1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid5.c : Multiple Devices driver for Linux 4 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman 5 * Copyright (C) 1999, 2000 Ingo Molnar 6 * Copyright (C) 2002, 2003 H. Peter Anvin 7 * 8 * RAID-4/5/6 management functions. 9 * Thanks to Penguin Computing for making the RAID-6 development possible 10 * by donating a test server! 11 */ 12 13 /* 14 * BITMAP UNPLUGGING: 15 * 16 * The sequencing for updating the bitmap reliably is a little 17 * subtle (and I got it wrong the first time) so it deserves some 18 * explanation. 19 * 20 * We group bitmap updates into batches. Each batch has a number. 21 * We may write out several batches at once, but that isn't very important. 22 * conf->seq_write is the number of the last batch successfully written. 23 * conf->seq_flush is the number of the last batch that was closed to 24 * new additions. 25 * When we discover that we will need to write to any block in a stripe 26 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq 27 * the number of the batch it will be in. This is seq_flush+1. 28 * When we are ready to do a write, if that batch hasn't been written yet, 29 * we plug the array and queue the stripe for later. 30 * When an unplug happens, we increment bm_flush, thus closing the current 31 * batch. 32 * When we notice that bm_flush > bm_write, we write out all pending updates 33 * to the bitmap, and advance bm_write to where bm_flush was. 34 * This may occasionally write a bit out twice, but is sure never to 35 * miss any bits. 36 */ 37 38 #include <linux/blkdev.h> 39 #include <linux/kthread.h> 40 #include <linux/raid/pq.h> 41 #include <linux/async_tx.h> 42 #include <linux/module.h> 43 #include <linux/async.h> 44 #include <linux/seq_file.h> 45 #include <linux/cpu.h> 46 #include <linux/slab.h> 47 #include <linux/ratelimit.h> 48 #include <linux/nodemask.h> 49 50 #include <trace/events/block.h> 51 #include <linux/list_sort.h> 52 53 #include "md.h" 54 #include "raid5.h" 55 #include "raid0.h" 56 #include "md-bitmap.h" 57 #include "raid5-log.h" 58 59 #define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED) 60 61 #define cpu_to_group(cpu) cpu_to_node(cpu) 62 #define ANY_GROUP NUMA_NO_NODE 63 64 #define RAID5_MAX_REQ_STRIPES 256 65 66 static bool devices_handle_discard_safely = false; 67 module_param(devices_handle_discard_safely, bool, 0644); 68 MODULE_PARM_DESC(devices_handle_discard_safely, 69 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions"); 70 static struct workqueue_struct *raid5_wq; 71 72 static void raid5_quiesce(struct mddev *mddev, int quiesce); 73 74 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect) 75 { 76 int hash = (sect >> RAID5_STRIPE_SHIFT(conf)) & HASH_MASK; 77 return &conf->stripe_hashtbl[hash]; 78 } 79 80 static inline int stripe_hash_locks_hash(struct r5conf *conf, sector_t sect) 81 { 82 return (sect >> RAID5_STRIPE_SHIFT(conf)) & STRIPE_HASH_LOCKS_MASK; 83 } 84 85 static inline void lock_device_hash_lock(struct r5conf *conf, int hash) 86 __acquires(&conf->device_lock) 87 { 88 spin_lock_irq(conf->hash_locks + hash); 89 spin_lock(&conf->device_lock); 90 } 91 92 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash) 93 __releases(&conf->device_lock) 94 { 95 spin_unlock(&conf->device_lock); 96 spin_unlock_irq(conf->hash_locks + hash); 97 } 98 99 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf) 100 __acquires(&conf->device_lock) 101 { 102 int i; 103 spin_lock_irq(conf->hash_locks); 104 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 105 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks); 106 spin_lock(&conf->device_lock); 107 } 108 109 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf) 110 __releases(&conf->device_lock) 111 { 112 int i; 113 spin_unlock(&conf->device_lock); 114 for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--) 115 spin_unlock(conf->hash_locks + i); 116 spin_unlock_irq(conf->hash_locks); 117 } 118 119 /* Find first data disk in a raid6 stripe */ 120 static inline int raid6_d0(struct stripe_head *sh) 121 { 122 if (sh->ddf_layout) 123 /* ddf always start from first device */ 124 return 0; 125 /* md starts just after Q block */ 126 if (sh->qd_idx == sh->disks - 1) 127 return 0; 128 else 129 return sh->qd_idx + 1; 130 } 131 static inline int raid6_next_disk(int disk, int raid_disks) 132 { 133 disk++; 134 return (disk < raid_disks) ? disk : 0; 135 } 136 137 /* When walking through the disks in a raid5, starting at raid6_d0, 138 * We need to map each disk to a 'slot', where the data disks are slot 139 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk 140 * is raid_disks-1. This help does that mapping. 141 */ 142 static int raid6_idx_to_slot(int idx, struct stripe_head *sh, 143 int *count, int syndrome_disks) 144 { 145 int slot = *count; 146 147 if (sh->ddf_layout) 148 (*count)++; 149 if (idx == sh->pd_idx) 150 return syndrome_disks; 151 if (idx == sh->qd_idx) 152 return syndrome_disks + 1; 153 if (!sh->ddf_layout) 154 (*count)++; 155 return slot; 156 } 157 158 static void print_raid5_conf(struct r5conf *conf); 159 160 static int stripe_operations_active(struct stripe_head *sh) 161 { 162 return sh->check_state || sh->reconstruct_state || 163 test_bit(STRIPE_BIOFILL_RUN, &sh->state) || 164 test_bit(STRIPE_COMPUTE_RUN, &sh->state); 165 } 166 167 static bool stripe_is_lowprio(struct stripe_head *sh) 168 { 169 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) || 170 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) && 171 !test_bit(STRIPE_R5C_CACHING, &sh->state); 172 } 173 174 static void raid5_wakeup_stripe_thread(struct stripe_head *sh) 175 __must_hold(&sh->raid_conf->device_lock) 176 { 177 struct r5conf *conf = sh->raid_conf; 178 struct r5worker_group *group; 179 int thread_cnt; 180 int i, cpu = sh->cpu; 181 182 if (!cpu_online(cpu)) { 183 cpu = cpumask_any(cpu_online_mask); 184 sh->cpu = cpu; 185 } 186 187 if (list_empty(&sh->lru)) { 188 struct r5worker_group *group; 189 group = conf->worker_groups + cpu_to_group(cpu); 190 if (stripe_is_lowprio(sh)) 191 list_add_tail(&sh->lru, &group->loprio_list); 192 else 193 list_add_tail(&sh->lru, &group->handle_list); 194 group->stripes_cnt++; 195 sh->group = group; 196 } 197 198 if (conf->worker_cnt_per_group == 0) { 199 md_wakeup_thread(conf->mddev->thread); 200 return; 201 } 202 203 group = conf->worker_groups + cpu_to_group(sh->cpu); 204 205 group->workers[0].working = true; 206 /* at least one worker should run to avoid race */ 207 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work); 208 209 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1; 210 /* wakeup more workers */ 211 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) { 212 if (group->workers[i].working == false) { 213 group->workers[i].working = true; 214 queue_work_on(sh->cpu, raid5_wq, 215 &group->workers[i].work); 216 thread_cnt--; 217 } 218 } 219 } 220 221 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh, 222 struct list_head *temp_inactive_list) 223 __must_hold(&conf->device_lock) 224 { 225 int i; 226 int injournal = 0; /* number of date pages with R5_InJournal */ 227 228 BUG_ON(!list_empty(&sh->lru)); 229 BUG_ON(atomic_read(&conf->active_stripes)==0); 230 231 if (r5c_is_writeback(conf->log)) 232 for (i = sh->disks; i--; ) 233 if (test_bit(R5_InJournal, &sh->dev[i].flags)) 234 injournal++; 235 /* 236 * In the following cases, the stripe cannot be released to cached 237 * lists. Therefore, we make the stripe write out and set 238 * STRIPE_HANDLE: 239 * 1. when quiesce in r5c write back; 240 * 2. when resync is requested fot the stripe. 241 */ 242 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) || 243 (conf->quiesce && r5c_is_writeback(conf->log) && 244 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) { 245 if (test_bit(STRIPE_R5C_CACHING, &sh->state)) 246 r5c_make_stripe_write_out(sh); 247 set_bit(STRIPE_HANDLE, &sh->state); 248 } 249 250 if (test_bit(STRIPE_HANDLE, &sh->state)) { 251 if (test_bit(STRIPE_DELAYED, &sh->state) && 252 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 253 list_add_tail(&sh->lru, &conf->delayed_list); 254 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) && 255 sh->bm_seq - conf->seq_write > 0) 256 list_add_tail(&sh->lru, &conf->bitmap_list); 257 else { 258 clear_bit(STRIPE_DELAYED, &sh->state); 259 clear_bit(STRIPE_BIT_DELAY, &sh->state); 260 if (conf->worker_cnt_per_group == 0) { 261 if (stripe_is_lowprio(sh)) 262 list_add_tail(&sh->lru, 263 &conf->loprio_list); 264 else 265 list_add_tail(&sh->lru, 266 &conf->handle_list); 267 } else { 268 raid5_wakeup_stripe_thread(sh); 269 return; 270 } 271 } 272 md_wakeup_thread(conf->mddev->thread); 273 } else { 274 BUG_ON(stripe_operations_active(sh)); 275 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 276 if (atomic_dec_return(&conf->preread_active_stripes) 277 < IO_THRESHOLD) 278 md_wakeup_thread(conf->mddev->thread); 279 atomic_dec(&conf->active_stripes); 280 if (!test_bit(STRIPE_EXPANDING, &sh->state)) { 281 if (!r5c_is_writeback(conf->log)) 282 list_add_tail(&sh->lru, temp_inactive_list); 283 else { 284 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags)); 285 if (injournal == 0) 286 list_add_tail(&sh->lru, temp_inactive_list); 287 else if (injournal == conf->raid_disks - conf->max_degraded) { 288 /* full stripe */ 289 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) 290 atomic_inc(&conf->r5c_cached_full_stripes); 291 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) 292 atomic_dec(&conf->r5c_cached_partial_stripes); 293 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list); 294 r5c_check_cached_full_stripe(conf); 295 } else 296 /* 297 * STRIPE_R5C_PARTIAL_STRIPE is set in 298 * r5c_try_caching_write(). No need to 299 * set it again. 300 */ 301 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list); 302 } 303 } 304 } 305 } 306 307 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh, 308 struct list_head *temp_inactive_list) 309 __must_hold(&conf->device_lock) 310 { 311 if (atomic_dec_and_test(&sh->count)) 312 do_release_stripe(conf, sh, temp_inactive_list); 313 } 314 315 /* 316 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list 317 * 318 * Be careful: Only one task can add/delete stripes from temp_inactive_list at 319 * given time. Adding stripes only takes device lock, while deleting stripes 320 * only takes hash lock. 321 */ 322 static void release_inactive_stripe_list(struct r5conf *conf, 323 struct list_head *temp_inactive_list, 324 int hash) 325 { 326 int size; 327 bool do_wakeup = false; 328 unsigned long flags; 329 330 if (hash == NR_STRIPE_HASH_LOCKS) { 331 size = NR_STRIPE_HASH_LOCKS; 332 hash = NR_STRIPE_HASH_LOCKS - 1; 333 } else 334 size = 1; 335 while (size) { 336 struct list_head *list = &temp_inactive_list[size - 1]; 337 338 /* 339 * We don't hold any lock here yet, raid5_get_active_stripe() might 340 * remove stripes from the list 341 */ 342 if (!list_empty_careful(list)) { 343 spin_lock_irqsave(conf->hash_locks + hash, flags); 344 if (list_empty(conf->inactive_list + hash) && 345 !list_empty(list)) 346 atomic_dec(&conf->empty_inactive_list_nr); 347 list_splice_tail_init(list, conf->inactive_list + hash); 348 do_wakeup = true; 349 spin_unlock_irqrestore(conf->hash_locks + hash, flags); 350 } 351 size--; 352 hash--; 353 } 354 355 if (do_wakeup) { 356 wake_up(&conf->wait_for_stripe); 357 if (atomic_read(&conf->active_stripes) == 0) 358 wake_up(&conf->wait_for_quiescent); 359 if (conf->retry_read_aligned) 360 md_wakeup_thread(conf->mddev->thread); 361 } 362 } 363 364 static int release_stripe_list(struct r5conf *conf, 365 struct list_head *temp_inactive_list) 366 __must_hold(&conf->device_lock) 367 { 368 struct stripe_head *sh, *t; 369 int count = 0; 370 struct llist_node *head; 371 372 head = llist_del_all(&conf->released_stripes); 373 head = llist_reverse_order(head); 374 llist_for_each_entry_safe(sh, t, head, release_list) { 375 int hash; 376 377 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */ 378 smp_mb(); 379 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state); 380 /* 381 * Don't worry the bit is set here, because if the bit is set 382 * again, the count is always > 1. This is true for 383 * STRIPE_ON_UNPLUG_LIST bit too. 384 */ 385 hash = sh->hash_lock_index; 386 __release_stripe(conf, sh, &temp_inactive_list[hash]); 387 count++; 388 } 389 390 return count; 391 } 392 393 void raid5_release_stripe(struct stripe_head *sh) 394 { 395 struct r5conf *conf = sh->raid_conf; 396 unsigned long flags; 397 struct list_head list; 398 int hash; 399 bool wakeup; 400 401 /* Avoid release_list until the last reference. 402 */ 403 if (atomic_add_unless(&sh->count, -1, 1)) 404 return; 405 406 if (unlikely(!conf->mddev->thread) || 407 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state)) 408 goto slow_path; 409 wakeup = llist_add(&sh->release_list, &conf->released_stripes); 410 if (wakeup) 411 md_wakeup_thread(conf->mddev->thread); 412 return; 413 slow_path: 414 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */ 415 if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) { 416 INIT_LIST_HEAD(&list); 417 hash = sh->hash_lock_index; 418 do_release_stripe(conf, sh, &list); 419 spin_unlock_irqrestore(&conf->device_lock, flags); 420 release_inactive_stripe_list(conf, &list, hash); 421 } 422 } 423 424 static inline void remove_hash(struct stripe_head *sh) 425 { 426 pr_debug("remove_hash(), stripe %llu\n", 427 (unsigned long long)sh->sector); 428 429 hlist_del_init(&sh->hash); 430 } 431 432 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh) 433 { 434 struct hlist_head *hp = stripe_hash(conf, sh->sector); 435 436 pr_debug("insert_hash(), stripe %llu\n", 437 (unsigned long long)sh->sector); 438 439 hlist_add_head(&sh->hash, hp); 440 } 441 442 /* find an idle stripe, make sure it is unhashed, and return it. */ 443 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash) 444 { 445 struct stripe_head *sh = NULL; 446 struct list_head *first; 447 448 if (list_empty(conf->inactive_list + hash)) 449 goto out; 450 first = (conf->inactive_list + hash)->next; 451 sh = list_entry(first, struct stripe_head, lru); 452 list_del_init(first); 453 remove_hash(sh); 454 atomic_inc(&conf->active_stripes); 455 BUG_ON(hash != sh->hash_lock_index); 456 if (list_empty(conf->inactive_list + hash)) 457 atomic_inc(&conf->empty_inactive_list_nr); 458 out: 459 return sh; 460 } 461 462 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 463 static void free_stripe_pages(struct stripe_head *sh) 464 { 465 int i; 466 struct page *p; 467 468 /* Have not allocate page pool */ 469 if (!sh->pages) 470 return; 471 472 for (i = 0; i < sh->nr_pages; i++) { 473 p = sh->pages[i]; 474 if (p) 475 put_page(p); 476 sh->pages[i] = NULL; 477 } 478 } 479 480 static int alloc_stripe_pages(struct stripe_head *sh, gfp_t gfp) 481 { 482 int i; 483 struct page *p; 484 485 for (i = 0; i < sh->nr_pages; i++) { 486 /* The page have allocated. */ 487 if (sh->pages[i]) 488 continue; 489 490 p = alloc_page(gfp); 491 if (!p) { 492 free_stripe_pages(sh); 493 return -ENOMEM; 494 } 495 sh->pages[i] = p; 496 } 497 return 0; 498 } 499 500 static int 501 init_stripe_shared_pages(struct stripe_head *sh, struct r5conf *conf, int disks) 502 { 503 int nr_pages, cnt; 504 505 if (sh->pages) 506 return 0; 507 508 /* Each of the sh->dev[i] need one conf->stripe_size */ 509 cnt = PAGE_SIZE / conf->stripe_size; 510 nr_pages = (disks + cnt - 1) / cnt; 511 512 sh->pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL); 513 if (!sh->pages) 514 return -ENOMEM; 515 sh->nr_pages = nr_pages; 516 sh->stripes_per_page = cnt; 517 return 0; 518 } 519 #endif 520 521 static void shrink_buffers(struct stripe_head *sh) 522 { 523 int i; 524 int num = sh->raid_conf->pool_size; 525 526 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE 527 for (i = 0; i < num ; i++) { 528 struct page *p; 529 530 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page); 531 p = sh->dev[i].page; 532 if (!p) 533 continue; 534 sh->dev[i].page = NULL; 535 put_page(p); 536 } 537 #else 538 for (i = 0; i < num; i++) 539 sh->dev[i].page = NULL; 540 free_stripe_pages(sh); /* Free pages */ 541 #endif 542 } 543 544 static int grow_buffers(struct stripe_head *sh, gfp_t gfp) 545 { 546 int i; 547 int num = sh->raid_conf->pool_size; 548 549 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE 550 for (i = 0; i < num; i++) { 551 struct page *page; 552 553 if (!(page = alloc_page(gfp))) { 554 return 1; 555 } 556 sh->dev[i].page = page; 557 sh->dev[i].orig_page = page; 558 sh->dev[i].offset = 0; 559 } 560 #else 561 if (alloc_stripe_pages(sh, gfp)) 562 return -ENOMEM; 563 564 for (i = 0; i < num; i++) { 565 sh->dev[i].page = raid5_get_dev_page(sh, i); 566 sh->dev[i].orig_page = sh->dev[i].page; 567 sh->dev[i].offset = raid5_get_page_offset(sh, i); 568 } 569 #endif 570 return 0; 571 } 572 573 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 574 struct stripe_head *sh); 575 576 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous) 577 { 578 struct r5conf *conf = sh->raid_conf; 579 int i, seq; 580 581 BUG_ON(atomic_read(&sh->count) != 0); 582 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); 583 BUG_ON(stripe_operations_active(sh)); 584 BUG_ON(sh->batch_head); 585 586 pr_debug("init_stripe called, stripe %llu\n", 587 (unsigned long long)sector); 588 retry: 589 seq = read_seqcount_begin(&conf->gen_lock); 590 sh->generation = conf->generation - previous; 591 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks; 592 sh->sector = sector; 593 stripe_set_idx(sector, conf, previous, sh); 594 sh->state = 0; 595 596 for (i = sh->disks; i--; ) { 597 struct r5dev *dev = &sh->dev[i]; 598 599 if (dev->toread || dev->read || dev->towrite || dev->written || 600 test_bit(R5_LOCKED, &dev->flags)) { 601 pr_err("sector=%llx i=%d %p %p %p %p %d\n", 602 (unsigned long long)sh->sector, i, dev->toread, 603 dev->read, dev->towrite, dev->written, 604 test_bit(R5_LOCKED, &dev->flags)); 605 WARN_ON(1); 606 } 607 dev->flags = 0; 608 dev->sector = raid5_compute_blocknr(sh, i, previous); 609 } 610 if (read_seqcount_retry(&conf->gen_lock, seq)) 611 goto retry; 612 sh->overwrite_disks = 0; 613 insert_hash(conf, sh); 614 sh->cpu = smp_processor_id(); 615 set_bit(STRIPE_BATCH_READY, &sh->state); 616 } 617 618 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector, 619 short generation) 620 { 621 struct stripe_head *sh; 622 623 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector); 624 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash) 625 if (sh->sector == sector && sh->generation == generation) 626 return sh; 627 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector); 628 return NULL; 629 } 630 631 static struct stripe_head *find_get_stripe(struct r5conf *conf, 632 sector_t sector, short generation, int hash) 633 { 634 int inc_empty_inactive_list_flag; 635 struct stripe_head *sh; 636 637 sh = __find_stripe(conf, sector, generation); 638 if (!sh) 639 return NULL; 640 641 if (atomic_inc_not_zero(&sh->count)) 642 return sh; 643 644 /* 645 * Slow path. The reference count is zero which means the stripe must 646 * be on a list (sh->lru). Must remove the stripe from the list that 647 * references it with the device_lock held. 648 */ 649 650 spin_lock(&conf->device_lock); 651 if (!atomic_read(&sh->count)) { 652 if (!test_bit(STRIPE_HANDLE, &sh->state)) 653 atomic_inc(&conf->active_stripes); 654 BUG_ON(list_empty(&sh->lru) && 655 !test_bit(STRIPE_EXPANDING, &sh->state)); 656 inc_empty_inactive_list_flag = 0; 657 if (!list_empty(conf->inactive_list + hash)) 658 inc_empty_inactive_list_flag = 1; 659 list_del_init(&sh->lru); 660 if (list_empty(conf->inactive_list + hash) && 661 inc_empty_inactive_list_flag) 662 atomic_inc(&conf->empty_inactive_list_nr); 663 if (sh->group) { 664 sh->group->stripes_cnt--; 665 sh->group = NULL; 666 } 667 } 668 atomic_inc(&sh->count); 669 spin_unlock(&conf->device_lock); 670 671 return sh; 672 } 673 674 /* 675 * Need to check if array has failed when deciding whether to: 676 * - start an array 677 * - remove non-faulty devices 678 * - add a spare 679 * - allow a reshape 680 * This determination is simple when no reshape is happening. 681 * However if there is a reshape, we need to carefully check 682 * both the before and after sections. 683 * This is because some failed devices may only affect one 684 * of the two sections, and some non-in_sync devices may 685 * be insync in the section most affected by failed devices. 686 * 687 * Most calls to this function hold &conf->device_lock. Calls 688 * in raid5_run() do not require the lock as no other threads 689 * have been started yet. 690 */ 691 int raid5_calc_degraded(struct r5conf *conf) 692 { 693 int degraded, degraded2; 694 int i; 695 696 degraded = 0; 697 for (i = 0; i < conf->previous_raid_disks; i++) { 698 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev); 699 700 if (rdev && test_bit(Faulty, &rdev->flags)) 701 rdev = READ_ONCE(conf->disks[i].replacement); 702 if (!rdev || test_bit(Faulty, &rdev->flags)) 703 degraded++; 704 else if (test_bit(In_sync, &rdev->flags)) 705 ; 706 else 707 /* not in-sync or faulty. 708 * If the reshape increases the number of devices, 709 * this is being recovered by the reshape, so 710 * this 'previous' section is not in_sync. 711 * If the number of devices is being reduced however, 712 * the device can only be part of the array if 713 * we are reverting a reshape, so this section will 714 * be in-sync. 715 */ 716 if (conf->raid_disks >= conf->previous_raid_disks) 717 degraded++; 718 } 719 if (conf->raid_disks == conf->previous_raid_disks) 720 return degraded; 721 degraded2 = 0; 722 for (i = 0; i < conf->raid_disks; i++) { 723 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev); 724 725 if (rdev && test_bit(Faulty, &rdev->flags)) 726 rdev = READ_ONCE(conf->disks[i].replacement); 727 if (!rdev || test_bit(Faulty, &rdev->flags)) 728 degraded2++; 729 else if (test_bit(In_sync, &rdev->flags)) 730 ; 731 else 732 /* not in-sync or faulty. 733 * If reshape increases the number of devices, this 734 * section has already been recovered, else it 735 * almost certainly hasn't. 736 */ 737 if (conf->raid_disks <= conf->previous_raid_disks) 738 degraded2++; 739 } 740 if (degraded2 > degraded) 741 return degraded2; 742 return degraded; 743 } 744 745 static bool has_failed(struct r5conf *conf) 746 { 747 int degraded = conf->mddev->degraded; 748 749 if (test_bit(MD_BROKEN, &conf->mddev->flags)) 750 return true; 751 752 if (conf->mddev->reshape_position != MaxSector) 753 degraded = raid5_calc_degraded(conf); 754 755 return degraded > conf->max_degraded; 756 } 757 758 enum stripe_result { 759 STRIPE_SUCCESS = 0, 760 STRIPE_RETRY, 761 STRIPE_SCHEDULE_AND_RETRY, 762 STRIPE_FAIL, 763 STRIPE_WAIT_RESHAPE, 764 }; 765 766 struct stripe_request_ctx { 767 /* a reference to the last stripe_head for batching */ 768 struct stripe_head *batch_last; 769 770 /* first sector in the request */ 771 sector_t first_sector; 772 773 /* last sector in the request */ 774 sector_t last_sector; 775 776 /* 777 * bitmap to track stripe sectors that have been added to stripes 778 * add one to account for unaligned requests 779 */ 780 DECLARE_BITMAP(sectors_to_do, RAID5_MAX_REQ_STRIPES + 1); 781 782 /* the request had REQ_PREFLUSH, cleared after the first stripe_head */ 783 bool do_flush; 784 }; 785 786 /* 787 * Block until another thread clears R5_INACTIVE_BLOCKED or 788 * there are fewer than 3/4 the maximum number of active stripes 789 * and there is an inactive stripe available. 790 */ 791 static bool is_inactive_blocked(struct r5conf *conf, int hash) 792 { 793 if (list_empty(conf->inactive_list + hash)) 794 return false; 795 796 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) 797 return true; 798 799 return (atomic_read(&conf->active_stripes) < 800 (conf->max_nr_stripes * 3 / 4)); 801 } 802 803 struct stripe_head *raid5_get_active_stripe(struct r5conf *conf, 804 struct stripe_request_ctx *ctx, sector_t sector, 805 unsigned int flags) 806 { 807 struct stripe_head *sh; 808 int hash = stripe_hash_locks_hash(conf, sector); 809 int previous = !!(flags & R5_GAS_PREVIOUS); 810 811 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector); 812 813 spin_lock_irq(conf->hash_locks + hash); 814 815 for (;;) { 816 if (!(flags & R5_GAS_NOQUIESCE) && conf->quiesce) { 817 /* 818 * Must release the reference to batch_last before 819 * waiting, on quiesce, otherwise the batch_last will 820 * hold a reference to a stripe and raid5_quiesce() 821 * will deadlock waiting for active_stripes to go to 822 * zero. 823 */ 824 if (ctx && ctx->batch_last) { 825 raid5_release_stripe(ctx->batch_last); 826 ctx->batch_last = NULL; 827 } 828 829 wait_event_lock_irq(conf->wait_for_quiescent, 830 !conf->quiesce, 831 *(conf->hash_locks + hash)); 832 } 833 834 sh = find_get_stripe(conf, sector, conf->generation - previous, 835 hash); 836 if (sh) 837 break; 838 839 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) { 840 sh = get_free_stripe(conf, hash); 841 if (sh) { 842 r5c_check_stripe_cache_usage(conf); 843 init_stripe(sh, sector, previous); 844 atomic_inc(&sh->count); 845 break; 846 } 847 848 if (!test_bit(R5_DID_ALLOC, &conf->cache_state)) 849 set_bit(R5_ALLOC_MORE, &conf->cache_state); 850 } 851 852 if (flags & R5_GAS_NOBLOCK) 853 break; 854 855 set_bit(R5_INACTIVE_BLOCKED, &conf->cache_state); 856 r5l_wake_reclaim(conf->log, 0); 857 858 /* release batch_last before wait to avoid risk of deadlock */ 859 if (ctx && ctx->batch_last) { 860 raid5_release_stripe(ctx->batch_last); 861 ctx->batch_last = NULL; 862 } 863 864 wait_event_lock_irq(conf->wait_for_stripe, 865 is_inactive_blocked(conf, hash), 866 *(conf->hash_locks + hash)); 867 clear_bit(R5_INACTIVE_BLOCKED, &conf->cache_state); 868 } 869 870 spin_unlock_irq(conf->hash_locks + hash); 871 return sh; 872 } 873 874 static bool is_full_stripe_write(struct stripe_head *sh) 875 { 876 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded)); 877 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded); 878 } 879 880 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) 881 __acquires(&sh1->stripe_lock) 882 __acquires(&sh2->stripe_lock) 883 { 884 if (sh1 > sh2) { 885 spin_lock_irq(&sh2->stripe_lock); 886 spin_lock_nested(&sh1->stripe_lock, 1); 887 } else { 888 spin_lock_irq(&sh1->stripe_lock); 889 spin_lock_nested(&sh2->stripe_lock, 1); 890 } 891 } 892 893 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) 894 __releases(&sh1->stripe_lock) 895 __releases(&sh2->stripe_lock) 896 { 897 spin_unlock(&sh1->stripe_lock); 898 spin_unlock_irq(&sh2->stripe_lock); 899 } 900 901 /* Only freshly new full stripe normal write stripe can be added to a batch list */ 902 static bool stripe_can_batch(struct stripe_head *sh) 903 { 904 struct r5conf *conf = sh->raid_conf; 905 906 if (raid5_has_log(conf) || raid5_has_ppl(conf)) 907 return false; 908 return test_bit(STRIPE_BATCH_READY, &sh->state) && 909 is_full_stripe_write(sh); 910 } 911 912 /* we only do back search */ 913 static void stripe_add_to_batch_list(struct r5conf *conf, 914 struct stripe_head *sh, struct stripe_head *last_sh) 915 { 916 struct stripe_head *head; 917 sector_t head_sector, tmp_sec; 918 int hash; 919 int dd_idx; 920 921 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */ 922 tmp_sec = sh->sector; 923 if (!sector_div(tmp_sec, conf->chunk_sectors)) 924 return; 925 head_sector = sh->sector - RAID5_STRIPE_SECTORS(conf); 926 927 if (last_sh && head_sector == last_sh->sector) { 928 head = last_sh; 929 atomic_inc(&head->count); 930 } else { 931 hash = stripe_hash_locks_hash(conf, head_sector); 932 spin_lock_irq(conf->hash_locks + hash); 933 head = find_get_stripe(conf, head_sector, conf->generation, 934 hash); 935 spin_unlock_irq(conf->hash_locks + hash); 936 if (!head) 937 return; 938 if (!stripe_can_batch(head)) 939 goto out; 940 } 941 942 lock_two_stripes(head, sh); 943 /* clear_batch_ready clear the flag */ 944 if (!stripe_can_batch(head) || !stripe_can_batch(sh)) 945 goto unlock_out; 946 947 if (sh->batch_head) 948 goto unlock_out; 949 950 dd_idx = 0; 951 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx) 952 dd_idx++; 953 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf || 954 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite)) 955 goto unlock_out; 956 957 if (head->batch_head) { 958 spin_lock(&head->batch_head->batch_lock); 959 /* This batch list is already running */ 960 if (!stripe_can_batch(head)) { 961 spin_unlock(&head->batch_head->batch_lock); 962 goto unlock_out; 963 } 964 /* 965 * We must assign batch_head of this stripe within the 966 * batch_lock, otherwise clear_batch_ready of batch head 967 * stripe could clear BATCH_READY bit of this stripe and 968 * this stripe->batch_head doesn't get assigned, which 969 * could confuse clear_batch_ready for this stripe 970 */ 971 sh->batch_head = head->batch_head; 972 973 /* 974 * at this point, head's BATCH_READY could be cleared, but we 975 * can still add the stripe to batch list 976 */ 977 list_add(&sh->batch_list, &head->batch_list); 978 spin_unlock(&head->batch_head->batch_lock); 979 } else { 980 head->batch_head = head; 981 sh->batch_head = head->batch_head; 982 spin_lock(&head->batch_lock); 983 list_add_tail(&sh->batch_list, &head->batch_list); 984 spin_unlock(&head->batch_lock); 985 } 986 987 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 988 if (atomic_dec_return(&conf->preread_active_stripes) 989 < IO_THRESHOLD) 990 md_wakeup_thread(conf->mddev->thread); 991 992 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) { 993 int seq = sh->bm_seq; 994 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) && 995 sh->batch_head->bm_seq > seq) 996 seq = sh->batch_head->bm_seq; 997 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state); 998 sh->batch_head->bm_seq = seq; 999 } 1000 1001 atomic_inc(&sh->count); 1002 unlock_out: 1003 unlock_two_stripes(head, sh); 1004 out: 1005 raid5_release_stripe(head); 1006 } 1007 1008 /* Determine if 'data_offset' or 'new_data_offset' should be used 1009 * in this stripe_head. 1010 */ 1011 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh) 1012 { 1013 sector_t progress = conf->reshape_progress; 1014 /* Need a memory barrier to make sure we see the value 1015 * of conf->generation, or ->data_offset that was set before 1016 * reshape_progress was updated. 1017 */ 1018 smp_rmb(); 1019 if (progress == MaxSector) 1020 return 0; 1021 if (sh->generation == conf->generation - 1) 1022 return 0; 1023 /* We are in a reshape, and this is a new-generation stripe, 1024 * so use new_data_offset. 1025 */ 1026 return 1; 1027 } 1028 1029 static void dispatch_bio_list(struct bio_list *tmp) 1030 { 1031 struct bio *bio; 1032 1033 while ((bio = bio_list_pop(tmp))) 1034 submit_bio_noacct(bio); 1035 } 1036 1037 static int cmp_stripe(void *priv, const struct list_head *a, 1038 const struct list_head *b) 1039 { 1040 const struct r5pending_data *da = list_entry(a, 1041 struct r5pending_data, sibling); 1042 const struct r5pending_data *db = list_entry(b, 1043 struct r5pending_data, sibling); 1044 if (da->sector > db->sector) 1045 return 1; 1046 if (da->sector < db->sector) 1047 return -1; 1048 return 0; 1049 } 1050 1051 static void dispatch_defer_bios(struct r5conf *conf, int target, 1052 struct bio_list *list) 1053 { 1054 struct r5pending_data *data; 1055 struct list_head *first, *next = NULL; 1056 int cnt = 0; 1057 1058 if (conf->pending_data_cnt == 0) 1059 return; 1060 1061 list_sort(NULL, &conf->pending_list, cmp_stripe); 1062 1063 first = conf->pending_list.next; 1064 1065 /* temporarily move the head */ 1066 if (conf->next_pending_data) 1067 list_move_tail(&conf->pending_list, 1068 &conf->next_pending_data->sibling); 1069 1070 while (!list_empty(&conf->pending_list)) { 1071 data = list_first_entry(&conf->pending_list, 1072 struct r5pending_data, sibling); 1073 if (&data->sibling == first) 1074 first = data->sibling.next; 1075 next = data->sibling.next; 1076 1077 bio_list_merge(list, &data->bios); 1078 list_move(&data->sibling, &conf->free_list); 1079 cnt++; 1080 if (cnt >= target) 1081 break; 1082 } 1083 conf->pending_data_cnt -= cnt; 1084 BUG_ON(conf->pending_data_cnt < 0 || cnt < target); 1085 1086 if (next != &conf->pending_list) 1087 conf->next_pending_data = list_entry(next, 1088 struct r5pending_data, sibling); 1089 else 1090 conf->next_pending_data = NULL; 1091 /* list isn't empty */ 1092 if (first != &conf->pending_list) 1093 list_move_tail(&conf->pending_list, first); 1094 } 1095 1096 static void flush_deferred_bios(struct r5conf *conf) 1097 { 1098 struct bio_list tmp = BIO_EMPTY_LIST; 1099 1100 if (conf->pending_data_cnt == 0) 1101 return; 1102 1103 spin_lock(&conf->pending_bios_lock); 1104 dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp); 1105 BUG_ON(conf->pending_data_cnt != 0); 1106 spin_unlock(&conf->pending_bios_lock); 1107 1108 dispatch_bio_list(&tmp); 1109 } 1110 1111 static void defer_issue_bios(struct r5conf *conf, sector_t sector, 1112 struct bio_list *bios) 1113 { 1114 struct bio_list tmp = BIO_EMPTY_LIST; 1115 struct r5pending_data *ent; 1116 1117 spin_lock(&conf->pending_bios_lock); 1118 ent = list_first_entry(&conf->free_list, struct r5pending_data, 1119 sibling); 1120 list_move_tail(&ent->sibling, &conf->pending_list); 1121 ent->sector = sector; 1122 bio_list_init(&ent->bios); 1123 bio_list_merge(&ent->bios, bios); 1124 conf->pending_data_cnt++; 1125 if (conf->pending_data_cnt >= PENDING_IO_MAX) 1126 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp); 1127 1128 spin_unlock(&conf->pending_bios_lock); 1129 1130 dispatch_bio_list(&tmp); 1131 } 1132 1133 static void 1134 raid5_end_read_request(struct bio *bi); 1135 static void 1136 raid5_end_write_request(struct bio *bi); 1137 1138 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s) 1139 { 1140 struct r5conf *conf = sh->raid_conf; 1141 int i, disks = sh->disks; 1142 struct stripe_head *head_sh = sh; 1143 struct bio_list pending_bios = BIO_EMPTY_LIST; 1144 struct r5dev *dev; 1145 bool should_defer; 1146 1147 might_sleep(); 1148 1149 if (log_stripe(sh, s) == 0) 1150 return; 1151 1152 should_defer = conf->batch_bio_dispatch && conf->group_cnt; 1153 1154 for (i = disks; i--; ) { 1155 enum req_op op; 1156 blk_opf_t op_flags = 0; 1157 int replace_only = 0; 1158 struct bio *bi, *rbi; 1159 struct md_rdev *rdev, *rrdev = NULL; 1160 1161 sh = head_sh; 1162 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) { 1163 op = REQ_OP_WRITE; 1164 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags)) 1165 op_flags = REQ_FUA; 1166 if (test_bit(R5_Discard, &sh->dev[i].flags)) 1167 op = REQ_OP_DISCARD; 1168 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags)) 1169 op = REQ_OP_READ; 1170 else if (test_and_clear_bit(R5_WantReplace, 1171 &sh->dev[i].flags)) { 1172 op = REQ_OP_WRITE; 1173 replace_only = 1; 1174 } else 1175 continue; 1176 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags)) 1177 op_flags |= REQ_SYNC; 1178 1179 again: 1180 dev = &sh->dev[i]; 1181 bi = &dev->req; 1182 rbi = &dev->rreq; /* For writing to replacement */ 1183 1184 rdev = conf->disks[i].rdev; 1185 rrdev = conf->disks[i].replacement; 1186 if (op_is_write(op)) { 1187 if (replace_only) 1188 rdev = NULL; 1189 if (rdev == rrdev) 1190 /* We raced and saw duplicates */ 1191 rrdev = NULL; 1192 } else { 1193 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev) 1194 rdev = rrdev; 1195 rrdev = NULL; 1196 } 1197 1198 if (rdev && test_bit(Faulty, &rdev->flags)) 1199 rdev = NULL; 1200 if (rdev) 1201 atomic_inc(&rdev->nr_pending); 1202 if (rrdev && test_bit(Faulty, &rrdev->flags)) 1203 rrdev = NULL; 1204 if (rrdev) 1205 atomic_inc(&rrdev->nr_pending); 1206 1207 /* We have already checked bad blocks for reads. Now 1208 * need to check for writes. We never accept write errors 1209 * on the replacement, so we don't to check rrdev. 1210 */ 1211 while (op_is_write(op) && rdev && 1212 test_bit(WriteErrorSeen, &rdev->flags)) { 1213 int bad = rdev_has_badblock(rdev, sh->sector, 1214 RAID5_STRIPE_SECTORS(conf)); 1215 if (!bad) 1216 break; 1217 1218 if (bad < 0) { 1219 set_bit(BlockedBadBlocks, &rdev->flags); 1220 if (!conf->mddev->external && 1221 conf->mddev->sb_flags) { 1222 /* It is very unlikely, but we might 1223 * still need to write out the 1224 * bad block log - better give it 1225 * a chance*/ 1226 md_check_recovery(conf->mddev); 1227 } 1228 /* 1229 * Because md_wait_for_blocked_rdev 1230 * will dec nr_pending, we must 1231 * increment it first. 1232 */ 1233 atomic_inc(&rdev->nr_pending); 1234 md_wait_for_blocked_rdev(rdev, conf->mddev); 1235 } else { 1236 /* Acknowledged bad block - skip the write */ 1237 rdev_dec_pending(rdev, conf->mddev); 1238 rdev = NULL; 1239 } 1240 } 1241 1242 if (rdev) { 1243 set_bit(STRIPE_IO_STARTED, &sh->state); 1244 1245 bio_init(bi, rdev->bdev, &dev->vec, 1, op | op_flags); 1246 bi->bi_end_io = op_is_write(op) 1247 ? raid5_end_write_request 1248 : raid5_end_read_request; 1249 bi->bi_private = sh; 1250 1251 pr_debug("%s: for %llu schedule op %d on disc %d\n", 1252 __func__, (unsigned long long)sh->sector, 1253 bi->bi_opf, i); 1254 atomic_inc(&sh->count); 1255 if (sh != head_sh) 1256 atomic_inc(&head_sh->count); 1257 if (use_new_offset(conf, sh)) 1258 bi->bi_iter.bi_sector = (sh->sector 1259 + rdev->new_data_offset); 1260 else 1261 bi->bi_iter.bi_sector = (sh->sector 1262 + rdev->data_offset); 1263 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags)) 1264 bi->bi_opf |= REQ_NOMERGE; 1265 1266 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 1267 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 1268 1269 if (!op_is_write(op) && 1270 test_bit(R5_InJournal, &sh->dev[i].flags)) 1271 /* 1272 * issuing read for a page in journal, this 1273 * must be preparing for prexor in rmw; read 1274 * the data into orig_page 1275 */ 1276 sh->dev[i].vec.bv_page = sh->dev[i].orig_page; 1277 else 1278 sh->dev[i].vec.bv_page = sh->dev[i].page; 1279 bi->bi_vcnt = 1; 1280 bi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf); 1281 bi->bi_io_vec[0].bv_offset = sh->dev[i].offset; 1282 bi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf); 1283 /* 1284 * If this is discard request, set bi_vcnt 0. We don't 1285 * want to confuse SCSI because SCSI will replace payload 1286 */ 1287 if (op == REQ_OP_DISCARD) 1288 bi->bi_vcnt = 0; 1289 if (rrdev) 1290 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags); 1291 1292 mddev_trace_remap(conf->mddev, bi, sh->dev[i].sector); 1293 if (should_defer && op_is_write(op)) 1294 bio_list_add(&pending_bios, bi); 1295 else 1296 submit_bio_noacct(bi); 1297 } 1298 if (rrdev) { 1299 set_bit(STRIPE_IO_STARTED, &sh->state); 1300 1301 bio_init(rbi, rrdev->bdev, &dev->rvec, 1, op | op_flags); 1302 BUG_ON(!op_is_write(op)); 1303 rbi->bi_end_io = raid5_end_write_request; 1304 rbi->bi_private = sh; 1305 1306 pr_debug("%s: for %llu schedule op %d on " 1307 "replacement disc %d\n", 1308 __func__, (unsigned long long)sh->sector, 1309 rbi->bi_opf, i); 1310 atomic_inc(&sh->count); 1311 if (sh != head_sh) 1312 atomic_inc(&head_sh->count); 1313 if (use_new_offset(conf, sh)) 1314 rbi->bi_iter.bi_sector = (sh->sector 1315 + rrdev->new_data_offset); 1316 else 1317 rbi->bi_iter.bi_sector = (sh->sector 1318 + rrdev->data_offset); 1319 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 1320 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 1321 sh->dev[i].rvec.bv_page = sh->dev[i].page; 1322 rbi->bi_vcnt = 1; 1323 rbi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf); 1324 rbi->bi_io_vec[0].bv_offset = sh->dev[i].offset; 1325 rbi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf); 1326 /* 1327 * If this is discard request, set bi_vcnt 0. We don't 1328 * want to confuse SCSI because SCSI will replace payload 1329 */ 1330 if (op == REQ_OP_DISCARD) 1331 rbi->bi_vcnt = 0; 1332 mddev_trace_remap(conf->mddev, rbi, sh->dev[i].sector); 1333 if (should_defer && op_is_write(op)) 1334 bio_list_add(&pending_bios, rbi); 1335 else 1336 submit_bio_noacct(rbi); 1337 } 1338 if (!rdev && !rrdev) { 1339 pr_debug("skip op %d on disc %d for sector %llu\n", 1340 bi->bi_opf, i, (unsigned long long)sh->sector); 1341 clear_bit(R5_LOCKED, &sh->dev[i].flags); 1342 set_bit(STRIPE_HANDLE, &sh->state); 1343 } 1344 1345 if (!head_sh->batch_head) 1346 continue; 1347 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1348 batch_list); 1349 if (sh != head_sh) 1350 goto again; 1351 } 1352 1353 if (should_defer && !bio_list_empty(&pending_bios)) 1354 defer_issue_bios(conf, head_sh->sector, &pending_bios); 1355 } 1356 1357 static struct dma_async_tx_descriptor * 1358 async_copy_data(int frombio, struct bio *bio, struct page **page, 1359 unsigned int poff, sector_t sector, struct dma_async_tx_descriptor *tx, 1360 struct stripe_head *sh, int no_skipcopy) 1361 { 1362 struct bio_vec bvl; 1363 struct bvec_iter iter; 1364 struct page *bio_page; 1365 int page_offset; 1366 struct async_submit_ctl submit; 1367 enum async_tx_flags flags = 0; 1368 struct r5conf *conf = sh->raid_conf; 1369 1370 if (bio->bi_iter.bi_sector >= sector) 1371 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512; 1372 else 1373 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512; 1374 1375 if (frombio) 1376 flags |= ASYNC_TX_FENCE; 1377 init_async_submit(&submit, flags, tx, NULL, NULL, NULL); 1378 1379 bio_for_each_segment(bvl, bio, iter) { 1380 int len = bvl.bv_len; 1381 int clen; 1382 int b_offset = 0; 1383 1384 if (page_offset < 0) { 1385 b_offset = -page_offset; 1386 page_offset += b_offset; 1387 len -= b_offset; 1388 } 1389 1390 if (len > 0 && page_offset + len > RAID5_STRIPE_SIZE(conf)) 1391 clen = RAID5_STRIPE_SIZE(conf) - page_offset; 1392 else 1393 clen = len; 1394 1395 if (clen > 0) { 1396 b_offset += bvl.bv_offset; 1397 bio_page = bvl.bv_page; 1398 if (frombio) { 1399 if (conf->skip_copy && 1400 b_offset == 0 && page_offset == 0 && 1401 clen == RAID5_STRIPE_SIZE(conf) && 1402 !no_skipcopy) 1403 *page = bio_page; 1404 else 1405 tx = async_memcpy(*page, bio_page, page_offset + poff, 1406 b_offset, clen, &submit); 1407 } else 1408 tx = async_memcpy(bio_page, *page, b_offset, 1409 page_offset + poff, clen, &submit); 1410 } 1411 /* chain the operations */ 1412 submit.depend_tx = tx; 1413 1414 if (clen < len) /* hit end of page */ 1415 break; 1416 page_offset += len; 1417 } 1418 1419 return tx; 1420 } 1421 1422 static void ops_complete_biofill(void *stripe_head_ref) 1423 { 1424 struct stripe_head *sh = stripe_head_ref; 1425 int i; 1426 struct r5conf *conf = sh->raid_conf; 1427 1428 pr_debug("%s: stripe %llu\n", __func__, 1429 (unsigned long long)sh->sector); 1430 1431 /* clear completed biofills */ 1432 for (i = sh->disks; i--; ) { 1433 struct r5dev *dev = &sh->dev[i]; 1434 1435 /* acknowledge completion of a biofill operation */ 1436 /* and check if we need to reply to a read request, 1437 * new R5_Wantfill requests are held off until 1438 * !STRIPE_BIOFILL_RUN 1439 */ 1440 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) { 1441 struct bio *rbi, *rbi2; 1442 1443 BUG_ON(!dev->read); 1444 rbi = dev->read; 1445 dev->read = NULL; 1446 while (rbi && rbi->bi_iter.bi_sector < 1447 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 1448 rbi2 = r5_next_bio(conf, rbi, dev->sector); 1449 bio_endio(rbi); 1450 rbi = rbi2; 1451 } 1452 } 1453 } 1454 clear_bit(STRIPE_BIOFILL_RUN, &sh->state); 1455 1456 set_bit(STRIPE_HANDLE, &sh->state); 1457 raid5_release_stripe(sh); 1458 } 1459 1460 static void ops_run_biofill(struct stripe_head *sh) 1461 { 1462 struct dma_async_tx_descriptor *tx = NULL; 1463 struct async_submit_ctl submit; 1464 int i; 1465 struct r5conf *conf = sh->raid_conf; 1466 1467 BUG_ON(sh->batch_head); 1468 pr_debug("%s: stripe %llu\n", __func__, 1469 (unsigned long long)sh->sector); 1470 1471 for (i = sh->disks; i--; ) { 1472 struct r5dev *dev = &sh->dev[i]; 1473 if (test_bit(R5_Wantfill, &dev->flags)) { 1474 struct bio *rbi; 1475 spin_lock_irq(&sh->stripe_lock); 1476 dev->read = rbi = dev->toread; 1477 dev->toread = NULL; 1478 spin_unlock_irq(&sh->stripe_lock); 1479 while (rbi && rbi->bi_iter.bi_sector < 1480 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 1481 tx = async_copy_data(0, rbi, &dev->page, 1482 dev->offset, 1483 dev->sector, tx, sh, 0); 1484 rbi = r5_next_bio(conf, rbi, dev->sector); 1485 } 1486 } 1487 } 1488 1489 atomic_inc(&sh->count); 1490 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL); 1491 async_trigger_callback(&submit); 1492 } 1493 1494 static void mark_target_uptodate(struct stripe_head *sh, int target) 1495 { 1496 struct r5dev *tgt; 1497 1498 if (target < 0) 1499 return; 1500 1501 tgt = &sh->dev[target]; 1502 set_bit(R5_UPTODATE, &tgt->flags); 1503 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1504 clear_bit(R5_Wantcompute, &tgt->flags); 1505 } 1506 1507 static void ops_complete_compute(void *stripe_head_ref) 1508 { 1509 struct stripe_head *sh = stripe_head_ref; 1510 1511 pr_debug("%s: stripe %llu\n", __func__, 1512 (unsigned long long)sh->sector); 1513 1514 /* mark the computed target(s) as uptodate */ 1515 mark_target_uptodate(sh, sh->ops.target); 1516 mark_target_uptodate(sh, sh->ops.target2); 1517 1518 clear_bit(STRIPE_COMPUTE_RUN, &sh->state); 1519 if (sh->check_state == check_state_compute_run) 1520 sh->check_state = check_state_compute_result; 1521 set_bit(STRIPE_HANDLE, &sh->state); 1522 raid5_release_stripe(sh); 1523 } 1524 1525 /* return a pointer to the address conversion region of the scribble buffer */ 1526 static struct page **to_addr_page(struct raid5_percpu *percpu, int i) 1527 { 1528 return percpu->scribble + i * percpu->scribble_obj_size; 1529 } 1530 1531 /* return a pointer to the address conversion region of the scribble buffer */ 1532 static addr_conv_t *to_addr_conv(struct stripe_head *sh, 1533 struct raid5_percpu *percpu, int i) 1534 { 1535 return (void *) (to_addr_page(percpu, i) + sh->disks + 2); 1536 } 1537 1538 /* 1539 * Return a pointer to record offset address. 1540 */ 1541 static unsigned int * 1542 to_addr_offs(struct stripe_head *sh, struct raid5_percpu *percpu) 1543 { 1544 return (unsigned int *) (to_addr_conv(sh, percpu, 0) + sh->disks + 2); 1545 } 1546 1547 static struct dma_async_tx_descriptor * 1548 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu) 1549 { 1550 int disks = sh->disks; 1551 struct page **xor_srcs = to_addr_page(percpu, 0); 1552 unsigned int *off_srcs = to_addr_offs(sh, percpu); 1553 int target = sh->ops.target; 1554 struct r5dev *tgt = &sh->dev[target]; 1555 struct page *xor_dest = tgt->page; 1556 unsigned int off_dest = tgt->offset; 1557 int count = 0; 1558 struct dma_async_tx_descriptor *tx; 1559 struct async_submit_ctl submit; 1560 int i; 1561 1562 BUG_ON(sh->batch_head); 1563 1564 pr_debug("%s: stripe %llu block: %d\n", 1565 __func__, (unsigned long long)sh->sector, target); 1566 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1567 1568 for (i = disks; i--; ) { 1569 if (i != target) { 1570 off_srcs[count] = sh->dev[i].offset; 1571 xor_srcs[count++] = sh->dev[i].page; 1572 } 1573 } 1574 1575 atomic_inc(&sh->count); 1576 1577 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL, 1578 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0)); 1579 if (unlikely(count == 1)) 1580 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0], 1581 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1582 else 1583 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count, 1584 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1585 1586 return tx; 1587 } 1588 1589 /* set_syndrome_sources - populate source buffers for gen_syndrome 1590 * @srcs - (struct page *) array of size sh->disks 1591 * @offs - (unsigned int) array of offset for each page 1592 * @sh - stripe_head to parse 1593 * 1594 * Populates srcs in proper layout order for the stripe and returns the 1595 * 'count' of sources to be used in a call to async_gen_syndrome. The P 1596 * destination buffer is recorded in srcs[count] and the Q destination 1597 * is recorded in srcs[count+1]]. 1598 */ 1599 static int set_syndrome_sources(struct page **srcs, 1600 unsigned int *offs, 1601 struct stripe_head *sh, 1602 int srctype) 1603 { 1604 int disks = sh->disks; 1605 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2); 1606 int d0_idx = raid6_d0(sh); 1607 int count; 1608 int i; 1609 1610 for (i = 0; i < disks; i++) 1611 srcs[i] = NULL; 1612 1613 count = 0; 1614 i = d0_idx; 1615 do { 1616 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1617 struct r5dev *dev = &sh->dev[i]; 1618 1619 if (i == sh->qd_idx || i == sh->pd_idx || 1620 (srctype == SYNDROME_SRC_ALL) || 1621 (srctype == SYNDROME_SRC_WANT_DRAIN && 1622 (test_bit(R5_Wantdrain, &dev->flags) || 1623 test_bit(R5_InJournal, &dev->flags))) || 1624 (srctype == SYNDROME_SRC_WRITTEN && 1625 (dev->written || 1626 test_bit(R5_InJournal, &dev->flags)))) { 1627 if (test_bit(R5_InJournal, &dev->flags)) 1628 srcs[slot] = sh->dev[i].orig_page; 1629 else 1630 srcs[slot] = sh->dev[i].page; 1631 /* 1632 * For R5_InJournal, PAGE_SIZE must be 4KB and will 1633 * not shared page. In that case, dev[i].offset 1634 * is 0. 1635 */ 1636 offs[slot] = sh->dev[i].offset; 1637 } 1638 i = raid6_next_disk(i, disks); 1639 } while (i != d0_idx); 1640 1641 return syndrome_disks; 1642 } 1643 1644 static struct dma_async_tx_descriptor * 1645 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu) 1646 { 1647 int disks = sh->disks; 1648 struct page **blocks = to_addr_page(percpu, 0); 1649 unsigned int *offs = to_addr_offs(sh, percpu); 1650 int target; 1651 int qd_idx = sh->qd_idx; 1652 struct dma_async_tx_descriptor *tx; 1653 struct async_submit_ctl submit; 1654 struct r5dev *tgt; 1655 struct page *dest; 1656 unsigned int dest_off; 1657 int i; 1658 int count; 1659 1660 BUG_ON(sh->batch_head); 1661 if (sh->ops.target < 0) 1662 target = sh->ops.target2; 1663 else if (sh->ops.target2 < 0) 1664 target = sh->ops.target; 1665 else 1666 /* we should only have one valid target */ 1667 BUG(); 1668 BUG_ON(target < 0); 1669 pr_debug("%s: stripe %llu block: %d\n", 1670 __func__, (unsigned long long)sh->sector, target); 1671 1672 tgt = &sh->dev[target]; 1673 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1674 dest = tgt->page; 1675 dest_off = tgt->offset; 1676 1677 atomic_inc(&sh->count); 1678 1679 if (target == qd_idx) { 1680 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL); 1681 blocks[count] = NULL; /* regenerating p is not necessary */ 1682 BUG_ON(blocks[count+1] != dest); /* q should already be set */ 1683 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1684 ops_complete_compute, sh, 1685 to_addr_conv(sh, percpu, 0)); 1686 tx = async_gen_syndrome(blocks, offs, count+2, 1687 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1688 } else { 1689 /* Compute any data- or p-drive using XOR */ 1690 count = 0; 1691 for (i = disks; i-- ; ) { 1692 if (i == target || i == qd_idx) 1693 continue; 1694 offs[count] = sh->dev[i].offset; 1695 blocks[count++] = sh->dev[i].page; 1696 } 1697 1698 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1699 NULL, ops_complete_compute, sh, 1700 to_addr_conv(sh, percpu, 0)); 1701 tx = async_xor_offs(dest, dest_off, blocks, offs, count, 1702 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1703 } 1704 1705 return tx; 1706 } 1707 1708 static struct dma_async_tx_descriptor * 1709 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu) 1710 { 1711 int i, count, disks = sh->disks; 1712 int syndrome_disks = sh->ddf_layout ? disks : disks-2; 1713 int d0_idx = raid6_d0(sh); 1714 int faila = -1, failb = -1; 1715 int target = sh->ops.target; 1716 int target2 = sh->ops.target2; 1717 struct r5dev *tgt = &sh->dev[target]; 1718 struct r5dev *tgt2 = &sh->dev[target2]; 1719 struct dma_async_tx_descriptor *tx; 1720 struct page **blocks = to_addr_page(percpu, 0); 1721 unsigned int *offs = to_addr_offs(sh, percpu); 1722 struct async_submit_ctl submit; 1723 1724 BUG_ON(sh->batch_head); 1725 pr_debug("%s: stripe %llu block1: %d block2: %d\n", 1726 __func__, (unsigned long long)sh->sector, target, target2); 1727 BUG_ON(target < 0 || target2 < 0); 1728 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1729 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags)); 1730 1731 /* we need to open-code set_syndrome_sources to handle the 1732 * slot number conversion for 'faila' and 'failb' 1733 */ 1734 for (i = 0; i < disks ; i++) { 1735 offs[i] = 0; 1736 blocks[i] = NULL; 1737 } 1738 count = 0; 1739 i = d0_idx; 1740 do { 1741 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1742 1743 offs[slot] = sh->dev[i].offset; 1744 blocks[slot] = sh->dev[i].page; 1745 1746 if (i == target) 1747 faila = slot; 1748 if (i == target2) 1749 failb = slot; 1750 i = raid6_next_disk(i, disks); 1751 } while (i != d0_idx); 1752 1753 BUG_ON(faila == failb); 1754 if (failb < faila) 1755 swap(faila, failb); 1756 pr_debug("%s: stripe: %llu faila: %d failb: %d\n", 1757 __func__, (unsigned long long)sh->sector, faila, failb); 1758 1759 atomic_inc(&sh->count); 1760 1761 if (failb == syndrome_disks+1) { 1762 /* Q disk is one of the missing disks */ 1763 if (faila == syndrome_disks) { 1764 /* Missing P+Q, just recompute */ 1765 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1766 ops_complete_compute, sh, 1767 to_addr_conv(sh, percpu, 0)); 1768 return async_gen_syndrome(blocks, offs, syndrome_disks+2, 1769 RAID5_STRIPE_SIZE(sh->raid_conf), 1770 &submit); 1771 } else { 1772 struct page *dest; 1773 unsigned int dest_off; 1774 int data_target; 1775 int qd_idx = sh->qd_idx; 1776 1777 /* Missing D+Q: recompute D from P, then recompute Q */ 1778 if (target == qd_idx) 1779 data_target = target2; 1780 else 1781 data_target = target; 1782 1783 count = 0; 1784 for (i = disks; i-- ; ) { 1785 if (i == data_target || i == qd_idx) 1786 continue; 1787 offs[count] = sh->dev[i].offset; 1788 blocks[count++] = sh->dev[i].page; 1789 } 1790 dest = sh->dev[data_target].page; 1791 dest_off = sh->dev[data_target].offset; 1792 init_async_submit(&submit, 1793 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1794 NULL, NULL, NULL, 1795 to_addr_conv(sh, percpu, 0)); 1796 tx = async_xor_offs(dest, dest_off, blocks, offs, count, 1797 RAID5_STRIPE_SIZE(sh->raid_conf), 1798 &submit); 1799 1800 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL); 1801 init_async_submit(&submit, ASYNC_TX_FENCE, tx, 1802 ops_complete_compute, sh, 1803 to_addr_conv(sh, percpu, 0)); 1804 return async_gen_syndrome(blocks, offs, count+2, 1805 RAID5_STRIPE_SIZE(sh->raid_conf), 1806 &submit); 1807 } 1808 } else { 1809 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1810 ops_complete_compute, sh, 1811 to_addr_conv(sh, percpu, 0)); 1812 if (failb == syndrome_disks) { 1813 /* We're missing D+P. */ 1814 return async_raid6_datap_recov(syndrome_disks+2, 1815 RAID5_STRIPE_SIZE(sh->raid_conf), 1816 faila, 1817 blocks, offs, &submit); 1818 } else { 1819 /* We're missing D+D. */ 1820 return async_raid6_2data_recov(syndrome_disks+2, 1821 RAID5_STRIPE_SIZE(sh->raid_conf), 1822 faila, failb, 1823 blocks, offs, &submit); 1824 } 1825 } 1826 } 1827 1828 static void ops_complete_prexor(void *stripe_head_ref) 1829 { 1830 struct stripe_head *sh = stripe_head_ref; 1831 1832 pr_debug("%s: stripe %llu\n", __func__, 1833 (unsigned long long)sh->sector); 1834 1835 if (r5c_is_writeback(sh->raid_conf->log)) 1836 /* 1837 * raid5-cache write back uses orig_page during prexor. 1838 * After prexor, it is time to free orig_page 1839 */ 1840 r5c_release_extra_page(sh); 1841 } 1842 1843 static struct dma_async_tx_descriptor * 1844 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu, 1845 struct dma_async_tx_descriptor *tx) 1846 { 1847 int disks = sh->disks; 1848 struct page **xor_srcs = to_addr_page(percpu, 0); 1849 unsigned int *off_srcs = to_addr_offs(sh, percpu); 1850 int count = 0, pd_idx = sh->pd_idx, i; 1851 struct async_submit_ctl submit; 1852 1853 /* existing parity data subtracted */ 1854 unsigned int off_dest = off_srcs[count] = sh->dev[pd_idx].offset; 1855 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1856 1857 BUG_ON(sh->batch_head); 1858 pr_debug("%s: stripe %llu\n", __func__, 1859 (unsigned long long)sh->sector); 1860 1861 for (i = disks; i--; ) { 1862 struct r5dev *dev = &sh->dev[i]; 1863 /* Only process blocks that are known to be uptodate */ 1864 if (test_bit(R5_InJournal, &dev->flags)) { 1865 /* 1866 * For this case, PAGE_SIZE must be equal to 4KB and 1867 * page offset is zero. 1868 */ 1869 off_srcs[count] = dev->offset; 1870 xor_srcs[count++] = dev->orig_page; 1871 } else if (test_bit(R5_Wantdrain, &dev->flags)) { 1872 off_srcs[count] = dev->offset; 1873 xor_srcs[count++] = dev->page; 1874 } 1875 } 1876 1877 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx, 1878 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); 1879 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count, 1880 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1881 1882 return tx; 1883 } 1884 1885 static struct dma_async_tx_descriptor * 1886 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu, 1887 struct dma_async_tx_descriptor *tx) 1888 { 1889 struct page **blocks = to_addr_page(percpu, 0); 1890 unsigned int *offs = to_addr_offs(sh, percpu); 1891 int count; 1892 struct async_submit_ctl submit; 1893 1894 pr_debug("%s: stripe %llu\n", __func__, 1895 (unsigned long long)sh->sector); 1896 1897 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_WANT_DRAIN); 1898 1899 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx, 1900 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); 1901 tx = async_gen_syndrome(blocks, offs, count+2, 1902 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1903 1904 return tx; 1905 } 1906 1907 static struct dma_async_tx_descriptor * 1908 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) 1909 { 1910 struct r5conf *conf = sh->raid_conf; 1911 int disks = sh->disks; 1912 int i; 1913 struct stripe_head *head_sh = sh; 1914 1915 pr_debug("%s: stripe %llu\n", __func__, 1916 (unsigned long long)sh->sector); 1917 1918 for (i = disks; i--; ) { 1919 struct r5dev *dev; 1920 struct bio *chosen; 1921 1922 sh = head_sh; 1923 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) { 1924 struct bio *wbi; 1925 1926 again: 1927 dev = &sh->dev[i]; 1928 /* 1929 * clear R5_InJournal, so when rewriting a page in 1930 * journal, it is not skipped by r5l_log_stripe() 1931 */ 1932 clear_bit(R5_InJournal, &dev->flags); 1933 spin_lock_irq(&sh->stripe_lock); 1934 chosen = dev->towrite; 1935 dev->towrite = NULL; 1936 sh->overwrite_disks = 0; 1937 BUG_ON(dev->written); 1938 wbi = dev->written = chosen; 1939 spin_unlock_irq(&sh->stripe_lock); 1940 WARN_ON(dev->page != dev->orig_page); 1941 1942 while (wbi && wbi->bi_iter.bi_sector < 1943 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 1944 if (wbi->bi_opf & REQ_FUA) 1945 set_bit(R5_WantFUA, &dev->flags); 1946 if (wbi->bi_opf & REQ_SYNC) 1947 set_bit(R5_SyncIO, &dev->flags); 1948 if (bio_op(wbi) == REQ_OP_DISCARD) 1949 set_bit(R5_Discard, &dev->flags); 1950 else { 1951 tx = async_copy_data(1, wbi, &dev->page, 1952 dev->offset, 1953 dev->sector, tx, sh, 1954 r5c_is_writeback(conf->log)); 1955 if (dev->page != dev->orig_page && 1956 !r5c_is_writeback(conf->log)) { 1957 set_bit(R5_SkipCopy, &dev->flags); 1958 clear_bit(R5_UPTODATE, &dev->flags); 1959 clear_bit(R5_OVERWRITE, &dev->flags); 1960 } 1961 } 1962 wbi = r5_next_bio(conf, wbi, dev->sector); 1963 } 1964 1965 if (head_sh->batch_head) { 1966 sh = list_first_entry(&sh->batch_list, 1967 struct stripe_head, 1968 batch_list); 1969 if (sh == head_sh) 1970 continue; 1971 goto again; 1972 } 1973 } 1974 } 1975 1976 return tx; 1977 } 1978 1979 static void ops_complete_reconstruct(void *stripe_head_ref) 1980 { 1981 struct stripe_head *sh = stripe_head_ref; 1982 int disks = sh->disks; 1983 int pd_idx = sh->pd_idx; 1984 int qd_idx = sh->qd_idx; 1985 int i; 1986 bool fua = false, sync = false, discard = false; 1987 1988 pr_debug("%s: stripe %llu\n", __func__, 1989 (unsigned long long)sh->sector); 1990 1991 for (i = disks; i--; ) { 1992 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags); 1993 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags); 1994 discard |= test_bit(R5_Discard, &sh->dev[i].flags); 1995 } 1996 1997 for (i = disks; i--; ) { 1998 struct r5dev *dev = &sh->dev[i]; 1999 2000 if (dev->written || i == pd_idx || i == qd_idx) { 2001 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) { 2002 set_bit(R5_UPTODATE, &dev->flags); 2003 if (test_bit(STRIPE_EXPAND_READY, &sh->state)) 2004 set_bit(R5_Expanded, &dev->flags); 2005 } 2006 if (fua) 2007 set_bit(R5_WantFUA, &dev->flags); 2008 if (sync) 2009 set_bit(R5_SyncIO, &dev->flags); 2010 } 2011 } 2012 2013 if (sh->reconstruct_state == reconstruct_state_drain_run) 2014 sh->reconstruct_state = reconstruct_state_drain_result; 2015 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) 2016 sh->reconstruct_state = reconstruct_state_prexor_drain_result; 2017 else { 2018 BUG_ON(sh->reconstruct_state != reconstruct_state_run); 2019 sh->reconstruct_state = reconstruct_state_result; 2020 } 2021 2022 set_bit(STRIPE_HANDLE, &sh->state); 2023 raid5_release_stripe(sh); 2024 } 2025 2026 static void 2027 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu, 2028 struct dma_async_tx_descriptor *tx) 2029 { 2030 int disks = sh->disks; 2031 struct page **xor_srcs; 2032 unsigned int *off_srcs; 2033 struct async_submit_ctl submit; 2034 int count, pd_idx = sh->pd_idx, i; 2035 struct page *xor_dest; 2036 unsigned int off_dest; 2037 int prexor = 0; 2038 unsigned long flags; 2039 int j = 0; 2040 struct stripe_head *head_sh = sh; 2041 int last_stripe; 2042 2043 pr_debug("%s: stripe %llu\n", __func__, 2044 (unsigned long long)sh->sector); 2045 2046 for (i = 0; i < sh->disks; i++) { 2047 if (pd_idx == i) 2048 continue; 2049 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 2050 break; 2051 } 2052 if (i >= sh->disks) { 2053 atomic_inc(&sh->count); 2054 set_bit(R5_Discard, &sh->dev[pd_idx].flags); 2055 ops_complete_reconstruct(sh); 2056 return; 2057 } 2058 again: 2059 count = 0; 2060 xor_srcs = to_addr_page(percpu, j); 2061 off_srcs = to_addr_offs(sh, percpu); 2062 /* check if prexor is active which means only process blocks 2063 * that are part of a read-modify-write (written) 2064 */ 2065 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 2066 prexor = 1; 2067 off_dest = off_srcs[count] = sh->dev[pd_idx].offset; 2068 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 2069 for (i = disks; i--; ) { 2070 struct r5dev *dev = &sh->dev[i]; 2071 if (head_sh->dev[i].written || 2072 test_bit(R5_InJournal, &head_sh->dev[i].flags)) { 2073 off_srcs[count] = dev->offset; 2074 xor_srcs[count++] = dev->page; 2075 } 2076 } 2077 } else { 2078 xor_dest = sh->dev[pd_idx].page; 2079 off_dest = sh->dev[pd_idx].offset; 2080 for (i = disks; i--; ) { 2081 struct r5dev *dev = &sh->dev[i]; 2082 if (i != pd_idx) { 2083 off_srcs[count] = dev->offset; 2084 xor_srcs[count++] = dev->page; 2085 } 2086 } 2087 } 2088 2089 /* 1/ if we prexor'd then the dest is reused as a source 2090 * 2/ if we did not prexor then we are redoing the parity 2091 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST 2092 * for the synchronous xor case 2093 */ 2094 last_stripe = !head_sh->batch_head || 2095 list_first_entry(&sh->batch_list, 2096 struct stripe_head, batch_list) == head_sh; 2097 if (last_stripe) { 2098 flags = ASYNC_TX_ACK | 2099 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST); 2100 2101 atomic_inc(&head_sh->count); 2102 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh, 2103 to_addr_conv(sh, percpu, j)); 2104 } else { 2105 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST; 2106 init_async_submit(&submit, flags, tx, NULL, NULL, 2107 to_addr_conv(sh, percpu, j)); 2108 } 2109 2110 if (unlikely(count == 1)) 2111 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0], 2112 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 2113 else 2114 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count, 2115 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 2116 if (!last_stripe) { 2117 j++; 2118 sh = list_first_entry(&sh->batch_list, struct stripe_head, 2119 batch_list); 2120 goto again; 2121 } 2122 } 2123 2124 static void 2125 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu, 2126 struct dma_async_tx_descriptor *tx) 2127 { 2128 struct async_submit_ctl submit; 2129 struct page **blocks; 2130 unsigned int *offs; 2131 int count, i, j = 0; 2132 struct stripe_head *head_sh = sh; 2133 int last_stripe; 2134 int synflags; 2135 unsigned long txflags; 2136 2137 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); 2138 2139 for (i = 0; i < sh->disks; i++) { 2140 if (sh->pd_idx == i || sh->qd_idx == i) 2141 continue; 2142 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 2143 break; 2144 } 2145 if (i >= sh->disks) { 2146 atomic_inc(&sh->count); 2147 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 2148 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 2149 ops_complete_reconstruct(sh); 2150 return; 2151 } 2152 2153 again: 2154 blocks = to_addr_page(percpu, j); 2155 offs = to_addr_offs(sh, percpu); 2156 2157 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 2158 synflags = SYNDROME_SRC_WRITTEN; 2159 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST; 2160 } else { 2161 synflags = SYNDROME_SRC_ALL; 2162 txflags = ASYNC_TX_ACK; 2163 } 2164 2165 count = set_syndrome_sources(blocks, offs, sh, synflags); 2166 last_stripe = !head_sh->batch_head || 2167 list_first_entry(&sh->batch_list, 2168 struct stripe_head, batch_list) == head_sh; 2169 2170 if (last_stripe) { 2171 atomic_inc(&head_sh->count); 2172 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct, 2173 head_sh, to_addr_conv(sh, percpu, j)); 2174 } else 2175 init_async_submit(&submit, 0, tx, NULL, NULL, 2176 to_addr_conv(sh, percpu, j)); 2177 tx = async_gen_syndrome(blocks, offs, count+2, 2178 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 2179 if (!last_stripe) { 2180 j++; 2181 sh = list_first_entry(&sh->batch_list, struct stripe_head, 2182 batch_list); 2183 goto again; 2184 } 2185 } 2186 2187 static void ops_complete_check(void *stripe_head_ref) 2188 { 2189 struct stripe_head *sh = stripe_head_ref; 2190 2191 pr_debug("%s: stripe %llu\n", __func__, 2192 (unsigned long long)sh->sector); 2193 2194 sh->check_state = check_state_check_result; 2195 set_bit(STRIPE_HANDLE, &sh->state); 2196 raid5_release_stripe(sh); 2197 } 2198 2199 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu) 2200 { 2201 int disks = sh->disks; 2202 int pd_idx = sh->pd_idx; 2203 int qd_idx = sh->qd_idx; 2204 struct page *xor_dest; 2205 unsigned int off_dest; 2206 struct page **xor_srcs = to_addr_page(percpu, 0); 2207 unsigned int *off_srcs = to_addr_offs(sh, percpu); 2208 struct dma_async_tx_descriptor *tx; 2209 struct async_submit_ctl submit; 2210 int count; 2211 int i; 2212 2213 pr_debug("%s: stripe %llu\n", __func__, 2214 (unsigned long long)sh->sector); 2215 2216 BUG_ON(sh->batch_head); 2217 count = 0; 2218 xor_dest = sh->dev[pd_idx].page; 2219 off_dest = sh->dev[pd_idx].offset; 2220 off_srcs[count] = off_dest; 2221 xor_srcs[count++] = xor_dest; 2222 for (i = disks; i--; ) { 2223 if (i == pd_idx || i == qd_idx) 2224 continue; 2225 off_srcs[count] = sh->dev[i].offset; 2226 xor_srcs[count++] = sh->dev[i].page; 2227 } 2228 2229 init_async_submit(&submit, 0, NULL, NULL, NULL, 2230 to_addr_conv(sh, percpu, 0)); 2231 tx = async_xor_val_offs(xor_dest, off_dest, xor_srcs, off_srcs, count, 2232 RAID5_STRIPE_SIZE(sh->raid_conf), 2233 &sh->ops.zero_sum_result, &submit); 2234 2235 atomic_inc(&sh->count); 2236 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL); 2237 tx = async_trigger_callback(&submit); 2238 } 2239 2240 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp) 2241 { 2242 struct page **srcs = to_addr_page(percpu, 0); 2243 unsigned int *offs = to_addr_offs(sh, percpu); 2244 struct async_submit_ctl submit; 2245 int count; 2246 2247 pr_debug("%s: stripe %llu checkp: %d\n", __func__, 2248 (unsigned long long)sh->sector, checkp); 2249 2250 BUG_ON(sh->batch_head); 2251 count = set_syndrome_sources(srcs, offs, sh, SYNDROME_SRC_ALL); 2252 if (!checkp) 2253 srcs[count] = NULL; 2254 2255 atomic_inc(&sh->count); 2256 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check, 2257 sh, to_addr_conv(sh, percpu, 0)); 2258 async_syndrome_val(srcs, offs, count+2, 2259 RAID5_STRIPE_SIZE(sh->raid_conf), 2260 &sh->ops.zero_sum_result, percpu->spare_page, 0, &submit); 2261 } 2262 2263 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request) 2264 { 2265 int overlap_clear = 0, i, disks = sh->disks; 2266 struct dma_async_tx_descriptor *tx = NULL; 2267 struct r5conf *conf = sh->raid_conf; 2268 int level = conf->level; 2269 struct raid5_percpu *percpu; 2270 2271 local_lock(&conf->percpu->lock); 2272 percpu = this_cpu_ptr(conf->percpu); 2273 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) { 2274 ops_run_biofill(sh); 2275 overlap_clear++; 2276 } 2277 2278 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) { 2279 if (level < 6) 2280 tx = ops_run_compute5(sh, percpu); 2281 else { 2282 if (sh->ops.target2 < 0 || sh->ops.target < 0) 2283 tx = ops_run_compute6_1(sh, percpu); 2284 else 2285 tx = ops_run_compute6_2(sh, percpu); 2286 } 2287 /* terminate the chain if reconstruct is not set to be run */ 2288 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) 2289 async_tx_ack(tx); 2290 } 2291 2292 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) { 2293 if (level < 6) 2294 tx = ops_run_prexor5(sh, percpu, tx); 2295 else 2296 tx = ops_run_prexor6(sh, percpu, tx); 2297 } 2298 2299 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request)) 2300 tx = ops_run_partial_parity(sh, percpu, tx); 2301 2302 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) { 2303 tx = ops_run_biodrain(sh, tx); 2304 overlap_clear++; 2305 } 2306 2307 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) { 2308 if (level < 6) 2309 ops_run_reconstruct5(sh, percpu, tx); 2310 else 2311 ops_run_reconstruct6(sh, percpu, tx); 2312 } 2313 2314 if (test_bit(STRIPE_OP_CHECK, &ops_request)) { 2315 if (sh->check_state == check_state_run) 2316 ops_run_check_p(sh, percpu); 2317 else if (sh->check_state == check_state_run_q) 2318 ops_run_check_pq(sh, percpu, 0); 2319 else if (sh->check_state == check_state_run_pq) 2320 ops_run_check_pq(sh, percpu, 1); 2321 else 2322 BUG(); 2323 } 2324 2325 if (overlap_clear && !sh->batch_head) { 2326 for (i = disks; i--; ) { 2327 struct r5dev *dev = &sh->dev[i]; 2328 if (test_and_clear_bit(R5_Overlap, &dev->flags)) 2329 wake_up_bit(&dev->flags, R5_Overlap); 2330 } 2331 } 2332 local_unlock(&conf->percpu->lock); 2333 } 2334 2335 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh) 2336 { 2337 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 2338 kfree(sh->pages); 2339 #endif 2340 if (sh->ppl_page) 2341 __free_page(sh->ppl_page); 2342 kmem_cache_free(sc, sh); 2343 } 2344 2345 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp, 2346 int disks, struct r5conf *conf) 2347 { 2348 struct stripe_head *sh; 2349 2350 sh = kmem_cache_zalloc(sc, gfp); 2351 if (sh) { 2352 spin_lock_init(&sh->stripe_lock); 2353 spin_lock_init(&sh->batch_lock); 2354 INIT_LIST_HEAD(&sh->batch_list); 2355 INIT_LIST_HEAD(&sh->lru); 2356 INIT_LIST_HEAD(&sh->r5c); 2357 INIT_LIST_HEAD(&sh->log_list); 2358 atomic_set(&sh->count, 1); 2359 sh->raid_conf = conf; 2360 sh->log_start = MaxSector; 2361 2362 if (raid5_has_ppl(conf)) { 2363 sh->ppl_page = alloc_page(gfp); 2364 if (!sh->ppl_page) { 2365 free_stripe(sc, sh); 2366 return NULL; 2367 } 2368 } 2369 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 2370 if (init_stripe_shared_pages(sh, conf, disks)) { 2371 free_stripe(sc, sh); 2372 return NULL; 2373 } 2374 #endif 2375 } 2376 return sh; 2377 } 2378 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp) 2379 { 2380 struct stripe_head *sh; 2381 2382 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf); 2383 if (!sh) 2384 return 0; 2385 2386 if (grow_buffers(sh, gfp)) { 2387 shrink_buffers(sh); 2388 free_stripe(conf->slab_cache, sh); 2389 return 0; 2390 } 2391 sh->hash_lock_index = 2392 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS; 2393 /* we just created an active stripe so... */ 2394 atomic_inc(&conf->active_stripes); 2395 2396 raid5_release_stripe(sh); 2397 WRITE_ONCE(conf->max_nr_stripes, conf->max_nr_stripes + 1); 2398 return 1; 2399 } 2400 2401 static int grow_stripes(struct r5conf *conf, int num) 2402 { 2403 struct kmem_cache *sc; 2404 size_t namelen = sizeof(conf->cache_name[0]); 2405 int devs = max(conf->raid_disks, conf->previous_raid_disks); 2406 2407 if (mddev_is_dm(conf->mddev)) 2408 snprintf(conf->cache_name[0], namelen, 2409 "raid%d-%p", conf->level, conf->mddev); 2410 else 2411 snprintf(conf->cache_name[0], namelen, 2412 "raid%d-%s", conf->level, mdname(conf->mddev)); 2413 snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]); 2414 2415 conf->active_name = 0; 2416 sc = kmem_cache_create(conf->cache_name[conf->active_name], 2417 struct_size_t(struct stripe_head, dev, devs), 2418 0, 0, NULL); 2419 if (!sc) 2420 return 1; 2421 conf->slab_cache = sc; 2422 conf->pool_size = devs; 2423 while (num--) 2424 if (!grow_one_stripe(conf, GFP_KERNEL)) 2425 return 1; 2426 2427 return 0; 2428 } 2429 2430 /** 2431 * scribble_alloc - allocate percpu scribble buffer for required size 2432 * of the scribble region 2433 * @percpu: from for_each_present_cpu() of the caller 2434 * @num: total number of disks in the array 2435 * @cnt: scribble objs count for required size of the scribble region 2436 * 2437 * The scribble buffer size must be enough to contain: 2438 * 1/ a struct page pointer for each device in the array +2 2439 * 2/ room to convert each entry in (1) to its corresponding dma 2440 * (dma_map_page()) or page (page_address()) address. 2441 * 2442 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we 2443 * calculate over all devices (not just the data blocks), using zeros in place 2444 * of the P and Q blocks. 2445 */ 2446 static int scribble_alloc(struct raid5_percpu *percpu, 2447 int num, int cnt) 2448 { 2449 size_t obj_size = 2450 sizeof(struct page *) * (num + 2) + 2451 sizeof(addr_conv_t) * (num + 2) + 2452 sizeof(unsigned int) * (num + 2); 2453 void *scribble; 2454 2455 /* 2456 * If here is in raid array suspend context, it is in memalloc noio 2457 * context as well, there is no potential recursive memory reclaim 2458 * I/Os with the GFP_KERNEL flag. 2459 */ 2460 scribble = kvmalloc_array(cnt, obj_size, GFP_KERNEL); 2461 if (!scribble) 2462 return -ENOMEM; 2463 2464 kvfree(percpu->scribble); 2465 2466 percpu->scribble = scribble; 2467 percpu->scribble_obj_size = obj_size; 2468 return 0; 2469 } 2470 2471 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors) 2472 { 2473 unsigned long cpu; 2474 int err = 0; 2475 2476 /* Never shrink. */ 2477 if (conf->scribble_disks >= new_disks && 2478 conf->scribble_sectors >= new_sectors) 2479 return 0; 2480 2481 raid5_quiesce(conf->mddev, true); 2482 cpus_read_lock(); 2483 2484 for_each_present_cpu(cpu) { 2485 struct raid5_percpu *percpu; 2486 2487 percpu = per_cpu_ptr(conf->percpu, cpu); 2488 err = scribble_alloc(percpu, new_disks, 2489 new_sectors / RAID5_STRIPE_SECTORS(conf)); 2490 if (err) 2491 break; 2492 } 2493 2494 cpus_read_unlock(); 2495 raid5_quiesce(conf->mddev, false); 2496 2497 if (!err) { 2498 conf->scribble_disks = new_disks; 2499 conf->scribble_sectors = new_sectors; 2500 } 2501 return err; 2502 } 2503 2504 static int resize_stripes(struct r5conf *conf, int newsize) 2505 { 2506 /* Make all the stripes able to hold 'newsize' devices. 2507 * New slots in each stripe get 'page' set to a new page. 2508 * 2509 * This happens in stages: 2510 * 1/ create a new kmem_cache and allocate the required number of 2511 * stripe_heads. 2512 * 2/ gather all the old stripe_heads and transfer the pages across 2513 * to the new stripe_heads. This will have the side effect of 2514 * freezing the array as once all stripe_heads have been collected, 2515 * no IO will be possible. Old stripe heads are freed once their 2516 * pages have been transferred over, and the old kmem_cache is 2517 * freed when all stripes are done. 2518 * 3/ reallocate conf->disks to be suitable bigger. If this fails, 2519 * we simple return a failure status - no need to clean anything up. 2520 * 4/ allocate new pages for the new slots in the new stripe_heads. 2521 * If this fails, we don't bother trying the shrink the 2522 * stripe_heads down again, we just leave them as they are. 2523 * As each stripe_head is processed the new one is released into 2524 * active service. 2525 * 2526 * Once step2 is started, we cannot afford to wait for a write, 2527 * so we use GFP_NOIO allocations. 2528 */ 2529 struct stripe_head *osh, *nsh; 2530 LIST_HEAD(newstripes); 2531 struct disk_info *ndisks; 2532 int err = 0; 2533 struct kmem_cache *sc; 2534 int i; 2535 int hash, cnt; 2536 2537 md_allow_write(conf->mddev); 2538 2539 /* Step 1 */ 2540 sc = kmem_cache_create(conf->cache_name[1-conf->active_name], 2541 struct_size_t(struct stripe_head, dev, newsize), 2542 0, 0, NULL); 2543 if (!sc) 2544 return -ENOMEM; 2545 2546 /* Need to ensure auto-resizing doesn't interfere */ 2547 mutex_lock(&conf->cache_size_mutex); 2548 2549 for (i = conf->max_nr_stripes; i; i--) { 2550 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf); 2551 if (!nsh) 2552 break; 2553 2554 list_add(&nsh->lru, &newstripes); 2555 } 2556 if (i) { 2557 /* didn't get enough, give up */ 2558 while (!list_empty(&newstripes)) { 2559 nsh = list_entry(newstripes.next, struct stripe_head, lru); 2560 list_del(&nsh->lru); 2561 free_stripe(sc, nsh); 2562 } 2563 kmem_cache_destroy(sc); 2564 mutex_unlock(&conf->cache_size_mutex); 2565 return -ENOMEM; 2566 } 2567 /* Step 2 - Must use GFP_NOIO now. 2568 * OK, we have enough stripes, start collecting inactive 2569 * stripes and copying them over 2570 */ 2571 hash = 0; 2572 cnt = 0; 2573 list_for_each_entry(nsh, &newstripes, lru) { 2574 lock_device_hash_lock(conf, hash); 2575 wait_event_cmd(conf->wait_for_stripe, 2576 !list_empty(conf->inactive_list + hash), 2577 unlock_device_hash_lock(conf, hash), 2578 lock_device_hash_lock(conf, hash)); 2579 osh = get_free_stripe(conf, hash); 2580 unlock_device_hash_lock(conf, hash); 2581 2582 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 2583 for (i = 0; i < osh->nr_pages; i++) { 2584 nsh->pages[i] = osh->pages[i]; 2585 osh->pages[i] = NULL; 2586 } 2587 #endif 2588 for(i=0; i<conf->pool_size; i++) { 2589 nsh->dev[i].page = osh->dev[i].page; 2590 nsh->dev[i].orig_page = osh->dev[i].page; 2591 nsh->dev[i].offset = osh->dev[i].offset; 2592 } 2593 nsh->hash_lock_index = hash; 2594 free_stripe(conf->slab_cache, osh); 2595 cnt++; 2596 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS + 2597 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) { 2598 hash++; 2599 cnt = 0; 2600 } 2601 } 2602 kmem_cache_destroy(conf->slab_cache); 2603 2604 /* Step 3. 2605 * At this point, we are holding all the stripes so the array 2606 * is completely stalled, so now is a good time to resize 2607 * conf->disks and the scribble region 2608 */ 2609 ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO); 2610 if (ndisks) { 2611 for (i = 0; i < conf->pool_size; i++) 2612 ndisks[i] = conf->disks[i]; 2613 2614 for (i = conf->pool_size; i < newsize; i++) { 2615 ndisks[i].extra_page = alloc_page(GFP_NOIO); 2616 if (!ndisks[i].extra_page) 2617 err = -ENOMEM; 2618 } 2619 2620 if (err) { 2621 for (i = conf->pool_size; i < newsize; i++) 2622 if (ndisks[i].extra_page) 2623 put_page(ndisks[i].extra_page); 2624 kfree(ndisks); 2625 } else { 2626 kfree(conf->disks); 2627 conf->disks = ndisks; 2628 } 2629 } else 2630 err = -ENOMEM; 2631 2632 conf->slab_cache = sc; 2633 conf->active_name = 1-conf->active_name; 2634 2635 /* Step 4, return new stripes to service */ 2636 while(!list_empty(&newstripes)) { 2637 nsh = list_entry(newstripes.next, struct stripe_head, lru); 2638 list_del_init(&nsh->lru); 2639 2640 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 2641 for (i = 0; i < nsh->nr_pages; i++) { 2642 if (nsh->pages[i]) 2643 continue; 2644 nsh->pages[i] = alloc_page(GFP_NOIO); 2645 if (!nsh->pages[i]) 2646 err = -ENOMEM; 2647 } 2648 2649 for (i = conf->raid_disks; i < newsize; i++) { 2650 if (nsh->dev[i].page) 2651 continue; 2652 nsh->dev[i].page = raid5_get_dev_page(nsh, i); 2653 nsh->dev[i].orig_page = nsh->dev[i].page; 2654 nsh->dev[i].offset = raid5_get_page_offset(nsh, i); 2655 } 2656 #else 2657 for (i=conf->raid_disks; i < newsize; i++) 2658 if (nsh->dev[i].page == NULL) { 2659 struct page *p = alloc_page(GFP_NOIO); 2660 nsh->dev[i].page = p; 2661 nsh->dev[i].orig_page = p; 2662 nsh->dev[i].offset = 0; 2663 if (!p) 2664 err = -ENOMEM; 2665 } 2666 #endif 2667 raid5_release_stripe(nsh); 2668 } 2669 /* critical section pass, GFP_NOIO no longer needed */ 2670 2671 if (!err) 2672 conf->pool_size = newsize; 2673 mutex_unlock(&conf->cache_size_mutex); 2674 2675 return err; 2676 } 2677 2678 static int drop_one_stripe(struct r5conf *conf) 2679 { 2680 struct stripe_head *sh; 2681 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK; 2682 2683 spin_lock_irq(conf->hash_locks + hash); 2684 sh = get_free_stripe(conf, hash); 2685 spin_unlock_irq(conf->hash_locks + hash); 2686 if (!sh) 2687 return 0; 2688 BUG_ON(atomic_read(&sh->count)); 2689 shrink_buffers(sh); 2690 free_stripe(conf->slab_cache, sh); 2691 atomic_dec(&conf->active_stripes); 2692 WRITE_ONCE(conf->max_nr_stripes, conf->max_nr_stripes - 1); 2693 return 1; 2694 } 2695 2696 static void shrink_stripes(struct r5conf *conf) 2697 { 2698 while (conf->max_nr_stripes && 2699 drop_one_stripe(conf)) 2700 ; 2701 2702 kmem_cache_destroy(conf->slab_cache); 2703 conf->slab_cache = NULL; 2704 } 2705 2706 static void raid5_end_read_request(struct bio * bi) 2707 { 2708 struct stripe_head *sh = bi->bi_private; 2709 struct r5conf *conf = sh->raid_conf; 2710 int disks = sh->disks, i; 2711 struct md_rdev *rdev = NULL; 2712 sector_t s; 2713 2714 for (i=0 ; i<disks; i++) 2715 if (bi == &sh->dev[i].req) 2716 break; 2717 2718 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n", 2719 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2720 bi->bi_status); 2721 if (i == disks) { 2722 BUG(); 2723 return; 2724 } 2725 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2726 /* If replacement finished while this request was outstanding, 2727 * 'replacement' might be NULL already. 2728 * In that case it moved down to 'rdev'. 2729 * rdev is not removed until all requests are finished. 2730 */ 2731 rdev = conf->disks[i].replacement; 2732 if (!rdev) 2733 rdev = conf->disks[i].rdev; 2734 2735 if (use_new_offset(conf, sh)) 2736 s = sh->sector + rdev->new_data_offset; 2737 else 2738 s = sh->sector + rdev->data_offset; 2739 if (!bi->bi_status) { 2740 set_bit(R5_UPTODATE, &sh->dev[i].flags); 2741 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 2742 /* Note that this cannot happen on a 2743 * replacement device. We just fail those on 2744 * any error 2745 */ 2746 pr_info_ratelimited( 2747 "md/raid:%s: read error corrected (%lu sectors at %llu on %pg)\n", 2748 mdname(conf->mddev), RAID5_STRIPE_SECTORS(conf), 2749 (unsigned long long)s, 2750 rdev->bdev); 2751 atomic_add(RAID5_STRIPE_SECTORS(conf), &rdev->corrected_errors); 2752 clear_bit(R5_ReadError, &sh->dev[i].flags); 2753 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2754 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2755 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2756 2757 if (test_bit(R5_InJournal, &sh->dev[i].flags)) 2758 /* 2759 * end read for a page in journal, this 2760 * must be preparing for prexor in rmw 2761 */ 2762 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags); 2763 2764 if (atomic_read(&rdev->read_errors)) 2765 atomic_set(&rdev->read_errors, 0); 2766 } else { 2767 int retry = 0; 2768 int set_bad = 0; 2769 2770 clear_bit(R5_UPTODATE, &sh->dev[i].flags); 2771 if (!(bi->bi_status == BLK_STS_PROTECTION)) 2772 atomic_inc(&rdev->read_errors); 2773 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2774 pr_warn_ratelimited( 2775 "md/raid:%s: read error on replacement device (sector %llu on %pg).\n", 2776 mdname(conf->mddev), 2777 (unsigned long long)s, 2778 rdev->bdev); 2779 else if (conf->mddev->degraded >= conf->max_degraded) { 2780 set_bad = 1; 2781 pr_warn_ratelimited( 2782 "md/raid:%s: read error not correctable (sector %llu on %pg).\n", 2783 mdname(conf->mddev), 2784 (unsigned long long)s, 2785 rdev->bdev); 2786 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) { 2787 /* Oh, no!!! */ 2788 set_bad = 1; 2789 pr_warn_ratelimited( 2790 "md/raid:%s: read error NOT corrected!! (sector %llu on %pg).\n", 2791 mdname(conf->mddev), 2792 (unsigned long long)s, 2793 rdev->bdev); 2794 } else if (atomic_read(&rdev->read_errors) 2795 > conf->max_nr_stripes) { 2796 if (!test_bit(Faulty, &rdev->flags)) { 2797 pr_warn("md/raid:%s: %d read_errors > %d stripes\n", 2798 mdname(conf->mddev), 2799 atomic_read(&rdev->read_errors), 2800 conf->max_nr_stripes); 2801 pr_warn("md/raid:%s: Too many read errors, failing device %pg.\n", 2802 mdname(conf->mddev), rdev->bdev); 2803 } 2804 } else 2805 retry = 1; 2806 if (set_bad && test_bit(In_sync, &rdev->flags) 2807 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2808 retry = 1; 2809 if (retry) 2810 if (sh->qd_idx >= 0 && sh->pd_idx == i) 2811 set_bit(R5_ReadError, &sh->dev[i].flags); 2812 else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) { 2813 set_bit(R5_ReadError, &sh->dev[i].flags); 2814 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2815 } else 2816 set_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2817 else { 2818 clear_bit(R5_ReadError, &sh->dev[i].flags); 2819 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2820 if (!(set_bad 2821 && test_bit(In_sync, &rdev->flags) 2822 && rdev_set_badblocks( 2823 rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 0))) 2824 md_error(conf->mddev, rdev); 2825 } 2826 } 2827 rdev_dec_pending(rdev, conf->mddev); 2828 bio_uninit(bi); 2829 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2830 set_bit(STRIPE_HANDLE, &sh->state); 2831 raid5_release_stripe(sh); 2832 } 2833 2834 static void raid5_end_write_request(struct bio *bi) 2835 { 2836 struct stripe_head *sh = bi->bi_private; 2837 struct r5conf *conf = sh->raid_conf; 2838 int disks = sh->disks, i; 2839 struct md_rdev *rdev; 2840 int replacement = 0; 2841 2842 for (i = 0 ; i < disks; i++) { 2843 if (bi == &sh->dev[i].req) { 2844 rdev = conf->disks[i].rdev; 2845 break; 2846 } 2847 if (bi == &sh->dev[i].rreq) { 2848 rdev = conf->disks[i].replacement; 2849 if (rdev) 2850 replacement = 1; 2851 else 2852 /* rdev was removed and 'replacement' 2853 * replaced it. rdev is not removed 2854 * until all requests are finished. 2855 */ 2856 rdev = conf->disks[i].rdev; 2857 break; 2858 } 2859 } 2860 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n", 2861 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2862 bi->bi_status); 2863 if (i == disks) { 2864 BUG(); 2865 return; 2866 } 2867 2868 if (replacement) { 2869 if (bi->bi_status) 2870 md_error(conf->mddev, rdev); 2871 else if (rdev_has_badblock(rdev, sh->sector, 2872 RAID5_STRIPE_SECTORS(conf))) 2873 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags); 2874 } else { 2875 if (bi->bi_status) { 2876 set_bit(WriteErrorSeen, &rdev->flags); 2877 set_bit(R5_WriteError, &sh->dev[i].flags); 2878 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2879 set_bit(MD_RECOVERY_NEEDED, 2880 &rdev->mddev->recovery); 2881 } else if (rdev_has_badblock(rdev, sh->sector, 2882 RAID5_STRIPE_SECTORS(conf))) { 2883 set_bit(R5_MadeGood, &sh->dev[i].flags); 2884 if (test_bit(R5_ReadError, &sh->dev[i].flags)) 2885 /* That was a successful write so make 2886 * sure it looks like we already did 2887 * a re-write. 2888 */ 2889 set_bit(R5_ReWrite, &sh->dev[i].flags); 2890 } 2891 } 2892 rdev_dec_pending(rdev, conf->mddev); 2893 2894 if (sh->batch_head && bi->bi_status && !replacement) 2895 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state); 2896 2897 bio_uninit(bi); 2898 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags)) 2899 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2900 set_bit(STRIPE_HANDLE, &sh->state); 2901 2902 if (sh->batch_head && sh != sh->batch_head) 2903 raid5_release_stripe(sh->batch_head); 2904 raid5_release_stripe(sh); 2905 } 2906 2907 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev) 2908 { 2909 struct r5conf *conf = mddev->private; 2910 unsigned long flags; 2911 pr_debug("raid456: error called\n"); 2912 2913 pr_crit("md/raid:%s: Disk failure on %pg, disabling device.\n", 2914 mdname(mddev), rdev->bdev); 2915 2916 spin_lock_irqsave(&conf->device_lock, flags); 2917 set_bit(Faulty, &rdev->flags); 2918 clear_bit(In_sync, &rdev->flags); 2919 mddev->degraded = raid5_calc_degraded(conf); 2920 2921 if (has_failed(conf)) { 2922 set_bit(MD_BROKEN, &conf->mddev->flags); 2923 conf->recovery_disabled = mddev->recovery_disabled; 2924 2925 pr_crit("md/raid:%s: Cannot continue operation (%d/%d failed).\n", 2926 mdname(mddev), mddev->degraded, conf->raid_disks); 2927 } else { 2928 pr_crit("md/raid:%s: Operation continuing on %d devices.\n", 2929 mdname(mddev), conf->raid_disks - mddev->degraded); 2930 } 2931 2932 spin_unlock_irqrestore(&conf->device_lock, flags); 2933 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2934 2935 set_bit(Blocked, &rdev->flags); 2936 set_mask_bits(&mddev->sb_flags, 0, 2937 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 2938 r5c_update_on_rdev_error(mddev, rdev); 2939 } 2940 2941 /* 2942 * Input: a 'big' sector number, 2943 * Output: index of the data and parity disk, and the sector # in them. 2944 */ 2945 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector, 2946 int previous, int *dd_idx, 2947 struct stripe_head *sh) 2948 { 2949 sector_t stripe, stripe2; 2950 sector_t chunk_number; 2951 unsigned int chunk_offset; 2952 int pd_idx, qd_idx; 2953 int ddf_layout = 0; 2954 sector_t new_sector; 2955 int algorithm = previous ? conf->prev_algo 2956 : conf->algorithm; 2957 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 2958 : conf->chunk_sectors; 2959 int raid_disks = previous ? conf->previous_raid_disks 2960 : conf->raid_disks; 2961 int data_disks = raid_disks - conf->max_degraded; 2962 2963 /* First compute the information on this sector */ 2964 2965 /* 2966 * Compute the chunk number and the sector offset inside the chunk 2967 */ 2968 chunk_offset = sector_div(r_sector, sectors_per_chunk); 2969 chunk_number = r_sector; 2970 2971 /* 2972 * Compute the stripe number 2973 */ 2974 stripe = chunk_number; 2975 *dd_idx = sector_div(stripe, data_disks); 2976 stripe2 = stripe; 2977 /* 2978 * Select the parity disk based on the user selected algorithm. 2979 */ 2980 pd_idx = qd_idx = -1; 2981 switch(conf->level) { 2982 case 4: 2983 pd_idx = data_disks; 2984 break; 2985 case 5: 2986 switch (algorithm) { 2987 case ALGORITHM_LEFT_ASYMMETRIC: 2988 pd_idx = data_disks - sector_div(stripe2, raid_disks); 2989 if (*dd_idx >= pd_idx) 2990 (*dd_idx)++; 2991 break; 2992 case ALGORITHM_RIGHT_ASYMMETRIC: 2993 pd_idx = sector_div(stripe2, raid_disks); 2994 if (*dd_idx >= pd_idx) 2995 (*dd_idx)++; 2996 break; 2997 case ALGORITHM_LEFT_SYMMETRIC: 2998 pd_idx = data_disks - sector_div(stripe2, raid_disks); 2999 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 3000 break; 3001 case ALGORITHM_RIGHT_SYMMETRIC: 3002 pd_idx = sector_div(stripe2, raid_disks); 3003 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 3004 break; 3005 case ALGORITHM_PARITY_0: 3006 pd_idx = 0; 3007 (*dd_idx)++; 3008 break; 3009 case ALGORITHM_PARITY_N: 3010 pd_idx = data_disks; 3011 break; 3012 default: 3013 BUG(); 3014 } 3015 break; 3016 case 6: 3017 3018 switch (algorithm) { 3019 case ALGORITHM_LEFT_ASYMMETRIC: 3020 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 3021 qd_idx = pd_idx + 1; 3022 if (pd_idx == raid_disks-1) { 3023 (*dd_idx)++; /* Q D D D P */ 3024 qd_idx = 0; 3025 } else if (*dd_idx >= pd_idx) 3026 (*dd_idx) += 2; /* D D P Q D */ 3027 break; 3028 case ALGORITHM_RIGHT_ASYMMETRIC: 3029 pd_idx = sector_div(stripe2, raid_disks); 3030 qd_idx = pd_idx + 1; 3031 if (pd_idx == raid_disks-1) { 3032 (*dd_idx)++; /* Q D D D P */ 3033 qd_idx = 0; 3034 } else if (*dd_idx >= pd_idx) 3035 (*dd_idx) += 2; /* D D P Q D */ 3036 break; 3037 case ALGORITHM_LEFT_SYMMETRIC: 3038 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 3039 qd_idx = (pd_idx + 1) % raid_disks; 3040 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 3041 break; 3042 case ALGORITHM_RIGHT_SYMMETRIC: 3043 pd_idx = sector_div(stripe2, raid_disks); 3044 qd_idx = (pd_idx + 1) % raid_disks; 3045 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 3046 break; 3047 3048 case ALGORITHM_PARITY_0: 3049 pd_idx = 0; 3050 qd_idx = 1; 3051 (*dd_idx) += 2; 3052 break; 3053 case ALGORITHM_PARITY_N: 3054 pd_idx = data_disks; 3055 qd_idx = data_disks + 1; 3056 break; 3057 3058 case ALGORITHM_ROTATING_ZERO_RESTART: 3059 /* Exactly the same as RIGHT_ASYMMETRIC, but or 3060 * of blocks for computing Q is different. 3061 */ 3062 pd_idx = sector_div(stripe2, raid_disks); 3063 qd_idx = pd_idx + 1; 3064 if (pd_idx == raid_disks-1) { 3065 (*dd_idx)++; /* Q D D D P */ 3066 qd_idx = 0; 3067 } else if (*dd_idx >= pd_idx) 3068 (*dd_idx) += 2; /* D D P Q D */ 3069 ddf_layout = 1; 3070 break; 3071 3072 case ALGORITHM_ROTATING_N_RESTART: 3073 /* Same a left_asymmetric, by first stripe is 3074 * D D D P Q rather than 3075 * Q D D D P 3076 */ 3077 stripe2 += 1; 3078 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 3079 qd_idx = pd_idx + 1; 3080 if (pd_idx == raid_disks-1) { 3081 (*dd_idx)++; /* Q D D D P */ 3082 qd_idx = 0; 3083 } else if (*dd_idx >= pd_idx) 3084 (*dd_idx) += 2; /* D D P Q D */ 3085 ddf_layout = 1; 3086 break; 3087 3088 case ALGORITHM_ROTATING_N_CONTINUE: 3089 /* Same as left_symmetric but Q is before P */ 3090 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 3091 qd_idx = (pd_idx + raid_disks - 1) % raid_disks; 3092 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 3093 ddf_layout = 1; 3094 break; 3095 3096 case ALGORITHM_LEFT_ASYMMETRIC_6: 3097 /* RAID5 left_asymmetric, with Q on last device */ 3098 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 3099 if (*dd_idx >= pd_idx) 3100 (*dd_idx)++; 3101 qd_idx = raid_disks - 1; 3102 break; 3103 3104 case ALGORITHM_RIGHT_ASYMMETRIC_6: 3105 pd_idx = sector_div(stripe2, raid_disks-1); 3106 if (*dd_idx >= pd_idx) 3107 (*dd_idx)++; 3108 qd_idx = raid_disks - 1; 3109 break; 3110 3111 case ALGORITHM_LEFT_SYMMETRIC_6: 3112 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 3113 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 3114 qd_idx = raid_disks - 1; 3115 break; 3116 3117 case ALGORITHM_RIGHT_SYMMETRIC_6: 3118 pd_idx = sector_div(stripe2, raid_disks-1); 3119 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 3120 qd_idx = raid_disks - 1; 3121 break; 3122 3123 case ALGORITHM_PARITY_0_6: 3124 pd_idx = 0; 3125 (*dd_idx)++; 3126 qd_idx = raid_disks - 1; 3127 break; 3128 3129 default: 3130 BUG(); 3131 } 3132 break; 3133 } 3134 3135 if (sh) { 3136 sh->pd_idx = pd_idx; 3137 sh->qd_idx = qd_idx; 3138 sh->ddf_layout = ddf_layout; 3139 } 3140 /* 3141 * Finally, compute the new sector number 3142 */ 3143 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset; 3144 return new_sector; 3145 } 3146 3147 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous) 3148 { 3149 struct r5conf *conf = sh->raid_conf; 3150 int raid_disks = sh->disks; 3151 int data_disks = raid_disks - conf->max_degraded; 3152 sector_t new_sector = sh->sector, check; 3153 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 3154 : conf->chunk_sectors; 3155 int algorithm = previous ? conf->prev_algo 3156 : conf->algorithm; 3157 sector_t stripe; 3158 int chunk_offset; 3159 sector_t chunk_number; 3160 int dummy1, dd_idx = i; 3161 sector_t r_sector; 3162 struct stripe_head sh2; 3163 3164 chunk_offset = sector_div(new_sector, sectors_per_chunk); 3165 stripe = new_sector; 3166 3167 if (i == sh->pd_idx) 3168 return 0; 3169 switch(conf->level) { 3170 case 4: break; 3171 case 5: 3172 switch (algorithm) { 3173 case ALGORITHM_LEFT_ASYMMETRIC: 3174 case ALGORITHM_RIGHT_ASYMMETRIC: 3175 if (i > sh->pd_idx) 3176 i--; 3177 break; 3178 case ALGORITHM_LEFT_SYMMETRIC: 3179 case ALGORITHM_RIGHT_SYMMETRIC: 3180 if (i < sh->pd_idx) 3181 i += raid_disks; 3182 i -= (sh->pd_idx + 1); 3183 break; 3184 case ALGORITHM_PARITY_0: 3185 i -= 1; 3186 break; 3187 case ALGORITHM_PARITY_N: 3188 break; 3189 default: 3190 BUG(); 3191 } 3192 break; 3193 case 6: 3194 if (i == sh->qd_idx) 3195 return 0; /* It is the Q disk */ 3196 switch (algorithm) { 3197 case ALGORITHM_LEFT_ASYMMETRIC: 3198 case ALGORITHM_RIGHT_ASYMMETRIC: 3199 case ALGORITHM_ROTATING_ZERO_RESTART: 3200 case ALGORITHM_ROTATING_N_RESTART: 3201 if (sh->pd_idx == raid_disks-1) 3202 i--; /* Q D D D P */ 3203 else if (i > sh->pd_idx) 3204 i -= 2; /* D D P Q D */ 3205 break; 3206 case ALGORITHM_LEFT_SYMMETRIC: 3207 case ALGORITHM_RIGHT_SYMMETRIC: 3208 if (sh->pd_idx == raid_disks-1) 3209 i--; /* Q D D D P */ 3210 else { 3211 /* D D P Q D */ 3212 if (i < sh->pd_idx) 3213 i += raid_disks; 3214 i -= (sh->pd_idx + 2); 3215 } 3216 break; 3217 case ALGORITHM_PARITY_0: 3218 i -= 2; 3219 break; 3220 case ALGORITHM_PARITY_N: 3221 break; 3222 case ALGORITHM_ROTATING_N_CONTINUE: 3223 /* Like left_symmetric, but P is before Q */ 3224 if (sh->pd_idx == 0) 3225 i--; /* P D D D Q */ 3226 else { 3227 /* D D Q P D */ 3228 if (i < sh->pd_idx) 3229 i += raid_disks; 3230 i -= (sh->pd_idx + 1); 3231 } 3232 break; 3233 case ALGORITHM_LEFT_ASYMMETRIC_6: 3234 case ALGORITHM_RIGHT_ASYMMETRIC_6: 3235 if (i > sh->pd_idx) 3236 i--; 3237 break; 3238 case ALGORITHM_LEFT_SYMMETRIC_6: 3239 case ALGORITHM_RIGHT_SYMMETRIC_6: 3240 if (i < sh->pd_idx) 3241 i += data_disks + 1; 3242 i -= (sh->pd_idx + 1); 3243 break; 3244 case ALGORITHM_PARITY_0_6: 3245 i -= 1; 3246 break; 3247 default: 3248 BUG(); 3249 } 3250 break; 3251 } 3252 3253 chunk_number = stripe * data_disks + i; 3254 r_sector = chunk_number * sectors_per_chunk + chunk_offset; 3255 3256 check = raid5_compute_sector(conf, r_sector, 3257 previous, &dummy1, &sh2); 3258 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx 3259 || sh2.qd_idx != sh->qd_idx) { 3260 pr_warn("md/raid:%s: compute_blocknr: map not correct\n", 3261 mdname(conf->mddev)); 3262 return 0; 3263 } 3264 return r_sector; 3265 } 3266 3267 /* 3268 * There are cases where we want handle_stripe_dirtying() and 3269 * schedule_reconstruction() to delay towrite to some dev of a stripe. 3270 * 3271 * This function checks whether we want to delay the towrite. Specifically, 3272 * we delay the towrite when: 3273 * 3274 * 1. degraded stripe has a non-overwrite to the missing dev, AND this 3275 * stripe has data in journal (for other devices). 3276 * 3277 * In this case, when reading data for the non-overwrite dev, it is 3278 * necessary to handle complex rmw of write back cache (prexor with 3279 * orig_page, and xor with page). To keep read path simple, we would 3280 * like to flush data in journal to RAID disks first, so complex rmw 3281 * is handled in the write patch (handle_stripe_dirtying). 3282 * 3283 * 2. when journal space is critical (R5C_LOG_CRITICAL=1) 3284 * 3285 * It is important to be able to flush all stripes in raid5-cache. 3286 * Therefore, we need reserve some space on the journal device for 3287 * these flushes. If flush operation includes pending writes to the 3288 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe 3289 * for the flush out. If we exclude these pending writes from flush 3290 * operation, we only need (conf->max_degraded + 1) pages per stripe. 3291 * Therefore, excluding pending writes in these cases enables more 3292 * efficient use of the journal device. 3293 * 3294 * Note: To make sure the stripe makes progress, we only delay 3295 * towrite for stripes with data already in journal (injournal > 0). 3296 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to 3297 * no_space_stripes list. 3298 * 3299 * 3. during journal failure 3300 * In journal failure, we try to flush all cached data to raid disks 3301 * based on data in stripe cache. The array is read-only to upper 3302 * layers, so we would skip all pending writes. 3303 * 3304 */ 3305 static inline bool delay_towrite(struct r5conf *conf, 3306 struct r5dev *dev, 3307 struct stripe_head_state *s) 3308 { 3309 /* case 1 above */ 3310 if (!test_bit(R5_OVERWRITE, &dev->flags) && 3311 !test_bit(R5_Insync, &dev->flags) && s->injournal) 3312 return true; 3313 /* case 2 above */ 3314 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) && 3315 s->injournal > 0) 3316 return true; 3317 /* case 3 above */ 3318 if (s->log_failed && s->injournal) 3319 return true; 3320 return false; 3321 } 3322 3323 static void 3324 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s, 3325 int rcw, int expand) 3326 { 3327 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks; 3328 struct r5conf *conf = sh->raid_conf; 3329 int level = conf->level; 3330 3331 if (rcw) { 3332 /* 3333 * In some cases, handle_stripe_dirtying initially decided to 3334 * run rmw and allocates extra page for prexor. However, rcw is 3335 * cheaper later on. We need to free the extra page now, 3336 * because we won't be able to do that in ops_complete_prexor(). 3337 */ 3338 r5c_release_extra_page(sh); 3339 3340 for (i = disks; i--; ) { 3341 struct r5dev *dev = &sh->dev[i]; 3342 3343 if (dev->towrite && !delay_towrite(conf, dev, s)) { 3344 set_bit(R5_LOCKED, &dev->flags); 3345 set_bit(R5_Wantdrain, &dev->flags); 3346 if (!expand) 3347 clear_bit(R5_UPTODATE, &dev->flags); 3348 s->locked++; 3349 } else if (test_bit(R5_InJournal, &dev->flags)) { 3350 set_bit(R5_LOCKED, &dev->flags); 3351 s->locked++; 3352 } 3353 } 3354 /* if we are not expanding this is a proper write request, and 3355 * there will be bios with new data to be drained into the 3356 * stripe cache 3357 */ 3358 if (!expand) { 3359 if (!s->locked) 3360 /* False alarm, nothing to do */ 3361 return; 3362 sh->reconstruct_state = reconstruct_state_drain_run; 3363 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 3364 } else 3365 sh->reconstruct_state = reconstruct_state_run; 3366 3367 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 3368 3369 if (s->locked + conf->max_degraded == disks) 3370 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state)) 3371 atomic_inc(&conf->pending_full_writes); 3372 } else { 3373 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) || 3374 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags))); 3375 BUG_ON(level == 6 && 3376 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) || 3377 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags)))); 3378 3379 for (i = disks; i--; ) { 3380 struct r5dev *dev = &sh->dev[i]; 3381 if (i == pd_idx || i == qd_idx) 3382 continue; 3383 3384 if (dev->towrite && 3385 (test_bit(R5_UPTODATE, &dev->flags) || 3386 test_bit(R5_Wantcompute, &dev->flags))) { 3387 set_bit(R5_Wantdrain, &dev->flags); 3388 set_bit(R5_LOCKED, &dev->flags); 3389 clear_bit(R5_UPTODATE, &dev->flags); 3390 s->locked++; 3391 } else if (test_bit(R5_InJournal, &dev->flags)) { 3392 set_bit(R5_LOCKED, &dev->flags); 3393 s->locked++; 3394 } 3395 } 3396 if (!s->locked) 3397 /* False alarm - nothing to do */ 3398 return; 3399 sh->reconstruct_state = reconstruct_state_prexor_drain_run; 3400 set_bit(STRIPE_OP_PREXOR, &s->ops_request); 3401 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 3402 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 3403 } 3404 3405 /* keep the parity disk(s) locked while asynchronous operations 3406 * are in flight 3407 */ 3408 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); 3409 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 3410 s->locked++; 3411 3412 if (level == 6) { 3413 int qd_idx = sh->qd_idx; 3414 struct r5dev *dev = &sh->dev[qd_idx]; 3415 3416 set_bit(R5_LOCKED, &dev->flags); 3417 clear_bit(R5_UPTODATE, &dev->flags); 3418 s->locked++; 3419 } 3420 3421 if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page && 3422 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) && 3423 !test_bit(STRIPE_FULL_WRITE, &sh->state) && 3424 test_bit(R5_Insync, &sh->dev[pd_idx].flags)) 3425 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request); 3426 3427 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n", 3428 __func__, (unsigned long long)sh->sector, 3429 s->locked, s->ops_request); 3430 } 3431 3432 static bool stripe_bio_overlaps(struct stripe_head *sh, struct bio *bi, 3433 int dd_idx, int forwrite) 3434 { 3435 struct r5conf *conf = sh->raid_conf; 3436 struct bio **bip; 3437 3438 pr_debug("checking bi b#%llu to stripe s#%llu\n", 3439 bi->bi_iter.bi_sector, sh->sector); 3440 3441 /* Don't allow new IO added to stripes in batch list */ 3442 if (sh->batch_head) 3443 return true; 3444 3445 if (forwrite) 3446 bip = &sh->dev[dd_idx].towrite; 3447 else 3448 bip = &sh->dev[dd_idx].toread; 3449 3450 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) { 3451 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector) 3452 return true; 3453 bip = &(*bip)->bi_next; 3454 } 3455 3456 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi)) 3457 return true; 3458 3459 if (forwrite && raid5_has_ppl(conf)) { 3460 /* 3461 * With PPL only writes to consecutive data chunks within a 3462 * stripe are allowed because for a single stripe_head we can 3463 * only have one PPL entry at a time, which describes one data 3464 * range. Not really an overlap, but R5_Overlap can be 3465 * used to handle this. 3466 */ 3467 sector_t sector; 3468 sector_t first = 0; 3469 sector_t last = 0; 3470 int count = 0; 3471 int i; 3472 3473 for (i = 0; i < sh->disks; i++) { 3474 if (i != sh->pd_idx && 3475 (i == dd_idx || sh->dev[i].towrite)) { 3476 sector = sh->dev[i].sector; 3477 if (count == 0 || sector < first) 3478 first = sector; 3479 if (sector > last) 3480 last = sector; 3481 count++; 3482 } 3483 } 3484 3485 if (first + conf->chunk_sectors * (count - 1) != last) 3486 return true; 3487 } 3488 3489 return false; 3490 } 3491 3492 static void __add_stripe_bio(struct stripe_head *sh, struct bio *bi, 3493 int dd_idx, int forwrite, int previous) 3494 { 3495 struct r5conf *conf = sh->raid_conf; 3496 struct bio **bip; 3497 int firstwrite = 0; 3498 3499 if (forwrite) { 3500 bip = &sh->dev[dd_idx].towrite; 3501 if (!*bip) 3502 firstwrite = 1; 3503 } else { 3504 bip = &sh->dev[dd_idx].toread; 3505 } 3506 3507 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) 3508 bip = &(*bip)->bi_next; 3509 3510 if (!forwrite || previous) 3511 clear_bit(STRIPE_BATCH_READY, &sh->state); 3512 3513 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next); 3514 if (*bip) 3515 bi->bi_next = *bip; 3516 *bip = bi; 3517 bio_inc_remaining(bi); 3518 md_write_inc(conf->mddev, bi); 3519 3520 if (forwrite) { 3521 /* check if page is covered */ 3522 sector_t sector = sh->dev[dd_idx].sector; 3523 for (bi=sh->dev[dd_idx].towrite; 3524 sector < sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf) && 3525 bi && bi->bi_iter.bi_sector <= sector; 3526 bi = r5_next_bio(conf, bi, sh->dev[dd_idx].sector)) { 3527 if (bio_end_sector(bi) >= sector) 3528 sector = bio_end_sector(bi); 3529 } 3530 if (sector >= sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf)) 3531 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags)) 3532 sh->overwrite_disks++; 3533 } 3534 3535 pr_debug("added bi b#%llu to stripe s#%llu, disk %d, logical %llu\n", 3536 (*bip)->bi_iter.bi_sector, sh->sector, dd_idx, 3537 sh->dev[dd_idx].sector); 3538 3539 if (conf->mddev->bitmap && firstwrite && !sh->batch_head) { 3540 sh->bm_seq = conf->seq_flush+1; 3541 set_bit(STRIPE_BIT_DELAY, &sh->state); 3542 } 3543 } 3544 3545 /* 3546 * Each stripe/dev can have one or more bios attached. 3547 * toread/towrite point to the first in a chain. 3548 * The bi_next chain must be in order. 3549 */ 3550 static bool add_stripe_bio(struct stripe_head *sh, struct bio *bi, 3551 int dd_idx, int forwrite, int previous) 3552 { 3553 spin_lock_irq(&sh->stripe_lock); 3554 3555 if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) { 3556 set_bit(R5_Overlap, &sh->dev[dd_idx].flags); 3557 spin_unlock_irq(&sh->stripe_lock); 3558 return false; 3559 } 3560 3561 __add_stripe_bio(sh, bi, dd_idx, forwrite, previous); 3562 spin_unlock_irq(&sh->stripe_lock); 3563 return true; 3564 } 3565 3566 static void end_reshape(struct r5conf *conf); 3567 3568 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 3569 struct stripe_head *sh) 3570 { 3571 int sectors_per_chunk = 3572 previous ? conf->prev_chunk_sectors : conf->chunk_sectors; 3573 int dd_idx; 3574 int chunk_offset = sector_div(stripe, sectors_per_chunk); 3575 int disks = previous ? conf->previous_raid_disks : conf->raid_disks; 3576 3577 raid5_compute_sector(conf, 3578 stripe * (disks - conf->max_degraded) 3579 *sectors_per_chunk + chunk_offset, 3580 previous, 3581 &dd_idx, sh); 3582 } 3583 3584 static void 3585 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh, 3586 struct stripe_head_state *s, int disks) 3587 { 3588 int i; 3589 BUG_ON(sh->batch_head); 3590 for (i = disks; i--; ) { 3591 struct bio *bi; 3592 3593 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 3594 struct md_rdev *rdev = conf->disks[i].rdev; 3595 3596 if (rdev && test_bit(In_sync, &rdev->flags) && 3597 !test_bit(Faulty, &rdev->flags)) 3598 atomic_inc(&rdev->nr_pending); 3599 else 3600 rdev = NULL; 3601 if (rdev) { 3602 if (!rdev_set_badblocks( 3603 rdev, 3604 sh->sector, 3605 RAID5_STRIPE_SECTORS(conf), 0)) 3606 md_error(conf->mddev, rdev); 3607 rdev_dec_pending(rdev, conf->mddev); 3608 } 3609 } 3610 spin_lock_irq(&sh->stripe_lock); 3611 /* fail all writes first */ 3612 bi = sh->dev[i].towrite; 3613 sh->dev[i].towrite = NULL; 3614 sh->overwrite_disks = 0; 3615 spin_unlock_irq(&sh->stripe_lock); 3616 3617 log_stripe_write_finished(sh); 3618 3619 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 3620 wake_up_bit(&sh->dev[i].flags, R5_Overlap); 3621 3622 while (bi && bi->bi_iter.bi_sector < 3623 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) { 3624 struct bio *nextbi = r5_next_bio(conf, bi, sh->dev[i].sector); 3625 3626 md_write_end(conf->mddev); 3627 bio_io_error(bi); 3628 bi = nextbi; 3629 } 3630 /* and fail all 'written' */ 3631 bi = sh->dev[i].written; 3632 sh->dev[i].written = NULL; 3633 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) { 3634 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 3635 sh->dev[i].page = sh->dev[i].orig_page; 3636 } 3637 3638 while (bi && bi->bi_iter.bi_sector < 3639 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) { 3640 struct bio *bi2 = r5_next_bio(conf, bi, sh->dev[i].sector); 3641 3642 md_write_end(conf->mddev); 3643 bio_io_error(bi); 3644 bi = bi2; 3645 } 3646 3647 /* fail any reads if this device is non-operational and 3648 * the data has not reached the cache yet. 3649 */ 3650 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) && 3651 s->failed > conf->max_degraded && 3652 (!test_bit(R5_Insync, &sh->dev[i].flags) || 3653 test_bit(R5_ReadError, &sh->dev[i].flags))) { 3654 spin_lock_irq(&sh->stripe_lock); 3655 bi = sh->dev[i].toread; 3656 sh->dev[i].toread = NULL; 3657 spin_unlock_irq(&sh->stripe_lock); 3658 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 3659 wake_up_bit(&sh->dev[i].flags, R5_Overlap); 3660 if (bi) 3661 s->to_read--; 3662 while (bi && bi->bi_iter.bi_sector < 3663 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) { 3664 struct bio *nextbi = 3665 r5_next_bio(conf, bi, sh->dev[i].sector); 3666 3667 bio_io_error(bi); 3668 bi = nextbi; 3669 } 3670 } 3671 /* If we were in the middle of a write the parity block might 3672 * still be locked - so just clear all R5_LOCKED flags 3673 */ 3674 clear_bit(R5_LOCKED, &sh->dev[i].flags); 3675 } 3676 s->to_write = 0; 3677 s->written = 0; 3678 3679 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 3680 if (atomic_dec_and_test(&conf->pending_full_writes)) 3681 md_wakeup_thread(conf->mddev->thread); 3682 } 3683 3684 static void 3685 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh, 3686 struct stripe_head_state *s) 3687 { 3688 int abort = 0; 3689 int i; 3690 3691 BUG_ON(sh->batch_head); 3692 clear_bit(STRIPE_SYNCING, &sh->state); 3693 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 3694 wake_up_bit(&sh->dev[sh->pd_idx].flags, R5_Overlap); 3695 s->syncing = 0; 3696 s->replacing = 0; 3697 /* There is nothing more to do for sync/check/repair. 3698 * Don't even need to abort as that is handled elsewhere 3699 * if needed, and not always wanted e.g. if there is a known 3700 * bad block here. 3701 * For recover/replace we need to record a bad block on all 3702 * non-sync devices, or abort the recovery 3703 */ 3704 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) { 3705 /* During recovery devices cannot be removed, so 3706 * locking and refcounting of rdevs is not needed 3707 */ 3708 for (i = 0; i < conf->raid_disks; i++) { 3709 struct md_rdev *rdev = conf->disks[i].rdev; 3710 3711 if (rdev 3712 && !test_bit(Faulty, &rdev->flags) 3713 && !test_bit(In_sync, &rdev->flags) 3714 && !rdev_set_badblocks(rdev, sh->sector, 3715 RAID5_STRIPE_SECTORS(conf), 0)) 3716 abort = 1; 3717 rdev = conf->disks[i].replacement; 3718 3719 if (rdev 3720 && !test_bit(Faulty, &rdev->flags) 3721 && !test_bit(In_sync, &rdev->flags) 3722 && !rdev_set_badblocks(rdev, sh->sector, 3723 RAID5_STRIPE_SECTORS(conf), 0)) 3724 abort = 1; 3725 } 3726 if (abort) 3727 conf->recovery_disabled = 3728 conf->mddev->recovery_disabled; 3729 } 3730 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), !abort); 3731 } 3732 3733 static int want_replace(struct stripe_head *sh, int disk_idx) 3734 { 3735 struct md_rdev *rdev; 3736 int rv = 0; 3737 3738 rdev = sh->raid_conf->disks[disk_idx].replacement; 3739 if (rdev 3740 && !test_bit(Faulty, &rdev->flags) 3741 && !test_bit(In_sync, &rdev->flags) 3742 && (rdev->recovery_offset <= sh->sector 3743 || rdev->mddev->resync_offset <= sh->sector)) 3744 rv = 1; 3745 return rv; 3746 } 3747 3748 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s, 3749 int disk_idx, int disks) 3750 { 3751 struct r5dev *dev = &sh->dev[disk_idx]; 3752 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]], 3753 &sh->dev[s->failed_num[1]] }; 3754 int i; 3755 bool force_rcw = (sh->raid_conf->rmw_level == PARITY_DISABLE_RMW); 3756 3757 3758 if (test_bit(R5_LOCKED, &dev->flags) || 3759 test_bit(R5_UPTODATE, &dev->flags)) 3760 /* No point reading this as we already have it or have 3761 * decided to get it. 3762 */ 3763 return 0; 3764 3765 if (dev->toread || 3766 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags))) 3767 /* We need this block to directly satisfy a request */ 3768 return 1; 3769 3770 if (s->syncing || s->expanding || 3771 (s->replacing && want_replace(sh, disk_idx))) 3772 /* When syncing, or expanding we read everything. 3773 * When replacing, we need the replaced block. 3774 */ 3775 return 1; 3776 3777 if ((s->failed >= 1 && fdev[0]->toread) || 3778 (s->failed >= 2 && fdev[1]->toread)) 3779 /* If we want to read from a failed device, then 3780 * we need to actually read every other device. 3781 */ 3782 return 1; 3783 3784 /* Sometimes neither read-modify-write nor reconstruct-write 3785 * cycles can work. In those cases we read every block we 3786 * can. Then the parity-update is certain to have enough to 3787 * work with. 3788 * This can only be a problem when we need to write something, 3789 * and some device has failed. If either of those tests 3790 * fail we need look no further. 3791 */ 3792 if (!s->failed || !s->to_write) 3793 return 0; 3794 3795 if (test_bit(R5_Insync, &dev->flags) && 3796 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3797 /* Pre-reads at not permitted until after short delay 3798 * to gather multiple requests. However if this 3799 * device is no Insync, the block could only be computed 3800 * and there is no need to delay that. 3801 */ 3802 return 0; 3803 3804 for (i = 0; i < s->failed && i < 2; i++) { 3805 if (fdev[i]->towrite && 3806 !test_bit(R5_UPTODATE, &fdev[i]->flags) && 3807 !test_bit(R5_OVERWRITE, &fdev[i]->flags)) 3808 /* If we have a partial write to a failed 3809 * device, then we will need to reconstruct 3810 * the content of that device, so all other 3811 * devices must be read. 3812 */ 3813 return 1; 3814 3815 if (s->failed >= 2 && 3816 (fdev[i]->towrite || 3817 s->failed_num[i] == sh->pd_idx || 3818 s->failed_num[i] == sh->qd_idx) && 3819 !test_bit(R5_UPTODATE, &fdev[i]->flags)) 3820 /* In max degraded raid6, If the failed disk is P, Q, 3821 * or we want to read the failed disk, we need to do 3822 * reconstruct-write. 3823 */ 3824 force_rcw = true; 3825 } 3826 3827 /* If we are forced to do a reconstruct-write, because parity 3828 * cannot be trusted and we are currently recovering it, there 3829 * is extra need to be careful. 3830 * If one of the devices that we would need to read, because 3831 * it is not being overwritten (and maybe not written at all) 3832 * is missing/faulty, then we need to read everything we can. 3833 */ 3834 if (!force_rcw && 3835 sh->sector < sh->raid_conf->mddev->resync_offset) 3836 /* reconstruct-write isn't being forced */ 3837 return 0; 3838 for (i = 0; i < s->failed && i < 2; i++) { 3839 if (s->failed_num[i] != sh->pd_idx && 3840 s->failed_num[i] != sh->qd_idx && 3841 !test_bit(R5_UPTODATE, &fdev[i]->flags) && 3842 !test_bit(R5_OVERWRITE, &fdev[i]->flags)) 3843 return 1; 3844 } 3845 3846 return 0; 3847 } 3848 3849 /* fetch_block - checks the given member device to see if its data needs 3850 * to be read or computed to satisfy a request. 3851 * 3852 * Returns 1 when no more member devices need to be checked, otherwise returns 3853 * 0 to tell the loop in handle_stripe_fill to continue 3854 */ 3855 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s, 3856 int disk_idx, int disks) 3857 { 3858 struct r5dev *dev = &sh->dev[disk_idx]; 3859 3860 /* is the data in this block needed, and can we get it? */ 3861 if (need_this_block(sh, s, disk_idx, disks)) { 3862 /* we would like to get this block, possibly by computing it, 3863 * otherwise read it if the backing disk is insync 3864 */ 3865 BUG_ON(test_bit(R5_Wantcompute, &dev->flags)); 3866 BUG_ON(test_bit(R5_Wantread, &dev->flags)); 3867 BUG_ON(sh->batch_head); 3868 3869 /* 3870 * In the raid6 case if the only non-uptodate disk is P 3871 * then we already trusted P to compute the other failed 3872 * drives. It is safe to compute rather than re-read P. 3873 * In other cases we only compute blocks from failed 3874 * devices, otherwise check/repair might fail to detect 3875 * a real inconsistency. 3876 */ 3877 3878 if ((s->uptodate == disks - 1) && 3879 ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) || 3880 (s->failed && (disk_idx == s->failed_num[0] || 3881 disk_idx == s->failed_num[1])))) { 3882 /* have disk failed, and we're requested to fetch it; 3883 * do compute it 3884 */ 3885 pr_debug("Computing stripe %llu block %d\n", 3886 (unsigned long long)sh->sector, disk_idx); 3887 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3888 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3889 set_bit(R5_Wantcompute, &dev->flags); 3890 sh->ops.target = disk_idx; 3891 sh->ops.target2 = -1; /* no 2nd target */ 3892 s->req_compute = 1; 3893 /* Careful: from this point on 'uptodate' is in the eye 3894 * of raid_run_ops which services 'compute' operations 3895 * before writes. R5_Wantcompute flags a block that will 3896 * be R5_UPTODATE by the time it is needed for a 3897 * subsequent operation. 3898 */ 3899 s->uptodate++; 3900 return 1; 3901 } else if (s->uptodate == disks-2 && s->failed >= 2) { 3902 /* Computing 2-failure is *very* expensive; only 3903 * do it if failed >= 2 3904 */ 3905 int other; 3906 for (other = disks; other--; ) { 3907 if (other == disk_idx) 3908 continue; 3909 if (!test_bit(R5_UPTODATE, 3910 &sh->dev[other].flags)) 3911 break; 3912 } 3913 BUG_ON(other < 0); 3914 pr_debug("Computing stripe %llu blocks %d,%d\n", 3915 (unsigned long long)sh->sector, 3916 disk_idx, other); 3917 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3918 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3919 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags); 3920 set_bit(R5_Wantcompute, &sh->dev[other].flags); 3921 sh->ops.target = disk_idx; 3922 sh->ops.target2 = other; 3923 s->uptodate += 2; 3924 s->req_compute = 1; 3925 return 1; 3926 } else if (test_bit(R5_Insync, &dev->flags)) { 3927 set_bit(R5_LOCKED, &dev->flags); 3928 set_bit(R5_Wantread, &dev->flags); 3929 s->locked++; 3930 pr_debug("Reading block %d (sync=%d)\n", 3931 disk_idx, s->syncing); 3932 } 3933 } 3934 3935 return 0; 3936 } 3937 3938 /* 3939 * handle_stripe_fill - read or compute data to satisfy pending requests. 3940 */ 3941 static void handle_stripe_fill(struct stripe_head *sh, 3942 struct stripe_head_state *s, 3943 int disks) 3944 { 3945 int i; 3946 3947 /* look for blocks to read/compute, skip this if a compute 3948 * is already in flight, or if the stripe contents are in the 3949 * midst of changing due to a write 3950 */ 3951 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state && 3952 !sh->reconstruct_state) { 3953 3954 /* 3955 * For degraded stripe with data in journal, do not handle 3956 * read requests yet, instead, flush the stripe to raid 3957 * disks first, this avoids handling complex rmw of write 3958 * back cache (prexor with orig_page, and then xor with 3959 * page) in the read path 3960 */ 3961 if (s->to_read && s->injournal && s->failed) { 3962 if (test_bit(STRIPE_R5C_CACHING, &sh->state)) 3963 r5c_make_stripe_write_out(sh); 3964 goto out; 3965 } 3966 3967 for (i = disks; i--; ) 3968 if (fetch_block(sh, s, i, disks)) 3969 break; 3970 } 3971 out: 3972 set_bit(STRIPE_HANDLE, &sh->state); 3973 } 3974 3975 static void break_stripe_batch_list(struct stripe_head *head_sh, 3976 unsigned long handle_flags); 3977 /* handle_stripe_clean_event 3978 * any written block on an uptodate or failed drive can be returned. 3979 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but 3980 * never LOCKED, so we don't need to test 'failed' directly. 3981 */ 3982 static void handle_stripe_clean_event(struct r5conf *conf, 3983 struct stripe_head *sh, int disks) 3984 { 3985 int i; 3986 struct r5dev *dev; 3987 int discard_pending = 0; 3988 struct stripe_head *head_sh = sh; 3989 bool do_endio = false; 3990 3991 for (i = disks; i--; ) 3992 if (sh->dev[i].written) { 3993 dev = &sh->dev[i]; 3994 if (!test_bit(R5_LOCKED, &dev->flags) && 3995 (test_bit(R5_UPTODATE, &dev->flags) || 3996 test_bit(R5_Discard, &dev->flags) || 3997 test_bit(R5_SkipCopy, &dev->flags))) { 3998 /* We can return any write requests */ 3999 struct bio *wbi, *wbi2; 4000 pr_debug("Return write for disc %d\n", i); 4001 if (test_and_clear_bit(R5_Discard, &dev->flags)) 4002 clear_bit(R5_UPTODATE, &dev->flags); 4003 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) { 4004 WARN_ON(test_bit(R5_UPTODATE, &dev->flags)); 4005 } 4006 do_endio = true; 4007 4008 returnbi: 4009 dev->page = dev->orig_page; 4010 wbi = dev->written; 4011 dev->written = NULL; 4012 while (wbi && wbi->bi_iter.bi_sector < 4013 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 4014 wbi2 = r5_next_bio(conf, wbi, dev->sector); 4015 md_write_end(conf->mddev); 4016 bio_endio(wbi); 4017 wbi = wbi2; 4018 } 4019 4020 if (head_sh->batch_head) { 4021 sh = list_first_entry(&sh->batch_list, 4022 struct stripe_head, 4023 batch_list); 4024 if (sh != head_sh) { 4025 dev = &sh->dev[i]; 4026 goto returnbi; 4027 } 4028 } 4029 sh = head_sh; 4030 dev = &sh->dev[i]; 4031 } else if (test_bit(R5_Discard, &dev->flags)) 4032 discard_pending = 1; 4033 } 4034 4035 log_stripe_write_finished(sh); 4036 4037 if (!discard_pending && 4038 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) { 4039 int hash; 4040 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 4041 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 4042 if (sh->qd_idx >= 0) { 4043 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 4044 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags); 4045 } 4046 /* now that discard is done we can proceed with any sync */ 4047 clear_bit(STRIPE_DISCARD, &sh->state); 4048 /* 4049 * SCSI discard will change some bio fields and the stripe has 4050 * no updated data, so remove it from hash list and the stripe 4051 * will be reinitialized 4052 */ 4053 unhash: 4054 hash = sh->hash_lock_index; 4055 spin_lock_irq(conf->hash_locks + hash); 4056 remove_hash(sh); 4057 spin_unlock_irq(conf->hash_locks + hash); 4058 if (head_sh->batch_head) { 4059 sh = list_first_entry(&sh->batch_list, 4060 struct stripe_head, batch_list); 4061 if (sh != head_sh) 4062 goto unhash; 4063 } 4064 sh = head_sh; 4065 4066 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) 4067 set_bit(STRIPE_HANDLE, &sh->state); 4068 4069 } 4070 4071 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 4072 if (atomic_dec_and_test(&conf->pending_full_writes)) 4073 md_wakeup_thread(conf->mddev->thread); 4074 4075 if (head_sh->batch_head && do_endio) 4076 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS); 4077 } 4078 4079 /* 4080 * For RMW in write back cache, we need extra page in prexor to store the 4081 * old data. This page is stored in dev->orig_page. 4082 * 4083 * This function checks whether we have data for prexor. The exact logic 4084 * is: 4085 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE) 4086 */ 4087 static inline bool uptodate_for_rmw(struct r5dev *dev) 4088 { 4089 return (test_bit(R5_UPTODATE, &dev->flags)) && 4090 (!test_bit(R5_InJournal, &dev->flags) || 4091 test_bit(R5_OrigPageUPTDODATE, &dev->flags)); 4092 } 4093 4094 static int handle_stripe_dirtying(struct r5conf *conf, 4095 struct stripe_head *sh, 4096 struct stripe_head_state *s, 4097 int disks) 4098 { 4099 int rmw = 0, rcw = 0, i; 4100 sector_t resync_offset = conf->mddev->resync_offset; 4101 4102 /* Check whether resync is now happening or should start. 4103 * If yes, then the array is dirty (after unclean shutdown or 4104 * initial creation), so parity in some stripes might be inconsistent. 4105 * In this case, we need to always do reconstruct-write, to ensure 4106 * that in case of drive failure or read-error correction, we 4107 * generate correct data from the parity. 4108 */ 4109 if (conf->rmw_level == PARITY_DISABLE_RMW || 4110 (resync_offset < MaxSector && sh->sector >= resync_offset && 4111 s->failed == 0)) { 4112 /* Calculate the real rcw later - for now make it 4113 * look like rcw is cheaper 4114 */ 4115 rcw = 1; rmw = 2; 4116 pr_debug("force RCW rmw_level=%u, resync_offset=%llu sh->sector=%llu\n", 4117 conf->rmw_level, (unsigned long long)resync_offset, 4118 (unsigned long long)sh->sector); 4119 } else for (i = disks; i--; ) { 4120 /* would I have to read this buffer for read_modify_write */ 4121 struct r5dev *dev = &sh->dev[i]; 4122 if (((dev->towrite && !delay_towrite(conf, dev, s)) || 4123 i == sh->pd_idx || i == sh->qd_idx || 4124 test_bit(R5_InJournal, &dev->flags)) && 4125 !test_bit(R5_LOCKED, &dev->flags) && 4126 !(uptodate_for_rmw(dev) || 4127 test_bit(R5_Wantcompute, &dev->flags))) { 4128 if (test_bit(R5_Insync, &dev->flags)) 4129 rmw++; 4130 else 4131 rmw += 2*disks; /* cannot read it */ 4132 } 4133 /* Would I have to read this buffer for reconstruct_write */ 4134 if (!test_bit(R5_OVERWRITE, &dev->flags) && 4135 i != sh->pd_idx && i != sh->qd_idx && 4136 !test_bit(R5_LOCKED, &dev->flags) && 4137 !(test_bit(R5_UPTODATE, &dev->flags) || 4138 test_bit(R5_Wantcompute, &dev->flags))) { 4139 if (test_bit(R5_Insync, &dev->flags)) 4140 rcw++; 4141 else 4142 rcw += 2*disks; 4143 } 4144 } 4145 4146 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n", 4147 (unsigned long long)sh->sector, sh->state, rmw, rcw); 4148 set_bit(STRIPE_HANDLE, &sh->state); 4149 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) { 4150 /* prefer read-modify-write, but need to get some data */ 4151 mddev_add_trace_msg(conf->mddev, "raid5 rmw %llu %d", 4152 sh->sector, rmw); 4153 4154 for (i = disks; i--; ) { 4155 struct r5dev *dev = &sh->dev[i]; 4156 if (test_bit(R5_InJournal, &dev->flags) && 4157 dev->page == dev->orig_page && 4158 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) { 4159 /* alloc page for prexor */ 4160 struct page *p = alloc_page(GFP_NOIO); 4161 4162 if (p) { 4163 dev->orig_page = p; 4164 continue; 4165 } 4166 4167 /* 4168 * alloc_page() failed, try use 4169 * disk_info->extra_page 4170 */ 4171 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE, 4172 &conf->cache_state)) { 4173 r5c_use_extra_page(sh); 4174 break; 4175 } 4176 4177 /* extra_page in use, add to delayed_list */ 4178 set_bit(STRIPE_DELAYED, &sh->state); 4179 s->waiting_extra_page = 1; 4180 return -EAGAIN; 4181 } 4182 } 4183 4184 for (i = disks; i--; ) { 4185 struct r5dev *dev = &sh->dev[i]; 4186 if (((dev->towrite && !delay_towrite(conf, dev, s)) || 4187 i == sh->pd_idx || i == sh->qd_idx || 4188 test_bit(R5_InJournal, &dev->flags)) && 4189 !test_bit(R5_LOCKED, &dev->flags) && 4190 !(uptodate_for_rmw(dev) || 4191 test_bit(R5_Wantcompute, &dev->flags)) && 4192 test_bit(R5_Insync, &dev->flags)) { 4193 if (test_bit(STRIPE_PREREAD_ACTIVE, 4194 &sh->state)) { 4195 pr_debug("Read_old block %d for r-m-w\n", 4196 i); 4197 set_bit(R5_LOCKED, &dev->flags); 4198 set_bit(R5_Wantread, &dev->flags); 4199 s->locked++; 4200 } else 4201 set_bit(STRIPE_DELAYED, &sh->state); 4202 } 4203 } 4204 } 4205 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) { 4206 /* want reconstruct write, but need to get some data */ 4207 int qread =0; 4208 rcw = 0; 4209 for (i = disks; i--; ) { 4210 struct r5dev *dev = &sh->dev[i]; 4211 if (!test_bit(R5_OVERWRITE, &dev->flags) && 4212 i != sh->pd_idx && i != sh->qd_idx && 4213 !test_bit(R5_LOCKED, &dev->flags) && 4214 !(test_bit(R5_UPTODATE, &dev->flags) || 4215 test_bit(R5_Wantcompute, &dev->flags))) { 4216 rcw++; 4217 if (test_bit(R5_Insync, &dev->flags) && 4218 test_bit(STRIPE_PREREAD_ACTIVE, 4219 &sh->state)) { 4220 pr_debug("Read_old block " 4221 "%d for Reconstruct\n", i); 4222 set_bit(R5_LOCKED, &dev->flags); 4223 set_bit(R5_Wantread, &dev->flags); 4224 s->locked++; 4225 qread++; 4226 } else 4227 set_bit(STRIPE_DELAYED, &sh->state); 4228 } 4229 } 4230 if (rcw && !mddev_is_dm(conf->mddev)) 4231 blk_add_trace_msg(conf->mddev->gendisk->queue, 4232 "raid5 rcw %llu %d %d %d", 4233 (unsigned long long)sh->sector, rcw, qread, 4234 test_bit(STRIPE_DELAYED, &sh->state)); 4235 } 4236 4237 if (rcw > disks && rmw > disks && 4238 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4239 set_bit(STRIPE_DELAYED, &sh->state); 4240 4241 /* now if nothing is locked, and if we have enough data, 4242 * we can start a write request 4243 */ 4244 /* since handle_stripe can be called at any time we need to handle the 4245 * case where a compute block operation has been submitted and then a 4246 * subsequent call wants to start a write request. raid_run_ops only 4247 * handles the case where compute block and reconstruct are requested 4248 * simultaneously. If this is not the case then new writes need to be 4249 * held off until the compute completes. 4250 */ 4251 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) && 4252 (s->locked == 0 && (rcw == 0 || rmw == 0) && 4253 !test_bit(STRIPE_BIT_DELAY, &sh->state))) 4254 schedule_reconstruction(sh, s, rcw == 0, 0); 4255 return 0; 4256 } 4257 4258 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh, 4259 struct stripe_head_state *s, int disks) 4260 { 4261 struct r5dev *dev = NULL; 4262 4263 BUG_ON(sh->batch_head); 4264 set_bit(STRIPE_HANDLE, &sh->state); 4265 4266 switch (sh->check_state) { 4267 case check_state_idle: 4268 /* start a new check operation if there are no failures */ 4269 if (s->failed == 0) { 4270 BUG_ON(s->uptodate != disks); 4271 sh->check_state = check_state_run; 4272 set_bit(STRIPE_OP_CHECK, &s->ops_request); 4273 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 4274 s->uptodate--; 4275 break; 4276 } 4277 dev = &sh->dev[s->failed_num[0]]; 4278 fallthrough; 4279 case check_state_compute_result: 4280 sh->check_state = check_state_idle; 4281 if (!dev) 4282 dev = &sh->dev[sh->pd_idx]; 4283 4284 /* check that a write has not made the stripe insync */ 4285 if (test_bit(STRIPE_INSYNC, &sh->state)) 4286 break; 4287 4288 /* either failed parity check, or recovery is happening */ 4289 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags)); 4290 BUG_ON(s->uptodate != disks); 4291 4292 set_bit(R5_LOCKED, &dev->flags); 4293 s->locked++; 4294 set_bit(R5_Wantwrite, &dev->flags); 4295 4296 set_bit(STRIPE_INSYNC, &sh->state); 4297 break; 4298 case check_state_run: 4299 break; /* we will be called again upon completion */ 4300 case check_state_check_result: 4301 sh->check_state = check_state_idle; 4302 4303 /* if a failure occurred during the check operation, leave 4304 * STRIPE_INSYNC not set and let the stripe be handled again 4305 */ 4306 if (s->failed) 4307 break; 4308 4309 /* handle a successful check operation, if parity is correct 4310 * we are done. Otherwise update the mismatch count and repair 4311 * parity if !MD_RECOVERY_CHECK 4312 */ 4313 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0) 4314 /* parity is correct (on disc, 4315 * not in buffer any more) 4316 */ 4317 set_bit(STRIPE_INSYNC, &sh->state); 4318 else { 4319 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches); 4320 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) { 4321 /* don't try to repair!! */ 4322 set_bit(STRIPE_INSYNC, &sh->state); 4323 pr_warn_ratelimited("%s: mismatch sector in range " 4324 "%llu-%llu\n", mdname(conf->mddev), 4325 (unsigned long long) sh->sector, 4326 (unsigned long long) sh->sector + 4327 RAID5_STRIPE_SECTORS(conf)); 4328 } else { 4329 sh->check_state = check_state_compute_run; 4330 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 4331 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 4332 set_bit(R5_Wantcompute, 4333 &sh->dev[sh->pd_idx].flags); 4334 sh->ops.target = sh->pd_idx; 4335 sh->ops.target2 = -1; 4336 s->uptodate++; 4337 } 4338 } 4339 break; 4340 case check_state_compute_run: 4341 break; 4342 default: 4343 pr_err("%s: unknown check_state: %d sector: %llu\n", 4344 __func__, sh->check_state, 4345 (unsigned long long) sh->sector); 4346 BUG(); 4347 } 4348 } 4349 4350 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh, 4351 struct stripe_head_state *s, 4352 int disks) 4353 { 4354 int pd_idx = sh->pd_idx; 4355 int qd_idx = sh->qd_idx; 4356 struct r5dev *dev; 4357 4358 BUG_ON(sh->batch_head); 4359 set_bit(STRIPE_HANDLE, &sh->state); 4360 4361 BUG_ON(s->failed > 2); 4362 4363 /* Want to check and possibly repair P and Q. 4364 * However there could be one 'failed' device, in which 4365 * case we can only check one of them, possibly using the 4366 * other to generate missing data 4367 */ 4368 4369 switch (sh->check_state) { 4370 case check_state_idle: 4371 /* start a new check operation if there are < 2 failures */ 4372 if (s->failed == s->q_failed) { 4373 /* The only possible failed device holds Q, so it 4374 * makes sense to check P (If anything else were failed, 4375 * we would have used P to recreate it). 4376 */ 4377 sh->check_state = check_state_run; 4378 } 4379 if (!s->q_failed && s->failed < 2) { 4380 /* Q is not failed, and we didn't use it to generate 4381 * anything, so it makes sense to check it 4382 */ 4383 if (sh->check_state == check_state_run) 4384 sh->check_state = check_state_run_pq; 4385 else 4386 sh->check_state = check_state_run_q; 4387 } 4388 4389 /* discard potentially stale zero_sum_result */ 4390 sh->ops.zero_sum_result = 0; 4391 4392 if (sh->check_state == check_state_run) { 4393 /* async_xor_zero_sum destroys the contents of P */ 4394 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 4395 s->uptodate--; 4396 } 4397 if (sh->check_state >= check_state_run && 4398 sh->check_state <= check_state_run_pq) { 4399 /* async_syndrome_zero_sum preserves P and Q, so 4400 * no need to mark them !uptodate here 4401 */ 4402 set_bit(STRIPE_OP_CHECK, &s->ops_request); 4403 break; 4404 } 4405 4406 /* we have 2-disk failure */ 4407 BUG_ON(s->failed != 2); 4408 fallthrough; 4409 case check_state_compute_result: 4410 sh->check_state = check_state_idle; 4411 4412 /* check that a write has not made the stripe insync */ 4413 if (test_bit(STRIPE_INSYNC, &sh->state)) 4414 break; 4415 4416 /* now write out any block on a failed drive, 4417 * or P or Q if they were recomputed 4418 */ 4419 dev = NULL; 4420 if (s->failed == 2) { 4421 dev = &sh->dev[s->failed_num[1]]; 4422 s->locked++; 4423 set_bit(R5_LOCKED, &dev->flags); 4424 set_bit(R5_Wantwrite, &dev->flags); 4425 } 4426 if (s->failed >= 1) { 4427 dev = &sh->dev[s->failed_num[0]]; 4428 s->locked++; 4429 set_bit(R5_LOCKED, &dev->flags); 4430 set_bit(R5_Wantwrite, &dev->flags); 4431 } 4432 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 4433 dev = &sh->dev[pd_idx]; 4434 s->locked++; 4435 set_bit(R5_LOCKED, &dev->flags); 4436 set_bit(R5_Wantwrite, &dev->flags); 4437 } 4438 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 4439 dev = &sh->dev[qd_idx]; 4440 s->locked++; 4441 set_bit(R5_LOCKED, &dev->flags); 4442 set_bit(R5_Wantwrite, &dev->flags); 4443 } 4444 if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags), 4445 "%s: disk%td not up to date\n", 4446 mdname(conf->mddev), 4447 dev - (struct r5dev *) &sh->dev)) { 4448 clear_bit(R5_LOCKED, &dev->flags); 4449 clear_bit(R5_Wantwrite, &dev->flags); 4450 s->locked--; 4451 } 4452 4453 set_bit(STRIPE_INSYNC, &sh->state); 4454 break; 4455 case check_state_run: 4456 case check_state_run_q: 4457 case check_state_run_pq: 4458 break; /* we will be called again upon completion */ 4459 case check_state_check_result: 4460 sh->check_state = check_state_idle; 4461 4462 /* handle a successful check operation, if parity is correct 4463 * we are done. Otherwise update the mismatch count and repair 4464 * parity if !MD_RECOVERY_CHECK 4465 */ 4466 if (sh->ops.zero_sum_result == 0) { 4467 /* both parities are correct */ 4468 if (!s->failed) 4469 set_bit(STRIPE_INSYNC, &sh->state); 4470 else { 4471 /* in contrast to the raid5 case we can validate 4472 * parity, but still have a failure to write 4473 * back 4474 */ 4475 sh->check_state = check_state_compute_result; 4476 /* Returning at this point means that we may go 4477 * off and bring p and/or q uptodate again so 4478 * we make sure to check zero_sum_result again 4479 * to verify if p or q need writeback 4480 */ 4481 } 4482 } else { 4483 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches); 4484 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) { 4485 /* don't try to repair!! */ 4486 set_bit(STRIPE_INSYNC, &sh->state); 4487 pr_warn_ratelimited("%s: mismatch sector in range " 4488 "%llu-%llu\n", mdname(conf->mddev), 4489 (unsigned long long) sh->sector, 4490 (unsigned long long) sh->sector + 4491 RAID5_STRIPE_SECTORS(conf)); 4492 } else { 4493 int *target = &sh->ops.target; 4494 4495 sh->ops.target = -1; 4496 sh->ops.target2 = -1; 4497 sh->check_state = check_state_compute_run; 4498 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 4499 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 4500 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 4501 set_bit(R5_Wantcompute, 4502 &sh->dev[pd_idx].flags); 4503 *target = pd_idx; 4504 target = &sh->ops.target2; 4505 s->uptodate++; 4506 } 4507 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 4508 set_bit(R5_Wantcompute, 4509 &sh->dev[qd_idx].flags); 4510 *target = qd_idx; 4511 s->uptodate++; 4512 } 4513 } 4514 } 4515 break; 4516 case check_state_compute_run: 4517 break; 4518 default: 4519 pr_warn("%s: unknown check_state: %d sector: %llu\n", 4520 __func__, sh->check_state, 4521 (unsigned long long) sh->sector); 4522 BUG(); 4523 } 4524 } 4525 4526 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh) 4527 { 4528 int i; 4529 4530 /* We have read all the blocks in this stripe and now we need to 4531 * copy some of them into a target stripe for expand. 4532 */ 4533 struct dma_async_tx_descriptor *tx = NULL; 4534 BUG_ON(sh->batch_head); 4535 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state); 4536 for (i = 0; i < sh->disks; i++) 4537 if (i != sh->pd_idx && i != sh->qd_idx) { 4538 int dd_idx, j; 4539 struct stripe_head *sh2; 4540 struct async_submit_ctl submit; 4541 4542 sector_t bn = raid5_compute_blocknr(sh, i, 1); 4543 sector_t s = raid5_compute_sector(conf, bn, 0, 4544 &dd_idx, NULL); 4545 sh2 = raid5_get_active_stripe(conf, NULL, s, 4546 R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE); 4547 if (sh2 == NULL) 4548 /* so far only the early blocks of this stripe 4549 * have been requested. When later blocks 4550 * get requested, we will try again 4551 */ 4552 continue; 4553 if (!test_bit(STRIPE_EXPANDING, &sh2->state) || 4554 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) { 4555 /* must have already done this block */ 4556 raid5_release_stripe(sh2); 4557 continue; 4558 } 4559 4560 /* place all the copies on one channel */ 4561 init_async_submit(&submit, 0, tx, NULL, NULL, NULL); 4562 tx = async_memcpy(sh2->dev[dd_idx].page, 4563 sh->dev[i].page, sh2->dev[dd_idx].offset, 4564 sh->dev[i].offset, RAID5_STRIPE_SIZE(conf), 4565 &submit); 4566 4567 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags); 4568 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags); 4569 for (j = 0; j < conf->raid_disks; j++) 4570 if (j != sh2->pd_idx && 4571 j != sh2->qd_idx && 4572 !test_bit(R5_Expanded, &sh2->dev[j].flags)) 4573 break; 4574 if (j == conf->raid_disks) { 4575 set_bit(STRIPE_EXPAND_READY, &sh2->state); 4576 set_bit(STRIPE_HANDLE, &sh2->state); 4577 } 4578 raid5_release_stripe(sh2); 4579 4580 } 4581 /* done submitting copies, wait for them to complete */ 4582 async_tx_quiesce(&tx); 4583 } 4584 4585 /* 4586 * handle_stripe - do things to a stripe. 4587 * 4588 * We lock the stripe by setting STRIPE_ACTIVE and then examine the 4589 * state of various bits to see what needs to be done. 4590 * Possible results: 4591 * return some read requests which now have data 4592 * return some write requests which are safely on storage 4593 * schedule a read on some buffers 4594 * schedule a write of some buffers 4595 * return confirmation of parity correctness 4596 * 4597 */ 4598 4599 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s) 4600 { 4601 struct r5conf *conf = sh->raid_conf; 4602 int disks = sh->disks; 4603 struct r5dev *dev; 4604 int i; 4605 int do_recovery = 0; 4606 4607 memset(s, 0, sizeof(*s)); 4608 4609 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head; 4610 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head; 4611 s->failed_num[0] = -1; 4612 s->failed_num[1] = -1; 4613 s->log_failed = r5l_log_disk_error(conf); 4614 4615 /* Now to look around and see what can be done */ 4616 for (i=disks; i--; ) { 4617 struct md_rdev *rdev; 4618 int is_bad = 0; 4619 4620 dev = &sh->dev[i]; 4621 4622 pr_debug("check %d: state 0x%lx read %p write %p written %p\n", 4623 i, dev->flags, 4624 dev->toread, dev->towrite, dev->written); 4625 /* maybe we can reply to a read 4626 * 4627 * new wantfill requests are only permitted while 4628 * ops_complete_biofill is guaranteed to be inactive 4629 */ 4630 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread && 4631 !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) 4632 set_bit(R5_Wantfill, &dev->flags); 4633 4634 /* now count some things */ 4635 if (test_bit(R5_LOCKED, &dev->flags)) 4636 s->locked++; 4637 if (test_bit(R5_UPTODATE, &dev->flags)) 4638 s->uptodate++; 4639 if (test_bit(R5_Wantcompute, &dev->flags)) { 4640 s->compute++; 4641 BUG_ON(s->compute > 2); 4642 } 4643 4644 if (test_bit(R5_Wantfill, &dev->flags)) 4645 s->to_fill++; 4646 else if (dev->toread) 4647 s->to_read++; 4648 if (dev->towrite) { 4649 s->to_write++; 4650 if (!test_bit(R5_OVERWRITE, &dev->flags)) 4651 s->non_overwrite++; 4652 } 4653 if (dev->written) 4654 s->written++; 4655 /* Prefer to use the replacement for reads, but only 4656 * if it is recovered enough and has no bad blocks. 4657 */ 4658 rdev = conf->disks[i].replacement; 4659 if (rdev && !test_bit(Faulty, &rdev->flags) && 4660 rdev->recovery_offset >= sh->sector + RAID5_STRIPE_SECTORS(conf) && 4661 !rdev_has_badblock(rdev, sh->sector, 4662 RAID5_STRIPE_SECTORS(conf))) 4663 set_bit(R5_ReadRepl, &dev->flags); 4664 else { 4665 if (rdev && !test_bit(Faulty, &rdev->flags)) 4666 set_bit(R5_NeedReplace, &dev->flags); 4667 else 4668 clear_bit(R5_NeedReplace, &dev->flags); 4669 rdev = conf->disks[i].rdev; 4670 clear_bit(R5_ReadRepl, &dev->flags); 4671 } 4672 if (rdev && test_bit(Faulty, &rdev->flags)) 4673 rdev = NULL; 4674 if (rdev) { 4675 is_bad = rdev_has_badblock(rdev, sh->sector, 4676 RAID5_STRIPE_SECTORS(conf)); 4677 if (s->blocked_rdev == NULL) { 4678 if (is_bad < 0) 4679 set_bit(BlockedBadBlocks, &rdev->flags); 4680 if (rdev_blocked(rdev)) { 4681 s->blocked_rdev = rdev; 4682 atomic_inc(&rdev->nr_pending); 4683 } 4684 } 4685 } 4686 clear_bit(R5_Insync, &dev->flags); 4687 if (!rdev) 4688 /* Not in-sync */; 4689 else if (is_bad) { 4690 /* also not in-sync */ 4691 if (!test_bit(WriteErrorSeen, &rdev->flags) && 4692 test_bit(R5_UPTODATE, &dev->flags)) { 4693 /* treat as in-sync, but with a read error 4694 * which we can now try to correct 4695 */ 4696 set_bit(R5_Insync, &dev->flags); 4697 set_bit(R5_ReadError, &dev->flags); 4698 } 4699 } else if (test_bit(In_sync, &rdev->flags)) 4700 set_bit(R5_Insync, &dev->flags); 4701 else if (sh->sector + RAID5_STRIPE_SECTORS(conf) <= rdev->recovery_offset) 4702 /* in sync if before recovery_offset */ 4703 set_bit(R5_Insync, &dev->flags); 4704 else if (test_bit(R5_UPTODATE, &dev->flags) && 4705 test_bit(R5_Expanded, &dev->flags)) 4706 /* If we've reshaped into here, we assume it is Insync. 4707 * We will shortly update recovery_offset to make 4708 * it official. 4709 */ 4710 set_bit(R5_Insync, &dev->flags); 4711 4712 if (test_bit(R5_WriteError, &dev->flags)) { 4713 /* This flag does not apply to '.replacement' 4714 * only to .rdev, so make sure to check that*/ 4715 struct md_rdev *rdev2 = conf->disks[i].rdev; 4716 4717 if (rdev2 == rdev) 4718 clear_bit(R5_Insync, &dev->flags); 4719 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4720 s->handle_bad_blocks = 1; 4721 atomic_inc(&rdev2->nr_pending); 4722 } else 4723 clear_bit(R5_WriteError, &dev->flags); 4724 } 4725 if (test_bit(R5_MadeGood, &dev->flags)) { 4726 /* This flag does not apply to '.replacement' 4727 * only to .rdev, so make sure to check that*/ 4728 struct md_rdev *rdev2 = conf->disks[i].rdev; 4729 4730 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4731 s->handle_bad_blocks = 1; 4732 atomic_inc(&rdev2->nr_pending); 4733 } else 4734 clear_bit(R5_MadeGood, &dev->flags); 4735 } 4736 if (test_bit(R5_MadeGoodRepl, &dev->flags)) { 4737 struct md_rdev *rdev2 = conf->disks[i].replacement; 4738 4739 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4740 s->handle_bad_blocks = 1; 4741 atomic_inc(&rdev2->nr_pending); 4742 } else 4743 clear_bit(R5_MadeGoodRepl, &dev->flags); 4744 } 4745 if (!test_bit(R5_Insync, &dev->flags)) { 4746 /* The ReadError flag will just be confusing now */ 4747 clear_bit(R5_ReadError, &dev->flags); 4748 clear_bit(R5_ReWrite, &dev->flags); 4749 } 4750 if (test_bit(R5_ReadError, &dev->flags)) 4751 clear_bit(R5_Insync, &dev->flags); 4752 if (!test_bit(R5_Insync, &dev->flags)) { 4753 if (s->failed < 2) 4754 s->failed_num[s->failed] = i; 4755 s->failed++; 4756 if (rdev && !test_bit(Faulty, &rdev->flags)) 4757 do_recovery = 1; 4758 else if (!rdev) { 4759 rdev = conf->disks[i].replacement; 4760 if (rdev && !test_bit(Faulty, &rdev->flags)) 4761 do_recovery = 1; 4762 } 4763 } 4764 4765 if (test_bit(R5_InJournal, &dev->flags)) 4766 s->injournal++; 4767 if (test_bit(R5_InJournal, &dev->flags) && dev->written) 4768 s->just_cached++; 4769 } 4770 if (test_bit(STRIPE_SYNCING, &sh->state)) { 4771 /* If there is a failed device being replaced, 4772 * we must be recovering. 4773 * else if we are after resync_offset, we must be syncing 4774 * else if MD_RECOVERY_REQUESTED is set, we also are syncing. 4775 * else we can only be replacing 4776 * sync and recovery both need to read all devices, and so 4777 * use the same flag. 4778 */ 4779 if (do_recovery || 4780 sh->sector >= conf->mddev->resync_offset || 4781 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery))) 4782 s->syncing = 1; 4783 else 4784 s->replacing = 1; 4785 } 4786 } 4787 4788 /* 4789 * Return '1' if this is a member of batch, or '0' if it is a lone stripe or 4790 * a head which can now be handled. 4791 */ 4792 static int clear_batch_ready(struct stripe_head *sh) 4793 { 4794 struct stripe_head *tmp; 4795 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state)) 4796 return (sh->batch_head && sh->batch_head != sh); 4797 spin_lock(&sh->stripe_lock); 4798 if (!sh->batch_head) { 4799 spin_unlock(&sh->stripe_lock); 4800 return 0; 4801 } 4802 4803 /* 4804 * this stripe could be added to a batch list before we check 4805 * BATCH_READY, skips it 4806 */ 4807 if (sh->batch_head != sh) { 4808 spin_unlock(&sh->stripe_lock); 4809 return 1; 4810 } 4811 spin_lock(&sh->batch_lock); 4812 list_for_each_entry(tmp, &sh->batch_list, batch_list) 4813 clear_bit(STRIPE_BATCH_READY, &tmp->state); 4814 spin_unlock(&sh->batch_lock); 4815 spin_unlock(&sh->stripe_lock); 4816 4817 /* 4818 * BATCH_READY is cleared, no new stripes can be added. 4819 * batch_list can be accessed without lock 4820 */ 4821 return 0; 4822 } 4823 4824 static void break_stripe_batch_list(struct stripe_head *head_sh, 4825 unsigned long handle_flags) 4826 { 4827 struct stripe_head *sh, *next; 4828 int i; 4829 4830 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) { 4831 4832 list_del_init(&sh->batch_list); 4833 4834 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) | 4835 (1 << STRIPE_SYNCING) | 4836 (1 << STRIPE_REPLACED) | 4837 (1 << STRIPE_DELAYED) | 4838 (1 << STRIPE_BIT_DELAY) | 4839 (1 << STRIPE_FULL_WRITE) | 4840 (1 << STRIPE_BIOFILL_RUN) | 4841 (1 << STRIPE_COMPUTE_RUN) | 4842 (1 << STRIPE_DISCARD) | 4843 (1 << STRIPE_BATCH_READY) | 4844 (1 << STRIPE_BATCH_ERR)), 4845 "stripe state: %lx\n", sh->state); 4846 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) | 4847 (1 << STRIPE_REPLACED)), 4848 "head stripe state: %lx\n", head_sh->state); 4849 4850 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS | 4851 (1 << STRIPE_PREREAD_ACTIVE) | 4852 (1 << STRIPE_ON_UNPLUG_LIST)), 4853 head_sh->state & (1 << STRIPE_INSYNC)); 4854 4855 sh->check_state = head_sh->check_state; 4856 sh->reconstruct_state = head_sh->reconstruct_state; 4857 spin_lock_irq(&sh->stripe_lock); 4858 sh->batch_head = NULL; 4859 spin_unlock_irq(&sh->stripe_lock); 4860 for (i = 0; i < sh->disks; i++) { 4861 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 4862 wake_up_bit(&sh->dev[i].flags, R5_Overlap); 4863 sh->dev[i].flags = head_sh->dev[i].flags & 4864 (~((1 << R5_WriteError) | (1 << R5_Overlap))); 4865 } 4866 if (handle_flags == 0 || 4867 sh->state & handle_flags) 4868 set_bit(STRIPE_HANDLE, &sh->state); 4869 raid5_release_stripe(sh); 4870 } 4871 spin_lock_irq(&head_sh->stripe_lock); 4872 head_sh->batch_head = NULL; 4873 spin_unlock_irq(&head_sh->stripe_lock); 4874 for (i = 0; i < head_sh->disks; i++) 4875 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags)) 4876 wake_up_bit(&head_sh->dev[i].flags, R5_Overlap); 4877 if (head_sh->state & handle_flags) 4878 set_bit(STRIPE_HANDLE, &head_sh->state); 4879 } 4880 4881 static void handle_stripe(struct stripe_head *sh) 4882 { 4883 struct stripe_head_state s; 4884 struct r5conf *conf = sh->raid_conf; 4885 int i; 4886 int prexor; 4887 int disks = sh->disks; 4888 struct r5dev *pdev, *qdev; 4889 4890 clear_bit(STRIPE_HANDLE, &sh->state); 4891 4892 /* 4893 * handle_stripe should not continue handle the batched stripe, only 4894 * the head of batch list or lone stripe can continue. Otherwise we 4895 * could see break_stripe_batch_list warns about the STRIPE_ACTIVE 4896 * is set for the batched stripe. 4897 */ 4898 if (clear_batch_ready(sh)) 4899 return; 4900 4901 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) { 4902 /* already being handled, ensure it gets handled 4903 * again when current action finishes */ 4904 set_bit(STRIPE_HANDLE, &sh->state); 4905 return; 4906 } 4907 4908 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state)) 4909 break_stripe_batch_list(sh, 0); 4910 4911 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) { 4912 spin_lock(&sh->stripe_lock); 4913 /* 4914 * Cannot process 'sync' concurrently with 'discard'. 4915 * Flush data in r5cache before 'sync'. 4916 */ 4917 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) && 4918 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) && 4919 !test_bit(STRIPE_DISCARD, &sh->state) && 4920 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) { 4921 set_bit(STRIPE_SYNCING, &sh->state); 4922 clear_bit(STRIPE_INSYNC, &sh->state); 4923 clear_bit(STRIPE_REPLACED, &sh->state); 4924 } 4925 spin_unlock(&sh->stripe_lock); 4926 } 4927 clear_bit(STRIPE_DELAYED, &sh->state); 4928 4929 pr_debug("handling stripe %llu, state=%#lx cnt=%d, " 4930 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n", 4931 (unsigned long long)sh->sector, sh->state, 4932 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx, 4933 sh->check_state, sh->reconstruct_state); 4934 4935 analyse_stripe(sh, &s); 4936 4937 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state)) 4938 goto finish; 4939 4940 if (s.handle_bad_blocks || 4941 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) { 4942 set_bit(STRIPE_HANDLE, &sh->state); 4943 goto finish; 4944 } 4945 4946 if (unlikely(s.blocked_rdev)) { 4947 if (s.syncing || s.expanding || s.expanded || 4948 s.replacing || s.to_write || s.written) { 4949 set_bit(STRIPE_HANDLE, &sh->state); 4950 goto finish; 4951 } 4952 /* There is nothing for the blocked_rdev to block */ 4953 rdev_dec_pending(s.blocked_rdev, conf->mddev); 4954 s.blocked_rdev = NULL; 4955 } 4956 4957 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) { 4958 set_bit(STRIPE_OP_BIOFILL, &s.ops_request); 4959 set_bit(STRIPE_BIOFILL_RUN, &sh->state); 4960 } 4961 4962 pr_debug("locked=%d uptodate=%d to_read=%d" 4963 " to_write=%d failed=%d failed_num=%d,%d\n", 4964 s.locked, s.uptodate, s.to_read, s.to_write, s.failed, 4965 s.failed_num[0], s.failed_num[1]); 4966 /* 4967 * check if the array has lost more than max_degraded devices and, 4968 * if so, some requests might need to be failed. 4969 * 4970 * When journal device failed (log_failed), we will only process 4971 * the stripe if there is data need write to raid disks 4972 */ 4973 if (s.failed > conf->max_degraded || 4974 (s.log_failed && s.injournal == 0)) { 4975 sh->check_state = 0; 4976 sh->reconstruct_state = 0; 4977 break_stripe_batch_list(sh, 0); 4978 if (s.to_read+s.to_write+s.written) 4979 handle_failed_stripe(conf, sh, &s, disks); 4980 if (s.syncing + s.replacing) 4981 handle_failed_sync(conf, sh, &s); 4982 } 4983 4984 /* Now we check to see if any write operations have recently 4985 * completed 4986 */ 4987 prexor = 0; 4988 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result) 4989 prexor = 1; 4990 if (sh->reconstruct_state == reconstruct_state_drain_result || 4991 sh->reconstruct_state == reconstruct_state_prexor_drain_result) { 4992 sh->reconstruct_state = reconstruct_state_idle; 4993 4994 /* All the 'written' buffers and the parity block are ready to 4995 * be written back to disk 4996 */ 4997 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) && 4998 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)); 4999 BUG_ON(sh->qd_idx >= 0 && 5000 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) && 5001 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags)); 5002 for (i = disks; i--; ) { 5003 struct r5dev *dev = &sh->dev[i]; 5004 if (test_bit(R5_LOCKED, &dev->flags) && 5005 (i == sh->pd_idx || i == sh->qd_idx || 5006 dev->written || test_bit(R5_InJournal, 5007 &dev->flags))) { 5008 pr_debug("Writing block %d\n", i); 5009 set_bit(R5_Wantwrite, &dev->flags); 5010 if (prexor) 5011 continue; 5012 if (s.failed > 1) 5013 continue; 5014 if (!test_bit(R5_Insync, &dev->flags) || 5015 ((i == sh->pd_idx || i == sh->qd_idx) && 5016 s.failed == 0)) 5017 set_bit(STRIPE_INSYNC, &sh->state); 5018 } 5019 } 5020 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5021 s.dec_preread_active = 1; 5022 } 5023 5024 /* 5025 * might be able to return some write requests if the parity blocks 5026 * are safe, or on a failed drive 5027 */ 5028 pdev = &sh->dev[sh->pd_idx]; 5029 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx) 5030 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx); 5031 qdev = &sh->dev[sh->qd_idx]; 5032 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx) 5033 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx) 5034 || conf->level < 6; 5035 5036 if (s.written && 5037 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags) 5038 && !test_bit(R5_LOCKED, &pdev->flags) 5039 && (test_bit(R5_UPTODATE, &pdev->flags) || 5040 test_bit(R5_Discard, &pdev->flags))))) && 5041 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags) 5042 && !test_bit(R5_LOCKED, &qdev->flags) 5043 && (test_bit(R5_UPTODATE, &qdev->flags) || 5044 test_bit(R5_Discard, &qdev->flags)))))) 5045 handle_stripe_clean_event(conf, sh, disks); 5046 5047 if (s.just_cached) 5048 r5c_handle_cached_data_endio(conf, sh, disks); 5049 log_stripe_write_finished(sh); 5050 5051 /* Now we might consider reading some blocks, either to check/generate 5052 * parity, or to satisfy requests 5053 * or to load a block that is being partially written. 5054 */ 5055 if (s.to_read || s.non_overwrite 5056 || (s.to_write && s.failed) 5057 || (s.syncing && (s.uptodate + s.compute < disks)) 5058 || s.replacing 5059 || s.expanding) 5060 handle_stripe_fill(sh, &s, disks); 5061 5062 /* 5063 * When the stripe finishes full journal write cycle (write to journal 5064 * and raid disk), this is the clean up procedure so it is ready for 5065 * next operation. 5066 */ 5067 r5c_finish_stripe_write_out(conf, sh, &s); 5068 5069 /* 5070 * Now to consider new write requests, cache write back and what else, 5071 * if anything should be read. We do not handle new writes when: 5072 * 1/ A 'write' operation (copy+xor) is already in flight. 5073 * 2/ A 'check' operation is in flight, as it may clobber the parity 5074 * block. 5075 * 3/ A r5c cache log write is in flight. 5076 */ 5077 5078 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) { 5079 if (!r5c_is_writeback(conf->log)) { 5080 if (s.to_write) 5081 handle_stripe_dirtying(conf, sh, &s, disks); 5082 } else { /* write back cache */ 5083 int ret = 0; 5084 5085 /* First, try handle writes in caching phase */ 5086 if (s.to_write) 5087 ret = r5c_try_caching_write(conf, sh, &s, 5088 disks); 5089 /* 5090 * If caching phase failed: ret == -EAGAIN 5091 * OR 5092 * stripe under reclaim: !caching && injournal 5093 * 5094 * fall back to handle_stripe_dirtying() 5095 */ 5096 if (ret == -EAGAIN || 5097 /* stripe under reclaim: !caching && injournal */ 5098 (!test_bit(STRIPE_R5C_CACHING, &sh->state) && 5099 s.injournal > 0)) { 5100 ret = handle_stripe_dirtying(conf, sh, &s, 5101 disks); 5102 if (ret == -EAGAIN) 5103 goto finish; 5104 } 5105 } 5106 } 5107 5108 /* maybe we need to check and possibly fix the parity for this stripe 5109 * Any reads will already have been scheduled, so we just see if enough 5110 * data is available. The parity check is held off while parity 5111 * dependent operations are in flight. 5112 */ 5113 if (sh->check_state || 5114 (s.syncing && s.locked == 0 && 5115 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 5116 !test_bit(STRIPE_INSYNC, &sh->state))) { 5117 if (conf->level == 6) 5118 handle_parity_checks6(conf, sh, &s, disks); 5119 else 5120 handle_parity_checks5(conf, sh, &s, disks); 5121 } 5122 5123 if ((s.replacing || s.syncing) && s.locked == 0 5124 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state) 5125 && !test_bit(STRIPE_REPLACED, &sh->state)) { 5126 /* Write out to replacement devices where possible */ 5127 for (i = 0; i < conf->raid_disks; i++) 5128 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) { 5129 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags)); 5130 set_bit(R5_WantReplace, &sh->dev[i].flags); 5131 set_bit(R5_LOCKED, &sh->dev[i].flags); 5132 s.locked++; 5133 } 5134 if (s.replacing) 5135 set_bit(STRIPE_INSYNC, &sh->state); 5136 set_bit(STRIPE_REPLACED, &sh->state); 5137 } 5138 if ((s.syncing || s.replacing) && s.locked == 0 && 5139 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 5140 test_bit(STRIPE_INSYNC, &sh->state)) { 5141 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1); 5142 clear_bit(STRIPE_SYNCING, &sh->state); 5143 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 5144 wake_up_bit(&sh->dev[sh->pd_idx].flags, R5_Overlap); 5145 } 5146 5147 /* If the failed drives are just a ReadError, then we might need 5148 * to progress the repair/check process 5149 */ 5150 if (s.failed <= conf->max_degraded && !conf->mddev->ro) 5151 for (i = 0; i < s.failed; i++) { 5152 struct r5dev *dev = &sh->dev[s.failed_num[i]]; 5153 if (test_bit(R5_ReadError, &dev->flags) 5154 && !test_bit(R5_LOCKED, &dev->flags) 5155 && test_bit(R5_UPTODATE, &dev->flags) 5156 ) { 5157 if (!test_bit(R5_ReWrite, &dev->flags)) { 5158 set_bit(R5_Wantwrite, &dev->flags); 5159 set_bit(R5_ReWrite, &dev->flags); 5160 } else 5161 /* let's read it back */ 5162 set_bit(R5_Wantread, &dev->flags); 5163 set_bit(R5_LOCKED, &dev->flags); 5164 s.locked++; 5165 } 5166 } 5167 5168 /* Finish reconstruct operations initiated by the expansion process */ 5169 if (sh->reconstruct_state == reconstruct_state_result) { 5170 struct stripe_head *sh_src 5171 = raid5_get_active_stripe(conf, NULL, sh->sector, 5172 R5_GAS_PREVIOUS | R5_GAS_NOBLOCK | 5173 R5_GAS_NOQUIESCE); 5174 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) { 5175 /* sh cannot be written until sh_src has been read. 5176 * so arrange for sh to be delayed a little 5177 */ 5178 set_bit(STRIPE_DELAYED, &sh->state); 5179 set_bit(STRIPE_HANDLE, &sh->state); 5180 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, 5181 &sh_src->state)) 5182 atomic_inc(&conf->preread_active_stripes); 5183 raid5_release_stripe(sh_src); 5184 goto finish; 5185 } 5186 if (sh_src) 5187 raid5_release_stripe(sh_src); 5188 5189 sh->reconstruct_state = reconstruct_state_idle; 5190 clear_bit(STRIPE_EXPANDING, &sh->state); 5191 for (i = conf->raid_disks; i--; ) { 5192 set_bit(R5_Wantwrite, &sh->dev[i].flags); 5193 set_bit(R5_LOCKED, &sh->dev[i].flags); 5194 s.locked++; 5195 } 5196 } 5197 5198 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) && 5199 !sh->reconstruct_state) { 5200 /* Need to write out all blocks after computing parity */ 5201 sh->disks = conf->raid_disks; 5202 stripe_set_idx(sh->sector, conf, 0, sh); 5203 schedule_reconstruction(sh, &s, 1, 1); 5204 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) { 5205 clear_bit(STRIPE_EXPAND_READY, &sh->state); 5206 atomic_dec(&conf->reshape_stripes); 5207 wake_up(&conf->wait_for_reshape); 5208 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1); 5209 } 5210 5211 if (s.expanding && s.locked == 0 && 5212 !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) 5213 handle_stripe_expansion(conf, sh); 5214 5215 finish: 5216 /* wait for this device to become unblocked */ 5217 if (unlikely(s.blocked_rdev)) { 5218 if (conf->mddev->external) 5219 md_wait_for_blocked_rdev(s.blocked_rdev, 5220 conf->mddev); 5221 else 5222 /* Internal metadata will immediately 5223 * be written by raid5d, so we don't 5224 * need to wait here. 5225 */ 5226 rdev_dec_pending(s.blocked_rdev, 5227 conf->mddev); 5228 } 5229 5230 if (s.handle_bad_blocks) 5231 for (i = disks; i--; ) { 5232 struct md_rdev *rdev; 5233 struct r5dev *dev = &sh->dev[i]; 5234 if (test_and_clear_bit(R5_WriteError, &dev->flags)) { 5235 /* We own a safe reference to the rdev */ 5236 rdev = conf->disks[i].rdev; 5237 if (!rdev_set_badblocks(rdev, sh->sector, 5238 RAID5_STRIPE_SECTORS(conf), 0)) 5239 md_error(conf->mddev, rdev); 5240 rdev_dec_pending(rdev, conf->mddev); 5241 } 5242 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) { 5243 rdev = conf->disks[i].rdev; 5244 rdev_clear_badblocks(rdev, sh->sector, 5245 RAID5_STRIPE_SECTORS(conf), 0); 5246 rdev_dec_pending(rdev, conf->mddev); 5247 } 5248 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) { 5249 rdev = conf->disks[i].replacement; 5250 if (!rdev) 5251 /* rdev have been moved down */ 5252 rdev = conf->disks[i].rdev; 5253 rdev_clear_badblocks(rdev, sh->sector, 5254 RAID5_STRIPE_SECTORS(conf), 0); 5255 rdev_dec_pending(rdev, conf->mddev); 5256 } 5257 } 5258 5259 if (s.ops_request) 5260 raid_run_ops(sh, s.ops_request); 5261 5262 ops_run_io(sh, &s); 5263 5264 if (s.dec_preread_active) { 5265 /* We delay this until after ops_run_io so that if make_request 5266 * is waiting on a flush, it won't continue until the writes 5267 * have actually been submitted. 5268 */ 5269 atomic_dec(&conf->preread_active_stripes); 5270 if (atomic_read(&conf->preread_active_stripes) < 5271 IO_THRESHOLD) 5272 md_wakeup_thread(conf->mddev->thread); 5273 } 5274 5275 clear_bit_unlock(STRIPE_ACTIVE, &sh->state); 5276 } 5277 5278 static void raid5_activate_delayed(struct r5conf *conf) 5279 __must_hold(&conf->device_lock) 5280 { 5281 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) { 5282 while (!list_empty(&conf->delayed_list)) { 5283 struct list_head *l = conf->delayed_list.next; 5284 struct stripe_head *sh; 5285 sh = list_entry(l, struct stripe_head, lru); 5286 list_del_init(l); 5287 clear_bit(STRIPE_DELAYED, &sh->state); 5288 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5289 atomic_inc(&conf->preread_active_stripes); 5290 list_add_tail(&sh->lru, &conf->hold_list); 5291 raid5_wakeup_stripe_thread(sh); 5292 } 5293 } 5294 } 5295 5296 static void activate_bit_delay(struct r5conf *conf, 5297 struct list_head *temp_inactive_list) 5298 __must_hold(&conf->device_lock) 5299 { 5300 struct list_head head; 5301 list_add(&head, &conf->bitmap_list); 5302 list_del_init(&conf->bitmap_list); 5303 while (!list_empty(&head)) { 5304 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru); 5305 int hash; 5306 list_del_init(&sh->lru); 5307 atomic_inc(&sh->count); 5308 hash = sh->hash_lock_index; 5309 __release_stripe(conf, sh, &temp_inactive_list[hash]); 5310 } 5311 } 5312 5313 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio) 5314 { 5315 struct r5conf *conf = mddev->private; 5316 sector_t sector = bio->bi_iter.bi_sector; 5317 unsigned int chunk_sectors; 5318 unsigned int bio_sectors = bio_sectors(bio); 5319 5320 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors); 5321 return chunk_sectors >= 5322 ((sector & (chunk_sectors - 1)) + bio_sectors); 5323 } 5324 5325 /* 5326 * add bio to the retry LIFO ( in O(1) ... we are in interrupt ) 5327 * later sampled by raid5d. 5328 */ 5329 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf) 5330 { 5331 unsigned long flags; 5332 5333 spin_lock_irqsave(&conf->device_lock, flags); 5334 5335 bi->bi_next = conf->retry_read_aligned_list; 5336 conf->retry_read_aligned_list = bi; 5337 5338 spin_unlock_irqrestore(&conf->device_lock, flags); 5339 md_wakeup_thread(conf->mddev->thread); 5340 } 5341 5342 static struct bio *remove_bio_from_retry(struct r5conf *conf, 5343 unsigned int *offset) 5344 { 5345 struct bio *bi; 5346 5347 bi = conf->retry_read_aligned; 5348 if (bi) { 5349 *offset = conf->retry_read_offset; 5350 conf->retry_read_aligned = NULL; 5351 return bi; 5352 } 5353 bi = conf->retry_read_aligned_list; 5354 if(bi) { 5355 conf->retry_read_aligned_list = bi->bi_next; 5356 bi->bi_next = NULL; 5357 *offset = 0; 5358 } 5359 5360 return bi; 5361 } 5362 5363 /* 5364 * The "raid5_align_endio" should check if the read succeeded and if it 5365 * did, call bio_endio on the original bio (having bio_put the new bio 5366 * first). 5367 * If the read failed.. 5368 */ 5369 static void raid5_align_endio(struct bio *bi) 5370 { 5371 struct bio *raid_bi = bi->bi_private; 5372 struct md_rdev *rdev = (void *)raid_bi->bi_next; 5373 struct mddev *mddev = rdev->mddev; 5374 struct r5conf *conf = mddev->private; 5375 blk_status_t error = bi->bi_status; 5376 5377 bio_put(bi); 5378 raid_bi->bi_next = NULL; 5379 rdev_dec_pending(rdev, conf->mddev); 5380 5381 if (!error) { 5382 bio_endio(raid_bi); 5383 if (atomic_dec_and_test(&conf->active_aligned_reads)) 5384 wake_up(&conf->wait_for_quiescent); 5385 return; 5386 } 5387 5388 pr_debug("raid5_align_endio : io error...handing IO for a retry\n"); 5389 5390 add_bio_to_retry(raid_bi, conf); 5391 } 5392 5393 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio) 5394 { 5395 struct r5conf *conf = mddev->private; 5396 struct bio *align_bio; 5397 struct md_rdev *rdev; 5398 sector_t sector, end_sector; 5399 int dd_idx; 5400 bool did_inc; 5401 5402 if (!in_chunk_boundary(mddev, raid_bio)) { 5403 pr_debug("%s: non aligned\n", __func__); 5404 return 0; 5405 } 5406 5407 sector = raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 0, 5408 &dd_idx, NULL); 5409 end_sector = sector + bio_sectors(raid_bio); 5410 5411 if (r5c_big_stripe_cached(conf, sector)) 5412 return 0; 5413 5414 rdev = conf->disks[dd_idx].replacement; 5415 if (!rdev || test_bit(Faulty, &rdev->flags) || 5416 rdev->recovery_offset < end_sector) { 5417 rdev = conf->disks[dd_idx].rdev; 5418 if (!rdev) 5419 return 0; 5420 if (test_bit(Faulty, &rdev->flags) || 5421 !(test_bit(In_sync, &rdev->flags) || 5422 rdev->recovery_offset >= end_sector)) 5423 return 0; 5424 } 5425 5426 atomic_inc(&rdev->nr_pending); 5427 5428 if (rdev_has_badblock(rdev, sector, bio_sectors(raid_bio))) { 5429 rdev_dec_pending(rdev, mddev); 5430 return 0; 5431 } 5432 5433 md_account_bio(mddev, &raid_bio); 5434 raid_bio->bi_next = (void *)rdev; 5435 5436 align_bio = bio_alloc_clone(rdev->bdev, raid_bio, GFP_NOIO, 5437 &mddev->bio_set); 5438 align_bio->bi_end_io = raid5_align_endio; 5439 align_bio->bi_private = raid_bio; 5440 align_bio->bi_iter.bi_sector = sector; 5441 5442 /* No reshape active, so we can trust rdev->data_offset */ 5443 align_bio->bi_iter.bi_sector += rdev->data_offset; 5444 5445 did_inc = false; 5446 if (conf->quiesce == 0) { 5447 atomic_inc(&conf->active_aligned_reads); 5448 did_inc = true; 5449 } 5450 /* need a memory barrier to detect the race with raid5_quiesce() */ 5451 if (!did_inc || smp_load_acquire(&conf->quiesce) != 0) { 5452 /* quiesce is in progress, so we need to undo io activation and wait 5453 * for it to finish 5454 */ 5455 if (did_inc && atomic_dec_and_test(&conf->active_aligned_reads)) 5456 wake_up(&conf->wait_for_quiescent); 5457 spin_lock_irq(&conf->device_lock); 5458 wait_event_lock_irq(conf->wait_for_quiescent, conf->quiesce == 0, 5459 conf->device_lock); 5460 atomic_inc(&conf->active_aligned_reads); 5461 spin_unlock_irq(&conf->device_lock); 5462 } 5463 5464 mddev_trace_remap(mddev, align_bio, raid_bio->bi_iter.bi_sector); 5465 submit_bio_noacct(align_bio); 5466 return 1; 5467 } 5468 5469 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio) 5470 { 5471 struct bio *split; 5472 sector_t sector = raid_bio->bi_iter.bi_sector; 5473 unsigned chunk_sects = mddev->chunk_sectors; 5474 unsigned sectors = chunk_sects - (sector & (chunk_sects-1)); 5475 5476 if (sectors < bio_sectors(raid_bio)) { 5477 struct r5conf *conf = mddev->private; 5478 split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split); 5479 bio_chain(split, raid_bio); 5480 submit_bio_noacct(raid_bio); 5481 raid_bio = split; 5482 } 5483 5484 if (!raid5_read_one_chunk(mddev, raid_bio)) 5485 return raid_bio; 5486 5487 return NULL; 5488 } 5489 5490 /* __get_priority_stripe - get the next stripe to process 5491 * 5492 * Full stripe writes are allowed to pass preread active stripes up until 5493 * the bypass_threshold is exceeded. In general the bypass_count 5494 * increments when the handle_list is handled before the hold_list; however, it 5495 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a 5496 * stripe with in flight i/o. The bypass_count will be reset when the 5497 * head of the hold_list has changed, i.e. the head was promoted to the 5498 * handle_list. 5499 */ 5500 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group) 5501 __must_hold(&conf->device_lock) 5502 { 5503 struct stripe_head *sh, *tmp; 5504 struct list_head *handle_list = NULL; 5505 struct r5worker_group *wg; 5506 bool second_try = !r5c_is_writeback(conf->log) && 5507 !r5l_log_disk_error(conf); 5508 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) || 5509 r5l_log_disk_error(conf); 5510 5511 again: 5512 wg = NULL; 5513 sh = NULL; 5514 if (conf->worker_cnt_per_group == 0) { 5515 handle_list = try_loprio ? &conf->loprio_list : 5516 &conf->handle_list; 5517 } else if (group != ANY_GROUP) { 5518 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list : 5519 &conf->worker_groups[group].handle_list; 5520 wg = &conf->worker_groups[group]; 5521 } else { 5522 int i; 5523 for (i = 0; i < conf->group_cnt; i++) { 5524 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list : 5525 &conf->worker_groups[i].handle_list; 5526 wg = &conf->worker_groups[i]; 5527 if (!list_empty(handle_list)) 5528 break; 5529 } 5530 } 5531 5532 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n", 5533 __func__, 5534 list_empty(handle_list) ? "empty" : "busy", 5535 list_empty(&conf->hold_list) ? "empty" : "busy", 5536 atomic_read(&conf->pending_full_writes), conf->bypass_count); 5537 5538 if (!list_empty(handle_list)) { 5539 sh = list_entry(handle_list->next, typeof(*sh), lru); 5540 5541 if (list_empty(&conf->hold_list)) 5542 conf->bypass_count = 0; 5543 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) { 5544 if (conf->hold_list.next == conf->last_hold) 5545 conf->bypass_count++; 5546 else { 5547 conf->last_hold = conf->hold_list.next; 5548 conf->bypass_count -= conf->bypass_threshold; 5549 if (conf->bypass_count < 0) 5550 conf->bypass_count = 0; 5551 } 5552 } 5553 } else if (!list_empty(&conf->hold_list) && 5554 ((conf->bypass_threshold && 5555 conf->bypass_count > conf->bypass_threshold) || 5556 atomic_read(&conf->pending_full_writes) == 0)) { 5557 5558 list_for_each_entry(tmp, &conf->hold_list, lru) { 5559 if (conf->worker_cnt_per_group == 0 || 5560 group == ANY_GROUP || 5561 !cpu_online(tmp->cpu) || 5562 cpu_to_group(tmp->cpu) == group) { 5563 sh = tmp; 5564 break; 5565 } 5566 } 5567 5568 if (sh) { 5569 conf->bypass_count -= conf->bypass_threshold; 5570 if (conf->bypass_count < 0) 5571 conf->bypass_count = 0; 5572 } 5573 wg = NULL; 5574 } 5575 5576 if (!sh) { 5577 if (second_try) 5578 return NULL; 5579 second_try = true; 5580 try_loprio = !try_loprio; 5581 goto again; 5582 } 5583 5584 if (wg) { 5585 wg->stripes_cnt--; 5586 sh->group = NULL; 5587 } 5588 list_del_init(&sh->lru); 5589 BUG_ON(atomic_inc_return(&sh->count) != 1); 5590 return sh; 5591 } 5592 5593 struct raid5_plug_cb { 5594 struct blk_plug_cb cb; 5595 struct list_head list; 5596 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS]; 5597 }; 5598 5599 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule) 5600 { 5601 struct raid5_plug_cb *cb = container_of( 5602 blk_cb, struct raid5_plug_cb, cb); 5603 struct stripe_head *sh; 5604 struct mddev *mddev = cb->cb.data; 5605 struct r5conf *conf = mddev->private; 5606 int cnt = 0; 5607 int hash; 5608 5609 if (cb->list.next && !list_empty(&cb->list)) { 5610 spin_lock_irq(&conf->device_lock); 5611 while (!list_empty(&cb->list)) { 5612 sh = list_first_entry(&cb->list, struct stripe_head, lru); 5613 list_del_init(&sh->lru); 5614 /* 5615 * avoid race release_stripe_plug() sees 5616 * STRIPE_ON_UNPLUG_LIST clear but the stripe 5617 * is still in our list 5618 */ 5619 smp_mb__before_atomic(); 5620 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state); 5621 /* 5622 * STRIPE_ON_RELEASE_LIST could be set here. In that 5623 * case, the count is always > 1 here 5624 */ 5625 hash = sh->hash_lock_index; 5626 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]); 5627 cnt++; 5628 } 5629 spin_unlock_irq(&conf->device_lock); 5630 } 5631 release_inactive_stripe_list(conf, cb->temp_inactive_list, 5632 NR_STRIPE_HASH_LOCKS); 5633 if (!mddev_is_dm(mddev)) 5634 trace_block_unplug(mddev->gendisk->queue, cnt, !from_schedule); 5635 kfree(cb); 5636 } 5637 5638 static void release_stripe_plug(struct mddev *mddev, 5639 struct stripe_head *sh) 5640 { 5641 struct blk_plug_cb *blk_cb = blk_check_plugged( 5642 raid5_unplug, mddev, 5643 sizeof(struct raid5_plug_cb)); 5644 struct raid5_plug_cb *cb; 5645 5646 if (!blk_cb) { 5647 raid5_release_stripe(sh); 5648 return; 5649 } 5650 5651 cb = container_of(blk_cb, struct raid5_plug_cb, cb); 5652 5653 if (cb->list.next == NULL) { 5654 int i; 5655 INIT_LIST_HEAD(&cb->list); 5656 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 5657 INIT_LIST_HEAD(cb->temp_inactive_list + i); 5658 } 5659 5660 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)) 5661 list_add_tail(&sh->lru, &cb->list); 5662 else 5663 raid5_release_stripe(sh); 5664 } 5665 5666 static void make_discard_request(struct mddev *mddev, struct bio *bi) 5667 { 5668 struct r5conf *conf = mddev->private; 5669 sector_t logical_sector, last_sector; 5670 struct stripe_head *sh; 5671 int stripe_sectors; 5672 5673 /* We need to handle this when io_uring supports discard/trim */ 5674 if (WARN_ON_ONCE(bi->bi_opf & REQ_NOWAIT)) 5675 return; 5676 5677 if (mddev->reshape_position != MaxSector) 5678 /* Skip discard while reshape is happening */ 5679 return; 5680 5681 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1); 5682 last_sector = bio_end_sector(bi); 5683 5684 bi->bi_next = NULL; 5685 5686 stripe_sectors = conf->chunk_sectors * 5687 (conf->raid_disks - conf->max_degraded); 5688 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector, 5689 stripe_sectors); 5690 sector_div(last_sector, stripe_sectors); 5691 5692 logical_sector *= conf->chunk_sectors; 5693 last_sector *= conf->chunk_sectors; 5694 5695 for (; logical_sector < last_sector; 5696 logical_sector += RAID5_STRIPE_SECTORS(conf)) { 5697 DEFINE_WAIT(w); 5698 int d; 5699 again: 5700 sh = raid5_get_active_stripe(conf, NULL, logical_sector, 0); 5701 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 5702 if (test_bit(STRIPE_SYNCING, &sh->state)) { 5703 raid5_release_stripe(sh); 5704 wait_on_bit(&sh->dev[sh->pd_idx].flags, R5_Overlap, 5705 TASK_UNINTERRUPTIBLE); 5706 goto again; 5707 } 5708 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 5709 spin_lock_irq(&sh->stripe_lock); 5710 for (d = 0; d < conf->raid_disks; d++) { 5711 if (d == sh->pd_idx || d == sh->qd_idx) 5712 continue; 5713 if (sh->dev[d].towrite || sh->dev[d].toread) { 5714 set_bit(R5_Overlap, &sh->dev[d].flags); 5715 spin_unlock_irq(&sh->stripe_lock); 5716 raid5_release_stripe(sh); 5717 wait_on_bit(&sh->dev[d].flags, R5_Overlap, 5718 TASK_UNINTERRUPTIBLE); 5719 goto again; 5720 } 5721 } 5722 set_bit(STRIPE_DISCARD, &sh->state); 5723 sh->overwrite_disks = 0; 5724 for (d = 0; d < conf->raid_disks; d++) { 5725 if (d == sh->pd_idx || d == sh->qd_idx) 5726 continue; 5727 sh->dev[d].towrite = bi; 5728 set_bit(R5_OVERWRITE, &sh->dev[d].flags); 5729 bio_inc_remaining(bi); 5730 md_write_inc(mddev, bi); 5731 sh->overwrite_disks++; 5732 } 5733 spin_unlock_irq(&sh->stripe_lock); 5734 if (conf->mddev->bitmap) { 5735 sh->bm_seq = conf->seq_flush + 1; 5736 set_bit(STRIPE_BIT_DELAY, &sh->state); 5737 } 5738 5739 set_bit(STRIPE_HANDLE, &sh->state); 5740 clear_bit(STRIPE_DELAYED, &sh->state); 5741 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5742 atomic_inc(&conf->preread_active_stripes); 5743 release_stripe_plug(mddev, sh); 5744 } 5745 5746 bio_endio(bi); 5747 } 5748 5749 static bool ahead_of_reshape(struct mddev *mddev, sector_t sector, 5750 sector_t reshape_sector) 5751 { 5752 return mddev->reshape_backwards ? sector < reshape_sector : 5753 sector >= reshape_sector; 5754 } 5755 5756 static bool range_ahead_of_reshape(struct mddev *mddev, sector_t min, 5757 sector_t max, sector_t reshape_sector) 5758 { 5759 return mddev->reshape_backwards ? max < reshape_sector : 5760 min >= reshape_sector; 5761 } 5762 5763 static bool stripe_ahead_of_reshape(struct mddev *mddev, struct r5conf *conf, 5764 struct stripe_head *sh) 5765 { 5766 sector_t max_sector = 0, min_sector = MaxSector; 5767 bool ret = false; 5768 int dd_idx; 5769 5770 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) { 5771 if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx) 5772 continue; 5773 5774 min_sector = min(min_sector, sh->dev[dd_idx].sector); 5775 max_sector = max(max_sector, sh->dev[dd_idx].sector); 5776 } 5777 5778 spin_lock_irq(&conf->device_lock); 5779 5780 if (!range_ahead_of_reshape(mddev, min_sector, max_sector, 5781 conf->reshape_progress)) 5782 /* mismatch, need to try again */ 5783 ret = true; 5784 5785 spin_unlock_irq(&conf->device_lock); 5786 5787 return ret; 5788 } 5789 5790 static int add_all_stripe_bios(struct r5conf *conf, 5791 struct stripe_request_ctx *ctx, struct stripe_head *sh, 5792 struct bio *bi, int forwrite, int previous) 5793 { 5794 int dd_idx; 5795 5796 spin_lock_irq(&sh->stripe_lock); 5797 5798 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) { 5799 struct r5dev *dev = &sh->dev[dd_idx]; 5800 5801 if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx) 5802 continue; 5803 5804 if (dev->sector < ctx->first_sector || 5805 dev->sector >= ctx->last_sector) 5806 continue; 5807 5808 if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) { 5809 set_bit(R5_Overlap, &dev->flags); 5810 spin_unlock_irq(&sh->stripe_lock); 5811 raid5_release_stripe(sh); 5812 /* release batch_last before wait to avoid risk of deadlock */ 5813 if (ctx->batch_last) { 5814 raid5_release_stripe(ctx->batch_last); 5815 ctx->batch_last = NULL; 5816 } 5817 md_wakeup_thread(conf->mddev->thread); 5818 wait_on_bit(&dev->flags, R5_Overlap, TASK_UNINTERRUPTIBLE); 5819 return 0; 5820 } 5821 } 5822 5823 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) { 5824 struct r5dev *dev = &sh->dev[dd_idx]; 5825 5826 if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx) 5827 continue; 5828 5829 if (dev->sector < ctx->first_sector || 5830 dev->sector >= ctx->last_sector) 5831 continue; 5832 5833 __add_stripe_bio(sh, bi, dd_idx, forwrite, previous); 5834 clear_bit((dev->sector - ctx->first_sector) >> 5835 RAID5_STRIPE_SHIFT(conf), ctx->sectors_to_do); 5836 } 5837 5838 spin_unlock_irq(&sh->stripe_lock); 5839 return 1; 5840 } 5841 5842 enum reshape_loc { 5843 LOC_NO_RESHAPE, 5844 LOC_AHEAD_OF_RESHAPE, 5845 LOC_INSIDE_RESHAPE, 5846 LOC_BEHIND_RESHAPE, 5847 }; 5848 5849 static enum reshape_loc get_reshape_loc(struct mddev *mddev, 5850 struct r5conf *conf, sector_t logical_sector) 5851 { 5852 sector_t reshape_progress, reshape_safe; 5853 5854 if (likely(conf->reshape_progress == MaxSector)) 5855 return LOC_NO_RESHAPE; 5856 /* 5857 * Spinlock is needed as reshape_progress may be 5858 * 64bit on a 32bit platform, and so it might be 5859 * possible to see a half-updated value 5860 * Of course reshape_progress could change after 5861 * the lock is dropped, so once we get a reference 5862 * to the stripe that we think it is, we will have 5863 * to check again. 5864 */ 5865 spin_lock_irq(&conf->device_lock); 5866 reshape_progress = conf->reshape_progress; 5867 reshape_safe = conf->reshape_safe; 5868 spin_unlock_irq(&conf->device_lock); 5869 if (reshape_progress == MaxSector) 5870 return LOC_NO_RESHAPE; 5871 if (ahead_of_reshape(mddev, logical_sector, reshape_progress)) 5872 return LOC_AHEAD_OF_RESHAPE; 5873 if (ahead_of_reshape(mddev, logical_sector, reshape_safe)) 5874 return LOC_INSIDE_RESHAPE; 5875 return LOC_BEHIND_RESHAPE; 5876 } 5877 5878 static void raid5_bitmap_sector(struct mddev *mddev, sector_t *offset, 5879 unsigned long *sectors) 5880 { 5881 struct r5conf *conf = mddev->private; 5882 sector_t start = *offset; 5883 sector_t end = start + *sectors; 5884 sector_t prev_start = start; 5885 sector_t prev_end = end; 5886 int sectors_per_chunk; 5887 enum reshape_loc loc; 5888 int dd_idx; 5889 5890 sectors_per_chunk = conf->chunk_sectors * 5891 (conf->raid_disks - conf->max_degraded); 5892 start = round_down(start, sectors_per_chunk); 5893 end = round_up(end, sectors_per_chunk); 5894 5895 start = raid5_compute_sector(conf, start, 0, &dd_idx, NULL); 5896 end = raid5_compute_sector(conf, end, 0, &dd_idx, NULL); 5897 5898 /* 5899 * For LOC_INSIDE_RESHAPE, this IO will wait for reshape to make 5900 * progress, hence it's the same as LOC_BEHIND_RESHAPE. 5901 */ 5902 loc = get_reshape_loc(mddev, conf, prev_start); 5903 if (likely(loc != LOC_AHEAD_OF_RESHAPE)) { 5904 *offset = start; 5905 *sectors = end - start; 5906 return; 5907 } 5908 5909 sectors_per_chunk = conf->prev_chunk_sectors * 5910 (conf->previous_raid_disks - conf->max_degraded); 5911 prev_start = round_down(prev_start, sectors_per_chunk); 5912 prev_end = round_down(prev_end, sectors_per_chunk); 5913 5914 prev_start = raid5_compute_sector(conf, prev_start, 1, &dd_idx, NULL); 5915 prev_end = raid5_compute_sector(conf, prev_end, 1, &dd_idx, NULL); 5916 5917 /* 5918 * for LOC_AHEAD_OF_RESHAPE, reshape can make progress before this IO 5919 * is handled in make_stripe_request(), we can't know this here hence 5920 * we set bits for both. 5921 */ 5922 *offset = min(start, prev_start); 5923 *sectors = max(end, prev_end) - *offset; 5924 } 5925 5926 static enum stripe_result make_stripe_request(struct mddev *mddev, 5927 struct r5conf *conf, struct stripe_request_ctx *ctx, 5928 sector_t logical_sector, struct bio *bi) 5929 { 5930 const int rw = bio_data_dir(bi); 5931 enum stripe_result ret; 5932 struct stripe_head *sh; 5933 enum reshape_loc loc; 5934 sector_t new_sector; 5935 int previous = 0, flags = 0; 5936 int seq, dd_idx; 5937 5938 seq = read_seqcount_begin(&conf->gen_lock); 5939 loc = get_reshape_loc(mddev, conf, logical_sector); 5940 if (loc == LOC_INSIDE_RESHAPE) { 5941 ret = STRIPE_SCHEDULE_AND_RETRY; 5942 goto out; 5943 } 5944 if (loc == LOC_AHEAD_OF_RESHAPE) 5945 previous = 1; 5946 5947 new_sector = raid5_compute_sector(conf, logical_sector, previous, 5948 &dd_idx, NULL); 5949 pr_debug("raid456: %s, sector %llu logical %llu\n", __func__, 5950 new_sector, logical_sector); 5951 5952 if (previous) 5953 flags |= R5_GAS_PREVIOUS; 5954 if (bi->bi_opf & REQ_RAHEAD) 5955 flags |= R5_GAS_NOBLOCK; 5956 sh = raid5_get_active_stripe(conf, ctx, new_sector, flags); 5957 if (unlikely(!sh)) { 5958 /* cannot get stripe, just give-up */ 5959 bi->bi_status = BLK_STS_IOERR; 5960 return STRIPE_FAIL; 5961 } 5962 5963 if (unlikely(previous) && 5964 stripe_ahead_of_reshape(mddev, conf, sh)) { 5965 /* 5966 * Expansion moved on while waiting for a stripe. 5967 * Expansion could still move past after this 5968 * test, but as we are holding a reference to 5969 * 'sh', we know that if that happens, 5970 * STRIPE_EXPANDING will get set and the expansion 5971 * won't proceed until we finish with the stripe. 5972 */ 5973 ret = STRIPE_SCHEDULE_AND_RETRY; 5974 goto out_release; 5975 } 5976 5977 if (read_seqcount_retry(&conf->gen_lock, seq)) { 5978 /* Might have got the wrong stripe_head by accident */ 5979 ret = STRIPE_RETRY; 5980 goto out_release; 5981 } 5982 5983 if (test_bit(STRIPE_EXPANDING, &sh->state)) { 5984 md_wakeup_thread(mddev->thread); 5985 ret = STRIPE_SCHEDULE_AND_RETRY; 5986 goto out_release; 5987 } 5988 5989 if (!add_all_stripe_bios(conf, ctx, sh, bi, rw, previous)) { 5990 ret = STRIPE_RETRY; 5991 goto out; 5992 } 5993 5994 if (stripe_can_batch(sh)) { 5995 stripe_add_to_batch_list(conf, sh, ctx->batch_last); 5996 if (ctx->batch_last) 5997 raid5_release_stripe(ctx->batch_last); 5998 atomic_inc(&sh->count); 5999 ctx->batch_last = sh; 6000 } 6001 6002 if (ctx->do_flush) { 6003 set_bit(STRIPE_R5C_PREFLUSH, &sh->state); 6004 /* we only need flush for one stripe */ 6005 ctx->do_flush = false; 6006 } 6007 6008 set_bit(STRIPE_HANDLE, &sh->state); 6009 clear_bit(STRIPE_DELAYED, &sh->state); 6010 if ((!sh->batch_head || sh == sh->batch_head) && 6011 (bi->bi_opf & REQ_SYNC) && 6012 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 6013 atomic_inc(&conf->preread_active_stripes); 6014 6015 release_stripe_plug(mddev, sh); 6016 return STRIPE_SUCCESS; 6017 6018 out_release: 6019 raid5_release_stripe(sh); 6020 out: 6021 if (ret == STRIPE_SCHEDULE_AND_RETRY && reshape_interrupted(mddev)) { 6022 bi->bi_status = BLK_STS_RESOURCE; 6023 ret = STRIPE_WAIT_RESHAPE; 6024 pr_err_ratelimited("dm-raid456: io across reshape position while reshape can't make progress"); 6025 } 6026 return ret; 6027 } 6028 6029 /* 6030 * If the bio covers multiple data disks, find sector within the bio that has 6031 * the lowest chunk offset in the first chunk. 6032 */ 6033 static sector_t raid5_bio_lowest_chunk_sector(struct r5conf *conf, 6034 struct bio *bi) 6035 { 6036 int sectors_per_chunk = conf->chunk_sectors; 6037 int raid_disks = conf->raid_disks; 6038 int dd_idx; 6039 struct stripe_head sh; 6040 unsigned int chunk_offset; 6041 sector_t r_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1); 6042 sector_t sector; 6043 6044 /* We pass in fake stripe_head to get back parity disk numbers */ 6045 sector = raid5_compute_sector(conf, r_sector, 0, &dd_idx, &sh); 6046 chunk_offset = sector_div(sector, sectors_per_chunk); 6047 if (sectors_per_chunk - chunk_offset >= bio_sectors(bi)) 6048 return r_sector; 6049 /* 6050 * Bio crosses to the next data disk. Check whether it's in the same 6051 * chunk. 6052 */ 6053 dd_idx++; 6054 while (dd_idx == sh.pd_idx || dd_idx == sh.qd_idx) 6055 dd_idx++; 6056 if (dd_idx >= raid_disks) 6057 return r_sector; 6058 return r_sector + sectors_per_chunk - chunk_offset; 6059 } 6060 6061 static bool raid5_make_request(struct mddev *mddev, struct bio * bi) 6062 { 6063 DEFINE_WAIT_FUNC(wait, woken_wake_function); 6064 bool on_wq; 6065 struct r5conf *conf = mddev->private; 6066 sector_t logical_sector; 6067 struct stripe_request_ctx ctx = {}; 6068 const int rw = bio_data_dir(bi); 6069 enum stripe_result res; 6070 int s, stripe_cnt; 6071 6072 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) { 6073 int ret = log_handle_flush_request(conf, bi); 6074 6075 if (ret == 0) 6076 return true; 6077 if (ret == -ENODEV) { 6078 if (md_flush_request(mddev, bi)) 6079 return true; 6080 } 6081 /* ret == -EAGAIN, fallback */ 6082 /* 6083 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH, 6084 * we need to flush journal device 6085 */ 6086 ctx.do_flush = bi->bi_opf & REQ_PREFLUSH; 6087 } 6088 6089 md_write_start(mddev, bi); 6090 /* 6091 * If array is degraded, better not do chunk aligned read because 6092 * later we might have to read it again in order to reconstruct 6093 * data on failed drives. 6094 */ 6095 if (rw == READ && mddev->degraded == 0 && 6096 mddev->reshape_position == MaxSector) { 6097 bi = chunk_aligned_read(mddev, bi); 6098 if (!bi) 6099 return true; 6100 } 6101 6102 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) { 6103 make_discard_request(mddev, bi); 6104 md_write_end(mddev); 6105 return true; 6106 } 6107 6108 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1); 6109 ctx.first_sector = logical_sector; 6110 ctx.last_sector = bio_end_sector(bi); 6111 bi->bi_next = NULL; 6112 6113 stripe_cnt = DIV_ROUND_UP_SECTOR_T(ctx.last_sector - logical_sector, 6114 RAID5_STRIPE_SECTORS(conf)); 6115 bitmap_set(ctx.sectors_to_do, 0, stripe_cnt); 6116 6117 pr_debug("raid456: %s, logical %llu to %llu\n", __func__, 6118 bi->bi_iter.bi_sector, ctx.last_sector); 6119 6120 /* Bail out if conflicts with reshape and REQ_NOWAIT is set */ 6121 if ((bi->bi_opf & REQ_NOWAIT) && 6122 get_reshape_loc(mddev, conf, logical_sector) == LOC_INSIDE_RESHAPE) { 6123 bio_wouldblock_error(bi); 6124 if (rw == WRITE) 6125 md_write_end(mddev); 6126 return true; 6127 } 6128 md_account_bio(mddev, &bi); 6129 6130 /* 6131 * Lets start with the stripe with the lowest chunk offset in the first 6132 * chunk. That has the best chances of creating IOs adjacent to 6133 * previous IOs in case of sequential IO and thus creates the most 6134 * sequential IO pattern. We don't bother with the optimization when 6135 * reshaping as the performance benefit is not worth the complexity. 6136 */ 6137 if (likely(conf->reshape_progress == MaxSector)) { 6138 logical_sector = raid5_bio_lowest_chunk_sector(conf, bi); 6139 on_wq = false; 6140 } else { 6141 add_wait_queue(&conf->wait_for_reshape, &wait); 6142 on_wq = true; 6143 } 6144 s = (logical_sector - ctx.first_sector) >> RAID5_STRIPE_SHIFT(conf); 6145 6146 while (1) { 6147 res = make_stripe_request(mddev, conf, &ctx, logical_sector, 6148 bi); 6149 if (res == STRIPE_FAIL || res == STRIPE_WAIT_RESHAPE) 6150 break; 6151 6152 if (res == STRIPE_RETRY) 6153 continue; 6154 6155 if (res == STRIPE_SCHEDULE_AND_RETRY) { 6156 WARN_ON_ONCE(!on_wq); 6157 /* 6158 * Must release the reference to batch_last before 6159 * scheduling and waiting for work to be done, 6160 * otherwise the batch_last stripe head could prevent 6161 * raid5_activate_delayed() from making progress 6162 * and thus deadlocking. 6163 */ 6164 if (ctx.batch_last) { 6165 raid5_release_stripe(ctx.batch_last); 6166 ctx.batch_last = NULL; 6167 } 6168 6169 wait_woken(&wait, TASK_UNINTERRUPTIBLE, 6170 MAX_SCHEDULE_TIMEOUT); 6171 continue; 6172 } 6173 6174 s = find_next_bit_wrap(ctx.sectors_to_do, stripe_cnt, s); 6175 if (s == stripe_cnt) 6176 break; 6177 6178 logical_sector = ctx.first_sector + 6179 (s << RAID5_STRIPE_SHIFT(conf)); 6180 } 6181 if (unlikely(on_wq)) 6182 remove_wait_queue(&conf->wait_for_reshape, &wait); 6183 6184 if (ctx.batch_last) 6185 raid5_release_stripe(ctx.batch_last); 6186 6187 if (rw == WRITE) 6188 md_write_end(mddev); 6189 if (res == STRIPE_WAIT_RESHAPE) { 6190 md_free_cloned_bio(bi); 6191 return false; 6192 } 6193 6194 bio_endio(bi); 6195 return true; 6196 } 6197 6198 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks); 6199 6200 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped) 6201 { 6202 /* reshaping is quite different to recovery/resync so it is 6203 * handled quite separately ... here. 6204 * 6205 * On each call to sync_request, we gather one chunk worth of 6206 * destination stripes and flag them as expanding. 6207 * Then we find all the source stripes and request reads. 6208 * As the reads complete, handle_stripe will copy the data 6209 * into the destination stripe and release that stripe. 6210 */ 6211 struct r5conf *conf = mddev->private; 6212 struct stripe_head *sh; 6213 struct md_rdev *rdev; 6214 sector_t first_sector, last_sector; 6215 int raid_disks = conf->previous_raid_disks; 6216 int data_disks = raid_disks - conf->max_degraded; 6217 int new_data_disks = conf->raid_disks - conf->max_degraded; 6218 int i; 6219 int dd_idx; 6220 sector_t writepos, readpos, safepos; 6221 sector_t stripe_addr; 6222 int reshape_sectors; 6223 struct list_head stripes; 6224 sector_t retn; 6225 6226 if (sector_nr == 0) { 6227 /* If restarting in the middle, skip the initial sectors */ 6228 if (mddev->reshape_backwards && 6229 conf->reshape_progress < raid5_size(mddev, 0, 0)) { 6230 sector_nr = raid5_size(mddev, 0, 0) 6231 - conf->reshape_progress; 6232 } else if (mddev->reshape_backwards && 6233 conf->reshape_progress == MaxSector) { 6234 /* shouldn't happen, but just in case, finish up.*/ 6235 sector_nr = MaxSector; 6236 } else if (!mddev->reshape_backwards && 6237 conf->reshape_progress > 0) 6238 sector_nr = conf->reshape_progress; 6239 sector_div(sector_nr, new_data_disks); 6240 if (sector_nr) { 6241 mddev->curr_resync_completed = sector_nr; 6242 sysfs_notify_dirent_safe(mddev->sysfs_completed); 6243 *skipped = 1; 6244 retn = sector_nr; 6245 goto finish; 6246 } 6247 } 6248 6249 /* We need to process a full chunk at a time. 6250 * If old and new chunk sizes differ, we need to process the 6251 * largest of these 6252 */ 6253 6254 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors); 6255 6256 /* We update the metadata at least every 10 seconds, or when 6257 * the data about to be copied would over-write the source of 6258 * the data at the front of the range. i.e. one new_stripe 6259 * along from reshape_progress new_maps to after where 6260 * reshape_safe old_maps to 6261 */ 6262 writepos = conf->reshape_progress; 6263 sector_div(writepos, new_data_disks); 6264 readpos = conf->reshape_progress; 6265 sector_div(readpos, data_disks); 6266 safepos = conf->reshape_safe; 6267 sector_div(safepos, data_disks); 6268 if (mddev->reshape_backwards) { 6269 if (WARN_ON(writepos < reshape_sectors)) 6270 return MaxSector; 6271 6272 writepos -= reshape_sectors; 6273 readpos += reshape_sectors; 6274 safepos += reshape_sectors; 6275 } else { 6276 writepos += reshape_sectors; 6277 /* readpos and safepos are worst-case calculations. 6278 * A negative number is overly pessimistic, and causes 6279 * obvious problems for unsigned storage. So clip to 0. 6280 */ 6281 readpos -= min_t(sector_t, reshape_sectors, readpos); 6282 safepos -= min_t(sector_t, reshape_sectors, safepos); 6283 } 6284 6285 /* Having calculated the 'writepos' possibly use it 6286 * to set 'stripe_addr' which is where we will write to. 6287 */ 6288 if (mddev->reshape_backwards) { 6289 if (WARN_ON(conf->reshape_progress == 0)) 6290 return MaxSector; 6291 6292 stripe_addr = writepos; 6293 if (WARN_ON((mddev->dev_sectors & 6294 ~((sector_t)reshape_sectors - 1)) - 6295 reshape_sectors - stripe_addr != sector_nr)) 6296 return MaxSector; 6297 } else { 6298 if (WARN_ON(writepos != sector_nr + reshape_sectors)) 6299 return MaxSector; 6300 6301 stripe_addr = sector_nr; 6302 } 6303 6304 /* 'writepos' is the most advanced device address we might write. 6305 * 'readpos' is the least advanced device address we might read. 6306 * 'safepos' is the least address recorded in the metadata as having 6307 * been reshaped. 6308 * If there is a min_offset_diff, these are adjusted either by 6309 * increasing the safepos/readpos if diff is negative, or 6310 * increasing writepos if diff is positive. 6311 * If 'readpos' is then behind 'writepos', there is no way that we can 6312 * ensure safety in the face of a crash - that must be done by userspace 6313 * making a backup of the data. So in that case there is no particular 6314 * rush to update metadata. 6315 * Otherwise if 'safepos' is behind 'writepos', then we really need to 6316 * update the metadata to advance 'safepos' to match 'readpos' so that 6317 * we can be safe in the event of a crash. 6318 * So we insist on updating metadata if safepos is behind writepos and 6319 * readpos is beyond writepos. 6320 * In any case, update the metadata every 10 seconds. 6321 * Maybe that number should be configurable, but I'm not sure it is 6322 * worth it.... maybe it could be a multiple of safemode_delay??? 6323 */ 6324 if (conf->min_offset_diff < 0) { 6325 safepos += -conf->min_offset_diff; 6326 readpos += -conf->min_offset_diff; 6327 } else 6328 writepos += conf->min_offset_diff; 6329 6330 if ((mddev->reshape_backwards 6331 ? (safepos > writepos && readpos < writepos) 6332 : (safepos < writepos && readpos > writepos)) || 6333 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 6334 /* Cannot proceed until we've updated the superblock... */ 6335 wait_event(conf->wait_for_reshape, 6336 atomic_read(&conf->reshape_stripes)==0 6337 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 6338 if (atomic_read(&conf->reshape_stripes) != 0) 6339 return 0; 6340 mddev->reshape_position = conf->reshape_progress; 6341 mddev->curr_resync_completed = sector_nr; 6342 if (!mddev->reshape_backwards) 6343 /* Can update recovery_offset */ 6344 rdev_for_each(rdev, mddev) 6345 if (rdev->raid_disk >= 0 && 6346 !test_bit(Journal, &rdev->flags) && 6347 !test_bit(In_sync, &rdev->flags) && 6348 rdev->recovery_offset < sector_nr) 6349 rdev->recovery_offset = sector_nr; 6350 6351 conf->reshape_checkpoint = jiffies; 6352 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6353 md_wakeup_thread(mddev->thread); 6354 wait_event(mddev->sb_wait, mddev->sb_flags == 0 || 6355 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 6356 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6357 return 0; 6358 spin_lock_irq(&conf->device_lock); 6359 conf->reshape_safe = mddev->reshape_position; 6360 spin_unlock_irq(&conf->device_lock); 6361 wake_up(&conf->wait_for_reshape); 6362 sysfs_notify_dirent_safe(mddev->sysfs_completed); 6363 } 6364 6365 INIT_LIST_HEAD(&stripes); 6366 for (i = 0; i < reshape_sectors; i += RAID5_STRIPE_SECTORS(conf)) { 6367 int j; 6368 int skipped_disk = 0; 6369 sh = raid5_get_active_stripe(conf, NULL, stripe_addr+i, 6370 R5_GAS_NOQUIESCE); 6371 set_bit(STRIPE_EXPANDING, &sh->state); 6372 atomic_inc(&conf->reshape_stripes); 6373 /* If any of this stripe is beyond the end of the old 6374 * array, then we need to zero those blocks 6375 */ 6376 for (j=sh->disks; j--;) { 6377 sector_t s; 6378 if (j == sh->pd_idx) 6379 continue; 6380 if (conf->level == 6 && 6381 j == sh->qd_idx) 6382 continue; 6383 s = raid5_compute_blocknr(sh, j, 0); 6384 if (s < raid5_size(mddev, 0, 0)) { 6385 skipped_disk = 1; 6386 continue; 6387 } 6388 memset(page_address(sh->dev[j].page), 0, RAID5_STRIPE_SIZE(conf)); 6389 set_bit(R5_Expanded, &sh->dev[j].flags); 6390 set_bit(R5_UPTODATE, &sh->dev[j].flags); 6391 } 6392 if (!skipped_disk) { 6393 set_bit(STRIPE_EXPAND_READY, &sh->state); 6394 set_bit(STRIPE_HANDLE, &sh->state); 6395 } 6396 list_add(&sh->lru, &stripes); 6397 } 6398 spin_lock_irq(&conf->device_lock); 6399 if (mddev->reshape_backwards) 6400 conf->reshape_progress -= reshape_sectors * new_data_disks; 6401 else 6402 conf->reshape_progress += reshape_sectors * new_data_disks; 6403 spin_unlock_irq(&conf->device_lock); 6404 /* Ok, those stripe are ready. We can start scheduling 6405 * reads on the source stripes. 6406 * The source stripes are determined by mapping the first and last 6407 * block on the destination stripes. 6408 */ 6409 first_sector = 6410 raid5_compute_sector(conf, stripe_addr*(new_data_disks), 6411 1, &dd_idx, NULL); 6412 last_sector = 6413 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors) 6414 * new_data_disks - 1), 6415 1, &dd_idx, NULL); 6416 if (last_sector >= mddev->dev_sectors) 6417 last_sector = mddev->dev_sectors - 1; 6418 while (first_sector <= last_sector) { 6419 sh = raid5_get_active_stripe(conf, NULL, first_sector, 6420 R5_GAS_PREVIOUS | R5_GAS_NOQUIESCE); 6421 set_bit(STRIPE_EXPAND_SOURCE, &sh->state); 6422 set_bit(STRIPE_HANDLE, &sh->state); 6423 raid5_release_stripe(sh); 6424 first_sector += RAID5_STRIPE_SECTORS(conf); 6425 } 6426 /* Now that the sources are clearly marked, we can release 6427 * the destination stripes 6428 */ 6429 while (!list_empty(&stripes)) { 6430 sh = list_entry(stripes.next, struct stripe_head, lru); 6431 list_del_init(&sh->lru); 6432 raid5_release_stripe(sh); 6433 } 6434 /* If this takes us to the resync_max point where we have to pause, 6435 * then we need to write out the superblock. 6436 */ 6437 sector_nr += reshape_sectors; 6438 retn = reshape_sectors; 6439 finish: 6440 if (mddev->curr_resync_completed > mddev->resync_max || 6441 (sector_nr - mddev->curr_resync_completed) * 2 6442 >= mddev->resync_max - mddev->curr_resync_completed) { 6443 /* Cannot proceed until we've updated the superblock... */ 6444 wait_event(conf->wait_for_reshape, 6445 atomic_read(&conf->reshape_stripes) == 0 6446 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 6447 if (atomic_read(&conf->reshape_stripes) != 0) 6448 goto ret; 6449 mddev->reshape_position = conf->reshape_progress; 6450 mddev->curr_resync_completed = sector_nr; 6451 if (!mddev->reshape_backwards) 6452 /* Can update recovery_offset */ 6453 rdev_for_each(rdev, mddev) 6454 if (rdev->raid_disk >= 0 && 6455 !test_bit(Journal, &rdev->flags) && 6456 !test_bit(In_sync, &rdev->flags) && 6457 rdev->recovery_offset < sector_nr) 6458 rdev->recovery_offset = sector_nr; 6459 conf->reshape_checkpoint = jiffies; 6460 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6461 md_wakeup_thread(mddev->thread); 6462 wait_event(mddev->sb_wait, 6463 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) 6464 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 6465 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6466 goto ret; 6467 spin_lock_irq(&conf->device_lock); 6468 conf->reshape_safe = mddev->reshape_position; 6469 spin_unlock_irq(&conf->device_lock); 6470 wake_up(&conf->wait_for_reshape); 6471 sysfs_notify_dirent_safe(mddev->sysfs_completed); 6472 } 6473 ret: 6474 return retn; 6475 } 6476 6477 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr, 6478 sector_t max_sector, int *skipped) 6479 { 6480 struct r5conf *conf = mddev->private; 6481 struct stripe_head *sh; 6482 sector_t sync_blocks; 6483 bool still_degraded = false; 6484 int i; 6485 6486 if (sector_nr >= max_sector) { 6487 /* just being told to finish up .. nothing much to do */ 6488 6489 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 6490 end_reshape(conf); 6491 return 0; 6492 } 6493 6494 if (mddev->curr_resync < max_sector) /* aborted */ 6495 mddev->bitmap_ops->end_sync(mddev, mddev->curr_resync, 6496 &sync_blocks); 6497 else /* completed sync */ 6498 conf->fullsync = 0; 6499 mddev->bitmap_ops->close_sync(mddev); 6500 6501 return 0; 6502 } 6503 6504 /* Allow raid5_quiesce to complete */ 6505 wait_event(conf->wait_for_reshape, conf->quiesce != 2); 6506 6507 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 6508 return reshape_request(mddev, sector_nr, skipped); 6509 6510 /* No need to check resync_max as we never do more than one 6511 * stripe, and as resync_max will always be on a chunk boundary, 6512 * if the check in md_do_sync didn't fire, there is no chance 6513 * of overstepping resync_max here 6514 */ 6515 6516 /* if there is too many failed drives and we are trying 6517 * to resync, then assert that we are finished, because there is 6518 * nothing we can do. 6519 */ 6520 if (mddev->degraded >= conf->max_degraded && 6521 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 6522 sector_t rv = mddev->dev_sectors - sector_nr; 6523 *skipped = 1; 6524 return rv; 6525 } 6526 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 6527 !conf->fullsync && 6528 !mddev->bitmap_ops->start_sync(mddev, sector_nr, &sync_blocks, 6529 true) && 6530 sync_blocks >= RAID5_STRIPE_SECTORS(conf)) { 6531 /* we can skip this block, and probably more */ 6532 do_div(sync_blocks, RAID5_STRIPE_SECTORS(conf)); 6533 *skipped = 1; 6534 /* keep things rounded to whole stripes */ 6535 return sync_blocks * RAID5_STRIPE_SECTORS(conf); 6536 } 6537 6538 mddev->bitmap_ops->cond_end_sync(mddev, sector_nr, false); 6539 6540 sh = raid5_get_active_stripe(conf, NULL, sector_nr, 6541 R5_GAS_NOBLOCK); 6542 if (sh == NULL) { 6543 sh = raid5_get_active_stripe(conf, NULL, sector_nr, 0); 6544 /* make sure we don't swamp the stripe cache if someone else 6545 * is trying to get access 6546 */ 6547 schedule_timeout_uninterruptible(1); 6548 } 6549 /* Need to check if array will still be degraded after recovery/resync 6550 * Note in case of > 1 drive failures it's possible we're rebuilding 6551 * one drive while leaving another faulty drive in array. 6552 */ 6553 for (i = 0; i < conf->raid_disks; i++) { 6554 struct md_rdev *rdev = conf->disks[i].rdev; 6555 6556 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) 6557 still_degraded = true; 6558 } 6559 6560 mddev->bitmap_ops->start_sync(mddev, sector_nr, &sync_blocks, 6561 still_degraded); 6562 6563 set_bit(STRIPE_SYNC_REQUESTED, &sh->state); 6564 set_bit(STRIPE_HANDLE, &sh->state); 6565 6566 raid5_release_stripe(sh); 6567 6568 return RAID5_STRIPE_SECTORS(conf); 6569 } 6570 6571 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio, 6572 unsigned int offset) 6573 { 6574 /* We may not be able to submit a whole bio at once as there 6575 * may not be enough stripe_heads available. 6576 * We cannot pre-allocate enough stripe_heads as we may need 6577 * more than exist in the cache (if we allow ever large chunks). 6578 * So we do one stripe head at a time and record in 6579 * ->bi_hw_segments how many have been done. 6580 * 6581 * We *know* that this entire raid_bio is in one chunk, so 6582 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector. 6583 */ 6584 struct stripe_head *sh; 6585 int dd_idx; 6586 sector_t sector, logical_sector, last_sector; 6587 int scnt = 0; 6588 int handled = 0; 6589 6590 logical_sector = raid_bio->bi_iter.bi_sector & 6591 ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1); 6592 sector = raid5_compute_sector(conf, logical_sector, 6593 0, &dd_idx, NULL); 6594 last_sector = bio_end_sector(raid_bio); 6595 6596 for (; logical_sector < last_sector; 6597 logical_sector += RAID5_STRIPE_SECTORS(conf), 6598 sector += RAID5_STRIPE_SECTORS(conf), 6599 scnt++) { 6600 6601 if (scnt < offset) 6602 /* already done this stripe */ 6603 continue; 6604 6605 sh = raid5_get_active_stripe(conf, NULL, sector, 6606 R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE); 6607 if (!sh) { 6608 /* failed to get a stripe - must wait */ 6609 conf->retry_read_aligned = raid_bio; 6610 conf->retry_read_offset = scnt; 6611 return handled; 6612 } 6613 6614 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) { 6615 raid5_release_stripe(sh); 6616 conf->retry_read_aligned = raid_bio; 6617 conf->retry_read_offset = scnt; 6618 return handled; 6619 } 6620 6621 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags); 6622 handle_stripe(sh); 6623 raid5_release_stripe(sh); 6624 handled++; 6625 } 6626 6627 bio_endio(raid_bio); 6628 6629 if (atomic_dec_and_test(&conf->active_aligned_reads)) 6630 wake_up(&conf->wait_for_quiescent); 6631 return handled; 6632 } 6633 6634 static int handle_active_stripes(struct r5conf *conf, int group, 6635 struct r5worker *worker, 6636 struct list_head *temp_inactive_list) 6637 __must_hold(&conf->device_lock) 6638 { 6639 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh; 6640 int i, batch_size = 0, hash; 6641 bool release_inactive = false; 6642 6643 while (batch_size < MAX_STRIPE_BATCH && 6644 (sh = __get_priority_stripe(conf, group)) != NULL) 6645 batch[batch_size++] = sh; 6646 6647 if (batch_size == 0) { 6648 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 6649 if (!list_empty(temp_inactive_list + i)) 6650 break; 6651 if (i == NR_STRIPE_HASH_LOCKS) { 6652 spin_unlock_irq(&conf->device_lock); 6653 log_flush_stripe_to_raid(conf); 6654 spin_lock_irq(&conf->device_lock); 6655 return batch_size; 6656 } 6657 release_inactive = true; 6658 } 6659 spin_unlock_irq(&conf->device_lock); 6660 6661 release_inactive_stripe_list(conf, temp_inactive_list, 6662 NR_STRIPE_HASH_LOCKS); 6663 6664 r5l_flush_stripe_to_raid(conf->log); 6665 if (release_inactive) { 6666 spin_lock_irq(&conf->device_lock); 6667 return 0; 6668 } 6669 6670 for (i = 0; i < batch_size; i++) 6671 handle_stripe(batch[i]); 6672 log_write_stripe_run(conf); 6673 6674 cond_resched(); 6675 6676 spin_lock_irq(&conf->device_lock); 6677 for (i = 0; i < batch_size; i++) { 6678 hash = batch[i]->hash_lock_index; 6679 __release_stripe(conf, batch[i], &temp_inactive_list[hash]); 6680 } 6681 return batch_size; 6682 } 6683 6684 static void raid5_do_work(struct work_struct *work) 6685 { 6686 struct r5worker *worker = container_of(work, struct r5worker, work); 6687 struct r5worker_group *group = worker->group; 6688 struct r5conf *conf = group->conf; 6689 struct mddev *mddev = conf->mddev; 6690 int group_id = group - conf->worker_groups; 6691 int handled; 6692 struct blk_plug plug; 6693 6694 pr_debug("+++ raid5worker active\n"); 6695 6696 blk_start_plug(&plug); 6697 handled = 0; 6698 spin_lock_irq(&conf->device_lock); 6699 while (1) { 6700 int batch_size, released; 6701 6702 released = release_stripe_list(conf, worker->temp_inactive_list); 6703 6704 batch_size = handle_active_stripes(conf, group_id, worker, 6705 worker->temp_inactive_list); 6706 worker->working = false; 6707 if (!batch_size && !released) 6708 break; 6709 handled += batch_size; 6710 wait_event_lock_irq(mddev->sb_wait, 6711 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags), 6712 conf->device_lock); 6713 } 6714 pr_debug("%d stripes handled\n", handled); 6715 6716 spin_unlock_irq(&conf->device_lock); 6717 6718 flush_deferred_bios(conf); 6719 6720 r5l_flush_stripe_to_raid(conf->log); 6721 6722 async_tx_issue_pending_all(); 6723 blk_finish_plug(&plug); 6724 6725 pr_debug("--- raid5worker inactive\n"); 6726 } 6727 6728 /* 6729 * This is our raid5 kernel thread. 6730 * 6731 * We scan the hash table for stripes which can be handled now. 6732 * During the scan, completed stripes are saved for us by the interrupt 6733 * handler, so that they will not have to wait for our next wakeup. 6734 */ 6735 static void raid5d(struct md_thread *thread) 6736 { 6737 struct mddev *mddev = thread->mddev; 6738 struct r5conf *conf = mddev->private; 6739 int handled; 6740 struct blk_plug plug; 6741 6742 pr_debug("+++ raid5d active\n"); 6743 6744 md_check_recovery(mddev); 6745 6746 blk_start_plug(&plug); 6747 handled = 0; 6748 spin_lock_irq(&conf->device_lock); 6749 while (1) { 6750 struct bio *bio; 6751 int batch_size, released; 6752 unsigned int offset; 6753 6754 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 6755 break; 6756 6757 released = release_stripe_list(conf, conf->temp_inactive_list); 6758 if (released) 6759 clear_bit(R5_DID_ALLOC, &conf->cache_state); 6760 6761 if ( 6762 !list_empty(&conf->bitmap_list)) { 6763 /* Now is a good time to flush some bitmap updates */ 6764 conf->seq_flush++; 6765 spin_unlock_irq(&conf->device_lock); 6766 mddev->bitmap_ops->unplug(mddev, true); 6767 spin_lock_irq(&conf->device_lock); 6768 conf->seq_write = conf->seq_flush; 6769 activate_bit_delay(conf, conf->temp_inactive_list); 6770 } 6771 raid5_activate_delayed(conf); 6772 6773 while ((bio = remove_bio_from_retry(conf, &offset))) { 6774 int ok; 6775 spin_unlock_irq(&conf->device_lock); 6776 ok = retry_aligned_read(conf, bio, offset); 6777 spin_lock_irq(&conf->device_lock); 6778 if (!ok) 6779 break; 6780 handled++; 6781 } 6782 6783 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL, 6784 conf->temp_inactive_list); 6785 if (!batch_size && !released) 6786 break; 6787 handled += batch_size; 6788 6789 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) { 6790 spin_unlock_irq(&conf->device_lock); 6791 md_check_recovery(mddev); 6792 spin_lock_irq(&conf->device_lock); 6793 } 6794 } 6795 pr_debug("%d stripes handled\n", handled); 6796 6797 spin_unlock_irq(&conf->device_lock); 6798 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) && 6799 mutex_trylock(&conf->cache_size_mutex)) { 6800 grow_one_stripe(conf, __GFP_NOWARN); 6801 /* Set flag even if allocation failed. This helps 6802 * slow down allocation requests when mem is short 6803 */ 6804 set_bit(R5_DID_ALLOC, &conf->cache_state); 6805 mutex_unlock(&conf->cache_size_mutex); 6806 } 6807 6808 flush_deferred_bios(conf); 6809 6810 r5l_flush_stripe_to_raid(conf->log); 6811 6812 async_tx_issue_pending_all(); 6813 blk_finish_plug(&plug); 6814 6815 pr_debug("--- raid5d inactive\n"); 6816 } 6817 6818 static ssize_t 6819 raid5_show_stripe_cache_size(struct mddev *mddev, char *page) 6820 { 6821 struct r5conf *conf; 6822 int ret = 0; 6823 spin_lock(&mddev->lock); 6824 conf = mddev->private; 6825 if (conf) 6826 ret = sprintf(page, "%d\n", conf->min_nr_stripes); 6827 spin_unlock(&mddev->lock); 6828 return ret; 6829 } 6830 6831 int 6832 raid5_set_cache_size(struct mddev *mddev, int size) 6833 { 6834 int result = 0; 6835 struct r5conf *conf = mddev->private; 6836 6837 if (size <= 16 || size > 32768) 6838 return -EINVAL; 6839 6840 WRITE_ONCE(conf->min_nr_stripes, size); 6841 mutex_lock(&conf->cache_size_mutex); 6842 while (size < conf->max_nr_stripes && 6843 drop_one_stripe(conf)) 6844 ; 6845 mutex_unlock(&conf->cache_size_mutex); 6846 6847 md_allow_write(mddev); 6848 6849 mutex_lock(&conf->cache_size_mutex); 6850 while (size > conf->max_nr_stripes) 6851 if (!grow_one_stripe(conf, GFP_KERNEL)) { 6852 WRITE_ONCE(conf->min_nr_stripes, conf->max_nr_stripes); 6853 result = -ENOMEM; 6854 break; 6855 } 6856 mutex_unlock(&conf->cache_size_mutex); 6857 6858 return result; 6859 } 6860 EXPORT_SYMBOL(raid5_set_cache_size); 6861 6862 static ssize_t 6863 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len) 6864 { 6865 struct r5conf *conf; 6866 unsigned long new; 6867 int err; 6868 6869 if (len >= PAGE_SIZE) 6870 return -EINVAL; 6871 if (kstrtoul(page, 10, &new)) 6872 return -EINVAL; 6873 err = mddev_lock(mddev); 6874 if (err) 6875 return err; 6876 conf = mddev->private; 6877 if (!conf) 6878 err = -ENODEV; 6879 else 6880 err = raid5_set_cache_size(mddev, new); 6881 mddev_unlock(mddev); 6882 6883 return err ?: len; 6884 } 6885 6886 static struct md_sysfs_entry 6887 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR, 6888 raid5_show_stripe_cache_size, 6889 raid5_store_stripe_cache_size); 6890 6891 static ssize_t 6892 raid5_show_rmw_level(struct mddev *mddev, char *page) 6893 { 6894 struct r5conf *conf = mddev->private; 6895 if (conf) 6896 return sprintf(page, "%d\n", conf->rmw_level); 6897 else 6898 return 0; 6899 } 6900 6901 static ssize_t 6902 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len) 6903 { 6904 struct r5conf *conf = mddev->private; 6905 unsigned long new; 6906 6907 if (!conf) 6908 return -ENODEV; 6909 6910 if (len >= PAGE_SIZE) 6911 return -EINVAL; 6912 6913 if (kstrtoul(page, 10, &new)) 6914 return -EINVAL; 6915 6916 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome) 6917 return -EINVAL; 6918 6919 if (new != PARITY_DISABLE_RMW && 6920 new != PARITY_ENABLE_RMW && 6921 new != PARITY_PREFER_RMW) 6922 return -EINVAL; 6923 6924 conf->rmw_level = new; 6925 return len; 6926 } 6927 6928 static struct md_sysfs_entry 6929 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR, 6930 raid5_show_rmw_level, 6931 raid5_store_rmw_level); 6932 6933 static ssize_t 6934 raid5_show_stripe_size(struct mddev *mddev, char *page) 6935 { 6936 struct r5conf *conf; 6937 int ret = 0; 6938 6939 spin_lock(&mddev->lock); 6940 conf = mddev->private; 6941 if (conf) 6942 ret = sprintf(page, "%lu\n", RAID5_STRIPE_SIZE(conf)); 6943 spin_unlock(&mddev->lock); 6944 return ret; 6945 } 6946 6947 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 6948 static ssize_t 6949 raid5_store_stripe_size(struct mddev *mddev, const char *page, size_t len) 6950 { 6951 struct r5conf *conf; 6952 unsigned long new; 6953 int err; 6954 int size; 6955 6956 if (len >= PAGE_SIZE) 6957 return -EINVAL; 6958 if (kstrtoul(page, 10, &new)) 6959 return -EINVAL; 6960 6961 /* 6962 * The value should not be bigger than PAGE_SIZE. It requires to 6963 * be multiple of DEFAULT_STRIPE_SIZE and the value should be power 6964 * of two. 6965 */ 6966 if (new % DEFAULT_STRIPE_SIZE != 0 || 6967 new > PAGE_SIZE || new == 0 || 6968 new != roundup_pow_of_two(new)) 6969 return -EINVAL; 6970 6971 err = mddev_suspend_and_lock(mddev); 6972 if (err) 6973 return err; 6974 6975 conf = mddev->private; 6976 if (!conf) { 6977 err = -ENODEV; 6978 goto out_unlock; 6979 } 6980 6981 if (new == conf->stripe_size) 6982 goto out_unlock; 6983 6984 pr_debug("md/raid: change stripe_size from %lu to %lu\n", 6985 conf->stripe_size, new); 6986 6987 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 6988 mddev->reshape_position != MaxSector || mddev->sysfs_active) { 6989 err = -EBUSY; 6990 goto out_unlock; 6991 } 6992 6993 mutex_lock(&conf->cache_size_mutex); 6994 size = conf->max_nr_stripes; 6995 6996 shrink_stripes(conf); 6997 6998 conf->stripe_size = new; 6999 conf->stripe_shift = ilog2(new) - 9; 7000 conf->stripe_sectors = new >> 9; 7001 if (grow_stripes(conf, size)) { 7002 pr_warn("md/raid:%s: couldn't allocate buffers\n", 7003 mdname(mddev)); 7004 err = -ENOMEM; 7005 } 7006 mutex_unlock(&conf->cache_size_mutex); 7007 7008 out_unlock: 7009 mddev_unlock_and_resume(mddev); 7010 return err ?: len; 7011 } 7012 7013 static struct md_sysfs_entry 7014 raid5_stripe_size = __ATTR(stripe_size, 0644, 7015 raid5_show_stripe_size, 7016 raid5_store_stripe_size); 7017 #else 7018 static struct md_sysfs_entry 7019 raid5_stripe_size = __ATTR(stripe_size, 0444, 7020 raid5_show_stripe_size, 7021 NULL); 7022 #endif 7023 7024 static ssize_t 7025 raid5_show_preread_threshold(struct mddev *mddev, char *page) 7026 { 7027 struct r5conf *conf; 7028 int ret = 0; 7029 spin_lock(&mddev->lock); 7030 conf = mddev->private; 7031 if (conf) 7032 ret = sprintf(page, "%d\n", conf->bypass_threshold); 7033 spin_unlock(&mddev->lock); 7034 return ret; 7035 } 7036 7037 static ssize_t 7038 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len) 7039 { 7040 struct r5conf *conf; 7041 unsigned long new; 7042 int err; 7043 7044 if (len >= PAGE_SIZE) 7045 return -EINVAL; 7046 if (kstrtoul(page, 10, &new)) 7047 return -EINVAL; 7048 7049 err = mddev_lock(mddev); 7050 if (err) 7051 return err; 7052 conf = mddev->private; 7053 if (!conf) 7054 err = -ENODEV; 7055 else if (new > conf->min_nr_stripes) 7056 err = -EINVAL; 7057 else 7058 conf->bypass_threshold = new; 7059 mddev_unlock(mddev); 7060 return err ?: len; 7061 } 7062 7063 static struct md_sysfs_entry 7064 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold, 7065 S_IRUGO | S_IWUSR, 7066 raid5_show_preread_threshold, 7067 raid5_store_preread_threshold); 7068 7069 static ssize_t 7070 raid5_show_skip_copy(struct mddev *mddev, char *page) 7071 { 7072 struct r5conf *conf; 7073 int ret = 0; 7074 spin_lock(&mddev->lock); 7075 conf = mddev->private; 7076 if (conf) 7077 ret = sprintf(page, "%d\n", conf->skip_copy); 7078 spin_unlock(&mddev->lock); 7079 return ret; 7080 } 7081 7082 static ssize_t 7083 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len) 7084 { 7085 struct r5conf *conf; 7086 unsigned long new; 7087 int err; 7088 7089 if (len >= PAGE_SIZE) 7090 return -EINVAL; 7091 if (kstrtoul(page, 10, &new)) 7092 return -EINVAL; 7093 new = !!new; 7094 7095 err = mddev_suspend_and_lock(mddev); 7096 if (err) 7097 return err; 7098 conf = mddev->private; 7099 if (!conf) 7100 err = -ENODEV; 7101 else if (new != conf->skip_copy) { 7102 struct request_queue *q = mddev->gendisk->queue; 7103 struct queue_limits lim = queue_limits_start_update(q); 7104 7105 conf->skip_copy = new; 7106 if (new) 7107 lim.features |= BLK_FEAT_STABLE_WRITES; 7108 else 7109 lim.features &= ~BLK_FEAT_STABLE_WRITES; 7110 err = queue_limits_commit_update(q, &lim); 7111 } 7112 mddev_unlock_and_resume(mddev); 7113 return err ?: len; 7114 } 7115 7116 static struct md_sysfs_entry 7117 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR, 7118 raid5_show_skip_copy, 7119 raid5_store_skip_copy); 7120 7121 static ssize_t 7122 stripe_cache_active_show(struct mddev *mddev, char *page) 7123 { 7124 struct r5conf *conf = mddev->private; 7125 if (conf) 7126 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes)); 7127 else 7128 return 0; 7129 } 7130 7131 static struct md_sysfs_entry 7132 raid5_stripecache_active = __ATTR_RO(stripe_cache_active); 7133 7134 static ssize_t 7135 raid5_show_group_thread_cnt(struct mddev *mddev, char *page) 7136 { 7137 struct r5conf *conf; 7138 int ret = 0; 7139 spin_lock(&mddev->lock); 7140 conf = mddev->private; 7141 if (conf) 7142 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group); 7143 spin_unlock(&mddev->lock); 7144 return ret; 7145 } 7146 7147 static int alloc_thread_groups(struct r5conf *conf, int cnt, 7148 int *group_cnt, 7149 struct r5worker_group **worker_groups); 7150 static ssize_t 7151 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len) 7152 { 7153 struct r5conf *conf; 7154 unsigned int new; 7155 int err; 7156 struct r5worker_group *new_groups, *old_groups; 7157 int group_cnt; 7158 7159 if (len >= PAGE_SIZE) 7160 return -EINVAL; 7161 if (kstrtouint(page, 10, &new)) 7162 return -EINVAL; 7163 /* 8192 should be big enough */ 7164 if (new > 8192) 7165 return -EINVAL; 7166 7167 err = mddev_suspend_and_lock(mddev); 7168 if (err) 7169 return err; 7170 raid5_quiesce(mddev, true); 7171 7172 conf = mddev->private; 7173 if (!conf) 7174 err = -ENODEV; 7175 else if (new != conf->worker_cnt_per_group) { 7176 old_groups = conf->worker_groups; 7177 if (old_groups) 7178 flush_workqueue(raid5_wq); 7179 7180 err = alloc_thread_groups(conf, new, &group_cnt, &new_groups); 7181 if (!err) { 7182 spin_lock_irq(&conf->device_lock); 7183 conf->group_cnt = group_cnt; 7184 conf->worker_cnt_per_group = new; 7185 conf->worker_groups = new_groups; 7186 spin_unlock_irq(&conf->device_lock); 7187 7188 if (old_groups) 7189 kfree(old_groups[0].workers); 7190 kfree(old_groups); 7191 } 7192 } 7193 7194 raid5_quiesce(mddev, false); 7195 mddev_unlock_and_resume(mddev); 7196 7197 return err ?: len; 7198 } 7199 7200 static struct md_sysfs_entry 7201 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR, 7202 raid5_show_group_thread_cnt, 7203 raid5_store_group_thread_cnt); 7204 7205 static struct attribute *raid5_attrs[] = { 7206 &raid5_stripecache_size.attr, 7207 &raid5_stripecache_active.attr, 7208 &raid5_preread_bypass_threshold.attr, 7209 &raid5_group_thread_cnt.attr, 7210 &raid5_skip_copy.attr, 7211 &raid5_rmw_level.attr, 7212 &raid5_stripe_size.attr, 7213 &r5c_journal_mode.attr, 7214 &ppl_write_hint.attr, 7215 NULL, 7216 }; 7217 static const struct attribute_group raid5_attrs_group = { 7218 .name = NULL, 7219 .attrs = raid5_attrs, 7220 }; 7221 7222 static int alloc_thread_groups(struct r5conf *conf, int cnt, int *group_cnt, 7223 struct r5worker_group **worker_groups) 7224 { 7225 int i, j, k; 7226 ssize_t size; 7227 struct r5worker *workers; 7228 7229 if (cnt == 0) { 7230 *group_cnt = 0; 7231 *worker_groups = NULL; 7232 return 0; 7233 } 7234 *group_cnt = num_possible_nodes(); 7235 size = sizeof(struct r5worker) * cnt; 7236 workers = kcalloc(size, *group_cnt, GFP_NOIO); 7237 *worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group), 7238 GFP_NOIO); 7239 if (!*worker_groups || !workers) { 7240 kfree(workers); 7241 kfree(*worker_groups); 7242 return -ENOMEM; 7243 } 7244 7245 for (i = 0; i < *group_cnt; i++) { 7246 struct r5worker_group *group; 7247 7248 group = &(*worker_groups)[i]; 7249 INIT_LIST_HEAD(&group->handle_list); 7250 INIT_LIST_HEAD(&group->loprio_list); 7251 group->conf = conf; 7252 group->workers = workers + i * cnt; 7253 7254 for (j = 0; j < cnt; j++) { 7255 struct r5worker *worker = group->workers + j; 7256 worker->group = group; 7257 INIT_WORK(&worker->work, raid5_do_work); 7258 7259 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++) 7260 INIT_LIST_HEAD(worker->temp_inactive_list + k); 7261 } 7262 } 7263 7264 return 0; 7265 } 7266 7267 static void free_thread_groups(struct r5conf *conf) 7268 { 7269 if (conf->worker_groups) 7270 kfree(conf->worker_groups[0].workers); 7271 kfree(conf->worker_groups); 7272 conf->worker_groups = NULL; 7273 } 7274 7275 static sector_t 7276 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks) 7277 { 7278 struct r5conf *conf = mddev->private; 7279 7280 if (!sectors) 7281 sectors = mddev->dev_sectors; 7282 if (!raid_disks) 7283 /* size is defined by the smallest of previous and new size */ 7284 raid_disks = min(conf->raid_disks, conf->previous_raid_disks); 7285 7286 sectors &= ~((sector_t)conf->chunk_sectors - 1); 7287 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1); 7288 return sectors * (raid_disks - conf->max_degraded); 7289 } 7290 7291 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 7292 { 7293 safe_put_page(percpu->spare_page); 7294 percpu->spare_page = NULL; 7295 kvfree(percpu->scribble); 7296 percpu->scribble = NULL; 7297 } 7298 7299 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 7300 { 7301 if (conf->level == 6 && !percpu->spare_page) { 7302 percpu->spare_page = alloc_page(GFP_KERNEL); 7303 if (!percpu->spare_page) 7304 return -ENOMEM; 7305 } 7306 7307 if (scribble_alloc(percpu, 7308 max(conf->raid_disks, 7309 conf->previous_raid_disks), 7310 max(conf->chunk_sectors, 7311 conf->prev_chunk_sectors) 7312 / RAID5_STRIPE_SECTORS(conf))) { 7313 free_scratch_buffer(conf, percpu); 7314 return -ENOMEM; 7315 } 7316 7317 local_lock_init(&percpu->lock); 7318 return 0; 7319 } 7320 7321 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node) 7322 { 7323 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node); 7324 7325 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu)); 7326 return 0; 7327 } 7328 7329 static void raid5_free_percpu(struct r5conf *conf) 7330 { 7331 if (!conf->percpu) 7332 return; 7333 7334 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node); 7335 free_percpu(conf->percpu); 7336 } 7337 7338 static void free_conf(struct r5conf *conf) 7339 { 7340 int i; 7341 7342 log_exit(conf); 7343 7344 shrinker_free(conf->shrinker); 7345 free_thread_groups(conf); 7346 shrink_stripes(conf); 7347 raid5_free_percpu(conf); 7348 for (i = 0; i < conf->pool_size; i++) 7349 if (conf->disks[i].extra_page) 7350 put_page(conf->disks[i].extra_page); 7351 kfree(conf->disks); 7352 bioset_exit(&conf->bio_split); 7353 kfree(conf->stripe_hashtbl); 7354 kfree(conf->pending_data); 7355 kfree(conf); 7356 } 7357 7358 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node) 7359 { 7360 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node); 7361 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu); 7362 7363 if (alloc_scratch_buffer(conf, percpu)) { 7364 pr_warn("%s: failed memory allocation for cpu%u\n", 7365 __func__, cpu); 7366 return -ENOMEM; 7367 } 7368 return 0; 7369 } 7370 7371 static int raid5_alloc_percpu(struct r5conf *conf) 7372 { 7373 int err = 0; 7374 7375 conf->percpu = alloc_percpu(struct raid5_percpu); 7376 if (!conf->percpu) 7377 return -ENOMEM; 7378 7379 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node); 7380 if (!err) { 7381 conf->scribble_disks = max(conf->raid_disks, 7382 conf->previous_raid_disks); 7383 conf->scribble_sectors = max(conf->chunk_sectors, 7384 conf->prev_chunk_sectors); 7385 } 7386 return err; 7387 } 7388 7389 static unsigned long raid5_cache_scan(struct shrinker *shrink, 7390 struct shrink_control *sc) 7391 { 7392 struct r5conf *conf = shrink->private_data; 7393 unsigned long ret = SHRINK_STOP; 7394 7395 if (mutex_trylock(&conf->cache_size_mutex)) { 7396 ret= 0; 7397 while (ret < sc->nr_to_scan && 7398 conf->max_nr_stripes > conf->min_nr_stripes) { 7399 if (drop_one_stripe(conf) == 0) { 7400 ret = SHRINK_STOP; 7401 break; 7402 } 7403 ret++; 7404 } 7405 mutex_unlock(&conf->cache_size_mutex); 7406 } 7407 return ret; 7408 } 7409 7410 static unsigned long raid5_cache_count(struct shrinker *shrink, 7411 struct shrink_control *sc) 7412 { 7413 struct r5conf *conf = shrink->private_data; 7414 int max_stripes = READ_ONCE(conf->max_nr_stripes); 7415 int min_stripes = READ_ONCE(conf->min_nr_stripes); 7416 7417 if (max_stripes < min_stripes) 7418 /* unlikely, but not impossible */ 7419 return 0; 7420 return max_stripes - min_stripes; 7421 } 7422 7423 static struct r5conf *setup_conf(struct mddev *mddev) 7424 { 7425 struct r5conf *conf; 7426 int raid_disk, memory, max_disks; 7427 struct md_rdev *rdev; 7428 struct disk_info *disk; 7429 char pers_name[6]; 7430 int i; 7431 int group_cnt; 7432 struct r5worker_group *new_group; 7433 int ret = -ENOMEM; 7434 7435 if (mddev->new_level != 5 7436 && mddev->new_level != 4 7437 && mddev->new_level != 6) { 7438 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n", 7439 mdname(mddev), mddev->new_level); 7440 return ERR_PTR(-EIO); 7441 } 7442 if ((mddev->new_level == 5 7443 && !algorithm_valid_raid5(mddev->new_layout)) || 7444 (mddev->new_level == 6 7445 && !algorithm_valid_raid6(mddev->new_layout))) { 7446 pr_warn("md/raid:%s: layout %d not supported\n", 7447 mdname(mddev), mddev->new_layout); 7448 return ERR_PTR(-EIO); 7449 } 7450 if (mddev->new_level == 6 && mddev->raid_disks < 4) { 7451 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n", 7452 mdname(mddev), mddev->raid_disks); 7453 return ERR_PTR(-EINVAL); 7454 } 7455 7456 if (!mddev->new_chunk_sectors || 7457 (mddev->new_chunk_sectors << 9) % PAGE_SIZE || 7458 !is_power_of_2(mddev->new_chunk_sectors)) { 7459 pr_warn("md/raid:%s: invalid chunk size %d\n", 7460 mdname(mddev), mddev->new_chunk_sectors << 9); 7461 return ERR_PTR(-EINVAL); 7462 } 7463 7464 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL); 7465 if (conf == NULL) 7466 goto abort; 7467 7468 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 7469 conf->stripe_size = DEFAULT_STRIPE_SIZE; 7470 conf->stripe_shift = ilog2(DEFAULT_STRIPE_SIZE) - 9; 7471 conf->stripe_sectors = DEFAULT_STRIPE_SIZE >> 9; 7472 #endif 7473 INIT_LIST_HEAD(&conf->free_list); 7474 INIT_LIST_HEAD(&conf->pending_list); 7475 conf->pending_data = kcalloc(PENDING_IO_MAX, 7476 sizeof(struct r5pending_data), 7477 GFP_KERNEL); 7478 if (!conf->pending_data) 7479 goto abort; 7480 for (i = 0; i < PENDING_IO_MAX; i++) 7481 list_add(&conf->pending_data[i].sibling, &conf->free_list); 7482 /* Don't enable multi-threading by default*/ 7483 if (!alloc_thread_groups(conf, 0, &group_cnt, &new_group)) { 7484 conf->group_cnt = group_cnt; 7485 conf->worker_cnt_per_group = 0; 7486 conf->worker_groups = new_group; 7487 } else 7488 goto abort; 7489 spin_lock_init(&conf->device_lock); 7490 seqcount_spinlock_init(&conf->gen_lock, &conf->device_lock); 7491 mutex_init(&conf->cache_size_mutex); 7492 7493 init_waitqueue_head(&conf->wait_for_quiescent); 7494 init_waitqueue_head(&conf->wait_for_stripe); 7495 init_waitqueue_head(&conf->wait_for_reshape); 7496 INIT_LIST_HEAD(&conf->handle_list); 7497 INIT_LIST_HEAD(&conf->loprio_list); 7498 INIT_LIST_HEAD(&conf->hold_list); 7499 INIT_LIST_HEAD(&conf->delayed_list); 7500 INIT_LIST_HEAD(&conf->bitmap_list); 7501 init_llist_head(&conf->released_stripes); 7502 atomic_set(&conf->active_stripes, 0); 7503 atomic_set(&conf->preread_active_stripes, 0); 7504 atomic_set(&conf->active_aligned_reads, 0); 7505 spin_lock_init(&conf->pending_bios_lock); 7506 conf->batch_bio_dispatch = true; 7507 rdev_for_each(rdev, mddev) { 7508 if (test_bit(Journal, &rdev->flags)) 7509 continue; 7510 if (bdev_nonrot(rdev->bdev)) { 7511 conf->batch_bio_dispatch = false; 7512 break; 7513 } 7514 } 7515 7516 conf->bypass_threshold = BYPASS_THRESHOLD; 7517 conf->recovery_disabled = mddev->recovery_disabled - 1; 7518 7519 conf->raid_disks = mddev->raid_disks; 7520 if (mddev->reshape_position == MaxSector) 7521 conf->previous_raid_disks = mddev->raid_disks; 7522 else 7523 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks; 7524 max_disks = max(conf->raid_disks, conf->previous_raid_disks); 7525 7526 conf->disks = kcalloc(max_disks, sizeof(struct disk_info), 7527 GFP_KERNEL); 7528 7529 if (!conf->disks) 7530 goto abort; 7531 7532 for (i = 0; i < max_disks; i++) { 7533 conf->disks[i].extra_page = alloc_page(GFP_KERNEL); 7534 if (!conf->disks[i].extra_page) 7535 goto abort; 7536 } 7537 7538 ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 7539 if (ret) 7540 goto abort; 7541 conf->mddev = mddev; 7542 7543 ret = -ENOMEM; 7544 conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL); 7545 if (!conf->stripe_hashtbl) 7546 goto abort; 7547 7548 /* We init hash_locks[0] separately to that it can be used 7549 * as the reference lock in the spin_lock_nest_lock() call 7550 * in lock_all_device_hash_locks_irq in order to convince 7551 * lockdep that we know what we are doing. 7552 */ 7553 spin_lock_init(conf->hash_locks); 7554 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 7555 spin_lock_init(conf->hash_locks + i); 7556 7557 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 7558 INIT_LIST_HEAD(conf->inactive_list + i); 7559 7560 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 7561 INIT_LIST_HEAD(conf->temp_inactive_list + i); 7562 7563 atomic_set(&conf->r5c_cached_full_stripes, 0); 7564 INIT_LIST_HEAD(&conf->r5c_full_stripe_list); 7565 atomic_set(&conf->r5c_cached_partial_stripes, 0); 7566 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list); 7567 atomic_set(&conf->r5c_flushing_full_stripes, 0); 7568 atomic_set(&conf->r5c_flushing_partial_stripes, 0); 7569 7570 conf->level = mddev->new_level; 7571 conf->chunk_sectors = mddev->new_chunk_sectors; 7572 ret = raid5_alloc_percpu(conf); 7573 if (ret) 7574 goto abort; 7575 7576 pr_debug("raid456: run(%s) called.\n", mdname(mddev)); 7577 7578 ret = -EIO; 7579 rdev_for_each(rdev, mddev) { 7580 raid_disk = rdev->raid_disk; 7581 if (raid_disk >= max_disks 7582 || raid_disk < 0 || test_bit(Journal, &rdev->flags)) 7583 continue; 7584 disk = conf->disks + raid_disk; 7585 7586 if (test_bit(Replacement, &rdev->flags)) { 7587 if (disk->replacement) 7588 goto abort; 7589 disk->replacement = rdev; 7590 } else { 7591 if (disk->rdev) 7592 goto abort; 7593 disk->rdev = rdev; 7594 } 7595 7596 if (test_bit(In_sync, &rdev->flags)) { 7597 pr_info("md/raid:%s: device %pg operational as raid disk %d\n", 7598 mdname(mddev), rdev->bdev, raid_disk); 7599 } else if (rdev->saved_raid_disk != raid_disk) 7600 /* Cannot rely on bitmap to complete recovery */ 7601 conf->fullsync = 1; 7602 } 7603 7604 conf->level = mddev->new_level; 7605 if (conf->level == 6) { 7606 conf->max_degraded = 2; 7607 if (raid6_call.xor_syndrome) 7608 conf->rmw_level = PARITY_ENABLE_RMW; 7609 else 7610 conf->rmw_level = PARITY_DISABLE_RMW; 7611 } else { 7612 conf->max_degraded = 1; 7613 conf->rmw_level = PARITY_ENABLE_RMW; 7614 } 7615 conf->algorithm = mddev->new_layout; 7616 conf->reshape_progress = mddev->reshape_position; 7617 if (conf->reshape_progress != MaxSector) { 7618 conf->prev_chunk_sectors = mddev->chunk_sectors; 7619 conf->prev_algo = mddev->layout; 7620 } else { 7621 conf->prev_chunk_sectors = conf->chunk_sectors; 7622 conf->prev_algo = conf->algorithm; 7623 } 7624 7625 conf->min_nr_stripes = NR_STRIPES; 7626 if (mddev->reshape_position != MaxSector) { 7627 int stripes = max_t(int, 7628 ((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4, 7629 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4); 7630 conf->min_nr_stripes = max(NR_STRIPES, stripes); 7631 if (conf->min_nr_stripes != NR_STRIPES) 7632 pr_info("md/raid:%s: force stripe size %d for reshape\n", 7633 mdname(mddev), conf->min_nr_stripes); 7634 } 7635 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) + 7636 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024; 7637 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS); 7638 if (grow_stripes(conf, conf->min_nr_stripes)) { 7639 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n", 7640 mdname(mddev), memory); 7641 ret = -ENOMEM; 7642 goto abort; 7643 } else 7644 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory); 7645 /* 7646 * Losing a stripe head costs more than the time to refill it, 7647 * it reduces the queue depth and so can hurt throughput. 7648 * So set it rather large, scaled by number of devices. 7649 */ 7650 conf->shrinker = shrinker_alloc(0, "md-raid5:%s", mdname(mddev)); 7651 if (!conf->shrinker) { 7652 ret = -ENOMEM; 7653 pr_warn("md/raid:%s: couldn't allocate shrinker.\n", 7654 mdname(mddev)); 7655 goto abort; 7656 } 7657 7658 conf->shrinker->seeks = DEFAULT_SEEKS * conf->raid_disks * 4; 7659 conf->shrinker->scan_objects = raid5_cache_scan; 7660 conf->shrinker->count_objects = raid5_cache_count; 7661 conf->shrinker->batch = 128; 7662 conf->shrinker->private_data = conf; 7663 7664 shrinker_register(conf->shrinker); 7665 7666 sprintf(pers_name, "raid%d", mddev->new_level); 7667 rcu_assign_pointer(conf->thread, 7668 md_register_thread(raid5d, mddev, pers_name)); 7669 if (!conf->thread) { 7670 pr_warn("md/raid:%s: couldn't allocate thread.\n", 7671 mdname(mddev)); 7672 ret = -ENOMEM; 7673 goto abort; 7674 } 7675 7676 return conf; 7677 7678 abort: 7679 if (conf) 7680 free_conf(conf); 7681 return ERR_PTR(ret); 7682 } 7683 7684 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded) 7685 { 7686 switch (algo) { 7687 case ALGORITHM_PARITY_0: 7688 if (raid_disk < max_degraded) 7689 return 1; 7690 break; 7691 case ALGORITHM_PARITY_N: 7692 if (raid_disk >= raid_disks - max_degraded) 7693 return 1; 7694 break; 7695 case ALGORITHM_PARITY_0_6: 7696 if (raid_disk == 0 || 7697 raid_disk == raid_disks - 1) 7698 return 1; 7699 break; 7700 case ALGORITHM_LEFT_ASYMMETRIC_6: 7701 case ALGORITHM_RIGHT_ASYMMETRIC_6: 7702 case ALGORITHM_LEFT_SYMMETRIC_6: 7703 case ALGORITHM_RIGHT_SYMMETRIC_6: 7704 if (raid_disk == raid_disks - 1) 7705 return 1; 7706 } 7707 return 0; 7708 } 7709 7710 static int raid5_set_limits(struct mddev *mddev) 7711 { 7712 struct r5conf *conf = mddev->private; 7713 struct queue_limits lim; 7714 int data_disks, stripe; 7715 struct md_rdev *rdev; 7716 7717 /* 7718 * The read-ahead size must cover two whole stripes, which is 7719 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices. 7720 */ 7721 data_disks = conf->previous_raid_disks - conf->max_degraded; 7722 7723 /* 7724 * We can only discard a whole stripe. It doesn't make sense to 7725 * discard data disk but write parity disk 7726 */ 7727 stripe = roundup_pow_of_two(data_disks * (mddev->chunk_sectors << 9)); 7728 7729 md_init_stacking_limits(&lim); 7730 lim.io_min = mddev->chunk_sectors << 9; 7731 lim.io_opt = lim.io_min * (conf->raid_disks - conf->max_degraded); 7732 lim.features |= BLK_FEAT_RAID_PARTIAL_STRIPES_EXPENSIVE; 7733 lim.discard_granularity = stripe; 7734 lim.max_write_zeroes_sectors = 0; 7735 mddev_stack_rdev_limits(mddev, &lim, 0); 7736 rdev_for_each(rdev, mddev) 7737 queue_limits_stack_bdev(&lim, rdev->bdev, rdev->new_data_offset, 7738 mddev->gendisk->disk_name); 7739 7740 /* 7741 * Zeroing is required for discard, otherwise data could be lost. 7742 * 7743 * Consider a scenario: discard a stripe (the stripe could be 7744 * inconsistent if discard_zeroes_data is 0); write one disk of the 7745 * stripe (the stripe could be inconsistent again depending on which 7746 * disks are used to calculate parity); the disk is broken; The stripe 7747 * data of this disk is lost. 7748 * 7749 * We only allow DISCARD if the sysadmin has confirmed that only safe 7750 * devices are in use by setting a module parameter. A better idea 7751 * might be to turn DISCARD into WRITE_ZEROES requests, as that is 7752 * required to be safe. 7753 */ 7754 if (!devices_handle_discard_safely || 7755 lim.max_discard_sectors < (stripe >> 9) || 7756 lim.discard_granularity < stripe) 7757 lim.max_hw_discard_sectors = 0; 7758 7759 /* 7760 * Requests require having a bitmap for each stripe. 7761 * Limit the max sectors based on this. 7762 */ 7763 lim.max_hw_sectors = RAID5_MAX_REQ_STRIPES << RAID5_STRIPE_SHIFT(conf); 7764 7765 /* No restrictions on the number of segments in the request */ 7766 lim.max_segments = USHRT_MAX; 7767 7768 return queue_limits_set(mddev->gendisk->queue, &lim); 7769 } 7770 7771 static int raid5_run(struct mddev *mddev) 7772 { 7773 struct r5conf *conf; 7774 int dirty_parity_disks = 0; 7775 struct md_rdev *rdev; 7776 struct md_rdev *journal_dev = NULL; 7777 sector_t reshape_offset = 0; 7778 int i; 7779 long long min_offset_diff = 0; 7780 int first = 1; 7781 int ret = -EIO; 7782 7783 if (mddev->resync_offset != MaxSector) 7784 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n", 7785 mdname(mddev)); 7786 7787 rdev_for_each(rdev, mddev) { 7788 long long diff; 7789 7790 if (test_bit(Journal, &rdev->flags)) { 7791 journal_dev = rdev; 7792 continue; 7793 } 7794 if (rdev->raid_disk < 0) 7795 continue; 7796 diff = (rdev->new_data_offset - rdev->data_offset); 7797 if (first) { 7798 min_offset_diff = diff; 7799 first = 0; 7800 } else if (mddev->reshape_backwards && 7801 diff < min_offset_diff) 7802 min_offset_diff = diff; 7803 else if (!mddev->reshape_backwards && 7804 diff > min_offset_diff) 7805 min_offset_diff = diff; 7806 } 7807 7808 if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) && 7809 (mddev->bitmap_info.offset || mddev->bitmap_info.file)) { 7810 pr_notice("md/raid:%s: array cannot have both journal and bitmap\n", 7811 mdname(mddev)); 7812 return -EINVAL; 7813 } 7814 7815 if (mddev->reshape_position != MaxSector) { 7816 /* Check that we can continue the reshape. 7817 * Difficulties arise if the stripe we would write to 7818 * next is at or after the stripe we would read from next. 7819 * For a reshape that changes the number of devices, this 7820 * is only possible for a very short time, and mdadm makes 7821 * sure that time appears to have past before assembling 7822 * the array. So we fail if that time hasn't passed. 7823 * For a reshape that keeps the number of devices the same 7824 * mdadm must be monitoring the reshape can keeping the 7825 * critical areas read-only and backed up. It will start 7826 * the array in read-only mode, so we check for that. 7827 */ 7828 sector_t here_new, here_old; 7829 int old_disks; 7830 int max_degraded = (mddev->level == 6 ? 2 : 1); 7831 int chunk_sectors; 7832 int new_data_disks; 7833 7834 if (journal_dev) { 7835 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n", 7836 mdname(mddev)); 7837 return -EINVAL; 7838 } 7839 7840 if (mddev->new_level != mddev->level) { 7841 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n", 7842 mdname(mddev)); 7843 return -EINVAL; 7844 } 7845 old_disks = mddev->raid_disks - mddev->delta_disks; 7846 /* reshape_position must be on a new-stripe boundary, and one 7847 * further up in new geometry must map after here in old 7848 * geometry. 7849 * If the chunk sizes are different, then as we perform reshape 7850 * in units of the largest of the two, reshape_position needs 7851 * be a multiple of the largest chunk size times new data disks. 7852 */ 7853 here_new = mddev->reshape_position; 7854 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors); 7855 new_data_disks = mddev->raid_disks - max_degraded; 7856 if (sector_div(here_new, chunk_sectors * new_data_disks)) { 7857 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n", 7858 mdname(mddev)); 7859 return -EINVAL; 7860 } 7861 reshape_offset = here_new * chunk_sectors; 7862 /* here_new is the stripe we will write to */ 7863 here_old = mddev->reshape_position; 7864 sector_div(here_old, chunk_sectors * (old_disks-max_degraded)); 7865 /* here_old is the first stripe that we might need to read 7866 * from */ 7867 if (mddev->delta_disks == 0) { 7868 /* We cannot be sure it is safe to start an in-place 7869 * reshape. It is only safe if user-space is monitoring 7870 * and taking constant backups. 7871 * mdadm always starts a situation like this in 7872 * readonly mode so it can take control before 7873 * allowing any writes. So just check for that. 7874 */ 7875 if (abs(min_offset_diff) >= mddev->chunk_sectors && 7876 abs(min_offset_diff) >= mddev->new_chunk_sectors) 7877 /* not really in-place - so OK */; 7878 else if (mddev->ro == 0) { 7879 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n", 7880 mdname(mddev)); 7881 return -EINVAL; 7882 } 7883 } else if (mddev->reshape_backwards 7884 ? (here_new * chunk_sectors + min_offset_diff <= 7885 here_old * chunk_sectors) 7886 : (here_new * chunk_sectors >= 7887 here_old * chunk_sectors + (-min_offset_diff))) { 7888 /* Reading from the same stripe as writing to - bad */ 7889 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n", 7890 mdname(mddev)); 7891 return -EINVAL; 7892 } 7893 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev)); 7894 /* OK, we should be able to continue; */ 7895 } else { 7896 BUG_ON(mddev->level != mddev->new_level); 7897 BUG_ON(mddev->layout != mddev->new_layout); 7898 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors); 7899 BUG_ON(mddev->delta_disks != 0); 7900 } 7901 7902 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && 7903 test_bit(MD_HAS_PPL, &mddev->flags)) { 7904 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n", 7905 mdname(mddev)); 7906 clear_bit(MD_HAS_PPL, &mddev->flags); 7907 clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags); 7908 } 7909 7910 if (mddev->private == NULL) 7911 conf = setup_conf(mddev); 7912 else 7913 conf = mddev->private; 7914 7915 if (IS_ERR(conf)) 7916 return PTR_ERR(conf); 7917 7918 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 7919 if (!journal_dev) { 7920 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n", 7921 mdname(mddev)); 7922 mddev->ro = 1; 7923 set_disk_ro(mddev->gendisk, 1); 7924 } else if (mddev->resync_offset == MaxSector) 7925 set_bit(MD_JOURNAL_CLEAN, &mddev->flags); 7926 } 7927 7928 conf->min_offset_diff = min_offset_diff; 7929 rcu_assign_pointer(mddev->thread, conf->thread); 7930 rcu_assign_pointer(conf->thread, NULL); 7931 mddev->private = conf; 7932 7933 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks; 7934 i++) { 7935 rdev = conf->disks[i].rdev; 7936 if (!rdev) 7937 continue; 7938 if (conf->disks[i].replacement && 7939 conf->reshape_progress != MaxSector) { 7940 /* replacements and reshape simply do not mix. */ 7941 pr_warn("md: cannot handle concurrent replacement and reshape.\n"); 7942 goto abort; 7943 } 7944 if (test_bit(In_sync, &rdev->flags)) 7945 continue; 7946 /* This disc is not fully in-sync. However if it 7947 * just stored parity (beyond the recovery_offset), 7948 * when we don't need to be concerned about the 7949 * array being dirty. 7950 * When reshape goes 'backwards', we never have 7951 * partially completed devices, so we only need 7952 * to worry about reshape going forwards. 7953 */ 7954 /* Hack because v0.91 doesn't store recovery_offset properly. */ 7955 if (mddev->major_version == 0 && 7956 mddev->minor_version > 90) 7957 rdev->recovery_offset = reshape_offset; 7958 7959 if (rdev->recovery_offset < reshape_offset) { 7960 /* We need to check old and new layout */ 7961 if (!only_parity(rdev->raid_disk, 7962 conf->algorithm, 7963 conf->raid_disks, 7964 conf->max_degraded)) 7965 continue; 7966 } 7967 if (!only_parity(rdev->raid_disk, 7968 conf->prev_algo, 7969 conf->previous_raid_disks, 7970 conf->max_degraded)) 7971 continue; 7972 dirty_parity_disks++; 7973 } 7974 7975 /* 7976 * 0 for a fully functional array, 1 or 2 for a degraded array. 7977 */ 7978 mddev->degraded = raid5_calc_degraded(conf); 7979 7980 if (has_failed(conf)) { 7981 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n", 7982 mdname(mddev), mddev->degraded, conf->raid_disks); 7983 goto abort; 7984 } 7985 7986 /* device size must be a multiple of chunk size */ 7987 mddev->dev_sectors &= ~((sector_t)mddev->chunk_sectors - 1); 7988 mddev->resync_max_sectors = mddev->dev_sectors; 7989 7990 if (mddev->degraded > dirty_parity_disks && 7991 mddev->resync_offset != MaxSector) { 7992 if (test_bit(MD_HAS_PPL, &mddev->flags)) 7993 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n", 7994 mdname(mddev)); 7995 else if (mddev->ok_start_degraded) 7996 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n", 7997 mdname(mddev)); 7998 else { 7999 pr_crit("md/raid:%s: cannot start dirty degraded array.\n", 8000 mdname(mddev)); 8001 goto abort; 8002 } 8003 } 8004 8005 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n", 8006 mdname(mddev), conf->level, 8007 mddev->raid_disks-mddev->degraded, mddev->raid_disks, 8008 mddev->new_layout); 8009 8010 print_raid5_conf(conf); 8011 8012 if (conf->reshape_progress != MaxSector) { 8013 conf->reshape_safe = conf->reshape_progress; 8014 atomic_set(&conf->reshape_stripes, 0); 8015 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8016 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8017 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8018 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8019 } 8020 8021 /* Ok, everything is just fine now */ 8022 if (mddev->to_remove == &raid5_attrs_group) 8023 mddev->to_remove = NULL; 8024 else if (mddev->kobj.sd && 8025 sysfs_create_group(&mddev->kobj, &raid5_attrs_group)) 8026 pr_warn("raid5: failed to create sysfs attributes for %s\n", 8027 mdname(mddev)); 8028 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 8029 8030 if (!mddev_is_dm(mddev)) { 8031 ret = raid5_set_limits(mddev); 8032 if (ret) 8033 goto abort; 8034 } 8035 8036 if (log_init(conf, journal_dev, raid5_has_ppl(conf))) 8037 goto abort; 8038 8039 return 0; 8040 abort: 8041 md_unregister_thread(mddev, &mddev->thread); 8042 print_raid5_conf(conf); 8043 free_conf(conf); 8044 mddev->private = NULL; 8045 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev)); 8046 return ret; 8047 } 8048 8049 static void raid5_free(struct mddev *mddev, void *priv) 8050 { 8051 struct r5conf *conf = priv; 8052 8053 free_conf(conf); 8054 mddev->to_remove = &raid5_attrs_group; 8055 } 8056 8057 static void raid5_status(struct seq_file *seq, struct mddev *mddev) 8058 { 8059 struct r5conf *conf = mddev->private; 8060 int i; 8061 8062 lockdep_assert_held(&mddev->lock); 8063 8064 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level, 8065 conf->chunk_sectors / 2, mddev->layout); 8066 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded); 8067 for (i = 0; i < conf->raid_disks; i++) { 8068 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev); 8069 8070 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 8071 } 8072 seq_printf (seq, "]"); 8073 } 8074 8075 static void print_raid5_conf(struct r5conf *conf) 8076 { 8077 struct md_rdev *rdev; 8078 int i; 8079 8080 pr_debug("RAID conf printout:\n"); 8081 if (!conf) { 8082 pr_debug("(conf==NULL)\n"); 8083 return; 8084 } 8085 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level, 8086 conf->raid_disks, 8087 conf->raid_disks - conf->mddev->degraded); 8088 8089 for (i = 0; i < conf->raid_disks; i++) { 8090 rdev = conf->disks[i].rdev; 8091 if (rdev) 8092 pr_debug(" disk %d, o:%d, dev:%pg\n", 8093 i, !test_bit(Faulty, &rdev->flags), 8094 rdev->bdev); 8095 } 8096 } 8097 8098 static int raid5_spare_active(struct mddev *mddev) 8099 { 8100 int i; 8101 struct r5conf *conf = mddev->private; 8102 struct md_rdev *rdev, *replacement; 8103 int count = 0; 8104 unsigned long flags; 8105 8106 for (i = 0; i < conf->raid_disks; i++) { 8107 rdev = conf->disks[i].rdev; 8108 replacement = conf->disks[i].replacement; 8109 if (replacement 8110 && replacement->recovery_offset == MaxSector 8111 && !test_bit(Faulty, &replacement->flags) 8112 && !test_and_set_bit(In_sync, &replacement->flags)) { 8113 /* Replacement has just become active. */ 8114 if (!rdev 8115 || !test_and_clear_bit(In_sync, &rdev->flags)) 8116 count++; 8117 if (rdev) { 8118 /* Replaced device not technically faulty, 8119 * but we need to be sure it gets removed 8120 * and never re-added. 8121 */ 8122 set_bit(Faulty, &rdev->flags); 8123 sysfs_notify_dirent_safe( 8124 rdev->sysfs_state); 8125 } 8126 sysfs_notify_dirent_safe(replacement->sysfs_state); 8127 } else if (rdev 8128 && rdev->recovery_offset == MaxSector 8129 && !test_bit(Faulty, &rdev->flags) 8130 && !test_and_set_bit(In_sync, &rdev->flags)) { 8131 count++; 8132 sysfs_notify_dirent_safe(rdev->sysfs_state); 8133 } 8134 } 8135 spin_lock_irqsave(&conf->device_lock, flags); 8136 mddev->degraded = raid5_calc_degraded(conf); 8137 spin_unlock_irqrestore(&conf->device_lock, flags); 8138 print_raid5_conf(conf); 8139 return count; 8140 } 8141 8142 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 8143 { 8144 struct r5conf *conf = mddev->private; 8145 int err = 0; 8146 int number = rdev->raid_disk; 8147 struct md_rdev **rdevp; 8148 struct disk_info *p; 8149 struct md_rdev *tmp; 8150 8151 print_raid5_conf(conf); 8152 if (test_bit(Journal, &rdev->flags) && conf->log) { 8153 /* 8154 * we can't wait pending write here, as this is called in 8155 * raid5d, wait will deadlock. 8156 * neilb: there is no locking about new writes here, 8157 * so this cannot be safe. 8158 */ 8159 if (atomic_read(&conf->active_stripes) || 8160 atomic_read(&conf->r5c_cached_full_stripes) || 8161 atomic_read(&conf->r5c_cached_partial_stripes)) { 8162 return -EBUSY; 8163 } 8164 log_exit(conf); 8165 return 0; 8166 } 8167 if (unlikely(number >= conf->pool_size)) 8168 return 0; 8169 p = conf->disks + number; 8170 if (rdev == p->rdev) 8171 rdevp = &p->rdev; 8172 else if (rdev == p->replacement) 8173 rdevp = &p->replacement; 8174 else 8175 return 0; 8176 8177 if (number >= conf->raid_disks && 8178 conf->reshape_progress == MaxSector) 8179 clear_bit(In_sync, &rdev->flags); 8180 8181 if (test_bit(In_sync, &rdev->flags) || 8182 atomic_read(&rdev->nr_pending)) { 8183 err = -EBUSY; 8184 goto abort; 8185 } 8186 /* Only remove non-faulty devices if recovery 8187 * isn't possible. 8188 */ 8189 if (!test_bit(Faulty, &rdev->flags) && 8190 mddev->recovery_disabled != conf->recovery_disabled && 8191 !has_failed(conf) && 8192 (!p->replacement || p->replacement == rdev) && 8193 number < conf->raid_disks) { 8194 err = -EBUSY; 8195 goto abort; 8196 } 8197 WRITE_ONCE(*rdevp, NULL); 8198 if (!err) { 8199 err = log_modify(conf, rdev, false); 8200 if (err) 8201 goto abort; 8202 } 8203 8204 tmp = p->replacement; 8205 if (tmp) { 8206 /* We must have just cleared 'rdev' */ 8207 WRITE_ONCE(p->rdev, tmp); 8208 clear_bit(Replacement, &tmp->flags); 8209 WRITE_ONCE(p->replacement, NULL); 8210 8211 if (!err) 8212 err = log_modify(conf, tmp, true); 8213 } 8214 8215 clear_bit(WantReplacement, &rdev->flags); 8216 abort: 8217 8218 print_raid5_conf(conf); 8219 return err; 8220 } 8221 8222 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev) 8223 { 8224 struct r5conf *conf = mddev->private; 8225 int ret, err = -EEXIST; 8226 int disk; 8227 struct disk_info *p; 8228 struct md_rdev *tmp; 8229 int first = 0; 8230 int last = conf->raid_disks - 1; 8231 8232 if (test_bit(Journal, &rdev->flags)) { 8233 if (conf->log) 8234 return -EBUSY; 8235 8236 rdev->raid_disk = 0; 8237 /* 8238 * The array is in readonly mode if journal is missing, so no 8239 * write requests running. We should be safe 8240 */ 8241 ret = log_init(conf, rdev, false); 8242 if (ret) 8243 return ret; 8244 8245 ret = r5l_start(conf->log); 8246 if (ret) 8247 return ret; 8248 8249 return 0; 8250 } 8251 if (mddev->recovery_disabled == conf->recovery_disabled) 8252 return -EBUSY; 8253 8254 if (rdev->saved_raid_disk < 0 && has_failed(conf)) 8255 /* no point adding a device */ 8256 return -EINVAL; 8257 8258 if (rdev->raid_disk >= 0) 8259 first = last = rdev->raid_disk; 8260 8261 /* 8262 * find the disk ... but prefer rdev->saved_raid_disk 8263 * if possible. 8264 */ 8265 if (rdev->saved_raid_disk >= first && 8266 rdev->saved_raid_disk <= last && 8267 conf->disks[rdev->saved_raid_disk].rdev == NULL) 8268 first = rdev->saved_raid_disk; 8269 8270 for (disk = first; disk <= last; disk++) { 8271 p = conf->disks + disk; 8272 if (p->rdev == NULL) { 8273 clear_bit(In_sync, &rdev->flags); 8274 rdev->raid_disk = disk; 8275 if (rdev->saved_raid_disk != disk) 8276 conf->fullsync = 1; 8277 WRITE_ONCE(p->rdev, rdev); 8278 8279 err = log_modify(conf, rdev, true); 8280 8281 goto out; 8282 } 8283 } 8284 for (disk = first; disk <= last; disk++) { 8285 p = conf->disks + disk; 8286 tmp = p->rdev; 8287 if (test_bit(WantReplacement, &tmp->flags) && 8288 mddev->reshape_position == MaxSector && 8289 p->replacement == NULL) { 8290 clear_bit(In_sync, &rdev->flags); 8291 set_bit(Replacement, &rdev->flags); 8292 rdev->raid_disk = disk; 8293 err = 0; 8294 conf->fullsync = 1; 8295 WRITE_ONCE(p->replacement, rdev); 8296 break; 8297 } 8298 } 8299 out: 8300 print_raid5_conf(conf); 8301 return err; 8302 } 8303 8304 static int raid5_resize(struct mddev *mddev, sector_t sectors) 8305 { 8306 /* no resync is happening, and there is enough space 8307 * on all devices, so we can resize. 8308 * We need to make sure resync covers any new space. 8309 * If the array is shrinking we should possibly wait until 8310 * any io in the removed space completes, but it hardly seems 8311 * worth it. 8312 */ 8313 sector_t newsize; 8314 struct r5conf *conf = mddev->private; 8315 int ret; 8316 8317 if (raid5_has_log(conf) || raid5_has_ppl(conf)) 8318 return -EINVAL; 8319 sectors &= ~((sector_t)conf->chunk_sectors - 1); 8320 newsize = raid5_size(mddev, sectors, mddev->raid_disks); 8321 if (mddev->external_size && 8322 mddev->array_sectors > newsize) 8323 return -EINVAL; 8324 8325 ret = mddev->bitmap_ops->resize(mddev, sectors, 0, false); 8326 if (ret) 8327 return ret; 8328 8329 md_set_array_sectors(mddev, newsize); 8330 if (sectors > mddev->dev_sectors && 8331 mddev->resync_offset > mddev->dev_sectors) { 8332 mddev->resync_offset = mddev->dev_sectors; 8333 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8334 } 8335 mddev->dev_sectors = sectors; 8336 mddev->resync_max_sectors = sectors; 8337 return 0; 8338 } 8339 8340 static int check_stripe_cache(struct mddev *mddev) 8341 { 8342 /* Can only proceed if there are plenty of stripe_heads. 8343 * We need a minimum of one full stripe,, and for sensible progress 8344 * it is best to have about 4 times that. 8345 * If we require 4 times, then the default 256 4K stripe_heads will 8346 * allow for chunk sizes up to 256K, which is probably OK. 8347 * If the chunk size is greater, user-space should request more 8348 * stripe_heads first. 8349 */ 8350 struct r5conf *conf = mddev->private; 8351 if (((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4 8352 > conf->min_nr_stripes || 8353 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4 8354 > conf->min_nr_stripes) { 8355 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n", 8356 mdname(mddev), 8357 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9) 8358 / RAID5_STRIPE_SIZE(conf))*4); 8359 return 0; 8360 } 8361 return 1; 8362 } 8363 8364 static int check_reshape(struct mddev *mddev) 8365 { 8366 struct r5conf *conf = mddev->private; 8367 8368 if (raid5_has_log(conf) || raid5_has_ppl(conf)) 8369 return -EINVAL; 8370 if (mddev->delta_disks == 0 && 8371 mddev->new_layout == mddev->layout && 8372 mddev->new_chunk_sectors == mddev->chunk_sectors) 8373 return 0; /* nothing to do */ 8374 if (has_failed(conf)) 8375 return -EINVAL; 8376 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) { 8377 /* We might be able to shrink, but the devices must 8378 * be made bigger first. 8379 * For raid6, 4 is the minimum size. 8380 * Otherwise 2 is the minimum 8381 */ 8382 int min = 2; 8383 if (mddev->level == 6) 8384 min = 4; 8385 if (mddev->raid_disks + mddev->delta_disks < min) 8386 return -EINVAL; 8387 } 8388 8389 if (!check_stripe_cache(mddev)) 8390 return -ENOSPC; 8391 8392 if (mddev->new_chunk_sectors > mddev->chunk_sectors || 8393 mddev->delta_disks > 0) 8394 if (resize_chunks(conf, 8395 conf->previous_raid_disks 8396 + max(0, mddev->delta_disks), 8397 max(mddev->new_chunk_sectors, 8398 mddev->chunk_sectors) 8399 ) < 0) 8400 return -ENOMEM; 8401 8402 if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size) 8403 return 0; /* never bother to shrink */ 8404 return resize_stripes(conf, (conf->previous_raid_disks 8405 + mddev->delta_disks)); 8406 } 8407 8408 static int raid5_start_reshape(struct mddev *mddev) 8409 { 8410 struct r5conf *conf = mddev->private; 8411 struct md_rdev *rdev; 8412 int spares = 0; 8413 int i; 8414 unsigned long flags; 8415 8416 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 8417 return -EBUSY; 8418 8419 if (!check_stripe_cache(mddev)) 8420 return -ENOSPC; 8421 8422 if (has_failed(conf)) 8423 return -EINVAL; 8424 8425 /* raid5 can't handle concurrent reshape and recovery */ 8426 if (mddev->resync_offset < MaxSector) 8427 return -EBUSY; 8428 for (i = 0; i < conf->raid_disks; i++) 8429 if (conf->disks[i].replacement) 8430 return -EBUSY; 8431 8432 rdev_for_each(rdev, mddev) { 8433 if (!test_bit(In_sync, &rdev->flags) 8434 && !test_bit(Faulty, &rdev->flags)) 8435 spares++; 8436 } 8437 8438 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded) 8439 /* Not enough devices even to make a degraded array 8440 * of that size 8441 */ 8442 return -EINVAL; 8443 8444 /* Refuse to reduce size of the array. Any reductions in 8445 * array size must be through explicit setting of array_size 8446 * attribute. 8447 */ 8448 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks) 8449 < mddev->array_sectors) { 8450 pr_warn("md/raid:%s: array size must be reduced before number of disks\n", 8451 mdname(mddev)); 8452 return -EINVAL; 8453 } 8454 8455 atomic_set(&conf->reshape_stripes, 0); 8456 spin_lock_irq(&conf->device_lock); 8457 write_seqcount_begin(&conf->gen_lock); 8458 conf->previous_raid_disks = conf->raid_disks; 8459 conf->raid_disks += mddev->delta_disks; 8460 conf->prev_chunk_sectors = conf->chunk_sectors; 8461 conf->chunk_sectors = mddev->new_chunk_sectors; 8462 conf->prev_algo = conf->algorithm; 8463 conf->algorithm = mddev->new_layout; 8464 conf->generation++; 8465 /* Code that selects data_offset needs to see the generation update 8466 * if reshape_progress has been set - so a memory barrier needed. 8467 */ 8468 smp_mb(); 8469 if (mddev->reshape_backwards) 8470 conf->reshape_progress = raid5_size(mddev, 0, 0); 8471 else 8472 conf->reshape_progress = 0; 8473 conf->reshape_safe = conf->reshape_progress; 8474 write_seqcount_end(&conf->gen_lock); 8475 spin_unlock_irq(&conf->device_lock); 8476 8477 /* Now make sure any requests that proceeded on the assumption 8478 * the reshape wasn't running - like Discard or Read - have 8479 * completed. 8480 */ 8481 raid5_quiesce(mddev, true); 8482 raid5_quiesce(mddev, false); 8483 8484 /* Add some new drives, as many as will fit. 8485 * We know there are enough to make the newly sized array work. 8486 * Don't add devices if we are reducing the number of 8487 * devices in the array. This is because it is not possible 8488 * to correctly record the "partially reconstructed" state of 8489 * such devices during the reshape and confusion could result. 8490 */ 8491 if (mddev->delta_disks >= 0) { 8492 rdev_for_each(rdev, mddev) 8493 if (rdev->raid_disk < 0 && 8494 !test_bit(Faulty, &rdev->flags)) { 8495 if (raid5_add_disk(mddev, rdev) == 0) { 8496 if (rdev->raid_disk 8497 >= conf->previous_raid_disks) 8498 set_bit(In_sync, &rdev->flags); 8499 else 8500 rdev->recovery_offset = 0; 8501 8502 /* Failure here is OK */ 8503 sysfs_link_rdev(mddev, rdev); 8504 } 8505 } else if (rdev->raid_disk >= conf->previous_raid_disks 8506 && !test_bit(Faulty, &rdev->flags)) { 8507 /* This is a spare that was manually added */ 8508 set_bit(In_sync, &rdev->flags); 8509 } 8510 8511 /* When a reshape changes the number of devices, 8512 * ->degraded is measured against the larger of the 8513 * pre and post number of devices. 8514 */ 8515 spin_lock_irqsave(&conf->device_lock, flags); 8516 mddev->degraded = raid5_calc_degraded(conf); 8517 spin_unlock_irqrestore(&conf->device_lock, flags); 8518 } 8519 mddev->raid_disks = conf->raid_disks; 8520 mddev->reshape_position = conf->reshape_progress; 8521 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8522 8523 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8524 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8525 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 8526 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8527 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8528 conf->reshape_checkpoint = jiffies; 8529 md_new_event(); 8530 return 0; 8531 } 8532 8533 /* This is called from the reshape thread and should make any 8534 * changes needed in 'conf' 8535 */ 8536 static void end_reshape(struct r5conf *conf) 8537 { 8538 8539 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 8540 struct md_rdev *rdev; 8541 8542 spin_lock_irq(&conf->device_lock); 8543 conf->previous_raid_disks = conf->raid_disks; 8544 md_finish_reshape(conf->mddev); 8545 smp_wmb(); 8546 conf->reshape_progress = MaxSector; 8547 conf->mddev->reshape_position = MaxSector; 8548 rdev_for_each(rdev, conf->mddev) 8549 if (rdev->raid_disk >= 0 && 8550 !test_bit(Journal, &rdev->flags) && 8551 !test_bit(In_sync, &rdev->flags)) 8552 rdev->recovery_offset = MaxSector; 8553 spin_unlock_irq(&conf->device_lock); 8554 wake_up(&conf->wait_for_reshape); 8555 8556 mddev_update_io_opt(conf->mddev, 8557 conf->raid_disks - conf->max_degraded); 8558 } 8559 } 8560 8561 /* This is called from the raid5d thread with mddev_lock held. 8562 * It makes config changes to the device. 8563 */ 8564 static void raid5_finish_reshape(struct mddev *mddev) 8565 { 8566 struct r5conf *conf = mddev->private; 8567 struct md_rdev *rdev; 8568 8569 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8570 8571 if (mddev->delta_disks <= 0) { 8572 int d; 8573 spin_lock_irq(&conf->device_lock); 8574 mddev->degraded = raid5_calc_degraded(conf); 8575 spin_unlock_irq(&conf->device_lock); 8576 for (d = conf->raid_disks ; 8577 d < conf->raid_disks - mddev->delta_disks; 8578 d++) { 8579 rdev = conf->disks[d].rdev; 8580 if (rdev) 8581 clear_bit(In_sync, &rdev->flags); 8582 rdev = conf->disks[d].replacement; 8583 if (rdev) 8584 clear_bit(In_sync, &rdev->flags); 8585 } 8586 } 8587 mddev->layout = conf->algorithm; 8588 mddev->chunk_sectors = conf->chunk_sectors; 8589 mddev->reshape_position = MaxSector; 8590 mddev->delta_disks = 0; 8591 mddev->reshape_backwards = 0; 8592 } 8593 } 8594 8595 static void raid5_quiesce(struct mddev *mddev, int quiesce) 8596 { 8597 struct r5conf *conf = mddev->private; 8598 8599 if (quiesce) { 8600 /* stop all writes */ 8601 lock_all_device_hash_locks_irq(conf); 8602 /* '2' tells resync/reshape to pause so that all 8603 * active stripes can drain 8604 */ 8605 r5c_flush_cache(conf, INT_MAX); 8606 /* need a memory barrier to make sure read_one_chunk() sees 8607 * quiesce started and reverts to slow (locked) path. 8608 */ 8609 smp_store_release(&conf->quiesce, 2); 8610 wait_event_cmd(conf->wait_for_quiescent, 8611 atomic_read(&conf->active_stripes) == 0 && 8612 atomic_read(&conf->active_aligned_reads) == 0, 8613 unlock_all_device_hash_locks_irq(conf), 8614 lock_all_device_hash_locks_irq(conf)); 8615 conf->quiesce = 1; 8616 unlock_all_device_hash_locks_irq(conf); 8617 /* allow reshape to continue */ 8618 wake_up(&conf->wait_for_reshape); 8619 } else { 8620 /* re-enable writes */ 8621 lock_all_device_hash_locks_irq(conf); 8622 conf->quiesce = 0; 8623 wake_up(&conf->wait_for_quiescent); 8624 wake_up(&conf->wait_for_reshape); 8625 unlock_all_device_hash_locks_irq(conf); 8626 } 8627 log_quiesce(conf, quiesce); 8628 } 8629 8630 static void *raid45_takeover_raid0(struct mddev *mddev, int level) 8631 { 8632 struct r0conf *raid0_conf = mddev->private; 8633 sector_t sectors; 8634 8635 /* for raid0 takeover only one zone is supported */ 8636 if (raid0_conf->nr_strip_zones > 1) { 8637 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n", 8638 mdname(mddev)); 8639 return ERR_PTR(-EINVAL); 8640 } 8641 8642 sectors = raid0_conf->strip_zone[0].zone_end; 8643 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev); 8644 mddev->dev_sectors = sectors; 8645 mddev->new_level = level; 8646 mddev->new_layout = ALGORITHM_PARITY_N; 8647 mddev->new_chunk_sectors = mddev->chunk_sectors; 8648 mddev->raid_disks += 1; 8649 mddev->delta_disks = 1; 8650 /* make sure it will be not marked as dirty */ 8651 mddev->resync_offset = MaxSector; 8652 8653 return setup_conf(mddev); 8654 } 8655 8656 static void *raid5_takeover_raid1(struct mddev *mddev) 8657 { 8658 int chunksect; 8659 void *ret; 8660 8661 if (mddev->raid_disks != 2 || 8662 mddev->degraded > 1) 8663 return ERR_PTR(-EINVAL); 8664 8665 /* Should check if there are write-behind devices? */ 8666 8667 chunksect = 64*2; /* 64K by default */ 8668 8669 /* The array must be an exact multiple of chunksize */ 8670 while (chunksect && (mddev->array_sectors & (chunksect-1))) 8671 chunksect >>= 1; 8672 8673 if ((chunksect<<9) < RAID5_STRIPE_SIZE((struct r5conf *)mddev->private)) 8674 /* array size does not allow a suitable chunk size */ 8675 return ERR_PTR(-EINVAL); 8676 8677 mddev->new_level = 5; 8678 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC; 8679 mddev->new_chunk_sectors = chunksect; 8680 8681 ret = setup_conf(mddev); 8682 if (!IS_ERR(ret)) 8683 mddev_clear_unsupported_flags(mddev, 8684 UNSUPPORTED_MDDEV_FLAGS); 8685 return ret; 8686 } 8687 8688 static void *raid5_takeover_raid6(struct mddev *mddev) 8689 { 8690 int new_layout; 8691 8692 switch (mddev->layout) { 8693 case ALGORITHM_LEFT_ASYMMETRIC_6: 8694 new_layout = ALGORITHM_LEFT_ASYMMETRIC; 8695 break; 8696 case ALGORITHM_RIGHT_ASYMMETRIC_6: 8697 new_layout = ALGORITHM_RIGHT_ASYMMETRIC; 8698 break; 8699 case ALGORITHM_LEFT_SYMMETRIC_6: 8700 new_layout = ALGORITHM_LEFT_SYMMETRIC; 8701 break; 8702 case ALGORITHM_RIGHT_SYMMETRIC_6: 8703 new_layout = ALGORITHM_RIGHT_SYMMETRIC; 8704 break; 8705 case ALGORITHM_PARITY_0_6: 8706 new_layout = ALGORITHM_PARITY_0; 8707 break; 8708 case ALGORITHM_PARITY_N: 8709 new_layout = ALGORITHM_PARITY_N; 8710 break; 8711 default: 8712 return ERR_PTR(-EINVAL); 8713 } 8714 mddev->new_level = 5; 8715 mddev->new_layout = new_layout; 8716 mddev->delta_disks = -1; 8717 mddev->raid_disks -= 1; 8718 return setup_conf(mddev); 8719 } 8720 8721 static int raid5_check_reshape(struct mddev *mddev) 8722 { 8723 /* For a 2-drive array, the layout and chunk size can be changed 8724 * immediately as not restriping is needed. 8725 * For larger arrays we record the new value - after validation 8726 * to be used by a reshape pass. 8727 */ 8728 struct r5conf *conf = mddev->private; 8729 int new_chunk = mddev->new_chunk_sectors; 8730 8731 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout)) 8732 return -EINVAL; 8733 if (new_chunk > 0) { 8734 if (!is_power_of_2(new_chunk)) 8735 return -EINVAL; 8736 if (new_chunk < (PAGE_SIZE>>9)) 8737 return -EINVAL; 8738 if (mddev->array_sectors & (new_chunk-1)) 8739 /* not factor of array size */ 8740 return -EINVAL; 8741 } 8742 8743 /* They look valid */ 8744 8745 if (mddev->raid_disks == 2) { 8746 /* can make the change immediately */ 8747 if (mddev->new_layout >= 0) { 8748 conf->algorithm = mddev->new_layout; 8749 mddev->layout = mddev->new_layout; 8750 } 8751 if (new_chunk > 0) { 8752 conf->chunk_sectors = new_chunk ; 8753 mddev->chunk_sectors = new_chunk; 8754 } 8755 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8756 md_wakeup_thread(mddev->thread); 8757 } 8758 return check_reshape(mddev); 8759 } 8760 8761 static int raid6_check_reshape(struct mddev *mddev) 8762 { 8763 int new_chunk = mddev->new_chunk_sectors; 8764 8765 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout)) 8766 return -EINVAL; 8767 if (new_chunk > 0) { 8768 if (!is_power_of_2(new_chunk)) 8769 return -EINVAL; 8770 if (new_chunk < (PAGE_SIZE >> 9)) 8771 return -EINVAL; 8772 if (mddev->array_sectors & (new_chunk-1)) 8773 /* not factor of array size */ 8774 return -EINVAL; 8775 } 8776 8777 /* They look valid */ 8778 return check_reshape(mddev); 8779 } 8780 8781 static void *raid5_takeover(struct mddev *mddev) 8782 { 8783 /* raid5 can take over: 8784 * raid0 - if there is only one strip zone - make it a raid4 layout 8785 * raid1 - if there are two drives. We need to know the chunk size 8786 * raid4 - trivial - just use a raid4 layout. 8787 * raid6 - Providing it is a *_6 layout 8788 */ 8789 if (mddev->level == 0) 8790 return raid45_takeover_raid0(mddev, 5); 8791 if (mddev->level == 1) 8792 return raid5_takeover_raid1(mddev); 8793 if (mddev->level == 4) { 8794 mddev->new_layout = ALGORITHM_PARITY_N; 8795 mddev->new_level = 5; 8796 return setup_conf(mddev); 8797 } 8798 if (mddev->level == 6) 8799 return raid5_takeover_raid6(mddev); 8800 8801 return ERR_PTR(-EINVAL); 8802 } 8803 8804 static void *raid4_takeover(struct mddev *mddev) 8805 { 8806 /* raid4 can take over: 8807 * raid0 - if there is only one strip zone 8808 * raid5 - if layout is right 8809 */ 8810 if (mddev->level == 0) 8811 return raid45_takeover_raid0(mddev, 4); 8812 if (mddev->level == 5 && 8813 mddev->layout == ALGORITHM_PARITY_N) { 8814 mddev->new_layout = 0; 8815 mddev->new_level = 4; 8816 return setup_conf(mddev); 8817 } 8818 return ERR_PTR(-EINVAL); 8819 } 8820 8821 static struct md_personality raid5_personality; 8822 8823 static void *raid6_takeover(struct mddev *mddev) 8824 { 8825 /* Currently can only take over a raid5. We map the 8826 * personality to an equivalent raid6 personality 8827 * with the Q block at the end. 8828 */ 8829 int new_layout; 8830 8831 if (mddev->pers != &raid5_personality) 8832 return ERR_PTR(-EINVAL); 8833 if (mddev->degraded > 1) 8834 return ERR_PTR(-EINVAL); 8835 if (mddev->raid_disks > 253) 8836 return ERR_PTR(-EINVAL); 8837 if (mddev->raid_disks < 3) 8838 return ERR_PTR(-EINVAL); 8839 8840 switch (mddev->layout) { 8841 case ALGORITHM_LEFT_ASYMMETRIC: 8842 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6; 8843 break; 8844 case ALGORITHM_RIGHT_ASYMMETRIC: 8845 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6; 8846 break; 8847 case ALGORITHM_LEFT_SYMMETRIC: 8848 new_layout = ALGORITHM_LEFT_SYMMETRIC_6; 8849 break; 8850 case ALGORITHM_RIGHT_SYMMETRIC: 8851 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6; 8852 break; 8853 case ALGORITHM_PARITY_0: 8854 new_layout = ALGORITHM_PARITY_0_6; 8855 break; 8856 case ALGORITHM_PARITY_N: 8857 new_layout = ALGORITHM_PARITY_N; 8858 break; 8859 default: 8860 return ERR_PTR(-EINVAL); 8861 } 8862 mddev->new_level = 6; 8863 mddev->new_layout = new_layout; 8864 mddev->delta_disks = 1; 8865 mddev->raid_disks += 1; 8866 return setup_conf(mddev); 8867 } 8868 8869 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf) 8870 { 8871 struct r5conf *conf; 8872 int err; 8873 8874 err = mddev_suspend_and_lock(mddev); 8875 if (err) 8876 return err; 8877 conf = mddev->private; 8878 if (!conf) { 8879 mddev_unlock_and_resume(mddev); 8880 return -ENODEV; 8881 } 8882 8883 if (strncmp(buf, "ppl", 3) == 0) { 8884 /* ppl only works with RAID 5 */ 8885 if (!raid5_has_ppl(conf) && conf->level == 5) { 8886 err = log_init(conf, NULL, true); 8887 if (!err) { 8888 err = resize_stripes(conf, conf->pool_size); 8889 if (err) 8890 log_exit(conf); 8891 } 8892 } else 8893 err = -EINVAL; 8894 } else if (strncmp(buf, "resync", 6) == 0) { 8895 if (raid5_has_ppl(conf)) { 8896 log_exit(conf); 8897 err = resize_stripes(conf, conf->pool_size); 8898 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) && 8899 r5l_log_disk_error(conf)) { 8900 bool journal_dev_exists = false; 8901 struct md_rdev *rdev; 8902 8903 rdev_for_each(rdev, mddev) 8904 if (test_bit(Journal, &rdev->flags)) { 8905 journal_dev_exists = true; 8906 break; 8907 } 8908 8909 if (!journal_dev_exists) 8910 clear_bit(MD_HAS_JOURNAL, &mddev->flags); 8911 else /* need remove journal device first */ 8912 err = -EBUSY; 8913 } else 8914 err = -EINVAL; 8915 } else { 8916 err = -EINVAL; 8917 } 8918 8919 if (!err) 8920 md_update_sb(mddev, 1); 8921 8922 mddev_unlock_and_resume(mddev); 8923 8924 return err; 8925 } 8926 8927 static int raid5_start(struct mddev *mddev) 8928 { 8929 struct r5conf *conf = mddev->private; 8930 8931 return r5l_start(conf->log); 8932 } 8933 8934 /* 8935 * This is only used for dm-raid456, caller already frozen sync_thread, hence 8936 * if rehsape is still in progress, io that is waiting for reshape can never be 8937 * done now, hence wake up and handle those IO. 8938 */ 8939 static void raid5_prepare_suspend(struct mddev *mddev) 8940 { 8941 struct r5conf *conf = mddev->private; 8942 8943 wake_up(&conf->wait_for_reshape); 8944 } 8945 8946 static struct md_personality raid6_personality = 8947 { 8948 .head = { 8949 .type = MD_PERSONALITY, 8950 .id = ID_RAID6, 8951 .name = "raid6", 8952 .owner = THIS_MODULE, 8953 }, 8954 8955 .make_request = raid5_make_request, 8956 .run = raid5_run, 8957 .start = raid5_start, 8958 .free = raid5_free, 8959 .status = raid5_status, 8960 .error_handler = raid5_error, 8961 .hot_add_disk = raid5_add_disk, 8962 .hot_remove_disk= raid5_remove_disk, 8963 .spare_active = raid5_spare_active, 8964 .sync_request = raid5_sync_request, 8965 .resize = raid5_resize, 8966 .size = raid5_size, 8967 .check_reshape = raid6_check_reshape, 8968 .start_reshape = raid5_start_reshape, 8969 .finish_reshape = raid5_finish_reshape, 8970 .quiesce = raid5_quiesce, 8971 .takeover = raid6_takeover, 8972 .change_consistency_policy = raid5_change_consistency_policy, 8973 .prepare_suspend = raid5_prepare_suspend, 8974 .bitmap_sector = raid5_bitmap_sector, 8975 }; 8976 static struct md_personality raid5_personality = 8977 { 8978 .head = { 8979 .type = MD_PERSONALITY, 8980 .id = ID_RAID5, 8981 .name = "raid5", 8982 .owner = THIS_MODULE, 8983 }, 8984 8985 .make_request = raid5_make_request, 8986 .run = raid5_run, 8987 .start = raid5_start, 8988 .free = raid5_free, 8989 .status = raid5_status, 8990 .error_handler = raid5_error, 8991 .hot_add_disk = raid5_add_disk, 8992 .hot_remove_disk= raid5_remove_disk, 8993 .spare_active = raid5_spare_active, 8994 .sync_request = raid5_sync_request, 8995 .resize = raid5_resize, 8996 .size = raid5_size, 8997 .check_reshape = raid5_check_reshape, 8998 .start_reshape = raid5_start_reshape, 8999 .finish_reshape = raid5_finish_reshape, 9000 .quiesce = raid5_quiesce, 9001 .takeover = raid5_takeover, 9002 .change_consistency_policy = raid5_change_consistency_policy, 9003 .prepare_suspend = raid5_prepare_suspend, 9004 .bitmap_sector = raid5_bitmap_sector, 9005 }; 9006 9007 static struct md_personality raid4_personality = 9008 { 9009 .head = { 9010 .type = MD_PERSONALITY, 9011 .id = ID_RAID4, 9012 .name = "raid4", 9013 .owner = THIS_MODULE, 9014 }, 9015 9016 .make_request = raid5_make_request, 9017 .run = raid5_run, 9018 .start = raid5_start, 9019 .free = raid5_free, 9020 .status = raid5_status, 9021 .error_handler = raid5_error, 9022 .hot_add_disk = raid5_add_disk, 9023 .hot_remove_disk= raid5_remove_disk, 9024 .spare_active = raid5_spare_active, 9025 .sync_request = raid5_sync_request, 9026 .resize = raid5_resize, 9027 .size = raid5_size, 9028 .check_reshape = raid5_check_reshape, 9029 .start_reshape = raid5_start_reshape, 9030 .finish_reshape = raid5_finish_reshape, 9031 .quiesce = raid5_quiesce, 9032 .takeover = raid4_takeover, 9033 .change_consistency_policy = raid5_change_consistency_policy, 9034 .prepare_suspend = raid5_prepare_suspend, 9035 .bitmap_sector = raid5_bitmap_sector, 9036 }; 9037 9038 static int __init raid5_init(void) 9039 { 9040 int ret; 9041 9042 raid5_wq = alloc_workqueue("raid5wq", 9043 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_SYSFS, 0); 9044 if (!raid5_wq) 9045 return -ENOMEM; 9046 9047 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE, 9048 "md/raid5:prepare", 9049 raid456_cpu_up_prepare, 9050 raid456_cpu_dead); 9051 if (ret) 9052 goto err_destroy_wq; 9053 9054 ret = register_md_submodule(&raid6_personality.head); 9055 if (ret) 9056 goto err_cpuhp_remove; 9057 9058 ret = register_md_submodule(&raid5_personality.head); 9059 if (ret) 9060 goto err_unregister_raid6; 9061 9062 ret = register_md_submodule(&raid4_personality.head); 9063 if (ret) 9064 goto err_unregister_raid5; 9065 9066 return 0; 9067 9068 err_unregister_raid5: 9069 unregister_md_submodule(&raid5_personality.head); 9070 err_unregister_raid6: 9071 unregister_md_submodule(&raid6_personality.head); 9072 err_cpuhp_remove: 9073 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE); 9074 err_destroy_wq: 9075 destroy_workqueue(raid5_wq); 9076 return ret; 9077 } 9078 9079 static void __exit raid5_exit(void) 9080 { 9081 unregister_md_submodule(&raid6_personality.head); 9082 unregister_md_submodule(&raid5_personality.head); 9083 unregister_md_submodule(&raid4_personality.head); 9084 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE); 9085 destroy_workqueue(raid5_wq); 9086 } 9087 9088 module_init(raid5_init); 9089 module_exit(raid5_exit); 9090 MODULE_LICENSE("GPL"); 9091 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD"); 9092 MODULE_ALIAS("md-personality-4"); /* RAID5 */ 9093 MODULE_ALIAS("md-raid5"); 9094 MODULE_ALIAS("md-raid4"); 9095 MODULE_ALIAS("md-level-5"); 9096 MODULE_ALIAS("md-level-4"); 9097 MODULE_ALIAS("md-personality-8"); /* RAID6 */ 9098 MODULE_ALIAS("md-raid6"); 9099 MODULE_ALIAS("md-level-6"); 9100 9101 /* This used to be two separate modules, they were: */ 9102 MODULE_ALIAS("raid5"); 9103 MODULE_ALIAS("raid6"); 9104