1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid5.c : Multiple Devices driver for Linux 4 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman 5 * Copyright (C) 1999, 2000 Ingo Molnar 6 * Copyright (C) 2002, 2003 H. Peter Anvin 7 * 8 * RAID-4/5/6 management functions. 9 * Thanks to Penguin Computing for making the RAID-6 development possible 10 * by donating a test server! 11 */ 12 13 /* 14 * BITMAP UNPLUGGING: 15 * 16 * The sequencing for updating the bitmap reliably is a little 17 * subtle (and I got it wrong the first time) so it deserves some 18 * explanation. 19 * 20 * We group bitmap updates into batches. Each batch has a number. 21 * We may write out several batches at once, but that isn't very important. 22 * conf->seq_write is the number of the last batch successfully written. 23 * conf->seq_flush is the number of the last batch that was closed to 24 * new additions. 25 * When we discover that we will need to write to any block in a stripe 26 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq 27 * the number of the batch it will be in. This is seq_flush+1. 28 * When we are ready to do a write, if that batch hasn't been written yet, 29 * we plug the array and queue the stripe for later. 30 * When an unplug happens, we increment bm_flush, thus closing the current 31 * batch. 32 * When we notice that bm_flush > bm_write, we write out all pending updates 33 * to the bitmap, and advance bm_write to where bm_flush was. 34 * This may occasionally write a bit out twice, but is sure never to 35 * miss any bits. 36 */ 37 38 #include <linux/blkdev.h> 39 #include <linux/kthread.h> 40 #include <linux/raid/pq.h> 41 #include <linux/async_tx.h> 42 #include <linux/module.h> 43 #include <linux/async.h> 44 #include <linux/seq_file.h> 45 #include <linux/cpu.h> 46 #include <linux/slab.h> 47 #include <linux/ratelimit.h> 48 #include <linux/nodemask.h> 49 50 #include <trace/events/block.h> 51 #include <linux/list_sort.h> 52 53 #include "md.h" 54 #include "raid5.h" 55 #include "raid0.h" 56 #include "md-bitmap.h" 57 #include "raid5-log.h" 58 59 #define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED) 60 61 #define cpu_to_group(cpu) cpu_to_node(cpu) 62 #define ANY_GROUP NUMA_NO_NODE 63 64 #define RAID5_MAX_REQ_STRIPES 256 65 66 static bool devices_handle_discard_safely = false; 67 module_param(devices_handle_discard_safely, bool, 0644); 68 MODULE_PARM_DESC(devices_handle_discard_safely, 69 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions"); 70 static struct workqueue_struct *raid5_wq; 71 72 static void raid5_quiesce(struct mddev *mddev, int quiesce); 73 74 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect) 75 { 76 int hash = (sect >> RAID5_STRIPE_SHIFT(conf)) & HASH_MASK; 77 return &conf->stripe_hashtbl[hash]; 78 } 79 80 static inline int stripe_hash_locks_hash(struct r5conf *conf, sector_t sect) 81 { 82 return (sect >> RAID5_STRIPE_SHIFT(conf)) & STRIPE_HASH_LOCKS_MASK; 83 } 84 85 static inline void lock_device_hash_lock(struct r5conf *conf, int hash) 86 __acquires(&conf->device_lock) 87 { 88 spin_lock_irq(conf->hash_locks + hash); 89 spin_lock(&conf->device_lock); 90 } 91 92 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash) 93 __releases(&conf->device_lock) 94 { 95 spin_unlock(&conf->device_lock); 96 spin_unlock_irq(conf->hash_locks + hash); 97 } 98 99 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf) 100 __acquires(&conf->device_lock) 101 { 102 int i; 103 spin_lock_irq(conf->hash_locks); 104 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 105 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks); 106 spin_lock(&conf->device_lock); 107 } 108 109 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf) 110 __releases(&conf->device_lock) 111 { 112 int i; 113 spin_unlock(&conf->device_lock); 114 for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--) 115 spin_unlock(conf->hash_locks + i); 116 spin_unlock_irq(conf->hash_locks); 117 } 118 119 /* Find first data disk in a raid6 stripe */ 120 static inline int raid6_d0(struct stripe_head *sh) 121 { 122 if (sh->ddf_layout) 123 /* ddf always start from first device */ 124 return 0; 125 /* md starts just after Q block */ 126 if (sh->qd_idx == sh->disks - 1) 127 return 0; 128 else 129 return sh->qd_idx + 1; 130 } 131 static inline int raid6_next_disk(int disk, int raid_disks) 132 { 133 disk++; 134 return (disk < raid_disks) ? disk : 0; 135 } 136 137 /* When walking through the disks in a raid5, starting at raid6_d0, 138 * We need to map each disk to a 'slot', where the data disks are slot 139 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk 140 * is raid_disks-1. This help does that mapping. 141 */ 142 static int raid6_idx_to_slot(int idx, struct stripe_head *sh, 143 int *count, int syndrome_disks) 144 { 145 int slot = *count; 146 147 if (sh->ddf_layout) 148 (*count)++; 149 if (idx == sh->pd_idx) 150 return syndrome_disks; 151 if (idx == sh->qd_idx) 152 return syndrome_disks + 1; 153 if (!sh->ddf_layout) 154 (*count)++; 155 return slot; 156 } 157 158 static void print_raid5_conf (struct r5conf *conf); 159 160 static int stripe_operations_active(struct stripe_head *sh) 161 { 162 return sh->check_state || sh->reconstruct_state || 163 test_bit(STRIPE_BIOFILL_RUN, &sh->state) || 164 test_bit(STRIPE_COMPUTE_RUN, &sh->state); 165 } 166 167 static bool stripe_is_lowprio(struct stripe_head *sh) 168 { 169 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) || 170 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) && 171 !test_bit(STRIPE_R5C_CACHING, &sh->state); 172 } 173 174 static void raid5_wakeup_stripe_thread(struct stripe_head *sh) 175 __must_hold(&sh->raid_conf->device_lock) 176 { 177 struct r5conf *conf = sh->raid_conf; 178 struct r5worker_group *group; 179 int thread_cnt; 180 int i, cpu = sh->cpu; 181 182 if (!cpu_online(cpu)) { 183 cpu = cpumask_any(cpu_online_mask); 184 sh->cpu = cpu; 185 } 186 187 if (list_empty(&sh->lru)) { 188 struct r5worker_group *group; 189 group = conf->worker_groups + cpu_to_group(cpu); 190 if (stripe_is_lowprio(sh)) 191 list_add_tail(&sh->lru, &group->loprio_list); 192 else 193 list_add_tail(&sh->lru, &group->handle_list); 194 group->stripes_cnt++; 195 sh->group = group; 196 } 197 198 if (conf->worker_cnt_per_group == 0) { 199 md_wakeup_thread(conf->mddev->thread); 200 return; 201 } 202 203 group = conf->worker_groups + cpu_to_group(sh->cpu); 204 205 group->workers[0].working = true; 206 /* at least one worker should run to avoid race */ 207 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work); 208 209 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1; 210 /* wakeup more workers */ 211 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) { 212 if (group->workers[i].working == false) { 213 group->workers[i].working = true; 214 queue_work_on(sh->cpu, raid5_wq, 215 &group->workers[i].work); 216 thread_cnt--; 217 } 218 } 219 } 220 221 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh, 222 struct list_head *temp_inactive_list) 223 __must_hold(&conf->device_lock) 224 { 225 int i; 226 int injournal = 0; /* number of date pages with R5_InJournal */ 227 228 BUG_ON(!list_empty(&sh->lru)); 229 BUG_ON(atomic_read(&conf->active_stripes)==0); 230 231 if (r5c_is_writeback(conf->log)) 232 for (i = sh->disks; i--; ) 233 if (test_bit(R5_InJournal, &sh->dev[i].flags)) 234 injournal++; 235 /* 236 * In the following cases, the stripe cannot be released to cached 237 * lists. Therefore, we make the stripe write out and set 238 * STRIPE_HANDLE: 239 * 1. when quiesce in r5c write back; 240 * 2. when resync is requested fot the stripe. 241 */ 242 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) || 243 (conf->quiesce && r5c_is_writeback(conf->log) && 244 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) { 245 if (test_bit(STRIPE_R5C_CACHING, &sh->state)) 246 r5c_make_stripe_write_out(sh); 247 set_bit(STRIPE_HANDLE, &sh->state); 248 } 249 250 if (test_bit(STRIPE_HANDLE, &sh->state)) { 251 if (test_bit(STRIPE_DELAYED, &sh->state) && 252 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 253 list_add_tail(&sh->lru, &conf->delayed_list); 254 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) && 255 sh->bm_seq - conf->seq_write > 0) 256 list_add_tail(&sh->lru, &conf->bitmap_list); 257 else { 258 clear_bit(STRIPE_DELAYED, &sh->state); 259 clear_bit(STRIPE_BIT_DELAY, &sh->state); 260 if (conf->worker_cnt_per_group == 0) { 261 if (stripe_is_lowprio(sh)) 262 list_add_tail(&sh->lru, 263 &conf->loprio_list); 264 else 265 list_add_tail(&sh->lru, 266 &conf->handle_list); 267 } else { 268 raid5_wakeup_stripe_thread(sh); 269 return; 270 } 271 } 272 md_wakeup_thread(conf->mddev->thread); 273 } else { 274 BUG_ON(stripe_operations_active(sh)); 275 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 276 if (atomic_dec_return(&conf->preread_active_stripes) 277 < IO_THRESHOLD) 278 md_wakeup_thread(conf->mddev->thread); 279 atomic_dec(&conf->active_stripes); 280 if (!test_bit(STRIPE_EXPANDING, &sh->state)) { 281 if (!r5c_is_writeback(conf->log)) 282 list_add_tail(&sh->lru, temp_inactive_list); 283 else { 284 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags)); 285 if (injournal == 0) 286 list_add_tail(&sh->lru, temp_inactive_list); 287 else if (injournal == conf->raid_disks - conf->max_degraded) { 288 /* full stripe */ 289 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) 290 atomic_inc(&conf->r5c_cached_full_stripes); 291 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) 292 atomic_dec(&conf->r5c_cached_partial_stripes); 293 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list); 294 r5c_check_cached_full_stripe(conf); 295 } else 296 /* 297 * STRIPE_R5C_PARTIAL_STRIPE is set in 298 * r5c_try_caching_write(). No need to 299 * set it again. 300 */ 301 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list); 302 } 303 } 304 } 305 } 306 307 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh, 308 struct list_head *temp_inactive_list) 309 __must_hold(&conf->device_lock) 310 { 311 if (atomic_dec_and_test(&sh->count)) 312 do_release_stripe(conf, sh, temp_inactive_list); 313 } 314 315 /* 316 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list 317 * 318 * Be careful: Only one task can add/delete stripes from temp_inactive_list at 319 * given time. Adding stripes only takes device lock, while deleting stripes 320 * only takes hash lock. 321 */ 322 static void release_inactive_stripe_list(struct r5conf *conf, 323 struct list_head *temp_inactive_list, 324 int hash) 325 { 326 int size; 327 bool do_wakeup = false; 328 unsigned long flags; 329 330 if (hash == NR_STRIPE_HASH_LOCKS) { 331 size = NR_STRIPE_HASH_LOCKS; 332 hash = NR_STRIPE_HASH_LOCKS - 1; 333 } else 334 size = 1; 335 while (size) { 336 struct list_head *list = &temp_inactive_list[size - 1]; 337 338 /* 339 * We don't hold any lock here yet, raid5_get_active_stripe() might 340 * remove stripes from the list 341 */ 342 if (!list_empty_careful(list)) { 343 spin_lock_irqsave(conf->hash_locks + hash, flags); 344 if (list_empty(conf->inactive_list + hash) && 345 !list_empty(list)) 346 atomic_dec(&conf->empty_inactive_list_nr); 347 list_splice_tail_init(list, conf->inactive_list + hash); 348 do_wakeup = true; 349 spin_unlock_irqrestore(conf->hash_locks + hash, flags); 350 } 351 size--; 352 hash--; 353 } 354 355 if (do_wakeup) { 356 wake_up(&conf->wait_for_stripe); 357 if (atomic_read(&conf->active_stripes) == 0) 358 wake_up(&conf->wait_for_quiescent); 359 if (conf->retry_read_aligned) 360 md_wakeup_thread(conf->mddev->thread); 361 } 362 } 363 364 static int release_stripe_list(struct r5conf *conf, 365 struct list_head *temp_inactive_list) 366 __must_hold(&conf->device_lock) 367 { 368 struct stripe_head *sh, *t; 369 int count = 0; 370 struct llist_node *head; 371 372 head = llist_del_all(&conf->released_stripes); 373 head = llist_reverse_order(head); 374 llist_for_each_entry_safe(sh, t, head, release_list) { 375 int hash; 376 377 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */ 378 smp_mb(); 379 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state); 380 /* 381 * Don't worry the bit is set here, because if the bit is set 382 * again, the count is always > 1. This is true for 383 * STRIPE_ON_UNPLUG_LIST bit too. 384 */ 385 hash = sh->hash_lock_index; 386 __release_stripe(conf, sh, &temp_inactive_list[hash]); 387 count++; 388 } 389 390 return count; 391 } 392 393 void raid5_release_stripe(struct stripe_head *sh) 394 { 395 struct r5conf *conf = sh->raid_conf; 396 unsigned long flags; 397 struct list_head list; 398 int hash; 399 bool wakeup; 400 401 /* Avoid release_list until the last reference. 402 */ 403 if (atomic_add_unless(&sh->count, -1, 1)) 404 return; 405 406 if (unlikely(!conf->mddev->thread) || 407 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state)) 408 goto slow_path; 409 wakeup = llist_add(&sh->release_list, &conf->released_stripes); 410 if (wakeup) 411 md_wakeup_thread(conf->mddev->thread); 412 return; 413 slow_path: 414 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */ 415 if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) { 416 INIT_LIST_HEAD(&list); 417 hash = sh->hash_lock_index; 418 do_release_stripe(conf, sh, &list); 419 spin_unlock_irqrestore(&conf->device_lock, flags); 420 release_inactive_stripe_list(conf, &list, hash); 421 } 422 } 423 424 static inline void remove_hash(struct stripe_head *sh) 425 { 426 pr_debug("remove_hash(), stripe %llu\n", 427 (unsigned long long)sh->sector); 428 429 hlist_del_init(&sh->hash); 430 } 431 432 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh) 433 { 434 struct hlist_head *hp = stripe_hash(conf, sh->sector); 435 436 pr_debug("insert_hash(), stripe %llu\n", 437 (unsigned long long)sh->sector); 438 439 hlist_add_head(&sh->hash, hp); 440 } 441 442 /* find an idle stripe, make sure it is unhashed, and return it. */ 443 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash) 444 { 445 struct stripe_head *sh = NULL; 446 struct list_head *first; 447 448 if (list_empty(conf->inactive_list + hash)) 449 goto out; 450 first = (conf->inactive_list + hash)->next; 451 sh = list_entry(first, struct stripe_head, lru); 452 list_del_init(first); 453 remove_hash(sh); 454 atomic_inc(&conf->active_stripes); 455 BUG_ON(hash != sh->hash_lock_index); 456 if (list_empty(conf->inactive_list + hash)) 457 atomic_inc(&conf->empty_inactive_list_nr); 458 out: 459 return sh; 460 } 461 462 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 463 static void free_stripe_pages(struct stripe_head *sh) 464 { 465 int i; 466 struct page *p; 467 468 /* Have not allocate page pool */ 469 if (!sh->pages) 470 return; 471 472 for (i = 0; i < sh->nr_pages; i++) { 473 p = sh->pages[i]; 474 if (p) 475 put_page(p); 476 sh->pages[i] = NULL; 477 } 478 } 479 480 static int alloc_stripe_pages(struct stripe_head *sh, gfp_t gfp) 481 { 482 int i; 483 struct page *p; 484 485 for (i = 0; i < sh->nr_pages; i++) { 486 /* The page have allocated. */ 487 if (sh->pages[i]) 488 continue; 489 490 p = alloc_page(gfp); 491 if (!p) { 492 free_stripe_pages(sh); 493 return -ENOMEM; 494 } 495 sh->pages[i] = p; 496 } 497 return 0; 498 } 499 500 static int 501 init_stripe_shared_pages(struct stripe_head *sh, struct r5conf *conf, int disks) 502 { 503 int nr_pages, cnt; 504 505 if (sh->pages) 506 return 0; 507 508 /* Each of the sh->dev[i] need one conf->stripe_size */ 509 cnt = PAGE_SIZE / conf->stripe_size; 510 nr_pages = (disks + cnt - 1) / cnt; 511 512 sh->pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL); 513 if (!sh->pages) 514 return -ENOMEM; 515 sh->nr_pages = nr_pages; 516 sh->stripes_per_page = cnt; 517 return 0; 518 } 519 #endif 520 521 static void shrink_buffers(struct stripe_head *sh) 522 { 523 int i; 524 int num = sh->raid_conf->pool_size; 525 526 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE 527 for (i = 0; i < num ; i++) { 528 struct page *p; 529 530 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page); 531 p = sh->dev[i].page; 532 if (!p) 533 continue; 534 sh->dev[i].page = NULL; 535 put_page(p); 536 } 537 #else 538 for (i = 0; i < num; i++) 539 sh->dev[i].page = NULL; 540 free_stripe_pages(sh); /* Free pages */ 541 #endif 542 } 543 544 static int grow_buffers(struct stripe_head *sh, gfp_t gfp) 545 { 546 int i; 547 int num = sh->raid_conf->pool_size; 548 549 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE 550 for (i = 0; i < num; i++) { 551 struct page *page; 552 553 if (!(page = alloc_page(gfp))) { 554 return 1; 555 } 556 sh->dev[i].page = page; 557 sh->dev[i].orig_page = page; 558 sh->dev[i].offset = 0; 559 } 560 #else 561 if (alloc_stripe_pages(sh, gfp)) 562 return -ENOMEM; 563 564 for (i = 0; i < num; i++) { 565 sh->dev[i].page = raid5_get_dev_page(sh, i); 566 sh->dev[i].orig_page = sh->dev[i].page; 567 sh->dev[i].offset = raid5_get_page_offset(sh, i); 568 } 569 #endif 570 return 0; 571 } 572 573 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 574 struct stripe_head *sh); 575 576 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous) 577 { 578 struct r5conf *conf = sh->raid_conf; 579 int i, seq; 580 581 BUG_ON(atomic_read(&sh->count) != 0); 582 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); 583 BUG_ON(stripe_operations_active(sh)); 584 BUG_ON(sh->batch_head); 585 586 pr_debug("init_stripe called, stripe %llu\n", 587 (unsigned long long)sector); 588 retry: 589 seq = read_seqcount_begin(&conf->gen_lock); 590 sh->generation = conf->generation - previous; 591 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks; 592 sh->sector = sector; 593 stripe_set_idx(sector, conf, previous, sh); 594 sh->state = 0; 595 596 for (i = sh->disks; i--; ) { 597 struct r5dev *dev = &sh->dev[i]; 598 599 if (dev->toread || dev->read || dev->towrite || dev->written || 600 test_bit(R5_LOCKED, &dev->flags)) { 601 pr_err("sector=%llx i=%d %p %p %p %p %d\n", 602 (unsigned long long)sh->sector, i, dev->toread, 603 dev->read, dev->towrite, dev->written, 604 test_bit(R5_LOCKED, &dev->flags)); 605 WARN_ON(1); 606 } 607 dev->flags = 0; 608 dev->sector = raid5_compute_blocknr(sh, i, previous); 609 } 610 if (read_seqcount_retry(&conf->gen_lock, seq)) 611 goto retry; 612 sh->overwrite_disks = 0; 613 insert_hash(conf, sh); 614 sh->cpu = smp_processor_id(); 615 set_bit(STRIPE_BATCH_READY, &sh->state); 616 } 617 618 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector, 619 short generation) 620 { 621 struct stripe_head *sh; 622 623 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector); 624 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash) 625 if (sh->sector == sector && sh->generation == generation) 626 return sh; 627 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector); 628 return NULL; 629 } 630 631 static struct stripe_head *find_get_stripe(struct r5conf *conf, 632 sector_t sector, short generation, int hash) 633 { 634 int inc_empty_inactive_list_flag; 635 struct stripe_head *sh; 636 637 sh = __find_stripe(conf, sector, generation); 638 if (!sh) 639 return NULL; 640 641 if (atomic_inc_not_zero(&sh->count)) 642 return sh; 643 644 /* 645 * Slow path. The reference count is zero which means the stripe must 646 * be on a list (sh->lru). Must remove the stripe from the list that 647 * references it with the device_lock held. 648 */ 649 650 spin_lock(&conf->device_lock); 651 if (!atomic_read(&sh->count)) { 652 if (!test_bit(STRIPE_HANDLE, &sh->state)) 653 atomic_inc(&conf->active_stripes); 654 BUG_ON(list_empty(&sh->lru) && 655 !test_bit(STRIPE_EXPANDING, &sh->state)); 656 inc_empty_inactive_list_flag = 0; 657 if (!list_empty(conf->inactive_list + hash)) 658 inc_empty_inactive_list_flag = 1; 659 list_del_init(&sh->lru); 660 if (list_empty(conf->inactive_list + hash) && 661 inc_empty_inactive_list_flag) 662 atomic_inc(&conf->empty_inactive_list_nr); 663 if (sh->group) { 664 sh->group->stripes_cnt--; 665 sh->group = NULL; 666 } 667 } 668 atomic_inc(&sh->count); 669 spin_unlock(&conf->device_lock); 670 671 return sh; 672 } 673 674 /* 675 * Need to check if array has failed when deciding whether to: 676 * - start an array 677 * - remove non-faulty devices 678 * - add a spare 679 * - allow a reshape 680 * This determination is simple when no reshape is happening. 681 * However if there is a reshape, we need to carefully check 682 * both the before and after sections. 683 * This is because some failed devices may only affect one 684 * of the two sections, and some non-in_sync devices may 685 * be insync in the section most affected by failed devices. 686 * 687 * Most calls to this function hold &conf->device_lock. Calls 688 * in raid5_run() do not require the lock as no other threads 689 * have been started yet. 690 */ 691 int raid5_calc_degraded(struct r5conf *conf) 692 { 693 int degraded, degraded2; 694 int i; 695 696 degraded = 0; 697 for (i = 0; i < conf->previous_raid_disks; i++) { 698 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev); 699 700 if (rdev && test_bit(Faulty, &rdev->flags)) 701 rdev = READ_ONCE(conf->disks[i].replacement); 702 if (!rdev || test_bit(Faulty, &rdev->flags)) 703 degraded++; 704 else if (test_bit(In_sync, &rdev->flags)) 705 ; 706 else 707 /* not in-sync or faulty. 708 * If the reshape increases the number of devices, 709 * this is being recovered by the reshape, so 710 * this 'previous' section is not in_sync. 711 * If the number of devices is being reduced however, 712 * the device can only be part of the array if 713 * we are reverting a reshape, so this section will 714 * be in-sync. 715 */ 716 if (conf->raid_disks >= conf->previous_raid_disks) 717 degraded++; 718 } 719 if (conf->raid_disks == conf->previous_raid_disks) 720 return degraded; 721 degraded2 = 0; 722 for (i = 0; i < conf->raid_disks; i++) { 723 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev); 724 725 if (rdev && test_bit(Faulty, &rdev->flags)) 726 rdev = READ_ONCE(conf->disks[i].replacement); 727 if (!rdev || test_bit(Faulty, &rdev->flags)) 728 degraded2++; 729 else if (test_bit(In_sync, &rdev->flags)) 730 ; 731 else 732 /* not in-sync or faulty. 733 * If reshape increases the number of devices, this 734 * section has already been recovered, else it 735 * almost certainly hasn't. 736 */ 737 if (conf->raid_disks <= conf->previous_raid_disks) 738 degraded2++; 739 } 740 if (degraded2 > degraded) 741 return degraded2; 742 return degraded; 743 } 744 745 static bool has_failed(struct r5conf *conf) 746 { 747 int degraded = conf->mddev->degraded; 748 749 if (test_bit(MD_BROKEN, &conf->mddev->flags)) 750 return true; 751 752 if (conf->mddev->reshape_position != MaxSector) 753 degraded = raid5_calc_degraded(conf); 754 755 return degraded > conf->max_degraded; 756 } 757 758 enum stripe_result { 759 STRIPE_SUCCESS = 0, 760 STRIPE_RETRY, 761 STRIPE_SCHEDULE_AND_RETRY, 762 STRIPE_FAIL, 763 STRIPE_WAIT_RESHAPE, 764 }; 765 766 struct stripe_request_ctx { 767 /* a reference to the last stripe_head for batching */ 768 struct stripe_head *batch_last; 769 770 /* first sector in the request */ 771 sector_t first_sector; 772 773 /* last sector in the request */ 774 sector_t last_sector; 775 776 /* 777 * bitmap to track stripe sectors that have been added to stripes 778 * add one to account for unaligned requests 779 */ 780 DECLARE_BITMAP(sectors_to_do, RAID5_MAX_REQ_STRIPES + 1); 781 782 /* the request had REQ_PREFLUSH, cleared after the first stripe_head */ 783 bool do_flush; 784 }; 785 786 /* 787 * Block until another thread clears R5_INACTIVE_BLOCKED or 788 * there are fewer than 3/4 the maximum number of active stripes 789 * and there is an inactive stripe available. 790 */ 791 static bool is_inactive_blocked(struct r5conf *conf, int hash) 792 { 793 if (list_empty(conf->inactive_list + hash)) 794 return false; 795 796 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) 797 return true; 798 799 return (atomic_read(&conf->active_stripes) < 800 (conf->max_nr_stripes * 3 / 4)); 801 } 802 803 struct stripe_head *raid5_get_active_stripe(struct r5conf *conf, 804 struct stripe_request_ctx *ctx, sector_t sector, 805 unsigned int flags) 806 { 807 struct stripe_head *sh; 808 int hash = stripe_hash_locks_hash(conf, sector); 809 int previous = !!(flags & R5_GAS_PREVIOUS); 810 811 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector); 812 813 spin_lock_irq(conf->hash_locks + hash); 814 815 for (;;) { 816 if (!(flags & R5_GAS_NOQUIESCE) && conf->quiesce) { 817 /* 818 * Must release the reference to batch_last before 819 * waiting, on quiesce, otherwise the batch_last will 820 * hold a reference to a stripe and raid5_quiesce() 821 * will deadlock waiting for active_stripes to go to 822 * zero. 823 */ 824 if (ctx && ctx->batch_last) { 825 raid5_release_stripe(ctx->batch_last); 826 ctx->batch_last = NULL; 827 } 828 829 wait_event_lock_irq(conf->wait_for_quiescent, 830 !conf->quiesce, 831 *(conf->hash_locks + hash)); 832 } 833 834 sh = find_get_stripe(conf, sector, conf->generation - previous, 835 hash); 836 if (sh) 837 break; 838 839 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) { 840 sh = get_free_stripe(conf, hash); 841 if (sh) { 842 r5c_check_stripe_cache_usage(conf); 843 init_stripe(sh, sector, previous); 844 atomic_inc(&sh->count); 845 break; 846 } 847 848 if (!test_bit(R5_DID_ALLOC, &conf->cache_state)) 849 set_bit(R5_ALLOC_MORE, &conf->cache_state); 850 } 851 852 if (flags & R5_GAS_NOBLOCK) 853 break; 854 855 set_bit(R5_INACTIVE_BLOCKED, &conf->cache_state); 856 r5l_wake_reclaim(conf->log, 0); 857 858 /* release batch_last before wait to avoid risk of deadlock */ 859 if (ctx && ctx->batch_last) { 860 raid5_release_stripe(ctx->batch_last); 861 ctx->batch_last = NULL; 862 } 863 864 wait_event_lock_irq(conf->wait_for_stripe, 865 is_inactive_blocked(conf, hash), 866 *(conf->hash_locks + hash)); 867 clear_bit(R5_INACTIVE_BLOCKED, &conf->cache_state); 868 } 869 870 spin_unlock_irq(conf->hash_locks + hash); 871 return sh; 872 } 873 874 static bool is_full_stripe_write(struct stripe_head *sh) 875 { 876 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded)); 877 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded); 878 } 879 880 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) 881 __acquires(&sh1->stripe_lock) 882 __acquires(&sh2->stripe_lock) 883 { 884 if (sh1 > sh2) { 885 spin_lock_irq(&sh2->stripe_lock); 886 spin_lock_nested(&sh1->stripe_lock, 1); 887 } else { 888 spin_lock_irq(&sh1->stripe_lock); 889 spin_lock_nested(&sh2->stripe_lock, 1); 890 } 891 } 892 893 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) 894 __releases(&sh1->stripe_lock) 895 __releases(&sh2->stripe_lock) 896 { 897 spin_unlock(&sh1->stripe_lock); 898 spin_unlock_irq(&sh2->stripe_lock); 899 } 900 901 /* Only freshly new full stripe normal write stripe can be added to a batch list */ 902 static bool stripe_can_batch(struct stripe_head *sh) 903 { 904 struct r5conf *conf = sh->raid_conf; 905 906 if (raid5_has_log(conf) || raid5_has_ppl(conf)) 907 return false; 908 return test_bit(STRIPE_BATCH_READY, &sh->state) && 909 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) && 910 is_full_stripe_write(sh); 911 } 912 913 /* we only do back search */ 914 static void stripe_add_to_batch_list(struct r5conf *conf, 915 struct stripe_head *sh, struct stripe_head *last_sh) 916 { 917 struct stripe_head *head; 918 sector_t head_sector, tmp_sec; 919 int hash; 920 int dd_idx; 921 922 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */ 923 tmp_sec = sh->sector; 924 if (!sector_div(tmp_sec, conf->chunk_sectors)) 925 return; 926 head_sector = sh->sector - RAID5_STRIPE_SECTORS(conf); 927 928 if (last_sh && head_sector == last_sh->sector) { 929 head = last_sh; 930 atomic_inc(&head->count); 931 } else { 932 hash = stripe_hash_locks_hash(conf, head_sector); 933 spin_lock_irq(conf->hash_locks + hash); 934 head = find_get_stripe(conf, head_sector, conf->generation, 935 hash); 936 spin_unlock_irq(conf->hash_locks + hash); 937 if (!head) 938 return; 939 if (!stripe_can_batch(head)) 940 goto out; 941 } 942 943 lock_two_stripes(head, sh); 944 /* clear_batch_ready clear the flag */ 945 if (!stripe_can_batch(head) || !stripe_can_batch(sh)) 946 goto unlock_out; 947 948 if (sh->batch_head) 949 goto unlock_out; 950 951 dd_idx = 0; 952 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx) 953 dd_idx++; 954 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf || 955 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite)) 956 goto unlock_out; 957 958 if (head->batch_head) { 959 spin_lock(&head->batch_head->batch_lock); 960 /* This batch list is already running */ 961 if (!stripe_can_batch(head)) { 962 spin_unlock(&head->batch_head->batch_lock); 963 goto unlock_out; 964 } 965 /* 966 * We must assign batch_head of this stripe within the 967 * batch_lock, otherwise clear_batch_ready of batch head 968 * stripe could clear BATCH_READY bit of this stripe and 969 * this stripe->batch_head doesn't get assigned, which 970 * could confuse clear_batch_ready for this stripe 971 */ 972 sh->batch_head = head->batch_head; 973 974 /* 975 * at this point, head's BATCH_READY could be cleared, but we 976 * can still add the stripe to batch list 977 */ 978 list_add(&sh->batch_list, &head->batch_list); 979 spin_unlock(&head->batch_head->batch_lock); 980 } else { 981 head->batch_head = head; 982 sh->batch_head = head->batch_head; 983 spin_lock(&head->batch_lock); 984 list_add_tail(&sh->batch_list, &head->batch_list); 985 spin_unlock(&head->batch_lock); 986 } 987 988 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 989 if (atomic_dec_return(&conf->preread_active_stripes) 990 < IO_THRESHOLD) 991 md_wakeup_thread(conf->mddev->thread); 992 993 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) { 994 int seq = sh->bm_seq; 995 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) && 996 sh->batch_head->bm_seq > seq) 997 seq = sh->batch_head->bm_seq; 998 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state); 999 sh->batch_head->bm_seq = seq; 1000 } 1001 1002 atomic_inc(&sh->count); 1003 unlock_out: 1004 unlock_two_stripes(head, sh); 1005 out: 1006 raid5_release_stripe(head); 1007 } 1008 1009 /* Determine if 'data_offset' or 'new_data_offset' should be used 1010 * in this stripe_head. 1011 */ 1012 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh) 1013 { 1014 sector_t progress = conf->reshape_progress; 1015 /* Need a memory barrier to make sure we see the value 1016 * of conf->generation, or ->data_offset that was set before 1017 * reshape_progress was updated. 1018 */ 1019 smp_rmb(); 1020 if (progress == MaxSector) 1021 return 0; 1022 if (sh->generation == conf->generation - 1) 1023 return 0; 1024 /* We are in a reshape, and this is a new-generation stripe, 1025 * so use new_data_offset. 1026 */ 1027 return 1; 1028 } 1029 1030 static void dispatch_bio_list(struct bio_list *tmp) 1031 { 1032 struct bio *bio; 1033 1034 while ((bio = bio_list_pop(tmp))) 1035 submit_bio_noacct(bio); 1036 } 1037 1038 static int cmp_stripe(void *priv, const struct list_head *a, 1039 const struct list_head *b) 1040 { 1041 const struct r5pending_data *da = list_entry(a, 1042 struct r5pending_data, sibling); 1043 const struct r5pending_data *db = list_entry(b, 1044 struct r5pending_data, sibling); 1045 if (da->sector > db->sector) 1046 return 1; 1047 if (da->sector < db->sector) 1048 return -1; 1049 return 0; 1050 } 1051 1052 static void dispatch_defer_bios(struct r5conf *conf, int target, 1053 struct bio_list *list) 1054 { 1055 struct r5pending_data *data; 1056 struct list_head *first, *next = NULL; 1057 int cnt = 0; 1058 1059 if (conf->pending_data_cnt == 0) 1060 return; 1061 1062 list_sort(NULL, &conf->pending_list, cmp_stripe); 1063 1064 first = conf->pending_list.next; 1065 1066 /* temporarily move the head */ 1067 if (conf->next_pending_data) 1068 list_move_tail(&conf->pending_list, 1069 &conf->next_pending_data->sibling); 1070 1071 while (!list_empty(&conf->pending_list)) { 1072 data = list_first_entry(&conf->pending_list, 1073 struct r5pending_data, sibling); 1074 if (&data->sibling == first) 1075 first = data->sibling.next; 1076 next = data->sibling.next; 1077 1078 bio_list_merge(list, &data->bios); 1079 list_move(&data->sibling, &conf->free_list); 1080 cnt++; 1081 if (cnt >= target) 1082 break; 1083 } 1084 conf->pending_data_cnt -= cnt; 1085 BUG_ON(conf->pending_data_cnt < 0 || cnt < target); 1086 1087 if (next != &conf->pending_list) 1088 conf->next_pending_data = list_entry(next, 1089 struct r5pending_data, sibling); 1090 else 1091 conf->next_pending_data = NULL; 1092 /* list isn't empty */ 1093 if (first != &conf->pending_list) 1094 list_move_tail(&conf->pending_list, first); 1095 } 1096 1097 static void flush_deferred_bios(struct r5conf *conf) 1098 { 1099 struct bio_list tmp = BIO_EMPTY_LIST; 1100 1101 if (conf->pending_data_cnt == 0) 1102 return; 1103 1104 spin_lock(&conf->pending_bios_lock); 1105 dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp); 1106 BUG_ON(conf->pending_data_cnt != 0); 1107 spin_unlock(&conf->pending_bios_lock); 1108 1109 dispatch_bio_list(&tmp); 1110 } 1111 1112 static void defer_issue_bios(struct r5conf *conf, sector_t sector, 1113 struct bio_list *bios) 1114 { 1115 struct bio_list tmp = BIO_EMPTY_LIST; 1116 struct r5pending_data *ent; 1117 1118 spin_lock(&conf->pending_bios_lock); 1119 ent = list_first_entry(&conf->free_list, struct r5pending_data, 1120 sibling); 1121 list_move_tail(&ent->sibling, &conf->pending_list); 1122 ent->sector = sector; 1123 bio_list_init(&ent->bios); 1124 bio_list_merge(&ent->bios, bios); 1125 conf->pending_data_cnt++; 1126 if (conf->pending_data_cnt >= PENDING_IO_MAX) 1127 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp); 1128 1129 spin_unlock(&conf->pending_bios_lock); 1130 1131 dispatch_bio_list(&tmp); 1132 } 1133 1134 static void 1135 raid5_end_read_request(struct bio *bi); 1136 static void 1137 raid5_end_write_request(struct bio *bi); 1138 1139 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s) 1140 { 1141 struct r5conf *conf = sh->raid_conf; 1142 int i, disks = sh->disks; 1143 struct stripe_head *head_sh = sh; 1144 struct bio_list pending_bios = BIO_EMPTY_LIST; 1145 struct r5dev *dev; 1146 bool should_defer; 1147 1148 might_sleep(); 1149 1150 if (log_stripe(sh, s) == 0) 1151 return; 1152 1153 should_defer = conf->batch_bio_dispatch && conf->group_cnt; 1154 1155 for (i = disks; i--; ) { 1156 enum req_op op; 1157 blk_opf_t op_flags = 0; 1158 int replace_only = 0; 1159 struct bio *bi, *rbi; 1160 struct md_rdev *rdev, *rrdev = NULL; 1161 1162 sh = head_sh; 1163 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) { 1164 op = REQ_OP_WRITE; 1165 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags)) 1166 op_flags = REQ_FUA; 1167 if (test_bit(R5_Discard, &sh->dev[i].flags)) 1168 op = REQ_OP_DISCARD; 1169 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags)) 1170 op = REQ_OP_READ; 1171 else if (test_and_clear_bit(R5_WantReplace, 1172 &sh->dev[i].flags)) { 1173 op = REQ_OP_WRITE; 1174 replace_only = 1; 1175 } else 1176 continue; 1177 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags)) 1178 op_flags |= REQ_SYNC; 1179 1180 again: 1181 dev = &sh->dev[i]; 1182 bi = &dev->req; 1183 rbi = &dev->rreq; /* For writing to replacement */ 1184 1185 rdev = conf->disks[i].rdev; 1186 rrdev = conf->disks[i].replacement; 1187 if (op_is_write(op)) { 1188 if (replace_only) 1189 rdev = NULL; 1190 if (rdev == rrdev) 1191 /* We raced and saw duplicates */ 1192 rrdev = NULL; 1193 } else { 1194 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev) 1195 rdev = rrdev; 1196 rrdev = NULL; 1197 } 1198 1199 if (rdev && test_bit(Faulty, &rdev->flags)) 1200 rdev = NULL; 1201 if (rdev) 1202 atomic_inc(&rdev->nr_pending); 1203 if (rrdev && test_bit(Faulty, &rrdev->flags)) 1204 rrdev = NULL; 1205 if (rrdev) 1206 atomic_inc(&rrdev->nr_pending); 1207 1208 /* We have already checked bad blocks for reads. Now 1209 * need to check for writes. We never accept write errors 1210 * on the replacement, so we don't to check rrdev. 1211 */ 1212 while (op_is_write(op) && rdev && 1213 test_bit(WriteErrorSeen, &rdev->flags)) { 1214 int bad = rdev_has_badblock(rdev, sh->sector, 1215 RAID5_STRIPE_SECTORS(conf)); 1216 if (!bad) 1217 break; 1218 1219 if (bad < 0) { 1220 set_bit(BlockedBadBlocks, &rdev->flags); 1221 if (!conf->mddev->external && 1222 conf->mddev->sb_flags) { 1223 /* It is very unlikely, but we might 1224 * still need to write out the 1225 * bad block log - better give it 1226 * a chance*/ 1227 md_check_recovery(conf->mddev); 1228 } 1229 /* 1230 * Because md_wait_for_blocked_rdev 1231 * will dec nr_pending, we must 1232 * increment it first. 1233 */ 1234 atomic_inc(&rdev->nr_pending); 1235 md_wait_for_blocked_rdev(rdev, conf->mddev); 1236 } else { 1237 /* Acknowledged bad block - skip the write */ 1238 rdev_dec_pending(rdev, conf->mddev); 1239 rdev = NULL; 1240 } 1241 } 1242 1243 if (rdev) { 1244 if (s->syncing || s->expanding || s->expanded 1245 || s->replacing) 1246 md_sync_acct(rdev->bdev, RAID5_STRIPE_SECTORS(conf)); 1247 1248 set_bit(STRIPE_IO_STARTED, &sh->state); 1249 1250 bio_init(bi, rdev->bdev, &dev->vec, 1, op | op_flags); 1251 bi->bi_end_io = op_is_write(op) 1252 ? raid5_end_write_request 1253 : raid5_end_read_request; 1254 bi->bi_private = sh; 1255 1256 pr_debug("%s: for %llu schedule op %d on disc %d\n", 1257 __func__, (unsigned long long)sh->sector, 1258 bi->bi_opf, i); 1259 atomic_inc(&sh->count); 1260 if (sh != head_sh) 1261 atomic_inc(&head_sh->count); 1262 if (use_new_offset(conf, sh)) 1263 bi->bi_iter.bi_sector = (sh->sector 1264 + rdev->new_data_offset); 1265 else 1266 bi->bi_iter.bi_sector = (sh->sector 1267 + rdev->data_offset); 1268 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags)) 1269 bi->bi_opf |= REQ_NOMERGE; 1270 1271 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 1272 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 1273 1274 if (!op_is_write(op) && 1275 test_bit(R5_InJournal, &sh->dev[i].flags)) 1276 /* 1277 * issuing read for a page in journal, this 1278 * must be preparing for prexor in rmw; read 1279 * the data into orig_page 1280 */ 1281 sh->dev[i].vec.bv_page = sh->dev[i].orig_page; 1282 else 1283 sh->dev[i].vec.bv_page = sh->dev[i].page; 1284 bi->bi_vcnt = 1; 1285 bi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf); 1286 bi->bi_io_vec[0].bv_offset = sh->dev[i].offset; 1287 bi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf); 1288 /* 1289 * If this is discard request, set bi_vcnt 0. We don't 1290 * want to confuse SCSI because SCSI will replace payload 1291 */ 1292 if (op == REQ_OP_DISCARD) 1293 bi->bi_vcnt = 0; 1294 if (rrdev) 1295 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags); 1296 1297 mddev_trace_remap(conf->mddev, bi, sh->dev[i].sector); 1298 if (should_defer && op_is_write(op)) 1299 bio_list_add(&pending_bios, bi); 1300 else 1301 submit_bio_noacct(bi); 1302 } 1303 if (rrdev) { 1304 if (s->syncing || s->expanding || s->expanded 1305 || s->replacing) 1306 md_sync_acct(rrdev->bdev, RAID5_STRIPE_SECTORS(conf)); 1307 1308 set_bit(STRIPE_IO_STARTED, &sh->state); 1309 1310 bio_init(rbi, rrdev->bdev, &dev->rvec, 1, op | op_flags); 1311 BUG_ON(!op_is_write(op)); 1312 rbi->bi_end_io = raid5_end_write_request; 1313 rbi->bi_private = sh; 1314 1315 pr_debug("%s: for %llu schedule op %d on " 1316 "replacement disc %d\n", 1317 __func__, (unsigned long long)sh->sector, 1318 rbi->bi_opf, i); 1319 atomic_inc(&sh->count); 1320 if (sh != head_sh) 1321 atomic_inc(&head_sh->count); 1322 if (use_new_offset(conf, sh)) 1323 rbi->bi_iter.bi_sector = (sh->sector 1324 + rrdev->new_data_offset); 1325 else 1326 rbi->bi_iter.bi_sector = (sh->sector 1327 + rrdev->data_offset); 1328 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 1329 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 1330 sh->dev[i].rvec.bv_page = sh->dev[i].page; 1331 rbi->bi_vcnt = 1; 1332 rbi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf); 1333 rbi->bi_io_vec[0].bv_offset = sh->dev[i].offset; 1334 rbi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf); 1335 /* 1336 * If this is discard request, set bi_vcnt 0. We don't 1337 * want to confuse SCSI because SCSI will replace payload 1338 */ 1339 if (op == REQ_OP_DISCARD) 1340 rbi->bi_vcnt = 0; 1341 mddev_trace_remap(conf->mddev, rbi, sh->dev[i].sector); 1342 if (should_defer && op_is_write(op)) 1343 bio_list_add(&pending_bios, rbi); 1344 else 1345 submit_bio_noacct(rbi); 1346 } 1347 if (!rdev && !rrdev) { 1348 if (op_is_write(op)) 1349 set_bit(STRIPE_DEGRADED, &sh->state); 1350 pr_debug("skip op %d on disc %d for sector %llu\n", 1351 bi->bi_opf, i, (unsigned long long)sh->sector); 1352 clear_bit(R5_LOCKED, &sh->dev[i].flags); 1353 set_bit(STRIPE_HANDLE, &sh->state); 1354 } 1355 1356 if (!head_sh->batch_head) 1357 continue; 1358 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1359 batch_list); 1360 if (sh != head_sh) 1361 goto again; 1362 } 1363 1364 if (should_defer && !bio_list_empty(&pending_bios)) 1365 defer_issue_bios(conf, head_sh->sector, &pending_bios); 1366 } 1367 1368 static struct dma_async_tx_descriptor * 1369 async_copy_data(int frombio, struct bio *bio, struct page **page, 1370 unsigned int poff, sector_t sector, struct dma_async_tx_descriptor *tx, 1371 struct stripe_head *sh, int no_skipcopy) 1372 { 1373 struct bio_vec bvl; 1374 struct bvec_iter iter; 1375 struct page *bio_page; 1376 int page_offset; 1377 struct async_submit_ctl submit; 1378 enum async_tx_flags flags = 0; 1379 struct r5conf *conf = sh->raid_conf; 1380 1381 if (bio->bi_iter.bi_sector >= sector) 1382 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512; 1383 else 1384 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512; 1385 1386 if (frombio) 1387 flags |= ASYNC_TX_FENCE; 1388 init_async_submit(&submit, flags, tx, NULL, NULL, NULL); 1389 1390 bio_for_each_segment(bvl, bio, iter) { 1391 int len = bvl.bv_len; 1392 int clen; 1393 int b_offset = 0; 1394 1395 if (page_offset < 0) { 1396 b_offset = -page_offset; 1397 page_offset += b_offset; 1398 len -= b_offset; 1399 } 1400 1401 if (len > 0 && page_offset + len > RAID5_STRIPE_SIZE(conf)) 1402 clen = RAID5_STRIPE_SIZE(conf) - page_offset; 1403 else 1404 clen = len; 1405 1406 if (clen > 0) { 1407 b_offset += bvl.bv_offset; 1408 bio_page = bvl.bv_page; 1409 if (frombio) { 1410 if (conf->skip_copy && 1411 b_offset == 0 && page_offset == 0 && 1412 clen == RAID5_STRIPE_SIZE(conf) && 1413 !no_skipcopy) 1414 *page = bio_page; 1415 else 1416 tx = async_memcpy(*page, bio_page, page_offset + poff, 1417 b_offset, clen, &submit); 1418 } else 1419 tx = async_memcpy(bio_page, *page, b_offset, 1420 page_offset + poff, clen, &submit); 1421 } 1422 /* chain the operations */ 1423 submit.depend_tx = tx; 1424 1425 if (clen < len) /* hit end of page */ 1426 break; 1427 page_offset += len; 1428 } 1429 1430 return tx; 1431 } 1432 1433 static void ops_complete_biofill(void *stripe_head_ref) 1434 { 1435 struct stripe_head *sh = stripe_head_ref; 1436 int i; 1437 struct r5conf *conf = sh->raid_conf; 1438 1439 pr_debug("%s: stripe %llu\n", __func__, 1440 (unsigned long long)sh->sector); 1441 1442 /* clear completed biofills */ 1443 for (i = sh->disks; i--; ) { 1444 struct r5dev *dev = &sh->dev[i]; 1445 1446 /* acknowledge completion of a biofill operation */ 1447 /* and check if we need to reply to a read request, 1448 * new R5_Wantfill requests are held off until 1449 * !STRIPE_BIOFILL_RUN 1450 */ 1451 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) { 1452 struct bio *rbi, *rbi2; 1453 1454 BUG_ON(!dev->read); 1455 rbi = dev->read; 1456 dev->read = NULL; 1457 while (rbi && rbi->bi_iter.bi_sector < 1458 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 1459 rbi2 = r5_next_bio(conf, rbi, dev->sector); 1460 bio_endio(rbi); 1461 rbi = rbi2; 1462 } 1463 } 1464 } 1465 clear_bit(STRIPE_BIOFILL_RUN, &sh->state); 1466 1467 set_bit(STRIPE_HANDLE, &sh->state); 1468 raid5_release_stripe(sh); 1469 } 1470 1471 static void ops_run_biofill(struct stripe_head *sh) 1472 { 1473 struct dma_async_tx_descriptor *tx = NULL; 1474 struct async_submit_ctl submit; 1475 int i; 1476 struct r5conf *conf = sh->raid_conf; 1477 1478 BUG_ON(sh->batch_head); 1479 pr_debug("%s: stripe %llu\n", __func__, 1480 (unsigned long long)sh->sector); 1481 1482 for (i = sh->disks; i--; ) { 1483 struct r5dev *dev = &sh->dev[i]; 1484 if (test_bit(R5_Wantfill, &dev->flags)) { 1485 struct bio *rbi; 1486 spin_lock_irq(&sh->stripe_lock); 1487 dev->read = rbi = dev->toread; 1488 dev->toread = NULL; 1489 spin_unlock_irq(&sh->stripe_lock); 1490 while (rbi && rbi->bi_iter.bi_sector < 1491 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 1492 tx = async_copy_data(0, rbi, &dev->page, 1493 dev->offset, 1494 dev->sector, tx, sh, 0); 1495 rbi = r5_next_bio(conf, rbi, dev->sector); 1496 } 1497 } 1498 } 1499 1500 atomic_inc(&sh->count); 1501 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL); 1502 async_trigger_callback(&submit); 1503 } 1504 1505 static void mark_target_uptodate(struct stripe_head *sh, int target) 1506 { 1507 struct r5dev *tgt; 1508 1509 if (target < 0) 1510 return; 1511 1512 tgt = &sh->dev[target]; 1513 set_bit(R5_UPTODATE, &tgt->flags); 1514 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1515 clear_bit(R5_Wantcompute, &tgt->flags); 1516 } 1517 1518 static void ops_complete_compute(void *stripe_head_ref) 1519 { 1520 struct stripe_head *sh = stripe_head_ref; 1521 1522 pr_debug("%s: stripe %llu\n", __func__, 1523 (unsigned long long)sh->sector); 1524 1525 /* mark the computed target(s) as uptodate */ 1526 mark_target_uptodate(sh, sh->ops.target); 1527 mark_target_uptodate(sh, sh->ops.target2); 1528 1529 clear_bit(STRIPE_COMPUTE_RUN, &sh->state); 1530 if (sh->check_state == check_state_compute_run) 1531 sh->check_state = check_state_compute_result; 1532 set_bit(STRIPE_HANDLE, &sh->state); 1533 raid5_release_stripe(sh); 1534 } 1535 1536 /* return a pointer to the address conversion region of the scribble buffer */ 1537 static struct page **to_addr_page(struct raid5_percpu *percpu, int i) 1538 { 1539 return percpu->scribble + i * percpu->scribble_obj_size; 1540 } 1541 1542 /* return a pointer to the address conversion region of the scribble buffer */ 1543 static addr_conv_t *to_addr_conv(struct stripe_head *sh, 1544 struct raid5_percpu *percpu, int i) 1545 { 1546 return (void *) (to_addr_page(percpu, i) + sh->disks + 2); 1547 } 1548 1549 /* 1550 * Return a pointer to record offset address. 1551 */ 1552 static unsigned int * 1553 to_addr_offs(struct stripe_head *sh, struct raid5_percpu *percpu) 1554 { 1555 return (unsigned int *) (to_addr_conv(sh, percpu, 0) + sh->disks + 2); 1556 } 1557 1558 static struct dma_async_tx_descriptor * 1559 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu) 1560 { 1561 int disks = sh->disks; 1562 struct page **xor_srcs = to_addr_page(percpu, 0); 1563 unsigned int *off_srcs = to_addr_offs(sh, percpu); 1564 int target = sh->ops.target; 1565 struct r5dev *tgt = &sh->dev[target]; 1566 struct page *xor_dest = tgt->page; 1567 unsigned int off_dest = tgt->offset; 1568 int count = 0; 1569 struct dma_async_tx_descriptor *tx; 1570 struct async_submit_ctl submit; 1571 int i; 1572 1573 BUG_ON(sh->batch_head); 1574 1575 pr_debug("%s: stripe %llu block: %d\n", 1576 __func__, (unsigned long long)sh->sector, target); 1577 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1578 1579 for (i = disks; i--; ) { 1580 if (i != target) { 1581 off_srcs[count] = sh->dev[i].offset; 1582 xor_srcs[count++] = sh->dev[i].page; 1583 } 1584 } 1585 1586 atomic_inc(&sh->count); 1587 1588 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL, 1589 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0)); 1590 if (unlikely(count == 1)) 1591 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0], 1592 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1593 else 1594 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count, 1595 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1596 1597 return tx; 1598 } 1599 1600 /* set_syndrome_sources - populate source buffers for gen_syndrome 1601 * @srcs - (struct page *) array of size sh->disks 1602 * @offs - (unsigned int) array of offset for each page 1603 * @sh - stripe_head to parse 1604 * 1605 * Populates srcs in proper layout order for the stripe and returns the 1606 * 'count' of sources to be used in a call to async_gen_syndrome. The P 1607 * destination buffer is recorded in srcs[count] and the Q destination 1608 * is recorded in srcs[count+1]]. 1609 */ 1610 static int set_syndrome_sources(struct page **srcs, 1611 unsigned int *offs, 1612 struct stripe_head *sh, 1613 int srctype) 1614 { 1615 int disks = sh->disks; 1616 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2); 1617 int d0_idx = raid6_d0(sh); 1618 int count; 1619 int i; 1620 1621 for (i = 0; i < disks; i++) 1622 srcs[i] = NULL; 1623 1624 count = 0; 1625 i = d0_idx; 1626 do { 1627 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1628 struct r5dev *dev = &sh->dev[i]; 1629 1630 if (i == sh->qd_idx || i == sh->pd_idx || 1631 (srctype == SYNDROME_SRC_ALL) || 1632 (srctype == SYNDROME_SRC_WANT_DRAIN && 1633 (test_bit(R5_Wantdrain, &dev->flags) || 1634 test_bit(R5_InJournal, &dev->flags))) || 1635 (srctype == SYNDROME_SRC_WRITTEN && 1636 (dev->written || 1637 test_bit(R5_InJournal, &dev->flags)))) { 1638 if (test_bit(R5_InJournal, &dev->flags)) 1639 srcs[slot] = sh->dev[i].orig_page; 1640 else 1641 srcs[slot] = sh->dev[i].page; 1642 /* 1643 * For R5_InJournal, PAGE_SIZE must be 4KB and will 1644 * not shared page. In that case, dev[i].offset 1645 * is 0. 1646 */ 1647 offs[slot] = sh->dev[i].offset; 1648 } 1649 i = raid6_next_disk(i, disks); 1650 } while (i != d0_idx); 1651 1652 return syndrome_disks; 1653 } 1654 1655 static struct dma_async_tx_descriptor * 1656 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu) 1657 { 1658 int disks = sh->disks; 1659 struct page **blocks = to_addr_page(percpu, 0); 1660 unsigned int *offs = to_addr_offs(sh, percpu); 1661 int target; 1662 int qd_idx = sh->qd_idx; 1663 struct dma_async_tx_descriptor *tx; 1664 struct async_submit_ctl submit; 1665 struct r5dev *tgt; 1666 struct page *dest; 1667 unsigned int dest_off; 1668 int i; 1669 int count; 1670 1671 BUG_ON(sh->batch_head); 1672 if (sh->ops.target < 0) 1673 target = sh->ops.target2; 1674 else if (sh->ops.target2 < 0) 1675 target = sh->ops.target; 1676 else 1677 /* we should only have one valid target */ 1678 BUG(); 1679 BUG_ON(target < 0); 1680 pr_debug("%s: stripe %llu block: %d\n", 1681 __func__, (unsigned long long)sh->sector, target); 1682 1683 tgt = &sh->dev[target]; 1684 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1685 dest = tgt->page; 1686 dest_off = tgt->offset; 1687 1688 atomic_inc(&sh->count); 1689 1690 if (target == qd_idx) { 1691 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL); 1692 blocks[count] = NULL; /* regenerating p is not necessary */ 1693 BUG_ON(blocks[count+1] != dest); /* q should already be set */ 1694 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1695 ops_complete_compute, sh, 1696 to_addr_conv(sh, percpu, 0)); 1697 tx = async_gen_syndrome(blocks, offs, count+2, 1698 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1699 } else { 1700 /* Compute any data- or p-drive using XOR */ 1701 count = 0; 1702 for (i = disks; i-- ; ) { 1703 if (i == target || i == qd_idx) 1704 continue; 1705 offs[count] = sh->dev[i].offset; 1706 blocks[count++] = sh->dev[i].page; 1707 } 1708 1709 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1710 NULL, ops_complete_compute, sh, 1711 to_addr_conv(sh, percpu, 0)); 1712 tx = async_xor_offs(dest, dest_off, blocks, offs, count, 1713 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1714 } 1715 1716 return tx; 1717 } 1718 1719 static struct dma_async_tx_descriptor * 1720 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu) 1721 { 1722 int i, count, disks = sh->disks; 1723 int syndrome_disks = sh->ddf_layout ? disks : disks-2; 1724 int d0_idx = raid6_d0(sh); 1725 int faila = -1, failb = -1; 1726 int target = sh->ops.target; 1727 int target2 = sh->ops.target2; 1728 struct r5dev *tgt = &sh->dev[target]; 1729 struct r5dev *tgt2 = &sh->dev[target2]; 1730 struct dma_async_tx_descriptor *tx; 1731 struct page **blocks = to_addr_page(percpu, 0); 1732 unsigned int *offs = to_addr_offs(sh, percpu); 1733 struct async_submit_ctl submit; 1734 1735 BUG_ON(sh->batch_head); 1736 pr_debug("%s: stripe %llu block1: %d block2: %d\n", 1737 __func__, (unsigned long long)sh->sector, target, target2); 1738 BUG_ON(target < 0 || target2 < 0); 1739 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1740 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags)); 1741 1742 /* we need to open-code set_syndrome_sources to handle the 1743 * slot number conversion for 'faila' and 'failb' 1744 */ 1745 for (i = 0; i < disks ; i++) { 1746 offs[i] = 0; 1747 blocks[i] = NULL; 1748 } 1749 count = 0; 1750 i = d0_idx; 1751 do { 1752 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1753 1754 offs[slot] = sh->dev[i].offset; 1755 blocks[slot] = sh->dev[i].page; 1756 1757 if (i == target) 1758 faila = slot; 1759 if (i == target2) 1760 failb = slot; 1761 i = raid6_next_disk(i, disks); 1762 } while (i != d0_idx); 1763 1764 BUG_ON(faila == failb); 1765 if (failb < faila) 1766 swap(faila, failb); 1767 pr_debug("%s: stripe: %llu faila: %d failb: %d\n", 1768 __func__, (unsigned long long)sh->sector, faila, failb); 1769 1770 atomic_inc(&sh->count); 1771 1772 if (failb == syndrome_disks+1) { 1773 /* Q disk is one of the missing disks */ 1774 if (faila == syndrome_disks) { 1775 /* Missing P+Q, just recompute */ 1776 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1777 ops_complete_compute, sh, 1778 to_addr_conv(sh, percpu, 0)); 1779 return async_gen_syndrome(blocks, offs, syndrome_disks+2, 1780 RAID5_STRIPE_SIZE(sh->raid_conf), 1781 &submit); 1782 } else { 1783 struct page *dest; 1784 unsigned int dest_off; 1785 int data_target; 1786 int qd_idx = sh->qd_idx; 1787 1788 /* Missing D+Q: recompute D from P, then recompute Q */ 1789 if (target == qd_idx) 1790 data_target = target2; 1791 else 1792 data_target = target; 1793 1794 count = 0; 1795 for (i = disks; i-- ; ) { 1796 if (i == data_target || i == qd_idx) 1797 continue; 1798 offs[count] = sh->dev[i].offset; 1799 blocks[count++] = sh->dev[i].page; 1800 } 1801 dest = sh->dev[data_target].page; 1802 dest_off = sh->dev[data_target].offset; 1803 init_async_submit(&submit, 1804 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1805 NULL, NULL, NULL, 1806 to_addr_conv(sh, percpu, 0)); 1807 tx = async_xor_offs(dest, dest_off, blocks, offs, count, 1808 RAID5_STRIPE_SIZE(sh->raid_conf), 1809 &submit); 1810 1811 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL); 1812 init_async_submit(&submit, ASYNC_TX_FENCE, tx, 1813 ops_complete_compute, sh, 1814 to_addr_conv(sh, percpu, 0)); 1815 return async_gen_syndrome(blocks, offs, count+2, 1816 RAID5_STRIPE_SIZE(sh->raid_conf), 1817 &submit); 1818 } 1819 } else { 1820 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1821 ops_complete_compute, sh, 1822 to_addr_conv(sh, percpu, 0)); 1823 if (failb == syndrome_disks) { 1824 /* We're missing D+P. */ 1825 return async_raid6_datap_recov(syndrome_disks+2, 1826 RAID5_STRIPE_SIZE(sh->raid_conf), 1827 faila, 1828 blocks, offs, &submit); 1829 } else { 1830 /* We're missing D+D. */ 1831 return async_raid6_2data_recov(syndrome_disks+2, 1832 RAID5_STRIPE_SIZE(sh->raid_conf), 1833 faila, failb, 1834 blocks, offs, &submit); 1835 } 1836 } 1837 } 1838 1839 static void ops_complete_prexor(void *stripe_head_ref) 1840 { 1841 struct stripe_head *sh = stripe_head_ref; 1842 1843 pr_debug("%s: stripe %llu\n", __func__, 1844 (unsigned long long)sh->sector); 1845 1846 if (r5c_is_writeback(sh->raid_conf->log)) 1847 /* 1848 * raid5-cache write back uses orig_page during prexor. 1849 * After prexor, it is time to free orig_page 1850 */ 1851 r5c_release_extra_page(sh); 1852 } 1853 1854 static struct dma_async_tx_descriptor * 1855 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu, 1856 struct dma_async_tx_descriptor *tx) 1857 { 1858 int disks = sh->disks; 1859 struct page **xor_srcs = to_addr_page(percpu, 0); 1860 unsigned int *off_srcs = to_addr_offs(sh, percpu); 1861 int count = 0, pd_idx = sh->pd_idx, i; 1862 struct async_submit_ctl submit; 1863 1864 /* existing parity data subtracted */ 1865 unsigned int off_dest = off_srcs[count] = sh->dev[pd_idx].offset; 1866 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1867 1868 BUG_ON(sh->batch_head); 1869 pr_debug("%s: stripe %llu\n", __func__, 1870 (unsigned long long)sh->sector); 1871 1872 for (i = disks; i--; ) { 1873 struct r5dev *dev = &sh->dev[i]; 1874 /* Only process blocks that are known to be uptodate */ 1875 if (test_bit(R5_InJournal, &dev->flags)) { 1876 /* 1877 * For this case, PAGE_SIZE must be equal to 4KB and 1878 * page offset is zero. 1879 */ 1880 off_srcs[count] = dev->offset; 1881 xor_srcs[count++] = dev->orig_page; 1882 } else if (test_bit(R5_Wantdrain, &dev->flags)) { 1883 off_srcs[count] = dev->offset; 1884 xor_srcs[count++] = dev->page; 1885 } 1886 } 1887 1888 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx, 1889 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); 1890 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count, 1891 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1892 1893 return tx; 1894 } 1895 1896 static struct dma_async_tx_descriptor * 1897 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu, 1898 struct dma_async_tx_descriptor *tx) 1899 { 1900 struct page **blocks = to_addr_page(percpu, 0); 1901 unsigned int *offs = to_addr_offs(sh, percpu); 1902 int count; 1903 struct async_submit_ctl submit; 1904 1905 pr_debug("%s: stripe %llu\n", __func__, 1906 (unsigned long long)sh->sector); 1907 1908 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_WANT_DRAIN); 1909 1910 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx, 1911 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); 1912 tx = async_gen_syndrome(blocks, offs, count+2, 1913 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1914 1915 return tx; 1916 } 1917 1918 static struct dma_async_tx_descriptor * 1919 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) 1920 { 1921 struct r5conf *conf = sh->raid_conf; 1922 int disks = sh->disks; 1923 int i; 1924 struct stripe_head *head_sh = sh; 1925 1926 pr_debug("%s: stripe %llu\n", __func__, 1927 (unsigned long long)sh->sector); 1928 1929 for (i = disks; i--; ) { 1930 struct r5dev *dev; 1931 struct bio *chosen; 1932 1933 sh = head_sh; 1934 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) { 1935 struct bio *wbi; 1936 1937 again: 1938 dev = &sh->dev[i]; 1939 /* 1940 * clear R5_InJournal, so when rewriting a page in 1941 * journal, it is not skipped by r5l_log_stripe() 1942 */ 1943 clear_bit(R5_InJournal, &dev->flags); 1944 spin_lock_irq(&sh->stripe_lock); 1945 chosen = dev->towrite; 1946 dev->towrite = NULL; 1947 sh->overwrite_disks = 0; 1948 BUG_ON(dev->written); 1949 wbi = dev->written = chosen; 1950 spin_unlock_irq(&sh->stripe_lock); 1951 WARN_ON(dev->page != dev->orig_page); 1952 1953 while (wbi && wbi->bi_iter.bi_sector < 1954 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 1955 if (wbi->bi_opf & REQ_FUA) 1956 set_bit(R5_WantFUA, &dev->flags); 1957 if (wbi->bi_opf & REQ_SYNC) 1958 set_bit(R5_SyncIO, &dev->flags); 1959 if (bio_op(wbi) == REQ_OP_DISCARD) 1960 set_bit(R5_Discard, &dev->flags); 1961 else { 1962 tx = async_copy_data(1, wbi, &dev->page, 1963 dev->offset, 1964 dev->sector, tx, sh, 1965 r5c_is_writeback(conf->log)); 1966 if (dev->page != dev->orig_page && 1967 !r5c_is_writeback(conf->log)) { 1968 set_bit(R5_SkipCopy, &dev->flags); 1969 clear_bit(R5_UPTODATE, &dev->flags); 1970 clear_bit(R5_OVERWRITE, &dev->flags); 1971 } 1972 } 1973 wbi = r5_next_bio(conf, wbi, dev->sector); 1974 } 1975 1976 if (head_sh->batch_head) { 1977 sh = list_first_entry(&sh->batch_list, 1978 struct stripe_head, 1979 batch_list); 1980 if (sh == head_sh) 1981 continue; 1982 goto again; 1983 } 1984 } 1985 } 1986 1987 return tx; 1988 } 1989 1990 static void ops_complete_reconstruct(void *stripe_head_ref) 1991 { 1992 struct stripe_head *sh = stripe_head_ref; 1993 int disks = sh->disks; 1994 int pd_idx = sh->pd_idx; 1995 int qd_idx = sh->qd_idx; 1996 int i; 1997 bool fua = false, sync = false, discard = false; 1998 1999 pr_debug("%s: stripe %llu\n", __func__, 2000 (unsigned long long)sh->sector); 2001 2002 for (i = disks; i--; ) { 2003 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags); 2004 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags); 2005 discard |= test_bit(R5_Discard, &sh->dev[i].flags); 2006 } 2007 2008 for (i = disks; i--; ) { 2009 struct r5dev *dev = &sh->dev[i]; 2010 2011 if (dev->written || i == pd_idx || i == qd_idx) { 2012 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) { 2013 set_bit(R5_UPTODATE, &dev->flags); 2014 if (test_bit(STRIPE_EXPAND_READY, &sh->state)) 2015 set_bit(R5_Expanded, &dev->flags); 2016 } 2017 if (fua) 2018 set_bit(R5_WantFUA, &dev->flags); 2019 if (sync) 2020 set_bit(R5_SyncIO, &dev->flags); 2021 } 2022 } 2023 2024 if (sh->reconstruct_state == reconstruct_state_drain_run) 2025 sh->reconstruct_state = reconstruct_state_drain_result; 2026 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) 2027 sh->reconstruct_state = reconstruct_state_prexor_drain_result; 2028 else { 2029 BUG_ON(sh->reconstruct_state != reconstruct_state_run); 2030 sh->reconstruct_state = reconstruct_state_result; 2031 } 2032 2033 set_bit(STRIPE_HANDLE, &sh->state); 2034 raid5_release_stripe(sh); 2035 } 2036 2037 static void 2038 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu, 2039 struct dma_async_tx_descriptor *tx) 2040 { 2041 int disks = sh->disks; 2042 struct page **xor_srcs; 2043 unsigned int *off_srcs; 2044 struct async_submit_ctl submit; 2045 int count, pd_idx = sh->pd_idx, i; 2046 struct page *xor_dest; 2047 unsigned int off_dest; 2048 int prexor = 0; 2049 unsigned long flags; 2050 int j = 0; 2051 struct stripe_head *head_sh = sh; 2052 int last_stripe; 2053 2054 pr_debug("%s: stripe %llu\n", __func__, 2055 (unsigned long long)sh->sector); 2056 2057 for (i = 0; i < sh->disks; i++) { 2058 if (pd_idx == i) 2059 continue; 2060 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 2061 break; 2062 } 2063 if (i >= sh->disks) { 2064 atomic_inc(&sh->count); 2065 set_bit(R5_Discard, &sh->dev[pd_idx].flags); 2066 ops_complete_reconstruct(sh); 2067 return; 2068 } 2069 again: 2070 count = 0; 2071 xor_srcs = to_addr_page(percpu, j); 2072 off_srcs = to_addr_offs(sh, percpu); 2073 /* check if prexor is active which means only process blocks 2074 * that are part of a read-modify-write (written) 2075 */ 2076 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 2077 prexor = 1; 2078 off_dest = off_srcs[count] = sh->dev[pd_idx].offset; 2079 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 2080 for (i = disks; i--; ) { 2081 struct r5dev *dev = &sh->dev[i]; 2082 if (head_sh->dev[i].written || 2083 test_bit(R5_InJournal, &head_sh->dev[i].flags)) { 2084 off_srcs[count] = dev->offset; 2085 xor_srcs[count++] = dev->page; 2086 } 2087 } 2088 } else { 2089 xor_dest = sh->dev[pd_idx].page; 2090 off_dest = sh->dev[pd_idx].offset; 2091 for (i = disks; i--; ) { 2092 struct r5dev *dev = &sh->dev[i]; 2093 if (i != pd_idx) { 2094 off_srcs[count] = dev->offset; 2095 xor_srcs[count++] = dev->page; 2096 } 2097 } 2098 } 2099 2100 /* 1/ if we prexor'd then the dest is reused as a source 2101 * 2/ if we did not prexor then we are redoing the parity 2102 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST 2103 * for the synchronous xor case 2104 */ 2105 last_stripe = !head_sh->batch_head || 2106 list_first_entry(&sh->batch_list, 2107 struct stripe_head, batch_list) == head_sh; 2108 if (last_stripe) { 2109 flags = ASYNC_TX_ACK | 2110 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST); 2111 2112 atomic_inc(&head_sh->count); 2113 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh, 2114 to_addr_conv(sh, percpu, j)); 2115 } else { 2116 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST; 2117 init_async_submit(&submit, flags, tx, NULL, NULL, 2118 to_addr_conv(sh, percpu, j)); 2119 } 2120 2121 if (unlikely(count == 1)) 2122 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0], 2123 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 2124 else 2125 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count, 2126 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 2127 if (!last_stripe) { 2128 j++; 2129 sh = list_first_entry(&sh->batch_list, struct stripe_head, 2130 batch_list); 2131 goto again; 2132 } 2133 } 2134 2135 static void 2136 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu, 2137 struct dma_async_tx_descriptor *tx) 2138 { 2139 struct async_submit_ctl submit; 2140 struct page **blocks; 2141 unsigned int *offs; 2142 int count, i, j = 0; 2143 struct stripe_head *head_sh = sh; 2144 int last_stripe; 2145 int synflags; 2146 unsigned long txflags; 2147 2148 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); 2149 2150 for (i = 0; i < sh->disks; i++) { 2151 if (sh->pd_idx == i || sh->qd_idx == i) 2152 continue; 2153 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 2154 break; 2155 } 2156 if (i >= sh->disks) { 2157 atomic_inc(&sh->count); 2158 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 2159 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 2160 ops_complete_reconstruct(sh); 2161 return; 2162 } 2163 2164 again: 2165 blocks = to_addr_page(percpu, j); 2166 offs = to_addr_offs(sh, percpu); 2167 2168 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 2169 synflags = SYNDROME_SRC_WRITTEN; 2170 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST; 2171 } else { 2172 synflags = SYNDROME_SRC_ALL; 2173 txflags = ASYNC_TX_ACK; 2174 } 2175 2176 count = set_syndrome_sources(blocks, offs, sh, synflags); 2177 last_stripe = !head_sh->batch_head || 2178 list_first_entry(&sh->batch_list, 2179 struct stripe_head, batch_list) == head_sh; 2180 2181 if (last_stripe) { 2182 atomic_inc(&head_sh->count); 2183 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct, 2184 head_sh, to_addr_conv(sh, percpu, j)); 2185 } else 2186 init_async_submit(&submit, 0, tx, NULL, NULL, 2187 to_addr_conv(sh, percpu, j)); 2188 tx = async_gen_syndrome(blocks, offs, count+2, 2189 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 2190 if (!last_stripe) { 2191 j++; 2192 sh = list_first_entry(&sh->batch_list, struct stripe_head, 2193 batch_list); 2194 goto again; 2195 } 2196 } 2197 2198 static void ops_complete_check(void *stripe_head_ref) 2199 { 2200 struct stripe_head *sh = stripe_head_ref; 2201 2202 pr_debug("%s: stripe %llu\n", __func__, 2203 (unsigned long long)sh->sector); 2204 2205 sh->check_state = check_state_check_result; 2206 set_bit(STRIPE_HANDLE, &sh->state); 2207 raid5_release_stripe(sh); 2208 } 2209 2210 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu) 2211 { 2212 int disks = sh->disks; 2213 int pd_idx = sh->pd_idx; 2214 int qd_idx = sh->qd_idx; 2215 struct page *xor_dest; 2216 unsigned int off_dest; 2217 struct page **xor_srcs = to_addr_page(percpu, 0); 2218 unsigned int *off_srcs = to_addr_offs(sh, percpu); 2219 struct dma_async_tx_descriptor *tx; 2220 struct async_submit_ctl submit; 2221 int count; 2222 int i; 2223 2224 pr_debug("%s: stripe %llu\n", __func__, 2225 (unsigned long long)sh->sector); 2226 2227 BUG_ON(sh->batch_head); 2228 count = 0; 2229 xor_dest = sh->dev[pd_idx].page; 2230 off_dest = sh->dev[pd_idx].offset; 2231 off_srcs[count] = off_dest; 2232 xor_srcs[count++] = xor_dest; 2233 for (i = disks; i--; ) { 2234 if (i == pd_idx || i == qd_idx) 2235 continue; 2236 off_srcs[count] = sh->dev[i].offset; 2237 xor_srcs[count++] = sh->dev[i].page; 2238 } 2239 2240 init_async_submit(&submit, 0, NULL, NULL, NULL, 2241 to_addr_conv(sh, percpu, 0)); 2242 tx = async_xor_val_offs(xor_dest, off_dest, xor_srcs, off_srcs, count, 2243 RAID5_STRIPE_SIZE(sh->raid_conf), 2244 &sh->ops.zero_sum_result, &submit); 2245 2246 atomic_inc(&sh->count); 2247 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL); 2248 tx = async_trigger_callback(&submit); 2249 } 2250 2251 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp) 2252 { 2253 struct page **srcs = to_addr_page(percpu, 0); 2254 unsigned int *offs = to_addr_offs(sh, percpu); 2255 struct async_submit_ctl submit; 2256 int count; 2257 2258 pr_debug("%s: stripe %llu checkp: %d\n", __func__, 2259 (unsigned long long)sh->sector, checkp); 2260 2261 BUG_ON(sh->batch_head); 2262 count = set_syndrome_sources(srcs, offs, sh, SYNDROME_SRC_ALL); 2263 if (!checkp) 2264 srcs[count] = NULL; 2265 2266 atomic_inc(&sh->count); 2267 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check, 2268 sh, to_addr_conv(sh, percpu, 0)); 2269 async_syndrome_val(srcs, offs, count+2, 2270 RAID5_STRIPE_SIZE(sh->raid_conf), 2271 &sh->ops.zero_sum_result, percpu->spare_page, 0, &submit); 2272 } 2273 2274 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request) 2275 { 2276 int overlap_clear = 0, i, disks = sh->disks; 2277 struct dma_async_tx_descriptor *tx = NULL; 2278 struct r5conf *conf = sh->raid_conf; 2279 int level = conf->level; 2280 struct raid5_percpu *percpu; 2281 2282 local_lock(&conf->percpu->lock); 2283 percpu = this_cpu_ptr(conf->percpu); 2284 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) { 2285 ops_run_biofill(sh); 2286 overlap_clear++; 2287 } 2288 2289 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) { 2290 if (level < 6) 2291 tx = ops_run_compute5(sh, percpu); 2292 else { 2293 if (sh->ops.target2 < 0 || sh->ops.target < 0) 2294 tx = ops_run_compute6_1(sh, percpu); 2295 else 2296 tx = ops_run_compute6_2(sh, percpu); 2297 } 2298 /* terminate the chain if reconstruct is not set to be run */ 2299 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) 2300 async_tx_ack(tx); 2301 } 2302 2303 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) { 2304 if (level < 6) 2305 tx = ops_run_prexor5(sh, percpu, tx); 2306 else 2307 tx = ops_run_prexor6(sh, percpu, tx); 2308 } 2309 2310 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request)) 2311 tx = ops_run_partial_parity(sh, percpu, tx); 2312 2313 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) { 2314 tx = ops_run_biodrain(sh, tx); 2315 overlap_clear++; 2316 } 2317 2318 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) { 2319 if (level < 6) 2320 ops_run_reconstruct5(sh, percpu, tx); 2321 else 2322 ops_run_reconstruct6(sh, percpu, tx); 2323 } 2324 2325 if (test_bit(STRIPE_OP_CHECK, &ops_request)) { 2326 if (sh->check_state == check_state_run) 2327 ops_run_check_p(sh, percpu); 2328 else if (sh->check_state == check_state_run_q) 2329 ops_run_check_pq(sh, percpu, 0); 2330 else if (sh->check_state == check_state_run_pq) 2331 ops_run_check_pq(sh, percpu, 1); 2332 else 2333 BUG(); 2334 } 2335 2336 if (overlap_clear && !sh->batch_head) { 2337 for (i = disks; i--; ) { 2338 struct r5dev *dev = &sh->dev[i]; 2339 if (test_and_clear_bit(R5_Overlap, &dev->flags)) 2340 wake_up(&sh->raid_conf->wait_for_overlap); 2341 } 2342 } 2343 local_unlock(&conf->percpu->lock); 2344 } 2345 2346 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh) 2347 { 2348 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 2349 kfree(sh->pages); 2350 #endif 2351 if (sh->ppl_page) 2352 __free_page(sh->ppl_page); 2353 kmem_cache_free(sc, sh); 2354 } 2355 2356 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp, 2357 int disks, struct r5conf *conf) 2358 { 2359 struct stripe_head *sh; 2360 2361 sh = kmem_cache_zalloc(sc, gfp); 2362 if (sh) { 2363 spin_lock_init(&sh->stripe_lock); 2364 spin_lock_init(&sh->batch_lock); 2365 INIT_LIST_HEAD(&sh->batch_list); 2366 INIT_LIST_HEAD(&sh->lru); 2367 INIT_LIST_HEAD(&sh->r5c); 2368 INIT_LIST_HEAD(&sh->log_list); 2369 atomic_set(&sh->count, 1); 2370 sh->raid_conf = conf; 2371 sh->log_start = MaxSector; 2372 2373 if (raid5_has_ppl(conf)) { 2374 sh->ppl_page = alloc_page(gfp); 2375 if (!sh->ppl_page) { 2376 free_stripe(sc, sh); 2377 return NULL; 2378 } 2379 } 2380 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 2381 if (init_stripe_shared_pages(sh, conf, disks)) { 2382 free_stripe(sc, sh); 2383 return NULL; 2384 } 2385 #endif 2386 } 2387 return sh; 2388 } 2389 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp) 2390 { 2391 struct stripe_head *sh; 2392 2393 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf); 2394 if (!sh) 2395 return 0; 2396 2397 if (grow_buffers(sh, gfp)) { 2398 shrink_buffers(sh); 2399 free_stripe(conf->slab_cache, sh); 2400 return 0; 2401 } 2402 sh->hash_lock_index = 2403 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS; 2404 /* we just created an active stripe so... */ 2405 atomic_inc(&conf->active_stripes); 2406 2407 raid5_release_stripe(sh); 2408 WRITE_ONCE(conf->max_nr_stripes, conf->max_nr_stripes + 1); 2409 return 1; 2410 } 2411 2412 static int grow_stripes(struct r5conf *conf, int num) 2413 { 2414 struct kmem_cache *sc; 2415 size_t namelen = sizeof(conf->cache_name[0]); 2416 int devs = max(conf->raid_disks, conf->previous_raid_disks); 2417 2418 if (mddev_is_dm(conf->mddev)) 2419 snprintf(conf->cache_name[0], namelen, 2420 "raid%d-%p", conf->level, conf->mddev); 2421 else 2422 snprintf(conf->cache_name[0], namelen, 2423 "raid%d-%s", conf->level, mdname(conf->mddev)); 2424 snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]); 2425 2426 conf->active_name = 0; 2427 sc = kmem_cache_create(conf->cache_name[conf->active_name], 2428 struct_size_t(struct stripe_head, dev, devs), 2429 0, 0, NULL); 2430 if (!sc) 2431 return 1; 2432 conf->slab_cache = sc; 2433 conf->pool_size = devs; 2434 while (num--) 2435 if (!grow_one_stripe(conf, GFP_KERNEL)) 2436 return 1; 2437 2438 return 0; 2439 } 2440 2441 /** 2442 * scribble_alloc - allocate percpu scribble buffer for required size 2443 * of the scribble region 2444 * @percpu: from for_each_present_cpu() of the caller 2445 * @num: total number of disks in the array 2446 * @cnt: scribble objs count for required size of the scribble region 2447 * 2448 * The scribble buffer size must be enough to contain: 2449 * 1/ a struct page pointer for each device in the array +2 2450 * 2/ room to convert each entry in (1) to its corresponding dma 2451 * (dma_map_page()) or page (page_address()) address. 2452 * 2453 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we 2454 * calculate over all devices (not just the data blocks), using zeros in place 2455 * of the P and Q blocks. 2456 */ 2457 static int scribble_alloc(struct raid5_percpu *percpu, 2458 int num, int cnt) 2459 { 2460 size_t obj_size = 2461 sizeof(struct page *) * (num + 2) + 2462 sizeof(addr_conv_t) * (num + 2) + 2463 sizeof(unsigned int) * (num + 2); 2464 void *scribble; 2465 2466 /* 2467 * If here is in raid array suspend context, it is in memalloc noio 2468 * context as well, there is no potential recursive memory reclaim 2469 * I/Os with the GFP_KERNEL flag. 2470 */ 2471 scribble = kvmalloc_array(cnt, obj_size, GFP_KERNEL); 2472 if (!scribble) 2473 return -ENOMEM; 2474 2475 kvfree(percpu->scribble); 2476 2477 percpu->scribble = scribble; 2478 percpu->scribble_obj_size = obj_size; 2479 return 0; 2480 } 2481 2482 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors) 2483 { 2484 unsigned long cpu; 2485 int err = 0; 2486 2487 /* Never shrink. */ 2488 if (conf->scribble_disks >= new_disks && 2489 conf->scribble_sectors >= new_sectors) 2490 return 0; 2491 2492 raid5_quiesce(conf->mddev, true); 2493 cpus_read_lock(); 2494 2495 for_each_present_cpu(cpu) { 2496 struct raid5_percpu *percpu; 2497 2498 percpu = per_cpu_ptr(conf->percpu, cpu); 2499 err = scribble_alloc(percpu, new_disks, 2500 new_sectors / RAID5_STRIPE_SECTORS(conf)); 2501 if (err) 2502 break; 2503 } 2504 2505 cpus_read_unlock(); 2506 raid5_quiesce(conf->mddev, false); 2507 2508 if (!err) { 2509 conf->scribble_disks = new_disks; 2510 conf->scribble_sectors = new_sectors; 2511 } 2512 return err; 2513 } 2514 2515 static int resize_stripes(struct r5conf *conf, int newsize) 2516 { 2517 /* Make all the stripes able to hold 'newsize' devices. 2518 * New slots in each stripe get 'page' set to a new page. 2519 * 2520 * This happens in stages: 2521 * 1/ create a new kmem_cache and allocate the required number of 2522 * stripe_heads. 2523 * 2/ gather all the old stripe_heads and transfer the pages across 2524 * to the new stripe_heads. This will have the side effect of 2525 * freezing the array as once all stripe_heads have been collected, 2526 * no IO will be possible. Old stripe heads are freed once their 2527 * pages have been transferred over, and the old kmem_cache is 2528 * freed when all stripes are done. 2529 * 3/ reallocate conf->disks to be suitable bigger. If this fails, 2530 * we simple return a failure status - no need to clean anything up. 2531 * 4/ allocate new pages for the new slots in the new stripe_heads. 2532 * If this fails, we don't bother trying the shrink the 2533 * stripe_heads down again, we just leave them as they are. 2534 * As each stripe_head is processed the new one is released into 2535 * active service. 2536 * 2537 * Once step2 is started, we cannot afford to wait for a write, 2538 * so we use GFP_NOIO allocations. 2539 */ 2540 struct stripe_head *osh, *nsh; 2541 LIST_HEAD(newstripes); 2542 struct disk_info *ndisks; 2543 int err = 0; 2544 struct kmem_cache *sc; 2545 int i; 2546 int hash, cnt; 2547 2548 md_allow_write(conf->mddev); 2549 2550 /* Step 1 */ 2551 sc = kmem_cache_create(conf->cache_name[1-conf->active_name], 2552 struct_size_t(struct stripe_head, dev, newsize), 2553 0, 0, NULL); 2554 if (!sc) 2555 return -ENOMEM; 2556 2557 /* Need to ensure auto-resizing doesn't interfere */ 2558 mutex_lock(&conf->cache_size_mutex); 2559 2560 for (i = conf->max_nr_stripes; i; i--) { 2561 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf); 2562 if (!nsh) 2563 break; 2564 2565 list_add(&nsh->lru, &newstripes); 2566 } 2567 if (i) { 2568 /* didn't get enough, give up */ 2569 while (!list_empty(&newstripes)) { 2570 nsh = list_entry(newstripes.next, struct stripe_head, lru); 2571 list_del(&nsh->lru); 2572 free_stripe(sc, nsh); 2573 } 2574 kmem_cache_destroy(sc); 2575 mutex_unlock(&conf->cache_size_mutex); 2576 return -ENOMEM; 2577 } 2578 /* Step 2 - Must use GFP_NOIO now. 2579 * OK, we have enough stripes, start collecting inactive 2580 * stripes and copying them over 2581 */ 2582 hash = 0; 2583 cnt = 0; 2584 list_for_each_entry(nsh, &newstripes, lru) { 2585 lock_device_hash_lock(conf, hash); 2586 wait_event_cmd(conf->wait_for_stripe, 2587 !list_empty(conf->inactive_list + hash), 2588 unlock_device_hash_lock(conf, hash), 2589 lock_device_hash_lock(conf, hash)); 2590 osh = get_free_stripe(conf, hash); 2591 unlock_device_hash_lock(conf, hash); 2592 2593 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 2594 for (i = 0; i < osh->nr_pages; i++) { 2595 nsh->pages[i] = osh->pages[i]; 2596 osh->pages[i] = NULL; 2597 } 2598 #endif 2599 for(i=0; i<conf->pool_size; i++) { 2600 nsh->dev[i].page = osh->dev[i].page; 2601 nsh->dev[i].orig_page = osh->dev[i].page; 2602 nsh->dev[i].offset = osh->dev[i].offset; 2603 } 2604 nsh->hash_lock_index = hash; 2605 free_stripe(conf->slab_cache, osh); 2606 cnt++; 2607 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS + 2608 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) { 2609 hash++; 2610 cnt = 0; 2611 } 2612 } 2613 kmem_cache_destroy(conf->slab_cache); 2614 2615 /* Step 3. 2616 * At this point, we are holding all the stripes so the array 2617 * is completely stalled, so now is a good time to resize 2618 * conf->disks and the scribble region 2619 */ 2620 ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO); 2621 if (ndisks) { 2622 for (i = 0; i < conf->pool_size; i++) 2623 ndisks[i] = conf->disks[i]; 2624 2625 for (i = conf->pool_size; i < newsize; i++) { 2626 ndisks[i].extra_page = alloc_page(GFP_NOIO); 2627 if (!ndisks[i].extra_page) 2628 err = -ENOMEM; 2629 } 2630 2631 if (err) { 2632 for (i = conf->pool_size; i < newsize; i++) 2633 if (ndisks[i].extra_page) 2634 put_page(ndisks[i].extra_page); 2635 kfree(ndisks); 2636 } else { 2637 kfree(conf->disks); 2638 conf->disks = ndisks; 2639 } 2640 } else 2641 err = -ENOMEM; 2642 2643 conf->slab_cache = sc; 2644 conf->active_name = 1-conf->active_name; 2645 2646 /* Step 4, return new stripes to service */ 2647 while(!list_empty(&newstripes)) { 2648 nsh = list_entry(newstripes.next, struct stripe_head, lru); 2649 list_del_init(&nsh->lru); 2650 2651 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 2652 for (i = 0; i < nsh->nr_pages; i++) { 2653 if (nsh->pages[i]) 2654 continue; 2655 nsh->pages[i] = alloc_page(GFP_NOIO); 2656 if (!nsh->pages[i]) 2657 err = -ENOMEM; 2658 } 2659 2660 for (i = conf->raid_disks; i < newsize; i++) { 2661 if (nsh->dev[i].page) 2662 continue; 2663 nsh->dev[i].page = raid5_get_dev_page(nsh, i); 2664 nsh->dev[i].orig_page = nsh->dev[i].page; 2665 nsh->dev[i].offset = raid5_get_page_offset(nsh, i); 2666 } 2667 #else 2668 for (i=conf->raid_disks; i < newsize; i++) 2669 if (nsh->dev[i].page == NULL) { 2670 struct page *p = alloc_page(GFP_NOIO); 2671 nsh->dev[i].page = p; 2672 nsh->dev[i].orig_page = p; 2673 nsh->dev[i].offset = 0; 2674 if (!p) 2675 err = -ENOMEM; 2676 } 2677 #endif 2678 raid5_release_stripe(nsh); 2679 } 2680 /* critical section pass, GFP_NOIO no longer needed */ 2681 2682 if (!err) 2683 conf->pool_size = newsize; 2684 mutex_unlock(&conf->cache_size_mutex); 2685 2686 return err; 2687 } 2688 2689 static int drop_one_stripe(struct r5conf *conf) 2690 { 2691 struct stripe_head *sh; 2692 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK; 2693 2694 spin_lock_irq(conf->hash_locks + hash); 2695 sh = get_free_stripe(conf, hash); 2696 spin_unlock_irq(conf->hash_locks + hash); 2697 if (!sh) 2698 return 0; 2699 BUG_ON(atomic_read(&sh->count)); 2700 shrink_buffers(sh); 2701 free_stripe(conf->slab_cache, sh); 2702 atomic_dec(&conf->active_stripes); 2703 WRITE_ONCE(conf->max_nr_stripes, conf->max_nr_stripes - 1); 2704 return 1; 2705 } 2706 2707 static void shrink_stripes(struct r5conf *conf) 2708 { 2709 while (conf->max_nr_stripes && 2710 drop_one_stripe(conf)) 2711 ; 2712 2713 kmem_cache_destroy(conf->slab_cache); 2714 conf->slab_cache = NULL; 2715 } 2716 2717 static void raid5_end_read_request(struct bio * bi) 2718 { 2719 struct stripe_head *sh = bi->bi_private; 2720 struct r5conf *conf = sh->raid_conf; 2721 int disks = sh->disks, i; 2722 struct md_rdev *rdev = NULL; 2723 sector_t s; 2724 2725 for (i=0 ; i<disks; i++) 2726 if (bi == &sh->dev[i].req) 2727 break; 2728 2729 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n", 2730 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2731 bi->bi_status); 2732 if (i == disks) { 2733 BUG(); 2734 return; 2735 } 2736 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2737 /* If replacement finished while this request was outstanding, 2738 * 'replacement' might be NULL already. 2739 * In that case it moved down to 'rdev'. 2740 * rdev is not removed until all requests are finished. 2741 */ 2742 rdev = conf->disks[i].replacement; 2743 if (!rdev) 2744 rdev = conf->disks[i].rdev; 2745 2746 if (use_new_offset(conf, sh)) 2747 s = sh->sector + rdev->new_data_offset; 2748 else 2749 s = sh->sector + rdev->data_offset; 2750 if (!bi->bi_status) { 2751 set_bit(R5_UPTODATE, &sh->dev[i].flags); 2752 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 2753 /* Note that this cannot happen on a 2754 * replacement device. We just fail those on 2755 * any error 2756 */ 2757 pr_info_ratelimited( 2758 "md/raid:%s: read error corrected (%lu sectors at %llu on %pg)\n", 2759 mdname(conf->mddev), RAID5_STRIPE_SECTORS(conf), 2760 (unsigned long long)s, 2761 rdev->bdev); 2762 atomic_add(RAID5_STRIPE_SECTORS(conf), &rdev->corrected_errors); 2763 clear_bit(R5_ReadError, &sh->dev[i].flags); 2764 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2765 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2766 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2767 2768 if (test_bit(R5_InJournal, &sh->dev[i].flags)) 2769 /* 2770 * end read for a page in journal, this 2771 * must be preparing for prexor in rmw 2772 */ 2773 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags); 2774 2775 if (atomic_read(&rdev->read_errors)) 2776 atomic_set(&rdev->read_errors, 0); 2777 } else { 2778 int retry = 0; 2779 int set_bad = 0; 2780 2781 clear_bit(R5_UPTODATE, &sh->dev[i].flags); 2782 if (!(bi->bi_status == BLK_STS_PROTECTION)) 2783 atomic_inc(&rdev->read_errors); 2784 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2785 pr_warn_ratelimited( 2786 "md/raid:%s: read error on replacement device (sector %llu on %pg).\n", 2787 mdname(conf->mddev), 2788 (unsigned long long)s, 2789 rdev->bdev); 2790 else if (conf->mddev->degraded >= conf->max_degraded) { 2791 set_bad = 1; 2792 pr_warn_ratelimited( 2793 "md/raid:%s: read error not correctable (sector %llu on %pg).\n", 2794 mdname(conf->mddev), 2795 (unsigned long long)s, 2796 rdev->bdev); 2797 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) { 2798 /* Oh, no!!! */ 2799 set_bad = 1; 2800 pr_warn_ratelimited( 2801 "md/raid:%s: read error NOT corrected!! (sector %llu on %pg).\n", 2802 mdname(conf->mddev), 2803 (unsigned long long)s, 2804 rdev->bdev); 2805 } else if (atomic_read(&rdev->read_errors) 2806 > conf->max_nr_stripes) { 2807 if (!test_bit(Faulty, &rdev->flags)) { 2808 pr_warn("md/raid:%s: %d read_errors > %d stripes\n", 2809 mdname(conf->mddev), 2810 atomic_read(&rdev->read_errors), 2811 conf->max_nr_stripes); 2812 pr_warn("md/raid:%s: Too many read errors, failing device %pg.\n", 2813 mdname(conf->mddev), rdev->bdev); 2814 } 2815 } else 2816 retry = 1; 2817 if (set_bad && test_bit(In_sync, &rdev->flags) 2818 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2819 retry = 1; 2820 if (retry) 2821 if (sh->qd_idx >= 0 && sh->pd_idx == i) 2822 set_bit(R5_ReadError, &sh->dev[i].flags); 2823 else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) { 2824 set_bit(R5_ReadError, &sh->dev[i].flags); 2825 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2826 } else 2827 set_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2828 else { 2829 clear_bit(R5_ReadError, &sh->dev[i].flags); 2830 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2831 if (!(set_bad 2832 && test_bit(In_sync, &rdev->flags) 2833 && rdev_set_badblocks( 2834 rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 0))) 2835 md_error(conf->mddev, rdev); 2836 } 2837 } 2838 rdev_dec_pending(rdev, conf->mddev); 2839 bio_uninit(bi); 2840 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2841 set_bit(STRIPE_HANDLE, &sh->state); 2842 raid5_release_stripe(sh); 2843 } 2844 2845 static void raid5_end_write_request(struct bio *bi) 2846 { 2847 struct stripe_head *sh = bi->bi_private; 2848 struct r5conf *conf = sh->raid_conf; 2849 int disks = sh->disks, i; 2850 struct md_rdev *rdev; 2851 int replacement = 0; 2852 2853 for (i = 0 ; i < disks; i++) { 2854 if (bi == &sh->dev[i].req) { 2855 rdev = conf->disks[i].rdev; 2856 break; 2857 } 2858 if (bi == &sh->dev[i].rreq) { 2859 rdev = conf->disks[i].replacement; 2860 if (rdev) 2861 replacement = 1; 2862 else 2863 /* rdev was removed and 'replacement' 2864 * replaced it. rdev is not removed 2865 * until all requests are finished. 2866 */ 2867 rdev = conf->disks[i].rdev; 2868 break; 2869 } 2870 } 2871 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n", 2872 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2873 bi->bi_status); 2874 if (i == disks) { 2875 BUG(); 2876 return; 2877 } 2878 2879 if (replacement) { 2880 if (bi->bi_status) 2881 md_error(conf->mddev, rdev); 2882 else if (rdev_has_badblock(rdev, sh->sector, 2883 RAID5_STRIPE_SECTORS(conf))) 2884 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags); 2885 } else { 2886 if (bi->bi_status) { 2887 set_bit(STRIPE_DEGRADED, &sh->state); 2888 set_bit(WriteErrorSeen, &rdev->flags); 2889 set_bit(R5_WriteError, &sh->dev[i].flags); 2890 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2891 set_bit(MD_RECOVERY_NEEDED, 2892 &rdev->mddev->recovery); 2893 } else if (rdev_has_badblock(rdev, sh->sector, 2894 RAID5_STRIPE_SECTORS(conf))) { 2895 set_bit(R5_MadeGood, &sh->dev[i].flags); 2896 if (test_bit(R5_ReadError, &sh->dev[i].flags)) 2897 /* That was a successful write so make 2898 * sure it looks like we already did 2899 * a re-write. 2900 */ 2901 set_bit(R5_ReWrite, &sh->dev[i].flags); 2902 } 2903 } 2904 rdev_dec_pending(rdev, conf->mddev); 2905 2906 if (sh->batch_head && bi->bi_status && !replacement) 2907 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state); 2908 2909 bio_uninit(bi); 2910 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags)) 2911 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2912 set_bit(STRIPE_HANDLE, &sh->state); 2913 2914 if (sh->batch_head && sh != sh->batch_head) 2915 raid5_release_stripe(sh->batch_head); 2916 raid5_release_stripe(sh); 2917 } 2918 2919 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev) 2920 { 2921 struct r5conf *conf = mddev->private; 2922 unsigned long flags; 2923 pr_debug("raid456: error called\n"); 2924 2925 pr_crit("md/raid:%s: Disk failure on %pg, disabling device.\n", 2926 mdname(mddev), rdev->bdev); 2927 2928 spin_lock_irqsave(&conf->device_lock, flags); 2929 set_bit(Faulty, &rdev->flags); 2930 clear_bit(In_sync, &rdev->flags); 2931 mddev->degraded = raid5_calc_degraded(conf); 2932 2933 if (has_failed(conf)) { 2934 set_bit(MD_BROKEN, &conf->mddev->flags); 2935 conf->recovery_disabled = mddev->recovery_disabled; 2936 2937 pr_crit("md/raid:%s: Cannot continue operation (%d/%d failed).\n", 2938 mdname(mddev), mddev->degraded, conf->raid_disks); 2939 } else { 2940 pr_crit("md/raid:%s: Operation continuing on %d devices.\n", 2941 mdname(mddev), conf->raid_disks - mddev->degraded); 2942 } 2943 2944 spin_unlock_irqrestore(&conf->device_lock, flags); 2945 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2946 2947 set_bit(Blocked, &rdev->flags); 2948 set_mask_bits(&mddev->sb_flags, 0, 2949 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 2950 r5c_update_on_rdev_error(mddev, rdev); 2951 } 2952 2953 /* 2954 * Input: a 'big' sector number, 2955 * Output: index of the data and parity disk, and the sector # in them. 2956 */ 2957 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector, 2958 int previous, int *dd_idx, 2959 struct stripe_head *sh) 2960 { 2961 sector_t stripe, stripe2; 2962 sector_t chunk_number; 2963 unsigned int chunk_offset; 2964 int pd_idx, qd_idx; 2965 int ddf_layout = 0; 2966 sector_t new_sector; 2967 int algorithm = previous ? conf->prev_algo 2968 : conf->algorithm; 2969 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 2970 : conf->chunk_sectors; 2971 int raid_disks = previous ? conf->previous_raid_disks 2972 : conf->raid_disks; 2973 int data_disks = raid_disks - conf->max_degraded; 2974 2975 /* First compute the information on this sector */ 2976 2977 /* 2978 * Compute the chunk number and the sector offset inside the chunk 2979 */ 2980 chunk_offset = sector_div(r_sector, sectors_per_chunk); 2981 chunk_number = r_sector; 2982 2983 /* 2984 * Compute the stripe number 2985 */ 2986 stripe = chunk_number; 2987 *dd_idx = sector_div(stripe, data_disks); 2988 stripe2 = stripe; 2989 /* 2990 * Select the parity disk based on the user selected algorithm. 2991 */ 2992 pd_idx = qd_idx = -1; 2993 switch(conf->level) { 2994 case 4: 2995 pd_idx = data_disks; 2996 break; 2997 case 5: 2998 switch (algorithm) { 2999 case ALGORITHM_LEFT_ASYMMETRIC: 3000 pd_idx = data_disks - sector_div(stripe2, raid_disks); 3001 if (*dd_idx >= pd_idx) 3002 (*dd_idx)++; 3003 break; 3004 case ALGORITHM_RIGHT_ASYMMETRIC: 3005 pd_idx = sector_div(stripe2, raid_disks); 3006 if (*dd_idx >= pd_idx) 3007 (*dd_idx)++; 3008 break; 3009 case ALGORITHM_LEFT_SYMMETRIC: 3010 pd_idx = data_disks - sector_div(stripe2, raid_disks); 3011 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 3012 break; 3013 case ALGORITHM_RIGHT_SYMMETRIC: 3014 pd_idx = sector_div(stripe2, raid_disks); 3015 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 3016 break; 3017 case ALGORITHM_PARITY_0: 3018 pd_idx = 0; 3019 (*dd_idx)++; 3020 break; 3021 case ALGORITHM_PARITY_N: 3022 pd_idx = data_disks; 3023 break; 3024 default: 3025 BUG(); 3026 } 3027 break; 3028 case 6: 3029 3030 switch (algorithm) { 3031 case ALGORITHM_LEFT_ASYMMETRIC: 3032 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 3033 qd_idx = pd_idx + 1; 3034 if (pd_idx == raid_disks-1) { 3035 (*dd_idx)++; /* Q D D D P */ 3036 qd_idx = 0; 3037 } else if (*dd_idx >= pd_idx) 3038 (*dd_idx) += 2; /* D D P Q D */ 3039 break; 3040 case ALGORITHM_RIGHT_ASYMMETRIC: 3041 pd_idx = sector_div(stripe2, raid_disks); 3042 qd_idx = pd_idx + 1; 3043 if (pd_idx == raid_disks-1) { 3044 (*dd_idx)++; /* Q D D D P */ 3045 qd_idx = 0; 3046 } else if (*dd_idx >= pd_idx) 3047 (*dd_idx) += 2; /* D D P Q D */ 3048 break; 3049 case ALGORITHM_LEFT_SYMMETRIC: 3050 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 3051 qd_idx = (pd_idx + 1) % raid_disks; 3052 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 3053 break; 3054 case ALGORITHM_RIGHT_SYMMETRIC: 3055 pd_idx = sector_div(stripe2, raid_disks); 3056 qd_idx = (pd_idx + 1) % raid_disks; 3057 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 3058 break; 3059 3060 case ALGORITHM_PARITY_0: 3061 pd_idx = 0; 3062 qd_idx = 1; 3063 (*dd_idx) += 2; 3064 break; 3065 case ALGORITHM_PARITY_N: 3066 pd_idx = data_disks; 3067 qd_idx = data_disks + 1; 3068 break; 3069 3070 case ALGORITHM_ROTATING_ZERO_RESTART: 3071 /* Exactly the same as RIGHT_ASYMMETRIC, but or 3072 * of blocks for computing Q is different. 3073 */ 3074 pd_idx = sector_div(stripe2, raid_disks); 3075 qd_idx = pd_idx + 1; 3076 if (pd_idx == raid_disks-1) { 3077 (*dd_idx)++; /* Q D D D P */ 3078 qd_idx = 0; 3079 } else if (*dd_idx >= pd_idx) 3080 (*dd_idx) += 2; /* D D P Q D */ 3081 ddf_layout = 1; 3082 break; 3083 3084 case ALGORITHM_ROTATING_N_RESTART: 3085 /* Same a left_asymmetric, by first stripe is 3086 * D D D P Q rather than 3087 * Q D D D P 3088 */ 3089 stripe2 += 1; 3090 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 3091 qd_idx = pd_idx + 1; 3092 if (pd_idx == raid_disks-1) { 3093 (*dd_idx)++; /* Q D D D P */ 3094 qd_idx = 0; 3095 } else if (*dd_idx >= pd_idx) 3096 (*dd_idx) += 2; /* D D P Q D */ 3097 ddf_layout = 1; 3098 break; 3099 3100 case ALGORITHM_ROTATING_N_CONTINUE: 3101 /* Same as left_symmetric but Q is before P */ 3102 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 3103 qd_idx = (pd_idx + raid_disks - 1) % raid_disks; 3104 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 3105 ddf_layout = 1; 3106 break; 3107 3108 case ALGORITHM_LEFT_ASYMMETRIC_6: 3109 /* RAID5 left_asymmetric, with Q on last device */ 3110 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 3111 if (*dd_idx >= pd_idx) 3112 (*dd_idx)++; 3113 qd_idx = raid_disks - 1; 3114 break; 3115 3116 case ALGORITHM_RIGHT_ASYMMETRIC_6: 3117 pd_idx = sector_div(stripe2, raid_disks-1); 3118 if (*dd_idx >= pd_idx) 3119 (*dd_idx)++; 3120 qd_idx = raid_disks - 1; 3121 break; 3122 3123 case ALGORITHM_LEFT_SYMMETRIC_6: 3124 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 3125 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 3126 qd_idx = raid_disks - 1; 3127 break; 3128 3129 case ALGORITHM_RIGHT_SYMMETRIC_6: 3130 pd_idx = sector_div(stripe2, raid_disks-1); 3131 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 3132 qd_idx = raid_disks - 1; 3133 break; 3134 3135 case ALGORITHM_PARITY_0_6: 3136 pd_idx = 0; 3137 (*dd_idx)++; 3138 qd_idx = raid_disks - 1; 3139 break; 3140 3141 default: 3142 BUG(); 3143 } 3144 break; 3145 } 3146 3147 if (sh) { 3148 sh->pd_idx = pd_idx; 3149 sh->qd_idx = qd_idx; 3150 sh->ddf_layout = ddf_layout; 3151 } 3152 /* 3153 * Finally, compute the new sector number 3154 */ 3155 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset; 3156 return new_sector; 3157 } 3158 3159 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous) 3160 { 3161 struct r5conf *conf = sh->raid_conf; 3162 int raid_disks = sh->disks; 3163 int data_disks = raid_disks - conf->max_degraded; 3164 sector_t new_sector = sh->sector, check; 3165 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 3166 : conf->chunk_sectors; 3167 int algorithm = previous ? conf->prev_algo 3168 : conf->algorithm; 3169 sector_t stripe; 3170 int chunk_offset; 3171 sector_t chunk_number; 3172 int dummy1, dd_idx = i; 3173 sector_t r_sector; 3174 struct stripe_head sh2; 3175 3176 chunk_offset = sector_div(new_sector, sectors_per_chunk); 3177 stripe = new_sector; 3178 3179 if (i == sh->pd_idx) 3180 return 0; 3181 switch(conf->level) { 3182 case 4: break; 3183 case 5: 3184 switch (algorithm) { 3185 case ALGORITHM_LEFT_ASYMMETRIC: 3186 case ALGORITHM_RIGHT_ASYMMETRIC: 3187 if (i > sh->pd_idx) 3188 i--; 3189 break; 3190 case ALGORITHM_LEFT_SYMMETRIC: 3191 case ALGORITHM_RIGHT_SYMMETRIC: 3192 if (i < sh->pd_idx) 3193 i += raid_disks; 3194 i -= (sh->pd_idx + 1); 3195 break; 3196 case ALGORITHM_PARITY_0: 3197 i -= 1; 3198 break; 3199 case ALGORITHM_PARITY_N: 3200 break; 3201 default: 3202 BUG(); 3203 } 3204 break; 3205 case 6: 3206 if (i == sh->qd_idx) 3207 return 0; /* It is the Q disk */ 3208 switch (algorithm) { 3209 case ALGORITHM_LEFT_ASYMMETRIC: 3210 case ALGORITHM_RIGHT_ASYMMETRIC: 3211 case ALGORITHM_ROTATING_ZERO_RESTART: 3212 case ALGORITHM_ROTATING_N_RESTART: 3213 if (sh->pd_idx == raid_disks-1) 3214 i--; /* Q D D D P */ 3215 else if (i > sh->pd_idx) 3216 i -= 2; /* D D P Q D */ 3217 break; 3218 case ALGORITHM_LEFT_SYMMETRIC: 3219 case ALGORITHM_RIGHT_SYMMETRIC: 3220 if (sh->pd_idx == raid_disks-1) 3221 i--; /* Q D D D P */ 3222 else { 3223 /* D D P Q D */ 3224 if (i < sh->pd_idx) 3225 i += raid_disks; 3226 i -= (sh->pd_idx + 2); 3227 } 3228 break; 3229 case ALGORITHM_PARITY_0: 3230 i -= 2; 3231 break; 3232 case ALGORITHM_PARITY_N: 3233 break; 3234 case ALGORITHM_ROTATING_N_CONTINUE: 3235 /* Like left_symmetric, but P is before Q */ 3236 if (sh->pd_idx == 0) 3237 i--; /* P D D D Q */ 3238 else { 3239 /* D D Q P D */ 3240 if (i < sh->pd_idx) 3241 i += raid_disks; 3242 i -= (sh->pd_idx + 1); 3243 } 3244 break; 3245 case ALGORITHM_LEFT_ASYMMETRIC_6: 3246 case ALGORITHM_RIGHT_ASYMMETRIC_6: 3247 if (i > sh->pd_idx) 3248 i--; 3249 break; 3250 case ALGORITHM_LEFT_SYMMETRIC_6: 3251 case ALGORITHM_RIGHT_SYMMETRIC_6: 3252 if (i < sh->pd_idx) 3253 i += data_disks + 1; 3254 i -= (sh->pd_idx + 1); 3255 break; 3256 case ALGORITHM_PARITY_0_6: 3257 i -= 1; 3258 break; 3259 default: 3260 BUG(); 3261 } 3262 break; 3263 } 3264 3265 chunk_number = stripe * data_disks + i; 3266 r_sector = chunk_number * sectors_per_chunk + chunk_offset; 3267 3268 check = raid5_compute_sector(conf, r_sector, 3269 previous, &dummy1, &sh2); 3270 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx 3271 || sh2.qd_idx != sh->qd_idx) { 3272 pr_warn("md/raid:%s: compute_blocknr: map not correct\n", 3273 mdname(conf->mddev)); 3274 return 0; 3275 } 3276 return r_sector; 3277 } 3278 3279 /* 3280 * There are cases where we want handle_stripe_dirtying() and 3281 * schedule_reconstruction() to delay towrite to some dev of a stripe. 3282 * 3283 * This function checks whether we want to delay the towrite. Specifically, 3284 * we delay the towrite when: 3285 * 3286 * 1. degraded stripe has a non-overwrite to the missing dev, AND this 3287 * stripe has data in journal (for other devices). 3288 * 3289 * In this case, when reading data for the non-overwrite dev, it is 3290 * necessary to handle complex rmw of write back cache (prexor with 3291 * orig_page, and xor with page). To keep read path simple, we would 3292 * like to flush data in journal to RAID disks first, so complex rmw 3293 * is handled in the write patch (handle_stripe_dirtying). 3294 * 3295 * 2. when journal space is critical (R5C_LOG_CRITICAL=1) 3296 * 3297 * It is important to be able to flush all stripes in raid5-cache. 3298 * Therefore, we need reserve some space on the journal device for 3299 * these flushes. If flush operation includes pending writes to the 3300 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe 3301 * for the flush out. If we exclude these pending writes from flush 3302 * operation, we only need (conf->max_degraded + 1) pages per stripe. 3303 * Therefore, excluding pending writes in these cases enables more 3304 * efficient use of the journal device. 3305 * 3306 * Note: To make sure the stripe makes progress, we only delay 3307 * towrite for stripes with data already in journal (injournal > 0). 3308 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to 3309 * no_space_stripes list. 3310 * 3311 * 3. during journal failure 3312 * In journal failure, we try to flush all cached data to raid disks 3313 * based on data in stripe cache. The array is read-only to upper 3314 * layers, so we would skip all pending writes. 3315 * 3316 */ 3317 static inline bool delay_towrite(struct r5conf *conf, 3318 struct r5dev *dev, 3319 struct stripe_head_state *s) 3320 { 3321 /* case 1 above */ 3322 if (!test_bit(R5_OVERWRITE, &dev->flags) && 3323 !test_bit(R5_Insync, &dev->flags) && s->injournal) 3324 return true; 3325 /* case 2 above */ 3326 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) && 3327 s->injournal > 0) 3328 return true; 3329 /* case 3 above */ 3330 if (s->log_failed && s->injournal) 3331 return true; 3332 return false; 3333 } 3334 3335 static void 3336 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s, 3337 int rcw, int expand) 3338 { 3339 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks; 3340 struct r5conf *conf = sh->raid_conf; 3341 int level = conf->level; 3342 3343 if (rcw) { 3344 /* 3345 * In some cases, handle_stripe_dirtying initially decided to 3346 * run rmw and allocates extra page for prexor. However, rcw is 3347 * cheaper later on. We need to free the extra page now, 3348 * because we won't be able to do that in ops_complete_prexor(). 3349 */ 3350 r5c_release_extra_page(sh); 3351 3352 for (i = disks; i--; ) { 3353 struct r5dev *dev = &sh->dev[i]; 3354 3355 if (dev->towrite && !delay_towrite(conf, dev, s)) { 3356 set_bit(R5_LOCKED, &dev->flags); 3357 set_bit(R5_Wantdrain, &dev->flags); 3358 if (!expand) 3359 clear_bit(R5_UPTODATE, &dev->flags); 3360 s->locked++; 3361 } else if (test_bit(R5_InJournal, &dev->flags)) { 3362 set_bit(R5_LOCKED, &dev->flags); 3363 s->locked++; 3364 } 3365 } 3366 /* if we are not expanding this is a proper write request, and 3367 * there will be bios with new data to be drained into the 3368 * stripe cache 3369 */ 3370 if (!expand) { 3371 if (!s->locked) 3372 /* False alarm, nothing to do */ 3373 return; 3374 sh->reconstruct_state = reconstruct_state_drain_run; 3375 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 3376 } else 3377 sh->reconstruct_state = reconstruct_state_run; 3378 3379 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 3380 3381 if (s->locked + conf->max_degraded == disks) 3382 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state)) 3383 atomic_inc(&conf->pending_full_writes); 3384 } else { 3385 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) || 3386 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags))); 3387 BUG_ON(level == 6 && 3388 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) || 3389 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags)))); 3390 3391 for (i = disks; i--; ) { 3392 struct r5dev *dev = &sh->dev[i]; 3393 if (i == pd_idx || i == qd_idx) 3394 continue; 3395 3396 if (dev->towrite && 3397 (test_bit(R5_UPTODATE, &dev->flags) || 3398 test_bit(R5_Wantcompute, &dev->flags))) { 3399 set_bit(R5_Wantdrain, &dev->flags); 3400 set_bit(R5_LOCKED, &dev->flags); 3401 clear_bit(R5_UPTODATE, &dev->flags); 3402 s->locked++; 3403 } else if (test_bit(R5_InJournal, &dev->flags)) { 3404 set_bit(R5_LOCKED, &dev->flags); 3405 s->locked++; 3406 } 3407 } 3408 if (!s->locked) 3409 /* False alarm - nothing to do */ 3410 return; 3411 sh->reconstruct_state = reconstruct_state_prexor_drain_run; 3412 set_bit(STRIPE_OP_PREXOR, &s->ops_request); 3413 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 3414 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 3415 } 3416 3417 /* keep the parity disk(s) locked while asynchronous operations 3418 * are in flight 3419 */ 3420 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); 3421 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 3422 s->locked++; 3423 3424 if (level == 6) { 3425 int qd_idx = sh->qd_idx; 3426 struct r5dev *dev = &sh->dev[qd_idx]; 3427 3428 set_bit(R5_LOCKED, &dev->flags); 3429 clear_bit(R5_UPTODATE, &dev->flags); 3430 s->locked++; 3431 } 3432 3433 if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page && 3434 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) && 3435 !test_bit(STRIPE_FULL_WRITE, &sh->state) && 3436 test_bit(R5_Insync, &sh->dev[pd_idx].flags)) 3437 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request); 3438 3439 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n", 3440 __func__, (unsigned long long)sh->sector, 3441 s->locked, s->ops_request); 3442 } 3443 3444 static bool stripe_bio_overlaps(struct stripe_head *sh, struct bio *bi, 3445 int dd_idx, int forwrite) 3446 { 3447 struct r5conf *conf = sh->raid_conf; 3448 struct bio **bip; 3449 3450 pr_debug("checking bi b#%llu to stripe s#%llu\n", 3451 bi->bi_iter.bi_sector, sh->sector); 3452 3453 /* Don't allow new IO added to stripes in batch list */ 3454 if (sh->batch_head) 3455 return true; 3456 3457 if (forwrite) 3458 bip = &sh->dev[dd_idx].towrite; 3459 else 3460 bip = &sh->dev[dd_idx].toread; 3461 3462 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) { 3463 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector) 3464 return true; 3465 bip = &(*bip)->bi_next; 3466 } 3467 3468 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi)) 3469 return true; 3470 3471 if (forwrite && raid5_has_ppl(conf)) { 3472 /* 3473 * With PPL only writes to consecutive data chunks within a 3474 * stripe are allowed because for a single stripe_head we can 3475 * only have one PPL entry at a time, which describes one data 3476 * range. Not really an overlap, but wait_for_overlap can be 3477 * used to handle this. 3478 */ 3479 sector_t sector; 3480 sector_t first = 0; 3481 sector_t last = 0; 3482 int count = 0; 3483 int i; 3484 3485 for (i = 0; i < sh->disks; i++) { 3486 if (i != sh->pd_idx && 3487 (i == dd_idx || sh->dev[i].towrite)) { 3488 sector = sh->dev[i].sector; 3489 if (count == 0 || sector < first) 3490 first = sector; 3491 if (sector > last) 3492 last = sector; 3493 count++; 3494 } 3495 } 3496 3497 if (first + conf->chunk_sectors * (count - 1) != last) 3498 return true; 3499 } 3500 3501 return false; 3502 } 3503 3504 static void __add_stripe_bio(struct stripe_head *sh, struct bio *bi, 3505 int dd_idx, int forwrite, int previous) 3506 { 3507 struct r5conf *conf = sh->raid_conf; 3508 struct bio **bip; 3509 int firstwrite = 0; 3510 3511 if (forwrite) { 3512 bip = &sh->dev[dd_idx].towrite; 3513 if (!*bip) 3514 firstwrite = 1; 3515 } else { 3516 bip = &sh->dev[dd_idx].toread; 3517 } 3518 3519 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) 3520 bip = &(*bip)->bi_next; 3521 3522 if (!forwrite || previous) 3523 clear_bit(STRIPE_BATCH_READY, &sh->state); 3524 3525 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next); 3526 if (*bip) 3527 bi->bi_next = *bip; 3528 *bip = bi; 3529 bio_inc_remaining(bi); 3530 md_write_inc(conf->mddev, bi); 3531 3532 if (forwrite) { 3533 /* check if page is covered */ 3534 sector_t sector = sh->dev[dd_idx].sector; 3535 for (bi=sh->dev[dd_idx].towrite; 3536 sector < sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf) && 3537 bi && bi->bi_iter.bi_sector <= sector; 3538 bi = r5_next_bio(conf, bi, sh->dev[dd_idx].sector)) { 3539 if (bio_end_sector(bi) >= sector) 3540 sector = bio_end_sector(bi); 3541 } 3542 if (sector >= sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf)) 3543 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags)) 3544 sh->overwrite_disks++; 3545 } 3546 3547 pr_debug("added bi b#%llu to stripe s#%llu, disk %d, logical %llu\n", 3548 (*bip)->bi_iter.bi_sector, sh->sector, dd_idx, 3549 sh->dev[dd_idx].sector); 3550 3551 if (conf->mddev->bitmap && firstwrite) { 3552 /* Cannot hold spinlock over bitmap_startwrite, 3553 * but must ensure this isn't added to a batch until 3554 * we have added to the bitmap and set bm_seq. 3555 * So set STRIPE_BITMAP_PENDING to prevent 3556 * batching. 3557 * If multiple __add_stripe_bio() calls race here they 3558 * much all set STRIPE_BITMAP_PENDING. So only the first one 3559 * to complete "bitmap_startwrite" gets to set 3560 * STRIPE_BIT_DELAY. This is important as once a stripe 3561 * is added to a batch, STRIPE_BIT_DELAY cannot be changed 3562 * any more. 3563 */ 3564 set_bit(STRIPE_BITMAP_PENDING, &sh->state); 3565 spin_unlock_irq(&sh->stripe_lock); 3566 md_bitmap_startwrite(conf->mddev->bitmap, sh->sector, 3567 RAID5_STRIPE_SECTORS(conf), 0); 3568 spin_lock_irq(&sh->stripe_lock); 3569 clear_bit(STRIPE_BITMAP_PENDING, &sh->state); 3570 if (!sh->batch_head) { 3571 sh->bm_seq = conf->seq_flush+1; 3572 set_bit(STRIPE_BIT_DELAY, &sh->state); 3573 } 3574 } 3575 } 3576 3577 /* 3578 * Each stripe/dev can have one or more bios attached. 3579 * toread/towrite point to the first in a chain. 3580 * The bi_next chain must be in order. 3581 */ 3582 static bool add_stripe_bio(struct stripe_head *sh, struct bio *bi, 3583 int dd_idx, int forwrite, int previous) 3584 { 3585 spin_lock_irq(&sh->stripe_lock); 3586 3587 if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) { 3588 set_bit(R5_Overlap, &sh->dev[dd_idx].flags); 3589 spin_unlock_irq(&sh->stripe_lock); 3590 return false; 3591 } 3592 3593 __add_stripe_bio(sh, bi, dd_idx, forwrite, previous); 3594 spin_unlock_irq(&sh->stripe_lock); 3595 return true; 3596 } 3597 3598 static void end_reshape(struct r5conf *conf); 3599 3600 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 3601 struct stripe_head *sh) 3602 { 3603 int sectors_per_chunk = 3604 previous ? conf->prev_chunk_sectors : conf->chunk_sectors; 3605 int dd_idx; 3606 int chunk_offset = sector_div(stripe, sectors_per_chunk); 3607 int disks = previous ? conf->previous_raid_disks : conf->raid_disks; 3608 3609 raid5_compute_sector(conf, 3610 stripe * (disks - conf->max_degraded) 3611 *sectors_per_chunk + chunk_offset, 3612 previous, 3613 &dd_idx, sh); 3614 } 3615 3616 static void 3617 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh, 3618 struct stripe_head_state *s, int disks) 3619 { 3620 int i; 3621 BUG_ON(sh->batch_head); 3622 for (i = disks; i--; ) { 3623 struct bio *bi; 3624 int bitmap_end = 0; 3625 3626 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 3627 struct md_rdev *rdev = conf->disks[i].rdev; 3628 3629 if (rdev && test_bit(In_sync, &rdev->flags) && 3630 !test_bit(Faulty, &rdev->flags)) 3631 atomic_inc(&rdev->nr_pending); 3632 else 3633 rdev = NULL; 3634 if (rdev) { 3635 if (!rdev_set_badblocks( 3636 rdev, 3637 sh->sector, 3638 RAID5_STRIPE_SECTORS(conf), 0)) 3639 md_error(conf->mddev, rdev); 3640 rdev_dec_pending(rdev, conf->mddev); 3641 } 3642 } 3643 spin_lock_irq(&sh->stripe_lock); 3644 /* fail all writes first */ 3645 bi = sh->dev[i].towrite; 3646 sh->dev[i].towrite = NULL; 3647 sh->overwrite_disks = 0; 3648 spin_unlock_irq(&sh->stripe_lock); 3649 if (bi) 3650 bitmap_end = 1; 3651 3652 log_stripe_write_finished(sh); 3653 3654 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 3655 wake_up(&conf->wait_for_overlap); 3656 3657 while (bi && bi->bi_iter.bi_sector < 3658 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) { 3659 struct bio *nextbi = r5_next_bio(conf, bi, sh->dev[i].sector); 3660 3661 md_write_end(conf->mddev); 3662 bio_io_error(bi); 3663 bi = nextbi; 3664 } 3665 if (bitmap_end) 3666 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3667 RAID5_STRIPE_SECTORS(conf), 0, 0); 3668 bitmap_end = 0; 3669 /* and fail all 'written' */ 3670 bi = sh->dev[i].written; 3671 sh->dev[i].written = NULL; 3672 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) { 3673 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 3674 sh->dev[i].page = sh->dev[i].orig_page; 3675 } 3676 3677 if (bi) bitmap_end = 1; 3678 while (bi && bi->bi_iter.bi_sector < 3679 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) { 3680 struct bio *bi2 = r5_next_bio(conf, bi, sh->dev[i].sector); 3681 3682 md_write_end(conf->mddev); 3683 bio_io_error(bi); 3684 bi = bi2; 3685 } 3686 3687 /* fail any reads if this device is non-operational and 3688 * the data has not reached the cache yet. 3689 */ 3690 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) && 3691 s->failed > conf->max_degraded && 3692 (!test_bit(R5_Insync, &sh->dev[i].flags) || 3693 test_bit(R5_ReadError, &sh->dev[i].flags))) { 3694 spin_lock_irq(&sh->stripe_lock); 3695 bi = sh->dev[i].toread; 3696 sh->dev[i].toread = NULL; 3697 spin_unlock_irq(&sh->stripe_lock); 3698 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 3699 wake_up(&conf->wait_for_overlap); 3700 if (bi) 3701 s->to_read--; 3702 while (bi && bi->bi_iter.bi_sector < 3703 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) { 3704 struct bio *nextbi = 3705 r5_next_bio(conf, bi, sh->dev[i].sector); 3706 3707 bio_io_error(bi); 3708 bi = nextbi; 3709 } 3710 } 3711 if (bitmap_end) 3712 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3713 RAID5_STRIPE_SECTORS(conf), 0, 0); 3714 /* If we were in the middle of a write the parity block might 3715 * still be locked - so just clear all R5_LOCKED flags 3716 */ 3717 clear_bit(R5_LOCKED, &sh->dev[i].flags); 3718 } 3719 s->to_write = 0; 3720 s->written = 0; 3721 3722 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 3723 if (atomic_dec_and_test(&conf->pending_full_writes)) 3724 md_wakeup_thread(conf->mddev->thread); 3725 } 3726 3727 static void 3728 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh, 3729 struct stripe_head_state *s) 3730 { 3731 int abort = 0; 3732 int i; 3733 3734 BUG_ON(sh->batch_head); 3735 clear_bit(STRIPE_SYNCING, &sh->state); 3736 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 3737 wake_up(&conf->wait_for_overlap); 3738 s->syncing = 0; 3739 s->replacing = 0; 3740 /* There is nothing more to do for sync/check/repair. 3741 * Don't even need to abort as that is handled elsewhere 3742 * if needed, and not always wanted e.g. if there is a known 3743 * bad block here. 3744 * For recover/replace we need to record a bad block on all 3745 * non-sync devices, or abort the recovery 3746 */ 3747 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) { 3748 /* During recovery devices cannot be removed, so 3749 * locking and refcounting of rdevs is not needed 3750 */ 3751 for (i = 0; i < conf->raid_disks; i++) { 3752 struct md_rdev *rdev = conf->disks[i].rdev; 3753 3754 if (rdev 3755 && !test_bit(Faulty, &rdev->flags) 3756 && !test_bit(In_sync, &rdev->flags) 3757 && !rdev_set_badblocks(rdev, sh->sector, 3758 RAID5_STRIPE_SECTORS(conf), 0)) 3759 abort = 1; 3760 rdev = conf->disks[i].replacement; 3761 3762 if (rdev 3763 && !test_bit(Faulty, &rdev->flags) 3764 && !test_bit(In_sync, &rdev->flags) 3765 && !rdev_set_badblocks(rdev, sh->sector, 3766 RAID5_STRIPE_SECTORS(conf), 0)) 3767 abort = 1; 3768 } 3769 if (abort) 3770 conf->recovery_disabled = 3771 conf->mddev->recovery_disabled; 3772 } 3773 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), !abort); 3774 } 3775 3776 static int want_replace(struct stripe_head *sh, int disk_idx) 3777 { 3778 struct md_rdev *rdev; 3779 int rv = 0; 3780 3781 rdev = sh->raid_conf->disks[disk_idx].replacement; 3782 if (rdev 3783 && !test_bit(Faulty, &rdev->flags) 3784 && !test_bit(In_sync, &rdev->flags) 3785 && (rdev->recovery_offset <= sh->sector 3786 || rdev->mddev->recovery_cp <= sh->sector)) 3787 rv = 1; 3788 return rv; 3789 } 3790 3791 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s, 3792 int disk_idx, int disks) 3793 { 3794 struct r5dev *dev = &sh->dev[disk_idx]; 3795 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]], 3796 &sh->dev[s->failed_num[1]] }; 3797 int i; 3798 bool force_rcw = (sh->raid_conf->rmw_level == PARITY_DISABLE_RMW); 3799 3800 3801 if (test_bit(R5_LOCKED, &dev->flags) || 3802 test_bit(R5_UPTODATE, &dev->flags)) 3803 /* No point reading this as we already have it or have 3804 * decided to get it. 3805 */ 3806 return 0; 3807 3808 if (dev->toread || 3809 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags))) 3810 /* We need this block to directly satisfy a request */ 3811 return 1; 3812 3813 if (s->syncing || s->expanding || 3814 (s->replacing && want_replace(sh, disk_idx))) 3815 /* When syncing, or expanding we read everything. 3816 * When replacing, we need the replaced block. 3817 */ 3818 return 1; 3819 3820 if ((s->failed >= 1 && fdev[0]->toread) || 3821 (s->failed >= 2 && fdev[1]->toread)) 3822 /* If we want to read from a failed device, then 3823 * we need to actually read every other device. 3824 */ 3825 return 1; 3826 3827 /* Sometimes neither read-modify-write nor reconstruct-write 3828 * cycles can work. In those cases we read every block we 3829 * can. Then the parity-update is certain to have enough to 3830 * work with. 3831 * This can only be a problem when we need to write something, 3832 * and some device has failed. If either of those tests 3833 * fail we need look no further. 3834 */ 3835 if (!s->failed || !s->to_write) 3836 return 0; 3837 3838 if (test_bit(R5_Insync, &dev->flags) && 3839 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3840 /* Pre-reads at not permitted until after short delay 3841 * to gather multiple requests. However if this 3842 * device is no Insync, the block could only be computed 3843 * and there is no need to delay that. 3844 */ 3845 return 0; 3846 3847 for (i = 0; i < s->failed && i < 2; i++) { 3848 if (fdev[i]->towrite && 3849 !test_bit(R5_UPTODATE, &fdev[i]->flags) && 3850 !test_bit(R5_OVERWRITE, &fdev[i]->flags)) 3851 /* If we have a partial write to a failed 3852 * device, then we will need to reconstruct 3853 * the content of that device, so all other 3854 * devices must be read. 3855 */ 3856 return 1; 3857 3858 if (s->failed >= 2 && 3859 (fdev[i]->towrite || 3860 s->failed_num[i] == sh->pd_idx || 3861 s->failed_num[i] == sh->qd_idx) && 3862 !test_bit(R5_UPTODATE, &fdev[i]->flags)) 3863 /* In max degraded raid6, If the failed disk is P, Q, 3864 * or we want to read the failed disk, we need to do 3865 * reconstruct-write. 3866 */ 3867 force_rcw = true; 3868 } 3869 3870 /* If we are forced to do a reconstruct-write, because parity 3871 * cannot be trusted and we are currently recovering it, there 3872 * is extra need to be careful. 3873 * If one of the devices that we would need to read, because 3874 * it is not being overwritten (and maybe not written at all) 3875 * is missing/faulty, then we need to read everything we can. 3876 */ 3877 if (!force_rcw && 3878 sh->sector < sh->raid_conf->mddev->recovery_cp) 3879 /* reconstruct-write isn't being forced */ 3880 return 0; 3881 for (i = 0; i < s->failed && i < 2; i++) { 3882 if (s->failed_num[i] != sh->pd_idx && 3883 s->failed_num[i] != sh->qd_idx && 3884 !test_bit(R5_UPTODATE, &fdev[i]->flags) && 3885 !test_bit(R5_OVERWRITE, &fdev[i]->flags)) 3886 return 1; 3887 } 3888 3889 return 0; 3890 } 3891 3892 /* fetch_block - checks the given member device to see if its data needs 3893 * to be read or computed to satisfy a request. 3894 * 3895 * Returns 1 when no more member devices need to be checked, otherwise returns 3896 * 0 to tell the loop in handle_stripe_fill to continue 3897 */ 3898 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s, 3899 int disk_idx, int disks) 3900 { 3901 struct r5dev *dev = &sh->dev[disk_idx]; 3902 3903 /* is the data in this block needed, and can we get it? */ 3904 if (need_this_block(sh, s, disk_idx, disks)) { 3905 /* we would like to get this block, possibly by computing it, 3906 * otherwise read it if the backing disk is insync 3907 */ 3908 BUG_ON(test_bit(R5_Wantcompute, &dev->flags)); 3909 BUG_ON(test_bit(R5_Wantread, &dev->flags)); 3910 BUG_ON(sh->batch_head); 3911 3912 /* 3913 * In the raid6 case if the only non-uptodate disk is P 3914 * then we already trusted P to compute the other failed 3915 * drives. It is safe to compute rather than re-read P. 3916 * In other cases we only compute blocks from failed 3917 * devices, otherwise check/repair might fail to detect 3918 * a real inconsistency. 3919 */ 3920 3921 if ((s->uptodate == disks - 1) && 3922 ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) || 3923 (s->failed && (disk_idx == s->failed_num[0] || 3924 disk_idx == s->failed_num[1])))) { 3925 /* have disk failed, and we're requested to fetch it; 3926 * do compute it 3927 */ 3928 pr_debug("Computing stripe %llu block %d\n", 3929 (unsigned long long)sh->sector, disk_idx); 3930 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3931 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3932 set_bit(R5_Wantcompute, &dev->flags); 3933 sh->ops.target = disk_idx; 3934 sh->ops.target2 = -1; /* no 2nd target */ 3935 s->req_compute = 1; 3936 /* Careful: from this point on 'uptodate' is in the eye 3937 * of raid_run_ops which services 'compute' operations 3938 * before writes. R5_Wantcompute flags a block that will 3939 * be R5_UPTODATE by the time it is needed for a 3940 * subsequent operation. 3941 */ 3942 s->uptodate++; 3943 return 1; 3944 } else if (s->uptodate == disks-2 && s->failed >= 2) { 3945 /* Computing 2-failure is *very* expensive; only 3946 * do it if failed >= 2 3947 */ 3948 int other; 3949 for (other = disks; other--; ) { 3950 if (other == disk_idx) 3951 continue; 3952 if (!test_bit(R5_UPTODATE, 3953 &sh->dev[other].flags)) 3954 break; 3955 } 3956 BUG_ON(other < 0); 3957 pr_debug("Computing stripe %llu blocks %d,%d\n", 3958 (unsigned long long)sh->sector, 3959 disk_idx, other); 3960 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3961 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3962 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags); 3963 set_bit(R5_Wantcompute, &sh->dev[other].flags); 3964 sh->ops.target = disk_idx; 3965 sh->ops.target2 = other; 3966 s->uptodate += 2; 3967 s->req_compute = 1; 3968 return 1; 3969 } else if (test_bit(R5_Insync, &dev->flags)) { 3970 set_bit(R5_LOCKED, &dev->flags); 3971 set_bit(R5_Wantread, &dev->flags); 3972 s->locked++; 3973 pr_debug("Reading block %d (sync=%d)\n", 3974 disk_idx, s->syncing); 3975 } 3976 } 3977 3978 return 0; 3979 } 3980 3981 /* 3982 * handle_stripe_fill - read or compute data to satisfy pending requests. 3983 */ 3984 static void handle_stripe_fill(struct stripe_head *sh, 3985 struct stripe_head_state *s, 3986 int disks) 3987 { 3988 int i; 3989 3990 /* look for blocks to read/compute, skip this if a compute 3991 * is already in flight, or if the stripe contents are in the 3992 * midst of changing due to a write 3993 */ 3994 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state && 3995 !sh->reconstruct_state) { 3996 3997 /* 3998 * For degraded stripe with data in journal, do not handle 3999 * read requests yet, instead, flush the stripe to raid 4000 * disks first, this avoids handling complex rmw of write 4001 * back cache (prexor with orig_page, and then xor with 4002 * page) in the read path 4003 */ 4004 if (s->to_read && s->injournal && s->failed) { 4005 if (test_bit(STRIPE_R5C_CACHING, &sh->state)) 4006 r5c_make_stripe_write_out(sh); 4007 goto out; 4008 } 4009 4010 for (i = disks; i--; ) 4011 if (fetch_block(sh, s, i, disks)) 4012 break; 4013 } 4014 out: 4015 set_bit(STRIPE_HANDLE, &sh->state); 4016 } 4017 4018 static void break_stripe_batch_list(struct stripe_head *head_sh, 4019 unsigned long handle_flags); 4020 /* handle_stripe_clean_event 4021 * any written block on an uptodate or failed drive can be returned. 4022 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but 4023 * never LOCKED, so we don't need to test 'failed' directly. 4024 */ 4025 static void handle_stripe_clean_event(struct r5conf *conf, 4026 struct stripe_head *sh, int disks) 4027 { 4028 int i; 4029 struct r5dev *dev; 4030 int discard_pending = 0; 4031 struct stripe_head *head_sh = sh; 4032 bool do_endio = false; 4033 4034 for (i = disks; i--; ) 4035 if (sh->dev[i].written) { 4036 dev = &sh->dev[i]; 4037 if (!test_bit(R5_LOCKED, &dev->flags) && 4038 (test_bit(R5_UPTODATE, &dev->flags) || 4039 test_bit(R5_Discard, &dev->flags) || 4040 test_bit(R5_SkipCopy, &dev->flags))) { 4041 /* We can return any write requests */ 4042 struct bio *wbi, *wbi2; 4043 pr_debug("Return write for disc %d\n", i); 4044 if (test_and_clear_bit(R5_Discard, &dev->flags)) 4045 clear_bit(R5_UPTODATE, &dev->flags); 4046 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) { 4047 WARN_ON(test_bit(R5_UPTODATE, &dev->flags)); 4048 } 4049 do_endio = true; 4050 4051 returnbi: 4052 dev->page = dev->orig_page; 4053 wbi = dev->written; 4054 dev->written = NULL; 4055 while (wbi && wbi->bi_iter.bi_sector < 4056 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 4057 wbi2 = r5_next_bio(conf, wbi, dev->sector); 4058 md_write_end(conf->mddev); 4059 bio_endio(wbi); 4060 wbi = wbi2; 4061 } 4062 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector, 4063 RAID5_STRIPE_SECTORS(conf), 4064 !test_bit(STRIPE_DEGRADED, &sh->state), 4065 0); 4066 if (head_sh->batch_head) { 4067 sh = list_first_entry(&sh->batch_list, 4068 struct stripe_head, 4069 batch_list); 4070 if (sh != head_sh) { 4071 dev = &sh->dev[i]; 4072 goto returnbi; 4073 } 4074 } 4075 sh = head_sh; 4076 dev = &sh->dev[i]; 4077 } else if (test_bit(R5_Discard, &dev->flags)) 4078 discard_pending = 1; 4079 } 4080 4081 log_stripe_write_finished(sh); 4082 4083 if (!discard_pending && 4084 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) { 4085 int hash; 4086 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 4087 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 4088 if (sh->qd_idx >= 0) { 4089 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 4090 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags); 4091 } 4092 /* now that discard is done we can proceed with any sync */ 4093 clear_bit(STRIPE_DISCARD, &sh->state); 4094 /* 4095 * SCSI discard will change some bio fields and the stripe has 4096 * no updated data, so remove it from hash list and the stripe 4097 * will be reinitialized 4098 */ 4099 unhash: 4100 hash = sh->hash_lock_index; 4101 spin_lock_irq(conf->hash_locks + hash); 4102 remove_hash(sh); 4103 spin_unlock_irq(conf->hash_locks + hash); 4104 if (head_sh->batch_head) { 4105 sh = list_first_entry(&sh->batch_list, 4106 struct stripe_head, batch_list); 4107 if (sh != head_sh) 4108 goto unhash; 4109 } 4110 sh = head_sh; 4111 4112 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) 4113 set_bit(STRIPE_HANDLE, &sh->state); 4114 4115 } 4116 4117 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 4118 if (atomic_dec_and_test(&conf->pending_full_writes)) 4119 md_wakeup_thread(conf->mddev->thread); 4120 4121 if (head_sh->batch_head && do_endio) 4122 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS); 4123 } 4124 4125 /* 4126 * For RMW in write back cache, we need extra page in prexor to store the 4127 * old data. This page is stored in dev->orig_page. 4128 * 4129 * This function checks whether we have data for prexor. The exact logic 4130 * is: 4131 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE) 4132 */ 4133 static inline bool uptodate_for_rmw(struct r5dev *dev) 4134 { 4135 return (test_bit(R5_UPTODATE, &dev->flags)) && 4136 (!test_bit(R5_InJournal, &dev->flags) || 4137 test_bit(R5_OrigPageUPTDODATE, &dev->flags)); 4138 } 4139 4140 static int handle_stripe_dirtying(struct r5conf *conf, 4141 struct stripe_head *sh, 4142 struct stripe_head_state *s, 4143 int disks) 4144 { 4145 int rmw = 0, rcw = 0, i; 4146 sector_t recovery_cp = conf->mddev->recovery_cp; 4147 4148 /* Check whether resync is now happening or should start. 4149 * If yes, then the array is dirty (after unclean shutdown or 4150 * initial creation), so parity in some stripes might be inconsistent. 4151 * In this case, we need to always do reconstruct-write, to ensure 4152 * that in case of drive failure or read-error correction, we 4153 * generate correct data from the parity. 4154 */ 4155 if (conf->rmw_level == PARITY_DISABLE_RMW || 4156 (recovery_cp < MaxSector && sh->sector >= recovery_cp && 4157 s->failed == 0)) { 4158 /* Calculate the real rcw later - for now make it 4159 * look like rcw is cheaper 4160 */ 4161 rcw = 1; rmw = 2; 4162 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n", 4163 conf->rmw_level, (unsigned long long)recovery_cp, 4164 (unsigned long long)sh->sector); 4165 } else for (i = disks; i--; ) { 4166 /* would I have to read this buffer for read_modify_write */ 4167 struct r5dev *dev = &sh->dev[i]; 4168 if (((dev->towrite && !delay_towrite(conf, dev, s)) || 4169 i == sh->pd_idx || i == sh->qd_idx || 4170 test_bit(R5_InJournal, &dev->flags)) && 4171 !test_bit(R5_LOCKED, &dev->flags) && 4172 !(uptodate_for_rmw(dev) || 4173 test_bit(R5_Wantcompute, &dev->flags))) { 4174 if (test_bit(R5_Insync, &dev->flags)) 4175 rmw++; 4176 else 4177 rmw += 2*disks; /* cannot read it */ 4178 } 4179 /* Would I have to read this buffer for reconstruct_write */ 4180 if (!test_bit(R5_OVERWRITE, &dev->flags) && 4181 i != sh->pd_idx && i != sh->qd_idx && 4182 !test_bit(R5_LOCKED, &dev->flags) && 4183 !(test_bit(R5_UPTODATE, &dev->flags) || 4184 test_bit(R5_Wantcompute, &dev->flags))) { 4185 if (test_bit(R5_Insync, &dev->flags)) 4186 rcw++; 4187 else 4188 rcw += 2*disks; 4189 } 4190 } 4191 4192 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n", 4193 (unsigned long long)sh->sector, sh->state, rmw, rcw); 4194 set_bit(STRIPE_HANDLE, &sh->state); 4195 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) { 4196 /* prefer read-modify-write, but need to get some data */ 4197 mddev_add_trace_msg(conf->mddev, "raid5 rmw %llu %d", 4198 sh->sector, rmw); 4199 4200 for (i = disks; i--; ) { 4201 struct r5dev *dev = &sh->dev[i]; 4202 if (test_bit(R5_InJournal, &dev->flags) && 4203 dev->page == dev->orig_page && 4204 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) { 4205 /* alloc page for prexor */ 4206 struct page *p = alloc_page(GFP_NOIO); 4207 4208 if (p) { 4209 dev->orig_page = p; 4210 continue; 4211 } 4212 4213 /* 4214 * alloc_page() failed, try use 4215 * disk_info->extra_page 4216 */ 4217 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE, 4218 &conf->cache_state)) { 4219 r5c_use_extra_page(sh); 4220 break; 4221 } 4222 4223 /* extra_page in use, add to delayed_list */ 4224 set_bit(STRIPE_DELAYED, &sh->state); 4225 s->waiting_extra_page = 1; 4226 return -EAGAIN; 4227 } 4228 } 4229 4230 for (i = disks; i--; ) { 4231 struct r5dev *dev = &sh->dev[i]; 4232 if (((dev->towrite && !delay_towrite(conf, dev, s)) || 4233 i == sh->pd_idx || i == sh->qd_idx || 4234 test_bit(R5_InJournal, &dev->flags)) && 4235 !test_bit(R5_LOCKED, &dev->flags) && 4236 !(uptodate_for_rmw(dev) || 4237 test_bit(R5_Wantcompute, &dev->flags)) && 4238 test_bit(R5_Insync, &dev->flags)) { 4239 if (test_bit(STRIPE_PREREAD_ACTIVE, 4240 &sh->state)) { 4241 pr_debug("Read_old block %d for r-m-w\n", 4242 i); 4243 set_bit(R5_LOCKED, &dev->flags); 4244 set_bit(R5_Wantread, &dev->flags); 4245 s->locked++; 4246 } else 4247 set_bit(STRIPE_DELAYED, &sh->state); 4248 } 4249 } 4250 } 4251 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) { 4252 /* want reconstruct write, but need to get some data */ 4253 int qread =0; 4254 rcw = 0; 4255 for (i = disks; i--; ) { 4256 struct r5dev *dev = &sh->dev[i]; 4257 if (!test_bit(R5_OVERWRITE, &dev->flags) && 4258 i != sh->pd_idx && i != sh->qd_idx && 4259 !test_bit(R5_LOCKED, &dev->flags) && 4260 !(test_bit(R5_UPTODATE, &dev->flags) || 4261 test_bit(R5_Wantcompute, &dev->flags))) { 4262 rcw++; 4263 if (test_bit(R5_Insync, &dev->flags) && 4264 test_bit(STRIPE_PREREAD_ACTIVE, 4265 &sh->state)) { 4266 pr_debug("Read_old block " 4267 "%d for Reconstruct\n", i); 4268 set_bit(R5_LOCKED, &dev->flags); 4269 set_bit(R5_Wantread, &dev->flags); 4270 s->locked++; 4271 qread++; 4272 } else 4273 set_bit(STRIPE_DELAYED, &sh->state); 4274 } 4275 } 4276 if (rcw && !mddev_is_dm(conf->mddev)) 4277 blk_add_trace_msg(conf->mddev->gendisk->queue, 4278 "raid5 rcw %llu %d %d %d", 4279 (unsigned long long)sh->sector, rcw, qread, 4280 test_bit(STRIPE_DELAYED, &sh->state)); 4281 } 4282 4283 if (rcw > disks && rmw > disks && 4284 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4285 set_bit(STRIPE_DELAYED, &sh->state); 4286 4287 /* now if nothing is locked, and if we have enough data, 4288 * we can start a write request 4289 */ 4290 /* since handle_stripe can be called at any time we need to handle the 4291 * case where a compute block operation has been submitted and then a 4292 * subsequent call wants to start a write request. raid_run_ops only 4293 * handles the case where compute block and reconstruct are requested 4294 * simultaneously. If this is not the case then new writes need to be 4295 * held off until the compute completes. 4296 */ 4297 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) && 4298 (s->locked == 0 && (rcw == 0 || rmw == 0) && 4299 !test_bit(STRIPE_BIT_DELAY, &sh->state))) 4300 schedule_reconstruction(sh, s, rcw == 0, 0); 4301 return 0; 4302 } 4303 4304 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh, 4305 struct stripe_head_state *s, int disks) 4306 { 4307 struct r5dev *dev = NULL; 4308 4309 BUG_ON(sh->batch_head); 4310 set_bit(STRIPE_HANDLE, &sh->state); 4311 4312 switch (sh->check_state) { 4313 case check_state_idle: 4314 /* start a new check operation if there are no failures */ 4315 if (s->failed == 0) { 4316 BUG_ON(s->uptodate != disks); 4317 sh->check_state = check_state_run; 4318 set_bit(STRIPE_OP_CHECK, &s->ops_request); 4319 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 4320 s->uptodate--; 4321 break; 4322 } 4323 dev = &sh->dev[s->failed_num[0]]; 4324 fallthrough; 4325 case check_state_compute_result: 4326 sh->check_state = check_state_idle; 4327 if (!dev) 4328 dev = &sh->dev[sh->pd_idx]; 4329 4330 /* check that a write has not made the stripe insync */ 4331 if (test_bit(STRIPE_INSYNC, &sh->state)) 4332 break; 4333 4334 /* either failed parity check, or recovery is happening */ 4335 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags)); 4336 BUG_ON(s->uptodate != disks); 4337 4338 set_bit(R5_LOCKED, &dev->flags); 4339 s->locked++; 4340 set_bit(R5_Wantwrite, &dev->flags); 4341 4342 clear_bit(STRIPE_DEGRADED, &sh->state); 4343 set_bit(STRIPE_INSYNC, &sh->state); 4344 break; 4345 case check_state_run: 4346 break; /* we will be called again upon completion */ 4347 case check_state_check_result: 4348 sh->check_state = check_state_idle; 4349 4350 /* if a failure occurred during the check operation, leave 4351 * STRIPE_INSYNC not set and let the stripe be handled again 4352 */ 4353 if (s->failed) 4354 break; 4355 4356 /* handle a successful check operation, if parity is correct 4357 * we are done. Otherwise update the mismatch count and repair 4358 * parity if !MD_RECOVERY_CHECK 4359 */ 4360 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0) 4361 /* parity is correct (on disc, 4362 * not in buffer any more) 4363 */ 4364 set_bit(STRIPE_INSYNC, &sh->state); 4365 else { 4366 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches); 4367 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) { 4368 /* don't try to repair!! */ 4369 set_bit(STRIPE_INSYNC, &sh->state); 4370 pr_warn_ratelimited("%s: mismatch sector in range " 4371 "%llu-%llu\n", mdname(conf->mddev), 4372 (unsigned long long) sh->sector, 4373 (unsigned long long) sh->sector + 4374 RAID5_STRIPE_SECTORS(conf)); 4375 } else { 4376 sh->check_state = check_state_compute_run; 4377 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 4378 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 4379 set_bit(R5_Wantcompute, 4380 &sh->dev[sh->pd_idx].flags); 4381 sh->ops.target = sh->pd_idx; 4382 sh->ops.target2 = -1; 4383 s->uptodate++; 4384 } 4385 } 4386 break; 4387 case check_state_compute_run: 4388 break; 4389 default: 4390 pr_err("%s: unknown check_state: %d sector: %llu\n", 4391 __func__, sh->check_state, 4392 (unsigned long long) sh->sector); 4393 BUG(); 4394 } 4395 } 4396 4397 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh, 4398 struct stripe_head_state *s, 4399 int disks) 4400 { 4401 int pd_idx = sh->pd_idx; 4402 int qd_idx = sh->qd_idx; 4403 struct r5dev *dev; 4404 4405 BUG_ON(sh->batch_head); 4406 set_bit(STRIPE_HANDLE, &sh->state); 4407 4408 BUG_ON(s->failed > 2); 4409 4410 /* Want to check and possibly repair P and Q. 4411 * However there could be one 'failed' device, in which 4412 * case we can only check one of them, possibly using the 4413 * other to generate missing data 4414 */ 4415 4416 switch (sh->check_state) { 4417 case check_state_idle: 4418 /* start a new check operation if there are < 2 failures */ 4419 if (s->failed == s->q_failed) { 4420 /* The only possible failed device holds Q, so it 4421 * makes sense to check P (If anything else were failed, 4422 * we would have used P to recreate it). 4423 */ 4424 sh->check_state = check_state_run; 4425 } 4426 if (!s->q_failed && s->failed < 2) { 4427 /* Q is not failed, and we didn't use it to generate 4428 * anything, so it makes sense to check it 4429 */ 4430 if (sh->check_state == check_state_run) 4431 sh->check_state = check_state_run_pq; 4432 else 4433 sh->check_state = check_state_run_q; 4434 } 4435 4436 /* discard potentially stale zero_sum_result */ 4437 sh->ops.zero_sum_result = 0; 4438 4439 if (sh->check_state == check_state_run) { 4440 /* async_xor_zero_sum destroys the contents of P */ 4441 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 4442 s->uptodate--; 4443 } 4444 if (sh->check_state >= check_state_run && 4445 sh->check_state <= check_state_run_pq) { 4446 /* async_syndrome_zero_sum preserves P and Q, so 4447 * no need to mark them !uptodate here 4448 */ 4449 set_bit(STRIPE_OP_CHECK, &s->ops_request); 4450 break; 4451 } 4452 4453 /* we have 2-disk failure */ 4454 BUG_ON(s->failed != 2); 4455 fallthrough; 4456 case check_state_compute_result: 4457 sh->check_state = check_state_idle; 4458 4459 /* check that a write has not made the stripe insync */ 4460 if (test_bit(STRIPE_INSYNC, &sh->state)) 4461 break; 4462 4463 /* now write out any block on a failed drive, 4464 * or P or Q if they were recomputed 4465 */ 4466 dev = NULL; 4467 if (s->failed == 2) { 4468 dev = &sh->dev[s->failed_num[1]]; 4469 s->locked++; 4470 set_bit(R5_LOCKED, &dev->flags); 4471 set_bit(R5_Wantwrite, &dev->flags); 4472 } 4473 if (s->failed >= 1) { 4474 dev = &sh->dev[s->failed_num[0]]; 4475 s->locked++; 4476 set_bit(R5_LOCKED, &dev->flags); 4477 set_bit(R5_Wantwrite, &dev->flags); 4478 } 4479 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 4480 dev = &sh->dev[pd_idx]; 4481 s->locked++; 4482 set_bit(R5_LOCKED, &dev->flags); 4483 set_bit(R5_Wantwrite, &dev->flags); 4484 } 4485 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 4486 dev = &sh->dev[qd_idx]; 4487 s->locked++; 4488 set_bit(R5_LOCKED, &dev->flags); 4489 set_bit(R5_Wantwrite, &dev->flags); 4490 } 4491 if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags), 4492 "%s: disk%td not up to date\n", 4493 mdname(conf->mddev), 4494 dev - (struct r5dev *) &sh->dev)) { 4495 clear_bit(R5_LOCKED, &dev->flags); 4496 clear_bit(R5_Wantwrite, &dev->flags); 4497 s->locked--; 4498 } 4499 clear_bit(STRIPE_DEGRADED, &sh->state); 4500 4501 set_bit(STRIPE_INSYNC, &sh->state); 4502 break; 4503 case check_state_run: 4504 case check_state_run_q: 4505 case check_state_run_pq: 4506 break; /* we will be called again upon completion */ 4507 case check_state_check_result: 4508 sh->check_state = check_state_idle; 4509 4510 /* handle a successful check operation, if parity is correct 4511 * we are done. Otherwise update the mismatch count and repair 4512 * parity if !MD_RECOVERY_CHECK 4513 */ 4514 if (sh->ops.zero_sum_result == 0) { 4515 /* both parities are correct */ 4516 if (!s->failed) 4517 set_bit(STRIPE_INSYNC, &sh->state); 4518 else { 4519 /* in contrast to the raid5 case we can validate 4520 * parity, but still have a failure to write 4521 * back 4522 */ 4523 sh->check_state = check_state_compute_result; 4524 /* Returning at this point means that we may go 4525 * off and bring p and/or q uptodate again so 4526 * we make sure to check zero_sum_result again 4527 * to verify if p or q need writeback 4528 */ 4529 } 4530 } else { 4531 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches); 4532 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) { 4533 /* don't try to repair!! */ 4534 set_bit(STRIPE_INSYNC, &sh->state); 4535 pr_warn_ratelimited("%s: mismatch sector in range " 4536 "%llu-%llu\n", mdname(conf->mddev), 4537 (unsigned long long) sh->sector, 4538 (unsigned long long) sh->sector + 4539 RAID5_STRIPE_SECTORS(conf)); 4540 } else { 4541 int *target = &sh->ops.target; 4542 4543 sh->ops.target = -1; 4544 sh->ops.target2 = -1; 4545 sh->check_state = check_state_compute_run; 4546 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 4547 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 4548 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 4549 set_bit(R5_Wantcompute, 4550 &sh->dev[pd_idx].flags); 4551 *target = pd_idx; 4552 target = &sh->ops.target2; 4553 s->uptodate++; 4554 } 4555 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 4556 set_bit(R5_Wantcompute, 4557 &sh->dev[qd_idx].flags); 4558 *target = qd_idx; 4559 s->uptodate++; 4560 } 4561 } 4562 } 4563 break; 4564 case check_state_compute_run: 4565 break; 4566 default: 4567 pr_warn("%s: unknown check_state: %d sector: %llu\n", 4568 __func__, sh->check_state, 4569 (unsigned long long) sh->sector); 4570 BUG(); 4571 } 4572 } 4573 4574 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh) 4575 { 4576 int i; 4577 4578 /* We have read all the blocks in this stripe and now we need to 4579 * copy some of them into a target stripe for expand. 4580 */ 4581 struct dma_async_tx_descriptor *tx = NULL; 4582 BUG_ON(sh->batch_head); 4583 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state); 4584 for (i = 0; i < sh->disks; i++) 4585 if (i != sh->pd_idx && i != sh->qd_idx) { 4586 int dd_idx, j; 4587 struct stripe_head *sh2; 4588 struct async_submit_ctl submit; 4589 4590 sector_t bn = raid5_compute_blocknr(sh, i, 1); 4591 sector_t s = raid5_compute_sector(conf, bn, 0, 4592 &dd_idx, NULL); 4593 sh2 = raid5_get_active_stripe(conf, NULL, s, 4594 R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE); 4595 if (sh2 == NULL) 4596 /* so far only the early blocks of this stripe 4597 * have been requested. When later blocks 4598 * get requested, we will try again 4599 */ 4600 continue; 4601 if (!test_bit(STRIPE_EXPANDING, &sh2->state) || 4602 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) { 4603 /* must have already done this block */ 4604 raid5_release_stripe(sh2); 4605 continue; 4606 } 4607 4608 /* place all the copies on one channel */ 4609 init_async_submit(&submit, 0, tx, NULL, NULL, NULL); 4610 tx = async_memcpy(sh2->dev[dd_idx].page, 4611 sh->dev[i].page, sh2->dev[dd_idx].offset, 4612 sh->dev[i].offset, RAID5_STRIPE_SIZE(conf), 4613 &submit); 4614 4615 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags); 4616 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags); 4617 for (j = 0; j < conf->raid_disks; j++) 4618 if (j != sh2->pd_idx && 4619 j != sh2->qd_idx && 4620 !test_bit(R5_Expanded, &sh2->dev[j].flags)) 4621 break; 4622 if (j == conf->raid_disks) { 4623 set_bit(STRIPE_EXPAND_READY, &sh2->state); 4624 set_bit(STRIPE_HANDLE, &sh2->state); 4625 } 4626 raid5_release_stripe(sh2); 4627 4628 } 4629 /* done submitting copies, wait for them to complete */ 4630 async_tx_quiesce(&tx); 4631 } 4632 4633 /* 4634 * handle_stripe - do things to a stripe. 4635 * 4636 * We lock the stripe by setting STRIPE_ACTIVE and then examine the 4637 * state of various bits to see what needs to be done. 4638 * Possible results: 4639 * return some read requests which now have data 4640 * return some write requests which are safely on storage 4641 * schedule a read on some buffers 4642 * schedule a write of some buffers 4643 * return confirmation of parity correctness 4644 * 4645 */ 4646 4647 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s) 4648 { 4649 struct r5conf *conf = sh->raid_conf; 4650 int disks = sh->disks; 4651 struct r5dev *dev; 4652 int i; 4653 int do_recovery = 0; 4654 4655 memset(s, 0, sizeof(*s)); 4656 4657 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head; 4658 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head; 4659 s->failed_num[0] = -1; 4660 s->failed_num[1] = -1; 4661 s->log_failed = r5l_log_disk_error(conf); 4662 4663 /* Now to look around and see what can be done */ 4664 for (i=disks; i--; ) { 4665 struct md_rdev *rdev; 4666 int is_bad = 0; 4667 4668 dev = &sh->dev[i]; 4669 4670 pr_debug("check %d: state 0x%lx read %p write %p written %p\n", 4671 i, dev->flags, 4672 dev->toread, dev->towrite, dev->written); 4673 /* maybe we can reply to a read 4674 * 4675 * new wantfill requests are only permitted while 4676 * ops_complete_biofill is guaranteed to be inactive 4677 */ 4678 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread && 4679 !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) 4680 set_bit(R5_Wantfill, &dev->flags); 4681 4682 /* now count some things */ 4683 if (test_bit(R5_LOCKED, &dev->flags)) 4684 s->locked++; 4685 if (test_bit(R5_UPTODATE, &dev->flags)) 4686 s->uptodate++; 4687 if (test_bit(R5_Wantcompute, &dev->flags)) { 4688 s->compute++; 4689 BUG_ON(s->compute > 2); 4690 } 4691 4692 if (test_bit(R5_Wantfill, &dev->flags)) 4693 s->to_fill++; 4694 else if (dev->toread) 4695 s->to_read++; 4696 if (dev->towrite) { 4697 s->to_write++; 4698 if (!test_bit(R5_OVERWRITE, &dev->flags)) 4699 s->non_overwrite++; 4700 } 4701 if (dev->written) 4702 s->written++; 4703 /* Prefer to use the replacement for reads, but only 4704 * if it is recovered enough and has no bad blocks. 4705 */ 4706 rdev = conf->disks[i].replacement; 4707 if (rdev && !test_bit(Faulty, &rdev->flags) && 4708 rdev->recovery_offset >= sh->sector + RAID5_STRIPE_SECTORS(conf) && 4709 !rdev_has_badblock(rdev, sh->sector, 4710 RAID5_STRIPE_SECTORS(conf))) 4711 set_bit(R5_ReadRepl, &dev->flags); 4712 else { 4713 if (rdev && !test_bit(Faulty, &rdev->flags)) 4714 set_bit(R5_NeedReplace, &dev->flags); 4715 else 4716 clear_bit(R5_NeedReplace, &dev->flags); 4717 rdev = conf->disks[i].rdev; 4718 clear_bit(R5_ReadRepl, &dev->flags); 4719 } 4720 if (rdev && test_bit(Faulty, &rdev->flags)) 4721 rdev = NULL; 4722 if (rdev) { 4723 is_bad = rdev_has_badblock(rdev, sh->sector, 4724 RAID5_STRIPE_SECTORS(conf)); 4725 if (s->blocked_rdev == NULL 4726 && (test_bit(Blocked, &rdev->flags) 4727 || is_bad < 0)) { 4728 if (is_bad < 0) 4729 set_bit(BlockedBadBlocks, 4730 &rdev->flags); 4731 s->blocked_rdev = rdev; 4732 atomic_inc(&rdev->nr_pending); 4733 } 4734 } 4735 clear_bit(R5_Insync, &dev->flags); 4736 if (!rdev) 4737 /* Not in-sync */; 4738 else if (is_bad) { 4739 /* also not in-sync */ 4740 if (!test_bit(WriteErrorSeen, &rdev->flags) && 4741 test_bit(R5_UPTODATE, &dev->flags)) { 4742 /* treat as in-sync, but with a read error 4743 * which we can now try to correct 4744 */ 4745 set_bit(R5_Insync, &dev->flags); 4746 set_bit(R5_ReadError, &dev->flags); 4747 } 4748 } else if (test_bit(In_sync, &rdev->flags)) 4749 set_bit(R5_Insync, &dev->flags); 4750 else if (sh->sector + RAID5_STRIPE_SECTORS(conf) <= rdev->recovery_offset) 4751 /* in sync if before recovery_offset */ 4752 set_bit(R5_Insync, &dev->flags); 4753 else if (test_bit(R5_UPTODATE, &dev->flags) && 4754 test_bit(R5_Expanded, &dev->flags)) 4755 /* If we've reshaped into here, we assume it is Insync. 4756 * We will shortly update recovery_offset to make 4757 * it official. 4758 */ 4759 set_bit(R5_Insync, &dev->flags); 4760 4761 if (test_bit(R5_WriteError, &dev->flags)) { 4762 /* This flag does not apply to '.replacement' 4763 * only to .rdev, so make sure to check that*/ 4764 struct md_rdev *rdev2 = conf->disks[i].rdev; 4765 4766 if (rdev2 == rdev) 4767 clear_bit(R5_Insync, &dev->flags); 4768 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4769 s->handle_bad_blocks = 1; 4770 atomic_inc(&rdev2->nr_pending); 4771 } else 4772 clear_bit(R5_WriteError, &dev->flags); 4773 } 4774 if (test_bit(R5_MadeGood, &dev->flags)) { 4775 /* This flag does not apply to '.replacement' 4776 * only to .rdev, so make sure to check that*/ 4777 struct md_rdev *rdev2 = conf->disks[i].rdev; 4778 4779 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4780 s->handle_bad_blocks = 1; 4781 atomic_inc(&rdev2->nr_pending); 4782 } else 4783 clear_bit(R5_MadeGood, &dev->flags); 4784 } 4785 if (test_bit(R5_MadeGoodRepl, &dev->flags)) { 4786 struct md_rdev *rdev2 = conf->disks[i].replacement; 4787 4788 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4789 s->handle_bad_blocks = 1; 4790 atomic_inc(&rdev2->nr_pending); 4791 } else 4792 clear_bit(R5_MadeGoodRepl, &dev->flags); 4793 } 4794 if (!test_bit(R5_Insync, &dev->flags)) { 4795 /* The ReadError flag will just be confusing now */ 4796 clear_bit(R5_ReadError, &dev->flags); 4797 clear_bit(R5_ReWrite, &dev->flags); 4798 } 4799 if (test_bit(R5_ReadError, &dev->flags)) 4800 clear_bit(R5_Insync, &dev->flags); 4801 if (!test_bit(R5_Insync, &dev->flags)) { 4802 if (s->failed < 2) 4803 s->failed_num[s->failed] = i; 4804 s->failed++; 4805 if (rdev && !test_bit(Faulty, &rdev->flags)) 4806 do_recovery = 1; 4807 else if (!rdev) { 4808 rdev = conf->disks[i].replacement; 4809 if (rdev && !test_bit(Faulty, &rdev->flags)) 4810 do_recovery = 1; 4811 } 4812 } 4813 4814 if (test_bit(R5_InJournal, &dev->flags)) 4815 s->injournal++; 4816 if (test_bit(R5_InJournal, &dev->flags) && dev->written) 4817 s->just_cached++; 4818 } 4819 if (test_bit(STRIPE_SYNCING, &sh->state)) { 4820 /* If there is a failed device being replaced, 4821 * we must be recovering. 4822 * else if we are after recovery_cp, we must be syncing 4823 * else if MD_RECOVERY_REQUESTED is set, we also are syncing. 4824 * else we can only be replacing 4825 * sync and recovery both need to read all devices, and so 4826 * use the same flag. 4827 */ 4828 if (do_recovery || 4829 sh->sector >= conf->mddev->recovery_cp || 4830 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery))) 4831 s->syncing = 1; 4832 else 4833 s->replacing = 1; 4834 } 4835 } 4836 4837 /* 4838 * Return '1' if this is a member of batch, or '0' if it is a lone stripe or 4839 * a head which can now be handled. 4840 */ 4841 static int clear_batch_ready(struct stripe_head *sh) 4842 { 4843 struct stripe_head *tmp; 4844 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state)) 4845 return (sh->batch_head && sh->batch_head != sh); 4846 spin_lock(&sh->stripe_lock); 4847 if (!sh->batch_head) { 4848 spin_unlock(&sh->stripe_lock); 4849 return 0; 4850 } 4851 4852 /* 4853 * this stripe could be added to a batch list before we check 4854 * BATCH_READY, skips it 4855 */ 4856 if (sh->batch_head != sh) { 4857 spin_unlock(&sh->stripe_lock); 4858 return 1; 4859 } 4860 spin_lock(&sh->batch_lock); 4861 list_for_each_entry(tmp, &sh->batch_list, batch_list) 4862 clear_bit(STRIPE_BATCH_READY, &tmp->state); 4863 spin_unlock(&sh->batch_lock); 4864 spin_unlock(&sh->stripe_lock); 4865 4866 /* 4867 * BATCH_READY is cleared, no new stripes can be added. 4868 * batch_list can be accessed without lock 4869 */ 4870 return 0; 4871 } 4872 4873 static void break_stripe_batch_list(struct stripe_head *head_sh, 4874 unsigned long handle_flags) 4875 { 4876 struct stripe_head *sh, *next; 4877 int i; 4878 int do_wakeup = 0; 4879 4880 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) { 4881 4882 list_del_init(&sh->batch_list); 4883 4884 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) | 4885 (1 << STRIPE_SYNCING) | 4886 (1 << STRIPE_REPLACED) | 4887 (1 << STRIPE_DELAYED) | 4888 (1 << STRIPE_BIT_DELAY) | 4889 (1 << STRIPE_FULL_WRITE) | 4890 (1 << STRIPE_BIOFILL_RUN) | 4891 (1 << STRIPE_COMPUTE_RUN) | 4892 (1 << STRIPE_DISCARD) | 4893 (1 << STRIPE_BATCH_READY) | 4894 (1 << STRIPE_BATCH_ERR) | 4895 (1 << STRIPE_BITMAP_PENDING)), 4896 "stripe state: %lx\n", sh->state); 4897 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) | 4898 (1 << STRIPE_REPLACED)), 4899 "head stripe state: %lx\n", head_sh->state); 4900 4901 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS | 4902 (1 << STRIPE_PREREAD_ACTIVE) | 4903 (1 << STRIPE_DEGRADED) | 4904 (1 << STRIPE_ON_UNPLUG_LIST)), 4905 head_sh->state & (1 << STRIPE_INSYNC)); 4906 4907 sh->check_state = head_sh->check_state; 4908 sh->reconstruct_state = head_sh->reconstruct_state; 4909 spin_lock_irq(&sh->stripe_lock); 4910 sh->batch_head = NULL; 4911 spin_unlock_irq(&sh->stripe_lock); 4912 for (i = 0; i < sh->disks; i++) { 4913 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 4914 do_wakeup = 1; 4915 sh->dev[i].flags = head_sh->dev[i].flags & 4916 (~((1 << R5_WriteError) | (1 << R5_Overlap))); 4917 } 4918 if (handle_flags == 0 || 4919 sh->state & handle_flags) 4920 set_bit(STRIPE_HANDLE, &sh->state); 4921 raid5_release_stripe(sh); 4922 } 4923 spin_lock_irq(&head_sh->stripe_lock); 4924 head_sh->batch_head = NULL; 4925 spin_unlock_irq(&head_sh->stripe_lock); 4926 for (i = 0; i < head_sh->disks; i++) 4927 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags)) 4928 do_wakeup = 1; 4929 if (head_sh->state & handle_flags) 4930 set_bit(STRIPE_HANDLE, &head_sh->state); 4931 4932 if (do_wakeup) 4933 wake_up(&head_sh->raid_conf->wait_for_overlap); 4934 } 4935 4936 static void handle_stripe(struct stripe_head *sh) 4937 { 4938 struct stripe_head_state s; 4939 struct r5conf *conf = sh->raid_conf; 4940 int i; 4941 int prexor; 4942 int disks = sh->disks; 4943 struct r5dev *pdev, *qdev; 4944 4945 clear_bit(STRIPE_HANDLE, &sh->state); 4946 4947 /* 4948 * handle_stripe should not continue handle the batched stripe, only 4949 * the head of batch list or lone stripe can continue. Otherwise we 4950 * could see break_stripe_batch_list warns about the STRIPE_ACTIVE 4951 * is set for the batched stripe. 4952 */ 4953 if (clear_batch_ready(sh)) 4954 return; 4955 4956 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) { 4957 /* already being handled, ensure it gets handled 4958 * again when current action finishes */ 4959 set_bit(STRIPE_HANDLE, &sh->state); 4960 return; 4961 } 4962 4963 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state)) 4964 break_stripe_batch_list(sh, 0); 4965 4966 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) { 4967 spin_lock(&sh->stripe_lock); 4968 /* 4969 * Cannot process 'sync' concurrently with 'discard'. 4970 * Flush data in r5cache before 'sync'. 4971 */ 4972 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) && 4973 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) && 4974 !test_bit(STRIPE_DISCARD, &sh->state) && 4975 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) { 4976 set_bit(STRIPE_SYNCING, &sh->state); 4977 clear_bit(STRIPE_INSYNC, &sh->state); 4978 clear_bit(STRIPE_REPLACED, &sh->state); 4979 } 4980 spin_unlock(&sh->stripe_lock); 4981 } 4982 clear_bit(STRIPE_DELAYED, &sh->state); 4983 4984 pr_debug("handling stripe %llu, state=%#lx cnt=%d, " 4985 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n", 4986 (unsigned long long)sh->sector, sh->state, 4987 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx, 4988 sh->check_state, sh->reconstruct_state); 4989 4990 analyse_stripe(sh, &s); 4991 4992 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state)) 4993 goto finish; 4994 4995 if (s.handle_bad_blocks || 4996 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) { 4997 set_bit(STRIPE_HANDLE, &sh->state); 4998 goto finish; 4999 } 5000 5001 if (unlikely(s.blocked_rdev)) { 5002 if (s.syncing || s.expanding || s.expanded || 5003 s.replacing || s.to_write || s.written) { 5004 set_bit(STRIPE_HANDLE, &sh->state); 5005 goto finish; 5006 } 5007 /* There is nothing for the blocked_rdev to block */ 5008 rdev_dec_pending(s.blocked_rdev, conf->mddev); 5009 s.blocked_rdev = NULL; 5010 } 5011 5012 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) { 5013 set_bit(STRIPE_OP_BIOFILL, &s.ops_request); 5014 set_bit(STRIPE_BIOFILL_RUN, &sh->state); 5015 } 5016 5017 pr_debug("locked=%d uptodate=%d to_read=%d" 5018 " to_write=%d failed=%d failed_num=%d,%d\n", 5019 s.locked, s.uptodate, s.to_read, s.to_write, s.failed, 5020 s.failed_num[0], s.failed_num[1]); 5021 /* 5022 * check if the array has lost more than max_degraded devices and, 5023 * if so, some requests might need to be failed. 5024 * 5025 * When journal device failed (log_failed), we will only process 5026 * the stripe if there is data need write to raid disks 5027 */ 5028 if (s.failed > conf->max_degraded || 5029 (s.log_failed && s.injournal == 0)) { 5030 sh->check_state = 0; 5031 sh->reconstruct_state = 0; 5032 break_stripe_batch_list(sh, 0); 5033 if (s.to_read+s.to_write+s.written) 5034 handle_failed_stripe(conf, sh, &s, disks); 5035 if (s.syncing + s.replacing) 5036 handle_failed_sync(conf, sh, &s); 5037 } 5038 5039 /* Now we check to see if any write operations have recently 5040 * completed 5041 */ 5042 prexor = 0; 5043 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result) 5044 prexor = 1; 5045 if (sh->reconstruct_state == reconstruct_state_drain_result || 5046 sh->reconstruct_state == reconstruct_state_prexor_drain_result) { 5047 sh->reconstruct_state = reconstruct_state_idle; 5048 5049 /* All the 'written' buffers and the parity block are ready to 5050 * be written back to disk 5051 */ 5052 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) && 5053 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)); 5054 BUG_ON(sh->qd_idx >= 0 && 5055 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) && 5056 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags)); 5057 for (i = disks; i--; ) { 5058 struct r5dev *dev = &sh->dev[i]; 5059 if (test_bit(R5_LOCKED, &dev->flags) && 5060 (i == sh->pd_idx || i == sh->qd_idx || 5061 dev->written || test_bit(R5_InJournal, 5062 &dev->flags))) { 5063 pr_debug("Writing block %d\n", i); 5064 set_bit(R5_Wantwrite, &dev->flags); 5065 if (prexor) 5066 continue; 5067 if (s.failed > 1) 5068 continue; 5069 if (!test_bit(R5_Insync, &dev->flags) || 5070 ((i == sh->pd_idx || i == sh->qd_idx) && 5071 s.failed == 0)) 5072 set_bit(STRIPE_INSYNC, &sh->state); 5073 } 5074 } 5075 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5076 s.dec_preread_active = 1; 5077 } 5078 5079 /* 5080 * might be able to return some write requests if the parity blocks 5081 * are safe, or on a failed drive 5082 */ 5083 pdev = &sh->dev[sh->pd_idx]; 5084 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx) 5085 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx); 5086 qdev = &sh->dev[sh->qd_idx]; 5087 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx) 5088 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx) 5089 || conf->level < 6; 5090 5091 if (s.written && 5092 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags) 5093 && !test_bit(R5_LOCKED, &pdev->flags) 5094 && (test_bit(R5_UPTODATE, &pdev->flags) || 5095 test_bit(R5_Discard, &pdev->flags))))) && 5096 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags) 5097 && !test_bit(R5_LOCKED, &qdev->flags) 5098 && (test_bit(R5_UPTODATE, &qdev->flags) || 5099 test_bit(R5_Discard, &qdev->flags)))))) 5100 handle_stripe_clean_event(conf, sh, disks); 5101 5102 if (s.just_cached) 5103 r5c_handle_cached_data_endio(conf, sh, disks); 5104 log_stripe_write_finished(sh); 5105 5106 /* Now we might consider reading some blocks, either to check/generate 5107 * parity, or to satisfy requests 5108 * or to load a block that is being partially written. 5109 */ 5110 if (s.to_read || s.non_overwrite 5111 || (s.to_write && s.failed) 5112 || (s.syncing && (s.uptodate + s.compute < disks)) 5113 || s.replacing 5114 || s.expanding) 5115 handle_stripe_fill(sh, &s, disks); 5116 5117 /* 5118 * When the stripe finishes full journal write cycle (write to journal 5119 * and raid disk), this is the clean up procedure so it is ready for 5120 * next operation. 5121 */ 5122 r5c_finish_stripe_write_out(conf, sh, &s); 5123 5124 /* 5125 * Now to consider new write requests, cache write back and what else, 5126 * if anything should be read. We do not handle new writes when: 5127 * 1/ A 'write' operation (copy+xor) is already in flight. 5128 * 2/ A 'check' operation is in flight, as it may clobber the parity 5129 * block. 5130 * 3/ A r5c cache log write is in flight. 5131 */ 5132 5133 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) { 5134 if (!r5c_is_writeback(conf->log)) { 5135 if (s.to_write) 5136 handle_stripe_dirtying(conf, sh, &s, disks); 5137 } else { /* write back cache */ 5138 int ret = 0; 5139 5140 /* First, try handle writes in caching phase */ 5141 if (s.to_write) 5142 ret = r5c_try_caching_write(conf, sh, &s, 5143 disks); 5144 /* 5145 * If caching phase failed: ret == -EAGAIN 5146 * OR 5147 * stripe under reclaim: !caching && injournal 5148 * 5149 * fall back to handle_stripe_dirtying() 5150 */ 5151 if (ret == -EAGAIN || 5152 /* stripe under reclaim: !caching && injournal */ 5153 (!test_bit(STRIPE_R5C_CACHING, &sh->state) && 5154 s.injournal > 0)) { 5155 ret = handle_stripe_dirtying(conf, sh, &s, 5156 disks); 5157 if (ret == -EAGAIN) 5158 goto finish; 5159 } 5160 } 5161 } 5162 5163 /* maybe we need to check and possibly fix the parity for this stripe 5164 * Any reads will already have been scheduled, so we just see if enough 5165 * data is available. The parity check is held off while parity 5166 * dependent operations are in flight. 5167 */ 5168 if (sh->check_state || 5169 (s.syncing && s.locked == 0 && 5170 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 5171 !test_bit(STRIPE_INSYNC, &sh->state))) { 5172 if (conf->level == 6) 5173 handle_parity_checks6(conf, sh, &s, disks); 5174 else 5175 handle_parity_checks5(conf, sh, &s, disks); 5176 } 5177 5178 if ((s.replacing || s.syncing) && s.locked == 0 5179 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state) 5180 && !test_bit(STRIPE_REPLACED, &sh->state)) { 5181 /* Write out to replacement devices where possible */ 5182 for (i = 0; i < conf->raid_disks; i++) 5183 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) { 5184 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags)); 5185 set_bit(R5_WantReplace, &sh->dev[i].flags); 5186 set_bit(R5_LOCKED, &sh->dev[i].flags); 5187 s.locked++; 5188 } 5189 if (s.replacing) 5190 set_bit(STRIPE_INSYNC, &sh->state); 5191 set_bit(STRIPE_REPLACED, &sh->state); 5192 } 5193 if ((s.syncing || s.replacing) && s.locked == 0 && 5194 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 5195 test_bit(STRIPE_INSYNC, &sh->state)) { 5196 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1); 5197 clear_bit(STRIPE_SYNCING, &sh->state); 5198 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 5199 wake_up(&conf->wait_for_overlap); 5200 } 5201 5202 /* If the failed drives are just a ReadError, then we might need 5203 * to progress the repair/check process 5204 */ 5205 if (s.failed <= conf->max_degraded && !conf->mddev->ro) 5206 for (i = 0; i < s.failed; i++) { 5207 struct r5dev *dev = &sh->dev[s.failed_num[i]]; 5208 if (test_bit(R5_ReadError, &dev->flags) 5209 && !test_bit(R5_LOCKED, &dev->flags) 5210 && test_bit(R5_UPTODATE, &dev->flags) 5211 ) { 5212 if (!test_bit(R5_ReWrite, &dev->flags)) { 5213 set_bit(R5_Wantwrite, &dev->flags); 5214 set_bit(R5_ReWrite, &dev->flags); 5215 } else 5216 /* let's read it back */ 5217 set_bit(R5_Wantread, &dev->flags); 5218 set_bit(R5_LOCKED, &dev->flags); 5219 s.locked++; 5220 } 5221 } 5222 5223 /* Finish reconstruct operations initiated by the expansion process */ 5224 if (sh->reconstruct_state == reconstruct_state_result) { 5225 struct stripe_head *sh_src 5226 = raid5_get_active_stripe(conf, NULL, sh->sector, 5227 R5_GAS_PREVIOUS | R5_GAS_NOBLOCK | 5228 R5_GAS_NOQUIESCE); 5229 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) { 5230 /* sh cannot be written until sh_src has been read. 5231 * so arrange for sh to be delayed a little 5232 */ 5233 set_bit(STRIPE_DELAYED, &sh->state); 5234 set_bit(STRIPE_HANDLE, &sh->state); 5235 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, 5236 &sh_src->state)) 5237 atomic_inc(&conf->preread_active_stripes); 5238 raid5_release_stripe(sh_src); 5239 goto finish; 5240 } 5241 if (sh_src) 5242 raid5_release_stripe(sh_src); 5243 5244 sh->reconstruct_state = reconstruct_state_idle; 5245 clear_bit(STRIPE_EXPANDING, &sh->state); 5246 for (i = conf->raid_disks; i--; ) { 5247 set_bit(R5_Wantwrite, &sh->dev[i].flags); 5248 set_bit(R5_LOCKED, &sh->dev[i].flags); 5249 s.locked++; 5250 } 5251 } 5252 5253 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) && 5254 !sh->reconstruct_state) { 5255 /* Need to write out all blocks after computing parity */ 5256 sh->disks = conf->raid_disks; 5257 stripe_set_idx(sh->sector, conf, 0, sh); 5258 schedule_reconstruction(sh, &s, 1, 1); 5259 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) { 5260 clear_bit(STRIPE_EXPAND_READY, &sh->state); 5261 atomic_dec(&conf->reshape_stripes); 5262 wake_up(&conf->wait_for_overlap); 5263 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1); 5264 } 5265 5266 if (s.expanding && s.locked == 0 && 5267 !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) 5268 handle_stripe_expansion(conf, sh); 5269 5270 finish: 5271 /* wait for this device to become unblocked */ 5272 if (unlikely(s.blocked_rdev)) { 5273 if (conf->mddev->external) 5274 md_wait_for_blocked_rdev(s.blocked_rdev, 5275 conf->mddev); 5276 else 5277 /* Internal metadata will immediately 5278 * be written by raid5d, so we don't 5279 * need to wait here. 5280 */ 5281 rdev_dec_pending(s.blocked_rdev, 5282 conf->mddev); 5283 } 5284 5285 if (s.handle_bad_blocks) 5286 for (i = disks; i--; ) { 5287 struct md_rdev *rdev; 5288 struct r5dev *dev = &sh->dev[i]; 5289 if (test_and_clear_bit(R5_WriteError, &dev->flags)) { 5290 /* We own a safe reference to the rdev */ 5291 rdev = conf->disks[i].rdev; 5292 if (!rdev_set_badblocks(rdev, sh->sector, 5293 RAID5_STRIPE_SECTORS(conf), 0)) 5294 md_error(conf->mddev, rdev); 5295 rdev_dec_pending(rdev, conf->mddev); 5296 } 5297 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) { 5298 rdev = conf->disks[i].rdev; 5299 rdev_clear_badblocks(rdev, sh->sector, 5300 RAID5_STRIPE_SECTORS(conf), 0); 5301 rdev_dec_pending(rdev, conf->mddev); 5302 } 5303 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) { 5304 rdev = conf->disks[i].replacement; 5305 if (!rdev) 5306 /* rdev have been moved down */ 5307 rdev = conf->disks[i].rdev; 5308 rdev_clear_badblocks(rdev, sh->sector, 5309 RAID5_STRIPE_SECTORS(conf), 0); 5310 rdev_dec_pending(rdev, conf->mddev); 5311 } 5312 } 5313 5314 if (s.ops_request) 5315 raid_run_ops(sh, s.ops_request); 5316 5317 ops_run_io(sh, &s); 5318 5319 if (s.dec_preread_active) { 5320 /* We delay this until after ops_run_io so that if make_request 5321 * is waiting on a flush, it won't continue until the writes 5322 * have actually been submitted. 5323 */ 5324 atomic_dec(&conf->preread_active_stripes); 5325 if (atomic_read(&conf->preread_active_stripes) < 5326 IO_THRESHOLD) 5327 md_wakeup_thread(conf->mddev->thread); 5328 } 5329 5330 clear_bit_unlock(STRIPE_ACTIVE, &sh->state); 5331 } 5332 5333 static void raid5_activate_delayed(struct r5conf *conf) 5334 __must_hold(&conf->device_lock) 5335 { 5336 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) { 5337 while (!list_empty(&conf->delayed_list)) { 5338 struct list_head *l = conf->delayed_list.next; 5339 struct stripe_head *sh; 5340 sh = list_entry(l, struct stripe_head, lru); 5341 list_del_init(l); 5342 clear_bit(STRIPE_DELAYED, &sh->state); 5343 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5344 atomic_inc(&conf->preread_active_stripes); 5345 list_add_tail(&sh->lru, &conf->hold_list); 5346 raid5_wakeup_stripe_thread(sh); 5347 } 5348 } 5349 } 5350 5351 static void activate_bit_delay(struct r5conf *conf, 5352 struct list_head *temp_inactive_list) 5353 __must_hold(&conf->device_lock) 5354 { 5355 struct list_head head; 5356 list_add(&head, &conf->bitmap_list); 5357 list_del_init(&conf->bitmap_list); 5358 while (!list_empty(&head)) { 5359 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru); 5360 int hash; 5361 list_del_init(&sh->lru); 5362 atomic_inc(&sh->count); 5363 hash = sh->hash_lock_index; 5364 __release_stripe(conf, sh, &temp_inactive_list[hash]); 5365 } 5366 } 5367 5368 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio) 5369 { 5370 struct r5conf *conf = mddev->private; 5371 sector_t sector = bio->bi_iter.bi_sector; 5372 unsigned int chunk_sectors; 5373 unsigned int bio_sectors = bio_sectors(bio); 5374 5375 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors); 5376 return chunk_sectors >= 5377 ((sector & (chunk_sectors - 1)) + bio_sectors); 5378 } 5379 5380 /* 5381 * add bio to the retry LIFO ( in O(1) ... we are in interrupt ) 5382 * later sampled by raid5d. 5383 */ 5384 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf) 5385 { 5386 unsigned long flags; 5387 5388 spin_lock_irqsave(&conf->device_lock, flags); 5389 5390 bi->bi_next = conf->retry_read_aligned_list; 5391 conf->retry_read_aligned_list = bi; 5392 5393 spin_unlock_irqrestore(&conf->device_lock, flags); 5394 md_wakeup_thread(conf->mddev->thread); 5395 } 5396 5397 static struct bio *remove_bio_from_retry(struct r5conf *conf, 5398 unsigned int *offset) 5399 { 5400 struct bio *bi; 5401 5402 bi = conf->retry_read_aligned; 5403 if (bi) { 5404 *offset = conf->retry_read_offset; 5405 conf->retry_read_aligned = NULL; 5406 return bi; 5407 } 5408 bi = conf->retry_read_aligned_list; 5409 if(bi) { 5410 conf->retry_read_aligned_list = bi->bi_next; 5411 bi->bi_next = NULL; 5412 *offset = 0; 5413 } 5414 5415 return bi; 5416 } 5417 5418 /* 5419 * The "raid5_align_endio" should check if the read succeeded and if it 5420 * did, call bio_endio on the original bio (having bio_put the new bio 5421 * first). 5422 * If the read failed.. 5423 */ 5424 static void raid5_align_endio(struct bio *bi) 5425 { 5426 struct bio *raid_bi = bi->bi_private; 5427 struct md_rdev *rdev = (void *)raid_bi->bi_next; 5428 struct mddev *mddev = rdev->mddev; 5429 struct r5conf *conf = mddev->private; 5430 blk_status_t error = bi->bi_status; 5431 5432 bio_put(bi); 5433 raid_bi->bi_next = NULL; 5434 rdev_dec_pending(rdev, conf->mddev); 5435 5436 if (!error) { 5437 bio_endio(raid_bi); 5438 if (atomic_dec_and_test(&conf->active_aligned_reads)) 5439 wake_up(&conf->wait_for_quiescent); 5440 return; 5441 } 5442 5443 pr_debug("raid5_align_endio : io error...handing IO for a retry\n"); 5444 5445 add_bio_to_retry(raid_bi, conf); 5446 } 5447 5448 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio) 5449 { 5450 struct r5conf *conf = mddev->private; 5451 struct bio *align_bio; 5452 struct md_rdev *rdev; 5453 sector_t sector, end_sector; 5454 int dd_idx; 5455 bool did_inc; 5456 5457 if (!in_chunk_boundary(mddev, raid_bio)) { 5458 pr_debug("%s: non aligned\n", __func__); 5459 return 0; 5460 } 5461 5462 sector = raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 0, 5463 &dd_idx, NULL); 5464 end_sector = sector + bio_sectors(raid_bio); 5465 5466 if (r5c_big_stripe_cached(conf, sector)) 5467 return 0; 5468 5469 rdev = conf->disks[dd_idx].replacement; 5470 if (!rdev || test_bit(Faulty, &rdev->flags) || 5471 rdev->recovery_offset < end_sector) { 5472 rdev = conf->disks[dd_idx].rdev; 5473 if (!rdev) 5474 return 0; 5475 if (test_bit(Faulty, &rdev->flags) || 5476 !(test_bit(In_sync, &rdev->flags) || 5477 rdev->recovery_offset >= end_sector)) 5478 return 0; 5479 } 5480 5481 atomic_inc(&rdev->nr_pending); 5482 5483 if (rdev_has_badblock(rdev, sector, bio_sectors(raid_bio))) { 5484 rdev_dec_pending(rdev, mddev); 5485 return 0; 5486 } 5487 5488 md_account_bio(mddev, &raid_bio); 5489 raid_bio->bi_next = (void *)rdev; 5490 5491 align_bio = bio_alloc_clone(rdev->bdev, raid_bio, GFP_NOIO, 5492 &mddev->bio_set); 5493 align_bio->bi_end_io = raid5_align_endio; 5494 align_bio->bi_private = raid_bio; 5495 align_bio->bi_iter.bi_sector = sector; 5496 5497 /* No reshape active, so we can trust rdev->data_offset */ 5498 align_bio->bi_iter.bi_sector += rdev->data_offset; 5499 5500 did_inc = false; 5501 if (conf->quiesce == 0) { 5502 atomic_inc(&conf->active_aligned_reads); 5503 did_inc = true; 5504 } 5505 /* need a memory barrier to detect the race with raid5_quiesce() */ 5506 if (!did_inc || smp_load_acquire(&conf->quiesce) != 0) { 5507 /* quiesce is in progress, so we need to undo io activation and wait 5508 * for it to finish 5509 */ 5510 if (did_inc && atomic_dec_and_test(&conf->active_aligned_reads)) 5511 wake_up(&conf->wait_for_quiescent); 5512 spin_lock_irq(&conf->device_lock); 5513 wait_event_lock_irq(conf->wait_for_quiescent, conf->quiesce == 0, 5514 conf->device_lock); 5515 atomic_inc(&conf->active_aligned_reads); 5516 spin_unlock_irq(&conf->device_lock); 5517 } 5518 5519 mddev_trace_remap(mddev, align_bio, raid_bio->bi_iter.bi_sector); 5520 submit_bio_noacct(align_bio); 5521 return 1; 5522 } 5523 5524 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio) 5525 { 5526 struct bio *split; 5527 sector_t sector = raid_bio->bi_iter.bi_sector; 5528 unsigned chunk_sects = mddev->chunk_sectors; 5529 unsigned sectors = chunk_sects - (sector & (chunk_sects-1)); 5530 5531 if (sectors < bio_sectors(raid_bio)) { 5532 struct r5conf *conf = mddev->private; 5533 split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split); 5534 bio_chain(split, raid_bio); 5535 submit_bio_noacct(raid_bio); 5536 raid_bio = split; 5537 } 5538 5539 if (!raid5_read_one_chunk(mddev, raid_bio)) 5540 return raid_bio; 5541 5542 return NULL; 5543 } 5544 5545 /* __get_priority_stripe - get the next stripe to process 5546 * 5547 * Full stripe writes are allowed to pass preread active stripes up until 5548 * the bypass_threshold is exceeded. In general the bypass_count 5549 * increments when the handle_list is handled before the hold_list; however, it 5550 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a 5551 * stripe with in flight i/o. The bypass_count will be reset when the 5552 * head of the hold_list has changed, i.e. the head was promoted to the 5553 * handle_list. 5554 */ 5555 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group) 5556 __must_hold(&conf->device_lock) 5557 { 5558 struct stripe_head *sh, *tmp; 5559 struct list_head *handle_list = NULL; 5560 struct r5worker_group *wg; 5561 bool second_try = !r5c_is_writeback(conf->log) && 5562 !r5l_log_disk_error(conf); 5563 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) || 5564 r5l_log_disk_error(conf); 5565 5566 again: 5567 wg = NULL; 5568 sh = NULL; 5569 if (conf->worker_cnt_per_group == 0) { 5570 handle_list = try_loprio ? &conf->loprio_list : 5571 &conf->handle_list; 5572 } else if (group != ANY_GROUP) { 5573 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list : 5574 &conf->worker_groups[group].handle_list; 5575 wg = &conf->worker_groups[group]; 5576 } else { 5577 int i; 5578 for (i = 0; i < conf->group_cnt; i++) { 5579 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list : 5580 &conf->worker_groups[i].handle_list; 5581 wg = &conf->worker_groups[i]; 5582 if (!list_empty(handle_list)) 5583 break; 5584 } 5585 } 5586 5587 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n", 5588 __func__, 5589 list_empty(handle_list) ? "empty" : "busy", 5590 list_empty(&conf->hold_list) ? "empty" : "busy", 5591 atomic_read(&conf->pending_full_writes), conf->bypass_count); 5592 5593 if (!list_empty(handle_list)) { 5594 sh = list_entry(handle_list->next, typeof(*sh), lru); 5595 5596 if (list_empty(&conf->hold_list)) 5597 conf->bypass_count = 0; 5598 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) { 5599 if (conf->hold_list.next == conf->last_hold) 5600 conf->bypass_count++; 5601 else { 5602 conf->last_hold = conf->hold_list.next; 5603 conf->bypass_count -= conf->bypass_threshold; 5604 if (conf->bypass_count < 0) 5605 conf->bypass_count = 0; 5606 } 5607 } 5608 } else if (!list_empty(&conf->hold_list) && 5609 ((conf->bypass_threshold && 5610 conf->bypass_count > conf->bypass_threshold) || 5611 atomic_read(&conf->pending_full_writes) == 0)) { 5612 5613 list_for_each_entry(tmp, &conf->hold_list, lru) { 5614 if (conf->worker_cnt_per_group == 0 || 5615 group == ANY_GROUP || 5616 !cpu_online(tmp->cpu) || 5617 cpu_to_group(tmp->cpu) == group) { 5618 sh = tmp; 5619 break; 5620 } 5621 } 5622 5623 if (sh) { 5624 conf->bypass_count -= conf->bypass_threshold; 5625 if (conf->bypass_count < 0) 5626 conf->bypass_count = 0; 5627 } 5628 wg = NULL; 5629 } 5630 5631 if (!sh) { 5632 if (second_try) 5633 return NULL; 5634 second_try = true; 5635 try_loprio = !try_loprio; 5636 goto again; 5637 } 5638 5639 if (wg) { 5640 wg->stripes_cnt--; 5641 sh->group = NULL; 5642 } 5643 list_del_init(&sh->lru); 5644 BUG_ON(atomic_inc_return(&sh->count) != 1); 5645 return sh; 5646 } 5647 5648 struct raid5_plug_cb { 5649 struct blk_plug_cb cb; 5650 struct list_head list; 5651 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS]; 5652 }; 5653 5654 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule) 5655 { 5656 struct raid5_plug_cb *cb = container_of( 5657 blk_cb, struct raid5_plug_cb, cb); 5658 struct stripe_head *sh; 5659 struct mddev *mddev = cb->cb.data; 5660 struct r5conf *conf = mddev->private; 5661 int cnt = 0; 5662 int hash; 5663 5664 if (cb->list.next && !list_empty(&cb->list)) { 5665 spin_lock_irq(&conf->device_lock); 5666 while (!list_empty(&cb->list)) { 5667 sh = list_first_entry(&cb->list, struct stripe_head, lru); 5668 list_del_init(&sh->lru); 5669 /* 5670 * avoid race release_stripe_plug() sees 5671 * STRIPE_ON_UNPLUG_LIST clear but the stripe 5672 * is still in our list 5673 */ 5674 smp_mb__before_atomic(); 5675 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state); 5676 /* 5677 * STRIPE_ON_RELEASE_LIST could be set here. In that 5678 * case, the count is always > 1 here 5679 */ 5680 hash = sh->hash_lock_index; 5681 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]); 5682 cnt++; 5683 } 5684 spin_unlock_irq(&conf->device_lock); 5685 } 5686 release_inactive_stripe_list(conf, cb->temp_inactive_list, 5687 NR_STRIPE_HASH_LOCKS); 5688 if (!mddev_is_dm(mddev)) 5689 trace_block_unplug(mddev->gendisk->queue, cnt, !from_schedule); 5690 kfree(cb); 5691 } 5692 5693 static void release_stripe_plug(struct mddev *mddev, 5694 struct stripe_head *sh) 5695 { 5696 struct blk_plug_cb *blk_cb = blk_check_plugged( 5697 raid5_unplug, mddev, 5698 sizeof(struct raid5_plug_cb)); 5699 struct raid5_plug_cb *cb; 5700 5701 if (!blk_cb) { 5702 raid5_release_stripe(sh); 5703 return; 5704 } 5705 5706 cb = container_of(blk_cb, struct raid5_plug_cb, cb); 5707 5708 if (cb->list.next == NULL) { 5709 int i; 5710 INIT_LIST_HEAD(&cb->list); 5711 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 5712 INIT_LIST_HEAD(cb->temp_inactive_list + i); 5713 } 5714 5715 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)) 5716 list_add_tail(&sh->lru, &cb->list); 5717 else 5718 raid5_release_stripe(sh); 5719 } 5720 5721 static void make_discard_request(struct mddev *mddev, struct bio *bi) 5722 { 5723 struct r5conf *conf = mddev->private; 5724 sector_t logical_sector, last_sector; 5725 struct stripe_head *sh; 5726 int stripe_sectors; 5727 5728 /* We need to handle this when io_uring supports discard/trim */ 5729 if (WARN_ON_ONCE(bi->bi_opf & REQ_NOWAIT)) 5730 return; 5731 5732 if (mddev->reshape_position != MaxSector) 5733 /* Skip discard while reshape is happening */ 5734 return; 5735 5736 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1); 5737 last_sector = bio_end_sector(bi); 5738 5739 bi->bi_next = NULL; 5740 5741 stripe_sectors = conf->chunk_sectors * 5742 (conf->raid_disks - conf->max_degraded); 5743 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector, 5744 stripe_sectors); 5745 sector_div(last_sector, stripe_sectors); 5746 5747 logical_sector *= conf->chunk_sectors; 5748 last_sector *= conf->chunk_sectors; 5749 5750 for (; logical_sector < last_sector; 5751 logical_sector += RAID5_STRIPE_SECTORS(conf)) { 5752 DEFINE_WAIT(w); 5753 int d; 5754 again: 5755 sh = raid5_get_active_stripe(conf, NULL, logical_sector, 0); 5756 prepare_to_wait(&conf->wait_for_overlap, &w, 5757 TASK_UNINTERRUPTIBLE); 5758 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 5759 if (test_bit(STRIPE_SYNCING, &sh->state)) { 5760 raid5_release_stripe(sh); 5761 schedule(); 5762 goto again; 5763 } 5764 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 5765 spin_lock_irq(&sh->stripe_lock); 5766 for (d = 0; d < conf->raid_disks; d++) { 5767 if (d == sh->pd_idx || d == sh->qd_idx) 5768 continue; 5769 if (sh->dev[d].towrite || sh->dev[d].toread) { 5770 set_bit(R5_Overlap, &sh->dev[d].flags); 5771 spin_unlock_irq(&sh->stripe_lock); 5772 raid5_release_stripe(sh); 5773 schedule(); 5774 goto again; 5775 } 5776 } 5777 set_bit(STRIPE_DISCARD, &sh->state); 5778 finish_wait(&conf->wait_for_overlap, &w); 5779 sh->overwrite_disks = 0; 5780 for (d = 0; d < conf->raid_disks; d++) { 5781 if (d == sh->pd_idx || d == sh->qd_idx) 5782 continue; 5783 sh->dev[d].towrite = bi; 5784 set_bit(R5_OVERWRITE, &sh->dev[d].flags); 5785 bio_inc_remaining(bi); 5786 md_write_inc(mddev, bi); 5787 sh->overwrite_disks++; 5788 } 5789 spin_unlock_irq(&sh->stripe_lock); 5790 if (conf->mddev->bitmap) { 5791 for (d = 0; 5792 d < conf->raid_disks - conf->max_degraded; 5793 d++) 5794 md_bitmap_startwrite(mddev->bitmap, 5795 sh->sector, 5796 RAID5_STRIPE_SECTORS(conf), 5797 0); 5798 sh->bm_seq = conf->seq_flush + 1; 5799 set_bit(STRIPE_BIT_DELAY, &sh->state); 5800 } 5801 5802 set_bit(STRIPE_HANDLE, &sh->state); 5803 clear_bit(STRIPE_DELAYED, &sh->state); 5804 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5805 atomic_inc(&conf->preread_active_stripes); 5806 release_stripe_plug(mddev, sh); 5807 } 5808 5809 bio_endio(bi); 5810 } 5811 5812 static bool ahead_of_reshape(struct mddev *mddev, sector_t sector, 5813 sector_t reshape_sector) 5814 { 5815 return mddev->reshape_backwards ? sector < reshape_sector : 5816 sector >= reshape_sector; 5817 } 5818 5819 static bool range_ahead_of_reshape(struct mddev *mddev, sector_t min, 5820 sector_t max, sector_t reshape_sector) 5821 { 5822 return mddev->reshape_backwards ? max < reshape_sector : 5823 min >= reshape_sector; 5824 } 5825 5826 static bool stripe_ahead_of_reshape(struct mddev *mddev, struct r5conf *conf, 5827 struct stripe_head *sh) 5828 { 5829 sector_t max_sector = 0, min_sector = MaxSector; 5830 bool ret = false; 5831 int dd_idx; 5832 5833 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) { 5834 if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx) 5835 continue; 5836 5837 min_sector = min(min_sector, sh->dev[dd_idx].sector); 5838 max_sector = max(max_sector, sh->dev[dd_idx].sector); 5839 } 5840 5841 spin_lock_irq(&conf->device_lock); 5842 5843 if (!range_ahead_of_reshape(mddev, min_sector, max_sector, 5844 conf->reshape_progress)) 5845 /* mismatch, need to try again */ 5846 ret = true; 5847 5848 spin_unlock_irq(&conf->device_lock); 5849 5850 return ret; 5851 } 5852 5853 static int add_all_stripe_bios(struct r5conf *conf, 5854 struct stripe_request_ctx *ctx, struct stripe_head *sh, 5855 struct bio *bi, int forwrite, int previous) 5856 { 5857 int dd_idx; 5858 int ret = 1; 5859 5860 spin_lock_irq(&sh->stripe_lock); 5861 5862 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) { 5863 struct r5dev *dev = &sh->dev[dd_idx]; 5864 5865 if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx) 5866 continue; 5867 5868 if (dev->sector < ctx->first_sector || 5869 dev->sector >= ctx->last_sector) 5870 continue; 5871 5872 if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) { 5873 set_bit(R5_Overlap, &dev->flags); 5874 ret = 0; 5875 continue; 5876 } 5877 } 5878 5879 if (!ret) 5880 goto out; 5881 5882 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) { 5883 struct r5dev *dev = &sh->dev[dd_idx]; 5884 5885 if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx) 5886 continue; 5887 5888 if (dev->sector < ctx->first_sector || 5889 dev->sector >= ctx->last_sector) 5890 continue; 5891 5892 __add_stripe_bio(sh, bi, dd_idx, forwrite, previous); 5893 clear_bit((dev->sector - ctx->first_sector) >> 5894 RAID5_STRIPE_SHIFT(conf), ctx->sectors_to_do); 5895 } 5896 5897 out: 5898 spin_unlock_irq(&sh->stripe_lock); 5899 return ret; 5900 } 5901 5902 static enum stripe_result make_stripe_request(struct mddev *mddev, 5903 struct r5conf *conf, struct stripe_request_ctx *ctx, 5904 sector_t logical_sector, struct bio *bi) 5905 { 5906 const int rw = bio_data_dir(bi); 5907 enum stripe_result ret; 5908 struct stripe_head *sh; 5909 sector_t new_sector; 5910 int previous = 0, flags = 0; 5911 int seq, dd_idx; 5912 5913 seq = read_seqcount_begin(&conf->gen_lock); 5914 5915 if (unlikely(conf->reshape_progress != MaxSector)) { 5916 /* 5917 * Spinlock is needed as reshape_progress may be 5918 * 64bit on a 32bit platform, and so it might be 5919 * possible to see a half-updated value 5920 * Of course reshape_progress could change after 5921 * the lock is dropped, so once we get a reference 5922 * to the stripe that we think it is, we will have 5923 * to check again. 5924 */ 5925 spin_lock_irq(&conf->device_lock); 5926 if (ahead_of_reshape(mddev, logical_sector, 5927 conf->reshape_progress)) { 5928 previous = 1; 5929 } else { 5930 if (ahead_of_reshape(mddev, logical_sector, 5931 conf->reshape_safe)) { 5932 spin_unlock_irq(&conf->device_lock); 5933 ret = STRIPE_SCHEDULE_AND_RETRY; 5934 goto out; 5935 } 5936 } 5937 spin_unlock_irq(&conf->device_lock); 5938 } 5939 5940 new_sector = raid5_compute_sector(conf, logical_sector, previous, 5941 &dd_idx, NULL); 5942 pr_debug("raid456: %s, sector %llu logical %llu\n", __func__, 5943 new_sector, logical_sector); 5944 5945 if (previous) 5946 flags |= R5_GAS_PREVIOUS; 5947 if (bi->bi_opf & REQ_RAHEAD) 5948 flags |= R5_GAS_NOBLOCK; 5949 sh = raid5_get_active_stripe(conf, ctx, new_sector, flags); 5950 if (unlikely(!sh)) { 5951 /* cannot get stripe, just give-up */ 5952 bi->bi_status = BLK_STS_IOERR; 5953 return STRIPE_FAIL; 5954 } 5955 5956 if (unlikely(previous) && 5957 stripe_ahead_of_reshape(mddev, conf, sh)) { 5958 /* 5959 * Expansion moved on while waiting for a stripe. 5960 * Expansion could still move past after this 5961 * test, but as we are holding a reference to 5962 * 'sh', we know that if that happens, 5963 * STRIPE_EXPANDING will get set and the expansion 5964 * won't proceed until we finish with the stripe. 5965 */ 5966 ret = STRIPE_SCHEDULE_AND_RETRY; 5967 goto out_release; 5968 } 5969 5970 if (read_seqcount_retry(&conf->gen_lock, seq)) { 5971 /* Might have got the wrong stripe_head by accident */ 5972 ret = STRIPE_RETRY; 5973 goto out_release; 5974 } 5975 5976 if (test_bit(STRIPE_EXPANDING, &sh->state) || 5977 !add_all_stripe_bios(conf, ctx, sh, bi, rw, previous)) { 5978 /* 5979 * Stripe is busy expanding or add failed due to 5980 * overlap. Flush everything and wait a while. 5981 */ 5982 md_wakeup_thread(mddev->thread); 5983 ret = STRIPE_SCHEDULE_AND_RETRY; 5984 goto out_release; 5985 } 5986 5987 if (stripe_can_batch(sh)) { 5988 stripe_add_to_batch_list(conf, sh, ctx->batch_last); 5989 if (ctx->batch_last) 5990 raid5_release_stripe(ctx->batch_last); 5991 atomic_inc(&sh->count); 5992 ctx->batch_last = sh; 5993 } 5994 5995 if (ctx->do_flush) { 5996 set_bit(STRIPE_R5C_PREFLUSH, &sh->state); 5997 /* we only need flush for one stripe */ 5998 ctx->do_flush = false; 5999 } 6000 6001 set_bit(STRIPE_HANDLE, &sh->state); 6002 clear_bit(STRIPE_DELAYED, &sh->state); 6003 if ((!sh->batch_head || sh == sh->batch_head) && 6004 (bi->bi_opf & REQ_SYNC) && 6005 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 6006 atomic_inc(&conf->preread_active_stripes); 6007 6008 release_stripe_plug(mddev, sh); 6009 return STRIPE_SUCCESS; 6010 6011 out_release: 6012 raid5_release_stripe(sh); 6013 out: 6014 if (ret == STRIPE_SCHEDULE_AND_RETRY && reshape_interrupted(mddev)) { 6015 bi->bi_status = BLK_STS_RESOURCE; 6016 ret = STRIPE_WAIT_RESHAPE; 6017 pr_err_ratelimited("dm-raid456: io across reshape position while reshape can't make progress"); 6018 } 6019 return ret; 6020 } 6021 6022 /* 6023 * If the bio covers multiple data disks, find sector within the bio that has 6024 * the lowest chunk offset in the first chunk. 6025 */ 6026 static sector_t raid5_bio_lowest_chunk_sector(struct r5conf *conf, 6027 struct bio *bi) 6028 { 6029 int sectors_per_chunk = conf->chunk_sectors; 6030 int raid_disks = conf->raid_disks; 6031 int dd_idx; 6032 struct stripe_head sh; 6033 unsigned int chunk_offset; 6034 sector_t r_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1); 6035 sector_t sector; 6036 6037 /* We pass in fake stripe_head to get back parity disk numbers */ 6038 sector = raid5_compute_sector(conf, r_sector, 0, &dd_idx, &sh); 6039 chunk_offset = sector_div(sector, sectors_per_chunk); 6040 if (sectors_per_chunk - chunk_offset >= bio_sectors(bi)) 6041 return r_sector; 6042 /* 6043 * Bio crosses to the next data disk. Check whether it's in the same 6044 * chunk. 6045 */ 6046 dd_idx++; 6047 while (dd_idx == sh.pd_idx || dd_idx == sh.qd_idx) 6048 dd_idx++; 6049 if (dd_idx >= raid_disks) 6050 return r_sector; 6051 return r_sector + sectors_per_chunk - chunk_offset; 6052 } 6053 6054 static bool raid5_make_request(struct mddev *mddev, struct bio * bi) 6055 { 6056 DEFINE_WAIT_FUNC(wait, woken_wake_function); 6057 struct r5conf *conf = mddev->private; 6058 sector_t logical_sector; 6059 struct stripe_request_ctx ctx = {}; 6060 const int rw = bio_data_dir(bi); 6061 enum stripe_result res; 6062 int s, stripe_cnt; 6063 6064 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) { 6065 int ret = log_handle_flush_request(conf, bi); 6066 6067 if (ret == 0) 6068 return true; 6069 if (ret == -ENODEV) { 6070 if (md_flush_request(mddev, bi)) 6071 return true; 6072 } 6073 /* ret == -EAGAIN, fallback */ 6074 /* 6075 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH, 6076 * we need to flush journal device 6077 */ 6078 ctx.do_flush = bi->bi_opf & REQ_PREFLUSH; 6079 } 6080 6081 if (!md_write_start(mddev, bi)) 6082 return false; 6083 /* 6084 * If array is degraded, better not do chunk aligned read because 6085 * later we might have to read it again in order to reconstruct 6086 * data on failed drives. 6087 */ 6088 if (rw == READ && mddev->degraded == 0 && 6089 mddev->reshape_position == MaxSector) { 6090 bi = chunk_aligned_read(mddev, bi); 6091 if (!bi) 6092 return true; 6093 } 6094 6095 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) { 6096 make_discard_request(mddev, bi); 6097 md_write_end(mddev); 6098 return true; 6099 } 6100 6101 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1); 6102 ctx.first_sector = logical_sector; 6103 ctx.last_sector = bio_end_sector(bi); 6104 bi->bi_next = NULL; 6105 6106 stripe_cnt = DIV_ROUND_UP_SECTOR_T(ctx.last_sector - logical_sector, 6107 RAID5_STRIPE_SECTORS(conf)); 6108 bitmap_set(ctx.sectors_to_do, 0, stripe_cnt); 6109 6110 pr_debug("raid456: %s, logical %llu to %llu\n", __func__, 6111 bi->bi_iter.bi_sector, ctx.last_sector); 6112 6113 /* Bail out if conflicts with reshape and REQ_NOWAIT is set */ 6114 if ((bi->bi_opf & REQ_NOWAIT) && 6115 (conf->reshape_progress != MaxSector) && 6116 !ahead_of_reshape(mddev, logical_sector, conf->reshape_progress) && 6117 ahead_of_reshape(mddev, logical_sector, conf->reshape_safe)) { 6118 bio_wouldblock_error(bi); 6119 if (rw == WRITE) 6120 md_write_end(mddev); 6121 return true; 6122 } 6123 md_account_bio(mddev, &bi); 6124 6125 /* 6126 * Lets start with the stripe with the lowest chunk offset in the first 6127 * chunk. That has the best chances of creating IOs adjacent to 6128 * previous IOs in case of sequential IO and thus creates the most 6129 * sequential IO pattern. We don't bother with the optimization when 6130 * reshaping as the performance benefit is not worth the complexity. 6131 */ 6132 if (likely(conf->reshape_progress == MaxSector)) 6133 logical_sector = raid5_bio_lowest_chunk_sector(conf, bi); 6134 s = (logical_sector - ctx.first_sector) >> RAID5_STRIPE_SHIFT(conf); 6135 6136 add_wait_queue(&conf->wait_for_overlap, &wait); 6137 while (1) { 6138 res = make_stripe_request(mddev, conf, &ctx, logical_sector, 6139 bi); 6140 if (res == STRIPE_FAIL || res == STRIPE_WAIT_RESHAPE) 6141 break; 6142 6143 if (res == STRIPE_RETRY) 6144 continue; 6145 6146 if (res == STRIPE_SCHEDULE_AND_RETRY) { 6147 /* 6148 * Must release the reference to batch_last before 6149 * scheduling and waiting for work to be done, 6150 * otherwise the batch_last stripe head could prevent 6151 * raid5_activate_delayed() from making progress 6152 * and thus deadlocking. 6153 */ 6154 if (ctx.batch_last) { 6155 raid5_release_stripe(ctx.batch_last); 6156 ctx.batch_last = NULL; 6157 } 6158 6159 wait_woken(&wait, TASK_UNINTERRUPTIBLE, 6160 MAX_SCHEDULE_TIMEOUT); 6161 continue; 6162 } 6163 6164 s = find_next_bit_wrap(ctx.sectors_to_do, stripe_cnt, s); 6165 if (s == stripe_cnt) 6166 break; 6167 6168 logical_sector = ctx.first_sector + 6169 (s << RAID5_STRIPE_SHIFT(conf)); 6170 } 6171 remove_wait_queue(&conf->wait_for_overlap, &wait); 6172 6173 if (ctx.batch_last) 6174 raid5_release_stripe(ctx.batch_last); 6175 6176 if (rw == WRITE) 6177 md_write_end(mddev); 6178 if (res == STRIPE_WAIT_RESHAPE) { 6179 md_free_cloned_bio(bi); 6180 return false; 6181 } 6182 6183 bio_endio(bi); 6184 return true; 6185 } 6186 6187 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks); 6188 6189 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped) 6190 { 6191 /* reshaping is quite different to recovery/resync so it is 6192 * handled quite separately ... here. 6193 * 6194 * On each call to sync_request, we gather one chunk worth of 6195 * destination stripes and flag them as expanding. 6196 * Then we find all the source stripes and request reads. 6197 * As the reads complete, handle_stripe will copy the data 6198 * into the destination stripe and release that stripe. 6199 */ 6200 struct r5conf *conf = mddev->private; 6201 struct stripe_head *sh; 6202 struct md_rdev *rdev; 6203 sector_t first_sector, last_sector; 6204 int raid_disks = conf->previous_raid_disks; 6205 int data_disks = raid_disks - conf->max_degraded; 6206 int new_data_disks = conf->raid_disks - conf->max_degraded; 6207 int i; 6208 int dd_idx; 6209 sector_t writepos, readpos, safepos; 6210 sector_t stripe_addr; 6211 int reshape_sectors; 6212 struct list_head stripes; 6213 sector_t retn; 6214 6215 if (sector_nr == 0) { 6216 /* If restarting in the middle, skip the initial sectors */ 6217 if (mddev->reshape_backwards && 6218 conf->reshape_progress < raid5_size(mddev, 0, 0)) { 6219 sector_nr = raid5_size(mddev, 0, 0) 6220 - conf->reshape_progress; 6221 } else if (mddev->reshape_backwards && 6222 conf->reshape_progress == MaxSector) { 6223 /* shouldn't happen, but just in case, finish up.*/ 6224 sector_nr = MaxSector; 6225 } else if (!mddev->reshape_backwards && 6226 conf->reshape_progress > 0) 6227 sector_nr = conf->reshape_progress; 6228 sector_div(sector_nr, new_data_disks); 6229 if (sector_nr) { 6230 mddev->curr_resync_completed = sector_nr; 6231 sysfs_notify_dirent_safe(mddev->sysfs_completed); 6232 *skipped = 1; 6233 retn = sector_nr; 6234 goto finish; 6235 } 6236 } 6237 6238 /* We need to process a full chunk at a time. 6239 * If old and new chunk sizes differ, we need to process the 6240 * largest of these 6241 */ 6242 6243 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors); 6244 6245 /* We update the metadata at least every 10 seconds, or when 6246 * the data about to be copied would over-write the source of 6247 * the data at the front of the range. i.e. one new_stripe 6248 * along from reshape_progress new_maps to after where 6249 * reshape_safe old_maps to 6250 */ 6251 writepos = conf->reshape_progress; 6252 sector_div(writepos, new_data_disks); 6253 readpos = conf->reshape_progress; 6254 sector_div(readpos, data_disks); 6255 safepos = conf->reshape_safe; 6256 sector_div(safepos, data_disks); 6257 if (mddev->reshape_backwards) { 6258 BUG_ON(writepos < reshape_sectors); 6259 writepos -= reshape_sectors; 6260 readpos += reshape_sectors; 6261 safepos += reshape_sectors; 6262 } else { 6263 writepos += reshape_sectors; 6264 /* readpos and safepos are worst-case calculations. 6265 * A negative number is overly pessimistic, and causes 6266 * obvious problems for unsigned storage. So clip to 0. 6267 */ 6268 readpos -= min_t(sector_t, reshape_sectors, readpos); 6269 safepos -= min_t(sector_t, reshape_sectors, safepos); 6270 } 6271 6272 /* Having calculated the 'writepos' possibly use it 6273 * to set 'stripe_addr' which is where we will write to. 6274 */ 6275 if (mddev->reshape_backwards) { 6276 BUG_ON(conf->reshape_progress == 0); 6277 stripe_addr = writepos; 6278 BUG_ON((mddev->dev_sectors & 6279 ~((sector_t)reshape_sectors - 1)) 6280 - reshape_sectors - stripe_addr 6281 != sector_nr); 6282 } else { 6283 BUG_ON(writepos != sector_nr + reshape_sectors); 6284 stripe_addr = sector_nr; 6285 } 6286 6287 /* 'writepos' is the most advanced device address we might write. 6288 * 'readpos' is the least advanced device address we might read. 6289 * 'safepos' is the least address recorded in the metadata as having 6290 * been reshaped. 6291 * If there is a min_offset_diff, these are adjusted either by 6292 * increasing the safepos/readpos if diff is negative, or 6293 * increasing writepos if diff is positive. 6294 * If 'readpos' is then behind 'writepos', there is no way that we can 6295 * ensure safety in the face of a crash - that must be done by userspace 6296 * making a backup of the data. So in that case there is no particular 6297 * rush to update metadata. 6298 * Otherwise if 'safepos' is behind 'writepos', then we really need to 6299 * update the metadata to advance 'safepos' to match 'readpos' so that 6300 * we can be safe in the event of a crash. 6301 * So we insist on updating metadata if safepos is behind writepos and 6302 * readpos is beyond writepos. 6303 * In any case, update the metadata every 10 seconds. 6304 * Maybe that number should be configurable, but I'm not sure it is 6305 * worth it.... maybe it could be a multiple of safemode_delay??? 6306 */ 6307 if (conf->min_offset_diff < 0) { 6308 safepos += -conf->min_offset_diff; 6309 readpos += -conf->min_offset_diff; 6310 } else 6311 writepos += conf->min_offset_diff; 6312 6313 if ((mddev->reshape_backwards 6314 ? (safepos > writepos && readpos < writepos) 6315 : (safepos < writepos && readpos > writepos)) || 6316 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 6317 /* Cannot proceed until we've updated the superblock... */ 6318 wait_event(conf->wait_for_overlap, 6319 atomic_read(&conf->reshape_stripes)==0 6320 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 6321 if (atomic_read(&conf->reshape_stripes) != 0) 6322 return 0; 6323 mddev->reshape_position = conf->reshape_progress; 6324 mddev->curr_resync_completed = sector_nr; 6325 if (!mddev->reshape_backwards) 6326 /* Can update recovery_offset */ 6327 rdev_for_each(rdev, mddev) 6328 if (rdev->raid_disk >= 0 && 6329 !test_bit(Journal, &rdev->flags) && 6330 !test_bit(In_sync, &rdev->flags) && 6331 rdev->recovery_offset < sector_nr) 6332 rdev->recovery_offset = sector_nr; 6333 6334 conf->reshape_checkpoint = jiffies; 6335 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6336 md_wakeup_thread(mddev->thread); 6337 wait_event(mddev->sb_wait, mddev->sb_flags == 0 || 6338 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 6339 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6340 return 0; 6341 spin_lock_irq(&conf->device_lock); 6342 conf->reshape_safe = mddev->reshape_position; 6343 spin_unlock_irq(&conf->device_lock); 6344 wake_up(&conf->wait_for_overlap); 6345 sysfs_notify_dirent_safe(mddev->sysfs_completed); 6346 } 6347 6348 INIT_LIST_HEAD(&stripes); 6349 for (i = 0; i < reshape_sectors; i += RAID5_STRIPE_SECTORS(conf)) { 6350 int j; 6351 int skipped_disk = 0; 6352 sh = raid5_get_active_stripe(conf, NULL, stripe_addr+i, 6353 R5_GAS_NOQUIESCE); 6354 set_bit(STRIPE_EXPANDING, &sh->state); 6355 atomic_inc(&conf->reshape_stripes); 6356 /* If any of this stripe is beyond the end of the old 6357 * array, then we need to zero those blocks 6358 */ 6359 for (j=sh->disks; j--;) { 6360 sector_t s; 6361 if (j == sh->pd_idx) 6362 continue; 6363 if (conf->level == 6 && 6364 j == sh->qd_idx) 6365 continue; 6366 s = raid5_compute_blocknr(sh, j, 0); 6367 if (s < raid5_size(mddev, 0, 0)) { 6368 skipped_disk = 1; 6369 continue; 6370 } 6371 memset(page_address(sh->dev[j].page), 0, RAID5_STRIPE_SIZE(conf)); 6372 set_bit(R5_Expanded, &sh->dev[j].flags); 6373 set_bit(R5_UPTODATE, &sh->dev[j].flags); 6374 } 6375 if (!skipped_disk) { 6376 set_bit(STRIPE_EXPAND_READY, &sh->state); 6377 set_bit(STRIPE_HANDLE, &sh->state); 6378 } 6379 list_add(&sh->lru, &stripes); 6380 } 6381 spin_lock_irq(&conf->device_lock); 6382 if (mddev->reshape_backwards) 6383 conf->reshape_progress -= reshape_sectors * new_data_disks; 6384 else 6385 conf->reshape_progress += reshape_sectors * new_data_disks; 6386 spin_unlock_irq(&conf->device_lock); 6387 /* Ok, those stripe are ready. We can start scheduling 6388 * reads on the source stripes. 6389 * The source stripes are determined by mapping the first and last 6390 * block on the destination stripes. 6391 */ 6392 first_sector = 6393 raid5_compute_sector(conf, stripe_addr*(new_data_disks), 6394 1, &dd_idx, NULL); 6395 last_sector = 6396 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors) 6397 * new_data_disks - 1), 6398 1, &dd_idx, NULL); 6399 if (last_sector >= mddev->dev_sectors) 6400 last_sector = mddev->dev_sectors - 1; 6401 while (first_sector <= last_sector) { 6402 sh = raid5_get_active_stripe(conf, NULL, first_sector, 6403 R5_GAS_PREVIOUS | R5_GAS_NOQUIESCE); 6404 set_bit(STRIPE_EXPAND_SOURCE, &sh->state); 6405 set_bit(STRIPE_HANDLE, &sh->state); 6406 raid5_release_stripe(sh); 6407 first_sector += RAID5_STRIPE_SECTORS(conf); 6408 } 6409 /* Now that the sources are clearly marked, we can release 6410 * the destination stripes 6411 */ 6412 while (!list_empty(&stripes)) { 6413 sh = list_entry(stripes.next, struct stripe_head, lru); 6414 list_del_init(&sh->lru); 6415 raid5_release_stripe(sh); 6416 } 6417 /* If this takes us to the resync_max point where we have to pause, 6418 * then we need to write out the superblock. 6419 */ 6420 sector_nr += reshape_sectors; 6421 retn = reshape_sectors; 6422 finish: 6423 if (mddev->curr_resync_completed > mddev->resync_max || 6424 (sector_nr - mddev->curr_resync_completed) * 2 6425 >= mddev->resync_max - mddev->curr_resync_completed) { 6426 /* Cannot proceed until we've updated the superblock... */ 6427 wait_event(conf->wait_for_overlap, 6428 atomic_read(&conf->reshape_stripes) == 0 6429 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 6430 if (atomic_read(&conf->reshape_stripes) != 0) 6431 goto ret; 6432 mddev->reshape_position = conf->reshape_progress; 6433 mddev->curr_resync_completed = sector_nr; 6434 if (!mddev->reshape_backwards) 6435 /* Can update recovery_offset */ 6436 rdev_for_each(rdev, mddev) 6437 if (rdev->raid_disk >= 0 && 6438 !test_bit(Journal, &rdev->flags) && 6439 !test_bit(In_sync, &rdev->flags) && 6440 rdev->recovery_offset < sector_nr) 6441 rdev->recovery_offset = sector_nr; 6442 conf->reshape_checkpoint = jiffies; 6443 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6444 md_wakeup_thread(mddev->thread); 6445 wait_event(mddev->sb_wait, 6446 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) 6447 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 6448 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6449 goto ret; 6450 spin_lock_irq(&conf->device_lock); 6451 conf->reshape_safe = mddev->reshape_position; 6452 spin_unlock_irq(&conf->device_lock); 6453 wake_up(&conf->wait_for_overlap); 6454 sysfs_notify_dirent_safe(mddev->sysfs_completed); 6455 } 6456 ret: 6457 return retn; 6458 } 6459 6460 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr, 6461 int *skipped) 6462 { 6463 struct r5conf *conf = mddev->private; 6464 struct stripe_head *sh; 6465 sector_t max_sector = mddev->dev_sectors; 6466 sector_t sync_blocks; 6467 int still_degraded = 0; 6468 int i; 6469 6470 if (sector_nr >= max_sector) { 6471 /* just being told to finish up .. nothing much to do */ 6472 6473 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 6474 end_reshape(conf); 6475 return 0; 6476 } 6477 6478 if (mddev->curr_resync < max_sector) /* aborted */ 6479 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 6480 &sync_blocks, 1); 6481 else /* completed sync */ 6482 conf->fullsync = 0; 6483 md_bitmap_close_sync(mddev->bitmap); 6484 6485 return 0; 6486 } 6487 6488 /* Allow raid5_quiesce to complete */ 6489 wait_event(conf->wait_for_overlap, conf->quiesce != 2); 6490 6491 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 6492 return reshape_request(mddev, sector_nr, skipped); 6493 6494 /* No need to check resync_max as we never do more than one 6495 * stripe, and as resync_max will always be on a chunk boundary, 6496 * if the check in md_do_sync didn't fire, there is no chance 6497 * of overstepping resync_max here 6498 */ 6499 6500 /* if there is too many failed drives and we are trying 6501 * to resync, then assert that we are finished, because there is 6502 * nothing we can do. 6503 */ 6504 if (mddev->degraded >= conf->max_degraded && 6505 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 6506 sector_t rv = mddev->dev_sectors - sector_nr; 6507 *skipped = 1; 6508 return rv; 6509 } 6510 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 6511 !conf->fullsync && 6512 !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 6513 sync_blocks >= RAID5_STRIPE_SECTORS(conf)) { 6514 /* we can skip this block, and probably more */ 6515 do_div(sync_blocks, RAID5_STRIPE_SECTORS(conf)); 6516 *skipped = 1; 6517 /* keep things rounded to whole stripes */ 6518 return sync_blocks * RAID5_STRIPE_SECTORS(conf); 6519 } 6520 6521 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false); 6522 6523 sh = raid5_get_active_stripe(conf, NULL, sector_nr, 6524 R5_GAS_NOBLOCK); 6525 if (sh == NULL) { 6526 sh = raid5_get_active_stripe(conf, NULL, sector_nr, 0); 6527 /* make sure we don't swamp the stripe cache if someone else 6528 * is trying to get access 6529 */ 6530 schedule_timeout_uninterruptible(1); 6531 } 6532 /* Need to check if array will still be degraded after recovery/resync 6533 * Note in case of > 1 drive failures it's possible we're rebuilding 6534 * one drive while leaving another faulty drive in array. 6535 */ 6536 for (i = 0; i < conf->raid_disks; i++) { 6537 struct md_rdev *rdev = conf->disks[i].rdev; 6538 6539 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) 6540 still_degraded = 1; 6541 } 6542 6543 md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded); 6544 6545 set_bit(STRIPE_SYNC_REQUESTED, &sh->state); 6546 set_bit(STRIPE_HANDLE, &sh->state); 6547 6548 raid5_release_stripe(sh); 6549 6550 return RAID5_STRIPE_SECTORS(conf); 6551 } 6552 6553 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio, 6554 unsigned int offset) 6555 { 6556 /* We may not be able to submit a whole bio at once as there 6557 * may not be enough stripe_heads available. 6558 * We cannot pre-allocate enough stripe_heads as we may need 6559 * more than exist in the cache (if we allow ever large chunks). 6560 * So we do one stripe head at a time and record in 6561 * ->bi_hw_segments how many have been done. 6562 * 6563 * We *know* that this entire raid_bio is in one chunk, so 6564 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector. 6565 */ 6566 struct stripe_head *sh; 6567 int dd_idx; 6568 sector_t sector, logical_sector, last_sector; 6569 int scnt = 0; 6570 int handled = 0; 6571 6572 logical_sector = raid_bio->bi_iter.bi_sector & 6573 ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1); 6574 sector = raid5_compute_sector(conf, logical_sector, 6575 0, &dd_idx, NULL); 6576 last_sector = bio_end_sector(raid_bio); 6577 6578 for (; logical_sector < last_sector; 6579 logical_sector += RAID5_STRIPE_SECTORS(conf), 6580 sector += RAID5_STRIPE_SECTORS(conf), 6581 scnt++) { 6582 6583 if (scnt < offset) 6584 /* already done this stripe */ 6585 continue; 6586 6587 sh = raid5_get_active_stripe(conf, NULL, sector, 6588 R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE); 6589 if (!sh) { 6590 /* failed to get a stripe - must wait */ 6591 conf->retry_read_aligned = raid_bio; 6592 conf->retry_read_offset = scnt; 6593 return handled; 6594 } 6595 6596 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) { 6597 raid5_release_stripe(sh); 6598 conf->retry_read_aligned = raid_bio; 6599 conf->retry_read_offset = scnt; 6600 return handled; 6601 } 6602 6603 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags); 6604 handle_stripe(sh); 6605 raid5_release_stripe(sh); 6606 handled++; 6607 } 6608 6609 bio_endio(raid_bio); 6610 6611 if (atomic_dec_and_test(&conf->active_aligned_reads)) 6612 wake_up(&conf->wait_for_quiescent); 6613 return handled; 6614 } 6615 6616 static int handle_active_stripes(struct r5conf *conf, int group, 6617 struct r5worker *worker, 6618 struct list_head *temp_inactive_list) 6619 __must_hold(&conf->device_lock) 6620 { 6621 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh; 6622 int i, batch_size = 0, hash; 6623 bool release_inactive = false; 6624 6625 while (batch_size < MAX_STRIPE_BATCH && 6626 (sh = __get_priority_stripe(conf, group)) != NULL) 6627 batch[batch_size++] = sh; 6628 6629 if (batch_size == 0) { 6630 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 6631 if (!list_empty(temp_inactive_list + i)) 6632 break; 6633 if (i == NR_STRIPE_HASH_LOCKS) { 6634 spin_unlock_irq(&conf->device_lock); 6635 log_flush_stripe_to_raid(conf); 6636 spin_lock_irq(&conf->device_lock); 6637 return batch_size; 6638 } 6639 release_inactive = true; 6640 } 6641 spin_unlock_irq(&conf->device_lock); 6642 6643 release_inactive_stripe_list(conf, temp_inactive_list, 6644 NR_STRIPE_HASH_LOCKS); 6645 6646 r5l_flush_stripe_to_raid(conf->log); 6647 if (release_inactive) { 6648 spin_lock_irq(&conf->device_lock); 6649 return 0; 6650 } 6651 6652 for (i = 0; i < batch_size; i++) 6653 handle_stripe(batch[i]); 6654 log_write_stripe_run(conf); 6655 6656 cond_resched(); 6657 6658 spin_lock_irq(&conf->device_lock); 6659 for (i = 0; i < batch_size; i++) { 6660 hash = batch[i]->hash_lock_index; 6661 __release_stripe(conf, batch[i], &temp_inactive_list[hash]); 6662 } 6663 return batch_size; 6664 } 6665 6666 static void raid5_do_work(struct work_struct *work) 6667 { 6668 struct r5worker *worker = container_of(work, struct r5worker, work); 6669 struct r5worker_group *group = worker->group; 6670 struct r5conf *conf = group->conf; 6671 struct mddev *mddev = conf->mddev; 6672 int group_id = group - conf->worker_groups; 6673 int handled; 6674 struct blk_plug plug; 6675 6676 pr_debug("+++ raid5worker active\n"); 6677 6678 blk_start_plug(&plug); 6679 handled = 0; 6680 spin_lock_irq(&conf->device_lock); 6681 while (1) { 6682 int batch_size, released; 6683 6684 released = release_stripe_list(conf, worker->temp_inactive_list); 6685 6686 batch_size = handle_active_stripes(conf, group_id, worker, 6687 worker->temp_inactive_list); 6688 worker->working = false; 6689 if (!batch_size && !released) 6690 break; 6691 handled += batch_size; 6692 wait_event_lock_irq(mddev->sb_wait, 6693 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags), 6694 conf->device_lock); 6695 } 6696 pr_debug("%d stripes handled\n", handled); 6697 6698 spin_unlock_irq(&conf->device_lock); 6699 6700 flush_deferred_bios(conf); 6701 6702 r5l_flush_stripe_to_raid(conf->log); 6703 6704 async_tx_issue_pending_all(); 6705 blk_finish_plug(&plug); 6706 6707 pr_debug("--- raid5worker inactive\n"); 6708 } 6709 6710 /* 6711 * This is our raid5 kernel thread. 6712 * 6713 * We scan the hash table for stripes which can be handled now. 6714 * During the scan, completed stripes are saved for us by the interrupt 6715 * handler, so that they will not have to wait for our next wakeup. 6716 */ 6717 static void raid5d(struct md_thread *thread) 6718 { 6719 struct mddev *mddev = thread->mddev; 6720 struct r5conf *conf = mddev->private; 6721 int handled; 6722 struct blk_plug plug; 6723 6724 pr_debug("+++ raid5d active\n"); 6725 6726 md_check_recovery(mddev); 6727 6728 blk_start_plug(&plug); 6729 handled = 0; 6730 spin_lock_irq(&conf->device_lock); 6731 while (1) { 6732 struct bio *bio; 6733 int batch_size, released; 6734 unsigned int offset; 6735 6736 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 6737 break; 6738 6739 released = release_stripe_list(conf, conf->temp_inactive_list); 6740 if (released) 6741 clear_bit(R5_DID_ALLOC, &conf->cache_state); 6742 6743 if ( 6744 !list_empty(&conf->bitmap_list)) { 6745 /* Now is a good time to flush some bitmap updates */ 6746 conf->seq_flush++; 6747 spin_unlock_irq(&conf->device_lock); 6748 md_bitmap_unplug(mddev->bitmap); 6749 spin_lock_irq(&conf->device_lock); 6750 conf->seq_write = conf->seq_flush; 6751 activate_bit_delay(conf, conf->temp_inactive_list); 6752 } 6753 raid5_activate_delayed(conf); 6754 6755 while ((bio = remove_bio_from_retry(conf, &offset))) { 6756 int ok; 6757 spin_unlock_irq(&conf->device_lock); 6758 ok = retry_aligned_read(conf, bio, offset); 6759 spin_lock_irq(&conf->device_lock); 6760 if (!ok) 6761 break; 6762 handled++; 6763 } 6764 6765 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL, 6766 conf->temp_inactive_list); 6767 if (!batch_size && !released) 6768 break; 6769 handled += batch_size; 6770 6771 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) { 6772 spin_unlock_irq(&conf->device_lock); 6773 md_check_recovery(mddev); 6774 spin_lock_irq(&conf->device_lock); 6775 } 6776 } 6777 pr_debug("%d stripes handled\n", handled); 6778 6779 spin_unlock_irq(&conf->device_lock); 6780 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) && 6781 mutex_trylock(&conf->cache_size_mutex)) { 6782 grow_one_stripe(conf, __GFP_NOWARN); 6783 /* Set flag even if allocation failed. This helps 6784 * slow down allocation requests when mem is short 6785 */ 6786 set_bit(R5_DID_ALLOC, &conf->cache_state); 6787 mutex_unlock(&conf->cache_size_mutex); 6788 } 6789 6790 flush_deferred_bios(conf); 6791 6792 r5l_flush_stripe_to_raid(conf->log); 6793 6794 async_tx_issue_pending_all(); 6795 blk_finish_plug(&plug); 6796 6797 pr_debug("--- raid5d inactive\n"); 6798 } 6799 6800 static ssize_t 6801 raid5_show_stripe_cache_size(struct mddev *mddev, char *page) 6802 { 6803 struct r5conf *conf; 6804 int ret = 0; 6805 spin_lock(&mddev->lock); 6806 conf = mddev->private; 6807 if (conf) 6808 ret = sprintf(page, "%d\n", conf->min_nr_stripes); 6809 spin_unlock(&mddev->lock); 6810 return ret; 6811 } 6812 6813 int 6814 raid5_set_cache_size(struct mddev *mddev, int size) 6815 { 6816 int result = 0; 6817 struct r5conf *conf = mddev->private; 6818 6819 if (size <= 16 || size > 32768) 6820 return -EINVAL; 6821 6822 WRITE_ONCE(conf->min_nr_stripes, size); 6823 mutex_lock(&conf->cache_size_mutex); 6824 while (size < conf->max_nr_stripes && 6825 drop_one_stripe(conf)) 6826 ; 6827 mutex_unlock(&conf->cache_size_mutex); 6828 6829 md_allow_write(mddev); 6830 6831 mutex_lock(&conf->cache_size_mutex); 6832 while (size > conf->max_nr_stripes) 6833 if (!grow_one_stripe(conf, GFP_KERNEL)) { 6834 WRITE_ONCE(conf->min_nr_stripes, conf->max_nr_stripes); 6835 result = -ENOMEM; 6836 break; 6837 } 6838 mutex_unlock(&conf->cache_size_mutex); 6839 6840 return result; 6841 } 6842 EXPORT_SYMBOL(raid5_set_cache_size); 6843 6844 static ssize_t 6845 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len) 6846 { 6847 struct r5conf *conf; 6848 unsigned long new; 6849 int err; 6850 6851 if (len >= PAGE_SIZE) 6852 return -EINVAL; 6853 if (kstrtoul(page, 10, &new)) 6854 return -EINVAL; 6855 err = mddev_lock(mddev); 6856 if (err) 6857 return err; 6858 conf = mddev->private; 6859 if (!conf) 6860 err = -ENODEV; 6861 else 6862 err = raid5_set_cache_size(mddev, new); 6863 mddev_unlock(mddev); 6864 6865 return err ?: len; 6866 } 6867 6868 static struct md_sysfs_entry 6869 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR, 6870 raid5_show_stripe_cache_size, 6871 raid5_store_stripe_cache_size); 6872 6873 static ssize_t 6874 raid5_show_rmw_level(struct mddev *mddev, char *page) 6875 { 6876 struct r5conf *conf = mddev->private; 6877 if (conf) 6878 return sprintf(page, "%d\n", conf->rmw_level); 6879 else 6880 return 0; 6881 } 6882 6883 static ssize_t 6884 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len) 6885 { 6886 struct r5conf *conf = mddev->private; 6887 unsigned long new; 6888 6889 if (!conf) 6890 return -ENODEV; 6891 6892 if (len >= PAGE_SIZE) 6893 return -EINVAL; 6894 6895 if (kstrtoul(page, 10, &new)) 6896 return -EINVAL; 6897 6898 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome) 6899 return -EINVAL; 6900 6901 if (new != PARITY_DISABLE_RMW && 6902 new != PARITY_ENABLE_RMW && 6903 new != PARITY_PREFER_RMW) 6904 return -EINVAL; 6905 6906 conf->rmw_level = new; 6907 return len; 6908 } 6909 6910 static struct md_sysfs_entry 6911 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR, 6912 raid5_show_rmw_level, 6913 raid5_store_rmw_level); 6914 6915 static ssize_t 6916 raid5_show_stripe_size(struct mddev *mddev, char *page) 6917 { 6918 struct r5conf *conf; 6919 int ret = 0; 6920 6921 spin_lock(&mddev->lock); 6922 conf = mddev->private; 6923 if (conf) 6924 ret = sprintf(page, "%lu\n", RAID5_STRIPE_SIZE(conf)); 6925 spin_unlock(&mddev->lock); 6926 return ret; 6927 } 6928 6929 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 6930 static ssize_t 6931 raid5_store_stripe_size(struct mddev *mddev, const char *page, size_t len) 6932 { 6933 struct r5conf *conf; 6934 unsigned long new; 6935 int err; 6936 int size; 6937 6938 if (len >= PAGE_SIZE) 6939 return -EINVAL; 6940 if (kstrtoul(page, 10, &new)) 6941 return -EINVAL; 6942 6943 /* 6944 * The value should not be bigger than PAGE_SIZE. It requires to 6945 * be multiple of DEFAULT_STRIPE_SIZE and the value should be power 6946 * of two. 6947 */ 6948 if (new % DEFAULT_STRIPE_SIZE != 0 || 6949 new > PAGE_SIZE || new == 0 || 6950 new != roundup_pow_of_two(new)) 6951 return -EINVAL; 6952 6953 err = mddev_suspend_and_lock(mddev); 6954 if (err) 6955 return err; 6956 6957 conf = mddev->private; 6958 if (!conf) { 6959 err = -ENODEV; 6960 goto out_unlock; 6961 } 6962 6963 if (new == conf->stripe_size) 6964 goto out_unlock; 6965 6966 pr_debug("md/raid: change stripe_size from %lu to %lu\n", 6967 conf->stripe_size, new); 6968 6969 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 6970 mddev->reshape_position != MaxSector || mddev->sysfs_active) { 6971 err = -EBUSY; 6972 goto out_unlock; 6973 } 6974 6975 mutex_lock(&conf->cache_size_mutex); 6976 size = conf->max_nr_stripes; 6977 6978 shrink_stripes(conf); 6979 6980 conf->stripe_size = new; 6981 conf->stripe_shift = ilog2(new) - 9; 6982 conf->stripe_sectors = new >> 9; 6983 if (grow_stripes(conf, size)) { 6984 pr_warn("md/raid:%s: couldn't allocate buffers\n", 6985 mdname(mddev)); 6986 err = -ENOMEM; 6987 } 6988 mutex_unlock(&conf->cache_size_mutex); 6989 6990 out_unlock: 6991 mddev_unlock_and_resume(mddev); 6992 return err ?: len; 6993 } 6994 6995 static struct md_sysfs_entry 6996 raid5_stripe_size = __ATTR(stripe_size, 0644, 6997 raid5_show_stripe_size, 6998 raid5_store_stripe_size); 6999 #else 7000 static struct md_sysfs_entry 7001 raid5_stripe_size = __ATTR(stripe_size, 0444, 7002 raid5_show_stripe_size, 7003 NULL); 7004 #endif 7005 7006 static ssize_t 7007 raid5_show_preread_threshold(struct mddev *mddev, char *page) 7008 { 7009 struct r5conf *conf; 7010 int ret = 0; 7011 spin_lock(&mddev->lock); 7012 conf = mddev->private; 7013 if (conf) 7014 ret = sprintf(page, "%d\n", conf->bypass_threshold); 7015 spin_unlock(&mddev->lock); 7016 return ret; 7017 } 7018 7019 static ssize_t 7020 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len) 7021 { 7022 struct r5conf *conf; 7023 unsigned long new; 7024 int err; 7025 7026 if (len >= PAGE_SIZE) 7027 return -EINVAL; 7028 if (kstrtoul(page, 10, &new)) 7029 return -EINVAL; 7030 7031 err = mddev_lock(mddev); 7032 if (err) 7033 return err; 7034 conf = mddev->private; 7035 if (!conf) 7036 err = -ENODEV; 7037 else if (new > conf->min_nr_stripes) 7038 err = -EINVAL; 7039 else 7040 conf->bypass_threshold = new; 7041 mddev_unlock(mddev); 7042 return err ?: len; 7043 } 7044 7045 static struct md_sysfs_entry 7046 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold, 7047 S_IRUGO | S_IWUSR, 7048 raid5_show_preread_threshold, 7049 raid5_store_preread_threshold); 7050 7051 static ssize_t 7052 raid5_show_skip_copy(struct mddev *mddev, char *page) 7053 { 7054 struct r5conf *conf; 7055 int ret = 0; 7056 spin_lock(&mddev->lock); 7057 conf = mddev->private; 7058 if (conf) 7059 ret = sprintf(page, "%d\n", conf->skip_copy); 7060 spin_unlock(&mddev->lock); 7061 return ret; 7062 } 7063 7064 static ssize_t 7065 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len) 7066 { 7067 struct r5conf *conf; 7068 unsigned long new; 7069 int err; 7070 7071 if (len >= PAGE_SIZE) 7072 return -EINVAL; 7073 if (kstrtoul(page, 10, &new)) 7074 return -EINVAL; 7075 new = !!new; 7076 7077 err = mddev_suspend_and_lock(mddev); 7078 if (err) 7079 return err; 7080 conf = mddev->private; 7081 if (!conf) 7082 err = -ENODEV; 7083 else if (new != conf->skip_copy) { 7084 struct request_queue *q = mddev->gendisk->queue; 7085 7086 conf->skip_copy = new; 7087 if (new) 7088 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q); 7089 else 7090 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q); 7091 } 7092 mddev_unlock_and_resume(mddev); 7093 return err ?: len; 7094 } 7095 7096 static struct md_sysfs_entry 7097 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR, 7098 raid5_show_skip_copy, 7099 raid5_store_skip_copy); 7100 7101 static ssize_t 7102 stripe_cache_active_show(struct mddev *mddev, char *page) 7103 { 7104 struct r5conf *conf = mddev->private; 7105 if (conf) 7106 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes)); 7107 else 7108 return 0; 7109 } 7110 7111 static struct md_sysfs_entry 7112 raid5_stripecache_active = __ATTR_RO(stripe_cache_active); 7113 7114 static ssize_t 7115 raid5_show_group_thread_cnt(struct mddev *mddev, char *page) 7116 { 7117 struct r5conf *conf; 7118 int ret = 0; 7119 spin_lock(&mddev->lock); 7120 conf = mddev->private; 7121 if (conf) 7122 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group); 7123 spin_unlock(&mddev->lock); 7124 return ret; 7125 } 7126 7127 static int alloc_thread_groups(struct r5conf *conf, int cnt, 7128 int *group_cnt, 7129 struct r5worker_group **worker_groups); 7130 static ssize_t 7131 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len) 7132 { 7133 struct r5conf *conf; 7134 unsigned int new; 7135 int err; 7136 struct r5worker_group *new_groups, *old_groups; 7137 int group_cnt; 7138 7139 if (len >= PAGE_SIZE) 7140 return -EINVAL; 7141 if (kstrtouint(page, 10, &new)) 7142 return -EINVAL; 7143 /* 8192 should be big enough */ 7144 if (new > 8192) 7145 return -EINVAL; 7146 7147 err = mddev_suspend_and_lock(mddev); 7148 if (err) 7149 return err; 7150 conf = mddev->private; 7151 if (!conf) 7152 err = -ENODEV; 7153 else if (new != conf->worker_cnt_per_group) { 7154 old_groups = conf->worker_groups; 7155 if (old_groups) 7156 flush_workqueue(raid5_wq); 7157 7158 err = alloc_thread_groups(conf, new, &group_cnt, &new_groups); 7159 if (!err) { 7160 spin_lock_irq(&conf->device_lock); 7161 conf->group_cnt = group_cnt; 7162 conf->worker_cnt_per_group = new; 7163 conf->worker_groups = new_groups; 7164 spin_unlock_irq(&conf->device_lock); 7165 7166 if (old_groups) 7167 kfree(old_groups[0].workers); 7168 kfree(old_groups); 7169 } 7170 } 7171 mddev_unlock_and_resume(mddev); 7172 7173 return err ?: len; 7174 } 7175 7176 static struct md_sysfs_entry 7177 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR, 7178 raid5_show_group_thread_cnt, 7179 raid5_store_group_thread_cnt); 7180 7181 static struct attribute *raid5_attrs[] = { 7182 &raid5_stripecache_size.attr, 7183 &raid5_stripecache_active.attr, 7184 &raid5_preread_bypass_threshold.attr, 7185 &raid5_group_thread_cnt.attr, 7186 &raid5_skip_copy.attr, 7187 &raid5_rmw_level.attr, 7188 &raid5_stripe_size.attr, 7189 &r5c_journal_mode.attr, 7190 &ppl_write_hint.attr, 7191 NULL, 7192 }; 7193 static const struct attribute_group raid5_attrs_group = { 7194 .name = NULL, 7195 .attrs = raid5_attrs, 7196 }; 7197 7198 static int alloc_thread_groups(struct r5conf *conf, int cnt, int *group_cnt, 7199 struct r5worker_group **worker_groups) 7200 { 7201 int i, j, k; 7202 ssize_t size; 7203 struct r5worker *workers; 7204 7205 if (cnt == 0) { 7206 *group_cnt = 0; 7207 *worker_groups = NULL; 7208 return 0; 7209 } 7210 *group_cnt = num_possible_nodes(); 7211 size = sizeof(struct r5worker) * cnt; 7212 workers = kcalloc(size, *group_cnt, GFP_NOIO); 7213 *worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group), 7214 GFP_NOIO); 7215 if (!*worker_groups || !workers) { 7216 kfree(workers); 7217 kfree(*worker_groups); 7218 return -ENOMEM; 7219 } 7220 7221 for (i = 0; i < *group_cnt; i++) { 7222 struct r5worker_group *group; 7223 7224 group = &(*worker_groups)[i]; 7225 INIT_LIST_HEAD(&group->handle_list); 7226 INIT_LIST_HEAD(&group->loprio_list); 7227 group->conf = conf; 7228 group->workers = workers + i * cnt; 7229 7230 for (j = 0; j < cnt; j++) { 7231 struct r5worker *worker = group->workers + j; 7232 worker->group = group; 7233 INIT_WORK(&worker->work, raid5_do_work); 7234 7235 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++) 7236 INIT_LIST_HEAD(worker->temp_inactive_list + k); 7237 } 7238 } 7239 7240 return 0; 7241 } 7242 7243 static void free_thread_groups(struct r5conf *conf) 7244 { 7245 if (conf->worker_groups) 7246 kfree(conf->worker_groups[0].workers); 7247 kfree(conf->worker_groups); 7248 conf->worker_groups = NULL; 7249 } 7250 7251 static sector_t 7252 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks) 7253 { 7254 struct r5conf *conf = mddev->private; 7255 7256 if (!sectors) 7257 sectors = mddev->dev_sectors; 7258 if (!raid_disks) 7259 /* size is defined by the smallest of previous and new size */ 7260 raid_disks = min(conf->raid_disks, conf->previous_raid_disks); 7261 7262 sectors &= ~((sector_t)conf->chunk_sectors - 1); 7263 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1); 7264 return sectors * (raid_disks - conf->max_degraded); 7265 } 7266 7267 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 7268 { 7269 safe_put_page(percpu->spare_page); 7270 percpu->spare_page = NULL; 7271 kvfree(percpu->scribble); 7272 percpu->scribble = NULL; 7273 } 7274 7275 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 7276 { 7277 if (conf->level == 6 && !percpu->spare_page) { 7278 percpu->spare_page = alloc_page(GFP_KERNEL); 7279 if (!percpu->spare_page) 7280 return -ENOMEM; 7281 } 7282 7283 if (scribble_alloc(percpu, 7284 max(conf->raid_disks, 7285 conf->previous_raid_disks), 7286 max(conf->chunk_sectors, 7287 conf->prev_chunk_sectors) 7288 / RAID5_STRIPE_SECTORS(conf))) { 7289 free_scratch_buffer(conf, percpu); 7290 return -ENOMEM; 7291 } 7292 7293 local_lock_init(&percpu->lock); 7294 return 0; 7295 } 7296 7297 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node) 7298 { 7299 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node); 7300 7301 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu)); 7302 return 0; 7303 } 7304 7305 static void raid5_free_percpu(struct r5conf *conf) 7306 { 7307 if (!conf->percpu) 7308 return; 7309 7310 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node); 7311 free_percpu(conf->percpu); 7312 } 7313 7314 static void free_conf(struct r5conf *conf) 7315 { 7316 int i; 7317 7318 log_exit(conf); 7319 7320 shrinker_free(conf->shrinker); 7321 free_thread_groups(conf); 7322 shrink_stripes(conf); 7323 raid5_free_percpu(conf); 7324 for (i = 0; i < conf->pool_size; i++) 7325 if (conf->disks[i].extra_page) 7326 put_page(conf->disks[i].extra_page); 7327 kfree(conf->disks); 7328 bioset_exit(&conf->bio_split); 7329 kfree(conf->stripe_hashtbl); 7330 kfree(conf->pending_data); 7331 kfree(conf); 7332 } 7333 7334 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node) 7335 { 7336 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node); 7337 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu); 7338 7339 if (alloc_scratch_buffer(conf, percpu)) { 7340 pr_warn("%s: failed memory allocation for cpu%u\n", 7341 __func__, cpu); 7342 return -ENOMEM; 7343 } 7344 return 0; 7345 } 7346 7347 static int raid5_alloc_percpu(struct r5conf *conf) 7348 { 7349 int err = 0; 7350 7351 conf->percpu = alloc_percpu(struct raid5_percpu); 7352 if (!conf->percpu) 7353 return -ENOMEM; 7354 7355 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node); 7356 if (!err) { 7357 conf->scribble_disks = max(conf->raid_disks, 7358 conf->previous_raid_disks); 7359 conf->scribble_sectors = max(conf->chunk_sectors, 7360 conf->prev_chunk_sectors); 7361 } 7362 return err; 7363 } 7364 7365 static unsigned long raid5_cache_scan(struct shrinker *shrink, 7366 struct shrink_control *sc) 7367 { 7368 struct r5conf *conf = shrink->private_data; 7369 unsigned long ret = SHRINK_STOP; 7370 7371 if (mutex_trylock(&conf->cache_size_mutex)) { 7372 ret= 0; 7373 while (ret < sc->nr_to_scan && 7374 conf->max_nr_stripes > conf->min_nr_stripes) { 7375 if (drop_one_stripe(conf) == 0) { 7376 ret = SHRINK_STOP; 7377 break; 7378 } 7379 ret++; 7380 } 7381 mutex_unlock(&conf->cache_size_mutex); 7382 } 7383 return ret; 7384 } 7385 7386 static unsigned long raid5_cache_count(struct shrinker *shrink, 7387 struct shrink_control *sc) 7388 { 7389 struct r5conf *conf = shrink->private_data; 7390 int max_stripes = READ_ONCE(conf->max_nr_stripes); 7391 int min_stripes = READ_ONCE(conf->min_nr_stripes); 7392 7393 if (max_stripes < min_stripes) 7394 /* unlikely, but not impossible */ 7395 return 0; 7396 return max_stripes - min_stripes; 7397 } 7398 7399 static struct r5conf *setup_conf(struct mddev *mddev) 7400 { 7401 struct r5conf *conf; 7402 int raid_disk, memory, max_disks; 7403 struct md_rdev *rdev; 7404 struct disk_info *disk; 7405 char pers_name[6]; 7406 int i; 7407 int group_cnt; 7408 struct r5worker_group *new_group; 7409 int ret = -ENOMEM; 7410 7411 if (mddev->new_level != 5 7412 && mddev->new_level != 4 7413 && mddev->new_level != 6) { 7414 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n", 7415 mdname(mddev), mddev->new_level); 7416 return ERR_PTR(-EIO); 7417 } 7418 if ((mddev->new_level == 5 7419 && !algorithm_valid_raid5(mddev->new_layout)) || 7420 (mddev->new_level == 6 7421 && !algorithm_valid_raid6(mddev->new_layout))) { 7422 pr_warn("md/raid:%s: layout %d not supported\n", 7423 mdname(mddev), mddev->new_layout); 7424 return ERR_PTR(-EIO); 7425 } 7426 if (mddev->new_level == 6 && mddev->raid_disks < 4) { 7427 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n", 7428 mdname(mddev), mddev->raid_disks); 7429 return ERR_PTR(-EINVAL); 7430 } 7431 7432 if (!mddev->new_chunk_sectors || 7433 (mddev->new_chunk_sectors << 9) % PAGE_SIZE || 7434 !is_power_of_2(mddev->new_chunk_sectors)) { 7435 pr_warn("md/raid:%s: invalid chunk size %d\n", 7436 mdname(mddev), mddev->new_chunk_sectors << 9); 7437 return ERR_PTR(-EINVAL); 7438 } 7439 7440 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL); 7441 if (conf == NULL) 7442 goto abort; 7443 7444 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 7445 conf->stripe_size = DEFAULT_STRIPE_SIZE; 7446 conf->stripe_shift = ilog2(DEFAULT_STRIPE_SIZE) - 9; 7447 conf->stripe_sectors = DEFAULT_STRIPE_SIZE >> 9; 7448 #endif 7449 INIT_LIST_HEAD(&conf->free_list); 7450 INIT_LIST_HEAD(&conf->pending_list); 7451 conf->pending_data = kcalloc(PENDING_IO_MAX, 7452 sizeof(struct r5pending_data), 7453 GFP_KERNEL); 7454 if (!conf->pending_data) 7455 goto abort; 7456 for (i = 0; i < PENDING_IO_MAX; i++) 7457 list_add(&conf->pending_data[i].sibling, &conf->free_list); 7458 /* Don't enable multi-threading by default*/ 7459 if (!alloc_thread_groups(conf, 0, &group_cnt, &new_group)) { 7460 conf->group_cnt = group_cnt; 7461 conf->worker_cnt_per_group = 0; 7462 conf->worker_groups = new_group; 7463 } else 7464 goto abort; 7465 spin_lock_init(&conf->device_lock); 7466 seqcount_spinlock_init(&conf->gen_lock, &conf->device_lock); 7467 mutex_init(&conf->cache_size_mutex); 7468 7469 init_waitqueue_head(&conf->wait_for_quiescent); 7470 init_waitqueue_head(&conf->wait_for_stripe); 7471 init_waitqueue_head(&conf->wait_for_overlap); 7472 INIT_LIST_HEAD(&conf->handle_list); 7473 INIT_LIST_HEAD(&conf->loprio_list); 7474 INIT_LIST_HEAD(&conf->hold_list); 7475 INIT_LIST_HEAD(&conf->delayed_list); 7476 INIT_LIST_HEAD(&conf->bitmap_list); 7477 init_llist_head(&conf->released_stripes); 7478 atomic_set(&conf->active_stripes, 0); 7479 atomic_set(&conf->preread_active_stripes, 0); 7480 atomic_set(&conf->active_aligned_reads, 0); 7481 spin_lock_init(&conf->pending_bios_lock); 7482 conf->batch_bio_dispatch = true; 7483 rdev_for_each(rdev, mddev) { 7484 if (test_bit(Journal, &rdev->flags)) 7485 continue; 7486 if (bdev_nonrot(rdev->bdev)) { 7487 conf->batch_bio_dispatch = false; 7488 break; 7489 } 7490 } 7491 7492 conf->bypass_threshold = BYPASS_THRESHOLD; 7493 conf->recovery_disabled = mddev->recovery_disabled - 1; 7494 7495 conf->raid_disks = mddev->raid_disks; 7496 if (mddev->reshape_position == MaxSector) 7497 conf->previous_raid_disks = mddev->raid_disks; 7498 else 7499 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks; 7500 max_disks = max(conf->raid_disks, conf->previous_raid_disks); 7501 7502 conf->disks = kcalloc(max_disks, sizeof(struct disk_info), 7503 GFP_KERNEL); 7504 7505 if (!conf->disks) 7506 goto abort; 7507 7508 for (i = 0; i < max_disks; i++) { 7509 conf->disks[i].extra_page = alloc_page(GFP_KERNEL); 7510 if (!conf->disks[i].extra_page) 7511 goto abort; 7512 } 7513 7514 ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 7515 if (ret) 7516 goto abort; 7517 conf->mddev = mddev; 7518 7519 ret = -ENOMEM; 7520 conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL); 7521 if (!conf->stripe_hashtbl) 7522 goto abort; 7523 7524 /* We init hash_locks[0] separately to that it can be used 7525 * as the reference lock in the spin_lock_nest_lock() call 7526 * in lock_all_device_hash_locks_irq in order to convince 7527 * lockdep that we know what we are doing. 7528 */ 7529 spin_lock_init(conf->hash_locks); 7530 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 7531 spin_lock_init(conf->hash_locks + i); 7532 7533 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 7534 INIT_LIST_HEAD(conf->inactive_list + i); 7535 7536 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 7537 INIT_LIST_HEAD(conf->temp_inactive_list + i); 7538 7539 atomic_set(&conf->r5c_cached_full_stripes, 0); 7540 INIT_LIST_HEAD(&conf->r5c_full_stripe_list); 7541 atomic_set(&conf->r5c_cached_partial_stripes, 0); 7542 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list); 7543 atomic_set(&conf->r5c_flushing_full_stripes, 0); 7544 atomic_set(&conf->r5c_flushing_partial_stripes, 0); 7545 7546 conf->level = mddev->new_level; 7547 conf->chunk_sectors = mddev->new_chunk_sectors; 7548 ret = raid5_alloc_percpu(conf); 7549 if (ret) 7550 goto abort; 7551 7552 pr_debug("raid456: run(%s) called.\n", mdname(mddev)); 7553 7554 ret = -EIO; 7555 rdev_for_each(rdev, mddev) { 7556 raid_disk = rdev->raid_disk; 7557 if (raid_disk >= max_disks 7558 || raid_disk < 0 || test_bit(Journal, &rdev->flags)) 7559 continue; 7560 disk = conf->disks + raid_disk; 7561 7562 if (test_bit(Replacement, &rdev->flags)) { 7563 if (disk->replacement) 7564 goto abort; 7565 RCU_INIT_POINTER(disk->replacement, rdev); 7566 } else { 7567 if (disk->rdev) 7568 goto abort; 7569 RCU_INIT_POINTER(disk->rdev, rdev); 7570 } 7571 7572 if (test_bit(In_sync, &rdev->flags)) { 7573 pr_info("md/raid:%s: device %pg operational as raid disk %d\n", 7574 mdname(mddev), rdev->bdev, raid_disk); 7575 } else if (rdev->saved_raid_disk != raid_disk) 7576 /* Cannot rely on bitmap to complete recovery */ 7577 conf->fullsync = 1; 7578 } 7579 7580 conf->level = mddev->new_level; 7581 if (conf->level == 6) { 7582 conf->max_degraded = 2; 7583 if (raid6_call.xor_syndrome) 7584 conf->rmw_level = PARITY_ENABLE_RMW; 7585 else 7586 conf->rmw_level = PARITY_DISABLE_RMW; 7587 } else { 7588 conf->max_degraded = 1; 7589 conf->rmw_level = PARITY_ENABLE_RMW; 7590 } 7591 conf->algorithm = mddev->new_layout; 7592 conf->reshape_progress = mddev->reshape_position; 7593 if (conf->reshape_progress != MaxSector) { 7594 conf->prev_chunk_sectors = mddev->chunk_sectors; 7595 conf->prev_algo = mddev->layout; 7596 } else { 7597 conf->prev_chunk_sectors = conf->chunk_sectors; 7598 conf->prev_algo = conf->algorithm; 7599 } 7600 7601 conf->min_nr_stripes = NR_STRIPES; 7602 if (mddev->reshape_position != MaxSector) { 7603 int stripes = max_t(int, 7604 ((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4, 7605 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4); 7606 conf->min_nr_stripes = max(NR_STRIPES, stripes); 7607 if (conf->min_nr_stripes != NR_STRIPES) 7608 pr_info("md/raid:%s: force stripe size %d for reshape\n", 7609 mdname(mddev), conf->min_nr_stripes); 7610 } 7611 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) + 7612 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024; 7613 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS); 7614 if (grow_stripes(conf, conf->min_nr_stripes)) { 7615 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n", 7616 mdname(mddev), memory); 7617 ret = -ENOMEM; 7618 goto abort; 7619 } else 7620 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory); 7621 /* 7622 * Losing a stripe head costs more than the time to refill it, 7623 * it reduces the queue depth and so can hurt throughput. 7624 * So set it rather large, scaled by number of devices. 7625 */ 7626 conf->shrinker = shrinker_alloc(0, "md-raid5:%s", mdname(mddev)); 7627 if (!conf->shrinker) { 7628 ret = -ENOMEM; 7629 pr_warn("md/raid:%s: couldn't allocate shrinker.\n", 7630 mdname(mddev)); 7631 goto abort; 7632 } 7633 7634 conf->shrinker->seeks = DEFAULT_SEEKS * conf->raid_disks * 4; 7635 conf->shrinker->scan_objects = raid5_cache_scan; 7636 conf->shrinker->count_objects = raid5_cache_count; 7637 conf->shrinker->batch = 128; 7638 conf->shrinker->private_data = conf; 7639 7640 shrinker_register(conf->shrinker); 7641 7642 sprintf(pers_name, "raid%d", mddev->new_level); 7643 rcu_assign_pointer(conf->thread, 7644 md_register_thread(raid5d, mddev, pers_name)); 7645 if (!conf->thread) { 7646 pr_warn("md/raid:%s: couldn't allocate thread.\n", 7647 mdname(mddev)); 7648 ret = -ENOMEM; 7649 goto abort; 7650 } 7651 7652 return conf; 7653 7654 abort: 7655 if (conf) 7656 free_conf(conf); 7657 return ERR_PTR(ret); 7658 } 7659 7660 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded) 7661 { 7662 switch (algo) { 7663 case ALGORITHM_PARITY_0: 7664 if (raid_disk < max_degraded) 7665 return 1; 7666 break; 7667 case ALGORITHM_PARITY_N: 7668 if (raid_disk >= raid_disks - max_degraded) 7669 return 1; 7670 break; 7671 case ALGORITHM_PARITY_0_6: 7672 if (raid_disk == 0 || 7673 raid_disk == raid_disks - 1) 7674 return 1; 7675 break; 7676 case ALGORITHM_LEFT_ASYMMETRIC_6: 7677 case ALGORITHM_RIGHT_ASYMMETRIC_6: 7678 case ALGORITHM_LEFT_SYMMETRIC_6: 7679 case ALGORITHM_RIGHT_SYMMETRIC_6: 7680 if (raid_disk == raid_disks - 1) 7681 return 1; 7682 } 7683 return 0; 7684 } 7685 7686 static int raid5_set_limits(struct mddev *mddev) 7687 { 7688 struct r5conf *conf = mddev->private; 7689 struct queue_limits lim; 7690 int data_disks, stripe; 7691 struct md_rdev *rdev; 7692 7693 /* 7694 * The read-ahead size must cover two whole stripes, which is 7695 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices. 7696 */ 7697 data_disks = conf->previous_raid_disks - conf->max_degraded; 7698 7699 /* 7700 * We can only discard a whole stripe. It doesn't make sense to 7701 * discard data disk but write parity disk 7702 */ 7703 stripe = roundup_pow_of_two(data_disks * (mddev->chunk_sectors << 9)); 7704 7705 blk_set_stacking_limits(&lim); 7706 lim.io_min = mddev->chunk_sectors << 9; 7707 lim.io_opt = lim.io_min * (conf->raid_disks - conf->max_degraded); 7708 lim.raid_partial_stripes_expensive = 1; 7709 lim.discard_granularity = stripe; 7710 lim.max_write_zeroes_sectors = 0; 7711 mddev_stack_rdev_limits(mddev, &lim); 7712 rdev_for_each(rdev, mddev) 7713 queue_limits_stack_bdev(&lim, rdev->bdev, rdev->new_data_offset, 7714 mddev->gendisk->disk_name); 7715 7716 /* 7717 * Zeroing is required for discard, otherwise data could be lost. 7718 * 7719 * Consider a scenario: discard a stripe (the stripe could be 7720 * inconsistent if discard_zeroes_data is 0); write one disk of the 7721 * stripe (the stripe could be inconsistent again depending on which 7722 * disks are used to calculate parity); the disk is broken; The stripe 7723 * data of this disk is lost. 7724 * 7725 * We only allow DISCARD if the sysadmin has confirmed that only safe 7726 * devices are in use by setting a module parameter. A better idea 7727 * might be to turn DISCARD into WRITE_ZEROES requests, as that is 7728 * required to be safe. 7729 */ 7730 if (!devices_handle_discard_safely || 7731 lim.max_discard_sectors < (stripe >> 9) || 7732 lim.discard_granularity < stripe) 7733 lim.max_hw_discard_sectors = 0; 7734 7735 /* 7736 * Requests require having a bitmap for each stripe. 7737 * Limit the max sectors based on this. 7738 */ 7739 lim.max_hw_sectors = RAID5_MAX_REQ_STRIPES << RAID5_STRIPE_SHIFT(conf); 7740 7741 /* No restrictions on the number of segments in the request */ 7742 lim.max_segments = USHRT_MAX; 7743 7744 return queue_limits_set(mddev->gendisk->queue, &lim); 7745 } 7746 7747 static int raid5_run(struct mddev *mddev) 7748 { 7749 struct r5conf *conf; 7750 int dirty_parity_disks = 0; 7751 struct md_rdev *rdev; 7752 struct md_rdev *journal_dev = NULL; 7753 sector_t reshape_offset = 0; 7754 int i; 7755 long long min_offset_diff = 0; 7756 int first = 1; 7757 int ret = -EIO; 7758 7759 if (mddev->recovery_cp != MaxSector) 7760 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n", 7761 mdname(mddev)); 7762 7763 rdev_for_each(rdev, mddev) { 7764 long long diff; 7765 7766 if (test_bit(Journal, &rdev->flags)) { 7767 journal_dev = rdev; 7768 continue; 7769 } 7770 if (rdev->raid_disk < 0) 7771 continue; 7772 diff = (rdev->new_data_offset - rdev->data_offset); 7773 if (first) { 7774 min_offset_diff = diff; 7775 first = 0; 7776 } else if (mddev->reshape_backwards && 7777 diff < min_offset_diff) 7778 min_offset_diff = diff; 7779 else if (!mddev->reshape_backwards && 7780 diff > min_offset_diff) 7781 min_offset_diff = diff; 7782 } 7783 7784 if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) && 7785 (mddev->bitmap_info.offset || mddev->bitmap_info.file)) { 7786 pr_notice("md/raid:%s: array cannot have both journal and bitmap\n", 7787 mdname(mddev)); 7788 return -EINVAL; 7789 } 7790 7791 if (mddev->reshape_position != MaxSector) { 7792 /* Check that we can continue the reshape. 7793 * Difficulties arise if the stripe we would write to 7794 * next is at or after the stripe we would read from next. 7795 * For a reshape that changes the number of devices, this 7796 * is only possible for a very short time, and mdadm makes 7797 * sure that time appears to have past before assembling 7798 * the array. So we fail if that time hasn't passed. 7799 * For a reshape that keeps the number of devices the same 7800 * mdadm must be monitoring the reshape can keeping the 7801 * critical areas read-only and backed up. It will start 7802 * the array in read-only mode, so we check for that. 7803 */ 7804 sector_t here_new, here_old; 7805 int old_disks; 7806 int max_degraded = (mddev->level == 6 ? 2 : 1); 7807 int chunk_sectors; 7808 int new_data_disks; 7809 7810 if (journal_dev) { 7811 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n", 7812 mdname(mddev)); 7813 return -EINVAL; 7814 } 7815 7816 if (mddev->new_level != mddev->level) { 7817 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n", 7818 mdname(mddev)); 7819 return -EINVAL; 7820 } 7821 old_disks = mddev->raid_disks - mddev->delta_disks; 7822 /* reshape_position must be on a new-stripe boundary, and one 7823 * further up in new geometry must map after here in old 7824 * geometry. 7825 * If the chunk sizes are different, then as we perform reshape 7826 * in units of the largest of the two, reshape_position needs 7827 * be a multiple of the largest chunk size times new data disks. 7828 */ 7829 here_new = mddev->reshape_position; 7830 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors); 7831 new_data_disks = mddev->raid_disks - max_degraded; 7832 if (sector_div(here_new, chunk_sectors * new_data_disks)) { 7833 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n", 7834 mdname(mddev)); 7835 return -EINVAL; 7836 } 7837 reshape_offset = here_new * chunk_sectors; 7838 /* here_new is the stripe we will write to */ 7839 here_old = mddev->reshape_position; 7840 sector_div(here_old, chunk_sectors * (old_disks-max_degraded)); 7841 /* here_old is the first stripe that we might need to read 7842 * from */ 7843 if (mddev->delta_disks == 0) { 7844 /* We cannot be sure it is safe to start an in-place 7845 * reshape. It is only safe if user-space is monitoring 7846 * and taking constant backups. 7847 * mdadm always starts a situation like this in 7848 * readonly mode so it can take control before 7849 * allowing any writes. So just check for that. 7850 */ 7851 if (abs(min_offset_diff) >= mddev->chunk_sectors && 7852 abs(min_offset_diff) >= mddev->new_chunk_sectors) 7853 /* not really in-place - so OK */; 7854 else if (mddev->ro == 0) { 7855 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n", 7856 mdname(mddev)); 7857 return -EINVAL; 7858 } 7859 } else if (mddev->reshape_backwards 7860 ? (here_new * chunk_sectors + min_offset_diff <= 7861 here_old * chunk_sectors) 7862 : (here_new * chunk_sectors >= 7863 here_old * chunk_sectors + (-min_offset_diff))) { 7864 /* Reading from the same stripe as writing to - bad */ 7865 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n", 7866 mdname(mddev)); 7867 return -EINVAL; 7868 } 7869 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev)); 7870 /* OK, we should be able to continue; */ 7871 } else { 7872 BUG_ON(mddev->level != mddev->new_level); 7873 BUG_ON(mddev->layout != mddev->new_layout); 7874 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors); 7875 BUG_ON(mddev->delta_disks != 0); 7876 } 7877 7878 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && 7879 test_bit(MD_HAS_PPL, &mddev->flags)) { 7880 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n", 7881 mdname(mddev)); 7882 clear_bit(MD_HAS_PPL, &mddev->flags); 7883 clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags); 7884 } 7885 7886 if (mddev->private == NULL) 7887 conf = setup_conf(mddev); 7888 else 7889 conf = mddev->private; 7890 7891 if (IS_ERR(conf)) 7892 return PTR_ERR(conf); 7893 7894 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 7895 if (!journal_dev) { 7896 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n", 7897 mdname(mddev)); 7898 mddev->ro = 1; 7899 set_disk_ro(mddev->gendisk, 1); 7900 } else if (mddev->recovery_cp == MaxSector) 7901 set_bit(MD_JOURNAL_CLEAN, &mddev->flags); 7902 } 7903 7904 conf->min_offset_diff = min_offset_diff; 7905 rcu_assign_pointer(mddev->thread, conf->thread); 7906 rcu_assign_pointer(conf->thread, NULL); 7907 mddev->private = conf; 7908 7909 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks; 7910 i++) { 7911 rdev = conf->disks[i].rdev; 7912 if (!rdev) 7913 continue; 7914 if (conf->disks[i].replacement && 7915 conf->reshape_progress != MaxSector) { 7916 /* replacements and reshape simply do not mix. */ 7917 pr_warn("md: cannot handle concurrent replacement and reshape.\n"); 7918 goto abort; 7919 } 7920 if (test_bit(In_sync, &rdev->flags)) 7921 continue; 7922 /* This disc is not fully in-sync. However if it 7923 * just stored parity (beyond the recovery_offset), 7924 * when we don't need to be concerned about the 7925 * array being dirty. 7926 * When reshape goes 'backwards', we never have 7927 * partially completed devices, so we only need 7928 * to worry about reshape going forwards. 7929 */ 7930 /* Hack because v0.91 doesn't store recovery_offset properly. */ 7931 if (mddev->major_version == 0 && 7932 mddev->minor_version > 90) 7933 rdev->recovery_offset = reshape_offset; 7934 7935 if (rdev->recovery_offset < reshape_offset) { 7936 /* We need to check old and new layout */ 7937 if (!only_parity(rdev->raid_disk, 7938 conf->algorithm, 7939 conf->raid_disks, 7940 conf->max_degraded)) 7941 continue; 7942 } 7943 if (!only_parity(rdev->raid_disk, 7944 conf->prev_algo, 7945 conf->previous_raid_disks, 7946 conf->max_degraded)) 7947 continue; 7948 dirty_parity_disks++; 7949 } 7950 7951 /* 7952 * 0 for a fully functional array, 1 or 2 for a degraded array. 7953 */ 7954 mddev->degraded = raid5_calc_degraded(conf); 7955 7956 if (has_failed(conf)) { 7957 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n", 7958 mdname(mddev), mddev->degraded, conf->raid_disks); 7959 goto abort; 7960 } 7961 7962 /* device size must be a multiple of chunk size */ 7963 mddev->dev_sectors &= ~((sector_t)mddev->chunk_sectors - 1); 7964 mddev->resync_max_sectors = mddev->dev_sectors; 7965 7966 if (mddev->degraded > dirty_parity_disks && 7967 mddev->recovery_cp != MaxSector) { 7968 if (test_bit(MD_HAS_PPL, &mddev->flags)) 7969 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n", 7970 mdname(mddev)); 7971 else if (mddev->ok_start_degraded) 7972 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n", 7973 mdname(mddev)); 7974 else { 7975 pr_crit("md/raid:%s: cannot start dirty degraded array.\n", 7976 mdname(mddev)); 7977 goto abort; 7978 } 7979 } 7980 7981 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n", 7982 mdname(mddev), conf->level, 7983 mddev->raid_disks-mddev->degraded, mddev->raid_disks, 7984 mddev->new_layout); 7985 7986 print_raid5_conf(conf); 7987 7988 if (conf->reshape_progress != MaxSector) { 7989 conf->reshape_safe = conf->reshape_progress; 7990 atomic_set(&conf->reshape_stripes, 0); 7991 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7992 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7993 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7994 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7995 } 7996 7997 /* Ok, everything is just fine now */ 7998 if (mddev->to_remove == &raid5_attrs_group) 7999 mddev->to_remove = NULL; 8000 else if (mddev->kobj.sd && 8001 sysfs_create_group(&mddev->kobj, &raid5_attrs_group)) 8002 pr_warn("raid5: failed to create sysfs attributes for %s\n", 8003 mdname(mddev)); 8004 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 8005 8006 if (!mddev_is_dm(mddev)) { 8007 ret = raid5_set_limits(mddev); 8008 if (ret) 8009 goto abort; 8010 } 8011 8012 if (log_init(conf, journal_dev, raid5_has_ppl(conf))) 8013 goto abort; 8014 8015 return 0; 8016 abort: 8017 md_unregister_thread(mddev, &mddev->thread); 8018 print_raid5_conf(conf); 8019 free_conf(conf); 8020 mddev->private = NULL; 8021 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev)); 8022 return ret; 8023 } 8024 8025 static void raid5_free(struct mddev *mddev, void *priv) 8026 { 8027 struct r5conf *conf = priv; 8028 8029 free_conf(conf); 8030 mddev->to_remove = &raid5_attrs_group; 8031 } 8032 8033 static void raid5_status(struct seq_file *seq, struct mddev *mddev) 8034 { 8035 struct r5conf *conf = mddev->private; 8036 int i; 8037 8038 lockdep_assert_held(&mddev->lock); 8039 8040 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level, 8041 conf->chunk_sectors / 2, mddev->layout); 8042 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded); 8043 for (i = 0; i < conf->raid_disks; i++) { 8044 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev); 8045 8046 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 8047 } 8048 seq_printf (seq, "]"); 8049 } 8050 8051 static void print_raid5_conf (struct r5conf *conf) 8052 { 8053 struct md_rdev *rdev; 8054 int i; 8055 8056 pr_debug("RAID conf printout:\n"); 8057 if (!conf) { 8058 pr_debug("(conf==NULL)\n"); 8059 return; 8060 } 8061 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level, 8062 conf->raid_disks, 8063 conf->raid_disks - conf->mddev->degraded); 8064 8065 rcu_read_lock(); 8066 for (i = 0; i < conf->raid_disks; i++) { 8067 rdev = rcu_dereference(conf->disks[i].rdev); 8068 if (rdev) 8069 pr_debug(" disk %d, o:%d, dev:%pg\n", 8070 i, !test_bit(Faulty, &rdev->flags), 8071 rdev->bdev); 8072 } 8073 rcu_read_unlock(); 8074 } 8075 8076 static int raid5_spare_active(struct mddev *mddev) 8077 { 8078 int i; 8079 struct r5conf *conf = mddev->private; 8080 struct md_rdev *rdev, *replacement; 8081 int count = 0; 8082 unsigned long flags; 8083 8084 for (i = 0; i < conf->raid_disks; i++) { 8085 rdev = conf->disks[i].rdev; 8086 replacement = conf->disks[i].replacement; 8087 if (replacement 8088 && replacement->recovery_offset == MaxSector 8089 && !test_bit(Faulty, &replacement->flags) 8090 && !test_and_set_bit(In_sync, &replacement->flags)) { 8091 /* Replacement has just become active. */ 8092 if (!rdev 8093 || !test_and_clear_bit(In_sync, &rdev->flags)) 8094 count++; 8095 if (rdev) { 8096 /* Replaced device not technically faulty, 8097 * but we need to be sure it gets removed 8098 * and never re-added. 8099 */ 8100 set_bit(Faulty, &rdev->flags); 8101 sysfs_notify_dirent_safe( 8102 rdev->sysfs_state); 8103 } 8104 sysfs_notify_dirent_safe(replacement->sysfs_state); 8105 } else if (rdev 8106 && rdev->recovery_offset == MaxSector 8107 && !test_bit(Faulty, &rdev->flags) 8108 && !test_and_set_bit(In_sync, &rdev->flags)) { 8109 count++; 8110 sysfs_notify_dirent_safe(rdev->sysfs_state); 8111 } 8112 } 8113 spin_lock_irqsave(&conf->device_lock, flags); 8114 mddev->degraded = raid5_calc_degraded(conf); 8115 spin_unlock_irqrestore(&conf->device_lock, flags); 8116 print_raid5_conf(conf); 8117 return count; 8118 } 8119 8120 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 8121 { 8122 struct r5conf *conf = mddev->private; 8123 int err = 0; 8124 int number = rdev->raid_disk; 8125 struct md_rdev **rdevp; 8126 struct disk_info *p; 8127 struct md_rdev *tmp; 8128 8129 print_raid5_conf(conf); 8130 if (test_bit(Journal, &rdev->flags) && conf->log) { 8131 /* 8132 * we can't wait pending write here, as this is called in 8133 * raid5d, wait will deadlock. 8134 * neilb: there is no locking about new writes here, 8135 * so this cannot be safe. 8136 */ 8137 if (atomic_read(&conf->active_stripes) || 8138 atomic_read(&conf->r5c_cached_full_stripes) || 8139 atomic_read(&conf->r5c_cached_partial_stripes)) { 8140 return -EBUSY; 8141 } 8142 log_exit(conf); 8143 return 0; 8144 } 8145 if (unlikely(number >= conf->pool_size)) 8146 return 0; 8147 p = conf->disks + number; 8148 if (rdev == p->rdev) 8149 rdevp = &p->rdev; 8150 else if (rdev == p->replacement) 8151 rdevp = &p->replacement; 8152 else 8153 return 0; 8154 8155 if (number >= conf->raid_disks && 8156 conf->reshape_progress == MaxSector) 8157 clear_bit(In_sync, &rdev->flags); 8158 8159 if (test_bit(In_sync, &rdev->flags) || 8160 atomic_read(&rdev->nr_pending)) { 8161 err = -EBUSY; 8162 goto abort; 8163 } 8164 /* Only remove non-faulty devices if recovery 8165 * isn't possible. 8166 */ 8167 if (!test_bit(Faulty, &rdev->flags) && 8168 mddev->recovery_disabled != conf->recovery_disabled && 8169 !has_failed(conf) && 8170 (!p->replacement || p->replacement == rdev) && 8171 number < conf->raid_disks) { 8172 err = -EBUSY; 8173 goto abort; 8174 } 8175 WRITE_ONCE(*rdevp, NULL); 8176 if (!err) { 8177 err = log_modify(conf, rdev, false); 8178 if (err) 8179 goto abort; 8180 } 8181 8182 tmp = p->replacement; 8183 if (tmp) { 8184 /* We must have just cleared 'rdev' */ 8185 WRITE_ONCE(p->rdev, tmp); 8186 clear_bit(Replacement, &tmp->flags); 8187 WRITE_ONCE(p->replacement, NULL); 8188 8189 if (!err) 8190 err = log_modify(conf, tmp, true); 8191 } 8192 8193 clear_bit(WantReplacement, &rdev->flags); 8194 abort: 8195 8196 print_raid5_conf(conf); 8197 return err; 8198 } 8199 8200 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev) 8201 { 8202 struct r5conf *conf = mddev->private; 8203 int ret, err = -EEXIST; 8204 int disk; 8205 struct disk_info *p; 8206 struct md_rdev *tmp; 8207 int first = 0; 8208 int last = conf->raid_disks - 1; 8209 8210 if (test_bit(Journal, &rdev->flags)) { 8211 if (conf->log) 8212 return -EBUSY; 8213 8214 rdev->raid_disk = 0; 8215 /* 8216 * The array is in readonly mode if journal is missing, so no 8217 * write requests running. We should be safe 8218 */ 8219 ret = log_init(conf, rdev, false); 8220 if (ret) 8221 return ret; 8222 8223 ret = r5l_start(conf->log); 8224 if (ret) 8225 return ret; 8226 8227 return 0; 8228 } 8229 if (mddev->recovery_disabled == conf->recovery_disabled) 8230 return -EBUSY; 8231 8232 if (rdev->saved_raid_disk < 0 && has_failed(conf)) 8233 /* no point adding a device */ 8234 return -EINVAL; 8235 8236 if (rdev->raid_disk >= 0) 8237 first = last = rdev->raid_disk; 8238 8239 /* 8240 * find the disk ... but prefer rdev->saved_raid_disk 8241 * if possible. 8242 */ 8243 if (rdev->saved_raid_disk >= first && 8244 rdev->saved_raid_disk <= last && 8245 conf->disks[rdev->saved_raid_disk].rdev == NULL) 8246 first = rdev->saved_raid_disk; 8247 8248 for (disk = first; disk <= last; disk++) { 8249 p = conf->disks + disk; 8250 if (p->rdev == NULL) { 8251 clear_bit(In_sync, &rdev->flags); 8252 rdev->raid_disk = disk; 8253 if (rdev->saved_raid_disk != disk) 8254 conf->fullsync = 1; 8255 WRITE_ONCE(p->rdev, rdev); 8256 8257 err = log_modify(conf, rdev, true); 8258 8259 goto out; 8260 } 8261 } 8262 for (disk = first; disk <= last; disk++) { 8263 p = conf->disks + disk; 8264 tmp = p->rdev; 8265 if (test_bit(WantReplacement, &tmp->flags) && 8266 mddev->reshape_position == MaxSector && 8267 p->replacement == NULL) { 8268 clear_bit(In_sync, &rdev->flags); 8269 set_bit(Replacement, &rdev->flags); 8270 rdev->raid_disk = disk; 8271 err = 0; 8272 conf->fullsync = 1; 8273 WRITE_ONCE(p->replacement, rdev); 8274 break; 8275 } 8276 } 8277 out: 8278 print_raid5_conf(conf); 8279 return err; 8280 } 8281 8282 static int raid5_resize(struct mddev *mddev, sector_t sectors) 8283 { 8284 /* no resync is happening, and there is enough space 8285 * on all devices, so we can resize. 8286 * We need to make sure resync covers any new space. 8287 * If the array is shrinking we should possibly wait until 8288 * any io in the removed space completes, but it hardly seems 8289 * worth it. 8290 */ 8291 sector_t newsize; 8292 struct r5conf *conf = mddev->private; 8293 8294 if (raid5_has_log(conf) || raid5_has_ppl(conf)) 8295 return -EINVAL; 8296 sectors &= ~((sector_t)conf->chunk_sectors - 1); 8297 newsize = raid5_size(mddev, sectors, mddev->raid_disks); 8298 if (mddev->external_size && 8299 mddev->array_sectors > newsize) 8300 return -EINVAL; 8301 if (mddev->bitmap) { 8302 int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0); 8303 if (ret) 8304 return ret; 8305 } 8306 md_set_array_sectors(mddev, newsize); 8307 if (sectors > mddev->dev_sectors && 8308 mddev->recovery_cp > mddev->dev_sectors) { 8309 mddev->recovery_cp = mddev->dev_sectors; 8310 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8311 } 8312 mddev->dev_sectors = sectors; 8313 mddev->resync_max_sectors = sectors; 8314 return 0; 8315 } 8316 8317 static int check_stripe_cache(struct mddev *mddev) 8318 { 8319 /* Can only proceed if there are plenty of stripe_heads. 8320 * We need a minimum of one full stripe,, and for sensible progress 8321 * it is best to have about 4 times that. 8322 * If we require 4 times, then the default 256 4K stripe_heads will 8323 * allow for chunk sizes up to 256K, which is probably OK. 8324 * If the chunk size is greater, user-space should request more 8325 * stripe_heads first. 8326 */ 8327 struct r5conf *conf = mddev->private; 8328 if (((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4 8329 > conf->min_nr_stripes || 8330 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4 8331 > conf->min_nr_stripes) { 8332 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n", 8333 mdname(mddev), 8334 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9) 8335 / RAID5_STRIPE_SIZE(conf))*4); 8336 return 0; 8337 } 8338 return 1; 8339 } 8340 8341 static int check_reshape(struct mddev *mddev) 8342 { 8343 struct r5conf *conf = mddev->private; 8344 8345 if (raid5_has_log(conf) || raid5_has_ppl(conf)) 8346 return -EINVAL; 8347 if (mddev->delta_disks == 0 && 8348 mddev->new_layout == mddev->layout && 8349 mddev->new_chunk_sectors == mddev->chunk_sectors) 8350 return 0; /* nothing to do */ 8351 if (has_failed(conf)) 8352 return -EINVAL; 8353 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) { 8354 /* We might be able to shrink, but the devices must 8355 * be made bigger first. 8356 * For raid6, 4 is the minimum size. 8357 * Otherwise 2 is the minimum 8358 */ 8359 int min = 2; 8360 if (mddev->level == 6) 8361 min = 4; 8362 if (mddev->raid_disks + mddev->delta_disks < min) 8363 return -EINVAL; 8364 } 8365 8366 if (!check_stripe_cache(mddev)) 8367 return -ENOSPC; 8368 8369 if (mddev->new_chunk_sectors > mddev->chunk_sectors || 8370 mddev->delta_disks > 0) 8371 if (resize_chunks(conf, 8372 conf->previous_raid_disks 8373 + max(0, mddev->delta_disks), 8374 max(mddev->new_chunk_sectors, 8375 mddev->chunk_sectors) 8376 ) < 0) 8377 return -ENOMEM; 8378 8379 if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size) 8380 return 0; /* never bother to shrink */ 8381 return resize_stripes(conf, (conf->previous_raid_disks 8382 + mddev->delta_disks)); 8383 } 8384 8385 static int raid5_start_reshape(struct mddev *mddev) 8386 { 8387 struct r5conf *conf = mddev->private; 8388 struct md_rdev *rdev; 8389 int spares = 0; 8390 int i; 8391 unsigned long flags; 8392 8393 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 8394 return -EBUSY; 8395 8396 if (!check_stripe_cache(mddev)) 8397 return -ENOSPC; 8398 8399 if (has_failed(conf)) 8400 return -EINVAL; 8401 8402 /* raid5 can't handle concurrent reshape and recovery */ 8403 if (mddev->recovery_cp < MaxSector) 8404 return -EBUSY; 8405 for (i = 0; i < conf->raid_disks; i++) 8406 if (conf->disks[i].replacement) 8407 return -EBUSY; 8408 8409 rdev_for_each(rdev, mddev) { 8410 if (!test_bit(In_sync, &rdev->flags) 8411 && !test_bit(Faulty, &rdev->flags)) 8412 spares++; 8413 } 8414 8415 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded) 8416 /* Not enough devices even to make a degraded array 8417 * of that size 8418 */ 8419 return -EINVAL; 8420 8421 /* Refuse to reduce size of the array. Any reductions in 8422 * array size must be through explicit setting of array_size 8423 * attribute. 8424 */ 8425 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks) 8426 < mddev->array_sectors) { 8427 pr_warn("md/raid:%s: array size must be reduced before number of disks\n", 8428 mdname(mddev)); 8429 return -EINVAL; 8430 } 8431 8432 atomic_set(&conf->reshape_stripes, 0); 8433 spin_lock_irq(&conf->device_lock); 8434 write_seqcount_begin(&conf->gen_lock); 8435 conf->previous_raid_disks = conf->raid_disks; 8436 conf->raid_disks += mddev->delta_disks; 8437 conf->prev_chunk_sectors = conf->chunk_sectors; 8438 conf->chunk_sectors = mddev->new_chunk_sectors; 8439 conf->prev_algo = conf->algorithm; 8440 conf->algorithm = mddev->new_layout; 8441 conf->generation++; 8442 /* Code that selects data_offset needs to see the generation update 8443 * if reshape_progress has been set - so a memory barrier needed. 8444 */ 8445 smp_mb(); 8446 if (mddev->reshape_backwards) 8447 conf->reshape_progress = raid5_size(mddev, 0, 0); 8448 else 8449 conf->reshape_progress = 0; 8450 conf->reshape_safe = conf->reshape_progress; 8451 write_seqcount_end(&conf->gen_lock); 8452 spin_unlock_irq(&conf->device_lock); 8453 8454 /* Now make sure any requests that proceeded on the assumption 8455 * the reshape wasn't running - like Discard or Read - have 8456 * completed. 8457 */ 8458 raid5_quiesce(mddev, true); 8459 raid5_quiesce(mddev, false); 8460 8461 /* Add some new drives, as many as will fit. 8462 * We know there are enough to make the newly sized array work. 8463 * Don't add devices if we are reducing the number of 8464 * devices in the array. This is because it is not possible 8465 * to correctly record the "partially reconstructed" state of 8466 * such devices during the reshape and confusion could result. 8467 */ 8468 if (mddev->delta_disks >= 0) { 8469 rdev_for_each(rdev, mddev) 8470 if (rdev->raid_disk < 0 && 8471 !test_bit(Faulty, &rdev->flags)) { 8472 if (raid5_add_disk(mddev, rdev) == 0) { 8473 if (rdev->raid_disk 8474 >= conf->previous_raid_disks) 8475 set_bit(In_sync, &rdev->flags); 8476 else 8477 rdev->recovery_offset = 0; 8478 8479 /* Failure here is OK */ 8480 sysfs_link_rdev(mddev, rdev); 8481 } 8482 } else if (rdev->raid_disk >= conf->previous_raid_disks 8483 && !test_bit(Faulty, &rdev->flags)) { 8484 /* This is a spare that was manually added */ 8485 set_bit(In_sync, &rdev->flags); 8486 } 8487 8488 /* When a reshape changes the number of devices, 8489 * ->degraded is measured against the larger of the 8490 * pre and post number of devices. 8491 */ 8492 spin_lock_irqsave(&conf->device_lock, flags); 8493 mddev->degraded = raid5_calc_degraded(conf); 8494 spin_unlock_irqrestore(&conf->device_lock, flags); 8495 } 8496 mddev->raid_disks = conf->raid_disks; 8497 mddev->reshape_position = conf->reshape_progress; 8498 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8499 8500 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8501 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8502 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 8503 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8504 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8505 conf->reshape_checkpoint = jiffies; 8506 md_new_event(); 8507 return 0; 8508 } 8509 8510 /* This is called from the reshape thread and should make any 8511 * changes needed in 'conf' 8512 */ 8513 static void end_reshape(struct r5conf *conf) 8514 { 8515 8516 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 8517 struct md_rdev *rdev; 8518 8519 spin_lock_irq(&conf->device_lock); 8520 conf->previous_raid_disks = conf->raid_disks; 8521 md_finish_reshape(conf->mddev); 8522 smp_wmb(); 8523 conf->reshape_progress = MaxSector; 8524 conf->mddev->reshape_position = MaxSector; 8525 rdev_for_each(rdev, conf->mddev) 8526 if (rdev->raid_disk >= 0 && 8527 !test_bit(Journal, &rdev->flags) && 8528 !test_bit(In_sync, &rdev->flags)) 8529 rdev->recovery_offset = MaxSector; 8530 spin_unlock_irq(&conf->device_lock); 8531 wake_up(&conf->wait_for_overlap); 8532 8533 mddev_update_io_opt(conf->mddev, 8534 conf->raid_disks - conf->max_degraded); 8535 } 8536 } 8537 8538 /* This is called from the raid5d thread with mddev_lock held. 8539 * It makes config changes to the device. 8540 */ 8541 static void raid5_finish_reshape(struct mddev *mddev) 8542 { 8543 struct r5conf *conf = mddev->private; 8544 struct md_rdev *rdev; 8545 8546 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8547 8548 if (mddev->delta_disks <= 0) { 8549 int d; 8550 spin_lock_irq(&conf->device_lock); 8551 mddev->degraded = raid5_calc_degraded(conf); 8552 spin_unlock_irq(&conf->device_lock); 8553 for (d = conf->raid_disks ; 8554 d < conf->raid_disks - mddev->delta_disks; 8555 d++) { 8556 rdev = conf->disks[d].rdev; 8557 if (rdev) 8558 clear_bit(In_sync, &rdev->flags); 8559 rdev = conf->disks[d].replacement; 8560 if (rdev) 8561 clear_bit(In_sync, &rdev->flags); 8562 } 8563 } 8564 mddev->layout = conf->algorithm; 8565 mddev->chunk_sectors = conf->chunk_sectors; 8566 mddev->reshape_position = MaxSector; 8567 mddev->delta_disks = 0; 8568 mddev->reshape_backwards = 0; 8569 } 8570 } 8571 8572 static void raid5_quiesce(struct mddev *mddev, int quiesce) 8573 { 8574 struct r5conf *conf = mddev->private; 8575 8576 if (quiesce) { 8577 /* stop all writes */ 8578 lock_all_device_hash_locks_irq(conf); 8579 /* '2' tells resync/reshape to pause so that all 8580 * active stripes can drain 8581 */ 8582 r5c_flush_cache(conf, INT_MAX); 8583 /* need a memory barrier to make sure read_one_chunk() sees 8584 * quiesce started and reverts to slow (locked) path. 8585 */ 8586 smp_store_release(&conf->quiesce, 2); 8587 wait_event_cmd(conf->wait_for_quiescent, 8588 atomic_read(&conf->active_stripes) == 0 && 8589 atomic_read(&conf->active_aligned_reads) == 0, 8590 unlock_all_device_hash_locks_irq(conf), 8591 lock_all_device_hash_locks_irq(conf)); 8592 conf->quiesce = 1; 8593 unlock_all_device_hash_locks_irq(conf); 8594 /* allow reshape to continue */ 8595 wake_up(&conf->wait_for_overlap); 8596 } else { 8597 /* re-enable writes */ 8598 lock_all_device_hash_locks_irq(conf); 8599 conf->quiesce = 0; 8600 wake_up(&conf->wait_for_quiescent); 8601 wake_up(&conf->wait_for_overlap); 8602 unlock_all_device_hash_locks_irq(conf); 8603 } 8604 log_quiesce(conf, quiesce); 8605 } 8606 8607 static void *raid45_takeover_raid0(struct mddev *mddev, int level) 8608 { 8609 struct r0conf *raid0_conf = mddev->private; 8610 sector_t sectors; 8611 8612 /* for raid0 takeover only one zone is supported */ 8613 if (raid0_conf->nr_strip_zones > 1) { 8614 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n", 8615 mdname(mddev)); 8616 return ERR_PTR(-EINVAL); 8617 } 8618 8619 sectors = raid0_conf->strip_zone[0].zone_end; 8620 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev); 8621 mddev->dev_sectors = sectors; 8622 mddev->new_level = level; 8623 mddev->new_layout = ALGORITHM_PARITY_N; 8624 mddev->new_chunk_sectors = mddev->chunk_sectors; 8625 mddev->raid_disks += 1; 8626 mddev->delta_disks = 1; 8627 /* make sure it will be not marked as dirty */ 8628 mddev->recovery_cp = MaxSector; 8629 8630 return setup_conf(mddev); 8631 } 8632 8633 static void *raid5_takeover_raid1(struct mddev *mddev) 8634 { 8635 int chunksect; 8636 void *ret; 8637 8638 if (mddev->raid_disks != 2 || 8639 mddev->degraded > 1) 8640 return ERR_PTR(-EINVAL); 8641 8642 /* Should check if there are write-behind devices? */ 8643 8644 chunksect = 64*2; /* 64K by default */ 8645 8646 /* The array must be an exact multiple of chunksize */ 8647 while (chunksect && (mddev->array_sectors & (chunksect-1))) 8648 chunksect >>= 1; 8649 8650 if ((chunksect<<9) < RAID5_STRIPE_SIZE((struct r5conf *)mddev->private)) 8651 /* array size does not allow a suitable chunk size */ 8652 return ERR_PTR(-EINVAL); 8653 8654 mddev->new_level = 5; 8655 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC; 8656 mddev->new_chunk_sectors = chunksect; 8657 8658 ret = setup_conf(mddev); 8659 if (!IS_ERR(ret)) 8660 mddev_clear_unsupported_flags(mddev, 8661 UNSUPPORTED_MDDEV_FLAGS); 8662 return ret; 8663 } 8664 8665 static void *raid5_takeover_raid6(struct mddev *mddev) 8666 { 8667 int new_layout; 8668 8669 switch (mddev->layout) { 8670 case ALGORITHM_LEFT_ASYMMETRIC_6: 8671 new_layout = ALGORITHM_LEFT_ASYMMETRIC; 8672 break; 8673 case ALGORITHM_RIGHT_ASYMMETRIC_6: 8674 new_layout = ALGORITHM_RIGHT_ASYMMETRIC; 8675 break; 8676 case ALGORITHM_LEFT_SYMMETRIC_6: 8677 new_layout = ALGORITHM_LEFT_SYMMETRIC; 8678 break; 8679 case ALGORITHM_RIGHT_SYMMETRIC_6: 8680 new_layout = ALGORITHM_RIGHT_SYMMETRIC; 8681 break; 8682 case ALGORITHM_PARITY_0_6: 8683 new_layout = ALGORITHM_PARITY_0; 8684 break; 8685 case ALGORITHM_PARITY_N: 8686 new_layout = ALGORITHM_PARITY_N; 8687 break; 8688 default: 8689 return ERR_PTR(-EINVAL); 8690 } 8691 mddev->new_level = 5; 8692 mddev->new_layout = new_layout; 8693 mddev->delta_disks = -1; 8694 mddev->raid_disks -= 1; 8695 return setup_conf(mddev); 8696 } 8697 8698 static int raid5_check_reshape(struct mddev *mddev) 8699 { 8700 /* For a 2-drive array, the layout and chunk size can be changed 8701 * immediately as not restriping is needed. 8702 * For larger arrays we record the new value - after validation 8703 * to be used by a reshape pass. 8704 */ 8705 struct r5conf *conf = mddev->private; 8706 int new_chunk = mddev->new_chunk_sectors; 8707 8708 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout)) 8709 return -EINVAL; 8710 if (new_chunk > 0) { 8711 if (!is_power_of_2(new_chunk)) 8712 return -EINVAL; 8713 if (new_chunk < (PAGE_SIZE>>9)) 8714 return -EINVAL; 8715 if (mddev->array_sectors & (new_chunk-1)) 8716 /* not factor of array size */ 8717 return -EINVAL; 8718 } 8719 8720 /* They look valid */ 8721 8722 if (mddev->raid_disks == 2) { 8723 /* can make the change immediately */ 8724 if (mddev->new_layout >= 0) { 8725 conf->algorithm = mddev->new_layout; 8726 mddev->layout = mddev->new_layout; 8727 } 8728 if (new_chunk > 0) { 8729 conf->chunk_sectors = new_chunk ; 8730 mddev->chunk_sectors = new_chunk; 8731 } 8732 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8733 md_wakeup_thread(mddev->thread); 8734 } 8735 return check_reshape(mddev); 8736 } 8737 8738 static int raid6_check_reshape(struct mddev *mddev) 8739 { 8740 int new_chunk = mddev->new_chunk_sectors; 8741 8742 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout)) 8743 return -EINVAL; 8744 if (new_chunk > 0) { 8745 if (!is_power_of_2(new_chunk)) 8746 return -EINVAL; 8747 if (new_chunk < (PAGE_SIZE >> 9)) 8748 return -EINVAL; 8749 if (mddev->array_sectors & (new_chunk-1)) 8750 /* not factor of array size */ 8751 return -EINVAL; 8752 } 8753 8754 /* They look valid */ 8755 return check_reshape(mddev); 8756 } 8757 8758 static void *raid5_takeover(struct mddev *mddev) 8759 { 8760 /* raid5 can take over: 8761 * raid0 - if there is only one strip zone - make it a raid4 layout 8762 * raid1 - if there are two drives. We need to know the chunk size 8763 * raid4 - trivial - just use a raid4 layout. 8764 * raid6 - Providing it is a *_6 layout 8765 */ 8766 if (mddev->level == 0) 8767 return raid45_takeover_raid0(mddev, 5); 8768 if (mddev->level == 1) 8769 return raid5_takeover_raid1(mddev); 8770 if (mddev->level == 4) { 8771 mddev->new_layout = ALGORITHM_PARITY_N; 8772 mddev->new_level = 5; 8773 return setup_conf(mddev); 8774 } 8775 if (mddev->level == 6) 8776 return raid5_takeover_raid6(mddev); 8777 8778 return ERR_PTR(-EINVAL); 8779 } 8780 8781 static void *raid4_takeover(struct mddev *mddev) 8782 { 8783 /* raid4 can take over: 8784 * raid0 - if there is only one strip zone 8785 * raid5 - if layout is right 8786 */ 8787 if (mddev->level == 0) 8788 return raid45_takeover_raid0(mddev, 4); 8789 if (mddev->level == 5 && 8790 mddev->layout == ALGORITHM_PARITY_N) { 8791 mddev->new_layout = 0; 8792 mddev->new_level = 4; 8793 return setup_conf(mddev); 8794 } 8795 return ERR_PTR(-EINVAL); 8796 } 8797 8798 static struct md_personality raid5_personality; 8799 8800 static void *raid6_takeover(struct mddev *mddev) 8801 { 8802 /* Currently can only take over a raid5. We map the 8803 * personality to an equivalent raid6 personality 8804 * with the Q block at the end. 8805 */ 8806 int new_layout; 8807 8808 if (mddev->pers != &raid5_personality) 8809 return ERR_PTR(-EINVAL); 8810 if (mddev->degraded > 1) 8811 return ERR_PTR(-EINVAL); 8812 if (mddev->raid_disks > 253) 8813 return ERR_PTR(-EINVAL); 8814 if (mddev->raid_disks < 3) 8815 return ERR_PTR(-EINVAL); 8816 8817 switch (mddev->layout) { 8818 case ALGORITHM_LEFT_ASYMMETRIC: 8819 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6; 8820 break; 8821 case ALGORITHM_RIGHT_ASYMMETRIC: 8822 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6; 8823 break; 8824 case ALGORITHM_LEFT_SYMMETRIC: 8825 new_layout = ALGORITHM_LEFT_SYMMETRIC_6; 8826 break; 8827 case ALGORITHM_RIGHT_SYMMETRIC: 8828 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6; 8829 break; 8830 case ALGORITHM_PARITY_0: 8831 new_layout = ALGORITHM_PARITY_0_6; 8832 break; 8833 case ALGORITHM_PARITY_N: 8834 new_layout = ALGORITHM_PARITY_N; 8835 break; 8836 default: 8837 return ERR_PTR(-EINVAL); 8838 } 8839 mddev->new_level = 6; 8840 mddev->new_layout = new_layout; 8841 mddev->delta_disks = 1; 8842 mddev->raid_disks += 1; 8843 return setup_conf(mddev); 8844 } 8845 8846 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf) 8847 { 8848 struct r5conf *conf; 8849 int err; 8850 8851 err = mddev_suspend_and_lock(mddev); 8852 if (err) 8853 return err; 8854 conf = mddev->private; 8855 if (!conf) { 8856 mddev_unlock_and_resume(mddev); 8857 return -ENODEV; 8858 } 8859 8860 if (strncmp(buf, "ppl", 3) == 0) { 8861 /* ppl only works with RAID 5 */ 8862 if (!raid5_has_ppl(conf) && conf->level == 5) { 8863 err = log_init(conf, NULL, true); 8864 if (!err) { 8865 err = resize_stripes(conf, conf->pool_size); 8866 if (err) 8867 log_exit(conf); 8868 } 8869 } else 8870 err = -EINVAL; 8871 } else if (strncmp(buf, "resync", 6) == 0) { 8872 if (raid5_has_ppl(conf)) { 8873 log_exit(conf); 8874 err = resize_stripes(conf, conf->pool_size); 8875 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) && 8876 r5l_log_disk_error(conf)) { 8877 bool journal_dev_exists = false; 8878 struct md_rdev *rdev; 8879 8880 rdev_for_each(rdev, mddev) 8881 if (test_bit(Journal, &rdev->flags)) { 8882 journal_dev_exists = true; 8883 break; 8884 } 8885 8886 if (!journal_dev_exists) 8887 clear_bit(MD_HAS_JOURNAL, &mddev->flags); 8888 else /* need remove journal device first */ 8889 err = -EBUSY; 8890 } else 8891 err = -EINVAL; 8892 } else { 8893 err = -EINVAL; 8894 } 8895 8896 if (!err) 8897 md_update_sb(mddev, 1); 8898 8899 mddev_unlock_and_resume(mddev); 8900 8901 return err; 8902 } 8903 8904 static int raid5_start(struct mddev *mddev) 8905 { 8906 struct r5conf *conf = mddev->private; 8907 8908 return r5l_start(conf->log); 8909 } 8910 8911 /* 8912 * This is only used for dm-raid456, caller already frozen sync_thread, hence 8913 * if rehsape is still in progress, io that is waiting for reshape can never be 8914 * done now, hence wake up and handle those IO. 8915 */ 8916 static void raid5_prepare_suspend(struct mddev *mddev) 8917 { 8918 struct r5conf *conf = mddev->private; 8919 8920 wake_up(&conf->wait_for_overlap); 8921 } 8922 8923 static struct md_personality raid6_personality = 8924 { 8925 .name = "raid6", 8926 .level = 6, 8927 .owner = THIS_MODULE, 8928 .make_request = raid5_make_request, 8929 .run = raid5_run, 8930 .start = raid5_start, 8931 .free = raid5_free, 8932 .status = raid5_status, 8933 .error_handler = raid5_error, 8934 .hot_add_disk = raid5_add_disk, 8935 .hot_remove_disk= raid5_remove_disk, 8936 .spare_active = raid5_spare_active, 8937 .sync_request = raid5_sync_request, 8938 .resize = raid5_resize, 8939 .size = raid5_size, 8940 .check_reshape = raid6_check_reshape, 8941 .start_reshape = raid5_start_reshape, 8942 .finish_reshape = raid5_finish_reshape, 8943 .quiesce = raid5_quiesce, 8944 .takeover = raid6_takeover, 8945 .change_consistency_policy = raid5_change_consistency_policy, 8946 .prepare_suspend = raid5_prepare_suspend, 8947 }; 8948 static struct md_personality raid5_personality = 8949 { 8950 .name = "raid5", 8951 .level = 5, 8952 .owner = THIS_MODULE, 8953 .make_request = raid5_make_request, 8954 .run = raid5_run, 8955 .start = raid5_start, 8956 .free = raid5_free, 8957 .status = raid5_status, 8958 .error_handler = raid5_error, 8959 .hot_add_disk = raid5_add_disk, 8960 .hot_remove_disk= raid5_remove_disk, 8961 .spare_active = raid5_spare_active, 8962 .sync_request = raid5_sync_request, 8963 .resize = raid5_resize, 8964 .size = raid5_size, 8965 .check_reshape = raid5_check_reshape, 8966 .start_reshape = raid5_start_reshape, 8967 .finish_reshape = raid5_finish_reshape, 8968 .quiesce = raid5_quiesce, 8969 .takeover = raid5_takeover, 8970 .change_consistency_policy = raid5_change_consistency_policy, 8971 .prepare_suspend = raid5_prepare_suspend, 8972 }; 8973 8974 static struct md_personality raid4_personality = 8975 { 8976 .name = "raid4", 8977 .level = 4, 8978 .owner = THIS_MODULE, 8979 .make_request = raid5_make_request, 8980 .run = raid5_run, 8981 .start = raid5_start, 8982 .free = raid5_free, 8983 .status = raid5_status, 8984 .error_handler = raid5_error, 8985 .hot_add_disk = raid5_add_disk, 8986 .hot_remove_disk= raid5_remove_disk, 8987 .spare_active = raid5_spare_active, 8988 .sync_request = raid5_sync_request, 8989 .resize = raid5_resize, 8990 .size = raid5_size, 8991 .check_reshape = raid5_check_reshape, 8992 .start_reshape = raid5_start_reshape, 8993 .finish_reshape = raid5_finish_reshape, 8994 .quiesce = raid5_quiesce, 8995 .takeover = raid4_takeover, 8996 .change_consistency_policy = raid5_change_consistency_policy, 8997 .prepare_suspend = raid5_prepare_suspend, 8998 }; 8999 9000 static int __init raid5_init(void) 9001 { 9002 int ret; 9003 9004 raid5_wq = alloc_workqueue("raid5wq", 9005 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0); 9006 if (!raid5_wq) 9007 return -ENOMEM; 9008 9009 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE, 9010 "md/raid5:prepare", 9011 raid456_cpu_up_prepare, 9012 raid456_cpu_dead); 9013 if (ret) { 9014 destroy_workqueue(raid5_wq); 9015 return ret; 9016 } 9017 register_md_personality(&raid6_personality); 9018 register_md_personality(&raid5_personality); 9019 register_md_personality(&raid4_personality); 9020 return 0; 9021 } 9022 9023 static void raid5_exit(void) 9024 { 9025 unregister_md_personality(&raid6_personality); 9026 unregister_md_personality(&raid5_personality); 9027 unregister_md_personality(&raid4_personality); 9028 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE); 9029 destroy_workqueue(raid5_wq); 9030 } 9031 9032 module_init(raid5_init); 9033 module_exit(raid5_exit); 9034 MODULE_LICENSE("GPL"); 9035 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD"); 9036 MODULE_ALIAS("md-personality-4"); /* RAID5 */ 9037 MODULE_ALIAS("md-raid5"); 9038 MODULE_ALIAS("md-raid4"); 9039 MODULE_ALIAS("md-level-5"); 9040 MODULE_ALIAS("md-level-4"); 9041 MODULE_ALIAS("md-personality-8"); /* RAID6 */ 9042 MODULE_ALIAS("md-raid6"); 9043 MODULE_ALIAS("md-level-6"); 9044 9045 /* This used to be two separate modules, they were: */ 9046 MODULE_ALIAS("raid5"); 9047 MODULE_ALIAS("raid6"); 9048