xref: /linux/drivers/md/raid5.c (revision 2dbf708448c836754d25fe6108c5bfe1f5697c95)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include "md.h"
57 #include "raid5.h"
58 #include "raid0.h"
59 #include "bitmap.h"
60 
61 /*
62  * Stripe cache
63  */
64 
65 #define NR_STRIPES		256
66 #define STRIPE_SIZE		PAGE_SIZE
67 #define STRIPE_SHIFT		(PAGE_SHIFT - 9)
68 #define STRIPE_SECTORS		(STRIPE_SIZE>>9)
69 #define	IO_THRESHOLD		1
70 #define BYPASS_THRESHOLD	1
71 #define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
72 #define HASH_MASK		(NR_HASH - 1)
73 
74 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
75 {
76 	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
77 	return &conf->stripe_hashtbl[hash];
78 }
79 
80 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
81  * order without overlap.  There may be several bio's per stripe+device, and
82  * a bio could span several devices.
83  * When walking this list for a particular stripe+device, we must never proceed
84  * beyond a bio that extends past this device, as the next bio might no longer
85  * be valid.
86  * This function is used to determine the 'next' bio in the list, given the sector
87  * of the current stripe+device
88  */
89 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
90 {
91 	int sectors = bio->bi_size >> 9;
92 	if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
93 		return bio->bi_next;
94 	else
95 		return NULL;
96 }
97 
98 /*
99  * We maintain a biased count of active stripes in the bottom 16 bits of
100  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
101  */
102 static inline int raid5_bi_phys_segments(struct bio *bio)
103 {
104 	return bio->bi_phys_segments & 0xffff;
105 }
106 
107 static inline int raid5_bi_hw_segments(struct bio *bio)
108 {
109 	return (bio->bi_phys_segments >> 16) & 0xffff;
110 }
111 
112 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
113 {
114 	--bio->bi_phys_segments;
115 	return raid5_bi_phys_segments(bio);
116 }
117 
118 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
119 {
120 	unsigned short val = raid5_bi_hw_segments(bio);
121 
122 	--val;
123 	bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
124 	return val;
125 }
126 
127 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
128 {
129 	bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
130 }
131 
132 /* Find first data disk in a raid6 stripe */
133 static inline int raid6_d0(struct stripe_head *sh)
134 {
135 	if (sh->ddf_layout)
136 		/* ddf always start from first device */
137 		return 0;
138 	/* md starts just after Q block */
139 	if (sh->qd_idx == sh->disks - 1)
140 		return 0;
141 	else
142 		return sh->qd_idx + 1;
143 }
144 static inline int raid6_next_disk(int disk, int raid_disks)
145 {
146 	disk++;
147 	return (disk < raid_disks) ? disk : 0;
148 }
149 
150 /* When walking through the disks in a raid5, starting at raid6_d0,
151  * We need to map each disk to a 'slot', where the data disks are slot
152  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
153  * is raid_disks-1.  This help does that mapping.
154  */
155 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
156 			     int *count, int syndrome_disks)
157 {
158 	int slot = *count;
159 
160 	if (sh->ddf_layout)
161 		(*count)++;
162 	if (idx == sh->pd_idx)
163 		return syndrome_disks;
164 	if (idx == sh->qd_idx)
165 		return syndrome_disks + 1;
166 	if (!sh->ddf_layout)
167 		(*count)++;
168 	return slot;
169 }
170 
171 static void return_io(struct bio *return_bi)
172 {
173 	struct bio *bi = return_bi;
174 	while (bi) {
175 
176 		return_bi = bi->bi_next;
177 		bi->bi_next = NULL;
178 		bi->bi_size = 0;
179 		bio_endio(bi, 0);
180 		bi = return_bi;
181 	}
182 }
183 
184 static void print_raid5_conf (struct r5conf *conf);
185 
186 static int stripe_operations_active(struct stripe_head *sh)
187 {
188 	return sh->check_state || sh->reconstruct_state ||
189 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
190 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
191 }
192 
193 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
194 {
195 	if (atomic_dec_and_test(&sh->count)) {
196 		BUG_ON(!list_empty(&sh->lru));
197 		BUG_ON(atomic_read(&conf->active_stripes)==0);
198 		if (test_bit(STRIPE_HANDLE, &sh->state)) {
199 			if (test_bit(STRIPE_DELAYED, &sh->state))
200 				list_add_tail(&sh->lru, &conf->delayed_list);
201 			else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
202 				   sh->bm_seq - conf->seq_write > 0)
203 				list_add_tail(&sh->lru, &conf->bitmap_list);
204 			else {
205 				clear_bit(STRIPE_BIT_DELAY, &sh->state);
206 				list_add_tail(&sh->lru, &conf->handle_list);
207 			}
208 			md_wakeup_thread(conf->mddev->thread);
209 		} else {
210 			BUG_ON(stripe_operations_active(sh));
211 			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
212 				if (atomic_dec_return(&conf->preread_active_stripes)
213 				    < IO_THRESHOLD)
214 					md_wakeup_thread(conf->mddev->thread);
215 			atomic_dec(&conf->active_stripes);
216 			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
217 				list_add_tail(&sh->lru, &conf->inactive_list);
218 				wake_up(&conf->wait_for_stripe);
219 				if (conf->retry_read_aligned)
220 					md_wakeup_thread(conf->mddev->thread);
221 			}
222 		}
223 	}
224 }
225 
226 static void release_stripe(struct stripe_head *sh)
227 {
228 	struct r5conf *conf = sh->raid_conf;
229 	unsigned long flags;
230 
231 	spin_lock_irqsave(&conf->device_lock, flags);
232 	__release_stripe(conf, sh);
233 	spin_unlock_irqrestore(&conf->device_lock, flags);
234 }
235 
236 static inline void remove_hash(struct stripe_head *sh)
237 {
238 	pr_debug("remove_hash(), stripe %llu\n",
239 		(unsigned long long)sh->sector);
240 
241 	hlist_del_init(&sh->hash);
242 }
243 
244 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
245 {
246 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
247 
248 	pr_debug("insert_hash(), stripe %llu\n",
249 		(unsigned long long)sh->sector);
250 
251 	hlist_add_head(&sh->hash, hp);
252 }
253 
254 
255 /* find an idle stripe, make sure it is unhashed, and return it. */
256 static struct stripe_head *get_free_stripe(struct r5conf *conf)
257 {
258 	struct stripe_head *sh = NULL;
259 	struct list_head *first;
260 
261 	if (list_empty(&conf->inactive_list))
262 		goto out;
263 	first = conf->inactive_list.next;
264 	sh = list_entry(first, struct stripe_head, lru);
265 	list_del_init(first);
266 	remove_hash(sh);
267 	atomic_inc(&conf->active_stripes);
268 out:
269 	return sh;
270 }
271 
272 static void shrink_buffers(struct stripe_head *sh)
273 {
274 	struct page *p;
275 	int i;
276 	int num = sh->raid_conf->pool_size;
277 
278 	for (i = 0; i < num ; i++) {
279 		p = sh->dev[i].page;
280 		if (!p)
281 			continue;
282 		sh->dev[i].page = NULL;
283 		put_page(p);
284 	}
285 }
286 
287 static int grow_buffers(struct stripe_head *sh)
288 {
289 	int i;
290 	int num = sh->raid_conf->pool_size;
291 
292 	for (i = 0; i < num; i++) {
293 		struct page *page;
294 
295 		if (!(page = alloc_page(GFP_KERNEL))) {
296 			return 1;
297 		}
298 		sh->dev[i].page = page;
299 	}
300 	return 0;
301 }
302 
303 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
304 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
305 			    struct stripe_head *sh);
306 
307 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
308 {
309 	struct r5conf *conf = sh->raid_conf;
310 	int i;
311 
312 	BUG_ON(atomic_read(&sh->count) != 0);
313 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
314 	BUG_ON(stripe_operations_active(sh));
315 
316 	pr_debug("init_stripe called, stripe %llu\n",
317 		(unsigned long long)sh->sector);
318 
319 	remove_hash(sh);
320 
321 	sh->generation = conf->generation - previous;
322 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
323 	sh->sector = sector;
324 	stripe_set_idx(sector, conf, previous, sh);
325 	sh->state = 0;
326 
327 
328 	for (i = sh->disks; i--; ) {
329 		struct r5dev *dev = &sh->dev[i];
330 
331 		if (dev->toread || dev->read || dev->towrite || dev->written ||
332 		    test_bit(R5_LOCKED, &dev->flags)) {
333 			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
334 			       (unsigned long long)sh->sector, i, dev->toread,
335 			       dev->read, dev->towrite, dev->written,
336 			       test_bit(R5_LOCKED, &dev->flags));
337 			WARN_ON(1);
338 		}
339 		dev->flags = 0;
340 		raid5_build_block(sh, i, previous);
341 	}
342 	insert_hash(conf, sh);
343 }
344 
345 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
346 					 short generation)
347 {
348 	struct stripe_head *sh;
349 	struct hlist_node *hn;
350 
351 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
352 	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
353 		if (sh->sector == sector && sh->generation == generation)
354 			return sh;
355 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
356 	return NULL;
357 }
358 
359 /*
360  * Need to check if array has failed when deciding whether to:
361  *  - start an array
362  *  - remove non-faulty devices
363  *  - add a spare
364  *  - allow a reshape
365  * This determination is simple when no reshape is happening.
366  * However if there is a reshape, we need to carefully check
367  * both the before and after sections.
368  * This is because some failed devices may only affect one
369  * of the two sections, and some non-in_sync devices may
370  * be insync in the section most affected by failed devices.
371  */
372 static int calc_degraded(struct r5conf *conf)
373 {
374 	int degraded, degraded2;
375 	int i;
376 
377 	rcu_read_lock();
378 	degraded = 0;
379 	for (i = 0; i < conf->previous_raid_disks; i++) {
380 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
381 		if (!rdev || test_bit(Faulty, &rdev->flags))
382 			degraded++;
383 		else if (test_bit(In_sync, &rdev->flags))
384 			;
385 		else
386 			/* not in-sync or faulty.
387 			 * If the reshape increases the number of devices,
388 			 * this is being recovered by the reshape, so
389 			 * this 'previous' section is not in_sync.
390 			 * If the number of devices is being reduced however,
391 			 * the device can only be part of the array if
392 			 * we are reverting a reshape, so this section will
393 			 * be in-sync.
394 			 */
395 			if (conf->raid_disks >= conf->previous_raid_disks)
396 				degraded++;
397 	}
398 	rcu_read_unlock();
399 	if (conf->raid_disks == conf->previous_raid_disks)
400 		return degraded;
401 	rcu_read_lock();
402 	degraded2 = 0;
403 	for (i = 0; i < conf->raid_disks; i++) {
404 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
405 		if (!rdev || test_bit(Faulty, &rdev->flags))
406 			degraded2++;
407 		else if (test_bit(In_sync, &rdev->flags))
408 			;
409 		else
410 			/* not in-sync or faulty.
411 			 * If reshape increases the number of devices, this
412 			 * section has already been recovered, else it
413 			 * almost certainly hasn't.
414 			 */
415 			if (conf->raid_disks <= conf->previous_raid_disks)
416 				degraded2++;
417 	}
418 	rcu_read_unlock();
419 	if (degraded2 > degraded)
420 		return degraded2;
421 	return degraded;
422 }
423 
424 static int has_failed(struct r5conf *conf)
425 {
426 	int degraded;
427 
428 	if (conf->mddev->reshape_position == MaxSector)
429 		return conf->mddev->degraded > conf->max_degraded;
430 
431 	degraded = calc_degraded(conf);
432 	if (degraded > conf->max_degraded)
433 		return 1;
434 	return 0;
435 }
436 
437 static struct stripe_head *
438 get_active_stripe(struct r5conf *conf, sector_t sector,
439 		  int previous, int noblock, int noquiesce)
440 {
441 	struct stripe_head *sh;
442 
443 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
444 
445 	spin_lock_irq(&conf->device_lock);
446 
447 	do {
448 		wait_event_lock_irq(conf->wait_for_stripe,
449 				    conf->quiesce == 0 || noquiesce,
450 				    conf->device_lock, /* nothing */);
451 		sh = __find_stripe(conf, sector, conf->generation - previous);
452 		if (!sh) {
453 			if (!conf->inactive_blocked)
454 				sh = get_free_stripe(conf);
455 			if (noblock && sh == NULL)
456 				break;
457 			if (!sh) {
458 				conf->inactive_blocked = 1;
459 				wait_event_lock_irq(conf->wait_for_stripe,
460 						    !list_empty(&conf->inactive_list) &&
461 						    (atomic_read(&conf->active_stripes)
462 						     < (conf->max_nr_stripes *3/4)
463 						     || !conf->inactive_blocked),
464 						    conf->device_lock,
465 						    );
466 				conf->inactive_blocked = 0;
467 			} else
468 				init_stripe(sh, sector, previous);
469 		} else {
470 			if (atomic_read(&sh->count)) {
471 				BUG_ON(!list_empty(&sh->lru)
472 				    && !test_bit(STRIPE_EXPANDING, &sh->state));
473 			} else {
474 				if (!test_bit(STRIPE_HANDLE, &sh->state))
475 					atomic_inc(&conf->active_stripes);
476 				if (list_empty(&sh->lru) &&
477 				    !test_bit(STRIPE_EXPANDING, &sh->state))
478 					BUG();
479 				list_del_init(&sh->lru);
480 			}
481 		}
482 	} while (sh == NULL);
483 
484 	if (sh)
485 		atomic_inc(&sh->count);
486 
487 	spin_unlock_irq(&conf->device_lock);
488 	return sh;
489 }
490 
491 /* Determine if 'data_offset' or 'new_data_offset' should be used
492  * in this stripe_head.
493  */
494 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
495 {
496 	sector_t progress = conf->reshape_progress;
497 	/* Need a memory barrier to make sure we see the value
498 	 * of conf->generation, or ->data_offset that was set before
499 	 * reshape_progress was updated.
500 	 */
501 	smp_rmb();
502 	if (progress == MaxSector)
503 		return 0;
504 	if (sh->generation == conf->generation - 1)
505 		return 0;
506 	/* We are in a reshape, and this is a new-generation stripe,
507 	 * so use new_data_offset.
508 	 */
509 	return 1;
510 }
511 
512 static void
513 raid5_end_read_request(struct bio *bi, int error);
514 static void
515 raid5_end_write_request(struct bio *bi, int error);
516 
517 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
518 {
519 	struct r5conf *conf = sh->raid_conf;
520 	int i, disks = sh->disks;
521 
522 	might_sleep();
523 
524 	for (i = disks; i--; ) {
525 		int rw;
526 		int replace_only = 0;
527 		struct bio *bi, *rbi;
528 		struct md_rdev *rdev, *rrdev = NULL;
529 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
530 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
531 				rw = WRITE_FUA;
532 			else
533 				rw = WRITE;
534 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
535 			rw = READ;
536 		else if (test_and_clear_bit(R5_WantReplace,
537 					    &sh->dev[i].flags)) {
538 			rw = WRITE;
539 			replace_only = 1;
540 		} else
541 			continue;
542 
543 		bi = &sh->dev[i].req;
544 		rbi = &sh->dev[i].rreq; /* For writing to replacement */
545 
546 		bi->bi_rw = rw;
547 		rbi->bi_rw = rw;
548 		if (rw & WRITE) {
549 			bi->bi_end_io = raid5_end_write_request;
550 			rbi->bi_end_io = raid5_end_write_request;
551 		} else
552 			bi->bi_end_io = raid5_end_read_request;
553 
554 		rcu_read_lock();
555 		rrdev = rcu_dereference(conf->disks[i].replacement);
556 		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
557 		rdev = rcu_dereference(conf->disks[i].rdev);
558 		if (!rdev) {
559 			rdev = rrdev;
560 			rrdev = NULL;
561 		}
562 		if (rw & WRITE) {
563 			if (replace_only)
564 				rdev = NULL;
565 			if (rdev == rrdev)
566 				/* We raced and saw duplicates */
567 				rrdev = NULL;
568 		} else {
569 			if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
570 				rdev = rrdev;
571 			rrdev = NULL;
572 		}
573 
574 		if (rdev && test_bit(Faulty, &rdev->flags))
575 			rdev = NULL;
576 		if (rdev)
577 			atomic_inc(&rdev->nr_pending);
578 		if (rrdev && test_bit(Faulty, &rrdev->flags))
579 			rrdev = NULL;
580 		if (rrdev)
581 			atomic_inc(&rrdev->nr_pending);
582 		rcu_read_unlock();
583 
584 		/* We have already checked bad blocks for reads.  Now
585 		 * need to check for writes.  We never accept write errors
586 		 * on the replacement, so we don't to check rrdev.
587 		 */
588 		while ((rw & WRITE) && rdev &&
589 		       test_bit(WriteErrorSeen, &rdev->flags)) {
590 			sector_t first_bad;
591 			int bad_sectors;
592 			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
593 					      &first_bad, &bad_sectors);
594 			if (!bad)
595 				break;
596 
597 			if (bad < 0) {
598 				set_bit(BlockedBadBlocks, &rdev->flags);
599 				if (!conf->mddev->external &&
600 				    conf->mddev->flags) {
601 					/* It is very unlikely, but we might
602 					 * still need to write out the
603 					 * bad block log - better give it
604 					 * a chance*/
605 					md_check_recovery(conf->mddev);
606 				}
607 				md_wait_for_blocked_rdev(rdev, conf->mddev);
608 			} else {
609 				/* Acknowledged bad block - skip the write */
610 				rdev_dec_pending(rdev, conf->mddev);
611 				rdev = NULL;
612 			}
613 		}
614 
615 		if (rdev) {
616 			if (s->syncing || s->expanding || s->expanded
617 			    || s->replacing)
618 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
619 
620 			set_bit(STRIPE_IO_STARTED, &sh->state);
621 
622 			bi->bi_bdev = rdev->bdev;
623 			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
624 				__func__, (unsigned long long)sh->sector,
625 				bi->bi_rw, i);
626 			atomic_inc(&sh->count);
627 			if (use_new_offset(conf, sh))
628 				bi->bi_sector = (sh->sector
629 						 + rdev->new_data_offset);
630 			else
631 				bi->bi_sector = (sh->sector
632 						 + rdev->data_offset);
633 			bi->bi_flags = 1 << BIO_UPTODATE;
634 			bi->bi_idx = 0;
635 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
636 			bi->bi_io_vec[0].bv_offset = 0;
637 			bi->bi_size = STRIPE_SIZE;
638 			bi->bi_next = NULL;
639 			if (rrdev)
640 				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
641 			generic_make_request(bi);
642 		}
643 		if (rrdev) {
644 			if (s->syncing || s->expanding || s->expanded
645 			    || s->replacing)
646 				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
647 
648 			set_bit(STRIPE_IO_STARTED, &sh->state);
649 
650 			rbi->bi_bdev = rrdev->bdev;
651 			pr_debug("%s: for %llu schedule op %ld on "
652 				 "replacement disc %d\n",
653 				__func__, (unsigned long long)sh->sector,
654 				rbi->bi_rw, i);
655 			atomic_inc(&sh->count);
656 			if (use_new_offset(conf, sh))
657 				rbi->bi_sector = (sh->sector
658 						  + rrdev->new_data_offset);
659 			else
660 				rbi->bi_sector = (sh->sector
661 						  + rrdev->data_offset);
662 			rbi->bi_flags = 1 << BIO_UPTODATE;
663 			rbi->bi_idx = 0;
664 			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
665 			rbi->bi_io_vec[0].bv_offset = 0;
666 			rbi->bi_size = STRIPE_SIZE;
667 			rbi->bi_next = NULL;
668 			generic_make_request(rbi);
669 		}
670 		if (!rdev && !rrdev) {
671 			if (rw & WRITE)
672 				set_bit(STRIPE_DEGRADED, &sh->state);
673 			pr_debug("skip op %ld on disc %d for sector %llu\n",
674 				bi->bi_rw, i, (unsigned long long)sh->sector);
675 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
676 			set_bit(STRIPE_HANDLE, &sh->state);
677 		}
678 	}
679 }
680 
681 static struct dma_async_tx_descriptor *
682 async_copy_data(int frombio, struct bio *bio, struct page *page,
683 	sector_t sector, struct dma_async_tx_descriptor *tx)
684 {
685 	struct bio_vec *bvl;
686 	struct page *bio_page;
687 	int i;
688 	int page_offset;
689 	struct async_submit_ctl submit;
690 	enum async_tx_flags flags = 0;
691 
692 	if (bio->bi_sector >= sector)
693 		page_offset = (signed)(bio->bi_sector - sector) * 512;
694 	else
695 		page_offset = (signed)(sector - bio->bi_sector) * -512;
696 
697 	if (frombio)
698 		flags |= ASYNC_TX_FENCE;
699 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
700 
701 	bio_for_each_segment(bvl, bio, i) {
702 		int len = bvl->bv_len;
703 		int clen;
704 		int b_offset = 0;
705 
706 		if (page_offset < 0) {
707 			b_offset = -page_offset;
708 			page_offset += b_offset;
709 			len -= b_offset;
710 		}
711 
712 		if (len > 0 && page_offset + len > STRIPE_SIZE)
713 			clen = STRIPE_SIZE - page_offset;
714 		else
715 			clen = len;
716 
717 		if (clen > 0) {
718 			b_offset += bvl->bv_offset;
719 			bio_page = bvl->bv_page;
720 			if (frombio)
721 				tx = async_memcpy(page, bio_page, page_offset,
722 						  b_offset, clen, &submit);
723 			else
724 				tx = async_memcpy(bio_page, page, b_offset,
725 						  page_offset, clen, &submit);
726 		}
727 		/* chain the operations */
728 		submit.depend_tx = tx;
729 
730 		if (clen < len) /* hit end of page */
731 			break;
732 		page_offset +=  len;
733 	}
734 
735 	return tx;
736 }
737 
738 static void ops_complete_biofill(void *stripe_head_ref)
739 {
740 	struct stripe_head *sh = stripe_head_ref;
741 	struct bio *return_bi = NULL;
742 	struct r5conf *conf = sh->raid_conf;
743 	int i;
744 
745 	pr_debug("%s: stripe %llu\n", __func__,
746 		(unsigned long long)sh->sector);
747 
748 	/* clear completed biofills */
749 	spin_lock_irq(&conf->device_lock);
750 	for (i = sh->disks; i--; ) {
751 		struct r5dev *dev = &sh->dev[i];
752 
753 		/* acknowledge completion of a biofill operation */
754 		/* and check if we need to reply to a read request,
755 		 * new R5_Wantfill requests are held off until
756 		 * !STRIPE_BIOFILL_RUN
757 		 */
758 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
759 			struct bio *rbi, *rbi2;
760 
761 			BUG_ON(!dev->read);
762 			rbi = dev->read;
763 			dev->read = NULL;
764 			while (rbi && rbi->bi_sector <
765 				dev->sector + STRIPE_SECTORS) {
766 				rbi2 = r5_next_bio(rbi, dev->sector);
767 				if (!raid5_dec_bi_phys_segments(rbi)) {
768 					rbi->bi_next = return_bi;
769 					return_bi = rbi;
770 				}
771 				rbi = rbi2;
772 			}
773 		}
774 	}
775 	spin_unlock_irq(&conf->device_lock);
776 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
777 
778 	return_io(return_bi);
779 
780 	set_bit(STRIPE_HANDLE, &sh->state);
781 	release_stripe(sh);
782 }
783 
784 static void ops_run_biofill(struct stripe_head *sh)
785 {
786 	struct dma_async_tx_descriptor *tx = NULL;
787 	struct r5conf *conf = sh->raid_conf;
788 	struct async_submit_ctl submit;
789 	int i;
790 
791 	pr_debug("%s: stripe %llu\n", __func__,
792 		(unsigned long long)sh->sector);
793 
794 	for (i = sh->disks; i--; ) {
795 		struct r5dev *dev = &sh->dev[i];
796 		if (test_bit(R5_Wantfill, &dev->flags)) {
797 			struct bio *rbi;
798 			spin_lock_irq(&conf->device_lock);
799 			dev->read = rbi = dev->toread;
800 			dev->toread = NULL;
801 			spin_unlock_irq(&conf->device_lock);
802 			while (rbi && rbi->bi_sector <
803 				dev->sector + STRIPE_SECTORS) {
804 				tx = async_copy_data(0, rbi, dev->page,
805 					dev->sector, tx);
806 				rbi = r5_next_bio(rbi, dev->sector);
807 			}
808 		}
809 	}
810 
811 	atomic_inc(&sh->count);
812 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
813 	async_trigger_callback(&submit);
814 }
815 
816 static void mark_target_uptodate(struct stripe_head *sh, int target)
817 {
818 	struct r5dev *tgt;
819 
820 	if (target < 0)
821 		return;
822 
823 	tgt = &sh->dev[target];
824 	set_bit(R5_UPTODATE, &tgt->flags);
825 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
826 	clear_bit(R5_Wantcompute, &tgt->flags);
827 }
828 
829 static void ops_complete_compute(void *stripe_head_ref)
830 {
831 	struct stripe_head *sh = stripe_head_ref;
832 
833 	pr_debug("%s: stripe %llu\n", __func__,
834 		(unsigned long long)sh->sector);
835 
836 	/* mark the computed target(s) as uptodate */
837 	mark_target_uptodate(sh, sh->ops.target);
838 	mark_target_uptodate(sh, sh->ops.target2);
839 
840 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
841 	if (sh->check_state == check_state_compute_run)
842 		sh->check_state = check_state_compute_result;
843 	set_bit(STRIPE_HANDLE, &sh->state);
844 	release_stripe(sh);
845 }
846 
847 /* return a pointer to the address conversion region of the scribble buffer */
848 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
849 				 struct raid5_percpu *percpu)
850 {
851 	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
852 }
853 
854 static struct dma_async_tx_descriptor *
855 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
856 {
857 	int disks = sh->disks;
858 	struct page **xor_srcs = percpu->scribble;
859 	int target = sh->ops.target;
860 	struct r5dev *tgt = &sh->dev[target];
861 	struct page *xor_dest = tgt->page;
862 	int count = 0;
863 	struct dma_async_tx_descriptor *tx;
864 	struct async_submit_ctl submit;
865 	int i;
866 
867 	pr_debug("%s: stripe %llu block: %d\n",
868 		__func__, (unsigned long long)sh->sector, target);
869 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
870 
871 	for (i = disks; i--; )
872 		if (i != target)
873 			xor_srcs[count++] = sh->dev[i].page;
874 
875 	atomic_inc(&sh->count);
876 
877 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
878 			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
879 	if (unlikely(count == 1))
880 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
881 	else
882 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
883 
884 	return tx;
885 }
886 
887 /* set_syndrome_sources - populate source buffers for gen_syndrome
888  * @srcs - (struct page *) array of size sh->disks
889  * @sh - stripe_head to parse
890  *
891  * Populates srcs in proper layout order for the stripe and returns the
892  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
893  * destination buffer is recorded in srcs[count] and the Q destination
894  * is recorded in srcs[count+1]].
895  */
896 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
897 {
898 	int disks = sh->disks;
899 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
900 	int d0_idx = raid6_d0(sh);
901 	int count;
902 	int i;
903 
904 	for (i = 0; i < disks; i++)
905 		srcs[i] = NULL;
906 
907 	count = 0;
908 	i = d0_idx;
909 	do {
910 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
911 
912 		srcs[slot] = sh->dev[i].page;
913 		i = raid6_next_disk(i, disks);
914 	} while (i != d0_idx);
915 
916 	return syndrome_disks;
917 }
918 
919 static struct dma_async_tx_descriptor *
920 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
921 {
922 	int disks = sh->disks;
923 	struct page **blocks = percpu->scribble;
924 	int target;
925 	int qd_idx = sh->qd_idx;
926 	struct dma_async_tx_descriptor *tx;
927 	struct async_submit_ctl submit;
928 	struct r5dev *tgt;
929 	struct page *dest;
930 	int i;
931 	int count;
932 
933 	if (sh->ops.target < 0)
934 		target = sh->ops.target2;
935 	else if (sh->ops.target2 < 0)
936 		target = sh->ops.target;
937 	else
938 		/* we should only have one valid target */
939 		BUG();
940 	BUG_ON(target < 0);
941 	pr_debug("%s: stripe %llu block: %d\n",
942 		__func__, (unsigned long long)sh->sector, target);
943 
944 	tgt = &sh->dev[target];
945 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
946 	dest = tgt->page;
947 
948 	atomic_inc(&sh->count);
949 
950 	if (target == qd_idx) {
951 		count = set_syndrome_sources(blocks, sh);
952 		blocks[count] = NULL; /* regenerating p is not necessary */
953 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
954 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
955 				  ops_complete_compute, sh,
956 				  to_addr_conv(sh, percpu));
957 		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
958 	} else {
959 		/* Compute any data- or p-drive using XOR */
960 		count = 0;
961 		for (i = disks; i-- ; ) {
962 			if (i == target || i == qd_idx)
963 				continue;
964 			blocks[count++] = sh->dev[i].page;
965 		}
966 
967 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
968 				  NULL, ops_complete_compute, sh,
969 				  to_addr_conv(sh, percpu));
970 		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
971 	}
972 
973 	return tx;
974 }
975 
976 static struct dma_async_tx_descriptor *
977 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
978 {
979 	int i, count, disks = sh->disks;
980 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
981 	int d0_idx = raid6_d0(sh);
982 	int faila = -1, failb = -1;
983 	int target = sh->ops.target;
984 	int target2 = sh->ops.target2;
985 	struct r5dev *tgt = &sh->dev[target];
986 	struct r5dev *tgt2 = &sh->dev[target2];
987 	struct dma_async_tx_descriptor *tx;
988 	struct page **blocks = percpu->scribble;
989 	struct async_submit_ctl submit;
990 
991 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
992 		 __func__, (unsigned long long)sh->sector, target, target2);
993 	BUG_ON(target < 0 || target2 < 0);
994 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
995 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
996 
997 	/* we need to open-code set_syndrome_sources to handle the
998 	 * slot number conversion for 'faila' and 'failb'
999 	 */
1000 	for (i = 0; i < disks ; i++)
1001 		blocks[i] = NULL;
1002 	count = 0;
1003 	i = d0_idx;
1004 	do {
1005 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1006 
1007 		blocks[slot] = sh->dev[i].page;
1008 
1009 		if (i == target)
1010 			faila = slot;
1011 		if (i == target2)
1012 			failb = slot;
1013 		i = raid6_next_disk(i, disks);
1014 	} while (i != d0_idx);
1015 
1016 	BUG_ON(faila == failb);
1017 	if (failb < faila)
1018 		swap(faila, failb);
1019 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1020 		 __func__, (unsigned long long)sh->sector, faila, failb);
1021 
1022 	atomic_inc(&sh->count);
1023 
1024 	if (failb == syndrome_disks+1) {
1025 		/* Q disk is one of the missing disks */
1026 		if (faila == syndrome_disks) {
1027 			/* Missing P+Q, just recompute */
1028 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1029 					  ops_complete_compute, sh,
1030 					  to_addr_conv(sh, percpu));
1031 			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1032 						  STRIPE_SIZE, &submit);
1033 		} else {
1034 			struct page *dest;
1035 			int data_target;
1036 			int qd_idx = sh->qd_idx;
1037 
1038 			/* Missing D+Q: recompute D from P, then recompute Q */
1039 			if (target == qd_idx)
1040 				data_target = target2;
1041 			else
1042 				data_target = target;
1043 
1044 			count = 0;
1045 			for (i = disks; i-- ; ) {
1046 				if (i == data_target || i == qd_idx)
1047 					continue;
1048 				blocks[count++] = sh->dev[i].page;
1049 			}
1050 			dest = sh->dev[data_target].page;
1051 			init_async_submit(&submit,
1052 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1053 					  NULL, NULL, NULL,
1054 					  to_addr_conv(sh, percpu));
1055 			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1056 				       &submit);
1057 
1058 			count = set_syndrome_sources(blocks, sh);
1059 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1060 					  ops_complete_compute, sh,
1061 					  to_addr_conv(sh, percpu));
1062 			return async_gen_syndrome(blocks, 0, count+2,
1063 						  STRIPE_SIZE, &submit);
1064 		}
1065 	} else {
1066 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1067 				  ops_complete_compute, sh,
1068 				  to_addr_conv(sh, percpu));
1069 		if (failb == syndrome_disks) {
1070 			/* We're missing D+P. */
1071 			return async_raid6_datap_recov(syndrome_disks+2,
1072 						       STRIPE_SIZE, faila,
1073 						       blocks, &submit);
1074 		} else {
1075 			/* We're missing D+D. */
1076 			return async_raid6_2data_recov(syndrome_disks+2,
1077 						       STRIPE_SIZE, faila, failb,
1078 						       blocks, &submit);
1079 		}
1080 	}
1081 }
1082 
1083 
1084 static void ops_complete_prexor(void *stripe_head_ref)
1085 {
1086 	struct stripe_head *sh = stripe_head_ref;
1087 
1088 	pr_debug("%s: stripe %llu\n", __func__,
1089 		(unsigned long long)sh->sector);
1090 }
1091 
1092 static struct dma_async_tx_descriptor *
1093 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1094 	       struct dma_async_tx_descriptor *tx)
1095 {
1096 	int disks = sh->disks;
1097 	struct page **xor_srcs = percpu->scribble;
1098 	int count = 0, pd_idx = sh->pd_idx, i;
1099 	struct async_submit_ctl submit;
1100 
1101 	/* existing parity data subtracted */
1102 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1103 
1104 	pr_debug("%s: stripe %llu\n", __func__,
1105 		(unsigned long long)sh->sector);
1106 
1107 	for (i = disks; i--; ) {
1108 		struct r5dev *dev = &sh->dev[i];
1109 		/* Only process blocks that are known to be uptodate */
1110 		if (test_bit(R5_Wantdrain, &dev->flags))
1111 			xor_srcs[count++] = dev->page;
1112 	}
1113 
1114 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1115 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1116 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1117 
1118 	return tx;
1119 }
1120 
1121 static struct dma_async_tx_descriptor *
1122 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1123 {
1124 	int disks = sh->disks;
1125 	int i;
1126 
1127 	pr_debug("%s: stripe %llu\n", __func__,
1128 		(unsigned long long)sh->sector);
1129 
1130 	for (i = disks; i--; ) {
1131 		struct r5dev *dev = &sh->dev[i];
1132 		struct bio *chosen;
1133 
1134 		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1135 			struct bio *wbi;
1136 
1137 			spin_lock_irq(&sh->raid_conf->device_lock);
1138 			chosen = dev->towrite;
1139 			dev->towrite = NULL;
1140 			BUG_ON(dev->written);
1141 			wbi = dev->written = chosen;
1142 			spin_unlock_irq(&sh->raid_conf->device_lock);
1143 
1144 			while (wbi && wbi->bi_sector <
1145 				dev->sector + STRIPE_SECTORS) {
1146 				if (wbi->bi_rw & REQ_FUA)
1147 					set_bit(R5_WantFUA, &dev->flags);
1148 				tx = async_copy_data(1, wbi, dev->page,
1149 					dev->sector, tx);
1150 				wbi = r5_next_bio(wbi, dev->sector);
1151 			}
1152 		}
1153 	}
1154 
1155 	return tx;
1156 }
1157 
1158 static void ops_complete_reconstruct(void *stripe_head_ref)
1159 {
1160 	struct stripe_head *sh = stripe_head_ref;
1161 	int disks = sh->disks;
1162 	int pd_idx = sh->pd_idx;
1163 	int qd_idx = sh->qd_idx;
1164 	int i;
1165 	bool fua = false;
1166 
1167 	pr_debug("%s: stripe %llu\n", __func__,
1168 		(unsigned long long)sh->sector);
1169 
1170 	for (i = disks; i--; )
1171 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1172 
1173 	for (i = disks; i--; ) {
1174 		struct r5dev *dev = &sh->dev[i];
1175 
1176 		if (dev->written || i == pd_idx || i == qd_idx) {
1177 			set_bit(R5_UPTODATE, &dev->flags);
1178 			if (fua)
1179 				set_bit(R5_WantFUA, &dev->flags);
1180 		}
1181 	}
1182 
1183 	if (sh->reconstruct_state == reconstruct_state_drain_run)
1184 		sh->reconstruct_state = reconstruct_state_drain_result;
1185 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1186 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1187 	else {
1188 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1189 		sh->reconstruct_state = reconstruct_state_result;
1190 	}
1191 
1192 	set_bit(STRIPE_HANDLE, &sh->state);
1193 	release_stripe(sh);
1194 }
1195 
1196 static void
1197 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1198 		     struct dma_async_tx_descriptor *tx)
1199 {
1200 	int disks = sh->disks;
1201 	struct page **xor_srcs = percpu->scribble;
1202 	struct async_submit_ctl submit;
1203 	int count = 0, pd_idx = sh->pd_idx, i;
1204 	struct page *xor_dest;
1205 	int prexor = 0;
1206 	unsigned long flags;
1207 
1208 	pr_debug("%s: stripe %llu\n", __func__,
1209 		(unsigned long long)sh->sector);
1210 
1211 	/* check if prexor is active which means only process blocks
1212 	 * that are part of a read-modify-write (written)
1213 	 */
1214 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1215 		prexor = 1;
1216 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1217 		for (i = disks; i--; ) {
1218 			struct r5dev *dev = &sh->dev[i];
1219 			if (dev->written)
1220 				xor_srcs[count++] = dev->page;
1221 		}
1222 	} else {
1223 		xor_dest = sh->dev[pd_idx].page;
1224 		for (i = disks; i--; ) {
1225 			struct r5dev *dev = &sh->dev[i];
1226 			if (i != pd_idx)
1227 				xor_srcs[count++] = dev->page;
1228 		}
1229 	}
1230 
1231 	/* 1/ if we prexor'd then the dest is reused as a source
1232 	 * 2/ if we did not prexor then we are redoing the parity
1233 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1234 	 * for the synchronous xor case
1235 	 */
1236 	flags = ASYNC_TX_ACK |
1237 		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1238 
1239 	atomic_inc(&sh->count);
1240 
1241 	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1242 			  to_addr_conv(sh, percpu));
1243 	if (unlikely(count == 1))
1244 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1245 	else
1246 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1247 }
1248 
1249 static void
1250 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1251 		     struct dma_async_tx_descriptor *tx)
1252 {
1253 	struct async_submit_ctl submit;
1254 	struct page **blocks = percpu->scribble;
1255 	int count;
1256 
1257 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1258 
1259 	count = set_syndrome_sources(blocks, sh);
1260 
1261 	atomic_inc(&sh->count);
1262 
1263 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1264 			  sh, to_addr_conv(sh, percpu));
1265 	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1266 }
1267 
1268 static void ops_complete_check(void *stripe_head_ref)
1269 {
1270 	struct stripe_head *sh = stripe_head_ref;
1271 
1272 	pr_debug("%s: stripe %llu\n", __func__,
1273 		(unsigned long long)sh->sector);
1274 
1275 	sh->check_state = check_state_check_result;
1276 	set_bit(STRIPE_HANDLE, &sh->state);
1277 	release_stripe(sh);
1278 }
1279 
1280 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1281 {
1282 	int disks = sh->disks;
1283 	int pd_idx = sh->pd_idx;
1284 	int qd_idx = sh->qd_idx;
1285 	struct page *xor_dest;
1286 	struct page **xor_srcs = percpu->scribble;
1287 	struct dma_async_tx_descriptor *tx;
1288 	struct async_submit_ctl submit;
1289 	int count;
1290 	int i;
1291 
1292 	pr_debug("%s: stripe %llu\n", __func__,
1293 		(unsigned long long)sh->sector);
1294 
1295 	count = 0;
1296 	xor_dest = sh->dev[pd_idx].page;
1297 	xor_srcs[count++] = xor_dest;
1298 	for (i = disks; i--; ) {
1299 		if (i == pd_idx || i == qd_idx)
1300 			continue;
1301 		xor_srcs[count++] = sh->dev[i].page;
1302 	}
1303 
1304 	init_async_submit(&submit, 0, NULL, NULL, NULL,
1305 			  to_addr_conv(sh, percpu));
1306 	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1307 			   &sh->ops.zero_sum_result, &submit);
1308 
1309 	atomic_inc(&sh->count);
1310 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1311 	tx = async_trigger_callback(&submit);
1312 }
1313 
1314 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1315 {
1316 	struct page **srcs = percpu->scribble;
1317 	struct async_submit_ctl submit;
1318 	int count;
1319 
1320 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1321 		(unsigned long long)sh->sector, checkp);
1322 
1323 	count = set_syndrome_sources(srcs, sh);
1324 	if (!checkp)
1325 		srcs[count] = NULL;
1326 
1327 	atomic_inc(&sh->count);
1328 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1329 			  sh, to_addr_conv(sh, percpu));
1330 	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1331 			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1332 }
1333 
1334 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1335 {
1336 	int overlap_clear = 0, i, disks = sh->disks;
1337 	struct dma_async_tx_descriptor *tx = NULL;
1338 	struct r5conf *conf = sh->raid_conf;
1339 	int level = conf->level;
1340 	struct raid5_percpu *percpu;
1341 	unsigned long cpu;
1342 
1343 	cpu = get_cpu();
1344 	percpu = per_cpu_ptr(conf->percpu, cpu);
1345 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1346 		ops_run_biofill(sh);
1347 		overlap_clear++;
1348 	}
1349 
1350 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1351 		if (level < 6)
1352 			tx = ops_run_compute5(sh, percpu);
1353 		else {
1354 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
1355 				tx = ops_run_compute6_1(sh, percpu);
1356 			else
1357 				tx = ops_run_compute6_2(sh, percpu);
1358 		}
1359 		/* terminate the chain if reconstruct is not set to be run */
1360 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1361 			async_tx_ack(tx);
1362 	}
1363 
1364 	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1365 		tx = ops_run_prexor(sh, percpu, tx);
1366 
1367 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1368 		tx = ops_run_biodrain(sh, tx);
1369 		overlap_clear++;
1370 	}
1371 
1372 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1373 		if (level < 6)
1374 			ops_run_reconstruct5(sh, percpu, tx);
1375 		else
1376 			ops_run_reconstruct6(sh, percpu, tx);
1377 	}
1378 
1379 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1380 		if (sh->check_state == check_state_run)
1381 			ops_run_check_p(sh, percpu);
1382 		else if (sh->check_state == check_state_run_q)
1383 			ops_run_check_pq(sh, percpu, 0);
1384 		else if (sh->check_state == check_state_run_pq)
1385 			ops_run_check_pq(sh, percpu, 1);
1386 		else
1387 			BUG();
1388 	}
1389 
1390 	if (overlap_clear)
1391 		for (i = disks; i--; ) {
1392 			struct r5dev *dev = &sh->dev[i];
1393 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
1394 				wake_up(&sh->raid_conf->wait_for_overlap);
1395 		}
1396 	put_cpu();
1397 }
1398 
1399 #ifdef CONFIG_MULTICORE_RAID456
1400 static void async_run_ops(void *param, async_cookie_t cookie)
1401 {
1402 	struct stripe_head *sh = param;
1403 	unsigned long ops_request = sh->ops.request;
1404 
1405 	clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1406 	wake_up(&sh->ops.wait_for_ops);
1407 
1408 	__raid_run_ops(sh, ops_request);
1409 	release_stripe(sh);
1410 }
1411 
1412 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1413 {
1414 	/* since handle_stripe can be called outside of raid5d context
1415 	 * we need to ensure sh->ops.request is de-staged before another
1416 	 * request arrives
1417 	 */
1418 	wait_event(sh->ops.wait_for_ops,
1419 		   !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1420 	sh->ops.request = ops_request;
1421 
1422 	atomic_inc(&sh->count);
1423 	async_schedule(async_run_ops, sh);
1424 }
1425 #else
1426 #define raid_run_ops __raid_run_ops
1427 #endif
1428 
1429 static int grow_one_stripe(struct r5conf *conf)
1430 {
1431 	struct stripe_head *sh;
1432 	sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1433 	if (!sh)
1434 		return 0;
1435 
1436 	sh->raid_conf = conf;
1437 	#ifdef CONFIG_MULTICORE_RAID456
1438 	init_waitqueue_head(&sh->ops.wait_for_ops);
1439 	#endif
1440 
1441 	if (grow_buffers(sh)) {
1442 		shrink_buffers(sh);
1443 		kmem_cache_free(conf->slab_cache, sh);
1444 		return 0;
1445 	}
1446 	/* we just created an active stripe so... */
1447 	atomic_set(&sh->count, 1);
1448 	atomic_inc(&conf->active_stripes);
1449 	INIT_LIST_HEAD(&sh->lru);
1450 	release_stripe(sh);
1451 	return 1;
1452 }
1453 
1454 static int grow_stripes(struct r5conf *conf, int num)
1455 {
1456 	struct kmem_cache *sc;
1457 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
1458 
1459 	if (conf->mddev->gendisk)
1460 		sprintf(conf->cache_name[0],
1461 			"raid%d-%s", conf->level, mdname(conf->mddev));
1462 	else
1463 		sprintf(conf->cache_name[0],
1464 			"raid%d-%p", conf->level, conf->mddev);
1465 	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1466 
1467 	conf->active_name = 0;
1468 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
1469 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1470 			       0, 0, NULL);
1471 	if (!sc)
1472 		return 1;
1473 	conf->slab_cache = sc;
1474 	conf->pool_size = devs;
1475 	while (num--)
1476 		if (!grow_one_stripe(conf))
1477 			return 1;
1478 	return 0;
1479 }
1480 
1481 /**
1482  * scribble_len - return the required size of the scribble region
1483  * @num - total number of disks in the array
1484  *
1485  * The size must be enough to contain:
1486  * 1/ a struct page pointer for each device in the array +2
1487  * 2/ room to convert each entry in (1) to its corresponding dma
1488  *    (dma_map_page()) or page (page_address()) address.
1489  *
1490  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1491  * calculate over all devices (not just the data blocks), using zeros in place
1492  * of the P and Q blocks.
1493  */
1494 static size_t scribble_len(int num)
1495 {
1496 	size_t len;
1497 
1498 	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1499 
1500 	return len;
1501 }
1502 
1503 static int resize_stripes(struct r5conf *conf, int newsize)
1504 {
1505 	/* Make all the stripes able to hold 'newsize' devices.
1506 	 * New slots in each stripe get 'page' set to a new page.
1507 	 *
1508 	 * This happens in stages:
1509 	 * 1/ create a new kmem_cache and allocate the required number of
1510 	 *    stripe_heads.
1511 	 * 2/ gather all the old stripe_heads and tranfer the pages across
1512 	 *    to the new stripe_heads.  This will have the side effect of
1513 	 *    freezing the array as once all stripe_heads have been collected,
1514 	 *    no IO will be possible.  Old stripe heads are freed once their
1515 	 *    pages have been transferred over, and the old kmem_cache is
1516 	 *    freed when all stripes are done.
1517 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1518 	 *    we simple return a failre status - no need to clean anything up.
1519 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
1520 	 *    If this fails, we don't bother trying the shrink the
1521 	 *    stripe_heads down again, we just leave them as they are.
1522 	 *    As each stripe_head is processed the new one is released into
1523 	 *    active service.
1524 	 *
1525 	 * Once step2 is started, we cannot afford to wait for a write,
1526 	 * so we use GFP_NOIO allocations.
1527 	 */
1528 	struct stripe_head *osh, *nsh;
1529 	LIST_HEAD(newstripes);
1530 	struct disk_info *ndisks;
1531 	unsigned long cpu;
1532 	int err;
1533 	struct kmem_cache *sc;
1534 	int i;
1535 
1536 	if (newsize <= conf->pool_size)
1537 		return 0; /* never bother to shrink */
1538 
1539 	err = md_allow_write(conf->mddev);
1540 	if (err)
1541 		return err;
1542 
1543 	/* Step 1 */
1544 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1545 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1546 			       0, 0, NULL);
1547 	if (!sc)
1548 		return -ENOMEM;
1549 
1550 	for (i = conf->max_nr_stripes; i; i--) {
1551 		nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1552 		if (!nsh)
1553 			break;
1554 
1555 		nsh->raid_conf = conf;
1556 		#ifdef CONFIG_MULTICORE_RAID456
1557 		init_waitqueue_head(&nsh->ops.wait_for_ops);
1558 		#endif
1559 
1560 		list_add(&nsh->lru, &newstripes);
1561 	}
1562 	if (i) {
1563 		/* didn't get enough, give up */
1564 		while (!list_empty(&newstripes)) {
1565 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
1566 			list_del(&nsh->lru);
1567 			kmem_cache_free(sc, nsh);
1568 		}
1569 		kmem_cache_destroy(sc);
1570 		return -ENOMEM;
1571 	}
1572 	/* Step 2 - Must use GFP_NOIO now.
1573 	 * OK, we have enough stripes, start collecting inactive
1574 	 * stripes and copying them over
1575 	 */
1576 	list_for_each_entry(nsh, &newstripes, lru) {
1577 		spin_lock_irq(&conf->device_lock);
1578 		wait_event_lock_irq(conf->wait_for_stripe,
1579 				    !list_empty(&conf->inactive_list),
1580 				    conf->device_lock,
1581 				    );
1582 		osh = get_free_stripe(conf);
1583 		spin_unlock_irq(&conf->device_lock);
1584 		atomic_set(&nsh->count, 1);
1585 		for(i=0; i<conf->pool_size; i++)
1586 			nsh->dev[i].page = osh->dev[i].page;
1587 		for( ; i<newsize; i++)
1588 			nsh->dev[i].page = NULL;
1589 		kmem_cache_free(conf->slab_cache, osh);
1590 	}
1591 	kmem_cache_destroy(conf->slab_cache);
1592 
1593 	/* Step 3.
1594 	 * At this point, we are holding all the stripes so the array
1595 	 * is completely stalled, so now is a good time to resize
1596 	 * conf->disks and the scribble region
1597 	 */
1598 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1599 	if (ndisks) {
1600 		for (i=0; i<conf->raid_disks; i++)
1601 			ndisks[i] = conf->disks[i];
1602 		kfree(conf->disks);
1603 		conf->disks = ndisks;
1604 	} else
1605 		err = -ENOMEM;
1606 
1607 	get_online_cpus();
1608 	conf->scribble_len = scribble_len(newsize);
1609 	for_each_present_cpu(cpu) {
1610 		struct raid5_percpu *percpu;
1611 		void *scribble;
1612 
1613 		percpu = per_cpu_ptr(conf->percpu, cpu);
1614 		scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1615 
1616 		if (scribble) {
1617 			kfree(percpu->scribble);
1618 			percpu->scribble = scribble;
1619 		} else {
1620 			err = -ENOMEM;
1621 			break;
1622 		}
1623 	}
1624 	put_online_cpus();
1625 
1626 	/* Step 4, return new stripes to service */
1627 	while(!list_empty(&newstripes)) {
1628 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
1629 		list_del_init(&nsh->lru);
1630 
1631 		for (i=conf->raid_disks; i < newsize; i++)
1632 			if (nsh->dev[i].page == NULL) {
1633 				struct page *p = alloc_page(GFP_NOIO);
1634 				nsh->dev[i].page = p;
1635 				if (!p)
1636 					err = -ENOMEM;
1637 			}
1638 		release_stripe(nsh);
1639 	}
1640 	/* critical section pass, GFP_NOIO no longer needed */
1641 
1642 	conf->slab_cache = sc;
1643 	conf->active_name = 1-conf->active_name;
1644 	conf->pool_size = newsize;
1645 	return err;
1646 }
1647 
1648 static int drop_one_stripe(struct r5conf *conf)
1649 {
1650 	struct stripe_head *sh;
1651 
1652 	spin_lock_irq(&conf->device_lock);
1653 	sh = get_free_stripe(conf);
1654 	spin_unlock_irq(&conf->device_lock);
1655 	if (!sh)
1656 		return 0;
1657 	BUG_ON(atomic_read(&sh->count));
1658 	shrink_buffers(sh);
1659 	kmem_cache_free(conf->slab_cache, sh);
1660 	atomic_dec(&conf->active_stripes);
1661 	return 1;
1662 }
1663 
1664 static void shrink_stripes(struct r5conf *conf)
1665 {
1666 	while (drop_one_stripe(conf))
1667 		;
1668 
1669 	if (conf->slab_cache)
1670 		kmem_cache_destroy(conf->slab_cache);
1671 	conf->slab_cache = NULL;
1672 }
1673 
1674 static void raid5_end_read_request(struct bio * bi, int error)
1675 {
1676 	struct stripe_head *sh = bi->bi_private;
1677 	struct r5conf *conf = sh->raid_conf;
1678 	int disks = sh->disks, i;
1679 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1680 	char b[BDEVNAME_SIZE];
1681 	struct md_rdev *rdev = NULL;
1682 	sector_t s;
1683 
1684 	for (i=0 ; i<disks; i++)
1685 		if (bi == &sh->dev[i].req)
1686 			break;
1687 
1688 	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1689 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1690 		uptodate);
1691 	if (i == disks) {
1692 		BUG();
1693 		return;
1694 	}
1695 	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1696 		/* If replacement finished while this request was outstanding,
1697 		 * 'replacement' might be NULL already.
1698 		 * In that case it moved down to 'rdev'.
1699 		 * rdev is not removed until all requests are finished.
1700 		 */
1701 		rdev = conf->disks[i].replacement;
1702 	if (!rdev)
1703 		rdev = conf->disks[i].rdev;
1704 
1705 	if (use_new_offset(conf, sh))
1706 		s = sh->sector + rdev->new_data_offset;
1707 	else
1708 		s = sh->sector + rdev->data_offset;
1709 	if (uptodate) {
1710 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1711 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1712 			/* Note that this cannot happen on a
1713 			 * replacement device.  We just fail those on
1714 			 * any error
1715 			 */
1716 			printk_ratelimited(
1717 				KERN_INFO
1718 				"md/raid:%s: read error corrected"
1719 				" (%lu sectors at %llu on %s)\n",
1720 				mdname(conf->mddev), STRIPE_SECTORS,
1721 				(unsigned long long)s,
1722 				bdevname(rdev->bdev, b));
1723 			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1724 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1725 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1726 		}
1727 		if (atomic_read(&rdev->read_errors))
1728 			atomic_set(&rdev->read_errors, 0);
1729 	} else {
1730 		const char *bdn = bdevname(rdev->bdev, b);
1731 		int retry = 0;
1732 
1733 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1734 		atomic_inc(&rdev->read_errors);
1735 		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1736 			printk_ratelimited(
1737 				KERN_WARNING
1738 				"md/raid:%s: read error on replacement device "
1739 				"(sector %llu on %s).\n",
1740 				mdname(conf->mddev),
1741 				(unsigned long long)s,
1742 				bdn);
1743 		else if (conf->mddev->degraded >= conf->max_degraded)
1744 			printk_ratelimited(
1745 				KERN_WARNING
1746 				"md/raid:%s: read error not correctable "
1747 				"(sector %llu on %s).\n",
1748 				mdname(conf->mddev),
1749 				(unsigned long long)s,
1750 				bdn);
1751 		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1752 			/* Oh, no!!! */
1753 			printk_ratelimited(
1754 				KERN_WARNING
1755 				"md/raid:%s: read error NOT corrected!! "
1756 				"(sector %llu on %s).\n",
1757 				mdname(conf->mddev),
1758 				(unsigned long long)s,
1759 				bdn);
1760 		else if (atomic_read(&rdev->read_errors)
1761 			 > conf->max_nr_stripes)
1762 			printk(KERN_WARNING
1763 			       "md/raid:%s: Too many read errors, failing device %s.\n",
1764 			       mdname(conf->mddev), bdn);
1765 		else
1766 			retry = 1;
1767 		if (retry)
1768 			set_bit(R5_ReadError, &sh->dev[i].flags);
1769 		else {
1770 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1771 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1772 			md_error(conf->mddev, rdev);
1773 		}
1774 	}
1775 	rdev_dec_pending(rdev, conf->mddev);
1776 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1777 	set_bit(STRIPE_HANDLE, &sh->state);
1778 	release_stripe(sh);
1779 }
1780 
1781 static void raid5_end_write_request(struct bio *bi, int error)
1782 {
1783 	struct stripe_head *sh = bi->bi_private;
1784 	struct r5conf *conf = sh->raid_conf;
1785 	int disks = sh->disks, i;
1786 	struct md_rdev *uninitialized_var(rdev);
1787 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1788 	sector_t first_bad;
1789 	int bad_sectors;
1790 	int replacement = 0;
1791 
1792 	for (i = 0 ; i < disks; i++) {
1793 		if (bi == &sh->dev[i].req) {
1794 			rdev = conf->disks[i].rdev;
1795 			break;
1796 		}
1797 		if (bi == &sh->dev[i].rreq) {
1798 			rdev = conf->disks[i].replacement;
1799 			if (rdev)
1800 				replacement = 1;
1801 			else
1802 				/* rdev was removed and 'replacement'
1803 				 * replaced it.  rdev is not removed
1804 				 * until all requests are finished.
1805 				 */
1806 				rdev = conf->disks[i].rdev;
1807 			break;
1808 		}
1809 	}
1810 	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1811 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1812 		uptodate);
1813 	if (i == disks) {
1814 		BUG();
1815 		return;
1816 	}
1817 
1818 	if (replacement) {
1819 		if (!uptodate)
1820 			md_error(conf->mddev, rdev);
1821 		else if (is_badblock(rdev, sh->sector,
1822 				     STRIPE_SECTORS,
1823 				     &first_bad, &bad_sectors))
1824 			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
1825 	} else {
1826 		if (!uptodate) {
1827 			set_bit(WriteErrorSeen, &rdev->flags);
1828 			set_bit(R5_WriteError, &sh->dev[i].flags);
1829 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
1830 				set_bit(MD_RECOVERY_NEEDED,
1831 					&rdev->mddev->recovery);
1832 		} else if (is_badblock(rdev, sh->sector,
1833 				       STRIPE_SECTORS,
1834 				       &first_bad, &bad_sectors))
1835 			set_bit(R5_MadeGood, &sh->dev[i].flags);
1836 	}
1837 	rdev_dec_pending(rdev, conf->mddev);
1838 
1839 	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
1840 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
1841 	set_bit(STRIPE_HANDLE, &sh->state);
1842 	release_stripe(sh);
1843 }
1844 
1845 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1846 
1847 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1848 {
1849 	struct r5dev *dev = &sh->dev[i];
1850 
1851 	bio_init(&dev->req);
1852 	dev->req.bi_io_vec = &dev->vec;
1853 	dev->req.bi_vcnt++;
1854 	dev->req.bi_max_vecs++;
1855 	dev->req.bi_private = sh;
1856 	dev->vec.bv_page = dev->page;
1857 
1858 	bio_init(&dev->rreq);
1859 	dev->rreq.bi_io_vec = &dev->rvec;
1860 	dev->rreq.bi_vcnt++;
1861 	dev->rreq.bi_max_vecs++;
1862 	dev->rreq.bi_private = sh;
1863 	dev->rvec.bv_page = dev->page;
1864 
1865 	dev->flags = 0;
1866 	dev->sector = compute_blocknr(sh, i, previous);
1867 }
1868 
1869 static void error(struct mddev *mddev, struct md_rdev *rdev)
1870 {
1871 	char b[BDEVNAME_SIZE];
1872 	struct r5conf *conf = mddev->private;
1873 	unsigned long flags;
1874 	pr_debug("raid456: error called\n");
1875 
1876 	spin_lock_irqsave(&conf->device_lock, flags);
1877 	clear_bit(In_sync, &rdev->flags);
1878 	mddev->degraded = calc_degraded(conf);
1879 	spin_unlock_irqrestore(&conf->device_lock, flags);
1880 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1881 
1882 	set_bit(Blocked, &rdev->flags);
1883 	set_bit(Faulty, &rdev->flags);
1884 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1885 	printk(KERN_ALERT
1886 	       "md/raid:%s: Disk failure on %s, disabling device.\n"
1887 	       "md/raid:%s: Operation continuing on %d devices.\n",
1888 	       mdname(mddev),
1889 	       bdevname(rdev->bdev, b),
1890 	       mdname(mddev),
1891 	       conf->raid_disks - mddev->degraded);
1892 }
1893 
1894 /*
1895  * Input: a 'big' sector number,
1896  * Output: index of the data and parity disk, and the sector # in them.
1897  */
1898 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
1899 				     int previous, int *dd_idx,
1900 				     struct stripe_head *sh)
1901 {
1902 	sector_t stripe, stripe2;
1903 	sector_t chunk_number;
1904 	unsigned int chunk_offset;
1905 	int pd_idx, qd_idx;
1906 	int ddf_layout = 0;
1907 	sector_t new_sector;
1908 	int algorithm = previous ? conf->prev_algo
1909 				 : conf->algorithm;
1910 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1911 					 : conf->chunk_sectors;
1912 	int raid_disks = previous ? conf->previous_raid_disks
1913 				  : conf->raid_disks;
1914 	int data_disks = raid_disks - conf->max_degraded;
1915 
1916 	/* First compute the information on this sector */
1917 
1918 	/*
1919 	 * Compute the chunk number and the sector offset inside the chunk
1920 	 */
1921 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
1922 	chunk_number = r_sector;
1923 
1924 	/*
1925 	 * Compute the stripe number
1926 	 */
1927 	stripe = chunk_number;
1928 	*dd_idx = sector_div(stripe, data_disks);
1929 	stripe2 = stripe;
1930 	/*
1931 	 * Select the parity disk based on the user selected algorithm.
1932 	 */
1933 	pd_idx = qd_idx = -1;
1934 	switch(conf->level) {
1935 	case 4:
1936 		pd_idx = data_disks;
1937 		break;
1938 	case 5:
1939 		switch (algorithm) {
1940 		case ALGORITHM_LEFT_ASYMMETRIC:
1941 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1942 			if (*dd_idx >= pd_idx)
1943 				(*dd_idx)++;
1944 			break;
1945 		case ALGORITHM_RIGHT_ASYMMETRIC:
1946 			pd_idx = sector_div(stripe2, raid_disks);
1947 			if (*dd_idx >= pd_idx)
1948 				(*dd_idx)++;
1949 			break;
1950 		case ALGORITHM_LEFT_SYMMETRIC:
1951 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1952 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1953 			break;
1954 		case ALGORITHM_RIGHT_SYMMETRIC:
1955 			pd_idx = sector_div(stripe2, raid_disks);
1956 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1957 			break;
1958 		case ALGORITHM_PARITY_0:
1959 			pd_idx = 0;
1960 			(*dd_idx)++;
1961 			break;
1962 		case ALGORITHM_PARITY_N:
1963 			pd_idx = data_disks;
1964 			break;
1965 		default:
1966 			BUG();
1967 		}
1968 		break;
1969 	case 6:
1970 
1971 		switch (algorithm) {
1972 		case ALGORITHM_LEFT_ASYMMETRIC:
1973 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1974 			qd_idx = pd_idx + 1;
1975 			if (pd_idx == raid_disks-1) {
1976 				(*dd_idx)++;	/* Q D D D P */
1977 				qd_idx = 0;
1978 			} else if (*dd_idx >= pd_idx)
1979 				(*dd_idx) += 2; /* D D P Q D */
1980 			break;
1981 		case ALGORITHM_RIGHT_ASYMMETRIC:
1982 			pd_idx = sector_div(stripe2, raid_disks);
1983 			qd_idx = pd_idx + 1;
1984 			if (pd_idx == raid_disks-1) {
1985 				(*dd_idx)++;	/* Q D D D P */
1986 				qd_idx = 0;
1987 			} else if (*dd_idx >= pd_idx)
1988 				(*dd_idx) += 2; /* D D P Q D */
1989 			break;
1990 		case ALGORITHM_LEFT_SYMMETRIC:
1991 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1992 			qd_idx = (pd_idx + 1) % raid_disks;
1993 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1994 			break;
1995 		case ALGORITHM_RIGHT_SYMMETRIC:
1996 			pd_idx = sector_div(stripe2, raid_disks);
1997 			qd_idx = (pd_idx + 1) % raid_disks;
1998 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1999 			break;
2000 
2001 		case ALGORITHM_PARITY_0:
2002 			pd_idx = 0;
2003 			qd_idx = 1;
2004 			(*dd_idx) += 2;
2005 			break;
2006 		case ALGORITHM_PARITY_N:
2007 			pd_idx = data_disks;
2008 			qd_idx = data_disks + 1;
2009 			break;
2010 
2011 		case ALGORITHM_ROTATING_ZERO_RESTART:
2012 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
2013 			 * of blocks for computing Q is different.
2014 			 */
2015 			pd_idx = sector_div(stripe2, raid_disks);
2016 			qd_idx = pd_idx + 1;
2017 			if (pd_idx == raid_disks-1) {
2018 				(*dd_idx)++;	/* Q D D D P */
2019 				qd_idx = 0;
2020 			} else if (*dd_idx >= pd_idx)
2021 				(*dd_idx) += 2; /* D D P Q D */
2022 			ddf_layout = 1;
2023 			break;
2024 
2025 		case ALGORITHM_ROTATING_N_RESTART:
2026 			/* Same a left_asymmetric, by first stripe is
2027 			 * D D D P Q  rather than
2028 			 * Q D D D P
2029 			 */
2030 			stripe2 += 1;
2031 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2032 			qd_idx = pd_idx + 1;
2033 			if (pd_idx == raid_disks-1) {
2034 				(*dd_idx)++;	/* Q D D D P */
2035 				qd_idx = 0;
2036 			} else if (*dd_idx >= pd_idx)
2037 				(*dd_idx) += 2; /* D D P Q D */
2038 			ddf_layout = 1;
2039 			break;
2040 
2041 		case ALGORITHM_ROTATING_N_CONTINUE:
2042 			/* Same as left_symmetric but Q is before P */
2043 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2044 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2045 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2046 			ddf_layout = 1;
2047 			break;
2048 
2049 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2050 			/* RAID5 left_asymmetric, with Q on last device */
2051 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2052 			if (*dd_idx >= pd_idx)
2053 				(*dd_idx)++;
2054 			qd_idx = raid_disks - 1;
2055 			break;
2056 
2057 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2058 			pd_idx = sector_div(stripe2, raid_disks-1);
2059 			if (*dd_idx >= pd_idx)
2060 				(*dd_idx)++;
2061 			qd_idx = raid_disks - 1;
2062 			break;
2063 
2064 		case ALGORITHM_LEFT_SYMMETRIC_6:
2065 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2066 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2067 			qd_idx = raid_disks - 1;
2068 			break;
2069 
2070 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2071 			pd_idx = sector_div(stripe2, raid_disks-1);
2072 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2073 			qd_idx = raid_disks - 1;
2074 			break;
2075 
2076 		case ALGORITHM_PARITY_0_6:
2077 			pd_idx = 0;
2078 			(*dd_idx)++;
2079 			qd_idx = raid_disks - 1;
2080 			break;
2081 
2082 		default:
2083 			BUG();
2084 		}
2085 		break;
2086 	}
2087 
2088 	if (sh) {
2089 		sh->pd_idx = pd_idx;
2090 		sh->qd_idx = qd_idx;
2091 		sh->ddf_layout = ddf_layout;
2092 	}
2093 	/*
2094 	 * Finally, compute the new sector number
2095 	 */
2096 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2097 	return new_sector;
2098 }
2099 
2100 
2101 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2102 {
2103 	struct r5conf *conf = sh->raid_conf;
2104 	int raid_disks = sh->disks;
2105 	int data_disks = raid_disks - conf->max_degraded;
2106 	sector_t new_sector = sh->sector, check;
2107 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2108 					 : conf->chunk_sectors;
2109 	int algorithm = previous ? conf->prev_algo
2110 				 : conf->algorithm;
2111 	sector_t stripe;
2112 	int chunk_offset;
2113 	sector_t chunk_number;
2114 	int dummy1, dd_idx = i;
2115 	sector_t r_sector;
2116 	struct stripe_head sh2;
2117 
2118 
2119 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
2120 	stripe = new_sector;
2121 
2122 	if (i == sh->pd_idx)
2123 		return 0;
2124 	switch(conf->level) {
2125 	case 4: break;
2126 	case 5:
2127 		switch (algorithm) {
2128 		case ALGORITHM_LEFT_ASYMMETRIC:
2129 		case ALGORITHM_RIGHT_ASYMMETRIC:
2130 			if (i > sh->pd_idx)
2131 				i--;
2132 			break;
2133 		case ALGORITHM_LEFT_SYMMETRIC:
2134 		case ALGORITHM_RIGHT_SYMMETRIC:
2135 			if (i < sh->pd_idx)
2136 				i += raid_disks;
2137 			i -= (sh->pd_idx + 1);
2138 			break;
2139 		case ALGORITHM_PARITY_0:
2140 			i -= 1;
2141 			break;
2142 		case ALGORITHM_PARITY_N:
2143 			break;
2144 		default:
2145 			BUG();
2146 		}
2147 		break;
2148 	case 6:
2149 		if (i == sh->qd_idx)
2150 			return 0; /* It is the Q disk */
2151 		switch (algorithm) {
2152 		case ALGORITHM_LEFT_ASYMMETRIC:
2153 		case ALGORITHM_RIGHT_ASYMMETRIC:
2154 		case ALGORITHM_ROTATING_ZERO_RESTART:
2155 		case ALGORITHM_ROTATING_N_RESTART:
2156 			if (sh->pd_idx == raid_disks-1)
2157 				i--;	/* Q D D D P */
2158 			else if (i > sh->pd_idx)
2159 				i -= 2; /* D D P Q D */
2160 			break;
2161 		case ALGORITHM_LEFT_SYMMETRIC:
2162 		case ALGORITHM_RIGHT_SYMMETRIC:
2163 			if (sh->pd_idx == raid_disks-1)
2164 				i--; /* Q D D D P */
2165 			else {
2166 				/* D D P Q D */
2167 				if (i < sh->pd_idx)
2168 					i += raid_disks;
2169 				i -= (sh->pd_idx + 2);
2170 			}
2171 			break;
2172 		case ALGORITHM_PARITY_0:
2173 			i -= 2;
2174 			break;
2175 		case ALGORITHM_PARITY_N:
2176 			break;
2177 		case ALGORITHM_ROTATING_N_CONTINUE:
2178 			/* Like left_symmetric, but P is before Q */
2179 			if (sh->pd_idx == 0)
2180 				i--;	/* P D D D Q */
2181 			else {
2182 				/* D D Q P D */
2183 				if (i < sh->pd_idx)
2184 					i += raid_disks;
2185 				i -= (sh->pd_idx + 1);
2186 			}
2187 			break;
2188 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2189 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2190 			if (i > sh->pd_idx)
2191 				i--;
2192 			break;
2193 		case ALGORITHM_LEFT_SYMMETRIC_6:
2194 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2195 			if (i < sh->pd_idx)
2196 				i += data_disks + 1;
2197 			i -= (sh->pd_idx + 1);
2198 			break;
2199 		case ALGORITHM_PARITY_0_6:
2200 			i -= 1;
2201 			break;
2202 		default:
2203 			BUG();
2204 		}
2205 		break;
2206 	}
2207 
2208 	chunk_number = stripe * data_disks + i;
2209 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2210 
2211 	check = raid5_compute_sector(conf, r_sector,
2212 				     previous, &dummy1, &sh2);
2213 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2214 		|| sh2.qd_idx != sh->qd_idx) {
2215 		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2216 		       mdname(conf->mddev));
2217 		return 0;
2218 	}
2219 	return r_sector;
2220 }
2221 
2222 
2223 static void
2224 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2225 			 int rcw, int expand)
2226 {
2227 	int i, pd_idx = sh->pd_idx, disks = sh->disks;
2228 	struct r5conf *conf = sh->raid_conf;
2229 	int level = conf->level;
2230 
2231 	if (rcw) {
2232 		/* if we are not expanding this is a proper write request, and
2233 		 * there will be bios with new data to be drained into the
2234 		 * stripe cache
2235 		 */
2236 		if (!expand) {
2237 			sh->reconstruct_state = reconstruct_state_drain_run;
2238 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2239 		} else
2240 			sh->reconstruct_state = reconstruct_state_run;
2241 
2242 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2243 
2244 		for (i = disks; i--; ) {
2245 			struct r5dev *dev = &sh->dev[i];
2246 
2247 			if (dev->towrite) {
2248 				set_bit(R5_LOCKED, &dev->flags);
2249 				set_bit(R5_Wantdrain, &dev->flags);
2250 				if (!expand)
2251 					clear_bit(R5_UPTODATE, &dev->flags);
2252 				s->locked++;
2253 			}
2254 		}
2255 		if (s->locked + conf->max_degraded == disks)
2256 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2257 				atomic_inc(&conf->pending_full_writes);
2258 	} else {
2259 		BUG_ON(level == 6);
2260 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2261 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2262 
2263 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2264 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2265 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2266 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2267 
2268 		for (i = disks; i--; ) {
2269 			struct r5dev *dev = &sh->dev[i];
2270 			if (i == pd_idx)
2271 				continue;
2272 
2273 			if (dev->towrite &&
2274 			    (test_bit(R5_UPTODATE, &dev->flags) ||
2275 			     test_bit(R5_Wantcompute, &dev->flags))) {
2276 				set_bit(R5_Wantdrain, &dev->flags);
2277 				set_bit(R5_LOCKED, &dev->flags);
2278 				clear_bit(R5_UPTODATE, &dev->flags);
2279 				s->locked++;
2280 			}
2281 		}
2282 	}
2283 
2284 	/* keep the parity disk(s) locked while asynchronous operations
2285 	 * are in flight
2286 	 */
2287 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2288 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2289 	s->locked++;
2290 
2291 	if (level == 6) {
2292 		int qd_idx = sh->qd_idx;
2293 		struct r5dev *dev = &sh->dev[qd_idx];
2294 
2295 		set_bit(R5_LOCKED, &dev->flags);
2296 		clear_bit(R5_UPTODATE, &dev->flags);
2297 		s->locked++;
2298 	}
2299 
2300 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2301 		__func__, (unsigned long long)sh->sector,
2302 		s->locked, s->ops_request);
2303 }
2304 
2305 /*
2306  * Each stripe/dev can have one or more bion attached.
2307  * toread/towrite point to the first in a chain.
2308  * The bi_next chain must be in order.
2309  */
2310 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2311 {
2312 	struct bio **bip;
2313 	struct r5conf *conf = sh->raid_conf;
2314 	int firstwrite=0;
2315 
2316 	pr_debug("adding bi b#%llu to stripe s#%llu\n",
2317 		(unsigned long long)bi->bi_sector,
2318 		(unsigned long long)sh->sector);
2319 
2320 
2321 	spin_lock_irq(&conf->device_lock);
2322 	if (forwrite) {
2323 		bip = &sh->dev[dd_idx].towrite;
2324 		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2325 			firstwrite = 1;
2326 	} else
2327 		bip = &sh->dev[dd_idx].toread;
2328 	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2329 		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2330 			goto overlap;
2331 		bip = & (*bip)->bi_next;
2332 	}
2333 	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2334 		goto overlap;
2335 
2336 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2337 	if (*bip)
2338 		bi->bi_next = *bip;
2339 	*bip = bi;
2340 	bi->bi_phys_segments++;
2341 
2342 	if (forwrite) {
2343 		/* check if page is covered */
2344 		sector_t sector = sh->dev[dd_idx].sector;
2345 		for (bi=sh->dev[dd_idx].towrite;
2346 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2347 			     bi && bi->bi_sector <= sector;
2348 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2349 			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2350 				sector = bi->bi_sector + (bi->bi_size>>9);
2351 		}
2352 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2353 			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2354 	}
2355 	spin_unlock_irq(&conf->device_lock);
2356 
2357 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2358 		(unsigned long long)(*bip)->bi_sector,
2359 		(unsigned long long)sh->sector, dd_idx);
2360 
2361 	if (conf->mddev->bitmap && firstwrite) {
2362 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2363 				  STRIPE_SECTORS, 0);
2364 		sh->bm_seq = conf->seq_flush+1;
2365 		set_bit(STRIPE_BIT_DELAY, &sh->state);
2366 	}
2367 	return 1;
2368 
2369  overlap:
2370 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2371 	spin_unlock_irq(&conf->device_lock);
2372 	return 0;
2373 }
2374 
2375 static void end_reshape(struct r5conf *conf);
2376 
2377 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2378 			    struct stripe_head *sh)
2379 {
2380 	int sectors_per_chunk =
2381 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2382 	int dd_idx;
2383 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2384 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2385 
2386 	raid5_compute_sector(conf,
2387 			     stripe * (disks - conf->max_degraded)
2388 			     *sectors_per_chunk + chunk_offset,
2389 			     previous,
2390 			     &dd_idx, sh);
2391 }
2392 
2393 static void
2394 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2395 				struct stripe_head_state *s, int disks,
2396 				struct bio **return_bi)
2397 {
2398 	int i;
2399 	for (i = disks; i--; ) {
2400 		struct bio *bi;
2401 		int bitmap_end = 0;
2402 
2403 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2404 			struct md_rdev *rdev;
2405 			rcu_read_lock();
2406 			rdev = rcu_dereference(conf->disks[i].rdev);
2407 			if (rdev && test_bit(In_sync, &rdev->flags))
2408 				atomic_inc(&rdev->nr_pending);
2409 			else
2410 				rdev = NULL;
2411 			rcu_read_unlock();
2412 			if (rdev) {
2413 				if (!rdev_set_badblocks(
2414 					    rdev,
2415 					    sh->sector,
2416 					    STRIPE_SECTORS, 0))
2417 					md_error(conf->mddev, rdev);
2418 				rdev_dec_pending(rdev, conf->mddev);
2419 			}
2420 		}
2421 		spin_lock_irq(&conf->device_lock);
2422 		/* fail all writes first */
2423 		bi = sh->dev[i].towrite;
2424 		sh->dev[i].towrite = NULL;
2425 		if (bi) {
2426 			s->to_write--;
2427 			bitmap_end = 1;
2428 		}
2429 
2430 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2431 			wake_up(&conf->wait_for_overlap);
2432 
2433 		while (bi && bi->bi_sector <
2434 			sh->dev[i].sector + STRIPE_SECTORS) {
2435 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2436 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2437 			if (!raid5_dec_bi_phys_segments(bi)) {
2438 				md_write_end(conf->mddev);
2439 				bi->bi_next = *return_bi;
2440 				*return_bi = bi;
2441 			}
2442 			bi = nextbi;
2443 		}
2444 		/* and fail all 'written' */
2445 		bi = sh->dev[i].written;
2446 		sh->dev[i].written = NULL;
2447 		if (bi) bitmap_end = 1;
2448 		while (bi && bi->bi_sector <
2449 		       sh->dev[i].sector + STRIPE_SECTORS) {
2450 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2451 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2452 			if (!raid5_dec_bi_phys_segments(bi)) {
2453 				md_write_end(conf->mddev);
2454 				bi->bi_next = *return_bi;
2455 				*return_bi = bi;
2456 			}
2457 			bi = bi2;
2458 		}
2459 
2460 		/* fail any reads if this device is non-operational and
2461 		 * the data has not reached the cache yet.
2462 		 */
2463 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2464 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2465 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2466 			bi = sh->dev[i].toread;
2467 			sh->dev[i].toread = NULL;
2468 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2469 				wake_up(&conf->wait_for_overlap);
2470 			if (bi) s->to_read--;
2471 			while (bi && bi->bi_sector <
2472 			       sh->dev[i].sector + STRIPE_SECTORS) {
2473 				struct bio *nextbi =
2474 					r5_next_bio(bi, sh->dev[i].sector);
2475 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2476 				if (!raid5_dec_bi_phys_segments(bi)) {
2477 					bi->bi_next = *return_bi;
2478 					*return_bi = bi;
2479 				}
2480 				bi = nextbi;
2481 			}
2482 		}
2483 		spin_unlock_irq(&conf->device_lock);
2484 		if (bitmap_end)
2485 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2486 					STRIPE_SECTORS, 0, 0);
2487 		/* If we were in the middle of a write the parity block might
2488 		 * still be locked - so just clear all R5_LOCKED flags
2489 		 */
2490 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2491 	}
2492 
2493 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2494 		if (atomic_dec_and_test(&conf->pending_full_writes))
2495 			md_wakeup_thread(conf->mddev->thread);
2496 }
2497 
2498 static void
2499 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2500 		   struct stripe_head_state *s)
2501 {
2502 	int abort = 0;
2503 	int i;
2504 
2505 	clear_bit(STRIPE_SYNCING, &sh->state);
2506 	s->syncing = 0;
2507 	s->replacing = 0;
2508 	/* There is nothing more to do for sync/check/repair.
2509 	 * Don't even need to abort as that is handled elsewhere
2510 	 * if needed, and not always wanted e.g. if there is a known
2511 	 * bad block here.
2512 	 * For recover/replace we need to record a bad block on all
2513 	 * non-sync devices, or abort the recovery
2514 	 */
2515 	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2516 		/* During recovery devices cannot be removed, so
2517 		 * locking and refcounting of rdevs is not needed
2518 		 */
2519 		for (i = 0; i < conf->raid_disks; i++) {
2520 			struct md_rdev *rdev = conf->disks[i].rdev;
2521 			if (rdev
2522 			    && !test_bit(Faulty, &rdev->flags)
2523 			    && !test_bit(In_sync, &rdev->flags)
2524 			    && !rdev_set_badblocks(rdev, sh->sector,
2525 						   STRIPE_SECTORS, 0))
2526 				abort = 1;
2527 			rdev = conf->disks[i].replacement;
2528 			if (rdev
2529 			    && !test_bit(Faulty, &rdev->flags)
2530 			    && !test_bit(In_sync, &rdev->flags)
2531 			    && !rdev_set_badblocks(rdev, sh->sector,
2532 						   STRIPE_SECTORS, 0))
2533 				abort = 1;
2534 		}
2535 		if (abort)
2536 			conf->recovery_disabled =
2537 				conf->mddev->recovery_disabled;
2538 	}
2539 	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2540 }
2541 
2542 static int want_replace(struct stripe_head *sh, int disk_idx)
2543 {
2544 	struct md_rdev *rdev;
2545 	int rv = 0;
2546 	/* Doing recovery so rcu locking not required */
2547 	rdev = sh->raid_conf->disks[disk_idx].replacement;
2548 	if (rdev
2549 	    && !test_bit(Faulty, &rdev->flags)
2550 	    && !test_bit(In_sync, &rdev->flags)
2551 	    && (rdev->recovery_offset <= sh->sector
2552 		|| rdev->mddev->recovery_cp <= sh->sector))
2553 		rv = 1;
2554 
2555 	return rv;
2556 }
2557 
2558 /* fetch_block - checks the given member device to see if its data needs
2559  * to be read or computed to satisfy a request.
2560  *
2561  * Returns 1 when no more member devices need to be checked, otherwise returns
2562  * 0 to tell the loop in handle_stripe_fill to continue
2563  */
2564 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2565 		       int disk_idx, int disks)
2566 {
2567 	struct r5dev *dev = &sh->dev[disk_idx];
2568 	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2569 				  &sh->dev[s->failed_num[1]] };
2570 
2571 	/* is the data in this block needed, and can we get it? */
2572 	if (!test_bit(R5_LOCKED, &dev->flags) &&
2573 	    !test_bit(R5_UPTODATE, &dev->flags) &&
2574 	    (dev->toread ||
2575 	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2576 	     s->syncing || s->expanding ||
2577 	     (s->replacing && want_replace(sh, disk_idx)) ||
2578 	     (s->failed >= 1 && fdev[0]->toread) ||
2579 	     (s->failed >= 2 && fdev[1]->toread) ||
2580 	     (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2581 	      !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2582 	     (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2583 		/* we would like to get this block, possibly by computing it,
2584 		 * otherwise read it if the backing disk is insync
2585 		 */
2586 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2587 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
2588 		if ((s->uptodate == disks - 1) &&
2589 		    (s->failed && (disk_idx == s->failed_num[0] ||
2590 				   disk_idx == s->failed_num[1]))) {
2591 			/* have disk failed, and we're requested to fetch it;
2592 			 * do compute it
2593 			 */
2594 			pr_debug("Computing stripe %llu block %d\n",
2595 			       (unsigned long long)sh->sector, disk_idx);
2596 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2597 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2598 			set_bit(R5_Wantcompute, &dev->flags);
2599 			sh->ops.target = disk_idx;
2600 			sh->ops.target2 = -1; /* no 2nd target */
2601 			s->req_compute = 1;
2602 			/* Careful: from this point on 'uptodate' is in the eye
2603 			 * of raid_run_ops which services 'compute' operations
2604 			 * before writes. R5_Wantcompute flags a block that will
2605 			 * be R5_UPTODATE by the time it is needed for a
2606 			 * subsequent operation.
2607 			 */
2608 			s->uptodate++;
2609 			return 1;
2610 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
2611 			/* Computing 2-failure is *very* expensive; only
2612 			 * do it if failed >= 2
2613 			 */
2614 			int other;
2615 			for (other = disks; other--; ) {
2616 				if (other == disk_idx)
2617 					continue;
2618 				if (!test_bit(R5_UPTODATE,
2619 				      &sh->dev[other].flags))
2620 					break;
2621 			}
2622 			BUG_ON(other < 0);
2623 			pr_debug("Computing stripe %llu blocks %d,%d\n",
2624 			       (unsigned long long)sh->sector,
2625 			       disk_idx, other);
2626 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2627 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2628 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2629 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
2630 			sh->ops.target = disk_idx;
2631 			sh->ops.target2 = other;
2632 			s->uptodate += 2;
2633 			s->req_compute = 1;
2634 			return 1;
2635 		} else if (test_bit(R5_Insync, &dev->flags)) {
2636 			set_bit(R5_LOCKED, &dev->flags);
2637 			set_bit(R5_Wantread, &dev->flags);
2638 			s->locked++;
2639 			pr_debug("Reading block %d (sync=%d)\n",
2640 				disk_idx, s->syncing);
2641 		}
2642 	}
2643 
2644 	return 0;
2645 }
2646 
2647 /**
2648  * handle_stripe_fill - read or compute data to satisfy pending requests.
2649  */
2650 static void handle_stripe_fill(struct stripe_head *sh,
2651 			       struct stripe_head_state *s,
2652 			       int disks)
2653 {
2654 	int i;
2655 
2656 	/* look for blocks to read/compute, skip this if a compute
2657 	 * is already in flight, or if the stripe contents are in the
2658 	 * midst of changing due to a write
2659 	 */
2660 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2661 	    !sh->reconstruct_state)
2662 		for (i = disks; i--; )
2663 			if (fetch_block(sh, s, i, disks))
2664 				break;
2665 	set_bit(STRIPE_HANDLE, &sh->state);
2666 }
2667 
2668 
2669 /* handle_stripe_clean_event
2670  * any written block on an uptodate or failed drive can be returned.
2671  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2672  * never LOCKED, so we don't need to test 'failed' directly.
2673  */
2674 static void handle_stripe_clean_event(struct r5conf *conf,
2675 	struct stripe_head *sh, int disks, struct bio **return_bi)
2676 {
2677 	int i;
2678 	struct r5dev *dev;
2679 
2680 	for (i = disks; i--; )
2681 		if (sh->dev[i].written) {
2682 			dev = &sh->dev[i];
2683 			if (!test_bit(R5_LOCKED, &dev->flags) &&
2684 				test_bit(R5_UPTODATE, &dev->flags)) {
2685 				/* We can return any write requests */
2686 				struct bio *wbi, *wbi2;
2687 				int bitmap_end = 0;
2688 				pr_debug("Return write for disc %d\n", i);
2689 				spin_lock_irq(&conf->device_lock);
2690 				wbi = dev->written;
2691 				dev->written = NULL;
2692 				while (wbi && wbi->bi_sector <
2693 					dev->sector + STRIPE_SECTORS) {
2694 					wbi2 = r5_next_bio(wbi, dev->sector);
2695 					if (!raid5_dec_bi_phys_segments(wbi)) {
2696 						md_write_end(conf->mddev);
2697 						wbi->bi_next = *return_bi;
2698 						*return_bi = wbi;
2699 					}
2700 					wbi = wbi2;
2701 				}
2702 				if (dev->towrite == NULL)
2703 					bitmap_end = 1;
2704 				spin_unlock_irq(&conf->device_lock);
2705 				if (bitmap_end)
2706 					bitmap_endwrite(conf->mddev->bitmap,
2707 							sh->sector,
2708 							STRIPE_SECTORS,
2709 					 !test_bit(STRIPE_DEGRADED, &sh->state),
2710 							0);
2711 			}
2712 		}
2713 
2714 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2715 		if (atomic_dec_and_test(&conf->pending_full_writes))
2716 			md_wakeup_thread(conf->mddev->thread);
2717 }
2718 
2719 static void handle_stripe_dirtying(struct r5conf *conf,
2720 				   struct stripe_head *sh,
2721 				   struct stripe_head_state *s,
2722 				   int disks)
2723 {
2724 	int rmw = 0, rcw = 0, i;
2725 	if (conf->max_degraded == 2) {
2726 		/* RAID6 requires 'rcw' in current implementation
2727 		 * Calculate the real rcw later - for now fake it
2728 		 * look like rcw is cheaper
2729 		 */
2730 		rcw = 1; rmw = 2;
2731 	} else for (i = disks; i--; ) {
2732 		/* would I have to read this buffer for read_modify_write */
2733 		struct r5dev *dev = &sh->dev[i];
2734 		if ((dev->towrite || i == sh->pd_idx) &&
2735 		    !test_bit(R5_LOCKED, &dev->flags) &&
2736 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2737 		      test_bit(R5_Wantcompute, &dev->flags))) {
2738 			if (test_bit(R5_Insync, &dev->flags))
2739 				rmw++;
2740 			else
2741 				rmw += 2*disks;  /* cannot read it */
2742 		}
2743 		/* Would I have to read this buffer for reconstruct_write */
2744 		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2745 		    !test_bit(R5_LOCKED, &dev->flags) &&
2746 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2747 		    test_bit(R5_Wantcompute, &dev->flags))) {
2748 			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2749 			else
2750 				rcw += 2*disks;
2751 		}
2752 	}
2753 	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2754 		(unsigned long long)sh->sector, rmw, rcw);
2755 	set_bit(STRIPE_HANDLE, &sh->state);
2756 	if (rmw < rcw && rmw > 0)
2757 		/* prefer read-modify-write, but need to get some data */
2758 		for (i = disks; i--; ) {
2759 			struct r5dev *dev = &sh->dev[i];
2760 			if ((dev->towrite || i == sh->pd_idx) &&
2761 			    !test_bit(R5_LOCKED, &dev->flags) &&
2762 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2763 			    test_bit(R5_Wantcompute, &dev->flags)) &&
2764 			    test_bit(R5_Insync, &dev->flags)) {
2765 				if (
2766 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2767 					pr_debug("Read_old block "
2768 						"%d for r-m-w\n", i);
2769 					set_bit(R5_LOCKED, &dev->flags);
2770 					set_bit(R5_Wantread, &dev->flags);
2771 					s->locked++;
2772 				} else {
2773 					set_bit(STRIPE_DELAYED, &sh->state);
2774 					set_bit(STRIPE_HANDLE, &sh->state);
2775 				}
2776 			}
2777 		}
2778 	if (rcw <= rmw && rcw > 0) {
2779 		/* want reconstruct write, but need to get some data */
2780 		rcw = 0;
2781 		for (i = disks; i--; ) {
2782 			struct r5dev *dev = &sh->dev[i];
2783 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2784 			    i != sh->pd_idx && i != sh->qd_idx &&
2785 			    !test_bit(R5_LOCKED, &dev->flags) &&
2786 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2787 			      test_bit(R5_Wantcompute, &dev->flags))) {
2788 				rcw++;
2789 				if (!test_bit(R5_Insync, &dev->flags))
2790 					continue; /* it's a failed drive */
2791 				if (
2792 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2793 					pr_debug("Read_old block "
2794 						"%d for Reconstruct\n", i);
2795 					set_bit(R5_LOCKED, &dev->flags);
2796 					set_bit(R5_Wantread, &dev->flags);
2797 					s->locked++;
2798 				} else {
2799 					set_bit(STRIPE_DELAYED, &sh->state);
2800 					set_bit(STRIPE_HANDLE, &sh->state);
2801 				}
2802 			}
2803 		}
2804 	}
2805 	/* now if nothing is locked, and if we have enough data,
2806 	 * we can start a write request
2807 	 */
2808 	/* since handle_stripe can be called at any time we need to handle the
2809 	 * case where a compute block operation has been submitted and then a
2810 	 * subsequent call wants to start a write request.  raid_run_ops only
2811 	 * handles the case where compute block and reconstruct are requested
2812 	 * simultaneously.  If this is not the case then new writes need to be
2813 	 * held off until the compute completes.
2814 	 */
2815 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2816 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2817 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2818 		schedule_reconstruction(sh, s, rcw == 0, 0);
2819 }
2820 
2821 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
2822 				struct stripe_head_state *s, int disks)
2823 {
2824 	struct r5dev *dev = NULL;
2825 
2826 	set_bit(STRIPE_HANDLE, &sh->state);
2827 
2828 	switch (sh->check_state) {
2829 	case check_state_idle:
2830 		/* start a new check operation if there are no failures */
2831 		if (s->failed == 0) {
2832 			BUG_ON(s->uptodate != disks);
2833 			sh->check_state = check_state_run;
2834 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2835 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2836 			s->uptodate--;
2837 			break;
2838 		}
2839 		dev = &sh->dev[s->failed_num[0]];
2840 		/* fall through */
2841 	case check_state_compute_result:
2842 		sh->check_state = check_state_idle;
2843 		if (!dev)
2844 			dev = &sh->dev[sh->pd_idx];
2845 
2846 		/* check that a write has not made the stripe insync */
2847 		if (test_bit(STRIPE_INSYNC, &sh->state))
2848 			break;
2849 
2850 		/* either failed parity check, or recovery is happening */
2851 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2852 		BUG_ON(s->uptodate != disks);
2853 
2854 		set_bit(R5_LOCKED, &dev->flags);
2855 		s->locked++;
2856 		set_bit(R5_Wantwrite, &dev->flags);
2857 
2858 		clear_bit(STRIPE_DEGRADED, &sh->state);
2859 		set_bit(STRIPE_INSYNC, &sh->state);
2860 		break;
2861 	case check_state_run:
2862 		break; /* we will be called again upon completion */
2863 	case check_state_check_result:
2864 		sh->check_state = check_state_idle;
2865 
2866 		/* if a failure occurred during the check operation, leave
2867 		 * STRIPE_INSYNC not set and let the stripe be handled again
2868 		 */
2869 		if (s->failed)
2870 			break;
2871 
2872 		/* handle a successful check operation, if parity is correct
2873 		 * we are done.  Otherwise update the mismatch count and repair
2874 		 * parity if !MD_RECOVERY_CHECK
2875 		 */
2876 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2877 			/* parity is correct (on disc,
2878 			 * not in buffer any more)
2879 			 */
2880 			set_bit(STRIPE_INSYNC, &sh->state);
2881 		else {
2882 			conf->mddev->resync_mismatches += STRIPE_SECTORS;
2883 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2884 				/* don't try to repair!! */
2885 				set_bit(STRIPE_INSYNC, &sh->state);
2886 			else {
2887 				sh->check_state = check_state_compute_run;
2888 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2889 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2890 				set_bit(R5_Wantcompute,
2891 					&sh->dev[sh->pd_idx].flags);
2892 				sh->ops.target = sh->pd_idx;
2893 				sh->ops.target2 = -1;
2894 				s->uptodate++;
2895 			}
2896 		}
2897 		break;
2898 	case check_state_compute_run:
2899 		break;
2900 	default:
2901 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2902 		       __func__, sh->check_state,
2903 		       (unsigned long long) sh->sector);
2904 		BUG();
2905 	}
2906 }
2907 
2908 
2909 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
2910 				  struct stripe_head_state *s,
2911 				  int disks)
2912 {
2913 	int pd_idx = sh->pd_idx;
2914 	int qd_idx = sh->qd_idx;
2915 	struct r5dev *dev;
2916 
2917 	set_bit(STRIPE_HANDLE, &sh->state);
2918 
2919 	BUG_ON(s->failed > 2);
2920 
2921 	/* Want to check and possibly repair P and Q.
2922 	 * However there could be one 'failed' device, in which
2923 	 * case we can only check one of them, possibly using the
2924 	 * other to generate missing data
2925 	 */
2926 
2927 	switch (sh->check_state) {
2928 	case check_state_idle:
2929 		/* start a new check operation if there are < 2 failures */
2930 		if (s->failed == s->q_failed) {
2931 			/* The only possible failed device holds Q, so it
2932 			 * makes sense to check P (If anything else were failed,
2933 			 * we would have used P to recreate it).
2934 			 */
2935 			sh->check_state = check_state_run;
2936 		}
2937 		if (!s->q_failed && s->failed < 2) {
2938 			/* Q is not failed, and we didn't use it to generate
2939 			 * anything, so it makes sense to check it
2940 			 */
2941 			if (sh->check_state == check_state_run)
2942 				sh->check_state = check_state_run_pq;
2943 			else
2944 				sh->check_state = check_state_run_q;
2945 		}
2946 
2947 		/* discard potentially stale zero_sum_result */
2948 		sh->ops.zero_sum_result = 0;
2949 
2950 		if (sh->check_state == check_state_run) {
2951 			/* async_xor_zero_sum destroys the contents of P */
2952 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2953 			s->uptodate--;
2954 		}
2955 		if (sh->check_state >= check_state_run &&
2956 		    sh->check_state <= check_state_run_pq) {
2957 			/* async_syndrome_zero_sum preserves P and Q, so
2958 			 * no need to mark them !uptodate here
2959 			 */
2960 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2961 			break;
2962 		}
2963 
2964 		/* we have 2-disk failure */
2965 		BUG_ON(s->failed != 2);
2966 		/* fall through */
2967 	case check_state_compute_result:
2968 		sh->check_state = check_state_idle;
2969 
2970 		/* check that a write has not made the stripe insync */
2971 		if (test_bit(STRIPE_INSYNC, &sh->state))
2972 			break;
2973 
2974 		/* now write out any block on a failed drive,
2975 		 * or P or Q if they were recomputed
2976 		 */
2977 		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2978 		if (s->failed == 2) {
2979 			dev = &sh->dev[s->failed_num[1]];
2980 			s->locked++;
2981 			set_bit(R5_LOCKED, &dev->flags);
2982 			set_bit(R5_Wantwrite, &dev->flags);
2983 		}
2984 		if (s->failed >= 1) {
2985 			dev = &sh->dev[s->failed_num[0]];
2986 			s->locked++;
2987 			set_bit(R5_LOCKED, &dev->flags);
2988 			set_bit(R5_Wantwrite, &dev->flags);
2989 		}
2990 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2991 			dev = &sh->dev[pd_idx];
2992 			s->locked++;
2993 			set_bit(R5_LOCKED, &dev->flags);
2994 			set_bit(R5_Wantwrite, &dev->flags);
2995 		}
2996 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2997 			dev = &sh->dev[qd_idx];
2998 			s->locked++;
2999 			set_bit(R5_LOCKED, &dev->flags);
3000 			set_bit(R5_Wantwrite, &dev->flags);
3001 		}
3002 		clear_bit(STRIPE_DEGRADED, &sh->state);
3003 
3004 		set_bit(STRIPE_INSYNC, &sh->state);
3005 		break;
3006 	case check_state_run:
3007 	case check_state_run_q:
3008 	case check_state_run_pq:
3009 		break; /* we will be called again upon completion */
3010 	case check_state_check_result:
3011 		sh->check_state = check_state_idle;
3012 
3013 		/* handle a successful check operation, if parity is correct
3014 		 * we are done.  Otherwise update the mismatch count and repair
3015 		 * parity if !MD_RECOVERY_CHECK
3016 		 */
3017 		if (sh->ops.zero_sum_result == 0) {
3018 			/* both parities are correct */
3019 			if (!s->failed)
3020 				set_bit(STRIPE_INSYNC, &sh->state);
3021 			else {
3022 				/* in contrast to the raid5 case we can validate
3023 				 * parity, but still have a failure to write
3024 				 * back
3025 				 */
3026 				sh->check_state = check_state_compute_result;
3027 				/* Returning at this point means that we may go
3028 				 * off and bring p and/or q uptodate again so
3029 				 * we make sure to check zero_sum_result again
3030 				 * to verify if p or q need writeback
3031 				 */
3032 			}
3033 		} else {
3034 			conf->mddev->resync_mismatches += STRIPE_SECTORS;
3035 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3036 				/* don't try to repair!! */
3037 				set_bit(STRIPE_INSYNC, &sh->state);
3038 			else {
3039 				int *target = &sh->ops.target;
3040 
3041 				sh->ops.target = -1;
3042 				sh->ops.target2 = -1;
3043 				sh->check_state = check_state_compute_run;
3044 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3045 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3046 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3047 					set_bit(R5_Wantcompute,
3048 						&sh->dev[pd_idx].flags);
3049 					*target = pd_idx;
3050 					target = &sh->ops.target2;
3051 					s->uptodate++;
3052 				}
3053 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3054 					set_bit(R5_Wantcompute,
3055 						&sh->dev[qd_idx].flags);
3056 					*target = qd_idx;
3057 					s->uptodate++;
3058 				}
3059 			}
3060 		}
3061 		break;
3062 	case check_state_compute_run:
3063 		break;
3064 	default:
3065 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3066 		       __func__, sh->check_state,
3067 		       (unsigned long long) sh->sector);
3068 		BUG();
3069 	}
3070 }
3071 
3072 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3073 {
3074 	int i;
3075 
3076 	/* We have read all the blocks in this stripe and now we need to
3077 	 * copy some of them into a target stripe for expand.
3078 	 */
3079 	struct dma_async_tx_descriptor *tx = NULL;
3080 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3081 	for (i = 0; i < sh->disks; i++)
3082 		if (i != sh->pd_idx && i != sh->qd_idx) {
3083 			int dd_idx, j;
3084 			struct stripe_head *sh2;
3085 			struct async_submit_ctl submit;
3086 
3087 			sector_t bn = compute_blocknr(sh, i, 1);
3088 			sector_t s = raid5_compute_sector(conf, bn, 0,
3089 							  &dd_idx, NULL);
3090 			sh2 = get_active_stripe(conf, s, 0, 1, 1);
3091 			if (sh2 == NULL)
3092 				/* so far only the early blocks of this stripe
3093 				 * have been requested.  When later blocks
3094 				 * get requested, we will try again
3095 				 */
3096 				continue;
3097 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3098 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3099 				/* must have already done this block */
3100 				release_stripe(sh2);
3101 				continue;
3102 			}
3103 
3104 			/* place all the copies on one channel */
3105 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3106 			tx = async_memcpy(sh2->dev[dd_idx].page,
3107 					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
3108 					  &submit);
3109 
3110 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3111 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3112 			for (j = 0; j < conf->raid_disks; j++)
3113 				if (j != sh2->pd_idx &&
3114 				    j != sh2->qd_idx &&
3115 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
3116 					break;
3117 			if (j == conf->raid_disks) {
3118 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
3119 				set_bit(STRIPE_HANDLE, &sh2->state);
3120 			}
3121 			release_stripe(sh2);
3122 
3123 		}
3124 	/* done submitting copies, wait for them to complete */
3125 	if (tx) {
3126 		async_tx_ack(tx);
3127 		dma_wait_for_async_tx(tx);
3128 	}
3129 }
3130 
3131 /*
3132  * handle_stripe - do things to a stripe.
3133  *
3134  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3135  * state of various bits to see what needs to be done.
3136  * Possible results:
3137  *    return some read requests which now have data
3138  *    return some write requests which are safely on storage
3139  *    schedule a read on some buffers
3140  *    schedule a write of some buffers
3141  *    return confirmation of parity correctness
3142  *
3143  */
3144 
3145 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3146 {
3147 	struct r5conf *conf = sh->raid_conf;
3148 	int disks = sh->disks;
3149 	struct r5dev *dev;
3150 	int i;
3151 	int do_recovery = 0;
3152 
3153 	memset(s, 0, sizeof(*s));
3154 
3155 	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3156 	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3157 	s->failed_num[0] = -1;
3158 	s->failed_num[1] = -1;
3159 
3160 	/* Now to look around and see what can be done */
3161 	rcu_read_lock();
3162 	spin_lock_irq(&conf->device_lock);
3163 	for (i=disks; i--; ) {
3164 		struct md_rdev *rdev;
3165 		sector_t first_bad;
3166 		int bad_sectors;
3167 		int is_bad = 0;
3168 
3169 		dev = &sh->dev[i];
3170 
3171 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3172 			 i, dev->flags,
3173 			 dev->toread, dev->towrite, dev->written);
3174 		/* maybe we can reply to a read
3175 		 *
3176 		 * new wantfill requests are only permitted while
3177 		 * ops_complete_biofill is guaranteed to be inactive
3178 		 */
3179 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3180 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3181 			set_bit(R5_Wantfill, &dev->flags);
3182 
3183 		/* now count some things */
3184 		if (test_bit(R5_LOCKED, &dev->flags))
3185 			s->locked++;
3186 		if (test_bit(R5_UPTODATE, &dev->flags))
3187 			s->uptodate++;
3188 		if (test_bit(R5_Wantcompute, &dev->flags)) {
3189 			s->compute++;
3190 			BUG_ON(s->compute > 2);
3191 		}
3192 
3193 		if (test_bit(R5_Wantfill, &dev->flags))
3194 			s->to_fill++;
3195 		else if (dev->toread)
3196 			s->to_read++;
3197 		if (dev->towrite) {
3198 			s->to_write++;
3199 			if (!test_bit(R5_OVERWRITE, &dev->flags))
3200 				s->non_overwrite++;
3201 		}
3202 		if (dev->written)
3203 			s->written++;
3204 		/* Prefer to use the replacement for reads, but only
3205 		 * if it is recovered enough and has no bad blocks.
3206 		 */
3207 		rdev = rcu_dereference(conf->disks[i].replacement);
3208 		if (rdev && !test_bit(Faulty, &rdev->flags) &&
3209 		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3210 		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3211 				 &first_bad, &bad_sectors))
3212 			set_bit(R5_ReadRepl, &dev->flags);
3213 		else {
3214 			if (rdev)
3215 				set_bit(R5_NeedReplace, &dev->flags);
3216 			rdev = rcu_dereference(conf->disks[i].rdev);
3217 			clear_bit(R5_ReadRepl, &dev->flags);
3218 		}
3219 		if (rdev && test_bit(Faulty, &rdev->flags))
3220 			rdev = NULL;
3221 		if (rdev) {
3222 			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3223 					     &first_bad, &bad_sectors);
3224 			if (s->blocked_rdev == NULL
3225 			    && (test_bit(Blocked, &rdev->flags)
3226 				|| is_bad < 0)) {
3227 				if (is_bad < 0)
3228 					set_bit(BlockedBadBlocks,
3229 						&rdev->flags);
3230 				s->blocked_rdev = rdev;
3231 				atomic_inc(&rdev->nr_pending);
3232 			}
3233 		}
3234 		clear_bit(R5_Insync, &dev->flags);
3235 		if (!rdev)
3236 			/* Not in-sync */;
3237 		else if (is_bad) {
3238 			/* also not in-sync */
3239 			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3240 			    test_bit(R5_UPTODATE, &dev->flags)) {
3241 				/* treat as in-sync, but with a read error
3242 				 * which we can now try to correct
3243 				 */
3244 				set_bit(R5_Insync, &dev->flags);
3245 				set_bit(R5_ReadError, &dev->flags);
3246 			}
3247 		} else if (test_bit(In_sync, &rdev->flags))
3248 			set_bit(R5_Insync, &dev->flags);
3249 		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3250 			/* in sync if before recovery_offset */
3251 			set_bit(R5_Insync, &dev->flags);
3252 		else if (test_bit(R5_UPTODATE, &dev->flags) &&
3253 			 test_bit(R5_Expanded, &dev->flags))
3254 			/* If we've reshaped into here, we assume it is Insync.
3255 			 * We will shortly update recovery_offset to make
3256 			 * it official.
3257 			 */
3258 			set_bit(R5_Insync, &dev->flags);
3259 
3260 		if (rdev && test_bit(R5_WriteError, &dev->flags)) {
3261 			/* This flag does not apply to '.replacement'
3262 			 * only to .rdev, so make sure to check that*/
3263 			struct md_rdev *rdev2 = rcu_dereference(
3264 				conf->disks[i].rdev);
3265 			if (rdev2 == rdev)
3266 				clear_bit(R5_Insync, &dev->flags);
3267 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3268 				s->handle_bad_blocks = 1;
3269 				atomic_inc(&rdev2->nr_pending);
3270 			} else
3271 				clear_bit(R5_WriteError, &dev->flags);
3272 		}
3273 		if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
3274 			/* This flag does not apply to '.replacement'
3275 			 * only to .rdev, so make sure to check that*/
3276 			struct md_rdev *rdev2 = rcu_dereference(
3277 				conf->disks[i].rdev);
3278 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3279 				s->handle_bad_blocks = 1;
3280 				atomic_inc(&rdev2->nr_pending);
3281 			} else
3282 				clear_bit(R5_MadeGood, &dev->flags);
3283 		}
3284 		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3285 			struct md_rdev *rdev2 = rcu_dereference(
3286 				conf->disks[i].replacement);
3287 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3288 				s->handle_bad_blocks = 1;
3289 				atomic_inc(&rdev2->nr_pending);
3290 			} else
3291 				clear_bit(R5_MadeGoodRepl, &dev->flags);
3292 		}
3293 		if (!test_bit(R5_Insync, &dev->flags)) {
3294 			/* The ReadError flag will just be confusing now */
3295 			clear_bit(R5_ReadError, &dev->flags);
3296 			clear_bit(R5_ReWrite, &dev->flags);
3297 		}
3298 		if (test_bit(R5_ReadError, &dev->flags))
3299 			clear_bit(R5_Insync, &dev->flags);
3300 		if (!test_bit(R5_Insync, &dev->flags)) {
3301 			if (s->failed < 2)
3302 				s->failed_num[s->failed] = i;
3303 			s->failed++;
3304 			if (rdev && !test_bit(Faulty, &rdev->flags))
3305 				do_recovery = 1;
3306 		}
3307 	}
3308 	spin_unlock_irq(&conf->device_lock);
3309 	if (test_bit(STRIPE_SYNCING, &sh->state)) {
3310 		/* If there is a failed device being replaced,
3311 		 *     we must be recovering.
3312 		 * else if we are after recovery_cp, we must be syncing
3313 		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3314 		 * else we can only be replacing
3315 		 * sync and recovery both need to read all devices, and so
3316 		 * use the same flag.
3317 		 */
3318 		if (do_recovery ||
3319 		    sh->sector >= conf->mddev->recovery_cp ||
3320 		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3321 			s->syncing = 1;
3322 		else
3323 			s->replacing = 1;
3324 	}
3325 	rcu_read_unlock();
3326 }
3327 
3328 static void handle_stripe(struct stripe_head *sh)
3329 {
3330 	struct stripe_head_state s;
3331 	struct r5conf *conf = sh->raid_conf;
3332 	int i;
3333 	int prexor;
3334 	int disks = sh->disks;
3335 	struct r5dev *pdev, *qdev;
3336 
3337 	clear_bit(STRIPE_HANDLE, &sh->state);
3338 	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3339 		/* already being handled, ensure it gets handled
3340 		 * again when current action finishes */
3341 		set_bit(STRIPE_HANDLE, &sh->state);
3342 		return;
3343 	}
3344 
3345 	if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3346 		set_bit(STRIPE_SYNCING, &sh->state);
3347 		clear_bit(STRIPE_INSYNC, &sh->state);
3348 	}
3349 	clear_bit(STRIPE_DELAYED, &sh->state);
3350 
3351 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3352 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3353 	       (unsigned long long)sh->sector, sh->state,
3354 	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3355 	       sh->check_state, sh->reconstruct_state);
3356 
3357 	analyse_stripe(sh, &s);
3358 
3359 	if (s.handle_bad_blocks) {
3360 		set_bit(STRIPE_HANDLE, &sh->state);
3361 		goto finish;
3362 	}
3363 
3364 	if (unlikely(s.blocked_rdev)) {
3365 		if (s.syncing || s.expanding || s.expanded ||
3366 		    s.replacing || s.to_write || s.written) {
3367 			set_bit(STRIPE_HANDLE, &sh->state);
3368 			goto finish;
3369 		}
3370 		/* There is nothing for the blocked_rdev to block */
3371 		rdev_dec_pending(s.blocked_rdev, conf->mddev);
3372 		s.blocked_rdev = NULL;
3373 	}
3374 
3375 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3376 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3377 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3378 	}
3379 
3380 	pr_debug("locked=%d uptodate=%d to_read=%d"
3381 	       " to_write=%d failed=%d failed_num=%d,%d\n",
3382 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3383 	       s.failed_num[0], s.failed_num[1]);
3384 	/* check if the array has lost more than max_degraded devices and,
3385 	 * if so, some requests might need to be failed.
3386 	 */
3387 	if (s.failed > conf->max_degraded) {
3388 		sh->check_state = 0;
3389 		sh->reconstruct_state = 0;
3390 		if (s.to_read+s.to_write+s.written)
3391 			handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3392 		if (s.syncing + s.replacing)
3393 			handle_failed_sync(conf, sh, &s);
3394 	}
3395 
3396 	/*
3397 	 * might be able to return some write requests if the parity blocks
3398 	 * are safe, or on a failed drive
3399 	 */
3400 	pdev = &sh->dev[sh->pd_idx];
3401 	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3402 		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3403 	qdev = &sh->dev[sh->qd_idx];
3404 	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3405 		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3406 		|| conf->level < 6;
3407 
3408 	if (s.written &&
3409 	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3410 			     && !test_bit(R5_LOCKED, &pdev->flags)
3411 			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3412 	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3413 			     && !test_bit(R5_LOCKED, &qdev->flags)
3414 			     && test_bit(R5_UPTODATE, &qdev->flags)))))
3415 		handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3416 
3417 	/* Now we might consider reading some blocks, either to check/generate
3418 	 * parity, or to satisfy requests
3419 	 * or to load a block that is being partially written.
3420 	 */
3421 	if (s.to_read || s.non_overwrite
3422 	    || (conf->level == 6 && s.to_write && s.failed)
3423 	    || (s.syncing && (s.uptodate + s.compute < disks))
3424 	    || s.replacing
3425 	    || s.expanding)
3426 		handle_stripe_fill(sh, &s, disks);
3427 
3428 	/* Now we check to see if any write operations have recently
3429 	 * completed
3430 	 */
3431 	prexor = 0;
3432 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3433 		prexor = 1;
3434 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
3435 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3436 		sh->reconstruct_state = reconstruct_state_idle;
3437 
3438 		/* All the 'written' buffers and the parity block are ready to
3439 		 * be written back to disk
3440 		 */
3441 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3442 		BUG_ON(sh->qd_idx >= 0 &&
3443 		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags));
3444 		for (i = disks; i--; ) {
3445 			struct r5dev *dev = &sh->dev[i];
3446 			if (test_bit(R5_LOCKED, &dev->flags) &&
3447 				(i == sh->pd_idx || i == sh->qd_idx ||
3448 				 dev->written)) {
3449 				pr_debug("Writing block %d\n", i);
3450 				set_bit(R5_Wantwrite, &dev->flags);
3451 				if (prexor)
3452 					continue;
3453 				if (!test_bit(R5_Insync, &dev->flags) ||
3454 				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
3455 				     s.failed == 0))
3456 					set_bit(STRIPE_INSYNC, &sh->state);
3457 			}
3458 		}
3459 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3460 			s.dec_preread_active = 1;
3461 	}
3462 
3463 	/* Now to consider new write requests and what else, if anything
3464 	 * should be read.  We do not handle new writes when:
3465 	 * 1/ A 'write' operation (copy+xor) is already in flight.
3466 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
3467 	 *    block.
3468 	 */
3469 	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3470 		handle_stripe_dirtying(conf, sh, &s, disks);
3471 
3472 	/* maybe we need to check and possibly fix the parity for this stripe
3473 	 * Any reads will already have been scheduled, so we just see if enough
3474 	 * data is available.  The parity check is held off while parity
3475 	 * dependent operations are in flight.
3476 	 */
3477 	if (sh->check_state ||
3478 	    (s.syncing && s.locked == 0 &&
3479 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3480 	     !test_bit(STRIPE_INSYNC, &sh->state))) {
3481 		if (conf->level == 6)
3482 			handle_parity_checks6(conf, sh, &s, disks);
3483 		else
3484 			handle_parity_checks5(conf, sh, &s, disks);
3485 	}
3486 
3487 	if (s.replacing && s.locked == 0
3488 	    && !test_bit(STRIPE_INSYNC, &sh->state)) {
3489 		/* Write out to replacement devices where possible */
3490 		for (i = 0; i < conf->raid_disks; i++)
3491 			if (test_bit(R5_UPTODATE, &sh->dev[i].flags) &&
3492 			    test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3493 				set_bit(R5_WantReplace, &sh->dev[i].flags);
3494 				set_bit(R5_LOCKED, &sh->dev[i].flags);
3495 				s.locked++;
3496 			}
3497 		set_bit(STRIPE_INSYNC, &sh->state);
3498 	}
3499 	if ((s.syncing || s.replacing) && s.locked == 0 &&
3500 	    test_bit(STRIPE_INSYNC, &sh->state)) {
3501 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3502 		clear_bit(STRIPE_SYNCING, &sh->state);
3503 	}
3504 
3505 	/* If the failed drives are just a ReadError, then we might need
3506 	 * to progress the repair/check process
3507 	 */
3508 	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3509 		for (i = 0; i < s.failed; i++) {
3510 			struct r5dev *dev = &sh->dev[s.failed_num[i]];
3511 			if (test_bit(R5_ReadError, &dev->flags)
3512 			    && !test_bit(R5_LOCKED, &dev->flags)
3513 			    && test_bit(R5_UPTODATE, &dev->flags)
3514 				) {
3515 				if (!test_bit(R5_ReWrite, &dev->flags)) {
3516 					set_bit(R5_Wantwrite, &dev->flags);
3517 					set_bit(R5_ReWrite, &dev->flags);
3518 					set_bit(R5_LOCKED, &dev->flags);
3519 					s.locked++;
3520 				} else {
3521 					/* let's read it back */
3522 					set_bit(R5_Wantread, &dev->flags);
3523 					set_bit(R5_LOCKED, &dev->flags);
3524 					s.locked++;
3525 				}
3526 			}
3527 		}
3528 
3529 
3530 	/* Finish reconstruct operations initiated by the expansion process */
3531 	if (sh->reconstruct_state == reconstruct_state_result) {
3532 		struct stripe_head *sh_src
3533 			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3534 		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3535 			/* sh cannot be written until sh_src has been read.
3536 			 * so arrange for sh to be delayed a little
3537 			 */
3538 			set_bit(STRIPE_DELAYED, &sh->state);
3539 			set_bit(STRIPE_HANDLE, &sh->state);
3540 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3541 					      &sh_src->state))
3542 				atomic_inc(&conf->preread_active_stripes);
3543 			release_stripe(sh_src);
3544 			goto finish;
3545 		}
3546 		if (sh_src)
3547 			release_stripe(sh_src);
3548 
3549 		sh->reconstruct_state = reconstruct_state_idle;
3550 		clear_bit(STRIPE_EXPANDING, &sh->state);
3551 		for (i = conf->raid_disks; i--; ) {
3552 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
3553 			set_bit(R5_LOCKED, &sh->dev[i].flags);
3554 			s.locked++;
3555 		}
3556 	}
3557 
3558 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3559 	    !sh->reconstruct_state) {
3560 		/* Need to write out all blocks after computing parity */
3561 		sh->disks = conf->raid_disks;
3562 		stripe_set_idx(sh->sector, conf, 0, sh);
3563 		schedule_reconstruction(sh, &s, 1, 1);
3564 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3565 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3566 		atomic_dec(&conf->reshape_stripes);
3567 		wake_up(&conf->wait_for_overlap);
3568 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3569 	}
3570 
3571 	if (s.expanding && s.locked == 0 &&
3572 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3573 		handle_stripe_expansion(conf, sh);
3574 
3575 finish:
3576 	/* wait for this device to become unblocked */
3577 	if (conf->mddev->external && unlikely(s.blocked_rdev))
3578 		md_wait_for_blocked_rdev(s.blocked_rdev, conf->mddev);
3579 
3580 	if (s.handle_bad_blocks)
3581 		for (i = disks; i--; ) {
3582 			struct md_rdev *rdev;
3583 			struct r5dev *dev = &sh->dev[i];
3584 			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3585 				/* We own a safe reference to the rdev */
3586 				rdev = conf->disks[i].rdev;
3587 				if (!rdev_set_badblocks(rdev, sh->sector,
3588 							STRIPE_SECTORS, 0))
3589 					md_error(conf->mddev, rdev);
3590 				rdev_dec_pending(rdev, conf->mddev);
3591 			}
3592 			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3593 				rdev = conf->disks[i].rdev;
3594 				rdev_clear_badblocks(rdev, sh->sector,
3595 						     STRIPE_SECTORS, 0);
3596 				rdev_dec_pending(rdev, conf->mddev);
3597 			}
3598 			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3599 				rdev = conf->disks[i].replacement;
3600 				if (!rdev)
3601 					/* rdev have been moved down */
3602 					rdev = conf->disks[i].rdev;
3603 				rdev_clear_badblocks(rdev, sh->sector,
3604 						     STRIPE_SECTORS, 0);
3605 				rdev_dec_pending(rdev, conf->mddev);
3606 			}
3607 		}
3608 
3609 	if (s.ops_request)
3610 		raid_run_ops(sh, s.ops_request);
3611 
3612 	ops_run_io(sh, &s);
3613 
3614 	if (s.dec_preread_active) {
3615 		/* We delay this until after ops_run_io so that if make_request
3616 		 * is waiting on a flush, it won't continue until the writes
3617 		 * have actually been submitted.
3618 		 */
3619 		atomic_dec(&conf->preread_active_stripes);
3620 		if (atomic_read(&conf->preread_active_stripes) <
3621 		    IO_THRESHOLD)
3622 			md_wakeup_thread(conf->mddev->thread);
3623 	}
3624 
3625 	return_io(s.return_bi);
3626 
3627 	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
3628 }
3629 
3630 static void raid5_activate_delayed(struct r5conf *conf)
3631 {
3632 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3633 		while (!list_empty(&conf->delayed_list)) {
3634 			struct list_head *l = conf->delayed_list.next;
3635 			struct stripe_head *sh;
3636 			sh = list_entry(l, struct stripe_head, lru);
3637 			list_del_init(l);
3638 			clear_bit(STRIPE_DELAYED, &sh->state);
3639 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3640 				atomic_inc(&conf->preread_active_stripes);
3641 			list_add_tail(&sh->lru, &conf->hold_list);
3642 		}
3643 	}
3644 }
3645 
3646 static void activate_bit_delay(struct r5conf *conf)
3647 {
3648 	/* device_lock is held */
3649 	struct list_head head;
3650 	list_add(&head, &conf->bitmap_list);
3651 	list_del_init(&conf->bitmap_list);
3652 	while (!list_empty(&head)) {
3653 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3654 		list_del_init(&sh->lru);
3655 		atomic_inc(&sh->count);
3656 		__release_stripe(conf, sh);
3657 	}
3658 }
3659 
3660 int md_raid5_congested(struct mddev *mddev, int bits)
3661 {
3662 	struct r5conf *conf = mddev->private;
3663 
3664 	/* No difference between reads and writes.  Just check
3665 	 * how busy the stripe_cache is
3666 	 */
3667 
3668 	if (conf->inactive_blocked)
3669 		return 1;
3670 	if (conf->quiesce)
3671 		return 1;
3672 	if (list_empty_careful(&conf->inactive_list))
3673 		return 1;
3674 
3675 	return 0;
3676 }
3677 EXPORT_SYMBOL_GPL(md_raid5_congested);
3678 
3679 static int raid5_congested(void *data, int bits)
3680 {
3681 	struct mddev *mddev = data;
3682 
3683 	return mddev_congested(mddev, bits) ||
3684 		md_raid5_congested(mddev, bits);
3685 }
3686 
3687 /* We want read requests to align with chunks where possible,
3688  * but write requests don't need to.
3689  */
3690 static int raid5_mergeable_bvec(struct request_queue *q,
3691 				struct bvec_merge_data *bvm,
3692 				struct bio_vec *biovec)
3693 {
3694 	struct mddev *mddev = q->queuedata;
3695 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3696 	int max;
3697 	unsigned int chunk_sectors = mddev->chunk_sectors;
3698 	unsigned int bio_sectors = bvm->bi_size >> 9;
3699 
3700 	if ((bvm->bi_rw & 1) == WRITE)
3701 		return biovec->bv_len; /* always allow writes to be mergeable */
3702 
3703 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3704 		chunk_sectors = mddev->new_chunk_sectors;
3705 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3706 	if (max < 0) max = 0;
3707 	if (max <= biovec->bv_len && bio_sectors == 0)
3708 		return biovec->bv_len;
3709 	else
3710 		return max;
3711 }
3712 
3713 
3714 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
3715 {
3716 	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3717 	unsigned int chunk_sectors = mddev->chunk_sectors;
3718 	unsigned int bio_sectors = bio->bi_size >> 9;
3719 
3720 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3721 		chunk_sectors = mddev->new_chunk_sectors;
3722 	return  chunk_sectors >=
3723 		((sector & (chunk_sectors - 1)) + bio_sectors);
3724 }
3725 
3726 /*
3727  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3728  *  later sampled by raid5d.
3729  */
3730 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
3731 {
3732 	unsigned long flags;
3733 
3734 	spin_lock_irqsave(&conf->device_lock, flags);
3735 
3736 	bi->bi_next = conf->retry_read_aligned_list;
3737 	conf->retry_read_aligned_list = bi;
3738 
3739 	spin_unlock_irqrestore(&conf->device_lock, flags);
3740 	md_wakeup_thread(conf->mddev->thread);
3741 }
3742 
3743 
3744 static struct bio *remove_bio_from_retry(struct r5conf *conf)
3745 {
3746 	struct bio *bi;
3747 
3748 	bi = conf->retry_read_aligned;
3749 	if (bi) {
3750 		conf->retry_read_aligned = NULL;
3751 		return bi;
3752 	}
3753 	bi = conf->retry_read_aligned_list;
3754 	if(bi) {
3755 		conf->retry_read_aligned_list = bi->bi_next;
3756 		bi->bi_next = NULL;
3757 		/*
3758 		 * this sets the active strip count to 1 and the processed
3759 		 * strip count to zero (upper 8 bits)
3760 		 */
3761 		bi->bi_phys_segments = 1; /* biased count of active stripes */
3762 	}
3763 
3764 	return bi;
3765 }
3766 
3767 
3768 /*
3769  *  The "raid5_align_endio" should check if the read succeeded and if it
3770  *  did, call bio_endio on the original bio (having bio_put the new bio
3771  *  first).
3772  *  If the read failed..
3773  */
3774 static void raid5_align_endio(struct bio *bi, int error)
3775 {
3776 	struct bio* raid_bi  = bi->bi_private;
3777 	struct mddev *mddev;
3778 	struct r5conf *conf;
3779 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3780 	struct md_rdev *rdev;
3781 
3782 	bio_put(bi);
3783 
3784 	rdev = (void*)raid_bi->bi_next;
3785 	raid_bi->bi_next = NULL;
3786 	mddev = rdev->mddev;
3787 	conf = mddev->private;
3788 
3789 	rdev_dec_pending(rdev, conf->mddev);
3790 
3791 	if (!error && uptodate) {
3792 		bio_endio(raid_bi, 0);
3793 		if (atomic_dec_and_test(&conf->active_aligned_reads))
3794 			wake_up(&conf->wait_for_stripe);
3795 		return;
3796 	}
3797 
3798 
3799 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3800 
3801 	add_bio_to_retry(raid_bi, conf);
3802 }
3803 
3804 static int bio_fits_rdev(struct bio *bi)
3805 {
3806 	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3807 
3808 	if ((bi->bi_size>>9) > queue_max_sectors(q))
3809 		return 0;
3810 	blk_recount_segments(q, bi);
3811 	if (bi->bi_phys_segments > queue_max_segments(q))
3812 		return 0;
3813 
3814 	if (q->merge_bvec_fn)
3815 		/* it's too hard to apply the merge_bvec_fn at this stage,
3816 		 * just just give up
3817 		 */
3818 		return 0;
3819 
3820 	return 1;
3821 }
3822 
3823 
3824 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
3825 {
3826 	struct r5conf *conf = mddev->private;
3827 	int dd_idx;
3828 	struct bio* align_bi;
3829 	struct md_rdev *rdev;
3830 	sector_t end_sector;
3831 
3832 	if (!in_chunk_boundary(mddev, raid_bio)) {
3833 		pr_debug("chunk_aligned_read : non aligned\n");
3834 		return 0;
3835 	}
3836 	/*
3837 	 * use bio_clone_mddev to make a copy of the bio
3838 	 */
3839 	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3840 	if (!align_bi)
3841 		return 0;
3842 	/*
3843 	 *   set bi_end_io to a new function, and set bi_private to the
3844 	 *     original bio.
3845 	 */
3846 	align_bi->bi_end_io  = raid5_align_endio;
3847 	align_bi->bi_private = raid_bio;
3848 	/*
3849 	 *	compute position
3850 	 */
3851 	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3852 						    0,
3853 						    &dd_idx, NULL);
3854 
3855 	end_sector = align_bi->bi_sector + (align_bi->bi_size >> 9);
3856 	rcu_read_lock();
3857 	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
3858 	if (!rdev || test_bit(Faulty, &rdev->flags) ||
3859 	    rdev->recovery_offset < end_sector) {
3860 		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3861 		if (rdev &&
3862 		    (test_bit(Faulty, &rdev->flags) ||
3863 		    !(test_bit(In_sync, &rdev->flags) ||
3864 		      rdev->recovery_offset >= end_sector)))
3865 			rdev = NULL;
3866 	}
3867 	if (rdev) {
3868 		sector_t first_bad;
3869 		int bad_sectors;
3870 
3871 		atomic_inc(&rdev->nr_pending);
3872 		rcu_read_unlock();
3873 		raid_bio->bi_next = (void*)rdev;
3874 		align_bi->bi_bdev =  rdev->bdev;
3875 		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3876 		/* No reshape active, so we can trust rdev->data_offset */
3877 		align_bi->bi_sector += rdev->data_offset;
3878 
3879 		if (!bio_fits_rdev(align_bi) ||
3880 		    is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
3881 				&first_bad, &bad_sectors)) {
3882 			/* too big in some way, or has a known bad block */
3883 			bio_put(align_bi);
3884 			rdev_dec_pending(rdev, mddev);
3885 			return 0;
3886 		}
3887 
3888 		spin_lock_irq(&conf->device_lock);
3889 		wait_event_lock_irq(conf->wait_for_stripe,
3890 				    conf->quiesce == 0,
3891 				    conf->device_lock, /* nothing */);
3892 		atomic_inc(&conf->active_aligned_reads);
3893 		spin_unlock_irq(&conf->device_lock);
3894 
3895 		generic_make_request(align_bi);
3896 		return 1;
3897 	} else {
3898 		rcu_read_unlock();
3899 		bio_put(align_bi);
3900 		return 0;
3901 	}
3902 }
3903 
3904 /* __get_priority_stripe - get the next stripe to process
3905  *
3906  * Full stripe writes are allowed to pass preread active stripes up until
3907  * the bypass_threshold is exceeded.  In general the bypass_count
3908  * increments when the handle_list is handled before the hold_list; however, it
3909  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3910  * stripe with in flight i/o.  The bypass_count will be reset when the
3911  * head of the hold_list has changed, i.e. the head was promoted to the
3912  * handle_list.
3913  */
3914 static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
3915 {
3916 	struct stripe_head *sh;
3917 
3918 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3919 		  __func__,
3920 		  list_empty(&conf->handle_list) ? "empty" : "busy",
3921 		  list_empty(&conf->hold_list) ? "empty" : "busy",
3922 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
3923 
3924 	if (!list_empty(&conf->handle_list)) {
3925 		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3926 
3927 		if (list_empty(&conf->hold_list))
3928 			conf->bypass_count = 0;
3929 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3930 			if (conf->hold_list.next == conf->last_hold)
3931 				conf->bypass_count++;
3932 			else {
3933 				conf->last_hold = conf->hold_list.next;
3934 				conf->bypass_count -= conf->bypass_threshold;
3935 				if (conf->bypass_count < 0)
3936 					conf->bypass_count = 0;
3937 			}
3938 		}
3939 	} else if (!list_empty(&conf->hold_list) &&
3940 		   ((conf->bypass_threshold &&
3941 		     conf->bypass_count > conf->bypass_threshold) ||
3942 		    atomic_read(&conf->pending_full_writes) == 0)) {
3943 		sh = list_entry(conf->hold_list.next,
3944 				typeof(*sh), lru);
3945 		conf->bypass_count -= conf->bypass_threshold;
3946 		if (conf->bypass_count < 0)
3947 			conf->bypass_count = 0;
3948 	} else
3949 		return NULL;
3950 
3951 	list_del_init(&sh->lru);
3952 	atomic_inc(&sh->count);
3953 	BUG_ON(atomic_read(&sh->count) != 1);
3954 	return sh;
3955 }
3956 
3957 static void make_request(struct mddev *mddev, struct bio * bi)
3958 {
3959 	struct r5conf *conf = mddev->private;
3960 	int dd_idx;
3961 	sector_t new_sector;
3962 	sector_t logical_sector, last_sector;
3963 	struct stripe_head *sh;
3964 	const int rw = bio_data_dir(bi);
3965 	int remaining;
3966 	int plugged;
3967 
3968 	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
3969 		md_flush_request(mddev, bi);
3970 		return;
3971 	}
3972 
3973 	md_write_start(mddev, bi);
3974 
3975 	if (rw == READ &&
3976 	     mddev->reshape_position == MaxSector &&
3977 	     chunk_aligned_read(mddev,bi))
3978 		return;
3979 
3980 	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3981 	last_sector = bi->bi_sector + (bi->bi_size>>9);
3982 	bi->bi_next = NULL;
3983 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
3984 
3985 	plugged = mddev_check_plugged(mddev);
3986 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3987 		DEFINE_WAIT(w);
3988 		int disks, data_disks;
3989 		int previous;
3990 
3991 	retry:
3992 		previous = 0;
3993 		disks = conf->raid_disks;
3994 		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3995 		if (unlikely(conf->reshape_progress != MaxSector)) {
3996 			/* spinlock is needed as reshape_progress may be
3997 			 * 64bit on a 32bit platform, and so it might be
3998 			 * possible to see a half-updated value
3999 			 * Of course reshape_progress could change after
4000 			 * the lock is dropped, so once we get a reference
4001 			 * to the stripe that we think it is, we will have
4002 			 * to check again.
4003 			 */
4004 			spin_lock_irq(&conf->device_lock);
4005 			if (mddev->reshape_backwards
4006 			    ? logical_sector < conf->reshape_progress
4007 			    : logical_sector >= conf->reshape_progress) {
4008 				disks = conf->previous_raid_disks;
4009 				previous = 1;
4010 			} else {
4011 				if (mddev->reshape_backwards
4012 				    ? logical_sector < conf->reshape_safe
4013 				    : logical_sector >= conf->reshape_safe) {
4014 					spin_unlock_irq(&conf->device_lock);
4015 					schedule();
4016 					goto retry;
4017 				}
4018 			}
4019 			spin_unlock_irq(&conf->device_lock);
4020 		}
4021 		data_disks = disks - conf->max_degraded;
4022 
4023 		new_sector = raid5_compute_sector(conf, logical_sector,
4024 						  previous,
4025 						  &dd_idx, NULL);
4026 		pr_debug("raid456: make_request, sector %llu logical %llu\n",
4027 			(unsigned long long)new_sector,
4028 			(unsigned long long)logical_sector);
4029 
4030 		sh = get_active_stripe(conf, new_sector, previous,
4031 				       (bi->bi_rw&RWA_MASK), 0);
4032 		if (sh) {
4033 			if (unlikely(previous)) {
4034 				/* expansion might have moved on while waiting for a
4035 				 * stripe, so we must do the range check again.
4036 				 * Expansion could still move past after this
4037 				 * test, but as we are holding a reference to
4038 				 * 'sh', we know that if that happens,
4039 				 *  STRIPE_EXPANDING will get set and the expansion
4040 				 * won't proceed until we finish with the stripe.
4041 				 */
4042 				int must_retry = 0;
4043 				spin_lock_irq(&conf->device_lock);
4044 				if (mddev->reshape_backwards
4045 				    ? logical_sector >= conf->reshape_progress
4046 				    : logical_sector < conf->reshape_progress)
4047 					/* mismatch, need to try again */
4048 					must_retry = 1;
4049 				spin_unlock_irq(&conf->device_lock);
4050 				if (must_retry) {
4051 					release_stripe(sh);
4052 					schedule();
4053 					goto retry;
4054 				}
4055 			}
4056 
4057 			if (rw == WRITE &&
4058 			    logical_sector >= mddev->suspend_lo &&
4059 			    logical_sector < mddev->suspend_hi) {
4060 				release_stripe(sh);
4061 				/* As the suspend_* range is controlled by
4062 				 * userspace, we want an interruptible
4063 				 * wait.
4064 				 */
4065 				flush_signals(current);
4066 				prepare_to_wait(&conf->wait_for_overlap,
4067 						&w, TASK_INTERRUPTIBLE);
4068 				if (logical_sector >= mddev->suspend_lo &&
4069 				    logical_sector < mddev->suspend_hi)
4070 					schedule();
4071 				goto retry;
4072 			}
4073 
4074 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4075 			    !add_stripe_bio(sh, bi, dd_idx, rw)) {
4076 				/* Stripe is busy expanding or
4077 				 * add failed due to overlap.  Flush everything
4078 				 * and wait a while
4079 				 */
4080 				md_wakeup_thread(mddev->thread);
4081 				release_stripe(sh);
4082 				schedule();
4083 				goto retry;
4084 			}
4085 			finish_wait(&conf->wait_for_overlap, &w);
4086 			set_bit(STRIPE_HANDLE, &sh->state);
4087 			clear_bit(STRIPE_DELAYED, &sh->state);
4088 			if ((bi->bi_rw & REQ_SYNC) &&
4089 			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4090 				atomic_inc(&conf->preread_active_stripes);
4091 			release_stripe(sh);
4092 		} else {
4093 			/* cannot get stripe for read-ahead, just give-up */
4094 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
4095 			finish_wait(&conf->wait_for_overlap, &w);
4096 			break;
4097 		}
4098 
4099 	}
4100 	if (!plugged)
4101 		md_wakeup_thread(mddev->thread);
4102 
4103 	spin_lock_irq(&conf->device_lock);
4104 	remaining = raid5_dec_bi_phys_segments(bi);
4105 	spin_unlock_irq(&conf->device_lock);
4106 	if (remaining == 0) {
4107 
4108 		if ( rw == WRITE )
4109 			md_write_end(mddev);
4110 
4111 		bio_endio(bi, 0);
4112 	}
4113 }
4114 
4115 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4116 
4117 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4118 {
4119 	/* reshaping is quite different to recovery/resync so it is
4120 	 * handled quite separately ... here.
4121 	 *
4122 	 * On each call to sync_request, we gather one chunk worth of
4123 	 * destination stripes and flag them as expanding.
4124 	 * Then we find all the source stripes and request reads.
4125 	 * As the reads complete, handle_stripe will copy the data
4126 	 * into the destination stripe and release that stripe.
4127 	 */
4128 	struct r5conf *conf = mddev->private;
4129 	struct stripe_head *sh;
4130 	sector_t first_sector, last_sector;
4131 	int raid_disks = conf->previous_raid_disks;
4132 	int data_disks = raid_disks - conf->max_degraded;
4133 	int new_data_disks = conf->raid_disks - conf->max_degraded;
4134 	int i;
4135 	int dd_idx;
4136 	sector_t writepos, readpos, safepos;
4137 	sector_t stripe_addr;
4138 	int reshape_sectors;
4139 	struct list_head stripes;
4140 
4141 	if (sector_nr == 0) {
4142 		/* If restarting in the middle, skip the initial sectors */
4143 		if (mddev->reshape_backwards &&
4144 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4145 			sector_nr = raid5_size(mddev, 0, 0)
4146 				- conf->reshape_progress;
4147 		} else if (!mddev->reshape_backwards &&
4148 			   conf->reshape_progress > 0)
4149 			sector_nr = conf->reshape_progress;
4150 		sector_div(sector_nr, new_data_disks);
4151 		if (sector_nr) {
4152 			mddev->curr_resync_completed = sector_nr;
4153 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4154 			*skipped = 1;
4155 			return sector_nr;
4156 		}
4157 	}
4158 
4159 	/* We need to process a full chunk at a time.
4160 	 * If old and new chunk sizes differ, we need to process the
4161 	 * largest of these
4162 	 */
4163 	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4164 		reshape_sectors = mddev->new_chunk_sectors;
4165 	else
4166 		reshape_sectors = mddev->chunk_sectors;
4167 
4168 	/* We update the metadata at least every 10 seconds, or when
4169 	 * the data about to be copied would over-write the source of
4170 	 * the data at the front of the range.  i.e. one new_stripe
4171 	 * along from reshape_progress new_maps to after where
4172 	 * reshape_safe old_maps to
4173 	 */
4174 	writepos = conf->reshape_progress;
4175 	sector_div(writepos, new_data_disks);
4176 	readpos = conf->reshape_progress;
4177 	sector_div(readpos, data_disks);
4178 	safepos = conf->reshape_safe;
4179 	sector_div(safepos, data_disks);
4180 	if (mddev->reshape_backwards) {
4181 		writepos -= min_t(sector_t, reshape_sectors, writepos);
4182 		readpos += reshape_sectors;
4183 		safepos += reshape_sectors;
4184 	} else {
4185 		writepos += reshape_sectors;
4186 		readpos -= min_t(sector_t, reshape_sectors, readpos);
4187 		safepos -= min_t(sector_t, reshape_sectors, safepos);
4188 	}
4189 
4190 	/* Having calculated the 'writepos' possibly use it
4191 	 * to set 'stripe_addr' which is where we will write to.
4192 	 */
4193 	if (mddev->reshape_backwards) {
4194 		BUG_ON(conf->reshape_progress == 0);
4195 		stripe_addr = writepos;
4196 		BUG_ON((mddev->dev_sectors &
4197 			~((sector_t)reshape_sectors - 1))
4198 		       - reshape_sectors - stripe_addr
4199 		       != sector_nr);
4200 	} else {
4201 		BUG_ON(writepos != sector_nr + reshape_sectors);
4202 		stripe_addr = sector_nr;
4203 	}
4204 
4205 	/* 'writepos' is the most advanced device address we might write.
4206 	 * 'readpos' is the least advanced device address we might read.
4207 	 * 'safepos' is the least address recorded in the metadata as having
4208 	 *     been reshaped.
4209 	 * If there is a min_offset_diff, these are adjusted either by
4210 	 * increasing the safepos/readpos if diff is negative, or
4211 	 * increasing writepos if diff is positive.
4212 	 * If 'readpos' is then behind 'writepos', there is no way that we can
4213 	 * ensure safety in the face of a crash - that must be done by userspace
4214 	 * making a backup of the data.  So in that case there is no particular
4215 	 * rush to update metadata.
4216 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4217 	 * update the metadata to advance 'safepos' to match 'readpos' so that
4218 	 * we can be safe in the event of a crash.
4219 	 * So we insist on updating metadata if safepos is behind writepos and
4220 	 * readpos is beyond writepos.
4221 	 * In any case, update the metadata every 10 seconds.
4222 	 * Maybe that number should be configurable, but I'm not sure it is
4223 	 * worth it.... maybe it could be a multiple of safemode_delay???
4224 	 */
4225 	if (conf->min_offset_diff < 0) {
4226 		safepos += -conf->min_offset_diff;
4227 		readpos += -conf->min_offset_diff;
4228 	} else
4229 		writepos += conf->min_offset_diff;
4230 
4231 	if ((mddev->reshape_backwards
4232 	     ? (safepos > writepos && readpos < writepos)
4233 	     : (safepos < writepos && readpos > writepos)) ||
4234 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4235 		/* Cannot proceed until we've updated the superblock... */
4236 		wait_event(conf->wait_for_overlap,
4237 			   atomic_read(&conf->reshape_stripes)==0);
4238 		mddev->reshape_position = conf->reshape_progress;
4239 		mddev->curr_resync_completed = sector_nr;
4240 		conf->reshape_checkpoint = jiffies;
4241 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4242 		md_wakeup_thread(mddev->thread);
4243 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4244 			   kthread_should_stop());
4245 		spin_lock_irq(&conf->device_lock);
4246 		conf->reshape_safe = mddev->reshape_position;
4247 		spin_unlock_irq(&conf->device_lock);
4248 		wake_up(&conf->wait_for_overlap);
4249 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4250 	}
4251 
4252 	INIT_LIST_HEAD(&stripes);
4253 	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4254 		int j;
4255 		int skipped_disk = 0;
4256 		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4257 		set_bit(STRIPE_EXPANDING, &sh->state);
4258 		atomic_inc(&conf->reshape_stripes);
4259 		/* If any of this stripe is beyond the end of the old
4260 		 * array, then we need to zero those blocks
4261 		 */
4262 		for (j=sh->disks; j--;) {
4263 			sector_t s;
4264 			if (j == sh->pd_idx)
4265 				continue;
4266 			if (conf->level == 6 &&
4267 			    j == sh->qd_idx)
4268 				continue;
4269 			s = compute_blocknr(sh, j, 0);
4270 			if (s < raid5_size(mddev, 0, 0)) {
4271 				skipped_disk = 1;
4272 				continue;
4273 			}
4274 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4275 			set_bit(R5_Expanded, &sh->dev[j].flags);
4276 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
4277 		}
4278 		if (!skipped_disk) {
4279 			set_bit(STRIPE_EXPAND_READY, &sh->state);
4280 			set_bit(STRIPE_HANDLE, &sh->state);
4281 		}
4282 		list_add(&sh->lru, &stripes);
4283 	}
4284 	spin_lock_irq(&conf->device_lock);
4285 	if (mddev->reshape_backwards)
4286 		conf->reshape_progress -= reshape_sectors * new_data_disks;
4287 	else
4288 		conf->reshape_progress += reshape_sectors * new_data_disks;
4289 	spin_unlock_irq(&conf->device_lock);
4290 	/* Ok, those stripe are ready. We can start scheduling
4291 	 * reads on the source stripes.
4292 	 * The source stripes are determined by mapping the first and last
4293 	 * block on the destination stripes.
4294 	 */
4295 	first_sector =
4296 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4297 				     1, &dd_idx, NULL);
4298 	last_sector =
4299 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4300 					    * new_data_disks - 1),
4301 				     1, &dd_idx, NULL);
4302 	if (last_sector >= mddev->dev_sectors)
4303 		last_sector = mddev->dev_sectors - 1;
4304 	while (first_sector <= last_sector) {
4305 		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4306 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4307 		set_bit(STRIPE_HANDLE, &sh->state);
4308 		release_stripe(sh);
4309 		first_sector += STRIPE_SECTORS;
4310 	}
4311 	/* Now that the sources are clearly marked, we can release
4312 	 * the destination stripes
4313 	 */
4314 	while (!list_empty(&stripes)) {
4315 		sh = list_entry(stripes.next, struct stripe_head, lru);
4316 		list_del_init(&sh->lru);
4317 		release_stripe(sh);
4318 	}
4319 	/* If this takes us to the resync_max point where we have to pause,
4320 	 * then we need to write out the superblock.
4321 	 */
4322 	sector_nr += reshape_sectors;
4323 	if ((sector_nr - mddev->curr_resync_completed) * 2
4324 	    >= mddev->resync_max - mddev->curr_resync_completed) {
4325 		/* Cannot proceed until we've updated the superblock... */
4326 		wait_event(conf->wait_for_overlap,
4327 			   atomic_read(&conf->reshape_stripes) == 0);
4328 		mddev->reshape_position = conf->reshape_progress;
4329 		mddev->curr_resync_completed = sector_nr;
4330 		conf->reshape_checkpoint = jiffies;
4331 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4332 		md_wakeup_thread(mddev->thread);
4333 		wait_event(mddev->sb_wait,
4334 			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4335 			   || kthread_should_stop());
4336 		spin_lock_irq(&conf->device_lock);
4337 		conf->reshape_safe = mddev->reshape_position;
4338 		spin_unlock_irq(&conf->device_lock);
4339 		wake_up(&conf->wait_for_overlap);
4340 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4341 	}
4342 	return reshape_sectors;
4343 }
4344 
4345 /* FIXME go_faster isn't used */
4346 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4347 {
4348 	struct r5conf *conf = mddev->private;
4349 	struct stripe_head *sh;
4350 	sector_t max_sector = mddev->dev_sectors;
4351 	sector_t sync_blocks;
4352 	int still_degraded = 0;
4353 	int i;
4354 
4355 	if (sector_nr >= max_sector) {
4356 		/* just being told to finish up .. nothing much to do */
4357 
4358 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4359 			end_reshape(conf);
4360 			return 0;
4361 		}
4362 
4363 		if (mddev->curr_resync < max_sector) /* aborted */
4364 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4365 					&sync_blocks, 1);
4366 		else /* completed sync */
4367 			conf->fullsync = 0;
4368 		bitmap_close_sync(mddev->bitmap);
4369 
4370 		return 0;
4371 	}
4372 
4373 	/* Allow raid5_quiesce to complete */
4374 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4375 
4376 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4377 		return reshape_request(mddev, sector_nr, skipped);
4378 
4379 	/* No need to check resync_max as we never do more than one
4380 	 * stripe, and as resync_max will always be on a chunk boundary,
4381 	 * if the check in md_do_sync didn't fire, there is no chance
4382 	 * of overstepping resync_max here
4383 	 */
4384 
4385 	/* if there is too many failed drives and we are trying
4386 	 * to resync, then assert that we are finished, because there is
4387 	 * nothing we can do.
4388 	 */
4389 	if (mddev->degraded >= conf->max_degraded &&
4390 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4391 		sector_t rv = mddev->dev_sectors - sector_nr;
4392 		*skipped = 1;
4393 		return rv;
4394 	}
4395 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4396 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4397 	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4398 		/* we can skip this block, and probably more */
4399 		sync_blocks /= STRIPE_SECTORS;
4400 		*skipped = 1;
4401 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4402 	}
4403 
4404 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4405 
4406 	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4407 	if (sh == NULL) {
4408 		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4409 		/* make sure we don't swamp the stripe cache if someone else
4410 		 * is trying to get access
4411 		 */
4412 		schedule_timeout_uninterruptible(1);
4413 	}
4414 	/* Need to check if array will still be degraded after recovery/resync
4415 	 * We don't need to check the 'failed' flag as when that gets set,
4416 	 * recovery aborts.
4417 	 */
4418 	for (i = 0; i < conf->raid_disks; i++)
4419 		if (conf->disks[i].rdev == NULL)
4420 			still_degraded = 1;
4421 
4422 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4423 
4424 	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4425 
4426 	handle_stripe(sh);
4427 	release_stripe(sh);
4428 
4429 	return STRIPE_SECTORS;
4430 }
4431 
4432 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
4433 {
4434 	/* We may not be able to submit a whole bio at once as there
4435 	 * may not be enough stripe_heads available.
4436 	 * We cannot pre-allocate enough stripe_heads as we may need
4437 	 * more than exist in the cache (if we allow ever large chunks).
4438 	 * So we do one stripe head at a time and record in
4439 	 * ->bi_hw_segments how many have been done.
4440 	 *
4441 	 * We *know* that this entire raid_bio is in one chunk, so
4442 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4443 	 */
4444 	struct stripe_head *sh;
4445 	int dd_idx;
4446 	sector_t sector, logical_sector, last_sector;
4447 	int scnt = 0;
4448 	int remaining;
4449 	int handled = 0;
4450 
4451 	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4452 	sector = raid5_compute_sector(conf, logical_sector,
4453 				      0, &dd_idx, NULL);
4454 	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4455 
4456 	for (; logical_sector < last_sector;
4457 	     logical_sector += STRIPE_SECTORS,
4458 		     sector += STRIPE_SECTORS,
4459 		     scnt++) {
4460 
4461 		if (scnt < raid5_bi_hw_segments(raid_bio))
4462 			/* already done this stripe */
4463 			continue;
4464 
4465 		sh = get_active_stripe(conf, sector, 0, 1, 0);
4466 
4467 		if (!sh) {
4468 			/* failed to get a stripe - must wait */
4469 			raid5_set_bi_hw_segments(raid_bio, scnt);
4470 			conf->retry_read_aligned = raid_bio;
4471 			return handled;
4472 		}
4473 
4474 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4475 			release_stripe(sh);
4476 			raid5_set_bi_hw_segments(raid_bio, scnt);
4477 			conf->retry_read_aligned = raid_bio;
4478 			return handled;
4479 		}
4480 
4481 		handle_stripe(sh);
4482 		release_stripe(sh);
4483 		handled++;
4484 	}
4485 	spin_lock_irq(&conf->device_lock);
4486 	remaining = raid5_dec_bi_phys_segments(raid_bio);
4487 	spin_unlock_irq(&conf->device_lock);
4488 	if (remaining == 0)
4489 		bio_endio(raid_bio, 0);
4490 	if (atomic_dec_and_test(&conf->active_aligned_reads))
4491 		wake_up(&conf->wait_for_stripe);
4492 	return handled;
4493 }
4494 
4495 
4496 /*
4497  * This is our raid5 kernel thread.
4498  *
4499  * We scan the hash table for stripes which can be handled now.
4500  * During the scan, completed stripes are saved for us by the interrupt
4501  * handler, so that they will not have to wait for our next wakeup.
4502  */
4503 static void raid5d(struct mddev *mddev)
4504 {
4505 	struct stripe_head *sh;
4506 	struct r5conf *conf = mddev->private;
4507 	int handled;
4508 	struct blk_plug plug;
4509 
4510 	pr_debug("+++ raid5d active\n");
4511 
4512 	md_check_recovery(mddev);
4513 
4514 	blk_start_plug(&plug);
4515 	handled = 0;
4516 	spin_lock_irq(&conf->device_lock);
4517 	while (1) {
4518 		struct bio *bio;
4519 
4520 		if (atomic_read(&mddev->plug_cnt) == 0 &&
4521 		    !list_empty(&conf->bitmap_list)) {
4522 			/* Now is a good time to flush some bitmap updates */
4523 			conf->seq_flush++;
4524 			spin_unlock_irq(&conf->device_lock);
4525 			bitmap_unplug(mddev->bitmap);
4526 			spin_lock_irq(&conf->device_lock);
4527 			conf->seq_write = conf->seq_flush;
4528 			activate_bit_delay(conf);
4529 		}
4530 		if (atomic_read(&mddev->plug_cnt) == 0)
4531 			raid5_activate_delayed(conf);
4532 
4533 		while ((bio = remove_bio_from_retry(conf))) {
4534 			int ok;
4535 			spin_unlock_irq(&conf->device_lock);
4536 			ok = retry_aligned_read(conf, bio);
4537 			spin_lock_irq(&conf->device_lock);
4538 			if (!ok)
4539 				break;
4540 			handled++;
4541 		}
4542 
4543 		sh = __get_priority_stripe(conf);
4544 
4545 		if (!sh)
4546 			break;
4547 		spin_unlock_irq(&conf->device_lock);
4548 
4549 		handled++;
4550 		handle_stripe(sh);
4551 		release_stripe(sh);
4552 		cond_resched();
4553 
4554 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
4555 			md_check_recovery(mddev);
4556 
4557 		spin_lock_irq(&conf->device_lock);
4558 	}
4559 	pr_debug("%d stripes handled\n", handled);
4560 
4561 	spin_unlock_irq(&conf->device_lock);
4562 
4563 	async_tx_issue_pending_all();
4564 	blk_finish_plug(&plug);
4565 
4566 	pr_debug("--- raid5d inactive\n");
4567 }
4568 
4569 static ssize_t
4570 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
4571 {
4572 	struct r5conf *conf = mddev->private;
4573 	if (conf)
4574 		return sprintf(page, "%d\n", conf->max_nr_stripes);
4575 	else
4576 		return 0;
4577 }
4578 
4579 int
4580 raid5_set_cache_size(struct mddev *mddev, int size)
4581 {
4582 	struct r5conf *conf = mddev->private;
4583 	int err;
4584 
4585 	if (size <= 16 || size > 32768)
4586 		return -EINVAL;
4587 	while (size < conf->max_nr_stripes) {
4588 		if (drop_one_stripe(conf))
4589 			conf->max_nr_stripes--;
4590 		else
4591 			break;
4592 	}
4593 	err = md_allow_write(mddev);
4594 	if (err)
4595 		return err;
4596 	while (size > conf->max_nr_stripes) {
4597 		if (grow_one_stripe(conf))
4598 			conf->max_nr_stripes++;
4599 		else break;
4600 	}
4601 	return 0;
4602 }
4603 EXPORT_SYMBOL(raid5_set_cache_size);
4604 
4605 static ssize_t
4606 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
4607 {
4608 	struct r5conf *conf = mddev->private;
4609 	unsigned long new;
4610 	int err;
4611 
4612 	if (len >= PAGE_SIZE)
4613 		return -EINVAL;
4614 	if (!conf)
4615 		return -ENODEV;
4616 
4617 	if (strict_strtoul(page, 10, &new))
4618 		return -EINVAL;
4619 	err = raid5_set_cache_size(mddev, new);
4620 	if (err)
4621 		return err;
4622 	return len;
4623 }
4624 
4625 static struct md_sysfs_entry
4626 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4627 				raid5_show_stripe_cache_size,
4628 				raid5_store_stripe_cache_size);
4629 
4630 static ssize_t
4631 raid5_show_preread_threshold(struct mddev *mddev, char *page)
4632 {
4633 	struct r5conf *conf = mddev->private;
4634 	if (conf)
4635 		return sprintf(page, "%d\n", conf->bypass_threshold);
4636 	else
4637 		return 0;
4638 }
4639 
4640 static ssize_t
4641 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
4642 {
4643 	struct r5conf *conf = mddev->private;
4644 	unsigned long new;
4645 	if (len >= PAGE_SIZE)
4646 		return -EINVAL;
4647 	if (!conf)
4648 		return -ENODEV;
4649 
4650 	if (strict_strtoul(page, 10, &new))
4651 		return -EINVAL;
4652 	if (new > conf->max_nr_stripes)
4653 		return -EINVAL;
4654 	conf->bypass_threshold = new;
4655 	return len;
4656 }
4657 
4658 static struct md_sysfs_entry
4659 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4660 					S_IRUGO | S_IWUSR,
4661 					raid5_show_preread_threshold,
4662 					raid5_store_preread_threshold);
4663 
4664 static ssize_t
4665 stripe_cache_active_show(struct mddev *mddev, char *page)
4666 {
4667 	struct r5conf *conf = mddev->private;
4668 	if (conf)
4669 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4670 	else
4671 		return 0;
4672 }
4673 
4674 static struct md_sysfs_entry
4675 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4676 
4677 static struct attribute *raid5_attrs[] =  {
4678 	&raid5_stripecache_size.attr,
4679 	&raid5_stripecache_active.attr,
4680 	&raid5_preread_bypass_threshold.attr,
4681 	NULL,
4682 };
4683 static struct attribute_group raid5_attrs_group = {
4684 	.name = NULL,
4685 	.attrs = raid5_attrs,
4686 };
4687 
4688 static sector_t
4689 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
4690 {
4691 	struct r5conf *conf = mddev->private;
4692 
4693 	if (!sectors)
4694 		sectors = mddev->dev_sectors;
4695 	if (!raid_disks)
4696 		/* size is defined by the smallest of previous and new size */
4697 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4698 
4699 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4700 	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4701 	return sectors * (raid_disks - conf->max_degraded);
4702 }
4703 
4704 static void raid5_free_percpu(struct r5conf *conf)
4705 {
4706 	struct raid5_percpu *percpu;
4707 	unsigned long cpu;
4708 
4709 	if (!conf->percpu)
4710 		return;
4711 
4712 	get_online_cpus();
4713 	for_each_possible_cpu(cpu) {
4714 		percpu = per_cpu_ptr(conf->percpu, cpu);
4715 		safe_put_page(percpu->spare_page);
4716 		kfree(percpu->scribble);
4717 	}
4718 #ifdef CONFIG_HOTPLUG_CPU
4719 	unregister_cpu_notifier(&conf->cpu_notify);
4720 #endif
4721 	put_online_cpus();
4722 
4723 	free_percpu(conf->percpu);
4724 }
4725 
4726 static void free_conf(struct r5conf *conf)
4727 {
4728 	shrink_stripes(conf);
4729 	raid5_free_percpu(conf);
4730 	kfree(conf->disks);
4731 	kfree(conf->stripe_hashtbl);
4732 	kfree(conf);
4733 }
4734 
4735 #ifdef CONFIG_HOTPLUG_CPU
4736 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4737 			      void *hcpu)
4738 {
4739 	struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
4740 	long cpu = (long)hcpu;
4741 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4742 
4743 	switch (action) {
4744 	case CPU_UP_PREPARE:
4745 	case CPU_UP_PREPARE_FROZEN:
4746 		if (conf->level == 6 && !percpu->spare_page)
4747 			percpu->spare_page = alloc_page(GFP_KERNEL);
4748 		if (!percpu->scribble)
4749 			percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4750 
4751 		if (!percpu->scribble ||
4752 		    (conf->level == 6 && !percpu->spare_page)) {
4753 			safe_put_page(percpu->spare_page);
4754 			kfree(percpu->scribble);
4755 			pr_err("%s: failed memory allocation for cpu%ld\n",
4756 			       __func__, cpu);
4757 			return notifier_from_errno(-ENOMEM);
4758 		}
4759 		break;
4760 	case CPU_DEAD:
4761 	case CPU_DEAD_FROZEN:
4762 		safe_put_page(percpu->spare_page);
4763 		kfree(percpu->scribble);
4764 		percpu->spare_page = NULL;
4765 		percpu->scribble = NULL;
4766 		break;
4767 	default:
4768 		break;
4769 	}
4770 	return NOTIFY_OK;
4771 }
4772 #endif
4773 
4774 static int raid5_alloc_percpu(struct r5conf *conf)
4775 {
4776 	unsigned long cpu;
4777 	struct page *spare_page;
4778 	struct raid5_percpu __percpu *allcpus;
4779 	void *scribble;
4780 	int err;
4781 
4782 	allcpus = alloc_percpu(struct raid5_percpu);
4783 	if (!allcpus)
4784 		return -ENOMEM;
4785 	conf->percpu = allcpus;
4786 
4787 	get_online_cpus();
4788 	err = 0;
4789 	for_each_present_cpu(cpu) {
4790 		if (conf->level == 6) {
4791 			spare_page = alloc_page(GFP_KERNEL);
4792 			if (!spare_page) {
4793 				err = -ENOMEM;
4794 				break;
4795 			}
4796 			per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4797 		}
4798 		scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4799 		if (!scribble) {
4800 			err = -ENOMEM;
4801 			break;
4802 		}
4803 		per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4804 	}
4805 #ifdef CONFIG_HOTPLUG_CPU
4806 	conf->cpu_notify.notifier_call = raid456_cpu_notify;
4807 	conf->cpu_notify.priority = 0;
4808 	if (err == 0)
4809 		err = register_cpu_notifier(&conf->cpu_notify);
4810 #endif
4811 	put_online_cpus();
4812 
4813 	return err;
4814 }
4815 
4816 static struct r5conf *setup_conf(struct mddev *mddev)
4817 {
4818 	struct r5conf *conf;
4819 	int raid_disk, memory, max_disks;
4820 	struct md_rdev *rdev;
4821 	struct disk_info *disk;
4822 
4823 	if (mddev->new_level != 5
4824 	    && mddev->new_level != 4
4825 	    && mddev->new_level != 6) {
4826 		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4827 		       mdname(mddev), mddev->new_level);
4828 		return ERR_PTR(-EIO);
4829 	}
4830 	if ((mddev->new_level == 5
4831 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
4832 	    (mddev->new_level == 6
4833 	     && !algorithm_valid_raid6(mddev->new_layout))) {
4834 		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4835 		       mdname(mddev), mddev->new_layout);
4836 		return ERR_PTR(-EIO);
4837 	}
4838 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4839 		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4840 		       mdname(mddev), mddev->raid_disks);
4841 		return ERR_PTR(-EINVAL);
4842 	}
4843 
4844 	if (!mddev->new_chunk_sectors ||
4845 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4846 	    !is_power_of_2(mddev->new_chunk_sectors)) {
4847 		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4848 		       mdname(mddev), mddev->new_chunk_sectors << 9);
4849 		return ERR_PTR(-EINVAL);
4850 	}
4851 
4852 	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
4853 	if (conf == NULL)
4854 		goto abort;
4855 	spin_lock_init(&conf->device_lock);
4856 	init_waitqueue_head(&conf->wait_for_stripe);
4857 	init_waitqueue_head(&conf->wait_for_overlap);
4858 	INIT_LIST_HEAD(&conf->handle_list);
4859 	INIT_LIST_HEAD(&conf->hold_list);
4860 	INIT_LIST_HEAD(&conf->delayed_list);
4861 	INIT_LIST_HEAD(&conf->bitmap_list);
4862 	INIT_LIST_HEAD(&conf->inactive_list);
4863 	atomic_set(&conf->active_stripes, 0);
4864 	atomic_set(&conf->preread_active_stripes, 0);
4865 	atomic_set(&conf->active_aligned_reads, 0);
4866 	conf->bypass_threshold = BYPASS_THRESHOLD;
4867 	conf->recovery_disabled = mddev->recovery_disabled - 1;
4868 
4869 	conf->raid_disks = mddev->raid_disks;
4870 	if (mddev->reshape_position == MaxSector)
4871 		conf->previous_raid_disks = mddev->raid_disks;
4872 	else
4873 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4874 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4875 	conf->scribble_len = scribble_len(max_disks);
4876 
4877 	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4878 			      GFP_KERNEL);
4879 	if (!conf->disks)
4880 		goto abort;
4881 
4882 	conf->mddev = mddev;
4883 
4884 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4885 		goto abort;
4886 
4887 	conf->level = mddev->new_level;
4888 	if (raid5_alloc_percpu(conf) != 0)
4889 		goto abort;
4890 
4891 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
4892 
4893 	rdev_for_each(rdev, mddev) {
4894 		raid_disk = rdev->raid_disk;
4895 		if (raid_disk >= max_disks
4896 		    || raid_disk < 0)
4897 			continue;
4898 		disk = conf->disks + raid_disk;
4899 
4900 		if (test_bit(Replacement, &rdev->flags)) {
4901 			if (disk->replacement)
4902 				goto abort;
4903 			disk->replacement = rdev;
4904 		} else {
4905 			if (disk->rdev)
4906 				goto abort;
4907 			disk->rdev = rdev;
4908 		}
4909 
4910 		if (test_bit(In_sync, &rdev->flags)) {
4911 			char b[BDEVNAME_SIZE];
4912 			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4913 			       " disk %d\n",
4914 			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4915 		} else if (rdev->saved_raid_disk != raid_disk)
4916 			/* Cannot rely on bitmap to complete recovery */
4917 			conf->fullsync = 1;
4918 	}
4919 
4920 	conf->chunk_sectors = mddev->new_chunk_sectors;
4921 	conf->level = mddev->new_level;
4922 	if (conf->level == 6)
4923 		conf->max_degraded = 2;
4924 	else
4925 		conf->max_degraded = 1;
4926 	conf->algorithm = mddev->new_layout;
4927 	conf->max_nr_stripes = NR_STRIPES;
4928 	conf->reshape_progress = mddev->reshape_position;
4929 	if (conf->reshape_progress != MaxSector) {
4930 		conf->prev_chunk_sectors = mddev->chunk_sectors;
4931 		conf->prev_algo = mddev->layout;
4932 	}
4933 
4934 	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4935 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4936 	if (grow_stripes(conf, conf->max_nr_stripes)) {
4937 		printk(KERN_ERR
4938 		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
4939 		       mdname(mddev), memory);
4940 		goto abort;
4941 	} else
4942 		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4943 		       mdname(mddev), memory);
4944 
4945 	conf->thread = md_register_thread(raid5d, mddev, NULL);
4946 	if (!conf->thread) {
4947 		printk(KERN_ERR
4948 		       "md/raid:%s: couldn't allocate thread.\n",
4949 		       mdname(mddev));
4950 		goto abort;
4951 	}
4952 
4953 	return conf;
4954 
4955  abort:
4956 	if (conf) {
4957 		free_conf(conf);
4958 		return ERR_PTR(-EIO);
4959 	} else
4960 		return ERR_PTR(-ENOMEM);
4961 }
4962 
4963 
4964 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4965 {
4966 	switch (algo) {
4967 	case ALGORITHM_PARITY_0:
4968 		if (raid_disk < max_degraded)
4969 			return 1;
4970 		break;
4971 	case ALGORITHM_PARITY_N:
4972 		if (raid_disk >= raid_disks - max_degraded)
4973 			return 1;
4974 		break;
4975 	case ALGORITHM_PARITY_0_6:
4976 		if (raid_disk == 0 ||
4977 		    raid_disk == raid_disks - 1)
4978 			return 1;
4979 		break;
4980 	case ALGORITHM_LEFT_ASYMMETRIC_6:
4981 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
4982 	case ALGORITHM_LEFT_SYMMETRIC_6:
4983 	case ALGORITHM_RIGHT_SYMMETRIC_6:
4984 		if (raid_disk == raid_disks - 1)
4985 			return 1;
4986 	}
4987 	return 0;
4988 }
4989 
4990 static int run(struct mddev *mddev)
4991 {
4992 	struct r5conf *conf;
4993 	int working_disks = 0;
4994 	int dirty_parity_disks = 0;
4995 	struct md_rdev *rdev;
4996 	sector_t reshape_offset = 0;
4997 	int i;
4998 	long long min_offset_diff = 0;
4999 	int first = 1;
5000 
5001 	if (mddev->recovery_cp != MaxSector)
5002 		printk(KERN_NOTICE "md/raid:%s: not clean"
5003 		       " -- starting background reconstruction\n",
5004 		       mdname(mddev));
5005 
5006 	rdev_for_each(rdev, mddev) {
5007 		long long diff;
5008 		if (rdev->raid_disk < 0)
5009 			continue;
5010 		diff = (rdev->new_data_offset - rdev->data_offset);
5011 		if (first) {
5012 			min_offset_diff = diff;
5013 			first = 0;
5014 		} else if (mddev->reshape_backwards &&
5015 			 diff < min_offset_diff)
5016 			min_offset_diff = diff;
5017 		else if (!mddev->reshape_backwards &&
5018 			 diff > min_offset_diff)
5019 			min_offset_diff = diff;
5020 	}
5021 
5022 	if (mddev->reshape_position != MaxSector) {
5023 		/* Check that we can continue the reshape.
5024 		 * Difficulties arise if the stripe we would write to
5025 		 * next is at or after the stripe we would read from next.
5026 		 * For a reshape that changes the number of devices, this
5027 		 * is only possible for a very short time, and mdadm makes
5028 		 * sure that time appears to have past before assembling
5029 		 * the array.  So we fail if that time hasn't passed.
5030 		 * For a reshape that keeps the number of devices the same
5031 		 * mdadm must be monitoring the reshape can keeping the
5032 		 * critical areas read-only and backed up.  It will start
5033 		 * the array in read-only mode, so we check for that.
5034 		 */
5035 		sector_t here_new, here_old;
5036 		int old_disks;
5037 		int max_degraded = (mddev->level == 6 ? 2 : 1);
5038 
5039 		if (mddev->new_level != mddev->level) {
5040 			printk(KERN_ERR "md/raid:%s: unsupported reshape "
5041 			       "required - aborting.\n",
5042 			       mdname(mddev));
5043 			return -EINVAL;
5044 		}
5045 		old_disks = mddev->raid_disks - mddev->delta_disks;
5046 		/* reshape_position must be on a new-stripe boundary, and one
5047 		 * further up in new geometry must map after here in old
5048 		 * geometry.
5049 		 */
5050 		here_new = mddev->reshape_position;
5051 		if (sector_div(here_new, mddev->new_chunk_sectors *
5052 			       (mddev->raid_disks - max_degraded))) {
5053 			printk(KERN_ERR "md/raid:%s: reshape_position not "
5054 			       "on a stripe boundary\n", mdname(mddev));
5055 			return -EINVAL;
5056 		}
5057 		reshape_offset = here_new * mddev->new_chunk_sectors;
5058 		/* here_new is the stripe we will write to */
5059 		here_old = mddev->reshape_position;
5060 		sector_div(here_old, mddev->chunk_sectors *
5061 			   (old_disks-max_degraded));
5062 		/* here_old is the first stripe that we might need to read
5063 		 * from */
5064 		if (mddev->delta_disks == 0) {
5065 			if ((here_new * mddev->new_chunk_sectors !=
5066 			     here_old * mddev->chunk_sectors)) {
5067 				printk(KERN_ERR "md/raid:%s: reshape position is"
5068 				       " confused - aborting\n", mdname(mddev));
5069 				return -EINVAL;
5070 			}
5071 			/* We cannot be sure it is safe to start an in-place
5072 			 * reshape.  It is only safe if user-space is monitoring
5073 			 * and taking constant backups.
5074 			 * mdadm always starts a situation like this in
5075 			 * readonly mode so it can take control before
5076 			 * allowing any writes.  So just check for that.
5077 			 */
5078 			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
5079 			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
5080 				/* not really in-place - so OK */;
5081 			else if (mddev->ro == 0) {
5082 				printk(KERN_ERR "md/raid:%s: in-place reshape "
5083 				       "must be started in read-only mode "
5084 				       "- aborting\n",
5085 				       mdname(mddev));
5086 				return -EINVAL;
5087 			}
5088 		} else if (mddev->reshape_backwards
5089 		    ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
5090 		       here_old * mddev->chunk_sectors)
5091 		    : (here_new * mddev->new_chunk_sectors >=
5092 		       here_old * mddev->chunk_sectors + (-min_offset_diff))) {
5093 			/* Reading from the same stripe as writing to - bad */
5094 			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5095 			       "auto-recovery - aborting.\n",
5096 			       mdname(mddev));
5097 			return -EINVAL;
5098 		}
5099 		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5100 		       mdname(mddev));
5101 		/* OK, we should be able to continue; */
5102 	} else {
5103 		BUG_ON(mddev->level != mddev->new_level);
5104 		BUG_ON(mddev->layout != mddev->new_layout);
5105 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5106 		BUG_ON(mddev->delta_disks != 0);
5107 	}
5108 
5109 	if (mddev->private == NULL)
5110 		conf = setup_conf(mddev);
5111 	else
5112 		conf = mddev->private;
5113 
5114 	if (IS_ERR(conf))
5115 		return PTR_ERR(conf);
5116 
5117 	conf->min_offset_diff = min_offset_diff;
5118 	mddev->thread = conf->thread;
5119 	conf->thread = NULL;
5120 	mddev->private = conf;
5121 
5122 	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5123 	     i++) {
5124 		rdev = conf->disks[i].rdev;
5125 		if (!rdev && conf->disks[i].replacement) {
5126 			/* The replacement is all we have yet */
5127 			rdev = conf->disks[i].replacement;
5128 			conf->disks[i].replacement = NULL;
5129 			clear_bit(Replacement, &rdev->flags);
5130 			conf->disks[i].rdev = rdev;
5131 		}
5132 		if (!rdev)
5133 			continue;
5134 		if (conf->disks[i].replacement &&
5135 		    conf->reshape_progress != MaxSector) {
5136 			/* replacements and reshape simply do not mix. */
5137 			printk(KERN_ERR "md: cannot handle concurrent "
5138 			       "replacement and reshape.\n");
5139 			goto abort;
5140 		}
5141 		if (test_bit(In_sync, &rdev->flags)) {
5142 			working_disks++;
5143 			continue;
5144 		}
5145 		/* This disc is not fully in-sync.  However if it
5146 		 * just stored parity (beyond the recovery_offset),
5147 		 * when we don't need to be concerned about the
5148 		 * array being dirty.
5149 		 * When reshape goes 'backwards', we never have
5150 		 * partially completed devices, so we only need
5151 		 * to worry about reshape going forwards.
5152 		 */
5153 		/* Hack because v0.91 doesn't store recovery_offset properly. */
5154 		if (mddev->major_version == 0 &&
5155 		    mddev->minor_version > 90)
5156 			rdev->recovery_offset = reshape_offset;
5157 
5158 		if (rdev->recovery_offset < reshape_offset) {
5159 			/* We need to check old and new layout */
5160 			if (!only_parity(rdev->raid_disk,
5161 					 conf->algorithm,
5162 					 conf->raid_disks,
5163 					 conf->max_degraded))
5164 				continue;
5165 		}
5166 		if (!only_parity(rdev->raid_disk,
5167 				 conf->prev_algo,
5168 				 conf->previous_raid_disks,
5169 				 conf->max_degraded))
5170 			continue;
5171 		dirty_parity_disks++;
5172 	}
5173 
5174 	/*
5175 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
5176 	 */
5177 	mddev->degraded = calc_degraded(conf);
5178 
5179 	if (has_failed(conf)) {
5180 		printk(KERN_ERR "md/raid:%s: not enough operational devices"
5181 			" (%d/%d failed)\n",
5182 			mdname(mddev), mddev->degraded, conf->raid_disks);
5183 		goto abort;
5184 	}
5185 
5186 	/* device size must be a multiple of chunk size */
5187 	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5188 	mddev->resync_max_sectors = mddev->dev_sectors;
5189 
5190 	if (mddev->degraded > dirty_parity_disks &&
5191 	    mddev->recovery_cp != MaxSector) {
5192 		if (mddev->ok_start_degraded)
5193 			printk(KERN_WARNING
5194 			       "md/raid:%s: starting dirty degraded array"
5195 			       " - data corruption possible.\n",
5196 			       mdname(mddev));
5197 		else {
5198 			printk(KERN_ERR
5199 			       "md/raid:%s: cannot start dirty degraded array.\n",
5200 			       mdname(mddev));
5201 			goto abort;
5202 		}
5203 	}
5204 
5205 	if (mddev->degraded == 0)
5206 		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5207 		       " devices, algorithm %d\n", mdname(mddev), conf->level,
5208 		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5209 		       mddev->new_layout);
5210 	else
5211 		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5212 		       " out of %d devices, algorithm %d\n",
5213 		       mdname(mddev), conf->level,
5214 		       mddev->raid_disks - mddev->degraded,
5215 		       mddev->raid_disks, mddev->new_layout);
5216 
5217 	print_raid5_conf(conf);
5218 
5219 	if (conf->reshape_progress != MaxSector) {
5220 		conf->reshape_safe = conf->reshape_progress;
5221 		atomic_set(&conf->reshape_stripes, 0);
5222 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5223 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5224 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5225 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5226 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5227 							"reshape");
5228 	}
5229 
5230 
5231 	/* Ok, everything is just fine now */
5232 	if (mddev->to_remove == &raid5_attrs_group)
5233 		mddev->to_remove = NULL;
5234 	else if (mddev->kobj.sd &&
5235 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5236 		printk(KERN_WARNING
5237 		       "raid5: failed to create sysfs attributes for %s\n",
5238 		       mdname(mddev));
5239 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5240 
5241 	if (mddev->queue) {
5242 		int chunk_size;
5243 		/* read-ahead size must cover two whole stripes, which
5244 		 * is 2 * (datadisks) * chunksize where 'n' is the
5245 		 * number of raid devices
5246 		 */
5247 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
5248 		int stripe = data_disks *
5249 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
5250 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5251 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5252 
5253 		blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5254 
5255 		mddev->queue->backing_dev_info.congested_data = mddev;
5256 		mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5257 
5258 		chunk_size = mddev->chunk_sectors << 9;
5259 		blk_queue_io_min(mddev->queue, chunk_size);
5260 		blk_queue_io_opt(mddev->queue, chunk_size *
5261 				 (conf->raid_disks - conf->max_degraded));
5262 
5263 		rdev_for_each(rdev, mddev) {
5264 			disk_stack_limits(mddev->gendisk, rdev->bdev,
5265 					  rdev->data_offset << 9);
5266 			disk_stack_limits(mddev->gendisk, rdev->bdev,
5267 					  rdev->new_data_offset << 9);
5268 		}
5269 	}
5270 
5271 	return 0;
5272 abort:
5273 	md_unregister_thread(&mddev->thread);
5274 	print_raid5_conf(conf);
5275 	free_conf(conf);
5276 	mddev->private = NULL;
5277 	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5278 	return -EIO;
5279 }
5280 
5281 static int stop(struct mddev *mddev)
5282 {
5283 	struct r5conf *conf = mddev->private;
5284 
5285 	md_unregister_thread(&mddev->thread);
5286 	if (mddev->queue)
5287 		mddev->queue->backing_dev_info.congested_fn = NULL;
5288 	free_conf(conf);
5289 	mddev->private = NULL;
5290 	mddev->to_remove = &raid5_attrs_group;
5291 	return 0;
5292 }
5293 
5294 static void status(struct seq_file *seq, struct mddev *mddev)
5295 {
5296 	struct r5conf *conf = mddev->private;
5297 	int i;
5298 
5299 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5300 		mddev->chunk_sectors / 2, mddev->layout);
5301 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5302 	for (i = 0; i < conf->raid_disks; i++)
5303 		seq_printf (seq, "%s",
5304 			       conf->disks[i].rdev &&
5305 			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5306 	seq_printf (seq, "]");
5307 }
5308 
5309 static void print_raid5_conf (struct r5conf *conf)
5310 {
5311 	int i;
5312 	struct disk_info *tmp;
5313 
5314 	printk(KERN_DEBUG "RAID conf printout:\n");
5315 	if (!conf) {
5316 		printk("(conf==NULL)\n");
5317 		return;
5318 	}
5319 	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5320 	       conf->raid_disks,
5321 	       conf->raid_disks - conf->mddev->degraded);
5322 
5323 	for (i = 0; i < conf->raid_disks; i++) {
5324 		char b[BDEVNAME_SIZE];
5325 		tmp = conf->disks + i;
5326 		if (tmp->rdev)
5327 			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5328 			       i, !test_bit(Faulty, &tmp->rdev->flags),
5329 			       bdevname(tmp->rdev->bdev, b));
5330 	}
5331 }
5332 
5333 static int raid5_spare_active(struct mddev *mddev)
5334 {
5335 	int i;
5336 	struct r5conf *conf = mddev->private;
5337 	struct disk_info *tmp;
5338 	int count = 0;
5339 	unsigned long flags;
5340 
5341 	for (i = 0; i < conf->raid_disks; i++) {
5342 		tmp = conf->disks + i;
5343 		if (tmp->replacement
5344 		    && tmp->replacement->recovery_offset == MaxSector
5345 		    && !test_bit(Faulty, &tmp->replacement->flags)
5346 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
5347 			/* Replacement has just become active. */
5348 			if (!tmp->rdev
5349 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
5350 				count++;
5351 			if (tmp->rdev) {
5352 				/* Replaced device not technically faulty,
5353 				 * but we need to be sure it gets removed
5354 				 * and never re-added.
5355 				 */
5356 				set_bit(Faulty, &tmp->rdev->flags);
5357 				sysfs_notify_dirent_safe(
5358 					tmp->rdev->sysfs_state);
5359 			}
5360 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
5361 		} else if (tmp->rdev
5362 		    && tmp->rdev->recovery_offset == MaxSector
5363 		    && !test_bit(Faulty, &tmp->rdev->flags)
5364 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5365 			count++;
5366 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5367 		}
5368 	}
5369 	spin_lock_irqsave(&conf->device_lock, flags);
5370 	mddev->degraded = calc_degraded(conf);
5371 	spin_unlock_irqrestore(&conf->device_lock, flags);
5372 	print_raid5_conf(conf);
5373 	return count;
5374 }
5375 
5376 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
5377 {
5378 	struct r5conf *conf = mddev->private;
5379 	int err = 0;
5380 	int number = rdev->raid_disk;
5381 	struct md_rdev **rdevp;
5382 	struct disk_info *p = conf->disks + number;
5383 
5384 	print_raid5_conf(conf);
5385 	if (rdev == p->rdev)
5386 		rdevp = &p->rdev;
5387 	else if (rdev == p->replacement)
5388 		rdevp = &p->replacement;
5389 	else
5390 		return 0;
5391 
5392 	if (number >= conf->raid_disks &&
5393 	    conf->reshape_progress == MaxSector)
5394 		clear_bit(In_sync, &rdev->flags);
5395 
5396 	if (test_bit(In_sync, &rdev->flags) ||
5397 	    atomic_read(&rdev->nr_pending)) {
5398 		err = -EBUSY;
5399 		goto abort;
5400 	}
5401 	/* Only remove non-faulty devices if recovery
5402 	 * isn't possible.
5403 	 */
5404 	if (!test_bit(Faulty, &rdev->flags) &&
5405 	    mddev->recovery_disabled != conf->recovery_disabled &&
5406 	    !has_failed(conf) &&
5407 	    (!p->replacement || p->replacement == rdev) &&
5408 	    number < conf->raid_disks) {
5409 		err = -EBUSY;
5410 		goto abort;
5411 	}
5412 	*rdevp = NULL;
5413 	synchronize_rcu();
5414 	if (atomic_read(&rdev->nr_pending)) {
5415 		/* lost the race, try later */
5416 		err = -EBUSY;
5417 		*rdevp = rdev;
5418 	} else if (p->replacement) {
5419 		/* We must have just cleared 'rdev' */
5420 		p->rdev = p->replacement;
5421 		clear_bit(Replacement, &p->replacement->flags);
5422 		smp_mb(); /* Make sure other CPUs may see both as identical
5423 			   * but will never see neither - if they are careful
5424 			   */
5425 		p->replacement = NULL;
5426 		clear_bit(WantReplacement, &rdev->flags);
5427 	} else
5428 		/* We might have just removed the Replacement as faulty-
5429 		 * clear the bit just in case
5430 		 */
5431 		clear_bit(WantReplacement, &rdev->flags);
5432 abort:
5433 
5434 	print_raid5_conf(conf);
5435 	return err;
5436 }
5437 
5438 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
5439 {
5440 	struct r5conf *conf = mddev->private;
5441 	int err = -EEXIST;
5442 	int disk;
5443 	struct disk_info *p;
5444 	int first = 0;
5445 	int last = conf->raid_disks - 1;
5446 
5447 	if (mddev->recovery_disabled == conf->recovery_disabled)
5448 		return -EBUSY;
5449 
5450 	if (rdev->saved_raid_disk < 0 && has_failed(conf))
5451 		/* no point adding a device */
5452 		return -EINVAL;
5453 
5454 	if (rdev->raid_disk >= 0)
5455 		first = last = rdev->raid_disk;
5456 
5457 	/*
5458 	 * find the disk ... but prefer rdev->saved_raid_disk
5459 	 * if possible.
5460 	 */
5461 	if (rdev->saved_raid_disk >= 0 &&
5462 	    rdev->saved_raid_disk >= first &&
5463 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
5464 		disk = rdev->saved_raid_disk;
5465 	else
5466 		disk = first;
5467 	for ( ; disk <= last ; disk++) {
5468 		p = conf->disks + disk;
5469 		if (p->rdev == NULL) {
5470 			clear_bit(In_sync, &rdev->flags);
5471 			rdev->raid_disk = disk;
5472 			err = 0;
5473 			if (rdev->saved_raid_disk != disk)
5474 				conf->fullsync = 1;
5475 			rcu_assign_pointer(p->rdev, rdev);
5476 			break;
5477 		}
5478 		if (test_bit(WantReplacement, &p->rdev->flags) &&
5479 		    p->replacement == NULL) {
5480 			clear_bit(In_sync, &rdev->flags);
5481 			set_bit(Replacement, &rdev->flags);
5482 			rdev->raid_disk = disk;
5483 			err = 0;
5484 			conf->fullsync = 1;
5485 			rcu_assign_pointer(p->replacement, rdev);
5486 			break;
5487 		}
5488 	}
5489 	print_raid5_conf(conf);
5490 	return err;
5491 }
5492 
5493 static int raid5_resize(struct mddev *mddev, sector_t sectors)
5494 {
5495 	/* no resync is happening, and there is enough space
5496 	 * on all devices, so we can resize.
5497 	 * We need to make sure resync covers any new space.
5498 	 * If the array is shrinking we should possibly wait until
5499 	 * any io in the removed space completes, but it hardly seems
5500 	 * worth it.
5501 	 */
5502 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5503 	md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5504 					       mddev->raid_disks));
5505 	if (mddev->array_sectors >
5506 	    raid5_size(mddev, sectors, mddev->raid_disks))
5507 		return -EINVAL;
5508 	set_capacity(mddev->gendisk, mddev->array_sectors);
5509 	revalidate_disk(mddev->gendisk);
5510 	if (sectors > mddev->dev_sectors &&
5511 	    mddev->recovery_cp > mddev->dev_sectors) {
5512 		mddev->recovery_cp = mddev->dev_sectors;
5513 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5514 	}
5515 	mddev->dev_sectors = sectors;
5516 	mddev->resync_max_sectors = sectors;
5517 	return 0;
5518 }
5519 
5520 static int check_stripe_cache(struct mddev *mddev)
5521 {
5522 	/* Can only proceed if there are plenty of stripe_heads.
5523 	 * We need a minimum of one full stripe,, and for sensible progress
5524 	 * it is best to have about 4 times that.
5525 	 * If we require 4 times, then the default 256 4K stripe_heads will
5526 	 * allow for chunk sizes up to 256K, which is probably OK.
5527 	 * If the chunk size is greater, user-space should request more
5528 	 * stripe_heads first.
5529 	 */
5530 	struct r5conf *conf = mddev->private;
5531 	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5532 	    > conf->max_nr_stripes ||
5533 	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5534 	    > conf->max_nr_stripes) {
5535 		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
5536 		       mdname(mddev),
5537 		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5538 			/ STRIPE_SIZE)*4);
5539 		return 0;
5540 	}
5541 	return 1;
5542 }
5543 
5544 static int check_reshape(struct mddev *mddev)
5545 {
5546 	struct r5conf *conf = mddev->private;
5547 
5548 	if (mddev->delta_disks == 0 &&
5549 	    mddev->new_layout == mddev->layout &&
5550 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
5551 		return 0; /* nothing to do */
5552 	if (mddev->bitmap)
5553 		/* Cannot grow a bitmap yet */
5554 		return -EBUSY;
5555 	if (has_failed(conf))
5556 		return -EINVAL;
5557 	if (mddev->delta_disks < 0) {
5558 		/* We might be able to shrink, but the devices must
5559 		 * be made bigger first.
5560 		 * For raid6, 4 is the minimum size.
5561 		 * Otherwise 2 is the minimum
5562 		 */
5563 		int min = 2;
5564 		if (mddev->level == 6)
5565 			min = 4;
5566 		if (mddev->raid_disks + mddev->delta_disks < min)
5567 			return -EINVAL;
5568 	}
5569 
5570 	if (!check_stripe_cache(mddev))
5571 		return -ENOSPC;
5572 
5573 	return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5574 }
5575 
5576 static int raid5_start_reshape(struct mddev *mddev)
5577 {
5578 	struct r5conf *conf = mddev->private;
5579 	struct md_rdev *rdev;
5580 	int spares = 0;
5581 	unsigned long flags;
5582 
5583 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5584 		return -EBUSY;
5585 
5586 	if (!check_stripe_cache(mddev))
5587 		return -ENOSPC;
5588 
5589 	rdev_for_each(rdev, mddev) {
5590 		if (!test_bit(In_sync, &rdev->flags)
5591 		    && !test_bit(Faulty, &rdev->flags))
5592 			spares++;
5593 	}
5594 
5595 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5596 		/* Not enough devices even to make a degraded array
5597 		 * of that size
5598 		 */
5599 		return -EINVAL;
5600 
5601 	/* Refuse to reduce size of the array.  Any reductions in
5602 	 * array size must be through explicit setting of array_size
5603 	 * attribute.
5604 	 */
5605 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5606 	    < mddev->array_sectors) {
5607 		printk(KERN_ERR "md/raid:%s: array size must be reduced "
5608 		       "before number of disks\n", mdname(mddev));
5609 		return -EINVAL;
5610 	}
5611 
5612 	atomic_set(&conf->reshape_stripes, 0);
5613 	spin_lock_irq(&conf->device_lock);
5614 	conf->previous_raid_disks = conf->raid_disks;
5615 	conf->raid_disks += mddev->delta_disks;
5616 	conf->prev_chunk_sectors = conf->chunk_sectors;
5617 	conf->chunk_sectors = mddev->new_chunk_sectors;
5618 	conf->prev_algo = conf->algorithm;
5619 	conf->algorithm = mddev->new_layout;
5620 	conf->generation++;
5621 	/* Code that selects data_offset needs to see the generation update
5622 	 * if reshape_progress has been set - so a memory barrier needed.
5623 	 */
5624 	smp_mb();
5625 	if (mddev->reshape_backwards)
5626 		conf->reshape_progress = raid5_size(mddev, 0, 0);
5627 	else
5628 		conf->reshape_progress = 0;
5629 	conf->reshape_safe = conf->reshape_progress;
5630 	spin_unlock_irq(&conf->device_lock);
5631 
5632 	/* Add some new drives, as many as will fit.
5633 	 * We know there are enough to make the newly sized array work.
5634 	 * Don't add devices if we are reducing the number of
5635 	 * devices in the array.  This is because it is not possible
5636 	 * to correctly record the "partially reconstructed" state of
5637 	 * such devices during the reshape and confusion could result.
5638 	 */
5639 	if (mddev->delta_disks >= 0) {
5640 		rdev_for_each(rdev, mddev)
5641 			if (rdev->raid_disk < 0 &&
5642 			    !test_bit(Faulty, &rdev->flags)) {
5643 				if (raid5_add_disk(mddev, rdev) == 0) {
5644 					if (rdev->raid_disk
5645 					    >= conf->previous_raid_disks)
5646 						set_bit(In_sync, &rdev->flags);
5647 					else
5648 						rdev->recovery_offset = 0;
5649 
5650 					if (sysfs_link_rdev(mddev, rdev))
5651 						/* Failure here is OK */;
5652 				}
5653 			} else if (rdev->raid_disk >= conf->previous_raid_disks
5654 				   && !test_bit(Faulty, &rdev->flags)) {
5655 				/* This is a spare that was manually added */
5656 				set_bit(In_sync, &rdev->flags);
5657 			}
5658 
5659 		/* When a reshape changes the number of devices,
5660 		 * ->degraded is measured against the larger of the
5661 		 * pre and post number of devices.
5662 		 */
5663 		spin_lock_irqsave(&conf->device_lock, flags);
5664 		mddev->degraded = calc_degraded(conf);
5665 		spin_unlock_irqrestore(&conf->device_lock, flags);
5666 	}
5667 	mddev->raid_disks = conf->raid_disks;
5668 	mddev->reshape_position = conf->reshape_progress;
5669 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5670 
5671 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5672 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5673 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5674 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5675 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5676 						"reshape");
5677 	if (!mddev->sync_thread) {
5678 		mddev->recovery = 0;
5679 		spin_lock_irq(&conf->device_lock);
5680 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5681 		rdev_for_each(rdev, mddev)
5682 			rdev->new_data_offset = rdev->data_offset;
5683 		smp_wmb();
5684 		conf->reshape_progress = MaxSector;
5685 		mddev->reshape_position = MaxSector;
5686 		spin_unlock_irq(&conf->device_lock);
5687 		return -EAGAIN;
5688 	}
5689 	conf->reshape_checkpoint = jiffies;
5690 	md_wakeup_thread(mddev->sync_thread);
5691 	md_new_event(mddev);
5692 	return 0;
5693 }
5694 
5695 /* This is called from the reshape thread and should make any
5696  * changes needed in 'conf'
5697  */
5698 static void end_reshape(struct r5conf *conf)
5699 {
5700 
5701 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5702 		struct md_rdev *rdev;
5703 
5704 		spin_lock_irq(&conf->device_lock);
5705 		conf->previous_raid_disks = conf->raid_disks;
5706 		rdev_for_each(rdev, conf->mddev)
5707 			rdev->data_offset = rdev->new_data_offset;
5708 		smp_wmb();
5709 		conf->reshape_progress = MaxSector;
5710 		spin_unlock_irq(&conf->device_lock);
5711 		wake_up(&conf->wait_for_overlap);
5712 
5713 		/* read-ahead size must cover two whole stripes, which is
5714 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5715 		 */
5716 		if (conf->mddev->queue) {
5717 			int data_disks = conf->raid_disks - conf->max_degraded;
5718 			int stripe = data_disks * ((conf->chunk_sectors << 9)
5719 						   / PAGE_SIZE);
5720 			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5721 				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5722 		}
5723 	}
5724 }
5725 
5726 /* This is called from the raid5d thread with mddev_lock held.
5727  * It makes config changes to the device.
5728  */
5729 static void raid5_finish_reshape(struct mddev *mddev)
5730 {
5731 	struct r5conf *conf = mddev->private;
5732 
5733 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5734 
5735 		if (mddev->delta_disks > 0) {
5736 			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5737 			set_capacity(mddev->gendisk, mddev->array_sectors);
5738 			revalidate_disk(mddev->gendisk);
5739 		} else {
5740 			int d;
5741 			spin_lock_irq(&conf->device_lock);
5742 			mddev->degraded = calc_degraded(conf);
5743 			spin_unlock_irq(&conf->device_lock);
5744 			for (d = conf->raid_disks ;
5745 			     d < conf->raid_disks - mddev->delta_disks;
5746 			     d++) {
5747 				struct md_rdev *rdev = conf->disks[d].rdev;
5748 				if (rdev &&
5749 				    raid5_remove_disk(mddev, rdev) == 0) {
5750 					sysfs_unlink_rdev(mddev, rdev);
5751 					rdev->raid_disk = -1;
5752 				}
5753 			}
5754 		}
5755 		mddev->layout = conf->algorithm;
5756 		mddev->chunk_sectors = conf->chunk_sectors;
5757 		mddev->reshape_position = MaxSector;
5758 		mddev->delta_disks = 0;
5759 		mddev->reshape_backwards = 0;
5760 	}
5761 }
5762 
5763 static void raid5_quiesce(struct mddev *mddev, int state)
5764 {
5765 	struct r5conf *conf = mddev->private;
5766 
5767 	switch(state) {
5768 	case 2: /* resume for a suspend */
5769 		wake_up(&conf->wait_for_overlap);
5770 		break;
5771 
5772 	case 1: /* stop all writes */
5773 		spin_lock_irq(&conf->device_lock);
5774 		/* '2' tells resync/reshape to pause so that all
5775 		 * active stripes can drain
5776 		 */
5777 		conf->quiesce = 2;
5778 		wait_event_lock_irq(conf->wait_for_stripe,
5779 				    atomic_read(&conf->active_stripes) == 0 &&
5780 				    atomic_read(&conf->active_aligned_reads) == 0,
5781 				    conf->device_lock, /* nothing */);
5782 		conf->quiesce = 1;
5783 		spin_unlock_irq(&conf->device_lock);
5784 		/* allow reshape to continue */
5785 		wake_up(&conf->wait_for_overlap);
5786 		break;
5787 
5788 	case 0: /* re-enable writes */
5789 		spin_lock_irq(&conf->device_lock);
5790 		conf->quiesce = 0;
5791 		wake_up(&conf->wait_for_stripe);
5792 		wake_up(&conf->wait_for_overlap);
5793 		spin_unlock_irq(&conf->device_lock);
5794 		break;
5795 	}
5796 }
5797 
5798 
5799 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
5800 {
5801 	struct r0conf *raid0_conf = mddev->private;
5802 	sector_t sectors;
5803 
5804 	/* for raid0 takeover only one zone is supported */
5805 	if (raid0_conf->nr_strip_zones > 1) {
5806 		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5807 		       mdname(mddev));
5808 		return ERR_PTR(-EINVAL);
5809 	}
5810 
5811 	sectors = raid0_conf->strip_zone[0].zone_end;
5812 	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
5813 	mddev->dev_sectors = sectors;
5814 	mddev->new_level = level;
5815 	mddev->new_layout = ALGORITHM_PARITY_N;
5816 	mddev->new_chunk_sectors = mddev->chunk_sectors;
5817 	mddev->raid_disks += 1;
5818 	mddev->delta_disks = 1;
5819 	/* make sure it will be not marked as dirty */
5820 	mddev->recovery_cp = MaxSector;
5821 
5822 	return setup_conf(mddev);
5823 }
5824 
5825 
5826 static void *raid5_takeover_raid1(struct mddev *mddev)
5827 {
5828 	int chunksect;
5829 
5830 	if (mddev->raid_disks != 2 ||
5831 	    mddev->degraded > 1)
5832 		return ERR_PTR(-EINVAL);
5833 
5834 	/* Should check if there are write-behind devices? */
5835 
5836 	chunksect = 64*2; /* 64K by default */
5837 
5838 	/* The array must be an exact multiple of chunksize */
5839 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
5840 		chunksect >>= 1;
5841 
5842 	if ((chunksect<<9) < STRIPE_SIZE)
5843 		/* array size does not allow a suitable chunk size */
5844 		return ERR_PTR(-EINVAL);
5845 
5846 	mddev->new_level = 5;
5847 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5848 	mddev->new_chunk_sectors = chunksect;
5849 
5850 	return setup_conf(mddev);
5851 }
5852 
5853 static void *raid5_takeover_raid6(struct mddev *mddev)
5854 {
5855 	int new_layout;
5856 
5857 	switch (mddev->layout) {
5858 	case ALGORITHM_LEFT_ASYMMETRIC_6:
5859 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5860 		break;
5861 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
5862 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5863 		break;
5864 	case ALGORITHM_LEFT_SYMMETRIC_6:
5865 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
5866 		break;
5867 	case ALGORITHM_RIGHT_SYMMETRIC_6:
5868 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5869 		break;
5870 	case ALGORITHM_PARITY_0_6:
5871 		new_layout = ALGORITHM_PARITY_0;
5872 		break;
5873 	case ALGORITHM_PARITY_N:
5874 		new_layout = ALGORITHM_PARITY_N;
5875 		break;
5876 	default:
5877 		return ERR_PTR(-EINVAL);
5878 	}
5879 	mddev->new_level = 5;
5880 	mddev->new_layout = new_layout;
5881 	mddev->delta_disks = -1;
5882 	mddev->raid_disks -= 1;
5883 	return setup_conf(mddev);
5884 }
5885 
5886 
5887 static int raid5_check_reshape(struct mddev *mddev)
5888 {
5889 	/* For a 2-drive array, the layout and chunk size can be changed
5890 	 * immediately as not restriping is needed.
5891 	 * For larger arrays we record the new value - after validation
5892 	 * to be used by a reshape pass.
5893 	 */
5894 	struct r5conf *conf = mddev->private;
5895 	int new_chunk = mddev->new_chunk_sectors;
5896 
5897 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5898 		return -EINVAL;
5899 	if (new_chunk > 0) {
5900 		if (!is_power_of_2(new_chunk))
5901 			return -EINVAL;
5902 		if (new_chunk < (PAGE_SIZE>>9))
5903 			return -EINVAL;
5904 		if (mddev->array_sectors & (new_chunk-1))
5905 			/* not factor of array size */
5906 			return -EINVAL;
5907 	}
5908 
5909 	/* They look valid */
5910 
5911 	if (mddev->raid_disks == 2) {
5912 		/* can make the change immediately */
5913 		if (mddev->new_layout >= 0) {
5914 			conf->algorithm = mddev->new_layout;
5915 			mddev->layout = mddev->new_layout;
5916 		}
5917 		if (new_chunk > 0) {
5918 			conf->chunk_sectors = new_chunk ;
5919 			mddev->chunk_sectors = new_chunk;
5920 		}
5921 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
5922 		md_wakeup_thread(mddev->thread);
5923 	}
5924 	return check_reshape(mddev);
5925 }
5926 
5927 static int raid6_check_reshape(struct mddev *mddev)
5928 {
5929 	int new_chunk = mddev->new_chunk_sectors;
5930 
5931 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5932 		return -EINVAL;
5933 	if (new_chunk > 0) {
5934 		if (!is_power_of_2(new_chunk))
5935 			return -EINVAL;
5936 		if (new_chunk < (PAGE_SIZE >> 9))
5937 			return -EINVAL;
5938 		if (mddev->array_sectors & (new_chunk-1))
5939 			/* not factor of array size */
5940 			return -EINVAL;
5941 	}
5942 
5943 	/* They look valid */
5944 	return check_reshape(mddev);
5945 }
5946 
5947 static void *raid5_takeover(struct mddev *mddev)
5948 {
5949 	/* raid5 can take over:
5950 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
5951 	 *  raid1 - if there are two drives.  We need to know the chunk size
5952 	 *  raid4 - trivial - just use a raid4 layout.
5953 	 *  raid6 - Providing it is a *_6 layout
5954 	 */
5955 	if (mddev->level == 0)
5956 		return raid45_takeover_raid0(mddev, 5);
5957 	if (mddev->level == 1)
5958 		return raid5_takeover_raid1(mddev);
5959 	if (mddev->level == 4) {
5960 		mddev->new_layout = ALGORITHM_PARITY_N;
5961 		mddev->new_level = 5;
5962 		return setup_conf(mddev);
5963 	}
5964 	if (mddev->level == 6)
5965 		return raid5_takeover_raid6(mddev);
5966 
5967 	return ERR_PTR(-EINVAL);
5968 }
5969 
5970 static void *raid4_takeover(struct mddev *mddev)
5971 {
5972 	/* raid4 can take over:
5973 	 *  raid0 - if there is only one strip zone
5974 	 *  raid5 - if layout is right
5975 	 */
5976 	if (mddev->level == 0)
5977 		return raid45_takeover_raid0(mddev, 4);
5978 	if (mddev->level == 5 &&
5979 	    mddev->layout == ALGORITHM_PARITY_N) {
5980 		mddev->new_layout = 0;
5981 		mddev->new_level = 4;
5982 		return setup_conf(mddev);
5983 	}
5984 	return ERR_PTR(-EINVAL);
5985 }
5986 
5987 static struct md_personality raid5_personality;
5988 
5989 static void *raid6_takeover(struct mddev *mddev)
5990 {
5991 	/* Currently can only take over a raid5.  We map the
5992 	 * personality to an equivalent raid6 personality
5993 	 * with the Q block at the end.
5994 	 */
5995 	int new_layout;
5996 
5997 	if (mddev->pers != &raid5_personality)
5998 		return ERR_PTR(-EINVAL);
5999 	if (mddev->degraded > 1)
6000 		return ERR_PTR(-EINVAL);
6001 	if (mddev->raid_disks > 253)
6002 		return ERR_PTR(-EINVAL);
6003 	if (mddev->raid_disks < 3)
6004 		return ERR_PTR(-EINVAL);
6005 
6006 	switch (mddev->layout) {
6007 	case ALGORITHM_LEFT_ASYMMETRIC:
6008 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
6009 		break;
6010 	case ALGORITHM_RIGHT_ASYMMETRIC:
6011 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
6012 		break;
6013 	case ALGORITHM_LEFT_SYMMETRIC:
6014 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
6015 		break;
6016 	case ALGORITHM_RIGHT_SYMMETRIC:
6017 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
6018 		break;
6019 	case ALGORITHM_PARITY_0:
6020 		new_layout = ALGORITHM_PARITY_0_6;
6021 		break;
6022 	case ALGORITHM_PARITY_N:
6023 		new_layout = ALGORITHM_PARITY_N;
6024 		break;
6025 	default:
6026 		return ERR_PTR(-EINVAL);
6027 	}
6028 	mddev->new_level = 6;
6029 	mddev->new_layout = new_layout;
6030 	mddev->delta_disks = 1;
6031 	mddev->raid_disks += 1;
6032 	return setup_conf(mddev);
6033 }
6034 
6035 
6036 static struct md_personality raid6_personality =
6037 {
6038 	.name		= "raid6",
6039 	.level		= 6,
6040 	.owner		= THIS_MODULE,
6041 	.make_request	= make_request,
6042 	.run		= run,
6043 	.stop		= stop,
6044 	.status		= status,
6045 	.error_handler	= error,
6046 	.hot_add_disk	= raid5_add_disk,
6047 	.hot_remove_disk= raid5_remove_disk,
6048 	.spare_active	= raid5_spare_active,
6049 	.sync_request	= sync_request,
6050 	.resize		= raid5_resize,
6051 	.size		= raid5_size,
6052 	.check_reshape	= raid6_check_reshape,
6053 	.start_reshape  = raid5_start_reshape,
6054 	.finish_reshape = raid5_finish_reshape,
6055 	.quiesce	= raid5_quiesce,
6056 	.takeover	= raid6_takeover,
6057 };
6058 static struct md_personality raid5_personality =
6059 {
6060 	.name		= "raid5",
6061 	.level		= 5,
6062 	.owner		= THIS_MODULE,
6063 	.make_request	= make_request,
6064 	.run		= run,
6065 	.stop		= stop,
6066 	.status		= status,
6067 	.error_handler	= error,
6068 	.hot_add_disk	= raid5_add_disk,
6069 	.hot_remove_disk= raid5_remove_disk,
6070 	.spare_active	= raid5_spare_active,
6071 	.sync_request	= sync_request,
6072 	.resize		= raid5_resize,
6073 	.size		= raid5_size,
6074 	.check_reshape	= raid5_check_reshape,
6075 	.start_reshape  = raid5_start_reshape,
6076 	.finish_reshape = raid5_finish_reshape,
6077 	.quiesce	= raid5_quiesce,
6078 	.takeover	= raid5_takeover,
6079 };
6080 
6081 static struct md_personality raid4_personality =
6082 {
6083 	.name		= "raid4",
6084 	.level		= 4,
6085 	.owner		= THIS_MODULE,
6086 	.make_request	= make_request,
6087 	.run		= run,
6088 	.stop		= stop,
6089 	.status		= status,
6090 	.error_handler	= error,
6091 	.hot_add_disk	= raid5_add_disk,
6092 	.hot_remove_disk= raid5_remove_disk,
6093 	.spare_active	= raid5_spare_active,
6094 	.sync_request	= sync_request,
6095 	.resize		= raid5_resize,
6096 	.size		= raid5_size,
6097 	.check_reshape	= raid5_check_reshape,
6098 	.start_reshape  = raid5_start_reshape,
6099 	.finish_reshape = raid5_finish_reshape,
6100 	.quiesce	= raid5_quiesce,
6101 	.takeover	= raid4_takeover,
6102 };
6103 
6104 static int __init raid5_init(void)
6105 {
6106 	register_md_personality(&raid6_personality);
6107 	register_md_personality(&raid5_personality);
6108 	register_md_personality(&raid4_personality);
6109 	return 0;
6110 }
6111 
6112 static void raid5_exit(void)
6113 {
6114 	unregister_md_personality(&raid6_personality);
6115 	unregister_md_personality(&raid5_personality);
6116 	unregister_md_personality(&raid4_personality);
6117 }
6118 
6119 module_init(raid5_init);
6120 module_exit(raid5_exit);
6121 MODULE_LICENSE("GPL");
6122 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6123 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6124 MODULE_ALIAS("md-raid5");
6125 MODULE_ALIAS("md-raid4");
6126 MODULE_ALIAS("md-level-5");
6127 MODULE_ALIAS("md-level-4");
6128 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6129 MODULE_ALIAS("md-raid6");
6130 MODULE_ALIAS("md-level-6");
6131 
6132 /* This used to be two separate modules, they were: */
6133 MODULE_ALIAS("raid5");
6134 MODULE_ALIAS("raid6");
6135