xref: /linux/drivers/md/raid5.c (revision 273b281fa22c293963ee3e6eec418f5dda2dbc83)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->bm_write is the number of the last batch successfully written.
31  * conf->bm_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is bm_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/async.h>
51 #include <linux/seq_file.h>
52 #include <linux/cpu.h>
53 #include "md.h"
54 #include "raid5.h"
55 #include "bitmap.h"
56 
57 /*
58  * Stripe cache
59  */
60 
61 #define NR_STRIPES		256
62 #define STRIPE_SIZE		PAGE_SIZE
63 #define STRIPE_SHIFT		(PAGE_SHIFT - 9)
64 #define STRIPE_SECTORS		(STRIPE_SIZE>>9)
65 #define	IO_THRESHOLD		1
66 #define BYPASS_THRESHOLD	1
67 #define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
68 #define HASH_MASK		(NR_HASH - 1)
69 
70 #define stripe_hash(conf, sect)	(&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
71 
72 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
73  * order without overlap.  There may be several bio's per stripe+device, and
74  * a bio could span several devices.
75  * When walking this list for a particular stripe+device, we must never proceed
76  * beyond a bio that extends past this device, as the next bio might no longer
77  * be valid.
78  * This macro is used to determine the 'next' bio in the list, given the sector
79  * of the current stripe+device
80  */
81 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
82 /*
83  * The following can be used to debug the driver
84  */
85 #define RAID5_PARANOIA	1
86 #if RAID5_PARANOIA && defined(CONFIG_SMP)
87 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
88 #else
89 # define CHECK_DEVLOCK()
90 #endif
91 
92 #ifdef DEBUG
93 #define inline
94 #define __inline__
95 #endif
96 
97 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
98 
99 /*
100  * We maintain a biased count of active stripes in the bottom 16 bits of
101  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
102  */
103 static inline int raid5_bi_phys_segments(struct bio *bio)
104 {
105 	return bio->bi_phys_segments & 0xffff;
106 }
107 
108 static inline int raid5_bi_hw_segments(struct bio *bio)
109 {
110 	return (bio->bi_phys_segments >> 16) & 0xffff;
111 }
112 
113 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
114 {
115 	--bio->bi_phys_segments;
116 	return raid5_bi_phys_segments(bio);
117 }
118 
119 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
120 {
121 	unsigned short val = raid5_bi_hw_segments(bio);
122 
123 	--val;
124 	bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
125 	return val;
126 }
127 
128 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
129 {
130 	bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
131 }
132 
133 /* Find first data disk in a raid6 stripe */
134 static inline int raid6_d0(struct stripe_head *sh)
135 {
136 	if (sh->ddf_layout)
137 		/* ddf always start from first device */
138 		return 0;
139 	/* md starts just after Q block */
140 	if (sh->qd_idx == sh->disks - 1)
141 		return 0;
142 	else
143 		return sh->qd_idx + 1;
144 }
145 static inline int raid6_next_disk(int disk, int raid_disks)
146 {
147 	disk++;
148 	return (disk < raid_disks) ? disk : 0;
149 }
150 
151 /* When walking through the disks in a raid5, starting at raid6_d0,
152  * We need to map each disk to a 'slot', where the data disks are slot
153  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
154  * is raid_disks-1.  This help does that mapping.
155  */
156 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
157 			     int *count, int syndrome_disks)
158 {
159 	int slot = *count;
160 
161 	if (sh->ddf_layout)
162 		(*count)++;
163 	if (idx == sh->pd_idx)
164 		return syndrome_disks;
165 	if (idx == sh->qd_idx)
166 		return syndrome_disks + 1;
167 	if (!sh->ddf_layout)
168 		(*count)++;
169 	return slot;
170 }
171 
172 static void return_io(struct bio *return_bi)
173 {
174 	struct bio *bi = return_bi;
175 	while (bi) {
176 
177 		return_bi = bi->bi_next;
178 		bi->bi_next = NULL;
179 		bi->bi_size = 0;
180 		bio_endio(bi, 0);
181 		bi = return_bi;
182 	}
183 }
184 
185 static void print_raid5_conf (raid5_conf_t *conf);
186 
187 static int stripe_operations_active(struct stripe_head *sh)
188 {
189 	return sh->check_state || sh->reconstruct_state ||
190 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
191 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
192 }
193 
194 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
195 {
196 	if (atomic_dec_and_test(&sh->count)) {
197 		BUG_ON(!list_empty(&sh->lru));
198 		BUG_ON(atomic_read(&conf->active_stripes)==0);
199 		if (test_bit(STRIPE_HANDLE, &sh->state)) {
200 			if (test_bit(STRIPE_DELAYED, &sh->state)) {
201 				list_add_tail(&sh->lru, &conf->delayed_list);
202 				blk_plug_device(conf->mddev->queue);
203 			} else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
204 				   sh->bm_seq - conf->seq_write > 0) {
205 				list_add_tail(&sh->lru, &conf->bitmap_list);
206 				blk_plug_device(conf->mddev->queue);
207 			} else {
208 				clear_bit(STRIPE_BIT_DELAY, &sh->state);
209 				list_add_tail(&sh->lru, &conf->handle_list);
210 			}
211 			md_wakeup_thread(conf->mddev->thread);
212 		} else {
213 			BUG_ON(stripe_operations_active(sh));
214 			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
215 				atomic_dec(&conf->preread_active_stripes);
216 				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
217 					md_wakeup_thread(conf->mddev->thread);
218 			}
219 			atomic_dec(&conf->active_stripes);
220 			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
221 				list_add_tail(&sh->lru, &conf->inactive_list);
222 				wake_up(&conf->wait_for_stripe);
223 				if (conf->retry_read_aligned)
224 					md_wakeup_thread(conf->mddev->thread);
225 			}
226 		}
227 	}
228 }
229 
230 static void release_stripe(struct stripe_head *sh)
231 {
232 	raid5_conf_t *conf = sh->raid_conf;
233 	unsigned long flags;
234 
235 	spin_lock_irqsave(&conf->device_lock, flags);
236 	__release_stripe(conf, sh);
237 	spin_unlock_irqrestore(&conf->device_lock, flags);
238 }
239 
240 static inline void remove_hash(struct stripe_head *sh)
241 {
242 	pr_debug("remove_hash(), stripe %llu\n",
243 		(unsigned long long)sh->sector);
244 
245 	hlist_del_init(&sh->hash);
246 }
247 
248 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
249 {
250 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
251 
252 	pr_debug("insert_hash(), stripe %llu\n",
253 		(unsigned long long)sh->sector);
254 
255 	CHECK_DEVLOCK();
256 	hlist_add_head(&sh->hash, hp);
257 }
258 
259 
260 /* find an idle stripe, make sure it is unhashed, and return it. */
261 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
262 {
263 	struct stripe_head *sh = NULL;
264 	struct list_head *first;
265 
266 	CHECK_DEVLOCK();
267 	if (list_empty(&conf->inactive_list))
268 		goto out;
269 	first = conf->inactive_list.next;
270 	sh = list_entry(first, struct stripe_head, lru);
271 	list_del_init(first);
272 	remove_hash(sh);
273 	atomic_inc(&conf->active_stripes);
274 out:
275 	return sh;
276 }
277 
278 static void shrink_buffers(struct stripe_head *sh, int num)
279 {
280 	struct page *p;
281 	int i;
282 
283 	for (i=0; i<num ; i++) {
284 		p = sh->dev[i].page;
285 		if (!p)
286 			continue;
287 		sh->dev[i].page = NULL;
288 		put_page(p);
289 	}
290 }
291 
292 static int grow_buffers(struct stripe_head *sh, int num)
293 {
294 	int i;
295 
296 	for (i=0; i<num; i++) {
297 		struct page *page;
298 
299 		if (!(page = alloc_page(GFP_KERNEL))) {
300 			return 1;
301 		}
302 		sh->dev[i].page = page;
303 	}
304 	return 0;
305 }
306 
307 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
308 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
309 			    struct stripe_head *sh);
310 
311 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
312 {
313 	raid5_conf_t *conf = sh->raid_conf;
314 	int i;
315 
316 	BUG_ON(atomic_read(&sh->count) != 0);
317 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
318 	BUG_ON(stripe_operations_active(sh));
319 
320 	CHECK_DEVLOCK();
321 	pr_debug("init_stripe called, stripe %llu\n",
322 		(unsigned long long)sh->sector);
323 
324 	remove_hash(sh);
325 
326 	sh->generation = conf->generation - previous;
327 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
328 	sh->sector = sector;
329 	stripe_set_idx(sector, conf, previous, sh);
330 	sh->state = 0;
331 
332 
333 	for (i = sh->disks; i--; ) {
334 		struct r5dev *dev = &sh->dev[i];
335 
336 		if (dev->toread || dev->read || dev->towrite || dev->written ||
337 		    test_bit(R5_LOCKED, &dev->flags)) {
338 			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
339 			       (unsigned long long)sh->sector, i, dev->toread,
340 			       dev->read, dev->towrite, dev->written,
341 			       test_bit(R5_LOCKED, &dev->flags));
342 			BUG();
343 		}
344 		dev->flags = 0;
345 		raid5_build_block(sh, i, previous);
346 	}
347 	insert_hash(conf, sh);
348 }
349 
350 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
351 					 short generation)
352 {
353 	struct stripe_head *sh;
354 	struct hlist_node *hn;
355 
356 	CHECK_DEVLOCK();
357 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
358 	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
359 		if (sh->sector == sector && sh->generation == generation)
360 			return sh;
361 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
362 	return NULL;
363 }
364 
365 static void unplug_slaves(mddev_t *mddev);
366 static void raid5_unplug_device(struct request_queue *q);
367 
368 static struct stripe_head *
369 get_active_stripe(raid5_conf_t *conf, sector_t sector,
370 		  int previous, int noblock, int noquiesce)
371 {
372 	struct stripe_head *sh;
373 
374 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
375 
376 	spin_lock_irq(&conf->device_lock);
377 
378 	do {
379 		wait_event_lock_irq(conf->wait_for_stripe,
380 				    conf->quiesce == 0 || noquiesce,
381 				    conf->device_lock, /* nothing */);
382 		sh = __find_stripe(conf, sector, conf->generation - previous);
383 		if (!sh) {
384 			if (!conf->inactive_blocked)
385 				sh = get_free_stripe(conf);
386 			if (noblock && sh == NULL)
387 				break;
388 			if (!sh) {
389 				conf->inactive_blocked = 1;
390 				wait_event_lock_irq(conf->wait_for_stripe,
391 						    !list_empty(&conf->inactive_list) &&
392 						    (atomic_read(&conf->active_stripes)
393 						     < (conf->max_nr_stripes *3/4)
394 						     || !conf->inactive_blocked),
395 						    conf->device_lock,
396 						    raid5_unplug_device(conf->mddev->queue)
397 					);
398 				conf->inactive_blocked = 0;
399 			} else
400 				init_stripe(sh, sector, previous);
401 		} else {
402 			if (atomic_read(&sh->count)) {
403 				BUG_ON(!list_empty(&sh->lru)
404 				    && !test_bit(STRIPE_EXPANDING, &sh->state));
405 			} else {
406 				if (!test_bit(STRIPE_HANDLE, &sh->state))
407 					atomic_inc(&conf->active_stripes);
408 				if (list_empty(&sh->lru) &&
409 				    !test_bit(STRIPE_EXPANDING, &sh->state))
410 					BUG();
411 				list_del_init(&sh->lru);
412 			}
413 		}
414 	} while (sh == NULL);
415 
416 	if (sh)
417 		atomic_inc(&sh->count);
418 
419 	spin_unlock_irq(&conf->device_lock);
420 	return sh;
421 }
422 
423 static void
424 raid5_end_read_request(struct bio *bi, int error);
425 static void
426 raid5_end_write_request(struct bio *bi, int error);
427 
428 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
429 {
430 	raid5_conf_t *conf = sh->raid_conf;
431 	int i, disks = sh->disks;
432 
433 	might_sleep();
434 
435 	for (i = disks; i--; ) {
436 		int rw;
437 		struct bio *bi;
438 		mdk_rdev_t *rdev;
439 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
440 			rw = WRITE;
441 		else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
442 			rw = READ;
443 		else
444 			continue;
445 
446 		bi = &sh->dev[i].req;
447 
448 		bi->bi_rw = rw;
449 		if (rw == WRITE)
450 			bi->bi_end_io = raid5_end_write_request;
451 		else
452 			bi->bi_end_io = raid5_end_read_request;
453 
454 		rcu_read_lock();
455 		rdev = rcu_dereference(conf->disks[i].rdev);
456 		if (rdev && test_bit(Faulty, &rdev->flags))
457 			rdev = NULL;
458 		if (rdev)
459 			atomic_inc(&rdev->nr_pending);
460 		rcu_read_unlock();
461 
462 		if (rdev) {
463 			if (s->syncing || s->expanding || s->expanded)
464 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
465 
466 			set_bit(STRIPE_IO_STARTED, &sh->state);
467 
468 			bi->bi_bdev = rdev->bdev;
469 			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
470 				__func__, (unsigned long long)sh->sector,
471 				bi->bi_rw, i);
472 			atomic_inc(&sh->count);
473 			bi->bi_sector = sh->sector + rdev->data_offset;
474 			bi->bi_flags = 1 << BIO_UPTODATE;
475 			bi->bi_vcnt = 1;
476 			bi->bi_max_vecs = 1;
477 			bi->bi_idx = 0;
478 			bi->bi_io_vec = &sh->dev[i].vec;
479 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
480 			bi->bi_io_vec[0].bv_offset = 0;
481 			bi->bi_size = STRIPE_SIZE;
482 			bi->bi_next = NULL;
483 			if (rw == WRITE &&
484 			    test_bit(R5_ReWrite, &sh->dev[i].flags))
485 				atomic_add(STRIPE_SECTORS,
486 					&rdev->corrected_errors);
487 			generic_make_request(bi);
488 		} else {
489 			if (rw == WRITE)
490 				set_bit(STRIPE_DEGRADED, &sh->state);
491 			pr_debug("skip op %ld on disc %d for sector %llu\n",
492 				bi->bi_rw, i, (unsigned long long)sh->sector);
493 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
494 			set_bit(STRIPE_HANDLE, &sh->state);
495 		}
496 	}
497 }
498 
499 static struct dma_async_tx_descriptor *
500 async_copy_data(int frombio, struct bio *bio, struct page *page,
501 	sector_t sector, struct dma_async_tx_descriptor *tx)
502 {
503 	struct bio_vec *bvl;
504 	struct page *bio_page;
505 	int i;
506 	int page_offset;
507 	struct async_submit_ctl submit;
508 	enum async_tx_flags flags = 0;
509 
510 	if (bio->bi_sector >= sector)
511 		page_offset = (signed)(bio->bi_sector - sector) * 512;
512 	else
513 		page_offset = (signed)(sector - bio->bi_sector) * -512;
514 
515 	if (frombio)
516 		flags |= ASYNC_TX_FENCE;
517 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
518 
519 	bio_for_each_segment(bvl, bio, i) {
520 		int len = bio_iovec_idx(bio, i)->bv_len;
521 		int clen;
522 		int b_offset = 0;
523 
524 		if (page_offset < 0) {
525 			b_offset = -page_offset;
526 			page_offset += b_offset;
527 			len -= b_offset;
528 		}
529 
530 		if (len > 0 && page_offset + len > STRIPE_SIZE)
531 			clen = STRIPE_SIZE - page_offset;
532 		else
533 			clen = len;
534 
535 		if (clen > 0) {
536 			b_offset += bio_iovec_idx(bio, i)->bv_offset;
537 			bio_page = bio_iovec_idx(bio, i)->bv_page;
538 			if (frombio)
539 				tx = async_memcpy(page, bio_page, page_offset,
540 						  b_offset, clen, &submit);
541 			else
542 				tx = async_memcpy(bio_page, page, b_offset,
543 						  page_offset, clen, &submit);
544 		}
545 		/* chain the operations */
546 		submit.depend_tx = tx;
547 
548 		if (clen < len) /* hit end of page */
549 			break;
550 		page_offset +=  len;
551 	}
552 
553 	return tx;
554 }
555 
556 static void ops_complete_biofill(void *stripe_head_ref)
557 {
558 	struct stripe_head *sh = stripe_head_ref;
559 	struct bio *return_bi = NULL;
560 	raid5_conf_t *conf = sh->raid_conf;
561 	int i;
562 
563 	pr_debug("%s: stripe %llu\n", __func__,
564 		(unsigned long long)sh->sector);
565 
566 	/* clear completed biofills */
567 	spin_lock_irq(&conf->device_lock);
568 	for (i = sh->disks; i--; ) {
569 		struct r5dev *dev = &sh->dev[i];
570 
571 		/* acknowledge completion of a biofill operation */
572 		/* and check if we need to reply to a read request,
573 		 * new R5_Wantfill requests are held off until
574 		 * !STRIPE_BIOFILL_RUN
575 		 */
576 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
577 			struct bio *rbi, *rbi2;
578 
579 			BUG_ON(!dev->read);
580 			rbi = dev->read;
581 			dev->read = NULL;
582 			while (rbi && rbi->bi_sector <
583 				dev->sector + STRIPE_SECTORS) {
584 				rbi2 = r5_next_bio(rbi, dev->sector);
585 				if (!raid5_dec_bi_phys_segments(rbi)) {
586 					rbi->bi_next = return_bi;
587 					return_bi = rbi;
588 				}
589 				rbi = rbi2;
590 			}
591 		}
592 	}
593 	spin_unlock_irq(&conf->device_lock);
594 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
595 
596 	return_io(return_bi);
597 
598 	set_bit(STRIPE_HANDLE, &sh->state);
599 	release_stripe(sh);
600 }
601 
602 static void ops_run_biofill(struct stripe_head *sh)
603 {
604 	struct dma_async_tx_descriptor *tx = NULL;
605 	raid5_conf_t *conf = sh->raid_conf;
606 	struct async_submit_ctl submit;
607 	int i;
608 
609 	pr_debug("%s: stripe %llu\n", __func__,
610 		(unsigned long long)sh->sector);
611 
612 	for (i = sh->disks; i--; ) {
613 		struct r5dev *dev = &sh->dev[i];
614 		if (test_bit(R5_Wantfill, &dev->flags)) {
615 			struct bio *rbi;
616 			spin_lock_irq(&conf->device_lock);
617 			dev->read = rbi = dev->toread;
618 			dev->toread = NULL;
619 			spin_unlock_irq(&conf->device_lock);
620 			while (rbi && rbi->bi_sector <
621 				dev->sector + STRIPE_SECTORS) {
622 				tx = async_copy_data(0, rbi, dev->page,
623 					dev->sector, tx);
624 				rbi = r5_next_bio(rbi, dev->sector);
625 			}
626 		}
627 	}
628 
629 	atomic_inc(&sh->count);
630 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
631 	async_trigger_callback(&submit);
632 }
633 
634 static void mark_target_uptodate(struct stripe_head *sh, int target)
635 {
636 	struct r5dev *tgt;
637 
638 	if (target < 0)
639 		return;
640 
641 	tgt = &sh->dev[target];
642 	set_bit(R5_UPTODATE, &tgt->flags);
643 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
644 	clear_bit(R5_Wantcompute, &tgt->flags);
645 }
646 
647 static void ops_complete_compute(void *stripe_head_ref)
648 {
649 	struct stripe_head *sh = stripe_head_ref;
650 
651 	pr_debug("%s: stripe %llu\n", __func__,
652 		(unsigned long long)sh->sector);
653 
654 	/* mark the computed target(s) as uptodate */
655 	mark_target_uptodate(sh, sh->ops.target);
656 	mark_target_uptodate(sh, sh->ops.target2);
657 
658 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
659 	if (sh->check_state == check_state_compute_run)
660 		sh->check_state = check_state_compute_result;
661 	set_bit(STRIPE_HANDLE, &sh->state);
662 	release_stripe(sh);
663 }
664 
665 /* return a pointer to the address conversion region of the scribble buffer */
666 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
667 				 struct raid5_percpu *percpu)
668 {
669 	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
670 }
671 
672 static struct dma_async_tx_descriptor *
673 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
674 {
675 	int disks = sh->disks;
676 	struct page **xor_srcs = percpu->scribble;
677 	int target = sh->ops.target;
678 	struct r5dev *tgt = &sh->dev[target];
679 	struct page *xor_dest = tgt->page;
680 	int count = 0;
681 	struct dma_async_tx_descriptor *tx;
682 	struct async_submit_ctl submit;
683 	int i;
684 
685 	pr_debug("%s: stripe %llu block: %d\n",
686 		__func__, (unsigned long long)sh->sector, target);
687 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
688 
689 	for (i = disks; i--; )
690 		if (i != target)
691 			xor_srcs[count++] = sh->dev[i].page;
692 
693 	atomic_inc(&sh->count);
694 
695 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
696 			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
697 	if (unlikely(count == 1))
698 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
699 	else
700 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
701 
702 	return tx;
703 }
704 
705 /* set_syndrome_sources - populate source buffers for gen_syndrome
706  * @srcs - (struct page *) array of size sh->disks
707  * @sh - stripe_head to parse
708  *
709  * Populates srcs in proper layout order for the stripe and returns the
710  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
711  * destination buffer is recorded in srcs[count] and the Q destination
712  * is recorded in srcs[count+1]].
713  */
714 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
715 {
716 	int disks = sh->disks;
717 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
718 	int d0_idx = raid6_d0(sh);
719 	int count;
720 	int i;
721 
722 	for (i = 0; i < disks; i++)
723 		srcs[i] = NULL;
724 
725 	count = 0;
726 	i = d0_idx;
727 	do {
728 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
729 
730 		srcs[slot] = sh->dev[i].page;
731 		i = raid6_next_disk(i, disks);
732 	} while (i != d0_idx);
733 
734 	return syndrome_disks;
735 }
736 
737 static struct dma_async_tx_descriptor *
738 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
739 {
740 	int disks = sh->disks;
741 	struct page **blocks = percpu->scribble;
742 	int target;
743 	int qd_idx = sh->qd_idx;
744 	struct dma_async_tx_descriptor *tx;
745 	struct async_submit_ctl submit;
746 	struct r5dev *tgt;
747 	struct page *dest;
748 	int i;
749 	int count;
750 
751 	if (sh->ops.target < 0)
752 		target = sh->ops.target2;
753 	else if (sh->ops.target2 < 0)
754 		target = sh->ops.target;
755 	else
756 		/* we should only have one valid target */
757 		BUG();
758 	BUG_ON(target < 0);
759 	pr_debug("%s: stripe %llu block: %d\n",
760 		__func__, (unsigned long long)sh->sector, target);
761 
762 	tgt = &sh->dev[target];
763 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
764 	dest = tgt->page;
765 
766 	atomic_inc(&sh->count);
767 
768 	if (target == qd_idx) {
769 		count = set_syndrome_sources(blocks, sh);
770 		blocks[count] = NULL; /* regenerating p is not necessary */
771 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
772 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
773 				  ops_complete_compute, sh,
774 				  to_addr_conv(sh, percpu));
775 		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
776 	} else {
777 		/* Compute any data- or p-drive using XOR */
778 		count = 0;
779 		for (i = disks; i-- ; ) {
780 			if (i == target || i == qd_idx)
781 				continue;
782 			blocks[count++] = sh->dev[i].page;
783 		}
784 
785 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
786 				  NULL, ops_complete_compute, sh,
787 				  to_addr_conv(sh, percpu));
788 		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
789 	}
790 
791 	return tx;
792 }
793 
794 static struct dma_async_tx_descriptor *
795 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
796 {
797 	int i, count, disks = sh->disks;
798 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
799 	int d0_idx = raid6_d0(sh);
800 	int faila = -1, failb = -1;
801 	int target = sh->ops.target;
802 	int target2 = sh->ops.target2;
803 	struct r5dev *tgt = &sh->dev[target];
804 	struct r5dev *tgt2 = &sh->dev[target2];
805 	struct dma_async_tx_descriptor *tx;
806 	struct page **blocks = percpu->scribble;
807 	struct async_submit_ctl submit;
808 
809 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
810 		 __func__, (unsigned long long)sh->sector, target, target2);
811 	BUG_ON(target < 0 || target2 < 0);
812 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
813 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
814 
815 	/* we need to open-code set_syndrome_sources to handle the
816 	 * slot number conversion for 'faila' and 'failb'
817 	 */
818 	for (i = 0; i < disks ; i++)
819 		blocks[i] = NULL;
820 	count = 0;
821 	i = d0_idx;
822 	do {
823 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
824 
825 		blocks[slot] = sh->dev[i].page;
826 
827 		if (i == target)
828 			faila = slot;
829 		if (i == target2)
830 			failb = slot;
831 		i = raid6_next_disk(i, disks);
832 	} while (i != d0_idx);
833 
834 	BUG_ON(faila == failb);
835 	if (failb < faila)
836 		swap(faila, failb);
837 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
838 		 __func__, (unsigned long long)sh->sector, faila, failb);
839 
840 	atomic_inc(&sh->count);
841 
842 	if (failb == syndrome_disks+1) {
843 		/* Q disk is one of the missing disks */
844 		if (faila == syndrome_disks) {
845 			/* Missing P+Q, just recompute */
846 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
847 					  ops_complete_compute, sh,
848 					  to_addr_conv(sh, percpu));
849 			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
850 						  STRIPE_SIZE, &submit);
851 		} else {
852 			struct page *dest;
853 			int data_target;
854 			int qd_idx = sh->qd_idx;
855 
856 			/* Missing D+Q: recompute D from P, then recompute Q */
857 			if (target == qd_idx)
858 				data_target = target2;
859 			else
860 				data_target = target;
861 
862 			count = 0;
863 			for (i = disks; i-- ; ) {
864 				if (i == data_target || i == qd_idx)
865 					continue;
866 				blocks[count++] = sh->dev[i].page;
867 			}
868 			dest = sh->dev[data_target].page;
869 			init_async_submit(&submit,
870 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
871 					  NULL, NULL, NULL,
872 					  to_addr_conv(sh, percpu));
873 			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
874 				       &submit);
875 
876 			count = set_syndrome_sources(blocks, sh);
877 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
878 					  ops_complete_compute, sh,
879 					  to_addr_conv(sh, percpu));
880 			return async_gen_syndrome(blocks, 0, count+2,
881 						  STRIPE_SIZE, &submit);
882 		}
883 	} else {
884 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
885 				  ops_complete_compute, sh,
886 				  to_addr_conv(sh, percpu));
887 		if (failb == syndrome_disks) {
888 			/* We're missing D+P. */
889 			return async_raid6_datap_recov(syndrome_disks+2,
890 						       STRIPE_SIZE, faila,
891 						       blocks, &submit);
892 		} else {
893 			/* We're missing D+D. */
894 			return async_raid6_2data_recov(syndrome_disks+2,
895 						       STRIPE_SIZE, faila, failb,
896 						       blocks, &submit);
897 		}
898 	}
899 }
900 
901 
902 static void ops_complete_prexor(void *stripe_head_ref)
903 {
904 	struct stripe_head *sh = stripe_head_ref;
905 
906 	pr_debug("%s: stripe %llu\n", __func__,
907 		(unsigned long long)sh->sector);
908 }
909 
910 static struct dma_async_tx_descriptor *
911 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
912 	       struct dma_async_tx_descriptor *tx)
913 {
914 	int disks = sh->disks;
915 	struct page **xor_srcs = percpu->scribble;
916 	int count = 0, pd_idx = sh->pd_idx, i;
917 	struct async_submit_ctl submit;
918 
919 	/* existing parity data subtracted */
920 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
921 
922 	pr_debug("%s: stripe %llu\n", __func__,
923 		(unsigned long long)sh->sector);
924 
925 	for (i = disks; i--; ) {
926 		struct r5dev *dev = &sh->dev[i];
927 		/* Only process blocks that are known to be uptodate */
928 		if (test_bit(R5_Wantdrain, &dev->flags))
929 			xor_srcs[count++] = dev->page;
930 	}
931 
932 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
933 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
934 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
935 
936 	return tx;
937 }
938 
939 static struct dma_async_tx_descriptor *
940 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
941 {
942 	int disks = sh->disks;
943 	int i;
944 
945 	pr_debug("%s: stripe %llu\n", __func__,
946 		(unsigned long long)sh->sector);
947 
948 	for (i = disks; i--; ) {
949 		struct r5dev *dev = &sh->dev[i];
950 		struct bio *chosen;
951 
952 		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
953 			struct bio *wbi;
954 
955 			spin_lock(&sh->lock);
956 			chosen = dev->towrite;
957 			dev->towrite = NULL;
958 			BUG_ON(dev->written);
959 			wbi = dev->written = chosen;
960 			spin_unlock(&sh->lock);
961 
962 			while (wbi && wbi->bi_sector <
963 				dev->sector + STRIPE_SECTORS) {
964 				tx = async_copy_data(1, wbi, dev->page,
965 					dev->sector, tx);
966 				wbi = r5_next_bio(wbi, dev->sector);
967 			}
968 		}
969 	}
970 
971 	return tx;
972 }
973 
974 static void ops_complete_reconstruct(void *stripe_head_ref)
975 {
976 	struct stripe_head *sh = stripe_head_ref;
977 	int disks = sh->disks;
978 	int pd_idx = sh->pd_idx;
979 	int qd_idx = sh->qd_idx;
980 	int i;
981 
982 	pr_debug("%s: stripe %llu\n", __func__,
983 		(unsigned long long)sh->sector);
984 
985 	for (i = disks; i--; ) {
986 		struct r5dev *dev = &sh->dev[i];
987 
988 		if (dev->written || i == pd_idx || i == qd_idx)
989 			set_bit(R5_UPTODATE, &dev->flags);
990 	}
991 
992 	if (sh->reconstruct_state == reconstruct_state_drain_run)
993 		sh->reconstruct_state = reconstruct_state_drain_result;
994 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
995 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
996 	else {
997 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
998 		sh->reconstruct_state = reconstruct_state_result;
999 	}
1000 
1001 	set_bit(STRIPE_HANDLE, &sh->state);
1002 	release_stripe(sh);
1003 }
1004 
1005 static void
1006 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1007 		     struct dma_async_tx_descriptor *tx)
1008 {
1009 	int disks = sh->disks;
1010 	struct page **xor_srcs = percpu->scribble;
1011 	struct async_submit_ctl submit;
1012 	int count = 0, pd_idx = sh->pd_idx, i;
1013 	struct page *xor_dest;
1014 	int prexor = 0;
1015 	unsigned long flags;
1016 
1017 	pr_debug("%s: stripe %llu\n", __func__,
1018 		(unsigned long long)sh->sector);
1019 
1020 	/* check if prexor is active which means only process blocks
1021 	 * that are part of a read-modify-write (written)
1022 	 */
1023 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1024 		prexor = 1;
1025 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1026 		for (i = disks; i--; ) {
1027 			struct r5dev *dev = &sh->dev[i];
1028 			if (dev->written)
1029 				xor_srcs[count++] = dev->page;
1030 		}
1031 	} else {
1032 		xor_dest = sh->dev[pd_idx].page;
1033 		for (i = disks; i--; ) {
1034 			struct r5dev *dev = &sh->dev[i];
1035 			if (i != pd_idx)
1036 				xor_srcs[count++] = dev->page;
1037 		}
1038 	}
1039 
1040 	/* 1/ if we prexor'd then the dest is reused as a source
1041 	 * 2/ if we did not prexor then we are redoing the parity
1042 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1043 	 * for the synchronous xor case
1044 	 */
1045 	flags = ASYNC_TX_ACK |
1046 		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1047 
1048 	atomic_inc(&sh->count);
1049 
1050 	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1051 			  to_addr_conv(sh, percpu));
1052 	if (unlikely(count == 1))
1053 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1054 	else
1055 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1056 }
1057 
1058 static void
1059 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1060 		     struct dma_async_tx_descriptor *tx)
1061 {
1062 	struct async_submit_ctl submit;
1063 	struct page **blocks = percpu->scribble;
1064 	int count;
1065 
1066 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1067 
1068 	count = set_syndrome_sources(blocks, sh);
1069 
1070 	atomic_inc(&sh->count);
1071 
1072 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1073 			  sh, to_addr_conv(sh, percpu));
1074 	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1075 }
1076 
1077 static void ops_complete_check(void *stripe_head_ref)
1078 {
1079 	struct stripe_head *sh = stripe_head_ref;
1080 
1081 	pr_debug("%s: stripe %llu\n", __func__,
1082 		(unsigned long long)sh->sector);
1083 
1084 	sh->check_state = check_state_check_result;
1085 	set_bit(STRIPE_HANDLE, &sh->state);
1086 	release_stripe(sh);
1087 }
1088 
1089 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1090 {
1091 	int disks = sh->disks;
1092 	int pd_idx = sh->pd_idx;
1093 	int qd_idx = sh->qd_idx;
1094 	struct page *xor_dest;
1095 	struct page **xor_srcs = percpu->scribble;
1096 	struct dma_async_tx_descriptor *tx;
1097 	struct async_submit_ctl submit;
1098 	int count;
1099 	int i;
1100 
1101 	pr_debug("%s: stripe %llu\n", __func__,
1102 		(unsigned long long)sh->sector);
1103 
1104 	count = 0;
1105 	xor_dest = sh->dev[pd_idx].page;
1106 	xor_srcs[count++] = xor_dest;
1107 	for (i = disks; i--; ) {
1108 		if (i == pd_idx || i == qd_idx)
1109 			continue;
1110 		xor_srcs[count++] = sh->dev[i].page;
1111 	}
1112 
1113 	init_async_submit(&submit, 0, NULL, NULL, NULL,
1114 			  to_addr_conv(sh, percpu));
1115 	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1116 			   &sh->ops.zero_sum_result, &submit);
1117 
1118 	atomic_inc(&sh->count);
1119 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1120 	tx = async_trigger_callback(&submit);
1121 }
1122 
1123 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1124 {
1125 	struct page **srcs = percpu->scribble;
1126 	struct async_submit_ctl submit;
1127 	int count;
1128 
1129 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1130 		(unsigned long long)sh->sector, checkp);
1131 
1132 	count = set_syndrome_sources(srcs, sh);
1133 	if (!checkp)
1134 		srcs[count] = NULL;
1135 
1136 	atomic_inc(&sh->count);
1137 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1138 			  sh, to_addr_conv(sh, percpu));
1139 	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1140 			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1141 }
1142 
1143 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1144 {
1145 	int overlap_clear = 0, i, disks = sh->disks;
1146 	struct dma_async_tx_descriptor *tx = NULL;
1147 	raid5_conf_t *conf = sh->raid_conf;
1148 	int level = conf->level;
1149 	struct raid5_percpu *percpu;
1150 	unsigned long cpu;
1151 
1152 	cpu = get_cpu();
1153 	percpu = per_cpu_ptr(conf->percpu, cpu);
1154 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1155 		ops_run_biofill(sh);
1156 		overlap_clear++;
1157 	}
1158 
1159 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1160 		if (level < 6)
1161 			tx = ops_run_compute5(sh, percpu);
1162 		else {
1163 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
1164 				tx = ops_run_compute6_1(sh, percpu);
1165 			else
1166 				tx = ops_run_compute6_2(sh, percpu);
1167 		}
1168 		/* terminate the chain if reconstruct is not set to be run */
1169 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1170 			async_tx_ack(tx);
1171 	}
1172 
1173 	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1174 		tx = ops_run_prexor(sh, percpu, tx);
1175 
1176 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1177 		tx = ops_run_biodrain(sh, tx);
1178 		overlap_clear++;
1179 	}
1180 
1181 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1182 		if (level < 6)
1183 			ops_run_reconstruct5(sh, percpu, tx);
1184 		else
1185 			ops_run_reconstruct6(sh, percpu, tx);
1186 	}
1187 
1188 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1189 		if (sh->check_state == check_state_run)
1190 			ops_run_check_p(sh, percpu);
1191 		else if (sh->check_state == check_state_run_q)
1192 			ops_run_check_pq(sh, percpu, 0);
1193 		else if (sh->check_state == check_state_run_pq)
1194 			ops_run_check_pq(sh, percpu, 1);
1195 		else
1196 			BUG();
1197 	}
1198 
1199 	if (overlap_clear)
1200 		for (i = disks; i--; ) {
1201 			struct r5dev *dev = &sh->dev[i];
1202 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
1203 				wake_up(&sh->raid_conf->wait_for_overlap);
1204 		}
1205 	put_cpu();
1206 }
1207 
1208 #ifdef CONFIG_MULTICORE_RAID456
1209 static void async_run_ops(void *param, async_cookie_t cookie)
1210 {
1211 	struct stripe_head *sh = param;
1212 	unsigned long ops_request = sh->ops.request;
1213 
1214 	clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1215 	wake_up(&sh->ops.wait_for_ops);
1216 
1217 	__raid_run_ops(sh, ops_request);
1218 	release_stripe(sh);
1219 }
1220 
1221 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1222 {
1223 	/* since handle_stripe can be called outside of raid5d context
1224 	 * we need to ensure sh->ops.request is de-staged before another
1225 	 * request arrives
1226 	 */
1227 	wait_event(sh->ops.wait_for_ops,
1228 		   !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1229 	sh->ops.request = ops_request;
1230 
1231 	atomic_inc(&sh->count);
1232 	async_schedule(async_run_ops, sh);
1233 }
1234 #else
1235 #define raid_run_ops __raid_run_ops
1236 #endif
1237 
1238 static int grow_one_stripe(raid5_conf_t *conf)
1239 {
1240 	struct stripe_head *sh;
1241 	int disks = max(conf->raid_disks, conf->previous_raid_disks);
1242 	sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
1243 	if (!sh)
1244 		return 0;
1245 	memset(sh, 0, sizeof(*sh) + (disks-1)*sizeof(struct r5dev));
1246 	sh->raid_conf = conf;
1247 	spin_lock_init(&sh->lock);
1248 	#ifdef CONFIG_MULTICORE_RAID456
1249 	init_waitqueue_head(&sh->ops.wait_for_ops);
1250 	#endif
1251 
1252 	if (grow_buffers(sh, disks)) {
1253 		shrink_buffers(sh, disks);
1254 		kmem_cache_free(conf->slab_cache, sh);
1255 		return 0;
1256 	}
1257 	/* we just created an active stripe so... */
1258 	atomic_set(&sh->count, 1);
1259 	atomic_inc(&conf->active_stripes);
1260 	INIT_LIST_HEAD(&sh->lru);
1261 	release_stripe(sh);
1262 	return 1;
1263 }
1264 
1265 static int grow_stripes(raid5_conf_t *conf, int num)
1266 {
1267 	struct kmem_cache *sc;
1268 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
1269 
1270 	sprintf(conf->cache_name[0],
1271 		"raid%d-%s", conf->level, mdname(conf->mddev));
1272 	sprintf(conf->cache_name[1],
1273 		"raid%d-%s-alt", conf->level, mdname(conf->mddev));
1274 	conf->active_name = 0;
1275 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
1276 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1277 			       0, 0, NULL);
1278 	if (!sc)
1279 		return 1;
1280 	conf->slab_cache = sc;
1281 	conf->pool_size = devs;
1282 	while (num--)
1283 		if (!grow_one_stripe(conf))
1284 			return 1;
1285 	return 0;
1286 }
1287 
1288 /**
1289  * scribble_len - return the required size of the scribble region
1290  * @num - total number of disks in the array
1291  *
1292  * The size must be enough to contain:
1293  * 1/ a struct page pointer for each device in the array +2
1294  * 2/ room to convert each entry in (1) to its corresponding dma
1295  *    (dma_map_page()) or page (page_address()) address.
1296  *
1297  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1298  * calculate over all devices (not just the data blocks), using zeros in place
1299  * of the P and Q blocks.
1300  */
1301 static size_t scribble_len(int num)
1302 {
1303 	size_t len;
1304 
1305 	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1306 
1307 	return len;
1308 }
1309 
1310 static int resize_stripes(raid5_conf_t *conf, int newsize)
1311 {
1312 	/* Make all the stripes able to hold 'newsize' devices.
1313 	 * New slots in each stripe get 'page' set to a new page.
1314 	 *
1315 	 * This happens in stages:
1316 	 * 1/ create a new kmem_cache and allocate the required number of
1317 	 *    stripe_heads.
1318 	 * 2/ gather all the old stripe_heads and tranfer the pages across
1319 	 *    to the new stripe_heads.  This will have the side effect of
1320 	 *    freezing the array as once all stripe_heads have been collected,
1321 	 *    no IO will be possible.  Old stripe heads are freed once their
1322 	 *    pages have been transferred over, and the old kmem_cache is
1323 	 *    freed when all stripes are done.
1324 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1325 	 *    we simple return a failre status - no need to clean anything up.
1326 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
1327 	 *    If this fails, we don't bother trying the shrink the
1328 	 *    stripe_heads down again, we just leave them as they are.
1329 	 *    As each stripe_head is processed the new one is released into
1330 	 *    active service.
1331 	 *
1332 	 * Once step2 is started, we cannot afford to wait for a write,
1333 	 * so we use GFP_NOIO allocations.
1334 	 */
1335 	struct stripe_head *osh, *nsh;
1336 	LIST_HEAD(newstripes);
1337 	struct disk_info *ndisks;
1338 	unsigned long cpu;
1339 	int err;
1340 	struct kmem_cache *sc;
1341 	int i;
1342 
1343 	if (newsize <= conf->pool_size)
1344 		return 0; /* never bother to shrink */
1345 
1346 	err = md_allow_write(conf->mddev);
1347 	if (err)
1348 		return err;
1349 
1350 	/* Step 1 */
1351 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1352 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1353 			       0, 0, NULL);
1354 	if (!sc)
1355 		return -ENOMEM;
1356 
1357 	for (i = conf->max_nr_stripes; i; i--) {
1358 		nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1359 		if (!nsh)
1360 			break;
1361 
1362 		memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1363 
1364 		nsh->raid_conf = conf;
1365 		spin_lock_init(&nsh->lock);
1366 		#ifdef CONFIG_MULTICORE_RAID456
1367 		init_waitqueue_head(&nsh->ops.wait_for_ops);
1368 		#endif
1369 
1370 		list_add(&nsh->lru, &newstripes);
1371 	}
1372 	if (i) {
1373 		/* didn't get enough, give up */
1374 		while (!list_empty(&newstripes)) {
1375 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
1376 			list_del(&nsh->lru);
1377 			kmem_cache_free(sc, nsh);
1378 		}
1379 		kmem_cache_destroy(sc);
1380 		return -ENOMEM;
1381 	}
1382 	/* Step 2 - Must use GFP_NOIO now.
1383 	 * OK, we have enough stripes, start collecting inactive
1384 	 * stripes and copying them over
1385 	 */
1386 	list_for_each_entry(nsh, &newstripes, lru) {
1387 		spin_lock_irq(&conf->device_lock);
1388 		wait_event_lock_irq(conf->wait_for_stripe,
1389 				    !list_empty(&conf->inactive_list),
1390 				    conf->device_lock,
1391 				    unplug_slaves(conf->mddev)
1392 			);
1393 		osh = get_free_stripe(conf);
1394 		spin_unlock_irq(&conf->device_lock);
1395 		atomic_set(&nsh->count, 1);
1396 		for(i=0; i<conf->pool_size; i++)
1397 			nsh->dev[i].page = osh->dev[i].page;
1398 		for( ; i<newsize; i++)
1399 			nsh->dev[i].page = NULL;
1400 		kmem_cache_free(conf->slab_cache, osh);
1401 	}
1402 	kmem_cache_destroy(conf->slab_cache);
1403 
1404 	/* Step 3.
1405 	 * At this point, we are holding all the stripes so the array
1406 	 * is completely stalled, so now is a good time to resize
1407 	 * conf->disks and the scribble region
1408 	 */
1409 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1410 	if (ndisks) {
1411 		for (i=0; i<conf->raid_disks; i++)
1412 			ndisks[i] = conf->disks[i];
1413 		kfree(conf->disks);
1414 		conf->disks = ndisks;
1415 	} else
1416 		err = -ENOMEM;
1417 
1418 	get_online_cpus();
1419 	conf->scribble_len = scribble_len(newsize);
1420 	for_each_present_cpu(cpu) {
1421 		struct raid5_percpu *percpu;
1422 		void *scribble;
1423 
1424 		percpu = per_cpu_ptr(conf->percpu, cpu);
1425 		scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1426 
1427 		if (scribble) {
1428 			kfree(percpu->scribble);
1429 			percpu->scribble = scribble;
1430 		} else {
1431 			err = -ENOMEM;
1432 			break;
1433 		}
1434 	}
1435 	put_online_cpus();
1436 
1437 	/* Step 4, return new stripes to service */
1438 	while(!list_empty(&newstripes)) {
1439 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
1440 		list_del_init(&nsh->lru);
1441 
1442 		for (i=conf->raid_disks; i < newsize; i++)
1443 			if (nsh->dev[i].page == NULL) {
1444 				struct page *p = alloc_page(GFP_NOIO);
1445 				nsh->dev[i].page = p;
1446 				if (!p)
1447 					err = -ENOMEM;
1448 			}
1449 		release_stripe(nsh);
1450 	}
1451 	/* critical section pass, GFP_NOIO no longer needed */
1452 
1453 	conf->slab_cache = sc;
1454 	conf->active_name = 1-conf->active_name;
1455 	conf->pool_size = newsize;
1456 	return err;
1457 }
1458 
1459 static int drop_one_stripe(raid5_conf_t *conf)
1460 {
1461 	struct stripe_head *sh;
1462 
1463 	spin_lock_irq(&conf->device_lock);
1464 	sh = get_free_stripe(conf);
1465 	spin_unlock_irq(&conf->device_lock);
1466 	if (!sh)
1467 		return 0;
1468 	BUG_ON(atomic_read(&sh->count));
1469 	shrink_buffers(sh, conf->pool_size);
1470 	kmem_cache_free(conf->slab_cache, sh);
1471 	atomic_dec(&conf->active_stripes);
1472 	return 1;
1473 }
1474 
1475 static void shrink_stripes(raid5_conf_t *conf)
1476 {
1477 	while (drop_one_stripe(conf))
1478 		;
1479 
1480 	if (conf->slab_cache)
1481 		kmem_cache_destroy(conf->slab_cache);
1482 	conf->slab_cache = NULL;
1483 }
1484 
1485 static void raid5_end_read_request(struct bio * bi, int error)
1486 {
1487 	struct stripe_head *sh = bi->bi_private;
1488 	raid5_conf_t *conf = sh->raid_conf;
1489 	int disks = sh->disks, i;
1490 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1491 	char b[BDEVNAME_SIZE];
1492 	mdk_rdev_t *rdev;
1493 
1494 
1495 	for (i=0 ; i<disks; i++)
1496 		if (bi == &sh->dev[i].req)
1497 			break;
1498 
1499 	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1500 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1501 		uptodate);
1502 	if (i == disks) {
1503 		BUG();
1504 		return;
1505 	}
1506 
1507 	if (uptodate) {
1508 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1509 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1510 			rdev = conf->disks[i].rdev;
1511 			printk_rl(KERN_INFO "raid5:%s: read error corrected"
1512 				  " (%lu sectors at %llu on %s)\n",
1513 				  mdname(conf->mddev), STRIPE_SECTORS,
1514 				  (unsigned long long)(sh->sector
1515 						       + rdev->data_offset),
1516 				  bdevname(rdev->bdev, b));
1517 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1518 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1519 		}
1520 		if (atomic_read(&conf->disks[i].rdev->read_errors))
1521 			atomic_set(&conf->disks[i].rdev->read_errors, 0);
1522 	} else {
1523 		const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1524 		int retry = 0;
1525 		rdev = conf->disks[i].rdev;
1526 
1527 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1528 		atomic_inc(&rdev->read_errors);
1529 		if (conf->mddev->degraded)
1530 			printk_rl(KERN_WARNING
1531 				  "raid5:%s: read error not correctable "
1532 				  "(sector %llu on %s).\n",
1533 				  mdname(conf->mddev),
1534 				  (unsigned long long)(sh->sector
1535 						       + rdev->data_offset),
1536 				  bdn);
1537 		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1538 			/* Oh, no!!! */
1539 			printk_rl(KERN_WARNING
1540 				  "raid5:%s: read error NOT corrected!! "
1541 				  "(sector %llu on %s).\n",
1542 				  mdname(conf->mddev),
1543 				  (unsigned long long)(sh->sector
1544 						       + rdev->data_offset),
1545 				  bdn);
1546 		else if (atomic_read(&rdev->read_errors)
1547 			 > conf->max_nr_stripes)
1548 			printk(KERN_WARNING
1549 			       "raid5:%s: Too many read errors, failing device %s.\n",
1550 			       mdname(conf->mddev), bdn);
1551 		else
1552 			retry = 1;
1553 		if (retry)
1554 			set_bit(R5_ReadError, &sh->dev[i].flags);
1555 		else {
1556 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1557 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1558 			md_error(conf->mddev, rdev);
1559 		}
1560 	}
1561 	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1562 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1563 	set_bit(STRIPE_HANDLE, &sh->state);
1564 	release_stripe(sh);
1565 }
1566 
1567 static void raid5_end_write_request(struct bio *bi, int error)
1568 {
1569 	struct stripe_head *sh = bi->bi_private;
1570 	raid5_conf_t *conf = sh->raid_conf;
1571 	int disks = sh->disks, i;
1572 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1573 
1574 	for (i=0 ; i<disks; i++)
1575 		if (bi == &sh->dev[i].req)
1576 			break;
1577 
1578 	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1579 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1580 		uptodate);
1581 	if (i == disks) {
1582 		BUG();
1583 		return;
1584 	}
1585 
1586 	if (!uptodate)
1587 		md_error(conf->mddev, conf->disks[i].rdev);
1588 
1589 	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1590 
1591 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1592 	set_bit(STRIPE_HANDLE, &sh->state);
1593 	release_stripe(sh);
1594 }
1595 
1596 
1597 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1598 
1599 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1600 {
1601 	struct r5dev *dev = &sh->dev[i];
1602 
1603 	bio_init(&dev->req);
1604 	dev->req.bi_io_vec = &dev->vec;
1605 	dev->req.bi_vcnt++;
1606 	dev->req.bi_max_vecs++;
1607 	dev->vec.bv_page = dev->page;
1608 	dev->vec.bv_len = STRIPE_SIZE;
1609 	dev->vec.bv_offset = 0;
1610 
1611 	dev->req.bi_sector = sh->sector;
1612 	dev->req.bi_private = sh;
1613 
1614 	dev->flags = 0;
1615 	dev->sector = compute_blocknr(sh, i, previous);
1616 }
1617 
1618 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1619 {
1620 	char b[BDEVNAME_SIZE];
1621 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1622 	pr_debug("raid5: error called\n");
1623 
1624 	if (!test_bit(Faulty, &rdev->flags)) {
1625 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1626 		if (test_and_clear_bit(In_sync, &rdev->flags)) {
1627 			unsigned long flags;
1628 			spin_lock_irqsave(&conf->device_lock, flags);
1629 			mddev->degraded++;
1630 			spin_unlock_irqrestore(&conf->device_lock, flags);
1631 			/*
1632 			 * if recovery was running, make sure it aborts.
1633 			 */
1634 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1635 		}
1636 		set_bit(Faulty, &rdev->flags);
1637 		printk(KERN_ALERT
1638 		       "raid5: Disk failure on %s, disabling device.\n"
1639 		       "raid5: Operation continuing on %d devices.\n",
1640 		       bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1641 	}
1642 }
1643 
1644 /*
1645  * Input: a 'big' sector number,
1646  * Output: index of the data and parity disk, and the sector # in them.
1647  */
1648 static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1649 				     int previous, int *dd_idx,
1650 				     struct stripe_head *sh)
1651 {
1652 	long stripe;
1653 	unsigned long chunk_number;
1654 	unsigned int chunk_offset;
1655 	int pd_idx, qd_idx;
1656 	int ddf_layout = 0;
1657 	sector_t new_sector;
1658 	int algorithm = previous ? conf->prev_algo
1659 				 : conf->algorithm;
1660 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1661 					 : conf->chunk_sectors;
1662 	int raid_disks = previous ? conf->previous_raid_disks
1663 				  : conf->raid_disks;
1664 	int data_disks = raid_disks - conf->max_degraded;
1665 
1666 	/* First compute the information on this sector */
1667 
1668 	/*
1669 	 * Compute the chunk number and the sector offset inside the chunk
1670 	 */
1671 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
1672 	chunk_number = r_sector;
1673 	BUG_ON(r_sector != chunk_number);
1674 
1675 	/*
1676 	 * Compute the stripe number
1677 	 */
1678 	stripe = chunk_number / data_disks;
1679 
1680 	/*
1681 	 * Compute the data disk and parity disk indexes inside the stripe
1682 	 */
1683 	*dd_idx = chunk_number % data_disks;
1684 
1685 	/*
1686 	 * Select the parity disk based on the user selected algorithm.
1687 	 */
1688 	pd_idx = qd_idx = ~0;
1689 	switch(conf->level) {
1690 	case 4:
1691 		pd_idx = data_disks;
1692 		break;
1693 	case 5:
1694 		switch (algorithm) {
1695 		case ALGORITHM_LEFT_ASYMMETRIC:
1696 			pd_idx = data_disks - stripe % raid_disks;
1697 			if (*dd_idx >= pd_idx)
1698 				(*dd_idx)++;
1699 			break;
1700 		case ALGORITHM_RIGHT_ASYMMETRIC:
1701 			pd_idx = stripe % raid_disks;
1702 			if (*dd_idx >= pd_idx)
1703 				(*dd_idx)++;
1704 			break;
1705 		case ALGORITHM_LEFT_SYMMETRIC:
1706 			pd_idx = data_disks - stripe % raid_disks;
1707 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1708 			break;
1709 		case ALGORITHM_RIGHT_SYMMETRIC:
1710 			pd_idx = stripe % raid_disks;
1711 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1712 			break;
1713 		case ALGORITHM_PARITY_0:
1714 			pd_idx = 0;
1715 			(*dd_idx)++;
1716 			break;
1717 		case ALGORITHM_PARITY_N:
1718 			pd_idx = data_disks;
1719 			break;
1720 		default:
1721 			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1722 				algorithm);
1723 			BUG();
1724 		}
1725 		break;
1726 	case 6:
1727 
1728 		switch (algorithm) {
1729 		case ALGORITHM_LEFT_ASYMMETRIC:
1730 			pd_idx = raid_disks - 1 - (stripe % raid_disks);
1731 			qd_idx = pd_idx + 1;
1732 			if (pd_idx == raid_disks-1) {
1733 				(*dd_idx)++;	/* Q D D D P */
1734 				qd_idx = 0;
1735 			} else if (*dd_idx >= pd_idx)
1736 				(*dd_idx) += 2; /* D D P Q D */
1737 			break;
1738 		case ALGORITHM_RIGHT_ASYMMETRIC:
1739 			pd_idx = stripe % raid_disks;
1740 			qd_idx = pd_idx + 1;
1741 			if (pd_idx == raid_disks-1) {
1742 				(*dd_idx)++;	/* Q D D D P */
1743 				qd_idx = 0;
1744 			} else if (*dd_idx >= pd_idx)
1745 				(*dd_idx) += 2; /* D D P Q D */
1746 			break;
1747 		case ALGORITHM_LEFT_SYMMETRIC:
1748 			pd_idx = raid_disks - 1 - (stripe % raid_disks);
1749 			qd_idx = (pd_idx + 1) % raid_disks;
1750 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1751 			break;
1752 		case ALGORITHM_RIGHT_SYMMETRIC:
1753 			pd_idx = stripe % raid_disks;
1754 			qd_idx = (pd_idx + 1) % raid_disks;
1755 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1756 			break;
1757 
1758 		case ALGORITHM_PARITY_0:
1759 			pd_idx = 0;
1760 			qd_idx = 1;
1761 			(*dd_idx) += 2;
1762 			break;
1763 		case ALGORITHM_PARITY_N:
1764 			pd_idx = data_disks;
1765 			qd_idx = data_disks + 1;
1766 			break;
1767 
1768 		case ALGORITHM_ROTATING_ZERO_RESTART:
1769 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
1770 			 * of blocks for computing Q is different.
1771 			 */
1772 			pd_idx = stripe % raid_disks;
1773 			qd_idx = pd_idx + 1;
1774 			if (pd_idx == raid_disks-1) {
1775 				(*dd_idx)++;	/* Q D D D P */
1776 				qd_idx = 0;
1777 			} else if (*dd_idx >= pd_idx)
1778 				(*dd_idx) += 2; /* D D P Q D */
1779 			ddf_layout = 1;
1780 			break;
1781 
1782 		case ALGORITHM_ROTATING_N_RESTART:
1783 			/* Same a left_asymmetric, by first stripe is
1784 			 * D D D P Q  rather than
1785 			 * Q D D D P
1786 			 */
1787 			pd_idx = raid_disks - 1 - ((stripe + 1) % raid_disks);
1788 			qd_idx = pd_idx + 1;
1789 			if (pd_idx == raid_disks-1) {
1790 				(*dd_idx)++;	/* Q D D D P */
1791 				qd_idx = 0;
1792 			} else if (*dd_idx >= pd_idx)
1793 				(*dd_idx) += 2; /* D D P Q D */
1794 			ddf_layout = 1;
1795 			break;
1796 
1797 		case ALGORITHM_ROTATING_N_CONTINUE:
1798 			/* Same as left_symmetric but Q is before P */
1799 			pd_idx = raid_disks - 1 - (stripe % raid_disks);
1800 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1801 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1802 			ddf_layout = 1;
1803 			break;
1804 
1805 		case ALGORITHM_LEFT_ASYMMETRIC_6:
1806 			/* RAID5 left_asymmetric, with Q on last device */
1807 			pd_idx = data_disks - stripe % (raid_disks-1);
1808 			if (*dd_idx >= pd_idx)
1809 				(*dd_idx)++;
1810 			qd_idx = raid_disks - 1;
1811 			break;
1812 
1813 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
1814 			pd_idx = stripe % (raid_disks-1);
1815 			if (*dd_idx >= pd_idx)
1816 				(*dd_idx)++;
1817 			qd_idx = raid_disks - 1;
1818 			break;
1819 
1820 		case ALGORITHM_LEFT_SYMMETRIC_6:
1821 			pd_idx = data_disks - stripe % (raid_disks-1);
1822 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1823 			qd_idx = raid_disks - 1;
1824 			break;
1825 
1826 		case ALGORITHM_RIGHT_SYMMETRIC_6:
1827 			pd_idx = stripe % (raid_disks-1);
1828 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1829 			qd_idx = raid_disks - 1;
1830 			break;
1831 
1832 		case ALGORITHM_PARITY_0_6:
1833 			pd_idx = 0;
1834 			(*dd_idx)++;
1835 			qd_idx = raid_disks - 1;
1836 			break;
1837 
1838 
1839 		default:
1840 			printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1841 			       algorithm);
1842 			BUG();
1843 		}
1844 		break;
1845 	}
1846 
1847 	if (sh) {
1848 		sh->pd_idx = pd_idx;
1849 		sh->qd_idx = qd_idx;
1850 		sh->ddf_layout = ddf_layout;
1851 	}
1852 	/*
1853 	 * Finally, compute the new sector number
1854 	 */
1855 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1856 	return new_sector;
1857 }
1858 
1859 
1860 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1861 {
1862 	raid5_conf_t *conf = sh->raid_conf;
1863 	int raid_disks = sh->disks;
1864 	int data_disks = raid_disks - conf->max_degraded;
1865 	sector_t new_sector = sh->sector, check;
1866 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1867 					 : conf->chunk_sectors;
1868 	int algorithm = previous ? conf->prev_algo
1869 				 : conf->algorithm;
1870 	sector_t stripe;
1871 	int chunk_offset;
1872 	int chunk_number, dummy1, dd_idx = i;
1873 	sector_t r_sector;
1874 	struct stripe_head sh2;
1875 
1876 
1877 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
1878 	stripe = new_sector;
1879 	BUG_ON(new_sector != stripe);
1880 
1881 	if (i == sh->pd_idx)
1882 		return 0;
1883 	switch(conf->level) {
1884 	case 4: break;
1885 	case 5:
1886 		switch (algorithm) {
1887 		case ALGORITHM_LEFT_ASYMMETRIC:
1888 		case ALGORITHM_RIGHT_ASYMMETRIC:
1889 			if (i > sh->pd_idx)
1890 				i--;
1891 			break;
1892 		case ALGORITHM_LEFT_SYMMETRIC:
1893 		case ALGORITHM_RIGHT_SYMMETRIC:
1894 			if (i < sh->pd_idx)
1895 				i += raid_disks;
1896 			i -= (sh->pd_idx + 1);
1897 			break;
1898 		case ALGORITHM_PARITY_0:
1899 			i -= 1;
1900 			break;
1901 		case ALGORITHM_PARITY_N:
1902 			break;
1903 		default:
1904 			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1905 			       algorithm);
1906 			BUG();
1907 		}
1908 		break;
1909 	case 6:
1910 		if (i == sh->qd_idx)
1911 			return 0; /* It is the Q disk */
1912 		switch (algorithm) {
1913 		case ALGORITHM_LEFT_ASYMMETRIC:
1914 		case ALGORITHM_RIGHT_ASYMMETRIC:
1915 		case ALGORITHM_ROTATING_ZERO_RESTART:
1916 		case ALGORITHM_ROTATING_N_RESTART:
1917 			if (sh->pd_idx == raid_disks-1)
1918 				i--;	/* Q D D D P */
1919 			else if (i > sh->pd_idx)
1920 				i -= 2; /* D D P Q D */
1921 			break;
1922 		case ALGORITHM_LEFT_SYMMETRIC:
1923 		case ALGORITHM_RIGHT_SYMMETRIC:
1924 			if (sh->pd_idx == raid_disks-1)
1925 				i--; /* Q D D D P */
1926 			else {
1927 				/* D D P Q D */
1928 				if (i < sh->pd_idx)
1929 					i += raid_disks;
1930 				i -= (sh->pd_idx + 2);
1931 			}
1932 			break;
1933 		case ALGORITHM_PARITY_0:
1934 			i -= 2;
1935 			break;
1936 		case ALGORITHM_PARITY_N:
1937 			break;
1938 		case ALGORITHM_ROTATING_N_CONTINUE:
1939 			/* Like left_symmetric, but P is before Q */
1940 			if (sh->pd_idx == 0)
1941 				i--;	/* P D D D Q */
1942 			else {
1943 				/* D D Q P D */
1944 				if (i < sh->pd_idx)
1945 					i += raid_disks;
1946 				i -= (sh->pd_idx + 1);
1947 			}
1948 			break;
1949 		case ALGORITHM_LEFT_ASYMMETRIC_6:
1950 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
1951 			if (i > sh->pd_idx)
1952 				i--;
1953 			break;
1954 		case ALGORITHM_LEFT_SYMMETRIC_6:
1955 		case ALGORITHM_RIGHT_SYMMETRIC_6:
1956 			if (i < sh->pd_idx)
1957 				i += data_disks + 1;
1958 			i -= (sh->pd_idx + 1);
1959 			break;
1960 		case ALGORITHM_PARITY_0_6:
1961 			i -= 1;
1962 			break;
1963 		default:
1964 			printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1965 			       algorithm);
1966 			BUG();
1967 		}
1968 		break;
1969 	}
1970 
1971 	chunk_number = stripe * data_disks + i;
1972 	r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1973 
1974 	check = raid5_compute_sector(conf, r_sector,
1975 				     previous, &dummy1, &sh2);
1976 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
1977 		|| sh2.qd_idx != sh->qd_idx) {
1978 		printk(KERN_ERR "compute_blocknr: map not correct\n");
1979 		return 0;
1980 	}
1981 	return r_sector;
1982 }
1983 
1984 
1985 static void
1986 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
1987 			 int rcw, int expand)
1988 {
1989 	int i, pd_idx = sh->pd_idx, disks = sh->disks;
1990 	raid5_conf_t *conf = sh->raid_conf;
1991 	int level = conf->level;
1992 
1993 	if (rcw) {
1994 		/* if we are not expanding this is a proper write request, and
1995 		 * there will be bios with new data to be drained into the
1996 		 * stripe cache
1997 		 */
1998 		if (!expand) {
1999 			sh->reconstruct_state = reconstruct_state_drain_run;
2000 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2001 		} else
2002 			sh->reconstruct_state = reconstruct_state_run;
2003 
2004 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2005 
2006 		for (i = disks; i--; ) {
2007 			struct r5dev *dev = &sh->dev[i];
2008 
2009 			if (dev->towrite) {
2010 				set_bit(R5_LOCKED, &dev->flags);
2011 				set_bit(R5_Wantdrain, &dev->flags);
2012 				if (!expand)
2013 					clear_bit(R5_UPTODATE, &dev->flags);
2014 				s->locked++;
2015 			}
2016 		}
2017 		if (s->locked + conf->max_degraded == disks)
2018 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2019 				atomic_inc(&conf->pending_full_writes);
2020 	} else {
2021 		BUG_ON(level == 6);
2022 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2023 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2024 
2025 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2026 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2027 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2028 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2029 
2030 		for (i = disks; i--; ) {
2031 			struct r5dev *dev = &sh->dev[i];
2032 			if (i == pd_idx)
2033 				continue;
2034 
2035 			if (dev->towrite &&
2036 			    (test_bit(R5_UPTODATE, &dev->flags) ||
2037 			     test_bit(R5_Wantcompute, &dev->flags))) {
2038 				set_bit(R5_Wantdrain, &dev->flags);
2039 				set_bit(R5_LOCKED, &dev->flags);
2040 				clear_bit(R5_UPTODATE, &dev->flags);
2041 				s->locked++;
2042 			}
2043 		}
2044 	}
2045 
2046 	/* keep the parity disk(s) locked while asynchronous operations
2047 	 * are in flight
2048 	 */
2049 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2050 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2051 	s->locked++;
2052 
2053 	if (level == 6) {
2054 		int qd_idx = sh->qd_idx;
2055 		struct r5dev *dev = &sh->dev[qd_idx];
2056 
2057 		set_bit(R5_LOCKED, &dev->flags);
2058 		clear_bit(R5_UPTODATE, &dev->flags);
2059 		s->locked++;
2060 	}
2061 
2062 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2063 		__func__, (unsigned long long)sh->sector,
2064 		s->locked, s->ops_request);
2065 }
2066 
2067 /*
2068  * Each stripe/dev can have one or more bion attached.
2069  * toread/towrite point to the first in a chain.
2070  * The bi_next chain must be in order.
2071  */
2072 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2073 {
2074 	struct bio **bip;
2075 	raid5_conf_t *conf = sh->raid_conf;
2076 	int firstwrite=0;
2077 
2078 	pr_debug("adding bh b#%llu to stripe s#%llu\n",
2079 		(unsigned long long)bi->bi_sector,
2080 		(unsigned long long)sh->sector);
2081 
2082 
2083 	spin_lock(&sh->lock);
2084 	spin_lock_irq(&conf->device_lock);
2085 	if (forwrite) {
2086 		bip = &sh->dev[dd_idx].towrite;
2087 		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2088 			firstwrite = 1;
2089 	} else
2090 		bip = &sh->dev[dd_idx].toread;
2091 	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2092 		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2093 			goto overlap;
2094 		bip = & (*bip)->bi_next;
2095 	}
2096 	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2097 		goto overlap;
2098 
2099 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2100 	if (*bip)
2101 		bi->bi_next = *bip;
2102 	*bip = bi;
2103 	bi->bi_phys_segments++;
2104 	spin_unlock_irq(&conf->device_lock);
2105 	spin_unlock(&sh->lock);
2106 
2107 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2108 		(unsigned long long)bi->bi_sector,
2109 		(unsigned long long)sh->sector, dd_idx);
2110 
2111 	if (conf->mddev->bitmap && firstwrite) {
2112 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2113 				  STRIPE_SECTORS, 0);
2114 		sh->bm_seq = conf->seq_flush+1;
2115 		set_bit(STRIPE_BIT_DELAY, &sh->state);
2116 	}
2117 
2118 	if (forwrite) {
2119 		/* check if page is covered */
2120 		sector_t sector = sh->dev[dd_idx].sector;
2121 		for (bi=sh->dev[dd_idx].towrite;
2122 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2123 			     bi && bi->bi_sector <= sector;
2124 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2125 			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2126 				sector = bi->bi_sector + (bi->bi_size>>9);
2127 		}
2128 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2129 			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2130 	}
2131 	return 1;
2132 
2133  overlap:
2134 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2135 	spin_unlock_irq(&conf->device_lock);
2136 	spin_unlock(&sh->lock);
2137 	return 0;
2138 }
2139 
2140 static void end_reshape(raid5_conf_t *conf);
2141 
2142 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2143 			    struct stripe_head *sh)
2144 {
2145 	int sectors_per_chunk =
2146 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2147 	int dd_idx;
2148 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2149 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2150 
2151 	raid5_compute_sector(conf,
2152 			     stripe * (disks - conf->max_degraded)
2153 			     *sectors_per_chunk + chunk_offset,
2154 			     previous,
2155 			     &dd_idx, sh);
2156 }
2157 
2158 static void
2159 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2160 				struct stripe_head_state *s, int disks,
2161 				struct bio **return_bi)
2162 {
2163 	int i;
2164 	for (i = disks; i--; ) {
2165 		struct bio *bi;
2166 		int bitmap_end = 0;
2167 
2168 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2169 			mdk_rdev_t *rdev;
2170 			rcu_read_lock();
2171 			rdev = rcu_dereference(conf->disks[i].rdev);
2172 			if (rdev && test_bit(In_sync, &rdev->flags))
2173 				/* multiple read failures in one stripe */
2174 				md_error(conf->mddev, rdev);
2175 			rcu_read_unlock();
2176 		}
2177 		spin_lock_irq(&conf->device_lock);
2178 		/* fail all writes first */
2179 		bi = sh->dev[i].towrite;
2180 		sh->dev[i].towrite = NULL;
2181 		if (bi) {
2182 			s->to_write--;
2183 			bitmap_end = 1;
2184 		}
2185 
2186 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2187 			wake_up(&conf->wait_for_overlap);
2188 
2189 		while (bi && bi->bi_sector <
2190 			sh->dev[i].sector + STRIPE_SECTORS) {
2191 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2192 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2193 			if (!raid5_dec_bi_phys_segments(bi)) {
2194 				md_write_end(conf->mddev);
2195 				bi->bi_next = *return_bi;
2196 				*return_bi = bi;
2197 			}
2198 			bi = nextbi;
2199 		}
2200 		/* and fail all 'written' */
2201 		bi = sh->dev[i].written;
2202 		sh->dev[i].written = NULL;
2203 		if (bi) bitmap_end = 1;
2204 		while (bi && bi->bi_sector <
2205 		       sh->dev[i].sector + STRIPE_SECTORS) {
2206 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2207 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2208 			if (!raid5_dec_bi_phys_segments(bi)) {
2209 				md_write_end(conf->mddev);
2210 				bi->bi_next = *return_bi;
2211 				*return_bi = bi;
2212 			}
2213 			bi = bi2;
2214 		}
2215 
2216 		/* fail any reads if this device is non-operational and
2217 		 * the data has not reached the cache yet.
2218 		 */
2219 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2220 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2221 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2222 			bi = sh->dev[i].toread;
2223 			sh->dev[i].toread = NULL;
2224 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2225 				wake_up(&conf->wait_for_overlap);
2226 			if (bi) s->to_read--;
2227 			while (bi && bi->bi_sector <
2228 			       sh->dev[i].sector + STRIPE_SECTORS) {
2229 				struct bio *nextbi =
2230 					r5_next_bio(bi, sh->dev[i].sector);
2231 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2232 				if (!raid5_dec_bi_phys_segments(bi)) {
2233 					bi->bi_next = *return_bi;
2234 					*return_bi = bi;
2235 				}
2236 				bi = nextbi;
2237 			}
2238 		}
2239 		spin_unlock_irq(&conf->device_lock);
2240 		if (bitmap_end)
2241 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2242 					STRIPE_SECTORS, 0, 0);
2243 	}
2244 
2245 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2246 		if (atomic_dec_and_test(&conf->pending_full_writes))
2247 			md_wakeup_thread(conf->mddev->thread);
2248 }
2249 
2250 /* fetch_block5 - checks the given member device to see if its data needs
2251  * to be read or computed to satisfy a request.
2252  *
2253  * Returns 1 when no more member devices need to be checked, otherwise returns
2254  * 0 to tell the loop in handle_stripe_fill5 to continue
2255  */
2256 static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2257 			int disk_idx, int disks)
2258 {
2259 	struct r5dev *dev = &sh->dev[disk_idx];
2260 	struct r5dev *failed_dev = &sh->dev[s->failed_num];
2261 
2262 	/* is the data in this block needed, and can we get it? */
2263 	if (!test_bit(R5_LOCKED, &dev->flags) &&
2264 	    !test_bit(R5_UPTODATE, &dev->flags) &&
2265 	    (dev->toread ||
2266 	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2267 	     s->syncing || s->expanding ||
2268 	     (s->failed &&
2269 	      (failed_dev->toread ||
2270 	       (failed_dev->towrite &&
2271 		!test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2272 		/* We would like to get this block, possibly by computing it,
2273 		 * otherwise read it if the backing disk is insync
2274 		 */
2275 		if ((s->uptodate == disks - 1) &&
2276 		    (s->failed && disk_idx == s->failed_num)) {
2277 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2278 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2279 			set_bit(R5_Wantcompute, &dev->flags);
2280 			sh->ops.target = disk_idx;
2281 			sh->ops.target2 = -1;
2282 			s->req_compute = 1;
2283 			/* Careful: from this point on 'uptodate' is in the eye
2284 			 * of raid_run_ops which services 'compute' operations
2285 			 * before writes. R5_Wantcompute flags a block that will
2286 			 * be R5_UPTODATE by the time it is needed for a
2287 			 * subsequent operation.
2288 			 */
2289 			s->uptodate++;
2290 			return 1; /* uptodate + compute == disks */
2291 		} else if (test_bit(R5_Insync, &dev->flags)) {
2292 			set_bit(R5_LOCKED, &dev->flags);
2293 			set_bit(R5_Wantread, &dev->flags);
2294 			s->locked++;
2295 			pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2296 				s->syncing);
2297 		}
2298 	}
2299 
2300 	return 0;
2301 }
2302 
2303 /**
2304  * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2305  */
2306 static void handle_stripe_fill5(struct stripe_head *sh,
2307 			struct stripe_head_state *s, int disks)
2308 {
2309 	int i;
2310 
2311 	/* look for blocks to read/compute, skip this if a compute
2312 	 * is already in flight, or if the stripe contents are in the
2313 	 * midst of changing due to a write
2314 	 */
2315 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2316 	    !sh->reconstruct_state)
2317 		for (i = disks; i--; )
2318 			if (fetch_block5(sh, s, i, disks))
2319 				break;
2320 	set_bit(STRIPE_HANDLE, &sh->state);
2321 }
2322 
2323 /* fetch_block6 - checks the given member device to see if its data needs
2324  * to be read or computed to satisfy a request.
2325  *
2326  * Returns 1 when no more member devices need to be checked, otherwise returns
2327  * 0 to tell the loop in handle_stripe_fill6 to continue
2328  */
2329 static int fetch_block6(struct stripe_head *sh, struct stripe_head_state *s,
2330 			 struct r6_state *r6s, int disk_idx, int disks)
2331 {
2332 	struct r5dev *dev = &sh->dev[disk_idx];
2333 	struct r5dev *fdev[2] = { &sh->dev[r6s->failed_num[0]],
2334 				  &sh->dev[r6s->failed_num[1]] };
2335 
2336 	if (!test_bit(R5_LOCKED, &dev->flags) &&
2337 	    !test_bit(R5_UPTODATE, &dev->flags) &&
2338 	    (dev->toread ||
2339 	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2340 	     s->syncing || s->expanding ||
2341 	     (s->failed >= 1 &&
2342 	      (fdev[0]->toread || s->to_write)) ||
2343 	     (s->failed >= 2 &&
2344 	      (fdev[1]->toread || s->to_write)))) {
2345 		/* we would like to get this block, possibly by computing it,
2346 		 * otherwise read it if the backing disk is insync
2347 		 */
2348 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2349 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
2350 		if ((s->uptodate == disks - 1) &&
2351 		    (s->failed && (disk_idx == r6s->failed_num[0] ||
2352 				   disk_idx == r6s->failed_num[1]))) {
2353 			/* have disk failed, and we're requested to fetch it;
2354 			 * do compute it
2355 			 */
2356 			pr_debug("Computing stripe %llu block %d\n",
2357 			       (unsigned long long)sh->sector, disk_idx);
2358 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2359 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2360 			set_bit(R5_Wantcompute, &dev->flags);
2361 			sh->ops.target = disk_idx;
2362 			sh->ops.target2 = -1; /* no 2nd target */
2363 			s->req_compute = 1;
2364 			s->uptodate++;
2365 			return 1;
2366 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
2367 			/* Computing 2-failure is *very* expensive; only
2368 			 * do it if failed >= 2
2369 			 */
2370 			int other;
2371 			for (other = disks; other--; ) {
2372 				if (other == disk_idx)
2373 					continue;
2374 				if (!test_bit(R5_UPTODATE,
2375 				      &sh->dev[other].flags))
2376 					break;
2377 			}
2378 			BUG_ON(other < 0);
2379 			pr_debug("Computing stripe %llu blocks %d,%d\n",
2380 			       (unsigned long long)sh->sector,
2381 			       disk_idx, other);
2382 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2383 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2384 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2385 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
2386 			sh->ops.target = disk_idx;
2387 			sh->ops.target2 = other;
2388 			s->uptodate += 2;
2389 			s->req_compute = 1;
2390 			return 1;
2391 		} else if (test_bit(R5_Insync, &dev->flags)) {
2392 			set_bit(R5_LOCKED, &dev->flags);
2393 			set_bit(R5_Wantread, &dev->flags);
2394 			s->locked++;
2395 			pr_debug("Reading block %d (sync=%d)\n",
2396 				disk_idx, s->syncing);
2397 		}
2398 	}
2399 
2400 	return 0;
2401 }
2402 
2403 /**
2404  * handle_stripe_fill6 - read or compute data to satisfy pending requests.
2405  */
2406 static void handle_stripe_fill6(struct stripe_head *sh,
2407 			struct stripe_head_state *s, struct r6_state *r6s,
2408 			int disks)
2409 {
2410 	int i;
2411 
2412 	/* look for blocks to read/compute, skip this if a compute
2413 	 * is already in flight, or if the stripe contents are in the
2414 	 * midst of changing due to a write
2415 	 */
2416 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2417 	    !sh->reconstruct_state)
2418 		for (i = disks; i--; )
2419 			if (fetch_block6(sh, s, r6s, i, disks))
2420 				break;
2421 	set_bit(STRIPE_HANDLE, &sh->state);
2422 }
2423 
2424 
2425 /* handle_stripe_clean_event
2426  * any written block on an uptodate or failed drive can be returned.
2427  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2428  * never LOCKED, so we don't need to test 'failed' directly.
2429  */
2430 static void handle_stripe_clean_event(raid5_conf_t *conf,
2431 	struct stripe_head *sh, int disks, struct bio **return_bi)
2432 {
2433 	int i;
2434 	struct r5dev *dev;
2435 
2436 	for (i = disks; i--; )
2437 		if (sh->dev[i].written) {
2438 			dev = &sh->dev[i];
2439 			if (!test_bit(R5_LOCKED, &dev->flags) &&
2440 				test_bit(R5_UPTODATE, &dev->flags)) {
2441 				/* We can return any write requests */
2442 				struct bio *wbi, *wbi2;
2443 				int bitmap_end = 0;
2444 				pr_debug("Return write for disc %d\n", i);
2445 				spin_lock_irq(&conf->device_lock);
2446 				wbi = dev->written;
2447 				dev->written = NULL;
2448 				while (wbi && wbi->bi_sector <
2449 					dev->sector + STRIPE_SECTORS) {
2450 					wbi2 = r5_next_bio(wbi, dev->sector);
2451 					if (!raid5_dec_bi_phys_segments(wbi)) {
2452 						md_write_end(conf->mddev);
2453 						wbi->bi_next = *return_bi;
2454 						*return_bi = wbi;
2455 					}
2456 					wbi = wbi2;
2457 				}
2458 				if (dev->towrite == NULL)
2459 					bitmap_end = 1;
2460 				spin_unlock_irq(&conf->device_lock);
2461 				if (bitmap_end)
2462 					bitmap_endwrite(conf->mddev->bitmap,
2463 							sh->sector,
2464 							STRIPE_SECTORS,
2465 					 !test_bit(STRIPE_DEGRADED, &sh->state),
2466 							0);
2467 			}
2468 		}
2469 
2470 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2471 		if (atomic_dec_and_test(&conf->pending_full_writes))
2472 			md_wakeup_thread(conf->mddev->thread);
2473 }
2474 
2475 static void handle_stripe_dirtying5(raid5_conf_t *conf,
2476 		struct stripe_head *sh,	struct stripe_head_state *s, int disks)
2477 {
2478 	int rmw = 0, rcw = 0, i;
2479 	for (i = disks; i--; ) {
2480 		/* would I have to read this buffer for read_modify_write */
2481 		struct r5dev *dev = &sh->dev[i];
2482 		if ((dev->towrite || i == sh->pd_idx) &&
2483 		    !test_bit(R5_LOCKED, &dev->flags) &&
2484 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2485 		      test_bit(R5_Wantcompute, &dev->flags))) {
2486 			if (test_bit(R5_Insync, &dev->flags))
2487 				rmw++;
2488 			else
2489 				rmw += 2*disks;  /* cannot read it */
2490 		}
2491 		/* Would I have to read this buffer for reconstruct_write */
2492 		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2493 		    !test_bit(R5_LOCKED, &dev->flags) &&
2494 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2495 		    test_bit(R5_Wantcompute, &dev->flags))) {
2496 			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2497 			else
2498 				rcw += 2*disks;
2499 		}
2500 	}
2501 	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2502 		(unsigned long long)sh->sector, rmw, rcw);
2503 	set_bit(STRIPE_HANDLE, &sh->state);
2504 	if (rmw < rcw && rmw > 0)
2505 		/* prefer read-modify-write, but need to get some data */
2506 		for (i = disks; i--; ) {
2507 			struct r5dev *dev = &sh->dev[i];
2508 			if ((dev->towrite || i == sh->pd_idx) &&
2509 			    !test_bit(R5_LOCKED, &dev->flags) &&
2510 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2511 			    test_bit(R5_Wantcompute, &dev->flags)) &&
2512 			    test_bit(R5_Insync, &dev->flags)) {
2513 				if (
2514 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2515 					pr_debug("Read_old block "
2516 						"%d for r-m-w\n", i);
2517 					set_bit(R5_LOCKED, &dev->flags);
2518 					set_bit(R5_Wantread, &dev->flags);
2519 					s->locked++;
2520 				} else {
2521 					set_bit(STRIPE_DELAYED, &sh->state);
2522 					set_bit(STRIPE_HANDLE, &sh->state);
2523 				}
2524 			}
2525 		}
2526 	if (rcw <= rmw && rcw > 0)
2527 		/* want reconstruct write, but need to get some data */
2528 		for (i = disks; i--; ) {
2529 			struct r5dev *dev = &sh->dev[i];
2530 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2531 			    i != sh->pd_idx &&
2532 			    !test_bit(R5_LOCKED, &dev->flags) &&
2533 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2534 			    test_bit(R5_Wantcompute, &dev->flags)) &&
2535 			    test_bit(R5_Insync, &dev->flags)) {
2536 				if (
2537 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2538 					pr_debug("Read_old block "
2539 						"%d for Reconstruct\n", i);
2540 					set_bit(R5_LOCKED, &dev->flags);
2541 					set_bit(R5_Wantread, &dev->flags);
2542 					s->locked++;
2543 				} else {
2544 					set_bit(STRIPE_DELAYED, &sh->state);
2545 					set_bit(STRIPE_HANDLE, &sh->state);
2546 				}
2547 			}
2548 		}
2549 	/* now if nothing is locked, and if we have enough data,
2550 	 * we can start a write request
2551 	 */
2552 	/* since handle_stripe can be called at any time we need to handle the
2553 	 * case where a compute block operation has been submitted and then a
2554 	 * subsequent call wants to start a write request.  raid_run_ops only
2555 	 * handles the case where compute block and reconstruct are requested
2556 	 * simultaneously.  If this is not the case then new writes need to be
2557 	 * held off until the compute completes.
2558 	 */
2559 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2560 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2561 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2562 		schedule_reconstruction(sh, s, rcw == 0, 0);
2563 }
2564 
2565 static void handle_stripe_dirtying6(raid5_conf_t *conf,
2566 		struct stripe_head *sh,	struct stripe_head_state *s,
2567 		struct r6_state *r6s, int disks)
2568 {
2569 	int rcw = 0, pd_idx = sh->pd_idx, i;
2570 	int qd_idx = sh->qd_idx;
2571 
2572 	set_bit(STRIPE_HANDLE, &sh->state);
2573 	for (i = disks; i--; ) {
2574 		struct r5dev *dev = &sh->dev[i];
2575 		/* check if we haven't enough data */
2576 		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2577 		    i != pd_idx && i != qd_idx &&
2578 		    !test_bit(R5_LOCKED, &dev->flags) &&
2579 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2580 		      test_bit(R5_Wantcompute, &dev->flags))) {
2581 			rcw++;
2582 			if (!test_bit(R5_Insync, &dev->flags))
2583 				continue; /* it's a failed drive */
2584 
2585 			if (
2586 			  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2587 				pr_debug("Read_old stripe %llu "
2588 					"block %d for Reconstruct\n",
2589 				     (unsigned long long)sh->sector, i);
2590 				set_bit(R5_LOCKED, &dev->flags);
2591 				set_bit(R5_Wantread, &dev->flags);
2592 				s->locked++;
2593 			} else {
2594 				pr_debug("Request delayed stripe %llu "
2595 					"block %d for Reconstruct\n",
2596 				     (unsigned long long)sh->sector, i);
2597 				set_bit(STRIPE_DELAYED, &sh->state);
2598 				set_bit(STRIPE_HANDLE, &sh->state);
2599 			}
2600 		}
2601 	}
2602 	/* now if nothing is locked, and if we have enough data, we can start a
2603 	 * write request
2604 	 */
2605 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2606 	    s->locked == 0 && rcw == 0 &&
2607 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2608 		schedule_reconstruction(sh, s, 1, 0);
2609 	}
2610 }
2611 
2612 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2613 				struct stripe_head_state *s, int disks)
2614 {
2615 	struct r5dev *dev = NULL;
2616 
2617 	set_bit(STRIPE_HANDLE, &sh->state);
2618 
2619 	switch (sh->check_state) {
2620 	case check_state_idle:
2621 		/* start a new check operation if there are no failures */
2622 		if (s->failed == 0) {
2623 			BUG_ON(s->uptodate != disks);
2624 			sh->check_state = check_state_run;
2625 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2626 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2627 			s->uptodate--;
2628 			break;
2629 		}
2630 		dev = &sh->dev[s->failed_num];
2631 		/* fall through */
2632 	case check_state_compute_result:
2633 		sh->check_state = check_state_idle;
2634 		if (!dev)
2635 			dev = &sh->dev[sh->pd_idx];
2636 
2637 		/* check that a write has not made the stripe insync */
2638 		if (test_bit(STRIPE_INSYNC, &sh->state))
2639 			break;
2640 
2641 		/* either failed parity check, or recovery is happening */
2642 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2643 		BUG_ON(s->uptodate != disks);
2644 
2645 		set_bit(R5_LOCKED, &dev->flags);
2646 		s->locked++;
2647 		set_bit(R5_Wantwrite, &dev->flags);
2648 
2649 		clear_bit(STRIPE_DEGRADED, &sh->state);
2650 		set_bit(STRIPE_INSYNC, &sh->state);
2651 		break;
2652 	case check_state_run:
2653 		break; /* we will be called again upon completion */
2654 	case check_state_check_result:
2655 		sh->check_state = check_state_idle;
2656 
2657 		/* if a failure occurred during the check operation, leave
2658 		 * STRIPE_INSYNC not set and let the stripe be handled again
2659 		 */
2660 		if (s->failed)
2661 			break;
2662 
2663 		/* handle a successful check operation, if parity is correct
2664 		 * we are done.  Otherwise update the mismatch count and repair
2665 		 * parity if !MD_RECOVERY_CHECK
2666 		 */
2667 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2668 			/* parity is correct (on disc,
2669 			 * not in buffer any more)
2670 			 */
2671 			set_bit(STRIPE_INSYNC, &sh->state);
2672 		else {
2673 			conf->mddev->resync_mismatches += STRIPE_SECTORS;
2674 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2675 				/* don't try to repair!! */
2676 				set_bit(STRIPE_INSYNC, &sh->state);
2677 			else {
2678 				sh->check_state = check_state_compute_run;
2679 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2680 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2681 				set_bit(R5_Wantcompute,
2682 					&sh->dev[sh->pd_idx].flags);
2683 				sh->ops.target = sh->pd_idx;
2684 				sh->ops.target2 = -1;
2685 				s->uptodate++;
2686 			}
2687 		}
2688 		break;
2689 	case check_state_compute_run:
2690 		break;
2691 	default:
2692 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2693 		       __func__, sh->check_state,
2694 		       (unsigned long long) sh->sector);
2695 		BUG();
2696 	}
2697 }
2698 
2699 
2700 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2701 				  struct stripe_head_state *s,
2702 				  struct r6_state *r6s, int disks)
2703 {
2704 	int pd_idx = sh->pd_idx;
2705 	int qd_idx = sh->qd_idx;
2706 	struct r5dev *dev;
2707 
2708 	set_bit(STRIPE_HANDLE, &sh->state);
2709 
2710 	BUG_ON(s->failed > 2);
2711 
2712 	/* Want to check and possibly repair P and Q.
2713 	 * However there could be one 'failed' device, in which
2714 	 * case we can only check one of them, possibly using the
2715 	 * other to generate missing data
2716 	 */
2717 
2718 	switch (sh->check_state) {
2719 	case check_state_idle:
2720 		/* start a new check operation if there are < 2 failures */
2721 		if (s->failed == r6s->q_failed) {
2722 			/* The only possible failed device holds Q, so it
2723 			 * makes sense to check P (If anything else were failed,
2724 			 * we would have used P to recreate it).
2725 			 */
2726 			sh->check_state = check_state_run;
2727 		}
2728 		if (!r6s->q_failed && s->failed < 2) {
2729 			/* Q is not failed, and we didn't use it to generate
2730 			 * anything, so it makes sense to check it
2731 			 */
2732 			if (sh->check_state == check_state_run)
2733 				sh->check_state = check_state_run_pq;
2734 			else
2735 				sh->check_state = check_state_run_q;
2736 		}
2737 
2738 		/* discard potentially stale zero_sum_result */
2739 		sh->ops.zero_sum_result = 0;
2740 
2741 		if (sh->check_state == check_state_run) {
2742 			/* async_xor_zero_sum destroys the contents of P */
2743 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2744 			s->uptodate--;
2745 		}
2746 		if (sh->check_state >= check_state_run &&
2747 		    sh->check_state <= check_state_run_pq) {
2748 			/* async_syndrome_zero_sum preserves P and Q, so
2749 			 * no need to mark them !uptodate here
2750 			 */
2751 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2752 			break;
2753 		}
2754 
2755 		/* we have 2-disk failure */
2756 		BUG_ON(s->failed != 2);
2757 		/* fall through */
2758 	case check_state_compute_result:
2759 		sh->check_state = check_state_idle;
2760 
2761 		/* check that a write has not made the stripe insync */
2762 		if (test_bit(STRIPE_INSYNC, &sh->state))
2763 			break;
2764 
2765 		/* now write out any block on a failed drive,
2766 		 * or P or Q if they were recomputed
2767 		 */
2768 		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2769 		if (s->failed == 2) {
2770 			dev = &sh->dev[r6s->failed_num[1]];
2771 			s->locked++;
2772 			set_bit(R5_LOCKED, &dev->flags);
2773 			set_bit(R5_Wantwrite, &dev->flags);
2774 		}
2775 		if (s->failed >= 1) {
2776 			dev = &sh->dev[r6s->failed_num[0]];
2777 			s->locked++;
2778 			set_bit(R5_LOCKED, &dev->flags);
2779 			set_bit(R5_Wantwrite, &dev->flags);
2780 		}
2781 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2782 			dev = &sh->dev[pd_idx];
2783 			s->locked++;
2784 			set_bit(R5_LOCKED, &dev->flags);
2785 			set_bit(R5_Wantwrite, &dev->flags);
2786 		}
2787 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2788 			dev = &sh->dev[qd_idx];
2789 			s->locked++;
2790 			set_bit(R5_LOCKED, &dev->flags);
2791 			set_bit(R5_Wantwrite, &dev->flags);
2792 		}
2793 		clear_bit(STRIPE_DEGRADED, &sh->state);
2794 
2795 		set_bit(STRIPE_INSYNC, &sh->state);
2796 		break;
2797 	case check_state_run:
2798 	case check_state_run_q:
2799 	case check_state_run_pq:
2800 		break; /* we will be called again upon completion */
2801 	case check_state_check_result:
2802 		sh->check_state = check_state_idle;
2803 
2804 		/* handle a successful check operation, if parity is correct
2805 		 * we are done.  Otherwise update the mismatch count and repair
2806 		 * parity if !MD_RECOVERY_CHECK
2807 		 */
2808 		if (sh->ops.zero_sum_result == 0) {
2809 			/* both parities are correct */
2810 			if (!s->failed)
2811 				set_bit(STRIPE_INSYNC, &sh->state);
2812 			else {
2813 				/* in contrast to the raid5 case we can validate
2814 				 * parity, but still have a failure to write
2815 				 * back
2816 				 */
2817 				sh->check_state = check_state_compute_result;
2818 				/* Returning at this point means that we may go
2819 				 * off and bring p and/or q uptodate again so
2820 				 * we make sure to check zero_sum_result again
2821 				 * to verify if p or q need writeback
2822 				 */
2823 			}
2824 		} else {
2825 			conf->mddev->resync_mismatches += STRIPE_SECTORS;
2826 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2827 				/* don't try to repair!! */
2828 				set_bit(STRIPE_INSYNC, &sh->state);
2829 			else {
2830 				int *target = &sh->ops.target;
2831 
2832 				sh->ops.target = -1;
2833 				sh->ops.target2 = -1;
2834 				sh->check_state = check_state_compute_run;
2835 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2836 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2837 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2838 					set_bit(R5_Wantcompute,
2839 						&sh->dev[pd_idx].flags);
2840 					*target = pd_idx;
2841 					target = &sh->ops.target2;
2842 					s->uptodate++;
2843 				}
2844 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2845 					set_bit(R5_Wantcompute,
2846 						&sh->dev[qd_idx].flags);
2847 					*target = qd_idx;
2848 					s->uptodate++;
2849 				}
2850 			}
2851 		}
2852 		break;
2853 	case check_state_compute_run:
2854 		break;
2855 	default:
2856 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2857 		       __func__, sh->check_state,
2858 		       (unsigned long long) sh->sector);
2859 		BUG();
2860 	}
2861 }
2862 
2863 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2864 				struct r6_state *r6s)
2865 {
2866 	int i;
2867 
2868 	/* We have read all the blocks in this stripe and now we need to
2869 	 * copy some of them into a target stripe for expand.
2870 	 */
2871 	struct dma_async_tx_descriptor *tx = NULL;
2872 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2873 	for (i = 0; i < sh->disks; i++)
2874 		if (i != sh->pd_idx && i != sh->qd_idx) {
2875 			int dd_idx, j;
2876 			struct stripe_head *sh2;
2877 			struct async_submit_ctl submit;
2878 
2879 			sector_t bn = compute_blocknr(sh, i, 1);
2880 			sector_t s = raid5_compute_sector(conf, bn, 0,
2881 							  &dd_idx, NULL);
2882 			sh2 = get_active_stripe(conf, s, 0, 1, 1);
2883 			if (sh2 == NULL)
2884 				/* so far only the early blocks of this stripe
2885 				 * have been requested.  When later blocks
2886 				 * get requested, we will try again
2887 				 */
2888 				continue;
2889 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2890 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2891 				/* must have already done this block */
2892 				release_stripe(sh2);
2893 				continue;
2894 			}
2895 
2896 			/* place all the copies on one channel */
2897 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2898 			tx = async_memcpy(sh2->dev[dd_idx].page,
2899 					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
2900 					  &submit);
2901 
2902 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2903 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2904 			for (j = 0; j < conf->raid_disks; j++)
2905 				if (j != sh2->pd_idx &&
2906 				    (!r6s || j != sh2->qd_idx) &&
2907 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
2908 					break;
2909 			if (j == conf->raid_disks) {
2910 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
2911 				set_bit(STRIPE_HANDLE, &sh2->state);
2912 			}
2913 			release_stripe(sh2);
2914 
2915 		}
2916 	/* done submitting copies, wait for them to complete */
2917 	if (tx) {
2918 		async_tx_ack(tx);
2919 		dma_wait_for_async_tx(tx);
2920 	}
2921 }
2922 
2923 
2924 /*
2925  * handle_stripe - do things to a stripe.
2926  *
2927  * We lock the stripe and then examine the state of various bits
2928  * to see what needs to be done.
2929  * Possible results:
2930  *    return some read request which now have data
2931  *    return some write requests which are safely on disc
2932  *    schedule a read on some buffers
2933  *    schedule a write of some buffers
2934  *    return confirmation of parity correctness
2935  *
2936  * buffers are taken off read_list or write_list, and bh_cache buffers
2937  * get BH_Lock set before the stripe lock is released.
2938  *
2939  */
2940 
2941 static void handle_stripe5(struct stripe_head *sh)
2942 {
2943 	raid5_conf_t *conf = sh->raid_conf;
2944 	int disks = sh->disks, i;
2945 	struct bio *return_bi = NULL;
2946 	struct stripe_head_state s;
2947 	struct r5dev *dev;
2948 	mdk_rdev_t *blocked_rdev = NULL;
2949 	int prexor;
2950 
2951 	memset(&s, 0, sizeof(s));
2952 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
2953 		 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
2954 		 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
2955 		 sh->reconstruct_state);
2956 
2957 	spin_lock(&sh->lock);
2958 	clear_bit(STRIPE_HANDLE, &sh->state);
2959 	clear_bit(STRIPE_DELAYED, &sh->state);
2960 
2961 	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2962 	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2963 	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2964 
2965 	/* Now to look around and see what can be done */
2966 	rcu_read_lock();
2967 	for (i=disks; i--; ) {
2968 		mdk_rdev_t *rdev;
2969 
2970 		dev = &sh->dev[i];
2971 		clear_bit(R5_Insync, &dev->flags);
2972 
2973 		pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2974 			"written %p\n",	i, dev->flags, dev->toread, dev->read,
2975 			dev->towrite, dev->written);
2976 
2977 		/* maybe we can request a biofill operation
2978 		 *
2979 		 * new wantfill requests are only permitted while
2980 		 * ops_complete_biofill is guaranteed to be inactive
2981 		 */
2982 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2983 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2984 			set_bit(R5_Wantfill, &dev->flags);
2985 
2986 		/* now count some things */
2987 		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2988 		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2989 		if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2990 
2991 		if (test_bit(R5_Wantfill, &dev->flags))
2992 			s.to_fill++;
2993 		else if (dev->toread)
2994 			s.to_read++;
2995 		if (dev->towrite) {
2996 			s.to_write++;
2997 			if (!test_bit(R5_OVERWRITE, &dev->flags))
2998 				s.non_overwrite++;
2999 		}
3000 		if (dev->written)
3001 			s.written++;
3002 		rdev = rcu_dereference(conf->disks[i].rdev);
3003 		if (blocked_rdev == NULL &&
3004 		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3005 			blocked_rdev = rdev;
3006 			atomic_inc(&rdev->nr_pending);
3007 		}
3008 		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3009 			/* The ReadError flag will just be confusing now */
3010 			clear_bit(R5_ReadError, &dev->flags);
3011 			clear_bit(R5_ReWrite, &dev->flags);
3012 		}
3013 		if (!rdev || !test_bit(In_sync, &rdev->flags)
3014 		    || test_bit(R5_ReadError, &dev->flags)) {
3015 			s.failed++;
3016 			s.failed_num = i;
3017 		} else
3018 			set_bit(R5_Insync, &dev->flags);
3019 	}
3020 	rcu_read_unlock();
3021 
3022 	if (unlikely(blocked_rdev)) {
3023 		if (s.syncing || s.expanding || s.expanded ||
3024 		    s.to_write || s.written) {
3025 			set_bit(STRIPE_HANDLE, &sh->state);
3026 			goto unlock;
3027 		}
3028 		/* There is nothing for the blocked_rdev to block */
3029 		rdev_dec_pending(blocked_rdev, conf->mddev);
3030 		blocked_rdev = NULL;
3031 	}
3032 
3033 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3034 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3035 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3036 	}
3037 
3038 	pr_debug("locked=%d uptodate=%d to_read=%d"
3039 		" to_write=%d failed=%d failed_num=%d\n",
3040 		s.locked, s.uptodate, s.to_read, s.to_write,
3041 		s.failed, s.failed_num);
3042 	/* check if the array has lost two devices and, if so, some requests might
3043 	 * need to be failed
3044 	 */
3045 	if (s.failed > 1 && s.to_read+s.to_write+s.written)
3046 		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3047 	if (s.failed > 1 && s.syncing) {
3048 		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3049 		clear_bit(STRIPE_SYNCING, &sh->state);
3050 		s.syncing = 0;
3051 	}
3052 
3053 	/* might be able to return some write requests if the parity block
3054 	 * is safe, or on a failed drive
3055 	 */
3056 	dev = &sh->dev[sh->pd_idx];
3057 	if ( s.written &&
3058 	     ((test_bit(R5_Insync, &dev->flags) &&
3059 	       !test_bit(R5_LOCKED, &dev->flags) &&
3060 	       test_bit(R5_UPTODATE, &dev->flags)) ||
3061 	       (s.failed == 1 && s.failed_num == sh->pd_idx)))
3062 		handle_stripe_clean_event(conf, sh, disks, &return_bi);
3063 
3064 	/* Now we might consider reading some blocks, either to check/generate
3065 	 * parity, or to satisfy requests
3066 	 * or to load a block that is being partially written.
3067 	 */
3068 	if (s.to_read || s.non_overwrite ||
3069 	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3070 		handle_stripe_fill5(sh, &s, disks);
3071 
3072 	/* Now we check to see if any write operations have recently
3073 	 * completed
3074 	 */
3075 	prexor = 0;
3076 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3077 		prexor = 1;
3078 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
3079 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3080 		sh->reconstruct_state = reconstruct_state_idle;
3081 
3082 		/* All the 'written' buffers and the parity block are ready to
3083 		 * be written back to disk
3084 		 */
3085 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3086 		for (i = disks; i--; ) {
3087 			dev = &sh->dev[i];
3088 			if (test_bit(R5_LOCKED, &dev->flags) &&
3089 				(i == sh->pd_idx || dev->written)) {
3090 				pr_debug("Writing block %d\n", i);
3091 				set_bit(R5_Wantwrite, &dev->flags);
3092 				if (prexor)
3093 					continue;
3094 				if (!test_bit(R5_Insync, &dev->flags) ||
3095 				    (i == sh->pd_idx && s.failed == 0))
3096 					set_bit(STRIPE_INSYNC, &sh->state);
3097 			}
3098 		}
3099 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
3100 			atomic_dec(&conf->preread_active_stripes);
3101 			if (atomic_read(&conf->preread_active_stripes) <
3102 				IO_THRESHOLD)
3103 				md_wakeup_thread(conf->mddev->thread);
3104 		}
3105 	}
3106 
3107 	/* Now to consider new write requests and what else, if anything
3108 	 * should be read.  We do not handle new writes when:
3109 	 * 1/ A 'write' operation (copy+xor) is already in flight.
3110 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
3111 	 *    block.
3112 	 */
3113 	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3114 		handle_stripe_dirtying5(conf, sh, &s, disks);
3115 
3116 	/* maybe we need to check and possibly fix the parity for this stripe
3117 	 * Any reads will already have been scheduled, so we just see if enough
3118 	 * data is available.  The parity check is held off while parity
3119 	 * dependent operations are in flight.
3120 	 */
3121 	if (sh->check_state ||
3122 	    (s.syncing && s.locked == 0 &&
3123 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3124 	     !test_bit(STRIPE_INSYNC, &sh->state)))
3125 		handle_parity_checks5(conf, sh, &s, disks);
3126 
3127 	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3128 		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3129 		clear_bit(STRIPE_SYNCING, &sh->state);
3130 	}
3131 
3132 	/* If the failed drive is just a ReadError, then we might need to progress
3133 	 * the repair/check process
3134 	 */
3135 	if (s.failed == 1 && !conf->mddev->ro &&
3136 	    test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
3137 	    && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
3138 	    && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
3139 		) {
3140 		dev = &sh->dev[s.failed_num];
3141 		if (!test_bit(R5_ReWrite, &dev->flags)) {
3142 			set_bit(R5_Wantwrite, &dev->flags);
3143 			set_bit(R5_ReWrite, &dev->flags);
3144 			set_bit(R5_LOCKED, &dev->flags);
3145 			s.locked++;
3146 		} else {
3147 			/* let's read it back */
3148 			set_bit(R5_Wantread, &dev->flags);
3149 			set_bit(R5_LOCKED, &dev->flags);
3150 			s.locked++;
3151 		}
3152 	}
3153 
3154 	/* Finish reconstruct operations initiated by the expansion process */
3155 	if (sh->reconstruct_state == reconstruct_state_result) {
3156 		struct stripe_head *sh2
3157 			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3158 		if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3159 			/* sh cannot be written until sh2 has been read.
3160 			 * so arrange for sh to be delayed a little
3161 			 */
3162 			set_bit(STRIPE_DELAYED, &sh->state);
3163 			set_bit(STRIPE_HANDLE, &sh->state);
3164 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3165 					      &sh2->state))
3166 				atomic_inc(&conf->preread_active_stripes);
3167 			release_stripe(sh2);
3168 			goto unlock;
3169 		}
3170 		if (sh2)
3171 			release_stripe(sh2);
3172 
3173 		sh->reconstruct_state = reconstruct_state_idle;
3174 		clear_bit(STRIPE_EXPANDING, &sh->state);
3175 		for (i = conf->raid_disks; i--; ) {
3176 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
3177 			set_bit(R5_LOCKED, &sh->dev[i].flags);
3178 			s.locked++;
3179 		}
3180 	}
3181 
3182 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3183 	    !sh->reconstruct_state) {
3184 		/* Need to write out all blocks after computing parity */
3185 		sh->disks = conf->raid_disks;
3186 		stripe_set_idx(sh->sector, conf, 0, sh);
3187 		schedule_reconstruction(sh, &s, 1, 1);
3188 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3189 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3190 		atomic_dec(&conf->reshape_stripes);
3191 		wake_up(&conf->wait_for_overlap);
3192 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3193 	}
3194 
3195 	if (s.expanding && s.locked == 0 &&
3196 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3197 		handle_stripe_expansion(conf, sh, NULL);
3198 
3199  unlock:
3200 	spin_unlock(&sh->lock);
3201 
3202 	/* wait for this device to become unblocked */
3203 	if (unlikely(blocked_rdev))
3204 		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3205 
3206 	if (s.ops_request)
3207 		raid_run_ops(sh, s.ops_request);
3208 
3209 	ops_run_io(sh, &s);
3210 
3211 	return_io(return_bi);
3212 }
3213 
3214 static void handle_stripe6(struct stripe_head *sh)
3215 {
3216 	raid5_conf_t *conf = sh->raid_conf;
3217 	int disks = sh->disks;
3218 	struct bio *return_bi = NULL;
3219 	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3220 	struct stripe_head_state s;
3221 	struct r6_state r6s;
3222 	struct r5dev *dev, *pdev, *qdev;
3223 	mdk_rdev_t *blocked_rdev = NULL;
3224 
3225 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3226 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3227 	       (unsigned long long)sh->sector, sh->state,
3228 	       atomic_read(&sh->count), pd_idx, qd_idx,
3229 	       sh->check_state, sh->reconstruct_state);
3230 	memset(&s, 0, sizeof(s));
3231 
3232 	spin_lock(&sh->lock);
3233 	clear_bit(STRIPE_HANDLE, &sh->state);
3234 	clear_bit(STRIPE_DELAYED, &sh->state);
3235 
3236 	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3237 	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3238 	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3239 	/* Now to look around and see what can be done */
3240 
3241 	rcu_read_lock();
3242 	for (i=disks; i--; ) {
3243 		mdk_rdev_t *rdev;
3244 		dev = &sh->dev[i];
3245 		clear_bit(R5_Insync, &dev->flags);
3246 
3247 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3248 			i, dev->flags, dev->toread, dev->towrite, dev->written);
3249 		/* maybe we can reply to a read
3250 		 *
3251 		 * new wantfill requests are only permitted while
3252 		 * ops_complete_biofill is guaranteed to be inactive
3253 		 */
3254 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3255 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3256 			set_bit(R5_Wantfill, &dev->flags);
3257 
3258 		/* now count some things */
3259 		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3260 		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3261 		if (test_bit(R5_Wantcompute, &dev->flags)) {
3262 			s.compute++;
3263 			BUG_ON(s.compute > 2);
3264 		}
3265 
3266 		if (test_bit(R5_Wantfill, &dev->flags)) {
3267 			s.to_fill++;
3268 		} else if (dev->toread)
3269 			s.to_read++;
3270 		if (dev->towrite) {
3271 			s.to_write++;
3272 			if (!test_bit(R5_OVERWRITE, &dev->flags))
3273 				s.non_overwrite++;
3274 		}
3275 		if (dev->written)
3276 			s.written++;
3277 		rdev = rcu_dereference(conf->disks[i].rdev);
3278 		if (blocked_rdev == NULL &&
3279 		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3280 			blocked_rdev = rdev;
3281 			atomic_inc(&rdev->nr_pending);
3282 		}
3283 		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3284 			/* The ReadError flag will just be confusing now */
3285 			clear_bit(R5_ReadError, &dev->flags);
3286 			clear_bit(R5_ReWrite, &dev->flags);
3287 		}
3288 		if (!rdev || !test_bit(In_sync, &rdev->flags)
3289 		    || test_bit(R5_ReadError, &dev->flags)) {
3290 			if (s.failed < 2)
3291 				r6s.failed_num[s.failed] = i;
3292 			s.failed++;
3293 		} else
3294 			set_bit(R5_Insync, &dev->flags);
3295 	}
3296 	rcu_read_unlock();
3297 
3298 	if (unlikely(blocked_rdev)) {
3299 		if (s.syncing || s.expanding || s.expanded ||
3300 		    s.to_write || s.written) {
3301 			set_bit(STRIPE_HANDLE, &sh->state);
3302 			goto unlock;
3303 		}
3304 		/* There is nothing for the blocked_rdev to block */
3305 		rdev_dec_pending(blocked_rdev, conf->mddev);
3306 		blocked_rdev = NULL;
3307 	}
3308 
3309 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3310 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3311 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3312 	}
3313 
3314 	pr_debug("locked=%d uptodate=%d to_read=%d"
3315 	       " to_write=%d failed=%d failed_num=%d,%d\n",
3316 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3317 	       r6s.failed_num[0], r6s.failed_num[1]);
3318 	/* check if the array has lost >2 devices and, if so, some requests
3319 	 * might need to be failed
3320 	 */
3321 	if (s.failed > 2 && s.to_read+s.to_write+s.written)
3322 		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3323 	if (s.failed > 2 && s.syncing) {
3324 		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3325 		clear_bit(STRIPE_SYNCING, &sh->state);
3326 		s.syncing = 0;
3327 	}
3328 
3329 	/*
3330 	 * might be able to return some write requests if the parity blocks
3331 	 * are safe, or on a failed drive
3332 	 */
3333 	pdev = &sh->dev[pd_idx];
3334 	r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3335 		|| (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3336 	qdev = &sh->dev[qd_idx];
3337 	r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
3338 		|| (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3339 
3340 	if ( s.written &&
3341 	     ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3342 			     && !test_bit(R5_LOCKED, &pdev->flags)
3343 			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3344 	     ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3345 			     && !test_bit(R5_LOCKED, &qdev->flags)
3346 			     && test_bit(R5_UPTODATE, &qdev->flags)))))
3347 		handle_stripe_clean_event(conf, sh, disks, &return_bi);
3348 
3349 	/* Now we might consider reading some blocks, either to check/generate
3350 	 * parity, or to satisfy requests
3351 	 * or to load a block that is being partially written.
3352 	 */
3353 	if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3354 	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3355 		handle_stripe_fill6(sh, &s, &r6s, disks);
3356 
3357 	/* Now we check to see if any write operations have recently
3358 	 * completed
3359 	 */
3360 	if (sh->reconstruct_state == reconstruct_state_drain_result) {
3361 		int qd_idx = sh->qd_idx;
3362 
3363 		sh->reconstruct_state = reconstruct_state_idle;
3364 		/* All the 'written' buffers and the parity blocks are ready to
3365 		 * be written back to disk
3366 		 */
3367 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3368 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags));
3369 		for (i = disks; i--; ) {
3370 			dev = &sh->dev[i];
3371 			if (test_bit(R5_LOCKED, &dev->flags) &&
3372 			    (i == sh->pd_idx || i == qd_idx ||
3373 			     dev->written)) {
3374 				pr_debug("Writing block %d\n", i);
3375 				BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3376 				set_bit(R5_Wantwrite, &dev->flags);
3377 				if (!test_bit(R5_Insync, &dev->flags) ||
3378 				    ((i == sh->pd_idx || i == qd_idx) &&
3379 				      s.failed == 0))
3380 					set_bit(STRIPE_INSYNC, &sh->state);
3381 			}
3382 		}
3383 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
3384 			atomic_dec(&conf->preread_active_stripes);
3385 			if (atomic_read(&conf->preread_active_stripes) <
3386 				IO_THRESHOLD)
3387 				md_wakeup_thread(conf->mddev->thread);
3388 		}
3389 	}
3390 
3391 	/* Now to consider new write requests and what else, if anything
3392 	 * should be read.  We do not handle new writes when:
3393 	 * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
3394 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
3395 	 *    block.
3396 	 */
3397 	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3398 		handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3399 
3400 	/* maybe we need to check and possibly fix the parity for this stripe
3401 	 * Any reads will already have been scheduled, so we just see if enough
3402 	 * data is available.  The parity check is held off while parity
3403 	 * dependent operations are in flight.
3404 	 */
3405 	if (sh->check_state ||
3406 	    (s.syncing && s.locked == 0 &&
3407 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3408 	     !test_bit(STRIPE_INSYNC, &sh->state)))
3409 		handle_parity_checks6(conf, sh, &s, &r6s, disks);
3410 
3411 	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3412 		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3413 		clear_bit(STRIPE_SYNCING, &sh->state);
3414 	}
3415 
3416 	/* If the failed drives are just a ReadError, then we might need
3417 	 * to progress the repair/check process
3418 	 */
3419 	if (s.failed <= 2 && !conf->mddev->ro)
3420 		for (i = 0; i < s.failed; i++) {
3421 			dev = &sh->dev[r6s.failed_num[i]];
3422 			if (test_bit(R5_ReadError, &dev->flags)
3423 			    && !test_bit(R5_LOCKED, &dev->flags)
3424 			    && test_bit(R5_UPTODATE, &dev->flags)
3425 				) {
3426 				if (!test_bit(R5_ReWrite, &dev->flags)) {
3427 					set_bit(R5_Wantwrite, &dev->flags);
3428 					set_bit(R5_ReWrite, &dev->flags);
3429 					set_bit(R5_LOCKED, &dev->flags);
3430 					s.locked++;
3431 				} else {
3432 					/* let's read it back */
3433 					set_bit(R5_Wantread, &dev->flags);
3434 					set_bit(R5_LOCKED, &dev->flags);
3435 					s.locked++;
3436 				}
3437 			}
3438 		}
3439 
3440 	/* Finish reconstruct operations initiated by the expansion process */
3441 	if (sh->reconstruct_state == reconstruct_state_result) {
3442 		sh->reconstruct_state = reconstruct_state_idle;
3443 		clear_bit(STRIPE_EXPANDING, &sh->state);
3444 		for (i = conf->raid_disks; i--; ) {
3445 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
3446 			set_bit(R5_LOCKED, &sh->dev[i].flags);
3447 			s.locked++;
3448 		}
3449 	}
3450 
3451 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3452 	    !sh->reconstruct_state) {
3453 		struct stripe_head *sh2
3454 			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3455 		if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3456 			/* sh cannot be written until sh2 has been read.
3457 			 * so arrange for sh to be delayed a little
3458 			 */
3459 			set_bit(STRIPE_DELAYED, &sh->state);
3460 			set_bit(STRIPE_HANDLE, &sh->state);
3461 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3462 					      &sh2->state))
3463 				atomic_inc(&conf->preread_active_stripes);
3464 			release_stripe(sh2);
3465 			goto unlock;
3466 		}
3467 		if (sh2)
3468 			release_stripe(sh2);
3469 
3470 		/* Need to write out all blocks after computing P&Q */
3471 		sh->disks = conf->raid_disks;
3472 		stripe_set_idx(sh->sector, conf, 0, sh);
3473 		schedule_reconstruction(sh, &s, 1, 1);
3474 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3475 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3476 		atomic_dec(&conf->reshape_stripes);
3477 		wake_up(&conf->wait_for_overlap);
3478 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3479 	}
3480 
3481 	if (s.expanding && s.locked == 0 &&
3482 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3483 		handle_stripe_expansion(conf, sh, &r6s);
3484 
3485  unlock:
3486 	spin_unlock(&sh->lock);
3487 
3488 	/* wait for this device to become unblocked */
3489 	if (unlikely(blocked_rdev))
3490 		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3491 
3492 	if (s.ops_request)
3493 		raid_run_ops(sh, s.ops_request);
3494 
3495 	ops_run_io(sh, &s);
3496 
3497 	return_io(return_bi);
3498 }
3499 
3500 static void handle_stripe(struct stripe_head *sh)
3501 {
3502 	if (sh->raid_conf->level == 6)
3503 		handle_stripe6(sh);
3504 	else
3505 		handle_stripe5(sh);
3506 }
3507 
3508 static void raid5_activate_delayed(raid5_conf_t *conf)
3509 {
3510 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3511 		while (!list_empty(&conf->delayed_list)) {
3512 			struct list_head *l = conf->delayed_list.next;
3513 			struct stripe_head *sh;
3514 			sh = list_entry(l, struct stripe_head, lru);
3515 			list_del_init(l);
3516 			clear_bit(STRIPE_DELAYED, &sh->state);
3517 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3518 				atomic_inc(&conf->preread_active_stripes);
3519 			list_add_tail(&sh->lru, &conf->hold_list);
3520 		}
3521 	} else
3522 		blk_plug_device(conf->mddev->queue);
3523 }
3524 
3525 static void activate_bit_delay(raid5_conf_t *conf)
3526 {
3527 	/* device_lock is held */
3528 	struct list_head head;
3529 	list_add(&head, &conf->bitmap_list);
3530 	list_del_init(&conf->bitmap_list);
3531 	while (!list_empty(&head)) {
3532 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3533 		list_del_init(&sh->lru);
3534 		atomic_inc(&sh->count);
3535 		__release_stripe(conf, sh);
3536 	}
3537 }
3538 
3539 static void unplug_slaves(mddev_t *mddev)
3540 {
3541 	raid5_conf_t *conf = mddev->private;
3542 	int i;
3543 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
3544 
3545 	rcu_read_lock();
3546 	for (i = 0; i < devs; i++) {
3547 		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3548 		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3549 			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3550 
3551 			atomic_inc(&rdev->nr_pending);
3552 			rcu_read_unlock();
3553 
3554 			blk_unplug(r_queue);
3555 
3556 			rdev_dec_pending(rdev, mddev);
3557 			rcu_read_lock();
3558 		}
3559 	}
3560 	rcu_read_unlock();
3561 }
3562 
3563 static void raid5_unplug_device(struct request_queue *q)
3564 {
3565 	mddev_t *mddev = q->queuedata;
3566 	raid5_conf_t *conf = mddev->private;
3567 	unsigned long flags;
3568 
3569 	spin_lock_irqsave(&conf->device_lock, flags);
3570 
3571 	if (blk_remove_plug(q)) {
3572 		conf->seq_flush++;
3573 		raid5_activate_delayed(conf);
3574 	}
3575 	md_wakeup_thread(mddev->thread);
3576 
3577 	spin_unlock_irqrestore(&conf->device_lock, flags);
3578 
3579 	unplug_slaves(mddev);
3580 }
3581 
3582 static int raid5_congested(void *data, int bits)
3583 {
3584 	mddev_t *mddev = data;
3585 	raid5_conf_t *conf = mddev->private;
3586 
3587 	/* No difference between reads and writes.  Just check
3588 	 * how busy the stripe_cache is
3589 	 */
3590 
3591 	if (mddev_congested(mddev, bits))
3592 		return 1;
3593 	if (conf->inactive_blocked)
3594 		return 1;
3595 	if (conf->quiesce)
3596 		return 1;
3597 	if (list_empty_careful(&conf->inactive_list))
3598 		return 1;
3599 
3600 	return 0;
3601 }
3602 
3603 /* We want read requests to align with chunks where possible,
3604  * but write requests don't need to.
3605  */
3606 static int raid5_mergeable_bvec(struct request_queue *q,
3607 				struct bvec_merge_data *bvm,
3608 				struct bio_vec *biovec)
3609 {
3610 	mddev_t *mddev = q->queuedata;
3611 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3612 	int max;
3613 	unsigned int chunk_sectors = mddev->chunk_sectors;
3614 	unsigned int bio_sectors = bvm->bi_size >> 9;
3615 
3616 	if ((bvm->bi_rw & 1) == WRITE)
3617 		return biovec->bv_len; /* always allow writes to be mergeable */
3618 
3619 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3620 		chunk_sectors = mddev->new_chunk_sectors;
3621 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3622 	if (max < 0) max = 0;
3623 	if (max <= biovec->bv_len && bio_sectors == 0)
3624 		return biovec->bv_len;
3625 	else
3626 		return max;
3627 }
3628 
3629 
3630 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3631 {
3632 	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3633 	unsigned int chunk_sectors = mddev->chunk_sectors;
3634 	unsigned int bio_sectors = bio->bi_size >> 9;
3635 
3636 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3637 		chunk_sectors = mddev->new_chunk_sectors;
3638 	return  chunk_sectors >=
3639 		((sector & (chunk_sectors - 1)) + bio_sectors);
3640 }
3641 
3642 /*
3643  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3644  *  later sampled by raid5d.
3645  */
3646 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3647 {
3648 	unsigned long flags;
3649 
3650 	spin_lock_irqsave(&conf->device_lock, flags);
3651 
3652 	bi->bi_next = conf->retry_read_aligned_list;
3653 	conf->retry_read_aligned_list = bi;
3654 
3655 	spin_unlock_irqrestore(&conf->device_lock, flags);
3656 	md_wakeup_thread(conf->mddev->thread);
3657 }
3658 
3659 
3660 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3661 {
3662 	struct bio *bi;
3663 
3664 	bi = conf->retry_read_aligned;
3665 	if (bi) {
3666 		conf->retry_read_aligned = NULL;
3667 		return bi;
3668 	}
3669 	bi = conf->retry_read_aligned_list;
3670 	if(bi) {
3671 		conf->retry_read_aligned_list = bi->bi_next;
3672 		bi->bi_next = NULL;
3673 		/*
3674 		 * this sets the active strip count to 1 and the processed
3675 		 * strip count to zero (upper 8 bits)
3676 		 */
3677 		bi->bi_phys_segments = 1; /* biased count of active stripes */
3678 	}
3679 
3680 	return bi;
3681 }
3682 
3683 
3684 /*
3685  *  The "raid5_align_endio" should check if the read succeeded and if it
3686  *  did, call bio_endio on the original bio (having bio_put the new bio
3687  *  first).
3688  *  If the read failed..
3689  */
3690 static void raid5_align_endio(struct bio *bi, int error)
3691 {
3692 	struct bio* raid_bi  = bi->bi_private;
3693 	mddev_t *mddev;
3694 	raid5_conf_t *conf;
3695 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3696 	mdk_rdev_t *rdev;
3697 
3698 	bio_put(bi);
3699 
3700 	mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3701 	conf = mddev->private;
3702 	rdev = (void*)raid_bi->bi_next;
3703 	raid_bi->bi_next = NULL;
3704 
3705 	rdev_dec_pending(rdev, conf->mddev);
3706 
3707 	if (!error && uptodate) {
3708 		bio_endio(raid_bi, 0);
3709 		if (atomic_dec_and_test(&conf->active_aligned_reads))
3710 			wake_up(&conf->wait_for_stripe);
3711 		return;
3712 	}
3713 
3714 
3715 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3716 
3717 	add_bio_to_retry(raid_bi, conf);
3718 }
3719 
3720 static int bio_fits_rdev(struct bio *bi)
3721 {
3722 	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3723 
3724 	if ((bi->bi_size>>9) > queue_max_sectors(q))
3725 		return 0;
3726 	blk_recount_segments(q, bi);
3727 	if (bi->bi_phys_segments > queue_max_phys_segments(q))
3728 		return 0;
3729 
3730 	if (q->merge_bvec_fn)
3731 		/* it's too hard to apply the merge_bvec_fn at this stage,
3732 		 * just just give up
3733 		 */
3734 		return 0;
3735 
3736 	return 1;
3737 }
3738 
3739 
3740 static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3741 {
3742 	mddev_t *mddev = q->queuedata;
3743 	raid5_conf_t *conf = mddev->private;
3744 	unsigned int dd_idx;
3745 	struct bio* align_bi;
3746 	mdk_rdev_t *rdev;
3747 
3748 	if (!in_chunk_boundary(mddev, raid_bio)) {
3749 		pr_debug("chunk_aligned_read : non aligned\n");
3750 		return 0;
3751 	}
3752 	/*
3753 	 * use bio_clone to make a copy of the bio
3754 	 */
3755 	align_bi = bio_clone(raid_bio, GFP_NOIO);
3756 	if (!align_bi)
3757 		return 0;
3758 	/*
3759 	 *   set bi_end_io to a new function, and set bi_private to the
3760 	 *     original bio.
3761 	 */
3762 	align_bi->bi_end_io  = raid5_align_endio;
3763 	align_bi->bi_private = raid_bio;
3764 	/*
3765 	 *	compute position
3766 	 */
3767 	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3768 						    0,
3769 						    &dd_idx, NULL);
3770 
3771 	rcu_read_lock();
3772 	rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3773 	if (rdev && test_bit(In_sync, &rdev->flags)) {
3774 		atomic_inc(&rdev->nr_pending);
3775 		rcu_read_unlock();
3776 		raid_bio->bi_next = (void*)rdev;
3777 		align_bi->bi_bdev =  rdev->bdev;
3778 		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3779 		align_bi->bi_sector += rdev->data_offset;
3780 
3781 		if (!bio_fits_rdev(align_bi)) {
3782 			/* too big in some way */
3783 			bio_put(align_bi);
3784 			rdev_dec_pending(rdev, mddev);
3785 			return 0;
3786 		}
3787 
3788 		spin_lock_irq(&conf->device_lock);
3789 		wait_event_lock_irq(conf->wait_for_stripe,
3790 				    conf->quiesce == 0,
3791 				    conf->device_lock, /* nothing */);
3792 		atomic_inc(&conf->active_aligned_reads);
3793 		spin_unlock_irq(&conf->device_lock);
3794 
3795 		generic_make_request(align_bi);
3796 		return 1;
3797 	} else {
3798 		rcu_read_unlock();
3799 		bio_put(align_bi);
3800 		return 0;
3801 	}
3802 }
3803 
3804 /* __get_priority_stripe - get the next stripe to process
3805  *
3806  * Full stripe writes are allowed to pass preread active stripes up until
3807  * the bypass_threshold is exceeded.  In general the bypass_count
3808  * increments when the handle_list is handled before the hold_list; however, it
3809  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3810  * stripe with in flight i/o.  The bypass_count will be reset when the
3811  * head of the hold_list has changed, i.e. the head was promoted to the
3812  * handle_list.
3813  */
3814 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3815 {
3816 	struct stripe_head *sh;
3817 
3818 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3819 		  __func__,
3820 		  list_empty(&conf->handle_list) ? "empty" : "busy",
3821 		  list_empty(&conf->hold_list) ? "empty" : "busy",
3822 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
3823 
3824 	if (!list_empty(&conf->handle_list)) {
3825 		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3826 
3827 		if (list_empty(&conf->hold_list))
3828 			conf->bypass_count = 0;
3829 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3830 			if (conf->hold_list.next == conf->last_hold)
3831 				conf->bypass_count++;
3832 			else {
3833 				conf->last_hold = conf->hold_list.next;
3834 				conf->bypass_count -= conf->bypass_threshold;
3835 				if (conf->bypass_count < 0)
3836 					conf->bypass_count = 0;
3837 			}
3838 		}
3839 	} else if (!list_empty(&conf->hold_list) &&
3840 		   ((conf->bypass_threshold &&
3841 		     conf->bypass_count > conf->bypass_threshold) ||
3842 		    atomic_read(&conf->pending_full_writes) == 0)) {
3843 		sh = list_entry(conf->hold_list.next,
3844 				typeof(*sh), lru);
3845 		conf->bypass_count -= conf->bypass_threshold;
3846 		if (conf->bypass_count < 0)
3847 			conf->bypass_count = 0;
3848 	} else
3849 		return NULL;
3850 
3851 	list_del_init(&sh->lru);
3852 	atomic_inc(&sh->count);
3853 	BUG_ON(atomic_read(&sh->count) != 1);
3854 	return sh;
3855 }
3856 
3857 static int make_request(struct request_queue *q, struct bio * bi)
3858 {
3859 	mddev_t *mddev = q->queuedata;
3860 	raid5_conf_t *conf = mddev->private;
3861 	int dd_idx;
3862 	sector_t new_sector;
3863 	sector_t logical_sector, last_sector;
3864 	struct stripe_head *sh;
3865 	const int rw = bio_data_dir(bi);
3866 	int cpu, remaining;
3867 
3868 	if (unlikely(bio_rw_flagged(bi, BIO_RW_BARRIER))) {
3869 		bio_endio(bi, -EOPNOTSUPP);
3870 		return 0;
3871 	}
3872 
3873 	md_write_start(mddev, bi);
3874 
3875 	cpu = part_stat_lock();
3876 	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
3877 	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
3878 		      bio_sectors(bi));
3879 	part_stat_unlock();
3880 
3881 	if (rw == READ &&
3882 	     mddev->reshape_position == MaxSector &&
3883 	     chunk_aligned_read(q,bi))
3884 		return 0;
3885 
3886 	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3887 	last_sector = bi->bi_sector + (bi->bi_size>>9);
3888 	bi->bi_next = NULL;
3889 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
3890 
3891 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3892 		DEFINE_WAIT(w);
3893 		int disks, data_disks;
3894 		int previous;
3895 
3896 	retry:
3897 		previous = 0;
3898 		disks = conf->raid_disks;
3899 		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3900 		if (unlikely(conf->reshape_progress != MaxSector)) {
3901 			/* spinlock is needed as reshape_progress may be
3902 			 * 64bit on a 32bit platform, and so it might be
3903 			 * possible to see a half-updated value
3904 			 * Ofcourse reshape_progress could change after
3905 			 * the lock is dropped, so once we get a reference
3906 			 * to the stripe that we think it is, we will have
3907 			 * to check again.
3908 			 */
3909 			spin_lock_irq(&conf->device_lock);
3910 			if (mddev->delta_disks < 0
3911 			    ? logical_sector < conf->reshape_progress
3912 			    : logical_sector >= conf->reshape_progress) {
3913 				disks = conf->previous_raid_disks;
3914 				previous = 1;
3915 			} else {
3916 				if (mddev->delta_disks < 0
3917 				    ? logical_sector < conf->reshape_safe
3918 				    : logical_sector >= conf->reshape_safe) {
3919 					spin_unlock_irq(&conf->device_lock);
3920 					schedule();
3921 					goto retry;
3922 				}
3923 			}
3924 			spin_unlock_irq(&conf->device_lock);
3925 		}
3926 		data_disks = disks - conf->max_degraded;
3927 
3928 		new_sector = raid5_compute_sector(conf, logical_sector,
3929 						  previous,
3930 						  &dd_idx, NULL);
3931 		pr_debug("raid5: make_request, sector %llu logical %llu\n",
3932 			(unsigned long long)new_sector,
3933 			(unsigned long long)logical_sector);
3934 
3935 		sh = get_active_stripe(conf, new_sector, previous,
3936 				       (bi->bi_rw&RWA_MASK), 0);
3937 		if (sh) {
3938 			if (unlikely(previous)) {
3939 				/* expansion might have moved on while waiting for a
3940 				 * stripe, so we must do the range check again.
3941 				 * Expansion could still move past after this
3942 				 * test, but as we are holding a reference to
3943 				 * 'sh', we know that if that happens,
3944 				 *  STRIPE_EXPANDING will get set and the expansion
3945 				 * won't proceed until we finish with the stripe.
3946 				 */
3947 				int must_retry = 0;
3948 				spin_lock_irq(&conf->device_lock);
3949 				if (mddev->delta_disks < 0
3950 				    ? logical_sector >= conf->reshape_progress
3951 				    : logical_sector < conf->reshape_progress)
3952 					/* mismatch, need to try again */
3953 					must_retry = 1;
3954 				spin_unlock_irq(&conf->device_lock);
3955 				if (must_retry) {
3956 					release_stripe(sh);
3957 					schedule();
3958 					goto retry;
3959 				}
3960 			}
3961 
3962 			if (bio_data_dir(bi) == WRITE &&
3963 			    logical_sector >= mddev->suspend_lo &&
3964 			    logical_sector < mddev->suspend_hi) {
3965 				release_stripe(sh);
3966 				/* As the suspend_* range is controlled by
3967 				 * userspace, we want an interruptible
3968 				 * wait.
3969 				 */
3970 				flush_signals(current);
3971 				prepare_to_wait(&conf->wait_for_overlap,
3972 						&w, TASK_INTERRUPTIBLE);
3973 				if (logical_sector >= mddev->suspend_lo &&
3974 				    logical_sector < mddev->suspend_hi)
3975 					schedule();
3976 				goto retry;
3977 			}
3978 
3979 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3980 			    !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3981 				/* Stripe is busy expanding or
3982 				 * add failed due to overlap.  Flush everything
3983 				 * and wait a while
3984 				 */
3985 				raid5_unplug_device(mddev->queue);
3986 				release_stripe(sh);
3987 				schedule();
3988 				goto retry;
3989 			}
3990 			finish_wait(&conf->wait_for_overlap, &w);
3991 			set_bit(STRIPE_HANDLE, &sh->state);
3992 			clear_bit(STRIPE_DELAYED, &sh->state);
3993 			release_stripe(sh);
3994 		} else {
3995 			/* cannot get stripe for read-ahead, just give-up */
3996 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
3997 			finish_wait(&conf->wait_for_overlap, &w);
3998 			break;
3999 		}
4000 
4001 	}
4002 	spin_lock_irq(&conf->device_lock);
4003 	remaining = raid5_dec_bi_phys_segments(bi);
4004 	spin_unlock_irq(&conf->device_lock);
4005 	if (remaining == 0) {
4006 
4007 		if ( rw == WRITE )
4008 			md_write_end(mddev);
4009 
4010 		bio_endio(bi, 0);
4011 	}
4012 	return 0;
4013 }
4014 
4015 static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
4016 
4017 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
4018 {
4019 	/* reshaping is quite different to recovery/resync so it is
4020 	 * handled quite separately ... here.
4021 	 *
4022 	 * On each call to sync_request, we gather one chunk worth of
4023 	 * destination stripes and flag them as expanding.
4024 	 * Then we find all the source stripes and request reads.
4025 	 * As the reads complete, handle_stripe will copy the data
4026 	 * into the destination stripe and release that stripe.
4027 	 */
4028 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4029 	struct stripe_head *sh;
4030 	sector_t first_sector, last_sector;
4031 	int raid_disks = conf->previous_raid_disks;
4032 	int data_disks = raid_disks - conf->max_degraded;
4033 	int new_data_disks = conf->raid_disks - conf->max_degraded;
4034 	int i;
4035 	int dd_idx;
4036 	sector_t writepos, readpos, safepos;
4037 	sector_t stripe_addr;
4038 	int reshape_sectors;
4039 	struct list_head stripes;
4040 
4041 	if (sector_nr == 0) {
4042 		/* If restarting in the middle, skip the initial sectors */
4043 		if (mddev->delta_disks < 0 &&
4044 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4045 			sector_nr = raid5_size(mddev, 0, 0)
4046 				- conf->reshape_progress;
4047 		} else if (mddev->delta_disks >= 0 &&
4048 			   conf->reshape_progress > 0)
4049 			sector_nr = conf->reshape_progress;
4050 		sector_div(sector_nr, new_data_disks);
4051 		if (sector_nr) {
4052 			mddev->curr_resync_completed = sector_nr;
4053 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4054 			*skipped = 1;
4055 			return sector_nr;
4056 		}
4057 	}
4058 
4059 	/* We need to process a full chunk at a time.
4060 	 * If old and new chunk sizes differ, we need to process the
4061 	 * largest of these
4062 	 */
4063 	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4064 		reshape_sectors = mddev->new_chunk_sectors;
4065 	else
4066 		reshape_sectors = mddev->chunk_sectors;
4067 
4068 	/* we update the metadata when there is more than 3Meg
4069 	 * in the block range (that is rather arbitrary, should
4070 	 * probably be time based) or when the data about to be
4071 	 * copied would over-write the source of the data at
4072 	 * the front of the range.
4073 	 * i.e. one new_stripe along from reshape_progress new_maps
4074 	 * to after where reshape_safe old_maps to
4075 	 */
4076 	writepos = conf->reshape_progress;
4077 	sector_div(writepos, new_data_disks);
4078 	readpos = conf->reshape_progress;
4079 	sector_div(readpos, data_disks);
4080 	safepos = conf->reshape_safe;
4081 	sector_div(safepos, data_disks);
4082 	if (mddev->delta_disks < 0) {
4083 		writepos -= min_t(sector_t, reshape_sectors, writepos);
4084 		readpos += reshape_sectors;
4085 		safepos += reshape_sectors;
4086 	} else {
4087 		writepos += reshape_sectors;
4088 		readpos -= min_t(sector_t, reshape_sectors, readpos);
4089 		safepos -= min_t(sector_t, reshape_sectors, safepos);
4090 	}
4091 
4092 	/* 'writepos' is the most advanced device address we might write.
4093 	 * 'readpos' is the least advanced device address we might read.
4094 	 * 'safepos' is the least address recorded in the metadata as having
4095 	 *     been reshaped.
4096 	 * If 'readpos' is behind 'writepos', then there is no way that we can
4097 	 * ensure safety in the face of a crash - that must be done by userspace
4098 	 * making a backup of the data.  So in that case there is no particular
4099 	 * rush to update metadata.
4100 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4101 	 * update the metadata to advance 'safepos' to match 'readpos' so that
4102 	 * we can be safe in the event of a crash.
4103 	 * So we insist on updating metadata if safepos is behind writepos and
4104 	 * readpos is beyond writepos.
4105 	 * In any case, update the metadata every 10 seconds.
4106 	 * Maybe that number should be configurable, but I'm not sure it is
4107 	 * worth it.... maybe it could be a multiple of safemode_delay???
4108 	 */
4109 	if ((mddev->delta_disks < 0
4110 	     ? (safepos > writepos && readpos < writepos)
4111 	     : (safepos < writepos && readpos > writepos)) ||
4112 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4113 		/* Cannot proceed until we've updated the superblock... */
4114 		wait_event(conf->wait_for_overlap,
4115 			   atomic_read(&conf->reshape_stripes)==0);
4116 		mddev->reshape_position = conf->reshape_progress;
4117 		mddev->curr_resync_completed = mddev->curr_resync;
4118 		conf->reshape_checkpoint = jiffies;
4119 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4120 		md_wakeup_thread(mddev->thread);
4121 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4122 			   kthread_should_stop());
4123 		spin_lock_irq(&conf->device_lock);
4124 		conf->reshape_safe = mddev->reshape_position;
4125 		spin_unlock_irq(&conf->device_lock);
4126 		wake_up(&conf->wait_for_overlap);
4127 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4128 	}
4129 
4130 	if (mddev->delta_disks < 0) {
4131 		BUG_ON(conf->reshape_progress == 0);
4132 		stripe_addr = writepos;
4133 		BUG_ON((mddev->dev_sectors &
4134 			~((sector_t)reshape_sectors - 1))
4135 		       - reshape_sectors - stripe_addr
4136 		       != sector_nr);
4137 	} else {
4138 		BUG_ON(writepos != sector_nr + reshape_sectors);
4139 		stripe_addr = sector_nr;
4140 	}
4141 	INIT_LIST_HEAD(&stripes);
4142 	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4143 		int j;
4144 		int skipped_disk = 0;
4145 		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4146 		set_bit(STRIPE_EXPANDING, &sh->state);
4147 		atomic_inc(&conf->reshape_stripes);
4148 		/* If any of this stripe is beyond the end of the old
4149 		 * array, then we need to zero those blocks
4150 		 */
4151 		for (j=sh->disks; j--;) {
4152 			sector_t s;
4153 			if (j == sh->pd_idx)
4154 				continue;
4155 			if (conf->level == 6 &&
4156 			    j == sh->qd_idx)
4157 				continue;
4158 			s = compute_blocknr(sh, j, 0);
4159 			if (s < raid5_size(mddev, 0, 0)) {
4160 				skipped_disk = 1;
4161 				continue;
4162 			}
4163 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4164 			set_bit(R5_Expanded, &sh->dev[j].flags);
4165 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
4166 		}
4167 		if (!skipped_disk) {
4168 			set_bit(STRIPE_EXPAND_READY, &sh->state);
4169 			set_bit(STRIPE_HANDLE, &sh->state);
4170 		}
4171 		list_add(&sh->lru, &stripes);
4172 	}
4173 	spin_lock_irq(&conf->device_lock);
4174 	if (mddev->delta_disks < 0)
4175 		conf->reshape_progress -= reshape_sectors * new_data_disks;
4176 	else
4177 		conf->reshape_progress += reshape_sectors * new_data_disks;
4178 	spin_unlock_irq(&conf->device_lock);
4179 	/* Ok, those stripe are ready. We can start scheduling
4180 	 * reads on the source stripes.
4181 	 * The source stripes are determined by mapping the first and last
4182 	 * block on the destination stripes.
4183 	 */
4184 	first_sector =
4185 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4186 				     1, &dd_idx, NULL);
4187 	last_sector =
4188 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4189 					    * new_data_disks - 1),
4190 				     1, &dd_idx, NULL);
4191 	if (last_sector >= mddev->dev_sectors)
4192 		last_sector = mddev->dev_sectors - 1;
4193 	while (first_sector <= last_sector) {
4194 		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4195 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4196 		set_bit(STRIPE_HANDLE, &sh->state);
4197 		release_stripe(sh);
4198 		first_sector += STRIPE_SECTORS;
4199 	}
4200 	/* Now that the sources are clearly marked, we can release
4201 	 * the destination stripes
4202 	 */
4203 	while (!list_empty(&stripes)) {
4204 		sh = list_entry(stripes.next, struct stripe_head, lru);
4205 		list_del_init(&sh->lru);
4206 		release_stripe(sh);
4207 	}
4208 	/* If this takes us to the resync_max point where we have to pause,
4209 	 * then we need to write out the superblock.
4210 	 */
4211 	sector_nr += reshape_sectors;
4212 	if ((sector_nr - mddev->curr_resync_completed) * 2
4213 	    >= mddev->resync_max - mddev->curr_resync_completed) {
4214 		/* Cannot proceed until we've updated the superblock... */
4215 		wait_event(conf->wait_for_overlap,
4216 			   atomic_read(&conf->reshape_stripes) == 0);
4217 		mddev->reshape_position = conf->reshape_progress;
4218 		mddev->curr_resync_completed = mddev->curr_resync + reshape_sectors;
4219 		conf->reshape_checkpoint = jiffies;
4220 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4221 		md_wakeup_thread(mddev->thread);
4222 		wait_event(mddev->sb_wait,
4223 			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4224 			   || kthread_should_stop());
4225 		spin_lock_irq(&conf->device_lock);
4226 		conf->reshape_safe = mddev->reshape_position;
4227 		spin_unlock_irq(&conf->device_lock);
4228 		wake_up(&conf->wait_for_overlap);
4229 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4230 	}
4231 	return reshape_sectors;
4232 }
4233 
4234 /* FIXME go_faster isn't used */
4235 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
4236 {
4237 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4238 	struct stripe_head *sh;
4239 	sector_t max_sector = mddev->dev_sectors;
4240 	int sync_blocks;
4241 	int still_degraded = 0;
4242 	int i;
4243 
4244 	if (sector_nr >= max_sector) {
4245 		/* just being told to finish up .. nothing much to do */
4246 		unplug_slaves(mddev);
4247 
4248 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4249 			end_reshape(conf);
4250 			return 0;
4251 		}
4252 
4253 		if (mddev->curr_resync < max_sector) /* aborted */
4254 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4255 					&sync_blocks, 1);
4256 		else /* completed sync */
4257 			conf->fullsync = 0;
4258 		bitmap_close_sync(mddev->bitmap);
4259 
4260 		return 0;
4261 	}
4262 
4263 	/* Allow raid5_quiesce to complete */
4264 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4265 
4266 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4267 		return reshape_request(mddev, sector_nr, skipped);
4268 
4269 	/* No need to check resync_max as we never do more than one
4270 	 * stripe, and as resync_max will always be on a chunk boundary,
4271 	 * if the check in md_do_sync didn't fire, there is no chance
4272 	 * of overstepping resync_max here
4273 	 */
4274 
4275 	/* if there is too many failed drives and we are trying
4276 	 * to resync, then assert that we are finished, because there is
4277 	 * nothing we can do.
4278 	 */
4279 	if (mddev->degraded >= conf->max_degraded &&
4280 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4281 		sector_t rv = mddev->dev_sectors - sector_nr;
4282 		*skipped = 1;
4283 		return rv;
4284 	}
4285 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4286 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4287 	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4288 		/* we can skip this block, and probably more */
4289 		sync_blocks /= STRIPE_SECTORS;
4290 		*skipped = 1;
4291 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4292 	}
4293 
4294 
4295 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4296 
4297 	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4298 	if (sh == NULL) {
4299 		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4300 		/* make sure we don't swamp the stripe cache if someone else
4301 		 * is trying to get access
4302 		 */
4303 		schedule_timeout_uninterruptible(1);
4304 	}
4305 	/* Need to check if array will still be degraded after recovery/resync
4306 	 * We don't need to check the 'failed' flag as when that gets set,
4307 	 * recovery aborts.
4308 	 */
4309 	for (i = 0; i < conf->raid_disks; i++)
4310 		if (conf->disks[i].rdev == NULL)
4311 			still_degraded = 1;
4312 
4313 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4314 
4315 	spin_lock(&sh->lock);
4316 	set_bit(STRIPE_SYNCING, &sh->state);
4317 	clear_bit(STRIPE_INSYNC, &sh->state);
4318 	spin_unlock(&sh->lock);
4319 
4320 	handle_stripe(sh);
4321 	release_stripe(sh);
4322 
4323 	return STRIPE_SECTORS;
4324 }
4325 
4326 static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4327 {
4328 	/* We may not be able to submit a whole bio at once as there
4329 	 * may not be enough stripe_heads available.
4330 	 * We cannot pre-allocate enough stripe_heads as we may need
4331 	 * more than exist in the cache (if we allow ever large chunks).
4332 	 * So we do one stripe head at a time and record in
4333 	 * ->bi_hw_segments how many have been done.
4334 	 *
4335 	 * We *know* that this entire raid_bio is in one chunk, so
4336 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4337 	 */
4338 	struct stripe_head *sh;
4339 	int dd_idx;
4340 	sector_t sector, logical_sector, last_sector;
4341 	int scnt = 0;
4342 	int remaining;
4343 	int handled = 0;
4344 
4345 	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4346 	sector = raid5_compute_sector(conf, logical_sector,
4347 				      0, &dd_idx, NULL);
4348 	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4349 
4350 	for (; logical_sector < last_sector;
4351 	     logical_sector += STRIPE_SECTORS,
4352 		     sector += STRIPE_SECTORS,
4353 		     scnt++) {
4354 
4355 		if (scnt < raid5_bi_hw_segments(raid_bio))
4356 			/* already done this stripe */
4357 			continue;
4358 
4359 		sh = get_active_stripe(conf, sector, 0, 1, 0);
4360 
4361 		if (!sh) {
4362 			/* failed to get a stripe - must wait */
4363 			raid5_set_bi_hw_segments(raid_bio, scnt);
4364 			conf->retry_read_aligned = raid_bio;
4365 			return handled;
4366 		}
4367 
4368 		set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4369 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4370 			release_stripe(sh);
4371 			raid5_set_bi_hw_segments(raid_bio, scnt);
4372 			conf->retry_read_aligned = raid_bio;
4373 			return handled;
4374 		}
4375 
4376 		handle_stripe(sh);
4377 		release_stripe(sh);
4378 		handled++;
4379 	}
4380 	spin_lock_irq(&conf->device_lock);
4381 	remaining = raid5_dec_bi_phys_segments(raid_bio);
4382 	spin_unlock_irq(&conf->device_lock);
4383 	if (remaining == 0)
4384 		bio_endio(raid_bio, 0);
4385 	if (atomic_dec_and_test(&conf->active_aligned_reads))
4386 		wake_up(&conf->wait_for_stripe);
4387 	return handled;
4388 }
4389 
4390 
4391 /*
4392  * This is our raid5 kernel thread.
4393  *
4394  * We scan the hash table for stripes which can be handled now.
4395  * During the scan, completed stripes are saved for us by the interrupt
4396  * handler, so that they will not have to wait for our next wakeup.
4397  */
4398 static void raid5d(mddev_t *mddev)
4399 {
4400 	struct stripe_head *sh;
4401 	raid5_conf_t *conf = mddev->private;
4402 	int handled;
4403 
4404 	pr_debug("+++ raid5d active\n");
4405 
4406 	md_check_recovery(mddev);
4407 
4408 	handled = 0;
4409 	spin_lock_irq(&conf->device_lock);
4410 	while (1) {
4411 		struct bio *bio;
4412 
4413 		if (conf->seq_flush != conf->seq_write) {
4414 			int seq = conf->seq_flush;
4415 			spin_unlock_irq(&conf->device_lock);
4416 			bitmap_unplug(mddev->bitmap);
4417 			spin_lock_irq(&conf->device_lock);
4418 			conf->seq_write = seq;
4419 			activate_bit_delay(conf);
4420 		}
4421 
4422 		while ((bio = remove_bio_from_retry(conf))) {
4423 			int ok;
4424 			spin_unlock_irq(&conf->device_lock);
4425 			ok = retry_aligned_read(conf, bio);
4426 			spin_lock_irq(&conf->device_lock);
4427 			if (!ok)
4428 				break;
4429 			handled++;
4430 		}
4431 
4432 		sh = __get_priority_stripe(conf);
4433 
4434 		if (!sh)
4435 			break;
4436 		spin_unlock_irq(&conf->device_lock);
4437 
4438 		handled++;
4439 		handle_stripe(sh);
4440 		release_stripe(sh);
4441 		cond_resched();
4442 
4443 		spin_lock_irq(&conf->device_lock);
4444 	}
4445 	pr_debug("%d stripes handled\n", handled);
4446 
4447 	spin_unlock_irq(&conf->device_lock);
4448 
4449 	async_tx_issue_pending_all();
4450 	unplug_slaves(mddev);
4451 
4452 	pr_debug("--- raid5d inactive\n");
4453 }
4454 
4455 static ssize_t
4456 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4457 {
4458 	raid5_conf_t *conf = mddev->private;
4459 	if (conf)
4460 		return sprintf(page, "%d\n", conf->max_nr_stripes);
4461 	else
4462 		return 0;
4463 }
4464 
4465 static ssize_t
4466 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4467 {
4468 	raid5_conf_t *conf = mddev->private;
4469 	unsigned long new;
4470 	int err;
4471 
4472 	if (len >= PAGE_SIZE)
4473 		return -EINVAL;
4474 	if (!conf)
4475 		return -ENODEV;
4476 
4477 	if (strict_strtoul(page, 10, &new))
4478 		return -EINVAL;
4479 	if (new <= 16 || new > 32768)
4480 		return -EINVAL;
4481 	while (new < conf->max_nr_stripes) {
4482 		if (drop_one_stripe(conf))
4483 			conf->max_nr_stripes--;
4484 		else
4485 			break;
4486 	}
4487 	err = md_allow_write(mddev);
4488 	if (err)
4489 		return err;
4490 	while (new > conf->max_nr_stripes) {
4491 		if (grow_one_stripe(conf))
4492 			conf->max_nr_stripes++;
4493 		else break;
4494 	}
4495 	return len;
4496 }
4497 
4498 static struct md_sysfs_entry
4499 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4500 				raid5_show_stripe_cache_size,
4501 				raid5_store_stripe_cache_size);
4502 
4503 static ssize_t
4504 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4505 {
4506 	raid5_conf_t *conf = mddev->private;
4507 	if (conf)
4508 		return sprintf(page, "%d\n", conf->bypass_threshold);
4509 	else
4510 		return 0;
4511 }
4512 
4513 static ssize_t
4514 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4515 {
4516 	raid5_conf_t *conf = mddev->private;
4517 	unsigned long new;
4518 	if (len >= PAGE_SIZE)
4519 		return -EINVAL;
4520 	if (!conf)
4521 		return -ENODEV;
4522 
4523 	if (strict_strtoul(page, 10, &new))
4524 		return -EINVAL;
4525 	if (new > conf->max_nr_stripes)
4526 		return -EINVAL;
4527 	conf->bypass_threshold = new;
4528 	return len;
4529 }
4530 
4531 static struct md_sysfs_entry
4532 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4533 					S_IRUGO | S_IWUSR,
4534 					raid5_show_preread_threshold,
4535 					raid5_store_preread_threshold);
4536 
4537 static ssize_t
4538 stripe_cache_active_show(mddev_t *mddev, char *page)
4539 {
4540 	raid5_conf_t *conf = mddev->private;
4541 	if (conf)
4542 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4543 	else
4544 		return 0;
4545 }
4546 
4547 static struct md_sysfs_entry
4548 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4549 
4550 static struct attribute *raid5_attrs[] =  {
4551 	&raid5_stripecache_size.attr,
4552 	&raid5_stripecache_active.attr,
4553 	&raid5_preread_bypass_threshold.attr,
4554 	NULL,
4555 };
4556 static struct attribute_group raid5_attrs_group = {
4557 	.name = NULL,
4558 	.attrs = raid5_attrs,
4559 };
4560 
4561 static sector_t
4562 raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4563 {
4564 	raid5_conf_t *conf = mddev->private;
4565 
4566 	if (!sectors)
4567 		sectors = mddev->dev_sectors;
4568 	if (!raid_disks)
4569 		/* size is defined by the smallest of previous and new size */
4570 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4571 
4572 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4573 	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4574 	return sectors * (raid_disks - conf->max_degraded);
4575 }
4576 
4577 static void raid5_free_percpu(raid5_conf_t *conf)
4578 {
4579 	struct raid5_percpu *percpu;
4580 	unsigned long cpu;
4581 
4582 	if (!conf->percpu)
4583 		return;
4584 
4585 	get_online_cpus();
4586 	for_each_possible_cpu(cpu) {
4587 		percpu = per_cpu_ptr(conf->percpu, cpu);
4588 		safe_put_page(percpu->spare_page);
4589 		kfree(percpu->scribble);
4590 	}
4591 #ifdef CONFIG_HOTPLUG_CPU
4592 	unregister_cpu_notifier(&conf->cpu_notify);
4593 #endif
4594 	put_online_cpus();
4595 
4596 	free_percpu(conf->percpu);
4597 }
4598 
4599 static void free_conf(raid5_conf_t *conf)
4600 {
4601 	shrink_stripes(conf);
4602 	raid5_free_percpu(conf);
4603 	kfree(conf->disks);
4604 	kfree(conf->stripe_hashtbl);
4605 	kfree(conf);
4606 }
4607 
4608 #ifdef CONFIG_HOTPLUG_CPU
4609 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4610 			      void *hcpu)
4611 {
4612 	raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4613 	long cpu = (long)hcpu;
4614 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4615 
4616 	switch (action) {
4617 	case CPU_UP_PREPARE:
4618 	case CPU_UP_PREPARE_FROZEN:
4619 		if (conf->level == 6 && !percpu->spare_page)
4620 			percpu->spare_page = alloc_page(GFP_KERNEL);
4621 		if (!percpu->scribble)
4622 			percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4623 
4624 		if (!percpu->scribble ||
4625 		    (conf->level == 6 && !percpu->spare_page)) {
4626 			safe_put_page(percpu->spare_page);
4627 			kfree(percpu->scribble);
4628 			pr_err("%s: failed memory allocation for cpu%ld\n",
4629 			       __func__, cpu);
4630 			return NOTIFY_BAD;
4631 		}
4632 		break;
4633 	case CPU_DEAD:
4634 	case CPU_DEAD_FROZEN:
4635 		safe_put_page(percpu->spare_page);
4636 		kfree(percpu->scribble);
4637 		percpu->spare_page = NULL;
4638 		percpu->scribble = NULL;
4639 		break;
4640 	default:
4641 		break;
4642 	}
4643 	return NOTIFY_OK;
4644 }
4645 #endif
4646 
4647 static int raid5_alloc_percpu(raid5_conf_t *conf)
4648 {
4649 	unsigned long cpu;
4650 	struct page *spare_page;
4651 	struct raid5_percpu *allcpus;
4652 	void *scribble;
4653 	int err;
4654 
4655 	allcpus = alloc_percpu(struct raid5_percpu);
4656 	if (!allcpus)
4657 		return -ENOMEM;
4658 	conf->percpu = allcpus;
4659 
4660 	get_online_cpus();
4661 	err = 0;
4662 	for_each_present_cpu(cpu) {
4663 		if (conf->level == 6) {
4664 			spare_page = alloc_page(GFP_KERNEL);
4665 			if (!spare_page) {
4666 				err = -ENOMEM;
4667 				break;
4668 			}
4669 			per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4670 		}
4671 		scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4672 		if (!scribble) {
4673 			err = -ENOMEM;
4674 			break;
4675 		}
4676 		per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4677 	}
4678 #ifdef CONFIG_HOTPLUG_CPU
4679 	conf->cpu_notify.notifier_call = raid456_cpu_notify;
4680 	conf->cpu_notify.priority = 0;
4681 	if (err == 0)
4682 		err = register_cpu_notifier(&conf->cpu_notify);
4683 #endif
4684 	put_online_cpus();
4685 
4686 	return err;
4687 }
4688 
4689 static raid5_conf_t *setup_conf(mddev_t *mddev)
4690 {
4691 	raid5_conf_t *conf;
4692 	int raid_disk, memory, max_disks;
4693 	mdk_rdev_t *rdev;
4694 	struct disk_info *disk;
4695 
4696 	if (mddev->new_level != 5
4697 	    && mddev->new_level != 4
4698 	    && mddev->new_level != 6) {
4699 		printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
4700 		       mdname(mddev), mddev->new_level);
4701 		return ERR_PTR(-EIO);
4702 	}
4703 	if ((mddev->new_level == 5
4704 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
4705 	    (mddev->new_level == 6
4706 	     && !algorithm_valid_raid6(mddev->new_layout))) {
4707 		printk(KERN_ERR "raid5: %s: layout %d not supported\n",
4708 		       mdname(mddev), mddev->new_layout);
4709 		return ERR_PTR(-EIO);
4710 	}
4711 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4712 		printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4713 		       mdname(mddev), mddev->raid_disks);
4714 		return ERR_PTR(-EINVAL);
4715 	}
4716 
4717 	if (!mddev->new_chunk_sectors ||
4718 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4719 	    !is_power_of_2(mddev->new_chunk_sectors)) {
4720 		printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4721 		       mddev->new_chunk_sectors << 9, mdname(mddev));
4722 		return ERR_PTR(-EINVAL);
4723 	}
4724 
4725 	conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4726 	if (conf == NULL)
4727 		goto abort;
4728 	spin_lock_init(&conf->device_lock);
4729 	init_waitqueue_head(&conf->wait_for_stripe);
4730 	init_waitqueue_head(&conf->wait_for_overlap);
4731 	INIT_LIST_HEAD(&conf->handle_list);
4732 	INIT_LIST_HEAD(&conf->hold_list);
4733 	INIT_LIST_HEAD(&conf->delayed_list);
4734 	INIT_LIST_HEAD(&conf->bitmap_list);
4735 	INIT_LIST_HEAD(&conf->inactive_list);
4736 	atomic_set(&conf->active_stripes, 0);
4737 	atomic_set(&conf->preread_active_stripes, 0);
4738 	atomic_set(&conf->active_aligned_reads, 0);
4739 	conf->bypass_threshold = BYPASS_THRESHOLD;
4740 
4741 	conf->raid_disks = mddev->raid_disks;
4742 	if (mddev->reshape_position == MaxSector)
4743 		conf->previous_raid_disks = mddev->raid_disks;
4744 	else
4745 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4746 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4747 	conf->scribble_len = scribble_len(max_disks);
4748 
4749 	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4750 			      GFP_KERNEL);
4751 	if (!conf->disks)
4752 		goto abort;
4753 
4754 	conf->mddev = mddev;
4755 
4756 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4757 		goto abort;
4758 
4759 	conf->level = mddev->new_level;
4760 	if (raid5_alloc_percpu(conf) != 0)
4761 		goto abort;
4762 
4763 	pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4764 
4765 	list_for_each_entry(rdev, &mddev->disks, same_set) {
4766 		raid_disk = rdev->raid_disk;
4767 		if (raid_disk >= max_disks
4768 		    || raid_disk < 0)
4769 			continue;
4770 		disk = conf->disks + raid_disk;
4771 
4772 		disk->rdev = rdev;
4773 
4774 		if (test_bit(In_sync, &rdev->flags)) {
4775 			char b[BDEVNAME_SIZE];
4776 			printk(KERN_INFO "raid5: device %s operational as raid"
4777 				" disk %d\n", bdevname(rdev->bdev,b),
4778 				raid_disk);
4779 		} else
4780 			/* Cannot rely on bitmap to complete recovery */
4781 			conf->fullsync = 1;
4782 	}
4783 
4784 	conf->chunk_sectors = mddev->new_chunk_sectors;
4785 	conf->level = mddev->new_level;
4786 	if (conf->level == 6)
4787 		conf->max_degraded = 2;
4788 	else
4789 		conf->max_degraded = 1;
4790 	conf->algorithm = mddev->new_layout;
4791 	conf->max_nr_stripes = NR_STRIPES;
4792 	conf->reshape_progress = mddev->reshape_position;
4793 	if (conf->reshape_progress != MaxSector) {
4794 		conf->prev_chunk_sectors = mddev->chunk_sectors;
4795 		conf->prev_algo = mddev->layout;
4796 	}
4797 
4798 	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4799 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4800 	if (grow_stripes(conf, conf->max_nr_stripes)) {
4801 		printk(KERN_ERR
4802 			"raid5: couldn't allocate %dkB for buffers\n", memory);
4803 		goto abort;
4804 	} else
4805 		printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4806 			memory, mdname(mddev));
4807 
4808 	conf->thread = md_register_thread(raid5d, mddev, NULL);
4809 	if (!conf->thread) {
4810 		printk(KERN_ERR
4811 		       "raid5: couldn't allocate thread for %s\n",
4812 		       mdname(mddev));
4813 		goto abort;
4814 	}
4815 
4816 	return conf;
4817 
4818  abort:
4819 	if (conf) {
4820 		free_conf(conf);
4821 		return ERR_PTR(-EIO);
4822 	} else
4823 		return ERR_PTR(-ENOMEM);
4824 }
4825 
4826 
4827 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4828 {
4829 	switch (algo) {
4830 	case ALGORITHM_PARITY_0:
4831 		if (raid_disk < max_degraded)
4832 			return 1;
4833 		break;
4834 	case ALGORITHM_PARITY_N:
4835 		if (raid_disk >= raid_disks - max_degraded)
4836 			return 1;
4837 		break;
4838 	case ALGORITHM_PARITY_0_6:
4839 		if (raid_disk == 0 ||
4840 		    raid_disk == raid_disks - 1)
4841 			return 1;
4842 		break;
4843 	case ALGORITHM_LEFT_ASYMMETRIC_6:
4844 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
4845 	case ALGORITHM_LEFT_SYMMETRIC_6:
4846 	case ALGORITHM_RIGHT_SYMMETRIC_6:
4847 		if (raid_disk == raid_disks - 1)
4848 			return 1;
4849 	}
4850 	return 0;
4851 }
4852 
4853 static int run(mddev_t *mddev)
4854 {
4855 	raid5_conf_t *conf;
4856 	int working_disks = 0, chunk_size;
4857 	int dirty_parity_disks = 0;
4858 	mdk_rdev_t *rdev;
4859 	sector_t reshape_offset = 0;
4860 
4861 	if (mddev->recovery_cp != MaxSector)
4862 		printk(KERN_NOTICE "raid5: %s is not clean"
4863 		       " -- starting background reconstruction\n",
4864 		       mdname(mddev));
4865 	if (mddev->reshape_position != MaxSector) {
4866 		/* Check that we can continue the reshape.
4867 		 * Currently only disks can change, it must
4868 		 * increase, and we must be past the point where
4869 		 * a stripe over-writes itself
4870 		 */
4871 		sector_t here_new, here_old;
4872 		int old_disks;
4873 		int max_degraded = (mddev->level == 6 ? 2 : 1);
4874 
4875 		if (mddev->new_level != mddev->level) {
4876 			printk(KERN_ERR "raid5: %s: unsupported reshape "
4877 			       "required - aborting.\n",
4878 			       mdname(mddev));
4879 			return -EINVAL;
4880 		}
4881 		old_disks = mddev->raid_disks - mddev->delta_disks;
4882 		/* reshape_position must be on a new-stripe boundary, and one
4883 		 * further up in new geometry must map after here in old
4884 		 * geometry.
4885 		 */
4886 		here_new = mddev->reshape_position;
4887 		if (sector_div(here_new, mddev->new_chunk_sectors *
4888 			       (mddev->raid_disks - max_degraded))) {
4889 			printk(KERN_ERR "raid5: reshape_position not "
4890 			       "on a stripe boundary\n");
4891 			return -EINVAL;
4892 		}
4893 		reshape_offset = here_new * mddev->new_chunk_sectors;
4894 		/* here_new is the stripe we will write to */
4895 		here_old = mddev->reshape_position;
4896 		sector_div(here_old, mddev->chunk_sectors *
4897 			   (old_disks-max_degraded));
4898 		/* here_old is the first stripe that we might need to read
4899 		 * from */
4900 		if (mddev->delta_disks == 0) {
4901 			/* We cannot be sure it is safe to start an in-place
4902 			 * reshape.  It is only safe if user-space if monitoring
4903 			 * and taking constant backups.
4904 			 * mdadm always starts a situation like this in
4905 			 * readonly mode so it can take control before
4906 			 * allowing any writes.  So just check for that.
4907 			 */
4908 			if ((here_new * mddev->new_chunk_sectors !=
4909 			     here_old * mddev->chunk_sectors) ||
4910 			    mddev->ro == 0) {
4911 				printk(KERN_ERR "raid5: in-place reshape must be started"
4912 				       " in read-only mode - aborting\n");
4913 				return -EINVAL;
4914 			}
4915 		} else if (mddev->delta_disks < 0
4916 		    ? (here_new * mddev->new_chunk_sectors <=
4917 		       here_old * mddev->chunk_sectors)
4918 		    : (here_new * mddev->new_chunk_sectors >=
4919 		       here_old * mddev->chunk_sectors)) {
4920 			/* Reading from the same stripe as writing to - bad */
4921 			printk(KERN_ERR "raid5: reshape_position too early for "
4922 			       "auto-recovery - aborting.\n");
4923 			return -EINVAL;
4924 		}
4925 		printk(KERN_INFO "raid5: reshape will continue\n");
4926 		/* OK, we should be able to continue; */
4927 	} else {
4928 		BUG_ON(mddev->level != mddev->new_level);
4929 		BUG_ON(mddev->layout != mddev->new_layout);
4930 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
4931 		BUG_ON(mddev->delta_disks != 0);
4932 	}
4933 
4934 	if (mddev->private == NULL)
4935 		conf = setup_conf(mddev);
4936 	else
4937 		conf = mddev->private;
4938 
4939 	if (IS_ERR(conf))
4940 		return PTR_ERR(conf);
4941 
4942 	mddev->thread = conf->thread;
4943 	conf->thread = NULL;
4944 	mddev->private = conf;
4945 
4946 	/*
4947 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
4948 	 */
4949 	list_for_each_entry(rdev, &mddev->disks, same_set) {
4950 		if (rdev->raid_disk < 0)
4951 			continue;
4952 		if (test_bit(In_sync, &rdev->flags))
4953 			working_disks++;
4954 		/* This disc is not fully in-sync.  However if it
4955 		 * just stored parity (beyond the recovery_offset),
4956 		 * when we don't need to be concerned about the
4957 		 * array being dirty.
4958 		 * When reshape goes 'backwards', we never have
4959 		 * partially completed devices, so we only need
4960 		 * to worry about reshape going forwards.
4961 		 */
4962 		/* Hack because v0.91 doesn't store recovery_offset properly. */
4963 		if (mddev->major_version == 0 &&
4964 		    mddev->minor_version > 90)
4965 			rdev->recovery_offset = reshape_offset;
4966 
4967 		printk("%d: w=%d pa=%d pr=%d m=%d a=%d r=%d op1=%d op2=%d\n",
4968 		       rdev->raid_disk, working_disks, conf->prev_algo,
4969 		       conf->previous_raid_disks, conf->max_degraded,
4970 		       conf->algorithm, conf->raid_disks,
4971 		       only_parity(rdev->raid_disk,
4972 				   conf->prev_algo,
4973 				   conf->previous_raid_disks,
4974 				   conf->max_degraded),
4975 		       only_parity(rdev->raid_disk,
4976 				   conf->algorithm,
4977 				   conf->raid_disks,
4978 				   conf->max_degraded));
4979 		if (rdev->recovery_offset < reshape_offset) {
4980 			/* We need to check old and new layout */
4981 			if (!only_parity(rdev->raid_disk,
4982 					 conf->algorithm,
4983 					 conf->raid_disks,
4984 					 conf->max_degraded))
4985 				continue;
4986 		}
4987 		if (!only_parity(rdev->raid_disk,
4988 				 conf->prev_algo,
4989 				 conf->previous_raid_disks,
4990 				 conf->max_degraded))
4991 			continue;
4992 		dirty_parity_disks++;
4993 	}
4994 
4995 	mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
4996 			   - working_disks);
4997 
4998 	if (mddev->degraded > conf->max_degraded) {
4999 		printk(KERN_ERR "raid5: not enough operational devices for %s"
5000 			" (%d/%d failed)\n",
5001 			mdname(mddev), mddev->degraded, conf->raid_disks);
5002 		goto abort;
5003 	}
5004 
5005 	/* device size must be a multiple of chunk size */
5006 	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5007 	mddev->resync_max_sectors = mddev->dev_sectors;
5008 
5009 	if (mddev->degraded > dirty_parity_disks &&
5010 	    mddev->recovery_cp != MaxSector) {
5011 		if (mddev->ok_start_degraded)
5012 			printk(KERN_WARNING
5013 			       "raid5: starting dirty degraded array: %s"
5014 			       "- data corruption possible.\n",
5015 			       mdname(mddev));
5016 		else {
5017 			printk(KERN_ERR
5018 			       "raid5: cannot start dirty degraded array for %s\n",
5019 			       mdname(mddev));
5020 			goto abort;
5021 		}
5022 	}
5023 
5024 	if (mddev->degraded == 0)
5025 		printk("raid5: raid level %d set %s active with %d out of %d"
5026 		       " devices, algorithm %d\n", conf->level, mdname(mddev),
5027 		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5028 		       mddev->new_layout);
5029 	else
5030 		printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
5031 			" out of %d devices, algorithm %d\n", conf->level,
5032 			mdname(mddev), mddev->raid_disks - mddev->degraded,
5033 			mddev->raid_disks, mddev->new_layout);
5034 
5035 	print_raid5_conf(conf);
5036 
5037 	if (conf->reshape_progress != MaxSector) {
5038 		printk("...ok start reshape thread\n");
5039 		conf->reshape_safe = conf->reshape_progress;
5040 		atomic_set(&conf->reshape_stripes, 0);
5041 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5042 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5043 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5044 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5045 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5046 							"reshape");
5047 	}
5048 
5049 	/* read-ahead size must cover two whole stripes, which is
5050 	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5051 	 */
5052 	{
5053 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
5054 		int stripe = data_disks *
5055 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
5056 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5057 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5058 	}
5059 
5060 	/* Ok, everything is just fine now */
5061 	if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5062 		printk(KERN_WARNING
5063 		       "raid5: failed to create sysfs attributes for %s\n",
5064 		       mdname(mddev));
5065 
5066 	mddev->queue->queue_lock = &conf->device_lock;
5067 
5068 	mddev->queue->unplug_fn = raid5_unplug_device;
5069 	mddev->queue->backing_dev_info.congested_data = mddev;
5070 	mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5071 
5072 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5073 
5074 	blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5075 	chunk_size = mddev->chunk_sectors << 9;
5076 	blk_queue_io_min(mddev->queue, chunk_size);
5077 	blk_queue_io_opt(mddev->queue, chunk_size *
5078 			 (conf->raid_disks - conf->max_degraded));
5079 
5080 	list_for_each_entry(rdev, &mddev->disks, same_set)
5081 		disk_stack_limits(mddev->gendisk, rdev->bdev,
5082 				  rdev->data_offset << 9);
5083 
5084 	return 0;
5085 abort:
5086 	md_unregister_thread(mddev->thread);
5087 	mddev->thread = NULL;
5088 	if (conf) {
5089 		print_raid5_conf(conf);
5090 		free_conf(conf);
5091 	}
5092 	mddev->private = NULL;
5093 	printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
5094 	return -EIO;
5095 }
5096 
5097 
5098 
5099 static int stop(mddev_t *mddev)
5100 {
5101 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
5102 
5103 	md_unregister_thread(mddev->thread);
5104 	mddev->thread = NULL;
5105 	mddev->queue->backing_dev_info.congested_fn = NULL;
5106 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5107 	sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
5108 	free_conf(conf);
5109 	mddev->private = NULL;
5110 	return 0;
5111 }
5112 
5113 #ifdef DEBUG
5114 static void print_sh(struct seq_file *seq, struct stripe_head *sh)
5115 {
5116 	int i;
5117 
5118 	seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
5119 		   (unsigned long long)sh->sector, sh->pd_idx, sh->state);
5120 	seq_printf(seq, "sh %llu,  count %d.\n",
5121 		   (unsigned long long)sh->sector, atomic_read(&sh->count));
5122 	seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
5123 	for (i = 0; i < sh->disks; i++) {
5124 		seq_printf(seq, "(cache%d: %p %ld) ",
5125 			   i, sh->dev[i].page, sh->dev[i].flags);
5126 	}
5127 	seq_printf(seq, "\n");
5128 }
5129 
5130 static void printall(struct seq_file *seq, raid5_conf_t *conf)
5131 {
5132 	struct stripe_head *sh;
5133 	struct hlist_node *hn;
5134 	int i;
5135 
5136 	spin_lock_irq(&conf->device_lock);
5137 	for (i = 0; i < NR_HASH; i++) {
5138 		hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
5139 			if (sh->raid_conf != conf)
5140 				continue;
5141 			print_sh(seq, sh);
5142 		}
5143 	}
5144 	spin_unlock_irq(&conf->device_lock);
5145 }
5146 #endif
5147 
5148 static void status(struct seq_file *seq, mddev_t *mddev)
5149 {
5150 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
5151 	int i;
5152 
5153 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5154 		mddev->chunk_sectors / 2, mddev->layout);
5155 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5156 	for (i = 0; i < conf->raid_disks; i++)
5157 		seq_printf (seq, "%s",
5158 			       conf->disks[i].rdev &&
5159 			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5160 	seq_printf (seq, "]");
5161 #ifdef DEBUG
5162 	seq_printf (seq, "\n");
5163 	printall(seq, conf);
5164 #endif
5165 }
5166 
5167 static void print_raid5_conf (raid5_conf_t *conf)
5168 {
5169 	int i;
5170 	struct disk_info *tmp;
5171 
5172 	printk("RAID5 conf printout:\n");
5173 	if (!conf) {
5174 		printk("(conf==NULL)\n");
5175 		return;
5176 	}
5177 	printk(" --- rd:%d wd:%d\n", conf->raid_disks,
5178 		 conf->raid_disks - conf->mddev->degraded);
5179 
5180 	for (i = 0; i < conf->raid_disks; i++) {
5181 		char b[BDEVNAME_SIZE];
5182 		tmp = conf->disks + i;
5183 		if (tmp->rdev)
5184 		printk(" disk %d, o:%d, dev:%s\n",
5185 			i, !test_bit(Faulty, &tmp->rdev->flags),
5186 			bdevname(tmp->rdev->bdev,b));
5187 	}
5188 }
5189 
5190 static int raid5_spare_active(mddev_t *mddev)
5191 {
5192 	int i;
5193 	raid5_conf_t *conf = mddev->private;
5194 	struct disk_info *tmp;
5195 
5196 	for (i = 0; i < conf->raid_disks; i++) {
5197 		tmp = conf->disks + i;
5198 		if (tmp->rdev
5199 		    && !test_bit(Faulty, &tmp->rdev->flags)
5200 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5201 			unsigned long flags;
5202 			spin_lock_irqsave(&conf->device_lock, flags);
5203 			mddev->degraded--;
5204 			spin_unlock_irqrestore(&conf->device_lock, flags);
5205 		}
5206 	}
5207 	print_raid5_conf(conf);
5208 	return 0;
5209 }
5210 
5211 static int raid5_remove_disk(mddev_t *mddev, int number)
5212 {
5213 	raid5_conf_t *conf = mddev->private;
5214 	int err = 0;
5215 	mdk_rdev_t *rdev;
5216 	struct disk_info *p = conf->disks + number;
5217 
5218 	print_raid5_conf(conf);
5219 	rdev = p->rdev;
5220 	if (rdev) {
5221 		if (number >= conf->raid_disks &&
5222 		    conf->reshape_progress == MaxSector)
5223 			clear_bit(In_sync, &rdev->flags);
5224 
5225 		if (test_bit(In_sync, &rdev->flags) ||
5226 		    atomic_read(&rdev->nr_pending)) {
5227 			err = -EBUSY;
5228 			goto abort;
5229 		}
5230 		/* Only remove non-faulty devices if recovery
5231 		 * isn't possible.
5232 		 */
5233 		if (!test_bit(Faulty, &rdev->flags) &&
5234 		    mddev->degraded <= conf->max_degraded &&
5235 		    number < conf->raid_disks) {
5236 			err = -EBUSY;
5237 			goto abort;
5238 		}
5239 		p->rdev = NULL;
5240 		synchronize_rcu();
5241 		if (atomic_read(&rdev->nr_pending)) {
5242 			/* lost the race, try later */
5243 			err = -EBUSY;
5244 			p->rdev = rdev;
5245 		}
5246 	}
5247 abort:
5248 
5249 	print_raid5_conf(conf);
5250 	return err;
5251 }
5252 
5253 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
5254 {
5255 	raid5_conf_t *conf = mddev->private;
5256 	int err = -EEXIST;
5257 	int disk;
5258 	struct disk_info *p;
5259 	int first = 0;
5260 	int last = conf->raid_disks - 1;
5261 
5262 	if (mddev->degraded > conf->max_degraded)
5263 		/* no point adding a device */
5264 		return -EINVAL;
5265 
5266 	if (rdev->raid_disk >= 0)
5267 		first = last = rdev->raid_disk;
5268 
5269 	/*
5270 	 * find the disk ... but prefer rdev->saved_raid_disk
5271 	 * if possible.
5272 	 */
5273 	if (rdev->saved_raid_disk >= 0 &&
5274 	    rdev->saved_raid_disk >= first &&
5275 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
5276 		disk = rdev->saved_raid_disk;
5277 	else
5278 		disk = first;
5279 	for ( ; disk <= last ; disk++)
5280 		if ((p=conf->disks + disk)->rdev == NULL) {
5281 			clear_bit(In_sync, &rdev->flags);
5282 			rdev->raid_disk = disk;
5283 			err = 0;
5284 			if (rdev->saved_raid_disk != disk)
5285 				conf->fullsync = 1;
5286 			rcu_assign_pointer(p->rdev, rdev);
5287 			break;
5288 		}
5289 	print_raid5_conf(conf);
5290 	return err;
5291 }
5292 
5293 static int raid5_resize(mddev_t *mddev, sector_t sectors)
5294 {
5295 	/* no resync is happening, and there is enough space
5296 	 * on all devices, so we can resize.
5297 	 * We need to make sure resync covers any new space.
5298 	 * If the array is shrinking we should possibly wait until
5299 	 * any io in the removed space completes, but it hardly seems
5300 	 * worth it.
5301 	 */
5302 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5303 	md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5304 					       mddev->raid_disks));
5305 	if (mddev->array_sectors >
5306 	    raid5_size(mddev, sectors, mddev->raid_disks))
5307 		return -EINVAL;
5308 	set_capacity(mddev->gendisk, mddev->array_sectors);
5309 	mddev->changed = 1;
5310 	revalidate_disk(mddev->gendisk);
5311 	if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
5312 		mddev->recovery_cp = mddev->dev_sectors;
5313 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5314 	}
5315 	mddev->dev_sectors = sectors;
5316 	mddev->resync_max_sectors = sectors;
5317 	return 0;
5318 }
5319 
5320 static int check_stripe_cache(mddev_t *mddev)
5321 {
5322 	/* Can only proceed if there are plenty of stripe_heads.
5323 	 * We need a minimum of one full stripe,, and for sensible progress
5324 	 * it is best to have about 4 times that.
5325 	 * If we require 4 times, then the default 256 4K stripe_heads will
5326 	 * allow for chunk sizes up to 256K, which is probably OK.
5327 	 * If the chunk size is greater, user-space should request more
5328 	 * stripe_heads first.
5329 	 */
5330 	raid5_conf_t *conf = mddev->private;
5331 	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5332 	    > conf->max_nr_stripes ||
5333 	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5334 	    > conf->max_nr_stripes) {
5335 		printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n",
5336 		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5337 			/ STRIPE_SIZE)*4);
5338 		return 0;
5339 	}
5340 	return 1;
5341 }
5342 
5343 static int check_reshape(mddev_t *mddev)
5344 {
5345 	raid5_conf_t *conf = mddev->private;
5346 
5347 	if (mddev->delta_disks == 0 &&
5348 	    mddev->new_layout == mddev->layout &&
5349 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
5350 		return 0; /* nothing to do */
5351 	if (mddev->bitmap)
5352 		/* Cannot grow a bitmap yet */
5353 		return -EBUSY;
5354 	if (mddev->degraded > conf->max_degraded)
5355 		return -EINVAL;
5356 	if (mddev->delta_disks < 0) {
5357 		/* We might be able to shrink, but the devices must
5358 		 * be made bigger first.
5359 		 * For raid6, 4 is the minimum size.
5360 		 * Otherwise 2 is the minimum
5361 		 */
5362 		int min = 2;
5363 		if (mddev->level == 6)
5364 			min = 4;
5365 		if (mddev->raid_disks + mddev->delta_disks < min)
5366 			return -EINVAL;
5367 	}
5368 
5369 	if (!check_stripe_cache(mddev))
5370 		return -ENOSPC;
5371 
5372 	return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5373 }
5374 
5375 static int raid5_start_reshape(mddev_t *mddev)
5376 {
5377 	raid5_conf_t *conf = mddev->private;
5378 	mdk_rdev_t *rdev;
5379 	int spares = 0;
5380 	int added_devices = 0;
5381 	unsigned long flags;
5382 
5383 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5384 		return -EBUSY;
5385 
5386 	if (!check_stripe_cache(mddev))
5387 		return -ENOSPC;
5388 
5389 	list_for_each_entry(rdev, &mddev->disks, same_set)
5390 		if (rdev->raid_disk < 0 &&
5391 		    !test_bit(Faulty, &rdev->flags))
5392 			spares++;
5393 
5394 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5395 		/* Not enough devices even to make a degraded array
5396 		 * of that size
5397 		 */
5398 		return -EINVAL;
5399 
5400 	/* Refuse to reduce size of the array.  Any reductions in
5401 	 * array size must be through explicit setting of array_size
5402 	 * attribute.
5403 	 */
5404 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5405 	    < mddev->array_sectors) {
5406 		printk(KERN_ERR "md: %s: array size must be reduced "
5407 		       "before number of disks\n", mdname(mddev));
5408 		return -EINVAL;
5409 	}
5410 
5411 	atomic_set(&conf->reshape_stripes, 0);
5412 	spin_lock_irq(&conf->device_lock);
5413 	conf->previous_raid_disks = conf->raid_disks;
5414 	conf->raid_disks += mddev->delta_disks;
5415 	conf->prev_chunk_sectors = conf->chunk_sectors;
5416 	conf->chunk_sectors = mddev->new_chunk_sectors;
5417 	conf->prev_algo = conf->algorithm;
5418 	conf->algorithm = mddev->new_layout;
5419 	if (mddev->delta_disks < 0)
5420 		conf->reshape_progress = raid5_size(mddev, 0, 0);
5421 	else
5422 		conf->reshape_progress = 0;
5423 	conf->reshape_safe = conf->reshape_progress;
5424 	conf->generation++;
5425 	spin_unlock_irq(&conf->device_lock);
5426 
5427 	/* Add some new drives, as many as will fit.
5428 	 * We know there are enough to make the newly sized array work.
5429 	 */
5430 	list_for_each_entry(rdev, &mddev->disks, same_set)
5431 		if (rdev->raid_disk < 0 &&
5432 		    !test_bit(Faulty, &rdev->flags)) {
5433 			if (raid5_add_disk(mddev, rdev) == 0) {
5434 				char nm[20];
5435 				if (rdev->raid_disk >= conf->previous_raid_disks)
5436 					set_bit(In_sync, &rdev->flags);
5437 				else
5438 					rdev->recovery_offset = 0;
5439 				added_devices++;
5440 				sprintf(nm, "rd%d", rdev->raid_disk);
5441 				if (sysfs_create_link(&mddev->kobj,
5442 						      &rdev->kobj, nm))
5443 					printk(KERN_WARNING
5444 					       "raid5: failed to create "
5445 					       " link %s for %s\n",
5446 					       nm, mdname(mddev));
5447 			} else
5448 				break;
5449 		}
5450 
5451 	if (mddev->delta_disks > 0) {
5452 		spin_lock_irqsave(&conf->device_lock, flags);
5453 		mddev->degraded = (conf->raid_disks - conf->previous_raid_disks)
5454 			- added_devices;
5455 		spin_unlock_irqrestore(&conf->device_lock, flags);
5456 	}
5457 	mddev->raid_disks = conf->raid_disks;
5458 	mddev->reshape_position = conf->reshape_progress;
5459 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5460 
5461 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5462 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5463 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5464 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5465 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5466 						"reshape");
5467 	if (!mddev->sync_thread) {
5468 		mddev->recovery = 0;
5469 		spin_lock_irq(&conf->device_lock);
5470 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5471 		conf->reshape_progress = MaxSector;
5472 		spin_unlock_irq(&conf->device_lock);
5473 		return -EAGAIN;
5474 	}
5475 	conf->reshape_checkpoint = jiffies;
5476 	md_wakeup_thread(mddev->sync_thread);
5477 	md_new_event(mddev);
5478 	return 0;
5479 }
5480 
5481 /* This is called from the reshape thread and should make any
5482  * changes needed in 'conf'
5483  */
5484 static void end_reshape(raid5_conf_t *conf)
5485 {
5486 
5487 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5488 
5489 		spin_lock_irq(&conf->device_lock);
5490 		conf->previous_raid_disks = conf->raid_disks;
5491 		conf->reshape_progress = MaxSector;
5492 		spin_unlock_irq(&conf->device_lock);
5493 		wake_up(&conf->wait_for_overlap);
5494 
5495 		/* read-ahead size must cover two whole stripes, which is
5496 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5497 		 */
5498 		{
5499 			int data_disks = conf->raid_disks - conf->max_degraded;
5500 			int stripe = data_disks * ((conf->chunk_sectors << 9)
5501 						   / PAGE_SIZE);
5502 			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5503 				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5504 		}
5505 	}
5506 }
5507 
5508 /* This is called from the raid5d thread with mddev_lock held.
5509  * It makes config changes to the device.
5510  */
5511 static void raid5_finish_reshape(mddev_t *mddev)
5512 {
5513 	raid5_conf_t *conf = mddev->private;
5514 
5515 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5516 
5517 		if (mddev->delta_disks > 0) {
5518 			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5519 			set_capacity(mddev->gendisk, mddev->array_sectors);
5520 			mddev->changed = 1;
5521 			revalidate_disk(mddev->gendisk);
5522 		} else {
5523 			int d;
5524 			mddev->degraded = conf->raid_disks;
5525 			for (d = 0; d < conf->raid_disks ; d++)
5526 				if (conf->disks[d].rdev &&
5527 				    test_bit(In_sync,
5528 					     &conf->disks[d].rdev->flags))
5529 					mddev->degraded--;
5530 			for (d = conf->raid_disks ;
5531 			     d < conf->raid_disks - mddev->delta_disks;
5532 			     d++) {
5533 				mdk_rdev_t *rdev = conf->disks[d].rdev;
5534 				if (rdev && raid5_remove_disk(mddev, d) == 0) {
5535 					char nm[20];
5536 					sprintf(nm, "rd%d", rdev->raid_disk);
5537 					sysfs_remove_link(&mddev->kobj, nm);
5538 					rdev->raid_disk = -1;
5539 				}
5540 			}
5541 		}
5542 		mddev->layout = conf->algorithm;
5543 		mddev->chunk_sectors = conf->chunk_sectors;
5544 		mddev->reshape_position = MaxSector;
5545 		mddev->delta_disks = 0;
5546 	}
5547 }
5548 
5549 static void raid5_quiesce(mddev_t *mddev, int state)
5550 {
5551 	raid5_conf_t *conf = mddev->private;
5552 
5553 	switch(state) {
5554 	case 2: /* resume for a suspend */
5555 		wake_up(&conf->wait_for_overlap);
5556 		break;
5557 
5558 	case 1: /* stop all writes */
5559 		spin_lock_irq(&conf->device_lock);
5560 		/* '2' tells resync/reshape to pause so that all
5561 		 * active stripes can drain
5562 		 */
5563 		conf->quiesce = 2;
5564 		wait_event_lock_irq(conf->wait_for_stripe,
5565 				    atomic_read(&conf->active_stripes) == 0 &&
5566 				    atomic_read(&conf->active_aligned_reads) == 0,
5567 				    conf->device_lock, /* nothing */);
5568 		conf->quiesce = 1;
5569 		spin_unlock_irq(&conf->device_lock);
5570 		/* allow reshape to continue */
5571 		wake_up(&conf->wait_for_overlap);
5572 		break;
5573 
5574 	case 0: /* re-enable writes */
5575 		spin_lock_irq(&conf->device_lock);
5576 		conf->quiesce = 0;
5577 		wake_up(&conf->wait_for_stripe);
5578 		wake_up(&conf->wait_for_overlap);
5579 		spin_unlock_irq(&conf->device_lock);
5580 		break;
5581 	}
5582 }
5583 
5584 
5585 static void *raid5_takeover_raid1(mddev_t *mddev)
5586 {
5587 	int chunksect;
5588 
5589 	if (mddev->raid_disks != 2 ||
5590 	    mddev->degraded > 1)
5591 		return ERR_PTR(-EINVAL);
5592 
5593 	/* Should check if there are write-behind devices? */
5594 
5595 	chunksect = 64*2; /* 64K by default */
5596 
5597 	/* The array must be an exact multiple of chunksize */
5598 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
5599 		chunksect >>= 1;
5600 
5601 	if ((chunksect<<9) < STRIPE_SIZE)
5602 		/* array size does not allow a suitable chunk size */
5603 		return ERR_PTR(-EINVAL);
5604 
5605 	mddev->new_level = 5;
5606 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5607 	mddev->new_chunk_sectors = chunksect;
5608 
5609 	return setup_conf(mddev);
5610 }
5611 
5612 static void *raid5_takeover_raid6(mddev_t *mddev)
5613 {
5614 	int new_layout;
5615 
5616 	switch (mddev->layout) {
5617 	case ALGORITHM_LEFT_ASYMMETRIC_6:
5618 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5619 		break;
5620 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
5621 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5622 		break;
5623 	case ALGORITHM_LEFT_SYMMETRIC_6:
5624 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
5625 		break;
5626 	case ALGORITHM_RIGHT_SYMMETRIC_6:
5627 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5628 		break;
5629 	case ALGORITHM_PARITY_0_6:
5630 		new_layout = ALGORITHM_PARITY_0;
5631 		break;
5632 	case ALGORITHM_PARITY_N:
5633 		new_layout = ALGORITHM_PARITY_N;
5634 		break;
5635 	default:
5636 		return ERR_PTR(-EINVAL);
5637 	}
5638 	mddev->new_level = 5;
5639 	mddev->new_layout = new_layout;
5640 	mddev->delta_disks = -1;
5641 	mddev->raid_disks -= 1;
5642 	return setup_conf(mddev);
5643 }
5644 
5645 
5646 static int raid5_check_reshape(mddev_t *mddev)
5647 {
5648 	/* For a 2-drive array, the layout and chunk size can be changed
5649 	 * immediately as not restriping is needed.
5650 	 * For larger arrays we record the new value - after validation
5651 	 * to be used by a reshape pass.
5652 	 */
5653 	raid5_conf_t *conf = mddev->private;
5654 	int new_chunk = mddev->new_chunk_sectors;
5655 
5656 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5657 		return -EINVAL;
5658 	if (new_chunk > 0) {
5659 		if (!is_power_of_2(new_chunk))
5660 			return -EINVAL;
5661 		if (new_chunk < (PAGE_SIZE>>9))
5662 			return -EINVAL;
5663 		if (mddev->array_sectors & (new_chunk-1))
5664 			/* not factor of array size */
5665 			return -EINVAL;
5666 	}
5667 
5668 	/* They look valid */
5669 
5670 	if (mddev->raid_disks == 2) {
5671 		/* can make the change immediately */
5672 		if (mddev->new_layout >= 0) {
5673 			conf->algorithm = mddev->new_layout;
5674 			mddev->layout = mddev->new_layout;
5675 		}
5676 		if (new_chunk > 0) {
5677 			conf->chunk_sectors = new_chunk ;
5678 			mddev->chunk_sectors = new_chunk;
5679 		}
5680 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
5681 		md_wakeup_thread(mddev->thread);
5682 	}
5683 	return check_reshape(mddev);
5684 }
5685 
5686 static int raid6_check_reshape(mddev_t *mddev)
5687 {
5688 	int new_chunk = mddev->new_chunk_sectors;
5689 
5690 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5691 		return -EINVAL;
5692 	if (new_chunk > 0) {
5693 		if (!is_power_of_2(new_chunk))
5694 			return -EINVAL;
5695 		if (new_chunk < (PAGE_SIZE >> 9))
5696 			return -EINVAL;
5697 		if (mddev->array_sectors & (new_chunk-1))
5698 			/* not factor of array size */
5699 			return -EINVAL;
5700 	}
5701 
5702 	/* They look valid */
5703 	return check_reshape(mddev);
5704 }
5705 
5706 static void *raid5_takeover(mddev_t *mddev)
5707 {
5708 	/* raid5 can take over:
5709 	 *  raid0 - if all devices are the same - make it a raid4 layout
5710 	 *  raid1 - if there are two drives.  We need to know the chunk size
5711 	 *  raid4 - trivial - just use a raid4 layout.
5712 	 *  raid6 - Providing it is a *_6 layout
5713 	 */
5714 
5715 	if (mddev->level == 1)
5716 		return raid5_takeover_raid1(mddev);
5717 	if (mddev->level == 4) {
5718 		mddev->new_layout = ALGORITHM_PARITY_N;
5719 		mddev->new_level = 5;
5720 		return setup_conf(mddev);
5721 	}
5722 	if (mddev->level == 6)
5723 		return raid5_takeover_raid6(mddev);
5724 
5725 	return ERR_PTR(-EINVAL);
5726 }
5727 
5728 
5729 static struct mdk_personality raid5_personality;
5730 
5731 static void *raid6_takeover(mddev_t *mddev)
5732 {
5733 	/* Currently can only take over a raid5.  We map the
5734 	 * personality to an equivalent raid6 personality
5735 	 * with the Q block at the end.
5736 	 */
5737 	int new_layout;
5738 
5739 	if (mddev->pers != &raid5_personality)
5740 		return ERR_PTR(-EINVAL);
5741 	if (mddev->degraded > 1)
5742 		return ERR_PTR(-EINVAL);
5743 	if (mddev->raid_disks > 253)
5744 		return ERR_PTR(-EINVAL);
5745 	if (mddev->raid_disks < 3)
5746 		return ERR_PTR(-EINVAL);
5747 
5748 	switch (mddev->layout) {
5749 	case ALGORITHM_LEFT_ASYMMETRIC:
5750 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5751 		break;
5752 	case ALGORITHM_RIGHT_ASYMMETRIC:
5753 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5754 		break;
5755 	case ALGORITHM_LEFT_SYMMETRIC:
5756 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5757 		break;
5758 	case ALGORITHM_RIGHT_SYMMETRIC:
5759 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5760 		break;
5761 	case ALGORITHM_PARITY_0:
5762 		new_layout = ALGORITHM_PARITY_0_6;
5763 		break;
5764 	case ALGORITHM_PARITY_N:
5765 		new_layout = ALGORITHM_PARITY_N;
5766 		break;
5767 	default:
5768 		return ERR_PTR(-EINVAL);
5769 	}
5770 	mddev->new_level = 6;
5771 	mddev->new_layout = new_layout;
5772 	mddev->delta_disks = 1;
5773 	mddev->raid_disks += 1;
5774 	return setup_conf(mddev);
5775 }
5776 
5777 
5778 static struct mdk_personality raid6_personality =
5779 {
5780 	.name		= "raid6",
5781 	.level		= 6,
5782 	.owner		= THIS_MODULE,
5783 	.make_request	= make_request,
5784 	.run		= run,
5785 	.stop		= stop,
5786 	.status		= status,
5787 	.error_handler	= error,
5788 	.hot_add_disk	= raid5_add_disk,
5789 	.hot_remove_disk= raid5_remove_disk,
5790 	.spare_active	= raid5_spare_active,
5791 	.sync_request	= sync_request,
5792 	.resize		= raid5_resize,
5793 	.size		= raid5_size,
5794 	.check_reshape	= raid6_check_reshape,
5795 	.start_reshape  = raid5_start_reshape,
5796 	.finish_reshape = raid5_finish_reshape,
5797 	.quiesce	= raid5_quiesce,
5798 	.takeover	= raid6_takeover,
5799 };
5800 static struct mdk_personality raid5_personality =
5801 {
5802 	.name		= "raid5",
5803 	.level		= 5,
5804 	.owner		= THIS_MODULE,
5805 	.make_request	= make_request,
5806 	.run		= run,
5807 	.stop		= stop,
5808 	.status		= status,
5809 	.error_handler	= error,
5810 	.hot_add_disk	= raid5_add_disk,
5811 	.hot_remove_disk= raid5_remove_disk,
5812 	.spare_active	= raid5_spare_active,
5813 	.sync_request	= sync_request,
5814 	.resize		= raid5_resize,
5815 	.size		= raid5_size,
5816 	.check_reshape	= raid5_check_reshape,
5817 	.start_reshape  = raid5_start_reshape,
5818 	.finish_reshape = raid5_finish_reshape,
5819 	.quiesce	= raid5_quiesce,
5820 	.takeover	= raid5_takeover,
5821 };
5822 
5823 static struct mdk_personality raid4_personality =
5824 {
5825 	.name		= "raid4",
5826 	.level		= 4,
5827 	.owner		= THIS_MODULE,
5828 	.make_request	= make_request,
5829 	.run		= run,
5830 	.stop		= stop,
5831 	.status		= status,
5832 	.error_handler	= error,
5833 	.hot_add_disk	= raid5_add_disk,
5834 	.hot_remove_disk= raid5_remove_disk,
5835 	.spare_active	= raid5_spare_active,
5836 	.sync_request	= sync_request,
5837 	.resize		= raid5_resize,
5838 	.size		= raid5_size,
5839 	.check_reshape	= raid5_check_reshape,
5840 	.start_reshape  = raid5_start_reshape,
5841 	.finish_reshape = raid5_finish_reshape,
5842 	.quiesce	= raid5_quiesce,
5843 };
5844 
5845 static int __init raid5_init(void)
5846 {
5847 	register_md_personality(&raid6_personality);
5848 	register_md_personality(&raid5_personality);
5849 	register_md_personality(&raid4_personality);
5850 	return 0;
5851 }
5852 
5853 static void raid5_exit(void)
5854 {
5855 	unregister_md_personality(&raid6_personality);
5856 	unregister_md_personality(&raid5_personality);
5857 	unregister_md_personality(&raid4_personality);
5858 }
5859 
5860 module_init(raid5_init);
5861 module_exit(raid5_exit);
5862 MODULE_LICENSE("GPL");
5863 MODULE_ALIAS("md-personality-4"); /* RAID5 */
5864 MODULE_ALIAS("md-raid5");
5865 MODULE_ALIAS("md-raid4");
5866 MODULE_ALIAS("md-level-5");
5867 MODULE_ALIAS("md-level-4");
5868 MODULE_ALIAS("md-personality-8"); /* RAID6 */
5869 MODULE_ALIAS("md-raid6");
5870 MODULE_ALIAS("md-level-6");
5871 
5872 /* This used to be two separate modules, they were: */
5873 MODULE_ALIAS("raid5");
5874 MODULE_ALIAS("raid6");
5875