripes)) {
1853 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
1854 			list_del(&nsh->lru);
1855 			kmem_cache_free(sc, nsh);
1856 		}
1857 		kmem_cache_destroy(sc);
1858 		return -ENOMEM;
1859 	}
1860 	/* Step 2 - Must use GFP_NOIO now.
1861 	 * OK, we have enough stripes, start collecting inactive
1862 	 * stripes and copying them over
1863 	 */
1864 	hash = 0;
1865 	cnt = 0;
1866 	list_for_each_entry(nsh, &newstripes, lru) {
1867 		lock_device_hash_lock(conf, hash);
1868 		wait_event_cmd(conf->wait_for_stripe,
1869 				    !list_empty(conf->inactive_list + hash),
1870 				    unlock_device_hash_lock(conf, hash),
1871 				    lock_device_hash_lock(conf, hash));
1872 		osh = get_free_stripe(conf, hash);
1873 		unlock_device_hash_lock(conf, hash);
1874 		atomic_set(&nsh->count, 1);
1875 		for(i=0; i<conf->pool_size; i++) {
1876 			nsh->dev[i].page = osh->dev[i].page;
1877 			nsh->dev[i].orig_page = osh->dev[i].page;
1878 		}
1879 		for( ; i<newsize; i++)
1880 			nsh->dev[i].page = NULL;
1881 		nsh->hash_lock_index = hash;
1882 		kmem_cache_free(conf->slab_cache, osh);
1883 		cnt++;
1884 		if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
1885 		    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
1886 			hash++;
1887 			cnt = 0;
1888 		}
1889 	}
1890 	kmem_cache_destroy(conf->slab_cache);
1891 
1892 	/* Step 3.
1893 	 * At this point, we are holding all the stripes so the array
1894 	 * is completely stalled, so now is a good time to resize
1895 	 * conf->disks and the scribble region
1896 	 */
1897 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1898 	if (ndisks) {
1899 		for (i=0; i<conf->raid_disks; i++)
1900 			ndisks[i] = conf->disks[i];
1901 		kfree(conf->disks);
1902 		conf->disks = ndisks;
1903 	} else
1904 		err = -ENOMEM;
1905 
1906 	get_online_cpus();
1907 	conf->scribble_len = scribble_len(newsize);
1908 	for_each_present_cpu(cpu) {
1909 		struct raid5_percpu *percpu;
1910 		void *scribble;
1911 
1912 		percpu = per_cpu_ptr(conf->percpu, cpu);
1913 		scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1914 
1915 		if (scribble) {
1916 			kfree(percpu->scribble);
1917 			percpu->scribble = scribble;
1918 		} else {
1919 			err = -ENOMEM;
1920 			break;
1921 		}
1922 	}
1923 	put_online_cpus();
1924 
1925 	/* Step 4, return new stripes to service */
1926 	while(!list_empty(&newstripes)) {
1927 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
1928 		list_del_init(&nsh->lru);
1929 
1930 		for (i=conf->raid_disks; i < newsize; i++)
1931 			if (nsh->dev[i].page == NULL) {
1932 				struct page *p = alloc_page(GFP_NOIO);
1933 				nsh->dev[i].page = p;
1934 				nsh->dev[i].orig_page = p;
1935 				if (!p)
1936 					err = -ENOMEM;
1937 			}
1938 		release_stripe(nsh);
1939 	}
1940 	/* critical section pass, GFP_NOIO no longer needed */
1941 
1942 	conf->slab_cache = sc;
1943 	conf->active_name = 1-conf->active_name;
1944 	conf->pool_size = newsize;
1945 	return err;
1946 }
1947 
1948 static int drop_one_stripe(struct r5conf *conf, int hash)
1949 {
1950 	struct stripe_head *sh;
1951 
1952 	spin_lock_irq(conf->hash_locks + hash);
1953 	sh = get_free_stripe(conf, hash);
1954 	spin_unlock_irq(conf->hash_locks + hash);
1955 	if (!sh)
1956 		return 0;
1957 	BUG_ON(atomic_read(&sh->count));
1958 	shrink_buffers(sh);
1959 	kmem_cache_free(conf->slab_cache, sh);
1960 	atomic_dec(&conf->active_stripes);
1961 	return 1;
1962 }
1963 
1964 static void shrink_stripes(struct r5conf *conf)
1965 {
1966 	int hash;
1967 	for (hash = 0; hash < NR_STRIPE_HASH_LOCKS; hash++)
1968 		while (drop_one_stripe(conf, hash))
1969 			;
1970 
1971 	if (conf->slab_cache)
1972 		kmem_cache_destroy(conf->slab_cache);
1973 	conf->slab_cache = NULL;
1974 }
1975 
1976 static void raid5_end_read_request(struct bio * bi, int error)
1977 {
1978 	struct stripe_head *sh = bi->bi_private;
1979 	struct r5conf *conf = sh->raid_conf;
1980 	int disks = sh->disks, i;
1981 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1982 	char b[BDEVNAME_SIZE];
1983 	struct md_rdev *rdev = NULL;
1984 	sector_t s;
1985 
1986 	for (i=0 ; i<disks; i++)
1987 		if (bi == &sh->dev[i].req)
1988 			break;
1989 
1990 	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1991 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1992 		uptodate);
1993 	if (i == disks) {
1994 		BUG();
1995 		return;
1996 	}
1997 	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1998 		/* If replacement finished while this request was outstanding,
1999 		 * 'replacement' might be NULL already.
2000 		 * In that case it moved down to 'rdev'.
2001 		 * rdev is not removed until all requests are finished.
2002 		 */
2003 		rdev = conf->disks[i].replacement;
2004 	if (!rdev)
2005 		rdev = conf->disks[i].rdev;
2006 
2007 	if (use_new_offset(conf, sh))
2008 		s = sh->sector + rdev->new_data_offset;
2009 	else
2010 		s = sh->sector + rdev->data_offset;
2011 	if (uptodate) {
2012 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
2013 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2014 			/* Note that this cannot happen on a
2015 			 * replacement device.  We just fail those on
2016 			 * any error
2017 			 */
2018 			printk_ratelimited(
2019 				KERN_INFO
2020 				"md/raid:%s: read error corrected"
2021 				" (%lu sectors at %llu on %s)\n",
2022 				mdname(conf->mddev), STRIPE_SECTORS,
2023 				(unsigned long long)s,
2024 				bdevname(rdev->bdev, b));
2025 			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2026 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2027 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2028 		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2029 			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2030 
2031 		if (atomic_read(&rdev->read_errors))
2032 			atomic_set(&rdev->read_errors, 0);
2033 	} else {
2034 		const char *bdn = bdevname(rdev->bdev, b);
2035 		int retry = 0;
2036 		int set_bad = 0;
2037 
2038 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2039 		atomic_inc(&rdev->read_errors);
2040 		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2041 			printk_ratelimited(
2042 				KERN_WARNING
2043 				"md/raid:%s: read error on replacement device "
2044 				"(sector %llu on %s).\n",
2045 				mdname(conf->mddev),
2046 				(unsigned long long)s,
2047 				bdn);
2048 		else if (conf->mddev->degraded >= conf->max_degraded) {
2049 			set_bad = 1;
2050 			printk_ratelimited(
2051 				KERN_WARNING
2052 				"md/raid:%s: read error not correctable "
2053 				"(sector %llu on %s).\n",
2054 				mdname(conf->mddev),
2055 				(unsigned long long)s,
2056 				bdn);
2057 		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2058 			/* Oh, no!!! */
2059 			set_bad = 1;
2060 			printk_ratelimited(
2061 				KERN_WARNING
2062 				"md/raid:%s: read error NOT corrected!! "
2063 				"(sector %llu on %s).\n",
2064 				mdname(conf->mddev),
2065 				(unsigned long long)s,
2066 				bdn);
2067 		} else if (atomic_read(&rdev->read_errors)
2068 			 > conf->max_nr_stripes)
2069 			printk(KERN_WARNING
2070 			       "md/raid:%s: Too many read errors, failing device %s.\n",
2071 			       mdname(conf->mddev), bdn);
2072 		else
2073 			retry = 1;
2074 		if (set_bad && test_bit(In_sync, &rdev->flags)
2075 		    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2076 			retry = 1;
2077 		if (retry)
2078 			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2079 				set_bit(R5_ReadError, &sh->dev[i].flags);
2080 				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2081 			} else
2082 				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2083 		else {
2084 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2085 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2086 			if (!(set_bad
2087 			      && test_bit(In_sync, &rdev->flags)
2088 			      && rdev_set_badblocks(
2089 				      rdev, sh->sector, STRIPE_SECTORS, 0)))
2090 				md_error(conf->mddev, rdev);
2091 		}
2092 	}
2093 	rdev_dec_pending(rdev, conf->mddev);
2094 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
2095 	set_bit(STRIPE_HANDLE, &sh->state);
2096 	release_stripe(sh);
2097 }
2098 
2099 static void raid5_end_write_request(struct bio *bi, int error)
2100 {
2101 	struct stripe_head *sh = bi->bi_private;
2102 	struct r5conf *conf = sh->raid_conf;
2103 	int disks = sh->disks, i;
2104 	struct md_rdev *uninitialized_var(rdev);
2105 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2106 	sector_t first_bad;
2107 	int bad_sectors;
2108 	int replacement = 0;
2109 
2110 	for (i = 0 ; i < disks; i++) {
2111 		if (bi == &sh->dev[i].req) {
2112 			rdev = conf->disks[i].rdev;
2113 			break;
2114 		}
2115 		if (bi == &sh->dev[i].rreq) {
2116 			rdev = conf->disks[i].replacement;
2117 			if (rdev)
2118 				replacement = 1;
2119 			else
2120 				/* rdev was removed and 'replacement'
2121 				 * replaced it.  rdev is not removed
2122 				 * until all requests are finished.
2123 				 */
2124 				rdev = conf->disks[i].rdev;
2125 			break;
2126 		}
2127 	}
2128 	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
2129 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2130 		uptodate);
2131 	if (i == disks) {
2132 		BUG();
2133 		return;
2134 	}
2135 
2136 	if (replacement) {
2137 		if (!uptodate)
2138 			md_error(conf->mddev, rdev);
2139 		else if (is_badblock(rdev, sh->sector,
2140 				     STRIPE_SECTORS,
2141 				     &first_bad, &bad_sectors))
2142 			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2143 	} else {
2144 		if (!uptodate) {
2145 			set_bit(STRIPE_DEGRADED, &sh->state);
2146 			set_bit(WriteErrorSeen, &rdev->flags);
2147 			set_bit(R5_WriteError, &sh->dev[i].flags);
2148 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2149 				set_bit(MD_RECOVERY_NEEDED,
2150 					&rdev->mddev->recovery);
2151 		} else if (is_badblock(rdev, sh->sector,
2152 				       STRIPE_SECTORS,
2153 				       &first_bad, &bad_sectors)) {
2154 			set_bit(R5_MadeGood, &sh->dev[i].flags);
2155 			if (test_bit(R5_ReadError, &sh->dev[i].flags))
2156 				/* That was a successful write so make
2157 				 * sure it looks like we already did
2158 				 * a re-write.
2159 				 */
2160 				set_bit(R5_ReWrite, &sh->dev[i].flags);
2161 		}
2162 	}
2163 	rdev_dec_pending(rdev, conf->mddev);
2164 
2165 	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2166 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2167 	set_bit(STRIPE_HANDLE, &sh->state);
2168 	release_stripe(sh);
2169 }
2170 
2171 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2172 
2173 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2174 {
2175 	struct r5dev *dev = &sh->dev[i];
2176 
2177 	bio_init(&dev->req);
2178 	dev->req.bi_io_vec = &dev->vec;
2179 	dev->req.bi_max_vecs = 1;
2180 	dev->req.bi_private = sh;
2181 
2182 	bio_init(&dev->rreq);
2183 	dev->rreq.bi_io_vec = &dev->rvec;
2184 	dev->rreq.bi_max_vecs = 1;
2185 	dev->rreq.bi_private = sh;
2186 
2187 	dev->flags = 0;
2188 	dev->sector = compute_blocknr(sh, i, previous);
2189 }
2190 
2191 static void error(struct mddev *mddev, struct md_rdev *rdev)
2192 {
2193 	char b[BDEVNAME_SIZE];
2194 	struct r5conf *conf = mddev->private;
2195 	unsigned long flags;
2196 	pr_debug("raid456: error called\n");
2197 
2198 	spin_lock_irqsave(&conf->device_lock, flags);
2199 	clear_bit(In_sync, &rdev->flags);
2200 	mddev->degraded = calc_degraded(conf);
2201 	spin_unlock_irqrestore(&conf->device_lock, flags);
2202 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2203 
2204 	set_bit(Blocked, &rdev->flags);
2205 	set_bit(Faulty, &rdev->flags);
2206 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
2207 	printk(KERN_ALERT
2208 	       "md/raid:%s: Disk failure on %s, disabling device.\n"
2209 	       "md/raid:%s: Operation continuing on %d devices.\n",
2210 	       mdname(mddev),
2211 	       bdevname(rdev->bdev, b),
2212 	       mdname(mddev),
2213 	       conf->raid_disks - mddev->degraded);
2214 }
2215 
2216 /*
2217  * Input: a 'big' sector number,
2218  * Output: index of the data and parity disk, and the sector # in them.
2219  */
2220 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2221 				     int previous, int *dd_idx,
2222 				     struct stripe_head *sh)
2223 {
2224 	sector_t stripe, stripe2;
2225 	sector_t chunk_number;
2226 	unsigned int chunk_offset;
2227 	int pd_idx, qd_idx;
2228 	int ddf_layout = 0;
2229 	sector_t new_sector;
2230 	int algorithm = previous ? conf->prev_algo
2231 				 : conf->algorithm;
2232 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2233 					 : conf->chunk_sectors;
2234 	int raid_disks = previous ? conf->previous_raid_disks
2235 				  : conf->raid_disks;
2236 	int data_disks = raid_disks - conf->max_degraded;
2237 
2238 	/* First compute the information on this sector */
2239 
2240 	/*
2241 	 * Compute the chunk number and the sector offset inside the chunk
2242 	 */
2243 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
2244 	chunk_number = r_sector;
2245 
2246 	/*
2247 	 * Compute the stripe number
2248 	 */
2249 	stripe = chunk_number;
2250 	*dd_idx = sector_div(stripe, data_disks);
2251 	stripe2 = stripe;
2252 	/*
2253 	 * Select the parity disk based on the user selected algorithm.
2254 	 */
2255 	pd_idx = qd_idx = -1;
2256 	switch(conf->level) {
2257 	case 4:
2258 		pd_idx = data_disks;
2259 		break;
2260 	case 5:
2261 		switch (algorithm) {
2262 		case ALGORITHM_LEFT_ASYMMETRIC:
2263 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2264 			if (*dd_idx >= pd_idx)
2265 				(*dd_idx)++;
2266 			break;
2267 		case ALGORITHM_RIGHT_ASYMMETRIC:
2268 			pd_idx = sector_div(stripe2, raid_disks);
2269 			if (*dd_idx >= pd_idx)
2270 				(*dd_idx)++;
2271 			break;
2272 		case ALGORITHM_LEFT_SYMMETRIC:
2273 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2274 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2275 			break;
2276 		case ALGORITHM_RIGHT_SYMMETRIC:
2277 			pd_idx = sector_div(stripe2, raid_disks);
2278 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2279 			break;
2280 		case ALGORITHM_PARITY_0:
2281 			pd_idx = 0;
2282 			(*dd_idx)++;
2283 			break;
2284 		case ALGORITHM_PARITY_N:
2285 			pd_idx = data_disks;
2286 			break;
2287 		default:
2288 			BUG();
2289 		}
2290 		break;
2291 	case 6:
2292 
2293 		switch (algorithm) {
2294 		case ALGORITHM_LEFT_ASYMMETRIC:
2295 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2296 			qd_idx = pd_idx + 1;
2297 			if (pd_idx == raid_disks-1) {
2298 				(*dd_idx)++;	/* Q D D D P */
2299 				qd_idx = 0;
2300 			} else if (*dd_idx >= pd_idx)
2301 				(*dd_idx) += 2; /* D D P Q D */
2302 			break;
2303 		case ALGORITHM_RIGHT_ASYMMETRIC:
2304 			pd_idx = sector_div(stripe2, raid_disks);
2305 			qd_idx = pd_idx + 1;
2306 			if (pd_idx == raid_disks-1) {
2307 				(*dd_idx)++;	/* Q D D D P */
2308 				qd_idx = 0;
2309 			} else if (*dd_idx >= pd_idx)
2310 				(*dd_idx) += 2; /* D D P Q D */
2311 			break;
2312 		case ALGORITHM_LEFT_SYMMETRIC:
2313 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2314 			qd_idx = (pd_idx + 1) % raid_disks;
2315 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2316 			break;
2317 		case ALGORITHM_RIGHT_SYMMETRIC:
2318 			pd_idx = sector_div(stripe2, raid_disks);
2319 			qd_idx = (pd_idx + 1) % raid_disks;
2320 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2321 			break;
2322 
2323 		case ALGORITHM_PARITY_0:
2324 			pd_idx = 0;
2325 			qd_idx = 1;
2326 			(*dd_idx) += 2;
2327 			break;
2328 		case ALGORITHM_PARITY_N:
2329 			pd_idx = data_disks;
2330 			qd_idx = data_disks + 1;
2331 			break;
2332 
2333 		case ALGORITHM_ROTATING_ZERO_RESTART:
2334 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
2335 			 * of blocks for computing Q is different.
2336 			 */
2337 			pd_idx = sector_div(stripe2, raid_disks);
2338 			qd_idx = pd_idx + 1;
2339 			if (pd_idx == raid_disks-1) {
2340 				(*dd_idx)++;	/* Q D D D P */
2341 				qd_idx = 0;
2342 			} else if (*dd_idx >= pd_idx)
2343 				(*dd_idx) += 2; /* D D P Q D */
2344 			ddf_layout = 1;
2345 			break;
2346 
2347 		case ALGORITHM_ROTATING_N_RESTART:
2348 			/* Same a left_asymmetric, by first stripe is
2349 			 * D D D P Q  rather than
2350 			 * Q D D D P
2351 			 */
2352 			stripe2 += 1;
2353 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2354 			qd_idx = pd_idx + 1;
2355 			if (pd_idx == raid_disks-1) {
2356 				(*dd_idx)++;	/* Q D D D P */
2357 				qd_idx = 0;
2358 			} else if (*dd_idx >= pd_idx)
2359 				(*dd_idx) += 2; /* D D P Q D */
2360 			ddf_layout = 1;
2361 			break;
2362 
2363 		case ALGORITHM_ROTATING_N_CONTINUE:
2364 			/* Same as left_symmetric but Q is before P */
2365 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2366 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2367 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2368 			ddf_layout = 1;
2369 			break;
2370 
2371 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2372 			/* RAID5 left_asymmetric, with Q on last device */
2373 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2374 			if (*dd_idx >= pd_idx)
2375 				(*dd_idx)++;
2376 			qd_idx = raid_disks - 1;
2377 			break;
2378 
2379 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2380 			pd_idx = sector_div(stripe2, raid_disks-1);
2381 			if (*dd_idx >= pd_idx)
2382 				(*dd_idx)++;
2383 			qd_idx = raid_disks - 1;
2384 			break;
2385 
2386 		case ALGORITHM_LEFT_SYMMETRIC_6:
2387 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2388 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2389 			qd_idx = raid_disks - 1;
2390 			break;
2391 
2392 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2393 			pd_idx = sector_div(stripe2, raid_disks-1);
2394 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2395 			qd_idx = raid_disks - 1;
2396 			break;
2397 
2398 		case ALGORITHM_PARITY_0_6:
2399 			pd_idx = 0;
2400 			(*dd_idx)++;
2401 			qd_idx = raid_disks - 1;
2402 			break;
2403 
2404 		default:
2405 			BUG();
2406 		}
2407 		break;
2408 	}
2409 
2410 	if (sh) {
2411 		sh->pd_idx = pd_idx;
2412 		sh->qd_idx = qd_idx;
2413 		sh->ddf_layout = ddf_layout;
2414 	}
2415 	/*
2416 	 * Finally, compute the new sector number
2417 	 */
2418 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2419 	return new_sector;
2420 }
2421 
2422 
2423 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2424 {
2425 	struct r5conf *conf = sh->raid_conf;
2426 	int raid_disks = sh->disks;
2427 	int data_disks = raid_disks - conf->max_degraded;
2428 	sector_t new_sector = sh->sector, check;
2429 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2430 					 : conf->chunk_sectors;
2431 	int algorithm = previous ? conf->prev_algo
2432 				 : conf->algorithm;
2433 	sector_t stripe;
2434 	int chunk_offset;
2435 	sector_t chunk_number;
2436 	int dummy1, dd_idx = i;
2437 	sector_t r_sector;
2438 	struct stripe_head sh2;
2439 
2440 
2441 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
2442 	stripe = new_sector;
2443 
2444 	if (i == sh->pd_idx)
2445 		return 0;
2446 	switch(conf->level) {
2447 	case 4: break;
2448 	case 5:
2449 		switch (algorithm) {
2450 		case ALGORITHM_LEFT_ASYMMETRIC:
2451 		case ALGORITHM_RIGHT_ASYMMETRIC:
2452 			if (i > sh->pd_idx)
2453 				i--;
2454 			break;
2455 		case ALGORITHM_LEFT_SYMMETRIC:
2456 		case ALGORITHM_RIGHT_SYMMETRIC:
2457 			if (i < sh->pd_idx)
2458 				i += raid_disks;
2459 			i -= (sh->pd_idx + 1);
2460 			break;
2461 		case ALGORITHM_PARITY_0:
2462 			i -= 1;
2463 			break;
2464 		case ALGORITHM_PARITY_N:
2465 			break;
2466 		default:
2467 			BUG();
2468 		}
2469 		break;
2470 	case 6:
2471 		if (i == sh->qd_idx)
2472 			return 0; /* It is the Q disk */
2473 		switch (algorithm) {
2474 		case ALGORITHM_LEFT_ASYMMETRIC:
2475 		case ALGORITHM_RIGHT_ASYMMETRIC:
2476 		case ALGORITHM_ROTATING_ZERO_RESTART:
2477 		case ALGORITHM_ROTATING_N_RESTART:
2478 			if (sh->pd_idx == raid_disks-1)
2479 				i--;	/* Q D D D P */
2480 			else if (i > sh->pd_idx)
2481 				i -= 2; /* D D P Q D */
2482 			break;
2483 		case ALGORITHM_LEFT_SYMMETRIC:
2484 		case ALGORITHM_RIGHT_SYMMETRIC:
2485 			if (sh->pd_idx == raid_disks-1)
2486 				i--; /* Q D D D P */
2487 			else {
2488 				/* D D P Q D */
2489 				if (i < sh->pd_idx)
2490 					i += raid_disks;
2491 				i -= (sh->pd_idx + 2);
2492 			}
2493 			break;
2494 		case ALGORITHM_PARITY_0:
2495 			i -= 2;
2496 			break;
2497 		case ALGORITHM_PARITY_N:
2498 			break;
2499 		case ALGORITHM_ROTATING_N_CONTINUE:
2500 			/* Like left_symmetric, but P is before Q */
2501 			if (sh->pd_idx == 0)
2502 				i--;	/* P D D D Q */
2503 			else {
2504 				/* D D Q P D */
2505 				if (i < sh->pd_idx)
2506 					i += raid_disks;
2507 				i -= (sh->pd_idx + 1);
2508 			}
2509 			break;
2510 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2511 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2512 			if (i > sh->pd_idx)
2513 				i--;
2514 			break;
2515 		case ALGORITHM_LEFT_SYMMETRIC_6:
2516 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2517 			if (i < sh->pd_idx)
2518 				i += data_disks + 1;
2519 			i -= (sh->pd_idx + 1);
2520 			break;
2521 		case ALGORITHM_PARITY_0_6:
2522 			i -= 1;
2523 			break;
2524 		default:
2525 			BUG();
2526 		}
2527 		break;
2528 	}
2529 
2530 	chunk_number = stripe * data_disks + i;
2531 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2532 
2533 	check = raid5_compute_sector(conf, r_sector,
2534 				     previous, &dummy1, &sh2);
2535 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2536 		|| sh2.qd_idx != sh->qd_idx) {
2537 		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2538 		       mdname(conf->mddev));
2539 		return 0;
2540 	}
2541 	return r_sector;
2542 }
2543 
2544 
2545 static void
2546 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2547 			 int rcw, int expand)
2548 {
2549 	int i, pd_idx = sh->pd_idx, disks = sh->disks;
2550 	struct r5conf *conf = sh->raid_conf;
2551 	int level = conf->level;
2552 
2553 	if (rcw) {
2554 
2555 		for (i = disks; i--; ) {
2556 			struct r5dev *dev = &sh->dev[i];
2557 
2558 			if (dev->towrite) {
2559 				set_bit(R5_LOCKED, &dev->flags);
2560 				set_bit(R5_Wantdrain, &dev->flags);
2561 				if (!expand)
2562 					clear_bit(R5_UPTODATE, &dev->flags);
2563 				s->locked++;
2564 			}
2565 		}
2566 		/* if we are not expanding this is a proper write request, and
2567 		 * there will be bios with new data to be drained into the
2568 		 * stripe cache
2569 		 */
2570 		if (!expand) {
2571 			if (!s->locked)
2572 				/* False alarm, nothing to do */
2573 				return;
2574 			sh->reconstruct_state = reconstruct_state_drain_run;
2575 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2576 		} else
2577 			sh->reconstruct_state = reconstruct_state_run;
2578 
2579 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2580 
2581 		if (s->locked + conf->max_degraded == disks)
2582 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2583 				atomic_inc(&conf->pending_full_writes);
2584 	} else {
2585 		BUG_ON(level == 6);
2586 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2587 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2588 
2589 		for (i = disks; i--; ) {
2590 			struct r5dev *dev = &sh->dev[i];
2591 			if (i == pd_idx)
2592 				continue;
2593 
2594 			if (dev->towrite &&
2595 			    (test_bit(R5_UPTODATE, &dev->flags) ||
2596 			     test_bit(R5_Wantcompute, &dev->flags))) {
2597 				set_bit(R5_Wantdrain, &dev->flags);
2598 				set_bit(R5_LOCKED, &dev->flags);
2599 				clear_bit(R5_UPTODATE, &dev->flags);
2600 				s->locked++;
2601 			}
2602 		}
2603 		if (!s->locked)
2604 			/* False alarm - nothing to do */
2605 			return;
2606 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2607 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2608 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2609 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2610 	}
2611 
2612 	/* keep the parity disk(s) locked while asynchronous operations
2613 	 * are in flight
2614 	 */
2615 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2616 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2617 	s->locked++;
2618 
2619 	if (level == 6) {
2620 		int qd_idx = sh->qd_idx;
2621 		struct r5dev *dev = &sh->dev[qd_idx];
2622 
2623 		set_bit(R5_LOCKED, &dev->flags);
2624 		clear_bit(R5_UPTODATE, &dev->flags);
2625 		s->locked++;
2626 	}
2627 
2628 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2629 		__func__, (unsigned long long)sh->sector,
2630 		s->locked, s->ops_request);
2631 }
2632 
2633 /*
2634  * Each stripe/dev can have one or more bion attached.
2635  * toread/towrite point to the first in a chain.
2636  * The bi_next chain must be in order.
2637  */
2638 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2639 {
2640 	struct bio **bip;
2641 	struct r5conf *conf = sh->raid_conf;
2642 	int firstwrite=0;
2643 
2644 	pr_debug("adding bi b#%llu to stripe s#%llu\n",
2645 		(unsigned long long)bi->bi_iter.bi_sector,
2646 		(unsigned long long)sh->sector);
2647 
2648 	/*
2649 	 * If several bio share a stripe. The bio bi_phys_segments acts as a
2650 	 * reference count to avoid race. The reference count should already be
2651 	 * increased before this function is called (for example, in
2652 	 * make_request()), so other bio sharing this stripe will not free the
2653 	 * stripe. If a stripe is owned by one stripe, the stripe lock will
2654 	 * protect it.
2655 	 */
2656 	spin_lock_irq(&sh->stripe_lock);
2657 	if (forwrite) {
2658 		bip = &sh->dev[dd_idx].towrite;
2659 		if (*bip == NULL)
2660 			firstwrite = 1;
2661 	} else
2662 		bip = &sh->dev[dd_idx].toread;
2663 	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2664 		if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2665 			goto overlap;
2666 		bip = & (*bip)->bi_next;
2667 	}
2668 	if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2669 		goto overlap;
2670 
2671 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2672 	if (*bip)
2673 		bi->bi_next = *bip;
2674 	*bip = bi;
2675 	raid5_inc_bi_active_stripes(bi);
2676 
2677 	if (forwrite) {
2678 		/* check if page is covered */
2679 		sector_t sector = sh->dev[dd_idx].sector;
2680 		for (bi=sh->dev[dd_idx].towrite;
2681 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2682 			     bi && bi->bi_iter.bi_sector <= sector;
2683 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2684 			if (bio_end_sector(bi) >= sector)
2685 				sector = bio_end_sector(bi);
2686 		}
2687 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2688 			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2689 	}
2690 
2691 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2692 		(unsigned long long)(*bip)->bi_iter.bi_sector,
2693 		(unsigned long long)sh->sector, dd_idx);
2694 	spin_unlock_irq(&sh->stripe_lock);
2695 
2696 	if (conf->mddev->bitmap && firstwrite) {
2697 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2698 				  STRIPE_SECTORS, 0);
2699 		sh->bm_seq = conf->seq_flush+1;
2700 		set_bit(STRIPE_BIT_DELAY, &sh->state);
2701 	}
2702 	return 1;
2703 
2704  overlap:
2705 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2706 	spin_unlock_irq(&sh->stripe_lock);
2707 	return 0;
2708 }
2709 
2710 static void end_reshape(struct r5conf *conf);
2711 
2712 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2713 			    struct stripe_head *sh)
2714 {
2715 	int sectors_per_chunk =
2716 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2717 	int dd_idx;
2718 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2719 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2720 
2721 	raid5_compute_sector(conf,
2722 			     stripe * (disks - conf->max_degraded)
2723 			     *sectors_per_chunk + chunk_offset,
2724 			     previous,
2725 			     &dd_idx, sh);
2726 }
2727 
2728 static void
2729 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2730 				struct stripe_head_state *s, int disks,
2731 				struct bio **return_bi)
2732 {
2733 	int i;
2734 	for (i = disks; i--; ) {
2735 		struct bio *bi;
2736 		int bitmap_end = 0;
2737 
2738 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2739 			struct md_rdev *rdev;
2740 			rcu_read_lock();
2741 			rdev = rcu_dereference(conf->disks[i].rdev);
2742 			if (rdev && test_bit(In_sync, &rdev->flags))
2743 				atomic_inc(&rdev->nr_pending);
2744 			else
2745 				rdev = NULL;
2746 			rcu_read_unlock();
2747 			if (rdev) {
2748 				if (!rdev_set_badblocks(
2749 					    rdev,
2750 					    sh->sector,
2751 					    STRIPE_SECTORS, 0))
2752 					md_error(conf->mddev, rdev);
2753 				rdev_dec_pending(rdev, conf->mddev);
2754 			}
2755 		}
2756 		spin_lock_irq(&sh->stripe_lock);
2757 		/* fail all writes first */
2758 		bi = sh->dev[i].towrite;
2759 		sh->dev[i].towrite = NULL;
2760 		spin_unlock_irq(&sh->stripe_lock);
2761 		if (bi)
2762 			bitmap_end = 1;
2763 
2764 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2765 			wake_up(&conf->wait_for_overlap);
2766 
2767 		while (bi && bi->bi_iter.bi_sector <
2768 			sh->dev[i].sector + STRIPE_SECTORS) {
2769 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2770 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2771 			if (!raid5_dec_bi_active_stripes(bi)) {
2772 				md_write_end(conf->mddev);
2773 				bi->bi_next = *return_bi;
2774 				*return_bi = bi;
2775 			}
2776 			bi = nextbi;
2777 		}
2778 		if (bitmap_end)
2779 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2780 				STRIPE_SECTORS, 0, 0);
2781 		bitmap_end = 0;
2782 		/* and fail all 'written' */
2783 		bi = sh->dev[i].written;
2784 		sh->dev[i].written = NULL;
2785 		if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
2786 			WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
2787 			sh->dev[i].page = sh->dev[i].orig_page;
2788 		}
2789 
2790 		if (bi) bitmap_end = 1;
2791 		while (bi && bi->bi_iter.bi_sector <
2792 		       sh->dev[i].sector + STRIPE_SECTORS) {
2793 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2794 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2795 			if (!raid5_dec_bi_active_stripes(bi)) {
2796 				md_write_end(conf->mddev);
2797 				bi->bi_next = *return_bi;
2798 				*return_bi = bi;
2799 			}
2800 			bi = bi2;
2801 		}
2802 
2803 		/* fail any reads if this device is non-operational and
2804 		 * the data has not reached the cache yet.
2805 		 */
2806 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2807 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2808 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2809 			spin_lock_irq(&sh->stripe_lock);
2810 			bi = sh->dev[i].toread;
2811 			sh->dev[i].toread = NULL;
2812 			spin_unlock_irq(&sh->stripe_lock);
2813 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2814 				wake_up(&conf->wait_for_overlap);
2815 			while (bi && bi->bi_iter.bi_sector <
2816 			       sh->dev[i].sector + STRIPE_SECTORS) {
2817 				struct bio *nextbi =
2818 					r5_next_bio(bi, sh->dev[i].sector);
2819 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2820 				if (!raid5_dec_bi_active_stripes(bi)) {
2821 					bi->bi_next = *return_bi;
2822 					*return_bi = bi;
2823 				}
2824 				bi = nextbi;
2825 			}
2826 		}
2827 		if (bitmap_end)
2828 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2829 					STRIPE_SECTORS, 0, 0);
2830 		/* If we were in the middle of a write the parity block might
2831 		 * still be locked - so just clear all R5_LOCKED flags
2832 		 */
2833 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2834 	}
2835 
2836 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2837 		if (atomic_dec_and_test(&conf->pending_full_writes))
2838 			md_wakeup_thread(conf->mddev->thread);
2839 }
2840 
2841 static void
2842 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2843 		   struct stripe_head_state *s)
2844 {
2845 	int abort = 0;
2846 	int i;
2847 
2848 	clear_bit(STRIPE_SYNCING, &sh->state);
2849 	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
2850 		wake_up(&conf->wait_for_overlap);
2851 	s->syncing = 0;
2852 	s->replacing = 0;
2853 	/* There is nothing more to do for sync/check/repair.
2854 	 * Don't even need to abort as that is handled elsewhere
2855 	 * if needed, and not always wanted e.g. if there is a known
2856 	 * bad block here.
2857 	 * For recover/replace we need to record a bad block on all
2858 	 * non-sync devices, or abort the recovery
2859 	 */
2860 	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2861 		/* During recovery devices cannot be removed, so
2862 		 * locking and refcounting of rdevs is not needed
2863 		 */
2864 		for (i = 0; i < conf->raid_disks; i++) {
2865 			struct md_rdev *rdev = conf->disks[i].rdev;
2866 			if (rdev
2867 			    && !test_bit(Faulty, &rdev->flags)
2868 			    && !test_bit(In_sync, &rdev->flags)
2869 			    && !rdev_set_badblocks(rdev, sh->sector,
2870 						   STRIPE_SECTORS, 0))
2871 				abort = 1;
2872 			rdev = conf->disks[i].replacement;
2873 			if (rdev
2874 			    && !test_bit(Faulty, &rdev->flags)
2875 			    && !test_bit(In_sync, &rdev->flags)
2876 			    && !rdev_set_badblocks(rdev, sh->sector,
2877 						   STRIPE_SECTORS, 0))
2878 				abort = 1;
2879 		}
2880 		if (abort)
2881 			conf->recovery_disabled =
2882 				conf->mddev->recovery_disabled;
2883 	}
2884 	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2885 }
2886 
2887 static int want_replace(struct stripe_head *sh, int disk_idx)
2888 {
2889 	struct md_rdev *rdev;
2890 	int rv = 0;
2891 	/* Doing recovery so rcu locking not required */
2892 	rdev = sh->raid_conf->disks[disk_idx].replacement;
2893 	if (rdev
2894 	    && !test_bit(Faulty, &rdev->flags)
2895 	    && !test_bit(In_sync, &rdev->flags)
2896 	    && (rdev->recovery_offset <= sh->sector
2897 		|| rdev->mddev->recovery_cp <= sh->sector))
2898 		rv = 1;
2899 
2900 	return rv;
2901 }
2902 
2903 /* fetch_block - checks the given member device to see if its data needs
2904  * to be read or computed to satisfy a request.
2905  *
2906  * Returns 1 when no more member devices need to be checked, otherwise returns
2907  * 0 to tell the loop in handle_stripe_fill to continue
2908  */
2909 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2910 		       int disk_idx, int disks)
2911 {
2912 	struct r5dev *dev = &sh->dev[disk_idx];
2913 	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2914 				  &sh->dev[s->failed_num[1]] };
2915 
2916 	/* is the data in this block needed, and can we get it? */
2917 	if (!test_bit(R5_LOCKED, &dev->flags) &&
2918 	    !test_bit(R5_UPTODATE, &dev->flags) &&
2919 	    (dev->toread ||
2920 	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2921 	     s->syncing || s->expanding ||
2922 	     (s->replacing && want_replace(sh, disk_idx)) ||
2923 	     (s->failed >= 1 && fdev[0]->toread) ||
2924 	     (s->failed >= 2 && fdev[1]->toread) ||
2925 	     (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2926 	      (!test_bit(R5_Insync, &dev->flags) || test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) &&
2927 	      !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2928 	     (sh->raid_conf->level == 6 && s->failed && s->to_write &&
2929 	      s->to_write - s->non_overwrite < sh->raid_conf->raid_disks - 2 &&
2930 	      (!test_bit(R5_Insync, &dev->flags) || test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))))) {
2931 		/* we would like to get this block, possibly by computing it,
2932 		 * otherwise read it if the backing disk is insync
2933 		 */
2934 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2935 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
2936 		if ((s->uptodate == disks - 1) &&
2937 		    (s->failed && (disk_idx == s->failed_num[0] ||
2938 				   disk_idx == s->failed_num[1]))) {
2939 			/* have disk failed, and we're requested to fetch it;
2940 			 * do compute it
2941 			 */
2942 			pr_debug("Computing stripe %llu block %d\n",
2943 			       (unsigned long long)sh->sector, disk_idx);
2944 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2945 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2946 			set_bit(R5_Wantcompute, &dev->flags);
2947 			sh->ops.target = disk_idx;
2948 			sh->ops.target2 = -1; /* no 2nd target */
2949 			s->req_compute = 1;
2950 			/* Careful: from this point on 'uptodate' is in the eye
2951 			 * of raid_run_ops which services 'compute' operations
2952 			 * before writes. R5_Wantcompute flags a block that will
2953 			 * be R5_UPTODATE by the time it is needed for a
2954 			 * subsequent operation.
2955 			 */
2956 			s->uptodate++;
2957 			return 1;
2958 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
2959 			/* Computing 2-failure is *very* expensive; only
2960 			 * do it if failed >= 2
2961 			 */
2962 			int other;
2963 			for (other = disks; other--; ) {
2964 				if (other == disk_idx)
2965 					continue;
2966 				if (!test_bit(R5_UPTODATE,
2967 				      &sh->dev[other].flags))
2968 					break;
2969 			}
2970 			BUG_ON(other < 0);
2971 			pr_debug("Computing stripe %llu blocks %d,%d\n",
2972 			       (unsigned long long)sh->sector,
2973 			       disk_idx, other);
2974 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2975 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2976 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2977 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
2978 			sh->ops.target = disk_idx;
2979 			sh->ops.target2 = other;
2980 			s->uptodate += 2;
2981 			s->req_compute = 1;
2982 			return 1;
2983 		} else if (test_bit(R5_Insync, &dev->flags)) {
2984 			set_bit(R5_LOCKED, &dev->flags);
2985 			set_bit(R5_Wantread, &dev->flags);
2986 			s->locked++;
2987 			pr_debug("Reading block %d (sync=%d)\n",
2988 				disk_idx, s->syncing);
2989 		}
2990 	}
2991 
2992 	return 0;
2993 }
2994 
2995 /**
2996  * handle_stripe_fill - read or compute data to satisfy pending requests.
2997  */
2998 static void handle_stripe_fill(struct stripe_head *sh,
2999 			       struct stripe_head_state *s,
3000 			       int disks)
3001 {
3002 	int i;
3003 
3004 	/* look for blocks to read/compute, skip this if a compute
3005 	 * is already in flight, or if the stripe contents are in the
3006 	 * midst of changing due to a write
3007 	 */
3008 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3009 	    !sh->reconstruct_state)
3010 		for (i = disks; i--; )
3011 			if (fetch_block(sh, s, i, disks))
3012 				break;
3013 	set_bit(STRIPE_HANDLE, &sh->state);
3014 }
3015 
3016 
3017 /* handle_stripe_clean_event
3018  * any written block on an uptodate or failed drive can be returned.
3019  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3020  * never LOCKED, so we don't need to test 'failed' directly.
3021  */
3022 static void handle_stripe_clean_event(struct r5conf *conf,
3023 	struct stripe_head *sh, int disks, struct bio **return_bi)
3024 {
3025 	int i;
3026 	struct r5dev *dev;
3027 	int discard_pending = 0;
3028 
3029 	for (i = disks; i--; )
3030 		if (sh->dev[i].written) {
3031 			dev = &sh->dev[i];
3032 			if (!test_bit(R5_LOCKED, &dev->flags) &&
3033 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3034 			     test_bit(R5_Discard, &dev->flags) ||
3035 			     test_bit(R5_SkipCopy, &dev->flags))) {
3036 				/* We can return any write requests */
3037 				struct bio *wbi, *wbi2;
3038 				pr_debug("Return write for disc %d\n", i);
3039 				if (test_and_clear_bit(R5_Discard, &dev->flags))
3040 					clear_bit(R5_UPTODATE, &dev->flags);
3041 				if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3042 					WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3043 					dev->page = dev->orig_page;
3044 				}
3045 				wbi = dev->written;
3046 				dev->written = NULL;
3047 				while (wbi && wbi->bi_iter.bi_sector <
3048 					dev->sector + STRIPE_SECTORS) {
3049 					wbi2 = r5_next_bio(wbi, dev->sector);
3050 					if (!raid5_dec_bi_active_stripes(wbi)) {
3051 						md_write_end(conf->mddev);
3052 						wbi->bi_next = *return_bi;
3053 						*return_bi = wbi;
3054 					}
3055 					wbi = wbi2;
3056 				}
3057 				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3058 						STRIPE_SECTORS,
3059 					 !test_bit(STRIPE_DEGRADED, &sh->state),
3060 						0);
3061 			} else if (test_bit(R5_Discard, &dev->flags))
3062 				discard_pending = 1;
3063 			WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3064 			WARN_ON(dev->page != dev->orig_page);
3065 		}
3066 	if (!discard_pending &&
3067 	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3068 		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3069 		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3070 		if (sh->qd_idx >= 0) {
3071 			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3072 			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3073 		}
3074 		/* now that discard is done we can proceed with any sync */
3075 		clear_bit(STRIPE_DISCARD, &sh->state);
3076 		/*
3077 		 * SCSI discard will change some bio fields and the stripe has
3078 		 * no updated data, so remove it from hash list and the stripe
3079 		 * will be reinitialized
3080 		 */
3081 		spin_lock_irq(&conf->device_lock);
3082 		remove_hash(sh);
3083 		spin_unlock_irq(&conf->device_lock);
3084 		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3085 			set_bit(STRIPE_HANDLE, &sh->state);
3086 
3087 	}
3088 
3089 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3090 		if (atomic_dec_and_test(&conf->pending_full_writes))
3091 			md_wakeup_thread(conf->mddev->thread);
3092 }
3093 
3094 static void handle_stripe_dirtying(struct r5conf *conf,
3095 				   struct stripe_head *sh,
3096 				   struct stripe_head_state *s,
3097 				   int disks)
3098 {
3099 	int rmw = 0, rcw = 0, i;
3100 	sector_t recovery_cp = conf->mddev->recovery_cp;
3101 
3102 	/* RAID6 requires 'rcw' in current implementation.
3103 	 * Otherwise, check whether resync is now happening or should start.
3104 	 * If yes, then the array is dirty (after unclean shutdown or
3105 	 * initial creation), so parity in some stripes might be inconsistent.
3106 	 * In this case, we need to always do reconstruct-write, to ensure
3107 	 * that in case of drive failure or read-error correction, we
3108 	 * generate correct data from the parity.
3109 	 */
3110 	if (conf->max_degraded == 2 ||
3111 	    (recovery_cp < MaxSector && sh->sector >= recovery_cp)) {
3112 		/* Calculate the real rcw later - for now make it
3113 		 * look like rcw is cheaper
3114 		 */
3115 		rcw = 1; rmw = 2;
3116 		pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
3117 			 conf->max_degraded, (unsigned long long)recovery_cp,
3118 			 (unsigned long long)sh->sector);
3119 	} else for (i = disks; i--; ) {
3120 		/* would I have to read this buffer for read_modify_write */
3121 		struct r5dev *dev = &sh->dev[i];
3122 		if ((dev->towrite || i == sh->pd_idx) &&
3123 		    !test_bit(R5_LOCKED, &dev->flags) &&
3124 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
3125 		      test_bit(R5_Wantcompute, &dev->flags))) {
3126 			if (test_bit(R5_Insync, &dev->flags))
3127 				rmw++;
3128 			else
3129 				rmw += 2*disks;  /* cannot read it */
3130 		}
3131 		/* Would I have to read this buffer for reconstruct_write */
3132 		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
3133 		    !test_bit(R5_LOCKED, &dev->flags) &&
3134 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
3135 		    test_bit(R5_Wantcompute, &dev->flags))) {
3136 			if (test_bit(R5_Insync, &dev->flags))
3137 				rcw++;
3138 			else
3139 				rcw += 2*disks;
3140 		}
3141 	}
3142 	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3143 		(unsigned long long)sh->sector, rmw, rcw);
3144 	set_bit(STRIPE_HANDLE, &sh->state);
3145 	if (rmw < rcw && rmw > 0) {
3146 		/* prefer read-modify-write, but need to get some data */
3147 		if (conf->mddev->queue)
3148 			blk_add_trace_msg(conf->mddev->queue,
3149 					  "raid5 rmw %llu %d",
3150 					  (unsigned long long)sh->sector, rmw);
3151 		for (i = disks; i--; ) {
3152 			struct r5dev *dev = &sh->dev[i];
3153 			if ((dev->towrite || i == sh->pd_idx) &&
3154 			    !test_bit(R5_LOCKED, &dev->flags) &&
3155 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3156 			    test_bit(R5_Wantcompute, &dev->flags)) &&
3157 			    test_bit(R5_Insync, &dev->flags)) {
3158 				if (test_bit(STRIPE_PREREAD_ACTIVE,
3159 					     &sh->state)) {
3160 					pr_debug("Read_old block %d for r-m-w\n",
3161 						 i);
3162 					set_bit(R5_LOCKED, &dev->flags);
3163 					set_bit(R5_Wantread, &dev->flags);
3164 					s->locked++;
3165 				} else {
3166 					set_bit(STRIPE_DELAYED, &sh->state);
3167 					set_bit(STRIPE_HANDLE, &sh->state);
3168 				}
3169 			}
3170 		}
3171 	}
3172 	if (rcw <= rmw && rcw > 0) {
3173 		/* want reconstruct write, but need to get some data */
3174 		int qread =0;
3175 		rcw = 0;
3176 		for (i = disks; i--; ) {
3177 			struct r5dev *dev = &sh->dev[i];
3178 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3179 			    i != sh->pd_idx && i != sh->qd_idx &&
3180 			    !test_bit(R5_LOCKED, &dev->flags) &&
3181 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3182 			      test_bit(R5_Wantcompute, &dev->flags))) {
3183 				rcw++;
3184 				if (test_bit(R5_Insync, &dev->flags) &&
3185 				    test_bit(STRIPE_PREREAD_ACTIVE,
3186 					     &sh->state)) {
3187 					pr_debug("Read_old block "
3188 						"%d for Reconstruct\n", i);
3189 					set_bit(R5_LOCKED, &dev->flags);
3190 					set_bit(R5_Wantread, &dev->flags);
3191 					s->locked++;
3192 					qread++;
3193 				} else {
3194 					set_bit(STRIPE_DELAYED, &sh->state);
3195 					set_bit(STRIPE_HANDLE, &sh->state);
3196 				}
3197 			}
3198 		}
3199 		if (rcw && conf->mddev->queue)
3200 			blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3201 					  (unsigned long long)sh->sector,
3202 					  rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3203 	}
3204 	/* now if nothing is locked, and if we have enough data,
3205 	 * we can start a write request
3206 	 */
3207 	/* since handle_stripe can be called at any time we need to handle the
3208 	 * case where a compute block operation has been submitted and then a
3209 	 * subsequent call wants to start a write request.  raid_run_ops only
3210 	 * handles the case where compute block and reconstruct are requested
3211 	 * simultaneously.  If this is not the case then new writes need to be
3212 	 * held off until the compute completes.
3213 	 */
3214 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3215 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3216 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3217 		schedule_reconstruction(sh, s, rcw == 0, 0);
3218 }
3219 
3220 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3221 				struct stripe_head_state *s, int disks)
3222 {
3223 	struct r5dev *dev = NULL;
3224 
3225 	set_bit(STRIPE_HANDLE, &sh->state);
3226 
3227 	switch (sh->check_state) {
3228 	case check_state_idle:
3229 		/* start a new check operation if there are no failures */
3230 		if (s->failed == 0) {
3231 			BUG_ON(s->uptodate != disks);
3232 			sh->check_state = check_state_run;
3233 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3234 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3235 			s->uptodate--;
3236 			break;
3237 		}
3238 		dev = &sh->dev[s->failed_num[0]];
3239 		/* fall through */
3240 	case check_state_compute_result:
3241 		sh->check_state = check_state_idle;
3242 		if (!dev)
3243 			dev = &sh->dev[sh->pd_idx];
3244 
3245 		/* check that a write has not made the stripe insync */
3246 		if (test_bit(STRIPE_INSYNC, &sh->state))
3247 			break;
3248 
3249 		/* either failed parity check, or recovery is happening */
3250 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3251 		BUG_ON(s->uptodate != disks);
3252 
3253 		set_bit(R5_LOCKED, &dev->flags);
3254 		s->locked++;
3255 		set_bit(R5_Wantwrite, &dev->flags);
3256 
3257 		clear_bit(STRIPE_DEGRADED, &sh->state);
3258 		set_bit(STRIPE_INSYNC, &sh->state);
3259 		break;
3260 	case check_state_run:
3261 		break; /* we will be called again upon completion */
3262 	case check_state_check_result:
3263 		sh->check_state = check_state_idle;
3264 
3265 		/* if a failure occurred during the check operation, leave
3266 		 * STRIPE_INSYNC not set and let the stripe be handled again
3267 		 */
3268 		if (s->failed)
3269 			break;
3270 
3271 		/* handle a successful check operation, if parity is correct
3272 		 * we are done.  Otherwise update the mismatch count and repair
3273 		 * parity if !MD_RECOVERY_CHECK
3274 		 */
3275 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3276 			/* parity is correct (on disc,
3277 			 * not in buffer any more)
3278 			 */
3279 			set_bit(STRIPE_INSYNC, &sh->state);
3280 		else {
3281 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3282 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3283 				/* don't try to repair!! */
3284 				set_bit(STRIPE_INSYNC, &sh->state);
3285 			else {
3286 				sh->check_state = check_state_compute_run;
3287 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3288 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3289 				set_bit(R5_Wantcompute,
3290 					&sh->dev[sh->pd_idx].flags);
3291 				sh->ops.target = sh->pd_idx;
3292 				sh->ops.target2 = -1;
3293 				s->uptodate++;
3294 			}
3295 		}
3296 		break;
3297 	case check_state_compute_run:
3298 		break;
3299 	default:
3300 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3301 		       __func__, sh->check_state,
3302 		       (unsigned long long) sh->sector);
3303 		BUG();
3304 	}
3305 }
3306 
3307 
3308 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3309 				  struct stripe_head_state *s,
3310 				  int disks)
3311 {
3312 	int pd_idx = sh->pd_idx;
3313 	int qd_idx = sh->qd_idx;
3314 	struct r5dev *dev;
3315 
3316 	set_bit(STRIPE_HANDLE, &sh->state);
3317 
3318 	BUG_ON(s->failed > 2);
3319 
3320 	/* Want to check and possibly repair P and Q.
3321 	 * However there could be one 'failed' device, in which
3322 	 * case we can only check one of them, possibly using the
3323 	 * other to generate missing data
3324 	 */
3325 
3326 	switch (sh->check_state) {
3327 	case check_state_idle:
3328 		/* start a new check operation if there are < 2 failures */
3329 		if (s->failed == s->q_failed) {
3330 			/* The only possible failed device holds Q, so it
3331 			 * makes sense to check P (If anything else were failed,
3332 			 * we would have used P to recreate it).
3333 			 */
3334 			sh->check_state = check_state_run;
3335 		}
3336 		if (!s->q_failed && s->failed < 2) {
3337 			/* Q is not failed, and we didn't use it to generate
3338 			 * anything, so it makes sense to check it
3339 			 */
3340 			if (sh->check_state == check_state_run)
3341 				sh->check_state = check_state_run_pq;
3342 			else
3343 				sh->check_state = check_state_run_q;
3344 		}
3345 
3346 		/* discard potentially stale zero_sum_result */
3347 		sh->ops.zero_sum_result = 0;
3348 
3349 		if (sh->check_state == check_state_run) {
3350 			/* async_xor_zero_sum destroys the contents of P */
3351 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3352 			s->uptodate--;
3353 		}
3354 		if (sh->check_state >= check_state_run &&
3355 		    sh->check_state <= check_state_run_pq) {
3356 			/* async_syndrome_zero_sum preserves P and Q, so
3357 			 * no need to mark them !uptodate here
3358 			 */
3359 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3360 			break;
3361 		}
3362 
3363 		/* we have 2-disk failure */
3364 		BUG_ON(s->failed != 2);
3365 		/* fall through */
3366 	case check_state_compute_result:
3367 		sh->check_state = check_state_idle;
3368 
3369 		/* check that a write has not made the stripe insync */
3370 		if (test_bit(STRIPE_INSYNC, &sh->state))
3371 			break;
3372 
3373 		/* now write out any block on a failed drive,
3374 		 * or P or Q if they were recomputed
3375 		 */
3376 		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3377 		if (s->failed == 2) {
3378 			dev = &sh->dev[s->failed_num[1]];
3379 			s->locked++;
3380 			set_bit(R5_LOCKED, &dev->flags);
3381 			set_bit(R5_Wantwrite, &dev->flags);
3382 		}
3383 		if (s->failed >= 1) {
3384 			dev = &sh->dev[s->failed_num[0]];
3385 			s->locked++;
3386 			set_bit(R5_LOCKED, &dev->flags);
3387 			set_bit(R5_Wantwrite, &dev->flags);
3388 		}
3389 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3390 			dev = &sh->dev[pd_idx];
3391 			s->locked++;
3392 			set_bit(R5_LOCKED, &dev->flags);
3393 			set_bit(R5_Wantwrite, &dev->flags);
3394 		}
3395 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3396 			dev = &sh->dev[qd_idx];
3397 			s->locked++;
3398 			set_bit(R5_LOCKED, &dev->flags);
3399 			set_bit(R5_Wantwrite, &dev->flags);
3400 		}
3401 		clear_bit(STRIPE_DEGRADED, &sh->state);
3402 
3403 		set_bit(STRIPE_INSYNC, &sh->state);
3404 		break;
3405 	case check_state_run:
3406 	case check_state_run_q:
3407 	case check_state_run_pq:
3408 		break; /* we will be called again upon completion */
3409 	case check_state_check_result:
3410 		sh->check_state = check_state_idle;
3411 
3412 		/* handle a successful check operation, if parity is correct
3413 		 * we are done.  Otherwise update the mismatch count and repair
3414 		 * parity if !MD_RECOVERY_CHECK
3415 		 */
3416 		if (sh->ops.zero_sum_result == 0) {
3417 			/* both parities are correct */
3418 			if (!s->failed)
3419 				set_bit(STRIPE_INSYNC, &sh->state);
3420 			else {
3421 				/* in contrast to the raid5 case we can validate
3422 				 * parity, but still have a failure to write
3423 				 * back
3424 				 */
3425 				sh->check_state = check_state_compute_result;
3426 				/* Returning at this point means that we may go
3427 				 * off and bring p and/or q uptodate again so
3428 				 * we make sure to check zero_sum_result again
3429 				 * to verify if p or q need writeback
3430 				 */
3431 			}
3432 		} else {
3433 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3434 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3435 				/* don't try to repair!! */
3436 				set_bit(STRIPE_INSYNC, &sh->state);
3437 			else {
3438 				int *target = &sh->ops.target;
3439 
3440 				sh->ops.target = -1;
3441 				sh->ops.target2 = -1;
3442 				sh->check_state = check_state_compute_run;
3443 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3444 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3445 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3446 					set_bit(R5_Wantcompute,
3447 						&sh->dev[pd_idx].flags);
3448 					*target = pd_idx;
3449 					target = &sh->ops.target2;
3450 					s->uptodate++;
3451 				}
3452 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3453 					set_bit(R5_Wantcompute,
3454 						&sh->dev[qd_idx].flags);
3455 					*target = qd_idx;
3456 					s->uptodate++;
3457 				}
3458 			}
3459 		}
3460 		break;
3461 	case check_state_compute_run:
3462 		break;
3463 	default:
3464 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3465 		       __func__, sh->check_state,
3466 		       (unsigned long long) sh->sector);
3467 		BUG();
3468 	}
3469 }
3470 
3471 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3472 {
3473 	int i;
3474 
3475 	/* We have read all the blocks in this stripe and now we need to
3476 	 * copy some of them into a target stripe for expand.
3477 	 */
3478 	struct dma_async_tx_descriptor *tx = NULL;
3479 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3480 	for (i = 0; i < sh->disks; i++)
3481 		if (i != sh->pd_idx && i != sh->qd_idx) {
3482 			int dd_idx, j;
3483 			struct stripe_head *sh2;
3484 			struct async_submit_ctl submit;
3485 
3486 			sector_t bn = compute_blocknr(sh, i, 1);
3487 			sector_t s = raid5_compute_sector(conf, bn, 0,
3488 							  &dd_idx, NULL);
3489 			sh2 = get_active_stripe(conf, s, 0, 1, 1);
3490 			if (sh2 == NULL)
3491 				/* so far only the early blocks of this stripe
3492 				 * have been requested.  When later blocks
3493 				 * get requested, we will try again
3494 				 */
3495 				continue;
3496 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3497 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3498 				/* must have already done this block */
3499 				release_stripe(sh2);
3500 				continue;
3501 			}
3502 
3503 			/* place all the copies on one channel */
3504 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3505 			tx = async_memcpy(sh2->dev[dd_idx].page,
3506 					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
3507 					  &submit);
3508 
3509 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3510 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3511 			for (j = 0; j < conf->raid_disks; j++)
3512 				if (j != sh2->pd_idx &&
3513 				    j != sh2->qd_idx &&
3514 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
3515 					break;
3516 			if (j == conf->raid_disks) {
3517 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
3518 				set_bit(STRIPE_HANDLE, &sh2->state);
3519 			}
3520 			release_stripe(sh2);
3521 
3522 		}
3523 	/* done submitting copies, wait for them to complete */
3524 	async_tx_quiesce(&tx);
3525 }
3526 
3527 /*
3528  * handle_stripe - do things to a stripe.
3529  *
3530  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3531  * state of various bits to see what needs to be done.
3532  * Possible results:
3533  *    return some read requests which now have data
3534  *    return some write requests which are safely on storage
3535  *    schedule a read on some buffers
3536  *    schedule a write of some buffers
3537  *    return confirmation of parity correctness
3538  *
3539  */
3540 
3541 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3542 {
3543 	struct r5conf *conf = sh->raid_conf;
3544 	int disks = sh->disks;
3545 	struct r5dev *dev;
3546 	int i;
3547 	int do_recovery = 0;
3548 
3549 	memset(s, 0, sizeof(*s));
3550 
3551 	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3552 	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3553 	s->failed_num[0] = -1;
3554 	s->failed_num[1] = -1;
3555 
3556 	/* Now to look around and see what can be done */
3557 	rcu_read_lock();
3558 	for (i=disks; i--; ) {
3559 		struct md_rdev *rdev;
3560 		sector_t first_bad;
3561 		int bad_sectors;
3562 		int is_bad = 0;
3563 
3564 		dev = &sh->dev[i];
3565 
3566 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3567 			 i, dev->flags,
3568 			 dev->toread, dev->towrite, dev->written);
3569 		/* maybe we can reply to a read
3570 		 *
3571 		 * new wantfill requests are only permitted while
3572 		 * ops_complete_biofill is guaranteed to be inactive
3573 		 */
3574 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3575 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3576 			set_bit(R5_Wantfill, &dev->flags);
3577 
3578 		/* now count some things */
3579 		if (test_bit(R5_LOCKED, &dev->flags))
3580 			s->locked++;
3581 		if (test_bit(R5_UPTODATE, &dev->flags))
3582 			s->uptodate++;
3583 		if (test_bit(R5_Wantcompute, &dev->flags)) {
3584 			s->compute++;
3585 			BUG_ON(s->compute > 2);
3586 		}
3587 
3588 		if (test_bit(R5_Wantfill, &dev->flags))
3589 			s->to_fill++;
3590 		else if (dev->toread)
3591 			s->to_read++;
3592 		if (dev->towrite) {
3593 			s->to_write++;
3594 			if (!test_bit(R5_OVERWRITE, &dev->flags))
3595 				s->non_overwrite++;
3596 		}
3597 		if (dev->written)
3598 			s->written++;
3599 		/* Prefer to use the replacement for reads, but only
3600 		 * if it is recovered enough and has no bad blocks.
3601 		 */
3602 		rdev = rcu_dereference(conf->disks[i].replacement);
3603 		if (rdev && !test_bit(Faulty, &rdev->flags) &&
3604 		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3605 		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3606 				 &first_bad, &bad_sectors))
3607 			set_bit(R5_ReadRepl, &dev->flags);
3608 		else {
3609 			if (rdev)
3610 				set_bit(R5_NeedReplace, &dev->flags);
3611 			rdev = rcu_dereference(conf->disks[i].rdev);
3612 			clear_bit(R5_ReadRepl, &dev->flags);
3613 		}
3614 		if (rdev && test_bit(Faulty, &rdev->flags))
3615 			rdev = NULL;
3616 		if (rdev) {
3617 			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3618 					     &first_bad, &bad_sectors);
3619 			if (s->blocked_rdev == NULL
3620 			    && (test_bit(Blocked, &rdev->flags)
3621 				|| is_bad < 0)) {
3622 				if (is_bad < 0)
3623 					set_bit(BlockedBadBlocks,
3624 						&rdev->flags);
3625 				s->blocked_rdev = rdev;
3626 				atomic_inc(&rdev->nr_pending);
3627 			}
3628 		}
3629 		clear_bit(R5_Insync, &dev->flags);
3630 		if (!rdev)
3631 			/* Not in-sync */;
3632 		else if (is_bad) {
3633 			/* also not in-sync */
3634 			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3635 			    test_bit(R5_UPTODATE, &dev->flags)) {
3636 				/* treat as in-sync, but with a read error
3637 				 * which we can now try to correct
3638 				 */
3639 				set_bit(R5_Insync, &dev->flags);
3640 				set_bit(R5_ReadError, &dev->flags);
3641 			}
3642 		} else if (test_bit(In_sync, &rdev->flags))
3643 			set_bit(R5_Insync, &dev->flags);
3644 		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3645 			/* in sync if before recovery_offset */
3646 			set_bit(R5_Insync, &dev->flags);
3647 		else if (test_bit(R5_UPTODATE, &dev->flags) &&
3648 			 test_bit(R5_Expanded, &dev->flags))
3649 			/* If we've reshaped into here, we assume it is Insync.
3650 			 * We will shortly update recovery_offset to make
3651 			 * it official.
3652 			 */
3653 			set_bit(R5_Insync, &dev->flags);
3654 
3655 		if (test_bit(R5_WriteError, &dev->flags)) {
3656 			/* This flag does not apply to '.replacement'
3657 			 * only to .rdev, so make sure to check that*/
3658 			struct md_rdev *rdev2 = rcu_dereference(
3659 				conf->disks[i].rdev);
3660 			if (rdev2 == rdev)
3661 				clear_bit(R5_Insync, &dev->flags);
3662 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3663 				s->handle_bad_blocks = 1;
3664 				atomic_inc(&rdev2->nr_pending);
3665 			} else
3666 				clear_bit(R5_WriteError, &dev->flags);
3667 		}
3668 		if (test_bit(R5_MadeGood, &dev->flags)) {
3669 			/* This flag does not apply to '.replacement'
3670 			 * only to .rdev, so make sure to check that*/
3671 			struct md_rdev *rdev2 = rcu_dereference(
3672 				conf->disks[i].rdev);
3673 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3674 				s->handle_bad_blocks = 1;
3675 				atomic_inc(&rdev2->nr_pending);
3676 			} else
3677 				clear_bit(R5_MadeGood, &dev->flags);
3678 		}
3679 		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3680 			struct md_rdev *rdev2 = rcu_dereference(
3681 				conf->disks[i].replacement);
3682 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3683 				s->handle_bad_blocks = 1;
3684 				atomic_inc(&rdev2->nr_pending);
3685 			} else
3686 				clear_bit(R5_MadeGoodRepl, &dev->flags);
3687 		}
3688 		if (!test_bit(R5_Insync, &dev->flags)) {
3689 			/* The ReadError flag will just be confusing now */
3690 			clear_bit(R5_ReadError, &dev->flags);
3691 			clear_bit(R5_ReWrite, &dev->flags);
3692 		}
3693 		if (test_bit(R5_ReadError, &dev->flags))
3694 			clear_bit(R5_Insync, &dev->flags);
3695 		if (!test_bit(R5_Insync, &dev->flags)) {
3696 			if (s->failed < 2)
3697 				s->failed_num[s->failed] = i;
3698 			s->failed++;
3699 			if (rdev && !test_bit(Faulty, &rdev->flags))
3700 				do_recovery = 1;
3701 		}
3702 	}
3703 	if (test_bit(STRIPE_SYNCING, &sh->state)) {
3704 		/* If there is a failed device being replaced,
3705 		 *     we must be recovering.
3706 		 * else if we are after recovery_cp, we must be syncing
3707 		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3708 		 * else we can only be replacing
3709 		 * sync and recovery both need to read all devices, and so
3710 		 * use the same flag.
3711 		 */
3712 		if (do_recovery ||
3713 		    sh->sector >= conf->mddev->recovery_cp ||
3714 		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3715 			s->syncing = 1;
3716 		else
3717 			s->replacing = 1;
3718 	}
3719 	rcu_read_unlock();
3720 }
3721 
3722 static void handle_stripe(struct stripe_head *sh)
3723 {
3724 	struct stripe_head_state s;
3725 	struct r5conf *conf = sh->raid_conf;
3726 	int i;
3727 	int prexor;
3728 	int disks = sh->disks;
3729 	struct r5dev *pdev, *qdev;
3730 
3731 	clear_bit(STRIPE_HANDLE, &sh->state);
3732 	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3733 		/* already being handled, ensure it gets handled
3734 		 * again when current action finishes */
3735 		set_bit(STRIPE_HANDLE, &sh->state);
3736 		return;
3737 	}
3738 
3739 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3740 		spin_lock(&sh->stripe_lock);
3741 		/* Cannot process 'sync' concurrently with 'discard' */
3742 		if (!test_bit(STRIPE_DISCARD, &sh->state) &&
3743 		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3744 			set_bit(STRIPE_SYNCING, &sh->state);
3745 			clear_bit(STRIPE_INSYNC, &sh->state);
3746 			clear_bit(STRIPE_REPLACED, &sh->state);
3747 		}
3748 		spin_unlock(&sh->stripe_lock);
3749 	}
3750 	clear_bit(STRIPE_DELAYED, &sh->state);
3751 
3752 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3753 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3754 	       (unsigned long long)sh->sector, sh->state,
3755 	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3756 	       sh->check_state, sh->reconstruct_state);
3757 
3758 	analyse_stripe(sh, &s);
3759 
3760 	if (s.handle_bad_blocks) {
3761 		set_bit(STRIPE_HANDLE, &sh->state);
3762 		goto finish;
3763 	}
3764 
3765 	if (unlikely(s.blocked_rdev)) {
3766 		if (s.syncing || s.expanding || s.expanded ||
3767 		    s.replacing || s.to_write || s.written) {
3768 			set_bit(STRIPE_HANDLE, &sh->state);
3769 			goto finish;
3770 		}
3771 		/* There is nothing for the blocked_rdev to block */
3772 		rdev_dec_pending(s.blocked_rdev, conf->mddev);
3773 		s.blocked_rdev = NULL;
3774 	}
3775 
3776 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3777 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3778 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3779 	}
3780 
3781 	pr_debug("locked=%d uptodate=%d to_read=%d"
3782 	       " to_write=%d failed=%d failed_num=%d,%d\n",
3783 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3784 	       s.failed_num[0], s.failed_num[1]);
3785 	/* check if the array has lost more than max_degraded devices and,
3786 	 * if so, some requests might need to be failed.
3787 	 */
3788 	if (s.failed > conf->max_degraded) {
3789 		sh->check_state = 0;
3790 		sh->reconstruct_state = 0;
3791 		if (s.to_read+s.to_write+s.written)
3792 			handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3793 		if (s.syncing + s.replacing)
3794 			handle_failed_sync(conf, sh, &s);
3795 	}
3796 
3797 	/* Now we check to see if any write operations have recently
3798 	 * completed
3799 	 */
3800 	prexor = 0;
3801 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3802 		prexor = 1;
3803 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
3804 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3805 		sh->reconstruct_state = reconstruct_state_idle;
3806 
3807 		/* All the 'written' buffers and the parity block are ready to
3808 		 * be written back to disk
3809 		 */
3810 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
3811 		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
3812 		BUG_ON(sh->qd_idx >= 0 &&
3813 		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
3814 		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
3815 		for (i = disks; i--; ) {
3816 			struct r5dev *dev = &sh->dev[i];
3817 			if (test_bit(R5_LOCKED, &dev->flags) &&
3818 				(i == sh->pd_idx || i == sh->qd_idx ||
3819 				 dev->written)) {
3820 				pr_debug("Writing block %d\n", i);
3821 				set_bit(R5_Wantwrite, &dev->flags);
3822 				if (prexor)
3823 					continue;
3824 				if (s.failed > 1)
3825 					continue;
3826 				if (!test_bit(R5_Insync, &dev->flags) ||
3827 				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
3828 				     s.failed == 0))
3829 					set_bit(STRIPE_INSYNC, &sh->state);
3830 			}
3831 		}
3832 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3833 			s.dec_preread_active = 1;
3834 	}
3835 
3836 	/*
3837 	 * might be able to return some write requests if the parity blocks
3838 	 * are safe, or on a failed drive
3839 	 */
3840 	pdev = &sh->dev[sh->pd_idx];
3841 	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3842 		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3843 	qdev = &sh->dev[sh->qd_idx];
3844 	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3845 		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3846 		|| conf->level < 6;
3847 
3848 	if (s.written &&
3849 	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3850 			     && !test_bit(R5_LOCKED, &pdev->flags)
3851 			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
3852 				 test_bit(R5_Discard, &pdev->flags))))) &&
3853 	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3854 			     && !test_bit(R5_LOCKED, &qdev->flags)
3855 			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
3856 				 test_bit(R5_Discard, &qdev->flags))))))
3857 		handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3858 
3859 	/* Now we might consider reading some blocks, either to check/generate
3860 	 * parity, or to satisfy requests
3861 	 * or to load a block that is being partially written.
3862 	 */
3863 	if (s.to_read || s.non_overwrite
3864 	    || (conf->level == 6 && s.to_write && s.failed)
3865 	    || (s.syncing && (s.uptodate + s.compute < disks))
3866 	    || s.replacing
3867 	    || s.expanding)
3868 		handle_stripe_fill(sh, &s, disks);
3869 
3870 	/* Now to consider new write requests and what else, if anything
3871 	 * should be read.  We do not handle new writes when:
3872 	 * 1/ A 'write' operation (copy+xor) is already in flight.
3873 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
3874 	 *    block.
3875 	 */
3876 	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3877 		handle_stripe_dirtying(conf, sh, &s, disks);
3878 
3879 	/* maybe we need to check and possibly fix the parity for this stripe
3880 	 * Any reads will already have been scheduled, so we just see if enough
3881 	 * data is available.  The parity check is held off while parity
3882 	 * dependent operations are in flight.
3883 	 */
3884 	if (sh->check_state ||
3885 	    (s.syncing && s.locked == 0 &&
3886 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3887 	     !test_bit(STRIPE_INSYNC, &sh->state))) {
3888 		if (conf->level == 6)
3889 			handle_parity_checks6(conf, sh, &s, disks);
3890 		else
3891 			handle_parity_checks5(conf, sh, &s, disks);
3892 	}
3893 
3894 	if ((s.replacing || s.syncing) && s.locked == 0
3895 	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
3896 	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
3897 		/* Write out to replacement devices where possible */
3898 		for (i = 0; i < conf->raid_disks; i++)
3899 			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3900 				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
3901 				set_bit(R5_WantReplace, &sh->dev[i].flags);
3902 				set_bit(R5_LOCKED, &sh->dev[i].flags);
3903 				s.locked++;
3904 			}
3905 		if (s.replacing)
3906 			set_bit(STRIPE_INSYNC, &sh->state);
3907 		set_bit(STRIPE_REPLACED, &sh->state);
3908 	}
3909 	if ((s.syncing || s.replacing) && s.locked == 0 &&
3910 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3911 	    test_bit(STRIPE_INSYNC, &sh->state)) {
3912 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3913 		clear_bit(STRIPE_SYNCING, &sh->state);
3914 		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3915 			wake_up(&conf->wait_for_overlap);
3916 	}
3917 
3918 	/* If the failed drives are just a ReadError, then we might need
3919 	 * to progress the repair/check process
3920 	 */
3921 	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3922 		for (i = 0; i < s.failed; i++) {
3923 			struct r5dev *dev = &sh->dev[s.failed_num[i]];
3924 			if (test_bit(R5_ReadError, &dev->flags)
3925 			    && !test_bit(R5_LOCKED, &dev->flags)
3926 			    && test_bit(R5_UPTODATE, &dev->flags)
3927 				) {
3928 				if (!test_bit(R5_ReWrite, &dev->flags)) {
3929 					set_bit(R5_Wantwrite, &dev->flags);
3930 					set_bit(R5_ReWrite, &dev->flags);
3931 					set_bit(R5_LOCKED, &dev->flags);
3932 					s.locked++;
3933 				} else {
3934 					/* let's read it back */
3935 					set_bit(R5_Wantread, &dev->flags);
3936 					set_bit(R5_LOCKED, &dev->flags);
3937 					s.locked++;
3938 				}
3939 			}
3940 		}
3941 
3942 
3943 	/* Finish reconstruct operations initiated by the expansion process */
3944 	if (sh->reconstruct_state == reconstruct_state_result) {
3945 		struct stripe_head *sh_src
3946 			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3947 		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3948 			/* sh cannot be written until sh_src has been read.
3949 			 * so arrange for sh to be delayed a little
3950 			 */
3951 			set_bit(STRIPE_DELAYED, &sh->state);
3952 			set_bit(STRIPE_HANDLE, &sh->state);
3953 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3954 					      &sh_src->state))
3955 				atomic_inc(&conf->preread_active_stripes);
3956 			release_stripe(sh_src);
3957 			goto finish;
3958 		}
3959 		if (sh_src)
3960 			release_stripe(sh_src);
3961 
3962 		sh->reconstruct_state = reconstruct_state_idle;
3963 		clear_bit(STRIPE_EXPANDING, &sh->state);
3964 		for (i = conf->raid_disks; i--; ) {
3965 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
3966 			set_bit(R5_LOCKED, &sh->dev[i].flags);
3967 			s.locked++;
3968 		}
3969 	}
3970 
3971 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3972 	    !sh->reconstruct_state) {
3973 		/* Need to write out all blocks after computing parity */
3974 		sh->disks = conf->raid_disks;
3975 		stripe_set_idx(sh->sector, conf, 0, sh);
3976 		schedule_reconstruction(sh, &s, 1, 1);
3977 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3978 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3979 		atomic_dec(&conf->reshape_stripes);
3980 		wake_up(&conf->wait_for_overlap);
3981 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3982 	}
3983 
3984 	if (s.expanding && s.locked == 0 &&
3985 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3986 		handle_stripe_expansion(conf, sh);
3987 
3988 finish:
3989 	/* wait for this device to become unblocked */
3990 	if (unlikely(s.blocked_rdev)) {
3991 		if (conf->mddev->external)
3992 			md_wait_for_blocked_rdev(s.blocked_rdev,
3993 						 conf->mddev);
3994 		else
3995 			/* Internal metadata will immediately
3996 			 * be written by raid5d, so we don't
3997 			 * need to wait here.
3998 			 */
3999 			rdev_dec_pending(s.blocked_rdev,
4000 					 conf->mddev);
4001 	}
4002 
4003 	if (s.handle_bad_blocks)
4004 		for (i = disks; i--; ) {
4005 			struct md_rdev *rdev;
4006 			struct r5dev *dev = &sh->dev[i];
4007 			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4008 				/* We own a safe reference to the rdev */
4009 				rdev = conf->disks[i].rdev;
4010 				if (!rdev_set_badblocks(rdev, sh->sector,
4011 							STRIPE_SECTORS, 0))
4012 					md_error(conf->mddev, rdev);
4013 				rdev_dec_pending(rdev, conf->mddev);
4014 			}
4015 			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4016 				rdev = conf->disks[i].rdev;
4017 				rdev_clear_badblocks(rdev, sh->sector,
4018 						     STRIPE_SECTORS, 0);
4019 				rdev_dec_pending(rdev, conf->mddev);
4020 			}
4021 			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4022 				rdev = conf->disks[i].replacement;
4023 				if (!rdev)
4024 					/* rdev have been moved down */
4025 					rdev = conf->disks[i].rdev;
4026 				rdev_clear_badblocks(rdev, sh->sector,
4027 						     STRIPE_SECTORS, 0);
4028 				rdev_dec_pending(rdev, conf->mddev);
4029 			}
4030 		}
4031 
4032 	if (s.ops_request)
4033 		raid_run_ops(sh, s.ops_request);
4034 
4035 	ops_run_io(sh, &s);
4036 
4037 	if (s.dec_preread_active) {
4038 		/* We delay this until after ops_run_io so that if make_request
4039 		 * is waiting on a flush, it won't continue until the writes
4040 		 * have actually been submitted.
4041 		 */
4042 		atomic_dec(&conf->preread_active_stripes);
4043 		if (atomic_read(&conf->preread_active_stripes) <
4044 		    IO_THRESHOLD)
4045 			md_wakeup_thread(conf->mddev->thread);
4046 	}
4047 
4048 	return_io(s.return_bi);
4049 
4050 	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4051 }
4052 
4053 static void raid5_activate_delayed(struct r5conf *conf)
4054 {
4055 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4056 		while (!list_empty(&conf->delayed_list)) {
4057 			struct list_head *l = conf->delayed_list.next;
4058 			struct stripe_head *sh;
4059 			sh = list_entry(l, struct stripe_head, lru);
4060 			list_del_init(l);
4061 			clear_bit(STRIPE_DELAYED, &sh->state);
4062 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4063 				atomic_inc(&conf->preread_active_stripes);
4064 			list_add_tail(&sh->lru, &conf->hold_list);
4065 			raid5_wakeup_stripe_thread(sh);
4066 		}
4067 	}
4068 }
4069 
4070 static void activate_bit_delay(struct r5conf *conf,
4071 	struct list_head *temp_inactive_list)
4072 {
4073 	/* device_lock is held */
4074 	struct list_head head;
4075 	list_add(&head, &conf->bitmap_list);
4076 	list_del_init(&conf->bitmap_list);
4077 	while (!list_empty(&head)) {
4078 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4079 		int hash;
4080 		list_del_init(&sh->lru);
4081 		atomic_inc(&sh->count);
4082 		hash = sh->hash_lock_index;
4083 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
4084 	}
4085 }
4086 
4087 int md_raid5_congested(struct mddev *mddev, int bits)
4088 {
4089 	struct r5conf *conf = mddev->private;
4090 
4091 	/* No difference between reads and writes.  Just check
4092 	 * how busy the stripe_cache is
4093 	 */
4094 
4095 	if (conf->inactive_blocked)
4096 		return 1;
4097 	if (conf->quiesce)
4098 		return 1;
4099 	if (atomic_read(&conf->empty_inactive_list_nr))
4100 		return 1;
4101 
4102 	return 0;
4103 }
4104 EXPORT_SYMBOL_GPL(md_raid5_congested);
4105 
4106 static int raid5_congested(void *data, int bits)
4107 {
4108 	struct mddev *mddev = data;
4109 
4110 	return mddev_congested(mddev, bits) ||
4111 		md_raid5_congested(mddev, bits);
4112 }
4113 
4114 /* We want read requests to align with chunks where possible,
4115  * but write requests don't need to.
4116  */
4117 static int raid5_mergeable_bvec(struct request_queue *q,
4118 				struct bvec_merge_data *bvm,
4119 				struct bio_vec *biovec)
4120 {
4121 	struct mddev *mddev = q->queuedata;
4122 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
4123 	int max;
4124 	unsigned int chunk_sectors = mddev->chunk_sectors;
4125 	unsigned int bio_sectors = bvm->bi_size >> 9;
4126 
4127 	if ((bvm->bi_rw & 1) == WRITE)
4128 		return biovec->bv_len; /* always allow writes to be mergeable */
4129 
4130 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4131 		chunk_sectors = mddev->new_chunk_sectors;
4132 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
4133 	if (max < 0) max = 0;
4134 	if (max <= biovec->bv_len && bio_sectors == 0)
4135 		return biovec->bv_len;
4136 	else
4137 		return max;
4138 }
4139 
4140 
4141 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4142 {
4143 	sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4144 	unsigned int chunk_sectors = mddev->chunk_sectors;
4145 	unsigned int bio_sectors = bio_sectors(bio);
4146 
4147 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4148 		chunk_sectors = mddev->new_chunk_sectors;
4149 	return  chunk_sectors >=
4150 		((sector & (chunk_sectors - 1)) + bio_sectors);
4151 }
4152 
4153 /*
4154  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
4155  *  later sampled by raid5d.
4156  */
4157 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4158 {
4159 	unsigned long flags;
4160 
4161 	spin_lock_irqsave(&conf->device_lock, flags);
4162 
4163 	bi->bi_next = conf->retry_read_aligned_list;
4164 	conf->retry_read_aligned_list = bi;
4165 
4166 	spin_unlock_irqrestore(&conf->device_lock, flags);
4167 	md_wakeup_thread(conf->mddev->thread);
4168 }
4169 
4170 
4171 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4172 {
4173 	struct bio *bi;
4174 
4175 	bi = conf->retry_read_aligned;
4176 	if (bi) {
4177 		conf->retry_read_aligned = NULL;
4178 		return bi;
4179 	}
4180 	bi = conf->retry_read_aligned_list;
4181 	if(bi) {
4182 		conf->retry_read_aligned_list = bi->bi_next;
4183 		bi->bi_next = NULL;
4184 		/*
4185 		 * this sets the active strip count to 1 and the processed
4186 		 * strip count to zero (upper 8 bits)
4187 		 */
4188 		raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4189 	}
4190 
4191 	return bi;
4192 }
4193 
4194 
4195 /*
4196  *  The "raid5_align_endio" should check if the read succeeded and if it
4197  *  did, call bio_endio on the original bio (having bio_put the new bio
4198  *  first).
4199  *  If the read failed..
4200  */
4201 static void raid5_align_endio(struct bio *bi, int error)
4202 {
4203 	struct bio* raid_bi  = bi->bi_private;
4204 	struct mddev *mddev;
4205 	struct r5conf *conf;
4206 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
4207 	struct md_rdev *rdev;
4208 
4209 	bio_put(bi);
4210 
4211 	rdev = (void*)raid_bi->bi_next;
4212 	raid_bi->bi_next = NULL;
4213 	mddev = rdev->mddev;
4214 	conf = mddev->private;
4215 
4216 	rdev_dec_pending(rdev, conf->mddev);
4217 
4218 	if (!error && uptodate) {
4219 		trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4220 					 raid_bi, 0);
4221 		bio_endio(raid_bi, 0);
4222 		if (atomic_dec_and_test(&conf->active_aligned_reads))
4223 			wake_up(&conf->wait_for_stripe);
4224 		return;
4225 	}
4226 
4227 
4228 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4229 
4230 	add_bio_to_retry(raid_bi, conf);
4231 }
4232 
4233 static int bio_fits_rdev(struct bio *bi)
4234 {
4235 	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
4236 
4237 	if (bio_sectors(bi) > queue_max_sectors(q))
4238 		return 0;
4239 	blk_recount_segments(q, bi);
4240 	if (bi->bi_phys_segments > queue_max_segments(q))
4241 		return 0;
4242 
4243 	if (q->merge_bvec_fn)
4244 		/* it's too hard to apply the merge_bvec_fn at this stage,
4245 		 * just just give up
4246 		 */
4247 		return 0;
4248 
4249 	return 1;
4250 }
4251 
4252 
4253 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
4254 {
4255 	struct r5conf *conf = mddev->private;
4256 	int dd_idx;
4257 	struct bio* align_bi;
4258 	struct md_rdev *rdev;
4259 	sector_t end_sector;
4260 
4261 	if (!in_chunk_boundary(mddev, raid_bio)) {
4262 		pr_debug("chunk_aligned_read : non aligned\n");
4263 		return 0;
4264 	}
4265 	/*
4266 	 * use bio_clone_mddev to make a copy of the bio
4267 	 */
4268 	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4269 	if (!align_bi)
4270 		return 0;
4271 	/*
4272 	 *   set bi_end_io to a new function, and set bi_private to the
4273 	 *     original bio.
4274 	 */
4275 	align_bi->bi_end_io  = raid5_align_endio;
4276 	align_bi->bi_private = raid_bio;
4277 	/*
4278 	 *	compute position
4279 	 */
4280 	align_bi->bi_iter.bi_sector =
4281 		raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4282 				     0, &dd_idx, NULL);
4283 
4284 	end_sector = bio_end_sector(align_bi);
4285 	rcu_read_lock();
4286 	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4287 	if (!rdev || test_bit(Faulty, &rdev->flags) ||
4288 	    rdev->recovery_offset < end_sector) {
4289 		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4290 		if (rdev &&
4291 		    (test_bit(Faulty, &rdev->flags) ||
4292 		    !(test_bit(In_sync, &rdev->flags) ||
4293 		      rdev->recovery_offset >= end_sector)))
4294 			rdev = NULL;
4295 	}
4296 	if (rdev) {
4297 		sector_t first_bad;
4298 		int bad_sectors;
4299 
4300 		atomic_inc(&rdev->nr_pending);
4301 		rcu_read_unlock();
4302 		raid_bio->bi_next = (void*)rdev;
4303 		align_bi->bi_bdev =  rdev->bdev;
4304 		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
4305 
4306 		if (!bio_fits_rdev(align_bi) ||
4307 		    is_badblock(rdev, align_bi->bi_iter.bi_sector,
4308 				bio_sectors(align_bi),
4309 				&first_bad, &bad_sectors)) {
4310 			/* too big in some way, or has a known bad block */
4311 			bio_put(align_bi);
4312 			rdev_dec_pending(rdev, mddev);
4313 			return 0;
4314 		}
4315 
4316 		/* No reshape active, so we can trust rdev->data_offset */
4317 		align_bi->bi_iter.bi_sector += rdev->data_offset;
4318 
4319 		spin_lock_irq(&conf->device_lock);
4320 		wait_event_lock_irq(conf->wait_for_stripe,
4321 				    conf->quiesce == 0,
4322 				    conf->device_lock);
4323 		atomic_inc(&conf->active_aligned_reads);
4324 		spin_unlock_irq(&conf->device_lock);
4325 
4326 		if (mddev->gendisk)
4327 			trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4328 					      align_bi, disk_devt(mddev->gendisk),
4329 					      raid_bio->bi_iter.bi_sector);
4330 		generic_make_request(align_bi);
4331 		return 1;
4332 	} else {
4333 		rcu_read_unlock();
4334 		bio_put(align_bi);
4335 		return 0;
4336 	}
4337 }
4338 
4339 /* __get_priority_stripe - get the next stripe to process
4340  *
4341  * Full stripe writes are allowed to pass preread active stripes up until
4342  * the bypass_threshold is exceeded.  In general the bypass_count
4343  * increments when the handle_list is handled before the hold_list; however, it
4344  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4345  * stripe with in flight i/o.  The bypass_count will be reset when the
4346  * head of the hold_list has changed, i.e. the head was promoted to the
4347  * handle_list.
4348  */
4349 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4350 {
4351 	struct stripe_head *sh = NULL, *tmp;
4352 	struct list_head *handle_list = NULL;
4353 	struct r5worker_group *wg = NULL;
4354 
4355 	if (conf->worker_cnt_per_group == 0) {
4356 		handle_list = &conf->handle_list;
4357 	} else if (group != ANY_GROUP) {
4358 		handle_list = &conf->worker_groups[group].handle_list;
4359 		wg = &conf->worker_groups[group];
4360 	} else {
4361 		int i;
4362 		for (i = 0; i < conf->group_cnt; i++) {
4363 			handle_list = &conf->worker_groups[i].handle_list;
4364 			wg = &conf->worker_groups[i];
4365 			if (!list_empty(handle_list))
4366 				break;
4367 		}
4368 	}
4369 
4370 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4371 		  __func__,
4372 		  list_empty(handle_list) ? "empty" : "busy",
4373 		  list_empty(&conf->hold_list) ? "empty" : "busy",
4374 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
4375 
4376 	if (!list_empty(handle_list)) {
4377 		sh = list_entry(handle_list->next, typeof(*sh), lru);
4378 
4379 		if (list_empty(&conf->hold_list))
4380 			conf->bypass_count = 0;
4381 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4382 			if (conf->hold_list.next == conf->last_hold)
4383 				conf->bypass_count++;
4384 			else {
4385 				conf->last_hold = conf->hold_list.next;
4386 				conf->bypass_count -= conf->bypass_threshold;
4387 				if (conf->bypass_count < 0)
4388 					conf->bypass_count = 0;
4389 			}
4390 		}
4391 	} else if (!list_empty(&conf->hold_list) &&
4392 		   ((conf->bypass_threshold &&
4393 		     conf->bypass_count > conf->bypass_threshold) ||
4394 		    atomic_read(&conf->pending_full_writes) == 0)) {
4395 
4396 		list_for_each_entry(tmp, &conf->hold_list,  lru) {
4397 			if (conf->worker_cnt_per_group == 0 ||
4398 			    group == ANY_GROUP ||
4399 			    !cpu_online(tmp->cpu) ||
4400 			    cpu_to_group(tmp->cpu) == group) {
4401 				sh = tmp;
4402 				break;
4403 			}
4404 		}
4405 
4406 		if (sh) {
4407 			conf->bypass_count -= conf->bypass_threshold;
4408 			if (conf->bypass_count < 0)
4409 				conf->bypass_count = 0;
4410 		}
4411 		wg = NULL;
4412 	}
4413 
4414 	if (!sh)
4415 		return NULL;
4416 
4417 	if (wg) {
4418 		wg->stripes_cnt--;
4419 		sh->group = NULL;
4420 	}
4421 	list_del_init(&sh->lru);
4422 	BUG_ON(atomic_inc_return(&sh->count) != 1);
4423 	return sh;
4424 }
4425 
4426 struct raid5_plug_cb {
4427 	struct blk_plug_cb	cb;
4428 	struct list_head	list;
4429 	struct list_head	temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4430 };
4431 
4432 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4433 {
4434 	struct raid5_plug_cb *cb = container_of(
4435 		blk_cb, struct raid5_plug_cb, cb);
4436 	struct stripe_head *sh;
4437 	struct mddev *mddev = cb->cb.data;
4438 	struct r5conf *conf = mddev->private;
4439 	int cnt = 0;
4440 	int hash;
4441 
4442 	if (cb->list.next && !list_empty(&cb->list)) {
4443 		spin_lock_irq(&conf->device_lock);
4444 		while (!list_empty(&cb->list)) {
4445 			sh = list_first_entry(&cb->list, struct stripe_head, lru);
4446 			list_del_init(&sh->lru);
4447 			/*
4448 			 * avoid race release_stripe_plug() sees
4449 			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
4450 			 * is still in our list
4451 			 */
4452 			smp_mb__before_atomic();
4453 			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4454 			/*
4455 			 * STRIPE_ON_RELEASE_LIST could be set here. In that
4456 			 * case, the count is always > 1 here
4457 			 */
4458 			hash = sh->hash_lock_index;
4459 			__release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
4460 			cnt++;
4461 		}
4462 		spin_unlock_irq(&conf->device_lock);
4463 	}
4464 	release_inactive_stripe_list(conf, cb->temp_inactive_list,
4465 				     NR_STRIPE_HASH_LOCKS);
4466 	if (mddev->queue)
4467 		trace_block_unplug(mddev->queue, cnt, !from_schedule);
4468 	kfree(cb);
4469 }
4470 
4471 static void release_stripe_plug(struct mddev *mddev,
4472 				struct stripe_head *sh)
4473 {
4474 	struct blk_plug_cb *blk_cb = blk_check_plugged(
4475 		raid5_unplug, mddev,
4476 		sizeof(struct raid5_plug_cb));
4477 	struct raid5_plug_cb *cb;
4478 
4479 	if (!blk_cb) {
4480 		release_stripe(sh);
4481 		return;
4482 	}
4483 
4484 	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4485 
4486 	if (cb->list.next == NULL) {
4487 		int i;
4488 		INIT_LIST_HEAD(&cb->list);
4489 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
4490 			INIT_LIST_HEAD(cb->temp_inactive_list + i);
4491 	}
4492 
4493 	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4494 		list_add_tail(&sh->lru, &cb->list);
4495 	else
4496 		release_stripe(sh);
4497 }
4498 
4499 static void make_discard_request(struct mddev *mddev, struct bio *bi)
4500 {
4501 	struct r5conf *conf = mddev->private;
4502 	sector_t logical_sector, last_sector;
4503 	struct stripe_head *sh;
4504 	int remaining;
4505 	int stripe_sectors;
4506 
4507 	if (mddev->reshape_position != MaxSector)
4508 		/* Skip discard while reshape is happening */
4509 		return;
4510 
4511 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4512 	last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
4513 
4514 	bi->bi_next = NULL;
4515 	bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4516 
4517 	stripe_sectors = conf->chunk_sectors *
4518 		(conf->raid_disks - conf->max_degraded);
4519 	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4520 					       stripe_sectors);
4521 	sector_div(last_sector, stripe_sectors);
4522 
4523 	logical_sector *= conf->chunk_sectors;
4524 	last_sector *= conf->chunk_sectors;
4525 
4526 	for (; logical_sector < last_sector;
4527 	     logical_sector += STRIPE_SECTORS) {
4528 		DEFINE_WAIT(w);
4529 		int d;
4530 	again:
4531 		sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4532 		prepare_to_wait(&conf->wait_for_overlap, &w,
4533 				TASK_UNINTERRUPTIBLE);
4534 		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4535 		if (test_bit(STRIPE_SYNCING, &sh->state)) {
4536 			release_stripe(sh);
4537 			schedule();
4538 			goto again;
4539 		}
4540 		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4541 		spin_lock_irq(&sh->stripe_lock);
4542 		for (d = 0; d < conf->raid_disks; d++) {
4543 			if (d == sh->pd_idx || d == sh->qd_idx)
4544 				continue;
4545 			if (sh->dev[d].towrite || sh->dev[d].toread) {
4546 				set_bit(R5_Overlap, &sh->dev[d].flags);
4547 				spin_unlock_irq(&sh->stripe_lock);
4548 				release_stripe(sh);
4549 				schedule();
4550 				goto again;
4551 			}
4552 		}
4553 		set_bit(STRIPE_DISCARD, &sh->state);
4554 		finish_wait(&conf->wait_for_overlap, &w);
4555 		for (d = 0; d < conf->raid_disks; d++) {
4556 			if (d == sh->pd_idx || d == sh->qd_idx)
4557 				continue;
4558 			sh->dev[d].towrite = bi;
4559 			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
4560 			raid5_inc_bi_active_stripes(bi);
4561 		}
4562 		spin_unlock_irq(&sh->stripe_lock);
4563 		if (conf->mddev->bitmap) {
4564 			for (d = 0;
4565 			     d < conf->raid_disks - conf->max_degraded;
4566 			     d++)
4567 				bitmap_startwrite(mddev->bitmap,
4568 						  sh->sector,
4569 						  STRIPE_SECTORS,
4570 						  0);
4571 			sh->bm_seq = conf->seq_flush + 1;
4572 			set_bit(STRIPE_BIT_DELAY, &sh->state);
4573 		}
4574 
4575 		set_bit(STRIPE_HANDLE, &sh->state);
4576 		clear_bit(STRIPE_DELAYED, &sh->state);
4577 		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4578 			atomic_inc(&conf->preread_active_stripes);
4579 		release_stripe_plug(mddev, sh);
4580 	}
4581 
4582 	remaining = raid5_dec_bi_active_stripes(bi);
4583 	if (remaining == 0) {
4584 		md_write_end(mddev);
4585 		bio_endio(bi, 0);
4586 	}
4587 }
4588 
4589 static void make_request(struct mddev *mddev, struct bio * bi)
4590 {
4591 	struct r5conf *conf = mddev->private;
4592 	int dd_idx;
4593 	sector_t new_sector;
4594 	sector_t logical_sector, last_sector;
4595 	struct stripe_head *sh;
4596 	const int rw = bio_data_dir(bi);
4597 	int remaining;
4598 	DEFINE_WAIT(w);
4599 	bool do_prepare;
4600 
4601 	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4602 		md_flush_request(mddev, bi);
4603 		return;
4604 	}
4605 
4606 	md_write_start(mddev, bi);
4607 
4608 	if (rw == READ &&
4609 	     mddev->reshape_position == MaxSector &&
4610 	     chunk_aligned_read(mddev,bi))
4611 		return;
4612 
4613 	if (unlikely(bi->bi_rw & REQ_DISCARD)) {
4614 		make_discard_request(mddev, bi);
4615 		return;
4616 	}
4617 
4618 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4619 	last_sector = bio_end_sector(bi);
4620 	bi->bi_next = NULL;
4621 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
4622 
4623 	prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4624 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4625 		int previous;
4626 		int seq;
4627 
4628 		do_prepare = false;
4629 	retry:
4630 		seq = read_seqcount_begin(&conf->gen_lock);
4631 		previous = 0;
4632 		if (do_prepare)
4633 			prepare_to_wait(&conf->wait_for_overlap, &w,
4634 				TASK_UNINTERRUPTIBLE);
4635 		if (unlikely(conf->reshape_progress != MaxSector)) {
4636 			/* spinlock is needed as reshape_progress may be
4637 			 * 64bit on a 32bit platform, and so it might be
4638 			 * possible to see a half-updated value
4639 			 * Of course reshape_progress could change after
4640 			 * the lock is dropped, so once we get a reference
4641 			 * to the stripe that we think it is, we will have
4642 			 * to check again.
4643 			 */
4644 			spin_lock_irq(&conf->device_lock);
4645 			if (mddev->reshape_backwards
4646 			    ? logical_sector < conf->reshape_progress
4647 			    : logical_sector >= conf->reshape_progress) {
4648 				previous = 1;
4649 			} else {
4650 				if (mddev->reshape_backwards
4651 				    ? logical_sector < conf->reshape_safe
4652 				    : logical_sector >= conf->reshape_safe) {
4653 					spin_unlock_irq(&conf->device_lock);
4654 					schedule();
4655 					do_prepare = true;
4656 					goto retry;
4657 				}
4658 			}
4659 			spin_unlock_irq(&conf->device_lock);
4660 		}
4661 
4662 		new_sector = raid5_compute_sector(conf, logical_sector,
4663 						  previous,
4664 						  &dd_idx, NULL);
4665 		pr_debug("raid456: make_request, sector %llu logical %llu\n",
4666 			(unsigned long long)new_sector,
4667 			(unsigned long long)logical_sector);
4668 
4669 		sh = get_active_stripe(conf, new_sector, previous,
4670 				       (bi->bi_rw&RWA_MASK), 0);
4671 		if (sh) {
4672 			if (unlikely(previous)) {
4673 				/* expansion might have moved on while waiting for a
4674 				 * stripe, so we must do the range check again.
4675 				 * Expansion could still move past after this
4676 				 * test, but as we are holding a reference to
4677 				 * 'sh', we know that if that happens,
4678 				 *  STRIPE_EXPANDING will get set and the expansion
4679 				 * won't proceed until we finish with the stripe.
4680 				 */
4681 				int must_retry = 0;
4682 				spin_lock_irq(&conf->device_lock);
4683 				if (mddev->reshape_backwards
4684 				    ? logical_sector >= conf->reshape_progress
4685 				    : logical_sector < conf->reshape_progress)
4686 					/* mismatch, need to try again */
4687 					must_retry = 1;
4688 				spin_unlock_irq(&conf->device_lock);
4689 				if (must_retry) {
4690 					release_stripe(sh);
4691 					schedule();
4692 					do_prepare = true;
4693 					goto retry;
4694 				}
4695 			}
4696 			if (read_seqcount_retry(&conf->gen_lock, seq)) {
4697 				/* Might have got the wrong stripe_head
4698 				 * by accident
4699 				 */
4700 				release_stripe(sh);
4701 				goto retry;
4702 			}
4703 
4704 			if (rw == WRITE &&
4705 			    logical_sector >= mddev->suspend_lo &&
4706 			    logical_sector < mddev->suspend_hi) {
4707 				release_stripe(sh);
4708 				/* As the suspend_* range is controlled by
4709 				 * userspace, we want an interruptible
4710 				 * wait.
4711 				 */
4712 				flush_signals(current);
4713 				prepare_to_wait(&conf->wait_for_overlap,
4714 						&w, TASK_INTERRUPTIBLE);
4715 				if (logical_sector >= mddev->suspend_lo &&
4716 				    logical_sector < mddev->suspend_hi) {
4717 					schedule();
4718 					do_prepare = true;
4719 				}
4720 				goto retry;
4721 			}
4722 
4723 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4724 			    !add_stripe_bio(sh, bi, dd_idx, rw)) {
4725 				/* Stripe is busy expanding or
4726 				 * add failed due to overlap.  Flush everything
4727 				 * and wait a while
4728 				 */
4729 				md_wakeup_thread(mddev->thread);
4730 				release_stripe(sh);
4731 				schedule();
4732 				do_prepare = true;
4733 				goto retry;
4734 			}
4735 			set_bit(STRIPE_HANDLE, &sh->state);
4736 			clear_bit(STRIPE_DELAYED, &sh->state);
4737 			if ((bi->bi_rw & REQ_SYNC) &&
4738 			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4739 				atomic_inc(&conf->preread_active_stripes);
4740 			release_stripe_plug(mddev, sh);
4741 		} else {
4742 			/* cannot get stripe for read-ahead, just give-up */
4743 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
4744 			break;
4745 		}
4746 	}
4747 	finish_wait(&conf->wait_for_overlap, &w);
4748 
4749 	remaining = raid5_dec_bi_active_stripes(bi);
4750 	if (remaining == 0) {
4751 
4752 		if ( rw == WRITE )
4753 			md_write_end(mddev);
4754 
4755 		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
4756 					 bi, 0);
4757 		bio_endio(bi, 0);
4758 	}
4759 }
4760 
4761 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4762 
4763 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4764 {
4765 	/* reshaping is quite different to recovery/resync so it is
4766 	 * handled quite separately ... here.
4767 	 *
4768 	 * On each call to sync_request, we gather one chunk worth of
4769 	 * destination stripes and flag them as expanding.
4770 	 * Then we find all the source stripes and request reads.
4771 	 * As the reads complete, handle_stripe will copy the data
4772 	 * into the destination stripe and release that stripe.
4773 	 */
4774 	struct r5conf *conf = mddev->private;
4775 	struct stripe_head *sh;
4776 	sector_t first_sector, last_sector;
4777 	int raid_disks = conf->previous_raid_disks;
4778 	int data_disks = raid_disks - conf->max_degraded;
4779 	int new_data_disks = conf->raid_disks - conf->max_degraded;
4780 	int i;
4781 	int dd_idx;
4782 	sector_t writepos, readpos, safepos;
4783 	sector_t stripe_addr;
4784 	int reshape_sectors;
4785 	struct list_head stripes;
4786 
4787 	if (sector_nr == 0) {
4788 		/* If restarting in the middle, skip the initial sectors */
4789 		if (mddev->reshape_backwards &&
4790 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4791 			sector_nr = raid5_size(mddev, 0, 0)
4792 				- conf->reshape_progress;
4793 		} else if (!mddev->reshape_backwards &&
4794 			   conf->reshape_progress > 0)
4795 			sector_nr = conf->reshape_progress;
4796 		sector_div(sector_nr, new_data_disks);
4797 		if (sector_nr) {
4798 			mddev->curr_resync_completed = sector_nr;
4799 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4800 			*skipped = 1;
4801 			return sector_nr;
4802 		}
4803 	}
4804 
4805 	/* We need to process a full chunk at a time.
4806 	 * If old and new chunk sizes differ, we need to process the
4807 	 * largest of these
4808 	 */
4809 	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4810 		reshape_sectors = mddev->new_chunk_sectors;
4811 	else
4812 		reshape_sectors = mddev->chunk_sectors;
4813 
4814 	/* We update the metadata at least every 10 seconds, or when
4815 	 * the data about to be copied would over-write the source of
4816 	 * the data at the front of the range.  i.e. one new_stripe
4817 	 * along from reshape_progress new_maps to after where
4818 	 * reshape_safe old_maps to
4819 	 */
4820 	writepos = conf->reshape_progress;
4821 	sector_div(writepos, new_data_disks);
4822 	readpos = conf->reshape_progress;
4823 	sector_div(readpos, data_disks);
4824 	safepos = conf->reshape_safe;
4825 	sector_div(safepos, data_disks);
4826 	if (mddev->reshape_backwards) {
4827 		writepos -= min_t(sector_t, reshape_sectors, writepos);
4828 		readpos += reshape_sectors;
4829 		safepos += reshape_sectors;
4830 	} else {
4831 		writepos += reshape_sectors;
4832 		readpos -= min_t(sector_t, reshape_sectors, readpos);
4833 		safepos -= min_t(sector_t, reshape_sectors, safepos);
4834 	}
4835 
4836 	/* Having calculated the 'writepos' possibly use it
4837 	 * to set 'stripe_addr' which is where we will write to.
4838 	 */
4839 	if (mddev->reshape_backwards) {
4840 		BUG_ON(conf->reshape_progress == 0);
4841 		stripe_addr = writepos;
4842 		BUG_ON((mddev->dev_sectors &
4843 			~((sector_t)reshape_sectors - 1))
4844 		       - reshape_sectors - stripe_addr
4845 		       != sector_nr);
4846 	} else {
4847 		BUG_ON(writepos != sector_nr + reshape_sectors);
4848 		stripe_addr = sector_nr;
4849 	}
4850 
4851 	/* 'writepos' is the most advanced device address we might write.
4852 	 * 'readpos' is the least advanced device address we might read.
4853 	 * 'safepos' is the least address recorded in the metadata as having
4854 	 *     been reshaped.
4855 	 * If there is a min_offset_diff, these are adjusted either by
4856 	 * increasing the safepos/readpos if diff is negative, or
4857 	 * increasing writepos if diff is positive.
4858 	 * If 'readpos' is then behind 'writepos', there is no way that we can
4859 	 * ensure safety in the face of a crash - that must be done by userspace
4860 	 * making a backup of the data.  So in that case there is no particular
4861 	 * rush to update metadata.
4862 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4863 	 * update the metadata to advance 'safepos' to match 'readpos' so that
4864 	 * we can be safe in the event of a crash.
4865 	 * So we insist on updating metadata if safepos is behind writepos and
4866 	 * readpos is beyond writepos.
4867 	 * In any case, update the metadata every 10 seconds.
4868 	 * Maybe that number should be configurable, but I'm not sure it is
4869 	 * worth it.... maybe it could be a multiple of safemode_delay???
4870 	 */
4871 	if (conf->min_offset_diff < 0) {
4872 		safepos += -conf->min_offset_diff;
4873 		readpos += -conf->min_offset_diff;
4874 	} else
4875 		writepos += conf->min_offset_diff;
4876 
4877 	if ((mddev->reshape_backwards
4878 	     ? (safepos > writepos && readpos < writepos)
4879 	     : (safepos < writepos && readpos > writepos)) ||
4880 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4881 		/* Cannot proceed until we've updated the superblock... */
4882 		wait_event(conf->wait_for_overlap,
4883 			   atomic_read(&conf->reshape_stripes)==0
4884 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4885 		if (atomic_read(&conf->reshape_stripes) != 0)
4886 			return 0;
4887 		mddev->reshape_position = conf->reshape_progress;
4888 		mddev->curr_resync_completed = sector_nr;
4889 		conf->reshape_checkpoint = jiffies;
4890 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4891 		md_wakeup_thread(mddev->thread);
4892 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4893 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4894 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4895 			return 0;
4896 		spin_lock_irq(&conf->device_lock);
4897 		conf->reshape_safe = mddev->reshape_position;
4898 		spin_unlock_irq(&conf->device_lock);
4899 		wake_up(&conf->wait_for_overlap);
4900 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4901 	}
4902 
4903 	INIT_LIST_HEAD(&stripes);
4904 	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4905 		int j;
4906 		int skipped_disk = 0;
4907 		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4908 		set_bit(STRIPE_EXPANDING, &sh->state);
4909 		atomic_inc(&conf->reshape_stripes);
4910 		/* If any of this stripe is beyond the end of the old
4911 		 * array, then we need to zero those blocks
4912 		 */
4913 		for (j=sh->disks; j--;) {
4914 			sector_t s;
4915 			if (j == sh->pd_idx)
4916 				continue;
4917 			if (conf->level == 6 &&
4918 			    j == sh->qd_idx)
4919 				continue;
4920 			s = compute_blocknr(sh, j, 0);
4921 			if (s < raid5_size(mddev, 0, 0)) {
4922 				skipped_disk = 1;
4923 				continue;
4924 			}
4925 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4926 			set_bit(R5_Expanded, &sh->dev[j].flags);
4927 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
4928 		}
4929 		if (!skipped_disk) {
4930 			set_bit(STRIPE_EXPAND_READY, &sh->state);
4931 			set_bit(STRIPE_HANDLE, &sh->state);
4932 		}
4933 		list_add(&sh->lru, &stripes);
4934 	}
4935 	spin_lock_irq(&conf->device_lock);
4936 	if (mddev->reshape_backwards)
4937 		conf->reshape_progress -= reshape_sectors * new_data_disks;
4938 	else
4939 		conf->reshape_progress += reshape_sectors * new_data_disks;
4940 	spin_unlock_irq(&conf->device_lock);
4941 	/* Ok, those stripe are ready. We can start scheduling
4942 	 * reads on the source stripes.
4943 	 * The source stripes are determined by mapping the first and last
4944 	 * block on the destination stripes.
4945 	 */
4946 	first_sector =
4947 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4948 				     1, &dd_idx, NULL);
4949 	last_sector =
4950 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4951 					    * new_data_disks - 1),
4952 				     1, &dd_idx, NULL);
4953 	if (last_sector >= mddev->dev_sectors)
4954 		last_sector = mddev->dev_sectors - 1;
4955 	while (first_sector <= last_sector) {
4956 		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4957 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4958 		set_bit(STRIPE_HANDLE, &sh->state);
4959 		release_stripe(sh);
4960 		first_sector += STRIPE_SECTORS;
4961 	}
4962 	/* Now that the sources are clearly marked, we can release
4963 	 * the destination stripes
4964 	 */
4965 	while (!list_empty(&stripes)) {
4966 		sh = list_entry(stripes.next, struct stripe_head, lru);
4967 		list_del_init(&sh->lru);
4968 		release_stripe(sh);
4969 	}
4970 	/* If this takes us to the resync_max point where we have to pause,
4971 	 * then we need to write out the superblock.
4972 	 */
4973 	sector_nr += reshape_sectors;
4974 	if ((sector_nr - mddev->curr_resync_completed) * 2
4975 	    >= mddev->resync_max - mddev->curr_resync_completed) {
4976 		/* Cannot proceed until we've updated the superblock... */
4977 		wait_event(conf->wait_for_overlap,
4978 			   atomic_read(&conf->reshape_stripes) == 0
4979 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4980 		if (atomic_read(&conf->reshape_stripes) != 0)
4981 			goto ret;
4982 		mddev->reshape_position = conf->reshape_progress;
4983 		mddev->curr_resync_completed = sector_nr;
4984 		conf->reshape_checkpoint = jiffies;
4985 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4986 		md_wakeup_thread(mddev->thread);
4987 		wait_event(mddev->sb_wait,
4988 			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4989 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4990 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4991 			goto ret;
4992 		spin_lock_irq(&conf->device_lock);
4993 		conf->reshape_safe = mddev->reshape_position;
4994 		spin_unlock_irq(&conf->device_lock);
4995 		wake_up(&conf->wait_for_overlap);
4996 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4997 	}
4998 ret:
4999 	return reshape_sectors;
5000 }
5001 
5002 /* FIXME go_faster isn't used */
5003 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
5004 {
5005 	struct r5conf *conf = mddev->private;
5006 	struct stripe_head *sh;
5007 	sector_t max_sector = mddev->dev_sectors;
5008 	sector_t sync_blocks;
5009 	int still_degraded = 0;
5010 	int i;
5011 
5012 	if (sector_nr >= max_sector) {
5013 		/* just being told to finish up .. nothing much to do */
5014 
5015 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5016 			end_reshape(conf);
5017 			return 0;
5018 		}
5019 
5020 		if (mddev->curr_resync < max_sector) /* aborted */
5021 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5022 					&sync_blocks, 1);
5023 		else /* completed sync */
5024 			conf->fullsync = 0;
5025 		bitmap_close_sync(mddev->bitmap);
5026 
5027 		return 0;
5028 	}
5029 
5030 	/* Allow raid5_quiesce to complete */
5031 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5032 
5033 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5034 		return reshape_request(mddev, sector_nr, skipped);
5035 
5036 	/* No need to check resync_max as we never do more than one
5037 	 * stripe, and as resync_max will always be on a chunk boundary,
5038 	 * if the check in md_do_sync didn't fire, there is no chance
5039 	 * of overstepping resync_max here
5040 	 */
5041 
5042 	/* if there is too many failed drives and we are trying
5043 	 * to resync, then assert that we are finished, because there is
5044 	 * nothing we can do.
5045 	 */
5046 	if (mddev->degraded >= conf->max_degraded &&
5047 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5048 		sector_t rv = mddev->dev_sectors - sector_nr;
5049 		*skipped = 1;
5050 		return rv;
5051 	}
5052 	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5053 	    !conf->fullsync &&
5054 	    !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5055 	    sync_blocks >= STRIPE_SECTORS) {
5056 		/* we can skip this block, and probably more */
5057 		sync_blocks /= STRIPE_SECTORS;
5058 		*skipped = 1;
5059 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5060 	}
5061 
5062 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5063 
5064 	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
5065 	if (sh == NULL) {
5066 		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
5067 		/* make sure we don't swamp the stripe cache if someone else
5068 		 * is trying to get access
5069 		 */
5070 		schedule_timeout_uninterruptible(1);
5071 	}
5072 	/* Need to check if array will still be degraded after recovery/resync
5073 	 * We don't need to check the 'failed' flag as when that gets set,
5074 	 * recovery aborts.
5075 	 */
5076 	for (i = 0; i < conf->raid_disks; i++)
5077 		if (conf->disks[i].rdev == NULL)
5078 			still_degraded = 1;
5079 
5080 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5081 
5082 	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5083 	set_bit(STRIPE_HANDLE, &sh->state);
5084 
5085 	release_stripe(sh);
5086 
5087 	return STRIPE_SECTORS;
5088 }
5089 
5090 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5091 {
5092 	/* We may not be able to submit a whole bio at once as there
5093 	 * may not be enough stripe_heads available.
5094 	 * We cannot pre-allocate enough stripe_heads as we may need
5095 	 * more than exist in the cache (if we allow ever large chunks).
5096 	 * So we do one stripe head at a time and record in
5097 	 * ->bi_hw_segments how many have been done.
5098 	 *
5099 	 * We *know* that this entire raid_bio is in one chunk, so
5100 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5101 	 */
5102 	struct stripe_head *sh;
5103 	int dd_idx;
5104 	sector_t sector, logical_sector, last_sector;
5105 	int scnt = 0;
5106 	int remaining;
5107 	int handled = 0;
5108 
5109 	logical_sector = raid_bio->bi_iter.bi_sector &
5110 		~((sector_t)STRIPE_SECTORS-1);
5111 	sector = raid5_compute_sector(conf, logical_sector,
5112 				      0, &dd_idx, NULL);
5113 	last_sector = bio_end_sector(raid_bio);
5114 
5115 	for (; logical_sector < last_sector;
5116 	     logical_sector += STRIPE_SECTORS,
5117 		     sector += STRIPE_SECTORS,
5118 		     scnt++) {
5119 
5120 		if (scnt < raid5_bi_processed_stripes(raid_bio))
5121 			/* already done this stripe */
5122 			continue;
5123 
5124 		sh = get_active_stripe(conf, sector, 0, 1, 1);
5125 
5126 		if (!sh) {
5127 			/* failed to get a stripe - must wait */
5128 			raid5_set_bi_processed_stripes(raid_bio, scnt);
5129 			conf->retry_read_aligned = raid_bio;
5130 			return handled;
5131 		}
5132 
5133 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
5134 			release_stripe(sh);
5135 			raid5_set_bi_processed_stripes(raid_bio, scnt);
5136 			conf->retry_read_aligned = raid_bio;
5137 			return handled;
5138 		}
5139 
5140 		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5141 		handle_stripe(sh);
5142 		release_stripe(sh);
5143 		handled++;
5144 	}
5145 	remaining = raid5_dec_bi_active_stripes(raid_bio);
5146 	if (remaining == 0) {
5147 		trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5148 					 raid_bio, 0);
5149 		bio_endio(raid_bio, 0);
5150 	}
5151 	if (atomic_dec_and_test(&conf->active_aligned_reads))
5152 		wake_up(&conf->wait_for_stripe);
5153 	return handled;
5154 }
5155 
5156 static int handle_active_stripes(struct r5conf *conf, int group,
5157 				 struct r5worker *worker,
5158 				 struct list_head *temp_inactive_list)
5159 {
5160 	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5161 	int i, batch_size = 0, hash;
5162 	bool release_inactive = false;
5163 
5164 	while (batch_size < MAX_STRIPE_BATCH &&
5165 			(sh = __get_priority_stripe(conf, group)) != NULL)
5166 		batch[batch_size++] = sh;
5167 
5168 	if (batch_size == 0) {
5169 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5170 			if (!list_empty(temp_inactive_list + i))
5171 				break;
5172 		if (i == NR_STRIPE_HASH_LOCKS)
5173 			return batch_size;
5174 		release_inactive = true;
5175 	}
5176 	spin_unlock_irq(&conf->device_lock);
5177 
5178 	release_inactive_stripe_list(conf, temp_inactive_list,
5179 				     NR_STRIPE_HASH_LOCKS);
5180 
5181 	if (release_inactive) {
5182 		spin_lock_irq(&conf->device_lock);
5183 		return 0;
5184 	}
5185 
5186 	for (i = 0; i < batch_size; i++)
5187 		handle_stripe(batch[i]);
5188 
5189 	cond_resched();
5190 
5191 	spin_lock_irq(&conf->device_lock);
5192 	for (i = 0; i < batch_size; i++) {
5193 		hash = batch[i]->hash_lock_index;
5194 		__release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5195 	}
5196 	return batch_size;
5197 }
5198 
5199 static void raid5_do_work(struct work_struct *work)
5200 {
5201 	struct r5worker *worker = container_of(work, struct r5worker, work);
5202 	struct r5worker_group *group = worker->group;
5203 	struct r5conf *conf = group->conf;
5204 	int group_id = group - conf->worker_groups;
5205 	int handled;
5206 	struct blk_plug plug;
5207 
5208 	pr_debug("+++ raid5worker active\n");
5209 
5210 	blk_start_plug(&plug);
5211 	handled = 0;
5212 	spin_lock_irq(&conf->device_lock);
5213 	while (1) {
5214 		int batch_size, released;
5215 
5216 		released = release_stripe_list(conf, worker->temp_inactive_list);
5217 
5218 		batch_size = handle_active_stripes(conf, group_id, worker,
5219 						   worker->temp_inactive_list);
5220 		worker->working = false;
5221 		if (!batch_size && !released)
5222 			break;
5223 		handled += batch_size;
5224 	}
5225 	pr_debug("%d stripes handled\n", handled);
5226 
5227 	spin_unlock_irq(&conf->device_lock);
5228 	blk_finish_plug(&plug);
5229 
5230 	pr_debug("--- raid5worker inactive\n");
5231 }
5232 
5233 /*
5234  * This is our raid5 kernel thread.
5235  *
5236  * We scan the hash table for stripes which can be handled now.
5237  * During the scan, completed stripes are saved for us by the interrupt
5238  * handler, so that they will not have to wait for our next wakeup.
5239  */
5240 static void raid5d(struct md_thread *thread)
5241 {
5242 	struct mddev *mddev = thread->mddev;
5243 	struct r5conf *conf = mddev->private;
5244 	int handled;
5245 	struct blk_plug plug;
5246 
5247 	pr_debug("+++ raid5d active\n");
5248 
5249 	md_check_recovery(mddev);
5250 
5251 	blk_start_plug(&plug);
5252 	handled = 0;
5253 	spin_lock_irq(&conf->device_lock);
5254 	while (1) {
5255 		struct bio *bio;
5256 		int batch_size, released;
5257 
5258 		released = release_stripe_list(conf, conf->temp_inactive_list);
5259 
5260 		if (
5261 		    !list_empty(&conf->bitmap_list)) {
5262 			/* Now is a good time to flush some bitmap updates */
5263 			conf->seq_flush++;
5264 			spin_unlock_irq(&conf->device_lock);
5265 			bitmap_unplug(mddev->bitmap);
5266 			spin_lock_irq(&conf->device_lock);
5267 			conf->seq_write = conf->seq_flush;
5268 			activate_bit_delay(conf, conf->temp_inactive_list);
5269 		}
5270 		raid5_activate_delayed(conf);
5271 
5272 		while ((bio = remove_bio_from_retry(conf))) {
5273 			int ok;
5274 			spin_unlock_irq(&conf->device_lock);
5275 			ok = retry_aligned_read(conf, bio);
5276 			spin_lock_irq(&conf->device_lock);
5277 			if (!ok)
5278 				break;
5279 			handled++;
5280 		}
5281 
5282 		batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5283 						   conf->temp_inactive_list);
5284 		if (!batch_size && !released)
5285 			break;
5286 		handled += batch_size;
5287 
5288 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5289 			spin_unlock_irq(&conf->device_lock);
5290 			md_check_recovery(mddev);
5291 			spin_lock_irq(&conf->device_lock);
5292 		}
5293 	}
5294 	pr_debug("%d stripes handled\n", handled);
5295 
5296 	spin_unlock_irq(&conf->device_lock);
5297 
5298 	async_tx_issue_pending_all();
5299 	blk_finish_plug(&plug);
5300 
5301 	pr_debug("--- raid5d inactive\n");
5302 }
5303 
5304 static ssize_t
5305 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5306 {
5307 	struct r5conf *conf = mddev->private;
5308 	if (conf)
5309 		return sprintf(page, "%d\n", conf->max_nr_stripes);
5310 	else
5311 		return 0;
5312 }
5313 
5314 int
5315 raid5_set_cache_size(struct mddev *mddev, int size)
5316 {
5317 	struct r5conf *conf = mddev->private;
5318 	int err;
5319 	int hash;
5320 
5321 	if (size <= 16 || size > 32768)
5322 		return -EINVAL;
5323 	hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS;
5324 	while (size < conf->max_nr_stripes) {
5325 		if (drop_one_stripe(conf, hash))
5326 			conf->max_nr_stripes--;
5327 		else
5328 			break;
5329 		hash--;
5330 		if (hash < 0)
5331 			hash = NR_STRIPE_HASH_LOCKS - 1;
5332 	}
5333 	err = md_allow_write(mddev);
5334 	if (err)
5335 		return err;
5336 	hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
5337 	while (size > conf->max_nr_stripes) {
5338 		if (grow_one_stripe(conf, hash))
5339 			conf->max_nr_stripes++;
5340 		else break;
5341 		hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
5342 	}
5343 	return 0;
5344 }
5345 EXPORT_SYMBOL(raid5_set_cache_size);
5346 
5347 static ssize_t
5348 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5349 {
5350 	struct r5conf *conf = mddev->private;
5351 	unsigned long new;
5352 	int err;
5353 
5354 	if (len >= PAGE_SIZE)
5355 		return -EINVAL;
5356 	if (!conf)
5357 		return -ENODEV;
5358 
5359 	if (kstrtoul(page, 10, &new))
5360 		return -EINVAL;
5361 	err = raid5_set_cache_size(mddev, new);
5362 	if (err)
5363 		return err;
5364 	return len;
5365 }
5366 
5367 static struct md_sysfs_entry
5368 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5369 				raid5_show_stripe_cache_size,
5370 				raid5_store_stripe_cache_size);
5371 
5372 static ssize_t
5373 raid5_show_preread_threshold(struct mddev *mddev, char *page)
5374 {
5375 	struct r5conf *conf = mddev->private;
5376 	if (conf)
5377 		return sprintf(page, "%d\n", conf->bypass_threshold);
5378 	else
5379 		return 0;
5380 }
5381 
5382 static ssize_t
5383 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
5384 {
5385 	struct r5conf *conf = mddev->private;
5386 	unsigned long new;
5387 	if (len >= PAGE_SIZE)
5388 		return -EINVAL;
5389 	if (!conf)
5390 		return -ENODEV;
5391 
5392 	if (kstrtoul(page, 10, &new))
5393 		return -EINVAL;
5394 	if (new > conf->max_nr_stripes)
5395 		return -EINVAL;
5396 	conf->bypass_threshold = new;
5397 	return len;
5398 }
5399 
5400 static struct md_sysfs_entry
5401 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
5402 					S_IRUGO | S_IWUSR,
5403 					raid5_show_preread_threshold,
5404 					raid5_store_preread_threshold);
5405 
5406 static ssize_t
5407 raid5_show_skip_copy(struct mddev *mddev, char *page)
5408 {
5409 	struct r5conf *conf = mddev->private;
5410 	if (conf)
5411 		return sprintf(page, "%d\n", conf->skip_copy);
5412 	else
5413 		return 0;
5414 }
5415 
5416 static ssize_t
5417 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
5418 {
5419 	struct r5conf *conf = mddev->private;
5420 	unsigned long new;
5421 	if (len >= PAGE_SIZE)
5422 		return -EINVAL;
5423 	if (!conf)
5424 		return -ENODEV;
5425 
5426 	if (kstrtoul(page, 10, &new))
5427 		return -EINVAL;
5428 	new = !!new;
5429 	if (new == conf->skip_copy)
5430 		return len;
5431 
5432 	mddev_suspend(mddev);
5433 	conf->skip_copy = new;
5434 	if (new)
5435 		mddev->queue->backing_dev_info.capabilities |=
5436 						BDI_CAP_STABLE_WRITES;
5437 	else
5438 		mddev->queue->backing_dev_info.capabilities &=
5439 						~BDI_CAP_STABLE_WRITES;
5440 	mddev_resume(mddev);
5441 	return len;
5442 }
5443 
5444 static struct md_sysfs_entry
5445 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
5446 					raid5_show_skip_copy,
5447 					raid5_store_skip_copy);
5448 
5449 
5450 static ssize_t
5451 stripe_cache_active_show(struct mddev *mddev, char *page)
5452 {
5453 	struct r5conf *conf = mddev->private;
5454 	if (conf)
5455 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
5456 	else
5457 		return 0;
5458 }
5459 
5460 static struct md_sysfs_entry
5461 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
5462 
5463 static ssize_t
5464 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
5465 {
5466 	struct r5conf *conf = mddev->private;
5467 	if (conf)
5468 		return sprintf(page, "%d\n", conf->worker_cnt_per_group);
5469 	else
5470 		return 0;
5471 }
5472 
5473 static int alloc_thread_groups(struct r5conf *conf, int cnt,
5474 			       int *group_cnt,
5475 			       int *worker_cnt_per_group,
5476 			       struct r5worker_group **worker_groups);
5477 static ssize_t
5478 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
5479 {
5480 	struct r5conf *conf = mddev->private;
5481 	unsigned long new;
5482 	int err;
5483 	struct r5worker_group *new_groups, *old_groups;
5484 	int group_cnt, worker_cnt_per_group;
5485 
5486 	if (len >= PAGE_SIZE)
5487 		return -EINVAL;
5488 	if (!conf)
5489 		return -ENODEV;
5490 
5491 	if (kstrtoul(page, 10, &new))
5492 		return -EINVAL;
5493 
5494 	if (new == conf->worker_cnt_per_group)
5495 		return len;
5496 
5497 	mddev_suspend(mddev);
5498 
5499 	old_groups = conf->worker_groups;
5500 	if (old_groups)
5501 		flush_workqueue(raid5_wq);
5502 
5503 	err = alloc_thread_groups(conf, new,
5504 				  &group_cnt, &worker_cnt_per_group,
5505 				  &new_groups);
5506 	if (!err) {
5507 		spin_lock_irq(&conf->device_lock);
5508 		conf->group_cnt = group_cnt;
5509 		conf->worker_cnt_per_group = worker_cnt_per_group;
5510 		conf->worker_groups = new_groups;
5511 		spin_unlock_irq(&conf->device_lock);
5512 
5513 		if (old_groups)
5514 			kfree(old_groups[0].workers);
5515 		kfree(old_groups);
5516 	}
5517 
5518 	mddev_resume(mddev);
5519 
5520 	if (err)
5521 		return err;
5522 	return len;
5523 }
5524 
5525 static struct md_sysfs_entry
5526 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
5527 				raid5_show_group_thread_cnt,
5528 				raid5_store_group_thread_cnt);
5529 
5530 static struct attribute *raid5_attrs[] =  {
5531 	&raid5_stripecache_size.attr,
5532 	&raid5_stripecache_active.attr,
5533 	&raid5_preread_bypass_threshold.attr,
5534 	&raid5_group_thread_cnt.attr,
5535 	&raid5_skip_copy.attr,
5536 	NULL,
5537 };
5538 static struct attribute_group raid5_attrs_group = {
5539 	.name = NULL,
5540 	.attrs = raid5_attrs,
5541 };
5542 
5543 static int alloc_thread_groups(struct r5conf *conf, int cnt,
5544 			       int *group_cnt,
5545 			       int *worker_cnt_per_group,
5546 			       struct r5worker_group **worker_groups)
5547 {
5548 	int i, j, k;
5549 	ssize_t size;
5550 	struct r5worker *workers;
5551 
5552 	*worker_cnt_per_group = cnt;
5553 	if (cnt == 0) {
5554 		*group_cnt = 0;
5555 		*worker_groups = NULL;
5556 		return 0;
5557 	}
5558 	*group_cnt = num_possible_nodes();
5559 	size = sizeof(struct r5worker) * cnt;
5560 	workers = kzalloc(size * *group_cnt, GFP_NOIO);
5561 	*worker_groups = kzalloc(sizeof(struct r5worker_group) *
5562 				*group_cnt, GFP_NOIO);
5563 	if (!*worker_groups || !workers) {
5564 		kfree(workers);
5565 		kfree(*worker_groups);
5566 		return -ENOMEM;
5567 	}
5568 
5569 	for (i = 0; i < *group_cnt; i++) {
5570 		struct r5worker_group *group;
5571 
5572 		group = &(*worker_groups)[i];
5573 		INIT_LIST_HEAD(&group->handle_list);
5574 		group->conf = conf;
5575 		group->workers = workers + i * cnt;
5576 
5577 		for (j = 0; j < cnt; j++) {
5578 			struct r5worker *worker = group->workers + j;
5579 			worker->group = group;
5580 			INIT_WORK(&worker->work, raid5_do_work);
5581 
5582 			for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
5583 				INIT_LIST_HEAD(worker->temp_inactive_list + k);
5584 		}
5585 	}
5586 
5587 	return 0;
5588 }
5589 
5590 static void free_thread_groups(struct r5conf *conf)
5591 {
5592 	if (conf->worker_groups)
5593 		kfree(conf->worker_groups[0].workers);
5594 	kfree(conf->worker_groups);
5595 	conf->worker_groups = NULL;
5596 }
5597 
5598 static sector_t
5599 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
5600 {
5601 	struct r5conf *conf = mddev->private;
5602 
5603 	if (!sectors)
5604 		sectors = mddev->dev_sectors;
5605 	if (!raid_disks)
5606 		/* size is defined by the smallest of previous and new size */
5607 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
5608 
5609 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5610 	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
5611 	return sectors * (raid_disks - conf->max_degraded);
5612 }
5613 
5614 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
5615 {
5616 	safe_put_page(percpu->spare_page);
5617 	kfree(percpu->scribble);
5618 	percpu->spare_page = NULL;
5619 	percpu->scribble = NULL;
5620 }
5621 
5622 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
5623 {
5624 	if (conf->level == 6 && !percpu->spare_page)
5625 		percpu->spare_page = alloc_page(GFP_KERNEL);
5626 	if (!percpu->scribble)
5627 		percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5628 
5629 	if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
5630 		free_scratch_buffer(conf, percpu);
5631 		return -ENOMEM;
5632 	}
5633 
5634 	return 0;
5635 }
5636 
5637 static void raid5_free_percpu(struct r5conf *conf)
5638 {
5639 	unsigned long cpu;
5640 
5641 	if (!conf->percpu)
5642 		return;
5643 
5644 #ifdef CONFIG_HOTPLUG_CPU
5645 	unregister_cpu_notifier(&conf->cpu_notify);
5646 #endif
5647 
5648 	get_online_cpus();
5649 	for_each_possible_cpu(cpu)
5650 		free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5651 	put_online_cpus();
5652 
5653 	free_percpu(conf->percpu);
5654 }
5655 
5656 static void free_conf(struct r5conf *conf)
5657 {
5658 	free_thread_groups(conf);
5659 	shrink_stripes(conf);
5660 	raid5_free_percpu(conf);
5661 	kfree(conf->disks);
5662 	kfree(conf->stripe_hashtbl);
5663 	kfree(conf);
5664 }
5665 
5666 #ifdef CONFIG_HOTPLUG_CPU
5667 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
5668 			      void *hcpu)
5669 {
5670 	struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
5671 	long cpu = (long)hcpu;
5672 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
5673 
5674 	switch (action) {
5675 	case CPU_UP_PREPARE:
5676 	case CPU_UP_PREPARE_FROZEN:
5677 		if (alloc_scratch_buffer(conf, percpu)) {
5678 			pr_err("%s: failed memory allocation for cpu%ld\n",
5679 			       __func__, cpu);
5680 			return notifier_from_errno(-ENOMEM);
5681 		}
5682 		break;
5683 	case CPU_DEAD:
5684 	case CPU_DEAD_FROZEN:
5685 		free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5686 		break;
5687 	default:
5688 		break;
5689 	}
5690 	return NOTIFY_OK;
5691 }
5692 #endif
5693 
5694 static int raid5_alloc_percpu(struct r5conf *conf)
5695 {
5696 	unsigned long cpu;
5697 	int err = 0;
5698 
5699 	conf->percpu = alloc_percpu(struct raid5_percpu);
5700 	if (!conf->percpu)
5701 		return -ENOMEM;
5702 
5703 #ifdef CONFIG_HOTPLUG_CPU
5704 	conf->cpu_notify.notifier_call = raid456_cpu_notify;
5705 	conf->cpu_notify.priority = 0;
5706 	err = register_cpu_notifier(&conf->cpu_notify);
5707 	if (err)
5708 		return err;
5709 #endif
5710 
5711 	get_online_cpus();
5712 	for_each_present_cpu(cpu) {
5713 		err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5714 		if (err) {
5715 			pr_err("%s: failed memory allocation for cpu%ld\n",
5716 			       __func__, cpu);
5717 			break;
5718 		}
5719 	}
5720 	put_online_cpus();
5721 
5722 	return err;
5723 }
5724 
5725 static struct r5conf *setup_conf(struct mddev *mddev)
5726 {
5727 	struct r5conf *conf;
5728 	int raid_disk, memory, max_disks;
5729 	struct md_rdev *rdev;
5730 	struct disk_info *disk;
5731 	char pers_name[6];
5732 	int i;
5733 	int group_cnt, worker_cnt_per_group;
5734 	struct r5worker_group *new_group;
5735 
5736 	if (mddev->new_level != 5
5737 	    && mddev->new_level != 4
5738 	    && mddev->new_level != 6) {
5739 		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
5740 		       mdname(mddev), mddev->new_level);
5741 		return ERR_PTR(-EIO);
5742 	}
5743 	if ((mddev->new_level == 5
5744 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
5745 	    (mddev->new_level == 6
5746 	     && !algorithm_valid_raid6(mddev->new_layout))) {
5747 		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
5748 		       mdname(mddev), mddev->new_layout);
5749 		return ERR_PTR(-EIO);
5750 	}
5751 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
5752 		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
5753 		       mdname(mddev), mddev->raid_disks);
5754 		return ERR_PTR(-EINVAL);
5755 	}
5756 
5757 	if (!mddev->new_chunk_sectors ||
5758 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
5759 	    !is_power_of_2(mddev->new_chunk_sectors)) {
5760 		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
5761 		       mdname(mddev), mddev->new_chunk_sectors << 9);
5762 		return ERR_PTR(-EINVAL);
5763 	}
5764 
5765 	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
5766 	if (conf == NULL)
5767 		goto abort;
5768 	/* Don't enable multi-threading by default*/
5769 	if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
5770 				 &new_group)) {
5771 		conf->group_cnt = group_cnt;
5772 		conf->worker_cnt_per_group = worker_cnt_per_group;
5773 		conf->worker_groups = new_group;
5774 	} else
5775 		goto abort;
5776 	spin_lock_init(&conf->device_lock);
5777 	seqcount_init(&conf->gen_lock);
5778 	init_waitqueue_head(&conf->wait_for_stripe);
5779 	init_waitqueue_head(&conf->wait_for_overlap);
5780 	INIT_LIST_HEAD(&conf->handle_list);
5781 	INIT_LIST_HEAD(&conf->hold_list);
5782 	INIT_LIST_HEAD(&conf->delayed_list);
5783 	INIT_LIST_HEAD(&conf->bitmap_list);
5784 	init_llist_head(&conf->released_stripes);
5785 	atomic_set(&conf->active_stripes, 0);
5786 	atomic_set(&conf->preread_active_stripes, 0);
5787 	atomic_set(&conf->active_aligned_reads, 0);
5788 	conf->bypass_threshold = BYPASS_THRESHOLD;
5789 	conf->recovery_disabled = mddev->recovery_disabled - 1;
5790 
5791 	conf->raid_disks = mddev->raid_disks;
5792 	if (mddev->reshape_position == MaxSector)
5793 		conf->previous_raid_disks = mddev->raid_disks;
5794 	else
5795 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5796 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
5797 	conf->scribble_len = scribble_len(max_disks);
5798 
5799 	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
5800 			      GFP_KERNEL);
5801 	if (!conf->disks)
5802 		goto abort;
5803 
5804 	conf->mddev = mddev;
5805 
5806 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
5807 		goto abort;
5808 
5809 	/* We init hash_locks[0] separately to that it can be used
5810 	 * as the reference lock in the spin_lock_nest_lock() call
5811 	 * in lock_all_device_hash_locks_irq in order to convince
5812 	 * lockdep that we know what we are doing.
5813 	 */
5814 	spin_lock_init(conf->hash_locks);
5815 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
5816 		spin_lock_init(conf->hash_locks + i);
5817 
5818 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5819 		INIT_LIST_HEAD(conf->inactive_list + i);
5820 
5821 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5822 		INIT_LIST_HEAD(conf->temp_inactive_list + i);
5823 
5824 	conf->level = mddev->new_level;
5825 	if (raid5_alloc_percpu(conf) != 0)
5826 		goto abort;
5827 
5828 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
5829 
5830 	rdev_for_each(rdev, mddev) {
5831 		raid_disk = rdev->raid_disk;
5832 		if (raid_disk >= max_disks
5833 		    || raid_disk < 0)
5834 			continue;
5835 		disk = conf->disks + raid_disk;
5836 
5837 		if (test_bit(Replacement, &rdev->flags)) {
5838 			if (disk->replacement)
5839 				goto abort;
5840 			disk->replacement = rdev;
5841 		} else {
5842 			if (disk->rdev)
5843 				goto abort;
5844 			disk->rdev = rdev;
5845 		}
5846 
5847 		if (test_bit(In_sync, &rdev->flags)) {
5848 			char b[BDEVNAME_SIZE];
5849 			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5850 			       " disk %d\n",
5851 			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
5852 		} else if (rdev->saved_raid_disk != raid_disk)
5853 			/* Cannot rely on bitmap to complete recovery */
5854 			conf->fullsync = 1;
5855 	}
5856 
5857 	conf->chunk_sectors = mddev->new_chunk_sectors;
5858 	conf->level = mddev->new_level;
5859 	if (conf->level == 6)
5860 		conf->max_degraded = 2;
5861 	else
5862 		conf->max_degraded = 1;
5863 	conf->algorithm = mddev->new_layout;
5864 	conf->reshape_progress = mddev->reshape_position;
5865 	if (conf->reshape_progress != MaxSector) {
5866 		conf->prev_chunk_sectors = mddev->chunk_sectors;
5867 		conf->prev_algo = mddev->layout;
5868 	}
5869 
5870 	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5871 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
5872 	atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
5873 	if (grow_stripes(conf, NR_STRIPES)) {
5874 		printk(KERN_ERR
5875 		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
5876 		       mdname(mddev), memory);
5877 		goto abort;
5878 	} else
5879 		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5880 		       mdname(mddev), memory);
5881 
5882 	sprintf(pers_name, "raid%d", mddev->new_level);
5883 	conf->thread = md_register_thread(raid5d, mddev, pers_name);
5884 	if (!conf->thread) {
5885 		printk(KERN_ERR
5886 		       "md/raid:%s: couldn't allocate thread.\n",
5887 		       mdname(mddev));
5888 		goto abort;
5889 	}
5890 
5891 	return conf;
5892 
5893  abort:
5894 	if (conf) {
5895 		free_conf(conf);
5896 		return ERR_PTR(-EIO);
5897 	} else
5898 		return ERR_PTR(-ENOMEM);
5899 }
5900 
5901 
5902 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5903 {
5904 	switch (algo) {
5905 	case ALGORITHM_PARITY_0:
5906 		if (raid_disk < max_degraded)
5907 			return 1;
5908 		break;
5909 	case ALGORITHM_PARITY_N:
5910 		if (raid_disk >= raid_disks - max_degraded)
5911 			return 1;
5912 		break;
5913 	case ALGORITHM_PARITY_0_6:
5914 		if (raid_disk == 0 ||
5915 		    raid_disk == raid_disks - 1)
5916 			return 1;
5917 		break;
5918 	case ALGORITHM_LEFT_ASYMMETRIC_6:
5919 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
5920 	case ALGORITHM_LEFT_SYMMETRIC_6:
5921 	case ALGORITHM_RIGHT_SYMMETRIC_6:
5922 		if (raid_disk == raid_disks - 1)
5923 			return 1;
5924 	}
5925 	return 0;
5926 }
5927 
5928 static int run(struct mddev *mddev)
5929 {
5930 	struct r5conf *conf;
5931 	int working_disks = 0;
5932 	int dirty_parity_disks = 0;
5933 	struct md_rdev *rdev;
5934 	sector_t reshape_offset = 0;
5935 	int i;
5936 	long long min_offset_diff = 0;
5937 	int first = 1;
5938 
5939 	if (mddev->recovery_cp != MaxSector)
5940 		printk(KERN_NOTICE "md/raid:%s: not clean"
5941 		       " -- starting background reconstruction\n",
5942 		       mdname(mddev));
5943 
5944 	rdev_for_each(rdev, mddev) {
5945 		long long diff;
5946 		if (rdev->raid_disk < 0)
5947 			continue;
5948 		diff = (rdev->new_data_offset - rdev->data_offset);
5949 		if (first) {
5950 			min_offset_diff = diff;
5951 			first = 0;
5952 		} else if (mddev->reshape_backwards &&
5953 			 diff < min_offset_diff)
5954 			min_offset_diff = diff;
5955 		else if (!mddev->reshape_backwards &&
5956 			 diff > min_offset_diff)
5957 			min_offset_diff = diff;
5958 	}
5959 
5960 	if (mddev->reshape_position != MaxSector) {
5961 		/* Check that we can continue the reshape.
5962 		 * Difficulties arise if the stripe we would write to
5963 		 * next is at or after the stripe we would read from next.
5964 		 * For a reshape that changes the number of devices, this
5965 		 * is only possible for a very short time, and mdadm makes
5966 		 * sure that time appears to have past before assembling
5967 		 * the array.  So we fail if that time hasn't passed.
5968 		 * For a reshape that keeps the number of devices the same
5969 		 * mdadm must be monitoring the reshape can keeping the
5970 		 * critical areas read-only and backed up.  It will start
5971 		 * the array in read-only mode, so we check for that.
5972 		 */
5973 		sector_t here_new, here_old;
5974 		int old_disks;
5975 		int max_degraded = (mddev->level == 6 ? 2 : 1);
5976 
5977 		if (mddev->new_level != mddev->level) {
5978 			printk(KERN_ERR "md/raid:%s: unsupported reshape "
5979 			       "required - aborting.\n",
5980 			       mdname(mddev));
5981 			return -EINVAL;
5982 		}
5983 		old_disks = mddev->raid_disks - mddev->delta_disks;
5984 		/* reshape_position must be on a new-stripe boundary, and one
5985 		 * further up in new geometry must map after here in old
5986 		 * geometry.
5987 		 */
5988 		here_new = mddev->reshape_position;
5989 		if (sector_div(here_new, mddev->new_chunk_sectors *
5990 			       (mddev->raid_disks - max_degraded))) {
5991 			printk(KERN_ERR "md/raid:%s: reshape_position not "
5992 			       "on a stripe boundary\n", mdname(mddev));
5993 			return -EINVAL;
5994 		}
5995 		reshape_offset = here_new * mddev->new_chunk_sectors;
5996 		/* here_new is the stripe we will write to */
5997 		here_old = mddev->reshape_position;
5998 		sector_div(here_old, mddev->chunk_sectors *
5999 			   (old_disks-max_degraded));
6000 		/* here_old is the first stripe that we might need to read
6001 		 * from */
6002 		if (mddev->delta_disks == 0) {
6003 			if ((here_new * mddev->new_chunk_sectors !=
6004 			     here_old * mddev->chunk_sectors)) {
6005 				printk(KERN_ERR "md/raid:%s: reshape position is"
6006 				       " confused - aborting\n", mdname(mddev));
6007 				return -EINVAL;
6008 			}
6009 			/* We cannot be sure it is safe to start an in-place
6010 			 * reshape.  It is only safe if user-space is monitoring
6011 			 * and taking constant backups.
6012 			 * mdadm always starts a situation like this in
6013 			 * readonly mode so it can take control before
6014 			 * allowing any writes.  So just check for that.
6015 			 */
6016 			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6017 			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
6018 				/* not really in-place - so OK */;
6019 			else if (mddev->ro == 0) {
6020 				printk(KERN_ERR "md/raid:%s: in-place reshape "
6021 				       "must be started in read-only mode "
6022 				       "- aborting\n",
6023 				       mdname(mddev));
6024 				return -EINVAL;
6025 			}
6026 		} else if (mddev->reshape_backwards
6027 		    ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
6028 		       here_old * mddev->chunk_sectors)
6029 		    : (here_new * mddev->new_chunk_sectors >=
6030 		       here_old * mddev->chunk_sectors + (-min_offset_diff))) {
6031 			/* Reading from the same stripe as writing to - bad */
6032 			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6033 			       "auto-recovery - aborting.\n",
6034 			       mdname(mddev));
6035 			return -EINVAL;
6036 		}
6037 		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6038 		       mdname(mddev));
6039 		/* OK, we should be able to continue; */
6040 	} else {
6041 		BUG_ON(mddev->level != mddev->new_level);
6042 		BUG_ON(mddev->layout != mddev->new_layout);
6043 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6044 		BUG_ON(mddev->delta_disks != 0);
6045 	}
6046 
6047 	if (mddev->private == NULL)
6048 		conf = setup_conf(mddev);
6049 	else
6050 		conf = mddev->private;
6051 
6052 	if (IS_ERR(conf))
6053 		return PTR_ERR(conf);
6054 
6055 	conf->min_offset_diff = min_offset_diff;
6056 	mddev->thread = conf->thread;
6057 	conf->thread = NULL;
6058 	mddev->private = conf;
6059 
6060 	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6061 	     i++) {
6062 		rdev = conf->disks[i].rdev;
6063 		if (!rdev && conf->disks[i].replacement) {
6064 			/* The replacement is all we have yet */
6065 			rdev = conf->disks[i].replacement;
6066 			conf->disks[i].replacement = NULL;
6067 			clear_bit(Replacement, &rdev->flags);
6068 			conf->disks[i].rdev = rdev;
6069 		}
6070 		if (!rdev)
6071 			continue;
6072 		if (conf->disks[i].replacement &&
6073 		    conf->reshape_progress != MaxSector) {
6074 			/* replacements and reshape simply do not mix. */
6075 			printk(KERN_ERR "md: cannot handle concurrent "
6076 			       "replacement and reshape.\n");
6077 			goto abort;
6078 		}
6079 		if (test_bit(In_sync, &rdev->flags)) {
6080 			working_disks++;
6081 			continue;
6082 		}
6083 		/* This disc is not fully in-sync.  However if it
6084 		 * just stored parity (beyond the recovery_offset),
6085 		 * when we don't need to be concerned about the
6086 		 * array being dirty.
6087 		 * When reshape goes 'backwards', we never have
6088 		 * partially completed devices, so we only need
6089 		 * to worry about reshape going forwards.
6090 		 */
6091 		/* Hack because v0.91 doesn't store recovery_offset properly. */
6092 		if (mddev->major_version == 0 &&
6093 		    mddev->minor_version > 90)
6094 			rdev->recovery_offset = reshape_offset;
6095 
6096 		if (rdev->recovery_offset < reshape_offset) {
6097 			/* We need to check old and new layout */
6098 			if (!only_parity(rdev->raid_disk,
6099 					 conf->algorithm,
6100 					 conf->raid_disks,
6101 					 conf->max_degraded))
6102 				continue;
6103 		}
6104 		if (!only_parity(rdev->raid_disk,
6105 				 conf->prev_algo,
6106 				 conf->previous_raid_disks,
6107 				 conf->max_degraded))
6108 			continue;
6109 		dirty_parity_disks++;
6110 	}
6111 
6112 	/*
6113 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
6114 	 */
6115 	mddev->degraded = calc_degraded(conf);
6116 
6117 	if (has_failed(conf)) {
6118 		printk(KERN_ERR "md/raid:%s: not enough operational devices"
6119 			" (%d/%d failed)\n",
6120 			mdname(mddev), mddev->degraded, conf->raid_disks);
6121 		goto abort;
6122 	}
6123 
6124 	/* device size must be a multiple of chunk size */
6125 	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6126 	mddev->resync_max_sectors = mddev->dev_sectors;
6127 
6128 	if (mddev->degraded > dirty_parity_disks &&
6129 	    mddev->recovery_cp != MaxSector) {
6130 		if (mddev->ok_start_degraded)
6131 			printk(KERN_WARNING
6132 			       "md/raid:%s: starting dirty degraded array"
6133 			       " - data corruption possible.\n",
6134 			       mdname(mddev));
6135 		else {
6136 			printk(KERN_ERR
6137 			       "md/raid:%s: cannot start dirty degraded array.\n",
6138 			       mdname(mddev));
6139 			goto abort;
6140 		}
6141 	}
6142 
6143 	if (mddev->degraded == 0)
6144 		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6145 		       " devices, algorithm %d\n", mdname(mddev), conf->level,
6146 		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6147 		       mddev->new_layout);
6148 	else
6149 		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6150 		       " out of %d devices, algorithm %d\n",
6151 		       mdname(mddev), conf->level,
6152 		       mddev->raid_disks - mddev->degraded,
6153 		       mddev->raid_disks, mddev->new_layout);
6154 
6155 	print_raid5_conf(conf);
6156 
6157 	if (conf->reshape_progress != MaxSector) {
6158 		conf->reshape_safe = conf->reshape_progress;
6159 		atomic_set(&conf->reshape_stripes, 0);
6160 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6161 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6162 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6163 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6164 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6165 							"reshape");
6166 	}
6167 
6168 
6169 	/* Ok, everything is just fine now */
6170 	if (mddev->to_remove == &raid5_attrs_group)
6171 		mddev->to_remove = NULL;
6172 	else if (mddev->kobj.sd &&
6173 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6174 		printk(KERN_WARNING
6175 		       "raid5: failed to create sysfs attributes for %s\n",
6176 		       mdname(mddev));
6177 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6178 
6179 	if (mddev->queue) {
6180 		int chunk_size;
6181 		bool discard_supported = true;
6182 		/* read-ahead size must cover two whole stripes, which
6183 		 * is 2 * (datadisks) * chunksize where 'n' is the
6184 		 * number of raid devices
6185 		 */
6186 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
6187 		int stripe = data_disks *
6188 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
6189 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6190 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6191 
6192 		blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
6193 
6194 		mddev->queue->backing_dev_info.congested_data = mddev;
6195 		mddev->queue->backing_dev_info.congested_fn = raid5_congested;
6196 
6197 		chunk_size = mddev->chunk_sectors << 9;
6198 		blk_queue_io_min(mddev->queue, chunk_size);
6199 		blk_queue_io_opt(mddev->queue, chunk_size *
6200 				 (conf->raid_disks - conf->max_degraded));
6201 		mddev->queue->limits.raid_partial_stripes_expensive = 1;
6202 		/*
6203 		 * We can only discard a whole stripe. It doesn't make sense to
6204 		 * discard data disk but write parity disk
6205 		 */
6206 		stripe = stripe * PAGE_SIZE;
6207 		/* Round up to power of 2, as discard handling
6208 		 * currently assumes that */
6209 		while ((stripe-1) & stripe)
6210 			stripe = (stripe | (stripe-1)) + 1;
6211 		mddev->queue->limits.discard_alignment = stripe;
6212 		mddev->queue->limits.discard_granularity = stripe;
6213 		/*
6214 		 * unaligned part of discard request will be ignored, so can't
6215 		 * guarantee discard_zeroes_data
6216 		 */
6217 		mddev->queue->limits.discard_zeroes_data = 0;
6218 
6219 		blk_queue_max_write_same_sectors(mddev->queue, 0);
6220 
6221 		rdev_for_each(rdev, mddev) {
6222 			disk_stack_limits(mddev->gendisk, rdev->bdev,
6223 					  rdev->data_offset << 9);
6224 			disk_stack_limits(mddev->gendisk, rdev->bdev,
6225 					  rdev->new_data_offset << 9);
6226 			/*
6227 			 * discard_zeroes_data is required, otherwise data
6228 			 * could be lost. Consider a scenario: discard a stripe
6229 			 * (the stripe could be inconsistent if
6230 			 * discard_zeroes_data is 0); write one disk of the
6231 			 * stripe (the stripe could be inconsistent again
6232 			 * depending on which disks are used to calculate
6233 			 * parity); the disk is broken; The stripe data of this
6234 			 * disk is lost.
6235 			 */
6236 			if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6237 			    !bdev_get_queue(rdev->bdev)->
6238 						limits.discard_zeroes_data)
6239 				discard_supported = false;
6240 			/* Unfortunately, discard_zeroes_data is not currently
6241 			 * a guarantee - just a hint.  So we only allow DISCARD
6242 			 * if the sysadmin has confirmed that only safe devices
6243 			 * are in use by setting a module parameter.
6244 			 */
6245 			if (!devices_handle_discard_safely) {
6246 				if (discard_supported) {
6247 					pr_info("md/raid456: discard support disabled due to uncertainty.\n");
6248 					pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
6249 				}
6250 				discard_supported = false;
6251 			}
6252 		}
6253 
6254 		if (discard_supported &&
6255 		   mddev->queue->limits.max_discard_sectors >= stripe &&
6256 		   mddev->queue->limits.discard_granularity >= stripe)
6257 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6258 						mddev->queue);
6259 		else
6260 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6261 						mddev->queue);
6262 	}
6263 
6264 	return 0;
6265 abort:
6266 	md_unregister_thread(&mddev->thread);
6267 	print_raid5_conf(conf);
6268 	free_conf(conf);
6269 	mddev->private = NULL;
6270 	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
6271 	return -EIO;
6272 }
6273 
6274 static int stop(struct mddev *mddev)
6275 {
6276 	struct r5conf *conf = mddev->private;
6277 
6278 	md_unregister_thread(&mddev->thread);
6279 	if (mddev->queue)
6280 		mddev->queue->backing_dev_info.congested_fn = NULL;
6281 	free_conf(conf);
6282 	mddev->private = NULL;
6283 	mddev->to_remove = &raid5_attrs_group;
6284 	return 0;
6285 }
6286 
6287 static void status(struct seq_file *seq, struct mddev *mddev)
6288 {
6289 	struct r5conf *conf = mddev->private;
6290 	int i;
6291 
6292 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6293 		mddev->chunk_sectors / 2, mddev->layout);
6294 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
6295 	for (i = 0; i < conf->raid_disks; i++)
6296 		seq_printf (seq, "%s",
6297 			       conf->disks[i].rdev &&
6298 			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
6299 	seq_printf (seq, "]");
6300 }
6301 
6302 static void print_raid5_conf (struct r5conf *conf)
6303 {
6304 	int i;
6305 	struct disk_info *tmp;
6306 
6307 	printk(KERN_DEBUG "RAID conf printout:\n");
6308 	if (!conf) {
6309 		printk("(conf==NULL)\n");
6310 		return;
6311 	}
6312 	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
6313 	       conf->raid_disks,
6314 	       conf->raid_disks - conf->mddev->degraded);
6315 
6316 	for (i = 0; i < conf->raid_disks; i++) {
6317 		char b[BDEVNAME_SIZE];
6318 		tmp = conf->disks + i;
6319 		if (tmp->rdev)
6320 			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
6321 			       i, !test_bit(Faulty, &tmp->rdev->flags),
6322 			       bdevname(tmp->rdev->bdev, b));
6323 	}
6324 }
6325 
6326 static int raid5_spare_active(struct mddev *mddev)
6327 {
6328 	int i;
6329 	struct r5conf *conf = mddev->private;
6330 	struct disk_info *tmp;
6331 	int count = 0;
6332 	unsigned long flags;
6333 
6334 	for (i = 0; i < conf->raid_disks; i++) {
6335 		tmp = conf->disks + i;
6336 		if (tmp->replacement
6337 		    && tmp->replacement->recovery_offset == MaxSector
6338 		    && !test_bit(Faulty, &tmp->replacement->flags)
6339 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
6340 			/* Replacement has just become active. */
6341 			if (!tmp->rdev
6342 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
6343 				count++;
6344 			if (tmp->rdev) {
6345 				/* Replaced device not technically faulty,
6346 				 * but we need to be sure it gets removed
6347 				 * and never re-added.
6348 				 */
6349 				set_bit(Faulty, &tmp->rdev->flags);
6350 				sysfs_notify_dirent_safe(
6351 					tmp->rdev->sysfs_state);
6352 			}
6353 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
6354 		} else if (tmp->rdev
6355 		    && tmp->rdev->recovery_offset == MaxSector
6356 		    && !test_bit(Faulty, &tmp->rdev->flags)
6357 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6358 			count++;
6359 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
6360 		}
6361 	}
6362 	spin_lock_irqsave(&conf->device_lock, flags);
6363 	mddev->degraded = calc_degraded(conf);
6364 	spin_unlock_irqrestore(&conf->device_lock, flags);
6365 	print_raid5_conf(conf);
6366 	return count;
6367 }
6368 
6369 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
6370 {
6371 	struct r5conf *conf = mddev->private;
6372 	int err = 0;
6373 	int number = rdev->raid_disk;
6374 	struct md_rdev **rdevp;
6375 	struct disk_info *p = conf->disks + number;
6376 
6377 	print_raid5_conf(conf);
6378 	if (rdev == p->rdev)
6379 		rdevp = &p->rdev;
6380 	else if (rdev == p->replacement)
6381 		rdevp = &p->replacement;
6382 	else
6383 		return 0;
6384 
6385 	if (number >= conf->raid_disks &&
6386 	    conf->reshape_progress == MaxSector)
6387 		clear_bit(In_sync, &rdev->flags);
6388 
6389 	if (test_bit(In_sync, &rdev->flags) ||
6390 	    atomic_read(&rdev->nr_pending)) {
6391 		err = -EBUSY;
6392 		goto abort;
6393 	}
6394 	/* Only remove non-faulty devices if recovery
6395 	 * isn't possible.
6396 	 */
6397 	if (!test_bit(Faulty, &rdev->flags) &&
6398 	    mddev->recovery_disabled != conf->recovery_disabled &&
6399 	    !has_failed(conf) &&
6400 	    (!p->replacement || p->replacement == rdev) &&
6401 	    number < conf->raid_disks) {
6402 		err = -EBUSY;
6403 		goto abort;
6404 	}
6405 	*rdevp = NULL;
6406 	synchronize_rcu();
6407 	if (atomic_read(&rdev->nr_pending)) {
6408 		/* lost the race, try later */
6409 		err = -EBUSY;
6410 		*rdevp = rdev;
6411 	} else if (p->replacement) {
6412 		/* We must have just cleared 'rdev' */
6413 		p->rdev = p->replacement;
6414 		clear_bit(Replacement, &p->replacement->flags);
6415 		smp_mb(); /* Make sure other CPUs may see both as identical
6416 			   * but will never see neither - if they are careful
6417 			   */
6418 		p->replacement = NULL;
6419 		clear_bit(WantReplacement, &rdev->flags);
6420 	} else
6421 		/* We might have just removed the Replacement as faulty-
6422 		 * clear the bit just in case
6423 		 */
6424 		clear_bit(WantReplacement, &rdev->flags);
6425 abort:
6426 
6427 	print_raid5_conf(conf);
6428 	return err;
6429 }
6430 
6431 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
6432 {
6433 	struct r5conf *conf = mddev->private;
6434 	int err = -EEXIST;
6435 	int disk;
6436 	struct disk_info *p;
6437 	int first = 0;
6438 	int last = conf->raid_disks - 1;
6439 
6440 	if (mddev->recovery_disabled == conf->recovery_disabled)
6441 		return -EBUSY;
6442 
6443 	if (rdev->saved_raid_disk < 0 && has_failed(conf))
6444 		/* no point adding a device */
6445 		return -EINVAL;
6446 
6447 	if (rdev->raid_disk >= 0)
6448 		first = last = rdev->raid_disk;
6449 
6450 	/*
6451 	 * find the disk ... but prefer rdev->saved_raid_disk
6452 	 * if possible.
6453 	 */
6454 	if (rdev->saved_raid_disk >= 0 &&
6455 	    rdev->saved_raid_disk >= first &&
6456 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
6457 		first = rdev->saved_raid_disk;
6458 
6459 	for (disk = first; disk <= last; disk++) {
6460 		p = conf->disks + disk;
6461 		if (p->rdev == NULL) {
6462 			clear_bit(In_sync, &rdev->flags);
6463 			rdev->raid_disk = disk;
6464 			err = 0;
6465 			if (rdev->saved_raid_disk != disk)
6466 				conf->fullsync = 1;
6467 			rcu_assign_pointer(p->rdev, rdev);
6468 			goto out;
6469 		}
6470 	}
6471 	for (disk = first; disk <= last; disk++) {
6472 		p = conf->disks + disk;
6473 		if (test_bit(WantReplacement, &p->rdev->flags) &&
6474 		    p->replacement == NULL) {
6475 			clear_bit(In_sync, &rdev->flags);
6476 			set_bit(Replacement, &rdev->flags);
6477 			rdev->raid_disk = disk;
6478 			err = 0;
6479 			conf->fullsync = 1;
6480 			rcu_assign_pointer(p->replacement, rdev);
6481 			break;
6482 		}
6483 	}
6484 out:
6485 	print_raid5_conf(conf);
6486 	return err;
6487 }
6488 
6489 static int raid5_resize(struct mddev *mddev, sector_t sectors)
6490 {
6491 	/* no resync is happening, and there is enough space
6492 	 * on all devices, so we can resize.
6493 	 * We need to make sure resync covers any new space.
6494 	 * If the array is shrinking we should possibly wait until
6495 	 * any io in the removed space completes, but it hardly seems
6496 	 * worth it.
6497 	 */
6498 	sector_t newsize;
6499 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
6500 	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
6501 	if (mddev->external_size &&
6502 	    mddev->array_sectors > newsize)
6503 		return -EINVAL;
6504 	if (mddev->bitmap) {
6505 		int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
6506 		if (ret)
6507 			return ret;
6508 	}
6509 	md_set_array_sectors(mddev, newsize);
6510 	set_capacity(mddev->gendisk, mddev->array_sectors);
6511 	revalidate_disk(mddev->gendisk);
6512 	if (sectors > mddev->dev_sectors &&
6513 	    mddev->recovery_cp > mddev->dev_sectors) {
6514 		mddev->recovery_cp = mddev->dev_sectors;
6515 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6516 	}
6517 	mddev->dev_sectors = sectors;
6518 	mddev->resync_max_sectors = sectors;
6519 	return 0;
6520 }
6521 
6522 static int check_stripe_cache(struct mddev *mddev)
6523 {
6524 	/* Can only proceed if there are plenty of stripe_heads.
6525 	 * We need a minimum of one full stripe,, and for sensible progress
6526 	 * it is best to have about 4 times that.
6527 	 * If we require 4 times, then the default 256 4K stripe_heads will
6528 	 * allow for chunk sizes up to 256K, which is probably OK.
6529 	 * If the chunk size is greater, user-space should request more
6530 	 * stripe_heads first.
6531 	 */
6532 	struct r5conf *conf = mddev->private;
6533 	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
6534 	    > conf->max_nr_stripes ||
6535 	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
6536 	    > conf->max_nr_stripes) {
6537 		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
6538 		       mdname(mddev),
6539 		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
6540 			/ STRIPE_SIZE)*4);
6541 		return 0;
6542 	}
6543 	return 1;
6544 }
6545 
6546 static int check_reshape(struct mddev *mddev)
6547 {
6548 	struct r5conf *conf = mddev->private;
6549 
6550 	if (mddev->delta_disks == 0 &&
6551 	    mddev->new_layout == mddev->layout &&
6552 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
6553 		return 0; /* nothing to do */
6554 	if (has_failed(conf))
6555 		return -EINVAL;
6556 	if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
6557 		/* We might be able to shrink, but the devices must
6558 		 * be made bigger first.
6559 		 * For raid6, 4 is the minimum size.
6560 		 * Otherwise 2 is the minimum
6561 		 */
6562 		int min = 2;
6563 		if (mddev->level == 6)
6564 			min = 4;
6565 		if (mddev->raid_disks + mddev->delta_disks < min)
6566 			return -EINVAL;
6567 	}
6568 
6569 	if (!check_stripe_cache(mddev))
6570 		return -ENOSPC;
6571 
6572 	return resize_stripes(conf, (conf->previous_raid_disks
6573 				     + mddev->delta_disks));
6574 }
6575 
6576 static int raid5_start_reshape(struct mddev *mddev)
6577 {
6578 	struct r5conf *conf = mddev->private;
6579 	struct md_rdev *rdev;
6580 	int spares = 0;
6581 	unsigned long flags;
6582 
6583 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6584 		return -EBUSY;
6585 
6586 	if (!check_stripe_cache(mddev))
6587 		return -ENOSPC;
6588 
6589 	if (has_failed(conf))
6590 		return -EINVAL;
6591 
6592 	rdev_for_each(rdev, mddev) {
6593 		if (!test_bit(In_sync, &rdev->flags)
6594 		    && !test_bit(Faulty, &rdev->flags))
6595 			spares++;
6596 	}
6597 
6598 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
6599 		/* Not enough devices even to make a degraded array
6600 		 * of that size
6601 		 */
6602 		return -EINVAL;
6603 
6604 	/* Refuse to reduce size of the array.  Any reductions in
6605 	 * array size must be through explicit setting of array_size
6606 	 * attribute.
6607 	 */
6608 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
6609 	    < mddev->array_sectors) {
6610 		printk(KERN_ERR "md/raid:%s: array size must be reduced "
6611 		       "before number of disks\n", mdname(mddev));
6612 		return -EINVAL;
6613 	}
6614 
6615 	atomic_set(&conf->reshape_stripes, 0);
6616 	spin_lock_irq(&conf->device_lock);
6617 	write_seqcount_begin(&conf->gen_lock);
6618 	conf->previous_raid_disks = conf->raid_disks;
6619 	conf->raid_disks += mddev->delta_disks;
6620 	conf->prev_chunk_sectors = conf->chunk_sectors;
6621 	conf->chunk_sectors = mddev->new_chunk_sectors;
6622 	conf->prev_algo = conf->algorithm;
6623 	conf->algorithm = mddev->new_layout;
6624 	conf->generation++;
6625 	/* Code that selects data_offset needs to see the generation update
6626 	 * if reshape_progress has been set - so a memory barrier needed.
6627 	 */
6628 	smp_mb();
6629 	if (mddev->reshape_backwards)
6630 		conf->reshape_progress = raid5_size(mddev, 0, 0);
6631 	else
6632 		conf->reshape_progress = 0;
6633 	conf->reshape_safe = conf->reshape_progress;
6634 	write_seqcount_end(&conf->gen_lock);
6635 	spin_unlock_irq(&conf->device_lock);
6636 
6637 	/* Now make sure any requests that proceeded on the assumption
6638 	 * the reshape wasn't running - like Discard or Read - have
6639 	 * completed.
6640 	 */
6641 	mddev_suspend(mddev);
6642 	mddev_resume(mddev);
6643 
6644 	/* Add some new drives, as many as will fit.
6645 	 * We know there are enough to make the newly sized array work.
6646 	 * Don't add devices if we are reducing the number of
6647 	 * devices in the array.  This is because it is not possible
6648 	 * to correctly record the "partially reconstructed" state of
6649 	 * such devices during the reshape and confusion could result.
6650 	 */
6651 	if (mddev->delta_disks >= 0) {
6652 		rdev_for_each(rdev, mddev)
6653 			if (rdev->raid_disk < 0 &&
6654 			    !test_bit(Faulty, &rdev->flags)) {
6655 				if (raid5_add_disk(mddev, rdev) == 0) {
6656 					if (rdev->raid_disk
6657 					    >= conf->previous_raid_disks)
6658 						set_bit(In_sync, &rdev->flags);
6659 					else
6660 						rdev->recovery_offset = 0;
6661 
6662 					if (sysfs_link_rdev(mddev, rdev))
6663 						/* Failure here is OK */;
6664 				}
6665 			} else if (rdev->raid_disk >= conf->previous_raid_disks
6666 				   && !test_bit(Faulty, &rdev->flags)) {
6667 				/* This is a spare that was manually added */
6668 				set_bit(In_sync, &rdev->flags);
6669 			}
6670 
6671 		/* When a reshape changes the number of devices,
6672 		 * ->degraded is measured against the larger of the
6673 		 * pre and post number of devices.
6674 		 */
6675 		spin_lock_irqsave(&conf->device_lock, flags);
6676 		mddev->degraded = calc_degraded(conf);
6677 		spin_unlock_irqrestore(&conf->device_lock, flags);
6678 	}
6679 	mddev->raid_disks = conf->raid_disks;
6680 	mddev->reshape_position = conf->reshape_progress;
6681 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
6682 
6683 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6684 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6685 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6686 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6687 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6688 						"reshape");
6689 	if (!mddev->sync_thread) {
6690 		mddev->recovery = 0;
6691 		spin_lock_irq(&conf->device_lock);
6692 		write_seqcount_begin(&conf->gen_lock);
6693 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
6694 		mddev->new_chunk_sectors =
6695 			conf->chunk_sectors = conf->prev_chunk_sectors;
6696 		mddev->new_layout = conf->algorithm = conf->prev_algo;
6697 		rdev_for_each(rdev, mddev)
6698 			rdev->new_data_offset = rdev->data_offset;
6699 		smp_wmb();
6700 		conf->generation --;
6701 		conf->reshape_progress = MaxSector;
6702 		mddev->reshape_position = MaxSector;
6703 		write_seqcount_end(&conf->gen_lock);
6704 		spin_unlock_irq(&conf->device_lock);
6705 		return -EAGAIN;
6706 	}
6707 	conf->reshape_checkpoint = jiffies;
6708 	md_wakeup_thread(mddev->sync_thread);
6709 	md_new_event(mddev);
6710 	return 0;
6711 }
6712 
6713 /* This is called from the reshape thread and should make any
6714  * changes needed in 'conf'
6715  */
6716 static void end_reshape(struct r5conf *conf)
6717 {
6718 
6719 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
6720 		struct md_rdev *rdev;
6721 
6722 		spin_lock_irq(&conf->device_lock);
6723 		conf->previous_raid_disks = conf->raid_disks;
6724 		rdev_for_each(rdev, conf->mddev)
6725 			rdev->data_offset = rdev->new_data_offset;
6726 		smp_wmb();
6727 		conf->reshape_progress = MaxSector;
6728 		spin_unlock_irq(&conf->device_lock);
6729 		wake_up(&conf->wait_for_overlap);
6730 
6731 		/* read-ahead size must cover two whole stripes, which is
6732 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6733 		 */
6734 		if (conf->mddev->queue) {
6735 			int data_disks = conf->raid_disks - conf->max_degraded;
6736 			int stripe = data_disks * ((conf->chunk_sectors << 9)
6737 						   / PAGE_SIZE);
6738 			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6739 				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6740 		}
6741 	}
6742 }
6743 
6744 /* This is called from the raid5d thread with mddev_lock held.
6745  * It makes config changes to the device.
6746  */
6747 static void raid5_finish_reshape(struct mddev *mddev)
6748 {
6749 	struct r5conf *conf = mddev->private;
6750 
6751 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6752 
6753 		if (mddev->delta_disks > 0) {
6754 			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6755 			set_capacity(mddev->gendisk, mddev->array_sectors);
6756 			revalidate_disk(mddev->gendisk);
6757 		} else {
6758 			int d;
6759 			spin_lock_irq(&conf->device_lock);
6760 			mddev->degraded = calc_degraded(conf);
6761 			spin_unlock_irq(&conf->device_lock);
6762 			for (d = conf->raid_disks ;
6763 			     d < conf->raid_disks - mddev->delta_disks;
6764 			     d++) {
6765 				struct md_rdev *rdev = conf->disks[d].rdev;
6766 				if (rdev)
6767 					clear_bit(In_sync, &rdev->flags);
6768 				rdev = conf->disks[d].replacement;
6769 				if (rdev)
6770 					clear_bit(In_sync, &rdev->flags);
6771 			}
6772 		}
6773 		mddev->layout = conf->algorithm;
6774 		mddev->chunk_sectors = conf->chunk_sectors;
6775 		mddev->reshape_position = MaxSector;
6776 		mddev->delta_disks = 0;
6777 		mddev->reshape_backwards = 0;
6778 	}
6779 }
6780 
6781 static void raid5_quiesce(struct mddev *mddev, int state)
6782 {
6783 	struct r5conf *conf = mddev->private;
6784 
6785 	switch(state) {
6786 	case 2: /* resume for a suspend */
6787 		wake_up(&conf->wait_for_overlap);
6788 		break;
6789 
6790 	case 1: /* stop all writes */
6791 		lock_all_device_hash_locks_irq(conf);
6792 		/* '2' tells resync/reshape to pause so that all
6793 		 * active stripes can drain
6794 		 */
6795 		conf->quiesce = 2;
6796 		wait_event_cmd(conf->wait_for_stripe,
6797 				    atomic_read(&conf->active_stripes) == 0 &&
6798 				    atomic_read(&conf->active_aligned_reads) == 0,
6799 				    unlock_all_device_hash_locks_irq(conf),
6800 				    lock_all_device_hash_locks_irq(conf));
6801 		conf->quiesce = 1;
6802 		unlock_all_device_hash_locks_irq(conf);
6803 		/* allow reshape to continue */
6804 		wake_up(&conf->wait_for_overlap);
6805 		break;
6806 
6807 	case 0: /* re-enable writes */
6808 		lock_all_device_hash_locks_irq(conf);
6809 		conf->quiesce = 0;
6810 		wake_up(&conf->wait_for_stripe);
6811 		wake_up(&conf->wait_for_overlap);
6812 		unlock_all_device_hash_locks_irq(conf);
6813 		break;
6814 	}
6815 }
6816 
6817 
6818 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
6819 {
6820 	struct r0conf *raid0_conf = mddev->private;
6821 	sector_t sectors;
6822 
6823 	/* for raid0 takeover only one zone is supported */
6824 	if (raid0_conf->nr_strip_zones > 1) {
6825 		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6826 		       mdname(mddev));
6827 		return ERR_PTR(-EINVAL);
6828 	}
6829 
6830 	sectors = raid0_conf->strip_zone[0].zone_end;
6831 	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
6832 	mddev->dev_sectors = sectors;
6833 	mddev->new_level = level;
6834 	mddev->new_layout = ALGORITHM_PARITY_N;
6835 	mddev->new_chunk_sectors = mddev->chunk_sectors;
6836 	mddev->raid_disks += 1;
6837 	mddev->delta_disks = 1;
6838 	/* make sure it will be not marked as dirty */
6839 	mddev->recovery_cp = MaxSector;
6840 
6841 	return setup_conf(mddev);
6842 }
6843 
6844 
6845 static void *raid5_takeover_raid1(struct mddev *mddev)
6846 {
6847 	int chunksect;
6848 
6849 	if (mddev->raid_disks != 2 ||
6850 	    mddev->degraded > 1)
6851 		return ERR_PTR(-EINVAL);
6852 
6853 	/* Should check if there are write-behind devices? */
6854 
6855 	chunksect = 64*2; /* 64K by default */
6856 
6857 	/* The array must be an exact multiple of chunksize */
6858 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
6859 		chunksect >>= 1;
6860 
6861 	if ((chunksect<<9) < STRIPE_SIZE)
6862 		/* array size does not allow a suitable chunk size */
6863 		return ERR_PTR(-EINVAL);
6864 
6865 	mddev->new_level = 5;
6866 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
6867 	mddev->new_chunk_sectors = chunksect;
6868 
6869 	return setup_conf(mddev);
6870 }
6871 
6872 static void *raid5_takeover_raid6(struct mddev *mddev)
6873 {
6874 	int new_layout;
6875 
6876 	switch (mddev->layout) {
6877 	case ALGORITHM_LEFT_ASYMMETRIC_6:
6878 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
6879 		break;
6880 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
6881 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
6882 		break;
6883 	case ALGORITHM_LEFT_SYMMETRIC_6:
6884 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
6885 		break;
6886 	case ALGORITHM_RIGHT_SYMMETRIC_6:
6887 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
6888 		break;
6889 	case ALGORITHM_PARITY_0_6:
6890 		new_layout = ALGORITHM_PARITY_0;
6891 		break;
6892 	case ALGORITHM_PARITY_N:
6893 		new_layout = ALGORITHM_PARITY_N;
6894 		break;
6895 	default:
6896 		return ERR_PTR(-EINVAL);
6897 	}
6898 	mddev->new_level = 5;
6899 	mddev->new_layout = new_layout;
6900 	mddev->delta_disks = -1;
6901 	mddev->raid_disks -= 1;
6902 	return setup_conf(mddev);
6903 }
6904 
6905 
6906 static int raid5_check_reshape(struct mddev *mddev)
6907 {
6908 	/* For a 2-drive array, the layout and chunk size can be changed
6909 	 * immediately as not restriping is needed.
6910 	 * For larger arrays we record the new value - after validation
6911 	 * to be used by a reshape pass.
6912 	 */
6913 	struct r5conf *conf = mddev->private;
6914 	int new_chunk = mddev->new_chunk_sectors;
6915 
6916 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
6917 		return -EINVAL;
6918 	if (new_chunk > 0) {
6919 		if (!is_power_of_2(new_chunk))
6920 			return -EINVAL;
6921 		if (new_chunk < (PAGE_SIZE>>9))
6922 			return -EINVAL;
6923 		if (mddev->array_sectors & (new_chunk-1))
6924 			/* not factor of array size */
6925 			return -EINVAL;
6926 	}
6927 
6928 	/* They look valid */
6929 
6930 	if (mddev->raid_disks == 2) {
6931 		/* can make the change immediately */
6932 		if (mddev->new_layout >= 0) {
6933 			conf->algorithm = mddev->new_layout;
6934 			mddev->layout = mddev->new_layout;
6935 		}
6936 		if (new_chunk > 0) {
6937 			conf->chunk_sectors = new_chunk ;
6938 			mddev->chunk_sectors = new_chunk;
6939 		}
6940 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
6941 		md_wakeup_thread(mddev->thread);
6942 	}
6943 	return check_reshape(mddev);
6944 }
6945 
6946 static int raid6_check_reshape(struct mddev *mddev)
6947 {
6948 	int new_chunk = mddev->new_chunk_sectors;
6949 
6950 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
6951 		return -EINVAL;
6952 	if (new_chunk > 0) {
6953 		if (!is_power_of_2(new_chunk))
6954 			return -EINVAL;
6955 		if (new_chunk < (PAGE_SIZE >> 9))
6956 			return -EINVAL;
6957 		if (mddev->array_sectors & (new_chunk-1))
6958 			/* not factor of array size */
6959 			return -EINVAL;
6960 	}
6961 
6962 	/* They look valid */
6963 	return check_reshape(mddev);
6964 }
6965 
6966 static void *raid5_takeover(struct mddev *mddev)
6967 {
6968 	/* raid5 can take over:
6969 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
6970 	 *  raid1 - if there are two drives.  We need to know the chunk size
6971 	 *  raid4 - trivial - just use a raid4 layout.
6972 	 *  raid6 - Providing it is a *_6 layout
6973 	 */
6974 	if (mddev->level == 0)
6975 		return raid45_takeover_raid0(mddev, 5);
6976 	if (mddev->level == 1)
6977 		return raid5_takeover_raid1(mddev);
6978 	if (mddev->level == 4) {
6979 		mddev->new_layout = ALGORITHM_PARITY_N;
6980 		mddev->new_level = 5;
6981 		return setup_conf(mddev);
6982 	}
6983 	if (mddev->level == 6)
6984 		return raid5_takeover_raid6(mddev);
6985 
6986 	return ERR_PTR(-EINVAL);
6987 }
6988 
6989 static void *raid4_takeover(struct mddev *mddev)
6990 {
6991 	/* raid4 can take over:
6992 	 *  raid0 - if there is only one strip zone
6993 	 *  raid5 - if layout is right
6994 	 */
6995 	if (mddev->level == 0)
6996 		return raid45_takeover_raid0(mddev, 4);
6997 	if (mddev->level == 5 &&
6998 	    mddev->layout == ALGORITHM_PARITY_N) {
6999 		mddev->new_layout = 0;
7000 		mddev->new_level = 4;
7001 		return setup_conf(mddev);
7002 	}
7003 	return ERR_PTR(-EINVAL);
7004 }
7005 
7006 static struct md_personality raid5_personality;
7007 
7008 static void *raid6_takeover(struct mddev *mddev)
7009 {
7010 	/* Currently can only take over a raid5.  We map the
7011 	 * personality to an equivalent raid6 personality
7012 	 * with the Q block at the end.
7013 	 */
7014 	int new_layout;
7015 
7016 	if (mddev->pers != &raid5_personality)
7017 		return ERR_PTR(-EINVAL);
7018 	if (mddev->degraded > 1)
7019 		return ERR_PTR(-EINVAL);
7020 	if (mddev->raid_disks > 253)
7021 		return ERR_PTR(-EINVAL);
7022 	if (mddev->raid_disks < 3)
7023 		return ERR_PTR(-EINVAL);
7024 
7025 	switch (mddev->layout) {
7026 	case ALGORITHM_LEFT_ASYMMETRIC:
7027 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7028 		break;
7029 	case ALGORITHM_RIGHT_ASYMMETRIC:
7030 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7031 		break;
7032 	case ALGORITHM_LEFT_SYMMETRIC:
7033 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7034 		break;
7035 	case ALGORITHM_RIGHT_SYMMETRIC:
7036 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7037 		break;
7038 	case ALGORITHM_PARITY_0:
7039 		new_layout = ALGORITHM_PARITY_0_6;
7040 		break;
7041 	case ALGORITHM_PARITY_N:
7042 		new_layout = ALGORITHM_PARITY_N;
7043 		break;
7044 	default:
7045 		return ERR_PTR(-EINVAL);
7046 	}
7047 	mddev->new_level = 6;
7048 	mddev->new_layout = new_layout;
7049 	mddev->delta_disks = 1;
7050 	mddev->raid_disks += 1;
7051 	return setup_conf(mddev);
7052 }
7053 
7054 
7055 static struct md_personality raid6_personality =
7056 {
7057 	.name		= "raid6",
7058 	.level		= 6,
7059 	.owner		= THIS_MODULE,
7060 	.make_request	= make_request,
7061 	.run		= run,
7062 	.stop		= stop,
7063 	.status		= status,
7064 	.error_handler	= error,
7065 	.hot_add_disk	= raid5_add_disk,
7066 	.hot_remove_disk= raid5_remove_disk,
7067 	.spare_active	= raid5_spare_active,
7068 	.sync_request	= sync_request,
7069 	.resize		= raid5_resize,
7070 	.size		= raid5_size,
7071 	.check_reshape	= raid6_check_reshape,
7072 	.start_reshape  = raid5_start_reshape,
7073 	.finish_reshape = raid5_finish_reshape,
7074 	.quiesce	= raid5_quiesce,
7075 	.takeover	= raid6_takeover,
7076 };
7077 static struct md_personality raid5_personality =
7078 {
7079 	.name		= "raid5",
7080 	.level		= 5,
7081 	.owner		= THIS_MODULE,
7082 	.make_request	= make_request,
7083 	.run		= run,
7084 	.stop		= stop,
7085 	.status		= status,
7086 	.error_handler	= error,
7087 	.hot_add_disk	= raid5_add_disk,
7088 	.hot_remove_disk= raid5_remove_disk,
7089 	.spare_active	= raid5_spare_active,
7090 	.sync_request	= sync_request,
7091 	.resize		= raid5_resize,
7092 	.size		= raid5_size,
7093 	.check_reshape	= raid5_check_reshape,
7094 	.start_reshape  = raid5_start_reshape,
7095 	.finish_reshape = raid5_finish_reshape,
7096 	.quiesce	= raid5_quiesce,
7097 	.takeover	= raid5_takeover,
7098 };
7099 
7100 static struct md_personality raid4_personality =
7101 {
7102 	.name		= "raid4",
7103 	.level		= 4,
7104 	.owner		= THIS_MODULE,
7105 	.make_request	= make_request,
7106 	.run		= run,
7107 	.stop		= stop,
7108 	.status		= status,
7109 	.error_handler	= error,
7110 	.hot_add_disk	= raid5_add_disk,
7111 	.hot_remove_disk= raid5_remove_disk,
7112 	.spare_active	= raid5_spare_active,
7113 	.sync_request	= sync_request,
7114 	.resize		= raid5_resize,
7115 	.size		= raid5_size,
7116 	.check_reshape	= raid5_check_reshape,
7117 	.start_reshape  = raid5_start_reshape,
7118 	.finish_reshape = raid5_finish_reshape,
7119 	.quiesce	= raid5_quiesce,
7120 	.takeover	= raid4_takeover,
7121 };
7122 
7123 static int __init raid5_init(void)
7124 {
7125 	raid5_wq = alloc_workqueue("raid5wq",
7126 		WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7127 	if (!raid5_wq)
7128 		return -ENOMEM;
7129 	register_md_personality(&raid6_personality);
7130 	register_md_personality(&raid5_personality);
7131 	register_md_personality(&raid4_personality);
7132 	return 0;
7133 }
7134 
7135 static void raid5_exit(void)
7136 {
7137 	unregister_md_personality(&raid6_personality);
7138 	unregister_md_personality(&raid5_personality);
7139 	unregister_md_personality(&raid4_personality);
7140 	destroy_workqueue(raid5_wq);
7141 }
7142 
7143 module_init(raid5_init);
7144 module_exit(raid5_exit);
7145 MODULE_LICENSE("GPL");
7146 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7147 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7148 MODULE_ALIAS("md-raid5");
7149 MODULE_ALIAS("md-raid4");
7150 MODULE_ALIAS("md-level-5");
7151 MODULE_ALIAS("md-level-4");
7152 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7153 MODULE_ALIAS("md-raid6");
7154 MODULE_ALIAS("md-level-6");
7155 
7156 /* This used to be two separate modules, they were: */
7157 MODULE_ALIAS("raid5");
7158 MODULE_ALIAS("raid6");
7159