1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid5.c : Multiple Devices driver for Linux 4 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman 5 * Copyright (C) 1999, 2000 Ingo Molnar 6 * Copyright (C) 2002, 2003 H. Peter Anvin 7 * 8 * RAID-4/5/6 management functions. 9 * Thanks to Penguin Computing for making the RAID-6 development possible 10 * by donating a test server! 11 */ 12 13 /* 14 * BITMAP UNPLUGGING: 15 * 16 * The sequencing for updating the bitmap reliably is a little 17 * subtle (and I got it wrong the first time) so it deserves some 18 * explanation. 19 * 20 * We group bitmap updates into batches. Each batch has a number. 21 * We may write out several batches at once, but that isn't very important. 22 * conf->seq_write is the number of the last batch successfully written. 23 * conf->seq_flush is the number of the last batch that was closed to 24 * new additions. 25 * When we discover that we will need to write to any block in a stripe 26 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq 27 * the number of the batch it will be in. This is seq_flush+1. 28 * When we are ready to do a write, if that batch hasn't been written yet, 29 * we plug the array and queue the stripe for later. 30 * When an unplug happens, we increment bm_flush, thus closing the current 31 * batch. 32 * When we notice that bm_flush > bm_write, we write out all pending updates 33 * to the bitmap, and advance bm_write to where bm_flush was. 34 * This may occasionally write a bit out twice, but is sure never to 35 * miss any bits. 36 */ 37 38 #include <linux/blkdev.h> 39 #include <linux/kthread.h> 40 #include <linux/raid/pq.h> 41 #include <linux/async_tx.h> 42 #include <linux/module.h> 43 #include <linux/async.h> 44 #include <linux/seq_file.h> 45 #include <linux/cpu.h> 46 #include <linux/slab.h> 47 #include <linux/ratelimit.h> 48 #include <linux/nodemask.h> 49 50 #include <trace/events/block.h> 51 #include <linux/list_sort.h> 52 53 #include "md.h" 54 #include "raid5.h" 55 #include "raid0.h" 56 #include "md-bitmap.h" 57 #include "raid5-log.h" 58 59 #define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED) 60 61 #define cpu_to_group(cpu) cpu_to_node(cpu) 62 #define ANY_GROUP NUMA_NO_NODE 63 64 #define RAID5_MAX_REQ_STRIPES 256 65 66 static bool devices_handle_discard_safely = false; 67 module_param(devices_handle_discard_safely, bool, 0644); 68 MODULE_PARM_DESC(devices_handle_discard_safely, 69 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions"); 70 static struct workqueue_struct *raid5_wq; 71 72 static void raid5_quiesce(struct mddev *mddev, int quiesce); 73 74 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect) 75 { 76 int hash = (sect >> RAID5_STRIPE_SHIFT(conf)) & HASH_MASK; 77 return &conf->stripe_hashtbl[hash]; 78 } 79 80 static inline int stripe_hash_locks_hash(struct r5conf *conf, sector_t sect) 81 { 82 return (sect >> RAID5_STRIPE_SHIFT(conf)) & STRIPE_HASH_LOCKS_MASK; 83 } 84 85 static inline void lock_device_hash_lock(struct r5conf *conf, int hash) 86 __acquires(&conf->device_lock) 87 { 88 spin_lock_irq(conf->hash_locks + hash); 89 spin_lock(&conf->device_lock); 90 } 91 92 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash) 93 __releases(&conf->device_lock) 94 { 95 spin_unlock(&conf->device_lock); 96 spin_unlock_irq(conf->hash_locks + hash); 97 } 98 99 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf) 100 __acquires(&conf->device_lock) 101 { 102 int i; 103 spin_lock_irq(conf->hash_locks); 104 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 105 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks); 106 spin_lock(&conf->device_lock); 107 } 108 109 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf) 110 __releases(&conf->device_lock) 111 { 112 int i; 113 spin_unlock(&conf->device_lock); 114 for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--) 115 spin_unlock(conf->hash_locks + i); 116 spin_unlock_irq(conf->hash_locks); 117 } 118 119 /* Find first data disk in a raid6 stripe */ 120 static inline int raid6_d0(struct stripe_head *sh) 121 { 122 if (sh->ddf_layout) 123 /* ddf always start from first device */ 124 return 0; 125 /* md starts just after Q block */ 126 if (sh->qd_idx == sh->disks - 1) 127 return 0; 128 else 129 return sh->qd_idx + 1; 130 } 131 static inline int raid6_next_disk(int disk, int raid_disks) 132 { 133 disk++; 134 return (disk < raid_disks) ? disk : 0; 135 } 136 137 /* When walking through the disks in a raid5, starting at raid6_d0, 138 * We need to map each disk to a 'slot', where the data disks are slot 139 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk 140 * is raid_disks-1. This help does that mapping. 141 */ 142 static int raid6_idx_to_slot(int idx, struct stripe_head *sh, 143 int *count, int syndrome_disks) 144 { 145 int slot = *count; 146 147 if (sh->ddf_layout) 148 (*count)++; 149 if (idx == sh->pd_idx) 150 return syndrome_disks; 151 if (idx == sh->qd_idx) 152 return syndrome_disks + 1; 153 if (!sh->ddf_layout) 154 (*count)++; 155 return slot; 156 } 157 158 static void print_raid5_conf (struct r5conf *conf); 159 160 static int stripe_operations_active(struct stripe_head *sh) 161 { 162 return sh->check_state || sh->reconstruct_state || 163 test_bit(STRIPE_BIOFILL_RUN, &sh->state) || 164 test_bit(STRIPE_COMPUTE_RUN, &sh->state); 165 } 166 167 static bool stripe_is_lowprio(struct stripe_head *sh) 168 { 169 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) || 170 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) && 171 !test_bit(STRIPE_R5C_CACHING, &sh->state); 172 } 173 174 static void raid5_wakeup_stripe_thread(struct stripe_head *sh) 175 __must_hold(&sh->raid_conf->device_lock) 176 { 177 struct r5conf *conf = sh->raid_conf; 178 struct r5worker_group *group; 179 int thread_cnt; 180 int i, cpu = sh->cpu; 181 182 if (!cpu_online(cpu)) { 183 cpu = cpumask_any(cpu_online_mask); 184 sh->cpu = cpu; 185 } 186 187 if (list_empty(&sh->lru)) { 188 struct r5worker_group *group; 189 group = conf->worker_groups + cpu_to_group(cpu); 190 if (stripe_is_lowprio(sh)) 191 list_add_tail(&sh->lru, &group->loprio_list); 192 else 193 list_add_tail(&sh->lru, &group->handle_list); 194 group->stripes_cnt++; 195 sh->group = group; 196 } 197 198 if (conf->worker_cnt_per_group == 0) { 199 md_wakeup_thread(conf->mddev->thread); 200 return; 201 } 202 203 group = conf->worker_groups + cpu_to_group(sh->cpu); 204 205 group->workers[0].working = true; 206 /* at least one worker should run to avoid race */ 207 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work); 208 209 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1; 210 /* wakeup more workers */ 211 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) { 212 if (group->workers[i].working == false) { 213 group->workers[i].working = true; 214 queue_work_on(sh->cpu, raid5_wq, 215 &group->workers[i].work); 216 thread_cnt--; 217 } 218 } 219 } 220 221 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh, 222 struct list_head *temp_inactive_list) 223 __must_hold(&conf->device_lock) 224 { 225 int i; 226 int injournal = 0; /* number of date pages with R5_InJournal */ 227 228 BUG_ON(!list_empty(&sh->lru)); 229 BUG_ON(atomic_read(&conf->active_stripes)==0); 230 231 if (r5c_is_writeback(conf->log)) 232 for (i = sh->disks; i--; ) 233 if (test_bit(R5_InJournal, &sh->dev[i].flags)) 234 injournal++; 235 /* 236 * In the following cases, the stripe cannot be released to cached 237 * lists. Therefore, we make the stripe write out and set 238 * STRIPE_HANDLE: 239 * 1. when quiesce in r5c write back; 240 * 2. when resync is requested fot the stripe. 241 */ 242 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) || 243 (conf->quiesce && r5c_is_writeback(conf->log) && 244 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) { 245 if (test_bit(STRIPE_R5C_CACHING, &sh->state)) 246 r5c_make_stripe_write_out(sh); 247 set_bit(STRIPE_HANDLE, &sh->state); 248 } 249 250 if (test_bit(STRIPE_HANDLE, &sh->state)) { 251 if (test_bit(STRIPE_DELAYED, &sh->state) && 252 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 253 list_add_tail(&sh->lru, &conf->delayed_list); 254 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) && 255 sh->bm_seq - conf->seq_write > 0) 256 list_add_tail(&sh->lru, &conf->bitmap_list); 257 else { 258 clear_bit(STRIPE_DELAYED, &sh->state); 259 clear_bit(STRIPE_BIT_DELAY, &sh->state); 260 if (conf->worker_cnt_per_group == 0) { 261 if (stripe_is_lowprio(sh)) 262 list_add_tail(&sh->lru, 263 &conf->loprio_list); 264 else 265 list_add_tail(&sh->lru, 266 &conf->handle_list); 267 } else { 268 raid5_wakeup_stripe_thread(sh); 269 return; 270 } 271 } 272 md_wakeup_thread(conf->mddev->thread); 273 } else { 274 BUG_ON(stripe_operations_active(sh)); 275 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 276 if (atomic_dec_return(&conf->preread_active_stripes) 277 < IO_THRESHOLD) 278 md_wakeup_thread(conf->mddev->thread); 279 atomic_dec(&conf->active_stripes); 280 if (!test_bit(STRIPE_EXPANDING, &sh->state)) { 281 if (!r5c_is_writeback(conf->log)) 282 list_add_tail(&sh->lru, temp_inactive_list); 283 else { 284 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags)); 285 if (injournal == 0) 286 list_add_tail(&sh->lru, temp_inactive_list); 287 else if (injournal == conf->raid_disks - conf->max_degraded) { 288 /* full stripe */ 289 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) 290 atomic_inc(&conf->r5c_cached_full_stripes); 291 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) 292 atomic_dec(&conf->r5c_cached_partial_stripes); 293 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list); 294 r5c_check_cached_full_stripe(conf); 295 } else 296 /* 297 * STRIPE_R5C_PARTIAL_STRIPE is set in 298 * r5c_try_caching_write(). No need to 299 * set it again. 300 */ 301 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list); 302 } 303 } 304 } 305 } 306 307 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh, 308 struct list_head *temp_inactive_list) 309 __must_hold(&conf->device_lock) 310 { 311 if (atomic_dec_and_test(&sh->count)) 312 do_release_stripe(conf, sh, temp_inactive_list); 313 } 314 315 /* 316 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list 317 * 318 * Be careful: Only one task can add/delete stripes from temp_inactive_list at 319 * given time. Adding stripes only takes device lock, while deleting stripes 320 * only takes hash lock. 321 */ 322 static void release_inactive_stripe_list(struct r5conf *conf, 323 struct list_head *temp_inactive_list, 324 int hash) 325 { 326 int size; 327 bool do_wakeup = false; 328 unsigned long flags; 329 330 if (hash == NR_STRIPE_HASH_LOCKS) { 331 size = NR_STRIPE_HASH_LOCKS; 332 hash = NR_STRIPE_HASH_LOCKS - 1; 333 } else 334 size = 1; 335 while (size) { 336 struct list_head *list = &temp_inactive_list[size - 1]; 337 338 /* 339 * We don't hold any lock here yet, raid5_get_active_stripe() might 340 * remove stripes from the list 341 */ 342 if (!list_empty_careful(list)) { 343 spin_lock_irqsave(conf->hash_locks + hash, flags); 344 if (list_empty(conf->inactive_list + hash) && 345 !list_empty(list)) 346 atomic_dec(&conf->empty_inactive_list_nr); 347 list_splice_tail_init(list, conf->inactive_list + hash); 348 do_wakeup = true; 349 spin_unlock_irqrestore(conf->hash_locks + hash, flags); 350 } 351 size--; 352 hash--; 353 } 354 355 if (do_wakeup) { 356 wake_up(&conf->wait_for_stripe); 357 if (atomic_read(&conf->active_stripes) == 0) 358 wake_up(&conf->wait_for_quiescent); 359 if (conf->retry_read_aligned) 360 md_wakeup_thread(conf->mddev->thread); 361 } 362 } 363 364 static int release_stripe_list(struct r5conf *conf, 365 struct list_head *temp_inactive_list) 366 __must_hold(&conf->device_lock) 367 { 368 struct stripe_head *sh, *t; 369 int count = 0; 370 struct llist_node *head; 371 372 head = llist_del_all(&conf->released_stripes); 373 head = llist_reverse_order(head); 374 llist_for_each_entry_safe(sh, t, head, release_list) { 375 int hash; 376 377 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */ 378 smp_mb(); 379 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state); 380 /* 381 * Don't worry the bit is set here, because if the bit is set 382 * again, the count is always > 1. This is true for 383 * STRIPE_ON_UNPLUG_LIST bit too. 384 */ 385 hash = sh->hash_lock_index; 386 __release_stripe(conf, sh, &temp_inactive_list[hash]); 387 count++; 388 } 389 390 return count; 391 } 392 393 void raid5_release_stripe(struct stripe_head *sh) 394 { 395 struct r5conf *conf = sh->raid_conf; 396 unsigned long flags; 397 struct list_head list; 398 int hash; 399 bool wakeup; 400 401 /* Avoid release_list until the last reference. 402 */ 403 if (atomic_add_unless(&sh->count, -1, 1)) 404 return; 405 406 if (unlikely(!conf->mddev->thread) || 407 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state)) 408 goto slow_path; 409 wakeup = llist_add(&sh->release_list, &conf->released_stripes); 410 if (wakeup) 411 md_wakeup_thread(conf->mddev->thread); 412 return; 413 slow_path: 414 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */ 415 if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) { 416 INIT_LIST_HEAD(&list); 417 hash = sh->hash_lock_index; 418 do_release_stripe(conf, sh, &list); 419 spin_unlock_irqrestore(&conf->device_lock, flags); 420 release_inactive_stripe_list(conf, &list, hash); 421 } 422 } 423 424 static inline void remove_hash(struct stripe_head *sh) 425 { 426 pr_debug("remove_hash(), stripe %llu\n", 427 (unsigned long long)sh->sector); 428 429 hlist_del_init(&sh->hash); 430 } 431 432 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh) 433 { 434 struct hlist_head *hp = stripe_hash(conf, sh->sector); 435 436 pr_debug("insert_hash(), stripe %llu\n", 437 (unsigned long long)sh->sector); 438 439 hlist_add_head(&sh->hash, hp); 440 } 441 442 /* find an idle stripe, make sure it is unhashed, and return it. */ 443 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash) 444 { 445 struct stripe_head *sh = NULL; 446 struct list_head *first; 447 448 if (list_empty(conf->inactive_list + hash)) 449 goto out; 450 first = (conf->inactive_list + hash)->next; 451 sh = list_entry(first, struct stripe_head, lru); 452 list_del_init(first); 453 remove_hash(sh); 454 atomic_inc(&conf->active_stripes); 455 BUG_ON(hash != sh->hash_lock_index); 456 if (list_empty(conf->inactive_list + hash)) 457 atomic_inc(&conf->empty_inactive_list_nr); 458 out: 459 return sh; 460 } 461 462 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 463 static void free_stripe_pages(struct stripe_head *sh) 464 { 465 int i; 466 struct page *p; 467 468 /* Have not allocate page pool */ 469 if (!sh->pages) 470 return; 471 472 for (i = 0; i < sh->nr_pages; i++) { 473 p = sh->pages[i]; 474 if (p) 475 put_page(p); 476 sh->pages[i] = NULL; 477 } 478 } 479 480 static int alloc_stripe_pages(struct stripe_head *sh, gfp_t gfp) 481 { 482 int i; 483 struct page *p; 484 485 for (i = 0; i < sh->nr_pages; i++) { 486 /* The page have allocated. */ 487 if (sh->pages[i]) 488 continue; 489 490 p = alloc_page(gfp); 491 if (!p) { 492 free_stripe_pages(sh); 493 return -ENOMEM; 494 } 495 sh->pages[i] = p; 496 } 497 return 0; 498 } 499 500 static int 501 init_stripe_shared_pages(struct stripe_head *sh, struct r5conf *conf, int disks) 502 { 503 int nr_pages, cnt; 504 505 if (sh->pages) 506 return 0; 507 508 /* Each of the sh->dev[i] need one conf->stripe_size */ 509 cnt = PAGE_SIZE / conf->stripe_size; 510 nr_pages = (disks + cnt - 1) / cnt; 511 512 sh->pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL); 513 if (!sh->pages) 514 return -ENOMEM; 515 sh->nr_pages = nr_pages; 516 sh->stripes_per_page = cnt; 517 return 0; 518 } 519 #endif 520 521 static void shrink_buffers(struct stripe_head *sh) 522 { 523 int i; 524 int num = sh->raid_conf->pool_size; 525 526 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE 527 for (i = 0; i < num ; i++) { 528 struct page *p; 529 530 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page); 531 p = sh->dev[i].page; 532 if (!p) 533 continue; 534 sh->dev[i].page = NULL; 535 put_page(p); 536 } 537 #else 538 for (i = 0; i < num; i++) 539 sh->dev[i].page = NULL; 540 free_stripe_pages(sh); /* Free pages */ 541 #endif 542 } 543 544 static int grow_buffers(struct stripe_head *sh, gfp_t gfp) 545 { 546 int i; 547 int num = sh->raid_conf->pool_size; 548 549 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE 550 for (i = 0; i < num; i++) { 551 struct page *page; 552 553 if (!(page = alloc_page(gfp))) { 554 return 1; 555 } 556 sh->dev[i].page = page; 557 sh->dev[i].orig_page = page; 558 sh->dev[i].offset = 0; 559 } 560 #else 561 if (alloc_stripe_pages(sh, gfp)) 562 return -ENOMEM; 563 564 for (i = 0; i < num; i++) { 565 sh->dev[i].page = raid5_get_dev_page(sh, i); 566 sh->dev[i].orig_page = sh->dev[i].page; 567 sh->dev[i].offset = raid5_get_page_offset(sh, i); 568 } 569 #endif 570 return 0; 571 } 572 573 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 574 struct stripe_head *sh); 575 576 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous) 577 { 578 struct r5conf *conf = sh->raid_conf; 579 int i, seq; 580 581 BUG_ON(atomic_read(&sh->count) != 0); 582 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); 583 BUG_ON(stripe_operations_active(sh)); 584 BUG_ON(sh->batch_head); 585 586 pr_debug("init_stripe called, stripe %llu\n", 587 (unsigned long long)sector); 588 retry: 589 seq = read_seqcount_begin(&conf->gen_lock); 590 sh->generation = conf->generation - previous; 591 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks; 592 sh->sector = sector; 593 stripe_set_idx(sector, conf, previous, sh); 594 sh->state = 0; 595 596 for (i = sh->disks; i--; ) { 597 struct r5dev *dev = &sh->dev[i]; 598 599 if (dev->toread || dev->read || dev->towrite || dev->written || 600 test_bit(R5_LOCKED, &dev->flags)) { 601 pr_err("sector=%llx i=%d %p %p %p %p %d\n", 602 (unsigned long long)sh->sector, i, dev->toread, 603 dev->read, dev->towrite, dev->written, 604 test_bit(R5_LOCKED, &dev->flags)); 605 WARN_ON(1); 606 } 607 dev->flags = 0; 608 dev->sector = raid5_compute_blocknr(sh, i, previous); 609 } 610 if (read_seqcount_retry(&conf->gen_lock, seq)) 611 goto retry; 612 sh->overwrite_disks = 0; 613 insert_hash(conf, sh); 614 sh->cpu = smp_processor_id(); 615 set_bit(STRIPE_BATCH_READY, &sh->state); 616 } 617 618 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector, 619 short generation) 620 { 621 struct stripe_head *sh; 622 623 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector); 624 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash) 625 if (sh->sector == sector && sh->generation == generation) 626 return sh; 627 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector); 628 return NULL; 629 } 630 631 static struct stripe_head *find_get_stripe(struct r5conf *conf, 632 sector_t sector, short generation, int hash) 633 { 634 int inc_empty_inactive_list_flag; 635 struct stripe_head *sh; 636 637 sh = __find_stripe(conf, sector, generation); 638 if (!sh) 639 return NULL; 640 641 if (atomic_inc_not_zero(&sh->count)) 642 return sh; 643 644 /* 645 * Slow path. The reference count is zero which means the stripe must 646 * be on a list (sh->lru). Must remove the stripe from the list that 647 * references it with the device_lock held. 648 */ 649 650 spin_lock(&conf->device_lock); 651 if (!atomic_read(&sh->count)) { 652 if (!test_bit(STRIPE_HANDLE, &sh->state)) 653 atomic_inc(&conf->active_stripes); 654 BUG_ON(list_empty(&sh->lru) && 655 !test_bit(STRIPE_EXPANDING, &sh->state)); 656 inc_empty_inactive_list_flag = 0; 657 if (!list_empty(conf->inactive_list + hash)) 658 inc_empty_inactive_list_flag = 1; 659 list_del_init(&sh->lru); 660 if (list_empty(conf->inactive_list + hash) && 661 inc_empty_inactive_list_flag) 662 atomic_inc(&conf->empty_inactive_list_nr); 663 if (sh->group) { 664 sh->group->stripes_cnt--; 665 sh->group = NULL; 666 } 667 } 668 atomic_inc(&sh->count); 669 spin_unlock(&conf->device_lock); 670 671 return sh; 672 } 673 674 /* 675 * Need to check if array has failed when deciding whether to: 676 * - start an array 677 * - remove non-faulty devices 678 * - add a spare 679 * - allow a reshape 680 * This determination is simple when no reshape is happening. 681 * However if there is a reshape, we need to carefully check 682 * both the before and after sections. 683 * This is because some failed devices may only affect one 684 * of the two sections, and some non-in_sync devices may 685 * be insync in the section most affected by failed devices. 686 * 687 * Most calls to this function hold &conf->device_lock. Calls 688 * in raid5_run() do not require the lock as no other threads 689 * have been started yet. 690 */ 691 int raid5_calc_degraded(struct r5conf *conf) 692 { 693 int degraded, degraded2; 694 int i; 695 696 degraded = 0; 697 for (i = 0; i < conf->previous_raid_disks; i++) { 698 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev); 699 700 if (rdev && test_bit(Faulty, &rdev->flags)) 701 rdev = READ_ONCE(conf->disks[i].replacement); 702 if (!rdev || test_bit(Faulty, &rdev->flags)) 703 degraded++; 704 else if (test_bit(In_sync, &rdev->flags)) 705 ; 706 else 707 /* not in-sync or faulty. 708 * If the reshape increases the number of devices, 709 * this is being recovered by the reshape, so 710 * this 'previous' section is not in_sync. 711 * If the number of devices is being reduced however, 712 * the device can only be part of the array if 713 * we are reverting a reshape, so this section will 714 * be in-sync. 715 */ 716 if (conf->raid_disks >= conf->previous_raid_disks) 717 degraded++; 718 } 719 if (conf->raid_disks == conf->previous_raid_disks) 720 return degraded; 721 degraded2 = 0; 722 for (i = 0; i < conf->raid_disks; i++) { 723 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev); 724 725 if (rdev && test_bit(Faulty, &rdev->flags)) 726 rdev = READ_ONCE(conf->disks[i].replacement); 727 if (!rdev || test_bit(Faulty, &rdev->flags)) 728 degraded2++; 729 else if (test_bit(In_sync, &rdev->flags)) 730 ; 731 else 732 /* not in-sync or faulty. 733 * If reshape increases the number of devices, this 734 * section has already been recovered, else it 735 * almost certainly hasn't. 736 */ 737 if (conf->raid_disks <= conf->previous_raid_disks) 738 degraded2++; 739 } 740 if (degraded2 > degraded) 741 return degraded2; 742 return degraded; 743 } 744 745 static bool has_failed(struct r5conf *conf) 746 { 747 int degraded = conf->mddev->degraded; 748 749 if (test_bit(MD_BROKEN, &conf->mddev->flags)) 750 return true; 751 752 if (conf->mddev->reshape_position != MaxSector) 753 degraded = raid5_calc_degraded(conf); 754 755 return degraded > conf->max_degraded; 756 } 757 758 enum stripe_result { 759 STRIPE_SUCCESS = 0, 760 STRIPE_RETRY, 761 STRIPE_SCHEDULE_AND_RETRY, 762 STRIPE_FAIL, 763 }; 764 765 struct stripe_request_ctx { 766 /* a reference to the last stripe_head for batching */ 767 struct stripe_head *batch_last; 768 769 /* first sector in the request */ 770 sector_t first_sector; 771 772 /* last sector in the request */ 773 sector_t last_sector; 774 775 /* 776 * bitmap to track stripe sectors that have been added to stripes 777 * add one to account for unaligned requests 778 */ 779 DECLARE_BITMAP(sectors_to_do, RAID5_MAX_REQ_STRIPES + 1); 780 781 /* the request had REQ_PREFLUSH, cleared after the first stripe_head */ 782 bool do_flush; 783 }; 784 785 /* 786 * Block until another thread clears R5_INACTIVE_BLOCKED or 787 * there are fewer than 3/4 the maximum number of active stripes 788 * and there is an inactive stripe available. 789 */ 790 static bool is_inactive_blocked(struct r5conf *conf, int hash) 791 { 792 if (list_empty(conf->inactive_list + hash)) 793 return false; 794 795 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) 796 return true; 797 798 return (atomic_read(&conf->active_stripes) < 799 (conf->max_nr_stripes * 3 / 4)); 800 } 801 802 struct stripe_head *raid5_get_active_stripe(struct r5conf *conf, 803 struct stripe_request_ctx *ctx, sector_t sector, 804 unsigned int flags) 805 { 806 struct stripe_head *sh; 807 int hash = stripe_hash_locks_hash(conf, sector); 808 int previous = !!(flags & R5_GAS_PREVIOUS); 809 810 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector); 811 812 spin_lock_irq(conf->hash_locks + hash); 813 814 for (;;) { 815 if (!(flags & R5_GAS_NOQUIESCE) && conf->quiesce) { 816 /* 817 * Must release the reference to batch_last before 818 * waiting, on quiesce, otherwise the batch_last will 819 * hold a reference to a stripe and raid5_quiesce() 820 * will deadlock waiting for active_stripes to go to 821 * zero. 822 */ 823 if (ctx && ctx->batch_last) { 824 raid5_release_stripe(ctx->batch_last); 825 ctx->batch_last = NULL; 826 } 827 828 wait_event_lock_irq(conf->wait_for_quiescent, 829 !conf->quiesce, 830 *(conf->hash_locks + hash)); 831 } 832 833 sh = find_get_stripe(conf, sector, conf->generation - previous, 834 hash); 835 if (sh) 836 break; 837 838 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) { 839 sh = get_free_stripe(conf, hash); 840 if (sh) { 841 r5c_check_stripe_cache_usage(conf); 842 init_stripe(sh, sector, previous); 843 atomic_inc(&sh->count); 844 break; 845 } 846 847 if (!test_bit(R5_DID_ALLOC, &conf->cache_state)) 848 set_bit(R5_ALLOC_MORE, &conf->cache_state); 849 } 850 851 if (flags & R5_GAS_NOBLOCK) 852 break; 853 854 set_bit(R5_INACTIVE_BLOCKED, &conf->cache_state); 855 r5l_wake_reclaim(conf->log, 0); 856 857 /* release batch_last before wait to avoid risk of deadlock */ 858 if (ctx && ctx->batch_last) { 859 raid5_release_stripe(ctx->batch_last); 860 ctx->batch_last = NULL; 861 } 862 863 wait_event_lock_irq(conf->wait_for_stripe, 864 is_inactive_blocked(conf, hash), 865 *(conf->hash_locks + hash)); 866 clear_bit(R5_INACTIVE_BLOCKED, &conf->cache_state); 867 } 868 869 spin_unlock_irq(conf->hash_locks + hash); 870 return sh; 871 } 872 873 static bool is_full_stripe_write(struct stripe_head *sh) 874 { 875 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded)); 876 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded); 877 } 878 879 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) 880 __acquires(&sh1->stripe_lock) 881 __acquires(&sh2->stripe_lock) 882 { 883 if (sh1 > sh2) { 884 spin_lock_irq(&sh2->stripe_lock); 885 spin_lock_nested(&sh1->stripe_lock, 1); 886 } else { 887 spin_lock_irq(&sh1->stripe_lock); 888 spin_lock_nested(&sh2->stripe_lock, 1); 889 } 890 } 891 892 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) 893 __releases(&sh1->stripe_lock) 894 __releases(&sh2->stripe_lock) 895 { 896 spin_unlock(&sh1->stripe_lock); 897 spin_unlock_irq(&sh2->stripe_lock); 898 } 899 900 /* Only freshly new full stripe normal write stripe can be added to a batch list */ 901 static bool stripe_can_batch(struct stripe_head *sh) 902 { 903 struct r5conf *conf = sh->raid_conf; 904 905 if (raid5_has_log(conf) || raid5_has_ppl(conf)) 906 return false; 907 return test_bit(STRIPE_BATCH_READY, &sh->state) && 908 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) && 909 is_full_stripe_write(sh); 910 } 911 912 /* we only do back search */ 913 static void stripe_add_to_batch_list(struct r5conf *conf, 914 struct stripe_head *sh, struct stripe_head *last_sh) 915 { 916 struct stripe_head *head; 917 sector_t head_sector, tmp_sec; 918 int hash; 919 int dd_idx; 920 921 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */ 922 tmp_sec = sh->sector; 923 if (!sector_div(tmp_sec, conf->chunk_sectors)) 924 return; 925 head_sector = sh->sector - RAID5_STRIPE_SECTORS(conf); 926 927 if (last_sh && head_sector == last_sh->sector) { 928 head = last_sh; 929 atomic_inc(&head->count); 930 } else { 931 hash = stripe_hash_locks_hash(conf, head_sector); 932 spin_lock_irq(conf->hash_locks + hash); 933 head = find_get_stripe(conf, head_sector, conf->generation, 934 hash); 935 spin_unlock_irq(conf->hash_locks + hash); 936 if (!head) 937 return; 938 if (!stripe_can_batch(head)) 939 goto out; 940 } 941 942 lock_two_stripes(head, sh); 943 /* clear_batch_ready clear the flag */ 944 if (!stripe_can_batch(head) || !stripe_can_batch(sh)) 945 goto unlock_out; 946 947 if (sh->batch_head) 948 goto unlock_out; 949 950 dd_idx = 0; 951 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx) 952 dd_idx++; 953 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf || 954 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite)) 955 goto unlock_out; 956 957 if (head->batch_head) { 958 spin_lock(&head->batch_head->batch_lock); 959 /* This batch list is already running */ 960 if (!stripe_can_batch(head)) { 961 spin_unlock(&head->batch_head->batch_lock); 962 goto unlock_out; 963 } 964 /* 965 * We must assign batch_head of this stripe within the 966 * batch_lock, otherwise clear_batch_ready of batch head 967 * stripe could clear BATCH_READY bit of this stripe and 968 * this stripe->batch_head doesn't get assigned, which 969 * could confuse clear_batch_ready for this stripe 970 */ 971 sh->batch_head = head->batch_head; 972 973 /* 974 * at this point, head's BATCH_READY could be cleared, but we 975 * can still add the stripe to batch list 976 */ 977 list_add(&sh->batch_list, &head->batch_list); 978 spin_unlock(&head->batch_head->batch_lock); 979 } else { 980 head->batch_head = head; 981 sh->batch_head = head->batch_head; 982 spin_lock(&head->batch_lock); 983 list_add_tail(&sh->batch_list, &head->batch_list); 984 spin_unlock(&head->batch_lock); 985 } 986 987 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 988 if (atomic_dec_return(&conf->preread_active_stripes) 989 < IO_THRESHOLD) 990 md_wakeup_thread(conf->mddev->thread); 991 992 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) { 993 int seq = sh->bm_seq; 994 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) && 995 sh->batch_head->bm_seq > seq) 996 seq = sh->batch_head->bm_seq; 997 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state); 998 sh->batch_head->bm_seq = seq; 999 } 1000 1001 atomic_inc(&sh->count); 1002 unlock_out: 1003 unlock_two_stripes(head, sh); 1004 out: 1005 raid5_release_stripe(head); 1006 } 1007 1008 /* Determine if 'data_offset' or 'new_data_offset' should be used 1009 * in this stripe_head. 1010 */ 1011 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh) 1012 { 1013 sector_t progress = conf->reshape_progress; 1014 /* Need a memory barrier to make sure we see the value 1015 * of conf->generation, or ->data_offset that was set before 1016 * reshape_progress was updated. 1017 */ 1018 smp_rmb(); 1019 if (progress == MaxSector) 1020 return 0; 1021 if (sh->generation == conf->generation - 1) 1022 return 0; 1023 /* We are in a reshape, and this is a new-generation stripe, 1024 * so use new_data_offset. 1025 */ 1026 return 1; 1027 } 1028 1029 static void dispatch_bio_list(struct bio_list *tmp) 1030 { 1031 struct bio *bio; 1032 1033 while ((bio = bio_list_pop(tmp))) 1034 submit_bio_noacct(bio); 1035 } 1036 1037 static int cmp_stripe(void *priv, const struct list_head *a, 1038 const struct list_head *b) 1039 { 1040 const struct r5pending_data *da = list_entry(a, 1041 struct r5pending_data, sibling); 1042 const struct r5pending_data *db = list_entry(b, 1043 struct r5pending_data, sibling); 1044 if (da->sector > db->sector) 1045 return 1; 1046 if (da->sector < db->sector) 1047 return -1; 1048 return 0; 1049 } 1050 1051 static void dispatch_defer_bios(struct r5conf *conf, int target, 1052 struct bio_list *list) 1053 { 1054 struct r5pending_data *data; 1055 struct list_head *first, *next = NULL; 1056 int cnt = 0; 1057 1058 if (conf->pending_data_cnt == 0) 1059 return; 1060 1061 list_sort(NULL, &conf->pending_list, cmp_stripe); 1062 1063 first = conf->pending_list.next; 1064 1065 /* temporarily move the head */ 1066 if (conf->next_pending_data) 1067 list_move_tail(&conf->pending_list, 1068 &conf->next_pending_data->sibling); 1069 1070 while (!list_empty(&conf->pending_list)) { 1071 data = list_first_entry(&conf->pending_list, 1072 struct r5pending_data, sibling); 1073 if (&data->sibling == first) 1074 first = data->sibling.next; 1075 next = data->sibling.next; 1076 1077 bio_list_merge(list, &data->bios); 1078 list_move(&data->sibling, &conf->free_list); 1079 cnt++; 1080 if (cnt >= target) 1081 break; 1082 } 1083 conf->pending_data_cnt -= cnt; 1084 BUG_ON(conf->pending_data_cnt < 0 || cnt < target); 1085 1086 if (next != &conf->pending_list) 1087 conf->next_pending_data = list_entry(next, 1088 struct r5pending_data, sibling); 1089 else 1090 conf->next_pending_data = NULL; 1091 /* list isn't empty */ 1092 if (first != &conf->pending_list) 1093 list_move_tail(&conf->pending_list, first); 1094 } 1095 1096 static void flush_deferred_bios(struct r5conf *conf) 1097 { 1098 struct bio_list tmp = BIO_EMPTY_LIST; 1099 1100 if (conf->pending_data_cnt == 0) 1101 return; 1102 1103 spin_lock(&conf->pending_bios_lock); 1104 dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp); 1105 BUG_ON(conf->pending_data_cnt != 0); 1106 spin_unlock(&conf->pending_bios_lock); 1107 1108 dispatch_bio_list(&tmp); 1109 } 1110 1111 static void defer_issue_bios(struct r5conf *conf, sector_t sector, 1112 struct bio_list *bios) 1113 { 1114 struct bio_list tmp = BIO_EMPTY_LIST; 1115 struct r5pending_data *ent; 1116 1117 spin_lock(&conf->pending_bios_lock); 1118 ent = list_first_entry(&conf->free_list, struct r5pending_data, 1119 sibling); 1120 list_move_tail(&ent->sibling, &conf->pending_list); 1121 ent->sector = sector; 1122 bio_list_init(&ent->bios); 1123 bio_list_merge(&ent->bios, bios); 1124 conf->pending_data_cnt++; 1125 if (conf->pending_data_cnt >= PENDING_IO_MAX) 1126 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp); 1127 1128 spin_unlock(&conf->pending_bios_lock); 1129 1130 dispatch_bio_list(&tmp); 1131 } 1132 1133 static void 1134 raid5_end_read_request(struct bio *bi); 1135 static void 1136 raid5_end_write_request(struct bio *bi); 1137 1138 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s) 1139 { 1140 struct r5conf *conf = sh->raid_conf; 1141 int i, disks = sh->disks; 1142 struct stripe_head *head_sh = sh; 1143 struct bio_list pending_bios = BIO_EMPTY_LIST; 1144 struct r5dev *dev; 1145 bool should_defer; 1146 1147 might_sleep(); 1148 1149 if (log_stripe(sh, s) == 0) 1150 return; 1151 1152 should_defer = conf->batch_bio_dispatch && conf->group_cnt; 1153 1154 for (i = disks; i--; ) { 1155 enum req_op op; 1156 blk_opf_t op_flags = 0; 1157 int replace_only = 0; 1158 struct bio *bi, *rbi; 1159 struct md_rdev *rdev, *rrdev = NULL; 1160 1161 sh = head_sh; 1162 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) { 1163 op = REQ_OP_WRITE; 1164 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags)) 1165 op_flags = REQ_FUA; 1166 if (test_bit(R5_Discard, &sh->dev[i].flags)) 1167 op = REQ_OP_DISCARD; 1168 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags)) 1169 op = REQ_OP_READ; 1170 else if (test_and_clear_bit(R5_WantReplace, 1171 &sh->dev[i].flags)) { 1172 op = REQ_OP_WRITE; 1173 replace_only = 1; 1174 } else 1175 continue; 1176 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags)) 1177 op_flags |= REQ_SYNC; 1178 1179 again: 1180 dev = &sh->dev[i]; 1181 bi = &dev->req; 1182 rbi = &dev->rreq; /* For writing to replacement */ 1183 1184 rdev = conf->disks[i].rdev; 1185 rrdev = conf->disks[i].replacement; 1186 if (op_is_write(op)) { 1187 if (replace_only) 1188 rdev = NULL; 1189 if (rdev == rrdev) 1190 /* We raced and saw duplicates */ 1191 rrdev = NULL; 1192 } else { 1193 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev) 1194 rdev = rrdev; 1195 rrdev = NULL; 1196 } 1197 1198 if (rdev && test_bit(Faulty, &rdev->flags)) 1199 rdev = NULL; 1200 if (rdev) 1201 atomic_inc(&rdev->nr_pending); 1202 if (rrdev && test_bit(Faulty, &rrdev->flags)) 1203 rrdev = NULL; 1204 if (rrdev) 1205 atomic_inc(&rrdev->nr_pending); 1206 1207 /* We have already checked bad blocks for reads. Now 1208 * need to check for writes. We never accept write errors 1209 * on the replacement, so we don't to check rrdev. 1210 */ 1211 while (op_is_write(op) && rdev && 1212 test_bit(WriteErrorSeen, &rdev->flags)) { 1213 sector_t first_bad; 1214 int bad_sectors; 1215 int bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 1216 &first_bad, &bad_sectors); 1217 if (!bad) 1218 break; 1219 1220 if (bad < 0) { 1221 set_bit(BlockedBadBlocks, &rdev->flags); 1222 if (!conf->mddev->external && 1223 conf->mddev->sb_flags) { 1224 /* It is very unlikely, but we might 1225 * still need to write out the 1226 * bad block log - better give it 1227 * a chance*/ 1228 md_check_recovery(conf->mddev); 1229 } 1230 /* 1231 * Because md_wait_for_blocked_rdev 1232 * will dec nr_pending, we must 1233 * increment it first. 1234 */ 1235 atomic_inc(&rdev->nr_pending); 1236 md_wait_for_blocked_rdev(rdev, conf->mddev); 1237 } else { 1238 /* Acknowledged bad block - skip the write */ 1239 rdev_dec_pending(rdev, conf->mddev); 1240 rdev = NULL; 1241 } 1242 } 1243 1244 if (rdev) { 1245 if (s->syncing || s->expanding || s->expanded 1246 || s->replacing) 1247 md_sync_acct(rdev->bdev, RAID5_STRIPE_SECTORS(conf)); 1248 1249 set_bit(STRIPE_IO_STARTED, &sh->state); 1250 1251 bio_init(bi, rdev->bdev, &dev->vec, 1, op | op_flags); 1252 bi->bi_end_io = op_is_write(op) 1253 ? raid5_end_write_request 1254 : raid5_end_read_request; 1255 bi->bi_private = sh; 1256 1257 pr_debug("%s: for %llu schedule op %d on disc %d\n", 1258 __func__, (unsigned long long)sh->sector, 1259 bi->bi_opf, i); 1260 atomic_inc(&sh->count); 1261 if (sh != head_sh) 1262 atomic_inc(&head_sh->count); 1263 if (use_new_offset(conf, sh)) 1264 bi->bi_iter.bi_sector = (sh->sector 1265 + rdev->new_data_offset); 1266 else 1267 bi->bi_iter.bi_sector = (sh->sector 1268 + rdev->data_offset); 1269 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags)) 1270 bi->bi_opf |= REQ_NOMERGE; 1271 1272 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 1273 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 1274 1275 if (!op_is_write(op) && 1276 test_bit(R5_InJournal, &sh->dev[i].flags)) 1277 /* 1278 * issuing read for a page in journal, this 1279 * must be preparing for prexor in rmw; read 1280 * the data into orig_page 1281 */ 1282 sh->dev[i].vec.bv_page = sh->dev[i].orig_page; 1283 else 1284 sh->dev[i].vec.bv_page = sh->dev[i].page; 1285 bi->bi_vcnt = 1; 1286 bi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf); 1287 bi->bi_io_vec[0].bv_offset = sh->dev[i].offset; 1288 bi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf); 1289 /* 1290 * If this is discard request, set bi_vcnt 0. We don't 1291 * want to confuse SCSI because SCSI will replace payload 1292 */ 1293 if (op == REQ_OP_DISCARD) 1294 bi->bi_vcnt = 0; 1295 if (rrdev) 1296 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags); 1297 1298 if (conf->mddev->gendisk) 1299 trace_block_bio_remap(bi, 1300 disk_devt(conf->mddev->gendisk), 1301 sh->dev[i].sector); 1302 if (should_defer && op_is_write(op)) 1303 bio_list_add(&pending_bios, bi); 1304 else 1305 submit_bio_noacct(bi); 1306 } 1307 if (rrdev) { 1308 if (s->syncing || s->expanding || s->expanded 1309 || s->replacing) 1310 md_sync_acct(rrdev->bdev, RAID5_STRIPE_SECTORS(conf)); 1311 1312 set_bit(STRIPE_IO_STARTED, &sh->state); 1313 1314 bio_init(rbi, rrdev->bdev, &dev->rvec, 1, op | op_flags); 1315 BUG_ON(!op_is_write(op)); 1316 rbi->bi_end_io = raid5_end_write_request; 1317 rbi->bi_private = sh; 1318 1319 pr_debug("%s: for %llu schedule op %d on " 1320 "replacement disc %d\n", 1321 __func__, (unsigned long long)sh->sector, 1322 rbi->bi_opf, i); 1323 atomic_inc(&sh->count); 1324 if (sh != head_sh) 1325 atomic_inc(&head_sh->count); 1326 if (use_new_offset(conf, sh)) 1327 rbi->bi_iter.bi_sector = (sh->sector 1328 + rrdev->new_data_offset); 1329 else 1330 rbi->bi_iter.bi_sector = (sh->sector 1331 + rrdev->data_offset); 1332 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 1333 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 1334 sh->dev[i].rvec.bv_page = sh->dev[i].page; 1335 rbi->bi_vcnt = 1; 1336 rbi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf); 1337 rbi->bi_io_vec[0].bv_offset = sh->dev[i].offset; 1338 rbi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf); 1339 /* 1340 * If this is discard request, set bi_vcnt 0. We don't 1341 * want to confuse SCSI because SCSI will replace payload 1342 */ 1343 if (op == REQ_OP_DISCARD) 1344 rbi->bi_vcnt = 0; 1345 if (conf->mddev->gendisk) 1346 trace_block_bio_remap(rbi, 1347 disk_devt(conf->mddev->gendisk), 1348 sh->dev[i].sector); 1349 if (should_defer && op_is_write(op)) 1350 bio_list_add(&pending_bios, rbi); 1351 else 1352 submit_bio_noacct(rbi); 1353 } 1354 if (!rdev && !rrdev) { 1355 if (op_is_write(op)) 1356 set_bit(STRIPE_DEGRADED, &sh->state); 1357 pr_debug("skip op %d on disc %d for sector %llu\n", 1358 bi->bi_opf, i, (unsigned long long)sh->sector); 1359 clear_bit(R5_LOCKED, &sh->dev[i].flags); 1360 set_bit(STRIPE_HANDLE, &sh->state); 1361 } 1362 1363 if (!head_sh->batch_head) 1364 continue; 1365 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1366 batch_list); 1367 if (sh != head_sh) 1368 goto again; 1369 } 1370 1371 if (should_defer && !bio_list_empty(&pending_bios)) 1372 defer_issue_bios(conf, head_sh->sector, &pending_bios); 1373 } 1374 1375 static struct dma_async_tx_descriptor * 1376 async_copy_data(int frombio, struct bio *bio, struct page **page, 1377 unsigned int poff, sector_t sector, struct dma_async_tx_descriptor *tx, 1378 struct stripe_head *sh, int no_skipcopy) 1379 { 1380 struct bio_vec bvl; 1381 struct bvec_iter iter; 1382 struct page *bio_page; 1383 int page_offset; 1384 struct async_submit_ctl submit; 1385 enum async_tx_flags flags = 0; 1386 struct r5conf *conf = sh->raid_conf; 1387 1388 if (bio->bi_iter.bi_sector >= sector) 1389 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512; 1390 else 1391 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512; 1392 1393 if (frombio) 1394 flags |= ASYNC_TX_FENCE; 1395 init_async_submit(&submit, flags, tx, NULL, NULL, NULL); 1396 1397 bio_for_each_segment(bvl, bio, iter) { 1398 int len = bvl.bv_len; 1399 int clen; 1400 int b_offset = 0; 1401 1402 if (page_offset < 0) { 1403 b_offset = -page_offset; 1404 page_offset += b_offset; 1405 len -= b_offset; 1406 } 1407 1408 if (len > 0 && page_offset + len > RAID5_STRIPE_SIZE(conf)) 1409 clen = RAID5_STRIPE_SIZE(conf) - page_offset; 1410 else 1411 clen = len; 1412 1413 if (clen > 0) { 1414 b_offset += bvl.bv_offset; 1415 bio_page = bvl.bv_page; 1416 if (frombio) { 1417 if (conf->skip_copy && 1418 b_offset == 0 && page_offset == 0 && 1419 clen == RAID5_STRIPE_SIZE(conf) && 1420 !no_skipcopy) 1421 *page = bio_page; 1422 else 1423 tx = async_memcpy(*page, bio_page, page_offset + poff, 1424 b_offset, clen, &submit); 1425 } else 1426 tx = async_memcpy(bio_page, *page, b_offset, 1427 page_offset + poff, clen, &submit); 1428 } 1429 /* chain the operations */ 1430 submit.depend_tx = tx; 1431 1432 if (clen < len) /* hit end of page */ 1433 break; 1434 page_offset += len; 1435 } 1436 1437 return tx; 1438 } 1439 1440 static void ops_complete_biofill(void *stripe_head_ref) 1441 { 1442 struct stripe_head *sh = stripe_head_ref; 1443 int i; 1444 struct r5conf *conf = sh->raid_conf; 1445 1446 pr_debug("%s: stripe %llu\n", __func__, 1447 (unsigned long long)sh->sector); 1448 1449 /* clear completed biofills */ 1450 for (i = sh->disks; i--; ) { 1451 struct r5dev *dev = &sh->dev[i]; 1452 1453 /* acknowledge completion of a biofill operation */ 1454 /* and check if we need to reply to a read request, 1455 * new R5_Wantfill requests are held off until 1456 * !STRIPE_BIOFILL_RUN 1457 */ 1458 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) { 1459 struct bio *rbi, *rbi2; 1460 1461 BUG_ON(!dev->read); 1462 rbi = dev->read; 1463 dev->read = NULL; 1464 while (rbi && rbi->bi_iter.bi_sector < 1465 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 1466 rbi2 = r5_next_bio(conf, rbi, dev->sector); 1467 bio_endio(rbi); 1468 rbi = rbi2; 1469 } 1470 } 1471 } 1472 clear_bit(STRIPE_BIOFILL_RUN, &sh->state); 1473 1474 set_bit(STRIPE_HANDLE, &sh->state); 1475 raid5_release_stripe(sh); 1476 } 1477 1478 static void ops_run_biofill(struct stripe_head *sh) 1479 { 1480 struct dma_async_tx_descriptor *tx = NULL; 1481 struct async_submit_ctl submit; 1482 int i; 1483 struct r5conf *conf = sh->raid_conf; 1484 1485 BUG_ON(sh->batch_head); 1486 pr_debug("%s: stripe %llu\n", __func__, 1487 (unsigned long long)sh->sector); 1488 1489 for (i = sh->disks; i--; ) { 1490 struct r5dev *dev = &sh->dev[i]; 1491 if (test_bit(R5_Wantfill, &dev->flags)) { 1492 struct bio *rbi; 1493 spin_lock_irq(&sh->stripe_lock); 1494 dev->read = rbi = dev->toread; 1495 dev->toread = NULL; 1496 spin_unlock_irq(&sh->stripe_lock); 1497 while (rbi && rbi->bi_iter.bi_sector < 1498 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 1499 tx = async_copy_data(0, rbi, &dev->page, 1500 dev->offset, 1501 dev->sector, tx, sh, 0); 1502 rbi = r5_next_bio(conf, rbi, dev->sector); 1503 } 1504 } 1505 } 1506 1507 atomic_inc(&sh->count); 1508 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL); 1509 async_trigger_callback(&submit); 1510 } 1511 1512 static void mark_target_uptodate(struct stripe_head *sh, int target) 1513 { 1514 struct r5dev *tgt; 1515 1516 if (target < 0) 1517 return; 1518 1519 tgt = &sh->dev[target]; 1520 set_bit(R5_UPTODATE, &tgt->flags); 1521 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1522 clear_bit(R5_Wantcompute, &tgt->flags); 1523 } 1524 1525 static void ops_complete_compute(void *stripe_head_ref) 1526 { 1527 struct stripe_head *sh = stripe_head_ref; 1528 1529 pr_debug("%s: stripe %llu\n", __func__, 1530 (unsigned long long)sh->sector); 1531 1532 /* mark the computed target(s) as uptodate */ 1533 mark_target_uptodate(sh, sh->ops.target); 1534 mark_target_uptodate(sh, sh->ops.target2); 1535 1536 clear_bit(STRIPE_COMPUTE_RUN, &sh->state); 1537 if (sh->check_state == check_state_compute_run) 1538 sh->check_state = check_state_compute_result; 1539 set_bit(STRIPE_HANDLE, &sh->state); 1540 raid5_release_stripe(sh); 1541 } 1542 1543 /* return a pointer to the address conversion region of the scribble buffer */ 1544 static struct page **to_addr_page(struct raid5_percpu *percpu, int i) 1545 { 1546 return percpu->scribble + i * percpu->scribble_obj_size; 1547 } 1548 1549 /* return a pointer to the address conversion region of the scribble buffer */ 1550 static addr_conv_t *to_addr_conv(struct stripe_head *sh, 1551 struct raid5_percpu *percpu, int i) 1552 { 1553 return (void *) (to_addr_page(percpu, i) + sh->disks + 2); 1554 } 1555 1556 /* 1557 * Return a pointer to record offset address. 1558 */ 1559 static unsigned int * 1560 to_addr_offs(struct stripe_head *sh, struct raid5_percpu *percpu) 1561 { 1562 return (unsigned int *) (to_addr_conv(sh, percpu, 0) + sh->disks + 2); 1563 } 1564 1565 static struct dma_async_tx_descriptor * 1566 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu) 1567 { 1568 int disks = sh->disks; 1569 struct page **xor_srcs = to_addr_page(percpu, 0); 1570 unsigned int *off_srcs = to_addr_offs(sh, percpu); 1571 int target = sh->ops.target; 1572 struct r5dev *tgt = &sh->dev[target]; 1573 struct page *xor_dest = tgt->page; 1574 unsigned int off_dest = tgt->offset; 1575 int count = 0; 1576 struct dma_async_tx_descriptor *tx; 1577 struct async_submit_ctl submit; 1578 int i; 1579 1580 BUG_ON(sh->batch_head); 1581 1582 pr_debug("%s: stripe %llu block: %d\n", 1583 __func__, (unsigned long long)sh->sector, target); 1584 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1585 1586 for (i = disks; i--; ) { 1587 if (i != target) { 1588 off_srcs[count] = sh->dev[i].offset; 1589 xor_srcs[count++] = sh->dev[i].page; 1590 } 1591 } 1592 1593 atomic_inc(&sh->count); 1594 1595 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL, 1596 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0)); 1597 if (unlikely(count == 1)) 1598 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0], 1599 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1600 else 1601 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count, 1602 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1603 1604 return tx; 1605 } 1606 1607 /* set_syndrome_sources - populate source buffers for gen_syndrome 1608 * @srcs - (struct page *) array of size sh->disks 1609 * @offs - (unsigned int) array of offset for each page 1610 * @sh - stripe_head to parse 1611 * 1612 * Populates srcs in proper layout order for the stripe and returns the 1613 * 'count' of sources to be used in a call to async_gen_syndrome. The P 1614 * destination buffer is recorded in srcs[count] and the Q destination 1615 * is recorded in srcs[count+1]]. 1616 */ 1617 static int set_syndrome_sources(struct page **srcs, 1618 unsigned int *offs, 1619 struct stripe_head *sh, 1620 int srctype) 1621 { 1622 int disks = sh->disks; 1623 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2); 1624 int d0_idx = raid6_d0(sh); 1625 int count; 1626 int i; 1627 1628 for (i = 0; i < disks; i++) 1629 srcs[i] = NULL; 1630 1631 count = 0; 1632 i = d0_idx; 1633 do { 1634 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1635 struct r5dev *dev = &sh->dev[i]; 1636 1637 if (i == sh->qd_idx || i == sh->pd_idx || 1638 (srctype == SYNDROME_SRC_ALL) || 1639 (srctype == SYNDROME_SRC_WANT_DRAIN && 1640 (test_bit(R5_Wantdrain, &dev->flags) || 1641 test_bit(R5_InJournal, &dev->flags))) || 1642 (srctype == SYNDROME_SRC_WRITTEN && 1643 (dev->written || 1644 test_bit(R5_InJournal, &dev->flags)))) { 1645 if (test_bit(R5_InJournal, &dev->flags)) 1646 srcs[slot] = sh->dev[i].orig_page; 1647 else 1648 srcs[slot] = sh->dev[i].page; 1649 /* 1650 * For R5_InJournal, PAGE_SIZE must be 4KB and will 1651 * not shared page. In that case, dev[i].offset 1652 * is 0. 1653 */ 1654 offs[slot] = sh->dev[i].offset; 1655 } 1656 i = raid6_next_disk(i, disks); 1657 } while (i != d0_idx); 1658 1659 return syndrome_disks; 1660 } 1661 1662 static struct dma_async_tx_descriptor * 1663 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu) 1664 { 1665 int disks = sh->disks; 1666 struct page **blocks = to_addr_page(percpu, 0); 1667 unsigned int *offs = to_addr_offs(sh, percpu); 1668 int target; 1669 int qd_idx = sh->qd_idx; 1670 struct dma_async_tx_descriptor *tx; 1671 struct async_submit_ctl submit; 1672 struct r5dev *tgt; 1673 struct page *dest; 1674 unsigned int dest_off; 1675 int i; 1676 int count; 1677 1678 BUG_ON(sh->batch_head); 1679 if (sh->ops.target < 0) 1680 target = sh->ops.target2; 1681 else if (sh->ops.target2 < 0) 1682 target = sh->ops.target; 1683 else 1684 /* we should only have one valid target */ 1685 BUG(); 1686 BUG_ON(target < 0); 1687 pr_debug("%s: stripe %llu block: %d\n", 1688 __func__, (unsigned long long)sh->sector, target); 1689 1690 tgt = &sh->dev[target]; 1691 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1692 dest = tgt->page; 1693 dest_off = tgt->offset; 1694 1695 atomic_inc(&sh->count); 1696 1697 if (target == qd_idx) { 1698 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL); 1699 blocks[count] = NULL; /* regenerating p is not necessary */ 1700 BUG_ON(blocks[count+1] != dest); /* q should already be set */ 1701 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1702 ops_complete_compute, sh, 1703 to_addr_conv(sh, percpu, 0)); 1704 tx = async_gen_syndrome(blocks, offs, count+2, 1705 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1706 } else { 1707 /* Compute any data- or p-drive using XOR */ 1708 count = 0; 1709 for (i = disks; i-- ; ) { 1710 if (i == target || i == qd_idx) 1711 continue; 1712 offs[count] = sh->dev[i].offset; 1713 blocks[count++] = sh->dev[i].page; 1714 } 1715 1716 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1717 NULL, ops_complete_compute, sh, 1718 to_addr_conv(sh, percpu, 0)); 1719 tx = async_xor_offs(dest, dest_off, blocks, offs, count, 1720 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1721 } 1722 1723 return tx; 1724 } 1725 1726 static struct dma_async_tx_descriptor * 1727 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu) 1728 { 1729 int i, count, disks = sh->disks; 1730 int syndrome_disks = sh->ddf_layout ? disks : disks-2; 1731 int d0_idx = raid6_d0(sh); 1732 int faila = -1, failb = -1; 1733 int target = sh->ops.target; 1734 int target2 = sh->ops.target2; 1735 struct r5dev *tgt = &sh->dev[target]; 1736 struct r5dev *tgt2 = &sh->dev[target2]; 1737 struct dma_async_tx_descriptor *tx; 1738 struct page **blocks = to_addr_page(percpu, 0); 1739 unsigned int *offs = to_addr_offs(sh, percpu); 1740 struct async_submit_ctl submit; 1741 1742 BUG_ON(sh->batch_head); 1743 pr_debug("%s: stripe %llu block1: %d block2: %d\n", 1744 __func__, (unsigned long long)sh->sector, target, target2); 1745 BUG_ON(target < 0 || target2 < 0); 1746 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1747 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags)); 1748 1749 /* we need to open-code set_syndrome_sources to handle the 1750 * slot number conversion for 'faila' and 'failb' 1751 */ 1752 for (i = 0; i < disks ; i++) { 1753 offs[i] = 0; 1754 blocks[i] = NULL; 1755 } 1756 count = 0; 1757 i = d0_idx; 1758 do { 1759 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1760 1761 offs[slot] = sh->dev[i].offset; 1762 blocks[slot] = sh->dev[i].page; 1763 1764 if (i == target) 1765 faila = slot; 1766 if (i == target2) 1767 failb = slot; 1768 i = raid6_next_disk(i, disks); 1769 } while (i != d0_idx); 1770 1771 BUG_ON(faila == failb); 1772 if (failb < faila) 1773 swap(faila, failb); 1774 pr_debug("%s: stripe: %llu faila: %d failb: %d\n", 1775 __func__, (unsigned long long)sh->sector, faila, failb); 1776 1777 atomic_inc(&sh->count); 1778 1779 if (failb == syndrome_disks+1) { 1780 /* Q disk is one of the missing disks */ 1781 if (faila == syndrome_disks) { 1782 /* Missing P+Q, just recompute */ 1783 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1784 ops_complete_compute, sh, 1785 to_addr_conv(sh, percpu, 0)); 1786 return async_gen_syndrome(blocks, offs, syndrome_disks+2, 1787 RAID5_STRIPE_SIZE(sh->raid_conf), 1788 &submit); 1789 } else { 1790 struct page *dest; 1791 unsigned int dest_off; 1792 int data_target; 1793 int qd_idx = sh->qd_idx; 1794 1795 /* Missing D+Q: recompute D from P, then recompute Q */ 1796 if (target == qd_idx) 1797 data_target = target2; 1798 else 1799 data_target = target; 1800 1801 count = 0; 1802 for (i = disks; i-- ; ) { 1803 if (i == data_target || i == qd_idx) 1804 continue; 1805 offs[count] = sh->dev[i].offset; 1806 blocks[count++] = sh->dev[i].page; 1807 } 1808 dest = sh->dev[data_target].page; 1809 dest_off = sh->dev[data_target].offset; 1810 init_async_submit(&submit, 1811 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1812 NULL, NULL, NULL, 1813 to_addr_conv(sh, percpu, 0)); 1814 tx = async_xor_offs(dest, dest_off, blocks, offs, count, 1815 RAID5_STRIPE_SIZE(sh->raid_conf), 1816 &submit); 1817 1818 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL); 1819 init_async_submit(&submit, ASYNC_TX_FENCE, tx, 1820 ops_complete_compute, sh, 1821 to_addr_conv(sh, percpu, 0)); 1822 return async_gen_syndrome(blocks, offs, count+2, 1823 RAID5_STRIPE_SIZE(sh->raid_conf), 1824 &submit); 1825 } 1826 } else { 1827 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1828 ops_complete_compute, sh, 1829 to_addr_conv(sh, percpu, 0)); 1830 if (failb == syndrome_disks) { 1831 /* We're missing D+P. */ 1832 return async_raid6_datap_recov(syndrome_disks+2, 1833 RAID5_STRIPE_SIZE(sh->raid_conf), 1834 faila, 1835 blocks, offs, &submit); 1836 } else { 1837 /* We're missing D+D. */ 1838 return async_raid6_2data_recov(syndrome_disks+2, 1839 RAID5_STRIPE_SIZE(sh->raid_conf), 1840 faila, failb, 1841 blocks, offs, &submit); 1842 } 1843 } 1844 } 1845 1846 static void ops_complete_prexor(void *stripe_head_ref) 1847 { 1848 struct stripe_head *sh = stripe_head_ref; 1849 1850 pr_debug("%s: stripe %llu\n", __func__, 1851 (unsigned long long)sh->sector); 1852 1853 if (r5c_is_writeback(sh->raid_conf->log)) 1854 /* 1855 * raid5-cache write back uses orig_page during prexor. 1856 * After prexor, it is time to free orig_page 1857 */ 1858 r5c_release_extra_page(sh); 1859 } 1860 1861 static struct dma_async_tx_descriptor * 1862 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu, 1863 struct dma_async_tx_descriptor *tx) 1864 { 1865 int disks = sh->disks; 1866 struct page **xor_srcs = to_addr_page(percpu, 0); 1867 unsigned int *off_srcs = to_addr_offs(sh, percpu); 1868 int count = 0, pd_idx = sh->pd_idx, i; 1869 struct async_submit_ctl submit; 1870 1871 /* existing parity data subtracted */ 1872 unsigned int off_dest = off_srcs[count] = sh->dev[pd_idx].offset; 1873 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1874 1875 BUG_ON(sh->batch_head); 1876 pr_debug("%s: stripe %llu\n", __func__, 1877 (unsigned long long)sh->sector); 1878 1879 for (i = disks; i--; ) { 1880 struct r5dev *dev = &sh->dev[i]; 1881 /* Only process blocks that are known to be uptodate */ 1882 if (test_bit(R5_InJournal, &dev->flags)) { 1883 /* 1884 * For this case, PAGE_SIZE must be equal to 4KB and 1885 * page offset is zero. 1886 */ 1887 off_srcs[count] = dev->offset; 1888 xor_srcs[count++] = dev->orig_page; 1889 } else if (test_bit(R5_Wantdrain, &dev->flags)) { 1890 off_srcs[count] = dev->offset; 1891 xor_srcs[count++] = dev->page; 1892 } 1893 } 1894 1895 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx, 1896 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); 1897 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count, 1898 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1899 1900 return tx; 1901 } 1902 1903 static struct dma_async_tx_descriptor * 1904 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu, 1905 struct dma_async_tx_descriptor *tx) 1906 { 1907 struct page **blocks = to_addr_page(percpu, 0); 1908 unsigned int *offs = to_addr_offs(sh, percpu); 1909 int count; 1910 struct async_submit_ctl submit; 1911 1912 pr_debug("%s: stripe %llu\n", __func__, 1913 (unsigned long long)sh->sector); 1914 1915 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_WANT_DRAIN); 1916 1917 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx, 1918 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); 1919 tx = async_gen_syndrome(blocks, offs, count+2, 1920 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1921 1922 return tx; 1923 } 1924 1925 static struct dma_async_tx_descriptor * 1926 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) 1927 { 1928 struct r5conf *conf = sh->raid_conf; 1929 int disks = sh->disks; 1930 int i; 1931 struct stripe_head *head_sh = sh; 1932 1933 pr_debug("%s: stripe %llu\n", __func__, 1934 (unsigned long long)sh->sector); 1935 1936 for (i = disks; i--; ) { 1937 struct r5dev *dev; 1938 struct bio *chosen; 1939 1940 sh = head_sh; 1941 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) { 1942 struct bio *wbi; 1943 1944 again: 1945 dev = &sh->dev[i]; 1946 /* 1947 * clear R5_InJournal, so when rewriting a page in 1948 * journal, it is not skipped by r5l_log_stripe() 1949 */ 1950 clear_bit(R5_InJournal, &dev->flags); 1951 spin_lock_irq(&sh->stripe_lock); 1952 chosen = dev->towrite; 1953 dev->towrite = NULL; 1954 sh->overwrite_disks = 0; 1955 BUG_ON(dev->written); 1956 wbi = dev->written = chosen; 1957 spin_unlock_irq(&sh->stripe_lock); 1958 WARN_ON(dev->page != dev->orig_page); 1959 1960 while (wbi && wbi->bi_iter.bi_sector < 1961 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 1962 if (wbi->bi_opf & REQ_FUA) 1963 set_bit(R5_WantFUA, &dev->flags); 1964 if (wbi->bi_opf & REQ_SYNC) 1965 set_bit(R5_SyncIO, &dev->flags); 1966 if (bio_op(wbi) == REQ_OP_DISCARD) 1967 set_bit(R5_Discard, &dev->flags); 1968 else { 1969 tx = async_copy_data(1, wbi, &dev->page, 1970 dev->offset, 1971 dev->sector, tx, sh, 1972 r5c_is_writeback(conf->log)); 1973 if (dev->page != dev->orig_page && 1974 !r5c_is_writeback(conf->log)) { 1975 set_bit(R5_SkipCopy, &dev->flags); 1976 clear_bit(R5_UPTODATE, &dev->flags); 1977 clear_bit(R5_OVERWRITE, &dev->flags); 1978 } 1979 } 1980 wbi = r5_next_bio(conf, wbi, dev->sector); 1981 } 1982 1983 if (head_sh->batch_head) { 1984 sh = list_first_entry(&sh->batch_list, 1985 struct stripe_head, 1986 batch_list); 1987 if (sh == head_sh) 1988 continue; 1989 goto again; 1990 } 1991 } 1992 } 1993 1994 return tx; 1995 } 1996 1997 static void ops_complete_reconstruct(void *stripe_head_ref) 1998 { 1999 struct stripe_head *sh = stripe_head_ref; 2000 int disks = sh->disks; 2001 int pd_idx = sh->pd_idx; 2002 int qd_idx = sh->qd_idx; 2003 int i; 2004 bool fua = false, sync = false, discard = false; 2005 2006 pr_debug("%s: stripe %llu\n", __func__, 2007 (unsigned long long)sh->sector); 2008 2009 for (i = disks; i--; ) { 2010 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags); 2011 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags); 2012 discard |= test_bit(R5_Discard, &sh->dev[i].flags); 2013 } 2014 2015 for (i = disks; i--; ) { 2016 struct r5dev *dev = &sh->dev[i]; 2017 2018 if (dev->written || i == pd_idx || i == qd_idx) { 2019 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) { 2020 set_bit(R5_UPTODATE, &dev->flags); 2021 if (test_bit(STRIPE_EXPAND_READY, &sh->state)) 2022 set_bit(R5_Expanded, &dev->flags); 2023 } 2024 if (fua) 2025 set_bit(R5_WantFUA, &dev->flags); 2026 if (sync) 2027 set_bit(R5_SyncIO, &dev->flags); 2028 } 2029 } 2030 2031 if (sh->reconstruct_state == reconstruct_state_drain_run) 2032 sh->reconstruct_state = reconstruct_state_drain_result; 2033 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) 2034 sh->reconstruct_state = reconstruct_state_prexor_drain_result; 2035 else { 2036 BUG_ON(sh->reconstruct_state != reconstruct_state_run); 2037 sh->reconstruct_state = reconstruct_state_result; 2038 } 2039 2040 set_bit(STRIPE_HANDLE, &sh->state); 2041 raid5_release_stripe(sh); 2042 } 2043 2044 static void 2045 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu, 2046 struct dma_async_tx_descriptor *tx) 2047 { 2048 int disks = sh->disks; 2049 struct page **xor_srcs; 2050 unsigned int *off_srcs; 2051 struct async_submit_ctl submit; 2052 int count, pd_idx = sh->pd_idx, i; 2053 struct page *xor_dest; 2054 unsigned int off_dest; 2055 int prexor = 0; 2056 unsigned long flags; 2057 int j = 0; 2058 struct stripe_head *head_sh = sh; 2059 int last_stripe; 2060 2061 pr_debug("%s: stripe %llu\n", __func__, 2062 (unsigned long long)sh->sector); 2063 2064 for (i = 0; i < sh->disks; i++) { 2065 if (pd_idx == i) 2066 continue; 2067 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 2068 break; 2069 } 2070 if (i >= sh->disks) { 2071 atomic_inc(&sh->count); 2072 set_bit(R5_Discard, &sh->dev[pd_idx].flags); 2073 ops_complete_reconstruct(sh); 2074 return; 2075 } 2076 again: 2077 count = 0; 2078 xor_srcs = to_addr_page(percpu, j); 2079 off_srcs = to_addr_offs(sh, percpu); 2080 /* check if prexor is active which means only process blocks 2081 * that are part of a read-modify-write (written) 2082 */ 2083 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 2084 prexor = 1; 2085 off_dest = off_srcs[count] = sh->dev[pd_idx].offset; 2086 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 2087 for (i = disks; i--; ) { 2088 struct r5dev *dev = &sh->dev[i]; 2089 if (head_sh->dev[i].written || 2090 test_bit(R5_InJournal, &head_sh->dev[i].flags)) { 2091 off_srcs[count] = dev->offset; 2092 xor_srcs[count++] = dev->page; 2093 } 2094 } 2095 } else { 2096 xor_dest = sh->dev[pd_idx].page; 2097 off_dest = sh->dev[pd_idx].offset; 2098 for (i = disks; i--; ) { 2099 struct r5dev *dev = &sh->dev[i]; 2100 if (i != pd_idx) { 2101 off_srcs[count] = dev->offset; 2102 xor_srcs[count++] = dev->page; 2103 } 2104 } 2105 } 2106 2107 /* 1/ if we prexor'd then the dest is reused as a source 2108 * 2/ if we did not prexor then we are redoing the parity 2109 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST 2110 * for the synchronous xor case 2111 */ 2112 last_stripe = !head_sh->batch_head || 2113 list_first_entry(&sh->batch_list, 2114 struct stripe_head, batch_list) == head_sh; 2115 if (last_stripe) { 2116 flags = ASYNC_TX_ACK | 2117 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST); 2118 2119 atomic_inc(&head_sh->count); 2120 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh, 2121 to_addr_conv(sh, percpu, j)); 2122 } else { 2123 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST; 2124 init_async_submit(&submit, flags, tx, NULL, NULL, 2125 to_addr_conv(sh, percpu, j)); 2126 } 2127 2128 if (unlikely(count == 1)) 2129 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0], 2130 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 2131 else 2132 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count, 2133 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 2134 if (!last_stripe) { 2135 j++; 2136 sh = list_first_entry(&sh->batch_list, struct stripe_head, 2137 batch_list); 2138 goto again; 2139 } 2140 } 2141 2142 static void 2143 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu, 2144 struct dma_async_tx_descriptor *tx) 2145 { 2146 struct async_submit_ctl submit; 2147 struct page **blocks; 2148 unsigned int *offs; 2149 int count, i, j = 0; 2150 struct stripe_head *head_sh = sh; 2151 int last_stripe; 2152 int synflags; 2153 unsigned long txflags; 2154 2155 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); 2156 2157 for (i = 0; i < sh->disks; i++) { 2158 if (sh->pd_idx == i || sh->qd_idx == i) 2159 continue; 2160 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 2161 break; 2162 } 2163 if (i >= sh->disks) { 2164 atomic_inc(&sh->count); 2165 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 2166 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 2167 ops_complete_reconstruct(sh); 2168 return; 2169 } 2170 2171 again: 2172 blocks = to_addr_page(percpu, j); 2173 offs = to_addr_offs(sh, percpu); 2174 2175 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 2176 synflags = SYNDROME_SRC_WRITTEN; 2177 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST; 2178 } else { 2179 synflags = SYNDROME_SRC_ALL; 2180 txflags = ASYNC_TX_ACK; 2181 } 2182 2183 count = set_syndrome_sources(blocks, offs, sh, synflags); 2184 last_stripe = !head_sh->batch_head || 2185 list_first_entry(&sh->batch_list, 2186 struct stripe_head, batch_list) == head_sh; 2187 2188 if (last_stripe) { 2189 atomic_inc(&head_sh->count); 2190 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct, 2191 head_sh, to_addr_conv(sh, percpu, j)); 2192 } else 2193 init_async_submit(&submit, 0, tx, NULL, NULL, 2194 to_addr_conv(sh, percpu, j)); 2195 tx = async_gen_syndrome(blocks, offs, count+2, 2196 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 2197 if (!last_stripe) { 2198 j++; 2199 sh = list_first_entry(&sh->batch_list, struct stripe_head, 2200 batch_list); 2201 goto again; 2202 } 2203 } 2204 2205 static void ops_complete_check(void *stripe_head_ref) 2206 { 2207 struct stripe_head *sh = stripe_head_ref; 2208 2209 pr_debug("%s: stripe %llu\n", __func__, 2210 (unsigned long long)sh->sector); 2211 2212 sh->check_state = check_state_check_result; 2213 set_bit(STRIPE_HANDLE, &sh->state); 2214 raid5_release_stripe(sh); 2215 } 2216 2217 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu) 2218 { 2219 int disks = sh->disks; 2220 int pd_idx = sh->pd_idx; 2221 int qd_idx = sh->qd_idx; 2222 struct page *xor_dest; 2223 unsigned int off_dest; 2224 struct page **xor_srcs = to_addr_page(percpu, 0); 2225 unsigned int *off_srcs = to_addr_offs(sh, percpu); 2226 struct dma_async_tx_descriptor *tx; 2227 struct async_submit_ctl submit; 2228 int count; 2229 int i; 2230 2231 pr_debug("%s: stripe %llu\n", __func__, 2232 (unsigned long long)sh->sector); 2233 2234 BUG_ON(sh->batch_head); 2235 count = 0; 2236 xor_dest = sh->dev[pd_idx].page; 2237 off_dest = sh->dev[pd_idx].offset; 2238 off_srcs[count] = off_dest; 2239 xor_srcs[count++] = xor_dest; 2240 for (i = disks; i--; ) { 2241 if (i == pd_idx || i == qd_idx) 2242 continue; 2243 off_srcs[count] = sh->dev[i].offset; 2244 xor_srcs[count++] = sh->dev[i].page; 2245 } 2246 2247 init_async_submit(&submit, 0, NULL, NULL, NULL, 2248 to_addr_conv(sh, percpu, 0)); 2249 tx = async_xor_val_offs(xor_dest, off_dest, xor_srcs, off_srcs, count, 2250 RAID5_STRIPE_SIZE(sh->raid_conf), 2251 &sh->ops.zero_sum_result, &submit); 2252 2253 atomic_inc(&sh->count); 2254 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL); 2255 tx = async_trigger_callback(&submit); 2256 } 2257 2258 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp) 2259 { 2260 struct page **srcs = to_addr_page(percpu, 0); 2261 unsigned int *offs = to_addr_offs(sh, percpu); 2262 struct async_submit_ctl submit; 2263 int count; 2264 2265 pr_debug("%s: stripe %llu checkp: %d\n", __func__, 2266 (unsigned long long)sh->sector, checkp); 2267 2268 BUG_ON(sh->batch_head); 2269 count = set_syndrome_sources(srcs, offs, sh, SYNDROME_SRC_ALL); 2270 if (!checkp) 2271 srcs[count] = NULL; 2272 2273 atomic_inc(&sh->count); 2274 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check, 2275 sh, to_addr_conv(sh, percpu, 0)); 2276 async_syndrome_val(srcs, offs, count+2, 2277 RAID5_STRIPE_SIZE(sh->raid_conf), 2278 &sh->ops.zero_sum_result, percpu->spare_page, 0, &submit); 2279 } 2280 2281 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request) 2282 { 2283 int overlap_clear = 0, i, disks = sh->disks; 2284 struct dma_async_tx_descriptor *tx = NULL; 2285 struct r5conf *conf = sh->raid_conf; 2286 int level = conf->level; 2287 struct raid5_percpu *percpu; 2288 2289 local_lock(&conf->percpu->lock); 2290 percpu = this_cpu_ptr(conf->percpu); 2291 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) { 2292 ops_run_biofill(sh); 2293 overlap_clear++; 2294 } 2295 2296 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) { 2297 if (level < 6) 2298 tx = ops_run_compute5(sh, percpu); 2299 else { 2300 if (sh->ops.target2 < 0 || sh->ops.target < 0) 2301 tx = ops_run_compute6_1(sh, percpu); 2302 else 2303 tx = ops_run_compute6_2(sh, percpu); 2304 } 2305 /* terminate the chain if reconstruct is not set to be run */ 2306 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) 2307 async_tx_ack(tx); 2308 } 2309 2310 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) { 2311 if (level < 6) 2312 tx = ops_run_prexor5(sh, percpu, tx); 2313 else 2314 tx = ops_run_prexor6(sh, percpu, tx); 2315 } 2316 2317 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request)) 2318 tx = ops_run_partial_parity(sh, percpu, tx); 2319 2320 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) { 2321 tx = ops_run_biodrain(sh, tx); 2322 overlap_clear++; 2323 } 2324 2325 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) { 2326 if (level < 6) 2327 ops_run_reconstruct5(sh, percpu, tx); 2328 else 2329 ops_run_reconstruct6(sh, percpu, tx); 2330 } 2331 2332 if (test_bit(STRIPE_OP_CHECK, &ops_request)) { 2333 if (sh->check_state == check_state_run) 2334 ops_run_check_p(sh, percpu); 2335 else if (sh->check_state == check_state_run_q) 2336 ops_run_check_pq(sh, percpu, 0); 2337 else if (sh->check_state == check_state_run_pq) 2338 ops_run_check_pq(sh, percpu, 1); 2339 else 2340 BUG(); 2341 } 2342 2343 if (overlap_clear && !sh->batch_head) { 2344 for (i = disks; i--; ) { 2345 struct r5dev *dev = &sh->dev[i]; 2346 if (test_and_clear_bit(R5_Overlap, &dev->flags)) 2347 wake_up(&sh->raid_conf->wait_for_overlap); 2348 } 2349 } 2350 local_unlock(&conf->percpu->lock); 2351 } 2352 2353 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh) 2354 { 2355 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 2356 kfree(sh->pages); 2357 #endif 2358 if (sh->ppl_page) 2359 __free_page(sh->ppl_page); 2360 kmem_cache_free(sc, sh); 2361 } 2362 2363 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp, 2364 int disks, struct r5conf *conf) 2365 { 2366 struct stripe_head *sh; 2367 2368 sh = kmem_cache_zalloc(sc, gfp); 2369 if (sh) { 2370 spin_lock_init(&sh->stripe_lock); 2371 spin_lock_init(&sh->batch_lock); 2372 INIT_LIST_HEAD(&sh->batch_list); 2373 INIT_LIST_HEAD(&sh->lru); 2374 INIT_LIST_HEAD(&sh->r5c); 2375 INIT_LIST_HEAD(&sh->log_list); 2376 atomic_set(&sh->count, 1); 2377 sh->raid_conf = conf; 2378 sh->log_start = MaxSector; 2379 2380 if (raid5_has_ppl(conf)) { 2381 sh->ppl_page = alloc_page(gfp); 2382 if (!sh->ppl_page) { 2383 free_stripe(sc, sh); 2384 return NULL; 2385 } 2386 } 2387 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 2388 if (init_stripe_shared_pages(sh, conf, disks)) { 2389 free_stripe(sc, sh); 2390 return NULL; 2391 } 2392 #endif 2393 } 2394 return sh; 2395 } 2396 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp) 2397 { 2398 struct stripe_head *sh; 2399 2400 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf); 2401 if (!sh) 2402 return 0; 2403 2404 if (grow_buffers(sh, gfp)) { 2405 shrink_buffers(sh); 2406 free_stripe(conf->slab_cache, sh); 2407 return 0; 2408 } 2409 sh->hash_lock_index = 2410 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS; 2411 /* we just created an active stripe so... */ 2412 atomic_inc(&conf->active_stripes); 2413 2414 raid5_release_stripe(sh); 2415 conf->max_nr_stripes++; 2416 return 1; 2417 } 2418 2419 static int grow_stripes(struct r5conf *conf, int num) 2420 { 2421 struct kmem_cache *sc; 2422 size_t namelen = sizeof(conf->cache_name[0]); 2423 int devs = max(conf->raid_disks, conf->previous_raid_disks); 2424 2425 if (conf->mddev->gendisk) 2426 snprintf(conf->cache_name[0], namelen, 2427 "raid%d-%s", conf->level, mdname(conf->mddev)); 2428 else 2429 snprintf(conf->cache_name[0], namelen, 2430 "raid%d-%p", conf->level, conf->mddev); 2431 snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]); 2432 2433 conf->active_name = 0; 2434 sc = kmem_cache_create(conf->cache_name[conf->active_name], 2435 struct_size_t(struct stripe_head, dev, devs), 2436 0, 0, NULL); 2437 if (!sc) 2438 return 1; 2439 conf->slab_cache = sc; 2440 conf->pool_size = devs; 2441 while (num--) 2442 if (!grow_one_stripe(conf, GFP_KERNEL)) 2443 return 1; 2444 2445 return 0; 2446 } 2447 2448 /** 2449 * scribble_alloc - allocate percpu scribble buffer for required size 2450 * of the scribble region 2451 * @percpu: from for_each_present_cpu() of the caller 2452 * @num: total number of disks in the array 2453 * @cnt: scribble objs count for required size of the scribble region 2454 * 2455 * The scribble buffer size must be enough to contain: 2456 * 1/ a struct page pointer for each device in the array +2 2457 * 2/ room to convert each entry in (1) to its corresponding dma 2458 * (dma_map_page()) or page (page_address()) address. 2459 * 2460 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we 2461 * calculate over all devices (not just the data blocks), using zeros in place 2462 * of the P and Q blocks. 2463 */ 2464 static int scribble_alloc(struct raid5_percpu *percpu, 2465 int num, int cnt) 2466 { 2467 size_t obj_size = 2468 sizeof(struct page *) * (num + 2) + 2469 sizeof(addr_conv_t) * (num + 2) + 2470 sizeof(unsigned int) * (num + 2); 2471 void *scribble; 2472 2473 /* 2474 * If here is in raid array suspend context, it is in memalloc noio 2475 * context as well, there is no potential recursive memory reclaim 2476 * I/Os with the GFP_KERNEL flag. 2477 */ 2478 scribble = kvmalloc_array(cnt, obj_size, GFP_KERNEL); 2479 if (!scribble) 2480 return -ENOMEM; 2481 2482 kvfree(percpu->scribble); 2483 2484 percpu->scribble = scribble; 2485 percpu->scribble_obj_size = obj_size; 2486 return 0; 2487 } 2488 2489 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors) 2490 { 2491 unsigned long cpu; 2492 int err = 0; 2493 2494 /* Never shrink. */ 2495 if (conf->scribble_disks >= new_disks && 2496 conf->scribble_sectors >= new_sectors) 2497 return 0; 2498 2499 raid5_quiesce(conf->mddev, true); 2500 cpus_read_lock(); 2501 2502 for_each_present_cpu(cpu) { 2503 struct raid5_percpu *percpu; 2504 2505 percpu = per_cpu_ptr(conf->percpu, cpu); 2506 err = scribble_alloc(percpu, new_disks, 2507 new_sectors / RAID5_STRIPE_SECTORS(conf)); 2508 if (err) 2509 break; 2510 } 2511 2512 cpus_read_unlock(); 2513 raid5_quiesce(conf->mddev, false); 2514 2515 if (!err) { 2516 conf->scribble_disks = new_disks; 2517 conf->scribble_sectors = new_sectors; 2518 } 2519 return err; 2520 } 2521 2522 static int resize_stripes(struct r5conf *conf, int newsize) 2523 { 2524 /* Make all the stripes able to hold 'newsize' devices. 2525 * New slots in each stripe get 'page' set to a new page. 2526 * 2527 * This happens in stages: 2528 * 1/ create a new kmem_cache and allocate the required number of 2529 * stripe_heads. 2530 * 2/ gather all the old stripe_heads and transfer the pages across 2531 * to the new stripe_heads. This will have the side effect of 2532 * freezing the array as once all stripe_heads have been collected, 2533 * no IO will be possible. Old stripe heads are freed once their 2534 * pages have been transferred over, and the old kmem_cache is 2535 * freed when all stripes are done. 2536 * 3/ reallocate conf->disks to be suitable bigger. If this fails, 2537 * we simple return a failure status - no need to clean anything up. 2538 * 4/ allocate new pages for the new slots in the new stripe_heads. 2539 * If this fails, we don't bother trying the shrink the 2540 * stripe_heads down again, we just leave them as they are. 2541 * As each stripe_head is processed the new one is released into 2542 * active service. 2543 * 2544 * Once step2 is started, we cannot afford to wait for a write, 2545 * so we use GFP_NOIO allocations. 2546 */ 2547 struct stripe_head *osh, *nsh; 2548 LIST_HEAD(newstripes); 2549 struct disk_info *ndisks; 2550 int err = 0; 2551 struct kmem_cache *sc; 2552 int i; 2553 int hash, cnt; 2554 2555 md_allow_write(conf->mddev); 2556 2557 /* Step 1 */ 2558 sc = kmem_cache_create(conf->cache_name[1-conf->active_name], 2559 struct_size_t(struct stripe_head, dev, newsize), 2560 0, 0, NULL); 2561 if (!sc) 2562 return -ENOMEM; 2563 2564 /* Need to ensure auto-resizing doesn't interfere */ 2565 mutex_lock(&conf->cache_size_mutex); 2566 2567 for (i = conf->max_nr_stripes; i; i--) { 2568 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf); 2569 if (!nsh) 2570 break; 2571 2572 list_add(&nsh->lru, &newstripes); 2573 } 2574 if (i) { 2575 /* didn't get enough, give up */ 2576 while (!list_empty(&newstripes)) { 2577 nsh = list_entry(newstripes.next, struct stripe_head, lru); 2578 list_del(&nsh->lru); 2579 free_stripe(sc, nsh); 2580 } 2581 kmem_cache_destroy(sc); 2582 mutex_unlock(&conf->cache_size_mutex); 2583 return -ENOMEM; 2584 } 2585 /* Step 2 - Must use GFP_NOIO now. 2586 * OK, we have enough stripes, start collecting inactive 2587 * stripes and copying them over 2588 */ 2589 hash = 0; 2590 cnt = 0; 2591 list_for_each_entry(nsh, &newstripes, lru) { 2592 lock_device_hash_lock(conf, hash); 2593 wait_event_cmd(conf->wait_for_stripe, 2594 !list_empty(conf->inactive_list + hash), 2595 unlock_device_hash_lock(conf, hash), 2596 lock_device_hash_lock(conf, hash)); 2597 osh = get_free_stripe(conf, hash); 2598 unlock_device_hash_lock(conf, hash); 2599 2600 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 2601 for (i = 0; i < osh->nr_pages; i++) { 2602 nsh->pages[i] = osh->pages[i]; 2603 osh->pages[i] = NULL; 2604 } 2605 #endif 2606 for(i=0; i<conf->pool_size; i++) { 2607 nsh->dev[i].page = osh->dev[i].page; 2608 nsh->dev[i].orig_page = osh->dev[i].page; 2609 nsh->dev[i].offset = osh->dev[i].offset; 2610 } 2611 nsh->hash_lock_index = hash; 2612 free_stripe(conf->slab_cache, osh); 2613 cnt++; 2614 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS + 2615 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) { 2616 hash++; 2617 cnt = 0; 2618 } 2619 } 2620 kmem_cache_destroy(conf->slab_cache); 2621 2622 /* Step 3. 2623 * At this point, we are holding all the stripes so the array 2624 * is completely stalled, so now is a good time to resize 2625 * conf->disks and the scribble region 2626 */ 2627 ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO); 2628 if (ndisks) { 2629 for (i = 0; i < conf->pool_size; i++) 2630 ndisks[i] = conf->disks[i]; 2631 2632 for (i = conf->pool_size; i < newsize; i++) { 2633 ndisks[i].extra_page = alloc_page(GFP_NOIO); 2634 if (!ndisks[i].extra_page) 2635 err = -ENOMEM; 2636 } 2637 2638 if (err) { 2639 for (i = conf->pool_size; i < newsize; i++) 2640 if (ndisks[i].extra_page) 2641 put_page(ndisks[i].extra_page); 2642 kfree(ndisks); 2643 } else { 2644 kfree(conf->disks); 2645 conf->disks = ndisks; 2646 } 2647 } else 2648 err = -ENOMEM; 2649 2650 conf->slab_cache = sc; 2651 conf->active_name = 1-conf->active_name; 2652 2653 /* Step 4, return new stripes to service */ 2654 while(!list_empty(&newstripes)) { 2655 nsh = list_entry(newstripes.next, struct stripe_head, lru); 2656 list_del_init(&nsh->lru); 2657 2658 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 2659 for (i = 0; i < nsh->nr_pages; i++) { 2660 if (nsh->pages[i]) 2661 continue; 2662 nsh->pages[i] = alloc_page(GFP_NOIO); 2663 if (!nsh->pages[i]) 2664 err = -ENOMEM; 2665 } 2666 2667 for (i = conf->raid_disks; i < newsize; i++) { 2668 if (nsh->dev[i].page) 2669 continue; 2670 nsh->dev[i].page = raid5_get_dev_page(nsh, i); 2671 nsh->dev[i].orig_page = nsh->dev[i].page; 2672 nsh->dev[i].offset = raid5_get_page_offset(nsh, i); 2673 } 2674 #else 2675 for (i=conf->raid_disks; i < newsize; i++) 2676 if (nsh->dev[i].page == NULL) { 2677 struct page *p = alloc_page(GFP_NOIO); 2678 nsh->dev[i].page = p; 2679 nsh->dev[i].orig_page = p; 2680 nsh->dev[i].offset = 0; 2681 if (!p) 2682 err = -ENOMEM; 2683 } 2684 #endif 2685 raid5_release_stripe(nsh); 2686 } 2687 /* critical section pass, GFP_NOIO no longer needed */ 2688 2689 if (!err) 2690 conf->pool_size = newsize; 2691 mutex_unlock(&conf->cache_size_mutex); 2692 2693 return err; 2694 } 2695 2696 static int drop_one_stripe(struct r5conf *conf) 2697 { 2698 struct stripe_head *sh; 2699 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK; 2700 2701 spin_lock_irq(conf->hash_locks + hash); 2702 sh = get_free_stripe(conf, hash); 2703 spin_unlock_irq(conf->hash_locks + hash); 2704 if (!sh) 2705 return 0; 2706 BUG_ON(atomic_read(&sh->count)); 2707 shrink_buffers(sh); 2708 free_stripe(conf->slab_cache, sh); 2709 atomic_dec(&conf->active_stripes); 2710 conf->max_nr_stripes--; 2711 return 1; 2712 } 2713 2714 static void shrink_stripes(struct r5conf *conf) 2715 { 2716 while (conf->max_nr_stripes && 2717 drop_one_stripe(conf)) 2718 ; 2719 2720 kmem_cache_destroy(conf->slab_cache); 2721 conf->slab_cache = NULL; 2722 } 2723 2724 static void raid5_end_read_request(struct bio * bi) 2725 { 2726 struct stripe_head *sh = bi->bi_private; 2727 struct r5conf *conf = sh->raid_conf; 2728 int disks = sh->disks, i; 2729 struct md_rdev *rdev = NULL; 2730 sector_t s; 2731 2732 for (i=0 ; i<disks; i++) 2733 if (bi == &sh->dev[i].req) 2734 break; 2735 2736 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n", 2737 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2738 bi->bi_status); 2739 if (i == disks) { 2740 BUG(); 2741 return; 2742 } 2743 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2744 /* If replacement finished while this request was outstanding, 2745 * 'replacement' might be NULL already. 2746 * In that case it moved down to 'rdev'. 2747 * rdev is not removed until all requests are finished. 2748 */ 2749 rdev = conf->disks[i].replacement; 2750 if (!rdev) 2751 rdev = conf->disks[i].rdev; 2752 2753 if (use_new_offset(conf, sh)) 2754 s = sh->sector + rdev->new_data_offset; 2755 else 2756 s = sh->sector + rdev->data_offset; 2757 if (!bi->bi_status) { 2758 set_bit(R5_UPTODATE, &sh->dev[i].flags); 2759 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 2760 /* Note that this cannot happen on a 2761 * replacement device. We just fail those on 2762 * any error 2763 */ 2764 pr_info_ratelimited( 2765 "md/raid:%s: read error corrected (%lu sectors at %llu on %pg)\n", 2766 mdname(conf->mddev), RAID5_STRIPE_SECTORS(conf), 2767 (unsigned long long)s, 2768 rdev->bdev); 2769 atomic_add(RAID5_STRIPE_SECTORS(conf), &rdev->corrected_errors); 2770 clear_bit(R5_ReadError, &sh->dev[i].flags); 2771 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2772 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2773 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2774 2775 if (test_bit(R5_InJournal, &sh->dev[i].flags)) 2776 /* 2777 * end read for a page in journal, this 2778 * must be preparing for prexor in rmw 2779 */ 2780 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags); 2781 2782 if (atomic_read(&rdev->read_errors)) 2783 atomic_set(&rdev->read_errors, 0); 2784 } else { 2785 int retry = 0; 2786 int set_bad = 0; 2787 2788 clear_bit(R5_UPTODATE, &sh->dev[i].flags); 2789 if (!(bi->bi_status == BLK_STS_PROTECTION)) 2790 atomic_inc(&rdev->read_errors); 2791 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2792 pr_warn_ratelimited( 2793 "md/raid:%s: read error on replacement device (sector %llu on %pg).\n", 2794 mdname(conf->mddev), 2795 (unsigned long long)s, 2796 rdev->bdev); 2797 else if (conf->mddev->degraded >= conf->max_degraded) { 2798 set_bad = 1; 2799 pr_warn_ratelimited( 2800 "md/raid:%s: read error not correctable (sector %llu on %pg).\n", 2801 mdname(conf->mddev), 2802 (unsigned long long)s, 2803 rdev->bdev); 2804 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) { 2805 /* Oh, no!!! */ 2806 set_bad = 1; 2807 pr_warn_ratelimited( 2808 "md/raid:%s: read error NOT corrected!! (sector %llu on %pg).\n", 2809 mdname(conf->mddev), 2810 (unsigned long long)s, 2811 rdev->bdev); 2812 } else if (atomic_read(&rdev->read_errors) 2813 > conf->max_nr_stripes) { 2814 if (!test_bit(Faulty, &rdev->flags)) { 2815 pr_warn("md/raid:%s: %d read_errors > %d stripes\n", 2816 mdname(conf->mddev), 2817 atomic_read(&rdev->read_errors), 2818 conf->max_nr_stripes); 2819 pr_warn("md/raid:%s: Too many read errors, failing device %pg.\n", 2820 mdname(conf->mddev), rdev->bdev); 2821 } 2822 } else 2823 retry = 1; 2824 if (set_bad && test_bit(In_sync, &rdev->flags) 2825 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2826 retry = 1; 2827 if (retry) 2828 if (sh->qd_idx >= 0 && sh->pd_idx == i) 2829 set_bit(R5_ReadError, &sh->dev[i].flags); 2830 else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) { 2831 set_bit(R5_ReadError, &sh->dev[i].flags); 2832 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2833 } else 2834 set_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2835 else { 2836 clear_bit(R5_ReadError, &sh->dev[i].flags); 2837 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2838 if (!(set_bad 2839 && test_bit(In_sync, &rdev->flags) 2840 && rdev_set_badblocks( 2841 rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 0))) 2842 md_error(conf->mddev, rdev); 2843 } 2844 } 2845 rdev_dec_pending(rdev, conf->mddev); 2846 bio_uninit(bi); 2847 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2848 set_bit(STRIPE_HANDLE, &sh->state); 2849 raid5_release_stripe(sh); 2850 } 2851 2852 static void raid5_end_write_request(struct bio *bi) 2853 { 2854 struct stripe_head *sh = bi->bi_private; 2855 struct r5conf *conf = sh->raid_conf; 2856 int disks = sh->disks, i; 2857 struct md_rdev *rdev; 2858 sector_t first_bad; 2859 int bad_sectors; 2860 int replacement = 0; 2861 2862 for (i = 0 ; i < disks; i++) { 2863 if (bi == &sh->dev[i].req) { 2864 rdev = conf->disks[i].rdev; 2865 break; 2866 } 2867 if (bi == &sh->dev[i].rreq) { 2868 rdev = conf->disks[i].replacement; 2869 if (rdev) 2870 replacement = 1; 2871 else 2872 /* rdev was removed and 'replacement' 2873 * replaced it. rdev is not removed 2874 * until all requests are finished. 2875 */ 2876 rdev = conf->disks[i].rdev; 2877 break; 2878 } 2879 } 2880 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n", 2881 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2882 bi->bi_status); 2883 if (i == disks) { 2884 BUG(); 2885 return; 2886 } 2887 2888 if (replacement) { 2889 if (bi->bi_status) 2890 md_error(conf->mddev, rdev); 2891 else if (is_badblock(rdev, sh->sector, 2892 RAID5_STRIPE_SECTORS(conf), 2893 &first_bad, &bad_sectors)) 2894 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags); 2895 } else { 2896 if (bi->bi_status) { 2897 set_bit(STRIPE_DEGRADED, &sh->state); 2898 set_bit(WriteErrorSeen, &rdev->flags); 2899 set_bit(R5_WriteError, &sh->dev[i].flags); 2900 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2901 set_bit(MD_RECOVERY_NEEDED, 2902 &rdev->mddev->recovery); 2903 } else if (is_badblock(rdev, sh->sector, 2904 RAID5_STRIPE_SECTORS(conf), 2905 &first_bad, &bad_sectors)) { 2906 set_bit(R5_MadeGood, &sh->dev[i].flags); 2907 if (test_bit(R5_ReadError, &sh->dev[i].flags)) 2908 /* That was a successful write so make 2909 * sure it looks like we already did 2910 * a re-write. 2911 */ 2912 set_bit(R5_ReWrite, &sh->dev[i].flags); 2913 } 2914 } 2915 rdev_dec_pending(rdev, conf->mddev); 2916 2917 if (sh->batch_head && bi->bi_status && !replacement) 2918 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state); 2919 2920 bio_uninit(bi); 2921 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags)) 2922 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2923 set_bit(STRIPE_HANDLE, &sh->state); 2924 2925 if (sh->batch_head && sh != sh->batch_head) 2926 raid5_release_stripe(sh->batch_head); 2927 raid5_release_stripe(sh); 2928 } 2929 2930 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev) 2931 { 2932 struct r5conf *conf = mddev->private; 2933 unsigned long flags; 2934 pr_debug("raid456: error called\n"); 2935 2936 pr_crit("md/raid:%s: Disk failure on %pg, disabling device.\n", 2937 mdname(mddev), rdev->bdev); 2938 2939 spin_lock_irqsave(&conf->device_lock, flags); 2940 set_bit(Faulty, &rdev->flags); 2941 clear_bit(In_sync, &rdev->flags); 2942 mddev->degraded = raid5_calc_degraded(conf); 2943 2944 if (has_failed(conf)) { 2945 set_bit(MD_BROKEN, &conf->mddev->flags); 2946 conf->recovery_disabled = mddev->recovery_disabled; 2947 2948 pr_crit("md/raid:%s: Cannot continue operation (%d/%d failed).\n", 2949 mdname(mddev), mddev->degraded, conf->raid_disks); 2950 } else { 2951 pr_crit("md/raid:%s: Operation continuing on %d devices.\n", 2952 mdname(mddev), conf->raid_disks - mddev->degraded); 2953 } 2954 2955 spin_unlock_irqrestore(&conf->device_lock, flags); 2956 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2957 2958 set_bit(Blocked, &rdev->flags); 2959 set_mask_bits(&mddev->sb_flags, 0, 2960 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 2961 r5c_update_on_rdev_error(mddev, rdev); 2962 } 2963 2964 /* 2965 * Input: a 'big' sector number, 2966 * Output: index of the data and parity disk, and the sector # in them. 2967 */ 2968 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector, 2969 int previous, int *dd_idx, 2970 struct stripe_head *sh) 2971 { 2972 sector_t stripe, stripe2; 2973 sector_t chunk_number; 2974 unsigned int chunk_offset; 2975 int pd_idx, qd_idx; 2976 int ddf_layout = 0; 2977 sector_t new_sector; 2978 int algorithm = previous ? conf->prev_algo 2979 : conf->algorithm; 2980 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 2981 : conf->chunk_sectors; 2982 int raid_disks = previous ? conf->previous_raid_disks 2983 : conf->raid_disks; 2984 int data_disks = raid_disks - conf->max_degraded; 2985 2986 /* First compute the information on this sector */ 2987 2988 /* 2989 * Compute the chunk number and the sector offset inside the chunk 2990 */ 2991 chunk_offset = sector_div(r_sector, sectors_per_chunk); 2992 chunk_number = r_sector; 2993 2994 /* 2995 * Compute the stripe number 2996 */ 2997 stripe = chunk_number; 2998 *dd_idx = sector_div(stripe, data_disks); 2999 stripe2 = stripe; 3000 /* 3001 * Select the parity disk based on the user selected algorithm. 3002 */ 3003 pd_idx = qd_idx = -1; 3004 switch(conf->level) { 3005 case 4: 3006 pd_idx = data_disks; 3007 break; 3008 case 5: 3009 switch (algorithm) { 3010 case ALGORITHM_LEFT_ASYMMETRIC: 3011 pd_idx = data_disks - sector_div(stripe2, raid_disks); 3012 if (*dd_idx >= pd_idx) 3013 (*dd_idx)++; 3014 break; 3015 case ALGORITHM_RIGHT_ASYMMETRIC: 3016 pd_idx = sector_div(stripe2, raid_disks); 3017 if (*dd_idx >= pd_idx) 3018 (*dd_idx)++; 3019 break; 3020 case ALGORITHM_LEFT_SYMMETRIC: 3021 pd_idx = data_disks - sector_div(stripe2, raid_disks); 3022 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 3023 break; 3024 case ALGORITHM_RIGHT_SYMMETRIC: 3025 pd_idx = sector_div(stripe2, raid_disks); 3026 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 3027 break; 3028 case ALGORITHM_PARITY_0: 3029 pd_idx = 0; 3030 (*dd_idx)++; 3031 break; 3032 case ALGORITHM_PARITY_N: 3033 pd_idx = data_disks; 3034 break; 3035 default: 3036 BUG(); 3037 } 3038 break; 3039 case 6: 3040 3041 switch (algorithm) { 3042 case ALGORITHM_LEFT_ASYMMETRIC: 3043 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 3044 qd_idx = pd_idx + 1; 3045 if (pd_idx == raid_disks-1) { 3046 (*dd_idx)++; /* Q D D D P */ 3047 qd_idx = 0; 3048 } else if (*dd_idx >= pd_idx) 3049 (*dd_idx) += 2; /* D D P Q D */ 3050 break; 3051 case ALGORITHM_RIGHT_ASYMMETRIC: 3052 pd_idx = sector_div(stripe2, raid_disks); 3053 qd_idx = pd_idx + 1; 3054 if (pd_idx == raid_disks-1) { 3055 (*dd_idx)++; /* Q D D D P */ 3056 qd_idx = 0; 3057 } else if (*dd_idx >= pd_idx) 3058 (*dd_idx) += 2; /* D D P Q D */ 3059 break; 3060 case ALGORITHM_LEFT_SYMMETRIC: 3061 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 3062 qd_idx = (pd_idx + 1) % raid_disks; 3063 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 3064 break; 3065 case ALGORITHM_RIGHT_SYMMETRIC: 3066 pd_idx = sector_div(stripe2, raid_disks); 3067 qd_idx = (pd_idx + 1) % raid_disks; 3068 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 3069 break; 3070 3071 case ALGORITHM_PARITY_0: 3072 pd_idx = 0; 3073 qd_idx = 1; 3074 (*dd_idx) += 2; 3075 break; 3076 case ALGORITHM_PARITY_N: 3077 pd_idx = data_disks; 3078 qd_idx = data_disks + 1; 3079 break; 3080 3081 case ALGORITHM_ROTATING_ZERO_RESTART: 3082 /* Exactly the same as RIGHT_ASYMMETRIC, but or 3083 * of blocks for computing Q is different. 3084 */ 3085 pd_idx = sector_div(stripe2, raid_disks); 3086 qd_idx = pd_idx + 1; 3087 if (pd_idx == raid_disks-1) { 3088 (*dd_idx)++; /* Q D D D P */ 3089 qd_idx = 0; 3090 } else if (*dd_idx >= pd_idx) 3091 (*dd_idx) += 2; /* D D P Q D */ 3092 ddf_layout = 1; 3093 break; 3094 3095 case ALGORITHM_ROTATING_N_RESTART: 3096 /* Same a left_asymmetric, by first stripe is 3097 * D D D P Q rather than 3098 * Q D D D P 3099 */ 3100 stripe2 += 1; 3101 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 3102 qd_idx = pd_idx + 1; 3103 if (pd_idx == raid_disks-1) { 3104 (*dd_idx)++; /* Q D D D P */ 3105 qd_idx = 0; 3106 } else if (*dd_idx >= pd_idx) 3107 (*dd_idx) += 2; /* D D P Q D */ 3108 ddf_layout = 1; 3109 break; 3110 3111 case ALGORITHM_ROTATING_N_CONTINUE: 3112 /* Same as left_symmetric but Q is before P */ 3113 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 3114 qd_idx = (pd_idx + raid_disks - 1) % raid_disks; 3115 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 3116 ddf_layout = 1; 3117 break; 3118 3119 case ALGORITHM_LEFT_ASYMMETRIC_6: 3120 /* RAID5 left_asymmetric, with Q on last device */ 3121 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 3122 if (*dd_idx >= pd_idx) 3123 (*dd_idx)++; 3124 qd_idx = raid_disks - 1; 3125 break; 3126 3127 case ALGORITHM_RIGHT_ASYMMETRIC_6: 3128 pd_idx = sector_div(stripe2, raid_disks-1); 3129 if (*dd_idx >= pd_idx) 3130 (*dd_idx)++; 3131 qd_idx = raid_disks - 1; 3132 break; 3133 3134 case ALGORITHM_LEFT_SYMMETRIC_6: 3135 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 3136 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 3137 qd_idx = raid_disks - 1; 3138 break; 3139 3140 case ALGORITHM_RIGHT_SYMMETRIC_6: 3141 pd_idx = sector_div(stripe2, raid_disks-1); 3142 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 3143 qd_idx = raid_disks - 1; 3144 break; 3145 3146 case ALGORITHM_PARITY_0_6: 3147 pd_idx = 0; 3148 (*dd_idx)++; 3149 qd_idx = raid_disks - 1; 3150 break; 3151 3152 default: 3153 BUG(); 3154 } 3155 break; 3156 } 3157 3158 if (sh) { 3159 sh->pd_idx = pd_idx; 3160 sh->qd_idx = qd_idx; 3161 sh->ddf_layout = ddf_layout; 3162 } 3163 /* 3164 * Finally, compute the new sector number 3165 */ 3166 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset; 3167 return new_sector; 3168 } 3169 3170 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous) 3171 { 3172 struct r5conf *conf = sh->raid_conf; 3173 int raid_disks = sh->disks; 3174 int data_disks = raid_disks - conf->max_degraded; 3175 sector_t new_sector = sh->sector, check; 3176 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 3177 : conf->chunk_sectors; 3178 int algorithm = previous ? conf->prev_algo 3179 : conf->algorithm; 3180 sector_t stripe; 3181 int chunk_offset; 3182 sector_t chunk_number; 3183 int dummy1, dd_idx = i; 3184 sector_t r_sector; 3185 struct stripe_head sh2; 3186 3187 chunk_offset = sector_div(new_sector, sectors_per_chunk); 3188 stripe = new_sector; 3189 3190 if (i == sh->pd_idx) 3191 return 0; 3192 switch(conf->level) { 3193 case 4: break; 3194 case 5: 3195 switch (algorithm) { 3196 case ALGORITHM_LEFT_ASYMMETRIC: 3197 case ALGORITHM_RIGHT_ASYMMETRIC: 3198 if (i > sh->pd_idx) 3199 i--; 3200 break; 3201 case ALGORITHM_LEFT_SYMMETRIC: 3202 case ALGORITHM_RIGHT_SYMMETRIC: 3203 if (i < sh->pd_idx) 3204 i += raid_disks; 3205 i -= (sh->pd_idx + 1); 3206 break; 3207 case ALGORITHM_PARITY_0: 3208 i -= 1; 3209 break; 3210 case ALGORITHM_PARITY_N: 3211 break; 3212 default: 3213 BUG(); 3214 } 3215 break; 3216 case 6: 3217 if (i == sh->qd_idx) 3218 return 0; /* It is the Q disk */ 3219 switch (algorithm) { 3220 case ALGORITHM_LEFT_ASYMMETRIC: 3221 case ALGORITHM_RIGHT_ASYMMETRIC: 3222 case ALGORITHM_ROTATING_ZERO_RESTART: 3223 case ALGORITHM_ROTATING_N_RESTART: 3224 if (sh->pd_idx == raid_disks-1) 3225 i--; /* Q D D D P */ 3226 else if (i > sh->pd_idx) 3227 i -= 2; /* D D P Q D */ 3228 break; 3229 case ALGORITHM_LEFT_SYMMETRIC: 3230 case ALGORITHM_RIGHT_SYMMETRIC: 3231 if (sh->pd_idx == raid_disks-1) 3232 i--; /* Q D D D P */ 3233 else { 3234 /* D D P Q D */ 3235 if (i < sh->pd_idx) 3236 i += raid_disks; 3237 i -= (sh->pd_idx + 2); 3238 } 3239 break; 3240 case ALGORITHM_PARITY_0: 3241 i -= 2; 3242 break; 3243 case ALGORITHM_PARITY_N: 3244 break; 3245 case ALGORITHM_ROTATING_N_CONTINUE: 3246 /* Like left_symmetric, but P is before Q */ 3247 if (sh->pd_idx == 0) 3248 i--; /* P D D D Q */ 3249 else { 3250 /* D D Q P D */ 3251 if (i < sh->pd_idx) 3252 i += raid_disks; 3253 i -= (sh->pd_idx + 1); 3254 } 3255 break; 3256 case ALGORITHM_LEFT_ASYMMETRIC_6: 3257 case ALGORITHM_RIGHT_ASYMMETRIC_6: 3258 if (i > sh->pd_idx) 3259 i--; 3260 break; 3261 case ALGORITHM_LEFT_SYMMETRIC_6: 3262 case ALGORITHM_RIGHT_SYMMETRIC_6: 3263 if (i < sh->pd_idx) 3264 i += data_disks + 1; 3265 i -= (sh->pd_idx + 1); 3266 break; 3267 case ALGORITHM_PARITY_0_6: 3268 i -= 1; 3269 break; 3270 default: 3271 BUG(); 3272 } 3273 break; 3274 } 3275 3276 chunk_number = stripe * data_disks + i; 3277 r_sector = chunk_number * sectors_per_chunk + chunk_offset; 3278 3279 check = raid5_compute_sector(conf, r_sector, 3280 previous, &dummy1, &sh2); 3281 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx 3282 || sh2.qd_idx != sh->qd_idx) { 3283 pr_warn("md/raid:%s: compute_blocknr: map not correct\n", 3284 mdname(conf->mddev)); 3285 return 0; 3286 } 3287 return r_sector; 3288 } 3289 3290 /* 3291 * There are cases where we want handle_stripe_dirtying() and 3292 * schedule_reconstruction() to delay towrite to some dev of a stripe. 3293 * 3294 * This function checks whether we want to delay the towrite. Specifically, 3295 * we delay the towrite when: 3296 * 3297 * 1. degraded stripe has a non-overwrite to the missing dev, AND this 3298 * stripe has data in journal (for other devices). 3299 * 3300 * In this case, when reading data for the non-overwrite dev, it is 3301 * necessary to handle complex rmw of write back cache (prexor with 3302 * orig_page, and xor with page). To keep read path simple, we would 3303 * like to flush data in journal to RAID disks first, so complex rmw 3304 * is handled in the write patch (handle_stripe_dirtying). 3305 * 3306 * 2. when journal space is critical (R5C_LOG_CRITICAL=1) 3307 * 3308 * It is important to be able to flush all stripes in raid5-cache. 3309 * Therefore, we need reserve some space on the journal device for 3310 * these flushes. If flush operation includes pending writes to the 3311 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe 3312 * for the flush out. If we exclude these pending writes from flush 3313 * operation, we only need (conf->max_degraded + 1) pages per stripe. 3314 * Therefore, excluding pending writes in these cases enables more 3315 * efficient use of the journal device. 3316 * 3317 * Note: To make sure the stripe makes progress, we only delay 3318 * towrite for stripes with data already in journal (injournal > 0). 3319 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to 3320 * no_space_stripes list. 3321 * 3322 * 3. during journal failure 3323 * In journal failure, we try to flush all cached data to raid disks 3324 * based on data in stripe cache. The array is read-only to upper 3325 * layers, so we would skip all pending writes. 3326 * 3327 */ 3328 static inline bool delay_towrite(struct r5conf *conf, 3329 struct r5dev *dev, 3330 struct stripe_head_state *s) 3331 { 3332 /* case 1 above */ 3333 if (!test_bit(R5_OVERWRITE, &dev->flags) && 3334 !test_bit(R5_Insync, &dev->flags) && s->injournal) 3335 return true; 3336 /* case 2 above */ 3337 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) && 3338 s->injournal > 0) 3339 return true; 3340 /* case 3 above */ 3341 if (s->log_failed && s->injournal) 3342 return true; 3343 return false; 3344 } 3345 3346 static void 3347 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s, 3348 int rcw, int expand) 3349 { 3350 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks; 3351 struct r5conf *conf = sh->raid_conf; 3352 int level = conf->level; 3353 3354 if (rcw) { 3355 /* 3356 * In some cases, handle_stripe_dirtying initially decided to 3357 * run rmw and allocates extra page for prexor. However, rcw is 3358 * cheaper later on. We need to free the extra page now, 3359 * because we won't be able to do that in ops_complete_prexor(). 3360 */ 3361 r5c_release_extra_page(sh); 3362 3363 for (i = disks; i--; ) { 3364 struct r5dev *dev = &sh->dev[i]; 3365 3366 if (dev->towrite && !delay_towrite(conf, dev, s)) { 3367 set_bit(R5_LOCKED, &dev->flags); 3368 set_bit(R5_Wantdrain, &dev->flags); 3369 if (!expand) 3370 clear_bit(R5_UPTODATE, &dev->flags); 3371 s->locked++; 3372 } else if (test_bit(R5_InJournal, &dev->flags)) { 3373 set_bit(R5_LOCKED, &dev->flags); 3374 s->locked++; 3375 } 3376 } 3377 /* if we are not expanding this is a proper write request, and 3378 * there will be bios with new data to be drained into the 3379 * stripe cache 3380 */ 3381 if (!expand) { 3382 if (!s->locked) 3383 /* False alarm, nothing to do */ 3384 return; 3385 sh->reconstruct_state = reconstruct_state_drain_run; 3386 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 3387 } else 3388 sh->reconstruct_state = reconstruct_state_run; 3389 3390 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 3391 3392 if (s->locked + conf->max_degraded == disks) 3393 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state)) 3394 atomic_inc(&conf->pending_full_writes); 3395 } else { 3396 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) || 3397 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags))); 3398 BUG_ON(level == 6 && 3399 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) || 3400 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags)))); 3401 3402 for (i = disks; i--; ) { 3403 struct r5dev *dev = &sh->dev[i]; 3404 if (i == pd_idx || i == qd_idx) 3405 continue; 3406 3407 if (dev->towrite && 3408 (test_bit(R5_UPTODATE, &dev->flags) || 3409 test_bit(R5_Wantcompute, &dev->flags))) { 3410 set_bit(R5_Wantdrain, &dev->flags); 3411 set_bit(R5_LOCKED, &dev->flags); 3412 clear_bit(R5_UPTODATE, &dev->flags); 3413 s->locked++; 3414 } else if (test_bit(R5_InJournal, &dev->flags)) { 3415 set_bit(R5_LOCKED, &dev->flags); 3416 s->locked++; 3417 } 3418 } 3419 if (!s->locked) 3420 /* False alarm - nothing to do */ 3421 return; 3422 sh->reconstruct_state = reconstruct_state_prexor_drain_run; 3423 set_bit(STRIPE_OP_PREXOR, &s->ops_request); 3424 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 3425 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 3426 } 3427 3428 /* keep the parity disk(s) locked while asynchronous operations 3429 * are in flight 3430 */ 3431 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); 3432 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 3433 s->locked++; 3434 3435 if (level == 6) { 3436 int qd_idx = sh->qd_idx; 3437 struct r5dev *dev = &sh->dev[qd_idx]; 3438 3439 set_bit(R5_LOCKED, &dev->flags); 3440 clear_bit(R5_UPTODATE, &dev->flags); 3441 s->locked++; 3442 } 3443 3444 if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page && 3445 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) && 3446 !test_bit(STRIPE_FULL_WRITE, &sh->state) && 3447 test_bit(R5_Insync, &sh->dev[pd_idx].flags)) 3448 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request); 3449 3450 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n", 3451 __func__, (unsigned long long)sh->sector, 3452 s->locked, s->ops_request); 3453 } 3454 3455 static bool stripe_bio_overlaps(struct stripe_head *sh, struct bio *bi, 3456 int dd_idx, int forwrite) 3457 { 3458 struct r5conf *conf = sh->raid_conf; 3459 struct bio **bip; 3460 3461 pr_debug("checking bi b#%llu to stripe s#%llu\n", 3462 bi->bi_iter.bi_sector, sh->sector); 3463 3464 /* Don't allow new IO added to stripes in batch list */ 3465 if (sh->batch_head) 3466 return true; 3467 3468 if (forwrite) 3469 bip = &sh->dev[dd_idx].towrite; 3470 else 3471 bip = &sh->dev[dd_idx].toread; 3472 3473 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) { 3474 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector) 3475 return true; 3476 bip = &(*bip)->bi_next; 3477 } 3478 3479 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi)) 3480 return true; 3481 3482 if (forwrite && raid5_has_ppl(conf)) { 3483 /* 3484 * With PPL only writes to consecutive data chunks within a 3485 * stripe are allowed because for a single stripe_head we can 3486 * only have one PPL entry at a time, which describes one data 3487 * range. Not really an overlap, but wait_for_overlap can be 3488 * used to handle this. 3489 */ 3490 sector_t sector; 3491 sector_t first = 0; 3492 sector_t last = 0; 3493 int count = 0; 3494 int i; 3495 3496 for (i = 0; i < sh->disks; i++) { 3497 if (i != sh->pd_idx && 3498 (i == dd_idx || sh->dev[i].towrite)) { 3499 sector = sh->dev[i].sector; 3500 if (count == 0 || sector < first) 3501 first = sector; 3502 if (sector > last) 3503 last = sector; 3504 count++; 3505 } 3506 } 3507 3508 if (first + conf->chunk_sectors * (count - 1) != last) 3509 return true; 3510 } 3511 3512 return false; 3513 } 3514 3515 static void __add_stripe_bio(struct stripe_head *sh, struct bio *bi, 3516 int dd_idx, int forwrite, int previous) 3517 { 3518 struct r5conf *conf = sh->raid_conf; 3519 struct bio **bip; 3520 int firstwrite = 0; 3521 3522 if (forwrite) { 3523 bip = &sh->dev[dd_idx].towrite; 3524 if (!*bip) 3525 firstwrite = 1; 3526 } else { 3527 bip = &sh->dev[dd_idx].toread; 3528 } 3529 3530 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) 3531 bip = &(*bip)->bi_next; 3532 3533 if (!forwrite || previous) 3534 clear_bit(STRIPE_BATCH_READY, &sh->state); 3535 3536 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next); 3537 if (*bip) 3538 bi->bi_next = *bip; 3539 *bip = bi; 3540 bio_inc_remaining(bi); 3541 md_write_inc(conf->mddev, bi); 3542 3543 if (forwrite) { 3544 /* check if page is covered */ 3545 sector_t sector = sh->dev[dd_idx].sector; 3546 for (bi=sh->dev[dd_idx].towrite; 3547 sector < sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf) && 3548 bi && bi->bi_iter.bi_sector <= sector; 3549 bi = r5_next_bio(conf, bi, sh->dev[dd_idx].sector)) { 3550 if (bio_end_sector(bi) >= sector) 3551 sector = bio_end_sector(bi); 3552 } 3553 if (sector >= sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf)) 3554 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags)) 3555 sh->overwrite_disks++; 3556 } 3557 3558 pr_debug("added bi b#%llu to stripe s#%llu, disk %d, logical %llu\n", 3559 (*bip)->bi_iter.bi_sector, sh->sector, dd_idx, 3560 sh->dev[dd_idx].sector); 3561 3562 if (conf->mddev->bitmap && firstwrite) { 3563 /* Cannot hold spinlock over bitmap_startwrite, 3564 * but must ensure this isn't added to a batch until 3565 * we have added to the bitmap and set bm_seq. 3566 * So set STRIPE_BITMAP_PENDING to prevent 3567 * batching. 3568 * If multiple __add_stripe_bio() calls race here they 3569 * much all set STRIPE_BITMAP_PENDING. So only the first one 3570 * to complete "bitmap_startwrite" gets to set 3571 * STRIPE_BIT_DELAY. This is important as once a stripe 3572 * is added to a batch, STRIPE_BIT_DELAY cannot be changed 3573 * any more. 3574 */ 3575 set_bit(STRIPE_BITMAP_PENDING, &sh->state); 3576 spin_unlock_irq(&sh->stripe_lock); 3577 md_bitmap_startwrite(conf->mddev->bitmap, sh->sector, 3578 RAID5_STRIPE_SECTORS(conf), 0); 3579 spin_lock_irq(&sh->stripe_lock); 3580 clear_bit(STRIPE_BITMAP_PENDING, &sh->state); 3581 if (!sh->batch_head) { 3582 sh->bm_seq = conf->seq_flush+1; 3583 set_bit(STRIPE_BIT_DELAY, &sh->state); 3584 } 3585 } 3586 } 3587 3588 /* 3589 * Each stripe/dev can have one or more bios attached. 3590 * toread/towrite point to the first in a chain. 3591 * The bi_next chain must be in order. 3592 */ 3593 static bool add_stripe_bio(struct stripe_head *sh, struct bio *bi, 3594 int dd_idx, int forwrite, int previous) 3595 { 3596 spin_lock_irq(&sh->stripe_lock); 3597 3598 if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) { 3599 set_bit(R5_Overlap, &sh->dev[dd_idx].flags); 3600 spin_unlock_irq(&sh->stripe_lock); 3601 return false; 3602 } 3603 3604 __add_stripe_bio(sh, bi, dd_idx, forwrite, previous); 3605 spin_unlock_irq(&sh->stripe_lock); 3606 return true; 3607 } 3608 3609 static void end_reshape(struct r5conf *conf); 3610 3611 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 3612 struct stripe_head *sh) 3613 { 3614 int sectors_per_chunk = 3615 previous ? conf->prev_chunk_sectors : conf->chunk_sectors; 3616 int dd_idx; 3617 int chunk_offset = sector_div(stripe, sectors_per_chunk); 3618 int disks = previous ? conf->previous_raid_disks : conf->raid_disks; 3619 3620 raid5_compute_sector(conf, 3621 stripe * (disks - conf->max_degraded) 3622 *sectors_per_chunk + chunk_offset, 3623 previous, 3624 &dd_idx, sh); 3625 } 3626 3627 static void 3628 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh, 3629 struct stripe_head_state *s, int disks) 3630 { 3631 int i; 3632 BUG_ON(sh->batch_head); 3633 for (i = disks; i--; ) { 3634 struct bio *bi; 3635 int bitmap_end = 0; 3636 3637 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 3638 struct md_rdev *rdev = conf->disks[i].rdev; 3639 3640 if (rdev && test_bit(In_sync, &rdev->flags) && 3641 !test_bit(Faulty, &rdev->flags)) 3642 atomic_inc(&rdev->nr_pending); 3643 else 3644 rdev = NULL; 3645 if (rdev) { 3646 if (!rdev_set_badblocks( 3647 rdev, 3648 sh->sector, 3649 RAID5_STRIPE_SECTORS(conf), 0)) 3650 md_error(conf->mddev, rdev); 3651 rdev_dec_pending(rdev, conf->mddev); 3652 } 3653 } 3654 spin_lock_irq(&sh->stripe_lock); 3655 /* fail all writes first */ 3656 bi = sh->dev[i].towrite; 3657 sh->dev[i].towrite = NULL; 3658 sh->overwrite_disks = 0; 3659 spin_unlock_irq(&sh->stripe_lock); 3660 if (bi) 3661 bitmap_end = 1; 3662 3663 log_stripe_write_finished(sh); 3664 3665 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 3666 wake_up(&conf->wait_for_overlap); 3667 3668 while (bi && bi->bi_iter.bi_sector < 3669 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) { 3670 struct bio *nextbi = r5_next_bio(conf, bi, sh->dev[i].sector); 3671 3672 md_write_end(conf->mddev); 3673 bio_io_error(bi); 3674 bi = nextbi; 3675 } 3676 if (bitmap_end) 3677 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3678 RAID5_STRIPE_SECTORS(conf), 0, 0); 3679 bitmap_end = 0; 3680 /* and fail all 'written' */ 3681 bi = sh->dev[i].written; 3682 sh->dev[i].written = NULL; 3683 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) { 3684 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 3685 sh->dev[i].page = sh->dev[i].orig_page; 3686 } 3687 3688 if (bi) bitmap_end = 1; 3689 while (bi && bi->bi_iter.bi_sector < 3690 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) { 3691 struct bio *bi2 = r5_next_bio(conf, bi, sh->dev[i].sector); 3692 3693 md_write_end(conf->mddev); 3694 bio_io_error(bi); 3695 bi = bi2; 3696 } 3697 3698 /* fail any reads if this device is non-operational and 3699 * the data has not reached the cache yet. 3700 */ 3701 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) && 3702 s->failed > conf->max_degraded && 3703 (!test_bit(R5_Insync, &sh->dev[i].flags) || 3704 test_bit(R5_ReadError, &sh->dev[i].flags))) { 3705 spin_lock_irq(&sh->stripe_lock); 3706 bi = sh->dev[i].toread; 3707 sh->dev[i].toread = NULL; 3708 spin_unlock_irq(&sh->stripe_lock); 3709 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 3710 wake_up(&conf->wait_for_overlap); 3711 if (bi) 3712 s->to_read--; 3713 while (bi && bi->bi_iter.bi_sector < 3714 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) { 3715 struct bio *nextbi = 3716 r5_next_bio(conf, bi, sh->dev[i].sector); 3717 3718 bio_io_error(bi); 3719 bi = nextbi; 3720 } 3721 } 3722 if (bitmap_end) 3723 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3724 RAID5_STRIPE_SECTORS(conf), 0, 0); 3725 /* If we were in the middle of a write the parity block might 3726 * still be locked - so just clear all R5_LOCKED flags 3727 */ 3728 clear_bit(R5_LOCKED, &sh->dev[i].flags); 3729 } 3730 s->to_write = 0; 3731 s->written = 0; 3732 3733 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 3734 if (atomic_dec_and_test(&conf->pending_full_writes)) 3735 md_wakeup_thread(conf->mddev->thread); 3736 } 3737 3738 static void 3739 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh, 3740 struct stripe_head_state *s) 3741 { 3742 int abort = 0; 3743 int i; 3744 3745 BUG_ON(sh->batch_head); 3746 clear_bit(STRIPE_SYNCING, &sh->state); 3747 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 3748 wake_up(&conf->wait_for_overlap); 3749 s->syncing = 0; 3750 s->replacing = 0; 3751 /* There is nothing more to do for sync/check/repair. 3752 * Don't even need to abort as that is handled elsewhere 3753 * if needed, and not always wanted e.g. if there is a known 3754 * bad block here. 3755 * For recover/replace we need to record a bad block on all 3756 * non-sync devices, or abort the recovery 3757 */ 3758 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) { 3759 /* During recovery devices cannot be removed, so 3760 * locking and refcounting of rdevs is not needed 3761 */ 3762 for (i = 0; i < conf->raid_disks; i++) { 3763 struct md_rdev *rdev = conf->disks[i].rdev; 3764 3765 if (rdev 3766 && !test_bit(Faulty, &rdev->flags) 3767 && !test_bit(In_sync, &rdev->flags) 3768 && !rdev_set_badblocks(rdev, sh->sector, 3769 RAID5_STRIPE_SECTORS(conf), 0)) 3770 abort = 1; 3771 rdev = conf->disks[i].replacement; 3772 3773 if (rdev 3774 && !test_bit(Faulty, &rdev->flags) 3775 && !test_bit(In_sync, &rdev->flags) 3776 && !rdev_set_badblocks(rdev, sh->sector, 3777 RAID5_STRIPE_SECTORS(conf), 0)) 3778 abort = 1; 3779 } 3780 if (abort) 3781 conf->recovery_disabled = 3782 conf->mddev->recovery_disabled; 3783 } 3784 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), !abort); 3785 } 3786 3787 static int want_replace(struct stripe_head *sh, int disk_idx) 3788 { 3789 struct md_rdev *rdev; 3790 int rv = 0; 3791 3792 rdev = sh->raid_conf->disks[disk_idx].replacement; 3793 if (rdev 3794 && !test_bit(Faulty, &rdev->flags) 3795 && !test_bit(In_sync, &rdev->flags) 3796 && (rdev->recovery_offset <= sh->sector 3797 || rdev->mddev->recovery_cp <= sh->sector)) 3798 rv = 1; 3799 return rv; 3800 } 3801 3802 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s, 3803 int disk_idx, int disks) 3804 { 3805 struct r5dev *dev = &sh->dev[disk_idx]; 3806 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]], 3807 &sh->dev[s->failed_num[1]] }; 3808 int i; 3809 bool force_rcw = (sh->raid_conf->rmw_level == PARITY_DISABLE_RMW); 3810 3811 3812 if (test_bit(R5_LOCKED, &dev->flags) || 3813 test_bit(R5_UPTODATE, &dev->flags)) 3814 /* No point reading this as we already have it or have 3815 * decided to get it. 3816 */ 3817 return 0; 3818 3819 if (dev->toread || 3820 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags))) 3821 /* We need this block to directly satisfy a request */ 3822 return 1; 3823 3824 if (s->syncing || s->expanding || 3825 (s->replacing && want_replace(sh, disk_idx))) 3826 /* When syncing, or expanding we read everything. 3827 * When replacing, we need the replaced block. 3828 */ 3829 return 1; 3830 3831 if ((s->failed >= 1 && fdev[0]->toread) || 3832 (s->failed >= 2 && fdev[1]->toread)) 3833 /* If we want to read from a failed device, then 3834 * we need to actually read every other device. 3835 */ 3836 return 1; 3837 3838 /* Sometimes neither read-modify-write nor reconstruct-write 3839 * cycles can work. In those cases we read every block we 3840 * can. Then the parity-update is certain to have enough to 3841 * work with. 3842 * This can only be a problem when we need to write something, 3843 * and some device has failed. If either of those tests 3844 * fail we need look no further. 3845 */ 3846 if (!s->failed || !s->to_write) 3847 return 0; 3848 3849 if (test_bit(R5_Insync, &dev->flags) && 3850 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3851 /* Pre-reads at not permitted until after short delay 3852 * to gather multiple requests. However if this 3853 * device is no Insync, the block could only be computed 3854 * and there is no need to delay that. 3855 */ 3856 return 0; 3857 3858 for (i = 0; i < s->failed && i < 2; i++) { 3859 if (fdev[i]->towrite && 3860 !test_bit(R5_UPTODATE, &fdev[i]->flags) && 3861 !test_bit(R5_OVERWRITE, &fdev[i]->flags)) 3862 /* If we have a partial write to a failed 3863 * device, then we will need to reconstruct 3864 * the content of that device, so all other 3865 * devices must be read. 3866 */ 3867 return 1; 3868 3869 if (s->failed >= 2 && 3870 (fdev[i]->towrite || 3871 s->failed_num[i] == sh->pd_idx || 3872 s->failed_num[i] == sh->qd_idx) && 3873 !test_bit(R5_UPTODATE, &fdev[i]->flags)) 3874 /* In max degraded raid6, If the failed disk is P, Q, 3875 * or we want to read the failed disk, we need to do 3876 * reconstruct-write. 3877 */ 3878 force_rcw = true; 3879 } 3880 3881 /* If we are forced to do a reconstruct-write, because parity 3882 * cannot be trusted and we are currently recovering it, there 3883 * is extra need to be careful. 3884 * If one of the devices that we would need to read, because 3885 * it is not being overwritten (and maybe not written at all) 3886 * is missing/faulty, then we need to read everything we can. 3887 */ 3888 if (!force_rcw && 3889 sh->sector < sh->raid_conf->mddev->recovery_cp) 3890 /* reconstruct-write isn't being forced */ 3891 return 0; 3892 for (i = 0; i < s->failed && i < 2; i++) { 3893 if (s->failed_num[i] != sh->pd_idx && 3894 s->failed_num[i] != sh->qd_idx && 3895 !test_bit(R5_UPTODATE, &fdev[i]->flags) && 3896 !test_bit(R5_OVERWRITE, &fdev[i]->flags)) 3897 return 1; 3898 } 3899 3900 return 0; 3901 } 3902 3903 /* fetch_block - checks the given member device to see if its data needs 3904 * to be read or computed to satisfy a request. 3905 * 3906 * Returns 1 when no more member devices need to be checked, otherwise returns 3907 * 0 to tell the loop in handle_stripe_fill to continue 3908 */ 3909 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s, 3910 int disk_idx, int disks) 3911 { 3912 struct r5dev *dev = &sh->dev[disk_idx]; 3913 3914 /* is the data in this block needed, and can we get it? */ 3915 if (need_this_block(sh, s, disk_idx, disks)) { 3916 /* we would like to get this block, possibly by computing it, 3917 * otherwise read it if the backing disk is insync 3918 */ 3919 BUG_ON(test_bit(R5_Wantcompute, &dev->flags)); 3920 BUG_ON(test_bit(R5_Wantread, &dev->flags)); 3921 BUG_ON(sh->batch_head); 3922 3923 /* 3924 * In the raid6 case if the only non-uptodate disk is P 3925 * then we already trusted P to compute the other failed 3926 * drives. It is safe to compute rather than re-read P. 3927 * In other cases we only compute blocks from failed 3928 * devices, otherwise check/repair might fail to detect 3929 * a real inconsistency. 3930 */ 3931 3932 if ((s->uptodate == disks - 1) && 3933 ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) || 3934 (s->failed && (disk_idx == s->failed_num[0] || 3935 disk_idx == s->failed_num[1])))) { 3936 /* have disk failed, and we're requested to fetch it; 3937 * do compute it 3938 */ 3939 pr_debug("Computing stripe %llu block %d\n", 3940 (unsigned long long)sh->sector, disk_idx); 3941 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3942 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3943 set_bit(R5_Wantcompute, &dev->flags); 3944 sh->ops.target = disk_idx; 3945 sh->ops.target2 = -1; /* no 2nd target */ 3946 s->req_compute = 1; 3947 /* Careful: from this point on 'uptodate' is in the eye 3948 * of raid_run_ops which services 'compute' operations 3949 * before writes. R5_Wantcompute flags a block that will 3950 * be R5_UPTODATE by the time it is needed for a 3951 * subsequent operation. 3952 */ 3953 s->uptodate++; 3954 return 1; 3955 } else if (s->uptodate == disks-2 && s->failed >= 2) { 3956 /* Computing 2-failure is *very* expensive; only 3957 * do it if failed >= 2 3958 */ 3959 int other; 3960 for (other = disks; other--; ) { 3961 if (other == disk_idx) 3962 continue; 3963 if (!test_bit(R5_UPTODATE, 3964 &sh->dev[other].flags)) 3965 break; 3966 } 3967 BUG_ON(other < 0); 3968 pr_debug("Computing stripe %llu blocks %d,%d\n", 3969 (unsigned long long)sh->sector, 3970 disk_idx, other); 3971 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3972 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3973 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags); 3974 set_bit(R5_Wantcompute, &sh->dev[other].flags); 3975 sh->ops.target = disk_idx; 3976 sh->ops.target2 = other; 3977 s->uptodate += 2; 3978 s->req_compute = 1; 3979 return 1; 3980 } else if (test_bit(R5_Insync, &dev->flags)) { 3981 set_bit(R5_LOCKED, &dev->flags); 3982 set_bit(R5_Wantread, &dev->flags); 3983 s->locked++; 3984 pr_debug("Reading block %d (sync=%d)\n", 3985 disk_idx, s->syncing); 3986 } 3987 } 3988 3989 return 0; 3990 } 3991 3992 /* 3993 * handle_stripe_fill - read or compute data to satisfy pending requests. 3994 */ 3995 static void handle_stripe_fill(struct stripe_head *sh, 3996 struct stripe_head_state *s, 3997 int disks) 3998 { 3999 int i; 4000 4001 /* look for blocks to read/compute, skip this if a compute 4002 * is already in flight, or if the stripe contents are in the 4003 * midst of changing due to a write 4004 */ 4005 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state && 4006 !sh->reconstruct_state) { 4007 4008 /* 4009 * For degraded stripe with data in journal, do not handle 4010 * read requests yet, instead, flush the stripe to raid 4011 * disks first, this avoids handling complex rmw of write 4012 * back cache (prexor with orig_page, and then xor with 4013 * page) in the read path 4014 */ 4015 if (s->to_read && s->injournal && s->failed) { 4016 if (test_bit(STRIPE_R5C_CACHING, &sh->state)) 4017 r5c_make_stripe_write_out(sh); 4018 goto out; 4019 } 4020 4021 for (i = disks; i--; ) 4022 if (fetch_block(sh, s, i, disks)) 4023 break; 4024 } 4025 out: 4026 set_bit(STRIPE_HANDLE, &sh->state); 4027 } 4028 4029 static void break_stripe_batch_list(struct stripe_head *head_sh, 4030 unsigned long handle_flags); 4031 /* handle_stripe_clean_event 4032 * any written block on an uptodate or failed drive can be returned. 4033 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but 4034 * never LOCKED, so we don't need to test 'failed' directly. 4035 */ 4036 static void handle_stripe_clean_event(struct r5conf *conf, 4037 struct stripe_head *sh, int disks) 4038 { 4039 int i; 4040 struct r5dev *dev; 4041 int discard_pending = 0; 4042 struct stripe_head *head_sh = sh; 4043 bool do_endio = false; 4044 4045 for (i = disks; i--; ) 4046 if (sh->dev[i].written) { 4047 dev = &sh->dev[i]; 4048 if (!test_bit(R5_LOCKED, &dev->flags) && 4049 (test_bit(R5_UPTODATE, &dev->flags) || 4050 test_bit(R5_Discard, &dev->flags) || 4051 test_bit(R5_SkipCopy, &dev->flags))) { 4052 /* We can return any write requests */ 4053 struct bio *wbi, *wbi2; 4054 pr_debug("Return write for disc %d\n", i); 4055 if (test_and_clear_bit(R5_Discard, &dev->flags)) 4056 clear_bit(R5_UPTODATE, &dev->flags); 4057 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) { 4058 WARN_ON(test_bit(R5_UPTODATE, &dev->flags)); 4059 } 4060 do_endio = true; 4061 4062 returnbi: 4063 dev->page = dev->orig_page; 4064 wbi = dev->written; 4065 dev->written = NULL; 4066 while (wbi && wbi->bi_iter.bi_sector < 4067 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 4068 wbi2 = r5_next_bio(conf, wbi, dev->sector); 4069 md_write_end(conf->mddev); 4070 bio_endio(wbi); 4071 wbi = wbi2; 4072 } 4073 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector, 4074 RAID5_STRIPE_SECTORS(conf), 4075 !test_bit(STRIPE_DEGRADED, &sh->state), 4076 0); 4077 if (head_sh->batch_head) { 4078 sh = list_first_entry(&sh->batch_list, 4079 struct stripe_head, 4080 batch_list); 4081 if (sh != head_sh) { 4082 dev = &sh->dev[i]; 4083 goto returnbi; 4084 } 4085 } 4086 sh = head_sh; 4087 dev = &sh->dev[i]; 4088 } else if (test_bit(R5_Discard, &dev->flags)) 4089 discard_pending = 1; 4090 } 4091 4092 log_stripe_write_finished(sh); 4093 4094 if (!discard_pending && 4095 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) { 4096 int hash; 4097 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 4098 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 4099 if (sh->qd_idx >= 0) { 4100 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 4101 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags); 4102 } 4103 /* now that discard is done we can proceed with any sync */ 4104 clear_bit(STRIPE_DISCARD, &sh->state); 4105 /* 4106 * SCSI discard will change some bio fields and the stripe has 4107 * no updated data, so remove it from hash list and the stripe 4108 * will be reinitialized 4109 */ 4110 unhash: 4111 hash = sh->hash_lock_index; 4112 spin_lock_irq(conf->hash_locks + hash); 4113 remove_hash(sh); 4114 spin_unlock_irq(conf->hash_locks + hash); 4115 if (head_sh->batch_head) { 4116 sh = list_first_entry(&sh->batch_list, 4117 struct stripe_head, batch_list); 4118 if (sh != head_sh) 4119 goto unhash; 4120 } 4121 sh = head_sh; 4122 4123 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) 4124 set_bit(STRIPE_HANDLE, &sh->state); 4125 4126 } 4127 4128 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 4129 if (atomic_dec_and_test(&conf->pending_full_writes)) 4130 md_wakeup_thread(conf->mddev->thread); 4131 4132 if (head_sh->batch_head && do_endio) 4133 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS); 4134 } 4135 4136 /* 4137 * For RMW in write back cache, we need extra page in prexor to store the 4138 * old data. This page is stored in dev->orig_page. 4139 * 4140 * This function checks whether we have data for prexor. The exact logic 4141 * is: 4142 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE) 4143 */ 4144 static inline bool uptodate_for_rmw(struct r5dev *dev) 4145 { 4146 return (test_bit(R5_UPTODATE, &dev->flags)) && 4147 (!test_bit(R5_InJournal, &dev->flags) || 4148 test_bit(R5_OrigPageUPTDODATE, &dev->flags)); 4149 } 4150 4151 static int handle_stripe_dirtying(struct r5conf *conf, 4152 struct stripe_head *sh, 4153 struct stripe_head_state *s, 4154 int disks) 4155 { 4156 int rmw = 0, rcw = 0, i; 4157 sector_t recovery_cp = conf->mddev->recovery_cp; 4158 4159 /* Check whether resync is now happening or should start. 4160 * If yes, then the array is dirty (after unclean shutdown or 4161 * initial creation), so parity in some stripes might be inconsistent. 4162 * In this case, we need to always do reconstruct-write, to ensure 4163 * that in case of drive failure or read-error correction, we 4164 * generate correct data from the parity. 4165 */ 4166 if (conf->rmw_level == PARITY_DISABLE_RMW || 4167 (recovery_cp < MaxSector && sh->sector >= recovery_cp && 4168 s->failed == 0)) { 4169 /* Calculate the real rcw later - for now make it 4170 * look like rcw is cheaper 4171 */ 4172 rcw = 1; rmw = 2; 4173 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n", 4174 conf->rmw_level, (unsigned long long)recovery_cp, 4175 (unsigned long long)sh->sector); 4176 } else for (i = disks; i--; ) { 4177 /* would I have to read this buffer for read_modify_write */ 4178 struct r5dev *dev = &sh->dev[i]; 4179 if (((dev->towrite && !delay_towrite(conf, dev, s)) || 4180 i == sh->pd_idx || i == sh->qd_idx || 4181 test_bit(R5_InJournal, &dev->flags)) && 4182 !test_bit(R5_LOCKED, &dev->flags) && 4183 !(uptodate_for_rmw(dev) || 4184 test_bit(R5_Wantcompute, &dev->flags))) { 4185 if (test_bit(R5_Insync, &dev->flags)) 4186 rmw++; 4187 else 4188 rmw += 2*disks; /* cannot read it */ 4189 } 4190 /* Would I have to read this buffer for reconstruct_write */ 4191 if (!test_bit(R5_OVERWRITE, &dev->flags) && 4192 i != sh->pd_idx && i != sh->qd_idx && 4193 !test_bit(R5_LOCKED, &dev->flags) && 4194 !(test_bit(R5_UPTODATE, &dev->flags) || 4195 test_bit(R5_Wantcompute, &dev->flags))) { 4196 if (test_bit(R5_Insync, &dev->flags)) 4197 rcw++; 4198 else 4199 rcw += 2*disks; 4200 } 4201 } 4202 4203 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n", 4204 (unsigned long long)sh->sector, sh->state, rmw, rcw); 4205 set_bit(STRIPE_HANDLE, &sh->state); 4206 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) { 4207 /* prefer read-modify-write, but need to get some data */ 4208 if (conf->mddev->queue) 4209 blk_add_trace_msg(conf->mddev->queue, 4210 "raid5 rmw %llu %d", 4211 (unsigned long long)sh->sector, rmw); 4212 for (i = disks; i--; ) { 4213 struct r5dev *dev = &sh->dev[i]; 4214 if (test_bit(R5_InJournal, &dev->flags) && 4215 dev->page == dev->orig_page && 4216 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) { 4217 /* alloc page for prexor */ 4218 struct page *p = alloc_page(GFP_NOIO); 4219 4220 if (p) { 4221 dev->orig_page = p; 4222 continue; 4223 } 4224 4225 /* 4226 * alloc_page() failed, try use 4227 * disk_info->extra_page 4228 */ 4229 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE, 4230 &conf->cache_state)) { 4231 r5c_use_extra_page(sh); 4232 break; 4233 } 4234 4235 /* extra_page in use, add to delayed_list */ 4236 set_bit(STRIPE_DELAYED, &sh->state); 4237 s->waiting_extra_page = 1; 4238 return -EAGAIN; 4239 } 4240 } 4241 4242 for (i = disks; i--; ) { 4243 struct r5dev *dev = &sh->dev[i]; 4244 if (((dev->towrite && !delay_towrite(conf, dev, s)) || 4245 i == sh->pd_idx || i == sh->qd_idx || 4246 test_bit(R5_InJournal, &dev->flags)) && 4247 !test_bit(R5_LOCKED, &dev->flags) && 4248 !(uptodate_for_rmw(dev) || 4249 test_bit(R5_Wantcompute, &dev->flags)) && 4250 test_bit(R5_Insync, &dev->flags)) { 4251 if (test_bit(STRIPE_PREREAD_ACTIVE, 4252 &sh->state)) { 4253 pr_debug("Read_old block %d for r-m-w\n", 4254 i); 4255 set_bit(R5_LOCKED, &dev->flags); 4256 set_bit(R5_Wantread, &dev->flags); 4257 s->locked++; 4258 } else 4259 set_bit(STRIPE_DELAYED, &sh->state); 4260 } 4261 } 4262 } 4263 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) { 4264 /* want reconstruct write, but need to get some data */ 4265 int qread =0; 4266 rcw = 0; 4267 for (i = disks; i--; ) { 4268 struct r5dev *dev = &sh->dev[i]; 4269 if (!test_bit(R5_OVERWRITE, &dev->flags) && 4270 i != sh->pd_idx && i != sh->qd_idx && 4271 !test_bit(R5_LOCKED, &dev->flags) && 4272 !(test_bit(R5_UPTODATE, &dev->flags) || 4273 test_bit(R5_Wantcompute, &dev->flags))) { 4274 rcw++; 4275 if (test_bit(R5_Insync, &dev->flags) && 4276 test_bit(STRIPE_PREREAD_ACTIVE, 4277 &sh->state)) { 4278 pr_debug("Read_old block " 4279 "%d for Reconstruct\n", i); 4280 set_bit(R5_LOCKED, &dev->flags); 4281 set_bit(R5_Wantread, &dev->flags); 4282 s->locked++; 4283 qread++; 4284 } else 4285 set_bit(STRIPE_DELAYED, &sh->state); 4286 } 4287 } 4288 if (rcw && conf->mddev->queue) 4289 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d", 4290 (unsigned long long)sh->sector, 4291 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state)); 4292 } 4293 4294 if (rcw > disks && rmw > disks && 4295 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4296 set_bit(STRIPE_DELAYED, &sh->state); 4297 4298 /* now if nothing is locked, and if we have enough data, 4299 * we can start a write request 4300 */ 4301 /* since handle_stripe can be called at any time we need to handle the 4302 * case where a compute block operation has been submitted and then a 4303 * subsequent call wants to start a write request. raid_run_ops only 4304 * handles the case where compute block and reconstruct are requested 4305 * simultaneously. If this is not the case then new writes need to be 4306 * held off until the compute completes. 4307 */ 4308 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) && 4309 (s->locked == 0 && (rcw == 0 || rmw == 0) && 4310 !test_bit(STRIPE_BIT_DELAY, &sh->state))) 4311 schedule_reconstruction(sh, s, rcw == 0, 0); 4312 return 0; 4313 } 4314 4315 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh, 4316 struct stripe_head_state *s, int disks) 4317 { 4318 struct r5dev *dev = NULL; 4319 4320 BUG_ON(sh->batch_head); 4321 set_bit(STRIPE_HANDLE, &sh->state); 4322 4323 switch (sh->check_state) { 4324 case check_state_idle: 4325 /* start a new check operation if there are no failures */ 4326 if (s->failed == 0) { 4327 BUG_ON(s->uptodate != disks); 4328 sh->check_state = check_state_run; 4329 set_bit(STRIPE_OP_CHECK, &s->ops_request); 4330 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 4331 s->uptodate--; 4332 break; 4333 } 4334 dev = &sh->dev[s->failed_num[0]]; 4335 fallthrough; 4336 case check_state_compute_result: 4337 sh->check_state = check_state_idle; 4338 if (!dev) 4339 dev = &sh->dev[sh->pd_idx]; 4340 4341 /* check that a write has not made the stripe insync */ 4342 if (test_bit(STRIPE_INSYNC, &sh->state)) 4343 break; 4344 4345 /* either failed parity check, or recovery is happening */ 4346 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags)); 4347 BUG_ON(s->uptodate != disks); 4348 4349 set_bit(R5_LOCKED, &dev->flags); 4350 s->locked++; 4351 set_bit(R5_Wantwrite, &dev->flags); 4352 4353 clear_bit(STRIPE_DEGRADED, &sh->state); 4354 set_bit(STRIPE_INSYNC, &sh->state); 4355 break; 4356 case check_state_run: 4357 break; /* we will be called again upon completion */ 4358 case check_state_check_result: 4359 sh->check_state = check_state_idle; 4360 4361 /* if a failure occurred during the check operation, leave 4362 * STRIPE_INSYNC not set and let the stripe be handled again 4363 */ 4364 if (s->failed) 4365 break; 4366 4367 /* handle a successful check operation, if parity is correct 4368 * we are done. Otherwise update the mismatch count and repair 4369 * parity if !MD_RECOVERY_CHECK 4370 */ 4371 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0) 4372 /* parity is correct (on disc, 4373 * not in buffer any more) 4374 */ 4375 set_bit(STRIPE_INSYNC, &sh->state); 4376 else { 4377 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches); 4378 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) { 4379 /* don't try to repair!! */ 4380 set_bit(STRIPE_INSYNC, &sh->state); 4381 pr_warn_ratelimited("%s: mismatch sector in range " 4382 "%llu-%llu\n", mdname(conf->mddev), 4383 (unsigned long long) sh->sector, 4384 (unsigned long long) sh->sector + 4385 RAID5_STRIPE_SECTORS(conf)); 4386 } else { 4387 sh->check_state = check_state_compute_run; 4388 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 4389 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 4390 set_bit(R5_Wantcompute, 4391 &sh->dev[sh->pd_idx].flags); 4392 sh->ops.target = sh->pd_idx; 4393 sh->ops.target2 = -1; 4394 s->uptodate++; 4395 } 4396 } 4397 break; 4398 case check_state_compute_run: 4399 break; 4400 default: 4401 pr_err("%s: unknown check_state: %d sector: %llu\n", 4402 __func__, sh->check_state, 4403 (unsigned long long) sh->sector); 4404 BUG(); 4405 } 4406 } 4407 4408 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh, 4409 struct stripe_head_state *s, 4410 int disks) 4411 { 4412 int pd_idx = sh->pd_idx; 4413 int qd_idx = sh->qd_idx; 4414 struct r5dev *dev; 4415 4416 BUG_ON(sh->batch_head); 4417 set_bit(STRIPE_HANDLE, &sh->state); 4418 4419 BUG_ON(s->failed > 2); 4420 4421 /* Want to check and possibly repair P and Q. 4422 * However there could be one 'failed' device, in which 4423 * case we can only check one of them, possibly using the 4424 * other to generate missing data 4425 */ 4426 4427 switch (sh->check_state) { 4428 case check_state_idle: 4429 /* start a new check operation if there are < 2 failures */ 4430 if (s->failed == s->q_failed) { 4431 /* The only possible failed device holds Q, so it 4432 * makes sense to check P (If anything else were failed, 4433 * we would have used P to recreate it). 4434 */ 4435 sh->check_state = check_state_run; 4436 } 4437 if (!s->q_failed && s->failed < 2) { 4438 /* Q is not failed, and we didn't use it to generate 4439 * anything, so it makes sense to check it 4440 */ 4441 if (sh->check_state == check_state_run) 4442 sh->check_state = check_state_run_pq; 4443 else 4444 sh->check_state = check_state_run_q; 4445 } 4446 4447 /* discard potentially stale zero_sum_result */ 4448 sh->ops.zero_sum_result = 0; 4449 4450 if (sh->check_state == check_state_run) { 4451 /* async_xor_zero_sum destroys the contents of P */ 4452 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 4453 s->uptodate--; 4454 } 4455 if (sh->check_state >= check_state_run && 4456 sh->check_state <= check_state_run_pq) { 4457 /* async_syndrome_zero_sum preserves P and Q, so 4458 * no need to mark them !uptodate here 4459 */ 4460 set_bit(STRIPE_OP_CHECK, &s->ops_request); 4461 break; 4462 } 4463 4464 /* we have 2-disk failure */ 4465 BUG_ON(s->failed != 2); 4466 fallthrough; 4467 case check_state_compute_result: 4468 sh->check_state = check_state_idle; 4469 4470 /* check that a write has not made the stripe insync */ 4471 if (test_bit(STRIPE_INSYNC, &sh->state)) 4472 break; 4473 4474 /* now write out any block on a failed drive, 4475 * or P or Q if they were recomputed 4476 */ 4477 dev = NULL; 4478 if (s->failed == 2) { 4479 dev = &sh->dev[s->failed_num[1]]; 4480 s->locked++; 4481 set_bit(R5_LOCKED, &dev->flags); 4482 set_bit(R5_Wantwrite, &dev->flags); 4483 } 4484 if (s->failed >= 1) { 4485 dev = &sh->dev[s->failed_num[0]]; 4486 s->locked++; 4487 set_bit(R5_LOCKED, &dev->flags); 4488 set_bit(R5_Wantwrite, &dev->flags); 4489 } 4490 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 4491 dev = &sh->dev[pd_idx]; 4492 s->locked++; 4493 set_bit(R5_LOCKED, &dev->flags); 4494 set_bit(R5_Wantwrite, &dev->flags); 4495 } 4496 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 4497 dev = &sh->dev[qd_idx]; 4498 s->locked++; 4499 set_bit(R5_LOCKED, &dev->flags); 4500 set_bit(R5_Wantwrite, &dev->flags); 4501 } 4502 if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags), 4503 "%s: disk%td not up to date\n", 4504 mdname(conf->mddev), 4505 dev - (struct r5dev *) &sh->dev)) { 4506 clear_bit(R5_LOCKED, &dev->flags); 4507 clear_bit(R5_Wantwrite, &dev->flags); 4508 s->locked--; 4509 } 4510 clear_bit(STRIPE_DEGRADED, &sh->state); 4511 4512 set_bit(STRIPE_INSYNC, &sh->state); 4513 break; 4514 case check_state_run: 4515 case check_state_run_q: 4516 case check_state_run_pq: 4517 break; /* we will be called again upon completion */ 4518 case check_state_check_result: 4519 sh->check_state = check_state_idle; 4520 4521 /* handle a successful check operation, if parity is correct 4522 * we are done. Otherwise update the mismatch count and repair 4523 * parity if !MD_RECOVERY_CHECK 4524 */ 4525 if (sh->ops.zero_sum_result == 0) { 4526 /* both parities are correct */ 4527 if (!s->failed) 4528 set_bit(STRIPE_INSYNC, &sh->state); 4529 else { 4530 /* in contrast to the raid5 case we can validate 4531 * parity, but still have a failure to write 4532 * back 4533 */ 4534 sh->check_state = check_state_compute_result; 4535 /* Returning at this point means that we may go 4536 * off and bring p and/or q uptodate again so 4537 * we make sure to check zero_sum_result again 4538 * to verify if p or q need writeback 4539 */ 4540 } 4541 } else { 4542 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches); 4543 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) { 4544 /* don't try to repair!! */ 4545 set_bit(STRIPE_INSYNC, &sh->state); 4546 pr_warn_ratelimited("%s: mismatch sector in range " 4547 "%llu-%llu\n", mdname(conf->mddev), 4548 (unsigned long long) sh->sector, 4549 (unsigned long long) sh->sector + 4550 RAID5_STRIPE_SECTORS(conf)); 4551 } else { 4552 int *target = &sh->ops.target; 4553 4554 sh->ops.target = -1; 4555 sh->ops.target2 = -1; 4556 sh->check_state = check_state_compute_run; 4557 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 4558 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 4559 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 4560 set_bit(R5_Wantcompute, 4561 &sh->dev[pd_idx].flags); 4562 *target = pd_idx; 4563 target = &sh->ops.target2; 4564 s->uptodate++; 4565 } 4566 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 4567 set_bit(R5_Wantcompute, 4568 &sh->dev[qd_idx].flags); 4569 *target = qd_idx; 4570 s->uptodate++; 4571 } 4572 } 4573 } 4574 break; 4575 case check_state_compute_run: 4576 break; 4577 default: 4578 pr_warn("%s: unknown check_state: %d sector: %llu\n", 4579 __func__, sh->check_state, 4580 (unsigned long long) sh->sector); 4581 BUG(); 4582 } 4583 } 4584 4585 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh) 4586 { 4587 int i; 4588 4589 /* We have read all the blocks in this stripe and now we need to 4590 * copy some of them into a target stripe for expand. 4591 */ 4592 struct dma_async_tx_descriptor *tx = NULL; 4593 BUG_ON(sh->batch_head); 4594 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state); 4595 for (i = 0; i < sh->disks; i++) 4596 if (i != sh->pd_idx && i != sh->qd_idx) { 4597 int dd_idx, j; 4598 struct stripe_head *sh2; 4599 struct async_submit_ctl submit; 4600 4601 sector_t bn = raid5_compute_blocknr(sh, i, 1); 4602 sector_t s = raid5_compute_sector(conf, bn, 0, 4603 &dd_idx, NULL); 4604 sh2 = raid5_get_active_stripe(conf, NULL, s, 4605 R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE); 4606 if (sh2 == NULL) 4607 /* so far only the early blocks of this stripe 4608 * have been requested. When later blocks 4609 * get requested, we will try again 4610 */ 4611 continue; 4612 if (!test_bit(STRIPE_EXPANDING, &sh2->state) || 4613 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) { 4614 /* must have already done this block */ 4615 raid5_release_stripe(sh2); 4616 continue; 4617 } 4618 4619 /* place all the copies on one channel */ 4620 init_async_submit(&submit, 0, tx, NULL, NULL, NULL); 4621 tx = async_memcpy(sh2->dev[dd_idx].page, 4622 sh->dev[i].page, sh2->dev[dd_idx].offset, 4623 sh->dev[i].offset, RAID5_STRIPE_SIZE(conf), 4624 &submit); 4625 4626 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags); 4627 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags); 4628 for (j = 0; j < conf->raid_disks; j++) 4629 if (j != sh2->pd_idx && 4630 j != sh2->qd_idx && 4631 !test_bit(R5_Expanded, &sh2->dev[j].flags)) 4632 break; 4633 if (j == conf->raid_disks) { 4634 set_bit(STRIPE_EXPAND_READY, &sh2->state); 4635 set_bit(STRIPE_HANDLE, &sh2->state); 4636 } 4637 raid5_release_stripe(sh2); 4638 4639 } 4640 /* done submitting copies, wait for them to complete */ 4641 async_tx_quiesce(&tx); 4642 } 4643 4644 /* 4645 * handle_stripe - do things to a stripe. 4646 * 4647 * We lock the stripe by setting STRIPE_ACTIVE and then examine the 4648 * state of various bits to see what needs to be done. 4649 * Possible results: 4650 * return some read requests which now have data 4651 * return some write requests which are safely on storage 4652 * schedule a read on some buffers 4653 * schedule a write of some buffers 4654 * return confirmation of parity correctness 4655 * 4656 */ 4657 4658 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s) 4659 { 4660 struct r5conf *conf = sh->raid_conf; 4661 int disks = sh->disks; 4662 struct r5dev *dev; 4663 int i; 4664 int do_recovery = 0; 4665 4666 memset(s, 0, sizeof(*s)); 4667 4668 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head; 4669 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head; 4670 s->failed_num[0] = -1; 4671 s->failed_num[1] = -1; 4672 s->log_failed = r5l_log_disk_error(conf); 4673 4674 /* Now to look around and see what can be done */ 4675 for (i=disks; i--; ) { 4676 struct md_rdev *rdev; 4677 sector_t first_bad; 4678 int bad_sectors; 4679 int is_bad = 0; 4680 4681 dev = &sh->dev[i]; 4682 4683 pr_debug("check %d: state 0x%lx read %p write %p written %p\n", 4684 i, dev->flags, 4685 dev->toread, dev->towrite, dev->written); 4686 /* maybe we can reply to a read 4687 * 4688 * new wantfill requests are only permitted while 4689 * ops_complete_biofill is guaranteed to be inactive 4690 */ 4691 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread && 4692 !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) 4693 set_bit(R5_Wantfill, &dev->flags); 4694 4695 /* now count some things */ 4696 if (test_bit(R5_LOCKED, &dev->flags)) 4697 s->locked++; 4698 if (test_bit(R5_UPTODATE, &dev->flags)) 4699 s->uptodate++; 4700 if (test_bit(R5_Wantcompute, &dev->flags)) { 4701 s->compute++; 4702 BUG_ON(s->compute > 2); 4703 } 4704 4705 if (test_bit(R5_Wantfill, &dev->flags)) 4706 s->to_fill++; 4707 else if (dev->toread) 4708 s->to_read++; 4709 if (dev->towrite) { 4710 s->to_write++; 4711 if (!test_bit(R5_OVERWRITE, &dev->flags)) 4712 s->non_overwrite++; 4713 } 4714 if (dev->written) 4715 s->written++; 4716 /* Prefer to use the replacement for reads, but only 4717 * if it is recovered enough and has no bad blocks. 4718 */ 4719 rdev = conf->disks[i].replacement; 4720 if (rdev && !test_bit(Faulty, &rdev->flags) && 4721 rdev->recovery_offset >= sh->sector + RAID5_STRIPE_SECTORS(conf) && 4722 !is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 4723 &first_bad, &bad_sectors)) 4724 set_bit(R5_ReadRepl, &dev->flags); 4725 else { 4726 if (rdev && !test_bit(Faulty, &rdev->flags)) 4727 set_bit(R5_NeedReplace, &dev->flags); 4728 else 4729 clear_bit(R5_NeedReplace, &dev->flags); 4730 rdev = conf->disks[i].rdev; 4731 clear_bit(R5_ReadRepl, &dev->flags); 4732 } 4733 if (rdev && test_bit(Faulty, &rdev->flags)) 4734 rdev = NULL; 4735 if (rdev) { 4736 is_bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 4737 &first_bad, &bad_sectors); 4738 if (s->blocked_rdev == NULL 4739 && (test_bit(Blocked, &rdev->flags) 4740 || is_bad < 0)) { 4741 if (is_bad < 0) 4742 set_bit(BlockedBadBlocks, 4743 &rdev->flags); 4744 s->blocked_rdev = rdev; 4745 atomic_inc(&rdev->nr_pending); 4746 } 4747 } 4748 clear_bit(R5_Insync, &dev->flags); 4749 if (!rdev) 4750 /* Not in-sync */; 4751 else if (is_bad) { 4752 /* also not in-sync */ 4753 if (!test_bit(WriteErrorSeen, &rdev->flags) && 4754 test_bit(R5_UPTODATE, &dev->flags)) { 4755 /* treat as in-sync, but with a read error 4756 * which we can now try to correct 4757 */ 4758 set_bit(R5_Insync, &dev->flags); 4759 set_bit(R5_ReadError, &dev->flags); 4760 } 4761 } else if (test_bit(In_sync, &rdev->flags)) 4762 set_bit(R5_Insync, &dev->flags); 4763 else if (sh->sector + RAID5_STRIPE_SECTORS(conf) <= rdev->recovery_offset) 4764 /* in sync if before recovery_offset */ 4765 set_bit(R5_Insync, &dev->flags); 4766 else if (test_bit(R5_UPTODATE, &dev->flags) && 4767 test_bit(R5_Expanded, &dev->flags)) 4768 /* If we've reshaped into here, we assume it is Insync. 4769 * We will shortly update recovery_offset to make 4770 * it official. 4771 */ 4772 set_bit(R5_Insync, &dev->flags); 4773 4774 if (test_bit(R5_WriteError, &dev->flags)) { 4775 /* This flag does not apply to '.replacement' 4776 * only to .rdev, so make sure to check that*/ 4777 struct md_rdev *rdev2 = conf->disks[i].rdev; 4778 4779 if (rdev2 == rdev) 4780 clear_bit(R5_Insync, &dev->flags); 4781 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4782 s->handle_bad_blocks = 1; 4783 atomic_inc(&rdev2->nr_pending); 4784 } else 4785 clear_bit(R5_WriteError, &dev->flags); 4786 } 4787 if (test_bit(R5_MadeGood, &dev->flags)) { 4788 /* This flag does not apply to '.replacement' 4789 * only to .rdev, so make sure to check that*/ 4790 struct md_rdev *rdev2 = conf->disks[i].rdev; 4791 4792 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4793 s->handle_bad_blocks = 1; 4794 atomic_inc(&rdev2->nr_pending); 4795 } else 4796 clear_bit(R5_MadeGood, &dev->flags); 4797 } 4798 if (test_bit(R5_MadeGoodRepl, &dev->flags)) { 4799 struct md_rdev *rdev2 = conf->disks[i].replacement; 4800 4801 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4802 s->handle_bad_blocks = 1; 4803 atomic_inc(&rdev2->nr_pending); 4804 } else 4805 clear_bit(R5_MadeGoodRepl, &dev->flags); 4806 } 4807 if (!test_bit(R5_Insync, &dev->flags)) { 4808 /* The ReadError flag will just be confusing now */ 4809 clear_bit(R5_ReadError, &dev->flags); 4810 clear_bit(R5_ReWrite, &dev->flags); 4811 } 4812 if (test_bit(R5_ReadError, &dev->flags)) 4813 clear_bit(R5_Insync, &dev->flags); 4814 if (!test_bit(R5_Insync, &dev->flags)) { 4815 if (s->failed < 2) 4816 s->failed_num[s->failed] = i; 4817 s->failed++; 4818 if (rdev && !test_bit(Faulty, &rdev->flags)) 4819 do_recovery = 1; 4820 else if (!rdev) { 4821 rdev = conf->disks[i].replacement; 4822 if (rdev && !test_bit(Faulty, &rdev->flags)) 4823 do_recovery = 1; 4824 } 4825 } 4826 4827 if (test_bit(R5_InJournal, &dev->flags)) 4828 s->injournal++; 4829 if (test_bit(R5_InJournal, &dev->flags) && dev->written) 4830 s->just_cached++; 4831 } 4832 if (test_bit(STRIPE_SYNCING, &sh->state)) { 4833 /* If there is a failed device being replaced, 4834 * we must be recovering. 4835 * else if we are after recovery_cp, we must be syncing 4836 * else if MD_RECOVERY_REQUESTED is set, we also are syncing. 4837 * else we can only be replacing 4838 * sync and recovery both need to read all devices, and so 4839 * use the same flag. 4840 */ 4841 if (do_recovery || 4842 sh->sector >= conf->mddev->recovery_cp || 4843 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery))) 4844 s->syncing = 1; 4845 else 4846 s->replacing = 1; 4847 } 4848 } 4849 4850 /* 4851 * Return '1' if this is a member of batch, or '0' if it is a lone stripe or 4852 * a head which can now be handled. 4853 */ 4854 static int clear_batch_ready(struct stripe_head *sh) 4855 { 4856 struct stripe_head *tmp; 4857 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state)) 4858 return (sh->batch_head && sh->batch_head != sh); 4859 spin_lock(&sh->stripe_lock); 4860 if (!sh->batch_head) { 4861 spin_unlock(&sh->stripe_lock); 4862 return 0; 4863 } 4864 4865 /* 4866 * this stripe could be added to a batch list before we check 4867 * BATCH_READY, skips it 4868 */ 4869 if (sh->batch_head != sh) { 4870 spin_unlock(&sh->stripe_lock); 4871 return 1; 4872 } 4873 spin_lock(&sh->batch_lock); 4874 list_for_each_entry(tmp, &sh->batch_list, batch_list) 4875 clear_bit(STRIPE_BATCH_READY, &tmp->state); 4876 spin_unlock(&sh->batch_lock); 4877 spin_unlock(&sh->stripe_lock); 4878 4879 /* 4880 * BATCH_READY is cleared, no new stripes can be added. 4881 * batch_list can be accessed without lock 4882 */ 4883 return 0; 4884 } 4885 4886 static void break_stripe_batch_list(struct stripe_head *head_sh, 4887 unsigned long handle_flags) 4888 { 4889 struct stripe_head *sh, *next; 4890 int i; 4891 int do_wakeup = 0; 4892 4893 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) { 4894 4895 list_del_init(&sh->batch_list); 4896 4897 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) | 4898 (1 << STRIPE_SYNCING) | 4899 (1 << STRIPE_REPLACED) | 4900 (1 << STRIPE_DELAYED) | 4901 (1 << STRIPE_BIT_DELAY) | 4902 (1 << STRIPE_FULL_WRITE) | 4903 (1 << STRIPE_BIOFILL_RUN) | 4904 (1 << STRIPE_COMPUTE_RUN) | 4905 (1 << STRIPE_DISCARD) | 4906 (1 << STRIPE_BATCH_READY) | 4907 (1 << STRIPE_BATCH_ERR) | 4908 (1 << STRIPE_BITMAP_PENDING)), 4909 "stripe state: %lx\n", sh->state); 4910 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) | 4911 (1 << STRIPE_REPLACED)), 4912 "head stripe state: %lx\n", head_sh->state); 4913 4914 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS | 4915 (1 << STRIPE_PREREAD_ACTIVE) | 4916 (1 << STRIPE_DEGRADED) | 4917 (1 << STRIPE_ON_UNPLUG_LIST)), 4918 head_sh->state & (1 << STRIPE_INSYNC)); 4919 4920 sh->check_state = head_sh->check_state; 4921 sh->reconstruct_state = head_sh->reconstruct_state; 4922 spin_lock_irq(&sh->stripe_lock); 4923 sh->batch_head = NULL; 4924 spin_unlock_irq(&sh->stripe_lock); 4925 for (i = 0; i < sh->disks; i++) { 4926 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 4927 do_wakeup = 1; 4928 sh->dev[i].flags = head_sh->dev[i].flags & 4929 (~((1 << R5_WriteError) | (1 << R5_Overlap))); 4930 } 4931 if (handle_flags == 0 || 4932 sh->state & handle_flags) 4933 set_bit(STRIPE_HANDLE, &sh->state); 4934 raid5_release_stripe(sh); 4935 } 4936 spin_lock_irq(&head_sh->stripe_lock); 4937 head_sh->batch_head = NULL; 4938 spin_unlock_irq(&head_sh->stripe_lock); 4939 for (i = 0; i < head_sh->disks; i++) 4940 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags)) 4941 do_wakeup = 1; 4942 if (head_sh->state & handle_flags) 4943 set_bit(STRIPE_HANDLE, &head_sh->state); 4944 4945 if (do_wakeup) 4946 wake_up(&head_sh->raid_conf->wait_for_overlap); 4947 } 4948 4949 static void handle_stripe(struct stripe_head *sh) 4950 { 4951 struct stripe_head_state s; 4952 struct r5conf *conf = sh->raid_conf; 4953 int i; 4954 int prexor; 4955 int disks = sh->disks; 4956 struct r5dev *pdev, *qdev; 4957 4958 clear_bit(STRIPE_HANDLE, &sh->state); 4959 4960 /* 4961 * handle_stripe should not continue handle the batched stripe, only 4962 * the head of batch list or lone stripe can continue. Otherwise we 4963 * could see break_stripe_batch_list warns about the STRIPE_ACTIVE 4964 * is set for the batched stripe. 4965 */ 4966 if (clear_batch_ready(sh)) 4967 return; 4968 4969 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) { 4970 /* already being handled, ensure it gets handled 4971 * again when current action finishes */ 4972 set_bit(STRIPE_HANDLE, &sh->state); 4973 return; 4974 } 4975 4976 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state)) 4977 break_stripe_batch_list(sh, 0); 4978 4979 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) { 4980 spin_lock(&sh->stripe_lock); 4981 /* 4982 * Cannot process 'sync' concurrently with 'discard'. 4983 * Flush data in r5cache before 'sync'. 4984 */ 4985 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) && 4986 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) && 4987 !test_bit(STRIPE_DISCARD, &sh->state) && 4988 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) { 4989 set_bit(STRIPE_SYNCING, &sh->state); 4990 clear_bit(STRIPE_INSYNC, &sh->state); 4991 clear_bit(STRIPE_REPLACED, &sh->state); 4992 } 4993 spin_unlock(&sh->stripe_lock); 4994 } 4995 clear_bit(STRIPE_DELAYED, &sh->state); 4996 4997 pr_debug("handling stripe %llu, state=%#lx cnt=%d, " 4998 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n", 4999 (unsigned long long)sh->sector, sh->state, 5000 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx, 5001 sh->check_state, sh->reconstruct_state); 5002 5003 analyse_stripe(sh, &s); 5004 5005 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state)) 5006 goto finish; 5007 5008 if (s.handle_bad_blocks || 5009 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) { 5010 set_bit(STRIPE_HANDLE, &sh->state); 5011 goto finish; 5012 } 5013 5014 if (unlikely(s.blocked_rdev)) { 5015 if (s.syncing || s.expanding || s.expanded || 5016 s.replacing || s.to_write || s.written) { 5017 set_bit(STRIPE_HANDLE, &sh->state); 5018 goto finish; 5019 } 5020 /* There is nothing for the blocked_rdev to block */ 5021 rdev_dec_pending(s.blocked_rdev, conf->mddev); 5022 s.blocked_rdev = NULL; 5023 } 5024 5025 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) { 5026 set_bit(STRIPE_OP_BIOFILL, &s.ops_request); 5027 set_bit(STRIPE_BIOFILL_RUN, &sh->state); 5028 } 5029 5030 pr_debug("locked=%d uptodate=%d to_read=%d" 5031 " to_write=%d failed=%d failed_num=%d,%d\n", 5032 s.locked, s.uptodate, s.to_read, s.to_write, s.failed, 5033 s.failed_num[0], s.failed_num[1]); 5034 /* 5035 * check if the array has lost more than max_degraded devices and, 5036 * if so, some requests might need to be failed. 5037 * 5038 * When journal device failed (log_failed), we will only process 5039 * the stripe if there is data need write to raid disks 5040 */ 5041 if (s.failed > conf->max_degraded || 5042 (s.log_failed && s.injournal == 0)) { 5043 sh->check_state = 0; 5044 sh->reconstruct_state = 0; 5045 break_stripe_batch_list(sh, 0); 5046 if (s.to_read+s.to_write+s.written) 5047 handle_failed_stripe(conf, sh, &s, disks); 5048 if (s.syncing + s.replacing) 5049 handle_failed_sync(conf, sh, &s); 5050 } 5051 5052 /* Now we check to see if any write operations have recently 5053 * completed 5054 */ 5055 prexor = 0; 5056 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result) 5057 prexor = 1; 5058 if (sh->reconstruct_state == reconstruct_state_drain_result || 5059 sh->reconstruct_state == reconstruct_state_prexor_drain_result) { 5060 sh->reconstruct_state = reconstruct_state_idle; 5061 5062 /* All the 'written' buffers and the parity block are ready to 5063 * be written back to disk 5064 */ 5065 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) && 5066 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)); 5067 BUG_ON(sh->qd_idx >= 0 && 5068 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) && 5069 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags)); 5070 for (i = disks; i--; ) { 5071 struct r5dev *dev = &sh->dev[i]; 5072 if (test_bit(R5_LOCKED, &dev->flags) && 5073 (i == sh->pd_idx || i == sh->qd_idx || 5074 dev->written || test_bit(R5_InJournal, 5075 &dev->flags))) { 5076 pr_debug("Writing block %d\n", i); 5077 set_bit(R5_Wantwrite, &dev->flags); 5078 if (prexor) 5079 continue; 5080 if (s.failed > 1) 5081 continue; 5082 if (!test_bit(R5_Insync, &dev->flags) || 5083 ((i == sh->pd_idx || i == sh->qd_idx) && 5084 s.failed == 0)) 5085 set_bit(STRIPE_INSYNC, &sh->state); 5086 } 5087 } 5088 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5089 s.dec_preread_active = 1; 5090 } 5091 5092 /* 5093 * might be able to return some write requests if the parity blocks 5094 * are safe, or on a failed drive 5095 */ 5096 pdev = &sh->dev[sh->pd_idx]; 5097 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx) 5098 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx); 5099 qdev = &sh->dev[sh->qd_idx]; 5100 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx) 5101 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx) 5102 || conf->level < 6; 5103 5104 if (s.written && 5105 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags) 5106 && !test_bit(R5_LOCKED, &pdev->flags) 5107 && (test_bit(R5_UPTODATE, &pdev->flags) || 5108 test_bit(R5_Discard, &pdev->flags))))) && 5109 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags) 5110 && !test_bit(R5_LOCKED, &qdev->flags) 5111 && (test_bit(R5_UPTODATE, &qdev->flags) || 5112 test_bit(R5_Discard, &qdev->flags)))))) 5113 handle_stripe_clean_event(conf, sh, disks); 5114 5115 if (s.just_cached) 5116 r5c_handle_cached_data_endio(conf, sh, disks); 5117 log_stripe_write_finished(sh); 5118 5119 /* Now we might consider reading some blocks, either to check/generate 5120 * parity, or to satisfy requests 5121 * or to load a block that is being partially written. 5122 */ 5123 if (s.to_read || s.non_overwrite 5124 || (s.to_write && s.failed) 5125 || (s.syncing && (s.uptodate + s.compute < disks)) 5126 || s.replacing 5127 || s.expanding) 5128 handle_stripe_fill(sh, &s, disks); 5129 5130 /* 5131 * When the stripe finishes full journal write cycle (write to journal 5132 * and raid disk), this is the clean up procedure so it is ready for 5133 * next operation. 5134 */ 5135 r5c_finish_stripe_write_out(conf, sh, &s); 5136 5137 /* 5138 * Now to consider new write requests, cache write back and what else, 5139 * if anything should be read. We do not handle new writes when: 5140 * 1/ A 'write' operation (copy+xor) is already in flight. 5141 * 2/ A 'check' operation is in flight, as it may clobber the parity 5142 * block. 5143 * 3/ A r5c cache log write is in flight. 5144 */ 5145 5146 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) { 5147 if (!r5c_is_writeback(conf->log)) { 5148 if (s.to_write) 5149 handle_stripe_dirtying(conf, sh, &s, disks); 5150 } else { /* write back cache */ 5151 int ret = 0; 5152 5153 /* First, try handle writes in caching phase */ 5154 if (s.to_write) 5155 ret = r5c_try_caching_write(conf, sh, &s, 5156 disks); 5157 /* 5158 * If caching phase failed: ret == -EAGAIN 5159 * OR 5160 * stripe under reclaim: !caching && injournal 5161 * 5162 * fall back to handle_stripe_dirtying() 5163 */ 5164 if (ret == -EAGAIN || 5165 /* stripe under reclaim: !caching && injournal */ 5166 (!test_bit(STRIPE_R5C_CACHING, &sh->state) && 5167 s.injournal > 0)) { 5168 ret = handle_stripe_dirtying(conf, sh, &s, 5169 disks); 5170 if (ret == -EAGAIN) 5171 goto finish; 5172 } 5173 } 5174 } 5175 5176 /* maybe we need to check and possibly fix the parity for this stripe 5177 * Any reads will already have been scheduled, so we just see if enough 5178 * data is available. The parity check is held off while parity 5179 * dependent operations are in flight. 5180 */ 5181 if (sh->check_state || 5182 (s.syncing && s.locked == 0 && 5183 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 5184 !test_bit(STRIPE_INSYNC, &sh->state))) { 5185 if (conf->level == 6) 5186 handle_parity_checks6(conf, sh, &s, disks); 5187 else 5188 handle_parity_checks5(conf, sh, &s, disks); 5189 } 5190 5191 if ((s.replacing || s.syncing) && s.locked == 0 5192 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state) 5193 && !test_bit(STRIPE_REPLACED, &sh->state)) { 5194 /* Write out to replacement devices where possible */ 5195 for (i = 0; i < conf->raid_disks; i++) 5196 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) { 5197 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags)); 5198 set_bit(R5_WantReplace, &sh->dev[i].flags); 5199 set_bit(R5_LOCKED, &sh->dev[i].flags); 5200 s.locked++; 5201 } 5202 if (s.replacing) 5203 set_bit(STRIPE_INSYNC, &sh->state); 5204 set_bit(STRIPE_REPLACED, &sh->state); 5205 } 5206 if ((s.syncing || s.replacing) && s.locked == 0 && 5207 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 5208 test_bit(STRIPE_INSYNC, &sh->state)) { 5209 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1); 5210 clear_bit(STRIPE_SYNCING, &sh->state); 5211 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 5212 wake_up(&conf->wait_for_overlap); 5213 } 5214 5215 /* If the failed drives are just a ReadError, then we might need 5216 * to progress the repair/check process 5217 */ 5218 if (s.failed <= conf->max_degraded && !conf->mddev->ro) 5219 for (i = 0; i < s.failed; i++) { 5220 struct r5dev *dev = &sh->dev[s.failed_num[i]]; 5221 if (test_bit(R5_ReadError, &dev->flags) 5222 && !test_bit(R5_LOCKED, &dev->flags) 5223 && test_bit(R5_UPTODATE, &dev->flags) 5224 ) { 5225 if (!test_bit(R5_ReWrite, &dev->flags)) { 5226 set_bit(R5_Wantwrite, &dev->flags); 5227 set_bit(R5_ReWrite, &dev->flags); 5228 } else 5229 /* let's read it back */ 5230 set_bit(R5_Wantread, &dev->flags); 5231 set_bit(R5_LOCKED, &dev->flags); 5232 s.locked++; 5233 } 5234 } 5235 5236 /* Finish reconstruct operations initiated by the expansion process */ 5237 if (sh->reconstruct_state == reconstruct_state_result) { 5238 struct stripe_head *sh_src 5239 = raid5_get_active_stripe(conf, NULL, sh->sector, 5240 R5_GAS_PREVIOUS | R5_GAS_NOBLOCK | 5241 R5_GAS_NOQUIESCE); 5242 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) { 5243 /* sh cannot be written until sh_src has been read. 5244 * so arrange for sh to be delayed a little 5245 */ 5246 set_bit(STRIPE_DELAYED, &sh->state); 5247 set_bit(STRIPE_HANDLE, &sh->state); 5248 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, 5249 &sh_src->state)) 5250 atomic_inc(&conf->preread_active_stripes); 5251 raid5_release_stripe(sh_src); 5252 goto finish; 5253 } 5254 if (sh_src) 5255 raid5_release_stripe(sh_src); 5256 5257 sh->reconstruct_state = reconstruct_state_idle; 5258 clear_bit(STRIPE_EXPANDING, &sh->state); 5259 for (i = conf->raid_disks; i--; ) { 5260 set_bit(R5_Wantwrite, &sh->dev[i].flags); 5261 set_bit(R5_LOCKED, &sh->dev[i].flags); 5262 s.locked++; 5263 } 5264 } 5265 5266 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) && 5267 !sh->reconstruct_state) { 5268 /* Need to write out all blocks after computing parity */ 5269 sh->disks = conf->raid_disks; 5270 stripe_set_idx(sh->sector, conf, 0, sh); 5271 schedule_reconstruction(sh, &s, 1, 1); 5272 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) { 5273 clear_bit(STRIPE_EXPAND_READY, &sh->state); 5274 atomic_dec(&conf->reshape_stripes); 5275 wake_up(&conf->wait_for_overlap); 5276 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1); 5277 } 5278 5279 if (s.expanding && s.locked == 0 && 5280 !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) 5281 handle_stripe_expansion(conf, sh); 5282 5283 finish: 5284 /* wait for this device to become unblocked */ 5285 if (unlikely(s.blocked_rdev)) { 5286 if (conf->mddev->external) 5287 md_wait_for_blocked_rdev(s.blocked_rdev, 5288 conf->mddev); 5289 else 5290 /* Internal metadata will immediately 5291 * be written by raid5d, so we don't 5292 * need to wait here. 5293 */ 5294 rdev_dec_pending(s.blocked_rdev, 5295 conf->mddev); 5296 } 5297 5298 if (s.handle_bad_blocks) 5299 for (i = disks; i--; ) { 5300 struct md_rdev *rdev; 5301 struct r5dev *dev = &sh->dev[i]; 5302 if (test_and_clear_bit(R5_WriteError, &dev->flags)) { 5303 /* We own a safe reference to the rdev */ 5304 rdev = conf->disks[i].rdev; 5305 if (!rdev_set_badblocks(rdev, sh->sector, 5306 RAID5_STRIPE_SECTORS(conf), 0)) 5307 md_error(conf->mddev, rdev); 5308 rdev_dec_pending(rdev, conf->mddev); 5309 } 5310 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) { 5311 rdev = conf->disks[i].rdev; 5312 rdev_clear_badblocks(rdev, sh->sector, 5313 RAID5_STRIPE_SECTORS(conf), 0); 5314 rdev_dec_pending(rdev, conf->mddev); 5315 } 5316 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) { 5317 rdev = conf->disks[i].replacement; 5318 if (!rdev) 5319 /* rdev have been moved down */ 5320 rdev = conf->disks[i].rdev; 5321 rdev_clear_badblocks(rdev, sh->sector, 5322 RAID5_STRIPE_SECTORS(conf), 0); 5323 rdev_dec_pending(rdev, conf->mddev); 5324 } 5325 } 5326 5327 if (s.ops_request) 5328 raid_run_ops(sh, s.ops_request); 5329 5330 ops_run_io(sh, &s); 5331 5332 if (s.dec_preread_active) { 5333 /* We delay this until after ops_run_io so that if make_request 5334 * is waiting on a flush, it won't continue until the writes 5335 * have actually been submitted. 5336 */ 5337 atomic_dec(&conf->preread_active_stripes); 5338 if (atomic_read(&conf->preread_active_stripes) < 5339 IO_THRESHOLD) 5340 md_wakeup_thread(conf->mddev->thread); 5341 } 5342 5343 clear_bit_unlock(STRIPE_ACTIVE, &sh->state); 5344 } 5345 5346 static void raid5_activate_delayed(struct r5conf *conf) 5347 __must_hold(&conf->device_lock) 5348 { 5349 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) { 5350 while (!list_empty(&conf->delayed_list)) { 5351 struct list_head *l = conf->delayed_list.next; 5352 struct stripe_head *sh; 5353 sh = list_entry(l, struct stripe_head, lru); 5354 list_del_init(l); 5355 clear_bit(STRIPE_DELAYED, &sh->state); 5356 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5357 atomic_inc(&conf->preread_active_stripes); 5358 list_add_tail(&sh->lru, &conf->hold_list); 5359 raid5_wakeup_stripe_thread(sh); 5360 } 5361 } 5362 } 5363 5364 static void activate_bit_delay(struct r5conf *conf, 5365 struct list_head *temp_inactive_list) 5366 __must_hold(&conf->device_lock) 5367 { 5368 struct list_head head; 5369 list_add(&head, &conf->bitmap_list); 5370 list_del_init(&conf->bitmap_list); 5371 while (!list_empty(&head)) { 5372 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru); 5373 int hash; 5374 list_del_init(&sh->lru); 5375 atomic_inc(&sh->count); 5376 hash = sh->hash_lock_index; 5377 __release_stripe(conf, sh, &temp_inactive_list[hash]); 5378 } 5379 } 5380 5381 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio) 5382 { 5383 struct r5conf *conf = mddev->private; 5384 sector_t sector = bio->bi_iter.bi_sector; 5385 unsigned int chunk_sectors; 5386 unsigned int bio_sectors = bio_sectors(bio); 5387 5388 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors); 5389 return chunk_sectors >= 5390 ((sector & (chunk_sectors - 1)) + bio_sectors); 5391 } 5392 5393 /* 5394 * add bio to the retry LIFO ( in O(1) ... we are in interrupt ) 5395 * later sampled by raid5d. 5396 */ 5397 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf) 5398 { 5399 unsigned long flags; 5400 5401 spin_lock_irqsave(&conf->device_lock, flags); 5402 5403 bi->bi_next = conf->retry_read_aligned_list; 5404 conf->retry_read_aligned_list = bi; 5405 5406 spin_unlock_irqrestore(&conf->device_lock, flags); 5407 md_wakeup_thread(conf->mddev->thread); 5408 } 5409 5410 static struct bio *remove_bio_from_retry(struct r5conf *conf, 5411 unsigned int *offset) 5412 { 5413 struct bio *bi; 5414 5415 bi = conf->retry_read_aligned; 5416 if (bi) { 5417 *offset = conf->retry_read_offset; 5418 conf->retry_read_aligned = NULL; 5419 return bi; 5420 } 5421 bi = conf->retry_read_aligned_list; 5422 if(bi) { 5423 conf->retry_read_aligned_list = bi->bi_next; 5424 bi->bi_next = NULL; 5425 *offset = 0; 5426 } 5427 5428 return bi; 5429 } 5430 5431 /* 5432 * The "raid5_align_endio" should check if the read succeeded and if it 5433 * did, call bio_endio on the original bio (having bio_put the new bio 5434 * first). 5435 * If the read failed.. 5436 */ 5437 static void raid5_align_endio(struct bio *bi) 5438 { 5439 struct bio *raid_bi = bi->bi_private; 5440 struct md_rdev *rdev = (void *)raid_bi->bi_next; 5441 struct mddev *mddev = rdev->mddev; 5442 struct r5conf *conf = mddev->private; 5443 blk_status_t error = bi->bi_status; 5444 5445 bio_put(bi); 5446 raid_bi->bi_next = NULL; 5447 rdev_dec_pending(rdev, conf->mddev); 5448 5449 if (!error) { 5450 bio_endio(raid_bi); 5451 if (atomic_dec_and_test(&conf->active_aligned_reads)) 5452 wake_up(&conf->wait_for_quiescent); 5453 return; 5454 } 5455 5456 pr_debug("raid5_align_endio : io error...handing IO for a retry\n"); 5457 5458 add_bio_to_retry(raid_bi, conf); 5459 } 5460 5461 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio) 5462 { 5463 struct r5conf *conf = mddev->private; 5464 struct bio *align_bio; 5465 struct md_rdev *rdev; 5466 sector_t sector, end_sector, first_bad; 5467 int bad_sectors, dd_idx; 5468 bool did_inc; 5469 5470 if (!in_chunk_boundary(mddev, raid_bio)) { 5471 pr_debug("%s: non aligned\n", __func__); 5472 return 0; 5473 } 5474 5475 sector = raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 0, 5476 &dd_idx, NULL); 5477 end_sector = sector + bio_sectors(raid_bio); 5478 5479 if (r5c_big_stripe_cached(conf, sector)) 5480 return 0; 5481 5482 rdev = conf->disks[dd_idx].replacement; 5483 if (!rdev || test_bit(Faulty, &rdev->flags) || 5484 rdev->recovery_offset < end_sector) { 5485 rdev = conf->disks[dd_idx].rdev; 5486 if (!rdev) 5487 return 0; 5488 if (test_bit(Faulty, &rdev->flags) || 5489 !(test_bit(In_sync, &rdev->flags) || 5490 rdev->recovery_offset >= end_sector)) 5491 return 0; 5492 } 5493 5494 atomic_inc(&rdev->nr_pending); 5495 5496 if (is_badblock(rdev, sector, bio_sectors(raid_bio), &first_bad, 5497 &bad_sectors)) { 5498 rdev_dec_pending(rdev, mddev); 5499 return 0; 5500 } 5501 5502 md_account_bio(mddev, &raid_bio); 5503 raid_bio->bi_next = (void *)rdev; 5504 5505 align_bio = bio_alloc_clone(rdev->bdev, raid_bio, GFP_NOIO, 5506 &mddev->bio_set); 5507 align_bio->bi_end_io = raid5_align_endio; 5508 align_bio->bi_private = raid_bio; 5509 align_bio->bi_iter.bi_sector = sector; 5510 5511 /* No reshape active, so we can trust rdev->data_offset */ 5512 align_bio->bi_iter.bi_sector += rdev->data_offset; 5513 5514 did_inc = false; 5515 if (conf->quiesce == 0) { 5516 atomic_inc(&conf->active_aligned_reads); 5517 did_inc = true; 5518 } 5519 /* need a memory barrier to detect the race with raid5_quiesce() */ 5520 if (!did_inc || smp_load_acquire(&conf->quiesce) != 0) { 5521 /* quiesce is in progress, so we need to undo io activation and wait 5522 * for it to finish 5523 */ 5524 if (did_inc && atomic_dec_and_test(&conf->active_aligned_reads)) 5525 wake_up(&conf->wait_for_quiescent); 5526 spin_lock_irq(&conf->device_lock); 5527 wait_event_lock_irq(conf->wait_for_quiescent, conf->quiesce == 0, 5528 conf->device_lock); 5529 atomic_inc(&conf->active_aligned_reads); 5530 spin_unlock_irq(&conf->device_lock); 5531 } 5532 5533 if (mddev->gendisk) 5534 trace_block_bio_remap(align_bio, disk_devt(mddev->gendisk), 5535 raid_bio->bi_iter.bi_sector); 5536 submit_bio_noacct(align_bio); 5537 return 1; 5538 } 5539 5540 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio) 5541 { 5542 struct bio *split; 5543 sector_t sector = raid_bio->bi_iter.bi_sector; 5544 unsigned chunk_sects = mddev->chunk_sectors; 5545 unsigned sectors = chunk_sects - (sector & (chunk_sects-1)); 5546 5547 if (sectors < bio_sectors(raid_bio)) { 5548 struct r5conf *conf = mddev->private; 5549 split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split); 5550 bio_chain(split, raid_bio); 5551 submit_bio_noacct(raid_bio); 5552 raid_bio = split; 5553 } 5554 5555 if (!raid5_read_one_chunk(mddev, raid_bio)) 5556 return raid_bio; 5557 5558 return NULL; 5559 } 5560 5561 /* __get_priority_stripe - get the next stripe to process 5562 * 5563 * Full stripe writes are allowed to pass preread active stripes up until 5564 * the bypass_threshold is exceeded. In general the bypass_count 5565 * increments when the handle_list is handled before the hold_list; however, it 5566 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a 5567 * stripe with in flight i/o. The bypass_count will be reset when the 5568 * head of the hold_list has changed, i.e. the head was promoted to the 5569 * handle_list. 5570 */ 5571 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group) 5572 __must_hold(&conf->device_lock) 5573 { 5574 struct stripe_head *sh, *tmp; 5575 struct list_head *handle_list = NULL; 5576 struct r5worker_group *wg; 5577 bool second_try = !r5c_is_writeback(conf->log) && 5578 !r5l_log_disk_error(conf); 5579 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) || 5580 r5l_log_disk_error(conf); 5581 5582 again: 5583 wg = NULL; 5584 sh = NULL; 5585 if (conf->worker_cnt_per_group == 0) { 5586 handle_list = try_loprio ? &conf->loprio_list : 5587 &conf->handle_list; 5588 } else if (group != ANY_GROUP) { 5589 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list : 5590 &conf->worker_groups[group].handle_list; 5591 wg = &conf->worker_groups[group]; 5592 } else { 5593 int i; 5594 for (i = 0; i < conf->group_cnt; i++) { 5595 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list : 5596 &conf->worker_groups[i].handle_list; 5597 wg = &conf->worker_groups[i]; 5598 if (!list_empty(handle_list)) 5599 break; 5600 } 5601 } 5602 5603 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n", 5604 __func__, 5605 list_empty(handle_list) ? "empty" : "busy", 5606 list_empty(&conf->hold_list) ? "empty" : "busy", 5607 atomic_read(&conf->pending_full_writes), conf->bypass_count); 5608 5609 if (!list_empty(handle_list)) { 5610 sh = list_entry(handle_list->next, typeof(*sh), lru); 5611 5612 if (list_empty(&conf->hold_list)) 5613 conf->bypass_count = 0; 5614 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) { 5615 if (conf->hold_list.next == conf->last_hold) 5616 conf->bypass_count++; 5617 else { 5618 conf->last_hold = conf->hold_list.next; 5619 conf->bypass_count -= conf->bypass_threshold; 5620 if (conf->bypass_count < 0) 5621 conf->bypass_count = 0; 5622 } 5623 } 5624 } else if (!list_empty(&conf->hold_list) && 5625 ((conf->bypass_threshold && 5626 conf->bypass_count > conf->bypass_threshold) || 5627 atomic_read(&conf->pending_full_writes) == 0)) { 5628 5629 list_for_each_entry(tmp, &conf->hold_list, lru) { 5630 if (conf->worker_cnt_per_group == 0 || 5631 group == ANY_GROUP || 5632 !cpu_online(tmp->cpu) || 5633 cpu_to_group(tmp->cpu) == group) { 5634 sh = tmp; 5635 break; 5636 } 5637 } 5638 5639 if (sh) { 5640 conf->bypass_count -= conf->bypass_threshold; 5641 if (conf->bypass_count < 0) 5642 conf->bypass_count = 0; 5643 } 5644 wg = NULL; 5645 } 5646 5647 if (!sh) { 5648 if (second_try) 5649 return NULL; 5650 second_try = true; 5651 try_loprio = !try_loprio; 5652 goto again; 5653 } 5654 5655 if (wg) { 5656 wg->stripes_cnt--; 5657 sh->group = NULL; 5658 } 5659 list_del_init(&sh->lru); 5660 BUG_ON(atomic_inc_return(&sh->count) != 1); 5661 return sh; 5662 } 5663 5664 struct raid5_plug_cb { 5665 struct blk_plug_cb cb; 5666 struct list_head list; 5667 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS]; 5668 }; 5669 5670 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule) 5671 { 5672 struct raid5_plug_cb *cb = container_of( 5673 blk_cb, struct raid5_plug_cb, cb); 5674 struct stripe_head *sh; 5675 struct mddev *mddev = cb->cb.data; 5676 struct r5conf *conf = mddev->private; 5677 int cnt = 0; 5678 int hash; 5679 5680 if (cb->list.next && !list_empty(&cb->list)) { 5681 spin_lock_irq(&conf->device_lock); 5682 while (!list_empty(&cb->list)) { 5683 sh = list_first_entry(&cb->list, struct stripe_head, lru); 5684 list_del_init(&sh->lru); 5685 /* 5686 * avoid race release_stripe_plug() sees 5687 * STRIPE_ON_UNPLUG_LIST clear but the stripe 5688 * is still in our list 5689 */ 5690 smp_mb__before_atomic(); 5691 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state); 5692 /* 5693 * STRIPE_ON_RELEASE_LIST could be set here. In that 5694 * case, the count is always > 1 here 5695 */ 5696 hash = sh->hash_lock_index; 5697 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]); 5698 cnt++; 5699 } 5700 spin_unlock_irq(&conf->device_lock); 5701 } 5702 release_inactive_stripe_list(conf, cb->temp_inactive_list, 5703 NR_STRIPE_HASH_LOCKS); 5704 if (mddev->queue) 5705 trace_block_unplug(mddev->queue, cnt, !from_schedule); 5706 kfree(cb); 5707 } 5708 5709 static void release_stripe_plug(struct mddev *mddev, 5710 struct stripe_head *sh) 5711 { 5712 struct blk_plug_cb *blk_cb = blk_check_plugged( 5713 raid5_unplug, mddev, 5714 sizeof(struct raid5_plug_cb)); 5715 struct raid5_plug_cb *cb; 5716 5717 if (!blk_cb) { 5718 raid5_release_stripe(sh); 5719 return; 5720 } 5721 5722 cb = container_of(blk_cb, struct raid5_plug_cb, cb); 5723 5724 if (cb->list.next == NULL) { 5725 int i; 5726 INIT_LIST_HEAD(&cb->list); 5727 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 5728 INIT_LIST_HEAD(cb->temp_inactive_list + i); 5729 } 5730 5731 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)) 5732 list_add_tail(&sh->lru, &cb->list); 5733 else 5734 raid5_release_stripe(sh); 5735 } 5736 5737 static void make_discard_request(struct mddev *mddev, struct bio *bi) 5738 { 5739 struct r5conf *conf = mddev->private; 5740 sector_t logical_sector, last_sector; 5741 struct stripe_head *sh; 5742 int stripe_sectors; 5743 5744 /* We need to handle this when io_uring supports discard/trim */ 5745 if (WARN_ON_ONCE(bi->bi_opf & REQ_NOWAIT)) 5746 return; 5747 5748 if (mddev->reshape_position != MaxSector) 5749 /* Skip discard while reshape is happening */ 5750 return; 5751 5752 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1); 5753 last_sector = bio_end_sector(bi); 5754 5755 bi->bi_next = NULL; 5756 5757 stripe_sectors = conf->chunk_sectors * 5758 (conf->raid_disks - conf->max_degraded); 5759 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector, 5760 stripe_sectors); 5761 sector_div(last_sector, stripe_sectors); 5762 5763 logical_sector *= conf->chunk_sectors; 5764 last_sector *= conf->chunk_sectors; 5765 5766 for (; logical_sector < last_sector; 5767 logical_sector += RAID5_STRIPE_SECTORS(conf)) { 5768 DEFINE_WAIT(w); 5769 int d; 5770 again: 5771 sh = raid5_get_active_stripe(conf, NULL, logical_sector, 0); 5772 prepare_to_wait(&conf->wait_for_overlap, &w, 5773 TASK_UNINTERRUPTIBLE); 5774 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 5775 if (test_bit(STRIPE_SYNCING, &sh->state)) { 5776 raid5_release_stripe(sh); 5777 schedule(); 5778 goto again; 5779 } 5780 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 5781 spin_lock_irq(&sh->stripe_lock); 5782 for (d = 0; d < conf->raid_disks; d++) { 5783 if (d == sh->pd_idx || d == sh->qd_idx) 5784 continue; 5785 if (sh->dev[d].towrite || sh->dev[d].toread) { 5786 set_bit(R5_Overlap, &sh->dev[d].flags); 5787 spin_unlock_irq(&sh->stripe_lock); 5788 raid5_release_stripe(sh); 5789 schedule(); 5790 goto again; 5791 } 5792 } 5793 set_bit(STRIPE_DISCARD, &sh->state); 5794 finish_wait(&conf->wait_for_overlap, &w); 5795 sh->overwrite_disks = 0; 5796 for (d = 0; d < conf->raid_disks; d++) { 5797 if (d == sh->pd_idx || d == sh->qd_idx) 5798 continue; 5799 sh->dev[d].towrite = bi; 5800 set_bit(R5_OVERWRITE, &sh->dev[d].flags); 5801 bio_inc_remaining(bi); 5802 md_write_inc(mddev, bi); 5803 sh->overwrite_disks++; 5804 } 5805 spin_unlock_irq(&sh->stripe_lock); 5806 if (conf->mddev->bitmap) { 5807 for (d = 0; 5808 d < conf->raid_disks - conf->max_degraded; 5809 d++) 5810 md_bitmap_startwrite(mddev->bitmap, 5811 sh->sector, 5812 RAID5_STRIPE_SECTORS(conf), 5813 0); 5814 sh->bm_seq = conf->seq_flush + 1; 5815 set_bit(STRIPE_BIT_DELAY, &sh->state); 5816 } 5817 5818 set_bit(STRIPE_HANDLE, &sh->state); 5819 clear_bit(STRIPE_DELAYED, &sh->state); 5820 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5821 atomic_inc(&conf->preread_active_stripes); 5822 release_stripe_plug(mddev, sh); 5823 } 5824 5825 bio_endio(bi); 5826 } 5827 5828 static bool ahead_of_reshape(struct mddev *mddev, sector_t sector, 5829 sector_t reshape_sector) 5830 { 5831 return mddev->reshape_backwards ? sector < reshape_sector : 5832 sector >= reshape_sector; 5833 } 5834 5835 static bool range_ahead_of_reshape(struct mddev *mddev, sector_t min, 5836 sector_t max, sector_t reshape_sector) 5837 { 5838 return mddev->reshape_backwards ? max < reshape_sector : 5839 min >= reshape_sector; 5840 } 5841 5842 static bool stripe_ahead_of_reshape(struct mddev *mddev, struct r5conf *conf, 5843 struct stripe_head *sh) 5844 { 5845 sector_t max_sector = 0, min_sector = MaxSector; 5846 bool ret = false; 5847 int dd_idx; 5848 5849 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) { 5850 if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx) 5851 continue; 5852 5853 min_sector = min(min_sector, sh->dev[dd_idx].sector); 5854 max_sector = max(max_sector, sh->dev[dd_idx].sector); 5855 } 5856 5857 spin_lock_irq(&conf->device_lock); 5858 5859 if (!range_ahead_of_reshape(mddev, min_sector, max_sector, 5860 conf->reshape_progress)) 5861 /* mismatch, need to try again */ 5862 ret = true; 5863 5864 spin_unlock_irq(&conf->device_lock); 5865 5866 return ret; 5867 } 5868 5869 static int add_all_stripe_bios(struct r5conf *conf, 5870 struct stripe_request_ctx *ctx, struct stripe_head *sh, 5871 struct bio *bi, int forwrite, int previous) 5872 { 5873 int dd_idx; 5874 int ret = 1; 5875 5876 spin_lock_irq(&sh->stripe_lock); 5877 5878 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) { 5879 struct r5dev *dev = &sh->dev[dd_idx]; 5880 5881 if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx) 5882 continue; 5883 5884 if (dev->sector < ctx->first_sector || 5885 dev->sector >= ctx->last_sector) 5886 continue; 5887 5888 if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) { 5889 set_bit(R5_Overlap, &dev->flags); 5890 ret = 0; 5891 continue; 5892 } 5893 } 5894 5895 if (!ret) 5896 goto out; 5897 5898 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) { 5899 struct r5dev *dev = &sh->dev[dd_idx]; 5900 5901 if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx) 5902 continue; 5903 5904 if (dev->sector < ctx->first_sector || 5905 dev->sector >= ctx->last_sector) 5906 continue; 5907 5908 __add_stripe_bio(sh, bi, dd_idx, forwrite, previous); 5909 clear_bit((dev->sector - ctx->first_sector) >> 5910 RAID5_STRIPE_SHIFT(conf), ctx->sectors_to_do); 5911 } 5912 5913 out: 5914 spin_unlock_irq(&sh->stripe_lock); 5915 return ret; 5916 } 5917 5918 static enum stripe_result make_stripe_request(struct mddev *mddev, 5919 struct r5conf *conf, struct stripe_request_ctx *ctx, 5920 sector_t logical_sector, struct bio *bi) 5921 { 5922 const int rw = bio_data_dir(bi); 5923 enum stripe_result ret; 5924 struct stripe_head *sh; 5925 sector_t new_sector; 5926 int previous = 0, flags = 0; 5927 int seq, dd_idx; 5928 5929 seq = read_seqcount_begin(&conf->gen_lock); 5930 5931 if (unlikely(conf->reshape_progress != MaxSector)) { 5932 /* 5933 * Spinlock is needed as reshape_progress may be 5934 * 64bit on a 32bit platform, and so it might be 5935 * possible to see a half-updated value 5936 * Of course reshape_progress could change after 5937 * the lock is dropped, so once we get a reference 5938 * to the stripe that we think it is, we will have 5939 * to check again. 5940 */ 5941 spin_lock_irq(&conf->device_lock); 5942 if (ahead_of_reshape(mddev, logical_sector, 5943 conf->reshape_progress)) { 5944 previous = 1; 5945 } else { 5946 if (ahead_of_reshape(mddev, logical_sector, 5947 conf->reshape_safe)) { 5948 spin_unlock_irq(&conf->device_lock); 5949 return STRIPE_SCHEDULE_AND_RETRY; 5950 } 5951 } 5952 spin_unlock_irq(&conf->device_lock); 5953 } 5954 5955 new_sector = raid5_compute_sector(conf, logical_sector, previous, 5956 &dd_idx, NULL); 5957 pr_debug("raid456: %s, sector %llu logical %llu\n", __func__, 5958 new_sector, logical_sector); 5959 5960 if (previous) 5961 flags |= R5_GAS_PREVIOUS; 5962 if (bi->bi_opf & REQ_RAHEAD) 5963 flags |= R5_GAS_NOBLOCK; 5964 sh = raid5_get_active_stripe(conf, ctx, new_sector, flags); 5965 if (unlikely(!sh)) { 5966 /* cannot get stripe, just give-up */ 5967 bi->bi_status = BLK_STS_IOERR; 5968 return STRIPE_FAIL; 5969 } 5970 5971 if (unlikely(previous) && 5972 stripe_ahead_of_reshape(mddev, conf, sh)) { 5973 /* 5974 * Expansion moved on while waiting for a stripe. 5975 * Expansion could still move past after this 5976 * test, but as we are holding a reference to 5977 * 'sh', we know that if that happens, 5978 * STRIPE_EXPANDING will get set and the expansion 5979 * won't proceed until we finish with the stripe. 5980 */ 5981 ret = STRIPE_SCHEDULE_AND_RETRY; 5982 goto out_release; 5983 } 5984 5985 if (read_seqcount_retry(&conf->gen_lock, seq)) { 5986 /* Might have got the wrong stripe_head by accident */ 5987 ret = STRIPE_RETRY; 5988 goto out_release; 5989 } 5990 5991 if (test_bit(STRIPE_EXPANDING, &sh->state) || 5992 !add_all_stripe_bios(conf, ctx, sh, bi, rw, previous)) { 5993 /* 5994 * Stripe is busy expanding or add failed due to 5995 * overlap. Flush everything and wait a while. 5996 */ 5997 md_wakeup_thread(mddev->thread); 5998 ret = STRIPE_SCHEDULE_AND_RETRY; 5999 goto out_release; 6000 } 6001 6002 if (stripe_can_batch(sh)) { 6003 stripe_add_to_batch_list(conf, sh, ctx->batch_last); 6004 if (ctx->batch_last) 6005 raid5_release_stripe(ctx->batch_last); 6006 atomic_inc(&sh->count); 6007 ctx->batch_last = sh; 6008 } 6009 6010 if (ctx->do_flush) { 6011 set_bit(STRIPE_R5C_PREFLUSH, &sh->state); 6012 /* we only need flush for one stripe */ 6013 ctx->do_flush = false; 6014 } 6015 6016 set_bit(STRIPE_HANDLE, &sh->state); 6017 clear_bit(STRIPE_DELAYED, &sh->state); 6018 if ((!sh->batch_head || sh == sh->batch_head) && 6019 (bi->bi_opf & REQ_SYNC) && 6020 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 6021 atomic_inc(&conf->preread_active_stripes); 6022 6023 release_stripe_plug(mddev, sh); 6024 return STRIPE_SUCCESS; 6025 6026 out_release: 6027 raid5_release_stripe(sh); 6028 return ret; 6029 } 6030 6031 /* 6032 * If the bio covers multiple data disks, find sector within the bio that has 6033 * the lowest chunk offset in the first chunk. 6034 */ 6035 static sector_t raid5_bio_lowest_chunk_sector(struct r5conf *conf, 6036 struct bio *bi) 6037 { 6038 int sectors_per_chunk = conf->chunk_sectors; 6039 int raid_disks = conf->raid_disks; 6040 int dd_idx; 6041 struct stripe_head sh; 6042 unsigned int chunk_offset; 6043 sector_t r_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1); 6044 sector_t sector; 6045 6046 /* We pass in fake stripe_head to get back parity disk numbers */ 6047 sector = raid5_compute_sector(conf, r_sector, 0, &dd_idx, &sh); 6048 chunk_offset = sector_div(sector, sectors_per_chunk); 6049 if (sectors_per_chunk - chunk_offset >= bio_sectors(bi)) 6050 return r_sector; 6051 /* 6052 * Bio crosses to the next data disk. Check whether it's in the same 6053 * chunk. 6054 */ 6055 dd_idx++; 6056 while (dd_idx == sh.pd_idx || dd_idx == sh.qd_idx) 6057 dd_idx++; 6058 if (dd_idx >= raid_disks) 6059 return r_sector; 6060 return r_sector + sectors_per_chunk - chunk_offset; 6061 } 6062 6063 static bool raid5_make_request(struct mddev *mddev, struct bio * bi) 6064 { 6065 DEFINE_WAIT_FUNC(wait, woken_wake_function); 6066 struct r5conf *conf = mddev->private; 6067 sector_t logical_sector; 6068 struct stripe_request_ctx ctx = {}; 6069 const int rw = bio_data_dir(bi); 6070 enum stripe_result res; 6071 int s, stripe_cnt; 6072 6073 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) { 6074 int ret = log_handle_flush_request(conf, bi); 6075 6076 if (ret == 0) 6077 return true; 6078 if (ret == -ENODEV) { 6079 if (md_flush_request(mddev, bi)) 6080 return true; 6081 } 6082 /* ret == -EAGAIN, fallback */ 6083 /* 6084 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH, 6085 * we need to flush journal device 6086 */ 6087 ctx.do_flush = bi->bi_opf & REQ_PREFLUSH; 6088 } 6089 6090 if (!md_write_start(mddev, bi)) 6091 return false; 6092 /* 6093 * If array is degraded, better not do chunk aligned read because 6094 * later we might have to read it again in order to reconstruct 6095 * data on failed drives. 6096 */ 6097 if (rw == READ && mddev->degraded == 0 && 6098 mddev->reshape_position == MaxSector) { 6099 bi = chunk_aligned_read(mddev, bi); 6100 if (!bi) 6101 return true; 6102 } 6103 6104 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) { 6105 make_discard_request(mddev, bi); 6106 md_write_end(mddev); 6107 return true; 6108 } 6109 6110 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1); 6111 ctx.first_sector = logical_sector; 6112 ctx.last_sector = bio_end_sector(bi); 6113 bi->bi_next = NULL; 6114 6115 stripe_cnt = DIV_ROUND_UP_SECTOR_T(ctx.last_sector - logical_sector, 6116 RAID5_STRIPE_SECTORS(conf)); 6117 bitmap_set(ctx.sectors_to_do, 0, stripe_cnt); 6118 6119 pr_debug("raid456: %s, logical %llu to %llu\n", __func__, 6120 bi->bi_iter.bi_sector, ctx.last_sector); 6121 6122 /* Bail out if conflicts with reshape and REQ_NOWAIT is set */ 6123 if ((bi->bi_opf & REQ_NOWAIT) && 6124 (conf->reshape_progress != MaxSector) && 6125 !ahead_of_reshape(mddev, logical_sector, conf->reshape_progress) && 6126 ahead_of_reshape(mddev, logical_sector, conf->reshape_safe)) { 6127 bio_wouldblock_error(bi); 6128 if (rw == WRITE) 6129 md_write_end(mddev); 6130 return true; 6131 } 6132 md_account_bio(mddev, &bi); 6133 6134 /* 6135 * Lets start with the stripe with the lowest chunk offset in the first 6136 * chunk. That has the best chances of creating IOs adjacent to 6137 * previous IOs in case of sequential IO and thus creates the most 6138 * sequential IO pattern. We don't bother with the optimization when 6139 * reshaping as the performance benefit is not worth the complexity. 6140 */ 6141 if (likely(conf->reshape_progress == MaxSector)) 6142 logical_sector = raid5_bio_lowest_chunk_sector(conf, bi); 6143 s = (logical_sector - ctx.first_sector) >> RAID5_STRIPE_SHIFT(conf); 6144 6145 add_wait_queue(&conf->wait_for_overlap, &wait); 6146 while (1) { 6147 res = make_stripe_request(mddev, conf, &ctx, logical_sector, 6148 bi); 6149 if (res == STRIPE_FAIL) 6150 break; 6151 6152 if (res == STRIPE_RETRY) 6153 continue; 6154 6155 if (res == STRIPE_SCHEDULE_AND_RETRY) { 6156 /* 6157 * Must release the reference to batch_last before 6158 * scheduling and waiting for work to be done, 6159 * otherwise the batch_last stripe head could prevent 6160 * raid5_activate_delayed() from making progress 6161 * and thus deadlocking. 6162 */ 6163 if (ctx.batch_last) { 6164 raid5_release_stripe(ctx.batch_last); 6165 ctx.batch_last = NULL; 6166 } 6167 6168 wait_woken(&wait, TASK_UNINTERRUPTIBLE, 6169 MAX_SCHEDULE_TIMEOUT); 6170 continue; 6171 } 6172 6173 s = find_next_bit_wrap(ctx.sectors_to_do, stripe_cnt, s); 6174 if (s == stripe_cnt) 6175 break; 6176 6177 logical_sector = ctx.first_sector + 6178 (s << RAID5_STRIPE_SHIFT(conf)); 6179 } 6180 remove_wait_queue(&conf->wait_for_overlap, &wait); 6181 6182 if (ctx.batch_last) 6183 raid5_release_stripe(ctx.batch_last); 6184 6185 if (rw == WRITE) 6186 md_write_end(mddev); 6187 bio_endio(bi); 6188 return true; 6189 } 6190 6191 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks); 6192 6193 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped) 6194 { 6195 /* reshaping is quite different to recovery/resync so it is 6196 * handled quite separately ... here. 6197 * 6198 * On each call to sync_request, we gather one chunk worth of 6199 * destination stripes and flag them as expanding. 6200 * Then we find all the source stripes and request reads. 6201 * As the reads complete, handle_stripe will copy the data 6202 * into the destination stripe and release that stripe. 6203 */ 6204 struct r5conf *conf = mddev->private; 6205 struct stripe_head *sh; 6206 struct md_rdev *rdev; 6207 sector_t first_sector, last_sector; 6208 int raid_disks = conf->previous_raid_disks; 6209 int data_disks = raid_disks - conf->max_degraded; 6210 int new_data_disks = conf->raid_disks - conf->max_degraded; 6211 int i; 6212 int dd_idx; 6213 sector_t writepos, readpos, safepos; 6214 sector_t stripe_addr; 6215 int reshape_sectors; 6216 struct list_head stripes; 6217 sector_t retn; 6218 6219 if (sector_nr == 0) { 6220 /* If restarting in the middle, skip the initial sectors */ 6221 if (mddev->reshape_backwards && 6222 conf->reshape_progress < raid5_size(mddev, 0, 0)) { 6223 sector_nr = raid5_size(mddev, 0, 0) 6224 - conf->reshape_progress; 6225 } else if (mddev->reshape_backwards && 6226 conf->reshape_progress == MaxSector) { 6227 /* shouldn't happen, but just in case, finish up.*/ 6228 sector_nr = MaxSector; 6229 } else if (!mddev->reshape_backwards && 6230 conf->reshape_progress > 0) 6231 sector_nr = conf->reshape_progress; 6232 sector_div(sector_nr, new_data_disks); 6233 if (sector_nr) { 6234 mddev->curr_resync_completed = sector_nr; 6235 sysfs_notify_dirent_safe(mddev->sysfs_completed); 6236 *skipped = 1; 6237 retn = sector_nr; 6238 goto finish; 6239 } 6240 } 6241 6242 /* We need to process a full chunk at a time. 6243 * If old and new chunk sizes differ, we need to process the 6244 * largest of these 6245 */ 6246 6247 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors); 6248 6249 /* We update the metadata at least every 10 seconds, or when 6250 * the data about to be copied would over-write the source of 6251 * the data at the front of the range. i.e. one new_stripe 6252 * along from reshape_progress new_maps to after where 6253 * reshape_safe old_maps to 6254 */ 6255 writepos = conf->reshape_progress; 6256 sector_div(writepos, new_data_disks); 6257 readpos = conf->reshape_progress; 6258 sector_div(readpos, data_disks); 6259 safepos = conf->reshape_safe; 6260 sector_div(safepos, data_disks); 6261 if (mddev->reshape_backwards) { 6262 BUG_ON(writepos < reshape_sectors); 6263 writepos -= reshape_sectors; 6264 readpos += reshape_sectors; 6265 safepos += reshape_sectors; 6266 } else { 6267 writepos += reshape_sectors; 6268 /* readpos and safepos are worst-case calculations. 6269 * A negative number is overly pessimistic, and causes 6270 * obvious problems for unsigned storage. So clip to 0. 6271 */ 6272 readpos -= min_t(sector_t, reshape_sectors, readpos); 6273 safepos -= min_t(sector_t, reshape_sectors, safepos); 6274 } 6275 6276 /* Having calculated the 'writepos' possibly use it 6277 * to set 'stripe_addr' which is where we will write to. 6278 */ 6279 if (mddev->reshape_backwards) { 6280 BUG_ON(conf->reshape_progress == 0); 6281 stripe_addr = writepos; 6282 BUG_ON((mddev->dev_sectors & 6283 ~((sector_t)reshape_sectors - 1)) 6284 - reshape_sectors - stripe_addr 6285 != sector_nr); 6286 } else { 6287 BUG_ON(writepos != sector_nr + reshape_sectors); 6288 stripe_addr = sector_nr; 6289 } 6290 6291 /* 'writepos' is the most advanced device address we might write. 6292 * 'readpos' is the least advanced device address we might read. 6293 * 'safepos' is the least address recorded in the metadata as having 6294 * been reshaped. 6295 * If there is a min_offset_diff, these are adjusted either by 6296 * increasing the safepos/readpos if diff is negative, or 6297 * increasing writepos if diff is positive. 6298 * If 'readpos' is then behind 'writepos', there is no way that we can 6299 * ensure safety in the face of a crash - that must be done by userspace 6300 * making a backup of the data. So in that case there is no particular 6301 * rush to update metadata. 6302 * Otherwise if 'safepos' is behind 'writepos', then we really need to 6303 * update the metadata to advance 'safepos' to match 'readpos' so that 6304 * we can be safe in the event of a crash. 6305 * So we insist on updating metadata if safepos is behind writepos and 6306 * readpos is beyond writepos. 6307 * In any case, update the metadata every 10 seconds. 6308 * Maybe that number should be configurable, but I'm not sure it is 6309 * worth it.... maybe it could be a multiple of safemode_delay??? 6310 */ 6311 if (conf->min_offset_diff < 0) { 6312 safepos += -conf->min_offset_diff; 6313 readpos += -conf->min_offset_diff; 6314 } else 6315 writepos += conf->min_offset_diff; 6316 6317 if ((mddev->reshape_backwards 6318 ? (safepos > writepos && readpos < writepos) 6319 : (safepos < writepos && readpos > writepos)) || 6320 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 6321 /* Cannot proceed until we've updated the superblock... */ 6322 wait_event(conf->wait_for_overlap, 6323 atomic_read(&conf->reshape_stripes)==0 6324 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 6325 if (atomic_read(&conf->reshape_stripes) != 0) 6326 return 0; 6327 mddev->reshape_position = conf->reshape_progress; 6328 mddev->curr_resync_completed = sector_nr; 6329 if (!mddev->reshape_backwards) 6330 /* Can update recovery_offset */ 6331 rdev_for_each(rdev, mddev) 6332 if (rdev->raid_disk >= 0 && 6333 !test_bit(Journal, &rdev->flags) && 6334 !test_bit(In_sync, &rdev->flags) && 6335 rdev->recovery_offset < sector_nr) 6336 rdev->recovery_offset = sector_nr; 6337 6338 conf->reshape_checkpoint = jiffies; 6339 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6340 md_wakeup_thread(mddev->thread); 6341 wait_event(mddev->sb_wait, mddev->sb_flags == 0 || 6342 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 6343 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6344 return 0; 6345 spin_lock_irq(&conf->device_lock); 6346 conf->reshape_safe = mddev->reshape_position; 6347 spin_unlock_irq(&conf->device_lock); 6348 wake_up(&conf->wait_for_overlap); 6349 sysfs_notify_dirent_safe(mddev->sysfs_completed); 6350 } 6351 6352 INIT_LIST_HEAD(&stripes); 6353 for (i = 0; i < reshape_sectors; i += RAID5_STRIPE_SECTORS(conf)) { 6354 int j; 6355 int skipped_disk = 0; 6356 sh = raid5_get_active_stripe(conf, NULL, stripe_addr+i, 6357 R5_GAS_NOQUIESCE); 6358 set_bit(STRIPE_EXPANDING, &sh->state); 6359 atomic_inc(&conf->reshape_stripes); 6360 /* If any of this stripe is beyond the end of the old 6361 * array, then we need to zero those blocks 6362 */ 6363 for (j=sh->disks; j--;) { 6364 sector_t s; 6365 if (j == sh->pd_idx) 6366 continue; 6367 if (conf->level == 6 && 6368 j == sh->qd_idx) 6369 continue; 6370 s = raid5_compute_blocknr(sh, j, 0); 6371 if (s < raid5_size(mddev, 0, 0)) { 6372 skipped_disk = 1; 6373 continue; 6374 } 6375 memset(page_address(sh->dev[j].page), 0, RAID5_STRIPE_SIZE(conf)); 6376 set_bit(R5_Expanded, &sh->dev[j].flags); 6377 set_bit(R5_UPTODATE, &sh->dev[j].flags); 6378 } 6379 if (!skipped_disk) { 6380 set_bit(STRIPE_EXPAND_READY, &sh->state); 6381 set_bit(STRIPE_HANDLE, &sh->state); 6382 } 6383 list_add(&sh->lru, &stripes); 6384 } 6385 spin_lock_irq(&conf->device_lock); 6386 if (mddev->reshape_backwards) 6387 conf->reshape_progress -= reshape_sectors * new_data_disks; 6388 else 6389 conf->reshape_progress += reshape_sectors * new_data_disks; 6390 spin_unlock_irq(&conf->device_lock); 6391 /* Ok, those stripe are ready. We can start scheduling 6392 * reads on the source stripes. 6393 * The source stripes are determined by mapping the first and last 6394 * block on the destination stripes. 6395 */ 6396 first_sector = 6397 raid5_compute_sector(conf, stripe_addr*(new_data_disks), 6398 1, &dd_idx, NULL); 6399 last_sector = 6400 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors) 6401 * new_data_disks - 1), 6402 1, &dd_idx, NULL); 6403 if (last_sector >= mddev->dev_sectors) 6404 last_sector = mddev->dev_sectors - 1; 6405 while (first_sector <= last_sector) { 6406 sh = raid5_get_active_stripe(conf, NULL, first_sector, 6407 R5_GAS_PREVIOUS | R5_GAS_NOQUIESCE); 6408 set_bit(STRIPE_EXPAND_SOURCE, &sh->state); 6409 set_bit(STRIPE_HANDLE, &sh->state); 6410 raid5_release_stripe(sh); 6411 first_sector += RAID5_STRIPE_SECTORS(conf); 6412 } 6413 /* Now that the sources are clearly marked, we can release 6414 * the destination stripes 6415 */ 6416 while (!list_empty(&stripes)) { 6417 sh = list_entry(stripes.next, struct stripe_head, lru); 6418 list_del_init(&sh->lru); 6419 raid5_release_stripe(sh); 6420 } 6421 /* If this takes us to the resync_max point where we have to pause, 6422 * then we need to write out the superblock. 6423 */ 6424 sector_nr += reshape_sectors; 6425 retn = reshape_sectors; 6426 finish: 6427 if (mddev->curr_resync_completed > mddev->resync_max || 6428 (sector_nr - mddev->curr_resync_completed) * 2 6429 >= mddev->resync_max - mddev->curr_resync_completed) { 6430 /* Cannot proceed until we've updated the superblock... */ 6431 wait_event(conf->wait_for_overlap, 6432 atomic_read(&conf->reshape_stripes) == 0 6433 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 6434 if (atomic_read(&conf->reshape_stripes) != 0) 6435 goto ret; 6436 mddev->reshape_position = conf->reshape_progress; 6437 mddev->curr_resync_completed = sector_nr; 6438 if (!mddev->reshape_backwards) 6439 /* Can update recovery_offset */ 6440 rdev_for_each(rdev, mddev) 6441 if (rdev->raid_disk >= 0 && 6442 !test_bit(Journal, &rdev->flags) && 6443 !test_bit(In_sync, &rdev->flags) && 6444 rdev->recovery_offset < sector_nr) 6445 rdev->recovery_offset = sector_nr; 6446 conf->reshape_checkpoint = jiffies; 6447 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6448 md_wakeup_thread(mddev->thread); 6449 wait_event(mddev->sb_wait, 6450 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) 6451 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 6452 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6453 goto ret; 6454 spin_lock_irq(&conf->device_lock); 6455 conf->reshape_safe = mddev->reshape_position; 6456 spin_unlock_irq(&conf->device_lock); 6457 wake_up(&conf->wait_for_overlap); 6458 sysfs_notify_dirent_safe(mddev->sysfs_completed); 6459 } 6460 ret: 6461 return retn; 6462 } 6463 6464 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr, 6465 int *skipped) 6466 { 6467 struct r5conf *conf = mddev->private; 6468 struct stripe_head *sh; 6469 sector_t max_sector = mddev->dev_sectors; 6470 sector_t sync_blocks; 6471 int still_degraded = 0; 6472 int i; 6473 6474 if (sector_nr >= max_sector) { 6475 /* just being told to finish up .. nothing much to do */ 6476 6477 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 6478 end_reshape(conf); 6479 return 0; 6480 } 6481 6482 if (mddev->curr_resync < max_sector) /* aborted */ 6483 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 6484 &sync_blocks, 1); 6485 else /* completed sync */ 6486 conf->fullsync = 0; 6487 md_bitmap_close_sync(mddev->bitmap); 6488 6489 return 0; 6490 } 6491 6492 /* Allow raid5_quiesce to complete */ 6493 wait_event(conf->wait_for_overlap, conf->quiesce != 2); 6494 6495 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 6496 return reshape_request(mddev, sector_nr, skipped); 6497 6498 /* No need to check resync_max as we never do more than one 6499 * stripe, and as resync_max will always be on a chunk boundary, 6500 * if the check in md_do_sync didn't fire, there is no chance 6501 * of overstepping resync_max here 6502 */ 6503 6504 /* if there is too many failed drives and we are trying 6505 * to resync, then assert that we are finished, because there is 6506 * nothing we can do. 6507 */ 6508 if (mddev->degraded >= conf->max_degraded && 6509 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 6510 sector_t rv = mddev->dev_sectors - sector_nr; 6511 *skipped = 1; 6512 return rv; 6513 } 6514 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 6515 !conf->fullsync && 6516 !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 6517 sync_blocks >= RAID5_STRIPE_SECTORS(conf)) { 6518 /* we can skip this block, and probably more */ 6519 do_div(sync_blocks, RAID5_STRIPE_SECTORS(conf)); 6520 *skipped = 1; 6521 /* keep things rounded to whole stripes */ 6522 return sync_blocks * RAID5_STRIPE_SECTORS(conf); 6523 } 6524 6525 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false); 6526 6527 sh = raid5_get_active_stripe(conf, NULL, sector_nr, 6528 R5_GAS_NOBLOCK); 6529 if (sh == NULL) { 6530 sh = raid5_get_active_stripe(conf, NULL, sector_nr, 0); 6531 /* make sure we don't swamp the stripe cache if someone else 6532 * is trying to get access 6533 */ 6534 schedule_timeout_uninterruptible(1); 6535 } 6536 /* Need to check if array will still be degraded after recovery/resync 6537 * Note in case of > 1 drive failures it's possible we're rebuilding 6538 * one drive while leaving another faulty drive in array. 6539 */ 6540 for (i = 0; i < conf->raid_disks; i++) { 6541 struct md_rdev *rdev = conf->disks[i].rdev; 6542 6543 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) 6544 still_degraded = 1; 6545 } 6546 6547 md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded); 6548 6549 set_bit(STRIPE_SYNC_REQUESTED, &sh->state); 6550 set_bit(STRIPE_HANDLE, &sh->state); 6551 6552 raid5_release_stripe(sh); 6553 6554 return RAID5_STRIPE_SECTORS(conf); 6555 } 6556 6557 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio, 6558 unsigned int offset) 6559 { 6560 /* We may not be able to submit a whole bio at once as there 6561 * may not be enough stripe_heads available. 6562 * We cannot pre-allocate enough stripe_heads as we may need 6563 * more than exist in the cache (if we allow ever large chunks). 6564 * So we do one stripe head at a time and record in 6565 * ->bi_hw_segments how many have been done. 6566 * 6567 * We *know* that this entire raid_bio is in one chunk, so 6568 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector. 6569 */ 6570 struct stripe_head *sh; 6571 int dd_idx; 6572 sector_t sector, logical_sector, last_sector; 6573 int scnt = 0; 6574 int handled = 0; 6575 6576 logical_sector = raid_bio->bi_iter.bi_sector & 6577 ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1); 6578 sector = raid5_compute_sector(conf, logical_sector, 6579 0, &dd_idx, NULL); 6580 last_sector = bio_end_sector(raid_bio); 6581 6582 for (; logical_sector < last_sector; 6583 logical_sector += RAID5_STRIPE_SECTORS(conf), 6584 sector += RAID5_STRIPE_SECTORS(conf), 6585 scnt++) { 6586 6587 if (scnt < offset) 6588 /* already done this stripe */ 6589 continue; 6590 6591 sh = raid5_get_active_stripe(conf, NULL, sector, 6592 R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE); 6593 if (!sh) { 6594 /* failed to get a stripe - must wait */ 6595 conf->retry_read_aligned = raid_bio; 6596 conf->retry_read_offset = scnt; 6597 return handled; 6598 } 6599 6600 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) { 6601 raid5_release_stripe(sh); 6602 conf->retry_read_aligned = raid_bio; 6603 conf->retry_read_offset = scnt; 6604 return handled; 6605 } 6606 6607 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags); 6608 handle_stripe(sh); 6609 raid5_release_stripe(sh); 6610 handled++; 6611 } 6612 6613 bio_endio(raid_bio); 6614 6615 if (atomic_dec_and_test(&conf->active_aligned_reads)) 6616 wake_up(&conf->wait_for_quiescent); 6617 return handled; 6618 } 6619 6620 static int handle_active_stripes(struct r5conf *conf, int group, 6621 struct r5worker *worker, 6622 struct list_head *temp_inactive_list) 6623 __must_hold(&conf->device_lock) 6624 { 6625 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh; 6626 int i, batch_size = 0, hash; 6627 bool release_inactive = false; 6628 6629 while (batch_size < MAX_STRIPE_BATCH && 6630 (sh = __get_priority_stripe(conf, group)) != NULL) 6631 batch[batch_size++] = sh; 6632 6633 if (batch_size == 0) { 6634 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 6635 if (!list_empty(temp_inactive_list + i)) 6636 break; 6637 if (i == NR_STRIPE_HASH_LOCKS) { 6638 spin_unlock_irq(&conf->device_lock); 6639 log_flush_stripe_to_raid(conf); 6640 spin_lock_irq(&conf->device_lock); 6641 return batch_size; 6642 } 6643 release_inactive = true; 6644 } 6645 spin_unlock_irq(&conf->device_lock); 6646 6647 release_inactive_stripe_list(conf, temp_inactive_list, 6648 NR_STRIPE_HASH_LOCKS); 6649 6650 r5l_flush_stripe_to_raid(conf->log); 6651 if (release_inactive) { 6652 spin_lock_irq(&conf->device_lock); 6653 return 0; 6654 } 6655 6656 for (i = 0; i < batch_size; i++) 6657 handle_stripe(batch[i]); 6658 log_write_stripe_run(conf); 6659 6660 cond_resched(); 6661 6662 spin_lock_irq(&conf->device_lock); 6663 for (i = 0; i < batch_size; i++) { 6664 hash = batch[i]->hash_lock_index; 6665 __release_stripe(conf, batch[i], &temp_inactive_list[hash]); 6666 } 6667 return batch_size; 6668 } 6669 6670 static void raid5_do_work(struct work_struct *work) 6671 { 6672 struct r5worker *worker = container_of(work, struct r5worker, work); 6673 struct r5worker_group *group = worker->group; 6674 struct r5conf *conf = group->conf; 6675 struct mddev *mddev = conf->mddev; 6676 int group_id = group - conf->worker_groups; 6677 int handled; 6678 struct blk_plug plug; 6679 6680 pr_debug("+++ raid5worker active\n"); 6681 6682 blk_start_plug(&plug); 6683 handled = 0; 6684 spin_lock_irq(&conf->device_lock); 6685 while (1) { 6686 int batch_size, released; 6687 6688 released = release_stripe_list(conf, worker->temp_inactive_list); 6689 6690 batch_size = handle_active_stripes(conf, group_id, worker, 6691 worker->temp_inactive_list); 6692 worker->working = false; 6693 if (!batch_size && !released) 6694 break; 6695 handled += batch_size; 6696 wait_event_lock_irq(mddev->sb_wait, 6697 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags), 6698 conf->device_lock); 6699 } 6700 pr_debug("%d stripes handled\n", handled); 6701 6702 spin_unlock_irq(&conf->device_lock); 6703 6704 flush_deferred_bios(conf); 6705 6706 r5l_flush_stripe_to_raid(conf->log); 6707 6708 async_tx_issue_pending_all(); 6709 blk_finish_plug(&plug); 6710 6711 pr_debug("--- raid5worker inactive\n"); 6712 } 6713 6714 /* 6715 * This is our raid5 kernel thread. 6716 * 6717 * We scan the hash table for stripes which can be handled now. 6718 * During the scan, completed stripes are saved for us by the interrupt 6719 * handler, so that they will not have to wait for our next wakeup. 6720 */ 6721 static void raid5d(struct md_thread *thread) 6722 { 6723 struct mddev *mddev = thread->mddev; 6724 struct r5conf *conf = mddev->private; 6725 int handled; 6726 struct blk_plug plug; 6727 6728 pr_debug("+++ raid5d active\n"); 6729 6730 md_check_recovery(mddev); 6731 6732 blk_start_plug(&plug); 6733 handled = 0; 6734 spin_lock_irq(&conf->device_lock); 6735 while (1) { 6736 struct bio *bio; 6737 int batch_size, released; 6738 unsigned int offset; 6739 6740 released = release_stripe_list(conf, conf->temp_inactive_list); 6741 if (released) 6742 clear_bit(R5_DID_ALLOC, &conf->cache_state); 6743 6744 if ( 6745 !list_empty(&conf->bitmap_list)) { 6746 /* Now is a good time to flush some bitmap updates */ 6747 conf->seq_flush++; 6748 spin_unlock_irq(&conf->device_lock); 6749 md_bitmap_unplug(mddev->bitmap); 6750 spin_lock_irq(&conf->device_lock); 6751 conf->seq_write = conf->seq_flush; 6752 activate_bit_delay(conf, conf->temp_inactive_list); 6753 } 6754 raid5_activate_delayed(conf); 6755 6756 while ((bio = remove_bio_from_retry(conf, &offset))) { 6757 int ok; 6758 spin_unlock_irq(&conf->device_lock); 6759 ok = retry_aligned_read(conf, bio, offset); 6760 spin_lock_irq(&conf->device_lock); 6761 if (!ok) 6762 break; 6763 handled++; 6764 } 6765 6766 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL, 6767 conf->temp_inactive_list); 6768 if (!batch_size && !released) 6769 break; 6770 handled += batch_size; 6771 6772 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) { 6773 spin_unlock_irq(&conf->device_lock); 6774 md_check_recovery(mddev); 6775 spin_lock_irq(&conf->device_lock); 6776 } 6777 } 6778 pr_debug("%d stripes handled\n", handled); 6779 6780 spin_unlock_irq(&conf->device_lock); 6781 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) && 6782 mutex_trylock(&conf->cache_size_mutex)) { 6783 grow_one_stripe(conf, __GFP_NOWARN); 6784 /* Set flag even if allocation failed. This helps 6785 * slow down allocation requests when mem is short 6786 */ 6787 set_bit(R5_DID_ALLOC, &conf->cache_state); 6788 mutex_unlock(&conf->cache_size_mutex); 6789 } 6790 6791 flush_deferred_bios(conf); 6792 6793 r5l_flush_stripe_to_raid(conf->log); 6794 6795 async_tx_issue_pending_all(); 6796 blk_finish_plug(&plug); 6797 6798 pr_debug("--- raid5d inactive\n"); 6799 } 6800 6801 static ssize_t 6802 raid5_show_stripe_cache_size(struct mddev *mddev, char *page) 6803 { 6804 struct r5conf *conf; 6805 int ret = 0; 6806 spin_lock(&mddev->lock); 6807 conf = mddev->private; 6808 if (conf) 6809 ret = sprintf(page, "%d\n", conf->min_nr_stripes); 6810 spin_unlock(&mddev->lock); 6811 return ret; 6812 } 6813 6814 int 6815 raid5_set_cache_size(struct mddev *mddev, int size) 6816 { 6817 int result = 0; 6818 struct r5conf *conf = mddev->private; 6819 6820 if (size <= 16 || size > 32768) 6821 return -EINVAL; 6822 6823 conf->min_nr_stripes = size; 6824 mutex_lock(&conf->cache_size_mutex); 6825 while (size < conf->max_nr_stripes && 6826 drop_one_stripe(conf)) 6827 ; 6828 mutex_unlock(&conf->cache_size_mutex); 6829 6830 md_allow_write(mddev); 6831 6832 mutex_lock(&conf->cache_size_mutex); 6833 while (size > conf->max_nr_stripes) 6834 if (!grow_one_stripe(conf, GFP_KERNEL)) { 6835 conf->min_nr_stripes = conf->max_nr_stripes; 6836 result = -ENOMEM; 6837 break; 6838 } 6839 mutex_unlock(&conf->cache_size_mutex); 6840 6841 return result; 6842 } 6843 EXPORT_SYMBOL(raid5_set_cache_size); 6844 6845 static ssize_t 6846 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len) 6847 { 6848 struct r5conf *conf; 6849 unsigned long new; 6850 int err; 6851 6852 if (len >= PAGE_SIZE) 6853 return -EINVAL; 6854 if (kstrtoul(page, 10, &new)) 6855 return -EINVAL; 6856 err = mddev_lock(mddev); 6857 if (err) 6858 return err; 6859 conf = mddev->private; 6860 if (!conf) 6861 err = -ENODEV; 6862 else 6863 err = raid5_set_cache_size(mddev, new); 6864 mddev_unlock(mddev); 6865 6866 return err ?: len; 6867 } 6868 6869 static struct md_sysfs_entry 6870 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR, 6871 raid5_show_stripe_cache_size, 6872 raid5_store_stripe_cache_size); 6873 6874 static ssize_t 6875 raid5_show_rmw_level(struct mddev *mddev, char *page) 6876 { 6877 struct r5conf *conf = mddev->private; 6878 if (conf) 6879 return sprintf(page, "%d\n", conf->rmw_level); 6880 else 6881 return 0; 6882 } 6883 6884 static ssize_t 6885 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len) 6886 { 6887 struct r5conf *conf = mddev->private; 6888 unsigned long new; 6889 6890 if (!conf) 6891 return -ENODEV; 6892 6893 if (len >= PAGE_SIZE) 6894 return -EINVAL; 6895 6896 if (kstrtoul(page, 10, &new)) 6897 return -EINVAL; 6898 6899 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome) 6900 return -EINVAL; 6901 6902 if (new != PARITY_DISABLE_RMW && 6903 new != PARITY_ENABLE_RMW && 6904 new != PARITY_PREFER_RMW) 6905 return -EINVAL; 6906 6907 conf->rmw_level = new; 6908 return len; 6909 } 6910 6911 static struct md_sysfs_entry 6912 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR, 6913 raid5_show_rmw_level, 6914 raid5_store_rmw_level); 6915 6916 static ssize_t 6917 raid5_show_stripe_size(struct mddev *mddev, char *page) 6918 { 6919 struct r5conf *conf; 6920 int ret = 0; 6921 6922 spin_lock(&mddev->lock); 6923 conf = mddev->private; 6924 if (conf) 6925 ret = sprintf(page, "%lu\n", RAID5_STRIPE_SIZE(conf)); 6926 spin_unlock(&mddev->lock); 6927 return ret; 6928 } 6929 6930 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 6931 static ssize_t 6932 raid5_store_stripe_size(struct mddev *mddev, const char *page, size_t len) 6933 { 6934 struct r5conf *conf; 6935 unsigned long new; 6936 int err; 6937 int size; 6938 6939 if (len >= PAGE_SIZE) 6940 return -EINVAL; 6941 if (kstrtoul(page, 10, &new)) 6942 return -EINVAL; 6943 6944 /* 6945 * The value should not be bigger than PAGE_SIZE. It requires to 6946 * be multiple of DEFAULT_STRIPE_SIZE and the value should be power 6947 * of two. 6948 */ 6949 if (new % DEFAULT_STRIPE_SIZE != 0 || 6950 new > PAGE_SIZE || new == 0 || 6951 new != roundup_pow_of_two(new)) 6952 return -EINVAL; 6953 6954 err = mddev_suspend_and_lock(mddev); 6955 if (err) 6956 return err; 6957 6958 conf = mddev->private; 6959 if (!conf) { 6960 err = -ENODEV; 6961 goto out_unlock; 6962 } 6963 6964 if (new == conf->stripe_size) 6965 goto out_unlock; 6966 6967 pr_debug("md/raid: change stripe_size from %lu to %lu\n", 6968 conf->stripe_size, new); 6969 6970 if (mddev->sync_thread || 6971 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 6972 mddev->reshape_position != MaxSector || 6973 mddev->sysfs_active) { 6974 err = -EBUSY; 6975 goto out_unlock; 6976 } 6977 6978 mutex_lock(&conf->cache_size_mutex); 6979 size = conf->max_nr_stripes; 6980 6981 shrink_stripes(conf); 6982 6983 conf->stripe_size = new; 6984 conf->stripe_shift = ilog2(new) - 9; 6985 conf->stripe_sectors = new >> 9; 6986 if (grow_stripes(conf, size)) { 6987 pr_warn("md/raid:%s: couldn't allocate buffers\n", 6988 mdname(mddev)); 6989 err = -ENOMEM; 6990 } 6991 mutex_unlock(&conf->cache_size_mutex); 6992 6993 out_unlock: 6994 mddev_unlock_and_resume(mddev); 6995 return err ?: len; 6996 } 6997 6998 static struct md_sysfs_entry 6999 raid5_stripe_size = __ATTR(stripe_size, 0644, 7000 raid5_show_stripe_size, 7001 raid5_store_stripe_size); 7002 #else 7003 static struct md_sysfs_entry 7004 raid5_stripe_size = __ATTR(stripe_size, 0444, 7005 raid5_show_stripe_size, 7006 NULL); 7007 #endif 7008 7009 static ssize_t 7010 raid5_show_preread_threshold(struct mddev *mddev, char *page) 7011 { 7012 struct r5conf *conf; 7013 int ret = 0; 7014 spin_lock(&mddev->lock); 7015 conf = mddev->private; 7016 if (conf) 7017 ret = sprintf(page, "%d\n", conf->bypass_threshold); 7018 spin_unlock(&mddev->lock); 7019 return ret; 7020 } 7021 7022 static ssize_t 7023 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len) 7024 { 7025 struct r5conf *conf; 7026 unsigned long new; 7027 int err; 7028 7029 if (len >= PAGE_SIZE) 7030 return -EINVAL; 7031 if (kstrtoul(page, 10, &new)) 7032 return -EINVAL; 7033 7034 err = mddev_lock(mddev); 7035 if (err) 7036 return err; 7037 conf = mddev->private; 7038 if (!conf) 7039 err = -ENODEV; 7040 else if (new > conf->min_nr_stripes) 7041 err = -EINVAL; 7042 else 7043 conf->bypass_threshold = new; 7044 mddev_unlock(mddev); 7045 return err ?: len; 7046 } 7047 7048 static struct md_sysfs_entry 7049 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold, 7050 S_IRUGO | S_IWUSR, 7051 raid5_show_preread_threshold, 7052 raid5_store_preread_threshold); 7053 7054 static ssize_t 7055 raid5_show_skip_copy(struct mddev *mddev, char *page) 7056 { 7057 struct r5conf *conf; 7058 int ret = 0; 7059 spin_lock(&mddev->lock); 7060 conf = mddev->private; 7061 if (conf) 7062 ret = sprintf(page, "%d\n", conf->skip_copy); 7063 spin_unlock(&mddev->lock); 7064 return ret; 7065 } 7066 7067 static ssize_t 7068 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len) 7069 { 7070 struct r5conf *conf; 7071 unsigned long new; 7072 int err; 7073 7074 if (len >= PAGE_SIZE) 7075 return -EINVAL; 7076 if (kstrtoul(page, 10, &new)) 7077 return -EINVAL; 7078 new = !!new; 7079 7080 err = mddev_suspend_and_lock(mddev); 7081 if (err) 7082 return err; 7083 conf = mddev->private; 7084 if (!conf) 7085 err = -ENODEV; 7086 else if (new != conf->skip_copy) { 7087 struct request_queue *q = mddev->queue; 7088 7089 conf->skip_copy = new; 7090 if (new) 7091 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q); 7092 else 7093 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q); 7094 } 7095 mddev_unlock_and_resume(mddev); 7096 return err ?: len; 7097 } 7098 7099 static struct md_sysfs_entry 7100 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR, 7101 raid5_show_skip_copy, 7102 raid5_store_skip_copy); 7103 7104 static ssize_t 7105 stripe_cache_active_show(struct mddev *mddev, char *page) 7106 { 7107 struct r5conf *conf = mddev->private; 7108 if (conf) 7109 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes)); 7110 else 7111 return 0; 7112 } 7113 7114 static struct md_sysfs_entry 7115 raid5_stripecache_active = __ATTR_RO(stripe_cache_active); 7116 7117 static ssize_t 7118 raid5_show_group_thread_cnt(struct mddev *mddev, char *page) 7119 { 7120 struct r5conf *conf; 7121 int ret = 0; 7122 spin_lock(&mddev->lock); 7123 conf = mddev->private; 7124 if (conf) 7125 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group); 7126 spin_unlock(&mddev->lock); 7127 return ret; 7128 } 7129 7130 static int alloc_thread_groups(struct r5conf *conf, int cnt, 7131 int *group_cnt, 7132 struct r5worker_group **worker_groups); 7133 static ssize_t 7134 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len) 7135 { 7136 struct r5conf *conf; 7137 unsigned int new; 7138 int err; 7139 struct r5worker_group *new_groups, *old_groups; 7140 int group_cnt; 7141 7142 if (len >= PAGE_SIZE) 7143 return -EINVAL; 7144 if (kstrtouint(page, 10, &new)) 7145 return -EINVAL; 7146 /* 8192 should be big enough */ 7147 if (new > 8192) 7148 return -EINVAL; 7149 7150 err = mddev_suspend_and_lock(mddev); 7151 if (err) 7152 return err; 7153 conf = mddev->private; 7154 if (!conf) 7155 err = -ENODEV; 7156 else if (new != conf->worker_cnt_per_group) { 7157 old_groups = conf->worker_groups; 7158 if (old_groups) 7159 flush_workqueue(raid5_wq); 7160 7161 err = alloc_thread_groups(conf, new, &group_cnt, &new_groups); 7162 if (!err) { 7163 spin_lock_irq(&conf->device_lock); 7164 conf->group_cnt = group_cnt; 7165 conf->worker_cnt_per_group = new; 7166 conf->worker_groups = new_groups; 7167 spin_unlock_irq(&conf->device_lock); 7168 7169 if (old_groups) 7170 kfree(old_groups[0].workers); 7171 kfree(old_groups); 7172 } 7173 } 7174 mddev_unlock_and_resume(mddev); 7175 7176 return err ?: len; 7177 } 7178 7179 static struct md_sysfs_entry 7180 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR, 7181 raid5_show_group_thread_cnt, 7182 raid5_store_group_thread_cnt); 7183 7184 static struct attribute *raid5_attrs[] = { 7185 &raid5_stripecache_size.attr, 7186 &raid5_stripecache_active.attr, 7187 &raid5_preread_bypass_threshold.attr, 7188 &raid5_group_thread_cnt.attr, 7189 &raid5_skip_copy.attr, 7190 &raid5_rmw_level.attr, 7191 &raid5_stripe_size.attr, 7192 &r5c_journal_mode.attr, 7193 &ppl_write_hint.attr, 7194 NULL, 7195 }; 7196 static const struct attribute_group raid5_attrs_group = { 7197 .name = NULL, 7198 .attrs = raid5_attrs, 7199 }; 7200 7201 static int alloc_thread_groups(struct r5conf *conf, int cnt, int *group_cnt, 7202 struct r5worker_group **worker_groups) 7203 { 7204 int i, j, k; 7205 ssize_t size; 7206 struct r5worker *workers; 7207 7208 if (cnt == 0) { 7209 *group_cnt = 0; 7210 *worker_groups = NULL; 7211 return 0; 7212 } 7213 *group_cnt = num_possible_nodes(); 7214 size = sizeof(struct r5worker) * cnt; 7215 workers = kcalloc(size, *group_cnt, GFP_NOIO); 7216 *worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group), 7217 GFP_NOIO); 7218 if (!*worker_groups || !workers) { 7219 kfree(workers); 7220 kfree(*worker_groups); 7221 return -ENOMEM; 7222 } 7223 7224 for (i = 0; i < *group_cnt; i++) { 7225 struct r5worker_group *group; 7226 7227 group = &(*worker_groups)[i]; 7228 INIT_LIST_HEAD(&group->handle_list); 7229 INIT_LIST_HEAD(&group->loprio_list); 7230 group->conf = conf; 7231 group->workers = workers + i * cnt; 7232 7233 for (j = 0; j < cnt; j++) { 7234 struct r5worker *worker = group->workers + j; 7235 worker->group = group; 7236 INIT_WORK(&worker->work, raid5_do_work); 7237 7238 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++) 7239 INIT_LIST_HEAD(worker->temp_inactive_list + k); 7240 } 7241 } 7242 7243 return 0; 7244 } 7245 7246 static void free_thread_groups(struct r5conf *conf) 7247 { 7248 if (conf->worker_groups) 7249 kfree(conf->worker_groups[0].workers); 7250 kfree(conf->worker_groups); 7251 conf->worker_groups = NULL; 7252 } 7253 7254 static sector_t 7255 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks) 7256 { 7257 struct r5conf *conf = mddev->private; 7258 7259 if (!sectors) 7260 sectors = mddev->dev_sectors; 7261 if (!raid_disks) 7262 /* size is defined by the smallest of previous and new size */ 7263 raid_disks = min(conf->raid_disks, conf->previous_raid_disks); 7264 7265 sectors &= ~((sector_t)conf->chunk_sectors - 1); 7266 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1); 7267 return sectors * (raid_disks - conf->max_degraded); 7268 } 7269 7270 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 7271 { 7272 safe_put_page(percpu->spare_page); 7273 percpu->spare_page = NULL; 7274 kvfree(percpu->scribble); 7275 percpu->scribble = NULL; 7276 } 7277 7278 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 7279 { 7280 if (conf->level == 6 && !percpu->spare_page) { 7281 percpu->spare_page = alloc_page(GFP_KERNEL); 7282 if (!percpu->spare_page) 7283 return -ENOMEM; 7284 } 7285 7286 if (scribble_alloc(percpu, 7287 max(conf->raid_disks, 7288 conf->previous_raid_disks), 7289 max(conf->chunk_sectors, 7290 conf->prev_chunk_sectors) 7291 / RAID5_STRIPE_SECTORS(conf))) { 7292 free_scratch_buffer(conf, percpu); 7293 return -ENOMEM; 7294 } 7295 7296 local_lock_init(&percpu->lock); 7297 return 0; 7298 } 7299 7300 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node) 7301 { 7302 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node); 7303 7304 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu)); 7305 return 0; 7306 } 7307 7308 static void raid5_free_percpu(struct r5conf *conf) 7309 { 7310 if (!conf->percpu) 7311 return; 7312 7313 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node); 7314 free_percpu(conf->percpu); 7315 } 7316 7317 static void free_conf(struct r5conf *conf) 7318 { 7319 int i; 7320 7321 log_exit(conf); 7322 7323 shrinker_free(conf->shrinker); 7324 free_thread_groups(conf); 7325 shrink_stripes(conf); 7326 raid5_free_percpu(conf); 7327 for (i = 0; i < conf->pool_size; i++) 7328 if (conf->disks[i].extra_page) 7329 put_page(conf->disks[i].extra_page); 7330 kfree(conf->disks); 7331 bioset_exit(&conf->bio_split); 7332 kfree(conf->stripe_hashtbl); 7333 kfree(conf->pending_data); 7334 kfree(conf); 7335 } 7336 7337 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node) 7338 { 7339 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node); 7340 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu); 7341 7342 if (alloc_scratch_buffer(conf, percpu)) { 7343 pr_warn("%s: failed memory allocation for cpu%u\n", 7344 __func__, cpu); 7345 return -ENOMEM; 7346 } 7347 return 0; 7348 } 7349 7350 static int raid5_alloc_percpu(struct r5conf *conf) 7351 { 7352 int err = 0; 7353 7354 conf->percpu = alloc_percpu(struct raid5_percpu); 7355 if (!conf->percpu) 7356 return -ENOMEM; 7357 7358 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node); 7359 if (!err) { 7360 conf->scribble_disks = max(conf->raid_disks, 7361 conf->previous_raid_disks); 7362 conf->scribble_sectors = max(conf->chunk_sectors, 7363 conf->prev_chunk_sectors); 7364 } 7365 return err; 7366 } 7367 7368 static unsigned long raid5_cache_scan(struct shrinker *shrink, 7369 struct shrink_control *sc) 7370 { 7371 struct r5conf *conf = shrink->private_data; 7372 unsigned long ret = SHRINK_STOP; 7373 7374 if (mutex_trylock(&conf->cache_size_mutex)) { 7375 ret= 0; 7376 while (ret < sc->nr_to_scan && 7377 conf->max_nr_stripes > conf->min_nr_stripes) { 7378 if (drop_one_stripe(conf) == 0) { 7379 ret = SHRINK_STOP; 7380 break; 7381 } 7382 ret++; 7383 } 7384 mutex_unlock(&conf->cache_size_mutex); 7385 } 7386 return ret; 7387 } 7388 7389 static unsigned long raid5_cache_count(struct shrinker *shrink, 7390 struct shrink_control *sc) 7391 { 7392 struct r5conf *conf = shrink->private_data; 7393 7394 if (conf->max_nr_stripes < conf->min_nr_stripes) 7395 /* unlikely, but not impossible */ 7396 return 0; 7397 return conf->max_nr_stripes - conf->min_nr_stripes; 7398 } 7399 7400 static struct r5conf *setup_conf(struct mddev *mddev) 7401 { 7402 struct r5conf *conf; 7403 int raid_disk, memory, max_disks; 7404 struct md_rdev *rdev; 7405 struct disk_info *disk; 7406 char pers_name[6]; 7407 int i; 7408 int group_cnt; 7409 struct r5worker_group *new_group; 7410 int ret = -ENOMEM; 7411 7412 if (mddev->new_level != 5 7413 && mddev->new_level != 4 7414 && mddev->new_level != 6) { 7415 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n", 7416 mdname(mddev), mddev->new_level); 7417 return ERR_PTR(-EIO); 7418 } 7419 if ((mddev->new_level == 5 7420 && !algorithm_valid_raid5(mddev->new_layout)) || 7421 (mddev->new_level == 6 7422 && !algorithm_valid_raid6(mddev->new_layout))) { 7423 pr_warn("md/raid:%s: layout %d not supported\n", 7424 mdname(mddev), mddev->new_layout); 7425 return ERR_PTR(-EIO); 7426 } 7427 if (mddev->new_level == 6 && mddev->raid_disks < 4) { 7428 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n", 7429 mdname(mddev), mddev->raid_disks); 7430 return ERR_PTR(-EINVAL); 7431 } 7432 7433 if (!mddev->new_chunk_sectors || 7434 (mddev->new_chunk_sectors << 9) % PAGE_SIZE || 7435 !is_power_of_2(mddev->new_chunk_sectors)) { 7436 pr_warn("md/raid:%s: invalid chunk size %d\n", 7437 mdname(mddev), mddev->new_chunk_sectors << 9); 7438 return ERR_PTR(-EINVAL); 7439 } 7440 7441 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL); 7442 if (conf == NULL) 7443 goto abort; 7444 7445 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 7446 conf->stripe_size = DEFAULT_STRIPE_SIZE; 7447 conf->stripe_shift = ilog2(DEFAULT_STRIPE_SIZE) - 9; 7448 conf->stripe_sectors = DEFAULT_STRIPE_SIZE >> 9; 7449 #endif 7450 INIT_LIST_HEAD(&conf->free_list); 7451 INIT_LIST_HEAD(&conf->pending_list); 7452 conf->pending_data = kcalloc(PENDING_IO_MAX, 7453 sizeof(struct r5pending_data), 7454 GFP_KERNEL); 7455 if (!conf->pending_data) 7456 goto abort; 7457 for (i = 0; i < PENDING_IO_MAX; i++) 7458 list_add(&conf->pending_data[i].sibling, &conf->free_list); 7459 /* Don't enable multi-threading by default*/ 7460 if (!alloc_thread_groups(conf, 0, &group_cnt, &new_group)) { 7461 conf->group_cnt = group_cnt; 7462 conf->worker_cnt_per_group = 0; 7463 conf->worker_groups = new_group; 7464 } else 7465 goto abort; 7466 spin_lock_init(&conf->device_lock); 7467 seqcount_spinlock_init(&conf->gen_lock, &conf->device_lock); 7468 mutex_init(&conf->cache_size_mutex); 7469 7470 init_waitqueue_head(&conf->wait_for_quiescent); 7471 init_waitqueue_head(&conf->wait_for_stripe); 7472 init_waitqueue_head(&conf->wait_for_overlap); 7473 INIT_LIST_HEAD(&conf->handle_list); 7474 INIT_LIST_HEAD(&conf->loprio_list); 7475 INIT_LIST_HEAD(&conf->hold_list); 7476 INIT_LIST_HEAD(&conf->delayed_list); 7477 INIT_LIST_HEAD(&conf->bitmap_list); 7478 init_llist_head(&conf->released_stripes); 7479 atomic_set(&conf->active_stripes, 0); 7480 atomic_set(&conf->preread_active_stripes, 0); 7481 atomic_set(&conf->active_aligned_reads, 0); 7482 spin_lock_init(&conf->pending_bios_lock); 7483 conf->batch_bio_dispatch = true; 7484 rdev_for_each(rdev, mddev) { 7485 if (test_bit(Journal, &rdev->flags)) 7486 continue; 7487 if (bdev_nonrot(rdev->bdev)) { 7488 conf->batch_bio_dispatch = false; 7489 break; 7490 } 7491 } 7492 7493 conf->bypass_threshold = BYPASS_THRESHOLD; 7494 conf->recovery_disabled = mddev->recovery_disabled - 1; 7495 7496 conf->raid_disks = mddev->raid_disks; 7497 if (mddev->reshape_position == MaxSector) 7498 conf->previous_raid_disks = mddev->raid_disks; 7499 else 7500 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks; 7501 max_disks = max(conf->raid_disks, conf->previous_raid_disks); 7502 7503 conf->disks = kcalloc(max_disks, sizeof(struct disk_info), 7504 GFP_KERNEL); 7505 7506 if (!conf->disks) 7507 goto abort; 7508 7509 for (i = 0; i < max_disks; i++) { 7510 conf->disks[i].extra_page = alloc_page(GFP_KERNEL); 7511 if (!conf->disks[i].extra_page) 7512 goto abort; 7513 } 7514 7515 ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 7516 if (ret) 7517 goto abort; 7518 conf->mddev = mddev; 7519 7520 ret = -ENOMEM; 7521 conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL); 7522 if (!conf->stripe_hashtbl) 7523 goto abort; 7524 7525 /* We init hash_locks[0] separately to that it can be used 7526 * as the reference lock in the spin_lock_nest_lock() call 7527 * in lock_all_device_hash_locks_irq in order to convince 7528 * lockdep that we know what we are doing. 7529 */ 7530 spin_lock_init(conf->hash_locks); 7531 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 7532 spin_lock_init(conf->hash_locks + i); 7533 7534 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 7535 INIT_LIST_HEAD(conf->inactive_list + i); 7536 7537 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 7538 INIT_LIST_HEAD(conf->temp_inactive_list + i); 7539 7540 atomic_set(&conf->r5c_cached_full_stripes, 0); 7541 INIT_LIST_HEAD(&conf->r5c_full_stripe_list); 7542 atomic_set(&conf->r5c_cached_partial_stripes, 0); 7543 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list); 7544 atomic_set(&conf->r5c_flushing_full_stripes, 0); 7545 atomic_set(&conf->r5c_flushing_partial_stripes, 0); 7546 7547 conf->level = mddev->new_level; 7548 conf->chunk_sectors = mddev->new_chunk_sectors; 7549 ret = raid5_alloc_percpu(conf); 7550 if (ret) 7551 goto abort; 7552 7553 pr_debug("raid456: run(%s) called.\n", mdname(mddev)); 7554 7555 ret = -EIO; 7556 rdev_for_each(rdev, mddev) { 7557 raid_disk = rdev->raid_disk; 7558 if (raid_disk >= max_disks 7559 || raid_disk < 0 || test_bit(Journal, &rdev->flags)) 7560 continue; 7561 disk = conf->disks + raid_disk; 7562 7563 if (test_bit(Replacement, &rdev->flags)) { 7564 if (disk->replacement) 7565 goto abort; 7566 RCU_INIT_POINTER(disk->replacement, rdev); 7567 } else { 7568 if (disk->rdev) 7569 goto abort; 7570 RCU_INIT_POINTER(disk->rdev, rdev); 7571 } 7572 7573 if (test_bit(In_sync, &rdev->flags)) { 7574 pr_info("md/raid:%s: device %pg operational as raid disk %d\n", 7575 mdname(mddev), rdev->bdev, raid_disk); 7576 } else if (rdev->saved_raid_disk != raid_disk) 7577 /* Cannot rely on bitmap to complete recovery */ 7578 conf->fullsync = 1; 7579 } 7580 7581 conf->level = mddev->new_level; 7582 if (conf->level == 6) { 7583 conf->max_degraded = 2; 7584 if (raid6_call.xor_syndrome) 7585 conf->rmw_level = PARITY_ENABLE_RMW; 7586 else 7587 conf->rmw_level = PARITY_DISABLE_RMW; 7588 } else { 7589 conf->max_degraded = 1; 7590 conf->rmw_level = PARITY_ENABLE_RMW; 7591 } 7592 conf->algorithm = mddev->new_layout; 7593 conf->reshape_progress = mddev->reshape_position; 7594 if (conf->reshape_progress != MaxSector) { 7595 conf->prev_chunk_sectors = mddev->chunk_sectors; 7596 conf->prev_algo = mddev->layout; 7597 } else { 7598 conf->prev_chunk_sectors = conf->chunk_sectors; 7599 conf->prev_algo = conf->algorithm; 7600 } 7601 7602 conf->min_nr_stripes = NR_STRIPES; 7603 if (mddev->reshape_position != MaxSector) { 7604 int stripes = max_t(int, 7605 ((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4, 7606 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4); 7607 conf->min_nr_stripes = max(NR_STRIPES, stripes); 7608 if (conf->min_nr_stripes != NR_STRIPES) 7609 pr_info("md/raid:%s: force stripe size %d for reshape\n", 7610 mdname(mddev), conf->min_nr_stripes); 7611 } 7612 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) + 7613 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024; 7614 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS); 7615 if (grow_stripes(conf, conf->min_nr_stripes)) { 7616 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n", 7617 mdname(mddev), memory); 7618 ret = -ENOMEM; 7619 goto abort; 7620 } else 7621 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory); 7622 /* 7623 * Losing a stripe head costs more than the time to refill it, 7624 * it reduces the queue depth and so can hurt throughput. 7625 * So set it rather large, scaled by number of devices. 7626 */ 7627 conf->shrinker = shrinker_alloc(0, "md-raid5:%s", mdname(mddev)); 7628 if (!conf->shrinker) { 7629 ret = -ENOMEM; 7630 pr_warn("md/raid:%s: couldn't allocate shrinker.\n", 7631 mdname(mddev)); 7632 goto abort; 7633 } 7634 7635 conf->shrinker->seeks = DEFAULT_SEEKS * conf->raid_disks * 4; 7636 conf->shrinker->scan_objects = raid5_cache_scan; 7637 conf->shrinker->count_objects = raid5_cache_count; 7638 conf->shrinker->batch = 128; 7639 conf->shrinker->private_data = conf; 7640 7641 shrinker_register(conf->shrinker); 7642 7643 sprintf(pers_name, "raid%d", mddev->new_level); 7644 rcu_assign_pointer(conf->thread, 7645 md_register_thread(raid5d, mddev, pers_name)); 7646 if (!conf->thread) { 7647 pr_warn("md/raid:%s: couldn't allocate thread.\n", 7648 mdname(mddev)); 7649 ret = -ENOMEM; 7650 goto abort; 7651 } 7652 7653 return conf; 7654 7655 abort: 7656 if (conf) 7657 free_conf(conf); 7658 return ERR_PTR(ret); 7659 } 7660 7661 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded) 7662 { 7663 switch (algo) { 7664 case ALGORITHM_PARITY_0: 7665 if (raid_disk < max_degraded) 7666 return 1; 7667 break; 7668 case ALGORITHM_PARITY_N: 7669 if (raid_disk >= raid_disks - max_degraded) 7670 return 1; 7671 break; 7672 case ALGORITHM_PARITY_0_6: 7673 if (raid_disk == 0 || 7674 raid_disk == raid_disks - 1) 7675 return 1; 7676 break; 7677 case ALGORITHM_LEFT_ASYMMETRIC_6: 7678 case ALGORITHM_RIGHT_ASYMMETRIC_6: 7679 case ALGORITHM_LEFT_SYMMETRIC_6: 7680 case ALGORITHM_RIGHT_SYMMETRIC_6: 7681 if (raid_disk == raid_disks - 1) 7682 return 1; 7683 } 7684 return 0; 7685 } 7686 7687 static void raid5_set_io_opt(struct r5conf *conf) 7688 { 7689 blk_queue_io_opt(conf->mddev->queue, (conf->chunk_sectors << 9) * 7690 (conf->raid_disks - conf->max_degraded)); 7691 } 7692 7693 static int raid5_run(struct mddev *mddev) 7694 { 7695 struct r5conf *conf; 7696 int dirty_parity_disks = 0; 7697 struct md_rdev *rdev; 7698 struct md_rdev *journal_dev = NULL; 7699 sector_t reshape_offset = 0; 7700 int i; 7701 long long min_offset_diff = 0; 7702 int first = 1; 7703 7704 if (mddev->recovery_cp != MaxSector) 7705 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n", 7706 mdname(mddev)); 7707 7708 rdev_for_each(rdev, mddev) { 7709 long long diff; 7710 7711 if (test_bit(Journal, &rdev->flags)) { 7712 journal_dev = rdev; 7713 continue; 7714 } 7715 if (rdev->raid_disk < 0) 7716 continue; 7717 diff = (rdev->new_data_offset - rdev->data_offset); 7718 if (first) { 7719 min_offset_diff = diff; 7720 first = 0; 7721 } else if (mddev->reshape_backwards && 7722 diff < min_offset_diff) 7723 min_offset_diff = diff; 7724 else if (!mddev->reshape_backwards && 7725 diff > min_offset_diff) 7726 min_offset_diff = diff; 7727 } 7728 7729 if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) && 7730 (mddev->bitmap_info.offset || mddev->bitmap_info.file)) { 7731 pr_notice("md/raid:%s: array cannot have both journal and bitmap\n", 7732 mdname(mddev)); 7733 return -EINVAL; 7734 } 7735 7736 if (mddev->reshape_position != MaxSector) { 7737 /* Check that we can continue the reshape. 7738 * Difficulties arise if the stripe we would write to 7739 * next is at or after the stripe we would read from next. 7740 * For a reshape that changes the number of devices, this 7741 * is only possible for a very short time, and mdadm makes 7742 * sure that time appears to have past before assembling 7743 * the array. So we fail if that time hasn't passed. 7744 * For a reshape that keeps the number of devices the same 7745 * mdadm must be monitoring the reshape can keeping the 7746 * critical areas read-only and backed up. It will start 7747 * the array in read-only mode, so we check for that. 7748 */ 7749 sector_t here_new, here_old; 7750 int old_disks; 7751 int max_degraded = (mddev->level == 6 ? 2 : 1); 7752 int chunk_sectors; 7753 int new_data_disks; 7754 7755 if (journal_dev) { 7756 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n", 7757 mdname(mddev)); 7758 return -EINVAL; 7759 } 7760 7761 if (mddev->new_level != mddev->level) { 7762 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n", 7763 mdname(mddev)); 7764 return -EINVAL; 7765 } 7766 old_disks = mddev->raid_disks - mddev->delta_disks; 7767 /* reshape_position must be on a new-stripe boundary, and one 7768 * further up in new geometry must map after here in old 7769 * geometry. 7770 * If the chunk sizes are different, then as we perform reshape 7771 * in units of the largest of the two, reshape_position needs 7772 * be a multiple of the largest chunk size times new data disks. 7773 */ 7774 here_new = mddev->reshape_position; 7775 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors); 7776 new_data_disks = mddev->raid_disks - max_degraded; 7777 if (sector_div(here_new, chunk_sectors * new_data_disks)) { 7778 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n", 7779 mdname(mddev)); 7780 return -EINVAL; 7781 } 7782 reshape_offset = here_new * chunk_sectors; 7783 /* here_new is the stripe we will write to */ 7784 here_old = mddev->reshape_position; 7785 sector_div(here_old, chunk_sectors * (old_disks-max_degraded)); 7786 /* here_old is the first stripe that we might need to read 7787 * from */ 7788 if (mddev->delta_disks == 0) { 7789 /* We cannot be sure it is safe to start an in-place 7790 * reshape. It is only safe if user-space is monitoring 7791 * and taking constant backups. 7792 * mdadm always starts a situation like this in 7793 * readonly mode so it can take control before 7794 * allowing any writes. So just check for that. 7795 */ 7796 if (abs(min_offset_diff) >= mddev->chunk_sectors && 7797 abs(min_offset_diff) >= mddev->new_chunk_sectors) 7798 /* not really in-place - so OK */; 7799 else if (mddev->ro == 0) { 7800 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n", 7801 mdname(mddev)); 7802 return -EINVAL; 7803 } 7804 } else if (mddev->reshape_backwards 7805 ? (here_new * chunk_sectors + min_offset_diff <= 7806 here_old * chunk_sectors) 7807 : (here_new * chunk_sectors >= 7808 here_old * chunk_sectors + (-min_offset_diff))) { 7809 /* Reading from the same stripe as writing to - bad */ 7810 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n", 7811 mdname(mddev)); 7812 return -EINVAL; 7813 } 7814 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev)); 7815 /* OK, we should be able to continue; */ 7816 } else { 7817 BUG_ON(mddev->level != mddev->new_level); 7818 BUG_ON(mddev->layout != mddev->new_layout); 7819 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors); 7820 BUG_ON(mddev->delta_disks != 0); 7821 } 7822 7823 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && 7824 test_bit(MD_HAS_PPL, &mddev->flags)) { 7825 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n", 7826 mdname(mddev)); 7827 clear_bit(MD_HAS_PPL, &mddev->flags); 7828 clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags); 7829 } 7830 7831 if (mddev->private == NULL) 7832 conf = setup_conf(mddev); 7833 else 7834 conf = mddev->private; 7835 7836 if (IS_ERR(conf)) 7837 return PTR_ERR(conf); 7838 7839 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 7840 if (!journal_dev) { 7841 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n", 7842 mdname(mddev)); 7843 mddev->ro = 1; 7844 set_disk_ro(mddev->gendisk, 1); 7845 } else if (mddev->recovery_cp == MaxSector) 7846 set_bit(MD_JOURNAL_CLEAN, &mddev->flags); 7847 } 7848 7849 conf->min_offset_diff = min_offset_diff; 7850 rcu_assign_pointer(mddev->thread, conf->thread); 7851 rcu_assign_pointer(conf->thread, NULL); 7852 mddev->private = conf; 7853 7854 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks; 7855 i++) { 7856 rdev = conf->disks[i].rdev; 7857 if (!rdev) 7858 continue; 7859 if (conf->disks[i].replacement && 7860 conf->reshape_progress != MaxSector) { 7861 /* replacements and reshape simply do not mix. */ 7862 pr_warn("md: cannot handle concurrent replacement and reshape.\n"); 7863 goto abort; 7864 } 7865 if (test_bit(In_sync, &rdev->flags)) 7866 continue; 7867 /* This disc is not fully in-sync. However if it 7868 * just stored parity (beyond the recovery_offset), 7869 * when we don't need to be concerned about the 7870 * array being dirty. 7871 * When reshape goes 'backwards', we never have 7872 * partially completed devices, so we only need 7873 * to worry about reshape going forwards. 7874 */ 7875 /* Hack because v0.91 doesn't store recovery_offset properly. */ 7876 if (mddev->major_version == 0 && 7877 mddev->minor_version > 90) 7878 rdev->recovery_offset = reshape_offset; 7879 7880 if (rdev->recovery_offset < reshape_offset) { 7881 /* We need to check old and new layout */ 7882 if (!only_parity(rdev->raid_disk, 7883 conf->algorithm, 7884 conf->raid_disks, 7885 conf->max_degraded)) 7886 continue; 7887 } 7888 if (!only_parity(rdev->raid_disk, 7889 conf->prev_algo, 7890 conf->previous_raid_disks, 7891 conf->max_degraded)) 7892 continue; 7893 dirty_parity_disks++; 7894 } 7895 7896 /* 7897 * 0 for a fully functional array, 1 or 2 for a degraded array. 7898 */ 7899 mddev->degraded = raid5_calc_degraded(conf); 7900 7901 if (has_failed(conf)) { 7902 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n", 7903 mdname(mddev), mddev->degraded, conf->raid_disks); 7904 goto abort; 7905 } 7906 7907 /* device size must be a multiple of chunk size */ 7908 mddev->dev_sectors &= ~((sector_t)mddev->chunk_sectors - 1); 7909 mddev->resync_max_sectors = mddev->dev_sectors; 7910 7911 if (mddev->degraded > dirty_parity_disks && 7912 mddev->recovery_cp != MaxSector) { 7913 if (test_bit(MD_HAS_PPL, &mddev->flags)) 7914 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n", 7915 mdname(mddev)); 7916 else if (mddev->ok_start_degraded) 7917 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n", 7918 mdname(mddev)); 7919 else { 7920 pr_crit("md/raid:%s: cannot start dirty degraded array.\n", 7921 mdname(mddev)); 7922 goto abort; 7923 } 7924 } 7925 7926 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n", 7927 mdname(mddev), conf->level, 7928 mddev->raid_disks-mddev->degraded, mddev->raid_disks, 7929 mddev->new_layout); 7930 7931 print_raid5_conf(conf); 7932 7933 if (conf->reshape_progress != MaxSector) { 7934 conf->reshape_safe = conf->reshape_progress; 7935 atomic_set(&conf->reshape_stripes, 0); 7936 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7937 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7938 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7939 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7940 rcu_assign_pointer(mddev->sync_thread, 7941 md_register_thread(md_do_sync, mddev, "reshape")); 7942 if (!mddev->sync_thread) 7943 goto abort; 7944 } 7945 7946 /* Ok, everything is just fine now */ 7947 if (mddev->to_remove == &raid5_attrs_group) 7948 mddev->to_remove = NULL; 7949 else if (mddev->kobj.sd && 7950 sysfs_create_group(&mddev->kobj, &raid5_attrs_group)) 7951 pr_warn("raid5: failed to create sysfs attributes for %s\n", 7952 mdname(mddev)); 7953 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 7954 7955 if (mddev->queue) { 7956 int chunk_size; 7957 /* read-ahead size must cover two whole stripes, which 7958 * is 2 * (datadisks) * chunksize where 'n' is the 7959 * number of raid devices 7960 */ 7961 int data_disks = conf->previous_raid_disks - conf->max_degraded; 7962 int stripe = data_disks * 7963 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 7964 7965 chunk_size = mddev->chunk_sectors << 9; 7966 blk_queue_io_min(mddev->queue, chunk_size); 7967 raid5_set_io_opt(conf); 7968 mddev->queue->limits.raid_partial_stripes_expensive = 1; 7969 /* 7970 * We can only discard a whole stripe. It doesn't make sense to 7971 * discard data disk but write parity disk 7972 */ 7973 stripe = stripe * PAGE_SIZE; 7974 stripe = roundup_pow_of_two(stripe); 7975 mddev->queue->limits.discard_granularity = stripe; 7976 7977 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 7978 7979 rdev_for_each(rdev, mddev) { 7980 disk_stack_limits(mddev->gendisk, rdev->bdev, 7981 rdev->data_offset << 9); 7982 disk_stack_limits(mddev->gendisk, rdev->bdev, 7983 rdev->new_data_offset << 9); 7984 } 7985 7986 /* 7987 * zeroing is required, otherwise data 7988 * could be lost. Consider a scenario: discard a stripe 7989 * (the stripe could be inconsistent if 7990 * discard_zeroes_data is 0); write one disk of the 7991 * stripe (the stripe could be inconsistent again 7992 * depending on which disks are used to calculate 7993 * parity); the disk is broken; The stripe data of this 7994 * disk is lost. 7995 * 7996 * We only allow DISCARD if the sysadmin has confirmed that 7997 * only safe devices are in use by setting a module parameter. 7998 * A better idea might be to turn DISCARD into WRITE_ZEROES 7999 * requests, as that is required to be safe. 8000 */ 8001 if (!devices_handle_discard_safely || 8002 mddev->queue->limits.max_discard_sectors < (stripe >> 9) || 8003 mddev->queue->limits.discard_granularity < stripe) 8004 blk_queue_max_discard_sectors(mddev->queue, 0); 8005 8006 /* 8007 * Requests require having a bitmap for each stripe. 8008 * Limit the max sectors based on this. 8009 */ 8010 blk_queue_max_hw_sectors(mddev->queue, 8011 RAID5_MAX_REQ_STRIPES << RAID5_STRIPE_SHIFT(conf)); 8012 8013 /* No restrictions on the number of segments in the request */ 8014 blk_queue_max_segments(mddev->queue, USHRT_MAX); 8015 } 8016 8017 if (log_init(conf, journal_dev, raid5_has_ppl(conf))) 8018 goto abort; 8019 8020 return 0; 8021 abort: 8022 md_unregister_thread(mddev, &mddev->thread); 8023 print_raid5_conf(conf); 8024 free_conf(conf); 8025 mddev->private = NULL; 8026 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev)); 8027 return -EIO; 8028 } 8029 8030 static void raid5_free(struct mddev *mddev, void *priv) 8031 { 8032 struct r5conf *conf = priv; 8033 8034 free_conf(conf); 8035 mddev->to_remove = &raid5_attrs_group; 8036 } 8037 8038 static void raid5_status(struct seq_file *seq, struct mddev *mddev) 8039 { 8040 struct r5conf *conf = mddev->private; 8041 int i; 8042 8043 lockdep_assert_held(&mddev->lock); 8044 8045 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level, 8046 conf->chunk_sectors / 2, mddev->layout); 8047 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded); 8048 for (i = 0; i < conf->raid_disks; i++) { 8049 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev); 8050 8051 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 8052 } 8053 seq_printf (seq, "]"); 8054 } 8055 8056 static void print_raid5_conf (struct r5conf *conf) 8057 { 8058 struct md_rdev *rdev; 8059 int i; 8060 8061 pr_debug("RAID conf printout:\n"); 8062 if (!conf) { 8063 pr_debug("(conf==NULL)\n"); 8064 return; 8065 } 8066 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level, 8067 conf->raid_disks, 8068 conf->raid_disks - conf->mddev->degraded); 8069 8070 rcu_read_lock(); 8071 for (i = 0; i < conf->raid_disks; i++) { 8072 rdev = rcu_dereference(conf->disks[i].rdev); 8073 if (rdev) 8074 pr_debug(" disk %d, o:%d, dev:%pg\n", 8075 i, !test_bit(Faulty, &rdev->flags), 8076 rdev->bdev); 8077 } 8078 rcu_read_unlock(); 8079 } 8080 8081 static int raid5_spare_active(struct mddev *mddev) 8082 { 8083 int i; 8084 struct r5conf *conf = mddev->private; 8085 struct md_rdev *rdev, *replacement; 8086 int count = 0; 8087 unsigned long flags; 8088 8089 for (i = 0; i < conf->raid_disks; i++) { 8090 rdev = conf->disks[i].rdev; 8091 replacement = conf->disks[i].replacement; 8092 if (replacement 8093 && replacement->recovery_offset == MaxSector 8094 && !test_bit(Faulty, &replacement->flags) 8095 && !test_and_set_bit(In_sync, &replacement->flags)) { 8096 /* Replacement has just become active. */ 8097 if (!rdev 8098 || !test_and_clear_bit(In_sync, &rdev->flags)) 8099 count++; 8100 if (rdev) { 8101 /* Replaced device not technically faulty, 8102 * but we need to be sure it gets removed 8103 * and never re-added. 8104 */ 8105 set_bit(Faulty, &rdev->flags); 8106 sysfs_notify_dirent_safe( 8107 rdev->sysfs_state); 8108 } 8109 sysfs_notify_dirent_safe(replacement->sysfs_state); 8110 } else if (rdev 8111 && rdev->recovery_offset == MaxSector 8112 && !test_bit(Faulty, &rdev->flags) 8113 && !test_and_set_bit(In_sync, &rdev->flags)) { 8114 count++; 8115 sysfs_notify_dirent_safe(rdev->sysfs_state); 8116 } 8117 } 8118 spin_lock_irqsave(&conf->device_lock, flags); 8119 mddev->degraded = raid5_calc_degraded(conf); 8120 spin_unlock_irqrestore(&conf->device_lock, flags); 8121 print_raid5_conf(conf); 8122 return count; 8123 } 8124 8125 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 8126 { 8127 struct r5conf *conf = mddev->private; 8128 int err = 0; 8129 int number = rdev->raid_disk; 8130 struct md_rdev **rdevp; 8131 struct disk_info *p; 8132 struct md_rdev *tmp; 8133 8134 print_raid5_conf(conf); 8135 if (test_bit(Journal, &rdev->flags) && conf->log) { 8136 /* 8137 * we can't wait pending write here, as this is called in 8138 * raid5d, wait will deadlock. 8139 * neilb: there is no locking about new writes here, 8140 * so this cannot be safe. 8141 */ 8142 if (atomic_read(&conf->active_stripes) || 8143 atomic_read(&conf->r5c_cached_full_stripes) || 8144 atomic_read(&conf->r5c_cached_partial_stripes)) { 8145 return -EBUSY; 8146 } 8147 log_exit(conf); 8148 return 0; 8149 } 8150 if (unlikely(number >= conf->pool_size)) 8151 return 0; 8152 p = conf->disks + number; 8153 if (rdev == p->rdev) 8154 rdevp = &p->rdev; 8155 else if (rdev == p->replacement) 8156 rdevp = &p->replacement; 8157 else 8158 return 0; 8159 8160 if (number >= conf->raid_disks && 8161 conf->reshape_progress == MaxSector) 8162 clear_bit(In_sync, &rdev->flags); 8163 8164 if (test_bit(In_sync, &rdev->flags) || 8165 atomic_read(&rdev->nr_pending)) { 8166 err = -EBUSY; 8167 goto abort; 8168 } 8169 /* Only remove non-faulty devices if recovery 8170 * isn't possible. 8171 */ 8172 if (!test_bit(Faulty, &rdev->flags) && 8173 mddev->recovery_disabled != conf->recovery_disabled && 8174 !has_failed(conf) && 8175 (!p->replacement || p->replacement == rdev) && 8176 number < conf->raid_disks) { 8177 err = -EBUSY; 8178 goto abort; 8179 } 8180 WRITE_ONCE(*rdevp, NULL); 8181 if (!err) { 8182 err = log_modify(conf, rdev, false); 8183 if (err) 8184 goto abort; 8185 } 8186 8187 tmp = p->replacement; 8188 if (tmp) { 8189 /* We must have just cleared 'rdev' */ 8190 WRITE_ONCE(p->rdev, tmp); 8191 clear_bit(Replacement, &tmp->flags); 8192 WRITE_ONCE(p->replacement, NULL); 8193 8194 if (!err) 8195 err = log_modify(conf, tmp, true); 8196 } 8197 8198 clear_bit(WantReplacement, &rdev->flags); 8199 abort: 8200 8201 print_raid5_conf(conf); 8202 return err; 8203 } 8204 8205 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev) 8206 { 8207 struct r5conf *conf = mddev->private; 8208 int ret, err = -EEXIST; 8209 int disk; 8210 struct disk_info *p; 8211 struct md_rdev *tmp; 8212 int first = 0; 8213 int last = conf->raid_disks - 1; 8214 8215 if (test_bit(Journal, &rdev->flags)) { 8216 if (conf->log) 8217 return -EBUSY; 8218 8219 rdev->raid_disk = 0; 8220 /* 8221 * The array is in readonly mode if journal is missing, so no 8222 * write requests running. We should be safe 8223 */ 8224 ret = log_init(conf, rdev, false); 8225 if (ret) 8226 return ret; 8227 8228 ret = r5l_start(conf->log); 8229 if (ret) 8230 return ret; 8231 8232 return 0; 8233 } 8234 if (mddev->recovery_disabled == conf->recovery_disabled) 8235 return -EBUSY; 8236 8237 if (rdev->saved_raid_disk < 0 && has_failed(conf)) 8238 /* no point adding a device */ 8239 return -EINVAL; 8240 8241 if (rdev->raid_disk >= 0) 8242 first = last = rdev->raid_disk; 8243 8244 /* 8245 * find the disk ... but prefer rdev->saved_raid_disk 8246 * if possible. 8247 */ 8248 if (rdev->saved_raid_disk >= first && 8249 rdev->saved_raid_disk <= last && 8250 conf->disks[rdev->saved_raid_disk].rdev == NULL) 8251 first = rdev->saved_raid_disk; 8252 8253 for (disk = first; disk <= last; disk++) { 8254 p = conf->disks + disk; 8255 if (p->rdev == NULL) { 8256 clear_bit(In_sync, &rdev->flags); 8257 rdev->raid_disk = disk; 8258 if (rdev->saved_raid_disk != disk) 8259 conf->fullsync = 1; 8260 WRITE_ONCE(p->rdev, rdev); 8261 8262 err = log_modify(conf, rdev, true); 8263 8264 goto out; 8265 } 8266 } 8267 for (disk = first; disk <= last; disk++) { 8268 p = conf->disks + disk; 8269 tmp = p->rdev; 8270 if (test_bit(WantReplacement, &tmp->flags) && 8271 mddev->reshape_position == MaxSector && 8272 p->replacement == NULL) { 8273 clear_bit(In_sync, &rdev->flags); 8274 set_bit(Replacement, &rdev->flags); 8275 rdev->raid_disk = disk; 8276 err = 0; 8277 conf->fullsync = 1; 8278 WRITE_ONCE(p->replacement, rdev); 8279 break; 8280 } 8281 } 8282 out: 8283 print_raid5_conf(conf); 8284 return err; 8285 } 8286 8287 static int raid5_resize(struct mddev *mddev, sector_t sectors) 8288 { 8289 /* no resync is happening, and there is enough space 8290 * on all devices, so we can resize. 8291 * We need to make sure resync covers any new space. 8292 * If the array is shrinking we should possibly wait until 8293 * any io in the removed space completes, but it hardly seems 8294 * worth it. 8295 */ 8296 sector_t newsize; 8297 struct r5conf *conf = mddev->private; 8298 8299 if (raid5_has_log(conf) || raid5_has_ppl(conf)) 8300 return -EINVAL; 8301 sectors &= ~((sector_t)conf->chunk_sectors - 1); 8302 newsize = raid5_size(mddev, sectors, mddev->raid_disks); 8303 if (mddev->external_size && 8304 mddev->array_sectors > newsize) 8305 return -EINVAL; 8306 if (mddev->bitmap) { 8307 int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0); 8308 if (ret) 8309 return ret; 8310 } 8311 md_set_array_sectors(mddev, newsize); 8312 if (sectors > mddev->dev_sectors && 8313 mddev->recovery_cp > mddev->dev_sectors) { 8314 mddev->recovery_cp = mddev->dev_sectors; 8315 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8316 } 8317 mddev->dev_sectors = sectors; 8318 mddev->resync_max_sectors = sectors; 8319 return 0; 8320 } 8321 8322 static int check_stripe_cache(struct mddev *mddev) 8323 { 8324 /* Can only proceed if there are plenty of stripe_heads. 8325 * We need a minimum of one full stripe,, and for sensible progress 8326 * it is best to have about 4 times that. 8327 * If we require 4 times, then the default 256 4K stripe_heads will 8328 * allow for chunk sizes up to 256K, which is probably OK. 8329 * If the chunk size is greater, user-space should request more 8330 * stripe_heads first. 8331 */ 8332 struct r5conf *conf = mddev->private; 8333 if (((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4 8334 > conf->min_nr_stripes || 8335 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4 8336 > conf->min_nr_stripes) { 8337 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n", 8338 mdname(mddev), 8339 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9) 8340 / RAID5_STRIPE_SIZE(conf))*4); 8341 return 0; 8342 } 8343 return 1; 8344 } 8345 8346 static int check_reshape(struct mddev *mddev) 8347 { 8348 struct r5conf *conf = mddev->private; 8349 8350 if (raid5_has_log(conf) || raid5_has_ppl(conf)) 8351 return -EINVAL; 8352 if (mddev->delta_disks == 0 && 8353 mddev->new_layout == mddev->layout && 8354 mddev->new_chunk_sectors == mddev->chunk_sectors) 8355 return 0; /* nothing to do */ 8356 if (has_failed(conf)) 8357 return -EINVAL; 8358 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) { 8359 /* We might be able to shrink, but the devices must 8360 * be made bigger first. 8361 * For raid6, 4 is the minimum size. 8362 * Otherwise 2 is the minimum 8363 */ 8364 int min = 2; 8365 if (mddev->level == 6) 8366 min = 4; 8367 if (mddev->raid_disks + mddev->delta_disks < min) 8368 return -EINVAL; 8369 } 8370 8371 if (!check_stripe_cache(mddev)) 8372 return -ENOSPC; 8373 8374 if (mddev->new_chunk_sectors > mddev->chunk_sectors || 8375 mddev->delta_disks > 0) 8376 if (resize_chunks(conf, 8377 conf->previous_raid_disks 8378 + max(0, mddev->delta_disks), 8379 max(mddev->new_chunk_sectors, 8380 mddev->chunk_sectors) 8381 ) < 0) 8382 return -ENOMEM; 8383 8384 if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size) 8385 return 0; /* never bother to shrink */ 8386 return resize_stripes(conf, (conf->previous_raid_disks 8387 + mddev->delta_disks)); 8388 } 8389 8390 static int raid5_start_reshape(struct mddev *mddev) 8391 { 8392 struct r5conf *conf = mddev->private; 8393 struct md_rdev *rdev; 8394 int spares = 0; 8395 int i; 8396 unsigned long flags; 8397 8398 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 8399 return -EBUSY; 8400 8401 if (!check_stripe_cache(mddev)) 8402 return -ENOSPC; 8403 8404 if (has_failed(conf)) 8405 return -EINVAL; 8406 8407 /* raid5 can't handle concurrent reshape and recovery */ 8408 if (mddev->recovery_cp < MaxSector) 8409 return -EBUSY; 8410 for (i = 0; i < conf->raid_disks; i++) 8411 if (conf->disks[i].replacement) 8412 return -EBUSY; 8413 8414 rdev_for_each(rdev, mddev) { 8415 if (!test_bit(In_sync, &rdev->flags) 8416 && !test_bit(Faulty, &rdev->flags)) 8417 spares++; 8418 } 8419 8420 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded) 8421 /* Not enough devices even to make a degraded array 8422 * of that size 8423 */ 8424 return -EINVAL; 8425 8426 /* Refuse to reduce size of the array. Any reductions in 8427 * array size must be through explicit setting of array_size 8428 * attribute. 8429 */ 8430 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks) 8431 < mddev->array_sectors) { 8432 pr_warn("md/raid:%s: array size must be reduced before number of disks\n", 8433 mdname(mddev)); 8434 return -EINVAL; 8435 } 8436 8437 atomic_set(&conf->reshape_stripes, 0); 8438 spin_lock_irq(&conf->device_lock); 8439 write_seqcount_begin(&conf->gen_lock); 8440 conf->previous_raid_disks = conf->raid_disks; 8441 conf->raid_disks += mddev->delta_disks; 8442 conf->prev_chunk_sectors = conf->chunk_sectors; 8443 conf->chunk_sectors = mddev->new_chunk_sectors; 8444 conf->prev_algo = conf->algorithm; 8445 conf->algorithm = mddev->new_layout; 8446 conf->generation++; 8447 /* Code that selects data_offset needs to see the generation update 8448 * if reshape_progress has been set - so a memory barrier needed. 8449 */ 8450 smp_mb(); 8451 if (mddev->reshape_backwards) 8452 conf->reshape_progress = raid5_size(mddev, 0, 0); 8453 else 8454 conf->reshape_progress = 0; 8455 conf->reshape_safe = conf->reshape_progress; 8456 write_seqcount_end(&conf->gen_lock); 8457 spin_unlock_irq(&conf->device_lock); 8458 8459 /* Now make sure any requests that proceeded on the assumption 8460 * the reshape wasn't running - like Discard or Read - have 8461 * completed. 8462 */ 8463 raid5_quiesce(mddev, true); 8464 raid5_quiesce(mddev, false); 8465 8466 /* Add some new drives, as many as will fit. 8467 * We know there are enough to make the newly sized array work. 8468 * Don't add devices if we are reducing the number of 8469 * devices in the array. This is because it is not possible 8470 * to correctly record the "partially reconstructed" state of 8471 * such devices during the reshape and confusion could result. 8472 */ 8473 if (mddev->delta_disks >= 0) { 8474 rdev_for_each(rdev, mddev) 8475 if (rdev->raid_disk < 0 && 8476 !test_bit(Faulty, &rdev->flags)) { 8477 if (raid5_add_disk(mddev, rdev) == 0) { 8478 if (rdev->raid_disk 8479 >= conf->previous_raid_disks) 8480 set_bit(In_sync, &rdev->flags); 8481 else 8482 rdev->recovery_offset = 0; 8483 8484 /* Failure here is OK */ 8485 sysfs_link_rdev(mddev, rdev); 8486 } 8487 } else if (rdev->raid_disk >= conf->previous_raid_disks 8488 && !test_bit(Faulty, &rdev->flags)) { 8489 /* This is a spare that was manually added */ 8490 set_bit(In_sync, &rdev->flags); 8491 } 8492 8493 /* When a reshape changes the number of devices, 8494 * ->degraded is measured against the larger of the 8495 * pre and post number of devices. 8496 */ 8497 spin_lock_irqsave(&conf->device_lock, flags); 8498 mddev->degraded = raid5_calc_degraded(conf); 8499 spin_unlock_irqrestore(&conf->device_lock, flags); 8500 } 8501 mddev->raid_disks = conf->raid_disks; 8502 mddev->reshape_position = conf->reshape_progress; 8503 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8504 8505 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8506 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8507 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 8508 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8509 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8510 rcu_assign_pointer(mddev->sync_thread, 8511 md_register_thread(md_do_sync, mddev, "reshape")); 8512 if (!mddev->sync_thread) { 8513 mddev->recovery = 0; 8514 spin_lock_irq(&conf->device_lock); 8515 write_seqcount_begin(&conf->gen_lock); 8516 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks; 8517 mddev->new_chunk_sectors = 8518 conf->chunk_sectors = conf->prev_chunk_sectors; 8519 mddev->new_layout = conf->algorithm = conf->prev_algo; 8520 rdev_for_each(rdev, mddev) 8521 rdev->new_data_offset = rdev->data_offset; 8522 smp_wmb(); 8523 conf->generation --; 8524 conf->reshape_progress = MaxSector; 8525 mddev->reshape_position = MaxSector; 8526 write_seqcount_end(&conf->gen_lock); 8527 spin_unlock_irq(&conf->device_lock); 8528 return -EAGAIN; 8529 } 8530 conf->reshape_checkpoint = jiffies; 8531 md_wakeup_thread(mddev->sync_thread); 8532 md_new_event(); 8533 return 0; 8534 } 8535 8536 /* This is called from the reshape thread and should make any 8537 * changes needed in 'conf' 8538 */ 8539 static void end_reshape(struct r5conf *conf) 8540 { 8541 8542 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 8543 struct md_rdev *rdev; 8544 8545 spin_lock_irq(&conf->device_lock); 8546 conf->previous_raid_disks = conf->raid_disks; 8547 md_finish_reshape(conf->mddev); 8548 smp_wmb(); 8549 conf->reshape_progress = MaxSector; 8550 conf->mddev->reshape_position = MaxSector; 8551 rdev_for_each(rdev, conf->mddev) 8552 if (rdev->raid_disk >= 0 && 8553 !test_bit(Journal, &rdev->flags) && 8554 !test_bit(In_sync, &rdev->flags)) 8555 rdev->recovery_offset = MaxSector; 8556 spin_unlock_irq(&conf->device_lock); 8557 wake_up(&conf->wait_for_overlap); 8558 8559 if (conf->mddev->queue) 8560 raid5_set_io_opt(conf); 8561 } 8562 } 8563 8564 /* This is called from the raid5d thread with mddev_lock held. 8565 * It makes config changes to the device. 8566 */ 8567 static void raid5_finish_reshape(struct mddev *mddev) 8568 { 8569 struct r5conf *conf = mddev->private; 8570 struct md_rdev *rdev; 8571 8572 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8573 8574 if (mddev->delta_disks <= 0) { 8575 int d; 8576 spin_lock_irq(&conf->device_lock); 8577 mddev->degraded = raid5_calc_degraded(conf); 8578 spin_unlock_irq(&conf->device_lock); 8579 for (d = conf->raid_disks ; 8580 d < conf->raid_disks - mddev->delta_disks; 8581 d++) { 8582 rdev = conf->disks[d].rdev; 8583 if (rdev) 8584 clear_bit(In_sync, &rdev->flags); 8585 rdev = conf->disks[d].replacement; 8586 if (rdev) 8587 clear_bit(In_sync, &rdev->flags); 8588 } 8589 } 8590 mddev->layout = conf->algorithm; 8591 mddev->chunk_sectors = conf->chunk_sectors; 8592 mddev->reshape_position = MaxSector; 8593 mddev->delta_disks = 0; 8594 mddev->reshape_backwards = 0; 8595 } 8596 } 8597 8598 static void raid5_quiesce(struct mddev *mddev, int quiesce) 8599 { 8600 struct r5conf *conf = mddev->private; 8601 8602 if (quiesce) { 8603 /* stop all writes */ 8604 lock_all_device_hash_locks_irq(conf); 8605 /* '2' tells resync/reshape to pause so that all 8606 * active stripes can drain 8607 */ 8608 r5c_flush_cache(conf, INT_MAX); 8609 /* need a memory barrier to make sure read_one_chunk() sees 8610 * quiesce started and reverts to slow (locked) path. 8611 */ 8612 smp_store_release(&conf->quiesce, 2); 8613 wait_event_cmd(conf->wait_for_quiescent, 8614 atomic_read(&conf->active_stripes) == 0 && 8615 atomic_read(&conf->active_aligned_reads) == 0, 8616 unlock_all_device_hash_locks_irq(conf), 8617 lock_all_device_hash_locks_irq(conf)); 8618 conf->quiesce = 1; 8619 unlock_all_device_hash_locks_irq(conf); 8620 /* allow reshape to continue */ 8621 wake_up(&conf->wait_for_overlap); 8622 } else { 8623 /* re-enable writes */ 8624 lock_all_device_hash_locks_irq(conf); 8625 conf->quiesce = 0; 8626 wake_up(&conf->wait_for_quiescent); 8627 wake_up(&conf->wait_for_overlap); 8628 unlock_all_device_hash_locks_irq(conf); 8629 } 8630 log_quiesce(conf, quiesce); 8631 } 8632 8633 static void *raid45_takeover_raid0(struct mddev *mddev, int level) 8634 { 8635 struct r0conf *raid0_conf = mddev->private; 8636 sector_t sectors; 8637 8638 /* for raid0 takeover only one zone is supported */ 8639 if (raid0_conf->nr_strip_zones > 1) { 8640 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n", 8641 mdname(mddev)); 8642 return ERR_PTR(-EINVAL); 8643 } 8644 8645 sectors = raid0_conf->strip_zone[0].zone_end; 8646 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev); 8647 mddev->dev_sectors = sectors; 8648 mddev->new_level = level; 8649 mddev->new_layout = ALGORITHM_PARITY_N; 8650 mddev->new_chunk_sectors = mddev->chunk_sectors; 8651 mddev->raid_disks += 1; 8652 mddev->delta_disks = 1; 8653 /* make sure it will be not marked as dirty */ 8654 mddev->recovery_cp = MaxSector; 8655 8656 return setup_conf(mddev); 8657 } 8658 8659 static void *raid5_takeover_raid1(struct mddev *mddev) 8660 { 8661 int chunksect; 8662 void *ret; 8663 8664 if (mddev->raid_disks != 2 || 8665 mddev->degraded > 1) 8666 return ERR_PTR(-EINVAL); 8667 8668 /* Should check if there are write-behind devices? */ 8669 8670 chunksect = 64*2; /* 64K by default */ 8671 8672 /* The array must be an exact multiple of chunksize */ 8673 while (chunksect && (mddev->array_sectors & (chunksect-1))) 8674 chunksect >>= 1; 8675 8676 if ((chunksect<<9) < RAID5_STRIPE_SIZE((struct r5conf *)mddev->private)) 8677 /* array size does not allow a suitable chunk size */ 8678 return ERR_PTR(-EINVAL); 8679 8680 mddev->new_level = 5; 8681 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC; 8682 mddev->new_chunk_sectors = chunksect; 8683 8684 ret = setup_conf(mddev); 8685 if (!IS_ERR(ret)) 8686 mddev_clear_unsupported_flags(mddev, 8687 UNSUPPORTED_MDDEV_FLAGS); 8688 return ret; 8689 } 8690 8691 static void *raid5_takeover_raid6(struct mddev *mddev) 8692 { 8693 int new_layout; 8694 8695 switch (mddev->layout) { 8696 case ALGORITHM_LEFT_ASYMMETRIC_6: 8697 new_layout = ALGORITHM_LEFT_ASYMMETRIC; 8698 break; 8699 case ALGORITHM_RIGHT_ASYMMETRIC_6: 8700 new_layout = ALGORITHM_RIGHT_ASYMMETRIC; 8701 break; 8702 case ALGORITHM_LEFT_SYMMETRIC_6: 8703 new_layout = ALGORITHM_LEFT_SYMMETRIC; 8704 break; 8705 case ALGORITHM_RIGHT_SYMMETRIC_6: 8706 new_layout = ALGORITHM_RIGHT_SYMMETRIC; 8707 break; 8708 case ALGORITHM_PARITY_0_6: 8709 new_layout = ALGORITHM_PARITY_0; 8710 break; 8711 case ALGORITHM_PARITY_N: 8712 new_layout = ALGORITHM_PARITY_N; 8713 break; 8714 default: 8715 return ERR_PTR(-EINVAL); 8716 } 8717 mddev->new_level = 5; 8718 mddev->new_layout = new_layout; 8719 mddev->delta_disks = -1; 8720 mddev->raid_disks -= 1; 8721 return setup_conf(mddev); 8722 } 8723 8724 static int raid5_check_reshape(struct mddev *mddev) 8725 { 8726 /* For a 2-drive array, the layout and chunk size can be changed 8727 * immediately as not restriping is needed. 8728 * For larger arrays we record the new value - after validation 8729 * to be used by a reshape pass. 8730 */ 8731 struct r5conf *conf = mddev->private; 8732 int new_chunk = mddev->new_chunk_sectors; 8733 8734 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout)) 8735 return -EINVAL; 8736 if (new_chunk > 0) { 8737 if (!is_power_of_2(new_chunk)) 8738 return -EINVAL; 8739 if (new_chunk < (PAGE_SIZE>>9)) 8740 return -EINVAL; 8741 if (mddev->array_sectors & (new_chunk-1)) 8742 /* not factor of array size */ 8743 return -EINVAL; 8744 } 8745 8746 /* They look valid */ 8747 8748 if (mddev->raid_disks == 2) { 8749 /* can make the change immediately */ 8750 if (mddev->new_layout >= 0) { 8751 conf->algorithm = mddev->new_layout; 8752 mddev->layout = mddev->new_layout; 8753 } 8754 if (new_chunk > 0) { 8755 conf->chunk_sectors = new_chunk ; 8756 mddev->chunk_sectors = new_chunk; 8757 } 8758 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8759 md_wakeup_thread(mddev->thread); 8760 } 8761 return check_reshape(mddev); 8762 } 8763 8764 static int raid6_check_reshape(struct mddev *mddev) 8765 { 8766 int new_chunk = mddev->new_chunk_sectors; 8767 8768 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout)) 8769 return -EINVAL; 8770 if (new_chunk > 0) { 8771 if (!is_power_of_2(new_chunk)) 8772 return -EINVAL; 8773 if (new_chunk < (PAGE_SIZE >> 9)) 8774 return -EINVAL; 8775 if (mddev->array_sectors & (new_chunk-1)) 8776 /* not factor of array size */ 8777 return -EINVAL; 8778 } 8779 8780 /* They look valid */ 8781 return check_reshape(mddev); 8782 } 8783 8784 static void *raid5_takeover(struct mddev *mddev) 8785 { 8786 /* raid5 can take over: 8787 * raid0 - if there is only one strip zone - make it a raid4 layout 8788 * raid1 - if there are two drives. We need to know the chunk size 8789 * raid4 - trivial - just use a raid4 layout. 8790 * raid6 - Providing it is a *_6 layout 8791 */ 8792 if (mddev->level == 0) 8793 return raid45_takeover_raid0(mddev, 5); 8794 if (mddev->level == 1) 8795 return raid5_takeover_raid1(mddev); 8796 if (mddev->level == 4) { 8797 mddev->new_layout = ALGORITHM_PARITY_N; 8798 mddev->new_level = 5; 8799 return setup_conf(mddev); 8800 } 8801 if (mddev->level == 6) 8802 return raid5_takeover_raid6(mddev); 8803 8804 return ERR_PTR(-EINVAL); 8805 } 8806 8807 static void *raid4_takeover(struct mddev *mddev) 8808 { 8809 /* raid4 can take over: 8810 * raid0 - if there is only one strip zone 8811 * raid5 - if layout is right 8812 */ 8813 if (mddev->level == 0) 8814 return raid45_takeover_raid0(mddev, 4); 8815 if (mddev->level == 5 && 8816 mddev->layout == ALGORITHM_PARITY_N) { 8817 mddev->new_layout = 0; 8818 mddev->new_level = 4; 8819 return setup_conf(mddev); 8820 } 8821 return ERR_PTR(-EINVAL); 8822 } 8823 8824 static struct md_personality raid5_personality; 8825 8826 static void *raid6_takeover(struct mddev *mddev) 8827 { 8828 /* Currently can only take over a raid5. We map the 8829 * personality to an equivalent raid6 personality 8830 * with the Q block at the end. 8831 */ 8832 int new_layout; 8833 8834 if (mddev->pers != &raid5_personality) 8835 return ERR_PTR(-EINVAL); 8836 if (mddev->degraded > 1) 8837 return ERR_PTR(-EINVAL); 8838 if (mddev->raid_disks > 253) 8839 return ERR_PTR(-EINVAL); 8840 if (mddev->raid_disks < 3) 8841 return ERR_PTR(-EINVAL); 8842 8843 switch (mddev->layout) { 8844 case ALGORITHM_LEFT_ASYMMETRIC: 8845 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6; 8846 break; 8847 case ALGORITHM_RIGHT_ASYMMETRIC: 8848 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6; 8849 break; 8850 case ALGORITHM_LEFT_SYMMETRIC: 8851 new_layout = ALGORITHM_LEFT_SYMMETRIC_6; 8852 break; 8853 case ALGORITHM_RIGHT_SYMMETRIC: 8854 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6; 8855 break; 8856 case ALGORITHM_PARITY_0: 8857 new_layout = ALGORITHM_PARITY_0_6; 8858 break; 8859 case ALGORITHM_PARITY_N: 8860 new_layout = ALGORITHM_PARITY_N; 8861 break; 8862 default: 8863 return ERR_PTR(-EINVAL); 8864 } 8865 mddev->new_level = 6; 8866 mddev->new_layout = new_layout; 8867 mddev->delta_disks = 1; 8868 mddev->raid_disks += 1; 8869 return setup_conf(mddev); 8870 } 8871 8872 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf) 8873 { 8874 struct r5conf *conf; 8875 int err; 8876 8877 err = mddev_suspend_and_lock(mddev); 8878 if (err) 8879 return err; 8880 conf = mddev->private; 8881 if (!conf) { 8882 mddev_unlock_and_resume(mddev); 8883 return -ENODEV; 8884 } 8885 8886 if (strncmp(buf, "ppl", 3) == 0) { 8887 /* ppl only works with RAID 5 */ 8888 if (!raid5_has_ppl(conf) && conf->level == 5) { 8889 err = log_init(conf, NULL, true); 8890 if (!err) { 8891 err = resize_stripes(conf, conf->pool_size); 8892 if (err) 8893 log_exit(conf); 8894 } 8895 } else 8896 err = -EINVAL; 8897 } else if (strncmp(buf, "resync", 6) == 0) { 8898 if (raid5_has_ppl(conf)) { 8899 log_exit(conf); 8900 err = resize_stripes(conf, conf->pool_size); 8901 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) && 8902 r5l_log_disk_error(conf)) { 8903 bool journal_dev_exists = false; 8904 struct md_rdev *rdev; 8905 8906 rdev_for_each(rdev, mddev) 8907 if (test_bit(Journal, &rdev->flags)) { 8908 journal_dev_exists = true; 8909 break; 8910 } 8911 8912 if (!journal_dev_exists) 8913 clear_bit(MD_HAS_JOURNAL, &mddev->flags); 8914 else /* need remove journal device first */ 8915 err = -EBUSY; 8916 } else 8917 err = -EINVAL; 8918 } else { 8919 err = -EINVAL; 8920 } 8921 8922 if (!err) 8923 md_update_sb(mddev, 1); 8924 8925 mddev_unlock_and_resume(mddev); 8926 8927 return err; 8928 } 8929 8930 static int raid5_start(struct mddev *mddev) 8931 { 8932 struct r5conf *conf = mddev->private; 8933 8934 return r5l_start(conf->log); 8935 } 8936 8937 static struct md_personality raid6_personality = 8938 { 8939 .name = "raid6", 8940 .level = 6, 8941 .owner = THIS_MODULE, 8942 .make_request = raid5_make_request, 8943 .run = raid5_run, 8944 .start = raid5_start, 8945 .free = raid5_free, 8946 .status = raid5_status, 8947 .error_handler = raid5_error, 8948 .hot_add_disk = raid5_add_disk, 8949 .hot_remove_disk= raid5_remove_disk, 8950 .spare_active = raid5_spare_active, 8951 .sync_request = raid5_sync_request, 8952 .resize = raid5_resize, 8953 .size = raid5_size, 8954 .check_reshape = raid6_check_reshape, 8955 .start_reshape = raid5_start_reshape, 8956 .finish_reshape = raid5_finish_reshape, 8957 .quiesce = raid5_quiesce, 8958 .takeover = raid6_takeover, 8959 .change_consistency_policy = raid5_change_consistency_policy, 8960 }; 8961 static struct md_personality raid5_personality = 8962 { 8963 .name = "raid5", 8964 .level = 5, 8965 .owner = THIS_MODULE, 8966 .make_request = raid5_make_request, 8967 .run = raid5_run, 8968 .start = raid5_start, 8969 .free = raid5_free, 8970 .status = raid5_status, 8971 .error_handler = raid5_error, 8972 .hot_add_disk = raid5_add_disk, 8973 .hot_remove_disk= raid5_remove_disk, 8974 .spare_active = raid5_spare_active, 8975 .sync_request = raid5_sync_request, 8976 .resize = raid5_resize, 8977 .size = raid5_size, 8978 .check_reshape = raid5_check_reshape, 8979 .start_reshape = raid5_start_reshape, 8980 .finish_reshape = raid5_finish_reshape, 8981 .quiesce = raid5_quiesce, 8982 .takeover = raid5_takeover, 8983 .change_consistency_policy = raid5_change_consistency_policy, 8984 }; 8985 8986 static struct md_personality raid4_personality = 8987 { 8988 .name = "raid4", 8989 .level = 4, 8990 .owner = THIS_MODULE, 8991 .make_request = raid5_make_request, 8992 .run = raid5_run, 8993 .start = raid5_start, 8994 .free = raid5_free, 8995 .status = raid5_status, 8996 .error_handler = raid5_error, 8997 .hot_add_disk = raid5_add_disk, 8998 .hot_remove_disk= raid5_remove_disk, 8999 .spare_active = raid5_spare_active, 9000 .sync_request = raid5_sync_request, 9001 .resize = raid5_resize, 9002 .size = raid5_size, 9003 .check_reshape = raid5_check_reshape, 9004 .start_reshape = raid5_start_reshape, 9005 .finish_reshape = raid5_finish_reshape, 9006 .quiesce = raid5_quiesce, 9007 .takeover = raid4_takeover, 9008 .change_consistency_policy = raid5_change_consistency_policy, 9009 }; 9010 9011 static int __init raid5_init(void) 9012 { 9013 int ret; 9014 9015 raid5_wq = alloc_workqueue("raid5wq", 9016 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0); 9017 if (!raid5_wq) 9018 return -ENOMEM; 9019 9020 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE, 9021 "md/raid5:prepare", 9022 raid456_cpu_up_prepare, 9023 raid456_cpu_dead); 9024 if (ret) { 9025 destroy_workqueue(raid5_wq); 9026 return ret; 9027 } 9028 register_md_personality(&raid6_personality); 9029 register_md_personality(&raid5_personality); 9030 register_md_personality(&raid4_personality); 9031 return 0; 9032 } 9033 9034 static void raid5_exit(void) 9035 { 9036 unregister_md_personality(&raid6_personality); 9037 unregister_md_personality(&raid5_personality); 9038 unregister_md_personality(&raid4_personality); 9039 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE); 9040 destroy_workqueue(raid5_wq); 9041 } 9042 9043 module_init(raid5_init); 9044 module_exit(raid5_exit); 9045 MODULE_LICENSE("GPL"); 9046 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD"); 9047 MODULE_ALIAS("md-personality-4"); /* RAID5 */ 9048 MODULE_ALIAS("md-raid5"); 9049 MODULE_ALIAS("md-raid4"); 9050 MODULE_ALIAS("md-level-5"); 9051 MODULE_ALIAS("md-level-4"); 9052 MODULE_ALIAS("md-personality-8"); /* RAID6 */ 9053 MODULE_ALIAS("md-raid6"); 9054 MODULE_ALIAS("md-level-6"); 9055 9056 /* This used to be two separate modules, they were: */ 9057 MODULE_ALIAS("raid5"); 9058 MODULE_ALIAS("raid6"); 9059