xref: /linux/drivers/md/raid5.c (revision 26b0d14106954ae46d2f4f7eec3481828a210f7d)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include "md.h"
57 #include "raid5.h"
58 #include "raid0.h"
59 #include "bitmap.h"
60 
61 /*
62  * Stripe cache
63  */
64 
65 #define NR_STRIPES		256
66 #define STRIPE_SIZE		PAGE_SIZE
67 #define STRIPE_SHIFT		(PAGE_SHIFT - 9)
68 #define STRIPE_SECTORS		(STRIPE_SIZE>>9)
69 #define	IO_THRESHOLD		1
70 #define BYPASS_THRESHOLD	1
71 #define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
72 #define HASH_MASK		(NR_HASH - 1)
73 
74 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
75 {
76 	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
77 	return &conf->stripe_hashtbl[hash];
78 }
79 
80 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
81  * order without overlap.  There may be several bio's per stripe+device, and
82  * a bio could span several devices.
83  * When walking this list for a particular stripe+device, we must never proceed
84  * beyond a bio that extends past this device, as the next bio might no longer
85  * be valid.
86  * This function is used to determine the 'next' bio in the list, given the sector
87  * of the current stripe+device
88  */
89 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
90 {
91 	int sectors = bio->bi_size >> 9;
92 	if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
93 		return bio->bi_next;
94 	else
95 		return NULL;
96 }
97 
98 /*
99  * We maintain a biased count of active stripes in the bottom 16 bits of
100  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
101  */
102 static inline int raid5_bi_phys_segments(struct bio *bio)
103 {
104 	return bio->bi_phys_segments & 0xffff;
105 }
106 
107 static inline int raid5_bi_hw_segments(struct bio *bio)
108 {
109 	return (bio->bi_phys_segments >> 16) & 0xffff;
110 }
111 
112 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
113 {
114 	--bio->bi_phys_segments;
115 	return raid5_bi_phys_segments(bio);
116 }
117 
118 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
119 {
120 	unsigned short val = raid5_bi_hw_segments(bio);
121 
122 	--val;
123 	bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
124 	return val;
125 }
126 
127 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
128 {
129 	bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
130 }
131 
132 /* Find first data disk in a raid6 stripe */
133 static inline int raid6_d0(struct stripe_head *sh)
134 {
135 	if (sh->ddf_layout)
136 		/* ddf always start from first device */
137 		return 0;
138 	/* md starts just after Q block */
139 	if (sh->qd_idx == sh->disks - 1)
140 		return 0;
141 	else
142 		return sh->qd_idx + 1;
143 }
144 static inline int raid6_next_disk(int disk, int raid_disks)
145 {
146 	disk++;
147 	return (disk < raid_disks) ? disk : 0;
148 }
149 
150 /* When walking through the disks in a raid5, starting at raid6_d0,
151  * We need to map each disk to a 'slot', where the data disks are slot
152  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
153  * is raid_disks-1.  This help does that mapping.
154  */
155 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
156 			     int *count, int syndrome_disks)
157 {
158 	int slot = *count;
159 
160 	if (sh->ddf_layout)
161 		(*count)++;
162 	if (idx == sh->pd_idx)
163 		return syndrome_disks;
164 	if (idx == sh->qd_idx)
165 		return syndrome_disks + 1;
166 	if (!sh->ddf_layout)
167 		(*count)++;
168 	return slot;
169 }
170 
171 static void return_io(struct bio *return_bi)
172 {
173 	struct bio *bi = return_bi;
174 	while (bi) {
175 
176 		return_bi = bi->bi_next;
177 		bi->bi_next = NULL;
178 		bi->bi_size = 0;
179 		bio_endio(bi, 0);
180 		bi = return_bi;
181 	}
182 }
183 
184 static void print_raid5_conf (struct r5conf *conf);
185 
186 static int stripe_operations_active(struct stripe_head *sh)
187 {
188 	return sh->check_state || sh->reconstruct_state ||
189 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
190 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
191 }
192 
193 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
194 {
195 	if (atomic_dec_and_test(&sh->count)) {
196 		BUG_ON(!list_empty(&sh->lru));
197 		BUG_ON(atomic_read(&conf->active_stripes)==0);
198 		if (test_bit(STRIPE_HANDLE, &sh->state)) {
199 			if (test_bit(STRIPE_DELAYED, &sh->state) &&
200 			    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
201 				list_add_tail(&sh->lru, &conf->delayed_list);
202 			else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
203 				   sh->bm_seq - conf->seq_write > 0)
204 				list_add_tail(&sh->lru, &conf->bitmap_list);
205 			else {
206 				clear_bit(STRIPE_DELAYED, &sh->state);
207 				clear_bit(STRIPE_BIT_DELAY, &sh->state);
208 				list_add_tail(&sh->lru, &conf->handle_list);
209 			}
210 			md_wakeup_thread(conf->mddev->thread);
211 		} else {
212 			BUG_ON(stripe_operations_active(sh));
213 			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
214 				if (atomic_dec_return(&conf->preread_active_stripes)
215 				    < IO_THRESHOLD)
216 					md_wakeup_thread(conf->mddev->thread);
217 			atomic_dec(&conf->active_stripes);
218 			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
219 				list_add_tail(&sh->lru, &conf->inactive_list);
220 				wake_up(&conf->wait_for_stripe);
221 				if (conf->retry_read_aligned)
222 					md_wakeup_thread(conf->mddev->thread);
223 			}
224 		}
225 	}
226 }
227 
228 static void release_stripe(struct stripe_head *sh)
229 {
230 	struct r5conf *conf = sh->raid_conf;
231 	unsigned long flags;
232 
233 	spin_lock_irqsave(&conf->device_lock, flags);
234 	__release_stripe(conf, sh);
235 	spin_unlock_irqrestore(&conf->device_lock, flags);
236 }
237 
238 static inline void remove_hash(struct stripe_head *sh)
239 {
240 	pr_debug("remove_hash(), stripe %llu\n",
241 		(unsigned long long)sh->sector);
242 
243 	hlist_del_init(&sh->hash);
244 }
245 
246 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
247 {
248 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
249 
250 	pr_debug("insert_hash(), stripe %llu\n",
251 		(unsigned long long)sh->sector);
252 
253 	hlist_add_head(&sh->hash, hp);
254 }
255 
256 
257 /* find an idle stripe, make sure it is unhashed, and return it. */
258 static struct stripe_head *get_free_stripe(struct r5conf *conf)
259 {
260 	struct stripe_head *sh = NULL;
261 	struct list_head *first;
262 
263 	if (list_empty(&conf->inactive_list))
264 		goto out;
265 	first = conf->inactive_list.next;
266 	sh = list_entry(first, struct stripe_head, lru);
267 	list_del_init(first);
268 	remove_hash(sh);
269 	atomic_inc(&conf->active_stripes);
270 out:
271 	return sh;
272 }
273 
274 static void shrink_buffers(struct stripe_head *sh)
275 {
276 	struct page *p;
277 	int i;
278 	int num = sh->raid_conf->pool_size;
279 
280 	for (i = 0; i < num ; i++) {
281 		p = sh->dev[i].page;
282 		if (!p)
283 			continue;
284 		sh->dev[i].page = NULL;
285 		put_page(p);
286 	}
287 }
288 
289 static int grow_buffers(struct stripe_head *sh)
290 {
291 	int i;
292 	int num = sh->raid_conf->pool_size;
293 
294 	for (i = 0; i < num; i++) {
295 		struct page *page;
296 
297 		if (!(page = alloc_page(GFP_KERNEL))) {
298 			return 1;
299 		}
300 		sh->dev[i].page = page;
301 	}
302 	return 0;
303 }
304 
305 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
306 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
307 			    struct stripe_head *sh);
308 
309 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
310 {
311 	struct r5conf *conf = sh->raid_conf;
312 	int i;
313 
314 	BUG_ON(atomic_read(&sh->count) != 0);
315 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
316 	BUG_ON(stripe_operations_active(sh));
317 
318 	pr_debug("init_stripe called, stripe %llu\n",
319 		(unsigned long long)sh->sector);
320 
321 	remove_hash(sh);
322 
323 	sh->generation = conf->generation - previous;
324 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
325 	sh->sector = sector;
326 	stripe_set_idx(sector, conf, previous, sh);
327 	sh->state = 0;
328 
329 
330 	for (i = sh->disks; i--; ) {
331 		struct r5dev *dev = &sh->dev[i];
332 
333 		if (dev->toread || dev->read || dev->towrite || dev->written ||
334 		    test_bit(R5_LOCKED, &dev->flags)) {
335 			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
336 			       (unsigned long long)sh->sector, i, dev->toread,
337 			       dev->read, dev->towrite, dev->written,
338 			       test_bit(R5_LOCKED, &dev->flags));
339 			WARN_ON(1);
340 		}
341 		dev->flags = 0;
342 		raid5_build_block(sh, i, previous);
343 	}
344 	insert_hash(conf, sh);
345 }
346 
347 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
348 					 short generation)
349 {
350 	struct stripe_head *sh;
351 	struct hlist_node *hn;
352 
353 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
354 	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
355 		if (sh->sector == sector && sh->generation == generation)
356 			return sh;
357 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
358 	return NULL;
359 }
360 
361 /*
362  * Need to check if array has failed when deciding whether to:
363  *  - start an array
364  *  - remove non-faulty devices
365  *  - add a spare
366  *  - allow a reshape
367  * This determination is simple when no reshape is happening.
368  * However if there is a reshape, we need to carefully check
369  * both the before and after sections.
370  * This is because some failed devices may only affect one
371  * of the two sections, and some non-in_sync devices may
372  * be insync in the section most affected by failed devices.
373  */
374 static int calc_degraded(struct r5conf *conf)
375 {
376 	int degraded, degraded2;
377 	int i;
378 
379 	rcu_read_lock();
380 	degraded = 0;
381 	for (i = 0; i < conf->previous_raid_disks; i++) {
382 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
383 		if (!rdev || test_bit(Faulty, &rdev->flags))
384 			degraded++;
385 		else if (test_bit(In_sync, &rdev->flags))
386 			;
387 		else
388 			/* not in-sync or faulty.
389 			 * If the reshape increases the number of devices,
390 			 * this is being recovered by the reshape, so
391 			 * this 'previous' section is not in_sync.
392 			 * If the number of devices is being reduced however,
393 			 * the device can only be part of the array if
394 			 * we are reverting a reshape, so this section will
395 			 * be in-sync.
396 			 */
397 			if (conf->raid_disks >= conf->previous_raid_disks)
398 				degraded++;
399 	}
400 	rcu_read_unlock();
401 	if (conf->raid_disks == conf->previous_raid_disks)
402 		return degraded;
403 	rcu_read_lock();
404 	degraded2 = 0;
405 	for (i = 0; i < conf->raid_disks; i++) {
406 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
407 		if (!rdev || test_bit(Faulty, &rdev->flags))
408 			degraded2++;
409 		else if (test_bit(In_sync, &rdev->flags))
410 			;
411 		else
412 			/* not in-sync or faulty.
413 			 * If reshape increases the number of devices, this
414 			 * section has already been recovered, else it
415 			 * almost certainly hasn't.
416 			 */
417 			if (conf->raid_disks <= conf->previous_raid_disks)
418 				degraded2++;
419 	}
420 	rcu_read_unlock();
421 	if (degraded2 > degraded)
422 		return degraded2;
423 	return degraded;
424 }
425 
426 static int has_failed(struct r5conf *conf)
427 {
428 	int degraded;
429 
430 	if (conf->mddev->reshape_position == MaxSector)
431 		return conf->mddev->degraded > conf->max_degraded;
432 
433 	degraded = calc_degraded(conf);
434 	if (degraded > conf->max_degraded)
435 		return 1;
436 	return 0;
437 }
438 
439 static struct stripe_head *
440 get_active_stripe(struct r5conf *conf, sector_t sector,
441 		  int previous, int noblock, int noquiesce)
442 {
443 	struct stripe_head *sh;
444 
445 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
446 
447 	spin_lock_irq(&conf->device_lock);
448 
449 	do {
450 		wait_event_lock_irq(conf->wait_for_stripe,
451 				    conf->quiesce == 0 || noquiesce,
452 				    conf->device_lock, /* nothing */);
453 		sh = __find_stripe(conf, sector, conf->generation - previous);
454 		if (!sh) {
455 			if (!conf->inactive_blocked)
456 				sh = get_free_stripe(conf);
457 			if (noblock && sh == NULL)
458 				break;
459 			if (!sh) {
460 				conf->inactive_blocked = 1;
461 				wait_event_lock_irq(conf->wait_for_stripe,
462 						    !list_empty(&conf->inactive_list) &&
463 						    (atomic_read(&conf->active_stripes)
464 						     < (conf->max_nr_stripes *3/4)
465 						     || !conf->inactive_blocked),
466 						    conf->device_lock,
467 						    );
468 				conf->inactive_blocked = 0;
469 			} else
470 				init_stripe(sh, sector, previous);
471 		} else {
472 			if (atomic_read(&sh->count)) {
473 				BUG_ON(!list_empty(&sh->lru)
474 				    && !test_bit(STRIPE_EXPANDING, &sh->state));
475 			} else {
476 				if (!test_bit(STRIPE_HANDLE, &sh->state))
477 					atomic_inc(&conf->active_stripes);
478 				if (list_empty(&sh->lru) &&
479 				    !test_bit(STRIPE_EXPANDING, &sh->state))
480 					BUG();
481 				list_del_init(&sh->lru);
482 			}
483 		}
484 	} while (sh == NULL);
485 
486 	if (sh)
487 		atomic_inc(&sh->count);
488 
489 	spin_unlock_irq(&conf->device_lock);
490 	return sh;
491 }
492 
493 /* Determine if 'data_offset' or 'new_data_offset' should be used
494  * in this stripe_head.
495  */
496 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
497 {
498 	sector_t progress = conf->reshape_progress;
499 	/* Need a memory barrier to make sure we see the value
500 	 * of conf->generation, or ->data_offset that was set before
501 	 * reshape_progress was updated.
502 	 */
503 	smp_rmb();
504 	if (progress == MaxSector)
505 		return 0;
506 	if (sh->generation == conf->generation - 1)
507 		return 0;
508 	/* We are in a reshape, and this is a new-generation stripe,
509 	 * so use new_data_offset.
510 	 */
511 	return 1;
512 }
513 
514 static void
515 raid5_end_read_request(struct bio *bi, int error);
516 static void
517 raid5_end_write_request(struct bio *bi, int error);
518 
519 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
520 {
521 	struct r5conf *conf = sh->raid_conf;
522 	int i, disks = sh->disks;
523 
524 	might_sleep();
525 
526 	for (i = disks; i--; ) {
527 		int rw;
528 		int replace_only = 0;
529 		struct bio *bi, *rbi;
530 		struct md_rdev *rdev, *rrdev = NULL;
531 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
532 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
533 				rw = WRITE_FUA;
534 			else
535 				rw = WRITE;
536 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
537 			rw = READ;
538 		else if (test_and_clear_bit(R5_WantReplace,
539 					    &sh->dev[i].flags)) {
540 			rw = WRITE;
541 			replace_only = 1;
542 		} else
543 			continue;
544 		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
545 			rw |= REQ_SYNC;
546 
547 		bi = &sh->dev[i].req;
548 		rbi = &sh->dev[i].rreq; /* For writing to replacement */
549 
550 		bi->bi_rw = rw;
551 		rbi->bi_rw = rw;
552 		if (rw & WRITE) {
553 			bi->bi_end_io = raid5_end_write_request;
554 			rbi->bi_end_io = raid5_end_write_request;
555 		} else
556 			bi->bi_end_io = raid5_end_read_request;
557 
558 		rcu_read_lock();
559 		rrdev = rcu_dereference(conf->disks[i].replacement);
560 		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
561 		rdev = rcu_dereference(conf->disks[i].rdev);
562 		if (!rdev) {
563 			rdev = rrdev;
564 			rrdev = NULL;
565 		}
566 		if (rw & WRITE) {
567 			if (replace_only)
568 				rdev = NULL;
569 			if (rdev == rrdev)
570 				/* We raced and saw duplicates */
571 				rrdev = NULL;
572 		} else {
573 			if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
574 				rdev = rrdev;
575 			rrdev = NULL;
576 		}
577 
578 		if (rdev && test_bit(Faulty, &rdev->flags))
579 			rdev = NULL;
580 		if (rdev)
581 			atomic_inc(&rdev->nr_pending);
582 		if (rrdev && test_bit(Faulty, &rrdev->flags))
583 			rrdev = NULL;
584 		if (rrdev)
585 			atomic_inc(&rrdev->nr_pending);
586 		rcu_read_unlock();
587 
588 		/* We have already checked bad blocks for reads.  Now
589 		 * need to check for writes.  We never accept write errors
590 		 * on the replacement, so we don't to check rrdev.
591 		 */
592 		while ((rw & WRITE) && rdev &&
593 		       test_bit(WriteErrorSeen, &rdev->flags)) {
594 			sector_t first_bad;
595 			int bad_sectors;
596 			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
597 					      &first_bad, &bad_sectors);
598 			if (!bad)
599 				break;
600 
601 			if (bad < 0) {
602 				set_bit(BlockedBadBlocks, &rdev->flags);
603 				if (!conf->mddev->external &&
604 				    conf->mddev->flags) {
605 					/* It is very unlikely, but we might
606 					 * still need to write out the
607 					 * bad block log - better give it
608 					 * a chance*/
609 					md_check_recovery(conf->mddev);
610 				}
611 				/*
612 				 * Because md_wait_for_blocked_rdev
613 				 * will dec nr_pending, we must
614 				 * increment it first.
615 				 */
616 				atomic_inc(&rdev->nr_pending);
617 				md_wait_for_blocked_rdev(rdev, conf->mddev);
618 			} else {
619 				/* Acknowledged bad block - skip the write */
620 				rdev_dec_pending(rdev, conf->mddev);
621 				rdev = NULL;
622 			}
623 		}
624 
625 		if (rdev) {
626 			if (s->syncing || s->expanding || s->expanded
627 			    || s->replacing)
628 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
629 
630 			set_bit(STRIPE_IO_STARTED, &sh->state);
631 
632 			bi->bi_bdev = rdev->bdev;
633 			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
634 				__func__, (unsigned long long)sh->sector,
635 				bi->bi_rw, i);
636 			atomic_inc(&sh->count);
637 			if (use_new_offset(conf, sh))
638 				bi->bi_sector = (sh->sector
639 						 + rdev->new_data_offset);
640 			else
641 				bi->bi_sector = (sh->sector
642 						 + rdev->data_offset);
643 			bi->bi_flags = 1 << BIO_UPTODATE;
644 			bi->bi_idx = 0;
645 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
646 			bi->bi_io_vec[0].bv_offset = 0;
647 			bi->bi_size = STRIPE_SIZE;
648 			bi->bi_next = NULL;
649 			if (rrdev)
650 				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
651 			generic_make_request(bi);
652 		}
653 		if (rrdev) {
654 			if (s->syncing || s->expanding || s->expanded
655 			    || s->replacing)
656 				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
657 
658 			set_bit(STRIPE_IO_STARTED, &sh->state);
659 
660 			rbi->bi_bdev = rrdev->bdev;
661 			pr_debug("%s: for %llu schedule op %ld on "
662 				 "replacement disc %d\n",
663 				__func__, (unsigned long long)sh->sector,
664 				rbi->bi_rw, i);
665 			atomic_inc(&sh->count);
666 			if (use_new_offset(conf, sh))
667 				rbi->bi_sector = (sh->sector
668 						  + rrdev->new_data_offset);
669 			else
670 				rbi->bi_sector = (sh->sector
671 						  + rrdev->data_offset);
672 			rbi->bi_flags = 1 << BIO_UPTODATE;
673 			rbi->bi_idx = 0;
674 			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
675 			rbi->bi_io_vec[0].bv_offset = 0;
676 			rbi->bi_size = STRIPE_SIZE;
677 			rbi->bi_next = NULL;
678 			generic_make_request(rbi);
679 		}
680 		if (!rdev && !rrdev) {
681 			if (rw & WRITE)
682 				set_bit(STRIPE_DEGRADED, &sh->state);
683 			pr_debug("skip op %ld on disc %d for sector %llu\n",
684 				bi->bi_rw, i, (unsigned long long)sh->sector);
685 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
686 			set_bit(STRIPE_HANDLE, &sh->state);
687 		}
688 	}
689 }
690 
691 static struct dma_async_tx_descriptor *
692 async_copy_data(int frombio, struct bio *bio, struct page *page,
693 	sector_t sector, struct dma_async_tx_descriptor *tx)
694 {
695 	struct bio_vec *bvl;
696 	struct page *bio_page;
697 	int i;
698 	int page_offset;
699 	struct async_submit_ctl submit;
700 	enum async_tx_flags flags = 0;
701 
702 	if (bio->bi_sector >= sector)
703 		page_offset = (signed)(bio->bi_sector - sector) * 512;
704 	else
705 		page_offset = (signed)(sector - bio->bi_sector) * -512;
706 
707 	if (frombio)
708 		flags |= ASYNC_TX_FENCE;
709 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
710 
711 	bio_for_each_segment(bvl, bio, i) {
712 		int len = bvl->bv_len;
713 		int clen;
714 		int b_offset = 0;
715 
716 		if (page_offset < 0) {
717 			b_offset = -page_offset;
718 			page_offset += b_offset;
719 			len -= b_offset;
720 		}
721 
722 		if (len > 0 && page_offset + len > STRIPE_SIZE)
723 			clen = STRIPE_SIZE - page_offset;
724 		else
725 			clen = len;
726 
727 		if (clen > 0) {
728 			b_offset += bvl->bv_offset;
729 			bio_page = bvl->bv_page;
730 			if (frombio)
731 				tx = async_memcpy(page, bio_page, page_offset,
732 						  b_offset, clen, &submit);
733 			else
734 				tx = async_memcpy(bio_page, page, b_offset,
735 						  page_offset, clen, &submit);
736 		}
737 		/* chain the operations */
738 		submit.depend_tx = tx;
739 
740 		if (clen < len) /* hit end of page */
741 			break;
742 		page_offset +=  len;
743 	}
744 
745 	return tx;
746 }
747 
748 static void ops_complete_biofill(void *stripe_head_ref)
749 {
750 	struct stripe_head *sh = stripe_head_ref;
751 	struct bio *return_bi = NULL;
752 	struct r5conf *conf = sh->raid_conf;
753 	int i;
754 
755 	pr_debug("%s: stripe %llu\n", __func__,
756 		(unsigned long long)sh->sector);
757 
758 	/* clear completed biofills */
759 	spin_lock_irq(&conf->device_lock);
760 	for (i = sh->disks; i--; ) {
761 		struct r5dev *dev = &sh->dev[i];
762 
763 		/* acknowledge completion of a biofill operation */
764 		/* and check if we need to reply to a read request,
765 		 * new R5_Wantfill requests are held off until
766 		 * !STRIPE_BIOFILL_RUN
767 		 */
768 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
769 			struct bio *rbi, *rbi2;
770 
771 			BUG_ON(!dev->read);
772 			rbi = dev->read;
773 			dev->read = NULL;
774 			while (rbi && rbi->bi_sector <
775 				dev->sector + STRIPE_SECTORS) {
776 				rbi2 = r5_next_bio(rbi, dev->sector);
777 				if (!raid5_dec_bi_phys_segments(rbi)) {
778 					rbi->bi_next = return_bi;
779 					return_bi = rbi;
780 				}
781 				rbi = rbi2;
782 			}
783 		}
784 	}
785 	spin_unlock_irq(&conf->device_lock);
786 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
787 
788 	return_io(return_bi);
789 
790 	set_bit(STRIPE_HANDLE, &sh->state);
791 	release_stripe(sh);
792 }
793 
794 static void ops_run_biofill(struct stripe_head *sh)
795 {
796 	struct dma_async_tx_descriptor *tx = NULL;
797 	struct r5conf *conf = sh->raid_conf;
798 	struct async_submit_ctl submit;
799 	int i;
800 
801 	pr_debug("%s: stripe %llu\n", __func__,
802 		(unsigned long long)sh->sector);
803 
804 	for (i = sh->disks; i--; ) {
805 		struct r5dev *dev = &sh->dev[i];
806 		if (test_bit(R5_Wantfill, &dev->flags)) {
807 			struct bio *rbi;
808 			spin_lock_irq(&conf->device_lock);
809 			dev->read = rbi = dev->toread;
810 			dev->toread = NULL;
811 			spin_unlock_irq(&conf->device_lock);
812 			while (rbi && rbi->bi_sector <
813 				dev->sector + STRIPE_SECTORS) {
814 				tx = async_copy_data(0, rbi, dev->page,
815 					dev->sector, tx);
816 				rbi = r5_next_bio(rbi, dev->sector);
817 			}
818 		}
819 	}
820 
821 	atomic_inc(&sh->count);
822 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
823 	async_trigger_callback(&submit);
824 }
825 
826 static void mark_target_uptodate(struct stripe_head *sh, int target)
827 {
828 	struct r5dev *tgt;
829 
830 	if (target < 0)
831 		return;
832 
833 	tgt = &sh->dev[target];
834 	set_bit(R5_UPTODATE, &tgt->flags);
835 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
836 	clear_bit(R5_Wantcompute, &tgt->flags);
837 }
838 
839 static void ops_complete_compute(void *stripe_head_ref)
840 {
841 	struct stripe_head *sh = stripe_head_ref;
842 
843 	pr_debug("%s: stripe %llu\n", __func__,
844 		(unsigned long long)sh->sector);
845 
846 	/* mark the computed target(s) as uptodate */
847 	mark_target_uptodate(sh, sh->ops.target);
848 	mark_target_uptodate(sh, sh->ops.target2);
849 
850 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
851 	if (sh->check_state == check_state_compute_run)
852 		sh->check_state = check_state_compute_result;
853 	set_bit(STRIPE_HANDLE, &sh->state);
854 	release_stripe(sh);
855 }
856 
857 /* return a pointer to the address conversion region of the scribble buffer */
858 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
859 				 struct raid5_percpu *percpu)
860 {
861 	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
862 }
863 
864 static struct dma_async_tx_descriptor *
865 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
866 {
867 	int disks = sh->disks;
868 	struct page **xor_srcs = percpu->scribble;
869 	int target = sh->ops.target;
870 	struct r5dev *tgt = &sh->dev[target];
871 	struct page *xor_dest = tgt->page;
872 	int count = 0;
873 	struct dma_async_tx_descriptor *tx;
874 	struct async_submit_ctl submit;
875 	int i;
876 
877 	pr_debug("%s: stripe %llu block: %d\n",
878 		__func__, (unsigned long long)sh->sector, target);
879 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
880 
881 	for (i = disks; i--; )
882 		if (i != target)
883 			xor_srcs[count++] = sh->dev[i].page;
884 
885 	atomic_inc(&sh->count);
886 
887 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
888 			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
889 	if (unlikely(count == 1))
890 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
891 	else
892 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
893 
894 	return tx;
895 }
896 
897 /* set_syndrome_sources - populate source buffers for gen_syndrome
898  * @srcs - (struct page *) array of size sh->disks
899  * @sh - stripe_head to parse
900  *
901  * Populates srcs in proper layout order for the stripe and returns the
902  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
903  * destination buffer is recorded in srcs[count] and the Q destination
904  * is recorded in srcs[count+1]].
905  */
906 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
907 {
908 	int disks = sh->disks;
909 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
910 	int d0_idx = raid6_d0(sh);
911 	int count;
912 	int i;
913 
914 	for (i = 0; i < disks; i++)
915 		srcs[i] = NULL;
916 
917 	count = 0;
918 	i = d0_idx;
919 	do {
920 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
921 
922 		srcs[slot] = sh->dev[i].page;
923 		i = raid6_next_disk(i, disks);
924 	} while (i != d0_idx);
925 
926 	return syndrome_disks;
927 }
928 
929 static struct dma_async_tx_descriptor *
930 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
931 {
932 	int disks = sh->disks;
933 	struct page **blocks = percpu->scribble;
934 	int target;
935 	int qd_idx = sh->qd_idx;
936 	struct dma_async_tx_descriptor *tx;
937 	struct async_submit_ctl submit;
938 	struct r5dev *tgt;
939 	struct page *dest;
940 	int i;
941 	int count;
942 
943 	if (sh->ops.target < 0)
944 		target = sh->ops.target2;
945 	else if (sh->ops.target2 < 0)
946 		target = sh->ops.target;
947 	else
948 		/* we should only have one valid target */
949 		BUG();
950 	BUG_ON(target < 0);
951 	pr_debug("%s: stripe %llu block: %d\n",
952 		__func__, (unsigned long long)sh->sector, target);
953 
954 	tgt = &sh->dev[target];
955 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
956 	dest = tgt->page;
957 
958 	atomic_inc(&sh->count);
959 
960 	if (target == qd_idx) {
961 		count = set_syndrome_sources(blocks, sh);
962 		blocks[count] = NULL; /* regenerating p is not necessary */
963 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
964 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
965 				  ops_complete_compute, sh,
966 				  to_addr_conv(sh, percpu));
967 		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
968 	} else {
969 		/* Compute any data- or p-drive using XOR */
970 		count = 0;
971 		for (i = disks; i-- ; ) {
972 			if (i == target || i == qd_idx)
973 				continue;
974 			blocks[count++] = sh->dev[i].page;
975 		}
976 
977 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
978 				  NULL, ops_complete_compute, sh,
979 				  to_addr_conv(sh, percpu));
980 		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
981 	}
982 
983 	return tx;
984 }
985 
986 static struct dma_async_tx_descriptor *
987 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
988 {
989 	int i, count, disks = sh->disks;
990 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
991 	int d0_idx = raid6_d0(sh);
992 	int faila = -1, failb = -1;
993 	int target = sh->ops.target;
994 	int target2 = sh->ops.target2;
995 	struct r5dev *tgt = &sh->dev[target];
996 	struct r5dev *tgt2 = &sh->dev[target2];
997 	struct dma_async_tx_descriptor *tx;
998 	struct page **blocks = percpu->scribble;
999 	struct async_submit_ctl submit;
1000 
1001 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1002 		 __func__, (unsigned long long)sh->sector, target, target2);
1003 	BUG_ON(target < 0 || target2 < 0);
1004 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1005 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1006 
1007 	/* we need to open-code set_syndrome_sources to handle the
1008 	 * slot number conversion for 'faila' and 'failb'
1009 	 */
1010 	for (i = 0; i < disks ; i++)
1011 		blocks[i] = NULL;
1012 	count = 0;
1013 	i = d0_idx;
1014 	do {
1015 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1016 
1017 		blocks[slot] = sh->dev[i].page;
1018 
1019 		if (i == target)
1020 			faila = slot;
1021 		if (i == target2)
1022 			failb = slot;
1023 		i = raid6_next_disk(i, disks);
1024 	} while (i != d0_idx);
1025 
1026 	BUG_ON(faila == failb);
1027 	if (failb < faila)
1028 		swap(faila, failb);
1029 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1030 		 __func__, (unsigned long long)sh->sector, faila, failb);
1031 
1032 	atomic_inc(&sh->count);
1033 
1034 	if (failb == syndrome_disks+1) {
1035 		/* Q disk is one of the missing disks */
1036 		if (faila == syndrome_disks) {
1037 			/* Missing P+Q, just recompute */
1038 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1039 					  ops_complete_compute, sh,
1040 					  to_addr_conv(sh, percpu));
1041 			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1042 						  STRIPE_SIZE, &submit);
1043 		} else {
1044 			struct page *dest;
1045 			int data_target;
1046 			int qd_idx = sh->qd_idx;
1047 
1048 			/* Missing D+Q: recompute D from P, then recompute Q */
1049 			if (target == qd_idx)
1050 				data_target = target2;
1051 			else
1052 				data_target = target;
1053 
1054 			count = 0;
1055 			for (i = disks; i-- ; ) {
1056 				if (i == data_target || i == qd_idx)
1057 					continue;
1058 				blocks[count++] = sh->dev[i].page;
1059 			}
1060 			dest = sh->dev[data_target].page;
1061 			init_async_submit(&submit,
1062 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1063 					  NULL, NULL, NULL,
1064 					  to_addr_conv(sh, percpu));
1065 			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1066 				       &submit);
1067 
1068 			count = set_syndrome_sources(blocks, sh);
1069 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1070 					  ops_complete_compute, sh,
1071 					  to_addr_conv(sh, percpu));
1072 			return async_gen_syndrome(blocks, 0, count+2,
1073 						  STRIPE_SIZE, &submit);
1074 		}
1075 	} else {
1076 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1077 				  ops_complete_compute, sh,
1078 				  to_addr_conv(sh, percpu));
1079 		if (failb == syndrome_disks) {
1080 			/* We're missing D+P. */
1081 			return async_raid6_datap_recov(syndrome_disks+2,
1082 						       STRIPE_SIZE, faila,
1083 						       blocks, &submit);
1084 		} else {
1085 			/* We're missing D+D. */
1086 			return async_raid6_2data_recov(syndrome_disks+2,
1087 						       STRIPE_SIZE, faila, failb,
1088 						       blocks, &submit);
1089 		}
1090 	}
1091 }
1092 
1093 
1094 static void ops_complete_prexor(void *stripe_head_ref)
1095 {
1096 	struct stripe_head *sh = stripe_head_ref;
1097 
1098 	pr_debug("%s: stripe %llu\n", __func__,
1099 		(unsigned long long)sh->sector);
1100 }
1101 
1102 static struct dma_async_tx_descriptor *
1103 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1104 	       struct dma_async_tx_descriptor *tx)
1105 {
1106 	int disks = sh->disks;
1107 	struct page **xor_srcs = percpu->scribble;
1108 	int count = 0, pd_idx = sh->pd_idx, i;
1109 	struct async_submit_ctl submit;
1110 
1111 	/* existing parity data subtracted */
1112 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1113 
1114 	pr_debug("%s: stripe %llu\n", __func__,
1115 		(unsigned long long)sh->sector);
1116 
1117 	for (i = disks; i--; ) {
1118 		struct r5dev *dev = &sh->dev[i];
1119 		/* Only process blocks that are known to be uptodate */
1120 		if (test_bit(R5_Wantdrain, &dev->flags))
1121 			xor_srcs[count++] = dev->page;
1122 	}
1123 
1124 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1125 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1126 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1127 
1128 	return tx;
1129 }
1130 
1131 static struct dma_async_tx_descriptor *
1132 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1133 {
1134 	int disks = sh->disks;
1135 	int i;
1136 
1137 	pr_debug("%s: stripe %llu\n", __func__,
1138 		(unsigned long long)sh->sector);
1139 
1140 	for (i = disks; i--; ) {
1141 		struct r5dev *dev = &sh->dev[i];
1142 		struct bio *chosen;
1143 
1144 		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1145 			struct bio *wbi;
1146 
1147 			spin_lock_irq(&sh->raid_conf->device_lock);
1148 			chosen = dev->towrite;
1149 			dev->towrite = NULL;
1150 			BUG_ON(dev->written);
1151 			wbi = dev->written = chosen;
1152 			spin_unlock_irq(&sh->raid_conf->device_lock);
1153 
1154 			while (wbi && wbi->bi_sector <
1155 				dev->sector + STRIPE_SECTORS) {
1156 				if (wbi->bi_rw & REQ_FUA)
1157 					set_bit(R5_WantFUA, &dev->flags);
1158 				if (wbi->bi_rw & REQ_SYNC)
1159 					set_bit(R5_SyncIO, &dev->flags);
1160 				tx = async_copy_data(1, wbi, dev->page,
1161 					dev->sector, tx);
1162 				wbi = r5_next_bio(wbi, dev->sector);
1163 			}
1164 		}
1165 	}
1166 
1167 	return tx;
1168 }
1169 
1170 static void ops_complete_reconstruct(void *stripe_head_ref)
1171 {
1172 	struct stripe_head *sh = stripe_head_ref;
1173 	int disks = sh->disks;
1174 	int pd_idx = sh->pd_idx;
1175 	int qd_idx = sh->qd_idx;
1176 	int i;
1177 	bool fua = false, sync = false;
1178 
1179 	pr_debug("%s: stripe %llu\n", __func__,
1180 		(unsigned long long)sh->sector);
1181 
1182 	for (i = disks; i--; ) {
1183 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1184 		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1185 	}
1186 
1187 	for (i = disks; i--; ) {
1188 		struct r5dev *dev = &sh->dev[i];
1189 
1190 		if (dev->written || i == pd_idx || i == qd_idx) {
1191 			set_bit(R5_UPTODATE, &dev->flags);
1192 			if (fua)
1193 				set_bit(R5_WantFUA, &dev->flags);
1194 			if (sync)
1195 				set_bit(R5_SyncIO, &dev->flags);
1196 		}
1197 	}
1198 
1199 	if (sh->reconstruct_state == reconstruct_state_drain_run)
1200 		sh->reconstruct_state = reconstruct_state_drain_result;
1201 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1202 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1203 	else {
1204 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1205 		sh->reconstruct_state = reconstruct_state_result;
1206 	}
1207 
1208 	set_bit(STRIPE_HANDLE, &sh->state);
1209 	release_stripe(sh);
1210 }
1211 
1212 static void
1213 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1214 		     struct dma_async_tx_descriptor *tx)
1215 {
1216 	int disks = sh->disks;
1217 	struct page **xor_srcs = percpu->scribble;
1218 	struct async_submit_ctl submit;
1219 	int count = 0, pd_idx = sh->pd_idx, i;
1220 	struct page *xor_dest;
1221 	int prexor = 0;
1222 	unsigned long flags;
1223 
1224 	pr_debug("%s: stripe %llu\n", __func__,
1225 		(unsigned long long)sh->sector);
1226 
1227 	/* check if prexor is active which means only process blocks
1228 	 * that are part of a read-modify-write (written)
1229 	 */
1230 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1231 		prexor = 1;
1232 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1233 		for (i = disks; i--; ) {
1234 			struct r5dev *dev = &sh->dev[i];
1235 			if (dev->written)
1236 				xor_srcs[count++] = dev->page;
1237 		}
1238 	} else {
1239 		xor_dest = sh->dev[pd_idx].page;
1240 		for (i = disks; i--; ) {
1241 			struct r5dev *dev = &sh->dev[i];
1242 			if (i != pd_idx)
1243 				xor_srcs[count++] = dev->page;
1244 		}
1245 	}
1246 
1247 	/* 1/ if we prexor'd then the dest is reused as a source
1248 	 * 2/ if we did not prexor then we are redoing the parity
1249 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1250 	 * for the synchronous xor case
1251 	 */
1252 	flags = ASYNC_TX_ACK |
1253 		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1254 
1255 	atomic_inc(&sh->count);
1256 
1257 	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1258 			  to_addr_conv(sh, percpu));
1259 	if (unlikely(count == 1))
1260 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1261 	else
1262 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1263 }
1264 
1265 static void
1266 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1267 		     struct dma_async_tx_descriptor *tx)
1268 {
1269 	struct async_submit_ctl submit;
1270 	struct page **blocks = percpu->scribble;
1271 	int count;
1272 
1273 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1274 
1275 	count = set_syndrome_sources(blocks, sh);
1276 
1277 	atomic_inc(&sh->count);
1278 
1279 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1280 			  sh, to_addr_conv(sh, percpu));
1281 	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1282 }
1283 
1284 static void ops_complete_check(void *stripe_head_ref)
1285 {
1286 	struct stripe_head *sh = stripe_head_ref;
1287 
1288 	pr_debug("%s: stripe %llu\n", __func__,
1289 		(unsigned long long)sh->sector);
1290 
1291 	sh->check_state = check_state_check_result;
1292 	set_bit(STRIPE_HANDLE, &sh->state);
1293 	release_stripe(sh);
1294 }
1295 
1296 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1297 {
1298 	int disks = sh->disks;
1299 	int pd_idx = sh->pd_idx;
1300 	int qd_idx = sh->qd_idx;
1301 	struct page *xor_dest;
1302 	struct page **xor_srcs = percpu->scribble;
1303 	struct dma_async_tx_descriptor *tx;
1304 	struct async_submit_ctl submit;
1305 	int count;
1306 	int i;
1307 
1308 	pr_debug("%s: stripe %llu\n", __func__,
1309 		(unsigned long long)sh->sector);
1310 
1311 	count = 0;
1312 	xor_dest = sh->dev[pd_idx].page;
1313 	xor_srcs[count++] = xor_dest;
1314 	for (i = disks; i--; ) {
1315 		if (i == pd_idx || i == qd_idx)
1316 			continue;
1317 		xor_srcs[count++] = sh->dev[i].page;
1318 	}
1319 
1320 	init_async_submit(&submit, 0, NULL, NULL, NULL,
1321 			  to_addr_conv(sh, percpu));
1322 	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1323 			   &sh->ops.zero_sum_result, &submit);
1324 
1325 	atomic_inc(&sh->count);
1326 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1327 	tx = async_trigger_callback(&submit);
1328 }
1329 
1330 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1331 {
1332 	struct page **srcs = percpu->scribble;
1333 	struct async_submit_ctl submit;
1334 	int count;
1335 
1336 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1337 		(unsigned long long)sh->sector, checkp);
1338 
1339 	count = set_syndrome_sources(srcs, sh);
1340 	if (!checkp)
1341 		srcs[count] = NULL;
1342 
1343 	atomic_inc(&sh->count);
1344 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1345 			  sh, to_addr_conv(sh, percpu));
1346 	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1347 			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1348 }
1349 
1350 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1351 {
1352 	int overlap_clear = 0, i, disks = sh->disks;
1353 	struct dma_async_tx_descriptor *tx = NULL;
1354 	struct r5conf *conf = sh->raid_conf;
1355 	int level = conf->level;
1356 	struct raid5_percpu *percpu;
1357 	unsigned long cpu;
1358 
1359 	cpu = get_cpu();
1360 	percpu = per_cpu_ptr(conf->percpu, cpu);
1361 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1362 		ops_run_biofill(sh);
1363 		overlap_clear++;
1364 	}
1365 
1366 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1367 		if (level < 6)
1368 			tx = ops_run_compute5(sh, percpu);
1369 		else {
1370 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
1371 				tx = ops_run_compute6_1(sh, percpu);
1372 			else
1373 				tx = ops_run_compute6_2(sh, percpu);
1374 		}
1375 		/* terminate the chain if reconstruct is not set to be run */
1376 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1377 			async_tx_ack(tx);
1378 	}
1379 
1380 	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1381 		tx = ops_run_prexor(sh, percpu, tx);
1382 
1383 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1384 		tx = ops_run_biodrain(sh, tx);
1385 		overlap_clear++;
1386 	}
1387 
1388 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1389 		if (level < 6)
1390 			ops_run_reconstruct5(sh, percpu, tx);
1391 		else
1392 			ops_run_reconstruct6(sh, percpu, tx);
1393 	}
1394 
1395 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1396 		if (sh->check_state == check_state_run)
1397 			ops_run_check_p(sh, percpu);
1398 		else if (sh->check_state == check_state_run_q)
1399 			ops_run_check_pq(sh, percpu, 0);
1400 		else if (sh->check_state == check_state_run_pq)
1401 			ops_run_check_pq(sh, percpu, 1);
1402 		else
1403 			BUG();
1404 	}
1405 
1406 	if (overlap_clear)
1407 		for (i = disks; i--; ) {
1408 			struct r5dev *dev = &sh->dev[i];
1409 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
1410 				wake_up(&sh->raid_conf->wait_for_overlap);
1411 		}
1412 	put_cpu();
1413 }
1414 
1415 #ifdef CONFIG_MULTICORE_RAID456
1416 static void async_run_ops(void *param, async_cookie_t cookie)
1417 {
1418 	struct stripe_head *sh = param;
1419 	unsigned long ops_request = sh->ops.request;
1420 
1421 	clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1422 	wake_up(&sh->ops.wait_for_ops);
1423 
1424 	__raid_run_ops(sh, ops_request);
1425 	release_stripe(sh);
1426 }
1427 
1428 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1429 {
1430 	/* since handle_stripe can be called outside of raid5d context
1431 	 * we need to ensure sh->ops.request is de-staged before another
1432 	 * request arrives
1433 	 */
1434 	wait_event(sh->ops.wait_for_ops,
1435 		   !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1436 	sh->ops.request = ops_request;
1437 
1438 	atomic_inc(&sh->count);
1439 	async_schedule(async_run_ops, sh);
1440 }
1441 #else
1442 #define raid_run_ops __raid_run_ops
1443 #endif
1444 
1445 static int grow_one_stripe(struct r5conf *conf)
1446 {
1447 	struct stripe_head *sh;
1448 	sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1449 	if (!sh)
1450 		return 0;
1451 
1452 	sh->raid_conf = conf;
1453 	#ifdef CONFIG_MULTICORE_RAID456
1454 	init_waitqueue_head(&sh->ops.wait_for_ops);
1455 	#endif
1456 
1457 	if (grow_buffers(sh)) {
1458 		shrink_buffers(sh);
1459 		kmem_cache_free(conf->slab_cache, sh);
1460 		return 0;
1461 	}
1462 	/* we just created an active stripe so... */
1463 	atomic_set(&sh->count, 1);
1464 	atomic_inc(&conf->active_stripes);
1465 	INIT_LIST_HEAD(&sh->lru);
1466 	release_stripe(sh);
1467 	return 1;
1468 }
1469 
1470 static int grow_stripes(struct r5conf *conf, int num)
1471 {
1472 	struct kmem_cache *sc;
1473 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
1474 
1475 	if (conf->mddev->gendisk)
1476 		sprintf(conf->cache_name[0],
1477 			"raid%d-%s", conf->level, mdname(conf->mddev));
1478 	else
1479 		sprintf(conf->cache_name[0],
1480 			"raid%d-%p", conf->level, conf->mddev);
1481 	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1482 
1483 	conf->active_name = 0;
1484 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
1485 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1486 			       0, 0, NULL);
1487 	if (!sc)
1488 		return 1;
1489 	conf->slab_cache = sc;
1490 	conf->pool_size = devs;
1491 	while (num--)
1492 		if (!grow_one_stripe(conf))
1493 			return 1;
1494 	return 0;
1495 }
1496 
1497 /**
1498  * scribble_len - return the required size of the scribble region
1499  * @num - total number of disks in the array
1500  *
1501  * The size must be enough to contain:
1502  * 1/ a struct page pointer for each device in the array +2
1503  * 2/ room to convert each entry in (1) to its corresponding dma
1504  *    (dma_map_page()) or page (page_address()) address.
1505  *
1506  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1507  * calculate over all devices (not just the data blocks), using zeros in place
1508  * of the P and Q blocks.
1509  */
1510 static size_t scribble_len(int num)
1511 {
1512 	size_t len;
1513 
1514 	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1515 
1516 	return len;
1517 }
1518 
1519 static int resize_stripes(struct r5conf *conf, int newsize)
1520 {
1521 	/* Make all the stripes able to hold 'newsize' devices.
1522 	 * New slots in each stripe get 'page' set to a new page.
1523 	 *
1524 	 * This happens in stages:
1525 	 * 1/ create a new kmem_cache and allocate the required number of
1526 	 *    stripe_heads.
1527 	 * 2/ gather all the old stripe_heads and tranfer the pages across
1528 	 *    to the new stripe_heads.  This will have the side effect of
1529 	 *    freezing the array as once all stripe_heads have been collected,
1530 	 *    no IO will be possible.  Old stripe heads are freed once their
1531 	 *    pages have been transferred over, and the old kmem_cache is
1532 	 *    freed when all stripes are done.
1533 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1534 	 *    we simple return a failre status - no need to clean anything up.
1535 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
1536 	 *    If this fails, we don't bother trying the shrink the
1537 	 *    stripe_heads down again, we just leave them as they are.
1538 	 *    As each stripe_head is processed the new one is released into
1539 	 *    active service.
1540 	 *
1541 	 * Once step2 is started, we cannot afford to wait for a write,
1542 	 * so we use GFP_NOIO allocations.
1543 	 */
1544 	struct stripe_head *osh, *nsh;
1545 	LIST_HEAD(newstripes);
1546 	struct disk_info *ndisks;
1547 	unsigned long cpu;
1548 	int err;
1549 	struct kmem_cache *sc;
1550 	int i;
1551 
1552 	if (newsize <= conf->pool_size)
1553 		return 0; /* never bother to shrink */
1554 
1555 	err = md_allow_write(conf->mddev);
1556 	if (err)
1557 		return err;
1558 
1559 	/* Step 1 */
1560 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1561 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1562 			       0, 0, NULL);
1563 	if (!sc)
1564 		return -ENOMEM;
1565 
1566 	for (i = conf->max_nr_stripes; i; i--) {
1567 		nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1568 		if (!nsh)
1569 			break;
1570 
1571 		nsh->raid_conf = conf;
1572 		#ifdef CONFIG_MULTICORE_RAID456
1573 		init_waitqueue_head(&nsh->ops.wait_for_ops);
1574 		#endif
1575 
1576 		list_add(&nsh->lru, &newstripes);
1577 	}
1578 	if (i) {
1579 		/* didn't get enough, give up */
1580 		while (!list_empty(&newstripes)) {
1581 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
1582 			list_del(&nsh->lru);
1583 			kmem_cache_free(sc, nsh);
1584 		}
1585 		kmem_cache_destroy(sc);
1586 		return -ENOMEM;
1587 	}
1588 	/* Step 2 - Must use GFP_NOIO now.
1589 	 * OK, we have enough stripes, start collecting inactive
1590 	 * stripes and copying them over
1591 	 */
1592 	list_for_each_entry(nsh, &newstripes, lru) {
1593 		spin_lock_irq(&conf->device_lock);
1594 		wait_event_lock_irq(conf->wait_for_stripe,
1595 				    !list_empty(&conf->inactive_list),
1596 				    conf->device_lock,
1597 				    );
1598 		osh = get_free_stripe(conf);
1599 		spin_unlock_irq(&conf->device_lock);
1600 		atomic_set(&nsh->count, 1);
1601 		for(i=0; i<conf->pool_size; i++)
1602 			nsh->dev[i].page = osh->dev[i].page;
1603 		for( ; i<newsize; i++)
1604 			nsh->dev[i].page = NULL;
1605 		kmem_cache_free(conf->slab_cache, osh);
1606 	}
1607 	kmem_cache_destroy(conf->slab_cache);
1608 
1609 	/* Step 3.
1610 	 * At this point, we are holding all the stripes so the array
1611 	 * is completely stalled, so now is a good time to resize
1612 	 * conf->disks and the scribble region
1613 	 */
1614 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1615 	if (ndisks) {
1616 		for (i=0; i<conf->raid_disks; i++)
1617 			ndisks[i] = conf->disks[i];
1618 		kfree(conf->disks);
1619 		conf->disks = ndisks;
1620 	} else
1621 		err = -ENOMEM;
1622 
1623 	get_online_cpus();
1624 	conf->scribble_len = scribble_len(newsize);
1625 	for_each_present_cpu(cpu) {
1626 		struct raid5_percpu *percpu;
1627 		void *scribble;
1628 
1629 		percpu = per_cpu_ptr(conf->percpu, cpu);
1630 		scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1631 
1632 		if (scribble) {
1633 			kfree(percpu->scribble);
1634 			percpu->scribble = scribble;
1635 		} else {
1636 			err = -ENOMEM;
1637 			break;
1638 		}
1639 	}
1640 	put_online_cpus();
1641 
1642 	/* Step 4, return new stripes to service */
1643 	while(!list_empty(&newstripes)) {
1644 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
1645 		list_del_init(&nsh->lru);
1646 
1647 		for (i=conf->raid_disks; i < newsize; i++)
1648 			if (nsh->dev[i].page == NULL) {
1649 				struct page *p = alloc_page(GFP_NOIO);
1650 				nsh->dev[i].page = p;
1651 				if (!p)
1652 					err = -ENOMEM;
1653 			}
1654 		release_stripe(nsh);
1655 	}
1656 	/* critical section pass, GFP_NOIO no longer needed */
1657 
1658 	conf->slab_cache = sc;
1659 	conf->active_name = 1-conf->active_name;
1660 	conf->pool_size = newsize;
1661 	return err;
1662 }
1663 
1664 static int drop_one_stripe(struct r5conf *conf)
1665 {
1666 	struct stripe_head *sh;
1667 
1668 	spin_lock_irq(&conf->device_lock);
1669 	sh = get_free_stripe(conf);
1670 	spin_unlock_irq(&conf->device_lock);
1671 	if (!sh)
1672 		return 0;
1673 	BUG_ON(atomic_read(&sh->count));
1674 	shrink_buffers(sh);
1675 	kmem_cache_free(conf->slab_cache, sh);
1676 	atomic_dec(&conf->active_stripes);
1677 	return 1;
1678 }
1679 
1680 static void shrink_stripes(struct r5conf *conf)
1681 {
1682 	while (drop_one_stripe(conf))
1683 		;
1684 
1685 	if (conf->slab_cache)
1686 		kmem_cache_destroy(conf->slab_cache);
1687 	conf->slab_cache = NULL;
1688 }
1689 
1690 static void raid5_end_read_request(struct bio * bi, int error)
1691 {
1692 	struct stripe_head *sh = bi->bi_private;
1693 	struct r5conf *conf = sh->raid_conf;
1694 	int disks = sh->disks, i;
1695 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1696 	char b[BDEVNAME_SIZE];
1697 	struct md_rdev *rdev = NULL;
1698 	sector_t s;
1699 
1700 	for (i=0 ; i<disks; i++)
1701 		if (bi == &sh->dev[i].req)
1702 			break;
1703 
1704 	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1705 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1706 		uptodate);
1707 	if (i == disks) {
1708 		BUG();
1709 		return;
1710 	}
1711 	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1712 		/* If replacement finished while this request was outstanding,
1713 		 * 'replacement' might be NULL already.
1714 		 * In that case it moved down to 'rdev'.
1715 		 * rdev is not removed until all requests are finished.
1716 		 */
1717 		rdev = conf->disks[i].replacement;
1718 	if (!rdev)
1719 		rdev = conf->disks[i].rdev;
1720 
1721 	if (use_new_offset(conf, sh))
1722 		s = sh->sector + rdev->new_data_offset;
1723 	else
1724 		s = sh->sector + rdev->data_offset;
1725 	if (uptodate) {
1726 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1727 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1728 			/* Note that this cannot happen on a
1729 			 * replacement device.  We just fail those on
1730 			 * any error
1731 			 */
1732 			printk_ratelimited(
1733 				KERN_INFO
1734 				"md/raid:%s: read error corrected"
1735 				" (%lu sectors at %llu on %s)\n",
1736 				mdname(conf->mddev), STRIPE_SECTORS,
1737 				(unsigned long long)s,
1738 				bdevname(rdev->bdev, b));
1739 			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1740 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1741 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1742 		}
1743 		if (atomic_read(&rdev->read_errors))
1744 			atomic_set(&rdev->read_errors, 0);
1745 	} else {
1746 		const char *bdn = bdevname(rdev->bdev, b);
1747 		int retry = 0;
1748 		int set_bad = 0;
1749 
1750 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1751 		atomic_inc(&rdev->read_errors);
1752 		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1753 			printk_ratelimited(
1754 				KERN_WARNING
1755 				"md/raid:%s: read error on replacement device "
1756 				"(sector %llu on %s).\n",
1757 				mdname(conf->mddev),
1758 				(unsigned long long)s,
1759 				bdn);
1760 		else if (conf->mddev->degraded >= conf->max_degraded) {
1761 			set_bad = 1;
1762 			printk_ratelimited(
1763 				KERN_WARNING
1764 				"md/raid:%s: read error not correctable "
1765 				"(sector %llu on %s).\n",
1766 				mdname(conf->mddev),
1767 				(unsigned long long)s,
1768 				bdn);
1769 		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
1770 			/* Oh, no!!! */
1771 			set_bad = 1;
1772 			printk_ratelimited(
1773 				KERN_WARNING
1774 				"md/raid:%s: read error NOT corrected!! "
1775 				"(sector %llu on %s).\n",
1776 				mdname(conf->mddev),
1777 				(unsigned long long)s,
1778 				bdn);
1779 		} else if (atomic_read(&rdev->read_errors)
1780 			 > conf->max_nr_stripes)
1781 			printk(KERN_WARNING
1782 			       "md/raid:%s: Too many read errors, failing device %s.\n",
1783 			       mdname(conf->mddev), bdn);
1784 		else
1785 			retry = 1;
1786 		if (retry)
1787 			set_bit(R5_ReadError, &sh->dev[i].flags);
1788 		else {
1789 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1790 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1791 			if (!(set_bad
1792 			      && test_bit(In_sync, &rdev->flags)
1793 			      && rdev_set_badblocks(
1794 				      rdev, sh->sector, STRIPE_SECTORS, 0)))
1795 				md_error(conf->mddev, rdev);
1796 		}
1797 	}
1798 	rdev_dec_pending(rdev, conf->mddev);
1799 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1800 	set_bit(STRIPE_HANDLE, &sh->state);
1801 	release_stripe(sh);
1802 }
1803 
1804 static void raid5_end_write_request(struct bio *bi, int error)
1805 {
1806 	struct stripe_head *sh = bi->bi_private;
1807 	struct r5conf *conf = sh->raid_conf;
1808 	int disks = sh->disks, i;
1809 	struct md_rdev *uninitialized_var(rdev);
1810 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1811 	sector_t first_bad;
1812 	int bad_sectors;
1813 	int replacement = 0;
1814 
1815 	for (i = 0 ; i < disks; i++) {
1816 		if (bi == &sh->dev[i].req) {
1817 			rdev = conf->disks[i].rdev;
1818 			break;
1819 		}
1820 		if (bi == &sh->dev[i].rreq) {
1821 			rdev = conf->disks[i].replacement;
1822 			if (rdev)
1823 				replacement = 1;
1824 			else
1825 				/* rdev was removed and 'replacement'
1826 				 * replaced it.  rdev is not removed
1827 				 * until all requests are finished.
1828 				 */
1829 				rdev = conf->disks[i].rdev;
1830 			break;
1831 		}
1832 	}
1833 	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1834 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1835 		uptodate);
1836 	if (i == disks) {
1837 		BUG();
1838 		return;
1839 	}
1840 
1841 	if (replacement) {
1842 		if (!uptodate)
1843 			md_error(conf->mddev, rdev);
1844 		else if (is_badblock(rdev, sh->sector,
1845 				     STRIPE_SECTORS,
1846 				     &first_bad, &bad_sectors))
1847 			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
1848 	} else {
1849 		if (!uptodate) {
1850 			set_bit(WriteErrorSeen, &rdev->flags);
1851 			set_bit(R5_WriteError, &sh->dev[i].flags);
1852 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
1853 				set_bit(MD_RECOVERY_NEEDED,
1854 					&rdev->mddev->recovery);
1855 		} else if (is_badblock(rdev, sh->sector,
1856 				       STRIPE_SECTORS,
1857 				       &first_bad, &bad_sectors))
1858 			set_bit(R5_MadeGood, &sh->dev[i].flags);
1859 	}
1860 	rdev_dec_pending(rdev, conf->mddev);
1861 
1862 	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
1863 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
1864 	set_bit(STRIPE_HANDLE, &sh->state);
1865 	release_stripe(sh);
1866 }
1867 
1868 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1869 
1870 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1871 {
1872 	struct r5dev *dev = &sh->dev[i];
1873 
1874 	bio_init(&dev->req);
1875 	dev->req.bi_io_vec = &dev->vec;
1876 	dev->req.bi_vcnt++;
1877 	dev->req.bi_max_vecs++;
1878 	dev->req.bi_private = sh;
1879 	dev->vec.bv_page = dev->page;
1880 
1881 	bio_init(&dev->rreq);
1882 	dev->rreq.bi_io_vec = &dev->rvec;
1883 	dev->rreq.bi_vcnt++;
1884 	dev->rreq.bi_max_vecs++;
1885 	dev->rreq.bi_private = sh;
1886 	dev->rvec.bv_page = dev->page;
1887 
1888 	dev->flags = 0;
1889 	dev->sector = compute_blocknr(sh, i, previous);
1890 }
1891 
1892 static void error(struct mddev *mddev, struct md_rdev *rdev)
1893 {
1894 	char b[BDEVNAME_SIZE];
1895 	struct r5conf *conf = mddev->private;
1896 	unsigned long flags;
1897 	pr_debug("raid456: error called\n");
1898 
1899 	spin_lock_irqsave(&conf->device_lock, flags);
1900 	clear_bit(In_sync, &rdev->flags);
1901 	mddev->degraded = calc_degraded(conf);
1902 	spin_unlock_irqrestore(&conf->device_lock, flags);
1903 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1904 
1905 	set_bit(Blocked, &rdev->flags);
1906 	set_bit(Faulty, &rdev->flags);
1907 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1908 	printk(KERN_ALERT
1909 	       "md/raid:%s: Disk failure on %s, disabling device.\n"
1910 	       "md/raid:%s: Operation continuing on %d devices.\n",
1911 	       mdname(mddev),
1912 	       bdevname(rdev->bdev, b),
1913 	       mdname(mddev),
1914 	       conf->raid_disks - mddev->degraded);
1915 }
1916 
1917 /*
1918  * Input: a 'big' sector number,
1919  * Output: index of the data and parity disk, and the sector # in them.
1920  */
1921 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
1922 				     int previous, int *dd_idx,
1923 				     struct stripe_head *sh)
1924 {
1925 	sector_t stripe, stripe2;
1926 	sector_t chunk_number;
1927 	unsigned int chunk_offset;
1928 	int pd_idx, qd_idx;
1929 	int ddf_layout = 0;
1930 	sector_t new_sector;
1931 	int algorithm = previous ? conf->prev_algo
1932 				 : conf->algorithm;
1933 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1934 					 : conf->chunk_sectors;
1935 	int raid_disks = previous ? conf->previous_raid_disks
1936 				  : conf->raid_disks;
1937 	int data_disks = raid_disks - conf->max_degraded;
1938 
1939 	/* First compute the information on this sector */
1940 
1941 	/*
1942 	 * Compute the chunk number and the sector offset inside the chunk
1943 	 */
1944 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
1945 	chunk_number = r_sector;
1946 
1947 	/*
1948 	 * Compute the stripe number
1949 	 */
1950 	stripe = chunk_number;
1951 	*dd_idx = sector_div(stripe, data_disks);
1952 	stripe2 = stripe;
1953 	/*
1954 	 * Select the parity disk based on the user selected algorithm.
1955 	 */
1956 	pd_idx = qd_idx = -1;
1957 	switch(conf->level) {
1958 	case 4:
1959 		pd_idx = data_disks;
1960 		break;
1961 	case 5:
1962 		switch (algorithm) {
1963 		case ALGORITHM_LEFT_ASYMMETRIC:
1964 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1965 			if (*dd_idx >= pd_idx)
1966 				(*dd_idx)++;
1967 			break;
1968 		case ALGORITHM_RIGHT_ASYMMETRIC:
1969 			pd_idx = sector_div(stripe2, raid_disks);
1970 			if (*dd_idx >= pd_idx)
1971 				(*dd_idx)++;
1972 			break;
1973 		case ALGORITHM_LEFT_SYMMETRIC:
1974 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1975 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1976 			break;
1977 		case ALGORITHM_RIGHT_SYMMETRIC:
1978 			pd_idx = sector_div(stripe2, raid_disks);
1979 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1980 			break;
1981 		case ALGORITHM_PARITY_0:
1982 			pd_idx = 0;
1983 			(*dd_idx)++;
1984 			break;
1985 		case ALGORITHM_PARITY_N:
1986 			pd_idx = data_disks;
1987 			break;
1988 		default:
1989 			BUG();
1990 		}
1991 		break;
1992 	case 6:
1993 
1994 		switch (algorithm) {
1995 		case ALGORITHM_LEFT_ASYMMETRIC:
1996 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1997 			qd_idx = pd_idx + 1;
1998 			if (pd_idx == raid_disks-1) {
1999 				(*dd_idx)++;	/* Q D D D P */
2000 				qd_idx = 0;
2001 			} else if (*dd_idx >= pd_idx)
2002 				(*dd_idx) += 2; /* D D P Q D */
2003 			break;
2004 		case ALGORITHM_RIGHT_ASYMMETRIC:
2005 			pd_idx = sector_div(stripe2, raid_disks);
2006 			qd_idx = pd_idx + 1;
2007 			if (pd_idx == raid_disks-1) {
2008 				(*dd_idx)++;	/* Q D D D P */
2009 				qd_idx = 0;
2010 			} else if (*dd_idx >= pd_idx)
2011 				(*dd_idx) += 2; /* D D P Q D */
2012 			break;
2013 		case ALGORITHM_LEFT_SYMMETRIC:
2014 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2015 			qd_idx = (pd_idx + 1) % raid_disks;
2016 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2017 			break;
2018 		case ALGORITHM_RIGHT_SYMMETRIC:
2019 			pd_idx = sector_div(stripe2, raid_disks);
2020 			qd_idx = (pd_idx + 1) % raid_disks;
2021 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2022 			break;
2023 
2024 		case ALGORITHM_PARITY_0:
2025 			pd_idx = 0;
2026 			qd_idx = 1;
2027 			(*dd_idx) += 2;
2028 			break;
2029 		case ALGORITHM_PARITY_N:
2030 			pd_idx = data_disks;
2031 			qd_idx = data_disks + 1;
2032 			break;
2033 
2034 		case ALGORITHM_ROTATING_ZERO_RESTART:
2035 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
2036 			 * of blocks for computing Q is different.
2037 			 */
2038 			pd_idx = sector_div(stripe2, raid_disks);
2039 			qd_idx = pd_idx + 1;
2040 			if (pd_idx == raid_disks-1) {
2041 				(*dd_idx)++;	/* Q D D D P */
2042 				qd_idx = 0;
2043 			} else if (*dd_idx >= pd_idx)
2044 				(*dd_idx) += 2; /* D D P Q D */
2045 			ddf_layout = 1;
2046 			break;
2047 
2048 		case ALGORITHM_ROTATING_N_RESTART:
2049 			/* Same a left_asymmetric, by first stripe is
2050 			 * D D D P Q  rather than
2051 			 * Q D D D P
2052 			 */
2053 			stripe2 += 1;
2054 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2055 			qd_idx = pd_idx + 1;
2056 			if (pd_idx == raid_disks-1) {
2057 				(*dd_idx)++;	/* Q D D D P */
2058 				qd_idx = 0;
2059 			} else if (*dd_idx >= pd_idx)
2060 				(*dd_idx) += 2; /* D D P Q D */
2061 			ddf_layout = 1;
2062 			break;
2063 
2064 		case ALGORITHM_ROTATING_N_CONTINUE:
2065 			/* Same as left_symmetric but Q is before P */
2066 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2067 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2068 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2069 			ddf_layout = 1;
2070 			break;
2071 
2072 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2073 			/* RAID5 left_asymmetric, with Q on last device */
2074 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2075 			if (*dd_idx >= pd_idx)
2076 				(*dd_idx)++;
2077 			qd_idx = raid_disks - 1;
2078 			break;
2079 
2080 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2081 			pd_idx = sector_div(stripe2, raid_disks-1);
2082 			if (*dd_idx >= pd_idx)
2083 				(*dd_idx)++;
2084 			qd_idx = raid_disks - 1;
2085 			break;
2086 
2087 		case ALGORITHM_LEFT_SYMMETRIC_6:
2088 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2089 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2090 			qd_idx = raid_disks - 1;
2091 			break;
2092 
2093 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2094 			pd_idx = sector_div(stripe2, raid_disks-1);
2095 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2096 			qd_idx = raid_disks - 1;
2097 			break;
2098 
2099 		case ALGORITHM_PARITY_0_6:
2100 			pd_idx = 0;
2101 			(*dd_idx)++;
2102 			qd_idx = raid_disks - 1;
2103 			break;
2104 
2105 		default:
2106 			BUG();
2107 		}
2108 		break;
2109 	}
2110 
2111 	if (sh) {
2112 		sh->pd_idx = pd_idx;
2113 		sh->qd_idx = qd_idx;
2114 		sh->ddf_layout = ddf_layout;
2115 	}
2116 	/*
2117 	 * Finally, compute the new sector number
2118 	 */
2119 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2120 	return new_sector;
2121 }
2122 
2123 
2124 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2125 {
2126 	struct r5conf *conf = sh->raid_conf;
2127 	int raid_disks = sh->disks;
2128 	int data_disks = raid_disks - conf->max_degraded;
2129 	sector_t new_sector = sh->sector, check;
2130 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2131 					 : conf->chunk_sectors;
2132 	int algorithm = previous ? conf->prev_algo
2133 				 : conf->algorithm;
2134 	sector_t stripe;
2135 	int chunk_offset;
2136 	sector_t chunk_number;
2137 	int dummy1, dd_idx = i;
2138 	sector_t r_sector;
2139 	struct stripe_head sh2;
2140 
2141 
2142 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
2143 	stripe = new_sector;
2144 
2145 	if (i == sh->pd_idx)
2146 		return 0;
2147 	switch(conf->level) {
2148 	case 4: break;
2149 	case 5:
2150 		switch (algorithm) {
2151 		case ALGORITHM_LEFT_ASYMMETRIC:
2152 		case ALGORITHM_RIGHT_ASYMMETRIC:
2153 			if (i > sh->pd_idx)
2154 				i--;
2155 			break;
2156 		case ALGORITHM_LEFT_SYMMETRIC:
2157 		case ALGORITHM_RIGHT_SYMMETRIC:
2158 			if (i < sh->pd_idx)
2159 				i += raid_disks;
2160 			i -= (sh->pd_idx + 1);
2161 			break;
2162 		case ALGORITHM_PARITY_0:
2163 			i -= 1;
2164 			break;
2165 		case ALGORITHM_PARITY_N:
2166 			break;
2167 		default:
2168 			BUG();
2169 		}
2170 		break;
2171 	case 6:
2172 		if (i == sh->qd_idx)
2173 			return 0; /* It is the Q disk */
2174 		switch (algorithm) {
2175 		case ALGORITHM_LEFT_ASYMMETRIC:
2176 		case ALGORITHM_RIGHT_ASYMMETRIC:
2177 		case ALGORITHM_ROTATING_ZERO_RESTART:
2178 		case ALGORITHM_ROTATING_N_RESTART:
2179 			if (sh->pd_idx == raid_disks-1)
2180 				i--;	/* Q D D D P */
2181 			else if (i > sh->pd_idx)
2182 				i -= 2; /* D D P Q D */
2183 			break;
2184 		case ALGORITHM_LEFT_SYMMETRIC:
2185 		case ALGORITHM_RIGHT_SYMMETRIC:
2186 			if (sh->pd_idx == raid_disks-1)
2187 				i--; /* Q D D D P */
2188 			else {
2189 				/* D D P Q D */
2190 				if (i < sh->pd_idx)
2191 					i += raid_disks;
2192 				i -= (sh->pd_idx + 2);
2193 			}
2194 			break;
2195 		case ALGORITHM_PARITY_0:
2196 			i -= 2;
2197 			break;
2198 		case ALGORITHM_PARITY_N:
2199 			break;
2200 		case ALGORITHM_ROTATING_N_CONTINUE:
2201 			/* Like left_symmetric, but P is before Q */
2202 			if (sh->pd_idx == 0)
2203 				i--;	/* P D D D Q */
2204 			else {
2205 				/* D D Q P D */
2206 				if (i < sh->pd_idx)
2207 					i += raid_disks;
2208 				i -= (sh->pd_idx + 1);
2209 			}
2210 			break;
2211 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2212 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2213 			if (i > sh->pd_idx)
2214 				i--;
2215 			break;
2216 		case ALGORITHM_LEFT_SYMMETRIC_6:
2217 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2218 			if (i < sh->pd_idx)
2219 				i += data_disks + 1;
2220 			i -= (sh->pd_idx + 1);
2221 			break;
2222 		case ALGORITHM_PARITY_0_6:
2223 			i -= 1;
2224 			break;
2225 		default:
2226 			BUG();
2227 		}
2228 		break;
2229 	}
2230 
2231 	chunk_number = stripe * data_disks + i;
2232 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2233 
2234 	check = raid5_compute_sector(conf, r_sector,
2235 				     previous, &dummy1, &sh2);
2236 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2237 		|| sh2.qd_idx != sh->qd_idx) {
2238 		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2239 		       mdname(conf->mddev));
2240 		return 0;
2241 	}
2242 	return r_sector;
2243 }
2244 
2245 
2246 static void
2247 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2248 			 int rcw, int expand)
2249 {
2250 	int i, pd_idx = sh->pd_idx, disks = sh->disks;
2251 	struct r5conf *conf = sh->raid_conf;
2252 	int level = conf->level;
2253 
2254 	if (rcw) {
2255 		/* if we are not expanding this is a proper write request, and
2256 		 * there will be bios with new data to be drained into the
2257 		 * stripe cache
2258 		 */
2259 		if (!expand) {
2260 			sh->reconstruct_state = reconstruct_state_drain_run;
2261 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2262 		} else
2263 			sh->reconstruct_state = reconstruct_state_run;
2264 
2265 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2266 
2267 		for (i = disks; i--; ) {
2268 			struct r5dev *dev = &sh->dev[i];
2269 
2270 			if (dev->towrite) {
2271 				set_bit(R5_LOCKED, &dev->flags);
2272 				set_bit(R5_Wantdrain, &dev->flags);
2273 				if (!expand)
2274 					clear_bit(R5_UPTODATE, &dev->flags);
2275 				s->locked++;
2276 			}
2277 		}
2278 		if (s->locked + conf->max_degraded == disks)
2279 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2280 				atomic_inc(&conf->pending_full_writes);
2281 	} else {
2282 		BUG_ON(level == 6);
2283 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2284 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2285 
2286 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2287 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2288 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2289 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2290 
2291 		for (i = disks; i--; ) {
2292 			struct r5dev *dev = &sh->dev[i];
2293 			if (i == pd_idx)
2294 				continue;
2295 
2296 			if (dev->towrite &&
2297 			    (test_bit(R5_UPTODATE, &dev->flags) ||
2298 			     test_bit(R5_Wantcompute, &dev->flags))) {
2299 				set_bit(R5_Wantdrain, &dev->flags);
2300 				set_bit(R5_LOCKED, &dev->flags);
2301 				clear_bit(R5_UPTODATE, &dev->flags);
2302 				s->locked++;
2303 			}
2304 		}
2305 	}
2306 
2307 	/* keep the parity disk(s) locked while asynchronous operations
2308 	 * are in flight
2309 	 */
2310 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2311 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2312 	s->locked++;
2313 
2314 	if (level == 6) {
2315 		int qd_idx = sh->qd_idx;
2316 		struct r5dev *dev = &sh->dev[qd_idx];
2317 
2318 		set_bit(R5_LOCKED, &dev->flags);
2319 		clear_bit(R5_UPTODATE, &dev->flags);
2320 		s->locked++;
2321 	}
2322 
2323 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2324 		__func__, (unsigned long long)sh->sector,
2325 		s->locked, s->ops_request);
2326 }
2327 
2328 /*
2329  * Each stripe/dev can have one or more bion attached.
2330  * toread/towrite point to the first in a chain.
2331  * The bi_next chain must be in order.
2332  */
2333 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2334 {
2335 	struct bio **bip;
2336 	struct r5conf *conf = sh->raid_conf;
2337 	int firstwrite=0;
2338 
2339 	pr_debug("adding bi b#%llu to stripe s#%llu\n",
2340 		(unsigned long long)bi->bi_sector,
2341 		(unsigned long long)sh->sector);
2342 
2343 
2344 	spin_lock_irq(&conf->device_lock);
2345 	if (forwrite) {
2346 		bip = &sh->dev[dd_idx].towrite;
2347 		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2348 			firstwrite = 1;
2349 	} else
2350 		bip = &sh->dev[dd_idx].toread;
2351 	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2352 		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2353 			goto overlap;
2354 		bip = & (*bip)->bi_next;
2355 	}
2356 	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2357 		goto overlap;
2358 
2359 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2360 	if (*bip)
2361 		bi->bi_next = *bip;
2362 	*bip = bi;
2363 	bi->bi_phys_segments++;
2364 
2365 	if (forwrite) {
2366 		/* check if page is covered */
2367 		sector_t sector = sh->dev[dd_idx].sector;
2368 		for (bi=sh->dev[dd_idx].towrite;
2369 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2370 			     bi && bi->bi_sector <= sector;
2371 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2372 			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2373 				sector = bi->bi_sector + (bi->bi_size>>9);
2374 		}
2375 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2376 			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2377 	}
2378 	spin_unlock_irq(&conf->device_lock);
2379 
2380 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2381 		(unsigned long long)(*bip)->bi_sector,
2382 		(unsigned long long)sh->sector, dd_idx);
2383 
2384 	if (conf->mddev->bitmap && firstwrite) {
2385 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2386 				  STRIPE_SECTORS, 0);
2387 		sh->bm_seq = conf->seq_flush+1;
2388 		set_bit(STRIPE_BIT_DELAY, &sh->state);
2389 	}
2390 	return 1;
2391 
2392  overlap:
2393 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2394 	spin_unlock_irq(&conf->device_lock);
2395 	return 0;
2396 }
2397 
2398 static void end_reshape(struct r5conf *conf);
2399 
2400 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2401 			    struct stripe_head *sh)
2402 {
2403 	int sectors_per_chunk =
2404 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2405 	int dd_idx;
2406 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2407 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2408 
2409 	raid5_compute_sector(conf,
2410 			     stripe * (disks - conf->max_degraded)
2411 			     *sectors_per_chunk + chunk_offset,
2412 			     previous,
2413 			     &dd_idx, sh);
2414 }
2415 
2416 static void
2417 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2418 				struct stripe_head_state *s, int disks,
2419 				struct bio **return_bi)
2420 {
2421 	int i;
2422 	for (i = disks; i--; ) {
2423 		struct bio *bi;
2424 		int bitmap_end = 0;
2425 
2426 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2427 			struct md_rdev *rdev;
2428 			rcu_read_lock();
2429 			rdev = rcu_dereference(conf->disks[i].rdev);
2430 			if (rdev && test_bit(In_sync, &rdev->flags))
2431 				atomic_inc(&rdev->nr_pending);
2432 			else
2433 				rdev = NULL;
2434 			rcu_read_unlock();
2435 			if (rdev) {
2436 				if (!rdev_set_badblocks(
2437 					    rdev,
2438 					    sh->sector,
2439 					    STRIPE_SECTORS, 0))
2440 					md_error(conf->mddev, rdev);
2441 				rdev_dec_pending(rdev, conf->mddev);
2442 			}
2443 		}
2444 		spin_lock_irq(&conf->device_lock);
2445 		/* fail all writes first */
2446 		bi = sh->dev[i].towrite;
2447 		sh->dev[i].towrite = NULL;
2448 		if (bi) {
2449 			s->to_write--;
2450 			bitmap_end = 1;
2451 		}
2452 
2453 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2454 			wake_up(&conf->wait_for_overlap);
2455 
2456 		while (bi && bi->bi_sector <
2457 			sh->dev[i].sector + STRIPE_SECTORS) {
2458 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2459 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2460 			if (!raid5_dec_bi_phys_segments(bi)) {
2461 				md_write_end(conf->mddev);
2462 				bi->bi_next = *return_bi;
2463 				*return_bi = bi;
2464 			}
2465 			bi = nextbi;
2466 		}
2467 		/* and fail all 'written' */
2468 		bi = sh->dev[i].written;
2469 		sh->dev[i].written = NULL;
2470 		if (bi) bitmap_end = 1;
2471 		while (bi && bi->bi_sector <
2472 		       sh->dev[i].sector + STRIPE_SECTORS) {
2473 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2474 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2475 			if (!raid5_dec_bi_phys_segments(bi)) {
2476 				md_write_end(conf->mddev);
2477 				bi->bi_next = *return_bi;
2478 				*return_bi = bi;
2479 			}
2480 			bi = bi2;
2481 		}
2482 
2483 		/* fail any reads if this device is non-operational and
2484 		 * the data has not reached the cache yet.
2485 		 */
2486 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2487 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2488 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2489 			bi = sh->dev[i].toread;
2490 			sh->dev[i].toread = NULL;
2491 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2492 				wake_up(&conf->wait_for_overlap);
2493 			if (bi) s->to_read--;
2494 			while (bi && bi->bi_sector <
2495 			       sh->dev[i].sector + STRIPE_SECTORS) {
2496 				struct bio *nextbi =
2497 					r5_next_bio(bi, sh->dev[i].sector);
2498 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2499 				if (!raid5_dec_bi_phys_segments(bi)) {
2500 					bi->bi_next = *return_bi;
2501 					*return_bi = bi;
2502 				}
2503 				bi = nextbi;
2504 			}
2505 		}
2506 		spin_unlock_irq(&conf->device_lock);
2507 		if (bitmap_end)
2508 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2509 					STRIPE_SECTORS, 0, 0);
2510 		/* If we were in the middle of a write the parity block might
2511 		 * still be locked - so just clear all R5_LOCKED flags
2512 		 */
2513 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2514 	}
2515 
2516 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2517 		if (atomic_dec_and_test(&conf->pending_full_writes))
2518 			md_wakeup_thread(conf->mddev->thread);
2519 }
2520 
2521 static void
2522 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2523 		   struct stripe_head_state *s)
2524 {
2525 	int abort = 0;
2526 	int i;
2527 
2528 	clear_bit(STRIPE_SYNCING, &sh->state);
2529 	s->syncing = 0;
2530 	s->replacing = 0;
2531 	/* There is nothing more to do for sync/check/repair.
2532 	 * Don't even need to abort as that is handled elsewhere
2533 	 * if needed, and not always wanted e.g. if there is a known
2534 	 * bad block here.
2535 	 * For recover/replace we need to record a bad block on all
2536 	 * non-sync devices, or abort the recovery
2537 	 */
2538 	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2539 		/* During recovery devices cannot be removed, so
2540 		 * locking and refcounting of rdevs is not needed
2541 		 */
2542 		for (i = 0; i < conf->raid_disks; i++) {
2543 			struct md_rdev *rdev = conf->disks[i].rdev;
2544 			if (rdev
2545 			    && !test_bit(Faulty, &rdev->flags)
2546 			    && !test_bit(In_sync, &rdev->flags)
2547 			    && !rdev_set_badblocks(rdev, sh->sector,
2548 						   STRIPE_SECTORS, 0))
2549 				abort = 1;
2550 			rdev = conf->disks[i].replacement;
2551 			if (rdev
2552 			    && !test_bit(Faulty, &rdev->flags)
2553 			    && !test_bit(In_sync, &rdev->flags)
2554 			    && !rdev_set_badblocks(rdev, sh->sector,
2555 						   STRIPE_SECTORS, 0))
2556 				abort = 1;
2557 		}
2558 		if (abort)
2559 			conf->recovery_disabled =
2560 				conf->mddev->recovery_disabled;
2561 	}
2562 	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2563 }
2564 
2565 static int want_replace(struct stripe_head *sh, int disk_idx)
2566 {
2567 	struct md_rdev *rdev;
2568 	int rv = 0;
2569 	/* Doing recovery so rcu locking not required */
2570 	rdev = sh->raid_conf->disks[disk_idx].replacement;
2571 	if (rdev
2572 	    && !test_bit(Faulty, &rdev->flags)
2573 	    && !test_bit(In_sync, &rdev->flags)
2574 	    && (rdev->recovery_offset <= sh->sector
2575 		|| rdev->mddev->recovery_cp <= sh->sector))
2576 		rv = 1;
2577 
2578 	return rv;
2579 }
2580 
2581 /* fetch_block - checks the given member device to see if its data needs
2582  * to be read or computed to satisfy a request.
2583  *
2584  * Returns 1 when no more member devices need to be checked, otherwise returns
2585  * 0 to tell the loop in handle_stripe_fill to continue
2586  */
2587 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2588 		       int disk_idx, int disks)
2589 {
2590 	struct r5dev *dev = &sh->dev[disk_idx];
2591 	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2592 				  &sh->dev[s->failed_num[1]] };
2593 
2594 	/* is the data in this block needed, and can we get it? */
2595 	if (!test_bit(R5_LOCKED, &dev->flags) &&
2596 	    !test_bit(R5_UPTODATE, &dev->flags) &&
2597 	    (dev->toread ||
2598 	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2599 	     s->syncing || s->expanding ||
2600 	     (s->replacing && want_replace(sh, disk_idx)) ||
2601 	     (s->failed >= 1 && fdev[0]->toread) ||
2602 	     (s->failed >= 2 && fdev[1]->toread) ||
2603 	     (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2604 	      !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2605 	     (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2606 		/* we would like to get this block, possibly by computing it,
2607 		 * otherwise read it if the backing disk is insync
2608 		 */
2609 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2610 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
2611 		if ((s->uptodate == disks - 1) &&
2612 		    (s->failed && (disk_idx == s->failed_num[0] ||
2613 				   disk_idx == s->failed_num[1]))) {
2614 			/* have disk failed, and we're requested to fetch it;
2615 			 * do compute it
2616 			 */
2617 			pr_debug("Computing stripe %llu block %d\n",
2618 			       (unsigned long long)sh->sector, disk_idx);
2619 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2620 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2621 			set_bit(R5_Wantcompute, &dev->flags);
2622 			sh->ops.target = disk_idx;
2623 			sh->ops.target2 = -1; /* no 2nd target */
2624 			s->req_compute = 1;
2625 			/* Careful: from this point on 'uptodate' is in the eye
2626 			 * of raid_run_ops which services 'compute' operations
2627 			 * before writes. R5_Wantcompute flags a block that will
2628 			 * be R5_UPTODATE by the time it is needed for a
2629 			 * subsequent operation.
2630 			 */
2631 			s->uptodate++;
2632 			return 1;
2633 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
2634 			/* Computing 2-failure is *very* expensive; only
2635 			 * do it if failed >= 2
2636 			 */
2637 			int other;
2638 			for (other = disks; other--; ) {
2639 				if (other == disk_idx)
2640 					continue;
2641 				if (!test_bit(R5_UPTODATE,
2642 				      &sh->dev[other].flags))
2643 					break;
2644 			}
2645 			BUG_ON(other < 0);
2646 			pr_debug("Computing stripe %llu blocks %d,%d\n",
2647 			       (unsigned long long)sh->sector,
2648 			       disk_idx, other);
2649 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2650 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2651 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2652 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
2653 			sh->ops.target = disk_idx;
2654 			sh->ops.target2 = other;
2655 			s->uptodate += 2;
2656 			s->req_compute = 1;
2657 			return 1;
2658 		} else if (test_bit(R5_Insync, &dev->flags)) {
2659 			set_bit(R5_LOCKED, &dev->flags);
2660 			set_bit(R5_Wantread, &dev->flags);
2661 			s->locked++;
2662 			pr_debug("Reading block %d (sync=%d)\n",
2663 				disk_idx, s->syncing);
2664 		}
2665 	}
2666 
2667 	return 0;
2668 }
2669 
2670 /**
2671  * handle_stripe_fill - read or compute data to satisfy pending requests.
2672  */
2673 static void handle_stripe_fill(struct stripe_head *sh,
2674 			       struct stripe_head_state *s,
2675 			       int disks)
2676 {
2677 	int i;
2678 
2679 	/* look for blocks to read/compute, skip this if a compute
2680 	 * is already in flight, or if the stripe contents are in the
2681 	 * midst of changing due to a write
2682 	 */
2683 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2684 	    !sh->reconstruct_state)
2685 		for (i = disks; i--; )
2686 			if (fetch_block(sh, s, i, disks))
2687 				break;
2688 	set_bit(STRIPE_HANDLE, &sh->state);
2689 }
2690 
2691 
2692 /* handle_stripe_clean_event
2693  * any written block on an uptodate or failed drive can be returned.
2694  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2695  * never LOCKED, so we don't need to test 'failed' directly.
2696  */
2697 static void handle_stripe_clean_event(struct r5conf *conf,
2698 	struct stripe_head *sh, int disks, struct bio **return_bi)
2699 {
2700 	int i;
2701 	struct r5dev *dev;
2702 
2703 	for (i = disks; i--; )
2704 		if (sh->dev[i].written) {
2705 			dev = &sh->dev[i];
2706 			if (!test_bit(R5_LOCKED, &dev->flags) &&
2707 				test_bit(R5_UPTODATE, &dev->flags)) {
2708 				/* We can return any write requests */
2709 				struct bio *wbi, *wbi2;
2710 				int bitmap_end = 0;
2711 				pr_debug("Return write for disc %d\n", i);
2712 				spin_lock_irq(&conf->device_lock);
2713 				wbi = dev->written;
2714 				dev->written = NULL;
2715 				while (wbi && wbi->bi_sector <
2716 					dev->sector + STRIPE_SECTORS) {
2717 					wbi2 = r5_next_bio(wbi, dev->sector);
2718 					if (!raid5_dec_bi_phys_segments(wbi)) {
2719 						md_write_end(conf->mddev);
2720 						wbi->bi_next = *return_bi;
2721 						*return_bi = wbi;
2722 					}
2723 					wbi = wbi2;
2724 				}
2725 				if (dev->towrite == NULL)
2726 					bitmap_end = 1;
2727 				spin_unlock_irq(&conf->device_lock);
2728 				if (bitmap_end)
2729 					bitmap_endwrite(conf->mddev->bitmap,
2730 							sh->sector,
2731 							STRIPE_SECTORS,
2732 					 !test_bit(STRIPE_DEGRADED, &sh->state),
2733 							0);
2734 			}
2735 		}
2736 
2737 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2738 		if (atomic_dec_and_test(&conf->pending_full_writes))
2739 			md_wakeup_thread(conf->mddev->thread);
2740 }
2741 
2742 static void handle_stripe_dirtying(struct r5conf *conf,
2743 				   struct stripe_head *sh,
2744 				   struct stripe_head_state *s,
2745 				   int disks)
2746 {
2747 	int rmw = 0, rcw = 0, i;
2748 	if (conf->max_degraded == 2) {
2749 		/* RAID6 requires 'rcw' in current implementation
2750 		 * Calculate the real rcw later - for now fake it
2751 		 * look like rcw is cheaper
2752 		 */
2753 		rcw = 1; rmw = 2;
2754 	} else for (i = disks; i--; ) {
2755 		/* would I have to read this buffer for read_modify_write */
2756 		struct r5dev *dev = &sh->dev[i];
2757 		if ((dev->towrite || i == sh->pd_idx) &&
2758 		    !test_bit(R5_LOCKED, &dev->flags) &&
2759 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2760 		      test_bit(R5_Wantcompute, &dev->flags))) {
2761 			if (test_bit(R5_Insync, &dev->flags))
2762 				rmw++;
2763 			else
2764 				rmw += 2*disks;  /* cannot read it */
2765 		}
2766 		/* Would I have to read this buffer for reconstruct_write */
2767 		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2768 		    !test_bit(R5_LOCKED, &dev->flags) &&
2769 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2770 		    test_bit(R5_Wantcompute, &dev->flags))) {
2771 			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2772 			else
2773 				rcw += 2*disks;
2774 		}
2775 	}
2776 	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2777 		(unsigned long long)sh->sector, rmw, rcw);
2778 	set_bit(STRIPE_HANDLE, &sh->state);
2779 	if (rmw < rcw && rmw > 0)
2780 		/* prefer read-modify-write, but need to get some data */
2781 		for (i = disks; i--; ) {
2782 			struct r5dev *dev = &sh->dev[i];
2783 			if ((dev->towrite || i == sh->pd_idx) &&
2784 			    !test_bit(R5_LOCKED, &dev->flags) &&
2785 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2786 			    test_bit(R5_Wantcompute, &dev->flags)) &&
2787 			    test_bit(R5_Insync, &dev->flags)) {
2788 				if (
2789 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2790 					pr_debug("Read_old block "
2791 						"%d for r-m-w\n", i);
2792 					set_bit(R5_LOCKED, &dev->flags);
2793 					set_bit(R5_Wantread, &dev->flags);
2794 					s->locked++;
2795 				} else {
2796 					set_bit(STRIPE_DELAYED, &sh->state);
2797 					set_bit(STRIPE_HANDLE, &sh->state);
2798 				}
2799 			}
2800 		}
2801 	if (rcw <= rmw && rcw > 0) {
2802 		/* want reconstruct write, but need to get some data */
2803 		rcw = 0;
2804 		for (i = disks; i--; ) {
2805 			struct r5dev *dev = &sh->dev[i];
2806 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2807 			    i != sh->pd_idx && i != sh->qd_idx &&
2808 			    !test_bit(R5_LOCKED, &dev->flags) &&
2809 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2810 			      test_bit(R5_Wantcompute, &dev->flags))) {
2811 				rcw++;
2812 				if (!test_bit(R5_Insync, &dev->flags))
2813 					continue; /* it's a failed drive */
2814 				if (
2815 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2816 					pr_debug("Read_old block "
2817 						"%d for Reconstruct\n", i);
2818 					set_bit(R5_LOCKED, &dev->flags);
2819 					set_bit(R5_Wantread, &dev->flags);
2820 					s->locked++;
2821 				} else {
2822 					set_bit(STRIPE_DELAYED, &sh->state);
2823 					set_bit(STRIPE_HANDLE, &sh->state);
2824 				}
2825 			}
2826 		}
2827 	}
2828 	/* now if nothing is locked, and if we have enough data,
2829 	 * we can start a write request
2830 	 */
2831 	/* since handle_stripe can be called at any time we need to handle the
2832 	 * case where a compute block operation has been submitted and then a
2833 	 * subsequent call wants to start a write request.  raid_run_ops only
2834 	 * handles the case where compute block and reconstruct are requested
2835 	 * simultaneously.  If this is not the case then new writes need to be
2836 	 * held off until the compute completes.
2837 	 */
2838 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2839 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2840 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2841 		schedule_reconstruction(sh, s, rcw == 0, 0);
2842 }
2843 
2844 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
2845 				struct stripe_head_state *s, int disks)
2846 {
2847 	struct r5dev *dev = NULL;
2848 
2849 	set_bit(STRIPE_HANDLE, &sh->state);
2850 
2851 	switch (sh->check_state) {
2852 	case check_state_idle:
2853 		/* start a new check operation if there are no failures */
2854 		if (s->failed == 0) {
2855 			BUG_ON(s->uptodate != disks);
2856 			sh->check_state = check_state_run;
2857 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2858 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2859 			s->uptodate--;
2860 			break;
2861 		}
2862 		dev = &sh->dev[s->failed_num[0]];
2863 		/* fall through */
2864 	case check_state_compute_result:
2865 		sh->check_state = check_state_idle;
2866 		if (!dev)
2867 			dev = &sh->dev[sh->pd_idx];
2868 
2869 		/* check that a write has not made the stripe insync */
2870 		if (test_bit(STRIPE_INSYNC, &sh->state))
2871 			break;
2872 
2873 		/* either failed parity check, or recovery is happening */
2874 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2875 		BUG_ON(s->uptodate != disks);
2876 
2877 		set_bit(R5_LOCKED, &dev->flags);
2878 		s->locked++;
2879 		set_bit(R5_Wantwrite, &dev->flags);
2880 
2881 		clear_bit(STRIPE_DEGRADED, &sh->state);
2882 		set_bit(STRIPE_INSYNC, &sh->state);
2883 		break;
2884 	case check_state_run:
2885 		break; /* we will be called again upon completion */
2886 	case check_state_check_result:
2887 		sh->check_state = check_state_idle;
2888 
2889 		/* if a failure occurred during the check operation, leave
2890 		 * STRIPE_INSYNC not set and let the stripe be handled again
2891 		 */
2892 		if (s->failed)
2893 			break;
2894 
2895 		/* handle a successful check operation, if parity is correct
2896 		 * we are done.  Otherwise update the mismatch count and repair
2897 		 * parity if !MD_RECOVERY_CHECK
2898 		 */
2899 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2900 			/* parity is correct (on disc,
2901 			 * not in buffer any more)
2902 			 */
2903 			set_bit(STRIPE_INSYNC, &sh->state);
2904 		else {
2905 			conf->mddev->resync_mismatches += STRIPE_SECTORS;
2906 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2907 				/* don't try to repair!! */
2908 				set_bit(STRIPE_INSYNC, &sh->state);
2909 			else {
2910 				sh->check_state = check_state_compute_run;
2911 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2912 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2913 				set_bit(R5_Wantcompute,
2914 					&sh->dev[sh->pd_idx].flags);
2915 				sh->ops.target = sh->pd_idx;
2916 				sh->ops.target2 = -1;
2917 				s->uptodate++;
2918 			}
2919 		}
2920 		break;
2921 	case check_state_compute_run:
2922 		break;
2923 	default:
2924 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2925 		       __func__, sh->check_state,
2926 		       (unsigned long long) sh->sector);
2927 		BUG();
2928 	}
2929 }
2930 
2931 
2932 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
2933 				  struct stripe_head_state *s,
2934 				  int disks)
2935 {
2936 	int pd_idx = sh->pd_idx;
2937 	int qd_idx = sh->qd_idx;
2938 	struct r5dev *dev;
2939 
2940 	set_bit(STRIPE_HANDLE, &sh->state);
2941 
2942 	BUG_ON(s->failed > 2);
2943 
2944 	/* Want to check and possibly repair P and Q.
2945 	 * However there could be one 'failed' device, in which
2946 	 * case we can only check one of them, possibly using the
2947 	 * other to generate missing data
2948 	 */
2949 
2950 	switch (sh->check_state) {
2951 	case check_state_idle:
2952 		/* start a new check operation if there are < 2 failures */
2953 		if (s->failed == s->q_failed) {
2954 			/* The only possible failed device holds Q, so it
2955 			 * makes sense to check P (If anything else were failed,
2956 			 * we would have used P to recreate it).
2957 			 */
2958 			sh->check_state = check_state_run;
2959 		}
2960 		if (!s->q_failed && s->failed < 2) {
2961 			/* Q is not failed, and we didn't use it to generate
2962 			 * anything, so it makes sense to check it
2963 			 */
2964 			if (sh->check_state == check_state_run)
2965 				sh->check_state = check_state_run_pq;
2966 			else
2967 				sh->check_state = check_state_run_q;
2968 		}
2969 
2970 		/* discard potentially stale zero_sum_result */
2971 		sh->ops.zero_sum_result = 0;
2972 
2973 		if (sh->check_state == check_state_run) {
2974 			/* async_xor_zero_sum destroys the contents of P */
2975 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2976 			s->uptodate--;
2977 		}
2978 		if (sh->check_state >= check_state_run &&
2979 		    sh->check_state <= check_state_run_pq) {
2980 			/* async_syndrome_zero_sum preserves P and Q, so
2981 			 * no need to mark them !uptodate here
2982 			 */
2983 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2984 			break;
2985 		}
2986 
2987 		/* we have 2-disk failure */
2988 		BUG_ON(s->failed != 2);
2989 		/* fall through */
2990 	case check_state_compute_result:
2991 		sh->check_state = check_state_idle;
2992 
2993 		/* check that a write has not made the stripe insync */
2994 		if (test_bit(STRIPE_INSYNC, &sh->state))
2995 			break;
2996 
2997 		/* now write out any block on a failed drive,
2998 		 * or P or Q if they were recomputed
2999 		 */
3000 		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3001 		if (s->failed == 2) {
3002 			dev = &sh->dev[s->failed_num[1]];
3003 			s->locked++;
3004 			set_bit(R5_LOCKED, &dev->flags);
3005 			set_bit(R5_Wantwrite, &dev->flags);
3006 		}
3007 		if (s->failed >= 1) {
3008 			dev = &sh->dev[s->failed_num[0]];
3009 			s->locked++;
3010 			set_bit(R5_LOCKED, &dev->flags);
3011 			set_bit(R5_Wantwrite, &dev->flags);
3012 		}
3013 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3014 			dev = &sh->dev[pd_idx];
3015 			s->locked++;
3016 			set_bit(R5_LOCKED, &dev->flags);
3017 			set_bit(R5_Wantwrite, &dev->flags);
3018 		}
3019 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3020 			dev = &sh->dev[qd_idx];
3021 			s->locked++;
3022 			set_bit(R5_LOCKED, &dev->flags);
3023 			set_bit(R5_Wantwrite, &dev->flags);
3024 		}
3025 		clear_bit(STRIPE_DEGRADED, &sh->state);
3026 
3027 		set_bit(STRIPE_INSYNC, &sh->state);
3028 		break;
3029 	case check_state_run:
3030 	case check_state_run_q:
3031 	case check_state_run_pq:
3032 		break; /* we will be called again upon completion */
3033 	case check_state_check_result:
3034 		sh->check_state = check_state_idle;
3035 
3036 		/* handle a successful check operation, if parity is correct
3037 		 * we are done.  Otherwise update the mismatch count and repair
3038 		 * parity if !MD_RECOVERY_CHECK
3039 		 */
3040 		if (sh->ops.zero_sum_result == 0) {
3041 			/* both parities are correct */
3042 			if (!s->failed)
3043 				set_bit(STRIPE_INSYNC, &sh->state);
3044 			else {
3045 				/* in contrast to the raid5 case we can validate
3046 				 * parity, but still have a failure to write
3047 				 * back
3048 				 */
3049 				sh->check_state = check_state_compute_result;
3050 				/* Returning at this point means that we may go
3051 				 * off and bring p and/or q uptodate again so
3052 				 * we make sure to check zero_sum_result again
3053 				 * to verify if p or q need writeback
3054 				 */
3055 			}
3056 		} else {
3057 			conf->mddev->resync_mismatches += STRIPE_SECTORS;
3058 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3059 				/* don't try to repair!! */
3060 				set_bit(STRIPE_INSYNC, &sh->state);
3061 			else {
3062 				int *target = &sh->ops.target;
3063 
3064 				sh->ops.target = -1;
3065 				sh->ops.target2 = -1;
3066 				sh->check_state = check_state_compute_run;
3067 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3068 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3069 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3070 					set_bit(R5_Wantcompute,
3071 						&sh->dev[pd_idx].flags);
3072 					*target = pd_idx;
3073 					target = &sh->ops.target2;
3074 					s->uptodate++;
3075 				}
3076 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3077 					set_bit(R5_Wantcompute,
3078 						&sh->dev[qd_idx].flags);
3079 					*target = qd_idx;
3080 					s->uptodate++;
3081 				}
3082 			}
3083 		}
3084 		break;
3085 	case check_state_compute_run:
3086 		break;
3087 	default:
3088 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3089 		       __func__, sh->check_state,
3090 		       (unsigned long long) sh->sector);
3091 		BUG();
3092 	}
3093 }
3094 
3095 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3096 {
3097 	int i;
3098 
3099 	/* We have read all the blocks in this stripe and now we need to
3100 	 * copy some of them into a target stripe for expand.
3101 	 */
3102 	struct dma_async_tx_descriptor *tx = NULL;
3103 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3104 	for (i = 0; i < sh->disks; i++)
3105 		if (i != sh->pd_idx && i != sh->qd_idx) {
3106 			int dd_idx, j;
3107 			struct stripe_head *sh2;
3108 			struct async_submit_ctl submit;
3109 
3110 			sector_t bn = compute_blocknr(sh, i, 1);
3111 			sector_t s = raid5_compute_sector(conf, bn, 0,
3112 							  &dd_idx, NULL);
3113 			sh2 = get_active_stripe(conf, s, 0, 1, 1);
3114 			if (sh2 == NULL)
3115 				/* so far only the early blocks of this stripe
3116 				 * have been requested.  When later blocks
3117 				 * get requested, we will try again
3118 				 */
3119 				continue;
3120 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3121 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3122 				/* must have already done this block */
3123 				release_stripe(sh2);
3124 				continue;
3125 			}
3126 
3127 			/* place all the copies on one channel */
3128 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3129 			tx = async_memcpy(sh2->dev[dd_idx].page,
3130 					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
3131 					  &submit);
3132 
3133 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3134 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3135 			for (j = 0; j < conf->raid_disks; j++)
3136 				if (j != sh2->pd_idx &&
3137 				    j != sh2->qd_idx &&
3138 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
3139 					break;
3140 			if (j == conf->raid_disks) {
3141 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
3142 				set_bit(STRIPE_HANDLE, &sh2->state);
3143 			}
3144 			release_stripe(sh2);
3145 
3146 		}
3147 	/* done submitting copies, wait for them to complete */
3148 	if (tx) {
3149 		async_tx_ack(tx);
3150 		dma_wait_for_async_tx(tx);
3151 	}
3152 }
3153 
3154 /*
3155  * handle_stripe - do things to a stripe.
3156  *
3157  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3158  * state of various bits to see what needs to be done.
3159  * Possible results:
3160  *    return some read requests which now have data
3161  *    return some write requests which are safely on storage
3162  *    schedule a read on some buffers
3163  *    schedule a write of some buffers
3164  *    return confirmation of parity correctness
3165  *
3166  */
3167 
3168 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3169 {
3170 	struct r5conf *conf = sh->raid_conf;
3171 	int disks = sh->disks;
3172 	struct r5dev *dev;
3173 	int i;
3174 	int do_recovery = 0;
3175 
3176 	memset(s, 0, sizeof(*s));
3177 
3178 	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3179 	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3180 	s->failed_num[0] = -1;
3181 	s->failed_num[1] = -1;
3182 
3183 	/* Now to look around and see what can be done */
3184 	rcu_read_lock();
3185 	spin_lock_irq(&conf->device_lock);
3186 	for (i=disks; i--; ) {
3187 		struct md_rdev *rdev;
3188 		sector_t first_bad;
3189 		int bad_sectors;
3190 		int is_bad = 0;
3191 
3192 		dev = &sh->dev[i];
3193 
3194 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3195 			 i, dev->flags,
3196 			 dev->toread, dev->towrite, dev->written);
3197 		/* maybe we can reply to a read
3198 		 *
3199 		 * new wantfill requests are only permitted while
3200 		 * ops_complete_biofill is guaranteed to be inactive
3201 		 */
3202 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3203 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3204 			set_bit(R5_Wantfill, &dev->flags);
3205 
3206 		/* now count some things */
3207 		if (test_bit(R5_LOCKED, &dev->flags))
3208 			s->locked++;
3209 		if (test_bit(R5_UPTODATE, &dev->flags))
3210 			s->uptodate++;
3211 		if (test_bit(R5_Wantcompute, &dev->flags)) {
3212 			s->compute++;
3213 			BUG_ON(s->compute > 2);
3214 		}
3215 
3216 		if (test_bit(R5_Wantfill, &dev->flags))
3217 			s->to_fill++;
3218 		else if (dev->toread)
3219 			s->to_read++;
3220 		if (dev->towrite) {
3221 			s->to_write++;
3222 			if (!test_bit(R5_OVERWRITE, &dev->flags))
3223 				s->non_overwrite++;
3224 		}
3225 		if (dev->written)
3226 			s->written++;
3227 		/* Prefer to use the replacement for reads, but only
3228 		 * if it is recovered enough and has no bad blocks.
3229 		 */
3230 		rdev = rcu_dereference(conf->disks[i].replacement);
3231 		if (rdev && !test_bit(Faulty, &rdev->flags) &&
3232 		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3233 		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3234 				 &first_bad, &bad_sectors))
3235 			set_bit(R5_ReadRepl, &dev->flags);
3236 		else {
3237 			if (rdev)
3238 				set_bit(R5_NeedReplace, &dev->flags);
3239 			rdev = rcu_dereference(conf->disks[i].rdev);
3240 			clear_bit(R5_ReadRepl, &dev->flags);
3241 		}
3242 		if (rdev && test_bit(Faulty, &rdev->flags))
3243 			rdev = NULL;
3244 		if (rdev) {
3245 			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3246 					     &first_bad, &bad_sectors);
3247 			if (s->blocked_rdev == NULL
3248 			    && (test_bit(Blocked, &rdev->flags)
3249 				|| is_bad < 0)) {
3250 				if (is_bad < 0)
3251 					set_bit(BlockedBadBlocks,
3252 						&rdev->flags);
3253 				s->blocked_rdev = rdev;
3254 				atomic_inc(&rdev->nr_pending);
3255 			}
3256 		}
3257 		clear_bit(R5_Insync, &dev->flags);
3258 		if (!rdev)
3259 			/* Not in-sync */;
3260 		else if (is_bad) {
3261 			/* also not in-sync */
3262 			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3263 			    test_bit(R5_UPTODATE, &dev->flags)) {
3264 				/* treat as in-sync, but with a read error
3265 				 * which we can now try to correct
3266 				 */
3267 				set_bit(R5_Insync, &dev->flags);
3268 				set_bit(R5_ReadError, &dev->flags);
3269 			}
3270 		} else if (test_bit(In_sync, &rdev->flags))
3271 			set_bit(R5_Insync, &dev->flags);
3272 		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3273 			/* in sync if before recovery_offset */
3274 			set_bit(R5_Insync, &dev->flags);
3275 		else if (test_bit(R5_UPTODATE, &dev->flags) &&
3276 			 test_bit(R5_Expanded, &dev->flags))
3277 			/* If we've reshaped into here, we assume it is Insync.
3278 			 * We will shortly update recovery_offset to make
3279 			 * it official.
3280 			 */
3281 			set_bit(R5_Insync, &dev->flags);
3282 
3283 		if (rdev && test_bit(R5_WriteError, &dev->flags)) {
3284 			/* This flag does not apply to '.replacement'
3285 			 * only to .rdev, so make sure to check that*/
3286 			struct md_rdev *rdev2 = rcu_dereference(
3287 				conf->disks[i].rdev);
3288 			if (rdev2 == rdev)
3289 				clear_bit(R5_Insync, &dev->flags);
3290 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3291 				s->handle_bad_blocks = 1;
3292 				atomic_inc(&rdev2->nr_pending);
3293 			} else
3294 				clear_bit(R5_WriteError, &dev->flags);
3295 		}
3296 		if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
3297 			/* This flag does not apply to '.replacement'
3298 			 * only to .rdev, so make sure to check that*/
3299 			struct md_rdev *rdev2 = rcu_dereference(
3300 				conf->disks[i].rdev);
3301 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3302 				s->handle_bad_blocks = 1;
3303 				atomic_inc(&rdev2->nr_pending);
3304 			} else
3305 				clear_bit(R5_MadeGood, &dev->flags);
3306 		}
3307 		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3308 			struct md_rdev *rdev2 = rcu_dereference(
3309 				conf->disks[i].replacement);
3310 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3311 				s->handle_bad_blocks = 1;
3312 				atomic_inc(&rdev2->nr_pending);
3313 			} else
3314 				clear_bit(R5_MadeGoodRepl, &dev->flags);
3315 		}
3316 		if (!test_bit(R5_Insync, &dev->flags)) {
3317 			/* The ReadError flag will just be confusing now */
3318 			clear_bit(R5_ReadError, &dev->flags);
3319 			clear_bit(R5_ReWrite, &dev->flags);
3320 		}
3321 		if (test_bit(R5_ReadError, &dev->flags))
3322 			clear_bit(R5_Insync, &dev->flags);
3323 		if (!test_bit(R5_Insync, &dev->flags)) {
3324 			if (s->failed < 2)
3325 				s->failed_num[s->failed] = i;
3326 			s->failed++;
3327 			if (rdev && !test_bit(Faulty, &rdev->flags))
3328 				do_recovery = 1;
3329 		}
3330 	}
3331 	spin_unlock_irq(&conf->device_lock);
3332 	if (test_bit(STRIPE_SYNCING, &sh->state)) {
3333 		/* If there is a failed device being replaced,
3334 		 *     we must be recovering.
3335 		 * else if we are after recovery_cp, we must be syncing
3336 		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3337 		 * else we can only be replacing
3338 		 * sync and recovery both need to read all devices, and so
3339 		 * use the same flag.
3340 		 */
3341 		if (do_recovery ||
3342 		    sh->sector >= conf->mddev->recovery_cp ||
3343 		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3344 			s->syncing = 1;
3345 		else
3346 			s->replacing = 1;
3347 	}
3348 	rcu_read_unlock();
3349 }
3350 
3351 static void handle_stripe(struct stripe_head *sh)
3352 {
3353 	struct stripe_head_state s;
3354 	struct r5conf *conf = sh->raid_conf;
3355 	int i;
3356 	int prexor;
3357 	int disks = sh->disks;
3358 	struct r5dev *pdev, *qdev;
3359 
3360 	clear_bit(STRIPE_HANDLE, &sh->state);
3361 	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3362 		/* already being handled, ensure it gets handled
3363 		 * again when current action finishes */
3364 		set_bit(STRIPE_HANDLE, &sh->state);
3365 		return;
3366 	}
3367 
3368 	if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3369 		set_bit(STRIPE_SYNCING, &sh->state);
3370 		clear_bit(STRIPE_INSYNC, &sh->state);
3371 	}
3372 	clear_bit(STRIPE_DELAYED, &sh->state);
3373 
3374 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3375 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3376 	       (unsigned long long)sh->sector, sh->state,
3377 	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3378 	       sh->check_state, sh->reconstruct_state);
3379 
3380 	analyse_stripe(sh, &s);
3381 
3382 	if (s.handle_bad_blocks) {
3383 		set_bit(STRIPE_HANDLE, &sh->state);
3384 		goto finish;
3385 	}
3386 
3387 	if (unlikely(s.blocked_rdev)) {
3388 		if (s.syncing || s.expanding || s.expanded ||
3389 		    s.replacing || s.to_write || s.written) {
3390 			set_bit(STRIPE_HANDLE, &sh->state);
3391 			goto finish;
3392 		}
3393 		/* There is nothing for the blocked_rdev to block */
3394 		rdev_dec_pending(s.blocked_rdev, conf->mddev);
3395 		s.blocked_rdev = NULL;
3396 	}
3397 
3398 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3399 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3400 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3401 	}
3402 
3403 	pr_debug("locked=%d uptodate=%d to_read=%d"
3404 	       " to_write=%d failed=%d failed_num=%d,%d\n",
3405 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3406 	       s.failed_num[0], s.failed_num[1]);
3407 	/* check if the array has lost more than max_degraded devices and,
3408 	 * if so, some requests might need to be failed.
3409 	 */
3410 	if (s.failed > conf->max_degraded) {
3411 		sh->check_state = 0;
3412 		sh->reconstruct_state = 0;
3413 		if (s.to_read+s.to_write+s.written)
3414 			handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3415 		if (s.syncing + s.replacing)
3416 			handle_failed_sync(conf, sh, &s);
3417 	}
3418 
3419 	/*
3420 	 * might be able to return some write requests if the parity blocks
3421 	 * are safe, or on a failed drive
3422 	 */
3423 	pdev = &sh->dev[sh->pd_idx];
3424 	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3425 		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3426 	qdev = &sh->dev[sh->qd_idx];
3427 	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3428 		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3429 		|| conf->level < 6;
3430 
3431 	if (s.written &&
3432 	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3433 			     && !test_bit(R5_LOCKED, &pdev->flags)
3434 			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3435 	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3436 			     && !test_bit(R5_LOCKED, &qdev->flags)
3437 			     && test_bit(R5_UPTODATE, &qdev->flags)))))
3438 		handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3439 
3440 	/* Now we might consider reading some blocks, either to check/generate
3441 	 * parity, or to satisfy requests
3442 	 * or to load a block that is being partially written.
3443 	 */
3444 	if (s.to_read || s.non_overwrite
3445 	    || (conf->level == 6 && s.to_write && s.failed)
3446 	    || (s.syncing && (s.uptodate + s.compute < disks))
3447 	    || s.replacing
3448 	    || s.expanding)
3449 		handle_stripe_fill(sh, &s, disks);
3450 
3451 	/* Now we check to see if any write operations have recently
3452 	 * completed
3453 	 */
3454 	prexor = 0;
3455 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3456 		prexor = 1;
3457 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
3458 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3459 		sh->reconstruct_state = reconstruct_state_idle;
3460 
3461 		/* All the 'written' buffers and the parity block are ready to
3462 		 * be written back to disk
3463 		 */
3464 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3465 		BUG_ON(sh->qd_idx >= 0 &&
3466 		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags));
3467 		for (i = disks; i--; ) {
3468 			struct r5dev *dev = &sh->dev[i];
3469 			if (test_bit(R5_LOCKED, &dev->flags) &&
3470 				(i == sh->pd_idx || i == sh->qd_idx ||
3471 				 dev->written)) {
3472 				pr_debug("Writing block %d\n", i);
3473 				set_bit(R5_Wantwrite, &dev->flags);
3474 				if (prexor)
3475 					continue;
3476 				if (!test_bit(R5_Insync, &dev->flags) ||
3477 				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
3478 				     s.failed == 0))
3479 					set_bit(STRIPE_INSYNC, &sh->state);
3480 			}
3481 		}
3482 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3483 			s.dec_preread_active = 1;
3484 	}
3485 
3486 	/* Now to consider new write requests and what else, if anything
3487 	 * should be read.  We do not handle new writes when:
3488 	 * 1/ A 'write' operation (copy+xor) is already in flight.
3489 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
3490 	 *    block.
3491 	 */
3492 	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3493 		handle_stripe_dirtying(conf, sh, &s, disks);
3494 
3495 	/* maybe we need to check and possibly fix the parity for this stripe
3496 	 * Any reads will already have been scheduled, so we just see if enough
3497 	 * data is available.  The parity check is held off while parity
3498 	 * dependent operations are in flight.
3499 	 */
3500 	if (sh->check_state ||
3501 	    (s.syncing && s.locked == 0 &&
3502 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3503 	     !test_bit(STRIPE_INSYNC, &sh->state))) {
3504 		if (conf->level == 6)
3505 			handle_parity_checks6(conf, sh, &s, disks);
3506 		else
3507 			handle_parity_checks5(conf, sh, &s, disks);
3508 	}
3509 
3510 	if (s.replacing && s.locked == 0
3511 	    && !test_bit(STRIPE_INSYNC, &sh->state)) {
3512 		/* Write out to replacement devices where possible */
3513 		for (i = 0; i < conf->raid_disks; i++)
3514 			if (test_bit(R5_UPTODATE, &sh->dev[i].flags) &&
3515 			    test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3516 				set_bit(R5_WantReplace, &sh->dev[i].flags);
3517 				set_bit(R5_LOCKED, &sh->dev[i].flags);
3518 				s.locked++;
3519 			}
3520 		set_bit(STRIPE_INSYNC, &sh->state);
3521 	}
3522 	if ((s.syncing || s.replacing) && s.locked == 0 &&
3523 	    test_bit(STRIPE_INSYNC, &sh->state)) {
3524 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3525 		clear_bit(STRIPE_SYNCING, &sh->state);
3526 	}
3527 
3528 	/* If the failed drives are just a ReadError, then we might need
3529 	 * to progress the repair/check process
3530 	 */
3531 	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3532 		for (i = 0; i < s.failed; i++) {
3533 			struct r5dev *dev = &sh->dev[s.failed_num[i]];
3534 			if (test_bit(R5_ReadError, &dev->flags)
3535 			    && !test_bit(R5_LOCKED, &dev->flags)
3536 			    && test_bit(R5_UPTODATE, &dev->flags)
3537 				) {
3538 				if (!test_bit(R5_ReWrite, &dev->flags)) {
3539 					set_bit(R5_Wantwrite, &dev->flags);
3540 					set_bit(R5_ReWrite, &dev->flags);
3541 					set_bit(R5_LOCKED, &dev->flags);
3542 					s.locked++;
3543 				} else {
3544 					/* let's read it back */
3545 					set_bit(R5_Wantread, &dev->flags);
3546 					set_bit(R5_LOCKED, &dev->flags);
3547 					s.locked++;
3548 				}
3549 			}
3550 		}
3551 
3552 
3553 	/* Finish reconstruct operations initiated by the expansion process */
3554 	if (sh->reconstruct_state == reconstruct_state_result) {
3555 		struct stripe_head *sh_src
3556 			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3557 		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3558 			/* sh cannot be written until sh_src has been read.
3559 			 * so arrange for sh to be delayed a little
3560 			 */
3561 			set_bit(STRIPE_DELAYED, &sh->state);
3562 			set_bit(STRIPE_HANDLE, &sh->state);
3563 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3564 					      &sh_src->state))
3565 				atomic_inc(&conf->preread_active_stripes);
3566 			release_stripe(sh_src);
3567 			goto finish;
3568 		}
3569 		if (sh_src)
3570 			release_stripe(sh_src);
3571 
3572 		sh->reconstruct_state = reconstruct_state_idle;
3573 		clear_bit(STRIPE_EXPANDING, &sh->state);
3574 		for (i = conf->raid_disks; i--; ) {
3575 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
3576 			set_bit(R5_LOCKED, &sh->dev[i].flags);
3577 			s.locked++;
3578 		}
3579 	}
3580 
3581 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3582 	    !sh->reconstruct_state) {
3583 		/* Need to write out all blocks after computing parity */
3584 		sh->disks = conf->raid_disks;
3585 		stripe_set_idx(sh->sector, conf, 0, sh);
3586 		schedule_reconstruction(sh, &s, 1, 1);
3587 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3588 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3589 		atomic_dec(&conf->reshape_stripes);
3590 		wake_up(&conf->wait_for_overlap);
3591 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3592 	}
3593 
3594 	if (s.expanding && s.locked == 0 &&
3595 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3596 		handle_stripe_expansion(conf, sh);
3597 
3598 finish:
3599 	/* wait for this device to become unblocked */
3600 	if (unlikely(s.blocked_rdev)) {
3601 		if (conf->mddev->external)
3602 			md_wait_for_blocked_rdev(s.blocked_rdev,
3603 						 conf->mddev);
3604 		else
3605 			/* Internal metadata will immediately
3606 			 * be written by raid5d, so we don't
3607 			 * need to wait here.
3608 			 */
3609 			rdev_dec_pending(s.blocked_rdev,
3610 					 conf->mddev);
3611 	}
3612 
3613 	if (s.handle_bad_blocks)
3614 		for (i = disks; i--; ) {
3615 			struct md_rdev *rdev;
3616 			struct r5dev *dev = &sh->dev[i];
3617 			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3618 				/* We own a safe reference to the rdev */
3619 				rdev = conf->disks[i].rdev;
3620 				if (!rdev_set_badblocks(rdev, sh->sector,
3621 							STRIPE_SECTORS, 0))
3622 					md_error(conf->mddev, rdev);
3623 				rdev_dec_pending(rdev, conf->mddev);
3624 			}
3625 			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3626 				rdev = conf->disks[i].rdev;
3627 				rdev_clear_badblocks(rdev, sh->sector,
3628 						     STRIPE_SECTORS, 0);
3629 				rdev_dec_pending(rdev, conf->mddev);
3630 			}
3631 			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3632 				rdev = conf->disks[i].replacement;
3633 				if (!rdev)
3634 					/* rdev have been moved down */
3635 					rdev = conf->disks[i].rdev;
3636 				rdev_clear_badblocks(rdev, sh->sector,
3637 						     STRIPE_SECTORS, 0);
3638 				rdev_dec_pending(rdev, conf->mddev);
3639 			}
3640 		}
3641 
3642 	if (s.ops_request)
3643 		raid_run_ops(sh, s.ops_request);
3644 
3645 	ops_run_io(sh, &s);
3646 
3647 	if (s.dec_preread_active) {
3648 		/* We delay this until after ops_run_io so that if make_request
3649 		 * is waiting on a flush, it won't continue until the writes
3650 		 * have actually been submitted.
3651 		 */
3652 		atomic_dec(&conf->preread_active_stripes);
3653 		if (atomic_read(&conf->preread_active_stripes) <
3654 		    IO_THRESHOLD)
3655 			md_wakeup_thread(conf->mddev->thread);
3656 	}
3657 
3658 	return_io(s.return_bi);
3659 
3660 	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
3661 }
3662 
3663 static void raid5_activate_delayed(struct r5conf *conf)
3664 {
3665 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3666 		while (!list_empty(&conf->delayed_list)) {
3667 			struct list_head *l = conf->delayed_list.next;
3668 			struct stripe_head *sh;
3669 			sh = list_entry(l, struct stripe_head, lru);
3670 			list_del_init(l);
3671 			clear_bit(STRIPE_DELAYED, &sh->state);
3672 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3673 				atomic_inc(&conf->preread_active_stripes);
3674 			list_add_tail(&sh->lru, &conf->hold_list);
3675 		}
3676 	}
3677 }
3678 
3679 static void activate_bit_delay(struct r5conf *conf)
3680 {
3681 	/* device_lock is held */
3682 	struct list_head head;
3683 	list_add(&head, &conf->bitmap_list);
3684 	list_del_init(&conf->bitmap_list);
3685 	while (!list_empty(&head)) {
3686 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3687 		list_del_init(&sh->lru);
3688 		atomic_inc(&sh->count);
3689 		__release_stripe(conf, sh);
3690 	}
3691 }
3692 
3693 int md_raid5_congested(struct mddev *mddev, int bits)
3694 {
3695 	struct r5conf *conf = mddev->private;
3696 
3697 	/* No difference between reads and writes.  Just check
3698 	 * how busy the stripe_cache is
3699 	 */
3700 
3701 	if (conf->inactive_blocked)
3702 		return 1;
3703 	if (conf->quiesce)
3704 		return 1;
3705 	if (list_empty_careful(&conf->inactive_list))
3706 		return 1;
3707 
3708 	return 0;
3709 }
3710 EXPORT_SYMBOL_GPL(md_raid5_congested);
3711 
3712 static int raid5_congested(void *data, int bits)
3713 {
3714 	struct mddev *mddev = data;
3715 
3716 	return mddev_congested(mddev, bits) ||
3717 		md_raid5_congested(mddev, bits);
3718 }
3719 
3720 /* We want read requests to align with chunks where possible,
3721  * but write requests don't need to.
3722  */
3723 static int raid5_mergeable_bvec(struct request_queue *q,
3724 				struct bvec_merge_data *bvm,
3725 				struct bio_vec *biovec)
3726 {
3727 	struct mddev *mddev = q->queuedata;
3728 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3729 	int max;
3730 	unsigned int chunk_sectors = mddev->chunk_sectors;
3731 	unsigned int bio_sectors = bvm->bi_size >> 9;
3732 
3733 	if ((bvm->bi_rw & 1) == WRITE)
3734 		return biovec->bv_len; /* always allow writes to be mergeable */
3735 
3736 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3737 		chunk_sectors = mddev->new_chunk_sectors;
3738 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3739 	if (max < 0) max = 0;
3740 	if (max <= biovec->bv_len && bio_sectors == 0)
3741 		return biovec->bv_len;
3742 	else
3743 		return max;
3744 }
3745 
3746 
3747 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
3748 {
3749 	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3750 	unsigned int chunk_sectors = mddev->chunk_sectors;
3751 	unsigned int bio_sectors = bio->bi_size >> 9;
3752 
3753 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3754 		chunk_sectors = mddev->new_chunk_sectors;
3755 	return  chunk_sectors >=
3756 		((sector & (chunk_sectors - 1)) + bio_sectors);
3757 }
3758 
3759 /*
3760  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3761  *  later sampled by raid5d.
3762  */
3763 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
3764 {
3765 	unsigned long flags;
3766 
3767 	spin_lock_irqsave(&conf->device_lock, flags);
3768 
3769 	bi->bi_next = conf->retry_read_aligned_list;
3770 	conf->retry_read_aligned_list = bi;
3771 
3772 	spin_unlock_irqrestore(&conf->device_lock, flags);
3773 	md_wakeup_thread(conf->mddev->thread);
3774 }
3775 
3776 
3777 static struct bio *remove_bio_from_retry(struct r5conf *conf)
3778 {
3779 	struct bio *bi;
3780 
3781 	bi = conf->retry_read_aligned;
3782 	if (bi) {
3783 		conf->retry_read_aligned = NULL;
3784 		return bi;
3785 	}
3786 	bi = conf->retry_read_aligned_list;
3787 	if(bi) {
3788 		conf->retry_read_aligned_list = bi->bi_next;
3789 		bi->bi_next = NULL;
3790 		/*
3791 		 * this sets the active strip count to 1 and the processed
3792 		 * strip count to zero (upper 8 bits)
3793 		 */
3794 		bi->bi_phys_segments = 1; /* biased count of active stripes */
3795 	}
3796 
3797 	return bi;
3798 }
3799 
3800 
3801 /*
3802  *  The "raid5_align_endio" should check if the read succeeded and if it
3803  *  did, call bio_endio on the original bio (having bio_put the new bio
3804  *  first).
3805  *  If the read failed..
3806  */
3807 static void raid5_align_endio(struct bio *bi, int error)
3808 {
3809 	struct bio* raid_bi  = bi->bi_private;
3810 	struct mddev *mddev;
3811 	struct r5conf *conf;
3812 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3813 	struct md_rdev *rdev;
3814 
3815 	bio_put(bi);
3816 
3817 	rdev = (void*)raid_bi->bi_next;
3818 	raid_bi->bi_next = NULL;
3819 	mddev = rdev->mddev;
3820 	conf = mddev->private;
3821 
3822 	rdev_dec_pending(rdev, conf->mddev);
3823 
3824 	if (!error && uptodate) {
3825 		bio_endio(raid_bi, 0);
3826 		if (atomic_dec_and_test(&conf->active_aligned_reads))
3827 			wake_up(&conf->wait_for_stripe);
3828 		return;
3829 	}
3830 
3831 
3832 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3833 
3834 	add_bio_to_retry(raid_bi, conf);
3835 }
3836 
3837 static int bio_fits_rdev(struct bio *bi)
3838 {
3839 	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3840 
3841 	if ((bi->bi_size>>9) > queue_max_sectors(q))
3842 		return 0;
3843 	blk_recount_segments(q, bi);
3844 	if (bi->bi_phys_segments > queue_max_segments(q))
3845 		return 0;
3846 
3847 	if (q->merge_bvec_fn)
3848 		/* it's too hard to apply the merge_bvec_fn at this stage,
3849 		 * just just give up
3850 		 */
3851 		return 0;
3852 
3853 	return 1;
3854 }
3855 
3856 
3857 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
3858 {
3859 	struct r5conf *conf = mddev->private;
3860 	int dd_idx;
3861 	struct bio* align_bi;
3862 	struct md_rdev *rdev;
3863 	sector_t end_sector;
3864 
3865 	if (!in_chunk_boundary(mddev, raid_bio)) {
3866 		pr_debug("chunk_aligned_read : non aligned\n");
3867 		return 0;
3868 	}
3869 	/*
3870 	 * use bio_clone_mddev to make a copy of the bio
3871 	 */
3872 	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3873 	if (!align_bi)
3874 		return 0;
3875 	/*
3876 	 *   set bi_end_io to a new function, and set bi_private to the
3877 	 *     original bio.
3878 	 */
3879 	align_bi->bi_end_io  = raid5_align_endio;
3880 	align_bi->bi_private = raid_bio;
3881 	/*
3882 	 *	compute position
3883 	 */
3884 	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3885 						    0,
3886 						    &dd_idx, NULL);
3887 
3888 	end_sector = align_bi->bi_sector + (align_bi->bi_size >> 9);
3889 	rcu_read_lock();
3890 	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
3891 	if (!rdev || test_bit(Faulty, &rdev->flags) ||
3892 	    rdev->recovery_offset < end_sector) {
3893 		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3894 		if (rdev &&
3895 		    (test_bit(Faulty, &rdev->flags) ||
3896 		    !(test_bit(In_sync, &rdev->flags) ||
3897 		      rdev->recovery_offset >= end_sector)))
3898 			rdev = NULL;
3899 	}
3900 	if (rdev) {
3901 		sector_t first_bad;
3902 		int bad_sectors;
3903 
3904 		atomic_inc(&rdev->nr_pending);
3905 		rcu_read_unlock();
3906 		raid_bio->bi_next = (void*)rdev;
3907 		align_bi->bi_bdev =  rdev->bdev;
3908 		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3909 
3910 		if (!bio_fits_rdev(align_bi) ||
3911 		    is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
3912 				&first_bad, &bad_sectors)) {
3913 			/* too big in some way, or has a known bad block */
3914 			bio_put(align_bi);
3915 			rdev_dec_pending(rdev, mddev);
3916 			return 0;
3917 		}
3918 
3919 		/* No reshape active, so we can trust rdev->data_offset */
3920 		align_bi->bi_sector += rdev->data_offset;
3921 
3922 		spin_lock_irq(&conf->device_lock);
3923 		wait_event_lock_irq(conf->wait_for_stripe,
3924 				    conf->quiesce == 0,
3925 				    conf->device_lock, /* nothing */);
3926 		atomic_inc(&conf->active_aligned_reads);
3927 		spin_unlock_irq(&conf->device_lock);
3928 
3929 		generic_make_request(align_bi);
3930 		return 1;
3931 	} else {
3932 		rcu_read_unlock();
3933 		bio_put(align_bi);
3934 		return 0;
3935 	}
3936 }
3937 
3938 /* __get_priority_stripe - get the next stripe to process
3939  *
3940  * Full stripe writes are allowed to pass preread active stripes up until
3941  * the bypass_threshold is exceeded.  In general the bypass_count
3942  * increments when the handle_list is handled before the hold_list; however, it
3943  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3944  * stripe with in flight i/o.  The bypass_count will be reset when the
3945  * head of the hold_list has changed, i.e. the head was promoted to the
3946  * handle_list.
3947  */
3948 static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
3949 {
3950 	struct stripe_head *sh;
3951 
3952 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3953 		  __func__,
3954 		  list_empty(&conf->handle_list) ? "empty" : "busy",
3955 		  list_empty(&conf->hold_list) ? "empty" : "busy",
3956 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
3957 
3958 	if (!list_empty(&conf->handle_list)) {
3959 		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3960 
3961 		if (list_empty(&conf->hold_list))
3962 			conf->bypass_count = 0;
3963 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3964 			if (conf->hold_list.next == conf->last_hold)
3965 				conf->bypass_count++;
3966 			else {
3967 				conf->last_hold = conf->hold_list.next;
3968 				conf->bypass_count -= conf->bypass_threshold;
3969 				if (conf->bypass_count < 0)
3970 					conf->bypass_count = 0;
3971 			}
3972 		}
3973 	} else if (!list_empty(&conf->hold_list) &&
3974 		   ((conf->bypass_threshold &&
3975 		     conf->bypass_count > conf->bypass_threshold) ||
3976 		    atomic_read(&conf->pending_full_writes) == 0)) {
3977 		sh = list_entry(conf->hold_list.next,
3978 				typeof(*sh), lru);
3979 		conf->bypass_count -= conf->bypass_threshold;
3980 		if (conf->bypass_count < 0)
3981 			conf->bypass_count = 0;
3982 	} else
3983 		return NULL;
3984 
3985 	list_del_init(&sh->lru);
3986 	atomic_inc(&sh->count);
3987 	BUG_ON(atomic_read(&sh->count) != 1);
3988 	return sh;
3989 }
3990 
3991 static void make_request(struct mddev *mddev, struct bio * bi)
3992 {
3993 	struct r5conf *conf = mddev->private;
3994 	int dd_idx;
3995 	sector_t new_sector;
3996 	sector_t logical_sector, last_sector;
3997 	struct stripe_head *sh;
3998 	const int rw = bio_data_dir(bi);
3999 	int remaining;
4000 
4001 	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4002 		md_flush_request(mddev, bi);
4003 		return;
4004 	}
4005 
4006 	md_write_start(mddev, bi);
4007 
4008 	if (rw == READ &&
4009 	     mddev->reshape_position == MaxSector &&
4010 	     chunk_aligned_read(mddev,bi))
4011 		return;
4012 
4013 	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4014 	last_sector = bi->bi_sector + (bi->bi_size>>9);
4015 	bi->bi_next = NULL;
4016 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
4017 
4018 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4019 		DEFINE_WAIT(w);
4020 		int previous;
4021 
4022 	retry:
4023 		previous = 0;
4024 		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4025 		if (unlikely(conf->reshape_progress != MaxSector)) {
4026 			/* spinlock is needed as reshape_progress may be
4027 			 * 64bit on a 32bit platform, and so it might be
4028 			 * possible to see a half-updated value
4029 			 * Of course reshape_progress could change after
4030 			 * the lock is dropped, so once we get a reference
4031 			 * to the stripe that we think it is, we will have
4032 			 * to check again.
4033 			 */
4034 			spin_lock_irq(&conf->device_lock);
4035 			if (mddev->reshape_backwards
4036 			    ? logical_sector < conf->reshape_progress
4037 			    : logical_sector >= conf->reshape_progress) {
4038 				previous = 1;
4039 			} else {
4040 				if (mddev->reshape_backwards
4041 				    ? logical_sector < conf->reshape_safe
4042 				    : logical_sector >= conf->reshape_safe) {
4043 					spin_unlock_irq(&conf->device_lock);
4044 					schedule();
4045 					goto retry;
4046 				}
4047 			}
4048 			spin_unlock_irq(&conf->device_lock);
4049 		}
4050 
4051 		new_sector = raid5_compute_sector(conf, logical_sector,
4052 						  previous,
4053 						  &dd_idx, NULL);
4054 		pr_debug("raid456: make_request, sector %llu logical %llu\n",
4055 			(unsigned long long)new_sector,
4056 			(unsigned long long)logical_sector);
4057 
4058 		sh = get_active_stripe(conf, new_sector, previous,
4059 				       (bi->bi_rw&RWA_MASK), 0);
4060 		if (sh) {
4061 			if (unlikely(previous)) {
4062 				/* expansion might have moved on while waiting for a
4063 				 * stripe, so we must do the range check again.
4064 				 * Expansion could still move past after this
4065 				 * test, but as we are holding a reference to
4066 				 * 'sh', we know that if that happens,
4067 				 *  STRIPE_EXPANDING will get set and the expansion
4068 				 * won't proceed until we finish with the stripe.
4069 				 */
4070 				int must_retry = 0;
4071 				spin_lock_irq(&conf->device_lock);
4072 				if (mddev->reshape_backwards
4073 				    ? logical_sector >= conf->reshape_progress
4074 				    : logical_sector < conf->reshape_progress)
4075 					/* mismatch, need to try again */
4076 					must_retry = 1;
4077 				spin_unlock_irq(&conf->device_lock);
4078 				if (must_retry) {
4079 					release_stripe(sh);
4080 					schedule();
4081 					goto retry;
4082 				}
4083 			}
4084 
4085 			if (rw == WRITE &&
4086 			    logical_sector >= mddev->suspend_lo &&
4087 			    logical_sector < mddev->suspend_hi) {
4088 				release_stripe(sh);
4089 				/* As the suspend_* range is controlled by
4090 				 * userspace, we want an interruptible
4091 				 * wait.
4092 				 */
4093 				flush_signals(current);
4094 				prepare_to_wait(&conf->wait_for_overlap,
4095 						&w, TASK_INTERRUPTIBLE);
4096 				if (logical_sector >= mddev->suspend_lo &&
4097 				    logical_sector < mddev->suspend_hi)
4098 					schedule();
4099 				goto retry;
4100 			}
4101 
4102 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4103 			    !add_stripe_bio(sh, bi, dd_idx, rw)) {
4104 				/* Stripe is busy expanding or
4105 				 * add failed due to overlap.  Flush everything
4106 				 * and wait a while
4107 				 */
4108 				md_wakeup_thread(mddev->thread);
4109 				release_stripe(sh);
4110 				schedule();
4111 				goto retry;
4112 			}
4113 			finish_wait(&conf->wait_for_overlap, &w);
4114 			set_bit(STRIPE_HANDLE, &sh->state);
4115 			clear_bit(STRIPE_DELAYED, &sh->state);
4116 			if ((bi->bi_rw & REQ_SYNC) &&
4117 			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4118 				atomic_inc(&conf->preread_active_stripes);
4119 			mddev_check_plugged(mddev);
4120 			release_stripe(sh);
4121 		} else {
4122 			/* cannot get stripe for read-ahead, just give-up */
4123 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
4124 			finish_wait(&conf->wait_for_overlap, &w);
4125 			break;
4126 		}
4127 	}
4128 
4129 	spin_lock_irq(&conf->device_lock);
4130 	remaining = raid5_dec_bi_phys_segments(bi);
4131 	spin_unlock_irq(&conf->device_lock);
4132 	if (remaining == 0) {
4133 
4134 		if ( rw == WRITE )
4135 			md_write_end(mddev);
4136 
4137 		bio_endio(bi, 0);
4138 	}
4139 }
4140 
4141 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4142 
4143 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4144 {
4145 	/* reshaping is quite different to recovery/resync so it is
4146 	 * handled quite separately ... here.
4147 	 *
4148 	 * On each call to sync_request, we gather one chunk worth of
4149 	 * destination stripes and flag them as expanding.
4150 	 * Then we find all the source stripes and request reads.
4151 	 * As the reads complete, handle_stripe will copy the data
4152 	 * into the destination stripe and release that stripe.
4153 	 */
4154 	struct r5conf *conf = mddev->private;
4155 	struct stripe_head *sh;
4156 	sector_t first_sector, last_sector;
4157 	int raid_disks = conf->previous_raid_disks;
4158 	int data_disks = raid_disks - conf->max_degraded;
4159 	int new_data_disks = conf->raid_disks - conf->max_degraded;
4160 	int i;
4161 	int dd_idx;
4162 	sector_t writepos, readpos, safepos;
4163 	sector_t stripe_addr;
4164 	int reshape_sectors;
4165 	struct list_head stripes;
4166 
4167 	if (sector_nr == 0) {
4168 		/* If restarting in the middle, skip the initial sectors */
4169 		if (mddev->reshape_backwards &&
4170 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4171 			sector_nr = raid5_size(mddev, 0, 0)
4172 				- conf->reshape_progress;
4173 		} else if (!mddev->reshape_backwards &&
4174 			   conf->reshape_progress > 0)
4175 			sector_nr = conf->reshape_progress;
4176 		sector_div(sector_nr, new_data_disks);
4177 		if (sector_nr) {
4178 			mddev->curr_resync_completed = sector_nr;
4179 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4180 			*skipped = 1;
4181 			return sector_nr;
4182 		}
4183 	}
4184 
4185 	/* We need to process a full chunk at a time.
4186 	 * If old and new chunk sizes differ, we need to process the
4187 	 * largest of these
4188 	 */
4189 	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4190 		reshape_sectors = mddev->new_chunk_sectors;
4191 	else
4192 		reshape_sectors = mddev->chunk_sectors;
4193 
4194 	/* We update the metadata at least every 10 seconds, or when
4195 	 * the data about to be copied would over-write the source of
4196 	 * the data at the front of the range.  i.e. one new_stripe
4197 	 * along from reshape_progress new_maps to after where
4198 	 * reshape_safe old_maps to
4199 	 */
4200 	writepos = conf->reshape_progress;
4201 	sector_div(writepos, new_data_disks);
4202 	readpos = conf->reshape_progress;
4203 	sector_div(readpos, data_disks);
4204 	safepos = conf->reshape_safe;
4205 	sector_div(safepos, data_disks);
4206 	if (mddev->reshape_backwards) {
4207 		writepos -= min_t(sector_t, reshape_sectors, writepos);
4208 		readpos += reshape_sectors;
4209 		safepos += reshape_sectors;
4210 	} else {
4211 		writepos += reshape_sectors;
4212 		readpos -= min_t(sector_t, reshape_sectors, readpos);
4213 		safepos -= min_t(sector_t, reshape_sectors, safepos);
4214 	}
4215 
4216 	/* Having calculated the 'writepos' possibly use it
4217 	 * to set 'stripe_addr' which is where we will write to.
4218 	 */
4219 	if (mddev->reshape_backwards) {
4220 		BUG_ON(conf->reshape_progress == 0);
4221 		stripe_addr = writepos;
4222 		BUG_ON((mddev->dev_sectors &
4223 			~((sector_t)reshape_sectors - 1))
4224 		       - reshape_sectors - stripe_addr
4225 		       != sector_nr);
4226 	} else {
4227 		BUG_ON(writepos != sector_nr + reshape_sectors);
4228 		stripe_addr = sector_nr;
4229 	}
4230 
4231 	/* 'writepos' is the most advanced device address we might write.
4232 	 * 'readpos' is the least advanced device address we might read.
4233 	 * 'safepos' is the least address recorded in the metadata as having
4234 	 *     been reshaped.
4235 	 * If there is a min_offset_diff, these are adjusted either by
4236 	 * increasing the safepos/readpos if diff is negative, or
4237 	 * increasing writepos if diff is positive.
4238 	 * If 'readpos' is then behind 'writepos', there is no way that we can
4239 	 * ensure safety in the face of a crash - that must be done by userspace
4240 	 * making a backup of the data.  So in that case there is no particular
4241 	 * rush to update metadata.
4242 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4243 	 * update the metadata to advance 'safepos' to match 'readpos' so that
4244 	 * we can be safe in the event of a crash.
4245 	 * So we insist on updating metadata if safepos is behind writepos and
4246 	 * readpos is beyond writepos.
4247 	 * In any case, update the metadata every 10 seconds.
4248 	 * Maybe that number should be configurable, but I'm not sure it is
4249 	 * worth it.... maybe it could be a multiple of safemode_delay???
4250 	 */
4251 	if (conf->min_offset_diff < 0) {
4252 		safepos += -conf->min_offset_diff;
4253 		readpos += -conf->min_offset_diff;
4254 	} else
4255 		writepos += conf->min_offset_diff;
4256 
4257 	if ((mddev->reshape_backwards
4258 	     ? (safepos > writepos && readpos < writepos)
4259 	     : (safepos < writepos && readpos > writepos)) ||
4260 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4261 		/* Cannot proceed until we've updated the superblock... */
4262 		wait_event(conf->wait_for_overlap,
4263 			   atomic_read(&conf->reshape_stripes)==0);
4264 		mddev->reshape_position = conf->reshape_progress;
4265 		mddev->curr_resync_completed = sector_nr;
4266 		conf->reshape_checkpoint = jiffies;
4267 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4268 		md_wakeup_thread(mddev->thread);
4269 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4270 			   kthread_should_stop());
4271 		spin_lock_irq(&conf->device_lock);
4272 		conf->reshape_safe = mddev->reshape_position;
4273 		spin_unlock_irq(&conf->device_lock);
4274 		wake_up(&conf->wait_for_overlap);
4275 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4276 	}
4277 
4278 	INIT_LIST_HEAD(&stripes);
4279 	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4280 		int j;
4281 		int skipped_disk = 0;
4282 		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4283 		set_bit(STRIPE_EXPANDING, &sh->state);
4284 		atomic_inc(&conf->reshape_stripes);
4285 		/* If any of this stripe is beyond the end of the old
4286 		 * array, then we need to zero those blocks
4287 		 */
4288 		for (j=sh->disks; j--;) {
4289 			sector_t s;
4290 			if (j == sh->pd_idx)
4291 				continue;
4292 			if (conf->level == 6 &&
4293 			    j == sh->qd_idx)
4294 				continue;
4295 			s = compute_blocknr(sh, j, 0);
4296 			if (s < raid5_size(mddev, 0, 0)) {
4297 				skipped_disk = 1;
4298 				continue;
4299 			}
4300 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4301 			set_bit(R5_Expanded, &sh->dev[j].flags);
4302 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
4303 		}
4304 		if (!skipped_disk) {
4305 			set_bit(STRIPE_EXPAND_READY, &sh->state);
4306 			set_bit(STRIPE_HANDLE, &sh->state);
4307 		}
4308 		list_add(&sh->lru, &stripes);
4309 	}
4310 	spin_lock_irq(&conf->device_lock);
4311 	if (mddev->reshape_backwards)
4312 		conf->reshape_progress -= reshape_sectors * new_data_disks;
4313 	else
4314 		conf->reshape_progress += reshape_sectors * new_data_disks;
4315 	spin_unlock_irq(&conf->device_lock);
4316 	/* Ok, those stripe are ready. We can start scheduling
4317 	 * reads on the source stripes.
4318 	 * The source stripes are determined by mapping the first and last
4319 	 * block on the destination stripes.
4320 	 */
4321 	first_sector =
4322 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4323 				     1, &dd_idx, NULL);
4324 	last_sector =
4325 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4326 					    * new_data_disks - 1),
4327 				     1, &dd_idx, NULL);
4328 	if (last_sector >= mddev->dev_sectors)
4329 		last_sector = mddev->dev_sectors - 1;
4330 	while (first_sector <= last_sector) {
4331 		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4332 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4333 		set_bit(STRIPE_HANDLE, &sh->state);
4334 		release_stripe(sh);
4335 		first_sector += STRIPE_SECTORS;
4336 	}
4337 	/* Now that the sources are clearly marked, we can release
4338 	 * the destination stripes
4339 	 */
4340 	while (!list_empty(&stripes)) {
4341 		sh = list_entry(stripes.next, struct stripe_head, lru);
4342 		list_del_init(&sh->lru);
4343 		release_stripe(sh);
4344 	}
4345 	/* If this takes us to the resync_max point where we have to pause,
4346 	 * then we need to write out the superblock.
4347 	 */
4348 	sector_nr += reshape_sectors;
4349 	if ((sector_nr - mddev->curr_resync_completed) * 2
4350 	    >= mddev->resync_max - mddev->curr_resync_completed) {
4351 		/* Cannot proceed until we've updated the superblock... */
4352 		wait_event(conf->wait_for_overlap,
4353 			   atomic_read(&conf->reshape_stripes) == 0);
4354 		mddev->reshape_position = conf->reshape_progress;
4355 		mddev->curr_resync_completed = sector_nr;
4356 		conf->reshape_checkpoint = jiffies;
4357 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4358 		md_wakeup_thread(mddev->thread);
4359 		wait_event(mddev->sb_wait,
4360 			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4361 			   || kthread_should_stop());
4362 		spin_lock_irq(&conf->device_lock);
4363 		conf->reshape_safe = mddev->reshape_position;
4364 		spin_unlock_irq(&conf->device_lock);
4365 		wake_up(&conf->wait_for_overlap);
4366 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4367 	}
4368 	return reshape_sectors;
4369 }
4370 
4371 /* FIXME go_faster isn't used */
4372 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4373 {
4374 	struct r5conf *conf = mddev->private;
4375 	struct stripe_head *sh;
4376 	sector_t max_sector = mddev->dev_sectors;
4377 	sector_t sync_blocks;
4378 	int still_degraded = 0;
4379 	int i;
4380 
4381 	if (sector_nr >= max_sector) {
4382 		/* just being told to finish up .. nothing much to do */
4383 
4384 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4385 			end_reshape(conf);
4386 			return 0;
4387 		}
4388 
4389 		if (mddev->curr_resync < max_sector) /* aborted */
4390 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4391 					&sync_blocks, 1);
4392 		else /* completed sync */
4393 			conf->fullsync = 0;
4394 		bitmap_close_sync(mddev->bitmap);
4395 
4396 		return 0;
4397 	}
4398 
4399 	/* Allow raid5_quiesce to complete */
4400 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4401 
4402 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4403 		return reshape_request(mddev, sector_nr, skipped);
4404 
4405 	/* No need to check resync_max as we never do more than one
4406 	 * stripe, and as resync_max will always be on a chunk boundary,
4407 	 * if the check in md_do_sync didn't fire, there is no chance
4408 	 * of overstepping resync_max here
4409 	 */
4410 
4411 	/* if there is too many failed drives and we are trying
4412 	 * to resync, then assert that we are finished, because there is
4413 	 * nothing we can do.
4414 	 */
4415 	if (mddev->degraded >= conf->max_degraded &&
4416 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4417 		sector_t rv = mddev->dev_sectors - sector_nr;
4418 		*skipped = 1;
4419 		return rv;
4420 	}
4421 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4422 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4423 	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4424 		/* we can skip this block, and probably more */
4425 		sync_blocks /= STRIPE_SECTORS;
4426 		*skipped = 1;
4427 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4428 	}
4429 
4430 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4431 
4432 	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4433 	if (sh == NULL) {
4434 		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4435 		/* make sure we don't swamp the stripe cache if someone else
4436 		 * is trying to get access
4437 		 */
4438 		schedule_timeout_uninterruptible(1);
4439 	}
4440 	/* Need to check if array will still be degraded after recovery/resync
4441 	 * We don't need to check the 'failed' flag as when that gets set,
4442 	 * recovery aborts.
4443 	 */
4444 	for (i = 0; i < conf->raid_disks; i++)
4445 		if (conf->disks[i].rdev == NULL)
4446 			still_degraded = 1;
4447 
4448 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4449 
4450 	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4451 
4452 	handle_stripe(sh);
4453 	release_stripe(sh);
4454 
4455 	return STRIPE_SECTORS;
4456 }
4457 
4458 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
4459 {
4460 	/* We may not be able to submit a whole bio at once as there
4461 	 * may not be enough stripe_heads available.
4462 	 * We cannot pre-allocate enough stripe_heads as we may need
4463 	 * more than exist in the cache (if we allow ever large chunks).
4464 	 * So we do one stripe head at a time and record in
4465 	 * ->bi_hw_segments how many have been done.
4466 	 *
4467 	 * We *know* that this entire raid_bio is in one chunk, so
4468 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4469 	 */
4470 	struct stripe_head *sh;
4471 	int dd_idx;
4472 	sector_t sector, logical_sector, last_sector;
4473 	int scnt = 0;
4474 	int remaining;
4475 	int handled = 0;
4476 
4477 	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4478 	sector = raid5_compute_sector(conf, logical_sector,
4479 				      0, &dd_idx, NULL);
4480 	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4481 
4482 	for (; logical_sector < last_sector;
4483 	     logical_sector += STRIPE_SECTORS,
4484 		     sector += STRIPE_SECTORS,
4485 		     scnt++) {
4486 
4487 		if (scnt < raid5_bi_hw_segments(raid_bio))
4488 			/* already done this stripe */
4489 			continue;
4490 
4491 		sh = get_active_stripe(conf, sector, 0, 1, 0);
4492 
4493 		if (!sh) {
4494 			/* failed to get a stripe - must wait */
4495 			raid5_set_bi_hw_segments(raid_bio, scnt);
4496 			conf->retry_read_aligned = raid_bio;
4497 			return handled;
4498 		}
4499 
4500 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4501 			release_stripe(sh);
4502 			raid5_set_bi_hw_segments(raid_bio, scnt);
4503 			conf->retry_read_aligned = raid_bio;
4504 			return handled;
4505 		}
4506 
4507 		handle_stripe(sh);
4508 		release_stripe(sh);
4509 		handled++;
4510 	}
4511 	spin_lock_irq(&conf->device_lock);
4512 	remaining = raid5_dec_bi_phys_segments(raid_bio);
4513 	spin_unlock_irq(&conf->device_lock);
4514 	if (remaining == 0)
4515 		bio_endio(raid_bio, 0);
4516 	if (atomic_dec_and_test(&conf->active_aligned_reads))
4517 		wake_up(&conf->wait_for_stripe);
4518 	return handled;
4519 }
4520 
4521 
4522 /*
4523  * This is our raid5 kernel thread.
4524  *
4525  * We scan the hash table for stripes which can be handled now.
4526  * During the scan, completed stripes are saved for us by the interrupt
4527  * handler, so that they will not have to wait for our next wakeup.
4528  */
4529 static void raid5d(struct mddev *mddev)
4530 {
4531 	struct stripe_head *sh;
4532 	struct r5conf *conf = mddev->private;
4533 	int handled;
4534 	struct blk_plug plug;
4535 
4536 	pr_debug("+++ raid5d active\n");
4537 
4538 	md_check_recovery(mddev);
4539 
4540 	blk_start_plug(&plug);
4541 	handled = 0;
4542 	spin_lock_irq(&conf->device_lock);
4543 	while (1) {
4544 		struct bio *bio;
4545 
4546 		if (atomic_read(&mddev->plug_cnt) == 0 &&
4547 		    !list_empty(&conf->bitmap_list)) {
4548 			/* Now is a good time to flush some bitmap updates */
4549 			conf->seq_flush++;
4550 			spin_unlock_irq(&conf->device_lock);
4551 			bitmap_unplug(mddev->bitmap);
4552 			spin_lock_irq(&conf->device_lock);
4553 			conf->seq_write = conf->seq_flush;
4554 			activate_bit_delay(conf);
4555 		}
4556 		if (atomic_read(&mddev->plug_cnt) == 0)
4557 			raid5_activate_delayed(conf);
4558 
4559 		while ((bio = remove_bio_from_retry(conf))) {
4560 			int ok;
4561 			spin_unlock_irq(&conf->device_lock);
4562 			ok = retry_aligned_read(conf, bio);
4563 			spin_lock_irq(&conf->device_lock);
4564 			if (!ok)
4565 				break;
4566 			handled++;
4567 		}
4568 
4569 		sh = __get_priority_stripe(conf);
4570 
4571 		if (!sh)
4572 			break;
4573 		spin_unlock_irq(&conf->device_lock);
4574 
4575 		handled++;
4576 		handle_stripe(sh);
4577 		release_stripe(sh);
4578 		cond_resched();
4579 
4580 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
4581 			md_check_recovery(mddev);
4582 
4583 		spin_lock_irq(&conf->device_lock);
4584 	}
4585 	pr_debug("%d stripes handled\n", handled);
4586 
4587 	spin_unlock_irq(&conf->device_lock);
4588 
4589 	async_tx_issue_pending_all();
4590 	blk_finish_plug(&plug);
4591 
4592 	pr_debug("--- raid5d inactive\n");
4593 }
4594 
4595 static ssize_t
4596 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
4597 {
4598 	struct r5conf *conf = mddev->private;
4599 	if (conf)
4600 		return sprintf(page, "%d\n", conf->max_nr_stripes);
4601 	else
4602 		return 0;
4603 }
4604 
4605 int
4606 raid5_set_cache_size(struct mddev *mddev, int size)
4607 {
4608 	struct r5conf *conf = mddev->private;
4609 	int err;
4610 
4611 	if (size <= 16 || size > 32768)
4612 		return -EINVAL;
4613 	while (size < conf->max_nr_stripes) {
4614 		if (drop_one_stripe(conf))
4615 			conf->max_nr_stripes--;
4616 		else
4617 			break;
4618 	}
4619 	err = md_allow_write(mddev);
4620 	if (err)
4621 		return err;
4622 	while (size > conf->max_nr_stripes) {
4623 		if (grow_one_stripe(conf))
4624 			conf->max_nr_stripes++;
4625 		else break;
4626 	}
4627 	return 0;
4628 }
4629 EXPORT_SYMBOL(raid5_set_cache_size);
4630 
4631 static ssize_t
4632 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
4633 {
4634 	struct r5conf *conf = mddev->private;
4635 	unsigned long new;
4636 	int err;
4637 
4638 	if (len >= PAGE_SIZE)
4639 		return -EINVAL;
4640 	if (!conf)
4641 		return -ENODEV;
4642 
4643 	if (strict_strtoul(page, 10, &new))
4644 		return -EINVAL;
4645 	err = raid5_set_cache_size(mddev, new);
4646 	if (err)
4647 		return err;
4648 	return len;
4649 }
4650 
4651 static struct md_sysfs_entry
4652 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4653 				raid5_show_stripe_cache_size,
4654 				raid5_store_stripe_cache_size);
4655 
4656 static ssize_t
4657 raid5_show_preread_threshold(struct mddev *mddev, char *page)
4658 {
4659 	struct r5conf *conf = mddev->private;
4660 	if (conf)
4661 		return sprintf(page, "%d\n", conf->bypass_threshold);
4662 	else
4663 		return 0;
4664 }
4665 
4666 static ssize_t
4667 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
4668 {
4669 	struct r5conf *conf = mddev->private;
4670 	unsigned long new;
4671 	if (len >= PAGE_SIZE)
4672 		return -EINVAL;
4673 	if (!conf)
4674 		return -ENODEV;
4675 
4676 	if (strict_strtoul(page, 10, &new))
4677 		return -EINVAL;
4678 	if (new > conf->max_nr_stripes)
4679 		return -EINVAL;
4680 	conf->bypass_threshold = new;
4681 	return len;
4682 }
4683 
4684 static struct md_sysfs_entry
4685 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4686 					S_IRUGO | S_IWUSR,
4687 					raid5_show_preread_threshold,
4688 					raid5_store_preread_threshold);
4689 
4690 static ssize_t
4691 stripe_cache_active_show(struct mddev *mddev, char *page)
4692 {
4693 	struct r5conf *conf = mddev->private;
4694 	if (conf)
4695 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4696 	else
4697 		return 0;
4698 }
4699 
4700 static struct md_sysfs_entry
4701 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4702 
4703 static struct attribute *raid5_attrs[] =  {
4704 	&raid5_stripecache_size.attr,
4705 	&raid5_stripecache_active.attr,
4706 	&raid5_preread_bypass_threshold.attr,
4707 	NULL,
4708 };
4709 static struct attribute_group raid5_attrs_group = {
4710 	.name = NULL,
4711 	.attrs = raid5_attrs,
4712 };
4713 
4714 static sector_t
4715 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
4716 {
4717 	struct r5conf *conf = mddev->private;
4718 
4719 	if (!sectors)
4720 		sectors = mddev->dev_sectors;
4721 	if (!raid_disks)
4722 		/* size is defined by the smallest of previous and new size */
4723 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4724 
4725 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4726 	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4727 	return sectors * (raid_disks - conf->max_degraded);
4728 }
4729 
4730 static void raid5_free_percpu(struct r5conf *conf)
4731 {
4732 	struct raid5_percpu *percpu;
4733 	unsigned long cpu;
4734 
4735 	if (!conf->percpu)
4736 		return;
4737 
4738 	get_online_cpus();
4739 	for_each_possible_cpu(cpu) {
4740 		percpu = per_cpu_ptr(conf->percpu, cpu);
4741 		safe_put_page(percpu->spare_page);
4742 		kfree(percpu->scribble);
4743 	}
4744 #ifdef CONFIG_HOTPLUG_CPU
4745 	unregister_cpu_notifier(&conf->cpu_notify);
4746 #endif
4747 	put_online_cpus();
4748 
4749 	free_percpu(conf->percpu);
4750 }
4751 
4752 static void free_conf(struct r5conf *conf)
4753 {
4754 	shrink_stripes(conf);
4755 	raid5_free_percpu(conf);
4756 	kfree(conf->disks);
4757 	kfree(conf->stripe_hashtbl);
4758 	kfree(conf);
4759 }
4760 
4761 #ifdef CONFIG_HOTPLUG_CPU
4762 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4763 			      void *hcpu)
4764 {
4765 	struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
4766 	long cpu = (long)hcpu;
4767 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4768 
4769 	switch (action) {
4770 	case CPU_UP_PREPARE:
4771 	case CPU_UP_PREPARE_FROZEN:
4772 		if (conf->level == 6 && !percpu->spare_page)
4773 			percpu->spare_page = alloc_page(GFP_KERNEL);
4774 		if (!percpu->scribble)
4775 			percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4776 
4777 		if (!percpu->scribble ||
4778 		    (conf->level == 6 && !percpu->spare_page)) {
4779 			safe_put_page(percpu->spare_page);
4780 			kfree(percpu->scribble);
4781 			pr_err("%s: failed memory allocation for cpu%ld\n",
4782 			       __func__, cpu);
4783 			return notifier_from_errno(-ENOMEM);
4784 		}
4785 		break;
4786 	case CPU_DEAD:
4787 	case CPU_DEAD_FROZEN:
4788 		safe_put_page(percpu->spare_page);
4789 		kfree(percpu->scribble);
4790 		percpu->spare_page = NULL;
4791 		percpu->scribble = NULL;
4792 		break;
4793 	default:
4794 		break;
4795 	}
4796 	return NOTIFY_OK;
4797 }
4798 #endif
4799 
4800 static int raid5_alloc_percpu(struct r5conf *conf)
4801 {
4802 	unsigned long cpu;
4803 	struct page *spare_page;
4804 	struct raid5_percpu __percpu *allcpus;
4805 	void *scribble;
4806 	int err;
4807 
4808 	allcpus = alloc_percpu(struct raid5_percpu);
4809 	if (!allcpus)
4810 		return -ENOMEM;
4811 	conf->percpu = allcpus;
4812 
4813 	get_online_cpus();
4814 	err = 0;
4815 	for_each_present_cpu(cpu) {
4816 		if (conf->level == 6) {
4817 			spare_page = alloc_page(GFP_KERNEL);
4818 			if (!spare_page) {
4819 				err = -ENOMEM;
4820 				break;
4821 			}
4822 			per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4823 		}
4824 		scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4825 		if (!scribble) {
4826 			err = -ENOMEM;
4827 			break;
4828 		}
4829 		per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4830 	}
4831 #ifdef CONFIG_HOTPLUG_CPU
4832 	conf->cpu_notify.notifier_call = raid456_cpu_notify;
4833 	conf->cpu_notify.priority = 0;
4834 	if (err == 0)
4835 		err = register_cpu_notifier(&conf->cpu_notify);
4836 #endif
4837 	put_online_cpus();
4838 
4839 	return err;
4840 }
4841 
4842 static struct r5conf *setup_conf(struct mddev *mddev)
4843 {
4844 	struct r5conf *conf;
4845 	int raid_disk, memory, max_disks;
4846 	struct md_rdev *rdev;
4847 	struct disk_info *disk;
4848 	char pers_name[6];
4849 
4850 	if (mddev->new_level != 5
4851 	    && mddev->new_level != 4
4852 	    && mddev->new_level != 6) {
4853 		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4854 		       mdname(mddev), mddev->new_level);
4855 		return ERR_PTR(-EIO);
4856 	}
4857 	if ((mddev->new_level == 5
4858 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
4859 	    (mddev->new_level == 6
4860 	     && !algorithm_valid_raid6(mddev->new_layout))) {
4861 		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4862 		       mdname(mddev), mddev->new_layout);
4863 		return ERR_PTR(-EIO);
4864 	}
4865 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4866 		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4867 		       mdname(mddev), mddev->raid_disks);
4868 		return ERR_PTR(-EINVAL);
4869 	}
4870 
4871 	if (!mddev->new_chunk_sectors ||
4872 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4873 	    !is_power_of_2(mddev->new_chunk_sectors)) {
4874 		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4875 		       mdname(mddev), mddev->new_chunk_sectors << 9);
4876 		return ERR_PTR(-EINVAL);
4877 	}
4878 
4879 	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
4880 	if (conf == NULL)
4881 		goto abort;
4882 	spin_lock_init(&conf->device_lock);
4883 	init_waitqueue_head(&conf->wait_for_stripe);
4884 	init_waitqueue_head(&conf->wait_for_overlap);
4885 	INIT_LIST_HEAD(&conf->handle_list);
4886 	INIT_LIST_HEAD(&conf->hold_list);
4887 	INIT_LIST_HEAD(&conf->delayed_list);
4888 	INIT_LIST_HEAD(&conf->bitmap_list);
4889 	INIT_LIST_HEAD(&conf->inactive_list);
4890 	atomic_set(&conf->active_stripes, 0);
4891 	atomic_set(&conf->preread_active_stripes, 0);
4892 	atomic_set(&conf->active_aligned_reads, 0);
4893 	conf->bypass_threshold = BYPASS_THRESHOLD;
4894 	conf->recovery_disabled = mddev->recovery_disabled - 1;
4895 
4896 	conf->raid_disks = mddev->raid_disks;
4897 	if (mddev->reshape_position == MaxSector)
4898 		conf->previous_raid_disks = mddev->raid_disks;
4899 	else
4900 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4901 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4902 	conf->scribble_len = scribble_len(max_disks);
4903 
4904 	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4905 			      GFP_KERNEL);
4906 	if (!conf->disks)
4907 		goto abort;
4908 
4909 	conf->mddev = mddev;
4910 
4911 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4912 		goto abort;
4913 
4914 	conf->level = mddev->new_level;
4915 	if (raid5_alloc_percpu(conf) != 0)
4916 		goto abort;
4917 
4918 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
4919 
4920 	rdev_for_each(rdev, mddev) {
4921 		raid_disk = rdev->raid_disk;
4922 		if (raid_disk >= max_disks
4923 		    || raid_disk < 0)
4924 			continue;
4925 		disk = conf->disks + raid_disk;
4926 
4927 		if (test_bit(Replacement, &rdev->flags)) {
4928 			if (disk->replacement)
4929 				goto abort;
4930 			disk->replacement = rdev;
4931 		} else {
4932 			if (disk->rdev)
4933 				goto abort;
4934 			disk->rdev = rdev;
4935 		}
4936 
4937 		if (test_bit(In_sync, &rdev->flags)) {
4938 			char b[BDEVNAME_SIZE];
4939 			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4940 			       " disk %d\n",
4941 			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4942 		} else if (rdev->saved_raid_disk != raid_disk)
4943 			/* Cannot rely on bitmap to complete recovery */
4944 			conf->fullsync = 1;
4945 	}
4946 
4947 	conf->chunk_sectors = mddev->new_chunk_sectors;
4948 	conf->level = mddev->new_level;
4949 	if (conf->level == 6)
4950 		conf->max_degraded = 2;
4951 	else
4952 		conf->max_degraded = 1;
4953 	conf->algorithm = mddev->new_layout;
4954 	conf->max_nr_stripes = NR_STRIPES;
4955 	conf->reshape_progress = mddev->reshape_position;
4956 	if (conf->reshape_progress != MaxSector) {
4957 		conf->prev_chunk_sectors = mddev->chunk_sectors;
4958 		conf->prev_algo = mddev->layout;
4959 	}
4960 
4961 	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4962 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4963 	if (grow_stripes(conf, conf->max_nr_stripes)) {
4964 		printk(KERN_ERR
4965 		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
4966 		       mdname(mddev), memory);
4967 		goto abort;
4968 	} else
4969 		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4970 		       mdname(mddev), memory);
4971 
4972 	sprintf(pers_name, "raid%d", mddev->new_level);
4973 	conf->thread = md_register_thread(raid5d, mddev, pers_name);
4974 	if (!conf->thread) {
4975 		printk(KERN_ERR
4976 		       "md/raid:%s: couldn't allocate thread.\n",
4977 		       mdname(mddev));
4978 		goto abort;
4979 	}
4980 
4981 	return conf;
4982 
4983  abort:
4984 	if (conf) {
4985 		free_conf(conf);
4986 		return ERR_PTR(-EIO);
4987 	} else
4988 		return ERR_PTR(-ENOMEM);
4989 }
4990 
4991 
4992 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4993 {
4994 	switch (algo) {
4995 	case ALGORITHM_PARITY_0:
4996 		if (raid_disk < max_degraded)
4997 			return 1;
4998 		break;
4999 	case ALGORITHM_PARITY_N:
5000 		if (raid_disk >= raid_disks - max_degraded)
5001 			return 1;
5002 		break;
5003 	case ALGORITHM_PARITY_0_6:
5004 		if (raid_disk == 0 ||
5005 		    raid_disk == raid_disks - 1)
5006 			return 1;
5007 		break;
5008 	case ALGORITHM_LEFT_ASYMMETRIC_6:
5009 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
5010 	case ALGORITHM_LEFT_SYMMETRIC_6:
5011 	case ALGORITHM_RIGHT_SYMMETRIC_6:
5012 		if (raid_disk == raid_disks - 1)
5013 			return 1;
5014 	}
5015 	return 0;
5016 }
5017 
5018 static int run(struct mddev *mddev)
5019 {
5020 	struct r5conf *conf;
5021 	int working_disks = 0;
5022 	int dirty_parity_disks = 0;
5023 	struct md_rdev *rdev;
5024 	sector_t reshape_offset = 0;
5025 	int i;
5026 	long long min_offset_diff = 0;
5027 	int first = 1;
5028 
5029 	if (mddev->recovery_cp != MaxSector)
5030 		printk(KERN_NOTICE "md/raid:%s: not clean"
5031 		       " -- starting background reconstruction\n",
5032 		       mdname(mddev));
5033 
5034 	rdev_for_each(rdev, mddev) {
5035 		long long diff;
5036 		if (rdev->raid_disk < 0)
5037 			continue;
5038 		diff = (rdev->new_data_offset - rdev->data_offset);
5039 		if (first) {
5040 			min_offset_diff = diff;
5041 			first = 0;
5042 		} else if (mddev->reshape_backwards &&
5043 			 diff < min_offset_diff)
5044 			min_offset_diff = diff;
5045 		else if (!mddev->reshape_backwards &&
5046 			 diff > min_offset_diff)
5047 			min_offset_diff = diff;
5048 	}
5049 
5050 	if (mddev->reshape_position != MaxSector) {
5051 		/* Check that we can continue the reshape.
5052 		 * Difficulties arise if the stripe we would write to
5053 		 * next is at or after the stripe we would read from next.
5054 		 * For a reshape that changes the number of devices, this
5055 		 * is only possible for a very short time, and mdadm makes
5056 		 * sure that time appears to have past before assembling
5057 		 * the array.  So we fail if that time hasn't passed.
5058 		 * For a reshape that keeps the number of devices the same
5059 		 * mdadm must be monitoring the reshape can keeping the
5060 		 * critical areas read-only and backed up.  It will start
5061 		 * the array in read-only mode, so we check for that.
5062 		 */
5063 		sector_t here_new, here_old;
5064 		int old_disks;
5065 		int max_degraded = (mddev->level == 6 ? 2 : 1);
5066 
5067 		if (mddev->new_level != mddev->level) {
5068 			printk(KERN_ERR "md/raid:%s: unsupported reshape "
5069 			       "required - aborting.\n",
5070 			       mdname(mddev));
5071 			return -EINVAL;
5072 		}
5073 		old_disks = mddev->raid_disks - mddev->delta_disks;
5074 		/* reshape_position must be on a new-stripe boundary, and one
5075 		 * further up in new geometry must map after here in old
5076 		 * geometry.
5077 		 */
5078 		here_new = mddev->reshape_position;
5079 		if (sector_div(here_new, mddev->new_chunk_sectors *
5080 			       (mddev->raid_disks - max_degraded))) {
5081 			printk(KERN_ERR "md/raid:%s: reshape_position not "
5082 			       "on a stripe boundary\n", mdname(mddev));
5083 			return -EINVAL;
5084 		}
5085 		reshape_offset = here_new * mddev->new_chunk_sectors;
5086 		/* here_new is the stripe we will write to */
5087 		here_old = mddev->reshape_position;
5088 		sector_div(here_old, mddev->chunk_sectors *
5089 			   (old_disks-max_degraded));
5090 		/* here_old is the first stripe that we might need to read
5091 		 * from */
5092 		if (mddev->delta_disks == 0) {
5093 			if ((here_new * mddev->new_chunk_sectors !=
5094 			     here_old * mddev->chunk_sectors)) {
5095 				printk(KERN_ERR "md/raid:%s: reshape position is"
5096 				       " confused - aborting\n", mdname(mddev));
5097 				return -EINVAL;
5098 			}
5099 			/* We cannot be sure it is safe to start an in-place
5100 			 * reshape.  It is only safe if user-space is monitoring
5101 			 * and taking constant backups.
5102 			 * mdadm always starts a situation like this in
5103 			 * readonly mode so it can take control before
5104 			 * allowing any writes.  So just check for that.
5105 			 */
5106 			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
5107 			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
5108 				/* not really in-place - so OK */;
5109 			else if (mddev->ro == 0) {
5110 				printk(KERN_ERR "md/raid:%s: in-place reshape "
5111 				       "must be started in read-only mode "
5112 				       "- aborting\n",
5113 				       mdname(mddev));
5114 				return -EINVAL;
5115 			}
5116 		} else if (mddev->reshape_backwards
5117 		    ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
5118 		       here_old * mddev->chunk_sectors)
5119 		    : (here_new * mddev->new_chunk_sectors >=
5120 		       here_old * mddev->chunk_sectors + (-min_offset_diff))) {
5121 			/* Reading from the same stripe as writing to - bad */
5122 			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5123 			       "auto-recovery - aborting.\n",
5124 			       mdname(mddev));
5125 			return -EINVAL;
5126 		}
5127 		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5128 		       mdname(mddev));
5129 		/* OK, we should be able to continue; */
5130 	} else {
5131 		BUG_ON(mddev->level != mddev->new_level);
5132 		BUG_ON(mddev->layout != mddev->new_layout);
5133 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5134 		BUG_ON(mddev->delta_disks != 0);
5135 	}
5136 
5137 	if (mddev->private == NULL)
5138 		conf = setup_conf(mddev);
5139 	else
5140 		conf = mddev->private;
5141 
5142 	if (IS_ERR(conf))
5143 		return PTR_ERR(conf);
5144 
5145 	conf->min_offset_diff = min_offset_diff;
5146 	mddev->thread = conf->thread;
5147 	conf->thread = NULL;
5148 	mddev->private = conf;
5149 
5150 	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5151 	     i++) {
5152 		rdev = conf->disks[i].rdev;
5153 		if (!rdev && conf->disks[i].replacement) {
5154 			/* The replacement is all we have yet */
5155 			rdev = conf->disks[i].replacement;
5156 			conf->disks[i].replacement = NULL;
5157 			clear_bit(Replacement, &rdev->flags);
5158 			conf->disks[i].rdev = rdev;
5159 		}
5160 		if (!rdev)
5161 			continue;
5162 		if (conf->disks[i].replacement &&
5163 		    conf->reshape_progress != MaxSector) {
5164 			/* replacements and reshape simply do not mix. */
5165 			printk(KERN_ERR "md: cannot handle concurrent "
5166 			       "replacement and reshape.\n");
5167 			goto abort;
5168 		}
5169 		if (test_bit(In_sync, &rdev->flags)) {
5170 			working_disks++;
5171 			continue;
5172 		}
5173 		/* This disc is not fully in-sync.  However if it
5174 		 * just stored parity (beyond the recovery_offset),
5175 		 * when we don't need to be concerned about the
5176 		 * array being dirty.
5177 		 * When reshape goes 'backwards', we never have
5178 		 * partially completed devices, so we only need
5179 		 * to worry about reshape going forwards.
5180 		 */
5181 		/* Hack because v0.91 doesn't store recovery_offset properly. */
5182 		if (mddev->major_version == 0 &&
5183 		    mddev->minor_version > 90)
5184 			rdev->recovery_offset = reshape_offset;
5185 
5186 		if (rdev->recovery_offset < reshape_offset) {
5187 			/* We need to check old and new layout */
5188 			if (!only_parity(rdev->raid_disk,
5189 					 conf->algorithm,
5190 					 conf->raid_disks,
5191 					 conf->max_degraded))
5192 				continue;
5193 		}
5194 		if (!only_parity(rdev->raid_disk,
5195 				 conf->prev_algo,
5196 				 conf->previous_raid_disks,
5197 				 conf->max_degraded))
5198 			continue;
5199 		dirty_parity_disks++;
5200 	}
5201 
5202 	/*
5203 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
5204 	 */
5205 	mddev->degraded = calc_degraded(conf);
5206 
5207 	if (has_failed(conf)) {
5208 		printk(KERN_ERR "md/raid:%s: not enough operational devices"
5209 			" (%d/%d failed)\n",
5210 			mdname(mddev), mddev->degraded, conf->raid_disks);
5211 		goto abort;
5212 	}
5213 
5214 	/* device size must be a multiple of chunk size */
5215 	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5216 	mddev->resync_max_sectors = mddev->dev_sectors;
5217 
5218 	if (mddev->degraded > dirty_parity_disks &&
5219 	    mddev->recovery_cp != MaxSector) {
5220 		if (mddev->ok_start_degraded)
5221 			printk(KERN_WARNING
5222 			       "md/raid:%s: starting dirty degraded array"
5223 			       " - data corruption possible.\n",
5224 			       mdname(mddev));
5225 		else {
5226 			printk(KERN_ERR
5227 			       "md/raid:%s: cannot start dirty degraded array.\n",
5228 			       mdname(mddev));
5229 			goto abort;
5230 		}
5231 	}
5232 
5233 	if (mddev->degraded == 0)
5234 		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5235 		       " devices, algorithm %d\n", mdname(mddev), conf->level,
5236 		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5237 		       mddev->new_layout);
5238 	else
5239 		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5240 		       " out of %d devices, algorithm %d\n",
5241 		       mdname(mddev), conf->level,
5242 		       mddev->raid_disks - mddev->degraded,
5243 		       mddev->raid_disks, mddev->new_layout);
5244 
5245 	print_raid5_conf(conf);
5246 
5247 	if (conf->reshape_progress != MaxSector) {
5248 		conf->reshape_safe = conf->reshape_progress;
5249 		atomic_set(&conf->reshape_stripes, 0);
5250 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5251 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5252 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5253 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5254 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5255 							"reshape");
5256 	}
5257 
5258 
5259 	/* Ok, everything is just fine now */
5260 	if (mddev->to_remove == &raid5_attrs_group)
5261 		mddev->to_remove = NULL;
5262 	else if (mddev->kobj.sd &&
5263 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5264 		printk(KERN_WARNING
5265 		       "raid5: failed to create sysfs attributes for %s\n",
5266 		       mdname(mddev));
5267 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5268 
5269 	if (mddev->queue) {
5270 		int chunk_size;
5271 		/* read-ahead size must cover two whole stripes, which
5272 		 * is 2 * (datadisks) * chunksize where 'n' is the
5273 		 * number of raid devices
5274 		 */
5275 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
5276 		int stripe = data_disks *
5277 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
5278 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5279 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5280 
5281 		blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5282 
5283 		mddev->queue->backing_dev_info.congested_data = mddev;
5284 		mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5285 
5286 		chunk_size = mddev->chunk_sectors << 9;
5287 		blk_queue_io_min(mddev->queue, chunk_size);
5288 		blk_queue_io_opt(mddev->queue, chunk_size *
5289 				 (conf->raid_disks - conf->max_degraded));
5290 
5291 		rdev_for_each(rdev, mddev) {
5292 			disk_stack_limits(mddev->gendisk, rdev->bdev,
5293 					  rdev->data_offset << 9);
5294 			disk_stack_limits(mddev->gendisk, rdev->bdev,
5295 					  rdev->new_data_offset << 9);
5296 		}
5297 	}
5298 
5299 	return 0;
5300 abort:
5301 	md_unregister_thread(&mddev->thread);
5302 	print_raid5_conf(conf);
5303 	free_conf(conf);
5304 	mddev->private = NULL;
5305 	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5306 	return -EIO;
5307 }
5308 
5309 static int stop(struct mddev *mddev)
5310 {
5311 	struct r5conf *conf = mddev->private;
5312 
5313 	md_unregister_thread(&mddev->thread);
5314 	if (mddev->queue)
5315 		mddev->queue->backing_dev_info.congested_fn = NULL;
5316 	free_conf(conf);
5317 	mddev->private = NULL;
5318 	mddev->to_remove = &raid5_attrs_group;
5319 	return 0;
5320 }
5321 
5322 static void status(struct seq_file *seq, struct mddev *mddev)
5323 {
5324 	struct r5conf *conf = mddev->private;
5325 	int i;
5326 
5327 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5328 		mddev->chunk_sectors / 2, mddev->layout);
5329 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5330 	for (i = 0; i < conf->raid_disks; i++)
5331 		seq_printf (seq, "%s",
5332 			       conf->disks[i].rdev &&
5333 			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5334 	seq_printf (seq, "]");
5335 }
5336 
5337 static void print_raid5_conf (struct r5conf *conf)
5338 {
5339 	int i;
5340 	struct disk_info *tmp;
5341 
5342 	printk(KERN_DEBUG "RAID conf printout:\n");
5343 	if (!conf) {
5344 		printk("(conf==NULL)\n");
5345 		return;
5346 	}
5347 	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5348 	       conf->raid_disks,
5349 	       conf->raid_disks - conf->mddev->degraded);
5350 
5351 	for (i = 0; i < conf->raid_disks; i++) {
5352 		char b[BDEVNAME_SIZE];
5353 		tmp = conf->disks + i;
5354 		if (tmp->rdev)
5355 			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5356 			       i, !test_bit(Faulty, &tmp->rdev->flags),
5357 			       bdevname(tmp->rdev->bdev, b));
5358 	}
5359 }
5360 
5361 static int raid5_spare_active(struct mddev *mddev)
5362 {
5363 	int i;
5364 	struct r5conf *conf = mddev->private;
5365 	struct disk_info *tmp;
5366 	int count = 0;
5367 	unsigned long flags;
5368 
5369 	for (i = 0; i < conf->raid_disks; i++) {
5370 		tmp = conf->disks + i;
5371 		if (tmp->replacement
5372 		    && tmp->replacement->recovery_offset == MaxSector
5373 		    && !test_bit(Faulty, &tmp->replacement->flags)
5374 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
5375 			/* Replacement has just become active. */
5376 			if (!tmp->rdev
5377 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
5378 				count++;
5379 			if (tmp->rdev) {
5380 				/* Replaced device not technically faulty,
5381 				 * but we need to be sure it gets removed
5382 				 * and never re-added.
5383 				 */
5384 				set_bit(Faulty, &tmp->rdev->flags);
5385 				sysfs_notify_dirent_safe(
5386 					tmp->rdev->sysfs_state);
5387 			}
5388 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
5389 		} else if (tmp->rdev
5390 		    && tmp->rdev->recovery_offset == MaxSector
5391 		    && !test_bit(Faulty, &tmp->rdev->flags)
5392 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5393 			count++;
5394 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5395 		}
5396 	}
5397 	spin_lock_irqsave(&conf->device_lock, flags);
5398 	mddev->degraded = calc_degraded(conf);
5399 	spin_unlock_irqrestore(&conf->device_lock, flags);
5400 	print_raid5_conf(conf);
5401 	return count;
5402 }
5403 
5404 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
5405 {
5406 	struct r5conf *conf = mddev->private;
5407 	int err = 0;
5408 	int number = rdev->raid_disk;
5409 	struct md_rdev **rdevp;
5410 	struct disk_info *p = conf->disks + number;
5411 
5412 	print_raid5_conf(conf);
5413 	if (rdev == p->rdev)
5414 		rdevp = &p->rdev;
5415 	else if (rdev == p->replacement)
5416 		rdevp = &p->replacement;
5417 	else
5418 		return 0;
5419 
5420 	if (number >= conf->raid_disks &&
5421 	    conf->reshape_progress == MaxSector)
5422 		clear_bit(In_sync, &rdev->flags);
5423 
5424 	if (test_bit(In_sync, &rdev->flags) ||
5425 	    atomic_read(&rdev->nr_pending)) {
5426 		err = -EBUSY;
5427 		goto abort;
5428 	}
5429 	/* Only remove non-faulty devices if recovery
5430 	 * isn't possible.
5431 	 */
5432 	if (!test_bit(Faulty, &rdev->flags) &&
5433 	    mddev->recovery_disabled != conf->recovery_disabled &&
5434 	    !has_failed(conf) &&
5435 	    (!p->replacement || p->replacement == rdev) &&
5436 	    number < conf->raid_disks) {
5437 		err = -EBUSY;
5438 		goto abort;
5439 	}
5440 	*rdevp = NULL;
5441 	synchronize_rcu();
5442 	if (atomic_read(&rdev->nr_pending)) {
5443 		/* lost the race, try later */
5444 		err = -EBUSY;
5445 		*rdevp = rdev;
5446 	} else if (p->replacement) {
5447 		/* We must have just cleared 'rdev' */
5448 		p->rdev = p->replacement;
5449 		clear_bit(Replacement, &p->replacement->flags);
5450 		smp_mb(); /* Make sure other CPUs may see both as identical
5451 			   * but will never see neither - if they are careful
5452 			   */
5453 		p->replacement = NULL;
5454 		clear_bit(WantReplacement, &rdev->flags);
5455 	} else
5456 		/* We might have just removed the Replacement as faulty-
5457 		 * clear the bit just in case
5458 		 */
5459 		clear_bit(WantReplacement, &rdev->flags);
5460 abort:
5461 
5462 	print_raid5_conf(conf);
5463 	return err;
5464 }
5465 
5466 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
5467 {
5468 	struct r5conf *conf = mddev->private;
5469 	int err = -EEXIST;
5470 	int disk;
5471 	struct disk_info *p;
5472 	int first = 0;
5473 	int last = conf->raid_disks - 1;
5474 
5475 	if (mddev->recovery_disabled == conf->recovery_disabled)
5476 		return -EBUSY;
5477 
5478 	if (rdev->saved_raid_disk < 0 && has_failed(conf))
5479 		/* no point adding a device */
5480 		return -EINVAL;
5481 
5482 	if (rdev->raid_disk >= 0)
5483 		first = last = rdev->raid_disk;
5484 
5485 	/*
5486 	 * find the disk ... but prefer rdev->saved_raid_disk
5487 	 * if possible.
5488 	 */
5489 	if (rdev->saved_raid_disk >= 0 &&
5490 	    rdev->saved_raid_disk >= first &&
5491 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
5492 		first = rdev->saved_raid_disk;
5493 
5494 	for (disk = first; disk <= last; disk++) {
5495 		p = conf->disks + disk;
5496 		if (p->rdev == NULL) {
5497 			clear_bit(In_sync, &rdev->flags);
5498 			rdev->raid_disk = disk;
5499 			err = 0;
5500 			if (rdev->saved_raid_disk != disk)
5501 				conf->fullsync = 1;
5502 			rcu_assign_pointer(p->rdev, rdev);
5503 			goto out;
5504 		}
5505 	}
5506 	for (disk = first; disk <= last; disk++) {
5507 		p = conf->disks + disk;
5508 		if (test_bit(WantReplacement, &p->rdev->flags) &&
5509 		    p->replacement == NULL) {
5510 			clear_bit(In_sync, &rdev->flags);
5511 			set_bit(Replacement, &rdev->flags);
5512 			rdev->raid_disk = disk;
5513 			err = 0;
5514 			conf->fullsync = 1;
5515 			rcu_assign_pointer(p->replacement, rdev);
5516 			break;
5517 		}
5518 	}
5519 out:
5520 	print_raid5_conf(conf);
5521 	return err;
5522 }
5523 
5524 static int raid5_resize(struct mddev *mddev, sector_t sectors)
5525 {
5526 	/* no resync is happening, and there is enough space
5527 	 * on all devices, so we can resize.
5528 	 * We need to make sure resync covers any new space.
5529 	 * If the array is shrinking we should possibly wait until
5530 	 * any io in the removed space completes, but it hardly seems
5531 	 * worth it.
5532 	 */
5533 	sector_t newsize;
5534 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5535 	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
5536 	if (mddev->external_size &&
5537 	    mddev->array_sectors > newsize)
5538 		return -EINVAL;
5539 	if (mddev->bitmap) {
5540 		int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
5541 		if (ret)
5542 			return ret;
5543 	}
5544 	md_set_array_sectors(mddev, newsize);
5545 	set_capacity(mddev->gendisk, mddev->array_sectors);
5546 	revalidate_disk(mddev->gendisk);
5547 	if (sectors > mddev->dev_sectors &&
5548 	    mddev->recovery_cp > mddev->dev_sectors) {
5549 		mddev->recovery_cp = mddev->dev_sectors;
5550 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5551 	}
5552 	mddev->dev_sectors = sectors;
5553 	mddev->resync_max_sectors = sectors;
5554 	return 0;
5555 }
5556 
5557 static int check_stripe_cache(struct mddev *mddev)
5558 {
5559 	/* Can only proceed if there are plenty of stripe_heads.
5560 	 * We need a minimum of one full stripe,, and for sensible progress
5561 	 * it is best to have about 4 times that.
5562 	 * If we require 4 times, then the default 256 4K stripe_heads will
5563 	 * allow for chunk sizes up to 256K, which is probably OK.
5564 	 * If the chunk size is greater, user-space should request more
5565 	 * stripe_heads first.
5566 	 */
5567 	struct r5conf *conf = mddev->private;
5568 	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5569 	    > conf->max_nr_stripes ||
5570 	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5571 	    > conf->max_nr_stripes) {
5572 		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
5573 		       mdname(mddev),
5574 		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5575 			/ STRIPE_SIZE)*4);
5576 		return 0;
5577 	}
5578 	return 1;
5579 }
5580 
5581 static int check_reshape(struct mddev *mddev)
5582 {
5583 	struct r5conf *conf = mddev->private;
5584 
5585 	if (mddev->delta_disks == 0 &&
5586 	    mddev->new_layout == mddev->layout &&
5587 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
5588 		return 0; /* nothing to do */
5589 	if (has_failed(conf))
5590 		return -EINVAL;
5591 	if (mddev->delta_disks < 0) {
5592 		/* We might be able to shrink, but the devices must
5593 		 * be made bigger first.
5594 		 * For raid6, 4 is the minimum size.
5595 		 * Otherwise 2 is the minimum
5596 		 */
5597 		int min = 2;
5598 		if (mddev->level == 6)
5599 			min = 4;
5600 		if (mddev->raid_disks + mddev->delta_disks < min)
5601 			return -EINVAL;
5602 	}
5603 
5604 	if (!check_stripe_cache(mddev))
5605 		return -ENOSPC;
5606 
5607 	return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5608 }
5609 
5610 static int raid5_start_reshape(struct mddev *mddev)
5611 {
5612 	struct r5conf *conf = mddev->private;
5613 	struct md_rdev *rdev;
5614 	int spares = 0;
5615 	unsigned long flags;
5616 
5617 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5618 		return -EBUSY;
5619 
5620 	if (!check_stripe_cache(mddev))
5621 		return -ENOSPC;
5622 
5623 	if (has_failed(conf))
5624 		return -EINVAL;
5625 
5626 	rdev_for_each(rdev, mddev) {
5627 		if (!test_bit(In_sync, &rdev->flags)
5628 		    && !test_bit(Faulty, &rdev->flags))
5629 			spares++;
5630 	}
5631 
5632 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5633 		/* Not enough devices even to make a degraded array
5634 		 * of that size
5635 		 */
5636 		return -EINVAL;
5637 
5638 	/* Refuse to reduce size of the array.  Any reductions in
5639 	 * array size must be through explicit setting of array_size
5640 	 * attribute.
5641 	 */
5642 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5643 	    < mddev->array_sectors) {
5644 		printk(KERN_ERR "md/raid:%s: array size must be reduced "
5645 		       "before number of disks\n", mdname(mddev));
5646 		return -EINVAL;
5647 	}
5648 
5649 	atomic_set(&conf->reshape_stripes, 0);
5650 	spin_lock_irq(&conf->device_lock);
5651 	conf->previous_raid_disks = conf->raid_disks;
5652 	conf->raid_disks += mddev->delta_disks;
5653 	conf->prev_chunk_sectors = conf->chunk_sectors;
5654 	conf->chunk_sectors = mddev->new_chunk_sectors;
5655 	conf->prev_algo = conf->algorithm;
5656 	conf->algorithm = mddev->new_layout;
5657 	conf->generation++;
5658 	/* Code that selects data_offset needs to see the generation update
5659 	 * if reshape_progress has been set - so a memory barrier needed.
5660 	 */
5661 	smp_mb();
5662 	if (mddev->reshape_backwards)
5663 		conf->reshape_progress = raid5_size(mddev, 0, 0);
5664 	else
5665 		conf->reshape_progress = 0;
5666 	conf->reshape_safe = conf->reshape_progress;
5667 	spin_unlock_irq(&conf->device_lock);
5668 
5669 	/* Add some new drives, as many as will fit.
5670 	 * We know there are enough to make the newly sized array work.
5671 	 * Don't add devices if we are reducing the number of
5672 	 * devices in the array.  This is because it is not possible
5673 	 * to correctly record the "partially reconstructed" state of
5674 	 * such devices during the reshape and confusion could result.
5675 	 */
5676 	if (mddev->delta_disks >= 0) {
5677 		rdev_for_each(rdev, mddev)
5678 			if (rdev->raid_disk < 0 &&
5679 			    !test_bit(Faulty, &rdev->flags)) {
5680 				if (raid5_add_disk(mddev, rdev) == 0) {
5681 					if (rdev->raid_disk
5682 					    >= conf->previous_raid_disks)
5683 						set_bit(In_sync, &rdev->flags);
5684 					else
5685 						rdev->recovery_offset = 0;
5686 
5687 					if (sysfs_link_rdev(mddev, rdev))
5688 						/* Failure here is OK */;
5689 				}
5690 			} else if (rdev->raid_disk >= conf->previous_raid_disks
5691 				   && !test_bit(Faulty, &rdev->flags)) {
5692 				/* This is a spare that was manually added */
5693 				set_bit(In_sync, &rdev->flags);
5694 			}
5695 
5696 		/* When a reshape changes the number of devices,
5697 		 * ->degraded is measured against the larger of the
5698 		 * pre and post number of devices.
5699 		 */
5700 		spin_lock_irqsave(&conf->device_lock, flags);
5701 		mddev->degraded = calc_degraded(conf);
5702 		spin_unlock_irqrestore(&conf->device_lock, flags);
5703 	}
5704 	mddev->raid_disks = conf->raid_disks;
5705 	mddev->reshape_position = conf->reshape_progress;
5706 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5707 
5708 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5709 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5710 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5711 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5712 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5713 						"reshape");
5714 	if (!mddev->sync_thread) {
5715 		mddev->recovery = 0;
5716 		spin_lock_irq(&conf->device_lock);
5717 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5718 		rdev_for_each(rdev, mddev)
5719 			rdev->new_data_offset = rdev->data_offset;
5720 		smp_wmb();
5721 		conf->reshape_progress = MaxSector;
5722 		mddev->reshape_position = MaxSector;
5723 		spin_unlock_irq(&conf->device_lock);
5724 		return -EAGAIN;
5725 	}
5726 	conf->reshape_checkpoint = jiffies;
5727 	md_wakeup_thread(mddev->sync_thread);
5728 	md_new_event(mddev);
5729 	return 0;
5730 }
5731 
5732 /* This is called from the reshape thread and should make any
5733  * changes needed in 'conf'
5734  */
5735 static void end_reshape(struct r5conf *conf)
5736 {
5737 
5738 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5739 		struct md_rdev *rdev;
5740 
5741 		spin_lock_irq(&conf->device_lock);
5742 		conf->previous_raid_disks = conf->raid_disks;
5743 		rdev_for_each(rdev, conf->mddev)
5744 			rdev->data_offset = rdev->new_data_offset;
5745 		smp_wmb();
5746 		conf->reshape_progress = MaxSector;
5747 		spin_unlock_irq(&conf->device_lock);
5748 		wake_up(&conf->wait_for_overlap);
5749 
5750 		/* read-ahead size must cover two whole stripes, which is
5751 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5752 		 */
5753 		if (conf->mddev->queue) {
5754 			int data_disks = conf->raid_disks - conf->max_degraded;
5755 			int stripe = data_disks * ((conf->chunk_sectors << 9)
5756 						   / PAGE_SIZE);
5757 			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5758 				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5759 		}
5760 	}
5761 }
5762 
5763 /* This is called from the raid5d thread with mddev_lock held.
5764  * It makes config changes to the device.
5765  */
5766 static void raid5_finish_reshape(struct mddev *mddev)
5767 {
5768 	struct r5conf *conf = mddev->private;
5769 
5770 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5771 
5772 		if (mddev->delta_disks > 0) {
5773 			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5774 			set_capacity(mddev->gendisk, mddev->array_sectors);
5775 			revalidate_disk(mddev->gendisk);
5776 		} else {
5777 			int d;
5778 			spin_lock_irq(&conf->device_lock);
5779 			mddev->degraded = calc_degraded(conf);
5780 			spin_unlock_irq(&conf->device_lock);
5781 			for (d = conf->raid_disks ;
5782 			     d < conf->raid_disks - mddev->delta_disks;
5783 			     d++) {
5784 				struct md_rdev *rdev = conf->disks[d].rdev;
5785 				if (rdev)
5786 					clear_bit(In_sync, &rdev->flags);
5787 				rdev = conf->disks[d].replacement;
5788 				if (rdev)
5789 					clear_bit(In_sync, &rdev->flags);
5790 			}
5791 		}
5792 		mddev->layout = conf->algorithm;
5793 		mddev->chunk_sectors = conf->chunk_sectors;
5794 		mddev->reshape_position = MaxSector;
5795 		mddev->delta_disks = 0;
5796 		mddev->reshape_backwards = 0;
5797 	}
5798 }
5799 
5800 static void raid5_quiesce(struct mddev *mddev, int state)
5801 {
5802 	struct r5conf *conf = mddev->private;
5803 
5804 	switch(state) {
5805 	case 2: /* resume for a suspend */
5806 		wake_up(&conf->wait_for_overlap);
5807 		break;
5808 
5809 	case 1: /* stop all writes */
5810 		spin_lock_irq(&conf->device_lock);
5811 		/* '2' tells resync/reshape to pause so that all
5812 		 * active stripes can drain
5813 		 */
5814 		conf->quiesce = 2;
5815 		wait_event_lock_irq(conf->wait_for_stripe,
5816 				    atomic_read(&conf->active_stripes) == 0 &&
5817 				    atomic_read(&conf->active_aligned_reads) == 0,
5818 				    conf->device_lock, /* nothing */);
5819 		conf->quiesce = 1;
5820 		spin_unlock_irq(&conf->device_lock);
5821 		/* allow reshape to continue */
5822 		wake_up(&conf->wait_for_overlap);
5823 		break;
5824 
5825 	case 0: /* re-enable writes */
5826 		spin_lock_irq(&conf->device_lock);
5827 		conf->quiesce = 0;
5828 		wake_up(&conf->wait_for_stripe);
5829 		wake_up(&conf->wait_for_overlap);
5830 		spin_unlock_irq(&conf->device_lock);
5831 		break;
5832 	}
5833 }
5834 
5835 
5836 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
5837 {
5838 	struct r0conf *raid0_conf = mddev->private;
5839 	sector_t sectors;
5840 
5841 	/* for raid0 takeover only one zone is supported */
5842 	if (raid0_conf->nr_strip_zones > 1) {
5843 		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5844 		       mdname(mddev));
5845 		return ERR_PTR(-EINVAL);
5846 	}
5847 
5848 	sectors = raid0_conf->strip_zone[0].zone_end;
5849 	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
5850 	mddev->dev_sectors = sectors;
5851 	mddev->new_level = level;
5852 	mddev->new_layout = ALGORITHM_PARITY_N;
5853 	mddev->new_chunk_sectors = mddev->chunk_sectors;
5854 	mddev->raid_disks += 1;
5855 	mddev->delta_disks = 1;
5856 	/* make sure it will be not marked as dirty */
5857 	mddev->recovery_cp = MaxSector;
5858 
5859 	return setup_conf(mddev);
5860 }
5861 
5862 
5863 static void *raid5_takeover_raid1(struct mddev *mddev)
5864 {
5865 	int chunksect;
5866 
5867 	if (mddev->raid_disks != 2 ||
5868 	    mddev->degraded > 1)
5869 		return ERR_PTR(-EINVAL);
5870 
5871 	/* Should check if there are write-behind devices? */
5872 
5873 	chunksect = 64*2; /* 64K by default */
5874 
5875 	/* The array must be an exact multiple of chunksize */
5876 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
5877 		chunksect >>= 1;
5878 
5879 	if ((chunksect<<9) < STRIPE_SIZE)
5880 		/* array size does not allow a suitable chunk size */
5881 		return ERR_PTR(-EINVAL);
5882 
5883 	mddev->new_level = 5;
5884 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5885 	mddev->new_chunk_sectors = chunksect;
5886 
5887 	return setup_conf(mddev);
5888 }
5889 
5890 static void *raid5_takeover_raid6(struct mddev *mddev)
5891 {
5892 	int new_layout;
5893 
5894 	switch (mddev->layout) {
5895 	case ALGORITHM_LEFT_ASYMMETRIC_6:
5896 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5897 		break;
5898 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
5899 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5900 		break;
5901 	case ALGORITHM_LEFT_SYMMETRIC_6:
5902 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
5903 		break;
5904 	case ALGORITHM_RIGHT_SYMMETRIC_6:
5905 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5906 		break;
5907 	case ALGORITHM_PARITY_0_6:
5908 		new_layout = ALGORITHM_PARITY_0;
5909 		break;
5910 	case ALGORITHM_PARITY_N:
5911 		new_layout = ALGORITHM_PARITY_N;
5912 		break;
5913 	default:
5914 		return ERR_PTR(-EINVAL);
5915 	}
5916 	mddev->new_level = 5;
5917 	mddev->new_layout = new_layout;
5918 	mddev->delta_disks = -1;
5919 	mddev->raid_disks -= 1;
5920 	return setup_conf(mddev);
5921 }
5922 
5923 
5924 static int raid5_check_reshape(struct mddev *mddev)
5925 {
5926 	/* For a 2-drive array, the layout and chunk size can be changed
5927 	 * immediately as not restriping is needed.
5928 	 * For larger arrays we record the new value - after validation
5929 	 * to be used by a reshape pass.
5930 	 */
5931 	struct r5conf *conf = mddev->private;
5932 	int new_chunk = mddev->new_chunk_sectors;
5933 
5934 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5935 		return -EINVAL;
5936 	if (new_chunk > 0) {
5937 		if (!is_power_of_2(new_chunk))
5938 			return -EINVAL;
5939 		if (new_chunk < (PAGE_SIZE>>9))
5940 			return -EINVAL;
5941 		if (mddev->array_sectors & (new_chunk-1))
5942 			/* not factor of array size */
5943 			return -EINVAL;
5944 	}
5945 
5946 	/* They look valid */
5947 
5948 	if (mddev->raid_disks == 2) {
5949 		/* can make the change immediately */
5950 		if (mddev->new_layout >= 0) {
5951 			conf->algorithm = mddev->new_layout;
5952 			mddev->layout = mddev->new_layout;
5953 		}
5954 		if (new_chunk > 0) {
5955 			conf->chunk_sectors = new_chunk ;
5956 			mddev->chunk_sectors = new_chunk;
5957 		}
5958 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
5959 		md_wakeup_thread(mddev->thread);
5960 	}
5961 	return check_reshape(mddev);
5962 }
5963 
5964 static int raid6_check_reshape(struct mddev *mddev)
5965 {
5966 	int new_chunk = mddev->new_chunk_sectors;
5967 
5968 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5969 		return -EINVAL;
5970 	if (new_chunk > 0) {
5971 		if (!is_power_of_2(new_chunk))
5972 			return -EINVAL;
5973 		if (new_chunk < (PAGE_SIZE >> 9))
5974 			return -EINVAL;
5975 		if (mddev->array_sectors & (new_chunk-1))
5976 			/* not factor of array size */
5977 			return -EINVAL;
5978 	}
5979 
5980 	/* They look valid */
5981 	return check_reshape(mddev);
5982 }
5983 
5984 static void *raid5_takeover(struct mddev *mddev)
5985 {
5986 	/* raid5 can take over:
5987 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
5988 	 *  raid1 - if there are two drives.  We need to know the chunk size
5989 	 *  raid4 - trivial - just use a raid4 layout.
5990 	 *  raid6 - Providing it is a *_6 layout
5991 	 */
5992 	if (mddev->level == 0)
5993 		return raid45_takeover_raid0(mddev, 5);
5994 	if (mddev->level == 1)
5995 		return raid5_takeover_raid1(mddev);
5996 	if (mddev->level == 4) {
5997 		mddev->new_layout = ALGORITHM_PARITY_N;
5998 		mddev->new_level = 5;
5999 		return setup_conf(mddev);
6000 	}
6001 	if (mddev->level == 6)
6002 		return raid5_takeover_raid6(mddev);
6003 
6004 	return ERR_PTR(-EINVAL);
6005 }
6006 
6007 static void *raid4_takeover(struct mddev *mddev)
6008 {
6009 	/* raid4 can take over:
6010 	 *  raid0 - if there is only one strip zone
6011 	 *  raid5 - if layout is right
6012 	 */
6013 	if (mddev->level == 0)
6014 		return raid45_takeover_raid0(mddev, 4);
6015 	if (mddev->level == 5 &&
6016 	    mddev->layout == ALGORITHM_PARITY_N) {
6017 		mddev->new_layout = 0;
6018 		mddev->new_level = 4;
6019 		return setup_conf(mddev);
6020 	}
6021 	return ERR_PTR(-EINVAL);
6022 }
6023 
6024 static struct md_personality raid5_personality;
6025 
6026 static void *raid6_takeover(struct mddev *mddev)
6027 {
6028 	/* Currently can only take over a raid5.  We map the
6029 	 * personality to an equivalent raid6 personality
6030 	 * with the Q block at the end.
6031 	 */
6032 	int new_layout;
6033 
6034 	if (mddev->pers != &raid5_personality)
6035 		return ERR_PTR(-EINVAL);
6036 	if (mddev->degraded > 1)
6037 		return ERR_PTR(-EINVAL);
6038 	if (mddev->raid_disks > 253)
6039 		return ERR_PTR(-EINVAL);
6040 	if (mddev->raid_disks < 3)
6041 		return ERR_PTR(-EINVAL);
6042 
6043 	switch (mddev->layout) {
6044 	case ALGORITHM_LEFT_ASYMMETRIC:
6045 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
6046 		break;
6047 	case ALGORITHM_RIGHT_ASYMMETRIC:
6048 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
6049 		break;
6050 	case ALGORITHM_LEFT_SYMMETRIC:
6051 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
6052 		break;
6053 	case ALGORITHM_RIGHT_SYMMETRIC:
6054 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
6055 		break;
6056 	case ALGORITHM_PARITY_0:
6057 		new_layout = ALGORITHM_PARITY_0_6;
6058 		break;
6059 	case ALGORITHM_PARITY_N:
6060 		new_layout = ALGORITHM_PARITY_N;
6061 		break;
6062 	default:
6063 		return ERR_PTR(-EINVAL);
6064 	}
6065 	mddev->new_level = 6;
6066 	mddev->new_layout = new_layout;
6067 	mddev->delta_disks = 1;
6068 	mddev->raid_disks += 1;
6069 	return setup_conf(mddev);
6070 }
6071 
6072 
6073 static struct md_personality raid6_personality =
6074 {
6075 	.name		= "raid6",
6076 	.level		= 6,
6077 	.owner		= THIS_MODULE,
6078 	.make_request	= make_request,
6079 	.run		= run,
6080 	.stop		= stop,
6081 	.status		= status,
6082 	.error_handler	= error,
6083 	.hot_add_disk	= raid5_add_disk,
6084 	.hot_remove_disk= raid5_remove_disk,
6085 	.spare_active	= raid5_spare_active,
6086 	.sync_request	= sync_request,
6087 	.resize		= raid5_resize,
6088 	.size		= raid5_size,
6089 	.check_reshape	= raid6_check_reshape,
6090 	.start_reshape  = raid5_start_reshape,
6091 	.finish_reshape = raid5_finish_reshape,
6092 	.quiesce	= raid5_quiesce,
6093 	.takeover	= raid6_takeover,
6094 };
6095 static struct md_personality raid5_personality =
6096 {
6097 	.name		= "raid5",
6098 	.level		= 5,
6099 	.owner		= THIS_MODULE,
6100 	.make_request	= make_request,
6101 	.run		= run,
6102 	.stop		= stop,
6103 	.status		= status,
6104 	.error_handler	= error,
6105 	.hot_add_disk	= raid5_add_disk,
6106 	.hot_remove_disk= raid5_remove_disk,
6107 	.spare_active	= raid5_spare_active,
6108 	.sync_request	= sync_request,
6109 	.resize		= raid5_resize,
6110 	.size		= raid5_size,
6111 	.check_reshape	= raid5_check_reshape,
6112 	.start_reshape  = raid5_start_reshape,
6113 	.finish_reshape = raid5_finish_reshape,
6114 	.quiesce	= raid5_quiesce,
6115 	.takeover	= raid5_takeover,
6116 };
6117 
6118 static struct md_personality raid4_personality =
6119 {
6120 	.name		= "raid4",
6121 	.level		= 4,
6122 	.owner		= THIS_MODULE,
6123 	.make_request	= make_request,
6124 	.run		= run,
6125 	.stop		= stop,
6126 	.status		= status,
6127 	.error_handler	= error,
6128 	.hot_add_disk	= raid5_add_disk,
6129 	.hot_remove_disk= raid5_remove_disk,
6130 	.spare_active	= raid5_spare_active,
6131 	.sync_request	= sync_request,
6132 	.resize		= raid5_resize,
6133 	.size		= raid5_size,
6134 	.check_reshape	= raid5_check_reshape,
6135 	.start_reshape  = raid5_start_reshape,
6136 	.finish_reshape = raid5_finish_reshape,
6137 	.quiesce	= raid5_quiesce,
6138 	.takeover	= raid4_takeover,
6139 };
6140 
6141 static int __init raid5_init(void)
6142 {
6143 	register_md_personality(&raid6_personality);
6144 	register_md_personality(&raid5_personality);
6145 	register_md_personality(&raid4_personality);
6146 	return 0;
6147 }
6148 
6149 static void raid5_exit(void)
6150 {
6151 	unregister_md_personality(&raid6_personality);
6152 	unregister_md_personality(&raid5_personality);
6153 	unregister_md_personality(&raid4_personality);
6154 }
6155 
6156 module_init(raid5_init);
6157 module_exit(raid5_exit);
6158 MODULE_LICENSE("GPL");
6159 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6160 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6161 MODULE_ALIAS("md-raid5");
6162 MODULE_ALIAS("md-raid4");
6163 MODULE_ALIAS("md-level-5");
6164 MODULE_ALIAS("md-level-4");
6165 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6166 MODULE_ALIAS("md-raid6");
6167 MODULE_ALIAS("md-level-6");
6168 
6169 /* This used to be two separate modules, they were: */
6170 MODULE_ALIAS("raid5");
6171 MODULE_ALIAS("raid6");
6172